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Editorial 
 

 
 
Celebrating 20 years of publication | REVSTAT-Statistical Journal  

 
This year we complete 20 years of publication of REVSTAT-Statistical Journal. 

Statistics Portugal (INE), aware of its responsibilities in disseminating statistical knowledge and 
intending to fill a gap of scientific publication in Statistics in 1996, started the publication of 
Revista de Estatística  in Portuguese, a quarterly publication whose goal was the publication of 
papers containing original statistical methodological results, and its applications, namely in the 
economic, social and demographic fields. 

A decisive step was taken in 1998, publishing papers also in English, aiming to change the 
character of Revista de Estatística from a national to an international scientific journal, the 
Statistical Review. Afterwards, during the EMS 2001, the 23rd European Meeting of Statisticians, 
its Editor-in-Chief Ivette Gomes invited several international top researcher participants to join 
the editorial board for the becoming new international journal and in 2003 the name changed 
to REVSTAT-Statistical Journal. 

The first issue of REVSTAT, Vol1(1),  was published in November 2003 and consisted of four 
papers in different topics, namely in random-effects log-linear model, extremal index of sub-
sampled periodic sequences, in lifetime models and multiple correspondence analysis. 

The year of 2010 was the first electronic JCR 
(Journal Citation Reports) year. Since then, 
an impressive increasing number of 
submissions has occurred.  The year of 2015 
was the first one with more than one 
hundred of submissions. It should be 
mentioned that, in the period 2015-2021, 
an average yearly number of around 150 
submissions have been received in our 
REVSTAT, with a mean number of 25 
published papers per year.  

The rate of acceptance of the last three 
years is around 20%. 

Ivette Gomes has acted, heroically, till the end of 2018, as Editor-in-Chief of REVSTAT, improving 
the visibility and impact of REVSTAT, serving the science community with dedication and 
commitment, setting up and shaping the journal to ensure it has maintained its place among 
the international benchmark journals in the field of Statistics. The importance of obtaining high 
quality reviews and timeliness in publish-decisions, has been a major concern under Ivette’s 
Editorship, assisted by the Co-Editor Antónia Amaral Turkman. 

https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_main
https://www.ine.pt/xurl/pubc/107710
https://www.ine.pt/revstat/tables.html
https://revstat.ine.pt/index.php/REVSTAT/issue/view/3
https://jcr.clarivate.com/jcr-jp/journal-profile?journal=REVSTAT-STAT%20J&year=2021&fromPage=%2Fjcr%2Fsearch-results


Since 2019, the current Editor-in-Chief Isabel Fraga Alves and Co-Editor Giovani L. Silva have 
been trying to maintain the high level of the journal, acting with the utmost scientific integrity, 
and promoting some special issues too, spreading the scientific communications of some 
thematic meetings.  One of the keystones that we propose ourselves was the creation of a new 
journal platform, making possible not only the electronic submission and refereeing process for 
our Associate Editors, but also making true the aim of DOI attribution and in a near future the 
Open Access  (OA) registration  in DOAJ, although REVSTAT has been OA since its birth. This goal 
is now partially accomplished, made possible due to our teamwork with INE and represents a 
continuous work in progress.  We assume that these recent years during covid-19 pandemic 
were very difficult, and represented a big challenge, not easy to accomplish by the two Editors, 
who must answer to their normal professional academic duties, apart from this pro bono job. 

At last, we should enhance the fact that a successful journal depends on the efficiency and 
competence of the teamwork with its editorial board and its reviewers. We would like to take 
this opportunity to thank all Associate Editors, Executive Editors, Reviewers, Authors, and the 
readers of REVSTAT for their support.  In the future, it is our continuous goal to improve the 
profile of the REVSTAT Journal, next to the objectives of its readers, answering not only to the 
theoretical, methodological, and applied topics but also to the nowadays bigdata paradigm. 

July 14, 2022 

Isabel Fraga Alves 

Giovani L. Silva 

REVSTAT-Statistical Journal 

Volume 20, number 3 (July 2022) - Special Issue 

https://revstat.ine.pt/
https://revstat.ine.pt/index.php/REVSTAT/about/editorialTeam
https://doaj.org/
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Abstract:

• Bias reduction in tail estimation has mainly been performed in case of Pareto-type models; see for
instance Drees (1996) [11], Peng (1998) [20], Feuerverger and Hall (1999) [14], Beirlant et al. (1999 [3],
2002 [4]), Gomes and Martins (2002) [16] and Caeiro et al. (2005 [9], 2009 [10]). In that context,
Beirlant et al. (2009) [7] and Papastathopoulos and Tawn (2013) [19] constructed distributional
models that are based on second order rates of convergence for distributions of peaks over thresholds
(POT). Such approach also allows to connect the tail and the bulk of the distribution.
Bias reduction for all max-domains of attractions, i.e. without restricting to the Pareto-type case,
received much less attention up to now. Here we extend the second-order refined POT approach
started in Beirlant et al. (2009) [7] providing a bias reduction technique for the classical generalized
Pareto (GP) approximation for POTs. We consider parametric and nonparametric modelling of
the second order component.
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1. INTRODUCTION

Extreme value (EV) methodology starts from the assumption that the distribution
of the available sample X1, X2, ..., Xn belongs to the domain of attraction of a generalized
extreme value distribution, i.e. there exists sequences (bn)n and (an > 0)n such that as n →∞

(1.1)
max(X1, X2, ..., Xn)− bn

an
→d Yξ,

where P(Yξ ≤ y) = exp(−(1 + ξy)−1/ξ), for some ξ ∈ R with 1 + ξy > 0. The parameter ξ is
termed the extreme value index (EVI). It is well-known (see e.g. Beirlant et al., 2004 [5], and
de Haan and Ferreira, 2006 [17]) that (1.1) is equivalent to the existence of a positive function
t 7→ σt, such that

(1.2) P
(

X − t

σt
> y|X > t

)
=

F̄ (t + yσt)
F̄ (t)

→t→x+ H̄GP
ξ (y) = (1 + ξy)−1/ξ,

where F̄ (x) = P(X > x) and x+ denotes the endpoint of the distribution of X. The condi-
tional distribution of X− t given X > t is called the peaks over threshold (POT) distribution,
while H̄GP

ξ is the survival function of the generalized Pareto distribution (GPD).

Estimation of ξ and tail quantities such as return periods is then based on fitting a GPD
to the observed excesses X − t given X > t. The main difficulty in such an EV application
is the choice of the threshold t. Most often, the threshold t is chosen as one of the top data
points Xn−k,n for some k ∈ {1, 2, ..., n} where X1,n ≤ X2,n ≤ ... ≤ Xn,n denotes the ordered
sample. The parameters (ξ, σ) are then estimated by fitting the GPD HGP

ξ

( y
σ

)
to the spacings

Xn,n −Xn−k,n, ..., Xn−k+1,n −Xn−k,n.

The limit result in (1.2) requires t to be chosen as large as possible (or, equivalently,
k as small as possible) for the bias in the estimation of ξ and other tail parameters to be
limited. However, in order to limit the estimation variance, t should be as small as possible,
i.e. the number of data points k used in the estimation should be as large as possible. Several
adaptive procedures for choosing t or k have been proposed, but mainly in the Pareto-type
case with ξ > 0, i.e. when

(1.3) F̄ (x) = x−1/ξ`(x),

for some slowly varying function `, i.e. satisfying `(yt)
`(t) → 1 as t →∞, for every y > 1. One

then typically assumes a second-order specification of (1.3) of the type

(1.4)
`(yt)
`(t)

− 1 = δt

(
y−β − 1

)
,

where δt = δ(t) = t−β ˜̀(t), with β > 0 and ˜̀ slowly varying at infinity.

As an alternative, bias reduction techniques have been proposed in the Pareto-type
case ξ > 0, among others in Feuerverger and Hall (1999) [14], Beirlant et al. (1999 [3], 2002
[4]) and Gomes and Martins (2002) [16]. However while the bias is reduced, the variance is
increased. In Caeiro et al. (2005 [9], 2009 [10]) methods are proposed to limit the variance of
bias-reduced estimators assuming a third-order slow variation model. These methods focus
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on the distribution of the log-spacings of high order statistics. Other construction methods
for asymptotically unbiased estimators of ξ > 0 were introduced in Peng (1998) [20] and Drees
(1996) [11].

Another approach consists of proposing penultimate limit distributions. In case ξ > 0,
Beirlant et al. (2009) [7] proposed an extension of the Pareto distribution (EPD) to approxi-
mate the tail probability of the POT distribution P

(
X
t > y|X > t

)
as t →∞:

(1.5) H̄EP
ξ,δ,ρ(y) = 1−HEP

ξ,δ,ρ(y) = y−1/ξ
(
1 + δt

(
(y−1/ξ)−ρ − 1

))
, y > 1,

with δt satisfying δt ↓ 0 as t →∞ and ρ = −βξ. In the literature, the second order parameter
ρ typically is estimated externally with a different sequence of extreme order statistics than
with ξ and δ, or it is given an appropriate ’canonical’ value such as −1. We suppress the
notation ρ from the extended distribution notation.

Fitting the extended Pareto distribution HEP
ξ,σ to the relative excesses {Xn−j+1,n

Xn−k,n
, j =

1, ..., k} leads to estimates of ξ that are more stable as a function of k compared to the original
ML estimator derived by Hill (1975) [18]

ξ̂H
k,n =

1
k

k∑
j=1

log
Xn−j+1,n

Xn−k,n
,

which is obtained by fitting the Pareto distribution HEP
ξ,0 . Denoting the maximum likelihood

estimators of ξ by ξ̂EP
k , it can indeed be shown under the assumption that the EP model for

the excesses X/t is correct and that ρ is estimated consistently, that the asymptotic bias of
ξ̂EP
k is 0 as long as k(k/n)−2ρ → λ ≥ 0 as k, n →∞, while the asymptotic bias of ξ̂H

k,n is only

0 when k(k/n)−2ρ → 0. On the other hand, the asymptotic variance of ξ̂EP
k equals

(
1−ρ

ρ

)2
ξ2

k ,

where ξ2

k is the asymptotic variance of ξ̂H
k,n.

In case of a real-valued EVI, for the selection of an appropriate threshold or the con-
struction of bias-reduced methods, only a few methods are available. Dupuis (1999) [12]
suggested a robust model validation mechanism to guide the threshold selection, assigning
weights between 0 and 1 to each data point where a high weight means that the point should
be retained since a GPD model is fitting it well. However, thresholding is required at the level
of the weights and hence the method cannot be used in an unsupervised manner. Buitendag
et al. (2019) [8] present a ridge regression method to reduce the bias of the generalized Hill
estimator proposed in Beirlant et al. (2005) [6].

In this paper we concentrate on bias reduction when fitting the GPD to the distribution
of POTs X − t|X > t using maximum likelihood estimation. We hence extend the second-
order refined POT approach based on H̄EP

ξ,δ from (1.5) to all max-domains of attraction. Here
the corresponding basic second order regular variation theory can be found in Theorem 2.3.8
in de Haan and Ferreira (2006) [17] stating that

(1.6) lim
t→x+

P(X − t > yσt|X > t)− (1 + ξy)−1/ξ

δ(t)
= (1 + ξy)−1−1/ξΨξ,ρ̃((1 + ξy)1/ξ),

with δ(t) → 0 as t → x+ and Ψξ,ρ̃(x) = 1
ρ̃

(
xξ+ρ̃−1

ξ+ρ̃ − xξ−1
ξ

)
which for the cases ξ = 0 and ρ̃ = 0

is understood to be equal to the limit as ξ → 0 and ρ̃ → 0. We further allow more flexible
second-order models than the ones arising from second-order regular variation theory such
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as in (1.6) using non-parametric modelling of the second-order component and the flexible
semiparametric GP modelling introduced in Tencaliec et al. (2019) [21]. This newly proposed
method can also be applied to the specific case of Pareto-type distributions.

In the next section we propose our extended GPD models, and detail the estimation
methods. Some basic asymptotic results are provided in Section 3. In the final section we
discuss simulation results and some practical case studies.

2. TRANSFORMED AND EXTENDED GPD MODELS

In this paper we propose to approximate the POT distribution with an extended GPD
model with survival function

(E) : F̄EGP
t (y) = H̄GP

ξ (
y

σ
)
{

1 + δtBη

(
H̄GP

ξ (
y

σ
)
)}

,

where

• δt = δ(t) → 0 as t → x+,

• Bη(1) = 0 and limu→0 u1−εBη(u) = 0 for every 0 < ε < 1,

• Bη is twice continously differentiable.

Here the parameter η represents a second order nuisance parameter. For negative δ-
values one needs δt > {minu(1− d

du (uBη(u))}−1 to obtain a valid distribution.

Note that this model is a transformation model Gt

(
H̄GP

ξ ( y
σ )
)

where the transformation

function Gt : (0, 1) → (0, 1), u 7→ u(1 + δtBη(u)) satisfies Gt(u)
u → 1 as t →∞ for every u ∈

(0, 1) as follows from (1.2).
Also, model (E) generalizes the EPD model (1.5) replacing the Pareto survival function

y−1/ξ (ξ > 0) by the GPD survival function H̄GP
ξ (ξ ∈ R), and considering a general function

Bη(u).

We here detail a parametric and non-parametric estimation procedure for (ξ, σ) under
(E) based on excesses Yj,k = Xn−j+1,n−Xn−k,n (j = 1, ..., k), while considering external esti-
mation of the parameters in the Bη component of the model. In this we use the reparametriza-
tion (ξ, τ) with τ = ξ/σ. Modelling the distribution of the exceedances Y with model (E)
leads to maximum likelihood estimators based on the excesses Yj,k = Xn−j+1,n −Xn−k,n

(j = 1, ..., k):

(ξ̂E
k , τ̂E

k , δ̂E
k ) = argmax


k∑

j=1

log
(
1 + δkbη((1 + τYj,k)−1/ξ)

)

+
k∑

j=1

log
{

τ

ξ
(1 + τYj,k)−1−1/ξ

}(2.1)

with bη(u) = d
du(uBη(u)) for a given choice of Bη.

Estimates of small tail probabilities P(X > c) are then obtained through

P̂E
k (X > c) =

k

n
H̄GP

ξ̂E
k

(
τ̂E
k

ξ̂E
k

(c−Xn−k,n)

)(
1 + δ̂E

k B̂η

(
H̄GP

ξ̂E
k

(
τ̂E
k

ξ̂E
k

(c−Xn−k,n)

)))
.
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A general approach to choose the parameters contained in the Bη component can be to
minimize the variance of the obtained estimates of ξ over k = 2, ..., n. See also the simulation
Section 4.

A parametric approach (Ep). The second-order result (1.6) leads to the parametric
choice Bξ,ρ̃(u) = uξ

ρ̃

(
u−ξ−ρ̃−1

ξ+ρ̃ − u−ξ−1
ξ

)
in case ξ + ρ̃ 6= 0 and ξ 6= 0.

Model (E) allows for bias reduction in the estimation of (ξ, τ) under the assumption
that the corresponding second-order model (1.6) is correct for the POTs X − t|X > t. Note
that here the Bη component contains two parameters ξ and ρ̃. So in this component ξ and ρ̃

will be substituted with an external value.
Here

bη(u) = u−ρ̃

(
1− ρ̃

ρ̃(ξ + ρ̃)

)
+ uξ

(
1 + ξ

ξ(ξ + ρ̃)

)
− 1

ξρ̃
,

in which the classical estimator of ξ (with δk = 0), or an appropriate value ξ0, is used to
substitute ξ. A consistent estimator of ρ̃ is provided in Fraga Alves et al. (2003) [15]. Another
option is to choose (ξ0, ρ̃) minimizing the variance in the plot of the resulting estimates of ξ

as a function of k.

A non-parametric approach (Ep̄). In practice a particular distribution probably
follows laws of nature, environment or business and does not have to follow the second-order
regular variation assumptions as in (1.6). A non-parametric approximation of u 7→ uBη(u) can
be obtained from an estimator Ĝt∗ of Gt∗ , or equivalently Ĝk∗ of Gk∗ , of the transformation
Gt(u) = u(1 + δtBη(u)) (u ∈ (0, 1)) at some particular t∗ or k∗. Indeed, using Ĝ

(m)
k∗

(u)− u as
an approximation of u 7→ δk∗uBη(u), and reparametrizing δk by δk/δk∗ , we obtain b̂η,k∗(u) =
−1 + d

duĜ
(m)
k∗

(u) as an estimator of bη.

For any t, an estimator Ĝt of Gt can be obtained using the Bernstein polynomial
algorithm from Tencaliec et al. (2019) [21]. The Bernstein approximation of order m of a
continuous distribution function G on [0, 1] is given by

G(m)(u) =
m∑

j=0

G

(
j

m

)(
m
j

)
uj(1− u)m−j , u ∈ [0, 1].

As in Babu et al. (2002) [2] one then replaces the unknown distribution function G itself
with the empirical distribution function Ĝn of the available data in order to obtain a smooth
estimator of G:

Ĝ(m)
n (u) =

m∑
j=0

Ĝn

(
j

m

)(
m
j

)
uj(1− u)m−j .

Note that Gt is the distribution function of H̄GP
ξ (Y/σ). Hence, in the present application,

data from Gt are only available after imputing a value for (ξ, τ). This then leads to the
iterative algorithm from Tencaliec et al. (2019) [21], which is applied to every threshold t, or
every number of top k data:
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(i) Set starting values (ξ̂(0)
k , τ̂

(0)
k ). Here one can use (ξ̂ML

k , τ̂ML
k ) from using Gt(u) = u.

(ii) Iterate for r = 0, 1, ... until the difference in log-likelihood taken in (ξ̂(r)
k , τ̂

(r)
k ) and

(ξ̂(r+1)
k , τ̂

(r+1)
k ) is smaller than a prescribed small value:

(a) Given (ξ̂(r)
k , τ̂

(r)
k ) construct rv’s Ẑj,k =

(
1 + τ̂

(r)
k Yj,k

)−1/ξ̂
(r)
k ;

(b) Construct Bernstein approximation based on Ẑj,k (1 ≤ j ≤ k)

Ĝ
(m)
k (u) =

m∑
j=0

Ĝk

(
j

m

)(
m
j

)
uj(1− u)m−j

with Ĝk the empirical distribution function of Ẑj,k;

(c) Obtain new estimates (ξ̂(r+1)
k , τ̂

(r+1)
k ) with ML:

(ξ̂(r+1)
k , τ̂

(r+1)
k ) = argmax


k∑

j=1

log
{

ĝ
(m)
k ((1 + τẐj,k)−1/ξ)

}
+

k∑
j=1

log
{

τ

ξ
(1 + τẐj,k)−1−1/ξ

}
with ĝ

(m)
k denoting the derivative of Ĝ

(m)
k .

As noted in Tencaliec et al. (2019) [21] a theoretical study of these estimates is difficult
and has not been established.

Remark 2.1. The estimation methods described above of course can be rewritten for
the specific case of Pareto-type distributions where the distribution of POTs Y = X

t |X > t

are approximated by transformed Pareto distributions. The model (E) is then rephrased as

(E+) : F̄E
t (y) = H̄P

ξ (y)
{
1 + δtBη

(
H̄P

ξ (y)
)}

.

The likelihood estimation method, now based on the exceedances Yj,k = Xn−j+1,n/Xn−k,n

(j = 1, ..., k), is then adapted to

(2.2) (ξ̂E+
k , δ̂E+

k ) = argmax

{
k∑

j=1

log
(
1 + δkbη(Y

−1/ξ
j,k )

)
+

k∑
j=1

log
{

1
ξ
(Yj,k)−1−1/ξ

}}
.

Note that the (Ep+) approach using the parametric version Bη(u) = u−ρ − 1 for a particular
fixed ρ < 0 equals the EPD method from Beirlant et al. (2009) [7], while (Ep̄+) is new.
Estimators of tail probabilities are then given by

P̂E+
k (X > c) =

k

n
H̄P

ξ̂E+
k

(c/Xn−k,n)
(
1 + δ̂E+

k B̂η

(
H̄P

ξ̂E+
k

(c/Xn−k,n)
))

.

3. BASIC ASYMPTOTICS UNDER MODEL (E)

In this section we discuss the asymptotic properties of the maximum likelihood es-
timators solving (2.1) and (2.2). To this end, as in Beirlant et al. (2009) [7], we develop
the likelihood equations up to linear terms in δk since δk → 0 with decreasing value of k.
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Below we set H̄θ(y) = (1+ τy)−1/ξ when using extended GPD modelling, while H̄θ(y) = y−1/ξ

when using extended Pareto modelling under ξ > 0.

Extended Pareto POT modelling. The likelihood problem (2.2) was already considered
in Beirlant et al. (2009) [7] in case of parametric modelling for Bη. We here propose a
more general treatment. The limit statements in the derivation can be obtained using the
methods from Beirlant et al. (2009) [7]. Denoting the log-likelihood function in (2.2) by `,
the likelihood equations are given by

(3.1)



∂

∂ξ
` = −k

ξ
+

1
ξ2

k∑
j=1

log Yj,k +
δk

ξ2

k∑
j=1

b′η(H̄θ(Yj,k))H̄θ(Yj,k) log Yj,k

1 + δkbη(H̄θ(Yj,k))
,

∂

∂δk
` =

k∑
j=1

bη(H̄θ(Yj,k))− δk

k∑
j=1

b2
η(H̄θ(Yj,k)).

Extended Generalized Pareto POT modelling. The likelihood equations following from
(2.1) up to linear terms in δk are now given by

∂

∂ξ
` = −k

ξ
+

1
ξ2

k∑
j=1

log(1 + τYj,k) +
δk

ξ2

k∑
j=1

b′η(H̄θ(Yj,k))H̄θ(Yj,k) log(1 + τYj,k),

∂

∂τ
` =

k

ξτ

−1 + (1+ ξ)
1
k

k∑
j=1

1
1+ τYj,k

− δk

k

k∑
j=1

b′η(H̄θ(Yj,k))(τYj,k)(1+ τYj,k)−1−1/ξ

 ,

∂

∂δk
` =

k∑
j=1

bη(H̄θ(Yj,k))− δk

k∑
j=1

b2
η(H̄θ(Yj,k)),

from which

(3.2)



δ̂k =

∑k
j=1 bη(H̄θ̂k

(Yj,k))∑k
j=1 b2

η(H̄θ̂k
(Yj,k))

,

1
k

k∑
j=1

log(1 + τ̂kYj,k) = ξ̂k −
δ̂k

k

k∑
j=1

b′η(H̄θ̂k
(Yj,k))H̄θ̂k

(Yj,k) log(1 + τ̂kYj,k),

1
k

k∑
j=1

1
1 + τ̂kYj,k

=
1

1 + ξ̂k

+
δ̂k

1 + ξ̂k

1
k

k∑
j=1

b′η(H̄θ̂k
(Yj,k))H̄θ̂k

(Yj,k)

−1
k

k∑
j=1

b′η(H̄θ̂k
(Yj,k))H̄θ̂k

(Yj,k)
1

1 + τ̂kYj,k

 .

Under the extended model we now state the asymptotic distribution of the estimators
(ξ̂E

k , τ̂E
k ) and ξ̂E+

k . To this end let Q denote the quantile function of F , and let U(x) =
Q(1− x−1) denote the corresponding tail quantile function. Model (E) assumption can be
rephrased in terms of U :

(Ẽ) :

U(vx)−U(v)
σU(v)

− hξ(x)

δ(U(v))
→v→∞ xξBη(1/x),
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where hξ(x) = (xξ − 1)/ξ and δ(U) regularly varying with index ρ̃ < 0. Moreover in the
mathematical derivations one needs the extra condition that for every ε, ν > 0, and v, vx

sufficiently large

(Ẽ2) :

∣∣∣∣∣∣
U(vx)−U(v)

σU(v)
− hξ(x)

δ(U(v))
− xξBη(1/x)

∣∣∣∣∣∣ ≤ εxξ|Bη(1/x)|max{xν , x−ν}.

Similarly, (E+) is rewritten as

(Ẽ+) :
U(vx)
U(v) − xξ

ξδ(U(v)))
→v→∞ xξBη(1/x).

The analogue of (Ẽ2) in this specific case is given by

(Ẽ+
2 ) :

∣∣∣∣∣∣
U(vx)
U(v) − xξ

ξδ(U(v))
− xξBη(1/x)

∣∣∣∣∣∣ ≤ εxξ|Bη(1/x)|max{xν , x−ν},

with δ(U) regularly varying with index ρ < 0.
Finally, in the expression of the asymptotic variances we use

Eb2
η =

∫ 1

0
b2
η(u)du, EBη =

∫ 1

0
Bη(u)du, ECη =

∫ 1

0
uξBη(u)du.

The proof of the next theorem is outlined in the Appendix. It allows to construct
confidence intervals for the estimators of ξ obtained under the extended models.

Theorem 3.1. Let k = kn be a sequence such that k, n →∞ and k/n → 0 such that√
kδ(U(n/k)) → λ ∈ R. Moreover assume that in (2.1) and (2.2), Bη is substituted by a

consistent estimator as n →∞. Then:

i. When ξ > −1/2 with (Ẽ2)(√
k(ξ̂E

k − ξ),
√

k(
τ̂E
k

τ
− 1)

)
→d N2(0,Σ)

Σ =
ξ2

D

 1
(1+ξ)2(1+2ξ)

− (ECη)2

Eb2η

1
ξ(1+ξ)3

− EBηECη

ξ(1+ξ)Eb2η
1

ξ(1+ξ)3
− EBηECη

ξ(1+ξ)Eb2η

1
ξ2(1+ξ)2

(
1− (EBη)2

Eb2η

)  ,

where

D =
(

1
(1 + ξ)2(1 + 2ξ)

− (ECη)2

Eb2
η

)(
1− (EBη)2

Eb2
η

)
−
(

1
(1 + ξ)2

− EBηECη

Eb2
η

)2

;

ii. When ξ > 0 with (Ẽ+
2 )(√
k(ξ̂E+

k − ξ),
√

k(δ̂E+
k − δk)

)
→d N2(0,Σ+),

Σ+ =
1

Eb2
η − (EBη)2

(
ξ2Eb2

η −ξEBη

−ξEBη 1

)
.
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Remark 3.1. The asymptotic variance of ξ̂E+
k is larger than the asymptotic variance

ξ2 of the Hill estimator ξ̂H
k,n. Indeed,

(EBη)2 =
(∫ 1

0
log(1/u)bη(u)du

)2

=
(∫ 1

0
(log(1/u)− 1)bη(u)du

)2

≤
(∫ 1

0
(log(1/u)− 1)2du

)(∫ 1

0
b2
η(u)du

)
= (Eb2

η),

where the above inequality follows using the Cauchy-Schwarz inequality.
Similarly, one can show that

(ECη)2 = ξ−2

(∫ 1

0
(uξ − 1

1 + ξ
)bηdu

)2

≤ 1
(1 + 2ξ)(1 + ξ)2

(Eb2
η).

The asymptotic variance of ξ̂E
k equals

(1 + ξ)2

k

1− (1 + ξ)2(1 + 2ξ)(ECη)2/(Eb2
η)

1− (1+ξ)4(1+2ξ)
ξ2 (Eb2

η)−1[(ECη)2 − 2 (ECη)(EBη)
(1+ξ)2

+ (EBη)2

(1+ξ)2(1+2ξ)
]

which can be shown to be larger than the asymptotic variance (1+ ξ)2/k of the classical GPD
maximum likelihood estimator. In the parametric case with Bη(u) = uξ

ρ̃

(
u−ξ−ρ̃−1

ξ+ρ̃ − u−ξ−1
ξ

)
,

one obtains EBη = (1 + ξ)−1(1− ρ̃)−1, ECη = (1 + ξ)−1(1 + 2ξ)−1(ξ − ρ̃ + 1)−1 and Eb2
η =

2(1 + 2ξ)−1(1− 2ρ̃)−1(ξ− ρ̃ + 1)−1. It then follows that the asymptotic variance of ξ̂E
k equals

(1+ξ)2

k

(
1−ρ̃

ρ̃

)2
.

In case ξ > 0 with Bη(u) = u−ρ−1, the asymptotic variance of ξ̂E+
k is given by ξ2

k

(
1−ρ

ρ

)2

as already found in Beirlant et al. (2009) [7].
Finally, an asymptotic representation of

√
k(δ̂E

k − δk) can be found at the end of the
proof of Theorem 3.1 in the Appendix.

In the case studies in the next section, asymptotic confidence intervals based on
Theorem 3.1 can be added to the analysis.

Remark 3.2. Since in model (E) the Bη factor is multiplied by δt, the asymptotic
distribution of tail estimators based on (E) will not depend on the asymptotic distribution
of the estimator of Bη. As in Beirlant et al. (2009) [7] when using the EPD model in the
Pareto-type setting, one can rely in the parametric approach on consistent estimators of the
nuisance parameter η using a larger proportion k∗ of the data. Alternatively, one can also
consider different values of η in the parametric approach, and of (k∗,m) in the non-parametric
setting, and search for values of this nuisance parameter which stabilizes the plots of the EVI
estimates as a function of k using the minimum variance principle for the estimates as a
function of k. Clearly one loses the asymptotic unbiasedness in Theorem 3.1 if Bη is not
consistently estimated. For the moment no proof is available to show that the estimators of
the parameters in the second order component Bη through the minimum variance principle
are consistent. Note that the estimator of ρ̃ presented in Fraga Alves et al. (2003) [15] has
been shown to be consistent.
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As becomes clear from the simulation results, in many instances the extreme value index
estimators are not very sensitive to such a misspecification, especially in the non-parametric
approach leading to Ep̄ and Ep̄+, and the proposed estimators can still outperform the
classical maximum likelihood estimators based on the first order approximations of the POT
distributions.

4. SIMULATIONS AND CASE STUDIES

Simulation results and practical cases are proposed in a Shinyapp written in R:

https://phdshinygao.shinyapps.io/ExtendedModels/

Under Simulations one finds simulation results with sample sizes n = 200 for different
distributions from each max-domain of attraction. The bias and MSE for the different esti-
mators are plotted as a function of the number of exceedances k. Using the notation from
the preceding sections one has a choice to apply the technique with H̄θ equal to the GPD,
respectively the simple Pareto distribution (only when ξ > 0).

Sliders are provided for the following parameters:

• in case of GPD modelling: ρ̃ in Ep, and (k∗,m) in Ep̄ estimation,

• in case of Pareto modelling: ρ in Ep+, and (k∗,m) in Ep̄+ estimation.

Again one can indicate to choose these parameters so as to minimize the variance of ξ̂k

over k = 2, ..., n. The value of ξ in the parametric function Bξ,ρ̃ in Ep is imputed with the
classical GPD-ML estimator at the given value of k.

Also bias and RMSE plots of the corresponding tail probability estimates of p=P(X >c)
are given, where c is chosen so that these probabilities equal p = 0.005 or p = 0.003. Here the
bias, respectively RMSE, are expressed as the average, respectively the average of squared
values, of log(p/p̂).

One can also change the vertical scale of the plots, smooth the figures by taking moving
averages of a certain number of estimates. Finally one can download the figures in pdf.

While on the above link, several other distributions are used and sliders are provided for
the different parameters ρ, ρ̃, and (k∗,m), we collect here the resulting figures for estimation
of ξ and estimating 0.003 tail probabilities, when using the minimum variance principle for
all parameters, in case of the following subset of models:

• The Burr(τ, λ) distribution with F̄ (x) = (1 + xτ )−λ for x > 0 with τ = 1 and λ = 2,
so that ξ = 1

τλ = 1
2 and ρ = ρ̃ = − 1

λ = −1
2 .

• The Fréchet (2) distribution with F̄ (x) = 1− exp
(
−x−2

)
for x > 0, so that ξ = 1

2

and ρ = ρ̃ = −1.

• The standard normal distribution with ξ = 0 and ρ̃ = 0.

• The Exponential distribution with F̄ (x) = e−λx for x > 0, so that ξ = 0 and ρ̃ = 0.

https://phdshinygao.shinyapps.io/ExtendedModels/
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• The Reversed Burr distribution with F̄ (x) = (1 + (1− x)−τ )−λ for x < 1 with τ = 5
and λ = 1, so that ξ = −1/(τλ) = −1

5 with ρ̃ = −1/λ = −1.

• The extreme value Weibull distribution with F̄ (x) = 1− e−(1−x)α
for x < 1 with

α = 4, so that ξ = −1
4 with ρ̃ = −1.

We also compare the bias and RMSE results for ξ̂E
k with those of the ridge regression

estimator presented in Buitendag et al. (2019) [8]. This regression method is constructed on
the basis of a regression model of the type

Yj = ξ + bn,k

(
j

k + 1

)−ρ̃

, j = 1, ..., k,

where

Yj = (j + 1)

(
log

Xn−j,nξ̂H
j,n

Xn−j−1,nξ̂H
j+1,n

− log(1 +
1
j
) +

1
j

)
, j = 1, ..., n− 1.

In case ξ > 0, the results for ξ̂E+
k are also compared with the corrected Hill method presented

in Caeiro et al. (2005) [9] and (2009) [10], also based on regression representations of top order
statistics Xn−j+1,n, and which have been shown to have asymptotic bias 0 while keeping the
same asymptotic variance ξ2/k as the Hill estimator ξ̂H

k,n under a third-order slow variation
model.

In general the minimum variance principle works well, though in some cases some im-
proved results can be obtained by choosing specific values of the parameters ρ, ρ̃, and (k∗,m).
This is mainly the case for the Pareto-type models when using Ep̄, such as for the Fréchet dis-
tribution. Also, in case of tail probability estimation using Ep for cases with ξ < 0 particular
choices of the corresponding parameters lead to improvements over the minimum variance
principle.

Overall the Ep approach yields the best results, both in estimation of ξ and tail proba-
bilities. The improvement over the classical GPD maximum likelihood approach is smaller for
Ep̄, and in case of situations where the second order parameter ρ̃ equals 0 then Ep̄ basically
equals the ML estimators. Note that when ρ̃ = 0 the conditions of the main theorem are
not met, in which case the GPD and the bias reductions are known to exhibit a large bias.
This is typically the case when ξ = 0. This is also known to be the case using simple Pareto
modelling when ρ = 0.

The proposed methods compare well with the ridge regression method. One excep-
tion is the Fréchet distribution (see Figure 3) in which the ridge regression method offers
exceptionally good results.

In case of simple Pareto modelling for ξ > 0 cases (see Figures 2 and 4) the Ep+ and
Ep̄+ approaches yield serious improvements over the Hill estimator, with small bias for Ep+

and Ep̄+, while the parametric approach Ep+ naturally exhibits the best RMSE. The results
obtained with proposed methods are comparable with the CH estimator (see Figures 2 and 4).

Under Applications the app also offers the analysis of some case studies, some of which
are discussed here in more detail. We use Belgian car insurance claim ultimates of a Belgian
car insurance portfolio discussed in Albrecher et al. (2017) [1], and lifetime data discussed in
Einmahl et al. (2019) [13]. We then present estimates of ξ, σ and tail probabilities P(X > xn,n)
with xn,n denoting the largest observation, so that the estimated probability is supposed to
be close to 1/n. An option is provided in the Shinyapp to construct asymptotic confidence
intervals for ξ for the Ep and Ep+ based estimates of ξ, on the basis of Theorem 3.1.
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Figure 1: Burr distribution with ξ = 0.5 and ρ = −0.5. Estimation of ξ (top) and
tail probability (bottom) using minimum variance principle, bias (left),
RMSE (right): GPD-ML (full line), Ep (dash-dotted), Ep̄ (dashed) and
ridge regression estimator (dotted).
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Figure 2: Burr distribution with ξ = 0.5 and ρ = −0.5. Estimation of ξ (top) and
tail probability (bottom) using minimum variance principle, bias (left),
RMSE (right): Pareto-ML (full line), Ep+ (dash-dotted), Ep̄+ (dashed)
and corrected Hill estimator (dotted).
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Figure 3: Fréchet distribution with ξ = 0.5. Estimation of ξ (top) and tail probability (bottom),
bias (left), RMSE (right): GPD-ML (full line), Ep with ρ = −2 (dash-dotted),
Ep̄ with (k∗,m) = (190, 150) (dashed), and ridge regression estimator (dotted).
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Figure 4: Fréchet distribution with ξ = 0.5. Estimation of ξ (top) and tail probability (bottom)
using minimum variance principle, bias (left), RMSE (right): Pareto-ML (full line),
Ep+ (dash-dotted), Ep̄+ (dashed) and corrected Hill estimator (dotted).
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Figure 5: Standard normal distribution (ξ = 0 and ρ̃ = 0). Estimation of ξ (top)
and tail probability (bottom) using minimum variance principle, bias (left),
RMSE (right): GPD-ML (full line), Ep (dash-dotted), Ep̄ (dashed) and
ridge regression estimator (dotted).
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Figure 6: The exponential distribution (ξ = 0 and ρ̃ = 0). Estimation of ξ (top) and
tail probability (bottom) using minimum variance principle, bias (left),
RMSE (right): GPD-ML (full line), Ep (dash-dotted), Ep̄ (dashed) and
ridge regression estimator (dotted).
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Figure 7: Reversed Burr distribution (ξ = −0.2 and ρ̃ = −1). Estimation of ξ (top)
and tail probability (bottom) using minimum variance principle, bias (left),
RMSE (right): GPD-ML (full line), Ep (dash-dotted), Ep̄ (dashed) and
ridge regression estimator (dotted).
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Figure 8: Extreme value Weibull distribution (ξ = −0.25 and ρ̃ = −1). Estimation of ξ (top)
and tail probability (bottom) using minimum variance principle, bias (left),
RMSE (right): GPD-ML (full line), Ep (dash-dotted), Ep̄ (dashed) and ridge
regression estimator (dotted).
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Figure 9: Ultimates of Belgian car insurance claims: estimation of ξ with asymptotic confidence
intervals (left), tail probability estimation at maximum observation (right), Pareto-
based analysis (top) and GPD-based analysis (bottom): classical ML estimation (full
line with dotted confidence intervals), Ep (dashed with shaded confidence intervals)
and Ep̄ (dash-dotted). CH (top left) and ridge regression (bottom left) estimators
are indicated by dotted lines.
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Figure 10: Lifetime data from the Netherlands, female persons who died in 1986. Left: esti-
mation of ξ with asymptotic confidence intervals for classical ML estimation (full
line with dotted confidence intervals), Ep (dashed with shaded confidence intervals,
ρ̃ = −0.5) and ridge regression (dotted). Right: tail probability estimation at maxi-
mum observation for classical ML estimation (full line) and Ep (dashed).

In actuarial statistics, Pareto-type modelling is customary in case of car insurance claim
modelling. So here we provide both the plots of ξ̂H

k,n, Ep+, Ep̄+ and the CH estimator (see top
left in Figure 9), as well as the GPD-ML, Ep, Ep̄ and ridge regression estimator (bottom left
in Figure 9), and the corresponding tail probability estimates at the right hand side. Under
the Pareto approach, confining oneselves to ξ > 0, the level 0.4 clearly appears for the EVI
both using Ep+ and Ep̄+ when using the minimum variance principle. The CH estimator
also shows a stable area around the value 0.5. The tail probability estimates of P(X > xn,n)
are close to 1/n for almost all k values while the plot of the classical estimates is difficult to
interpret.

With GPD based modelling two EVI levels are visible, around 0.2 and 0.4, of which
the lower level is more clearly indicated when using Ep̄ with k∗ = 427 and m = 25 as shown
in Figure 9, bottom left. The ridge estimator is stable at the value 0.4. The corresponding
tail probability estimates based on Ep̄ are also stable at the value 1/n for a long k range.

In Einmahl et al. (2019) [13] the life spans are studied for Dutch males and females
reaching age 92 years and higher, considering their age at death. For every year, from 1986
till 2015, the life spans of this subgroup were analyzed. The authors decided to use k = 1500
for every year when using the classical GPD-ML estimators, and found an EVI estimate ξ̂

between −0.1 and −0.15 for females, while for males a value around −0.15 is common over
the whole period. Here we restrict ourselves to the female data from 1986. The results of
Ep with asymptotic confidence intervals as discussed in Remark 3.1 with ρ̃ = −0.5 are shown
in Figure 10 (left). While the classical GPD-ML estimates decrease with increasing k from
1 to 1500, the Ep estimates show a more stable plot at a negative ξ value which is rather
between −0.05 and −0.1. The ridge regression method shows a similar value for k ≤ 500.
The corresponding tail probability estimates for a larger k indicate a value closer to the
tail probability estimate 1/n based on the empirical distribution function, in contrast to the
classical GPD approach.
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5. CONCLUSIONS

In this contribution we have constructed bias reduced estimators of tail parameters
extending the classical POT method. The bias can be modelled parametrically (for instance
based on second order regular variation theory), or non-parametrically using Bernstein poly-
nomial approximations. A basic asymptotic limit theorem is provided for the estimators
of the extreme value parameters which allows to compute asymptotic confidence intervals.
A shinyapp has been constructed with which the characteristics and the effectiveness of the
proposed methods are illustrated through simulations and practical case studies. From this it
follows that within the proposed methods it is always possible to improve upon the classical
POT method both in bias and RMSE. This approach can also be used as a data analytic tool
to enhance an extreme value analysis.
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A. APPENDIX

In this section we provide details concerning the proof of Theorem 3.1.

Asymptotic distribution of ξ̂E+
k .

From (3.1) we obtain up to linear terms in δk that (denoting ξ̂k for ξ̂E+
k )


δ̂k =

∑k
j=1 bη(Y

−1/ξ̂k

j,k )∑k
j=1 b2

η(Y
−1/ξ̂k

j,k )
,

ξ̂k = ξ̂H
k,n + δ̂kB

(1)
k ,

with B
(1)
k = 1

k

∑k
j=1 b′η(Y

−1/ξ̂k

j,k )Y −1/ξ̂k

j,k log Yj,k. As k, n →∞ and k/n → 0 we have B
(1)
k →p

−ξ
∫ 1
0 b′η(u)u log udu = −ξEBη.

Using a Taylor expansion on the numerator of the right hand side of the first equation
leads to

1
k

k∑
j=1

bη(Y
−1/ξ̂k

j,k ) =
1
k

k∑
j=1

bη(Y
−1/ξ
j,k )− (ξ̂k − ξ)ξ−1(EBη) (1 + op(1)),

so that, with 1
k

∑k
j=1 b2

η(Y
−1/ξ̂k

j,k ) →p Eb2
η, up to lower order terms

δ̂k =
1

Eb2
η

1
k

k∑
j=1

bη(Y
−1/ξ
j,k )− (ξ̂k − ξ)ξ−1 EBη

Eb2
η

(1 + op(1)).

Hence, inserting this expansion into ξ̂k = ξ̂H
k,n + δ̂kB

(1)
k , finally leads to

√
k(ξ̂k − ξ)(1 + op(1)) =

Eb2
η

Eb2
η − (EBη)2

√
k
(
ξ̂H
k,n − ξ

)
− ξEBη

Eb2
η − (EBη)2

√
k

1
k

k∑
j=1

bη(Y
−1/ξ
j,k )


=

Eb2
η

Eb2
η − (EBη)2

√
k
(
ξ̂H
k,n − ξ − ξδkEBη

)
− ξEBη

Eb2
η − (EBη)2

√
k

1
k

k∑
j=1

bη(Y
−1/ξ
j,k )− δkEb2

η

 ,

with δk = δ(U(n/k)). We now show that this final expression is a linear combination of two
zero centered statistics (up to the required accuracy) which is asymptotically normal with
the stated asymptotic variance. To this end let Zn−k,n ≤ Zn−k+1,n ≤ ... ≤ Zn,n denote the
top k + 1 order statistics of a sample of size n from the standard Pareto distribution with
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distribution function z 7→ z−1, z > 1. Then from (Ẽ+
2 )

ξ̂H
k,n =

1
k

k∑
j=1

(log U(Zn−j+1,n)− log U(Zn−k,n))

=
1
k

k∑
j=1

log

{(
Zn−j+1,n

Zn−k,n

)ξ [
1 + ξδ(U(Zn−k,n))Bη

(
Zn−k,n

Zn−j+1,n

)

+ op(1)|δ(U(Zn−k,n))||Bη

(
Zn−k,n

Zn−j+1,n

)
|
(

Zn−j+1,n

Zn−k,n

)ε]}
= ξ

1
k

k∑
j=1

log
Zn−j+1,n

Zn−k,n
+ ξδ(U(Zn−k,n))

1
k

k∑
j=1

Bη

(
Zn−k,n

Zn−j+1,n

)

+ op(1)|δ(U(Zn−k,n))|1
k

k∑
j=1

|Bη

(
Zn−k,n

Zn−j+1,n

)
|
(

Zn−j+1,n

Zn−k,n

)ε

.

Now log Zn−j+1,n − log Zn−k,n =d Ek−j+1,k, the (k − j + 1)-th smallest value from a stan-
dard exponential sample E1, ..., Ek of size k, so that 1

k

∑k
j=1 log Zn−j+1,n

Zn−k,n
=d

1
k

∑k
j=1 Ej and

1
k

∑k
j=1 Bη

(
Zn−k,n

Zn−j+1,n

)
=d

1
k

∑k
j=1 Bη(e−Ej ) =d

1
k

∑k
j=1 Bη(Uj) where U1, ..., Uk is a uniform

(0,1) sample. Hence, since δ(U(Zn−k,n))/δ(U(n/k)) →p 1 and 1
k

∑k
j=1 Bη(Uj) →p EBη, we

have that ξ̂H
k,n − ξ − ξδkEBη is asymptotically equivalent to 1

k

∑k
j=1 ξ(Ej − 1) as

√
kδk → λ.

Similarly

1
k

k∑
j=1

bη(Y
−1/ξ
j,k ) =

1
k

k∑
j=1

bη


U

(
Zn−j+1,n

Zn−k,n
Zn−k,n

)
U(Zn−k,n)

−1/ξ


=
1
k

k∑
j=1

bη

((
Zn−j+1,n

Zn−k,n

)−1 [
1 + ξδ(U(Zn−k,n))Bη

(
Zn−k,n

Zn−j+1,n

)

+ op(1)|δ(U(Zn−k,n))||Bη

(
Zn−k,n

Zn−j+1,n

)
|
(

Zn−j+1,n

Zn−k,n

)ε]−1/ξ
)

=
1
k

k∑
j=1

bη

((
Zn−j+1,n

Zn−k,n

)−1 [
1− δ(U(Zn−k,n))Bη

(
Zn−k,n

Zn−j+1,n

)

+ op(1)|δ(U(Zn−k,n))||Bη

(
Zn−k,n

Zn−j+1,n

)
|
(

Zn−j+1,n

Zn−k,n

)ε])
=

1
k

k∑
j=1

bη(e−Ej )

− δ(U(Zn−k,n))
1
k

k∑
j=1

b′η

(
Zn−k,n

Zn−j+1,n

)
Bη

(
Zn−k,n

Zn−j+1,n

)(
Zn−k,n

Zn−j+1,n

)
(1+ op(1)).

Since δ(U(Zn−k,n))/δk →p 1 and 1
k

∑k
j=1 b′η

(
Zn−k,n

Zn−j+1,n

)
Bη

(
Zn−k,n

Zn−j+1,n

)(
Zn−k,n

Zn−j+1,n

)
→p −Eb2

η

it follows that 1
k

∑k
j=1 bη(Y

−1/ξ
j,k )− δkEb2

η is asymptotically equivalent to 1
k

∑k
j=1 bη(e−Ej ) =d

1
k

∑k
j=1 bη(Uj) as

√
kδk → λ, which is centered at 0 since E(bη(U)) = 0. The results incorpo-

rating δ̂E+
k follow similarly.
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Asymptotic distribution of ξ̂E
k .

This derivation follows similar lines starting from (3.2):

1
k

k∑
j=1

b′η(H̄θ̂k
(Yj,k))H̄θ̂k

(Yj,k) log(1 + τ̂kYj,k) →p −ξEBη,

1
k

k∑
j=1

b2
η(H̄θ̂k

(Yj,k)) →p Eb2
η,

1
k

k∑
j=1

b′η(H̄θ̂k
(Yj,k))H̄θ̂k

(Yj,k) →p bη(1),

1
k

k∑
j=1

b′η(H̄θ̂k
(Yj,k))H̄θ̂k

(Yj,k)
1

1 + τ̂kYj,k
→p ξ(1 + ξ)ECη + bη(1),

as k, n →∞ and k/n →∞, so that the system of equations is asymptotically equivalent to

δ̂k =
1
k

∑k
j=1 bη(H̄θ̂k

(Yj,k))

Eb2
η

,

1
k

k∑
j=1

log(1 + τ̂kYj,k) = ξ̂k + ξ̂kδ̂kEBη,

1
k

k∑
j=1

1
1 + τ̂kYj,k

=
1

1 + ξ̂k

− ξ̂kδ̂kECη.

Using a Taylor expansion on the numerator of the right hand side of the first equation leads
to

δ̂kEb2
η =

1
k

k∑
j=1

bη(H̄θ(Yj,k))−
EBη

ξ
(ξ̂k − ξ) + (1 + ξ)ECη

(
τ̂k

τ
− 1
)

.

Imputing this in the second and third equation in ξ and τ , and expanding these equations
linearly around the correct values (ξ, τ), while using, as k, n →∞ and k/n → 0

1
k

k∑
j=1

τYj,k

1 + τYj,k
→p

ξ

1 + ξ
and

1
k

k∑
j=1

τYj,k

(1 + τYj,k)2
→p

ξ

(1 + ξ)(1 + 2ξ)
,

leads to the linearized equations

(A.1)



(
ξ̂k − ξ

)(
−1 +

(EBη)2

Eb2
η

)
+
(

τ̂k

τ
− 1
)(

ξ

1 + ξ
− ξ(1 + ξ)

EBη ECη

Eb2
η

)
= −

(
1
k

k∑
j=1

log(1 + τYj,k)− ξ

)
+

ξEBη

Eb2
η

1
k

k∑
j=1

bη(H̄θ(Yj,k)),

(
ξ̂k − ξ

)( 1
(1+ ξ)2

− EBηECη

Eb2
η

)
+
(

τ̂k

τ
− 1
)(

− ξ

(1+ ξ)(1+2ξ)
+ ξ(1+ ξ)

(ECη)2

Eb2
η

)
= −

(
1
k

k∑
j=1

1
1 + τYj,k

− 1
1 + ξ

)
− ξECη

Eb2
η

1
k

k∑
j=1

bη(H̄θ(Yj,k)).
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Using similar derivations as in the case ξ̂E+
k , it follows that the right hand sides in (A.1) can

be rewritten as a linear combination of two zero centered statistics from which the asymptotic
normality of

(√
k(ξ̂E

k − ξ),
√

k( τ̂E
k
τ − 1)

)
can be obtained, as stated in Theorem 3.1:

(
ξ̂k − ξ

)(
−1 +

(EBη)2

Eb2
η

)
+
(

τ̂k

τ
− 1
)(

ξ

1 + ξ
− ξ(1 + ξ)

EBη ECη

Eb2
η

)
= −

(
1
k

k∑
j=1

log(1 + τYj,k)− ξ − ξδkEBη

)
+

ξEBη

Eb2
η

(
1
k

k∑
j=1

bη(H̄θ(Yj,k))− δkEb2
η

)
,

(
ξ̂k − ξ

)( 1
(1 + ξ)2

− EBηECη

Eb2
η

)
+
(

τ̂k

τ
− 1
)(

− ξ

(1 + ξ)(1 + 2ξ)
+ ξ(1 + ξ)

(ECη)2

Eb2
η

)
= −

(
1
k

k∑
j=1

1
1 + τYj,k

− 1
1 + ξ

+ ξδkECη

)
− ξECη

Eb2
η

(
1
k

k∑
j=1

bη(H̄θ(Yj,k))− δkEb2
η

)
.

We hence obtain the following asymptotic representation

(
ξ̂E
k − ξ,

τ̂E
k

τ
− 1
)T

= W−1


−1 0 ξ

EBη

Eb2
η

0 −1 −ξ
ECη

Eb2
η

(U (1)
k , U

(2)
k , U

(3)
k

)T

where

W =


−1 +

(EBη)2

Eb2
η

ξ

1 + ξ
− ξ(1 + ξ)

EBη ECη

Eb2
η

1
(1 + ξ)2

− EBηECη

Eb2
η

− ξ

(1 + ξ)(1 + 2ξ)
+ ξ(1 + ξ)

(ECη)2

Eb2
η

 ,

and

√
k
(
U

(1)
k , U

(2)
k , U

(3)
k

)T
:=



1
k

k∑
j=1

log(1 + τYj,k)− ξ − ξδkEBη

1
k

k∑
j=1

1
1 + τYj,k

− 1
1 + ξ

+ ξδkECη

1
k

k∑
j=1

bη(H̄θ(Yj,k))− δkEb2
η


is asymptotically normal with variance-covariance matrix

ΣU =

 ξ2 −ξ2(1 + ξ)−2 ξEBη

−ξ2(1 + ξ)−2 ξ2(1 + ξ)−2(1 + 2ξ)−1 −ξECη

ξEBη −ξECη Eb2
η

 .

Concerning δ̂E
k we find the following representation:

(Eb2
η)
√

k
(
δ̂E
k − δk

)
=

(0 0 1) + (−EBη/ξ (1 + ξ)ECη)W−1


−1 0 ξ
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η

0 −1 −ξ
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k
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k

U
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1. INTRODUCTION

The Weibull distribution is one of the most popular probability models, both from a
theoretical and practical viewpoint, and it has been successfully used to model lifetime and
failure data in a wide variety of areas. Prabhakar et al. [11] and Rinne [13] are two excellent
monograph books that review the history, theory and applications of the Weibull distribution.

To be more precise, let X be a random variable having a two-parameter Weibull dis-
tribution, that is, its cumulative distribution function (cdf) is given by

(1.1) FX(x;α, β) = 1− exp
(
−αxβ

)
, x > 0 ,

where α > 0 and β > 0 are the scale and shape parameters, respectively. Note that the
domain of the Weibull model is the positive real line. However, there are many real situations
in which the data take values in a bounded interval and then a truncated distribution may be
preferred. In this note, the attention will be focussed on the Weibull distribution truncated
to the interval (0, c), c > 0, which is commonly referred to as the right –or upper– truncated
Weibull (RTW) distribution. The cdf of a random variable Y having a RTW distribution on
(0, c) is easily deduced from (1.1), namely,

FY (y;α, β, c) = P
(
X≤ y |X≤ c

)
=

FX(y;α, β)− FX(0;α, β)
FX(c;α, β)− FX(0;α, β)

=
1− exp

(
−αyβ

)
1− exp

(
−αcβ

) , 0 < y < c ,
(1.2)

where α > 0 and β > 0. Statistical properties concerning the RTW model can be found in
Mart́ınez and Quintana [7], McEwen and Parresol [8], Rao [12], Wingo [16] and Zhang and
Xie [18], among others.

On the other hand, let Z be a random variable having a power function (PF) distribu-
tion on the interval (0, c), that is, its cdf is given by

FZ(z;β, c) =
(

z

c

)β

, 0 < z < c ,

where β > 0 is a shape parameter. Recall that the PF distribution is obtained by inverting the
Pareto distribution. Statistical properties of the PF distribution can be found in Forbes et al.

[3, Chapter 36] and Johnson et al. [6, Chapter 20]. A detailed review of research concerning
the PF law is given in Tahir et al. [15]. Practical applications in different areas can also
be found in Ferreira and Andrade [2] (queuing theory), Meniconi and Barry [9] (electrical
component reliability) and Wu et al. [17] (economics and finance), among others.

There exists a well-known relationship between the non-truncated Weibull distribution
and the PF distribution. If a random variable Z follows a PF distribution on (0, 1) with shape
parameter α > 0, then the random variable (− log Z)1/β has a Weibull distribution with cdf
(1.1). The aim of this note is to present a non-trivial connection between the distributions
RTW and PF. In the next section, it is shown that the RTW model can be derived as the
distribution of the minimum of a positive random number N of independent and identically
distributed (iid) random variables having a common PF distribution. Specifically, the random
number N follows a zero-truncated Poisson distribution.
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Before going further, it is interesting to point out that families of distributions derived as
the minimum of a positive random number N of iid random variables are common in statistical
applications. For example, this stochastic representation arises in reliability analysis of series
systems, in which the failure of the system is due to the presence of an unknown number of
independent components of the same kind and it is assumed that the system fails if at least one
component fails. Some of those families of distributions are listed in Nadarajah et al. [10] and
some applications can be found in Silva et al. [14]. In addition, Bobotas and Koutras [1] have
also studied the special case where N is a non-negative random number with P (N= 0) > 0.

2. MAIN RESULT

Let N be a random variable having a zero-truncated Poisson distribution with param-
eter λ > 0. The probability mass function of N is given by

(2.1) P (N= n) =
λn exp(−λ)(

1− exp(−λ)
)
n!

, n = 1, 2, ...

The following result provides a relationship between the RTW and the minimum of iid PF
distributions. The zero-truncated Poisson distribution plays a crucial role.

Proposition 2.1. For any c > 0, let Z1, ..., ZN be iid random variables having a PF

distribution on the interval (0, c) with shape parameter β > 0. For any α > 0, let N be a

random variable having a zero-truncated Poisson distribution with parameter λ = αcβ. Then,

the random variable T = min{Z1, ..., ZN} has a RTW distribution on the interval (0, c).

Proof: For any n = 1, 2, ..., c > 0 and β > 0, the conditional cdf of the random variable
T |N = n is given by

FT |N=n(t;β, c) = 1−
n∏

i=1

(
1− FZi(t;β, c)

)
= 1−

(
1−

(
t

c

)β)n

, 0 < t < c .

From the above equation together with (2.1), for any α > 0 the marginal cdf of T is obtained
as follows:

FT (t;α, β, c) =
∞∑

n=1

P
(
T ≤ t, N= n

)
=

∞∑
n=1

FT |N=n(t;β, c) P
(
N= n

)
=

∞∑
n=1

[
1−

(
1−

(
t

c

)β)n]
(αcβ)n exp(−αcβ)(
1− exp(−αcβ)

)
n!

=
1− exp

(
−αtβ

)
1− exp

(
−αcβ

) , 0 < t < c ,

which taking into account (1.2) implies the desired result.

To conclude, it is interesting to note that by taking the minimum of a random number N

of iid PF random variables on the unit interval (0, 1), Jodrá [4] and Jodrá and Jiménez-
Gamero [5] have introduced two new probability distributions depending on if N follows a
shifted Poisson distribution or a zero-truncated geometric distribution, respectively. Sur-
prisingly, the well-studied RTW distribution is obtained if the random number N has a
zero-truncated Poisson distribution.
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[4] Jodrá, P. (2020). A bounded distribution derived from the shifted Gompertz law, Journal
of King Saud University – Science, 32, 523–536.
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1. INTRODUCTION

A diagnostic test is medical test that is applied to an individual in order to determine
the presence or absence of a disease. When the result of a diagnostic test is positive (indicating
the presence of the disease) or negative (indicating its absence), the diagnostic test is called
a binary diagnostic test (BDT) and its accuracy is measured in terms of two fundamental
parameters: sensitivity and specificity. Sensitivity (Se) is the probability of the BDT result
being positive when the individual has the disease, and specificity (Sp) is the probability of
the BDT result being negative when the individual does not have the disease. Sensitivity is
also called true positive fraction (TPF ) and specificity is also called true negative fraction
(TNF ), verifying that TPF = 1− FNF and that TNF = 1− FPF , where FNF (FPF ) is
the false negative (positive) fraction. The accuracy of a BDT is assessed in relation to a gold
standard (GS), which is a medical test that objectively determines whether or not an individ-
ual has the disease. When considering the losses of an erroneous classification with the BDT,
the performance of the BDT is measured in terms of the weighted kappa coefficient (Kraemer
et al., 1990 [7]; Kraemer, 1992 [8]; Kraemer et al., 2002 [9]). The weighted kappa coefficient
depends on the Se and Sp of the BDT, on the disease prevalence (p) and on the relative im-
portance between the false negatives and the false positives (weighting index c). The weighted
kappa coefficient is a measure of the beyond-chance agreement between the BDT and the GS.

Furthermore, the comparison of the performance of two BDTs is an important topic in
the study of Statistical Methods for Diagnosis in Medicine. The comparison of two BDTs can
be made subject to two types of sample designs: unpaired design and paired design. In the
book by Pepe (2003) [13] we can see a broad discussion about both types of sample designs.
Summing up, subject to an unpaired design each individual is tested with a single BDT,
whereas subject to a paired design each individual is tested with the two BDTs. Consequently,
unpaired design consists of applying a BDT to a sample of n1 individuals and the other BDT
to another sample of n2 individuals; paired design consists of applying both BDTs to all of the
individuals of a sample sized n. The comparative studies based on a paired design are more
efficient from a statistical point of view than the studies based on an unpaired design, since it
minimizes the impact of the between-individual variability. Therefore, in this article we focus
on paired design. Subject to this type of design, Bloch (1997) [3] has studied an asymptotic
hypothesis test to compare the weighted kappa coefficients of two BDTs. Nevertheless, if
the hypothesis test is significant, this method does not allow us to assess how much bigger
one weighted kappa coefficient is compared to another one, and it is necessary to estimate
this effect through confidence intervals (CIs). Thus, the objective of our study is to compare
the weighted kappa coefficients of two BDTs through CIs. Frequentist and Bayesian CIs
have been studied for the difference and for the ratio of the two weighted kappa coefficients.
If a CI for the difference (ratio) does not contain the zero (one) value, then we reject the
equality between the two weighted kappa coefficients and we estimate how much bigger one
coefficient is than another one. Consequently, our study is an extension of the Bloch method
to the situation of the CIs. We have also dealt with the problem of calculating the sample
size to compare the two parameters through a CI.

The manuscript is structured in the following way. In Section 2, we explain the
weighted kappa coefficient of a BDT and we relate the comparison of the weighted kappa
coefficients of two BDTs with the relative true (false) positive fraction of the two BDTs.
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Section 3 summarizes the Bloch method and we propose CIs for the difference and the ratio
of the weighted kappa coefficients of two BDTs subject to a paired design. In Section 4, sim-
ulation experiments are carried out to study the asymptotic behaviour of the proposed CIs,
and some general rules of application are given. In Section 5, we propose a method to calcu-
late the sample size necessary to compare the two weighted kappa coefficients through a CI.
In Section 6, a programme written in R is presented to solve the problems posed in this
manuscript. In Section 7, the results were applied to a real example on the diagnosis of
malaria, and in Section 8 the results are discussed.

2. WEIGHTED KAPPA COEFFICIENT

Let us consider a BDT that is assessed in relation to a GS. Let L (L′) the loss which
occurs when for a diseased (non-diseased) individual the BDT gives a negative (positive)
result. Therefore, the loss L (L′) is associated with a false negative (positive). If an in-
dividual (with or without the disease) is correctly diagnosed by the BDT then L = L′ = 0.
Let D be the variable that models the result of the GS: D = 1 when an individual has
the disease and D = 0 when this is not the case. Let p = P (D = 1) be the prevalence of
the disease and q = 1− p. Let T be the random variable that models the result of the
BDT: T = 1 when the result of the BDT is positive and T = 0 when the result is negative.
Table 1 shows the losses and the probabilities associated with the assessment of a BDT
in relation to a GS, and the probabilities when the BDT and the GS are independent,
i.e. when P (T = i|D = j) = P (T = i). Multiplying each loss in the 2× 2 table by its cor-
responding probability and adding up all the terms, we find p(1− Se)L + q(1− Sp)L′,
a term that is defined as expected loss. Therefore, the expected loss is the loss that occurs
when erroneously classifying with the BDT an individual with or without the disease.

Table 1: Losses and probabilities.

Losses (Probabilities)

T = 1 T = 0 Total

D = 1 0 (pSe) L (p(1− Se)) L (p)

D = 0 L′ (q(1− Sp)) 0 (qSp) L′ (q)

Total L′ (Q = pSe + q(1− Sp)) L (1−Q = p(1− Se) + qSp) L + L′ (1)

Probabilities when the BDT and the GS are independent

T = 1 T = 0 Total

D = 1 pQ p(1−Q) p

D = 0 qQ q(1−Q) q

Total Q 1−Q 1

Moreover, if the BDT and the GS are independent, multiplying each loss by its corresponding
probability (subject to the independence between the BDT and the GS) and adding up all of the
terms we find p[p(1−Se)+qSp]L+q[pSe+q(1−Sp)]L′, a term that is defined as random loss.
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Therefore, the random loss is the loss that occurs when the BDT and the GS are independent.
The independence between the BDT and the GS is equivalent to the Youden index of the BDT
being equal to zero i.e. Se + Sp− 1, and is also equivalent to the expected loss being equal
to the random loss. In terms of expected and random losses, the weighted kappa coefficient
of a BDT is defined as

κ =
Random loss− Expected loss

Random loss
.

Substituting in this equation each loss with its expression, the weighted kappa coefficient of
a BDT is expressed (Kraemer et al., 1990 [7]; Kraemer, 1992 [8]; Kraemer et al., 2002 [9]) as

(2.1) κ(c) =
pqY

p(1−Q)c + qQ(1− c)
,

where Y = Se + Sp− 1 is the Youden index, Q = pSe + q(1− Sp) is the probability that the
BDT result is positive, and c = L/(L + L′) is the weighting index. The weighting index c is
a measure of the relative importance between the false negatives and the false positives. For
example, let us consider the diagnosis of breast cancer using as a diagnostic mammography
test. If the mammography test is positive in a woman that does not have cancer (false
positive), the woman will be given a biopsy that will give a negative result. The loss L′ is
determined from the economic costs of the diagnosis and also from the risk, stress, anxiety,
etc., caused to the woman. If the mammography test is negative in a woman who has breast
cancer (false negative), the woman may be diagnosed at a later stage, but the cancer may
spread, and the possibility of the treatment being successful will have diminished. The loss
L is determined from these considerations. The losses L and L′ are measured in terms of
economic costs and also from risks, stress, etc., which is why in practice their values cannot
be determined. Therefore, as loss L (L′) cannot be determined, L (L′) is substituted by the
importance that a false negative (positive) has for the clinician. The value of the weighting
index c will depend therefore on the relative importance between a false negative and a false
positive. If the clinician is more concerned about false negatives, as in a screening test, then
0.5 < c ≤ 1. If the clinician has greater concerns about false positives, as it is the situation
in which the BDT is used as a definitive test prior to a treatment that involves a risk for the
individual (e.g., a definitive test prior to a surgical operation), then 0 ≤ c < 0.5. The index c
is equal to 0.5 when the clinician considers that the false negatives and the false positives have
the same importance, in which case κ(0.5) is the Cohen kappa coefficient. Weighting index c

quantifies the relative importance between a false negative and a false positive, but it is not
a measure that quantifies how much bigger the proportion of false negatives is compared to
the false positives. If c = 0 then

(2.2) κ(0) =
Sp− (1−Q)

Q
=

p(1− FNF − FPF )
p(1− FNF ) + qFPF

,

which is the chance corrected specificity according to the kappa model. If c = 1 then

(2.3) κ(1) =
Se−Q

1−Q
=

q(1− FNF − FPF )
pFNF + q(1− FPF )

,

which is the chance corrected sensitivity according to the kappa model. A low (high) value
of κ(1) will indicate that the value of FNF is high (low), and a low (high) value of κ(0) will
indicate that the value of FPF is high (low). The weighted kappa coefficient can be written
as

(2.4) κ(c) =
pc(1−Q)κ(1) + q(1− c)Qκ(0)

p(1−Q)c + qQ(1− c)
,
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which is a weighted average of κ(0) and κ(1). Therefore, the weighted kappa coefficient is a
measure that considers the proportion of false negatives (FNF ) and the proportion of false
positives (FPF ). Moreover, for a set value of the c index and of the accuracy (Se and Sp) of
the BDT, the weighted kappa coefficient strongly depends on the disease prevalence among
the population being studied, and its value increases when the disease prevalence increases.
The weighted kappa coefficient is a measure of the beyond-chance agreement between the
BDT and the GS. The properties of the kappa coefficient can be seen in the manuscripts of
Kraemer et al. (2002) [9], Roldán-Nofuentes et al. (2009) [15] and of Roldán-Nofuentes and
Amro (2018) [16].

When comparing the accuracies of two BDTs, Pepe (2003) [13] recommends using the
parameters rTPF12 = Se1

Se2
and rFPF12 = FPF1

FPF2
, where FPFh = 1− Sph, with h = 1, 2. If

rTPF12 > 1 then the sensitivity of Test 1 is greater than that of Test 2, and if rFPF12 > 1
then the FPF of Test 1 is greater than that of Test 2 (the specificity of Test 2 is greater
than that of Test 1). The comparison of the weighted kappa coefficients of two BDTs can
be related to the previous measures, and these have an important effect on the comparison
of κ1(c) and κ2(c). From now onwards, it is considered that 0 < Seh < 1, 0 < Sph < 1 and
0 < p < 1, with h = 1, 2. Let us consider the subindexes i and j, in such a way that if i = 1
(i = 2) then j = 2 (j = 1). It is obvious that if rTPFij = rFPFij = 1 then Se1 = Se2 and
Sp1 = Sp2, and that therefore κ1(c) = κ2(c) with 0 ≤ c ≤ 1. Let

(2.5) c′ =
(1− p)[Se2(1− Sp1)− Se1(1− Sp2)]

p(Se1 − Se2) + (1− Sp1)(Se2 − p)− (1− Sp2)(Se1 − p)
.

In terms of rTPFij and rFPFij the following rules are verified to compare κ1(c) and κ2(c):

a) If rTPFij ≥ 1 and rFPFij < 1, or rTPFij > 1 and rFPFij ≤ 1, then κi(c) > κj(c)
for 0 ≤ c ≤ 1.

b) If rTPFij > 1 and rFPFij > 1, then:

b.1) κi(c) > κj(c) if 0 < c′ < c ≤ 1;

b.2) κi(c) < κj(c) if 0 ≤ c < c′ < 1;

b.3) κi(c) = κj(c) if c = c′, with 0 < c′ < 1;

b.4) κi(c) > κj(c) for 0 ≤ c ≤ 1 if c′ < 0 (or c′ > 1) and rTPFij > rFPFij > 1;

b.5) κi(c) < κj(c) for 0 ≤ c ≤ 1 if c′ < 0 (or c′ > 1) and rFPFij > rTPFij > 1.

c) If rTPFij < 1 and rFPFij < 1, then:

c.1) κi(c) > κj(c) if 0 ≤ c < c′ < 1;

c.2) κi(c) < κj(c) if 0 < c′ < c ≤ 1;

c.3) κi(c) = κj(c) if c = c′, with 0 < c′ < 1;

c.4) κi(c) > κj(c) for 0 ≤ c ≤ 1 if c′ < 0 (or c′ > 1) and rTPFij > rFPFij > 1;

c.5) κi(c) < κj(c) for 0 ≤ c ≤ 1 if c′ < 0 (or c′ > 1) and rFPFij > rTPFij > 1.
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The demonstrations can be seen in the Appendix A of the supplementary material.
Regarding c′, this is obtained solving the equation κ1(c)−κ2(c) = 0 in c. The graphs in Figure 1
show how κ1(c) (on a continuous line) and κ2(c) (on a dotted line) vary depending on the
weighting index c, taking as prevalence p = {5%, 25%, 50%, 75%}, for Se1 = 0.80, Sp1 = 0.95,
Se2 = 0.90 and Sp2 = 0.85. These graphs correspond to the case in which rTPF12 < 1 and
rFPF12 < 1, and therefore κ1(c) > κ2(c) when c < c′, and κ2(c) > κ1(c) when c > c′, and
c′ is equal to 0.95 when p = 5%, 0.75 when p = 25%, 0.50 when p = 50% and 0.25 when
p = 75% . If the clinician considers that a false positive is 1.5 times more important than
a false negative, then c = 0.4 and κ1(c) > κ2(c) in the population with p = {5%, 25%, 50%}
and κ2(c) > κ1(c) in the population with p = 75%. If in the population with p = 75% the
clinician has a greater concern about a false positive than a false negative (0 ≤ c < 0.5), then
κ1(c) > κ2(c) if 0 ≤ c < 0.25 and κ2(c) > κ1(c) if 0.25 < c < 0.5; in the populations with
p = {5%, 25%, 50%}, κ1(c) > κ2(c) when 0 ≤ c < 0.5.

Figure 1: Weighted kappa coefficients with rTPF12 < 1 and rFPF12 < 1.

We will now study the comparison of the weighted kappa coefficients of two BDTs
through CIs subject to a paired design.

3. CONFIDENCE INTERVALS

Let us consider two BDTs which are assessed in relation to the same GS. Let T1 and
T2 be the random binary variables that model the results of each BDT respectively. Let Seh

and Sph be the sensitivity and specificity of the h-th BDT, with h = 1, 2. Table 2 (Observed
frequencies) shows the frequencies that are obtained when both BDTs and the GS are applied
to all the individuals in a random sample sized n. The frequencies sij and rij are the product
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of a multinomial distribution whose probabilities are also shown in Table 2 (Theoretical
probabilities), where pij = P (D = 1, T1 = i, T2 = j) and qij = P (D = 0, T1 = i, T2 = j), with
i, j = 0, 1. Applying the Vacek (1985) [17] conditional dependency model, the probabilities
pij and qij are written as

(3.1) pij = p
[
Sei

1(1− Se1)
1−iSej

2(1− Se2)
1−j + δijε1

]
and

(3.2) qij = q
[
Sp1−i

1 (1− Sp1)
iSp1−j

2 (1− Sp2)
j + δijε0

]
,

where ε1 (ε0) is the covariance or dependence factor between the two BDTs when D = 1
(D = 0), δij = 1 if i = j and δij = −1 if i 6= j, with i, j = 0, 1. It is verified that

0 ≤ ε1 ≤ Min {Se1 (1− Se2) , Se2 (1− Se1)}

and
0 ≤ ε0 ≤ Min {Sp1 (1− Sp2) , Sp2 (1− Sp1)} .

If ε1 = ε0 = 0 then the two BDTs are conditionally independent on the disease. In practice,
the assumption of conditional independence is not realistic, and so ε1 > 0 and/or ε0 > 0.
Let π = (p11, p10, p01, p00, q11, q10, q01, q00)

T be the vector of probabilities of the multinomial

distribution, and it is verified that p =
1∑

i,j=0
pij and q = 1− p =

1∑
i,j=0

qij . The maximum

likelihood estimators of these probabilities are p̂ij = sij/n and q̂ij = rij/n .

The rules given in Section 2 about the effect of rTPF and rFPF on the comparison of
κ1(c) and κ2(c) are theoretical rules that can be applied to the estimators, but they cannot
guarantee that one weighted kappa coefficient will be higher than another. This question
should be studied through hypothesis tests and confidence intervals. The Bloch method to
compare the weighted kappa coefficients of two BDTs subject to a paired design is summarized
below, and different CIs are proposed to compare these parameters subject to the same type
of sample design.

Table 2: Observed frequencies and theoretical probabilities subject to a paired design.

Observed frequencies

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0 Total

D = 1 s11 s10 s01 s00 s

D = 0 r11 r10 r01 r00 r

Total s11 + r11 s10 + r10 s01 + r01 s00 + r00 n

Theoretical probabilities

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0 Total

D = 1 p11 p10 p01 p00 p

D = 0 q11 q10 q01 q00 q

Total p11 + q11 p10 + q10 p01 + q01 p00 + q00 1
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3.1. Hypothesis test

Bloch (1997) [3] studied the comparison of the weighted kappa coefficients of two BDTs
subject to a paired design. In terms of probabilities (3.1) and (3.2), the weighted kappa
coefficient of Test 1 is

κ1 (c) =
(p11 + p10) (q01 + q00)− (p01 + p00) (q10 + q11)

pc
1∑

k=0

(p0k + q0k) + q (1− c)
1∑

k=0

(p1k + q1k)
,

and that of Test 2 is

κ2 (c) =
(p11 + p01) (q10 + q00)− (p10 + p00) (q01 + q11)

pc
1∑

k=0

(pk0 + qk0) + q (1− c)
1∑

k=0

(pk1 + qk1)
.

Substituting in the previous expressions the parameters by their estimators, the estimators
of the weighted kappa coefficients are

(3.3) κ̂1 (c) =
(s11 + s10) (r01 + r00)− (s01 + s00) (r10 + r11)

sc
1∑

k=0

(s0k + r0k) + r (1− c)
1∑

k=0

(s1k + r1k)

and

(3.4) κ̂2 (c) =
(s11 + s01) (r10 + r00)− (s10 + s00) (r01 + r11)

sc
1∑

k=0

(sk0 + rk0) + r (1− c)
1∑

k=0

(sk1 + rk1)
.

Their variances-covariance are obtained applying the delta method (see the Appendix B of the
supplementary material). Subject to paired design, the covariance between the two sensitivi-
ties and between the two specificities are given by Cov(Ŝe1, Ŝe2) = ε1

np and Cov(Ŝp1, Ŝp2) = ε0
nq

respectively (Appendix B of the supplementary material), where ε1 and ε0 are the covariances
between the two BDTs when D = 1 and D = 0 respectively. These covariances also affect
the covariances between the two weighted kappa coefficients, just as can be seen in the ex-
pressions given in the Appendix B of the supplementary material. Finally, the statistic for
the hypothesis test H0 : κ1(c) = κ2(c) vs H0 : κ1(c) 6= κ2(c) is

(3.5) z =
κ̂1 (c)− κ̂2 (c)√

V̂ar [κ̂1 (c)] + V̂ar [κ̂2 (c)]− 2 Ĉov [κ̂1 (c) , κ̂2 (c)]
−−−→
n→∞

N (0, 1) .

3.2. Confidence intervals

When two parameters are compared, the interest is generally focused on studying the
difference or the ratio between them. We then compare the weighted kappa coefficients of two
BDTs through CIs for the difference δ = κ1(c)− κ2(c) and for the ratio θ = κ1(c)

κ2(c) . Through
the CIs: a) the two weighted kappa coefficients are compared, in such a way that if a CI for the
difference (ratio) does not contain the zero (one) value, then we reject the equality between
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the weighted kappa coefficients; and b) we estimate (if the two weighted kappa coefficients
are different) how much bigger one weighted kappa coefficient is than the other. Firstly, three
CIs are proposed for the difference of the two weighted kappa coefficients, and secondly five
CIs are proposed for the ratio.

3.2.1. CIs for the difference

For the difference of the two weighted kappa coefficients we propose the Wald, bootstrap
and Bayesian CIs.

Wald CI. Based on the asymptotic normality of the estimator of δ = κ1(c)− κ2(c), i.e.
δ̂ → N [δ,Var (δ)] when the sample size n is large, the Wald CI for the difference δ is very
easy to obtain inverting the test statistic proposed by Bloch (1997) [3], therefore

(3.6) δ ∈ κ̂1 (c)− κ̂2 (c)± z1−α/2

√
V̂ar [κ̂1 (c)] + V̂ar [κ̂2 (c)]− 2 Ĉov [κ̂1 (c) , κ̂2 (c)],

where z1−α/2 is the 100 (1− α/2 )-th percentile of the standard normal distribution.

Bootstrap CI. The bootstrap CI is calculated generating B random samples with re-
placement from the sample of n individuals. In each sample with replacement, we calcu-
late the estimators of the weighted kappa coefficients and the difference between them, i.e.
κ̂i1B (c), κ̂i2B (c) and δ̂iB = κ̂i1B (c)− κ̂i2B (c), with i = 1, ..., B. Then, based on the B dif-

ferences calculated, the average difference is estimated as ˆ̄δB = 1
B

B∑
i=1

δ̂iB. Assuming that

the bootstrap statistic ˆ̄δB can be transformed to a normal distribution, the bias-corrected
bootstrap CI (Efron and Tibshirani, 1993 [5]) for δ is calculated in the following way. Let
A = #

(
δ̂iB < δ̂

)
be the number of bootstrap estimators δ̂iB that are lower than the maximum

likelihood estimator δ̂ = κ̂1 (c)− κ̂2 (c), and let ẑ0 = Φ−1 (A/B ), where Φ−1 (·) is the inverse
function of the standard normal cumulative distribution function. Let α1 = Φ

(
2ẑ0 − z1−α/2

)
and α2 = Φ

(
2ẑ0 + z1−α/2

)
, then the bias-corrected bootstrap CI is

(
δ̂
(α1)
B , δ̂

(α2)
B

)
, where δ̂

(αj)
B

is the j-th quantile of the distribution of the B bootstrap estimations of δ.

Bayesian CI. The problem is now approached from a Bayesian perspective. The number
of individuals with the disease (s) is the product of a binomial distribution with parameters
n and p, i.e. s → B(n, p). Conditioning on the individuals with the disease, i.e. conditioning
on D = 1, it is verified that

(3.7) s11 + s10 → B (s, Se1) and s11 + s01 → B (s, Se2) .

The number of individuals without the disease (r) is the product of a binomial distribution
with parameters n and q, i.e. r → B(n, q), with q = 1− p. Conditioning on the individuals
without the disease (D = 0), it is verified that

(3.8) r01 + r00 → B (r, Sp1) and r10 + r00 → B (r, Sp2) .

Considering the marginal distributions of each BDT, the estimators of the sensitivity and the
specificity of the Test 1, Ŝe1 = s11+s10

s and Ŝp1 = r01+r00
r , and of the Test 2, Ŝe2 = s11+s01

s
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and Ŝp2 = r10+r00
r , are estimators of binomial proportions. In a similar way, considering

the marginal distribution of the GS, the estimator of the disease prevalence, p̂ = s
n , is also

the estimator of a binomial proportion. Therefore, for these estimators we propose conjugate
beta prior distributions, which are the appropriate distributions for the binomial distributions
involved, i.e.

(3.9) Ŝeh → Beta (αSeh
, βSeh

) , Ŝph → Beta (αSph
, βSph

) and p̂ → Beta (αp, βp) .

Let v = (s11, s10, s01, s, r11, r10, r01, r) be the vector of observed frequencies, with s00 = s−
s11 − s10 − s01, r = n− s and r00 = r − r11 − r10 − r01. Then the posteriori distributions for
the estimators of the sensitivities, of the specificities and of the prevalence are:

(3.10)

Ŝe1 |v → Beta (s11 + s10 + αSe1 , s− s11 − s10 + βSe1) ,

Ŝe2 |v → Beta (s11 + s01 + αSe2 , s− s11 − s01 + βSe2) ,

Ŝp1 |v → Beta (r01 + r00 + αSp1 , r − r01 − r00 + βSp1) ,

Ŝp2 |v → Beta (r10 + r00 + αSp2 , r − r10 − r00 + βSp2) ,

p̂ |v → Beta (s + αp, r + βp) .

Once we have defined all distributions, the posteriori distribution for the weighted kappa
coefficient of each BDT, and for the difference between them, can be approximated applying
the Monte Carlo method. This method consists of generating M values of the posteriori
distributions given in equations (3.10). In the m-th iteration, the values generated for sensi-
tivity Ŝe

(m)
h and specificity Ŝp

(m)
h of each BDT, and for the prevalence p̂(m), are plugged in

the equations

(3.11) κ̂
(m)
h (c) =

p̂(m)q̂(m)
(
Ŝe

(m)
h + Ŝp

(m)
h − 1

)
p̂(m)

(
1− Q̂

(m)
h

)
c + q̂(m)Q̂

(m)
h (1− c)

, h = 1, 2,

where Q̂
(m)
h = p̂(m)Ŝe

(m)
h + q̂(m)

(
1− Ŝp

(m)
h

)
. We then calculate the difference between the

two weighted kappa coefficients in the m-th iteration: δ̂(m) = κ̂
(m)
1 (c)− κ̂

(m)
2 (c). As the

estimator of the average difference of the weighted kappa coefficients, we calculate the average

of the M estimations of difference, i.e. ˆ̄δ = 1
M

M∑
m=1

δ̂(m). Once the Monte Carlo method is

applied, based on the M values δ̂(m) we propose the calculation of a CI based on quantiles,
i.e. the 100(1− α)% CI for δ is

(3.12) (qα/2 , q1−α/2 ),

where qγ is the γ-th quantile of the distribution of the M values δ̂(m).

3.2.2. CIs for the ratio

We propose five CIs for the ratio of the two weighted kappa coefficients: Wald, loga-
rithmic, Fieller, bootstrap and Bayesian CIs.
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Wald CI. Assuming the asymptotic normality of the estimator of θ = κ1(c)/κ2(c) , i.e.
θ̂ → N [θ, Var(θ)] when the sample size n is large, the Wald CI for θ is

(3.13) θ ∈ θ̂ ± z1−α/2

√
V̂ar(θ̂),

where V̂ar(θ̂) is obtained applying the delta method (Agresti, 2002 [1]), and whose expression
is

V̂ar
(
θ̂
)
≈ κ̂2

2 (c) V̂ar [κ̂1 (c)] + κ̂2
1 (c) V̂ar [κ̂2 (c)]− 2κ̂1 (c) κ̂2 (c) Ĉov [κ̂1 (c) , κ̂2 (c)]

κ̂4
2 (c)

.

Expressions of the variances-covariance can be seen in the Appendix B of the supplementary
material.

Logarithmic CI. Assuming the asymptotic normality of the Napierian logarithm of the
θ̂, i.e. ln(θ̂) → N(ln(θ),Var[ln(θ)]) when the sample size n is large, an asymptotic CI for ln(θ)
is

ln(θ) ∈ ln(θ̂)± z1−α/2

√
V̂ar[ln(θ̂)].

Taking exponential, the logarithmic CI for θ is

(3.14) θ ∈ θ̂ × exp
{
±z1−α/2

√
V̂ar[ln(θ̂)]

}
,

where V̂ar[ln(θ̂)] is obtained applying the delta method (see the Appendix B of the supple-
mentary material), i.e.

V̂ar[ln(θ̂)] ≈ V̂ar [κ̂1 (c)]
κ̂2

1 (c)
+

V̂ar [κ̂2 (c)]
κ̂2

2 (c)
− 2 Ĉov [κ̂1 (c) , κ̂2 (c)]

κ̂1 (c) κ̂2 (c)
.

Fieller CI. The Fieller method (1940) [6] is a classic method to obtain a CI for the ratio
of two parameters. This method requires us to assume that the estimators are distributed
according to a normal bivariate distribution, i.e. (κ̂1 (c) , κ̂2 (c))T → N

[
κ (c) ,

∑
κ(c)

]
when

the sample size n is large, where

κ(c) = (κ1(c), κ2(c))
T

and ∑
κ(c)

=
(

σ11 σ12

σ21 σ22

)
=

(
Var [κ1 (c)] Cov [κ1 (c) , κ2 (c)]

Cov [κ1 (c) , κ2 (c)] Var [κ2 (c)]

)
.

Applying the Fieller method it is verified that

κ̂1 (c)− θκ̂2 (c) −−−→
n→∞

N
(
0, σ11 − 2θσ12 + θ2σ22

)
.

The Fieller CI is obtained by searching for the set of values for that satisfy the inequality

[κ̂1 (c)− θκ̂2 (c)]2

σ̂11 − 2θσ̂12 + θ2σ̂22
< z2

1−α/2 .

Finally, the Fieller CI for θ = κ1 (c)/κ2 (c) is

(3.15) θ ∈ ω̂12 ±
√

ω̂2
12 − ω̂11ω̂22

ω̂22
,

where ω̂ij = κ̂i(c)× κ̂j(c)− σ̂ijz
2
1−α/2 with i, j = 1, 2, and verifying that ω̂12 = ω̂21. This

interval is valid when ω̂2
12 > ω̂11ω̂22 and ω̂22 6= 0.
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Bootstrap CI. The bootstrap CI for θ is calculated in a similar way to that of the
bootstrap interval explained in Section 3.1 but considering θ instead of δ. In each sample with
replacement obtained we calculate the estimators of the weighted kappa coefficients and the
ratio between them, i.e. κ̂i1B (c), κ̂i2B (c) and θ̂iB = κ̂i1B (c)/κ̂i2B (c) , with i = 1, ..., B. Then,

based on the B ratios calculated we estimate the average ratio as ˆ̄θB = 1
B

B∑
i=1

θ̂iB. Assuming

that the statistic ˆ̄θB can be transformed to a normal distribution, the bias-corrected bootstrap
CI (Efron and Tibshirani, 1993 [5]) for θ is obtained in a similar way to how the bootstrap
CI for δ is calculated, considering now that A = #

(
θ̂iB < θ̂

)
. Finally, the bias-corrected

bootstrap CI is
(
θ̂
(α1)
B , θ̂

(α2)
B

)
, where θ̂

(αj)
B is the j-th quantile of the distribution of the

B bootstrap estimations of θ.

Bayesian CI. The Bayesian CI for θ is also calculated in a similar way to that of the
bayesian CI presented in Section 3.1. Considering the same distributions given in equations
(3.9) and (3.10), in the m-th iteration of the Monte Carlo method we calculate the ratio

θ̂(m) = κ̂
(m)
1 (c)/κ̂

(m)
2 (c) and as an estimator we calculate ˆ̄θ = 1

M

M∑
m=1

θ̂(m). Finally, based on

the M values θ̂(m) we calculate the CI based on quantiles.

The five previous CIs are for the ratio θ = κ1 (c)/κ2 (c) . If we want to calculate the
CI for the ratio κ2 (c)/κ1 (c) (= θ′ = 1/θ ), then the logarithmic, Fieller, bootstrap and
Bayesian CIs are obtained by calculating the inverse of each boundary of the corresponding
CI for θ = κ1(c)/κ2(c). Nevertheless, the Wald CI for θ′ is obtained from the Wald CI for θ

dividing each boundary by θ̂2, i.e. if (Lθ, Uθ) is the Wald CI for θ = κ1 (c)/κ2 (c) then the
Wald CI for θ′ = κ2 (c)/κ1 (c) is

(
Lθ/θ̂2 , Uθ/θ̂2

)
.

4. SIMULATION EXPERIMENTS

Monte Carlo simulation experiments were carried out to study the coverage probability
(CP) and the average length (AL) of each of the CIs presented in Section 3.2. For this
purpose, we generated N = 10, 000 random samples with multinomial distribution sized n =
{25, 50, 100, 200, 300, 400, 500, 1000}. The random samples were generated setting the values
of the weighted kappa coefficients, following these Steps:

1. For the disease prevalence, we took the values p = {5%, 10%, 25%, 50%}.

2. For the weighting index, we took a small, intermediate and high value:
c = {0.1, 0.5, 0.9}.

3. As values of the weighted kappa coefficients with c = 0 and c = 1, we took the
following values: κh (0) , κh (1) = {0.01, 0.02, ..., 0.98, 0.99}.

4. Next, using all of the values set previously, we calculated the sensitivity and the
specificity of each diagnostic test solving the equations

Seh =
[qκh (0) + p]κh (1)
qκh (0) + pκh (1)

and Sph =
[pκh (1) + q]κh (0)
qκh (0) + pκh (1)

,

considering, quite logically, only those cases in which the Youden index is higher
than 0, i.e. Yh = Seh + Sph − 1 > 0.
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5. The values of κh (c) were calculated applying the equation

κh (c) =
pc (1−Qh) κh (1) + q (1− c) Qhκh (0)

pc (1−Qh) + q (1− c) Qh
,

where Qh = pSeh + q (1− Sph).

6. As values of the weighted kappa coefficients we considered κh(c) = {0.2, 0.4, 0.6, 0.8},
and from these we calculated δ and θ. In order to be able to compare the coverage
probabilities of the CIs for δ and for θ, κ1(c) and κ2(c) must be the same for δ and θ.

Following the idea of Cicchetti (2001) [4], simulations were carried out for values of
κh (c) with different levels of significance: poor (κh (c) < 0.40), fair (0.40 ≤ κh (c) ≤ 0.59),
good (0.60 ≤ κh (c) ≤ 0.74) and excellent (0.75 ≤ κh(c) ≤ 1). As values of the dependence
factors ε1 and ε0 we took intermediate values (50% of the maximum value of each εi) and high
values (80% of the maximum value of each εi), i.e. ε1 = f×Min {Se1 (1− Se2) , Se2 (1− Se1)}
and ε0 = f ×Min {Sp1 (1− Sp2) , Sp2 (1− Sp1)}, where f = {0.50, 0.80}. Probabilities of
the multinomial distributions, equations (3.1) and (3.2), were calculated from values of the
weighted kappa coefficients, and not setting the values of the sensitivities and specificities.
In each scenario considered, for each one of the N random samples we calculated all the CIs
proposed in Section 3.2. For the bayesian CIs we considered as prior distribution a Beta (1, 1)
distribution for all of the estimators (sensitivities, specificities and prevalence). This distri-
bution is a non-informative distribution and is flat for all possible values of each sensitivity,
specificity and prevalence, and has a minimum impact on each posteriori distribution. For the
bootstrap method, for each one of the N random samples we also generated B = 2, 000 sam-
ples with replacement; and for the Bayesian method, for each one of the N random samples
we also generated another M = 10, 000. Moreover, the simulation experiments were designed
in such a way that in all of the random samples generated we can estimate the weighted
kappa coefficients and their variances-covariance, in order to be able to calculate all of the
intervals proposed in Section 3.2. As the confidence level, we took 95%.

The comparison of the asymptotic behaviour of the CIs was made following a similar
procedure to that used by other authors (Price and Bonett, 2004 [14]; Mart́ın-Andrés and
Alvarez-Hernández, 2014a [10], 2014b [11]; Montero-Alonso and Roldán-Nofuentes, 2019 [12]).
This procedure consists of determining if the CI“fails” for a confidence of 95%, which happens
if the CI has a CP ≤ 93%. The selection of the CI with the best asymptotic behaviour (for
the difference and for the ratio) was made following the following Steps: 1) Choose the CIs
with the least failures (CP > 93%), and 2) Choose the CIs which are the most accurate,
i.e. those which have the lowest AL. In the Appendix C of the supplementary material this
method is justified.

4.1. CIs for the difference δ

Tables 3 and 4 show some of the results obtained (CPs and ALs) for δ = {−0.6,

−0.4,−0.2, 0}, indicating in each case the scenarios (κh(c), Seh, Sph and p) in which these
values were obtained, and for intermediate values of the dependence factors ε1 and ε0.
These tables indicate the failures in bold type and it was considered that κ1(c) ≤ κ2(c).
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Table 3: Coverage probabilities (CPs) and average lengths (ALs) of the CIs
for the difference δ of the two weighted kappa coefficients (I).

κ1 (0.1) = 0.2, κ2 (0.1) = 0.8, δ = −0.6
Se1 = 0.484, Sp1 = 0.684, Se2 = 0.852, Sp2 = 0.911

ε1 = 0.0359, ε0 = 0.0306, p = 50%

Wald Bootstrap Bayesian
n

CP AL CP AL CP AL

25 0.335 0.866 0 0.643 0.287 0.923
50 0.737 0.646 0.038 0.589 0.762 0.690
100 0.912 0.470 0.750 0.473 0.937 0.501
200 0.958 0.337 0.952 0.354 0.968 0.364
300 0.972 0.276 0.980 0.295 0.982 0.301
400 0.960 0.239 0.969 0.258 0.971 0.262
500 0.955 0.214 0.972 0.231 0.975 0.236
1000 0.937 0.152 0.963 0.164 0.965 0.168

κ1 (0.9) = 0.2, κ2 (0.9) = 0.8, δ = −0.6
Se1 = 0.28, Sp1 = 0.92, Se2 = 0.82, Sp2 = 0.98

ε1 = 0.0252, ε0 = 0.0092, p = 10%

Wald Bootstrap Bayesian
n

CP AL CP AL CP AL

25 0.114 0.999 0 0.651 0.033 0.987
50 0.566 0.863 0 0.640 0.280 0.838
100 0.760 0.682 0.031 0.614 0.600 0.667
200 0.885 0.503 0.487 0.490 0.815 0.503
300 0.934 0.411 0.733 0.402 0.886 0.418
400 0.935 0.354 0.823 0.347 0.903 0.365
500 0.947 0.314 0.892 0.309 0.937 0.326
1000 0.947 0.220 0.938 0.218 0.947 0.233

κ1 (0.1) = 0.4, κ2 (0.1) = 0.8, δ = −0.4
Se1 = 0.804, Sp1 = 0.887, Se2 = 0.82, Sp2 = 0.98

ε1 = 0.0723, ε0 = 0.0089, p = 10%

Wald Bootstrap Bayesian
n

CP AL CP AL CP AL

25 0.847 0.812 0.473 0.671 0.920 0.899
50 0.856 0.715 0.602 0.608 0.910 0.764
100 0.924 0.534 0.847 0.528 0.953 0.580
200 0.968 0.373 0.955 0.423 0.978 0.426
300 0.957 0.302 0.986 0.367 0.976 0.369
400 0.951 0.261 0.992 0.313 0.978 0.315
500 0.955 0.232 0.994 0.259 0.979 0.262
1000 0.941 0.164 0.994 0.202 0.967 0.204

κ1 (0.5) = 0.4, κ2 (0.5) = 0.8, δ = −0.4
Se1 = 0.76, Sp1 = 0.72, Se2 = 0.85, Sp2 = 0.95

ε1 = 0.0570, ε0 = 0.0180, p = 25%

Wald Bootstrap Bayesian
n

CP AL CP AL CP AL

25 0.894 0.810 0.004 0.613 0.962 0.858
50 0.935 0.580 0.516 0.516 0.961 0.641
100 0.945 0.397 0.824 0.379 0.970 0.458
200 0.946 0.275 0.928 0.271 0.971 0.320
300 0.952 0.221 0.934 0.220 0.974 0.259
400 0.940 0.191 0.938 0.192 0.963 0.224
500 0.948 0.171 0.942 0.170 0.979 0.200
1000 0.945 0.120 0.944 0.119 0.979 0.140
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Table 4: Coverage probabilities (CPs) and average lengths (ALs) of the CIs
for the difference δ of the two weighted kappa coefficients (II).

κ1 (0.9) = 0.6, κ2 (0.9) = 0.8, δ = −0.2
Se1 = 0.62, Sp1 = 0.98, Se2 = 0.911, Sp2 = 0.937

ε1 = 0.0277, ε0 = 0.0094, p = 5%

Wald Bootstrap Bayesian
n

CP AL CP AL CP AL

25 1 1.009 0.757 0.724 1 1.018
50 0.996 0.913 0.829 0.659 0.999 0.916
100 0.993 0.823 0.928 0.580 0.998 0.801
200 0.934 0.642 0.763 0.535 0.986 0.649
300 0.922 0.533 0.745 0.483 0.964 0.551
400 0.941 0.456 0.794 0.434 0.971 0.481
500 0.933 0.404 0.799 0.393 0.962 0.430
1000 0.948 0.282 0.913 0.282 0.967 0.305

κ1 (0.1) = 0.6, κ2 (0.1) = 0.8, δ = −0.2
Se1 = 0.195, Sp1 = 0.995, Se2 = 0.477, Sp2 = 0.987

ε1 = 0.0509, ε0 = 0.0026, p = 25%

Wald Bootstrap Bayesian
n

CP AL CP AL CP AL

25 1 0.928 1.000 0.644 1 0.981
50 0.999 0.787 1.000 0.613 1 0.866
100 0.994 0.604 0.999 0.581 0.999 0.692
200 0.985 0.429 0.997 0.464 0.998 0.505
300 0.981 0.347 0.991 0.393 0.994 0.411
400 0.973 0.297 0.986 0.346 0.992 0.352
500 0.967 0.263 0.984 0.311 0.989 0.311
1000 0.957 0.182 0.988 0.222 0.987 0.213

κ1 (0.5) = 0.4, κ2 (0.5) = 0.4, δ = 0
Se1 = 0.76, Sp1 = 0.72, Se2 = 0.40, Sp2 = 0.943

ε1 = 0.0480, ε0 = 0.0206, p = 25%

Wald Bootstrap Bayesian
n

CP AL CP AL CP AL

25 0.990 0.811 0.988 0.624 0.999 0.826
50 0.978 0.683 0.998 0.598 0.994 0.691
100 0.962 0.499 0.967 0.466 0.985 0.522
200 0.955 0.353 0.963 0.340 0.981 0.381
300 0.944 0.288 0.943 0.280 0.965 0.314
400 0.960 0.250 0.962 0.244 0.980 0.274
500 0.946 0.223 0.945 0.219 0.966 0.246
1000 0.951 0.158 0.951 0.155 0.972 0.175

κ1 (0.9) = 0.4, κ2 (0.9) = 0.4, δ = 0
Se1 = 0.943, Sp1 = 0.229, Se2 = 0.70, Sp2 = 0.70

ε1 = 0.0200, ε0 = 0.0343, p = 50%

Wald Bootstrap Bayesian
n

CP AL CP AL CP AL

25 1 0.936 1 0.735 1 0.950
50 0.997 0.788 0.997 0.717 1 0.786
100 0.992 0.602 0.982 0.578 0.997 0.617
200 0.980 0.435 0.981 0.432 0.990 0.461
300 0.959 0.356 0.965 0.358 0.973 0.382
400 0.951 0.307 0.958 0.311 0.972 0.332
500 0.956 0.274 0.958 0.278 0.969 0.297
1000 0.956 0.193 0.958 0.196 0.970 0.210
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If it is considered that κ1(c) > κ2(c), the CPs are the same and the conclusions too. From
the results, the following conclusions are obtained:

a) Wald CI. For δ = {−0.6,−0.4} the Wald CI fails for a small (n ≤ 50) and a moder-
ate sample size (n = 100), and for a large sample size (n ≥ 200) the Wald CI does
not fail. For δ = {−0.2, 0} the Wald CI does not fail.

b) Bootstrap CI. In very general terms, for δ = {−0.6,−0.4} this CI fails when n ≤
100, and for n ≥ 200 this interval does not fail. For δ = −0.2 this CI fails for almost
all the sample sizes, and for δ = 0 does not fail. When this CI does not fail, the
AL is slightly lower than the Wald CI for δ = {−0.2, 0}, and slightly higher for
δ = {−0.6,−0.4} and n ≥ 200.

c) Bayesian CI. In very general terms, for δ = {−0.6,−0.4} this CI fails when n ≤ 50,
whereas for n ≥ 100 this CI does not fail. For δ = {−0.2, 0} this CI does not fail.
Regarding the AL, in the situations in which it does not fail, the AL is slightly
higher than the ALs of the Wald CI and of the bootstrap CI.

Similar conclusions are obtained when the dependence factors take high values. There-
fore, regarding the effect of the dependence factors εi on the asymptotic behaviour of the CIs,
in general terms they do not have a clear effect on the CPs of the CIs.

4.2. CIs for the ratio θ

Tables 5 and 6 show some of the results obtained for θ = {0.25, 0.50, 0.75, 1}, considering
the same scenarios as in Tables 3 and 4. As in the case of the previous CIs, it was considered
that κ1(c) ≤ κ2(c), and the same conclusions are obtained if κ1(c) > κ2(c). From the results,
the following conclusions are obtained:

a) Wald CI. The Wald CI fails when θ = 0.25 and the sample size is small (n ≤ 50)
or moderate (n = 100), and this CI does not fail for the rest of the values of θ and
sample sizes.

b) Logarithmic CI. This CI fails when θ = {0.25, 0.50} and n ≤ 200− 300 depending
on the value of θ. For θ = 0.75 this CI fails for some large sample sizes, and for
θ = 1 it does not fail. This CI fails more than the Wald CI, and in the situations
in which it does not fail, its AL is slightly higher than that of the Wald CI.

c) Fieller CI. This CI fails when θ = {0.25, 0.5} and n ≤ 50, and it does not fail for
the rest of the values of θ and sample sizes. In general terms, when there are no
failures, its AL is similar to that of the Wald and logarithmic CIs.

d) Bootstrap CI. This CI has numerous failures when θ = {0.25, 0.50, 0.75}, whereas
for θ = 1 it does not fail. When θ = 1, its AL is greater than that of the Wald and
logarithmic CIs, especially when n ≤ 400, and its AL is also slightly lower than
that of the Fieller CI.

e) Bayesian CI. This CI only fails when θ = 0.25 and n ≤ 50. When this CI does not
fail, its AL is, in general terms, somewhat larger than that of the rest of the CIs.

Similar conclusions are obtained when the dependence factors take high values. There-
fore, regarding the effect of the dependence factors on the CIs, in general terms they do not
have a clear effect on the CPs of the CIs.
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Table 5: Coverage probabilities (CPs) and average lengths (ALs) of the CIs
for the ratio θ of the two weighted kappa coefficients (I).

κ1 (0.1) = 0.2, κ2 (0.1) = 0.8, θ = 0.25
Se1 = 0.484, Sp1 = 0.684, Se2 = 0.852, Sp2 = 0.911

ε1 = 0.0359, ε0 = 0.0306, p = 50%

Wald Logarit. Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL

25 0.823 1.351 0.088 1.517 0.700 1.950 0.368 2.260 0.884 2.704
50 0.837 0.803 0.532 0.886 0.828 0.851 0.634 0.882 0.905 0.965
100 0.931 0.551 0.832 0.608 0.942 0.565 0.889 0.569 0.954 0.585
200 0.957 0.389 0.920 0.422 0.962 0.392 0.952 0.388 0.970 0.402
300 0.970 0.318 0.933 0.340 0.974 0.319 0.969 0.316 0.984 0.328
400 0.960 0.277 0.936 0.293 0.967 0.278 0.962 0.276 0.976 0.285
500 0.957 0.248 0.944 0.260 0.967 0.248 0.969 0.247 0.975 0.256
1000 0.945 0.175 0.963 0.179 0.944 0.176 0.943 0.175 0.953 0.182

κ1 (0.9) = 0.2, κ2 (0.9) = 0.8, θ = 0.25
Se1 = 0.28, Sp1 = 0.92, Se2 = 0.82, Sp2 = 0.98

ε1 = 0.0252, ε0 = 0.0092, p = 10%

Wald Logarit. Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL

25 0.885 1.760 0.002 2.029 0.566 3.567 0.011 3.175 0.866 3.851
50 0.916 1.249 0.259 1.415 0.765 1.660 0.040 1.722 0.767 1.816
100 0.936 0.846 0.636 0.947 0.884 0.939 0.363 1.048 0.843 0.986
200 0.958 0.560 0.835 0.617 0.945 0.581 0.807 0.607 0.932 0.594
300 0.967 0.440 0.900 0.479 0.960 0.450 0.902 0.456 0.948 0.459
400 0.965 0.373 0.931 0.402 0.959 0.379 0.932 0.380 0.943 0.387
500 0.971 0.327 0.936 0.349 0.971 0.331 0.942 0.330 0.960 0.339
1000 0.950 0.227 0.941 0.235 0.950 0.228 0.949 0.227 0.955 0.234

κ1 (0.1) = 0.4, κ2 (0.1) = 0.8, θ = 0.5
Se1 = 0.804, Sp1 = 0.887, Se2 = 0.82, Sp2 = 0.98

ε1 = 0.0723, ε0 = 0.0089, p = 10%

Wald Logarit. Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL

25 0.918 1.141 0.835 1.259 0.893 2.824 0.543 1.157 0.906 2.310
50 0.959 1.021 0.859 1.119 0.939 1.518 0.897 1.140 0.978 1.710
100 0.961 0.619 0.922 0.655 0.949 0.693 0.880 0.670 0.975 0.828
200 0.962 0.395 0.947 0.406 0.959 0.409 0.914 0.400 0.977 0.470
300 0.955 0.315 0.951 0.320 0.956 0.321 0.928 0.312 0.976 0.363
400 0.953 0.271 0.949 0.274 0.952 0.274 0.935 0.265 0.975 0.308
500 0.951 0.240 0.950 0.242 0.953 0.242 0.932 0.234 0.971 0.271
1000 0.939 0.169 0.943 0.170 0.939 0.170 0.934 0.163 0.963 0.189

κ1 (0.5) = 0.4, κ2 (0.5) = 0.8, θ = 0.5
Se1 = 0.76, Sp1 = 0.72, Se2 = 0.85, Sp2 = 0.95

ε1 = 0.0570, ε0 = 0.0180, p = 25%

Wald Logarit. Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL

25 0.997 1.328 0.918 1.493 0.966 2.222 0.901 2.463 0.999 2.825
50 0.983 0.780 0.924 0.848 0.966 0.855 0.925 0.894 0.995 1.057
100 0.977 0.488 0.957 0.510 0.969 0.501 0.952 0.498 0.990 0.586
200 0.958 0.323 0.956 0.329 0.957 0.327 0.940 0.320 0.981 0.372
300 0.958 0.257 0.954 0.260 0.957 0.259 0.945 0.252 0.978 0.292
400 0.948 0.221 0.947 0.222 0.948 0.221 0.936 0.215 0.966 0.249
500 0.954 0.196 0.953 0.197 0.954 0.196 0.943 0.190 0.972 0.220
1000 0.944 0.137 0.951 0.137 0.945 0.137 0.933 0.132 0.968 0.152
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Table 6: Coverage probabilities (CPs) and average lengths (ALs) of the CIs
for the ratio θ of the two weighted kappa coefficients (II).

κ1 (0.9) = 0.6, κ2 (0.9) = 0.8, θ = 0.75
Se1 = 0.62, Sp1 = 0.98, Se2 = 0.911, Sp2 = 0.936

ε1 = 0.0277, ε0 = 0.0094, p = 5%

Wald Logarit. Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL

25 1 1.514 1 1.679 1 2.689 0.999 2.578 1 3.538
50 0.999 1.409 0.994 1.487 0.993 1.972 0.979 2.311 1 2.392
100 0.999 1.323 0.993 1.451 0.993 1.899 0.975 1.425 1 1.980
200 0.971 0.909 0.933 0.965 0.940 1.037 0.965 0.998 0.991 1.173
300 0.946 0.709 0.916 0.738 0.939 0.767 0.958 0.784 0.973 0.854
400 0.955 0.583 0.933 0.599 0.944 0.601 0.959 0.620 0.977 0.679
500 0.943 0.506 0.925 0.516 0.931 0.516 0.961 0.551 0.969 0.579
1000 0.947 0.341 0.945 0.344 0.943 0.344 0.969 0.375 0.969 0.377

κ1 (0.1) = 0.6, κ2 (0.1) = 0.8, θ = 0.75
Se1 = 0.195, Sp1 = 0.995, Se2 = 0.477, Sp2 = 0.987

ε1 = 0.0509, ε0 = 0.0026, p = 25%

Wald Logarit. Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL

25 1 1.687 1 1.924 1 4.747 1 2.676 1 4.561
50 1 1.266 1 1.400 1 2.837 1 1.609 1 2.308
100 0.999 0.865 0.997 0.923 0.997 0.946 0.998 0.945 1 1.188
200 0.992 0.565 0.990 0.583 0.986 0.579 0.975 0.618 0.997 0.700
300 0.971 0.444 0.990 0.452 0.976 0.449 0.958 0.493 0.992 0.536
400 0.971 0.375 0.985 0.380 0.972 0.378 0.960 0.420 0.989 0.448
500 0.966 0.328 0.976 0.331 0.971 0.331 0.964 0.371 0.987 0.390
1000 0.955 0.223 0.965 0.224 0.960 0.224 0.976 0.255 0.986 0.258

κ1 (0.5) = 0.4, κ2 (0.5) = 0.4, θ = 1
Se1 = 0.76, Sp1 = 0.72, Se2 = 0.40, Sp2 = 0.943

ε1 = 0.0480, ε0 = 0.0206, p = 25%

Wald Logarit. Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL

25 0.979 1.627 0.999 1.835 0.990 5.762 0.977 2.244 0.999 3.650
50 0.953 1.525 0.991 1.708 0.977 3.028 0.981 2.173 0.995 2.728
100 0.941 1.350 0.983 1.467 0.962 2.342 0.956 1.703 0.984 2.051
200 0.953 0.972 0.971 1.014 0.955 1.212 0.960 1.091 0.979 1.251
300 0.950 0.770 0.953 0.790 0.944 0.851 0.941 0.825 0.965 0.931
400 0.955 0.658 0.969 0.670 0.960 0.705 0.959 0.694 0.980 0.776
500 0.951 0.582 0.954 0.590 0.947 0.612 0.943 0.607 0.965 0.678
1000 0.952 0.403 0.955 0.406 0.951 0.413 0.950 0.410 0.972 0.458

κ1 (0.9) = 0.4, κ2 (0.9) = 0.4, θ = 1
Se1 = 0.943, Sp1 = 0.229, Se2 = 0.70, Sp2 = 0.70

ε1 = 0.0200, ε0 = 0.0343, p = 50%

Wald Logarit. Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL

25 1 1.857 1 2.233 1 4.483 1 2.595 1 4.216
50 0.999 1.762 0.999 2.134 0.997 3.455 0.979 1.943 1 3.294
100 0.995 1.685 0.997 1.876 0.992 2.338 0.974 1.770 0.997 2.396
200 0.983 1.195 0.988 1.278 0.980 1.345 0.980 1.268 0.990 1.445
300 0.964 0.943 0.982 0.986 0.959 1.003 0.965 0.989 0.971 1.093
400 0.957 0.803 0.976 0.828 0.951 0.838 0.957 0.839 0.971 0.913
500 0.954 0.709 0.970 0.726 0.956 0.733 0.960 0.739 0.970 0.801
1000 0.956 0.491 0.964 0.496 0.956 0.499 0.959 0.505 0.969 0.545
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4.3. CIs with a small sample

The results of the simulation experiments have shown that the CIs may fail when the
sample size is small (n = 25− 50). A classic solution to this problem is adding the correction
0.5 to each observed frequency, as is frequent in the analysis of 2× 2 tables. To assess this
procedure, the same simulation experiments as before were carried out for n = {25, 50, 100}
adding the value 0.5 to all of the observed frequencies sij and rij . Table 7 shows some of the
results obtained for the CIs for the ratio θ. The results for the difference δ are not shown
since, although this method improves the CP of the CIs, these intervals continue to fail when
they failed without adding the correction. The results for n = 100 are not shown either,
since these are very similar to those obtained without adding the correction. As conclusions,
in general terms, it holds that: a) the Wald CI for θ does not fail, its CP is 100% or very
close to 100%, and its AL is lower than the rest of the intervals when these do not fail;
b) the logarithmic, Fieller, Bootstrap and Bayesian CIs may continue to fail when θ = 0.25.
Consequently, when the sample size is small one must use the Wald CI for θ adding the value
0.5 to all of the observed frequencies.

Table 7: Coverage probabilities (CPs) and average lengths (ALs) of the CIs
for θ with small samples.

κ1 (0.9) = 0.2, κ2 (0.9) = 0.8, θ = 0.25
Se1 = 0.28, Sp1 = 0.92, Se2 = 0.82, Sp2 = 0.98

ε1 = 0.0252, ε0 = 0.00092, p = 10%

Wald Logarit. Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL

25 0.999 1.808 0.008 1.960 0.653 3.014 0.145 2.150 0.783 3.531
50 0.940 1.287 0.262 1.464 0.768 1.710 0.556 1.440 0.768 1.813

κ1 (0.5) = 0.4, κ2 (0.5) = 0.8, θ = 0.5
Se1 = 0.76, Sp1 = 0.72, Se2 = 0.85, Sp2 = 0.95

ε1 = 0.0570, ε0 = 0.0180, p = 25%

Wald Logarit. Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL

25 1 1.458 0.961 1.659 0.984 2.332 0.940 1.897 1 3.118
50 0.992 0.836 0.960 0.913 0.982 0.932 0.962 0.869 0.997 1.141

κ1 (0.9) = 0.6, κ2 (0.9) = 0.8, θ = 0.75
Se1 = 0.62, Sp1 = 0.98, Se2 = 0.911, Sp2 = 0.936

ε1 = 0.0277, ε0 = 0.0094, p = 5%

Wald Logarit. Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL

25 1 1.812 1 2.073 1 3.554 1 2.425 1 4.053
50 1 1.593 1 1.789 1 2.564 0.999 2.067 1 2.682

κ1 (0.9) = 0.4, κ2 (0.9) = 0.4, θ = 1
Se1 = 0.943, Sp1 = 0.229, Se2 = 0.70, Sp2 = 0.70

ε1 = 0.0200, ε0 = 0.0343, p = 50%

Wald Logarit. Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL

25 1 1.896 1 2.140 1 4.727 1 2.571 1 4.234
50 1 1.798 1 1.991 1 3.211 1 2.418 1 3.242



328 J.A. Roldán-Nofuentes and S.B. Sidaty-Regad

4.4. Rules of application

The CIs for the difference and for the ratio of the two weighted kappa coefficients
compare both parameters, and therefore we can decide which method is preferable to make
this comparison. Once we have studied the coverage probabilities and the average lengths of
the CIs for δ = κ1(c)− κ2(c) and for θ = κ1(c)/κ2(c) , from the results obtained some general
rules of application can be given for the CIs in terms of sample size. These rules are based
on the failures and on the coverage probabilities, since the average lengths of the CIs for the
difference and for the ratio cannot be compared as they are different intervals. In terms of
sample size n:

a) If n is small (n < 100), use the Wald CI for θ increasing the frequencies sij and rij

in 0.5.

b) If 100 ≤ n ≤ 400, use the Wald CI for the ratio θ without adding 0.5.

c) If n ≥ 500, use any of the CIs (for the difference or for the ratio) proposed in
Section 3.2 without adding 0.5.

In general terms, if the sample size is small, the Wald CI calculated adding 0.5 to each
observed frequency does not fail. In this situation, its AL increases in relation to the Wald CI
without adding 0.5, but its CP also increases meaning that the interval does not fail. When
100 ≤ n ≤ 400 the CI that behaves best (fewest failures and its CP shows better fluctuations
around 95%) is the Wald CI for the ratio θ. When the sample size is very large (n ≥ 500),
there is no important difference between the asymptotic behaviour of the proposed CIs, and
therefore any one of them can be used. When the sample size is small, (n ≤ 50) the CIs may
fail, especially when the difference between the two weighted kappa coefficients is not small.

5. SAMPLE SIZE

The determination of the sample size to compare parameters of two BDTs is a topic
of interest. We then propose a method to calculate the sample size to estimate the ratio θ

between two weighted kappa coefficients with a precision φ and a confidence 100(1− α)%.
This method is based on the Wald CI for θ, which is, in general terms, the interval with the
best asymptotic behaviour. Furthermore, this method requires a pilot sample (or another
previous study) from which we calculate estimations of all of the parameters (Seh, Sph, ε1, ε0
and p, and consequently of κh(c)) and the Wald CI for θ. If the pilot sample size is not small
and the Wald CI for θ calculated from this sample contains the value 1, it makes no sense
to determine the sample size necessary to estimate how much bigger one weighted kappa
coefficient is than the other one, as the equality between both is not rejected. Nevertheless, if
the pilot sample is small and the Wald CI (adding 0.5) contains the value 1, it may be useful
to calculate the sample size to estimate the ratio θ. In this situation, the Wald CI (adding
0.5) will be very wide (as the pilot sample is small) and may contain the value 1 even if κ1(c)
and κ2(c) are different. Let us considerer that κ2(c) ≥ κ1(c) and therefore θ ≤ 1, and let φ

be the precision set by the researcher. As it has been assumed that θ ≤ 1, then φ must be
lower than one, and if we want to have a high level of precision then φ must be a small value.
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On the other and, based on the asymptotic normality of θ̂ = κ̂1(c)/κ̂2(c) it is verified that

θ̂ ∈ θ± z1−α/2

√
Var(θ̂), i.e. the probability of obtaining an estimator θ̂ is in this interval with

a probability 100(1− α)%. Setting a precision φ, we can then calculate the sample size n

from

(5.1) φ = z1−α/2

√
Var(θ̂),

where

Var
(
θ̂
)
≈ κ2

2 (c) Var [κ̂1 (c)] + κ2
1 (c) Var [κ̂2 (c)]− 2κ1 (c) κ2 (c) Cov [κ̂1 (c) , κ̂2 (c)]

κ4
2 (c)

.

In the Appendix B of the supplementary material, we can see how this expression is obtained.
This variance depends on the weighted kappa coefficients and on their respective variances and
covariance. Furthermore, the variances Var[κ̂h(c)] and the covariance Cov[κ̂1(c), κ̂2(c)] (their
expressions can be seen in the Appendix B of the supplementary material) depend, among
other parameters, on the sample size n. Consequently, it is possible to use this relation to
calculate the sample size to estimate the ratio θ. Substituting in the equation of Var(θ̂) the
variances and the covariance with its respective expressions, substituting the parameters with
their estimators and clearing n in equation (5.1), it is obtained that

(5.2)

n =
z2
1−α/2 θ̂2

φ2p̂3q̂3


2∑

h=1

 â2
h1Ŝeh

(
1− Ŝeh

)
q̂ + â2

h2Ŝph

(
1− Ŝph

)
p̂ + â2

h3p̂
2q̂2

Ŷ 2
h


− 2

Ŷ1Ŷ2

[
â11â21ε̂1q̂ + â12â22ε̂0p̂ + â13â23p̂

2q̂2
] ,

where âh1 = p̂q̂ − p̂ (q̂ − c) κ̂h (c), âh2 = âh1 + (q̂ − c) κ̂h (c) and âh3 = (1− 2p̂) Ŷh −[
(1− c− 2p̂) Ŷh + Ŝph + c− 1

]
κ̂h(c), with h = 1, 2. This method requires us to know Ŝeh,

Ŝph, ε̂1, ε̂0 and p̂ (and therefore κ̂h(c)), for example obtained from a pilot sample or from
previous studies. The procedure to calculate the sample size consists of the following Steps:

1. Take pilot samples sized n′ (in general terms, n′ ≥ 100 to be able to calculate the
Wald CI without adding 0.5 or use the Wald CI adding 0.5 to the frequencies if
n is small), and from this sample calculate Ŝeh, Ŝph, ε̂1, ε̂0, p̂ and κ̂h(c), and a
then calculate the Wald CI for θ. If the Wald CI calculated has a precision φ,
i.e. if Upper limit−Lower limit

2 ≤ φ, then with the pilot sample the precision has been
reached and the process has finished (θ has been estimated with a precision φ to a
confidence 100(1− α)%); if this is not the case, go to the following Step.

2. From the estimations obtained in Step 1, calculate the new sample size n applying
equation (5.2).

3. Take the sample of n individuals (n− n′ is added to the pilot sample), and from
the new sample we calculate Ŝeh, Ŝph, ε̂1, ε̂0, p̂, κ̂h(c) and the Wald CI for θ.
If the Wald CI calculated has a precision φ, then with the new sample the precision
has been reached and the process has finished. If the Wald CI does not have the
required precision, then this new sample is considered as a pilot sample and the
process starts again at Step 1. In this situation, the new sample has a size n calcu-
lated in Step 2, i.e. we add n− n′ individuals to the initial pilot sample (sized n′).
Therefore, the process starts again at Step 1 considering the new sample as the pilot
sample and from this samplewe calculate the values of the estimators and theWaldCI.
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The method to calculate the sample size is an iterative method which depends on
the pilot sample and which does not guarantee that θ will be estimated with the required
precision. Each time that the previous process (Steps 1–3) is repeated, we calculate (starting
from an initial sample) the new sample size to estimate θ, i.e. we calculate the number of
individuals that must be added to the initial sample to obtain a new sample. Therefore, this
process adjusts the size of the initial pilot sample, adding (in each iteration of the process:
Steps 1–3) the number of individuals necessary to obtain the right sample size to estimate
θ with the precision required. The programme in R described in the Section 6 allows us to
calculate the sample size to estimate θ.

If the Wald CI for θ is higher than one, the BDTs can always be permuted and θ will
then be lower than one. Another alternative consists of setting a value for a precision φ′, in
a similar way to the previous situation when θ ≤ 1, and then apply the equation (5.2) with
φ = θ̂2φ′, where θ̂ = κ̂1(c)/κ̂2(c) ≤ 1. This is due to the fact that if (Lθ, Uθ) is the Wald CI
for θ = κ1(c)/κ2(c) ≤ 1 then the Wald CI for θ′ = 1/θ = κ2(c)/κ1(c) is

(
Lθ/θ̂2 , Uθ/θ̂2

)
.

It is easy to check that the calculated value of the sample size n is the same both if θ ≤ 1
(with precision φ) and if θ > 1 (with precision φ = θ̂2φ′).

Simulation experiments were carried out to study the effect that the pilot sample has
on the calculation of the sample size. These experiments consisted of generating N = 10, 000
random samples of multinomial distributions considering the same scenarios as those given
in Tables 5 and 6. The equation of the sample size depends on the values of the estimators,
which in turn depend on the pilot sample. Consequently, the pilot sample may have an effect
on the sample size calculated. To study this effect, the simulation experiments consisted of
the following Steps:

1. Calculate the sample size n from the values of the parameters set in the different
scenarios considered. Therefore, equation (5.2) was applied using the values of the
parameters (instead of their estimators).

2. Generate the N multinomial random samples sized n calculating the probabilities
from equations (3.1) and (3.2), using the values of the previous parameters, and as εi

we considered low values (25%), intermediate values (50%) and high values (80%).
From each one of the N random samples, Ŝeh, Ŝph, ε̂1, ε̂0 and p̂ (and therefore
κ̂h(c)) were calculated, and then we calculated the sample size n′i applying equation
(5.2).

3. For each scenario, the average sample size and the relative bias were calculated, i.e.
n̄ =

∑
n′i/N and RB (n′) = (n̄− n)/n .

Table 8 shows some of the results obtained. The relative biases are very small, which
indicates that the equation of the calculation of the sample size provides robust values, and
therefore the choice of the pilot sample does not have an important effect on the calculation
of the sample size.
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Table 8: Effect of the pilot sample on the sample size.

κ1 (0.1) = 0.2 κ2 (0.1) = 0.8 θ = 0.25
Se1 = 0.484 Sp1 = 0.684 Se2 = 0.852 Sp2 = 0.911 p = 50%

ε1 = 0.0179 ε0 = 0.0153 ε1 = 0.0359 ε0 = 0.0306 ε1 = 0.0574 ε0 = 0.0489

φ = 0.05 φ = 0.10 φ = 0.05 φ = 0.10 φ = 0.05 φ = 0.10

Sample size 3170 793 3066 767 2942 736

Average sample size 3173 795 3068 769 2946 738

Relative bias (%) 0.095 0.252 0.065 0.261 0.136 0.272

κ1 (0.9) = 0.2 κ2 (0.9) = 0.8 θ = 0.25
Se1 = 0.28 Sp1 = 0.92 Se2 = 0.82 Sp2 = 0.98 p = 10%

ε1 = 0.0126 ε0 = 0.0046 ε1 = 0.0252 ε0 = 0.0092 ε1 = 0.0403 ε0 = 0.0147

φ = 0.05 φ = 0.10 φ = 0.05 φ = 0.10 φ = 0.05 φ = 0.10

Sample size 5104 1276 4947 1237 4758 1190

Average sample size 5113 1287 4948 1246 4759 1218

Relative bias (%) 0.18 0.83 0.02 0.73 0.02 2.35

6. PROGRAMME citwkc

A programme has been written in R and called “citwkc” (Confidence Intervals for Two
Weighted Kappa Coefficients) which allows us to calculate the CIs proposed in Section 3 and
the sample size proposed in Section 5. The programme runs with the command

citwkc
(
s11, s10, s01, s00, r11, r10, r01, r00, cindex , preci = 0, conf = 0.95

)
,

where cindex is the weighting index, preci is the precision that is needed to calculate the
sample size and conf is the level of confidence (by default 95%). By default preci = 0, and
the programme does not calculate the sample size, and only calculates it when preci > 0. In
this situation (preci > 0), the programme checks if it is necessary to calculate the sample size.
The programme checks that the values of the frequencies and of the parameters are viable
(e.g. that there are no negative values, frequencies with decimals, etc,), and also checks that it
is possible to estimate all of the parameters and their variances-covariances. For the intervals
obtained applying the bootstrap method, 2,000 samples with replacement are generated, and
for the Bayesian intervals 10,000 random samples are generated. The results obtained on
running the programme are saved in file called “Results_citwkc.txt” in the same folders
from where the programme is run. The program is available for free at URL:

https://www.ugr.es/local/bioest/software/cmd.php?seccion=mdb

https://www.ugr.es/local/bioest/software/cmd.php?seccion=mdb
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7. APPLICATION

The results obtained have been applied to the study by Batwala et al. (2010) [2] on
the diagnosis of malaria. Batwala et al. have applied the Expert Microscopy Test and the
HRP2-Based Rapid Diagnostic Test to a sample of 300 individuals using the PCR as the GS.
The observed frequencies of this study are shown in Table 9, where the T1 models the result of
the Expert Microscopy Test, T2 models the result of the HRP2-Based Rapid Diagnostic Test
and D models the result of the PCR. In this example, Ŝe1 = 46.07%, Ŝp1 = 97.16%, Ŝe2 =
91.01% and Ŝp2 = 86.26%, and therefore ̂rTPF12 = 0.506 and ̂rFPF12 = 0.207. Applying
the equation (2.5) it holds that c′ = 0.1902. As ̂rTPF12 < 1 and ̂rFPF12 < 1, applying the
rule c) given in Section 2, it holds that κ̂1 (c) > κ̂2 (c) for 0 ≤ c < 0.1902 and that κ̂1 (c) <

κ̂2 (c) for 0.1902 < c ≤ 1. Applying the rules given in Section 4, as n = 300 < 400 then it
is necessary to use the Wald CI for the ratio θ. Table 10 shows the values of κ̂h (c), δ̂,
θ̂ and the 95% CIs for θ when c = {0.1, 0.1902, 0.2, ..., 0.8, 0.9}. The results were obtained
running the programme“citwkc”with the command“citwkc (41, 0, 40, 8, 5, 1, 24, 181, c)”taking
c = {0.1, 0.1902, 0.2, ..., 0.8, 0.9}.

Table 9: Observed frequencies of the study of Batwala et al..

Frequencies

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0 Total

D = 1 41 0 40 8 89

D = 0 5 1 24 181 211

Total 46 1 64 189 300

Table 10: CIs for the ratio θ = κ1 (c)/κ2 (c).

c κ̂1 (c) κ̂2 (c) δ̂ Wald Logarithmic Fieller Bootstrap Bayesian

0.1 0.726 0.642 1.131 0.925 , 1.335 0.943 , 1.355 0.940 , 1.357 0.926 , 1.344 0.883 , 1.393

0.1902 0.659 0.659 1 0.811 , 1.189 0.828 , 1.208 0.823 , 1.206 0.817 , 1.204 0.776 , 1.234

0.2 0.653 0.661 0.988 0.800 , 1.174 0.817 , 1.194 0.812 , 1.192 0.808 , 1.192 0.766 , 1.219

0.3 0.593 0.681 0.871 0.695 , 1.046 0.711 , 1.065 0.704 , 1.059 0.701 , 1.065 0.673 , 1.083

0.4 0.543 0.701 0.775 0.609 , 0.939 0.625 , 0.958 0.615 , 0.948 0.615 , 0.952 0.593 , 0.971

0.5 0.501 0.723 0.693 0.537 , 0.847 0.553 , 0.866 0.541 , 0.854 0.541 , 0.857 0.525 , 0.877

0.6 0.464 0.747 0.621 0.476 , 0.768 0.492 , 0.786 0.479 , 0.772 0.481 , 0.776 0.468 , 0.799

0.7 0.433 0.772 0.561 0.425 , 0.698 0.440 , 0.716 0.426 , 0.701 0.430 , 0.707 0.418 , 0.727

0.8 0.406 0.799 0.508 0.380 , 0.637 0.395 , 0.654 0.381 , 0.639 0.384 , 0.644 0.375 , 0.667

0.9 0.382 0.827 0.462 0.341, 0.582 0.356 , 0.599 0.342 , 0.584 0.347 , 0.594 0.339 , 0.611

For c = {0.1, 0.1902, 0.2, 0.3}, the Wald CI for θ contains the value 1, and therefore
in these cases we do not reject the equality of the weighted kappa coefficients of the Expert
Microscopy Test and of the HRP2-Based Rapid Diagnostic Test. Therefore, when the clinician
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considers that a false positive is 9, 4 or 2.33 times more important than a false negative, we
do not reject the equality between the weighted kappa coefficients of the Expert Microscopy
Test and of the HRP2-Based Rapid Diagnostic Test in the population studied. The rest of
the intervals for θ also contain the value 1.

For c = {0.4, 0.5, ..., 0.8, 0.9}, the Wald CI θ does not contain the value 1, and therefore
in all of these cases we reject the equality of the weighted kappa coefficients of the Expert
Microscopy Test and of the HRP2-Based Rapid Diagnostic Test in the population studied.
Therefore, the clinician considers that 0.5 < c ≤ 0.9, i.e. a false negative is more important
than a false positive (as happens in the situation in which the diagnostic tests are applied as
screening tests), the weighted kappa coefficient of the HRP2-Based Rapid Diagnostic Test is
significantly greater than the weighted kappa coefficient of the Expert Microscopy Test in the
population studied. The same conclusion is obtained when the clinician considers that a false
positive and a false negative have the same importance (c = 0.5). If the clinician considers
that a false positive is 1.5 times greater than a false negative (i.e. c = 0.4), then the same
conclusion is obtained. The rest of the CIs for θ do not contain the value 1. For example,
considering c = 0.9, it is concluded that in the population being studied the beyond-chance
agreement between the HRP2-Based Rapid Diagnostic Test and the PCR is, with a confidence
of 95%, a value between 1.72 (1/0.582 ≈ 1.72) and 2.94 (1/0.341 ≈ 2.94) times greater than
the beyond-chance agreement between the Expert Microscopy Test and the PCR.

In order to illustrate the method to calculate the sample size presented in Section 5
we will consider that c = 0.9, and therefore that the two BDTs are applied as a screen-
ing test. In this situation, the 95% Wald CI for θ is (0.341 , 0.582), and the precision is
0.1205. As an example, we will consider that the clinician wishes to estimate the ratio
between the two weighted kappa coefficients with a precision φ = 0.10. As with the sam-
ple of 300 individuals the desired precision (φ = 0.10 < 0.1205) was not achieved, then us-
ing this sample as a pilot sample and running the programme “citwkc” with the command
“citwkc (41, 0, 40, 8, 5, 1, 24, 181, 0.9, 0.1)” it holds that n = 435. Therefore, to the sample pi-
lot of 300 individuals we must add 135 more. Once the new sample has been taken, it is
necessary to check that the precision φ = 0.10 is verified.

8. DISCUSSION

The weighted kappa coefficient of a BDT is a measure of the beyond-chance agreement
between the BDT and the GS, and depends on the sensitivity and specificity of the BDT,
on the disease prevalence and on the weighting index. The weighted kappa coefficient is a
parameter that is used to assess and compare the performance of BDTs. In this article,
we have studied the comparison of the weighted kappa coefficients of two BDTs through
confidence intervals when the sample design is paired. Three intervals have been studied for
the difference of the two weighted kappa coefficients and five more intervals for the ratio of
the two parameters. All the intervals studied are asymptotic and simulation experiments
have been carried out to study their coverage probabilities and average lengths subject to
different scenarios and for different sample sizes. Based on the results of the simulation
experiments, some general rules of application have been given. When the sample size is
moderate (n = 100) or large (n = 200− 400) it is preferable to compare the two weighted
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kappa coefficients through an interval for the ratio, and when the sample size is very large
(n ≥ 500) the two weighted kappa coefficients can be compared through the difference or the
ratio. When the sample size is small (n ≤ 50), the interval with the best behaviour is the
Wald CI for the ratio θ adding 0.5 to all of the observed frequencies. Adding 0.5 to all of
the frequencies does not improve the behaviour of the intervals for the difference δ, since
these continue to fail when they failed without adding the value 0.5. This question may be
due to the fact that the ratio θ̂ converges more quickly to the normal distribution than the
difference δ̂. In the simulation experiments, the asymptotic behaviour of the Bayesian CIs has
been studied using the Beta(1, 1) distribution as prior distribution for all of the parameters.
The choice of the values of the hyperparameters of the Beta distribution will depend on the
previous information that the researcher has. If the researcher has some information and
wants this information to have some weight in the data, then it is possible to use higher
values of α and β, i.e. considering a Beta(α, β) distribution with α, β > 1. The increase in α

and β adds information and decreases the variance and, therefore, there is less uncertainty
about the parameter. If the researcher does not want this information to have a great weight
in the posteriori distribution, then the researcher chooses moderate values of α and β which
are consistent with the information available, i.e. the average should be compatible with
that information. To assess the effect that the Beta distribution has on the asymptotic
behaviour of the Bayesian interval, we have carried out simulations (in a similar way to
those carried out in Section 4) using as prior the distributions Beta(5, 5) and Beta(25, 25)
for the Bayesian interval for θ = κ1(c)

κ2(c) . These two distributions have the same average as the
Beta(1, 1) distribution but different variances. The first distribution has a moderate weight
in the subsequent distribution and the second has an important weight. In general terms,
the results obtained with the distribution Beta(5, 5) are very similar to those obtained with
the Beta(1, 1) distribution. Regarding the Beta(25, 25) distribution, there is no important
difference in relation to the CPs obtained with the Beta(1, 1), although for θ = {0.25, 0.50}
the AL is slightly lower with the Beta(25, 25), and when θ = {0.75, 1} the AL is slightly higher
with the Beta(25, 25). In general terms, when the Bayesian interval fails using the Beta(1, 1)
distribution then it also fails using the Beta(5, 5) and the Beta(25, 25). Furthermore, the
Bayesian CI for θ = κ1(c)/κ2(c) with the Beta(5, 5) and Beta(25, 25), respectively, does not
display a better CP than the Wald CI (when it does not fail), and therefore the Bayesian
CI does not improve the asymptotic behaviour of the Wald CI. The application of the CIs
requires the marginal frequencies s and r to be higher than zero. If the marginal frequency
s (or r) is equal to zero, then it is not possible to estimate the weighted kappa coefficient
of each BDT. Moreover, if a marginal frequency sij + rij is equal to zero, then it is possible
to calculate all of the CIs proposed; but not if two of these marginal frequencies are equal
to zero. In this last situation, one of the weighted kappa coefficients (or both) is equal to
zero, and the variance and the covariance are also equal to zero. If s10 + r10 = s01 + r01 = 0
then κ̂1 (c) = κ̂2 (c) and V̂ar [κ̂1 (c)] = V̂ar [κ̂2 (c)] = Cov [κ̂1 (c) , κ̂2 (c)], and the frequentist
intervals cannot be calculated. A solution to this problem is to add 0.5 to each observed
frequency.

In this article, we have also proposed a method to calculate the sample size to esti-
mate the ratio between the two weighted kappa coefficients with a determined precision and
confidence. This method, based on the Wald CI for the ratio, is an iterative method, which
starting from a pilot sample adds individuals to the sample until the CI has the set preci-
sion. From the initial sample we estimate a vector of parameters and in the second stage
we calculate the sample size. Furthermore, the simulation experiments carried out to study
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the robustness of the method to calculate the sample size have shown that the method has
practical validity and the choice of the pilot sample has very little effect on this method.

When the two diagnostic tests are continuous, for each cut off point of each estimated
ROC curve there will be a value of Ŝeh and of F̂PF h (and therefore of Ŝph = 1− F̂PF h),
with h = 1, 2. Once the clinician has set the value of the weighting index, κ̂1(c) and κ̂2(c) are
calculated and therefore the CIs studied in Section 3 can be applied.

9. SUPPLEMENTARY MATERIAL

Appendices A, B and C are available as supplementary material of the manuscript in
the URL:

https://www.ugr.es/local/bioest/software/cmd.php?seccion=mdb
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1. INTRODUCTION

Copula models are popular tools for describing multivariate data where the univariate
distribution functions are combined to joint distribution function by Sklar’s theorem (Sklar,
1959 [13]). Let X and Y be random variables with joint distribution function H and the
marginal distribution functions F and G, respectively. Then, there exists a copula C such
that H(x, y) = C(F (x), G(y)), for all x, y in R. As an advantage of the copula models, the
dependence structure can be modelled separately from the marginal distributions. If F and
G are continuous, then C is unique. Otherwise, the copula C is uniquely determined on
Ran(F )× Ran(G). There are various families of copulas. One of the most popular families
is Archimedean copula family of which the dependence structure can be characterized by an
univariate distribution function (Nelsen, 2006 [12], Section 4). The important feature that
separates this class from the others is that it has a generator function ϕ which is used to
construct an Archimedean copula.

Definition 1.1. A generator function ϕ is a continuous, strictly decreasing convex
function defined from I to [0,∞) such that ϕ(1) = 0. If ϕ(0) = ∞, then the generator is
called as a strict generator. The pseudo inverse of ϕ is the function ϕ[−1], defined on [0,∞)
to I is given by

ϕ[−1] =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0),

0, ϕ(0) ≤ t < ∞.

A bivariate Archimedean copula with generator function ϕ, C : I2 → I is defined by

(1.1) C(u, v) = ϕ[−1]{ϕ(u) + ϕ(v)},

where u = F (x) and v = G(y).

An Archimedean copula function can be reduced to an univariate distribution function
through generator function. Genest et al. (1993) [8] showed that the function ϕ(t) can be
obtained by the univariate distribution function K(t) = Pr(C(u, v) ≤ t). Remarkably, there
is a link between the function ϕ(t) and K(t) such as

(1.2) K(t) = t− ϕ(t)
ϕ′(t)

= t− λ(t).

K(t) called as Kendall distribution function identifies the generator function ϕ(t) and so
the dependence structure of the Archimedean copula family. Dependence measures such as
Kendall’s tau, upper and lower tail dependence coefficients can be obtained by using Kendall
distribution function. For a bivariate Archimedean copula with Kendall distribution function
K(t), Genest and MacKay (1986) [7] defined Kendall’s Tau (τ) as

(1.3) τ = 3− 4
∫ 1

0
K(t)dt.

And also, Michiels et al. (2011) [10] defined lower λL and upper λU tail dependence as

λL = 2limt→0+

(
t−K(t)

)′
,(1.4)

λU = 2− 2limt→1−
(
t−K(t)

)′
,(1.5)
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and they investigated a general method for constructing bivariate Archimedean copula fami-
lies using λ function. They worked with polynomials to construct multi-parameter copula fam-
ilies. Genest et al. (1998) [9] proposed several ways to generate bivariate Archimedean copula
models via smooth transformations of existing generator function. Dimitrova et al. (2008) [4]
defined an estimation method of Kendall distribution using B-spline functions. In addition,
they defined sufficient conditions for the B-spline estimator to possess the properties of the
Kendall distribution function. So, the function can be considered as a proper Kendall distri-
bution function and associated with the multivariate Archimedean copula. Cooray (2018) [3]
introduced two-parameter strict Archimedean generator function based on Clayton copula.
Najjari et al. (2014) [11] constructed a new generator function ϕ(t) using hyperbolic functions
as generators of Archimedean copulas. The majority of the papers proposed some methods
based on generator function ϕ for constructing a new Archimedean family of copulas. In this
study, we propose constructing a multi-parameter Archimedean copula using Kendall distri-
bution function K(t). We use Bernstein-Bézier polynomials to create the new Archimedean
class. Kendall’s tau, lower and upper tail dependence coefficients are also obtained according
to the polynomial degree and the control points. This new multi-parameter Archimedean
copula family is contributed to the expansion of the existing Archimedean copula family.

The contribution of this study is two fold: First, a new Archimedean copula class
based on Bernstein-Bézier polynomial is proposed. Different values of Kendall’s tau (nega-
tive or positive), lower and upper tail dependence coefficients can be obtained by changing
the polynomial degree and the control points, so the proposed class has flexible dependence
structure. It is possible to create a new distribution function which has desirable dependence
characteristics. This is quite useful in power analysis of goodness-of-fit test statistic. Second,
an algorithm is proposed to create different distributions with the same dependence level
by changing the control points for poynomial degree. Also, an estimation process based on
minimizing Cramér-von Mises distance is presented and a Monte Carlo simulation study is
employed to measure the performance of the parameter estimates.

The rest of the paper is organized as follows. In Section 2, Bernstein-Bézier type
Archimedean copula is given and some dependence characteristics are investigated. A sim-
ulation procedure of this new class for different polynomial degrees is given in Section 3.
Parameter estimation procedure which is based on minumum Cramér-von-Mises measure is
given and parameter estimates are obtained in Section 4. And the last section is devoted to
the conclusion.

2. BERNSTEIN BÉZIER TYPE BIVARIATE ARCHIMEDEAN COPULA

A Kendall distribution function K(t) should satisfy the following properties (1–4)
described in Nelsen (2006) [12]:

1. K(0) = 0;

2. K(1) = 1;

3. K
′
(t) > 0;

4. K(t) > t , t ∈ (0, 1).
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Let K(m,α; t) be a Bernstein-Bézier type Kendall distribution function with polynomial
degree m and control points α defined as

(2.1) K(m,α; t) =
m∑

k=0

αkBk,m(t)

where Bk,m(t) =
(
m
k

)
tk(1− t)m−k for t ∈ [0, 1].

Lemma 2.1. A Bernstein-Bézier type Kendall distribution function K(m,α; t) satis-

fies the properties (1–4) if the following constraints hold:

1. α0 = 0 < α1 < α2 < ... < αm = 1;

2. αk > k
m , k = 1, ...,m− 1.

Proof: K(m,α, t = 0, ) =
∑m

k=0 αkBk,m(t = 0) = 0 holds since α0 = 0. Similarly,
K(m,α, t = 1) =

∑m
k=0 αkBk,m(t = 1) = 1 holds since αm = 1 .

Also, K(m,α, t)
′
= m

∑m−1
k=0 (αk+1 − αk)Pk,m−1(t) ≥ 0. See, Duncan (2005) [5]. So,

α0 = 0 < α1 < α2 < ... < αm = 1.

If the Bézier control points αk > k
m , k = 1, ...,m− 1 where αk = k/m + εk, then,

K(m,α, t) =
m∑

k=0

αk

(
m

k

)
tk(1− t)m−k

=
m∑

k=0

(
k

m
+ εk)

(
m

k

)
tk(1− t)m−k

=
m∑

k=0

(
k

m
)
(

m

k

)
tk(1− t)m−k +

m∑
k=0

(εk)
(

m

k

)
tk(1− t)m−k

= t
m∑

k=1

(
m− 1
k − 1

)
tk−1(1− t)m−k +

m∑
k=0

(εk)
(

m

k

)
tk(1− t)m−k

= t

m−1∑
p=0

tp(1− t)m−p−1

(
m− 1

p

)
+

m∑
k=0

(εk)
(

m

k

)
tk(1− t)m−k

= t +
m∑

k=0

(εk)
(

m

k

)
tk(1− t)m−k > t.

We also obtain Kendall’s tau, lower and upper tail dependence of the Bernstein-Bézier
type Archimedean copula class using the following lemmas.

Lemma 2.2. Kendall’s tau for Bernstein-Bézier type Archimedean copula is obtained

as

τ = 3− 4
m∑

k=0

αk

(
m

k

)
β(k + 1,m− k + 1)

where β(., .) is the beta function defined as β(v1, v2) =
∫ 1
0 tv1−1(1− t)v2−1dt for v1, v2 positive

integers.

Proof: τ is easily derived from equation τ = 3− 4
∫ 1
0 K(t)dt.
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Lemma 2.3. The lower tail λL and the upper tail λU dependence for Bernstein-Bézier

type Archimedean copula are obtained by

λL = 21−mα1 ,

λU = 2− 21−m(1−αm−1).

Proof: λU and λL are easily derived from equation λL = 2limt→0+

(
t−K(t)

)′
,

λU = 2− 2limt→1−
(
t−K(t)

)′
.

It is seen that λL and λU are affected by only the control points α1 and αm−1, respec-
tively. We can create Bernstein-Bézier type Archimedean copula using λL and λU , setting
up the control points α1 and αm−1.

The following inequalities given in the next lemma provide an information for proper
selection of λU and λL.

Lemma 2.4. Let λL and λU be lower and upper tail dependence of Bernstein-Bézier

type Archimedean copula with polynomial degree m. Then,

1 > λL >
22−m

2− λU

holds for all values of polynomial degree m.

Proof: It can ve proved using the inequality α1 < αm−1. Also, 0 < λU , λL < 1, see
Charpentier and Segers (2009) [2].

Suppose that the parameters αk are defined as αk > k
m for for k = 1, ...,m− 1, then

K(m,α; t) > t. See, Lemma 2.1. Also, we note that if the control points are selected as
αk → k

m , then the dependence coefficients (τ, λU , λL) approximate 1. In other words, the
Bernstein-Bézier type Archimedean copula approximates comonotonic dependence when the
control points are closely distributed uniform.

The Bernstein-Bézier type Archimedean copula with higher degree can represent various
dependence forms. However, they may have some disadvantages:

1. As the degree increases, the complexity and therefore the processing time increase;

2. Because of the complexity, the curves of higher degree are more sensitive to round
off errors.

As opposed to these disadvantages, we can combine several Bernstein-Bézier type
Kendall distribution functions, mostly of degree three and four. We note that the Bernstein-
Bézier polynomials are invariant under barycentric combinations (Farin (2001) [6], p. 61).
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So, we obtain the following Bernstein-Bezier type Archimedean copulas for θ ∈ [0, 1]:

K(m,α; t) =
m∑

k=0

(
θα1,k + (1− θ)α2,k

)
Bk,m(t)

= θ
m∑

k=0

α1,kBk,m(t) + (1− θ)
m∑

k=0

α2,kBk,m(t)

= θK(m,α1,.; t) + (1− θ)K(m,α2,.; t).

We can construct the weighted average of two Bernstein-Bézier Archimedean copulas either
by taking the weighted average of corresponding points on the distribution, or by taking the
weighted average of corresponding parameters α.

Dependence coefficients of two barycentric combinations of Bernstein-Bézier type Archi-
medean copula are given by

τ = 3− 4
m∑

k=0

α2,kβ(k + 1,m− k + 1)
(

m

k

)

+ 4θ

(
m∑

k=0

(α2,k − α1,k)β(k + 1,m− k + 1)
(

m

k

))
,

λU = 2− 21+θmα1,m−1+(1−θ)mα2,m−1−m,

λL = 21−
(
θmα1,1+(1−θ)mα2,1

)
.

Note that if θ is selected as 1, then the classical Bernstein-Bézier type Archimedean
copula is obtained.

3. SIMULATING DATA FROM BERNSTEIN BÉZIER TYPE
ARCHIMEDEAN COPULA

In this section, data simulation from Bernstein-Bézier type Archimedean copula is
given. Construction of a new distribution function which has desirable Kendall’s tau and
tail dependence coefficients are investigated.

The following procedure is used to create a distribution with the dependence charac-
teristics represented by Kendall’s tau and tail dependence coefficients:

1. The arbitrary value of the upper tail dependence λU is determined primarily.

2. λL is determined arbitrarily by using Lemma 2.4.

3. The value of Kendall’s tau τ is determined for the distributions with polynomial
degrees 2 and 3. For the distributions having polynomial degree m ≥ 4, an interval
of Kendall’s tau is determined. Then, Kendall’s tau is selected arbitrarily from this
interval.

4. Bivariate data is simulated using the following algorithm. See, Nelsen (2006) [12].
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The algorithm based on Michiels et al. (2011) [10] allows one to simulate C(u, v) by Kendall
distribution function K(t) given as:

• Simulate uniformly distributed random pair (s, t) on [0, 1].

• Set w = K−1(t).

• Set u such that
∫ u
w

1
t−K(t)dt− ln(s) = 0.

• Set v such that
∫ v
w

1
t−K(t)dt− ln(1− s) = 0.

The range of the parameters and the dependence coefficients depending on the Bernstein-
Bézier polynomial degree m are summarized in Table 1. It is observed that as the degree of
the polynomial increases, the range of the dependence coefficients gets wider.

Table 1: Range of parameters and dependence coefficients.

m α0 α1 α2 α3 α4 α5 τ λU λL

3 0
�

1
3
, 1

� �
max

�
2
3
, α1

�
, 1

�
1 — — (0, 1) (0, 1)

�
1
4
, 1

�

4 0
�

1
4
, 1

� �
max

�
2
4
, α1

�
, 1

� �
max

�
3
4
, α2

�
, 1

�
1 — (−0.2, 1) (0, 1)

�
1
8
, 1

�

5 0
�

1
5
, 1

� �
max

�
2
5
, α1

�
, 1

� �
max

�
3
5
, α2

�
, 1

� �
max

�
4
5
, α3

�
, 1

�
1 (−0.33, 1) (0, 1)

�
1
16

, 1
�

Kendall’s tau, upper and lower tail dependence coefficients obtained by the Bernstein-
Bézier type Archimedean copula with control points for degree (m = 3, 4, 5) are summa-
rized in Table 2. Also, different distributions having the same dependence level at the con-
trol points α2 and α3 for poynomial degree 5 are given. All the Bernstein-Bézier control
points and dependence coefficients are obtained by applying the simulation procedure (1–4).
All cases in Table 2 are examined in the Subsections 3.1–3.3.

Table 2: Parameters and dependence coefficients.

Degree K(t) α0 α1 α2 α3 α4 α5 τ λU λL

m = 3 K1 0 0.7173 0.7928 1 — — 0.4899 0.7 0.45

m = 4 K2 0 0.3537 0.5828 0.9815 1 — 0.68 0.1 0.75

m = 5
K3 0 0.4 0.43 0.8531 0.9169 1 0.6 0.5 0.5
K4 0 0.4 0.63 0.6531 0.9169 1 0.6 0.5 0.5

3.1. Bernstein-Bézier type Archimedean copula with degree three

A Bernstein-Bézier type Archimedean copula with degree 3 has the following distribu-
tion function,

K(m = 3, α; t) =
3∑

k=0

αk

(
3
k

)
tk(1− t)3−k, t ∈ [0, 1].
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From Lemma 2.1, α0 = 0, α3 = 1 , α0 < α1 < α2 < α3 and α1 > 1
3 , α2 > 2

3 . Kendall’s
tau of the distribution is given as

τ = 3− 4
3∑

k=0

αk

(
3
k

)
β(k + 1, 3− k + 1) = 2− α1 − α2

and lower and upper tail dependence coefficients are

λL = 21−3α1 , λU = 2− 23α2−2.

(1–4) procedure is applied to determine the Kendall’s tau and the tail dependence coef-
ficients of the distribution. The arbitrary value of the upper tail dependence λU is determined
primarily in the range λU ∈ (0,1). We select λU as 0.7, so α2 is equal to 0.7928. From Lemma
2.4, 1 > λL > 0.3846. Then, λL is determined arbitrarily as 0.45. So, α1 is equal to 0.7173.
The stage conditions for control points given Lemma 2.1 are satisfied. Finally, Kendall’s tau
is 0.4899. K(3, α; t) with control points α0 = 0, α1 = 0.7173, α2 = 0.7928 and α3 = 1 has the
Kendall’s tau value as τ = 0.4899 and the value tail dependence coefficients as λL = 0.45 and
λU = 0.7. Simulated data and K(m = 3, α; t) with the sample of size 150 are visualized in
Figure 1.
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K(3,�;t)

0.2 0.4 0.6 0.8 1.0
t
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0.6

0.8

1.0

K

Figure 1: Simulated data from K(3, α; t) with τ = 0.4899, λL = 0.45, λU = 0.7.

3.2. Bernstein-Bézier type Archimedean copula with degree four

Bernstein-Bézier type Archimedean copula with degree 4 has the following distribution
function with the dependence characteristics, Kendall’s tau, lower and upper tail dependence:

K(4, α; t) =
4∑

k=0

αk

(
4
k

)
tk(1− t)4−k, t ∈ [0, 1],

τ =
1
5

(
11− 4(α1 + α2 + α3)

)
,

λL = 21−4α1 , λU = 2− 24α3−3.
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(1–4) procedure is applied to determine the Kendall’s tau and the tail dependence values of
the distribution. The arbitrary value of the upper tail dependence λU is determined primarily
in range λU ∈ (0, 1). We select λU as 0.1 and so α3 is equal to 0.9815. From Lemma 2.4,
1 > λL > 0.1315. Then, λL is determined arbitrarily as 0.75. So, α1 is equal to 0.3537.
Finally from Lemma 2.1, Kendall’s tau should be selected in the range τ ∈ (0.3610, 0.7462).
We determine Kendall’s tau arbitrarily as 0.68. So, α2 is 0.5828. K(4, α; t) with control
points α0 = 0, α1 = 0.3537, α2 = 0.5828, α3 = 0.9815 and α4 = 1 has the value of Kendall’s
tau τ = 0.68 and the values of tail dependences as λL = 0.75 and λU = 0.1. Simulated data
and K(m = 4, α; t) with the sample of size 150 is visualized in Figure 2.
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Figure 2: Simulated data from K(4, α; t) with τ = 0.68, λL = 0.75, λU = 0.1.

3.3. Bernstein-Bézier type Archimedean copula with degree five

Bernstein-Bézier type Archimedean copula with degree 5 has the following distribution
function with the dependence characteristics Kendall’s tau, lower and upper tail dependence,

K(5, α; t) =
5∑

k=0

αk

(
5
k

)
tk(1− t)5−k, t ∈ [0, 1],

τ =
1
3

(
7− 2(α1 + α2 + α3 + α4)

)
,

λL = 21−5α1 , λU = 2− 25α4−4.

(1–4) procedure is again applied to determine the Kendall’s tau and the tail dependence values
of the distribution. The arbitrary value of the upper tail dependence λU is determined primar-
ily in range λU ∈ (0, 1). We select λU as 0.5 and so α4 is equal to 0.9169. From Lemma 2.4,
1 > λL > 0.0833. Then, λL is determined arbitrarily as 0.5. So, α1 is equal to 0.4. Finally
from Lemma 2.1, Kendall’s tau should be selected in the range τ ∈ (0.2328, 0.6220). We
determine Kendall’s tau arbitrarily as 0.6. α2 and α3 can be derived from solving equations
α2 +α3 = 1.2831. From the last equation and Lemma 2.1, α2 and α3 should be selected in the
range α2 ∈ (0.4, 0.6415) and α3 ∈ (0.6415, 0.8831), respectively. Different α2 and α3 values
can be selected in order to provide α2 + α3 = 1.2831 in the range of α2 and α3. This case is
important, because we can create different distributions with the same dependence level by
selecting different α2 and α3 values. One possible selection is α2 = 0.43 and α3 = 0.8531.
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Another possible selection is α2 = 0.63 and α3 = 0.6531. K1(5, α; t) with control points
α0 = 0, α1 = 0.4, α2 = 0.43, α3 = 0.8531, α4 = 0.9169, α5 = 1 and K2(5, α; t) with control
points α0 = 0, α1 = 0.4, α2 = 0.63, α3 = 0.6531, α4 = 0.9169, α5 = 1 with the same depen-
dence level are visualized in Figure 3.

For the higher order polynomial degree, for example m = 6, the range of τ , λL and λU

are determined as the same as for degree m < 6. But the range of α2, α3 and α4 for the
solutions of α2 + α3 + α4 = a cannot be determined easily.
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Figure 3: Simulated data from K1(5, α; t) and K2(5, α; t)
with the same τ = 0.6, λL = 0.5, λU = 0.5.

4. PARAMETER ESTIMATION BASED ON CRAMÉR-VON-MISES
MEASURE

Genest and Rivest (1993) [8] proposed a nonparametric procedure using empirical es-
timate Kn of K. The psuedo observations of T̂i were obtained by

T̂i =
n∑

j=1

I(Xi < Xj , Yi < Yj)/(n− 1), i = 1, ..., n.

Then, K(t) was estimated by the empirical distribution function as

(4.1) K̂n(t) =
n∑

i=1

(T̂i ≤ t)/n.
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Barbe et al. (1996) [1] investigated consistency of K̂n(t). Alternatively, Susam and
Ucer (2018) [14] defined the empirical Bernstein estimator of order (m1 > 0) for the Kendall
distribution function as

(4.2) K̂m1,n(t) =
m1∑
k=0

K̂n(k/m1)Pk,m1(t),

where Pk,m1(t) =
(
m1

k

)
tk(1− t)m1−k is the binomial probability. Also, they showed that the

Bernstein Kendall distribution function outperforms the empirical Kendall distribution func-
tion according to its performance by Monte Carlo simulation study.

In this study, through the parameter estimation process, we first estimate the Bernstein-
Bézier type Archimedean copula parameters by using empirical estimate of K̂n. Then,
Cramér-von-Mises (CvM) distance between the empirical Kendall distribution function and
the Bernstein-Bézier type Kendall distribution function is obtained as

CvMK̂n
=
∫ 1

0
n
(
K̂n(t)−K(α, m2; t)

)2
dK̂n(t)

=
1
n

n∑
i=1

(
K̂n(T̂i)−K(α, m2; T̂i)

)2
.

Then the parameters are estimated by

α̂K̂n
= argmin

α∈Θ

{
CvMK̂n

}

where Θ =
{
αk > k

m2
, αk+1 > αk ; k = 1, ...,m2 − 1

}
and α0 = 0, αm2 = 1.

Secondly, the Bernstein-Bézier type Archimedean copula parameters are estimated by
using empirical Bernstein estimator K̂m1,n(t). Since the empirical Bernstein Kendall distri-
bution function is a continuous approximation of the empirical Kendall distribution function
K̂n, we use empirical Bernstein Kendall distribution function which is upgraded version of
K̂n to obtain Cramér-von-Mises (CvM) distance as

(4.3) CvMK̂n,m
=
∫ 1

0
n
(
K̂n,m1(t)−K(α, m2; t)

)2
dt.

The estimation of the dependence parameter αi for i = 0, ...,m2 can be selected as the value
that minimizes the CvM distance.

Lemma 4.1. Let K(α, m2; t) be the Bernstein-Bézier type Kendall distribution func-

tion with order (m2 > 0) and let K̂m,n(t) be the empirical Bernstein estimator of Kendall
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distribution function with order (m1 > 0). Then the Cramér-von-Mises distance is defined as

CvM = n

m1∑
k=0

(
m1

k

)2

K̂2
n

(
k

m1

)
β(2k + 1, 2m1 − 2k + 1)

+ 2n

m1−1∑
k=0

m1∑
s=k+1

(
m1

k

)(
m1

s

)
K̂n

(
k

m1

)
K̂n

(
s

m1

)
β(k + s + 1, 2m1 − k − s + 1)

+ n

m2∑
k=0

(
m2

k

)2

α2
kβ(2k + 1, 2m2 − 2k + 1)

+ 2n

m2−1∑
k=0

m2∑
s=k+1

(
m2

k

)(
m2

s

)
αkαsβ(k + s + 1, 2m2 − k − s + 1)

− 2n

m1∑
k=0

m2∑
s=0

K̂n

(
k

m1

)
αs

(
m1

k

)(
m2

s

)
β(k + s + 1,m1 + m2 − k − s + 1)

where β(., .) is the beta function defined as β(v1, v2) =
∫ 1
0 tv1−1(1− t)v2−1dt for v1, v2 positive

integers.

Proof:

CvM =
∫ 1

0
(K̂n,m1(t)−K(α, m2; t))2dt

= n

∫ 1

0
K̂2

n,m1
(t)dt + n

∫ 1

0
(K(α, m2; t))2dt− 2n

∫ 1

0
K̂n,m1(t)K(α, m2; t)dt

= n

∫ 1

0

(
m1∑
k=0

(
m1

k

)
tk(1− t)m1−kK̂n

(
k

m1

))2

dt

+ n

∫ 1

0

(
m2∑
k=0

αkt
k

(
m2

k

)
tk(1− t)m2−k

)2

dt

− 2n

m1∑
k=0

m2∑
s=0

K̂n

(
k

m1

)
αs

(
m1

k

)(
m2

s

)∫ 1

0
tk+s(1− t)m1+m2−k−sdt

= I1 + I2 − I3.

Now we calculate part of I1. We know that (a1+a2 + ···+an)2 =
∑n

i=1a2
i + 2

∑n−1
i=1

∑n
j=i+1aiaj ,

then we can write

I1 = n

m1∑
k=0

(
m1

k

)2

K̂2
n

(
k

m1

)∫ 1

0
t2k(1− t)2m1−2kdt

+ 2
m1−1∑
k=0

m1∑
s=k+1

(
m1

k

)
K̂n

(
k

m1

)(
m1

s

)
K̂n

(
s

m1

)∫ 1

0
tk+s(1− t)2m1−k−sdt

= n

m1∑
k=0

(
m1

k

)2

K̂2
n

(
k

m1

)
β(2k + 1, 2m1 − 2k + 1)

+ 2n

m1−1∑
k=0

m1∑
s=k+1

(
m1

k

)
K̂n

(
k

m1

)(
m1

s

)
K̂n

(
s

m1

)
β(k + s + 1, 2m1 − k − s + 1).

Proof of the parts of I2 and I3 are the same as proof of part I1.
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Then, the parameter estimate which gives the minimum value of Cramér-von-Mises dis-
tance based on Bernstein empirical distribution is defined for Bernstein-Bézier type Archime-
dean copula by

α̂K̂n,m
= argmin

α∈Θ

{
CvMK̂n,m

}

where Θ =
{
αk > k

m2
, αk+1 > αk ; k = 1, ...,m2 − 1

}
and α0 = 0, αm2 = 1.

Genest et al. (1993) [8] introduced a method-of-moment estimator for bivariate Archime-
dean copula based on empirical Kendall distribution function K̂n(t). For one-parameter fam-
ilies, the parameter can be estimated by only using the first moment. However, for more than
one parameters, we need the moments as much as the number of parameters.

We note that the estimation procedure explained in this section are not only available
for Archimedean copulas but also available for all continuous copula classes. The empirical
Kendall distribution function can also be used for all continuous copula classes. See Genest
et al. (1993) [8].

A Monte Carlo simulation study is conducted to measure the performance of the estima-
tion method with several values of Kendall’s tau, lower and upper tail dependence coefficients.

1.000 Monte Carlo samples of sizes n = 50, 150 are generated from each type of
Bernstein-Bézier type Archimedean copulas given in Table 2 and investigated the perfor-
mances of two parameter estimation methods as αK̂n

and αK̂n,m
. For the empirical Bernstein

estimator, we select the polynomial degree as m1 = 15 for sample size n = 50 and m1 = 30
for sample size n = 150.

Simulation results are shown in Table 3 and Table 4. When the results are examined,
the minumum Cramér-von-Mises method based on Kendall distribution using Bernstein poly-
nomials outperforms the method based on empirical Kendall distribution in almost all cases
for all sample sizes.

Table 3: MSE of the parameter estimations for four Bernstein-Bézier type copula
with sample size n = 50.

Dist. Est. Mth. α̂1 α̂2 α̂3 α̂4

K1
α̂K̂n

0.00684 0.00431 — —

α̂K̂n,15
0.00575 0.00313 — —

K2
α̂K̂n

0.00903 0.01116 0.00221 —

α̂K̂n,15
0.00324 0.00688 0.00585 —

K3
α̂K̂n

0.00633 0.01580 0.01428 0.00349

α̂K̂n,15
0.00342 0.00925 0.01192 0.00193

K4
α̂K̂n

0.01544 0.00957 0.00992 0.00266

α̂K̂n,15
0.00534 0.01422 0.00923 0.00356
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Table 4: MSE of the parameter estimations for four Bernstein-Bézier type copula
with sample size n = 150.

Dist. Est. Mth. α̂1 α̂2 α̂3 α̂4

K1
α̂K̂n

0.00261 0.00151 — —

α̂K̂n,30
0.00303 0.00141 — —

K2
α̂K̂n

0.00209 0.00437 0.00096 —

α̂K̂n,30
0.00123 0.00384 0.00177 —

K3
α̂K̂n

0.00177 0.00661 0.00827 0.00242

α̂K̂n,30
0.00229 0.00589 0.00614 0.00091

K4
α̂K̂n

0.00516 0.00775 0.00650 0.00144

α̂K̂n,30
0.00224 0.00753 0.00670 0.00165

5. CONCLUSION

In this study, we propose a new family of Archimedean copulas based on Kendall dis-
tribution function K(t). We use Bernstein-Bézier polynomials to construct this new multi-
parameter distribution. The method is illustrated for polynomial degree m = 3, 4, 5. There
are several advantages of this new Archimedean copula class. It is shown that while work-
ing with the Bernstein-Bézier polynomial structures, a multi-parameter copula family can be
constructed in an organized way. It is possible to create a new distribution function which has
desirable dependence characteristics using Kendall’s tau, lower and upper tail dependence.
The parameters of the new model can be interpreted in terms of these dependence char-
acteristics. And also, it is possible that we can create different distributions with the same
dependence structures. Also, we obtain the parameter estimates minimizing the Cramér-von-
Mises distance which is based on Bernstein-Bézier type Archimedean copulas. We measure
the performance of the estimation method with several values of Kendall’s tau, lower and
upper tail dependence coefficients by a Monte Carlo simulation study. We can conclude
that the minimum Cramér-von-Mises method based on Kendall distribution using Bernstein
polynomials outperforms the method based on empirical Kendall distribution function.
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– Laboratoire de Mathématiques Nicolas Oresme,
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1. INTRODUCTION

In this paper, the biased nonparametric regression model is considered. It is formulated
as follows. Let (X1, Y1), (X2, Y2), ..., (Xn, Yn) be identically distributed random variables
defined on a probability space (Ω,F ,P) with the common density function

(1.1) f(x, y) =
ω(x, y) g(x, y)

µ
, (x, y) ∈ [0, 1]×R ,

where ω stands for a known positive function, g denotes the density function of the unobserved
random variables (U, V ) and µ := E(ω(X,Y )) <∞. In this setup g and f mean the target
density and weighted density, respectively, and the resulting data are biased data. We want
to estimate the dth derivative r(d)(x) of regression function

(1.2) r(x) := E
(
ρ(V ) |U= x

)
=
∫

R

ρ(y) g(x, y)
h(x)

dy , x ∈ [0, 1] .

This above model arises in many applications. For example, in order to estimate the
change rate of agricultural output V when the input U increase (decrease) in a country.
We obtain data (Xi, Yi) (i = 1, 2, ..., n) from those regions where spend more in agriculture,
then Xi and Yi stands for the agricultural input and output. Because it is more likely to
sample those special regions, the density f of (Xi, Yi) satisfies f(x, y) = ω(x,y) g(x,y)

µ with some
weight function ω and the real density g of (U, V ). Then we can estimate the change rate r(d)

of the country by the given data (Xi, Yi). Hence, the work about this regression estimation
model is very important.

The former works have developed kernel or modified local polynomials estimators for
the problem of estimating r(x), i.e., r(d)(x) with d = 0. See, for instance, [1], [20], [10], [21],
[11], [12] and [5]. In order to obtain theoretical results, as optimal rates of convergence, in
a general statistical setting or to reach the goal of adaptivity, wavelet methods have been
developed by [9], [4] and [6]. Always focusing on wavelet methods, the estimation of r(x) for
(strongly mixing) dependent (X1, Y1), (X2, Y2), ..., (Xn, Yn) has been explored by [7], [8] and
[17]. Also, for the prime goal, the estimation of the derivative r(d)(x) has been considered
by [3] and [14], but only for independent (X1, Y1), (X2, Y2), ..., (Xn, Yn). More precisely, [3]
provide an upper bound estimation over Lp(R) (1 ≤ p <∞) risk for the derivative r(d)(x) of
regression function with a linear wavelet estimator. Because this linear wavelet estimator is
not adaptive, [14] construct a nonlinear wavelet estimator and study its convergence rate over
Lp(R) (1 ≤ p <∞) risk.

In this paper, we investigate a generalization of these works by considering the estima-
tion of r(d)(x) from dependent (X1, Y1), (X2, Y2), ..., (Xn, Yn); the negatively associated case
is considered. This kind of dependence naturally appear in many well-known multivariate
distributions involved in a wide variety of applications. We refer to [2] and [16]. In this
setting, a linear nonadaptive and nonlinear adaptive wavelet estimators are introduced.
We determine their rates of convergence under the Lp risk with 1 ≤ p <∞, assuming that
r(d)(x) belongs to Besov spaces Bsep,q(R). We prove that, with mathematical efforts, the es-
tablished results in the independent case can be transposed to the negatively associated case,
showing the consistency of the wavelet methodology for this problem.
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The rest of this paper is the following. The mathematical assumptions on the model
are presented in Section 2. The necessary on the wavelets and Besov spaces are described in
Section 3. The linear wavelet estimation is performed in Section 4. The nonlinear wavelet
estimation is developed in Section 5. Some concluding remarks are postponed in Section 6.

2. ASUMPTIONS ON THE MODEL

In this section, we will introduce the definition and properties of negatively associated
sample. In addition, some other assumptions for the model (1.1)–(1.2) are proposed.

Definition 2.1 ([2]). A sequence of random variable X1, X2, ..., Xn is said to be neg-
atively associated, if for each pair of disjoint nonempty subsets A and B of {i = 1, 2, ..., n},

Cov
(
f(Xi, i∈A), g(Xj , j ∈B)

)
≤ 0 ,

where f and g are real-valued coordinate-wise nondecreasing functions and the corresponding
covariances exist.

This definition can be extended to random vectors (see [16]). It is well known that
Cov

(
Xi, Xj

)
≡ 0 when the random variable X1, X2, ..., Xn is independent. Hence, the in-

dependence case is a special case of negatively associated case. Also, let X1, X2, ..., Xn be

independent random variables with log concave densities. Then, if
n∑

i=1
Xi = c (c is a constant),

X1, X2, ..., Xn are negatively associated.

For examples of negatively associated case, [16] showed that many well-known multi-
variate distributions process the negatively associated property. Some examples include: the
multinomial distribution, the multivariate hypergeometric distribution, the Dirichlet com-
pound multinomial distribution, the permutation distribution and so on. Because of its
wide application in multivariate statistical analysis and system reliability, many research of
negatively associated has already considered, see, e.g., [19], [24], [18], [23]. In addition, an
important property of negative association is given in the following lemma. It will be at a
center of one of our main result.

Lemma 2.1 ([16]). Let X1, X2, ..., Xn be a sequence of negatively associated random

variables and B1, B2, ..., Bm be some pairwise disjoint nonempty subsets of {i = 1, 2, ..., n}.
If fi (i = 1, 2, ...,m) are m coordinate-wise nondecreasing (nonincreasing) functions, then

f1

(
Xi, i∈B1

)
, f2

(
Xi, i∈B2

)
, ..., fm

(
Xi, i∈Bm

)
are also negatively associated.

In this paper, A . B denotes A ≤ cB with a positive constant c which is independent
of A and B; A & B means B . A; A ∼ B stands for both A . B and B . A.

For the problem (1.1)–(1.2), in addition to assume that (X1, Y1), (X2, Y2), ..., (Xn, Yn)
are negatively associated, we make the following other assumptions:

A1. The density function h of the random variable U is nonincreasing, and has a
positive lower bound,

0 < c1 ≤ h(x) , x ∈ [0, 1] .
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A2. The weight function ω is coordinate-wise nonincreasing, and has both positive
upper and lower bounds, i.e., for (x, y) ∈ [0, 1]×R,

ω(x, y) ∼ 1 .

A3. The function ρ is known, nondecreasing and ρ ∈ L∞(R).

A4. We have r(u)(0) = r(u)(1) = 0 for any u ∈ {0, ..., d}.

A5. There exists a constant c2 > 0 such that

sup
x∈[0,1]

∣∣r(d)(x)
∣∣ ≤ c2 .

These assumptions are quite standard for the considered problem (see [3] and [14]).
Only those involving the non monotonicity of some functions are deeply link with the neg-
atively associated dependence assumption. They will be used for technical purpose in the
proofs.

3. WAVELETS AND BESOV SPACES

Throughout this paper, we work with the wavelet basis described below. A wavelet func-
tionψ can be constructed from the scaling function φ in a simple way such that

{
2j/2ψ(2jx−k),

j ∈ Z, k ∈ Z
}

constitutes an orthonormal basis (wavelet basis) of L2(R). Then, each f ∈L2(R),

f =
∑
k∈Z

αj0,k φj0,k +
∞∑

j=j0

∑
k∈Z

βj,k ψj,k

holds in L2(R) sense, where αj0,k = 〈f, φj0,k〉, βj,k = 〈f, ψj,k〉 and

φj0,k(x) = 2
j0
2 φ(2j0x− k) , ψj,k(x) = 2

j
2 ψ(2jx− k) .

Let Pj be the orthogonal projection operator from L2(R) onto the space Vj with the
orthonormal basis

{
φj,k(·) = 2j/2φ(2j · −k), k ∈Z

}
. Then, for f ∈ L2(R),

Pjf =
∑
k∈Z

αj,k φj,k .

A scaling function φ is called m regular, if φ ∈ Cm(R) and |Dαφ(x)| ≤ c(1 + x2)−l for each
l ∈ Z (α = 0, 1, ...,m). In this paper, we choose Daubechies scaling function D2N . Then,
φ is m regular when N gets large enough. Furthermore, it can be shown that, for f ∈ Lp(R)
(1 ≤ p <∞),

(3.1) Pjf(x) =
∑
k∈Z

αj,k φj,k(x)

holds almost everywhere on R ([15]).
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Lemma 3.1. Let a scaling function φ ∈ L2(R) satisfy m regular and {αk} ∈ lp
(1 ≤ p ≤ ∞). Then ∥∥∥∥∥∑

k∈Z
αk 2

j
2 φ(2jx− k)

∥∥∥∥∥
p

∼ 2j
�

1
2
− 1

p

�
‖(αk)‖p .

The proof of lemma can be found in [15]. In addition, Lemma 3.1 holds if the scaling
function φ is replaced by the corresponding wavelet ψ.

One advantage of wavelets is that it can characterize Besov spaces. Besov spaces are
important in theory and applications, which contain Hölder and L2 Sobolev spaces as special
examples. The next lemma provides equivalent definition for Besov space.

Lemma 3.2. Let φ be m regular, ψ be the corresponding wavelets and f ∈ Lp(R).
If αj,k = 〈f, φj,k〉, βj,k = 〈f, ψj,k〉, p, q ∈ [1,∞] and 0 < s < m, then the following assertions

are equivalent:

(1) f ∈ Bs
p,q(R) ;

(2)
{

2js‖Pjf − f‖p

}
∈ lq ;

(3)
{

2j
�
s− 1

p
+ 1

2

�
‖βj‖p

}
∈ lq .

The Besov norm of f can be defined by

(3.2) ‖f‖Bs
p,q

:= ‖(αj0)‖p +

∥∥∥∥∥
(

2j
�
s− 1

p
+ 1

2

�
‖βj‖p

)
j≥j0

∥∥∥∥∥
q

,

where ‖βj‖p
p =

∑
k∈Z

|βj,k|p.

In this paper, we will suppose the unknown function r(d)(x) belong to Besov balls
Bs

p,q(H) with H > 0, which means f ∈ Bs
p,q(H) :=

{
f ∈ Bs

p,q(Rd), ‖f‖Bs
p,q
≤ H

}
.

4. LINEAR WAVELET ESTIMATION

This section will introduce a linear wavelet estimator and discuss its convergence rate
over Lp (1 ≤ p <∞) risk. Now our linear wavelet estimator is defined by

(4.1) r̂(d)
n (x) :=

∑
k∈Ω

α̂j0,k φj0,k(x) .

In this definition, we have set

(4.2) α̂j0,k = (−1)d µ̂n

n

n∑
i=1

ρ(Yi)
ω(Xi, Yi)h(Xi)

φ
(d)
j0,k(Xi) ,

(4.3) µ̂n =

[
1
n

n∑
i=1

1
ω(Xi, Yi)

]−1

and Ω =
{
k ∈Z, supp r(d)∩ suppφj0,k 6= ∅

}
. Then, it follows from the compactly supported

properties of the function r(d) and φj0,k that the cardinality of Ω satisfies |Ω| ∼ 2j0 .
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On the other hand, some existing results on these estimators in the independent case
remain true. Indeed, according to the [14, Lemma 2.1], under Condition A4, we know that

E
(

1
µ̂n

)
=

1
µ

(4.4)

and

E
[
(−1)d µρ(Yi)

ω(Xi, Yi)h(Xi)
φ

(d)
j0,k(Xi)

]
= αj0,k .(4.5)

These two equations mean that µ̂n and α̂j0,k are unbiased estimators of µ and αj0,k, respec-
tively. Furthermore, the linear estimator r̂(d)

n (x) can also be as an unbiased estimator of
r(d)(x). In the following, we present an important lemma, which will be used to prove our
theorems.

Lemma 4.1. For the problem (1.1)–(1.2) with Conditions A1–A5 hold. If 2j0 ≤ n,

then, for 1 ≤ p <∞, we have

E
∣∣∣α̂j0,k − αj0,k

∣∣∣p . 2j0dp n−
p
2 .

Proof of Lemma 4.1: According to the definition of α̂j0,k, the following decomposi-
tion holds:

α̂j0,k − αj0,k =
µ̂n

µ

[
(−1)d µ

n

n∑
i=1

ρ(Yi)
ω(Xi, Yi)h(Xi)

φ
(d)
j0,k(Xi)− αj0,k

]
+ αj0,k · µ̂n

(
1
µ
− 1
µ̂n

)
.

Furthermore, one has

E
∣∣∣α̂j0,k − αj0,k

∣∣∣p . E

∣∣∣∣∣ µ̂n

µ

[
(−1)d µ

n

n∑
i=1

ρ(Yi)
ω(Xi, Yi)h(Xi)

φ
(d)
j0,k(Xi)− αj0,k

]∣∣∣∣∣
p

+ E
∣∣∣∣αj0,k · µ̂n

(
1
µ
− 1
µ̂n

)∣∣∣∣p .(4.6)

Then, it follows from Condition A5, Hölder’s inequality and the orthonormality of {φj0,k}
that |αj0,k| =

∣∣∫
[0,1] r

(d)(x)φj0,k(x) dx
∣∣ . 1. Moreover, Condition A2 and the definition of µ̂n

imply that |µ̂n| . 1. Hence, the inequality (4.6) reduces to

E
∣∣∣α̂j0,k − αj0,k

∣∣∣p . E

∣∣∣∣∣µn
n∑

i=1

(−1)d ρ(Yi)
ω(Xi, Yi)h(Xi)

φ
(d)
j0,k(Xi)− αj0,k

∣∣∣∣∣
p

+ E
∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣p
:= Q1 +Q2 .(4.7)

Let us now bound Q1 and Q2 as sharp as possible.

• Upper bound of Q1.

Define ξi := (−1)d µρ(Yi)
ω(Xi,Yi) h(Xi)

φ
(d)
j0,k(Xi)− αj0,k. Then, one gets

Q1 := E

∣∣∣∣∣ 1n
n∑

i=1

ξi

∣∣∣∣∣
p

=
(

1
n

)p
E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
p

.
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Because φ(d) is a bounded variation function, one can assume

φ(d) := φ− φ̃ ,

where φ and φ̃ are bounded, nonnegative and nondecreasing functions ([22]). Then, we can
write

φ
(d)
j0,k := 2j0d

(
φj0,k − φ̃j0,k

)
.

Moreover, one defines

αj0,k :=
∫

(−1)d 2j0d φj0,k(x) r(x) dx , α̃j0,k :=
∫

(−1)d 2j0d φ̃j0,k(x) r(x) dx

and

ξi :=
(−1)d 2j0dµρ(Yi)
ω(Xi, Yi)h(Xi)

φj0,k(Xi)− αj0,k , ξ̃i :=
(−1)d 2j0dµρ(Yi)
ω(Xi, Yi)h(Xi)

φ̃j0,k(Xi)− α̃j0,k .

Then, we have αj0,k = αj0,k−α̃j0,k, ξi = ξi− ξ̃i and, by an elementary inequality of convexity,
one gets

Q1 =
(

1
n

)p
E

∣∣∣∣∣
n∑

i=1

(
ξi − ξ̃i

)∣∣∣∣∣
p

.

(
1
n

)p [
E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
p

+ E

∣∣∣∣∣
n∑

i=1

ξ̃i

∣∣∣∣∣
p ]
.(4.8)

Using (1.1), (1.2) and Condition A4, one knows that Eξi = 0. Note that
ρ(y) φj0,k(x)

ω(x,y) h(x) is a

nondecreasing function by the monotonicity of φj0,k(x) and Conditions A1–A3. Furthermore,
we get that {ξi, i = 1, 2, ..., n} is negatively associated by Lemma 2.1. On the other hand,
|ξi|p .

∣∣∣ (−1)d 2j0dµρ(Yi)
ω(Xi,Yi) h(Xi)

φj0,k(Xi)
∣∣∣p+ |αj0,k|p and |αj0,k|p =

∣∣∣E[ (−1)d 2j0dµρ(Yi)
ω(Xi,Yi) h(Xi)

φj0,k(Xi)
]∣∣∣p

≤ E
∣∣∣ (−1)d 2j0dµρ(Yi)

ω(Xi,Yi) h(Xi)
φj0,k(Xi)

∣∣∣p thanks to Jensen’s inequality. Then, one has

E|ξi|p . E
∣∣∣∣(−1)d 2j0dµρ(Yi)
ω(Xi, Yi)h(Xi)

φj0,k(Xi)
∣∣∣∣p

=
∫

R

∫
[0,1]

∣∣∣∣(−1)d 2j0dµρ(y)
ω(x, y)h(x)

φj0,k(x)
∣∣∣∣pf(x, y) dx dy .

Using Conditions A1–A3 and (1.1), one finds that

E|ξi|p . 2j0dp

∫
[0,1]

∣∣φj0,k(x)
∣∣pdx . 2j0

[
(d+ 1

2)p−1
]
.(4.9)

In particular, E|ξi|2 . 22j0d. Recall Rosenthal’s inequality ([18]): If X1, X2, ..., Xn are nega-
tively associated random variables such that EXi = 0 and E|Xi|p <∞, then

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

.


n∑

i=1
E|Xi|p +

(
n∑

i=1
EX2

i

)p
2

, p > 2 ;(
n∑

i=1
EX2

i

)p
2

, 1 ≤ p ≤ 2 .

According to this inequality and (4.9), one gets

E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
p

.


[
2j0
[
(d+ 1

2)p−1
]
· n+

(
n · 22j0d

)p
2

]
, p ≥ 2 ;

2j0dp np/2 , 1 ≤ p < 2 .
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This with 2j0 < n shows that E
∣∣∣∣ n∑
i=1

ξi

∣∣∣∣p . 2j0dp np/2. Similarly, E
∣∣∣∣ n∑
i=1

ξ̃i

∣∣∣∣p . 2j0dp np/2.

Combining those with (4.8), one knows that

Q1 . 2j0dp n−p/2.(4.10)

• Upper bound of Q2.

Using the definition of µ̂n, one has

E
∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣p = E

∣∣∣∣∣ 1n
n∑

i=1

1
ω(Xi, Yi)

− 1
µ

∣∣∣∣∣
p

=
1
np

E

∣∣∣∣∣
n∑

i=1

[
1

ω(Xi, Yi)
− 1
µ

]∣∣∣∣∣
p

.(4.11)

Define ηi := 1
ω(Xi,Yi)

− 1
µ . Then, E(ηi)=0 by (4.4). The monotonicity of ω(x,y) in Condition A2

and Lemma 2.1 imply that η1, ..., ηn are negatively associated. In addition, E|ηi|p . 1 thanks
to Condition A2. According to Rosenthal’s inequality, one has

E
∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣p . n−
p
2 .(4.12)

Now it is easy to see from (4.7), (4.10) and (4.12) that

E
∣∣∣α̂j0,k − αj0,k

∣∣∣p . 2j0dp n−
p
2 .

This completes the proof of Lemma 4.1.

In this position, we will state our first theorem.

Theorem 4.1. For the problem (1.1)–(1.2) with Conditions A1–A5. Let r(d)∈Bsep,q(H)(
p̃, q ∈ [1,∞), s> 0

)
, and p̃ ≥ p ≥ 1, or p̃ ≤ p <∞ and s > 1ep . The linear wavelet estimator

r̂
(d)
n be defined in (4.1) with 2j0 ∼ n

1
2s′+2d+1 and s′ = s−

(
1ep − 1

p

)
+
. Then, for 1 ≤ p <∞,

we have

E
∫

[0,1]

∣∣∣r̂(d)
n (x)− r(d)(x)

∣∣∣p dx . n
− s′p

2s′+2d+1 .

Proof of Theorem 4.1: Note that

(4.13) E
∫

[0,1]

∣∣∣r̂(d)
n (x)− r(d)(x)

∣∣∣pdx . E

∥∥∥∥∥∑
k∈Ω

(
α̂j0,k − αj0,k

)
φj0,k

∥∥∥∥∥
p

p

+
∥∥∥Pj0r

(d) − r(d)
∥∥∥p

p
.

It follows from Lemma 3.1 that

E

∥∥∥∥∥∑
k∈Ω

(
α̂j0,k − αj0,k

)
φj0,k

∥∥∥∥∥
p

p

. 2p
�

j0
2
− j0

p

�∑
k∈Ω

E
∣∣∣α̂j0,k − αj0,k

∣∣∣p.
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Using Lemma 4.1, |Ω| ∼ 2j0 and 2j0 ∼ n
1

2s′+2d+1 , one knows

E

∥∥∥∥∥∑
k∈Ω

(
α̂j0,k − αj0,k

)
φj0,k

∥∥∥∥∥
p

p

.

(
2j0(1+2d)

n

)p
2

∼ n
− s′p

2s′+2d+1 .(4.14)

Next, one estimates
∥∥Pj0r

(d) − r(d)
∥∥p

p
. When p̃ ≤ p and s > 1ep , Bsep,q(R) ⊆ Bs′

p,q(R).

Then, r(d) ∈ Bs′
p,q(R) and ∥∥∥Pj0r

(d) − r(d)
∥∥∥p

p
. 2−j0s′p(4.15)

thanks to Lemma 3.2. When p̃ > p, s′ = s. Using Hölder’s inequality and the compact
support of r(d) and φ, one gets∥∥∥Pj0r

(d) − r(d)
∥∥∥p

p
.
∥∥∥Pj0r

(d) − r(d)
∥∥∥p

ep .

Then, it is easy to see from Lemma 3.2 and r(d) ∈ Bsep,q(H) that
∥∥Pj0r

(d) − r(d)
∥∥p

p
. 2−j0s′p.

This result with (4.15) shows that, for 1 ≤ p <∞,∥∥∥Pj0r
(d) − r(d)

∥∥∥p

p
. 2−j0s′p .(4.16)

Furthermore, by 2j0 ∼ n
1

2s′+2d+1 , one gets∥∥∥Pj0r
(d) − r(d)

∥∥∥p

p
. n

− s′p
2s′+2d+1 .(4.17)

Combining this with (4.13) and (4.14),

E
∫

[0,1]

∣∣∣r̂(d)
n (x)− r(d)(x)

∣∣∣p dx . n
− s′p

2s′+2d+1 .

This ends the proof of Theorem 4.1.

Since j0 depends on s′ which remains unknown, r̂(d)
n (x) is not adaptive. Theorem 4.1

is however of interest to determine in a simple manner sharp rates of convergence in our
statistical setting. We do not however claim that they are optimal in the minimax sense; the
lower bounds in this case are not proved in this study. Also, Theorem 4.1 can be viewed as
generalization to the [3, Theorem 3.3] to the negatively associated case.

5. NONLINEAR WAVELET ESTIMATION

In this section, we will construct a adaptive nonlinear wavelet estimator and consider
its upper bound over Lp (1 ≤ p < +∞) risk. Now, we define our nonlinear wavelet estimator

(5.1) r̃(d)
n (x) :=

∑
k∈Ω

α̂j0,k φj0,k(x) +
j1∑

j=j0

∑
k∈Λj

β̂j,k I{|bβj,k|≥κtn}ψj,k(x) ,
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where tn := 2jd
√

ln n
n ,

(5.2) β̂j,k = (−1)d µ̂n

n

n∑
i=1

ρ(Yi)
ω(Xi, Yi)h(Xi)

ψ
(d)
j,k (Xi)

and IA denotes the indicator function over a set A, i.e., IA = 1 if A is satisfied and 0 otherwise.
The positive integers j0, j1 (depend on n) and the positive number κ will be given later on.
The main difference between r̃(d) and the linear wavelet estimator is the individual selection
of the β̂j,k’s done by the hard thresholding rule (formalized by the indicator function over
{|β̂j,k| ≥ κtn}). We refer to [13] and [15] for the deep link between this selection technique
and the intrinsic properties of the wavelets.

It should be pointed out that E
[
(−1)d µρ(Yi)

ω(Xi,Yi) h(Xi)
ψ

(d)
j,k (Xi)

]
= βj,k thanks to [14,

Lemma 2.1] (which uses Condition A4).

Note that Lemma 4.1 is still true if α̂j0,k is replaced by β̂j,k, which leads to the following
lemma.

Lemma 5.1. For the problem (1.1)–(1.2) with Conditions A1–A5 hold. If 2j ≤ n,

then for 1 ≤ p <∞, we have

E
∣∣∣β̂j,k − βj,k

∣∣∣p . 2jdp n−
p
2 .

Lemma 5.2. For the problem (1.1)–(1.2) with Conditions A1–A5. Then, for j2j ≤ n

and each w > 0, there exists a constant κ > 1 such that

P
(∣∣∣β̂j,k − βj,k

∣∣∣≥ κtn

)
. 2−wj .

Proof of Lemma 5.2: Via similar arguments to those used in (4.7), we obtain∣∣∣β̂j,k − βj,k

∣∣∣ .

∣∣∣∣∣µn
n∑

i=1

(−1)d ρ(Yi)
ω(Xi, Yi)h(Xi)

ψ
(d)
j,k (Xi)− βj,k

∣∣∣∣∣+
∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣ .
Hence, it suffices to prove

P

(∣∣∣∣∣ 1n
n∑

i=1

[
(−1)dµρ(Yi)
ω(Xi, Yi)h(Xi)

ψ
(d)
j,k (Xi)− βj,k

]∣∣∣∣∣ ≥ κ

2
tn

)
. 2−wj(5.3)

and

P

(
1
n

∣∣∣∣∣
n∑

i=1

[
1

ω(Xi, Yi)
− 1
µ

]∣∣∣∣∣ ≥ κ

2
tn

)
. 2−wj .

One shows the first inequality (5.3) only, the second one is similar and even simpler.

Define γi := (−1)dµρ(Yi)
ω(Xi,Yi) h(Xi)

ψ
(d)
j,k (Xi)− βj,k. Then, one has

P

(∣∣∣∣∣ 1n
n∑

i=1

[
(−1)dµρ(Yi)
ω(Xi, Yi)h(Xi)

ψ
(d)
j,k (Xi)− βj,k

]∣∣∣∣∣ ≥ κ

2
tn

)
= P

(∣∣∣∣∣ 1n
n∑

i=1

γi

∣∣∣∣∣ ≥ κ

2
tn

)
.
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Because ψ(d) is a bounded variation function, one can assume

ψ(d) := ψ − ψ̃ ,

where ψ and ψ̃ are bounded, nonnegative and nondecreasing functions ([22]). Then,

ψ
(d)
j,k := 2jd

(
ψj,k − ψ̃j,k

)
.

Moreover, one defines

βj,k :=
∫

(−1)d 2jd ψj,k(x) r(x) dx , β̃j,k :=
∫

(−1)d 2jd ψ̃j,k(x) r(x) dx ,

and

γi :=
(−1)d 2jdµρ(Yi)
ω(Xi, Yi)h(Xi)

ψj,k(Xi)− βj,k , γ̃i :=
(−1)d 2jdµρ(Yi)
ω(Xi, Yi)h(Xi)

ψ̃j,k(Xi)− β̃j,k .

Then, βj,k = βj,k − β̃j,k, γi = γi − γ̃i and

(5.4) P

(∣∣∣∣∣ 1n
n∑

i=1

γi

∣∣∣∣∣ ≥ κ

2
tn

)
. P

(∣∣∣∣∣ 1n
n∑

i=1

γi

∣∣∣∣∣ ≥ κ

4
tn

)
+ P

(∣∣∣∣∣ 1n
n∑

i=1

γ̃i

∣∣∣∣∣ ≥ κ

4
tn

)
.

According to (1.1), (1.2) and Condition A4, one gets Eγi = βj,k. Moreover, γ1, γ2, ..., γn

are negatively associated by Conditions A1–A3, Lemma 2.1 and the nondecreasing property
of ψj,k. On the other hand, by the bounded properties of functions in Conditions A1–A3,∣∣∣ (−1)d 2jd µρ(Yi)

ω(Xi,Yi) h(Xi)
ψj,k(Xi)

∣∣∣ . 2j(d+ 1
2
) and

|γi| .

∣∣∣∣(−1)d 2jdµρ(Yi)
ω(Xi, Yi)h(Xi)

ψj,k(Xi)
∣∣∣∣+ E

∣∣∣∣(−1)d 2jdµρ(Yi)
ω(Xi, Yi)h(Xi)

ψj,k(Xi)
∣∣∣∣ . 2j(d+ 1

2).

Similar to the arguments of (4.9) with p = 2, E(γi)2 . 22jd. Recall Bernstein’s inequality:
Let X1, ..., Xn be negatively associated random variables such that EXi = 0, |Xi| ≤M and
EX2

i = σ2. Then, for each v ≥ 0,

P

(
1
n

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣≥ v

)
≤ 2 · exp

{
− nv2

2
(
σ2 + vM

3

)} .
It follows from Bernstein’s inequality, tn = 2jd

√
ln n
n and j2j ≤ n that

P

(∣∣∣∣∣ 1n
n∑

i=1

γi

∣∣∣∣∣≥ κ

4
tn

)
. exp

− n
(

κtn
4

)2
2
(
22jd + κtn

12 2j(d+ 1
2)
)
 . exp

{
− lnn κ2

32
(
1 + κ

12

)} .
Obviously, there exists sufficiently large κ > 1 such that exp

{
− ln n κ2

32
(
1+ κ

12

)} . 2−wj . Hence,

P

(∣∣∣∣∣ 1n
n∑

i=1

γi

∣∣∣∣∣≥ κ

4
tn

)
. 2−wj .

Similarly, P
(∣∣∣∣ 1n n∑

i=1
γ̃i

∣∣∣∣ ≥ κ
4 tn

)
. 2−wj . Those results with (5.4) show that

P

(∣∣∣∣∣ 1n
n∑

i=1

[
(−1)dµρ(Yi)
ω(Xi, Yi)h(Xi)

ψ
(d)
j,k (Xi)− βj,k

]∣∣∣∣∣ ≥ κ

2
tn

)
. 2−wj .

This ends the proof of Lemma 5.2.
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Now we will give our last theorem in this position.

Theorem 5.1. For the problem (1.1)–(1.2) with Conditions A1–A5. Let r(d) ∈ Bsep,q(H)
(p̃, q ∈ [1,∞), s > 0), and p̃ ≥ p ≥ 1, or p̃ ≤ p <∞ and s > 1ep . Then, the nonlinear wavelet

estimator r̃
(d)
n defined in (5.1) with 2j0 ∼ n

1
2m+2d+1 (m> s) and 2j1 ∼

(
n

ln n

) 1
2d+1 satisfies

E
∫

[0,1]

∣∣∣r̃(d)
n (x)− r(d)(x)

∣∣∣p dx .
(
lnn

)3p
2 n−αp ,(5.5)

where

(5.6) α =


s

2s+ 2d+ 1
, p̃ ≥ p(2d+ 1)

2s+ 2d+ 1
,

s− 1/p̃ + 1/p
2(s− 1/p̃) + 2d+ 1

, p̃ <
p(2d+ 1)

2s+ 2d+ 1
.

Proof of Theorem 5.1: For the proof of Theorem 5.1, we will prove it under two
cases respectively.

(i) Upper bound estimation under p̃ ≤ p <∞ and s > 1ep .

In this case, (5.6) can be rewritten as

α = min
{

s

2s+ 2d+ 1
,

s− 1/p̃ + 1/p
2(s− 1/p̃) + 2d+ 1

}
.

By the definition of r̃(d)
n (x),

E
∫

[0,1]

∣∣∣r̃(d)
n (x)− r(d)(x)

∣∣∣p dx . E

∥∥∥∥∥∑
k∈Ω

(
α̂j0,k − αj0,k

)
φj0,k

∥∥∥∥∥
p

p

+
∥∥∥r(d) − Pj1+1r

(d)
∥∥∥p

p

+ E

∥∥∥∥∥∥
j1∑

j=j0

∑
k∈Λj

[
β̂j,k I{|bβj,k|≥κtn} − βj,k

]
ψj,k

∥∥∥∥∥∥
p

p

.(5.7)

It follows from Lemma 3.1 that

E

∥∥∥∥∥∑
k∈Ω

(
α̂j0,k − αj0,k

)
φj0,k

∥∥∥∥∥
p

p

. 2p
�

j0
2
− j0

p

�∑
k∈Ω

E
∣∣∣α̂j0,k − αj0,k

∣∣∣p.
Using Lemma 4.1, |Ω| ∼ 2j0 and 2j0 ∼ n

1
2m+2d+1 (m > s), one knows

E

∥∥∥∥∥∑
k∈Ω

(
α̂j0,k − αj0,k

)
φj0,k

∥∥∥∥∥
p

p

. n−
mp

2m+2d+1 < n−
sp

2s+2d+1 ≤ n−αp .(5.8)

Similar to the arguments of (4.15), when p̃ ≤ p and s > 1ep , one gets that∥∥∥Pj1+1r
(d) − r(d)

∥∥∥
p

. 2−j1(s−1/ep+1/p) .(5.9)
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On the other hand, s− 1ep + 1
p ≥ α thanks to p̃ ≤ p and s > 1ep . Then, it follows from 2j1 ∼(

n
ln n

) 1
2d+1 that

∥∥∥Pj1+1r
(d) − r(d)

∥∥∥p

p
.

(
lnn
n

)(s−1/ep+1/p)p

2d+1

.

(
lnn
n

)αp

.

The main work for the proof of Theorem 5.1 is to show

Z := E

∥∥∥∥∥∥
j1∑

j=j0

∑
k∈Λj

[
β̂j,k I{|bβj,k|≥κtn} − βj,k

]
ψj,k

∥∥∥∥∥∥
p

p

. (lnn)
3p
2 n−αp .(5.10)

It is easy to see from Lemma 3.1 that

Z . (j1 − j0 + 1)p−1
j1∑

j=j0

2p( j
2
− j

p)
∑
k∈Λj

E
∣∣∣β̂j,k I{|bβj,k|≥κtn} − βj,k

∣∣∣p .
Then, the classical technique ([13]) gives

Z . (j1 − j0 + 1)p−1 (Z1 + Z2 + Z3) ,(5.11)

where

Z1 =
j1∑

j=j0

2p( j
2
− j

p)
∑
k∈Λj

E
[∣∣∣β̂j,k − βj,k

∣∣∣p I{|bβj,k−βj,k|> κtn
2 }

]
,

Z2 =
j1∑

j=j0

2p( j
2
− j

p)
∑
k∈Λj

E
[∣∣∣β̂j,k − βj,k

∣∣∣p I{|bβj,k|≥κtn, |βj,k|≥κtn
2 }

]
,

Z3 =
j1∑

j=j0

2p( j
2
− j

p)
∑
k∈Λj

|βj,k|p I{|bβj,k|<κtn, |βj,k|≤2κtn} .

• Upper bound of Z1.

It follows from Hölder’s inequality that

E
[∣∣∣β̂j,k − βj,k

∣∣∣p I{|bβj,k−βj,k|> κtn
2 }

]
≤
[
E
∣∣∣β̂j,k − βj,k

∣∣∣2p
]1

2
[
P
(∣∣∣β̂j,k − βj,k

∣∣∣ > κtn
2

)]1
2

.

Furthermore, Lemmas 5.1 and 5.2 imply that

E
[∣∣∣β̂j,k − βj,k

∣∣∣p I{|bβj,k−βj,k|> κtn
2 }

]
. 2jdp n−

p
2 2−

wj
2 ,

where κ > 1 is chosen for w > p+ 2dp in Lemma 5.2. This with the choice 2j0 ∼ n
1

2m+2d+1

(m > s) shows that

Z1 . n−
p
2

j1∑
j=j0

2j( p
2
+dp−w

2 ) . n−
p
2 2j0( p

2
+dp) . n−

mp
2m+2d+1

≤ n−
sp

2s+2d+1 ≤ n−αp .(5.12)
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• Upper bound of Z2.

Taking

2j∗0 ∼
( n

lnn

)1−2α
2d+1

.

Because 0 < α ≤ s
2s+2d+1 and 2j0 ∼ n

1
2m+2d+1 (m> s), 2j∗0 ≤ 2j1 ∼

(
n

ln n

) 1
2d+1 and 2j∗0 ≥(

n
ln n

)1− 2s
2s+2d+1
2d+1 =

(
n

ln n

) 1
2s+2d+1 & n

1
2m+2d+1 ∼ 2j0 . Furthermore, it follows from Lemma 5.1

that

Z21 :=
j∗0∑

j=j0

2p( j
2
− j

p)
∑
k∈Λj

E
[∣∣∣β̂j,k − βj,k

∣∣∣p I{|bβj,k|≥κtn, |βj,k|≥κtn
2 }

]

.

j∗0∑
j=j0

2p( j
2
− j

p)
∑
k∈Λj

2jdp n−
p
2 . 2j∗0( p

2
+dp) n−

p
2 . n−αp .(5.13)

On the other hand, by Lemmas 5.1 and 3.2, and tn = 2jd
√

ln n
n , one has

Z22 :=
j1∑

j=j∗0+1

2p( j
2
− j

p)
∑
k∈Λj

E
[∣∣∣β̂j,k − βj,k

∣∣∣p I{|bβj,k|≥κtn, |βj,k|≥κtn
2 }

]

.
j1∑

j=j∗0+1

2p( j
2
− j

p)
∑
k∈Λj

E
∣∣∣β̂j,k − βj,k

∣∣∣p ( |βj,k|
κtn/2

)ep

.
j1∑

j=j∗0+1

(lnn)−ep/2 n−
p−ep
2 2−j

h
sep− (p−ep) (2d+1)

2

i
.(5.14)

Define

ε := sp̃ − (p− p̃) (2d+ 1)
2

.

Then, ε > 0 holds if and only if p̃ > p(2d+1)
2s+2d+1 , and (5.14) can be rewritten as

Z22 . (lnn)−ep/2 n−
p−ep
2

j1∑
j=j∗0+1

2−jε.(5.15)

When ε > 0, p̃ > p(2d+1)
2s+2d+1 and α = s

2s+2d+1 thanks to (5.6). Moreover, it can be easily checked

that p−ep
2 + 1−2α

2d+1

[
sp̃− (p−ep) (2d+1)

2

]
= αp. This with the choice of 2j∗0 leads to

Z22 . (lnn)−ep/2 n−
p−ep
2 2−j∗0ε ≤ (lnn)

(
1
n

)p−ep
2

+ 1−2α
2d+1

h
sep− (p−ep)(2d+1)

2

i

= (lnn) n−αp .(5.16)

For the case ε ≤ 0, p̃ ≤ p(2d+1)
2s+2d+1 and α =

s− 1
ep
+ 1

p

2
�
s− d

ep

�
+2d+1

. Define p1 := (1− 2α)p. Then,
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α ≤ s
2s+2d+1 and p̃ ≤ p(2d+1)

2s+2d+1 < (1− 2α)p = p1. Similarly to (5.14), one has

Z22 .
j1∑

j=j∗0+1

2p( j
2
− j

p)
∑
k∈Λj

E
∣∣∣β̂j,k − βj,k

∣∣∣p( |βj,k|
κtn/2

)p1

.
j1∑

j=j∗0+1

2p( j
2
− j

p) 2jdp n−
p
2 t−p1

n ‖βj‖p1
p1

.

Because p̃ ≤ p1 and r(d) ∈ Bsep,q(H), we get ‖βj‖p1
p1 ≤ ‖βj‖p1ep . 2−j(s− 1

ep
+ 1

2)p1 and

Z22 .
j1∑

j=j∗0+1

2p( j
2
− j

p) 2jdp n−
p
2 t−p1

n 2−j(s− 1
ep
+ 1

2)p1

≤
(

1
n

)p−p1
2

j1∑
j=j∗0+1

2−j(sp1− p1
ep

+
p1
2

+dp1−dp− p
2
+1) .

By the definitions of p1 and α, sp1− p1ep + p1

2 +dp1−dp− p
2 +1 = 0 and Z22 .

(
1
n

)p−p1
2 (lnn) =

(lnn)
(

1
n

)αp. This with (5.13) and (5.16) shows in both cases,

Z2 = Z21 + Z22 . (lnn) n−αp .(5.17)

• Upper bound of Z3.

It is easy to see that

Z31 :=
j∗0∑

j=j0

2p( j
2
− j

p)
∑
k∈Λj

|βj,k|p I{|bβj,k|<κtn, |βj,k|≤2κtn}

≤
j∗0∑

j=j0

2p( j
2
− j

p)
∑
k∈Λj

|2κtn|p .

j∗0∑
j=j0

2j( p
2
+dp)

(
lnn
n

)p
2

.

(
lnn
n

)p
2

2j∗0( p
2
+dp) .

(
lnn
n

)αp

.(5.18)

On the other hand, one has

Z32 :=
j1∑

j=j∗0+1

2p( j
2
− j

p)
∑
k∈Λj

|βj,k|p I{|bβj,k|<κtn, |βj,k|≤2κtn}

≤
j1∑

j=j∗0+1

2p( j
2
− j

p)
∑
k∈Λj

|βj,k|p
∣∣∣∣2κtnβj,k

∣∣∣∣p−ep

.
j1∑

j=j∗0+1

2p( j
2
− j

p) tp−epn ‖βj‖epep .

(
lnn
n

)p−ep
2

j1∑
j=j∗0+1

2−jε .(5.19)

The same arguments as (5.15) shows that, for ε > 0,

Z32 .

(
lnn
n

)αp

.(5.20)
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For the case of ε ≤ 0, one defines

2j∗1 ∼
( n

lnn

) α
s−1/ep+1/p

.

Note that ε ≤ 0 and s > 1ep . Then, p̃ ≤ p(2d+1)
2s+2d+1 , α =

s− 1
ep
+ 1

p

2
�
s− 1

ep

�
+2d+1

and α ≤ s− 1ep + 1
p .

Hence, n
1−2α
2d+1 . 2j∗0 ≤ 2j∗1 ≤ 2j1 ∼

(
n

ln n

) 1
2d+1 and Z32 = Z321 + Z322, where

Z321 :=
j∗1∑

j=j∗0+1

2p( j
2
− j

p)
∑
k∈Λj

|βj,k|p I{|bβj,k|<κtn, |βj,k|≤2κtn} ,

Z322 :=
j1∑

j=j∗1+1

2p( j
2
− j

p)
∑
k∈Λj

|βj,k|p I{|bβj,k|<κtn, |βj,k|≤2κtn} .

By the arguments of (5.15) and the choice of 2j∗1 , one has

Z321 .

(
lnn
n

)p−ep
2

2−j∗1ε =
(

lnn
n

)p−ep
2

+ αε
s−1/ep+1/p

.

It is easy to check that p−ep
2 + αε

s−1/ep+1/p = αp. Then,

Z321 .

(
lnn
n

)αp

.

On the other hand, using ‖βj‖ep . 2−j(s− 1
ep
+ 1

2), s > 1ep and 2j∗1 ∼
(

n
ln n

) α
s−1/ep+1/p .

Z322 ≤
j1∑

j=j∗1+1

2p( j
2
− j

p)
∑
k∈Λj

|βj,k|p ≤
j1∑

j=j∗1+1

2p( j
2
− j

p) ‖βj‖pep

.
j1∑

j=j∗1+1

2−j(1+sp−p/ep) . 2−j∗1 (1+sp−p/ep) ∼
(

lnn
n

)αp

.

Now, it follows that for ε ≤ 0,

Z32 = Z321 + Z322 .

(
lnn
n

)αp

.

Combining this with (5.18) and (5.20), one knows

Z3 .

(
lnn
n

)αp

.(5.21)

Then, it follows from (5.11), (5.12), (5.17) and (5.21) that

Z . (lnn)
3p
2 n−αp.

Hence,

E
∫

[0,1]

∣∣∣r̃(d)
n (x)− r(d)(x)

∣∣∣p dx . (lnn)
3p
2 n−αp(5.22)

in the case of p̃ ≤ p <∞ and s > 1ep .
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(ii) Upper bound estimation under p̃ > p.

From the above arguments, one finds that when p̃ = p, the inequality (5.22) still holds
without the assumption s > 1ep . It remains to conclude (5.22) for p̃ > p ≥ 1. By Hölder’s
inequality, ∫

[0,1]

∣∣∣r̃(d)
n (x)− r(d)(x)

∣∣∣p dx .

[∫
[0,1]

∣∣∣r̃(d)
n (x)− r(d)(x)

∣∣∣ep dx]p
ep

.

Using Jensen’s inequality and (5.22) with p̃ = p, one gets

E
∫

[0,1]

∣∣∣r̃(d)
n (x)− r(d)(x)

∣∣∣p dx .

[
E
∫

[0,1]

∣∣∣r̃(d)
n (x)− r(d)(x)

∣∣∣ep dx]p
ep

. (lnn)
3p
2 n−αp.

This completes the proof of Theorem 5.1.

Contrary to the linear wavelet estimator given by (4.1), r̃(d)
n (x) is fully adaptive; its

construction does not depend on s. The convergence rate of the nonlinear estimator keeps
the same as that of the linear one up to a logarithmic factor when p̃ > p. However, it gets
better in the case of p̃ ≤ p. This aspect remains standard in nonlinear wavelet estimation in
the standard regression (or density) estimation framework (see [15]). Also, Theorem 5.1 can
be viewed as generalization to the [14, Theorem 1] to the negatively associated case.

6. CONCLUDING REMARKS

In this paper, the estimation of the derivatives of a regression function for biased data
is considered. The feature of the study is to investigate the negatively dependent assumption
on the data, beyond the independent assumption, opening new perspective of applications.
Two wavelet estimators are introduced. The first estimator is based on wavelet projection of
wavelet coefficient estimators only, the second estimator is nonlinear; a selection of the wavelet
coefficient estimators are applied according to their magnitude via a hard thresholding rule.
Sharp rates of convergence are obtained under the Lp risk with 1 ≤ p <∞, assuming that the
function of interest belongs to a ball of Besov spaces Bs

p̃,q(R). These rates correspond to those
obtained in the independent setting, showing that the wavelet methodology is consistent for
this problem. Perspectives of this work are to prove the optimal lower bounds in the minimax
sense, to relax some assumptions on the model, mainly the compact support of r(d) and explore
the practical aspects of the proposed estimators. These points needs further investigations
that we leave for a future work.
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1. INTRODUCTION

Let ξ1, ξ2, . . . , ξn be n independent random variables concentrated on Z+ = {0, 1, 2, ...}
and

(1.1) Wn :=
n∑

i=1

ξi,

their convolution of n independent random variables. The distribution of Wn has received
special attention in the literature due to its applicability in many settings such as rare events,
the waiting time distributions, wireless communications, counts in nuclear decay, and business
situations, among many others. For large values of n, it is in practice hard to obtain the exact
distribution of Wn in general, in fact, it becomes intractable if the underlying distribution
is complicated such as hyper-geometric and logarithmic series distribution, among many
others. It is therefore of interest to approximate the distribution of such Wn with some well-
known and easy to use distributions. Approximations to Wn have been studied by several
authors such as, saddle point approximation (Lugannani and Rice [22] and Murakami [24]),
compound Poisson approximation (Barbour et al. [4], Serfozo [28], and Roos [25]), Poisson
approximation (Barbour et al. [7]), the centred Poisson approximation (Čekanavičius and
Vaitkus [8]), compound negative binomial approximation (Vellaisamy and Upadhye [33]),
and negative binomial approximation (Vellaisamy et al. [32] and Kumar and Upadhye [17]).
In this article, we consider Poisson and Poisson convoluted geometric approximation to Wn.
Let X and Y follow Poisson and geometric distribution with parameter λ and p = 1− q with
probability mass function (PMF)

P (X = k) =
e−λλk

k!
and P (Y = k) = qkp, k = 0, 1, 2, . . . ,(1.2)

respectively. Also, assume X and Y are independent. We use Stein’s method to obtain
bounds for the approximation of the law of Wn with that of X and X + Y . Stein’s method
(Stein [29]) requires identification of a Stein operator and there are several approaches to
obtain Stein operators (see Reinert [26]) such as density approach (Stein [29], Stein et al.

[30], Ley and Swan [19, 20]), generator approach (Barbour [2] and Götze [12]), orthogonal
polynomial approach (Diaconis and Zabell [10]), and probability generating function (PGF)
approach (Upadhye et al. [31]). We use the PGF approach to obtain Stein operators.

This article is organized as follows. In Section 2, we introduce some notations to
simplify the presentation of the article. Also, we discuss some known results of Stein’s method.
In Section 3, Stein operators for Wn and X +Y are obtained as a perturbation of the Poisson
operator. In Section 4, the error bounds for X and X + Y approximation to Wn are derived
in total variation distance. In Section 5, we demonstrate the relevance of our results through
an application to the waiting time distribution of 2-runs. In Section 6, we point out some
relevant remarks.
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2. NOTATIONS AND PRELIMINARIES

Recall that Wn =
∑n

i=1 ξi, where ξ1, ξ2, ..., ξn are n independent random variables con-
centrated on Z+. Throughout, we assume that ψξi

, the PGF of ξi, satisfies

(2.1)
ψ′ξi

(w)
ψξi

(w)
=

∞∑
j=0

gi,j+1w
j =: φξi

(w),

at all w ∈ Z+. Note that this assumption is satisfied for the series (2.1) converges absolutely.
Also, one can show that the hyper-geometric and logarithmic series distribution do not satisfy
(2.1). See Yakshyavichus [34], and Kumar and Upadhye [17] for more details. Note that

1. If ξi ∼ Po(λi) =⇒ gi,j+1 =
{
λi, for j = 0,
0, for j ≥ 1.

2. If ξi ∼ Ge(pi) =⇒ gi,j+1 = qj+1
i .

3. If ξi ∼ Bi(n, pi) =⇒ gi,j+1 = n(−1)j (pi/(1− pi))
j+1.

Next, let µ and σ2 be the mean and variance of Wn, respectively. Also, let µ2 and µ3

denote the second and third factorial cumulant moments of Wn, respectively. Then, it can
be easily verified that

µ =
n∑

i=1

φξi
(1) =

n∑
i=1

∞∑
j=0

gi,j+1, σ
2 =

n∑
i=1

[φξi
(1) + φ′ξi

(1)] =
n∑

i=1

∞∑
j=0

(j + 1)gi,j+1,(2.2)

µ2 =
n∑

i=1

φ′ξi
(1) =

n∑
i=1

∞∑
j=0

jgi,j+1, and µ3 =
n∑

i=1

φ′′ξi
(1) =

n∑
i=1

∞∑
j=0

j(j − 1)gi,j+1.

For more details, see Vellaisamy et al. [32], and Kumar and Upadhye [17].
Next, let H := {f |f : Z+ → R is bounded} and

(2.3) HX̄ := {h ∈ H|h(0) = 0, and h(j) = 0 for j /∈ Supp(X̄)}

for a random variable X̄ and Supp(X̄) denotes the support of random variable X̄.
Now, we discuss Stein’s method which can be carried out in the following three steps.
We first identify a suitable operator AX̄ for a random variable X̄ (known as Stein

operator) such that
E(AX̄h(X̄)) = 0, for h ∈ H.

In the second step, we find a solution to the Stein equation

(2.4) AX̄h(j) = f(j)− Ef(X̄), j ∈ Z+ and f ∈ HX̄

and obtain the bound for ‖∆h‖, where ‖∆h‖ = supj∈Z+
|∆h(j)| and ∆h(j) = h(j + 1)− h(j)

denotes the first forward difference operator.
Finally, substitute a random variable Ȳ for j in (2.4) and taking expectation and

supremum, the expression leads to

(2.5) dTV (X̄, Ȳ ) := sup
f∈H

∣∣Ef(X̄)− Ef(Ȳ )
∣∣ = sup

f∈H

∣∣E[AX̄h(Ȳ )]
∣∣,
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where H = {1A | A ⊆ Z+} and 1A is the indicator function of A. Equivalently, (2.5) can be
represented as

dTV (X̄, Ȳ ) =
1
2

∞∑
j=0

|P (X̄ = j)− P (Ȳ = j)|.

For more details, we refer the reader to Barbour et al. [7], Chen et al. [9], Goldstein and
Reinert [11], and Ross [27]. For recent developments, see Barbour and Chen [3], Ley et al. [21],
Upadhye et al. [31], and references therein.

Next, it is known that a Stein operator for X ∼ Po(λ), the Poisson random variable
with parameter λ, is given by

(2.6) AXh(j) = λh(j + 1)− jh(j), for j ∈ Z+ and h ∈ H.

Also, from Section 5 of Barbour and Eagleson [6], the bound for the solution to the stein
equation (say hf ) is given by

(2.7) ‖∆hf‖ ≤
1

max(1, λ)
, for f ∈ H, h ∈ H.

In terms of ‖f‖, we have the following bound

(2.8) ‖∆hf‖ ≤
2‖f‖

max(1, λ)
, for f ∈ H, h ∈ H.

See Section 3 of Upadhye et al. [31] for more details. Note that the condition h(0) = 0 in
(2.3) is used while obtaining the bound (2.7), see Barbour and Eagleson [6] for more details.
Next, suppose we have three random variables X1, X2, and X3 defined on some common
probability space. Define U = AX2 −AX1 then the upper bound for dTV (X2, X3) can be
obtained by the following lemma which is given by Upadhye et al. [31].

Lemma 2.1 (Lemma 3.1, Upadhye et al. [31]). Let X1 be a random variable with

support S, Stein operator AX1 , and h0 be the solution to Stein equation (2.4) satisfying

‖∆h0‖ ≤ w1‖f‖min(1, α−1),

where w1, α > 0. Also, let X2 be a random variable whose Stein operator can be written as

AX2 = AX1 + U1 and X3 be a random variable such that, for h ∈ HX1 ∩HX2 ,

‖U1h‖ ≤ w2‖∆h‖ and |EAX2h(X3)| ≤ ε‖∆h‖,

where w1w2 < α. Then

dTV (X2, X3) ≤
α

2(α− w1w2)
(
εw1 min(1, α−1) + 2P (X2 ∈ Sc) + 2P (X3 ∈ Sc)

)
,

where Sc denote the complement of set S.

Finally, from Corollary 1.6 of Mattner and Roos [23], we have

(2.9) dTV (Wn,Wn + 1) ≤
√

2
π

(
1
4

+
n∑

i=1

(
1− dTV (ξi, ξi + 1)

))−1/2

.

For more details about these results, we refer the reader to Barbour et al. [5], Upadhye et al.

[31], Vellaisamy et al. [32], Kumar and Upadhye [17], and references therein.
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3. STEIN OPERATOR FOR THE CONVOLUTION OF
RANDOM VARIABLES

In this section, we derive Stein operators for Wn and X+Y as a perturbation of Poisson
operator which are used to obtain the main results in Section 4.

Proposition 3.1. Let ξ1, ξ2, . . . , ξn be independent random variables satisfying (2.1)
and Wn =

∑n
i=1 ξi. Then, a Stein operator for Wn is

AWnh(j) = µh(j + 1)− jh(j) +
n∑

i=1

∞∑
k=0

k∑
l=1

gi,k+1∆h(j + l),

where µ is defined in (2.2).

Proof: It can be easily verified that the PGF of Wn, denoted by ψWn , is

ψWn(w) =
n∏

i=1

ψξi
(w)

as ξ1, ξ2, . . . , ξn are independent random variables. Differentiating with respect to w, we have

ψ
′
Wn

(w) = ψWn(w)
n∑

i=1

φξi
(w)

=
n∑

i=1

ψWn(w)
∞∑

j=0

gi,j+1w
j ,

where φξi
(·) is defined in (2.1). Using definition of the PGF, the above expression can be

expressed as

∞∑
j=0

(j + 1)γj+1w
j =

n∑
i=1

∞∑
k=0

γkw
k
∞∑

j=0

gi,j+1w
j =

∞∑
j=0

(
n∑

i=1

j∑
k=0

γkgi,j−k+1

)
wj ,

where γj = P (Wn = j). Comparing the coefficients of wj , we get

n∑
i=1

j∑
k=0

γkgi,j−k+1 − (j + 1)γj+1 = 0.

Let h ∈ HWn as defined in (2.3), then

∞∑
j=0

h(j + 1)

[
n∑

i=1

j∑
k=0

γkgi,j−k+1 − (j + 1)γj+1

]
= 0.

Therefore,
∞∑

j=0

[
n∑

i=1

∞∑
k=0

gi,k+1h(j + k + 1)− jh(j)

]
γj = 0.
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Hence, a Stein operator for Wn is given by

(3.1) AWnh(j) =
n∑

i=1

∞∑
k=0

gi,k+1h(j + k + 1)− jh(j).

It is well known that

(3.2) h(j + k + 1) =
k∑

l=1

∆h(j + l) + h(j + 1).

Using (3.2) in (3.1), the proof follows.

Proposition 3.2. Let X ∼ Po(λ) and Y ∼ Ge(p) as defined in (1.2). Also, assume

X and Y are independent random variables. Then a Stein operator for X + Y is given by

ĀX+Y h(j) =
(
λ+

q

p

)
h(j + 1)− jh(j) +

∞∑
k=0

k∑
l=1

qk+1∆h(j + l).

Proof: It is known that the PGF of X and Y are

ψX(w) = e−λ(1−w) and ψY (w) =
p

1− qw
,

respectively. Then, the PGF of Z = X + Y is given by

ψZ(w) = ψX(w).ψY (w).

Differentiating with respect to w, we get

ψ′Z(w) =
(
λ+

q

1− qw

)
ψZ(w) =

(
λ+ q

∞∑
j=0

qjwj
)
ψZ(w), |w| < q−1.

Let γ̄j = P (Z = j) be the PMF of Z. Then, using definition of the PGF, we have

∞∑
j=0

(j + 1)γ̄j+1w
j = λ

∞∑
j=0

γ̄jw
j +

∞∑
j=0

qj+1wj
∞∑

k=0

γ̄kw
k.

This implies

∞∑
j=0

(j + 1)γ̄j+1w
j − λ

∞∑
j=0

γ̄jw
j −

∞∑
j=0

(
j∑

k=0

γ̄kq
j−k+1

)
wj = 0.

Collecting the coefficients of wj , we get

(j + 1)γ̄j+1 − λγ̄j −
j∑

k=0

γ̄kq
j−k+1 = 0.

Let h ∈ HZ as defined in (2.3), then

∞∑
j=0

h(j + 1)
[
λγ̄j − (j + 1)γ̄j+1 +

j∑
k=0

γ̄kq
j−k+1

]
= 0.
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Further simplification leads to
∞∑

j=0

[
λh(j + 1)− jh(j) +

∞∑
k=0

qk+1h(j + k + 1)
]
γ̄j = 0.

Therefore,

ĀX+Y h(j) = λh(j + 1)− jh(j) +
∞∑

k=0

qk+1h(j + k + 1).

Using (3.2), the proof follows.

4. APPROXIMATION RESULTS

In this section, we derive an error bound for the Poisson and Poisson convoluted
geometric approximation to Wn. The following theorem gives the bound for Poisson, with
parameter µ, approximation.

Theorem 4.1. Let ξ1, ξ2, . . . , ξn be independent random variables satisfying (2.1)
and Wn =

∑n
i=1 ξi. Then

dTV (Wn, X) ≤ |µ2|
max(1, µ)

,

where X ∼ Po(µ).

Proof: From Proposition 3.1, a Stein operator for Wn is given by

AWnh(j) = µh(j + 1)− jh(j) +
n∑

i=1

∞∑
k=0

k∑
l=1

gi,k+1∆h(j + l)

= AXh(j) + UWnh(j),

where AX is a Stein operator forX as discussed in (2.6). Observe that AWn is a Stein operator
for Wn which can be seen as a perturbation of Poisson operator. Now, for h ∈ HX ∩HWn ,
taking expectation of perturbed operator UWn with respect to Wn and using (2.7), the result
follows.

Next, we derive Z = X + Y approximation to Wn, where X ∼ Po(λ) and Y ∼ Ge(p),
by matching first two moments, that is, E(Z) = E(Wn) and Var(Z) = Var(Wn) which give
the following choice of parameters

λ = µ−
√
σ2 − µ and p =

1

1 +
√
σ2 − µ

.(4.1)

Theorem 4.2. Let ξ1, ξ2, . . . , ξn be independent random variables satisfying (2.1)
and the mean and variance of Wn =

∑n
i=1 ξi satisfying (4.1). Also, assume that σ2 > µ and

λ > 2(q/p)2. Then

dTV (Wn, Z) ≤
λ
√

2
π

∣∣∣µ3 − 2 (q/p)3
∣∣∣ (1

4 +
∑n

i=1

(
1− dTV (ξi, ξi + 1)

))−1/2(
λ− 2(q/p)2

)
max(1, λ)

,

where Z = X + Y , X ∼ Po(λ) and Y ∼ Ge(p).
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Remark 4.1. Note that, in Theorem 4.2, the choice of parameters are valid as

µ = λ+
q

p
>
q

p
=
√
σ2 − µ and p =

1

1 +
√
σ2 − µ

≤ 1,

since σ2 > µ.

Proof of Theorem 4.2: From (3.1), the Stein operator for Wn is given by

AWnh(j) =
n∑

i=1

∞∑
k=0

gi,k+1h(j + k + 1)− jh(j).

Using (3.2), with
∑n

i=1

∑∞
k=0 gi,k+1 = E(Wn) = E(Z) = λ+ q/p, we get

AWnh(j) =
(
λ+

q

p

)
h(j + 1)− jh(j) +

∞∑
k=0

k∑
l=1

qk+1∆h(j + l)

+
n∑

i=1

∞∑
k=0

k∑
l=1

gi,k+1∆h(j + l)−
∞∑

k=0

k∑
l=1

qk+1∆h(j + l)

= AZh(j) + ŪWnh(j).

This is a Stein operator for Wn which can be seen as perturbation of Z = X + Y operator,
obtained in Proposition 3.2. Now, consider

(4.2) ŪWnh(j) =
n∑

i=1

∞∑
k=0

k∑
l=1

gi,k+1∆h(j + l)−
∞∑

k=0

k∑
l=1

qk+1∆h(j + l).

We know that

∆h(j + l) =
l−1∑
m=1

∆2h(j +m) + ∆h(j + 1).

Substituting in (4.2) and using Var(Z) = Var(Wn) with
∑n

i=1

∑∞
k=0 gi,k+1 = E(Wn) = E(Z) =

λ+ q/p, we have

ŪWnh(j) =
n∑

i=1

∞∑
k=0

k∑
l=1

l−1∑
m=1

gi,k+1∆2h(j +m)−
∞∑

k=0

k∑
l=1

l−1∑
m=1

qk+1∆2h(j +m).

Now, taking expectation with respect to Wn, we get

E
[
ŪWnh(Wn)

]
=

∞∑
j=0

[ n∑
i=1

∞∑
k=0

k∑
l=1

l−1∑
m=1

gi,k+1∆2h(j +m)

−
∞∑

k=0

k∑
l=1

l−1∑
m=1

qk+1∆2h(j +m)
]
P [Wn = j].

Therefore,

∣∣E[ŪWnh(Wn)
]∣∣ ≤ 2dTV (Wn,Wn + 1)‖∆h‖

∣∣∣∣∣
n∑

i=1

∞∑
k=0

k(k − 1)
2

gi,k+1 −
∞∑

k=0

k(k − 1)
2

qk+1

∣∣∣∣∣.
≤ dTV (Wn,Wn + 1)‖∆h‖

∣∣∣∣∣µ3 − 2
q3

p3

∣∣∣∣∣.
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Using (2.9), we have

∣∣∣E[UWnh(Wn)
]∣∣∣ ≤ ‖∆h‖

√
2
π

(
1
4

+
n∑

i=1

(
1− dTV (ξi, ξi + 1)

))−1/2∣∣∣∣∣µ3 − 2
q3

p3

∣∣∣∣∣.(4.3)

From Proposition 3.2, we have

‖UX+Y h‖ ≤
q2

p2
‖∆h‖.(4.4)

Using (2.8), (4.3), and (4.4) with Lemma 2.1, the proof follows.

5. AN APPLICATION TO THE WAITING TIME DISTRIBUTION
OF 2-RUNS

The concept of runs and patterns is well-known in the literature due to its applicability
in many real-life applications such as reliability theory, machine maintenance, statistical
testing, and quality control, among many others. In this section, we consider the set up
discussed by Hirano [13] and generalized by Huang and Tsai [15] as follows:

Let N denote the number of two consecutive successes in n Bernoulli trials with success
probability p. Then, Huang and Tsai [15] (with k1 = 0 and k2 = 2 in their notation) have
shown that the waiting time for n-th occurrence of 2-runs can be written as the sum of n
independent and identical distributed (iid) random variables, say U1, U2, . . . , Un, concentrated
on {2, 3, . . . }. Here Ui is 2 plus the number of trials between the (j−1)-th and j-th occurrence
of 2-runs. The PGF of Ui is given by

ψU (t) =
p2t2

1− t+ p2t2
,

where U is the iid copy of Ui, i = 1, 2, . . . , n (see Hung and Tsai [15] for more details).
Now, let Vi = Ui − 2 concentrated on Z+. Then, Kumar and Upadhye [17] have given

the PGF of Vi and which is given by

ψVi(t) =
p2

1− t+ p2t2
=

∞∑
j=0

bj/2c∑
`=0

(
j − `

`

)
(−1)`p2(`+1)

 tj =
∞∑

j=0

gi,j+1t
j ,

where gi,j+1 =
∑bj/2c

`=0

(
j−`
`

)
(−1)`p2(`+1), for each i = 1, 2, . . . , n. For more details, we refer the

reader to Huang and Tsai [15], Kumar and Upadhye [17], and Balakrishnan and Koutras [1],
and references therein.

Now, let Wn̄ =
∑n̄

i=1 Vi then Wn̄ denotes the number of failures before n̄th occurrence
of 2-runs. Therefore, from Theorem 4.1, we have

dTV (Wn̄, Po(µ)) ≤ |µ2|
max(1, µ)

,

where µ = n̄
∑∞

j=0 gi,j+1 and µ2 = n̄
∑∞

j=0 jgi,j+1. In a similar manner, from Theorem 4.2,
we can also obtain the bound for the Poisson convoluted geometric approximation. For more
details, we refer the reader to Section 4 of Kumar and Upadhye [17].
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6. CONCLUDING REMARKS

1. Note that, if ξi ∼ Po(λi), i = 1, 2, . . . , n then dTV (Wn, X) = 0 in Theorem 4.1, as
expected.

2. If ξ1 ∼ Po(λ) and ξ2 ∼ Ge(p), for i = 1, 2, and W2 = ξ1 + ξ2 then dTV (W2, Z) = 0
in Theorem 4.2, as expected.

3. The bounds obtained in Theorems 4.1 and 4.2 are either comparable to or im-
provement over the existing bounds available in the literature. In particular, some
comparison can be seen as follows:

(a) If ξi ∼ Ber(pi), for i = 1, 2, . . . , n then, from Theorem 4.1, we have

dTV (Wn, Po(µ)) ≤ 1
max(1, µ)

n∑
i=1

p2
i ,

where µ =
∑n

i=1 pi. The above bound is same as given by Barbour et al. [7]
and is an improvement over the bound dTV (Wn, Po(µ)) ≤

∑n
i=1 p

2
i given by

Khintchine [16] and Le Cam [18].

(b) If ξi ∼ Ge(pi), i = 1, 2, . . . , n then, from Theorem 4.1, we have

dTV (Wn, X) ≤ 1
max(1, µ)

n∑
i=1

(
qi
pi

)2

.

This bound is an improvement over negative binomial approximation given
by Kumar and Upadhye [17] in Corollary 3.1.

(c) If ξi ∼ NB(αi, pi), i = 1, 2, . . . , n then, from Theorems 4.1, we have

dTV (Wn, Po(µ)) ≤ 1
max(1, µ)

n∑
i=1

αi

(
qi
pi

)2

,(6.1)

where µ =
∑n

i=1
αiqi

pi
. Vellaisamy and Upadhye [33] obtained bound for Sn =∑n

i=1 ξi and is given by

(6.2) dTV (Sn, Po(λ)) ≤ min
(

1,
1√
2λe

) n∑
i=1

αiq
2
i

pi
,

where λ =
∑n

i=1 αiqi = αq. Under identical set up with α = 5 and various
values of n and q, the numerical comparison of (6.1) and (6.2) as follows:

Table 1: Comparison of bounds.

n q From (6.1) From (6.2)

10
0.1

0.1111 0.3370
30 0.1111 1.0109
50 0.1111 1.6848

10
0.2

0.2500 1.0722
30 0.2500 3.2166
50 0.2500 5.3610
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Note that our bound (from (6.1)) is better than the bound given in (6.2).
In particular, graphically, the closeness of these two distributions can be seen
as follows:

Po(50/9)

NB(50,0.9)

2 4 6 8 10 12 14

0.05

0.10

0.15

Figure 1: n = 10, q = 0.1.

Po(50/3)

NB(150,0.9)

5 10 15 20 25 30 35

0.02

0.04

0.06

0.08

0.10

Figure 2: n = 30, q = 0.1.

Po(250/9)

NB(250,0.9)
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Figure 3: n = 50, q = 0.1.
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NB(50,0.8)
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Figure 4: n = 10, q = 0.2.

Po(75/2)

NB(150,0.8)
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Figure 5: n = 30, q = 0.2.

Po(125/2)

NB(250,0.8)

20 40 60 80 100

0.01

0.02

0.03

0.04

0.05

Figure 6: n = 50, q = 0.2.

The above graphs are obtained by using the moment matching conditions.
Also, from the numerical table and graphs, observe that the distributions are
closer for sufficiently small values of q and large values of n, as expected.
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(d) From Theorem 1 of Hung and Giang [14], it is given that, for A ⊂ Z+,

sup
A

∣∣∣∣∣P (Wn ∈ A)−
∑
k∈A

λk
ne
−λn

k!

∣∣∣∣∣
≤

n∑
i=1

min
{
λ−1

n (1− e−λn)rn,i(1− pn,i), 1− pn,i

}
(1− pn,i)p−1

n,i ,(6.3)

where Wn =
∑n

i=1Xn,i, Xn,i ∼ NB(rn,i, pn,i) with λn = E(Wn). Note that
if min

{
λ−1

n (1− e−λn)rn,i(1− pn,i), 1− pn,i

}
= 1− pn,i, for all i = 1, 2, ..., n,

then

sup
A

∣∣∣∣∣P (Wn ∈ A)−
∑
k∈A

λk
ne
−λn

k!

∣∣∣∣∣ ≤
n∑

i=1

(1− pn,i)2p−1
n,i ,(6.4)

which is of order O(n). Clearly, for large values of n, Theorem 4.1 is an
improvement over (6.4).
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– Department of Statistics, Universidad de Concepción,

Concepción, Chile
jifiguer@gmail.com

Sebastián Niklitschek-Soto
– Department of Statistics, Universidad de Concepción,

Concepción, Chile
sniklitschek@udec.cl

V́ıctor Leiva �

– School of Industrial Engineering, Pontificia Universidad Católica de Valparáıso,
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1. INTRODUCTION

Distribution theory is an emerging field of statistics which has received an increasing
attention recently, with different methods that have been proposed to generate new distribu-
tions; see [4, 21, 23, 24, 45]. To the best of our knowledge, the method used in the present
work has not been previously considered.

When modeling continuous data restricted to a bounded interval, the beta distribution
is a natural choice providing a wide variety of shapes; see [12]. Some of its extensions, derived
by using general classes of distributions, are the beta-Gumbel [37], beta-Fréchet [36], beta-
exponential [38], beta-Pareto [1], beta-generalized-exponential [3], beta-normal [11], beta-
power [8], beta-Marshall-Olkin [2], and beta-Marshall-Olkin-Lomax [45] distributions. These
extensions of the beta distribution have provided good fits to different types of data. However,
all of such extensions lose the essence of the beta distribution of having its support in the
unit interval, that is, to model data between zero and one.

An alternative to the beta distribution is a double-bounded distribution first defined
in [25] and after named the Kumaraswamy distribution in [22]. The cumulative distribu-
tion function (CDF) of the Kumaraswamy distribution has a closed analytical form. Some
of its extensions are the Kumaraswamy-G [6], Kumaraswamy-Gumbel [7], Kumaraswamy-
Weibull [9], Kumaraswamy-generalized-gamma [10], and trapezoidal-Kumaraswamy [42] dis-
tributions. The extensions of the Kumaraswamy distribution include additional parameters,
are able to model bathtub-shaped hazard rates, and are widely applied in engineering.

In general, as mentioned, the beta distribution is very flexible and often employed in
practice. However, it is common in many cases to have bounded data which follow heavy left-
and-right tailed distributions. Therefore, as noted in [14, 18], the beta and Kumaraswamy
distributions, as well as their extensions above mentioned, are not suitable to model heavy
tails. In order to add flexibility into the beta distribution, the rectangular beta (RB) distribu-
tion was proposed in [18]. In practice, the beta and RB distributions have been powerful tools
for modeling bounded data, but the RB distribution permits the modeling of heavy-tailed
bounded data in equal proportions in both tails. An approach to solve the above mentioned
limitations was presented in [19], but the parameters of such an approach do not have a clear
interpretation and there is no an efficient method for estimating these parameters. Another
attempt for obtaining alternative beta distributions is provided in [24]. To the best of our
knowledge, there is no distributions that allow the modeling of heavy left-and-right tailed
bounded data in different proportions.

The objective of this paper is to propose a bounded-support distribution based on a novel
method to circumvent the above-mentioned limitations. This new distribution is the trapezoidal
beta (TB) model, which has high flexibility to describe the tails in different proportions for its
probability density function (PDF). The TB distribution is a mixture model, extends both the
beta and rectangular beta distributions, and permits one to describe bounded data with heavy
right and/or left tails in different proportions. We estimate the TB distribution parameters
by using the maximum likelihood method. We take advantage of the finite mixture represen-
tation of the TB distribution to implement the expectation-maximization (EM) algorithm.
This algorithm has two main steps: the expectation (E) step and the maximization (M) step.
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The EM algorithm is a widely applicable approach to the iterative computation of maximum
likelihood estimates, which is useful in a variety of incomplete data settings. The idea behind
the EM algorithm applied to mixture models is to assume that the mixture is generated by
missing observations. For more details of this algorithm, see [34].

The rest of the paper is organized as follows. In Section 2, we provide background of the
beta and RB distributions and propose the new TB distribution specifying its mathematical
properties. In addition, in this section, a shape analysis is performed to show the flexibility
of the TB distribution graphically. Section 3 describes a methodology to estimate the TB
distribution parameters based on the EM algorithm. In Section 4, the proposed distribution
is evaluated throughout Monte Carlo simulation studies. A comparison of the proposed dis-
tribution and the beta and RB distributions is also conducted in this section. Furthermore,
we include an empirical illustration with education data corresponding to a university selec-
tion score of 1295 institutions in the Metropolitan region of Chile. Finally, some concluding
remarks and possible directions for future research are given in Section 5.

2. THE NEW DISTRIBUTION

In this section, background with respect to the beta and RB distribution is provided
and then the proposed TB distribution is derived specifying its mathematical properties and
a shape analysis to graphically show the flexibility of the TB distribution.

2.1. Background

Let Y follow a beta distribution of parameters α > 0 and β > 0, which we denote by
Y ∼ Beta(α, β). The PDF of Y is given by

fY (y;α, β) =
Γ(α+ β)
Γ(α)Γ(β)

yα−1(1− y)β−1, 0 < y < 1,(2.1)

where Γ is the gamma function. The mean and variance of Y are established respectively as

E(Y ) =
α

α+ β
,(2.2)

Var(Y ) =
αβ

(α+ β)2(α+ β + 1)
.

In order to add flexibility into the beta distribution, the RB distribution was proposed. If a
random variable Z follows an RB distribution of parameters 0 ≤ θ ≤ 1, α > 0 and β > 0, the
notation Z ∼ RB(θ, α, β) is adopted. The PDF of Z is stated as

(2.3) fZ(z; θ, α, β) = θ + (1− θ)fY (z;α, β), 0 < z < 1,

where θ is a mixture parameter. From (2.2) and (2.3), we obtain that

E(Z) =
θ

2
+ (1− θ)

α

α+ β
,(2.4)

Var(Z) =
αβ

(α+ β)2(α+ β + 1)
(1− θ)(1− θ(1 + (α+ β))) +

θ

12
(4− 3θ).
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By taking θ = 1 and θ = 0 in the RB distribution, we get the uniform and beta distributions,
so that its mean and variance are given in (2.4). The RB distribution permits one to model
heavy-tailed bounded data in equal proportions on both tails as noted in the shape analysis;
see Figure 1(a).

2.2. The trapezoidal beta distribution

Consider a non-negative polynomial P such that 0 ≤
∫ 1
0 P (t; a, b) dt ≤ 1. By choosing

P (t; a, b) = a+ (b− a)t, the PDF of the TB distribution is obtained as

fT (t; a, b, α, β) = a+ (b− a)t+
(

1−
∫ 1

0
(a+ (b− a)t) dt

)
fY (t;α, β)

= a+ (b− a)t+
(

1− a+ b

2

)
fY (t;α, β), 0 < t < 1,(2.5)

with 0 ≤ a, b ≤ 2, 0 ≤ a+ b ≤ 2, and fY being the beta PDF of parameters α and β as defined
in (2.1). In this case, the notation T ∼ TB(a, b, α, β) is used. Note that the TB PDF defined
by (2.5) can be rewritten as a mixture of three beta distributions by considering

fT (t; a, b, α, β) = ω1f1(t) + ω2f2(t) + ω3f3(t),(2.6)

=
a

2
(2− 2t) +

b

2
(2t) +

(
1− a+ b

2

)
fY (t;α, β),

where f1(t) = fY (t; 1, 2) = 2− 2t, f2(t) = fY (t; 2, 1) = 2t and f3(t) = fY (t;α, β) correspond
to particular cases of the beta PDF described in (2.1). In addition,

(2.7) ω1 =
a

2
, ω2 =

b

2
, ω3 =

(
1− a+ b

2

)
are the weights such that ω1 + ω2 + ω3 = 1 and 0 ≤ ω1, ω2, ω3 ≤ 1.

We now present some properties of the TB distribution. Let T ∼ TB(a, b, α, β). Then,
the k-th moment of T is given by

(2.8) mk = E(T k) =
a

k + 1
+
b− a

k + 2
+
(

1− a+ b

2

)
m∗k,

where m∗k is the k-th moment of the Beta(α, β) distribution. Thus, from (2.8), we have

mk =
a

k + 1
+
b− a

k + 2
+
(

1− a+ b

2

)(k−1∏
r=0

α+ r

α+ β + r

)
.(2.9)

In addition, the moment generating and characteristic functions of T ∼ TB(a, b, α, β) are
stated respectively as

MT (v) = E(evT ) = 1 +
∞∑

k=1

mk
vk

k!
, v ∈ R,(2.10)

ϕT (v) = E(eivT ) = 1 +
∞∑

k=1

mk
(iv)k

k!
, v ∈ R.



Modeling heavy-tailed bounded data by the trapezoidal beta distribution with applications 391

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

z

f Z
(z

)
θ = 0.1

θ = 0.5

θ = 0.9

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

t

f T
(t

)

a=1.0,b=1.0

a=0.0,b=0.0

a=0.5,b=0.5

a=1.0,b=0.5

a=0.5,b=1.0

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

t

f T
(t

)

a = 0.0,b = 0

a = 1.0,b = 0

a = 1.5,b = 0

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

t

f T
(t

)

a=0,b=0.0

a=0,b=1.0

a=0,b=1.5

(d)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

t

f T
(t

)

a=0.0,b=0.5

a=0.5,b=0.5

a=1.0,b=0.5

(e)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
.0

2
.0

3
.0

t

f T
(t

)

a=0.5,b=0.0

a=0.5,b=0.5

a=0.5,b=1.0

(f)

Figure 1: Plots of the (a) RB(θ, α = 10, β = 15) PDF with θ as indicated,
and (b)–(f) TB(a, b, α = 10, β = 15) PDF with a, b as listed.
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Based on (2.9) or (2.10), we deduce that the mean and variance of T are given respectively
as

E(T ) =
a+ 2b

6
+
(

1− a+ b

2

)
α

α+ β
,(2.11)

Var(T ) =
(

3a+ 9b− (a+ 2b)2

36

)
+
(

α

α+ β

)(
1− a+ b

2

)(
α+ 1

α+ β + 1
− α(2− a− b)

2(α+ β)
− a+ 2b

3

)
.

Note that taking a = b = 0 (beta distribution), and a = b = θ (RB distribution) in (2.11),
the mean and variance established in (2.2) and (2.4) are obtained, respectively.

Figure 1(a) shows how the RB distribution allow us to model heavy tails in equal
proportions in both tails, but not in different proportions, such as the TB distribution does.
Figure 1(b) reflects a global vision of the TB distribution with its diverse particular cases,
which are the uniform (solid line in black), beta (segmented line in black), RB (dotted line
in black) and two different types of TB (in gray) distributions. Observe that the parameters
a and b presented in the PDF of the TB distribution defined in (2.5) can be intuitively
interpreted as the lift at the left and right tails, respectively; see Figure 1(b)–(e). For example,
Figure 1(c) lifts the left tails but not the right tails, whereas Figure 1(d) does the opposite.
Similarly, Figure 1(e) lifts the left tails and also the right tails, whereas Figure 1(f) does the
opposite. In summary, particular cases of the TB distribution, plotted in Figure 1(a)–(f), are:
(i) a = b = 1 (uniform distribution); (ii) a = b = 0 (beta distribution); and (iii) a = b = θ

(RB distribution), with PDFs defined in (2.1) and (2.3), respectively. Special and interesting
situations occur when a = 0, b 6= 0 and when a 6= 0, b = 0, in whose case extreme-tail events
are concentrated close to zero or to one, respectively, as noted in Figure 1(c)–(d).

3. ESTIMATION AND EM ALGORITHM

In this section, a methodology to estimate the parameters of the TB distribution is
provided. We implement the EM algorithm to efficiently obtain the corresponding estimates.

3.1. Estimation of TB distribution parameters

Note that the parameters of the TB distribution can be estimated by the maximum
likelihood method. Then, by taking advantage of the finite mixture representation of the
TB distribution stated in (2.6), the EM algorithm may be implemented to efficiently estimate
the TB distribution parameters.

First, based on a sample T = (T1, ..., Tn)> of size n from the TB distribution of PDF as
given in (2.5), with observations t = (t1, ..., tn)>, the likelihood function for Θ = (a, b, α, β)>

is written as

L(Θ; t) =
n∏

i=1

(
a+ (b− a)ti +

(
1− a+ b

2

)
fY (ti;α, β)

)
.(3.1)
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Then, in order to build estimators for the parameter Θ of the TB distribution, we can
maximize the log-likelihood function defined as

`(Θ; t) =
n∑

i=1

log
(
a+ (b− a)ti +

(
1− a+ b

2

)
fY (ti;α, β)

)
.(3.2)

The maximum likelihood estimates of a, b, α and β are obtained by differentiating the function
(3.2) with respect to the mentioned parameters, generating the corresponding score vector.
This vector must be equated to zero and the associated solution are the maximum likelihood
estimates. However, such equations do not have closed-form and then they need to be solved
numerically to maximize the log-likelihood function defined in (3.2). Subsequently, a non-
linear optimization method is needed. For instance, the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) quasi-Newton method can be used; see [26]. We use the EM algorithm to obtain the
parameter estimates.

3.2. EM algorithm

An efficient computationally strategy for estimating the parameter Θ = (a, b, α, β)> of
the TB distribution is to optimize the function (3.2) as a missing data framework.

The optimization problem can be solved with the EM algorithm and the finite mixture
structure of the TB distribution. Consider a discrete random variable U for the missing (unob-
served) data, where ui = j, with j ∈ {1, 2, 3}, indicates which mixture component generates ti.
Thus, the complete data v are formed by v = (t>,u>)>, where the unobserved data are
u = (u1, ...,un)> and the observed data are t = (t1, ..., tn)>. Thus, the likelihood function for Θ,
considering the finite mixture representation of the TB distribution given in (2.6), under
a complete data setting with n observations is now given by

(3.3) L(c)(Θ;v) =
n∏

i=1

(ω1f1(t))
11 (ω2f2(t))

12 (ω3f3(t))
13 ,

where 1 is the indicator function, such that 1j = 1 if ui = j, with j ∈ {1, 2, 3}, and 1j = 0
otherwise. Hence, the log-likelihood function based on (3.3) for complete data is defined as

(3.4) `(c)(Θ;v) =
n∑

i=1

11 log (ω1f1(t)) +
n∑

i=1

12 log (ω2f2(t)) +
n∑

i=1

13 log (ω3f3(t)) .

Note that the complete data log-likelihood function defined in (3.4) contains missing data, so
that parameter estimates obtained directly from it cannot be calculated. Thus, in order to
compute the estimates of a, b, α and β, we use the EM algorithm, recalling it has the E-step
and M-step.

In order to implement its E-step, we need to find the expected value of the log-likelihood
function stated in (3.4) and consequently of 1j , for j ∈ {1, 2, 3}, given Ti. Therefore, it is
necessary to specify an auxiliary function Q, which is the mentioned conditional expectation,
using the random vector V = (T>,U>)>, associated with the complete data v, given the
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observed data T = t, established as

Q(Θ) = E(`(c)(Θ;V )|T = t)(3.5)

=
n∑

i=1

E(`(c)(Θ;Vi)|Ti = ti)

=
n∑

i=1

3∑
j=1

pij`
(c)(Θ; vi, ti)

=
n∑

i=1

3∑
j=1

pij log(ωjfj(ti;Θ)),

where

(3.6) pij = P(Ui = j|Ti = ti;Θ) =
ωjfj(ti;Θ)∑3
l=1 ωlfl(ti;Θ)

, i ∈ {1, ..., n}, j ∈ {1, 2, 3}.

In order to initiate the EM algorithm, in its E-step, we need a starting value Θ̂(0); see details
about how to establish this starting value in Subsection 4.2. Thus, from (3.5), we have

Q(Θ)|
Θ= bΘ(r−1) =

n∑
i=1

3∑
j=1

p̂
(r−1)
ij log(ω̂(r−1)

j fj(ti; Θ̂(r−1))),(3.7)

where Θ̂(r−1) is the value of Θ for the (r − 1)-th iteration at which the function Q(Θ) must
be evaluated in order to iterate the EM algorithm. In addition, for j ∈ {1, 2, 3}, ωj and fj are
defined in (2.6), with ω̂

(r−1)
j being the value of ωj given in (2.7) for the (r − 1)-th iteration

and ω̂(0)
j as established in Subsection 4.2. Furthermore, we have

(3.8) p̂
(r−1)
ij =

ω̂
(r−1)
j fj(ti; Θ̂(r−1))∑3

l=1 ω̂
(r−1)
l fl(ti; Θ̂(r−1))

, i ∈ {1, ..., n}, j ∈ {1, 2, 3}.

Note that the expression given in (3.8) is obtained from E(1j |Ti = ti)|Θ= bΘ(r−1) .

In the M-step, we must find Θ̂(r), which maximizes Q(Θ)|
Θ= bΘ(r−1) defined in (3.7). By

taking the derivatives of Q with respect to ω1, ω2, and ω3, under the restriction ω1+ω2+ω3 =1,
it is possible obtain the estimates

(3.9) ω̂
(r)
j =

∑n
i=1 p̂

(r−1)
ij∑n

i=1

∑3
j=1 p̂

(r−1)
ij

=
n̂

(r−1)
j

n
, j ∈ {1, 2, 3}.

In addition, the derivatives with respect to α and β lead to the usual maximum likelihood
estimates of the beta distribution, which solves the equations

ψ
(
α̂(r)

)
− ψ

(
α̂(r) + β̂(r)

)
=
∑n

i=1 p̂
(r−1)
i3 log(ti)

n̂
(r−1)
3

,

(3.10)

ψ
(
β̂(r)

)
− ψ

(
α̂(r) + β̂(r)

)
=
∑n

i=1 p̂
(r−1)
i3 log(1− ti)

n̂
(r−1)
3

,

where ψ is the digamma function that is defined as the logarithmic derivative of the gamma
function Γ stated in (2.1) and given by

ψ(x) =
d
dx

log
(
Γ(x)

)
=

1
Γ(x)

d
dx

Γ(x).
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The estimating equations presented in (3.10) can be solved using a quasi-Newton algorithm
and the estimates of ω1, ω2, and ω3, subject to ω1 + ω2 + ω3 = 1, are obtained from (3.9).
Once the parameters are updated in each iteration, repeat both the E and M steps iteratively
until a certain criterion of convergence is obtained. The algorithm EM must be iterated until
reaching convergence, for example, when |`(c)(Θ̂(r))− `(c)(Θ̂(r−1))| < 10−5, where Θ̂(r) is the
current ML estimate of Θ and Θ̂(r−1) its previous estimate, with `(c) being given in (3.4);
see McLachlan and Krishnan [35, pp. 21–23]. Note that, in some cases, the EM algorithm
does not admit an analytical solution in its E-step or M-step. Then, it becomes necessary
to use iterative methods for the computation of the expectation or for the maximization.
For variants of the EM algorithm based on approximations of its E-step or M-step, which
preserve its convergence properties, see [32]. In our case, in the M-step of the algorithm, we use
the BFGS method to iteratively solve the corresponding non-linear maximization problem.
The BFGS method is implemented in the R software by the functions optim and optimx;
see www.R-project.org and R Core Team [39].

4. NUMERICAL STUDIES

In this section, the TB distribution is evaluated throughout Monte Carlo simulations,
comparing it with the beta and RB distributions. Here, we also include an empirical illustra-
tion with education data to show potential applications of the results obtained in the present
investigation.

4.1. Simulation study

We start this section with an important remark about the data generation from the
TB distribution. As noted in (2.6), this distribution can be seen as the mixture of three beta
distributions. Except in some extreme cases such as the L-J-U-shaped beta distribution, the
weights of the first two distributions on the mixture precisely capture the behavior of their
tails. From Figure 2, note that, if we generate a small sample of data from the TB distribution
with parameter Θ = (0.2, 0.5, 10, 15), we might not have data in any of its tails. Therefore,
the corresponding histogram may not represent the true shape of the TB distribution. This
small sample behavior is improved as the sample size increases and noted in Figure 2
for different values of the sample size n. For this reason, in our simulation study, we consider
a sample size n = 1000.

We carry out a Monte Carlo simulation study to compare the performance of the beta,
RB and TB distributions with samples generated from each of them. In order to capture the
particular tail behavior of each one of these distributions, we use a sample size of n = 1000 and
generate 100 samples for calculating the mean of the log-likelihood and Akaike information
criterion (AIC). The AIC is given by AIC = −2`(Θ̂) + 2d, where `(Θ̂) is the log-likelihood
function for Θ, associated with the underlying distribution, evaluated at Θ = Θ̂, d is the
dimension of the parameter space, and n is the size of the data set. Note that this criterion
is based on the log-likelihood function and penalize the distribution with more parameters.
A distribution whose information criterion has a smaller value is better [13, 47].

www.R-project.org
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Figure 2: Histograms for the indicated sample size n from the TB(0.2,0.5,10,15) distribution
with simulated data, where the true TB PDF is drawn in solid line.
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Firstly, we simulate data from the TB distribution with parameter Θ = (0.3, 0.7, 10, 15).
In Table 1, we observe that the TB distribution achieves a better fit than the RB and beta
distributions. Table 2 reports that the RB distribution fits the data by finding a value for θ
between a and b. The beta distribution fits the data by increasing the variance, that is,
by finding smaller values for α and β compensating the inability of this distribution to lift
the tails. Secondly, we simulate data from the RB(0.4,10,15) distribution. In Table 3, note
that the TB distribution fits the data with the same good level than the RB distribution.
Table 4 reports that the TB distribution gives similar parameter estimates compared to the
RB distribution. As in the first scenario, the beta distribution fits the data by increasing
the variance. We collect a sample from the Beta(10,15) distribution. In Table 5, notice that
the TB and RB distributions fit the data with the same good level in comparison to the
beta distribution. Table 6 reports that the TB and RB distributions give similar parameter
estimates in comparison to the beta distribution.

Table 1: Mean log-likelihood and AIC of the listed distributions for samples
drawn from a TB(0.3,0.7,10,15) distribution with simulated data.

Distribution Log-likelihood AIC

TB 193.3288 −378.6576
RB 181.0892 −356.1783
Beta 64.0552 −124.1103

Table 2: Mean estimated parameter of the indicated distribution for samples
drawn from a TB distribution with simulated data.

Distribution
a = 0.3 b = θ = 0.7 α = 10 β = 15

ba bb, bθ bα bβ

TB(a, b, α, β) 0.3023 0.7187 10.0799 15.1376
RB(θ, α, β) — 0.5435 11.0549 16.2195
Beta(α, β) — — 1.6037 1.6018

Table 3: Mean log-likelihood and AIC of the listed distributions for samples
drawn from an RB(0.4,10,15) distribution with simulated data.

Distribution Log-likelihood AIC

TB 278.6866 −549.3732
RB 278.1757 −550.3514
Beta 132.9706 −261.9412

Table 4: Mean estimated parameter of the indicated distribution for samples
drawn from a TB distribution with simulated data.

Distribution
a = 0.4 b = θ = 0.4 α = 10 β = 15

ba bb, bθ bα bβ

TB(a, b, α, β) 0.4188 0.4141 9.7293 14.7257
RB(θ, α, β) — 0.4161 9.7188 14.7168
Beta(α, β) — — 1.7944 2.1850
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Table 5: Mean log-likelihood and AIC of the listed distributions for samples
drawn from a Beta(10, 15) distribution with simulated data.

Distribution Log-likelihood AIC

TB 942.6532 −1877.306
RB 942.6532 −1879.306
Beta 942.6532 −1881.306

Table 6: Mean estimated parameter of the indicated distribution for samples
drawn from a Beta(10, 15) distribution with simulated data.

Distribution
a = 0 b = θ = 0 α = 10 β = 15

ba bb, bθ bα bβ

TB(a, b, α, β) 9.88e−324 4.94e−324 10.3288 15.5109
RB(θ, α, β) — 9.88e−324 10.3294 15.5120
Beta(α, β) — — 10.3274 15.5087

4.2. Empirical illustration

To illustrate the TB distribution in practice, we apply the proposed methods to a real-
world data set and we compare the goodness of fit of the beta, RB and TB distributions.
We analyze the data collected in the year 2016 of the average score of a university selection
test for 1295 school establishments in the Metropolitan Region of Chile. This test is applied to
students who have graduated from school in Chile at a national level and covers different areas
of knowledge. In Chile, this test is named “Prueba de Selección Universitaria” (PSU) and
the results obtained by the students in this test define the available possibilities to continue
their studies in different universities in the country. The data set is publicly available on the
“datachile” website (https://es.datachile.io).

We are interested in describing the distribution of the performance of the students who
have applied to the PSU. To measure the performance, a total of 1295 average scores per
establishment have been taken in the Metropolitan Region of Chile and scored in the interval
(0, 1) throughout the transformation proposed by [44] defined as

t =
(N − 1)
N

(t∗ − a1)
(a2 − a1)

+
1

2N
, t∗ ∈ [a1, a2].

In our case, a1 = 293.5, a2 = 715.5 and N = 1295.

From the histogram presented in Figure 3, note that the distribution of the data has a
lifted right tail and slightly lifted left tail. Thus, it is justifiable to propose the TB distribution
to model these data, that is, we assume that T ∼ TB(a, b, α, β). From Table 7, observe
that the TB distribution achieves the best fit compared to the RB and beta distributions.
In Table 8, we present the estimated parameters according to the method described in Section 3.

https://es.datachile.io
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Figure 3: Histogram with estimated PDFs for the indicated distribution
with the education data.

As starting values of Θ = (a, b, α, β)> to initiate the EM algorithm, we consider the maximum
likelihood estimates of α and β of the beta distribution. To obtain a and b, we consider the
relation given in (2.7) with ω1 and ω2, respectively, according to a visual conjecture detected
at the tails of the histogram of the data such as mentioned above. This is corroborated by the
estimates obtained, mainly at its right tail (â = 0.0066 and b̂ = 0.2742). Observe that these
estimates have a very intuitive interpretation, since the tails of the PDF are lifted in these
quantities. The RB distribution attempts to compensate for this fact by assigning weight
in both tails (â = b̂ = θ̂ = 0.0334), whereas the beta distribution tries to compensate it by
increasing the variance (decreasing α̂ and β̂). In Figure 3, we see the adjusted PDFs for
the three different distributions, with the TB distribution being the model that captures the
empirical behavior of the data better.

Table 7: Log-likelihood/AIC of the indicated distribution for education data.

Distribution
Indicator

TB RB Beta

Log-likelihood 413.896 401.647 371.711
AIC −819.791 −797.293 −739.422

Table 8: Estimates of the indicated distribution parameter with education data.

Distribution ba bb = bθ bα bβ

TB(a, b, α, β) 0.0066 0.2742 4.3566 5.0824
RB(θ, α, β) — 0.0334 3.5307 3.6990
Beta(α, β) — — 3.1095 3.1901
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5. CONCLUSIONS AND FUTURE RESEARCH

This paper reported the following findings:

(i) By using a new method, we have proposed a new family of four-parameter distri-
butions, called the trapezoidal beta distribution. The new model is widely flexible
and generalizes the beta and rectangular beta distributions, being the new distri-
bution an alternative to the beta distribution when both left and right tails are
heavy.

(ii) It was shown that the trapezoidal beta distribution can be rewritten conveniently
as a mixture of three beta distributions, two with specific values in their param-
eters, and one traditional beta distribution with two arbitrary parameters.

(iii) By taking advantage of the finite mixture representation of the new family of
distributions, the expectation-maximization algorithm was implemented to effi-
ciently estimate its parameters.

(iv) Monte Carlo simulations based on the new family of distributions proposed in
this research were provided to detect its performance.

(v) An example with a real data set was conducted to illustrate the potential appli-
cations with the new family of distributions proposed in the paper. In addition,
we compare the new distributions to their natural competitors, corresponding to
the beta and rectangular beta distributions, showing the convenience of using the
new distribution.

In summary, we have proposed a new family of distributions based on new method, which
allows us to model data with support between zero and one as well as heavy left and/or right
tails. We estimated the parameters of the new distribution with the expectation-maximization
algorithm. Numerical studies with simulated and real data were performed to show the
good empirical behavior of the estimators and to illustrate potential applications. In the
simulation study, we observed that the trapezoidal beta distribution performed as well as
the rectangular beta and beta distributions when the samples are generated from any of
these two distributions. Moreover, we noted marked differences in favor of the trapezoidal
beta distribution when the samples were generated from the trapezoidal beta distribution.
In the empirical illustration, the trapezoidal beta distribution turned out to be the model
that fits the data best, based on the Akaike information criterion. Furthermore, it is the
only distribution that adequately addresses the essence of the data distribution when heavy
left and/or right right tails are present. We conclude that the trapezoidal beta distribution
seems to be a new robust alternative for modeling bounded data. Therefore, this investigation
may be a knowledge addition to the tool-kit of diverse practitioners, including educators,
statisticians, and data scientists.

Some open problems that arose from the present investigation are the following:

(i) It is possible to extend the benefits of the trapezoidal beta distribution to any
bounded distribution.

(ii) A re-parametrization of the trapezoidal beta model in terms of its mean is of
interest. This will allow us to connect its mean to a regression structure in a
similar manner to generalized linear models.
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(iii) Identifiability problems can be present in the case of the parameter estimation
of the new distribution and they must be studied further.

(iv) The use of covariates when modeling a response with support in [0, 1] following
the new family of distributions is of interest.

(v) An extension of the present study to the multivariate case is also of practical
relevance [27, 31, 41].

(vi) Incorporation of temporal, spatial, functional, and quantile regression structures
in the modeling, as well as errors-in-variables, and PLS regression, are also of
interest [5, 16, 17, 20, 28, 29, 33, 40, 43].

(vii) The derivation of diagnostic techniques to detect potential influential cases are
needed, which are an important tool to be used in all statistical modeling
[5, 15, 30].

(viii) Robust estimation methods when outliers are present into the data set can be
applied [46].

(ix) Applications of the new methodology proposed here can be of interest in diverse
areas [23].

Therefore, the proposed results in this study promotes new challenges and offers an open
door to explore other theoretical and numerical issues. Research on these and other issues
are in progress and their findings will be reported in future articles.
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