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Abstract:

• The breakdown point plays an important though at times controversial role in statis-
tics. In situations in which it has proved most successful there is a group of trans-
formations which act on the sample space and which give rise to an equivariance
structure. For equivariant functionals, that is those functionals which respect the
group structure, a non-trivial upper bound for the breakdown point was derived in
Davies and Gather (2005). The present paper briefly repeats the main results of
Davies and Gather (2005) but is mainly concerned with giving additional insight into
the concept of breakdown point. In particular, we discuss the attainability of the
bound and the dependence of the breakdown point on the sample or distribution and
on the metrics used in its definition.
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1. INTRODUCTION

The breakdown point is one of the most popular measures of robustness of

a statistical procedure. Originally introduced for location functionals (Hampel,

1968, 1971) the concept has been generalized to scale, regression and — with

more or less success — to other situations.

In Huber’s functional analytic approach to robustness breakdown is related

to the boundedness of a functional and the breakdown point is defined in terms of

the sizes of neighbourhoods on the space of distributions. A simple and intuitive

definition of the breakdown point but one restricted to finite samples, the finite

sample breakdown point, was introduced by Donoho (1982) and Donoho and

Huber (1983). Successful applications of the concept of breakdown point have

been to the location, scale and regression models in R
k and to models which are

intimately related to these (see for example Ellis and Morgenthaler, 1992, Davies

and Gather, 1993, Hubert, 1997, Terbeck and Davies, 1998, He and Fung, 2000,

Müller and Uhlig, 2001). The reason for this is that such models have a rich equiv-

ariance structure deriving from the translation or affine group operating on R
k.

By restricting the class of statistical functionals to those with the appropriate

equivariance structure one can prove the existence of non-trivial highest break-

down points (Davies and Gather, 2005), which in many cases can be achieved,

at least locally (Huber, 1981, Davies, 1993).

It is the aim of this paper to provide some additional insight into the

definition of the breakdown point, to point out the limits of the concept and to

give some results on the attainment of the upper bound.

We proceed as follows: Chapter 2 summarizes the definitions and theorems

of Davies and Gather (2005). Chapter 3 shows via examples that the breakdown

point is a local concept. Chapter 4 is devoted to the attainability of the bound

and Chapter 5 to the choice of metrics. Chapter 6 contains some concluding

remarks.

2. DEFINITIONS AND BOUNDS FOR THE BREAKDOWN

POINT

Let T be a functional defined on some subfamily PT of the family P of all

distributions on a sample space (X ,B(X )) which takes its values in some metric

space (Θ, D) with

(2.1) sup
θ1,θ2∈Θ

D(θ1, θ2) = ∞ .
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The finite sample breakdown point of T at a sample xn = (x1, ..., xn), xi ∈X ,

i = 1, ..., n, is defined as

(2.2) fsbp(T, xn, D) =
1

n
min

{

k ∈ {1, ..., n} : sup
Qn,k

D
(

T (Pn), T (Qn,k)
)

= ∞
}

where Pn =
∑n

i=1 δxi
/n and Qn,k is the empirical distribution of a replacement

sample with at least n−k points from the original sample xn.

Example 2.1. If T is the median functional Tmed defined on PT = P
with Θ = R, and D(θ1, θ2) = |θ1− θ2|, then

(2.3) fsbp(Tmed, x, D) =

⌊

n+1

2

⌋

/ n .

A distributional definition of the breakdown point requires a metric d on P
with

sup
P,Q∈P

d(P, Q) = 1 .

The breakdown point of a functional T at a distribution P ∈ PT w.r.t. d and

D is then defined by

(2.4) ǫ∗(T, P, d, D) = inf

{

ǫ > 0: sup
d(P,Q)<ǫ

D
(

T (P ), T (Q)
)

= ∞
}

where D
(

T (P ), T (Q)
)

:= ∞ if Q /∈ PT .

Example 2.2. Let P and D be as in Example 2.1 and d be the Kolmo-

gorov-metric dk(P, Q) = sup
x

|FP (x) − FQ(x)|. For the expectation functional TE

TE(P ) = E(P ) :=

∫

x dP (x) , PT =
{

P ∈ P : E(P ) exists
}

we have ǫ∗(TE , P, d, D) = 0 for any P ∈ PT , in contrast to the median for which

ǫ∗(Tmed, P, d, D) = 1/2.

As already pointed out in the introduction the derivation of a non-trivial

upper bound for the breakdown point requires a group structure. Assume that

G is a group of measurable transformations of the sample space X onto itself.

Then G induces a group of transformations of P onto itself via P g(B)=P (g−1(B))

for all sets B ∈B(X ). Let Hg = {hg : g ∈G} be the group of transformations

hg : Θ → Θ which describes the equivariance structure of the problem. A func-

tional T : PT → Θ is called equivariant with respect to G if and only if PT is

closed under G and

(2.5) T (P g) = hg

(

T (P )
)

for all g ∈ G, P ∈ PT .
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Let

(2.6) G1 :=
{

g ∈ G : lim
n→∞

inf
θ∈Θ

D
(

θ, hgn(θ)
)

= ∞
}

and define

(2.7) ∆(Q) := sup
{

Q(B) : B ∈ B(X ), g|B = ι|B for some g ∈ G1

}

where ι is the unit element of G. We cite the main result from Davies and Gather

(2005):

Theorem 2.1. Suppose that the metrics d and D satisfy the properties

given above and additionally

(2.8) d
(

αP +(1−α)Q1, αP +(1−α)Q2

)

≤ 1−α , P, Q1, Q2 ∈ P, 0 < α < 1 ,

(2.9) G1 6= ∅ .

Then for all G-equivariant functionals T : PT → Θ, for all P ∈PT and for all xn

we have respectively

a) ǫ∗(T, P, d, D) ≤
(

1 − ∆(P )
)

2
,

b) fsbp(T, xn, D) ≤
⌊

n − n ∆(Pn) + 1

2

⌋

/

n .

Proof: a) cf. Davies and Gather (2005).

b) The proof is similar to a) but it is not given in Davies and Gather (2005).

We present it here as it illustrates the simplicity of the idea of the finite sample

breakdown point. The basic idea of all such proofs may be found in Huber (1981)

although it was clearly known to Hampel (1975) who stated the breakdown point

of what is now known as the LMS estimator (see Rousseeuw, 1984). Donoho

and Huber (1983) give the first calculations for the finite sample breakdown

point both for multivariate location and for a high breakdown linear regression

estimator based on the multivariate location estimator of Donoho (1982). The

corresponding calculations for the LMS estimator may be found in Rousseeuw

(1984). Firstly we note that there are exactly n ∆(Pn) points in xn for which

g(xi) = xi for some g ∈ G1. We assume without loss of generality that these

are the sample points x1, ..., xn∆(Pn). If ∆(Pn) = 0 there are no such points and

some obvious alterations to the following proof are required. To ease the notation

we write

l(n) =

⌊

n − n ∆(Pn) + 1

2

⌋

.

We consider the sample y
∗
n,k given by

y
∗
n,k =

(

x1, ..., xn∆(Pn), ..., xn−l(n), gm(xn−l(n)+1), ..., g
m(xn)

)

for some m ≥ 1 and some g ∈ G1. We denote its empirical distribution by Q∗
n,k .
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The sample y
∗
n,k contains at least n − l(n) points of the original sample xn.

The transformed sample g−m(y∗
n,k) is equal to

(

x1, ..., xn∆(Pn), g−m(xn∆(Pn)+1), ..., g
−m(xn−l(n)), xn−l(n)+1, ..., xn

)

.

It contains at least n ∆(Pn)+ l(n) points of the original sample xn and as

n ∆(Pn) + l(n) ≥ n − l(n)

it contains at least n − l(n) points of xn. By the equivariance of T we have

T (Q∗g−m

n,k ) = hg−m

(

T (Q∗
n,k)

)

from which it follows

D
(

hg−m

(

T (Q∗
n,k)

)

, T (Q∗
n,k)

)

≤ D
(

T (Pn), T (Q∗
n,k)

)

+ D
(

T (Pn), T (Q∗g−m

n,k )
)

.

From lim
n→∞

inf
θ

D(θ, hgn(θ)) = ∞ for all g ∈ G1 we have

lim
m→∞

D
(

hg−m

(

T (Q∗
n,k)

)

, T (Q∗
n,k)

)

= ∞

and hence D
(

T (Pn), T (Q∗
n,k)

)

and D
(

T (Pn), T (Q∗g−m

n,k )
)

cannot both remain

bounded. We conclude that for any k ≥
⌊n−n∆(Pn)+1

2

⌋

sup
Qn,k

D
(

T (Pn), T (Qn,k)
)

= ∞

from which the claim of the theorem follows.

For examples of Theorem 2.1 we refer to Davies and Gather (2005).

3. THE BREAKDOWN POINT IS A LOCAL CONCEPT

As seen above the median Tmed has a finite sample breakdown point of

⌊(n+1)/2⌋ at every real sample xn and this is the highest possible value for

translation equivariant location functionals. If we consider scale functionals then

the situation is somewhat different. The statistical folklore is that the highest

possible finite sample breakdown point for any affine equivariant scale functional

is ⌊n/2⌋/n and that this is attained by the median absolute deviation functional

TMAD. Some authors (Croux and Rousseeuw, 1992, Davies, 1993) are aware that

this is not correct as is shown by the following sample

(3.1) x11 =
(

1.0, 1.8, 1.3, 1.3, 1.9, 1.1, 1.3, 1.6, 1.7, 1.3, 1.3
)

.
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The fsbp of TMAD at this sample is 1/11. This can be seen by replacing the data

point 1.0 by 1.3 so that for the altered data set TMAD= 0 which is conventionally

defined as breakdown. If a sample has no repeated observations then TMAD has a

finite sample breakdown point of ⌊n/2⌋/n and this is indeed the highest possible

finite sample breakdown point for a scale functional. The difference between

the maximal finite sample breakdown points for location and scale functionals

is explained by Theorem 2.1. For the sample (3.1) we have ∆(Pn) = 5/11 and

the theorem gives

fsbp
(

TMAD, x11, D
)

≤ 3/11 .

For a sample x̃11 without ties we have ∆(Pn) = 1/n and the theorem yields

fsbp
(

TMAD, x̃11, D
)

≤
⌊n

2

⌋

/

n = 5/11 .

From the above it follows that TMAD may or may not attain the upper bound.

We study this in more detail in the next chapter.

4. ATTAINING THE BOUND

4.1. Location functionals

From Theorem 2.1 above it is clear that the maximum breakdown point

for translation equivariant location functionals is 1/2. This bound is sharp as

is shown by the location equivariant L1-functional

(4.1) T (P ) = argminµ

∫

(

‖x−µ‖ − ‖x‖
)

dP (x) .

In general the L1-functional is not regarded as a satisfactory location functional

as it is not affine equivariant in dimensions higher than one. For an affinely

equivariant location functional the set G1 of (2.6) is now the set of pure non-zero

translations and it follows that ∆(P ) = 0 for any distribution P . Theorem 2.1

gives an upper bound of 1/2 which is clearly attainable in one dimension.

It is not however clear whether this bound is attainable in higher dimensions.

Work has been done in this direction but it is not conclusive (Rousseeuw and

Leroy, 1987, Niinimaa, Oja and Tableman, 1990, Lopuhaä and Rousseeuw, 1991,

Gordaliza, 1991, Lopuhaä, 1992, Donoho and Gasko, 1992, Davies and Gather,

2005, Chapter 5 and the Discussion of Rousseeuw in Davies and Gather, 2005).

We first point out that the bound 1/2 is not globally sharp. Take a dis-

crete measure in R
2 with point mass 1/3 on the points x1 = (0, 1), x2 = (0,−1),

x3 = (
√

3, 0). The points form a regular simplex. For symmetry reasons every
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affinely equivariant location functional must yield the value (1/
√

3, 0). On replac-

ing (
√

3, 0) by (η
√

3, 0) it is clear that each affinely equivariant location functional

must result in (η/
√

3, 0). On letting η →∞ it follows that the breakdown point

of every affinely equivariant location functional cannot exceed 1/3. In k dimen-

sions one can prove in a similar manner that 1/(k+1) is the maximal breakdown

point for points on a regular simplex with k+1 sides.

In spite of the above example we now show that there are probability dis-

tributions at which the finite sample replacement breakdown point is 1/2 even if

this cannot be obtained globally. We consider a sample xn = (x1, ..., xn) of size n

in R
k and form the empirical measure Pn given by Pn = 1/n

∑n
i=1 δxi

. To obtain

our goal we define an appropriate affinely equivariant location functional T

at PA
n for all affine transformations A and also at all measures of the form P ∗A

n .

Here P ∗
n is any empirical measure obtained from xn by altering the values of

at most ⌊(n−1)/2⌋ of the xi. The new sample will be denoted by x
∗
n= (x∗

1, ..., x
∗
n).

We have to show that the values of T (P ∗A
n ) can be defined in such a way that

T (PA
n ) = A

(

T (Pn)
)

,(4.2)

T (P ∗A
n ) = A

(

T (P ∗
n)

)

(4.3)

and

sup
P ∗

n

∣

∣T (Pn) − T (P ∗
n)

∣

∣ < ∞ .(4.4)

This is done in Appendix A.

We note that the Sample conditions 1 and 2 in Appendix A are satisfied

for an i.i.d. Gaussian sample of size n if n is sufficiently large. We indicate how

this may be shown in Appendix B.

4.2. Scatter functionals

At the sample (3.1) above the median absolute deviation TMAD has a finite

sample breakdown point of 1/11 compared with the upper bound of 3/11 given

by Theorem 2.1. We consider a modification of TMAD as defined in Davies and

Gather (2005) which attains the upper bound.

For a probability measure P the interval I(P, λ) is defined by

I(P, λ) =
[

med(P )−λ, med(P )+λ
]

.

We write

∆(P, λ) = max
{

P ({x}) : x ∈ I(P, λ)
}

.

The new scale functional T ∗
MAD is defined by

T ∗
MAD(P ) = min

{

λ : P
(

I(P, λ)
)

≥
(

1+∆(P, λ)
)

/2
}

.
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We shall show

(4.5) fsbp
(

T ∗
MAD, xn, D

)

=

⌊

n − n ∆(Pn) + 1

2

⌋

/

n .

We consider a replacement sample x
′
n with

n1 + n2 = m <
⌊

(

n − n ∆(Pn) + 1
)

/2
⌋

points replaced and with empirical distribution P ′
n. We show firstly that T ∗

MAD(P ′
n)

does not explode. Let λ′ be such that the interval
[

med(P ′
n)−λ′, med(P ′

n)+λ′
]

contains the original sample xn. As the median does not explode we see that

λ′ remains bounded over all replacement samples. Clearly if T ∗
MAD(P ′

n) is to

explode x
′
n must contain points outside of this interval. We denote the num-

ber of such points by n1. We use n2 points to increase the size of the largest

atom of x
′
n in the interval. This is clearly done by placing these points at

the largest atom of xn. The size of the largest atom of x
′
n in the interval

is therefore at most ∆(Pn) + n2/n. It follows that T ∗
MAD(P ′

n)≤ λ′ if the inter-

val contains at least
(

n + n ∆(Pn) + n2

)

/2 observations. This will be the case

if n−n1 ≥
(

n + n ∆(Pn) + n2

)

/2 which reduces to n1 + n2/2 ≤ n
(

1−∆(Pn)
)

/2

which holds as

n1 + n2/2 ≤ n1 + n2 <
⌊

n
(

1 − ∆(Pn) + 1
)

⌋

/

2 .

It remains to show that T ∗
MAD(P ′

n) does not implode to zero. For this to

happen we would have to be able to construct a replacement sample for which the

interval I(P ′, λ) is arbitrarily small but for which P ′
(

I(P ′, λ)
)

≥
(

1+∆(P ′, λ)
)

/2.

In order for the interval to be arbitrarily small it must contain either no points

of the original sample xn or just one atom. In the latter case we denote the size

of the atom by ∆1(Pn). Suppose we replace n1+n2 points and that the n2 points

form the largest atom in the interval I(P ′, λ). We see that if n2 ≥ n ∆1(Pn) then

n1 + n2 + n ∆1(Pn) ≥ (n+n2)/2

which implies

2n1 + 2n2 ≥ 2n1 + n2 + n ∆1(Pn) ≥ n > n − n ∆(Pn)

which contradicts n1 + n2 <
⌊

n
(

1−∆(Pn)+1
)⌋

/2. If the n2 replacement points

do not compose the largest atom then this must be of size at least ∆1(Pn) which

implies

n1 + n2 + n ∆1(Pn) ≥
(

n + n ∆1(Pn)
)

/2

and hence

2n1 + 2n2 ≥ n − n ∆1(Pn) ≥ n − n ∆(Pn)

which again contradicts n1 + n2 <
⌊

n
(

1 − ∆(Pn) + 1
)⌋

/2. We conclude that

T ∗
MAD(P ′

n) cannot implode, and thus (4.5) is shown.
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5. THE CHOICE OF THE METRICS d AND D

5.1. The metric d

Considering the parts a) and b) of Theorem 2.1 we note that there is

in fact a direct connection between the two results. We consider the total varia-

tion metric dtv defined by

dtv(P, Q) = sup
B∈B(X )

∣

∣P (B) − Q(B)
∣

∣ .

If B(X ) “shatters” every finite set of points in X then

dtv(Pn, P ∗
n) = k/n

where Pn denotes the empirical measure deriving from (x1, ..., xn) and P ∗
n that

deriving from (x∗
1, ..., x

∗
n) with the two samples differing in exactly k points.

Suppose now that ǫ∗(T, Pn, dtv, D) =
(

1 − ∆(Pn)
)

/2. If k < n
(

1 − ∆(Pn)
)

/2

then breakdown in the sense of finite sample breakdown point cannot occur and

we see that

(5.1) fsbp
(

T, xn, D
)

≥
⌊

n − n ∆(Pn)

2

⌋

/

n .

Unfortunately the inequality of Theorem 2.1 b) seems not to be provable in the

same manner.

We point out that the breakdown point is not necessarily the same for all

metrics d. A simple counterexample is provided by the scale problem in R. If we

use the Kolmogorov metric then the breakdown point of TMAD at an atomless

distribution is 1/4 (Huber, 1981, page 110). However if we use the Kuiper metric

d1
ku defined in (5.3) below then the breakdown point is 1/2 in spite of the fact that

both metrics satisfy the conditions of the theorem. More generally if d′ and d′′

are two metrics satisfying sup
P,Q∈P

d(P, Q) = 1 and (2.8) and such that d′≤ d′′ then

(5.2) ǫ∗(T, P, d′, D) ≤ ǫ∗(T, P, d′′, D) ≤
(

1 − ∆(P )
)

/2 .

In particular if ǫ∗(T, P, d′, D) =
(

1−∆(P )
)

/2 then ǫ∗(T, P, d′′, D) =
(

1−∆(P )
)

/2.

A class of ordered metrics is provided by the generalized Kuiper metrics dm
ku

defined by

(5.3) dm
ku(P, Q) = sup

{

∣

∣

∣

∣

m
∑

k=1

(

P (Ik)−Q(Ik)
)

∣

∣

∣

∣

: I1, ..., Im disjoint intervals

}

.

We have

(5.4) d1
ku ≤ ... ≤ dm

ku .
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For further remarks on the choice of d we refer to Davies and Gather (2005),

Rejoinder and for a related but different generalization of the Kuiper metric of

use in the context of the modality of densities we refer to Davies and Kovac

(2004).

5.2. The metric D

As we have seen in the case of d above there seems to be no canonical choice:

different choices of d can lead to different breakdown points. A similar problem

exists with respect to the metric D on Θ. In the discussion of Tyler in Davies and

Gather (2005) it was also pointed out that it might be difficult to achieve (2.1)

when Θ is a compact space. This problem is discussed in the Rejoinder of Davies

and Gather (2005), Chapter 6, and solved in Davies and Gather (2006) with

applications to directional data.

We now indicate a possibility of making D dependent on d. The idea is that

two parameter values θ1 and θ2 are far apart with respect to D if and only if

the corresponding distributions are far apart with respect to d. We illustrate

the idea using the location problem in R. Suppose we have data with empirical

distribution Pn and two values of the location parameter θ1 and θ2. We trans-

form the data using the translations θ1 and θ2 which gives rise to two further

distributions Pn( · − θ1) and Pn( · − θ2). If these two distributions are clearly dis-

tinguishable then d
(

Pn( · − θ1), Pn( · − θ2)
)

will be almost one. An opposed case

is provided by an autoregressive process of order one. The parameter space is

Θ = (−1, 1) and this may be metricized in such a manner that D(θ1, θ2) tends to

infinity for fixed θ1 as θ2 tends to the boundary. However values of θ close to, on,

or even beyond the boundary, may not be empirically distinguishable from values

of θ in the parameter space. A sample of size n = 100 generated with θ1 = 0.95

is not easily distinguishable from a series generated with θ2 = 0.9999 even though

D(θ1, θ2) is large.

We now give a choice of D in terms of d and such that (2.1) is satisfied.

We set

G(θ1, θ2) =
{

g ∈ G : hg(θ1) = θ2

}

and then define D by

(5.5) D(θ1, θ2) = DP (θ1, θ2) = inf
g∈G(θ1,θ2)

∣

∣ log
(

1− d(P g, P )
)
∣

∣ .

The interpretation is that we associate P with the parameter value θ1 and P g

with the parameter value θ2. The requirement (2.1) will only hold if d(P g, P )

may be arbitrarily close to one so that the distributions associated with θ1 and θ2

are as far apart as possible. It is easily checked that D defines a pseudometric
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on Θ, which is sufficient for our purposes; namely DP ≥ 0, DP is symmetric and

satisfies the triangle inequality. In some situations it seems reasonable to require

that d and D be invariant with respect to the groups G and HG respectively.

If d is G-invariant, i.e.

d(P, Q) = d(P g, Qg), for all P, Q ∈ P, g ∈ G ,

then D, defined by (5.5), inherits the invariance, i.e.

D(θ1, θ2) = D
(

hg(θ1), hg(θ2)
)

, for all θ1, θ2 ∈ Θ, g ∈ G .

The G-invariance of d can often be met.

6. FINAL REMARKS

We conclude with a small graphic showing the connections between all

ingredients which are necessary for a meaningful breakdown point concept.

G

(X ,B(X ),P)

HG

Θ
T

d D

�
��

@
@@

�
��

@
@@

Figure 1: Connections.

We point out that each object in this graphic has an important influence on the

breakdown point and its upper bound:

• ǫ∗(T, P, d, D) depends on P as shown in Chapter 3, and it depends on

the metrics d and D as discussed in Chapter 5.

• It is the equivariance structure w.r.t. the group G which allows to

prove an upper bound for ǫ∗(T, P, d, D) and it is the condition G1 6= ∅
which provides the main step in the proof. In particular, the choice

of the group G determines ∆(P ), thereby the upper bound, as well as

its attainability. For many P, T and G the attainability of the bound

remains an open problem.
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APPENDIX A

We consider the constraints imposed upon us when defining T (P ∗
n).

We start with the internal constraints which apply to each P ∗
n without reference

to the other measures.

• Case 1: P ∗A1
n 6=P ∗A2

n for any two different affine transformations A1 and A2.

This is seen to reduce to P ∗A
n 6= P ∗

n for any affine transformation A which

is not the identity. If this is the case then there are no restrictions on

the choice of T (P ∗
n). Having chosen it we extend the definition of T to all

the measures P ∗A
n by T (P ∗A

n ) = A
(

T (P ∗
n)

)

.

• Case 2: P ∗A
n =P ∗

n for some affine transformation A which is not the iden-

tity. If this is the case then A is unique and there exists a permutation π of

{1, ..., n} such that A(xi) = xπ(i). This implies that for each i we can form

cycles
(

xi, A(xi), ..., Ami−1(xi)
)

with Ami(xi) = xi. From this we see that for some sufficiently large m

Am(xi) = xi for all i. On writing A(x) = α(x) + a we see that if the xi,

i = 1, ..., n, span R
k then αm = I where I denotes the identity transforma-

tion on R
k. This implies that α must be an orthogonal transformation and

that

(A.1)
m−1
∑

j=0

αj(a) = 0 .

It follows that if we set T (P ∗
n) = µ, we must have A(µ) = µ for any affine

transformation for which P ∗A
n = P ∗

n . The choice of µ is arbitrary subject

only to these constraints. Having chosen such a µ the values of T (P ∗B
n ) are

defined to be B(µ) for all other affine transformations B.

The above argument shows the internal consistency relationships which

must be placed on T so that T (P ∗A
n ) = A

(

T (Pn)
)

for any affine transformation A.

We now consider what one may call the external restrictions.

• Case 3: Suppose that P ∗
n is such that there does not exist a P ′∗

n and an

affine transformation A such that P ∗A
n = P ′∗

n . In this case the choice of

T (P ∗
n) is only restricted by the considerations of Case 2 above if that case

applies and otherwise not at all.

• Case 4: Suppose that P ∗
n is such that there exists a P ′∗

n and an affine

transformation A such that P ∗
n = P ′∗A

n . In this case we require T (P ∗
n) =

A
(

T (P ′∗
n )

)

.
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We now place the following conditions on the sample xn:

Sample condition 1: There do not exist two distinct subsets of xn each

of size at least k+2 and an affine transformation A which transforms one subset

into the other.

Sample condition 2: If
∣

∣A(xn) ∩ B(xn)
∣

∣ ≥
⌊

(n+1)/2
⌋

− 2k

for two affine transformations A and B then A = B.

Sample condition 3: k <
⌊

(n−1)/2
⌋

.

We now construct a functional T which satisfies (4.2), (4.3) and (4.4).

If the sample conditions hold then for any affine transformation A 6= I we have

PA
n 6= P ∗

n where P ∗
n derives from a subset x

∗
n which differs from xn by at least one

and at most
⌊

(n−1)/2
⌋

points. This follows on noting that at most k+1 of the

A(xi) belong to xn by Sample condition 1. Because of this we can define T (Pn)

without reference to the values of T (P ∗
n). We set

T (Pn) =
1

n

n
∑

i=1

xi .

If P ∗
n satisfies the conditions of Case 3 above we set

T (P ∗
n) =

1

n∗

n∗

∑

i=1

xπ(i)

where the xπ(i) are those n∗ ≥
⌈

(n + 1)/2
⌉

points of the sample xn which also

belong to the sample x
∗
n. Finally we consider Case 4 above. We show that the

sample assumptions and the condition P ∗
n = P ′∗A

n uniquely determine the affine

transformation A. To see this we suppose that there exists a second affine trans-

formation B and a distribution P ′′∗
n such that P ∗

n = P ′′∗B
n . Let x∗

π(1), ..., x
∗
π(N ′)

denote those points of x
∗
n not contained in the sample xn. Because of Sample

condition 1 this set contains at least
⌈

(n+1)/2
⌉

− k− 2 points of the form A(xi).

Similarly it also contains at least
⌈

(n + 1)/2
⌉

− k − 2 points of the form B(xi).

The intersection of these two sets is of size at least
⌊

(n+1)/2
⌋

− 2k and we may

conclude from Sample condition 2 that A = B. The representation is therefore

unique. Let xπ(1), ..., xπ(m) be those points of xn which belong to the sample x
′∗
n

and for which A(xπ(1)), ..., A(xπ(m)) belong to the sample xn. It is clear that

m ≥ 1. We define

T (P ′∗
n ) =

1

m

m
∑

i=1

xπ(i)

and by equivariance

T (P ∗
n) =

1

m

m
∑

i=1

A
(

xπ(i)

)

.
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It follows that T (P ∗
n) is well defined and in both cases the sums involved come

from the sample xn. The functional T is extended to all Pn∗B and P ′
n∗B by affine

equivariance. In all cases the definition of T (P ∗
n) is as the mean of a subset of xn.

From this it is clear that (4.4) is satisfied.

APPENDIX B

We now show that Sample conditions 1 and 2 hold for independent random

samples X1, ..., Xn with probability one. Let A=A+a and B=B+b with A and B

nonsingular matrices and a and b points in R
k. We suppose that A 6= B. On tak-

ing differences we see that there exist variables Xi1 , ..., Xik+1
and Xj1 , ..., Xjk+1

such that

A(Xil−Xik+1
) = B(Xjl

−Xjk+1
) , j = 1, ..., k .

This implies that B−1A and B−1(b−a) are functions of the chosen sample points

B−1A = C
(

Xi1 , ..., Xik+1
, Xj1 , ..., Xjk+1

)

,
(B.1)

B−1(b−a) = c
(

Xi1 , ..., Xik+1
, Xj1 , ..., Xjk+1

)

.

For n sufficiently large there exist four further sample points Xi, i = 1, ..., 4

which are not contained in
{

Xi1 , ..., Xik+1
, Xj1 , ..., Xjk+1

}

and for which

A(X1) + a = B(X2) + b , A(X3) + a = B(X4) + b .

This implies

(B.2) B−1A(X3 − X1) = X4 − X2 .

However as the Xi, i = 1, ..., 4, are independent of Xi1 , ..., Xik+1
, Xj1 , ..., Xjk+1

it follows from (B.1) that (B.2) holds with probability zero. From this we conclude

that A = B. Similarly we can show that a = b and hence A = B.
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1. INTRODUCTION

Most statistical problems are defined in terms of loss functions in the sense

that loss functions define what a “good” estimator or a “good” prediction is.

This paper discusses some aspects of the choice of a loss function. The main

message of the paper is that the task of choosing a loss function is about the

translation of an informal aim or interest that a researcher may have in the given

application into the formal language of mathematics. The choice of a loss function

cannot be formalized as a solution of a mathematical decision problem in itself,

because such a decision problem would require the specification of another loss

function. Therefore, the choice of a loss function requires informal decisions,

which necessarily have to be subjective, or at least contain subjective elements.

This seems to be acknowledged somewhat implicitly in the decision theoretic

literature, but we are not aware of any sources where this is discussed in detail.

Several different uses of loss functions can be distinguished.

(a) In prediction problems, a loss function depending on predicted and

observed value defines the quality of a prediction.

(b) In estimation problems, a loss function depending on the true pa-

rameter and the estimated value defines the quality of estimation.

As opposed to prediction problems, this assumes a statistical model

to hold, which defines the parameter to be estimated. The true param-

eter value in an estimation problem is generally unobservable, while

in a prediction problem the “truth” is observable in the future.

(c) Definition of estimators: many estimators (such as least squares or

M-estimators) are defined as optimizers of certain loss functions which

then depend on the data and the estimated value. Note that this

is essentially different from (a) and (b) in the sense that the least

squares estimator is not necessarily the estimator minimizing the

mean squared estimation error or the squared prediction error.

There are several further uses of loss functions, which won’t be treated in

the present paper, for instance defining optimal testing procedures, Bayesian risk,

etc.

While general loss functions have been treated in the literature1, versions of

the squared loss function are used in a vast majority of applications of prediction

and estimation problems (note that UMVU estimation is a restricted optimization

of a squared loss function). Main reasons for this seem to be the simplicity of

the mathematics of squared loss and the self-confirming nature of the frequent

1See, for instance, Lehmann and Casella ([6]), who mainly use squared loss, but discuss
alternatives in several chapters.
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use of certain “standard” methods in science. However, if prediction methods are

compared using nonparametric resampling techniques such as cross-validation

and bootstrap, there is no computational reason to stick to the squared loss, and

other loss functions can be used. Robustness aspects of loss functions have been

discussed previously by Ronchetti, Field and Blanchard ([9]) and Leung ([7]).

In Section 2, the subject-matter dependent design of a loss function in

a business application using robust regression is discussed to give an illustrating

example of the “translation problem” mentioned above and to motivate some of

the discussion in the following sections.

In Section 3, the implications of the different statistical uses of loss func-

tions (a), (b) and (c) above are explored in more detail. The question whether

the negative loglikelihood can be considered as the “true” objective loss function

in estimation is discussed.

In Section 4, some philosophical aspects are treated. In particular, the con-

cepts of subjectivity and objectivity, emphasizing the role of subjective decisions

in the choice of loss functions, and the standardizing role of communication in

the scientific community are discussed. Finally, a brief conclusion is given.

2. LOCATIONS OF RESTAURANTS: A CASE STUDY

The case study presented in this section is about a prediction problem

in a business application. Because the original study is confidential, the story

presented here is made up, and the original data are not shown. The values and

rankings in Tables 1 and 2, however, are authentic (absolute and squared losses

have been multiplied by a constant).

A restaurant chain wanted to predict the turnover for new branches,

depending on the following six independent variables:

• number of people living in a (suitably defined) neighborhood,

• number of people working or shopping at daytime in the neighborhood,

• number of branches of competitors in the neighborhood,

• size of the branch,

• a wealth indicator of the neighborhood,

• distance to the next branch of the same chain.

The results are to be used to support decisions such as where to open new

branches, and what amount of rents or building prices can be accepted for par-

ticular locations. Data from 154 already existing branches on all the variables
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were available. In our study we confined ourselves to finding a good linear regres-

sion type prediction rule, partly because the company wanted to have a simple

formula, and partly because an alternative (regression trees) had already been

explored in a former project.

The data are neither apparently nonlinear, nor heteroscedastic in any clear

systematic way. However, there are obvious outliers. We decided to choose the

best out of several more or less robust linear regression estimators using leave-

one-out cross-validation (LOO-CV). In the real study, choice of transformations

of variables and variable selection have also been considered, but this doesn’t add

to the discussion of interest here.

Note that LOO-CV processes all data points in the same manner, which

means that all observations are treated as if they were a representative sample

from the underlying population of interest. Particularly, outliers are treated in

the same way as seemingly more typical data points (but may be weighted down

implicitly, see below). This makes sense if there is no further subject matter

information indicating that the outliers are erroneous or atypical in a way that

we would not expect similar observations anymore in the future. In the given

case study, outlying observations are not erroneous and stem from restaurants at

some locations with special features. It may well be possible that further outliers

occur in the future for similar reasons.

The estimators we took into account were

• the least squares (LS)-estimator,

• the least median of squares (LMS)-estimator as suggested by Rousseeuw

([10]),

• Huber’s M-estimator for linear regression with tuning constant k=1.345

to produce 95% efficiency for normal samples, see Huber ([5]),

• an M-estimator for linear regression using the “bisquared” objective

function with tuning constant k = 4.685 to produce 95% efficiency for

normal samples, see Western ([13]),

• the MM-estimator suggested by Yohai ([14]) tuned to 95% efficiency

for normal samples.

In principle, it is reasonable to include M-/MM-estimators tuned to smaller effi-

ciency as well, which will then potentially downweight some further outliers.

However, we compared several tunings of the MM-estimator in one particular

situation, from which we concluded that not too much gain is to be expected

from smaller tunings than 95% efficiency (larger efficiencies can be better, but

our results on this are quite unstable).

All estimators were used as implemented in R (www.R-project.org), but

the implementations we used for this project have been replaced by new ones
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in the meantime (in packages “MASS” and “robustbase”). The scale estimator

used for the two M-estimators was a re-scaled median absolute deviance (MAD)

based on the residuals (as implemented in the function rlm).

The estimators have been compared according to the estimated expected

prediction error

(2.1)
1

n

n
∑

i=1

L(yi, ŷ−i) ,

where n is the number of observations, y1, ..., yn are the observed turnovers, and

ŷ−i is the predicted value of the turnover for yi from applying the linear regression

method to the data omitting the i th observation. L is a loss function, of which

the design will be discussed in the following.

Note that (2.1) already implies some decisions. Firstly, L is defined here

to depend on yi and y−i only, but not directly on the values of the independent

variables of the i th observation. In general, this restriction is not required, but

it is justified in the present setup by the fact that the company didn’t specify

any particular dependence of their tolerance of prediction errors on the values of

the independent variables, and there is no obvious subject-matter reason in the

present study for such a dependence to be needed. This is a first illustration of

our major principle to translate the informal interests and aims of those who use

the results in the formal mathematical language.

Secondly, it is part of the design of the loss function not just to choose L,

but also to decide about how the values of L(yi, ŷ−i) should be aggregated.

Their mean is used in (2.1), but instead, their maximum, their median, another

quantile or a trimmed mean could be chosen as well. Note that there is some

interaction between the choice of L and the choice of how the values of L are

to be aggregated. For example, under the assumption that we would like to do

something robust against outliers, the choice of a bounded L-function bounds the

influence of extreme prediction errors in itself and allows therefore the aggrega-

tion of the L-values in a less robust manner such as taking their mean. For the

present study, we confine ourselves to the mean, of which the interpretation is

that the prediction error of every single observation is judged as equally impor-

tant to us, and we will deal with the influence of extreme observations via the

choice of L.

As mentioned before, the “standard” loss function for this kind of prob-

lem is defined by L2(y, ŷ) = (y − ŷ)2, but because we use LOO-CV, there is

no mathematical reason to use L = L2.

One of the decisions to make is whether L should be symmetric. This means

that a negative prediction error is judged as causing the same loss as a positive

error of the same absolute value. This is difficult to judge in the present situation.
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It could be argued that it is not as bad for the company to underestimate the

turnover at a particular location than to overestimate it, because the money spent

by the company on a branch with overestimated turnover may be lost.

However, because the prediction should guide the decision whether a branch

should be opened in the first place, how much rent should be paid and also

how the branch will be initially equipped, underestimation of the turnover may

have serious consequences as well, as offers for good locations may be turned

down or under-equipped. Though the effects of over- and underestimation can

be considered to be asymmetric in the present setup, we decided to stick to

symmetric loss functions, meaning that the loss of paid money is treated as equally

bad as the loss of money which is not earned because of a missed opportunity.

A main feature of L2 is its convexity, which means that the differences

between high prediction errors are assessed as more important than differences

between small prediction errors. As an example, consider two prediction rules

that only differ with respect to their cross-validated predictions of two data points,

y1 and y2. Suppose that for rule 1, y1−ŷ−1 =10,000, y2−ŷ−2 =−10, and for rule 2,

y1− ŷ−1 = 9,990, y2− ŷ−2 =−20 (the units of y don’t have a particular meaning

here because we have to use artificial values anyway, but you may imagine them

to mean £ 1,000 a year). L2 favours rule 2 in this situation. But is this adequate?

Going back to the discussion above, if the values could be interpreted as

earned (or lost) money, the L1-loss (L1(y, ȳ) = |y− ȳ|) seemed to be more ade-

quate, because it assesses both rules as equally good, based on the fact that they

both cause the same direct or indirect financial loss of 10,010 units. For the

restaurant case, switching from L2 to L1-loss makes a big difference in terms of

the quality ranking of the methods, as can be seen in Table 1.

Table 1: Ranking of regression methods and loss function values
(multiplied by two different constants, for L1 and L2);
the higher the rank, the better the result in terms of (2.1),
using L=L2 and L=L1, evaluated on the restaurant data.

L2 L1

1. M-Huber 3203 1. MM 2205

2. LS 3235 2. M-Huber 2219

3. MM 3524 3. M-Bisquare 2247

4. M-Bisquare 3651 4. LS 2274

5. LMS 3692 5. LMS 2278

However, the situation is more complex. Firstly, the data made available

to us are about turnover and not about profit (a reason for this may be that

for the accurate prediction of profits factors carry a higher weight that rather
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have to do with management decisions than with the location of the branch).

Usually, profits are less sensitive against differences between two large values of

turnovers than against the same absolute differences between two smaller values

of turnovers. Therefore, more tolerance is allowed in the prediction of larger

yi-values.

Secondly, the data give turnovers over a long period (three years, say),

and after a new branch has been opened, if it turns out after some months that

the turnover has been hugely wrongly predicted, the management has several

possibilities of reaction, ranging from hiring or firing staff over special offers and

campaigns attracting more customers to closing the branch.

Therefore, if predictions are hugely wrong, it matters that they are hugely

wrong, but it doesn’t matter too much how wrong they exactly are. This means

that, at least for large absolute errors, the loss function should be concave if not

constant. Actually we chose a function which is constant for large absolute errors,

because we could give the lowest absolute error above which the loss function is

constant a simple interpretation: above this error value, predictions are treated

as “essentially useless” and it doesn’t matter how wrong they precisely are. This

interpretation could be communicated to the company, and the company was

then able to specify this limiting value. The design of a concave but strictly

increasing function would have involved much more complicated communication.

The company initially specified the critical value for “usefulness” as 10% of

the true turnover, i.e., they were concerned about relative rather than absolute

error, which motivated the following loss function:

Lc(y, ŷ) =















(y− ŷ)2

y2
:

(y− ŷ)2

y2
≤ c2

c2 :
(y− ŷ)2

y2
> c2 ,

c = 0.1. Below the cutoff value c, we have used a squared function of the rela-

tive error. Two intuitive alternatives would be to choose the L1-norm of the rela-

tive error below c or a concave function, possibly the square root, see Figure 1.

Of course, an infinite number of other convex or concave functions could be

chosen, but for pragmatic reasons it is necessary to discuss just a small number of

possible choices, between which the differences can be given a clear interpretation.

The interpretation of L1 here is again that all differences between relative

errors are treated as equally important, be they between relatively large or rela-

tively small errors. The concave function considers differences between small

errors as more important. To optimize this function, it would be advantageous

to predict some (maybe very few) observations very well, while the precise rela-

tive error values for all observations causing a bit larger prediction don’t matter

too much. Optimizing the convex square function, on the other hand, means to

try as much as possible observations to achieve a relative prediction error below c,
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while differences between small errors don’t have a large influence. Because the

company is interested in useful information about many branches, rather than

to predict few branches very precisely, we chose the squared function below c.
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0.
00

0.
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0.
10

0.
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)

Figure 1: Bounded functions of the relative prediction error r,
the lower part being squared, L1 and square root.

Unfortunately, when we carried out the comparison, it turned out that

the company had been quite optimistic about the possible quality of prediction.

Table 2 (left side) shows the ranking of the estimators, but also the number

of observations of which the relative prediction error has been smaller than c,

i.e., for which the prediction has not been classified as “essentially useless”.

Table 2: Ranking and loss function values of regression methods
in terms of (2.1), using L = Lc with c = 0.1 and c = 0.2.
The number of observations of which the prediction has
not been classified as “essentially useless” is also given.

Ranking # obs. 107∗ Ranking # obs. 106∗
c = 0.1 (y−ŷ)

2

y2 ≤ 0.12 L0.1 c = 0.2 (y−ŷ)
2

y2 ≤ 0.22 L0.2

1. M-Huber 42 8117 1. MM 85 2474

2. M-Bisquare 49 8184 2. M-Bisquare 86 2482

3. LS 38 8184 3. M-Huber 83 2494

4. MM 49 8195 4. LMS 75 2593

5. LMS 39 8373 5. LS 81 2602
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With n = 154, this is less than a third of the observations for all methods.

Confronted with this, the company decided to allow relative prediction errors

up to 20% to be called “useful”, which at least made it possible to obtain reason-

able predictions for more than half of the observations. The company accepted

this result (which can be seen on the right side of Table 2) though we believe

that accepting even larger relative errors for more branches as “useful” would

be reasonable, given the precision of the data at hand. One could also think

about using a squared function of the relative error below c = 0.2, constant loss

above c = 0.4 and something concave in between, which, however, would have

been difficult to negotiate with the company. The question whether it would be

advantageous to use an estimator that directly minimizes
∑

L(y, ŷ), given a loss

function L, instead of comparing other estimators in terms of L is treated in

Section 3.1.

The considered loss functions lead to quite different rankings of methods.

Figure 2 gives an illustration how the choice of the loss function affects the

optimality of the estimator. It shows artificially generated heterogeneous data,

coming from four different groups, all generated by normal errors along some

regression line. The groups are indicated by four different symbols: circles (150

points), pluses (30 points), crosses (30 points) and triangles (3 points).
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not so robust MM, high efficiency     

Figure 2: Artificial heterogeneous data with fits of three different
regression estimators, giving full weight to all data (LS),
only the majority group (circles; low efficiency MM) and
about 80% of the data (high efficiency MM).
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The plot has a rough similarity with some of the scatterplots from the original

restaurants data. If the aim is to fit some points very well, and the loss function

is chosen accordingly, the most robust “low efficiency MM-estimator” in Figure 2

is the method of choice, which does the best job for the majority of the data.

A squared loss function would emphasize to make the prediction errors for the

outlying points (triangles) as small as possible, which would presumably favour

the LS-estimator here (this is not always the case, see Section 3). However, if

the aim is to yield a good relative prediction error for more data than fitted well

by the robust estimator, the less robust, but more efficient MM-estimator (or an

estimator with breakdown point of, say, 75%) leads to a fit that does a reasonable

job for circles, crosses, and some of the pluses. The decision about the best ap-

proach here is depending on the application. For instance, an insurance company

may be interested particularly in large outliers and will choose a different loss

function from a company which considers large prediction errors as “essentially

useless”. But even such a company may not be satisfied by getting only a tight

majority of the points about right.

3. STATISTICAL ASPECTS

Though Section 2 was about prediction, methods have been compared that

were originally introduced as parameter estimators for certain models, and that

are defined via optimizing some objective (loss) functions. Therefore the applica-

tions (a), (b) and (c) of loss functions mentioned in the introduction were involved.

Here are some remarks about differences and relations between these uses.

3.1. Prediction loss vs. objective functions defining estimators

First of all, the estimator defined by minimizing
∑

L(y, ŷ) is not always the

best predictor in terms of
∑

L(y, ŷ−i). Consider the situation in Figure 3, given

that L = L2, the squared loss function. Compare the LS-estimator with a robust

estimator giving zero weight to the outlier at (1.5,−2), the LMS-estimator, say,

using LOO-CV. Whenever a non-outlier is deleted, the LMS-estimator computed

from the remaining points will give an almost perfect fit, while the LS-estimator

will be strongly influenced by the outlier. This means that the LMS estimator

will be much better in terms of L2(y, ŷ−i). If the outlier is left out, LMS- and

LS-estimator will get about the same line, which gives a bad prediction for the

outlier. Adding the loss values up, the LMS-estimator gives a much smaller

estimated L2-prediction error. This is not mainly due to the use of LOO-CV,

but will happen with any resampling scheme which is based on the prediction of
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a subsample of points by use of the remaining points. The situation changes (for

LOO-CV) when further outliers are added at about (−1.5, 2). In this case, the

LS-estimator is better in terms of the estimated L2-prediction error, because this

is dominated by the outliers, and if one outlier is left out, the further outliers

at about the same place enable LS to do a better job on these than the robust

estimator. The situation is again different when outliers are added at other

locations in a way that none of the outliers provides useful information to predict

the others. In this situation, it depends strongly on where exactly the outliers

are whether LOO-CV prefers LS or LMS. Here, the assessment of the prediction

error itself is non-robust and quite sensitive to small changes in the data.

−1.0 −0.5 0.0 0.5 1.0 1.5

−
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−
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−
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−
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−
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−
2

x

y
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LMS     

Figure 3: Artificial data with fits of LS and LMS estimator.

From a theoretical point of view, apart from the particular use of LOO-CV

to estimate the prediction error, LS is clearly better than LMS in terms of

L2-prediction loss, in a “normal model plus outliers” situation, if the outliers

make it possible to find a suitable compromise between fitting them and the

majority, while it is bad for LS if the outliers are scattered all over the place

and one outlier doesn’t give useful information about the prediction of the others

(as for example in a linear model with Cauchy random term). Whether the

L2-loss is reasonable or the LMS-fit should be preferred because it predicts the

“good” majority of the data better even in cases where the outliers can be used

to predict each other depends on subject-matter decisions.
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Asymptotically, using empirical process theory, it is often possible to show

that the estimator defined by minimizing
∑

L(y, ŷ) is consistent for θ minimizing

EL(y, θ) (in such situations, optimal prediction optimizing L and estimation of θ

are equivalent). Therefore, for a given loss function, it makes at least some sense

to use the estimator defined by the same objective function. However, this is

often not optimal, not even asymptotically, as will be shown in the next section.

3.2. Prediction and maximum likelihood-estimation

Suppose that the data have been generated by some parametric model.

Then there are two different approaches to prediction:

1. find a good prediction method directly, or

2. estimate the true model first, as well as possible, solve the prediction

problem theoretically on the model and then plug in the estimated

parameter into the theoretical prediction rule.

As an example, consider i.i.d. samples from an exponential(λ)-distribution, and

consider prediction optimizing L1-loss. The sample median suggests itself as a

prediction rule, minimizing
∑

L1(y− ŷ). The theoretical median (and therefore

the asymptotically optimal prediction rule) of the exponential(λ)-distribution is

log 2/λ, and this can be estimated by maximum likelihood as log 2/X̄n, X̄n being

the arithmetic mean. We have simulated 10,000 samples with n = 20 observations

from an exponential(1)-distribution. The MSE of the sample median has been

0.566 and the MSE of the ML-median has been 0.559. This doesn’t seem to be

a big difference, but using the paired Mann-Whitney test (not assuming a par-

ticular loss function), the advantage of the ML-median is highly significant with

p < 10−5, and the ML-median was better than the sample median in 6,098

out of 10,000 simulations.

Therefore, in this situation, it is advantageous to estimate the underlying

model first, and to derive predictions from the estimator. There is an asymptotic

justification for this, called the “convolution theorem” (see, e.g., Bickel et al, [1],

p. 24). A corollary of it says that under several assumptions

(3.1) lim inf
n→∞

Eθ L
(√

n
(

Tn− q(θ)
)

)

≥ Eθ L
(

Mn− q(θ)
)

,

where q(θ) is the parameter to be estimated (which determines the asymptoti-

cally optimal prediction rule), Tn is an estimator and Mn is the ML-estimator.

This holds for every loss function L which is a function of the difference between

estimated and true parameter satisfying

(3.2) L(x) = L(−x) ,
{

x : L(x) ≤ c
}

convex ∀ c > 0 .
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(3.2) is somewhat restrictive, but not strongly so. For example, it includes all

loss functions discussed in Section 2 (applied to the estimation problem of the

optimal prediction rule instead of direct prediction, however).

This fact may provoke three misinterpretations:

1. estimation is essentially equivalent to prediction (at least asymptoti-

cally — though the exponential example shows that the implications

may already hold for small n),

2. the negative loglikelihood can be seen as the “true” loss function be-

longing to a particular model. In this sense the choice of the loss func-

tion would rather be guided by knowledge about the underlying truth

than by subjective subject-matter dependent decisions as illustrated in

Section 2,

3. all loss functions fulfilling (3.2) are asymptotically equivalent.

Our view is different.

1. The main assumption behind the convolution theorem is that we know

the true parametric model, which is obviously not true in practice.

While the ML-median performed better in our simulation, prediction

by log 2/X̄n can be quite bad in terms of L1-loss if the true distribution

is not the exponential. The sample median can be expected to perform

well over a wide range of distributions (which can be backed up by

asymptotic theory, see above), and other prediction rules can turn out

to be even better in some situations using LOO-CV and the like,

for which we don’t need any parametric assumption.

The basic difference between prediction and estimation is that the truth

is observable in prediction problems, while it is not in estimation prob-

lems. In reality, it can not even be assumed that any probability model

involving an i.i.d. component holds. In such a case, estimation problems

are not well defined, while prediction problems are, and there are pre-

diction methods that are not based on any such model. Such methods

can be assessed by resampling methods as well (though LOO-CV admit-

tedly makes the implicit assumption that the data are exchangeable).

Apart from this, there are parametric situations, in which the as-

sumptions of the convolution theorem are not satisfied and optimal

estimation and optimal prediction are even asymptotically different.

For example, in many model selection problems, the BIC estimates

the order of a model consistently, as opposed to the AIC (Nishii [8]).

But often, the AIC can be proved to be asymptotically better for predic-

tion, because for this task underestimation of the model order matters

more than overestimation (Shibata [11], [12]).
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2. The idea that the negative loglikelihood can be seen as the “true” loss

function belonging to a particular model (with which we have been

confronted in private communication) is a confusion of the different

applications of loss functions. The negative loglikelihood defines the

ML estimator, which is, according to the convolution theorem, asymp-

totically optimal with respect to several loss functions specifying an

estimation problem. These loss functions are assumed to be symmetric.

In some applications asymmetric loss functions may be justified, for

which different estimators may be optimal (for example shrinked or in-

flated ML-estimators; this would be the case in Section 2 if the company

had a rather conservative attitude, were less keen on risking money

by opening new branches and would rather miss opportunities as long

as they are not obviously excellent). This may particularly hold under

asymmetric distributions, for which not even the negative loglikelihood

itself is symmetric. (The idea of basing the loss function on the under-

lying distribution, however, could make some sense, see Section 3.4.)

In the above mentioned simulation with the exponential distribution,

LOO-CV with the L1-loss function decided in 6,617 out of 10,000 cases

that the ML-median is a better predictor than the sample median.

This shows that in a situation where the negative loglikelihood is a

good loss function to define a predictor, LOO-CV based on the loss

function in which we are really interested is able to tell us quite relia-

bly that ML is better than the predictor based on direct optimization

of this loss function (which is the sample median for L1).

3. The idea that all loss functions are asymptotically equivalent again only

applies to an estimation problem of a given parameter assuming that

the model is known. The convolution theorem doesn’t tell us in which

parameter q(θ) in (3.1) we should be interested. The L1-loss for the

prediction problem determines that it is the median.

3.3. Various interpretations of loss functions

According to our main hypothesis, the choice of a loss function is a trans-

lation problem. An informal judgment of a situation has to be translated into

a mathematical formula. To do this, it is essential to keep in mind how loss

functions are to be interpreted. This depends essentially on the use of the loss

function, referring to (a), (b) and (c) in the introduction.

(a) In prediction problems, the loss function is about how we measure the

quality of a predicted value, having in mind that a true value exists

and will be observable in the future. As can be seen from the restau-
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rant example, this is not necessarily true, because if a prediction turns

out to be very bad early, the company will react, which prevents the

“true value” under the prediction model from being observed (it may

further happen that the very fact that the company selects locations

based on a new prediction method changes the underlying distribu-

tion). However, the idea of an observable true value to be predicted,

enables a very direct interpretation of the loss function in terms of

observable quantities.

(b) The situation is different in estimation problems, where the loss func-

tion is a function of an estimator and an underlying, essentially

unobservable quantity. The quantification of loss is more abstract

in such a situation. For example, the argument used in Section 2

to justify the boundedness of the loss function was that if the predic-

tion is so wrong that it is essentially useless, it doesn’t matter anymore

how wrong it exactly is. Now imagine the estimation of a treatment

effect in medicine. It may be that after some study to estimate the

treatment effect, the treatment is applied regularly to patients with

a particular disease. Even though, in terms of the prediction of the

effect of the treatment on one particular patient, it may hold that

it doesn’t matter how wrong a grossly wrong prediction exactly is,

the situation for the estimation of the overall effect may be much

different. Under- or overestimation of the general treatment effect

matters to quite a lot of patients, and it may be of vital importance

to keep the estimation error as small as possible in case of a not very

good estimation, while small estimation errors could easily be toler-

ated. In such a case, something like the L2-loss could be adequate for

estimation, while a concave loss is preferred for pointwise prediction.

It could be argued that, at least in some situations, the estimation

loss is nothing else than an accumulated prediction loss. This idea

may justify the choice of the mean (which is sensitive to large values)

to summarize more robust pointwise prediction losses, as in (2.1).

Note that the convolution theorem compares expected values of losses,

and the expectation as a functional is in itself connected to the L2-loss.

Of course, all of this depends strongly on the subject matter.

(c) There is also a direct interpretation that can be given to the use of

loss functions to define methods. This is about measuring the quality

of data summary by the method. For example, the L2-loss function

defining the least squares estimator defines how the locations of the

already observed data points are summarized by the regression line.

Because L2 is convex, it is emphasized that points far away from a

bulk of the data are fitted relatively well, to the price that most points

are not fitted as precisely as would be possible. Again, a decision has

to be made whether this is desired.



Some Thoughts About the Design of Loss Functions 35

As a practical example, consider a clustering problem where a

company wants to assign k storerooms in order to deliver goods to

n shops so that the total delivery distance is minimized. This is an

L1-optimization problem (leading to k-medoids) where neither pre-

diction nor estimation are involved. Estimation, prediction and ro-

bustness theory could be derived for the resulting clustering method,

but they are irrelevant for the problem at hand.

3.4. Data dependent choice of loss functions

In the restaurant example, the loss function has been adjusted because,

having seen the results based on the initial specification of c, the company realized

that a more “tolerant” specification would be more useful.

Other choices of the loss function dependent on the data or the underlying

model (about which the strongest information usually comes from the data) are

imaginable, e.g., asymmetric loss for skew distributions and weighting schemes

depending on random variations where they are heteroscedastic.

In terms of statistical theory, the consequences of data dependent changes

of loss functions can be expected to be at least as serious as data dependent

choices of models and methods, which may lead to biased confidence intervals,

incoherent Bayesian methodology and the like. Furthermore, the consequences of

changing the loss function dependent on the data cannot be analyzed by the same

methodology as the consequences of the data dependent choice of models, because

the latter analysis always assumes a true model to hold, but there is no single

true loss function. It may be argued, though, that the company representatives

have a “true subjective” loss function in mind, which they failed to communicate

initially.

However, as with all subjective decisions, we have to acknowledge that

people change their point of view and their assessment of situations when new

information comes in, and they do this often in ways which can’t be formally pre-

dicted in the very beginning (unforeseen prior-data conflicts in Bayesian analysis

are an analogous problem).

Here, we just emphasize that data dependent choice of the loss function

may lead to some problems which are not fully understood at the moment.

In situations such as the restaurant example, we are willing to accept these

problems if the impression exists that the results from the initial choice of the

loss function are clearly unsatisfactory, but loss functions should not be changed

without urgency.
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4. PHILOSOPHICAL ASPECTS

The term “subjective” has been used several times in the present paper.

In science, there are usually some reservations against subjective decisions,

because of the widespread view that objectivity is a main aim of science.

We use “subjectivity” here in a quite broad sense, meaning any kind of

decision which can’t be made by the application of a formal rule of which the

uniqueness can be justified by rational arguments. “Subjective decisions” in this

sense should take into account subject-matter knowledge, and can be agreed upon

by groups of experts after thorough discussion, so that they could be called “inter-

subjective” in many situations and are certainly well-founded and not “arbitrary”.

However, even in such situations different groups of experts may legitimately

arrive at different decisions. This is similar to the impact of subjective decisions

on the choice of subjective Bayesian prior probabilities.

For example, even if there are strong arguments in a particular situation

that the loss function should be convex, it is almost always impossible to find

decisive arguments why it should be exactly equal to L2. In the restaurant

example it could be argued that the loss function should be differentiable (because

the sharp switch at c is quite artificial) or that it should not be exactly constant

above c. But there isn’t any clear information suggesting how exactly it should

behave around c.

Note that the dependent variable in the restaurant example is an amount

of money, which, in principle, can be seen as a clear example of a high quality

ratio scale measurement. But even this feature doesn’t make the measurement of

loss in any way trivial or objective, as has been discussed in Section 2. The fact

that it is a non-scientific business application does also not suffice as a reason

for the impact of subjective decisions in this example. The argument not to take

the absolute value as loss function was that in case of very wrong predictions

it may turn out that the prediction is wrong early enough so that it is still

possible to react in order to keep the effective loss as small as possible. But

this may apply as well in several scientific setups, e.g., in medical, technical and

ecological applications. In such a situation there is generally no way to predict

exactly what the loss of grossly wrong prediction will be. If it is not possible to

predict a given situation reliably, it is even less possible to predict accurately the

outcome of possible reactions in case that the initial prediction turns out to be

grossly wrong. Furthermore, there are generally no objective rules about how to

balance underestimation and overestimation in situations which are not clearly

symmetric. Therefore, the need for subjective decisions about the choice of loss

functions is general and applies to “objective” science as well.
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As emphasized before, a loss function cannot be found as a solution of

a formal optimization problem, unless another loss function is invented to define

this problem. There is no objectively best loss function, because the loss function

defines what “good” means.

The quest for objectivity in science together with a certain misconception of

it has some undesirable consequences. Experience shows that it is much easier to

get scientific work published which makes use of standard measurements such as

the L2-loss, even in situations in which it is only very weakly (if at all) justified,

than to come up with a rather idiosyncratic but sensible loss function involv-

ing obviously subjective decisions about functional shapes and tuning constants.

It is almost certain that referees will ask for objective justifications or at least

sensitivity analyses in the latter case. We are not generally against such sensitiv-

ity analyses, but if they are demanded in a situation where authors come up with

an already well thought over choice of a loss function, it would be much more

urgent to carry out such analyses if “standard” choices have been made without

much reflection.

It seems that many scientists see “general agreement” as a main source of

objectivity, and therefore they have no doubts about it in case that somebody

does “what everybody else does” without justification, while obviously personal

decisions, even if discussed properly, are taken as a reason for suspicion. This is

clearly counterproductive.

It is important to acknowledge that there is some reason for this general

attitude. By changing the loss function, it may actually be possible to arrive

at very different results, including results previously desired by the researcher.

This is made more difficult by insisting on the use of widespread standard mea-

sures that have proven useful under a range of different situations.

We see this as a legitimate, but in no way decisive argument. Science is

essentially about reaching stable rational agreement. Certainly, agreement based

on the unreflected choice of standard methods cannot be expected to be stable,

and it may be controversial at best whether it can be seen as rational. On the

other hand, more subjective decisions will not enable agreement as long as they

are not backed up by clear comprehensible arguments. Therefore, such arguments

have to be given. If for some decisions, there are no strong arguments, it makes

sense to stick to standard choices. Therefore, if there are strong arguments that

a loss function should be convex, but there is no further clear information how

exactly it should look like, the standard choice L2 should be chosen on grounds of

general acceptance. But even if L2 is chosen in such a situation, convexity should

still be justified and it makes even sense to admit that, apart from convexity,

L2 has been chosen purely for the above reason. This is as well a subjective,

but rational decision in the sense given in the beginning of this section.
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A more sophisticated but often impractical approach would start from a

list of characteristics (axioms) that the loss function in a particular application

should fulfill, and then investigate the range of results obtained by the whole

class of such loss functions.

The perhaps most important aspect of scientific agreement is the possibility

to communicate in an unambiguous way, which is mainly ensured by mathemat-

ical formalism. Therefore, the subjective design of more or less idiosyncratic loss

functions, including their detailed discussion, contributes to the clarity of the

viewpoint of the researcher. Her subjective decisions become transparent and are

accessible to rational discussion. Making the subjective impact clear in this way

actually helps scientific discussion much more than to do what everybody else

does without much discussion.

We don’t know whether and to what extent our attitude to science is al-

ready present in the philosophical literature, but it seems to be quite close to

what Ernest ([2]) wrote in his chapter about “the social construction of objective

knowledge”. Some more elaboration can be found in Hennig ([3]).

5. CONCLUSION

We hope that the present paper encourages researchers to choose or design

loss functions which reflect closely their expert’s view of the situation in which

the loss function is needed. Instead of being “less objective”, this would be rather

quite helpful for scientific discussion.

Robustness is not treated as an aim in itself here, but rather as an implicit

consequence of the decision of the researchers about the formalization of the

prediction loss for atypical observations.

There are other problems in data analysis where similar principles can

be applied. One example is the design of dissimilarity measures, see Hennig

and Hausdorf ([4]). Combination of different loss criteria (such as efficiency and

robustness in estimation) has not been treated in the present paper, but could

be approached in a similar spirit.
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1. INTRODUCTION

Our research has been motivated by the frequency-domain analysis of short-

term heart rate variability (HRV) measurements. This is a non-invasive method

which has been increasingly used in medicine (cf. [8, 22]). To analyze biosignals

or, generally speaking, time series, the spectral density function is commonly

used in many application areas. Further areas of applications besides medicine

are signal processing (cf. [31]) and geophysics (cf. [4, 9]).

The additive outlier model (AO model) which was introduced by Fox ([6])

is a commonly used model for outliers in time series. The AO model consists of a

stationary core process, xt, to which occasional outliers are added. The observed

process {yt, t=1, ..., n} is said to have additive outliers if it is defined by

yt = xt + vt(1.1)

where the contaminations vt are independent and identically distributed.

For the methods presented in this paper, it is convenient to model the univariate

distribution of vt by a contaminated normal distribution with degenerated central

component, i.e.,

CN (γ, 0, σ2) = (1−γ)N (0, 0) + γN (0, σ2) .(1.2)

Hence, the core process xt is observed with probability 1− γ whereas the core

process plus a disturbance vt is observed with probability γ. We shall also assume

that xt and vt are independent.

The AO model seems to be an appropriate model when analyzing heart rate

variability data. To access the variability of heart rate in the frequency domain

the spectral density function of the tachogram is estimated. The tachogram

is the series of time intervals between consecutive heart beats, the so called

R-R-intervals (e.g. Figure 1). The R-R-interval denotes the period between an

R-peak and the next R-peak in an electrocardiogram.

Non-sinus ectopic beats and other artifacts can cause outlying observa-

tions in the tachogram. If, during the recording and sampling, an R-peak is

missed in the electrocardiogram (ECG) this will result in a very large value in

the tachogram. Or, if an ectopic beat occurs, i.e., if there is an extra heart beat

between two regular beats, the amplitude in the ECG of the heart beat following

the ectopic beat will be very low and therefore this beat will usually be missed.

This results in a lower tachogram value followed by a higher one.

The aim of accessing the heart rate variability is accomplished by estimating

the spectral density function of the tachogram robustly in order to be insensitive

against outlying tachogram values caused by ectopic beats and other artifacts.
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Figure 1: Tachogram of 1321 consecutive heart beats.

We do not compute the spectral density function of the entire tachogram series,

but estimate several within overlapping windows to assure stationarity in each

window (cf. also [28]). Each slice in Figure 2 represents the spectral density

estimate of the corresponding time interval.
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Figure 2: Robust dynamic Fourier analysis of
the original short-term HRV data.
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Although we do not use the entire tachogram series but several overlapping

windows to access the heart rate variability we only focus on an analysis in

the frequency domain. We are not interested in modeling the heart rate in the

time domain nor in forecasting as this is often the aim in the context of online-

monitoring.

In the present paper we consider the problem of estimating the spectral

density function robustly. Unfortunately, conventional spectral density estima-

tors are not robust in the presence of additive outliers. See [12] or [18] for details.

To obtain a robust estimate of the spectral density function we present two dif-

ferent multi-step procedures. The first procedure was proposed by Martin and

Thomson ([18]) and incorporates an important robust filtering operation which

is accomplished by an approximate conditional-mean (ACM) type filter. For the

second multi-step procedure we suggest to replace the ACM type filter and use

the rLS filter proposed by Ruckdeschel ([26]) instead. Both filters are robustified

versions of the Kalman filter. In order to compare both approaches we implement

them in R.

In the next section we state the definitions of the state-space model and

the classical Kalman filter which is the basis of the robustifying approaches pro-

posed by Martin and Thomson ([18]) and Ruckdeschel ([26]). Both methods are

described in Section 3. In Section 4 we give an outline of our simulation study

and the results are presented in Section 5. Some remarks are given in Section 6.

2. PRELIMINARIES

2.1. State-space models

Let us assume we observe a q-dimensional, vector-valued process yt,

t=1, ..., n, which is only a linear transformation of an unobserved p-dimensional

signal xt with some noise added. Then the state-space model can be defined

as follows:

xt = Φxt−1 + εt ,

yt = Hxt + vt ,
(2.1)

where xt is the unobserved p-dimensional vector called the state vector. The first

equation in (2.1) is called state equation and the second is called the observation

equation. It is assumed that εt has dimension p, Φ is a p×p matrix and H is

a q×p matrix. We further assume that xt is independent of future εt, and that

εt and vt are individually zero mean independent and identically distributed

(iid) sequences which also are mutually independent but could be non-Gaussian.
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A more general definition of state-space models considering correlated errors as

well as more complex models including exogenous variables or selection matrices

can be found in [27] and [5].

2.2. The classical Kalman filter

The primary aim of any analysis using state-space models as defined by

(2.1) is to produce estimators of the underlying unobserved signal xt, given the

data Ys = {y1,y2, ...,ys}, up to time s. If s < t, s = t or s > t, the problem

is called prediction, filtering or smoothing, respectively.

In addition, we want to get estimators Tt(Ys) of xt which are best in the

sense of the minimum mean-squared error, i.e.,

E
(

‖xt − Tt(Ys)‖2
)

= min
Tt

! .(2.2)

The solution is the conditional mean of xt given Ys, i.e.,

Tt(Ys) = E(xt |Ys) ,(2.3)

and will further on be denoted by xt|s.

However, in general the conditional mean is hard to calculate and there-

fore we restrict ourselves to the class of linear estimators. Then the solution to

these problems is accomplished via the Kalman filter and smoother (cf. [10, 11]).

The estimators we obtain are the minimum mean-squared error estimates within

the class of linear estimators.

In the following we will just focus on the Kalman filter. Its advantage

is that it specifies how to update the filter values from xt−1|t−1 to xt|t once

a new observation yt is obtained, without having to reprocess the entire data set

y1,y2, ...,yt. The Kalman filter recursions can be split into three steps:

(i) Initialization (t= 0):

x0|0 = µ0 , P0 = Σ0 ,(2.4)

where µ0 and Σ0 are the unconditional mean and p×p covariance

matrix of x0 ;

(ii) Prediction (t≥ 1):

xt|t−1 = Φxt−1|t−1 ,

Mt = ΦPt−1Φ
⊤ + Q ;

(2.5)
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(iii) Correction (t≥ 1):

xt|t = xt|t−1 + Kt(yt− Hxt|t−1) ,

Pt = Mt − KtHMt ,

with Kt = MtH
⊤(HMtH

⊤+ R)−1 .

(2.6)

The p×q matrix Kt is called the Kalman gain. The p×p matrix Mt is the con-

ditional prediction error covariance matrix,

Mt = E
(

(xt− xt|t−1) (xt− xt|t−1)
⊤ | Yt−1

)

,(2.7)

and the conditional filtering error covariance matrix Pt is given by

Pt = E
(

(xt− xt|t) (xt− xt|t)
⊤ | Yt

)

.(2.8)

Moreover, the p×p matrix Q and the q×q matrix R denote the covariance ma-

trices of εt and vt, respectively.

3. ROBUST SPECTRAL DENSITY ESTIMATION

In order to obtain a robust estimate of the spectral density function,

we clean the data in a robust way first and compute the spectral density func-

tion afterwards using a prewhitened spectral density estimate. This approach

was proposed by Martin and Thomson ([18]) and leads to encouraging results.

The data-cleaning operation wherein the robustness is introduced is accomplished

by a robustified version of the Kalman filter.

Martin and Thomson ([18]), based on the work of Martin ([15]), propose to

modify the calculation of the filter estimate as well as of the conditional filtering

error covariance matrix in the correction step (2.6). In [15] Martin, motivated

by Masreliez’s result ([20]), only considers autoregressive models. This limitation

to univariate signals and several approximations lead to a simplification of the

correction step that enables a robust estimation of the filter estimate as well as

of the conditional filtering error covariance matrix.

Another approach, proposed by Ruckdeschel ([26]), preserves the general

concept of the Kalman filter, that allows for multivariate signals, and modifies

only the updating of the filter estimate.
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3.1. Robust prewhitening

Let {yt, t = 1, ..., n} again denote the observed process which is assumed

to be second-order stationary and to have mean zero. The cleaning operator C

maps the original data yt into the cleaned data Cyt. In the context of the

AO model (1.1), we want the Cyt to reconstruct the core process xt, and so

we will use the labeling Cyt = x̂t|t, where x̂t|t denotes an estimate of xt at time t.

The second index of x̂t|t should indicate that the kind of data cleaning proce-

dure we have in mind here is a robust filtering procedure which uses the past

and present data values y1, ..., yt to produce a cleaned filter estimate x̂t|t of xt,

t=1, ..., n. For AO models with a fraction of contamination γ not too large,

it turns out that the data cleaner has the property that Cyt = yt most of the

time, that is about (1− γ)×100 percent of the time.

The filter-cleaner procedure involves a robust estimation of an autoregres-

sive approximation to the core process xt of order p, with estimated coefficients
̂φ1, ..., ̂φp. Now, the residual process

rt = Cyt −
p

∑

i=1

̂φiCyt−i , t = p+1, ..., n ,(3.1)

can easily be formed. Since cleaned data are used to obtain these residuals,

and the ̂φi are robust estimates, the transformation (3.1) is called a robust pre-

whitening operation. The benefit in the use of prewhitening in the context

of spectral density estimation is to reduce the bias, i.e., the transfer of power

from one frequency region of the spectral density function to another, known as

leakage (cf. [3]).

The robust spectral density estimate is based on the above robust pre-

whitening as follows. Let

̂Hp(f) = 1 −
p

∑

j=1

̂φj e
−i2πjf(3.2)

be the transfer function of the prewhitening operator (3.1) at frequency f , and let
̂S

(lw)
r (f) denote a lag window spectral estimate based on the residual process rt.

Then the spectral density estimate is

̂S(f) =
̂S

(lw)
r (f)

∣

∣ ̂Hp(f)
∣

∣

2 ,(3.3)

where ̂S(f) is evaluated at the Fourier frequencies fk = k/n, k= 0, ..., [n/2].
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3.2. The robust filter-cleaner algorithm

The robust filter-cleaner proposed by Martin and Thomson ([18]) is

an approximate conditional-mean (ACM) type filter motivated by Masreliez’s

result ([20]).

3.2.1. The robust filter-cleaner

The filter-cleaner algorithm as presented in the paper of Martin and

Thomson ([18]) relies on the p-th order autoregressive approximation of the un-

derlying process xt, which can be represented in state-space form (2.1) as follows.

Assuming that xt satisfies

xt = φ1xt−1 + φ2 xt−2 + · · · + φp xt−p + εt

the state space model can be written as

xt = Φxt−1 + εt ,

yt = xt + vt ,
(3.4)

with

xt = (xt, xt−1, ..., xt−p+1)
⊤ ,(3.5)

εt = (εt, 0, ..., 0)⊤(3.6)

and

Φ =











φ1 · · · φp−1 φp

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0











.(3.7)

Additionally, we set

cov(εt) = Q =











σ2
ε 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0











(3.8)

and

var(vt) = R = σ2
0 .(3.9)

The algorithm computes robust estimates x̂t|t of the unobservable xt

according to the following recursion:

x̂t|t = Φ x̂t−1|t−1 +
m.1,t

s2t
st ψ

(

yt− ŷt|t−1

st

)

(3.10)
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with m.1,t being the first column of Mt which is computed recursively as

Mt+1 = ΦPt Φ
⊤ + Q ,(3.11)

Pt = Mt − w

(

yt− ŷt|t−1

st

)

m.1,t m
⊤
.1,t

s2t
.(3.12)

The weight function w is defined by

w(r) =
ψ(r)

r
,(3.13)

where ψ stands for some psi-function described below. The scale st is set to

s2t = m11,t(3.14)

and ŷt|t−1 denotes a robust one-step-ahead prediction of yt based on Yt−1 =

{y1, ..., yt−1}, and is given by

ŷt|t−1 = (Φ x̂t−1|t−1)1 .(3.15)

Finally, the cleaned process at time t results in

x̂t|t = (x̂t|t)1 .(3.16)

It should be noted that if ψ is the identity function, which gives w ≡ 1,

and (3.14) is replaced by s2t = m11,t + σ2
0 with σ2

0 = var(vt) in the AO model,

the above recursions are those of the Kalman filter. The use of σ2
0 = 0 in (3.14)

corresponds to the assumptions that vt = 0 a large fraction of time and that

a contaminated normal distribution with degenerated central component (1.2)

provides a reasonable model. Correspondingly, Mt and Pt are the prediction

and filtering error-covariance matrices as described in the previous section

(Section 2). Again, in order to agree with the definition of the classical Kalman

filter recursions, we specify the initial conditions for the above recursions by

setting x̂0|0 = 0 and P0 = ̂Cx where ̂Cx is an estimate of the p×p covariance

matrix of the state process. We note that there also exists another way to specify

those initial conditions (see [17]).

The psi-function ψ and the weight function w which are essential to obtain

robustness should be bounded and continuous. Additionally, it is highly desir-

able that both have zero values outside a bounded, symmetric interval around

the origin. Furthermore, ψ(s) is odd and should look like the identity function

for small values of s (see [15]). Boundedness assures that no single observation

has an arbitrarily large effect on the filter-cleaner. Continuity assures that small

variations, e.g., due to rounding, will not have a major effect. Compact support

results in the following behavior which is desirable for a filter-cleaner: if an obser-

vation yt deviates from its prediction ŷt|t−1 by a sufficiently large amount, then

x̂t|t will be the pure prediction x̂t|t = Φ x̂t−1|t−1 and the filtering error covariance
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Pt is set equal to the prediction error covariance Mt. Martin and Thomson ([18])

proposed to use for ψ a special form of Hampel’s three-part redescending psi-

function ([7]),

ψHA(s) =



























s if |s| ≤ a ,

a sgn(s) if a< |s| ≤ b ,
a

b− c
(

s− c sgn(s)
)

if b < |s| ≤ c ,

0 if c < |s| ,

(3.17)

namely, Hampel’s two-part redescending psi-function, with b = a, which has

all the desirable properties.

3.2.2. An approximate optimality result

There is an approximate optimality result for the filter described above

if we replace (3.14) by

s2t = m11,t + σ2
0 ,(3.18)

and ψ and w in (3.10) and (3.13), respectively, by

w(r) = ψ′(r) =
∂

∂r
ψ(r) .(3.19)

Namely, under the assumption that the state prediction density fxt( . |Yt−1)

is Gaussian and that ψ(r) =−(∂/∂r) log g(r), where g is an approximation of

the observation prediction density fyt( . |Yt−1), the filter is the conditional-mean

filter proposed by Masreliez ([20]). The preceding assumption will never hold

exactly under an AO model where vt is non-Gaussian (see [15], Sec. 5). However,

there is some evidence that fxt( . |Yt−1) is nearly Gaussian and that the filter is

a good approximation to the exact conditional-mean filter. Therefore the filter

is referred to as an approximate conditional-mean (ACM) type filter. More de-

tails can be found in [15]. The results therein suggest that the use of Hampel’s

two-part redescending psi-function is reasonable when the observation noise vt

has a contaminated normal distribution. However, the weight function w given

by (3.19) is discontinuous if using Hampel’s two-part redescending psi-function,

and therefore Martin and Thomson ([18]) prefer to specify w by (3.13).

3.2.3. Fixed-lag smoother-cleaners

As mentioned in [15], if one uses the last coordinate of the filter estimate

x̂t|t to produce cleaned data, then one has that x̂t−p+1 = (x̂t|t)p is an estimate

of xt−p+1 based on the observations Yt up to time t. Such an estimate is usually

called a fixed-lag smoother, with lag p−1 in this case.
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3.2.4. Estimation of hyper parameters

To use the filter-cleaner algorithm we need robust estimates ̂φ, σ̂ε and ̂Cx

of the AR(p) parameter vector φ = (φ1, ..., φp)
⊤, the innovations scale σε and

the p×p covariance matrix of the state process, respectively. Martin and Thom-

son ([18]) proposed to get initial estimates using bounded-influence autoregres-

sion (BIAR) via the iteratively reweighted least squares (IWLS) algorithm.

Details about BIAR may be found in [19], [16] or [29].

3.2.5. Selection of order p

Martin and Thomson ([18]) propose the following procedure to select the

order p of the autoregressive approximation. For increasing orders p BIAR esti-

mates are computed and the estimated innovation scale estimates σ̂ε(p) are exam-

ined for each order. The final order is selected as that value of p for which

σ̂ε(p +1) is not much smaller than σ̂ε(p), e.g., less than a 10-percent decrement

as suggested by Martin and Thomson ([18]).

Another robust order-selection rule based on BIAR estimates and moti-

vated by Akaike’s minimization criterion ([1]) was proposed by Martin ([16]).

3.3. The robust Least Squares (rLS) filter algorithm

In the following we describe a robustified version of the Kalman filter which

was proposed by Ruckdeschel ([26]).

3.3.1. Robustified optimization problem

The idea is to reduce in the correction step (2.6) of the classical Kalman

filter the influence of an observation yt that is affected by an additive outlier.

Instead of Kt∆yt with ∆yt = yt −Hxt|t−1 we use a huberized version of it, i.e.,

Hbt
(Kt ∆yt) = Kt ∆yt min

{

1,
bt

‖Kt ∆yt‖

}

,(3.20)

so that the obtained result will be equal to the one of the classical Kalman filter,

if ‖Kt∆yt‖ is not too large, whereas if ‖Kt∆yt‖ is too large, the direction
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will remain unchanged and it will be projected on the q-dimensional ball with

radius bt.

This leads to a robustified optimization problem given by

E
(

‖∆xt −Hbt
(Kt ∆yt)‖2

)

= min
Kt

! ,(3.21)

where ∆xt = xt− xt|t−1 denotes the prediction error. The above optimization

problem is equivalent to the optimization problem (2.2) of the classical Kalman

filter and its solution is named K
rLS

t .

3.3.2. The rLS filter

Hence, this gives us the following filter recursions:

(i) Initialization (t= 0):

x
rLS

0|0 = µ0 ;(3.22)

(ii) Prediction (t≥ 1):

x
rLS

t|t−1 = Φx
rLS

t−1|t−1 ;(3.23)

(iii) Correction (t≥ 1):

x
rLS

t|t = x
rLS

t|t−1 +Hbt

(

K
rLS

t (yt− Hx
rLS

t|t−1)
)

.(3.24)

The above filter recursions will be named robust least squares (rLS) filter.

Because the calculation of K
rLS

t is computationally extensive Ruckdeschel

([26]) proposes to use K
KK

t instead where K
KK

t denotes the Kalman gain obtained

by the classical Kalman filter recursions. Simulation studies therein have shown

that the worsening, in sense of a larger mean-squared error, is only small if using

K
KK

t instead of K
rLS

t . Hence, this simplifying modification almost yields the

classical Kalman filter recursions with the only exception of replacing the first

line of the correction step (2.6) by

xt|t = xt|t−1 +Hbt

(

K
KK

t (yt− Hxt|t−1)
)

.(3.25)

From now on, if speaking of the rLS filter, we will only consider this modified

version.

Moreover, Ruckdeschel ([26]) proved that the rLS filter is SO-optimal under

certain side conditions. SO stands for substitutive outlier and means that, instead
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of disturbing vt, contamination effects yt directly, replacing it by an arbitrarily

distributed variable y′t with some low probability. For further details we refer

the reader to [26].

Still, the open problem of fixing the clipping height bt remains.

3.3.3. Fixing the clipping height bt

In order to properly choose bt Ruckdeschel ([26]) proposes an assurance

criterion: How much efficiency in the ideal model relative to the optimal proce-

dure, i.e., the Kalman filter, am I ready to pay in order to get robustness under

deviations from the ideal model? This loss of efficiency, which we will obtain

if we use a robust version instead of the classical Kalman filter, is quantified as

the relative worsening of the mean-squared error in the ideal model. Hence, for

a given relative worsening δ > 0 we solve

E
(

∥

∥∆xt −Hbt
(KrLS

t ∆yt)
∥

∥

2
)

!
= (1+δ)E

(

∥

∥∆xt − K
KK

t ∆yt

∥

∥

2
)

.(3.26)

The symbol
!
= means that bt is chosen in a way to achieve equality.

Again, we use the simplifying modifications just mentioned and replace

K
rLS

t by K
KK

t . Moreover, in most time-invariant situations, the sequence of Mt

(and hence also of Pt and K
KK

t ) stabilizes due to asymptotic stationarity.

Thus, once Mt does not change for more than a given tolerance level, we can

stop calibration and use the last calculated bt for all subsequent times s, s > t.

The Kalman gain and filtering error covariance matrix used in this last calibra-

tion step will be denoted by K
KK

∞ and P∞, respectively. For details we refer to

[2] and [21]. Further we make another simplifying modification and assume that

for all t

∆xt ∼ N (0,Mt) and vt ∼ N (0,R) .(3.27)

Thus, we may solve

E
(

∥

∥∆x −Hb(K
KK

∞ ∆y)
∥

∥

2
)

!
= (1+δ)E

(

∥

∥∆x − K
KK

∞ ∆y

∥

∥

2
)

= (1+δ) tr P∞ ,
(3.28)

in b, uniquely for a given loss of efficiency δ, where tr P∞ denotes the trace

of the conditional filtering error covariance matrix. We note that the relative

time-expensive calibration, i.e., finding b to a given δ, can be done beforehand.

Additional details may be found in [26] and [25].
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4. SIMULATION STUDY

The outline of our simulation study is as follows: First we simulate a core

process xt of length n= 100. xt is chosen to be an autoregressive process of order 2

given by

xt = xt−1− 0.9xt−2 + εt ,(4.1)

with εt ∼ N (0, 1). The variance of the core process xt, i.e., the value of the

autocovariance function at lag zero can be calculated by numerical integration

and is given approximately by var(xt)≈ 7.27. Additionally, the additive outliers

are simulated from a contaminated normal distribution with degenerate central

component (1.2) with σ2 = 102. The contamination γ is varied from 0% to 20%

by steps of 5%. That means that with probability γ, vt is an additive outlier

with vt 6= 0. To obtain the contaminated process yt, the vt’s are added to the

core process xt. For each level of contamination this was done 400 times.

For each of the contaminated series, estimates of the hyper parameter, i.e.,

the innovations scale σ̂ε, the autoregressive parameters ̂φ1, ..., ̂φp and the p×p
covariance matrix ̂Cx of the state process xt, are computed via bounded-influence

autoregression. The order p of the autoregressive approximation is chosen accord-

ing to the order-selection criterion proposed by Martin and Thomson ([18]), which

yields values of p from 2 to 3 subject to the contamination level. In order to be

able to compare the results we choose an equal order p for all levels of contami-

nation and fix it equal to 3. Using an order p= 2 in cases of lower contamination

levels, where this is appropriate, we obtain almost perfect fits for both filtering

algorithms. But, although the simulated core process is of order 2, the estimated

BIAR parameters we obtain setting p equal to 3 are similar to the ones of the

original core process, i.e., the first two AR parameters are close to the original

ones and the third AR parameter is almost zero, as one would expect.

Then each process is cleaned using the ACM-type filter and the rLS filter

proposed by Martin and Thomson ([18]) and Ruckdeschel ([26]), respectively.

Afterwards, the hyper parameters of the filtered series are estimated again.

Those re-estimated hyper parameters are used to calculate a prewhitened

spectral density estimate for each process. Last, the deviation of each estimated

spectral density function from the true spectral density function is measured

in the sense of the squared L2-norm, i.e.,

err2bS(f)
:=

∥

∥̂S(f) − S(f)
∥

∥

2
=

∫

(

̂S(f) − S(f)
)2
df ,(4.2)

where ̂S(f) and S(f) denote the estimated and true spectral density functions.
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5. RESULTS

Regarding the computation time the rLS filter performs better than the

ACM-type filter as we expected. This is due to the fact that additional weights

have to be computed within the correction step of the ACM-type filter.

Figure 3 tries to visualize the results of our simulation study. For both

methods and contamination levels 0%, 10% and 20% seven curves are plotted on

a logarithmic scale. The thick line represents the true spectral density function,

whereas the thin line is the spectral density estimate of one realization out of 400.

Moreover, we may calculate the minimum and maximum, at each frequency,

the first and third quartile and median value of all spectral density estimates.

Connecting all median values we obtain the grey line, to which we will refer

hereafter as median spectral density function. In the same sense we refer to all

minimum values as minimum spectral density function, and so on. Hence, the

lower and upper dotted lines are the minimum and maximum spectral density

functions, whereas the lower and upper dashed lines represent the first and third

quartile spectral density functions. The results obtained by using the ACM-type

filter are plotted in the left column, whereas the results of the rLS filter are

displayed in the right column.

As expected, for both methods the dispersion of the spectral density

estimates becomes greater the higher the contamination. However, this effect

is more visible, especially at higher frequencies, when using the ACM-type filter.

Next, we try to visualize the squared errors of the estimated spectral den-

sity functions. First, the logarithm of the squared errors is taken. For both

methods Figure 4 shows boxplots of the squared errors in eight equally-sized fre-

quency bands as well as the total squared errors (bottom right) for all different

levels of contamination. Again, the squared errors become greater the higher the

contamination, especially at higher frequencies. And, this effect again is greater,

when using the ACM-type filter. However, these errors are very small and, look-

ing at the total squared errors for different contamination levels, we see that the

ACM-type filter performs better than the rLS filter. The greatest contribution

to the total squared error is the amount of the frequency band where the spec-

tral density function has its peak. There the squared errors using the rLS filter

are higher than the ones using the ACM-type filter. Moreover, we see that all

squared errors are in the same range for all contamination levels.
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Figure 3: Robust spectral density estimates of the simulated data,
left column ‘ACM’, right ‘rLS’.
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6. DISCUSSION

In order to get a robust estimate of the spectral density function, it turns

out that cleaning the series in a robust way first and calculating a prewhitened

spectral density estimate afterwards leads to encouraging results. This data-

cleaning operation wherein the robustness is introduced, is solved by two different

robustified versions of the Kalman filter. Although, as far as we know, there exist

no theoretical results on the statistical properties of both proposed multi-step

procedures, the empirical results based on simulations and real data sets promise

those procedures to be of high quality. The results of the simulation study suggest

that the ACM-type filter algorithm performs slightly better than the rLS filter

algorithm. Hence, the ACM-type filter algorithm was used to compute the robust

spectral density estimates shown in Figure 2.

In [28] we compare the ACM-type filter approach with another approach

proposed by Tatum and Hurvich ([30]). This procedure, called biweight filter-

cleaner, also yields good results, but tends to underestimate the core process

slightly. Moreover it is computational intensive.

The problem of estimating the hyper parameters was accomplished by

bounded-influence autoregression. An alternative way would be to use a highly

robust autocovariance function estimator (cf. [13]) and calculate estimates of

the hyper parameters via the Yule-Walker equations. Hyper parameters may also

be obtained by computing a robust covariance matrix via the MCD algorithm

(cf. [24]) and estimate the parameters again using the Yule-Walker equations.

Recently, Maronna et al. ([14]) propose to use τ -estimates. Our experience by now

is that all these different approaches (except the last one, which we have not tried

yet, although it seems worthwhile) leads to similar results.

The simulation study was only done for one specific autoregressive model

of order 2. Other models seem worth trying. Further research and additional

simulation studies have already been done, but, as well as the applications to the

motivating real data, are not published here.
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1. INTRODUCTION

The problem of discriminant analysis arises when one wants to assign an

individual to one of g populations on the basis of a p-dimensional feature vector x.

Usually it is considered that the p-dimensional vectors xik come from multivariate

normal populations πk

(1.1) xik : πk ∼ N(µk,Σk) (i=1, ..., nk; k=1, ..., g) .

Here nk is the size of the sample from population k for each of the g different

groups. If it is further assumed that all covariance matrices are equal (Σ1 = ... =

Σg = Σ), the overall probability of misclassification is minimized by assigning

a new observation x to population πk which maximizes

(1.2) dk(x) =
1

2
(x−µk)

t Σ−1 (x−µk) + log(αk) (k=1, ..., g) ,

where αk is the prior probability that an individual comes from population πk.

If the means µk, k=1, ..., g, and the common covariance matrix Σ are unknown,

which is usually the case, a training set consisting of samples drawn from each of

the populations is required.

The problem of the non-robustness of the classical estimates in the setting

of the quadratic and linear discriminant analysis has been addressed by many au-

thors: Todorov et al. [19, 20], replaced the classical estimates by MCD estimates;

Chork and Rousseeuw [1] used MVE instead; Hawkins and McLachlan [4] defined

the Minimum Within Covariance Determinant estimator (MWCD) especially for

the case of linear discriminant analysis; He and Fung [5] and Croux and Dehon [2]

used S estimates; Hubert and Van Driessen [6] applied the MCD estimates com-

puted by the FAST MCD algorithm.

Most of the authors use one step re-weighting after the high breakdown

point estimation in order to obtain increased efficiency. We propose to use

M-iteration as described by Woodruff and Rocke [22] instead, since this is the

preferred means of achieving efficiency with high breakdown and the time neces-

sary for the M-iteration is negligible when compared to the time necessary for

the MCD estimation, even using the FAST-MCD algorithm. Further we want

to experiment with the pairwise class of algorithms proposed by Maronna and

Zamar [10] which have not been used up to now in the context of discriminant

analysis.

In most of the cited papers, apart from the theoretical results, the proposed

methods are illustrated on one or two data sets and only a limited simulation is

performed, i.e. only a few contamination configurations are used and the new

method is compared to one or two of the already known ones on the basis of
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these configurations. Todorov et al. [20] carried out a more extended simulation,

using a general model and varying a number of parameters but this study was

restricted only to scale contaminations of the training samples in case of two

groups.

The purpose of this work is to review the recent results in robust linear

discriminant analysis and to compare the available methods on a large scale

simulation study. The discriminant analysis is considered in a prediction context

and the performance of the discrimination rules is evaluated by misclassification

probabilities obtained by simulation.

The paper is organized as follows. In the next section we describe the

robust linear discriminant analysis methods used. In Section 3 we illustrate the

application of these methods with two real data sets. In Section 4 we describe the

simulation study and present the results. The paper ends with a brief summary

and conclusions. The discussed methods for robust linear discriminant analysis

are implemented as R functions in the package for robust multivariate analysis

rrcov .

2. ROBUST ESTIMATORS FOR LINEAR DISCRIMINANT

ANALYSIS

In order to obtain a robust procedure with high breakdown point for linear

discriminant analysis the classical estimators are replaced by different robust

estimators. To overcome the low efficiency of the most high breakdown point

estimators, their reweighted version is used.

The Minimum Covariance Determinant (MCD) Estimator introduced by

Rousseeuw [16] looks for a subset of h observations whose covariance matrix has

the lowest determinant. The MCD location estimate T is defined as the mean of

that subset and the MCD scatter estimate C is a multiple of its covariance matrix.

The multiplication factor is selected so that C is consistent at the multivariate

normal model and unbiased at small samples — see Pison and Willems [11].

This estimator is not very efficient at normal models, especially if h is selected

so that maximal breakdown point is achieved, but in spite of its low efficiency

it is the mostly used robust estimator in practice, mainly because of the existing

efficient algorithm for computation as well as the readily available implementa-

tions in most of the well known statistical software packages like R, S-Plus, SAS

and Matlab.

We start by finding initial estimates of the group means m
0
k and the com-

mon covariance matrix C0 based on the reweighted MCD estimates. There are
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several methods for estimating the common covariance matrix based on a high

breakdown point estimator.

The easiest one is to obtain the estimates of the group means and group

covariance matrices from the individual groups (mk, Ck), k = 1, ..., g, and then

pool them to yield the common covariance matrix

(2.1) C =

∑g
k=1 nk Ck

∑g
k=1 nk − g

.

This method, using MVE and MCD estimates, was proposed by Todorov et al.

[19] and [20] and was also used, based on the MVE estimator by Chork and

Rousseeuw [1]. Croux and Dehon [2] applied this procedure for robustifying

linear discriminant analysis based on S estimates. A drawback of this method is

that the same trimming proportions are applied to all groups which could lead

to a loss of efficiency if some groups are outlier free. We will denote this method

as A and the corresponding estimator as XXX-A. For example in the case of the

MCD estimator this will be MCD-A.

Another method was proposed by He and Fung [5] for the S estimates

and was later adapted by Hubert and Van Driessen [6] for the MCD estimates.

Instead of pooling the group covariance matrices, the observations are centered

and pooled to obtain a single sample for which the covariance matrix is estimated.

It starts by obtaining the individual group location estimates tk, k=1, ..., g,

as the reweighted MCD location estimates of each group. These group means

are swept from the original observations to obtain the centered observations

Z = {zik} , zik = xik − tk .(2.2)

The common covariance matrix C is estimated as the reweighted MCD covariance

matrix of the centered observations Z. The location estimate δ of Z is used to

adjust the group means mk and thus the final group means are

(2.3) mk = tk + δ .

This process could be iterated until convergence, but since the improvements from

such iterations are negligible (see [5], [6]) we are not going to use it. This method

will be denoted by B and as already mentioned, the corresponding estimator as

XXX-B, for example MCD-B.

The third approach is to modify the algorithm for high breakdown point

estimation itself in order to accommodate the pooled sample. He and Fung [5]

modified Ruperts’s SURREAL algorithm for S estimation in case of two groups.

Hawkins and McLachlan [4] defined the Minimum Within-group Covariance De-

terminant estimator (MWCD) which does not apply the same trimming propor-

tion to each group but minimizes directly the determinant of the common within

groups covariance matrix by pairwise swaps of observations. Unfortunately their
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estimator is based on the Feasible Solution Algorithm (see [4] and the references

therein), which is extremely time consuming as compared to the FAST-MCD al-

gorithm. Hubert and Van Driessen [6] proposed a modification of this algorithm

taking advantage of the FAST-MCD, but it is still necessary to compute the MCD

for each individual group. This method will be denoted by MCD-C.

Using the estimates m
0
k and C0 obtained by one of the methods, we can

calculate the initial robust distances (Rousseeuw and van Zomeren [17])

(2.4) RD0
ik =

√

(xik − m
0
k)

t C
−1
0 (xik − m

0
k) .

With these initial robust distances we can define a weight for each observation

xik, i = 1, ..., nk and k = 1, ..., g, by setting the weight to 1 if the corresponding

robust distance is less or equal to a suitable cut-off, usually
√

χ2
p,0.975 , and to 0

otherwise, i.e.

(2.5) wik =







1 RD0
ik ≤

√

χ2
p,0.975

0 otherwise .

With these weights we can calculate the final reweighted estimates of the group

means, mk, and the common within-groups covariance matrix, C, which are

necessary for constructing the robust classification rules,

mk =

(

nk
∑

i=1

wik xik

)

/

νk ,

C =
1

ν−g

g
∑

k=1

nk
∑

i=1

wik (xik − mk) (xik − mk)
t ,(2.6)

where νk are the sums of the weights within group k, for k=1, ..., g, and ν is the

total sum of weights,

νk =

nk
∑

i=1

wik , ν =

g
∑

k=1

νk .

Table 1 summarizes the methods to be considered in this study. It has

already been shown by simulations that the reweighted versions of most of the

estimators, at least in the case of one sample, are by far more efficient. This has

also been shown for the common covariance matrix in the framework of linear

discriminant analysis for the S estimates by He and Fung [5] and for the MCD

estimates by Hubert and Van Driessen [6]. Therefore in the following sections

we will prefer the reweighted estimates whenever possible without explicitly men-

tioning this.

Some of the methods are extremely slow which to some extent prevented us

from performing the complete simulation on them. These are particularly the

MWCD of Hawkins and McLachlan [4] and the S-estimates computed by
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Ruppert’s SURREAL algorithm. The FAST S algorithm, whose implementation

is similar to the one proposed by Salibian-Barrera and Yohai [18] for the case

of regression is promising, but since the available implementation is in pure R,

it cannot compete with MCD (in FORTRAN) and OGK, for example. A C or

FORTRAN implementation of this algorithm will allow its more frequent use.

Note also that, because of the large amount of results, not all of them can be

reported here.

Table 1: Estimators for the group means and the common covariance matrix
which will be considered in this study.

Algorithm Comment

FSA Minimum Within-group Covariance Determinant
estimator [4] computed by the FSA algorithm

MCD-A method A MCD

MCD-B method B MCD

MCD-C method C MCD

M-tb M estimator with translated biweight function [15]

M-bw M estimator with biweight function [15]

OGK Pairwise estimators — [10] (method B)

S S estimates computed by Ruppert’s SURREAL

Sfast S estimates computed by the fast algorithm proposed
for regression by [18] (method B)

3. EXAMPLES

3.1. The Fish catch data

As a first example for illustration of the robust approach to linear discri-

minant analysis we use a data set containing measurements on 159 fish caught

in the lake Laengelmavesi, Finland. The data set is available from [12]. It is

also included in the R package rrcov — see Todorov [21]. For the 159 fishes of

7 species the weight, length, height, and width were measured. Three different

length measurements are recorded: from the nose of the fish to the beginning of

its tail, from the nose to the notch of its tail and from the nose to the end of

its tail. The height and width are calculated as percentages of the third length

variable. This results in 6 observed variables, listed in Table 2. Observation 14

has a missing value in variable Weight, therefore this observation was excluded
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from the analysis. The 7 species are listed in Table 3. The last column of this

table gives the number of observations in each class. In the six dimensional

problem presented by this data set, classes 2 (with 6 observations) and 4 (with

11 observations) will cause a problem to the half-sample based robust methods.

Therefore we will consider three cases: (i) all 7 classes, (ii) 6 classes, with class 2

removed and (iii) 5 classes, with classes 2 and 4 removed.

Table 2: Fish measurements data: Variables.

1 Weight Weight of the fish (in grams)

2 Length1 Length from the nose to the beginning of the tail (in cm)

3 Length2 Length from the nose to the notch of the tail (in cm)

4 Length3 Length from the nose to the end of the tail (in cm)

5 Height% Maximal height as % of Length3

6 Width% Maximal width as % of Length3

Table 3: Fish measurements data: Names of the species in Finish and English.
The last column shows the number of objects in each class.

Finish English #

1 Lahna Bream 34

2 Siika Whitewish 6

3 Saerki Roach 20

4 Parkki Parkki 11

5 Norssi Smelt 14

6 Hauki Pike 17

7 Ahven Perch 56

In order to evaluate and compare the considered linear discriminant rules

we have to determine their performance in the classification of future obser-

vations, i.e. we need an estimate of the overall probability of misclassification.

A number of methods to estimate this probability exist in the literature — see

for example Lachenbruch [7]. The apparent error rate (known also as resubstitu-

tion error rate or reclassification error rate) is the most straightforward estimator

of the actual (true) error rate in discriminant analysis and is calculated by ap-

plying the classification criterion to the same data set from which it was derived

and then counting the number of misclassified observations. It is well known

that this method is too optimistic (the true error is likely to be higher). If there

are plenty of observations in each class the error rate can be estimated by split-

ting the data into training and validation sets. The first one is used to estimate

the discriminant rules and the second to estimate the misclassification error.
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This method is fast and easy to apply but it is wasteful of data which would be

critical in our case. Another method is the leaving-one-out or the cross-validation

method (Lachenbruch and Michey [8] which proceeds by removing one observa-

tion from the data set, estimating the discriminant rule using the remaining

n− 1 observations and than classifying this observation with the estimated dis-

criminant rule. For the classical linear discriminant analysis there exist updating

formulas which avoid the recomputation of the discriminant rule at each step but

no such formulas are available for the robust methods. Thus the estimation of

the error rate by this method can be very time consuming depending on the size

of the data set. Nevertheless, for the sake of our example, we will afford the time

and will use the leaving-one-out method to evaluate the considered discriminant

rules. Table 4 shows the results. The apparent error rate is also computed and

given for comparison.

Table 4: Fish measurements data: Apparent Error rate (APR)
and Leaving-One-Out (CV) estimate of the error rate for
the classical (MLE) and eight robust discriminant rules.

Method
All Classes Without 2 Without 2 and 4

APR CV APR CV APR CV

MLE 0.0127 0.0190 0.0132 0.0132 0.0142 0.0142

FSA 0.0949 0.1139 0.0197 0.0197 0.0142 0.0142

MCD-A — — — — 0.0851 0.0780

MCD-B — — — — 0.0638 0.0638

MCD-C — — — — 0.0496 0.0451

M-tb — — — — 0.0071 0.0142

M-bw — — — — 0.0142 0.0142

S — — 0.0132 0.0132 0.0142 0.0142

OGK 0.0126 0.0696 0.0066 0.0132 0.0142 0.0142

For the complete data set, apart from the MLE estimates, we could compute

only the FSA and OGK which do not need a half-sample based estimates of

each group. The estimated error rates (0.1139 and 0.0696 respectively) are higher

than the error rate for MLE — 0.0190. If we remove class 2 which has only

six observations, it is possible to compute also the S estimates. Now only FSA

has slightly higher error rate, while the other rules (MLE, S and OGK) give the

same (cross-validation) error rate of 0.0132. After removing also class 4 with only

11 observations all robust estimates are available. The MLE discriminant rule

as well as most of the robust rules give the same error rate of 0.0142 and only the

three versions based on FAST-MCD give somewhat higher values. As expected,

in general the apparent error rate is lower than the leaving-one-out estimate.
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Since there is no difference in the estimated error rates, it seems that both

robust and non-robust methods perform equally well on this data set. As already

noted by Hawkins and McLachlan [4] this does not mean that robust methods

are not necessary, but on the contrary, this means that the robust methods, while

providing safeguard against possible outliers in the data, do not perform worse

when the data are outlier-free.

3.2. The Diabetes data

As a second example, we use the Diabetes Data, which was analyzed by [13]

in an attempt to examine the relationship between chemical diabetes and overt

diabetes in 145 nonobese adult subjects. The analysis was focused on three pri-

mary variables and the 145 individuals were classified initially on the basis of

their plasma glucose levels into three groups: normal subjects, chemical dia-

betes and overt diabetes. This data set was also analyzed by [4] in the context

of the robust linear discriminant analysis. The data set is available in several

R packages: diabetes in package mclust, chemdiab in package locfit and diabetes.dat

in Rfwdmv. We used the first one for which the value of the second variable,

insulin, on the 104-th observation, is 45 while for the other data sets this value

is 455 (note that 45 is more likely to be an outlier in this variable than 455).

As in the first example, the discriminant rules based on MLE and the eight ro-

bust methods were applied. The corresponding apparent error rates and the

leaving-one-out estimates of the error rate are shown in Table 5.

Table 5: Diabetes data: Apparent Error rate (APR) and Leaving-One-Out (CV)
estimate of the error rate for the classical (MLE) and eight robust dis-
criminant rules. The last two columns give the error rate estimates for
the raw (not reweighted) methods.

Method
Reweighted Raw

APR CV APR CV

MLE 0.1310 0.1310 — —

FSA 0.0483 0.0552 0.0621 0.0552

MCD-A 0.1241 0.1379 0.1379 0.1379

MCD-B 0.1034 0.1172 0.0966 0.1172

MCD-C 0.0699 0.0802 0.0965 0.0803

M-tb 0.0965 0.1103 — —

M-bw 0.1034 0.1172 — —

S 0.0965 0.1034 0.1034 0.1034

OGK 0.0689 0.1103 0.1034 0.1034
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All the robust methods identify the outliers and show smaller error rates

than the MLE discriminant rule. The FSA estimator performs best followed

by MCD-C (i.e. the FAST-MCD analogue of MWCD as defined by Hubert and

Van Driessen [6]). Table 5 also shows the results of the raw (not-reweighted)

estimates but for this data set they differ only slightly from the reweighted ones.

4. SIMULATION

4.1. Distributions

The estimators considered will be evaluated on data sets generated from

a variety of settings with different dimensions p = 2, 6, 10, different number of

groups g = 2, 3 and different size of the training samples n =
∑g

j=1 nj . In all

cases the class distributions are normal, but the generated data sets differ in

the shapes of the group populations and in the separation between the means of

the groups. The various combinations of the parameters of these classification

problems were to some extent motivated by the studies performed by Friedman [3]

to test his regularized discriminant analysis method. These data structures are

denoted by Di and are the following:

• D1. Equal spherical covariance matrices. In this situation all groups πj ,

j =1, ..., g, have the same spherical covariance matrix Ip. The mean of

the first group is the origin, the mean of the second group is at distance

d = 3.0 and the mean of the third group is at the same distance d = 3.0,

but in an orthogonal direction. More precisely, the data sets are generated

from the following p-dimensional normal distributions, where each group

πj , j =1, ..., g, has a separate mean µj and all of them have the same

covariance matrix Ip,

(4.1) πj ∼ Np(µj ,Σj) , j = 1, ..., 3 ,

with

µ1 = (0, 0, ..., 0) ,

µ2 = (3, 0, ..., 0) ,

µ3 = (0, 3, ..., 0) ,

Σ1 = Σ2 = Σ3 = Ip .
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These distributions will be contaminated in the following two ways

– scale contamination:

(4.2) πj ∼ (1−ε)Np(µj , Ip) + εNp(µj , κIp) , j = 1, ..., g ,

– location contamination

(4.3) πj ∼ (1−ε)Np(µj , Ip) + εNp(µ̂j , 0.252
Ip) , j = 1, ..., g ,

µ̂j = µj + (νQp, ..., νQp) ,

Qp =
√

χ2
p;0.001/p ,

where ε = {0, 0.1, 0.25, 0.4}, κ = {9, 100}, and ν = 5, 10 are parameters

of the simulation. The shift of the location outliers is measured in terms

of the unit measure Q =
√

χ2
p;0.001. The outliers are placed at distance νQ

by adding νQp to each component of the location vector µ, where Qp =
√

χ2
p;0.001/p (see Rocke and Woodruff [15]).

The variation of the parameters g, p, n, ε, ν and κ results in 234 data dis-

tributions (18 uncontaminated, 108 location contaminated and 108 scale

contaminated).

• D2. Unequal spherical covariance matrices. In this situation each group πj ,

j =1, ..., g, has a spherical covariance matrix jIp, i.e. the first group has

as covariance matrix the identity matrix Ip and the covariance matrix of

each other group is a multiple of the identity matrix Ip with inflation factor

equal to the number of the group. The mean of the first group is the origin,

the mean of the second is at distance d = 3.0 as in the situation D1 and

the mean of the third is at distance d = 4.0, but in an orthogonal direction.

The data sets in this situation are generated from the distributions given

in equation (4.1), where each group πj , j =1, ..., g, has a separate mean µj

and their covariance matrices Σj are spherical and proportional,

µ1 = (0, 0, 0, ..., 0) ,

µ2 = (3, 0, 0, ..., 0) ,

µ3 = (0, 4, 0, ..., 0) ,

Σ1 = Ip ,

Σ2 = 2 Ip ,

Σ3 = 3 Ip .

Only location contamination will be applied to these distributions, as de-

scribed in equation (4.3). This results in altogether 136 data distributions

(18 uncontaminated and 108 location contaminated).
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• D0. In order to calibrate the simulation we will start with the same con-

figurations as described by He and Fung [5] and then repeated by Croux

and Dehon [2] and later by Hubert and Van Driessen [6]. In these classifi-

cation problems data were generated from two groups g = 2 with p = 3 and

different sizes of the training samples. In most of the cases the populations

have the same spherical covariance matrices Σ1 = Σ2 = I3. The mean of

the first group is the origin, µ1 = (0, 0, 0), the mean of the second group is

µ2 = (1, 1, 1). Location and scale contaminations are applied as described

in D1. More precisely, the following five data structures are used.

– A: n1 = n2 = 50, ε = 0, no contamination.

– B: n1 = n2 = 50, ε = 0.2, location contamination with µ̂1 = (5, 5, 5)

and µ̂2 = (−4,−4,−4).

– C: n1 = 100, n2 = 10, ε = 0.2, location contamination with µ̂1= (5, 5, 5)

and µ̂2 = (−4,−4,−4).

– D: n1 = n2 = 20, ε = 0.2, scale contamination with κ = 25.

– E: n1 = 70, n2 = 30, ε = 0.2, unequal covariance matrices Σ1 = I3

and Σ2 = 4 I3, location contamination with µ̂1 = (5, 5, 5) and µ̂2 =

(−10,−10,−10).

4.2. Criteria

The described linear discriminant analysis estimators can be evaluated with

regard to the following two aspects of the discriminant analysis:

• the quality of the estimates of the group means and the common co-

variance matrix and thus the quality of the discriminant functions and

scores and

• in a prediction context the performance of the discrimination rules eva-

luated by their misclassification probabilities obtained by simulation.

Although the quality of the estimates is important since it entirely deter-

mines the robustness of the discriminant rules towards outliers, in this study

we will concentrate only on the second aspect, the evaluation of the classification

performance of the rules, and leave the detailed study of the estimates for further

work.

The discrimination performance of the estimated classification rules is eva-

luated by the Overall Probability of Misclassification (OPM) which can be esti-

mated by simulation (similar as in He and Fung [5] and Hubert and Van Driessen

[6]). For this purpose we generate a test sample consisting of 2000 observations
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from each group (with the known distribution), classify them using each of the

estimated discrimination rules and obtain the corresponding proportions of the

misclassified observations. This procedure is repeated N = 100 times and the

mean and standard error of the probability of misclassification are calculated

for each method. Whenever possible, the robust estimates are based on one-step

reweighting.

4.3. Simulation results

In this section we present the results of the simulation study for the robust

linear discriminant rules as well as the classical MLE one. Also the results of

MLE applied to the clean data are shown and are denoted by MLE-C.

Table 6: Simulation results: Mean probability of misclassification for
the classical and robust estimators under different cases of
contaminated distributions, as described in He and Fung [5].

Estimators

FSA M-bw MCD-A MCD-B MCD-C OGK S MLE-C MLE

A 0.202 0.202 0.203 0.203 0.208 0.202 0.203 0.202 0.202

B 0.207 0.207 0.209 0.203 0.208 0.211 0.202 0.202 0.661

C 0.210 0.263 0.217 0.222 0.218 0.215 0.213 0.211 0.617

D 0.240 0.221 0.226 0.223 0.225 0.227 0.219 0.215 0.260

E 0.462 0.283 0.285 0.283 0.291 0.289 0.279 0.277 0.558

First we consider the results of the simulation study following He and Fung [5].

Table 6 shows the estimated overall probability of misclassification for the discri-

minant rules in the five different distribution setups. Note that the S estimator,

computed by the method B which we are using in this study is equivalent to

the estimator denoted by S2A in [5]. In the case of clean data — setup A —

all estimators perform almost equally well. In case B with 20% location contami-

nation the MLE breaks down, but all the robust estimators perform equally well,

following closely MLE-C. In the third case, with unequal sample sizes — setup

C — the robust estimators are worse than MLE-C, although they do better than

MLE. The best are FSA, OGK and S. In case D, with 20% scale contamina-

tion, S and M-bw perform best. In the last case, with unequal sample sizes per

group, n1 = 70 and n2 = 30, and unequal covariance matrices most of the robust

estimators also perform similar to MLE-C, only FSA breaks down. There is no
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estimator which performs best in all cases but S and M-bw are the ones that

perform best in most of the cases being almost equally good (however, M-bw is

much faster taking advantage of the existing fast algorithm for MCD). The next

best estimator is OGK and it is even faster than MCD.

As far as the main simulation is concerned, let us start by investigating

the case of clean data — i.e. ε = 0 — and consider the dependence of the estima-

tors on the data dimension and the sample size. Figure 1 presents the mean overall

probability of misclassification of the classical and robust discriminant rules when

applied to clean data (the results for S and M-tb are not presented, since they

are almost the same as those for M-bw). For n1 = n2 = 50 and n1 = n2 = 100

all robust estimators follow closely the MLE. For n1 = n2 = 20 only the smooth

estimators and OGK are very near to the MLE. No substantial difference between

two and three groups can be noted.

Clean data (ε = 0)

p x n

O
P

M

0.10

0.15

0.20

2x20 2x50 2x100 6x20 6x50 6x100 10x20 10x50 10x100

2 groups

0.10

0.15

0.20

3 groups

MLE
MCD−A

MCD−B
MCD−C

OGK
M−bw

Figure 1: Mean Overall probability of misclassification for distribution setup D1
without contamination for different dimensions and sample sizes in case
of 2 and 3 groups.

The next three tables display the estimated overall probability of misclas-

sification (OPM) as a function of the contamination proportion ε in different

simulation situations and different types of contamination. First we will consider
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the performance of the estimators in the case of scale contamination. Table 7

shows some of the results for two and three groups, where ε = 0, 10, 25 and 40%

scale contamination is added to all groups with scale inflation factor κ = 9 and

100 respectively. Only the reweighted estimators are shown — the raw versions

were slightly worse. Only the constrained M-estimates with Tukey’s biweight

function (M-bw) is shown, since it was slightly better than the M-estimates with

the translated biweight function (Rocke [14]) in almost all of the cases. The re-

sults for the S estimates, as described by He and Fung [5] where these estimates

are denoted S2A, were not computed for all cases because of their computa-

tional restrictions (the results actually computed are quite similar to those for

M-bw). The S estimates computed by an algorithm similar to the one proposed

by Salibian-Barrera and Yohai [18] for regression which they call Fast S are

quite promising, but the available R implementation is rather slow (comparable

with Rupperts SURREAL). A native implementation in C is under development.

In the right hand part of the table, representing the results for 3 groups only

MLE, M-bw and OGK are shown.

For g = 2, p = 2 and n1 = n2 = 20 in the case κ = 9 there is only slight

gain in performance and only OGK and M-bw are better than the classical

MLE estimates. The picture changes completely when κ = 100 where all robust

methods show similar discrimination performance (closely following MLE-C).

When the sample size is increased to n1 = n2 = 50, 100 the performance of MLE

improves, but so does the performance of the robust estimators. When the

number of variables p is increased (p = 6, 10), keeping the same sample size

n1 = n2 = 20 only OGK remains usable, which is not surprising since all other

robust estimators are based on a half sample. When the sample size is increased

to n1 = n2 = 50, 100, all robust estimators perform very well again. In the case

of three groups the results (shown in the right three columns of Table 7) are

quite similar to the two-group situation, but the estimated overall probability

of misclassification is slightly higher for all estimators, including MLE.

Next we will consider the performance of the estimators in case of location

contamination. Table 8 shows some of the results for two and three groups,

where ε = 0, 10, 25 and 40% location contamination is added to all groups with

location shift parameter ν = 5 and 10 respectively. The “uninteresting” cases

where the dimension is high compared to the sample size, and to which we know

that the robust estimators cannot be applied, are not shown. OGK preforms best

in almost all cases except for 40% contamination with shift factor ν = 5, where

it always breaks down.

Table 9 shows some of the results for two and three groups for distribution

setup D2 (unequal spherical covariance matrices) when location contamination

is added to the data. The situation is quite similar to the case of equal spherical

covariance matrices, but the estimated probability of misclassification increases

for all estimators including MLE-C.
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Table 7: Mean probability of misclassification for Setup D1 with
scale contamination in the case of two and three groups
(for three groups not all of the estimators are shown).

ε κ MLE M-bw MCD-A MCD-B MCD-C OGK MLE M-bw OGK

p = 2, n1 = n2 = 20, g = 2 g = 3

0 — 0.073 0.084 0.082 0.083 0.083 0.077 0.102 0.113 0.105

0.10 9 0.079 0.083 0.083 0.084 0.084 0.074 0.109 0.112 0.106

0.25 9 0.087 0.089 0.091 0.088 0.089 0.083 0.109 0.103 0.103

0.40 9 0.094 0.095 0.091 0.092 0.090 0.088 0.119 0.119 0.114

0.10 100 0.124 0.084 0.082 0.083 0.083 0.079 0.166 0.114 0.109

0.25 100 0.197 0.084 0.083 0.083 0.082 0.080 0.252 0.110 0.107

0.40 100 0.218 0.082 0.083 0.082 0.082 0.080 0.324 0.103 0.102

p = 6, n1 = n2 = 20, g = 2 g = 3

0 — 0.086 0.160 0.129 0.146 0.151 0.097 0.119 0.146 0.131

0.10 9 0.108 0.158 0.126 0.134 0.140 0.106 0.138 0.144 0.129

0.25 9 0.115 0.146 0.126 0.131 0.127 0.102 0.151 0.149 0.136

0.40 9 0.123 0.131 0.131 0.126 0.124 0.114 0.159 0.146 0.138

0.10 100 0.186 0.165 0.129 0.145 0.149 0.107 0.230 0.138 0.125

0.25 100 0.225 0.130 0.112 0.118 0.123 0.106 0.322 0.137 0.128

0.40 100 0.291 0.123 0.136 0.123 0.108 0.105 0.366 0.155 0.129

p = 10, n1 = n2 = 20, g = 2 g = 3

0 — 0.107 0.245 0.146 0.228 0.232 0.128 0.136 0.245 0.153

0.10 9 0.123 0.212 0.144 0.196 0.204 0.131 0.159 0.224 0.151

0.25 9 0.153 0.186 0.149 0.179 0.182 0.142 0.173 0.207 0.158

0.40 9 0.158 0.166 0.173 0.165 0.164 0.150 0.196 0.196 0.175

0.10 100 0.153 0.210 0.143 0.198 0.203 0.135 0.236 0.224 0.158

0.25 100 0.237 0.168 0.123 0.163 0.170 0.134 0.325 0.213 0.166

0.40 100 0.283 0.167 0.203 0.167 0.162 0.156 0.419 0.202 0.171

p = 10, n1 = n2 = 50, g = 2 g = 3

0 — 0.074 0.089 0.098 0.092 0.092 0.081 0.102 0.112 0.107

0.10 9 0.093 0.094 0.101 0.096 0.095 0.087 0.124 0.118 0.114

0.25 9 0.100 0.097 0.099 0.097 0.098 0.091 0.128 0.116 0.113

0.40 9 0.102 0.098 0.096 0.098 0.099 0.093 0.133 0.122 0.120

0.10 100 0.173 0.094 0.102 0.098 0.098 0.089 0.201 0.117 0.114

0.25 100 0.179 0.096 0.100 0.096 0.096 0.092 0.242 0.116 0.113

0.40 100 0.251 0.097 0.095 0.096 0.097 0.095 0.315 0.120 0.120

p = 10, n1 = n2 = 100, g = 2 g = 3

0 — 0.073 0.075 0.078 0.076 0.076 0.075 0.097 0.100 0.100

0.10 9 0.086 0.081 0.083 0.082 0.082 0.081 0.110 0.103 0.103

0.25 9 0.085 0.079 0.081 0.080 0.079 0.079 0.110 0.103 0.103

0.40 9 0.085 0.079 0.079 0.079 0.079 0.078 0.115 0.107 0.107

0.10 100 0.125 0.079 0.081 0.079 0.079 0.079 0.154 0.102 0.102

0.25 100 0.134 0.077 0.078 0.077 0.077 0.077 0.177 0.099 0.100

0.40 100 0.157 0.078 0.079 0.078 0.078 0.078 0.212 0.107 0.107
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Table 8: Mean probability of misclassification for Setup D1
with location contamination.

ε κ MLE M-bw MCD-A MCD-B MCD-C OGK MLE M-bw OGK

p = 2, n1 = n2 = 20, g = 2 g = 3

0 — 0.073 0.084 0.082 0.083 0.083 0.077 0.102 0.115 0.106
0.10 5 0.139 0.080 0.079 0.080 0.080 0.075 0.192 0.113 0.106
0.25 5 0.144 0.082 0.079 0.080 0.080 0.080 0.196 0.103 0.102
0.40 5 0.158 0.091 0.091 0.091 0.091 0.144 0.198 0.117 0.200
0.10 10 0.150 0.085 0.083 0.084 0.085 0.080 0.201 0.114 0.109
0.25 10 0.144 0.073 0.070 0.069 0.069 0.070 0.199 0.110 0.108
0.40 10 0.146 0.075 0.074 0.074 0.074 0.080 0.196 0.101 0.110

p = 2, n1 = n2 = 50, g = 2 g = 3

0 — 0.071 0.074 0.074 0.074 0.074 0.072 0.102 0.105 0.104
0.10 5 0.135 0.074 0.073 0.073 0.073 0.072 0.175 0.096 0.095
0.25 5 0.150 0.075 0.074 0.074 0.074 0.076 0.192 0.096 0.097
0.40 5 0.144 0.063 0.063 0.063 0.063 0.137 0.196 0.097 0.195
0.10 10 0.144 0.071 0.071 0.070 0.070 0.070 0.204 0.096 0.095
0.25 10 0.150 0.079 0.079 0.079 0.079 0.081 0.193 0.095 0.096
0.40 10 0.144 0.071 0.071 0.071 0.071 0.084 0.198 0.103 0.111

p = 2, n1 = n2 = 100, g = 2 g = 3

0 — 0.073 0.075 0.074 0.074 0.074 0.074 0.094 0.096 0.095
0.10 5 0.137 0.067 0.067 0.066 0.066 0.067 0.182 0.096 0.096
0.25 5 0.149 0.065 0.065 0.065 0.065 0.068 0.196 0.096 0.098
0.40 5 0.151 0.076 0.076 0.076 0.076 0.150 0.197 0.098 0.198
0.10 10 0.139 0.072 0.072 0.072 0.072 0.071 0.185 0.096 0.095
0.25 10 0.144 0.065 0.065 0.065 0.065 0.066 0.192 0.095 0.094
0.40 10 0.139 0.067 0.067 0.067 0.067 0.075 0.201 0.098 0.122

p = 6, n1 = n2 = 50, g = 2 g = 3

0 — 0.073 0.076 0.083 0.080 0.079 0.075 0.096 0.100 0.099
0.10 5 0.096 0.087 0.091 0.090 0.089 0.085 0.128 0.110 0.109
0.25 5 0.098 0.098 0.106 0.106 0.104 0.083 0.127 0.130 0.108
0.40 5 0.104 0.129 0.131 0.132 0.132 0.118 0.124 0.151 0.138
0.10 10 0.092 0.076 0.082 0.080 0.080 0.077 0.124 0.106 0.105
0.25 10 0.094 0.079 0.082 0.079 0.080 0.078 0.126 0.106 0.106
0.40 10 0.100 0.127 0.129 0.132 0.132 0.104 0.121 0.141 0.131

p = 6, n1 = n2 = 100, g = 2 g = 3

0 — 0.072 0.073 0.075 0.075 0.074 0.073 0.094 0.095 0.096
0.10 5 0.094 0.077 0.079 0.078 0.078 0.078 0.117 0.099 0.099
0.25 5 0.089 0.089 0.097 0.097 0.096 0.075 0.120 0.122 0.104
0.40 5 0.092 0.103 0.110 0.112 0.111 0.101 0.122 0.132 0.131
0.10 10 0.096 0.081 0.082 0.081 0.081 0.081 0.117 0.094 0.095
0.25 10 0.093 0.071 0.071 0.071 0.071 0.073 0.119 0.098 0.100
0.40 10 0.093 0.104 0.113 0.114 0.114 0.098 0.125 0.134 0.130

p = 10, n1 = n2 = 100, g = 2 g = 3

0 — 0.071 0.074 0.076 0.074 0.074 0.074 0.096 0.098 0.098
0.10 5 0.084 0.078 0.080 0.078 0.078 0.078 0.120 0.108 0.108
0.25 5 0.088 0.095 0.112 0.121 0.121 0.080 0.117 0.123 0.108
0.40 5 0.088 0.108 0.114 0.117 0.117 0.099 0.117 0.129 0.124
0.10 10 0.083 0.078 0.080 0.078 0.078 0.078 0.110 0.101 0.101
0.25 10 0.086 0.093 0.112 0.114 0.113 0.080 0.110 0.117 0.102
0.40 10 0.082 0.103 0.111 0.111 0.110 0.092 0.111 0.125 0.120
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Table 9: Mean probability of misclassification for Setup D2
with location contamination.

ε κ MLE M-bw MCD-A MCD-B MCD-C OGK MLE M-bw OGK

p = 2, n1 = n2 = 20, g = 2 g = 3

0.00 — 0.112 0.128 0.125 0.127 0.126 0.116 0.138 0.155 0.146

0.10 5 0.189 0.131 0.127 0.126 0.126 0.123 0.202 0.144 0.137

0.25 5 0.193 0.127 0.124 0.125 0.126 0.125 0.221 0.151 0.145

0.40 5 0.190 0.132 0.131 0.131 0.131 0.183 0.224 0.197 0.226

0.10 10 0.190 0.126 0.123 0.122 0.124 0.117 0.227 0.155 0.149

0.25 10 0.196 0.122 0.121 0.120 0.121 0.122 0.229 0.152 0.149

0.40 10 0.184 0.118 0.115 0.116 0.116 0.137 0.225 0.149 0.187

p = 2, n1 = n2 = 50, g = 2 g = 3

0.00 — 0.109 0.113 0.114 0.113 0.113 0.111 0.137 0.138 0.137

0.10 5 0.175 0.109 0.109 0.108 0.108 0.108 0.197 0.132 0.129

0.25 5 0.187 0.108 0.107 0.107 0.107 0.110 0.218 0.137 0.137

0.40 5 0.184 0.115 0.115 0.114 0.115 0.185 0.221 0.154 0.222

0.10 10 0.188 0.113 0.112 0.112 0.113 0.112 0.214 0.133 0.130

0.25 10 0.191 0.120 0.120 0.120 0.120 0.121 0.216 0.134 0.133

0.40 10 0.183 0.112 0.112 0.112 0.112 0.140 0.224 0.142 0.201

p = 2, n1 = n2 = 100, g = 2 g = 3

0.00 — 0.100 0.102 0.102 0.102 0.102 0.102 0.134 0.136 0.135

0.10 5 0.171 0.108 0.107 0.107 0.107 0.108 0.201 0.130 0.129

0.25 5 0.184 0.105 0.104 0.104 0.104 0.109 0.220 0.136 0.136

0.40 5 0.169 0.100 0.100 0.100 0.100 0.169 0.227 0.143 0.227

0.10 10 0.179 0.110 0.109 0.109 0.109 0.109 0.214 0.140 0.139

0.25 10 0.182 0.106 0.105 0.105 0.105 0.106 0.216 0.132 0.130

0.40 10 0.178 0.103 0.102 0.102 0.102 0.133 0.213 0.135 0.201

5. SUMMARY AND CONCLUSIONS

In this paper we have reviewed the recent methods for robust LDA and have

proposed several new ones — based on the Constrained M estimates as defined

by Rocke [14] and on the pairwise estimator OGK of Maronna and Zamar [10].

It is shown with examples that the proposed robust LDA procedures behave very

well on data sets with and without outlying observations. The simulation study of

He and Fung [5] was repeated for all estimators and it showed S, M-bw and OGK

as the best performers (the estimators are shown in increasing order of their

speed). A large scale simulation study covering a variety of settings with different

distributions and contaminations was performed, and showed that in most of the

cases the robust LDA procedures behave similarly to the MLE procedure when

applied on clean data — i.e. remain uninfluenced by the presence of outliers in

the data unlike the classical rules.
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Although the OGK estimator seems to be the best performer in terms

of probability of misclassification as well as of speed, a more thorough study

is necessary because of its non-affine equivariance. Also, the evaluation of the

quality of the estimators of the group means and the common covariance matrix

in the context of the linear discriminant analysis deserves further work.

All computations were performed by software developed in the statistical

environment R, which is available in the package rrcov — Todorov [21].

ACKNOWLEDGMENTS

This research was partially supported by the Center for Mathematics and

its Applications, Lisbon, Portugal, through Programa Operacional “Ciência,

Tecnologia, Inovação” (POCTI) of the Fundação para a Ciência e a Tecnolo-

gia (FCT), cofinanced by the European Community fund FEDER.

We also acknowledge the valuable suggestions from the referees.

REFERENCES

[1] Chork, C. and Rousseeuw, P.J. (1992). Integrating a high breakdown option
into discriminant analysis in exploration geochemistry, Journal of Geochemical

Exploration, 43, 191–203.

[2] Croux, C. and Dehon, C. (2001). Robust linear discriminant analysis using
s-estimators, The Canadian Journal of Statistics, 29, 473–492.

[3] Friedman, J.H. (1989). Regularized discriminant analysis, Journal of the Amer-

ican Statistical Association, 84, 165–175.

[4] Hawkins, D.M. and McLachlan, G. (1997). High-breakdown linear discrimi-
nant analysis, Journal of the American Statistical Association, 92, 136–143.

[5] He, X. and Fung, W. (2000). High breakdown estimation for multiple popula-
tions with applications to discriminant analysis, Journal of Multivariate Analysis,
72, 151–162.

[6] Hubert, M. and Van Driessen, K. (2004). Fast and robust discriminant anal-
ysis, Computational Statistics and Data Analysis, 45, 301–320.

[7] Lachenbruch, P.A. (1975). Discriminant Analysis, Hafner, New York.

[8] Lachenbruch, P.A. and Michey, M. (1968). Estimation of error rates in
discriminant analysis, Technometrics, 10, 1–11.



Robust LDA 83

[9] Maronna, R. and Yohai, V. (1998). Robust estimation of multivariate loca-

tion and scatter. In “Encyclopedia of Statistical Sciences”, Updated Volume 2
(S.C.R. Kotz and D. Banks, Eds.), Wiley, New York, 589–596.

[10] Maronna, R. and Zamar, R. (2002). Robust estimation of location and dis-
persion for high-dimensional datasets, Technometrics, 44, 307–317.

[11] Pison, G.; Van Aelst, S. and Willems, G. (2002). Small sample corrections
for LTS and MCD, Metrika, 55, 111–123.

[12] Puranen, J. (2006). Fish catch data set,
http://www.amstat.org/publications/jse/datasets/fishcatch.txt

[13] Reaven, G.M. and Miller, R.G. (1979). An attempt to define the nature of
chemical diabetes using a multidimensional analysis, Diabetologia, 16, 17–24.

[14] Rocke, D.M. (1996). Robustness properties of S-estimators of multivariate
location and shape in high dimension, Annals of Statistics, 24, 1327–1345.

[15] Rocke, D.M. and Woodruff, D.L. (1996). Identification of outliers in multi-
variate data, Journal of the American Statistical Association, 91, 1047–1061.

[16] Rousseeuw, P. (1984). Least median of squares regression, Journal of the Amer-

ican Statistical Association, 79, 851–857.

[17] Rousseeuw, P.J. and van Zomeren, B.C. (1991). Robust distances: Simu-

lation and cutoff values. In: “Directions in Robust Statistics and Diagnostics”,
Part II (W. Stahel and S. Weisberg, Eds.), Springer Verlag, New York.

[18] Salibian-Barrera, M. and Yohai, V. (2005). A fast algorithm for S-regression
estimates. To appear in the Journal of Computational and Graphical Statistics.

[19] Todorov, V.; Neykov, N. and Neytchev, P. (1990). Robust selection of

variables in the discriminant analysis based on mve and mcd estimators. In: “Pro-
ceedings in Computational Statistics, COMPSTAT”, Physica Verlag, Heidelberg.

[20] Todorov, V.; Neykov, N. and Neytchev, P. (1994). Robust two-group dis-
crimination by bounded influence regression, Computational Statistics and Data

Analysis, 17, 289–302.

[21] Todorov, V.K. (2006). rrcov: Scalable Robust Estimators with High Breakdown

Point, R package version 0.3-05.

[22] Woodruff, D.L. and Rocke, D.M. (1994). Computable robust estimation of
multivariate location and shape in high dimension using compound estimators,
Journal of the American Statistical Association, 89, 888–896.



REVSTAT – Statistical Journal

Volume 5, Number 1, March 2007, 85–96

DE-BIASING WEIGHTED MLE VIA INDIRECT

INFERENCE: THE CASE OF GENERALIZED

LINEAR LATENT VARIABLE MODELS

Authors: Maria-Pia Victoria-Feser

– University of Geneva,
Switzerland
maria-pia.victoriafeser@hec.unige.ch

Abstract:

• In this paper we study bias-corrections to the weighted MLE (Dupuis and Morgen-
thaler, 2002), a robust estimator simply defined through a weighted score function.
Indeed, although the WMLE is relatively simple to compute, for most models it is
not consistent and hence not very helpful. For example, the model we consider in this
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1. INTRODUCTION

Consider a general class of weighted MLE (WMLE) proposed by Dupuis

and Morgenthaler (2002) belonging to the class of M -estimators (Huber, 1981)

defined as the solution in θ of

1

n

n
∑

i=1

ψc(xi; θ) =
1

n

n
∑

i=1

s(xi; θ)w(xi, c) = 0 ,

with the underlying assumption that xi ∼ Fθ and the weights w(xi, c) are such

that smaller weights are given to observations with larger score function s(xi; θ)=

∂/∂θ log
(

∂/∂xFθ(x)
)

. A typical choice for the weights is Huber type weights,

which for a given tuning parameter c are given by

(1.1) w(x; c) = min

(

1;
c

‖s(x; θ)‖

)

,

where ‖...‖ denotes the Euclidean norm. If Fθ and/or the weight function are

not symmetric, then the resulting estimator is not consistent. Based on a first

order development of the bias, Dupuis and Morgenthaler (2002) propose a bias

correction given by

(1.2) B(̂θ) = −

∫

s(x; θ)w(x; θ) dFθ(x)
∫
(

∂

∂θ
s(x; θ)w(x; θ) + s(x; θ)

∂

∂θ
w(x; θ)

)

dFθ(x)

∣

∣

∣

∣

∣

∣

∣

θ=bθ
to be added to the inconsistent WMLE ̂θ. The computation of two integrals

is still needed (and can be done by means of simulations) as well as the derivative

of the weight function. Alternatively, one can consider estimators of the type

1

n

n
∑

i=1

s(xi; θ)w(xi, c) − a(θ) = 0 ,

with
a(θ) =

∫

s(x; θ)w(x, c) dFθ(x)

and hence estimate simultaneously the bias correction with the estimator.

This can become very complicated depending on the form of the score function.

In the following section, a bias correction for a WMLE is presented, in the same

spirit as (1.2) but based on the theory of indirect inference.

2. INDIRECT INFERENCE FOR BIAS REDUCTION

Indirect estimation (Gouriéroux, Monfort, and Renault, 1993, Gallant and

Tauchen, 1996) has been proposed as an estimation procedure for a complex

model Fθ with intractable likelihood functions. It involves the computation of
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an estimator π̂ for the parameters of an auxiliary model Fπ that does not provide

a consistent estimator of θ. In particular, let π̂ be an M -estimator defined

implicitly by ∫

ψ(x; π̂) dFn(x) = 0 .

As the sample size tends to infinity, this auxiliary estimate defines a mapping

from the parameter space of θ to the parameter space of the auxiliary model,

i.e. θ → π(θ), defined by

(2.1)

∫

ψ(x; π(θ)) dFθ(x) = 0 .

With indirect inference one tries in some sense to invert this map, i.e. π → θ(π),

and use this inverse to calculate the estimator ̂θ = θ(π̂). The latter can be

obtained implicitly by the solution in θ of

(2.2)

∫

ψ(x; π̂) dFθ(x) = 0 .

This indirect estimator results as a particular case of the general minimization

problem defining indirect estimators, i.e.

̂θ = arg min
θ

(

π̂ − π(θ)
)T

Ω
(

π̂ − π(θ)
)

,

with π(θ) obtained as the solution of (2.1). The matrix Ω can be chosen on effi-

ciency arguments but for simplicity, on can choose Ω = I. The estimation of π(θ)

is the difficulty in applying the indirect method. If it is possible to create samples

x̃i(θ), i=1, ..., s ·n, simulated (with fixed seed) from Fθ for a given θ, then a

Monte Carlo estimate of π(θ) can be used. This estimate is defined as the

solution in π(θ) of
1

sn

sn
∑

i=1

ψ
(

x̃i(θ); π(θ)
)

= 0 .

Gouriéroux, Monfort, and Renault (1993) show that this estimator is asymptot-

ically equivalent to the one proposed by Gallant and Tauchen (1996) (available

since 1992 as a working paper) defined by

(2.3) ̂θ = arg min
θ

(

1

sn

sn
∑

i=1

ψ
(

x̃i(θ); π̂
)

)T

∆

(

1

sn

sn
∑

i=1

ψ
(

x̃i(θ); π̂
)

)

,

with again ∆ chosen on efficiency arguments. When dim(θ) = dim(π) and ∆ = I,

the solution of (2.3) is given by the solution in θ of (2.2) in which the integral

is estimated by the mean over a simulated sample. We also note that when ψ is

the score function, then ̂θ = π̂.

Indirect inference has already been used with robust statistics: see Genton

and de Luna (2000) and Genton and Ronchetti (2003). Similar ideas can be found

in Cabrera and Fernholz (1999).
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̂θ can be found iteratively using a Newton step. For that we need

∂

∂θ

∫

ψ(x; π̂) dFθ(x) =

∫

ψ(x; π̂) sT(x; θ) dFθ(x) .

Then the Newton step is given by

(2.4) ̂θ
(k+1)

= ̂θ
(k)− S−1

(

π̂, ̂θ
(k))

sn
∑

i=1

ψ
(

x̃i(̂θ
(k)

); π̂
)

,

where

S
(

π̂, ̂θ
)

=

sn
∑

i=1

ψ
(

xi(̂θ); π̂
)

sT
(

xi(̂θ); ̂θ
)

and π̂ is the (inconsistent) M -estimator. With this indirect estimator, there is

hence no need for simultaneous estimation of bias (computation of a(θ)). This

estimator has been proposed by Moustaki and Victoria-Feser (2006) in the context

of generalized linear latent variable models.

3. GENERALIZED LINEAR LATENT VARIABLE MODELS

(GLLVM)

Latent variable models are widely used in social sciences for studying the

interrelationships among observed variables. More specifically, latent variable

models are used for reducing the dimensionality of multivariate data, for assign-

ing scores to sample members on the latent dimensions identified by the model

as well as for the construction of measurement scales (e.g. in educational testing

and psychometrics). Moustaki and Knott (2000) proposed a generalized linear

latent variable model (GLLVM) framework for any type of observed data (metric

and categorical) in the exponential family. They extended the work of Mous-

taki (1996) and Sammel, Ryan, and Legler (1997) for mixed binary and metric

variables (the latter with covariate effects as well) and Bartholomew and Knott

(1999) for categorical variables. A similar framework is also discussed by Skro-

ndal and Rabe-Hesketh (2004) that includes multilevel models (random-effects

models) as a special case.

Formally, given a set of response variables x1, ..., xp, there exists a (smaller)

set of latent variables or factors z1, ..., zq that account for the dependencies among

the response variables. In other words, given the latent variables, the mani-

fest ones are conditionally independent. Factor analysis is the simplest case.

In general we suppose that the conditional distribution of the manifest variables

given the latent ones belongs to the exponential family, i.e.

gm

(

xm |z, θm

)

= exp

{

xm αm z
∗

φm
− b(αm z

∗)

φm
+ c(xm, φm)

}

, m= 1, ..., p ,
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with αm = [αm0, ..., αmq], m=1, ..., p, the so-called loadings, φm, m=1, ..., p,

the scale parameters (for example for normal manifest variables),

z
∗ = [1, z1, ..., zq]

T = [1, zT ]T

and hence θm = (αm, φm)T . The latent variables z are supposed standard mul-

tivariate normal with density ϕ(z) (but the independence assumption can be

relaxed), hence, the marginal distribution is

f(x; θ) =

∫

· · ·
∫

[

p
∏

m=1

gm

(

xm |z, θm

)

]

ϕ(z) dz .

The score functions become

s(1)m (x; θ) =
∂

∂αm
log
(

f(x; θ)
)

(3.1)

=
1

f(x; θ)

∫

· · ·
∫

g
(

x |z, θ
)

(

xm− b′(αm z
∗)

φm

)

z
∗ϕ(z) dz ,

s(2)m (x; θ) =
∂

∂φm
log
(

f(x; θ)
)

(3.2)

=
1

f(x; θ)

∫

· · ·
∫

g
(

x |z, θ
)

·
(

−xm αm z
∗− b(αm z

∗)

φ2
m

+
∂

∂φm
c(φm, xm)

)

ϕ(z) dz ,

for m=1, ..., p. The integrals in (3.1) and (3.2) can be approximated using fixed

Gauss–Hermite quadrature (see e.g. Bock and Liberman, 1970), adaptive quadra-

ture points (see e.g. Bock and Schilling, 1997, Schilling and Bock, 2005), Monte

Carlo approximations (see e.g. Sammel, Ryan, and Legler, 1997) or Laplace

approximation (see e.g. Huber, Ronchetti, and Victoria-Feser 2004). All these

approximations lead to approximate ML estimators. The models we consider here

are one factor models and although it is known that Gauss–Hermite rule can give

biased estimators in some situations, we will nevertheless use it to compute the

integrals.

Moustaki and Victoria-Feser (2006) study the robustness properties of the

(approximated) MLE by means of the Influence Function (Hampel, 1968, 1974).

Not surprisingly, even with binary data, the MLE can be biased by data contam-

ination, which in this context appear as unexpected binary responses. Since the

(approximate) MLE is already quite complicate computationally, Moustaki and

Victoria-Feser (2006) propose to use a WMLE with consistency correction via

indirect inference. The WMLE π̂ is computed with Huber type weights (1.1).

The consistent estimator ̂θ is obtained using indirect inference and called Indi-

rect Globally Weighted Robust (IGWR) estimator. Its (approximate) asymptotic

covariance is also given in Moustaki and Victoria-Feser (2006) which is used for

inference and also for choosing the tuning constant c of the Huber weights on

efficiency arguments.
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4. SIMULATION STUDY

We report here the simulation study presented in Moustaki and Victoria-

Feser (2006). The model we consider is the one-factor model (q= 1) fitted to two

binary (m = 1, 2) and three normal (m = 3, 4, 5) manifest variables with param-

eter values

• α1 = [1.0, 0.7] ,

• α2 = [0.8, 1.0] ,

• α3 = [2.0, 0.6] and φ3 = 1 ,

• α4 = [2.5, 0.7] and φ4 = 1 ,

• α5 = [3.0, 0.8] and φ5 = 1 .

150 samples of size 200 where generated and contaminated in three ways:

• 3% of the first normal variable (i.e. observations of x3) set to an arbitrary

value (20) (pointmass 1);

• 3% of all three normal variables set to an arbitrary value (20) (pointmass 3);

• 3% of the data from the mixed GLLVM with α5 = [3.0, 8]T instead of

α5 = [3.0, 0.8]T (model deviation).

The MLE, IGWR and IGWR1 which is defined by the iterative procedure given

in (2.4) with only one iteration, were computed. The tuning constant was set to

c= 3.5, which corresponds to an efficiency level of 95% with respect to the MLE.

Figure 1 presents the distributions of the different estimators for the load-

ing of the first manifest variable (binary) α11 with all types of contamination

(including no contamination). Even if the contamination occurs on the normal

manifest variables, the MLE can be biased as can bee seen with the pointmass 3

contamination type. Figures 2 and 3 present the distribution of the different

estimators for respectively the mean of the third manifest variable (normal) α30

and the loading of the fifth manifest variable (normal) α51 with all types of

contamination. The bias on the MLE appears quite large, while both robust

estimators remain very stable. Without contamination, there is no apparent dif-

ference in distribution between the MLE and the robust estimators. Figure 4

presents the same analysis but for the estimators of the scale parameter for the

first normal variable φ3. The MLE of the scale parameter seems to be affected

only when the contamination occurs only on the corresponding manifest variable.

Again, the behavior of the robust estimators show great stability.

It should be noted that Moustaki and Victoria-Feser (2006) conclude that

although the IGWR1 seems to perform very well with the examples of this

simulations study, its bias increases more rapidly that the one of the IGWR

as the WMLE is more biased, i.e. as the tuning constant c decreases.
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Figure 1: Distribution of the estimators for the loading on the first binary
manifest variable. The horizontal line gives the true value.
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Figure 2: Distribution of the estimators for the mean on the first normal
manifest variable. The horizontal line gives the true value.
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Figure 3: Distribution of the estimators for the loading on the third normal
manifest variable. The horizontal line gives the true value.
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Figure 4: Distribution of the estimators for the scale on the first normal
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5. ANALYSIS OF WEALTH DATA

Moustaki and Victoria-Feser (2006) also present an example based on a

sub-sample of size 100 households of the 1990 consumption survey in Switzerland,

provided by the Swiss Federal Statistical Office. The aim is to construct a measure-

ment scale for the level of wealth, and for the purpose of this exercise, five vari-

ables have been selected. These are:

• purchase of a dishwasher (1/0) (Dishwasher)

• purchase of a car (1/0) (Car)

• equivalent food expenditure in logarithm (Food)

• equivalent expenditures for clothing in logarithm (Clothing)

• equivalent expenditures for housing in logarithm (Housing)

The continuous variables are treated as normal variables. Variables from the same

survey have been analyzed before using the GLLVM by Moustaki and Knott

(1997), Bartholomew and Knott (1999) and Huber, Ronchetti, and Victoria-

Feser (2004). A one-factor model using both the ML and the IGWR estimators

is fitted to the data. The bounding constant c has been set to 5 corresponding

to an efficiency level of 94% (computed on the parameter values provided by the

IGWR). The parameter values estimated by the ML and the IGWR estimators

are presented in Table 1 together with their standard errors (the values in bold

correspond to significant variables at the 5% level).

Table 1: Parameter’s estimates and standard errors for the GLLVM
on the wealth data.

Parameters
MLE IGWR, c = 5

Estimate Stand. Err. Estimate Stand. Err.

α10 – 0.506 0.23 – 0.589 0.26
α20 – 0.623 0.23 – 0.537 0.23

Constants α30 6.922 0.23 6.887 0.28
α40 5.353 0.32 5.332 0.32
α50 7.087 0.33 7.140 0.29

α11 0.466 0.26 0.679 0.28
α21 – 0.167 0.24 0.216 0.25

Loadings α31 1.021 0.18 1.098 0.21
α41 1.412 0.31 1.415 0.28
α51 1.044 0.33 1.064 0.27

φ3 0.289 0.16 0.426 0.17
Variances φ4 1.280 0.27 1.056 0.20

φ5 1.475 0.22 0.935 0.14
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The ML estimator shows that only the variables (Food, Clothing and Hous-

ing) are indicators of wealth, whereas the IGWR adds the variable Dishwasher.

Both analyses exclude the variable Car. Variables Food and Housing are found

with both methods to be indicators of the latent variable, whereas the associa-

tion is stronger with the Clothing variable. For a diagnostics analysis, the weights

given in (1.1) have been computed for each observation at the IGWR values and

plotted in Figure 5. There are apparently (only) 5 outliers.

observation number

w
e
ig

h
t

0 20 40 60 80 100

0
.4

0
.6

0
.8

1
.0

12
3
45678910

11
12
1314

15
1617

18
19202122

23
24252627

28

29
30
31
323334353637383940414243444546474849505152535455565758596061626364656667686970

71
72
73

74

75
76
7778

79

80
81

82

83
8485868788899091

92

93949596979899100

Figure 5: IGWR’s weights against observation number for the wealth data.
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1. INTRODUCTION

Asset allocation is the process that investors use to determine the asset

classes in which to invest and the weight for each asset class. Past studies have

shown that asset allocation explains 75 – 90% of the return variation and is the

single most important factor determining the variability of portfolio performance.

Among all the asset allocation models, Harry Markowitz’s mean-variance portfo-

lio theory is by far the most well-known and well-studied model for both academic

researchers and practitioners alike [17, 18]. The crux of mean-variance portfo-

lio theory assumes that investors prefer lower standard deviations/variances for

a given level of expected return. Portfolios that provide the minimum standard

deviation for a given expected return are termed efficient portfolios and those

that do not are termed inefficient portfolios.

For a portfolio with N risky assets to invest in, the portfolio return is the

weighted average return of each asset

rp ≡ w1r1 + w2 r2 + · · · + wN rN = w
′
r(1.1)

and the expected return and the variance of the portfolio can be expressed as

µp = w1µ1 + w2µ2 + · · · + wNµN = w
′
µ ,

(1.2)
var(rp) = var

(

w1r1 + w2 r2 + · · · + wN rN
)

= w
′Σ w ,

where wi, ∀ i=1, ..., N , is the weight of the i-th asset in the portfolio; ri is the

return of the i-th asset in the portfolio; µi is the expected return of the i-th asset

in the portfolio; w is a N×1 column vector of wi’s; r is a N×1 column vector

of ri’s; µ is a N×1 column vector of µi’s; and Σ is the N×N covariance matrix

of the returns of N assets.

We can formulate the following problem to assign optimal weight to each

asset and identify the efficient portfolio:

min
w

w
′Σ w s.t. w

′
µ = µp, w

′
e = 1 ,(1.3)

where µp is the expected portfolio return and e is N×1 column vector with

all elements 1. For each specified µp, the problem can be solved in closed form

using the method of Lagrange [23]. The simple mean-variance optimization only

requires two inputs–expected return vector and expected covariance matrix.

The model is based on a formal quantitative objective that will always give the

same solution with the same set of parameters. These all explain its popularity

and its contribution to modern portfolio theory (MPT).

Nevertheless, the original form of mean-variance portfolio optimization has

rarely been applied in practice because of several drawbacks. The method uses



100 Roy E. Welsch and Xinfeng Zhou

variance as the risk measure, which is often considered to be a simplistic mea-

surement when the asset returns do not follow normal distributions. In reality,

many of the financial assets’ returns do have fat tails or are skewed. Besides,

the one-period nature of static optimization also does not take dynamic factors

into account, and some researchers argue for more complicated models based on

stochastic processes and dynamic programming. However, the most serious prob-

lem of the mean-variance efficient frontier is probably the method’s instability.

The mean-variance frontier is very sensitive to the inputs, and these inputs are

subject to random errors in the estimation of expected return and covariance.

Small and statistically insignificant changes in these estimates can lead to a sig-

nificant change in the composition of the efficient frontier. This may lead us to

frequently and mistakenly rebalance our portfolio to stay on this elusive efficient

frontier, incurring unnecessary transaction costs.

The Markowitz portfolio optimization estimates the expected return and

the covariance matrix from historical return time series and treats them as

true parameters for portfolio selection. The historical returns for N assets over

T periods are denoted as R, a T×N matrix where each column vector ri,

∀ i=1, ..., N , represents the returns of asset i over different periods and each

row vector Rt, ∀ t=1, ..., T , represents the returns of different assets at period t.

The simple sample mean and covariance matrix are used as the parameters since

they are the best unbiased estimators under the assumption of multivariate nor-

mality. Despite the simple computation involved, this approach has high com-

plexity (large number of parameters). It suffers from the problem of high vari-

ance, which means the estimation errors can be significant and generate erro-

neous mean-variance efficient frontiers. This näıve “certainty equivalence” mean-

variance approach often leads to extreme portfolio weights (instead of a diversified

portfolio as the method anticipates) and dramatic swings in weights when there

is a minor change to the expected returns or the covariance matrix [7, 10, 12].

The problem is further exacerbated if the number of observations is of the same

order as the number of assets, which is often the case in financial applications to

select industry sectors or individual securities.

A number of alternative models have been developed to improve parameter

estimation. For example, factor-based models try to reduce the model complexity

(number of parameters) by explaining asset return variances/covariances using a

limited number of common factors. Multivariate GARCH models try to address

fat tails and volatility clustering by incorporating the time dependence of returns

in the covariance matrix. But neither approach effectively reduces or eliminates

the influences of outliers in the data. A small percentage of outliers, in some cases

even a single outlier, can distort the final estimated variance and covariance.

Evidence has shown that the most extreme (large positive or negative) coeffi-

cients in the estimated covariance matrix often contain the largest error and

as a result, mean-variance optimization based on such a matrix routinely gives

the heaviest weights — either positive or negative — to those coefficients that
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are most unreliable. This “error-maximization” phenomenon [24] causes the

mean-variance technique to behave very badly unless such errors are corrected.

In this study, we focus on investigating robust statistical approaches to

reduce the influence of outliers, to increase the stability of the portfolio and

to reduce asset turnover. The remainder of the paper is organized as follows.

In Section 2, we investigate and extend some robust statistical methods such

as FAST-MCD, Iterated Bivariate Winsorization, and Fast 2-D Winsorization

to estimate the covariance matrix. We also explore penalization methods as

a direct way to reduce asset turnovers. In Section 3, we apply these methods to

construct US industrial selection portfolios and show that these robust methods

dramatically improve risk-adjusted portfolio performance, especially when trans-

action costs are taken into consideration. In Section 4, we conclude this paper

by summarizing our findings and offering possible directions for future research.

2. METHODS

During the past decade, statisticians have developed a variety of robust esti-

mation methods to estimate both the mean and the covariance matrix [4, 8, 19, 20].

However, the use of robust estimators has received relatively little attention in

the finance literature overall, and in the context of estimating the expected value

and the covariance matrix of asset returns in particular [13, 22]. In this study,

we take the initiative to investigate the value of some robust approaches to asset

allocation problems.

2.1. FAST-MCD

The general principle of robust statistical estimation is to give full weights

to observations assumed to come from the main body of the data, but to reduce

or completely eliminate weights for the observations from tails of the contami-

nated data. The minimum covariance determinant (MCD) method [3], a robust

estimator introduced by Rousseeuw in 1985, eliminates perceived outliers from

the estimation of the mean and the covariance matrix. It uses the mean and the

covariance matrix of h data points (T/2 6 h < T ) with the smallest determinant

to estimate the population mean and the covariance matrix. The method has

a break-down value of (T −h)/T . If the data come from a multivariate normal

distribution, the average of the optimal subset is an unbiased estimator of the

population mean. The resulting covariance matrix is biased, but a finite sample

correction factor (ch,T ≥1) can be used to make the covariance matrix unbiased.

The multiplication factor ch,T can be determined through Monte Carlo simula-
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tion. For our specific purpose, the bias by itself does not affect the asset allocation

since all pairs of covariances are underestimated by the same factor.

MCD has rarely been applied to high-dimensional problems because it is

extremely difficult to compute. MCD estimators are solutions to highly non-

convex optimization problems that have exponential complexity of the order 2N

in terms of the dimension N of the data. Therefore, these original methods are

not suitable for asset allocation problems when N > 20. Yet, in practice, asset

allocation problems often include dozens of industrial classes or hundreds of

individual securities, which makes the MCD method computationally infeasible.

In order to cope with computational complexity problems, a heuristic FAST-MCD

algorithm developed by Rousseeuw and Van Driessen [25], provides an efficient al-

ternative. A näıve MCD approach would compute the MCD for up to
(

T
h

)

subsets,

while FAST-MCD uses sampling to reduce the computation and usually offers

a satisfactory heuristic estimation. Other equivariant robust covariance methods

are discussed in a recent book [20] and we are experimenting with the S-estimator

they recommend, SR-05.

The key step of the FAST-MCD algorithm takes advantage of the fact that,

starting from any approximation to the MCD, it is possible to compute another

approximation with a determinant no higher than the current one. The method

is based on the following theorem related to a concentration step (C-step):

Let H1 ⊂ {1, ..., n} be any h-subset of the original cross-sectional data,

put µ̂1 = 1
h

∑

t∈H1
Rt and Σ̂1 = 1

h

∑

t∈H1
(Rt − µ̂1) (Rt − µ̂1)

′. If det(Σ̂1) 6= 0,

define the distance d1(t) =
√

(Rt− µ̂1) Σ̂
−1
1 (Rt− µ̂1)

′, t=1, ..., T . Now take H2

such that {d1(i); i∈H2} := {(d1)1:T , ..., (d1)h:T } where (d1)1:T ≤ (d1)2:T ≤ · · · ≤
(d1)T :T are the ordered distances, and compute µ̂2 and Σ̂2 based on H2. Then

det(Σ̂2) ≤ det(Σ̂1) with equality if and only if µ̂2 = µ̂1 and Σ̂2 = Σ̂1.

If det(Σ̂1) > 0, the C-step yields Σ̂2 with det(Σ̂2) ≤ det(Σ̂1). Basically

the theorem indicates the sequence of determinants obtained through C-steps

converges in a finite number of steps from any original h-subset to a subset sat-

isfying det(Σ̂m+1) = det(Σ̂m). Afterward, running the C-step no longer reduces

the determinant. However, this process only guarantees that the resulting det(Σ̂)

is a local minimum instead of the global one. To yield the h-subset with global

minimum det(Σ̂) or at least close to optimal, many initial choices (often > 500)

of H1 are taken and C-steps are applied to each.

Simulated and empirical results showed that FAST-MCD typically gives

“good” results and is orders of magnitude faster than exact MCD methods.

Yet, the FAST-MCD method still requires substantial running times for large

N and T , and the probability of retaining outliers in the final h-subset increases

when N becomes large. We use the FAST-MCD as an affine equivariant bench-

mark for faster non-equivariant methods. Other examples of its use are contained

in [26, 30].
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2.2. Iterated bivariate Winsorization (I2D-Winsor)

The FAST-MCD estimator for the covariance matrix is positive semidefinite

and affine equivariant, which means the estimator behaves properly under affine

transformations of the data. If the affine equivariance requirement is dropped,

much faster estimators with high breakdown points can be computed. These

methods are often based on pair-wise robust correlation or covariance estimates

such as coordinate-wise outlier insensitive transformations (e.g. Huber-function

transformation, quadrant correlation) and bivariate outlier resistant models.

All these methods have quadratic complexity in the number of variables and lin-

ear complexity in the number of observations, so they reduce the computational

complexity to O(N2T ).

Huber’s function, defined as Hc(x) = min
{

max{−c, x}, c
}

, c > 0, has been

widely used to shrink outliers towards the median by the transformation

r̃ti = mi + si×Hc

(

(rti− mi)/si

)

,(2.1)

where mi and si are the median and the median absolute deviation from the

median of return vector ri. Essentially Huber’s function brings the outliers of

each variable to the boundary mi ± c×si and, as a result, reduces the impact of

outliers.

The one-dimensional Winsorization approach using the Huber function has

been a popular method in finance because of its intuitive appeal and easy com-

putation. Yet for covariance analysis, the method fails to take the orientation of

the bivariate data into consideration. To address the problem, bivariate Winsori-

zation methods have also been investigated. For each pair of variables, outliers

are shrunken to the border of an ellipse which includes the majority of the data

by using the bivariate transformation

r̃t,i,j = µ0 + min
(
√

c/D(rt,i,j) , 1
)

(rt,i,j − µ0) ,(2.2)

where, for each pair of ri and rj , rt,i,j =

[

rti

rtj

]

; µ0 =

[

mi

mj

]

; D(rt,i,j) is the Maha-

lanobis distance based on an initial bivariate covariance matrix Σ0 and location

µ0 : (rt,i,j −µ0)
′ Σ−1

0 (rt,i,j −µ0); c is a positive constant. The transformation

shrinks the outlier towards µ0 when D(rt,i,j) > c .

Based on the idea of shrinking data toward the border of a two-dimensional

ellipse, Chilson et al. developed an iterated bivariate Winsorization (I2D-Winsor)

method to estimate covariance and applied the method to cluster correlated genes

[5]. The method includes the following three steps:

Step A. For each pair of variables ri and rj , compute a simple robust

mean and adjusted MAD for each column and construct the initial estimate of
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mean and covariance matrix as

µ0 =

[

mi

mj

]

and Σ0 =







si

0.6745
0

0
sj

0.6745






.(2.3)

Step B. For each µk and Σk, calculate the Mahalanobis distance for each

return pair

Dt,k = (rt,i,j −µk)
′
Σ−1

k (rt,i,j −µk)(2.4)

and then calculate the weight for each rt,i,j as

zt = min
(
√

c/Dt,k , 1
)

,(2.5)

where the constant c is chosen as 5.99 (the 95% quantile of the χ2
2 distribution).

Step C. Update µk and Σk to µk+1 and Σk+1 using equations

µk+1 =
T
∑

i=1

zt rt,i,j

/

T
∑

i=1

zt ,

(2.6)

Σk+1 =
T
∑

i=1

z2
t (rt,i,j −µk+1) (rt,i,j −µk+1)

′

/

T
∑

i=1

z2
t .

This iteration is repeated until µk+1, Σk+1 and µk, Σk converge as de-

termined by the sum of absolute differences between two consecutive Σ being

less than a predefined error. The covariance matrix of variables ri and rj is then

set to Σk+1. Diagonal elements of the covariance matrix are obtained using bias

adjusted median absolute deviations from the median.

The I2D-Winsor method allowed parallel computation of high dimensional

correlation and covariance matrices for different gene expressions and obtained

good performance in heterogeneous cluster studies. But the method suffers the

drawback of failing to guarantee positive semidefiniteness of the covariance ma-

trix — a crucial requirement for mean-variance portfolio optimization. Maronna

et al. [21] proposed an adjustment method to obtain a positive semidefinite co-

variance matrix using a pair-wise robust covariance matrix. The method is based

on the observation that any positive semidefinite covariance matrix C can be

expressed as C =
∑

λ̂i âi â
′
i, where 0≤ λ̂1 ≤ · · · ≤ λ̂N are the eigenvalues and

âi (i=1, ..., N) are the corresponding eigenvectors. If C is not positive semidefi-

nite, then one or more of the eigenvalues are negative. To convert such a matrix

to a positive semidefinite one, a natural approach is to replace these negative

eigenvalues with positive ones. When C is the sample correlation, λ̂i’s are the

variances of the projected data on the direction of the corresponding eigenvectors.
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This indicates that in order to get rid of possibly negative eigenvalues in the quad-

rant covariance matrix Ĉ0, one can replace the λ̂i’s in C0 =
∑

λ̂i âi â
′
i by the

square of robust standard deviation estimates for the projected data. We can

compute the decomposition of Ĉ0: Ĉ0 = QΛQ
′, where Q is the orthogonal ma-

trix of eigenvectors and Λ is the diagonal matrix of eigenvalues. Then we can

transform R to R̃ using the new basis Q : R̃ = RQ
′ and compute the robust

standard deviation estimate (s̃j/0.6745) of the columns of R̃. Let D̃ be the di-

agonal matrix whose elements are (s̃j/0.6745)2 ordered from largest to smallest.

The final positive definite robust covariance matrix is Σ̂ = QD̃Q
′
.

By transforming the I2D-Winsor robust covariance matrix using Maronna’s

adjustment method, we guarantee the positive semidefiniteness of the final

covariance matrix and make it directly applicable to asset allocation problems.

2.3. Fast 2-D Winsorization (F2D-Winsor)

Khan et al. [11] proposed a fast two-step, two-dimensional Winsorization

method (F2D-Winsor) while investigating ways to make least-angle regression

(LARS) robust. Instead of repeated iteration of step B in I2D-Winsor, which

is computationally expensive, Khan’s method only implements step B once.

In order to achieve a similar level of robustness as I2D-Winsor, F2D-Winsor con-

structs an informative initial covariance matrix. We again combine F2D-Winsor

ideas from Khan’s paper and Maronna’s method to guarantee the positive semide-

finiteness of the covariance matrix and design the following F2D-Winsor method:

Step A. Initial covariance estimate. For each pair of variables ri and rj ,

compute simple robust location (median) and scale (adjusted MAD) estimates

for each variable. We then compute an initial covariance matrix using Khan’s

adjusted Winsorization method that is more resistant to bivariate outliers [11].

In the adjusted Winsorization method, two tuning parameters are used with c1

for the two quadrants (separated by mi and mj) that contain the majority of the

data and a smaller constant c2 for the other two quadrants. For example, c1 can be

taken to be 1.96 (µ±1.96 σ includes 95% of the data from the normal distribution)

and c2 = hc1 where h = n2/n1 with n1 the number of observations in the major

quadrants and n2 = T−n1, where T is the total number of observations. As shown

in Figure 1, the data are now shrunk to the boundary of the four smaller rectangles

instead of a large rectangle. As a result, the adjusted Winsorization method

handles bivariate outliers better than the univariate Winsorization. However,

it does raise a problem that the initial covariance matrix constructed from pair-

wise covariance may not be positive definite. To address the problem, Maronna’s

transformation is applied to convert the initial covariance matrix Σ0 to a positive

definite one.
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Figure 1: Adjusted Winsorization (for initial covariance) with c1 = 1.96,
where si and sj are estimated from adjusted MAD.

Step B. 2D-Winsorization based covariance matrix. For each pair of (ri,rj),

outliers are shrunk to the border of an ellipsoid by using the transformation

r̃t,i,j = µ0 + min
(√

c/Dt,0 , 1
)

(rt,i,j −µ0), with constant c = 5.99 (the 95% quan-

tile of the χ2
2 distribution). The covariance for each pair is calculated using this

modified data. Maronna’s transformation is again applied to guarantee the posi-

tive definiteness of the final covariance matrix.

2.4. L1-penalized mean-variance method (V1)

All these robust covariance matrix estimation methods try to increase the

stability of the allocation model by increasing the stability of the mean and co-

variance matrix of returns over time. Since the influence of outliers is reduced,

the updated return data tend to have less impact on the robust mean and co-

variance matrix, even if some of the new return vectors contain extreme values.

In this sub-section, we also implement a different class of penalization-based

robust estimators to directly increase model stability and reduce turnover.

If the expected return and covariance matrix are estimated from the histor-

ical sample R1, ...,RT , the original mean-variance portfolio optimization problem

min
w

w
′ Σ w s.t. w

′
µ = µp, w

′
e = 1 ,(2.7)
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can be rewritten as

min
w,q

1

T

T
∑

i=1

(w′
Rt − q)2 s.t. w

′
µ = µp, w

′
e = 1 .(2.8)

Lauprete [14] and Lauprete, et al. [15] proposed penalizing deviations from

the market weights (wm,i =Mi/
∑N

j=1Mj with Mj being the market value of asset j)

as a possible way to reduce the influences of outliers and to reduce turnover.

These authors also considered using robust loss functions (M-estimators) in place

of least-squares loss in (2.8). A recent paper by DeMiguel and Nogales [6] replaces

M-estimators with S-estimators but omits any penalty term. If the market is

efficient (or nearly efficient as many researchers believe), a penalty term serves

as the prior in our optimization problem. We should penalize the final cost

function if the proposed asset weights deviate from the prior. As a result, extreme

deviations from the prior are unlikely. In this study, we focused on an L1 regulari-

zation method, which was the penalty function used in LASSO regression [27].

The regularized portfolio estimator can be expressed as [14]:

(

w(λ), q(λ)
)

= arg min
q∈R

(

1

T

T
∑

i=1

(w′
Rt − q)2 + λ |w − wm|

)

(2.9)
s.t. w

′
µ = µp, w

′
e = 1 ,

where λ > 0 is the regularization parameter; |w−wm| is the L1-norm of w−wm:
∑N

i=1 |wi − wm,i| .

The term λ |w − wm| reflects the investor’s a priori confidence in the

market portfolio wm. A large λ means large penalty for any deviation and

strong confidence in wm; a small λ reflects weak confidence in wm. We choose

the parameter λ using 5-fold cross validation. For any given λ, we implement

the following steps:

Step A. Divide the T observations randomly into 5 subsets of T/5 obser-

vations. Call these subsets T (i) for i=1, ..., 5. For every i, run the optimization

to yield the optimal
(

ŵ(λ), q̂(λ)
)

for the in-sample data:

(

ŵ(λ), q̂(λ)
)

= arg min
q∈R

(

1

0.8 T

∑

t∈T\T (i)

(w′
Rt − q)2 + λ |w − wm|

)

(2.10)
s.t. w

′
µ = µp, w

′
e = 1 .

Step B. For every i=1, ..., 5 apply
(

ŵ(λ), q̂(λ)
)

to the out-of-sample data

to calculate a sum of squared errors, PEλ(i) =
∑

t∈T (i)

[(

ŵλ(i)′Rt − q̂λ(i)
)2]

.

Step C. Calculate the total sum of squared errors PEλ =
∑5

i=1PEλ(i).
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A series of candidate values of λ from 0.01 to 2 are tested to yield a value

of λ with minimum total sum of squared errors PEλ. Once λ is selected, w(λ)

and q(λ) can be solved as the “optimal” solution to the corresponding quadratic

optimization problem. The lower bound of 0.01 was found by experimentation

and may be different for other data sets.

3. APPLICATION RESULTS

In this section, we show a real asset allocation application using daily re-

turns on 51 MSCI US industry sector indexes, from 01/03/1995 to 02/07/2005

(2600 trading days of data). Combining the stocks in these industry indexes

(∼ 700 stocks included) forms a general index for US equity markets broader

than the S&P 500. The robust methods discussed in Section 2 are applied to

find the “optimal” weights for each industry.

For every estimator, we use the following portfolio rebalancing strategy:

estimate the industry sector weights using the most recent 100 daily returns and

rebalance the portfolio weights every five trading days (a week). Since there are

2600 trading days in the data, there are 500 rebalances in total. In practice, there

are transaction costs when we change the weights of each asset using updated

information. So we will compare the results both without considering transaction

costs and with 5 cents for each $100 bought or sold. We apply a target return

constraint and convexity constraint to all estimates:

w
′
µ = µp , w

′
e = 1 .(3.1)

The resulting stream of ex-post portfolio returns is collected for each

estimator/target return combination. We calculate the following statistics of

the ex-post returns of each estimator/target return combination:

Mean: the sample mean of weekly ex-post returns;

STD: the sample standard deviation of weekly ex-post returns;

Information Ratio: IR = mean/STD×
√

52, where the standardization

by
√

52 makes the information ratio an annual estimate assuming

260 trading days per year;

α-VaR for α = 5% and 1%: the loss at the α-quantile of the weekly ex-post

return;

MaxDD: the maximum drawdown, which is the maximum loss in a week;

CRet: cumulative return;

Turnover: weekly asset turnover, defined as the mean of the absolute

weight changes
(
∑51

i=1 |wt,i− wt−1,i|
)

for 500 updates;
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Cret cost: cumulative return with transaction costs;

IRcost: Information ratio with transaction costs.

Except for the market model, which uses market weights and the corre-

sponding market returns, a range of target expected annual portfolio returns

from 10% to 20% are used for portfolio construction. Table 1 shows the sum-

marized results for annual expected return µp = 15% for V (mean-variance op-

timization with simple mean and covariance matrix), FAST-MCD, I2D-Winsor,

F2D-Winsor, V1 models and market index. More extensive tables are in Zhou [31].

Table 1: Performance of V, FAST-MCD, I2D-Winsor, F2D-Winsor, V1 models
and Market index for µp = 15%. For FAST-MCD, I2D-Winsor and
F2D-Winsor, the median instead of the mean of the returns is used as
the expected return of each asset.

µp = 15% V FAST-MCD I2D-Winsor F2D-Winsor V1 Market

mean 0.065% 0.096% 0.156% 0.155% 0.198% 0.160%

STD 1.962% 2.025% 1.948% 2.007% 2.431% 2.343%

IR 0.239 0.341 0.578 0.558 0.589 0.491

VaR(0.05) 3.06% 3.10% 3.10% 3.23% 3.71% 4.06%

VaR(0.01) 5.78% 6.33% 5.80% 5.52% 6.65% 5.28%

MaxDD –7.48% –8.57% –9.39% –9.40% –8.35% –10.01%

Cret 1.256 1.457 1.983 1.965 2.328 1.935

Cret cost 0.845 0.888 1.801 1.803 2.252 1.923

IRcost –0.054 –0.013 0.507 0.497 0.569 0.487

Turnover 1.59 1.99 0.39 0.35 0.13 0.02

Both the pair-wise Winsorization methods and the penalization method

yield significantly better results than mean-variance optimization with the sim-

ple mean and covariance matrix as inputs. The V method has significant asset

turnover (159%) and as a result the IRcost — the most popular performance

measure — is negative after the transaction costs are taken into consideration.

In contrast, I2D-Winsor, F2D-Winsor and V1 methods have much lower turnovers

(0.39, 0.35 and 0.13 respectively) and yield an IRcost of 0.507, 0.497 and 0.569

respectively, which are much higher than the V method. All these methods also

beat the market in VaR (5%), MaxDD and IRcost, which clearly shows their

value in active portfolio management.

The benefit of FAST-MCD is modest compared with the V method and

it is inferior to the market. The reason most likely lies in the strict assump-

tions of the MCD approaches. Although both MCD methods and pair-wise ro-
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bust estimators are designed to eliminate the effects of outliers, MCD models use

a restrictive contamination model assuming complete dependence of outliers

for different assets. Basically MCD models assume that each row of returns,

Rt, is either from the core distribution F0 or outlier generating distribution H.

The data are from the following mixed model:

F = (1−ε)F0 + εH , 0 < ε <
1

2
,(3.2)

where F is the mixed model; F0 is a multivariate normal distribution; H is an

arbitrary multivariate distribution that generates outliers.

Such a contamination model is rather restrictive for our application.

By looking at N -dimensional outliers, the models assume that all asset returns

for any given day are either from a core distribution F0 or outlier generating

distribution H. This assumption is only true if the market is the only factor that

determines asset returns or there are high correlations between different assets’

returns. In practice, the market return by itself only explains a small percent-

age of the variance of asset returns. Industrial factors and idiosyncratic risk have

been shown to explain the majority of the return variances. The pair-wise models

[1, 2] use a much more flexible mixed model for data:

Rt = (I−B)Yt + BZt ,(3.3)

with B = diag
(

[B1 B2 · · · BN ]
)

, Yt multivariate normal, Zt an arbitrary ran-

dom vector, and the Bi, Bernoulli random variables with success probability εi.

We can assume any format for the correlation matrix matrix of (B1, B2, . . . , BN ).

MCD models assume complete dependence B1 = B2 = · · · = BN , while pair-wise

models often assume independent Bi and Bj , i 6= j, or independently evaluate the

correlation for each pair of Bi and Bj . As a result, pair-wise robust estimators

offer more flexibility to calculate the covariances. Once the positive semidefi-

niteness property of the covariance matrix is guaranteed through transformation,

they provide far better results than FAST-MCD.

As shown in Table 2, pair-wise Winsorization methods are also faster than

the FAST-MCD method (10 hours) for the same data set. The sampling process

of FAST-MCD is much faster than the original MCD method, but the C-steps

still require extensive computation. Between the two pair-wise Winsorization

methods, F2D-Huber (35 minutes) is faster because it eliminates the repeated

iteration step in I2D-Winsor (3 hours), while I2D-Winsor is likely to yield a more

robust estimation of the covariance and indeed gives slightly better results than

F2D-Huber in our study. It is also worth noting that the estimated covariance

matrix often slightly underestimates the real covariance, so the estimation is

biased. Yet it is believed that for the constant c = 5.99 (the 95% quantile of the

χ2
2 distribution) that we chose, the bias would be small. Furthermore, the asset

weights depend on the relative size of the covariance, so the impact of bias on

our problem is even smaller.
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Table 2: Run Time for 500 Rebalancings.
All programs were run on a computer
with 3 GHz CPU and 3 GB of RAM.

Time V FAST-MCD I2D-Winsor F2D-winsor V1 Market

500 Rebalances 40 sec 10 hr 3 hr 35 min 4 hr < 4 sec

Penalization methods are more computationally intensive than pair-wise

Winsorization methods. The addition of the penalty term extends the dimension

of the optimization problems and increases the number of constraints. The cross-

validation of each penalty coefficient λ increases the computation further by ∼ 25

fold. Unlike robust estimation of the mean and covariance matrix, which only

need to calculate the parameters once for all µp, the optimization problem needs

to be performed for every µp. As a result, the run times of penalization methods

are often longer.

Though computationally intensive, the V1 method using the market index

as the prior carries great advantages. It yields the best information ratio with or

without transaction costs. Because of the L1 penalty term, most asset weights

are mainly restricted to the market weight, which dramatically reduces the asset

turnover compared with pair-wise Winsorization methods. Penalization methods

are especially valuable when the number of assets is of the same order of magni-

tude as the number of observations (in our study, T = 2N), since the covariance

matrix is often ill-conditioned.

We also compared our methods with some of the factor-based models, e.g.,

CAPM model, Principal Component Analysis model, Shrinkage model ([16]) and

multivariate GARCH models (e.g., Constant Conditional Correlation GARCH

and Dynamic Conditional Correlation GARCH [28, 29]). The results [31] show

that both pair-wise Winsorization methods and penalization methods perform

better than these traditional approaches.

4. CONCLUSION

The implementation of the mean-variance portfolio optimization is limited

in practice by difficulties in estimating model inputs, expected returns and the

covariance matrices of different assets, and the sensitivity of asset weights

assigned to these inputs. Traditionally, sample means and covariance matri-

ces from historical data were used, which are subject to large estimation errors.
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This paper investigates some of the recently developed robust statistical methods

such as FAST-MCD, Iterative 2-D Winsorization, Fast 2-D Winsorization and pe-

nalization methods. These methods prove to be valuable tools in improving risk-

adjusted portfolio performance and reducing asset turnover. Results also show

that the V1 penalization method outperforms the 2-D Winsorization methods.

However, they achieve this at the cost of significantly higher computational com-

plexity. The computational problem may be overcome by the recently developed

LARS algorithm [9]. LARS greatly speeds up computations for LASSO since

all solutions for all λ can be found in about the same time as one-least-squares

regression, which removes the need for a grid search on λ. If the LARS algorithm

can be successfully applied to penalized portfolio optimization, then penalization

methods can be used to allocate weights for 700 individual stocks directly instead

of 51 sector index funds. This is work in progress.
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1. INTRODUCTION

In linear regression models data often contain outliers and bad influential

observations. It is important to identify these observations and eliminate them

from the data set. If the data are contaminated with a single or few outliers the

problem of identifying such observations is not difficult. However, in most cases

data sets contain more outliers or a group of masking outliers and the problem

of identifying such cases becomes more difficult, due to masking effects.

The approaches to outlier identification can be separated into two catego-

ries: direct approaches and indirect approaches using residuals from the robust fit.

Among famous direct approaches, Hadi and Simonoff [9] presented a procedure

where it is attempted to separate the data into a set of “clean” data points

(of size k = (n+p−1)/2) and a set of points that contain the potential outliers.

The potential outliers are then tested to see how extreme they are relative to the

clean subset, using an appropriate diagnostic measure like the adjusted residual,

or Cook distance. Atkinson [1] proposed an identification method of multiple

outliers by using a simple forward search starting from initial random subsets.

The procedure requires again that at least one of the subsets does not contain

high-leverage outliers. Peña and Yohai [14] proposed a successful fast procedure

for detecting group of outliers in many situations, where due to masking effects

the usual diagnostics procedures fail. However, they do not claim that their

proposal keeps breakdown point of the original estimates. Their procedure has

two stages; in the first stage high-leverage points eliminated from the data set

irrespective of bad or good leverage points. Although in the second stage the effi-

ciency is improved by testing again the potential outliers, some precision may be

lost from the first stage. Generally, the key to the success of the above procedures

is to obtain a clean initial subset of data. An indirect approach to outlier identi-

fication is through a robust regression estimate. If a robust estimate is relatively

unaffected from outliers, then the residuals from the robust fit should be used

to flag the outliers. A famous estimator that preserves high breakdown point

(HBP) is the least trimmed squares LTS estimator of Rousseeuw and Leroy [16],

that minimize the sum of the k, (coverage k ≥ [(n+p−1)/2]) smallest squared

residuals. But is well known that the LTS loses efficiency. Some better pro-

posals obtain high breakdown points and simultaneously improve the efficiency

of the LTS estimator. Among them are the S estimators of Rousseeuw and

Yohai [18], the MM estimators of Yohai [24] Simpson, Ruppert, and Carroll [20]

and Coakley and Hettmansperger [7], which combine good asymptotic efficiency

under the normal linear model with HBP. These estimators, uses a less efficient

high-breakdown method as an initial estimate, and then uses an M estimation

strategy based on the redescending ψ function. Although they have achieved

good asymptotic properties, may have low finite-sample efficiencies if the design
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contains high leverage points. Morgenthaler [12] and Stefanski [21] argue that no

estimator with a breakdown point greater than 1/n, can have high finite-sample

efficiency in the presence of extreme leverage points. All these improvements to

LTS achieve high breakdown point, improve the efficiency and have the bounded

influence property. However, these estimators are based mainly on the initial

LTS regression coefficient value. In practice, their performance depends heavily

on the precision of the initial coefficient estimates. Sometimes, in data contam-

inated by high-leverage outliers, a bad initial coefficient value does not lead to

a good final robust estimation. Moreover, the LTS method requires the coverage k

or equivalently the number n−k of the most likely outliers that produces the

largest reduction in the residual sum of square when deleted. Unfortunately,

this knowledge of k is typically unknown, Gentleman and Wilk [8].

In this article we propose a different approach penalized trimmed squares

PTS, which does not require presetting the number n−k of outliers to delete

from the data set. The new estimator PTS is defined by minimizing a convex

objective function (loss function), which is the sum of squared residuals and

penalty costs for discarding bad observations. The robust estimate is obtained

by the unique optimum solution of the convex mathematical formula called QMIP.

The PTS estimator is very sensitive to the penalties defined a priori. In fact, these

penalty costs are a function of the robust scale σ and leverage of the design points

provided by the LTS and minimum covariance determinant MCD of Rousseeuw

and Van Driessen [17]. In particular, these penalties in the loss function regulate

the robustness and the efficiency of the estimator. The main purpose of the pre-

sented paper is first to construct a regression estimator that has high breakdown

point combined with good efficiency. For this purpose appropriate penalties for

high-leverage observations are developed so as to unmask the multiple outliers

and delete bad high-leverage outliers whereas keeping all of good high-leverage

points, if possible, in the data sample, otherwise most of them. Second, to im-

prove the computation time by bringing together the PTS loss function and the

idea of ǫ-insensitive loss function from support vector machines, Vapnik [23].

The support vectors have the advantage to reduce the complexity, as usually

not all observations but only the support vectors contribute to the predictions,

see Christmann [4]. Residuals within the interval (−ǫ, ǫ) are ignored in the loss

function, and those points outside the so-called ǫ-tube define the regression line.

The mathematical programming formula gains the sparseness property and as

a result the computation time is significantly reduced. Besides, the effective-

ness of the robust regression method is improved, since noisy training data are

ignored. For the support vector machines, Suykens et al. [22] and Christmann

and Steinwart [5], have emphasized among other properties and the advantage

of being robust. Both of the new estimators PTS and ǫ-insensitive PTS have

shown robustness against all type of outliers reasonable high breakdown point

and well efficiency. The PTS formula has the advantage to remove the outliers

and it suffers little from masking effects. Generally, the proposed estimator has
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the ability to handle a group of outliers. This is shown by means of Examples and

Monte Carlo Study. For small datasets and when the computation time is not

a problem, we recommend as robust regression procedure the PTS. For moderate

data sets the ǫ-insensitive PTS procedure is faster and successful.

In Section 2, we start from the LTS objective function and afterwards

the PTS procedure is described. Moreover, the masking problem is described

and a suitable penalty function is searched. A mathematical programming for-

mula QMIP is developed in Section 3, for obtaining a PTS estimate. In Section 4,

a support vector machines technique is developed with the new ǫ-insensitive loss

function. Some benchmark examples are studied in Section 5. The performance

of the new estimators PTS and IPTS are tested using Monte-Carlo simulation

study in Section 6. Finally, conclusions and future research are addressed in

Section 7.

2. TRIMMED SQUARES REGRESSION

We consider the linear regression model with p independent variables

y = X β + u ,

where y is the n×1 vector of the response variable y = (y1, y2, ..., yn)T ,

X is a full rank n×p matrix of the p×1 vectors of explanatory variables,

xi = (xi,1,xi,2, ...,xi,p), for i = 1, 2, ..., n, β is a p×1 vector of unknown pa-

rameters β = (β1, β2, ..., βp)
T , and u is a n×1 vector u = (u1, u2, ..., un)T of

iid random errors with expectation zero and variance σ2. We observe a sample

(yi, xi,1, xi,2, ..., xi,p), for i= 1, 2, ..., n, and construct an estimator for the un-

known parameters β. The Least Squares Estimator is defined by minimizing

the squared error loss function

min
β

n
∑

i=1

u
2
i .

Unfortunately, points that are far from the predicted line (outliers) are over-

emphasized. Least Squares Estimators are very sensitive to outliers. We wish

to construct a robust estimator for the parameter β, in the sense that the influence

of any observation (xi, yi) on the sample estimator is bounded.

Rousseeuw and Leroy [16], introduced the Least Trimmed Squares LTS

estimator, which fits the best subset of k observations, removing the rest n− k

observations. The LTS estimator is defined by minimizing:

min
β

k
∑

i=1

u2
i ,(2.1)

s.t. u2
(1) < u2

(2) < u2
(3) < ... < u2

(k) ,
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where k is the coverage, k > n/2 chosen a priori, to maximize the so called

breakdown point, k = (n+p−1)/2. The estimator has high breakdown point

but loses efficiency, since n−k observations have to be removed from the sample

even they are not outliers. In real applications the coverage k is unknown.

The exact computation of LTS is difficult. Given coverage k, we have to find

the best set from all combinations (n, k). The exact algorithm for LTS is a com-

binatory one, and is suitable for small data sets, i.e. n < 50. Fast probabilistic

algorithms have been developed for larger samples. In the following proposed

robust procedures we consider only exact solutions.

X

y

y ≈ Xβ

Delete n − k potential outliers

Fit k points

Figure 1: LTS fitting with coverage k. (In practice the coverage k is unknown).

A problem with the LTS method is that the size n−k of the outlier subset

is rarely known. We propose a new approach that does not require presetting

the number n− k of outliers to delete from the data set. The basic idea is to

insert fixed penalty costs into the loss function for possible deletion. Thus, only

observations that produce reduction larger than their penalty costs are deleted

from the data set. The penalty costs are defined a priori, in the following section

the definition of the penalized trimmed squares estimator PTS is formalized and

suitable penalties for multiple high-leverage outliers are proposed. In this work,

the PTS estimator is defined over those k observations out of n with the largest

maximum likelihood estimation (MLE) fit. We consider as most likely outliers

the subset of the observations that produces significant reduction in the residual

sum of square when deleted. The proposed PTS estimator minimizes the total

sum of squared residuals which is split into two parts; the sum of the k squared

residuals in the clean data and the sum of the penalties for deleting the rest n−k
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observations,

min
β,k

(

Sk(β) + Sn−k(β)
)

,

or equivalently min
β,k

(

k
∑

i=1

u2
i + (n−k)×(cσ)2

)

,(2.2)

where, (cσ)2 can be interpreted as a penalty cost for deleting an observation,

σ is a robust residual scale, taken from LTS, and c is a cut-off parameter.

The estimator performance is very sensitive to the penalties defined a priori,

which regulate the robustness and the efficiency of the estimator. The choice of

the robust scale σ plays an important role in the coverage of the PTS estimator.

If we wish to obtain an initial clean subset from the PTS estimator (coverage 51%),

we choose as scale σ the square root of the minimum mean squared residuals re-

sulted from LTS with the same coverage. Alternatively, in order to delete only the

bad outliers, we could get the normalized robust scale σ from the LTS estimator.

The minimization problem (2.2) is convex, as it will be proved in Section 3,

therefore a global minimum exists. Given that the LTS estimate for coverage k

converges to the unique optimum solution of (2.1), the following proposition

is useful.

Proposition 2.1. If the PTS estimator for given penalty (cσ)2 converges

to the solution (βPTS , k), then for the same coverage k the LTS estimator yields

the equal estimate βLTS = βPTS .

Proof: For given penalty (cσ)2, the PTS is defined by solving the mini-

mization problem (2.2), and the resulted global minimum is

Sk,PTS = Sk(βPTS) + (n−k)×(cσ)2 .

From the resulted coverage k of the PTS solution, the LTS leads to a unique

minimum Sk(βLTS). Increasing this sum by a constant (n−k)×(cσ)2 yields the

unique global minimum sum Sk(βLTS) + (n−k)×(cσ)2, which is the same with

Sk,PTS , since both are global minimum. Therefore, both estimates βPTS and

βLTS coincide.

As a consequence of Proposition 2.1, the PTS estimator can be consid-

ered as high breakdown estimator, for small penalty cost (cσ)2. For instance,

asymptotically under Gaussian conditions, minimizing (2.2) with penalty cost of

c≈ 0.7, the solution of (2.2) converges to the LTS estimator with high breakdown

point ≈ 49%. Increasing the parameter c, we obtain better efficiency with rea-

sonable robustness. We have found that for c= 3, the PTS estimator works well

for the catastrophic outliers and this value has been used in the simulation and
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the examples. Moreover, the PTS estimate is the OLS estimate of the “clean”

data subset k. PTS can be approached equivalently by solving the problem

min
β

n
∑

i=1

ρcσ(ui) ,

(2.3) ρcσ(ui) =

{

u2
i for |ui|< cσ

√
1−hi ,

(cσ)2 for |ui| ≥ cσ
√

1−hi ,

where the leverages hi are introduced in the following paragraph. The PTS loss

function is simple, for large residual ui the sum of squared residuals is less rapidly

increasing. An interpretation of constant penalizing for big residuals is that the

observation (xi, yi) does not influence further the regression fitting and can be

considered as a deleted one.

As it is known from robust literature, Atkinson and Riani [2], a transfor-

mation of residuals that has been useful for outlier diagnostics, is the square

of adjusted residual,
u2

i

1−hi
, where hi (0<hi < 1) measures the leverage of the

i th observation, hi = x
T
i (XT

X)−1
xi. The general principle of PTS estimator

(2.3) is to delete an observation if its reduction in the sum of squared errors,

Sk(β), is larger than the penalty cost
u2

i

1−hi
> (cσ)2. In the solution of the min-

imization problem (2.3), every residual in the clean data subset has an upper

bound |ui|< cσ(
√

1−hi). However, as the number of the observations to be

deleted increases, there is a combinatorial explosion of the number of deleted

subsets to be considered, which can lead to difficulties. Besides, as it is known

the leverage value hi can be distorted by the presence of collection of points,

which individually have small leverage values but collectively forms a high lever-

age group. Peña and Yohai [14] point out that the individual leverage hi of each

point might be small, whereas the final residual ui may appear very close to 0,

and this is a masking problem.

2.1. Masking problem and choice of penalties

For y-outliers and even for few x-outliers the PTS estimator has successful

performance. Unfortunately, masking problem arises when there is a group of

high leverage points in the same direction. In a set of identical high leverage

outliers, the leverage of each outlier is masked; the hi might be small (Peña and

Yohai [13]), hi ≪ 1. Deleting a masked leverage point, the reduction in the sum of

squared residuals may be small
u2

i

1−hi
≪ (cσ)2. In order to eliminate the distortion

of the masking problem appropriate penalties for high-leverage observations are

searched in this work to unmask the multiple outliers and delete bad high-leverage
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outliers. Most methods for multiple outlier detection as Hadi and Simonoff [9],

Peña and Yohai [14], seek to divide the data into two parts, a larger “clean data”

part and the outliers. The clean data are then used for the estimation of useful

parameters. In the PTS procedure we follow a similar principle, we propose to

down-weight the penalties using information from:

1) The initial leverage of each data point (xi, yi), hi = x
T
i (XT

X)−1
xi.

2) The leverage of each point (xi, yi) as it joins the clean data subset

taken from MCD with coverage k (Rousseeuw and Van Driessen [17]),

is h∗i = x
T
i (XT

k+1Xk+1)
−1

xi, which can be considered as the lever-

age at the clean data set of coverage k. From robust literature, it is

expected that h∗i ≥ hi for the potential xi-outliers, i.e. for points not

included in Xk. For the remaining points, which are included in Xk,

we take h∗i = hi.

In a bounded influence estimate we wish for every data point (xi, yi),

|ui| ≤ cσ
√

1−h∗i . This can be obtained by weighting the penalty as
1−h∗

i

1−hi
(cσ)2.

Applying the proposed robust function (2.3) to the initial data set

ρ(1−h∗

i )(1−hi)cσ(ui) =



















u2
i for |ui|< cσ

√
1−h∗

i√
1−hi

√
1−hi = cσ

√

1−h∗i ,

√

1−h∗i√
1−hi

(cσ)2 for |ui| ≥ cσ

√
1−h∗

i√
1−hi

√
1−hi = cσ

√

1−h∗i .

The above argument leads to the choice of penalty down-weighting with

(2.4) wi = min

{

1 ,

√

1− h∗i√
1− hi

}

.

Therefore, the deleting penalties become (ciσ)2, where ci = cwi. For minimizing

the penalty loss function in (2.2), a quadratic mixed integer programming formula

is used as it is developed in the next paragraph.

3. QMIP FORMULA FOR THE PTS

The new estimator PTS is defined from the solution of the problem (2.2)

or (2.3). In order to minimize the penalty loss function in a robust regression,

Zioutas and Avramidis [25] proposed a quadratic mixed integer programming
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formula, called QMIP:

min
β,ui,si,δi

n
∑

i=1

(

u2
i + δi(cwiσ)2

)

,(3.1)

s.t. x
T
i β + ui ≥ yi − si

x
T
i β − ui ≤ yi + si

si ≤ δiM

δi : zero-one variable

ui, si ≥ 0 for i= 1, ..., n ,

where, s is the pulling distance for moving an outlier towards the regression line,

δ is a zero-one decision vector, to indicate which observations must be removed

andM is an upper limit of the residuals ui, i=1, ..., n. Given any fixed δ ∈ {0, 1}n

from the 2n possible ones, and using matrix notation we have the following mixed

integer quadratic problem:

min
β

u
T
u + δ

T
p ,

s.t. Xβ + u ≥ y − s

Xβ − u ≤ y + s

s ≤ δM

u, s ≥ 0 ,

where, p =
(

(cw1σ)2, (cw2σ)2, ..., (cwnσ)2
)T

, u = (u1, ..., un)T, s = (s1, ..., sn)T,

y = (y1, ..., yn)T, β = (β1, ..., βn)T and the matrix X= [x1,x2, ...,xn]T . This prob-

lem has linear constraints and a convex quadratic objective function, since the

Hessian of u
T
u has nonnegative eigenvalues (and it is therefore positive semi-

definite). Therefore we have a convex program, which will have a unique global

optimum solution according to the Karush–Kuhn–Tucker optimality conditions [3].

Considering that there is a finite number of possible δ, we can conclude that

a global optimum solution to the problem exist. Hence, the quadratic mixed

integer programming formula (3.1) is convex; therefore, a unique global optimum

solution can be obtained for the given data, which is an estimate of the PTS.

In the present work, the solution of the QMIP formula obtained by the

Fort/QMIP algorithm, Mitra et al. [11]. Computationally, the PTS estimation is

suitable for small number of observations, n< 50, otherwise it could be extremely

intensive. In the next paragraph we propose an ǫ-insensitive PTS procedure where

the QMIP formula gains sparseness and it becomes computationally reasonable

even for larger data sets.
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4. SUPPORT VECTORS TOLERANT REGRESSION

4.1. ǫ-Insensitive loss function

��
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��
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��

��

��

��

X

y

ǫ

ui

y = Xβ

ǫ ≤ ui

Figure 2: ǫ-insensitive tolerant regression. Only the points outside the tube
enter the stochastic term. Points close to actual regression have ǫ loss.

In order, to improve the computation time we use the idea of ǫ-insensitive

loss function from support vector machines, proposed by Vapnik [23]. In the

ǫ-insensitive loss function small errors are not penalized and it is attempted to

fit a tube with radius ǫ to the data, by ignoring (tolerating) small errors, u< ǫ,

(4.1) |y−f(x)|ǫ = |y − x
T
β|ǫ = max

(

0, |y−x
T
β| − ǫ

)

.

Small errors (below some ǫ > 0) are not penalized in the loss function. The accu-

racy parameter ǫ controls the number of points outside the tube with radius ǫ.

The Support Vectors Regression (SVR) based on the ǫ-insensitive loss function

has the advantage to offer sparseness of the solution, Vapnik [23] and Schölkopf

and Smola [19]. Christmann and Steinwart [5], [6] proved that kernel methods

including SVR have good robustness properties for classification and regression

problems if these kernel methods use a bounded and universal kernel and a loss

function with bounded first derivative.

We adapt the support vectors technique to our approach modifying the

ǫ-insensitive loss function in a squared form, and all the errors smaller than ǫ

are penalized with a constant value ǫ2. Thus, the proposed ǫ-insensitive loss
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function becomes

(4.2) (y−f(x))2ǫ = (y − x
T
β)2ǫ = max

[

ǫ2, (y − x
T
β)2
]

,

where, the accuracy parameter ǫ controls the number of points outside the tube,

and trades off a potential loss in prediction accuracy with gain of sparseness

property and faster solutions.

We bring together, the loss functions of the new ǫ-insensitive and the Penal-

ized Trimmed Squares. Thus, a new estimator called IPTS can yield by solving

the problem

min
β

n
∑

i=1

ρǫ,ciσ(ui) ,

(4.3) ρǫ,ciσ(ui) =















ǫ2 for |ui| ≤ ǫ ,

u2
i for ǫ < |ui| < ciσ

√
1−hi ,

(ciσ)2 for |ui| ≥ ciσ
√

1−hi ,

where ciσ = max{ǫ, ciσ}. Under Gaussian conditions good efficiency could be

obtained for ǫ = 0.612σ, Schölkopf and Smola [19]. From our empirical results

ǫ= σ was a good choice for faster computation and efficiency. The minimization

of the loss function (4.3) is equivalent to the following constraint optimization

problem QMIP

min
β,ui,si,δi

n
∑

i=1

(

u2
i + δi(cwiσ)2

)

,

s.t. x
T
i β + ui ≥ yi − si(4.4)

x
T
i β − ui ≤ yi + si

ui ≥ ǫ

si ≤ δiM

δi : zero-one variable

ui, si ≥ 0 for i= 1, ..., n ,

where cwiσ = max{ǫ, c wiσ}, δi is a zero-one decision variable, to indicate which

observations must be deleted. The IPTS formula is convex, see Section 3, there-

fore a unique optimum solution can be found and the IPTS is estimated. The

tolerance constraint of the above formula leads to sparsity. It should be noted

that due to the third constraint any residual smaller than ǫ penalizes the objec-

tive function with ǫ2. A final note must be made regarding the sparseness of

the above formula (4.4). All points inside the ǫ-tube do not contribute to the

solution: we could remove any one of them, and still obtain the same solution.
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The new mathematical programming formula is still convex, see Section 3, and

therefore the unique global optimum solution of the convex problem (4.4) yields

an estimation of IPTS. In the same solution those δi = 1 flag the deleted

outliers. This way of identifying outliers with the IPTS, guarantees faster

numerical solvability.
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y = Xβ

outliers

Figure 3: IPTS regression. Appropriate emphasis is given on medium residuals
(risk part). De-emphasize small or big errors.

4.2. The Algorithm of IPTS Procedure for large data sets

The parameter ǫ can be useful for the desired accuracy and sparseness.

In present case, however, our main goal is the identification of the outliers and

faster computation, therefore larger values for the parameter ǫ could be used.

Besides, as the size of the data set increases, it would be reasonable to increase the

sparseness of the mathematical formula (4.4) in order to reduce the computational

time. It should be noted that small changes in the parameter ǫ might increase the

sparseness without affecting the correct identification of the outliers. However,

as the radius ǫ increases, efficiency of the IPTS estimator may be lost. Therefore,

for large data sets, we propose an algorithm of the IPTS procedure which is

described briefly as follows:
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• Step 1. Estimate the robust scale σ and leverage h∗i , and determine the
penalty costs (ciσ)2.

• Step 2. Solve the QMIP formula for the IPTS estimator.

• Step 3. Remove the detected outliers from the data i.e. points for which
δi = 1 in Step 2.

• Step 4. Estimate OLS on the clean data set. This is the final IPTS esti-
mator.

Following these steps we obtain the IPTS estimator, which shows good perfor-

mance as it is illustrated via Examples from literature and Monte Carlo Study

in the next sections. More steps could improve further the IPTS estimator by

reincluding deleted observations similar to Hadi and Simonoff [9]. However, this

is not the goal of the present work.

5. EXAMPLES

The PTS and IPTS procedures have the advantage to remove the outliers

and suffers less from masking effects. This is shown by means of real examples

or artificial data sets encountered in the literature. The first four data sets, dis-

cussed by Rousseeuw and Leroy [16], have become standard “benchmark” data

sets for detecting outliers in regression. The high breakdown estimators like

LMS, LTS, the MM or its improved versions and the identification procedures

of Hadi and Simonoff [9] correctly identify the outliers for these four data sets.

Both of our proposals PTS and IPTS identify the true outliers correctly as sig-

nificantly outlying. Further, the proposed procedures in this article have been

tested with many other examples of Rousseeuw and Leroy [16]; in all cases we

got good results.

Telephone Data. We start with the data, which relate the number of

telephone calls in Belgium to the variable year, for 24 years. Cases 15–20 are

unusually high; cases 14 and 21 are marginal. The outliers draw the OLS regres-

sion line upwards, masking the true outliers, while swamping in the clean cases

2–24 as too low. The MM estimator is similar to the other high breakdown esti-

mators and correctly flags the outliers. Also, our estimators the PTS and IPTS

correctly identify the true outliers.

The Stars Data. This set consists of 47 measurements of the logarithm

of effective temperature at the surface of a star and the logarithm of the light

intensity of the star. Although there is a direct relationship between the two

variables for most of the stars, the four red giants (cases 11, 20, 30 and 34) have

low temperature with high light intensity, and a scatter plot shows them as clear

outliers and leverage points. The OLS- and M-estimate lines are very similar,

being drawn toward the outliers are masked. The bounded influence estimator is
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less sensitive to the outliers than are the OLS and M estimators, having (small)

positive slope, but the outliers are still masked. The high breakdown estimators

LTS and MM find the true relationship if the efficiency level is set lower than the

typical 95% (for efficiencies up to 80–90%). Considering stronger efficiency the

MM estimator fails for this data. Application of the PTS and IPTS procedure

both flags correctly the outliers.

Modified Wood Gravity Data. We next analyze the five predictors

data set, based on real data but modified by Rousseeuw [15] to contain outliers

at cases 4, 6, 8 and 19. All of the identification methods discussed above, as well,

the OLS, M, and bounded influence estimates, fail to identify the outliers.

The MM estimator is successful for this data, with the true outliers having large

residuals. The proposed PTS and IPTS estimators are also successful.

Hawkins, Bradu and Kass Data. The data generated by Hawkins

et al. [10] for illustrating the merits of a robust technique. This artificial data

set offers the advantage that at least the position of the good or bad leverage

points is known. The Hawkins, Bradu and Kass data consists of 75 observa-

tions in four dimensions. The first ten observations is a group of identical bad

leverage points, the next four points are good leverage while the remaining are

good data. The problem in this case is to fit a hyperplane to the observed

data. Plotting the regression residuals from the model obtained from the stan-

dard OLS estimator, the bad high-leverage point data are masked and do not

show up from the residual plot. Some robust methods not only fail to identify

the outliers, but they also swamp in the good cases 11–14. The MM estimate is

Y =−0.9525 + 0.1492X1 + 0.1968X2 + 0.1793X3, which means that the true out-

liers are masked, whereas cases 11–14 are swamped in. Less efficient versions of

the MM (up to 80%) give results similar to LTS and correctly flag the outliers.

The LTS estimate is Y = −0.524 + 0.2723X1 + 0.0552X2− 0.1876X3, and cor-

rectly flags the outliers. An initial estimate of robust design weights reveals the

first 14 points of this data set as high leverage points. Application of the PTS

and IPTS to these data, starting with robust scale estimate about σ= 0.61 from

the LTS and down-weighting the penalty cost with weights wi from (2.4), rejects

only the first 10 points as outliers, which are known as the bad leverage points.

More specifically, the IPTS estimate gives Y =−0.6599+0.2393X1+0.0598X2 −
0.1026X3, and its computation time is much faster than the PTS procedure.

New Artificial Data. These data have been created by Hadi and Simo-

noff [9], in order to illustrate the performance of various robust methods in outlier

identification. The two predictors were originally created as uniform (0, 15) and

were then transformed to have a correlation of 0.5. The depended variable was

then created to be consistent with the model y = x1 + x2 + u with u∼N(0, 1).

The first 3 cases (1–3) were contaminated to have predictor values around (15, 15),

and to satisfy y = x1 + x2 + 4. Scatterplots or diagnostics have failed to detect

the outliers. Many identification methods fail to identify the three outliers. Some
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bounded influence estimates have largest absolute residual at the clean case 17,

indicating potential swamping. The LMS regression line in cases 6, 11, 13, 17 and 24

yields larger absolute LMS residual values than the true outliers. The more effi-

cient high breakdown methods like LTS, MM do identify the three outliers as

the most outlying cases in the sample, but the residuals are to small to be con-

sidered significantly outliers. In contrast, robust methods proposed by Hadi and

Simonoff [9], PTS estimator and IPTS identify correct the clean set 4–25, with

each of the cases 1–3 having residuals greater than 3.78.

6. MONTE CARLO RESULTS

In this section we perform Monte Carlo experiments to evaluate the per-

formance of our robust procedure and compare it with the well-known methods

discussed in this article. To carry out one simulation run, we proceeded as follows.

The distributions of independent variables and errors and the values of param-

eters are given. The observations yi, were obtained following the regression

model second degree p = 2, yi = β0 +β1x1i + β2 x2i + ui, where the coefficient

values are β1 = 1.20, β2 = −0.80 and a zero constant term β0 = 0.0. We pre-

fer the Gauss distribution for the iid error term u∼N(0, σ2 = 162), while x1i

and x2i are iid values drawn also from normal distributions N(µ= 20, σ2 = 62)

and N(µ= 30, σ2 = 82) respectively. We consider that the sample may contain

three types of outliers, regression outliers (“bad” high-leverage points), “good”

high-leverage points, and response outliers (y-outliers). An extra value is drawn

from the uniform distribution U(a= 80, b= 220) and for the regression outlier is

added to x1i or x2i, for the “good” leverage point is added to x1i or x2i but the

value of the dependent variable yi follows their contamination, according to the

above regression model, for the response outlier is added to yi. All simulation re-

sults are based on 100 replications enough to obtain a relative error < 10% with

a reasonable confidence level of at least 90% for all the simulation estimates.

The robust scale estimate σ from LTS with coverage k = 28 is used throughout

the simulation study. We report the results only of the available well-known ro-

bust high breakdown methods. The methods examined are, therefore, five differ-

ent types of robust estimators: the LTS estimator with coverage k= [(n+p−1)/2],

the MM and S1S estimators using in both initially the LTS regression estimate,

the proposed PTS estimator solving the QMIP in (3.1), the proposed IPTS

estimator solving the QMIP in (4.4). We run all of the computer programs on a

1200 Mhz Athlon AMD Processor. The computations for the robust estimators

LTS and MM were carried out using the S-Plus package, while S1S estimator has

been computed by the S1S algorithm given in Coakley and Hettmansperger [7].

The simplex iterations for the QMIP solution were carried out on the same

machine using the solver FortMP/QMIP-Fortran Code provided by CARISMA,

Brunel University, U.K., 2003.
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All of the following conclusions were supported by careful examination of

the individual estimates. Tables 1, 2, 3 and 4 display results concerning the

performance of the four robust estimators corresponding to the following cases:

Table 1, based on data contaminated by “bad” and “good” high leverage points.

Table 2, based on data contaminated only by “good” leverage points. Table 3,

based on data contaminated by “bad” high leverage outliers. Table 4, based on

data contaminated by “bad” high leverage outliers (heavier contamination).

Table 1: x-outliers 6, “good” leverage points 4, y-outliers 6, n= 50.
True: β0 = 0.0, β1 = 1.20, β2 =−0.80.

Estimator LTS MM S1S PTS IPTSǫ=0.8σ

Mean estimate of β0 – 0.67 1.82 8.54 0.03 – 1.12

Mean estimate of β1 1.01 0.98 0.96 1.13 1.21

Mean estimate of β2 – 0.68 – 0.75 – 0.75 – 0.81 – 0.80

Mean absolute error of β̂0 7.76 5.96 9.53 3.89 2.82

Mean absolute error of β̂1 0.34 0.27 0.34 0.14 0.05

Mean absolute error of β̂2 0.15 0.09 0.08 0.07 0.06

Mean square error of β̂ 98.91 71.53 146.05 25.43 14.78

Norm of bias of β̂ 7.78 5.97 9.54 3.90 2.82

Trace of covariance 98.41 68.18 73.05 25.42 13.54

Mean square fitting error
353 314 344 275 263(true value σ2=256)

Computation Time (secs) 11 3

Table 1 presents the measures of the performance criteria for the four es-

timators in the presence of bad and good high leverage outliers. Taking account

all the performance criteria, the PTS and IPTS outperform the other estima-

tors. In this Table, we see that IPTS outperform the PTS estimator and the

IPTS procedure is faster, as it was expected. As far as the computation time of

MM, LTS and S1S concern, these are not shown in Tables 1, 2, 3 and 4. This is

these estimates results from probabilistic solutions. As it has been mentioned

in the previous sections, the PTS and IPTS estimates are the exact solution

of QMIP formulas. Therefore, the computation time between probabilistic and

exact solutions is not comparable. Not surprisingly, most of the methods are

more effective in the case of clean data. For the simulation conducted over clean

data contaminated only by “good” high leverage points, Table 2, the IPTS es-

timator outperforms the other estimators. The performance of PTS, MM, S1S

and LTS was reasonable well with PTS much better. Of course, one can improve

the efficiency of the robust estimates, but at the cost of losing robustness and

outlier detection.
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Table 2: “good” leverage points 6, n= 50.
True: β0 = 0.0, β1 = 1.20, β2 =−0.80.

Estimator LTS MM S1S PTS IPTSǫ=0.8σ

Mean estimate of β0 0.53 – 1.16 – 2.26 – 1.67 – 1.26

Mean estimate of β1 1.17 1.20 1.20 1.21 1.21

Mean estimate of β2 – 0.77 – 0.75 – 0.91 – 0.75 – 0.77

Mean absolute error of β̂0 7.55 3.02 3.66 2.88 2.79

Mean absolute error of β̂1 0.08 0.04 0.09 0.04 0.03

Mean absolute error of β̂2 0.10 0.07 0.10 0.07 0.06

Mean square error of β̂ 76.93 18.02 22.88 15.80 14.91

Norm of bias of β̂ 7.55 3.03 3.66 2.88 2.79

Trace of covariance 76.65 16.67 17.81 13.02 13.33

Mean square fitting error
308 266 268 263 262(true value σ2=256)

Computation Time (secs) 9 2

In case of only bad high leverage contamination, shown in Table 3, the

penalized trimmed squares approach has shown remarkable improvement in both

robustness and efficiency, with IPTS the best. As a final conclusion of Tables 1, 2, 3

and taking account all the performance criteria, the IPTS procedure improves

reasonable the performance of the PTS. Also, the IPTS procedure is faster.

Table 3: “bad” leverage points 6, n= 50.
True: β0 = 0.0, β1 = 1.20, β2 =−0.80.

Estimator LTS MM S1S PTS IPTSǫ=0.8σ

Mean estimate of β0 4.95 1.04 3.06 0.91 0.02

Mean estimate of β1 0.87 1.04 0.81 1.10 1.15

Mean estimate of β2 – 0.77 – 0.74 – 0.82 – 0.76 – 0.76

Mean absolute error of β̂0 11.42 5.46 6.94 4.11 3.92

Mean absolute error of β̂1 0.44 0.22 0.42 0.17 0.13

Mean absolute error of β̂2 0.22 0.12 0.17 0.10 0.10

Mean square error of β̂ 229.69 48.59 103.16 27.24 22.61

Norm of bias of β̂ 11.45 5.47 6.99 4.13 3.93

Trace of covariance 205.12 47.48 93.67 26.41 22.60

Mean square fitting error
378 298 327 282 274(true value σ2=256)

Computation Time (secs) 9 2.9
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The most fruitful result concerning the IPTS procedure is presented in Table 4.

Data are heavy contaminated by bad high leverage outliers. A masking problem

arises affecting the performance of the other robust estimators. The IPTS proce-

dure with ǫ = 1.5σ has improved significantly the performance criteria and the

computation load as well.

Table 4: “bad” leverage points 10, y-outliers 6, n = 50.
True: β0 = 0.0, β1 = 1.20, β2 =−0.80.

Estimator LTS MM S1S PTS IPTSǫ=1.5σ

Mean estimate of β0 0.03 – 0.97 6.39 – 1.14 – 1.69

Mean estimate of β1 0.77 0.76 0.79 1.15 1.16

Mean estimate of β2 – 0.57 – 0.51 – 0.52 – 0.74 – 0.74

Mean absolute error of β̂0 9.46 7.42 12.48 5.12 4.37

Mean absolute error of β̂1 0.56 0.54 0.65 0.21 0.18

Mean absolute error of β̂2 0.28 0.31 0.30 0.10 0.09

Mean square error of β̂ 128.07 87.84 202.22 57.56 30.50

Norm of bias of β̂ 9.50 7.51 12.51 5.15 4.25

Trace of covariance 127.84 86.63 161.21 56.25 27.63

Mean square fitting error
456 432 490 293 277(true value σ2=256)

Computation Time (secs) 13 0.5

For large data sets, we could increase the radius ǫ in order to earn compu-

tation time, and following the algorithm of subsection 4.2, we obtain reasonable

efficiency. In Tables 5 and 6, the success in outlier detection is obvious in large

data sets as also the reduction of the computation time of the IPTS estimator

as we increase the tube radius.

Table 5: Large artificial data set, 500 points in R
2 including 120 outliers.

Estimator LTS PTS IPTSǫ=1.5σ IPTSǫ=2.0σ IPTSǫ=2.5σ

Deleting outlier success 95% 95% 95% 95% 95%

Computation time (sec.) 3800 3800 2500 681 21

Table 6: Hawkins et al. [10] artificial data, 75 points in R
3 including 10 outliers.

Estimator LTS PTS IPTSǫ=1.5σ

Deleting outlier success 100% 100% 100%

Computation time (sec.) 255 255 1.4
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7. CONCLUSIONS AND FUTURE WORK

The PTS estimate procedure based on robust residual scale and leverage

from the LTS and MCD respectively, can be used successfully in regression prob-

lems. Through benchmark Examples and Monte Carlo simulation the proposed

estimators have shown robustness against all type of outliers. The robust esti-

mates presented in this article give directly a useful diagnostic tool to identify

multiple outliers. The penalized procedure has the advantage to remove the catas-

trophic outliers and it does not suffer from masking problems. Generally, the

proposed estimator PTS has the ability to handle effectively a group of outliers.

The new estimator PTS is obtained through a convex quadratic mixed integer

programming formula (QMIP). The computational effort to solve this formula

is heavy. Following a modification of ǫ-insensitive technique from Support Vector

Machines we have improved significantly the computational time and the effec-

tiveness of the proposed estimator. However, the computational load of the IPTS

estimator is still heavy for large data sets (n > 100), since the IPTS procedure

is based on Quadratic Mixed Integer Programming which is partly a combina-

torial problem. Based on the above optimum criteria and results, we conclude

that the PTS estimator outperforms in many circumstances and is reasonable

for both regression and response outliers. Therefore, it is accessed that for small

sample data the added computational complexity is worth the potential benefits.

Further improvements in the penalized procedure are a subject of ongoing

research; for example, determine possible better choices of the penalties and

continue the method in a second stage to reconsider the outliers, following one

step MM-type procedure. Concerning the computation effort, further research

is needed to improve the computational time for large size sample data by deter-

mining possible better choice of the ǫ-insensitive size for the IPTS procedure

or implementing probabilistic techniques, similar to LTS or others known from

robust literature. As a final remark, since the number of outliers in a medium

sample data is not known, we recommend the use of the PTS or IPTS procedure.
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