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EDITORIAL

#StatsDay2020 — The WORLD STATISTICS DAY, 20 October 2020

This year we celebrate on 20 October 2020 the third World Statistics Day (WSD).

The first WSD was celebrated on 20 October 2010 with the topic “Service, profession-
alism, integrity celebrating the many contributions and achievements of official statistics”.
Later on, in June 2015, the United Nations (UN) General Assembly adopted a resolution,
in which 20 October 2015 was designated as the second WSD, with the theme “Better data,
better lives”; moreover, it was decided to celebrate the WSD every five years on 20 October.

The WSD 2020 was launched by the UN Statistical Commission at the 51st Session, and
will be commemorated around the world under the theme “Connecting the world with data
we can trust”, giving head to the importance of trust on reliable data in official statistics.

On the other hand, 2020 will also be a year in which COVID-19 pandemic has become
an unavoidable topic. More than ever, scientists from all branches put efforts together in
order to make out relevant information as much as possible from data labelled as reliable.
Statistics play here a main role, no doubt.

In this Special Issue, in Celebration of the WORLD STATISTICS DAY 20 October 2020,
REVSTAT offers to its readers a first Invited Paper with discussion, on the pandemic issue.
We are grateful to all the authors involved in the main paper and subsequent discussants.
Special thanks are due to our Past Editor Antónia Amaral-Turkman, a major engine for
guiding the invitation process.

The other seven articles present original contributions, with data applications mainly
in life sciences (two treatments using matched pairs, leukaemia, diabetic retinopathy, bladder
cancer, tree mortality, maximum time of breastfeeding, level of a biomedical marker, lung
cancer rates, diagnostic tests on epithelial ovarian cancer) and official statistics (food security
and poverty).

It is our pleasure to invite our readers to enjoy this Special Issue of REVSTAT –
Statistical Journal.

Happy World Statistics Day!

October 20, 2020

Isabel Fraga Alves

Giovani Loiola da Silva
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Portugal
liliana.antunes@insa-min-saude.pt

Carlos Dias
– Dep. Epidemiology, Instituto Nacional de Saúde Dr. Ricardo Jorge, and
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Abstract:

• Statistical and epidemiological methods play an essential role in producing information for the
public health decision process. They allow the collection, analysis, reporting and interpretation
of data necessary to inform public health officials in the decision-making process, enabling the
diagnosis of the situation, the selection of the most adequate measures and to monitor and evaluate
their impact.
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1. INTRODUCTION

After the identification of the first cases of COVID-19 in December 2019 in Wuhan,
China, it took one month (30 January 2020) for the World Health Organization to declare
the epidemic a Public Health Emergency of Global concern, and almost two months to be
declared a pandemic (11 March 2020) ([11]).

The start of the rampant community transmission of the SARS-CoV-2 virus in Italy
and Spain in early February ([11]), which meant that most new cases did not have an epi-
demiological link, set a decisive date for public health action in Portugal. The first case
of COVID-19 was diagnosed in Portugal on the 2nd of March 2020, and it was only a few
weeks before community spread of the virus started in Portugal, which brought urgency to
the implementation of population-base public health interventions.

Although the infection and disease occurs at the individual level, the epidemic occurs
at the population level. This means that the control and mitigation of the infection or disease
occurrence cannot be only achieved through individual targeted measures. Population level
intervention is crucial to control the spread of the infection and to mitigate the impact of the
disease. Among these, one can list vaccination, social distancing, respiratory hygiene, closing
of schools, working from home, closing of commerce, restaurants and bars, or even more
severe lockdowns, which involve, in addition to the previous measures, stay at home policies.

Public health authorities need information almost on a real time basis to be able to
track the infection evolution among the population, the potential effect of interventions and
their impact. The information provided can range from descriptive analysis of the distri-
bution of the number of new cases of infection in time and space, population or individual
characteristics (age, sex, education, health status), to projections of the infection spread and
impact according to different epidemiological scenarios, or control and mitigation strategies.

Throughout an epidemic it is usual for certain geographical locations to be affected
differently, probably due to factors that promote the spread of infection, such as population
density and connectivity, the inbound and outbound of infected individuals from the region,
amongst others. Which means that nowadays, the access to accurate and detailed information
is paramount to mount proper public health measures, which can be targeted during a certain
period of time, in a certain geographical area or population group.

In the context of a pandemic there are three areas where statistical and epidemio-
logical methods are crucial, namely: epidemiological surveillance, specific epidemiological
observational studies aimed at describing or measuring epidemiological parameters and the
development of mathematical models, which focus on simulating the disease transmission
dynamics and assess impact scenarios under different control and mitigation measures.

2. EPIDEMIOLOGICAL SURVEILLANCE

The epidemiological surveillance is defined as the systematic collection, analysis, in-
terpretation and reporting of data for public health action. During the COVID-19 public
health emergency, most of the epidemiological surveillance data comes from the case noti-
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fication of SARS-CoV-2 infection. Individuals with a laboratory diagnosis of SARS-CoV-2
infection, with or without the presentation of COVID-19 symptoms at diagnosis, are notified
and registered in a database. In Portugal, data is collected through the SINAVE system
(Sistema Nacional de Vigilância Epidemiológica) ([28]), where medical doctors or laborato-
ries, authorized to perform the SARS-CoV-2 test, report new cases of infection or disease on
a daily basis. After the case notification, public health officials perform an epidemiological
enquire where data is collected on individual characteristics, disease characteristics (symp-
toms), probable routes of infection, date of symptom onset, laboratory diagnosis date and
notification date, travel history, and close contacts.

Among the first questions that arise, and that can be answered with epidemiological
surveillance data, are about the distribution of cases in the time scale, namely: what is the
recent incidence of the disease and its trend? Are the number of new cases of the disease
increasing, decreasing or stable?

A simple but essential way to study the course of the epidemic is by plotting the
epidemic curve. This graph basically depicts the number of new cases by date of disease onset.

Figure 1: SARS-CoV-2 epidemic curve by date of symptom onset corrected for notification delay
(Dark blue – Observed cases with date of symptom onset; Light blue – Observed cases
with imputed date of symptom onset; Grey – Occurred but not yet reported cases
(nowcasted)).

In actuality, the graph should be represented by date of infection, but for the majority of the
cases this information is not available. The analysis of this figure is of utmost importance,
given that allows the epidemiologist and public health officials to analyse the evolution of the
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infection transmission, its trends, growing and decreasing phases, the impact of public health
measures or changes in the epidemiology of the infection.

The classical presentation of an epidemic curve is divided in four phases, the estab-
lishment phase, with a sporadic number of new cases, the exponential growing phase, the
peak and the decreasing phase. But in reality, mainly with pandemics like the one we are
facing with SARS-CoV-2 virus, there is a diversity in the presentation of the epidemic curve.
As Adam Kurcharski, from London School of Hygiene and Tropical Medicine, referred in his
recent book, The Rules of Contagion ([22]), “If you have seen one pandemic, you have seen
one pandemic.”. In reality, the form of the epidemic curve can present several growing, de-
creasing and endemic phases, depending on the presence of several factors, including public
health measures, population behaviour, population susceptibility, virus changes or climate
effects.

The quality of the surveillance data used in the production and analysis of an epidemic
curve in real time can be affected by several factors. Surveillance data is collected hastily,
since the priority of medical personnel is to isolate the cases and quarantine their contacts,
in order to be able to interrupt the chains of transmission. So, collecting perfect data in
these circumstances is very difficult, and usually, data quality, completeness and timeliness
are substandard during pandemic emergencies. This problem is further exacerbated during
the epidemic growth and epidemic peak phases, which is when this information is mostly
needed.

As mentioned above, in order to draw a proper and useful epidemic curve the date
of disease onset for each case is essential. Unfortunately, during an epidemic this is one of
the variables that suffers more from incompleteness. Moreover, there is the need to draw
conclusions on the epidemic course for the last few days or weeks recorded. As can be easily
understood, before an infected individual is accounted for in the surveillance system, several
other events must occur, namely: disease onset, which is when the individual starts developing
symptoms; medical visit, which is usually the time it takes an individual to seek health
care after developing symptoms; diagnosis, when the infection has laboratory confirmation;
and ultimately, notification, which is when the case is introduced in the surveillance system
database.

Naturally, from disease onset to the notification of the case to the surveillance system,
several days can go by. Not only due to the disease and reporting process described above
but also due to other factors, such as the awareness of the population, preparedness of the
surveillance system, overload of the professionals involved in the reporting process during the
growth or peak phases, weekends when most medical sites are closed, personal and regional
characteristics, among others ([15]).

The time between disease onset and case notification, precludes the monitoring of the
epidemic in real time, translated in epidemic curves showing the last days/weeks always with
fewer cases than the day before, suggesting a declining trend in incidence, when in fact, as
more data is available, it might actually show it was increasing.

The notification delay varies across different surveillance systems because of the intrinsic
nature of the reporting process implemented for each disease and country, and also due
to changes in time. During the COVID-19 emergency, the time between disease onset to
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notification delays have been described as 8 days on average, also 95% of the cases with onset
of symptoms in one specific day take 15 days to be notified ([30, 12]). In Portugal, the median
time between disease onset and notification decreased from 8 to 4 days throughout the course
of the epidemic.

Here the statistical and epidemiological methods can be used to our advantage ([23]).
Imputation methods can be used to estimate missing dates of disease onset, and nowcasting
techniques can be applied to estimate the occurred-but-not-yet-reported cases in the last
weeks of the epidemic curve ([23, 25, 19]). In order to be applied, both these methods need
the distribution of the diagnosis and/or notification delay.

Several approaches have been proposed to impute date of symptom onset and to nowcast
the recent days in public health setting ([15]). Nowcasting methods have also been developed
in both frequentist and Bayesian framework ([19]).

There are several constraints that difficult the real time implementation of nowcast
procedures such as the distribution of the delay from disease onset to notification not being
invariant in time, place and individual characteristics. During the first weeks of the epidemic,
the delay between disease onset and notification is usually longer, given that the first traced
cases are usually detected at a later date. This means that several weeks of epidemic data
are necessary in order to be able to estimate a complete distribution of the delay. So, for
the first weeks of the epidemic, the delay distribution is truncated, and we need to recur to
other sources of information, like historical data from other epidemics in order to estimate
the notification delay distribution and nowcast the most recent days of the epidemic curve.

Besides the level of incidence and its distribution in time, public health officials usually
need to know the level of transmission of the infection in the community. The reproduction
number (R) of the infection is the measure used to monitor the transmission of infectious
diseases. During the COVID-19 emergency it has been given a very important role in decision
making, such as being used to implement or lift lockdown measures. This index measures
the average number of secondary cases a typical infectious case gives origin to. When R is
above one it means that the epidemic is in a growing phase, and each generation of infected
individuals, gives rise to a new generation with a higher number of infected individuals.
Otherwise if R is below one, the next generation of infected individuals is smaller than
the previous one, which means that the size of the epidemic converges to 0, leading to its
extinction. If R is equal to or close to 1, then the number of new infected individuals in each
subsequent generation is approximately constant, which corresponds to an endemic or stable
phase of disease spread.

It is important to estimate the reproduction number during the first phase of a pan-
demic, when all the population is susceptible and there are no control measures in place, in
order to have a natural measure of the infection transmissibility in the population in study.
This parameter is called R0 (“R naught”) and has a very crucial role in infectious disease
epidemiology. It can be interpreted as the average number of infectious cases resulting from
one infectious case, after its introduction in a completely susceptible population ([31]).

R0 is used in mathematical modelling studies to set up the base scenario of an epidemic,
allowing to find the level of public health measures needed to bring it below one. Or it can be
used as reference to be compared with the effective reproduction number in order to evaluate
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changes in the infection transmission, due to the implementation of public health measures
or due to the natural course of the epidemic.

R0 can be estimated from transmission chains data, which are usually difficult to obtain,
measuring the distribution of the secondary cases each initial case gave origin to. It can also be
estimated from the epidemic curve growth in the initial phase of the epidemic, with additional
information on the generation time distribution of the infection ([31]).

The generation time of infection corresponds to the time elapsed between the times
of infection of infector and infectee individuals. Given that it is difficult to collect data on
infection dates, this distribution is substituted by the serial time distribution, which is given
by the time interval between symptom onset of the infector and the symptom onset of the
infectee. Regarding the COVID-19 infection, the serial time is being described with a mean
from 3.1 to 7.5 according to the study published ([2]). This distribution plays also a very
relevant role in the epidemic transmission, given that it represents the time elapsed between
the disease onset in two generations of infected individuals. The shorter the serial time, the
quicker the infection spread.

Besides the R0, another reproduction number that has been recurrently used by several
public health agencies and governments to monitor the SARS-CoV-2 transmission, is the time
dependent effective reproduction number. Firstly proposed by Wallinga and Teunis in 2004
([32]), to measure the average number of secondary cases originated by the incident infectious
cases in time t, it has been showed to be an excellent tool to monitor transmission over time
and evaluate in a real-time manner the impact of public health measures and changes in the
infection epidemiology. Nevertheless, for surveillance proposes, where date-of-onset data is
always incomplete in the last few recorded weeks, several researchers have recommended the
use of Cori et al. method ([8]) to estimate the time dependent effective reproduction number.
In this method the Rt represents the average number of secondary cases that originated the
new cases observed at time t.

As stated by other researchers, today’s challenge is how to include the imputation and
nowcasting methods uncertainty into the estimate of Rt.

In Portugal the Rt has been estimated from the epidemic curve after imputation and
nowcasting ([20]), using a method developed by Antunes et al. in 2014 ([3]) for daily mortality
monitoring. The Rt has been estimated using the Cori et al. method ([8]). This analysis
did not include a method for error propagation from the imputation and nowcasting to the
estimate of the reproduction number.

3. SPECIAL STUDIES

Special studies are specifically designed to measure epidemiological parameters of in-
fection or disease and to identify risk factors of infection or disease severity, including the
need for critical care and case-fatality.

One of the most relevant studies that the WHO recommends, at the start of the emer-
gency of a new infectious agent with pandemic potential, is the First Few X Cases study
(FFX) ([29]). This study should be implemented as quickly as the first cases are identified,
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and is aimed at estimating key epidemiological indicators that are essential both for surveil-
lance and for modelling the transmission and impact of the disease. FFX study aims at
describing the clinical presentation of the disease and the routes of infection, the secondary
infection and clinical attack rate, the serial interval, proportion of asymptomatic infections,
the basic reproduction number, the incubation period, and eventually preliminary estimates
of infection and disease-severity ratios (case-severity and case-fatality ratios).

Early estimates of these parameters are essential to the design and selection of the
more effective public health measures, however, during emergency situations, it might not be
feasible to carry out such studies. During the COVID-19 emergency, Portugal included the
FFX protocol in the list of studies to implement ([26]), but once the number of cases started
to increase exponentially, its implementation was not possible. Since only a few countries
were able to conduct this study ([5]), the majority of the estimates of key epidemiological
parameters came from the secondary analysis of data from routine epidemiological surveillance
systems.

According to the different phases of the pandemic, and with the increase in the number
of cases, other studies can be implemented. Such as, cohort or case-control studies aimed
at identifying risk or protective factors of infection, disease or disease severity ([26]). These
studies are also crucial for the implementation of targeted public health measures, but also
to feed the mathematical models that aim to produce impact scenarios in the health care
sector.

Other special studies of high importance are population-based surveys. These are cross-
sectional studies that aim to measure seroprevalence of antibodies against the infectious agent,
or surveys focused on evaluating the knowledge about the infection and disease, the adoption
of preventive measures (hand washing, social distancing or use of mask) or the impact of the
universal public health measures, such as lockdown of specific areas or countries, on the so-
cioeconomic indicators or even on mental health. A very specific survey that some countries
have implemented before and during the COVID-19 emergency, aims at measuring the profile
of the contacts between individuals, according to their age and setting (home, school, work-
place and general community). These are very important to feed the mathematical models
in order to include age heterogeneity in the contacts between individuals and the observed
impact of social distancing measures on these contact matrices.

Finally, it is important to mention those studies dedicated at measuring the effectiveness
or impact of the public health measures, vaccines or treatments. These are essential to adjust
the set of intervention and treatments. During the COVID-19 emergency several studies were
performed to evaluate the impact of the lockdown measures, using quasi-experimental designs
like interrupted time series analysis. Moreover, complex randomized clinical trials aimed at
identifying effective treatments against COVID-19 disease and their complications were also
implemented.

In all these studies the role of the statistical methods is undeniable in the several phases
of the study development. These encompass the design, field implementation and data vali-
dation, analysis, reporting and interpretation of results. One of the lessons learned during the
COVID-19 emergency is that the development of these studies needs generic scientific proto-
cols developed and approved during inter-pandemic phases, and most importantly, dedicated
teams for their implementation.
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4. MATHEMATICAL MODELS OF DISEASE TRANSMISSION

Epidemic models for the spread of infectious diseases date back to the beginning of the
twentieth century. Pioneer mathematical techniques were proposed to describe the dynamics
of disease transmission and these are key tools to lay out proper mitigation and suppression
measures to deal with an epidemic ([13]). The susceptible-infected-recovered (SIR) models
developed by Kermack and McKendrick (1927) were the first mathematical models developed
to the transmission dynamics of infectious diseases. These compartmental models have been
further extended and adapted to an assortment of different diseases ([31]). Nowadays, these
models are seldom used in their original form, since they are too simplistic to account for the
inherent heterogeneity of disease transmission.

The SIR and SEIR (Susceptible, Exposed, Infectious and Removed) models have been
improved to account for several crucial factors, such as the heterogeneity of human con-
tact ([16, 31]), geographical distribution ([4]) and disease susceptibility, as well as account-
ing for the underlying uncertainty in disease transmission, i.e. stochastic models ([35, 34]).
These extended models have been developed for different goals:

a) assessing the epidemic preparedness of health systems ([27, 7]), by taking into
consideration the susceptibility and contact pattern of individuals, as well as the
infectivity of the pathogen;

b) evaluate the impact of intervention measures that aim to reduce mortality and
healthcare demand during an epidemic ([13]);

c) account for the geographical distribution of the population, i.e. metapopulation
models ([4, 33]);

d) study the seasonality of disease prevalence ([10]);

e) evaluate the necessary herd immunity vaccination threshold ([17]).

Since the beginning of the SARS-CoV-2 epidemic, a number of different working groups
have employed SIR-like deterministic and stochastic models to evaluate the spread of the dis-
ease. The authors in [33] used a deterministic SEIR model to nowcast and forecast the
national spread of SARS-CoV-2 in China, by creating scenarios for the transmissibility re-
duction and mobility reduction associated with the measures implemented in Wuhan, China.
A SEIR-type stochastic model was developed by the authors of [35] to estimate key latent
epidemiological parameters and states, such as the proportion of asymptomatic individu-
als, and the strength of the contact tracing. The authors in [9] employed the use of a
healthy-asymptomatic-sick-dead model to assess the relaxation of social-distancing measures
in Germany, a similar approach was also employed by the authors in [24] for Spain.

One of the biggest challenges that epidemiologists and modellers face during this epi-
demic is to foresee the duration of different epidemic phases. The first phase consisted in
the containment of imported cases and identification of transmission chains, after which,
an exponential growth of incident cases is expected, hence, the next phase consisted in the
introduction of suppression measures by enforcing strict social-distancing. Lately, several
countries having been phasing-out social-distancing measures, which might result in higher
disease transmission during next winter along with the transmission of other seasonal respira-
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tory viruses. For each of these phases several measures are necessary to prevent, control and
mitigate COVID-19’s impact, which need to be evaluated and simulated with best available
modelling tools.

Other very important discussion for which mathematical modelling has provided very
important insights and discussion is the future of the pandemic and its end, such as the
herd immunity threshold, with estimates ranging from around 10% to 70% ([14, 6, 1]). Fur-
thermore, should we expect that SARS-CoV-2 will be present for several years and became a
seasonal respiratory virus ([21]) together with influenza and other respiratory virus ([14, 6, 1])?

5. FINAL REMARKS

The emergence of SARS-CoV-2 and the COVID-19 pandemic was really a black swan
event, although international and national institutions have been preparing for new influenza
pandemic, in truth, the majority of the countries were not prepared for all the implications
of this event.

Data and information about the epidemic course, the risk factors for infection and
disease, the effectiveness of public health measures and treatments, and the future scenarios
of the course of the pandemic are among the most wanted pieces of knowledge by all the
sectors of society.

These can be obtained through the development of surveillance systems, special epi-
demiological studies and mathematical modelling, areas that must be developed together
in comprehensive and timely manner. Data from surveillance systems is important to feed
special studies and mathematical modelling. Special studies allow the estimation of relevant
parameters to feed the mathematical models and to estimate transmission parameters in real
time (Rt). The public health measures that are evaluated prospectively through mathemat-
ical modelled scenarios, can be retrospectively evaluated using surveillance systems data or
special studies.

Epidemiologists, statisticians and mathematical modellers have been probably among
the most needed professionals during this phase, due to the amounts of data and information
that needs to be collected, analysed, reported and interpreted. Data and information is
demanded by decision makers with higher levels of certainty and lowest timeliness.

On the side of those that must make decisions, the information and knowledge that
public health officials and decision-makers (at the highest level) receive in real time to de-
cide is overwhelming. During this emergency, decision makers needed to deal with complex
epidemiological concepts, with high levels of uncertainty. This placed very high pressure in
public institutions responsible for delivering the information needed for decision, but also on
decision makers and public health authorities that are confronted with uncertain information
and are asked to make correct decisions ([18]).

A reflection should be made about several of these issues in the light of the COVID-19
pandemic experience, from the point of view of data and information. These reflections should
include the anticipation of data, studies and information needed during the different phases of
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a pandemic; methods and models available for analysis in order to develop a public available
data analysis toolkit and clear rules for data disclosure and availability. The collaboration
between public health institutes and the science academies should also be enhanced for the
development of these three areas. Finally, efforts should be allocated in the translation of
data and information for decision makers in order to contribute to more informed decisions,
with a focus on the population health and welfare.
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Abstract:

• Nunes et al. ([54]) provide an overview of mathematical models used to analyse epidemics and
techniques for conducting studies to obtain parameter estimates for such models. They discuss
the SEIR model which has been used in much coronavirus disease 2019 (COVID-19) analysis. Our
discussion presents a modelling framework based in time series analysis developed for the analysis
of infectious disease surveillance data, as well as our use of the framework in analysing COVID-19.
We believe many of the purposes of modelling infectious disease outlined by Nunes et al. ([54])
as well as the benefits of mathematical modelling highlighted can also be found in the statistical
modelling techniques we use in our work.

1. ENDEMIC-EPIDEMIC MODELLING FRAMEWORK

Multiple epidemic data sources provide valuable information on different aspects of
an infectious disease outbreak ([19]). Indeed, a recent simulation study by Colón-González
et al. [18] indicates that use of multiple data streams arising from such surveillance activi-
ties can be a useful approach to disease detection. However, it is pertinent that appropriate
statistical techniques be used in analysing such data sources to incorporate the associated
uncertainties to avoid introducing bias and artificial precision in estimates of disease out-
comes, impacts of disease control interventions, and real-time predictions ([9]). One such
statistical technique is the endemic-epidemic (EE) modelling framework. The EE framework
is a multivariate time series model created for analysis of infectious disease surveillance data
([30]). The simplest EE model is a spatio-temporal multivariate time-series model of disease
incidence from surveillance data. The model additively decomposes incidence into endemic
and epidemic components. The endemic component covers exogenous factors such as season-
ality, sociodemography, and population while the epidemic component is autoregressive and
is driven by previous case counts (“infectiousness”), i.e. the force of infection. We will discuss
this modelling approach and its applicability to the current COVID-19 setting.
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1.1. Applications

The EE framework has been applied to a multitude of infectious diseases classified
as various types, e.g. diseases with other reservoirs than just humans, vaccine-preventable
diseases, and vector-borne diseases, showcasing its versatility. See Table 1 for an overview
of diseases analysed using the method. COVID-19 and SFTS are both currently consid-
ered emerging infectious diseases, showcasing the EE framework’s flexibility and ability to
consider both novel and established diseases. Since its introduction, the EE framework has
been extended to cover many different aspects of disease modelling and statistical analysis
([58, 57, 33, 47, 32, 48, 62]). Recent extensions include the possibility to estimate the
serial interval distribution ([13]) and methodology to adjust for underreporting ([12]).

Table 1: Applications of the EE framework.

Disease Reference(s)

Endemic porcine diseases [3]

Leishmaniasis [1, 52]

Dengue [16, 75]

Invasive pneumococcal disease [17]

Campylobacteriosis [69]

Hand, foot and mouth disease [6]

Measles [30, 34, 50, 56]

Influenza [58, 46, 47, 62]

Norovirus [32, 31, 13]

Rotavirus [13, 12]

Pertussis [51]

Tuberculosis [76]

Meningococcal disease [58]

Severe fever with [71]
thrombocytopenia syndrome (SFTS)

Coronavirus disease 2019 (COVID-19) see next section

NB: A regularly updated table of use cases is maintained by Sebastian Meyer at

https://github.com/rforge/surveillance/blob/master/www/applications_EE.csv .

The EE framework is considered state-of-the-art and is often used used as a benchmark
model for comparison in infectious disease modelling and probabilistic forecasting ([7, 61, 64]).
In model construction using the EE framework, it is possible to incorporate dependencies such
as the spatial movements of a population under study; the effects of human movement can
be examined statistically using gravity models ([14]). Gravity models examine the flow from
one subpopulation to another taking into account locations on mobility networks rather than
geographical distance. Such models have been used to examine measles epidemics ([72, 38])
and influenza pandemics ([68]). This is but one example of where the EE framework works
well with other available modelling options. Finally, the EE framework is implemented in a
readily available software package ([50]), and its extensions are included in a wider ecosystem
of packages within the same software ([11, 49, 10]).

https://github.com/rforge/surveillance/blob/master/www/applications_EE.csv
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1.2. Comparison with mathematical modelling approaches

To provide further synergy with established methods, the EE framework can be mo-
tivated from the discrete-time SIR compartmental model ([36, 6, 67]) and can be adjusted
to include natural depletion of susceptibles ([66]) as well as to incorporate potential future
pharmaceutical countermeasures and vaccines ([34]). Co-occurrences and co-infections as well
as the existence of multi-strain pathogens provide added levels of complexity to disease trans-
mission. Specifically for multiple strains of a disease, Wakefield et al. [67] outline models that
can be used for outbreak detection in settings — including the EE framework. Additionally,
bivariate analysis of different diseases can be conducted, see e.g. the example of influenza
and meningococcal disease by Paul et al. [58]. For this reason we believe the EE framework
should conceivably be able to include 2020 influenza season in the northern hemisphere in
a model for COVID-19. This is a co-occurrence and co-infection scenario being raised by
policy makers as we enter the final months of 2020. We conceptualise one situation where full
synergy between mathematical and statistical modelling may not be possible: consider the
Anderson–May equation for calculating the basic reproductive rate of sexually transmitted
infections. Mathematically it might make sense to consider the interplay between the five or
so parameters but once we examine case count data, we may only really be able to estimate
one parameter in place of the five. If the effects are not inseparable, additional data may be
required to estimate them.

2. COVID-19 CASE STUDIES

We feel the EE framework is particularly well-suited to being adapted to examine
COVID-19. The EE framework was developed in surveillance situations of weekly case counts
of established diseases, both in terms of biology as well as available information capturing
infrastructure of their associated surveillance systems, meaning no new data gathering ap-
proaches were required. The EE framework offers increased flexibility and robustness com-
pared to more standard epidemic models which may need to be constructed on a disease-
by-disease basis. The framework allows us to incorporate available evidence at various levels
of detail and examine intervention measures and other explanatory variables, e.g. meteoro-
logical ([6]) with all unknown parameters being estimated with likelihood techniques from
the available data. Spatio-temporal spread can be captured by suitably parametrised power
laws ([47]) and gravity models ([72]), and long term predictions can be produced ([32]).
Importantly, the spatio-temporal formulation of the EE model can be extended to include
age-dependent contact information ([48]), which is often considered a proxy of transmission
events for respiratory disease such as COVID-19. The EE model has also been extended
to include higher order lags in the epidemic component, allowing for the inclusion of in-
fectiousness from the entire serial interval in the analysis of daily COVID-19 counts ([13]).
This allows us to consider data at a finer temporal resolution than weekly, and analyse the
near-real-time daily COVID-19 case information. We are aware that the EE framework has
been used in the epidemiologic and economic studies of COVID-19 listed in Table 2.
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Table 2: EE models focusing on COVID-19.

Author Area of focus

Dickson et al. [20] Italy

Giuliani et al. [28] Italy

Alipour et al. [4] Germany

Berlamann and Haustein [8] Germany

Fritz and Kauermann [23] Germany

Fronterre et al. [24] England

Ssentongo et al. [63] African continent

SUSPend Switzerland and surrounding

2.1. Introduction of the SUSPend project

We have been using EE modelling approaches in the SUSPend: Impact of Social dis-

tancing policies and Underreporting on the SPatio-temporal spread of COVID-19 project.
This project is funded by the Swiss national science foundation’s emergency support for
research into coronaviruses as project number 196247. A description of the project can
be found at https://data.snf.ch/covid-19/snsf/196247. Within the SUSPend project we
are working on two subprojects, both concern the introduction of time-varying transmission
weights in the model. The first subproject incorporates a contact matrix which changes
over time. In particular, we are considering a synthetic contact matrix for Switzerland
([25]). The benefit to using the synthetic contact matrix for Switzerland rather than the
single empirical one which exists ([35]) is that the sampling approach for the synthetic
matrix is well-designed and the sample size is sufficiently large. The Swiss contact ma-
trix considers contacts in various settings and we have adjusted these to reflect social dis-
tancing measures put in place, similar to other approaches seen in COVID-19 modelling
([70, 60, 55, 21]). The obvious alternative to adjusting contact matrices would be to consider
instead contact surveys conducted during the COVID-19 outbreak as part of the EpiPose
project (https://cordis.europa.eu/project/id/101003688), whose contact survey work has
recently expanded to cover additional countries, including Switzerland [personal communica-
tion]. Such information has mainly been gathered in the United Kingdom, an island nation in
northern Europe, which may be very different to landlocked Switzerland. Additional contact
surveys conducted during the 2020 COVID-19 outbreak have been done by Feehan and Mah-
mud [22] in a north American setting and Latsuzbaia et al. [45] in a central European setting,
indicating there is an increasing awareness that understanding the evolution of contacts es-
tablished during an ongoing outbreak is useful for informing future outbreak modelling efforts.

The second subproject we are working on uses time-varying adjacency matrices and
focuses on spatial spread of COVID-19. We create time-varying adjacency matrices for the
seven Swiss NUTS-2 regions and their immediate neighbouring regions. These matrices are
adjusted from baseline adjacencies based on mobility data gathered from smartphone users
available at subregional level. Such mobility data has been used in studies of COVID-19 in
multiple countries, including: China ([63, 44, 42, 27, 2]), Taiwan ([15]), Japan ([43]), Italy

https://data.snf.ch/covid-19/snsf/196247
https://cordis.europa.eu/project/id/101003688
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([59, 26]), France ([26]), the United Kingdom ([39, 5, 26]), the United States of America
([65, 40, 37, 74, 41]), and Brazil, Chile, Bolivia, Colombia, and Peru ([74]). Our first project
concerns the first half of 2020 while the timescale considered in the second project is longer.
The EE framework is suitably flexible to allow us to incorporate additional information as it
is found to be important. Thus, considerations nested in both policy making and biological
can be included in the model as they are identified.

An issue common to the COVID-19 pandemic, and thus both of our subprojects, is the
presence of underreporting and reporting delays in case data ([53]). Simple multiplication
factors can be applied to address the former. However, such multiplication factors need to be
time-dependent to incorporate increased testing capacities and changes in testing strategies
observed in some countries. Multiplication factors may also vary across age groups, which is
particularly relevant for the subproject with time-varying contact matrices as this has an age
focus. The usefulness of incorporating delays in disease surveillance models has been shown
([12]). Nowcasting allows us to predict the true number of case counts based on available data
and can be used to address reporting delays. Within compartmental modelling, nowcasting
is often referred to as “real-time modelling”. Nowcasting requires information both on test
and reporting date on an individual basis. Unfortunately such information is rarely available
in surveillance systems.
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In this issue, Nunes et al. ([4]) review the prominent role embraced by statistical and
epidemiological researchers in conducting societies through the COVID-19 pandemic. Basic
epidemiological concepts, such as infection-fatality ratios (IFR), temporal infection repro-
duction numbers (Rt) and herd immunity thresholds (HIT), became part of every person
vocabulary. Daily new cases, recoveries and deaths, have been diligently tracked and fea-
tured at the opening of prime-time news since the first case was confirmed in each country
(February–March in most of Europe). Besides reviewing research conducted by themselves
and others, Nunes et al. ([4]) provide a frank account of the challenges associated with con-
ducting scientific research under such spotlight. Their paper should interest a very wide
readership.

Comparing COVID-19 trajectories across countries and regions and appraising control
strategies became topical in most social encounters, whether physical or virtual. Europe was
the first major epicentre outside the source in China, and European countries quickly started
to be classified into those with high death toll (such as Italy, UK, Belgium and Sweden) or
low death toll (most prominently, Czech Republic) during the first wave in the spring 2020.
Due to combinations of non-pharmaceutical interventions based on social distancing measures
and naturally acquired immunity in populations, epidemics curbed throughout Europe and
cases were brough to very low levels during the summer. By the end of the summer and into
the autumn, Europe started to experience a second wave. Countries who were least affected in
the spring (such as Czech Republic) are seeing steeper rises now, most plausibly due to having
acquired less immunity. Portugal appears in neither of these extremes. Rates of infection
and death were moderate throughout and the epidemic is under control. Although a final
assessment is not possible until the pandemic is over, I expect the Portuguese strategy to
rank among the most balanced. This would almost certainly not have been the case without
the dedicated work of statisticians and epidemiologists.

The authors touch briefly on the role of mathematical modelling of the COVID-19
pandemic. Models were developed early in the pandemic to project epidemic trajectories in
various countries ([5, 3]). Initial projections for Portugal suggested that, without mitiga-
tion, up to 70% of the population would be infected before cases started to decline (HIT),
85% would be infected by the time the epidemic ended and 1% would die as a result ([5]).
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These results relied on the hypothesis that populations were homogeneously susceptible,
which was recently refuted ([2]). According to models constructed to account for complete
heterogeneity in susceptibility or exposure to infection, and conditional on the accuracy of
currently available seroprevalence results, herd immunity is expected at much lower infec-
tion levels (around 10–20%) which I estimate to be happening this Autumn in Portugal.
Continuing monitoring will inform the accuracy of these estimates but, if confirmed, these
results imply that the COVID-19 pandemic is ending in Europe. Incident cases will continue
but sustained epidemic growth will not be expected more than for other seasonal respiratory
viruses. Given the disease fatality observed in the spring, protection of the most vulnerable
is critical until a vaccine is available but the risk of complications is considered low for the
majority of the population.
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The authors would like to thank the commentaries from Bekker-Nielsen Dunbar and
Held ([2]) and from Gomes ([3]) to their article Statistics in times of pandemics: the role of

statistical and epidemiological methods during the COVID-19 emergency, and for sharing
their experience, knowledge and work in the response to the COVID-19 epidemic.

In their commentary, Bekker-Nielsen Dunbar and Held ([2]) introduced the time-series
framework of endemic-epidemic models, showing the benefit of this approach to resolve and
overcome many of the challenges identified during the analysis of surveillance data and epi-
demic dynamics modelling. They also share their experience using Switzerland’s data and
present the work developed under the SUSPend project, that aims at bring knowledge on
essentials components of the epidemic transmission, for its control and mitigation.

The same is revealed in the Gomes ([3]) commentary that, based on new mathematical
modelling approaches, suggests that by introducing different levels of heterogeneity in the
immunity or susceptibility of the population, the size of the epidemics and its conclusion can
change dramatically.

Considering the four main components of infectious diseases transmission, summarised
in the acronym DOTS (Duration of infectious period, Opportunities of transmission, prob-
ability of Transmission upon contact and Susceptibility), as described by Adam Kucharski
from the London School of Hygiene and Tropical Medicine ([4]), it is possible to verify that,
Bekker-Nielsen Dunbar and Held ([2]) and Gomes ([3]), cover, in their works, the majority of
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these components. The understanding of these four components is crucial for the epidemic
control and mitigation.

Gomes ([3]) describe works developed with colleagues ([1]), on the role that the hetero-
geneity in population susceptibility and connectivity play on the SARS-CoV-2 epidemic dy-
namics. They propose that by using classical mathematical disease transmission models, that
assume everyone is equally susceptible, one can overestimate the Herd Immunity Threshold
(HIT). Their results show that by increasing the heterogeneity of the population susceptibil-
ity, the HIT could be as low as 10%. Which means that the COVID-19 epidemic could be
resolved during the 2020–21 autumn–winter season. This is an important and hopeful hypoth-
esis, however it cannot be used as the base model for planning and decision making during
the public health emergency, where it is necessary to plan for the worst and hope for the best.

The works described by Bekker-Nielsen Dunbar and Held ([2]), namely in the project
SUSPend, look more deeply into the role of the Opportunities of transmission, and indi-
rectly into the component probability of Transmission upon contact, by introducing in their
models population contact matrices to model COVID-19 disease dynamics. One important
feature is the possibility of modelling the changes in population contacts as a function of time,
by allowing the introduction of time-dependent contact matrices. Modelling these compo-
nents and measuring their impact on the disease transmission is of utmost importance, given
that a relevant part of Non Pharmaceutical Interventions (NPI), recommended by Public
Health Authorities, are: incentivizing social distancing, use of mask and respiratory hygiene.
This pandemic has shown to us the capability of NPI, and their ability to interrupted or re-
duce infection transmission, given that they can be implemented at levels that do not suspend
the needed social interaction and the economy.

Finally, the last component of DOTS is the Duration of infectiousness that was not
directly discussed in the commentaries of Bekker-Nielsen Dunbar and Held ([2]) and Gomes
([3]). This component relates to the number of infectious individuals present in the general
population, that are not isolated or in a hospital, and their infectious period. The lower
the number of infectious individuals and the shorter their infectious period, results in lower
transmissibility of the infection. The reduction of the transmission in this component it
is in part achievable by the early identification of infection cases, its quick isolation and
quarantine of the closer contacts. A group of mathematical modellers from Universidade de
Trás-dos-Montes, Faculdade de Ciências e Tecnologia da Universidade NOVA de Lisboa and
the Instituto Nacional de Saúde Dr. Ricardo Jorge are currently developing an age-structured
SEIR model that accounts for different levels of contact tracing and symptomatic cases iden-
tification. This model is being developed under the project COVID-19 in-CTRL funded
by Fundação para a Ciência e Tecnologia, under the program RESEARCH4COVID ([5]).
The aim of this project is to evaluate the necessary coverage of SARS-CoV-2 symptomatic
cases that need to be identified by public health teams, and the proportion of close contacts
that need to be traced in order to reduce the effective reproduction number below 1.

As a final note, the authors would like to emphasize the important role that previous
statistical and mathematical modelling of infectious diseases research had in the scientific
response during the emergency of COVID-19. Previous developments, including open source
R packages like the ones made available by R Epidemics Consortium (RECON) ([5]), or the
ones described in the Bekker-Nielsen Dunbar and Held ([2]) commentary, like the surveillance
R ([6, 7]) package, were of invaluable importance during all the phases of this pandemic.
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In fact, it has shown the benefit of sharing knowledge and resources in the scope of enhancing
the global response to current and future pandemics.
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1. INTRODUCTION

The comparison of two treatments, T0 and T1, using matched pairs of individuals is a
simple and often effective way of improving precision and is the basis for many generalizations.
When each outcome is binary, 0 or 1, say, there are four possible outcomes from a pair, (0, 0)
and (1, 1), called concordant pairs, and (1, 0) and (0, 1), called discordant pairs. The analysis
of such data has been extensively discussed, partly because of the broader implications for
approaching formalized statistical inference; see, for example, the wide-ranging review of
Agresti [1] (1990).

McNemar [10] (1947) suggested testing the null hypothesis of treatment equivalence by
discarding the concordant pairs and testing the discordant pairs for an equal split between the
two possibilities, using the binomial distribution with parameter 1/2. Cox [3, 4] (1958a, b)
formalized this within a systematic approach to the analysis of binary data using an expo-
nential family setting based on a linear logistic model. In the psychometric literature the
problem is considered in this way as a special case of the Rasch model (Rasch [12], 1960).

One approach, possibly closer in spirit to McNemar’s paper, is to treat the analysis as
a simple significance test (Fisher [8, Chapter II], 1935) in which the strong null hypothesis
is that the outcome on each individual is totally unaffected by the treatment allocations,
taken to be by design independent randomization for each pair between the two possible
assignments. With m pairs and two treatments there are thus 2m possible configurations that
might be observed, each with the same probability under the null hypothesis; McNemar’s test
follows from that. Here a stochastic model for the data is not needed; rather the stochastic
element comes from the randomization in design. This is a powerful argument but limited
in its implications because an estimation formulation attached to it is rather contrived. The
extensive literature on the matched pairs and related issues has tended not to follow that
route.

A general aspect that underlies the discussion of binary data goes back in particular to
earlier differences between Karl Pearson and Yule (Pearson [11], 1907; Yule [13], 1903). The
former treated the two binary variables in a simple 2× 2 contingency table as derived from
an underlying standardized bivariate Gaussian distribution whose correlation coefficient is to
be estimated, whereas Yule considered the binary variables as such.

In the logistic formulation, let Ys0, Ys1 be independent random variables representing
the observations on the sth pair and suppose that for m pairs

P (Ys0 = i) = Li(αs − θ/2), P (Ys1 = j) = Lj(αs + θ/2), i, j ∈ {0, 1},(1.1)

where αs, θ ∈ R are unknown parameters, L1(x) = ex/(1 + ex) is the unit logistic function
and s = 1, ...,m and we write L0(x) = 1− L1(x). Interest is typically focused on θ whereas
the αs specify inter-pair differences supposed to be of no direct interest. Here i, j take values
0 and 1 and the parameter space is unconstrained.

It follows from the existence of complete sufficient statistics that if study of θ is to be
made regarding the αs as totally arbitrary nuisance parameters, then to achieve a procedure
not formally depending on those parameters, inference is made conditionally on the pair totals,
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and therefore confined to the discordant pairs. In the nonnull case this leads to confidence
limits for θ based on the binomial distribution.

The discarding of concordant pairs has often been regarded with unease, especially if
there are many such pairs, this superficially pointing to treatment equivalence. If, though, it is
required to cover the possibility that many of the αs are large in absolute value the rejection
seems inevitable. If, however, implicit or explicit restrictions are placed on the variation
of these parameters some information may be recoverable from the concordant pairs. For
example, Lee [9] (2001) replaced the logistic model by a broadly equivalent Poisson model.
Because of the richer reference set somewhat improved estimates involving the concordant
pairs were obtained.

Another route is to replace the logistic function in the above formulation by some other
function, for example the linear or Gaussian functions. Such a change might give a better
fit or a more direct interpretation or accommodate several related studies more conformably.
Aranda-Ordaz [2] (1981) studied a parametric family of transformations as a basis for choosing
the best fitting model. Empirical discrimination betweeen different models typically requires
extensive data.

In essentially discrete problems “exact” significance testing involves reference to a dis-
crete distribution and hence for each data configuration to a limited set of achievable signifi-
cance levels. There is a very extensive literature on how the discrete test can be augmented
to achieve some pre-specified level, such as 0.05. For interpretative purposes such arbitrarily
defined levels are irrelevant. Repetitive binary decision problems such as routine screening
need to be treated as such.

2. OUTLINE ANALYSES OF TWO MODELS

For data from m independent pairs we write for pair s the likelihood contribution for
outcome (i, j) as

Li(αs − θ/2)Lj(αs + θ/2).

It follows that, if π̂ij is the proportion of pairs with Y0 = i, Y1 = j with corresponding prob-
abilities πij , then

πij = AvesLi(αs − θ/2)Lj(αs + θ/2),(2.1)

where s indexes the pairs and Aves is the average over the m pairs in the study or over
a population of pairs from which the observed pairs have been randomly chosen. For each
fixed θ the sufficient statistics for the αs are the pair totals. Conditioning on these leaves no
information in the concordant pairs and the contribution to the conditional log likelihood is
thus L1(θ) from each of the N01 pairs with outcome (0, 1) and L0(θ) from each of N10 pairs
(1, 0). It follows that θ̂ = log(N01/N10) and L1(θ̂) = N01/(N01 +N10), so that, in particular,
from the variance of a binomial distribution,

var{L1(θ̂)} = L0(θ)L1(θ)/(mπD),(2.2)
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and then by the formula for the asymptotic variance of nonlinear function

var(θ̂) = 1/{mL0(θ)L1(θ)πD},

where πD is the average probability that a pair is discordant so that mπD is the expected
number of discordant pairs.

Suppose now that we replace the logistic formulation by the linear representation

P (Ys0 = 1) = 1/2 + βs − φ/2, P (Ys1 = 1) = 1/2 + βs + φ/2,(2.3)

where βs specifies the impact of the sth pair and φ gives the difference of probabilities between
the two groups. The parameter space is constrained so that all probabilities are in [0, 1].
This places relatively complicated restrictions on the component parameters. If we write
µβ = Σβs/m, σ2

β = Σβ2
s/m− µ2

β, then the four cell probabilities for the expected outcome
proportions are in a symmetrized notation

π00 = 1/4− φ2/4− µβ + γβ,

π01 = 1/4 + φ/2 + φ2/4− γβ ,

π10 = 1/4− φ/2 + φ2/4− γβ ,

π11 = 1/4− φ2/4 + µβ + γβ,

where γβ = µ2
β + σ2

β. Here φ specifies the inter-treatment differences and βs characterizes the
sth pair. Explicit characterization of the parameter space, that is the non-negativity of pij

is not simple.

It follows that φ = π01 − π10 is estimated by

(2.4) φ̂ = π̂01 − π̂10 = (N01 −N10)/m.

The numerator is the sum of independent random variables taking the values (−1, 0, 1) and
it follows that

var(φ̂) =
1− φ2 − 4γβ

2m
= (πD − φ2)/m.(2.5)

This depends not only on the discordant pairs but, through the denominator, also on
the total number of concordant pairs.

The variance component σ2
β can be estimated through its equivalence to

1/4− (π0. − π1.)(π.0 − π.1)/4− πD/2.

In this discussion µβ and σ2
β are the mean and variance of the finite population of values

of βs. Alternatively if the βs correspond to independent and identically distributed random
variables and expectations are taken over their distribution the parameters µβ and σ2

β refer
to that distribution.
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3. SOME SIMPLE COMPARISONS

Comparison of logistic and linear in probability and indeed other models can be viewed
in a number of distinct ways. From the viewpoint of formal statistical theory the logistic
model has the major advantage of leading to a full exponential family form with the regression
coefficients as canonical parameters (Cox [3], 1958a) and associated “exact” methods. Fully
efficient estimation for the linear in probability models requires iterative calculation. However
the use of ordinary least squares, treating the binary (0, 1) outcomes as if quantitative, has
high efficiency so long as the probabilities are in a central range, say (0.2, 0.8) (Cox and
Wermuth [7], 1992). The direct subject-matter interpretation of differences in probabilities in
terms of expected numbers of individuals affected is an advantage of the linear in probabilities
model but the severe restrictions to specified regions of the parameter space are a major
disadvantage of that formulation.

There is, however, a further general consideration applying to all issues connected with
binary data and going back to the early work of Karl Pearson [11] (1907) and Yule [13] (1903)
on the simpler 2× 2 table. Pearson treated binary variables as formed from dichotomizing
unobserved continuous variables having a bivariate normal distribution whose correlation is
the focus of interest, whereas Yule treated binary variables directly in their own right. In
many contexts the distinction is nugatory, although for quantal bioassay the former approach
is directly relevant. Each study individual has a just critical dose above which, say, a lethal
response is observed; each individual can be tested only once. Treating the unobserved critical
dose levels as having a normal distribution, virtually indistinguishable from a continuous
logistic distribution, is often reasonable; treating it as uniform, the implication of the linear
in probabilities model, would typically not be.

The distinction between logistic and linear formulation disappears at the null hypothesis
θ = φ = 0 and locally the parameter estimated in the linear in probability model is φ =
Aves{L1(αs + θ/2)− L1(αs − θ/2)} = θAves{L′

1(αs)}, where L′
1(·) is the derivate of L1(·),

and this is approximately
φ̃ = θAves{L1(αs)L0(αs)} = θπD/2.

Here Aves(bs) is the unweighted average Σbs/m. The asymptotic relative efficiency of the
linear and logistic procedures is thus given by the ratio var(φ̃)/var(φ̂) evaluated at the null
hypothesis and this is one.

Both logistic and linear formulations have three free parameters and are therefore sat-
urated families for the distribution over the four possible outcomes. The linear in probability
model has for most purposes the more directly understandable interpretation, although if the
proportions of, say, 1’s are small, the interpretation of the logistic model in terms of propor-
tional effects is attractive and the positivity constraints on the linear model are severe. Often
the most appealing base for choosing between different formulations is stability of estimated
effects across replicate sets of data, that is relative constancy of either θ or of φ, potentially
favouring the logistic formulation.

Instead of matching in pairs it would be possible to randomize the allocation of in-
dividuals to the two groups, leading to a comparison of two binomially distributed random
variables. We study the consequences of this in Section 8.
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4. SOME APPROXIMATIONS

A number of aspects of the study of logistic models involve the evaluation of expecta-
tions typified in its simplest form by E{L1(µ+A)}, where A is a random variable of zero
mean and variance σ2. There are a number of approximations for small σ equivalent to order
σ2 but one that is likely to be better over a wider range of values. The simplest is based on
Taylor expansion of L1(µ+A) for small A and is

E{L1(µ+A)} = L1(µ) + σ2L′′
1(µ)/2,(4.1)

where

L′′
1(µ) = L1(µ)L0(µ) {L0(µ)− L1(µ)} .

The second approximation is based on absorbing the correction term in (4.1) into the first by
writing the approximation

L1

{
µ+ σ2{L0(µ)− L1(µ)}/2

}
,

differing from (4.1) by terms of order O(σ4).

A third approximation is obtained less directly but is more stable for larger values of
σ2. We approximate the logistic function L1(x) by the standardized normal integral Φ(kx)
for a suitable constant k; this gives a good approximation over a wide range of arguments.
Then the expectation of interest is approximately E{Φ(kµ+ kA)} and if also A is normally
distributed this expectation is itself a normal integral. On re-expressing this as a logistic
function we obtain the third approximation

L1

{
µ

(1 + k2σ2)1/2

}
.

Suitable values of k are suggested by Cox and Snell [6, p. 21–22] (1989); a compromise value
over the central part of the range is k = 0.607. A major advantage of this third approximation
is that, unlike the other two, it gives qualitatively sensible answers even for large values of
σ2.

To aid interpretation, suppose for instance that the probabilities varied with roughly
95% of values being between 0.6 and 0.9. Then the corresponding logistic function varies
between 0.4 and 2.2 suggesting a σ of roughly 0.45. Then the correction factor

√
{1+(0.6072 ·

0.452)} would be about 1.04, implying a quite modest adjustment.

For more detailed comparisons more explicit information about the probability that a
pair is discordant is needed. We treat αs as a random variable A, so that

(4.2) πD = EA {L0(µ+A− θ/2)L1(µ+A+ θ/2) + L1(µ+A− θ/2)L0(µ+A+ θ/2)} .

This can be expanded in terms of σ by the methods outlined above. The complex details will
not be given.

Table 1 shows πD against θ, µ and σ. The calculated values of πD were confirmed by
simulation. The proportion of discordant pairs decreases rather slowly with σ.
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Table 1: Probability of a pair being discordant, πD, against θ, µ and σ.

πD(0)

θ 0 0.5 1 1.5 2

σ µ
0 0.500 0.530 0.607 0.702 0.790
0.5 0.470 0.500 0.578 0.676 0.769
1 0.393 0.422 0.500 0.604 0.709
1.5 0.298 0.324 0.396 0.500 0.615

πD(σ) / πD(0)

0.5 0 0.94 0.94 0.95 0.96 0.97
0.5 0.95 0.95 0.96 0.97 0.97
1 0.98 0.98 0.97 0.97 0.98
1.5 1.01 1.01 1.00 0.99 0.98
2 1.05 1.04 1.03 1.01 1.00

1 0 0.75 0.76 0.80 0.85 0.90
0.5 0.79 0.80 0.83 0.86 0.90
1 0.91 0.90 0.90 0.89 0.90
1.5 1.05 1.04 1.00 0.95 0.93
2 1.19 1.17 1.11 1.04 0.98

1.5 0 0.44 0.47 0.56 0.66 0.76
0.5 0.54 0.56 0.61 0.69 0.77
1 0.80 0.79 0.76 0.76 0.78
1.5 1.12 1.08 0.99 0.90 0.84
2 1.42 1.37 1.25 1.10 0.96

Estimation of σ is in principle possible by first estimating θ and µ and then comparing
the proportion of discordant observations with that to be expected in the homogenous case,
σ = 0. Table 1 shows that it is only for rather large value of σ and even then for certain
ranges of the other parameters that such estimation is likely to be effective.

5. UNCONDITIONAL ANALYSIS

Suppose that instead of pairing, individuals are randomized to two groups, 0 and 1,
therefore with probabilities of success

P (Y0 = 1) = E {L1(µ+A− θ/2)} , P (Y1 = 1) = E {L1(µ+A+ θ/2)} ,

respectively. The resulting unconditional analysis uses all pairs.

Thus, for example, the probability of success for an individual in group 0 is approxi-
mately

(5.1) ψ0 ' L1

(
µ− θ/2√
(1 + k2σ2)

)
and that for an individual in group 1 is

(5.2) ψ1 ' L1

(
µ+ θ/2√
(1 + k2σ2)

)
.
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To estimate the marginal log odds ratio, we calculate

logit(ψ1)− logit(ψ0) =
θ√

(1 + k2σ2)
.

Thus the sample proportions can be used to obtain an unconditional estimate of θ

θ̂U =
√

(1 + k2σ2)

{
log

ψ̂1

1− ψ̂1

− log
ψ̂0

1− ψ̂0

}
,

where in this discussion we shall treat σ as known or, more realistically, treated by sensitivity
analysis.

The asymptotic variance of the estimate of the treatment effect θ in the unconditional
analysis is then

(5.3) var(θ̂U ) ' (1 + k2σ2)
{

1
mψ0(1− ψ0)

+
1

nψ1(1− ψ1)

}
,

which can be expressed in terms of the functions Li. The parameter σ2 might possibly be
estimated from the proportion of discordant pairs, although the resulting precision is likely
to be low.

Table 2 shows var(θ̂U ) against θ, µ and σ. The variance of the estimate of θ from
the unconditional analysis increases with µ. The relation between σ and the variance of the
estimate of the treatment effect from the unconditional analysis is rather weak.

Table 2: var(θ̂U ) against θ, µ and σ.

var(θ̂U )

θ
0 2 4

µ µ µ

0 1 2 0 1 2 0 1 2

0 0.020 0.025 0.048 0.025 0.034 0.068 0.048 0.068 0.152
σ 0.5 0.022 0.027 0.049 0.027 0.035 0.067 0.049 0.067 0.142

1 0.027 0.033 0.053 0.033 0.040 0.068 0.053 0.068 0.125

6. COMPARISON OF THE EFFICIENCY OF THE CONDITIONAL AND
UNCONDITIONAL ANALYSES

The variances of θ̂C and θ̂U , the estimates from the conditional and unconditional anal-
ysis respectively, are next compared. The parameter θ is defined in terms of the conditional
formulation so that naive estimates of the log odds ratio are not directly comparable. Of the
values in Table 3, θ = 4 corresponds to a quite extreme odds ratio.
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Table 3: var(θ̂C)/var(θ̂U ) against θ, µ and σ.

var(θ̂C)/var(θ̂U )

θ
0 2 4

µ µ µ

0 1 2 0 1 2 0 1 2

0 1 1 1 1.54 1.41 1.20 3.76 2.93 1.87
σ 0.5 0.98 0.96 0.93 1.52 1.39 1.18 3.77 3.03 2.00

1 0.97 0.85 0.76 1.49 1.33 1.08 3.80 3.25 2.30

Table 3 shows the ratio of the variance of the estimate of θC to the variance of the
estimate of θU against θ, µ and σ. The ratio var(θ̂C)/var(θ̂U ) is equal to one when θ = σ = 0,
that is for the null hypothesis with effectively random pairing. As to be expected from the
matching, near θ = 0 the gain from using the conditional estimate increases with σ. Especially
for larger values of µ and θ, however, the unconditional estimate using the concordant pairs
is to be preferred.

The values of the variances as a function of µ, σ and θ were checked by simulation.
For θC there was good agreement and also for θU for small values of σ, but for large σ the
calculated variance was larger than the simulated variance.

We now return to testing the hypothesis of no difference between the two groups. In
comparing the conditional and unconditional analyses, it is important that the parameters
used to specify departures from the null hypothesis have broadly comparable interpretations
in the different formulations.

For the conditional analysis, described in Section 6, we take the test statistic to be
TC = log(N01/N10) and in the discussion to follow of the unconditional analysis we take
TU = log{(N.1N0.)/(N1.N.0)}.

Then TC , interpreted as the logit difference between the two individuals in an arbi-
trary pair, has asymptotic expected value E(TC) = θ. At the null hypothesis we have that,
asymptotically,

var(TC) =

{
1

1
2mD

+
1

1
2mD

}
=

4
mD

=
4

mπD
,

where m is the number of pairs, mD the number of discordant pairs and πD the probability
of a pair being discordant. The Pitman efficacy (Cox and Hinkley [5, p. 337–338], 1974) for
testing the hypothesis that θ = 0 is thus

EC =

{
∂E(TC)/∂θ

∣∣
θ=0

}2

mvar(TC)
∣∣
θ=0

= πD.

Under the null hypothesis, the probability of a pair being discordant, and hence also EC , is

(6.1) πD ' 2L0(µ)L1(µ)
{

1 +
1
2
σ2 (1− 6L0(µ)L1(µ))

}
.
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In the unmatched analysis of Section 7 we have, for instance, that P (Y0 = 1) =
E {L1(A− θ)}. Such probabilities can be calculated approximately by using a Taylor ex-
pansion or by approximating L1(·) by Φ(·), the standard normal cumulative distribution
function. For group 0 this gives

P (Y0 = 1) ' L1(µ− θ/2) +
1
2
σ2L1(µ− θ/2)L0(µ− θ/2) {L0(µ− θ/2)− L1(µ− θ/2)} .

For group 1 an analogous expression holds, with µ− θ/2 replaced by µ+ θ/2. By a further
approximation,

logit {P (Y0 = 1)} ' µ+
1
2
σ2 {L0(µ− θ/2)− L1(µ− θ/2)} ,

so that TU , the log odds contrast in the unconditional analysis, has asymptotic expected value

E(TU ) =
1
4
θ +

1
4
σ2 {L0(µ+ θ/2)− L1(µ+ θ/2)− L0(µ− θ/2) + L1(µ− θ/2)} .

Then
∂E(TU )
∂θ

' 1
2
{1− σ2L0(µ+ θ/2)L1(µ+ θ/2)}

which under the null hypothesis is {1− σ2L0(µ)L1(µ)}/2. The variance under the null hy-
pothesis is that of the comparison of two independent logits, each based on m observations
and thus is

var(TU ) =
1

2mL0(µ)L1(µ)

{
1− 1

2
σ2 (L0(µ)− L1(µ))2

}
,

assuming σ4 is negligible. Therefore the Pitman efficacy for TU is after some simplification

(6.2) EU ' L0(µ)L1(µ)
2

{
1 +

1
2
σ2 (1− 8L0(µ)L1(µ))

}
,

ignoring terms of order σ4 and above.

Therefore to assess the relative efficiency for θ = 0, we compare EU and RC . Since in
this special case EU is smaller than EC , near the null hypothesis of zero treatment effect the
matched design tends to be slightly more efficient than the unmatched one, as is confirmed
by the comparison of the variances.

Often L0(µ)L1(µ) ' 1/4 and then

EC ' 1
2

(
1− 1

4
σ2

)
and for comparison

EU ' 1
2

(
1− 1

2
σ2

)
.

Thus for testing the hypothesis of no treatment effect the conditional analysis is asymptoti-
cally slightly better than the unconditional analysis, depending on the amount of variability
between pairs.



Matched Pairs with Binary Outcomes 591

7. DISCUSSION

The main qualitative aspects in this discussion, some with broader implications, are
as follows. Most importantly, should conclusions be formulated in terms of differences of
probabilities or as logistic differences or possibly on some other scale? For any specific set of
data the choice is likely to be numerically unimportant if all probabilities are in the central
range, say between 0.2 and 0.8 (Cox and Wermuth [7], 1992). The choice becomes important
if several sets of data are considered together, when stability of contrasts across data sets, if
achievable, is desirable. The direct interpretation of differences of probabilities in terms of
the numbers of individuals notionally affected by a change in treatment is attractive but in
general decreasingly so at the extremes of the scale, where the logistic comparisons, essentially
log ratios at the two ends of the scale, become more appealing, especially so for case-control
studies, where there are quite strong specific arguments for the use of logistic differences.

The second general issue applying to the logistic analysis of matched pairs is that the
parameter of interest, a difference of log odds, is notionally specific to each pair. This implies,
in particular, that it is not directly comparable with the same difference calculated from an
unmatched randomized comparison of the same two treatments from the same population.
The exception is when the variation between pairs is small. Otherwise some correction based
on the inter-pair variability can be made, essentially using the relation between that variability
and the proportion of discordant pairs, but such adjustments are likely to be quite fragile.

The third issue is that detailed comparison of the conclusions from different studies,
some matched and some totally randomized, requires recognition that different ways of ex-
pressing the comparisons of interest by an unknown parameter may be involved.

Finally our detailed results show when the gain in sensitivity from matching is likely
to be appreciable.
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Mustafa Ç. Korkmaz
– Department of Measurement and Evaluation, Artvin Çoruh University,
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1. INTRODUCTION

Statistical distributions are important tools to model the characteristics of data sets
such as right or left skewness, bi-modality or multi-modality observed in different applied
sciences such as engineering, medicine and finance and among others. The well-known distri-
butions such as normal, Weibull, gamma, Lindley are extensively used because of theirs simple
forms and identifiability properties. However, in the last decade, researchers have focused
on the more complex and flexible distributions to increase the modeling ability of these dis-
tributions by adding one or more shape parameters. The well-known family of distributions
can be cited as follows: Marshall-Olkin-G (Marshall and Olkin [19], 1997), beta-G (Eugene
et al. [11], 2002), gamma-G (Zografos and Balakrishnan [33], 2009), type I half-logistic-G
(Cordeiro et al. [8], 2016), Burr X-G (Yousof et al. [32], 2016), generalized transmuted-G
(Nofal et al. [23], 2017) and exponentiated Weibull-H (Cordeiro et al. [7], 2017), among
others.

Recently, Sen et al. [29] (2016) proposed and studied the xgamma (XG) distribution
with cumulative distribution function (cdf) and probability density function (pdf) (for θ > 0)
given by

(1.1) G (x; θ) = 1−
1 + θ + θx + 1

2θ2x2

1 + θ
exp (−θx) , x > 0

and

(1.2) g (x; θ) =
θ2

1 + θ

(
1 +

θ

2
x2

)
exp (−θx) ,

respectively. During the recent years, the xgamma distribution has been shown great interest
by researchers. Altun and Hamedani [2] (2018) introduced a new bounded distribution using
the transformation Y = exp (−X) as an alternative to the beta distribution based on the
xgamma distribution. Biçer [4] (2019) introduced the transmuted-xgamma distribution and
studied its statistically properties comprehensively. The another generalization of xgamma
distribution was provided by Sen et al. [27] (2018a) on the basis of special mixture of expo-
nential and gamma distributions. Sen et al. [28] (2018b) studied the parameter estimation
of xgamma distribution under progressively type-II right censoring scheme by maximum
likelihood and Bayesian estimation methods. Sen and Chandra [25] (2017) introduced the
quasi-xgamma distribution by using the xgamma distribution as a baseline distribution. The
weighted generalization of xgamma distribution, using w (x) = xr as a weighting function,
was studied by Sen et al. [26] (2017).

In this paper, we introduce and study a new class of distributions called the xgamma-G
(XG-G) family. The idea is to incorporate any distribution into a larger family through an
application of the XG cdf. In fact, based on the T–X transform defined by Alzaatreh et

al. [3] (2013) and the XG cdf, we construct the XG-G family. The some of its mathematical
properties are provided comprehensively. The new family has flexible shapes to model various
lifetime data sets. Additionally, its special models produce better fits than other well-known
families.
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To this end, we define the cdf of the XG-G family with one extra shape parameter θ > 0
by

F (x; θ, ξ) =
θ2

1 + θ

∫ − log G(x;ξ)

0

(
1 +

θ

2
t2
)

exp (−θt) dt

= 1−
1 + θ − θ log G(x; ξ) + 1

2θ2
[
log G(x; ξ)

]2
1 + θ

G(x; ξ)θ,(1.3)

where G(x; ξ) = 1−G(x; ξ) and G (x; ξ) is a baseline cdf with a parameter vector ξ.

The pdf corresponding to (1.3) reduces to

(1.4) f(x; θ, ξ) =
θ

1 + θ
g(x; ξ)G(x; ξ)θ−1

{
θ +

1
2
θ2
[
log G(x; ξ)

]2}
,

where g(x; ξ) = dG(x; ξ)/dx. If the random variable (rv) T has the xgamma distribution
(1), then X = G−1 [1− exp (−T )] follows the XG-G family (4). Henceforth, we denote by
X ∼XG-G(θ, ξ) a rv having density (1.4). The hazard rate function (hrf) of X is given by

τ (x; θ, ξ) =
θr(x; ξ)

{
θ + 1

2θ2
[
log G(x; ξ)

]2}{
1 + θ − θ log G(x; ξ) + 1

2θ2
[
log G(x; ξ)

]2} .

The identifiability is an important property of the statistical distributions to satisfy the precise
inference for the model parameters. The following theorem is given to prove the identifiability
property of XG-G family.

Theorem 1.1. The cdf (1.3) is identifiable.

Proof: Assume that the baseline cdf G (x; ξ) is identifiable. The cdf (1.3) is identifiable
once F (x; θ1) = F (x; θ2) is valid if and only if θ1 = θ2. Using (1.3), we have

(1.5)
F (x; θ1) = F (x; θ2)
1−

(
1 + θ1 − θ1A + 1

2θ2
1A

2
)
(1 + θ1)

−1 exp (Aθ1)
= 1−

(
1 + θ2 − θ2A + 1

2θ2
2A

2
)
(1 + θ2)

−1 exp (Aθ2)

where A = log Ḡ (x). (1.5) can be simplified as follows[
exp (Aθ2)
(1 + θ2)

− exp (Aθ1)
(1 + θ1)

]
+
[
exp (Aθ2) θ2

(1 + θ2)
− exp (Aθ1) θ1

(1 + θ1)

]
−
[
exp (Aθ2) θ2A

(1 + θ2)
− exp (Aθ1) θ1

(1 + θ1)

]
+
[
exp (Aθ2) θ2

2A
2

2 (1 + θ2)
− exp (Aθ1) θ2

1A
2

2 (1 + θ1)

]
= 0(1.6)

The expression (1.6) is equal to zero for all x only when the parameters θ1 = θ2. Since the
parameter θ > 0, it is concluded that the model is identifiable: F (x; θ1) = F (x; θ2) ⇔ θ1 =
θ2.

The purpose of the generation of the XG-G family is to provide new opportunities to
model the different characteristics of the data sets such as left skewness, excess kurtosis and
bathtub failure rate. The well-known distributions are insufficient to model these kinds of
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data sets. The special members of the XG-G family can be used to model skewed and long-
tailed data sets to improve the modeling accuracy of interested data set with only one extra
shape parameter. Moreover, the proposed family is highly effective in modeling the censored
lifetimes of individuals with some covariates in a location-scale regression framework.

The remaining part of the paper is organized as follows. In Section 2, three special
cases of the XG-G family are given. In Section 3, a linear representation of the XG-G density
is provided. The comprehensive mathematical properties of the XG-G density are obtained
and reported in Section 4. Section 5 is devoted to the maximum likelihood estimation of
the model parameters for uncensored and censored data. In Section 6, we present a new
log-location-scale regression model based on the log XG-Weibull distribution. Section 7 deals
with simulation studies to evaluate the maximum likelihood estimators of the parameters of
proposed models. In Section 8, three applications to the real data sets are given to prove
empirically the importance of XG-G family. Section 9 contains the concluding remarks of the
study.

2. SOME SPECIAL XG-G MODELS

2.1. The XG-Lindley (XG-Li) model

Consider the cdf G(x) = 1− 1+a+ax
1+a exp (−ax) of the Li distribution with scale param-

eter a > 0. The XG-Li density (for x > 0) can be determined from (1.4). Some plots of the
XG-Li density and hazard functions for selected parameter values are displayed in Figure 1.
These plots reveal that the pdf of the XG-Li model can be reversed J-shape, right skewed or
unimodal. The hrf can be unimodal or bathtub.
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Figure 1: Plots of the XG-Li pdf (left) and hrf (right) for some parameter values.
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2.2. The XG-Weibull (XG-W) model

Consider the cdf G(x) = 1− exp[−(ax)b] of the W distribution with scale a > 0 and
shape b > 0. The pdf of the XG-W model (for x > 0) follows from (1.4). Some plots of the
XG-W pdf and hrf for selected parameter values are displayed in Figure 2. Figure 2 reveals
that the XG-W density can be concave down, left skewed or right skewed. The hrf of the
XG-W model can be increasing, decreasing, bathtub or unimodal.
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Figure 2: Plots of the XG-W pdf (left) and hrf (right) for some parameter values.

2.3. The XG-BurrXII (XG-BXII) model
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Figure 3: Plots of the XG-BXII pdf (left) and hrf (right) for some parameter values.
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Consider the cdf G(x) = 1− (1 + xa)−b of the BXII distribution with parameters a > 0
and b > 0. The pdf of the XG-BXII model (for x > 0) can be obtained from (1.4). Some plots
of the XG-BXII pdf and hrf for selected parameter values are displayed in Figure 3. These
plots reveal that the pdf of the XG-BXII model can be reversed J-shape, concave down or
right skewed. Its hrf can be increasing or unimodal.

3. USEFUL REPRESENTATION OF PDF AND CDF

The XG-G family density in (1.4) can be expressed as

f (x) =
θ2g(x)
1 + θ

G(x)θ−1 +
θ3g(x)

2 (1 + θ)
G(x)θ−1[log G(x)︸ ︷︷ ︸

A

]2.

Consider

(3.1) log(1− z) = −
∞∑
i=0

zi+1

i + 1
, |z| < 1,

and the power series raised to a positive integer n (Gradshteyn and Ryzhik [14, Section 0.314],
2002)

(3.2)

 ∞∑
j=0

aj uj

n

=
∞∑

j=0

cn,j uj ,

where the coefficients cn,j (for j = 1, 2, ...) can be easily determined from the recurrence
equation

cn,j = (ja0)
−1

j∑
m=1

[m (n + 1)− j] am cn,j−m and cn,0 = an
0 .

The coefficient cn,j can be calculated from cn,0, ..., cn,j−1 and hence from the quantities
a0, ..., aj . For |z| < 1 and b > 0, the power series holds

(3.3) (1− z)b−1 =
∞∑

k=0

(−1)k Γ(b)
k! Γ(b− k)

zk.

Applying (3.1) to the quantity A gives

f(x) =
θ2g(x)
1 + θ

G(x)θ−1 +
θ3g(x)

2(1 + θ)
G(x)θ−1G(x)2

[ ∞∑
i=0

G(x)i

i + 1

]2

︸ ︷︷ ︸
B

.

Next, the quantity B follows using (3.2) as

f(x) =
θ2g(x)
1 + θ

G(x)θ−1︸ ︷︷ ︸
C

+
θ3g(x)

2(1 + θ)

∞∑
i=0

c2,i G(x)i+2 G(x)θ−1︸ ︷︷ ︸
C

,

where ai = 1/(i + 1).
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Applying the power series (3.3) to the quantity C, we obtain

(3.4) f (x) =
∞∑

k=0

[
bk πk+1 (x) +

∞∑
i=0

bi,k πi+k+3 (x)

]
,

where

bk =
(−1)k θ2Γ(θ)

(k + 1) (1 + θ) Γ(θ − k)
, bi,k =

(−1)k θ3Γ(θ) c2,i

2(1 + θ)(i + k + 3) k! Γ(θ − k)
,

and πα(x) = α g(x) G(x)α−1 is the exponentiated-G (Exp-G) density function with power
parameter α > 0. So, the density of X is a linear combination of Exp-G densities.

The properties of Exp-G distributions have been studied by many authors in recent
years, see, for example, Mudholkar and Srivastava [20] (1993) and Mudholkar et al. [21]
(1995) for exponentiated Weibull (EW), Gupta and Kundu [16] (1999) for exponentiated
exponential and Nadarajah and Gupta [22] (2007) for exponentiated gamma, among others.

The cdf of X follows by integrating (3.4) as

(3.5) F (x) =
∞∑

k=0

[
bk Πk+1(x) +

∞∑
i=0

bi,k Πi+k+3(x)

]
,

where Πα(x) = G(x)α is the Exp-G cdf with power parameter α. Equations (3.4) and (3.5)
are the main results of this section.

4. PROPERTIES

In this section, we investigate some mathematical properties of the XG-G family.

4.1. Quantile function

The quantile function (qf) of X can be determined by inverting F (x) = u in (1.3). We
require numerical methods to obtain the quantiles. For given u, we solve numerically for
z = z(u) in the equation[

1 + θ − θ log(z) + 0.5 θ2 log2(z)
]

zθ = (1 + θ)(1− u),

and then x = Q(u) = G−1(1− z) is a variate from the XG-G family (1.4).

4.2. Moments

Let Yα be a rv having density πα(x). The r-th ordinary moment of X, say µ′r, follows
from (3.4) as

(4.1) µ′r = E (Xr) =
∞∑

k=0

[
bk E

(
Y r

k+1

)
+

∞∑
i=0

bi,k E
(
Y r

i+k+3

)]
,
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where E(Y r
α ) = α

∫∞
−∞ xr g(x) G(x)α−1 dx can be evaluated numerically in terms of the

baseline qf QG(u) = G−1(u) as E(Y n
α ) = α

∫ 1
0 QG(u)n uα−1du. Setting r = 1 in (4.1) gives

the mean of X. Table 1 lists the first three ordinary moments of XG-W distribution. The
results given in this table show that when the parameter θ increases, the ordinary moments
of XG-W decrease for fixed a and b parameters.

Table 1: Moments of XG-W distribution for several parameter values.

Parameters
µ

′
1 µ

′
2 µ

′
3

θ a b

2 2 2 1.619 3.333 7.990
2 2 1 0.809 0.833 0.999
2 2 0.5 0.405 0.208 0.125
2 1 0.5 0.417 0.333 0.375
2 0.5 0.5 0.667 2.125 14.035
1 0.5 0.5 3.500 48.000 1304.865

0.5 0.5 0.5 17.231 953.497 94367.230

4.3. Incomplete moments

The r-th incomplete moment of X is given by

(4.2) mr(y) =
∫ y

−∞
xr f(x)dx.

Using (3.4), the r-th incomplete moment of XG-G family is

mr(y) =
∞∑

k=0

[
bk mr,k+1(y) +

∞∑
i=0

bi,k mr,i+k+3(y)

]
,

where mr,α(y) =
∫ G(y)
0 Qr

G(u) uα−1 du. The mr,α(y) can be calculated numerically by using
the software such as Matlab, R, Mathematica etc. The incomplete moments of the XG-W
distribution are given in Table 2. As seen from the results given in Table 2, the incomplete
moments of XG-W distribution increases for fixed a and b parameters when the parameter θ

increases.
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Table 2: Incomplete moments of XG-W distribution for several parameter values.

Parameters
µ1(0.5) µ1(1) µ1(2)

θ a b

2 2 2 0.026 0.170 0.790
2 2 1 0.085 0.395 0.799
2 2 0.5 0.197 0.400 0.405
2 1 0.5 0.135 0.293 0.406
2 0.5 0.5 0.080 0.168 0.313
1 0.5 0.5 0.051 0.129 0.320

0.5 0.5 0.5 0.022 0.060 0.166

4.4. Moment generating function

The moment generating function (mgf) of X, say M(t) = E(et X), is obtained from
(3.4) as

M(t) =
∞∑

k=0

[
bk Mk+1 (t) +

∞∑
i=0

bi,k Mi+k+3 (t)

]
,

where Mα(t) is the generating function of Yα given by

Mα(t) = α

∫ ∞

−∞
et xG(x)g(x)α−1 dx = α

∫ 1

0
exp[t QG(u;α )]uα−1du.

The last two integrals can be computed numerically for most parent distributions.

5. ESTIMATION

This section deals with the maximum likelihood estimation of the unknown model
parameters.

5.1. Maximum likelihood estimation

Let x1, ···, xn be a random sample from the XG-G models with a parameter vector
Φ =(θ, ξᵀ)ᵀ. The log-likelihood function is given by

`n(Φ) = n log θ − n log (1 + θ) +
n∑

i=1

log g(xi; ξ) + (θ − 1)
n∑

i=1

log G(xi; ξ)

+
n∑

i=1

log
{

θ +
1
2
θ2
[
log G(xi; ξ)

]2}
.
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Taking the partial derivatives of the log-likelihood function concerning the parameters,
we obtain the score vectors. The simultaneous solution of these equations for zero gives the
maximum likelihood estimate of Φ. Since it is not possible to obtain closed-form expressions
of the maximum likelihood estimators of the parameters of XG-G family, direct maximization
of the log-likelihood is needed. In this study, the optim function of R software is used to
minimize the minus of the log-likelihood function which is equivalent to the maximization of
log-likelihood.

5.2. Multi-censored maximum likelihood estimation

Censored data are often encountered in survival analysis and reliability studies. Here,
the general case of multi-censored data is considered. Assume that m0 subjects of m are failed
at the times x1, ···, xm0 , m1 subjects of m are failed in (sj−1, sj) interval where j = 1, ...,m1

and m2 subjects of m survived until a time rj , j = 1, ...,m2. Note that m0 + m1 + m2 = m.
The log-likelihood function for Φ is

`m(Φ) = m0 log θ −m0 log (1 + θ) +
m0∑
i=1

log g(xi, ξ)

+ (θ − 1)
m0∑
i=1

log G(xi, ξ) +
m0∑
i=1

log
{

θ +
1
2
θ2
[
log G(xi, ξ)

]2}

+
m2∑
i=1

log

{
1

1 + θ

[
1 + θ − θ log tri +

(log tri)
2

2θ−2

]
tθri

}

+
m1∑
i=1

log

({
1− 1

1 + θ

[
1 + θ − θ log tsi +

(log tsi)
2

2θ−2

]
tθsi

}

−

{
1− 1

1 + θ

[
1 + θ − θ log tsi−1 +

(
log tsi−1

)2
2θ−2

]
tθsi−1

})
,

where tri = G(ri, ξ), tsi = G(si, ξ), tsi−1 = G(si−1, ξ) and the normal equations are available
before.

6. THE LXG-W REGRESSION MODEL FOR CENSORED DATA

Let X be a rv having the XG-W density function. The rv Y = log(X) defines the
log-xgamma Weibull (LXG-W) distribution. Let a = e−µ and b = σ−1. Then, the pdf of Y

(for y ∈ <) is given by

(6.1) f(y) =
θ

σ (1 + θ)
exp

[
(1− θ)

(
y − µ

σ

)] {
θ +

θ2

2

[
− exp

(
y − µ

σ

)]2
}

,

where µ ∈ <, σ > 0 and θ > 0. If Y is a rv having density function (6.1), we can write Y ∼
LXG-W(θ, µ, σ). For σ = 1, the LXG-W distribution reduces to the log-xgamma-exponential
(LXG-E) distribution. The survival function (sf) corresponding to (6.1) is given by

S(y) =
1

1 + θ

[
(1 + θ) +

(
θ − θ2

2

)
exp

(
y − µ

σ

)] {
exp

[
− exp

(
y − µ

σ

)]}θ

.
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We define the standardized rv Z = (Y − µ)/σ with pdf (for z ∈ <) given by

(6.2) f(z) =
θ

(1 + θ)
exp [(1− θ)z]

[
θ +

θ2

2
exp (2z)

]
.

Regression models are widely used to model dependent variable with some covariates.
The lifetimes of individuals are generally effected by some explanatory variables such as
gender, age, alcohol abuse or smoking. To model these kind of data sets, we propose a new
log-location-scale regression model based on the LXG-W density. Let yi be the response
variable and vT

i = (vi1, ..., vip) is the explanatory variable vector, we consider the following
regression model

(6.3) yi = vT
i β + σ zi, i = 1, ..., n.

where yi follows the LXG-W density with unknown parameters µi ∈ <, θ > 0, and σ > 0.
The location of yi, µi, is modeled by using the identity link function, µi = vT

i β. The vector
µ = (µ1, ..., µn)T is defined as µ = Vβ, where V = (v1, ...,vn)T is a known model matrix.

Let the random sample (y1,v1), ..., (yn,vn) are independent and the response variable
is defined as yi = min{log(ti), log(ci)}. Assume that the lifetimes and censoring times are
independent. F and C represent the sets of individuals for the log-lifetime and log-censoring,
respectively. The log-likelihood function for the vector of parameters η = (βT , θ, σ)T is given
by

l(η) = r log
[

θ

σ (1 + θ)

]
+ (1− θ)

∑
i∈F

yi − vT
i β

σ

+
∑
i∈F

log

{
θ +

θ2

2

[
− exp

(
yi − vT

i β

σ

)]2
}

+c log
(

1
1 + θ

)
− θ

∑
i∈C

exp
(

yi − vT
i β

σ

)

+
∑
i∈C

log
[
(1 + θ) +

(
θ − θ2

2

)
exp

(
yi − vT

i β

σ

)]
,(6.4)

where r and c are the number of uncensored (failures) and censored observations. The
parameter vector, η, of the LXG-W regression model is estimated by minimizing the minus of
log-likelihood function, given in (6.4). To do this, the optim function of R software is used.
The inverse of the observed information matrix is used to obtain corresponding standard
errors and construct 95% asymptotic confidence intervals of the parameters. The observed
information matrix is evaluated numerically at η̂ by hessian function of R software.

7. SIMULATION STUDIES

In this section, three simulation studies are given to evaluate the finite sample perfor-
mance of the parameters of proposed models.
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7.1. Simulations of XG-W and XG-N distributions

Here, we perform two simulation studies using the XG-W and XG-normal (XG-N)
distributions. To verify the performance of the MLEs for these distributions, we generate
1,000 samples of sizes 20, 50 and 100 from their qfs by inverting the cdfs. The simulation
results are reported in Tables 3 and 4. These results reveal that the mean estimates become
closer to the true parameter values when the sample size increases, whereas the standard
errors of the estimates decrease.

The cdfs of the XG-W and XG-N distributions are given here for convenience

F (x) = 1−
1 + θ + θ (ax) b + θ2

2 (ax)2b

1 + θ
exp

[
−θ(ax)b

]

and

F (x) = 1−
1 + θ − θ log

[
1−Φ

(x−µ
σ

)]
+ 1

2θ2
{
log
[
1−Φ

(x−µ
σ

)]}2

1 + θ

×
[
1−Φ

(
x− µ

σ

)]θ

,

respectively, where x , µ ∈ <, θ, σ > 0.

Table 3: Empirical means and standard errors (in parentheses)
for different values of the XG-W parameters.

Parameters n = 20 n = 50 n = 100

a, b, θ ba bb bθ ba bb bθ ba bb bθ

5, 5, 5 5.3196 5.2006 4.7679 5.2329 4.8741 4.9432 5.0876 4.9086 5.0471
(0.5927) (0.9124) (1.5578) (0.5339) (0.5449) (1.5381) (0.1677) (0.3679) (0.3703)

50,3,3 50.6839 3.0894 3.2746 49.5001 2.9022 3.1821 49.9190 2.9504 3.1318
(1.9717) (0.6324) (5.0238) (1.9357) (0.3407) (0.5332) (1.8658) (0.2525) (0.4192)

3,3,50 3.3019 3.2521 50.0152 3.0971 3.0684 50.0124 3.0622 3.0433 49.9866
(0.7011) (0.6395) (0.1291) (0.4194) (0.3396) (0.1232) (0.2885) (0.2412) (0.3244)

3,10,3 3.0714 10.3185 2.9319 3.0328 9.8262 3.0470 3.0203 9.8692 3.0153
(0.1308) (1.3464) (0.6916) (0.0526) (0.6161) (0.1897) (0.0460) (0.5184) (0.1689)

50,10,50 51.0354 10.6994 50.1005 50.4395 10.2804 50.0442 50.3066 10.1571 50.0298
(3.2573) (2.0583) (0.3469) (2.0441) (1.1738) (0.2420) (1.4197) (0.7910) (0.1551)

0.01,2,5 0.0107 1.9949 4.9998 0.0106 1.9961 4.9999 0.0105 1.9970 5.0001
(0.0013) (0.1175) (0.0013) (0.0008) (0.0391) (0.0003) (0.0005) (0.0264) (0.0004)

1,1,1 0.9338 1.1141 1.2913 0.9526 1.0424 1.1839 1.0430 1.0327 1.0584
(0.5201) (0.2313) (0.5837) (0.3619) (0.1177) (0.4090) (0.3041) (0.1023) (0.3542)

1,2,3 1.1736 2.0477 2.9188 1.1361 1.9665 3.0585 1.0643 1.9385 3.0133
(0.4524) (0.3743) (0.7855) (0.3183) (0.2056) (0.7672) (0.1287) (0.1538) (0.3812)

2,2,2 2.2538 1.9168 2.4294 2.0430 1.9369 2.3574 1.9826 1.9603 2.3360
(0.8596) (0.3450) (1.2688) (0.5113) (0.2314) (0.7653) (0.4837) (0.1494) (0.7579)

5,0.9,5 5.6190 0.9244 5.5789 5.2117 0.8744 5.2745 5.1839 0.9059 5.1761
(0.8374) (0.1629) (1.0001) (0.5833) (0.0824) (0.5583) (0.4753) (0.0792) (0.4106)

0.025,0.9,1 0.0271 0.9142 1.0044 0.0254 0.9081 0.9965 0.0253 0.8999 0.9968
(0.0131) (0.1036) (0.0730) (0.0041) (0.0767) (0.0365) (0.0040) (0.0485) (0.0540)
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Table 4: Empirical means and standard errors (in parentheses)
for different values of the XG-N parameters.

Parameters n = 20 n = 50 n = 100

θ, µ, σ bθ bµ bσ bθ bµ bσ bθ bµ bσ

5,0,1 4.9748 -0.0626 0.9531 5.0029 -0.0163 0.9829 5.0023 -0.0111 0.9918
(0.7832) (0.2480) (0.1611) (0.4507) (0.1539) (0.0968) (0.2156) (0.0966) (0.0674)

1,0,1 0.9254 0.0846 0.9605 1.0915 0.0519 0.9791 1.0126 0.1369 1.0126
(0.3459) (0.6632) (0.1990) (0.5446) (0.5433) (0.1819) (0.1570) (0.4313) (0.1570)

5,-1,1 4.8906 -1.0657 0.9416 5.0272 -1.0172 0.9850 4.9931 -1.0043 0.9922
(0.7691) (0.2425) (0.1598) (1.0933) (0.1696) (0.1023) (0.1220) (0.0951) (0.0685)

5,-1,2 4.5540 -1.4028 1.8114 4.8770 -1.1455 1.9313 5.0085 -1.0687 1.9668
(1.5270) (0.7732) (0.3485) (1.1746) (0.5544) (0.2326) (1.2758) (0.5046) (0.1903)

1,0,2 1.1759 0.2696 1.9480 1.0623 0.0886 1.9207 1.0115 0.0078 2.0198
(0.6231)) (1.0898) (0.4291) (0.5966) (1.0551) (0.3179) (0.3250) (0.1924) (0.2135)

5,0.25,0.5 4.9820 0.2220 0.4792 5.0115 0.2426 0.4914 4.9943 0.2457 0.4948
(0.2254) (0.0996) (0.0719) (0.2712) (0.0716) (0.0476) (0.0751) (0.0444) (0.0340)

1,1,1 1.2206 1.1946 0.9452 1.1730 1.1117 0.9606 0.9647 1.0068 0.9741
(0.5303) (0.5923) (0.1978) (0.6568) (0.6751) (0.1619) (0.1463) (0.0056) (0.1575)

50,5,5 50.0425 4.5608 4.8112 49.9274 4.7581 4.9854 49.9130 4.9392 4.9764
(0.5333) (1.6910) (0.8088) (0.9864) (1.0880) 4.9854 49.9130 4.9392 4.9764

4,-50,10 4.2033 -50.6667 9.4225 4.0616 -50.5333 9.6902 4.0208 -49.8745 10.0017
(1.4918) (2.5538) (1.4512) (1.5078) (2.4856) (1.1384) (1.0730) (2.2228) (0.8002)

0.9,0,0.01 0.8998 0.00042 0.009603 0.9001 0.0001 0.0098 0.9000 0.0000 0.0099
(0.0000) (0.0032) (0.0014) (0.0000) (0.0019) (0.0009) (0.0000) (0.0014) (0.0006)

0.9,50,10 0.9594 50.2913 10.2145 0.9038 50.0927 9.8318 0.9012 50.0459 9.9480
(0.3181) (1.5910) (1.3660) (0.1473) (1.1424) (1.2016) (0.1046) (0.9813) (0.7806)

7.2. Simulation of the LXG-W regression model

Table 5: Simulation results of LXG-W regression model.

Censoring rate=0.10 n=50 n=200 n=500

Parameters AE Bias MSE AE Bias MSE AE Bias MSE

θ 2.4958 0.4958 0.7937 2.2815 0.2815 0.4029 2.0743 0.0743 0.1866
σ 0.5077 0.0077 0.0061 0.5090 0.0090 0.0028 0.5048 0.0048 0.0010
β0 1.9266 -0.0734 0.4430 1.9563 -0.0437 0.2712 1.9870 -0.0130 0.1184
β1 1.9992 -0.0008 0.0215 1.9997 -0.0003 0.0054 2.0010 0.0010 0.0020

Censoring rate=0.20 n=50 n=200 n=500

Parameters AE Bias MSE AE Bias MSE AE Bias MSE

θ 2.3648 0.3648 0.4329 2.1059 0.1059 0.3109 2.0528 0.0528 0.0722
σ 0.5059 0.0059 0.0030 0.5120 0.0120 0.0008 0.5147 0.0147 0.0001
β0 1.9669 -0.0331 0.2197 1.9776 -0.0224 0.0840 1.8440 -0.1560 0.0080
β1 2.0047 0.0047 0.0135 2.0037 0.0037 0.0020 1.9994 -0.0006 0.0001

Censoring rate=0.30 n=50 n=200 n=500

Parameters AE Bias MSE AE Bias MSE AE Bias MSE

θ 2.2911 0.2911 0.6217 2.1508 0.1508 0.1559 1.9377 -0.0623 0.0262
σ 0.5011 0.0011 0.0018 0.5077 0.0077 0.0026 0.5084 0.0084 0.0014
β0 2.0236 0.0236 0.1682 2.0620 0.0620 0.3145 1.9769 -0.0231 0.1693
β1 2.0030 0.0030 0.0100 1.9962 -0.0038 0.0061 2.0009 0.0009 0.0027
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The simulation study is given to evaluate the MLEs of the parameters of LXG-W regres-
sion model. The three censoring rates (10%, 20%, 30%) and sample sizes (n = 50, 200, 500)
are used. The simulation replication is N = 1, 000. The lifetimes are generated by using
the quantile function of the LXG-W distribution. The following parameter vector is used:
(θ = 2, σ = 0.5, β0 = 2, β1 = 2). For each generated sample sizes, the biases, average of esti-
mates (AEs) and MSEs are calculated. The simulation results are reported in Table 5. As
seen from the results, the estimated biases and MSEs are near the desired value, zero. More-
over, the estimated AEs are closer the nominal values which indicates that the estimates are
stable. The similar results can be also obtained for different parameter vector.

8. DATA ANALYSIS

In this section, we provide three applications to real data to illustrate the importance
and flexibility of the XG-W, XG-N and LXG-W distributions. The Akaike Information Crite-
ria (AIC), Bayesian information criterion (BIC) and Kolmogorov-Smirnov (K-S) statistic are
used to compare the fitted distributions. All computations are performed using the maxLik
routine in the R software.

8.1. Application 1: Glass fibres data

The first data set represents the strength of 1.5 cm glass fibres measured at National
physical laboratory, England (Smith and Naylor [30], 1987). These data have been analyzed
by Korkmaz and Genç [18] (2017). We shall compare the fits of the XG-W, Kumaraswamy-
Weibull (Kw-W) (Cordeiro and de Castro [9], 2011), beta-Weibull (BW) (Famoye et al.

[12], 2005), Lindley-Weibull (LW) (Cakmakyapan and Ozel [6], 2016), EW (Mudholkar and
Srivastava [20], 1993) and odd log-logistic-Weibull (OLL-W) (Gleaton and Lynch [13], 2010;
da Cruz et al. [10], 2016) distributions to the glass fibres data. The cdfs of the Kw-W, BW,
LW, EW and OLL-W models (for x > 0) are given by

F (x) = 1−
(
1−

{
1− exp

[
−(ax)b

]}γ)η
,

F (x) =
1

B (γ, η)
B
(
1− exp

[
−(ax)b

]
, γ, η

)
,

F (x) = 1− exp
[
−θ (ax)β

] [
1 +

θ

θ + 1
(ax)β

]
,

F (x) =
{

1− exp
[
−(αx)β

]}θ
,

F (x) =

{
1− exp

[
−(ax)b

]}θ

{
1− exp

[
−(ax)b

]}θ
+ exp

[
−θ(ax)b

] ,
respectively, where B(γ, η) is the complete beta function and the parameters of the above
densities are all positive real numbers. The MLEs (and their corresponding standard errors
in parentheses) of the parameters, AIC, BIC and K-S statistics for the above fitted models
are displayed in Table 6. The values in this table indicate that the XG-W model provides a
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better fit than the other fitted models because proposed model has the smallest values of the
AIC, BIC and K-S statistics and has the largest p-value of the K-S statistic.

Table 6: The MLEs (standard errors in parentheses), AIC, BIC and K-S
(with p-values in {·}) statistics for glass fibres data.

Model bγ bη bθ ba bb AIC BIC K-S
XG-W - - 0.4392 0.8952 4.6911 31.4342 37.8636 0.1210

- - (0.0421) (0.0250) (0.1330) {0.3151}
Kw-W 0.7910 112.6514 - 0.2702 7.2790 38.3943 46.9669 0.1524

(0.1088) (15.9962) - (0.0226) (0.5671) {0.1073}
BW 0.6207 120.6149 - 0.3051 7.7653 37.1752 45.7477 0.1455

(0.0947) (0.3733) - (0.0088) (0.1522) {0.1388}
LW - - 117.0336 0.2698 5.7804 36.4135 42.8429 0.1522

- - (9.4031) (0.0215) (0.5800) {0.1078}
EW - - 0.6713 0.5821 7.2841 35.3510 41.7804 0.1462

- - (0.2876) (0.0332) (2.0252) {0.1351}
OLL-W - - 0.9438 0.6159 6.0252 36.3736 42.8030 0.1537

- - (0.2655) (0.0163) (1.3273) {0.1018}

8.2. Application 2: Leukemia data

The second data set represents the lifetimes in days of 40 patients suffering from
leukemia from one of the Ministry of Health Hospitals in Saudi Arabia (Abouammoh et

al. [1], 1994). The data have been analyzed by Sarhan et al. [24] (2013). We compare
the XG-N distribution with the Kumaraswamy-normal (Kw-N) (Cordeiro and de Castro [9],
2011), power-normal (PN) (Gupta and Gupta [15], 2008), logistic-normal (L-N) (Tahir et al.

[31], 2016) and odd log-logistic-normal (OLL-N) (Braga et al. [5], 2016) distributions. The
cdfs of the Kw-N, PN, L-N, and OLL-N models are given by

F (x) = 1−
{

1−
[
Φ
(

x− µ

σ

)]γ}η

,

F (x) =
[
Φ
(

x− µ

σ

)]θ

,

F (x) =

{
1 +

[
1−Φ

(
x− µ

σ

)]−θ
}−1

,

F (x) =

[
Φ
(x−µ

σ

)]θ[
Φ
(x−µ

σ

)]θ +
[
1−Φ

(x−µ
σ

)]θ ,

respectively, where x , µ ∈ <, γ, η, σ > 0 and Φ(·) is the cdf of the standard normal distribu-
tion.

Table 7 lists the MLEs (and their standard errors) of the parameters and the K-S
statistic for the fitted models. The figures in this table reveal that the XG-N distribution
has the smallest values of the AIC, BIC and K-S statistics and has the largest p-value of the
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K-S statistic. Therefore, we can conclude that the XG-N distribution could be chosen as the
most adequate model for this data set.

Table 7: The MLEs (standard errors in parentheses) AIC, BIC and K-S
(with p-values in {·}) statistic for leukemia data.

Model bγ bη bθ bµ bσ AIC BIC K-S
XG-N - - 0.6892 662.6324 609.7157 609.7157 614.7824 0.0825

- - (0.0717) (0.9018) (1.5488) {0.9484}
Kw-N 0.8320 0.2217 - 614.6680 294.0911 616.3179 623.0734 0.1314

(1.0023) (0.2217) - (0.5583) (1.7209) {0.4942}
PN - - 5.5078 189.8173 776.1012 615.2070 620.2736 0.1196

- - (0.8745) (4.2845) (0.8745) {0.6163}
L-N - - 4.4833 719.6505 1329.4302 617.0567 622.1234 0.1022

- - (0.5873) (0.5873) (4.1943) {0.7976}
OLL-N - - 36.6070 1169.5520 16331.9508 614.8475 619.9142 0.0869

- - (5.9316) (4.1943) (7.2647) {0.9228}

The histogram of both data sets and the estimated pdfs and cdfs of the XG-W and
XG-N models and their competitive models are displayed in Figures 4 and 5, respectively. It
is clear from these plots that the XG-W and XG-N models provide the best fits to both data
sets.
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(a) Fitted pdfs for data set I. (b) Fitted cdfs for data set I.

Figure 4: Plots of the estimated pdfs and cdfs of the XG-W distribution
and other competitive models.
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Figure 5: Plots of the estimated pdfs and cdfs of the XG-N distribution
and other competitive models.

8.3. Application 3: Diabetic retinopathy study

We consider a data set analyzed by Huster et al. [17] (1989) which represents patients
with diabetic retinopathy in both eyes and 20/100 or better visual acuity for both eyes
were eligible for the study. The patients were followed for two consecutively completed 4
month follow-ups and the endpoint was the occurrence of visual acuity less than 5/200. We
choose only the treatment time. A 50% sample of the high-risk patients defined by diabetic
retinopathy criteria was taken for the data set (n =197) and the percentage of censored
observations was 72.4%. The variables involved in the study are: ti – failure time for the
treatment (in min); censoring indicator (0 = censoring, 1 = lifetime observed); xi1 – age (0 =
patient is an adult diabetic, 1 = patient is a juvenile diabetic). The below regression structure
is fitted by LXG-W regression model

yi = β0 + β1xi1 + σ zi,

where the rv Yi has the LXG-W distribution (6.1) for i = 1, ..., 197. The statistical soft-
ware R is used to estimate the unknown model parameters by MLE approach. The op-
tim function of R software is used to minimize the minus of log-likelihood function, given
in (6.4). The initial values of the parameters are taken from the fitted LXG-E regression
model (with σ = 1). The MLEs of the parameters of LXG-W regression model (approximate
standard errors and p-values in parentheses) are: θ̂ = 1.7187 (1.8739), σ̂ = 1.2085 (0.1518),
β̂0 = 4.2902 (1.9308) (0.0068) and β̂1 = 0.6474 (0.3755) (0.0215). The explanatory variable x1

is found statistically significant at the 5% significance level. In order to assess the validity of
the fitted regression model, the estimated survival functions of the LXG-W regression model
and empirical one are displayed in Figure 6. As seen from this figure, the LXG-W regression
model provides substantial fit to these data.
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Figure 6: Estimated survival function by fitting the LXG-W regression model and
the empirical survival for each level of the diabetic retinopathy study.

9. CONCLUSIONS

A new class of distributions called the xgamma-G family with one extra positive param-
eter is introduced and studied. We provide some mathematical properties of the new family
including ordinary and incomplete moments, quantile and generating functions and mean
deviations. The maximum likelihood method is used for estimating the model parameters.
We assess of the performance of the maximum likelihood estimators in terms of biases and
mean squared errors by means of two simulation studies. We also introduced a new linear
regression model based on the logarithm of the xgamma random variable for uncensored and
censored data. We prove that the special models of the proposed family provide consistently
better fits than other competitive models by means of three real data sets.
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1. INTRODUCTION

Surveys are intended not only to estimate population target parameters, but also to
estimate characteristics for a variety of subpopulations commonly known as domains or areas.
An area is considered as small if the sample domain is not sufficiently large to have a direct
estimate of the area parameter with adequate precision. Then, the goal of the small area
estimation is to produce reliable estimates of subpopulation target parameters for areas with
small samples or even where the area is not sampled at all; see Pfeffermann [30] (2013).

Currently, the small area estimation methodology is playing an important role in both
public and private sectors. Different government agencies around the world, for example,
the Bureau of Labor Statistics and Census Bureau in the United States (US), Ministry of
Social Development of Chile, National Administrative Department of Statistics in Colombia,
National Council for the Evaluation of Social Development Policy in Mexico and Office of
National Statistics in the United Kingdom (UK) are adopting such a methodology. This is
due to the need for reliable estimates on parameters of interest in specific areas or domains;
see Rao and Molina [35] (2015).

Because of the wide acceptance about small area estimation in recent years, several
models have been developed, applied and studied. Pfeffermann [30] (2013), Rao [34] (2003)
and Rao and Molina [35] (2015) reviewed the advances in this methodology from its beginnings
to the present. Small area estimation methodology can be divided into two parts (Lohr [24,
pp. 518-522], 1999): (i) design-based techniques (for example, direct, synthetic and composite
estimators) and (ii) model-based techniques (for example, area-level models and unit-level
models); see Coelho and Pereira [6] (2011), Pereira and Coelho [29] (2012) and Rueda et al.

[36] (2018). On the one hand, in design-based techniques, the existence of a model is not
recognized. Implicit models are sometimes proposed as an assisting tool, linking a number
of small areas according to administrative or census records, which is considered as auxiliary
data. Then, even when the model is misspecified, design-based properties can hold; see
Lehtonen and Veijanen [22] (2009). On the other hand, model-based techniques rely on
explicit super-population models (Datta [7], 2009) and include area-level models, relating each
small area characteristic to auxiliary data that are available for each area. Area-level modeling
is often described by the popular Fay-Herriot (FH) model (Fay and Herriot [13], 1979),
which has been widely used in small area estimation. Li and Lahiri [23] (2010) emphasized
that the main reasons for its widespread usage include: (i) its simplicity, (ii) its ability to
protect the confidentiality of microdata, and (iii) its ability to produce design-consistent
estimators. Other advantages of the FH model are that it takes into account the sampling
design (level 1 model) and only requires area auxiliary variables that, in general, are more
easily available in practice than unit auxiliary variables. Applications of the FH model
have been extensive, mainly in the study of poverty and other related socio-demographic
variables. For a reference in the context of big data sources in small area estimation through
the FH model, see Marchetti et al. [25] (2015). A recent application of the FH model for
poverty mapping in Chile can be found in Casas-Cordero et al. [2] (2016). Also, model-
based techniques include unit-level models relating the unit values of the response variable
to auxiliary variables for each individual in the survey; see Coelho and Casimiro [5] (2008).
A well-known model proposed by Battese et al. [1] (1988) is a particular example of a
unit-level model, corresponding to a nested regression model. Area and unit model-based
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techniques in small area estimation are presented by Jiang and Lahiri [20] (2006), Datta [7]
(2009) and Datta and Ghosh [8] (2012), among others. Linear mixed models have played
a crucial role in model-based techniques. Note also that these techniques can be based on
either Bayesian or frequentist methods. In this paper, we consider a frequentist model-based
technique employing the FH model under a non-informative sampling design. For informative
sampling, see Pfeffermann and Sverchkov [31] (2007).

A problem detected in small areas, using the FH model, is that the standard methods
utilized for variance component estimation may produce a negative or zero value. For more
details about these methods, see Fay and Herriot [13] (1979), Prasad and Rao [33] (1990) for
moment estimation (PR method), and Datta and Lahiri [9] (2000) for maximum likelihood
(ML) and residual or restricted ML (RML) estimation. Note that the empirical best linear
unbiased predictor (EBLUP) of a small area mean does not take into account the variance of
the random effect for the corresponding area, reducing it to a regression estimator. Li and
Lahiri [23] (2010) and Yoshimori and Lahiri [42] (2014) solved this problem adjusting the
associated likelihood function.

The expectation-maximization (EM) algorithm is a popular iterative approach to esti-
mate parameters by the ML method in models with incomplete data (unobserved or missing).
This algorithm is used in many applications of mixed models, because there the unobserved
data occur naturally. A comprehensive account of the EM algorithm is found in Laird and
Were [21] (1982), van Dyk [39] (2000) and McLachlan and Krishnan [26] (2008). Some advan-
tages of the EM algorithm are the following: (i) it is more stable than other algorithms, due
to its property of monotone convergence (Laird and Were [21], 1982); (ii) it is more robust to
starting values than other algorithms (Demidenko [11], 2013); and (iii) it generates positive
definite matrix estimates if the starting matrix is positive definite (Thompson and Meyer
[38], 1986; Searle et al. [37], 2006; Demidenko [11], 2013; El-Leithy et al. [12], 2016). An
important feature related to (iii), stated by Searle et al. [37, pp. 297-298] (2006), is that the
iterations will always remain in the parameter space, since the ML estimation is performed
for the complete data.

The main objectives of this research are: (i) to review the estimation methods proposed
at date on the topic; (ii) to propose an alternative approach for avoiding a negative or zero
value in the variance component estimates, using the EM algorithm in both ML (MLEM)
and RML (RMLEM) methods; (iii) to evaluate the proposed approach by Monte Carlo (MC)
simulations; and (iv) to illustrate potential applications of our approach with official data
related to food security and poverty. The proposed approach is compared to the methods
presented in Li and Lahiri [23] (2010) and Yoshimori and Lahiri [42] (2014).

The outline of this paper is as follows. Section 2 introduces background to the FH
model, the EBLUP of a small area mean, and a measure of its uncertainty. In addition, in
this section, some variance component estimation methods are reviewed, highlighting their
advantages and shortcomings. In Section 3, we propose an approach based on the EM algo-
rithm to get positive values for the variance component estimates. In Section 4, the results of
an MC simulation are presented to assess the performance of the proposed approach, compar-
ing it to two alternative methods recently introduced. In Section 5, we apply our approach
to estimate the small area means of monthly per capita expenditure in a food security and
poverty study conducted in Mexico; see CIESIN [4] (2005). Conclusions and future research
are discussed in Section 6.
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2. THE FAY-HERRIOT MODEL

2.1. Formulation

Suppose that there are m small areas labeled as i = 1, ...,m. Assuming a p× 1 vector of
observed values xi = (xi1, ..., xip)> for auxiliary variables is available for each area i, Fay and
Herriot [13] (1979) proposed their model to improve the direct estimator θ̂i used to compute
the true small area mean θi, consisting of the following two levels:

• Level 1 (sampling model): θ̂i|θi
IND∼ N(θi, ψi),

• Level 2 (linking model): θi
IND∼ N(x>i β, σ2), i = 1, ...,m,

where “IND” stands for “independent”, ψi is the known variance of the sampling error, β =
(β1, ..., βp)> is a vector of unknown regression coefficients to be estimated, and σ2 is the
unknown variance of the area-specific random effect to be estimated. Level 1 accounts for the
sampling variability of the survey estimates θ̂i of θi, whereas Level 2 links θi to the vector of
p known area-specific auxiliary variables; see Jiang and Lahiri [20] (2006) and Li and Lahiri
[23] (2010). Then, the FH model can be written as

(2.1) θ̂i = x>i β + bi + εi, i = 1, ...,m,

where bi
IID∼ N(0, σ2) are independent and identically distributed (IID) area-specific random

effects with unknown σ2 to be estimated from the data, and εi
IND∼ N(0, ψi) represent sampling

errors with known variances ψi. Although in this paper we are considering ψi as known, in
practical cases when the variances ψi are not available, Fay and Herriot [13] (1979) employed
generalized variance functions (Wolter [41, Chapter 7], 2007) to estimate them. In addition,
it is assumed that bi and εi are independent.

2.2. Estimation of a small area mean

We are interested in estimating or predicting the small area mean θi = x>i β + bi, as
well as in obtaining a measurement of uncertainty associated with that prediction. Under
the model given in (2.1), the best predictor (BP) of θi, which minimizes the mean squared
error (MSE), can be expressed by a weighted average of the direct estimator θ̂i and the
regression-synthetic estimator x>i β, being it defined as

(2.2) θ̂ BP
i = (1−Bi)θ̂i +Bi x

>
i β, i = 1, ...,m,

with the weight 0 < Bi < 1 defined as Bi = ψi/(σ2 + ψi). Note that (1−Bi) is a function
of the variance ratio σ2/ψi and measures the uncertainty when estimating θi relative to the
total variance σ2 + ψi; see Rao and Molina [35] (2015). In addition, the parameter σ2 is a
measure of homogeneity of the areas after accounting for the auxiliary variables xi. If σ2 is
known, β can be obtained by the standard weighted least squares estimator β; see Mert [27]
(2015). Hence, by replacing it in (2.2), one gets the best linear unbiased predictor (BLUP)
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of θi expressed as

(2.3) θ̂ BLUP
i = (1−Bi)θ̂i +Bi x

>
i β, i = 1, ...,m,

where

β =

m∑
i=1

xiθ̂i/(σ2 + ψi)

m∑
i=1

xix>i /(σ2 + ψi)
.

The BLUP of θi given in (2.3) depends on σ2, which is unknown in practical applications.
Replacing σ2 in (2.3) with a general estimator, that for now we denote by σ̂ 2 (see details in
Section 2.3), we obtain the EBLUP of θi as

(2.4) θ̂ EBLUP
i = (1− B̂i)θ̂i + B̂i x

>
i β̃,

where B̂i and β̃ are the estimators of Bi and β when σ2 is replaced with σ̂ 2 in (2.2) and
(2.3), respectively. Note that the model given in (2.1) can be rewritten in matrix terms as

(2.5) Y = Xβ + Imb + ε,

where Y = (Y1, ..., Ym)>, with Yi = θ̂i, X = (x1, ...,xm)> is of full rank, Im is the m×m

identity matrix, β is defined as above, b = (b1, ..., bm)> and ε = (ε1, ..., εm)>. In addition,
as mentioned in scalar terms, b and ε are independently distributed with b ∼ Nm(0,G)
and ε ∼ Nm(0,S), for G = σ2Im and S = diag{ψ1, ..., ψm}. The model defined in (2.5) is
a particular case of a more general linear mixed model (Datta et al. [10], 2005) with its
variance-covariance matrix taking the form V = G + S.

2.3. Estimation of σ2

Note that the EBLUP given in (2.4) depends on the way how σ2 is estimated. Different
methods have been proposed in the literature to estimate σ2; see Fay and Herriot [13] (1979)
and Prasad and Rao [33] (1990). In those cases when the estimate of σ2 takes a negative value,
Prasad and Rao [33] (1990) suggested to truncate the negative estimate at zero. They also
showed that the probability of having a negative estimate goes to zero as m→∞; see Datta
[7] (2009). As an alternative, the ML method has been widely used in small area estimation;
see Jiang and Lahiri [20] (2006) and Rao and Molina [35] (2015). It was employed by Datta
and Lahiri [9] (2000) in the context of the FH model, in whose case the log-likelihood function
takes the form

(2.6) `ML(σ2,β;Y ) = c− 1
2

log(|V |)− 1
2
(Y −Xβ)>V −1(Y −Xβ),

where c is a constant that is independent of σ2. By differentiating (2.6) with respect to β

and σ2, we have

∂`ML(σ2,β;Y )
∂β

= X>V −1Y −X>V −1Xβ,(2.7)

∂`ML(σ2,β;Y )
∂σ2

=
1
2
(Y −Xβ)>V −2(Y −Xβ)− 1

2
tr(V −1).(2.8)
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Thus, equating (2.7) and (2.8) to zero, and solving them simultaneously with respect to σ2

and β, we obtain the ML estimators of σ2, denoted by σ̂ 2
ML, and of β given in (2.3). If

we replace β by β̃ in (2.6), we have the corresponding profile log-likelihood (PML) function
expressed as

(2.9) `PML(σ2;Y ) = c− 1
2

log(|V |)− 1
2
Y >PY ,

where P = V −1 − V −1X(X>V −1X)−1X>V −1. Equating (2.9) to zero and solving it with
respect to σ2, we have an estimator of σ2 identical to that obtained through (2.6) by means
of the ML method; see Jiang [19] (2007). Consequently, the associated estimate computed
with the PML method is not analyzed here. Datta and Lahiri [9] (2000) obtained both the
asymptotic variance and bias of σ̂ 2

ML, given respectively by

V [σ̂ 2
ML] =

2
tr(V −2)

+ o(m−1),(2.10)

Bias[σ̂ 2
ML] =

tr(P − V −1)
tr(V −2)

+ o(m−1).

Note that the ML estimates tend to underestimate the variance components and then the
RML estimation is preferred; see Pinheiro and Bates [32] (2004). A feature of the RML
method is that, when estimating variance components, it takes into account the degrees of
freedom involved in estimating the fixed effects, which is not considered by the ML method;
see Searle et al. [37] (2006). Several alternative derivations of the RML method have been
presented in the literature; see Harville [18] (1977), Jiang [19] (2007) and references therein.

Verbyla [40] (1990) proposed an approach which divides the likelihood function into two
independent parts, one related to the fixed effect (Y1 = L>1 Y ) and the another part related
to the residual contrasts Y2 = L>2 Y , where L = [L1 L2] is a non-singular matrix, with Y

given in (2.5) and L1 and L2 being m× p and m× (m− p) matrices, respectively, both of
full column rank, which are chosen to satisfy L>1 X = Ip and L>2 X = 0. Therefore, Y is
transformed as

L>Y =
[
L>1 Y
L>2 Y

]
=
[
Y1

Y2

]
∼ Nm

([
β
0

]
,

[
L>1 V L1 L>1 V L2

L>2 V L1 L>2 V L2

])
.

The probability density function (PDF) of L>Y can be expressed as the product of the
conditional PDF of Y1 given Y2 and the marginal PDF of Y2. Hence, the log-likelihood
function of L>Y is `(β, σ2;L>Y ) = `(β, σ2;Y1|Y2) + `(σ2;Y2). Since Y1 is a p× 1 vector
and `(σ2;Y2) is not a function of β, the fixed effects are estimated from `(β, σ2;Y1|Y2). Once
β has been estimated, there is no information left for estimating σ2 and `(σ2;Y2) is used
for estimating σ2. The function `(σ2;Y2) is known as residual or restricted log-likelihood
function, from which the RML estimator is obtained. Then, under the FH model defined in
(2.5), it is expressed as

(2.11) `RML(σ2;Y2) = c− 1
2

log(|X>V −1X|)− 1
2

log(|V |)− 1
2
Y >PY .

Thus, the RML estimator of σ2, σ̂ 2
RML namely, is generated as a solution of the equation

∂`RML(σ2;Y2)
∂σ2

= 0.
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Datta and Lahiri [9] (2000) showed that V [σ̂ 2
RML] is identical to V [σ̂ 2

ML] given in (2.10),
whereas σ̂ 2

RML is asymptotically unbiased for σ2. All above estimators hold the following
properties: (i) they are m

1
2 -consistent, that is, σ̂ 2− σ2 = O(m

1
2 ); (ii) they are even functions

of Y and hence σ̂ 2(−Y ) = σ̂ 2(Y ); and (iii) they are invariant functions under translation
and so σ̂ 2(Y + Xd) = σ̂ 2(Y ), for any d ∈ Rp and for all Y ; see Datta et al. [10] (2005).
In contrast to these properties (i)-(iii), the FH, ML, PR and RML methods can provide
non-admissible negative or zero values for the estimates of σ̂ 2, especially when the number
of small areas is low; see Li and Lahiri [23] (2010) and Yoshimori and Lahiri [42] (2014).
However, as happens in practice with any of these methods, the estimate σ̂ 2 = max(σ̂ 2

M, 0) is
used, where “M” indicates the FH, PR, ML or RML method. Then, if σ̂ 2 = 0 (when the Level
2 model is perfect), the EBLUP in (2.4) reduces to the simple regression-synthetic estimator
(since B̂i = 1), which typically has an overshrinking problem. Thus, as mentioned by Li and
Lahiri [23] (2010), this situation is unrealistic, because Level 2 model cannot be perfect and
σ̂ 2 should be always greater than zero. To solve the problem of a negative or zero value for
the variance component estimate, various methods have been proposed. Li and Lahiri [23]
(2010) adjusted the ML (LML) method defining a product of σ2 and a standard likelihood
function, introducing the adjusted log-likelihood function `LML(σ2;Y ) = `(σ2;Y ) + log(σ2),
where `(σ2;Y ) may be chosen from (2.9) or (2.11). Its maximization produces the LML and
Li-Lahiri RML (LRML) estimators of σ2, denoted as σ̂ 2

LML and σ̂ 2
LRML, respectively. Both

σ̂ 2
LML and σ̂ 2

LRML are strictly positive, even for small m. Li and Lahiri [23] (2010) showed
that their asymptotic variances are as given in (2.10). In addition, the corresponding biases
are expressed as

Bias[σ̂ 2
LML] =

tr(P − V −1) + 2/σ2

tr(V −2)
+ o(m−1),

Bias[σ̂ 2
LRML] =

2/σ2

tr(V −2)
+ o(m−1).

Yoshimori and Lahiri [42] (2014) proposed other adjusted ML method, with adjusted likeli-
hood function defined as the product of a function h(σ2) and a standard likelihood function.
In this case, the adjusted log-likelihood function is defined as

(2.12) `YML(σ2;Y ) = `(σ2;Y ) + log(h(σ2)),

where `(σ2;Y ) expressed in (2.12) can be chosen from (2.9) or (2.11), and h(σ2) = (tan−1(tr−
(Im −B)))

1
m , with B = diag{B1, ..., Bm} and Bi as defined in (2.2). Thus, the Yoshimori-

Lahiri ML (YML) and Yoshimori-Lahiri RML (YRML) estimators of σ2, denoted by σ̂ 2
YML

and σ̂ 2
YRML, respectively, are obtained by maximizing (2.12) with respect to σ2. Both σ̂ 2

YML

and σ̂ 2
YRML are also strictly positive, even for small m. Yoshimori and Lahiri [42] (2014)

showed that their asymptotic variances are identical as in (2.10). In addition, we have that

Bias[σ̂ 2
YML] =

tr(P − V −1)
tr(V −2)

+ o(m−1)

and σ̂ 2
YRML is asymptotically unbiased for σ2.

2.4. Uncertainty of the EBLUP

A measure of uncertainty of the EBLUP of θi given in (2.4) is obtained by its mean
squared predicted error (MSPE), also known as MSE or predicted mean squared error (Rao
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and Molina [35, Section 5.2, p. 119], 2015), defined by

(2.13) MSPE[θ̂ EBLUP
i ] = E[θ̂ EBLUP

i − θi]2,

which, under certain regularity conditions, can be decomposed as (Datta et al. [10], 2005)

(2.14) MSPE[θ̂ EBLUP
i ] = g1i(σ2) + g2i(σ2) + E[θ̂ EBLUP

i − θ̂ BLUP
i ]2,

where

g1i(σ2) =
σ2ψi

σ2 + ψi
, g2i(σ2) =

ψ2
i

(σ2 + ψi)2
x>i

 m∑
j=1

1
σ2 + ψi

xjx
>
j

−1

xi.(2.15)

The term g1i(σ2) is of order O(1), which captures the uncertainty of the BP given in (2.2),
whereas the term g2i(σ2) is of order O(m−1), capturing the uncertainty due to the estimation
of β. The last term in (2.14) considers the uncertainty due to the estimation of σ2. Ignoring
this term seriously underestimates the MSPE. However, there is no closed-form expression
available for it, but an approximation of order O(m−1) can be expressed by (Li and Lahiri
[23], 2010)

E[θ̂ EBLUP
i − θ̂ BLUP

i ]2 = g3i(σ2) + o(m−1),

where

(2.16) g3i(σ2) =
ψ2

i

(σ2 + ψi)3
V [σ̂ 2].

Therefore, a second-order approximation to MSPE[θ̂ EBLUP
i ] in (2.13) or (2.14), under certain

regularity conditions, is defined as

(2.17) MSPE[θ̂ EBLUP
i ] = g1i(σ2) + g2i(σ2) + g3i(σ2) + o(m−1).

It is noteworthy that both terms g1i(σ2) and g2i(σ2) given in (2.17) do not depend on the
estimation method for σ2 or Bi, but σ2 affects the term g3i(σ2) through V [σ̂ 2]. For the FH
model, Datta et al. [10] (2005) and Datta [7] (2009) showed that the term g3i(σ2) is the
smallest in the ML and RML methods, but it is the largest in the PR and FH methods.

Note that MSPE[θ̂ EBLUP
i ] defined in (2.17) depends on σ2, which is unknown and

hence cannot be used to asses the uncertainty of the EBLUP for a certain data set. Then,
it is of interest to obtain a second-order unbiased estimator of MSPE(θ̂ EBLUP

i ), denoted as
M̂SPE[θ̂ EBLUP

i ], which must satisfy

E[M̂SPE[θ̂ EBLUP
i )]−MSPE[θ̂ EBLUP

i ] = o(m−1).

Datta and Lahiri [9] (2000) derived a standard second-order unbiased approximation to the
MSPE of the EBLUP, which is valid for all estimation methods of σ2 discussed in this paper,
and given by

(2.18) M̂SPE[θ̂ EBLUP
i ] = g1i(σ̂ 2) + g2i(σ̂ 2) + 2g3i(σ̂ 2)− B̂ 2

i B̂ias[σ̂ 2],

where g1i(σ̂ 2), g2i(σ̂ 2) and g3i(σ̂ 2) are defined in (2.15) and (2.16), respectively, when σ2 is
replaced by σ̂ 2 and B̂ias[σ̂ 2] is a second-order unbiased estimator of Bias[σ̂ 2]. It is important
to note that a disadvantage of the method proposed by Li and Lahiri [23] (2010) for estimating
σ2 is that it can yield a negative value for the corresponding MSPE; see Yoshimori and Lahiri
[42] (2014).
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3. EM ALGORITHM IN THE ML ESTIMATION OF σ2

3.1. The EM algorithm

Let Yo be the random vector corresponding to the observed data yo, and θ the parame-
ter of interest corresponding to a d×1 vector with parameter space Θ. The vector yo is viewed
as being incomplete and is regarded as an observable function of the complete data. The ran-
dom vector Yc = (Y >

o ,U>)> corresponds to the complete-data vector yc = (y>o ,u
>)>, where

U is the random vector associated with u, the vector of unobserved or missing data. Let
`(θ|yo) be the log-likelihood function for θ based on observed data. The EM algorithm
approaches the problem of solving the incomplete-data likelihood equation ∂`(θ|yo)/∂θ = 0
indirectly by proceeding in an iterative form in terms of the complete-data log-likelihood
function, `(θ|yc). As it is unobservable, it is replaced by its conditional expectation given
Yo = yo, using a current estimate of θ. Let θ(0) be a starting value for θ. Then, on the first
iteration, the E-step of the EM algorithm requires the calculation of

(3.1) Q ≡ Q(θ|θ(0)) = E[`(θ|Yc)|Yo,θ
(0)],

whereas its M-step needs the maximization of Q(θ|θ(0)) with respect to θ over the parameter
space Θ. Hence, we choose θ(1) such that Q(θ(1)|θ(0)) ≥ Q(θ|θ(0)), for all θ ∈ Θ. The E-step
and M-step must be iterated until reaching convergence, for example, when |`(θ(r+1)|Yo)−
`(θ(r)|Yo| < 10−5, where θ̂ (r+1) is the current ML estimate of θ and θ̂ (r) is its previous
estimate; see McLachlan and Krishnan [26, pp. 18-20] (2008). Thus, the (r + 1)-th iteration
of the EM algorithm consists of an E-step followed by an M-step described as:

E-step: Given θ̂ = θ̂(r), compute Q(θ|θ̂(r)) = E[`(θ|Yc)|Yo, θ̂
(r)].

M-step: Find θ̂(r+1) maximizing Q(θ|θ̂(r)) such that Q(θ(r+1)|θ̂(r)) ≥ Q(θ|θ̂(r)), for
all θ ∈ Θ.

3.2. The EM algorithm in the ML method for small area estimation

To solve the problem of negative or zero values when estimating the strictly positive
variance components mentioned in Section 2.3, we propose to use the EM algorithm. Then,
we derive the MLEM and RMLEM approaches. Let Yo = Y , U = b and θ = (β, σ2)>. From
(2.5), we have that

Yc =
(

Y
b

)
∼ N2m

([
Xβ
0

]
,

[
V σ2Im

σ2Im σ2Im

])
,

with V = G + S given below (2.5). Then, the distribution of b conditional on Y is b|Y =
y ∼ Nm(σ2V −1(y −Xβ), σ2(Im − σ2V −1)). Thus, the log-likelihood function for θ based
on yc can be expressed as `(β, σ2;yc) = `(β, σ2;y|b) + `(σ2; b). Hence, we have that

(3.2) `(β, σ2;yc) = c− 1
2

log(|S|)− 1
2
ε>S−1ε− 1

2
log(|σ2Im|)−

1
2σ2

b>b,

where ε = y −Xβ − b and c is a constant that is independent of σ2.
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Let Q1 ≡ Q1(β, σ2|β(0), σ2(0)
). By eliminating the constant term in (3.2) and according

to (3.1), we obtain Q1 = E[`(β, σ2|Yc)|Y ,β(0), σ2(0)
] as

(3.3)

Q1 = −1
2

log(|S|)− 1
2
E[ε>S−1ε|Y ,β(0), σ2(0)

]− 1
2

log(|σ2Im|)−
1

2σ2
E[b>b|Y ,β(0), σ2(0)

].

After some algebraic steps, we get

(3.4) E[ε>S−1ε|Y ,β(0), σ2(0)
] = tr(S−1(ε̃1 ε̃>1 + Var[b1])),

with σ2(0)
and β(0) being starting values for σ2 and β, respectively, where ε̃1= E[ε|Y ,β(0)σ2(0)

]
= Y −Xβ − b̃1, and

b̃1 =
(

1
σ2(0)

Im + S−1

)−1

S−1(Y −Xβ(0)), Var[b1] =
(

1
σ2(0)

Im + S−1

)−1

.

In addition, we have that

(3.5) E[b>b|Y ,β(0), σ2(0)
] = tr( b̃1 b̃>1 + Var[b1]),

so that substituting (3.4) and (3.5) in (3.3), we obtain

Q1 = −1
2

log(|S|)− 1
2
ε̃>1 S−1ε̃1−

1
2

log(|σ2Im|)−
1

2σ2
b̃>1 b̃1−

1
2
tr
((

1
σ2

Im + S−1

)
Var[b1]

)
.

Maximizing Q1 with respect to β and σ2, we get

β̂ = (X>S−1X)−1X>S−1(Y − b̃1), σ̂2
(1)

=
1
m

(
b̃>1 b̃1 + tr

(
1

σ2(0)
Im + S−1

)−1
)
.

Thus, the first main result of this study based on the EM algorithm, for the ML method used
in the FH model, is described as follows:

Step 0. Set r = 0 and choose starting values β(0) and σ2(0).

Step 1. For r ≥ 0, calculate

b̃
(r+1)
1 =

(
1

σ2(r)
Im + S−1

)−1

S−1(Y −Xβ̂(r)).

Step 2. For r ≥ 0, compute

β̂(r+1) = (X>S−1X)−1X>S−1(Y − b̃
(r+1)
1 ),

σ̂2
(r+1)

=
1
m

b̃
(r+1)>

1 b̃
(r+1)
1 + tr

(
1

σ̂2
(r)

Im + S−1

)−1
 .

Step 3. Iterate Steps 1 and 2 from r = 1 until reaching convergence when the differ-
ence in absolute value between the iterations (r + 1)-th and r-th is less than
a small preset precision value (for example10−5).

The EM algorithm generates positive definite matrix estimates in Step 2, if the starting
matrix is positive definite according to Thompson and Meyer [38] (1986), Searle et al. [37]
(2006), Demidenko [11] (2013) and El-Leithy et al. [12] (2016) in the context of mixed models.
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3.3. EM algorithm in the RML method for small area estimation

The joint distribution of b and Y2 (defined in Section 2.3) is given by(
Y2

b

)
∼ N2m−p

([
0
0

]
,

[
L>2 V L2 σ2L>2
σ2L2 σ2Im

])
.

From results of the multivariate normal distribution and after some matrix operations, we
have that the distribution of b conditional on Y2 is b|Y2 = y2 ∼ Nm(σ2Py2, σ

2(Im − σ2P )).
Since we propose to use the EM algorithm to estimate σ2 with the RML method, we rewrite
the log-likelihood function for Yc in (3.2) as

(3.6) `(σ2;Yc) = c− 1
2

log(|S|)− 1
2
ε>S−1ε− 1

2
log(|σ2Im|)−

1
2σ2

b>b.

Then, we maximize it conditional on Y2.

Let Q2 ≡ Q2(σ2|σ2(0)
). By eliminating the constant term in (3.6) and according to

(3.1), we have that Q2 = E[`(σ2|Yc)|Y2, σ
2(0)

] is such that

(3.7) Q2 = −1
2

log(|S|)− 1
2
E[ε>S−1ε|Y2, σ

2(0)
]− 1

2
log(|σ2Im|)−

1
2σ2

E[b>b|Y2, σ
2(0)

].

After some algebraic steps, we obtain

(3.8) E[ε>S−1ε|Y2, σ
2(0)

] = tr(S−1(ε̃2 ε̃>2 + Var[b2])),

where Var[b2]= σ2(0)
(Im−σ2(0)

P (0)), ε̃2 = E[ε|Y2, σ
2(0)

] = Y−Xβ− b̃2, with b̃2 = σ2(0)
P (0)Y

and P (0) being a starting value for P . In addition, we have that

(3.9) E[b>b|Y2, σ
2(0)

] = tr(b̃2 b̃>2 + Var[b2]),

so that substituting (3.8) and (3.9) in (3.7), it conducts to

Q2 = −1
2

log(|S| − 1
2
ε̃>2 S−1ε̃2 −

1
2

log(|σ2Im|)−
1

2σ2
b̃>2 b̃2 −

1
2
tr((σ2Im + S−1) Var[b2]).

Maximizing Q2 with respect to σ2, we obtain σ2(1) = (1/m)(b̃>2 b̃2 +tr(σ2(0)
(Im−σ2(0)

P (0)))).
Thus, the second main result of this study based on the EM algorithm, for the RML method
in the FH model, is summarized as follows:

Step 0. Set s = 0, and choose a starting value σ2(0).

Step 1. For s ≥ 0, calculate b̃
(s+1)
2 = σ̂2

(s)
P (s)Y .

Step 2. For s≥ 0, compute σ̂2
(s+1)

= (1/m)(b̃(s+1)>

2 b̃
(s+1)
2 +tr(σ̂2

(s)
(Im− σ̂2

(s)
P (s)))).

Step 3. Iterate Steps 1 and 2 from r = 1 until reaching convergence when the dif-
ference in absolute value between the iterations (r + 1)-th and r-th is less a
small preset precision value (for example10−5).
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4. MONTE CARLO SIMULATION STUDY

4.1. Scenario of the simulation

We present a multi-sample MC simulation study to compare the performance of the
approaches proposed in this paper (MLEM and RMLEM) as alternative solutions to the
problem of a negative or zero value in the estimate of σ2. The multi-sample simulation is
a common practice in MC procedures whenever we do not have an easy way to estimate
measures of dispersion of a statistic, like for the MSE; see Fishman [15] (1973), Figueiredo
and Gomes [14] (2004) and Gomes et al. [16, 17] (2011, 2016) for details about multi-sample
MC simulation. The idea is reasonably simple: in a multi-sample simulation of size R× T ,
instead of generating a sample of very large size of observed values of a statistic, Nsim = R×T
say, we collect T observations of the statistic on each of the R independent replications of the
experiment. The value of T also needs to be large enough to reduce the bias, and eventually
provide asymptotic normality. Then, we take the average of the corresponding R estimates
as overall estimate of the parameter of interest, where each estimate is computed from T

runs. Thus, under very broad conditions, the overall estimator converges to normality as
R increases. Moreover, we may estimate the standard error (SE) of this overall estimator,
even if R is small. For small values of R, and whenever we may guarantee the asymptotic
normality of the estimator for the parameter of interest, we may use the t-student distribution
with R − 1 degrees of freedom to approximate its true distribution. The performance of
the approaches proposed in this paper is compared to the LML, LRML, YML and YRML
methods, according to their percentage relative bias (PRB) and MSE, as well as the MSPE of
the EBLUP estimator. We follow the same scenario used in Yoshimori and Lahiri [42] (2014)
to do an effective comparison in relation to that work. Specifically, we consider the FH model
defined in (2.1) with a common mean µ = x>i β. As the MSE is invariant under translation,
we set µ = 0 without loss of generality. However, to account for the uncertainty in the
estimation of the common mean that arises in practice, we treat the mean as unknown. We
generate R = 20 independent MC replications with T = 500 runs (Nsim = 20× 500 = 10, 000)
of {Yi, i = 1, ...,m} using the FH model: Yi = bi + εi, where bi and εi are independent with
bi

IID∼ N(0, σ2) and εi
IND∼ N(0, ψi). We analyze both balanced (equal sampling variances ψi)

and unbalanced (unequal sampling variances ψi) cases for different values of m. To examine
the effect of the number of small areas on the performance of several estimators, we use
values of m ∈ {15, 30, 45}. In the balanced case, we consider each of the combinations of
m and ψi, where ψi ∈ {0.05, 0.1, 1, 10, 20}, fixing σ2 = 1. We also examine the effect of
σ2/ψi on the performance of the estimators as in Yoshimori and Lahiri [42] (2014). In the
unbalanced case, we also fix σ2 = 1 and assume the following three patterns of sampling
variances as in Yoshimori and Lahiri [42] (2014): (i) Pattern A, ψi ∈ {0.1, 0.4, 0.5, 0.6, 4.0},
where almost all (but one) of the sampling variances are smaller than σ2; (ii) Pattern B,
ψi ∈ {1.5, 2.0, 2.5, 3.0, 3.5}, where all sampling variances are slightly greater than σ2; and (iii)
Pattern C, ψi ∈ {2, 4, 5, 6, 20}, where not only are all sampling variances greater than σ2, but
one is much greater than σ2, representing a case for extremely small area. Pattern A was
also used by Datta and Lahiri [9] (2000) and Datta et al. [10] (2005), and Pattern C by Chen
and Lahiri [3] (2008) in their simulation studies. In each pattern, we consider five groups
(g) of small areas, each with three, six or nine small areas according to m = 15, m = 30 or
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m = 45, such that the sampling variances ψi are the same within a given group. For example,
in Pattern A for m = 15, we simulate three small areas for each case with sampling variances
ψi = 0.1, 0.4, 0.5, 0.6 and 4.0. Similarly the other patterns of sampling variances and m were
simulated.

4.2. Behavior of σ̂2

The empirical probabilities of obtaining a zero estimate of σ2 by different methods for
balanced and unbalanced cases are reported in Tables 1 (balanced case) and 2 (unbalanced
case). In both cases, the MLEM/RMLEM approaches and the LML/LRML/YML/YRML
methods produce strictly positive estimates of σ2. As mentioned in Yoshimori and Lahiri [42]
(2014), only the ML and RML methods could yield negative or zero estimate of σ2. For the
balanced case and the ML/RML methods, the probability of getting negative or zero esti-
mate increases as σ2/ψi decreases in both methods, being slightly smaller in the RML method.

Table 1: Percentage of negative or zero estimate of σ2 for the indicated m,
variance ratio and method.

m σ2/ψi ML RML LML LRML YML YRML MLEM RMLEM

15 0.05 57.57 50.50 0 0 0 0 0 0
0.1 52.28 44.89 0 0 0 0 0 0

1 8.49 6.49 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0

30 0.05 51.14 46.09 0 0 0 0 0 0
0.1 43.91 38.97 0 0 0 0 0 0

1 1.42 1.09 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0

45 0.05 48.18 44.25 0 0 0 0 0 0
0.1 39.68 36.02 0 0 0 0 0 0

1 0.26 0.18 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0

Table 2: Percentage of negative or zero estimate of σ2 for the indicated m,
pattern and method.

m Pattern ML RML LML LRML YML YRML MLEM RMLEM

15 A 0.92 0.37 0 0 0 0 0 0
B 27.33 21.65 0 0 0 0 0 0
C 35.37 27.04 0 0 0 0 0 0

30 A 0.06 0.03 0 0 0 0 0 0
B 13.87 11.29 0 0 0 0 0 0
C 28.21 23.39 0 0 0 0 0 0

45 A 0 0 0 0 0 0 0 0
B 7.50 6.24 0 0 0 0 0 0
C 21.40 18.21 0 0 0 0 0 0
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As m increases, this probability decreases and is very similar in both methods. In the unbal-
anced case, Pattern C (having an extreme value in the sampling variance) yields the largest
percentages of negative or zero variance component estimates. Similarly to the balanced case,
as m increases, this probability decreases, being smaller for the RML method than the ML
method. In the remainder of this section, we consider only the performance of those methods
mentioned above that produce strictly positive variance, because these methods solve the
problem of inadmissibility presented in this paper (we do not further comparisons for the ML
and RML methods). An aspect to be evaluated for assessing the performance of different
estimators of σ2 is their bias. We use the PRB of a given estimator of σ2, σ̂ 2 say, defined
in our simulation study as the sample mean P̂RB[σ̂ 2] = (1/R)

∑R
r=1(P̂RBr[σ̂ 2)] of the PRB

calculated on the R = 20 replications, with P̂RBr[σ̂ 2] = (1/T )
∑T

t=1((σ̂
2(t) − σ2)/σ2)× 100,

where σ̂ 2(r)
denotes an estimate of σ2 for the t-th instance in the r-th replication, with an

associated SE defined as ((1/(R−1))
∑R

r=1(P̂RBr[σ̂ 2]− P̂RB[σ̂ 2)]2)1/2. The PRBs of estima-
tors for σ2 are presented in Tables 3 and 4 for balanced and unbalanced cases, respectively.

Table 3: PRB and its corresponding SE (in parentheses) of estimators of σ2

for the indicated m, variance ratio and method.

m σ2/ψi LML LRML YML YRML MLEM RMLEM

15 0.05 1094.36 (24.35) 1272.41 (27.71) 224.55 (18.36) 309.57 (21.42) 171.28 (19.42) 262.68 (22.69)
0.1 541.57 (13.50) 636.53 (15.31) 94.98 (10.38) 143.26 (12.07) 69.39 (10.79) 121.47 (12.60)

1 44.33 (2.96) 62.77 (3.25) -11.38 (2.68) 1.38 (2.90) -12.14 (2.71) 0.81 (2.93)
10 10.61 (2.06) 20.65 (2.23) -6.94 (1.79) 0.42 (1.92) -6.95 (1.79) 0.42 (1.92)
20 9.34 (1.64) 18.86 (1.78) -6.61 (1.42) 0.42 (1.53) -6.61 (1.42) 0.42 (1.53)

30 0.05 672.31 (13.29) 737.93 (14.26) 144.30 (11.8) 187.01 (12.62) 124.84 (12.02) 175.96 (12.76)
0.1 322.88 (9.24) 358.37 (9.88) 53.59 (9.12) 78.31 (9.93) 44.51 (9.43) 73.99 (10.29)

1 21.76 (2.17) 29.46 (2.26 ) -6.19 (2.16) 0.44 (2.24) -6.24 (2.16) 0.51 (2.24)
10 4.89 (1.22) 9.14 (1.27) -3.51 (1.14) 0.16 (1.18) -3.51 (1.14) 0.17 (1.18)
20 4.19 (1.26) 8.23 (1.31) -3.44 (1.18) 0.06 (1.22) -3.44 (1.18) 0.06 (1.22)

45 0.05 515.15 (17.7) 554.32 (18.67) 111.86 (16.27) 140.66 (17.42) 101.51 (16.38) 139.52 (17.67)
0.1 243.74 (6.9) 265.20 (7.21 ) 39.55 (7.13) 56.53 (7.48) 34.93 (7.31) 57.02 (7.65)

1 13.55 (1.98) 18.40 (2.04) -4.94 (1.99) -0.51 (2.03) -4.95 (1.99) -0.39 (2.04)
10 3.08 (0.83) 5.78 (0.85) -2.43 (0.79) 0.01 (0.81) - 2.43 (0.79) 0.02 (0.81)
20 2.70 (0.67) 5.26 (0.68) -2.32 (0.64) 0.01 (0.65) -2.32 (0.64) 0.01 (0.65)

Table 4: PRB and its corresponding SE (in parentheses) of estimators of σ2

for the indicated m, pattern and method.

m Pattern LML LRML YML YRML MLEM RMLEM

15 A 26.01 (3.07) 42.66 (3.46) -9.20 (2.43) 1.99 (2.7) -9.28 (2.42) 1.97 (2.7)
B 114.71 (5.43) 146.20 (6.02) -3.76 (4.90) 15.63 (5.46) -8.00 (5.09) 12.30 (5.65)
C 258.95 (7.35) 323.53 (8.43) 24.72 (5.83) 58.94 (6.81) 14.73 (5.86) 48.72 (7.19)

30 A 10.19 (1.33) 16.72 (1.39) -5.91 (1.24) -0.51 (1.28) -5.91 (1.24) -0.47 (1.28)
B 58.85 (4.26) 71.31 (4.49) -6.07 (4.24) 4.24 (4.46) -7.03 (4.30) 4.02 (4.53)
C 123.79 (6.31) 145.68 (6.79) 0.97 (5.56) 16.90 (6.04) -2.10 (5.63) 13.38 (6.20)

45 A 6.47 (1.43) 10.52 (1.47) -4.00 (1.36) -0.42 (1.39) -4.00 (1.36) -0.38 (1.39)
B 39.56 (2.73) 47.34 (2.81) -6.07 (2.87) 1.05 (2.93) -6.40 (2.87) 1.38 (2.93)
C 87.02 (4.51) 100.23 (4.73) -1.16 (4.49) 9.85 (4.71) -2.68 (4.52) 7.83 (4.95)

In the balanced case, when σ2/ψi < 1, all methods widely overestimate σ2, with the best
performance in those methods based on the ML method than those based on the RML
method. In this case, the performance of the MLEM approach is better having the small-
est PRBs. When σ2/ψi ≥ 1, the RMLEM approach and the YRML method are the best
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options being them very similar. Also, the MLEM approach and the YML method always
underestimate σ2. For the unbalanced case, the performance of the RMLEM approach and
the YRML method are very similar and have the smallest PRBs in the following cases: (i)
for Pattern A and all m (with the PRBs being always smallest for the proposed RMLEM
approach) and (ii) for Pattern B, when m = 30 and m = 45. The performance of the MLEM
approach is better for Pattern C when m = 15 than in the other cases. For all remain-
ing situations (Pattern B with m = 15 and Pattern C with m = 30, 45), the smallest PRBs
correspond to the YML method. In both balanced and unbalanced cases, as m increases,
the performance of all estimators improves. We define the empirical percentage MSE of
an estimator σ̂2 of σ2 based in our simulation study as (Yoshimori and Lahiri [42], 2014)

M̂SEr[σ̂2] = (1/T )
∑T

t=1 (σ̂2(t) − σ2)
2
× 100, with 1 ≤ r ≤ R, for the t-th instance in the r-th

replication, where the overall MSE is then the sample mean M̂SE[σ̂2] = (1/R)
∑T

t=1 M̂SEr[σ̂2],
with an associated SE given by ((1/(R− 1))

∑R
r=1(M̂SEr[σ̂ 2]− M̂SE[σ̂ 2)]2)1/2. The empiri-

cal percentage MSEs of different estimators of σ2 are shown in Tables 5 (balanced case) and
6 (unbalanced case). In Table 5, the performance of the MLEM approach and the YML
method are better than the other ones, with a performance much better when σ2/ψi is small,
for all m. In other cases, when σ2/ψi is large, all methods have a similar performance, par-
ticularly for m = 45, but the performance of the MLEM approach and the YML method are
still slightly better than other methods. In the unbalanced case, again the MLEM approach
and the YML method have a better performance than the other methods, followed by the
RMLEM approach and the YRML method, for all patterns and values of m.

Table 5: Percentage MSE and its corresponding SE (in parentheses) of estimators of σ2

for the indicated m, variance ratio and method.

m σ2/ψi LML LRML YML YRML MLEM RMLEM

15 0.05 15530.4 (815.1) 20780.8 (1043.4) 2522.0 (354.8) 3726.0 (460.9) 2507.6 (352.9) 3722.4 (459.3)
0.1 4031.4 (223.7) 5457.1 (287.1) 770.5 (98.7) 1114.5 (127.4) 789.7 (98.5) 1133.4 (127.0)

1 74.5 (6.1) 105.5 (8.0) 46.2 (2.9) 52.9 (3.7) 47.4 (2.8) 53.9 (3.7)
10 21.1 (1.6) 27.7 (2.1) 15.5 (1.0) 17.2 (1.2) 15.5 (1.0) 17.2 (1.2)
20 20.0 (1.7) 26.0/ (2.2) 14.8 (1.1) 16.5 (1.4) 14.8 (1.1) 16.5 (1.4)

30 0.05 5940.1 (268.4) 7084.0 (308.8) 1332.7 (147.8) 1711.6 (174.0) 1348.0 (147.9) 1746.4 (174.0)
0.1 1489.0 (90.5) 1795.1 (104.6) 414.3 (48.1) 517.9 (57.2) 426.2 (47.9 ) 530.9 (56.9)

1 31.3 (2.0) 37.5 (2.4) 26.1 (1.6) 27.6 (1.7) 26.1 (1.6) 27.6 (1.7)
10 9.3 (0.9) 10.6 (1.0) 8.1 (0.7) 8.5 (0.7) 8.1 (0.7) 8.5 (0.7)
20 8.3 (0.7) 9.4 (0.8) 7.2 (0.5) 7.5 (0.6) 7.2 (0.5) 7.5 (0.6)

45 0.05 3545.6 (250.6) 4063.1 (279.6) 935.9 (138.9) 1133.6 (158.9) 947.8 (138.7) 1163.8 (158.5)
0.1 888.1 (58.1) 1027.1 (64.3) 307.1 (36.6) 361.1 (41.3) 314.0 (36.6) 368.6 (41.3)

1 19.2 (1.6) 21.7 (1.8) 17.6 (1.3) 18.1 (1.4) 17.6 (1.3) 18.1 (1.4)
10 5.9 (0.3) 6.5 (0.4) 5.4 (0.3) 5.6 (0.3) 5.4 (0.3) 5.6 (0.3)
20 5.2 (0.4) 5.7 (0.4) 4.7 (0.3) 4.9 (0.3) 4.7 (0.3) 4.9 (0.3)

Note that, although the results of the MSE in the estimation of the variance component
in our simulation study are similar under the YML and MLEM methods, we observe that
the estimation by means of the EM algorithm is slightly more accurate (with smaller SEs)
than the estimation under the YML and YRML methods, such as occurs when comparing
the YRML and RMLEM methods.
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Table 6: Percentage MSE and its corresponding SE (in parentheses) of estimators of σ2

for the indicated m, pattern and method.

m Pattern LML LRML YML YRML MLEM RMLEM

15 A 46.6 (5.8) 66.5 (8.1) 29.4 (2.7) 33.5 (3.7) 29.5 (2.7) 33.5 (3.7)
3 B 261.9 (22.0) 375.9 (28.9) 98.3 (8.6) 124.7 (11.8) 104.8 (8.4) 130.0 (11.5)

C 990.7 (58.4) 1466.0 (78.5) 207.4 (26.6) 303.4 (34.3) 219.8 (26.8) 315.8 (34.4)
30 A 18.3 (1.7) 21.5 (2.0) 15.1 (1.2) 15.9 (1.4) 15.1 (1.2) 15.9 (1.4)

B 94.2 (8.9) 117.2 (10.4) 59.9 (3.8) 66.3 (4.8) 61.5 (3.7) 67.2 (4.8)
C 282.7 (28.5) 361.3 (34.1) 112.5 (13.8) 134.5 (16.9) 117.3 (13.8) 140.6 (16.9)

45 A 11.0 (0.7) 12.3 (0.8) 9.7 (0.5) 10.1 (0.6) 9.7 (0.5) 10.1 (0.6)
B 54.0 (5.9) 63.6 (6.6) 42.4 (4.0) 44.8 (4.5) 42.9 (4.0) 44.9 (4.6)
C 162.1 (13.9) 195.5 (15.8) 86.7 (7.9) 97.1 (9.2) 89.1 (7.9) 101.1 (9.2)

4.3. Estimator of the MSPE

We study the performance of the estimators of the MSPE of the EBLUP using different
estimators of σ2. Let θ(t)

i and θ̂ EBLUP(t)
i be the empirical mean and EBLUP corresponding to

several estimators of σ2 of the area i for the t-th simulation in the r-th replication, respectively,
for i = 1, ...,m, t = 1, ..., T and r = 1, ..., R, with T = 500, R = 20 and Nsim = 10, 000, as
mentioned. The empirical MSPE of the EBLUP estimator in the area i for the r-th replication

is given by M̂SPE
(r)

i = (1/T )
∑T

t=1 (θ̂ EBLUP(t)
i − θ̂

(t)
i )

2
. Then, the overall MSPE is M̂SPEi =

(1/R)
∑R

r=1 M̂SPE
(r)

i , with an associated SE given by (
∑R

r=1(M̂SPE
r

i − M̂SPEi)2/(R−1))1/2.
Tables 7 (balanced case) and 8 (unbalanced case) report the empirical MSPEs of EBLUPs
for different estimation methods of σ2. In the balanced case, when σ2/ψi is small, both
the MLEM approach and the YML method present a performance slightly better than the
RMLEM approach and the YRML method, and much better than the LML and LRML
methods. This behavior is more pronounced when m is small. If σ2/ψi ≥ 1, all methods
provide similar results, and for a fixed σ2/ψi, the performance does not change substantially
as m increases. For the unbalanced case, all methods have a similar performance.

Table 7: Empirical MSPE and its corresponding SE (in parentheses) of EBLUPs of θ̂i

for the indicated m, ratio and method.

m σ2/ψi LML LRML YML YRML MLEM RMLEM

15 0.05 4.75 (0.15) 5.22 (0.16) 2.86 (0.11) 3.08 (0.12) 2.86 (0.11) 3.08 (0.12)
0.1 2.68 (0.08) 2.90 (0.08) 1.85 (0.06) 1.96 (0.07) 1.87 (0.06) 1.97 (0.07)

1 0.58 (0.01) 0.59 (0.01) 0.60 (0.01) 0.59 (0.01) 0.60 (0.01) 0.59 (0.01)
10 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01)
20 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01)

30 0.05 2.95 (0.06) 3.13 (0.07) 1.99 (0.05) 2.08 (0.05) 2.00 (0.05) 2.09 (0.05)
0.1 1.81 (0.05) 1.90 (0.06) 1.43 (0.04) 1.47 (0.04) 1.44 (0.04) 1.48 (0.04)

1 0.54 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01)
10 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01)
20 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01)

45 0.05 2.31 (0.07) 2.40 (0.08) 1.68 (0.06) 1.73 (0.06) 1.69 (0.06) 1.74 (0.06)
0.1 1.53 (0.03) 1.57 (0.03) 1.29 (0.02) 1.31 (0.02) 1.29 (0.02) 1.32 (0.02)

1 0.53 (0.01) 0.53 (0.01) 0.54 (0.01) 0.53 (0.01) 0.54 (0.01) 0.53 (0.01)
10 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01)
20 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01)
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Table 8: Empirical MSPE and its corresponding SE (in parentheses) of EBLUP of θ̂i

for indicated m, pattern group and method.

m Pattern g LML LRML YML YRML MLEM RMLEM

15 A 1 0.92 (0.03) 0.94 (0.03) 0.91 (0.03) 0.92 (0.03) 0.92 (0.03) 0.92 (0.03)
2 0.41 (0.01) 0.41 (0.01) 0.42 (0.01) 0.42 (0.01) 0.43 (0.01) 0.42 (0.01)
3 0.36 (0.01) 0.36 (0.01) 0.37 (0.01) 0.37 (0.01) 0.37 (0.01) 0.37 (0.01)
4 0.31 (0.01) 0.31 (0.01) 0.32 (0.01) 0.32 (0.01) 0.32 (0.01) 0.32 (0.01)
5 0.09 (<0.01) 0.09 (<0.01) 0.10 (<0.01) 0.10 (<0.01) 0.10 (<0.01) 0.10 (<0.01)

B 1 1.10 (0.04) 1.15 (0.04) 1.02 (0.04) 1.03 (0.04) 1.03 (0.04) 1.04 (0.05)
2 1.07 (0.04) 1.11 (0.04) 1.00 (0.03) 1.01 (0.03) 1.02 (0.03) 1.02 (0.03)
3 1.01 (0.04) 1.05 (0.04) 0.95 (0.04) 0.96 (0.04) 0.96 (0.04) 0.97 (0.04)
4 0.93 (0.03) 0.96 (0.04) 0.88 (0.03) 0.89 (0.03) 0.90 (0.03) 0.90 (0.03)
5 0.80 (0.04) 0.82 (0.04) 0.77 (0.04) 0.77 (0.04) 0.79 (0.04) 0.79 (0.04)

C 1 1.70 (0.06) 1.86 (0.07) 1.39 (0.04) 1.43 (0.04) 1.40 (0.04) 1.44 (0.04)
2 1.68 (0.08) 1.84 (0.09) 1.32 (0.05) 1.37 (0.06) 1.34 (0.05) 1.39 (0.06)
3 1.61 (0.10) 1.75 (0.10) 1.27 (0.07) 1.32 (0.08) 1.29 (0.07) 1.34 (0.08)
4 1.50 (0.07) 1.61 (0.07) 1.21 (0.06) 1.25 (0.06) 1.23 (0.06) 1.27 (0.07)
5 1.12 (0.04) 1.18 (0.04) 0.96 (0.04) 0.98 (0.04) 0.99 (0.04) 1.01 (0.04)

30 A 1 0.86 (0.02) 0.86 (0.03) 0.86 (0.03) 0.86 (0.03) 0.86 (0.03) 0.86 (0.03)
2 0.40 (0.01) 0.40 (0.01) 0.40 (0.01) 0.40 (0.01) 0.40 (0.01) 0.40 (0.01)
3 0.35 (0.01) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01)
4 0.30 (0.01) 0.30 (0.01) 0.30 (0.01) 0.30 (0.01) 0.30 (0.01) 0.30 (0.01)
5 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01)

B 1 0.93 (0.03) 0.94 (0.03) 0.92 (0.03) 0.92 (0.03) 0.92 (0.03) 0.92 (0.03)
2 0.90 (0.02) 0.91 (0.02) 0.89 (0.02) 0.89 (0.02) 0.89 (0.02) 0.89 (0.02)
3 0.85 (0.02) 0.86 (0.02) 0.85 (0.02) 0.85 (0.02) 0.85 (0.02) 0.85 (0.02)
4 0.80 (0.02) 0.81 (0.02) 0.80 (0.02) 0.80 (0.02) 0.81 (0.02) 0.80 (0.02)
5 0.70 (0.01) 0.71 (0.01) 0.71 (0.01) 0.71 (0.01) 0.72 (0.01) 0.71 (0.01)

C 1 1.24 (0.04) 1.27 (0.05) 1.17 (0.04) 1.18 (0.04) 1.18 (0.04) 1.18 (0.04)
2 1.20 (0.03) 1.24 (0.03) 1.11 (0.03) 1.12 (0.03) 1.11 (0.03) 1.13 (0.03)
3 1.16 (0.03) 1.20 (0.03) 1.08 (0.03) 1.09 (0.03) 1.09 (0.03) 1.10 (0.04)
4 1.12 (0.03) 1.16 (0.04) 1.03 (0.03) 1.04 (0.03) 1.04 (0.03) 1.05 (0.03)
5 0.91 (0.02) 0.93 (0.02) 0.87 (0.02) 0.87 (0.02) 0.88 (0.02) 0.89 (0.02)

45 A 1 0.83 (0.02) 0.83 (0.02) 0.83 (0.02) 0.83 (0.02) 0.83 (0.02) 0.83 (0.02)
2 0.39 (0.01) 0.39 (0.01) 0.39 (0.01) 0.39 (0.01) 0.39 (0.01) 0.39 (0.01)
3 0.34 (0.01) 0.34 (0.01) 0.34 (0.01) 0.34 (0.01) 0.34 (0.01) 0.34 (0.01)
4 0.30 (0.01) 0.30 (0.01) 0.30 (0.01) 0.30 (0.01) 0.30 (0.01) 0.30 (0.01)
5 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01)

B 1 0.88 (0.02) 0.88 (0.02) 0.88 (0.02) 0.88 (0.02) 0.88 (0.02) 0.88 (0.02)
2 0.85 (0.02) 0.86 (0.02) 0.86 (0.02) 0.86 (0.02) 0.86 (0.02) 0.86 (0.02)
3 0.80 (0.02) 0.81 (0.02) 0.81 (0.02) 0.81 (0.02) 0.81 (0.02) 0.81 (0.02)
4 0.75 (0.01) 0.75 (0.01) 0.76 (0.02) 0.76 (0.02) 0.76 (0.02) 0.76 (0.01)
5 0.67 (0.02) 0.68 (0.02) 0.69 (0.02) 0.69 (0.02) 0.69 (0.02) 0.69 (0.02)

C 1 1.13 (0.04) 1.14 (0.04) 1.10 (0.03) 1.11 (0.03) 1.10 (0.03) 1.11 (0.03)
2 1.07 (0.03) 1.09 (0.03) 1.03 (0.03) 1.03 (0.03) 1.03 (0.03) 1.04 (0.03)
3 1.05 (0.03) 1.07 (0.03) 1.01 (0.03) 1.02 (0.03) 1.02 (0.03) 1.02 (0.03)
4 1.01 (0.03) 1.03 (0.03) 0.97 (0.03) 0.98 (0.03) 0.98 (0.03) 0.99 (0.03)
5 0.83 (0.02) 0.84 (0.02) 0.82 (0.02) 0.82 (0.02) 0.83 (0.02) 0.83 (0.02)

5. APPLICATION

We illustrate the results of this study with real-world data taken from http://dx.doi.

org/10.7927/H4FF3Q9B; see CIESIN [4] (2005). The small areas in our application correspond
to the 32 states of Mexico. Here, mi is the number of municipalities in the state i that were
used for direct estimation within each state, which ranges from 5 to 578 municipalities.

We are interested in modeling the “average monthly per capita food expenditure for
rural household in 2000 (AMPCFERH)”. The direct estimator θ̂i is available. We use three
auxiliary variables: (i) the size of the illiterate population aged 15 years and above (X1);
(ii) the percentage of the population living in rural areas (X2); and (iii) the fraction of rural
households below the food poverty line (X3). Our small area model is given by

θ̂i = β1x1i + β2x2i + β3x3i + bi + εi, i = 1, ..., 32,

http://dx.doi.org/10.7927/H4FF3Q9B
http://dx.doi.org/10.7927/H4FF3Q9B
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where bi
IID∼ N(0, σ2) are area-specific random effects with unknown σ2; εi

IND∼ N(0, ψi) represent
the sampling errors in the area i with known variance ψi, which was calculated from the vari-
ance of the AMPCFERH within each municipality. Note that ψi 6= ψj , for i 6= j, and hence we
are in the unbalanced case. We estimate σ2 with the LML, LRML, YML, YRML, MLEM and
RMLEM methods obtaining the following values: σ̂ 2

LML = 105147.20, σ̂ 2
LRML = 123306.20,

σ̂ 2
YML = 93504.80, σ̂ 2

YLML = 108737.40, σ̂ 2
MLEM = 93503.32 and σ̂ 2

RMLEM = 108735.6. The re-
sults of the EBLUP of θ̂i generated under different estimators of σ2 are shown in Table 9.

Table 9: EBLUP of θ̂i with estimates of σ2 for the indicated Mexican state,
mi and method.

State mi
bθi LML LRML YML YRML MLEM RMLEM

Aguascalientes (Ags) 11 939.35 918.37 ± 21.27 921.38 ± 18.11 915.63 ± 24.81 918.88 ± 21.21 883.70 ± 164.85 921.38 ± 18.11
Baja California (BC) 5 1169.42 1126.60 ± 36.11 1132.35 ± 31.93 1121.75 ± 39.89 1127.78 ± 35.52 1061.41 ± 327.17 1132.35 ± 31.93
Baja California Sur (BCS) 5 1356.74 995.54 ± 182.87 1035.31 ± 166.05 963.68 ± 200.21 1003.73 ± 183.40 912.80 ± 420.93 1035.31 ± 166.05
Campeche (Camp) 11 460.49 479.69 ± 18.28 477.29 ± 15.77 481.72 ± 20.75 479.23 ± 17.97 504.41 ± 148.49 477.29 ± 15.77
Chiapas (Chis) 119 325.82 340.69 ± 15.38 338.74 ± 13.19 342.42 ± 17.79 340.35 ± 15.30 357.94 ± 103.04 338.74 ± 13.19
Chihuahua (Chih) 67 962.03 871.35 ± 94.37 879.37 ± 86.44 864.92 ± 101.19 872.73 ± 93.51 844.74 ± 166.78 879.37 ± 86.44
Coahuila (Coah) 38 879.43 856.88 ± 41.54 860.06 ± 35.87 853.96 ± 47.65 857.35 ± 41.47 834.94 ± 133.54 860.06 ± 35.87
Colima (Col) 10 803.55 789.86 ± 20.16 791.98 ± 17.31 787.95 ± 23.02 790.23 ± 19.89 752.55 ± 189.81 791.98 ± 17.31
Distrito Federal (DF) 7 1526.98 409.99 ± 335.33 459.56 ± 342.75 374.67 ± 332.40 418.91 ± 339.88 355.75 ± 364.64 459.56 ± 342.75
Durango (Dgo) 39 754.39 788.84 ± 47.27 784.37 ± 42.01 792.78 ± 52.38 788.10 ± 46.84 812.29 ± 139.89 784.37 ± 42.01
Guanajuato (Gto) 46 597.01 593.20 ± 14.86 593.98 ± 12.64 592.41 ± 17.36 593.32 ± 14.77 576.37 ± 92.82 593.98 ± 12.64
Guerrero (Gro) 76 605.11 550.19 ± 60.47 557.22 ± 53.54 544.14 ± 66.68 551.49 ± 59.49 495.19 ± 302.22 557.22 ± 53.54
Hidalgo (Hgo) 85 641.63 630.10 ± 43.78 631.72 ± 38.25 628.68 ± 48.94 630.41 ± 43.06 611.97 ± 127.91 631.72 ± 38.25
Jalisco (Jal) 124 808.46 657.37 ± 112.62 664.11 ± 110.76 652.36 ± 114.25 658.54 ± 112.67 639.18 ± 131.28 664.11 ± 110.76
México (Méx) 123 1036.92 622.15 ± 167.89 628.90 ± 167.92 617.30 ± 168.26 623.35 ± 168.21 597.08 ± 180.24 628.90 ± 167.92
Michoacán (Mich) 113 577.81 581.91 ± 17.52 581.69 ± 15.00 582.02 ± 20.23 581.85 ± 17.33 577.63 ± 55.60 581.69 ± 15.00
Morelos (Mor) 33 926.05 787.61 ± 107.11 804.31 ± 96.10 773.48 ± 118.51 790.61 ± 106.99 719.25 ± 310.25 804.31 ± 96.10
Nayarit (Nay) 20 677.62 668.68 ± 34.96 670.25 ± 30.90 667.21 ± 38.93 668.92 ± 34.66 656.15 ± 78.34 670.25 ± 30.90
Nuevo León (NL) 50 1232.20 859.37 ± 132.73 883.75 ± 131.00 841.01 ± 135.47 863.66 ± 134.46 814.11 ± 203.67 883.75 ± 131.00
Oaxaca (Oax) 578 412.72 576.55 ± 100.21 559.66 ± 92.17 590.51 ± 109.23 573.70 ± 101.17 618.84 ± 199.55 559.66 ± 92.17
Puebla (Pue) 223 423.22 462.18 ± 25.78 457.26 ± 22.49 466.51 ± 29.59 461.34 ± 25.91 491.48 ± 139.54 457.26 ± 22.49
Querétaro (Qro) 18 641.84 641.50 ± 18.55 641.64 ± 16.00 641.37 ± 21.14 641.53 ± 18.32 634.05 ± 73.27 641.64 ± 16.00
Quintana Roo (QR) 8 632.76 589.84 ± 73.18 596.10 ± 64.57 584.20 ± 81.90 590.85 ± 72.60 550.42 ± 205.72 596.10 ± 64.57
San Luis Potośı (SLP) 58 504.47 536.93 ± 24.67 532.63 ± 21.44 540.76 ± 28.47 536.20 ± 24.78 567.95 ± 146.40 532.63 ± 21.44
Sinaloa (Sin) 18 927.84 826.22 ± 66.88 838.54 ± 59.69 815.67 ± 74.98 828.40 ± 67.41 765.16 ± 278.01 838.54 ± 59.69
Sonora (Son) 72 989.80 954.36 ± 51.44 958.16 ± 45.92 951.17 ± 56.45 955.01 ± 50.76 937.69 ± 123.42 958.16 ± 45.92
Tabasco (Tab) 17 541.45 554.30 ± 10.05 552.53 ± 8.67 555.89 ± 11.56 553.98 ± 10.00 586.06 ± 161.98 552.53 ± 8.67
Tamaulipas (Tamps) 41 793.39 798.74 ± 33.53 798.14 ± 29.30 799.22 ± 37.98 798.61 ± 33.23 800.82 ± 84.05 798.14 ± 29.30
Tlaxcala (Tlax) 51 777.61 742.60 ± 66.61 747.53 ± 58.27 738.16 ± 75.27 743.37 ± 66.16 715.98 ± 157.75 747.53 ± 58.27
Veracruz (Ver) 216 515.10 515.72 ± 59.07 516.32 ± 52.16 515.10 ± 65.23 515.83 ± 58.07 501.88 ± 126.33 516.32 ± 52.16
Yucatán (Yuc) 100 344.22 369.75 ± 23.10 366.72 ± 20.06 372.30 ± 25.99 369.16 ± 22.72 392.23 ± 136.02 366.72 ± 20.06
Zacatecas (Zac) 57 842.43 836.09 ± 15.82 836.93 ± 13.70 835.33 ± 18.11 836.23 ± 15.62 826.72 ± 73.82 836.93 ± 13.70

Following to Figueiredo and Gomes [14] (2004), we have generated 10000 bootstrap samples
of size 32 (the same as the number of states) to calculate the SEs. With these SEs, we
build the corresponding bootstrap confidence intervals (BCI95%) for each EBLUP, using a
confidence level of 95%. For the EBLUP, these intervals are obtained as

(5.1) BCI95%(θ̂EBLUP
i ) =

[
θ̂
EBLUP(B)

i ± z1−α/2SD
(
θ̂
EBLUP(B)
i

)]
,

where θ̂
EBLUP(B)

i and SD(θ̂EBLUP(B)
i ) are the mean and standard deviation bootstrap, respec-

tively, and z1−α/2 is the (1− α/2)× 100-th percentile of the standard normal distribution.
The results for BCIs based on (5.1) with the Mexican data are resented in Table 9. Figure 1
shows the estimated AMPCFERH, where the states are colored according to a classification
into quartiles for the values of the estimates by the RMLEM approach. Note that, in gen-
eral, the states with smaller AMPCFERH are mainly concentrated in the southwest part
of the country, except for Quintana Roo, while the states with larger AMPCFERH are lo-
cated at the north part. A measure of uncertainty of the EBLUP of θ̂i is given in Table 10.
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Figure 1: Estimated average monthly per capita food expenditure for rural
household in 2000 with the RMLEM approach for Mexican data.

We compute the MSPE and its corresponding BCI95%, similarly as for the EBLUP given in
(5.1), using (2.18) for each of the estimation methods. We highlight two aspects: (i) the
values obtained by the MLEM and RMLEM approaches are similar to the corresponding
values of the YML and RYML methods, and moreover, its variability presents the same
results; and (ii) note that the LML and LRML approaches show lower MSPE indicators,
but, as mentioned, these methods can provide a negative value for the MSPE, making their
results underestimated and unreliable. As in Molina et al. [28] (2014), we calculate the
coefficients of variation (CVs), and its correspondig BCI95% in terms of the MSPE esti-
mates as CV[θ̂ EBLUP

i ] = ((MSPE(θ̂ EBLUP
i ))1/2/θ̂ EBLUP

i )× 100 for each bootstrap sample, in
order to analyze the gain in efficiency of the θ̂ EBLUP

i in comparison with direct estimates.
Table 11 displays these CVs, from which the two following aspects can be mentioned: (i) there
is a clear overall gain in precision when the EBLUP of θ̂i is obtained with the YML/YRML/
MLEM/RMLEM methods, if σ2 is estimated, since in almost all cases the CVs are less than
the CVs of the direct estimator; and (ii) in general, this gain in precision has a greater effect
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in the RMLEM method, and moreover, the variability obtained by the bootstrapp resampling
shows that it also has less variability in comparison to the rest of the methods.

Table 10: MSPE of EBLUP of θ̂i with estimates of σ2 for the indicated Mexican state,
mi and method.

State mi
bθi LML LRML YML YRML MLEM RMLEM

Aguascalientes 11 – 7062.57 ± 88.31 7072.20 ± 84.91 7065.37 ± 87.95 7063.48 ± 87.76 7065.36 ± 87.95 7063.47 ± 87.76
Baja California 5 – 8533.92 ± 113.74 8537.96 ± 110.40 8545.70 ± 112.33 8533.08 ± 113.05 8545.69 ± 112.33 8533.07 ± 113.05
Baja California Sur 5 – 38291.19 ± 3898.23 38779.60 ± 3658.90 38101.79 ± 4049.52 38373.13 ± 3851.71 38101.59 ± 4049.52 38372.91 ± 3851.71
Campeche 11 – 6002.27 ± 58.62 6005.50 ± 56.77 6007.47 ± 57.86 6002.09 ± 58.32 6007.46 ± 57.86 6002.09 ± 58.32
Chiapas 119 – 4727.16 ± 36.06 4728.90 ± 34.86 4730.72 ± 35.61 4726.98 ± 35.83 4730.72 ± 35.61 4726.98 ± 35.83
Chihuahua 67 – 43346.23 ± 3745.72 43585.34 ± 3567.53 43361.26 ± 3843.81 43372.80 ± 3706.31 43361.08 ± 3843.81 43372.60 ± 3706.31
Coahuila 38 – 13307.16 ± 322.52 13340.25 ± 309.35 13314.31 ± 323.26 13310.50 ± 320.07 13314.29 ± 323.26 13310.48 ± 320.07
Colima 10 – 4821.23 ± 42.43 4824.96 ± 40.71 4823.34 ± 42.17 4821.47 ± 42.13 4823.34 ± 42.17 4821.47 ± 42.13
Distrito Federal 7 – 111400.65 ± 32054.55 113227.77 ± 30823.28 110394.68 ± 33003.71 111738.73 ± 31720.72 110393.75 ± 33003.71 111737.70 ± 31720.72
Durango 39 – 17327.26 ± 542.56 17353.87 ± 522.28 17358.39 ± 543.24 17326.94 ± 538.59 17358.36 ± 543.24 17326.91 ± 538.59
Guanajuato 46 – 6224.48 ± 74.76 6232.15 ± 71.48 6226.63 ± 74.66 6225.22 ± 74.12 6226.63 ± 74.66 6225.22 ± 74.12
Guerrero 76 – 18966.35 ± 589.66 18872.63 ± 556.05 19098.20 ± 606.77 18939.14 ± 579.86 19098.18 ± 606.77 18939.12 ± 579.86
Hidalgo 85 – 15972.62 ± 491.00 16015.04 ± 469.76 15984.87 ± 494.07 15976.51 ± 486.51 15984.84 ± 494.07 15976.48 ± 486.51
Jalisco 124 – 95196.34 ± 29228.59 97750.38 ± 28174.99 93689.46 ± 30058.90 95683.09 ± 28945.16 93688.45 ± 30058.90 95681.96 ± 28945.16
México 123 – 171437.83 ± 54229.90 174617.81 ± 52689.00 169339.63 ± 55318.79 172075.09 ± 53758.50 169338.20 ± 55318.79 172073.49 ± 53758.50
Michoacán 113 – 9280.13 ± 175.17 9298.77 ± 167.71 9282.71 ± 175.54 9282.20 ± 173.85 9282.70 ± 175.54 9282.19 ± 173.85
Morelos 33 – 26572.95 ± 1626.86 26759.52 ± 1546.85 26534.16 ± 1661.29 26600.49 ± 1611.46 26534.08 ± 1661.29 26600.39 ± 1611.46
Nayarit 20 – 22314.46 ± 1123.78 22447.65 ± 1070.15 22291.05 ± 1142.82 22333.72 ± 1113.91 22290.98 ± 1142.82 22333.66 ± 1113.91
Nuevo León 50 – 68062.42 ± 12681.30 69275.95 ± 12132.42 67486.95 ± 13078.86 68276.16 ± 12554.36 67486.42 ± 13078.86 68275.58 ± 12554.36
Oaxaca 578 – 35112.56 ± 2740.44 35374.18 ± 2611.48 35068.08 ± 2802.07 35149.58 ± 2712.87 35067.93 ± 2802.07 35149.43 ± 2712.87
Puebla 223 – 10943.82 ± 240.24 10967.14 ± 230.28 10948.83 ± 240.76 10946.20 ± 238.56 10948.81 ± 240.76 10946.18 ± 238.56
Querétaro 18 – 8204.86 ± 134.72 8217.40 ± 129.18 8208.76 ± 134.56 8206.02 ± 133.81 8208.75 ± 134.56 8206.01 ± 133.81
Quintana Roo 8 – 19958.04 ± 797.45 20018.77 ± 765.16 19976.57 ± 803.66 19963.41 ± 791.20 19976.53 ± 803.66 19963.36 ± 791.20
San Luis Potośı 58 – 9360.25 ± 174.23 9377.92 ± 166.87 9363.88 ± 174.46 9362.08 ± 173.01 9363.87 ± 174.46 9362.07 ± 173.01
Sinaloa 18 – 21443.10 ± 972.04 21545.23 ± 928.59 21438.25 ± 984.28 21456.33 ± 963.25 21438.19 ± 984.28 21456.27 ± 963.25
Sonora 72 – 23983.14 ± 1109.54 24042.02 ± 1065.55 24024.91 ± 1119.54 23985.42 ± 1100.99 24024.85 ± 1119.54 23985.35 ± 1100.99
Tabasco 17 – 3501.87 ± 22.68 3503.64 ± 21.93 3503.21 ± 22.36 3501.95 ± 22.57 3503.21 ± 22.36 3501.95 ± 22.57
Tamaulipas 41 – 16459.47 ± 547.96 16507.93 ± 525.90 16469.43 ± 550.71 16464.38 ± 544.25 16469.40 ± 550.71 16464.34 ± 544.25
Tlaxcala 51 – 20426.38 ± 867.03 20518.08 ± 828.69 20423.87 ± 876.94 20438.07 ± 859.53 20423.82 ± 876.94 20438.02 ± 859.53
Veracruz 216 – 22062.93 ± 993.54 22146.37 ± 950.78 22075.62 ± 1005.02 22071.75 ± 984.50 22075.56 ± 1005.02 22071.69 ± 984.50
Yucatán 100 – 7949.13 ± 112.31 7949.75 ± 109.16 7961.83 ± 110.59 7947.76 ± 111.89 7961.82 ± 110.59 7947.75 ± 111.89
Zacatecas 57 – 8189.27 ± 131.47 8198.87 ± 126.70 8195.48 ± 130.75 8189.79 ± 130.78 8195.47 ± 130.75 8189.78 ± 130.78

Table 11: CVs of direct estimator and EBLUP of θ̂i with estimates of σ2

for the indicated Mexican state, mi and method.

State mi
bθi LML LRML YML YRML MLEM RMLEM

Aguascalientes 11 9.21 9.15 ± 0.21 9.13 ± 0.18 9.18 ± 0.25 9.15 ± 0.21 9.51 ± 0.24 9.12 ± 0.18
Baja California 5 8.14 8.20 ± 0.27 8.16 ± 0.24 8.24 ± 0.30 8.19 ± 0.27 8.71 ± 0.29 8.16 ± 0.24
Baja California Sur 5 17.58 19.66 ± 4.56 19.02 ± 3.76 20.26 ± 5.56 19.52 ± 4.52 21.38 ± 4.45 18.92 ± 3.77
Campeche 11 17.20 16.15 ± 0.60 16.24 ± 0.53 16.09 ± 0.68 16.17 ± 0.59 15.37 ± 0.62 16.23 ± 0.53
Chiapas 119 21.47 20.18 ± 0.24 20.30 ± 0.78 20.09 ± 1.01 20.20 ± 0.88 19.22 ± 0.90 20.30 ± 0.78
Chihuahua 67 25.74 23.89 ± 3.06 23.74 ± 2.74 24.08 ± 3.34 23.86 ± 3.02 24.65 ± 2.77 23.68 ± 2.76
Coahuila 38 13.85 13.46 ± 0.68 13.43 ± 0.58 13.51 ± 0.80 13.46 ± 0.68 13.82 ± 0.72 13.41 ± 0.59
Colima 10 8.81 8.79 ± 0.23 8.77 ± 0.20 8.81 ± 0.26 8.79 ± 0.23 9.23 ± 0.25 8.77 ± 0.20
Distrito Federal 7 39.79 81.41 ± 80.28 73.22 ± 72.47 88.68 ± 83.59 79.80 ± 77.55 93.40 ± 79.40 72.74 ± 70.28
Durango 39 18.60 16.69 ± 1.01 16.79 ± 0.91 16.62 ± 1.11 16.70 ± 1.00 16.22 ± 0.98 16.78 ± 0.91
Guanajuato 46 13.55 13.30 ± 0.35 13.29 ± 0.30 13.32 ± 0.41 13.30 ± 0.35 13.69 ± 0.39 13.28 ± 0.30
Guerrero 76 23.69 25.03 ± 3.17 24.65 ± 2.71 25.40 ± 3.60 24.95 ± 3.09 27.91 ± 2.97 24.70 ± 2.72
Hidalgo 85 21.00 20.06 ± 1.55 20.03 ± 1.35 20.11 ± 1.75 20.05 ± 1.53 20.66 ± 1.51 20.01 ± 1.35
Jalisco 124 77.60 46.94 ± 11.61 47.08 ± 11.20 46.92 ± 11.97 46.97 ± 11.56 47.89 ± 9.14 46.58 ± 11.29
México 123 130.27 66.55 ± 24.00 66.44 ± 23.43 66.66 ± 24.51 66.55 ± 23.95 68.92 ± 17.91 65.96 ± 23.48
Michoacán 113 17.33 16.55 ± 0.53 16.58 ± 0.46 16.55 ± 0.60 16.56 ± 0.52 16.68 ± 0.56 16.56 ± 0.46
Morelos 33 19.88 20.70 ± 3.34 20.34 ± 2.84 21.06 ± 3.94 20.63 ± 3.33 22.65 ± 3.23 20.28 ± 2.85
Nayarit 20 24.39 22.34 ± 1.35 22.35 ± 1.20 22.38 ± 1.49 22.34 ± 1.34 22.75 ± 1.30 22.30 ± 1.21
Nuevo León 50 30.82 30.36 ± 5.98 29.78 ± 5.61 30.89 ± 6.36 30.25 ± 5.99 31.91 ± 5.06 29.57 ± 5.65
Oaxaca 578 53.03 32.50 ± 5.71 33.61 ± 5.56 31.71 ± 5.90 32.68 ± 5.77 30.26 ± 4.71 33.50 ± 5.57
Puebla 223 25.85 22.63 ± 1.28 22.90 ± 1.14 22.43 ± 1.42 22.68 ± 1.28 21.29 ± 1.24 22.88 ± 1.14
Querétaro 18 14.59 14.12 ± 0.43 14.13 ± 0.37 14.13 ± 0.48 14.12 ± 0.42 14.29 ± 0.45 14.12 ± 0.37
Quintana Roo 8 24.17 23.95 ± 3.47 23.74 ± 2.95 24.19 ± 4.10 23.91 ± 3.46 25.68 ± 3.35 23.70 ± 2.96
San Luis Potośı 58 19.93 18.02 ± 0.81 18.18 ± 0.71 17.89 ± 0.92 18.05 ± 0.81 17.04 ± 0.82 18.17 ± 0.72
Sinaloa 18 17.31 17.72 ± 1.66 17.50 ± 1.44 17.95 ± 1.91 17.68 ± 1.65 19.14 ± 1.63 17.47 ± 1.45
Sonora 72 17.13 16.23 ± 0.96 16.18 ± 0.86 16.30 ± 1.06 16.22 ± 0.95 16.53 ± 0.94 16.16 ± 0.87
Tabasco 17 11.08 10.68 ± 0.19 10.71 ± 0.17 10.65 ± 0.22 10.68 ± 0.19 10.10 ± 0.21 10.71 ± 0.17
Tamaulipas 41 17.29 16.06 ± 0.70 16.10 ± 0.62 16.06 ± 0.78 16.07 ± 0.69 16.03 ± 0.70 16.08 ± 0.62
Tlaxcala 51 20.06 19.25 ± 1.96 19.16 ± 1.68 19.36 ± 2.27 19.23 ± 1.95 19.96 ± 1.93 19.12 ± 1.69
Veracruz 216 31.55 28.80 ± 3.66 28.82 ± 3.21 28.84 ± 4.08 28.80 ± 3.59 29.60 ± 3.33 28.77 ± 3.22
Yucatán 100 26.60 24.11 ± 1.46 24.31 ± 1.29 23.97 ± 1.62 24.15 ± 1.44 22.75 ± 1.40 24.31 ± 1.29
Zacatecas 57 11.09 10.82 ± 0.22 10.82 ± 0.19 10.84 ± 0.25 10.82 ± 0.22 10.95 ± 0.24 10.81 ± 0.20
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6. CONCLUSIONS AND FUTURE RESEARCH

One of the advantages of using a methodology based on small area estimation is that
through auxiliary data we can improve direct estimates of a parameter of interest in small
areas. Standard methods of variance component estimation used in the FH model for small
areas produce a negative or zero estimate for these variances, with severe implications. In
such a context, we proposed alternative approaches to those available in the literature, based
on the EM algorithm, for estimating the variance of the random effects in the FH model,
when estimating small area means. We showed through a simulation study that the EM
algorithm is a good alternative to compute the ML estimate of the variance components,
ensuring its strictly positive value. We compared the performance of our approaches with
two recently proposed methods by means of statistical indicators. In general, the MLEM
and RMLEM approaches performed well and similarly to the YML and YRML methods
proposed by Yoshimori and Lahiri [42] (2014), but better than the LML and LRML methods
proposed by Li and Lahiri [23] (2010). The proposed approaches have the advantage of
working directly with the likelihood function without having to adjust it. A shortcoming
of the LML and LRML methods in comparison to the approaches proposed here is that
they can yield a negative value for the MSPE. Also, although the results of the MSE in
the estimation of the variance component are similar under the YML and MLEM methods,
note that the estimation with the EM algorithm is slightly more accurate in terms of SEs
than the estimation with the YML and YRML methods, such as occurs when comparing
the YRML and RMLEM methods. In an application from the real-world, we confirmed that
small area estimation through the FH model helped to improve the direct estimates of the
average monthly per capita food expenditure for Mexican rural households in 2000 according
to three auxiliary variables. A possible future study can be conducted to compare the YML
and YRML methods to their analogous based on the EM algorithm.
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1. INTRODUCTION

Vilca-Labra and Leiva-Sánchez ([30]) extended the ordinary Birnbaum–Saunders (BS)
distribution by considering the generalized Birnbaum–Saunders skew-elliptical distribution
which is based on replacing the normal distribution by the elliptical family of distributions of
which the normal distribution is a special case. Such general family of distributions is very
successful in dealing with data sets with high degrees of asymmetry and kurtosis.

In this paper, we consider an extension of the generalized BS (GBS) model proposed in
Dı́az-Garćıa and Leiva-Sánchez ([9]) to the case of elliptical distributions. A comprehensive
review of the GBS model can be found in Sanhueza et al. ([29]). Another important feature
of this distribution is related to robustness with respect to parameter estimation which was
studied in Barros et al. ([4]). The generalized Birnbaum–Saunders skew-elliptical distribution
represents an important extension of the ordinary BS distribution to the case of symmetrical
and asymmetrical distributions, which can be appropriate for applications in life data and
material fatigue data.

The family of elliptical distributions has proved to be an important alternative to the
normal distribution. The distributions in this family are symmetric and include distributions
with greater and smaller kurtosis than the normal distribution. The normal distribution is
an important member of the family. The elliptical family of distributions has been studied
by many authors including Fang and Zang ([12]), Fang et al. ([11]), Gupta and Varga ([13]),
Arellano-Valle and Bolfarine ([2]), among others.

A random variable X is distributed according to the elliptical distribution with location
parameter ξ and scale parameter η if its pdf can be written as

f(x) =
c

η
g

((
x− ξ

η

)2
)

,(1.1)

for some nonnegative function g(u), u > 0, such that
∫∞
0 u−

1
2 g(u)du = 1/c, where c is a

normalizing constant. The function g(·) is known as the density generator function. If X

is elliptically distributed with location-scale parameters ξ and η and generator function g,

denoted X ∼ EC(ξ, η; g). If ξ = 0 and η = 1, then X has spherical distribution, denoted
as X ∼ EC(0, 1; g). Properties of this family can be studied in Kelker ([15]), Cambanis et

al. ([5]), Fang et al. ([11]), Arellano-Valle and Bolfarine ([2]) and Gupta and Varga ([13])
among others. Particular cases of the X ∼ EC(0, 1; g) distribution are the Pearson type
VII distribution, the type Kotz distribution, the Student-t (tν) distribution, the Cauchy
distribution and the normal distribution, among others.

Dı́az-Garćıa and Leiva-Sánchez ([9]) present the GBS distribution, by assuming that

Z =
1
γ

(√
T

β
−
√

β

T

)
∼ EC(0, 1; g).

where γ > 0 is the shape parameter and β > 0 is the scale parameter and the distribution
median. Then, from

T =
β

4

[
γZ +

√
γ2Z2 + 4

]2
,
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the GBS distribution follows, which we denote by T ∼ GBS(γ, β; g). The pdf for the random
variable T is given by

fGBS(t) = cg

(
1
γ2

[
t

β
+

β

t
− 2
])

t−3/2(t + β)
2γβ1/2

, t > 0,(1.2)

where c is a normalizing constant and g is the generator function. Moreover, letting

at(γ, β) = at =
1
γ

(√
t

β
−
√

β

t

)
,(1.3)

it follows that

At(γ, β) =
d

dt
at(γ, β) =

t−3/2(t + β)
2γβ1/2

,

so that (1.2) can be written as

fGBS(t) = f(at(γ, β))At(γ, β),

where f is given in (1.1).

An extension of the elliptical model to the asymmetric case was given in Vilca-Labra and
Leiva-Sánchez ([30]), where it is defined the standard elliptical asymmetric or skew-elliptical
(SE) model as

fY (y;λ) = 2f(y)F (λy); y, λ ∈ R,

where f is given in (1.1), F is its respective cumulative distribution function (cdf) and λ is an
asymmetry parameter. We use the notation Y ∼ SE(0, 1; g, λ). The cumulative distribution
function for this model is given by

(1.4) FY (y) = 2
∫ y

−∞
f(t)F (λt)dt.

A particular case of model (1.4) is the skew-normal (SN) distribution (see Azzalini,
([3])) with f = φ and F = Φ with pdf and cdf given, respectively, by

(1.5) φSN (y) = 2φ(y)Φ(λy), y ∈ R,

ΦSN (y) = Φ(y)− 2T (y;λ), y ∈ R,

where φ(·) and Φ(·) are the pdf and cdf of N(0, 1) (the standard normal distribution), re-
spectively and T (·; ·) is Owen’s ([25]) function.

Extensions of the BS model to elliptical distributions were studied in Vilca-Labra and
Leiva-Sánchez ([30]), namely, skew-elliptical Birnbaum–Saunders (SEBS) distribution. Model
construction is based on the condition that

Z =
1
γ

(√
T

β
−
√

β

T

)
∼ SE(0, 1; g, λ).

We use the notation SEBS(γ, β; g, λ). The case of model SEBS based on SN distribu-
tion, we denote SNBS(γ, β, λ). Additional references on the BS distribution can be found in
the recent book by Leiva ([18]).
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An alternative asymmetric distribution is studied in Durrans ([10]), by introducing the
fractional order statistical model, with pdf given by

(1.6) ϕH(z;α) = αh(z){H(z)}α−1, z ∈ R,

where H is an absolutely continuous cumulative distribution function with pdf h and α > 0
is a parameter that controls the distributional shape. The case H = Φ is called the power-
normal (PN) distribution, with pdf given by

ϕΦ(z;α) = αφ(z){Φ(z)}α−1, z ∈ R,

denoted Z ∼ PN(α). This model is an alternative to adjust data with asymmetry and kurtosis
above (or below) the expected for the normal distribution.

In this paper we extend the SEBS model considered in Vilca-Labra and Leiva-Sánchez
([30]), using the fractionary order statistical model of Durrans ([10]). This generalization
leads to a more flexible model in what concerns asymmetry and kurtosis, that the SEBS
model, given that those models are special cases (hence also the ordinary BS model). It than
can used for fitting fatigue data as well as life data.

The paper is organized as follows. Section 2 is devoted to study extensions of the
GBS elliptical model by using the fractionary order statistical model in Durrans ([10]). Some
properties of this family are studied and it is shown, in particular, that the range of asymmetry
and kurtosis surpasses that of the ordinary skew-normal and power-normal models. Maximum
likelihood estimation for the model proposed is implemented in Section 3. Observed and
expected information matrices are derived and it is shown to be nonsingular at the vicinity
of symmetry. Results of three real data application is presented in Section 4. The main
conclusion is that the model proposed offers a viable alternative to others considered in the
literature.

2. POWER SKEW-ELLIPTICAL BIRNBAUM–SAUNDERS
DISTRIBUTIONS

We start by extending the model (1.6) assuming that the pdf h it is as follows

h(y;λ) = 2f(y)F (λy); y, λ ∈ R,(2.1)

where f is given in (1.1), F is its respective cumulative distribution function and λ is an
asymmetry parameter. We call it the power skew-elliptical(PSE) model with pdf given by

(2.2) ϕPSE(z;λ, α) = αh(z;λ){H(z;λ)}α−1, z ∈ R.

We use the notation Z ∼ PSE(0, 1; g, λ, α).

Moments of the random variable Z have no closed form, but under a variable change
the r-th moment of the random variable Z can be written as

E(Zr) = α

∫ 1

0
[H−1(z;λ)]rzα−1dx,
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where H−1 is the inverse of the function H.

If the pdf h follows model (1.5), then, we have the power skew-normal (PSN) model
with parameters λ and α introduced in Mart́ınez-Flórez et al. ([23]). This model we denote
by PSN(λ, α).

Special cases of model PSN occur with α = 1, so that the skew-normal model φSN (x),
follows. On the other hand, with λ = 0 the model with pdf ϕΦ(x), that is, Durrans generalized
normal model follows. The ordinary standard normal model is also a special case which follows
by taking α = 1 and λ = 0, that is, ϕPSN (x; 0, 1) = φ(x). Notice from Figure 1 (a) and (b)
below that α and λ affect both, distribution asymmetry and kurtosis and hence the model
proposed seems more flexible than the models by Azzalini ([3]) and Durrans ([10]).
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Figure 1: PSN model. (a) α = 1.5 and λ =-0.75 (dotted dashed line),
0 (dotted line), 1 (dashed line) and 1.75 (solid line), (b) λ =
0.70 and α = 0.50 (dotted-dashed line), 1.0 (dotted line), 2.0
(dashed line) and 5.0 (solid line).

For some values of λ and α ∈ [0.1, 100], asymmetry and kurtosis coefficients namely√
β1 and β2, for Z ∼ PSN(λ, α), are in the intervals [-1.4676,0.9953) and [1.4672,5.4386] re-

spectively, see Mart́ınez-Flórez et al. ([23]). Such intervals contain the corresponding intervals
for the skew-normal distribution, given by (-0.9953,0.9953) and [3,3.8692) respectively, and
for the PN model, given by [-0.6115,0.9007] and [1.7170,4.3556], respectively, see Pewsey et

al. ([26]). This illustrates the fact that the exponentiated skew-normal family contains mod-
els with greater (and smaller) asymmetry than both skew-normal (Azzalini, ([3])) and the
power-normal (generalized normal) model (Durrans, ([10])). It then encompasses a family of
distributions with more of both, platykurtic and leptokurtic, distributions. This illustrates
the fact that the PSE model can be more flexible, respective to asymmetry and kurtosis, than
the models characterized by density functions fY and ϕH .

We consider now an extension of the BS model to the case of exponentiated skew
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elliptical distributions. Assuming that

Z =
1
γ

(√
T

β
−
√

β

T

)
∼ PSE(0, 1; g, λ, α),

it follow that Z is distributed according to model (2.2). Therefore, trough a simple variable
change, it can be shown that the random variable

T =
β

4

[
γZ +

√
γ2Z2 + 4

]2
,(2.3)

is distributed according to the power skew-elliptical Birnbaum–Saunders (PSEBS) distribu-
tion, denoted by T ∼ PSEBS(γ, β; g, λ, α).

The pdf for random variable (2.3) is given by

(2.4) ϕPSEBS(t; γ, β, λ, α) = αh(at(γ, β);λ){H(at(γ, β);λ)}α−1At(γ, β), t ∈ R+.

This model provides then a generalization for the model introduced by Dı́az-Garćıa
and Leiva-Sánchez ([9]) and Vilca-Labra and Leiva-Sánchez ([30]). Notice that for α = 1, the
SEBS model (Vilca-Labra and Leiva-Sánchez ([30])) is obtained and for λ = 0 and α = 1 we
obtain the GBS model (Dı́az-Garćıa and Leiva-Sánchez ([9])). The case λ = 0 constitutes
an extension for the BS model since it contains the ordinary BS model. This model has
been studied in Mart́ınez-Flórez et al. ([22]), supposing that Z ∼ PN(α) and is called the
power normal Birnbaum–Saunders (PNBS) model, denoted PNBS(γ, β, α) for the case of the
normal distribution. Some properties and moments of the PSEBS distribution represented
by the random variable T in (2.3) are presented next. Properties are similar to the ones
derived for the SEBS distribution by Vilca-Labra and Leiva-Sánchez ([30]), for T with Z ∼
SE(0, 1; g, λ).

Theorem 2.1. Let T ∼ PSEBS(γ, β; g, λ, α). Then,

1. bT ∼ PSEBS(γ, bβ; g, λ, α), b > 0 and

2. T−1 ∼ PSEBS(γ, β−1; g,−λ, α).

Proof: 1. Let T ∼ PSEBS(γ, β; g, λ, α) and Y = bT for b > 0 so that T = Y
b , where

the Jacobian is J = 1
b . Moreover, since at(γ, β) = ay/b(γ, β) = ay(γ, bβ) and |J | d

dtat(γ, β) =
|J | d

dtay/b(γ, β) = d
dyay(γ, bβ) = Ay(γ, bβ), so that, from the above transformations we have

fY (y) = αh(ay/b(γ, β);λ)
{
H(ay/b(γ, β);λ)

}α−1 d

dt
ay/b(γ, β)|J |

= αh(ay(γ, bβ);λ) {H(ay(γ, bβ);λ)}α−1 Ay(γ, bβ),

so that Y = bT ∼ PSEBS(γ, bβ; g, λ, α).

2. Let T ∼ PSEBS(γ, β; g, λ, α) and Y = T−1 then T = Y −1 the jacobian of the trans-
formation is J = Y −2. Moreover, at(γ, β) = ay−1(γ, β) = −ay(γ, β−1) and |J | d

dtat(γ, β) =
|J | d

dtay−1(γ, β) = d
dyay(γ, β−1) = Ay(γ, β−1).
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Then, h(at(γ, β);λ) = h(ay−1(γ, β);λ) = h(ay(γ, β);−λ) and

H(at(γ, β);λ) = H(−ay(γ, β−1);λ)

=
∫ −ay(γ,β−1)

−∞
2cg(x2)F (λx)dx

=
∫ y

0
2cg(ax(γ, β−1)2)F (−λax(γ, β−1))

d

dx
ax(γ, β−1)dx

=
∫ ay(γ,β−1)

−∞
h(x;−λ)dx

= H(ay(γ, β−1);−λ).

Using the above transformations, we have that

fY (y) = αh(ay−1(γ, β);λ)
{
H(ay−1(γ, β);λ)

}α−1 d

dt
ay−1(γ, β)|J |

= αh(ay(γ, β−1);−λ)
{
H(ay(γ, β−1);−λ)

}α−1
Ay(γ, β−1)

then we conclude that Y = T−1 ∼ PSEBS(γ, β−1; g,−λ, α).

Theorem 2.2. Let T ∼ PSEBS(γ, β; g, λ, α), HT its cumulative distribution func-

tion and H the distribution function of Z ∼ PSE(0, 1; g, λ, α). Then,

HT (t, γ, β; g, λ, α) = {H(at(γ, β);λ)}α.

Proof: Let ax(λ, β), as defined above, so that

HT (t, γ, β; gλ, α) =
∫ t

0
αh(ax(γ, β);λ) {H(ax(γ, β);λ)}α−1 Ax(γ, β)dx

=
∫ t

0
αh(ax(γ, β);λ) {H(ax(γ, β);λ)}α−1 d

dx
ax(γ, β)dx

=
∫ at(γ,β)

−∞
αh(x;λ) {H(x;λ)}α−1 dx

= FZ(at(γ, β);λ, α).

Furthermore,

FZ(at(γ, β);λ, α) =
∫ at(γ,β)

−∞
αh(x;λ) {H(x;λ)}α−1 dx

=
∫ at(γ,β)

−∞

d

dx
{H(x;λ)}α dx

= {H(at(γ, β);λ)}α,

concluding the proof.

Theorem 2.3. The p-th percentile of the PSEBS(γ, β; g, λ, α), tp = H−1(p, γ, β; gλ, α),
is given by:

tp = β

λ

2
zp +

√(
λ

2
zp

)2

+ 1

2

,

where zp is the p-th percentile of the distribution of PSE(0,1;g,λ,α), given by zp =H−1(p1/α;λ).
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Proof: For p ∈ (0, 1) as in Theorem 2.2, it follows that p = {H(at(γ, β);λ)}α so that
aT (γ, β) = Zp = H−1(p1/α;λ) ∼ PSE(0, 1 : g, λ, α) where H−1 is the inverse of H. Therefore,
result follows from (2.3).

Theorem 2.4. The survivor function, cumulative risk function, risk and inverted risk

functions for model PSEBS are given, respectively, by:

S(t) = 1− {H(at(γ, β);λ)}α, M(t) = − log[S(t)],

r(t) = αrSEBS(t)
{H(at(γ, β);λ)}α−1 − {H(at(γ, β);λ)}α

1− {H(at(γ, β);λ)}α
and R(t) = αRSEBS(t),

where rSEBS(t) and RSEBS(t) denote the risk and inverted risk for the skew-elliptical BS

model.

Proof: Result follows directly from the definitions of survival function risk and inverse
risk using the result in Theorem 2.2.

From Theorem 2.4 we can conclude that the inverse risk rate is proportional to the risk
rate for the SEBS distribution. Hence, the intervals where R(t) is decreasing or increasing,
are the same as the intervals where RSEBS(t) is decreasing or increasing.

The following two Theorem discuss the existence and the r-th moment of a random
variable T ∼ PSEBS(γ, β; g, λ, α).

Theorem 2.5. Let T ∼PSEBS(γ, β; g, λ, α) and Z ∼PSE(0, 1; g, λ, α). Hence, E(T r)
exists if and only if,

E

[(
γZ

2

)k+l ((γZ

2

)
+ 1
) k−l

2

]
(2.5)

exists k = 1, 2, ..., r with l = 0, 1, ..., k.

Proof: Taking Z ∼ PSE(0, 1; g, λ, α) it follows that

E
{[

T

β

]n}
= E


[

γ

2
Z +

√(γ

2
Z
)2

+ 1

]2


n

= E

{[
1 +

{
γ2

2
Z2 + γZ

√(γ

2
Z
)2

+ 1

}]n}
.

Therefore, using the binomial expansion, we have

E
{[

T

β

]n}
=

n∑
k=0

(
n

k

)
E


[

γ2

2
Z2 + γZ

√(γ

2
Z
)2

+ 1

]k
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and doing another binomial expansion, we obtain

E
{[

T

β

]n}
=

n∑
k=0

(
n

k

) k∑
l=0

(
k

l

)
2kE

{[(γ

2
Z
)k+l

[(γ

2
Z
)2

+ 1
] k−l

2

]}
,

so that E
{[

T
β

]n}
exists if, and only if, E

{[(γ
2Z
)k+l

[(γ
2Z
)2 + 1

] k−l
2

]}
exists, for k =

0, 1, ..., n and l = 0, 1, ..., k.

Theorem 2.6. Let T ∼ PSEBS(γ, β; g, λ, α) and Z ∼ PSE(0, 1; g, λ, α). If E[Zr]
exists for r = 1, 2, ..., then

µr = E(T r) = βr
∑

[0≤k≤r/2]

(
r

2k

)(
1
2

)2k 2k∑
j=0

(
2k

j

)
E[(γZ)4k−j(γ2Z2 + 4)j/2]

+ βr
∑

[0≤k<r/2]

(
r

2k + 1

)(
1
2

)2k+1 2k+1∑
j=0

(
2k + 1

j

)
E[(γZ)4k+2−j(γ2Z2 + 4)j/2]

where [·] corresponds to the sum of the integer part of the subscripts.

Corollary 2.1. For r = 1, 2 we have that

E(T ) =
β

2
[2 + γ2ν2 + γκ1] and E(T 2) =

β2

2
[2 + 4γ2ν2 + γ4ν4 + 2γκ1 + γ3κ3],

where νk = E[Zk] and κk = E
[
Zk
(
γ2Z2 + 4

)1/2
]
. Then, the variance is given by

V ar(T ) = E(T 2)− E2(T ) =
γ2β2

4
[4ν2 − κ2

1 + 2γκ3 − 2γν2κ1 − γ2ν2
2 + 2γ2ν4].

The central moments, µ́r = E(T − E(T ))r, for r = 2, 3, 4 can be obtained using µ́2 =
µ2 − µ2

1, µ́3 = µ3 − 3µ2µ1 + 2µ3
1 and µ́4 = µ4 − 4µ3µ1 + 6µ2µ

2
1 − 3µ4

1. Hence, variation coef-
ficient, asymmetry and kurtosis can be obtained by using:

CV =

√
σ2

T

µ1
,

√
β1 =

µ́3

[µ́2]3/2
and β2 =

µ́4

[µ́2]2
.

2.1. Power skew-normal Birnbaum–Saunders distribution

The power skew-normal Birnbaum–Saunders distribution is obtained by taking H =
ΦSN (and h = φSN ) in (2.4) and is denoted by PSNBS. It follows then that the density
function is given by

ϕPSNBS(t; γ, β;φ, λ, α) = αφSN (at(γ, β)){ΦSN (at(γ, β))}α−1At(γ, β),

with at given in (1.3). Notice that the ordinary BS is a special case which follows by taking
F = Φ, λ = 0 and α = 1. If α = 1, the asymmetric BS model studied in Vilca-Labra and
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Leiva-Sánchez ([30]) is derived and for λ = 0, we obtain the power-normal BS model studied
in Mart́ınez-Flórez et al. ([22]). Moreover, some properties of the BS distribution holds for
the PSNBS distribution.

The cumulative distribution function for this model is given by

HPSNBS(t, γ, β;λ, α) = {Φ(at(γ, β))− 2T (at(γ, β);λ)}α , t > 0,

Figures 2 and 3 depicts the behavior of the PSNBS distribution for those values of α

and λ.
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Figure 2: Plots for density function ϕT (t; γ, β, λ, α). (a)
(γ, β, λ, α) = (0.75,1,-1,1.75) (dashed and dotted lines),
(γ, β, λ, α) = (0.75,1,-0.25,1.75) (dotted line), (γ, β, λ, α) =
(0.75,1,0.25,1.75) (dashed line) and (γ, β, λ, α) =
(0.75,1,1,1.75) (solid line). (b)(γ, β, λ, α) = (1.25,1,-1,1.75)
(dashed and dotted lines), (γ, β, λ, α) = (1.25,1,-0.25,1.75)
(dotted line), (γ, β, λ, α) = (1.25,1,0.25,1.75) (dashed line)
and (γ, β, λ, α) = (1.25,1,1,1.75) (solid line).

From Theorem 2.4, the survivor function, risk and inverted risk functions for model
PSNBS are given, respectively, by

(2.6) S(t) = 1− {ΦSN (at(γ, β))}α, M(t) = − log[S(t)],

r(t) = αrSNBS(t)
{ΦSN (at(γ, β))}α−1 − {ΦSN (at(γ, β))}α

1− {ΦSN (at(γ, β))}α
and R(t) = αRSNBS(t),

where rSNBS(t) and RSNBS(t) respectively denote the risk and inverted risk of the skew-
normal Birnbaum–Saunders.

The following Theorem shows that for t →∞ the limit of the risk function of the
PSNBS model coincides with the limit to infinity for the risk function of the SNBS model,
result found by Leiva et al. ([20]).
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Figure 3: Plots for density function ϕT (t; γ, β, λ, α). a)
(γ, β, λ, α) = (0.75,1,1,0.75) (dashed and dot-
ted lines), (γ, β, λ, α) =(0.75,1,1,1.5) (dotted line),
(γ, β, λ, α) =(0.75,1,1,2.25) (dashed line) and
(γ, β, λ, α) =(0.75,1,1,3) (solid line). b)(γ, β, λ, α) =
(1.25,1,1,0.75) (dashed and dotted lines), (γ, β, λ, α) =
(1.25,1,1,1.5) (dotted line), (γ, β, λ, α) = (1.25,1,1,2.25)
(dashed line) and (γ, β, λ, α) = (1.25,1,1,3) (solid line).

Theorem 2.7.
lim
t→∞

r(t) = (1 + λ2)(2γ2β)−1.

Proof: Rewritting the risk function in the form

r(t) = αrSNBS(t){ΦSN (at(γ, β))}α−1 1− ΦSN (at(γ, β))
1− {ΦSN (at(γ, β))}α

,

and using L’Hôpital rule, we obtain

lim
t→∞

1− ΦSN (at(γ, β))
1− {ΦSN (at(γ, β))}α

= lim
t→∞

−φSN (at(γ, β))At(γ, β)
−α{ΦSN (at(γ, β))}α−1φSN (at(γ, β))At(γ, β)

=
1
α

,

where At(γ, β) = d
dtat(γ, β).

Therefore,

lim
t→∞

r(t) = α lim
t→∞

rSNBS(t)
1
α

= lim
t→∞

rSNBS(t) = (1 + λ2)(2γ2β)−1

where
lim
t→∞

rSNBS(t) = (1 + λ2)(2γ2β)−1,

as shown in Leiva et al. ([20]).

Figures 4 and 5 reveals the fact that the risk function is a non decreasing (and unimodal)
function of t, but an increasing function of parameter α. Moreover, r(t) is a non decreasing
function for parameter γ.
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Figure 4: Function r(t), for (a) γ = 0.25, β = 1.0, λ = 2 and α = 0.75
(dashed and dotted line), α =1 (dotted line), α =2 (dashed
line) and α =5 (solid line). (b)γ = 0.5, β = 1.0, λ = 2 and
α = 0.75 (dashed and dotted line), α =1 (dotted line), α =2
(dashed line) and α =5 (solid line).
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Figure 5: Function r(t), for (a) γ = 0.25, β = 1.0, α = 1.75 and λ =-
1.5 (dashed and dotted lines), λ =-0.75 (dotted line), λ =0.75
(dashed line) and λ =1.5 (solid line). (b)γ = 0.5, β = 1.0, α =
1.75 and λ = -1.5 (dashed and dotted lines), λ =-0.75 (dotted
line), λ =0.75 (dashed line) and λ =1.5 (solid line).
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2.2. Inference for the PSNBS model

We present in this section the score functions and the observed and expected in-
formation matrices for the parameter θ = (γ, β, λ, α). Given a random sample of size n,
t = (t1, ..., tn)′, from the distribution PSNBS(γ, β, λ, α), the log-likelihood function for
θ = (γ, β, λ, α)′ can be written as

`(θ; t) = n

[
log(α)− log(γ)− 1

2
log(β)

]
+

n∑
i=1

log(ti + β)− 3
2

n∑
i=1

log(ti)

− 1
2γ2

n∑
i=1

[
ti
β

+
β

ti
− 2
]

+
n∑

i=1

log(Φ(λati)) + (α− 1)
n∑

i=1

log(ΦSN (ati)).(2.7)

The maximum likelihood (ML) estimators are obtained by maximizing the log-likelihood
function given in (2.7). The score function, defined as the derivative of the likelihood function
with respect to model parameters is denoted by U(θ) = (U(γ), U(β), U(λ), U(α))′ so that the
score equations follow by equating the scores to zero, leading to the following equations

U(γ) = −1
γ

n∑
i=1

[
1− a2

ti + ati [λwi + (α− 1)w1i]
]

= 0,

U(β) = − n

2β
+

n∑
i=1

1
β + ti

− 1
2γ2

n∑
i=1

[
1
ti
− ti

β2

]
− 1

2γβ
3
2

n∑
i=1

ti + β

t
1
2
i

[λwi + (α− 1)w1i] = 0,

U(λ) =
n∑

i=1

ati

φ(λati)
Φ(λati)

−
√

2
π

(α− 1)
1 + λ2

n∑
i=1

w2i = 0, U(α) =
n

α
+

n∑
i=1

ui = 0,

where ui = log{ΦSN (ati)},

wi =
φ(λati)
Φ(λati)

, w1i =
φSN (ati)
ΦSN (ati)

,

and

w2i =
φ
(√

1 + λ2ati

)
ΦSN (ati)

, i = 1, ..., n.

Numerical approaches are required for solving the above system of equations.

The elements of the observed information matrix are the negative of the second partial
derivatives of the likelihood function with respect to the model parameters evaluated at the
ML estimators. We use the notation jγγ , jβγ , jλγ , jαγ , ..., jαλ, jαα so that, after extensive
algebraic manipulations,

jγγ = − n

γ2
+

3
γ2

n∑
i=1

a2
ti +

λ

γ2

n∑
i=1

a2
tiwi

[
λ2ati + λwi − 2

]
−
√

2
π

λ(α− 1)
γ2

n∑
i=1

a2
tiw2i

− (α− 1)
γ2

n∑
i=1

atiw1i

[
2 + a2

ti − atiw1i

]
.
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jβγ =
1
γ3

n∑
i=1

[
ti
β2

− 1
ti

]
− λ

2γ2β3/2

n∑
i=1

ti + β√
ti

wi [1− λati(λati + wi)]

− α− 1
2γ2β3/2

n∑
i=1

ti + β√
ti

[√
2
π

λatiw2i + w1i(1 + a2
ti − atiw1i)

]
,

jλγ =
1
γ

n∑
i=1

atiwi [1− λatiwi(λati + wi)] +

√
2
π

α− 1
γ

n∑
i=1

atiw2i

[
ati +

1
1 + λ2

w1i

]
,

jββ = − n

2β2
+

n∑
i=1

1
(ti + β)2

+
1

γ2β3

n∑
i=1

ti −
1

2γβ5/2

n∑
i=1

3ti + β√
ti

[λwi + (α− 1)w1i]

+
1

4γ2β3

n∑
i=1

(ti + β)2

ti

[
λ2wi

(
λ(ti − β)

γβ1/2t
1/2
i

+ wi

)

+ (α− 1)

(
ti − β

γβ1/2t
1/2
i

w1i + w2
1i −

√
2
π

λw2i

)]
,

jλβ =
1

2γβ3/2

n∑
i=1

ti + β√
ti

wi [1− λatiwi(λati + wi)]

+

√
2
π

α− 1
2γβ3/2

n∑
i=1

ti + β√
ti

w2i

[
ati +

1
1 + λ2

w1i

]
,

jαγ =
1
γ

n∑
i=1

atiw1i, jαβ =
1

2γβ3/2

n∑
i=1

ti + β√
ti

w1i,

jλλ =
n∑

i=1

a2
tiwi(λati + wi)−

√
2
π

2λ(α− 1)
(1 + λ2)2

n∑
i=1

w2i

+

√
2
π

α− 1
1 + λ2

n∑
i=1

w2i

[
−λa2

ti +

√
2
π

1
1 + λ2

w2i

]
,

jαλ =

√
2
π

1
1 + λ2

n∑
i=1

w2i, jαα =
n

α2
.

The elements of the Fisher information matrix are n−1 times the expected values of the
elements of the matrix of second derivatives of the log-likelihood function.

Considering now λ = 0 and α = 1 and using the approximation in Cribari-Neto and
Branco ([8]), we can write the expected Fisher information matrix as

IF (θ) =


1
γ2 0 0 1

4γ
π2

√
8+π2

0
√

2π+γp(γ)√
2πγ2β2 A1(γ, β) A2(γ, β)

0 A1(γ, β) 2
π

√
1
2

1
4γ

π2
√

8+π2 A2(γ, β)
√

1
2 1

 ,



A Unification of Families of Birnbaum–Saunders Distributions with Applications 651

where p(γ) = γ
√

2
π −

π exp( 2
γ2 )

2 erfc( 2
γ ), with erfc(x) = 2√

π

∫∞
x exp(−t2)dt being the error func-

tion (see Prudnikov et al. ([27])), A1(γ, β) =
√

2
π

1
4γ2β2

∫∞
0

(
1 + β

t

)
φ(at)dt and A2(γ, β) =√

2
π

1
4γ2β2

∫∞
0

(
1 + β

t

)
φ(2

√
2at/π)Φ(−at)dt.

The 2x2 superior submatrix of I(θ) is the Fisher information matrix for the ordinary
BS distribution, as can be seen in Lemonte et al. ([21]). It can be verified that the columns
(lines) of the matrix IF (θ) are linearly independent and hence, it is invertible. Hence, for
large samples, the MLE θ̂ of θ is asymptotically normal, that is,

θ̂
A→ N4(θ, IF (θ)−1),

resulting that the asymptotic variance of the ML estimators θ̂ is the inverse of IF (θ), which
we denote by Σθ̂ = IF (θ)−1.

Approximation N4(θ, Σθ̂) can be used to construct confidence intervals for θr, which

are given by θ̂r ∓ z1−ρ/2

√
σ̂(θ̂r), where σ̂(·) corresponds to the r-th diagonal element of the

matrix Σθ̂ and z1−ρ/2 denotes 100(1− ρ/2)-quantile of the standard normal distribution.
On the other hand, in presence of right-censoring we can adopt the following scheme. Assum-
ing that for each individual the failure time is independent of the censoring time (say, Yi and
Ci for i = 1, ..., n respectively). The observed times are given by Ti = min(Yi, Ci) and the
failure indicator is denoted as δi = I(Yi ≤ Ci). Given a sample of observed times and failure
indicators (t1, δ1), (t2, δ2), ..., (tn, δn) and under the additional assumption of non-informative
censoring, i.e., the distribution of failure times (Yi) don’t provide information about the cen-
soring times (Ci) and viceversa (see Lagakos ([16])), the log-likelihood function for θ is given

(2.8) l(θ; t) =
n∑

i=1

[δi log ϕPSNBS(ti; γ, β;φ, λ, α) + (1− δi) log S((ti; γ, β;φ, λ, α))] .

For δi = 1, i = 1, ..., n, equation (2.8) is reduced to (2.7). Finally, inference based on (2.8)
can be performed in a similar manner as was done in the uncensored case, as described above.

3. RELATIONSHIP AMONG DISTRIBUTIONS OF THE FAMILY PSEBS

The pdf for the PSEBS model with tν distribution (denoted PSTBS) is given by:

(3.1) ϕPSTBS(t; ξ) =
αΓ(ν+1

2 )
(νπ)1/2Γ(ν

2 )

[
1 +

a2
t

ν

]− ν+1
2

Fst(λat){Hst(at;λ)}α−1At(γ, β),

where ξ = (γ, β;λ, α, ν) and ν representing degrees of freedom and Fst is the cdf of the tν
distribution (see Johnson et al. ([14])) and Hst is the cdf of the skew-tν distribution. The
power skew-Cauchy Birnbaum–Saunders (PSCBS) model follows from pdf (3.1) by taking
ν = 1. Note that in the particular case that λ = 0 and α = 1, the PSTBS coincides with the
Birnbaum–Saunders-tν (BST) distribution studied in Dı́az-Garćıa and Leiva-Sánchez ([9]) and
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for λ = 0 is obtained the Power Birnbaum–Saunders Student-t distribution studied in ([24]).
Moreover, for α = 1, we obtain the skew-tν-Birnbaum–Saunders (STBS) model, studied in
Vilca-Labra and Leiva-Sánchez ([30]). The relationships among some of those models are
presented in Figure 6.
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Figure 6: Relationship among distributions of the family PSEBS.

The density generator of the normal, Cauchy, tν , generalized tν , type I logistic, type II
logistic and power exponential are, respectively, given by g(u) = (2π)−1/2 exp(−u/2), g(u) =
{π(1 + u)}−1, g(u) = νν/2B(1/2, ν/2)−1(ν + u)−(ν+1)/2, where ν > 0 and B(·, ·) is the beta
function, g(u) = sr/2B(1/2, r/2)−1(s+u)−(r+1)/2 (s, r > 0), g(u) = c exp(−u)(1+exp(−u))−2,
where c ≈ 1.484300029 is the normalizing constant obtained from

∫∞
0 u−1/2g(u)du = 1, g(u) =

exp(−
√

u)(1 + exp(−
√

u))−2 and g(u) = c(k) exp(−1
2u1/(1+k)), −1 < k ≤ 1, where c(k) =

Γ(1 + (k + 1)/2)21+(1+k)/2.

4. APPLICATIONS

In this section, it is shown that the model discussed in the previous sections can give
good feedback to understand relations between variables in applied problems. The first
application considers the remission times (in months) of the bladder cancer patients. The
second application presented is based on certain features of the trees in a forestry area, and
the last applications is a censured data.



A Unification of Families of Birnbaum–Saunders Distributions with Applications 653

4.1. Application I

We consider an uncensored data set corresponding to remission times (in months) of a
random sample of 128 bladder cancer patients. These data were previously studied by Lee
and Wang ([17]). Bladder cancer is a disease in which abnormal cells multiply without control
in the bladder. The most common type of bladder cancer recapitulates the normal histology
of the urothelium and is known as transitional cell carcinoma.

Descriptive statistics results are summarized in Table 1, where
√

b1 and b2 are sample
asymmetry and sample kurtosis coefficients, respectively. There is indication of high kurtosis
in this data set, which suggest that PSNBS model can be more appropriate than BS model.
ML estimators were computed by maximizing log-likelihood using function“optim” in R Core
Team ([28]). Table 2 shows the fitting of the BS, SNBS, PNBS and PSNBS models (standard
error are in parenthesis). To compare the fitting of these models, we use Akaike ([1]) criterion,
namely

AIC = −2`(·; t) + 2k,

we consider also the AICC (corrected Akaike information criterion), namely

AICC = AIC +
2k(k + 1)

n− (k + 1)
,

where k is the number of parameters in the model. According to this criterion the model
that best fits the data is the one with the lowest AIC or AICC. We also apply the formal
goodness-of-fit tests in order to verify which distribution fits better to these data. We consider
the Cramér-von Mises (W ∗), Anderson-Darling (A∗) statistics, Kolmolgorov- Smirnov(K-S)
test statistics and p-value. The statistics W ∗ and A∗ are described in detail in Chen and
Balakrishnan ([6]). In general, the smaller the values of the statistics W ∗ and A∗, the better
the fit to the data.

Table 1: Descriptive statistics for the data
set.

n t s2
√

b1 b2

128 4.1293 9.3660 3.2480 15.1950

Table 2: ML estimates for BS, PNBS, SNBS and PSNBS models.

Parameters γ β α λ

BS 1.3740(0.0862) 4.5711(0.4461) − −
PNBS 3.2915(0.2856) 0.4227(0.6321) 5.1830(0.2051) −
SNBS 2.3350(0.4131) 1.3566(0.3849) − 1.9050(1.1294)

PSNBS 5.3315(3.0351) 0.1764(0.2060) 2.3024(0.4235) 2.5762(3.7211)
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The values of these statistics for all models are given in Table 3. As expected, the
values of AIC, AICC, W ∗, A∗, K-S and p-value indicates better fit for the PSNBS model over
the SNBS, PNBS and BS models. Figure 7 shows graphs for PSNBS model (a) empirical
cdf (b) histogram and Figure 8 (a) and (b) shows the qq-plot for the models with better fit.

Table 3: AIC, AICC, W ∗, A∗, K-S and p-value for the remission times of
bladder cancer data for BS, PNBS, SNBS and PSNBS models.

`(θ) AIC AICC W ∗ A∗ K-S P-value

BS 430.0420 864.0836 864.1898 0.4136 2.5615 0.1689 0.0013
PNBS 413.0645 832.1290 832.3433 0.1196 0.7219 0.0694 0.5680
SNBS 418.8570 843.7140 843.9283 0.1667 1.0930 0.1214 0.0459

PSNBS 411.8310 831.6620 832.0224 0.0829 0.5073 0.0623 0.7037
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Figure 7: Graphs for PSNBS model (a) empirical cdf (b) histogram.
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Figure 8: (a) qq-plot PNBS and (b) qq-plot PSNBS.
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Note that the PSNBS model provides better fit to the data set analyzed. Therefore, the
PSNBS model fits better than the other models, although it has one more parameter.

4.2. Application II

A major problem with forest areas is tree mortality due to various factors that can be
seen as caused by stress through a phenomenon similar to material fatigue. In this context,
two problems of great interest are tree mortality and the distribution of the diameter at the
breast height (DBH). It has been observed that the BS distribution has a failure rate that
can capture such features. As seen above, the ordinary BS is a particular case of the PSEBS
distribution, so that the PSEBS is more flexible to explain skewness and kurtosis excess.
Thus, we apply this distribution to explain the behavior of the variable DHB (in cm) in
explaining forest mortality of Gray Birch (Betula populifolia Marshall) of a perennial with an
average height of ten meters. The data basis consists of 160 trees and are available in Leiva
et al. ([19]). Descriptive statistics results are summarized in Table 4. There is indication of
high kurtosis in this data set, that suggest a more flexible model than the BS model, such as
the PSTBS model. For this reason we implement the BS, BST, STBS and PSTBS models.

Table 4: Descriptive statistics for the data set.

n t s2
√

b1 b2

160 14.5387 13.0510 2.8893 13.9716

Table 5 reports the estimates of the degrees of freedom, ν, for each model based on
the tν distribution, which are obtained by maximizing the profile log-likelihood function. ML
estimates (standard errors in parenthesis) are presented in Table 6.

Table 5: Estimation of ν for the BST, STBS and PSTBS models by
maximizing the log-likelihood function.

Log-likelihood Log-likelihood Log-likelihood

ν BST STBS PSTBS

1 -406.4265 -402.8126 -390.2868
2 -392.7834 -387.5216 -383.0684
3 -389.9824 -383.4061 -381.0513
4 −389.4381 -381.8612 -380.0609
5 -389.5679 -381.1933 -379.6883
6 -389.9238 -380.8925 -379.4448
7 -390.3497 -380.8505 -379.4001
8 -390.7852 −380.7285 -379.0779
9 -391.2060 -381.0066 −378.8113
10 -391.6025 -383.8818 -379.3470
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Table 6: ML estimates for BS, BST (ν = 4), STBS (ν = 8) and PSTBS
(ν = 9) models.

γ β α λ

BS 0.2083(0.0116) 14.2302(0.2331) − −
BST 0.151(0.074) 13.818(0.014) − −
STBS 0.2653(0.103) 11.346(0.025) − 3.325(1.174)

PSTBS 0.2796(0.1135) 9.8844(0.1244) 2.3178(0.9654) 7.7185(11.4417)

According to the AIC and AICC criteria, W ∗, A∗, K-S and p-value indicates better fit
for the PSNBS model over the other models. See Table 7.

Table 7: AIC, AICC, W ∗, A∗, K-S and p-value for the remission times
of Gray birch data for BS, BST4, STBS8 and PSTBS9 models.

`(θ) AIC AICC W ∗ A∗ K-S P-value

BS 399.7764 803.5528 803.6590 0.4396 2.7084 0.1066 0.0526
BST 389.4381 782.8762 782.9526 0.16602 1.1472 0.0707 0.4004
STBS 380.7285 767.4569 767.6108 0.04515 0.3166 0.0535 0.7506

PSTBS 378.8113 764.355 764.6131 0.040 0.2966 0.047 0.8614

Figure 9 shows graphs for PSTBS9 model (a) empirical cdf (b) histogram and Figure 10
(a) and (b) shows the qq-plot for the models with better fit.
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Figure 9: Graphs for PSTBS9 model (a) empirical cdf and (b) histogram.
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Figure 10: (a) qq-plot STBS8 and (b) qq-plot PSTBS9.

4.3. Application III (censored data)

The World Health Organization recommends breastfeeding exclusive for babies until 4
and 6 months. For this reason, an study from Universidade Federal de Minas Gerais UFMG
main breastfeeding practice, as well as the possible factors of risk for an early weaning. The
study consists of 150 mothers with children under 2 years of age. The response variable was
the maximum time of breastfeeding, i.e., the time counted from birth to the weaning. More
details on this data set can be found in Colosimo and Giolo ([7]). The values of the ML
estimates for the BS, SNBS and PSNBS statistics for all models are given in Table 8. As
expected, the values of AIC better fit for the PSNBS over other models, and the Figure 11
we can see that most babies stop having exclusive breastfeeding after 7 or 8 months.

Table 8: ML estimates for BS, SNBS and PSNBS models and AIC criteria.

γ β α λ `(θ) AIC

BS 2.362 (0.268) 6.696(1.372) − − -243.545 491.090
SNBS 5.380(1.538) 0.591(0.277) − 4.015 (1.712) -230.047 466.094

PSNBS 6.441(2.794) 0.252(0.227) 1.489(0.299) 3.761(2.287) -228.357 464.715
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Figure 11: Estimated survival function for weaning study data under PSNBS model.

5. FINAL COMMENTS

This Paper proposes a flexible asymmetric BS distribution which contains previous
ones as special cases and is able to surpass traditional models in terms of wider ranges of
asymmetry and kurtosis. It is also shown that it is able to perform well in real applications,
outperforming potential rival models. Maximum likelihood estimation is implemented and
Fisher and observed information matrices are derived. It is shown that both are nonsingular.
Some more features of this family of distributions are:

• The PSEBS model contains, as special cases, the SEBS model proposed by Vilca-
Labra and Leiva-Sánchez ([30]) and the PEBS model proposed by Mart́ınez-Flórez
et al. ([22]).

• The proposed model it has a closed expression and presents more flexible asymmetry
and kurtosis coefficients than PEBS and SEBS models.

• Some properties of the BS distribution were extended for the PSEBS model.

• The moments of the PSEBS family are finite.

• In the three applications it is shown that the PSEBS model fit better than the other
models. This is confirmed by the different criteria used.
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[19] Leiva, V.; Ponce, M.; Marchant, C. and Bustos, O. (2012). Fatigue statistical distribu-
tions useful for modeling diameter and mortality of trees, Revista Colombiana de Estad́ıstica,
35, 349–370.

[20] Leiva, V.; Vilca, F.; Balakrishnan, N. and Sanhueza, A. (2010). A skewed sinh-normal
distribution and its properties and application to air pollution, Communications in Statistics
Theory and Methods, 39, 426–443.

[21] Lemonte, A.; Cribari-Neto, F. and Vasconcellos, K. (2007). Improved statistical in-
ference for the two-parameter Birnbaum–Saunders distribution, Computational Statistics and
Data Analysis, 51, 4656–4681.

[22] Mart́ınez-Flórez, G.; Bolfarine, H. and Gómez, H.W. (2014a). An alpha-power exten-
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1. INTRODUCTION

Analysis of experimental data that have been observed at different points in time leads
to specific problems in statistical modeling and inference. In traditional time series the
main emphasis is on the case when a continuous variable is measured at discrete equispaced
time points, [22]. There is an extensive body of literature on analyzing equally spaced time
series data, see for example [3] and [6]. However, unevenly spaced (also called unequally
or irregularly spaced) time series data naturally occurs in many scientific domains. Natural
disasters such as earthquakes, floods, or volcanic eruptions typically occur at irregular time
intervals. In observational astronomy, for example, measurements of properties such as the
spectra of celestial objects are taken at irregularly spaced times determined by seasonal,
weather conditions, and availability of observation time slots. In clinical trials (or more
generally, longitudinal studies), a patient’s state of health may be observed only at irregular
time intervals, and different patients are usually observed at different points in time.

It must be noted that sometimes equally spaced time series are treated as irregularly
spaced time series, namely time series with missing observations and multivariate data sets
that consist of time series with different frequencies, even if the observations of each time series
are reported at regular intervals. One of the first to treat evenly sampled gene expression
time series with missing values as unevenly sampled data is [19].

There are few methods available in the literature for the analysis of irregularly spaced
series. Some authors, such us [10], [12], [2] and [5] have suggested an embedding into con-
tinuous diffusion processes, with the aim of using the well established tools for univariate
autoregressive moving average (ARMA) processes.

Observations with irregularly spaced sampling times are much harder to work with,
partly because the established and efficient algorithms developed for equally spaced sampling
times are no longer applicable [15]. A common approach to perform parametric estimation
is to construct a log-likelihood function in terms of the unknown parameter [4]. When the
sampling times are considered deterministic, the traditional approach is to build the classical
Gaussian log-likelihood function. However, because the inversion of the covariance matrix
has to be performed, numerical evaluation of this Gaussian log-likelihood function is in gen-
eral very expensive [14]. One way to overcome this computational effort is to regulate the
sampling scheme, using some form of interpolation, and consider it as being equally spaced.
Under the assumption of equally spaced sampling times, the Gaussian log-likelihood function
can be approximated, at least for a sufficiently large sample, by the Whittle log-likelihood
function [24]. This approach has been successfully applied to irregularity caused by missing
values, [16]. While, it may be reasonable to use this methodology, to deal with the mi-
nor irregularities in sampling times caused by missing values, the interpolation procedure
will typically change the dynamic of the underlying process, leading to biased estimates for
the parameters [9]. Moreover, there is little understanding of which particular interpolation
method is the most appropriate on a given data set. Alternatively, a convenient continuous
time domain dynamic model may be assumed for the underlying continuous time stationary
process such as the Continuous time ARMA (CARMA) model. The application of Kalman
recursion techniques to the parametric estimation of CARMA processes is reviewed in [22].
Additionally, [13] estimate the parameters of an irregularly sampled CARMA process using
a Bayesian framework.
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A particular case of irregularly spaced data is that in which the collection procedure
along time depends also, for practical constraints, on the observed values. For example, a
certain health indicator for an individual may be measured at different time points and with
different frequencies depending on his health state. In a completely different setting, the
times of occurrence of transactions in the financial markets depend largely on the value of
the underlying asset. In environmental monitoring applications, or in the context of smart
cities if it is decided to monitor more frequently when a value considered critical to human
health is exceeded. Therefore, additional information on the phenomena under study is
obtained from the frequency or time occurrence of the observations. In such situations, there
is stochastic dependence between the process being modeled and times of the observations,
which may be coined as temporal preferential sampling following [8] in the context of spatial
statistics.

In this work, we propose a model-based approach to analyze a time series observed
under preferential sampling. The suggested framework considers the observed time points
as the realization of a time point process stochastically dependent on an underlying latent
process (e.g. an individual health indicator or the underlying asset). This latent process is
assumed as Gaussian without loss of generality.

The paper is organized as follows. Section 2 describes our proposed model for prefer-
ential sampling in time dimension, namely to make inference and prediction. In Section 3
we describe the Monte Carlo Maximum Likelihood Estimation. In section 4 we conduct a
numerical illustration, in an artificial data set, to analyze the quality of the proposed model.
We then show the application of the previously described methodology to a real data set
related to monitoring the level of a biomedical marker, after a cancer patient undergoes a
bone marrow transplant. Section 5 is devoted to make some concluding remarks.

2. A MODEL FOR PREFERENTIAL SAMPLING

In time series, data are obtained by sampling a phenomenon S(t) : t > 0 at a discrete set
of times ti, i = 1, ..., n. Admiting the possibility that the sampling design may be stochastic,
T = (t1, ..., tn) denotes a stochastic process of observation times. In many situations, S(t)
cannot be measured without error, hence, if Y (ti) denotes the measured value at time ti, a
model for the data takes the form:

(2.1) Y (t) = µ + S(t) + N(0, τ2), t > 0

where µ is a constant mean effect and S(·) is a stationary Gaussian process with E[S(t)] = 0.
An equivalent formulation is that conditional on S(·), the Y (ti) are mutually independent,
normally distributed with mean µ + S(ti) and common variance τ2.

We consider S(·) as a continuous time autoregressive process of order 1, CAR(1), that
satisfies the differential equation dS(t) + α0S(t)dt = dW (t) where, α0 is the autoregressive
coefficient, S(·) is asymptotically stationary if an only if α0 > 0 and W (t) is a Brownian
motion with variance parameter σ2

w. For notation simplification let us denote Yi = Y (ti).
Then Y = (Y1, ..., Yn) is multivariate Gaussian with mean µ1 and covariance matrix ΣY =
σ2

w
2α0

Ry(α0) + τ2In, where 1 is a n-length vector of ones, In is the n× n identity matrix and
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Ry(α0) has elements rij = ρ (|ti − tj | ;α0) defined by

(2.2) ρ(h) =
γ(h)
γ(0)

= exp(−α0 |h|)

being γ(·) the covariance function.

Admitting that the sampling times are stochastic, a complete model needs to specify
the joint distribution of S, T and Y . Considering the stochastic dependence between S and
T , the model to deal with preferential sampling is defined through [S, T, Y ] written as:

(2.3) [S][T |S ][Y |S(T ) ]

where [·] means “the distribution of”, S = {S(t) : t > 0}, T = (t1, ..., tn) and S(T ) represents
{S(t1), ..., S(tn)}.

We define a specific class of models through the additional assumptions: conditional
on S, T is an inhomogeneous Poisson process with intensity λ (t) = exp {a + βS (t)} and
unconditionally T is a log-Gaussian Cox process. The log-Gaussian Cox process is a flexible
class of point pattern models that allows conditioning the sampling times to the variable of
interest. β is the parameter that controls the degree of preferentiality, for example, β = 2
corresponds to a situation when the sampling times are concentrated, predominantly, near the
maximum of the observed values and β = 0 corresponds to the situation of an homogeneous,
non-preferential, sampling. Conditional on S and T , Y is a set of mutually independent
Gaussian variates with τ2 being the measurement error variance.

The predicted value of S(·) at an unsampled time point tni < t0 < tnj , S(t0|T ), is given
by S(t0|T ) = E

[
S(t0)|Y (T ). Considering that the process CAR(1) is Markovian, [6, p.358]

shows that the conditional mean of S(t0) given Y (T ) is

S(t0|T ) = E
[
S(t0)|Y (T )

]
(2.4)

= exp (−α0(t0 − tni))Y (T ) + µ (1− exp (−α0(t0 − tni))) .

The variance of the prediction is

(2.5) σ2(t0) = V ar
[
S(t0)|Y (T )

]
=

σ2
w

2α0
(1− exp (−2α0(t0 − tni))) .

3. MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION

We consider a discretization of the S process with N points and a partition of S into
S = {S0, S1}, where S0 denotes the values of S at each of n times ti ∈ T , and S1 are the
values of S at the remaining (N − n).

The likelihood function for data T and Y can be expressed as

(3.1) L(θ) = [T, Y ] =
∫

S
[T, Y, S]dS =

∫
S
[S][T, Y |S]dS =

∫
S
[S][T |S][Y |T, S]dS
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where θ = (µ, σw, α0, τ, β) represents all the model parameters.
An algebraic simplification of [Y |T, S] is [Y |S0] so, we can rewrite the integral as

(3.2) L(θ) =
∫

S
[S][T |S][Y |S0]

[S|Y ]
[S|Y ]

dS.

Considering that [S] = [S1, S0] = [S1|S0][S0] and replacing the term [S|Y ] in the denom-
inator of expression (3.2) by [S|Y ] = [S0, S1|Y ] = [S1|S0, Y ][S0|Y ] = [S1|S0][S0|Y ], equation
(3.2) becomes

L(θ) =
∫

S
[S1|S0][S0][T |S][Y |S0]

[S|Y ]
[S1|S0][S0|Y ]

dS

=
∫

S
[T |S]

[Y |S0]
[S0|Y ]

[S0][S|Y ]dS(3.3)

= ES|Y

[
[T |S]

[Y |S0]
[S0|Y ]

[S0]
]

.

Taking into account that the above conditional expectation can be approximated by
Monte Carlo, MLE’s are obtained by maximizing the Monte Carlo likelihood

(3.4) LMC(θ) = m−1
m∑

j=1

[T |Sj ]
[Y |S0j ]
[S0j |Y ]

[S0j ]

where Sj are assumed as realizations of the distribution of S conditional on Y . S0j denotes
the values of Sj restricted to the n observed time points. We may notice that j takes a value
from 1 to m, the total number of Monte Carlo replicates. With this purpose, we use a tech-
nique known as conditioning by kriging [18] and we use the following construction. The new
sample Sj = U +ΣSAT

(
AΣSAT + τ2In

)−1 (V −AU) where A is the n×N matrix whose ith
row consists of N − 1 0s and a single 1 to identify the position of ti within T = (t1, ..., tn);
U = Σ1/2

S u ∼ MV N(0,ΣS) with u ∼ N(0, 1) and Σ1/2
S is obtained from the Cholesky decom-

position and V ∼ MV N(y, ΣY ). Then Sj has the required multivariate Gaussian distribution
of S given Y = y. In practice, we use antithetic pairs of realizations to reduce Monte Carlo
variance [8].

T |Sj in (3.4) is an inhomogeneous Poisson process with intensity

(3.5) λ(t) = exp {a + βSj(t)} .

For computational reasons, we work with logarithm and thus,

(3.6) log([T |Sj ]) =
n∑

i=1

(a + βSj(ti))− n log
(∫ T

0
exp(a + βSj(t))dt

)
.

As the Sj replicate is not known in [0, T ] domain, we can not calculate the integral
presented in expression (3.6), so, we approximate the integral using the composed trapezium
formula for unequally spaced data.

[S0j ] in (3.4) is multivariate Gaussian with mean 0 and covariance matrix ΣS0j =
σ2

w
2α0

RS0j (α0), where RS0j (α0) is the n×n correlation matrix with elements rij = ρ (|ti − tj | ;α0)
defined by (2.2).
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[S0j |Y ] in (3.4) is multivariate Gaussian with mean µS0j |Y = ΣS0jΣ
−1
Y (y − µ1) and

covariance matrix ΣS0j |Y = ΣS0j − ΣS0jΣ
−1
Y Σt

S0j
. For more details about conditional distri-

bution see for e.g. [1].

Obtained the Maximum Likelihood Estimates (MLE’s), we can plug them into (2.4) and
(2.5), treating them as known. We are in position of doing the so-called plug-in predictions.

4. NUMERICAL ILLUSTRATION

In this section we document the performance of the model with time series simulated
under preferential and non preferential (irregular and regular sampling) scenarios. The simu-
lation allows control the degree of preferentiality. In addition, we apply our modeling proce-
dure to a time series related to the biomedical marker level of platelet after a cancer patient
undergoes a bone marrow transplant. Taken together, these examples suggest that our model
is effective at detecting potential preferential sampling situations, estimating an adequate
model and obtaining predictions for the process. We compare the results from our model
with the traditional Kalman filter approach to irregularly spaced data (cts package [23]).
We begin by describing the procedure to simulate a time series under preferential sampling.

4.1. Artificial data

To generate a time series under preferential sampling we first generate a realization of
S from model (2.1) with α0 = 0.2 and σ2

w = 1, discretized in 400 equally spaced time points.
These values correspond to V ar[S(.)] = σ2 = σ2

w
2α0

= (1.581)2 and φ = 1
α0

= 5, being the latter
related to the lag beyond which there is no correlation for practical purposes. To generate
Y from model (2.1), we consider µ = 0 and τ = 0.1, conducting three separate sampling
procedures over the realization of S:

• preferential sampling: conditional on the values of S, we obtain n = 70 sampling
times T following an inhomogeneous Poisson process with intensity function defined
in (3.5) and β = 2;

• irregular sampling: we obtain n = 70 sampling times T from (3.5) and with β = 0,
illustrating the situation without preferential sampling;

• regular sampling: we obtain n = 70 sampling times with equidistant observations.

To illustrate the results of these sampling schemes, we represent in Figure 1 a realization
of the process S (gray line) and the three resulting data sets. We have 70 sampling times
(black points), considering β = 2 in the process intensity function, in which the preferential
nature of the sampling process results in sample times falling predominantly near the maxima.
For 70 sampling times (white points), we consider β = 0, the situation without preferential
sampling and with irregularly sampling points. For the remaining 70 points (star points), we
have the situation of regular spaced sampling times.
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Figure 1: Sample times with preferential sampling nature (black points),
without preferential sampling and irregularly spaced time
points (white points), regular spaced time points (star points)
and underlying process S (gray line).

The parameters µ, σ, φ, τ and β are the target of estimation. The estimates are ob-
tained under (3.4), henceforward denoted by MCMLE’s and from the Kalman filter, denoted
by MLE’s. For the maximization of our Monte Carlo log-likelihood function we considered
a total of grid points N = 400 and a total number of MÇ replicates m = 1000. Mean and
standard errors for the estimates obtained from 250 independent simulated samples are sum-
marized in Table 1.

Table 1: Maximum likelihood estimates, under PS model (MCMLE’s)
and by cts package (MLE’s), mean (standard errors) obtained
from a total of 250 independent samples.

PS Data set (β = 2) Irregularly Sampling (β = 0) Regular sampling
True PS model CTS PS Model CTS PS Model CTS

bµ 0 0.13 (0.18) 0.38 (0.31) 0.04 (0.12) 0.26 (0.34) 0.02 (0.22) 0.71 (0.62)
bσ 1.58 1.53 (0.21) 0.99 (0.18) 1.64 (0.11) 1.52 (0.21) 1.60 (0.13) 1.45 (0.24)
bφ 5 5.71 (1.01) 3.17 (2.55) 5.20 (0.48) 5.52 (1.96) 5.12 (0.89) 6.78 (2.93)
bτ 0.1 0.12 (0.04) 0.27 (0.13) 0.11 (0.01) 0.30 (0.18) 0.11 (0.02) 0.55 (0.28)
bβ 2 or 0 1.76 (0.39) 0.00 (0.07) 0.00 (0.02)

Analysing Table 1 we conclude that the model for Temporal Preferential Sampling
presents estimates for the parameters less biased, even when the preferability degree is null,
with regular and irregularly sampling.
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To analyse the impact of ignoring preferential sampling on the quality of predictions,
we conducted a second simulation study. We simulated 250 realizations of S and for each we
constructed a preferential sampling data set. Then, the proposed MCMLE’s and the MLE’s
from the Kalman filter approach were obtained and plugged-in equation (2.4) to predict S(t)
at 50 equally spaced time points. These together with the corresponding standard errors, in
(2.5), allowed us to calculate prediction 95% confidence intervals and estimate their coverage.

Figure 2 represents one simulation of S(t) (black line), the corresponding preferential
sampling data (black points) and the predictions acquired from MCMLE’s (white points)
and MLE’s (gray points). MLE’s which do not take into account the preferential character of
the data lead to predictions with larger bias (overestimation of the observations) and smaller
variance than that of MCMLE’s. In fact, in the overall simulation results confidence intervals
from MCMLE’s present an estimated coverage of 88% while the MLE’s provide an estimated
coverage of just 73%. Thus, the proposed model leads to estimates that are less biased but
with larger variance, reflecting the uncertainty associated with the observations.
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Figure 2: Predictions acquired from MCMLE’s (white points) and
MLE’s (gray points), dashed line are confidence bands, black
points are the preferential sampling data and black line is the
underlying process S.

Further studies with β taking non-integer and negative values (sampling times are con-
centrated, predominantly, near the minima of the observed values) lead to similar conclusions.
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4.2. Biomedical marker

We consider the problem of monitoring the level of a biomedical marker, platelet, after
a cancer patient undergoes a bone marrow transplant. The data in Figure 3, studied in [20]
as missing data problem, are 91 measurements made different days on variable log(platelet)
[PLT]. In the first 35 days the data were observed daily and then irregularly, once the indicator
began to show better results. According to [11], “Platelet count at about 100 days post
transplant has previously been shown to be a good indicator of subsequent long term survival”.
This data is available in the package astsa [21] with the name of “blood”.
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Figure 3: Measurements of the log(platelet) [PLT].

The MCMLE’s for model parameters are: µ̂ = 1.99, φ̂ = 66.18, σ̂ = 0.72, τ̂ = 0.11 and
β̂ = −2.01. The estimated value for β with its negative sign indicates that the data was, in
fact, observed under a preferential framework whereby the patient is observed more frequently
when the biomarker shows lower values. Predictions of the biomarker within the period of
observations are obtained plugging-in the estimated parameters in equations (2.4) and (2.5).
Figure 4 top panel shows the 95% prediction intervals for (log of) the biomarker while the
bottom panel represents the 95% prediction intervals obtained from the MLE’s from the
Kalman filter approach, with µ̂ = 1.57, φ̂ = 53.94, σ̂ = 0.42 and τ̂ = 0.13. As expected in
view of the simulation results, the predictions obtained from MCMLE present larger variance
reflecting the uncertainty associated with the preferential data under analysis.

This kind of study is important, for example, to analyse when a new measurement of
the patient’s health indicator should be taken.
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Figure 4: Prediction 95% confidence intervals using predictions acquired
from MCMLE’s (top) and MLE’s (bottom).

5. CONCLUDING REMARKS AND FUTURE WORK

We propose, in this work, a methodology to deal with irregularly spaced time series
but also a methodology that takes into account the frequency or time occurrence of the
observations. The proposed model not only provides good estimates for model parameters
but also reveals quite satisfactory results for prediction. A key aspect of this methodology
is that it provides a tool, for example in the context of clinical trials, supporting a better
knowledge of the underlying stochastic process, goal of study.
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In their work, [7] affirm that the use of a single parameter in (3.5) to capture both
the strength of the preferentiality and the amount of non-uniformity in sampling locations is
somewhat inflexible. Alternatively, a more flexible and computational more efficient class of
models, based on the proposal of [17], is discussed. These authors suggest an extension to
the model proposed by [8], by adding a second Gaussian process and use of stochastic partial
differential equation models. For future investigation we intend to adapt those suggestions
to the time dimension.

ACKNOWLEDGMENTS

The authors acknowledge Foundation FCT (Fundação para a Ciência e Tecnologia) for
funding through Individual Scholarship PhD PD/BD/ 105743/2014, Centre of Mathematics of
Minho University and Center for Research & Development in Mathematics and Applications
of Aveiro University within project UID/MAT/04106/2019.

REFERENCES

[1] Anderson, T. (1984). An Introduction to Multivariate Statistical Analysis, Wiley, New York.

[2] Belcher, J.; Hampton, J. and Wilson, G.T. (1994). Parameterization of continuous time
autoregressive models for irregularly sampled time series data, Journal of the Royal Statistical
Society Series B (Methodological), 56, 141–155.

[3] Box, G.E.; Jenkins, G.M.; Reinsel, G.C. and Ljung, G.M. (2015). Time Series Analysis:
Forecasting and Control, John Wiley & Sons.

[4] Brockwell, P.J. (2001). Continuous-time ARMA processes, Handbook of Statistics, 19,
249–276.

[5] Brockwell, P.J. (2009). Levy-driven continuous-time ARMA processes, Handbook of Fi-
nancial Time Series, 457–480.

[6] Brockwell, P.J. and Davis, R.A. (2002). Introduction to Time Series and Forecasting
(second ed.), Springer.

[7] Diggle, P.J. and Giorgi, E. (2016). Preferential sampling of exposure levels, Hanbook of
Environmental and Ecological Statisics, Chapman & Hall/CRC Handbooks of Modern Statis-
tical Methods.

[8] Diggle, P.J.; Menezes, R. and Su, T.l. (2010). Geostatistical inference under preferential
sampling, Journal of the Royal Statistical Society: Series C (Applied Statistics), 59, 191–232.

[9] Erdogan, E.; Ma, S.; Beygelzimer, A. and Rish, I. (2005). Statistical models for un-
equally spaced time series. In: “Proceedings of the 2005 SIAM International Conference on
Data Mining”, 626–630.

[10] Jones, R.H. (1981). Fitting a continuous time autoregression to discrete data, Applied Time
Series Analysis II, Elsevier, 651–682.

[11] Jones, R.H. (1984). Fitting multivariate models to unequally spaced data. In “Time Series
Analysis of Irregularly Observed Data” (E. Parzen, Ed.), Lecture Notes in Statistics, vol. 25,
Springer, New York, pp. 158–188.



672 A. Monteiro, R. Menezes and M.E. Silva

[12] Jones, R.H. (1985). Time series analysis with unequally spaced data, Handbook of Statistics,
5, 157–177.

[13] Kelly, B.C.; Becker, A.C.; Sobolewska, M.; Siemiginowska, A. and Uttley, P.
(2014). Flexible and scalable methods for quantifying stochastic variability in the era of massive
time-domain astronomical data sets, The Astrophysical Journal, 788, 1–33.

[14] Lange, K. (2010). Numerical Analysis for Statisticians, Springer Science & Business Media.

[15] Li, Z. (2014). Methods for irregularly sampled continuous time processes, Ph.D. Thesis, UCL
(University College of London).

[16] Little, R.J. and Rubin, D.B. (2014). Statistical Analysis with Missing Data, John Wiley
& Sons.

[17] Pati, D.; Reich, B.J. and Dunson, D.B. (2011). Bayesian geostatistical modelling with
informative sampling locations, Biometrika, 98(1), 35–48.

[18] Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications,
CRC press.

[19] Ruf, T. (1999). The Lomb-Scargle periodogram in biological rhythm research: analysis of
incomplete and unequally spaced time-series, Biological Rhythm Research, 30(2), 178–201.

[20] Shumway, R.H. and Stoffer, D.S. (2017). Time Series Analysis and Its Applications: With
R Examples, Edition 4, Springer, New York.

[21] Stoffer, D.S. (2017). astsa: Applied Statistical Time Series Analysis, R Package Version,
1, https://CRAN.R-project.org/package=astsa .

[22] Tomasson, H. (2015). Some computational aspects of Gaussian CARMA modelling, Statistics
and Computing, 25(2), 375–387.

[23] Wang, Z. (2013). cts: an R package for continuous time autoregressive models via kalman
filter, Journal of Statistical Software, 53(5), 1–19, http://www.jstatsoft.org/v53/i05/ .

[24] Whittle, P. (1961). Gaussian estimation in stationary time series, Bull. Internat. Statist.
Inst., 39, 105–129.

https://CRAN.R-project.org/package=astsa
http://www.jstatsoft.org/v53/i05/


REVSTAT – Statistical Journal
Volume 18, Number 5, October 2020, 673–695

ON A SUM AND DIFFERENCE OF TWO LINDLEY DIS-
TRIBUTIONS: THEORY AND APPLICATIONS

Authors: Christophe Chesneau
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1. INTRODUCTION

Statistical distributions have been widely applied over the past decades for modeling
data in several areas. In fact, the statistics literature is filled with hundreds or thousands of
continuous univariate distributions. Among them, the exponential distribution is perhaps the
most widely applied statistical distribution in various fields, mainly because of the simplicity
of its mathematical quantities like moments, moment generating function, etc. However,
under some comparison criteria, it was shown that the Lindley distribution is a reliable
alternative to the exponential distribution in modeling lifetime data. The Lindley distribution
has a cumulative density function (cdf) of the form

F∗(x) = 1−
(

1 +
θ

1 + θ
x

)
e−θx, x, θ > 0.

The corresponding probability density function (pdf) is given by

(1.1) f∗(x) =
θ2

1 + θ
(1 + x)e−θx, x, θ > 0.

As indicated by its name, this distribution was introduced by [14, 15] to illustrate
a difference between fiducial distribution and posterior distribution. In the recent years,
the Lindley distribution is mainly used for studying stress-strength reliability modeling.
It finds applications in various areas such as engineering, demography, reliability, medicine
and biology. Its detailed properties can be found in [6], [10], [3], [1], [24], [27], etc.

In the last decades, its different generalizations have been emerged in distribution theory
and applications. In particular, the reader is refereed to the three parameters-Lindley dis-
tribution [31], generalized Poisson-Lindley distribution [16], generalized Lindley distribution
[22], Marshall-Olkin Lindley distribution [32], power Lindley distribution [5], two-parameter
Lindley distribution [25], quasi Lindley distribution [26], transmuted Lindley distribution
[18], transmuted Lindley-geometric distribution [19], beta-Lindley distribution [20] and dis-
crete Harris extended Lindley distribution [29], among others. Moreover, a latest version
of the Lindley distribution, called modified Lindley distribution, is given by [2]. Further,
Lindley distribution and its generalizations have been studied extensively by [30].

In this note, we consider two independent random variables following the Lindley distri-
bution with appropriate parameter and study the convolutions (sum and difference) of their
distributions. In addition, we investigate applications and structural properties of the new
models. In fact, this is a pioneering work in investigating comprehensively the applications
and properties of exact distributions of the sum and difference of Lindley random variables.
The article is outlined as follows: Section 2 deals with a detailed study of sum of two in-
dependent Lindley distributions. Section 3 presents difference of two independent Lindley
distributions. Finally, Section 4 offers some concluding remarks.
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2. ON THE SUM OF TWO INDEPENDENT LINDLEY DISTRIBUTION

This section is devoted to the sum of two independent random variables following the
Lindley distribution with pdf given by equation (1.1), including its main theoretical properties
and modeling.

2.1. Definition

We consider the pdf given by

f(x) =
θ4

(1 + θ)2
x

(
x2

6
+ x + 1

)
e−θx, x, θ > 0.(2.1)

The feature of this distribution is the following: let X and Y be two independent random
variables following the Lindley distribution with parameter θ. Then, the random variable
Z = X + Y has the pdf given by (2.1). This result is a particular case of [8, Theorem 2].
A crystal clear proof is given below. Since X and Y are independent, the pdf of Z is given
by the following convolution product: for x > 0,

f(x) =
∫ +∞

−∞
f∗(x− t)f∗(t)dt =

∫ x

0

θ2

1 + θ
(1 + x− t)e−θ(x−t) θ2

1 + θ
(1 + t)e−θtdt

=
θ4

(1 + θ)2
e−θx

∫ x

0
(1 + x− t)(1 + t)dt =

θ4

(1 + θ)2
x

(
x2

6
+ x + 1

)
e−θx.

For the purpose of this study, the corresponding distribution is called the 2S-Lindley
distribution (2S for Sum of 2 random variables). To the best of our knowledge, there is no
work on the theoretical and practical aspect of this distribution, which motivates a part of
this study.

As a first approach, some possible shapes of the pdf of the 2S-Lindley distribution are
shown in Figure 1.
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Figure 1: Plots of the pdf of the 2S-Lindley distribution for different values of θ.
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2.2. Probability functions

First of all, after some algebraic manipulations, the cdf of the 2S-Lindley distribution
is given by

F (x) = 1− 1
6(1 + θ)2

[
θ3x(x2 + 6x + 6) + 3θ2(x2 + 4x + 2) + 6θ(x + 2) + 6

]
e−θx,

x > 0.

The corresponding survival function (sf) is given by

S(x) = 1− F (x)

=
1

6(1 + θ)2
[
θ3x(x2 + 6x + 6) + 3θ2(x2 + 4x + 2) + 6θ(x + 2) + 6

]
e−θx,

x > 0.

The corresponding hazard rate function (hrf) is given by

h(x) =
f(x)
S(x)

=
θ4x(x2 + 6x + 6)

θ3x(x2 + 6x + 6) + 3θ2(x2 + 4x + 2) + 6θ(x + 2) + 6
, x > 0.

Also, the corresponding cumulative hazard rate function is given by

Ω(x) = − log[S(x)]

= log(6) + 2 log(1 + θ) + θx

− log
[
θ3x(x2 + 6x + 6) + 3θ2(x2 + 4x + 2) + 6θ(x + 2) + 6

]
, x > 0.

The corresponding quantile function (qf), say Q(u), can be obtained by solving the following
equation: F (Q(u)) = Q(F (u)), u ∈ (0, 1). It can not be presented analytically but can be
determined numerically for a given θ. Also, shapes of the hrf of the 2S-Lindley distribution
are shown in Figure 2.
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Figure 2: Plots of the hrf of the 2S-Lindley distribution for different values of θ.
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2.3. Moments

The (ordinary) moments of the 2S-Lindley distribution are expressed in the following
result.

Proposition 2.1. Let r ∈ N and Z a random variable following the 2S-Lindley dis-

tribution with parameter θ. Then, the r-th moment of Z is given by

µ∗r = E(Zr) =
1

6θr

1
(1 + θ)2

(r + 1)!
[
6θ2 + 6θ(r + 2) + r2 + 5r + 6

]
.

Proof: Let us introduce the gamma function defined by Γ(x) =
∫ +∞
0 tx−1e−tdt, x > 0.

By using the pdf of Z given by (2.1), we have

µ∗r = E(Zr) =
∫ +∞

−∞
xrf(x)dx

=
θ4

(1 + θ)2

[
1
6

∫ +∞

0
xr+3e−θxdx +

∫ +∞

0
xr+2e−θxdx +

∫ +∞

0
xr+1e−θxdx

]
=

θ4

(1 + θ)2

[
1
6

1
θr+4

Γ(r + 4) +
1

θr+3
Γ(r + 3) +

1
θr+2

Γ(r + 2)
]

=
1

6θr

1
(1 + θ)2

(r + 1)!
[
6θ2 + 6θ(r + 2) + r2 + 5r + 6

]
.

This ends the proof of Proposition 2.1.

An alternative proof of Proposition 2.1 using the Lindley distribution as baseline is
given below. Let us recall that, for any r ∈ N and a random variable X following the Lindley
distribution with parameter θ, the r-th moment of X is given by

µ′r = E(Xr) =
r!(θ + r + 1)

θr(1 + θ)
.

Therefore, by Z = X + Y and the binomial formula, the r-th moment of Z is given by

µ∗r = E((X + Y )r) =
r∑

k=0

(
r

k

)
µ′r−kµ

′
k

=
r∑

k=0

(
r

k

)
(r − k)!(θ + r − k + 1)

θr−k(1 + θ)
k!(θ + k + 1)

θk(1 + θ)

=
1
θr

1
(1 + θ)2

r!
r∑

k=0

(θ + r − k + 1)(θ + k + 1)

=
1

6θr

1
(1 + θ)2

(r + 1)!
[
6θ2 + 6θ(r + 2) + r2 + 5r + 6

]
.

Also, owing to Proposition 2.1, we have

µ∗1 =
2(θ + 2)
θ(1 + θ)

, µ∗2 =
6θ(θ + 4) + 20

θ2(1 + θ)2
, µ∗3 =

24(θ2 + 5θ + 5)
θ3(1 + θ)2
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and

µ∗4 =
120(θ2 + 6θ + 7)

θ4(1 + θ)2
.

In particular, the mean of Z is given by µ = µ∗1 and the variance of Z is given by

σ2 = µ∗2 − µ2 =
2(θ2 + 4θ + 2)

θ2(1 + θ)2
.

Other important quantities can be defined via the moments as, for instance, the skewness
and kurtosis coefficients of Z, respectively given by

√
β1 =

1
σ3

E
[
(Z − µ)3

]
=

1
σ3

3∑
k=0

(
3
k

)
(−1)3−kµ∗kµ

3−k

and

β2 =
1
σ4

E
[
(Z − µ)4

]
=

1
σ4

4∑
k=0

(
4
k

)
(−1)4−kµ∗kµ

4−k.

Table 1 indicates numerical values for the quantities above, i.e., µ∗1, µ∗2, µ∗3, µ∗4, σ2,
√

β1 and
β2, for selected values for θ.

Table 1: Numerical values of some measures of the 2S-Lindley distribution
for selected values of parameter θ.

θ µ∗1 µ∗2 µ∗3 µ∗4 σ2 √
β1 β2

0.002 1998.004 4992018 14970071832 5.23803e+13 999998 14.9442 4.5000

0.02 198.0392 49217.61 14707036 5132929642 9998.0787 14.4597 4.500

0.2 18.3333 434.7222 12583.33 429166.7 98.6111 10.8801 4.5420

0.1 38.1818 1856.198 109289.3 7547107 398.3471 12.6300 4.5124

1 3.0000 12.5000 66.0000 420.0000 3.5000 4.3525 4.8980

2 1.3333 2.5556 6.3333 19.1666 0.7778 0.4860 5.2347

5 0.4667 0.3222 0.2933 0.3305 0.1044 8.2294 5.6713

10 0.2182 0.0711 0.0307 0.0166 0.0235 22.0892 5.8688

20 0.1048 0.0164 0.0035 0.0009 0.0054 50.0478 5.9566

100 0.0202 0.0006 2.4715e-05 1.2477e-06 0.0002 275.9059 5.9978

2.4. Incomplete moments

A result on the incomplete moments for the 2S-Lindley distribution is given below.
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Proposition 2.2. Let r be a positive integer and Z a random variable following the

2S-Lindley distribution with parameter θ. Let us introduce the lower gamma function defined

by γ(x, y) =
∫ y
0 tx−1e−tdt, x > 0 and y ≥ 0. Then, the r-th incomplete moment of Z is given

by

µ∗r(t) = E(Zr1{Z≤t}) =
1

(1 + θ)2θr

[
1
6
γ(r + 4, θt) + θγ(r + 3, θt) + θ2γ(r + 2, θt)

]
.

Proof: By using the pdf of Z given by (2.1), we have

µ∗r(t) =
∫ t

−∞
xrf(x)dx

=
θ4

(1 + θ)2

[
1
6

∫ t

0
xr+3e−θxdx +

∫ t

0
xr+2e−θxdx +

∫ t

0
xr+1e−θxdx

]
=

θ4

(1 + θ)2

[
1
6

1
θr+4

γ(r + 4, θt) +
1

θr+3
γ(r + 3, θt) +

1
θr+2

γ(r + 2, θt)
]

=
1

(1 + θ)2θr

[
1
6
γ(r + 4, θt) + θγ(r + 3, θt) + θ2γ(r + 2, θt)

]
.

This ends the proof of Proposition 2.2.

The incomplete mean given by µ∗1(t) deserves a particular focus, because it allows to
express several important quantities, as the mean deviation of Z about the mean given by
δ1 = E(|Z − µ|) = 2µF (µ)− 2µ∗1(µ), the mean residual life of Z given by m∗(t) = E(Z − t |
Z > t) = [1−µ∗1(t)]/[1−F (t)]− t and the mean waiting time of Z given by M∗(t) = E(t−Z |
Z < t) = t− µ∗1(t)/F (t), among others.

2.5. Characteristic function

The characteristic function of the 2S-Lindley distribution is provided in the following
result.

Proposition 2.3. Let Z be a random variable following the 2S-Lindley distribution

with parameter θ. Then, the characteristic function of Z is given by

ϕ(t) =
θ4(θ − it + 1)2

(1 + θ)2(θ − it)4
, t ∈ R.

Proof: Let us recall that, for any t ∈ R and a random variable X following the Lindley
distribution with parameter θ, the characteristic function of X is given by

ϕ∗(t) = E(eitX) =
θ2(θ − it + 1)

(1 + θ)(θ − it)2
.

Hence, using the representation Z = X + Y with X and Y independent and identically dis-
tributed, the characteristic function for Z is given by

ϕ(t) = [ϕ∗(t)]2 =
θ4(θ − it + 1)2

(1 + θ)2(θ − it)4
.

This ends the proof of Proposition 2.3.
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2.6. Stochastic ordering

A result on stochastic ordering related to the 2S-Lindley distribution is now presented.
Before that, some basics are recalled. Let X1 and X2 be two random variables having pdfs
given by f1(x) and f2(x), respectively. Then, X1 is said to be smaller than X2 in the
likelihood ratio order, denoted by X1 ≤lr X2, if f1(x)/f2(x) is decreasing in x. This property
has important consequence in terms of distribution comparisons. We refer to [23] for the
technical details.

Proposition 2.4. Let X1 be random variable following the 2S-Lindley distribution

with parameter θ1 and X2 be a random variable following the 2S-Lindley distribution with

parameter θ2. Then, if θ1 ≥ θ2, we have X1 ≤lr X2.

Proof: Let f1(x) and f2(x) be the pdfs of X1 and X2 given by (2.1) with θ = θ1 and
θ = θ2, respectively. Then, for x > 0, we have

f1(x)
f2(x)

=
θ4
1(1 + θ2)2

θ4
2(1 + θ1)2

e−(θ1−θ2)x,

which is clearly decreasing if θ1 ≥ θ2, implying the desired result. This ends the proof of
Proposition 2.4.

2.7. Extreme order statistics

Let us consider a random sample X1, ..., Xn of size n from the 2S-Lindley distri-
bution with parameter θ. Let X1:n = min(X1, ..., Xn) be the sample minima and Xn:n =
max(X1, ..., Xn) be the sample maxima. Then, we have the following limit results:

lim
t→0

F (xt)
F (t)

=

lim
t→0

1− 1
6(1+θ)2

[
θ3xt(x2t2 + 6xt + 6) + 3θ2(x2t2 + 4xt + 2) + 6θ(xt + 2) + 6

]
e−θxt

1− 1
6(1+θ)2

[θ3t(t2 + 6t + 6) + 3θ2(t2 + 4t + 2) + 6θ(t + 2) + 6] e−θt

= x.

Thus, [13, Theorem 1.6.2] ensures the existence of an and bn such that

lim
n→∞

P (an(X1:n − bn) ≤ x) = 1− e−x.

We recognize the cdf of the exponential distribution with parameter 1, showing that an(X1:n−
bn) can be approximated by this distribution.

Moreover, we have

lim
t→+∞

1− F (x + t)

1− F (t)
=

lim
t→+∞

θ3(x + t)((x + t)2 + 6(x + t) + 6) + 3θ2((x + t)2 + 4(x + t) + 2) + 6θ((x + t) + 2) + 6

θ3t(t2 + 6t + 6) + 3θ2(t2 + 4t + 2) + 6θ(t + 2) + 6
e−θx

= e−θx.
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Thus, [13, Theorem 1.6.2] ensures the existence of an and bn such that

lim
n→∞

P (an(Xn:n − bn) ≤ x) = exp
(
−e−θx

)
.

We recognize the cdf of the Gumbel distribution with parameters 1 and 1/θ, showing that
an(Xn:n − bn) can be approximated by this distribution.

The form of the norming constants can also be determined using [13, Corollary 1.6.3].

2.8. Maximum likelihood estimator

Let x1, ..., xn be n observations of a random variable Z following the 2S-Lindley distri-
bution with parameter θ. Then, the likelihood and log-likelihood functions are, respectively,
defined by

L(θ) =
n∏

i=1

f(xi) =
θ4n

(1 + θ)2n

[
n∏

i=1

xi

] [
n∏

i=1

(
x2

i

6
+ xi + 1

)]
e−θ
Pn

i=1 xi

and

`(θ) = log[L(θ)] = 4n log(θ)− 2n log(1 + θ)− θ
n∑

i=1

xi +
n∑

i=1

log(xi)

+
n∑

i=1

log
(

x2
i

6
+ xi + 1

)
.

The maximum likelihood estimator (MLE) of θ, denoted by θ̂, is defined by the θ maximizing
L(θ) or `(θ). Thus, it can be obtained by solving the following equation: ∂`(θ)/∂θ = 0, i.e.,

4n

θ
− 2n

1 + θ
−

n∑
i=1

xi = 0.

After some algebra, we have

θ̂ =

−
n∑

i=1
xi +

√(
2n−

n∑
i=1

xi

)2

+ 16n
n∑

i=1
xi + 2n

2
n∑

i=1
xi

.

Hence, θ̂ has a simple expression. As any MLE, it enjoys desirable properties of convergence,
guarantied by the well-established theory of the maximum likelihood method.

2.9. Simulation study

In this section, we present some simulation results to examine the finite sample be-
havior of the MLE proposed in previous section in the case of the 2S-Lindley distribution.
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The simulation study is repeated for N = 1000 iterations each with sample size n = 25, 50,
150 and 300 from the 2S-Lindley distribution. The 2S-Lindley random number generation
was performed using the sum of rlindley() function from LindleyR package [17] and the
parameters are estimated by using the method of MLE by using the package nlm in R. The
evaluation of the assessment is based on two quantities such as the bias and the mean squared
errors (MSE), as follows:

1) bias of the simulated N estimates of R:

1
N

N∑
i=1

(R̂i −R),

2) mean square error of the simulated N estimates of R:

1
N

N∑
i=1

(R̂i −R)2,

where R is the true value of parameters θ. The results of our simulation study are summarized
in Table 2. Based on the table, notice that the MLEs are close to the true parameter values
for the current sample sizes, which means that the maximum likelihood method can be used
effectively for estimating θ. Also, we can see that the bias and MSE of the MLEs converge
to zero when the sample size is increased, as expected.

Table 2: Bias and MSE of θ̂ for the 2S-Lindley distribution.

θ = 0.3 θ = 0.5 θ = 1.0 θ = 1.2

n Bias MSE Bias MSE Bias MSE Bias MSE

25 0.0031 0.0009 0.0055 0.0027 0.0166 0.0124 0.0145 0.0178

50 0.0023 0.0004 0.0032 0.0013 0.0075 0.0055 0.0077 0.0079

100 0.0011 0.0002 0.0010 0.0007 0.0053 0.0029 0.0027 0.0041

200 6.7e-05 0.0001 0.0006 0.0003 0.0034 0.0015 0.0027 0.0022

300 4.6e-05 7.7e-05 5.1e-05 0.0002 0.0014 0.0010 0.0020 0.0014

2.10. Applications

Here, we use four data sets to illustrate the power of the proposed 2S-Lindley distribu-
tion. We compare the proposed distribution with the Lindley and exponential distributions.
The first real data set corresponds to arose in tests on endurance of deep groove ball bearings
from [12] on the number of million revolutions before failure for each of the 23 ball bearings
in the life tests. The data are given below:

17.88 28.92 33.00 41.52 42.12 45.60 48.80 51.84 51.96 54.12 55.56 67.80 68.44 68.64 68.88
84.12 93.12 98.64 105.12 105.84 127.92 128.04 173.40 .
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The second real data set is from [28]. It represents the strength of 1.5cm glass fibers measured
at the National Physical Laboratory, England. The data are given below:

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68 1.73 1.81 2.00 0.74 1.04 1.27 1.39 1.49 1.53
1.59 1.61 1.66 1.68 1.76 1.82 2.01 0.77 1.11 1.28 1.42 1.50 1.54 1.60 1.62 1.66 1.69 1.76 1.84
2.24 0.81 1.13 1.29 1.48 1.50 1.55 1.61 1.62 1.66 1.70 1.77 1.84 0.84 1.24 1.30 1.48 1.51 1.55
1.61 1.63 1.67 1.70 1.78 1.89

The third real data set is reported by [7]. It demonstrates the lifetime’s data relating to relief
times (in minutes) of 20 patients receiving an analgesic. The data are given below:

1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2 1.7 2.7 4.1 1.8 1.5 1.2 1.4 3 1.7 2.3 1.6 2

The fourth data set is taken from [4]. it gives the strength data of glass of the aircraft window.
The data are given below:

18.83 20.8 21.657 23.03 23.23 24.05 24.321 25.5 25.52 25.8 26.69 26.77 26.78 27.05 27.67 29.9
31.11 33.2 33.73 33.76 33.89 34.76 35.75 35.91 36.98 37.08 37.09 39.58 44.045 45.29 45.381.

For comparing the goodness of fit of the models, we found the unknown parameters (by the
maximum likelihood method), standard error (SE), −log likelihood (−logL), AIC (Akaike
Information Criterion), BIC (Bayesian Information Criterion), corrected Akaike Information
Criterion (AICc) and Kolmogorov-Smirnov (K-S) statistic, given by

−LogL = − log(L), AIC = −2LogL + 2k, BIC = −2LogL + k log(n),

AICc = AIC +
2k(k + 1)
n− k − 1

,

and

K-S = max{|F (xi)− F̂ (xi)|, |F (xi)− F̂ (xi−1)|},

where L is the maximum value of the corresponding likelihood function, k is the number of
parameters, n is the sample size, F (xi) denote the value of the cdf of the candidate distribution
at xi and F̂ (xi) denote the value of the empirical distribution function at xi.

Table 3, Table 4 Table 5 and Table 6 summarize the results of the fitted 2S-Lindley,
Lindley and exponential distributions for the four considered data sets.

Table 3: Estimated values, −logL, AIC, BIC, AICc and K-S statistics
for the first data set.

Distribution Estimates (SE) −logL AIC BIC AICc K-S

2S-Lindley 0.0570 (0.0028) 113.0799 228.1598 229.2953 228.2254 0.10606

Lindley 0.0273 (0.0040) 115.7356 233.4713 234.6068 233.66 0.19299

exponential 0.0138 (0.0029) 121.4365 244.8731 246.0086 245.06 0.30677
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Table 4: Estimated values, −logL, AIC, BIC, AICc and K-S statistics
for the second data set.

Distribution Estimates (SE) −logL AIC BIC AICc K-S

2S-Lindley 1.8011 (0.1274) 62.2742 126.5484 128.6916 126.614 0.32852

Lindley 0.9961 (0.0948) 81.27844 164.5569 166.7 164.6225 0.38643

exponential 0.6636 (0.0836) 88.83032 179.6606 181.8038 179.7262 0.418

Table 5: Estimated values, −logL, AIC, BIC, AICc and K-S statistics
for the third data set.

Distribution Estimates (SE) −logL AIC BIC AICc K-S

2S-Lindley 1.4775 (0.1822) 24.8511 51.70225 52.69799 51.92447 0.29271

Lindley 0.8161 (0.1361) 30.24955 62.4991 63.49483 62.72132 0.43951

exponential 0.5263 (0.1179) 32.83708 67.67416 68.66989 67.89638 0.43951

Table 6: Estimated values, −logL, AIC, BIC, AICc and K-S statistics
for the fourth data set.

Distribution Estimates (SE) −logL AIC BIC AICc K-S

2S-Lindley 0.1227 (0.011) 117.8023 237.6046 239.0386 237.7425 0.26915

Lindley 0.0630 (0.008) 126.9942 255.9884 257.4224 256.1263 0.36548

exponential 0.0324 (0.0058) 137.2644 276.5289 277.9629 276.6668 0.4586

From these tables, it is obvious that the smallest −logL, AIC, BIC, AICc and K-S
statistic are acquired for the 2S-Lindley distribution. In summary, we can conclude that the
2S-Lindley model can be adequate for modeling these data.

3. ON THE DIFFERENCE OF TWO INDEPENDENT LINDLEY DISTRI-
BUTION

This section now focuses on the properties of the difference of two independent random
variables following the Lindley distribution with the same parameter.
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3.1. Definition

We now consider the pdf given by

f(x) =
θ

4(1 + θ)2
[
θ(2θ + 1)|x|+ 2θ2 + 2θ + 1

]
e−θ|x|, x ∈ R, θ > 0.(3.1)

The feature of this pdf is described in the result below.

Proposition 3.1. Let X and Y be two independent random variables both following

the Lindley distribution with parameter θ. Then, the random variable Z = X − Y has the

pdf given by (3.1).

Proof: First of all, since the support of X and Y is (0,+∞), the support of Z is R.
Now, let us notice that the cdf and pdf of −Y are, respectively, given by

F∗∗(x) =
[
1− θ

1 + θ
x

]
eθx, f∗∗(x) =

θ2

1 + θ
(1− x)eθx, x < 0.

Since X and −Y are independent, the pdf of Z is given by the convolution product:

f(x) = (f∗ ? f∗∗)(x) =
∫ +∞

−∞
f∗(x− t)f∗∗(t)dt

=
∫ inf(x,0)

−∞

θ2

1 + θ
[1 + (x− t)]e−θ(x−t) θ2

1 + θ
(1− t)eθtdt

=
θ4

(1 + θ)2
e−θx

{∫ inf(x,0)

−∞
(1− t)2e2θtdt + x

∫ inf(x,0)

−∞
(1− t)e2θtdt

}

=
θ

4(1 + θ)2
e−θ[x−2 inf(x,0)]

[
2θ2 inf(x, 0)2 − 2θ2 inf(x, 0)x− 4θ2 inf(x, 0) + 2θ2x

+ 2θ2 − 2θ inf(x, 0) + θx + 2θ + 1
]
.

When x ≥ 0, we have inf(x, 0) = 0 implying that

f(x) =
θ

4(1 + θ)2
[
θ(2θ + 1)x + 2θ2 + 2θ + 1

]
e−θx.

When x < 0, we have inf(x, 0) = x, implying that

f(x) =
θ

4(1 + θ)2
[
−θ(2θ + 1)x + 2θ2 + 2θ + 1

]
eθx.

By putting the above results together, we obtain the desired result. This ends the proof of
Proposition 3.1.

For the purpose of this study, the corresponding distribution is called the 2D-Lindley
distribution (2D for Difference of 2 random variables). To the best of our knowledge, there is
no work on the theoretical and practical aspect of this distribution, which motivates a part
of this study. Figure 3 shows the behavior the pdf of the 2D-Lindley distribution for selected
values of parameter θ.
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Figure 3: The pdf of the 2D-Lindley distribution for different values of θ.

3.2. Probability functions

The cdf of the 2D-Lindley distribution is presented in the proposition below.

Proposition 3.2. The cdf of the 2D-Lindley distribution is given by

F (x) =


1

4(1 + θ)2
[
−θ(2θ + 1)x + 2(1 + θ)2

]
eθx if x < 0,

1− 1
4(1 + θ)2

[
θ(2θ + 1)x + 2(1 + θ)2

]
e−θx if x ≥ 0.

(3.2)

Proof: For x < 0, by using (3.1), we have

F (x) = P (Z ≤ x) =
∫ x

−∞
f(t)dt

=
θ

4(1 + θ)2

[
−θ(2θ + 1)

∫ x

−∞
teθtdt + (2θ2 + 2θ + 1)

∫ x

−∞
eθtdt

]
=

1
4(1 + θ)2

[
−θ(2θ + 1)x + 2(1 + θ)2

]
eθx.

Since the distribution of Z is symmetric around 0, for x ≥ 0, we have

F (x) = 1− F (−x) = 1− 1
4(1 + θ)2

[
θ(2θ + 1)x + 2(1 + θ)2

]
e−θx.

We obtain the desired result by putting the above equalities together. This completes the
proof of Proposition 3.2.

By using Proposition 3.2, the corresponding survival function is given by

S(x) =


1− 1

4(1 + θ)2
[
−θ(2θ + 1)x + 2(1 + θ)2

]
eθx if x < 0,

1
4(1 + θ)2

[
θ(2θ + 1)x + 2(1 + θ)2

]
e−θx if x ≥ 0.
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The corresponding hrf is given by

h(x) =


θ
[
θ(2θ + 1)|x|+ 2θ2 + 2θ + 1

]
4(1 + θ)2e−θx + θ(2θ + 1)x− 2(1 + θ)2

if x < 0,

θ
[
θ(2θ + 1)x + 2θ2 + 2θ + 1

]
θ(2θ + 1)x + 2(1 + θ)2

if x ≥ 0.

Also, the corresponding chrf is given by

Ω(x) =

 − log
[
1− 1

4(1 + θ)2
[
−θ(2θ + 1)x + 2(1 + θ)2

]
eθx

]
if x < 0,

log(4) + 2 log(1 + θ) + θx− log
[
θ(2θ + 1)x + 2(1 + θ)2

]
if x ≥ 0.

The corresponding qf, say Q(u), can be obtained by solving the following equation: F (Q(u)) =
Q(F (u)), u ∈ (0, 1). It can not be presented analytically but can be determined numerically
for a given θ. Further, Figure 4 depicts the behavior the hrf of the 2D-Lindley distribution
for selected values of parameter θ.

−40 −20 0 20 40

0.
0

0.
4

0.
8

1.
2

x

h(
x)

hrf

θ=0.90    
θ=0.50
θ=0.20
θ=0.10

Figure 4: The hrf of the 2D-Lindley distribution for different values of θ.

3.3. Mixture

The 2D-Lindley distribution can be viewed as a particular mixture of distributions, as
described below.

Proposition 3.3. Let U , V and W be three random variables following the Laplace

distribution with parameter θ and A a random variable following the Bernoulli distribution

with parameter θ2/(1 + θ)2, all these random variables are independent. Let Z be a random

variable following the 2D-Lindley distribution with parameter θ. Then, we have the following

stochastic representation:

Z
(d)
= AU + (1−A)(V + W ).
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Proof: It is enough to remark that we can write f(x) given by (3.1) as

f(x) =
θ2

(1 + θ)2

[
θ

2
e−θ|x|

]
+

1 + 2θ

(1 + θ)2

[
θ

4
(1 + θ|x|)e−θ|x|

]
= pf1(x) + (1− p)f2(x),

where

p =
θ2

(1 + θ)2
, f1(x) =

θ

2
e−θ|x|, f2(x) =

θ

4
(1 + θ|x|)e−θ|x|.

One can notice that f1(x) is the pdf of the Laplace distribution with parameter θ and f2(x)
is the pdf of the sum of two independent random variables both following the Laplace distri-
bution with parameter θ as common distribution, see, [9, Section 2.3]. This ends the proof
of Proposition 3.3.

3.4. Moments

The moments of the 2D-Lindley distribution are described below.

Proposition 3.4. Let r ∈ N and Z a random variable following the 2D-Lindley dis-

tribution with parameter θ. Then, the r-th moment of Z is given by

µ∗r = E(Zr) = [1 + (−1)r]
1

2θr
r!

[
1 +

1 + 2θ

2(1 + θ)2
r

]
.

Proof: Since the distribution of Z is symmetric around 0 and the integral is well
defined, for any m ∈ N, we have µ∗2m+1 = 0. By the use of the gamma function, for any
m ∈ N, we have

µ∗2m = E(Z2m) =
∫ +∞

−∞
x2mf(x)dx

=
θ2

(1 + θ)2

∫ +∞

−∞
x2m θ

2
e−θ|x|dx +

1 + 2θ

(1 + θ)2

∫ +∞

−∞
x2m θ

4
(1 + θ|x|)e−θ|x|dx

=
θ2

(1 + θ)2
1

θ2m
Γ(2m + 1) +

1 + 2θ

(1 + θ)2
1
2

1
θ2m

[Γ(2m + 1) + Γ(2m + 2)]

=
1

θ2m
(2m)!

[
1 +

1 + 2θ

(1 + θ)2
m

]
.

By distinguishing the odd and even integer, we prove the desired result, ending the proof of
Proposition 3.4.

Owing to Proposition 3.4, we have

µ∗1 = 0, µ∗2 =
2(θ2 + 4θ + 2)

θ2(1 + θ)2
, µ∗3 = 0, µ∗4 =

24[θ(θ + 6) + 3]
θ4(1 + θ)2

.

In particular, the mean of Z is given by µ = 0 and the variance of Z is given by

σ2 = µ∗2 =
2(θ2 + 4θ + 2)

θ2(1 + θ)2
.
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Without surprise, the variance of the 2S and 2D Lindley distributions are the same.

The skewness of Z is equal to 0 and the kurtosis of Z is given by

β2 =
1
σ4

E
[
(Z − µ)4

]
=

6(θ2 + 6θ + 3)(1 + θ)2

(θ2 + 4θ + 2)2
.

Table 7 indicates numerical values for the quantities above, that is, µ∗2, µ∗4, σ2 and β2, for
selected values for θ.

Table 7: Numerical values of some measures of the 2D-Lindley distribution for
selected values of parameter θ.

θ µ∗2 µ∗4 σ2 β2

0.02 9998.078 449884660 9998.078 4.5006

0.01 39998.04 7199529458 39998.04 4.5001

0.1 398.3471 716033.1 398.3471 4.5124

1 3.500 60.00 3.5000 4.8980

2 0.7778 3.1667 0.7778 5.2347

5 0.1044 0.0619 0.1044 5.6713

10 0.0235 0.0032 0.0235 5.8688

20 0.0055 0.0002 0.0055 5.9565

100 0.0002 2.494e-07 0.0002 5.9978

3.5. Characteristic function

The characteristic function of the 2D-Lindley distribution is presented below.

Proposition 3.5. Let Z be a random variable following the 2D-Lindley distribution

with parameter θ. Then, the characteristic function of Z is given by

ϕ(t) =
θ4[(1 + θ)2 + t2]
(1 + θ)2(θ2 + t2)2

, t ∈ R.

Proof: Let us recall that, for any t ∈ R and a random variable X following the Lindley
distribution with parameter θ, the characteristic function of X is given by

ϕ∗(t) = E(eitX) =
θ2(θ − it + 1)

(1 + θ)(θ − it)2
.

Hence, using the representation Z = X − Y with X and Y independent and identically dis-
tributed, the characteristic function for Z is given by

ϕ(t) = ϕ∗(t)ϕ∗(−t) =
θ2(θ − it + 1)

(1 + θ)(θ − it)2
× θ2(θ + it + 1)

(1 + θ)(θ + it)2
=

θ4[(1 + θ)2 + t2]
(1 + θ)2(θ2 + t2)2

.

This ends the proof of Proposition 3.5.
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Let us mention that can prove Proposition 3.3 by using the characteristic function.
It is enough to observe that we can write ϕ(t) as

ϕ(t) =
θ2

(1 + θ)2
θ2

θ2 + t2
+

(
1− θ2

(1 + θ)2

) [
θ2

θ2 + t2

]2

,

which is exactly the characteristic function of AU + (1−A)(V + W ), implying the desired
result.

3.6. Maximum likelihood estimator

Let x1, ..., xn be n observations of a random variable Z following the 2D-Lindley distri-
bution with parameter θ. Then, the likelihood and log-likelihood functions are, respectively,
defined by

L(θ) =
n∏

i=1

f(xi) =
θn

4n(1 + θ)2n

{
n∏

i=1

[
θ(2θ + 1)|xi|+ 2θ2 + 2θ + 1

]}
e−θ
Pn

i=1 |xi|

and

`(θ) = log[L(θ)]

= n log(θ)− n log(4)− 2n log(1 + θ)− θ
n∑

i=1

|xi|

+
n∑

i=1

log
[
θ(2θ + 1)|xi|+ 2θ2 + 2θ + 1

]
.

The MLE of θ can be obtained by solving the following equation: ∂`(θ)/∂θ = 0, i.e.,

n

θ
− 2n

1 + θ
−

n∑
i=1

|xi|+
n∑

i=1

(4θ + 1)|xi|+ 4θ + 2
θ(2θ + 1)|xi|+ 2θ2 + 2θ + 1

= 0.

This equation can not be solved analytically. However, some numerical algorithm allows to
approach the solution in a precise way.

3.7. Simulation study

In this section, the simulation study is repeated for N = 1000 iterations from the 2D-
Lindley distribution. For each replication, a random sample of size n = 25, 50, 100, 200 and
300 is drawn from the 2D-Lindley distribution. The 2D-Lindley random number generation
was performed using difference of rlindley() function from LindleyR package [17] and the
parameters are estimated by using the method of MLE by using the package nlm in R. The
initial values of parameter are θ = 0.3, 0.5, 1.0 and 1.5. The bias and MSE are presented in
Table 8. From the table, we can observe that the bias and MSE of the MLEs converge to zero
when the sample size is increased. This shows that the estimates are precise and accurate,
hence, consistent and (asymptotically) unbiased.
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Table 8: Bias and MSE of θ̂ for the 2D-Lindley distribution.

θ = 0.3 θ = 0.5 θ = 1 θ = 1.2

n Bias MSE Bias MSE Bias MSE Bias MSE

25 0.0066 0.0029 0.0055 0.0107 0.0288 0.0291 0.0307 0.0358

50 0.0048 0.0012 0.0090 0.0042 0.0133 0.0154 0.0154 0.0156

100 0.0020 0.0007 0.0027 0.0020 0.0057 0.0070 0.0074 0.0077

200 0.0012 0.0003 0.0010 0.0010 0.0017 0.0037 0.0040 0.0040

300 0.0008 0.0002 0.0007 0.0006 0.0016 0.0024 0.0022 0.0022

3.8. Applications

In this section, we analyze three data sets in order to illustrate the good performance
of the 2D-Lindley distribution to compare with the Laplace and normal distributions, both
with parameters standardly denoted by µ and σ. Here, we consider an extended form of
the 2D-Lindley distribution by adding the location parameter µ in the pdf of the 2D-Lindley
distribution. Thus, the related pdf is given by

f(x) =
θ

4(1 + θ)2
[
θ(2θ + 1)|x− µ|+ 2θ2 + 2θ + 1

]
e−θ|x−µ| x, µ ∈ R, θ > 0.

3.8.1. Comparison with the Laplace distribution

The first two data sets correspond to the age of the propellant and the tensile strength
of kraft paper, respectively, reported in [21]. The data of the first set are given below:

15.5 23.75 8.0 17.0 5.5 19.0 24.0 2.5 7.5 11.0 13.0 3.75 25.0 9.75 22.0 18.0 6.0 12.5 2.0 21.5

The data of the second set are given below:

6.3 11.1 20.0 24.0 26.1 30.0 33.8 34.0 38.1 39.9 42.0 46.1 53.1 52.0 52.5 48.0 42.8 27.8 21.9

The third data set representing lung cancer rates data for 44 US states is given by
www.calvin.edu/stob/data/cigs.csv . The data are given below:

17.05 19.8 15.98 22.07 22.83 24.55 27.27 23.57 13.58 22.8 20.3 16.59 16.84 17.71 25.45 20.94
26.48 22.04 22.72 14.2 15.6 20.98 19.5 16.7 23.03 25.95 14.59 25.02 12.12 21.89 19.45 12.11
23.68 17.45 14.11 17.6 20.74 12.01 21.22 20.34 20.55 15.53 15.92 25.88.

Table 9, Table 10 and Table 11 list the values of estimate, −logL, AIC, BIC and AICc,
for the considered data sets.

www.calvin.edu/stob/data/cigs.csv
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Table 9: Estimated values, −logL, AIC, BIC and AICc for the first data set.

Distribution Estimates (SE) −logL AIC BIC AICc

2D-Lindley θ̂ = 0.2335 (0.0447) 70.13335 144.2667 146.2582 144.9726

µ̂ = 13.0205 (2.0049)

Laplace µ̂ = 12.8350 (0.60) 71.33741 146.6748 148.6663 147.3807

σ̂ = 6.512916 (0.002)

Table 10: Estimated values, −logL, AIC, BIC and AICc for the second data set.

Distribution Estimates (SE) −logL AIC BIC AICc

2D-Lindley θ̂ = 0.1355 (0.0268) 77.22743 146.6748 148.6663 147.3807

µ̂ = 34.7542 (3.4269)

Laplace µ̂ = 34.00 (0.1062) 78.13456 160.2691 162.158 161.0191

σ̂ = 11.2337 (2.5791)

Table 11: Estimated values, −logL, AIC, BIC and AICc for the third data set.

Distribution Estimates (SE) −logL AIC BIC AICc

2D-Lindley θ̂ = 0.4182 (0.0536) 128.1709 260.3419 263.9103 260.6496

µ̂ = 19.9190 (0.7894)

Laplace µ̂ =20.3182 (0.27) 129.9786 263.9572 267.5255 264.2649

σ̂ = 3.5289 (0.03)

From the tables, it may be noticed that the proposed 2D-Lindley model present the
smallest values of the −logL, AIC, BIC and AICc and hence should be chosen as the best
model for these datasets.

3.8.2. Comparison with the Normal distribution

Here we consider the data set artificially created from the standard Laplace distribution
(with parameters 0 and 1) and truncated at the second decimal places which has been studied
by [11]. The fourth data are given below:

-1.28 0.36 -1.29 -0.80 0.28 -0.06 -1.53 0.28 -0.54 0.17 0.59 6.22 2.41 0.33 -1.51 0.25 2.33 2.81
-0.92 2.12 -1.01 1.35 -0.37 -0.39 -4.39 -2.39 0.97 -0.58 -2.24 -0.05.
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Table 12 shows the values of estimate, −logL, AIC, BIC and AICc, for the data set above.

Table 12: Estimated values, −logL, AIC, BIC and AICc for the fourth data set.

Distribution Estimates (SE) −logL AIC BIC AICc

2D-Lindley θ̂ =1.0299 (0.1593) 59.4520 122.9040 125.7064 123.3484

µ̂ = 0.0295 (0.4476)

Normal µ̂ = 0.1228 (0.3445) 61.61703 127.2341 130.0365 127.6785

σ̂ = 1.8870 (0.2436)

From the Table 12, we can see that the 2D-Lindley model present the smallest values
of the −logL, AIC, BIC and AICc, which confirm the suitability behavior of the 2D-Lindley
distribution.

4. CONCLUDING REMARKS

In this paper, we have derived single representations for the exact distribution of the
sum and difference of independent Lindley random variables. We referred to the distribu-
tions of sum and difference of two independent Lindley random variables as the 2S-Lindley
and 2D-Lindley distributions, respectively. Statistical properties such as moments, incom-
plete moments, characteristic function, stochastic ordering and extreme order statistics of
the 2S-Lindley distribution have been provided. At the same time, a comprehensive study
of statistical properties of the 2D-Lindley distribution also has been discussed. The model
parameters are estimated by maximum likelihood method for both cases. From simulation
studies, the performance of the maximum likelihood estimators has been assessed. The new
models provide consistently better fit than some classical models available in the literature.
In conclusion, proposed model with their attracting properties should have a promising future
in distribution theory.
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1. INTRODUCTION

The assessment of diagnostic tests is an important issue in modern medicine. In a
two-class problem, i.e. when the disease status has two categories (e.g., “healthy” and “dis-
eased”), for a diagnostic test T that yields a continuous measure, the receiver operating
characteristic (ROC) curve is a popular tool for displaying the ability of the test to dis-
tinguish between the classes. Assuming, without loss of generality, that higher test val-
ues indicate a higher likelihood of disease, the ROC curve is defined as the set of points
{(1− TNR(c),TPR(c)), c ∈ (−∞,∞)} in the unit square, where c is a cut point value,
TPR(c) = Pr(T ≥ c | subject is diseased) is the true positive rate at c and TNR(c) = Pr(T < c |
subject is non–diseased) is the true negative rate at c. The shape of the ROC curve allows

to evaluate the ability of the test. For example, a ROC curve equal to a straight line joining
points (0, 0) and (1, 1) represents a diagnostic test which is the random guess. A commonly
used summary measure of the overall performance of the test is the area under ROC curve
(AUC). Under correct ordering, values of AUC range from 0.5, suggesting that the test is no
better than chance alone, to 1.0, which indicates a perfect test. See, for example, [13] and
[17] as general references.

In some medical studies, the disease status often involves three classes; see, for example,
[5], [6] and [11]. In such situations, quantities used to evaluate the accuracy of tests are the
true class fractions (TCF’s). These quantities are defined as generalizations of TPR and
TNR. For a given pair of cut points (c1, c2) such that c1 < c2, the true class fractions TCF’s
of the continuous test T at (c1, c2) are

TCF1(c1) = Pr(T < c1|class 1) = 1− Pr(T ≥ c1|class 1),

TCF2(c1, c2) = Pr(c1 ≤ T < c2|class 2)

= Pr(T ≥ c1|class 2)− Pr(T ≥ c2|class 2),

TCF3(c2) = Pr(T ≥ c2|class 3) = Pr(T ≥ c2|class 3).

The plot of (TCF1, TCF2, TCF3) at various values of the pair (c1, c2) produces the ROC
surface, a generalization of the ROC curve to the unit cube (see [11],[10],[15]). The ROC
surface is the region defined by the triangle with vertices (0, 0, 1), (0, 1, 0), and (1, 0, 0) if the
three TCF’s are identical for every pair (c1, c2). In this case, we say that the diagnostic test is,
again, the random guess. The ROC surface of an effective test lies in the unit cube above such
region. A summary measure of the overall diagnostic accuracy of the test under consideration
is the volume under the ROC surface (VUS), which can be seen as a generalization of the
AUC. For correctly ordered categories, values of VUS vary from 1/6 to 1, ranging from bad
to perfect diagnostic tests.

The application of a diagnostic test in the clinical practice requires a preliminary rig-
orous statistical assessment of its performance. Clearly, the true ROC curve (or surface) of
the test under assessment and its AUC (or VUS) are unknown, so that the statistical eval-
uation relies on suitable inferential procedures, typically based on measurements collected
on a sample of patients. The assessment requires to ascertain the true disease status of the
patients in the sample, a verification that it is generally done by employing the most accurate
available test, the so-called gold standard (GS) test. Some times, however, the GS test is
too expensive, or too invasive, or both to be used on large samples, so that only a subset
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of patients undergoes disease verification. It happens that statistical evaluations based only
on data from subjects with verified disease status are typically biased, an effect known as
verification bias.

Correcting for verification bias is a well known issue of medical statistics. Various
methods have been developed to deal with the problem, most of which refer to the two-
class case and assume that the true disease status, if missing, is missing at random (MAR,
see [9]). We recall, among others, papers [1], [2], [3], [7], [14] and [17]. In particular, for
continuous tests, [3] proposes four types of partially parametric estimators of TPR and TNR
under the MAR assumption, i.e., full imputation (FI), mean score imputation (MSI), inverse
probability weighting (IPW) and semiparametric efficient (SPE, also known as doubly robust
DR) estimators. [1] and [2], instead, propose a fully nonparametric approach for ROC curve
and AUC estimation, respectively.

The issue of correcting for verification bias in ROC surface analysis is very scarcely
considered in the literature. To the best of our knowledge, only [5] and [16] discuss the
issue. [5] proposes a maximum likelihood approach for estimation of the ROC surface and
corresponding VUS for ordinal diagnostic tests, whereas [16] extends methods in [3] to the
estimation of ROC surfaces of continuous diagnostic tests. It is worth noting that FI, MSI,
IPW and SPE estimators in [16] are partially parametric estimators and their use requires the
specification of parametric regression models for the probability of a subject being correctly
classified with respect to the disease state, or the probability of a subject being verified (i.e.,
tested by GS), or both. As a consequence, a wrong specification of such parametric models
negatively affects the behavior of the estimators, that no longer are consistent.

To avoid problems due to model misspecification, in this paper we propose a fully
nonparametric approach to estimate TCF1, TCF2 and TCF3 in the presence of verification
bias, for continuous diagnostic tests. The proposed approach is based on a nearest-neighbor
(NN) imputation of the missing data and extends an idea developed in [1]. Consistency
and asymptotic normality of the estimators derived from the proposed method are studied.
In addition, estimation of their variance is also discussed. Usefulness of our proposal and
advantages in comparison with partially parametric estimators is assessed with the aid of
some simulation experiments. An illustrative example is also given.

The rest of paper is organized as follows. In Section 2, we review partially parametric
methods for correcting for verification bias in case of continuous tests. The proposed nonpara-
metric method for (pointwise) estimating ROC surfaces and the related asymptotic results are
presented in Section 3. In Section 4, we discuss variance-covariance estimation and in Section
5 we give some simulation results. An application is illustrated in Section 6. Finally, conclu-
sions are drawn in Section 7. Some technical details and other simulation results are available
in a Supplementary Material, downloadable at http://paduaresearch.cab.unipd.it/11221/ .

http://paduaresearch.cab.unipd.it/11221/
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2. PARTIALLY PARAMETRIC ESTIMATORS OF ROC SURFACES

Consider a study with n subjects, for whom the result of a continuous diagnostic test
T is available. For each subject, D denotes the true disease status, that can possibly be
unknown. Hereafter, we will describe the true disease status as a trinomial random vector
D = (D1, D2, D3). Dk is a binary variable that takes 1 if the subject belongs to class k,
k = 1, 2, 3 and 0 otherwise. Here, class 1, class 2 and class 3 can be referred, for example, as
“non-diseased”, “intermediate” and “diseased”, and are assumed to be ordered. Further, let V
be a binary verification status for a subject, such that V = 1 if he/she is undergoes the GS
test, and V = 0 otherwise. In practice, some information, other than the results from the test
T , can be obtained for each patient. Let A be the covariate vector for the patients, that may
be associated both with D and V . We are interested in estimating the ROC surface of T , and
hence the true class fractions TCF1(c1) = Pr(Ti < c1|D1i = 1), TCF2(c1, c2) = Pr(c1 ≤ Ti <

c2|D2i = 1) and TCF3(c2) = Pr(Ti ≥ c2|D3i = 1), for fixed constants c1, c2, with c1 < c2.

When all patients have their disease status verified by a GS, i.e., Vi = 1 for all i =
1, ..., n, for any pair of cut points (c1, c2), the true class fractions TCF1(c1), TCF2(c1, c2) and
TCF3(c2) can be easily estimated by

T̂CF1(c1) = 1−

n∑
i=1

I(Ti ≥ c1)D1i

n∑
i=1

D1i

,

T̂CF2(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2)D2i

n∑
i=1

D2i

,

T̂CF3(c2) =

n∑
i=1

I(Ti ≥ c2)D3i

n∑
i=1

D3i

,

where I(·) is the indicator function. It is straightforward to show that the above estimators
are consistent. However, they cannot be employed in case of incomplete data, i.e. when
Vi = 0 for some i = 1, ..., n.

When only some subjects are selected to undergo the GS test, we need to make an
assumption about the selection mechanism. We assume that the verification status V and
the disease status D are mutually independent given the test result T and covariate A. This
means that Pr(V |T,A) = Pr(V |D, T, A) or equivalently Pr(D|T,A) = Pr(D|V, T,A). Such
assumption is a special case of the missing at random (MAR) assumption (see [9]).

Under MAR assumption, verification bias-corrected estimation of the true class frac-
tions is discussed in [16], where (partially) parametric estimators, based on four different ap-
proaches, are given. In particular, full imputation (FI) estimators of TCF1(c1), TCF2(c1, c2)
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and TCF3(c2) are defined as

T̂CF1,FI(c1) = 1−

n∑
i=1

I(Ti ≥ c1)ρ̂1i

n∑
i=1

ρ̂1i

,

T̂CF2,FI(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2)ρ̂2i

n∑
i=1

ρ̂2i

,(2.1)

T̂CF3,FI(c2) =

n∑
i=1

I(Ti ≥ c2)ρ̂3i

n∑
i=1

ρ̂3i

.

This method requires a parametric model (e.g. multinomial logistic regression model) to
obtain the estimates ρ̂ki of ρki = Pr(Dki = 1|Ti, Ai), using only data from verified subjects.
Differently, the mean score imputation (MSI) approach only uses the estimates ρ̂ki for the
missing values of disease status Dki. Hence, MSI estimators are

T̂CF1,MSI(c1) = 1−

n∑
i=1

I(Ti ≥ c1) [ViD1i + (1− Vi)ρ̂1i]

n∑
i=1

[ViD1i + (1− Vi)ρ̂1i]
,

T̂CF2,MSI(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2) [ViD2i + (1− Vi)ρ̂2i]

n∑
i=1

[ViD2i + (1− Vi)ρ̂2i]
,(2.2)

T̂CF3,MSI(c2) =

n∑
i=1

I(Ti ≥ c2) [ViD3i + (1− Vi)ρ̂3i]

n∑
i=1

[ViD3i + (1− Vi)ρ̂3i]
.

The inverse probability weighting (IPW) approach weights each verified subject by the inverse
of the probability that the subject is selected for verification. Thus, TCF1(c1),TCF2(c1, c2)
and TCF3(c2) are estimated by

T̂CF1,IPW(c1) = 1−

n∑
i=1

I(Ti ≥ c1)Viπ̂
−1
i D1i

n∑
i=1

Viπ̂
−1
i D1i

,

T̂CF2,IPW(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2)Viπ̂
−1
i D2i

n∑
i=1

Viπ̂
−1
i D2i

,(2.3)

T̂CF3,IPW(c2) =

n∑
i=1

I(Ti ≥ c2)Viπ̂
−1
i D3i

n∑
i=1

Viπ̂
−1
i D3i

,
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where π̂i is an estimate of the conditional verification probabilities πi = Pr(Vi = 1|Ti, Ai).
Finally, the semiparametric efficient (SPE) estimators are

T̂CF1,SPE(c1) = 1−

n∑
i=1

I(Ti ≥ c1)
{

ViD1i
π̂i

− ρ̂1i(Vi−π̂i)
π̂i

}
n∑

i=1

{
ViD1i

π̂i
− ρ̂1i(Vi−π̂i)

π̂i

} ,

T̂CF2,SPE(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2)
{

ViD2i
π̂i

− ρ̂2i(Vi−π̂i)
π̂i

}
n∑

i=1

{
ViD2i

π̂i
− ρ̂2i(Vi−π̂i)

π̂i

} ,(2.4)

T̂CF3,SPE(c2) =

n∑
i=1

I(Ti ≥ c2)
{

ViD3i
π̂i

− ρ̂3i(Vi−π̂i)
π̂i

}
n∑

i=1

{
ViD3i

π̂i
− ρ̂3i(Vi−π̂i)

π̂i

} .

Estimators (2.1)-(2.4) represent an extension to the three-classes problem of the estimators
proposed in [3]. SPE estimators are also known to be doubly robust estimators, in the sense
that they are consistent if either the ρki’s or the πi’s are estimated consistently. However,
SPE estimates could fall outside the interval (0, 1). This happens because the quantities
ViDkiπ̂

−1
i − ρ̂ki(Vi − π̂i)π̂−1

i can be negative.

3. NONPARAMETRIC ESTIMATORS

3.1. The proposed method

All the verification bias-corrected estimators of TCF1(c1), TCF2(c1, c2) and TCF3(c2)
revised in the previous section belong to the class of (partially) parametric estimators,
i.e., they need regression models to estimate ρki = Pr(Dki = 1|Ti, Ai) and/or πi = Pr(Vi =
1|Ti, Ai). In what follows, we propose a fully nonparametric approach to the estimation
of TCF1(c1),TCF2(c1, c2) and TCF3(c2). Our approach is based on the K-nearest neigh-
bor (KNN) imputation method. Hereafter, we shall assume that A is a continuous random
variable.

Recall that the true disease status is a trinomial random vector D = (D1, D2, D3) such
that Dk is a n Bernoulli trials with success probability θk = Pr(Dk = 1). Note that θ1 +
θ2 + θ3 = 1. Since parameters θk are the means of the random variables Dk, we can use the
KNN estimation procedure discussed in [12] to obtain nonparametric estimates θ̂k,KNN. More
precisely, we define

θ̂k,KNN =
1
n

n∑
i=1

[ViDki + (1− Vi)ρ̂ki,K ] , K ∈ {1, 2, 3, ...},

where ρ̂ki,K =
1
K

K∑
l=1

Dki(l), and
{
(Ti(l), Ai(l), Dki(l)) : Vi(l) = 1, l = 1, ...,K

}
is a set of K ob-

served data triplets and (Ti(l), Ai(l)) denotes the l-th nearest neighbor to (Ti, Ai) among all
(T,A)’s corresponding to verified patients, i.e., patients with V = 1.
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Let βjk = Pr(T ≥ cj , Dk = 1), with j ∈ {1, 2}, k ∈ {1, 2, 3} and k ≥ j. Then, we can
define the KNN estimates of βjk as

β̂jk,KNN =
1
n

n∑
i=1

I(Ti ≥ cj) [ViDki + (1− Vi)ρ̂ki,K ] .

It follows that the KNN imputation estimators for TCFk are

T̂CF1,KNN(c1) = 1− β̂11

θ̂1
=

n∑
i=1

I(Ti < c1) [ViD1i + (1− Vi)ρ̂1i,K ]

n∑
i=1

[ViD1i + (1− Vi)ρ̂1i,K ]
,

T̂CF2,KNN(c1, c2) =
β̂12 − β̂22

θ̂2

=

n∑
i=1

I(c1 ≤ Ti < c2) [ViD2i + (1− Vi)ρ̂2i,K ]

n∑
i=1

[ViD2i + (1− Vi)ρ̂2i,K ]
,(3.1)

T̂CF3,KNN(c2) =
β̂23

θ̂3
=

n∑
i=1

I(Ti ≥ c2) [ViD3i + (1− Vi)ρ̂3i,K ]

n∑
i=1

[ViD3i + (1− Vi)ρ̂3i,K ]
.

Note that KNN estimators (3.1) can be seen as nonparametric versions of the MSI estimators
(2.2).

3.2. Asymptotic distribution

Let ρk(t, a) = Pr(Dk = 1|T = t, A = a) and π(t, a) = Pr(V = 1|T = t, A = a). The KNN
imputation estimators of TCF1(c1), TCF2(c1, c2) and TCF3(c2) are consistent and asymp-
totically normal. In fact, we have the following theorems.

Theorem 3.1. Assume the functions ρk(t, a) and π(t, a) are finite and first-order

differentiable. Moreover, assume that the expectation of 1/π(T,A) exists. Then, for a fixed

pair of cut points (c1, c2) such that c1 < c2, the KNN imputation estimators T̂CF1,KNN(c1),
T̂CF2,KNN(c1, c2) and T̂CF3,KNN(c2) are consistent.

Proof: Since the disease status Dk is a Bernoulli random variable, its second-order
moment, E(D2

k), is finite. According to the first assumption, we can show that the conditional
variance of Dk given T and A, Var(Dk|T = t, A = a), is equal to ρk(t, a) [1− ρk(t, a)] , which
is clearly finite. Thus, by an application of Theorem 1 in [12], the KNN imputation estimators
θ̂k,KNN are consistent.



704 Khanh To Duc, Monica Chiogna and Gianfranco Adimari

Now, observe that, for j ∈ {1, 2}, k ∈ {1, 2, 3} and k ≥ j,

β̂jk,KNN − βjk =
1
n

n∑
i=1

I(Ti ≥ cj) [ViDki + (1− Vi)ρki]

+
1
n

n∑
i=1

I(Ti ≥ cj)(1− Vi)(ρ̂ki,K − ρki)− βjk

=
1
n

n∑
i=1

I(Ti ≥ cj)Vi [Dki − ρki] +
1
n

n∑
i=1

[I(Ti ≥ cj)ρki − βjk]

+
1
n

n∑
i=1

I(Ti ≥ cj)(1− Vi)(ρ̂ki,K − ρki)

= Sjk +Rjk + Tjk.

Here, the quantities Rjk, Sjk and Tjk are similar to the quantities R,S and T in the proof of
Theorem 2.1 in [4] and of Theorem 1 in [12]. Thus, we have that

√
nRjk

d→ N (0,Var [I(T ≥ cj)ρk(T,A)]) ,
√
nSjk

d→ N
(
0,E

[
π(T,A)δ2jk(T,A)

])
,

where δ2jk(T,A) is the conditional variance of I(T ≥ cj , Dk = 1) given T,A. From proof of
Theorem 1 in [12], we also get Tjk = Wjk + op(n−1/2), where

Wjk =
1
n

n∑
i=1

I(Ti ≥ cj)(1− Vi)

[
1
K

K∑
l=1

(
Vi(l)Dki(l) − ρki(l)

)]
,

with E(Wjk) = 0,
√
nWjk

d→ N
(
0, σ2

Wjk

)
, and

(3.2) σ2
Wjk

=
1
K

E
[
(1− π(T,A))δ2jk(T,A)

]
+ E

[
(1− π(T,A))2δ2jk(T,A)

π(T,A)

]
.

This leads to the consistency of β̂jk,KNN, i.e, β̂jk,KNN
p→ βjk. It follows that T̂CF1,KNN(c1) =

1− β̂11

θ̂1
, T̂CF2,KNN(c1, c2) = β̂12−β̂22

θ̂2
and T̂CF3,KNN(c2) = β̂23

θ̂3
are consistent.

Theorem 3.2. Assume that the conditions in Theorem 3.1 hold. We get

(3.3)
√
n


 T̂CF1,KNN(c1)

T̂CF2,KNN(c1, c2)
T̂CF3,KNN(c2)

−

 TCF1(c1)
TCF2(c1, c2)
TCF3(c2)


 d→ N (0,Ξ),

where Ξ is a suitable matrix.

Proof: From proof of Theorem 3.1, we have

β̂jk,KNN − βjk = Sjk +Rjk +Wjk + op(n−1/2),

√
nRjk

d→N (0,Var [I(T ≥ cj)ρk(T,A)]) ,
√
nSjk

d→N
(
0,E

[
π(T,A)δ2jk(T,A)

])
and

√
nWjk

d→
N (0, σ2

Wjk
). Moreover, arguments in the proof of Theorem 2.1 in [4] and of Theorem 1 in [12],
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allows to state that Wjk asymptotically behaves as a sample mean, Sjk, Rjk and Wjk

are jointly asymptotically normal, and
√
n(β̂jk,KNN − βjk)

d→ N (0, σ2
jk), with σ2

jk =[
βjk (1− βjk) + ω2

jk

]
and

ω2
jk =

(
1 +

1
K

)
E
[
I(T ≥ cj)ρk(T,A)(1− ρk(T,A))(1− π(T,A))

]
+ E

[
I(T ≥ cj)ρk(T,A)

(1− ρk(T,A))(1− π(T,A))2

π(T,A)

]
.(3.4)

Finally, a direct application of Theorem 1 in [12] gives that
√
n(θ̂k,KNN − θk) converges to a

normal random variable with mean 0 and variance σ2
k =

[
θk(1− θk) + ω2

k

]
, where

ω2
k =

(
1 +

1
K

)
E [ρk(T,A)(1− ρk(T,A))(1− π(T,A))]

+ E
[
ρk(T,A)(1− ρk(T,A))(1− π(T,A))2

π(T,A)

]
.(3.5)

Since
√
n
(
θ̂1,KNN, θ̂2,KNN, β̂11,KNN, β̂12,KNN, β̂22,KNN, β̂23,KNN

)> is asymptotically normally dis-
tributed with mean (θ1, θ2, β11, β12, β22, β23)> and suitable covariance matrix Ξ∗, result (3.3)
follows by applying the multivariate delta method to

h(θ̂1, θ̂2, β̂11, β̂12, β̂22, β̂23) =

(
1− β̂11

θ̂1
,
(β̂12 − β̂22)

θ̂2
,

β̂23

(1− θ̂1 − θ̂2)

)
.

Let us denote elements in the asymptotic covariance matrix Ξ as follows

Ξ =

 ξ21 ξ12 ξ13
ξ12 ξ22 ξ23
ξ13 ξ23 ξ23

 .

Recall that, from proof of Theorem 3.2, σ2
k =

[
θk(1− θk) + ω2

k

]
and σ2

jk = βjk(1− βjk) +ω2
jk,

where ω2
k and ω2

jk are given in (3.5) and (3.4), respectively. In Section S1, Supplementary
Material, we show that

ξ21 =
β2

11

θ4
1

σ2
1 +

σ2
11

θ2
1

− β11

θ3
1

(σ2
1 + σ2

11 − ζ2
11),

ξ22 = σ2
2

(β12 − β22)2

θ4
2

+
λ2

θ2
2

− β12 − β22

θ3
2

(σ2
12 − σ2

22 − ζ2
12 + ζ2

22),

ξ23 =
β2

23σ
2
3

θ4
3

+
σ2

23

θ2
3

− β23

θ3
3

(σ2
3 + σ2

23 − ζ2
23),

ξ12 =
1

θ1θ2

[
ψ2

1212 + β11(β12 − β22)
]
− β11

θ2
1θ2

[
ψ2

1212 + θ1(β12 − β22)
]

− β12 − β22

θ2
2θ1

(
β11

θ1
σ∗12 + ψ2

112 + θ2β11

)
,(3.6)

ξ13 =
1
θ3

[
−β11

θ2
1

(ψ2
213 + θ1β23) +

ψ2
213 + β11β23

θ1

]
+

β23

θ1θ2
3

×
[
β11

θ1

(
σ2

1 + σ∗12

)
− ψ2

113 − θ3β11

]
,

ξ23 =
1

θ2θ3

[
−β23(β12 − β22) +

β12 − β22

θ2
(ψ2

223 + θ2β23)
]

+
β23

θ2θ2
3

[
ψ2

1223 + θ3(β12 − β22)−
β12 − β22

θ2
(σ2

2 + σ∗12)
]
,
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where ζ2
jk = γjk(1− γjk) + η2

jk, λ
2 = (β12− β22)[1− (β12− β22)] +ω2

12−ω2
22, σ

∗
12 = −(θ1θ2 +

ψ2
12), with γjk = Pr (T < cj , Dk = 1) and

η2
jk =

K + 1
K

E
[
I(T < cj)ρk(T,A){1− ρk(T,A)}{1− π(T,A)}

]
+ E

[
I(T < cj)ρk(T,A)

{1− ρk(T,A)}{1− π(T,A)}2

π(T,A)

]
,

ψ2
12 =

(
1 +

1
K

)
E {[1− π(T,A)]ρ1(T,A)ρ2(T,A)}

+ E
{

[1− π(T,A)]2ρ1(T,A)ρ2(T,A)
π(T,A)

}
,

ψ2
1212 =

(
1 +

1
K

)
E
{

[1− π(T,A)]I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)
}

+ E
{

[1− π(T,A)]2I(c1 ≤ T < c2)
ρ1(T,A)ρ2(T,A)

π(T,A)

}
,

ψ2
112 =

(
1 +

1
K

)
E {[1− π(T,A)]I(T ≥ c1)ρ1(T,A)ρ2(T,A)}

+ E
{

[1− π(T,A)]2I(T ≥ c1)ρ1(T,A)ρ2(T,A)
π(T,A)

}
,

ψ2
213 =

(
1 +

1
K

)
E {[1− π(T,A)]I(T ≥ c2)ρ1(T,A)ρ3(T,A)}

+ E
{

[1− π(T,A)]2I(T ≥ c2)ρ1(T,A)ρ3(T,A)
π(T,A)

}
,

ψ2
113 =

(
1 +

1
K

)
E {[1− π(T,A)]I(T ≥ c1)ρ1(T,A)ρ3(T,A)}

+ E
{

[1− π(T,A)]2I(T ≥ c1)ρ1(T,A)ρ3(T,A)
π(T,A)

}
,

ψ2
223 =

(
1 +

1
K

)
E {[1− π(T,A)]I(T ≥ c2)ρ2(T,A)ρ3(T,A)}

+ E
{

[1− π(T,A)]2I(T ≥ c2)ρ2(T,A)ρ3(T,A)
π(T,A)

}
,

ψ2
1223 =

(
1 +

1
K

)
E
{

[1− π(T,A)]I(c1 ≤ T < c2)ρ2(T,A)ρ3(T,A)
}

+ E
{

[1− π(T,A)]2I(c1 ≤ T < c2)
ρ2(T,A)ρ3(T,A)

π(T,A)

}
.

Therefore, from (3.6), the elements of Ξ depend, among others, on quantities as ω2
k, ω

2
jk,

γjk, η2
jk, ψ

2
1212, ψ

2
112, ψ

2
213, ψ

2
12, ψ

2
113, ψ

2
223 and ψ2

1223. As a consequence, to obtain consistent
estimates of the asymptotic variances and covariances, we ultimately need to estimate these
quantities.
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3.3. Choice of K and of the distance measure

The proposed method is based on nearest-neighbor imputation, which requires the
choice of a value for K as well as a distance measure.

In practice, the selection of a suitable distance is typically dictated by features of the
data and possible subjective evaluations; thus, a general indication about an adequate choice
is difficult to express. In many cases, the simple Euclidean distance may be appropriate.
Other times, the researcher may wish to consider specific characteristics of data at hand, and
then make a different choice. For example, the diagnostic test result T and the auxiliary
covariate A could be heterogeneous with respect to their variances (in particular when the
variables are measured on different scales). In this case, the choice of the Mahalanobis
distance may be suitable. A further discussion on this topic in the context of medical studies
can be found in [8]. Therein, we refer the reader to results relative to numerical datasets.

As for the choice of the size of the neighborhood, [12] argue that nearest-neighbor
imputation with a small value of K typically yields negligible bias of the estimators, but a
large variance; the opposite happens with a large value of K. The authors suggest that the
choice of K ∈ {1, 2} is generally adequate when the aim is to estimate a mean. A similar
comment is also raised by [1] and [2], i.e., a small value of K, within the range 1–3, may
be a good choice to estimate ROC curves and AUC. However, the authors stress that, in
general, the choice of K may depend on the dimension of the feature space, and propose to
use cross–validation to find K. Specifically, the authors indicate that a suitable value of the
size of neighbor could be found by

K∗ = arg min
K

1
nver

‖D − ρ̂K‖1 ,

where D is a binary disease status, ‖ · ‖1 denotes L1 norm for vector and nver is the number of
verified subjects. The formula above can be generalized to our three–class case. In fact, when
the disease status has q categories (q ≥ 3), the difference between D and ρ̂K is a nver× (q− 1)
matrix. In such situation, the selection rule could be

(3.7) K∗ = arg min
K

1
nver(q − 1)

‖D − ρ̂K‖1,1 ,

where ‖A‖1,1 denotes L1,1 norm of matrix A, i.e.,

‖A‖1,1 =
q−1∑
j=1

(
nver∑
i=1

|aij |

)
.

4. VARIANCE-COVARIANCE ESTIMATION

Consider first the problem of estimating the variances of T̂CF1,KNN(c1), T̂CF2,KNN(c1, c2)
and T̂CF3,KNN(c2). In a nonparametric framework, quantities as ω2

k, ω
2
jk and η2

jk in Section
3.2 can be estimated by their empirical counterparts, using also the plug–in method. Here,
we consider an approach that uses a nearest-neighbor rule to estimate the functions ρk(T,A)
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and the propensity score π(T,A), that appear in the expressions of ω2
k, ω

2
jk and η2

jk. In par-
ticular, for the conditional probabilities of disease, we can use KNN estimates ρ̃ki = ρ̂ki,K̄ ,
where the integer K̄ must be greater than one to avoid estimates equal to zero. For the
conditional probabilities of verification, we can resort to the KNN procedure proposed in [1],
which considers the estimates

π̃i =
1
K∗

i

K∗
i∑

l=1

Vi(l),

where
{
(Ti(l), Ai(l), Vi(l)) : l = 1, ...,K∗

i

}
is a set of K∗

i observed triplets and (Ti(l), Ai(l)) de-
notes the l-th nearest neighbor to (Ti, Ai) among all (T,A)’s. When Vi equals 0, K∗

i is
set equal to the rank of the first verified nearest neighbor to the unit i, i.e., K∗

i is such
that Vi(K∗

i ) = 1 and Vi = Vi(1) = Vi(2) = ... = Vi(K∗
i −1) = 0. In case of Vi = 1, K∗

i is such that
Vi = Vi(1) = Vi(2) = ... = Vi(K∗

i −1) = 1, and Vi(K∗
i ) = 0, i.e., K∗

i is set equal to the rank of the
first non–verified nearest neighbor to the unit i. Such a procedure automatically avoids zero
values for the π̃i’s.

Then, based on the ρ̃ki’s and π̃i’s, we obtain the estimates

ω̂2
k =

K + 1
nK

n∑
i=1

ρ̃ki (1− ρ̃ki) (1− π̃i) +
1
n

n∑
i=1

ρ̃ki (1− ρ̃ki) (1− π̃i)
2

π̃i
,

ω̂2
jk =

K + 1
nK

n∑
i=1

I(Ti ≥ cj)ρ̃ki (1− ρ̃ki) (1− π̃i)

+
1
n

n∑
i=1

I(Ti ≥ cj)ρ̃ki (1− ρ̃ki) (1− π̃i)
2

π̃i
,

η̂2
jk =

K + 1
nK

n∑
i=1

I(Ti < cj)ρ̃ki (1− ρ̃ki) (1− π̃i)

+
1
n

n∑
i=1

I(Ti < cj)ρ̃ki (1− ρ̃ki) (1− π̃i)
2

π̃i
,

from which, along with θ̂k,KNN, β̂jk,KNN and

γ̂jk,KNN =
1
n

n∑
i=1

I(Ti < cj) [ViDki + (1− Vi)ρ̂ki,K ] ,

one derives the estimates of the variances of the proposed KNN imputation estimators.

To obtain estimates of covariances, we need to estimate also the quantities ψ2
1212, ψ

2
112,

ψ2
213, ψ

2
12, ψ

2
113, ψ

2
223 and ψ2

1223. However, estimates of such quantities are similar to those
given above for ω2

k, ω
2
jk and η2

jk. For example,

ψ̂2
1212 =

K + 1
nK

n∑
i=1

I(c1 ≤ Ti < c2)ρ̃1iρ̃2i (1− π̃i)

+
1
n

n∑
i=1

I(c1 ≤ Ti < c2)ρ̃1iρ̃2i (1− π̃i)
2

π̃i
.

Of course, there are other possible approaches to obtain variance and covariance esti-
mates. For instance, one could resort to a standard bootstrap procedure.
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5. SIMULATION STUDY

In this section, the ability of KNN method to estimate TCF1, TCF2 and TCF3 is
evaluated by using Monte Carlo experiments. We also compare the proposed method with
partially parametric approaches, namely, FI, MSI, IPW and SPE approaches. As already
mentioned, partially parametric bias-corrected estimators of TCF1, TCF2 and TCF3 require
parametric regression models to estimate ρki = Pr(Dki = 1|Ti, Ai), or πi = Pr(Vi = 1|Ti, Ai),
or both. A wrong specification of such models may affect the estimators. Therefore, in the
simulation study we consider two scenarios: in the parametric estimation process,

(i) the disease model and the verification model are both correctly specified;

(ii) the disease model and the verification model are both misspecified.

In both scenarios, we execute 5000 Monte Carlo runs at each setting; we set three sample
sizes, i.e., 250, 500 and 1000 in scenario (i) and a sample size of 1000 in scenario (ii).

We consider KNN estimators based on the Euclidean distance, with K = 1 and K = 3.
This in light of the discussion in Section 3.4 and some results of a preliminary simulation study
presented in Section S5, Supplementary Material. In such preliminary study, we compared
the behavior of the KNN estimators for several choices of the distance measure (Euclidean,
Manhattan, Canberra and Mahalanobis) and the size of the neighborhood (K = 1, 3, 5, 10, 20).

5.1. Correctly specified parametric models

The true disease is generated by a trinomial random vector (D1, D2, D3), such thatDk is
a Bernoulli random variable with success probability θk, k = 1, 2, 3. We set θ1 = 0.4, θ2 = 0.35
and θ3 = 0.25. The continuous test result T and a covariate A are generated from the following
conditional models

T,A|Dk ∼ N2 (µk,Σ) , k = 1, 2, 3,

where µk = (2k, k)> and

Σ =

(
σ2

T |D σT,A|D
σT,A|D σ2

A|D

)
.

We consider three different values for Σ, specifically(
1.75 0.1
0.1 2.5

)
,

(
2.5 1.5
1.5 2.5

)
,

(
5.5 3
3 2.5

)
,

giving rise to a correlation between T and A equal to 0.36, 0.69 and 0.84, respectively.
The verification status V is generated by the following model

logit {Pr(V = 1|T,A)} = δ0 + δ1T + δ2A,

where we fix δ0 = 0.5, δ1 = −0.3 and δ2 = 0.75. This choice corresponds to a verification rate
of about 0.65. We consider six pairs of cut points (c1, c2), i.e., (2, 4), (2, 5), (2, 7), (4, 5), (4, 7)
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and (5, 7). Since the conditional distribution of T given Dk is the normal distribution, the
true parameters values are

TCF1(c1) = Φ
(
c1 − 2
σT |D

)
,

TCF2(c1, c2) = Φ
(
c2 − 4
σT |D

)
− Φ

(
c1 − 4
σT |D

)
,

TCF3(c2) = 1− Φ
(
c2 − 6
σT |D

)
,

where Φ(·) denotes the cumulative distribution function of the standard normal random
variable.

In this set–up, FI, MSI, IPW and SPE estimators are computed under correct working
models for both the disease and the verification processes. Therefore, the conditional veri-
fication probabilities πi are estimated from a logistic model for V given T and A with logit
link. Under our data–generating process, the true conditional disease model is a multinomial
logistic model

Pr(Dk = 1|T,A) =
exp (τ0k + τ1kT + τ2kA)

1 + exp (τ01 + τ11T + τ21A) + exp (τ02 + τ12T + τ22A)

for suitable τ0k, τ1k, τ2k, where k = 1, 2.

Tables 1–3 show Monte Carlo means and standard deviations of the estimators for
the three true class factions. Results concern the estimators FI, MSI, IPW, SPE, and the
KNN estimator with K = 1 and K = 3 computed using the Euclidean distance. Also, the
estimated standard deviations are shown in the tables. The estimates are obtained by using
asymptotic results. To estimate standard deviations of KNN estimators, we use the KNN
procedure discussed in Section 4, with K̄ = 2. Each table refers to a chosen value for Σ. The
sample size is 250. The results for sample sizes 500 and 1000 are presented in Section S2 of
Supplementary Material.

As expected, the parametric approaches work well when both models for ρk(t, a) and
π(t, a) are correctly specified. FI and MSI estimators seem to be the most efficient ones,
whereas the IPW approach seems to provide less powerful estimators, in general. The new
proposals (1NN and 3NN estimators) yield also good results, comparable, in terms of bias
and standard deviation, to those of the parametric competitors. Moreover, estimators 1NN
and 3NN seem to achieve similar performances, and the results about estimated standard
deviations of KNN estimators seem to show the effectiveness of the procedure discussed in
Section 4.

Finally, some results of simulation experiments performed to explore the effect of a
multidimensional vector of auxiliary covariates are given in Section S3, Supplementary Mate-
rial. A vector A of dimension 3 is employed. The results in Table 7, Supplementary Material,
show that KNN estimators still behave satisfactorily.
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Table 1: Monte Carlo means, Monte Carlo standard deviations and es-
timated standard deviations of the estimators for the true class
fractions, when n = 250 and the first value of Σ is considered.
“True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut points = (2, 4)

True 0.5000 0.4347 0.9347
FI 0.5005 0.4348 0.9344 0.0537 0.0484 0.0269 0.0440 0.0398 0.0500

MSI 0.5005 0.4346 0.9342 0.0550 0.0547 0.0320 0.0465 0.0475 0.0536
IPW 0.4998 0.4349 0.9341 0.0722 0.0727 0.0372 0.0688 0.0702 0.0420
SPE 0.5010 0.4346 0.9344 0.0628 0.0659 0.0364 0.0857 0.0637 0.0363
1NN 0.4989 0.4334 0.9331 0.0592 0.0665 0.0387 0.0555 0.0626 0.0382
3NN 0.4975 0.4325 0.9322 0.0567 0.0617 0.0364 0.0545 0.0608 0.0372

cut points = (2, 5)

True 0.5000 0.7099 0.7752
FI 0.5005 0.7111 0.7761 0.0537 0.0461 0.0534 0.0440 0.0400 0.0583

MSI 0.5005 0.7104 0.7756 0.0550 0.0511 0.0566 0.0465 0.0467 0.0626
IPW 0.4998 0.7108 0.7750 0.0722 0.0701 0.0663 0.0688 0.0667 0.0713
SPE 0.5010 0.7106 0.7762 0.0628 0.0619 0.0627 0.0857 0.0604 0.0611
1NN 0.4989 0.7068 0.7738 0.0592 0.0627 0.0652 0.0555 0.0591 0.0625
3NN 0.4975 0.7038 0.7714 0.0567 0.0576 0.0615 0.0545 0.0574 0.0610

cut points = (2, 7)

True 0.5000 0.9230 0.2248
FI 0.5005 0.9229 0.2240 0.0537 0.0236 0.0522 0.0440 0.0309 0.0428

MSI 0.5005 0.9231 0.2243 0.0550 0.0285 0.0531 0.0465 0.0353 0.0443
IPW 0.4998 0.9238 0.2222 0.0722 0.0374 0.0765 0.0688 0.0360 0.0728
SPE 0.5010 0.9236 0.2250 0.0628 0.0362 0.0578 0.0857 0.0348 0.0573
1NN 0.4989 0.9201 0.2233 0.0592 0.0372 0.0577 0.0555 0.0366 0.0570
3NN 0.4975 0.9177 0.2216 0.0567 0.0340 0.0558 0.0545 0.0355 0.0563

cut points = (4, 5)

True 0.9347 0.2752 0.7752
FI 0.9347 0.2763 0.7761 0.0245 0.0412 0.0534 0.0179 0.0336 0.0583

MSI 0.9348 0.2758 0.7756 0.0271 0.0471 0.0566 0.0220 0.0404 0.0626
IPW 0.9350 0.2758 0.7750 0.0421 0.0693 0.0663 0.0391 0.0651 0.0713
SPE 0.9353 0.2761 0.7762 0.0386 0.0590 0.0627 0.0377 0.0568 0.0611
1NN 0.9322 0.2734 0.7738 0.0374 0.0572 0.0652 0.0342 0.0553 0.0625
3NN 0.9303 0.2712 0.7714 0.0328 0.0526 0.0615 0.0332 0.0538 0.0610

cut points = (4, 7)

True 0.9347 0.4883 0.2248
FI 0.9347 0.4881 0.2240 0.0245 0.0541 0.0522 0.0179 0.0444 0.0428

MSI 0.9348 0.4885 0.2243 0.0271 0.0576 0.0531 0.0220 0.0495 0.0443
IPW 0.9350 0.4889 0.2222 0.0421 0.0741 0.0765 0.0391 0.0713 0.0728
SPE 0.9353 0.4890 0.2250 0.0386 0.0674 0.0578 0.0377 0.0646 0.0573
1NN 0.9322 0.4867 0.2233 0.0374 0.0680 0.0577 0.0342 0.0633 0.0570
3NN 0.9303 0.4852 0.2216 0.0328 0.0630 0.0558 0.0332 0.0615 0.0563

cut points = (5, 7)

True 0.9883 0.2132 0.2248
FI 0.9879 0.2118 0.2240 0.0075 0.0435 0.0522 0.0055 0.0336 0.0428

MSI 0.9882 0.2127 0.2243 0.0096 0.0467 0.0531 0.0084 0.0388 0.0443
IPW 0.9887 0.2130 0.2222 0.0193 0.0653 0.0765 0.0177 0.0618 0.0728
SPE 0.9888 0.2130 0.2250 0.0191 0.0571 0.0578 0.0184 0.0554 0.0573
1NN 0.9868 0.2133 0.2233 0.0177 0.0567 0.0577 0.0172 0.0532 0.0570
3NN 0.9860 0.2139 0.2216 0.0151 0.0519 0.0558 0.0168 0.0516 0.0563
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Table 2: Monte Carlo means, Monte Carlo standard deviations and es-
timated standard deviations of the estimators for the true class
fractions, when n = 250 and the second value of Σ is consid-
ered. “True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut points = (2, 4)

True 0.5000 0.3970 0.8970
FI 0.4999 0.3974 0.8973 0.0503 0.0421 0.0362 0.0432 0.0352 0.0466

MSI 0.5000 0.3975 0.8971 0.0521 0.0497 0.0416 0.0461 0.0451 0.0515
IPW 0.4989 0.3990 0.8971 0.0663 0.0685 0.0534 0.0647 0.0681 0.0530
SPE 0.5004 0.3980 0.8976 0.0570 0.0619 0.0516 0.0563 0.0620 0.0493
1NN 0.4982 0.3953 0.8976 0.0587 0.0642 0.0537 0.0561 0.0618 0.0487
3NN 0.4960 0.3933 0.8970 0.0556 0.0595 0.0494 0.0548 0.0600 0.0472

cut points = (2, 5)

True 0.5000 0.6335 0.7365
FI 0.4999 0.6337 0.7395 0.0503 0.0436 0.0583 0.0432 0.0379 0.0554

MSI 0.5000 0.6330 0.7385 0.0521 0.0508 0.0613 0.0461 0.0469 0.0612
IPW 0.4989 0.6335 0.7386 0.0663 0.0676 0.0728 0.0647 0.0663 0.0745
SPE 0.5004 0.6333 0.7390 0.0570 0.0622 0.0682 0.0563 0.0612 0.0673
1NN 0.4982 0.6304 0.7400 0.0587 0.0645 0.0721 0.0561 0.0615 0.0672
3NN 0.4960 0.6283 0.7396 0.0556 0.0600 0.0670 0.0548 0.0597 0.0654

cut points = (2, 7)

True 0.5000 0.8682 0.2635
FI 0.4999 0.8676 0.2655 0.0503 0.0316 0.0560 0.0432 0.0294 0.0478

MSI 0.5000 0.8678 0.2660 0.0521 0.0374 0.0583 0.0461 0.0364 0.0512
IPW 0.4989 0.8682 0.2669 0.0663 0.0507 0.0698 0.0647 0.0484 0.0692
SPE 0.5004 0.8681 0.2663 0.0570 0.0476 0.0608 0.0563 0.0459 0.0600
1NN 0.4982 0.8672 0.2672 0.0587 0.0495 0.0629 0.0561 0.0458 0.0609
3NN 0.4960 0.8657 0.2671 0.0556 0.0452 0.0610 0.0548 0.0442 0.0601

cut points = (4, 5)

True 0.8970 0.2365 0.7365
FI 0.8980 0.2363 0.7395 0.0284 0.0367 0.0583 0.0239 0.0301 0.0554

MSI 0.8976 0.2356 0.7385 0.0318 0.0437 0.0613 0.0292 0.0386 0.0612
IPW 0.8975 0.2345 0.7386 0.0377 0.0594 0.0728 0.0373 0.0578 0.0745
SPE 0.8974 0.2353 0.7390 0.0364 0.0529 0.0682 0.0361 0.0522 0.0673
1NN 0.8958 0.2352 0.7400 0.0388 0.0540 0.0721 0.0373 0.0524 0.0672
3NN 0.8946 0.2350 0.7396 0.0362 0.0502 0.0670 0.0361 0.0510 0.0654

cut points = (4, 7)

True 0.8970 0.4711 0.2635
FI 0.8980 0.4703 0.2655 0.0284 0.0512 0.0560 0.0239 0.0413 0.0478

MSI 0.8976 0.4703 0.2660 0.0318 0.0561 0.0583 0.0292 0.0490 0.0512
IPW 0.8975 0.4692 0.2669 0.0377 0.0693 0.0698 0.0373 0.0679 0.0692
SPE 0.8974 0.4701 0.2663 0.0364 0.0638 0.0608 0.0361 0.0629 0.0600
1NN 0.8958 0.4719 0.2672 0.0388 0.0666 0.0629 0.0373 0.0630 0.0609
3NN 0.8946 0.4724 0.2671 0.0362 0.0627 0.0610 0.0361 0.0611 0.0601

cut points = (5, 7)

True 0.9711 0.2347 0.2635
FI 0.9710 0.2339 0.2655 0.0124 0.0407 0.0560 0.0104 0.0336 0.0478

MSI 0.9709 0.2348 0.2660 0.0166 0.0461 0.0583 0.0156 0.0412 0.0512
IPW 0.9709 0.2347 0.2669 0.0204 0.0568 0.0698 0.0202 0.0562 0.0692
SPE 0.9709 0.2348 0.2663 0.0202 0.0531 0.0608 0.0199 0.0524 0.0600
1NN 0.9701 0.2368 0.2672 0.0217 0.0549 0.0629 0.0213 0.0533 0.0609
3NN 0.9695 0.2375 0.2671 0.0200 0.0519 0.0610 0.0206 0.0517 0.0601
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Table 3: Monte Carlo means, Monte Carlo standard deviations and es-
timated standard deviations of the estimators for the true class
fractions, when n = 250 and the third value of Σ is considered.
“True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut points = (2, 4)

True 0.5000 0.3031 0.8031
FI 0.5009 0.3031 0.8047 0.0488 0.0344 0.0495 0.0418 0.0284 0.0467

MSI 0.5005 0.3032 0.8045 0.0515 0.0448 0.0544 0.0460 0.0410 0.0542
IPW 0.5015 0.3030 0.8043 0.0624 0.0632 0.0649 0.0618 0.0620 0.0640
SPE 0.5007 0.3034 0.8043 0.0565 0.0576 0.0628 0.0564 0.0574 0.0614
1NN 0.4997 0.3021 0.8047 0.0592 0.0602 0.0682 0.0571 0.0584 0.0621
3NN 0.4984 0.3018 0.8043 0.0561 0.0565 0.0632 0.0556 0.0566 0.0601

cut points = (2, 5)

True 0.5000 0.4682 0.6651
FI 0.5009 0.4692 0.6668 0.0488 0.0384 0.0616 0.0418 0.0323 0.0536

MSI 0.5005 0.4687 0.6666 0.0515 0.0495 0.0658 0.0460 0.0455 0.0610
IPW 0.5015 0.4681 0.6670 0.0624 0.0671 0.0753 0.0618 0.0670 0.0743
SPE 0.5007 0.4690 0.6665 0.0565 0.0624 0.0721 0.0564 0.0622 0.0704
1NN 0.4997 0.4676 0.6668 0.0592 0.0661 0.0780 0.0571 0.0634 0.0717
3NN 0.4984 0.4670 0.6666 0.0561 0.0619 0.0729 0.0556 0.0614 0.0695

cut points = (2, 7)

True 0.5000 0.7027 0.3349
FI 0.5009 0.7030 0.3358 0.0488 0.0375 0.0595 0.0418 0.0318 0.0501

MSI 0.5005 0.7027 0.3360 0.0515 0.0474 0.0637 0.0460 0.0435 0.0563
IPW 0.5015 0.7026 0.3366 0.0624 0.0625 0.0730 0.0618 0.0618 0.0716
SPE 0.5007 0.7032 0.3362 0.0565 0.0591 0.0677 0.0564 0.0583 0.0657
1NN 0.4997 0.7024 0.3366 0.0592 0.0633 0.0712 0.0571 0.0592 0.0675
3NN 0.4984 0.7016 0.3362 0.0561 0.0590 0.0680 0.0556 0.0572 0.0660

cut points = (4, 5)

True 0.8031 0.1651 0.6651
FI 0.8042 0.1660 0.6668 0.0383 0.0277 0.0616 0.0323 0.0231 0.0536

MSI 0.8037 0.1655 0.6666 0.0415 0.0372 0.0658 0.0380 0.0333 0.0610
IPW 0.8039 0.1651 0.6670 0.0473 0.0503 0.0753 0.0473 0.0493 0.0743
SPE 0.8036 0.1655 0.6665 0.0456 0.0465 0.0721 0.0458 0.0455 0.0704
1NN 0.8032 0.1655 0.6668 0.0487 0.0481 0.0780 0.0472 0.0466 0.0717
3NN 0.8020 0.1651 0.6666 0.0460 0.0450 0.0729 0.0457 0.0451 0.0695

cut points = (4, 7)

True 0.8031 0.3996 0.3349
FI 0.8042 0.3999 0.3358 0.0383 0.0426 0.0595 0.0323 0.0349 0.0501

MSI 0.8037 0.3995 0.3360 0.0415 0.0522 0.0637 0.0380 0.0463 0.0563
IPW 0.8039 0.3996 0.3366 0.0473 0.0658 0.0730 0.0473 0.0645 0.0716
SPE 0.8036 0.3998 0.3362 0.0456 0.0618 0.0677 0.0458 0.0606 0.0657
1NN 0.8032 0.4003 0.3366 0.0487 0.0660 0.0712 0.0472 0.0619 0.0675
3NN 0.8020 0.3998 0.3362 0.0460 0.0617 0.0680 0.0457 0.0600 0.0660

cut points = (5, 7)

True 0.8996 0.2345 0.3349
FI 0.9003 0.2338 0.3358 0.0266 0.0351 0.0595 0.0224 0.0292 0.0501

MSI 0.9004 0.2340 0.3360 0.0308 0.0443 0.0637 0.0285 0.0398 0.0563
IPW 0.9005 0.2345 0.3366 0.0355 0.0555 0.0730 0.0353 0.0550 0.0716
SPE 0.9004 0.2342 0.3362 0.0349 0.0523 0.0677 0.0346 0.0517 0.0657
1NN 0.9000 0.2348 0.3366 0.0373 0.0556 0.0712 0.0361 0.0531 0.0675
3NN 0.8992 0.2346 0.3362 0.0349 0.0520 0.0680 0.0349 0.0515 0.0660
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5.2. Misspecified models

We start from two independent random variables Z1 ∼ N (0, 0.5) and Z2 ∼ N (0, 0.5).
The true conditional disease is generated by a trinomial random vector (D1, D2, D3) such
that

D1 =
{

1 if Z1 + Z2 ≤ h1

0 otherwise
, D2 =

{
1 if h1 < Z1 + Z2 ≤ h2

0 otherwise
,

and

D3 =
{

1 if Z1 + Z2 > h2

0 otherwise
.

Here, h1 and h2 are two thresholds. We choose h1 and h2 to make θ1 = 0.4 and θ3 = 0.25.
The continuous test results T and the covariate A are generated to be related to D through
Z1 and Z2. More precisely,

T = α(Z1 + Z2) + ε1, A = Z1 + Z2 + ε2,

where ε1 and ε2 are two independent normal random variables with mean 0 and the common
variance 0.25. We choose α = 0.5. The verification status V is simulated by the following
logistic model

logit {Pr(V = 1|T,A)} = −1.5− 0.35T − 1.5A.

Under this model, the verification rate is roughly 0.276. For the cut-point, we consider six
pairs (c1, c2), i.e., (−1.0,−0.5), (−1.0, 0.7), (−1.0, 1.3), (−0.5, 0.7), (−0.5, 1.3) and (0.7, 1.3).
Within this set–up, we determine the true values of TCF’s as follows:

TCF1(c1) =
1

Φ(h1)

∫ h1

−∞
Φ
(
c1 − αz√

0.25

)
φ(z)dz,

TCF2(c1, c2) =
1

Φ(h2)− Φ(h1)

∫ h2

h1

[
Φ
(
c2 − αz√

0.25

)
− Φ

(
c1 − αz√

0.25

)]
φ(z)dz,

TCF3(c2) = 1− 1
1− Φ(h2)

∫ ∞

h2

Φ
(
c2 − αz√

0.25

)
φ(z)dz,

where φ(·) denotes the density function of the standard normal random variable.

The aim in this scenario is to compare FI, MSI, IPW, SPE and KNN estimators when
both the estimates for π̂i and ρ̂ki in the parametric approach are inconsistent. Therefore,
ρ̂ki is obtained from a multinomial logistic regression model with D = (D1, D2, D3) as the
response and T as predictor. To estimate πi, we use a generalized linear model for V given T
and A2/3 with logit link. Clearly, the two fitted models are misspecified. The KNN estimators
are obtained by using K = 1 and K = 3 and the Euclidean distance. Again, we use K̄ = 2 in
the KNN procedure to estimate standard deviations of KNN estimators. As a large sample
size is required to guarantee that FI, MSI, IPW, SPE and KNN estimators reach a substantial
stability, we set n = 1000. For KNN estimators, results based on smaller sample sizes are
reported in Section S4, Supplementary Material.

Table 4 presents Monte Carlo means and standard deviations (across 5000 replications)
for the estimators of the true class fractions, TCF1, TCF2 and TCF3. The table also gives the
means of the estimated standard deviations (of the estimators), based on the asymptotic theory.
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Table 4: Monte Carlo means, Monte Carlo standard deviations and esti-
mated standard deviations of the estimators for the true class
fractions, when both models for ρk(t, a) and π(t, a) are mis-
specified and the sample size n = 1000. “True” denotes the
true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut points = (−1.0,−0.5)

True 0.1812 0.1070 0.9817
FI 0.1290 0.0588 0.9888 0.0153 0.0133 0.0118 0.0170 0.0126 0.0423

MSI 0.1299 0.0592 0.9895 0.0154 0.0153 0.0131 0.0171 0.0144 0.0427
IPW 0.1231 0.0576 0.9889 0.0178 0.0211 0.0208 0.0174 0.0201 0.2878
SPE 0.1407 0.0649 0.9877 0.0173 0.0216 0.0231 0.0171 0.0207 0.0125
1NN 0.1809 0.1036 0.9817 0.0224 0.0304 0.0255 0.0210 0.0257 0.0180
3NN 0.1795 0.0991 0.9814 0.0214 0.0258 0.0197 0.0207 0.0240 0.0190

cut points = (−1.0, 0.7)

True 0.1812 0.8609 0.4469
FI 0.1290 0.7399 0.5850 0.0153 0.0447 0.1002 0.0170 0.0403 0.0919

MSI 0.1299 0.7423 0.5841 0.0154 0.0453 0.1008 0.0171 0.0408 0.0926
IPW 0.1231 0.7690 0.5004 0.0178 0.0902 0.2049 0.0174 0.0824 0.1844
SPE 0.1407 0.7635 0.5350 0.0173 0.0702 0.2682 0.0171 0.0646 0.2171
1NN 0.1809 0.8452 0.4406 0.0224 0.0622 0.1114 0.0210 0.0503 0.0895
3NN 0.1795 0.8285 0.4339 0.0214 0.0521 0.0882 0.0207 0.0479 0.0929

cut points = (−1.0, 1.3)

True 0.1812 0.9732 0.1171
FI 0.1290 0.9499 0.1900 0.0153 0.0179 0.0550 0.0170 0.0203 0.0440

MSI 0.1299 0.9516 0.1902 0.0154 0.0184 0.0552 0.0171 0.0206 0.0442
IPW 0.1231 0.9645 0.1294 0.0178 0.0519 0.1795 0.0174 0.0268 0.0898
SPE 0.1407 0.9567 0.1760 0.0173 0.0425 0.3383 0.0171 0.0311 0.2127
1NN 0.1809 0.9656 0.1124 0.0224 0.0218 0.0448 0.0210 0.0272 0.0544
3NN 0.1795 0.9604 0.1086 0.0214 0.0172 0.0338 0.0207 0.0262 0.0567

cut points = (−0.5, 0.7)

True 0.4796 0.7539 0.4469
FI 0.3715 0.6811 0.5850 0.0270 0.0400 0.1002 0.0244 0.0353 0.0919

MSI 0.3723 0.6831 0.5841 0.0271 0.0409 0.1008 0.0246 0.0361 0.0926
IPW 0.3547 0.7114 0.5004 0.0325 0.0883 0.2049 0.0321 0.0815 0.1844
SPE 0.3949 0.6986 0.5350 0.0318 0.0687 0.2682 0.0312 0.0637 0.2171
1NN 0.4783 0.7416 0.4406 0.0361 0.0610 0.1114 0.0310 0.0526 0.0895
3NN 0.4756 0.7294 0.4339 0.0341 0.0499 0.0882 0.0303 0.0500 0.0929

cut points = (−0.5, 1.3)

True 0.4796 0.8661 0.1171
FI 0.3715 0.8910 0.1900 0.0270 0.0202 0.0550 0.0244 0.0218 0.0440

MSI 0.3723 0.8924 0.1902 0.0271 0.0211 0.0552 0.0246 0.0226 0.0442
IPW 0.3547 0.9068 0.1294 0.0325 0.0535 0.1795 0.0321 0.0384 0.0898
SPE 0.3949 0.8918 0.1760 0.0318 0.0451 0.3383 0.0312 0.0368 0.2127
1NN 0.4783 0.8620 0.1124 0.0361 0.0349 0.0448 0.0310 0.0373 0.0544
3NN 0.4756 0.8613 0.1086 0.0341 0.0285 0.0338 0.0303 0.0355 0.0567

cut points = (0.7, 1.3)

True 0.9836 0.1122 0.1171
FI 0.9618 0.2099 0.1900 0.0122 0.0317 0.0550 0.0114 0.0263 0.0440

MSI 0.9613 0.2093 0.1902 0.0125 0.0320 0.0552 0.0116 0.0265 0.0442
IPW 0.9548 0.1955 0.1294 0.0339 0.0831 0.1795 0.0278 0.0764 0.0898
SPE 0.9582 0.1932 0.1760 0.0332 0.0618 0.3383 0.0290 0.0577 0.2127
1NN 0.9821 0.1204 0.1124 0.0144 0.0494 0.0448 0.0109 0.0449 0.0544
3NN 0.9804 0.1319 0.1086 0.0138 0.0404 0.0338 0.0108 0.0429 0.0567
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The table clearly shows limitations of the (partially) parametric approaches in case of mis-
specified models for Pr(Dk = 1|T,A) and Pr(V = 1|T,A). More precisely, in term of bias,
the FI, MSI, IPW and SPE approaches perform almost always poorly, with high distortion
in almost all cases. As we mentioned in Section 2, the SPE estimators could fall outside
the interval (0, 1). In our simulations, in the worst case, the estimator T̂CF3,SPE(−1.0,−0.5)
gives rise to 20% of the values greater than 1. Moreover, the Monte Carlo standard deviations
shown in the table indicate that the SPE approach might yield unstable estimates. Finally,
the misspecification also has a clear effect on the estimated standard deviations of the esti-
mators. On the other side, the estimators 1NN and 3NN seem to perform well in terms of
both bias and standard deviation. In fact, KNN estimators yield estimated values that are
near to the true values. In addition, we observe that the estimator 3NN has larger bias than
1NN, but with slightly less variance.

6. AN ILLUSTRATION

We use data on epithelial ovarian cancer (EOC) extracted from the Pre-PLCO Phase
II Dataset from the SPORE/Early Detection Network/Prostate, Lung, Colon and Ovarian
Cancer Ovarian Validation Study. 1

As in [16], we consider the following three classes of EOC, i.e., benign disease, early
stage (I and II) and late stage (III and IV) cancer, and 12 of the 59 available biomarkers, i.e.
CA125, CA153, CA72–4, Kallikrein 6 (KLK6), HE4, Chitinase (YKL40) and immune costim-
ulatory protein–B7H4 (DD–0110), Insulin–like growth factor 2 (IGF2), Soluble mesothelin-
related protein (SMRP), Spondin–2 (DD–P108), Decoy Receptor 3 (DcR3; DD–C248) and
Macrophage inhibitory cytokine 1 (DD–X065). In addition, age of patients is also considered.

After cleaning for missing data, we are left 134 patients with benign disease, 67 early
stage samples and 77 late stage samples. As a preliminary step of our analysis we ranked
the 12 markers according to value of VUS, estimated on the complete data. The observed
ordering, consistent with medical knowledge, led us to select CA125 as the test T to be used
to illustrate our method.

To mimic verification bias, a subset of the complete dataset is constructed using the
test T and a vector A = (A1, A2) of two covariates, namely the marker CA153 (A1) and
age (A2). Reasons for using CA153 as a covariate come from the medical literature that
suggests that the concomitant measurement of CA153 with CA125 could be advantageous in
the pre-operative discrimination of benign and malignant ovarian tumors. In this subset, T
and A are known for all samples (patients), but the true status (benign, early stage or late
stage) is available only for some samples, that we select according to the following mechanism.
We select all samples having a value for T , A1 and A2 above their respective medians, i.e.
0.87, 0.30 and 45; as for the others, we apply the following selection process

Pr(V = 1|T,A) = 0.05 + 0.35I(T > 0.87) + 0.25I(A1 > 0.30) + 0.35I(A2 > 45),

leading to a marginal probability of selection equal to 0.634.
1The study protocol and data are publicly available at the address:

https://edrn.nci.nih.gov/protocols/119-spore-edrn-pre-plco-ovarian-phase-ii-validation .

https://edrn.nci.nih.gov/protocols/119-spore-edrn-pre-plco-ovarian-phase-ii-validation
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Since the test T and the covariates A1, A2 are heterogeneous with respect to their
variances, the Mahalanobis distance is used for KNN estimators. Based on the discussion
in Section 3.4, we use the selection rule (3.7) to find the size K of the neighborhood. This
leads to the choice of K = 1 for our data. In addition, we also employ K = 3 for the sake
of comparison with 1NN result, and produce the estimate of the ROC surface based on full
data (Full estimate), displayed in Figure 1.

Figure 1: Estimated ROC surface for CA125, based on full data.

Figure 2 shows the 1NN and 3NN estimated ROC surfaces for the test T (CA125).

(a) 1NN (b) 3NN

Figure 2: Bias–corrected estimated ROC surfaces for CA125, based on incomplete data.

In this figure, we also give the 95% ellipsoidal confidence regions (green color) for (TCF1,

TCF2,TCF3) at cut points (−0.56, 2.31). These regions are built using the asymptotic nor-
mality of the estimators. Compared with the Full estimate, KNN bias-corrected method
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proposed in the paper appears to well behave, yielding reasonable estimates of the ROC sur-
face with incomplete data. A closer inspection to the behavior at some chosen points can be
taken by looking at Table 5.

Table 5: Comparison between Full and KNN estimates of the true class
fractions for CA125, for some values of c1 and c2.

Full 1NN 3NN

(c1, c2) TCF1 TCF2 TCF3 TCF1 TCF2 TCF3 TCF1 TCF2 TCF3

(0, 0.5) 0.500 0.104 0.922 0.516 0.171 0.938 0.497 0.170 0.933
(0, 1) 0.500 0.254 0.883 0.516 0.271 0.838 0.497 0.275 0.858

(0, 2.6) 0.500 0.567 0.688 0.516 0.557 0.663 0.497 0.550 0.667
(0, 3) 0.500 0.612 0.623 0.516 0.614 0.612 0.497 0.605 0.617
(0, 4) 0.500 0.731 0.325 0.516 0.714 0.312 0.497 0.710 0.317

(0.4, 0.5) 0.694 0.030 0.922 0.688 0.043 0.938 0.670 0.040 0.933
(0.4, 1) 0.694 0.179 0.883 0.688 0.143 0.838 0.670 0.145 0.858

(0.4, 2.6) 0.694 0.493 0.688 0.688 0.429 0.663 0.670 0.420 0.667
(0.4, 3) 0.694 0.537 0.623 0.688 0.486 0.612 0.670 0.475 0.617
(0.4, 4) 0.694 0.657 0.325 0.688 0.586 0.312 0.670 0.580 0.317

(1, 2.6) 0.813 0.313 0.688 0.789 0.286 0.663 0.787 0.275 0.667
(1, 3) 0.813 0.358 0.623 0.789 0.343 0.612 0.787 0.330 0.617
(1, 4) 0.813 0.478 0.325 0.789 0.443 0.312 0.787 0.435 0.317

(2, 2.6) 0.955 0.149 0.688 0.945 0.143 0.663 0.942 0.130 0.667
(2, 3) 0.955 0.194 0.623 0.945 0.200 0.612 0.942 0.185 0.617
(2, 4) 0.955 0.313 0.325 0.945 0.300 0.312 0.942 0.290 0.317

(3.5, 4) 0.993 0.045 0.325 0.992 0.043 0.312 0.990 0.045 0.317

7. CONCLUSIONS

A general suitable strategy for reducing the effects of model misspecification in sta-
tistical inference is to resort on fully nonparametric methods. This paper proposes a non-
parametric estimator of the ROC surface of a continuous diagnostic test. The estimator is
based on nearest-neighbor imputation and works under MAR assumption. It represents an
alternative to (partially) parametric estimators discussed in [16]. Our simulation results and
the presented illustrative example show usefulness of the proposal.

Generally speaking, performances of our estimator depend on various intrinsic factors,
and on some user-defined choices. Among intrinsic factors, we mention the unknown values
of parameters TCF1, TCF2 and TCF3 to be estimated, the rate of verified units in the
sample at hand, and the nature of the unknown processes generating the observations. In
particular, extreme values of the true class fractions, i.e. values close to 0 or 1, are difficult
to estimate in an accurate way, especially when sample data are characterized by a low
verification rate, which limits the amount of information available. On the basis of discussions
in Section 3.3 (and in the last part of this section) and of simulation results in Section 5 (and
in Supplementary Material), we offer some recommendations for tackling the user-defined
choices. More precisely, we recommend: (a) to use the Euclidean distance, as the first choice,
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and the Mahalanobis distance in case of heterogeneity among variables; (b) to keep small,
from 1 to 3, say, the number of neighbors K. Our simulation results show satisfactory
performances of the KNN estimator of the ROC surface when about 70 verified observations
are present in the sample.

As in [1], a simple extension of our estimator, that could be used when categorical
auxiliary variables are also available, is possible. Without loss of generality, we suppose that
a single factor C, with m levels, is observed together with T and A. We also assume that
C may be associated with both D and V . In this case, the sample can be divided into m

strata, i.e. m groups of units sharing the same level of C. Then, for example, if the MAR
assumption and first-order differentiability of the functions ρk(t, a) and π(t, a) hold in each
stratum, a consistent and asymptotically normally distributed estimator of TCF1 is

T̂CF
S

1,KNN(c1) =
1
n

m∑
j=1

njT̂CF
cond

1j,KNN(c1),

where nj denotes the size of the j-th stratum and the quantity T̂CF
cond

1j,KNN(c1) denotes the
KNN estimator of the conditional TCF1, i.e., the KNN estimator in (3.1) obtained from the
patients in the j-th stratum. Of course, we must assume that, for every j, ratios nj/n have
finite and nonzero limits as n goes to infinity.

In our approach, the KNN method is used to estimate the probabilities ρk(t, a) for non–
verified subjects. A referee pointed out that KNN estimators might suffer from boundary
effects, i.e., increases in bias when estimates are computed near the boundary of the support
of the covariates. Indeed, near the boundaries, any smoothing method is less accurate, as
fewer observations can be averaged, so that bias of estimators can be affected. In contrast to
other nonparametric regression methods, however, KNN estimators always involve the same
number of observations. Boundary effects, therefore, act on neighborhoods’ sizes more than
on the number of observations involved in the local fitting. For this reason, a prominent source
of bias of KNN estimators is the shape at the boundary of the functions to be estimated.
Steeper functions are more likely associated to a larger bias, an aspect pointing to small
values of K as good choices to limit boundary effects. Moreover, it is worth noting that in
the domain of our interest, i.e., evaluation of diagnostic tests, is hard to deal with test and
covariate values close to the boundary of their support. More likely, one faces sparsity of data
in some regions of the features space and, therefore, one has to deal with situations in which,
for a fixed sample size, information brought by data on those regions is structurally low. This
aspect also impacts on the neighborhoods’ sizes, and probably amounts to a primary source
of bias in our application contest. This remark is supported by results of some simulations
that we carried out to evaluate possible bias due to boundary effects and/or sparsity of data
(see Section S5, Supplementary Material). Overall, simulation results seem to show that the
bias, when present, is driven more by sparsity of data issues than by boundary effects and
that KNN estimators have their poorest performances on largest values of K, regardless of
the position of points in the domain.
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