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1. INTRODUCTION

The Burr system of distributions was proposed by Burr, for modelling a wide variety of
data observed in real life [8]. Subsequently, among this system of distributions, the Burr XII
distribution received special attention by researchers, see Tadikamalla [22] and the references
therein. The Burr XII distribution is given by the cumulative distribution function (CDF)

(1.1) FY (y;α, β) = 1− (1 + yβ)−α, y > 0,

with corresponding probability density function (PDF)

(1.2) fY (y;α, β) = αβyβ−1(1 + yβ)−(α+1), y > 0.

with α > 0 and β > 0, both of which are shape parameters. The Burr XII distribution gets
its flexibility through the shape parameters β and α. Figures 1 and 2 display the PDF of
the Burr XII distribution for different values of β (keeping α fixed), and α (keeping β fixed),
respectively. Note that for β ≤ 1, the distribution is L-shaped, while it is unimodal for β > 1,
as observed by Beirlant et al. [6].

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

PDF of two−parameter Burr XII distribution

y

f(
y)

β= 0.25
β= 0.5
β= 1
β= 2
β= 3

Figure 1: Density function of the Burr XII model for different values of β when α = 1.
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Figure 2: Density function of the Burr XII model for different values of α when β = 1.

Zimmer et al. [24] advocated for the use of the Burr XII distribution as an alternative
to lognormal and Weibull distributions, and mentioned the many advantages this model has.
The log-logistic distribution, which is another important lifetime model, is a special case of
the Burr XII distribution; this also is a motivation to use the Burr XII distribution to model
failure-time data [24].

Despite its great flexibility, however, the Burr XII distribution was relatively less used
in survival and reliability studies, especially compared to the well-known models like Weibull,
gamma etc. Recently, some researchers have used the Burr XII model in the context of
failure-time data. For example, Soliman [21] modelled progressively type-II censored data by
the Burr XII distribution. Silva et al. [19] and Silva et al. [20] discussed regression models
for the Burr XII distribution based on censored data.

Left truncated right censored (LTRC) data are commonly observed in studies involving
lifetimes of experimental units [14]. For example, in many reliability and survival experiments,
the main event of interest is the failure of experimental units. Due to practical time constraints
on sample collection in such experiments, the observed samples are often either left truncated,
or right censored, or both. In medical studies, for example, groups of subjects are often
followed over time for observing the occurrence of certain disease or event such as death.
LTRC data arise naturally in situations of this type. Another example of LTRC data may
be found in oraganisational or social science studies where start-up businesses are observed
over a time-window during which they may fail.

As left truncation and right censoring are quite commonly observed features among
data arising out of survival and reliability studies, it is of natural importance to develop
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inferential methods for the Burr XII distribution based on LTRC data, especially as due
to its flexible nature the Burr XII model has been posed as a general purpose model for
failure-time data by Zimmer et al. [24]. To use the Burr XII distribution as a general purpose
failure-time model, it is important to develop inferential methods for the model based on
LTRC data which is one of the most common and general structures among incomplete data
formats in lifetime studies. However, so far, no researcher has attempted modelling LTRC
data by using the Burr XII distribution.

In this article, we discuss modelling LTRC failure-time data by the Burr XII distri-
bution in detail. First, we consider the two-parameter version of the Burr XII distribution,
as it is the more frequently used version. The stochastic expectation maximization (St-EM)
algorithm has emerged as a stable, efficient, and convenient method for parameter estimation
for incomplete data problems. For estimating the parameters of the Burr XII model, we
develop the steps of the St-EM algorithm based on LTRC data. We discuss two approaches
for constructing confidence intervals, one of them being based on an adaptation of the miss-
ing information principle of Louis [15], and the other being based on parametric bootstrap
approach. For comparison purposes, we also use the Newton-Raphson (NR) method which
is a direct approach to obtain maximum likelihood estimates by optimizing the observed
likelihood function. Through detailed Monte Carlo simulations, we study the performance of
the proposed methods of inferences. Further, we extend our discussion of inferential methods
to the cases for a covariate-included model, and the three-parameter Burr XII distribution.
These are the main contributions of these paper.

The article is organized as follows. A brief introduction to LTRC data is provided
in Section 2. The St-EM algorithm for the two-parameter Burr XII model based on LTRC
data is discussed in detail in Section 3; both point and interval estimation procedures are
presented. The direct method of obtaining MLEs is presented in this section too. This
section also contains a discussion of inferential methods for a covariate-included model. The
detailed results of the numerical experiments are presented in Section 4. Then, in Section 5,
discussion of the St-EM algorithm is extended to a three-parameter Burr XII model with a
scale parameter in addition to the two shape parameters α and β. This three-parameter model
is also used in failure-time data modelling [24]. An application of the inferential methods in
predicting the expected number of failures in a future time interval is presented in Section
6. Along with an estimate of the expected number of failures in a future time interval, we
provide asymptotic confidence intervals for this expected number of failures. This is of direct
practical relevance, as in many situations like maintenance, the researcher may want to have
an estimate of the expected number of future failures during a certain time period. In Section
7, a numerical illustration based on a real data is provided. Finally, mentioning some future
directions of research in this area, the paper is concluded with some remarks in Section 8.

2. LEFT TRUNCATED RIGHT CENSORED DATA

Hong et al. [13] analyzed LTRC data obtained from an electrical industry in the US.
Following the setup used by Hong et al. [13], Balakrishnan and Mitra [1, 2, 3, 4, 5] discussed
the EM algorithm based on LTRC data for some commonly used failure-time models such as
lognormal, Weibull, gamma, and generalized gamma; see also Mitra et al. [16].
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Consider a life-test involving n industrial units. Let T denote the underlying failure-
time variable. Let L and R denote points of left truncation and right censoring, respectively;
that is, we suppose that the study starts at time point L and continues till time point R.
Some units start operating before L, while some start after L. No information are available
for units that fail before L, making the data left truncated. Some units may not have failed
when the study ends at R, and those units become right censored at R. A unit that starts
operating before L, has to live through a threshold time, say κL, before its failure become
an observable event. We call κL the left truncation time. An indicator variable ν indicates
whether a unit is left truncated or not; for a left truncated unit ν is 0, otherwise it is 1.
Note that failures are observable only in the window from L to R. As a result, for each
operating unit, there is a time κR depending on the starting point of the unit, such that the
unit is right censored if T > κR. As different units may have different starting points, values
of κL and κR may be differ from unit to unit. Thus in effect, for each unit we can define the
observed lifetime as Y =Min(T, κR), provided Y > κL. Let δ denote an indicator variable for
censoring; δ is 0 for a right censored unit, and 1 otherwise.

For subsequent formulation of the problem, let S1 and S2 denote index sets for untrun-
cated and truncated units, respectively, that is,

S1 = {i : νi = 1}, and S2 = {i : νi = 0},

where νi is the truncation indicator for the i−th unit, i = 1, ..., n. Incorporating the censoring
indicator δ, we define the index sets

S11 = {i : i ∈ S1, δi = 1}, S10 = {i : i ∈ S1, δi = 0},

S21 = {i : i ∈ S2, δi = 1}, S20 = {i : i ∈ S2, δi = 0}.

We further define Scen:
Scen = S10 ∪ S20.

We assume that the underlying lifetime T follows the Burr XII distribution with parameters
α and β, i.e., T ∼ Burr(α, β).

Figure 3: Illustration of LTRC Data.
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In Figure 3, we present an illustration of the structure of LTRC data we consider here.
We would also like to point out that this is a very general structure that can accommodate
units with different combinations of truncation and censoring: left truncated and right cen-
sored, left truncated and uncensored, untruncated and right censored, and untruncated and
uncensored. This enhances the scope of this model greatly, to be applied to a wide array of
observational studies involving failure-times.

3. INFERENCE VIA THE STOCHASTIC EM ALGORITHM

The St-EM algorithm has emerged as a strong tool for analyzing incomplete data. Com-
pared to the traditional EM algorithm, the St-EM algorithm has some distinct advantages.
For example, in the EM algorithm, one needs to analytically calculate the conditional expec-
tation of the complete data log-likelihood given the observed data and the current parameter
values. Analytical calculation of this conditional expectation may be very difficult, or even
intractable, for complex problems. However, in St-EM algorithm, one does not require the
analytic calculation of the conditional expectations unlike the EM algorithm. Moreover, in
the EM algorithm, the sequence of estimated parameters may get trapped in saddle points
depending on the nature of the likelihood surface. But in the St-EM algorithm, due to its
stochastic nature, one does not encounter such a problem [23].

The St-EM algorithm has been used for various incomplete data problems in statistical
literature; see [9], [23], for example. The asymptotic properties of the St-EM algorithm have
been explored by Nielsen [17], among others. Bordes and Chauveau [7] and Ng and Ye [18]
recommended the use of the St-EM algorithm for LTRC data.

In St-EM algorithm, for each censored failure-time, a randomly drawn observation from
an appropriate conditional distribution is obtained given the observed data and the current
value of the parameter. By replacing all censored failure times by such randomly drawn obser-
vations, a pseudo-complete dataset is obtained and the pseudo-complete likelihood function is
constructed. Then, the pseudo-complete likelihood is optimized to obtain updated parameter
estimates. The whole process is then iterated large number of times, to get a sequence of
estimates corresponding to each stage of the algorithm. Finally, after discarding some initial
values of the estimates for burn-in, the remaining values are averaged to obtain the final
estimates.

Note that corresponding to the underlying failure-time variable T , the observed data
can be written as

t = Υ ∪ Γ,

where Υ = {ti : δi = 1} and Γ = {ti : δi = 0} contain the observed and right censored failure-
times, respectively. For each unit in Γ, we generate a random observation from the conditional
distribution

fTi|Ti>yi
(ti|ti > yi;θ) =

fT (ti;θ)
1− FT (yi;θ)

= αβtβ−1
i (1 + tβi )−(α+1)(1 + yβ

i )α, ti > yi,(3.1)

where θ = (α, β), and yi is the censored failure-time. By replacing the censored failure-times
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by these randomly drawn observations, we obtain the pseudo-complete data

tPC = Υ ∪ ΓPC .

In the EM algorithm, the complete data likelihood is constructed considering the situation
where there would be no incompleteness in the data. In case of the St-EM algorithm, having
imputed the censored lifetimes by randomly generated observations from the above condi-
tional distributions, the pseudo-complete data tPC will now be used in a similar fashion, i.e.,
as if there was no censoring in the data. For a unit that belongs to the untruncated group, the
contribution to the likelihood would be fT (ti;θ); and for a unit that belongs to the left trun-
cated group, the contribution would be fT (ti;θ)

1−FT (κLi;θ) . Therefore, by using the pseudo-complete
data, the pseudo-complete likelihood is constructed as

LPC(θ) =
∏
i∈S1

{fT (ti;θ)} ×
∏
i∈S2

{
fT (ti;θ)

1− FT (κLi;θ)

}

=
n∏

i=1

{αβtβ−1
i (1 + tβi )−(α+1)} ×

∏
i∈S2

{(1 + κβ
Li)

α}.(3.2)

The pseudo-complete log-likelihood function, given by

log LPC(θ) = n(log α + log β) +
n∑

i=1

[
(β − 1) log ti − (α + 1) log(1 + tβi )

]
+ α

∑
i∈S2

log(1 + κβ
Li),(3.3)

which we shall denote by QPC(θ), essentially serves as the pseudo-Q function in this setup,
where the Q-function in the traditional EM algorithm is defined as

Q(θ,θ(k)) = Eθ(k) [log LC(θ)|Γ],

with log LC(θ) as the complete data log-likelihood, and θ(k) as the available value of the
parameter vector at the k-th stage of iteration.

To optimize QPC(θ), for fixed β, equating the first derivative of QPC(θ) with respect
to α to zero we obtain

(3.4) α =
n∑n

i=1 log(1 + tβi )−
∑

i∈S2
log(1 + κβ

Li)
= α(β).

Substituting (3.4) in (3.3), we obtain the pseudo-profile log-likelihood in β as

pPC(β) = n log β + β

n∑
i=1

log ti − n log
{ n∑

i=1

log(1 + tβi )−
∑
i∈S2

log(1 + κβ
Li)
}

−
n∑

i=1

log(1 + tβi ).(3.5)

Note that maximizing pPC(β) in (3.5) is a one-dimensional optimization problem, and can be
achieved by using any routine optimizer of a statistical software, for example, the maxNR()
function in the “maxLik” package [12] available in R software.
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The following algorithm implements the St-EM algorithm for obtaining estimates of
the model parameters.

Algorithm 1: At the k-th stage of the algorithm:

Stochastic Expectation (St-E) step:

Step 1: The available parameter value is θ(k) = (α(k), β(k));

Step 2: Replace each unit in Γ by generating observations from fTi|Ti>yi
(ti|ti>yi;θ(k))

to obtain pseudo-complete data tPC ;

Step 3: With tPC thus obtained in Step 2, construct QPC(θ(k)) following (3.3);

Maximization (M) step:

Step 4: Choose an initial value β
(k)
init;

Step 5: Optimize pPC(β) in (3.5) to get β̂(k+1) subject to a tolerance level;

Step 6: Using (3.4), calculate α̂(k+1) = α(β̂(k+1));

Step 7: With the updated estimate θ(k+1) = (α(k+1), β(k+1)), go back to Step 2.

These steps are iterated N times to get a sequence of estimates θ(0), θ(1), θ(2), ..., θ(N).
After discarding first M of these estimates for burn-in, the remaining ones are averaged to
get estimates of α and β. As mentioned in Ye and Ng [23], sufficiently large values of N and
M must be chosen for very complex data, while the values as 1000 and 100, respectively may
be good enough for most problems.

The algorithm starts with an initial value for the parameter vector θ(0) = (α(0), β(0)).
For such optimization problems to numerically estimate the parameters, moments estimates
may be used as the initial values, provided the moments of the concerned distribution exist
and are easily available, for example, in closed form expressions. For the Burr XII distribution,
however, moments estimates based on left truncated data are not available in closed form.
A practical solution to the problem of selecting initial values for the parameters α and β in
this case would be to use a two-dimensional grid search approach. However, it may be noted
here that use of a two-dimensional grid search approach followed by the St-EM algorithm
will be computationally costly. In this work, for given sets of true values of the parameters
α and β, we have tried different arbitrarily chosen initial values for the St-EM algorithm.
And we have noticed that the St-EM algorithm as described above is reasonably robust to
the choice of initial values. That is, the final estimates obtained from the algorithm by using
different choices of initial values are quite close. In this connection, it may be noted here
that the direct method of optimization, for example, the Newton-Raphson method, is heavily
dependent on the choice of initial parameters in general.
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3.1. Regression

In many applications, failure-times of experimental units depend on covariates. For
example, failure-time of electrical machines may depend on temperature and humidity of
the place of operation; failure-time of patients may depend on their respective demographic
conditions etc. In view of this, it is of interest to consider a failure-time model that can
accommodate relevant covariate information.

Regression models for Burr XII distribution have been considered by some authors.
Beirlant et al. [6], in the context of a financial application involving portfolio segmentation,
discussed different strategies for accommodating covariate information in the Burr XII model
through the shape and scale parameters. Regression model for the log-Burr XII distribution
was considered by Silva et al. [19], where covariate information was modelled as a linear
function of the location parameter of the log-transformed model.

In this paper, we use an approach suggested in Beirlant et al. [6]. However, for param-
eter estimation, instead of using the observed likelihood based estimation approach which
may not be computationally stable for complex models, we indicate the use of stochastic EM
algorithm which is more reliable for its convergence.

We allow the shape parameter β in (1.1) to vary with covariates. Thus, when the x

represent the vector of covariates, we assume the model

(3.6) β(x) = exp(γ ′x),

where γ is the vector of regression parameters. Under this assumption, our model for the
failure-time variable Y becomes

(3.7) Yi|xi ∼ Burr(α, βi), with βi = exp(γ ′xi), i = 1, ..., n.

The conditional distributions for generating observations are given in this case by

fTi|Ti>yi
(ti|ti > yi;α, γ,xi) = α exp(γ ′xi)t

exp(γ′xi)−1
i (1 + t

exp(γ′xi)
i )−(α+1)

× (1 + y
exp(γ′xi)
i )α, ti > yi.(3.8)

Corresponding to the censored failure-times, given the covariates, observations are generated
from (3.8). Based on the pseudo-complete data, the pseudo-complete likelihood function is

LPC(α, γ) =
n∏

i=1

{
α exp(γ ′xi)t

exp(γ′xi)−1
i (1 + t

exp(γ′xi)
i )−(α+1)

}
×
∏
i∈S2

{
(1 + κ

exp(γ′xi)
Li )α

}
.(3.9)

The corresponding pseudo-complete log-likelihood function is given by

log LPC(α, γ) = n log α +
n∑

i=1

γ ′xi +
n∑

i=1

(exp(γ ′xi)− 1) log ti

− (α + 1)
n∑

i=1

log(1 + t
exp(γ′xi)
i ) + α

∑
i∈S2

log(1 + κ
exp(γ′xi)
Li ),(3.10)
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which is also the pseudo-Q function, denoted by QPC(α, γ). Equating the first derivative of
(3.10) with respect to α to zero, we have

(3.11) α =
n∑n

i=1 log(1 + t
exp(γ′xi)
i )−

∑
i∈S2

log(1 + κ
exp(γ′xi)
Li )

= α(γ).

Substituting (3.11) in (3.10), the profile-likelihood in γ is obtained as

pPC(γ) =
n∑

i=1

γ ′xi +
n∑

i=1

exp(γ ′xi) log ti −
n∑

i=1

log(1 + t
exp(γ′xi)
i )

− n log

{
n∑

i=1

log(1 + t
exp(γ′xi)
i )−

∑
i∈S2

log(1 + κ
exp(γ′xi)
Li )

}
.(3.12)

The profile log-likelihood in the regression parameters γ can be maximized first using some
numerical approach such as Newton-Raphson or Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm. Then, the α can be estimated using (3.11). An algorithm similar to Algorithm 1
can be easily constructed for this purpose.

3.2. Asymptotic confidence intervals

For obtaining asymptotic confidence intervals for the parameters, we use the missing
information principle of Louis [15] that says

(3.13) Observed Information = Complete Information−Missing Information.

For the traditional EM algorithm, Louis’ principle is used to obtain the asymptotic variances
of the estimates. For the St-EM algorithm also, an adaptation of the Louis’ principle is
possible, see Ye and Ng [23]. Mitra et al. [16] used the same approach in connection to the
Lehmann family of distributions. The approach of Ye and Ng [23] is as follows.

Let S(θ, tPC) and H(θ, tPC) denote the first, and negative of the second derivatives
of QPC(θ) given in (3.3) with respect to θ. Then, by the missing information principle,
following Ye and Ng [23], the observed information matrix is given by

(3.14) I(θ) = E[H(θ, t)|y]− E[S2(θ, t)|y] + {E[S(θ, t)|y]}2.

For evaluating I(θ) in (3.14) for a given a LTRC data, multiple samples Γ(m)
PC , m = 1, ...,M

are imputed corresponding to the censored data Γ = {i : δi = 0}, thus obtaining multiple
pseudo-complete datasets t

(m)
PC , m = 1, ...,M . Then, I(θ) is estimated as

(3.15) Î(θ) =
1
M

M∑
m=1

H(θ, t
(m)
PC )− 1

M

M∑
m=1

[S(θ, t
(m)
PC )]2 +

[
1
M

M∑
m=1

S(θ, t
(m)
PC )

]2 ∣∣∣∣∣
θ=bθ

.

Finally, the asymptotic variance-covariance matrix of the estimates is obtained by inverting
Î(θ), and the asymptotic confidence intervals for the parameters can be constructed using
the asymptotic variances.
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A second approach we use here is based on the bootstrap procedure. Bootstrap confi-
dence intervals [11] are widely used in statistical literature. These intervals are particularly
of interest for LTRC data, as the presence of truncation and censoring often tend to bias
the estimates of parameters. We use the following algorithm to obtain parametric bootstrap
confidence intervals. Here, SP is the starting point, and TP is the termination point of units.

Algorithm 2:

Step 1: Based on the given LTRC data, obtain the estimate θ̂ = (α̂, β̂);

Step 2: Construct empirical distribution of SPs for left truncated units;

Step 3: Construct empirical distribution of SPs for untruncated units;

Step 4: To get a bootstrap sample (preserving proportion of truncation):

Step 4.1: Sample SPs for truncated units from empirical distribution of
Step 2;

Step 4.2: Sample SPs for untruncated units from empirical distribution of
Step 3;

Step 4.3: Generate failure-times from Burr(α̂, β̂);
Step 4.4: Add failure-times to SPs, to obtain corresponding TPs;
Step 4.5: Determine censoring status of units according to their TPs;

Step 5: For this bootstrap sample, obtain bootstrap estimate θ̂∗ = (α̂∗, β̂∗);

Step 6: Repeat Steps 4 and 5 B times, to obtain θ̂∗
1, θ̂

∗
2, ..., θ̂

∗
B.

The value of B, i.e., the number of bootstrap samples, should be sufficient to stabilize
the estimated bootstrap bias and variance of θ̂. For constructing parametric bootstrap con-
fidence intervals based on LTRC data from the Burr XII distribution, we recommend using
B ≥ 200.

A 100(1− δ)% parametric bootstrap confidence interval for α is then given by(
α̂− bα − zδ/2

√
vα, α̂− bα + zδ/2

√
vα

)
,

where bα and vα are the bootstrap bias and bootstrap variance, respectively. Here, zδ is
the upper δ-percentile point of standard normal distribution. The 100(1− δ)% parametric
bootstrap confidence intervals for β are constructed in a similar way.

3.3. Direct optimization of observed likelihood

Considering the four different types of units with different combinations of left trunca-
tion and right censoring as mentioned in Figure 3 in Section 2, the observed likelihood for
LTRC data is given by

L(θ|DATA) =
∏
i∈S1

{
f(ti;θ)

}δi
{
1− F (ti;θ)

}1−δi

×
∏
i∈S0

{
f(ti;θ)

1− F (κLi;θ)

}δi
{

1− F (ti;θ)
1− F (κLi;θ)

}1−δi

.(3.16)
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By plugging in the PDF and CDF of the Burr XII distribution in (3.16), we get the spe-
cific likelihood for the Burr XII distribution based on LTRC data. The likelihood (or the
corredponding log-likelihood) function may then be maximized using routine functions in
statistical software. The performance of the estimates obtained by the St-EM algorithm, and
those obtained by the direct method of optimization based on observed likelihood can then
be compared through Monte Carlo simulations. In this paper, we have used the “maxLik”
package in R software for maximizing the observed likelihood provided in (3.16). In par-
ticular, we have used the Newton-Raphson method for direct numerical optimization; the
Newton-Raphson method may be employed by using the maxNR() routine available in the
maxLik package. Details of the numerical results are presented in the next Section.

4. NUMERICAL EXPERIMENTS

The methods of inference are assessed through Monte Carlo simulations using the R
software. For simulating LTRC data, the following process is followed. We consider lifetime
data at the yearly scale. Left truncation and right censoring points are fixed at the years
2000 and 2004, respectively, without loss of generality. That is, in connection to the notations
used in Section 2, we set L = 2000, and R = 2004. The total sample size n is fixed; here, we
consider several values of n, namely, 50, 100, 200, 300, and 500.

First, a truncation percentage p (0 ≤ p ≤ 1) is specified; this implies that in the sample,
there will be np left truncated units, and n(1−p) untruncated units. For this simulation study,
p is chosen as 20, and 30. Two arbitrary sets of years as installation points (IPs), say WLT and
WNT , respectively, are chosen; WLT corresponds to the left truncated group (i.e., less than
2000), and WNT corresponds to the untruncated group (i.e., more than or equal to 2000),
are taken as reference frames from sampling. Then, through equal probability sampling,
two sets of samples of IPs are generated from WLT and WNT according to the pre-specified
truncation percentage; these samples represent the left truncated and the untruncated groups,
respectively. For example, for n = 100, and p = 20, a sample of 20 IPs is taken from WLT ,
and a sample of 80 IPs is taken from WNT .

For generating lifetimes from the Burr XII distributions, two sets of values for the model
parameters are used. A LTRC dataset of size n is generated as follows. Corresponding to each
IP ωi, with ωi ∈ W , i = 1, ..., n, where W = WLT

⋃
WNT , a failure-time yi is generated from

the Burr XII distribution in (1.2), and is added to ωi to obtain the respective termination
point (TP). Left truncation and right censoring, corresponding to L = 2000 and R = 2004,
are incorporated into the generated data through the following mechanism. For i ∈ WLT ,
if ωi + yi < 2000 for a unit, that unit is completely discarded, and is replaced by a new
set of values for ωi, and yi; this process of discarding continues until for that unit we have
ωi + yi > 2000. This ensures that all units have to cross a threshold to be included in the
study, as required by left truncation. For a unit i ∈ W , if ωi + yi > 2004, it is a right-
censored unit; otherwise, it is not censored. The chosen values of the parameters of the Burr
XII distribution ensures that there are enough censored units.

The bias, and mean squared error (MSE) of the point estimates for different simulation
parameter settings are reported in Tables 1–6. The coverage probability and average length of
the asymptotic confidence intervals for the model parameters are also reported in these tables.
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Table 1: Performance of point and interval estimates for truncation percentage 20,
corresponding to true parameter value (α, β) = (2, 0.5). Coverage probability
(CP) and average length (AL) are reported for 95% confidence intervals corre-
sponding to missing information principle (MI) and parametric bootstrap (PB).

St-EM NR MI PB
n Parm

Bias MSE Bias MSE CP AL CP AL

50
α 0.051 0.123 0.037 0.121 0.960 1.298 0.960 1.335
β 0.014 0.004 0.012 0.004 0.954 0.253 0.956 0.262

100
α 0.028 0.054 0.021 0.053 0.942 0.907 0.950 0.915
β 0.005 0.002 0.004 0.002 0.950 0.177 0.946 0.179

200
α 0.009 0.025 0.005 0.025 0.958 0.633 0.958 0.639
β 0.003 0.001 0.002 0.001 0.958 0.124 0.952 0.125

300
α 0.013 0.018 0.011 0.018 0.952 0.516 0.946 0.519
β 0.004 0.001 0.004 0.001 0.956 0.102 0.956 0.102

500
α 0.002 0.011 0.001 0.011 0.932 0.396 0.948 0.400
β 0.001 0.000 0.001 0.000 0.954 0.078 0.954 0.079

Table 2: Performance of point and interval estimates for truncation percentage 30,
corresponding to true parameter value (α, β) = (2, 0.5). Coverage probability
(CP) and average length (AL) are reported for 95% confidence intervals corre-
sponding to missing information principle (MI) and parametric bootstrap (PB).

St-EM NR MI PB
n Parm

Bias MSE Bias MSE CP AL CP AL

50
α 0.026 0.103 0.012 0.102 0.966 1.313 0.964 1.342
β 0.017 0.005 0.015 0.005 0.956 0.263 0.956 0.273

100
α 0.013 0.054 0.006 0.053 0.956 0.919 0.950 0.931
β 0.009 0.002 0.008 0.002 0.962 0.183 0.960 0.186

200
α 0.018 0.030 0.015 0.030 0.940 0.649 0.950 0.650
β 0.003 0.001 0.002 0.002 0.952 0.128 0.952 0.128

300
α 0.012 0.019 0.010 0.019 0.962 0.527 0.958 0.529
β 0.000 0.001 −0.000 0.001 0.942 0.104 0.950 0.104

500
α 0.004 0.012 0.003 0.012 0.932 0.401 0.942 0.411
β 0.000 0.000 0.000 0.000 0.934 0.080 0.934 0.081

Table 3: Performance of point and interval estimates for truncation percentage 50,
corresponding to true parameter value (α, β) = (2, 0.5). Coverage probability
(CP) and average length (AL) are reported for 95% confidence intervals corre-
sponding to missing information principle (MI) and parametric bootstrap (PB).

St-EM NR MI PB
n Parm

Bias MSE Bias MSE CP AL CP AL

50
α 0.027 0.125 0.015 0.124 0.956 1.410 0.956 1.436
β 0.015 0.005 0.013 0.005 0.968 0.287 0.968 0.304

100
α 0.026 0.074 0.019 0.073 0.930 0.989 0.934 1.000
β 0.006 0.003 0.005 0.003 0.948 0.199 0.962 0.204

200
α 0.014 0.030 0.010 0.030 0.946 0.693 0.952 0.701
β 0.001 0.001 0.001 0.001 0.956 0.139 0.956 0.141

300
α 0.012 0.020 0.010 0.020 0.946 0.563 0.952 0.569
β 0.001 0.001 0.001 0.001 0.970 0.114 0.964 0.114

500
α 0.008 0.012 0.006 0.012 0.960 0.432 0.966 0.441
β 0.001 0.001 0.001 0.001 0.962 0.088 0.958 0.088
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Table 4: Performance of point and interval estimates for truncation percentage 20,
corresponding to true parameter value (α, β) = (3, 1). Coverage probability
(CP) and average length (AL) are reported for 95% confidence intervals corre-
sponding to missing information principle (MI) and parametric bootstrap (PB).

St-EM NR MI PB
n Parm

Bias MSE Bias MSE CP AL CP AL

50
α 0.080 0.231 0.076 0.231 0.946 1.764 0.955 1.875
β 0.024 0.012 0.023 0.012 0.957 0.425 0.955 0.441

100
α 0.032 0.098 0.029 0.098 0.958 1.225 0.952 1.265
β 0.014 0.006 0.014 0.006 0.946 0.298 0.946 0.305

200
α 0.015 0.052 0.014 0.052 0.952 0.862 0.950 0.875
β 0.004 0.003 0.004 0.003 0.948 0.209 0.944 0.211

300
α 0.014 0.030 0.013 0.030 0.962 0.703 0.964 0.705
β 0.006 0.002 0.006 0.002 0.944 0.171 0.952 0.172

500
α −0.005 0.016 −0.005 0.016 0.960 0.541 0.964 0.543
β 0.002 0.001 0.002 0.001 0.958 0.132 0.954 0.132

Table 5: Performance of point and interval estimates for truncation percentage 30,
corresponding to true parameter value (α, β) = (3, 1). Coverage probability
(CP) and average length (AL) are reported for 95% confidence intervals corre-
sponding to missing information principle (MI) and parametric bootstrap (PB).

St-EM NR MI PB
n Parm

Bias MSE Bias MSE CP AL CP AL

50
α 0.110 0.290 0.106 0.209 0.947 1.772 0.937 1.866
β 0.021 0.012 0.020 0.012 0.968 0.428 0.958 0.446

100
α −0.002 0.105 −0.004 0.105 0.944 1.209 0.942 1.239
β 0.010 0.006 0.009 0.006 0.964 0.301 0.958 0.308

200
α 0.013 0.046 0.012 0.046 0.964 0.858 0.966 0.869
β 0.005 0.003 0.005 0.003 0.942 0.211 0.944 0.214

300
α −0.004 0.035 −0.005 0.035 0.946 0.697 0.946 0.701
β 0.004 0.002 0.004 0.002 0.956 0.173 0.948 0.174

500
α 0.008 0.017 0.008 0.017 0.962 0.542 0.968 0.542
β 0.002 0.001 0.002 0.001 0.958 0.133 0.956 0.133

Table 6: Performance of point and interval estimates for truncation percentage 50,
corresponding to true parameter value (α, β) = (3, 1). Coverage probability
(CP) and average length (AL) are reported for 95% confidence intervals corre-
sponding to missing information principle (MI) and parametric bootstrap (PB).

St-EM NR MI PB
n Parm

Bias MSE Bias MSE CP AL CP AL

50
α 0.053 0.234 0.050 0.234 0.946 1.810 0.950 1.873
β 0.027 0.015 0.026 0.015 0.948 0.465 0.954 0.491

100
α 0.027 0.112 0.026 0.112 0.944 1.269 0.948 1.284
β 0.008 0.007 0.007 0.007 0.950 0.323 0.958 0.332

200
α −0.004 0.057 −0.004 0.057 0.944 0.889 0.928 0.891
β 0.013 0.003 0.013 0.003 0.964 0.230 0.970 0.232

300
α 0.009 0.030 0.009 0.030 0.942 0.729 0.944 0.728
β 0.002 0.002 0.002 0.002 0.944 0.185 0.940 0.187

500
α 0.005 0.020 0.005 0.020 0.940 0.564 0.944 0.562
β 0.004 0.001 0.004 0.001 0.946 0.144 0.944 0.145
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The Monte Carlo estimate of coverage probability of an asymptotic confidence interval corre-
sponding to a nominal level of confidence (say, 95%) is the proportion of times the asymptotic
confidence interval includes the true parameter value out of the total number of Monte Carlo
runs of the experiment. The average length of an asymptotic confidence interval is the mean
length of the interval, averaged over the lengths obtained in the Monte Carlo runs.

From Tables 1–6, we notice that the estimates obtained by the St-EM algorithm are
quite efficient in general, with respect to their bias and MSE. As one would expect, with
increase in sample size, the bias and MSE of the estimates reduce. Truncation percentage
does not seem to have a significant effect on the point estimates, as the bias and MSE values
do not change much with change in truncation percentage.

It may also be of interest to compare the results of the St-EM algorithm with that of
the Newton-Raphson method. It is observed from Tables 1–6 that for parameter α, the biases
corresponding to the St-EM algorithm and the Newton-Raphson method are to some extent
different for smaller sample sizes (i.e., n = 50 and 100). However, with increase in sample size
(i.e., for n = 200, 300, 500), the biases become very close. For parameter β, the biases of the
estimates corresponding to the two methods are close for all simulation settings considered
here. Finally, the MSE of the estimates of both α and β are always quite close for the two
methods.

Tables 1–6 also report coverage probabilities (CP) and average lengths (AL) for asymp-
totic 95% confidence intervals. The coverage probability and average length are two important
criteria for assessing the performance of confidence intervals. For a confidence interval to be
reasonable, its coverage probability should be close to the nominal confidence level, and its
average length should not be large. It may be noted that the coverage probabilities cor-
responding to the missing information principle are always very close to the nominal level.
The coverage probabilities corresponding to the parametric bootstrap are also close to the
nominal level. With respect to average length of the intervals, both methods perform closely.
It is also observed that with increase in sample size, though their average lengths reduce as
expected, but the confidence intervals are able to retain the coverage probability close to the
nominal level.

5. THE THREE PARAMETER BURR XII DISTRIBUTION

Considering a scale parameter λ along with the two shape parameters α and β, the
PDF of the three parameter Burr XII distribution is given by (see [24])

fY (y;λ, α, β) =
αβ

λ

(
y

λ

)β−1(
1 +

(
y

λ

)β)−(α+1)

, y > 0, λ, α, β > 0.

For the St-EM algorithm, the conditional distributions for generating random observations
is given by
(5.1)

fTi|Ti>yi
(ti|ti > yi;λ, α, β) =

αβ

λ

(
ti
λ

)β−1(
1 +

(
ti
λ

)β)−(α+1)(
1 +

(
yi

λ

)β)α

, ti > yi.
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After replacing the right censored failure-times by randomly generated observations from
(5.1), the pseudo-Q function is obtained as

QPC(θ) = n(log α + log β − β log λ) + (β − 1)
n∑

i=1

log ti −
n∑

i=1

log
(

1 +
(

ti
λ

)β)

− α

[
n∑

i=1

log
(

1 +
(

ti
λ

)β)
−
∑
i∈S2

log
(

1 +
(

κLi

λ

)β)]
,(5.2)

with θ = (λ, α, β). For fixed λ and β, equating the first derivative of QPC(θ) with respect to
α to zero, we obtain

(5.3) α =
n

WPC(λ, β)
,

where

WPC(λ, β) =
n∑

i=1

log
(

1 +
(

ti
λ

)β)
−
∑
i∈S2

log
(

1 +
(

κLi

λ

)β)
.

Substituting (5.3) in (5.2), the profile log-likelihood in λ and β is obtained as
(5.4)

pPC(λ, β) = n(log β − β log λ− log WPC(λ, β)) + (β − 1)
n∑

i=1

log ti −
n∑

i=1

log
(

1 +
(

ti
λ

)β)
,

which can then be maximized by a routine two-parameter optimizer.

Starting with an initial value for the parameter vector as θ(0) = (λ(0), α(0), β(0)), to the
choice of which the St-EM algorithm is quite robust, the following are the steps of the St-EM
algorithm for the three-parameter Burr XII distribution based on LTRC data.

Algorithm 3: At the k-th stage of the algorithm:

Stochastic Expectation (St-E) step:

Step 1: The available parameter value is θ(k) = (λ(k), α(k), β(k));

Step 2: Replace each unit in Γ by generating observations from fTi|Ti>yi
(ti|ti>yi;θ(k))

to obtain pseudo-complete data tPC ;

Step 3: With tPC from Step 2, construct QPC(θ(k)) following (5.2);

Maximization (M) step:

Step 4: Choose initial values λ
(k)
init and β

(k)
init based on the pseudo-complete data tPC ;

Step 5: Optimize pPC(λ, β) in (5.4) to get λ̂(k+1) and β̂(k+1) subject to a tolerance
level;

Step 6: Using (5.3), calculate α̂(k+1) = n
WPC(λ(k+1),β(k+1))

;

Step 7: With updated estimate θ(k+1) = (λ(k+1), α(k+1), β(k+1)), go back to Step 2.
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From a sequence of estimates θ(0),θ(1),θ(2), ...,θ(N), after discarding first M estimates
for burn-in, the remaining ones are averaged to get estimates λ̂, α̂, and β̂. The confidence
intervals for the model parameters may be obtained by similar processes as described in
Section 3 for the two-parameter Burr XII distribution.

It may be mentioned here that in case of LTRC data from the three-parameter Burr
XII distribution, based on some limited simulations, we have noticed an indication that the
St-EM algorithm performs better compared to the direct optimization of observed likelihood,
in terms of bias and MSE of the estimates. However, implementation of the St-EM algorithm
in this case is very challenging due to its computational cost; the running time of the St-
EM algorithm for the three-parameter case is significantly longer than that of the direct
optimization method.

6. PREDICTION OF EXPECTED NUMBER OF FAILURES IN A FUTURE
INTERVAL

Consider the right censored units with the i-th unit having right censored lifetime yi,
i ∈ Scen. Consider a future interval (τ1, τ2] with tmax < τ1, where tmax = Max{ti; i ∈ Scen}.
The probability that the i-th unit fails in this interval (τ1, τ2] is given by

(6.1) πi = P (τ1 < Ti ≤ τ2|Ti > yi) =
S(τ1;θ)− S(τ2;θ)

S(yi;θ)
,

where S(t) = P (T > t) is the survival function of the underlying failure-time variable T . Note
that the expression for this probability remains same regardless of the truncation status of
the i-th unit, i ∈ Scen. We are interested in obtaining the expected number of failures in the
future interval (τ1, τ2].

Let us define random variables Ui, i ∈ Scen, such that

Ui =

{
1, if i-th item fails in (τ1, τ2]
0, otherwise.

Note that E[Ui] = P (Ui = 1) = πi. We want to obtain the expected number of failures in the
future interval (τ1, τ2), given by

ζ = E

[ ∑
i∈Scen

Ui

]
=
∑

i∈Scen

πi.

Now, using the expression for πi in (6.1), we obtain

ζ = {(1 + τβ
1 )−α − (1 + τβ

2 )α}
∑

i∈Scen

(1 + yβ
i )α

= h(θ) (say).(6.2)

Clearly, an estimate ζ̂ of the expected number of failures ζ can be obtained by simply plugging-
in the estimated parameters in (6.2). It is also possible to provide an asymptotic confidence
interval for ζ by a straightforward application of the delta-method, by using the asymptotic
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normality and the delta-method. That is, using the fact that
√

n(ζ̂ − ζ) D−→ N(0,Var(ζ̂)),
where the variance can be estimated as

(6.3) V̂ar(ζ̂) =

((
∂h

∂α

)2
Var(α̂) + 2

(
∂h

∂α

)(
∂h

∂β

)
Cov(α̂, β̂) +

(
∂h

∂β

)2
Var(β̂)

)∣∣∣∣∣
θ=bθ

.

Finally, using the estimated variance, an asymptotic 100(1− γ)% confidence interval for ζ

can be easily obtained.

7. ILLUSTRATIVE DATA ANALYSIS

The Channing House data involves lives of residents of a retirement centre in Palo Alto,
California. The dataset contains lifetimes of residents of the centre since it started operations
in 1965 till July, 1975. A person had to be at least 60 years of age to be a resident of the
centre; this fact incorporated left truncation in the data. In fact, due to this restriction on
the entry of individuals to the centre, the entire data (i.e., 100% of the observations) is left
truncated according to the notion of left truncation followed in here.

Some individuals died as residents of the centre, while some other were still alive when
the collection ended in July, 1975. This incorporated right censoring in the data. The dataset
contains lives of total 462 residents. Out of 462, the number of observed failures is only 176,
and the rest of the units are right censored. A summary of the dataset is presented in Table 7.

Table 7: Summary of Channing House Data.

Group Total number Right censoring Mean lifetime (Years) SD lifetimes (Years)

Male 97 52.58% 82.63 6.14
Female 365 64.38% 82.04 6.15

Combined 462 61.90% 82.17 6.15

Before analyzing the dataset, we change the origin and scale of this data by subtracting
720 from each of the lifetimes (and left truncation times), and by dividing them by 200; this
change of origin and scale of the data will not impact the inferential results in any way. We
assume that the underlying failure-time variable follow a two-parameter Burr XII distribution.
The results of point and interval estimation by the proposed methods are given in Table 8.
The estimated parameters can then be used in further analyses, for example, in predicting
future failures as described below.

Table 8: Point and interval estimates of model parameters for Channing House Data.

Parameter Point Estimate
Interval Estimate

MI BB

α 0.508 (0.354, 0.662) (0.354, 0.655)
β 3.976 (2.915, 5.038) (2.764, 5.002)
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As the estimates of the parameters turn out to be α̂ = 0.508 and β̂ = 3.976, using these,
we can obtain the asymptotic variance-covariance matrix by using the missing information
principle as described in Section 3.2 as

(
Var(α̂) Cov(α̂, β)

Var(β̂)

)
=
(

0.0061 −0.0369
0.2934

)
.

The maximum value among the transformed right censored lifetimes is 2.435. Suppose,
we are interested in predicting the expected number of failures in the interval (2.5, 2.7]. By
plugging-in the estimates α̂ and β̂ in (6.2), we get the expected number of failures in the above
interval as ζ̂ = 13.4000. Finally, upon estimating the variance of ζ̂ by (6.3) to be 0.0490, a
95% confidence interval for the expected number of failures in this future interval is obtained
as (12.9660, 13.8339).

Suppose it is of interest to select an appropriate model for this dataset among many
candidate models. One way to achieve this would be fit different models to the dataset, and
then to choose the model for which the value of the maximized log-likelihood, evaluated at
the MLE, is the largest. Naturally, the distributions which are frequently used to model
lifetime data would be the candidate models. As suggested by a reviewer, here, we consider
Weibull, Gompertz, and Lomax distributions as the candidate models, along with the Burr
XII model. It may be mentioned here that Weibull, Gompertz, and Lomax distributions
belong to a family of distributions known as the Lehmann family of distributions [16].

Table 9 gives the results of the model selection. We fit the Burr XII model to the
Channing House data by using the St-EM algorithm; we also fit Weibull, Gompertz, and
Lomax distributions to the data by using St-EM algorithm. Then, we evaluate the log-
likelihood functions corresponding to the four distributions at the respective MLEs, the log-
likelihood being constructed by using the LTRC data structure. It may be mentioned here
that since all the models considered here have same number of parameters, the process of
using the maximized log-likelihood is essentially equivalent to using the Akaike’s information
criterion (AIC) for model selection.

Table 9: Maximized log-likelihood for different models.

Model Distribution Function Maximized log-likelihood

Weibull FW (t; λ, α) = 1− e−αtλ

, t > 0 −155.9704

Gompertz FG(t; λ, α) = 1− e−α(eλt−1), t > 0 −152.9099

Lomax FL(t; λ, α) = 1−
�

1
1+λt

�α

, t > 0 −189.7542

Burr XII FB(t; α, β) = 1− (1 + tβ)−α, t > 0 −181.7247

It turns out that the maximized log-likelihood is the largest for the Gompertz distri-
bution based on this data. Therefore, the Gompertz distribution turns out to be the most
suitable model for the Channing House data by the above criterion.
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8. CONCLUSION AND FUTURE WORK

In this article, statistical inferential procedures for the Burr XII distribution based on
LTRC data are discused. the two- and the three-parameter Burr XII models are considered.
Detailed steps of the stochastic EM algorithm based on LTRC data are developed for ob-
taining point estimates of the model parameters. Two methods for constructing asymptotic
confidence intervals of the parameters are discussed: one by using the missing information
principle, and the other by using a parametric bootstrap approach. A method for includ-
ing covariates in the Burr XII model in this setup is also discussed. An application of the
estimated parameters in predictive number of failures in a future interval is presented.

From the numerical results of a detailed Monte Carlo simulation study, it is observed
that the stochastic EM algorithm performs reasonably well in estimating the model parame-
ters. The approaches for constructing confidence intervals also perform satisfactorily, as the
coverage probabilities of the confidence intervals remain always close to the nominal confi-
dence level of 95%. It is also observed that the performance of the St-EM algorithm is close
to that of the Newton-Raphson method.

While parametric inference can generate accurate results when the assumptions regard-
ing the underlying distribution of data are appropriate, it may be of interest to verify whether
the distributional assumptions are reasonable or not. In view of this, it will be of interest to
develop a test for goodness of fit for the Burr XII distribution based on LTRC data.

Another problem of interest would be to study Bayesian inference for the Burr XII
distribution based on LTRC data. The Bayesian methods can provide significant information
regarding a model, especially when the prior assumptions are appropriate. In particular, the
Bayesian methods may outperform classical inferential methods when the sample size is not
very large, provided meaningful prior assumptions are made. However, the most critical task
of performing Bayesian inference would be the elicitation of the prior distributions.
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1. INTRODUCTION

The major breakthrough concerning integer-valued autoregressive (INAR) processes
was made, independently of each other, by [16] and [1]. In the period that followed, many
generalizations and modifications of these models were published, and many authors were
trying to create their own models in order to better describe the data obtained from some
natural processes. Some of them introduced new thinning operators dependent of a single
parameter, as it was done by [12], [22, 23] and [13]. More recently, a thinning operator
with two parameters has appeared in [15]. On contrary to this, others researchers discussed
marginal distributions, as given in [2] and [3]. In recent years, authors have been trying to
model some specific count data. Thus, data sets with excess zeros and excess ones are modeled
in [20], while a model for modeling heavily-tailed count data is proposed in [21]. Most of the
introduced models were applied to non-negative data, although in many real-life situations
there are processes which may consist of integer values including both positive and negative
numbers. A step forward in this direction was made by [9], who introduced a true integer-
valued process, defined in distribution as a difference of two non-negative, independent INAR
processes with Poisson marginal distributions. In the same way, [17] introduced an INAR
model with discrete Laplace marginal distributions (DLINAR(1)), defined in distribution
as a difference of two non-negative, independent INAR processes with the same geometric
marginal distributions. Some generalizations of this idea emerged in the work of [4] and
[7]. Lately, [6] and [14] have also come up with innovative ideas for creating models on Z.
Although each of these models deserves attention, the DLINAR(1) model introduced by [17]
is of particular importance for this paper.

All the processes mentioned here are stationary, since stationarity simplifies the calcu-
lation when describing the model and determining the estimates of model parameters. But,
we can say that stationary processes are rigid, since some of their properties are conserved
in time. Nevertheless, the real data are not usually like that. The first non-stationary model
appeared in [18] and is flexible towards the environment conditions changes. Namely, quan-
titative properties of phenomena from nature depend on environment, so it’s logical, as well,
to assume the distribution to depend on environment. It is supposed that environment condi-
tions can be divided into r different types, called states. Each state is associated with a fixed
distribution, and an element of the process has the distribution of its state. Various authors
have tried to generalize or modify this idea in recent years. They assumed that the order
of the model, or even the thinning parameter value, are also determined by the environment
state at a particular moment, as it was done by [11] and [19].

Although the DLINAR(1) model successfully estimates the data it was tested on, due
to its property of stationarity, the model shows substantial difficulties in adjusting to the
elements that deviate significantly from zero. In particular, the model is struggling to esti-
mate the highest and the lowest peaks, with a large difference between real values and their
estimated values. This fact leaves room for model improvement. The main goal of this article
is to make the DLINAR(1) model more flexible, using the idea given in [18]. In other words,
the goal is to construct the DLINAR(1) process dependent on the environment states. Neve-
rtheless, the idea mentioned in [18] cannot be fully taken over and certain adaptations have
to be made. So, in Section 2 of this article, the construction of such a process, which over-
comes problems mentioned above, is given alongside with its main distributional properties.
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Section 3 provides the k-step ahead conditional expectation and a correlation structure.
Yule-Walker (YW) estimates of the parameters of the defined model are given in Section 4.
In Section 5, the quality of YW estimates is examined on simulated data. Section 6 deals with
forecasting and provides a criterion to compare the prediction results between different mod-
els. An application of the introduced model to some real-life data is presented in Section 7,
and results are compared for different models.

2. CONSTRUCTION OF THE PROCESS

As mentioned in the previous section, the first attempt to increase the flexibility of
the DLINAR(1) process followed the idea given in [18]. An attempt to construct such an
improved process brought some difficulties, because the newly acquired process had the same
shape of one-step ahead conditional expectation as it was the case with DLINAR(1) process.
To avoid this issue, the flexibility of the DLINAR(1) process is improved using the concept
given in [11], although in a bit simpler form. Namely, it is assumed that information about
the environment state is not only carried by the marginal distribution parameter, but it can
also be expressed through the thinning parameter value. In other words, we assume that
the value of the marginal distribution parameter and the value of the thinning parameter,
both in moment n, depend on environment state in the same moment. A new INAR process
with discrete Laplace marginal distributions, that meets the aforementioned assumptions, is
defined in this section and some of its properties are discussed.

In order to make the reading of the manuscript easygoing, definitions of
RrNGINAR(M,A,P) and DLINAR(1) processes are given, since the paper relies heavily
on those. As mentioned in [11], we call {Xn(zn)} the RrNGINAR(M,A,P) process if its
element Xn(zn) at moment n ∈ N is determined by the recursive relation

Xn =


αzn ∗Xn−1(zn−1) + εn(zn, zn − 1) w.p. φzn

1,Pn
,

αzn ∗Xn−2(zn−2) + εn(zn, zn − 2) w.p. φzn
2,Pn

,
...
αzn ∗Xn−Pn(zn−Pn) + εn(zn, zn − Pn) w.p. φzn

Pn,Pn
,

where {zn}∞n=1 is the realization of the random environment process {Zn}∞n=1 (which is a
Markov chain) whose elements take values in Er = {1, ..., r}, r ∈ N, for r being the num-
ber of different environment states. Probabilities φzn

i,Pn
, i = 1, 2, ..., Pn, are all in [0, 1] and∑Pn

i=1 φzn
i,Pn

= 1. In addition, “α ∗”, α ∈ (0, 1), denotes the negative binomial thinning operator
defined as α ∗X =

∑X
i=1 Ui. Such defined thinning operator assigns to each integer-valued

random variable X the sum of X independent random variables having the same geometric
distribution with the mean α. Sets M = {µ1, ..., µr}, A = {α1, ..., αr}, P = {p1, ..., pr} con-
tain parameter values of the model, µzn is the mean of the marginal geometric distribution of
Xn(zn), αzn is the thinning parameter value and pzn represents the maximal value that the
order Pn may take for a fixed state zn ∈ {1, ..., r}.

Now, let us define the thinning operator “α�” as it was done in [17]. Let Y be a
random variable with discrete Laplace distribution DL(µ/(1 + µ)), µ > 0, with probability
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mass function given by

P (Y = y) =
1

1 + 2µ

(
µ

1 + µ

)|y|
, y = 0,±1,±2, ...,

and let X(1) and X(2) be two independent random variables with the same Geom (µ/(1 + µ))
distribution. In that case, operator “α�” is defined as

(2.1) α� Y |Y d=
(
α ∗X(1) − α ∗X(2)

)
|
(
X(1) −X(2)

)
,

where “α ∗”, α ∈ (0, 1), represents the negative binomial thinning operator. In addition, the
counting sequences involved in α ∗X(1) and α ∗X(2) are mutually independent and indepen-
dent of random variables X(1) and X(2).

Using this newly defined thinning operator, [17] defined the DLINAR(1) process in the
following way:

Yn = α� Yn−1 + en, n ∈ N,

where {Yn} represents a discrete Laplace distributed process, while {en} is an innovation
sequence of independent and identically distributed (i.i.d.) random variables, such that en

and Yn−l are mutually independent for all l > 0.

For the purpose of better understanding the content which follows, it is convenient to
introduce here as well the skewed discrete Laplace distribution SDL(µ/(1 + µ), ν/(1 + ν)),
µ > 0, ν > 0, with probability mass function given by

P (Y = y) =


1

1 + µ + ν

(
µ

1 + µ

)y

, y ≥ 0,

1
1 + µ + ν

(
ν

1 + ν

)−y

, y < 0.

Following notations given in the definition of RrNGINAR(M,A,P), let Er = {1, 2, ..., r}
be the set of all possible environment states, where r ∈ N, and let {zn}, n ∈ N0, be a real-
ization of the r states random environment process {Zn}. For i, j ∈ Er, let {en(i, j), n ∈ N}
be the sequences of i.i.d. random variables. Notation Yn(zn) will be used to tag an element
of a new process, where zn represents the realized value of the random environment process
in moment n ≥ 0. Regarding this, let us introduce the following notations:

Yn(Zn) =
r∑

z=1

Yn(z)I{Zn=z},

en(Zn−1, Zn) =
r∑

z1=1

r∑
z2=1

en(z1, z2)I{Zn−1=z1,Zn=z2},

αZn =
r∑

z=1

αzI{Zn=z},

whereby I{Zn=z} represents an indicator random variable associated with the event Zn = z.

Before introducing the definition of a new process that will be in the focus of this
research, it is necessary to define a random environment INAR process based on the thinning
operator “α�”, with variable marginal distribution and inconstant thinning parameter value.
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Definition 2.1. Let {Zn} be a random environment process with r possible states
from the set Er = {1, 2, ..., r}, r ∈ N. Let M = {µ1, µ2, ..., µr} and A = {α1, α2, ..., αr}, with
µi > 0 and αi ∈ (0, 1), for all i ∈ Er. We say that {Yn(Zn)} is a random environment INAR
process of order 1 based on the thinning operator“α�”, with r states, distribution parameters
set M and thinning parameters set A (RrINAR1(M,A)), if the random variable Yn(Zn) is
defined for n ≥ 1 as

(2.2) Yn(Zn) = αZn � Yn−1(Zn−1) + en(Zn−1, Zn),

where “αZn �” is defined by (2.1) and the following conditions are satisfied:

1. For fixed i, j ∈ Er, the sequence {en(i, j)}n∈N is a sequence of i.i.d. random vari-
ables;

2. The sequences of random variables {Zn}, {en(1, 1)}, {en(1, 2)}, ..., {en(r, r)} are mu-
tually independent;

3. Random variables Zm and em(i, j) are independent of Yn(l) for all n < m and all
i, j, l ∈ Er.

It is convenient now to define a random environment INAR process of order 1 with
discrete Laplace marginals. In order to simplify the process, we can assume we know a
realization {zn} of the random environment process {Zn}. This assumption is plausible, since
the estimate of {zn} can be easily obtained by applying the appropriate clustering procedure.

Definition 2.2. Let {zn} be a realization of the random environment process {Zn}
with r possible states from the set Er = {1, 2, ..., r}, r ∈ N, and let M = {µ1, µ2, ..., µr} and
A = {α1, α2, ..., αr}, with µi > 0 and αi ∈ (0, 1), for all i ∈ Er. We say that {Yn(zn)} is a
random environment discrete Laplace INAR process of order 1 with r states, distribution pa-
rameters set M and thinning parameters set A (RrDLINAR1(M,A)), if the random variable
Yn(zn) satisfies

(2.3) Yn(zn) = αzn � Yn−1(zn−1) + en(zn−1, zn),

for n ≥ 1, where conditions 1-3 from Definition 2.1 are satisfied and the random variable
Yn(zn) has DL(µzn/(1 + µzn)) distribution, for all n ∈ N0.

The introduced process is fully determined if the distributions of random variables
en(i, j) are known for all n ≥ 1 and all i, j ∈ Er. The following theorem reveals distributions
of these random variables.

Theorem 2.1. Let {Yn(zn)} be a RrDLINAR1(M,A) process. Let us suppose that

zn = j and zn−1 = k for some k and j ∈ Er. If 0 < αj ≤ µj

1+maxi∈Er µi
, then the distribution

of the random variable en(k, j) can be written as a mixture of discrete Laplace and skewed

discrete Laplace distributed random variables in the following form:

(2.4) en(k, j) d=



DL

(
µj

1 + µj

)
, w.p.

(
1− αjµk

µj − αj

)2

,

SDL

(
µj

1 + µj
,

αj

1 + αj

)
, w.p.

αjµk

µj − αj

(
1− αjµk

µj − αj

)
,

SDL

(
αj

1 + αj
,

µj

1 + µj
,

)
, w.p.

αjµk

µj − αj

(
1− αjµk

µj − αj

)
,

DL

(
αj

1 + αj

)
, w.p.

(
αjµk

µj − αj

)2

.
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Proof: Let ϕen(k,j)(t) represents the characteristic function of the random variable
en(k, j). Based on the definition and properties of the process and the assumption that
zn−1 = k and zn = j, it holds

ϕen(k,j)(t) =
ϕYn(j)(t)

ϕαj�Yn−1(k)(t)
.

As can be seen in [17],

ϕYn(j)(t) =
1

(1 + µj − µjeit)(1 + µj − µje−it)
,

ϕαj�Yn−1(k)(t) =
(1 + αj − αje

it)(1 + αj − αje
−it)

(1 + αj(1 + µk)− αj(1 + µk)eit)(1 + αj(1 + µk)− αj(1 + µk)e−it)
.

Using these facts, we obtain that

ϕen(k,j)(t) =
[1 + αj(1 + µk)− αj(1 + µk)eit][1 + αj(1 + µk)− αj(1 + µk)e−it]
(1 + αj − αjeit)(1 + αj − αje−it)(1 + µj − µjeit)(1 + µj − µje−it)

=
A

(1 + αj − αjeit)(1 + αj − αje−it)
+

B

(1 + αj − αjeit)(1 + µj − µje−it)

+
C

(1 + µj − µjeit)(1 + µj − µje−it)
+

D

(1 + µj − µjeit)(1 + αj − αje−it)
.

By solving the system

AM2 + BKM + CK2 + DMK = (1 + αj(1 + µk))2,

AMµj + BKµj + CKαj + DMαj = αj(1 + µk)(1 + αj(1 + µk)),

AMµj + BMαj + CKαj + DKµj = αj(1 + µk)(1 + αj(1 + µk)),

Aµ2
j + Bαjµj + Cα2

j + Dαjµj = (αj(1 + µk))2,

where K = 1 + αj and M = 1 + µj , we obtain that

A =
(

αjµk

µj − αj

)2

, B = D =
αjµk

µj − αj

(
1− αjµk

µj − αj

)
, C =

(
1− αjµk

µj − αj

)2

.

Knowing that the characteristic functions of random variables with DL
(

µj

1+µj

)
,

SDL
(

µj

1+µj
,

αj

1+αj

)
, SDL

(
αj

1+αj
,

µj

1+µj

)
and DL

(
αj

1+αj

)
distributions are of the form

ϕ1(t) =
1

(1 + µj − µjeit)(1 + µj − µje−it)
, ϕ2(t) =

1
(1 + µj − µjeit)(1 + αj − αje−it)

,

ϕ3(t) =
1

(1 + αj − αjeit)(1 + µj − µje−it)
, ϕ4(t) =

1
(1 + αj − αjeit)(1 + αj − αje−it)

respectively, it becomes obvious that (2.4) holds.

It is left to provide that A,B, C and D are probabilities, i.e. that A + B + C + D = 1
and all of them belong to [0, 1]. First condition is easily confirmable. To provide the second
one, it is enough to confirm that 0 ≤ αjµk

µj−αj
≤ 1. By solving this double inequality, we get

αj ≤ µj

1+µk
. Since this condition must hold for an arbitrary k and j, and αj ∈ (0, 1), we have

that 0 < αj ≤ µj

1+maxi∈Er µi
. This fact completes the proof.
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According to the previous theorem and the fact that discrete Laplace and skewed dis-
crete Laplace distributed random variables can be represented as a difference of two random
variables with geometric distributions, it is possible to make an interesting conclusion.

Corollary 2.1. If 0<αj≤ µj

1+maxi∈Er µi
, then en(i,j) d=εn(i,j)− ηn(i,j), where εn(i,j)

and ηn(i, j) are two i.i.d. random variables with the distribution given as

(2.5)


Geom

(
µj

1 + µj

)
, w.p.

(
1− αjµi

µj − αj

)
,

Geom

(
αj

1 + αj

)
, w.p.

αjµi

µj − αj
.

Presenting the distribution of the innovation time series {en(i, j)}, n ∈ N, in this shape
may simplify the calculation of many properties of the process itself, as can be seen in the
following corollary.

Corollary 2.2. Let us suppose that zn = j and zn−1 = i, for some i and j ∈ Er. Then,

we have:

E(en(i, j)) = 0,

Var(en(i, j)) = 2(µj(1 + µj)− αjµi(1 + 2αj + αjµi)).

Proof: The proof of the first equality is trivial, given that εn(i, j) and ηn(i, j) have
the same distribution.
Bearing in mind the shape of the distribution of εn(i, j) and ηn(i, j) and using properties of
the probability generating function (p.g.f.), it is easy to prove that

Var(ηn(i, j)) = Var(εn(i, j)) = Φ′′
εn(i,j)(1) + Φ′

εn(i,j)(1)−
[
Φ′

εn(i,j)(1)
]2

= µj(1 + µj)− αjµi(1 + 2αj + αjµi).

Now, it is obvious that

Var(en(i, j)) = Var(εn(i, j)) + Var(ηn(i, j)) = 2(µj(1 + µj)− αjµi(1 + 2αj + αjµi)).

Remark 2.1. Let us highlight here two interesting facts:

• For zn = j and zn−1 = i, εn(i, j) and ηn(i, j) have the same distribution as an inno-
vation process given in RrNGINAR(M,A,P) model (see [11]);

• For j = i, the distribution of the innovation process {en(i, j)} coincides with the
distribution of the innovation process of the DLINAR(1) model (see [17]).
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3. PROPERTIES OF THE PROCESS

In this section, the most important properties of the RrDLINAR1(M,A) model will be
derived and analyzed. It is interesting to notice that many properties can be derived by ob-
serving RrDLINAR1(M,A) process as a difference of two independent RrNGINAR(M,A,P)
processes, in case of P = {1}.

To that purpose, for given setsM,A and P={1}, let us define two RrNGINAR(M,A,P)
time series

X(1)
n (zn) = αzn ∗X

(1)
n−1(zn−1) + εn(zn−1, zn), n ≥ 1,

X(2)
n (zn) = αzn ∗X

(2)
n−1(zn−1) + ηn(zn−1, zn), n ≥ 1.

Time series {X(1)
n (zn)} and {X(2)

n (zn)} are mutually independent and, for fixed zn = j,
X

(1)
n (j) and X

(2)
n (j) have the same Geom

(
µj

1+µj

)
, µj ∈ M, distribution. Also, for fixed

values zn = j and zn−1 = i, {εn(i, j)} and {ηn(i, j)} are two mutually independent time se-
ries with the same marginal distribution given in Corollary 2.1. Based on the definition of
the RrNGINAR(M,A,P) process, X

(1)
n−l(k) and εn(i, j), as well as X

(2)
n−l(k) and ηn(i, j), are

mutually independent for all l ≥ 1 and for all i, j, i ∈ Er.

Let Yn(zn) be a RrDLINAR1(M,A) process with DL
(

µj

1+µj

)
marginals, given zn = j.

Now, using Corollary 2.1 and Corollary 2.1 from [17], we have

X(1)
n (zn)−X(2)

n (zn) =
(
αzn ∗X

(1)
n−1(zn−1)− αzn ∗X

(2)
n−1(zn−1)

)
+ (εn(zn−1, zn)− ηn(zn−1, zn))

d= αzn � Yn−1(zn−1) + en(zn−1, zn) = Yn(zn).(3.1)

Now, it is easy to prove that E(Yn(zn)) = 0 and

Var(Yn(zn)) = 2 Var
(
X(1)

n (zn)
)

= 2µzn(1 + µzn).

One important property holds for RrDLINAR1(M,A) process. Namely, according to
the Theorem 2.4 given in [17],

α� Y
d= sgn(Y )(α ∗ |Y |) +

min(X(1),X(2))∑
j=1

Dj ,

whereby the following conditions are satisfied:

a) Y ∼ DL
(

µ
1+µ

)
, X(1) ∼ Geom

(
µ

1+µ

)
, X(2) ∼ Geom

(
µ

1+µ

)
;

b) Dj ∼ DL
(

α
1+α

)
;

c) random variables Y, X(1), X(2), Dj , j ≥ 1, and random variables involved in “α∗”
are independent.

For RrDLINAR1(M,A) process, the following result holds.
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Theorem 3.1. The RrDLINAR1(M,A) process {Yn(zn)} is a Markov process.

Proof: Let us define sets A and B as A = {Ys(zs) = ys, s = 0, 1, ..., n− 2} and B =
A ∪ {Yn−1(zn−1) = yn−1}. According to the property of “α�” mentioned above, it holds

αzn � Yn−1(zn−1) = sgn(Yn−1(zn−1))(αzn ∗ |Yn−1(zn−1)|)

+

min
�
X

(1)
n−1(zn−1),X

(2)
n−1(zn−1)

�∑
j=1

Dj(zn),

whereby X
(1)
n−1(zn−1) and X

(2)
n−1(zn−1) have the same Geom

(
µzn−1

1+µzn−1

)
distribution and Dj(zn)

has the DL
(

αzn
1+αzn

)
distribution. Now, we have

P (Yn(zn) = yn|B) = P

(
sgn(Yn−1(zn−1))(αzn ∗ |Yn−1(zn−1)|)

+

min
�
X

(1)
n−1(zn−1),X

(2)
n−1(zn−1)

�∑
j=1

Dj(zn) + en(zn−1, zn) = yn

∣∣B).

Bearing in mind property (c) mentioned above and condition (3) of the Definition 2.1, it
becomes obvious that

P (Yn(zn) = yn|B) =
+∞∑

j=−∞
P (sgn(Yn−1(zn−1))(αzn ∗ |Yn−1(zn−1)|) = j|B)

× P

(min
�
X

(1)
n−1(zn−1),X

(2)
n−1(zn−1)

�∑
j=1

Dj(zn) + en(zn−1, zn) = yn − j

)

=
+∞∑

j=−∞

(
|yn−1|+ |j| − 1

|j|

)
α
|j|
zn

(1 + αzn)|yn−1|+|j|

× P

(min
�
X

(1)
n−1(zn−1),X

(2)
n−1(zn−1)

�∑
j=1

Dj(zn) + en(zn−1, zn) = yn − j

)
.

As the last expression depends only on yn−1, it is obvious that RrDLINAR1(M,A) is a
Markov process.

3.1. The k-step ahead conditional expectation

Theorem 3.2. Let {Yn(zn)} be a RrDLINAR1(M,A) process. Then for k ≥ 1,

(3.2) E(Yn+k(zn+k)|Yn(zn)) =

 k∏
j=1

αzn+j

Yn(zn).
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Proof: The proof will be derived by induction. Let k = 1. Using Theorem 2.3 from
[17], we have

E(Yn+1(zn+1)|Yn(zn)) = E(αzn+1 � Yn(zn)|Yn(zn)) + E(en+1(zn, zn+1))(3.3)

= αzn+1Yn(zn).

Suppose the equality (3.2) holds for k < m. Bearing in mind the Markov property of the
RrDLINAR1(M,A) process, we will prove that (3.2) holds for k = m as well. Namely,

E(Yn+m(zn+m)|Yn(zn)) = E
[
E(Yn+m(zn+m)|Yn+m−1(zn+m−1), ..., Yn(zn))|Yn(zn)

]
= E

[
E(Yn+m(zn+m)|Yn+m−1(zn+m−1))|Yn(zn)

]
= E(αzn+mYn+m−1(zn+m−1)|Yn(zn))

= αzn+m

m−1∏
j=1

αzn+j

Yn(zn)

=

 m∏
j=1

αzn+j

Yn(zn).

This completes the proof of this theorem.

3.2. Correlation structure

Theorem 3.3. A RrDLINAR1(M,A) process {Yn(zn)} given by (2.3) is the correlated

process with

(3.4) Corr(Yn(zn), Yn−k(zn−k)) =



k−1∏
j=0

αzn−j

√µzn−k
(1 + µzn−k

)
µzn(1 + µzn)

, k ≥ 0,

−k∏
j=1

αzn+j

√ µzn(1 + µzn)
µzn−k

(1 + µzn−k
)
, k < 0.

Proof: Since {Yn(zn)} is a process with the k-step ahead conditional expectation of the
form E(Yn+k(zn+k)|Yn(zn)) =

(∏k
j=1 αzn+j

)
Yn(zn), unconditional expectation E(Yn(zn)) = 0

and finite variance Var(Yn(zn)) = 2µzn(1 + µzn), for k ≥ 0 it becomes easy to obtain

Cov(Yn(zn), Yn−k(zn−k)) = Cov(E(Yn(zn)|Yn−k(zn−k)), Yn−k(zn−k))

= Cov

k−1∏
j=0

αzn−j

Yn−k(zn−k), Yn−k(zn−k)


=

k−1∏
j=0

αzn−j

Var(Yn−k(zn−k))

= 2

k−1∏
j=0

αzn−j

µzn−k
(1 + µzn−k

),
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whence we have

Corr(Yn(zn), Yn−k(zn−k)) =

2

(
k−1∏
j=0

αzn−j

)
µzn−k

(1 + µzn−k
)√

2µzn(1 + µzn)2µzn−k
(1 + µzn−k

)

=

k−1∏
j=0

αzn−j

√µzn−k
(1 + µzn−k

)
µzn(1 + µzn)

.

Similar to this, for k < 0 we obtain

Cov(Yn(zn), Yn−k(zn−k)) = E(Yn(zn) · Yn−k(zn−k))

= E[E(Yn(zn)Yn−k(zn−k)|Yn(zn))]

= E

Yn(zn)

−k∏
j=1

αzn+j

Yn(zn)


=

−k∏
j=1

αzn+j

Var(Yn(zn))

=

−k∏
j=1

αzn+j

2µzn(1 + µzn),

whence we have

Corr(Yn(zn), Yn−k(zn−k)) =

−k∏
j=1

αzn+j

√ µzn(1 + µzn)
µzn−k

(1 + µzn−k
)
.

Remark 3.1. If zn =zn−1 = ···=zn−k =j, then it holds that Corr(Yn(zn), Yn−k(zn−k))
= α

|k|
j , which matches with correlation function of the DLINAR(1) process.

Bearing in mind the equality (3.4) and the facts that µzn−k
> 0, µzn > 0 and αzn−j > 0

for all j = 0, 1, ..., k− 1, it is obvious that in case of k ≥ 0, Corr(Yn(zn), Yn−k(zn−k)) > 0. Let
us prove now the validity of the relation Corr(Yn(zn), Yn−k(zn−k)) < 1.

For all j = 0, 1, ..., k − 1, αzn−j ≤
µzn−j

1+maxi∈Er µzi
, so, obviously

αzn−j ≤
µzn−j

1 + µzn−j−1

<
µzn−j

µzn−j−1

<
1 + µzn−j

µzn−j−1

.

Then,

α2
zn−j

<
µzn−j

1 + µzn−j−1

·
1 + µzn−j

µzn−j−1

,

so we can conclude that αzn−j <

√
µzn−j (1+µzn−j )

µzn−j−1 (1+µzn−j−1 ) , and further, that

k−1∏
j=0

αzn−j <

√
µzn(1 + µzn)

µzn−1(1 + µzn−1)

√
µzn−1(1 + µzn−1)
µzn−2(1 + µzn−2)

···

√
µzn−k+1

(1 + µzn−k+1
)

µzn−k
(1 + µzn−k

)

=

√
µzn(1 + µzn)

µzn−k
(1 + µzn−k

)
.
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Finally, it holds

Corr(Yn(zn), Yn−k(zn−k)) <

√
µzn(1 + µzn)

µzn−k
(1 + µzn−k

)

√
µzn−k

(1 + µzn−k
)

µzn(1 + µzn)
= 1.

Similarly, it can be shown that 0 < Corr(Yn(zn), Yn−k(zn−k)) < 1, for k < 0.

4. YULE-WALKER ESTIMATION

In this section, the YW estimators will be provided and their strong consistency will
be proven. To that purpose, we will use procedure similar to the one described in [18].

Thus, let Y1(z1), Y2(z2), ..., YN (zN ) be a sample of the RrDLINAR1(M,A) process
{Yn(zn)} of size N . The main idea of the procedure described in [18] is to estimate pa-
rameters µk and αk only by using elements corresponding to the state k. Thus, let us divide
the initial sample into r subsamples Sk, k = 1, 2, ..., r, where Sk is a subsample which contains
all the elements corresponding to the state k and doesn’t contain elements corresponding to
any other state. This division can be performed in the following way:

Ik = {i ∈ {1, 2, ..., N}|zi = k}, k ∈ {1, 2, ..., r},
r⋃

k=1

Ik = {1, 2, ..., N}, |Ik| = nk, n1 + n2 + ···+ nr = N,

Sk = {Yk1(k), Yk2(k), ..., Yknk
(k)}, kj ∈ Ik, kj < kj+1, ∀j ∈ {1, 2, ..., nk − 1}.

In more detail, each Sk, k = 1, 2, ..., r, represents a disjoint union of subsamples
Sk,1, Sk,2, ..., Sk,ik , which we call ‘maximal’ subsamples. For an arbitrary subsample Sk,l,
l = 1, 2, ..., ik, we can find natural numbers ml and nl, ml < nl, such that zml

6= k,
zml+1 = zml+2 = ··· = znl

= k, znl+1 6= k. In that case, the subsample Sk,l = {Yml+1(zml+1),
Yml+2(zml+2), ..., Ynl

(znl
)} corresponds to the state k and is maximal in the sense that it can-

not be expanded neither to the left nor right side in the way that all of its elements correspond
to the state k. Now, each of those maximal subsamples Sk,l, l = 1, 2, ..., ik may be observed
as a sample of some DLINAR(1) process with the marginal distribution parameter µk. Let
us introduce the following notation: Jk,l = {i ∈ {1, 2, ..., N}|Yi(zi) ∈ Sk,l}, |Jk,l| = nk,l for all
l = 1, 2, ..., ik and nk,1 + nk,2 + ···+ nk,ik = nk. As shown in [17], the DLINAR(1) process
is stationary and ergodic, and the corresponding sample variance and the first-order sample
covariance are strongly consistent estimates of the variance and the first-order covariance of
the process. Finally, in case of subsample Sk,l, these estimators are of the form

γ̂
(k)
0,l =

1
nk,l

∑
i∈Jk,l

Y 2
i (k) and γ̂

(k)
1,l =

1
nk,l

∑
i,i+1∈Jk,l

Yi(k)Yi+1(k).

Let us define now the corresponding estimators without taking maximal subsamples into
account.

Definition 4.1. Estimators obtained from the subsample Sk corresponding to the
state k are defined as

(4.1) γ̂
(k)
0 =

1
nk

∑
i∈Ik

Y 2
i (k), γ̂

(k)
1 =

1
nk

∑
i,i+1∈Ik

Yi(k)Yi+1(k).
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Theorem 4.1. Estimators γ̂
(k)
0 and γ̂

(k)
1 from Definition 4.1 are strongly consistent.

Proof: This theorem shall be proven in a similar way as it was done by [18]. First
of all, the strong consistency property for γ̂

(k)
0 shall be proven. Because γ̂

(k)
0,l is strongly

consistent for all l ∈ {1, 2, ..., ik} it holds that γ̂
(k)
0,l → γk

0 , nk,l →∞ everywhere except on the
set Ωk,l, where P (Ωk,l) = 0. Now, it holds that

γ̂
(k)
0 =

1
nk

∑
i∈Ik

Y 2
i (k) =

1
nk

ik∑
l=1

∑
i∈Jk,l

Y 2
i (k) =

ik∑
l=1

nk,l

nk

1
nk,l

∑
i∈Jk,l

Y 2
i (k) =

ik∑
l=1

nk,l

nk
γ̂

(k)
0,l .

Let nk →∞. Following the technique introduced by [18], it is easy to show that

lim
nk→∞

γ̂
(k)
0 = lim

nk→∞

d∑
l=1

nk,l

nk
γ̂

(k)
0,l ,

where nk,l, l = 1, 2, ..., d, represent those maximal sample sizes which approach infinity when
nk does so. Thus, we have

lim
nk→∞

γ̂
(k)
0 = lim

nk,l→∞, ∀l∈{1,2,...,d}

d∑
l=1

nk,l

nk
γ̂

(k)
0,l

= γ
(k)
0 lim

nk,l→∞, ∀l∈{1,2,...,d}

d∑
l=1

nk,l

nk
= γ

(k)
0 .(4.2)

We mentioned earlier that lim
nk,l→∞

γ̂
(k)
0,l = γ

(k)
0 everywhere except on the set Ωk,l, where

P (Ωk,l) = 0. Thus, the equality (4.2) holds everywhere except on the set Ωk =
⋃d

l=1 Ωk,l,
where

P (Ωk) = P

(
d⋃

l=1

Ωk,l

)
≤

d∑
l=1

P (Ωk,l) = 0.

From the non-negativity of the probability, it follows that P (Ωk) = 0. Hence, γ̂
(k)
0 is a strongly

consistent estimator of the variance γ
(k)
0 .

Proof for γ̂
(k)
1 is analogous to the one proposed for γ̂

(k)
0 .

It has remained to estimate parameters µk and αk on the subsample Sk. According to
Theorem 3.3 from [17], it holds

γ
(k)
0 = 2µk(1 + µk), γ

(k)
1 = 2αkµk(1 + µk).

It follows that

µ̂Y W
k = −1

2
+

1
2

√
1 + 2γ̂

(k)
0 , α̂Y W

k =
γ̂

(k)
1

γ̂
(k)
0

.

Now, it is obvious that f(x) = −1
2 + 1

2

√
1 + 2x, x ≥ 0 is a continuous function.

According to Proposition 6.3.4 provided by [5], we conclude that µ̂Y W
k is strongly consistent.

The strong consistency of α̂Y W
k follows from the Theorem 4.1 given in [8].
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5. MODEL SIMULATIONS

We now focus on the YW estimating procedures on simulated data series, in order to
clarify the utility of the observed non-stationary modeling and to justify the quality of the
presented estimation method. Both processes, the random environment process {Zn} and the
RrDLINAR1(M,A) process {Yn(zn)} have been simultaneously simulated in 100 replicates,
each of size 10000. Sequences {Yn(zn)} are simulated using the fact that the newly defined
process is distributed the same as a difference between two independent RrNGINAR(M,A,P)
processes {X(1)

n (zn)} and {X(2)
n (zn)}, with P = {1}. Thus, first we simulated {X(1)

n (zn)}, and
independently of it, {X(2)

n (zn)} and derive {Yn(zn)} as Yn(zn) = X
(1)
n (zn)−X

(2)
n (zn), n ≥ 1.

Considering the number of possible random states, we have decided to discuss, in our opinion,
two of the most plausible cases in practice, as follows.

5.1. The case of two states

Here we have assumed that the random environment process is performed in two dif-
ferent states. Also, we have considered two different combinations of the model parameter
values. Bearing in mind that αj ∈

(
0,

µj

1+maxi∈Er µi

]
, first of all we have analyzed the case

when parameters αj , j = 1, 2, were close to their upper limits. So, we have used the fol-
lowing true values: µ = (1, 3) and α = (0.25, 0.7). It has been assumed that the choice of
the initial random state is fair, which led us to have pvec = (0.5, 0.5). It has remained for us
to set the random environment process transition probability matrix. In order to preserve
the simulated RrDLINAR1(M,A) process in one state as long as possible, we have chosen to
prefer the present state of the random environment process, i.e. probabilities that the random

environment process changes its state are significantly smaller. Thus, pmat =
[

0.6 0.4
0.2 0.8

]
.

In the second case, we have chosen parameters αj , j = 1, 2, to be smaller than the

midpoints of intervals
(
0,

µj

1+maxi∈Er µi

]
, j = 1, 2. In order not to shrink these intervals too

much, parameters µj , j = 1, 2, must have relatively close values. In that manner, we have
chosen the following true parameter values: µ = (2, 3) and α = (0.2, 0.3). An initial state
is nearly fair, due to the value of its distribution pvec = (0.45, 0.55), and the random states

transition probabilities are given as pmat =
[

0.7 0.3
0.3 0.7

]
.

5.2. The case of three states

Similarly, as aforementioned, in the case of three different random states we have also
considered two different combinations of the true parameter values. And yet again, the case
when parameters αj , j =1, 2, 3, approach their upper limits has been analyzed in the first place.
The following true parameter values have been used: µ = (1, 2, 5) and α = (0.1, 0.25, 0.7).
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An initial state is nearly fair, due to the value of its distribution pvec = (0.3, 0.4, 0.3), and the

random environment process transition probability matrix is pmat =

 0.7 0.2 0.1
0.1 0.7 0.2
0.2 0.1 0.7

.

At the very end, the second case represents the simulation when parameters αj , j =1, 2, 3,

are smaller than the midpoints of corresponding intervals
(
0,

µj

1+maxi∈Er µi

]
, j = 1, 2, 3.

Thus, we have chosen the following true parameter values: µ = (2, 3, 5) and α = (0.1, 0.2, 0.4).
An initial state is fair, due to the value of its distribution pvec = (0.33, 0.34, 0.33) and the

random environment process transition probability matrix is pmat =

 0.8 0.1 0.1
0.1 0.7 0.2
0.1 0.1 0.8

.

5.3. Estimation results

Forbothpresented cases, r = 2 and r = 3, we estimateparameters µj and αj , j =1, 2, ..., r,
of the RrDLINAR1(M,A) model using the YW method. Compared to the DLINAR(1)
model, the newly defined model has a greater number of unknown parameters, which leads
to better fitting to the data, because it is more “flexible”. However, since each state has its
own parameters that can be estimated only based on the part of the sample corresponding
to that state, it is expected to need a bigger sample for the same precision of the estimation.

Table 1: The case of 2 states.

a) True values µ = (1, 3), α = (0.25, 0.7), pvec = (0.5, 0.5), pmat =

�
0.6 0.4
0.2 0.8

�
.

N1 bµY W
1 bµY W

2 bαY W
1 bαY W

2

200 0.967 2.865 0.229 0.662
St. errors (0.164) (0.498) (0.136) (0.114)

500 0.980 2.943 0.236 0.686
St. errors (0.113) (0.350) (0.092) (0.068)

1000 0.984 3.003 0.241 0.700
St. errors (0.082) (0.238) (0.066) (0.052)

5000 0.997 3.002 0.249 0.700
St. errors (0.038) (0.117) (0.033) (0.023)

10000 0.990 2.998 0.250 0.700
St. errors (0.025) (0.087) (0.024) (0.015)

b) True values µ = (2, 3), α = (0.2, 0.3), pvec = (0.45, 0.55), pmat =

�
0.7 0.3
0.3 0.7

�
.

N1 bµY W
1 bµY W

2 bαY W
1 bαY W

2

200 2.052 3.033 0.210 0.291
St. errors (0.274) (0.368) (0.114) (0.121)

500 2.026 2.992 0.197 0.294
St. errors (0.166) (0.256) (0.080) (0.073)

1000 2.024 2.992 0.202 0.298
St. errors (0.108) (0.209) (0.057) (0.056)

5000 2.000 3.002 0.198 0.298
St. errors (0.055) (0.082) (0.027) (0.023)

10000 2.000 3.002 0.198 0.298
St. errors (0.041) (0.056) (0.017) (0.017)
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Thus, parameter estimates are derived for subsamples of sizes 200, 500, 1000, 5000 and 10000.
In each mentioned case, 100 simulated data series are used, and the corresponding standard
errors are calculated. With the sample size increment, all estimates are convergent with the
standard errors decreasing towards 0. It is also visible that the standard errors for µj are
smaller for smaller values of µj . These results are presented in Table 1 and Table 2, corre-
sponding to the cases of two and three random states, respectively. Transition probabilities
are not estimated this time, since those are not parameters of the RrDLINAR1(M,A) model
itself.

Table 2: The case of 3 states.

a) True values µ = (1, 2, 5), α = (0.1, 0.25, 0.7), pvec = (0.3, 0.4, 0.3), pmat =

2
4 0.7 0.2 0.1

0.1 0.7 0.2
0.2 0.1 0.7

3
5.

N1 bµY W
1 bµY W

2 bµY W
3 bαY W

1 bαY W
2 bαY W

3

200 1.030 2.103 4.957 0.115 0.263 0.695
St. errors (0.202) (0.407) (0.945) (0.130) (0.130) (0.141)

500 1.007 2.038 5.051 0.107 0.259 0.705
St. errors (0.133) (0.250) (0.696) (0.085) (0.092) (0.104)

1000 0.993 2.037 5.018 0.104 0.259 0.705
St. errors (0.090) (0.174) (0.521) (0.062) (0.061) (0.078)

5000 1.000 2.010 5.009 0.103 0.250 0.701
St. errors (0.035) (0.073) (0.216) (0.030) (0.030) (0.034)

10000 1.000 2.004 4.995 0.103 0.250 0.700
St. errors (0.025) (0.053) (0.164) (0.020) (0.020) (0.026)

b) True values µ = (2, 3, 5), α = (0.1, 0.2, 0.4), pvec = (0.33, 0.34, 0.33), pmat =

2
4 0.8 0.1 0.1

0.1 0.7 0.2
0.1 0.1 0.8

3
5.

N1 bµY W
1 bµY W

2 bµY W
3 bαY W

1 bαY W
2 bαY W

3

200 1.978 3.016 4.937 0.110 0.181 0.390
St. errors (0.359) (0.652) (0.737) (0.122) (0.141) (0.119)

500 2.016 3.016 4.946 0.103 0.207 0.390
St. errors (0.216) (0.366) (0.471) (0.083) (0.121) (0.083)

1000 1.991 2.994 4.954 0.103 0.201 0.393
St. errors (0.157) (0.248) (0.312) (0.060) (0.080) (0.054)

5000 1.991 3.006 4.989 0.099 0.199 0.396
St. errors (0.078) (0.120) (0.146) (0.028) (0.036) (0.027)

10000 1.991 3.006 4.991 0.099 0.201 0.399
St. errors (0.048) (0.087) (0.112) (0.018) (0.023) (0.018)

6. FORECASTING

Accuracy of forecasting in real-life data analysis is as important as evaluating the fit
of the model. We introduce here a criterion suitable to compare the prediction results of
different models. However, before we introduce the criterion itself, the forecasting proce-
dure will be described in brief. At the beginning, the data sample of size N = n1 + n2 is
divided into two sets, the training set and the prediction set. The training set contains the
first n1 sample elements and the prediction set contains the last n2 elements of the sample.
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We use training set to estimate model parameters and evaluate the fitting quality. In order
to evaluate the forecasting accuracy, we generate m sequences of predictions from the esti-
mated model parameters, each of size n2. Using the proposed criterion, we compare generated
predictions with the prediction set and finally determine the accuracy of forecasting.

We decided to use the forecasting log-score criterion (FLSC) already introduced in [14].
The criterion represents a modification of the log-score criterion (LSC) proposed by [10].
The FLSC criterion is given by the formula

FLSC =
n2∑

h=1

log p̂n1+h(xn1+h),

where h = 1, 2, ..., n2 and p̂n1+h(xn1+h) represents the estimated probability of correctly pre-
dicting the value xn1+h from the prediction set, that is,

p̂n1+h(xn1+h) =
number of correct predictions

m
.

Hihger values of the FLSC imply better forecasting.

7. APPLICATION

Regarding the application to the real-life data, we want to examine whether there is any
progress compared to other INAR models that deal with both positive and negative values.
For that purpose, we consider the number of motor vehicle thefts reported on a monthly
basis to police stations number 1608 and 2811, in Pittsburgh, Pennsylvania, USA, between
January 1990. and December 2001. The data were collected by the City of Pittsburgh Bureau
of Police and reported under the FBI Uniform Crime Report. The differences between motor
vehicle thefts on a monthly basis reported to these two police stations are calculated and
provided in Table 3.

Table 3: Differences between motor vehicle thefts reported on a monthly
basis to police stations number 1608 and 2811.

12 −1 2 3 8 −2 −3 4 4 6 5 5 5 4 4
5 4 5 4 0 1 0 1 2 3 −6 0 −1 −1 1
0 2 −1 0 1 −4 −5 −13 −4 −4 −5 −4 −6 −5 −8
−5 −5 −4 −4 −6 −5 0 1 −3 3 0 1 −2 0 0
−3 −1 −3 −3 −1 3 1 −1 0 0 −1 −1 2 1 1

1 3 0 2 1 0 0 2 1 1 −2 −2 −1 0 1
0 0 −3 0 1 −2 0 −2 2 −2 −3 2 2 2 3
2 1 −2 0 0 2 3 −3 0 −2 3 3 1 0 0
2 3 1 0 −3 −2 1 −3 −3 −3 2 3 −2 −2 1
3 1 2 0 3 2 3 2 −3

Based on the sample size of N =144, the sample mean of the differences between motor
vehicle thefts in police stations number 1608 and 2811 is y = 0.048, which proves the fact that the
mean values of the number of motor vehicle thefts in both stations are approximately the same.
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This condition is crucial here, since it had been claimed earlier that both processes {X(1)
n (zn)}

and {X(2)
n (zn)} must have the same distribution.

The usual first step in standard INAR modeling is to obtain the plots of autocor-
relation and partial autocorrelation functions. Those are given in Figure 1 and success-
fully justify the usage of the INAR(1) modeling. Bearing that in mind, we decide to com-
pare our RrDLINAR1(M,A) model on the training set with TINAR(1) (introduced by [9]),
DLINAR(1) (proposed by [17]) and STINAR(1) (given in [4]). All mentioned models involve
two i.i.d. latent AR components and are therefore suitable to compete with the
RrDLINAR1(M,A) model. As the criteria of the model validity, we take the following
goodness-of-fit statistics: the root mean square error (RMSE), the mean absolute error (MAE)
and the median absolute error (MdAE). Here, errors are defined as differences between ob-
served values and corresponding predictions. In general, the model that provides better fitting
to the data is expected to show lower values of these statistics.

Figure 1: Autocorrelations and partial autocorrelations.

In the next step, the observed data values are clustered. This is how we actually obtain
realized values of the corresponding random environment process. For all n ∈ {1, 2, ..., 144}, if
the theft difference in the n-th month is in the i-th cluster (where i ∈ Er and Er = {1, 2, ..., r}
is a set of possible random states), then zn = i is a n-th realized value of the corresponding
r states random environment process. In that way, realizations zn are determined. In this
particular case, we decided to divide the theft difference realizations into two clusters, using
the K-means clustering technique. These clustering results are given in Figure 2. Based
on this figure, the decision to divide the theft difference realizations into two clusters is
justified. As can be noticed, the differences that do not deviate too much from zero are
located in the first cluster (triangles). The second cluster mainly consists of realizations
from two time intervals (August 1990–July 1991 and December 1993–March 1995). These
realizations deviate significantly from zero (circles), indicating that changes in environment
state may have occurred. With each additional increase in the number of clusters, at least
one cluster with very few realizations in it is created. This leads to frequent state changes,
which is ruinous to any model in a random environment, including RrDLINAR1(M,A).
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Hence, RrDLINAR1(M,A) models with more than 2 environment states should not be con-
sidered for this data series.

Figure 2: Clustering results obtained by applying the K-means technique
to the motor vehicle theft differences.

The data set was divided into two parts, the training set with the first 120 sample
elements and the prediction set with the last 24 sample elements. Based on the training set,
we are able to construct the R2DLINAR1(M,A) process {Yn(zn)}, of which arbitrary element
Yn(zn) has the DL

( bµzn
1+bµzn

)
distribution, where µ̂1, µ̂2 and α̂1, α̂2 are previously obtained from

the training set using corresponding YW estimates.

Furthermore, we perform on training set the fitting quality comparison of all applied
models by calculating RMSE, MAE and MdAE for each particular model. These values,
together with the Yule-Walker parameter estimates, are presented in Table 4. Obviously, the
R2DLINAR1(M,A) model based on two states random environment process showed the best
performance when fitting this kind of real-life data sequences, providing the smallest values
of all goodness-of-fit statistics. Regarding other competitors, STINAR(1) performed slightly
better. However, even for this model, goodness-of-fit statistics are significantly higher then
corresponding counterparts calculated for the R2DLINAR1(M,A) model. One more fact is
noticeable. Compared to the parameter α2, parameter α1 from R2DLINAR1(M,A) model
is more similar to the parameter α from the other three models. Bearing in mind the form
of the one-step ahead conditional expectation given with (3.3), it can be concluded that all
proposed models are suppose to give relatively similar approximations of data points from the
first cluster. However, in the second cluster, the approximations should differ dramatically,
which would explain the difference in RMSE, MAE and MdAE values.

In Figure 3, the realization of the theft difference process, as well as the predicted values
of R2DLINAR1(M,A) and STINAR(1) models, are shown. The TINAR(1) and DLINAR(1)
model predictions are omitted here due to their similarity to STINAR(1) predictions.
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Table 4: YW parameter estimates and goodness-of-fit statistics RMSE,
MAE and MdAE for INAR(1) modeling of the theft difference.

Model YW RMSE MAE MdAE

TINAR(1) bα = 0.334 2.691 2.139 2.010bλ = 1.818

DLINAR(1) bα = 0.332 2.690 2.135 2.001bµ = 1.882

STINAR(1) bα = 0.338 2.681 2.131 1.993bµ1 = 2.008bµ2 = 1.992

R2DLINAR1(M,A) bα1 = 0.190 2.188 1.665 1.001bα2 = 0.809bµ1 = 0.816bµ2 = 3.649

As expected, both models (R2DLINAR1(M,A) and STINAR(1)) approximate well the values
which are not that far from zero. A large difference in quality fitting is noticeable in realiza-
tions that correspond to another state, i.e., that deviate significantly from zero. In this case,
the newly defined R2DLINAR1(M,A) model shows much better ability to adjust to the real-
life realizations, which leads to better fitting. For high deviations, the difference between the
predicted values of the R2DLINAR1(M,A) and STINAR(1) models is larger. This adapt-
ability is certainly a consequence of the non-stationary nature of the RrDLINAR1(M,A).
It is important to add that the trajectory of the R2DLINAR1(M,A) model generally follows
the trajectory of the realized process.

Figure 3: Black line – realization of the theft difference process;
red line – R2DLINAR1(M,A) predicted values;
blue line – STINAR(1) predicted values.
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Finally, we focus our attention on forecasting. To neutralize the impact of random-
ness on forecasting procedure, 10000 different sequences of size 24 are generated for each
model, whereby corresponding model parameters are based on the training set. We com-
pare these generated sequences of predictions with the prediction set and calculate FLSC.
Table 5 shows results of the FLSC for all considered models. According to this table, the
R2DLINAR1(M,A) model has the largest FLSC among all considered models and thus, it
provides the most accurate forecasting.

Table 5: FLSC for the prediction set of the theft difference.

TINAR(1) DLINAR(1) STINAR(1) R2DLINAR1(M,A)

FLSC −65.712 −63.982 −64.151 −63.136

8. CONCLUSION

In this paper, we introduced a random environment integer-valued autoregressive pro-
cess with discrete Laplace marginal distributions, RrDLINAR1(M,A). Since the construction
of this process was inspired by the work of [17], some of its features have been obtained in a
similar way. Besides the definition of the RrDLINAR1(M,A) process, we presented the full
characterization of the process including its k-step ahead conditional expectation, correlation
properties and the innovation process distribution. Parameter estimation was carried out
using the method of moments and the strong consistency was proven. The YW estimates
quality has been verified using subsamples of different sizes of 100 simulated data series, each
of length 10000. At the very end, an application of the introduced model on real-life data
series has been presented.

Further research might be performed in two directions. First of all, the model itself
can be generalized to an order higher than 1, following the technique used in [11]. As for the
second direction, an idea presented in this paper might be applied to the INAR process with
asymmetric discrete Laplace marginal distribution, introduced by [7].
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1. INTRODUCTION

The power (P ) model for a probability density function (pdf), say f , was discussed by
Lehmann [18] for the case α ∈ N and later by Durrans [5] for α ∈ R+, the shape parameter.
If a random variable Z is distributed according to this class of distributions, we use the
notation Z ∼ Pf (α).

Its probability density function (pdf) is given by

g(z;α) = αf(z)F (z)α−1, z ∈ Z,(1.1)

where Z is the sample space defined for f and F is the cumulative distribution function (cdf)
related to f . Durrans [5] considers f = φ(·), the density function of the normal distribution
with location and scale parameters, which we will refer to as power normal (PN) distribution.
The case when f is symmetrical is discussed by Gupta and Gupta [10], including some
fundamental properties of this family; Pewsey et al. [38] show that the information matrix is
not singular when the symmetrical case is recovered (α = 1).

Based on this representation, there are some extensions in the literature and we refer
to Table 1 for a few references.

Table 1: Some extensions for the Power family.

Authors Distribution F

Gupta and Kundu EE Exponential
[11, 12]

Mudholkar et al. Exponentiated Weibull Weibull
[32, 33] (WE)

Gupta et al. Exponentiated-Pareto Pareto
[9] (EP)

Nadarajah Exponentiated Gumbel Gumbel
[35] (EG)

Kakde and Shirke Exponentiated lognormal Lognormal
[14] (ELN)

Nadarajah and Gupta Exponentiated gamma Gamma
[36] (EG)

Mart́ınez-Flórez et al. Skew-normal alpha power Skew-normal
[25] (SNAP)

Mart́ınez-Flórez et al. Power Birnbaum-Saunders Birbaum-Saunders
[26] (PBS)

Gómez and Bolfarine Power half-normal Half-normal
[7] (PHN)

Zhao and Kim Power t t-Student
[42] (PT)

Gómez et al. Power piecewise exponential Piecewise exponential
[8] (PPE)

Another important property of the Pf (α) class is its interpretability for α ∈ N. In this
case, the Pf (α) model can be interpreted as the distribution of the maximum of X1, X2, ..., Xα,
where the Xi’s are independent, identically distributed random variables from X ∼ f .



Bias reduction of maximum likelihood estimates for asymmetric power models 493

A similar interpretation is given by Durrans [5] for the extended case α ∈ R+ using frac-
tional order statistics.

Other extensions related to this model are presented in Mart́ınez-Flórez et al. [23], intro-
ducing a multivariate version of the model; Mart́ınez-Flórez et al. [24], performing applications
in regression models; Mart́ınez-Flórez et al. [27], studying the exponential transformation of
the model; in [28], studying a version of the doubly censored model with inflation in a regres-
sion context. In one of the references in Table 1, Gupta and Kundu [12] reported a simulation
study for the EE model in which an overestimation problem for the shape parameter in small
sample sizes was observed. Based on this, we propose a bias correction methodology which
should be useful not only for this distribution, but for the whole P family. To motivate our
discussion, we start our presentation with two special cases from this class of models. Later,
in the simulation studies, we add another case; and in the applications we also add another
member of this family. This is done to ensure that our bias correction method works with
different distributions, not just certain carefully selected distributions.

The first case is the EE model with shape and rate parameters α and λ respectively
(which we denote as EE(α, λ)). The second case is the PHN model with shape and scale
parameters α and σ (which we denote as PHN(α, σ)).

For Z ∼EE(α, λ), the pdf is

g(z;α, λ) = αλe−λz[1− e−λz]α−1, z > 0,(1.2)

and for Z ∼ PHN(α, σ), the pdf is given by

g(z;α, σ) =
2α

σ
φ
( z

σ

)[
2Φ
( z

σ

)
− 1
]α−1

, z > 0,(1.3)

where φ(·) and Φ(·) are the pdf and the cdf for the standard normal distribution.

When dealing with these cases, it is important to study the associated bias in parameter
estimation, if we use maximum likelihood estimation methods for instance. Although the
unbiased property of these estimators is well known in asymptotic condition, we need to
be careful when using this estimation method for small sample sizes. For applications of
recent mean bias reduction methodology in different contexts, see for instance Kosmidis et

al. [15], Melo et al. [31], Maity et al. [22], Magalhães et al. [20] and Mazucheli et al. [30].
An alternative method is the median bias reduction methodology recently proposed in Pagui
et al. [37] and applied in different contexts in Kyriakou et al. [16] and Ioannis et al. [13], for
example.

For the Pf (α) class of distributions, a simple simulation study can be set up to identify
some weaknesses of the maximum likelihood estimators (MLE’s) for different values of each
parameter and different sample sizes, considering the cases of the exponentiated exponential
and the power-half normal models. In Figures 1 and 2 we report the estimated bias based on
10,000 replicates for the EE and PHN models for the MLEs.

Note that in both models, the observed average bias of the estimator of α is considerably
greater (in relative terms) when compared with the average bias for the other parameters.
This fact motivates the study of a method for reducing the mean bias for the MLE of α in
the general class of model defined in (1.1), which can be applied to any member of the class.
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Figure 1: Estimated bias for the MLE of λ and α in the EE(α, λ) under
different scenarios based on 10,000 replicates.

Initially, considering only the shape parameter α, it is possible not only to study the
bias, but also to define an unbiased estimator, namely the UMVUE. This result is also related
to the method proposed by Firth [6] for prevention of bias in maximum likelihood estimation.
Moreover, when there are more parameters in this class of distributions, the approach used
in Sartori [41] for skew normal models provides a convenient scheme to focus our attention
on the bias for α, while also maximizing the likelihood for the other parameters; it has been
applied more recently in Arrué et al. [1] and Magalhães et al. [21] in the study of bias for
skew-normal, modified skew-normal and Marshall-Olkin models respectively.

This paper is organized as follows. Section 2 defines the bias for the shape parameter
and presents the UMVUE for α in the general class of power models. Section 3 discusses the
method to prevent bias to the shape parameter, while also obtaining maximum likelihood
estimates for the other parameters, where we describe an iterative algorithm to find these
estimates. Section 4 shows a simulation study, where we consider the cases not only of the
exponentiated exponential and the power-half models, but also the power piecewise expo-
nential, to illustrate the superior performance of the modified estimator. In Section 5, we
highlight the improvements provided by the methods proposed here with three applications,
which are known in the literature for this type of data.
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Figure 2: Estimated bias for the MLE of σ and α in the PHN(α, σ) under
different scenarios based on 10,000 replicates.

2. CASE I: F (·) IS FREE OF PARAMETERS

The likelihood for a random sample z = (z1, z2, ..., zn) from Pf (α) is given by

L(α) =
n∏

i=1

f(zi)× αn exp

{
(α− 1)

(
n∑

i=1

log F (zi)

)}
.(2.1)

Theorem 2.1. For the Pf (α) model, T (z) = −
∑n

i=1 log F (zi) is a complete statistic.

Proof: Note that the likelihood function in (2.1) can be broken down as

L(α) =
n∏

i=1

f(zi)︸ ︷︷ ︸
h(z)

×αn exp

{
−(α− 1)

(
−

n∑
i=1

log F (zi)

)}
︸ ︷︷ ︸

gα

(
−

n∑
i=1

log F (zi)

)
.
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According to the Neyman factorization theorem, T = T (z) = −
∑n

i=1 log F (zi) is a sufficient
statistic for α. It is possible to verify that − log F (Zi) ∼ E(α), where E(α) denotes the
exponential distribution with rate α. As the Zi’s are independent, then T ∼ G(n, α), with
G(a, b) the gamma distribution with shape and rate parameters a and b respectively. Let g

be a measurable function in the interval (0,∞). Therefore,

E(g(T )) = 0 ⇔
∫ ∞

0
g(t)tn−1e−αtdt = 0.

As α > 0 and n ≥ 1, then tn−1e−αt > 0, ∀t > 0. Thus, E(g(T )) = 0 ⇔ g(T ) = 0, implying
that T is a complete statistic.

On the other hand, the log-likelihood function is given by

`(α) = n log α +
n∑

i=1

[log f(zi) + (α− 1) log F (zi)].

It is direct that the MLE of α is given by

α̂ =
n

−
n∑

i=1

log F (zi)

.

Theorem 2.2. α̂ is a biased estimator for α.

Proof: As −
∑n

i=1 log F (Zi) ∼ G(n, α), we have that

E(α̂) =
nα

n− 1
, n > 1.

Remark 2.1. Note that bias(α̂) = α/(n− 1), so that the bias can be“too large”when
α is increased and the sample size is small. Clearly, for n →∞, α̂ is unbiased.

Theorem 2.3. α̂M = (n− 1)/(−
∑n

i=1 log F (zi)) is the UMVUE for α.

Proof: It is clear that α̂M is an unbiased estimator for α. As α̂M depends on a
complete statistic, by the Lehmann-Scheffé theorem α̂M is the UMVUE for α.

2.1. Connection with the Firth method

A popular method to reduce the bias of an estimator is the Firth method [6]. For the
univariate case, the method consists in modifying the score function, say S(α), by

SM (α) = S(α) + M(α),
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where M(α) = 1
2I(α)−1(να,α,α + να,αα), I(α) the information matrix for the model, να,α,α =

E
[(

∂`(α)
∂α

)3]
and να,αα = E

[
∂`(α)
∂α

∂2`(α)
∂α2

]
. The solution of the modified score equation SM (α) = 0

produces the modified MLE, say α̂M . Firth [6] shows that the bias of α̂M is reduced from
O(n−1) to O(n−2) when compared with the ordinary MLE. Moreover, the asymptotic distri-
bution of α̂M coincides with that of α̂, i.e.

√
n(α̂M − α) → N

(
0, I(α)−1

)
, as n →∞.

Note that for the Pf (α) model

∂`(α)
∂α

=
n

α
+

n∑
i=1

log F (zi) and
∂2`(α)
∂α2

= −n2

α2
.

As −
∑n

i=1 log F (Zi) ∼ G(n, α), it can be verified that

I(α) =
n2

α2
, να,α,α = −2n

α3
and να,αα = 0.

Then, for the Pf (α) model we have that M(α) = −α−1. Therefore, SM (α) = n−1
α +∑n

i=1 log F (zi). Solving SM (α) = 0, we obtain newly

α̂M = (n− 1)/

(
−

n∑
i=1

log F (zi)

)
,

as the solution.

3. CASE II: F (·) DEPENDS OF ψ, A VECTOR OF PARAMETERS

Consider that F (·) is indexed by a vector of parameters ψ. In this case, the log-
likelihood function for θ = (ψ, α) is given by

`(θ) = n log α +
n∑

i=1

[
log f(zi;ψ) + (α− 1) log F (zi;ψ)

]
.

Our proposal is to consider the bias correction only for α and not for ψ. This is justifiable in
some models such as EE and PHN because the bias for α is considerable in small and median
sample sizes and lower for the components of ψ as presented in Figures 1 and 2.
Following the approach used in Sartori [41], we first compute the constrained MLE ψ̂(α) for
fixed α, and then we apply Firth’s method to the profile score function of α, which produces
the modified estimator

α̂M =
n− 1

−
n∑

i=1

log F (xi; ψ̂)

.

In short, the estimation procedure can be described as:

• Step 0: Choose an initial value for θ = (ψ, α), say θ̂
(0)

. A possible value can be

θ̂
(0)

= (ψ̂
(0)

, 1), where ψ̂
(0)

is the MLE for ψ considering that X1, ..., Xn are iid
from F (·;ψ).
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• Step 1: For k = 1, 2, ..., choose ψ̂
(k)

as the vector that maximizes

`p(ψ; α̂(k−1))

in relation to ψ.

• Step 2: For k = 1, 2, ..., do

α̂
(k)
M =

n− 1

−
n∑

i=1

log F
(
xi; ψ̂

(k)
) .

Although we apply the bias correction only for α, we will see in the next section that
this procedure also provides better estimates for ψ.

Remark 3.1. Given the MLE of ψ, say, ψ̂ and considering Remark 2.1, we can com-
pute the corrective method of Cox–Snell for α. This estimator will be denoted as α̂C and is
given by

α̂C =
n− 1

−
∑n

i=1 log F (zi; ψ̂)
.

Note that in this procedure ψ̂ is not recomputed and matched directly with the MLE es-
timator. However, to avoid confusion in the simulation study, we consider the notation
θ̂C = (ψ̂C , α̂C) to refer to the estimators obtained by this method.

4. SIMULATION STUDY

In this section, we illustrate the method discussed in Section 3 for the EE, PHN and
PPE models (see Gómez et al. [8]). All the computational programs were developed in R
Core Team [39] and are available upon request. Random samples for those distributions can
be obtained using the inverse transformation method, considering that the inverse of the cdf
for the basal models are implemented in R. We consider sample sizes ranging from 10 to 100,
taking one sample for every 5 units. For the EE model, we consider all combinations among
the sets A = {0.25, 0.5, 1, 2, 5, 10} and L = {0.1, 0.5, 2} for α and λ, respectively. In a similar
manner, for the PHN model we consider all combinations among the sets A = {0.5, 2, 5, 10}
and S = {5, 30, 50} for α and σ, respectively. For the PPE models we choose a different way
to select the parameters. We consider the case L = 2, which includes three parameters for
the model. For a given time partition a and α, we take λ1 = −(1/a) log(1− 0.61/α), which
guarantees that each observation belongs to the intervals (0, a) and (a,∞) with probabilities
0.6 and 0.4, respectively. We consider α in A = {0.5, 2, 5, 10}, a in {6, 10} and λ2 = 1 for all
combinations.

We consider 10,000 replicates for each combination between n, the sample size, α and
λ, σ or (λ1, λ2) (depending on the model). In each replication we compute the ordinary
MLEs, the estimators considering the Cox–Snell corrective method, and the proposed modi-
fied MLEs. For each scenario, we present the relative bias and the relative root mean squared
error

√
MSE. In Figure 3 we can find the bias, and in Figure 4 we see the

√
MSE for one
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case in the EE distribution. The remaining combinations for the EE, PHN and PPE models
are presented as supplementary material.
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Figure 3: Estimated bias for the MLE and the modified MLE in the EE(α, λ) model
under different scenarios based on 10,000 replicates.

Note that the bias of α̂M is reduced considerably when compared with α̂ and α̂C in the
three models, EE, PHN and PPE, especially for small sample sizes (say n ≤ 20). Specifically,
for the EE and PHN distributions in all the cases considered for n = 10 (the smallest sample
size), the bias reduction is at least 10% when α̂ is compared with α̂M and at least 5% when
is compared α̂C with α̂M . For the PPE distribution in all the cases considered for n = 10,
the bias reduction is at least 40% when α̂ is compared with α̂M and at least 30% when α̂C is
compared with α̂M . In all the models, the difference is even greater when the true value of α

is increased. On the other hand and as expected, this difference is reduced when the sample
size is increased.
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Figure 4: Estimated root MSE for the MLE and the modified MLE in the EE(α = 0.5, λ = 0.05)
model under different scenarios based on 10,000 replicates.

The components of the vector ψ also are benefited in terms of bias, although the bias
reduction is only proposed for α. For the EE model in all the cases considered and n = 10,
the bias reduction is at least 10% when λ̂ or λ̂C is compared with λ̂M . For the PHN and
PPE models, in all the cases considered the bias reduction for λ and (λ1, λ2) exists, but is
marginal.

Additionally,
√

MSE related to α̂M is also lower when compared with α̂ and α̂C . For
the EE and PHN distributions, in all the cases considered for n = 10 the

√
MSE is reduced

by at least around 5% when α̂ or α̂C is compared with α̂M , whereas for the PPE model in
all the cases considered for n = 10 this reduction is at least around 20%. On the other hand,
for the EE and PPE models in all the cases considered for n = 10, the

√
MSE is reduced by

at least around 10% when the modified estimator is compared with the traditional estimator
or the Cox–Snell estimator; whereas for the PHN distribution, in all the considered models
the reduction for

√
MSE is marginal. Again, in all the models, the difference is even greater

when the true value for α is increased and as expected, the difference between the different
estimators is reduced when the sample size is increased.

These simulation results are encouraging since they show, for these three particular
members of the class of power models, that even though we focus this bias prevention method
on the shape parameter, α, we still observe better bias results for the other parameters.

5. APPLICATIONS

In this section, we illustrate the methods in three real data sets for the EE, PPE and
PN models. All data sets are already known in the literature and we wish to compare the
performance of the modified MLE against the ordinary MLE and also using the Cox–Snell
correction method. We examine not only how well they both fit the data, but also the bias,
which could be estimated through bootstrap. Additional applications for the PHN and PBS
models are presented as supplementary material.
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5.1. Illustration 1

In this first application, we consider data on the number of million revolutions before
failure for each of 23 ball bearings in a life test. More details about the data are presented
in Lawless [17]. This data set was analyzed in Gupta and Kundu [12] using the EE model.
The estimates considering the ordinary MLE’s and the modified MLEs for this model are
presented in Table 2, with respective s.e. and confidence intervals.

Table 2: MLE and modified MLE for the EE model in the ball bearings data set.

Parameter bλ bα bλM bαM

Estimate 0.0323 5.2832 0.0302 4.5379
s.e. 0.0064 2.0492 0.0060 1.6566

95% C.I. (0.0197 ; 0.0449) (1.2667 ; 9.2998) (0.0206 ; 0.0440) (2.0363 ; 8.5302)

Note that the confidence intervals when we consider the modified MLEs are more
accurate for both parameters, since they have a smaller length compared to the confidence
intervals obtained with the estimates of the ordinary MLEs. The histogram of the data and
the estimated density functions of both estimates are presented in Figure 5a.
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Figure 5: Comparisons for the ordinary and modified MLEs in the ball bearings data set.
Left panel: Histogram for EE model and respective density estimate for each proposal.
Right panel: Estimated bias via 10,000 bootstrap samples for each estimator.

The estimated density for the modified MLEs presents a better fit with the data, if
we note that this density better represents the peak of values around 50 million revolutions
before failure. Furthermore, if we take 10,000 bootstrap samples to estimate the bias, we have
Figure 5b, where we are able to compare these two estimators empirically. The ordinary MLE
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present an estimated bias, via bootstrap, equal to 1.4774, while this value for the modified
bias is 1.0626. The bootstrap standard errors are equal to 3.8744 and 2.7440 for the ordinary
and modified MLE, respectively. These results are confirmed by the analysis of Figure 5b,
where the estimated density for the modified MLE is clearly more concentrated around zero,
further evidence of the superior performance of the modified method.

5.2. Illustration 2

This data set is available in Murthy et al. [34] (data set 6.1 in Section 6.6.5). The
data set represents the failure time of 20 components. We propose to analyze this data set
based on the PPE model with L = 2 in order to illustrate the advantage of our methodol-
ogy to reduce the bias for parameters. Table 3 shows the ordinary, corrected and modified
MLEs for the PPE distribution in this data set. The main differences between the three
methods are given in the estimates for λ1 and α. We also highlight that the standard errors
are lower for the modified MLEs, which also provides more accurate confidence intervals.

Table 3: Ordinary, corrected and modified MLE for the PPE model in failure time data set.

Parameter Estimate s.e. 95% C.I.

bλ1 0.8766 0.2643 (0.4855 ; 1.5829)
bλ2 3.8663 1.1347 (2.1751 ; 6.8725)
bα 5.1751 2.6060 (1.9287 ; 13.8856)

bλ1C 0.8766 0.2477 (0.4967 ; 1.5472)
bλ2C 3.8663 1.1394 (2.1759 ; 6.8699)
bαC 4.9163 2.2601 (1.8781 ; 12.8693)

bλ1M 0.7600 0.2366 (0.3893 ; 1.4836)
bλ2M 3.8379 1.1303 (2.1542 ; 6.8376)
bαM 4.0096 1.8634 (1.4397 ; 11.1671)
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Figure 6: Cumulative distribution function for failure time data set using PPE model
for ordinary MLE, corrected MLE and modified MLE.
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Figure 6 shows the empirical cdf and the estimated cdf for the three methods. The main
difference between the curves is given before the median of the distribution (approximately
2.2 units). Finally, Figure 7 shows the estimated distribution for the bias of the estimators of
λ1, λ2 and α for the three methods, which are computed based on 10,000 bootstrap samples.
Again, the main differences are given for the estimators for λ1 and α. For this last term, the
estimators provided by the ordinary and corrected MLEs have an evident and considerable
bias, in contrast to the modified MLE where the bias is negligible.
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Figure 7: Estimated distribution for the bias for MLEs, corrected MLEs
and modified MLEs based on 10,000 bootstrap samples.
Dashed lines represents the respective average bias.

5.3. Illustration 3

This data set is related to 3,848 observations of the variable “density” in the data
available at http://lib.stat.cmu.edu/datasets/pollen.data and was analyzed by Pewsey
et al. [38] using the PN distribution. Although the PN distribution was not considered in
the simulation studies, we decided to include this example using the PN model in order to
demonstrate the effectiveness of our modified MLE for the parameters in a class of location-
scale (µ and σ, respectively) within the power models. Evidently, as the sample size is large,
it is to be expected that the ordinary MLE and their corrections will be closer. However,
in order to illustrate our proposal, we considered a subsample of n = 30 from the original
data. Table 4 presents the results. Note that the estimates for α are closer for the ordinary
MLE and the Cox–Snell corrective method, but differ strongly from the modified MLE. The
impact of this can be assessed by the huge reduction in the bias of α̂M in comparison with
the bias of α̂ and α̂C . In addition, Figure 8 shows the histogram with the estimated density
function based on the PN model for the three estimation methods.

http://lib.stat.cmu.edu/datasets/pollen.data
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Table 4: Ordinary, corrected, modified MLE and estimated bias
based on 1,000 non-parametric bootstrap samples for
the PN model in the pollen data set.

Parameter Estimate s.e. 95% C.I. bias

bµ −16.3238 36.7854 (−53.1092 ; 20.4616) 10.6265
bσ 6.8207 6.5279 (0.2928 ; 13.3486) −2.8944
bα 115.1611 970.8617 (0.0000 ; 1086.0228) 265.4226

bµC −16.3238 5.3937 (−21.7175 ; −10.9301) 10.6265
bσC 6.8207 1.3255 (5.4952 ; 8.1462) −2.8944
bαC 111.3105 117.7705 (0.0000 ; 229.0813) 256.5461

bµM 4.7456 1.6875 (3.0581 ; 6.4331) 1.1611
bσM 1.7058 0.5620 (1.1438 ; 2.2678) −0.4343
bαM 0.1838 0.1674 (0.0163 ; 0.3512) −0.0601
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Figure 8: Estimated pdf for pollen data set using PN model for ordinary MLE,
corrected MLE and modified MLE.

6. CONCLUSIONS

In this paper, we considered the problem of estimation of the shape parameter in the
general class of power models; we recognize empirically the difficulties in this task, especially
for small sample sizes. For the case where we have only α to estimate, we present the unbiased
estimator as a function of a complete statistic for this class of models, obtaining the UMVUE
for α. We discuss the connection of these results with the bias prevention method proposed by
Firth [6]. We also propose an estimation method for the case when there are more parameters,
limiting the bias correction to α.
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Although our results are valid for all members of the general class of power models,
we selected some members of this class of models, namely EE, PN, PPE, PHN and PBS, in
order to demonstrate and compare the results between the ordinary MLE and the modified
MLE proposed in this paper. The simulation studies confirm the bias reduction for the
shape parameter, but they also show that there is an improvement related to bias for the
other parameters involved, for each distribution considered here. According to our simulation
results, the improvements are not only related to bias, as we also noticed lower root mean
squared errors when we use the modified estimator. Although we do not consider families of
bimodal distributions belonging to this family (as presented in Bolfarine et al. [4]), we see no
reason why the method should not work in families of this type.

We illustrate our findings with three known data sets from the literature, for each
distribution. Although this is a large number of examples, we thought it was important to
make sure our method was tested with different members of this class, and not just some
selected cases. We show that our modified estimator gives a better fit with the data in each
case, and also we estimate the bias via bootstrap, validating that our proposal performs
better.
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1. INTRODUCTION

In lifetime and reliability studies, an experimenter may not have complete information
of the failure times for each and every experimental units. Due to various reasons, it is
sometimes required to remove few units from an experiment and as a result, one gets censored
data set. There are two most common censoring schemes: (i) type-I and (ii) type-II. The
type-I censoring is censored at fixed time, whereas the type-II censoring is censored at a fixed
number. These two censoring schemes can not handle the situations, in which we need to
remove units at various stages of a test. The removal of experimental units can be done
in the progressive censoring scheme. In this paper, we consider PT-II censoring scheme
for estimation and prediction for an EGT-II distribution. The PT-II censored scheme is
described below. Let n units be placed in a life test. It is pre-decided by the experimenter
that m number of failures will be observed. At the time of first failure, we assume that
Φ1 of the remaining n− 1 surviving units are randomly withdrawn from the experiment.
Further, Φ2 of the remaining n− Φ1 − 2 units are removed from the on-going experiment.
This procedure continues till the occurrence of m-th failure. We remove all the remaining
surviving units Φm = n−m− Φ1 − ··· − Φm−1, when the m-th failure takes place. In PT-II
censoring scheme, we denote the m observed failure times as x1:m:n, ..., xm:m:n. For simplicity,
we use xi = xi:m:n, for i = 1, ...,m.

The most popular lifetime models are those with monotone hazard rates (gamma,
Weibull), which reflect a wear out or a work hardening behaviour of the population under
study. However, there are many other situations, in which the failure pattern is somehow
different. When studying the life-cycle of an industrial product or the entire life-span of a
biological entity, the three-phase behaviour of the failure rate is likely to be observed. For
example, consider a high failure rate in infancy which decreases to a certain level, where
it remains fixed for some time, and then increases from a point onwards due to ageing.
Thus, in this case, a model having bathtub-shaped hazard rate will be appropriate to study
the population’s survival capacity. Further, there are also some situations, in which the
failure pattern looks like upside-down bathtub. The distributions with upside-down bathtub-
shaped hazard rate function is often associated with overload of a component or a subsystem.
Intuitively, a lifetime distribution with upside-down shaped hazard rate would suggest a hard
stress on the components, leading to fast ageing processes for a part of them but leading
to a decreasing failure rate for the surviving items after the stress. There are various real
life applications, when the data show upside-down bathtub shape hazard rates. For example,
Langlands et al. [10] studied cases of breast carcinoma and showed that the associated hazard
rate has upside-down bathtub shape. We refer to Efron [5] for more applications of this type
of hazard rate functions. The EGT-II distribution has a upside-down bathtub-shaped hazard
rate function. Thus, this distribution can be useful in modelling population having bathtub-
shaped failure pattern. In addition, this distribution can model various types of data as it can
take various shapes (Leptokurtic, platykurtic with thick and thin tails) for various choices of
the parameters.

Let X be a random variable following EGT-II distribution, with probability density
and cumulative distribution functions respectively given by

fX(x : α, β, γ) = αβγx−β−1 exp{−γx−β}
(
1− exp{−γx−β}

)α−1
(1.1)
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and

FX(x : α, β, γ) = 1−
(
1− exp{−γx−β}

)α
,(1.2)

for x > 0 and α, β, γ > 0. The constants α and β are known as the shape parameters, whereas
γ is known as the scale parameter. We denote X ∼ EGT-II(α, β, γ) if X has the distribution
function given by (1.2). The EGT-II distribution is a generalization of various well known
statistical models. When α = 1, β = 1, β = 2 and γ = 1, the EGT-II distribution reduces to
the Gumbel type-II, generalized inverted exponential, inverted exponentiated Rayleigh and
exponentiated Frechet distributions, respectively. The EGT-II distribution becomes Frechet
distribution for α = γ = 1.

Several authors have considered estimation of parameters and some reliability charac-
teristics of various lifetime distributions based on PT-II censored observations. Maiti and
Kayal [13] considered estimation for the generalized Frechet distribution based on the PT-II
censored data. Ghanbari et al. [7] studied estimation of stress-strength reliability for Marshall-
Olkin distributions based on PT-II censored samples. Ren and Gui [17] explored goodness
of fit test for Rayleigh distribution based on PT-II censored samples. Tarvirdizade and Ne-
matollahi [20] proposed some inferences for the power-exponential hazard rate distribution
under PT-II censored data. To the best of authors’ knowledge, nobody has considered the
problem of estimation of parameters of EGT-II distribution based on PT-II censored data. It
is already seen that this distribution can be considered as an alternative lifetime model since
it has upside-down bathtub shaped hazard rate function, which is useful in various places.

The aim of this paper is three-fold. First, we consider statistical inference of EGT-II
distribution based on the PT-II censored data. The existence and uniqueness of the maximum
likelihood estimates (MLEs) are investigated. Further, we obtain MLEs of the parameters.
The closed-form solutions of the likelihood equations can not be obtained. Thus, we apply EM
algorithm. We also use stochastic EM algorithm to compute the desired MLEs. Confidence
intervals using bootstrap algorithms are obtained. The Bayes estimates are derived. It is
noticed that the explicit expressions of the Bayes estimates can not be obtained. So, we
use Lindley’s approximation and importance sampling methods. The Metropolies-Hastings
algorithm is also used for this purpose. Second, we study Bayesian prediction problem, and
obtain Bayesian prediction intervals. Third, we consider optimal life testing plan for the
present problem.

The paper is organized as follows. In Section 2, we present sufficient condition for the
existence and uniqueness of MLEs. For the purpose of computation, two algorithms: EM
and stochastic EM are used. In Section 3, we obtain observed Fisher’s information matrix.
The bootstrap confidence intervals are constructed in Section 4. Section 5 provides the form
of Bayes estimates with respect to the entropy loss function. Since explicit expressions of the
Bayes estimates do not exist, we use various approximation methods to compute the estimates
in Section 6. The prediction problem has been considered in Section 7 from Bayesian point of
view. Bayesian predictive intervals are also obtained. Data analysis is carried out in Section 8
based on a real life data set. In Section 9, we propose optimal PT-II censoring plan. Finally,
Section 10 concludes the paper.
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2. ML ESTIMATES AND THEIR COMPUTATION

In this section, first, we show that MLEs of the parameters exist and unique based on
the PT-II censored sample.

2.1. Existence and uniqueness of the MLEs

Consider PT-II censored sample of size m from a sample of size n from EGT-II distri-
bution as X = (X1, ..., Xm). The likelihood function of α, β and γ is given by

L(α, β, γ|x) ∝ αmβmγm
m∏

i=1

x
−(β+1)
i exp{−γx−β

i }
(
1− exp{−γx−β

i }
)α(Φi+1)−1

,

where x = (x1, ..., xm). Here, x1 ≤ ... ≤ xm. The log-likelihood function is denoted by
`(α, β, γ|x) = lnL(α, β, γ|x). The MLEs of α, β and γ can be obtained after solving first
order partial derivatives of the log-likelihood function with respect to the parameters equal
to zero, simultaneously. The normal equations are

∂`

∂α
=

m

α
+

m∑
i=1

(1 + Φi) ln
(
1− exp{−γx−β

i }
)

= 0,(2.1)

∂`

∂β
=

m

β
− γ

m∑
i=1

(α(1 + Φi)− 1)x−β
i exp{−γx−β

i } lnxi

1− exp{−γx−β
i }

(2.2)

+γ
m∑

i=1

x−β
i lnxi −

m∑
i=1

lnxi = 0,

∂`

∂γ
=

m

γ
+

m∑
i=1

(α(1 + Φi)− 1)x−β
i exp{−γx−β

i }
1− exp{−γx−β

i }
−

m∑
i=1

x−β
i = 0.(2.3)

Note that the closed forms of the MLEs do not exist. So, to get approximate values of the
MLEs, we use EM algorithm, which is presented in the following subsection. An important
question always comes out whether the MLEs exist, and unique. To investigate this, note
that the domain of `(α, β, γ|x) is (0,∞)× (0,∞)× (0,∞). So, our goal is to show that
for (α, β, γ) ∈ (0,∞)× (0,∞)× (0,∞), the function `(α, β, γ|x) has unique maximum. The
second order partial derivatives of ` with respect to α, β and γ can be shown to be strictly
negative under the following conditions:

∂2`

∂α2
< 0,(2.4)

∂2`

∂β2
< 0, if α(1 + Φi) > 1,(2.5)

∂2`

∂γ2
< 0, if α(1 + Φi) > 1.(2.6)
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Therefore, ` is a strictly concave function with respect to one of the parameters keeping other
two parameters fixed. For fixed (β, γ), (α, γ) and (α, β), we respectively have

lim
α→0

`(α, β, γ|x) = −∞, lim
α→∞

`(α, β, γ|x) = −∞,

lim
β→0

`(α, β, γ|x) = −∞, lim
β→∞

`(α, β, γ|x) = −∞,

lim
γ→0

`(α, β, γ|x) = −∞, lim
γ→∞

`(α, β, γ|x) = −∞.

So, `(α, β, γ|x) is a unimodal function with respect to α, β and γ, when other two associated
parameters are fixed. Now, proceeding with the similar arguments as in Dey et al. [4], we get
the following theorem, which provides sufficient conditions for the existence and uniqueness
of MLEs.

Theorem 2.1. The MLEs of α, β and γ when (α, β, γ) ∈ (0,∞)× (0,∞)× (0,∞)
exist and unique based on the PT-II censored sample, provided α(1 + Φi) > 1.

Remark 2.1. From real data set, which are presented in Section 8, we notice that the
sufficient condition in Theorem 2.1 is satisfied. Thus, as stated, the MLEs of the parameters
exist and are unique. The profile of the log-likelihood function of α, β and γ for the data set
is depicted in Figure 2.

2.2. EM and StEM algorithms

The EM algorithm is very useful iterative process to obtain MLEs of the parameters
when the data are censored. For incomplete data problems, the most attractive features of
the EM algorithm relative to other optimization techniques are its simplicity and stability.
Further, successive iterations of the EM algorithm are guaranteed never to decrease the likeli-
hood function, which is not generally true of gradient methods like Newton-Raphson. Hence,
in the case of the unimodal and concave likelihood function, the EM algorithm converges to
the global maximizer from any starting value. Due to this, it has been widely used by various
authors. One may refer to Singh and Tripathi [19] and Singh et al. [18] for computing MLEs
of some lifetime distributions using this method. The EM algorithm is described briefly as
follows. To start the EM algorithm, the likelihood function of the complete sample which
have been put on a test is required. We denote the complete sample by W = (W1, ...,Wn).
After conducting the test, we see that the complete sample is a combination of the observe
data X = (X1, ..., Xm) and the censored data Z = (Z1, ..., Zm). Here Zj is a 1× Φj vector
(Zj1, ..., ZjΦj ) for j = 1, ...,m. Then, the complete sample is W = (X,Z). The log-likelihood
function of α, β and γ based on the complete sample is given by

`C(α, β, γ|w) = n ln(αβγ) +
m∑

j=1

[
(α− 1)

(
ln(1− exp{−γx−β

j })(2.7)

+
Φj∑

k=1

ln(1− exp{−γz−β
jk })

)
− γ
(
x−β

j +
Φj∑

k=1

z−β
jk

)

−(β + 1)
(

lnxj +
Φj∑

k=1

ln zjk

)]
.
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Further, the pseudo log-likelihood function is obtained in E-step as

Lp(α, β, γ) = n ln(αβγ) + (α− 1)
m∑

j=1

ln(1− exp{−γx−β
j })− γ

m∑
j=1

x−β
j(2.8)

−(β + 1)
m∑

j=1

lnxj − (β + 1)
m∑

j=1

ΦjE[lnZjk|Zjk > xj ]

+(α− 1)
m∑

j=1

ΦjE[ln(1− exp{−γZ−β
jk })|Zjk > xj ].

Please see the Appendix A for the expressions of the expectations, which are involved in (2.8).
In M -step, we will find the values of the parameters such that the pseudo log-likelihood func-
tion is maximum. Let (α(k), β(k), γ(k)) be the value of (α, β, γ) obtained after k-th iteration.
Mathematically, at the (k + 1)-th iteration, (α(k+1), β(k+1), γ(k+1)) has to be computed by
maximizing the following function based on (α(k), β(k), γ(k)):

L∗p(α, β, γ) = n ln(αβγ)− (β + 1)
m∑

j=1

lnxj − γ
m∑

j=1

x−β
j(2.9)

+ (α− 1)
m∑

j=1

ln(1− exp{−γx−β
j })

− (β + 1)
m∑

j=1

ΦjE[lnZjk|Zjk > xj , α
(k), β(k), γ(k)]

− γ

m∑
j=1

ΦjE[Z−β
jk |Zjk > xj , α

(k), β(k), γ(k)]

+ (α− 1)
m∑

j=1

ΦjE[ln(1− exp{−γZ−β
jk })|Zjk > xj , α

(k), β(k), γ(k)].

The normal equations are given by

n

α
+

m∑
j=1

ln
(
1− e−γx−β

j

)
+

m∑
j=1

E3Φj = 0,(2.10)

n− (α−1)βγ
m∑

j=1

x−β
j e−γx−β

j lnxj

1− e−γx−β
j

− β
( m∑

j=1

E1Φj − γ
m∑

j=1

x−β
j lnxj +

m∑
j=1

lnxj

)
= 0,(2.11)

n

γ
+ (α−1)

m∑
j=1

x−β
j e−γx−β

j

1− e−γx−β
j

−
m∑

j=1

x−β
j −

m∑
j=1

E2Φj = 0,(2.12)

where E1 = E[lnZjk|Zjk > xj , α
(k), β(k), γ(k)], E2 = E[Z−β

jk |Zjk > xj , α
(k), β(k), γ(k)] and

E3 = E[ln(1− exp{−γZ−β
jk })|Zjk > xj , α

(k), β(k), γ(k)]. The (k + 1)-th iteration values of the
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unknown parameters can be obtained from

α(k+1) = −n

[
m∑

j=1

ln
(
1− e−γ(k)x−β(k)

j
)

+
m∑

j=1

E3(xj ;α(k), β(k), γ(k))Φj

]−1

,(2.13)

β(k+1) =

(
m∑

j=1

E1(xj , α
(k+1), β(k), γ(k))Φj − γ(k)

m∑
j=1

x−β(k)

j lnxj +
m∑

j=1

lnxj

)−1

(2.14)

×

(
n− (α(k+1) − 1)β(k)γ(k)

m∑
j=1

x−β(k)

j exp{−γ(k)x−β(k)

j } lnxj

1− exp{−γ(k)x−β(k)

j }

)
,

γ(k+1) = n

(
m∑

j=1

x−β(k+1)

j − (α(k+1) − 1)
m∑

j=1

x−β(k+1)

j exp{−γ(k)x−β(k+1)

j }

1− exp{−γ(k)x−β(k+1)

j }
(2.15)

+
m∑

j=1

E2(xj , α
(k+1), β(k+1), γ(k))Φj

)−1

.

Next, we present the algorithm.

Algorithm-1

Step-1: Set k = 0. Given the starting value (α(0), β(0), γ(0)), we estimate the param-
eters α, β and γ.

Step-2: In E-step, let (α(k), β(k), γ(k)) be an estimate of (α, β, γ) at k-th iteration.
We compute the required conditional expectations E1, E2 and E3 and then
substitute in (2.9).

Step-3: In M -step, we obtain (α(k+1), β(k+1), γ(k+1)) the updated values of the pa-
rameters at (k + 1)-th iteration by solving Equations (2.13− 2.15).

Step-4: If |α(k+1)−α(k)|+ |β(k+1)− β(k)|+ |γ(k+1)− γ(k)| ≤ ε for a given ε > 0 (small
tolerance), then we stop the procedure. The latest values will be the MLEs
of α, β and γ.

Step-5: If |α(k+1)−α(k)|+ |β(k+1)− β(k)|+ |γ(k+1)− γ(k)| > ε, then set k = k+ 1 and
go to the Step-1.

Denote the MLEs of α, β and γ by α̂, β̂ and γ̂, respectively.

There are various situations, where EM algorithm is difficult to implement due to
difficulty in the expectation step. To overcome this, a novel technique has been introduced
in the literature called Stochastic EM algorithm. It consists of replacing E-step of the EM
algorithm by one iteration of a stochastic approximation procedure. We refer the reader
to Nielsen et al. [15] for some discussions on this method. The main advantage of StEM
algorithm is that it is usually less complicated and gives more appropriate results compared
to EM algorithm for many problems (see Tregouet et al. [21]). Similar to EM algorithm, the
StEM algorithm has two steps: S-step and M -step. In S-step, the missing observations Z are
generated from conditional distribution given observed data X. We generate Φi independent
number of censored lifetimes zij from the condition distribution function FZ|X(xj : α, β, γ)



516 K. Maiti and S. Kayal

for j = 1, ...,m, which is given by

FZ|X(xj : α, β, λ) =
FZ(zjk : α, β, γ)− FX(xj : α, β, γ)

1− FX(xj : α, β, γ)
.(2.16)

The Z is then substituted to (2.7) to form the pseudo log-likelihood function and then this
function is optimized in M -step to get (α(k+1), β(k+1), γ(k+1)) for the next iteration. These
two steps are repeated until a stationary distribution is reached for each parameter. The mean
of the stationary distribution is considered as an estimate of the parameters. For brevity, the
details are not presented here.

3. OBSERVED FISHER’S INFORMATION MATRIX

In this section, we compute observed Fisher’s information matrix, which can be used for
construction of the asymptotic confidence intervals. Louis [12] derived Fisher’s information
matrix using the missing information based on EM algorithm. According to him, the observed
information is equal to complete information minus missing information. That is,

IX(α, β, γ) = IW (α, β, γ)− IW |X(α, β, γ),(3.1)

where IX(α, β, γ), IW (α, β, γ) and IW |X(α, β, γ) are observed, complete and missing infor-
mations, respectively. Let `∗ = `C(w;α, β, γ) and akl = −E[ ∂2`∗

∂θk∂θl
] for k, l = 1, 2, 3, where

θ1 = α, θ2 = β and θ3 = γ. Then, the complete information matrix IW (α, β, γ) is given as

IW (α, β, γ) =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

.(3.2)

Further, denote bkl = −
∑m

j=1 ΦjEZj |Xj
[∂2 ln f∗

∂θk∂θl
] and f∗ = fZj |Xj

(zj |xj , α, β, γ). Thus, the
missing information matrix IW |X(α, β, γ) is

IW |X(α, β, γ) =
m∑

j=1

ΦjI
j
W |X(α, β, γ) =

 b11 b12 b13
b21 b22 b23
b31 b32 b33

,(3.3)

where Ij
W |X(α, β, γ) is missing information matrix at the j-th failure time xj . It is given as

Ij
W |X(α, β, γ) = −EZj |Xj


∂2 ln f∗

∂α2
∂2 ln f∗

∂α∂β
∂2 ln f∗

∂α∂γ

∂2 ln f∗

∂β∂α
∂2 ln f∗

∂β2
∂2 ln f∗

∂β∂γ

∂2 ln f∗

∂γ∂α
∂2 ln f∗

∂γ∂β
∂2 ln f∗

∂γ2

.(3.4)

It is worthwhile to mention that the matrices in (3.2) and (3.3) are computed at (α, β, γ) =
(α̂, β̂, γ̂). From the 3× 3 order matrices given by (3.2) and (3.3), one can easily compute the
observed Fisher’s information matrix of the model parameters α, β and γ. We obtain the
asymptotic variance covariance matrix (M̂) for the MLEs of α, β and γ from the inverse of
IX(α, β, γ), which is given by

M̂ =

 var(α̂) cov(α̂, β̂) cov(α̂, γ̂)
cov(α̂, β̂) var(β̂) cov(β̂, γ̂)
cov(α̂, γ̂) cov(β̂, γ̂) var(γ̂)

.
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The asymptotic confidence intervals of the parameters by using normal approximation (NA)
to MLE, and normal approximation of the log-transformed (NL) MLE can be constructed.
The derivations are omitted to maintain brevity.

4. BOOTSTRAP CONFIDENCE INTERVALS

In this section, we construct two bootstrap confidence intervals for the parameters.
These are the percentile bootstrap (Boot-p) (see Efron and Tibshirani [6]) and the bootstrap-
t (Boot-t) (see Hall [8]) methods. The algorithms for these methods are presented below.

Algorithm-2 (Boot-p)

Step-1: From Equations (2.1), (2.2) and (2.3), under the original data sets xi,
i = 1, ...,m, we obtain α̂, β̂ and γ̂.

Step-2: Based on the values of the estimates of the parameters, generate a bootstrap
sample x∗ = (x∗1, ..., x

∗
m) for a pre-specified censoring scheme. Then, compute

the bootstrap estimates α̂∗, β̂∗ and γ̂∗.

Step-3: Repeat Step-2, for N = 1000 times to get (α̂∗1, ..., α̂
∗
1000), (β̂

∗
1 , ..., β̂

∗
1000) and

(γ̂∗1 , ..., γ̂
∗
1000).

Step-4: Arrange the values obtained in Step-3 in ascending order and denote
α̂∗(1), ..., α̂

∗
(1000), β̂∗(1), ..., β̂

∗
(1000) and γ̂∗(1), ..., γ̂

∗
(1000).

Then, for a specified value of σ, the 100(1− σ)% Boot-p confidence intervals for α, β and γ

are respectively given by(
α̂(N(σ

2
)), α̂(N(1−σ

2 ))
)
,
(
β̂(N(σ

2
)), β̂(N(1−σ

2 ))
)

and
(
γ̂(N(σ

2
)), γ̂(N(1−σ

2 ))
)
.

Algorithm-3 (Boot-t)

Step-1: In analogy to Step-1 and Step-2 as in Boot-p method, obtain bootstrap esti-
mates of the unknown parameters.

Step-2: Compute variance-covariance matrix I∗(α̂∗, β̂∗, γ̂∗)−1. Write

T ∗αi
=

α̂∗i − α̂i√
V̂ar(α̂∗i )

, T ∗βi
=

β̂∗i − β̂i√
V̂ar(β̂∗i )

and T ∗γi
=

γ̂∗i − γ̂i√
V̂ar(γ̂∗i )

for i = 1, ..., 1000.

Step-3: Repeat Step-1 and Step-2, N = 1000 times and arrange the values in ascend-
ing order. Denote

T ∗α(1)
, ..., T ∗α(1000)

, T ∗β(1)
, ..., T ∗β(1000)

and T ∗γ(1)
, ..., T ∗γ(1000)

.

Thus, for a given σ, the 100(1−σ)% Boot-t confidence intervals for α, β and γ are respectively
obtained as(

T̂α(N( σ
2 ))
, T̂α(N(1−σ

2 ))

)
,
(
T̂β(N( σ

2 ))
, T̂β(N(1−σ

2 ))

)
and

(
T̂γ(N( σ

2 ))
, T̂γ(N(1−σ

2 ))

)
.
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5. BAYESIAN ESTIMATION

In this section, we focus on obtaining Bayes estimates of α, β and γ with respect to
entropy loss function. Let δ be an estimator for the unknown parameter θ. The entropy loss
function (ELF) is

Le(θ, δ) =
(
δ

θ

)q

− q ln
(
δ

θ

)
− 1, q 6= 0.(5.1)

This loss function is asymmetric in nature. The constant q in (5.1) stands for the magnitude
and degree of symmetry. The overestimation is dangerous than the underestimation for pos-
itive values of q. When q is negative, underestimation is dangerous than the overestimation.
The Bayes estimate of θ with respect to this loss function can be obtained using the following
tool:

θ̂be =
[
Eθ

(
θ−q| x

)]− 1
q , q 6= 0.(5.2)

Note that the Bayes estimate of the parameter θ under ELF reduces to the Bayes estimates
with respect to the squared error loss function (SELF) when q = −1. For q = −2 and 1, it
becomes Bayes estimates under the precautionary loss function (PLF) and weighted squared
error loss function (WSELF). Prior distributions play an essential role for derivation of the
Bayes estimators. There is no clear method on choosing priors for a particular problem. We
refer to Arnold and Press [1] for more details on this. Here, we consider independent gamma
prior density functions for the parameters α, β and γ as

g1(α : c1, c2) ∝ αc1−1 exp{−αc2},(5.3)

g2(β : c3, c4) ∝ βc3−1 exp{−βc4},(5.4)

g3(γ : c5, c6) ∝ γc5−1 exp{−γc6},(5.5)

where α, β, γ > 0 and ci > 0; i = 1, 2, 3, 4, 5, 6. The constants ci’s are known as the hyper-
parameters. The joint prior distribution of α, β and γ is given by

π(α, β, γ) ∝ αc1−1βc3−1γc5−1 exp{−(αc2 + βc4 + γc6)}.(5.6)

Further, the joint distribution of α, β, γ and X is

π1(α, β, γ,x) ∝ αm+c1−1βm+c3−1γm+c5−1 exp{−(αc2 + βc4 + γc6)}(5.7)

×
m∏

i=1

x
−(β+1)
i exp{−γx−β

i }(1− exp{−γx−β
i })

Φi+α−1.

The posterior distribution of α, β and γ given X = x is obtained as

Π(α, β, γ|x) =
1
k
αm+c1−1βm+c3−1γm+c5−1 exp{−(αc2 + βc4 + γc6)}(5.8)

×
m∏

i=1

x
−(β+1)
i exp{−γx−β

i }(1− exp{−γx−β
i })

Φi+α−1,

where

k =
∫ ∞

α=0

∫ ∞

β=0

∫ ∞

γ=0
αm+c1−1βm+c3−1γm+c5−1 exp{−(αc2 + βc4 + γc6)}(5.9)

×
m∏

i=1

x
−(β+1)
i exp{−γx−β

i }(1− exp{−γx−β
i })

Φi+α−1 dα dβ dγ.
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Thus, from Equation (5.2), the Bayes estimate of α with respect to the entropy loss function
is obtained as

α̂be =
[
1
k

∫ ∞

α=0

∫ ∞

β=0

∫ ∞

γ=0
αm+c1−q−1βm+c3−1γm+c5−1 exp{−(αc2 + βc4 + γc6)}(5.10)

×
m∏

i=1

exp{−γx−β
i }(1− exp{−γx−β

i })
Φi+α−1x

−(β+1)
i dα dβ dγ

]− 1
q

, q 6= 0.

Similarly, the Bayes estimates of β and γ with respect to the entropy loss function can be
obtained. We omit these for the sake of conciseness. Below, we discuss how to compute Bayes
estimates using some well known techniques.

6. COMPUTING METHODS FOR BAYESIAN ESTIMATION

In the previous section, we have seen that the desired Bayes estimates can not be
obtained in explicit forms. So, we consider approximation methods in this section. First, we
explain Lindley’s method (see Lindley [11]).

6.1. Lindley’s approximation method

Let θ1, θ2 and θ3 be the unknown parameters of a statistical model and u(θ) be a
function of the parameters, where θ = (θ1, θ2, θ3). It is known that the Bayes estimate of
u(θ) is evaluated in terms of expectation, where the expectation is taken with respect to
posterior distribution. Let l(θ|x) denote the log-likelihood function and ρ(θ) is the logarithm
of the joint prior distribution of θ1, θ2 and θ3. From the Lindley’s approximation technique,
we obtain (see Lindley [11])

δ̂be(x) ≈ u(θ̂) +W (θ̂) + ρ1(θ̂)W123 + ρ2(θ̂)W213 + ρ3(θ̂)W321(6.1)

+ 0.5
[
`∗300V123 + `∗030V213 + `∗003V321 + 2`∗111(E123 + E213 + E312)

+ `∗210C123 + `∗201C132 + `∗120C213 + `∗102C312 + `∗021C231 + `∗012C321

]
,

where W (θ̂) = 1
2

∑3
i=1

∑3
j=1 uij(θ̂)τij(θ̂), θ̂ is the MLE of θ, `∗ijk = ∂3`(θ|x)

∂θi∂θj∂θk
|θ=θ̂ with

i, j, k = 0, 1, 2, 3 such that i+ j + k = 3, τij is the (i, j)-th element in the inverse matrix
of [−∂2`(θ|x)

∂θi∂θj
]|θ=θ̂. Other unknown terms of (6.1) are given as

Wijk = uiτii(θ̂) + ujτji(θ̂) + ukτki(θ̂),

Vijk = τii(θ̂)(uiτii(θ̂) + ujτij(θ̂) + ukτik(θ̂)),

Eijk = ui(τii(θ̂)τjk(θ̂) + 2τij(θ̂)τik(θ̂))

and

Cijk = 3uiτii(θ̂)τij(θ̂) + uj(τii(θ̂)τjj(θ̂) + 2τ2
ij(θ̂)) + uk(τii(θ̂)τjk(θ̂) + 2τij(θ̂)τik(θ̂)).
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Further, uij(θ̂) = ∂2u(θ)
∂θi∂θj

|θ=θ̂, ui(θ̂) = ∂u(θ)
∂θi
|θ=θ̂, ρi(θ) = ∂ρ(θ)

∂θi
|θ=θ̂, and ρ(θ) is equal to the

logarithmic of the joint prior distribution of θ1, θ2 and θ3, where i, j, k = 1, 2, 3. Now, we
provide approximate Bayes estimate for the unknown parameter α with respect to the entropy
loss function. In order to write the Bayes estimate of α with respect to the entropy loss
function, we have u(α, β, γ) = α−q, u1 = −qα−(q+1), u11 = q(q + 1)α−(q+2) and u2 = u3 =
u12 = u13 = u21 = u22 = u23 = u31 = u32 = u33 = 0. Thus, from (6.1), the approximate Bayes
estimate of α with respect to the entropy loss function is obtained as

α̂LI
be =

[
α−q + 0.5

[
q(q + 1)α−(q+2)τ11 − qα−(q+1)

{
`∗300τ

2
11 + `∗030τ21τ22(6.2)

+ `∗003τ31τ33 + 2`∗111(τ11τ23 + 2τ13τ12) + `∗120(τ11τ22 + 2τ2
21)

+ `∗102(τ33τ11 + 2τ2
31) + `∗021(τ22τ31 + 2τ23τ21)

+ `∗012(τ33τ21 + 2τ32τ31) + 2ρ1τ11 + 2ρ2τ12 + 2ρ3τ13

}]]− 1
q
∣∣∣∣
(α,β,γ)=(α̂,β̂,γ̂)

.

Similarly, we can obtain the Bayes estimates of β and γ with respect to the entropy loss
function. The expressions are omitted here.

6.2. Importance sampling method

In the subsection, we consider another approximation technique known as importance
sampling method to obtain the Bayes estimates for the parameters. We rewrite the posterior
distribution of α, β and γ given in (5.8) as

Π(α, β, γ|x) ∝ Gβ

(
m+ c3, c4 +

m∑
i=1

lnxi

)
.Gγ|β

(
m+ c5, c6 +

m∑
i=1

x−β
i

)
(6.3)

× Gα|β,γ

(
m+ c1, c2 −

m∑
i=1

ln(1− exp{−γx−β
i })

)
.ψ(α, β, γ),

where

ψ(α, β, γ) =
(c4 +

∑m
i=1 lnxi)−(m+c3)

(c2 −
∑m

i=1 ln(1− exp{−γx−β
i }))(m+c1)

(6.4)

×
exp{

∑m
i=1(Φi + 1) ln(1− exp{−γx−β

i })}
(c6 +

∑m
i=1 x

−β
i )m+c5 exp{

∑m
i=1 lnxi}

.

Below, we present the steps which will be used for the implementation of importance sampling
technique.

Algorithm-4

Step-1: Generate β from Gβ(m+ c3, c4 +
∑m

i=1 lnxi), that is, from a gamma distri-
bution with shape parameter (m+ c3) and scale parameter (c4 +

∑m
i=1 lnxi)).

Step-2: For a given β as obtained in Step-1, we generate γ from Gγ|β(m+ c5, c6 +∑m
i=1 x

−β
i ).
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Step-3: For β and γ as generated in Step-1 and Step-2, we will generate parameter
α from Gα|β,γ(m+ c1, c2 −

∑m
i=1 ln(1− exp{−γx−β

i })).

Step-4: Repeat Steps-1,2 and 3, N = 1000 times to obtain (α1, β1, γ1), ..., (αN , βN , γN ).

Finally, the Bayes estimate of a parametric function g(α, β, γ) with respect to entropy loss
function is obtained as

ĝIS
be (α, β, γ) =

[∑N
i=1 g(αi, βi, γi)−qψ(αi, βi, γi)∑N

i=1 ψ(αi, βi, γi)

]− 1
q

.(6.5)

Substituting q = −1, 1 and q = −2 in the above expression, we obtain Bayes estimates with
respect to the SELF, WSELF and PLF, respectively. Further, to get the Bayes estimates of
α, β and γ, one needs to respectively replace α, β and γ in place of g(α, β, γ) in (6.5).

6.3. Metropolis-Hastings algorithm

In this subsection, we use an alternative method to get Bayes estimates of α, β and
γ using Gibbs sampling method and Metropolis-Hastings algorithm. The MH algorithm is
also used for the construction of credible intervals. After analysing the posterior distribution
given by (5.8), the marginal posterior distribution of α given β, γ and x is obtained as

Π1(α|β, γ,x) ∝ G

(
m+ c1,

(
c1 −

m∑
i=1

ln(1− exp{−γx−β
i })

))
.(6.6)

Similarly, the marginal posterior distributions of β given α, γ and x; and γ given α, β and x

can be obtained as

Π2(β|α, γ,x) ∝ βm+c3−1 exp{−βc4}
m∏

i=1

x−β
i exp{−γx−β

i }
(1− exp{−γx−β

i })
(6.7)

and

Π3(γ|α, β,x) ∝ γm+c5−1 exp{−γc6}
m∏

i=1

exp{−γx−β
i }

(1− exp{−γx−β
i })

,(6.8)

respectively. Note that the marginal posterior distribution in (6.6) is gamma distribution.
But, other two marginal posterior distributions in (6.7) and (6.8) do not follow any know
models. Thus, one has to generate random samples for β and γ from the normal proposal
distribution. The following algorithm is useful for the generation of the posterior samples.

Algorithm-5

Step-1: Set an initial value (α(0), β(0), γ(0)) and set j = 1.

Step-2: Generate β∗ and γ∗ from the proposal distributions N(β(j−1), var(β)) and
N(γ(j−1), var(γ)), respectively. Then, generate α∗ from
G(m+ c1, (c1 −

∑m
i=1 ln(1− exp{−γ(j−1)x−β(j−1)

i }))).
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Step-3: Compute

ωβ = min
{

1,
Π2(β∗|α(j), γ(j),x)

Π2(β(j−1)|α(j−1), γ(j−1),x)

}
(6.9)

and ωγ = min
{

1,
Π3(γ∗|α(j), β(j),x)

Π3(γ(j−1)|α(j−1), β(j−1),x)

}
.

Step-4: Generate samples u2 and u3 from uniform distribution U(0, 1).

Step-5: If u2 ≤ ωβ and u3 ≤ ωγ then β(j) ←− β∗, else β(j) ←− β(j−1) and γ(j) ←− γ∗,
else γ(j) ←− γ(j−1), respectively. Further, set j = j + 1.

Step-6: Repeat Steps (3− 5), N = 1000 times to obtain MCMC samples. These are
denoted as (α(1), β(1), γ(1)), ..., (α(N), β(N), γ(N)).

Now, the Bayes estimate of α with respect to entropy loss function based on MCMC samples
is given by

α̂MH
be =

 1
N

N∑
j=1

(
α(j)

)−q

− 1
q

.(6.10)

Similarly, the Bayes estimates of β and γ under entropy loss function can be obtained. Next,
we compute HPD credible intervals of α, β and γ by using the method due to Chen and
Shao [3]. Here, we use MH algorithm to generate samples from the posterior density. After
that we arrange α̂(j), β̂(j) and γ̂(j) in ascending order, and denote α̂(1), ..., α̂(N), β̂(1), ..., β̂(N)

and γ̂(1), ..., γ̂(N), respectively. Thus, the 100(1− σ)% credible intervals for α, β and γ are
respectively given by(

α̂(N(σ
2 )), α̂(N(1−σ

2 ))
)
,
(
β̂(N(σ

2 )), β̂(N(1−σ
2 ))
)

and
(
γ̂(N(σ

2 )), γ̂(N(1−σ
2 ))
)
.

6.4. Computation of hyper-parameters

Here, we briefly discuss the procedure how to calculate the hyper-parameters when
informative priors are known to us. The hyper-parameters are c1, c2, c3, c4, c5 and c6. These
are obtained from gamma prior distributions as given in Section 5. Suppose r samples are
available from the EGT-II distribution. The MLEs of the parameters α, β and γ are α̂j , β̂j

and γ̂j for j = 1, ..., r, respectively for each of these r number of samples. Note that these
hyper-parameter values are evaluated from the past data set. First, we calculate hyper-
parameters c1 and c2. The mean and variance of the gamma prior of α are c1/c2 and
c1/c

2
2, respectively. Further, the mean and variance of the MLEs of α for r samples are

1
r

∑r
j=1 α̂

j and 1
r−1

∑r
j=1(α̂

j− 1
r

∑r
j=1 α̂

j)2, respectively. Therefore, c1
c2

= 1
r

∑r
j=1 α̂

j and c1
c22

=
1

r−1

∑r
j=1(α̂

j − 1
r

∑r
j=1 α̂

j)2. Solving these equations, we get

c1 =
(1

r

∑r
j=1 α̂

j)2

1
r−1

∑r
j=1(α̂j − 1

r

∑r
j=1 α̂

j)2
(6.11)

and c2 =
1
r

∑r
j=1 α̂

j

1
r−1

∑r
j=1(α̂j − 1

r

∑r
j=1 α̂

j)2
.

Similarly, other hyper-parameters c3, c4 and c5, c6 can be obtained from (6.11) replacing β̂j

and γ̂j in place of α̂j , respectively.
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7. BAYESIAN PREDICTION AND INTERVAL ESTIMATION

In this section, we discuss Bayesian prediction for the future observations depending
upon the PT-II censored sample. We assume that the sample is taken from the EGT-II
distribution. We also compute the corresponding prediction intervals. Many authors have
studied prediction problems related to Bayesian prediction and interval estimation. We refer
to Bdair et al. [2] and Maiti and Kayal [13] for some references. We illustrate the one-
sample prediction problem. Suppose n independent life testing units are put in an experi-
ment. Let x = (x1, ..., xm) be the observed PT-II censored sample. Further, assume that the
censoring scheme is taken as Φ = (Φ1, ...,Φm). Let yi = (yi1, ..., yiΦi) represent the ordered
lifetimes of the units which are censored at the i-th failure xi. Our goal is to predict the fu-
ture observations based on x. We assume that these are y = (yip ; i = 1, ...,m; p = 1, ...,Φi).
The conditional density of y under the given information can be obtained as

f1(y|x, α, β, γ) = αβγp

(
Φi

p

) p−1∑
k=0

(−1)p−k−1

(
p− 1
k

)
y−(β+1)(7.1)

× exp{−γy−β}(1− exp{−γy−β})α(Φi−k)−1

×(1− exp{−γx−β
i })

α(k−Φi), y > xi.

The conditional distribution function is

F1(y|x, α, β, γ) = p

(
Φi

p

) p−1∑
k=0

(−1)p−k−1

Φi − k

(
p− 1
k

)
×
[
1− (1− exp{−γx−β

i })
α(k−Φi)(1− exp{−γy−β})α(Φi−k)

]
.(7.2)

Notice that the posterior predictive density and the distribution functions are respectively
given by

f∗1 (y|x) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
f1(y|x, α, β, γ)Π(α, β, γ|x) dα dβ dγ(7.3)

and

F ∗1 (y|x) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
F1(y|x, α, β, γ)Π(α, β, γ|x) dα dβ dγ.(7.4)

Thus, the Bayesian predictive estimate of y under the entropy loss function is obtained as

ŷbe = [E(P1(α, β, γ)|x)]−
1
q ,

where

P1(α, β, γ) =
∫ ∞

xi

y−qf1(y|x, α, β, γ) dy.

Note that the above integrals can not be evaluated analytically. Therefore, we have to adopt
numerical technique for the computation of the predictive estimates. In this purpose, we use
importance sampling method which is mentioned in Subsection 6.2. Equation (7.5) can be
computed using the importance sampling method as

ŷBP
be =

[∑1000
i=1 P1(αi, βi, γi)ψ(αi, βi, γi)∑1000

i=1 ψ(αi, βi, γi)

]−1/q

.(7.5)
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Now, we obtain the Bayesian predictive interval (BPI). The prior predictive survival
function is obtained as

S1(t|x, α, β, γ) =
P (y > t|x, α, β, γ)
P (y > xi|x, α, β, γ)

=

∫∞
t f1(u|x, α, β, γ) du∫∞
xi
f1(u|x, α, β, γ) du

.

The posterior survival function is

S∗1(t|x) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
S1(t|x, α, β, γ)Π(α, β, γ|x) dα dβ dγ.(7.6)

Using (7.6), we obtain two-sided 100(1− σ)% equal-tail symmetric predictive interval (L,U)
by solving the following non-linear equations

S∗1(L|x) = 1− σ

2
and S∗1(U |x) =

σ

2
.(7.7)

For the algorithm to obtain L and U from the above equations, we refer to Singh and Tripathi
[19].

8. REAL DATA ANALYSIS

In this section, we analyze a real life data set to illustrate our established results. We
consider real life data set representing the window strength in a life test. The data set was
provided by Ed Fuller of the NICT Ceramics Division in December 1993. It contains polished
window strength data. The data set was introduced by Pepi [16]. The data set is presented
below:

18.83 20.8 21.657 23.03 23.23 24.05 24.321 25.5 25.52
25.8 26.69 26.77 26.78 27.05 27.67 29.9 31.11 33.2
33.73 33.76 33.89 34.76 35.75 35.91 36.98 37.08 37.09
39.58 44.045 45.29 45.381

For the purpose of goodness of fit test, we consider various methods such as Bayesian
information criterion (BIC), Akaikes-information criterion (AIC), the associated second-order
information criterion (AICc), negative log-likelihood criterion and Kolmogorov-Smirnov (KS)
statistic. Five distributions such as exponential (Exp), half-logistic (HL), inverse Weibull
(InWE), Weibull (WE) and EGT-II distributions. The values of the MLEs and the five
goodness of fit test statistics are presented in Table 1. It is observed that the values of
test statistics corresponding to the EGT-II distribution are smaller comparing to the other
distributions. Thus, it can be assumed that the given data set follows EGT-II distribution.

Next, we consider the PT-II censoring sample and two different censoring schemes (CS)
as CS-I and CS-II with the failure sample size m = 20 in Table 2. The CS-I is progressive
type-II censoring and CS-II is conventional type-II censoring schemes.

In Table 3, we present the values of the proposed estimates of α, β and γ for different
censoring schemes. Note that CS-III represents for the case of the complete sample. We
assume c1 = 2, c2 = c3 = 4, c4 = 3, c5 = 2 and c6 = 4 while computing the Bayes estimates.
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Table 1: The MLE, BIC, AICc, AIC, negative log-likelihood and KS values for the real data set.

Method Parameter Exp HL InWE WE EGT-II

MLE
Shape

α 55.68475
β 17.18068 4.63630 1.11743

Scale γ 0.03247 0.04961 0.58803 33.67241 198.992

BIC 277.9629 266.8936 260.3572 218.8458 218.6415
AICc 276.6668 265.5976 257.9178 215.4064 215.2285
AIC 276.5289 265.4596 257.4892 214.9779 214.3396
−InL 137.2645 131.7298 126.7446 105.4889 104.1698
KS 0.45878 0.44230 0.47472 0.15257 0.13645

Table 2: PT-II censored data and censoring schemes for the real data set.

(n, m)

(31, 20)

xi

18.83 20.80 21.657 24.05 24.321 25.8 26.78
27.05 27.67 29.9 33.73 33.89 34.76 35.75
35.91 36.98 37.08 37.09 39.58 45.381

Φi

(CS-I)
2 0 0 0 0 0 0
0 0 2 2 0 0 0
0 5 0 0 0 0

(CS-II)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 11

The Bayes estimates with respect to the ELF are computed for two distinct values of q, say
−0.5 and 0.5, which are denoted by (̂·)

EN

be |−0.5 and (̂·)
EN

be |0.5, respectively. Further, under the
squared error, weighted squared error and precautionary loss functions, the Bayes estimates
are presented, which are respectively denoted by (̂·)

SE

be , (̂·)
WS

be and (̂·)
PL

be . We use (̂·)EM and
(̂·)StEM for the MLEs by the EM and StEM algorithms, respectively. The sixth column
presents three different methods such as Lindley’s approximation (LI), importance sampling
(IS) and Metropolies-Hastings algorithm. In Table 4, the 95% various confidence and credible
intervals for α, β and γ are presented. These are the asymptotic (asy) confidence intervals
based on the NA to MLE and NL, the bootstrap (t and p) confidence intervals and the HPD
credible intervals. Table 5 reports one-sample predictive observations and 95% predictive
interval estimates of the lifetime of first two units at i-th failure. The following points can be
pointed out from Tables 3, 4 and 5:

• From Table 3, we notice that the estimated values of the parameters obtained based
on MH algorithm are smaller compared to that obtained using LI and IS methods.
The Lindley’s method provides largest Bayes estimates with respect to WSELF.
For PLF, we get largest Bayes estimates when IS method is used. Under the ELF
with q = −0.5, MH method yields largest estimates. It is also observed that the
estimated values for q = 0.5 are always smaller than that for q = −0.5.
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Table 3: Estimates of the parameters α, β and γ for the real data set.

(n, m) (̂·)EM

Schemes (̂·)StEM

(̂·)
SE

be (̂·)
WS

be (̂·)
PL

be (̂·)
EN

be |−0.5 (̂·)
EN

be |0.5

(31, 20)

92.76551 LI 91.16425 92.34685 91.94697 91.46521 91.13645
α 92.64304 MH 90.26894 90.13469 91.23567 92.2641 91.56770

IS 93.10641 94.34077 96.11584 92.36499 91.82408

0.96694 LI 0.94365 0.99643 0.94895 0.93482 0.91142

(CS-I)
β 0.99004 MH 0.90876 0.90397 0.93499 0.96315 0.94315

IS 0.92465 0.95157 0.95708 0.93145 0.91349

147.2729 LI 144.26052 146.48510 143.05582 143.89825 143.63215
γ 147.5308 MH 141.68496 140.99953 142.53064 143.10289 142.94891

IS 144.70046 147.83406 148.31648 144.32213 141.70526

(31, 20)

29.74175 LI 28.16496 29.03008 27.69961 27.16431 26.92482
α 29.31584 MH 26.64515 26.31584 27.00948 27.67598 27.20806

IS 28.16845 31.06412 31.47601 28.10648 26.16004

0.78636 LI 0.73168 0.765461 0.74524 0.72886 0.71145

(CS-II)
β 0.79857 MH 0.68065 0.641328 0.69546 0.70094 0.69088

IS 0.71094 0.71643 0.71948 0.68315 0.66081

66.33405 LI 65.10594 65.84694 63.40869 64.28256 63.81425
γ 66.94850 MH 61.16764 60.46131 63.16512 63.84247 61.23548

IS 63.16185 67.99107 68.57093 66.91354 64.09728

(31, 31)

55.68475 LI 54.06889 54.76121 53.16428 53.81254 53.46942
α 55.40823 MH 51.68434 51.20809 53.46849 55.64813 51.65741

IS 53.64794 54.58215 54.61348 52.16310 50.82622

1.11743 LI 1.10144 1.12465 1.10412 1.09526 1.09034

(CS-III)
β 1.13526 MH 1.07164 1.04316 1.08797 1.08964 1.05152

IS 1.11364 1.15049 1.15942 1.11310 1.10034

198.992 LI 194.56894 197.16421 196.46852 192.84542 192.08806
γ 199.35641 MH 191.47964 191.08871 194.94568 195.81774 192.67880

IS 195.39486 196.03513 196.37460 193.81345 191.10130

• Table 4 shows that among the asymptotic intervals, estimates obtained via NA
method performs better than that obtained using NL method. Here, performance
has been measured in terms of the length. In boot type intervals, Boot-t provides
better confidence interval estimates than Boot-p method. Considering all the five
methods together, it is observed that the HPD method outperforms others. Further,
the lengths of the confidence and credible intervals decrease when effective sample
size increases. The length of the interval estimates under CS-I is smaller than that
under CS-II. Also, the lengths in the scheme CS-III is smaller compared to the
other schemes. When progressive type-II censoring and type-II censoring plans are
compared, the progressive type-II plan provides better result.

• From Table 5, we see that the values of the predictive estimates and prediction
lengths increase as i and p increase. Further, when the effective sample size (m)
increases, the predictive estimate values and predictive interval lengths decrease.
The PT-II plan provides smaller length of the interval estimates compared to the
type-II scheme.
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Table 4: 95% confidence and credible intervals of α, β and γ for the real data set.

(n, m)
Schemes

Methods α β γ

(31, 20)

Asy
NA (87.96352, 97.39403) (0.50153, 2.85852) (138.13641, 159.88704)
NL (88.31042, 97.82276) (0.61582, 3.12609) (135.99003, 158.96112)

(CS-I) Boot
t (85.10587, 96.93401) (0.68148, 3.44237) (137.46815, 161.96911)
p (88.73142, 99.93547) (0.70824, 3.64435) (134.69740, 161.75805)

HPD (89.50718, 98.16640) (0.83540, 2.71149) (138.74876, 158.76592)

(31, 20)

Asy
NA (24.16824, 33.83525) (0.46815, 3.12882) (23.16784, 45.18696)
NL (25.34025, 35.07839) (0.51672, 3.33375) (25.43152, 48.55777)

(CS-II) Boot
t (25.76253, 36.60352) (0.54157, 3.57718) (22.08264, 45.74319)
p (23.15687, 34.76890) (0.55481, 3.71807) (23.56840, 47.79902)

HPD (25.84508, 34.94702) (0.76109, 2.86216) (25.94206, 47.15132)

(31, 31)

Asy
NA (47.16494, 55.78248) (0.81995, 2.68102) (189.18240, 205.44600)
NL (49.15205, 57.99300) (0.86454, 2.76610) (183.49482, 201.24983)

(CS-III) Boot
t (46.85641, 56.57569) (0.84099, 2.79355) (185.10064, 204.99083)
p (47.52215, 57.84276) (0.84672, 2.89734) (185.76185, 206.85296)

HPD (48.77806, 55.97009) (0.92187, 2.21199) (188.64287, 202.75298)

Table 5: One-sample predicted values and 95% prediction intervals for future observations
for the real data set.

(n, m)
Scheme

i p (̂·)
SE

be (̂·)
WS

be (̂·)
PL

be (̂·)
EN

be |−0.5 (̂·)
EN

be |0.5 Interval

(31, 20)
1

1 0.09415 0.11180 0.13157 0.11097 0.10894 (0.00769, 0.13465)
2 0.13642 0.13758 0.14064 0.12771 0.11756 (0.02482, 0.17559)

(CS-I)
10

1 0.74288 0.81256 0.88157 0.80526 0.79157 (0.60408, 1.02431)
2 0.77051 0.78109 0.78698 0.75281 0.75101 (0.66826, 1.14794)

(31, 20)
1

1 0.13065 0.16848 0.17582 0.14033 0.11005 (0.07534, 0.26626)
2 0.14359 0.18157 0.18278 0.18072 0.16121 (0.09077, 0.31233)

(CS-II)
10

1 0.70204 0.76241 0.76587 0.76112 0.71089 (0.48262, 1.08883)
2 0.74885 0.79485 0.79948 0.74158 0.71826 (0.53170, 1.16397)

(31, 31)
1

1 0.02465 0.03110 0.03345 0.03197 0.03128 (0.00894, 0.04656)
2 0.06004 0.06422 0.06784 0.05682 0.04997 (0.01348, 0.09229)

(CS-III)
10

1 0.70909 0.71184 0.71648 0.70482 0.67158 (0.51582, 0.77149)
2 0.72187 0.75001 0.75389 0.72807 0.72554 (0.62877, 0.91890)

Figure 1(a) presents the histogram and fitted probability density plots of five models
based on real data set. From the graphs, we visualize that the EGT-II distribution covers
the maximum area of the data set comparing to other distributions. The scaled total time on
test (TTT) plot reveal that the hazard rate function of the fitted distribution is upside-down
bathtub in Figure 1(b). The profile of the log-likelihood function of α, β and γ for real data
set is shown in Figure 2(a, b, c).
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Figure 1: The first figure (in left) is the plots of the histogram and probability density
functions of the fitted EGT-II, WE, Exp, HL, InWE models for the real data set.
The second figure (in right) is for the scaled TTT plot.
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Figure 2: The profile log-likelihood plots for α (left), β (middle) and γ (right) for real data set.

9. OPTIMAL PT-II CENSORING SCHEME

In this section, we obtain optimum progressive censoring scheme from different cen-
soring schemes for which the value of the chosen criterion is minimum. At first, we need to
define a criterion. Define

Cr1(Φ) = ED{VPos(Φ)(lnTp)},

where VPos(Φ)(lnTp) is the posterior variance of lnTp, Φ = (Φ1, ...,Φm) is the censoring scheme
and ED is the expectation with respect to the data set. Further, Tp is the p-th quantile of
the EGT-II distribution, which is given by

Tp =
[
−
(

1
γ

)
ln
(
1− (1− p)

1
α

)]−� 1
β

�

.(9.1)

Note that the total number of possible censoring schemes, given by
(

n−1
m−1

)
is finite and large

for fixed n and m. For example, when for n = 30 and m = 20, it is equal to 20030010,
which is quite large. We say that a scheme Φ(1) = (Φ(1)

1 , ...,Φ(1)
m ) is better than another

scheme Φ(2) = (Φ(2)
1 , ...,Φ(2)

m ), if Φ(1) gives more information about the parameters than Φ(2).
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Mathematically, this is equivalent to Cr1(Φ(1)) < Cr1(Φ(2)). We refer to Kundu and Pradhan
[9] and Singh and Tripathi [19] for more discussions in this direction. It is easy to see that
the explicit expressions of the criterion are hard to obtain. Therefore, we use Lindley’s
approximation method. In the criterion, we compute approximated value of VPos(Φ)(ln(Tp)).
We know that

VPos(Φ)(lnTp) = EPos(Φ)[lnTp]2 − (EPos(Φ)[lnTp])2.(9.2)

For simulation purpose, we generate all the parameters α, β and γ from Gamma(5, 5) dis-
tribution. To evaluate both terms in the RHS of (9.2), we apply Lindley’s approxima-
tion method, which is explained in Section 6.1. To approximate EPos(Φ)[lnTp]2, we have
u(α, β, γ) = (lnTp)2. Further,

u1 = − 2(1− p)
1
α ln(1− p) lnTp

α2βγ
(
(1− p)

1
α − 1

)
exp{−β lnTp}

, u2 = −2u(α, β, γ)
β

,

u3 =
2 lnTp

βγ
, u12 = u21 =

4(1− p)
1
α ln(1− p) lnTp

α2β2γ
(
(1− p)

1
α − 1

)
exp{−β lnTp}

,

u31 = u13 = − 2(1− p)
1
α ln(1− p)

α2β2γ2
(
(1− p)

1
α − 1

)
exp{−β lnTp}

,

u32 = u32 =
4 lnTp

β2γ
, u22 =

6u(α, β, γ)
β2

, u33 =
2(1− β lnTp)

β2γ2
,

u11 = − 2(1− p)
1
α ln(1− p)

α4β2γ2
(
(1− p)

1
α − 1

)2
(exp{−β lnTp})2

×
(

(1− p)
1
α

(
(2αγ exp{−β lnTp}) + ln(1− p)

)
(−β lnTp) + ln(1− p)

)
− βγ exp{−β lnTp}

(
2α+ ln(1− p)

)
lnTp.

Other terms in (6.1) are same. In this way, EPos(Φ)[lnTp]2 can be approximated. Similarly,
to compute EPos(Φ)[lnTp], we have u(α, β, γ) = lnTp. Furthermore,

u1 = − (1− p)
1
α ln(1− p)

α2βγ
(
(1− p)

1
α − 1

)
exp{−β lnTp}

, u2 = − lnTp

β
, u3 =

1
βγ
,

u11 =

(
(1− p)

1
α ln(1− p)− γ exp{−β lnTp}

(
ln(1− p)− 2α

(
(1− p)

1
α − 1

)))
α4βγ2

(
(1− p)

1
α − 1

)2
(exp{−β lnTp})2

×(1− p)
1
α ln(1− p), u31 = u13 = 0,

u22 =
2 lnTp

β2
, u33 = − 1

βγ2
, u12 = u21 = − (1− p)

1
α ln(1− p)

α2β2γ
(
(1− p)

1
α − 1

)
exp{−β lnTp}

.

From Table 6, we observe that Φ(3) plan gives maximum information compared to other
plans, when p = 0.25 and (n,m) = (25, 15). So, plan Φ(3) is optimal. Similarly, when (n,m) =
(25, 15), Φ(1) and Φ(2) plans are optimal for p = 0.5, 0.9 and p = 0.75, respectively. In each
censoring scheme, p increases, then the value of criterion increases. Next, for (n,m) = (25, 20),
the plans Φ(2),Φ(3),Φ(1) and Φ(3) are optimal for p = 0.25, 0.5, 0.75 and p = 0.9, respectively.
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Table 6: The values of Cr1(Φ) for different censoring schemes Φ.

(n, m) Φ (Φ1, ..., Φm) p = 0.25 p = 0.5 p = 0.75 p = 0.9

(25, 15)

Φ(1) (10,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 0.74826 0.76445 0.90050 0.92418

Φ(2) (5,0,0,0,0,0,0,0,0,0,0,0,0,0,5) 0.85085 0.86170 0.87642 0.98054

Φ(3) (1,1,1,1,0,1,1,0,0,0,0,1,1,1,1) 0.66523 0.81064 0.91135 0.97068
Type-II (0,0,0,0,0,0,0,0,0,0,0,0,0,0,10) 1.09417 1.14158 1.15333 1.20081

(25, 20)

Φ(1) (5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 0.55135 0.61053 0.67182 0.72992

Φ(2) (2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1) 0.39408 0.51581 0.71540 0.76204

Φ(3) (1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1) 0.45826 0.47643 0.69471 0.70648
Type-II (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5) 0.63105 0.68846 0.72283 0.78524

10. CONCLUDING REMARKS

In this paper, we studied the problem of estimation and prediction when the lifetime
data follow EGT-II distribution under the constraint that the sample is progressively cen-
sored. First, we proved that the MLEs exist and are unique. Further, it was seen that the
closed form expressions of the MLEs do not exist. Thus, we used EM algorithm. The process
of EM algorithm is little complicated since it requires integrations which need to be com-
puted numerically. So, we next used stochastic version of the EM algorithm for the purpose
of computation of the MLEs. In numerical study, it has been noticed that the performance of
the stochastic EM algorithm is better than that of the EM algorithm. The observed Fisher’s
information matrix was also calculated. This is useful for obtaining the asymptotic confi-
dence intervals. In addition, we used Boot-t and p algorithms for the computation of the
confidence intervals. Bayes estimates were derived. Like the MLEs, the explicit forms of the
Bayes estimates are difficult to obtain. Thus, we adopted three approximation techniques:
(i) Lindley’s approximation method, (ii) Importance sampling method and (iii) Metropolis-
Hastings algorithm. The HPD credible intervals were also proposed. In data analysis, it was
seen that the HPD credible intervals outperform others. The discussions on the elicitation
of the hyper-parameters have been presented. Next, we presented the prediction problem.
Here, we obtained Bayes prediction estimates and the associated Bayesian predictive interval
estimates. Finally, we proposed the use of a criteria for the comparison of different sampling
schemes, and then, pointed out the optimal sampling scheme for the given criterion.
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A. APPENDIX

Theorem A.1. The conditional distribution of zjk for k = 1, ..., Rj given X1 = x1, ...,

Xj = xj has the form

fZ|X(zj |X1 = x1, ..., Xj = xj) = fZ|X(zj |Xj = xj)

=


f(zj : α, β, γ)

1− F (xj : α, β, γ)
, zj > xj

0, elsewhere.

Proof: The proof is straightforward. For details, see Ng et al. [14].

Using Theorem A.1, we can write

E[lnZjk|Zjk > xj , α, β, γ] =

=
αβγ

1− FX(xj : α, β, γ)

∫ ∞

xj

t−β−1 exp{−γt−β} (1− exp{−γt−β})α−1 ln t dt

=
α

β
(
1− exp{−γx−β

j }
)α

∫ 0

1−exp{−γx−β
j }

uα−1 ln
(

ln(u− 1)
γ

)
du,

E[Z−β
jk |Zjk > xj , α, β, γ] =

=
αβγ

1− FX(xj : α, β, γ)

∫ ∞

xj

t−2β−1 exp{−γt−β} (1− exp{−γt−β})α−1 dt

=
α

γ(1− exp{−γt−β})α

∫ 0

1−exp{−γx−β
j }

uα−1 ln(1− u) du,

E[ln(1− exp{−γZ−β
jk })|Zjk > xj , α, β, γ] =

=
αβγ

1−FX(xj : α, β, γ)

∫ ∞

xj

t−β−1 exp{−γt−β} (1−exp{−γt−β})α−1 ln(1− exp{−γt−β}) dt

=
α(

1− exp{−γx−β
j }

)α

∫ 1−exp{−γx−β
j }

0
uα−1 lnu du.
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1. INTRODUCTION

Routinely statisticians start on analysis of data estimating PDF (commonly called
histogram) or plotting empirical CDF on an appropriate probability paper. It depends on
the sample size they possess. It may happen that a solid evidence emerges from the obtained
figures suggesting bimodality of the population distribution as it is shown in Figure 1.

Figure 1: Bimodality of the population distribution.

In such a situation the statisticians as a rule employ the mixed (also called compound)
theoretical distribution that has a general form:

(1.1) fm(x;ω, Θ1, σ1, Θ2, σ2) = ωf1(x;Θ1, σ1) + (1− ω)f2(x;Θ2, σ2).

Let us denote such a distribution as mixed bimodal distribution (MBD). In (1.1) ω is the
fraction parameter whereas Θ1, σ1 and Θ2, σ2 are pairs of location — scale or scale — shape
parameters depending on sorts of distributions being mixed.

The MBD can be made bimodal and fitted to data of the sort we say about. However,
employing MBD the statisticians unambiguously state that the population is nonhomoge-
neous. Wide applicability of the MBD comes from its clarity and interpretability of parame-
ters. Nevertheless, it is hard to believe that non-homogeneity is a sole cause of distribution
bimodality. It is hard to believe because many factors other than intentional or unintentional
mixing sample items play a role in shaping population distribution. Thus, we see that a vital
necessity arises to develop non-mixed bimodal distribution (nMBD) arises. What makes our
task more difficult is that parameters of such distribution should be relatively clearly inter-
pretable. In order that nMBD be a worthy challenger to MBD. However, we are fully aware
that the parameters in question will never be so clearly interpretable as parameters of the
MBD are, which is easy to explain. The MBD comes into being due to one factor, which
causes mixing in particular proportion items belonging to two different subpopulations. In
contrast nMBD comes into being due to many factors. And effects of “activity” of all these
many factors have to be expressed also by means of only five parameters as estimators of
parameters consume information.
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Let us recall the Johnson family of probability distributions (JFD). All the distributions
that belong to JFD have the following general form

(1.2) F (x) = Φ

[
c + ρϕ

(
x− a

b

)
; 0, 1

]
,

where ϕ(x) can be any non-decreasing function of x, Φ(x;u, v) is CDF of N(u, v). Literature
related to JFD is numerous (see e.g. [14], [15], [3]).

Before defining the new members of the JFD, it is worth taking a look at the distribu-
tions that belong to this family.

The normal (N) distribution with location parameter a ∈ R and scale parameter b > 0
is defined as

(1.3) FN (x; a, b) = Φ

[
ϕ

(
x− a

b

)
; 0, 1

]
.

We obtain (1.3) from (1.2) by considering c = 0, δ = 1, ϕ(y) = y and y = (x− a)/b.

The Birnbaum–Saunders (BS) distribution with location parameter a ∈ R, scale pa-
rameter b > 0 and shape parameter α > 0, is defined as [7]

(1.4) FBS(x;α, a, b) = Φ

[
1
α

(√
x− a

b
−
√

b

x− a

)
; 0, 1

]
(x > a).

We obtain (1.4) from (1.2) by considering c = 0, δ = 1/α, ϕ(y) =
√

y−
√

1/y and y = (x−a)/b.

The generalization of the Birnbaum–Saunders (GBS) distribution with location pa-
rameter a ∈ R, scale parameter b > 0 and shape parameters α > 0, β > 0, is defined as [18]

(1.5) FGBS(x;α, a, b, β) = Φ

[
1
α

((
x− a

β

)β

−
(

β

x− a

)β
)

; 0, 1

]
(x > a).

The BS distribution is a special case of the GBS distribution for β = 0.5. We obtain (1.5)
from (1.2) by considering c = 0, δ = 1/α, ϕ(y) = yβ − y−β and y = (x− a)/b.

The Four-Parameter BS (FBS) distribution with location parameter a ∈ R, scale pa-
rameter b > 0, shape parameter δ > 0 and non-centrality parameter c ∈ R, is given by [2]

(1.6) FFBS(x; c, δ, a, b) = Φ

[
c + δ

(√
x− a

b
−
√

b

x− a

)
; 0, 1

]
(x > a).

Formula (1.4) is a special case of (1.6) for c = 0, δ = 1/α. We obtain (1.6) from (1.2) by
considering ϕ(y) =

√
y −

√
1/y and y = (x− a)/b.

The sinh-normal (SN) distribution with the location parameter a ∈ R, the scale param-
eter b > 0 and the shape parameter α > 0, is given by [19]

(1.7) FSN (x;α, a, b) = Φ

[
2
α

sinh
(

x− a

b

)
; 0, 1

]
.
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This distribution is symmetric about the location parameter a ∈ R. We obtain (1.7) from
(1.2) by considering c = 0, δ = 2/α, ϕ(y) = sinh(y) and y = (x− a)/b.

The lognormal or SL distribution with location parameter a ∈ R, scale parameter b > 0
and shape parameters c1 ∈ R, δ > 0, is defined as [14]

(1.8) FSL(x; c1, δ, a, b) = Φ

[
c1 + δ ln

(
x− a

b

)
; 0, 1

]
(x > a).

Formula (1.8) can be written using three parameters, namely:

(1.9) FSL(x; c1, δ, a, b) = Φ[c + δ ln(x− a); 0, 1] (x > a),

where c = c1 − δ ln(b), c ∈ R. We obtain (1.9) from (1.2) by considering b = 1, ϕ(y) =
ln(y) and y = (x− a). Please notice that the lognormal distribution with the CDF [11]
F̆SL(x; e1, e2) = Φ

[
ln(x)−e1

e2
; 0, 1

]
(x > 0) widely used in practice can be treated as a special

case of (1.8) when a = 0, δ = 1/e2 and c = −e1/e2.

The SB distribution with the location parameter a ∈ R, the scale parameter b > 0 and
the shape parameters c ∈ R, δ > 0, is defined as [14]

(1.10) FSB(x; c, δ, a, b) = Φ

[
c + δ ln

(
x− a

b + a− x

)
; 0, 1

]
(a < x < a + b).

We obtain (1.10) from (1.2) by considering ϕ(y) = ln(y)− ln(1− y) and y = (x− a)/b. Let
a = 0, b = 1, δ = 1/e2 and c = −e1/e2, then we obtain the special case of (1.10) widely used
in practice defined as

F̆SB(x; e1, e2) = Φ

 ln
(

x
1−x

)
− e1

e2
; 0, 1

.

The SU distribution with the location parameter a ∈ R, the scale parameter b > 0 and the
shape parameters c ∈ R, δ > 0, is defined as [14]

(1.11) FSU (x; c, δ, a, b) = Φ

[
c + δ asinh

(
x− a

b

)
; 0, 1

]
.

We obtain (1.11) from (1.2) by considering ϕ(y) = asinh(y) and y = (x− a)/b.

This paper introduces two new members of the JFD, namely SC and SD. In the SU
distribution Johnson employed asinh(x) = ln

(
x +

√
1 + x2

)
. In the SC and SD distributions

we will employ sinh(x) = exp(x)−exp(−x)
2 .

The SC distribution with location parameter a ∈ R, the scale parameter b > 0 and
shape parameter c ∈ R, is defined as

(1.12) FSC(x; c, a, b) = Φ

[
c + 2 sinh

(
x− a

b

)
; 0, 1

]
.

Please notice that ρ parameter appearing in (1.2) has been in (1.12) replaced with a constant
equal to 2. This constant compensates denominator in definition of the sinh(x) function. For
c = 0 in (1.12) and α = 1 in (1.7), the SN distribution is equivalent to the SC distribution.
We obtain (1.12) from (1.2) by considering δ = 2, ϕ(y) = sinh(y) and y = (x− a)/b.
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The SD distribution with multipurpose parameters a1, a2 ∈ R, b1, b2 > 0 and semi-
fraction parameter c > 0 (see Figure 2), is defined as

(1.13) FSD(x; c, a1, b1, a2, b2) = Φ

[
c− exp

(
a1 − x

b1

)
+ exp

(
x− a2

b2

)
; 0, 1

]
.

The SD distribution is obtained from SC by adding the second exponential function. The
CDF FSD(x; c, a1, b1, a1, b1) is equal to the CDF FSC(x; c, a1, b1), so the SC is a special case
of the SD.

Although SD cannot be acknowledged as a special case of (1.2), it seems reasonable to
treat SD as a member of the JFD, which can be justified by appearing as a generalization or
extension of an element of the SN distribution family obviously belonging to the JFD family.
The mentioned element is the SC distribution. The FSD involves two exponential components
that can be independently movable on the x axis. Owing to this we are able to obtain bimodal
distribution provided we locate the components sufficiently far from one another on the x

axis as it is exemplified in Figure 2 (left). This figure shows examples of CDFs of the SD
distribution plotted on the Normal probability paper. The reader is prompted to compare
Figure 2 (left) with Figure 1 (left). Figure 2 (right) shows examples of PDFs of the SD
distribution with exemplifying a role of c parameter. No doubt, c parameter can be called
the semi-fraction parameter.

Let

P (x; c, a1, b1, a2, b2) = c− exp
(

a1 − x

b1

)
+ exp

(
x− a2

b2

)
.

Figure 2: Bimodality in the SD distribution.

If we subject a random variable to a linear transformation, the skewness and kurtosis retain
their values. This fact was also confirmed by a simulation study. To simplify the study of
the skewness and kurtosis of the SD distribution, let us standardize a random variable x:
z = x−a1

b1
⇒ x = b1z + a1. As a result of simple transformation the CDF (1.13) has the form

FSD(x; c, a0, b0) = Φ

[
c− exp(−z) + exp

(
x− a0

b0

)
; 0, 1

]
,

where a0 = a2−a1
b1

, b0 = b2
b1

.
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Let (γ1, γ2) be coordinate of a point described by skewness and kurtosis, respectively.
The normal distribution (ND) is characterized by only one point (0, 3), obviously. For every
distribution from the JFD (except the ND), values of (γ1, γ2) are calculated for 104 randomly
determined values of parameters influencing skewness and kurtosis in the Malakhov area (MA)
10≥ γ2 ≥ γ2

1 +1 (Table 1). In the MA γ2 ∈ [1, 10], then γ1 ∈ [−3, 3] (see Figure 3). The param-
eter value ranges are selected to maximize MA filling according to the SKS measure (1.14).
To make the calculations more reliable (without the so called outliers) the normalization
conditions were checked.

Table 1: Ranges of parameter values influencing skewness and kurtosis
as well as skewness and kurtosis values for the JDF in the
Malakhov area 10 ≥ γ2 ≥ γ2

1 + 1.

JFD Parameter ranges Skewness range Kurtosis range

BS α ∈ (0, 0.46) γ1 ∈ (0, 2.22) γ2 ∈ (3, 5.92)

GBS α ∈ (0, 7), β ∈ (0, 1.75) γ1 ∈ (0.07, 2.38) γ2 ∈ (2.03, 10)

FBS c ∈ (−6.25, 6.25), δ ∈ (0, 2.75) γ1 ∈ (0.44, 2.23) γ2 ∈ (3.27, 10)

SN α ∈ (0.1, 180.4) γ1 = 0 γ2 ∈ (1.15, 3)

SL δ ∈ (1.88, 100) γ1 ∈ (0.03, 1.89) γ2 ∈ (3, 9.98)

SB c ∈ (−3.35, 3.39), δ ∈ (0.1, 1.2) γ1 ∈ (−2.84, 2.91) γ2 ∈ (1.13, 10)

SU c ∈ (−2.05, 2.05), δ ∈ (1.31, 1.9) γ1 ∈ (−1.8, 1.79) γ2 ∈ (4.76, 10)

SC c ∈ (−89.94, 89.97) γ1 ∈ (−0.69, 0.69) γ2 ∈ (2.52, 3.90)

SD
c ∈ (−4.1, 4.1), a0 ∈ (−4.3, 4.3),

γ1 ∈ (−2.79, 2.46) γ2 ∈ (1.26, 10)
b0 ∈ (0.1, 0.9)

Figure 3 presents sets of points (γ1, γ2) and the MP γ2 = γ2
1 + 1 in the MA 10 ≥ γ2 ≥

γ2
1 + 1 related to the SB, SU, SC, SD distributions. The SD and SU distributions are the best

filling the MA. The SD distribution has common areas of skewness and kurtosis with the SB
and SU distributions. Sets of points (γ1, γ2) and the MP γ2 = γ2

1 + 1 in the MA 10 ≥ γ2 ≥
γ2

1 + 1 related to the BS, GBS, FBS, SL distributions are presented in the supplementary
material.

In addition to visual assessment, the skewness-kurtosis-square (SKS) measure [22] is
used to compare the flexibility of distributions. Colored circles of diameter and coordinates
of their centers determined by skewness γ1 and kurtosis γ2 are placed within the MA that is
described by inequality γ2 ≥ γ2

1 + 1 [17]. Then colored area fraction is calculated. Squares
of sides equal to η seem a reasonable alternative to circles since they simplify calculation of
the total colored area. Obviously, when some squares overlap, only one is taken into account.
The SKS measure is given by [22]

(1.14) SKS =
SI

ST
,

where ST denotes a total number of squares within the MA, SI — a number of squares to
which the point (γ1, γ2) has fallen. The SKS measure takes values in [0, 1]. The maximum
value denotes a perfect dispersal of points (γ1, γ2) in the MA. The R codes for calculating
the SKS measure are presented in the supplementary material.
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Figure 3: Skewness and kurtosis for the SB, SU, SC, SD distributions.

Table 2 presents values of SKS measures (1.14) obtained for square side η = 0.05, 0.1,

0.15, 0.20. The best dispersion of points (γ1, γ2), taking into account the accuracy expressed
by η, occurs for the SD, SU and SB distribution (see bold).

Table 2: SKS measure values for JFD in the MA 10 ≥ γ2 ≥ γ2
1 + 1 for square side η.

JFD η = 0.05 η = 0.1 η = 0.15 η = 0.2

BS 0.0070 0.0140 0.0203 0.0271
GBS 0.0778 0.1051 0.1277 0.1333
FBS 0.0561 0.0694 0.0794 0.0906
SL 0.0111 0.0237 0.0346 0.0458
SB 0.2410 0.3401 0.3813 0.4052
SU 0.2375 0.3433 0.3693 0.3740
SC 0.0092 0.0175 0.0274 0.0323
SD 0.2185 0.4102 0.4994 0.5469

New distributions, modelled on the SL, SB, SU distributions, was named as SC and SD
distributions. The SC is a special cases of the SD, so the remainder of the paper is devoted
to the SD distribution. The lognormal distribution is defined with the log function and the
SD distribution is defined with the exp function, therefore the SD distribution is also called
the expnormal (EN) distribution.
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This paper is organized as follows. Section 2 presents properties of the SD distribution.
The unknown parameters are estimated in Section 3 and entropies are calculated in Section 4.
Examples are presented in Section 5. Section 6 deals with conclusions. Due to the size of the
paper, the selected figures and tables as well as the main R codes have been transferred to
the supplementary material.

2. MAIN PROPERTIES OF INTRODUCED DISTRIBUTION

2.1. Distribution and density function

Definition 2.1. The distribution of the random variable X with PDF given by

(2.1) f(x; a1, b1, a2, b2, c) =
(

1
b1

e−z1(x) +
1
b2

ez2(x)

)
φ[c− exp(−z1(x)) + exp(z2(x)); 0, 1],

where φ(x;u, v) is PDF of N(u, v), z1(x) = x−a1
b1

and z2(x) = x−a2
b2

, is called the expnormal
(EN) distribution. In (2.1) a1, a2 ∈ R are position parameters, b1, b2 > 0 are scale parameters
and c ∈ R is the semi-fraction parameter (see Figure 2). For these parameter values, the
main argument of φ in (2.1) is an increasing function, hence∫ +∞

−∞
f(x; a1, b1, a2, b2, c) = 1.

PDF of the EN distribution is calculated using the R function dEN (see supplementary
material).

If a1 = a2, b1 = b2, c = 0, then EN(a1, b1, a2, b2, c) is very similar to the N
(
a1,

b1
2

)
.

According to the similarity measure between two distributions defined in [23], we have for
a1 ∈ R, b1 > 0.

(2.2)
∫ +∞

−∞
min

[
f(x; a1, b1.a1, b1, 0), φ

(
x; a1,

b1

2

)]
= 0.966.

Thus the EN(0, 2, 0, 2, 0) is similar to the N(0, 1) in 96.6%. The distribution with
multipurpose parameter a1, b1, a2, b2 = b1 is symmetrical for c = 0 (see Table 4 and Figure 4,
series D1,D2). If X ∼ EN(a1, b1, a2, b2 = b1, c = 0) then E(X) = a1+a2

2 . In this case the
modes are at the same height. The mean value formula is also confirmed by numerical
methods. The EN(a1, b1, a2, b2, c > 0) is positively skewed (Figure 4, series A1, A2, E1, E2)
and the EN(a1, b1, a2, b2, c≤ 0) is negatively skewed (Figure 4, series B1, B2, F1, F2). The
EN distribution can be unimodal (Figure 4, series A1, B1, D1, E1, F1) and bimodal (Figure 4,
series A2, B2, D2, E2, F2). See Table 4 for more information.

Table 3 presents the division of distributions by their skewness and excess kurtosis [22].
The ND obviously does not belong to this family. Selecting appropriate parameter values
of the EN distribution, we can obtain skewness and excess kurtosis values belonging to the
analyzed groups A1–B2 and D1–F2 (Table 4).
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Table 3: Groups of distributions according to their skewness and excess kurtosis [23].
Denote: * unimodal distribution, ** bimodal distribution.

Group Skewness Ex. kurtosis Group Skewness Ex. kurtosis

A1* positive positive D1* zero negative
A2** positive positive D2** zero negative
B1* negative positive E1* positive negative
B2** negative positive E2** positive negative
C1* zero positive F1* negative negative
C2** zero positive F2** negative negative

Table 4: The EN(a1, b1, a2, b1, 0) distribution with parameter values for groups A1–B2 and D1–F2.

a1 b1 a2 b2 c Skewness Ex. kurtosis Group

0 1 1 1.25 1 0.740 0.268 A1
−1 1 3 1 1 1.239 0.608 A2

1 2 0 1 0 −0.527 0.151 B1
−4 0.5 1 1 −1 −1.298 0.334 B2

0 2 0 2 0 0 −0.479 D1
0 0.5 1 0.5 0 0 −1.024 D2
0 1 1 1 1 0.584 −0.13 E1

−1 1 3 1 0.5 0.601 −0.961 E2
0 1 1 1 −1 −0.584 −0.13 F1

−1 1 3 1 −0.5 −0.601 −0.961 F2

Figure 4 plots the PDF of the EN(a1, b1, a2, b2, c) for groups of parameters presented
in Table 4.

Figure 4: PDF of the EN(a1, b1, a2, b1, 0) for groups from Table 4.

Theorem 2.1. Let X ∼ EN(a1, b1, a2, b2, c), then the CDF of X is given by

(2.3) F (x; a1, b1, a2, b2, c) = Φ

[
c− exp

(
−x− a1

b1

)
+ exp

(
x− a2

b2

)
; 0, 1

]
.

Proof: Obtaining (2.3) based on (2.1) is trivial.

CDFof theENdistribution is calculatedusing theR functionpEN(see supplementarymaterial).
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Figure 5 (left) plots the CDF of the EN(a1, b1, a2, b2, c) for groups A1, A2, B1, B2. The
CDF of the EN(a1, b1 > 0, a2, b2 > 0, c) on the normal Q-Q plot is monotonically increasing
curve (Figure 5, right).

Figure 5: CDF of the EN(a1, b1, a2, b1, 0) (left) and the normal Q-Q plot (right).

Theorem 2.2. The EN(a1, b1, a2, b2, c) with the PDF given by (14) is identifiable in

a parameter space v = (a1, b1, a2, b2, c).

Proof: Let v1 = (a11, b11, a21, b21, c1) and v2 = (a12, b12, a22, b22, c2). Let us suppose
that fv1(x) = fv2(x) for all x. This condition based on (2.3) implies that

Φ

[
c1 − exp

(
−x− a11

b11

)
+ exp

(
x− a21

b21

)
; 0, 1

]
=

= Φ

[
c2 − exp

(
−x− a12

b12

)
+ exp

(
x− a22

b22

)
; 0, 1

]
.

The function Φ is an increasing function which implies that

c1 − exp
(
−x− a11

b11

)
+ exp

(
x− a21

b21

)
= c2 − exp

(
−x− a12

b12

)
+ exp

(
x− a22

b22

)
or

c1 − c2 + exp
(
−x− a12

b12

)
− exp

(
−x− a11

b11

)
+ exp

(
x− a21

b21

)
− exp

(
x− a22

b22

)
= 0.

As a result of simple transformation a11 = a12, b11 = b12, a21 = a22, b21 = b22, c1 = c2.

2.2. Hazard function

Proposition 2.1. Let X ∼ EN(a1, b1, a2, b2, c). The hazard function associated with

the EN distribution is

(2.4) h(x) =

(
1
b1

e
−x−a1

b1 + 1
b2

e
x−a2

b2

)
φ
[
c− exp

(
−x−a1

b1

)
+ exp

(
x−a2

b2

)
; 0, 1

]
1− Φ

[
c− exp

(
−x−a1

b1

)
+ exp

(
x−a2

b2

)
; 0, 1

] .
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The limits of the EN hazard function as x → −∞ and x →∞ are respectively 0 and ∞
(Figure 6).

Figure 6: The EN hazard function for various values of parameters.

2.3. Quantiles

Proposition 2.2. Let X ∼ EN(a1, b1, a2, b2, c). The p-th (0 < p < 1) quantiles are

the solution of the following equation

c− exp
(
−xp − a1

b1

)
+ exp

(
xp − a2

b2

)
− Φ−1(p) = 0.

The value of xp is obtained by the numerical method, e.g. using the R software. Quantile
function of the EN distribution is calculated using the R function qEN (see supplementary
material).

2.4. Moments and moment generating function

Proposition 2.3. Let X ∼ EN(a1, b1, a2, b2, c). The k-th, k ∈ Z non-central mo-

ments from (14) are given by

(2.5) αk =
∫ +∞

−∞
xk

(
1
b1

e−z1 +
1
b2

ez2

)
φ[c− exp(−z1) + exp(z2); 0, 1],

where z1 = x−a1
b1

and z2 = x−a2
b2

, φ(x; a, b) is PDF of N(a, b)

Thus the variance µ2, skewness γ1 and kurtosis γ2 of the EN distribution are defined as

µ2 = α2 − α2
1, γ1 =

α3 − 3α1α2 + 2α3
1

µ1.5
2

, γ2 =
α4 − 4α1α3 + 6α2

1α2 − 3α4
1

µ2
2

.
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Table 5 provides the mode xmod, mean α1, variance µ2, skewness γ1 and kurtosis γ2 of
the EN distribution for various parameter combinations.

Table 5: Mode, mean, variance, skewness and kurtosis of the EN(a1, b1, a2, b2, c).

a1 b1 a2 b2 c xmod α1 µ2 γ1 γ2

0 2 0 2 0 0 0 0.837 0 2.521
1 0.5 0.5 0.538 0 2.643
2 1 1 0.34 0 2.745
3 1.5 1.5 0.212 0 2.826

0 0.5 1 1 0 −0.005 0.444 0.334 0.194 2.532
1 0.5 0.5 0.474 0 2.245

1.5 0.95 0.52 0.622 −0.216 2.455
2 1.077 0.523 0.775 −0.469 2.812

−2 1 −2 1 0 −2 −2 0.209 0 2.521
−1 −1.5 −1.5 0.474 0 2.245
1 −1.946,0.946 −0.5 1.791 0 1.751
2 1.981 0 3.009 0 1.578

0 0.5 0.5 0.25 1 −0.215 −0.025 0.096 0.019 2.156
0.5 −0.245 −0.08 0.096 0.056 2.87
0.75 −0.281 −0.114 0.101 0.089 3.686
1 −0.308 −0.137 0.107 0.12 4.583

0 1 1 2 0.5 −0.377 0.072 0.597 0.534 3.594
1 −0.615 −0.274 0.427 0.48 4.583

1.5 −0.815 −0.561 0.293 0.367 5.503
2 −0.988 −0.798 0.199 0.252 6.006

−2 2 2 1 −1 2.508 1.721 1.633 −2.662 5.457
0 −1.833,1.99 0.226 3.357 −1.557 2.014
1 −2.949,1.273 −1.604 3.253 1.832 2.271
2 −3.762 −3.097 1.642 2.352 5.387

Table 5 shows that the PDF of EN distribution may be unimodal or bimodal. The EN
is a symmetric distribution for c = 0 and b1 = b2. If c > 0 or c = 0 and b1 < b2, then the EN
distribution is positively skewed. If c < 0 or c = 0 and b1 > b2 — negatively skewed.

Equidispersion occurs when the variance is equal to the mean ([1]). Overdisper-
sion is a situation in which the variance exceeds the mean, underdispersion is the oppo-
site. The mean of the EN(a1, b1, a2, b2, 0) — as mentioned earlier — equals a1+a2

2 , so
the EN(a1, b1, a2 ≤ −a1, b1, 0) has underdispersion property. Figure 7 shows the regions
in which the EN(a1, b1, 0, 1, 2) and EN(a1, b1, 0, 2, 1) distributions are overdispersed and
underdispersed for selected parameter values. The regions for the EN(a1, b1, 1, 1,−2) and
EN(a1, b1, 1, 1, 0) as well as for the EN(0, b1, 0, 1, c) and EN(0, b1, 0, 2, c) are presented
in the supplementary material. The curve connects the points where the distribution is
equidispersed. It is interesting to point out that the relationship between a1 and b1 in the
EN(a1, b1, 0, b2, c > 0) remains linear for b2 = 1, c = 2 and b2 = 2, c = 1 (see Figure 7).

Proposition 2.4. The moment generating function (MGF) of the EN distribution,

based on (2.1), is given by

(2.6) MX(t) =
∫ +∞

−∞
etx

(
1
b1

e−z1 +
1
b2

ez2

)
φ[c− exp(−z1) + exp(z2); 0, 1],

where z1 = x−a1
b1

and z2 = x−a2
b2

.
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Figure 7: Dispersion regions for the EN(a1, b1, 0, 1, 2) and EN(a1, b1, 0, 2, 1).

2.5. Moments of order statistics

Proposition 2.5. Let the random variable Xi,n be the i-th order statistic X1.n ≤
X2,n ≤ ··· ≤ Xn,n in a sample of size n from the EN(a1, b1, a2, b2, c). The PDF of Xk,n is

given by

fi.n(x; ∗) =
n!

(i− 1)!(n− i)!
f(x; ∗)F (x; ∗)i−1[1− F (x; ∗)]n−i,

where ∗ = (a1, b1, a2, b2, c), and f(x; ∗), F (x; ∗) are respectively given by (2.1) and (2.3).

Figure 8 plots the PDF of Xi,20 for some parameter values of the EN distribution. The
k-th moment of the i-th order statistic Xk,n is defined as

E
(
Xk

i.n

)
=
∫ +∞

−∞
xkfi,n(x).

Figure 8: The PDF of the Xi,20 of the EN distribution.
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2.6. Random numbers generator

Proposition 2.6. Let X ∼ EN(a1, b1, a2, b2, c), R ∼ Uniform(0, 1). The formula

for generating X value, using the quantile function qEN of the EN distribution, is given by

X = qEN(R; a1, b1, a2, b2, c).

The R codes for generating n values of X in increasing order are in the supplementary material
as function rEN .

3. ESTIMATION PROCEDURES

Let x∗1, x
∗
2, ..., x

∗
n be a random sample of size n from the EN(a1, b1, a2, b2, c). Our aim is

to estimate the unknown parameter vector Θ = (a1, b1, a2, b2, c). The log-likelihood function
based on (2.1) is given by

(3.1) l(Θ) =
n∑

i=1

ln
(

1
b1

e−z∗1i +
1
b2

ez∗2i

)
+

n∑
i=1

ln
[
φ
(
c− e−z∗1i + ez∗2i

)]
,

where z∗1i = x∗i−a1

b1
, z∗2i = x∗i−a2

b2
. Solving the system of five complicated nonlinear equations in

the form
dl(Θ)
da1

= 0,
dl(Θ)
db1

= 0,
dl(Θ)
da2

= 0,
dl(Θ)
db2

= 0,
dl(Θ)

dc
= 0

is not possible analytically. We had better maximize the log-likelihood function (3.1) in math-
ematical computing environments such as Excel, R and Mathcad. The MLEs of parameters
a1, b1, a2, b2, c were calculated in R software using “optim” function.

The ordinary least square estimators (OLSEs) can be obtained by minimizing

O(Θ) =
n∑

i=1

[
F (xi; a1, b1, a2, b2, c)−

i

n + 1

]2

,

where F (x; Θ) is the CDF of the EN distribution (2.3).

The weighted least square estimators (WLSEs) can be obtained by minimizing

W (Θ) = (n + 1)2(n + 2)
n∑

i=1

1
i(n− i + 1)

[
F (xi; a1, b1, a2, b2, c)−

i

n + 1

]2

,

where F (x; Θ) is the CDF of the EN distribution (2.3).

A simulation study is conducted to assess the properties of the MLEs, OLSEs, WLSEs of
the parameter vector Θ = (a1, b1, a2, b2, c) using sample sizes of 50, 500 and 1000. In each case,
104 samples from the EN distribution with the specified parameters are drawn (see Figure 9).
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Figure 9: PDF of the EN distribution used in the estimation procedures (EPs).

The biases and the root mean squared errors (RMSEs) of the MLEs, OLSEs, WLSEs for
the EN(a1, 1, 0, 1, 0) are presented in Table 6. The biases and the root mean squared errors
(RMSEs) of the MLEs, OLSEs, WLSEs for the EN(0, b1, 1, 1, 1) and EN(1, 1, 0, 2, c) are
presented in the supplementary material.

Table 6: Biases and RMSEs of the MLEs (denoted as 1), OLSEs (denoted as 2),
WLSEs (denoted as 3) for the EN(a1, 1, 0, 1, 0).

a1 EP n
Bias RMSE

ba1
bb1 ba2

bb2 bc ba1
bb1 ba2

bb2 bc

1 0.53 0.16 −0.65 0.15 −0.01 2.48 1.35 2.99 1.44 1.82
2 50 0.56 0.47 −0.76 0.44 −0.12 1.62 1.38 1.97 1.42 1.15
3 0.77 0.57 −1.06 0.57 −0.18 2.04 1.62 2.50 1.51 1.33

1 0.10 0.03 −0.10 0.02 0.01 0.61 0.33 0.65 0.35 1.00
0 2 500 0.24 0.14 −0.26 0.14 0.00 0.76 0.50 0.87 0.55 0.49

3 0.14 0.09 −0.16 0.09 −0.01 0.57 0.37 0.69 0.42 0.44

1 0.07 0.02 −0.05 0.01 0.03 0.47 0.24 0.47 0.25 0.84
2 1e3 0.15 0.09 −0.15 0.09 0.01 0.52 0.36 0.58 0.39 0.37
3 0.07 0.04 −0.06 0.04 0.01 0.33 0.23 0.37 0.25 0.34

1 0.41 0.13 −0.46 0.07 0.06 2.38 1.37 2.79 1.42 1.87
2 50 0.28 0.24 −0.37 0.25 −0.05 1.15 0.94 1.43 1.14 1.07
3 0.51 0.34 −0.62 0.34 −0.08 1.53 1.07 1.79 1.21 1.36

1 0.29 0.10 −0.29 0.10 0.03 1.29 0.60 1.35 0.63 1.15
1 2 500 0.15 0.07 −0.14 0.06 0.02 0.67 0.40 0.72 0.41 0.58

3 0.22 0.09 −0.20 0.08 0.04 0.83 0.45 0.87 0.47 0.69

1 0.19 0.07 −0.14 0.05 0.06 0.86 0.41 0.85 0.42 0.91
2 1e3 0.10 0.05 −0.10 0.04 0.01 0.52 0.31 0.58 0.32 0.48
3 0.16 0.07 −0.13 0.06 0.04 0.64 0.34 0.65 0.36 0.57

1 −0.02 −0.05 0.08 −0.08 0.23 1.63 1.32 1.72 0.97 2.34
2 50 0.09 0.19 −0.13 0.26 0.04 0.93 0.84 1.43 1.60 1.45
3 0.16 0.20 −0.20 0.24 −0.02 1.05 0.92 1.26 1.11 1.53

1 0.11 0.01 −0.09 0.01 0.02 1.07 0.47 0.97 0.44 1.86
2 2 500 0.05 0.03 −0.03 0.04 0.08 0.35 0.20 0.37 0.25 0.84

3 0.06 0.03 −0.04 0.03 0.05 0.50 0.25 0.48 0.25 0.81

1 0.08 0.01 −0.06 0.01 0.02 0.88 0.38 0.75 0.34 1.63
2 1e3 0.03 0.02 −0.02 0.02 0.05 0.26 0.14 0.27 0.17 0.61
3 0.04 0.02 −0.02 0.01 0.03 0.41 0.20 0.39 0.20 0.65
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We observe in Table 6 that the estimates approach true values and RMSEs decrease as
the sample size increases implying the consistency of the estimates. For EN(0, 1, 0, 1, 0) and
EN(1, 1, 0, 1, 0) biases are the smallest for ĉ and the greatest for â2 as well as RMSEs are the
smallest for b̂1 and the greatest for â2 (see Table 6). The smallest biases are for maximum
likelihood estimate (MLE) related to the EN(0, 1, 0, 1, 0).

To examine the accuracy of the coverage probability of the asymptotic confidence in-
tervals (CIs) using MLEe, another simulation study was performed with 104 samples using
sample sizes of 50, 100, 250, 500 and 1000. The study focused on the parameters a1, b1, a2, b2, c

and samples were drawn from the EN(0, 1, 1, 1.25, 1) (see Table 4). The coverage probabili-
ties of the obtained 95% CIs for a1 = 0, b1 = 1, a2 = 1, b2 = 1.25, c = 1 reported in Table 7
are very close to the nominal level. The results suggest that the obtained standard errors
and hence the asymptotic CIs are reliable.

Table 7: Coverage probabilities for the standard asymptotic 95% CIs.

Sample size n a1 b1 a2 b2 c

50 0.9531 0.9521 0.9495 0.9496 0.9500
100 0.9511 0.9517 0.9422 0.9495 0.9455
250 0.9484 0.9507 0.9513 0.9529 0.9495
500 0.9509 0.9522 0.9519 0.9543 0.9522
1000 0.9449 0.9461 0.9495 0.9499 0.9472

4. SHANNON, RENYI AND TSALLIS ENTROPIES

Let f(x, a1, b1, a2, b2, c) be a PDF of the EN distribution (2.1). The Shannon entropy
of the EN distribution is given by [26]

S(a1, b1, a2, b2, c) = −
∫ +∞

−∞
f(x; a1, b1.a1, b1, c) ln f(x; a1, b1.a1, b1, c)dx.

The Renyi entropy of order α for the EN distribution is defined as [21]

Rα(a1, b1, a2, b2, c) =
1

1− α
ln
(∫ +∞

−∞
f(x; a1, b1.a1, b1, c)

αdx

)
(α > 0, α 6= 1).

The Tsallis entropy of order α for the EN distribution has the form [29]

Tα(a1, b1, a2, b2, c) =
1

α− 1

∫ +∞

−∞
f(x; a1, b1.a1, b1, c)

αdx− 1 (α > 0, α 6= 1).

Renyi and Tsallis entropies converge to the Shannon entropy. Table 8 presents values of the
Shannon, Renyi and Tsallis entropies for parameter values from groups A1–B2 and D1–F2
(see Table 4).
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Table 8: Shannon (S), Renyi (Rα) and Tsallis (Tα) entropies.
Groups of parameter values A1–B2, D1–F2.

Group S
Rα Tα

α = 0.5 α = 2 α = 3 α = 0.5 α = 2 α = 3

A1 0.89 1.06 0.727 0.65 −4.39 −0.52 −0.86
A2 1.43 1.64 1.17 1.02 −5.53 −0.69 −0.94
B1 0.65 0.82 0.50 0.43 −4.02 −0.39 −0.79
B2 1.47 1.69 1.19 1.04 −5.66 −0.70 −0.94
D1 1.32 1.45 1.21 1.15 −5.14 −0.70 −0.95
D2 0.65 0.71 0.59 0.57 −3.86 −0.45 −0.84
E1 0.89 1.03 0.75 0.68 −4.35 −0.53 −0.87
E2 1.66 1.76 1.51 1.40 −5.83 −0.78 −0.97
F1 0.89 1.03 0.75 0.68 −4.35 −0.53 −0.87
F2 1.66 1.76 1.51 1.40 −5.83 −0.78 −0.97

5. APPLICATION

The aim of this Section is to demonstrate the flexibility and applicability of the EN
distribution. This section is composed of two real data examples. As mentioned in Introduc-
tion, the EN distribution is bimodal, so the analyzed real data are also bimodal. In papers
devoted to probability distributions, Johnson distributions such as SB and SU are used very
rarely in the examples, perhaps because of their unimodality. The other models selected for
comparison with the new proposal are:

a) compound normal (CN) with PDF:

f(x; a1, b1, a2, b2, c) = ωφ(x; a1, b1) + (1− ω)φ(x; a2, b2);

b) compound Gumbel (CG) with PDF:

fG(x; a, b) =
1
b

exp
[
a− x

b
− exp

(
a− x

b

)]
,

f(x; a1, b1, a2, b2, c) = ωfG(x; a1, b1) + (1− ω)fG(x; a2, b2);

c) two-piece power normal (TPPN) [22] with PDF:

σ = σ1I(x < θ) + σ2I(x ≥ θ),

f(x; θ, σ1, σ2, c) =
c

σ
√

2π

∣∣∣∣x− θ

σ

∣∣∣∣c−1

exp

[
−0.5

∣∣∣∣x− θ

σ

∣∣∣∣2c
]
;

d) bimodal skew-symmetric normal (BSSN) [12] with PDF:

f(x; θ1, θ2, c, d) =
2c1.5

[
d + (x− θ2)

2
]
exp
[
−c(x− θ1)

2
]

√
π
[
1 + 2c

[
d + (θ2 − θ1)

2
]] ;
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e) flexible generalized skew-normal of order 3 (FGSN) [16] with PDF:

u =
x− a

b
,

f(x; a, b, α0, α1) =
2
b
φ(u; 0, 1)Φ

(
α0u + α1u

3; 0, 1
)
;

f) bimodal asymmetric power-normal (BAPN) [8] with PDF:

u =
x− θ

σ
,

f(x;α, β, θ, σ) =
α2α

2α − 1
φ(u; 0, 1)Φ(u; 0, 1)α−1Φ(βu; 0, 1);

g) normal distribution with plasticizing component (NDPC) [24] with PDF:

u =
x− a2

b2
, fpc(x; a2, b2, c) =

c

b2
|u|c−1φ(|u|c; 0, 1),

f(x; a1, b1, a2, b2, c, ω) = ωφ(x; a1, b1) + (1− ω)fpc(x; a2, b2, c).

The estimation of the model parameters is carried out by the maximum likelihood
method. To avoid local maxima of the logarithmic likelihood function, the optimization
routine is run 100 times with several different starting values that are widely scattered in the
parameter space.

Table 9 presents the MLEs, confidence interval (CI), log-likelihood function l, AIC,
BIC and HQIC for the first data sets. Models are sorted by AIC values.

Following the bootstrap method proposed in [5], [4] and [20], we used the obtained
estimates Θ̂ (Table 9) to derive the 95% bootstrap CIs for the parameters of distributions.
We generated 104 samples of size n from the given distribution with values of the parameters
equal to Θ̂. For each obtained sample, we obtained the MLEs Θ̂∗i

(
i = 1, 2, ..., 104

)
using the

true values of estimates as starting values for the maximum likelihood estimation. For the
95% bootstrap CIs, we took the 250-th and 9750-th ordered estimates.

Table 10 shows p-values (sorted by p-value of the KS test) for mentioned GoFTs cal-
culated as follows. First, we obtain the values of the Kolmogorov–Smirnov (KS), Anderson-
Darling (AD) and Cramer-von Mises (CvM) test statistics (denoted ST) for true values of
parameters Θ̂ based on the sample x1, x2, ..., xn. In the next step we simulate 104 samples
x
′
1, x

′
2, ..., x

′
n from the given distribution with true values of parameters Θ̂. For each sample,

we calculate the values of the KS, AD and CvM test statistics (denoted STS). Finally, the
p-value is calculated as p ≈ #

{
i : STS

i ≥ ST
}
10−4.

5.1. Example 1

The first real data present waiting time between eruptions and the duration of the
eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA ([13]).
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The data consist of 272 observations of the variable “eruptions numeric Eruption time in
mins” and are available in the R software with code faithful[1].

As shown in Table 9 the EN model is definitely the best in terms of the −l, AIC, BIC
and HQIC values. The AIC ranking is the same as the BIC and HQIC rankings. The EN
model is definitely distinguished by the p-values (see Table 10). The p-value ranking for the
KS test is, with only one exception, the same as the p-value rankings for the AD and CvM
tests. The information criteria ranking is not the same as the p-value ones. It is worth noting
that the rankings are similar for most models, with the biggest difference in the rankings for
the TPPN model.

Table 9: Results of estimation. Information criteria. Example 1.

Model bΘ 95%CI −l AIC BIC HQIC

ba1 −1.453 [−1.486,−1.416] 224.331 456.663 471.086 462.453
bb1 0.185 [0.147, 0.224]

EN ba2 0.820 [0.729, 0.896]
bb2 0.481 [0.405, 0.563]
bc −0.427 [−0.602,−0.264]

ba1 0.508 [0.353, 0.611] 227.238 466.476 488.111 475.161
bb1 0.375 [0.275, 0.444]

NDPC
ba2 −0.173 [−0.210,−0.137]
bb2 1.219 [1.182, 1.256]
bc 4.795 [4.186, 5.786]
bω 0.342 [0.235, 0.432]

ba1 0.688 [0.631, 0.745] 240.394 490.788 508.817 498.026
bb1 0.383 [0.341, 0.423]

CN ba2 −1.287 [−1.328,−1.245]
bb2 0.206 [0.175, 0.237]
bω 0.652 [0.597, 0.706]

bθ1 −0.454 [−0.537,−0.370] 244.651 497.301 511.724 503.092

TPPN
bσ1 0.921 [0.835, 1.007]
bσ2 1.357 [1.267, 1.448]
bc 3.166 [2.891, 3.549]

ba1 −1.367 [−1.405,−1.307] 250.318 510.636 528.665 517.874
bb1 0.180 [0.145, 0.213]

CG ba2 0.532 [0.456, 0.604]
bb2 0.362 [0.218, 0.411]
bω 0.362 [0.305, 0.427]

ba 0.191 [0.153, 0.236] 271.813 551.626 566.049 557.416

FGSN
bb 1.016 [0.930, 1.102]
bα0 4.148 [3.389, 5.351]
bα1 −3.406 [−4.942,−2.460]

bθ1 −0.212 [−0.265,−0.155] 277.255 562.509 576.932 568.300

BSSN
bθ2 1.402 [1.279, 1.625]
bc −0.323 [−0.372,−0.265]
bd 0.003 [−0.045, 0.021]

bα 16.160 [14.243, 18.776] 464.240 936.479 953.675 943.203

BAPN
bβ 0.048 [−0.011, 0.108]
bθ −0.070 [−0.090,−0.040]
bσ 0.543 [0.520, 0.565]
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Table 10: The KS, AD and CvM tests. Example 1.

Model
KS test AD test CvM test

TS p-value TS p-value TS p-value

EN 0.0306 0.935 0.2845 0.9546 0.0414 0.9316
CN 0.049 0.4644 1.063 0.322 0.124 0.4741

NDPC 0.0514 0.4108 1.1111 0.3066 0.1724 0.3336
CG 0.0639 0.1858 2.129 0.0801 0.2636 0.1775

BSSN 0.0751 0.0814 3.896 0.0118 0.5454 0.0302
FGSN 0.0832 0.0404 3.289 0.0195 0.4366 0.0537
BAPN 0.1331 0.0001 8.7874 0.0002 1.0307 0.0019
TPPN 0.1495 0 7.201 0 1.516 0

Concluding, the EN model fits better than the other models analyzed in this case.

The second real data present Intercountry Life-Cycle Savings Data ([27], [6]). A detailed
analysis of this example done identically to Example 1 is presented in the supplementary
material.

6. CONCLUSIONS

Heterogeneity is not the only one cause of population distribution’s bimodality. The
population distribution is shaped by many factors. Therefore, the aim of the paper was to
introduce into a family of the mixed bimodal distributions two distant relatives more. The
relatives in question are distant since they are not of mixture form. So, they was denoted
as non-mixed bimodal distributions. It is author’s duty to give potential user of non-mixed
bimodal distributions warning. Parameters of non-mixed bimodal distributions are not so
clearly interpretable as parameters of mixed bimodal distributions are. Interpretability com-
plication may, in turn, complicate conclusions when statistical reasoning procedure involves
non-mixed bimodal distributions.

As a result of considerations presented in this paper two probability distributions de-
noted SC and SD came into existence. The distributions are members of the Johnson family
of distribution. The SC and SD were tested in great depth, first for flexibility then for
applicability.

In order to test for flexibility the Malachov plot was applied. The Malachov plot is
a rectangular coordinate system with skewness (γ1) as the abscissa and kurtozis (γ2) as the
ordinate. Points located below Malachov parabola γ2 = γ2

1 + 1 are related to obtainable
γ1/γ2 combinations. The more flexible distribution is the wider points are scattered on the
Malachov plot. In this paper the above fact served as a basis for definition of numerical
flexibility measure being a fraction of an area “occupied” by particular distribution. The
skewness-kurtosis-square measure was denoted SKS. Points are dimensionless entities, for a
purpose of SKS measure, they were replaced with micro-squares. The best dispersion of
points (γ1, γ2) occurs for the SD, SU and SB distribution.
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After having flexibility testing completed the EN distribution was tested for applica-
bility. For the purpose of applicability testing two real data sets were used. Empirical pdf’s
estimated from these data sets display bimodality. The EN had seven competitors with re-
spect to applicability. These were already existing distributions that all have a property of
bimodality. The competition consisted in fitting distributions to the data sets. Two types
of rankings were performed. First the EN and its competitors were ranked with respect
to information criteria. The criteria were AIC, BIC and HQIC ones. Then the EN and its
competitors were ranked with respect to results of goodness-of-fit tests. The results were mea-
sured with p-values. The goodness-of-fit test involved in rankings were Kolmogorov-Smirnow,
Anderson-Darling and Crmaer-von Mises ones. Altogether there were three information crite-
ria rankings and three p-value rankings performed. It is interesting that all three information
criteria rankings gave quite the same results. What makes a matter of rankings more in-
teresting is that all three p-value rankings gave quite the same results too! So, one can say
about one joint information criteria ranking and one joint p-value ranking. These rankings
considerably differed from each other. In its essence this fact is not even strange since criteria
differ considerably too. It is of special interest that the EN ranks high in all the rankings.

The content of the paper shows that the EN (including SC) as a new member of the
Johnson family of distributions and simultaneously as a new distribution from the non-mixed
bimodal distribution category, is a competitive model that deserves to be added to the existing
distributions in modeling data.
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1. INTRODUCTION

Convolution based models are introduced in the literature as a combination of two
random variables. It is used in various fields like physics, engineering, biological studies,
etc. Radovic et al. [22] studied breakdown voltage distribution in neon using the convolution
of distributions. For applications of convolution models, one may refer to Burbeck and
Luce [6], Rosso et al. [23] and Golubev [11]. Fajriyah [10] noted that beta convolutions
and beta convoluted normal can be used in microarray experiments due to the presence
of some non-biological noises. Plancade et al. [20] introduced gamma-normal convolution
to model the background correction of the Illumina BeadArrays. Exponential-lognormal
convolution is found to be a good fit for microarray data. Several convolution models based
on different underlying distributions such as the exponential-gamma, the normal-gamma and
the exponential-normal were studied in the past and different estimation methods of the
parameters have been discussed and illustrated with real life data sets. Chen et al. [7] used
exponential-gamma distribution and its highly skewed behavior for the improved estimation
of the detection of differently expressed genes.

For the modeling and analysis of symmetrical and tailed peaks in the data, the exponen-
tial-Gaussian distribution has been used by several researchers in the past. The exponential-
Gaussian distribution discussed by Xie et al. [26], is a convolution distribution for the ob-
served gene expression intensities by assuming that the true signal intensities are exponen-
tially distributed and the noise intensity is normally distributed. Ding et al. [9] used the
exponential-normal convolution model to correct the background of the Illumina platform by
using Markov chain Monte Carlo simulation. With the name exponentially modified Gaus-
sian, the convolution of exponential and Gaussian distribution has been found as a good
model in modeling chromatographic peaks as seen in Naish and Hartwell [19]. This distribu-
tion is used to model residuals in Ament et al. [2]. Application of this distribution in flow
injection analysis, quantitation of chromatographic peaks etc. is explained in Jeansonne and
Foley [14]. A recent work on exponential-Gaussian distribution is also seen in Jehan et al.

[13].

Time series analysis using autoregressive models having non-normality assumptions had
been an interesting area of researchers of all times. See Lawrance [17], Lawrance and Lewis
[16], Popovici [21] and Billard [5] for the details of stationary autoregressive models under
the assumption that the marginal distribution is exponential, and refer Sim [24] for gamma
distributed marginals. The convolution distribution is relatively less explored in time series
data analysis. In the regression context, one may refer to Gori and Rioul [12], where they
estimated a linear bound in the presence of outliers under the assumption that the noise is
exponential-Gaussian distributed. Also, it is of interest to study time series models developed
under the assumption that data is exponential-Gaussian distributed. In this paper, we study
the first order autoregressive time series models having exponential-Gaussian as marginals.
The paper is systematically organized into various sections as follows.

In Section 2, we consider the probability density function (pdf) of the exponential-
Gaussian distribution and bring out its analytical properties. The autoregressive process of
order 1(AR(1)) with exponential-Gaussian distribution as marginals is introduced and the
distribution of the innovation random variable is identified in Section 3. Important properties
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of the proposed model are derived in Section 4. The parameters involved in the proposed
model are estimated using different methods and the performance of the same are verified
using a simulation study in Section 5. Section 6 is devoted to the analysis of real data of
GDP growth rate using the proposed model.

2. EXPONENTIAL-GAUSSIAN DISTRIBUTION

Let U ∈ R and V ∈ R+ be two independent and continuous random variables with pdfs
g(·) and h(·) respectively. Then the pdf of the random variable X = U + V is

f(x) = (g ∗ h)(x) =
∫ +∞
0 g(x− v)h(v)dv.(2.1)

With particular choice of U as Gaussian with parameters µ and σ and V as exponential with
mean λ in (2.1), the pdf of X is

f(x) =
1

λσ
√

2π

∫ ∞

0
e−

(x−µ−v)2

2σ2 e−
v
λ dv.

Using the erfc(·) function, Naish and Hartwell [19] expressed the above integral in a more
convenient form as

f(x) =
1
2λ

e
1
λ

�
σ2

2λ
+µ−x

�
erfc

(
1√
2σ

(
σ2

λ
+ µ− x

))
,(2.2)

−∞ < x < ∞, λ > 0, µ ∈ R, σ > 0,

where

erfc(x) =
2√
π

∫ ∞

x
e−

t2

2 dt.

We denote the exponential-Gaussian random variable having pdf (2.2) as EG(λ, µ, σ).
A striking feature of such a construction is that, the resultant distribution is capable of
capturing the skewed behaviour of the data. X being the sum of independent normal and
exponential random variables, it is obvious that

E(X) = µ + λ,(2.3)

Var(X) = σ2 + λ2,(2.4)

Skewness(X) =
2λ3

(σ2 + λ2)3/2
(2.5)

and

Kurtosis(X) = 3
(σ4 + 2λ2σ2 + 3λ4)

(σ2 + λ2)2
.(2.6)

When λ → 0, the exponential-Gaussian becomes a Normal distribution with skewness zero
and kurtosis value 3.
The characteristic function of the EG(λ, µ, σ) is given by

φX(t) =
eiµt− 1

2
t2σ2

1− λit
.(2.7)
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The shape of the pdf of EG(λ, µ, σ) random variable for various values of the parameter λ,
by taking µ = 0 and σ = 1, is depicted in Figure 1. The shape of EG(λ, µ, σ) is determined
by the value of k = σ

λ . When k → 0 the EG(λ, µ, σ) density function will be very close to
the exponential density, and when k is very large, the distribution is close to the Gaussian
distribution. The density plots reveal an apparent similarity in shape, but the peakedness
increases significantly and becomes heavy tailed as λ increases.
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Figure 1: Shape of the density function of exponential-Gaussian
for the different values of λ ∈ {0.5, 1, 1.5}, µ = 0, σ = 1.

To discuss its application in time series, we propose an AR(1) process with EG(λ, µ, σ)
distribution as marginals in the next section.

3. AR(1) MODEL WITH EXPONENTIAL-GAUSSIAN AS MARGINAL

Let {Xn} be a first order autoregressive process having the linear structure

Xn = aXn−1 + εn, |a| < 1.(3.1)

Assume that {Xn} is a stationary process with exponential-Gaussian distribution as marginals
and {εn} is a sequence of independent and identically distributed (i.i.d) random variables
independent of {Xt}, where t < n.
Since Xn’s are stationary, by using the characteristic function of Xn we can write

φεn(t) =
φX(t)
φX(at)

.(3.2)

Since Xn is following EG(λ, µ, σ) distribution, substituting (2.7) we obtain

φεn(t) = eitµ(1−a)−σ2t2(1−a2)
2

[
1− λiat

1− λit

]
.(3.3)
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Using the expression of φεn(t), we can represent the random variable {Xn} as

Xn = aXn−1 +

{
Zn, with probability a,

Wn, with probability 1− a,
(3.4)

where Zn ∼ N(µ(1− a), σ
√

1− a2) and Wn ∼ EG(λ, µ(1− a), σ
√

(1− a2)).
Alternatively (3.3) can be expressed as

φεn(t) = eitµ(1−a)−σ2t2(1−a2)
2

[
a + (1− a)

1
1− λit

]
.(3.5)

Further it may be noted that, using the tailed exponential random variable of Littlejohn [18],
Xn may be written as

Xn = aXn−1 + Y1n + Y2n,(3.6)

where Y1n ∼ N(µ(1− a), σ
√

1− a2) and

Y2n =

{
0, with probability a,

Exp(λ) with probability 1− a,
(3.7)

and Exp(λ) is the exponential distributed random variable with mean λ.

Now we define the first order exponential-Gaussian autoregressive process (EGAR(1))
as given below.

Definition 3.1. A Markovian sequence {Xn} defined according to (3.1), is said to
be an exponential-Gaussian autoregressive process of order 1 (EGAR(1)) with EG(λ, µ, σ)
distribution as marginals if and only if {εn} admits the following representation

εn =

{
Zn, with probability a,

Wn, with probability 1− a,
(3.8)

where Zn ∼ N(µ(1− a), σ
√

1− a2) and Wn ∼ EG(λ, µ(1− a), σ
√

(1− a2)).

From (3.8), the pdf of εn can be written as

fεn(x) = afZn(x) + (1− a)fWn(x),

where

fZn(x) =
1√

2πσ
√

1− a2
e

−1

2(1−a2)

�
x−µ(1−a)

σ

�2

,

fWn(x) =
1
2λ

e
1
λ

�
σ2(1−a2)

2λ
+µ(1−a)−x

�
erfc

(
1√

2(1− a2)σ

(
σ2(1− a2)

λ
+ µ(1− a)− x)

))
.

In the next section, we shall bring together the important properties of EGAR(1).
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4. PROPERTIES OF THE EGAR(1) PROCESS

Proposition 4.1. If X0 is distributed arbitrarily, the Markovian process (3.1) is again

exponential-Gaussian distributed asymptotically.

Proof: We can rewrite Xn = aXn−1 + εn, as

Xn = anX0 +
∑n−1

k=0 akεn−k.

Consequently, the characteristic function is

φXn(t) = φX0(a
nt)

n−1∏
k=0

φε(akt)

= φX0(a
nt)

[
exp

(
iµ(1− a)

n−1∑
k=0

akt− 1
2
σ2(1− a2)

n−1∑
k=0

a2kt2

)]
n−1∏
k=0

1− iak+1tλ

1− iaktλ
.

As n →∞,

φXn(t) → eiµt−σ2t2

2

[
1

1− itλ

]
,(4.1)

implying that Xn is asymptotically EG(λ, µ, σ) distributed.

Proposition 4.2. For the EGAR(1) process, the (k + 1) step ahead conditional mean

is given by

(4.2) E(Xn+k|Xn−1 = xn−1) = ak+1xn−1 + (1− ak+1)(λ + µ).

Proof: Using (3.1), we have

(4.3) Xn+k = ak+1Xn−1 + akεn + ak−1εn+1 + ···+ εn+k.

By taking expectation conditionally on Xn−1 = xn−1 on both sides, we obtain the desired
result.

Remark 4.1. When k →∞,

(4.4) E(Xn+k|Xn−1 = xn−1) → λ + µ,

which is the unconditional mean of the process.

Proposition 4.3. For the EGAR(1) process, the (k + 1) step ahead conditional vari-

ance is given by

(4.5) Var(Xn+k|Xn−1 = xn−1) = (1− a2(k+1))(σ2 + λ2).
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Remark 4.2. As k →∞,

(4.6) Var(Xn+k|Xn−1 = xn−1) → (σ2 + λ2).

Proposition 4.4. EGAR(1) process is not time-reversible.

Proof: The joint characteristic function of (Xn, Xn+1) is

φXn,Xn+1(t) = E
(
eit1Xn+it2Xn+1

)
= E

(
e(it1Xn+it2(aXn+εn+1)

)
= φXn(t1 + at2)φεn+1(t2)

= eiµ(t1+t2)−σ2

2
(t21+t22+2at1t2) 1− iaλt2

(1− iλt2)(1− iλ(t1 + at2))
,

which is not symmetric in t1 and t2. So the process EGAR(1) is not time reversible.

Remark 4.3. From the model defined in (3.1),

E(Xn|Xn−1 = x) = ax + (1− a)(λ + µ).

Therefore, we can see that regression in the forward direction is linear and the conditional
variance is constant.

Following the steps in Lawrance [17], the joint moment generating function (m.g.f)
of (Xn, Xn+1) is

(4.7) MXn,Xn+1(t1, t2) =
MX(t1 + at2)MX(t2)

MX(at2)
.

Differentiating this with respect to t1 and setting t1 = 0, t2 = t,

E(etXn+1E(Xn|Xn+1)) =
M ′

X(at)MX(t)
MX(at)

= M ′
X(at)Mε(t)

= etµ+σ2t2

2

[
λa + (1− λat)(µa + a2σ2t)

(1− λat)(1− λt)

]
.(4.8)

Also differentiating (4.7) with respect to t2 and setting t2 = 0, t1 = 0, we get E(Xn) = λ + µ.

Proposition 4.5. The characteristic function of the partial sums Sr = Xn + Xn+1 +
···+ Xn+r−1 is

φSr(t) =

[
exp

(
iµ

1− ar

1− a
t− σ2

2

(
1− ar

1− a

)2

t2

)]
1

1− λi
(

1−ar

1−a

)
t

·
r−1∏
j=1

[
exp

(
iµ(1− ar−j)t− σ2

2
(1− a2)

(
1− ar−j

1− a

)2

t2

)]
1− aλi

(
1−ar−j

1−a

)
t

1− λi
(

1−ar−j

1−a

)
t

.
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Proof:
Sr = Xn + Xn+1 + ···+ Xn+r−1

=
r−1∑
j=0

ajXn +
r−2∑
j=0

ajεn+1 +
r−3∑
j=0

ajεn+2 + ···+ εn+r−1

= Xn

(
1− ar

1− a

)
+

r−1∑
j=1

εn+j

(
1− ar−j

1− a

)
,

φSr(t) = φXn

(
1− ar

1− a
t

) r−1∏
j=1

φε

(
1− ar−j

1− a
t

)

=

[
exp

(
iµ

1− ar

1− a
t− σ2

2

(
1− ar

1− a

)2

t2

)]
1

1− λi
(

1−ar

1−a

)
t

r−1∏
j=1

[
exp

(
iµ(1− ar−j)t− σ2

2
(1− a2)

(
1− ar−j

1− a

)2

t2

)]
1− aλi

(
1−ar−j

1−a

)
t

1− λi
(

1−ar−j

1−a

)
t

.

On inverting the above expression of the characteristic function of Sr, one may obtain its
distribution.

5. ESTIMATION

In this section we will discuss the estimation of the parameters. The parameters in-
volved in the process are µ, a, σ and λ. Let (X1, ..., Xn) be the realizations from the EGAR(1)
process. Method of moments, conditional least square method, and Gaussian estimation
method are discussed in the following sections. A simulation study is also conducted.

5.1. Estimation using the Method of Moments

Using (2.3), (2.4), and (2.5), we can identify the estimates for the parameters µ, σ and λ

under the method of moments estimation. The autoregressive parameter a can be estimated
by the sample autocorrelation function (ACF), that is â = corr(Xn, Xn−1). Other moment
estimates are given by

µ̂ = m− s
(γ

2

)1/3
,(5.1)

σ̂2 = s2

[
1−

(γ

2

)2/3
]

(5.2)

and

λ̂ = s
(γ

2

)1/3
,(5.3)

where m is the sample mean, s is the sample standard deviation and γ is the skewness.

It may be noted that explicit expression for the mean and variance of the above esti-
mators are not available.
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5.2. Conditional Least Square Estimation

The conditional least square estimates of the parameters are obtained by minimizing
the conditional sum of squares function

Dn(a, µ, σ, λ) =
n∑

i=1

(xi − E(Xi|Xi−1 = xi−1))2.(5.4)

From the linearity of the regression of EGAR(1) process, we have

(5.5) E(Xi|Xi−1 = x) = axi−1 + (1− a)(λ + µ).

Therefore, (5.4) can be written as

(5.6) Dn(a, µ, σ, λ) =
n∑

i=1

[xi − axi−1 − (1− a)(λ + µ)]2.

Solving the normal equations obtained from (5.6) we obtain estimates of a and µ in terms of
λ̂ as

â =
n
∑

xixi−1 −
∑

xi
∑

xi−1

n
∑

x2
i−1 − (

∑
xi)2

,(5.7)

µ̂ =
∑

xi − â
∑

xi−1

n(1− â)
− λ̂.(5.8)

Estimates of σ and λ can be identified numerically through other methods, like maximizing
the conditional likelihood function, and also by making use of (5.7) and (5.8). The conditional
likelihood function is given by

L(x; a, µ, σ, λ) =

[
n∏

i=1

fXi|Xi−1
(xi|xi−1)

]
fX0(x0)

=

[
n∏

i=1

fXi|Xi−1
(xi|xi−1)

]
1
2λ

e
1
λ

�
σ2

2λ
+µ−x0

�

· erfc
(

1√
2σ

(
σ2

λ
+ µ− x0

))
,

where

fXi|Xi−1
(xi|xi−1) = afZn(xi − axi−1) + (1− a)fWn(xi − axi−1)

= a
1√
2π

1
σ
√

1− a2
e
−1
2

(xi−axi−1−µ(1−a))2

σ2(1−a2)

+ (1− a)
1
2λ

e
1
λ

�
σ2(1−a2)

2λ
+µ(1−a)−xi+axi−1

�

· erfc

(
1√

2(1− a2)σ

(
σ2(1− a2)

λ
+ µ(1− a)− xi + axi−1

))
.

Since EGAR(1) is a stationary process and the moments are finite, using the regularity
conditions of Klimko and Nelson [15], it is verified that the conditional least square estimators
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obtained are consistent and asymptotically normal. That is,
√

n
[
(â, λ̂)′ − (a, λ)′

]
→ N(0,Σ)

where N(0,Σ) is a bivariate normal distribution with mean 0 and dispersion matrix

Σ =
[
(1− a2) 0

0 1+a
1−aλ2

]
.

5.3. Gaussian Estimation Method

Whittle [25] introduced this method by taking, Gaussian likelihood function as the
baseline distribution for the estimation. Later, Crowder [8] used this method of estimation
for the analysis of correlated binomial data. Al-Nachawati et al. [1] and Alwasel et al. [3] used
the same estimation procedure in the context of first order autoregressive process. Although
this method has an approximate nature, this gives a good estimation to our model and also the
possibility to estimate all the parameters in the model. The conditional maximum likelihood
function is given by

(5.9) L = f(x1)
n∏

t=2

f(xt|xt−1).

Here f(xt|xt−1) and f(x1) are the conditional and marginal probability function of Xt|Xt−1

and Xt, respectively. We assume Gaussian pdf for f(x1) and f(xt|xt−1) with conditional
mean and conditional variance as the parameters. Then the log-likelihood function can be
written as

(5.10) log(L) = n log
1√
2π

− 1
2

n∑
t=2

(
log(σ2

xt−1
) +

(xt −mxt−1)
2

σ2
xt−1

)
,

where mxt−1=E(Xt|Xt−1) = axt−1+(1−a)(λ+µ) and σ2
xt−1

=Var(Xt|Xt−1) = (1−a2)(λ2+σ2).
So, the Gaussian log-likelihood function corresponding to EGAR(1) process becomes

log(L) = n log

(
1√
2π

)
− 1

2

n∑
t=2

[
log
(
(1− a2)(λ2 + σ2)

)
+

(xt − axt−1 − (1− a)(λ + µ))2

(1− a2)(λ2 + σ2)

]
.

(5.11)

The Gaussian estimators are, thus, obtained by maximising the above non linear equation.
But explicit expressions as the solution for the parameters a, λ, µ and σ are not available.
Therefore, we have used numerical methods for identifying the value for these parameters.
We use the nlminb() function in R with the Nelder–Mead method for this purpose. Crowder [8]
pointed out that under Gaussian method of estimation of the parameter θ,

√
n(θ̂ − θ) is

asymptotically normally distributed with mean zero and asymptotic variance [J(θ)]−1, where
J(θ) is the conditional expected information matrix. An approximation of the same can be
done using the observed conditional information matrix, see Bakouch and Popovic [4].
To check the performance of the estimates, we have conducted a simulation study and the
mean square error (MSE) is used for the comparison purpose.
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5.4. Simulation Study

For checking the validity of the model, we simulated 100 samples of sizes 100, 500, 1000,
5000 and 10000 for different values of the parameters. The values considered are:

(1) a = 0.1, λ = 1, µ = 2 and σ = 1;

(2) a = 0.2, λ = 3, µ = 5 and σ = 4;

(3) a = 0.5, λ = 8, µ = 10 and σ = 8.

We obtained the estimates of the parameters and corresponding MSE values and the results
are presented in Table 1. It can be seen from the table that the Gaussian estimators are very
close to the true value of the parameters and it shows better performance when the sample
size increases. Further it may be noted that the MSE values decrease as the sample size
increases for different parameter values.

Table 1: Estimated values of a, λ, µ and σ corresponding mean squared error (MSE).

True values are: a = 0.1, λ = 1, µ = 2, σ = 1

Sample
size

ba bλ bµ bσ MSE(ba) MSE(bλ) MSE(bµ) MSE(bσ)

100 0.1371 0.9158 1.8221 1.1812 0.0613 0.1514 0.1034 0.1588
500 0.1158 0.9821 1.9948 1.1609 0.0227 0.0863 0.0949 0.1368

1000 0.1117 0.9969 1.9951 1.2321 0.0184 0.0546 0.0602 0.1211
5000 0.1041 1.0028 1.9934 1.0860 0.0124 0.0299 0.0287 0.0947

10000 0.1030 1.0003 2.0002 1.0636 0.0055 0.0269 0.0272 0.0782

True values are: a = 0.2, λ = 3, µ = 5, σ = 4

Sample
size

ba bλ bµ bσ MSE(ba) MSE(bλ) MSE(bµ) MSE(bσ)

100 0.1895 3.1918 5.1041 3.7119 0.0629 0.4664 0.2149 0.5053
500 0.1908 2.9903 4.9784 3.7372 0.0369 0.3011 0.1347 0.4146

1000 0.1946 2.9960 4.9863 3.7753 0.0299 0.1769 0.0738 0.3238
5000 0.1980 2.9986 4.9975 3.8110 0.0261 0.1369 0.0573 0.3009

10000 0.2004 3.0001 4.9993 3.8410 0.0095 0.0605 0.0393 0.2363

True values are: a = 0.5, λ = 8, µ = 10, σ = 8

Sample
size

ba bλ bµ bσ MSE(ba) MSE(bλ) MSE(bµ) MSE(bσ)

100 0.4842 7.8667 10.1034 7.5170 0.0631 0.8189 0.5678 1.0678
500 0.4951 7.9766 9.9780 7.6179 0.0383 0.6861 0.4468 0.9906

1000 0.4973 7.9827 9.9863 7.8915 0.0288 0.4723 0.3221 0.8955
5000 0.4985 7.9930 9.9945 7.8955 0.0120 0.2179 0.1620 0.8915

10000 0.5001 7.9989 10.0005 7.9301 0.0080 0.1339 0.1059 0.8207

Next we shall look into the sample path behaviour of the EGAR(1) process. We sim-
ulated 500 observations from the proposed process by taking a = 0.5, µ = 0, σ = 1 and
λ = 0.2, 0.4, 0.6, 0.8, and the same is plotted in Figure 2. The sample path clearly shows
that the simulated data is stationary.
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Figure 2: Sample path for the values of lambda=0.2, 0.4, 0.6, 0.8, µ=0 and σ=1.

6. DATA ANALYSIS

For establishing the applicability of the model, we considered the US GDP growth rate
data for the period from 1961 to 2018 which is available in https://data.worldbank.org.
The exponential-Gaussian distribution is found to be a suitable distribution for the data
and the fitted density is ploted in Figure 3. We performed the Kolmogorov–Smirnov test of
goodness of fit for the data set to check the adequacy of the exponential-Gaussian distribution
and obtained the p-value as 0.28 > 0.05. Significantly high p-value indicates the acceptance
of the hypothesis that EG is a good fit to the data.
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Figure 3: Fitted Exponential-Gaussian distribution for the GDP data.
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Hence we tried to model the data using the proposed EGAR(1) model. The time
series plot, the plots of the ACF and the partial autocorrelation function (PACF) of the data
are presented in Figure 4. We can find that the ACF and PACF is significant only at lag 1.
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Figure 4: GDP data, ACF, PACF plots.
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Therefore, we use AR(1) model for this data. The Gaussian estimation discussed in Section 5.3
is performed and the values of the parameters of EGAR(1) process are obtained as â = 0.33,
λ̂ = 1.88, µ̂ = 1.18 and σ̂ = 0.19. Residual analysis has been carried out and the model ade-
quacy has been checked. The p-value of Ljung–Box test is 0.79 > 0.05, accepting the null hy-
pothesis that the residuals are white noise. Also, the ACF and PACF of the residual are within
the limits as represented in Figure 5. We have calculated the standard errors of the estimates
using the Hessian matrix and got the standard errors of a as 0.05, µ as 0.08 and λ as 0.08.
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Figure 5: ACF and PACF plots of residuals.

Due to the evaluation of the likelihood function outside the given range of the parameter
values, the standard error of σ is not evaluated correctly. We have predicted the GDP values
for the next years and plotted them in Figure 6. In particular, note that the predicted value
of GDP growth rate in the year 2019 was 2.32, where the actual value is 2.161.
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Figure 6: Prediction for the GDP data.
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7. CONCLUSION

In this paper, we studied exponential-Gaussian distribution as a suitable model for data
having symmetry or heavy tailed behaviour. The time series application of the EG distri-
bution has been explored using an AR(1) process. The estimation of the model parameters
and the problem of fitting of the model to real time series data and simulated data are pe-
rused. Application of the similar convolution model like Lindley-Gaussian, Gamma-Gaussian
etc. are themes for future works. It may be interesting to investigate non-linear time series
models and stochastic volatility models based on EG distribution.
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theorem was proved later by AuthorB and AuthorC (1990); § This subject has 
been widely addressed (AuthorA 1990; AuthorB et al. 1995; AuthorA and 
AuthorB 1998). 
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