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Abstract:

• In this article, we describe simultaneous inferential methods in detecting differentially expressed
gene isoforms based on the Poisson generalized linear models. We derive the joint asymptotic
distribution of pivotal quantities. The sample size of RNA sequencing data is often small in practice.
Using multiple comparison procedures based on large-sample approximation becomes problematic.
The parametric bootstrap method based on pivotal quantities is outlined as a robust alternative.
Moreover, we observe the validity of robustness of the bootstrap method when mild overdispersion
presents in RNA-sequencing data. We demonstrate the validity of the proposed method in detecting
differentially expressed isoforms through Monte Carlo simulation. It shows the proposed method
controls the family-wise error rate for large-scale inference. Even though the proposed method can
be extended to many experimental designs, we focus on factorial designs in this article.
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1. INTRODUCTION

Studies of Gene isoform expression have not only been concentrated on detecting dif-
ferentially expressed genes with known gene bank ID but also their isoforms due to the de-
velopment of RNA sequencing technology. RNA sequencing technology, also known as Next
Generation Sequencing (NGS), counts how many copies of nucleotide sequence for hundreds
to thousands of gene isoforms.

To detect which genes are differentially expressed among hundreds even thousands
of genes, researchers often conduct large-scale multiple hypotheses tests simultaneously, see
Dudoit et al. [3]. One of the major concerns of gene expression analysis is to control the family-
wise error rate (FWER). When the multiplicity is overlooked, researchers may claim dozens
even hundreds of genes which are differentially expressed but in fact, they are false positives.
Concerted efforts have been devoted to controlling FWER for microarray gene expression
analysis. Dudoit et al. [4] applied Westfall and Young step-down method (Westfall and
Young, [13]) based on two-sample Welch’s t-tests to detect differentially expressed genes in
microarray experiments. Alternatively, simultaneous confidence intervals based on the linear
models of Kerr et al. [7] are constructed, see Hsu et al. [6]. Li and Mansouri [8] proposed
simultaneous rank tests to search differentially expressed genes when microarray data violate
normality assumption and contain a large number of outliers.

Auer and Doerge [1] proposed factorial designs for RNA sequencing experiments. To
account for a variety of sources of variations, the resulting observations are fit to the Poisson
generalized linear models, see Auer and Doerge [1]. Under this framework, we propose the
simultaneous testing procedure to detect differentially expressed gene isoforms such that it
controls FWER. Simultaneous test based on large-sample approximation is outlined. The
sample size for RNA sequencing study is often small. As it will be shown in Section 4 that
the large-sample approximation method does not provide a satisfactory solution in terms of
controlling FWER. Monte Carlo simulation of Mansouri and Li [9] shows that percentile-t
bootstrap method based on pivotal quantities provides a viable method in microarray gene
expression analysis. Extension of bootstrap method to RNA sequencing gene expression anal-
ysis is hence appealing. In this article, we propose the simultaneous inferential method based
on pivotal quantities to detect differentially expressed isoforms using parametric bootstrap.
We investigate the performance of the proposed method in controlling the overall error rates
through a simulation study.

2. PROBLEM FORMULATION AND PIVOTAL QUANTITIES

2.1. Experimental design and generalized linear model

To account for different sources of variations in observations from treatment, batch, flow
cell, and lane, we consider factorial designs for the Next Generation Sequencing. In brief,
bar-coded mRNA samples are pooled and assigned to different lanes of a sequencing device
in such a way that there are n biological replicates randomly assigned at each combination
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of treatment, lane, and flow cell. For details, see Auer and Doerge [1]. Since we can assign
an ID to each isoform sequence in RNA sequencing data file, we may use the term “gene”
instead of “isoform” in the following.

For gene l, l = 1, ..., g we let Ylijkm be the the count of readings from the i-th treatment,
the j-th flow-cell, the k-th lane, and the m-th biological replicate, i = 1, ..., a, j = 1, ..., b,
k = 1, ..., c, and m = 1, ..., n. We assume Ylijkm’s are independent random observations and
the expected value E(Ylijkm) = µlijk, for m = 1, ..., n follow a per gene Poisson model with
log-link (Auer and Doerge, [1]) that

(2.1) log(µlijk)− log(cjk) = αl + τli + νlj + ωlk

where αl is the overall gene l effect; τli is the i-th treatment effect on gene l with
∑

i τli = 0;
νlj is the j-th flow cell effect on gene l with

∑
j νlj = 0; ωlk is the k-th lane effect on gene l

with
∑

k ωlk = 0; cjk is a known constant, namely library size, j = 1, ..., b, k = 1, ..., c

to normalize the readings from j-th flow-cell and k-th lane, see Section 6 and Chen et al. [2].
We assume that αl, τli, νlj , ωlk, for l = 1, ..., g, i = 1, ..., a, j = 1, ..., b, and k = 1, ..., c in (2.1)
are fixed effects. Let N = abcn be the total number of readings from each gene.

We let vector

Yl =
[
Yl1111, ..., Yl111n, ..., Ylijk1, ..., Ylijkn, ..., Ylabc1, ..., Ylabcn

]′
be a collection of all readings from gene l and let µl = E(Yl), l = 1, ..., g. It is useful to write
the model in (2.1) in the form of matrix representation that

(2.2) log(µl/cjk) = Xβl

where βl =
[
αl, τl1, ..., τl(a−1), νl1, ..., νl(b−1), ωl1, ..., ωl(c−1)

]′ and X is the corresponding
N × (a + b + c− 2) design matrix.

Since we use per gene generalized linear model, the model for all genes can be written
as

(2.3) 1g ⊗ log(µl/cjk) = 1g ⊗Xβl .

2.2. Pivotal quantities

For gene l, l = 1, ..., g we assume

(2.4) Ylijkm ∼ Poisson(µlijk) , for m = 1, ..., n ,

where

(2.5) µlijk = exp
[
(αl + τli + νlj + ωlk) + log(cjk)

]
with i = 1, ..., a, j = 1, ..., b, k = 1, ..., c, and m = 1, ..., n.

Let β̂l,N be the maximum likelihood estimation of βl, l = 1, ..., g. We apply Newton–
Raphson method using Fisher Scoring to compute the estimation. We may suppress the
notation of the dependence on N and denote the estimation by β̂l.
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Now, we define a q × (a + b + c− 2) comparison matrix C to detect differential gene
expression among treatments. In gene expression studies, researchers often interest in i) all-
pairwise comparisons of gene expression over treatments, or ii) comparing gene expression
for several treatments versus a control, Hsu et al. [6]. We focus on all-pairwise comparisons
in this article and analogous results should hold for multiple comparisons to a control. As an
example of comparison matrix C for all-pairwise comparisons, see (4.1) in Section 4.

Let Wl be N×N diagonal weight matrix whose diagonal elements are given by µl1111, ...,

µl111n, ..., µlijk1, ..., µlijkn, ..., µlabc1, ..., µlabcn in order. The vector containing pivotal quan-
tities is given by

(2.6) T (βl) = Σ−1/2
l

[
C(β̂l − βl)

]
where Σl is a diagonal matrix whose diagonal elements equal to the diagonal elements in
C(X ′WlX)−1C ′, l = 1, ..., g.

In relation to the Poisson generalized linear model in (2.3), (2.4), and (2.5), consider
gene expression by letting

T (β) =
[
T (β1)′, ..., T (βl)′, ..., T (βg)′

]′
.

The joint limiting distribution of T (β) is given by the following Theorem.

Theorem 2.1. Suppose Y1, ...,Yg are independent vectors, for 1
N (X ′WlX) N→∞−→ Wl,

which is positive definite, for l = 1, ..., g, then

(2.7)
√

N T (β) D−→ MVN(1g⊗ 0q, Λ) , as N→∞ ,

where Λ is a gq × gq block diagonal matrix such that the l-th (q×q) diagonal block matrix

Λl = limN→∞NΣ−1/2
l C(X ′WlX)−1C ′Σ−1/2

l , l = 1, ..., g.

Proof of Theorem 2.1 immediately follows equation (5.25) and (S.17) of McCulloch
et al. [10]. Note: since Λl is unknown in practice, we use a consistent estimator Λ̂l =
N Σ̂−1/2

l C(X ′ŴlX)−1C ′Σ̂−1/2
l where Σ̂l is a diagonal matrix whose elements equal to the diag-

onal elements in C(X ′ŴlX)−1C ′, and Ŵl has diagonal elements given by exp{(α̂l + τ̂l1 + ν̂l1 +
ω̂l1)+log(c11)}, ..., exp{(α̂l + τ̂li + ν̂lj + ω̂lk)+log(cjk)}, ..., exp{(α̂l + τ̂la + ν̂lb + ω̂lc)+log(cbc)}
in order, l = 1, ..., g. In the expression, α̂l, τ̂li, ν̂lj , and ω̂lk are maximum likelihood estima-
tion of the parameters, i = 1, ..., a; j = 1, ..., b; k = 1, ..., c. Application of the large-sample
approximation method is not trivial since the multivariate normal distribution in Theorem 2.1
has mean and variance with dimension (gq)× 1 and (gq)× (gq) respectively and the total
number of genes g, in RNA-sequencing experiments, is typically very large. We propose an
Algorithm in Section 4 to reduce the computational burden in RNA-sequencing gene expres-
sion analysis.

A challenge besetting RNA-sequencing gene expression analysis may be the overdisper-
sion among counting data, Auer and Doerge [1] and Wang et al. [11]. To proceed, we let φl

be the dispersion parameter and overdispersion occurs when φl > 1, l = 1, ..., g.

It is suggested in Auer and Doerge [1] that statistics for detecting differential gene
expression should be scaled by the dispersion parameter. Hence, a sequence of pivotal quan-
tities, considering overdispersion, are given by

(2.8) T (βl, φl) = (φlΣl)−1/2
[
C(β̂l − βl)

]
.
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The pivotal quantities in (2.6) can be considered as a special case of (2.8) when φl = 1.
We focus on gene expression analysis for RNA-sequencing data, which presents mild overdis-
persion such that φl is in a neighborhood of 1, and examine the validity of robustness of the
large-sample approximation method through a simulation study in Section 4 in this article.

3. SIMULTANEOUS INFERENCE USING BOOTSTRAP

3.1. Simultaneous inference

In relation to the generalized linear model in (2.3), let the relative gene expression be
τli − τli′ , i 6= i′ = 1, ..., a, l = 1, ..., g. Detecting all-pairwise differential gene expression can
be formulated as testing a sequence of hypotheses that:

(3.1) H0l,ii′ : τli − τli′ = 0 vs. H1l,ii′ : τli − τli′ 6= 0

for i 6= i′ = 1, ..., a, l = 1, ..., g. Hence we conduct q×g tests simultaneously, where q is the
number of rows in comparison matrix C such that Cβl = [τl1− τl2, ..., τl(a−1)− τla]′, see (4.1)
for example.

The resulting test statistics are given by

(3.2) T (β̂l, φ̂l) = (φ̂lΣ̂l)−1/2Cβ̂l

for l = 1, ..., g where the plug-in estimation of φl in Auer and Doerge [1] is given by

(3.3) φ̂l =

 ∑
i,j,k,m

(
Ylijkm− exp

{
(α̂l + τ̂li + ν̂lj + ω̂lk) + log(cjk)

})2

exp
{
(α̂l + τ̂li + ν̂lj + ω̂lk) + log(cjk)

}
/(

N − (a + b + c− 2)
)
.

For gene l, write

T (β̂l, φ̂l) =
[
T12(β̂l, φ̂l), ..., Tii′(β̂l, φ̂l), ..., T(a−1)a(β̂l, φ̂l)

]′
in association to the hypotheses in (3.1) and the test statistics in (3.2). For all-pairwise
comparisons, the total number of comparisons (the total number of elements in T (β̂l, φ̂l))
q =

(
a
2

)
.

Simultaneous level-α tests reject hypothesis H0l,ii′ , i 6= i′ = 1, ..., a, l = 1, ..., g if:

(3.4)
∣∣Tii′(β̂l, φ̂l)

∣∣ > qα

where qα is the upper α-th quantile of the distribution of maximum modulus statistics
max

i6=i′=1,...,a
l=1,...,g

{
|Tii′(β̂l, φ̂l)|

}
.

When the magnitude of differential gene expression is of interest, a (1−α) 100% simul-
taneous confidence interval of τli − τli′ , i 6= i′ = 1, ..., a, l = 1, ..., g is given by

(3.5) c′ii′β̂l ± qα

{
φ̂l c

′
ii′(X

′ŴlX)−1cii′
}1/2

where cii′ is the row vector of C in association to τli − τli′ , i 6= i′ = 1, ..., a for all l = 1, ..., g.
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3.2. Bootstrap based on pivotal quantities

It can be shown that the upper α-th quantile of the multivariate normal distribution
defined in (2.7) is a consistent estimator of qα. RNA sequencing data analysis is often com-
plicated by a large number of unknown parameters but a limited number of observations.
Using the large-sample approximation method indicated by Theorem 2.1 can be problematic
in the estimation of qα as it will be shown in Section 4. We propose the parametric bootstrap
method based on pivotal quantities to approximate quantiles qα in detecting differentially
expressed genes for RNA sequencing data.

For r = 1, ..., B, we define the q×1 vector of pivotal quantities based on the r-th boot-
strap sample by

(3.6) T (r)(β̂l, φ̂l) =
(
φ̂

(r)
l Σ̂(r)

l

)−1/2
C

[
β̂

(r)
l − β̂l

]
, l = 1, ..., g ,

where φ̂
(r)
l , Σ̂(r)

l , and β̂
(r)
l are estimated based on the r-th bootstrap data set. Analogously,

we write
T (r)(β̂l, φ̂l) =

[
T

(r)
12 (β̂l, φ̂l), ..., T

(r)
ii′ (β̂l, φ̂l), ..., T

(r)
(a−1)a(β̂l, φ̂l)

]′
.

We use the following Algorithm to approximate quantiles qα. For each r, r = 1, ..., B,

(i) for each l, l = 1, ..., g generate random variables {Ylijkm} from Poisson
(
exp

{
(α̂l +

τ̂li + ν̂lj + ω̂lk) + log(cjk)
})

, i = 1, ..., a, j = 1, ..., b, k = 1, ..., c, and m = 1, ..., n;

(ii) obtain maximum modulus statistics

T
(r)
M (β̂l, φ̂l) = max

i6=i′=1,...,a

{∣∣T (r)
ii′ (β̂l, φ̂l)

∣∣} , l = 1, ..., g ,

and

T
(r)
M (β̂, φ̂) = max

l=1,...,g

{
T

(r)
M (β̂l, φ̂l)

}
.

Repeat (i) and (ii) B times, and the upper α-th quantile of the sampling distribution
of T

(r)
M (β̂, φ̂) is an approximation of qα.

As it will be shown in Section 4, the bootstrap method provides a viable alternative of
the large-sample approximation method when the overdispersion parameter is in a neighbor-
hood of φl = 1, l = 1, ..., g.

4. SIMULATION STUDY

In this section, we investigate the performance of the proposed method in terms of
controlling the family-wise error rate (FWER) using Monte Carlo simulation.

We assign the following values to the parameters of the model in (2.1). Let

τli = 0, for l = 1, ..., 20, i = 1, 2, 3, 4 (Complete Null) ,

τli = 0, for l = 1, ..., 15, i = 1, 2, 3, 4 (Partial Null) .
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To study the power rates under partial null hypotheses, we let τl1 = −0.02, τl2 = 0.01,
τl3 = 0.01, and τl4 = 0, for l = 16, ..., 20.

For nuisance parameters, we let αl = −3 and

νlj =


0.5 , if j = 1,

−1 , if j = 2,
0.5 , if j = 3 ,

for l = 1, ..., 20. Let

ωlk =



0.25 , if k = 1 ,
−0.5 , if k = 2 ,

0.75 , if k = 3 ,
−1.25 , if k = 4 ,

1.5 , if k = 5 ,
−0.75 , if k = 6 ,

for l = 1, ..., 20.

Assume the library size for each lane and flow cell cjk = 1, 000, 000 for all j = 1, 2, 3
and k = 1, ..., 6.

We may rewrite the model in (2.1) as log(λlijk) = αl + τli +νlj +ωlk, where the sampling
rate λlijk = E(Ylijk/cjk) and cjk is a given constant. The observations Y ′lijkm are generated
from Poisson(µlijk) where µlijk = cjkλlijk, for m = 1, 2. To exam the performance of the
proposed method under mild overdispersion, we add Gaussian noise εlijkm∼N(0, (φl−1)µlijk)
(φl > 1) to the observations that Ylijkm = Y ′lijkm + [εlijkm], i = 1, ..., 4, j = 1, 2, 3, k = 1, ..., 6,
m = 1, 2 for gene l, l = 1, ..., 20 as it is treated in Auer and Doerge [1]. Note that E(Y ′lijkm +
εlijkm) = µlijk and Var(Y ′lijkm + εlijkm) = φlµlijk. We choose φl = 1.1, 1.05, 1.01, and 1.001
respectively and let Ylijkm = Y ′lijkm for φl = 1. In addition, we let the observations equal to
zero if it generates “negative” counts, though the chance of generating “negative” counts is
rare when the value of (φl − 1) is small.

Hence, the vector of parameters βl = [αl, τl1, τl2, τl3, νl1, νl2, ωl1, ..., ωl5]′, l = 1, ..., g.
Let X be the corresponding design matrix for all genes. Consider all-pairwise comparisons
among treatments. Let C be the 6× 11 comparison matrix given by

(4.1) C =



0 1 −1 0 0 ··· 0
0 1 0 −1 0 ··· 0
0 2 1 1 0 ··· 0
0 0 1 −1 0 ··· 0
0 1 2 1 0 ··· 0
0 1 1 2 0 ··· 0

 .

We run simultaneous tests in (3.4) 1, 000 times and compute the empirical overall error
rates. Widely used measures of the overall error rates in gene expression analysis are the
family-wise error rate (FWER) and the false discovery rate (FDR). Let FWER0 be the
probability that at least one true null hypotheses rejected under complete null hypotheses.
Let FWER1 be the probability that at least one true null hypotheses rejected under partial
null hypotheses. The false discovery rate (FDR) is computed as the average proportion of
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wrongly rejected null hypotheses among all rejected hypotheses. FDR is defined as 0 if no
rejection were made. To investigate the power of the simultaneous tests, we compute the
proportional power rate by obtaining the average proportion of genes found differentially
expressed among all misexpressed genes, Dudoit et al. [3].

To evaluate the performance of the large-sample approximation method, we use the fol-
lowing Algorithm to generate quantiles based on the multivariate normal distribution defined
in Theorem 2.1. In specific, for each r, r = 1, ..., B,

(i*) generate random variables T
(r)
l from MVN(0, Λ̂l), for all l = 1, ..., g;

(ii*) obtain maximum modulus statistics T
(r)
Ml

= max{|T (r)
l |}, l = 1, ..., g and T

(r)
M =

max{T (r)
Ml
}.

Repeat (i*) and (ii*) B times, and the upper α-th quantile of the empirical distribution
of T

(r)
M is an approximation of qα based on Theorem 2.1.

The performance of the large-sample approximation method and the bootstrap method
in the simulation study are summarized in Table 1.

Table 1: Error rates of detecting differentially expressed genes/isoforms
— nominal type-1 error rate α = 0.05.

Method φl FWER0 FWER1 FDR Prop. Power

No Adjustment 1.000 0.993 0.970 0.146 —

MVN

1.000† 0.072 0.059 0.003 0.889

1.050 (1.1)‡ 0.084 0.061 0.003 0.861
1.010 0.073 0.045 0.002 0.887
1.001 0.065 0.065 0.003 0.886

Bootstrap Method

1.000 0.052 0.037 0.002 0.878
1.050 (1.1) 0.051 0.035 0.002 0.849
1.010 0.049 0.034 0.002 0.874
1.001 0.050 0.045 0.002 0.872

Notes:

i) Simulation size = 1,000. Bootstrap size B = 200.

ii) FWER0 denotes the family-wise error rate under complete null hypotheses.

iii) FWER1 denotes the family-wise error rate under partial null hypotheses.

iv) MVN denotes the method of large-sample approximation in Section 3.1.

v) “Bootstrap Method” means the parametric bootstrap method in Section 3.2.

vi) † The same value of φl is assigned to all genes.

vii) ‡ The first 15 genes have φl = 1.05 and the last 5 genes have φl = 1.1.

viii) The total computation user time was about 16 hours on a desktop with processor
with the following specifications: Intel(R) Core(TM) i5-7600 CPU @ 3.50GHz,
3504 Mhz and Installed physical memory (RAM): 16.0 GB.

It shows that the bootstrap method based on pivotal quantities controls FWER un-
der both complete and partial null hypotheses. This implies the proposed method controls
FWER strongly, see Dudoit et al. [3]. Without adjustment of multiplicity, it is well known
that the overall error rates often exceed the nominal level, particularly in large-scale tests.
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Simultaneous tests based on large-sample approximation fail to control FWER in the strong
sense in RNA sequencing data analysis. While the overall error rates are controlled at nom-
inal level α = 0.05, in average more than 85% of “real” misexpressed genes are detected as
differentially expressed genes using the bootstrap method in Section 3.2. Note that it is not
useful to address the power rates when the method does not control FWER.

To investigate the performance of the bootstrap method in estimation of quantiles, we
generate 1, 000 samples as described above and obtain the (1−α)-th quantile of the sampling
distribution of pivotal quantities in (2.8). Since the quantiles are generated from a given
underlying distribution of maximum modulus distribution empirically, it can be used as a
benchmark to evaluate the performance of the proposed method. The results are summarized
in Table 2.

Table 2: Quantiles qα of detecting differentially expressed genes/isoforms
— nominal type-1 error rate α = 0.05.

φl Simulation MVN Bootstrap

1.000 3.604 3.519 (0.090) 3.606 (0.094)
1.050 (1.1) 3.617 3.522 (0.086) 3.611 (0.094)
1.010 3.605 3.524 (0.090) 3.609 (0.095)
1.001 3.604 3.516 (0.084) 3.604 (0.097)

Notes:

i) Simulation size = 1,000. Bootstrap size B = 200.

ii) MVN denotes the method of large-sample approximation in Section 3.1 and
the Algorithm in Section 4. The quantile is generated from B = 200 samples.
We repeat the process for 1, 000 times. The mean value of these repeats is in-
cluded outside of the parentheses and standard deviation is tabulated in the
parentheses.

iii) “Bootstrap” means the parametric bootstrap method in Section 3.2. The quantile
is generated from B =200 bootstrap samples. We repeat the process for 1,000 times.
The mean value of these repeats is included outside of the parentheses and stan-
dard deviation is tabulated in the parentheses.

iv) “Simulation” means: we generate observations from the model in (2.1) with the
parameter value assigned in Section 4 and given underlying distributions for
1, 000 times; the upper α-th quantile of maximum modulus statistics based on
pivotal quantiles in (2.8) is tabulated in the table.

v) The total computation user time was about 8 hours on a desktop with processor
with the following specifications: Intel(R) Core(TM) i5-7600 CPU @ 3.50GHz,
3504 Mhz and Installed physical memory (RAM): 16.0 GB.

It shows from Table 2 that the bootstrap quantiles in Section 3.2 are closer to the
simulated quantiles as compared to that generated from MVN. A closer examination sees
the quantiles based on normal theory are generally below the simulated quantiles. Therefore,
the large-sample approximation method provides a liberal estimation of FWER, as evidenced
in Table 1.
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5. CONCLUSION AND FUTURE WORK

In this article, we have proposed the parametric bootstrap method based on pivotal
quantities in detecting differentially expressed genes for RNA-sequencing data. We have for-
mulated the problem using the Poisson generalized linear models. We have derived the joint
limiting distribution of the vector containing pivotal quantities. We have conducted an empir-
ical study to show that the proposed method controls FWER and FDR strongly in detecting
differentially expressed genes. The bootstrap method requires a large computation time,
parallel computation is recommended particularly for large-scale inference. When data “ap-
parently”violate Poisson distributional assumption, we will investigate the methods involving
a large value of overdispersion. To capture the within genes’ variation and between genes’
variation, we will study the resampling methods, such as moving block bootstrap method in
the future work.

6. SOFTWARE

We use the function glm() in R to obtain maximum likelihood estimation of the pa-
rameters in model (2.1). Note that computation of the estimation using glm() in R may
encounter non-convergence. Alternatively, iterative weighted least squares method of Wed-
derburn [12] may be used in the estimation. Our experience in the simulation study (results
not shown) shows that using 20-step iterative weighted least squares method provides satis-
factory approximation of the overall Type-I error rates. We use the function rmvnorm() of
Genz et al. [5] in R to generate multivariate normal random variables. We use the function
calcNormFactors() of Chen et al. [2] to obtain the library size. Software in the form of
R code is available on request from the author (bli@citadel.edu).
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1. INTRODUCTION

When conducting surveys, it is sometimes difficult to make a direct observation on
the variable of interest. This is more so in the case where the research involves a topic
that is a taboo in nature. In surveys on such topics, some of the respondents might give
false responses. To offer a solution to this, a Randomized Response Technique (RRT) was
developed by Warner [7]. The technique allows respondents to provide a response while
maintaining their privacy.

The problem of mean and variance estimation is a topic that has been explored very
well by researchers, although less so the problem of variance estimation. This is particularly
the case in the context of RRT models. This is the main focus of this study where we examine
variance estimation of a sensitive study variable using a highly correlated but non-sensitive
auxiliary variable. According to Collins et al. [1], the auxiliary variables when combined with
the main study variable help to achieve more efficient estimators.

In this paper, three variance estimators have been proposed under RRT using one
auxiliary variable and two scrambling variables. In Section 2, some of the variance estimators
in literature are reviewed. In Section 3, we propose a new class of variance estimators under
RRT and derive their Bias as well as their MSE. We provide a comparison of the proposed
estimators in Section 4. A numerical study is conducted in Section 5 based on real data.
Some concluding remarks are given in Section 6.

2. ESTIMATORS IN LITERATURE

Let a simple random sample of size n be extracted without replacement from a finite
population U = {U1, U2, ..., UN}. Let Y be a sensitive variable of interest and X be a pos-
itively correlated auxiliary variable. Let (xi, yi) be the observed (X,Y ) values for the i-th
population unit Ui. Let (x̄, ȳ) and (X̄, Ȳ ) be the sample and population means, and (s2x, s

2
y)

and (σ2
x, σ

2
y) be the sample and population variances respectively. Let

s2y =
1

n− 1

n∑
i=1

(yi − ȳ)2 , s2x =
1

n− 1

n∑
i=1

(xi − x̄)2 ,

σ2
y =

1
N − 1

N∑
i=1

(Yi − Ȳ )2 , σ2
x =

1
N − 1

N∑
i=1

(Xi − X̄)2 ,

X̄ =
1
N

N∑
i=1

Xi , Ȳ =
1
N

N∑
i=1

Yi , x̄ =
1
N

N∑
i=1

xi , ȳ =
1
N

N∑
i=1

yi .

An unbiased estimator for the finite population variance is the sample variance given
by:

t0 = s2y .
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Up to the first degree of approximation, its variance is given by

V (t0) = θσ4
y(λ40 − 1) ,

where

λrs =
µrs

µ
r
2
20 µ

s
2
02

, µrs =
1

N − 1

N∑
i=1

(Yi − Ȳ )r (Xi − X̄)s , and θ =
1
n

.

Also ‘r’ and ‘s’ are non-negative integers, µ20 and µ02 are the second order moments and λrs

is the moment ratio.

Isaki [4] proposed the following ratio estimator of population variance using auxiliary
information:

t1 = s2y

(
σ2

x

s2x

)
.

The expressions for Bias and Mean Square Error (MSE) of the estimator, up to the
first order of approximation, are given by

B(t1) = θσ2
y (λ04 − 1) [1− f04]

and
MSE(t1) = θσ4

y (λ40 − 1) + (λ04 − 1) [1− 2f04] ,

where

f04 =
(λ22 − 1)
(λ04 − 1)

.

The regression estimator of population variance was also proposed by Isaki [4] as

t2 = s2y + α(σ2
x − s2x) , where α =

(
σ2

y

σ2
x

)
f04 .

The MSE of t2 is given by

MSE(t2) = θσ4
y (λ40 − 1) (1− p2) , where p = (λ22 − 1)/

√
(λ40 − 1) (λ04 − 1) .

3. PROPOSED ESTIMATORS

Since Y is sensitive in nature, and hence subject to social desirability bias, we observe
only a scrambled version of Y as given by Diana and Perri [2]. This is given by Z = TY + S,
where T and S are scrambling variables. We also assume that Y , T and S are mutually
uncorrelated. We also assume E(S) = 0 and E(T ) = 1.

To obtain the Bias and MSE expressions for the proposed estimators, we define the
following error terms:

s2z = σ2
z(1 + δz) and z̄ = Z̄(1 + ez) ,
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where

δz =
s2z − σ2

z

σ2
z

and ez =
z̄ − Z̄

Z̄

such that

E(δz) = E(ez) = 0, E(δ2z) = θ(λ40 − 1) , and E(e2z) = θC2
z ; and E(δzez) = θλ30Cz

where

C2
z = C2

y σ
2
T +

(
σ2

S

Ȳ 2

)
.

We now propose several population variance estimators under RRT.

3.1. A basic variance estimator under RRT

Based on the RRT model Z = TY + S, we have σ2
z as

σ2
z = σ2

TY +S = σ2
TY + σ2

S

=
(
σ2

T ∗ σ2
Y + σ2

T ∗
(
E[Y ]

)2 +
(
E[T ]

)2 ∗ σ2
Y

)
+ σ2

S

=
(
σ2

T ∗ σ2
Y + σ2

T ∗ (µY )2 + σ2
Y

)
+ σ2

S

= σ2
T ∗ σ2

Y + σ2
T ∗ µ2

Y + σ2
Y + σ2

S .

Rearranging, we get

σ2
y =

σ2
z − σ2

S − (σ2
T ∗ Z̄2)

σ2
T + 1

.

Estimating σ2
z by its unbiased estimator s2z, we have our first proposed estimator given by

(3.1) t0(R) =
s2z − σ2

S − σ2
T ∗ z̄2

σ2
T + 1

.

Rewriting (3.1), we have

t0(R) =
σ2

z(1 + δz)− σ2
S − σ2

T

[
Z̄(1 + ez)

]2

σ2
T + 1

.

Subtracting σ2
y on both sides, we obtain

(3.2)
(
t0(R)− σ2

y

)
=

σ2
z δz − 2σ2

T Z̄
2ez − σ2

T Z̄
2e2z

σ2
T + 1

.

By taking the expectation on both sides of (3.2), the Bias of t0(R) is obtained as

Bias
(
t0(R)

)
= −θ

(
σ2

T Z̄
2

σ2
T + 1

)
C2

z .

By squaring both sides of (3.2) and using the first order approximation, the MSE is obtained
as

(3.3) MSE
(
t0(R)

)
= θ

(
1

(σ2
T + 1)2

) (
σ4

z(λ40 − 1) + 4σ4
T Z̄

4C2
z − 4σ2

z σ
2
T Z̄

2λ30Cz

)
.
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3.2. The ratio estimator under RRT

Isaki [4] proposed the classical ratio estimator t1 = s2y

(
σ2

x
s2
x

)
. The RRT version of t1 is

(3.4) t1(R) =
s2z − σ2

S − σ2
T ∗ z̄2

σ2
T + 1

∗
(
σ2

x

s2x

)
.

To obtain the Bias and MSE, we define the following error terms:

s2x = σ2
x(1 + δx) , where δx =

s2x − σ2
x

σ2
x

,

such that

E(δx) = 0 , E(δ2x) = θ(λ04 − 1) and E(δxez) = θλ12Cz .

Rewriting (3.4), we have

t1(R) =
σ2

z − σ2
S − σ2

T Z̄
2

σ2
T + 1

+
2σ2

T Z̄
2ez δx − σ2

z δz δx − σ2
T Z̄

2e2z
σ2

T + 1
.

Subtracting σ2
y and taking the expectation on both sides, the Bias of t1(R) is obtained as

(3.5) Bias
(
t1(R)

)
= θ

(
2σ2

T Z̄
2λ12Cz − σ2

z(λ22 − 1)− σ2
T Z̄

2C2
z

σ2
T + 1

)
.

For MSE, we have

t1(R) =
σ2

z + σ2
z δz − σ2

S − σ2
T Z̄

2 − 2σ2
T Z̄

2ez − σ2
T Z̄

2e2z
σ2

T + 1
−σ2

zδx − σ2
zδzδx + σ2

S δx + σ2
T Z̄

2δx + 2σ2
T Z̄

2ezδx + σ2
T Z̄

2e2zδx
σ2

T + 1
.

Simplifying and ignoring second and higher order terms,

t1(R) =
σ2

z − σ2
SW − σ2

T Z̄
2

σ2
T + 1

+
σ2

zδz − 2σ2
T Z̄

2ez − σ2
zδx + σ2

S δx + σ2
T Z̄

2δx
σ2

T + 1
.

Squaring and taking the expectation on both sides, we have

MSE
(
t1(R)

)
= E

(
σ2

zδz
σ2

T + 1
−

2σ2
T Z̄

2ez
σ2

T + 1
− σ2

yδx

)2

.

After some simplifications, the MSE of t1(R) is obtained as

MSE
(
t1(R)

)
= θ

1
(σ2

T +1)2

[
σ4

z(λ40−1)− 2σ2
zσ

2
y(λ22−1)(σ2

T +1) + σ4
y(λ04−1)(σ2

T +1)2

+ 4Cz

(
σ4

T Z̄
4Cz − σ2

zσ
2
T Z̄

2λ30 + σ2
T σ

2
yZ̄

2λ12(σ2
T + 1)

)]
.

(3.6)
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3.3. A generalized variance estimator under RRT

We now propose the following class of generalized population variance estimators:

(3.7) tp(R) =

[((
s2z−σ2

S−σ2
T ∗ z̄2

σ2
T + 1

)
+ (σ2

x−s2x)
)
∗
(

(ασ2
x + β)

ω(αs2x+β) + (1−ω)(ασ2
x+β)

)g
]

,

where g, α, β and ω are suitably chosen constants. We would choose g = 1 for positive
correlation between Y and X, and −1 for negative correlation. α and β are known parameters
associated with the auxiliary variable and ω is obtained from optimality consideration.

Using Taylor series approximation, we obtain the bias of the generalized estimator tp(R)
as

(3.8) Bias
(
tp(R)

)
=

−θσ2
T Z̄

2

σ2
T + 1

C2
z − (gωψi) θ

(
σ2

z(λ22−1)− 2σ2
T Z̄

2λ12Cz

σ2
T + 1

− σ2
x(λ04−1)

)
,

where ψi = ασ2
x

ασ2
x+β

.

The mean square error is given by

MSE
(
tp(R)

)
= θ

[(
σ4

z(λ40 − 1) + 4σ4
T Z̄

4C2
z − 4σ2

zσ
2
T Z̄

2λ30Cz

(σ2
T + 1)2

)
+

(
(σ2

x +Qσ2
y)

2 (λ04 − 1)
)

− 2
(
σ2

z(λ22 − 1)− 2σ2
T Z̄

2λ12Cz

σ2
T + 1

)
(σ2

x +Qσ2
y)

]
,

(3.9)

where Q = gωψi.

Differentiate (3.9) w.r.t Q:

2σ2
y(σ

2
x +Qσ2

y) (λ04 − 1) = 2σ2
y

(
σ2

z(λ22 − 1)− 2σ2
T Z̄

2λ12Cz

σ2
T + 1

)
,

Qopt =
1
σ2

y

[(
σ2

z(λ22 − 1)− 2σ2
T Z̄

2λ12Cz

σ2
T + 1

)(
1

(λ04 − 1)

)
− σ2

x

]
.

The MSE at this optimum value is given by

MSE
(
tp(R)

)
opt

=
θ

(σ2
T + 1)2

[(
σ4

z(λ40 − 1) + 4σ4
T Z̄

4C2
z − 4σ2

zσ
2
T Z̄

2λ30Cz

)

− 1
(λ04 − 1)

(
σ2

z(λ22 − 1)− 2σ2
T Z̄

2λ12Cz

)2
]

.

(3.10)
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4. SIMULATION STUDY

In this section, we use a simulation study to evaluate how efficient the generalized esti-
mator tp(R) is as compared to both the basic estimator t0(R) and the ratio estimator t1(R).
We first consider samples of size N = 1000 each from three bivariate normal populations
determined by the following means and covariance matrices:

Population I: µ =
[
6
4

]
, Σ =

[
4 1.6

1.6 1

]
, ρyx = 0.80 ;

Population II: µ =
[
6
4

]
, Σ =

[
4 2.25

2.25 2

]
, ρyx = 0.80 ;

Population III: µ =
[
6
4

]
, Σ =

[
4 1.2

1.2 1

]
, ρyx = 0.60 .

(4.1)

These 1000 observations are treated as our finite populations. For the 1000 values
generated from these distributions, the means, variances, covariances, and correlations are
given by

Population I: µx = 6.029 , µy = 4.007 , σ2
x = 3.8862 , σ2

y = 0.9450 ,
σxy = 1.5284 , ρyx = 0.7975389 ;

Population II: µx = 6.021 , µy = 3.9836 , σ2
x = 3.9467 , σ2

y = 1.9998 ,
σxy = 2.2382 , ρyx = 0.7967094 ;

Population III: µx = 5.962 , µy = 3.971 , σ2
x = 4.1149 , σ2

y = 0.9560 ,
σxy = 1.2442 , ρyx = 0.5927674 .

For each population, we consider samples of sizes 200 and 500. The scrambling variables
S and T are assumed to have normal distributions with E(S) = 0 and E(T ) = 1. We have
used different values for Var(S) and Var(T ).

Before presenting the simulation results, we would like to note that in most studies,
researchers have compared estimators only with respect to the Percent Relative Efficiency
which is defined as

PRE =
MSE

(
t0(R)

)
MSE

(
ti(R)

) × 100 , where i = 0, 1 and p .

However, for estimators based on RRT methodology, one needs to also consider the Privacy
Protection offered by the RRT model. With that in mind, Gupta et al. [3] introduced a
unified measure of estimator quality (δ) given by

δ =
Theoretical MSE

∆DP
, where ∆DP = E(Z − Y )2 = σ2

T (µ2
y + σ2

y) + σ2
s

is the privacy level for the model Z = TY + S, as per Yan et al. [8]. A smaller value of (δ)
is to be preferred. Khalil et al. [6] used this unified measure to compare the performance of
various mean estimators under RRT.
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Table 1: Theoretical (bold) and empirical MSEs and PREs of the estimators
for Population I with σ2

T = 0.5, σ2
y = 1 and ρyx = 0.80.

Var(S) n Estimator Mean(bσ2
y) MSE PRE δ

0.2

200

t0(R) 1.018416
0.4593715 100

0.052801
0.4629093 100

t1(R) 0.9873038
0.4166811 110.2453

0.04789438
0.4137594 111.8788

tp(R) 0.9708478
0.3685766 124.6339

0.04236513
0.3689481 125.4673

500

t0(R) 1.021572
0.1995375 100

0.02293534
0.2100302 100

t1(R) 0.9846944
0.1430092 139.5277

0.01643784
0.146612 143.2558

tp(R) 0.9999683
0.0946721 210.7669

0.01088185
0.0957580 219.3343

0.5

200

t0(R) 1.034554
0.5512713 100

0.06125237
0.5593184 100

t1(R) 0.9986482
0.4943552 111.5131

0.05492836
0.5045654 110.8515

tp(R) 0.9854447
0.4320352 127.5987

0.04800391
0.4187965 133.5537

500

t0(R) 1.023019
0.2022691 100

0.02247434
0.1991505 100

t1(R) 0.9816713
0.1866725 108.3550

0.02074139
0.182478 109.1367

tp(R) 1.00232
0.1686173 119.9575

0.01873526
0.1685935 118.1246

1

200

t0(R) 1.032376
0.6313128 100

0.06645398
0.6288249 100

t1(R) 0.9967019
0.5716984 110.4275

0.06017878
0.5582806 112.6359

tp(R) 0.9682892
0.494106 127.7686

0.05201116
0.5058227 124.3172

500

t0(R) 1.040029
0.2705931 100

0.02848348
0.2652877 100

t1(R) 0.9968461
0.212635 127.2570

0.02238263
0.2254085 117.6919

tp(R) 0.9791635
0.1965888 137.6442

0.02069356
0.204013 130.0347

Tables 1, 2 and 3 show the values of the theoretical MSEs and empirical MSEs. The
values from the table confirm that the basic estimator t0(R) and the ratio estimator t1(R)
are less efficient as compared to the generalized estimator tp(R). Also, while comparing the
generalized estimator tp(R) with the ratio estimator t1(R) and basic estimator t0(R), we note
that as the variance of T or variance of S increase, the MSEs increase. This is expected since
adding more noise makes the MSE increase. However, if we look at the unified measure (δ),
we find that it does not always increase as variance of T or variance of S increase, or at
least not to the same extent as does the MSE. For example, for the generalized estimator
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tp(R), theoretical MSE for Population II, with sample size 500, is 0.09227229 for σ2
T = 0.2

but increases to 0.3790013 for σ2
T = 1. In contrast, the (δ) value decreases from 0.023659

to 0.020499. Admittedly, this is not a big drop in (δ) value but at least it is not going up.
The important point here is that the 310% increase in MSE (from 0.09227229 to 0.3790013)
is more than offset by the significant increase in privacy level in using σ2

T = 1 as compared
to σ2

T = 0.2. In another example, for the generalized estimator tp(R), theoretical MSE for
Population III, with sample size 500, is 0.1877209 for σ2

T = 0.5 but increases to 0.3634541 for
σ2

T = 1. In contrast, the (δ) value decreases from 0.021453 to 0.021069.

Table 2: Theoretical (bold) and empirical MSEs and PREs of the estimators
for Population II with σ2

s = 0.5, σ2
y = 2 and ρyx = 0.80.

Var(T) n Estimator Mean(bσ2
y) MSE PRE δ

0.2

200

t0(R) 1.961504
0.3353948 100

0.085998
0.3330506 100

t1(R) 1.938223
0.3086746 108.6564

0.079147
0.310405 107.2955

tp(R) 1.97547
0.2604031 128.7983

0.066770
0.2696629 123.5062

500

t0(R) 1.984015
0.1299197 100

0.033312
0.1273284 100

t1(R) 1.999045
0.1057879 122.8114

0.027125
0.1067183 119.3126

tp(R) 1.985764
0.09227229 140.8003

0.023659
0.09218931 138.1162

0.5

200

t0(R) 1.997112
0.8036853 100

0.084651
0.7958328 100

t1(R) 1.988183
0.7195406 111.6942

0.075788
0.694571 114.5790

tp(R) 1.98627
0.624445 128.7039

0.065772
0.6421061 123.9410

500

t0(R) 1.991561
0.2858802 100

0.030111
0.2751116 100

t1(R) 1.982515
0.2471334 115.6784

0.026030
0.232594 118.2797

tp(R) 1.968053
0.1816638 157.3677

0.019134
0.1885275 145.9265

1

200

t0(R) 1.981875
1.170947 100

0.063335
1.167372 100

t1(R) 2.002721
1.014171 115.4585

0.054855
0.5582806 112.8290

tp(R) 1.988997
0.955732 122.5183

0.051694
0.969496 120.4101

500

t0(R) 1.979819
0.5567679 100

0.030114
0.531363 100

t1(R) 1.998328
0.4837988 115.0825

0.026168
0.4790216 110.9267

tp(R) 1.971607
0.3790013 146.9039

0.020499
0.3843118 138.2635
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Table 3: Theoretical (bold) and empirical MSEs and PREs of the estimators
for Population III with σ2

s = 0.25, σ2
y = 1 and ρyx = 0.60.

Var(T) n Estimator Mean(bσ2
y) MSE PRE δ

0.2

200

t0(R) 1.021512
0.2249759 100

0.061637
0.223441 100

t1(R) 1.037037
0.1962207 114.6545

0.053759
0.1958733 114.0742

tp(R) 0.979563
0.1733191 129.8044

0.047484
0.1752187 127.5212

500

t0(R) 0.99568
0.09192312 100

0.025184
0.09384772 100

t1(R) 1.035195
0.08558669 107.4035

0.023448
0.08575554 109.4363

tp(R) 0.995747
0.06216159 147.8776

0.017030
0.06279393 149.4534

0.5

200

t0(R) 0.9830188
0.6333537 100

0.072383
0.6304459 100

t1(R) 1.039288
0.5491218 115.3393

0.062756
0.5699384 110.6164

tp(R) 0.971143
0.4907475 129.0589

0.056085
0.5044131 124.9860

500

t0(R) 0.9941702
0.2469968 100

0.028228
0.2442127 100

t1(R) 0.9846135
0.2070803 119.2758

0.023666
0.2115374 115.4465

tp(R) 0.9992722
0.1877209 131.5766

0.021453
0.1827657 133.6206

1

200

t0(R) 0.9571123
1.166476 100

0.067621
1.148805 100

t1(R) 0.9954355
1.092394 106.7816

0.063327
1.087534 105.6339

tp(R) 0.9794743
0.9463649 123.2585

0.054861
0.9256485 124.1081

500

t0(R) 1.009706
0.5152219 100

0.029867
0.4923866 100

t1(R) 0.9918212
0.4304643 119.6898

0.024954
0.458314 107.4343

tp(R) 0.9856029
0.3634541 141.7570

0.021069
0.3569531 137.9415

5. APPLICATION

In this section, we use a real data to show the performance of the generalized estimator
tp(R) in comparison to other estimators. For this data which can be obtained from James
et al. [5], the population size is (N = 777). The study variable Y is the reported percent of
alumni who donate. The auxiliary variable X is the student to faculty ratio. The scrambling
variable S is taken to be a normal random variable with mean equal to zero and variance
equal to 0.5. The scrambling variable T is taken to be a normal random variable with mean
equal to 1 and variance equal to 0.2, 0.5, and 1.
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Population Characteristics are given by

N = 777, n = 200, µX = 14.08, µY = 22.74 ,

σX = 3.95, σY = 12.39, σXY = 19.7641, ρyx = 0.40 .

From the Table 4, it can be observed that the generalized estimator tp(R) performs
better than the other estimators t0(R) and t1(R). Also, we can observe that the unified
measure (δ) does not always increase as variance of T increases, or at least not to the same
extent as does the MSE. For example, for the generalized estimator tp(R), theoretical MSE
is 301.0716 for σ2

T = 0.2 but increases to 1196.559 for σ2
T = 1. In contrast, the (δ) value

decreases from 2.23565474 to 1.78234135.

Table 4: Theoretical (bold) and empirical MSEs and PREs of the estimators.

n Var(T) Estimator MSE PRE δ

500

0.2

t0(R)
519.1796 100

3.85525016
490.2126 100

t1(R)
435.4705 119.2226

3.23365501
437.4432 112.0631

tp(R)
301.0716 172.4438

2.23565474
297.7625 164.6320

0.5

t0(R)
896.6322 100

2.66917897
888.2846 100

t1(R)
643.4997 139.3368

1.91563036
620.5305 143.1492

tp(R)
596.1386 150.4066

1.77464139
570.0859 155.8159

1

t0(R)
1805.427 100

2.68928418
1876.467 100

t1(R)
1618.569 111.5446

2.41094877
1650.915 113.6622

tp(R)
1196.559 150.8849

1.78234135
1105.511 169.7375

6. CONCLUSION

We propose here some variance estimators under RRT. These are the basic estimator
t0(R), ratio estimator t1(R) and the generalized estimator tp(R). The simulation study
reveals that the generalized estimator tp(R) is more efficient than the other estimators t0(R)
and t1(R). We also examine the efficiency of the estimators relative to not just the MSE
values, but also with respect to the unified measure of estimators quality (δ) and observe
that while MSE always increases as the noise level increases, the (δ) value does not necessary
follow this pattern. This highlights the significance of respondent under privacy.
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1. INTRODUCTION

In general, the problem of characterization of probability distributions is described
as follows. Suppose a family of distributions F possesses a property A. If, conversely, a
distribution has propertyA only if it is a member of that family, then propertyA characterizes
the family F . This result is referred to as a characterization of the distributions in F .
Primary motivation for characterizations problems is due to statistical applications. If a
statistical procedure assumes that property A holds, then the underlying distribution must be
a member of the family F . Naturally, first characterizations results are for the normal family
of distributions. The exponential distribution is one of the non-normal distributions, which
has received a lot of attention as well. Comprehensive surveys of exponential characterizations
can be found in [1], [3], [5], [6], and [8].

More recently, Arnold and Villaseñor [4] obtained a series of characterizations of the
exponential distribution based on random samples of size two and conjectured possible gen-
eralizations for samples of size three. They provide motivation for their results by pointing
out an example of a goodness-of-fit construction. A test for exponentiality based on the
characterizations in [4] was recently constructed in [7]. Another possible use of the results
in [4] and their generalizations, is in verifying modeling assumptions and in simulations (see
also [8]). Extending the techniques from [4], we will prove some of Arnold and Villaseñor’s
conjectures.

Assume throughout that X1, X2, and X3 are independent random variables with a com-
mon absolutely continuous cumulative distribution function (cdf) F , such that F (0) = 0 and
probability density function (pdf) f . Denote X2:2 := max{X1, X2}, X3:3 := max{X1, X2, X3},
and F̄ = 1− F . Consider the relations:

(1.1)
3∑

j=1

1
j

Xj has pdf
3∑

j=1

(
3
j

)
(−1)j−1j f(j x) ,

(1.2) X3:3 has pdf
3∑

j=1

(
3
j

)
(−1)j−1j F̄ (j x) ,

(1.3)
3∑

j=1

(
3
j

)
(−1)j−1j f(jx) =

3∑
j=1

(
3
j

)
(−1)j−1j F̄ (j x) ,

(1.4) X2:2 +
1
3

X3
d= X3:3 and

3∑
j=1

1
j

Xj
d= X3:3 ,

where d= denotes equality in distribution. We will prove, under some regularity assumptions
on F , that each one of these five conditions, on its own, is sufficient for X1, X2, and X3 to be
exponentially distributed.

We organize this paper as follows. Using Laplace transforms, in Section 2 we prove the
characterization (1.1). In Section 3, we establish characterization (1.2) utilizing the Taylor
series expansion of the cdf F . In Section 4, using a recurrent relation, we prove that (1.3) is a
sufficient condition for having exponential parent. Section 5 contains characterization results
based on (1.4). In Section 6 we provide an example with simulated data. In the concluding
section, we discuss possible extensions of the given results.
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2. SUM OF THREE INDEPENDENT VARIABLES

To prove that (1.1) characterizes the exponential distribution, we will convert it into
an equation for the Laplace transform ϕ(t) := E[e−tX1 ].

Theorem 2.1. Assume ϕ(t) is finite for all t in a neighbourhood of zero. If for x > 0

(2.1)
3∑

j=1

1
j

Xj has pdf

3∑
j=1

(
3
j

)
(−1)j−1j f(j x) ,

then X1 ∼ exp(λ) for some λ > 0.

Proof: It follows by (2.1), interchanging the order of summation and integration, that

ϕ(t) ϕ

(
t

2

)
ϕ

(
t

3

)
= E

[
e
−t
P3

j=1
1
j
Xj

]
=
∫ ∞

0
e−tx

 3∑
j=1

(
3
j

)
(−1)j−1j f(j x)

 dx

=
3∑

j=1

(
3
j

)
(−1)j−1

∫ ∞

0
e−txj f(j x) dx

=
3∑

j=1

(
3
j

)
(−1)j−1 ϕ

(
t

j

)
.

(2.2)
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Dividing both sides of (2.2) by ϕ(t) ϕ(t/2) ϕ(t/3), we obtain

(2.3) 1 = α(t) α

(
t

2

)
− 3 α(t) α

(
t

3

)
+ 3 α

(
t

2

)
α

(
t

3

)
,

where for t > 0

(2.4) α(t) :=
1

ϕ(t)
=

∞∑
k=0

ak tk .

Note that, the series in (2.4) is convergent in a neighbourhood of zero, by assumption.
To prove the theorem, it is sufficient to show that

(2.5) α(t) = 1 + λt , λ > 0 .

We will prove (2.5) by calculating the coefficients of the series in (2.4) to be: a0 = 1, a1 =
λ > 0, and ak = 0 for k ≥ 2. It is clear that a0 = ϕ−1(0) = 1. Applying Cauchy formula for
multiplication of two power series, we have for any nonzeros p and q,

(2.6) α

(
t

p

)
α

(
t

q

)
=

∞∑
k=0

 k∑
j=0

1
pj qk−j

aj ak−j

 tk .

Now, (2.3) and (2.6) yield for k ≥ 1

(2.7)
k∑

j=0

(
1

2k−j
− 3

3k−j
+

3
2j 3k−j

)
aj ak−j = 0 .

Setting k = 1 we see that equation (2.7) has as solution any a1. The assumption F (0) = 0
implies that there is λ > 0, such that a1 = λ > 0. If k = 2, then (2.7) yields a2 = 0. Assuming
aj = 0 for 2 ≤ j ≤ k − 1, it follows from (2.7) that(

1− 1
2k−1

)
ak = 0 .

Thus, ak = 0 for any k ≥ 3. Therefore, (2.5) holds, which completes the proof.

Note that, conversely, if Xi ∼ exp(λ) for i = 1, 2, 3, then (2.1) holds true. To show
this, it is sufficient to verify (2.2). Indeed, assuming X1 ∼ exp(λ), we have ϕ(t) = (1 + λt)−1.
Therefore,

∫ ∞

0
e−tx

 3∑
j=1

(
3
j

)
(−1)j−1j f(j x)

 dx = 3 ϕ(t)− 3 ϕ

(
t

2

)
+ ϕ

(
t

3

)
=

3
1 + λt

− 6
2 + λt

+
3

3 + λt

= ϕ(t) ϕ

(
t

2

)
ϕ

(
t

3

)
= E

[
e−t
(
X1+ 1

2
X2+ 1

3
X3

)]
,

which is equivalent to (2.1).
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3. MAXIMUM OF THREE INDEPENDENT VARIABLES

In this section we will prove that, under some regularity assumptions on F , condition
(1.2) is sufficient for X1, X2, and X3 to be exponentially distributed. The proof will be based
on the Taylor series expansion of F .

Theorem 3.1. Assume the cdf F has a power series representation for x in a neigh-

borhood of zero. If for x > 0

(3.1) X3:3 has pdf

3∑
k=1

(
3
k

)
(−1)k−1kF̄ (kx) ,

then X1∼ exp(1).

Proof: The relation (3.1) implies

(3.2) F 2(x) f(x) + F (x)− 2 F (2x) + F (3x) = 0 .

Since F (x) =
∑∞

k=0 ckxk and f(x) =
∑∞

k=0(k + 1)ck+1x
k, Cauchy formula for the product of

three power series yields

(3.3) F 2(x) f(x) =
∞∑

k=0

 k∑
i=0

i∑
j=0

cj ci−j (k + 1− i) ck+1−i

xk .

Using (3.2) and (3.3), we obtain for any k ≥ 0

(3.4)
k∑

i=0

i∑
j=0

cj ci−j (k + 1− i) ck+1−i + ck(1− 2k+1 + 3k) = 0 .

Since F (0) = 0, we have c0 = 0. Also (3.4) with k = 1 yields c2
0c1 = 0, which in turn implies

that c1 is undetermined. Let us set c1 = δ, where −∞ < δ < ∞. Equation (3.4) with k = 2
yields c3

1 + 2 c2 = 0. Hence, c2 = δ3/2. We will prove by induction that

(3.5) ck = (−1)k−1 δ2k−1

k!
, k = 1, 2, 3, ... .

Indeed, assuming (3.5) holds true for 1, 2, ..., k, we have

(3.6)
k+1∑
i=0

i∑
j=0

cj ci−j (k + 2− i) ck+2−i =
k+1∑
i=2

i−1∑
j=1

(−1)k+1 δ2k+1

j! (i− j)! (k + 1− i)!
.

Observe that
k+1∑
i=2

i−1∑
j=1

1
j! (i− j)! (k + 1− i)!

=
k+1∑
i=2

1
i! (k + 1− i)!

i−1∑
j=1

i!
j! (i− j)!

=
1

(k + 1)!

k+1∑
i=2

(k + 1)!
i! (k + 1− i)!

(2i − 2)

=
1

(k + 1)!

[
k+1∑
i=2

(
k + 1

i

)
2i − 2

k+1∑
i=2

(
k + 1

i

)]

=
1

(k + 1)!

(
3k+1 − 2k+2 + 1

)
.

(3.7)
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It follows from (3.4), (3.6) and (3.7) that

(−1)k+1 δ2k+1

(k + 1)!

(
3k+1 − 2k+2 + 1

)
+ ck+1(1− 2k+2 + 3k+1) = 0 .

Therefore,

ck+1 = (−1)k δ2k+1

(k + 1)!
,

which completes the induction and hence proves (3.5).

Now, we have

F (x) =
∞∑

k=1

(−1)k+1 δ2k−1

k!
xk =

1
δ

(
1− e−δ2x

)
.

Since limx→∞ F (x) = 1, we obtain δ = 1. The proof is complete.

It is not difficult to see that, conversely, if X1 ∼ exp(1), then (3.1) holds. Indeed, under
the assumption of unit exponential parent variable, for the pdf of X3:3 we obtain

3F 2(x) f(x) = 3 (1− e−x)2 e−x = 3F̄ (x)− 6F̄ (2x) + 3F̄ (3x) ,

which is equivalent to (3.1).

4. SUMS OF DENSITY AND DISTRIBUTION FUNCTIONS

In this section we will prove that (1.3) is a sufficient condition for X1 to be exponentially
distributed. It is straightforward that (1.3) is a necessary condition as well.

Theorem 4.1. Assume that f is right-continuous at zero. If for x > 0

(4.1)
3∑

j=1

(
3
j

)
(−1)j−1j f(j x) =

3∑
j=1

(
3
j

)
(−1)j−1j F̄ (j x) ,

then X1∼ exp(1).

Proof: The relation (4.1) leads to

(4.2)
[
f(3x)− F̄ (3x)

]
−
[
f(2x)− F̄ (2x)

]
=
[
f(2x)− F̄ (2x)

]
−
[
f(x)− F̄ (x)

]
.

Denoting Q(y) = f(y)− F̄ (y), we rewrite (4.2) as

Q(y)−Q

(
2
3

y

)
= Q

(
2
3

y

)
−Q

(
1
3

y

)
.

Iterating this equation k times and taking limit as k →∞, we obtain

Q(y)−Q

(
2
3

y

)
= Q

(
2
3

y

)
−Q

(
1
3

y

)
= lim

k→∞
Q

((
2
3

)k
y

)
−Q

((
1
3

)k
y

)
= 0 .
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This implies Q(y) = Q(2y/3) and thus,

(4.3) Q(y) = Q

(
2
3

y

)
= lim

k→∞
Q

((
2
3

)k
y

)
= f(0+)− F̄ (0+) = f(0+)− 1 .

On the other hand,

(4.4) lim
y→∞

f(y) = lim
y→∞

f(y)− lim
y→∞

F̄ (y) = lim
y→∞

Q(y) = f(0+)− 1 .

But since f is integrable, we have limy→∞ f(y) = 0, and therefore, by (4.3) and (4.4), Q(x) = 0.
Thus, f(x) = F̄ (x) for every x ≥ 0. This, in turn, implies X1∼ exp(1).

5. SUM AND MAXIMUM OF THREE VARIABLES

It is known (e.g., Arnold et al. (2008), p. 77) that if X ∼ exp{λ}, then

(5.1)
3∑

j=1

1
j

Xj
d= X3:3 and X2:2 +

1
3

X3
d= X3:3 .

We will prove that both relations in (5.1) are also characterization properties of the expo-
nential distribution. Next lemma provides the key argument in the proof of Theorem 1 in [4]
and of the theorem below.

Lemma 5.1. If F (0) = 0, the pdf f has a Taylor series expansion for x > 0, and

(5.2) f (m)(0) =
[
f ′(0)
f(0)

]m−1

f ′(0) , m = 1, 2, ... ,

then X1∼ exp{λ} for some λ > 0.

Proof: For the Taylor series of f(x), using (5.2), we have for x > 0

f(x) =
∞∑

m=0

f (m)(0)
m!

xm = f(0) + f(0)
∞∑

m=1

[
f ′(0)
f(0)

]m xm

m!
= f(0) exp

{
f ′(0)
f(0)

x

}
.

Since f(x) is a pdf, we have f ′(0)/f(0) < 0. Denoting λ = −f ′(0)/f(0) > 0 and setting∫∞
0 f(x) dx = 1, we obtain λ = f(0). Therefore, f(x) = λe−λx.

Next theorem can be obtained as a particular case of the results in [9]. We include it
here since it complements the other results for samples of size three given in Theorems 2.1–4.1
and thus provides an easily reference.

Theorem 5.1. Assume the cdf F admits a power series representation in a neighbor-

hood of zero and F (0) = 0.

(i) If

(5.3) X2:2 +
1
3

X3
d= X3:3 ,

then X1∼ exp{λ} for some λ > 0.
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(ii) If

(5.4)
3∑

j=1

1
j

Xj
d= X3:3 ,

then X1∼ exp{λ} for some λ > 0.

Proof: (i). The pdf of the left-hand side of (5.3) is

fX2:2+X3/3(x) =
∫ x

0
fX3/3(y) fX2:2(x− y) dy

=
∫ x

0
3f(3y)

d

dx

[
F 2(x− y)

]
dy

= 6
∫ x

0
f(3y) F (x− y) f(x− y) dy .

(5.5)

For the pdf of the right-hand side of (5.3), we have

(5.6) fX3:3(x) = 3F 2(x) f(x) = 6f(x)
∫ x

0
F (y) f(y) dy .

Let G(x) := F (x)f(x). It follows from (5.5) and (5.6) that (5.3) is equivalent to

(5.7)
∫ x

0
f(3y) G(x− y) dy = f(x)

∫ x

0
G(y) dy .

Differentiating the left-hand side of (5.7) n times with respect to x, we obtain

dn

dxn

∫ x

0
f(3y) G(x− y) dy =

n∑
i=1

f (n−i)(3x) G(i−1)(0) +
∫ x

0
f(3y) G(n)(x− y) dy .

Applying the Leibniz rule for the n-th derivative of a product of two functions to the right-
hand side of (5.7), we obtain

dn

dxn

[
f(x)

∫ x

0
G(y) dy

]
=

n∑
i=1

(
n

i

)
f (n−i)(x) G(i−1)(x) + f (n)(x)

∫ x

0
G(y) dy .

In the last two equations letting x = 0, we have

(5.8)
n∑

i=1

3n−if (n−i)(0)G(i−1)(0) =
n∑

i=1

(
n

i

)
f (n−i)(0)G(i−1)(0) .

Since G(0) = 0 and G′(0) = f2(0), the above equation is equivalent to

(5.9)
[
3n−2 −

(
n

2

)]
f (n−2)(0) f2(0) =

n∑
i=3

[(
n

i

)
− 3n−i

]
f (n−i)(0)G(i−1)(0) ,

where n ≥ 4. We will prove that (5.9) implies (5.2). Equation (5.2) is trivially true for m = 1.
To proceed by induction, assume (5.2) holds true for all 1 ≤ m ≤ n− 3, where n ≥ 4.
We need to prove it for m = n− 2. Using the induction assumption, it is not difficult to
obtain for j = 1, 2, ..., n− 2

G(j)(0) =
j∑

i=0

(
j

i

)
F (i)(0) f (j−i)(0) = f2(0)

[
f ′(0)
f(0)

]j−1

(2j − 1) .
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Therefore, using the induction assumption again, we have for i = 3, 4, ..., n− 1

(5.10) f (n−i)(0)G(i−1)(0) =
[
f ′(0)
f(0)

]n−3

f ′(0) f2(0) (2i−1−1) .

Substituting this in the right-hand side of (5.9) yields[
3n−2 −

(
n

2

)]
f (n−2)(0) =

[
f ′(0)
f(0)

]n−3

f ′(0)
n∑

i=3

[(
n

i

)
− 3n−i

]
(2i−1 − 1) .

To complete the proof of (5.2), it is sufficient to show that

3n−2 −
(

n

2

)
=

n∑
i=3

[(
n

i

)
− 3n−i

]
(2i−1−1) ,

which can be easily verified. This proves (5.2). The claim in (i) follows from (5.2) and the
lemma.

Proof: (ii). Equation (5.4) is equivalent to

(5.11) 6
∫ z

0
f(y)

∫ z−y

0
f(2x) f

(
3(z − y − x)

)
dx dy = 6f(z)

∫ z

0
F (y) f(y) dy .

Denoting

(5.12) H(z − y) :=
∫ z−y

0
f(2x) f

(
3(z − y − x)

)
dx ,

we write (5.11) as

(5.13)
∫ z

0
f(y) H(z − y) dy = f(z)

∫ z

0
G(y) dy .

Similarly to the proof of (i), differentiating n times both sides of (5.13) with respect to z and
setting z = 0, we have

n−1∑
i=1

f (n−1−i)(0)H(i)(0) =
n−1∑
i=1

(
n

i+1

)
f (n−1−i)(0)G(i)(0) .

Since H ′(0) = G′(0) = f2(0), the last equation can be written for k = n− 1 as

(5.14)
[
1−

(
k+1

2

)]
f (k−1)(0) f2(0) =

k∑
i=2

[(
k+1
i+1

)
G(i)(0)−H(i)(0)

]
f (k−i)(0) .

Now we are in a position to prove (5.2) by induction. (5.2) holds true for m = 1, 2, ..., k−2.
Differentiating (5.12) with respect to z and setting z = y, we have

(5.15) H(n)(0) =
n∑

i=1

2n−if (n−i)(0) 3i−1f (i−1)(0) .
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Under the induction assumption, (5.15) implies for j = 1, 2, ..., n−2

H(j)(0) =
[
f ′(0)
f(0)

]j−1

f2(0) (3j − 2j) .

Using the induction assumption again, we have for i = 3, 4, ..., n−1

f (n−i)(0)H(i−1)(0) =
[
f ′(0)
f(0)

]n−3

f ′(0) f2(0) (3i−1− 2i−1) .

Recalling (5.10) from the proof of (i), we rewrite (5.14) as (note that i = n corresponds to a
0 term)[

1−
(

n

2

)]
f (n−2)(0) =

[
f ′(0)
f(0)

]n−3

f ′(0)
n∑

i=3

[(
n

i

)
(2i−1−1)− (3i−1− 2i−1)

]
.

Thus, to prove (5.2) for k = n− 2 it is sufficient to show that

1−
(

n

2

)
=

n∑
i=3

[(
n

i

)
(2i−1−1)− (3i−1− 2i−1)

]
,

which verifies. This proves (5.2), which referring to the lemma, completes the proof of (ii).

6. EXAMPLE

We will illustrate a possible application of Theorem 5.1 with an example (see also [4]).
Assume we have a simple random sample X1, X2, ..., Xn for n ≥ 6. Let us randomly divide
the data set into six subsets, relabeled as

U1, U2, ..., Un/6 , V1, V2, ..., Vn/6 , W1,W2, ...,Wn/6 ,

X1, X2, ..., Xn/6 , Y1, Y2, ..., Yn/6 , Z1, Z2, ..., Zn/6 .

Define for i = 1, 2, ..., n/4

Ri := Ui +
1
2

Vi +
1
3

Wi , Si := max{Ui, Vi}+
1
3

Wi and Ti := max{Xi, Yi, Zi} .

Then, according to Theorem 5.1, the R’s, the S’s, and the T ’s will have a common distribution
if and only if the original X’s follow an exponential distribution.

Let us simulate a sample of size n = 180 from a parent variable with exp(1) distribution.
The values of Ri, Si, and Ti for i = 1, 2, ..., 30 are presented in Table 1.

Using the non-parametric two-sample Wicoxon rank test, we compare the sample dis-
tribution functions of the R’s and T ’s on one hand and the S’s and T ’s on another. The
test results provide evidence supporting an exponential underlying distribution. Namely, the
hypothesis that the distributions of the R’s and the T ’s are the same cannot be rejected with
p-value 0.7635 (W = 471). The hypothesis that the distributions of the S’s and the T ’s are
the same cannot be rejected with p-value 0.9357 (W = 444).
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Table 1: Values Ri, Si, and Ti for i = 1, 2, ..., 30.

R 3.56 0.70 0.62 3.33 0.30 0.78 2.29 0.97 1.59 0.50

0.83 2.27 0.69 2.95 0.32 4.12 0.74 0.91 2.66 0.48

2.87 2.19 2.32 1.08 3.69 1.98 1.13 1.32 3.37 2.73

S 2.98 1.23 0.77 2.75 0.44 0.75 1.97 1.08 1.43 0.50

0.76 1.65 0.58 2.39 0.27 3.41 0.73 0.89 2.63 0.40

2.22 1.87 4.25 1.07 2.72 1.74 1.07 1.11 2.71 3.87

T 2.07 0.60 0.97 0.47 2.84 0.84 1.02 1.84 0.57 2.88

1.39 1.92 8.46 1.77 2.60 1.42 1.50 0.47 0.26 2.17

1.92 1.67 2.87 1.06 2.24 6.63 0.52 1.09 1.33 1.07

7. CONCLUDING REMARKS

In this paper we proved characterizations of the exponential distribution conjectured
by Arnold and Villaseñor in [4]. Furthermore, under the assumptions of Theorem 2.1 and
using the same technique of proof, it can be seen that if X1 + 1

2X2 + 1
3X3 has as its density

any one of the following seven forms, then Xi’s are exponential:

3f(x)− 6f(2x) + 3F̄ (3x) , 3f(x)− 6F̄ (2x) + 3f(3x) ,

3F̄ (x)− 6f(2x) + 3f(3x) , 3f(x)− 6F̄ (2x) + 3F̄ (3x) ,

3F (x)− 6f(2x) + 3F̄ (3x) , 3F̄ (x)− 6F̄ (2x) + 3f(3x) ,

3F̄ (x)− 6F̄ (2x) + 3F̄ (3x) .

Likewise, under the assumptions of Theorem 3.1 and using the same technique of proof, it
can be obtained that if X3:3 has as its density any one of the preceding seven forms, then
Xi’s are exponential.

The results presented here can be extended in several directions. Naturally, one would
like to explore the general case of samples of size n for any n ≥ 4. As we mentioned earlier,
generalizations of Theorem 5.1 for arbitrary sample size are proved in [9]. Here we would
like to propose as open problems the following two characterizations, which would extend
Theorem 2.1 and Theorem 3.1, respectively.

Proposition 7.1. Let X1, X2, ..., Xn be i.i.d. random variables, where n ≥ 4. Assume

ϕ(t) is finite for all t in a neighbourhood of zero. If for x > 0

n∑
j=1

1
j

Xj has pdf

n∑
j=1

(
n

j

)
(−1)j−1j f(j x) ,

then X1∼ exp(λ) for some λ > 0.
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Proposition 7.2. Let X1, X2, ..., Xn be i.i.d. random variables, where n ≥ 4. Assume

the cdf F has a power series representation in a neighborhood of zero. If for x > 0

Xn:n has pdf
n∑

j=1

(
n

j

)
(−1)j−1j F̄ (j x) ,

then X1∼ exp(1).
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1. INTRODUCTION

Let X be a random variable with continuous distribution function F and corresponding
survival function F̄ = 1− F . Let x∗ be the right endpoint of the support of F defined by
x∗ = sup{x ∈ R : F (x) < 1}. Given a real number u < x∗, referred to as the threshold, an
exceedance over the threshold u occurs when X > u. The residual life function of F at time u,
the probability that X > u + x given that X > u, is

F̄u(x) = P
(
X−u > x | X > u

)
=

F̄ (x + u)
F̄ (u)

, 0 < x < x∗− u .(1.1)

The random variable X− u is called the excess over the threshold u and F̄u is the
excess survival function of X over u. When F belongs to the domain of attraction of one
of the extreme value distributions, it follows that, for sufficiently large u, the distribution
function of X− u can be approximated by the Generalized Pareto Distribution (GPD). The
distribution function of a GPD(ξ, β) is

F (x; ξ, β) =


1− (1− ξx/β)1/ξ , ξ 6= 0 , β > 0 ,

1− exp(−x/β) , ξ = 0 , β > 0 ,
(1.2)

where ξ and β are the shape and scale parameters, respectively. When ξ < 0 the support of
F (x; ξ, β) consists of the positive reals. When ξ > 0, the support is the interval (0, β/ξ). The
case ξ = 0 corresponds to the exponential distribution with mean β. When ξ = 1, the GPD
distribution corresponds to the uniform distribution on [0, β].

More precisely, let X1, ..., Xn be a sequence of independent and identically distributed
random variables with continuos distribution H. Let Mn = max{X1, ..., Xn}. Suppose that
there are sequences an > 0 and bn of real numbers such that

P
{
an(Mn− bn)≤ z

}
→ G(z) , as n →∞ .(1.3)

Then G(z) is a member of the generalized extreme value distribution family defined by

G(z) = exp

{
−

{
1− ξ

(
z − µ

σ

)}1/ξ
}

.

The precise technical justification for modeling excesses using the GPD — expression
(1.2) — was provided by Smith [32] and is based on the fact that

lim
u→x∗

sup
0<x<x∗−u

∣∣Fu(x)− F
(
x; ξ, β(u)

)∣∣ = 0 ,

for fixed ξ and some positive function β(u), if and only if F is in the domain of attraction of
some extreme value distribution. This result is from the parallel work done by Balkema and
de Haan [1] and Pickands [23]. Since most of the common continuous distributions belong
to the domain of attraction of one of the three extreme value distributions, this result makes
the GPD the natural model for the excess distribution of the random variable X when the
threshold is high.



Testing for Trends in Excesses Over a Threshold Using the Generalized Pareto Distribution 191

Starting with the early works by Smith [31] and Davison [6], the GPD has been used by
many authors to model excesses over high thresholds in several fields such as river floods, air
pollution, wind velocity, sea waves, insurance claims, etc. For the details of these applications
see Hosking and Wallis [12], Smith [33], Dargahi-Noubary [5], Grimshaw [10], Rootzen and
Tajvidi [29], Castillo andHady [4], and Parisi andLund [22]. Embrechts et al. [8], Falk et al. [9],
and Reiss and Thomas [24] present detailed and elegant accounts of the theoretical under-
pinnings and the practical aspects of the modeling of extremes including discussions on the
modeling of exceedances and excesses.

One of the main objectives of modeling excesses over high thresholds with the GPD is
the estimation of tails of probability distributions — Smith [32]. But the GPD has also been
used to detect and test for trends in the excesses. The papers by Smith [33], Davison and
Smith [7], Smith and Huang [35] and Rootzen and Tajvidi [29] are some examples of such
applications. Our interest in this article is also in testing for the existence of a long term trend
in the excesses of a time series. The main difference with other works is our use of the concept
of stochastic orderings of distribution functions. In Section 2 it is shown that given k GPD
distributions F (·; ξj , β), (j = 1, ..., k), if ξ1 < ξ2 < ··· < ξk, then F (x; ξ1, β) > F (x; ξ2, β) >

··· > F (x; ξk, β) for all x. That is, we give a sufficient condition for the GPD family to be
stochastically ordered. This condition is used in Section 3 to develop a simple procedure based
on a likelihood ratio statistic for testing H0 : ξ1 = ξ2 = ··· = ξk vs. the isotonic alternative
Ha : ξ1 ≤ ξ2 ≤ ··· ≤ ξk. Our procedure is desirable when it is believed a priori that the GPDs
satisfy the stochastic order restriction and, hence, it is desirable to have a test that is more
powerful than an omnibus test.

The test being proposed here belongs to the field of restricted inference. There is a vast
literature in this area. The literature consists of roughly two large subareas: shaped-restricted
inference, and order-restricted inference. Barlow et al. [2] is a classic pioneering work based
on isotonic regression ideas and the Pool-Adjacent-Violators-Algorithm. Robertson et al. [25]
and the many references therein, summarize and extend the work of Barlow et al. and adopt
the Nonparametric Maximum Likelihood paradigm proposed by Kiefer and Wolfowitz [14].
Kiefer and Wolfowitz [15] seem to have pioneered the area of shape-restricted inference.
Wang [36, 37, 38], extended ideas of Kiefer and Wolfowitz to the estimation of distribution
functions under the restriction of being star-shaped or being Increasing Failure Rate on
Average. Lo [19], Rojo [26, 27], and Rojo and Ma [28], provide nonparametric estimators for
distribution functions that are stochastically ordered. One recent monograph that examines
shape-restricted inference is Groeneboom and Jongbloed [11]. Marshall and Olkin [20] and
Shaked and Shanthikumar [30] provide excellent treatises on the topic of partial orders of
distribution functions.

Finally, in Section 4, we apply our procedure to test for the existence of a monotonic
trend in the size of the excesses of a time series of ozone measurements.

2. STOCHASTIC ORDERING OF THE GPD

The concept of stochastic order permeates the theory and applications of statistics.
The concept was introduced in the seminal paper by Lehmann [17] and was used to study
the power properties of certain tests.
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Definition 2.1. Let X and Y be random variables such that

P (X > x) ≤ P (Y > x) , −∞ < x < ∞ .

Then X is said to be stochastically smaller than Y . This is denoted by X <st Y .

We can also state that Y is stochastically larger than X and write Y >st X.
If F and G represent the cumulative distribution functions (cdfs) of X and Y respectively,
then X <st Y if and only of F (x) ≥ G(x) for all x ∈ R, and then we write F <st G.
As discussed by Lehmann [17], a convenient situation arises when the stochastic order is
induced by the parameter as it varies monotonically in the parameter space. That is, a
parametric family of cdfs {F (x; θ) : θ ∈ Θ ⊂ R} is stochastically increasing in θ if θ1 < θ2

implies that F (·; θ1) <st F (·; θ2). Similarly, {F (x; θ) : θ ∈ Θ ⊂ R} is stochastically decreasing
in θ if θ1 < θ2 implies that F (·; θ2) <st F (·; θ1). Lehmann and Rojo [18] provided simple
characterizations of this and other related orders.

Sufficient conditions are provided here for the family of GPD distribution functions
F = {F (x; ξ, β) : −∞ < ξ < ∞, β > 0}, to be stochastically ordered. Since β is a scale
parameter it is clear that the family F is stochastically ordered in β for fixed ξ. The following
Proposition states that the family F is stochastically decreasing in ξ for fixed β.

Proposition 2.1. Let F1, F2 ∈ F with shape parameters ξ1 and ξ2, respectively and

equal scale β. If ξ1 < ξ2 then F2 <st F1.

Proof: The proof of Proposition 2.1 uses the following result.

Proposition 2.2 (Mitrinovic [21], pp. 266, inequality 3.6.1). If a > 0 and x > 0, then

(2.1) e−x ≤
( a

ex

)a
.

Setting x = 1/u and a = 1 in (2.1) we obtain

(2.2) u ≥ e1−1/u , u > 0 .

Now we prove Proposition 2.1. Let F (·; ξ, β) ∈ F for β fixed. From the definition of the usual
stochastic order, it is enough to show that F (·; ξ, β) is an increasing function of the parameter
ξ ∈ R. This is true if and only if

h(ξ) = log
[
1− F (x; ξ, β)

]
= (1/ξ) log(1− ξx/β)

is a decreasing function. First we analyze the case ξ 6= 0, for which the problem reduces to
showing that

(2.3) h′(ξ) = −(1/ξ2) log(1− ξx/β)− x

ξβ(1− ξx/β)
< 0 .

Making the change of variable u = 1− ξx/β we get h′(ξ) = h′
(
β(1− u)/x

)
= g(u), where

g(u) = −
[
x/β(1− u)

]2 (
log u + (1/u)− 1

)
,
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for 0 < u < 1 when ξ > 0, and 1 < u < ∞ when ξ < 0. Then, g(u) < 0 if and only if log u +
(1/u)− 1 > 0, if and only if u > e1−1/u, u > 0. But this is the strict inequality in (2.2). Hence
(2.3) holds and therefore F (x; ξ, β) is increasing in ξ for ξ ∈ R\{0}. Now

lim
ξ→0

{
1− (1− ξx/β)1/ξ

}
= 11− e−x/β .

This means that F (x; ξ, β) ↑ F (x; ξ= 0, β) as ξ ↑ 0, and F (x; ξ, β) ↓ F (x; ξ= 0, β) as ξ ↓ 0.
Then, from the proved monotonicity of F (x; ξ, β) in ξ ∈ R\{0}, the proposition follows.

Thus, the following result is obtained.

Corollary 2.1. Let F (x; ξ;β) denote the GPD distribution with scale parameter β

and shape parameter ξ as defined by (1.2). Then,

If ξ∗ = ξ and β < β∗, F (·; ξ∗, β∗) ≥st F (·; ξ, β).

If ξ > ξ∗ and β = β∗, F (·; ξ∗, β∗) ≥st F (·; ξ, β).

When ξ > −1, the expected value µ of a GPD(ξ, β) is µ = β(1+ ξ)−1. Then ξ = ξ(µ) =
(β/µ)− 1. Thus the shape parameter ξ is a decreasing function of the mean µ. So, if X1 ∼
GPD(ξ1, β) and X2 ∼ GPD(ξ2, β), with ξ1, ξ2 > −1, and we assume that the means µj = EXj

(j = 1, 2) are such that µ2 ≤ µ1, then ξ1 < ξ2. Thus if µ2 ≤ µ1 then X2 <st X1. The converse
is also true. To see this, let Fj be the cdf of Xj and assume X2 <st X1, then we have
1− F2(x) ≤ 1− F1(x) for all x, and since the GPD only takes positive values, it follows that

µ2 =
∫ ∞

0

[
1− F2(x)

]
dx ≤

∫ ∞

0

[
1− F1(x)

]
dx = µ1 .

We can put together all these results in the following corollary.

Corollary 2.2. Let Xj ∼ GPD(ξj , β), (or if Xj ∼GPD(ξ, βj)), (j = 1, ..., k). Suppose

that E(Xj) = µj exists for all j. Then the following propositions are equivalent.

a) X1
st> X2

st> ··· st> Xk.

b) ξ1 < ξ2 < ··· < ξk, (β1 > β2 > ··· > βk).

c) µ1 ≥ µ2 ≥ ··· ≥ µk.

3. TESTING FOR A LINEAR TREND IN THE EXCESSES

Let Xj ∼ GPD(ξj , β), (j = 1, ..., k), and denote equality in distribution by D=. Suppose
we want to test the null hypothesis

H0 : X1
D= X2

D= ··· D= Xk

vs. the alternative

Ha : X1 >st X2 >st ··· >st Xk .
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From Corollary 2.2, we see that this would be equivalent to testing the null hypothesis

H0 : ξ1 = ξ2 = ··· = ξk

vs. the alternative hypothesis

Ha : ξ1 < ξ2 < ··· < ξk .

Similarly, the hypothesis Ha : X1 <st X2 <st ···<st Xk can be tested by using Ha : ξ1 > ξ2 >

··· > ξk. From Corollary 2.2, a test for the stochastic order could also be based on the means
of the GPD’s. However the means do not always exist. Therefore we test the hypothesis
of stochastic order on the basis of the shape parameter. Assume that for each Xj we have
a random sample of size nj , xj = (x1j , ..., xnjj)′ and let x = (x1, x2, ..., xk) be the full data
vector. Furthermore, assume that we observe the Xj ’s sequentially along time, and let tj
be the epoch at which the random sample xj was observed. To detect a linear time trend,
we introduce a third parameter θ by writing ξj = ξ + θtj , (j = 1, ..., k). When the tj ’s are
equally spaced, tj can be set as tj = j. Thus, we can test the hypothesis of order restriction
by testing

H0 : θ = 0

vs. the alternative hypothesis

Ha : θ 6= 0 .(3.1)

Although other forms of monotonic trends could occur, e.g. ξj = ξ exp(θtj), a test
without assuming a particular form of the monotone trend would require a semiparametric
model that would provide protection against misspecification of the functional form of the
trend but would not perform as well as the current test for the specific alternative of a
monotonic linear trend.

Modeling the parameters of the GPD in order to assess a trend is similar to the approach
described in other works such as those by Smith [34], Smith and Huang [35] and Rootzen
and Tajvidi [29]. For instance, Rootzen and Tajvidi model the scale parameter as β =
exp(α0 + α1t) where t is time in years, and keep the shape parameter ξ constant. In this
work we reverse this procedure.

Let
˜
X represent the data vector X1, X2, ..., Xn. For testing the hypothesis (3.1), we

use the Likelihood Ratio Test (LRT) based on λ(
˜
X) = L(ξ̂, β̂)/L(ξ̂, θ̂, β̂), where L denotes

the likelihood function and the estimators are maximum likelihood estimators (MLE). Then
−2 log λ(

˜
X) follows asymptotically a chi-square distribution with one degree of freedom. The

detailed expression for −2 log λ(
˜
X) is given in the Appendix.

4. AN APPLICATION TO OZONE DATA

The data we analyze was collected in Yosemite National Park Wanona Valley and
consists of hourly measurements of ozone (ppm) taken from April 1, 1987 to October 31,
1996. The time series contains 84,011 observations with 9412 missing values. The main
concern is the detection of a long term trend in the extremal behavior of the time series.
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More precisely, the problem is to detect either a decreasing or increasing trend in the size of
the excesses over a certain high threshold, if in fact a trend exists. Table 1 displays the monthly
number of exceedances over 0.08 ppm. The observations have a strong seasonal component
with two periods: the exceedances period which extends from the month of April trough the
month of October and the no-exceedances period in the remaining months. The frequency of
exceedances increases in the summer months and then decreases in the fall months. Moreover,
exploring the data we found that the ozone levels also tend to increase in the summer months
and decrease in the fall months. Since the interest lies on the extremal behavior of the data,
the analysis was based on the months from April to October.

Table 1: Monthly exceedances over 8 ppm.

Year Apr May Jun Jul Aug Sep Oct Total (Nu) n

1987 4 14 70 55 75 50 23 291 4742
1988 9 2 11 83 71 92 21 289 4856
1989 0 6 9 32 29 7 0 83 4913
1990 1 8 34 91 65 63 3 265 4630
1991 0 0 2 19 1 38 17 77 4463
1992 0 2 14 27 49 21 11 124 4736
1993 0 0 3 20 11 21 0 55 3860
1994 6 6 3 14 3 0 0 32 4720
1995 0 0 0 6 50 27 0 83 4804
1996 0 0 4 39 29 22 2 96 4636

Total 20 38 150 386 383 341 77 1395 46360

Figure 1: Excesses over 0.08 ppm.

blocks of length b. Then consider all the exceedances within a block as a clus-
ter of exceedances. These are called block-clusters. See Leadbetter (1995)
for the formal justification of this approach as well as for some applications.

The second approach is to select a positive integer r (called the run length)
and then decide that any run of at least r consecutive observations below the
threshold separates two clusters of exceedances and then assume that such
clusters are independent. These are called run-clusters. See Smith (1989)
for an application of this approach. In this work we use the run-cluster
approach with 72 hours (three days) separation. This window of 72 hours is
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Figure 1: Excesses over 0.08 ppm.
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Figure 1 shows the empirical marked point processes of exceedances over 0.08 ppm.
A clear decreasing trend in the size of the excesses appears. We assess the significance of this
trend using the LRT from Section 3.

The LRT requires the excesses to be independent of one another. There is, however, a
strong dependence between the exceedances because they tend to occur in clusters. That is,
an exceedance tends to attract other exceedances. Several procedures to deal with dependent
data have been proposed. One such procedure is to identify clusters of exceedances for which
it can be assumed that the excesses within any cluster are independent of the excesses within
any other cluster, and then select the maximum excesses within each cluster.

The practical problem with this approach is the identification of independent clusters.
Two methods have been used. One is to select a time length b (called block length) and
then partition all the observations into consecutive blocks of length b. Then consider all the
exceedances within a block as a cluster of exceedances. These are called block-clusters. See
Leadbetter [16] for the formal justification of this approach as well as for some applications.

The second approach is to select a positive integer r (called the run length) and then
decide that any run of at least r consecutive observations below the threshold separates two
clusters of exceedances and then assume that such clusters are independent. These are called
run-clusters. See Smith [33] for an application of this approach. In this work we use the
run-cluster approach with 72 hours (three days) separation. This window of 72 hours is the
common practice when analyzing ozone data. Once we have identified the run clusters, we
take the maximum excess within each cluster. To distinguish from the Exceedances over a
Threshold we call these values the Peaks over a Threshold, (POT’s). Table 2 shows the POT’s
that we analyze in this work.

Table 2: POT, run-clusters, 72 hours.

Year Peaks

1987
0.002 0.004 0.032 0.022 0.065 0.025 0.053 0.032 0.027 0.036
0.010 0.011

1988
0.002 0.010 0.002 0.013 0.017 0.007 0.017 0.026 0.023 0.025
0.031 0.039 0.008 0.018

1989
0.013 0.005 0.015 0.014 0.004 0.013 0.009 0.019 0.031 0.010
0.007 0.002

1990
0.003 0.020 0.003 0.013 0.040 0.036 0.007 0.018 0.026 0.016
0.005

1991 0.005 0.005 0.002 0.013 0.004 0.011 0.007 0.025 0.010 0.008

1992
0.003 0.021 0.010 0.031 0.006 0.015 0.007 0.028 0.012 0.013
0.019 0.003 0.002

1993 0.004 0.009 0.011 0.009 0.015 0.018

1994 0.009 0.008 0.004 0.009 0.006 0.012 0.015

1995 0.017 0.017 0.030 0.023 0.018 0.009 0.023 0.011 0.019

1996
0.004 0.013 0.023 0.021 0.012 0.009 0.017 0.018 0.006 0.006
0.004 0.005

Figure 2 shows the POT’s for all the years of the observation period. The decreasing
trend in the POT’s is evident. Under H0 the estimates of the parameters are ξ̂ = 0.2121 and
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β̂ = 0.0179. Under Ha we have ξ̂ = 0.164, θ̂ = 0.0575, and β̂ = 0.0209. The positive value
of the estimate of ξ is consistent with the observed decrease in the excesses of the ozone
levels. The observed value of the LRT is −2 log λ(x) = 17.24 which has a p-value of 0.000033.
Thus we conclude that the observed decrease in the size of the excesses from 1987 to 1996 is
statistically significant.

Figure 2: Maximum excesses within run-clusters grouped by years.

Smith (1990) or Embrechts et al. (1997). From (1) one gets

1− F (u+ x) = γu[1− Fu(x)],

where γu = Pr(X > u) = 1−F (u). Thus, if Nu is the number of exceedances
over u and n is the number of observations, then an estimator of γu is γ̂u =
Nu/n, and an estimator of the upper tail of FX is given by

1− F̂ (u+ x) = γ̂u[1− F̂u(x)] =
Nu

n

(
1− ξ̂ x

β̂

)1/ξ̂

, x > 0. (8)
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Figure 2: Maximum excesses within run-clusters grouped by years.

Once we have found statistical evidence for the decreasing trend in the excesses, we
estimate the upper tail of the ozone levels as in Davison and Smith [7] or Embrechts et al. [8].
From (1.1) one gets

1− F (u + x) = γu

[
1− Fu(x)

]
,

where γu = Pr(X > u) = 1− F (u). Thus, if Nu is the number of exceedances over u and n is
the number of observations, then an estimator of γu is γ̂u = Nu/n, and an estimator of the
upper tail of FX is given by

1− F̂ (u + x) = γ̂u

[
1− F̂u(x)

]
=

Nu

n

(
1− ξ̂

x

β̂

)1/ξ̂

, x > 0 .(4.1)

Estimators of the quantiles of F are obtained by solving F̂ (xp) = p for xp in (4.1), 0 ≤ p ≤ 1.
This yields

x̂p = u +
β̂

ξ̂

[
1−

(
n(1− p)

Nu

)̂ξ
]

.(4.2)

When ξ̂ > 0 by setting p = 1 we obtain the estimator of the right end point x̂∗ = u + β̂/ξ̂.
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The ozone levels are not independent. So, to simplify, we assume that within the
exceedances period in the year (from April to October) the ozone levels come from a strongly
stationary process. Then, from the Ergodic Theorem — see Breiman [3], pp. 118 —, we have
that (1/n)

∑n
i=1 1{Xi>u} = Nu/n converges almost surely to 1− F (u), where now F is the

marginal distribution of the ozone levels. Thus Nu/n may be used as an estimator of 1−F (u),
and then we can use (4.2) to estimate the upper tail and high quantiles of the distribution
of the ozone levels. Table 3 shows the estimates of the shape parameters and from Table 1
we get the number of observations (ozone measurements) and the number of exceedances per
year. With this information we can estimate the extreme quantiles of the ozone levels. For
instance, for 1987, we have

x̂p = 0.08 + (0.0209)
(
1−

[
4742 (1− p)/291

]0.22
)/

0.22 , 0 ≤ p ≤ 1 .

Figure 3 shows the estimated 0.99, 0.999 quantiles as well as the right endpoints of the
marginal distribution of the ozone levels. The decreasing trend is evident.

Table 3: Estimated shape parameters.

tj 1 2 3 4 5 6 7 8 9 10

ξ̂j .22 .278 .336 .394 .452 .51 .568 .626 .684 .742

Figure 3: Estimated 0.99 and 0.999 quantiles, and estimated right endpoints
of the distribution of ozone levels for a threshold of 0.08 ppm.

5 Conclusions

An exploratory data analysis of the extreme values of a time series of ozone
levels made clear the existence of a decreasing linear trend in the size of
the excesses over the threshold 8 ppm. We fitted the GPD to the POT’s of
the time series. By modeling the shape parameter of the GPD as a linear
function of time in years, we were able to test the significance of a trend in
the size of the excesses. More specifically, consider the years s and t with
s, t = 1987, . . . , 1996. Then we can say that the ozone excesses over 8 ppm
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Figure 3: Estimated 0.99 and 0.999 quantiles, and estimated right endpoints
of the distribution of ozone levels for a threshold of 0.08 ppm.
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5. CONCLUSIONS

An exploratory data analysis of the extreme values of a time series of ozone levels made
clear the existence of a decreasing linear trend in the size of the excesses over the threshold
8 ppm. We fitted the GPD to the POT’s of the time series. By modeling the shape parameter
of the GPD as a linear function of time in years, we were able to test the significance of a
trend in the size of the excesses. More specifically, consider the years s and t with s, t =
1987, ..., 1996. Then we can say that the ozone excesses over 8 ppm for year s were more
likely to take larger values then the ozone excesses over 8 ppm for year t, when s < t.

A. APPENDIX – Maximum Likelihood Calculations

The density function of a GPD(ξ, β) is

f(x; ξ, β) =


(1/β) (1− ξx/β)(1/ξ)−1 , ξ 6= 0 , β > 0 ,

(1/β) exp(−x/β) , ξ = 0 , β > 0 .

Let Xj ∼ GPD(ξj , β), and let xj = (x1j , ..., xnjj)′ be a random sample from Xj ,
(j = 1, ..., k). Write ξj = ξ + θtj . Then the log-likelihood function under H0 : θ = 0 is

(A.1) l(ξ, β) =
k∑

j=1

nj∑
i=1

log f(xij ; ξ, β) = −n log β + (ξ−1−1)
k∑

j=1

nj∑
i=1

log(1− ξxij/β) ,

where n =
∑k

j=1 nj , (ξ, β) ∈ Θ0 =
{
(ξ, β) : ξ < 0, β > 0

}
∪

{
(ξ, β) : ξ > 0, β > 0, and β/ξ >

maxij(xij)
}
. Making the reparametrization (ξ, β) 7→ (ξ, τ), where τ = ξ/β, the log-likelihood

function becomes

l(ξ, τ) = −n log ξ + n log τ + (ξ−1−1)
k∑

j=1

nj∑
i=1

log(1− τ xij) ,

where
{
ξ < 0, τ > 0

}
∪

{
0 < ξ ≤ 1, τ < 1/maxij(xij)

}
. The log-likelihood equations are

∂l

∂ξ
= (n/ξ)− (1/ξ2)

k∑
j=1

nj∑
i=1

log(1− τ xij) = 0 ,(A.2)

∂l

∂τ
= (n/τ)− (ξ−1−1)

k∑
j=1

nj∑
i=1

xij

1− τ xij
= 0 .(A.3)

Solving equation (A.2) for ξ we obtain

(A.4) ξ(τ) = −(1/n)
k∑

j=1

nj∑
i=1

log(1− τ xij) .
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Since equation (A.4) gives ξ as an explicit function of τ , we can substitute ξ(τ) of (A.4) in
equation (A.3), and obtain

(n/τ)−
(
ξ(τ)−1−1

) k∑
j=1

nj∑
i=1

xij

1− τ xij
= 0 ,

which can be solved numerically for τ . If τ̂ is the solution, then the MLE’s of ξ and β are
given by ξ̂ = ξ(τ̂) and β̂ = ξ̂/τ̂ , respectively. This is the standard procedure to find the MLE’s
of the parameters of the GPD. For a detailed analysis of this procedure see Grimshaw [10].
Under Ha : θ > 0 the log-likelihood function is

l(ξ, θ, β) =
k∑

j=1

nj∑
i=1

log f(xij ; ξ, θ, β)

= −n log β +
k∑

j=1

[
(ξ + θtj)−1−1

] nj∑
i=1

log
[
1− (ξ + θtj) xij/β

]
,

where (ξ, θ, β) ∈ Θa =
{
(ξ, θ, β) : ξ+θtj < 0, j =1, ..., k, β > 0, θ > 0

}
∪

{
(ξ, θ, β) : ξ+θtj > 0,

j =1, ..., k, β > 0, θ > 0 and β/(ξ+θtj) > maxi(xij), j =1, ..., k
}
. Let x(nj)j = maxi(xij), and

note that the restriction β/(ξ + θtj) > x(nj)j is equivalent to β − ξx(nj)j − θx(nj)j tj > 0.
So, the parameter space Θa ⊂ R3 is given by all the (β, ξ, θ)′ that satisfy the linear pointwise
restrictions 

1 −x(n1)1 −x(n1)1t1
1 −x(n2)2 −x(n2)2t2
...

...
...

1 −x(nk)k −x(nk)k tk
0 0 1


 β

ξ
θ

 >


0
0
...
0
0

 .

Finding the MLE’s of ξ, θ, and β becomes a problem of maximization with linear
constraints. There are several numerical algorithms to deal with this type of problem. In this
work we used the Price’s controlled random search procedure. See Khuri [13], pp. 334–336,
for the details of this algorithm. The calculations were performed with R. The test statistic
is given by −2 log λ(x) = 2

[
l(ξ̂, θ̂, β̂)− l(ξ̂, β̂)

]
.
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Abstract:
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a reduced dimensional latent spatial process. For skewed data, likelihood based approaches with
Gaussian assumption may not lead to faithful inference. Any L2 norm based estimation is suscep-
tible to long tails and outliers due to contamination. Our method is based on an empirical binned
covariance matrix using the median absolute deviation and minimizes L1 norm between empirical
covariance and the model covariance. The consistency of the proposed estimate is established the-
oretically. The improvement is demonstrated using simulated data and cloud data obtained from
NASA’s Terra satellite.
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1. INTRODUCTION

Analysis of geostatistical data is known to be computationally intense or infeasible when
the number of observed locations, n, is large. This is due to the size of the covariance matrix,
Σ (which is n×n) and the computational demand of inverting or factoring it. Cressie and
Johannesson [4] introduced Fixed Rank Kriging (FRK) to address the computational hurdle
by modeling the spatial covariance through a fixed number of deterministic basis functions
and a latent reduced rank spatial process. To introduce the parameters, we consider an
observed spatial process Z(s) to be made up of a hidden spatial process Y (s) along with a
white noise process ε(s) which could represent, for example, measurement errors. So we write

Z(s) = Y (s) + ε(s) .(1.1)

Typically Y (s) and ε(s) are assumed to be independent Gaussian distributions, with ε(s)
having mean of zero. In this work however we develop methods that are robust to depar-
ture from this assumption. Then, for n observed locations, Z(s) ≡

{
Z(s1), ..., Z(sn)

}
is an

n-dimensional process with mean E(Y (s)) = µY and covariance matrix expressed as ΣZ =
ΣY + σ2 In, where ΣY is the covariance matrix of Y (s) ≡

{
Y (s1), ..., Y (sn)

}
and In is the

identity matrix of rank n. We then model Y (s) using a mixed effects model such as

Y (s) = X(s)β + S(s)η + δ(s) .(1.2)

In this model X(s) is a matrix of known covariates and β is the associated vector of regression
coefficients; S(s) is a sparse n×r matrix of fixed, spatially varying basis functions which are
centered at a set of r knot locations. Dimension reduction is achieved by selecting r � n.
Various classes of basis functions may be used, including wavelets (Shi and Cressie [18] and
Zhu et al. [22]) and bisquare (Cressie and Johannesson [4] and Paul et al. [16]) functions.
The latent process η is a zero-mean r-dimensional Gaussian process defined over the knot
locations, with covariance matrix V. Finally δ(s), the process error, is an iid zero-mean
Gaussian process with variance τ2 which takes into account the variations unexplained by
the large scale variations X(s)β and spatial process S(s)η, and uncertainties arising from
the dimension reduction. The process and measurement errors are usually assumed to be
independent. When there is only one observation at each spatial location, τ2 and σ2 are non-
identifiable, instead their sum ν2 = σ2 + τ2, called the nugget variance, is estimated (though
indirect means exist to estimate these separately, see Katzfuss and Cressie [11]). Going
forward, we suppress the dependence on s when possible by stacking scalers into vectors, and
vectors into matrices (e.g., Y (s) is replaced with Y and X(s) is replaced with X).

With this framework, the covariance matrix ΣZ can be written as ΣZ = SVS′ + ν2 In.
The objective is to estimate the model parameters: β,V and ν2. Once this has been done
one may obtain the inverse of ΣZ easily using the Sherman–Morrison–Woodbury matrix
identity. This model offers a large degree of flexibility. The only restriction on V is the
positive-definiteness, hence the resulting covariance matrix may be both anisotropic and
nonstationary.

A variety of approaches have been used to model or estimate V. In introducing FRK,
Cressie and Johannesson [4] used a Method of Moments (MoM) estimation scheme, while
Katzfuss and Cressie [11] developed an expectation-maximization (EM) algorithm. Much
attention has also been given to Bayesian hierarchical modeling (see, for example, Banerjee
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et al. [1], Kang et al. [9] and Kang and Cressie [8]). To-date, little attention appears to
have been given to robust estimation schemes. Zhu et al. [22] developed a method to reduce
bias through improved basis function selection, but otherwise did not consider distributional
assumptions. Paul et al. [16] developed a scale mixture model applicable to non-Gaussian
datasets, but like many Bayesian methods it can be time-intensive to implement and run.

The basic FRK model we have described has been elaborated in various ways. For
example, to obtain better representation of the spatial dependence some have used a tapering
approach (Sang and Huang [17]) or multiple sets of knot locations with different resolutions
(Cressie and Johannesson [4] and Kang et al. [10]). We demonstrate the latter approach in
our data application in Section 5. Both the estimation and fitting stages in the existing MoM
estimation use least-squares concepts, and therefore may suffer in the presence of skewed or
contaminated data. In the present work we develop an alternative MoM estimator for the
parameters of the RRSM. Our motivation in this is to provide an estimator that can model
data containing outliers or exhibiting skewness, two features that are frequently encountered
in geostatistical datasets, and which does not require significant computational resources.

MoM estimation of the model parameters is divided into two stages: an estimation
stage and a fitting stage. In the estimation stage, the entire spatial domain is divided
into M bins such that r < M � n, and ΣM is defined to be the covariance matrix over
the bins. The bins are defined subjectively, though Cressie and Johannesson [4] and Katz-
fuss and Cressie [11] provide some recommendations. Then an empirical estimate Σ̂M is
constructed using the detail residuals, D = Z−Xβ̂, where β̂ is the ordinary least squares
estimate of β. Cressie and Johannesson [4] defined Σ̂M in the following manner: The mth

diagonal elements Σ̂M (m, m) = avg(D2
m) and the (m,m′) off-diagonal element Σ̂M (m,m′) =

avg(Dm)× avg(Dm′). In these expressions, Dm is the vector of detail residuals in bin m, and
avg(·) denotes the average.

Similarly S is binned into an M×r matrix by taking the column averages of the rows of S
associated with the observed locations falling into each of the M bins. Denoting this as S,
one may then write

ΣM = SVS′ + ν2 IM .(1.3)

After estimation, the fitting stage obtains V̂ and ν̂2 by minimizing the Frobenius norm
between ΣM and Σ̂M , using the QR-decomposition on S. This is a two-step process resulting
in the following estimates:

ν̂2 = (F′F)−1F′(Σ̂M −QQ′ Σ̂M QQ′) ,

V̂ = R−1Q′(Σ̂M − ν̂2 IM

)
QR′−1 ,

where F = IM −QQ′. If Σ̂M is not positive-definite, the eigenvalues must be lifted to ensure
that V̂ is positive-definite (see Kang et al. [9]). For further details on Fixed Rank Kriging,
see Katzfuss and Cressie [11].

We redesign both the estimation and fitting stages for the MoM estimation using the
Median Absolute Deviation and quantile regression (Section 2). Our work is novel in that
we return to basic principles to redesign the estimation and fitting stages with a mind for
resisting contaminated data. The consistency of our proposed estimate is shown (Section 3),
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though the technical details are given in the Appendix. We describe and conduct a simulation
study (Section 4) to investigate the performance of our proposed method. Finally, we provide
a data example (Section 5) using a large remote sensing dataset and some concluding remarks
(Section 6).

2. ROBUST ESTIMATION AND FITTING

In this section we describe robust alternatives to both the estimation stage and fitting
stage of MoM estimation for the FRK model. First we define Σ̂

(rob)
M as an estimate empirical

binned covariance matrix which is robust to contamination. Then we describe a robust
strategy to fit the model parameters, which we call the robust fit. We denote the previous-
described methods from Cressie and Johannesson [4] as Σ̂

(CJ)
M and the Frobenius fit.

2.1. Estimation stage

The diagonal elements of ΣM represent the variance within a bin. We estimate this
quantity using the median absolute deviation, MAD(X) = med

(
|X −med(X)|

)
. A constant

scale factor is applied to the MAD which causes it to be a consistent estimate for the standard
deviation (see Hettmansperger and McKean [7], Eqn. 3.9.27). In the present work, we use
the usual MAD which is consistent for σ when the errors are normally distributed. Hence,
the diagonal elements of our proposed estimate are given by

Σ̂
(rob)
M (m,m) = MAD2(Dm) , m = 1, ...,M .(2.1)

Estimating the covariance between two bins is more challenging. First, recall that
cov(A,B) = 1

4

[
V (A + B)− V (A−B)

]
. Estimating a covariance using this identity requires

finding Dm ±Dm′ , however, these quantities are not well-defined. For example, two bins
may not even have the same number of observations, much less any natural correspondence
between observations. We therefore use the pairwise sums and pairwise differences, denoted
using ⊕ and 	 respectively, to approximate Dm±Dm′ . We again use the square of the MAD
to estimate the variance, so the off-diagonal elements of our estimate are given by:

Σ̂
(rob)
M (m,m′) =

1
4

[
MAD2(Dm ⊕Dm′)−MAD2(Dm 	Dm′)

]
.(2.2)

2.2. Fitting stage

Given an empirical covariance matrix Σ̂M , we fit V by minimizing some norm between
Σ̂M and ΣM . To develop the robust fitting stage, we start from equation (1.3),

Σ̂M = SVS′ + ν̂2 IM ,(
Σ̂M − ν̂2 IM

)
S
(
S′S

)−1 = SV.(2.3)
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Then we may see equation (2.3) as a multivariate regression problem with S as the design
matrix and V as the matrix of regression coefficients. Any method of robust regression
may then be implemented to obtain an estimate of V. For this work, we use the popu-
lar least absolute deviations, L1, estimator; see Koenker and Bassett [13] and Section 3.8
of Hettmansperger and McKean [7]. In comparison to least squares (LS), the least abso-
lute deviation fit is obtained by replacing the squared Euclidean norm with the L1 norm.
Hence, the geometry and interpretation of the L1 fit is quite similar to LS fit, but unlike the
LS estimate, the L1 estimate is robust. As discussed in Section 3.8 of Hettmansperger and
McKean [7], the fit is also efficient. It attains efficiency 0.64 relative to LS for normal errors
but is generally more efficient than LS for error distributions with tails heavier than the
normal.

Each column of
(
Σ̂M − ν̂2 IM

)
S
(
S′S

)−1 is used as the response in a separate estimation.
There are therefore r estimates to obtain, each of which corresponds to a column of V.
As the final estimate V may not be numerically symmetric, we symmetrize V̂ by taking
V̂ = 0.5

(
V̂ + V̂

′)
. We used the quantreg R package (Koenker [12]) for the computation of

the L1 fit.

Estimation of V requires an estimate of ν2. By substituting the left side of (2.3) for
SV in (1.3) we obtain:

Σ̂M =
(
Σ̂M − ν2 IM

)
S
(
S′S

)−1S′ + ν2 IM ,

Σ̂M

(
IM − S

(
S′S

)−1S′
)

= ν2
(
IM − S

(
S′S

)−1S′
)

.(2.4)

We then stack the columns of Σ̂M

(
IM −S

(
S′S

)−1S′) and the columns of
(
IM −S

(
S′S

)−1S′).
Doing this, we again cast the problem as a zero-intercept robust regression, where ν2 is the
slope. This estimate is substituted into equation (2.3) to obtain an estimate of V.

The estimate of V may not be positive-definite, so we may need to lift the eigenvalues
(similar to Cressie and Johannesson [4]), while preserving the total variability. In our work,
we compute the sum of the eigenvalues, ∆, and proportionally redistribute this sum across
the eigenvalues after shifting all eigenvalues to be non-negative.

3. ASYMPTOTIC PROPERTIES

Here we discuss some of the infill asymptotic properties of our proposed estimator,
Σ̂

(rob)
M . Infill asymptotics is a common method of considering asymptotics related to geo-

statistical methodology in which the domain, D, remains fixed but the density of observed
locations is increased.

Recall that we obtain V̂ by minimizing some norm ‖ · ‖:

V̂ = argmin
∥∥Σ̂M −ΣM

∥∥ .

Hence, once Σ̂M is known, V̂ is fully determined by the fitting method. Therefore, a desirable
property of the empirical binned covariance matrix Σ̂

(rob)
M is that it be consistent for ΣM ,

which we establish in this section.
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There are two sets of assumptions that we need to make. From expressions (2.1)

and (2.2), Σ̂
(rob)
M is a function of MADs applied to the detail residuals. For each bin m,

these residuals are obtained from ordinary least-squares regression, our proof requires that√
n

(
β̂ − β

)
= O(1) for each bin. For this, we assume the conditions in the paper by Lahiri

et al. [14] for each bin.

Our process for bin j (slightly abusing the notation to avoid double subscript), is{
e1, e2, ..., enj

}
which we denote by {ej}. On this process we assume that

1. {ej} is stationary.

2. {ej} satisfies the strong mixing coefficients assumption given as follows. For i 6= k,
let Ai and Bk be in the σ-fields generated by ei and ek. Then

(3.1)
∣∣∣P [Ai ∩Bk]− P [Ai]P [Bk]

∣∣∣ = O
(
ρ|i−k|) ,

where 0 ≤ ρ < 1.

Note that Assumption 2 implies that the spatial correlation between two locations
exhibits exponential decay. This is a common feature in spatial modeling (e.g. the Matérn
class of covariance models), and as such is not an unreasonable assumption.

For our proof, let Dm denote the random detail residual process within the mth bin,
and let Dm =

{
R̃m1 , ..., R̃mk

}
be the k observed detail residuals from that bin. We assume

that Dm and, as will be seen, |Dm|, exhibit strong mixing as described in conditions 1 and 2.

We now state the consistency result in theorem form. The proof is given in the Appendix.

Theorem 3.1. Under the above conditions, Σ̂
(rob)
M is a consistent estimator of ΣM .

Throughout we treat the number of bins, M , as fixed, and do not consider limits over
that quantity. This is analogous to the work of Bliznyuk et al. [2]. In another context
on binned estimation, they considered m (the number of bins) as a radius to determine
“adjacency” of locations, where m does not depend on n, (the number of observations) and
did not limit over m. The only restriction on M is that it should be large enough to ensure
that the assumption of stationary within bins holds for practical implementation.

4. SIMULATION STUDY

To compare our proposed methods with the existing methods using simulated data,
we generate a spatial process Z according to the model:

Z = Xβ + Sη + ε .

First we select n locations uniformly over a 100×100 domain, and ro = 1225 knot
locations on a 35×35 grid. These knot locations are used to simulate the data but not to fit
the models (because reduced rank spatial models are designed as approximations of a more
complex spatial process). Then we define X as an n×3 matrix where the columns correspond
respectively to an intercept, the x-coordinate, and the y-coordinate.
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To define V we first compute the pairwise distances between the knot locations, and
generate a Matérn covariance matrix using these distances with sill and range parameters
each set to 1, and smoothness set to 0.5. We use cov.sp in the R package SpatialTools

(French [6]) to generate this matrix. We then obtain V as an observation from the inverse
Wishart distribution using the Matérn covariance as a scale matrix and 2(r + 1) degrees of
freedom. In this way the covariance matrix used to simulate the data is not constrained to
be either stationary or isotropic.

We construct S using the bisquare basis functions defined as

Si,j =


(
1−

(
‖si − uj‖/ru

)2
)2

for ‖si − uj‖ ≤ ru ,

0 otherwise ,

where ru is 1.5 times the minimum distance between knots and ‖ · ‖ denotes the measure of
distance appropriate to the data (e.g., in our simulations, we used Euclidean distance).

We used two methods to simulate the data, a Contaminated Normal distribution and an
Exponential distribution. These simulate the presence of outliers or of skewness, respectively,
in the resulting dataset. For either simulation method, we compare the model fits by splitting
the simulated data into a training set and a held-out test set. The hold-out set was set as all
of the locations in the square bounded by the points (40, 40) and (60, 60), which corresponds
to approximately 4% of the observations. We use the estimated parameters to predict at
the held-out locations and compute diagnostics to assess both the accuracy and uncertainty
of the prediction, including the mean square error (MSE), mean square prediction error
(MSPE), and the continuous ranked probability score (CRPS, Wilks [21]), a measure which
incorporates both the prediction accuracy and the prediction uncertainty. Lower values are
preferable for all of these measures.

4.1. Simulation 1: contaminated normal

For simulating datasets we first generate a ro-dimensional process η from a zero-mean
multivariate normal with covariance V. To induce outliers, the measurement error process ε

is generated from a contaminated normal distribution. We first draw a random sample from
N (0, ν2), and then replace αn of the values with random draws from N (0, ν2

c ). Finally, we
obtain the simulated data by Z = Xβ + Sη + ε. For each simulated dataset, estimate model
parameters using both the method of Cressie and Johannesson [4] and the proposed robust
method.

We considered three sample sizes, n ∈ {10000, 15000, 20000} and five levels for the
number of knots locations to fit the model, r ∈ {64, 100, 144, 196, 256}, intentionally chosen
to much less than ro, so that the“true” spatial process was more granular than the model. For
the contamination level of ε we consider α ∈ {0.00, 0.05, 0.10, 0.15, 0.20}. For the simulations
shown, the values of β = (1, 0.01, 0.05)′, ν2 = 1, and ν2

c = 100 were held constant. These
choices are not sensitive to our estimation technique except insofar as a larger or smaller ν2

c

would correspond to a larger or smaller effect from the contamination. For each combination
of these parameters, we generated 50 replications of data. Hence, there were 75 settings of
parameter levels, and 3750 replications in total.
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4.2. Simulation 2: exponential

As we have noted throughout, skewness can also be problematic for least-squares type
estimators, and skewed data are not uncommon in geostatistics. Hence, we designed a second
simulation in which we generate ε from an Exponential distribution rather than from a
contaminated Normal distribution. We use the same design as Simulation 1, but instead of α,
we consider the rate parameter of the Exponential distribution λ ∈ {0.10, 0.25, 0.50, 1.00}.
Hence, for this simulation there were 60 settings and 3000 replications in total.

4.3. Simulation results

The simulations suggest that the robust method is generally preferable to the CJ
method. For brevity we present the results for the CRPS, but results for the MSE and
MSPE were similar. We use two main values to compare the results: The median CRPS
across the 50 replications, and the CRPS of the CJ method relative to that of the robust
method (we refer to this as the CRPS ratio).

Results of Simulation 1 are shown in Figure 1, which plots the median CRPS over the
50 replications for each of the settings. In 67 of the 75 settings, the robust method produced
a smaller median CRPS than the CJ method.
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Figure 1: Results for Simulation 1. Plotted points are median CRPS of the CJ method (circles)
and the robust method (triangles) over the 50 replications.
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In addition, the robust method produced a smaller CRPS (i.e.CRPS ratio greater than 1)
in 68.8% of the replications, and the median of the CRPS ratio showed a 9% larger CRPS
for the CJ method. When considering the CRPS ratio for each setting, the worst-performing
setting for the robust method had a median CPRS ratio of 0.975 (near equivalence), while
half of the settings had a median CRPS ratio showing an improvement of 10% or more.

The results for Simulation 2 were similar to those of Simulation 1, and are shown in
Figure 2. In 55 of the 75 settings, the robust method produced a smaller median CRPS than
the CJ method.

10000 15000 20000

6
4

1
0

0
1

4
4

1
9

6
2

5
6

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

4

8

12

16

4

8

12

16

4

8

12

16

4

8

12

16

4

8

12

16

Lambda

M
e

d
ia

n
 C

R
P

S

Figure 2: Results for Simulation 2. Plotted points are median CRPS of the CJ method (circles)
and the robust method (triangles) over the 50 replications.

In addition, the robust method produced a smaller CRPS (i.e.CRPS ratio greater than 1)
in 65.3% of the replications, and the median of the CRPS ratio showed an 8% larger CRPS
for the CJ method. When considering the CRPS ratio for each setting, the worst-performing
setting for the robust method had a median CPRS ratio of 0.957, which again shows minimal
advantage for the CJ method, while half of the settings had a median CRPS ratio showing
an improvement of at least 7%.

To provide an overall summary of our results, our findings suggest that the proposed
robust method tends to be advantageous compared to the CJ method. While we acknowledge
this is not uniformly the case, we note that in approximately two-thirds of cases, the proposed
method resulted in smaller CRPS. It is unfortunately difficult to discern much in the way of a
pattern across the simulation settings, to determine whether the robust or CJ method might
be preferable in a specific setting. The main apparent pattern from these simulations is that
the more knots, the better the robust method tended to perform against the CJ method.
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This could potentially be a consequence of each bin from the estimation of ΣM having fewer
observations compared to a setting with the same sample size but smaller number of knots,
in which case outliers would have an increased effect.

Since the number of knots is chosen by the modeler, one might be tempted to select
a smaller value of r, so that any effect from the choice of method is minimized. However,
fewer knots corresponds to a more coarse representation of the spatial variation, hence the
general recommendation (e.g. Finley et al. [5]) is to use as many as possible (within any
computational limits). Hence, the natural choice guiding the selection of r will also tend to
produce situations in which the robust method appears to perform better.

5. APPLICATION TO NASA DATA

We use remote sensing data on daily cloud liquid water path (CWP), obtained through
NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on
April 22, 2012. Note that this date is an arbitrary choice, our interest here is to demonstrate
our method outside of a fabricated example. Because the dataset is large (n = 48552),
a reduced rank model is a reasonable choice for inference. The CWP data are right-skewed,
so we restrict out focus to the log-scale.

5.1. Original Data Analysis

The observed data are plotted in Figure 3. Due to a north-south trend (tending to
smaller values closer to the equator), we model the large-scale variation using Legendre poly-
nomials similar to Stein [19], though using only the latitude. Specifically, let L denote the
degrees latitudes and define ` = π(L/180).

Figure 3: Plot of observed Cloud Water Path over the spatial domain.
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We compute Legendre polynomials P q
p (sin(`)) of degree p = 80 and order q = 0, 1, ..., p.

This results in a design matrix consisting of 81 regressors of spherical harmonics. Stein [19]
also included a cosine of the longitude. Since we observed primarily a trend over the latitudes,
we do not include the cosine term on longitude. Since our focus is on the small-scale (spatial)
variation rather than the large-scale variation, the main concern for us is that this model
enables stationarity of the spatial process to be reasonable; visual inspection (figure not
shown) of the predictions for each latitude show this to be the case.

For the MoM estimation described in the preceding sections we first compute the de-
tailed residuals. The normal quantile-quantile plot of the detailed residuals in Figure 4 shows
a heavy lower tail, which motivates the use of the proposed robust techniques. Initially we
model the data as observed. Afterwards, we also induce outliers into the data and reanalyze
the data.

Figure 4: Normal quantile-quantile plot of the detailed residuals.

As recommended by Cressie and Johannesson [4], we use a multi-resolution model for
CWP (see Nychka et al. [15]), to capture multiple scales of variation. We choose r1 = 38
knot locations for the first resolution, and r2 = 97 knot locations for the second resolution.
Therefore the estimate of V is a 135×135 matrix. A map of these knot locations is given in
Figure 5.

To construct the S matrix, we use the modified bisquare function, defined as:

Si,j(l) =


(
1− 0.25 d2

(
si,uj(l)

))
for d

(
si,uj(l)

)
≤ 2 ,

0 otherwise ,

where uj(l) is the jth knot location of the lth resolution, si are the observed locations. The
distance is given by:

d
(
si,uj(l)

)
=

√
d2

long

(
si,uj(l)

)/
r2
long(l) + d2

lat

(
si,uj(l)

)/
r2
lat(l) ,

where dlong

(
si,uj(l)

)
and dlat

(
si,uj(l)

)
denote the longitude (east-west) and latitude (north-

south) distances, respectively, between the location s and the knot location uj(l). The values
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rlong(l) and rlat(l) control the maximum distance between an observation and a knot such that
there is non-zero weight associated between the two. We set these to be the minimum east-
west distance and minimum north-south distance between two knot locations of the same
resolution.
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Figure 5: Plot of the knot locations of the basis functions over the spatial domain.
Triangles represent the 38 knot locations of the first resolution, and
circles represent the 97 knot locations of the second resolution.

Figures of the predictions or prediction uncertainties are not particularly informative,
as our focus is on comparing the robust method to the CJ method. The CJ method yielded
larger RMSPEs by approximately 20%, and the CRPS tended to be larger as well. A plot of
the CRPS ratio for each location is shown in Figure 6. On average, the CRPS ratio is 1.04,
indicating better performance for the robust method.

Figure 6: Plot of the CRPS of predictions using the CJ method relative to
those using the robust method. Larger values indicate the CJ method
produced a larger CRPS at that location.
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5.2. Analysis after inducing outliers

In addition to this analysis, we artificially contaminated the log CWP data by replacing
the 2% of observed values Zi(s) with 1.5 Zi(s). Inspection of the normal quantile-quantile
plot showed a heavy upper tail which also contained many outliers. The results followed the
same pattern as those described above. The RMSPE were again uniformly larger for the
CJ method, now averaging 78% larger, while the CRPS were, on average, 11% larger.

6. CONCLUSIONS AND DISCUSSION

The Method of Moments is a flexible and powerful tool for estimating the parameters of
a FRK model. Bayesian methods are more accurate than kriging (Kang and Cressie [8]), but
they are also more time-consuming, and often come with some distributional assumptions.
Kriging is typically a faster process, and kriging estimates are BLUP even in the face of non-
normality, so kriging presents benefits of its own. However the typical parameter estimates
using EM algorithm or MoM are susceptible to contaminated data. In this work we have
provided robust alternatives to both stages of the MoM estimation.

Our results indicate that the proposed estimate and fitting scheme successfully capture
the spatial covariance. In both our simulations and in our application to real data, the robust
method tended to provide an advantage over the CJ method. At times the advantage was
small, but in some cases the robust method showed substantial improvement, even when the
data were neither contaminated or skewed.

Besides the L1-fit, other robust fits can be used. For example, the Wilcoxon fit is a ro-
bust fit that minimizes the sum of the absolute differences of the residuals (see Hettmansperger
and McKean [7], Section 3.8). The Wilcoxon fit is generally more efficient than the L1-fit
and it generalizes to fits for skewed-error distributions. We are currently investigating other
robust norms which result in fits with higher efficiency than that of the L1 fit for normal
errors.

Again we emphasize that the kriging equations have been derived by minimizing the
mean square prediction error. These predictions are then simply functions of V and ν. In our
work, we have provided robust methods of estimating these same parameters. Yet when using
robust techniques, it may be desirable to derive predictions and measures of precision using a
different loss function than the squared error loss, or such that the predictions are robust in
addition to the parameter estimates (Cressie and Hawkins [3]). Our robust estimates perform
well in spite of this.
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A. APPENDIX – Proof of Theorem 3.1

The proof utilizes the consistency of a fit β̂ such that
√

n
(
β̂ − β

)
= O(1); the assump-

tions as discussed in Section 3, including nj →∞, for j = 1, ...M ; and the theory for the sign
processes as discussed in Chapters 1 and 3 of Hettmansperger and McKean [7]. For the sign
process theory, we assume that the pdf of the random errors is positive at its median. The
proof is in two parts. Part 2 gives the desired result, while Part 1 establishes the consistency
of the medians used in the second part.

Part 1 of the Proof:

Consider the j-th bin, for j = 1, ...M . Let {ej} denote the process of random errors
of the linear model Zj = Xj βj + ej . Assume without loss of generality that βj = 0 and the
median of ei is 0, where for ease of notation we have omitted the second subscript j on ei.
Let ê = Zj −Xj β̂j,ls denote the residuals from the a fit such that

√
n

(
β̂ − β

)
= O(1). Let

F (t) and f(t) denote the cdf and pdf of ei, respectively.

Consider the sign process given by

Sj(θ) =
1
nj

nj∑
i=1

sgn(ei − θ) ,(A.1)

where sgn(u) = −1, 0, or 1 for u < 0, u = 0, or u > 0. Denote the median of e1, ..., enj by θ̂e.
Notice that θ̂e solves the equation Sj(θ) = 0. Our immediate goal is the asymptotic linearity
of the process Sj(θ) that is given in expression (A.3). We accomplish this by showing that
the four sufficient conditions hold as given in Section 1.5 of Hettmansperger and McKean [7].
First note that Sj(θ) is a nonincreasing function of θ. Thus the first condition holds. For the
second condition, by a simple shift theorem and stationarity, we have

µ(θ) = E0

[
Sj(θ)

]
= Eθ

[
Sj(0)

]
=

1
nj

nj∑
i=1

Eθ

[
sgn(ei)

]
= 1− 2F (−θ) .

Hence, µ′(0) = 2f(0) > 0 which establishes the second condition.

For the third condition, we need to show the variance of √nj Sj(0) exists. This variance
is

σ2
nj

= V
[√

nj Sj(0)
]

=
1
nj

nj∑
i=1

V
(
sgn(ei)

)
+

2
nj

nj−1∑
i=1

nj∑
k=i+1

cov
[
sgn(ei), sgn(ek)

]
.

The first term on the right is easily seen to be 1. Using P [ei <0] = 1/2 and expanding
each covariance term into its expectation, we obtain four probability terms and, hence, the
sum of four series. The absolute value of one of these four series is given next. As we show, we
establish a bound on the series by invoking the assumption (3.1) and then applying properties
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of the geometric series. A similar proof holds for the other three series.∣∣∣∣∣ 2
nj

nj−1∑
i=1

nj∑
k=i+1

[
P (ei <0, ek <0)− P (ei <0) P (ek <0)

]∣∣∣∣∣ ≤
≤ 2

nj

nj−1∑
i=1

nj∑
k=i+1

∣∣∣P (ei <0, ek <0)− P (ei <0) P (ek <0)|

≤ K
2
nj

nj−1∑
i=1

nj∑
k=i+1

ρk−i

= 2K
ρ

1− ρ

nj − 1
nj

−
[

1
nj

ρ2

1− ρ2

(
1− ρnj−1

)]
≤ 2K

ρ

1− ρ
,

where the constants K > 0 and 0 ≤ ρ < 1 are given in expression (3.1). The last line follows
because the term in brackets is nonnegative and the entire expression is nonnegative. Thus
the above series is convergent. Since the other three series follow similarly and, since absolute
convergence implies convergence, the series for the variance σ2

nj
converges. Let σ2(0) denote

the value to which the series converges. The actual value is not needed in the proof but can
be obtained from Wendler [20] as noted below.

The fourth condition requires that for all b, Var0
{√

nj

[
S(b/√nj)− S(0)

]}
→ 0, as

nj →∞, where I(x) = 1 if x is true, 0 otherwise. Based on the sign function, we have

Vnj ,b =dfn Var
[√

nj

[
S(b/

√
nj)− S(0)

]]
= Var

[
−2
√

nj

nj∑
i=1

I
(
0 < ei < b/

√
nj

)]
.

Thus,

Vnj ,b =
4
nj

nj∑
i=1

Var
[
I
(
0 < ei < b/

√
nj

)]
+

8
nj

nj−1∑
i=1

nj∑
k=i+1

cov
[
I
(
0 < ei < b/

√
nj

)
, I

(
0 < ek < b/

√
nj

)]
.

(A.2)

By stationarity and continuity of the cdf F (t), E
[
I
(
0 < ei < b/

√
nj

)]
= F

(
b/
√

nj

)
− 1

2 → 0,
as nj →∞; hence, the variance term on the right side of (A.2) goes to 0 as nj →∞.

We can write the covariances as

cnj ,i,k =dfn cov
[
I
(
0 < ei < b/

√
nj

)
, I

(
0 < ek < b/

√
nj

)]
= P

[
0 < ei < b/

√
nj , 0 < ek < b/

√
nj

]
− P

[
0 < ei < b/

√
nj

]
P

[
0 < ek < b/

√
nj

]
.

Notice that this is similar to the above argument on the variance, except that the terms also
go to zero as nj →∞. Using mean value theorems it follows that the rate of this convergence
is 1/nj . Using the assumptions from Section 3 and this rate we have |cnj ,i,k| ≤ Kρk−i

nj
, where

ρnj = O(1/nj). Following the same argument as used for the variance, the covariance term
in (A.2) in absolute value is less than or equal to

2K
ρnj

1− ρnj

≤ O(1/nj) → 0 , as nj →∞ .
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Thus Vnj ,b → 0 as nj →∞.

By these four conditions, as shown in Chapter 1 of Hettmansperger and McKean [7],
the sign process satisfies the linearity result:

(A.3)
√

nj Sj(θ) =
√

nj Sj(0)− 2f(0)
√

nj θ + op(1) ,

for √nj |θ| ≤ B, for all B > 0.

To obtain σ2(0), we can use Wendler [20]. He showed, under the mixing conditions
above, that √nj |θ̂e| converges in distribution and, hence, is tight. Since Sj(θ) = 0, we can
use (A.3) and Wendler’s asymptotic distribution to obtain the asymptotic normal distribution
of √nj Sj(0).

For our proof, we are interested in the residual process. Since for the proof the true
parameters are 0, we can write the residuals as êi = ei − x′

i β̂LS , i = 1, ..., nj . The residual
sign process is then given by

(A.4) S
∗
j (θ) =

1
nj

nj∑
i=1

sgn(êi − θ) .

Let θ̂∗ denote median of the residuals. Notice that it solves S
∗
j (θ̂∗) = 0. In the independent

error case, Hettmansperger and McKean [7] established the linearity of the residual process
for any root-n consistent estimate of β; see their Section 3.5 and the associated parts of the
Appendix. A key result used in their proof was the linearity for the single sample case, i.e.,
in the current proof, the result (A.3). See Lemma A.3.2 of Hettmansperger and McKean [7].
The remainder of the proof for the linearity of S

∗
j (θ) follows using similar reasoning as above.

The result is

(A.5)
√

nj S
∗
j (θ) =

√
nj S

∗
j (0)− 2f(0)

√
nj θ + op(1) ,

for √nj |θ| ≤ B, for all B > 0. Using this and S
∗
j (θ̂∗) = 0, we obtain the asymptotic distri-

bution of θ̂∗ and, hence, its consistency.

The second part of our proof requires the consistency of three other estimators. The
first is the median of the absolute value of the residuals. This is easily obtained by replacing
ei with |ei| in the above processes. Since the pdf of |ei| is strictly positive at the true median,
the proof holds in this case too. The second estimator is a function of the residuals from two
bins, say, j and j′. More specifically, it is a function of the residuals

êj,i + êj′,i′ = ej,i + ej′,i′ −
[
xT

j,i xT
j′,i′

] [
β̂j

β̂j′

]
,

where β̂j and β̂j′ denote the LS estimates from bins j and j′, respectively. Because the

vector
(
β̂

T
j , β̂

T
j′
)T is root-n consistent and the convolution of identical pdfs is positive at its

median when each pdf is positive at its median, nothing in the above proof precludes the
use of random errors of the form ej,i + ej′,i′ . Thus the theory holds in this case also. These
comments apply to the third estimator also because it is based on the residuals êj,i − êj′,i′ .
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Part 2 of the Proof:

This part of the proof makes use of the standard inequality |a| = |a−b+b| ≤ |a−b|+ |b|.
It suffices to show consistency of Σ̂

(rob)
M element-wise. We first show the consistency of the

diagonal elements. The statistic and functional of the mth diagonal of Σ̂
(rob)
M are given by:

MAD{êm} = medi

∣∣êmi−medj{êmj}
∣∣ with functional ξm = med

∣∣em−med{em}
∣∣ .

Without loss of generality, assume that med{em} = 0. From Part 1, medi{êmi}
P→ 0, in

probability. Next, assume that med{|em|} = ξ. Then also from Part 1, medi|êmi |
P→ ξ.

Choose N0 sufficiently large so that, given ε > 0,

(A.6) k ≥ N0 =⇒
∣∣med1≤i≤k{êmi}

∣∣ < ε

with probability greater than (1− (ε/2)). Let An denote the event where (A.6) occurs. Then,
on An we have

|êmi | =
∣∣êmi−medj{êmj}+ medj{êmj}

∣∣
≤

∣∣êmi−medj{êmj}
∣∣ +

∣∣medj{êmj}
∣∣

<
∣∣êmi−medj{êmj}

∣∣ + ε .

So, on An,

(A.7) medi|êmi | < medi

∣∣êmi−medj{êmj}
∣∣ + ε ,

and ∣∣êmi−medj{êmj}
∣∣ =

∣∣êmi−medj{êmj} − êmi + êmi

∣∣
≤

∣∣medj{êmj}
∣∣ + |êmi |

< |êmi | + ε .

Hence, on An,

(A.8) medi

∣∣êmi−medj{êmj}
∣∣ < medi|êmj | + ε .

Putting (A.7) and (A.8) together, we have on An,

(A.9)
∣∣∣medi

∣∣êmi−medj{êmj}
∣∣− medi|êmi |

∣∣∣ < ε .

Since this occurs with probability of at least (1−(ε/2)), the difference on the left-side goes to 0
in probability. As noted above, from Part 1, medi|êmi|

P→ξ; hence, medi

∣∣êmi−medj{êmj}
∣∣ P→ ξ.

For the off-diagonal elements, let m 6= m′ be given. Recall that the off-diagonal elements
of Σ̂

(rob)
M are given by equation (2.2), which can be expressed as follows:

Σ̂
(rob)
M (m, m′) =

(
MAD

{
êm ⊕ êm′

2

})2

−
(

MAD
{

êm 	 êm′

2

})2

.(A.10)

It suffices to show consistency for each of the terms on the right-side. Define t = 1
2 (em ⊕ em′).

Then the statistic and its functional, respectively, for the off-diagonal elements are:

MAD{t̂} = medi

∣∣t̂i −medj {t̂j}
∣∣ with functional ξm,m′ = med

∣∣t−med{t}
∣∣ .

Without loss of generality let med{t} = 0. From Part 1, medi{t̂i}
P→ 0. Then the proof follows

in the same manner as for the diagonal elements. So each of the MADs in equation (A.10)
is consistent. Therefore, the entire expression is consistent. Thus, the diagonal and off-diagonal
entries of Σ̂

(rob)
M are consistent. Hence, Σ̂

(rob)
M is a consistent estimator of ΣM .
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1. INTRODUCTION

In social sciences, responses on some stigmatizing variables are often needed to make
inference about the behavior of some human populations. Examples of such situations are
where questions are asked that are related to topics like tax evasion, use of illegal drugs,
extra marital affairs, ethical issues, political affiliation, etc. In the case of stigmatizing study
variables, non-sampling error may increase due to missing or false responses, which leads to
biased estimates of population parameters such as mean, total or proportion. To reduce such
bias in sample surveys, [34] proposed a randomized response technique (RRT) for obtaining
more accurate estimates. A lot of research has been done for improving the original RRT
model of [34]. Authors contributing in this area include [17], [18], [35], [6], [12], [22], [7],
[3], [19, 20], [21] and [9, 10, 11]. In RRT literature, much more attention has been paid to
design-based approach which assumes the population to consist of fixed constants. But in
many real-life situations, population values are generated as realizations of a set of stochastic
variables. Such population is called a superpopulation and the statistical models for such type
of populations are called superpopulation models. Superpopulation models help in sample
selection, constructing estimators for population parameters of interest, and enhancing the
precision of estimates. A superpopulation model uses the relationship between the study
variable and the auxiliary variable(s) to predict the population values for the non-sampled
units assuming non-informative sampling approach. Under the framework of model-based
inference, [14] dealt with the problem of estimation of a finite population mean or total.
[27] and [8] attempted to obtain optimal model-unbiased estimators of the population mean
and total using least squares estimation methods and the well-known Gauss–Markov theorem.
Some discussion on model-based approach can be found in [2], [15], [16], [30, 31], [29], [28],
and [33]. A detailed review of model-based estimation is also available in [32].

[13] and [24] have suggested post-censal estimates (estimates obtained immediately af-
ter census using the census results) for small areas and called it small area estimation (SAE).
[23] dealt with labor force trend estimation for small areas. Work related to such methods can
also be found in [25, 26] and [38]. More recently, [36] have considered estimation of uncertainty
in spatial micro-simulation approaches for SAE. The main purpose of SAE is to overcome
the problem of small sample when separate estimates for domains are needed. In this article,
we develop some model-based estimators for small area totals assuming the study variable in
each domain is sensitive. A generalized randomized response model has been used to collect
information about the study variable. The rest of the article is structured as follows: an
overview of SAE under direct response is considered in Section 2 with some superpopulation
models. Section 3 extends the SAE given in Section 2 to randomized response models, as-
suming a sensitive quantitative study variable and non-sensitive auxiliary variable. Section 4
presents a numerical study based on two real life data sets. Some concluding remarks are
provided in Section 5.
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2. SAE UNDER DIRECT RESPONSE

Consider a finite population U = {U1, U2, ..., UN} of N units as a realization of a super-
population with variable of interest y, and auxiliary variable x. For a specific sup-population
Ak, also known as “small area”, let dki be an area specific binary variable, for k = 1, 2, 3, ...m
and i = 1, 2, ...N , such that dki = 1 if Ui belongs to Ak, and zero otherwise. Further, let
Nk =

∑
U dki be the size of the k-th sub-population or k-th small area (usually unknown),

Tyk =
∑

U dki yi and Txk =
∑

U dki xi be the population totals, µyk = Tyk

Nk
and µxk = Txk

Nk
be

the population means, and σ2
yk = 1

Nk

∑
U dki(yi − µyk)2 and σ2

xk = 1
Nk

∑
U dki(xi − µxk)2 be

the population variances of the study variable and the auxiliary variable respectively in
the k-th area. The notation

∑
U is used for summing the values over U . Also, let the

covariance between the study variable and the auxiliary variable in the k-th area be σyxk =
1

Nk

∑
U dik (yi−µyk)(xi−µxk). Suppose that s is a member of the set S of all possible samples

that can be drawn from U using simple random sampling without replacement (SRSWOR)
scheme with size n, and s̄ consists of all those elements of U that are not selected in sample s.
The population total for the study variable, quantity of interest or estimand, in k-th area can
then be expressed as Tyk =

∑
s dki yi +

∑
s̄ dki yi. A predictor for Tyk is obtained as follows:

(2.1) T̂yk =
∑

s

dki yi +
∑

s̄

dki ŷi .

The main problem is to find ŷi for Ui ∈ s̄. The predictor ŷi is obtained assuming different
superpopulation models. We consider three most widely used population models:

1. Homogenous Population Model (HPM): y = µyk + ε ,

2. Linear Population Model (LPM): y = αk + βx+ ε ,

3. Ratio Population Model (RPM): y = γx+ x1/2ε ,

for k = 1, 2, ...,m, where ε is the stochastic error term which has mean 0 and a constant
variance σ2. Also, µyk and αk are mean effects in k-th area and β and γ are the coefficients of
the regression line of y on x for the whole population for the cases with and without intercepts.
In model based approach, these parameters are termed as superpopulation parameters.

2.1. Homogeneous Population Model (HPM)

In case of HPM, a BLUP for µyk, obtained by minimizing the residual sum of square∑
s dki(yi − µyk)2 is ȳk = 1

nk

∑
s dki yi, which yields an estimator for Tyk given by

(2.2) t̂kh =
∑

s

dki yi +
∑

s̄

dki ȳk =
N

n

∑
s

dki yi .

The sub-script ‘h’ is used to indicate that the superpopulation model is homogeneous.
It is straight forward to show that t̂kh is an unbiased estimator of population total Tyk

with variance given by

(2.3) Var(t̂kh) = λ
[
θk σ

2
yk + θk(1− θk)µ2

yk

]
,
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where θk = Nk
N is the population proportion of the units belonging to k-th small area, and

λ = N(N−N)
n . For proof readers can see [5, p. 156–160].

2.2. Linear Population Model (LPM)

Now consider LPM for finding ŷi, Ui ∈ s̄. The BLUP for αk and β are obtained by
minimizing the sum of squared prediction errors for specific areas, i.e.

SSPE =
∑

s

dki(yi − αk − xiβ)2 .

These are given by α̂k = ȳk − β̂ x̄k and β̂ =
P

s dki (yi−ȳk) (xi−x̄k)P
s dki(xi−x̄k)2

, where ȳk and x̄k are the
sample means corresponding to k-th small area. The estimator of Tyk under LPM is given by

t̂klr =
∑

s

dki yi +
∑

s̄

dki

(
α̂k + β̂ xi

)
.

After some simplifications and using assumption from [5], i.e. Nk
N ≈ nk

n , we get

(2.4) t̂klr =
N

n
tyk + β̂

(
Txk −

N

n
txk

)
,

where tyk =
∑

s dki yi and txk =
∑

s dki xi are the sample totals for k-th small area. Further,
β̂ given in (2.4) is based on local (area specific) observations only, which do not account for
relationship between the variables for the entire population. To overcome this deficiency,
different area level models have been proposed in literature. For simplicity, we assume that
the regression coefficient β of y on x is known for the whole population. For known β,
we have

(2.5) t̂klr =
N

n
tyk + β

(
Txk −

N

n
txk

)
.

The sub-script ‘lr’ is used to denote that the underlying model is linear. For known β, t̂klr is
unbiased for Tyk with variance given by

(2.6) Var(t̂klr) = λ
(
σ∗2yk + β2σ∗2xk − 2βσ∗yxk

)
,

where σ∗2yk = θkσ
2
yk + θk(1 − θk)µ2

yk, σ∗2xk = θkσ
2
xk + θk(1 − θk)µ2

xk and σ∗yxk = θkσyxk +

θk(1− θk)µyk µxk. The value of β that minimizes the variance is βopt =
σ∗yxk

σ∗2xk
. The corre-

sponding minimum variance of t̂klr is given by

(2.7) Var(t̂klr)opt = λ
(
1− ρ∗2yxk

)
σ∗2yk ,

where ρ∗yxk =
σ∗yxk

σ∗ykσ∗xk
. From Equations (2.7) and (2.3), it is obvious that t̂klr is always more

efficient than t̂kh for any linear relationship between y and x.
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2.3. Ratio Population Model (RPM)

For situations when there is a proportional relationship between the survey variable
and the auxiliary variables, the RPM [32] is often preferred as the working model. RPM is
given by

(2.8) y = γx+ x1/2ε .

The estimator for γ which minimizes the sum of squared errors, i.e. SSE∗ =
∑

s dki

(yi−xiγ

x
1/2
i

)2,

is given by γ̂ =
P

s dki yiP
s dki xi

. Now consider

(2.9) t̂kr =
∑

s

dki yi +
∑

s̄

dki(γ̂xi)

as an estimator of Tyk. The sub-script ‘r’ is used to denote the ratio population model for
the response variable. After simplification and assuming Nk

N ≈ nk
n , we get

(2.10) t̂kr =
∑

s dki yi∑
s dki xi

∑
s̄

dki xi =
N

n

[
tyk

nµxk

txk

]
.

The bias and MSE respectively, of t̂kr, are given by

(2.11) Bias(t̂klr) ∼=
λ

N
µyk

(
C∗2

xk − C∗
yxk

)
and

(2.12) MSE(t̂kr) ∼= λµ2
yk

(
C∗2

yk + C∗2
xk − 2C∗

yxk

)
,

where C∗2
yk =

σ∗2yk

µ2
yk

, C∗
xk=

σ∗2xk

µ2
xk

and C∗
yxk=

σ∗yxk

µyk µyk
. From (2.3) and (2.12), it can be inferred that

MSE(t̂kr) ≤ Var(t̂kh) if ρ∗yxk ≥
1
2

C∗
xk

C∗
yk

.

3. SAE UNDER RANDOMIZED RESPONSE TECHNIQUE

When the study variable is of sensitive nature, it is difficult to obtain 100% response
through direct response method. For improved response rate in such situations, survey statis-
ticians prefer to use RRT. Assuming quantitative study variable, and following [11], we use
the following scrambled response model

(3.1) z = ay + b ,

where y is the sensitive study variable which follows one of the population models given in
Section 2, a and b are two uncorrelated scrambling variables with means µa and µb, and
variances σ2

a and σ2
b respectively. Further, a and b are independent of the study variable y.

Note that respondents from each small area use the same scrambling variables a and b whose
distributions are unknown to the interviewer while the means and variances are known.
Taking expectation of Equation (3.1) with respect to randomization mechanism, we have
ER(z) =µay+µb. The transformed scrambled response is obtained as y= ER(z)−µb

µa
. A sample

unbiased estimate for y is ỹ = z−µb
µa

.
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3.1. Homogeneous Population Model (HPM)

When the underlying population model is homogeneous, i.e. when there is no covariate
affecting the outcome variable, a BLUP for the superpopulation parameter µyk is ˜̄yk = t̃yk/nk

which yields an estimator for Tyk given by

(3.2) t̃kh =
∑

s

dki ỹi +
∑

s̄

dki ˜̄yk = nk ˜̄yk + (Nk − nk) ˜̄yk =
N

n
t̃yk ,

where t̃yk =
∑

s dki ỹi. We assume that the sampling weights for the whole sample and the
sample within k-th domain are same, i.e. Nk

N ≈ nk
n . It is easy to show that t̃kh is an unbiased

estimator of population total Tyk with variance

(3.3) Var(t̃kh) = λ
(
θk σ̃

2
yk + θk(1− θk)µ2

yk

)
,

where σ̃2
yk = Var(ỹi | dki =1) = 1

µ2
a

Var(zi | dki =1), and

Var(zi | dki =1) = Vs
{
ER(zi | dki =1)

}
+ VR

{
ES(zi | dki =1)

}
= Es

(
σ2
a y

2
i + σ2

b | dki =1
)

+ Vs
(
µayi +µb | dki =1

)
= σ2

a µ2,yk + σ2
b + µ2

aσ
2
yk ,

(3.4)

where Es and Vs are the expectation and variance with respect to the data generating mech-
anism. Also µ2,yk is the second order raw moment for k-th area. Using value of σ̃2

yk from
(3.3), we get

Var(t̃kh) = λ
(
θkσ

2
yk + θk(1− θk)µ2

yk + θkψ
2
yk

)
,

Var(t̃kh) = Var(t̂kh) + λ
(
θkψ

2
yk

)
,(3.5)

where ψ2
yk = 1

µ2
a

(
σ2
a µ2,yk + σ2

b

)
. It is observed from (3.5) that Var(t̃kh) is always larger than

Var(t̂kh) as the second term is positive. For detailed derivation, see [1]. The Var(t̃kh) de-
creases with decrease in variance of the scrambled variables but this leads to reduction in
respondent’s privacy as well. Hence, the variance of the scrambled response models should
be of a reasonable size resulting in a proper tradeoff between respondent’s privacy and the
efficiency of the proposed estimators.

To improve efficiency for a fixed level of privacy protection, we use model relationship
between the available auxiliary variable and the study variable. Subsections 3.2 and 3.3
cover linear and ratio population models respectively that utilize the relationship between
the variables at unit level to increase efficiency.

3.2. Linear Population Model (LPM)

Assuming LPM, we find the predicted transformed scrambled response ỹi, Ui ∈ s̄. The
BLUP for αk and β are obtained by minimizing the sum of squared errors for the k-th area
as follows:

SSE =
∑

s

dki ẽ
2
i =

∑
s

dki(ỹi − αk − xiβ)2 ,
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where ˜̂αk = ˜̄yk −
˜̂
β x̄k and ˜̂

β =
P

s dki(ỹi−˜̄yk) (xi−x̄k)P
s dki(xi−x̄k)2

. The predictive estimator under LPM using
transformed scrambled response is given by

(3.6) t̃klr =
∑

s

dki ỹi +
∑

s̄

dki

( ˜̂αk + ˜̂
βxi

)
.

After some simplification, we get

t̃klr =
N

n
t̃yk + ˜̂

β

(
Txk −

N

n
txk

)
.

By same argument as given in Subsection 2.2, we have

(3.7) t̃klr =
N

n
t̃yk + β

(
Txk −

N

n
txk

)
.

For known β, t̃klr is unbiased for Tyk, with variance given by

(3.8) Var(t̃klr) = λ
(
σ̃∗2yk + β2σ∗2xk − 2βσ∗yxk

)
.

The optimum value of β is βopt =
σ∗yxk

σ∗2xk
with corresponding design optimum variance

(3.9) Var(t̃klr)opt = λ
(
1− ρ̃∗2yxk

)
σ̃∗2yk ,

where ρ̃∗yxk =
σ∗yxk

σ̃∗yk σ∗xk
. Equation (3.9) shows that t̃klr is always more efficient than t̃kh for any

correlation between y and x.

3.3. Ratio Population Model (RPM)

For the situation when there is a proportional relationship between the sensitive study
variable, and the auxiliary variable whose values are available for all population units and
the variance of the survey variable is also proportional to the auxiliary variable, the RPM is
often preferred. Consider (3.1), where y follows the ratio population model. The estimator
for γ which minimizes the sum of squared errors, i.e. SSE∗ =

∑
s dki

( ỹi−xiγ

x
1/2
i

)2, is given by

˜̂γ =
P

s dki ỹiP
s dki xi

. Consider the prediction problem as follows

(3.10) t̃kr =
∑

s

d̃ki ỹi +
∑

s̄

dki

(˜̂γxi

)
.

After simplification, we get

(3.11) t̃kr =
∑

s dki ỹi∑
s dki xi

∑
s̄

dki xi =
N

n

[
t̃yk

nµxk

txk

]
.

The bias and MSE of t̃kr are given by

(3.12) Bias(t̃klr) ∼=
λ

N
µyk

(
C∗2

xk − C∗
yxk

)
and

(3.13) MSE(t̃kr) ∼= λµ2
yk

(
C̃∗

yk + C̃∗
xk − 2C∗

yxk

)
,

where C̃∗2
yk =

σ̃∗2yk

µ2
yk

and C∗
yxk =

σ∗yxk

µyk µxk
. Equation (3.12) shows that the use of RRT to collect

response on the dependent variable does not affect the bias of ratio estimator. From (3.5)
and (3.13), it can be inferred that MSE(t̃kr) ≤ Var(t̃kh) if ρ̃∗yxk ≥

1
2

C∗
xk

C̃∗
yk

.
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4. NUMERICAL STUDY

For numerical validation of our proposed estimators, two real life data sets, one with
two small areas and the other with three small areas, are used. The detailed descriptions
along with summary statistics of the populations are given in following subsections.

Blood transfusion data

The data are taken from [37], where F , the frequency of donations, is the study variable,
T (Time in months since first donation) is taken as the covariate, and a binary variable
representing whether he/she donated blood in March 2007 (1 stands for donating blood;
0 stands for not donating blood) is taken as the area membership variable.

Players head circumference data

This data is taken from [4] which contains physical measures of N= 90 players forming
three groups, i.e. high school football players (Group 1), college football players (Group 2)
and Non-football players (Group 3), each having 30 students. The three groups represent the
small areas. The study variable y and the auxiliary variable x respectively are jaw width and
ear-to-top-of-head measurement of players. The scrambling variables a and b are generated
from Uniform distributions with different ranges.

Table 1: Summary statistics.

Parameter Data 1 Data 2

k 1 2 1 2 3

θk 0.7620 0.2380 0.3333 0.3333 0.3333

µyk 4.8018 7.7978 13.0833 10.0800 10.9467

µxk 4.8018 7.7978 14.7333 13.4533 13.6967

σ2
yk 22.5318 64.5916 1.0876 1.1520 1.4577

σ2
xk 605.4251 558.3500 0.8920 0.5702 0.3921

σyxk 76.3885 140.5756 0.5402 0.0870 0.0870
ρyxk 0.6540 0.7402 0.3333 0.3333 0.3333

Table 1 provides the summary statistics for the data sets. The theoretical results (TR)
are obtained using Variance/MSE expressions given in Section 2. The simulated results (SR)
are obtained using following algorithm:

1. Select a simple random sample of size n (100 and 30 for Populations I and II re-
spectively) without replacement from the populations described above and stratify
the populations according to the domain membership variable dk.
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2. Record information y and x for all small areas after generating values of scrambling
variables a and b from uniform distribution with different ranges.

3. Calculate the values of small area estimators under direct and randomized response
technique.

4. Repeat Steps 1–3 50000 times and obtain the simulated Variance, MSE and PRE.

The PRE in Table 2 are computed as PREr = Var(t̂kh)

MSE(t̂kr)
and PRElr = Var(t̂kh)

Var(t̂klr)
for t̂kr and

t̃klr are respectively while PREh is 100 for t̂kh. Table 2 gives the theoretical and simulated
PREs of the small area total estimators for different domains under direct response (without
using randomized response techniques) with both data sets. PREs in Tables 3 and 4 are
obtained in similar manner using the Variances and MSEs under RRT. The theoretical and
simulated values of PRE are reported in Tables 2–4 with notations TR and SR respectively.

Table 2: PREs of the SAE under direct response.

Type PREh PREr PRElr

Data I

k = 1
TR 100 215.864 216.839
SR 100 217.230 218.106

k = 2
TR 100 378.592 379.123
SR 100 370.443 375.775

Data II

k = 1
TR 100 13853.214 13862.216
SR 100 12993.771 14382.960

k = 2
TR 100 5134.249 5137.867
SR 100 4855.831 5352.376

k = 3
TR 100 6770.974 6770.974
SR 100 6371.760 7076.799

From Table 2, one can infer that for both data sets, total estimators under RPM and LPM (see
the last two columns) which utilize auxiliary information provide smaller variance than the
MSE of Total estimator under HPM. Further, estimator obtained through LPM outperforms
the other two competitors in all cases.

Tables 3 and Table 4 give a comparison of the three competing population models in
term of PREs for Data I and Data II respectively under randomized response. Going from top
to bottom in Tables 3 and 4, we observe that the PREs decrease with increase in variability
in the scrambling variables. Also, comparing Table 2 with Tables 3 and 4, we can infer that
the efficiency of the domain estimators decreases when using randomized response technique.
But that is expected given that RRT introduces noise in the data. Without RRT, the real
loss of efficiency will be much larger due to “invisible” response bias.
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Table 3: PRE of the SAE under randomized response for Data I.

a b Type PREh PREr PRElr

k = 1

U(2, 3)

U(0, 1)
TR 100 210.572 211.480
SR 100 210.726 211.501

U(0, 5)
TR 100 208.031 208.907
SR 100 207.984 208.938

U(1, 4)

U(0, 1)
TR 100 181.451 182.026
SR 100 179.096 179.553

U(0, 5)
TR 100 180.063 180.625
SR 100 177.685 178.235

k = 2

U(2, 3)

U(0, 1)
TR 100 363.439 363.921
SR 100 355.997 360.266

U(0, 5)
TR 100 360.746 361.220
SR 100 351.889 357.175

U(1, 4)

U(0, 1)
TR 100 284.007 284.270
SR 100 275.869 277.921

U(0, 5)
TR 100 282.689 282.949
SR 100 273.902 276.442

Table 4: PRE of the SAE under randomized response for Data II.

a b Type PREh PREr PRElr

k = 1

U(2, 3)

U(0, 1)
TR 100 3740.45 3740.97
SR 100 2624.11 2797.29

U(0, 5)
TR 100 3403.93 3404.35
SR 100 2368.88 2524.28

U(1, 4)

U(0, 1)
TR 100 631.56 631.57
SR 100 435.21 460.29

U(0, 5)
TR 100 623.77 623.78
SR 100 429.72 454.59

k = 2

U(2, 3)

U(0, 1)
TR 100 2578.63 2579.54
SR 100 1991.16 2127.92

U(0, 5)
TR 100 2318.17 2318.90
SR 100 1758.21 1875.70

U(1, 4)

U(0, 1)
TR 100 593.55 593.59
SR 100 424.67 447.19

U(0, 5)
TR 100 582.27 582.31
SR 100 416.73 438.87

k = 3

U(2, 3)

U(0, 1)
TR 100 2930.02 2930.02
SR 100 2203.50 2354.74

U(0, 5)
TR 100 2642.70 2642.70
SR 100 1967.09 2095.90

U(1, 4)

U(0, 1)
TR 100 608.22 608.22
SR 100 432.67 455.85

U(0, 5)
TR 100 598.12 598.12
SR 100 426.19 448.82
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5. CONCLUSION

In this study, an attempt for obtaining separate total estimates for the sensitive study
variable in each domain (small area) is made using the model relationship between the sen-
sitive study variable and the auxiliary variable. It is observed that the small area total
estimators under randomized response techniques possess larger variance (as they should) as
compared to the estimators obtained through direct responses. As the privacy and efficiency
move in opposite directions, one can’t improve both at the same time. Our proposed esti-
mators provide greater efficiency in estimating small area totals when an appropriate model
relationship between the study variable and the auxiliary variable is used. Our numerical
study with two real life data sets supports the theoretical findings. This is clear from the fact
that both PREr and PRElr are greater than PREh.
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REVSTAT – STATISTICAL JOURNAL 
 

 

Background 

Statistics Portugal (INE, I.P.), well aware of how vital a statistical culture is in 
understanding most phenomena in the present-day world, and of its responsibility in 
disseminating statistical knowledge, started the publication of a scientific statistical journal 
called Revista de Estatística. The original language used in this publication was Portuguese 
and the idea behind it was to publish it, three times a year, containing original research 
results, and application studies, namely in the economic, social and demographic fields. 
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