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Editorial: 

In memoriam: Sir David Cox [1924-2022] 
We deeply regret to hear that Sir David Cox passed away on January 18th, 2022, at age 97. His 
name is associated with one of the most influential statisticians of all time. REVSTAT - Statistical 
Journal is honoured with his collaboration in the Editorial Board since its foundation. David Cox 
served as REVSTAT Associate Editor from 2002 to 2018. He has been very active until recently, 
and his last article in our journal was published in October 2020 [Matched pairs with binary 
outcomes,  REVSTAT - Statistical Journal, Vol. 18, No. 5, 581-592, 2020, jointly with Christiana 
Kartsonaki]. 

Cox Regression Model and its extensions have been widely used in survival analysis since the 

publication Regression Models and Life-Tables, Journal of the Royal Statistical Society - Series B 

(Methodological), Vol. 34, No. 2, 187-220, 1972 by David Cox in 1972, one of the most cited 
papers of all time. 

Along his life in the United Kingdom, the long career in Statistics includes the position of Editor 
of Biometrika from 1966 to 1991 and President of the Royal Statistical Society (RSS) in the period 
1980-1982. He was knighted by Queen Elizabeth in 1985. The RSS awarded him with Copley 
Medal in 2010. 

Among his long list of interesting talks, we mention 2 in special: In 2014, David Cox gave a lecture 
in celebrating the 180th anniversary of RSS, 'Statistics past, present and future', and in 2018 the 
talk 'In gentle praise of significance tests', at the RSS Annual Conference.  

David Cox Research Prize is the recently renamed RSS Prize in 2021, which is aimed to award 
annually a RSS fellow, near the beginning of their research career, for outstanding published 
contributions to statistical theory or application. 

Among other positions and awards, Sir David Cox was Professor of Statistics Head of Department 
of Mathematics in Imperial College, and Department of Statistics, University of Oxford, and 
served as Warden and Honorary Fellow of Nuffield College, Oxford. 

At last, but not least, it is a pleasure to hear that David Roxbee Cox was able to remain active 
as a researcher until the end of his life. 

January 21, 2022 

 

 

 

Isabel Fraga Alves  

Giovani L. Silva 
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1. INTRODUCTION

Over the past decades, different statistical distributions and related models have been
proposed for treating randomness and uncertainty, among which the exponentiated Weibull
distribution models is a key one [20]. Meanwhile, two-parameter generalized exponential
distribution (denoted by GED) has also been proposed as a sub-model in the exponen-
tiated Weibull distribution model which model the real data in a more realistic manner.
Several researchers have concentrated on applying this distribution in various fields and stud-
ied the problem of parameters estimation for GED [11]–[14], [18], [22], [23], [25], [27]–[30],
[35].

Inferences about stress-strength model is an important and interesting fields in the
reliability theory. In the mechanical reliability of a system, if we denote X as the strength of
a component which is subject to the stress Y, then R = P (Y <X) is known as a measure of
system performance. The problem of estimating R for certain family of probability distribu-
tions, has been widely studied in the literature. In the following, we review the main studies
in this context in an attempt to display the motivation for this paper.

The MLE of P (Y <X), when X and Y have bivariate exponential distribution, has
been considered by Awad et al. [1]. Church and Harris [2], Downton [6], Woodward and
Kelley [34] and Owen et al. [26] considered the estimation of P (Y <X), when X and Y

are normally distributed. Similar problem for the multivariate normal distribution has been
considered by Gupta and Gupta [10]. Kelley et al. [16] and Sathe and Shah [32] considered
the estimation of P (Y <X) when X and Y are independent exponential random variables.
Constantine and Karson [4] considered the estimation of P (Y <X), when X and Y are in-
dependent Gamma random variables. Sathe and Dixit [31] have been estimate of P (Y <X)
in the negative binomial distribution. Surles and Padgett [33] considered the estimation of
P (Y <X), where X and Y are Burr Type random variables. Finally, Nasiri and Pazira [24]
have done the estimation of P (Y <X) in exponential case.

The drawback of the above mentioned models is their lack of a supporting the sample
data which contain outliers due to human error in measuring or erroneous procedures. To the
best of our knowledge, a few researchers investigated the statistical inference about R based
on samples contain outlier observation(s). Kim and Chung [17] and Jeevanand and Nair [15]
have considered the Bayesian estimation of R based on samples containing outlier from the
Burr-X distribution and exponential distribution, respectively. Li and Hao [19] studied the
Bayesian and maximum likelihood estimation of R when X and Y are two independent gener-
alized exponential distributions containing one outlier. Pazira and Nasiri [28] and Nasiri [21]
consider the estimating parameters of R for generalized exponential distribution and Lomax
distribution with presence k-outliers, respectively. Ghanizadeh [8] and Ghanizadeh et al. [9]
studied the estimation of R in the presence of k-outlier for Rayleigh and Exponentiated
Gamma distribution, respectively.

In the present work, the Bayes and maximum likelihood approaches to estimate the
P (Y <X) are incorporated into the samples containing outliers. This paper is organized as
follows: First, in Section 2, we recall the concept of GED and then formulated the problem.
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Then, we investigate the MLE and the Bayes estimators of R when the scale parameter is
known and unknown, respectively in Section 3 and 4. The different proposed methods have
been compared using Monte Carlo simulations and bootstrap methods and their results have
been reported in Section 5. An numerical example is illustrated in Section 6. Finally, a brief
conclusion presented in Section 7.

2. MATHEMATICAL FORMULATION

The two-parameter GED has the following density function

(2.1) f(x, α, λ) = αλe−λx
(
1− e−λx

)α−1 , x > 0 ,

where α > 0 and λ > 0 are the shape and scale parameters, respectively. We denote the two-
parameter GED with the shape parameter α and scale parameter λ will be denoted by GE(α, λ).

For different values of the shape parameter, the density function can take different
shape. If the scale parameter λ is equal to one, for α ≤ 1, the density function is a decreasing
function and for α > 1, it is a unimodal, skewed, right tailed similar to the Weibull or Gamma
density function. It is observed that even for very large shape parameter (α), it is not
symmetric. For this density function (2.1), the mode is at log α for α > 1 and for α ≤ 1, the
mode is at α. It has the median at − ln(1 − 0.51/α) . The mean, median and mode are non-
linear functions of the shape parameter α and as this parameter goes to infinity all of them
tend to infinity. For large values of α, the mean, median and mode are approximately equal
to α but they converge at different rates. Figure 1 shows the shape of f(x, α) for different
values of α when λ = 1 (for more details refer to Gupta and Kundu [11]).

Figure 1: pdf of GE(α,1) for different values of α.

The main aim of this paper is to focus on the inference of R = P (Y <X), where Y ∼
GE(α,λ), with pdf denoted in Equation (2.1) and X has GED with presence of k outliers,
with pdf

(2.2) f(x, β1, β2, λ) =
k

n
f(x, β1, λ) +

n − k

n
f(x, β2, λ) , x > 0 ,

where function f(·) is given in Equation (2.1). For more details see Dixit [5] and Nasiri and
Pazira [23]–[24].
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To this end, suppose that Y1, Y2, ..., Ym be a random sample for Y with pdf

(2.3) g(y, α, λ) = αλe−λy
(
1− e−λy

)α−1 , y > 0 ,

and X1, X2, ..., Xn be random sample for X with pdf

(2.4) f(x, β1, β2, λ) =
k

n
g(x, β1, λ) +

n − k

n
g(x, β2, λ) , x > 0 ,

with presence of k outliers. The function g(·) is given in Equation (2.3).
Then, based on the definition of R, we have that

R = P (Y <X) =
∫ ∞

0

∫ x

0
g(y, α, λ) f(x, β1, β2, λ) dy dx(2.5)

=
k

n
· β1

α + β1
+

n − k

n
· β2

α + β2
.

Thus, in order to estimate the R, it is sufficient that we estimate the parameters α, β1

and β2.

3. MAXIMUM LIKELIHOOD ESTIMATOR OF R

In this section, we study the maximum likelihood estimation of the R. In order to
compute the MLE of R, first we consider the joint distribution of X1, X2, ..., Xn with presence
of k outliers as follows:

f(x1, x2, ..., xn) =

=
1

C(n, k)

n∏
i=1

[
β2λe−λxi

(
1− e−λxi

)β2−1
]∑

A

k∏
r=1

(
β1λe−λxAr

(
1− e−λxAr

)β1−1

β2λe−λxAr

(
1− e−λxAr

)β2−1

)
(3.1)

=
1

C(n, k)
βk

1 βn−k
2 λne−λ

P
xi

n∏
i=1

[(
1− e−λxi

)β2−1
] ∑

A

k∏
r=1

(
1− e−λxAr

)β1−β2 ,

where C(n,k)=
(n

k

)
and

∑
A =

∑n−k+1
A1=1

∑n−k+2
A2=A1+1 ···

∑n
Ak=Ak−1+1. (For more details see [28]).

Using Equation (3.1), the likelihood function based on two observed sample is given as follows:

L(α, β1, β2, λ) = g(y1, y2, ..., ym) f(x1, x2, ..., xn) .

The Log-likelihood function of the observed sample is

lnL(α,β1,β2,λ) = m ln(αλ) − λ

m∑
i=1

yi + (α−1)
m∑

i=1

ln
(
1− e−λyi

)
+ ln

βk
1βn−k

2

C(n,k)
λne−

Pn
i=1λxi

n∏
i=1

[(
1−e−λxi

)β2−1
]∑

A

k∏
r=1

(
1−e−λxAr

)β1−β2

.(3.2)
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It is well known that, in order to compute the The MLE’s of α say α̂, we must obtain the
solution of following equation

∂ lnL

∂α
=

mλ

αλ
+

m∑
i=1

ln
(
1− e−λyi

)
= 0 ,

or

m

α
= −

m∑
i=1

ln
(
1− e−λyi

)
.

Hence,

α̂ =
−m∑m

i=1 ln
(
1− e−λ̂yi

) .(3.3)

In similar way, the MLE’s of β1, β2 and λ, say β̂1, β̂2 and λ̂ respectively, obtained as the
solutions of

∂ lnL

∂β1
=

k

β1
+

∂
∂β1

∑
A

∏k
r=1

(
1− e−λxAr

)β1−β2∑
A

∏k
r=1

(
1− e−λxAr

)β1−β2
= 0

=
k

β1
+

∑
A

∏k
r=1

(
1− e−λxAr

)β1−β2 ln
(
1− e−λxAr

)
∑

A

∏k
r=1

(
1− e−λxAr

)β1−β2
= 0 ,

(3.4)

∂ lnL

∂β2
=

n− k

β2
+

n∑
i=1

ln
(
1− e−λxi

)
+

∂
∂β2

∑
A

∏k
r=1

(
1− e−λxAr

)β1−β2∑
A

∏k
r=1

(
1− e−λxAr

)β1−β2
= 0

=
n− k

β2
+

n∑
i=1

ln
(
1−e−λxi

)
−
∑

A

∏k
r=1

(
1−e−λxAr

)β1−β2 ln
(
1−e−λxAr

)
∑

A

∏k
r=1

(
1−e−λxAr

)β1−β2
= 0 ,

(3.5)

∂ lnL

∂λ
=

m

λ
−

m∑
i=1

yi +
n

λ
−

n∑
i=1

xi + (α − 1)
m∑

i=1

yi e
−λyi

1− e−λyi

+ (β2−1)
n∑

i=1

xi e
−λxi

1− e−λxi
+

∂
∂λ

∑
A

∏k
r=1

(
1− e−λxAr

)β1−β2∑
A

∏k
r=1

(
1− e−λxAr

)β1−β2
= 0

=
m

λ
−

m∑
i=1

yi +
n

λ
−

n∑
i=1

xi + (α − 1)
m∑

i=1

yi e
−λyi

1− e−λyi

+ (β2−1)
n∑

i=1

xi e
−λxi

1− e−λxi
+

∑
A

∏k
r=1(β1−β2) xAr

(
1− e−λxAr

)β1−β2−1∑
A

∏k
r=1

(
1− e−λxAr

)β1−β2
= 0 .

(3.6)

From Equations (3.4)–(3.6), we obtain the β̂1, β̂2 and λ̂ as the solution of non-linear
equations.

Since ML estimators are invariant, so the MLE of R becomes

R̂ =
k

n

β̂1

α̂ + β̂1

+
n − k

n

β̂2

α̂ + β̂2

.(3.7)
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Note 3.1. For β1 = β2 = β in case of no outliers presence, α̂ and β̂ can be obtained as

α̂ =
−m∑m

i=1 ln
(
1− e−λ̂yi

) , β̂ =
−n∑n

i=1 ln
(
1− e−λ̂xi

)
and λ̂ can be obtained as the function of the non-linear equation

g(λ) =
m + n

λ
− n∑n

i=1 ln
(
1− e−λxi

) n∑
i=1

xi e
−λxi(

1− e−λxi
)

− m∑m
i=1 ln

(
1− e−λyi

) m∑
i=1

yi e
−λyi(

1− e−λyi
) −

n∑
i=1

xi(
1− e−λxi

) −
m∑

i=1

yi(
1− e−λyi

) = 0

are given by Kundu and Gupta [18].

Note 3.2. The estimation of R when λ is known was studied by Pazira and Nasiri
[28]. In this case, the MLE estimation of R is given as Equation (3.7) in which α̂, β̂1 and β̂2

given as follows:

α̂ =
−m∑m

i=1 ln
(
1− e−yi

) ,(3.8)

∂ lnL

∂β1
=

k

β1
+

∑
A

∏k
r=1

(
1− e−xAr

)β1−β2 ln
(
1− e−xAr

)
∑

A

∏k
r=1

(
1− e−xAr

)β1−β2
= 0 ,(3.9)

∂ lnL

∂β2
=

n− k

β2
+

n∑
i=1

ln
(
1− e−xi

)
−
∑

A

∏k
r=1

(
1− e−xAr

)β1−β2 ln
(
1− e−xAr

)
∑

A

∏k
r=1

(
1− e−xAr

)β1−β2
= 0 .(3.10)

3.1. Bootstrap method

In this subsection, we propose the percentile bootstrap method based on the idea of
Efrom [7] in two cases of parameter λ is known and unknown. The algorithms for estimating
the R in these cases are illustrated below.

When λ is unknown

Step 1: From the sample {y1, ..., ym} and {x1, ..., xn}, compute α̂, β̂1, β̂2 and λ̂ from
equations (3.3), (3.4) and (3.5) and (3.6) respectively.

Step 2: Using α̂ and λ̂, we generate a bootstrap sample {y∗1, ..., y∗m} and similarly using
β̂1, β̂2 and λ̂, generate a bootstrap sample {x∗1, ..., x∗n}. Based on {y∗1, ..., y∗m} and {x∗1, ..., x∗n}
compute R.

Step 3: Repeat step 2, NBOOT times.
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When λ is known

Step 1: From the sample {y1, ..., ym} and {x1, ..., xn}, compute α̂, β̂1 and β̂2 from
Equations (3.8), (3.9) and (3.10) respectively.

Step 2: Using α̂, we generate a bootstrap sample {y∗1, ..., y∗m} and similarly using
β̂1 and β̂2, generate a bootstrap sample {x∗1, ..., x∗n}. Based on {y∗1, ..., y∗m} and {x∗1, ..., x∗n}
compute R.

Step 3: Repeat step 2, NBOOT times.

4. BAYES ESTIMATOR OF R

In this section, we obtain the Bayes estimation of R under assumption that the param-
eters β1, β2, α and λ are random variables. We mainly obtain the Bayes estimate of R

under the squared error loss. It is assumed that the parameters β1, β2, α and λ have
independent gamma priors with the parameters β1 ∼ Gamma(a1, b1), β2 ∼ Gamma(a2, b2),
α ∼ Gamma(a3, b3) and λ ∼ Gamma(a4, b4). Based on the above assumptions, the joint den-
sity of the data, β1, β2, α and λ can be obtained as

L(data, β1, β2, α, λ) = L(data; β1, β2, α, λ) . π(β1) . π(β2) . π(α) . π(λ)

= C1 βk+a1−1
1 βn−k+a2−1

2 αm+a3−1λn+m+a4−1 h(β1, β2, α) h(β1, β2, α, λ) ,

where

C1 =
4∏

i=1

(
bai
i

Γ(ai)

)
1

C(n, k)
,

h (β1, β2, λ) =
∑
A

k∏
r=1

(
1− e−λxAr

)β1−β2 ,

h (β1, β2, α, λ) = e
−b1β1−β2

(
b2−

nP

i=1
ln
(
1−e−λxi

))
−α

(
b3−

mP

j=1
ln
(
1−e−λyj

))
e−λ(nx̄+mȳ)

.

Therefore, the joint posterior density of given the data is

L(β1, β2, α, λ |data) =(4.1)

=
βk+a1−1

1 βn−k+a2−1
2 αm+a3−1λn+m+a4−1 h(β1, β2, α) h(β1, β2, α, λ)

∞∫
0

∞∫
0

∞∫
0

∞∫
0

βk+a1−1
1 βn−k+a2−1

2 αm+a3−1λn+m+a4−1 h(β1,β2,α) h(β1,β2,α,λ) dβ1 dβ2 dα dλ

.
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Finally, the Bayes estimator of R, denoted by R̂B, is given as follows

R̂B =(4.2)

=
k

n

∞R

0

∞R

0

∞R

0

∞R

0

u(α,β1) βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 λn+m+a4−1 h(β1, β2, α) h(β1, β2, α, λ) dβ1 dβ2 dα dλ

∞R

0

∞R

0

∞R

0

∞R

0

βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 λn+m+a4−1 h(β1, β2, α) h(β1, β2, α, λ) dβ1 dβ2 dα dλ

+
n−k

n

∞R

0

∞R

0

∞R

0

∞R

0

u(α,β2) βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 λn+m+a4−1 h(β1,β2,α) h(β1,β2,α,λ) dβ1 dβ2 dα dλ

∞R

0

∞R

0

∞R

0

∞R

0

βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 λn+m+a4−1 h(β1, β2, α) h(β1, β2, α, λ) dβ1 dβ2 dα dλ

,

where u(α, βi) = βi

α+βi
, i = 1, 2.

Furthermore, in the case of λ known, the Bayes estimator of R is given by

R̂B =(4.3)

=
k

n

∞∫
0

∞∫
0

∞∫
0

u(α,β1) βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 g(β1, β2) g(β1, β2, α) dβ1 dβ2 dα

∞∫
0

∞∫
0

∞∫
0

βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 g(β1, β2) g(β1, β2, α) dβ1 dβ2 dα

+
n−k

n

∞∫
0

∞∫
0

∞∫
0

u(α,β2) βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 g(β1, β2) g(β1, β2, α) dβ1 dβ2 dα

∞∫
0

∞∫
0

∞∫
0

βk+a1−1
1 βn−k+a2−1

2 αm+a3−1 g(β1, β2) g(β1, β2, α) dβ1 dβ2 dα

,

where

g (β1, β2) =
∑
A

k∏
r=1

(
1− e−λxAr

)β1−β2 ,

g (β1, β2, α) = e
−b1β1−β2

(
b2−

nP

i=1
ln
(
1−e−λxi

))
−α

(
b3−

mP

j=1
ln
(
1−e−λyj

))
.

Since Equations (4.2) and (4.3) can not be obtained analytically, we adopt the Gibbs sam-
pling technique to compute the Bayes estimate of R. Moreover, to compute different Bayes
estimates, we prefer to use the non-informative prior, because we do not have any prior in-
formation on R. On the other hand, the non-informative prior provides prior distributions
which are not proper, we adopt the suggestion of Congdon [3] and Kundu and Gupta [18].

5. SIMULATION RESULTS

In this section, we present some results based on Monte Carlo simulations to compare
the performance of the different methods. We consider two cases separately to draw inference
on R, namely when:

(i) the common scale parameter λ is known;

(ii) the common scale parameter λ is unknown.
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In both cases we consider the following small sample size

(n, m) = (15, 15), (20, 20), (25, 25), (15, 20), (20, 15), (15, 25), (25, 15), (20, 25), (25, 20) .

Moreover, in both cases we take α = 1.50, β1 = 2.50 and β2 = 2.75. Without loss of generality
we take λ = 1 in the case λ is known. Here we present a complete analysis of a simulated
data, and the results are given in Tables 1 to 4 for k = 1 and Tables 5 to 8 for k = 2.

It is observed that the maximum likelihood estimator of R, when λ is known and
unknown works quite well. We report the average estimates and the MSEs based on 5000
replications. The results are reported in Tables 1 and 2 for k = 1, and 5 and 6 for k = 2.
In this case, as we expected, when m = n and m, n increase then the average biases and
the MSEs decrease. For fixed m as n increase the MSEs decrease and also for fixed n as m

increases the MSEs decrease.

Based on obtained results, it is clear that the estimator of R using bootstrap method,
when λ is known and unknown works quite well. We report the average estimates and the
MSEs based on 100 replications. The results are reported in Tables 3 and 4 for k = 1, and
7 and 8 for k = 2. In this case, as we expected, when m = n and m, n increase then the
average biases and the MSEs decrease. For fixed m as n increase the MSEs decrease and also
for fixed n as m increases the MSEs decrease.

Table 1: MLE when k = 1, α = 1.5, β1 = 2.5, β2 = 2.75 and λ = 1.

(n, m) α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15, 15) 1.8444 2.5000 3.3135 0.6278 −0.0178 0.0217
(20, 20) 1.6075 2.5000 2.7086 0.6237 −0.0222 0.0063
(25, 25) 1.8233 2.5000 2.7277 0.6074 −0.0388 0.0082
(15, 20) 1.6851 2.5000 3.1127 0.6445 −0.0011 0.0023
(20, 15) 1.4864 2.5000 3.4041 0.6959 0.0500 0.0034
(15, 25) 1.7807 2.5000 2.6832 0.6071 −0.0385 0.0088
(25, 15) 1.4213 2.5000 2.7206 0.6490 0.0028 0.0033
(20, 25) 1.6360 2.5000 2.8331 0.6333 −0.0126 0.0030
(25, 20) 1.5888 2.5000 2.6093 0.6249 −0.0213 0.0073

Table 2: MLE when k = 1, α = 1.5, β1 = 2.5 and β2 = 2.75.

(n, m) λ̂ α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15, 15) 0.9877 1.5666 2.5000 2.7500 0.6443 −0.0012 0.0051
(20, 20) 0.9899 1.6447 2.5000 2.7500 0.6338 −0.0122 0.0050
(25, 25) 1.0223 1.6172 2.5000 2.7500 0.6344 −0.0118 0.0036
(15, 20) 1.0108 1.6242 2.5000 2.7500 0.6365 −0.0091 0.0050
(20, 15) 1.0209 1.6831 2.5000 2.7500 0.6291 −0.0168 0.0060
(15, 25) 1.0165 1.6402 2.5000 2.7500 0.6359 −0.0097 0.0052
(25, 15) 1.0037 1.6527 2.5000 2.7500 0.6324 −0.0138 0.0054
(20, 25) 0.9974 1.5571 2.5000 2.7500 0.6425 −0.0034 0.0032
(25, 20) 1.0251 1.6440 2.5000 2.7500 0.6325 −0.0137 0.0044
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Table 3: Bootstrap method when k = 1, α = 1.5, β1 = 2.5, β2 = 2.75 and λ = 1.

(n, m) α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15, 15) 1.6774 14.6622 59.6942 0.9076 0.2620 0.0735
(20, 20) 1.7030 9.7609 180.1635 0.8881 0.2421 0.0780
(25, 25) 0.3793 2.5000 12.5714 0.9010 0.2548 0.0796
(15, 20) 4.5208 2.5000 13.3324 0.6994 0.0539 0.0105
(20, 15) 1.5245 6.5037 89.0338 0.9411 0.2952 0.0899
(15, 25) 3.4078 6.1308 272.3902 0.8519 0.2063 0.0503
(25, 15) 2.6388 2.5401 112.7504 0.8501 0.2039 0.0489
(20, 25) 1.6082 2.5000 7.5632 0.7984 0.1525 0.0324
(25, 20) 0.5908 2.5000 2.1251 0.8065 0.1603 0.0692

Table 4: Bootstrap method when k = 1, α = 1.5, β1 = 2.5 and β2 = 2.75.

(n, m) λ̂ α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15, 15) 0.0942 47.7459 2.5000 2.7500 0.3846 −0.2609 0.1497
(20, 20) 0.1831 4.0096 2.5000 2.7500 0.4931 −0.1528 0.0571
(25, 25) 1.8805 9.7125 2.5000 2.7500 0.3571 −0.2890 0.1195
(15, 20) 0.7036 8.4306 2.5000 2.7500 0.4055 −0.2401 0.0980
(20, 15) 1.9512 6.6062 2.5000 2.7500 0.3598 −0.2861 0.1075
(15, 25) 0.8380 2.2379 2.5000 2.7500 0.6275 −0.0181 0.0474
(25, 15) 0.2228 10.3235 2.5000 2.7500 0.3642 −0.2820 0.1196
(20, 25) 1.4792 2.4191 2.5000 2.7500 0.5761 −0.0698 0.0277
(25, 20) 0.4040 1.7287 2.5000 2.7500 0.6455 −0.0006 0.0198

Table 5: MLE when k = 2, α = 1.5, β1 = 2.5, β2 = 2.75 and λ = 1.

(n, m) α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15, 15) 1.8567 2.8847 2.2264 0.5198 −0.1244 0.0217
(20, 20) 1.5968 2.5165 2.5660 0.5848 −0.0601 0.0071
(25, 25) 1.6174 1.9278 2.4801 0.6004 −0.0449 0.0056
(15, 20) 1.5593 3.9744 2.8183 0.6380 −0.0061 0.0111
(20, 15) 1.6675 3.1053 2.6176 0.6174 −0.0274 0.0166
(15, 25) 1.6831 2.9464 2.3125 0.5741 −0.0700 0.0106
(25, 15) 1.5960 1.7858 2.6101 0.6034 −0.0419 0.0071
(20, 25) 1.6159 3.1946 2.7131 0.6198 −0.0250 0.0060
(25, 20) 1.4687 3.1153 2.8283 0.6556 0.0103 0.0034

Table 6: MLE when k = 2, α = 1.5, β1 = 2.5 and β2 = 2.75.

(n, m) λ̂ α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15, 15) 1.0637 1.6394 2.7108 2.3042 0.5491 −0.0950 0.0106
(20, 20) 0.9842 1.6196 2.6559 2.4108 0.5779 −0.0670 0.0110
(25, 25) 0.9916 1.8235 2.6076 2.4758 0.5824 −0.0629 0.0159
(15, 20) 0.9449 1.3620 2.5189 2.3047 0.5885 −0.0557 0.0037
(20, 15) 1.0560 1.9955 2.8272 2.4110 0.5297 −0.1152 0.0185
(15, 25) 0.9265 1.4211 3.7023 2.3022 0.5857 −0.0584 0.0051
(25, 15) 0.9867 1.5628 2.2423 2.4753 0.5911 −0.0542 0.0056
(20, 25) 1.0057 1.4799 2.4455 2.4105 0.5931 −0.0517 0.0056
(25, 20) 0.9153 1.5412 2.7855 2.4752 0.5947 −0.0506 0.0045
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Table 7: Bootstrap method when k = 2, α = 1.5, β1 = 2.5, β2 = 2.75 and λ = 1.

(n, m) α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15,15) 2.21351 0.65190 1.30161 0.348023 −0.254428 0.0671290
(20,20) 2.42581 0.46529 1.21980 0.315847 −0.297756 0.0922301
(25,25) 1.95369 3.91502 2.95105 0.601363 −0.018931 0.0036032
(15,20) 1.14788 5.47549 3.46179 0.748267 0.145816 0.0250333
(20,15) 1.50094 6.10851 3.89440 0.709387 0.095784 0.0205170
(15,25) 1.42394 0.66237 1.25841 0.439300 −0.163151 0.0443621
(25,15) 4.55750 1.89003 2.24141 0.362190 −0.258104 0.0943967
(20,25) 1.09092 1.39501 1.75356 0.603435 −0.010168 0.0032842
(25,20) 1.53441 1.77145 2.36214 0.589008 −0.031286 0.0134582

Table 8: Bootstrap method when MLE when k = 2, α = 1.5, β1 = 2.5 and β2 = 2.75.

(n, m) λ̂ α̂ β̂1 β̂2 R̂ Bias(R̂) MSE(R̂)

(15,15) 1.5127 2.0224 2.2197 2.3071 0.5339 −0.1102 0.0150
(20,20) 1.0199 1.5270 1.5802 2.4121 0.6068 −0.0380 0.0047
(25,25) 1.1685 2.2125 2.3427 2.4754 0.5302 −0.1151 0.0150
(15,20) 2.2332 1.8661 2.5324 2.3066 0.5534 −0.0908 0.0110
(20,15) 1.3911 0.6630 1.7005 2.4124 0.7806 0.1357 0.0209
(15,25) 1.3795 3.0205 3.4349 2.3031 0.4660 −0.1781 0.0424
(25,15) 0.6082 1.1873 2.5821 2.4751 0.6773 0.0321 0.0020
(20,25) 0.7843 1.9834 2.8723 2.4099 0.5562 −0.0887 0.0103
(25,20) 1.1818 2.1626 2.0703 2.4756 0.5314 −0.1139 0.0142

6. NUMERICAL EXAMPLE

In this section an numerical example is illustrated and the results of different methods
are compared. to do this, the data has been generated using k = 2, m = n = 15, α = 1.50,
β1 = 2.50, β2 = 2.75 and λ = 1. The data has been truncated after four decimal places and
it has been presented below. The Y values are

0.1656 1.4907 0.1297 0.1890 1.0442 0.2366 2.0775 2.0741
1.6354 0.3315 1.4178 1.0370 4.0119 1.3847 1.9806

and the corresponding X values are

3.5641 3.5056 4.9680 2.4494 2.6494 2.7850 3.3939 5.0067
4.8371 2.3331 3.4162 3.7709 3.4634 1.8660 1.7731

Now, we obtain the MLE estimates of α, β1, β2 and R as, α̂ = 2.234, β̂1 = 2.5, β̂2 =
10.43, R = 0.6441 and therefore R̂ = 0.7542. Also, using Equation (4.3) the Bayes estimation
becomes R̂B = 0.7623.
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In case (ii), when λ is unknown, the Y values are

1.5746 0.1059 0.5531 0.1378 0.2374 2.1082 1.5347 0.6255
3.3972 0.1119 0.8613 0.7467 1.8130 1.9542 0.3958

and the corresponding X values are

3.6642 3.5416 4.1511 4.3893 4.5871 3.0850 4.2729 4.1823
2.7502 2.5972 3.6886 6.5070 3.2589 1.6457 0.7974

Then α̂ = 0.7731, β̂1 = 2.5, β̂2 = 2.75, λ̂ = 0.5405, R = 0.6441 and R̂ = 0.7783. Also, the
Bayes estimation becomes R̂B = 0.7763 using Equation (4.2).

For the bootstrap method when λ is known, the Y values are

0.2550 1.3994 0.9810 1.8751 1.6076 2.7293 2.6022 0.6569
1.5485 0.4147 0.1028 1.7211 0.9942 0.9493 2.7400

and the corresponding X values are

4.0273 4.0531 5.2043 4.8492 3.9213 2.8151 2.9842 5.4328
2.1106 3.6646 2.7675 7.1520 4.4030 1.4194 1.3471

Then α̂ = 1.7297, β̂1 = 2.5, β̂2 = 6.206, R = 0.6441 and R̂ = 0.7566.

In the bootstrap method when λ is unknown, the Y values are

1.9301 3.3788 0.6447 1.4552 0.8611 2.1686 1.8280 0.3618
2.3616 4.9962 1.0273 2.5419 1.2103 0.3400 0.4183

and the corresponding X values are

3.4369 4.5594 4.9697 4.7634 3.2003 3.7920 2.4787 2.5690
2.6606 4.2689 3.6796 2.8361 3.6791 0.6259 0.3760

Then α̂ = 1.7886, β̂1 = 2.5, β̂2 = 2.75, λ̂ = 0.7535, R = 0.6441 and R̂ = 0.6029.

7. CONCLUSION

In this paper, we have studied the estimation of P (Y <X) for the GED. We assume
that the sample from each population contains k-outlier. Two cases scale parameter is known
or unknown are considered in this context. The MLE and Bayes estimator of R are obtained
in each case.

When the common scale parameter is unknown, it is observed that the maximum
likelihood estimator works quite well. Based on the simulation results, when the sample size
is very small, we recommend to use the parametric bootstrap percentile method. The similar
results was obtained in the case of the common scale parameter is known.
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1. INTRODUCTION

Let X and Y be two continuous random variables. A large body of literature has grown
around statistical inference for R = P (X >Y ). This enthusiasm roots in applicability of this
quantity in diverse areas. In the so-called stress-strength model in engineering, R measures
the reliability of a component, where X and Y represent the strength of the component, and
the stress that it is undergoing, respectively. For example, Weerahandi and Johnson [22]
considered a rocket-motor experiment in which X represents the chamber burst strength,
and Y represents the operating pressure. In medicine, R may be interpreted as a measure of
treatment’s effectiveness if X and Y are the response variables from treatment and control
groups, respectively (Ventura and Racugno [20]). It is also related to receiver operating
characteristic (ROC) curve, which is a useful tool in analysis of the discriminatory accuracy of
a diagnostic test or marker in distinguishing between diseased and non-diseased individuals.
Bamber [2] showed that the area under the ROC curve equals R. Wolfe and Hogg [23]
considered R as a general measure for the difference between two populations.

The estimation of R has received considerable attention in the statistical literature.
A comprehensive account of this topic appears in Kotz et al. [11]. To facilitate mathematical
development, most of the pertinent articles assume that X and Y are independent. In many
real situations, however, the two variables are correlated. In the following, three examples in
the context of engineering, education and economics are presented (see Domma and Giordano
[4]):

• Let X and Y be the lifetimes of two electronic devices, stimulated by a single source.
Then R is the probability that one survives after the other one.

• Some universities in Japan use an admission test based on Japanese (X) and English
(E) knowledge. In order to get admission, a candidate must qualify X + E > c,
where c is a pre-determined cut-off score. If we set Y = c− E, then the admission
probability is given by R.

• Let X and Y be household consumption and income, respectively. If consumption
exceeds income, then household will face financial stress. Thus, R is a measure of
household financial fragility.

The reliability estimation has been studied for some bivariate distributions, including
bivariate normal (Gupta and Subramanian [10]), bivariate beta (Nadarajah [15]), bivariate
exponential (Nadarajah and Kotz [16]), and bivariate log-normal (Gupta et al. [9]), among
others. A limitation shared by these articles is that the marginal distributions are of the same
type. Moreover, a specific form of dependence between margins is allowed. Bivariate normal
distribution is a nice example clarifying these points. Here, the marginal distributions are
normal, and their association is linear. To overcome the above shortcomings, Domma and
Giordano [4] built on a copula to model the association between the two variables.

Let the random variables X and Y be the lifetimes of two systems. If both systems
are operating at time t > 0, then their residual lifetimes are given by Xt = (X− t |X >t) and
Yt = (Y− t |Y >t). Zardasht and Asadi [24] proposed R(t) = P (Xt>Yt) as a time-dependent
criterion to compare the two residual lifetimes. They studied properties of this measure, and
developed a nonparametric estimator for R(t) based on two independent random samples.
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Mahdizadeh and Zamanzade [12, 13, 14] are examples of recent works on inference about
R(t). In light of the above argument for R, we think that R(t) is also applicable in settings
where Xt and Yt are not independent. For example, in the third example provided above, R(t)
can be considered as a measure of household financial fragility, given that the consumption
and income exceed a lower bound t. This article employs a copula approach to account for
dependence in evaluating R(t). Our approach is similar to that adopted by Domma and
Giordano [4].

Section 2 presents some basic properties of copulas. Section 3 provides expressions
of R(t) for some parametric family of copulas, and margins. Section 4 contains numerical
results evaluating the effect of the marginal distributions and the reference copula parameters
on the reliability index. In Section 5, the proposed method is applied to a data set. Final
conclusions appear in Section 6. Figures are collected in an Appendix.

2. THE COPULA APPROACH

If I is the interval [0,1], then a bivariate copula can be represented as C : I×I → I,
where C fulfils the following properties:

• For all u, v ∈ I, C(u, 0) = 0, C(0, v) = 0, C(u, 1) = u, and C(1, v) = v.

• For all u1, u2, v1, v2 ∈ I, with u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0 .

A famous theorem by Sklar [19] provides the connection between bivariate copulas and bi-
variate distribution functions. It states that for any two continuous random variables X and
Y with joint distribution function H, there exists a unique copula C such that

H(x, y) = C
(
F (x), G(y)

)
, ∀x, y ∈ R ,

where F and G are the marginal distributions of X and Y , respectively. Let f and g be the
corresponding marginal density functions. Then, the joint density function is

(2.1) h(x, y) = c
(
F (x), G(y)

)
f(x) g(y) ,

where c
(
F (x), G(y)

)
=

∂2C
(
F (x), G(y)

)
∂F (x) ∂G(y)

is called the copula density.

In general, C ∈ Cθ, where θ is a vector of parameters that determines the degree of
dependence between the two random variables. Also, F ∈ Fγ and G ∈ Gν , where γ and ν are
vectors of parameters associated with the marginal distributions. For simplicity in notation,
all such parameters are assumed implicitly.

A salient feature of copulas is that they allow us to model the dependence structure
between random variables independently of the marginal distributions. Owing to this flexi-
bility, the copula approach has drawn much interest in recent years. It has been successfully
applied in a variety of scientific fields. Some applications are provided in the following. In
biomedical research, Escarela and Carrière [5] employed copula in studying competing risks.
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In the actuarial context, Frees and Wang [6] modeled dependent mortality and losses using
copulas. In the engineering context, Genest and Favre [7] utilized copulas in hydrological
modeling.

3. COMPUTATION OF R(t)

We first provide a representation for R(t) which is helpful in our mathematical devel-
opment. It is easily seen that

(3.1) R(t) =
R1(t)
R2(t)

,

where R1(t) = P (X >Y > t) and R2(t) = P (X >t, Y > t). Using h(x, y) in (2.1), components
of R(t) can be written as

(3.2) R1(t) =
∫ ∞

t

∫ x

t
c
(
F (x), G(y)

)
f(x) g(y) dy dx ,

and

(3.3) R2(t) =
∫ ∞

t

∫ ∞

t
c
(
F (x), G(y)

)
f(x) g(y) dy dx .

In the following, the marginal distributions and the copulas used in computing (3.1) are
introduced.

Burr [3] introduced a family of distributions that includes twelve distribution types.
Two important cases are the Burr type III (BIII), and Burr type XII. The former distribution
is more flexible in the sense that it covers wider ranges of skewness and kurtosis, often
exhibited by real data. It has been applied in a multitude of data-modeling contexts. The
interested reader is referred to Zimmer et al. [25] and Shao [18] for some applications in
reliability and environmental studies, among others.

The cumulative distribution function (CDF) and the probability density function (PDF)
of the BIII distribution are given by

F (x) =
(
1 + x−δ

)−α, x > 0; α, δ > 0 ,

and
f(x) = α δx−(δ+1)

(
1 + x−δ

)−(α+1), x > 0; α, δ > 0 ,

respectively. The random variable X with this distribution will be denoted by X ∼ BIII(α, δ).
In our reliability modeling, it is assumed that both stress and strength variables follow the BIII
distribution. The positivity assumption for X and Y is not restrictive, because it is possible to
use an increasing transformation to create positive random variables from arbitrary X and Y ,
while preserving the dependence structure. See Theorem 2.4.3 in Nelsen [17].

To model the association between the two variables, we consider two famous copulas:
Farlie–Gumbel–Morgenstern (FGM), and generalized Farlie–Gumbel–Morgenstern (GFGM).
These copulas enjoy the advantage of mathematical tractability. In particular, it turns out
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that under both families, R1(t) and R2(t) are decomposed into two components. The first
one represents the numerator/denominator in (3.1) when X and Y are independent, and the
second one indicates contribution of the association between the two variables in the value of
the corresponding quantity. This property is not shared by all other copulas.

3.1. Using FGM copula

The FGM copula is one of the most popular parametric family of copulas that has been
widely used due to its simple form. It is defined as

C
(
F (x), G(y)

)
= F (x) G(y)

(
1 + θ

[
1− F (x)

] [
1−G(y)

])
, θ ∈ [−1, 1] .

The corresponding copula density is given by

(3.4) c
(
F (x), G(y)

)
= 1 + θ

[
1− 2F (x)

] [
1− 2G(y)

]
, θ ∈ [−1, 1] .

Substituting (3.4) in (3.2) and with some algebra, it follows that

R1(t) = RI
1(t) + θRD

1 (t) ,

where

(3.5) RI
1(t) =

∫ ∞

t
G(x) dF (x) − G(t)

[
1− F (t)

]
,

and

(3.6) RD
1 (t) =

∫ ∞

t

[
1− 2F (x)

] [
G(x)−G2(x)

]
dF (x) +

[
F (t)− F 2(t)

] [
G(t)−G2(t)

]
.

Again, substituting (3.4) in (3.3) and some simplification yield

R2(t) = RI
2(t) + θRD

2 (t) ,

where

(3.7) RI
2(t) =

[
1− F (t)

] [
1−G(t)

]
,

and

(3.8) RD
2 (t) = F (t) G(t)

[
1− F (t)

] [
1−G(t)

]
.

If X∼ BIII(α, δ) and Y ∼ BIII(β, δ), then it is possible to obtain a closed-form expres-
sion for R(t). For notational convenience, S(t; δ, k) is defined as

(3.9) S(t; δ, k) =
1
k

[
1−

(
1 + t−δ

)−k
]
, t, k, δ > 0 .

Incorporating the PDF and CDF of the the BIII distribution in (3.5) and (3.6), we get

RI
1(t) = α S(t; δ, α + β)− α S(t; δ, α)

[
1− β S(t; δ, β)

]
,
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and

RD
1 (t) = α

[
S(t; δ, α+β)− S(t; δ, α+2β)

]
− 2α

[
S(t; δ, 2α+β)− S(t; δ, 2(α+β))

]
+α β S(t; δ, α) S(t; δ, β)

[
1− α S(t; δ, α)

][
1− β S(t; δ, β)

]
.

Similarly, one can verify that (3.7) and (3.8) take the forms

RI
2(t) = α β S(t; δ, α) S(t; δ, β) ,

and
RD

2 (t) = α β S(t; δ, α) S(t; δ, β)
[
1− α S(t; δ, α)

][
1− β S(t; δ, β)

]
.

3.2. Using GFGM copula

Any copula depends on some parameters which determine the degree of dependence be-
tween the margins. Two common measures of the association are Spearman’s ρ and Kendall’s
τ coefficients. Under the FGM copula, ρ ∈ [−1/3, 1/3] and τ ∈ [−2/9, 2/9], meaning that a
relatively weak dependence is allowed. As a result, several modifications of the original FGM
copula have been proposed. In the following, we consider a generalization due to Bairamov
et al. [1]. The GFGM copula is defined as

C
(
F (x), G(y)

)
= F (x) G(y)

(
1 + θ

[
1− F (x)m1

]p1
[
1−G(y)m2

]p2
)

,

where m1, m2, p1, and p2 are positive parameters, and θ ∈ [θ`, θu] with

θ` = −min

{
1,

1
m1m2

(
1 + m1p1

m1(p1 − 1)

)p1−1( 1 + m2p2

m2 (p2 − 1)

)p2−1
}

,

and

θu = min

{
1

m1

(
1 + m1p1

m1(p1 − 1)

)p1−1

,
1

m2

(
1 + m2p2

m2(p2 − 1)

)p2−1
}

.

The corresponding copula density is given by

c
(
F (x), G(y)

)
= 1 + θ

[
1− F (x)m1

]p1−1[
1− (1 + m1p1) F (x)m1

]
×
[
1−G(y)m2

]p2−1[
1− (1 + m2p2) G(y)m2

]
.(3.10)

Clearly, by setting m1 = m2 = p1 = p2 = 1 in the above equation, we arrive at (3.4).

Let p1 and p2 be two positive integers. Then using the binomial expansion in (3.10),
it can be shown that

c
(
F (x), G(y)

)
= 1 + θ

p1−1∑
i=0

p2−1∑
j=0

(
p1−1

i

)(
p2−1

j

)
(−1)i+j F (x)m1i G(y)m2j

×
[
1− (1 + m1p1) F (x)m1

] [
1− (1 + m2p2) G(y)m2

]
.(3.11)



Dynamic Reliability Modeling with Medical Applications 21

This representation will be used in computing R(t). Proceeding as in the previous sub-section,
we get

R1(t) = RI
1(t) + θRD

1 (t) ,

where RI
1(t) is given in (3.5), and

(3.12) RD
1 (t) =

p1−1∑
i=0

(
p1−1

i

)
(−1)i

∫ ∞

t
F (x)m1i

[
1− (1 + m1p1) F (x)m1

]
J(x) dF (x) ,

with

J(x) =
p2−1∑
j=0

(
p2−1

j

)
(−1)j

(
1

m2 j + 1

[
G(x)m2j+1 −G(t)m2j+1

]
− 1 + m2p2

m2(j +1) + 1

[
G(x)m2(j+1)+1 −G(t)m2(j+1)+1

])
.

Similarly, it is concluded that

R2(t) = RI
2(t) + θRD

2 (t) ,

where RI
2(t) is given in (3.7), and

RD
2 (t) =

p1−1∑
i=0

p2−1∑
j=0

(
p1−1

i

)(
p2−1

j

)
(−1)i+j

×

(
1

m1i + 1

[
1− F (t)m1i+1

]
− 1 + m1p1

m1(i+1) + 1

[
1− F (t)m1(i+1)+1

])

×

(
1

m2j + 1

[
1−G(t)m2j+1

]
− 1 + m2p2

m2(j +1) + 1

[
1−G(t)m2(j+1)+1

])
.(3.13)

If X∼ BIII(α, δ), Y ∼ BIII(β, δ), and S(t; δ, k) is defined as in (3.9), then from (3.12)
and (3.13) we have

RD
1 (t) =

p1−1∑
i=0

p2−1∑
j=0

(
p1−1

i

)(
p2−1

j

)
(−1)i+j

×

{
α

(m2 j + 1)
S
(
t; δ, α(m1 i+1) + β(m2 j +1)

)
− α(1 + m2p2)

m2(j +1) + 1
S
(
t; δ, α(m1 i+1) + β

(
m2(j +1) + 1

))
− α(1 + m1p1)

m2 j + 1
S
(
t; δ, α

(
m1(i+1) + 1

)
+ β(m2 j + 1)

)
+

α(1 + m1p1) (1 + m2p2)
m2(j +1) + 1

S
(
t; δ, α

(
m1(i+1) + 1

)
+ β

(
m2(j +1) + 1

))
+

(
(1 + m2p2)

[
1

m2(j +1) + 1
− β S

(
t; δ, β

(
m2(j +1) + 1

))]
−
[

1
m2 j + 1

− β S
(
t; δ, β(m2 j + 1)

)])

× α

[
S
(
t; δ, α(m1 i + 1)

)
− (1 + m1p1) S

(
t; δ, α

(
m1(i+1) + 1

))]}
,
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and

RD
2 (t) =

p1−1∑
i=0

p2−1∑
j=0

(
p1−1

i

)(
p2−1

j

)
(−1)i+j

× α

[
S
(
t; δ, α(m1 i + 1)

)
− (1 + m1p1) S

(
t; δ, α

(
m1(i+1) + 1

))]
× β

[
S
(
t; δ, β(m2 j + 1)

)
− (1 + m2p2) S

(
t; δ, β

(
m2(j +1) + 1

))]
.

4. NUMERICAL RESULTS

We now evaluate R(t) for some specific choices of the marginal distributions, and the
reference copula parameters. Figures 1–5 show the curves of R(t), where the involved param-
eters are given in the caption of each figure. The following configurations of

(m1,m2, p1, p2) ∈
{

(1, 1, 1, 1), (1, 4, 2, 7), (1, 4, 1, 10), (4, 1, 3, 2), (5, 5, 2, 1)
}

are associated with Figures 1–5, respectively. In each case, sixteen combinations of (α, β, δ)
and θ are considered whose values can be found in the caption of the figures. In particular,
black/solid curves indicate the situation that X and Y are independent, i.e. θ = 0 in (3.4)
and (3.10).

Figure 1 is given to the FGM copula. For fixed t, R(t) is a decreasing function of θ if
α < β. The situation is reversed if α > β. For example, compare panels (a) and (c). These
properties are easily concluded in the special case of t = 0, as mentioned by Domma and
Giordano [4]. The plot presented in panel (d) is very interesting. In fact, it can be shown
that if the marginal distributions are identical (α = β), then R(t) = 0.5 for all t, regardless
of θ. Finally, one can see that R(t) is a monotone function of t, given a fixed θ.

Figures 2–5 correspond to the GFGM copula. Depending on values of the involved
parameters, the reliability measure takes a variety of functional forms. A marked difference
from Figure 1 is that for fixed θ, R(t) may not be a monotone function of t. This is observed
in panel (d) of Figure 3, for example. If the margins are the same and θ = 0 (see Figures 2
and 4), then it can be proved that R(t) = 0.5 for all t. We note that under the FGM copula,
this property holds for arbitrary θ.

It should be emphasized that if the dependence between X and Y is not incorporated
in computing the reliability, the resulting value could be higher/lower than the true one.
Compare black/solid curve with the others in each panel of Figures 1–5. This highlights
importance of the copula approach as it is an efficient way to capture dependence structure
between random variables in developing inference procedures.
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5. APPLICATION

In this section, application of the copula-based approach in reliability modeling is pro-
vided based on China Health and Nutrition Survey (CHNS) data. The CHNS is an inter-
national collaborative project between the Carolina Population Center at the University of
North Carolina at Chapel Hill, and the National Institute for Nutrition and Health at the
Chinese Center for Disease Control and Prevention. It is designed to examine the effects of
the health, nutrition, and family planning policies and programs implemented by national
and local governments and to see how the social and economic transformation of Chinese
society is affecting the health and nutritional status of its population.

Recent studies support the importance of the lipid-transporting apolipoproteins, such
as ApoA and ApoB which transport high-density lipoprotein (HDL, good) cholesterol and
low-density lipoprotein (LDL, bad) cholesterol particles, respectively. A healthy individual
probably has larger ApoA value than ApoB, and thereby less risk for cardiovascular disease.
As alternatives to the traditional LDL and HDL biomarkers, these apolipoproteins have some
advantages (Walldius and Jungner [21]). Let R be the probability of ApoA being greater
than ApoB, where both were from the same individual, i.e., R = P (ApoA>ApoB). If this
probability is significantly larger than 0.5, then ApoA is stochastically larger than ApoB
for the population, meaning that this population is relatively at lower risk of cardiovascular
disease. Suppose from the previous studies, the researcher knows a lower bound t for values
of the biomarkers in the population. Then, one can utilize the index

R(t) =
P
(
ApoA>ApoB >t

)
P
(
ApoA>t, ApoB>t

) .

The CHNS data set1 contains values of ApoA and ApoB biomarkers for 10,187 Chinese
children and adults (aged ≥ 7) in year 2009. For the purpose of illustration, we estimated R(t)
based on the first 1,000 pairs of data. In doing so, we used the GFGM copula and assumed
that the margins are X∼ BIII(α, δ) and Y ∼ BIII(β, δ), where X and Y denote ApoA and
ApoB, respectively. In particular, the copula parameters were chosen as m1 = m2 = 3 and
p1 = p2 = 2. This set of values allows for nearly the maximum degree of dependence between
the margins under the GFGM copula. Moreover, it simplifies the model through setting
m1 = m2 and p1 = p2. The last parameter of the copula can be estimated from the expression
of Kendall’s τ . Domma and Giordano [4] showed that Kendall’s τ for the GFGM copula is
given by

τ =
8 θ p1p2

(2 + m1p1) (2 + m2p2)
B

(
2

m1
, p1

)
B

(
2

m2
, p2

)
,

where B(·, ·) is the beta function. By replacing τ in the above equation with its value from
the sample, and setting m1 = m2 = 3 and p1 = p2 = 2, an estimate of θ is obtained as 0.176.
It is to be noted that 0.176 falls into admissible range of θ in the GFGM copula with the
aforesaid choices of mi’s and pi’s, i.e. [−0.605, 0.778].

Before using the results of Sub-section 3.2, it is needed to formally assess fit of the
above-mentioned copula to the data. Toward this end, we employed the test statistic S

(B)
n ,

introduced by Genest et al. [8], based on Rosenblatt’s transform. The P-value associated
1It is available at http://www.cpc.unc.edu/projects/china/data/datasets .

http://www.cpc.unc.edu/projects/china/data/datasets
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with this test is determined through parametric bootstrap, where the details can be found
in Appendix D of Genest et al. [8]. In doing so, parameters α, β and δ were estimated
from data by 1.286, 0.522 and 7.398, respectively. Based on 1,000 bootstrap replications, an
approximate P-value for the test was computed as 0.316. So the null hypothesis that the
selected copula fits the data is not rejected at 0.05 significance level. Figure 6 shows the PDF
constructed using this specific GFGM copula with the Burr III marginal distributions.

Plugging in the above set of parameters into the expression of R(t) in Sub-section 3.2
yields an estimate of the dynamic reliability. The corresponding graph is depicted in Figure 7
with blue/dashed curve. A similar graph may be plotted by ignoring the dependence between
the two variables, i.e. replacing 0.176 with 0 in the computations. The result is displayed
by black/solid curve in Figure 7. It is worth commenting that failing to incorporate the
dependence structure leads to inaccuracy in estimating R(t).

6. CONCLUSION

In the classical stress-strength model, the interest centers on R = P (X >Y ) for a unit,
where X and Y are the strength of the unit and the environmental stress, respectively.
This model has attracted much interest in the statistical literature. There are abundant
applications in the areas of reliability, quality control, psychology, medicine and clinical trials.
Recently, R has been extended to a dynamic form R(t) = P (Xt >Yt), where Xt and Yt are
residual lifetimes of two systems. Although the latter measure was motivated by a problem
in reliability theory, it is potentially applicable in many other situations. This article puts
forward a copula approach to account for dependence in evaluating R(t). Some explicit
expressions for R(t) are provided when the margins follow the BIII distribution, and the
reference copula is either the FGM or GFGM. The proposed method is explored by means of
numerical results and real data analysis.

It would be interesting to use other copulas, which allow for higher correlation between
the stress and strength variables, in dynamic reliability modeling. This will be considered in
a separate study.
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Figure 1: Plot of R(t) based on the FGM copula and the Burr III marginal
distributions with: (a) (α, β, δ) = (1, 5, 0.5), (b) (α, β, δ) = (1, 5, 3),
(c) (α, β, δ) = (8, 5, 0.5), and (d) (α, β, δ) = (8, 8, 3). Black/solid,
blue/dashed, red/dotted, and orange/long-dashed curves relate to
θ = 0, 0.333, 0.667, 1, respectively.
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Figure 2: Plot of R(t) based on the GFGM copula with (m1,m2, p1, p2) = (1, 4, 2, 7),
and the Burr III marginal distributions with: (a) (α, β, δ) = (0.75, 0.75, 0.5),
(b) (α, β, δ) = (0.75, 0.75, 3), (c) (α, β, δ) = (4, 4, 0.5), and (d) (α, β, δ) = (4, 4, 3).
Black/solid, blue/dashed, red/dotted, and orange/long-dashed curves relate to
θ = 0, 0.259, 0.519, 0.778, respectively.
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Figure 3: Plot of R(t) based on the GFGM copula with (m1,m2, p1, p2) = (1, 4, 1, 10),
and the Burr III marginal distributions with: (a) (α, β, δ) = (1, 0.5, 0.5),
(b) (α, β, δ) = (1, 0.5, 3), (c) (α, β, δ) = (1, 2, 0.5), and (d) (α, β, δ) = (1, 2, 3).
Black/solid, blue/dashed, red/dotted, and orange/long-dashed curves relate to
θ = 0, 0.269, 0.537, 0.806, respectively.
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Figure 4: Plot of R(t) based on the GFGM copula with (m1,m2, p1, p2) = (4, 1, 3, 2),
and the Burr III marginal distributions with: (a) (α, β, δ) = (0.75, 0.75, 0.5),
(b) (α, β, δ) = (0.75, 0.75, 3), (c) (α, β, δ) = (4, 4, 0.5), and (d) (α, β, δ) = (4, 4, 3).
Black/solid, blue/dashed, red/dotted, and orange/long-dashed curves relate to
θ = 0, 0.22, 0.44, 0.66, respectively.
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Figure 5: Plot of R(t) based on the GFGM copula with (m1,m2, p1, p2) = (5, 5, 2, 1),
and the Burr III marginal distributions with: (a) (α, β, δ) = (1, 0.5, 0.5),
(b) (α, β, δ) = (1, 0.5, 3), (c) (α, β, δ) = (1, 2, 0.5), and (d) (α, β, δ) = (1, 2, 3).
Black/solid, blue/dashed, red/dotted, and orange/long-dashed curves relate
to θ = 0, 0.067, 0.133, 0.200, respectively.
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Figure 6: Plot of the PDF constructed using the GFGM copula with (m1,m2, p1, p2) = (3, 3, 2, 2),
and the Burr III marginal distributions with (α, β, δ) = (1.286, 0.522, 7.398).
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Figure 7: Plot of R(t) estimated from the CHNS data set based on the GFGM copula
with (m1,m2, p1, p2) = (3, 3, 2, 2), and the Burr III marginal distributions
with (α, β, δ) = (1.286, 0.522, 7.398). Black/solid and blue/dashed curves
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1. INTRODUCTION

In 1964, Lukacs and Laha defined the matrix variate gamma (MG) distribution. In mul-
tivariate statistical analysis, the MG distribution has been the subject of considerable interest,
study, and applications for many years. For example, the Wishart distribution, which is the
distribution of the sample variance covariance matrix when sampling from a multivariate nor-
mal distribution, is a special case of the MG distribution. Applications of the MG distribution
have included: damping modeling (Adhikari [1]); models for stochastic upscaling for inelas-
tic material behavior from limited experimental data (Das and Ghanem [7], [8]); models for
fusion yield [15]; models for uncertainty quantification (Pascual and Adhikari [31]); charac-
terizing the distribution of anisotropic micro-structural environments with diffusion-weighted
imaging (Scherrer et al. [32]); models for magnetic tractography (Chamberland et al. [4]);
models for diffusion compartment imaging (Scherrer et al. [33]); models for image classification
(Luo et al. [24]); models for accurate signal reconstruction (Jian et al. [22], Bates et al. [3]).
Two recent applications of the Wishart distribution can be found in Arashi et al. [2] and
Ferreira et al. [13].

However, generalizations of the MG distribution have been neglected and there is no
account on this matter in the literature. The only extension that we are aware of is the
inverted matrix variate gamma distribution due to Iranmanesh et al. [17]: if X has the MG
distribution then X−1 has the inverted matrix variate gamma distribution. A generalization
of the MG distribution must contain the MG distribution as a particular case. See also
Iranmanesh et al. [18] and references there in for more details.

The goal of this paper is to give the first generalization to the MG distribution, where
its kernel includes zonal polynomials (Takemura [34]). The generalization proposed has two
shape parameters. One of the shape parameters acts on the determinant of the data while
the other acts on the trace of the data. The MG distribution has only one shape parameter
acting on the determinant of the data. The proposed generalization can be more flexible for
data modeling:

i) if both trace and determinant are significant (that is, the empirical distribution
of the data has significant patterns involving both the trace and determinant);

ii) if trace is significant but determinant is not (that is, the empirical distribution of
the data has significant patterns involving only the trace);

iii) if trace is more significant than determinant is (that is, the empirical distribution
of the data has more significant patterns involving the trace).

For our purpose, we first provide the reader with some preliminary definitions and
lemmas. Most of the following definitions and results can be found in Gupta and Nagar [14],
Muirhead [27], and Mathai [26].
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2. PRELIMINARIES

In this section we state certain well known definitions and results. These results will
be used in subsequent sections.

Let A = (aij) be a p× p matrix. Then, A′ denotes the transpose of A; tr(A) = a11 +
···+ app; etr(A) = exp (tr(A)); det(A) = determinant of A; norm of A = ‖A‖ = maximum
of absolute values of eigenvalues of the matrix A; A1/2 denotes a symmetric positive definite
square root of A; A > 0 means that A is symmetric positive definite and 0 < A < Ip means
that the matrices A and Ip −A are symmetric positive definite. The multivariate gamma
function which is frequently used in multivariate statistical analysis is defined by

Γp(a) =
∫

X>0
etr(−X) det(X)a−(p+1)/2 dX

= πp(p−1)/4
p∏

i=1

Γ
(
a− i− 1

2

)
, Re(a) >

p− 1
2

.(2.1)

Let Cκ(X) be the zonal polynomial of p×p complex symmetric matrix X corresponding
to the ordered partition κ = (k1, ..., kp) , k1 ≥ ··· ≥ kp ≥ 0, k1 + ···+ kp = k and

∑
κ denotes

summation over all partitions κ of k. The generalized hypergeometric coefficient (a)κ used
above is defined by

(a)κ =
p∏

i=1

(
a− i− 1

2

)
ki

,

where (a)r = a(a+ 1) ··· (a+ r − 1), r = 1, 2, ... with (a)0 = 1.

Lemma 2.1. Let Z be a complex symmetric p× p matrix with Re(Z) > 0, and let Y

be a symmetric p× p matrix. Then, for Re(a) > (p− 1)/2, we have

(2.2)
∫

X>0
etr (−XZ) (det X)a−(p+1)/2Cκ (XY ) dX = (a)κ Γp(a) (det Z)−aCκ

(
Y Z−1

)
.

Lemma 2.2. Let Z be a complex symmetric p× p matrix with Re(Z) > 0, and let Y

be a symmetric p× p matrix. Then, for Re > (p− 1)/2, we have

(2.3)
∫
X>0

etr(−XZ) (det X)a−(p+1)/2
[
tr(XY )

]k
dX = Γp(a) (det Z)−a

∑
κ

(a)κCκ(Y Z−1) .

For Z = Y in (2.3), we get∫
X>0

etr(−XY ) (det X)a−(p+1)/2
[
tr(XY )

]k
dX = Γp(a) (detY )−a

∑
κ

(a)κCκ(Ip)

= Γp(a) (ap)k (detY )−a .(2.4)

The above result was derived by Khatri [23].
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Davis [9, 10] introduced a class of polynomials Cκ,λ
φ (X,Y ) of p×p symmetric matrix ar-

guments X and Y , which are invariant under the transformation (X,Y ) → (HXH ′,HYH ′),
H ∈ O(p). For properties and applications of invariant polynomials we refer to Davis [9, 10],
Chikuse [5] and Nagar and Gupta [28]. Let κ, λ, φ and ρ be ordered partitions of non-negative
integers k, `, f = k + ` and r, respectively, into not more than p parts. Then

Cκ,λ
φ (X,X) = θκ,λ

φ Cφ(X) , θκ,λ
φ =

Cκ,λ
φ (Ip, Ip)

Cφ(Ip)
,(2.5)

Cκ,λ
φ (X, Ip) = θκ,λ

φ

Cφ(Ip) Cκ(X)
Cκ(Ip)

, Cκ,λ
φ (Ip,Y ) = θκ,λ

φ

Cφ(Ip) Cλ(X)
Cλ(Ip)

,(2.6)

Cκ,0
κ (X,Y ) ≡ Cκ(X) , C0,λ

λ (X,Y ) ≡ Cλ(Y )

and

Cκ(X)Cλ(Y ) =
∑

φ∈κ·λ
θκ,λ
φ Cκ,λ

φ (X,Y ) ,(2.7)

where φ ∈ κ · λ signifies that irreducible representation of Gl(p,R) indexed by 2φ, occurs in
the decomposition of the Kronecker product 2κ⊗2λ of the irreducible representations indexed
by 2κ and 2λ. Further,∫

R>0
etr(−CR) det(R)t−(p+1)/2Cκ,λ

φ

(
ARA′,BRB′) dR =

= Γp(t, φ) det(C)−tCκ,λ
φ

(
AC−1A′,BC−1B′) ,(2.8)

∫ Ip

0
det(R)t−(p+1)/2 det(Ip −R)u−(p+1)/2 Cκ,λ

φ (R, Ip−R) dR =

=
Γp(t, κ) Γp(u, λ)

Γp(t+ u, φ)
θκ,λ
φ Cφ(Ip)(2.9)

and ∫ Ip

0
det(R)t−(p+1)/2 det(Ip −R)u−(p+1)/2 Cκ,λ

φ (AR,BR) dR =

=
Γp(t, φ) Γp(u)
Γp(t+ u, φ)

Cκ,λ
φ (A,B) .(2.10)

In expressions (2.8), (2.9) and (2.10), Γp(a, ρ) is defined by

Γp(a, ρ) = (a)ρ Γp(a) .(2.11)

Note that Γp(a, 0) = Γp(a), which is the multivariate gamma function.
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Let A, B, X and Y be p× p symmetric matrices. Then∫
H∈O(p)

Cκ,λ
φ

(
AH ′XH,BH ′Y H

)
[dH] =

Cκ,λ
φ (A,B)Cκ,λ

φ (X,Y )

θκ,λ
φ Cφ(Ip)

,(2.12)

where [dH] is the unit invariant Haar measure. The above result is a generalization of Davis
[10, Eq. 5.4] and is due to Dı́az-Garćıa [11]. Finally, using (2.9) and (2.12), it is straightforward
to see that∫ Ip

0
det(R)t−(p+1)/2 det(Ip −R)u−(p+1)/2 Cκ,λ

φ

(
AR,B (Ip−R)

)
dR =

=
Γp(t, κ) Γp(u, λ)

Γp(t+ u, φ)
Cκ,λ

φ (A,B) .(2.13)

Definition 2.1. The n× p random matrix X is said to have a matrix variate normal
distribution with n× p mean matrix M and np× np covariance matrix Ω⊗Σ, denoted by
X ∼ Nn,p (M ,Ω⊗Σ), if its probability density function (p.d.f) is given by (Gupta and Nagar
[14])

(2π)−np/2 det(Ω)−p/2 det(Σ)−n/2 exp
{
−1

2
tr
[
Ω−1(X−M)Σ−1(X−M)′

]}
,

X ∈ Rn×p, M ∈ Rn×p ,

where Σ(p×p) > 0 and Ω(n×n) > 0.

If X∼ Nn,p (M ,Ω⊗Σ), then the characteristic function of X is

φX(Z) = E
[
exp

(
tr
(
ιZ ′X

))]
= exp

[
tr
(
ιZ ′M − 1

2
Z ′ΩZΣ

)]
, Z ∈ Rn×p , ι =

√
−1 .

The present paper has been organized in the following sections. In Section 3, a new
generalized matrix gamma (GMG) distribution has been defined. Some important properties
of this newly defined distribution are given in Section 4. In Section 5, using the conditioning
approach for the matrix variate normal distribution, a new matrix t type family of distribu-
tions is introduced. Some important statistical characteristics of this family are studied in
Section 6. A Bayesian application is given in Section 7. The paper is concluded in Section 8.

3. GENERALIZED MATRIX GAMMA DISTRIBUTION

Recently, Nagar et al. [30] defined a generalized matrix variate gamma distribution by
generalizing the multivariate gamma function. We also refer to Nagar et al. [29] for further
generalizations. In this paper, by incorporating an additional factor in the p.d.f, we give a
generalization of the matrix variate gamma distribution (Das and Dey [6], Iranmanesh et al.

[17]).
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In the following we provide the reader with the definition of the generalized matrix
variate gamma distribution.

Definition 3.1. A random symmetric matrix X of order p is said to have a gener-
alized matrix gamma (GMG) distribution with parameters α, β, k, Σ and U , denoted by
X∼ GMGp (α, β, k,Σ,U), if its p.d.f is given by

C(α, β, k,Σ,U) etr
(
− 1
β

Σ−1X

)
det(X)α−(p+1)/2

[
tr(XU)

]k , X > 0 ,(3.1)

where α > (p− 1)/2, β > 0, Σ > 0, U > 0, k ∈ N0 and C (α, β, k,Σ,U) is the normalizing
constant.

By integrating the p.d.f of X over its support set, the normalizing constantC(α,β,k,Σ,U)
can be evaluated as[

C(α, β, k,Σ,U)
]−1 =

∫
X>0

etr
(
− 1
β

Σ−1X

)
det(X)α−(p+1)/2

[
tr(XU)

]k
dX

= βpα+k Γp(α) det(Σ)α
∑

κ

(α)κCκ(UΣ) ,(3.2)

where the last line has been obtained by using (2.3).

The distribution given by the p.d.f (3.1) is a generalization of the matrix variate gamma
distribution (Das and Dey [6], Iranmanesh et al. [17]). For U = Σ−1, the p.d.f in (3.1)
simplifies to

etr
(
−Σ−1X/β

)
det(X)α−(p+1)/2

[
tr
(
Σ−1X

)]k
βαp+k(αp)k Γp(α) det(Σ)α

, X > 0 .(3.3)

Further, for U = 0 or k = 0 the p.d.f (3.1) reduces to the matrix variate gamma p.d.f given
by

etr
(
−Σ−1X/β

)
det(X)α−(p+1)/2

βαp Γp(α) det(Σ)α
, X > 0 .(3.4)

By suitably choosing β we can derive a number of special cases of (3.3). If we choose α = n/2
and β = 2, then X has a generalized Wishart distribution with p.d.f

etr
(
−Σ−1X/2

)
det(X)n/2−(p+1)/2

[
tr
(
Σ−1X

)]k
2np/2+k Γp(n/2) (np/2)k det(Σ)n/2

, X > 0 .(3.5)

Note that n is a positive integer, generally considered as the sample size. If we choose Σ = Ip,
β = 2 and p = 1 in (3.3), then the scalar variable X follows a chi-square distribution with
n+ 2k degrees of freedom. Further, if we take p = 1 and β = 1 in (3.3), then the scalar
variable X follows a univariate gamma distribution with shape parameter α+ k and scale
parameter σ. Finally, for Σ = Ip and p = 1, the scalar variable X follows a univariate gamma
distribution with shape parameter α+ k and scale parameter β.

Definition 3.2. If X∼ GMGp (α, β, k,Σ,U) then X−1 is said to have an inverted
generalized matrix gamma (IGMG) distribution with parameters α, β, k, Σ−1 and U , denoted
by X−1∼ IGMGp

(
α, β, k,Σ−1,U

)
.
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In the following theorem, the p.d.f of the IGMG distribution is derived.

Proposition 3.1. Let X∼ GMGp (α, β, k,Σ,U). Then, Y = X−1∼ IGMGp(α, β, k,
Σ−1,U) has the p.d.f given by

(3.6) C
(
α, β, k,Σ−1,U

)
etr
(
− 1
β

ΣY −1

)
det(Y )−α−(p+1)/2

[
tr
(
Y −1U

)]k
, Y > 0 ,

where α > (p− 1)/2, β > 0, Σ > 0, U > 0, k ∈ N0 and C
(
α, β, k,Σ−1,U

)
is the normalizing

constant.

Proof: The proof follows from the fact that the Jacobian of the transformation Y =
X−1 is given by J (X → Y ) = det(Y )−(p+1).

By taking U = Σ, α = n/2 and β = 2 in (3.6), the inverted generalized Wishart p.d.f
can be obtained as

(3.7)
etr
(
−ΣY −1/2

)
det(Y )−n/2−(p+1)/2

[
tr
(
ΣY −1

)]k
2np/2+k Γp(n/2) (np/2)k det(Σ)−n/2

, Y > 0 .

4. PROPERTIES OF GMG AND IGMG DISTRIBUTIONS

In this section, various properties of the GMG and IGMG distributions are derived.

Proposition 4.1. Let X∼GMGp (α, β, k,Σ,U). Then, the Laplace transform of X is

(4.1) ϕX(T ) = det(Ip + βΣT )−α

∑
κ(α)κCκ

(
U
(
βT + Σ−1

)−1
)

∑
κ(α)κCκ(UΣ)

,

where T is a complex symmetric matrix of order p with Re(T ) > 0.

Proof: By definition, we have

ϕX(T ) = E
[
exp
(
− tr(TX)

)]
= C (α, β, k,Σ,U)

∫
X>0

etr
[
−X

(
T +

1
β

Σ−1

)]
det(X)α−(p+1)/2

[
tr(XU)

]k
dX .

Now, evaluating the above integral by using (3.2) and simplifying the resulting expression,
we get the desired result.
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Corollary 4.0.1. Let X∼ GMGp (α, β, k,Σ,U). Then the characteristic function of

X is

(4.2) ψX(T ) = det(Ip − ι βΣT )−α

∑
κ(α)κCκ

(
UΣ (Ip − ι βT Σ)−1

)
∑

κ(α)κCκ(UΣ)
,

where ι=
√
−1, T is a symmetric positive definite matrix of order p with T = ((1+ δij) tij/2)

and δij is the Kronecker delta.

Proposition 4.2. If X∼ GMGp (α, β, k,Σ,U), then for a p× p non-singular constant

matrix A, we have

AXA′ ∼ GMGp

(
α, β, k,AΣA′,

(
A−1

)′
UA−1

)
.

Proposition 4.3. Let X∼ GMGp(α, β, k,Σ,U). Then

E
[
det(X)h

]
= det(βΣ)h Γp(α+ h)

Γp(α)

∑
κ(α+ h)κCκ(UΣ)∑

κ(α)κCκ(UΣ)
.

Proof: By definition

E
[
det(X)h

]
= C (α, β, k,Σ,U)

∫
X>0

etr
(
− 1
β

Σ−1X

)
det(X)α+h−(p+1)/2

[
tr(XU)

]k
dX

=
C (α, β, k,Σ,U)

C (α+ h, β, k,Σ,U)
.

Now, simplification of the above expression yields the desired result.

Proposition 4.4. If X∼ GMGp

(
α, β, k,Σ,Σ−1

)
. Then

E
[
det(X)h

]
= det(βΣ)h Γp(α+ h)

Γp(α)
(αp+ hp)k

(αp)k
.

In order to find the expectation of the trace of a GMG random matrix, it is useful to
find the expectation of zonal polynomials, which is derived below.

Theorem 4.1. Let X∼ GMGp (α, β, k,Σ,U) and B be a constant symmetric matrix

of order p. Then

E
[
Cτ (XB)

]
= C (α, β, k,Σ,U) βpα+t+k det(Σ)α

∑
κ

∑
φ∈κ·τ

θκ,τ
φ Γp(α, φ)Cκ,τ

φ (UΣ,BΣ) .

Proof: By definition, we have

E
[
Cτ (XB)

]
= C (α, β, k,Σ,U)

×
∫

X>0
etr
(
− 1
β

Σ−1X

)
det(X)α−(p+1)/2

[
tr(XU)

]k
Cτ (XB) dX .
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Now, writing [
tr(XU)

]k
Cτ (XB) =

∑
κ

Cκ(XU)Cτ (XB)

=
∑

κ

∑
φ∈κ·τ

θκ,τ
φ Cκ,τ

φ (XU ,XB) ,

where we have used (2.7), and integrating X by using (2.8), we obtain

E
[
Cτ (XB)

]
= C (α, β, k,Σ,U)

∑
κ

∑
φ∈κ·τ

θκ,τ
φ

×
∫

X>0
etr
(
− 1
β

Σ−1X

)
det(X)α−(p+1)/2Cκ,τ

φ (XU ,XB) dX

= C(α, β, k,Σ,U) det(βΣ)α
∑

κ

∑
φ∈κ·τ

θκ,τ
φ Γp(α, φ)Cκ,τ

φ (βUΣ, βBΣ) .

Now, the result follows from the fact that

Cκ,τ
φ (βUΣ, βBΣ) = βk+tCκ,τ

φ (UΣ,BΣ) .

Theorem 4.2. Let Y ∼ IGMGp (α, β, k,Ψ,U). Then, the Laplace transform of Y is

given by

ϕY (T ) = C
(
α, β, k,Ψ−1,U

)
det(T )α

[
dk

dzk
Bα

(
T
(
β−1Ψ− zU

))]
z=0

,(4.3)

where T is a complex symmetric matrix of order p with Re(T ) > 0 and Bδ(·) is the Bessel

function of matrix argument (Herz [16]) given by

(4.4) Bδ(WZ) = det(W )−δ

∫
S>0

det(S)δ−(p+1)/2 etr
(
−SZ − S−1W

)
dS .

Proof: The Laplace transform of Y , denoted by ϕY (T ) can be derived as

ϕY (T ) = C
(
α, β, k,Ψ−1,U

)
×
∫

Y >0
etr(−TY ) etr

(
− 1
β

ΨY −1

)
det(Y )−α−(p+1)/2

[
tr
(
Y −1U

)]k
dY .(4.5)

Note that we can write

(4.6)
[
tr
(
Y −1U

)]k =
[
dk

dzk
exp

[
z tr
(
Y −1U

)]]
z=0

.

Now, substituting (4.6) in (4.5), we have

ϕY (T ) = C
(
α, β, k,Ψ−1,U

)
×
[
dk

dzk

∫
Y >0

etr(−TY ) etr
[
−
(
β−1Ψ− zU

)
Y −1

]
det(Y )−α−(p+1)/2 dY

]
z=0

= C
(
α, β, k,Ψ−1,U

)
×
[
dk

dzk

∫
Y >0

etr
[
−TY −1−

(
β−1Ψ− zU

)
Y
]

det(Y )α−(p+1)/2 dY

]
z=0

.(4.7)

Finally, using (4.4) in (4.7), we get the desired result.
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Proposition 4.5. Let Y ∼ IGMGp (α, β, k,Ψ,U). Then

E
[
det(Y )h

]
=

det(Ψ)h Γp(α− h)
βph Γp(α)

∑
κ(α− h)κCκ

(
UΨ−1

)∑
κ(α)κCκ(UΨ−1)

, Re(α− h) >
p− 1

2
.

Proof: By definition,

E
[
det(Y )h

]
= C

(
α, β, k,Ψ−1,U

)
×
∫

Y >0
etr
(
−β−1ΨY −1

)
det(Y )−(α−h)−(p+1)/2

[
tr
(
Y −1U

)]k
dY

=
C
(
α, β, k,Ψ−1,U

)
C (α− h, β, k,Ψ−1,U)

, Re(α− h) >
p− 1

2
.

Now, the desired result is obtained by simplifying the above expression.

Proposition 4.6. Let Y ∼ IGMGp (α, β, k,Ψ,U) and A be a constant symmetric ma-

trix of order p. Then AYA′ ∼ IGMGp (α, β, k,AΨA′,AUA′).

Proof: The Jacobian of the transformation Z = AYA′ is J(Y →Z) = det(A)−(p+1).
Substituting appropriately in the p.d.f of Y , we get the desired result.

Theorem 4.3. Let the p× p random symmetric matrices X1 and X2 be independent,

X1∼ GMGp (α1, β, k,Σ,U) and X2 ∼ GMGp (α2, β, l,Σ,U). Define R = (X1 + X2)
−1/2

×X1 (X1 + X2)
−1/2 and S = X1 + X2. The p.d.f of S is given by

C (α1, β, k,Σ,U) C (α2, β, l,Σ,U) etr
[
− (βΣ)−1S

]
det(S)α1+α2−(p+1)/2 ×

×
∑

κ

∑
λ

∑
φ∈κ·λ

θκ,λ
φ

Γp (α1, κ) Γp (α1, λ)
Γp (α1 + α2, φ)

Cκ,λ
φ (SU ,SU) , S > 0 .

Further, for U = Ip, the p.d.f of R is given by

C (α1, β, k,Σ, Ip) C (α2, β, l,Σ, Ip) det(βΣ)α1+α2 det(R)α1−(p+1)/2 det(Ip−R)α2−(p+1)/2 ×

×
∑

κ

∑
λ

∑
φ∈κ·λ

θκ,λ
φ Γp (α1 + α2, φ) Cκ,λ

φ

(
βΣR, βΣ (Ip−R)

)
, 0<R< Ip .

Proof: The joint p.d.f of X1 and X2 is given by

C (α1, β, k,Σ,U) C (α2, β, l,Σ,U) etr
[
− (βΣ)−1 (X1+X2)

]
×

× det(X1)
α1−(p+1)/2 det(X2)

α2−(p+1)/2 [tr(X1U)
]k [tr(X2U)

]l , X1 > 0, X2 > 0 .

Transforming R = (X1 + X2)
−1/2 X1 (X1 + X2)

−1/2 and S = X1 + X2 with the Jacobian
J (X1,X2→R,S) = det(S)(p+1)/2 in the joint p.d.f of X1 and X2, the joint p.d.f of R and S

can be derived as

C (α1, β, k,Σ,U) C (α2, β, l,Σ,U) etr
[
− (βΣ)−1S

]
det(S)α1+α2−(p+1)/2 det(R)α1−(p+1)/2 ×

× det(Ip−R)α2−(p+1)/2 [tr(S1/2RS1/2U
)]k [

tr
(
S1/2 (Ip−R) S1/2U

)]l
,(4.8)
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where S > 0 and 0 < R < Ip. Now, writing

[
tr
(
S1/2RS1/2U

)]k [
tr
(
S1/2 (Ip −R) S1/2U

)]l
=

=
∑

κ

∑
λ

∑
φ∈κ·λ

θκ,λ
φ Cκ,λ

φ

(
S1/2US1/2R, S1/2US1/2 (Ip −R)

)
in (4.8), the joint p.d.f of R and S can be re-written as

C (α1, β, k,Σ,U) C (α2, β, l,Σ,U) etr
[
− (βΣ)−1S

]
det(S)α1+α2−(p+1)/2 ×

× det(R)α1−(p+1)/2 det(Ip −R)α2−(p+1)/2

×
∑

κ

∑
λ

∑
φ∈κ·λ

θκ,λ
φ Cκ,λ

φ

(
S1/2US1/2R, S1/2US1/2 (Ip −R)

)
,(4.9)

where S > 0 and 0 < R < Ip. Finally, integrating the above expression with respect to R

by using (2.13), we get the p.d.f of S. Further, substituting U = Ip in the above expression
and integrating S by using (2.8), we get the p.d.f of R.

5. FAMILY OF GENERALIZED MATRIX VARIATE t-DISTRIBUTIONS

In this section, a new family of matrix variate t distributions is introduced. This
distribution will be useful in Bayesian analysis.

Definition 5.1. The n× p random matrix T is said to have a generalized matrix
variate t distribution (GMT) with parameters M ∈ Rn×p, Ψ(p×p) > 0, Ω(n×n) > 0,
U(p×p) > 0, α > (p− 1)/2, β > 0, κ = (k1, ..., kp), k1 ≥ ··· ≥ kp ≥ 0, if its p.d.f is given
by

det(Ω)−p/2 det(Ψ)−n/2 Γp(α+ n/2)
Γp(α)

∑
κ(α)κCκ(UΨ−1)

(
β

2π

)np/2

×

× det
(

In +
β

2
Ω−1(T−M)Ψ−1(T−M)′

)−(α+n/2)

×
∑

κ

(
α+

n

2

)
κ
Cκ

(
U

(
Ψ +

β

2
(T−M)′ Ω−1(T−M)

)−1
)

, T ∈ Rn×p .(5.1)

We shall use the notation T ∼ GMTn,p (α, β, k,M ,Ω,Ψ,U).

For β = 2, α = (m+ p− 1)/2 and k = 0, the GMT distribution simplifies to the matrix
variate t distribution (Gupta and Nagar [14]). Further, for k = 0, the GMT simplifies to the
generalized matrix variate t distribution defined by Iranmanesh et al. [19].

Theorem 5.1. Let X |Σ ∼ Nn,p (0,Ω⊗Σ) and Σ ∼ IGMGp (α, β, k,Ψ,U). Then,

X∼ GMTn,p (α, β, k,0,Ω,Ψ,U).
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Proof: Let g(X |Σ) be the conditional p.d.f of X given Σ. Further, let h(Σ) be the
marginal p.d.f of Σ. Then, using conditional method, we find the marginal p.d.f of X as

f(X) =
∫
Σ>0

g(X |Σ)h(Σ) dΣ .

Now, substituting for g(X|Σ) and h(Σ) above, we get the marginal p.d.f of X as

f(X) = (2π)−np/2 det(Ω)−p/2C
(
α, β, k,Ψ−1,U

)
×
∫
Σ>0

etr
[
− 1
β

(
Ψ +

β

2
X ′Ω−1X

)
Σ−1

]
det(Σ)−α−(n+p+1)/2

[
tr
(
Σ−1U

)]k
dΣ.

Further, substituting Σ−1 = Z with the Jacobian J(Σ → Z) = det(Z)−(p+1) in the above
integral and using (3.2), we get

f(X) = (2π)−np/2 det(Ω)−p/2 C
(
α, β, k,Ψ−1,U

)
C
(
α+ n/2, β, k, (Ψ + βX ′Ω−1X/2)−1 ,U

) .
Finally, simplifying the above expression, we get

det(Ω)−p/2 det(Ψ)−n/2Γp(α+ n/2)
Γp(α)

∑
κ(α)κCκ (UΨ−1)

(
β

2π

)np/2

det
(

In +
β

2
Ω−1XΨ−1X ′

)−(α+n/2)

×

×
∑

κ

(
α+

n

2

)
κ
Cκ

(
U

(
Ψ +

β

2
X ′Ω−1X

)−1
)
, X ∈ Rn×p,

which is the desired result.

Next, in Corollary 5.1.1, Corollary 5.1.2 and Theorem 5.2, we give three different vari-
ations of the above theorem.

Corollary 5.1.1. Let Y |Σ ∼ Np,n (0,Σ⊗Ω) and Σ ∼ IGMGp (α, β, k,Ψ,U). Then,

the marginal p.d.f of Y is given by

det(Ω)−p/2 det(Ψ)−n/2Γp(α+ n/2)
Γp(α)

∑
κ(α)κCκ (UΨ−1)

(
β

2π

)np/2

det
(

Ip +
β

2
Ψ−1Y Ω−1Y ′

)−(α+n/2)

×

×
∑

κ

(
α+

n

2

)
κ
Cκ

(
U

(
Ψ +

β

2
Y Ω−1Y ′

)−1
)
, Y ∈ Rp×n.

Proof: Take Y = X ′ in Theorem 5.1.

Corollary 5.1.2. Let X|Ω ∼ Nn,p (0,Ω⊗Σ) and Ω ∼ IGMGn (α, β, k,Ψ,U). Then,

the marginal p.d.f of X is

det(Σ)−n/2 det(Ψ)−p/2Γn(α+ p/2)
Γn(α)

∑
κ(α)κCκ (UΨ−1)

(
β

2π

)np/2

det
(

In +
β

2
Ψ−1XΣ−1X ′

)−(α+p/2)

×

×
∑

κ

(
α+

p

2

)
κ
Cκ

(
U

(
Ψ +

β

2
XΣ−1X ′

)−1
)
, X ∈ Rn×p.

Proof: This result can be obtained from Corollary 5.1.1.
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Theorem 5.2. Let Y |Ω ∼ Np,n (0,Σ⊗Ω) and Ω ∼ IGMGn (α, β, k,Ψ,U). Then,

Y ∼ GMTp,n (α, β, k,0,Σ,Ψ,U).

Proof: Let g(Y |Ω) be the conditional p.d.f of Y given Ω. Further, let h(Ω) be the
marginal p.d.f of Ω. Then, using conditional method, we find the marginal p.d.f of Y as

fY (Y ) =
∫
Ω>0

g(Y |Ω)h(Ω) dΩ.

Now, substituting for g(Y |Ω) and h(Ω) above, we get the marginal p.d.f of Y as

fY (Y ) = (2π)−np/2 det(Σ)−n/2C
(
α, β, k,Ψ−1,U

)
×
∫
Ω>0

etr
[
− 1
β

(
Ψ +

β

2
Y ′Σ−1Y

)
Ω−1

]
det(Ω)−α−(n+p+1)/2

[
tr
(
Ω−1U

)]k
dΩ.

Further, substituting Ω−1 = Z with the Jacobian J(Ω → Z) = det(Z)−(p+1) in the above
integral and using (3.2), we get

fY (Y ) = (2π)−np/2 det(Σ)−n/2 C
(
α, β, k,Ψ−1,U

)
C
(
α+ p/2, β, k, (Ψ + βY ′Σ−1Y /2)−1 ,U

) .
Finally, simplifying the above expression, we get the desired result.

6. SOME PROPERTIES OF THE GMT FAMILY OF DISTRIBUTIONS

In this section, various properties of the GMT distribution are derived.

Proposition 6.1. Let T ∼ GMTn,p (α, β, k,M ,Ω,Ψ,U). Let A(n×n) and B(p× p)
be constant nonsingular matrices. Then, ATB ∼ GMTn,p(α, β, k,AMB,AΩA′,B′ΨB,

B′UB).

Proof: Transforming W = ATB, with the Jacobian J(T →W ) = det(A)−p det(B)−n,
in the p.d.f (5.1) of T , and simplifying the resulting expression, we get the result.

Corollary 6.0.1. If T ∼ GMTn,p (α, β, k,M ,Ω,Ψ,U), then

Ω−1/2TB ∼ GMTn,p

(
α, β, k,Ω−1/2MB, In,B

′ΨB,B′UB
)
,

ATΨ−1/2 ∼ GMTn,p

(
α, β, k,AMΨ−1/2,AΩA′, Ip,Ψ−1/2UΨ−1/2

)
and

Ω−1/2TΨ−1/2 ∼ GMTn,p

(
α, β, k,Ω−1/2MΨ−1/2, In, Ip,Ψ−1/2UΨ−1/2

)
.
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Proposition 6.2. If T ∼ GMTn,p (α, β, k,M ,Ω,Ψ,U), then for n ≥ p, the p.d.f of

Z = (T −M)′Ω−1(T −M) is given by

det(Ω)−p/2 det(Ψ)−n/2Γp(α+ n/2)
Γp(n/2)Γp(α)

∑
κ(α)κCκ (UΨ−1)

(
β

2

)np/2

det(Z)(n−p−1)/2×

× det
(

Ip +
β

2
Ψ−1Z

)−(α+n/2)∑
κ

(
α+

n

2

)
κ
Cκ

(
U

(
Ψ +

β

2
Z

)−1
)
, Z > 0.(6.1)

Proof: The p.d.f of Z is given by

det(Ω)−p/2 det(Ψ)−n/2Γp(α+ n/2)
Γp(α)

∑
κ(α)κCκ (UΨ−1)

(
β

2π

)np/2∑
κ

(
α+

n

2

)
κ
×

×
∫

(T−M)′Ω−1(T−M)=Z
det
(

Ip +
β

2
Ψ−1(T −M)′Ω−1(T −M)

)−(α+n/2)

×Cκ

(
U

(
Ψ +

β

2
(T −M)′Ω−1(T −M)

)−1
)
dZ, Z > 0.

Now, evaluating the above integral by using Theorem 1.4.10 of Gupta and Nagar [14], we get
the result.

The following result is a generalization of the work of Dickey [12].

Theorem 6.1. Let X∼Nn,p (0,Ω⊗ Ip), independent of S ∼ GMGp

(
α, β, k,Λ−1,U

)
.

Define T = XS−1/2 +M , where M is an n× p constant matrix and S1/2
(
S1/2

)′
= S. Then,

the p.d.f of T is given by

det(Ω)−p/2 det(Λ)−n/2Γp(α+ n/2)
Γp(α)

∑
κ(α)κCκ (UΛ−1)

(
β

2π

)np/2

×

× det
(

Ip +
β

2
Λ−1(T −M)′Ω−1(T −M)

)−(α+n/2)

×
∑

κ

(
α+

n

2

)
κ
Cκ

(
U

(
Λ +

β

2
(T −M)′Ω−1(T −M)

)−1
)
, T ∈ Rn×p.

Proof: The joint p.d.f of X and S is given by

(2π)−np/2 det(Ω)−p/2 det(Λ)α

βpα+kΓp(α)
∑

κ(α)κCκ (UΛ−1)
det(S)α−(p+1)/2 [tr(SU)]k ×

× exp
[
− tr

(
1
β
ΛS +

1
2
X ′Ω−1X

)]
, S > 0, X ∈ Rn×p.

Now, let T = XS−1/2 + M . The Jacobian of this transformation is J(X → T ) = det(S)n/2.
Substituting for X in terms of T in the joint p.d.f of X and S, and multiplying the resulting
expression by J(X → T ), we get the joint p.d.f of T and S as

(2π)−np/2 det(Ω)−p/2 det(Λ)α

βpα+kΓp(α)
∑

κ(α)κCκ (UΛ−1)
det(S)α+n/2−(p+1)/2 [tr(SU)]k ×

× etr
[
− 1
β

(
Λ +

β

2
(T −M)′Ω−1(T −M)

)
S

]
, S > 0, T ∈ Rn×p.
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Now, integrating out S by using (3.2) and simplifying the resulting expression the p.d.f of T

is obtained.

Theorem 6.2. Let X∼Nn,p (0, In ⊗Σ), independent of S∼GMGn

(
α, β, k,Λ−1,U

)
.

Define T =
(
S−1/2

)′
X + M , where M is an n× p constant matrix and S1/2

(
S1/2

)′
= S.

Then, the p.d.f of T is

det(Σ)−n/2 det(Λ)−p/2Γn(α+ p/2)
Γn(α)

∑
κ(α)κCκ (UΛ−1)

(
β

2π

)np/2

×

× det
(

In +
β

2
Λ−1(T −M)Σ−1(T −M)′

)−(α+p/2)

×
∑

κ

(
α+

p

2

)
κ
Cκ

(
U

(
Λ +

β

2
(T −M)Σ−1(T −M)′

)−1
)
, T ∈ Rn×p.

Proof: The joint p.d.f of X and S is given by

(2π)−np/2 det(Σ)−n/2 det(Λ)α

βnα+kΓn(α)
∑

κ(α)κCκ (UΛ−1)
det(S)α−(n+1)/2 [tr(SU)]k ×

× exp
[
− tr

(
1
β
ΛS +

1
2
XΣ−1X ′

)]
, S > 0, X ∈ Rn×p.

Now, let T =
(
S−1/2

)′
X +M . The Jacobian of the transformation is J(X → T ) = det(S)p/2.

Substituting for X in terms of T in the joint p.d.f of X and S, and multiplying the resulting
expression by J(X → T ), we get the joint p.d.f of T and S as

(2π)−np/2 det(Σ)−n/2 det(Λ)α

βnα+kΓn(α)
∑

κ(α)κCκ (UΛ−1)
det(S)α+p/2−(n+1)/2 [tr(SU)]k ×

× etr
[
−
(

1
β
Λ +

1
2
(T −M)Σ−1(T −M)′

)
S

]
, S > 0, X ∈ Rn×p.

Now, integrating out S by using (3.2) and simplifying the resulting expression, the p.d.f of
T is obtained.

7. APPLICATIONS IN BAYESIAN ANALYSIS

As in Iranmanesh et al. [17], consider the Kullback-Leibler divergence loss (KLDL)
function log

(
π(A|D)
π(Σ|D)

)
with the posterior expected loss function

ρ(Σ,A) = E

[
log
(
π(A|D)
π(Σ|D)

)]
.

One may use the inverted generalized matrix gamma distribution as a prior distribution in
Bayesian context. It is straightforward to prove that posterior distributions are IGMG. They
are stated in Propositions 7.1 and 7.2 without proof.
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Proposition 7.1. Let X|Σ ∼ Nn,p (0,Ω⊗Σ). Further suppose that the prior distri-

bution of Σ is IGMG with parameters (α, β, k,Ψ,U). Then, the posterior distribution of Σ
is IGMG with parameters(
α+ n/2, β, k,

(
Ψ + βX ′Ω−1X/2

)−1
,U
)
. That is, the posterior p.d.f of Σ is

π(Σ|X) = C

(
α+

n

2
, β, k,

(
Ψ +

β

2
X ′Ω−1X

)−1

,U

)

× etr
[
− 1
β

(
Ψ +

β

2
X ′Ω−1X

)
Σ−1

]
det(Σ)−α−(n+p+1)/2

[
tr
(
Σ−1U

)]k
, Σ > 0.

Proposition 7.2. Let X|Σ ∼ Nn,p (0,Ω⊗Σ). Further suppose that the prior distri-

bution of Ω is IGMG with parameters (α, β, k,Ψ,U). Then, the posterior distribution of Ω
is IGMG with parameters

(
α+ p/2, β, k,

(
Ψ + βXΣ−1X ′/2

)−1
,U
)
. That is, the posterior

p.d.f of Ω is

π(Ω|X) = C

(
α+

p

2
, β, k,

(
Ψ +

β

2
XΣ−1X ′

)−1

,U

)

× etr
[
− 1
β

(
Ψ +

β

2
XΣ−1X ′

)
Ω−1

]
det(Ω)−α−(n+p+1)/2

[
tr
(
Ω−1U

)]k
, Ω > 0.

By definition, the Bayes estimator of Σ, under the KLDL function, is given by Σ̂ =
argmaxΣ π(Σ|X). Iranmanesh et al. [19] have shown that

Σ̂ = [α+ n/2 + (p+ 1)/2]−1

(
1
2
X ′Ω−1X +

1
β
Ψ
)

for the special case k = 0.

8. CONCLUSION

In this paper, a generalized matrix variate gamma distribution has been introduced.
The corresponding inverted matrix variate gamma distribution has also been derived. By
making use of this newly defined matrix variate distribution as the prior for the characteristic
matrix of a matrix variate normal distribution, using conditioning approach, a family of
generalized matrix variate t distributions has also been defined.

A future work is to consider estimation of the newly introduced matrix variate distribu-
tions. One issue is that the new distributions are over parameterized; that is, there is param-
eter redundancy. This can be accounted for numerically by constrained maximization of the
log likelihood. For example, if the data follow the overparameterized p.d.f ab exp(−abx) then
the log likelihood can be maximized using the constraint ab = c. Usually, partial derivatives of
the log likelihood are not required for evaluating maximum likelihood estimates numerically.
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1. INTRODUCTION

One of the most interesting problems in reliability theory, is inference of the stress-
strength parameter, R = P (X < Y ). The variables Y and X are known as strength and
stress, respectively. In one system, if the applied stress is greater than its strength, as a
result the system fails. In statistical science, more attention has been paid to the estimation
of R since 1956, beginning with the work of Birnbaum [3]. From that time, estimating the R

have been done from the frequentist and Bayesian viewpoints. Recently, some studies about
the stress-strength model can be found in Rezaei et al. [21], Babayi et al. [2], Nadar et al. [18]
and Kizilaslan and Nadar [8].

Although, in the complete sample case, many authors have been investigated the stress-
strength models, they did not pay attention to the censored sample case. Whereas in really
applicable situations, for many reasons like financial plane or limited time, the researchers
confront censored data.

Among various censoring schemes, Type-I and Type-II are the two most fundamental
schemes, which can be explained as follows. We finish the test in a pre-selected time and
pre-chosen number of failures, in Type-I and Type-II schemes, respectively. Also, we finish
the test at time T ∗ = min{Xm:n, T}, where Xm:n is the m-th failure times from n items and
T > 0, in the hybrid scheme, which has been indicated by Epstein [5]. Also, In hybrid scheme,
Singh and Goel [24] obtained reliability estimation of modified Weibull distribution. Because
in the hybrid scheme, the removal of active units cannot be lost during the test, hybrid pro-
gressive (HP) scheme is introduced by Kundu and Joarder [14], which can be described as
follows. Let N units be put on the test with censoring scheme (R1, ..., Rn) and pausing time
T ∗ = min{Xn:n:N , T}, where X1:n:N ≤ ... ≤ Xn:n:N be a progressive censoring scheme and
T > 0 is a fixed time. It is obvious that if Xn:n:N < T then we finish the test at time Xn:n:N

and {X1:n:N , ..., Xn:n:N} is the observed sample. Otherwise, if XJ :n:N < T < XJ+1:n:N then
we finish the test at time T and {X1:n:N , ..., XJ :n:N} is the observed sample. In symbol, we
say that {X1:n:N , ..., XJ :n:N} is a HP censoring sample with scheme {N,n, T, J,R1, ..., RJ}.
Recently, some of the authors have studied the stress-strength model and censored data.
For example, Shoaee and Khorram considered stress-strength reliability of a two-parameter
bathtub-shaped lifetime distribution with respect to progressively censored samples, [22].
Also, they obtained some statistical inference of R = P (Y < X) for Weibull distribution un-
der Type-II progressively hybrid censored data, [23]. Kohansal [9] considered estimation of
multicomponent stress-strength reliability for Kumaraswamy distribution under progressive
censoring. Rasethuntsa and Nadar [20] studied stress-strength reliability of a non-identical-
component-strengths system based on upper record values from the family of Kumaraswamy
generalized distributions. Very recently, Maurya and Tripathi [17] derived the reliability
estimation in a multicomponent stress strength model for Burr XII distribution under pro-
gressive censoring. In addition, Kohansal [10] obtained Bayesian and classical estimation
of R = P (X < Y ) based on Burr type XII distribution under hybrid progressive censored
samples. Kohansal and Rezakhah [12] considered the inference of R = P (Y < X) for two-
parameter Rayleigh distribution in terms of progressively censored samples. Ahmadi and
Ghafouri [1] obtained the reliability estimation in a multicomponent stress-strength model
under generalized half-normal distribution based on progressive Type-II censoring. Further-
more, Kohansal and Shoaee [13] derived Bayesian and classical estimation of reliability in
a multicomponent stress-strength model under adaptive hybrid progressive censored data.
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Finally, Kohansal and Nadarajah [11] estimated the stress-strength parameter based on
Type-II hybrid progressive censored samples for a Kumaraswamy distribution. In this study,
based on HP censoring scheme, the reliability parameter R = P (X < Y ) is estimated when
X and Y are two independent random variables from the Kumaraswamy distribution (KuD).
This paper has also some contribution in terms of inference. We consider the different point
and interval estimations of R, and all of these estimates are considered in Bayesian and classi-
cal viewpoints. Also, we investigate the problem in three different cases, first at the time that
X and Y have the unknown common one parameter, secondly when have known common
one parameter, and third when they have different unknown parameters. Moreover, as the
HP censoring is a general scheme, so we can obtain from it, some cases that are considered
(up to now).

KuD with the first and second shape parameters α and λ, respectively, which is denoted
by Ku(α, λ), has the probability density function (pdf), cumulative distribution function (cdf)
and failure rate function as follows:

f(x) = αλxλ−1(1− xλ)α−1, 0 < x < 1, α, λ > 0,

F (x) = 1− (1− xλ)α, 0 < x < 1, α, λ > 0,

H(x) =
αλxλ−1

1− xλ
, 0 < x < 1, α, λ > 0,

respectively. The probability density and failure rate functions of KuD are presented in
Figure 1. KuD has an increasing failure rate function, so the KuD can be used for analyzing
the real data sets if the empirical consideration suggests that the failure rate function of the
prior distribution is increasing. Moreover, KuD is the very appropriate fit to many natural
phenomena, which their outcomes have lower and upper bounds, such as the heights of
individuals, scores obtained on a test, atmospheric temperatures, hydrological data, economic
data, etc.
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Figure 1: Shape of probability density (right) and failure rate (left) functions of KuD when λ = 2.

The other parts of this paper are arranged as follows: In Section 2, under the
HP censoring scheme, assuming X ∼ Ku(α, λ) and Y ∼ Ku(β, λ), we obtain the point
and interval estimates of R = P (X < Y ), from the frequentist and Bayesian viewpoints.
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More specifically, in Section 2, the existence and uniqueness of MLEs are considered. Because
the MLEs of unknown parameters and R cannot be earned in the closed forms, we obtain
the AMLEs of parameters and R, which have the explicit forms. In addition, we develop
the Bayes estimates of R, by applying Lindley’s approximation and MCMC method due to
the lack of explicit forms. Moreover, different confidence intervals such as asymptotic and
HPD intervals of R are provided. In Section 3, by assuming that the common shape param-
eter is known, the MLE and exact Bayes estimate of R are earned. Because the assumption
studied in Section 2 is quite strong, we consider the statistical inference of R in general
case. Accordingly, in Section 4, under the HP censoring scheme, assuming X ∼ Ku(α, λ1)
and Y ∼ Ku(β, λ2), we provide the MLE, AMLE and Bayes estimate of R, respectively.
In Section 5, we give the simulation results and data analysis, and following that we conclude
the paper in Section 6.

2. INFERENCE ON R WITH UNKNOWN COMMON λ

2.1. MLE of R

The stress-strength parameter, when X and Y are two independent random variables
from Ku(α, λ) and Ku(β, λ), respectively, can be obtained simply as R = P (X < Y ) = α

α+β .
In this section, under the HP censoring scheme, we derive the MLE of R. Because R is
a function of the unknown parameters, consequently at first we obtain the MLEs of α, β,
and λ. If {X1, ..., Xn} and {Y1, ..., Ym} be two HP censoring samples with censoring schemes
{N,n, T1, J1, R1, ..., RJ1} and {M,m, T2, J2, S1, ..., SJ2}, respectively, after that the likelihood
function of the unknown parameters α, β and λ can be written as

L(α, β, λ) ∝
[ J1∏

i=1

f(xi)[1− F (xi)]Ri [1− F (T1)]
R∗

J1

]

×
[ J2∏

i=1

f(yj)[1− F (yj)]Sj [1− F (T2)]
S∗

J2

]
,

where

R∗
J1

= N − J1 −
J1∑
i=1

Ri, S∗J2
= M − J2 −

J2∑
j=1

Sj .

The proposed model, in association with the existing ones, has some differences and
similarities. About the differences, we notice that it is a general model and some important
models can be obtained from it. For example, by setting T1 = Xn and T2 = Ym, we derive the
likelihood function for R = P (X < Y ) in the progressive censoring scheme. Also, by setting
T1 = Xn, Ri = 0 (i = 1, ..., n− 1), Rn = N −n and T2 = Ym, Sj = 0 (j = 1, ...,m− 1), Sm =
M −m, we obtain the likelihood function for R = P (X < Y ) in Type-II censoring scheme.
Moreover, by setting T1 = Xn, Ri = 0 (i = 1, ..., n) and T2 = Ym, Sj = 0 (j = 1, ...,m), we
derive the likelihood function for R = P (X < Y ) in complete sample. About the similarities,
we identify that most of the censoring schemes have complex computational needs.
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The likelihood function, with respect to the observed data can be obtained as:

L(data|α, β, λ) ∝ αJ1βJ2λJ1+J2

(
J1∏
i=1

xλ−1
i (1− xλ

i )α(Ri+1)−1

)
(1− T λ

1 )αR∗
J1

×

 J2∏
j=1

yλ−1
j (1− yλ

j )β(Sj+1)−1

 (1− T λ
2 )βS∗

J2 .

Therefore, the log-likelihood function, along with ignoring the constant value, is as:

`(α, β, λ) = J1 log(α) +
J1∑
i=1

(α(Ri + 1)− 1) log(1− xλ
i ) + αR∗

J1
log(1− T λ

1 )

+ J2 log(β) +
J2∑

j=1

(β(Sj + 1)− 1) log(1− yλ
j ) + βS∗J2

log(1− T λ
2 )

+ (λ− 1)
J1∑
i=1

log(xi) + (λ− 1)
J2∑

j=1

log(yj) + (J1 + J2) log(λ).(2.1)

Consequently, to earn the MLEs of α, β and λ, namely, α̂, β̂ and λ̂, respectively, we should
solve the following equations:

∂`

∂α
=

J1

α
+

J1∑
i=1

(Ri + 1) log(1− xλ
i ) + R∗

J1
log(1− T λ

1 ) = 0,(2.2)

∂`

∂β
=

J2

β
+

J2∑
j=1

(Sj + 1) log(1− yλ
j ) + S∗J2

log(1− T λ
2 ) = 0,(2.3)

∂`

∂λ
=

J1 + J2

λ
+

J1∑
i=1

log(xi)−
J1∑
i=1

(
α(Ri + 1)− 1

)
xλ

i

log(xi)
1− xλ

i

− αR∗
J1

T λ
1

log(T1)
1− T λ

1

+
J2∑

j=1

log(yj)−
J2∑

j=1

(
β(Sj + 1)− 1

)
yλ

j

log(yj)
1− yλ

j

− βS∗J2
T λ

2

log(T2)
1− T λ

2

= 0.(2.4)

From the equations (2.2) and (2.3), we have

α̂(λ) = −J1

{ J1∑
i=1

(Ri + 1) log(1− xλ
i ) + R∗

J1
log(1− T λ

1 )
}−1

,

β̂(λ) = −J2

{ J2∑
j=1

(Sj + 1) log(1− yλ
j ) + S∗J2

log(1− T λ
2 )
}−1

.

Also, to derive λ̂, we apply one numerical method like Newton–Raphson on the equation
(2.4). After obtaining the MLEs of α, β, and λ, by the use of the invariance property, the
MLE of R can be derived as

(2.5) R̂MLE =
α̂

α̂ + β̂
.
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2.2. Existence and uniqueness of the MLEs

In this section, we consider the existence and uniqueness of the MLEs.

Theorem 2.1. The MLEs of the parameters α and β, which were obtained by ap-

plying the following equations, are unique:

α̂ = −J1

{ J1∑
i=1

(Ri + 1) log(1− xλ
i ) + R∗

J1
log(1− T λ

1 )
}−1

,

β̂ = −J2

{ J2∑
j=1

(Sj + 1) log(1− yλ
j ) + S∗J2

log(1− T λ
2 )
}−1

,

and λ̂ should be obtained by finding a solution for the following equation:

G(λ) =
J1 + J2

λ
+

J1∑
i=1

log(xi)−
J1∑
i=1

(
α̂(Ri + 1)− 1

)
xλ

i

log(xi)
1− xλ

i

− α̂R∗
J1

T λ
1

log(T1)
1− T λ

1

+
J2∑

j=1

log(yj)−
J2∑

j=1

(
β̂(Sj + 1)− 1

)
yλ

j

log(yj)
1− yλ

j

− β̂S∗J2
T λ

2

log(T2)
1− T λ

2

.

Proof: See Appendix A.

2.3. AMLE of R

From Section 2.1, we observe that the MLEs of unknown parameters and R cannot
be earned in the closed forms. As a result in this section, we obtain the AMLEs of the
parameters, which have the explicit forms.

Lemma 2.1. Let Z ′ and Z ′′ be Weibull and Extreme value distributions, in symbols

Z ′ ∼ W(α, θ) and Z ′′ ∼ EV(µ, σ), if they have the following cumulative distribution functions,

respectively as:

FZ′(z) = 1− e−
xα

θ , z > 0, α, θ > 0,

FZ′′(z) = 1− e−e
x−µ

σ , z ∈ R, µ ∈ R, σ > 0.

(i) If Z ∼ Ku(α, λ) and Z ′ = (− log(1− Zλ))
1
λ , then Z ′ ∼ W(λ, 1

α).

(ii) If Z ′ ∼ W(λ, 1
α) and Z ′′ = log(Z ′), then Z ′′ ∼ EV(µ, σ), where µ = − 1

λ log(α) and

σ = 1
λ .

Proof: Obvious.
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Consider that {X1, ..., Xn} and {Y1, ..., Ym} be two HP censoring samples with censoring
schemes {N,n, T1, J1, R1, ..., RJ1} and {M,m, T2, J2, S1, ..., SJ2}, respectively and

X ′
i = (− log(1−Xλ

i ))
1
λ , Ui = log(X ′

i) and Y ′
j = (− log(1− Y λ

j ))
1
λ , Vj = log(Y ′

j ).

Applying Lemma 2.1, Ui ∼ EV(µ1, σ) and Vj ∼ EV(µ2, σ), where

µ1 = − 1
λ

log(α), µ2 = − 1
λ

log(β), and σ =
1
λ

.

Therefore, in terms of the observed data {U1, ..., Un} and {V1, ..., Vm}, and by ignoring the
constant value, the log-likelihood function is as follows:

`∗(µ1, µ2, σ) =
J1∑
i=1

ti −
J1∑
i=1

(Ri + 1)eti −R∗
J1

eδ1

+
J2∑

j=1

zj −
J2∑

j=1

(Sj + 1)ezj − S∗J2
eδ2 − (J1 + J2) log(σ),(2.6)

where

ti =
ui − µ1

σ
, zj =

vj − µ2

σ
, δ1 =

a1 − µ1

σ
, δ2 =

a2 − µ2

σ
,

a1 = log
(
(− log(1− T λ

1 ))
1
λ
)
, a2 = log

(
(− log(1− T λ

2 ))
1
λ
)
.

Now by taking derivatives with respect to µ1, µ2 and σ from (2.6), we achieve the following
equations:

∂`∗

∂µ1
= − 1

σ

[
J1 −

J1∑
i=1

(Ri + 1)eti −R∗
J1

eδ1

]
= 0,(2.7)

∂`∗

∂µ2
= − 1

σ

[
J2 −

J2∑
j=1

(Sj + 1)ezj − S∗J2
eδ2

]
= 0,(2.8)

∂`∗

∂σ
= − 1

σ

[
J1 + J2 +

J1∑
i=1

ti −
J1∑
i=1

(Ri + 1)tieti −R∗
J1

δ1e
δ1

+
J2∑

j=1

zj −
J2∑

j=1

(Sj + 1)zje
zj − S∗J2

δ2e
δ2

]
= 0.(2.9)

To obtain the AMLEs of µ1, µ2 and σ, let

qi = 1−
n∏

j=n−i+1

j +
n∑

k=n−j+1

Rk

j + 1 +
n∑

k=n−j+1

Rk

, i = 1, ..., n, q∗J1
= 1− 1

2
(qJ1 + qJ1+1),

q̄j = 1−
m∏

i=m−j+1

i +
m∑

k=m−i+1

Sk

i + 1 +
m∑

k=m−i+1

Sk

, j = 1, ...,m, q̄∗J2
= 1− 1

2
(q̄J2 + q̄J2+1).

Also, by expanding the functions eti , ezj , eδ1 and eδ2 in Taylor series around the points

νi = log
(
− log(1− qi)

)
, ν̄j = log

(
− log(1− q̄j)

)
,

ν∗J1
= log

(
− log(1− q∗J1

)
)
, ν̄∗J2

= log
(
− log(1− q̄∗J2

)
)
,
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respectively, and keeping the first order derivatives, we have

eti = αi + βiti, ezj = ᾱj + β̄jzj , eδ1 = α∗J1
+ β∗J1

δ1, eδ2 = ᾱ∗J1
+ β̄∗J2

δ2,

where

αi = eνi(1− νi), βi = eνi , ᾱj = eν̄j (1− ν̄j), β̄j = eν̄j ,

α∗J1
= e

ν∗J1 (1− ν∗J1
), β∗J1

= e
ν∗J1 , ᾱ∗J2

= e
ν̄∗J2 (1− ν̄∗J2

), β̄∗J2
= e

ν̄∗J2 .

Now, if we apply the linear approximations in equations (2.7)–(2.9) and solve them, then the
AMLEs of µ1, µ2, and σ, say µ̃1, µ̃2 and σ̃, respectively, can be resulted from the following
equation:

µ̃1 = A1 − σ̃B1, µ̃2 = A2 − σ̃B2,

σ̃ =
−(D1 + D2) +

√
(D1 + D2)2 + 4(C1 + C2)(E1 + E2)

2(C1 + C2)
,

where A1, A2, B1, B2, C1, C2, D1, D2, E1, E2 are given in details in Appendix B. After
deriving µ̃1, µ̃2 and σ̃, the AMLEs of α, β, and λ, say α̃, β̃ and λ̃, respectively, can be
evaluated through

α̃ = e−
µ̃1
σ̃ , β̃ = e−

µ̃2
σ̃ , λ̃ =

1
σ̃

.

So, the AMLE of R, namely R̃, is

(2.10) R̃ =
α̃

α̃ + β̃
.

2.4. Asymptotic confidence interval

In this section, we obtain the asymptotic confidence interval of R by the asymptotic
distribution of R̂, which was obtained from the asymptotic distribution of θ̂ = (α̂, β̂, λ̂).

We denote the observed Fisher information matrix by I(θ) = [Iij ] =
[
− ∂2`

∂θi ∂θj

]
, i, j = 1, 2, 3.

By differentiating from (2.1) for two times with respect to α, β, and λ, the inlines of I(θ)
matrix can be obtained as:

I11 =
J1

α2
, I22 =

J2

β2
, I12 = I21 = 0,

I13 = I31 =
J1∑
i=1

(Ri + 1)xλ
i

log(xi)
1− xλ

i

+ R∗
J1

T λ
1

log(T1)
1− T λ

1

,

I23 = I32 =
J2∑

j=1

(Sj + 1)yλ
j

log(yj)
1− yλ

j

+ S∗J2
T λ

2

log(T2)
1− T λ

2

,

I33 =
J1 + J2

λ2
+

J1∑
i=1

(
α(Ri + 1)− 1

)
xλ

i

( log(xi)
1− xλ

i

)2 + αR∗
J1

T λ
1

( log(T1)
1− T λ

1

)2
+

J2∑
j=1

(
β(Sj + 1)− 1

)
yλ

j

( log(yj)
1− yλ

j

)2 + βS∗J2
T λ

2

( log(T2)
1− T λ

2

)2
.
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Theorem 2.2. Let α̂, β̂ and λ̂ be the MLEs of α, β, and λ, respectively. So

[(α̂− α), (β̂ − β), (λ̂− λ)]T D−→ N3(0, I−1(α, β, λ)),

where I(α, β, λ) and I−1(α, β, λ) are symmetric matrices and

I(α, β, λ) =

 I11 0 I13

I22 I23

I33

 , I−1(α, β, λ) =
1

|I(α, β, λ)|

 b11 b12 b13

b22 b23

b33

 ,

in which |I(α, β, λ)| = I11I22I33 − I11I
2
23 − I2

13I22,

b11 = I22I33 − I2
23, b12 = I13I23, b13 = −I13I22,

b22 = I11I33 − I2
13, b23 = −I11I23, b33 = I11I22.

Proof: From the asymptotic normality of the MLE, the theorem would be resulted.

Theorem 2.3. Let R̂MLE be the MLE of R. So,

(R̂MLE −R) D−→ N(0, B),

where

(2.11) B =
1

|I(α, β, λ)|

[
(
∂R

∂α
)2b11 + (

∂R

∂β
)2b22 + 2(

∂R

∂α
)(

∂R

∂β
)b12

]
.

Proof: Using Theorem 2.2 and applying the delta method, the asymptotic distribution
of R̂ = bα

bα+bβ
can be obtained as follows:

(R̂MLE −R) D−→ N(0, B),

where B = bTI−1(α, β, λ)b, with b = [∂R
∂α , ∂R

∂β , ∂R
∂λ ]T = [∂R

∂α , ∂R
∂β , 0]T, in which

(2.12)
∂R

∂α
=

β

(α + β)2
,

∂R

∂β
= − α

(α + β)2
,

and I−1(α, β, λ) is defined in Theorem 2.2. Therefore, B can be represented as (2.11) and
the theorem results.

Using Theorem 2.3, the asymptotic confidence interval of R can be derived. It is notable
that B should be estimated by the MLEs of α, β, and λ. So, a 100(1− γ)% asymptotic
confidence interval of R can be constructed as

(R̂MLE − z1− γ
2

√
B̂, R̂MLE + z1− γ

2

√
B̂),

where zγ is 100γ-th percentile of N(0, 1).
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2.5. Bayes estimation

In this section, under the squared error loss function, we infer the Bayesian estimation
and corresponding credible interval of the stress-strength parameter, when α ∼ Γ(a1, b1),
β ∼ Γ(a2, b2) and λ ∼ Γ(a3, b3) are independent random variables. Accordingly, based on the
observed censoring samples, the joint posterior density function of α, β and λ are achieved
by:

π(α, β, λ|data) =
L(data|α, β, λ)π1(α)π2(β)π3(λ)∫∞

0

∫∞
0

∫∞
0 L(data|α, β, λ)π1(α)π2(β)π3(λ)dαdβdλ

,(2.13)

where

π1(α) ∝ αa1−1e−b1α, α > 0, a1, b1 > 0,

π2(β) ∝ βa2−1e−b2β, β > 0, a2, b2 > 0,

π3(λ) ∝ λa3−1e−b3λ, λ > 0, a3, b3 > 0.

As we observe from (2.13), the Bayes estimates cannot be derived in the closed-form. There-
fore, we approximate them by applying two following methods:

• Lindley’s approximation,

• MCMC method.

2.5.1. Lindley’s approximation

One of the most applicable numerical methods to approximate the Bayes estimate has
been introduced by Lindley in [16]. This method can be described as follows. Let U(θ) be a
function of the parameter value. The Bayes estimate of U(θ), under the squared error loss
function, is

E
(
u(θ)|data

)
=
∫

u(θ)eQ(θ)dθ∫
eQ(θ)dθ

,

where Q(θ) = `(θ) + ρ(θ), `(θ) and ρ(θ) are the logarithm of likelihood function and prior
density of θ, respectively. Lindley has been approximated E(u(θ)|data) as

E
(
u(θ)|data

)
= u +

1
2

∑
i

∑
j

(uij + 2uiρj)σij +
1
2

∑
i

∑
j

∑
k

∑
p

`ijkσijσkpup

∣∣∣∣
θ=bθ

,

where θ = (θ1, ..., θm), i, j, k, p = 1, ...,m, θ̂ is the MLE of θ, u = u(θ), ui = ∂u/∂θi, uij =
∂2u/∂θi∂θj , `ijk = ∂3`/∂θi∂θj∂θk, ρj = ∂ρ/∂θj , and σij = (i, j)-th element in the inverse of
matrix [−`ij ] all calculated at the MLE of parameters.

When we face up to the case of three parameter θ = (θ1, θ2, θ3), Lindley’s approximation
conducts to

E(u(θ)|data) = u + (u1d1 + u2d2 + u3d3 + d4 + d5) +
1
2

[
A(u1σ11 + u2σ12 + u3σ13)

+ B(u1σ21 + u2σ22 + u3σ23) + C(u1σ31 + u2σ32 + u3σ33)
]
,(2.14)
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which their elements are presented in detail in Appendix C. Therefore, the Bayes estimate of
R is

R̂Lin
s,k = R + [u1d1 + u2d2 + d4 + d5] +

1
2

[
A(u1σ11 + u2σ12)

+ B(u1σ21 + u2σ22) + C(u1σ31 + u2σ32)
]
.(2.15)

It should be noted that all parameters are evaluated at (α̂, β̂, λ̂), respectively.

As we observe, constructing the HPD credible interval is not possible by using the
Lindley’s approximation. So, we apply the Markov Chain Monte Carlo (MCMC) method to
approximate the Bayes estimate and construct the corresponding HPD credible intervals.

2.5.2. MCMC method

After simplify equation (2.13), we get the posterior pdfs of α, β and λ as:

α|λ, data ∼ Γ
(
J1 + a1, b1 −

J1∑
i=1

(Ri + 1) log(1− xλ
i )−R∗

J1
log(1− T λ

1 )
)
,

β|λ, data ∼ Γ
(
J2 + a2, b2 −

J2∑
j=1

(Sj + 1) log(1− yλ
j )− S∗J2

log(1− T λ
2 )
)
,

π(λ|α, β, data) ∝
( J1∏

i=1

xλ−1
i (1− xλ

i )α(Ri+1)−1

)( J2∏
j=1

yλ−1
j (1− yλ

j )β(Sj+1)−1

)
× λJ1+J2+a3−1e−λb3(1− T λ

1 )αR∗
J1 (1− T λ

2 )βS∗
J2 .

It is identified that the posterior pdf of λ is not a well known distribution. Therefore, we
utilize the Metropolis–Hastings method with normal proposal distribution in order to generate
random samples from it. Consequently, the Gibbs sampling algorithm can be proposed as
follows:

1. Start with the begin value (α(0), β(0), λ(0)).

2. Set t = 1.

3. Generate λ(t) from π(λ|α(t−1), β(t−1),data), using Metropolis–Hastings method.

4. Generate α(t) from Γ
(
J1 +a1, b1−

J1∑
i=1

(Ri +1) log(1−x
λ(t−1)

i −R∗
J1

log(1−T
λ(t−1)

1 )
)
.

5. Generate β(t) from Γ
(
J2 +a2, b2−

J2∑
j=1

(Sj +1) log(1−y
λ(t−1)

j )−S∗J2
log(1−T

λ(t−1)

2 )
)
.

6. Calculate Rt = αt
αt+βt

.

7. Set t = t + 1.

8. Repeat steps 3–7, for T times.
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By applying this algorithm, the Bayes estimate of R, under the squared error loss function
is resulted from

R̂MC =
1

T −M

T∑
t=M+1

Rt,(2.16)

where M is the burn-in period. Moreover, a 100(1− γ)% HPD credible interval of R can be
constructed by applying the method conducted by Chen and Shao [4].

3. INFERENCE ON R WITH KNOWN COMMON λ

3.1. MLE of R

Consider that {X1, ..., Xn} and {Y1, ..., Ym} be two HP censoring samples with censor-
ing schemes {N,n, T1, J1, R1, ..., RJ1} and {M,m, T2, J2, S1, ..., SJ2}, respectively. Based on
Section 2.1, when the common shape parameter λ is known, the MLE of R can be attained
easily by the following equation:

(3.1) R̂MLE =

1 +
J2

( J1∑
i=1

(Ri + 1) log(1− xλ
i ) + R∗

J1
log(1− T λ

1 )
)

J1

( J2∑
j=1

(Sj + 1) log(1− yλ
j ) + S∗J2

log(1− T λ
2 )
)

−1

.

In a similar manner to Section 2.4, (R̂MLE−R) D−→ N(0, C), where C = (∂R
∂α )2 1

I11
+(∂R

∂β )2 1
I22

,

and ∂R
∂α and ∂R

∂β are indicated in (2.12). Consequently, a 100(1− γ)% asymptotic confidence
interval for R can be constructed as(

R̂MLE − z1− γ
2

√
Ĉ, R̂MLE + z1− γ

2

√
Ĉ
)
,

where zγ is 100γ-th percentile of N(0, 1).

3.2. Bayes estimation

In this section, we infer the Bayesian estimation and corresponding credible interval of
the stress-strength parameter, when α ∼ Γ(a1, b1) and β ∼ Γ(a2, b2) are independent random
variables. With respect to the observed censoring samples, the joint posterior density function
of α and β are given by:

(3.2) π(α, β|λ, data) =
(V + b1)J1+a1(U + b2)J2+a2

Γ(J1 + a1)Γ(J2 + a2)
αJ1+a1−1βJ2+a2−1e−α(V +b1)−β(U+b2),
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where

V = −
J1∑
i=1

(Ri + 1) log(1− xλ
i )−R∗

J1
log(1− T λ

1 ),

U = −
J2∑

j=1

(Sj + 1) log(1− yλ
j )− S∗J2

log(1− T λ
2 ).

Under the squared error loss function, for obtaining R Bayes estimate, we solve the following
integral:

R̂B =
∫ ∞

0

∫ ∞

0

α

α + β
× π(α, β|λ, data)dαdβ.

Now in this study, we use the idea of Kizilaslan and Nadar [8], and accordingly, obtain the
R Bayes estimate as

(3.3) R̂B =


(1− z)J1+a1(J1 + a1)

w
2F1(w, J1 + a1 + 1;w + 1, z) if |z| < 1,

(J1 + a1)
w(1− z)J2+a2

2F1(w, J2 + a2;w + 1,
z

1− z
) if z < −1,

where w = J1 + J2 + a1 + a2, z = 1− V + b1

U + b2
and

2F1(α, β; γ, z) =
1

B(β, γ − β)

∫ 1

0
tβ−1(1− t)γ−β−1(1− tz)−αdt, |z| < 1,

is the hypergeometric series, which is quickly evaluated and readily available in standard
software like MATLAB. Moreover, we construct a 100(1−γ)% Bayesian interval for the stress-
strength parameter by (L,U), where L and U are the lower and upper bounds, respectively,
which indicate

(3.4)
∫ L

0
fR(R)dR =

γ

2
,

∫ U

0
fR(R)dR = 1− γ

2
,

where fR(R) is the probability density function of R, which obtained from (3.2) as

fR(R) =
(1− z)J1+a1RJ1+a1−1(1−R)J2+a2−1(1−Rz)−w

B(J1 + a1, J2 + a2)
, 0 < R < 1.
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4. ESTIMATION OF R IN GENERAL CASE

4.1. MLE of R

The stress-strength parameter, when X and Y are two independent random variables
from Ku(α, λ1) and Ku(β, λ2), respectively, can be obtained as

R = P (X < Y )

=
∫ 1

0
fY (y)FX(y)dy

=
∫ 1

0
βλ2y

λ2−1(1− yλ2)β−1
(
1− (1− yλ1)α

)
dy

= 1−
∫ 1

0
βλ2y

λ2−1(1− yλ2)β−1(1− yλ1)αdy.

Assume that {X1, ..., Xn} and {Y1, ..., Ym} are two HP censoring samples with censoring
schemes {N,n, T1, J1, R1, ..., RJ1} and {M,m, T2, J2, S1, ..., SJ2}, respectively. As a result,
the likelihood function of the unknown parameters α, β, λ1 and λ2 can be written as

L(data|α, β, λ1, λ2) ∝ αJ1λJ1
1

(
J1∏
i=1

xλ1−1
i (1− xλ1

i )α(Ri+1)−1

)
(1− T λ1

1 )αR∗
J1

× βJ2λJ2
2

 J2∏
j=1

yλ2−1
j (1− yλ2

j )β(Sj+1)−1

 (1− T λ2
2 )βS∗

J2 .

Therefore, the log-likelihood function, along with ignoring the constant value, is as:

`(α, β, λ1, λ2) = J1 log(αλ1) + J2 log(βλ2) +
J1∑
i=1

(α(Ri + 1)− 1) log(1− xλ1
i )

+
J2∑

j=1

(β(Sj + 1)− 1) log(1− yλ2
j ) + αR∗

J1
log(1− T λ1

1 )

+ βS∗J2
log(1− T λ2

2 ) + (λ1 − 1)
J1∑
i=1

log(xi) + (λ2 − 1)
J2∑

j=1

log(yj).

In a similar manner as Section 2.1, α̂ and β̂, respectively, can be obtained from

α̂(λ1) = −J1

{ J1∑
i=1

(Ri + 1) log(1− xλ1
i ) + R∗

J1
log(1− T λ1

1 )
}−1

,

β̂(λ2) = −J2

{ J2∑
j=1

(Sj + 1) log(1− yλ2
j ) + S∗J2

log(1− T λ2
2 )
}−1

.
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Also, to derive λ̂1 and λ̂2, respectively, we apply one numerical method like Newton–Raphson
on the following equations:

∂`

∂λ1
=

J1

λ1
+

J1∑
i=1

log(xi)−
J1∑
i=1

(α(Ri + 1)− 1)xλ1
i

log(xi)
1− xλ1

i

− αR∗
J1

T λ1
1

log(T1)
1− T λ1

1

= 0,

∂`

∂λ2
=

J2

λ2
+

J2∑
j=1

log(yj)−
J2∑

j=1

(β(Sj + 1)− 1)yλ2
j

log(yj)

1− yλ2
j

− βS∗J2
T λ2

2

log(T2)
1− T λ2

2

= 0.

After obtaining the MLEs of α, β, λ1, and λ2, by using the invariance property, the MLE of
R can be derived as

(4.1) R̂MLE = 1−
∫ 1

0
β̂λ̂2y

bλ2−1(1− y
bλ2)bβ−1(1− y

bλ1)bαdy.

4.2. AMLE of R

In this section, we obtain AMLE of R. Consider {X1, ..., Xn} and {Y1, ..., Ym} are two
HP censoring samples with censoring schemes {N,n, T1, J1, R1, ..., RJ1} and also by consid-
ering {M,m, T2, J2, S1, ..., SJ2} from the distributions Ku(α, λ1) and Ku(β, λ2), respectively,
and

X ′
i = (− log(1−Xλ1

i ))
1

λ1 , Ui = log(X ′
i) and Y ′

j = (− log(1− Y λ2
j ))

1
λ2 , Vj = log(Y ′

j ).

Based on the observed data {U1, ..., Un} and {V1, ..., Vm}, along with ignoring the constant
value, the log-likelihood function is obtained as follows:

`∗(µ1, µ2, σ1, σ2) = − J1 log(σ1) +
J1∑
i=1

ti −
J1∑
i=1

(Ri + 1)eti −R∗
J1

eδ1

− J2 log(σ2) +
J2∑

j=1

zj −
J2∑

j=1

(Sj + 1)ezj − S∗J2
eδ2 ,(4.2)

where

ti =
ui − µ1

σ1
, zj =

vj − µ2

σ2
, µ1 =

− log(α)
λ1

, µ2 =
− log(β)

λ2
,

δp =
ap − µp

σp
, σp =

1
λp

, ap = log((− log(1− T
λp
p ))

1
λp ), p = 1, 2.
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Now by taking derivatives due to µ1, µ2, σ1 and σ2 from (4.2), we obtain the following
equations:

∂`∗

∂µ1
= − 1

σ1

[
J1 −

J1∑
i=1

(Ri + 1)eti −R∗
J1

eδ1

]
= 0,

∂`∗

∂µ2
= − 1

σ2

[
J2 −

J2∑
j=1

(Sj + 1)ezj − S∗J2
eδ2

]
= 0,

∂`∗

∂σ1
= − 1

σ1

[
J1 +

J1∑
i=1

ti −
J1∑
i=1

(Ri + 1)tieti −R∗
J1

δ1e
δ1

]
= 0,

∂`∗

∂σ2
= − 1

σ2

[
J2 +

J2∑
j=1

zj −
J2∑

j=1

(Sj + 1)zje
zj − S∗J2

δ2e
δ2

]
= 0.

In a similar manner as Section 2.3, we derive the AMLEs of µ1, µ2, σ1 and σ2, say µ̃1, µ̃2, σ̃1

and σ̃2, respectively, by

µ̃1 = A1 − σ̃1B1, µ̃2 = A2 − σ̃2B2,

σ̃1 =
−D1 +

√
D2

1 + 4C1E1

2C1
, σ̃2 =

−D2 +
√

D2
2 + 4C2E2

2C2
,

where A1, A2, B1, B2, C1, C2, D1, D2, E1, E2 are given in Section 2.3. After achieving µ̃1,

µ̃2, σ̃1, and σ̃2, the values of α̃, β̃, λ̃1, λ̃2 and R̃ can be evaluated by α̃ = e
− µ̃1

σ̃1 , β̃ = e
− µ̃2

σ̃2 ,
λ̃1 = 1

σ̃1
, λ̃2 = 1

σ̃2
and consequently

(4.3) R̃ = 1−
∫ 1

0
β̃λ̃2y

λ̃2−1(1− yλ̃2)β̃−1(1− yλ̃1)α̃dy.

4.3. Bayes estimation

In this section, under the squared error loss function, we infer the Bayesian estima-
tion and corresponding credible interval of the stress-strength parameter, when the unknown
parameters α ∼ Γ(a1, b1), β ∼ Γ(a2, b2), λ1 ∼ Γ(a3, b3) and λ2 ∼ Γ(a4, b4) are independent
random variables. In a same manner as Section 2.5, as the Bayesian estimation of R has not
a closed-form, we approximate it by applying MCMC method. After simplifying the joint
posterior density function of the unknown parameters, we get the posterior pdfs of α, β, λ1

and λ2 as:

α|λ1,data ∼ Γ
(
J1 + a1, b1 −

J1∑
i=1

(Ri + 1) log(1− xλ1
i )−R∗

J1
log(1− T λ1

1 )
)
,

β|λ2,data ∼ Γ
(
J2 + a2, b2 −

J2∑
j=1

(Sj + 1) log(1− yλ2
j )− S∗J2

log(1− T λ2
2 )
)
,

π(λ1|α, data) ∝ λJ1+a3−1
1

( J1∏
i=1

xλ1−1
i (1− xλ1

i )α(Ri+1)−1

)
(1− T λ1

1 )αR∗
J1e−λ1b3

π(λ2|β, data) ∝ λJ2+a4−1
2

( J2∏
j=1

yλ2−1
j (1− yλ2

j )β(Sj+1)−1

)
(1− T λ2

2 )βS∗
J2e−λ2b4 .
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It is recognized that the posterior pdfs of λ1 and λ2 are not well known distributions. So,
we utilize the Metropolis–Hastings method with normal proposal distribution for generating
random samples from them. Therefore, the Gibbs sampling algorithm can be proposed as
follows:

1. Start with the begin value (α(0), β(0), λ1(0), λ2(0)).

2. Set t = 1.

3. Generate λ1(t) from π(λ1|α(t−1),data), using Metropolis–Hastings method.

4. Generate λ2(t) from π(λ2|β(t−1),data), using Metropolis–Hastings method.

5. Generate α(t) from Γ
(
J1 +a1, b1−

J1∑
i=1

(Ri +1) log(1−x
λ1(t−1)

i −R∗
J1

log(1−T
λ1(t−1)

1 )
)
.

6. Generate β(t) from Γ
(
J2 +a2, b2−

J2∑
j=1

(Sj +1) log(1−y
λ2(t−1)

j )−S∗J2
log(1−T

λ2(t−1)

2 )
)
.

7. Calculate Rt = 1−
∫ 1
0 β(t)λ2(t)y

λ2(t)−1(1− yλ2(t))β(t)−1(1− yλ1(t))αtdy.

8. Set t = t + 1.

9. Repeat steps 3–8, for T times.

Using this algorithm, under the squared error loss function, the R Bayes estimate will be
resulted from

R̂MC =
1

T −M

T∑
t=M+1

Rt,(4.4)

where M is the burn-in period. Moreover, a 100(1− γ)% HPD credible interval of R can be
constructed by applying the method accomplished by Chen and Shao [4].

5. SIMULATION STUDY AND DATA ANALYSIS

In this section, we compare the performance of different methods by Monte Carlo
simulations and analyze two real data sets to illustrative aims.

5.1. Numerical experiments and discussions

In this section, we compare the behavior of various estimates by Monte Carlo simula-
tions, under different censoring schemes. The comparison among estimates is accomplished
in terms of mean squared errors (MSEs). Also, the comparison of confidence intervals is
performed in terms of average lengths and coverage percentages. We apply different schemes,
parameters, and hyper parameters to implement the simulation study. All results are re-
ported based on 3000 replications. Also, the nominal level is 0.95 in comparison with the
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confidence intervals. We utilize the different censoring schemes as:

Scheme 1: R1 = ... = Rn−1 = 0, Rn = N − n,

Scheme 2: R1 = ... = Rn =
N − n

n
,

Scheme 3: R1 = ... = Rn
2

= 0, Rn
2
+1 = ... = Rn =

2(N − n)
n

.

We can interpret theses schemes as follows. In Scheme 1, the number of removal units
at the first, second and so on until reaching the (n− 1)-th failure times is zero and we remove
all N − n units at the n-th failure time. We use Scheme 2 and 3 when N − n to be divisible
by n, and n must be an even number. In Scheme 2, the number of removal units at the first,
second and so on until reaching the (n)-th failure times is N−n

n . In Scheme 3, the number of
removal units at the first, second and so on until reaching the (n

2 )-th failure times is zero and
the number of removal units at the n

2 + 1, and so on up to the (n)-th failure times is 2(N−n)
n .

All of these schemes are considered for two values of T as 0.7 and 0.9, respectively.

In the First case, by assuming the unknown common shape parameter λ, we choose
α = β = λ = 2, without any loss of generality. Also, Bayesian inference are given in terms
of three priors as: Prior 1: aj = 0, bj = 0, j = 1, 2, 3, Prior 2: aj = 1, bj = 0.1, j = 1, 2, 3,

and Prior 3: aj = 2, bj = 0.2, j = 1, 2, 3. Moreover, we noted that the number of iterations
in the MCMC method is T = 5000, and the threshold of burn-in is 2000. In this case, we
obtained the Biases and MSEs of MLE using (2.5), AMLE using (2.10), Bayes estimates of R

through Lindley’s approximation and MCMC method using (2.15) and (2.16), respectively.
The results are shown in Table 1. Additionally, we derived the asymptotic confidence and
HPD credible intervals of R. Theses results are displayed in Table 2. By the above chosen,
R was obtained equal to 0.5. Also, using the numerical method, we obtain the mean and
variance of R as a random variable. Based on Priors 2 and 3, the variance of R is 0.0833 and
0.05, respectively, and the mean of R is 0.5 for both priors. So we expect that the performance
of MSE is the best using Prior 3.

In the second case, by assuming the known common shape parameter λ, we choose
α = β = λ = 3, without loss of generality. Also, Bayesian inference are given in terms of
three priors as: Prior 4: aj = 0, bj = 0, j = 1, 2, Prior 5: aj = 1, bj = 0.1, j = 1, 2, and
Prior 6: aj = 2, bj = 0.2, j = 1, 2. In this case, we obtained the Biases and MSEs of MLE,
Bayes estimates and 95% Bayesian intervals of R using (3.1), (3.3) and (3.4), respectively. The
results are indicated in Table 3. Similar to the previous case, we expect that the performance
of MSE be the best using Prior 6.

In the third case, assuming the different second shape parameters λ1 and λ2, we choose
α = β = λ1 = λ2 = 2, without any loss of generality. Also, Bayesian inference are presented
based on three priors as: Prior 7: aj = 0, bj = 0, j = 1, 2, 3, 4, Prior 8: aj = 1, bj = 0.1, j =
1, 2, 3, 4, and Prior 9: aj = 2, bj = 0.2, j = 1, 2, 3, 4. Also, we noted that the number of
iterations in the MCMC method is T = 5000, and the threshold of burn-in is 2000. In this
case, we obtained the Biases and MSEs of MLE, AMLE and Bayes estimate by applying
MCMC method using (4.1), (4.3) and (4.4), respectively. Also, the results are indicated in
Table 4.
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Table 2: Average confidence/credible lengths and coverage percentages
for estimates of R when λ is unknown.

(N, n, T ) C.S
AMLE MLE Prior 1 Prior 2 Prior 3

length C.P length C.P length C.P length C.P length C.P

(40,10,0.7)

(1,1) 0.4374 0.8710 0.4197 0.8710 0.4061 0.9000 0.3922 0.9020 0.3791 0.9100
(2,2) 0.4352 0.8760 0.4216 0.8750 0.4043 0.9020 0.3931 0.9070 0.3787 0.9080
(3,3) 0.4543 0.8870 0.4270 0.8830 0.4117 0.9030 0.3956 0.9080 0.3813 0.9080
(1,2) 0.4137 0.8940 0.4009 0.8900 0.3887 0.9010 0.3788 0.9040 0.3669 0.9060

(60,10,0.7)

(1,1) 0.4369 0.8810 0.4242 0.8860 0.4074 0.9120 0.3912 0.9130 0.3831 0.9140
(2,2) 0.4366 0.8960 0.4221 0.8900 0.4064 0.9080 0.3915 0.9110 0.3806 0.9170
(3,3) 0.4280 0.9090 0.4209 0.9050 0.4055 0.9200 0.3932 0.9210 0.3799 0.9260
(1,2) 0.4329 0.9010 0.3987 0.9020 0.3764 0.9200 0.3661 0.9230 0.3605 0.9280

(40,20,0.7)

(1,1) 0.3090 0.9180 0.3055 0.9140 0.3001 0.9350 0.2926 0.9380 0.2888 0.9390
(2,2) 0.3045 0.9290 0.3082 0.9230 0.3030 0.9340 0.2968 0.9360 0.2903 0.9400
(3,3) 0.2989 0.9100 0.3148 0.9120 0.3099 0.9350 0.3028 0.9360 0.2947 0.9370
(1,2) 0.2897 0.9340 0.2877 0.9340 0.2730 0.9360 0.2728 0.9380 0.2690 0.9390

(60,20,0.7)

(1,1) 0.3097 0.9240 0.3051 0.9270 0.2980 0.9310 0.2930 0.9310 0.2874 0.9330
(2,2) 0.3065 0.9110 0.3049 0.9120 0.2983 0.9310 0.2912 0.9320 0.2888 0.9330
(3,3) 0.3043 0.9280 0.3066 0.9230 0.3029 0.9360 0.2942 0.9370 0.2903 0.9390
(1,2) 0.2893 0.9340 0.2807 0.9320 0.2697 0.9380 0.2614 0.9390 0.2599 0.9400

(40,10,0.9)

(1,1) 0.4370 0.8810 0.4135 0.8880 0.4019 0.9150 0.3864 0.9150 0.3780 0.9180
(2,2) 0.4350 0.8850 0.4152 0.8880 0.4020 0.9150 0.3902 0.9160 0.3783 0.9170
(3,3) 0.4313 0.8870 0.4250 0.8840 0.4078 0.9180 0.3948 0.9200 0.3810 0.9270
(1,2) 0.4115 0.9000 0.3988 0.9050 0.3769 0.9150 0.3708 0.9200 0.3612 0.9210

(60,10,0.9)

(1,1) 0.4368 0.9020 0.4200 0.9080 0.4042 0.9290 0.3895 0.9300 0.3796 0.9330
(2,2) 0.4350 0.8940 0.4219 0.8960 0.4039 0.9220 0.3906 0.9240 0.3804 0.9290
(3,3) 0.4211 0.8900 0.4187 0.8940 0.4055 0.9210 0.3920 0.9220 0.3778 0.9270
(1,2) 0.4319 0.9030 0.3957 0.9050 0.3717 0.9300 0.3659 0.9310 0.3567 0.9330

(40,20,0.9)

(1,1) 0.3077 0.9240 0.3040 0.9230 0.2973 0.9390 0.2920 0.9400 0.2848 0.9430
(2,2) 0.3023 0.9320 0.3038 0.9320 0.2970 0.9390 0.2925 0.9450 0.2845 0.9480
(3,3) 0.2909 0.9270 0.3028 0.9260 0.2963 0.9390 0.2916 0.9390 0.2844 0.9400
(1,2) 0.2820 0.9290 0.2863 0.9210 0.2728 0.9420 0.2719 0.9460 0.2682 0.9470

(60,20,0.9)

(1,1) 0.3095 0.9360 0.3046 0.9350 0.2979 0.9400 0.2919 0.9420 0.2866 0.9490
(2,2) 0.3065 0.9290 0.3029 0.9290 0.2977 0.9390 0.2873 0.9400 0.2859 0.9410
(3,3) 0.2974 0.9340 0.3040 0.9360 0.2974 0.9420 0.2904 0.9440 0.2857 0.9500
(1,2) 0.2823 0.9230 0.2767 0.9280 0.2598 0.9390 0.2562 0.9400 0.2558 0.9410

To monitor the convergence of the MCMC method, in the first and third cases, we
studied the trace plots for various censoring schemes and parameters. In all cases, the trace
plots indicated that the MCMC method is converged. Some of these plots are displayed in
Figures 2–5. It is notable that Figures 2 and 3 have considered the problem in the first case
(when the common second shape parameter is unknown), and Figures 4 and 5 have considered
the problem in the third case (when all parameters are different and unknown), respectively.

Due to the information of Table 1, we observed that the Bayes estimates have the
minimum value of MSEs. Also, in Bayesian inference, the informative priors performance was
better than non-informative ones and the best performance, in terms of MSE, was belonged
to Prior 3. Furthermore, the MCMC method performs better, in comparison with Lindley’s
approximation. From Table 2, we observed that the HPD credible intervals indicated a better
performance compared to the asymptotic confidence intervals. Also, in Bayesian inference,
the best performance belonged to Prior 3, namely, the HPD credible intervals based on Prior
3, have the smallest average lengths and largest coverage percentages.
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As shown in Table 3, we observed that the Bayes estimates have the minimum value
of MSEs. Also, in Bayesian inference, the informative priors performed better than non-
informative ones and the best performance, in terms of MSE, was belonged to Prior 6.
Moreover, we observed that the Bayesian credible intervals have the better performance,
in comparison with the asymptotic confidence intervals. Also, in Bayesian inference, the best
performance belonged to Prior 6, namely, the Bayesian credible intervals based on Prior 6
have the smallest average lengths and largest coverage percentages.

As we observe from Table 4, the Bayes estimates have the minimum value of MSEs.
Also, in Bayesian inference, the informative priors perform better than non-informative ones
and the best performance, in terms of MSE, was belonged to Prior 9. Moreover, we ob-
served that HPD credible intervals based on informative priors, indicated better performance
compared to non-informative ones.

To tell the truth, from Tables 1, 3 and 4, along by increasing n for fixed N and T , and
also with increasing T for fixed N and n, the MSEs of all estimates decrease in all cases. This
can be due to the fact in both of the above mentioned cases, some additional information
is gathered. Moreover, from Tables 2, 3 and 4, with increasing n for fixed N and T , and
also with increasing T for fixed N and n, the average confidence lengths decrease and the
associated coverage percentages increase, in all cases.
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Figure 2: Trace plots with C.S (1, 1) (left) and (3, 3) (right), for (N,n, T ) = (40, 10, 0.7),
in common shape parameter λ.
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Figure 3: Trace plots with C.S (2, 2) (left) and (3, 3) (right), for (N,n, T ) = (60, 20, 0.9),
in common shape parameter λ.
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Figure 4: Trace plots with C.S (1, 3) (left) and (1, 1) (right), for (N,n, T ) = (40, 20, 0.7),
in general case.
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Figure 5: Trace plots with C.S (2, 3) (left) and (1, 1) (right), for (N,n, T ) = (60, 10, 0.9),
in general case.

5.2. Data analysis

In this section, we analyze two pair of real data set for illustrative proposes.

Example 5.1. In the first example, we use the monthly water capacity of the Shasta
reservoir in California, USA, see data in http://cdec.water.ca.gov/cgi-progs/queryMonthly?SHA.
Some authors such as Sultana et al. [25], Kohansal [9], Kizilaslan and Nadar [8], [6] and
Nadar et al. [19] have been studied this data, previously. From this data, we construct one
scenario relating to the excessive drought. In fact, we contract that if the average water
capacity in July and August of a same year is more than the water capacity in December,
the excessive drought will not occur. With respect to this scenario, we consider the months
July, August, and December from 1987 to 2016. So, X1, ..., X30 are the capacity of December
and Y1, ..., Y30 are the average capacity of July and August from 1987 to 2016, respectively,
and R = P (X < Y ) is the probability of non-occurrence of drought. As the range of KuD is
(0, 1), all data have been divided by the total capacity of Shasta reservoir, 4552000 acre-feet.
This work does not make any change in statistical inference.

At first, we check that the KuD can separately analyze these data sets or not. To fit
the KuD, we obtain the initial guess, in the Newton–Raphson method, by using the profile

http://cdec.water.ca.gov/cgi-progs/queryMonthly?SHA
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log-likelihood functions, which were indicated in Figure 6. So, we start this method by the
starting values 3.45 and 3.65, for X and Y , respectively. By fitting the KuD, for X, α̂, λ̂,
the Kolmogorov–Smirnov distance and the corresponding p-value are 4.1903, 3.5000, 0.1592
and 0.3916, respectively. Also, for Y , β̂, λ̂, the Kolmogorov–Smirnov distance and the associ-
ated p-value are 3.7828, 3.7700, 0.1218 and 0.7195, respectively. In terms of the p-values, we
identify that the KuD provides suitable fits for the data sets. Figures 7 and 8 indicated the em-
pirical distribution functions, PP-plots, and PP-plots with simulated envelope, for X and Y ,
respectively.
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Figure 6: Profile log-likelihood function of λ for X (left) Y (right).
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Figure 7: Empirical distribution function (left), PP-plot (center) and
PP-plots with simulated envelope (right) for X.
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Figure 8: Empirical distribution functions (left)PP-plot (center) and
PP plots with simulated envelope (right) for Y .
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For the illustrative proposes, we consider two different HP censoring schemes for X and
Y as follows:

Scheme 1: [1∗10, 0∗10], T1 = T2 = 0.9,

Scheme 2: [2∗10], T1 = T2 = 0.5.

In the first case, when the common shape parameter λ is unknown, for complete data
sets, and Schemes 1 and 2, we obtained the ML, AML and Bayes estimates of R with non-
informative priors assumption, i.e., a1 = b1 = a2 = b2 = a3 = b3 = 0 by applying Lindley’s
approximation and MCMC method. Also, we derived the 95% asymptotic and HPD intervals.
The results are listed in Table 5.

Table 5: The ML, AML, Bayes estimates and different confidence/credible
intervals of R, in Example 5.1.

MLE Asymp. (MLE) AMLE Asymp. (AMLE)
Bayes

HPD
MCMC Lindley

Complete 0.5522 (0.4268,0.6776) 0.5641 (0.4403,0.6879) 0.5520 0.5511 (0.4258,0.6707)
λ Scheme 1 0.5520 (0.3983,0.7057) 0.5369 (0.3865,0.6927) 0.5523 0.5503 (0.3985,0.7036)

Scheme 2 0.5723 (0.3563,0.7882) 0.5200 (0.3013,0.7388) 0.5727 0.5673 (0.3530,0.7687)

Complete 0.5617 — 0.5971 — 0.5647 — (0.4372,0.6848)
λ1, λ2 Scheme 1 0.5533 — 0.5593 — 0.5534 — (0.3974,0.7027)

Scheme 2 0.5777 — 0.4899 — 0.5779 — (0.3501,0.7657)

As we observe, the second shape parameters of two data sets are not exactly same.
As a result, in the second case, when the shape parameters λ1 and λ2 are different and
unknown, for complete data sets, Schemes 1 and 2, we obtained the ML, AML and Bayes
estimates of R with non-informative priors assumption, i.e., a1 = b1 = a2 = b2 = a3 = b3 =
a4 = b4 = 0, respectively. Also, we derived 95% HPD credible intervals. Theses results are
presented in Table 5. By comparing the two schemes, we observed that estimators have
smaller standard errors in Scheme 1, compared to Scheme 2, as it was expected. It is notable
that the estimation methods which presented a better performance in the simulations are more
reliable than the others. So, the results based on the Bayesian estimations and in Bayesian
estimation the results obtained by the MCMC method are more preferred, in comparison
with the others. Also, we would like to use the HPD credible intervals as the best intervals.

Example 5.2. In the second example, we use the lifetime data for insulation speci-
mens. The length of time was observed until each specimen failed or ”broke down”. Also, the
results for seven groups of specimens, tested at voltages ranging from 26 to 38 kilovolts (kV)
were presented. We consider the data sets for 34 kV and 36 kV, reported in Lawless [15],
as the strength and stress variables, respectively. Therefore, the parameter R = P (X < Y )
can be investigated as the probability of insulation resistance. For the same reason as it was
earlier explained in Example 5.1, we have converted all data between 0 and 1. Recently,
Kizilaslan and Nadar [7] considered this data set.

At first, we must check that the KuD can analyze these data sets, separately. By fitting
the KuD, for X, α̂, λ̂, the Kolmogorov–Smirnov distance and the corresponding p-value are
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9.7733, 0.84, 0.2103 and 0.4592, respectively. Also, for Y , β̂, λ̂, the Kolmogorov–Smirnov
distance and the associated p-value are 0.8963, 0.3736, 0.2756 and 0.0911, respectively.
In terms of the p-values, we observe that the KuD provides suitable fits for the data sets.

For the illustrative proposes, we consider the HP censoring scheme as Scheme 3: [1∗5, 0∗5],
T1 = 0.1 and [1∗9, 0∗1], T2 = 0.2 for X and Y , respectively.

In the first case, when the common shape parameter λ is unknown, for complete data
sets and Scheme 3, we obtained the ML, AML, and Bayes estimates of R with non-informative
priors assumption, i.e., a1 = b1 = a2 = b2 = a3 = b3 = 0 by applying Lindley’s approximation
and MCMC method. Also, we derived the 95% asymptotic and HPD intervals. These ob-
tained results are listed in Table 6.

As indicated, the second shape parameters of two data sets are not similar. So, when
the shape parameters λ1 and λ2 are different and unknown, for complete data sets, Schemes
1 and 2, we obtained the ML, AML and Bayes estimates of R with non-informative pri-
ors assumption, i.e., a1 = b1 = a2 = b2 = a3 = b3 = a4 = b4 = 0. Also, we derived 95% HPD
credible intervals. These results are given in Table 6.

Table 6: The ML, AML, Bayes estimates and different confidence/credible
intervals of R, in Example 5.2.

MLE Asymp. (MLE) AMLE Asymp. (AMLE)
Bayes

HPD
MCMC Lindley

λ
Complete 0.8007 (0.6763,0.9252) 0.7034 (0.5944,0.8619) 0.8016 0.7892 (0.6798,0.8938)
Scheme 3 0.6368 (0.4151,0.8614) 0.6739 (0.4131,0.9048) 0.6326 0.6273 (0.3851,0.8183)

λ1, λ2
Complete 0.7127 — 0.6058 — 0.7252 — (0.5979,0.8360)
Scheme 3 0.6371 — 0.6760 — 0.6351 — (0.3989,0.8234)

To see a motivation based on real data set that presents the need for the new methodol-
ogy, we consider the progressive scheme, one of the most applicable censoring scheme, for this
data set. Comparison between two methodologies (HP and progressive schemes) is performed
by obtaining the values of Akaike information criterion (AIC), Bayesian information criterion
(BIC) and Hannan–Quinn information criterion (HQC). We have shown the results in Table 7.
From Table 7, by ignoring minor differences, we see that the new methodology (results
based on HP scheme) is better than the previous one (results based on the progressive scheme.)

Table 7: AIC, BIC and HQC in comparison of two methodology, in Example 5.2.

HP Progressive

MLE AMLE Lindley MCMC MLE AMLE Lindley MCMC

AIC −42.9761 −37.8133 −42.9575 −42.9762 −42.0119 −37.5979 −42.0107 −42.0119
λ BIC −40.4765 −35.3137 −40.4579 −40.4765 −39.0247 −34.6107 −39.0235 −39.0249

HQC −42.7276 −37.5648 −42.7090 −42.7277 −41.4288 −37.0148 −41.4276 −41.4289

AIC −41.0665 −37.4275 — −41.0906 −40.0246 −35.5724 — −40.0373
λ1, λ2 BIC −37.7337 −34.0946 — −37.7678 −36.0417 −31.5895 — −36.0544

HQC −40.7352 −37.0962 — −40.7694 −39.2471 −34.7949 — −39.2597
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6. CONCLUSION

In this paper, we obtain different estimates of the stress-strength parameter, under
the hybrid progressive censored scheme, at the time that stress and strength are considered
as two independent Kumaraswamy random variables. The problem is going to be solved
in three cases. First, when X ∼ Ku(α, λ) and Y ∼ Ku(β, λ), we derive ML, AML and two
approximated Bayes estimates by applying Lindley’s approximation and MCMC method, due
to the lack of explicit forms. Also, we consider the existence and uniqueness of the MLE and
construct the asymptotic and HPD intervals for R. Second, when the common second shape
parameter, λ, is known, we obtain the MLE and exact Bayes estimate of R. Third, in general
case, when X ∼ Ku(α, λ1) and Y ∼ Ku(β, λ2), we provide ML, AML and Bayesian inferences
of R, respectively.

From the simulation results, which were obtained using the Monte Carlo method, in
point estimates, we observed that the Bayes estimates have the minimum value of MSEs.
Also, in Bayesian inference, the informative priors perform better than non-informative ones.
Furthermore, the MCMC method performs better than Lindley’s approximation. In interval
estimates, we observed that the HPD credible intervals have a better performance in compar-
ison with the asymptotic confidence intervals. Also, in Bayesian inference, the HPD credible
intervals based on informative priors have the smallest average lengths and largest coverage
percentages.

A. APPENDIX

Proof of Theorem 2.1: By a simple method, we can rewrite G(λ) as:

G(λ) =
J1

λ
+ G1(λ) + J1

G2(λ)
G3(λ)

+
J2

λ
+ H1(λ) + J2

H2(λ)
H3(λ)

,

where

G1(λ) =
J1∑
i=1

log(xi)
1− xλ

i

, G2(λ) =
J1∑
i=1

(Ri + 1)xλ
i

log(xi)
1− xλ

i

+ R∗
J1

T λ
1

log(T1)
1− T λ

1

,

G3(λ) =
J1∑
i=1

(Ri + 1) log(1− xλ
i ) + R∗

J1
log(1− T λ

1 ),

H1(λ) =
J2∑

j=1

log(yj)
1− yλ

j

, H2(λ) =
J2∑

j=1

(Sj + 1)yλ
j

log(yj)
1− yλ

j

+ S∗J2
T λ

2

log(T2)
1− T λ

2

,

H3(λ) =
J2∑

j=1

(Sj + 1) log(1− yλ
j ) + S∗J2

log(1− T λ
2 ).

We observe that lim
λ→0+

G(λ) = ∞ and lim
λ→∞

G(λ) < 0. Consequently, G(λ) has at least one

root in (0,∞) by the intermediate value theorem. So, it is enough to show that G′(λ) < 0.
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We can obtain G′(λ), after accomplishing some steps, as:

G′(λ) = − 1
λ2

{
G4(λ)− J1

G3(λ)G5(λ) +
(
G2(λ)

)2(
G3(λ)

)2 }

− 1
λ2

{
H4(λ)− J2

H3(λ)H5(λ) +
(
H2(λ)

)2(
H3(λ)

)2 }
,

where

G4(λ) = J1 −
J1∑
i=1

xλ
i

(
log(xλ

i )
1− xλ

i

)2

, H4(λ) = J2 −
J2∑

j=1

yλ
j

( log(yλ
j )

1− yλ
j

)2

,

G5(λ) =
J1∑
i=1

(Ri + 1)xλ
i

(
log(xλ

i )
1− xλ

i

)2

+ R∗
J1

T λ
1

(
log(T λ

1 )
1− T λ

1

)2

,

H5(λ) =
J2∑

j=1

(Sj + 1)yλ
j

( log(yλ
j )

1− yλ
j

)2

+ S∗J2
T λ

2

(
log(T λ

2 )
1− T λ

2

)2

.

It can be observed that G4(λ) > 0, as f(x) = x
( log(x)

1−x

)2, so f(x) < 1 for x ∈ (0, 1). Moreover,

(G2(λ))2 =

(
J1∑
i=1

(Ri + 1)xλ
i

log(xλ
i )

1− xλ
i

)2

+
(

R∗
J1

T λ
1

log(T λ
1 )

1− T λ
1

)2

+2

(
J1∑
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log(xλ
i )
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)(
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log(T λ
1 )
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1

)

≤

(
J1∑
i=1

(Ri + 1)xλ
i

)(
J1∑
i=1

(Ri + 1)xλ
i

(
log(xλ

i )
1− xλ

i

)2
)

+
(

R∗
J1

T λ
1

log(T λ
1 )

1− T λ
1

)2

+
J1∑
i=1

(Ri + 1)xλ
i

(
R∗

J1
T λ

1

(
log(T λ

1 )
1− T λ

1

)2
)

+
J1∑
i=1

(Ri + 1)xλ
i

log(xλ
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1− xλ
i

(
R∗

J1
T λ

1

)
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(
−

J1∑
i=1

(Ri + 1)xλ
i log(1− xλ

i )

)(
J1∑
i=1

(Ri + 1)xλ
i

(
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1

(
log(T λ
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1− T λ

1

)2(
−R∗
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1 )
)

−
J1∑
i=1
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i )

(
R∗

J1
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1

(
log(T λ

1 )
1− T λ

1

)2
)

+
J1∑
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(
−R∗
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1 )
)

=

[
−

J1∑
i=1

(Ri + 1)xλ
i log(1− xλ

i )−R∗
J1

log(1− T λ
1 )

]

×

[
J1∑
i=1

(Ri + 1)xλ
i

(
log(xλ

i )
1− xλ

i

)2

+ R∗
J1

T λ
1

(
log(T λ

1 )
1− T λ

1

)2
]

= −G3(λ)G5(λ).

The above equations have been obtained by applying the Cauchy–Schwarz inequality and
x < − log(1− x), x ∈ (0, 1). Consequently, G′(λ) < 0 and the proof is completed.
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B. APPENDIX

We compute µ̃1, µ̃2 and σ̃ at

A1 =

J1∑
i=1

(Ri + 1)βiui + R∗
J1

β∗J1
a1

J1∑
i=1

(Ri + 1)βi + R∗
J1

β∗J1

, B1 =

J1∑
i=1

αi −
J1∑
i=1

Ri(1− αi)−R∗
J1

(1− α∗J1
)

J1∑
i=1

(Ri + 1)βi + R∗
J1

β∗J1

,

A2 =

J2∑
j=1

(Sj + 1)β̄jvj + S∗J2
β̄∗J2

a2

J2∑
j=1

(Sj + 1)β̄j + S∗J2
β̄∗J2

, B2 =

J2∑
j=1

ᾱj −
J2∑

j=1
Sj(1− ᾱj)− S∗J2

(1− ᾱ∗J2
)

J2∑
j=1

(Sj + 1)β̄j + S∗J2
β̄∗J2

,

D1 =
J1∑
i=1

αiui −A1B1

(
J1∑
i=1

(Ri + 1)βi + R∗
J1

β∗J1

)
−

J1∑
i=1

Riui(1− αi)

−R∗
J1

(1− α∗J1
)a1, C1 = J1,

D2 =
J2∑

j=1

ᾱjvj −A2B2

(
J2∑

j=1

(Sj + 1)β̄j + S∗J2
β̄∗J2

)
−

J2∑
j=1

Sjvj(1− ᾱj)

−S∗J2
(1− ᾱ∗J2

)a2, C2 = J2,

E1 =
J1∑
i=1

(Ri + 1)βi(ui −A1)2 + R∗
J1

β∗J1
(a1 −A1)2,

E2 =
J2∑

j=1

(Sj + 1)β̄j(vj −A2)2 + S∗J2
β̄∗J2

(a2 −A2)2.

C. APPENDIX.

For three parameters case, we compute (2.14) at θ̂ = (θ̂1, θ̂2, θ̂3), where

di = ρ1σi1 + ρ2σi2 + ρ3σi3, i = 1, 2, 3,

d4 = u12σ12 + u13σ13 + u23σ23,

d5 =
1
2
(u11σ11 + u22σ22 + u33σ33),

A = `111σ11 + 2`121σ12 + 2`131σ13 + 2`231σ23 + `221σ22 + `331σ33,

B = `112σ11 + 2`122σ12 + 2`132σ13 + 2`232σ23 + `222σ22 + `332σ33,

C = `113σ11 + 2`123σ12 + 2`133σ13 + 2`233σ23 + `223σ22 + `333σ33.
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In our case, for (θ1, θ2, θ3) ≡ (α, β, λ) and u = R = α
α+β , we have

ρ1 =
a1 − 1

α
− b1, ρ2 =

a2 − 1
β

− b2, ρ3 =
a3 − 1

λ
− b3,

`11 = −J1

α2
, `22 = −J2

β2
, `12 = `21 = 0,

`13 = `31 = −
J1∑
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(Ri + 1)xλ
i

log(xi)
1− xλ

i

−R∗
J1

T λ
1

log(T1)
1− T λ

1

,
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J2∑
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j

− S∗J2
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2
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2

,

`33 = −J1 + J2
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(
α(Ri + 1)− 1

)
xλ

i

(
log(xi)
1− xλ

i

)2

− αR∗
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1

(
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(
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j

(
log(yj)
1− yλ

j

)2

− βS∗J2
T λ

2

(
log(T2)
1− T λ

2

)2

,

σij , i, j = 1, 2, 3 are obtained using `ij , i, j = 1, 2, 3 and

`111 =
2J1

α3
, `222 =

2J2

β3

`133 = `331 = `313 = −
J1∑
i=1

(Ri + 1)xλ
i

(
log(xi)
1− xλ

i

)2

−R∗
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(
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,
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log(T2)
1− T λ

2

)2

,
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(

log(T2)
1− T λ

2

)3

,

and other `ijk = 0. Moreover, u3 = ui3 = 0, i = 1, 2, 3, and u1, u2 are given in (2.12). Also,
u11 = −2β

(α+β)3
, u12 = u21 = α−β

(α+β)3
, u22 = 2α

(α+β)3
. So,

d4 = u12σ12, d5 =
1
2
(u11σ11 + u22σ22),

A = `111σ11 + `331σ33, B = `222σ22 + `332σ33, C = 2`133σ13 + 2`233σ23 + `333σ33.
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1. MOTIVATION AND RELATED WORK

In this paper we present a solution to a second order differential–difference equation.
This equation may appear when one solves an optimal stopping problem in which the state
process follows a jump–diffusion process, where the diffusion is a geometric Brownian motion
and the jumps are driven by a Poisson process. The main difficulty of working with this
type of equation is due to the jump process, which makes the equation not local in one point
— see, for instance, Murto [25]. This characteristic is not universal, i.e., there are optimal
stopping problems involving jump–diffusions processes for which the differential–difference
equation does not exhibit this behavior. Thus, on these cases to find a closed form solution
to the differential–difference equation can be easier. However, as we will see later, this is not
the case when the jumps may lead directly to the stopping region, across the boundary.

The seminal works in financial options — such as the classical work of Black and Scholes
[5], where for the first time a pricing formula was derived — and in real options — as the
seminal book of Dixit and Pindyck [12] — assume that the sample path of the involved state
process is continuous, with probability one.

In recent times investors often need to take decisions facing uncertainty and there is
higher likelihood of financial crashes, which are the climax of the so-called log-periodic power
law signatures associated with speculative bubbles (see Johansen and Sornette [18]). One
example of this occurred in February 2015, when due to a cyber-attack, a high-frequency
trading company started uncontrollably buying oil futures, causing a downward jump in the
oil prices1. Here, a crash is a significant drop in the total value of the market, creating a
situation wherein the majority of investors are trying to flee the market at the same time and
consequently incurring massive losses. Indeed, in the presence of a crash investors likely take
the decision to sell their assets. As the crash means that there is a significant drop, we borrow
the probabilistic terminology and we call it a jump (in the above example, a downward jump).

The sudden changes in the state variable can also be found when one decides about
investments in projects, often addressed in the context of real options. In this context, usually
the temporal term is long, and therefore unexpected events may occur, leading to a disruption
of the market. One example of a disrupt event is the introduction or the abolition of public
subsidies. There are many economical sectors where subsidies play an important role, such
as agriculture.

Due to the interest of the equation that we solve in this paper in the framework of real
options, we mainly focus in problems and questions arising in such context. The following
are examples of decisions regarding investments where investors face the likelihood of sudden
events.

It is well established that agricultural pricing policies (taxes, subsidies) have a sub-
stantial influence on farmer production decisions2. For example, USA has been supporting
farming since early times. But after several decades, these incentive policies have proved to

1https://www.businessinsider.com/investigation-into-hft-firm-for-using-an-algo-gone-wild-

that-caused-oil-trading-mayhem-in-just-5-seconds-2010-8
2http://www.pbl.nl/en/publications/the-impact-of-taxes-and-subsidies-on-crop-yields

https://www.businessinsider.com/investigation-into-hft-firm-for-using-an-algo-gone-wild-that-caused-oil-trading-mayhem-in-just-5-seconds-2010-8
https://www.businessinsider.com/investigation-into-hft-firm-for-using-an-algo-gone-wild-that-caused-oil-trading-mayhem-in-just-5-seconds-2010-8
http://www.pbl.nl/en/publications/the-impact-of-taxes-and-subsidies-on-crop-yields


The solution to a Differential–Difference Equation 87

be unsuccessful 3. In 2005 Bush administration decided to change the farm incentive policy,
cutting in agricultural subsidies4. Evidently, this decision led to changes in private investment
farming projects.

Another area where subsidies play an important role is the renewable energy (RE)
sector. In an effort to reach the ambitious targets of the EU Strategic Energy Technology
Plan (SET-Plan), EU member states have implemented support mechanisms of various forms
(e.g., price mechanisms, like carbon tax or permit trading schemes) intended to incentive and
accelerate adoption of RE technologies. These climate change policies have introduced a new
factor that has to be included into the investment decision and have become a major source
of uncertainty in energy strategy. The problem is that policies designed to stimulate the
investment in green energies have frequently and unexpectedly been changed for a number
of reasons. For instance, change of governments, collapse of the international cooperation
for reducing GHG emissions, arrival of new information about climate sensitivity, and fiscal
pressure. In the last decade we have seen many studies on the impact of wrong investment
decisions. We refer, for instance, to Boomsma and Linnerud [6], Boomsma et al. [7], and
Hagspiel et al. [14].

These examples show that when taking decisions regarding investments in new projects,
the investor needs to take into account these sudden changes. The area of real options soon
realized the importance of such events, and therefore the interest of real options literature in
problems involving jump–diffusion processes is not new. We refer to Kou [21] for a survey
on jump–diffusion models for finance engineering. In the area of real options, there has been
an increasing interest about jump–diffusion processes in the context of technology adoption
(see, for instance, Hagspiel et al. [16]).

Furthermore, Kwon [22] and Hagspiel et al. [15] consider a combination of a continuous
process with a jump-process, but they do not consider a sequence of innovations arriving over
time. Instead, they assume a one-single innovation opportunity, with other involved options
(like the option to exit the market). Kwon [22] work is generalized in Hagspiel et al. [15],
by considering capacity optimization, and by Matomäki [23], considering different stochastic
processes representing the profit uncertainty.

In another context, Couto et al. [11] and Nunes and Pimentel [26] consider the in-
vestment problem in a high-speed railway service, assuming that both the demand and the
investment cost are modeled by jump–diffusion processes. Although these papers start by as-
suming two sources of uncertainty, they end up with the study of a one-dimensional problem.
This happens because they assume that the value of the firm is homogeneous, and therefore
it is possible to consider a change of variables that will turn the two-dimensional problem in
a one-dimensional one. Murto [25] also consider two stochastic processes, in order to model
technological and revenue uncertainties, motivated by wind power investment. He assumes
that the investment cost depends on the technological progress, driven by a pure Poisson
process, whereas the price of the output is a geometric Brownian motion. As the value of the
project is homogeneous, the same type of approach as in Nunes and Pimentel [26] is proposed.

In all the above examples, it is of the most crucial importance to assess the impact of the
jumps in the decision, and, in particular, in case the jumps anticipate the optimal decision.

3https://grist.org/article/farm_bill2/
4https://www.agpolicy.org/weekpdf/258.pdf

https://grist.org/article/farm_bill2/
https://www.agpolicy.org/weekpdf/258.pdf
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Moreover, the impact of such jumps has to be reflected in the value of the project, which is a
quantitative measure of the value that the firm has as a result of its option to invest. Under
an optimal strategy in terms of the investment timing, such value is, before the investment,
solution of a differential equation (that we will present in section 2). Mathematically, the
possibility of occurrence of jumps leads to this value being solution of particular types of
differential equations.

Our contribution to the state of the art is two-fold: on one side, we provide an analytical
solution to a non-homogeneous differential equation. As it turns out, some optimal stopping
problems found in real options lead to a differential–difference equations that are exactly as
the form of such differential equation, for a subset of the state space. Therefore, one may use
this analytical solution to provide a characterization of the value of a firm, which is given by
a piecewise function.

The paper is organized as follows: in Section 2 we motivate the differential–difference
equation that we address in this paper, presenting also the basic assumptions. In Section 3
we show how we can find a general solution for such equation, using a backwards procedure.
This procedure presents the solution as a piecewise function. For each branch, the function is
the solution of a non-homogeneous differential equation. Therefore, in Section 4 we provide
the particular solution to it. Finally, in Section 5 we conclude.

2. DIFFERENTIAL–DIFFERENCE EQUATION

In order to motivate the meaningfulness of the differential–difference equation solved
in this paper, we consider that we want to derive the value of a firm that has the option to
undertake an investment. As we briefly explain in this section, these type of problems leads
to a variational inequality known as the Hamilton–Jacobi–Bellman (HJB, for short) equation,
where one of the members is a differential–difference equation. To solve such equation, we
also need to be able to find the solution of a differential equation of the following type:

(2.1) x2y′′(x) + axy′(x) + by(x) = Axα(lnx)n,

with x > 0, a, b ∈ R, α, A ∈ R \ {0} and n ∈ N0.

We note that the corresponding homogeneous equation to (2.1) is an Euler–Cauchy
equation and its solution is known. The difficulty lays in the particular solution, consequence
of the non-homogeneous term, Axα(lnx)n.

The result that we provide in this paper is per se interesting, as it provides a contri-
bution to the area of ordinary differential equations (ODE). Besides this contribution, being
able to compute the solution of such equation is also relevant for the applications. Next we
motivate the mathematical problem by an investment problem, using the terminology and
notation of real options.

Real options is a theory on how to make decisions under uncertainty about future
returns. These decisions share the following two characteristics: they are irreversible and can
be postponed.
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One of the most relevant problems in real options regards the characterization of the
optimal time to undertake some investment decision. This leads to an optimal stopping
problem, which is formally defined as follows: given a stochastic process X = {X(t), t > 0},
find V (x) and τ? ∈ T such that

(2.2) V (x) = sup
τ∈T

Ex
[
e−rτg(X(τ))χ{τ<+∞}

]
, x ∈ R+,

with T being the set of all stopping times adapted to the filtration generated by the process X,
r > 0 states for the discount factor and χ{A} represents the indicator function on set A. The
function g is usually called running function, which accounts for the return of the investment.

The class of stochastic processes that lead to the type of equations that we study in this
paper — equation (2.1) — is an one-dimensional jump–diffusion, which is the strong solution
of the following stochastic differential equation:

dX(t)
X(t−)

= µdt + σdW (t) + κdN(t),

with initial value X(0) = x > 0, where {W (t), t > 0} is a standard one-dimensional Brownian
motion, and {N(t), t > 0} is a centered time-homogeneous Poisson process, with intensity λ > 0.
Moreover, µ is the drift of the process X, σ > 0 is its volatility and κ is the multiplicative
factor, in case a jump occurs. The notation X(t−) means that whenever there is a jump, the
value of the process before the jump is considered. Motivated by the references mentioned in
Section 1, we assume that the jumps are multiplicative and with constant magnitude.

One way to solve the optimal stopping problem defined in (2.2) is to solve the variational
inequality HJB (we do not provide further details, referring instead to Peskir and Shiryaev
[28]). In this case, the corresponding HJB equation is the following:

(2.3) min {rV (x)− LV (x), V (x)− g(x)} = 0,

where L is the infinitesimal generator of the process X. As X is a jump–diffusion process, it
follows that

(2.4) Lv(x) =
σ2

2
x2v′′(x) + (µ− λκ)xv′(x) + λ (v(x(1 + κ))− v(x)) ,

for v ∈ C1 and x ∈ R+ (see Øksendal and Sulem [27] for more details).

In general, the use of these inequalities leads to a differential equation, which in some
cases may be solved analytically. Besides the possible difficulty to find the analytical solution
to the differential equation, one faces also the problem to find the boundary conditions, as
the set of values where the differential equation holds is also unknown. For this reason the
problem presented in (2.2) when solved by the use of variational inequalities is known in the
literature as a free boundary problem.

Considering an investment problem, the differential equation holds in the region where
it is not optimal to stop (in our case to invest). For that reason, this region is usually called
continuation region, and in opposition its complementary is called stopping region. In some
cases, one can provide a guess for the shape of the continuation set. For example, if g is a non-
decreasing function, the firm takes the decision to invest for large values of x, whereas for small
values of x the firm postpones its investment decision. Thus, the stopping region is of the form
S = [x∗,+∞) and the continuation region is C = (0, x∗), where x∗ is the exercise threshold.
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When X is a jump–diffusion process with positive jumps, the stopping region can be
reached in two different ways:

(i) Either due to a continuous change, caused by the diffusion. In this case the state
process hits the boundary threshold x∗.

(ii) Or due to the occurrence of a jump. In this case the state process crosses the
boundary threshold.

In the literature, the majority of the authors address the case that either there is just
the jump process (for which it is possible to solve the corresponding difference equation, as
there is no differential part) — this is the case of Huisman [17] — or the process is a jump–
diffusion but the jumps always lead to the continuation region — which is the case of Nunes
and Pimentel [26].

Our work is related with Merton [24], who considers a model to price American call
options. He assumes multiplicative independent and identically distributed jumps and g(x) =
max(x−K, 0) (the payoff of an American call option). For this case, he provides in Equation
(16) a semi-analytical result, as it involves a series with infinite number of terms that depend,
each one, on the cumulative distribution of a normal random variable. More recently, Murto
[25] considers a problem with a similar setting as ours. However, in view of the impossi-
bility to derive an analytical solution, he provides solutions only for some particular cases
(namely, if the volatility parameter of the diffusion is zero, or when the jump process is in
fact deterministic, with an exponential decay).

In the current paper, we assume a non-decreasing g function. Then it follows that
on the one hand, in the stopping region V is equal to g, i.e. V (x) = g(x) for x ≥ x?. On
the other hand, in the continuation region the value function V must be the solution of the
left-hand side of the HJB Equation (2.3), which combined with Equation (2.4), leads to the
following equation:

(2.5) x2V ′′(x) + a xV ′(x) + b V (x)− c V (x(1 + k)) = 0,

where a = 2(µ−λk)
σ2 , b = −2(r+λ)

σ2 and c = −2λ
σ2 . This is called in the literature mixed partial

differential–difference equation, and it is known to be difficult to solve (see Merton [24]).

3. BACKWARDS ANALYSIS

In this section we provide a backwards procedure that can be used to solve the Equation
(2.5). This procedure is motivated by the geometry of the stopping/continuation regions
previously presented, when g is non-decreasing.

Firstly, we note that the homogeneous part of Equation (2.5) has an analytical solution,
hereby denoted by Vh, which is given by

(3.1) Vh(x) = δ1x
β1 + δ2x

β2 ,

where β1 and β2 are the roots of the characteristic polynomial

(3.2) Q(β) = β (β − 1) + aβ + b.
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In our case, given that b < 0, there are two distinct real roots:

β1 =
1
2

[
1− a +

√
(1− a)2 − 4b

]
> 0;(3.3)

β2 =
1
2

[
1− a−

√
(1− a)2 − 4b

]
< 0.(3.4)

As presented before, V (x) = g(x) for x ∈ [x?,+∞). Therefore, one needs to solve the
problem for 0 < x < x?. For that, we start by considering x ∈

[
x?

1+κ , x?
)
, meaning that

x(1 + κ) ≥ x?. So, the interval
[

x?

1+κ , x?
)

is the set of values of x where stopping will surely
happen if a jump occurs. Thus V (x(1 + κ)) = g(x(1 + κ)). In this case Equation (2.5) can
be re-written as

x2V ′′(x) + a xV ′(x) + b V (x) = c g(x(1 + κ)).

and therefore its solution, hereby denoted by V1, is given by

(3.5) V (x) := V1(x) = Vh(x) + V 1
p (x) = δ1x

β1 + δ2x
β2 + f1

g (x),

Note that the superscript in V 1
p and f1

g represents how many jumps we are away from the stop-
ping region5 (see Figure 1 for an illustration). Moreover, the bottom index in f1

g emphasizes
that this function depends explicitly on g.
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values of x where stopping will surely happen if a jump occurs. Thus V (x(1 +
κ)) = g(x(1 + κ)). In this case Equation (2.5) can be re-written as

x2V ′′(x) + a xV ′(x) + b V (x) = c g(x(1 + κ)).

and therefore its solution, hereby denoted by V1, is given by

(3.3) V (x) := V1(x) = Vh(x) + V 1
p (x) = δ1x

β1 + δ2x
β2 + f1

g (x),

Note that the superscript in V 1
p and f1

g represents how many jumps we are away
from the stopping region5 (see Figure 1 for an illustration). Moreover, the bottom
index in f1

g emphasizes that this function depends explicitly on g.

x

SC

x?

1+κ
x?

g(x)g(x)V1(x)

Figure 1: Representation of V in the last interval before stopping.

Next we derive the value of V when we are two jumps away from the
stopping region. Following the same notation, we denote this function by V2,

defined for x ∈
[

x?

(1+κ)2
, x?

1+κ

)
. In this case x(1+κ) ∈

[
x?

1+κ , x
?
)

, so V (x(1+κ)) =

V1(x(1 + κ)). This means that (2.5) can be re–written as follows

x2V ′′(x) + a xV ′(x) + b V (x) = c V1(x(1 + κ)).

The homogeneous part of the previous equation is the same as before, and thus
the solution is provided in (3). We just need to take into account the particular
solution, which we denote by V 2

p . This particular solution depends on V 1
p (and

thus depends on g) but also depends on Vh (then also depends on the roots of
Q, β1 and β2), as V1 is given by (3.3). Therefore, both the homogeneous and the
particular solution for this case share the powers β1 and β2. Using Theorem 3.5
of Sabuwala and De Leon [29], we end up with the following particular solution

V 2
p (x) = η2

1 lnx xβ1 + η2
2 lnx xβ2 + f2

g (x).

We write f2
g to denote the part of the solution that depends strictly on g (following

the same reasoning as for f1
g ), whereas η2

1 and η2
2 depend on the parameters

from the homogeneous solution. So, for x ∈
[

x?

(1+κ)2
, x?

1+κ

)
(see Figure 2 for an

illustration), we have

(3.4) V (x) := V2(x) = δ1x
β1 + δ2x

β2 + η2
1 lnx xβ1 + η2

2 lnx xβ2 + f2
g (x).

Figure 1: Representation of V in the last interval before stopping.

Next we derive the value of V when we are two jumps away from the stopping region.
Following the same notation, we denote this function by V2, defined for x ∈

[
x?

(1+κ)2
, x?

1+κ

)
.

In this case x(1 + κ) ∈
[

x?

1+κ , x?
)
, so V (x(1 + κ)) = V1(x(1 + κ)). This means that (2.5) can

be re-written as follows:

x2V ′′(x) + a xV ′(x) + b V (x) = c V1(x(1 + κ)).

The homogeneous part of the previous equation is the same as before, and thus the solution is
provided in (3.1). We just need to take into account the particular solution, which we denote
by V 2

p . This particular solution depends on V 1
p (and thus depends on g) but also depends on

Vh (then also depends on the roots of Q, β1 and β2), as V1 is given by (3.5). Therefore, both
the homogeneous and the particular solution for this case share the powers β1 and β2. Using
Theorem 3.5 of Sabuwala and De Leon [29], we end up with the following particular solution:

V 2
p (x) = η2

1 lnx xβ1 + η2
2 lnx xβ2 + f2

g (x).

5We use this type of notation for all particular solutions.
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We write f2
g to denote the part of the solution that depends strictly on g (following the same

reasoning as for f1
g ), whereas η2

1 and η2
2 depend on the parameters from the homogeneous

solution. So, for x ∈
[

x?

(1+κ)2
, x?

1+κ

)
(see Figure 2 for an illustration), we have

(3.6) V (x) := V2(x) = δ1x
β1 + δ2x

β2 + η2
1 lnx xβ1 + η2

2 lnx xβ2 + f2
g (x).
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x

SC

x?

(1+κ)2
x?

1+κ
x?

g(x)V1(x)V2(x)

Figure 2: Representation of V in the last two intervals before stopping.

Proceeding one step back, we determine the value of V when we are three

jumps away from the stopping region, which we call V3. When x ∈
[

x?

(1+κ)3
, x?

(1+κ)2

)
,

then x(1 + κ) ∈
[

x?

(1+κ)2
, x?

1+κ

)
and V (x(1 + κ)) = V2(x(1 + κ)). Then, Equation

(2.5) is re-written as

(3.5) x2V ′′(x) + a xV ′(x) + b V (x) = c V2(x(1 + κ)).

As before, the homogeneous equation is the same and therefore Vh is part of the
solution of this equation. Once more, the problem is reduced to the derivation of
a particular solution, which is not trivial, as the function V2 involves polynomials
of power β1 and β2 multiplied by a logarithm (see Equation (3.4)). After some
calculations, one may find that the particular solution of (3.5) is of the following
form

V 3
p (x) = η3

1 lnx xβ1 + η3
2 lnx xβ2 + η3

3 (lnx)2 xβ1 + η3
4 (lnx)2 xβ2 + f3

g (x).

Also here f3
g stands for the part of the solution that depends strictly on g whereas

η3
1, η

3
2, η

3
3 and η3

4 depend on the parameters from the homogeneous solution. As

previously, for x ∈
[

x?

(1+κ)3
, x?

(1+κ)2

)
, we have

V (x) := V3(x) = δ1x
β1 + δ2x

β2 + η3
1 lnx xβ1 + η3

2 lnx xβ2

+η3
3 (lnx)2 xβ1 + η3

4 (lnx)2 xβ2 + f3
g (x).

A similar reasoning applies for other intervals of x. When we are i (with
i ∈ N) jumps away from the stopping region, we have x?

(1+κ)i ≤ x < x?

(1+κ)i−1 and

V is represented by Vi, which may be obtained using a similar procedure as the
one used for V1, V2 and V3. Indeed, V is a piecewise function, given by

V (x) =

{
Vi(x) if x?

(1+κ)i ≤ x < x?

(1+κ)i−1

g(x) if x ≥ x?
,

where
Vi(x) = δ1x

β1 + δ2x
β2 + V i

p (x)

5We use this type of notation for all particular solutions.

Figure 2: Representation of V in the last two intervals before stopping.

Proceeding one step back, we determine the value of V when we are three jumps away
from the stopping region, which we call V3. When x ∈

[
x?

(1+κ)3
, x?

(1+κ)2

)
, then x(1 + κ) ∈[

x?

(1+κ)2
, x?

1+κ

)
and V (x(1 + κ)) = V2(x(1 + κ)). Then, Equation (2.5) is re-written as

(3.7) x2V ′′(x) + a xV ′(x) + b V (x) = c V2(x(1 + κ)).

As before, the homogeneous equation is the same and therefore Vh is part of the solution of
this equation. Once more, the problem is reduced to the derivation of a particular solution,
which is not trivial, as the function V2 involves polynomials of power β1 and β2 multiplied by
a logarithm (see Equation (3.6)). After some calculations, one may find that the particular
solution of (3.7) is of the following form:

V 3
p (x) = η3

1 lnx xβ1 + η3
2 lnx xβ2 + η3

3 (lnx)2 xβ1 + η3
4 (lnx)2 xβ2 + f3

g (x).

Also here f3
g stands for the part of the solution that depends strictly on g whereas η3

1, η
3
2, η

3
3

and η3
4 depend on the parameters from the homogeneous solution. As previously, for x ∈[

x?

(1+κ)3
, x?

(1+κ)2

)
, we have

V (x) := V3(x) = δ1x
β1 + δ2x

β2 + η3
1 lnx xβ1 + η3

2 lnx xβ2

+η3
3 (lnx)2 xβ1 + η3

4 (lnx)2 xβ2 + f3
g (x).

A similar reasoning applies for other intervals of x. When we are i (with i ∈ N) jumps
away from the stopping region, we have x?

(1+κ)i ≤ x < x?

(1+κ)i−1 and V is represented by Vi,
which may be obtained using a similar procedure as the one used for V1, V2 and V3. Indeed,
V is a piecewise function, given by

V (x) =

{
Vi(x) if x?

(1+κ)i ≤ x < x?

(1+κ)i−1

g(x) if x ≥ x?
,

where
Vi(x) = δ1x

β1 + δ2x
β2 + V i

p (x)
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with

V 1
p (x) = f1

g (x) and

V i
p (x) =

i−1∑
j=1

[
ηi
2j−1 xβ1 + ηi

2j xβ2

]
(lnx)j + f i

g(x), for i ∈ N \ {1} .(3.8)

Clearly, one needs to find functions that are solutions of certain differential equations,
that depend intrinsically on the function g, considered in the definition of the problem.

For example, for

(3.9) g(x) = ρxθ − I

we obtain the following particular solutions V i
p , for i = 1, 2, 3:

V 1
p (x) =ξ1

1x
θ + ξ1

2 , with ξ1
1 =

cρ(1 + κ)θ

Q(θ)
, ξ1

2 = −cI

b
.

V 2
p (x) =η2

1 lnx xβ1 + η2
2 lnx xβ2 + ξ2

1x
θ + ξ2

2 , with

η2
1 = δ1

c(1 + κ)β1

Q′(β1)
, η2

2 = δ2
c(1 + κ)β2

Q′(β2)
,

ξ2
1 = ρ

[
c(1 + κ)θ

Q(θ)

]2

, ξ2
2 = −

(c

b

)2
I.

V 3
p (x) =η3

1 lnx xβ1 + η3
2 lnx xβ2 + η3

3 (lnx)2 xβ1 + η3
4 (lnx)2 xβ2 + ξ3

1x
θ + ξ3

2 , with

η3
1 = δ1

c(1 + κ)β1

Q′(β1)

[
1 +

c(1 + κ)β1

Q′(β1)

(
ln(1 + κ)− 1

Q′(β1)

)]
,

η3
2 = δ2

c(1 + κ)β2

Q′(β2)

[
1 +

c(1 + κ)β2

Q′(β2)

(
ln(1 + κ)− 1

Q′(β2)

)]
,

η3
3 =

δ1

2

[
c(1 + κ)β1

Q′(β1)

]2

, η3
4 =

δ2

2

[
c(1 + κ)β2

Q′(β2)

]2

,

ξ3
1 = ρ

[
c(1 + κ)θ

Q(θ)

]3

, ξ3
2 = −

(c

b

)3
I.

For simplicity, in the above calculations we assume that θ is not a root of the char-
acteristic polynomial Q. This example is motivated by the relevance of this analysis in real
options context. In fact, functions such that the one presented in (3.9) are frequently used
in this context and describe the profit of a firm. This function is called in the literature an
iso-elastic demand function (see, for instance, Nunes and Pimentel [26]).

This example also shows that a more systematic way to find the solution to the non-
homogeneous differential Equation (2.1) is quite valuable. We address this issue in the next
section.
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4. MAIN RESULTS

We want to find a particular solution to the Equation (2.1). The type of solution is
understandable from the special case solved at the end of the previous section. However, a
systematic way to obtain all the coefficients is not so easy to develop.

We start deriving a recursive expression for the particular solution of (2.1). Later,
using this result, we will be able to present explicit expressions for the involved coefficients.

Theorem 4.1 (recursive). Consider the second order ODE presented in (2.1), with

the corresponding characteristic polynomial Q given by (3.2). Then the following cases occur:

• If α is not a root of Q, the particular solution of (2.1) is

yp(x) = xα
n∑

i=0

ci (lnx)i ,

where cn = A
Q(α) , cn−1 = −nA Q′(α)

Q(α)2
and ci = − i+1

Q(α) [Q′(α)ci+1 + (i + 2)ci+2]
for i = 0, 1, 2, ..., n− 2.

• If α is a simple root of Q, the particular solution of (2.1) is

yp(x) = xα
n∑

i=0

ci (lnx)i+1 ,

where cn = A
(n+1)Q′(α) and ci = − i+2

Q′(α)ci+1, for i = 0, 1, 2, ..., n− 1.

• If α is a root of Q with multiplicity two, the particular solution of (2.1) is

yp(x) = xαcn (lnx)n+2 ,

where cn = A
(n+1)(n+2) .

Proof: We start by proposing that the particular solution of Equation (2.1) is of the
form yp(x) = xαP (x). Calculating first and second derivatives, we obtain

y′p(x) = xα−1
[
xP ′(x) + αP (x)

]
y′′p(x) = xα−2

[
x2P ′′(x) + 2αxP ′(x) + α(α− 1)P (x)

]
,

from where

x2y′′p(x) + axy′p(x) + byp(x) = xα
[
x2P ′′(x) +

(
Q′(α) + 1

)
xP ′(x) + Q(α)P (x)

]
.

Thus P (x) is such that

(4.1) x2P ′′(x) +
(
Q′(α) + 1

)
xP ′(x) + Q(α)P (x) = A(lnx)n.
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Taking into account whether Q(α) is null or not, we end up with different cases, described
hereafter:

1. If α is not a root of Q, then P (x) =
∑n

i=0 ci (lnx)i, as we prove next. For that,
we compute the first and second derivatives:

P ′(x) =
1
x

n∑
i=1

ici (lnx)i−1

P ′′(x) =
1
x2

[
n∑

i=2

i(i− 1)ci(lnx)i−2 −
n∑

i=1

ici(lnx)i−1

]
.

Thus, x2P ′′(x) + (Q′(α) + 1) xP ′(x) + Q(α)P (x) is given by

n−2∑
i=0

[
(i + 2)(i + 1)ci+2 + Q′(α)(i + 1)ci+1 + Q(α)ci

]
(lnx)i

+
[
Q′(α)ncn + Q(α)cn−1

]
(lnx)n−1 + Q(α)cn(lnx)n.

Therefore, (4.1) holds if Q(α)cn = A, Q′(α)ncn + Q(α)cn−1 = 0 and (i+2)(i+1)ci+2

+ Q′(α)(i + 1)ci+1 + Q(α)ci = 0, for i = 0, 1, ..., n− 2, which leads to the result.

2. If α is a root of Q with multiplicity one, then P (x) =
∑n

i=0 ci (lnx)i+1. In fact,
calculating first and second derivatives, we obtain

P ′(x) =
1
x

n∑
i=0

(i + 1)ci (lnx)i ,

P ′′(x) =
1
x2

[
n∑

i=1

(i + 1)ici(lnx)i−1 −
n∑

i=0

(i + 1)ci(lnx)i

]
.

Given that Q(α) = 0, then x2P ′′(x) + (Q′(α) + 1) tP ′(x) + Q(α)P (x) is given by∑n−1
i=0 [(i + 2)ci+1 + Q′(α)ci] (lnx)i + Q′(α)(n + 1)cn(lnx)n.

Assuming that α has multiplicity one we have Q′(α) 6= 0. Thus, in order to have
(4.1), we need to set that Q′(α)(n + 1)cn = A and (i + 2)ci+1 + Q′(α)ci = 0, for
i = 0, 1, ..., n− 1, and the result follows.

3. If α is a root of Q with multiplicity two, then P (x) = cn (lnx)n+2 as

P ′(x) =
1
x

cn(n + 2) (lnx)n+1 ,

P ′′(x) =
1
x2

cn(n + 2)
[
(n + 1)(lnx)n − (lnx)n+1

]
.

Since Q(α) = 0 and Q′(α) = 0, then x2P ′′(x) + (Q′(α) + 1) tP ′(x) + Q(α)P (x) is
given by cn(n + 2)(n + 1)(lnx)n. Finally, in order to have (4.1) we conclude that
cn = A

(n+1)(n+2) .

This theorem is useful in two ways: first it provides a way to compute (recursively) the
particular solution of the differential equation (2.1). Second, it provides the tool to derive
explicit expressions for the involved coefficients. In the following theorem we present such
result.
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Theorem 4.2 (non-recursive). Consider the second order ODE presented in (2.1),
with the corresponding characteristic polynomial Q given by (3.2).

• If α is not a root of Q, the particular solution of (2.1) is given by yp(x) =
xα

∑n
i=0 ci (lnx)i, with

ci = (−1)n−i n!
i!

A

Q(α)n−i+1

n−i
2∑

j=0
j∈N0

(−1)j

(
n− i− j

j

)
Q′(α)n−i−2j Q(α)j ,(4.2)

for i = 0, 1, 2, ..., n, where
(
k
r

)
= k!

r!(k−r)! , with k ≥ r ≥ 0.

• If α is a simple root of Q, the particular solution of (2.1) is yp(x) =
xα

∑n
i=0 ci (lnx)i+1, with

ci = (−1)n−i n!
(i + 1)!

A

Q′(α)n−i+1
, for i = 0, 1, 2, ..., n.(4.3)

• If α is a root of Q with multiplicity two, the particular solution of (2.1) is yp(x) =
xαcn (lnx)n+2, with cn = A

(n+1)(n+2) .

Proof: The last case coincides with the one presented in Theorem 4.1. For the other
two cases, we use backwards mathematical induction to prove it, taking advantage of the
recursive solutions presented in Theorem 4.1.

1. If α is not a root of Q, we already know that, the particular solution is of the form
yp(x) = xα

∑n
i=0 ci (lnx)i, where cn = A

Q(α) , cn−1 = −nA Q′(α)
Q(α)2

and ci =
− i+1

Q(α) [Q′(α)ci+1 + (i + 2)ci+2] for i = 0, 1, 2, ..., n− 2. We want to prove that,
for i = 0, 1, 2, ..., n, the coefficients ci can be written in the general form presented
in (4.2).
Using backwards mathematical induction we have two base cases to be verified,
cn and cn−1, which we know from Theorem 4.1 that are A

Q(α) and −nA Q′(α)
Q(α)2

,
respectively. Taking into account (4.2), we have

cn = (−1)0
n!
n!

A

Q(α)
(−1)0

(
0
0

)
Q′(α)0 Q(α)0 =

A

Q(α)
,

cn−1 = (−1)
n!

(n− 1)!
A

Q(α)2
(−1)0

(
1
0

)
Q′(α)1 Q(α)0 = −nA

Q′(α)
Q(α)2

,

which means that the base cases are verified. For the inductive step, we assume
that, for i = 0, 1, 2, ..., n− 2, ci+1 and ci+2 are given by (4.2), and we want to prove
that ci is also given by (4.2).
From Theorem 4.1, we know that ci = − i+1

Q(α) [Q′(α)ci+1 + (i + 2)ci+2] for i =
0, 1, 2, ..., n− 2. Plugging the expressions of ci+1 and ci+2, which are defined by
(4.2), in the expression of ci we obtain

− i + 1
Q(α)

Q′(α)(−1)n−i−1 n!
(i + 1)!

A

Q(α)n−i

n−i
2
− 1

2∑
j=0
j∈N0

(−1)j

(
n− i− j − 1

j

)
Q′(α)n−i−2j−1Q(α)j

+(i + 2)(−1)n−i−2 n!
(i + 2)!

A

Q(α)n−i−1

n−i
2
−1∑

j=0
j∈N0

(−1)j

(
n− i− j − 2

j

)
Q′(α)n−i−2j−2Q(α)j

 .
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Rearranging the terms and changing the variable in the second sum, we get

(−1)n−i n!
i!

A

Q(α)n−i+1


n−i
2
− 1

2∑
j=0
j∈N0

(−1)j

(
n− i− j − 1

j

)
Q′(α)n−i−2j Q(α)j

+

n−i
2∑

j=1
j∈N0

(−1)j

(
n− i− j − 1

j − 1

)
Q′(α)n−i−2j Q(α)j

 .

Joining the two sums and taking into account some permutation’s properties, we
end up with the following expression:

(−1)n−i n!
i!

A

Q(α)n−i+1


n−i
2
− 1

2∑
j=1
j∈N0

(−1)j

(
n− i− j

j

)
Q′(α)n−i−2j Q(α)j

+ Q′(α)n−i + (−1)
n−i
2 Q(α)

n−i
2 χ{n−i is even}

]
.

Finally, we conclude that

ci = (−1)n−i n!
i!

A

Q(α)n−i+1

n−i
2∑

j=0
j∈N0

(−1)j

(
n− i− j

j

)
Q′(α)n−i−2j Q(α)j ,

which coincides with the expression given by (4.2). Thus the proof for the first case
is finished.

2. If α is a root of Q with multiplicity one, as we proved before, the particular so-
lution is of the form yp(x) = xα

∑n
i=0 ci (lnx)i+1, where cn = A

(n+1)Q′(α) and ci =
− i+2

Q′(α)ci+1, for i = 0, 1, 2, ..., n− 1. We want to prove that we can write the coeffi-
cients ci in the general way presented in (4.3).
As before, we use backwards mathematical induction. Starting with the base case
and taking into account (4.3), we have

cn = (−1)0
n!

(n + 1)!
A

Q′(α)
=

A

(n + 1)Q′(α)
,

which coincides with the expression given by Theorem 4.1. Thus, the base case is
verified. To prove the induction step, for i = 0, 1, 2, ..., n− 1, we assume that ci+1

is given by (4.3) and we want to prove that ci is also given by (4.3).
From Theorem 4.1, we know that ci = − i+2

Q′(α)ci+1, for i = 0, 1, 2, ..., n− 1. Plugging
in ci the expression of ci+1, which is given by (4.3), we obtain

ci = − i + 2
Q′(α)

(−1)n−i−1 n!
(i + 2)!

A

Q′(α)n−i
= (−1)n−i n!

(i + 1)!
A

Q′(α)n−i+1
,

and therefore the induction step is proved. With this we conclude the proof.
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A special case of the previous theorem is when n = 0. In this case the Equation (2.1)
is simply

x2y′′(x) + axy′(x) + by(x) = Axα.

Using the results proved before, the corresponding particular solution is given by

yp(x) = ϕ xα (lnx)r ,

where ϕ = A
Q(r)(α)

6, with r7 being the multiplicity of α as a root of Q.

In the following corollary, we use the results presented in Theorem 4.2 for the case that
the non-homogeneous part of the differential equation is a sum of power and log functions
(as it is the case, for example, of (3.8)).

Corollary 4.1. Consider the following second order differential equation:

(4.4) x2y′′(x) + axy′(x) + by(x) =
m∑

k=1

Akx
αk (lnx)nk ,

with x > 0, a, b ∈ R, αk, Ak ∈ R \ {0} and nk ∈ N0, for k = 1, 2, ...,m, with m ∈ N. Then the

particular solution of (4.4) is of the form yp(x) =
∑m

k=1 ypk
(x)8, where ypk

(x) is the solution

of the equation

x2y′′k(x) + axy′k(x) + byk(x) = Akx
αk (lnx)nk ,

which is presented in Theorem 4.2.

Proof: The result follows from the superposition principle.

5. CONCLUSIONS

In this paper we provide a solution to a differential–difference equation that can be
found, for instance, when one studies an investment problem with the underlying following
a jump–diffusion process. This problem is particularly important from the point of view of
the application, as nowadays the prices and demand are often subject to external shocks that
cause a disruptive behavior on the state variables. Analytical solutions or quasi-analytical
solutions are scarce or even non-existent. Our results contribute to the state of the art in this
area.

As our results show, the solution to the differential–difference equation is a piecewise
function, where each branch depends on the next one. Therefore, to find the expression for
each branch a non-homogeneous ODE needs to be solved. In this paper we also provide the
expression for each coefficient involved in the particular solution of this family of ODEs.

6Q(r)(α) is the derivative of order r of Q w.r.t. α. In particular, if r = 0 we consider that Q(r)(α) is exactly
Q(α).

7r can take the values 0, 1 or 2. We consider r = 0 when α is not a root of Q.
8Note that yp has at least m parcels and at most m +

Pm
k=1 nk parcels. When α1 = α2 = ... = αm are roots

of Q all with multiplicity two, yp has m parcels. Oppositely, when none of the αk (with k = 1, 2, ..., m) has
multiplicity two, yp has m +

Pm
k=1 nk parcels.
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As future work, we want to apply these results to solve the original optimal stopping
problem. We highlight that this is a challenging question, as in order to find the optimal
value function, we need to use enough conditions to define all the unknown parameters of
the solution. Indeed, the expressions that we provide in this paper define classes of solutions,
and only considering the boundary and initial conditions we are able to derive the solution.
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1. INTRODUCTION

Finite mixture regression models (FMRM) provide a flexible tool for modeling data
that arise from a heterogeneous population, where a single regression model is not enough for
capturing the complexities of the conditional distribution of the observed sample given the
features. FMRM of Gaussian distributions, using maximum likelihood methods for parameter
estimation, have been extensively used in the literature in different fields like marketing
[11, 12], economics [10, 21], agriculture [36], psychometrics [28], among others.

From a Bayesian perspective, there is a wide range of nonparametric methods, in par-
ticular, methods in which the error follows a mixture of Dirichlet process [27] or a mixture
of Polya trees [22]. However, in comparison with these methodologies, the finite mixture of
regressions presents the advantage of classifying the observations over the components of the
mixture in a natural way. This classification, in a range of applications, is the main topic of
interest and provides for practitioners a clear interpretation of the results, besides facilitating
the implementation.

Extensions of FMRM of Gaussian distributions have been proposed to broaden the
applicability of the model to more general structures like skewed or heavy tailed errors. In
this regard, [4] modified the EM algorithm for normal mixtures, replacing the least squares
criterion in the M step with a robust one. [33] and [41], in turn, implemented an estima-
tion procedure for finite mixture of linear regression models assuming that the error terms
follow a Laplace and a Student-t distribution, respectively. As an attempt to accommodate
asymmetric observations, [29] introduced a FMRM based on skew-normal distributions [1].

More recently, as an attractive way to deal with skewness and heavy tails simultane-
ously, [42] introduced a finite mixture regression model based on scale mixtures of skew-normal
distributions [6, SMSN] as follow:

f(yi|xi,ϑ,η) =
G∑
j=1

ηjg(yi|xi,θj),(1.1)

where the probability density function g(·|xi,θj) comes from the same member of the
SMSN(xiβj + µj , σ

2
j , λj , νj) family, θj = (βj , σ2

j , λj , νj) is the specific parametric vector for
the component j, ηj > 0, j = 1, ..., G,

∑G
j=1 ηj = 1, ϑ and η denote the unknown param-

eters with ϑ = (θ1, ...,θG) and η = (η1, ..., ηG). However, [42] impose the constraints τ2
1 =

··· = τ2
G and ν1 = ··· = νG about the parameters during the estimation procedure in which

τ2
j = σ2

j (1− δ2j ) and δj = λj/(
√

1 + λ2
j ).

The aim of this paper, therefore, is to provide a flexible version for the mixture of regres-
sions based on scale mixtures of skew-normal distributions introduced by [42], relaxing the
restrictions described above and verifying empirically how our ideas improve the estimation
process. Bayesian inference is developed applying ideas like the data augmentation principle,
stochastic representation in terms of a random-effects model [2, 23], standard hierarchical
representation of a finite mixture model [14] and MCMC methods.
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The remainder of the paper is organized as follows. Section 2 is related to the devel-
opment of a flexible methodology for the mixture regression model based on scale mixture
of skew-normal (SMSN-FMRM) distributions from a Bayesian perspective. In order to make
comparisons between the methodology proposed in the present work and the one proposed
by [42] feasible, Sections 3 and 4 present the analysis of a simulation study and a real dataset
respectively. Finally, some concluding remarks and suggestions for future developments are
given in Section 5.

2. MIXTURE REGRESSION MODEL BASED ON SCALE MIXTURE OF
SKEW-NORMAL DISTRIBUTIONS

2.1. The model

Let y = (y1, ..., yn)T given x = (xT1 , ...,x
T
n )T be a random sample from a G-component

mixture model, xi is a p-dimensional vector of explanatory variables, and consider a mixture
regression model in which the random errors follow a scale mixtures of skew-normal distribu-
tions (SMSN-FMRM) as defined by the equation 1.1. Let S = (S1, ...,Sn) be the allocation
vector, i. e., the vector containing the information about in which group the observation yi
of the random variable Yi is. The indicator variable Si = (Si1, ..., SiG)T , with

Sij =

{
1, if Yi belongs to component j
0, otherwise

and
∑G

j=1 Sij = 1. Given the weights vector η, the latent variables S1, ...,Sn are independent
with multinomial distribution

p(Si|η) = ηSi1
1 ηSi2

2 ···(1− η1 − ··· − ηG−1)SiG .

The joint density of Y = (Y1, ..., Yn) and S = (S1, ...,Sn) is given by

f(y, s|x,ϑ,η) =
G∏
j=1

n∏
i=1

[ηjg(yi|xi,θj)]Sij .

From the stochastic representation in terms of a random-effects model introduced by
[2] and [23], a random variable drawn from the scale mixture of skew-normal distributions
has a hierarchical representation. Hence, the individual Yi belonging to the j-th component
can be written as

Yi|Sij = 1,xi, wi, ui,θj ∼ N(xiβj + µj + σjδjwi, k(ui)σj
√

1− δ2j ),

Wi|Sij = 1, ui ∼ TN[0,+∞)(0, k(ui)),

Ui|Sij = 1, νj ∼ h(·; νj),

where µj = −
√

2
πm1,jσjδj , m1 = E[U−1/2], which corresponds to the regression model where

the error distribution has zero mean and hence the regression parameters are all comparable.
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Thus, the joint density of Y and the latent variables S, W and U is

f(y, s,w,u|x,ϑ,η) =
G∏
j=1

[
n∏
i=1

[ηjf(yi|θj ,xi, wi, ui)f(wi|ui)f(ui|νj)]Sij

]
.

In this article, k(U) = U−1 is used since it leads to good mathematical properties.
Without loss of generality, the distributions skew normal [1, SN], skew-t [3, ST] and skew-
slash [39, SSL] are considered here, it means that mixing variables are chosen as: U = 1,
U ∼ G(ν2 ,

ν
2 ) and U ∼ Be(ν, 1), where G(·, ·) and Be(·, ·) indicate the gamma and beta dis-

tributions respectively.

As in [17], we introduce a new parameterization in terms of the component-specific pa-
rameters θ∗j = (βj , ψj , τ2

j , νj), where ψj = σjδj and τ2
j = σ2

j (1− δ2j ). The original parametric
vector θj = (βj , σ2

j , λj , νj), on its turn, is recovered through

λj =
ψj
τj
, σ2

j = τ2
j + ψ2

j ,

since ψj/τj = σjδj/(σj
√

1− δ2j ) = λj and τ2
j + ψ2

j = σ2
j (1− δ2j ) + σ2

j δ
2
j = σ2

j .

2.2. Bayesian inference

Performing a Bayesian analysis, an important step is the priors distributions selection.
In the context of finite mixture models, in particular, mixture regression models, a special
attention on these choices is quite relevant since it is not possible to choose an improper prior
because it implies in an improper posterior density [16]. In addition, as pointed by [25], it is
recommended to avoid be as “noninformative as possible” by choosing large prior variances
because the number of components is highly influenced by the prior choices. Consequently,
in order to avoid identifiability problems, it was adopted the hierarchical priors introduced
by [31] for mixtures of normal distributions to reduce sensitivity with respect to choosing the
prior variances.

Hence, considering the parametric vector θ∗j = (βj , ψj , τ2
j , νj) for an arbitrary mixture

component j, the prior set was specified as: η ∼ D(e0, ..., e0), (βj , ψj)|τ2
j ∼ Np+1(b0, τ

2
j B0),

τ2
j |C0 ∼ IG(c0, C0) and C0 ∼ G(h0,H0), where e0, b0 ∈ R(p+1), B0 ∈ R(p+1)×(p+1), c0, h0

and H0 are known hyper parameters, Nq(·, ·), D(·, ..., ·) and IG(·, ·) indicate the q-variate
normal, the Dirichlet and inverse gamma distributions. Considering the parameter ν pri-
ors, p(νj) ∝ νj/(νj + d)31(2,40)(νj) [26] and νj ∼ G(1,40)(α, γ), where α and γ are known hy-
per parameters and GA(·, ·) denotes the truncated gamma on set A, are specified for the
ST-FMRM and SSL-FMRM respectively.

The Bayesian approach for estimating the parameters uses the data augmentation prin-
ciple [35], which considers W,U and S as latent unobserved variables. The joint posterior
density of parameters and latent variables can be written as

p(ϑ∗,η,w,u, s|y,x) ∝


G∏
j=1

[ n∏
i=1

[
ηjf(yi|θ∗j ,xi, wi, ui)f(wi|ui)f(ui|νj)

]Sij

]
p(θ∗j )

 p(η),
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where p(θ∗j ) = p(βj , ψj |τ2
j )p(τ2

j |C0)p(C0)p(νj) and ϑ∗ = (θ∗1, ...,θ
∗
G). In light of the data aug-

mentation technique, conditional on the allocation vector S, the parameters estimation may
be executed independently for each parametric component θ∗j and for the weights distribu-
tion η. As a consequence, the full conditionals of the parameters and the latent unobserved
variables for the mixture regression models based on the SMSN distributions are written as
follows:

p(η|s) ∝ p(s|η)p(η)(2.1)

p(wi|Sij = 1, ···) ∝
[
f(yi|θ∗j ,xi, wi, ui)f(wi|ui)

]Sij ,(2.2)

p(ui|Sij = 1, ···) ∝
[
f(yi|θ∗j ,xi, wi, ui)f(wi|ui)f(ui|νj)

]Sij ,(2.3)

p(βj , ψj |···) ∝
∏

{i:Sij=1}

f(yi|θ∗j ,xi, wi, ui)p(βj , ψj |τ2
j ),(2.4)

p(τ2
j |···) ∝

∏
{i:Sij=1}

f(yi|θ∗j ,xi, wi, ui)p(τ2
j |C0),(2.5)

p(C0|···) ∝
G∏
j=1

p(τ2
j |C0)p(C0),(2.6)

p(νj |···) ∝
∏

{i:Sij=1}

f(ui|νj)p(νj).(2.7)

Additional details about the derivations of the full conditionals are available in Appendix
A.1.

In furtherance of making Bayesian analysis feasible for parameter estimation in the
SMSN-FMRM class of models, random samples from the posterior distributions of (ϑ,η,w,u,s)
given (y,x) are drawn through Monte Chain Monte Carlo simulation methods. Algorithm 1
describes the sampling scheme from the full conditionals distributions of the parameters and
the latent unobserved variables.

Algorithm 1. MCMC for finite mixture of scale mixtures of skew-normal.

1. Set k = 1 and get starting values for S(0), (θ∗(0)1 , ...,θ
∗(0)
G ), η(0), w(0) and u(0);

2. Parameter simulation conditional on the classification S(k−1):

2.1. Sample η(k) from p(η|s(k−1));

2.2. Sample the component latent variables w(k)
i and u(k)

i , i = 1, ..., n, from the full
conditionals (2.2)–(2.3) and the component parameters β

(k)
j , ψ

(k)
j , τ2(k)

j , ν
(k)
j ,

j = 1, ..., G, from the full conditionals (2.4)–(2.7).

3. Sample S(k)
i independently for each i = 1, ..., n from

Pr(Sil = 1|yi,xi,ϑ∗) =
g(yi|xi,θ∗l ) Pr(Sil = 1|ϑ∗)∑G
j=1 g(yi|xi,θ

∗
j ) Pr(Sij = 1|ϑ∗)

.

4. Set k = k + 1 and repeat the steps 2, 3 and 4 until convergence is achieved.
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Introduced by [30] into the mixture models background, the term label switching refers
to the invariance of the mixture likelihood function under relabeling the components. Consid-
ering the maximum likelihood estimation, where we are looking for the corresponding modes
of the likelihood function, label switching is not an object of interest. From the Bayesian point
of view, however, it is a topic of concern because the labeling of the unobserved categories
changes during the sample process of the mixture posterior distribution. Post-processed the
MCMC, in order to deal with the label switching problem, the Kullback–Leibler algorithm
[34] is applied over this paper.

3. SIMULATION STUDY

In this section, a simulated scenario is considered for three purposes:

(i) verifying if the true parameter values are recovered accurately by using the
methodology described on Section 2;

(ii) comparing the estimation performance of the unconstrained and constrained
models;

(iii) formulating a sensitivity analysis study to the hyperparameters specification.

To that end, datasets are artificially generated as follow:{
Yi = xiβ1 + ε1, Si1 = 1,
Yi = xiβ2 + ε2, Si2 = 1,

where Sij is a component indicator of Yi with Pr(Sij = 1) = ηj , j = 1, 2, xi = (1, xi1), i =
1, ..., n. Finally, ε1 and ε2 follow a distribution in the SMSN family. According to this
procedure, 100 random samples of size n = 500 are generated from the SN-FMRM, ST-FMRM
and SSL-FMRM models with the following parameter values: β1 = (β01, β11)T = (20, 0)T ,
β2 = (β02, β12)T = (−4, 3)T , σ2

1 = 1, σ2
2 = 4, λ1 = 0, λ2 = 5, η1 = 0.4, η2 = 0.6. In addition,

for the ST-FMRM and SSL-FMRM models, ν = (ν1, ν2) = (8, 3) and ν = (6, 2), respectively.

During the estimation process for the SMSN-FMRM models, the unconstrained version
proposed in this paper and the constrained version of [42] were considered and it was adopted
the four different hyperparameters specifications described in Table 1 for both. For each
sample, 20000 iterations from Algorithm 1 were conducted. The first 10000 were discarded
as a burn-in period. In order to reduce the autocorrelation within the successive values of
the simulated chain, it was required a thin equals to 10. Finally, based on 1000 records, the
posterior mean were obtained.

Table 1: Prior sets hyperparameters specifications.

Specification e0 b0 B0 c0 h0 H0 d α γ

P1 4 (0,0,0) Diag(100,100,100) 0.01 0.01 0.01 4/(1 +
√

2) 6 1

P2 4 (0,0,0) Diag(10,10,10) 0.01 0.01 0.01 4/(1 +
√

2) 6 1

P3 4 (0,0,0) Diag(100,100,100) 2.5 0.75 0.75
0.5s2

y
4/(1 +

√
2) 6 1

P4 4 (0,0,0) Diag(100,100,100) 0.01 0.01 0.01 9/(1 +
√

2) 4 1
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Table 2: MSE and coverage percentage in parenthesis for the MCMC
estimates based on the 100 samples from the SMSN-FMRM.

Parameters
SN-FMRM ST-FMRM SSL-FMRM

τ2
1 6=τ2

2 τ2
1 =τ2

2 τ2
1 6=τ2

2 , ν1 6=ν2 τ2
1=τ2

2 , ν1=ν2 τ2
1 6=τ2

2 , ν1 6=ν2 τ2
1=τ2

2 , ν1=ν2

β0,1

P1 0.0143(1.00) 0.0148(0.99) 0.0221(0.99) 0.0271(0.96) 0.0234(1.00) 0.0458(0.97)
P2 0.0222(0.98) 0.0225(0.97) 0.0311(0.98) 0.0293(1.00) 0.0426(0.98) 0.0497(0.97)
P3 0.0253(1.00) 0.0272(0.98) 0.0286(0.99) 0.0364(0.94) 0.0312(0.99) 0.0434(0.97)
P4 — — 0.0228(0.99) 0.0284(0.98) 0.0378(0.99) 0.0499(0.97)

β1,1

P1 0.0000(0.97) 0.0001(0.98) 0.0001(0.96) 0.0001(0.96) 0.0001(0.93) 0.0001(0.94)
P2 0.0001(0.95) 0.0001(0.93) 0.0002(0.95) 0.0002(0.92) 0.0002(0.95) 0.0002(0.92)
P3 0.0001(0.94) 0.0001(0.89) 0.0002(0.95) 0.0002(0.95) 0.0001(0.97) 0.0001(0.94)
P4 — — 0.0001(0.99) 0.0001(0.94) 0.0002(0.91) 0.0002(0.92)

β0,2

P1 0.0142(0.94) 0.0170(0.97) 0.0454(0.84) 0.0545(0.84) 0.1869(0.91) 0.1932(0.84)
P2 0.0156(0.94) 0.0204(0.99) 0.0351(0.94) 0.0697(0.83) 0.1461(0.91) 0.2866(0.65)
P3 0.0157(0.93) 0.0163(0.96) 0.0369(0.91) 0.0477(0.90) 0.1502(0.91) 0.1502(0.90)
P4 — — 0.0316(0.90) 0.0429(0.88) 0.1708(0.96) 0.1170(0.95)

β1,2

P1 0.0000(0.94) 0.0001(0.96) 0.0001(0.97) 0.0001(0.99) 0.0001(0.90) 0.0001(0.92)
P2 0.0000(0.96) 0.0001(0.95) 0.0001(0.97) 0.0001(0.99) 0.0001(0.99) 0.0001(0.99)
P3 0.0000(0.95) 0.0000(0.98) 0.0001(0.97) 0.0001(0.96) 0.0001(0.98) 0.0001(0.99)
P4 — — 0.0001(0.90) 0.0001(0.98) 0.0001(0.95) 0.0001(0.96)

σ2
1

P1 0.0956(0.95) 0.9566(0.34) 0.0523(0.99) 0.0756(0.98) 0.0943(0.99) 0.4890(0.77)
P2 0.1233(0.37) 0.0823(0.89) 0.2337(0.17) 0.0335(0.98) 0.1374(0.42) 0.0612(0.96)
P3 0.1385(0.90) 0.8905(0.29) 0.0600(0.99) 0.1026(0.95) 0.1015(0.98) 0.4174(0.84)
P4 — — 0.0593(0.98) 0.1311(0.95) 0.0348(1.00) 0.2948(0.89)

σ2
2

P1 0.1760(0.91) 0.5010(0.62) 1.3980(0.84) 0.7495(0.86) 2.5937(0.84) 1.5439(0.85)
P2 0.2358(0.82) 1.9505(0.09) 0.7075(0.90) 0.5111(0.94) 2.3527(0.72) 1.8668(0.74)
P3 0.2076(0.89) 0.5872(0.55) 0.9655(0.87) 0.7671(0.85) 2.3347(0.80) 1.3687(0.88)
P4 — — 0.9523(0.91) 0.7049(0.88) 1.4102(0.92) 0.9150(0.88)

λ1

P1 0.0648(1.00) 2.4698(0.54) 0.0622(1.00) 0.6500(0.85) 0.1128(1.00) 1.7950(0.62)
P2 0.0122(1.00) 0.0820(1.00) 0.0128(1.00) 0.0589(1.00) 0.0142(1.00) 0.0965(1.00)
P3 0.1465(1.00) 2.3544(0.48) 0.0781(0.99) 0.6287(0.89) 0.1241(1.00) 1.2843(0.78)
P4 — — 0.0620(1.00) 0.7134(0.83) 0.0547(1.00) 1.3541(0.72)

λ2

P1 1.6120(0.96) 6.1614(0.00) 3.1617(0.98) 6.3709(0.00) 2.3855(0.94) 4.1220(0.04)
P2 1.8628(0.52) 14.1231(0.00) 0.7802(0.92) 10.7803(0.00) 0.5909(0.94) 8.9064(0.00)
P3 1.0375(0.86) 6.6829(0.00) 0.9961(0.96) 6.6883(0.01) 0.7847(0.97) 4.6046(0.02)
P4 — — 3.2051(0.96) 6.4518(0.00) 1.8351(1.00) 4.7205(0.01)

η1

P1 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P2 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P3 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P4 — — 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)

η2

P1 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P2 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P3 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P4 — — 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)

ν1

P1

— —

3.6146(0.97) 19.8156(0.14) 1.3108(1.00) 7.2708(0.73)
P2 11.0161(1.00) 14.5225(0.25) 1.9544(1.00) 3.2971(0.89)
P3 5.1347(0.96) 20.0174(0.12) 1.7550(1.00) 8.0294(0.66)
P4 5.9129(0.97) 19.0113(0.16) 4.9511(0.97) 10.5920(0.46)

ν2

P1

— —

1.0621(1.00) 0.9324(0.92) 3.3490(0.86) 4.7921(0.65)
P2 1.7930(0.95) 3.4168(0.63) 4.4666(0.69) 14.4817(0.18)
P3 1.0371(0.99) 1.3937(0.92) 3.0896(0.79) 3.7640(0.67)
P4 1.9016(0.95) 2.2195(0.91) 1.0183(0.96) 1.7100(0.84)
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Table 2 shows the mean squared error (MSE) and coverage percentage for the MCMC
estimates based on the 100 samples, in which the coverage percentage is the proportion of
the time that the credibility interval contains the true value of interest. The first impor-
tant fact that is possible to observe from the table is that with high probability the true
parameter values are recovered, particularly if the unconstrained methodology is considered.
Comparing the unconstrained methodology proposed in this work with the restricted version,
there is a significant improvement on the MSE and coverage percentage, specially for the
scale, symmetry and kurtosis parameters. Taking λ2, for example, the coverage percentage is
zero or almost zero in all cases and the MSE is more than ten times greater in specific cases.

Taking the hyperparameters specification P1 as a baseline, a sensitivity analysis study is
built. The specification P2 consists in reducing the values of B0, and almost no impact on the
results of β1 and β2 is observed, however, looking to the unconstrained model, a significant
decrease in the coverage percentage for the scale and symmetry parameters is noticed. The
specification P3 follows [31], the results are similar compared with the P1 ones, but there is
a gain on the MSE for λ2 in the heavy tailed distributions and unconstrained model. Lastly,
a degradation on the MSE for ν is noted when the changes made in P4 for d, α and γ are
assumed.

4. EMPIRICAL ANALYSIS

In order to explore the interval memory hypothesis and the partial matching hypothesis,
[9] designed an experiment in which a pure fundamental tone with electronically generated
overtones added was played to a trained musician. The overtones were determined by a
stretching ratio, corresponding to the harmonic pattern usually heard in traditional definite
pitched instruments. The musician was asked to tune an adjustable tone to the octave above
the fundamental tone and 150 trials were recorded as the ratio of the adjusted tone to the
fundamental.

This dataset has been analysed in many articles which explored the mixture of linear
regression framework [13, 38, 24]. More recently, [41] fitted a robust mixture regression
model using the t-distribution and [42], a robust mixture regression based on the SMSN
class of distributions. Conducive to make comparisons with the results in [42] possible, the
methods proposed in this paper are applied to the tone perception data.
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Figure 1: Tone perception data scatterplot and histogram.
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Considering the estimation process for the SN-FMRM, ST-FMRM and SSL-FMRM,
the hyperparameters specification P3 presented in Table 1 was chosen. From the MCMC
scheme described in Section 2.2, 20000 iterations were drawn. The first 10000 draws were
discarded as a burn-in period. In order to reduce the autocorrelation between successive
values of the simulated chain, only every 10th values of the chain were stored and from the
resulting 1000 we calculated the posterior estimates. It is worth mentioning that, because of
the two well defined components, the label switching problem was not identified.

Table 3: Estimation results for fitting the SMSN-FMRM under analysis to the tone data.
First row: maximum a posteriori. Second row: 95% high posterior density credi-
bility interval. Third row: convergence test Z-scores.

Parameters N-FMRM T-FMRM SL-FMRM SN-FMRM ST-FMRM SSL-FMRM

β0,1

1.9107 1.9325 1.9167 1.9044 1.9291 1.9147
(1.8586,1.9569) (1.8832,1.9771) (1.8703,1.9689) (1.8532,1.9664) (1.8757,1.9846) (1.8679,1.9703)

−1.2777 0.0250 −0.0878 −0.7281 0.2527 −0.2157

β1,1

0.0457 0.0387 0.0425 0.0447 0.0365 0.0431
(0.0243,0.0688) (0.0175,0.0595) (0.0196,0.0649) (0.0205,0.0672) (0.0151,0.0618) (0.0202,0.0641)

1.0459 −0.2666 −0.2561 0.4088 −0.2404 1.1750

β0,2

−0.0188 0.0153 0.0477 0.0208 0.0136 0.0194
(−0.2054,0.2059) (−0.0186,0.0704) (−0.0317,0.1359) (−0.2457,0.2495) (−0.0358,0.0849) (−0.1075,0.1276)

−0.7409 1.2719 −0.6623 −0.1860 −0.9211 −1.1195

β1,2

0.9893 0.9928 0.9745 0.9796 0.9869 0.9729
(0.9070,1.0802) (0.9669,1.0079) (0.9304,1.0061) (0.8899,1.0971) (0.9615,1.0141) (0.9228,1.0212)

0.3946 −1.5883 1.0861 0.3949 0.0831 1.7043

σ2
1

0.0027 0.0020 0.0019 0.0028 0.0021 0.0022
(0.0019,0.0036) (0.0012,0.0029) (0.0014,0.0029) (0.0019,0.0042) (0.0013,0.0035) (0.0015,0.0034)

−0.4449 1.7121 −1.5685 0.6334 0.4865 1.8521

σ2
2

0.0173 0.0005 0.0011 0.0269 0.0009 0.0032
(0.0105,0.02676) (0.0002,0.0010) (0.0004,0.0026) (0.0127,0.0621) (0.0003,0.0024) (0.0008,0.0141)

0.1553 1.5999 −0.9927 1.1119 0.2782 −0.2783

λ1

0.0800 −0.0972 0.0186
— — — (−0.7634,0.7341) (−0.8113,0.5411) (−0.7843,0.5725)

−0.3516 −1.6838 0.1532

λ2

1.0045 −0.3676 −1.2264
— — — (−1.7427,2.7095) (−1.3333,0.0821) (−2.6623,0.3076)

−0.7809 −1.3453 0.4094

η1

0.6908 0.5606 0.5805 0.7045 0.5691 0.6296
(0.6030,0.7733) (0.4700,0.6516) (0.4820,0.6876) (0.6103,0.7901) (0.4538,0.6564) (0.5223,0.7383)

−0.2578 1.6709 1.7261 0.3072 0.4209 −0.6418

η2

0.3091 0.4393 0.4194 0.2954 0.4308 0.3703
(0.2266,0.3969) (0.3483,0.5299) (0.3123,0.5179) (0.2098,0.3896) (0.3435,0.5461) (0.2616,0.4776)

0.2578 −1.6709 −1.7261 −0.3072 −0.4209 0.6418

ν1

3.0280 5.8212 5.5252 6.2337
— (2.0015,24.7743) (2.1481,11.7897) — (2.0678,21.7135) (3.1571,11.5048)

0.7383 −1.0693 1.5870 1.4383

ν2

2.1162 1.4630 2.1281 1.5494
— (2.0001,2.6451) (1.4000,1.7509) — (2.0000,2.6977) (1.4000,3.0780)

0.8492 0.9953 −1.8332 −0.3276

WAIC1 −263.9868 −349.6941 −301.1313 −253.9442 −329.4679 −283.6500
WAIC2 −288.2918 −372.0548 −329.3142 −290.7716 −361.6124 −330.5183

Table 3 contains the maximum a posteriori estimation of the parameters of the models
under analysis: SN-FMRM, ST-FMRM and SSL-FMRM in addition to their corresponding
95% high posterior density credibility interval and the Z-scores for the convergence test intro-



110 M.G. Lavagnole Nascimento and C.A. Abanto-Valle

duced by [20]. Additionally, in order to compare the fit of the different models, two versions
proposed by [19] of the Watanabe–Akaike Information Criterion [40, WAIC] were computed,
indicating that the T-FMRM has the best fitting, conclusion that goes in opposition to
the ST-FMRM model observed by [42]. More details about these criteria are available in
Appendix A.2. Figure 2 illustrates the scatterplots of the dataset with the six fitted models
and the equivalent 95% high posterior density credibility intervals.
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Figure 2: Tone perception data scatterplot and the fitted SMSN-FMRM models.

In comparison with [42], the coefficients β estimates are quite similar. However, for the
parameters λ and ν, in line with the results observed on the previous section, the estimates
diverge. [42] outcomes point to the presence of asymmetry for at least of one the components
when the SN-FMRM, ST-FMRM and SSL-FMRM are considered. Nevertheless, as Figure 3
illustrates, when the flexible version proposed in this paper is applied, it is possible to verify
that the introduction of a skewness parameter is not effective considering the dataset under
analysis.
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Figure 3: Skewness parameters posterior samples.

5. CONCLUSION

In this work a flexible Bayesian methodology is developed for the mixture regression
models based on scale mixtures of skew-normal distributions proposed by [42] with the aim of
understanding the possible effects caused by the restrictions commonly imposed in the context
of robust mixture regression modeling. The tone perception data and an artificial dataset
are analysed in order to verify the advantages that the additional flexibility introduced by
the methodology developed in this article has. In fact, this paper presents divergent results
in comparison with [42] and the empirical analysis illustrates the possible effects of imposing
constraints for this class of models.

Extensions of the contributions made in this article are possible. First, the number
of components might be consider as an unknown quantity of interest, estimating it in a full
Bayesian framework. Also the proposed methods may be extended to multivariate settings,
such as the recent proposals of [18] for mixtures of multivariate Student-t distributions and to
models capable to deal with longitudinal data as discussed in [37]. Contemplating extensions
able to deal with nonlinear effects of the covariates [7, 8, 5] is also a stimulating topic for
further research.
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A. APPENDIX

A.1. Mixture regression based on scale mixtures of skew-normal full conditional
distributions

Considering the SN-FMRM model and assuming Fn×(p+1) = (x w), for each j = 1, ..., G,
construct a matrix Fj ∈ RNj×(p+1), Nj =

∑n
i=1 Sij . Similarly, construct an observation ma-

trix yj ∈ RNj×1. Hence, by the Bayes theorem, the full conditionals are:

• η|s ∼ D(e0 +N1, ..., e0 +NG);

• (βj , ψj)|s,y,w, τ2
k ∼ Np+1(bj ,Bj),

Bj =
(

1
τ2
j
B−1

0 + 1
τ2
j
(FjTFj)

)−1

,

bj = Bj

(
1
τ2
j
B−1

0 b0 + 1
τ2
j
(FjT (yk − µk))

)
;

• τ2
j |s,y,w, C0,βj , ψj ∼ IG(cj , Cj),

cj = c0 + Nj

2 + 1
2 ,

Cj = C0 +
(yj−Fjβ

∗
j−µj)

T (yj−Fjβ
∗
j−µj)+(β∗

j−b0)T B−1
0 (β∗

j−b0)

2 ;

• C0|τ2
1 , ..., τ

2
G ∼ G(h,H),

h = h0 +Gc0,

H = H0 +
∑G

j=1
1
τ2
j
;

where β∗
j = (βj ψj)T . Considering now the latent variable W:

• Wi|Sij = 1, yi,βj , ψj , τ2
j ∼ TN[0,+∞)(a,A),

a =
(yi−xiβj−µj)ψj

τ2
j +ψ2

j
,

A =
τ2
j

τ2
j +ψ2

j
.

For the ST-FMRM and the SSL-FMRM models the full conditionals are almost the
same, the difference is that F is replaced by Fwn×(p+1) = (

√
ux

√
uw) and y, by yw =

√
uy,

where
√

u is the square root element by element. Considering now the latent variable W:

• Wi|Sij = 1, yi, ui,βj , ψj , τ2
j ∼ TN[0,+∞)(a,A/ui).

Lastly, for the latent variable U and the parameters ν:

• Skew-t:

Ui|Sij = 1, yi, wi, νj ,βj , ψj , τ2
j ∼ G

(
νj

2 + 1, νj

2 +
(yi−µj−xiβj−ψjwi)

2

2τ2
j

+ w2
i

2

)
;

• Skew-slash:

Ui|Sij = 1, yi, wi, νj ,βj , ψj , τ2
j ∼ G(0,1)

(
νj + 1,

(yi−µj−xiβj−ψjwi)
2

2τ2
j

+ w2
i

2

)
,

νj |s,u ∼ G(2,40)(α+Nj , γ −
∑

i:Sij=1 ui).
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For the degrees of freedom in skew-t is not possible to find a closed form to the full condi-
tionals, so a Metropolis–Hastings step is required. To sample νj , j = 1, ..., G a normal log
random walk proposal was used

log(νnewj − 2) ∼ N(log(νj − 2), cνj )(A.1)

with adaptive width parameter cνj [32]. The proposal was shifted away from 0, as it is
advisable to avoid values for νj that are close to 0, see [15].

A.2. Watanabe–Akaike information criterion

Define the predictive accuracy of the fitted model to data as

p(y) =
n∑
i=1

log
∫
f(yi|θ)p(θ|y)dθ.

To compute this predictive density, it is possible to evaluate the expectation using draws from
the usual posterior simulations:

p(y) =
n∑
i=1

log

(
1
T

T∑
t=1

f(yi|θ(t))

)
.

Introduced by [40], the Watanabe–Akaike information criterion (WAIC) consists on the
posterior predictive density in addition to a correction for effective number of parameters to
adjust for overfitting. [19] describes two adjustments. The first one is a difference:

WAIC∗
1 = 2

n∑
i=1

(
log
(
E(θ|y)f(yi|θ)

)
− E(θ|y) (log(f(yi|θ))

)
,

which can be computed from simulations by replacing the expectations by averages over the
posterior draws, it means,

WAIC∗
1 = 2

n∑
i=1

(
log

(
1
T

T∑
t=1

f(yi|θ(t))

)
− 1
T

T∑
t=1

log f(yi|θ(t))

)
.

The second is based on the variance of individual terms in the log predictive density summed
over the n data observations:

WAIC∗
2 =

n∑
i=1

var(θ|y) (log f(yi|θ)) .

In practice, the posterior variance of the log predictive density for each data point yi, that is,
V T
t=1 log f(yi|θ(t)), where V T

t=1 is the sample variance, V T
t=1a(t) = 1

T−1

∑T
t=1(a(t) − ā)2. Sum-

ming over all the data observations, the effective number of parameters is:

WAIC∗
2 =

n∑
i=1

V T
t=1

(
log f(yi|θ(t))

)
.

Finally, either WAIC∗
1 or WAIC∗

2 are applied as a bias correction:

WAICq = −2(p(y)−WAIC∗
q ).(A.2)
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1. INTRODUCTION

The coefficient of variation (CV) chart is commonly used in SPC for processes which
require the reproducibility of measuring tools or methods [3, 20]. Operators usually demand
a lower CV profile for better equipment and/or method precision while maintaining the accu-
racy of the process with an in-control state [8, 17]. Examples of the use of CV are laboratory
assay techniques in medicine and biology [19, 36], monitoring the associated stand-alone
risk in actuarial finance [24], factory processes in mechanical industries [4], to name a few.

Kang et al. [9] proposed the first Shewhart-type univariate CV chart. Since then, the
univariate CV charts continue to receive attention among researchers (see [4] and [28], to name
a few) but not the multivariate CV (MCV) chart. Yeong et al. [32] was the first to propose
a control chart for the MCV. More recent studies on MCV charts include studies by Giner-
Bosch et al. [6] on the EWMA MCV chart and Nguyen et al. [16] on one-sided synthetic
MCV charts. Some crucial applications of MCV in laboratories and industries are in the
correlation of phenotypic variation [25], affymetrix gene expression [7], comparison of serum
protein electrophoresis techniques [35], multivariate gage repeatability and reproducibility
studies [18, 27], and several others.

The advancement in hardware technologies enabled more automation techniques to
be easily applied in various aspects of living. Newly developed equipment and methods can
produce large pool of useful data and results with high efficiency. The generalization of CV to
the multivariate setting is required to accommodate the part-to-part variability measurements
and the correlations of higher dimensional variables. However, the definition of MCV is not
as straight forward as that of the univariate CV, i.e. lacking in the generality. Currently,
the available definitions of MCV were those by Reyment [21], Van Valen [29], Voinov and
Nikulin [30], and Albert and Zhang [2]. Similar to existing MCV type control charts (see for
example, Yeong et al. [32], Abbasi and Adegoke [1], Khaw et al. [11] and Khatun et al. [10]),
this work adopts the Voinov and Nikulin’s [30] definition of MCV.

A pure statistical design of a control chart may not be cost effective in industrial
practices. An optimal economic design of a control chart will enhance the competency of
the chart from the cost perspective [26]. The idea of an economic model was first presented
by Duncan [5], and later improved by Lorenzen and Vance [13]. Saniga [23] expanded the
model by incorporating statistical constraints into the cost function, resulting in an economic-
statistical model. The unified cost model by Lorenzen and Vance [13] is widely accepted and
used in many types of control charts. Some published works which are closely related to this
study include Linderman and Love [12] and Molnau et al. [14] on economic and economic-
statistical designs of multivariate EWMA control chart.

Despite being over three decades old, the Lorenzen and Vance’s [13] model is one of
the most inclusive cost models in the literature, where it considers all possible sources of
cost assumptions, phases of a process and evaluations of expenses. As the Lorenzen and
Vance’s [13] model is easy to be implemented, it continues to be adopted by researchers until
now. Some of the recent works that adopted the Lorenzen and Vance’s [13] model are Safe
et al. [22] and Wan and Zhu [31] who used the model on variable sampling interval type
control charts; and Ng et al. [15] who employed the model on auxiliary information based X̄,
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synthetic and EWMA charts. Note that the numerical example presented in Lorenzen and
Vance [13] and adopted by the above-mentioned researchers, to name a few, is based on a
real casting operation process from the General Motors Company.

This study proposes the economic and economic-statistical designs of MCV chart as
they are currently not available in the literature. In each of the designs, optimal parameters
will be computed to minimize the cost. A comparison between purely economic design and
economic-statistical design will also be presented.

This paper is organized in the following order: The properties of MCV and the MCV
chart will be explained in Section 2. Following that is a brief review on Lorenzen and Vance
[13] cost model in Section 3. Subsequently, a set of numerical examples along with compar-
isons of different parameter settings and designs are given in Section 4. A sum up of the
paper with some general remarks and findings are given in Section 5.

2. PROPERTIES OF MCV AND MCV CHART

Section 2.1 discusses the cumulative distribution function (cdf) and inverse cdf of the
sample MCV derived by Yeong et al. [32] while the MCV chart is discussed in Section 2.2.

2.1. Distribution of the sample MCV

Suppose that a random vector, Xi, in a sample of size n with mean vector, µ and
covariance matrix, Σ follows a p-variate normal distribution, i.e. Xi ∼ Np(µ,Σ), where XT

i =
(Xi1, Xi2, ..., Xip), for 1 ≤ i ≤ n. A general definition of the population MCV by Voinov and
Nikulin [30] is

(2.1) γ =
(
µTΣ−1µ

)− 1
2 .

Yeong et al. [32] derived an estimator of the process MCV, γ̂ based on Equation (2.1),
where µ and Σ are estimated using the sample mean vector, X̄ and the sample covariance
matrix, S, respectively. Here,

(2.2) X̄T =

(
1
n

n∑
i=1

Xi1,
1
n

n∑
i=1

Xi2, ...,
1
n

n∑
i=1

Xip

)
,

and

(2.3) S =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)T.

Then, γ̂ takes the form

(2.4) γ̂ = (X̄TS−1X̄)−
1
2 .
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The cdf of γ̂ was derived by Yeong et al. [32] to be

(2.5) Fγ̂(x|n, p, δ) = 1− FF

(
n(n− p)

(n− 1)px2
|p, n− p, δ

)
,

where FF (·|p, n− p, δ) is the non-central F distribution with p and n− p degrees of freedom
and non-centrality parameter δ = nµTΣ−1µ (which can be written as δ =

n

γ2
). Yeong et al.

[32] also derived the inverse cdf of γ̂ (or the α quantile of Fγ̂) as follows:

(2.6) F−1
γ̂ (α|n, p, δ) =

√√√√n(n− p)
(n− 1)p

[
1

F−1
F (1− α|p, n− p, δ)

]
.

Note that F−1
F (·|p, n− p, δ) is the inverse cdf of the non-central F distribution with p and

n− p degrees of freedom and non-centrality parameter δ.

2.2. MCV chart

The MCV chart is a Shewhart type chart where the statistic plotted on the chart is
the sample MCV, γ̂. To justify the use of the MCV chart, a check for the constant MCV
assumption needs to be conducted. This check is conducted by plotting the rational group
MCV, γ̂2

t versus X̄T
t X̄t, followed by a formal test of the regression slope [32].

Yeong et al. [32] suggested estimating the in-control sample MCV, γ̂0 using the root
mean square method as this method has high statistical efficiency and the estimate can be
easily computed. Consequently, γ̂0 is computed as

(2.7) γ̂0 =

√√√√ 1
m

m∑
t=1

γ̂2
t ,

where m is the number of Phase-I sample MCVs. As the distribution of γ̂ is not symmetric,
the use of two-sided limits will result in an average run length (ARL) biased chart. Therefore,
Yeong et al. [32] suggested adopting two separate one-sided (an upward and a downward)
charts to overcome this drawback. Using two separate one-sided charts allow the upper and
lower limits of the respective charts to be determined independently based on the desired
in-control ARL value.

For the downward MCV chart in detecting decreasing shifts in the process MCV, its
lower control limit (LCL) is computed as

(2.8) LCL = F−1
γ̂ (α|n, p, δ0),

where α is the Type-I error probability and δ0 =
n

γ2
0

with γ0 representing the in-control process

MCV. The statistical performance of MCV chart can be measured using the ARL criterion.
The corresponding value of the in-control average run length (ARL0) computed using the
LCL in Equation (2.8) is

(2.9) ARL0 =
1
α

.
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In like manner, for the upward MCV chart in detecting increasing shifts in the process
MCV, its upper control limit (UCL) is obtained as

(2.10) UCL = F−1
γ̂ (1− α|n, p, δ0)

which gives the ARL0 value in Equation (2.9). The process MCV is considered as out-of-
control when γ̂ < LCL (for the downward chart) or γ̂ > UCL (for the upward chart).

The out-of-control process MCV is represented by γ1 = τγ0. Here, τ is the shift size in
the process MCV, where τ < 1 (γ1 < γ0) indicates process improvement, while τ > 1 (γ1 > γ0)
implies process deterioration. The probability of detecting a shift by the downward and
upward MCV charts are

P = Pr(γ̂ < LCL) = Fγ̂(LCL|n, p, δ1)(2.11)

and

P = Pr(γ̂ > UCL) = 1− Fγ̂(UCL|n, p, δ1),(2.12)

respectively, where δ1 =
n

γ2
1

. The out-of-control average run length (ARL1) is computed as

(2.13) ARL1 =
1
P

.

3. LORENZEN AND VANCE COST MODEL

The unified cost model proposed by Lorenzen and Vance [13] is adopted for the economic
and economic-statistical designs of the MCV chart. The functional form of this model only
requires the computation of ARL, sample size and control limit of the chart at hand. Thus,
Lorenzen and Vance [13] cost model can be used on any type of control chart, regardless of
the quality characteristics. Table 1 provides the list of notations for this cost model.

The total cost per hour as defined by this model includes the costs during the in-control
and out-of-control states, cost of false alarms, cost of repair and cost of sampling. In Lorenzen
and Vance [13] cost model, the assignable cause is assumed to occur randomly once in every
λ hours. Another assumption is that the shift in the process MCV is due to only a single
assignable cause. Lorenzen and Vance [13] cost function is defined as

(3.1) C =

C0

λ
+ C1B +

b + cn

h

(
1
λ

+ B

)
+

sY

ARL0
+ W

1
λ

+
(1− ϕ1)sT0

ARL0
+ EH

,

where

B = (ARL1 − 0.5)h + F,

F = ne + ϕ1T1 + ϕ2T2,

EH = (ARL1 − 0.5)h + G,

G = ne + T1 + T2,

and
s =

1
λh

− 1
2
.
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Table 1: List of notations for Lorenzen and Vance (1986) cost model.

b Fixed cost per sample

c Variable cost per unit sampled

C Cost per hour

C0 Quality cost per hour while in-control

C1 Quality cost per hour while out-of-control

e Time to sample and interpret one unit

h Sampling interval

n Sample size

s Expected number of samples taken while in-control

T0 Expected search time during false alarm

T1 Expected time to find the assignable cause

T2 Expected time to repair the process

W Cost to locate and remove the assignable cause

Y Cost of false alarms

ϕ1 = 1 if process continues during search
= 0 if process stops during search

ϕ2 = 1 if process continues during repair
= 0 if process stops during repair

λ Rate of occurrence of assignable cause

The objective of the economic design of the MCV chart is to obtain the optimal pa-
rameters n, h and α in minimizing the cost function, C in Equation (3.1), for specified values
of p, τ and γ0. Note that the parameters p, τ and γ0 are not included in the optimization
procedure because they are intrinsic properties of the process.

With the same objective, the economic-statistical design adds additional constraints on
ARL0 and ARL1 while minimizing the cost function, C in Equation (3.1). Here, ARL0 must
be greater than a lower bound value while ARL1 must be less than an upper bound value.
The aim of these constraints is to ensure that the MCV chart gives acceptably high ARL0

value when the process is in-control and low ARL1 value when the process is out-of-control.
In this research, the constraints ARL0 ≥ 250 and ARL1 ≤ 20, i.e. similar to those used by
Yeong et al. [34] are adopted.

The optimal sampling interval, h can be computed as follows [33]:

(3.2) h =
−r2 +

√
r2
2 − 4r1r3

2r1
,

where

r1 =
ARL1 − 0.5

2λARL0

{
λ
(
Y + C1T0(−1 + ϕ1)

)
− 2 ARL0

[
C0 + λ

(
(ARL1 − 0.5)b + (ARL1 − 0.5)cn + W

)
+ C1(−1 + Fλ−Gλ)

]}
,

r2 = −
2(ARL1 − 0.5)

[
Y + C1T0(−1 + ϕ1) + ARL0(b + cn)(1 + Fλ)

]
λARL0

,
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and

r3 = − 1
2λ2ARL0

{
2Y + 2C0T0(−1 + ϕ1)− bT0λ− 2(ARL1 − 0.5)bT0λ− 2C1FT0λ

− cnT0λ− 2(ARL1 − 0.5)cnT0λ− 2T0Wλ + 2GY λ + bT0ϕ1λ

+ 2(ARL1 − 0.5)bT0ϕ1λ + 2C1FT0ϕ1λ + cnT0ϕ1λ

+ 2(ARL1 − 0.5)cnT0ϕ1λ + 2T0Wϕ1λ− bFT0λ
2 − cFnT0λ

2

+ bFT0ϕ1λ
2 + cFnT0ϕ1λ

2 + 2ARL0(b + cn)(1 + Fλ)(1 + Gλ)
}

.

From Equations (3.1) and (3.2), it is clear that both ARL0 and ARL1 need to be
computed first before the computation of C and h can be made. The formulae for computing
ARL0 and ARL1 are dependent on n, α, p, τ and γ0. As the exact values of p, τ , γ0 and the
desired values of the thirteen input parameters in Table 2, i.e. λ, C0, C1, Y , W , b, c, e, T0,
T1, T2, ϕ1 and ϕ2 are specified, the parameters that control the cost minimization iteration
in this case are n and α. The desired values of these thirteen input parameters are adopted
from Lorenzen and Vance [13], where they are taken as the control case (Case 1) in Table 2.

Table 2: Input parameters for the cost function, C and the variations of each input parameters,
labelled with case numbering.

Case Changes λ C0 C1 Y W b c e T0 T1 T2 ϕ1 ϕ2

1 Control 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0

2 λ2 0.01 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0
3 λ3 0.04 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0

4 C02 0.02 57.12 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0
5 C03 0.02 228.48 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0

6 C12 0.02 114.24 474.6 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0
7 C13 0.02 114.24 1898.4 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0

8 Y 2 0.02 114.24 949.2 488.7 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0
9 Y 3 0.02 114.24 949.2 1954.8 977.4 0 4.22 0.083 0.083 0.083 0.75 1 0

10 W2 0.02 114.24 949.2 977.4 488.7 0 4.22 0.083 0.083 0.083 0.75 1 0
11 W3 0.02 114.24 949.2 977.4 1954.8 0 4.22 0.083 0.083 0.083 0.75 1 0

12 b2 0.02 114.24 949.2 977.4 977.4 5 4.22 0.083 0.083 0.083 0.75 1 0
13 b3 0.02 114.24 949.2 977.4 977.4 10 4.22 0.083 0.083 0.083 0.75 1 0

14 c2 0.02 114.24 949.2 977.4 977.4 0 2.11 0.083 0.083 0.083 0.75 1 0
15 c3 0.02 114.24 949.2 977.4 977.4 0 8.44 0.083 0.083 0.083 0.75 1 0

16 e2 0.02 114.24 949.2 977.4 977.4 0 4.22 0.042 0.083 0.083 0.75 1 0
17 e3 0.02 114.24 949.2 977.4 977.4 0 4.22 0.166 0.083 0.083 0.75 1 0

18 T02 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.042 0.083 0.75 1 0
19 T03 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.166 0.083 0.75 1 0

20 T12 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.042 0.75 1 0
21 T13 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.166 0.75 1 0

22 T22 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.375 1 0
23 T23 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 1.5 1 0

24 ϕ1ϕ22 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 0 0
25 ϕ1ϕ23 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 0 1
26 ϕ1ϕ24 0.02 114.24 949.2 977.4 977.4 0 4.22 0.083 0.083 0.083 0.75 1 1
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The computations of the control values of these thirteen input parameters will be explained
in detail in Section 4.

In order to impose changes to each of the thirteen input parameters of the control case
(Case 1) in Table 2, each of these input parameters (except b, ϕ1 and ϕ2) is either increased
(i.e. doubled) or decreased (i.e. halved). For example, λ2 (= 0.01) (Case 2) is half of its
control value (λ = 0.02) in Case 1, while λ3 (= 0.04) (Case 3) is twice of its control value in
Case 1. The notations λ2 and λ3 are used to represent the second and third variations of the
control value of λ, as not every input parameter (such as b, ϕ1 and ϕ2) is doubled or halved.
For instance, the fixed cost per sample, b is set at $0 for the control case (Case 1), while b2
involves a raise to $5 (Case 12) and b3 to $10 (Case 13).

In this research, the sample sizes, n ∈ {2, 3, ..., 30} are considered. The upper limit of n

(= 30) is chosen because from a practical perspective, n = 30 is considered as a large sample
size. In addition, the Type-I error probabilities α ∈ {0.0010, 0.0011, ..., 0.05} are adopted
for the economic design, while α ∈ {0.0010, 0.0011, ..., 0.004} are adopted for the economic-
statistical design. Note that the Type-I error rate for the economic-statistical design is kept
at a maximum of α = 0.004, in order to correspond to the constraint ARL0 ≥ 250 specified
earlier. An optimization program is written in the MATLAB software to compute the optimal
parameters n, α and h that minimize the cost function, C in Equation (3.1), based on the
specified values of p, τ , γ0 and thirteen input parameters in Table 2.

Econ and Econ-Stat Designs of MCV Chart 11

Figure 1: A flowchart explaining the minimization of the cost function, C in
Equation (3.1), where thick arrows indicate additional steps for the economic-
statistical design model.

4. Numerical examples

The thirteen input parameters and their values given in Lorenzen and Vance
[13] for a real case problem of a casting operation process producing 84 castings
per hour will be adopted in the numerical analyses in this section. These values
are taken as the control values of the thirteen input parameters. In practice, the
control values of these input parameters can be computed from historical data
and prior knowledge of the process.

To demonstrate the computations of the control values of these thirteen
input parameters in a real case problem, the following discussions adopted from
Lorenzen and Vance [13] is provided. In this case study, the variable cost per
unit sampled (c) is $4.22 and it requires approximately 5 minutes to sample a

Figure 1: A flowchart explaining the minimization of the cost function, C in Equation (3.1),
where thick arrows indicate additional steps for the economic-statistical design model.
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The program starts with an assumingly large value of the cost per hour, C, which
will be replaced by a new value of C each time a smaller one is obtained. For the con-
trolled parameters, the first pair (n, α) = (2, 0.0010) is iteratively increased as (2, 0.0011),
(2, 0.0012), ..., (2, 0.05), (3, 0.0010), (3, 0.0011), ..., until it reaches (30, 0.05) for the economic
design. However, for the economic-statistical design, the pair (n, α) is iteratively increased as
(2, 0.0010), (2, 0.0011), ..., (2, 0.004), (3, 0.0010), (3, 0.0011), ..., (3, 0.004), ..., (30, 0.0010),
(30, 0.0011), ..., (30, 0.004). After the completion of all the iterations, the lowest cost per
hour, C (= Cmin) is recorded, together with the corresponding optimal parameters n, α and
h that produce the cost Cmin. The ARL0 and ARL1 values associated with these optimal
parameter values are also recorded. Figure 1 shows a flowchart in minimizing C. In this
flowchart, the statistical constraints imposed on the economic-statistical design of the MCV
chart are shown as additional steps with thicker arrows.

4. NUMERICAL EXAMPLES

The thirteen input parameters and their values given in Lorenzen and Vance [13] for a
real case problem of a casting operation process producing 84 castings per hour will be adopted
in the numerical analyses in this section. These values are taken as the control values of the
thirteen input parameters. In practice, the control values of these input parameters can be
computed from historical data and prior knowledge of the process.

To demonstrate the computations of the control values of these thirteen input param-
eters in a real case problem, the following discussions adopted from Lorenzen and Vance [13]
is provided. In this case study, the variable cost per unit sampled (c) is $4.22 and it requires
approximately 5 minutes to sample a single unit. The cost of each nonconforming unit pro-
duced is $100. Historical data indicate that the process produces about 1.36% nonconforming
units when it is in-control and about 11.3% nonconforming units when it is out-of-control,
and the process stays in-control for an average of 50 hours. When an out-of-control signal is
detected, a search for assignable cause is conducted. When one is found, the manufacturing
system is stopped for repair, otherwise, the system is allowed to continue running. After
repair is completed, the manufacturing system is restarted. The search for an assignable
cause requires about 5 minutes, while repair requires 45 minutes. The repair cost is $22.80
per hour and the downtime cost is $21.34 per minute.

From the above paragraph, λ = 1/50 = 0.02 is the occurrence rate of assignable cause
per hour. The time per unit sampled (e), expected search time during false alarm (T0)
and expected time to find the assignable cause (T1) are e = T0 = T1 = 5/60 = 0.083 hour;
while the expected time to repair the process is T2 = 45/60 = 0.75 hour. During the search
for the assignable cause, the process continues, thus ϕ1 = 1, whereas the process is stopped
during repair, hence, ϕ2 = 0. The quality cost per hour while the process is in-control (C0) is
computed as follows: C0 = $100 (per nonconforming unit) × 84 (castings / units per hour)
× 1.36% (nonconforming units) = $114.24. Additionally, the quality cost per hour while
the process is out-of-control (C1) is calculated as follows: C1 = $100× 84× 11.3% = $949.20.
Next, the cost of locating and removing the assignable cause (W ) is obtained as the sum of
the downtime cost and repair cost, i.e. W = 45× $21.34 + (45/60)× $22.80 = $977.40. It is
assumed that the cost of false alarms (Y ) is the same as the cost, W , hence, Y = $977.40 is
considered. Lastly, there is no fixed cost per sample, thus b = $0.
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Tables 3 and 4 provide the optimal parameters n, α and h of the MCV chart in minimiz-
ing the cost function, C in Equation (3.1), for the economic and economic-statistical designs
of the aforementioned chart. The minimum cost, Cmin and corresponding ARL0 and ARL1

values are also given in these tables. In Table 3, p = 2, γ0 = 0.1 and τ = 0.5 are considered
for the downward MCV chart while in Table 4, p = 2, γ0 = 0.1 and τ = 1.5 are used for the
upward MCV chart.

Table 3: Optimal parameters n, α and h in minimizing the cost function, C and
the corresponding minimum cost (Cmin), ARL0 and ARL1 values com-
puted for the downward MCV chart when p = 2, γ0 = 0.1 and τ = 0.5.

Case
Economic design Economic-statistical design

n α h Cmin ARL0 ARL1 n α h Cmin ARL0 ARL1

1 13 0.0294 2.9112 206.7028 34.0136 1.1744 19 0.0039 2.8236 217.3567 256.4103 1.2426

2 14 0.0255 4.1072 173.8845 39.2157 1.1479 20 0.0039 4.1215 180.1477 256.4103 1.1865
3 12 0.0345 2.1108 258.1688 28.9855 1.2028 17 0.0040 1.8151 275.8835 250.0000 1.4009

4 13 0.0294 2.8124 153.6580 34.0136 1.1744 19 0.0039 2.7275 164.9246 256.4103 1.2426
5 13 0.0295 3.1474 312.5772 33.8983 1.1736 19 0.0039 3.0500 321.9959 256.4103 1.2426

6 14 0.0267 4.7588 175.5130 37.4532 1.1396 20 0.0039 4.7535 180.7912 256.4103 1.1865
7 12 0.0329 1.8891 254.6568 30.3951 1.2150 17 0.0040 1.6308 274.8385 250.0000 1.4009

8 11 0.0500 2.6535 200.1941 20.0000 1.1805 19 0.0039 2.7912 216.7512 256.4103 1.2426
9 15 0.0158 3.0772 213.0151 63.2911 1.1876 19 0.0039 2.8873 218.5457 256.4103 1.2426

10 13 0.0294 2.8935 197.6308 34.0136 1.1744 19 0.0039 2.8064 208.3897 256.4103 1.2426
11 13 0.0295 2.9507 224.8406 33.8983 1.1736 19 0.0039 2.8588 235.2841 256.4103 1.2426

12 13 0.0309 3.0492 208.3568 32.3625 1.1638 19 0.0039 2.9099 219.0768 256.4103 1.2426
13 13 0.0323 3.1805 209.9396 30.9598 1.1548 19 0.0039 2.9941 220.7473 256.4103 1.2426

14 14 0.0174 2.0716 195.5321 57.4713 1.2310 17 0.0040 1.7404 200.6940 250.0000 1.4009
15 11 0.0500 3.8064 221.1789 20.0000 1.1805 20 0.0039 4.2830 240.5155 256.4103 1.1865

16 14 0.0259 2.9664 198.8200 38.6100 1.1451 20 0.0039 2.9661 206.0657 256.4103 1.1865
17 11 0.0384 2.7917 220.0642 26.0417 1.2543 17 0.0040 2.4938 236.8859 250.0000 1.4009

18 13 0.0294 2.9112 206.7028 34.0136 1.1744 19 0.0039 2.8236 217.3567 256.4103 1.2426
19 13 0.0294 2.9112 206.7028 34.0136 1.1744 19 0.0039 2.8236 217.3567 256.4103 1.2426

20 13 0.0294 2.9092 206.1229 34.0136 1.1744 19 0.0039 2.8214 216.7844 256.4103 1.2426
21 13 0.0295 2.9183 207.8738 33.8983 1.1736 19 0.0039 2.8280 218.5125 256.4103 1.2426

22 13 0.0294 2.9140 208.1516 34.0136 1.1744 19 0.0039 2.8265 218.8624 256.4103 1.2426
23 13 0.0294 2.9056 203.8647 34.0136 1.1744 19 0.0039 2.8179 214.4064 256.4103 1.2426

24 13 0.0297 2.9074 205.0555 33.6700 1.1722 19 0.0039 2.8173 215.8458 256.4103 1.2426
25 13 0.0300 2.9575 218.5185 33.3333 1.1700 19 0.0039 2.8632 229.2907 256.4103 1.2426
26 13 0.0297 2.9620 220.1732 33.6700 1.1722 19 0.0039 2.8696 230.8008 256.4103 1.2426

In Tables 3 and 4, the italicized Cmin values represent poorer performance (an increase
in cost) while the boldfaced ones represent better performance (a decrease in cost) when the
values of the input parameters are varied from the control values in case 1. The following
discussions are based on the observations in Tables 3 and 4. It is found that the effects of
changes in the input parameters on Cmin, ARL0, ARL1, n, α, and h for the economic design
are almost similar to that for the economic-statistical design. In this section, the case number
hereafter refers to the cases in Tables 3 and 4, unless stated otherwise.
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Table 4: Optimal parameters n, α and h in minimizing the cost function, C and
the corresponding minimum cost (Cmin), ARL0 and ARL1 values com-
puted for the upward MCV chart when p = 2, γ0 = 0.1 and τ = 1.5.

Case
Economic design Economic-statistical design

n α h Cmin ARL0 ARL1 n α h Cmin ARL0 ARL1

1 11 0.0286 1.8598 226.8698 34.9650 2.0070 13 0.0040 1.3199 240.2701 250.0000 2.9300

2 13 0.0287 2.9321 188.9809 34.8432 1.7783 15 0.0040 2.1137 198.1568 250.0000 2.5281
3 10 0.0294 1.2885 283.8155 34.0136 2.1403 10 0.0040 0.7368 302.8548 250.0000 3.8952

4 11 0.0285 1.7935 174.4656 35.0877 2.0088 13 0.0040 1.2741 188.4030 250.0000 2.9308
5 12 0.0295 2.1823 331.3248 33.8983 1.8689 13 0.0040 1.4282 343.6606 250.0000 2.9308

6 14 0.0316 3.7171 188.3456 31.6456 1.6559 17 0.0040 2.8399 196.3893 250.0000 2.2335
7 9 0.0260 1.0184 283.2810 38.4615 2.4111 10 0.0040 0.6580 303.6778 250.0000 3.8952

8 9 0.0500 1.7034 217.5766 20.0000 1.9849 12 0.0040 1.1850 238.8530 250.0000 3.1912
9 14 0.0154 2.0966 235.8959 64.9351 1.9456 15 0.0040 1.5939 242.7479 250.0000 2.5281

10 11 0.0286 1.8483 217.9094 34.9650 2.0070 13 0.0040 1.3117 231.4024 250.0000 2.9308
11 11 0.0286 1.8833 244.7820 34.9650 2.0070 13 0.0040 1.3367 257.9956 250.0000 2.9308

12 12 0.0322 2.1482 229.2706 31.0559 1.8291 15 0.0040 1.6083 243.6569 250.0000 2.5281
13 13 0.0353 2.4240 231.4296 28.3286 1.6959 17 0.0040 1.9016 246.5326 250.0000 2.2335

14 12 0.0144 1.2457 211.4058 69.4444 2.2442 12 0.0040 0.8688 216.2331 250.0000 3.1912
15 10 0.0500 2.6657 245.8762 20.0000 1.8487 15 0.0040 2.2106 273.8320 250.0000 2.5281

16 15 0.0300 2.4123 219.5414 33.3333 1.6013 20 0.0040 2.1005 231.4886 250.0000 1.9190
17 8 0.0258 1.3946 237.4666 38.7597 2.6647 9 0.0040 0.8917 251.5718 250.0000 4.3840

18 11 0.0286 1.8598 226.8698 34.9650 2.0070 13 0.0040 1.3199 240.2701 250.0000 2.9308
19 11 0.0286 1.8598 226.8698 34.9650 2.0070 13 0.0040 1.3199 240.2701 250.0000 2.9308

20 11 0.0286 1.8586 226.3077 34.9650 2.0070 13 0.0040 1.3189 239.7114 250.0000 2.9308
21 11 0.0286 1.8622 228.0051 34.9650 2.0070 13 0.0040 1.3220 241.3983 250.0000 2.9308

22 11 0.0286 1.8618 228.4402 34.9650 2.0070 19 0.0039 1.3214 218.8624 256.4103 2.9308
23 11 0.0286 1.8558 223.7926 34.9650 2.0070 19 0.0039 1.3169 214.4064 256.4103 2.9308

24 11 0.0291 1.8616 225.1268 34.3643 1.9978 19 0.0039 1.3166 215.8458 256.4103 2.9308
25 11 0.0296 1.8989 238.5002 33.7838 1.9889 19 0.0039 1.3383 229.2907 256.4103 2.9308
26 11 0.0290 1.8954 240.2556 34.4828 1.9996 19 0.0039 1.3417 230.8008 256.4103 2.9308

The thirteen input parameters of Lorenzen and Vance [13] cost model can be classified as
expenses related parameters (C0, C1, Y , W , b, c), time related parameters (e, T0, T1, T2) and
process related parameters (λ, ϕ1, ϕ2). For a more effective and systematic way of discussing
the effects of each input parameters on the minimum cost, ARLs and optimal parameters, this
section is organized as follows: Firstly, the effects of expenses related parameters are discussed
in Section 4.1, then those of time related parameters are enumerated in Section 4.2 and finally
that of process related parameters are explained in Section 4.3. Additionally, the effects of
the shift size τ in the process MCV is included in Section 4.3. Lastly, a comparison be-
tween economic and economic-statistical designs of the MCV chart is presented in Section 4.4.

4.1. Effects of expenses related parameters on Cmin, ARLs and optimal parameters

An increase in the quality cost (due to nonconformities produced) per hour while in-
control, C0 or out-of-control, C1 results in an increase in the minimum cost, Cmin; and
vice-versa (see cases 4–7). Although C1 is larger than C0 (Table 2, cases 4–7), C0 has a more



128 W.C. Ng, M.B.C. Khoo, Z.L. Chong and M.H. Lee

noticeable effect on the minimum cost (Cmin) as it results in a larger change in Cmin. It is also
seen that an increase in C0 (see case 5) or a decrease in C1 (see case 6) leads to an increase in
h, as compared to the control case (case 1). Note that a larger sampling interval, h is adopted
when C0 increases so that less frequent sampling is made when the process is in-control in
order to offset the increase in quality cost per hour while the process is in-control. On a
similar note, a decrease in C1 indicates a lower quality cost per hour while the process is
out-of-control, implying that sampling can be made less frequently (with an increase in h) so
that the model remains economically viable. The same explanation applies for a decrease in
h when C0 decreases or C1 increases.

Another cost parameter worthy of discussion is the cost of false alarm, Y . It is found
that increasing (decreasing) Y only results in a slight increase (decrease) in the minimum
cost, Cmin but it substantially increases (decreases) the ARL0 value for the economic design
of the chart (see cases 8 and 9). An increased (decreased) ARL0 value translates into a lower
(higher) false alarm rate, hence a smaller (larger) α value (see case 9 for the economic design).
A larger cost of false alarm (see case 9 in Table 2, where Y = $1954.8 instead of the control
value of $977.4) will reduce the sampling frequency (larger h of 3.0772 instead of the control
value of 2.9112 — see Table 3) for the economic design model. To compensate for the less
frequent sampling, a larger sample size (larger n, increasing from 13 to 15) is adopted (see
cases 1 and 9 for the economic design in Table 3). Note that the effect of changing Y on the
optimal parameters, minimum cost and ARLs under the economic-statistical design model is
less pronounced.

Comparing to Y , varying the cost to locate and remove the assignable cause, W poses
no significant changes to the optimal parameters n, α and h. However, W has a greater
influence on the minimum cost Cmin than Y . As an example, increasing W from $977.4 to
$1954.8 (see case 11 in Table 2) causes Cmin to increase from $226.8698 to $244.7820 (see case
11 for economic design in Table 4) while the same amount of increment in Y (see case 9 in
Table 2) results in a smaller increase in Cmin, i.e. from $226.8698 to $235.8959 (see case 9 for
the economic design in Table 4). Likewise, Cmin decreases at a quicker rate when W decreases
compared to that for the same amount of a decrease in Y . Using another example based on
the economic-statistical design in Table 3, decreasing W and Y to half of their original values
causes Cmin to decrease by $8.9670 (i.e. $217.3567−$208.3897 or the difference between Cmin

of cases 1 and 10) versus $0.6055 (i.e. $217.3567− $216.7512 or the difference between Cmin

of cases 1 and 8), respectively.

The sampling cost is affected by two different parameters, namely the fixed cost per
sample, b and the variable cost per unit sampled, c. The control value of b is $0. When b

increases to $5 and $10, it is found that the minimum cost, Cmin for case 13 is larger than
that for case 12 but the Cmin values for these two cases are larger than the control cost in case
1. In fact, increasing any cost parameter, including the variable cost per unit sampled, c will
always result in an increase in Cmin, as expected. Increasing the cost b and (or) c (see cases
12, 13 and 15) results in a larger optimal sampling interval (larger h) for both economic and
economic-statistical design models and a smaller ARL0 value for the economic design model.
The exact opposite results are observed by decreasing c (case 14 in Table 2), which results
in smaller h, lower Cmin and larger ARLs (see the economic design for both downward and
upward charts in Tables 3 and 4). Note that the ARL0 values in Tables 3 and 4 do not vary
much in the economic-statistical design model in satisfying the constraint ARL0 ≥ 250.
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4.2. Effects of time related parameters on Cmin, ARLs and optimal parameters

Besides the expenses related parameters, Lorenzen and Vance’s [13] cost model also
includes the time related parameters, namely e, T0, T1 and T2. Other than the time to
sample and interpret one unit (e), the remaining time related parameters have minimal effect
on the optimal parameters, Cmin, ARL0 and ARL1 values (see cases 18–23). An increase
(decrease) in e causes the minimum cost, Cmin to increase (decrease) (see cases 16 and 17).
As e increases (from 0.083 hours to 0.166 hours), smaller sample sizes (for example, see case
17, where n = 11 in Table 3 and n = 8 in Table 4 for the economic design) are adopted
to offset the increase in Cmin. Consequently, shorter sampling intervals (see case 17, where
h = 2.7917 hours in Table 3 and h = 1.3946 hours in Table 4 for the economic design) are
adopted as more frequent samplings are needed to compensate for the smaller sample sizes
used. In addition, increasing (decreasing) the value of e leads to a larger (smaller) ARL1 value
(see cases 16 and 17). Using an example from the economic-statistical design, increasing e

causes ARL1 to increase from 1.2426 to 1.4009 for the downward MCV chart (see case 17
in Table 3) and from 2.9300 to 4.3840 for the upward MCV chart (see case 17 in Table 4).
In addition, decreasing e causes ARL1 to decrease from 1.2426 to 1.1865 for the downward
MCV chart (see case 16 in Table 3) and from 2.9300 to 1.9190 for the upward MCV chart
(see case 16 in Table 4).

4.3. Effects of process related parameters on Cmin, ARLs and optimal parameters

The rate of occurrence of assignable cause, λ has a significant effect on the optimal
sample size, n, optimal sampling interval, h and minimum cost, Cmin (see cases 2 and 3).
For example, when λ decreases from 0.02 to 0.01 (see cases 1 and 2), Cmin decreases from
$206.7028 to $173.8845 (see case 2 for the economic design in Table 3) because the process
failure rate decreases. In contrast, when λ increases from 0.02 to 0.04 (see cases 1 and 3),
Cmin increases from $206.7028 to $258.1688 (see case 3 for the economic design in Table 3).
To enable this undesirable condition (an increase in λ) to be detected quickly by the MCV
chart, more frequent samplings (decreasing h) are needed while smaller sample sizes (decreas-
ing n) are adopted in order to remain economically favourable (see cases 1 and 3 in Tables 3
and 4, for both economic and economic statistical designs).

The parameters ϕ1 and ϕ2 determine whether the process continues or stops during
search and repair, respectively. As shown in Table 1, ϕ1 (ϕ2) has:

(i) the value 1 if the process continues while searching for the assignable cause
(repairing following the occurrence of an assignable cause);

(ii) the value 0 if the process stops during search (repair).

By comparing cases 1, 24, 25 and 26, it is observed that case 24 (where (ϕ1, ϕ2 = (0, 0)) has
the lowest minimum cost, Cmin (see Tables 3 and 4). This is expected because when the
process stops during both search and repair, the cost will be minimized. For example, for the
economic design in Table 3, Cmin ∈ {$205.0555, 206.7028, 218.5185, 220.1732} for (ϕ1, ϕ2) ∈
{(0, 0), (1, 0), (0, 1), (1, 1)}, where the lowest Cmin (= $205.0555) occurs at (ϕ1, ϕ2) = (0, 0),
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i.e. when the process stops during both search and repair. On the contrary, case 26, i.e. the pro-
cess continues during both search and repair ((ϕ1,ϕ2)=(1,1)) undoubtedly results in the high-
est minimum cost, Cmin. Note that the effect of the same pair of (ϕ1,ϕ2) values on Cmin is similar
for both economic and economic-statistical designs of the downward and upward MCV charts.

Another interesting observation obtained is the influence of the shift, τ (= γ1/γ0) on
the minimum cost, Cmin. Table 3 deals with a 50% decreasing shift in the process MCV while
Table 4 involves an increasing shift of 50%, hence, the size of shifts in both tables is the same.
It is found that for the same size of shift in the process MCV, generally, the upward MCV chart
incurs a higher Cmin than that of the downward MCV chart. As an example, for the economic-
statistical design in Table 3, Cmin ∈ {$217.3567, 180.1477, 275.8835, 164.9246, 321.9959} while
in Table 4, Cmin ∈ {$240.2701, 198.1568, 302.8548, 188.4030, 343.6606} for cases 1, 2, 3, 4 and 5,
respectively. This example clearly shows that Cmin for the upward MCV chart is higher than
the corresponding one for the downward MCV chart. It is noteworthy that a larger Cmin for
the upward MCV chart corresponds to detecting an increasing shift (τ = 1.5) in the process
MCV, which simply means process deterioration. In contrast, a smaller Cmin incurred by the
downward MCV chart is associated with the detection of a decreasing MCV shift (τ = 0.5)
or simply process improvement. As Cmin incurred by the upward MCV chart is higher,
smaller sample sizes, n must be adopted by this chart to offset the increase in cost. This
is evident as n in Table 4 is generally lower than the corresponding one in Table 3. For
example, based on the economic-statistical design in cases 1, 2, 3, 4 and 5, it is noticed that
n ∈ {19, 20, 17, 19, 19} and n ∈ {13, 15, 10, 13, 13} in Tables 3 and 4, respectively, where it is
obvious that the sample sizes in Table 4 are lower than the corresponding ones in Table 3.
Consequently, to compensate for the smaller sample sizes adopted by the upward MCV chart
in Table 4, samples must be taken more frequently, hence a smaller sampling interval, h is
adopted. For the same example, h ∈ {1.3199, 2.1137, 0.7368, 1.2741, 1.4282} are adopted for
cases 1–5 in Table 4 while h ∈ {2.8236, 4.1215, 1.8151, 2.7275, 3.0500} are employed for the
same cases in Table 3. Evidently, the h values in Table 4 are smaller than that in Table 3.

4.4. Comparisons between economic and economic-statistical designs

It is shown in Tables 3 and 4 that imposing statistical constraints in the economic design
of the MCV chart significantly improves the statistical performance of the chart as it results
in larger ARL0 values at the expense of slight increases in the minimum cost (Cmin) and ARL1

values. For a better analysis, Table 5 shows the percentage of increase in the ARL0 value
for each of the 26 cases in Table 2 when the economic-statistical design is used in place of
the economic design. Additionally, Table 5 shows the percentage of the slight increase in the
minimum cost (Cmin) and ARL1 values as a result of adding the statistical constraints (in the
economic-statistical design). In Table 5, p = 2 and γ0 = 0.1 are considered for the downward
(τ = 0.5) and upward (τ = 1.5) MCV charts. It is found in Table 5 that by employing the
economic-statistical design model, the ARL0 value increases by at least 305.13% (case 9)
and 260% (case 14), for the downward and upward MCV charts, respectively. In contrast,
the chart’s performances in terms of Cmin and ARL1 criteria only deteriorate slightly. For
example, Cmin increases by at most 8.79% (case 15) for the downward MCV chart and 11.42%
(case 15) for the upward MCV chart. On similar lines, the ARL1 increases by at most 16.47%
(case 3) and 81.99% (case 3) for the downward and upward MCV charts, respectively.
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Table 5: Percentages of increase in the minimum cost (Cmin), ARL0 and ARL1 values
by using economic-statistical design in place of economic design for the
downward and upward MCV charts when p = 2 and γ0 = 0.1.

Downward MCV chart Upward MCV chart

Case % increase % increase % increase % increase % increase % increase
in Cmin in ARL0 in ARL1 in Cmin in ARL0 in ARL1

1 5.15 653.85 5.81 5.91 615.00 45.99

2 3.60 553.85 3.36 4.86 617.50 42.16
3 6.86 762.50 16.47 6.71 635.00 81.99

4 7.33 653.85 5.81 7.99 612.50 45.90
5 3.01 656.41 5.88 3.72 637.50 56.82

6 3.01 584.62 4.12 4.27 690.00 34.88
7 7.93 722.50 15.30 7.20 550.00 61.55

8 8.31 1510.25 4.02 9.79 1255.00 64.56
9 2.60 305.13 4.63 2.90 285.00 29.94

10 5.44 653.85 5.81 6.19 615.00 46.03
11 4.64 656.41 5.88 5.40 615.00 46.03

12 5.15 692.31 6.77 6.27 705.00 38.22
13 5.15 728.20 7.60 6.53 782.50 31.70

14 2.64 335.00 13.80 2.28 260.00 42.20
15 8.79 1325.64 2.67 11.42 1342.50 42.08

16 3.64 564.10 3.62 5.44 650.00 19.84
17 7.64 860.00 11.69 5.94 545.00 64.52

18 5.15 653.85 5.81 5.91 615.00 46.03
19 5.15 653.85 5.81 5.91 615.00 46.03

20 5.17 653.85 5.81 5.92 615.00 46.03
21 5.12 656.41 5.88 5.87 615.00 46.03

22 5.15 653.85 5.81 5.90 615.00 46.03
23 5.17 653.85 5.81 5.92 615.00 46.03

24 5.26 661.54 6.01 6.04 627.50 46.70
25 4.93 669.23 6.21 5.74 640.00 47.36
26 4.83 661.54 6.01 5.61 625.00 46.57

Average 5.26 697.55 6.78 5.99 653.65 46.59

The last row in Table 5 shows the average percentages of increase in Cmin, ARL0 and
ARL1 values when the economic-statistical design is used instead of the economic design.
For the downward MCV chart, it is found that there is a huge average increase in the ARL0

value, i.e. 697.55% as compared to significantly smaller average increase in Cmin and ARL1

values, i.e. at only 5.26% and 6.78%, respectively. Similarly, for the upward MCV chart, a
large average increase in ARL0, i.e. 653.65% is obtained at the expense of enormously smaller
average increases in Cmin (5.99%) and ARL1 (46.59%) values. It is obviously seen in Table 5
that when the economic-statistical design is adopted in lieu of the economic design, the
downward MCV chart (average increase of 6.78%) results in a smaller increase in the value
compared to the upward MCV chart (average increase of 46.59%).

Additional analyses are conducted for the number of correlated variables, p ≥ 3, where
the same trends as that for p = 2 are observed. Thus, the results for p ≥ 3 are not given here
so as not to increase the length of this manuscript unnecessarily.
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5. CONCLUSIONS

The MCV chart is used in the monitoring of the process MCV. The use of the MCV
chart in process monitoring requires not only the statistical consideration in assessing its
performance but also from a cost point of view. In line with this requirement, this research
studies the economic and economic-statistical designs of the MCV chart. The economic
design takes into account of minimizing the cost, but it ignores the statistical evaluation
of the chart. Therefore, the economic design exposes the MCV chart to a poor statistical
performance, resulting in an undesirable Type-I error rate. To circumvent this setback,
statistical constraints, in terms of the ARL0 and ARL1 considerations, are imposed on the
cost minimization model, resulting in the economic-statistical design of the chart. The effects
of changes in the input parameters on the minimum cost and the corresponding optimal
parameters of the MCV chart, as well as the char’s ARL0 and ARL1 values are enumerated.
Additionally, this work also compares the impact of adding statistical constraints on the
performance of the MCV chart. It is found that the economic-statistical design significantly
improves the ARL0 performance of the MCV chart at the expense of slight increases in
minimum cost (Cmin) and ARL1 values.
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