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FOREWORD

This special issue of REVSTAT – Statistical Journal contains a selection

of invited papers presented at the Workshop StaM2010 — Statistical Modelling:

Challenges in Health that took place in Parque das Nações — Lisbon, Portugal,

from 9 to 12 May 2010.

The workshop was organized under the auspices of the Center of Statistics

and Applications, University of Lisbon (CEAUL, http://www.ceaul.fc.ul.pt),

and the FCT/MCTES research projects: “Statistical Methods in Genetics and

Environment” (PTDC/MAT/64353/2006), “Latent Class Models in Tropical Health”

(PTDC/SAU-ESA/81240/2006). It brought together researchers interested in ad-

vanced statistical applications in Health challenging problems, to promote knowl-

edge and experience exchange and also to encourage cooperation between the

participants. A fruitful discussion on the role of statistical modelling in Health

with maximum participation in non-parallel sessions included the following areas:

health spatial problems; survival analysis; genetics; molecular biology; bioinfor-

matics; latent class models in health.

The six papers in this volume illustrate some of the statistical problems

currently of interest in Health. Jow et al. develop a method for estimating the

density of BLAST hits across chromosomes on a target genome, which is used

to identify genes associated with QTLs from Bovine Hemoglobine Genome by

using the Human genome. Anticoagulants are one of the most prescribed groups

of drugs. This is the motivation for Henderson et al. to review and develop

methods to optimal dynamic treatment regime determination. Teixeira-Pinto

and Normand develop likelihood and quasi-likelihood methods to analyse multi-

ple non-commensurate outcomes in the presence of missing data in biomedical

researches. Sousa reviews different methods for joint modelling of longitudinal

and time to event data, based on the full likelihood of the joint distribution of

the two processes. This special issue also includes a review of several nonpara-

metric approaches for non-Markov multi-state survival models. Meira-Machado

illustrates his contributions on that topic with well-known real data sets using

three-state models. Bailey and Hewson suggest an addition to the multivariate

modelling of the geographical distribution of different but potentially related dis-

eases, which incorporates a discrete mixture of latent factors. This is illustrated

on data on four carcinomas in some UK geographical areas.

Thanks are due to Maria Antónia Amaral Turkman, Ana Lúısa Papoila and

Giovani Silva who helped to organize the invited programme. We also express our

gratitude to the speakers and the authors of the posters for their valuable con-

tribution to the high scientific standards of the Workshop Statistical Modelling:

Challenges in Health.

Lisete Sousa

Valeska Andreozzi

Maŕılia Antunes

Luzia Gonçalves
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Abstract:

• Despite rapid advances in sequencing technology, many commercially relevant species
remain unsequenced, and many that are sequenced have very poorly annotated
genomes. There is therefore still considerable interest in using comparative approaches
to exploit information from well-characterised model organisms in order to better un-
derstand related species. This paper develops a statistical method for automating part
of a comparative genomics bioinformatic pipeline for the identification of genes and
genomic regions in a model organism associated with a QTL region in an unsequenced
species. A non-parametric Bayesian statistical model is used for characterising the
density of a large number of BLAST hits across a model species genome. The method
is illustrated using a test problem demonstrating that markers associated with Bovine
hemoglobin can be automatically mapped to a region of the human genome containing
human hemoglobin genes. Consequently, by exploiting the (relatively) high quality of
genome annotation for model organisms and humans it is possible to quickly identify
candidate genes in those well-characterised genomes relevant to the quantitative trait
of interest.

Key-Words:

• Bayesian; non-parametric; density estimation; QTL; BLAST; mapping; compara-

tive genomics.
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1. INTRODUCTION

The mapping of the genetic component influencing quantitative traits of

a species, such as height and weight, can be achieved even in the absence of a

complete physical map of a species’ genome. This is called quantitative trait

loci (QTL) mapping. One method by which QTLs can be mapped utilizes a

map of typed genetic markers in order to establish the statistical correlation

between a given quantitative trait and a given point, between two markers, on

the genetic map ([12]). This allows for the identification of regions which are

highly statistically correlated with the quantitative trait and therefore likely to

contain a QTL. These regions can then be sequenced and the genes influencing

the quantitative trait can be identified.

This method of finding the genes that influence a particular quantitative

trait has its drawbacks. For one thing it is dependent on the quality and resolution

of the genetic map used to map the QTLs. A low resolution genetic map would

lead to a low resolution QTL map in which relatively large regions are identified as

being statistically significant and therefore likely to contain a QTL. This in turn

requires the sequencing of large portions of the sequence genome. Alternatively

the method can be used on high resolution genetic maps. However, this too has

problems: constructing high resolution genetic maps is far from a trivial process

and can be expensive and labour intensive, especially for traditional linkage maps.

The method described in this paper uses a comparative genomics approach

to locate genes which are correlated with the QTL. It works by first identifying

statistically significant QTL regions. Then a high resolution map is constructed

by integrating available partial maps of the chromosome in which the QTL regions

lie into a single map. There are a number of methods available for integrating

partial genetic maps ([14, 18, 16, 19, 6, 13, 11]) and in this paper we use a Bayesian

approach to map integration developed by Jow et al. ([11]).

On obtaining a high resolution integrated map, the markers lying between

the QTL flanking markers are identified and a BLAST ([1]) search made of their

sequences against the genome of a target species. This gives us a series of “hits”

on the target genome, that is, locations where the search sequences match. Using

these hits it is possible to estimate the probability density of hits across the target

genome using, for example, standard kernel density techniques ([17]) or Bayesian

alternatives based on Dirichlet processes ([4, 2, 3]). We will use a Bayesian

density estimate and then threshold this density to identify regions along the

target species which are likely to contain genes performing similar functions to

the genes associated with the QTL of the source species.

The rest of this paper is organised as follows. Section 2.1 describes how

to construct a Bayesian density estimate from a collection of BLAST hits across
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a number of chromosomes. The model is described in detail, with the resulting

MCMC algorithm available in the appendix. This section also describes a pro-

cedure for determining the location of regions likely to contain genes associated

with the QTL. Section 3 validates the MCMC algorithm and implementation on

a synthetic example and Section 4 provides a real example of how our method can

be used to help identify genes associated with QTLs obtained from the Bovine

Hemoglobin genome by using the Human genome.

2. METHODS

In this section we describe how to construct a Bayesian density estimate

from a collection of BLAST hits and the procedure for determining the location

of intervals likely to contain genes associated with the QTL.

2.1. Bayesian density estimation

Suppose that the target genome consists of C chromosomes with lengths

L1, ..., LC . The data take the form of n BLAST hits describing the location (y)

and chromosome (c) on which each hit was made: (yi, ci), i= 1, ..., n. Let nc

be the number of observed hits on chromosome c. We construct the Bayesian

density estimate by modelling these locations as an infinite mixture of normal

distributions with unknown means (µ) and variances (σ2) and with these pa-

rameters φ = (µ, σ2) resulting from a Dirichlet process with a particular base

distribution. Let θc denote the probability of a hit occurring on chromosome c.

The formulation of the model is slightly complicated by the need to have a con-

tinuous density across the C chromosomes. In summary we have, for i = 1, ..., n

and ci ∈ {1, ..., C},

θ = (θ1, ..., θC)|α ∼ Dir(αℓ) ,

Yi, ci|φici
, θci

∼ N(µici
, σ2

ici
) × Bern(θci

) ,

φici
|Gci

∼ Gci
,

Gci
|α ∼ DP(α,G0ci

) ,

G0ci
= U(0, Lci

) × Inv Γ(a, L2
ci
b) ,

where DP(α,G0) denotes a Dirichlet process with base measure G0 and concen-

tration parameter α, and ℓ is the normalized form of L, that is, ℓc = Lc/
∑C

j=1
Lj .

The form of the base distribution has been chosen so that it is independent of

the scale used to measure the location of the BLAST hits, for example, Mb or b.
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All that remains for a full model specification is to choose the prior distribution

for α. In this paper we take a flexible semi-conjugate form with

α ∼ Γ(g, h) .

Given the data model above and the hit data, it is generally not possible to

derive an analytical expression for the probability density at an arbitrary point y

on an unknown chromosome k. However, numerical sampling methods can be

used approximate this (predictive) density as

(2.1) π(y, k|D) ≃ 1

Tn

T
∑

t=1

n
∑

i=1

π
(

y, k|φt
ik, θ

t
k

)

,

where (φt
ik, θ

t
k), t= 1, ..., T , is a sample from the posterior distribution π(φik, θk|D)

obtained using an appropriate sampling algorithm. In this paper we have used

an MCMC algorithm based on one by Escobar and West ([3]); the algorithm is

described in the appendix.

2.2. Identification of QTL intervals

On obtaining the probability density of hits across the entire target genome

the remaining task is to identify regions with a high probability density. This

is done by identifying the highest density regions (HDRs) containing a given

percentage of the density; see [10]. For example, a 75% HDR could be found

across all the chromosomes. Given that in our model the target genome is one-

dimensional, the HDR would be a set of regions across all the chromosomes.

These regions can then be searched for genes of interest.

3. SIMULATED DATA

To validate our MCMC algorithm and implementation, we simulated a

dataset of 200“hits” spread over three chromosomes with lengths 100 Mb, 200 Mb

and 400 Mb. The distribution of the locations of hits on the different chromosomes

were taken to be normal distributions on chromosomes 1 and 3 and a mixture

of two normal distributions on chromosome 2; see the dashed lines in Figure 1.

Also the probability of a hit being located on a particular chromosome was taken

as being proportional to the length of the chromosome, that is, with probability

1/7, 2/7 and 4/7 for chromosomes 1, 2 and 3 respectively.

We specify the base distribution for the cluster variances (σ2) by taking

a = 2.05 and b = 0.000105, so that E(σ2) = 10−4L2 and SD(σ2) =
√

2E(σ2).
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For example, on chromosome 1 this gives E(σ2) = (1Mb)2, that is, suggests

cluster standard deviations are around 1 Mb. We also input fairly weak prior

information for α by taking g = 4 and h = 2, that is, E(α) = 2 and SD(α) = 1.
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Figure 1: The theoretical distribution of hits along the chromosomes
(dashed lines) and the Bayesian density estimate obtained from
the simulated data (dotted line).

3.1. Results

The MCMC algorithm outlined in the appendix was applied to the simu-

lated dataset. Convergence was assessed by using informal visual methods and

the diagnostics suggested by Gelman and Rubin ([5]) and by Heidelberger and

Welch ([7]). We found that a burn-in of 100K iterations was required to achieve

convergence and we then ran the chain for a further 100K iterations, thinning

the output by taking every 100th iterate. This gave a posterior sample of size 1K

observations from which we could calculate the Bayesian density estimate (2.1)

across the (simulated) chromosomes. The results are summarized in in Table 1

and Figure 1, and show that there is a reasonably close match between the theo-

retical and estimated probabilities of a hit being found on a particular chromo-

some and between the Bayesian density estimate for the location of hits and their

generating distribution.
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Table 1: Probability of a hit being located on each (simulated)
chromosome (to 3 d.p.).

Chromosome Probability

1 0.142
2 0.285
3 0.573

4. BOVINE HEMOGLOBIN MARKER DATA

To illustrate the power of our method, we now show how the Human genome

can be used to help identify genes associated with QTLs obtained from the Bovine

Hemoglobin genome. The sequences of molecular markers associated with Bovine

Hemoglobin genes were taken from the NCBI “GENE” database ([15]) and the

markers we use are given in Table 2. For our analysis, we use the same input

parameters (a, b, g and h) as in Section 3.

Table 2: Markers associated with Bovine Hemoglobin genes.

Marker name Associated gene Gene symbol Sequence length

REN97351 Hemoglobin Beta HBB 248
RH69634 Hemoglobin Beta HBB 141
PMC115301P1 Hemoglobin Beta HBB 136
GDB:178694 Hemoglobin Beta HBB 300
HBB Hemoglobin Gamma HBG 171
PMC86017P3 Hemoglobin Gamma HBG 267
PMC21968P1 Hemoglobin Epsilon HBE 989
Hba-a1 Hemoglobin Alpha HBA 188
AW312144 Hemoglobin Alpha HBA 327
CB603723 Hemoglobin Zeta HBZ 312
BE749596 Hemoglobin Theta 1 HBQ 277
AW428039.1 Hemoglobin Mu HBM 193

4.1. Results

A BLAST search of these markers was conducted against the reference

Human genome (NCBI 36.3 build) using the parameters listed in Table 3, and

gave 188 hits distributed across 15 chromosomes. The MCMC algorithm was
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then run on these hit data. As with the simulated data, convergence was as-

sessed by using informal visual methods and standard diagnostics tools. Again,

we found that a burn-in of 100K iterations was required to achieve convergence.

Table 3: BLAST search parameters against the Human genome
for the Bovine Hemoglobin markers.

BLAST parameter argument value

Expectation Value −e 0.1
Gap Cost −G 5
Gap Extension Cost −E 2
Nucleotide Mismatch Cost −q 3
Nucleotide Match reward −r 2

We then ran the chain for a further 100K iterations, thinning the output by

taking every 100th iterate, to obtain a posterior sample of size 1K observations.

The results are summarized in Tables 4, 5 and in Figure 2. The posterior prob-

ability of a hit being on the target human chromosomes is shown in Table 4.

Table 4: Probability of a hit being located on each chromosome
of the Human genome (to 3 d.p.).

Chromosome Probability

1 0.032
3 0.022
5 0.016
6 0.005
7 0.011
9 0.032

11 0.620
12 0.016
13 0.011
14 0.005
15 0.005
16 0.161
17 0.027
19 0.021
20 0.016

2, 4, 8, 10, 18, 21, 22, X, Y ≃ 0

Table 5 contains the 50%, 60% and 75% highest density regions (HDRs) across

all chromosomes, calculated using the method of Hyndman ([10]). Figure 2 gives

a graphical view of the HDRs for those chromosomes with a hit probability of

at least 5%, that is, for chromosomes 11 and 16. The 50% and 60% HDRs



Identification of QTL Candidate Genes 9

determined over all chromosomes point to genes of interest only on chromo-

somes 11 and 16. The aim of our method in this example is to identify regions

on the human genome which are associated with the Bovine Hemoglobin genome.

Table 5: HDR intervals on the Human genome for the Bovine Hemoglobin markers.

HDR level Chromosome Intervals Number of candidate genes

50%
11 4.59Mb– 5.77Mb 95
16 0.00Mb– 0.36Mb 27

60%
11 4.37Mb– 5.98Mb 104
16 0.00Mb– 0.49Mb 33

75%

11 3.88Mb– 6.47Mb 131
11 54.52Mb– 58.11Mb 121
16 0.00Mb– 0.78Mb 59
9 124.28Mb– 124.53Mb 13

17 2.51Mb– 3.72Mb 35
20 61.14Mb– 61.92Mb 30
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Figure 2: Figure showing the Bayesian density estimate of BLAST hits
across chromosomes 11 and 16 of the Human genome.

If we look in detail at the Human genome, its Hemoglobin genes are located in

two clusters on chromosomes 11 and 16, with the β-globin cluster spanning an

interval of roughly 5.20–5.25Mb on chromosome 11 and the α-globin cluster span-
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ning an interval of roughly 0.14–0.17Mb on chromosome 16. Thus our method

has correctly and reasonably accurately identified the appropriate regions on the

Human genome.

If we examine the Human genes found within these 60% HDRs, we find

the 33 genes located on chromosome 16 listed in Table 6. These include the

five known functional genes and two pseudo-genes of the human α-globin locus.

Table 6: A list of genes in the 60% HDR for chromosome 16. The genes in bold
are the 5 known functional genes present in the Human α-globin locus
and those in italics are the two known pseudo-genes ([9]).

Ensembl Gene ID Gene name

ENSG00000220481 Z84812.3
ENSG00000181404 WASH4P
ENSG00000219509 Z84723.2
ENSG00000185203 Z84723.1
ENSG00000161980 POLR3K
ENSG00000161981 C16orf33
ENSG00000007384 RHBDF1
ENSG00000103152 MPG
ENSG00000103148 C16orf35
ENSG00000130656 HBZ

ENSG00000206178 Z84721.1
ENSG00000206177 HBM

ENSG00000218072 Z84721.4
ENSG00000188536 HBA2

ENSG00000206172 HBA1

ENSG00000207243 Y RNA
ENSG00000086506 HBQ1

ENSG00000007392 LUC7L
ENSG00000206168 Z69890.1
ENSG00000167930 ITFG3
ENSG00000215289 AC004754.1
ENSG00000076344 RGS11
ENSG00000206156 ARHGDIG
ENSG00000185615 PDIA2
ENSG00000103126 AXIN1
ENSG00000086504 MRPL28
ENSG00000129925 TMEM8
ENSG00000216963 Z97634.3
ENSG00000103200 NME4
ENSG00000103202 DECR2
ENSG00000090565 RAB11FIP3
ENSG00000201034 Y RNA
ENSG00000217816 RP1-196A12.1

Additionally, C16orf35 is known to be involved in the regulation of α-globin. The

corresponding list for chromosome 11 contains 104 genes and includes the five
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known functional Hemoglobin genes in the human β-globin locus (HBE1, HBG1,

HBG2, HBD and HBB) and one known hemoglobin pseudogene (HBBP1). The

annotations available for the remaining genes in these lists show no known direct

link to Hemoglobin or its regulation.

5. CONCLUSIONS

In this paper we have developed a method for estimating the density of

BLAST hits across chromosomes on a target genome. This estimate can then be

used to determine highest density regions (HDRs) on the target genome for genes

associated with the QTL of interest.

The method has been shown to work well on both simulated data and

real data. In this latter case this involved obtaining BLAST hits for a number

of Bovine Hemoglobin markers (given in Table 2) against the Human genome.

We were able to construct the density estimate of BLAST hits across the Human

genome and thereby determine the highest density regions. The regions obtained

were found to contain the Human α-globin and β-globin loci ([8]).

Currently our method uses a fairly superficial treatment of BLAST hits

and does not, for example, distinguish between poor BLAST hits and good ones.

Future work might involve exploring how to incorporate properly weighted BLAST

hits so that the better hits contribute more to the density estimate and this might

lead to more accurate HDRs. Also, because the chromosomes have finite length,

strictly the density across the chromosomes should have finite support. This could

be achieved, for example, by replacing the Gaussian distribution for the location of

clusters by (a mixture of) truncated Gaussian distributions. Unfortunately, such a

modification does lead to analytical intractability in the calculations underpinning

the Bayesian density estimate, though research into using such distributions is

also a possible area of future work.

APPENDIX

The MCMC algorithm is a Gibbs sampler for the cluster parameters

φici
=

(

µici
, σ2

ici

)

, i= 1, ..., n, and the parameters (α, θ). In the following sections,

we derive the posterior conditional distributions for these parameters.
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A. The cluster parameters

Here we derive the posterior conditional distributions for the φici
=(µici

,σ2
ici

),

i= 1, ..., n. Letting φ′ici
=

{

φjci
: j 6= i

}

, the conditional prior density for φici
|φ′ici

is

π
(

φici
|φ′ici

)

=
α

α+ nci
− 1

g0ci
(φici

) +
∑

j 6=i

1

α+ nci
−1

δφjci
(φici

)

where g0ci
is the probability density corresponding to the distribution G0ci

, nci
is

the number of observed hits on chromosome ci and δy(x) is Dirac’s delta function

(δy(x) = 0 if x 6= y and
∫

δy(x) dx = 1).

Multiplying this by the likelihood π(yi, ci|φici
, θci

), we get the conditional

posterior density

π
(

φici
|φ′ici

, yi, θci

)

= qi0 gici
(φici

) +
∑

j 6=i

qij δφjci
(φici

)

where

qij = κπ(yi, ci|φjci
, θci

) ,

qi0 = κα

∫

π(yi, ci|φici
, θci

) g0ci
(φici

) dφici
,

gici
(φici

) = π(yi, ci|φici
) g0ci

(φici
)

/
∫

π(yi, ci|φici
) g0ci

(φici
) dφici

and κ is a normalizing constant such that

qi0 +
∑

j 6=i

qij = 1 .

We can derive closed form expressions for the densities gici
and the qij

by using the base distribution for the Dirichlet process Gci
, G0ci

= U(0, Lci
)×

Inv Γ(a, L2
ci
b), as follows. Let φ(·|a, b2) denote the N(a, b2) density, ψa(·|b, c) the

St(a, b, c) density and Ψa(·) the ta distribution function. Note that if X∼ ta then

b+
√
cX ∼ St(a, b, c). Also, to simplify notation, we write τ = σ2. Then

qij = κπ(yi, ci|φici
, θci

) = κ θci
φ(yi|µici

, τici
)
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and

qi0 = κα

∫

π(yi, ci|φici
, θci

) g0ci
(φi) dφici

= κα

∫ Lci

0

∫ ∞

0

θci
φ(yi|µici

, τici
) × 1

Lci

×
(L2

ci
b)a τ−a−1

ici
e−L2

ci
b/τici

Γ(a)
dτici

dµici

=
κα θci

Lci

∫ Lci

0

ψ2a(µ|yi, L
2
ci
b/a) dµ

=
κα θci

Lci

{

Ψ2a

(

1 − yi/Lci
√

b/a

)

− Ψ2a

(

−yi/Lci
√

b/a

)

}

.

Also, for 0 ≤ µici
≤ Lci

, τici
> 0

gici
(φici

) =
π(yi, ci|φi, θci

) g0(φici
)

∫

π(yi, ci|φici
, θci

) g0(φici
) dφici

=
φ(yi|µici

, τici
) × (L2

ci
b)a τ−a−1

ici
e−L2

ci
b/τici

/

Γ(a)

Ψ2a

(

1− yi/Lci√
b/a

)

− Ψ2a

(

−yi/Lci√
b/a

)

=
(L2

ci
b)a τ

−a−3/2

ici

√
2π Γ(a)

{

Ψ2a

(

1− yi/Lci√
b/a

)

− Ψ2a

(

−yi/Lci√
b/a

)

}

× exp

{

−
(

L2
ci
b+

(yi −µici
)2

2

)/

τici

}

.

For simulation purposes, it is useful to note that

gici
(φici

) = π(µici
)π(σ2

ici
|µici

)

where

µici
∼ St

(

2a, yi, L
2
ci
b/a

)

, 0 ≤ µici
≤ Lci

and

σ2
ici

∣

∣µici
∼ Inv Γ

(

a+
1

2
, L2

ci
b+

(yi − µici
)2

2

)

.

B. The remaining parameters

Here we derive the posterior conditional distributions for α and θ. The

procedure is a generalisation of that used by Escobar and West ([3]).
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Suppose that chromosome c has nc hits arranged in kc clusters (c=1,2, ...,C).

Then the probability function for the number of clusters on chromosome c is

π(kc|nc, α, θ) ∝











αkc
Γ(α)

Γ(α+ nc)
, kc = 1, 2, ..., nc , if nc > 0 ,

1, kc = 0 , if nc = 0 .

Let k = (k1, k2, ..., kC). As we have independent Dirichlet processes for each

chromosome, kc|nc, α are independent for c = 1, 2, ..., C and so

π(k|n, α, θ) ∝
C

∏

c=1

αkc
Γ(α)

Γ(α+ nc)
,

for kc = 1, 2, ..., nc if nc > 0 or kc = 0 if nc = 0 (c= 1, 2, ..., C). This can be simpli-

fied slightly by letting A = {c : nc > 0} with size |A|, and renumbering the chro-

mosomes so that nc > 0 for c = 1, 2, ..., |A| and nc = 0 for c = |A|+1, |A|+2, ..., C,

giving

π(k|n, α, θ) ∝
|A|
∏

c=1

αkc
Γ(α)

Γ(α+ nc)
.

The probability function for the number of hits on each chromosome has a

multinomial distribution, with

π(n|α, θ) ∝
C

∏

c=1

θnc
c ,

and so the likelihood function for (α, θ) is

π(k, n|α, θ) = π(k|n, α, θ)π(n|α, θ) ∝
|A|
∏

c=1

αkc
Γ(α)

Γ(α+ nc)
×

C
∏

c=1

θnc
c .

Thus, if we take a gamma Γ(g, h) prior distribution for α, the joint posterior

density is

π(α, θ|k, n) ∝ π(k, n|α, θ)π(θ|α)π(α)

∝
|A|
∏

c=1

αkc
Γ(α)

Γ(α+ nc)
×

C
∏

c=1

θnc+αℓc−1
c × αg−1e−hα

∝
|A|
∏

c=1

Γ(α)

Γ(α+ nc)
×

C
∏

c=1

θnc+αℓc−1
c × αg+(k̄−1)|A|−1e−hα ,

where k̄ =
∑|A|

c=1 kc/|A| be the mean cluster size over chromosomes with hits.

Therefore the (conditional) posterior density for θ is

π(θ|α, k, n)
C

∏

c=1

θnc+αℓc−1
c ,
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that is, a Dir(n+αℓ) distribution. Also the (conditional) posterior density for α

is

π(α|θ, k, n) ∝ αG−1e−Hα

|A|
∏

c=1

Γ(α)

Γ(α+ nc)
,

where G = g + (k̄ − 1) |A| and H = h− ∑C
c=1

ℓc log θc. Using the identity

Γ(α)

Γ(α+ nc)
=

(α+ nc)B(α+ 1, nc)

α Γ(nc)
,

where B(·, ·) is the Beta function, we obtain

π(α|θ, k, n) ∝ αG−1e−Hα

|A|
∏

c=1

(α+ nc)B(α+ 1, nc) .(B.1)

As the Beta function has integral representation

B(α+ 1, nc) =

∫ 1

0

xα
c (1 − xc)

nc−1 dxc

it is clear that

π(α, η|θ, k, n) ∝ αG−1e−Hα

|A|
∏

c=1

(α+ nc) η
α
c (1− ηc)

nc−1 ,

where η = (η1, η2, ..., η|A|)
′ are beta distributed auxiliary variables, has distribu-

tion (B.1) when marginalised over η. Therefore, letting η̄g =
(
∏|A|

c=1 ηc

)1/|A|
be

the geometric mean of the components of η, we have

π(α|η, θ, k, n) ∝ αG−1 exp
{

−(H − |A| log η̄g)α
}

|A|
∏

c=1

(α+ nc) .(B.2)

Now

|A|
∏

c=1

(α+ nc) = e0(n)α|A| + e1(n)α|A|−1 + e2(n)α|A|−2 + · · · + e|A|(n)

where

e0(n) = 1 , e1(n) =

|A|
∑

i=1

ni , e2(n) =

|A|
∑

1=i<j

ni nj , ... , e|A|(n) =

|A|
∏

i=1

ni .

Here the ek(n) are elementary symmetric polynomials which may be calculated

efficiently by using the Newton–Girard formula

k ek(n) =
k

∑

i=1

(−1)i−1ek−i(n)Sk(n) where Sk(n) =

|A|
∑

i=1

nk
i .
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Substituting this power series expansion into (B.2) gives

π(α|η, θ, k, n) ∝
|A|
∑

i=0

ei(n)αG+|A|−i−1 exp
{

−(H−|A| log η̄g)α
}

,

which is a mixture of Gamma distributions, that is,

α|η, θ, k, n ∼
|A|
∑

i=0

pi Γ
(

α;G+ |A|− i, H−|A| log η̄g

)

with mixture proportions

pi =
ei(n) Γ(G+ |A|− i)

∑|A|
j=0

ej(n) Γ(G+ |A|− j) (H−|A| log η̄g)j−i
, i = 0, 1, ..., |A| .

Finally, for c = 1, 2, ..., |A|,

ηc|α, k, n ∼ Beta(α+ 1, nc) , independently .
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1. INTRODUCTION

Individualised medicine, which is one of the growing areas in health re-

search, presents a number of statistical challenges. Without the luxury of major

clinical trials, can we find methods to tailor treatment to a patient’s individual

circumstances, especially for those with chronic conditions? In this paper we

give an overview of a selection of methods for optimal dynamic treatment regime

determination from observational data [1], [3], [6], [11]–[13]. Our interest in the

area is motivated by a collaboration in which an algorithm to determine decision

rules for anticoagulation doseage is required. Anticoagulants are used to main-

tain blood clotting speed and reduce risk of thrombosis. They are one of the

most prescribed groups of drugs in the world, being used for both treatment and

prophylaxis for conditions like deep venous thrombosis, stroke, atrial fibrillation,

acute myocardial infarction, prosthetic heart valves and many more. A difficulty

is that there is no standard dose: the amount required varies not just between

patients but also over time within patients, in response to lifestyle and dietary

changes, in particular the amount of vitamin K within the body. Given a pa-

tient’s current and previous values of blood clotting time, and their history of

anticoagulation, can we find decision rules to provide the optimal current dose?

Three classes of methods for a general version of this problem are sum-

marised in Section 2. We consider model formulation and estimation, and illus-

trate through simulations. In Section 3 we draw attention to links between recent

optimal dynamic treatment methods and the longstanding stochastic scheduling

research in the operational research literature. In Section 4 we propose a suite of

diagnostic tests for model adequacy based on wild bootstrap residuals. In Sec-

tion 5 we describe an application of the methods to the warfarin anticoagulation

application which motivated our interest.

2. REGRETS, BLIPS AND REGRESSION

2.1. Modelling approaches

We assume there are K decision times, for example clinic visits. At each

decision time a state variable is recorded, S1, S2, ..., SK . This might be the health

of a patient and can be multivariate or scalar. A decision on the action to be

taken is then made, such as treatment allocation, leading to an action sequence

A1, A2, ..., AK . The objective is to maximise some final value Y, which may not

be revealed until all K decisions have been taken, or which may accrue with
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time, as in the warfarin example in Section 5. Panel (a) of Figure 1 illustrates

the sequence that is followed. Throughout we will assume independence between

subjects and will take the standard assumption of no unmeasured confounders: all

non-random elements influences action choices are captured in the observed data.

We omit further technical detail on the conditions needed for valid inference.

(a) S1
- A1

- S2
- A2 S3

- ...- - SK
-AK

- Y

(b) S1
- A1

- S2
- A2 S3

- ...- - SK
-AK

- Y

��
��

?

Z2 ��
��

?

Z3 ��
��

?

ZK

(c) S1
- A1

- A2
...- -AK

- Y

��
��
Z2 ��

��
Z3 ��

��
ZK@

@@R

@@R @
@@R

Figure 1: State, action and outcome sequence: (a) the general scenario;
(b) inclusion of exogenous variables; (c) orthogonalisation.

Define S̄j = (S1, ..., Sj) and Āj = (A1, ..., Aj) to indicate the history of

states and actions respectively, up to and including time j. The information

available just before action j is selected is Fj = (S̄j , Āj−1) and the aim is to

obtain decision rules dj(Fj) which will maximise the expected value of Y given

the information to hand. We will use dref
j to denote a known standard or refer-

ence regime, with the underscore being read as meaning all times from j to K.

Similarly dopt

j is the optimal regime, which is unknown and is the target for

analysis.

Robins [14] proposed a structural nested mean model [8] approach to the

problem, based on blip functions, which can be defined as

γj(aj |Fj) = E(Y | Fj , aj , d
opt

j+1
) − E(Y | Fj , d

ref
j , dopt

j+1
) .

Here γj is a function of the possible actions aj which are available at time j,

given the history Fj of states and actions up to that point. The blip contrasts

two expectations. The first is of the final response Y given that aj is selected at
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time j and under the possibly counterfactual assumption that the optimal refer-

ence regime will be followed from j+1 onward. The second expectation is similar

except action aj is replaced by the reference regime d ref
j at time j. Robins chose

the name because in each expectation the past Fj is the same, the future policy

is the same, and the only difference or “blip” is between aj and d ref
j at time j.

Under Robins’ approach a parametric form γj(aj |Fj ; θ) is assumed for the

blip function. For example we might take

γj(aj |Fj ; θ) = θ1

(

aj − (θ2 + θ3Sj + θ4Sj−1)
)

I(aj 6= d ref
j )

where I(·) is an indicator function introduced to ensure the blip is zero if the

reference action is selected. Otherwise the effect of the action aj is assumed

to depend on current and previous states Sj and Sj−1 respectively. This is a

strong assumption, but an advantage of the approach is that once parameter θ is

estimated it is straightforward to determine the causal effect of actions.

Murphy [13] prefers to work with regret functions

µj(aj |Fj) = E(Y | Fj , d
opt

j ) − E(Y | Fj , aj , d
opt

j+1
) .

These are of similar form to blip functions except they contrast the effect at time

j of action aj with the as-yet-unknown optimal rule. Thus the first expectation

assumes the optimal decision is taken from j onward, whereas in the second

expectation action aj is chosen at j and then the optimal policy followed from

j + 1 onward. Regrets are non-negative since the objective is to maximise Y.

They give a direct measure of the effect of choosing a sub-optimal action at time j.

Again a parametric form is assumed, for example

µj(aj |Fj ;ψ) = ψ1

(

aj − (ψ2 + ψ3Sj + ψ4Sj−1)
)2

.

This guarantees the non-negativity of the regrets and assumes the optimal action

— that which has zero regret — is a linear combination of Sj and Sj−1. Once ψ

is known the optimal action is therefore immediately obtained.

The parametric forms assumed for blips or regrets cannot be checked, since

they are models for differences in counterfactuals. An alternative approach intro-

duced independently by Almirall and colleagues [1] and Henderson and colleagues

[6] attempts to incorporate parametrised regrets into a model for the actual re-

sponse Y. The authors note first that the final response Y is determined by three

groups of factors:

1. The initial conditions.

2. The actions selected.

3. Chance development over time.
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It is straightforward to introduce initial conditions as a function of S1 into a

model for Y. The effect of actions can be modelled by regrets as above. To model

chance development over time, [1] and [6] envisage a sequence of exogenous vari-

ables Z1, Z2, ..., ZK which influence states and Y over and above the effects of the

chosen actions, as summarised in panel (b) of Figure 1. If the {Zj} are observed

then we can model final response as

(2.1) E[Y |S̄K , ĀK ] = β1(S1) +
K
∑

j=2

βT
j (S̄j−1, Āj−1)Zj −

K
∑

j=1

µj(Aj |Fj) ,

where β1 is an appropriate function to capture the effect of initial conditions, and

β2, β3, ..., βK are coefficients which measure the effect of the exogenous variables.

In principle these can depend on the complete history of states and actions: in

practice dimensionality can be managed by allowing them to depend only on

recent history. The regrets µ measure the effects of actions and complete the

three components. Since the {Zj} are unknown, Henderson et al. propose they

be estimated by residuals from models for Sj on previous states and actions

(S̄j−1, Āj−1). If linear models are used then the residuals are orthogonal to the

covariates. Thus, we can separate the effect of exogenous variables from the

effect of earlier decisions, as displayed in panel (c) of Figure 1. See [6] for further

information.

2.2. Estimation

Moodie et al. [11] provide a very clear description of the estimation pro-

cedures proposed by Robins and Murphy. We provide only a brief outline here.

The blips of Robins [14] can be obtained by first obtaining constructed variables

which estimate at each j the response under the optimal policy:

Hj(θ) = Y +
∑

k≥j

{

γj(d
opt

j |Fj ; θ) − γj(Aj |Fj ; θ)
}

.

A user-specified vector Vj(Aj) of length dim(θ) is then specified. By construction

Hj(θ) is independent of Vj(Aj) and so

0 =
∑

j

Hj(θ)
{

Vj(Aj) − E
[

Vj(Aj)|S̄j , Āj−1

]

}

is an unbiased estimating equation.

Murphy [13] takes a different approach. She defines a sum of squares in-

volving two versions of the parameter vector ψ, say ψ and ψ∗, together with a
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stabilising constant c:

fn

(

ψ,ψ∗, c
)

=
1

n

n
∑

i=1

K
∑

j=1

(

Y i + c +
K
∑

l=1,l 6=j

µl(S̄
i
l , Ā

i
l;ψ)

+ µj(S̄
i
j , Ā

i
j ;ψ

∗) − ÊAj

(

µj(S̄
i
j , Ā

i
j ;ψ

∗)|S̄i
j , Ā

i
j−1

)

)2

.

Murphy shows that consistent estimation is possible through an iterative proce-

dure to find (ψ, ĉ) such that

fn(ψ,ψ, ĉ) ≤ fn(ψ,ψ∗, c)

for all (ψ∗, c). Note that this is not the same as minimising f .

The estimation methods of Robins and Murphy are at best computationally

challenging. By contrast, the approach of Almirall et al. [1] and Henderson et

al. [6] is based on a model for the observed response (2.1) which means standard

methods are available. Henderson et al. propose ordinary least squares between

observed and expected responses, which is valid without any distributional as-

sumption for responses. More efficient procedures may be possible if further

assumptions are made.

2.3. Illustration

We will illustrate using a simple two-timepoint example with Normal states

and binary actions as also used by Moodie et al. [11]. Data were generated

as S1 ∼ N(450, 1502), A1 ∼ Bern(0.5), S2 ∼ N(1.25S1, 602) and A2 ∼ Bern(0.5).

Blip functions were parametrised, leading to regrets

µ1(a1|S1;ψ) =

{

I(a1 = 0) (ψ10 + ψ11S1) , ψ10 + ψ11S1 > 0 ,

−I(a1 = 1) (ψ10 + ψ11S1) , ψ10 + ψ11S1 < 0 ,

µ2(a1|S̄2, A1;ψ) =

{

I(a1 = 0) (ψ20 + ψ21S1) , ψ20 + ψ21S2 > 0 ,

−I(a1 = 1) (ψ20 + ψ21S2) , ψ20 + ψ21S2 < 0 ,

and then response Y ∼ N
(

400 + 1.6S1 − µ1(A1|S1;ψ) − µ2(S1|S̄2, A1;ψ), 602

)

.

Table 1 compares G-estimation as used by Moodie et al. with the regret-

regression method proposed by [6]. For the latter we used ordinary least squares

to fit the correctly specified model

E[Y |S̄2, Ā2] = β0 + β1S1 − µ1(A1|S1;ψ) − µ2(S1|S̄2, A1;ψ) .
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The nlm routine in R was used for parameter estimation. In all simulations the

algorithm converged very quickly. Both methods produce apparently unbiased es-

timators, as they should, with smaller standard errors under the regret-regression

method.

Table 1: Summary of simulation results based on Moodie et al. scenario.
One thousand repetitions at sample size n = 500.

G-estimation∗ Regret-regression
True ψ

Mean SE Mean SE

250.0 250.01 17.20 250.20 11.39
−1.0 −1.00 0.04 −1.00 0.03
720.0 720.30 24.05 719.85 10.82
−2.0 −2.00 0.04 −2.00 0.02

∗

These results are taken from Moodie et al. (2007), who used the doubly robust form of

G-estimation: their equation (2), which is the most efficient of the methods they considered.

Table 2 investigates how estimated parameters translate into decision regime

performance. One thousand repetitions at sample size n= 500 were generated.

After each repetition a further 10 000 observations were generated using each

of four different decision rules: the gold standard of always choosing the opti-

mal decision; equally likely randomised decisions; and following the estimated

decision rules obtained from the first stage data by G-estimation of the regret

functions and by the regret-regression procedure. Column Ȳ gives the mean

achieved response for each procedure, and column“Err” gives the overall percent-

age of times a suboptimal decision was made, pooled over both decision times.

Columns ‘Cut 1’ and ‘Cut 2’ summarise the estimated cutpoints at each decision

time, with the true values given in the gold standard row. Again we see that

both G-estimation and regret-regression perform well, with again less variability

when regret-regression is used.

Table 2: Further summary of simulation results based on Moodie et al. scenario.
See text for explanation.

Ȳ SE Err Cut 1 SE Cut 2 SE

Gold 1120.1 2.4 0.0 250.0 360.0
Random 780.0 3.5 50.0
Regrets (G-est.) 1119.6 2.8 0.6 249.9 9.9 359.5 12.7
Regret-regression 1120.0 2.5 0.3 250.5 6.3 359.9 2.6
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3. REGRET-REGRESSION FOR A TWO-ARM BANDIT PROBLEM

The methods summarised above were developed with the aim of causal

inference from observational data. In this section we argue that they can also be

applied to problems from the stochastic optimisation literature. We will illustrate

using the classic two-arm bandit problem.

At time j the state value Sj is a 2-vector (M0j ,M1j), where M0j ∈ {0, 1}
is the value of arm zero and M1j ∈ {0, 1} of arm one. The action Aj is to choose

one of the arms. Response Y is then incremented by a reward which depends on

the current value of the chosen arm. In our example the rewards are 6 or 4 for

the two values of arm zero, and 8 or 3 for the two values of arm one. If arm zero

is selected then M0j is updated for time j + 1 according to a Markov chain but

M1j remains at its previous value. The opposite happens if arm one is selected:

M1j is updated but M0j is unchanged. In our example the transition matrices

are

P0 =

(

0.2 0.8

0.3 0.7

)

and P1 =

(

0.4 0.6

0.5 0.5

)

.

This is a special case of the so-called multi-armed bandit problem. A single

resource is available to process a collection of competing projects (arms) over an

infinite horizon. At each decision time j = 0, 1, ..., a decision must be taken as

to which arm will be selected for processing. If arm k is chosen at time j then a

discounted reward of
λjRk(Mkj)

is gained, where λ ∈ [0, 1) is a discount rate, Rk(·) is a reward function and Mkj

is the value of a Markov chain modelling the evolution of arm k at time j. After

a unit of time dedicated to project k, it changes state according to a Markov law

of motion Pk. The states of the other arms remain unchanged.

The objective is to find a policy for allocating arms for processing that max-

imises the total expected discounted reward over an infinite horizon. In principle,

for particular problems the use of dynamic programming and the application of

Bellman’s principle of optimality [2] would allow these classical problems to be

solved. However, as the size of the problem increases, the computational dif-

ficulties become intractable. Additionally, no insight into the structure of the

optimal policy is obtained. An alternative method of solution, based around

forwards induction, was introduced by Gittins and Jones [5]. They defined a

dynamic allocation index (DAI) as

Gk(xk) = sup
τ>0

E
[

∑τ−1

t=0
λtR(Mt)|M0 = xk

]

1 − E [λτ ]
,

where the bandit is initially in state xk and τ is a positively valued stopping time

defined on the process. The Gittins Index policy is the one that selects the arm
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with the current largest DAI. Such policies, since Whittle [17], are now referred

to as Gittins Index policies. There are a number of methods for calculating the

Gittins index including direct calculation, calibration methods, linear program-

ming and special purpose algorithms; see [4] for more details. The “largest to

smallest algorithm” [15] was implemented for the illustration here.

For the special two-arm two-value case described at the opening of this

section, the Gittins Index policy under almost no discounting (λ = 0.9999) is to

choose arms 1,0,1,1 for states (0,0), (0,1), (1,0) and (1,1) respectively. Note that

a play-the-winner rule which optimises current reward would be 1,0,1,0 in the

same order. The difference is at state (1,1) where the rewards on offer are (4,3).

The Gittins policy of choosing arm one acknowledges future expectation — the

possibility that the arm one reward value could change from 3 to 8 — whereas

the play-the-winner rule is myopic and takes the higher immediate reward of 4

on offer from arm zero.

The Gittins policy is derived under an assumption that the process con-

tinues indefinitely and the optimal policy is stationary. We can use the regret-

regression method to examine optimal dynamic policies for fixed length horizons.

We simply simulate the process with actions chosen randomly and then fit a lin-

ear model incorporating regrets and residuals from dummy variables to describe

the values. After each action the model includes residuals associated with eight

dummy variables: one for each state/action combination. We choose optimal

actions by working from the final timepoint and changing the action to ensure

regrets are positive, starting with a working guess at which actions are optimal.

Since linear models are used, this is a trivial task even when large samples are

used to smooth out the noise generated by the Markov chains.

Table 3 illustrates for K= 5, showing the optimal action for each state Sj

(j = 1, 2, ..., 5) for this problem, along with the regrets for choosing a suboptimal

action. It is interesting to compare the optimal choices with the Gittins policy.

In states (0,0) and (1,0) they are the same: choose action Aj = 1 and hence take

reward 8 units. State (1,1) has Gittins and optimal actions the same at Aj = 1

until time j = 5 at which final time the higher short-term reward under action

Aj = 0 should be taken. State (0,1) also has a change in optimal action near

the end, but this time at the penultimate decision stage. When in this state at

earlier times, the optimal dynamic policy is to choose action Aj = 1 whereas the

stationary Gittins policy is to choose Aj = 0.

For reference we give the mean reward under four decision regimes:

Regime Mean Y

Random, prob 0.5 25.2
Play-the-winner 26.0
Gittins 27.1
Optimal dynamic 27.8



Optimal Dynamic Treatments 29

Table 3: Optimal actions and regrets for two-arm bandit problem with horizonK= 5.
The first reward is obtained if Aj = 0, the second if Aj = 1.
See text for other parameter values.

Optimal action
State Sj Rewards

j = 1 j = 2 j = 3 j = 4 j = 5

(0,0) 6 or 8 1 1 1 1 1
(0,1) 6 or 3 1 1 1 0 0
(1,0) 4 or 8 1 1 1 1 1
(1,1) 4 or 3 1 1 1 1 0

Regret
State Sj Rewards

j = 1 j = 2 j = 3 j = 4 j = 5

(0,0) 6 or 8 0.32 0.32 0.32 0.80 2.00
(0,1) 6 or 3 0.32 0.32 0.32 0.40 3.00
(1,0) 4 or 8 0.88 0.88 0.88 1.60 4.00
(1,1) 4 or 3 0.88 0.88 0.88 0.40 1.00

4. DIAGNOSTICS

We return to the general problem of Section 2 and focus on the regret-

regression approach based on (2.1). An advantage of this approach is that we

model the actual responses and hence can obtain residuals between observed and

fitted values. Plots of residuals against covariates, fitted values, selected actions or

estimated regrets can be used for diagnostic assessment and model comparisons.

However, we have made no assumptions on response Y other than independence

and our model (2.1) for the mean. In particular we have not assumed homogeneity

of variance, which implies that whilst there should be no trends in the means

of plots of residuals there may well be systematic patterns in the scatter, even

for a correctly specified model. Further, standard bootstrap methods can be

problematic when observations are independent but not identically distributed.

We propose to test for trend in residual plots using the wild bootstrap

or conditional multiplier method [7], [10]. Suppose we have variables {Di}
(i = 1, 2, ..., n) which are independent with zero mean and finite but not neces-

sarily equal variance. Suppose further that T0 = n−1/2
∑n

i=1
Di converges in dis-

tribution to some variable D. Let {ξi} (i = 1, 2, ..., n) be independent and identi-

cally distributed with zero mean and unit variance. Then T1 = n−1/2
∑n

i=1
ξiDi

also converges in distribution to D. The wild bootstrap resampling method is to

generate N independent copies of {ξi} and use the resulting N copies of T1 as an

empirical estimator of the distribution of T0. Note that all original variables Di

contribute exactly once to each T1: there is no omission or duplication as in the

standard bootstrap.
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A complication is that residuals Ri = Yi −E[Yi|S̄iK , ĀiK ] are not indepen-

dent. Our proposal is to base a test statistic on a contrast: T0 = n−1/2
∑n

i=1
ciRi

where
∑n

i=1
ci = 0. We then obtain N resamples of T1 = n−1/2

∑n
i=1

ξi ciRi and

we compare the observed T0 with the empirical distribution of T1 to obtain a test

of trend. The detail is as follows:

1. Order the residuals against a chosen covariate (or the fitted value).

2. Divide the residuals into six equally sized groups 1 to 6 corresponding to

lowest sixth to highest sixth covariate values (with minor adjustments

below if the six groups cannot be equal).

3. Select a contrast set from the following:

Contrast coefficients c
Test

1 2 3 4 5 6

T1 Trend 1 1 1 −1 −1 −1
T2 Curvature 1 1 −2 −2 1 1
T3 Lower tail 1 −1 0 0 0 0
T4 Upper tail 0 0 0 0 1 −1

4. Compute T0 with the chosen contrasts for the six groups. Compute N

wild bootstrap versions as described above using standard Normal {ξi}
and obtain an empirical p-value as the proportion of resampled test

statistics which are more extreme than T0.

Simulation results (not shown) indicate that all of the tests have the correct

size for correctly specified models and that none uniformly dominates for power.

We propose that all four be adopted in practice and in addition we recommend

a fifth test based on the extremum of the cumulative residuals:

T5 = max
j

{

j
∑

i=1

Ri

}

.

5. APPLICATION

Rosthøj et al. [16] and Henderson et al. [6] describe analyses of data on war-

farin treatment of patients on long term anticoagulation. There are 303 patients

with 14 clinic visits each. At each visit the International Normalised Ratio (INR)

of blood clotting time was recorded, along with the change in prescribed dose

of anticoagulant. If INR is too high then patients have risk of severe bleeding,

whereas if INR is too low then there is risk of thrombosis. The aim therefore is to

adjust dose to maintain as closely as possible INR within a target range, which

can depend on underlying condition of the patient.
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The response variable Y used in previous analysis is the overall percentage

time the patient spent in range (PTR), which was to be maximised. The state

variable Sj used by [16] and [6] is a standardised version of the INR, defined to

be zero if the patient has INR in range, and otherwise the scaled distance to

the nearest target boundary, with scaling by the population standard deviation.

This ensures comparability between patients with different conditions and target

intervals. The action variable Aj is the change in dose, in mg Warfarin. The first

four visits are considered as a stabilisation period, and since there is no informa-

tion after the final visit this is not used for the analyses to come. Thus K= 9

and the data for analysis consist of states S1, S2, ..., S9 and actions A1, A2, ..., A9

for the 303 patients. Henderson et al. [6] also worked with a discretised state S∗
j

given by

S∗
j =































1 , Sj ≤ −0.3 (very low) ,

2 , −0.3 < Sj < 0 (low) ,

3 , Sj = 0 (in range) ,

4 , 0 < Sj < 0.55 (high) ,

5 , Sj ≥ 0.55 (very high) .

Rosthøj et al. used the methods of [13] and were able to fit only one very

simple regret model:

(5.1) µj(aj |Fj) =

{

I(aj 6= 0)
(

5.84 + 1.59 a2
j

)

, Sj = 0 ,

0.24
(

aj + 2.01Sj

)2
, Sj 6= 0 .

Here the optimal decision by construction is to leave dose unchanged if INR

is within range, and is otherwise to change in proportion to state. For high states

the dose should be increased so as to reduce clotting time, and the opposite for low

states. The regret for a suboptimal decision increases quadratically as the dose

change moves away from optimal. The model is overly simple and not claimed

to be realistic, but Rosthøj et al. were unable to obtain convergence of either the

G-estimation or iterative methods (see Section 2) for more realistic models.

Henderson et al. used the regret-regression approach based on (2.1) and

had no difficulty in fitting more realistic models. Their final selection assumed

that the regret function depended on the current discretised state S∗
j and the

previous standardised state Sj−1. For category s of S∗
j the model is:

(5.2) µj(aj |Fj , S
∗
j = s;ψ) = ψs1f(Aj − ψs2 − ψs3Sj−1) ,

where f(u) = u if u ≥ 0 and f(u) = u2 otherwise. Parameter estimates and

bootstrap standard errors from 100 resamples are given in the upper part of

Table 4.
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Table 4: Parameter estimates and bootstrap standard errors for anticoagu-
lation model example. Upper section: λ = 1 and analysis as [6].
Lower section: λ = 0.3.

S

∗

j = s ψs1 SE ψs2 SE ψs3 SE

−2 0.67 0.32 2.15 0.27 −1.11 0.38
−1 0.38 0.11 2.74 0.18 −1.57 0.67

0 0.97 0.36 −0.14 0.32 −1.12 0.74
1 2.38 0.27 −2.33 0.26 −0.98 0.27
2 2.83 0.79 −3.00 0.44 0.25 0.21

1 0.28 0.17 1.86 0.33 −1.05 0.58
2 0.12 0.11 3.00 0.43 −1.54 0.81
3 0.23 0.27 −0.10 0.17 −1.21 0.75
4 1.24 0.37 −1.57 0.42 −0.27 0.43
5 1.47 0.60 −1.98 0.69 0.39 0.39

To illustrate our diagnostic test suggestion, we will consider residuals from

the two fitted models plotted against the regret following the first considered visit

time. Figure 2 shows that the residuals from model (5.1) are more variable than

those from model (5.2), with perhaps more evidence of trend in the early and later

segments. To investigate, we applied the five wild bootstrap tests of Section 4.

p-values from 200 wild bootstrap samples are given in Table 5. They confirm the

early and late trends for model (5.1) are significant and the model is not fully

adequate, but there are no significant trends for model (5.2).
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Figure 2: Warfarin residuals against regret at time 1.
Left plot: model (5.1); right plot: model (5.2).
The solid line is a smooth through the data.
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Table 5: Wild bootstrap p-values for residuals in Figure 2.

Test
Model

T1 T2 T3 T4 T5

(5.1) 0.830 0.000 0.593 0.018 0.055
(5.2) 0.753 0.611 0.136 0.870 0.816

We summarise now a new analysis of the warfarin data with a revised

response variable. As well as a decision on the dose to be taken, at each clinic

visit there is also a recommendation as to the timing of the next visit. Generally

overly frequent visits are discouraged. Letting N(τ) be the number of visits in

follow-up time τ we propose a new response

(5.3) Y = Y (τ) = λPTR(τ) + (1 − λ)
τ

N(τ)
, 0 ≤ λ ≤ 1 ,

which weights together percentage time in range and average time between visits.

Overly frequent visits thus reduce the response. For the warfarin data N(τ) is

fixed at nine visits of interest but the time τ taken varies considerably between

patients.

We will use model (5.2) for analysis. Choosing λ = 1 gives the previous

results. To explore, we also analysed for a variety of other values for λ. To

illustrate, the lower part of Table 4 gives parameter estimates at λ= 0.3 together

with bootstrap standard errors obtained from 100 resamples. The general trend

against s is the same as for λ = 1 but since the response is on a different scale it

is hard to make a direct comparison. Instead, in Figure 3 we show the estimated

optimal actions at a variety of combinations of current and previous state. The

crosses indicate the values obtained when λ = 1 and the other points indicate

values at a sequence of decreasing λ. As expected, increase in dose is indicated

when INR is low, and decrease when INR is high, with previous INR moderating

the action. Generally there is little effect of λ except at high INR, where the

recommendation would be to reduce dose by a smaller amount if timing of visits

is of interest. The rationale is that large dose changes are usually followed by

quick return visits to monitor the effect. If this is to be discouraged then more

modest changes are recommended. There lack of effect of λ at the low values

of INR reflects the asymmetry in risk: very low values of INR need immediate

strong action.
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Figure 3: Effect of changing λ in response 5.3. The crosses mark optimal actions
when λ = 1. The other points show how the optimal action changes as
λ varies through {0.995, 0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3}, moved to
the right for display purposes.

6. DISCUSSION

We have presented an overview of the structural nested mean model ap-

proach to optimal dynamic treatment regime determination, with focus on blip

models [14], regret models [13], and regret-regression models [1], [6]. Although

there has been growing discussion in the literature on causal inference for dy-

namic treatment regimes, the area is still very much underdeveloped and there

are few genuine applications in realistic problems. One issue is the computa-

tional challenge faced for reasonable sized data sets. Another is the assumption

of balanced data, in the sense of common clinic or visit times. Methods which

allow irregular timing of visits are needed. In this case the definition of regrets

and blips is problematic. The counting process approach may be fruitful [9] but

much further research is needed. Nonetheless we see great promise in this type

of approach.
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1. INTRODUCTION

Many biomedical studies involve measurements of multiple outcomes on

each subject. When the outcomes are commensurate, i.e., are measured on the

same scale and are measuring the same underlying variable, classical tools of

multivariate statistics can be used. However, multivariate methods to analyze

outcomes measured on different scales or measuring different underlying vari-

ables, i.e., non-commensurate outcomes, are less common and rarely used in data

analysis. A common solution used in the presence of non-commensurate out-

comes is to analyze each outcome separately, ignoring the potential correlation

between the outcomes. There are several disadvantages of this approach. First,

there might be a loss of efficiency by ignoring the extra information contained in

the correlation between the outcomes. Second, with separate analysis it is harder

to answer intrinsic multivariate questions such as the existence of a covariate ef-

fect on the underlying outcome. Third, if some outcomes are missing for some

individuals, different samples of individuals will be included in the analysis of

the effect of exposure on different outcomes. Finally, the situation of missing

data may also produce biased results if the missing data depends on the other

outcomes.

The main difficulty of modeling non-commensurate variables is that there

is no obvious multivariate distribution. Mainly, three approaches to model non-

commensurate outcomes have been described in the literature. The first has its

roots in the general location model ([10]) and has been extended to accommo-

date covariates ([2]) and clustered data ([6], [12]). The key idea is to factorize the

likelihood as the product of marginal and conditional distributions, and model

each term of the product. However, this approach does not generalize easily when

the number of outcomes is increased. The second approach uses latent variables

to induce the correlation between the outcomes and assumes that conditional on

these latent quantities, the outcomes are independent ([14], [17], [5]). The third

approach extends the framework of generalized estimating equations (GEE) to

multivariate discrete and continuous outcomes ([11], [20], [19]). The main advan-

tages of the GEE over likelihood methods is the lack of assumptions regarding the

distribution of the data and its robustness to misspecification of the correlation

between the outcomes. Naturally this will lead to less efficient but more robust

estimates (see Teixeira-Pinto and Normand ([19]) for a summary of these and

other approaches).

With the measurement of multiple outcomes there is a higher risk of miss-

ing data. Few authors have addressed the problem of missing data in the set-

ting of non-commensurate outcomes. Fitzmaurice and Laird ([7]) proposed the

use of the EM-algorithm ([3]) to fit the extension of the general location model

in the presence of missing data. Shafer ([15]) described likelihood-based data
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augmentation approaches to missing data assuming a general location model.

In Little and Rubin’s ([9]) nomenclature, the missing data is defined as miss-

ing at random (MAR) if it only depends on the observed data. If the missing

data does not depend on the observed or unobserved data, the missing data is

designated as missing completely at random (MCAR). In contrast, if the the

missing data depends on unobserved data, the missing mechanism is said to be

missing not at random (MNAR). The GEE gives consistent estimates in the

presence of missing data only if the data are MCAR. This would also apply to

the GEE extension proposed by several authors ([11], [20] and, [19]). However,

Robins et al. ([13]) extended the common GEE methodology to situations of MAR

by weighting each observation by its inverse probability of being observed.

In this paper we describe the properties of the latent variable model under

missing data and extend the weighted GEE (WGEE) to multiple non-commen-

surate outcomes for MAR data. A study investigating the association between

participation in a managed behavioral health care carve-out and quality of health

care measured using bivariate mixed outcomes ([4]), and a study evaluating

health-related quality of life after discharge from an intensive care unit using

the Euroqol-5d instrument([8]), illustrate our methods.

2. LATENT VARIABLE MODEL FOR MULTIPLE CONTINU-

OUS AND BINARY OUTCOMES

Let (y1i, ..., yqi) represent a multivariate outcome for the ith-individual

(i = 1, ..., n). We will use the symbol · in the subscript of yk·
to designate all

the observations for outcome k or y
·i to indicate all the outcomes for the indi-

vidual i. Let xji represent a vector of covariates for the ith-individual associated

with the j th-outcome. We allow each outcome to be associated with its own set

of covariates. Let Rji be an indicator variable with value 1 if yji is observed and

0 otherwise. The superscript ‘obs’ is used to denote observed data. We assume

throughout that the covariates are fixed and completely observed, and thus will

be suppressed when writing the conditional distributions.

2.1. Latent variable model with outcome data MAR

One approach to model non-commensurate outcomes in a multivariate

framework is to introduce latent variables, ui = (u1i, ..., upi; p < q), to induce

the correlation between the outcomes. Conditional on the latent variables u the

outcomes are assumed to be independent ([5]). We assume that one of the out-

comes, y1i, has some missing observations and that these observations are MAR,
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i.e., P
(

R1i = 1 | y
·i, xji

)

depends on the observed data, for example, y2i, ..., yqi

and x1i. Let θ be the vector of parameters associated with the distribution of

y
·i |xji. The log-likelihood for the observed data is given by

log L
(

θ; yobs
1·

, ..., yq·
, R1·

, xji

)

∝ log
n
∏

i=1

(

f(y
·i |xji)P

(

R1i =1 | y
·i, xji

)

)R1i

(2.1)
×
(
∫

f(y
·i |xji)P

(

R1i = 0 | y
·i, xji

)

∂y1i

)(1−R1i)

.

With some algebraic manipulation and using the fact that R1i does not depend

on y1i we can re-write (2.1) as

=
n
∑

i=1

(

R1i logf(y
·i |xji) + (1−R1i) logf(y2i, ..., yqi |xji)

)

(2.2)
+

n
∑

i=1

(

R1i log
(

P
(

R1i = 1 | y2i, ..., yqi, xji

)

)

+ (1−R1i) log
(

P
(

R1i = 0 | y2i, ..., yqi, xji

)

)

)

.

The terms in the log-likelihood involving the missingness mechanism P
(

R1i |
y2i, ..., yqi, xji

)

will not involve the parameters θ associated with the distribution

of y
·i |xji. These terms will not contribute for the estimation of θ and for this

reason they can be ignored. Therefore, the log-likelihood can be written as the

sum of terms associated with the distribution for complete observations and terms

associated with the distribution for incomplete observations. Thus, the presence

of missing data does not add extra difficulty to the maximization of the likelihood.

In this case we say that the likelihood can be directly maximized because it does

not require a more complex method, such as the EM-algorithm nor multiple

imputation, to compute the maximum likelihood estimates.

Consider the case of a binary outcome, y1·
, and a continuous outcome, y2·

,

where some entries of y1·
are missing. In this case q = 2 and p =1. We assume

the following model for the outcomes:

probit
(

E(y1i |x1i, ui)
)

= β∗T
1 x1i + ui ,

(2.3)
y2i |x1i, ui = βT

2 x2i + σ2ui + ǫ2i ,

where ǫ2i ∼ N(0, σ2
2) and ui is a latent variable with ui ∼ N(0, σ2

u). The latent

variable ui in the model induces the correlation between the outcomes and the

parameter σ2 that multiplies the latent variable is introduced to standardize the

different scales of the two outcomes. For more details see Teixeira-Pinto and

Normand ([19]).
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The log-likelihood for the observed data can be written as

log L
(

θ; yobs
1·

, y2·
, R1·

, x1i, x2i

)

∝(2.4)

∝
n
∑

i=1

(

R1i logf(y1i, y2i |x1i, x2i) + (1−R1i) logf(y2i |x2i)
)

=
n
∑

i=1

(

R1i log

∫

f(y1i |x1i, ui) f(y2i |x2i, ui) f(ui) ∂ui + (1−R1i) logf(y2i |x2i)

)

.

Depending on the link functions used for each outcome it might be possible to

have a closed-form representation for the marginal distribution of each outcome.

Using the identity link for the continuous outcome and the probit link for the

binary as in (2.3), the model for the marginal means of each outcome can be

written as

probit
(

P (y1i =1 |x1i)
)

= probit

(
∫

P (y1i =1 |x1i, ui) f(ui) dui

)

=
β∗T

1 x1i
√

1+ σ2
u

,

(2.5)
y2i |x2i = βT

2 x2i + ǫ∗2i , where ǫ∗2i ∼ N
(

0, σ2
2(1+ σ2

u)
)

.

If instead we choose a logit link for the binary outcome in equation (2.3), the

model for the marginal mean does not have a closed-form representation.

3. WEIGHTED GENERALIZED ESTIMATING EQUATIONS

FOR NON-COMMENSURATE OUTCOMES

3.1. WGEE with data MAR

Suppose we are in the same setting as in the previous section with a binary

and a continuous outcome to motivate the WGEE. We adapt the WGEE proposed

by Robins et al. ([13]) to the situation of multiple non-commensurate outcomes.

The generalization to multiple outcomes is relatively straightforward but

some remarks will be made.

Let y
·i = (y1i, y2i)

T be a vector of a binary and a continuous outcome with

the following marginal model for the outcomes:

µji = g−1
j (βT

j xji) ,(3.1)

where µji = E(yji |xji), j = (1, 2), gj is the probit link for j = 1 and the identity

link for j = 2. If both outcomes are completely observed, the estimating equation
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is

n
∑

i=1

DT
i V −1

i (y
·i − µ

·i) = 0(3.2)

and has a solution that is a consistent and asymptotically normal estimator for

βj ([20], [19]) with variance Γ−1ΩΓ−1, where Di =
(∂µ

·i

∂β

)

j
, Vi is a ‘working’ co-

variance matrix for y1i and y2i, Γ = E(DT
i V −1Di) and Ω =E

(

DT
i V −1(y

·i −µ
·i)·

· (y
·i − µ

·i)
T V −1Di

)

. Typically, Di is a block-diagonal matrix because the equa-

tions for each outcome do not share the regression parameters. The solution for

the estimating equation is a consistent estimator of β even if Vi is misspecified.

In the case of missing data, this result holds if the data are MCAR but not for

MAR.

Suppose that some observations of y1i are missing and the missing mech-

anism depends on y2i and xji. If the variables y2i and xji are always observed

then y1i is MAR. In this case E(yobs
1i |xji) 6= µ1i because

E(yobs
1i |xji) = E(R1i y1i |xji) = E

(

E(R1i y1i | y1i, y2i, xji)
)

= E
(

y1i E(R1i | y2i, y1i, xji)
)

.
(3.3)

R1i does not depend on y1i because the data are MAR, and E
(

y1i E(R1i | y2i, y1i,

xji)
)

simplifies to E
(

y1i P (R1i = 1 | y2i, xji)
)

. Therefore, this expectation is not

equal to µ1i so the solution for the equation (3.2) is no longer a consistent estimate

of β1. However, if we weight y1i by its inverse probability of being observed

π1i = P (R1i | y2i, xji), we have:

E

(

R1i

π1i
(y1i−µ1i) | x1i

)

= E

(

E

(

R1i

π1i
(y1i−µ1i) | y1i, y2i, xji

)

∣

∣ x1i

)

and, because E(R1i |y2i,xji) = π1i,

= E
(

y1i −µ1i |x1i

)

= 0 .

This motivates the following weighted estimating equation:

n
∑

i=1

DT
i V −1

i ∆i(y·i − µ
·i) = 0(3.4)

and

∆i =

(

R1i π−1
1i 0

0 1

)

.(3.5)

The estimating equation (3.4) has a solution β̂ which is a consistent estimate

of β and has an asymptotic normal distribution with a consistent estimator
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of its variance given by Γ̂−1
(
∑n

i=1
Ĉi ĈT

i

)

Γ−1T
where Γ̂ =

∑n
i=1

(DT
i V −1∆iDi),

Ĉi = DT
i V −1(y

·i − µ
·i) −

(
∑n

i=1
DT

i V −1(y
·i − µ

·i)ST
i

) (
∑n

i=1
Si S

T
i

)

Si and Si is

the score component for the ith-individual from the model for π1i.

The last entry in the matrix ∆i is 1 because only y1·
is missing for some

subjects and y2·
is always observed. The weights πji are unknown and have to

be estimated. We can use, for example, a logistic regression to estimate π1i =

P (R1i = 1 | y2i, xji) as in (3.6) and plug in the estimates in equation (3.4).

logit(π1i) = ζ0 + ζ1y2i + ζ2 xji .(3.6)

The assumption of MAR implies that if Rji depends on the other outcomes,

then only one outcome can have missing observations. However, if there are

missing observations in y2i or in one of the covariates involved in the model (3.6),

we no longer have a case of MAR and we are not able to estimate all the weights

π1i.

3.2. Estimation of the Covariance Parameters

Although we are mainly interested in the estimation of the parameters βj ,

consistent estimators for the parameters in Vi =

(

σ2
1 ρ σ2 σ1

ρ σ2 σ1 σ2
2

)

are needed

in equation (3.4). One way of obtaining these estimators is to add estimating

equations for these parameters. Because we are not concerned about estimating

σ1, σ2 and ρ efficiently, we can use the following unbiased equations based on the

method of moments:

∑ R1i

π1i

(

σ1 −
√

∑

(y1i − µ1i)2

n

)

= 0 ,(3.7)

∑

(

σ2 −
√

∑

(y2i − µ2i)2

n

)

= 0 ,(3.8)

∑ R1i

π1i

(

ρ −
∑

(y1i − µ1i) (y2i − µ2i)

σ2

√

n
∑

(y1i − µ1i)2

)

= 0 .

Equations (3.4) and (3.7) can be solved jointly to obtain estimates for all the

parameters. If instead of missing observations in y1i we had missing observations

in y2i, then the terms in equation for σ2 would also require to be weighted in

order to obtain an unbiased estimator for σ2.

This entire approach can be applied to more than two outcomes. However,

the assumption of MAR implies that missingness mechanism has to depend only

in completely observed outcomes. If this is not the case the data are MNAR.
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4. SIMULATION STUDY

Data were generated using the model

(y∗1i, y2i) | (xi, z1i, z2i) ∼ MV N

(

(

.5 + 2xi + 2 z1i

5 + 10 xi + 2 z2i

)

,

(

1 6×1×.8
36

)

)

,(4.1)

with xi generated from a Bernoulli(.5), z1i generated from a Uniform(−1, 0) and

z2i from N(1, 4). Then, y∗1i was categorized in the following way:

(4.2) y1i =

{

0 , if y∗1i ≤ 0 ,

1 , if y∗1i > 0 .

By using a probit link to model y1i as probit
(

P (y1i = 1 |xi, zi)
)

= α1+β1xi+γ1zi,

we have P (y1i = 1 |xi, zi) = P (y∗1i > 0 |xi, zi) = Φ
(

.5+2 xi+2 zi

σ1

)

. By construction

σ1 = 1 thus, the true parameters for the probit regression maintain the same

value as in (4.1), i.e., α1 = .5, β1 = 2 and γ1 = 2.

We generated 1000 datasets with 400 bivariate observations each. Some

observations for the continuous outcome were deleted according to the model

logit
(

P (R2i = 1 | y1i, xi)
)

= .5 − 3.5 y1i − xi. The parameters were chosen to ob-

tain approximately 25% of missing observations (about 40% of missing y2i when

xi = 0 and 5% when xi = 1).

4.1. Univariate analysis

We fit separate regressions for each outcome, ignoring the missingness mech-

anism and the correlation between the outcomes. We used a probit regression for

the binary outcome (4.3) and a linear regression for the continuous (4.4):

probit
(

E(y1i |xi, z1i)
)

= α1 + β1xi + γ1z1i ,(4.3)

E(y2i |xi, z2i) = α2 + β2xi + γ2z2i .(4.4)

4.2. Latent variable model

We fit the latent variable model,

probit
(

E(y1i |xi, z1i, ui)
)

= α∗
1 + β∗

1xi + γ∗
1 z1i + ui ,(4.5)

E(y2i |xi, z2i, ui) = α2 + β2xi + γ2z2i + σ2ui .(4.6)
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It can shown that the above model is the correct model for the data generation

process. To obtain marginal effects of the covariates as in the other models we

have to average over the latent variable ui. In this case the marginal effects can

be obtained by dividing the parameters by
√

1 + σ2
u, for example, the marginal

effect of x on y1 is β1 =
β∗
1√

1+σ2
u

. We used PROC NLMIXED from SAS to fit

the latent variable model. The initial parameters were obtained by fitting sepa-

rate regressions for each outcome (univariate analysis). The initial value for the

correlation parameter was set to be 0.5.

4.3. Weighted generalized estimating equations

We assumed the following model for the means of the outcomes:

probit
(

E(y1i |xi, z1i)
)

= probit(µ1i) = α1 + β1xi + γ1z1i ,(4.7)

E(y2i |xi, z2i) = µ2i = α1 + β1xi + γ1z2i .(4.8)

We solved the WGEE:

n
∑

i=1

















−φ(Ai) 0
−xi φ(Ai) 0
−z1i φ(Ai) 0

0 1
0 xi

0 z2i

















(

σ2
1 ρ σ2 σ1

ρ σ2 σ1 σ2
2

)−1(
1 0

0 R2i

π̂2i

)(

y1i − µ1i

y2i − µ2i

)

= 0(4.9)

with Ai = α1 + β1xi + γ1z1i and σ1 =
√

Φ(Ai) (1 − Φ(Ai)). The weights π̂2i were

estimated using the logistic regression

logit
(

R2i = 1 | y1i, xi

)

= logit(π2i) = ζ0 + ζ1y1i + ζ2 xi .(4.10)

Two additional equations were added to the system of equations (4.9) to

obtain estimates of the unknown parameters σ2 and ρ:

∑ R2i

π2i

(

σ2 −
√

∑

(y2i − µ2i)2

n

)

= 0 ,(4.11)

∑ R2i

π2i

(

ρ −
∑

(y1i − µ1i) (y2i − µ2i)

σ2

√

n
∑

(y1i − µ1i)2

)

= 0 .

The WGEE were solved using a program developed in SAS with PROC IML.
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4.4. Results

The results of the simulations are summarized in Tables 1 and 2. Over-

all, the latent variable model performed better than the univariate approach

and the WGEE. The estimates of the parameters associated with the continu-

ous outcome, α̂2 and β̂2, were biased for the univariate model, and the mean

square errors (MSE) were about 4 and 6 times higher than the correspond-

ing MSE estimates obtained from the latent variable model. The remaining

estimates for the univariate approach were not biased but they had slightly

higher standard errors than the latent model. This is explained by the fact

that the latent variable model uses the additional information of the correla-

tion between the outcomes as described by Teixeira-Pinto and Normand ([19]).

Table 1: Estimates and standard errors averaged over the results of 1000
simulated datasets with sample size equal to 400. About 25%
data were deleted for the continuous outcome using a model for
the missingness mechanism that depends on the binary outcome.

Univariate Latent WGEE
Estimates (true value)

Mean (SE) Mean (SE) Mean (SE)

Binary outcome
α̂1 (α1 = .5) 0.521 (0.167) 0.521 (0.148) 0.519 (0.159)

β̂1 (β1 = 2) 2.025 (0.181) 2.025 (0.172) 2.019 (0.181)
γ̂1 (γ1 = 2) 2.045 (0.305) 2.044 (0.257) 2.035 (0.288)

Continuous outcome
α̂2 (α2 = 5) 6.523 (0.581) 5.009 (0.556) 5.033 (0.601)

β̂2 (β2 = 10) 8.737 (0.702) 9.980 (0.685) 9.944 (0.737)
γ̂2 (γ2 = 2) 2.001 (0.170) 1.999 (0.145) 1.999 (0.171)

Table 2: Mean square error (MSE) and relative bias (estimate/true value)
averaged over the results of 1000 simulated datasets with sample
size equal to 400. About 25% data were deleted for the contin
uous outcome using a model for the missingness mechanism that
depends on the binary outcome.

Mean square error Relative bias
Estimates

Univ. Latent WGEE Univ. Latent WGEE

Binary outcome
α̂1 0.030 0.024 0.027 1.042 1.042 1.037

β̂1 0.033 0.031 0.038 1.013 1.013 1.009
γ̂1 0.097 0.071 0.089 1.023 1.022 1.018

Continuous outcome
α̂2 2.669 0.317 0.371 1.305 1.002 1.007

β̂2 2.108 0.494 0.857 0.874 0.998 0.994
γ̂2 0.028 0.021 0.031 1.001 1.000 1.000
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The WGEE estimates had very similar bias to the latent variable model, although

the MSEs for all estimates were higher in the WGEE due to higher variances

for the estimates. This loss of efficiency is expected when compared to a full

likelihood method such as the latent variable model. The sandwich estimator for

the variance of the estimates is robust to the misspecification of the correlation

between the outcomes and for this reason is more conservative.

5. EXAMPLES

5.1. Example 1: Managed Care and Quality of Care for Schizophrenia

Dickey et al. ([4]) conducted a prospective observational study of 420 adults

with schizophrenia who sought care for a psychiatric crisis. The main objective

of the study was to compare care for patients who were and were not enrolled in

managed care because advocates for those with mental illness worried that pa-

tients who had their care managed may have worse care than those who did not.

Two outcomes, one binary (whether the patient was prescribed an atypical anti-

psychotic medication) and one continuous (self-reported quality of interpersonal

interactions between patient and clinician) were measured for the 197 patients

who had their care managed and the 223 patients whose care was not managed.

The self-reported quality of interpersonal interactions between patient and clini-

cian was missing for 26 patients (6%). The information regarding the prescription

of an atypical anti-psychotic was available for all the subjects. There was a sig-

nificant difference in the proportion of patients who were prescribed an atypical

anti-psychotic medication between the group without data on the quality of in-

terpersonal interactions between patient and clinician (50%) and the group of

patients with data on this outcome (71%) (χ2
2 = 5, p-value = 0.03). This result

suggests that the data are MAR. There was no statistical significant association

between the missing indicator and the sociodemographic characteristics using a

significance level of 0.05.

We used separate regression models for each outcome (the univariate ap-

proach) ignoring the correlation between the outcomes and the missing data

(equations 4.3 and 4.4). We fit the latent variable model (4.5) and the WGEE

(4.9). For the latent variable model we computed the marginal effects estimates of

managed care on the outcomes by dividing the regression coefficients by
√

1 + σ2
u

as described in section 2.1. The weights for the WGEE were obtained from

a logistic model for the probability of missing observation in the self-reported

quality of interpersonal interactions between patient and clinician outcome us-

ing the prescription of an atypical anti-psychotic and managed care status as

covariates. The estimates for the weights were given by the inverse of the esti-

mated probabilities from the logistic model, logit(π̂2i) = logit
(

P̂ (R2i | y1i, xi)
)

=

2.23 + 0.88 y1i − 0.11 xi.
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The mean (SD) age of patients was 40 (8.5) and 41 (7.9) in the managed

care and not managed care group, respectively. Other sociodemographic char-

acteristics of the patients are described in Table 3. No significant differences

were observed for the two outcomes analyzed regarding the sociodemographic

characteristics. Seventy one percent of the patients in the managed care group

received atypical anti-psychotic medication versus 68% in the not managed care

group. The mean (SD) self-reported quality of interpersonal interactions between

patient and clinician was 3.20 (0.67) for the managed care group and 3.21 (0.65)

for the not managed group.

Table 3: Sociodemographic characteristics of 420 patients with schizophrenia.

Sociodemographic
characteristics

Type of care

Managed Not Managed
(n = 197) (n = 223)

p-value

Age
< 35 years 24 21
35–44 years 46 44 0.338
45–54 years 21 29
55–64 years 8 6

Male sex 47 66 < 0.001

Race or Ethnicity
White 51 66
African American 31 22 0.005
Other 18 12

Never married 64 68 0.364

High school education or less 74 59 0.002

Homeless 15 9 0.069

English speaking 90 93 0.277

The effect estimates of managed care on the outcomes were identical and

not statistically significant at the 0.05 level for all the models (Table 4). This sug-

gests no difference in the quality of care between the managed and not managed

care groups. For the outcome with some missing observations, patient/clinician

relationship outcome, the estimated effect of managed care was the same for the

latent variable model and the WGEE (β̂2 = −0.019). The effect estimate for the

univariate approach was slightly smaller (β̂2 = −0.017). Although this result is

consistent with the simulation study, it is hard to argue that such a small dif-

ference is a consequence of ignoring the MAR mechanism rather than random

variation. The WGEE provided identical standard errors of the estimators to the

other two approaches. This can be explained by the low correlation between the

outcomes (0.059 as estimated by the WGEE).
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Table 4: Managed care effect on the two outcomes related to quality of care:
“patient/clinician relationship” and “prescription of anti-psychotic
medication”. Data on 420 patients with schizophrenia but only 394
patients had information regarding patient/clinician’s relationship.

Estimated effects

Model

Univariate Latent WGEE

β (Std. Error) β (Std. Error) β (Std. Error)
p-value p-value p-value

Binary: Prescription of
anti-psychotic (n = 420)

Intercept 0.549 (0.089) 0.548 (0.089) 0.549 (0.088)
≤ 0.001 ≤ 0.001 ≤ 0.001

Managed care −0.081 (0.129) −0.079 (0.129) −0.081 (0.128)
0.530 0.538 0.527

Continuous: Patient/clinician
relationship (n = 394)

Intercept 3.213 (0.045) 3.213 (0.045) 3.213 (0.045)
≤ 0.001 ≤ 0.001 ≤ 0.001

Managed Care −0.017 (0.066) −0.019 (0.066) −0.019 (0.067)
0.799 0.775 0.771

σ̂2 0.656 0.630 0.656
σ̂u — 0.286 —
ρ̂ — — 0.059

5.2. Example 2: Quality of life after discharge from Intensive Care

Granja et al. ([8]) evaluated the health-related quality of life (HRQOL) of

adult patients discharged from an intensive care unit (ICU) located in Portugal.

The 485 patients who agreed to participate in the study were asked to complete

the Euroqol 5D (EQ-5D) instrument to evaluate their HRQOL ([1]), 6 months

after discharge from ICU. This instrument includes two main sections. The first

contains five questions that measure functional dimensions of HRQOL (mobility,

self-care, usual activities, pain/discomfort and anxiety/depression) and it is sum-

marized by a general score designated as the EQ-5D index. The EQ-5D index

varies from 0 to 100, where 100 indicates no disability in the 5 dimensions. The

second part of the instrument is a visual analogue scale (VAS) in which patients

mark their perception of their health state in a 0 to 100 scale (100 – best imag-

inable state, 0 – worst imaginable state). For the analysis the VAS scale was

dichotomized using the middle point of its scale (less or equal to 50 and more

than 50).
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In this example we will focus on the impact of patient’s severity when

admitted to the ICU (measured by the Apache II score) on the HRQOL after

discharge (measured by the EQ-5D index and dichotomized VAS). Some stud-

ies reported that most of the patients who survive ICU do not show significant

decrease in physical ability but they report psychological problems ([18], [16]).

This finding suggests that the effect of the severity of the episode that led to ICU

admission may be different for functional HRQOL and for patient’s perception of

their HRQOL. If this is the case, both aspects of HRQOL should be reported in

HRQOL studies.

The effect of patient’s severity at ICU admission on HRQOL should be

adjusted to age and previous health state (non-chronic disease, chronic disease

with no disability and chronic disease with disability). All the patients completed

the first part of the questionnaire involved in the calculation of the EQ-5D index,

but only 366 completed the VAS question.

Table 5 summarizes some demographic and clinical information from the

485 patients. The mean (SD) age of the 485 patients was 55.2 (17.4) years old.

Twenty eight percent (28%) of the patients reported that they had no chronic

disease prior to admission to ICU and 21% reported they had chronic disease

that caused some kind of disability. The remaining 51% indicated that they

had chronic disease with no disability before admission to ICU. The mean (SD)

Apache II score at admission was 13.0 (6.8). For the 366 patients who completed

the VAS scale, 64% reported a value above 50. The mean (SD) for the EQ-5D

index was 74.2 (17.4). The group of patients that completed both parts of the

questionnaire had significantly higher EQ-5D index than those who did not com-

pleted the VAS question (77.9 vs. 52.6, p-value < 0.001).

Table 5: Demographic and clinical characteristics of 485 patients that
participated in the study of HRQOL after ICU admission.

Demographic and clinical characteristics (n = 485)

Age (mean (SD)) 55.2 (17.4)

Male sex (n (%)) 275 (57)

Apache II score (mean (SD)) 13.0 (6.8)

Previous health state (n (%))

non-chronic disease 138 (28)
chronic disease with no disability 245 (51)
chronic disease with disability 102 (21)

ICU length of stay in days (median (IQR)) 2 (1–6)

Similarly to example 1, we run separate models for each outcome (a linear

regression for the EQ-5D index and a probit regression for the dichotomized

VAS) and we fit the latent model and WGEE using the same link functions as
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the univariate models. The effect of previous health state on both measures of

HRQOL was linear for the three categories, so it entered the model as an interval

variable with no need to create dummy variables for the categories. The weights

for the WGEE were obtained from a logistic model for the probability of missing

observation in the VAS question using the EQ-5D index, Apache II score, age and

the previous health state as covariates. The estimates for the weights were given

by the inverse of the estimated probabilities from the logistic model, logit(π̂1i) =

logit
(

P̂ (R1i | y2i, x1i, x2i, x3i)
)

= 0.85 + 0.04 y1i − 0.03 x1i − 0.04 x2i − 0.17 x3i.

The results are summarized in Table 6. The HRQOL is associated with

patient’s age and the health state previous to admission. The severity at ad-

mission measured by Apache II is not associated with the functional aspect

of HRQOL (p-value = 0.999). These results were consistent in all approaches.

Table 6: Effect of severity at admission to ICU (Apache II), adjusted to age
and previous health state, on health-related quality of life measured
(D-VAS and EQ-5D index), 6 months after discharge from an ICU.
A total of 485 patients entered the study but only 366 completed the
question regarding D-VAS.

Estimated effects

Model

Univariate Latent WGEE

β (Std. Error) β (Std. Error) β (Std. Error)
p-value p-value p-value

Binary: D-VAS (n = 366)

Intercept −2.069 (0.290) 2.018 (0.280) 2.027 (0.280)
< 0.001 < 0.001 < 0.001

Age −0.011 (0.004) −0.009 (0.004) −0.012 (0.004)
0.014 0.029 0.014

Previous health state −0.460 (0.111) −0.494 (0.106) −0.442 (0.111)
< 0.001 < 0.001 < 0.001

Apache II −0.018 (0.011) −0.028 (0.011) −0.025 (0.012)
0.093 0.009 0.040

Continuous: EQ-5D (n = 485)

Intercept 100.3 (3.902) 100.3 (3.886) 103.3 (3.489)
< 0.001 < 0.001 < 0.001

Age −0.244 (0.061) −0.244 (0.061) −0.244 (0.055)
< 0.001 < 0.001 < 0.001

Previous health state −8.116 (1.540) −8.116 (1.533) −8.115 (1.458)
< 0.001 < 0.001 < 0.001

Apache II ≈ 0 (0.157) ≈ 0 (0.157) ≈ 0 (0.163)
0.999 0.999 0.999

σ̂2 21.94 14.86 21.94
σ̂u — 1.086 —
ρ̂ — — 0.532
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The major difference between the univariate and the multivariate methods is the

result for the effect of Apache II on the dichotomized VAS. The estimate in the

latent model and WGEE is higher than that in the univariate approach and it

becomes statistically significant at the 0.05 level. This may indicate that the

patient’s perception about his or her own HRQOL is affected by the degree of

severity of the episode leading to ICU admission. This fact would not be identified

in the univariate analysis.

6. CONCLUSION

We developed likelihood and quasi-likelihood methods to analyze multiple

non-commensurate outcomes in the presence of missing data. Although this type

of data is common in biomedical studies, the usual approach is to analyze each

outcome separately ignoring the correlation among the outcomes. This can lead

to loss of efficiency and biased estimates in the case of MAR. The WGEE has the

advantage of being robust to the misspecification of the correlation between the

outcomes and MAR while the latent variable model is a full likelihood approach

which typically gives more efficient estimates but assumes that the mean and

covariance models are correctly specified. Another alternative to WGEE is to use

the multiple imputation methodology. We could assume a model to impute values

for the missing observations and repeat the process to create several complete

datasets. Then we could solve a regular GEE for each dataset and obtain the

estimates of the regression parameters as the mean over the estimates obtained

in each complete dataset.

We have shown both in simulations and in real data analysis that the esti-

mation of associations can be biased in situations of MAR in the outcomes. The

bias can be substantially reduced by jointly model the outcomes in a multivariate

framework.
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1. INTRODUCTION

Longitudinal studies are characterised by observation of repeated measure-

ments on a number of subjects at a series of time points. In this work we will only

consider continuous response variables. It is of interest, particularly in longitudi-

nal clinical trials, to test significant differences between the underlying processes

of the same response variables for different treatment groups.

Time to event data are a set of times on individuals, induced by multiple

or single events. We will for this work only consider single events. In clinical

trials patients are usually assigned to different treatment groups, or in different

age or gender groups. Therefore, the aim of time-to-event analysis is to identify

differences in the time-to-event distributions of different groups.

In medical studies it is common to have data on repeated measurements

jointly with time-to-event. The interest on data analysis is sometimes on the

analysis of time-to-event, allowing for correlation with a time dependent variable,

or on the analysis of longitudinal outcome with potentially informative missing

data. Individual longitudinal and survival models might be considered. However,

the notion of joint modelling is motivated in a setting of dependent longitudinal

and time-to-event data.

If the interest of inference is on the association between the response vari-

able and the survival mechanism, the two processes have to be modelled jointly,

including parameters that represent their correlation. The proposal goes to the

so called joint models for longitudinal and time-to-event. These models are based

on a joint distribution for the two processes, longitudinal and failure time.

2. LONGITUDINAL DATA ANALYSIS

A longitudinal data set is characterised by repeated measurements of one or

more response variables on a number of subjects at a series of time points. We first

introduce linear models for repeated measurements with focus on general linear

mixed effects models. For the analysis of repeated measurements it is common

to assume independence between subjects, to have the replication across subjects

for the analysis of time trajectory. However, this assumption is not adequate for

measurements within the same subject, as measurements in time from a same

person tend to be correlated. Moreover, measurements from different subjects

and within a same individual are also subject to measurement error.
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2.1. Notation

In the context of repeated measurements of a response variable, we let

Yij be a response variable measured on subject i = 1, ..., n at time point tij ,

with j = 1, ...,mi. We include a set of p explanatory variables given by the

vector xij with dimension p, which can be time dependent or only measured at

baseline. The full set of repeated measurements for subject i is represented by the

vector Yi = (Yi1, ..., Yimi
), with mean E[Yi] = µi, and variance covariance matrix

Var(Yi) = Vi of dimension (mi ×mi), where each element (j, k) of this matrix is

the covariance Cov(Yij , Yik) = vijk, and Var(Yij) = vij , for j = k.

The most common model-based approach for longitudinal repeated mea-

surements assumes independence between subjects i, where each measurement is

a realisation of a Gaussian random variable. The linear model is based on the

regression of explanatory variables:

(2.1) Yij = µi(tij) + ǫij .

Different models for longitudinal data differ on the correlation structure for

the errors ǫij . For the entire data set of N =
∑n

i=1
mi longitudinal measurements,

we use the notation Y = (Y1, ...,Yn) as the random variable of all measurements

for all subjects, with the linear model for longitudinal measurements as

Y ∼ MV N
(

Xβ,V (ψ)
)

,

where X is the (N× p) design matrix of explanatory variables. The matrix V ,

with dimension (N×N) and parameters ψ, is a block diagonal matrix, because

we assume independence between subjects, with each diagonal matrix V i repre-

senting the variance covariance matrix for subject i.

2.2. General linear mixed models

We will be using linear longitudinal models as defined previously, with

ideas from [1] and [2]. The general idea of linear mixed effects models is to

assume a structure for the ǫij ’s as in (2.1), separating pure measurement error

from variability between and within individuals. The general linear mixed effects

model is defined as

(2.2) Yij = µi(tij) + Ωi(tij) + Zij ,

where Ωi(tij) is an unobserved random process, and Zij are independent reali-

sations of a zero-mean Gaussian random variable with variance τ2, representing
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pure measurement error. Diggle et al. [2] propose to decompose the unobserved

random process Ωi(tij) into two components in an additive way,

Ωi(tij) = d′ij Ui +Wi(tij) ,

where Ui are n independent realisations of a r-dimension multivariate Gaus-

sian random variable with mean zero and variance covariance matrix G, and

dij are r-dimension vectors of explanatory variables for the random process Ui.

The Wi(tij) are n independent realisations of a stationary Gaussian process with

mean zero, variance σ2 and correlation function ρ(u), with u being time lag. The

processes Ui and Wi(tij) are in [2] terminology random effects and serial correla-

tion components, interpreted as the variability between and within individuals,

respectively.

Notice that decomposing ǫij in the previous additive way implies that

Var(ǫij) = DiGD
′
i + σ2Hi + τ2Ii ,

where Hi is a matrix with (j, k) element hijk = ρ(|tik − tij |).

For estimation of model parameters we will use likelihood-based methods.

The full likelihood is easily available for the entire data set.

2.3. Modelling missing process in longitudinal analysis

In this section we will be referring to balanced longitudinal study designs.

This meaning that the study specifies that all subjects are observed at the same

equally spaced time points, the same number of times. It is common that not

all subjects provide the complete set of measurements for the study, originating

missing values. Therefore, we review longitudinal models that cope with poten-

tially informative missing data. In particular, we consider longitudinal models

where the event is “drop-out of the study”. This will lead us to distinguish differ-

ent reasons for missing values, and how they can be associated with the repeated

measurement processes.

Missing values in longitudinal studies occur in two different ways. They

can be missing at intermittent times in the sequence, which means that other

measurements are observed following missing values; for example, when a patient

does not feel well for the visit, or just forgets the appointment. The other type

of missing values appear when all other values after this are also missing, and

the patient is said to have dropped-out of the study (measurement sequence

terminates prematurely [3]). There might be several reasons for a patient to

drop-out a study such as death, feeling the treatment is not helpful to them or

just moving house.
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The main concern of longitudinal analysis with missing data arises when

there is an association between the longitudinal profile and the missing process.

For example, if a patient drops-out the study because he/she believes that the

treatment is not being effective, the missing values should not be dissociated

from the measurement process. Therefore, it is necessary to distinguish between

different reasons for missing values, to be possible to conjecture on possible as-

sociation. Little and Rubin [4] classified the nature of missing data mechanism

as:

MCAR — Missing Completely At Random: when the probability of miss-

ing does not depend on either the observed or unobserved measurements.

For example, when a patient forgets to attend the appointment.

MAR — Missing At Random: when the probability of missing depends on

the observed data, but not on the unobserved measurements. Conditional

on the observed measurements, missing process and data are independent.

For example, the patients leaves the study on doctors advice based on

previous observed longitudinal measurements.

MNAR — Missing Not At Random: when the probability of missing

depends on observed and unobserved data. For example, when a patient

leaves the study because he/she feels ill on the day of their appointment,

and the illness is related with all the longitudinal profile, including those

measurements that would have been observed if they would have kept on

going to the appointments.

In a setting of time-to-event, it is reasonable to consider missing values

as events, and the design times at which the missing values occur as the set of

possible event times. The events associated with intermittent missingness are

multiple events in a same subject. However, it is commonly assumed that this

type of missing data is missing completely at random, because other measure-

ments are observed after in time. Hence, intermittent missing values are treated

as ignorable and inferences can me made using likelihood based methods.

The drop-out missing value originates a single event, identified as the time

that terminates the longitudinal sequence. It is usual in clinical trials to record

the cause of the patient’s drop-out. This information helps to identify the nature

of the missing data.

Let Y be the random variable associate with the complete data vector for

a single subject, that can be decompose as Y = (Yobs,Ymis) with observed and

missing measurements, respectively. Also, D be the missing data indicator (0/1)

for the same subject, for observed and missing measurements, respectively. The

model for the complete data requires the specification of the joint distribution

[Y ,D], where [·] represents the density distribution. Using this notation, Little [5]

contrasts different models for the drop-out mechanism that come in parallel with
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the nature of the missing data as before. These are:

Covariate-Dependent Drop-out — when the drop-out mechanism does not

depend on any longitudinal values, but is allowed to depend on the covari-

ates:

[D|Y ] = [D] ≡ MCAR .

Missing-at-Random Drop-out — when the drop-out mechanism depends

only on observed data:

[D|Y ] = [D|Yobs] ≡ MAR .

Nonignorable Outcome-Based Drop-out — when the drop-out may depend

on missing components of Y :

[D|Y ] = [D|Yobs,Ymis] ≡ MNAR .

It is proved that likelihood-based inferences on the model parameters are

unbiased when ignoring the missing values of the data [6], if the data is believed

to be MCAR. The standard procedure for testing for MCAR is to compare the

empirical distributions of complete observed variables for respondents and non-

respondents subjects, using t-tests [7].

If the likelihood function can be factorised into two independent parts, one

corresponding to the response parameters and the other corresponding to missing

parameters, the missing process is considered to be at least MAR with respect

to the response process. Under the MAR assumption Rubin [6] shows that if

the parameters θ and ψ, on the distributions f(y|θ) and f(d|y,ψ), are distinct,

then likelihood inference is possible, by integrating out the density of y
mis

. If the

parameters θ and ψ do not have common components it is possible to factorise

f(y
obs
,d|θ,ψ) =

∫

f(y
obs
,y

mis
|θ) f(d|y

obs
,y

mis
,ψ) dy

mis
,

and under the MAR assumption f(d|y
obs
,y

mis
,ψ) = f(d|y

obs
,ψ), so

f(y
obs
,d|θ,ψ) = f(d|y

obs
,ψ) f(y

obs
|θ) .

Therefore, maximisation of the likelihood for model parameters, requires

the maximisation of two independent terms, that do not share common parame-

ters. However a theorem proved by Molenberghs et al. [8] implies that MAR is

untestable without additional assumptions no matter how much data are avail-

able. Also, Molenberghs and colleagues [9] derive the bias on parameter estimates

when data is MCAR and MAR and simple methods like last observation carried

forward and complete case analysis are used, and show that likelihood-base meth-

ods provide consistent estimators.
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Missing values which are MCAR or MAR are known in the literature as

ignorable, because longitudinal analysis can be performed ignoring them. How-

ever, missing values originated by MNAR are said to be informative or non-

ignorable [10].

3. TIME-TO-EVENT DATA ANALYSIS

Time-to-event data is generated by observing several subjects until a single

or multiple event occur, and the data is the waiting time. For example, in a

medical context a single time-to-event is the time to recurrence of a health con-

dition, time of response to a treatment or time to death from a certain cause.

To determine time-to-event correctly, it is necessary to choose an appropriate time

origin, which has to be easily identified and common for all patients. Usually,

time from randomisation, time from diagnosis or time from beginning of medica-

tion is chosen. From now we will refer to failure time with the same meaning as

time-to-event.

The special difficulty with time-to-event data, is that the event will not

occur for some subjects during the follow-up period of the study. The only infor-

mation available for these patients is a maximum time, up to which it is known

not to have observed the event. For example, in a clinical trial where failure time

is time to death, not all patients will die during the study. For these patients we

observe a right-censored time, which in the maximum is the follow-up time of the

study. The set of failure and censored times we call survival data, or sometimes

observed lifetime. Therefore, the analysis of time-to-event data is also commonly

called survival data analysis.

The observed censored times can represent subjects still alive when the

study is finished, or subjects who drop-out of the study. We consider drop-out

time, the time when a subject drops out of the study, and we use it analogously

to time-to-event.

3.1. Notation

Let the random variable F denote the time-to-event and let f1, ..., fn be

a random sample from F on i = 1, ..., n subjects. However, the event is not

always observed and every subject i has associated a censored time, coming from

a random variable C, where c1, ..., cn is the random sample from C for the same

subjects. Therefore, the observed survival data is the realisation si = min {fi, ci},
i = 1, ..., n, of a random variable S.
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A common assumption in survival analysis is non-informative censoring,

meaning that random variables C and F are independent. Therefore, if F ≤ C,

S = F and a failure time is observed, if C < F , S = C and a censoring time is

observed. The observed data are realisations (si, δi), where si is defined as before,

and δi is a subject indicator (1/0), for failure or censored time, respectively.

To describe the distribution of failure time f , it is more appropriate to

use the survival and hazard functions. The survival function S(t) is defined as

the probability of failure time being beyond some point t, S(t) = P(F >t). The

hazard function is the probability of failure time occur in the next short period

of time, given that failure time did not occur up to that time and all the past

history,

λ(t) = lim
∆t→0+

P
(

t≤F < t+ ∆t |F ≥ t
)

∆t
,

and is defined as the instantaneous death rate for an individual surviving to time t.

It is possible to combine the two definitions and get the relation

(3.1) λ(t) =
f(t)

S(t)
,

where f(t) is the density function of F .

For observed survival data (si, δi) on subjects i = 1, ..., n, the likelihood

function of model parameter is the product of probabilities given the observed

data, for all subjects i. Usually the censoring mechanism is ignored [11] and the

likelihood of interest is

(3.2) L(θ; s, δ) ∝
∏

i

f(si)
δi×S(si)

1−δi ,

where each failure time contributes with the density function and each censored

time contributes with the survival function.

3.2. Survival models

When modelling survival data, the most common non-parametric method

is the product-limit estimator [12], sometimes called the Kaplan–Meier estima-

tor. Consider the ordered subset of k ≤ n unique observed failure times from the

observed survival times, s(1) < ... < s(k). Let di be the number of failures which

occur at ti and ni the number of individuals who are at risk just before time ti,

making up the risk set R(ti), say. Notice that ni represents the number of subjects

that survive at least until time ti. Therefore, di/ni is an estimate of the proba-

bility of failure at time ti, conditional on surviving up to ti. The product-limit
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estimator is then defined as

(3.3) Ŝ(t) =















1 if t < s(1) ,

∏

s(i)≤t

(

1 − di

ni

)

if t ≥ s(1) .

The most common way to model survival data is through the hazard func-

tion, including a set of q explanatory variablesW measured at baseline to predict

failure time. The most widely use semi-parametric model is the so called Cox

proportional hazards model [13],

(3.4) λ(t|W ) = λ0(t) exp(W ′α) ,

where α is a (q×1) vector of parameters to estimate, and λ0(t) is the unknown

hazard function at the baseline variablesW= 0. This is a semi-parametric model,

because the baseline covariates are modelled parametrically whereas the base-

line hazard function is modelled non-parametrically with no specific form. The

function λ0(t) is considered a nuisance parameter in the Cox proportional haz-

ards analysis. Therefore, when writing the likelihood function for this model as

in (3.2), it is not possible to estimate simultaneously the baseline hazard func-

tion and parameters of interest α. Consequently, Cox [14] suggests an estimation

method based on conditional probabilities at the set of failure times, which is

based on maximising the partial likelihood. The main advantage of the partial

likelihood is that it does not depend on the baseline proportional hazard function

λ0(·), and only parameters of explanatory variables are estimated. For complete

details on parameter estimates in the partial likelihood and score function vector

see [15].

3.3. Time dependent covariates in time-to-event analysis

When the interest is on inference for the model parameters of a time-to-

event process, we allow for survival data analysis, which deals with censored event

times. The most popular model is the Cox proportional hazards model, where

the hazard of an individual with some covariates is proportional to a baseline

function of time [13], as discussed before. This model allows for fixed covariates

that do not change over time [16], and parameters are estimated by maximising

the partial-likelihood [14]. However, it is often the case that time-dependent

covariates are available and these also want to be included in the survival model.

The Cox proportional hazards model can be extended to incorporate the

observed time-dependent covariates [17], with the partial likelihood evaluated at
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each event time in the form

(3.5)
∏

ti: event time

exp {W ′
i (ti)α}

∑

j∈R(ti)
exp

{

W ′
j(ti)α

} ,

where R(ti) represents the set of subjects at risk at event time ti. This model is

described in [16] Chapter 8, and the efficiency of the parameter estimates using

partial likelihood is compared with those obtained from a fully parametric model.

Moreover, Hougaard [11] in section 2.4.4 argues that time dependent covariates

have to be predicted, which means the trajectory of the covariate has to be known

at every time points.

There are also ways for handling with missing time dependent covariates, as

in longitudinal models mention in the previous section. Lin and Ying [18] estimate

from the subjects with complete measurements, the conditional expectation of

missing covariates at all time points. Thus, in the parameter estimating equations

this is subtracted to the observed covariate. They claim this method is generally

more efficient than using only subjects with complete data. However, it is stated

that the validity of the method “depends critically on the MCAR assumption”.

Paik and Tsai [19] suggest a very similar estimator, with the advantage that

is consistent under the missingness mechanism. But also in this work, the authors

conclude that when the missing probability depends on unobserved values of the

covariate, their estimator is biased.

If we consider longitudinal measurements as time dependent covariates, it is

ignored that these are measured with error, and the observe measurements are a

noisy version of true process. A drawback of the previous methods is that they do

not account for measurement error in the repeated measurements. Prentice [20]

shows that regression coefficients on the partial likelihood are asymptotically bi-

ased when it accommodates covariates measured with error, and he suggests a

modified partial likelihood, using conditional expectations on the relative ob-

served hazard. Altman and DeStavola [21] review the different problems of in-

cluding time dependent covariates measured with error in survival data analysis.

Following this, models for the joint distribution of time-to-event and longitudinal

response variables have been proposed, included in the so called area of joint

analysis of longitudinal and time-to-event outcomes.

4. JOINT MODELLING

In the context of joint modelling it is necessary to establish a clear frame-

work to distinguish terminology from longitudinal and time-to-event processes.
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Two processes are considered, the longitudinal Y and time-to-event F processes

with possible association, which we are interested in. Another common issue in

any data set is the missing process generating missing data. Therefore, the miss-

ing data can be missing of longitudinal measurements or missing to observe the

event. When the event is not observed the missing process is called censoring C,

and missing of longitudinal measurements is called missing data D. The censor-

ing process C is usually assumed non-informative, in the sense that is considered

independent of the time-to-event and longitudinal processes.

The missing of longitudinal measurements can be intermittent or termi-

nating the sequence of longitudinal measurements, as discussed in section 2.

In the case of intermittent missingness we assume these MCAR and it is known

that these can be ignored in the likelihood function. If a missing longitudinal

measurement terminates the sequence of longitudinal measurements, we call it a

drop-out time from a drop-out process D, as corresponds to a subject drop-out

of the study. Moreover, the drop-out process cannot be ignored in most of the

cases and it is considered to be MNAR.

We then have four processes, longitudinal process Y , drop-out process D,

time-to-event process F and censoring process C, and assumptions on possible

associations on these processes is necessary. For example, we might assume that

the event of interest is drop-out time, and so processes D and F are the same.

This is an assumption of many clinical trials, as there is no record of an actual

time-to-event, and the time of the last observation is considered the failure time.

Furthermore, the missing longitudinal measurements caused by drop-out time are

allowed to be associated with the event time, that is MNAR.

Different associations are possible between the four processes. We will

consider the situation that time-to-event is available in the data set and the

event generates missing data. Therefore, the time-to-event process completely

determines the drop-out process. Figure 1 represents graphically this situation.

Figure 1: Graphical representation of possible associations between
longitudinal, time-to-event and drop-out processes.

Another situation would be the longitudinal process associated with both

processes time-to-event and drop-out, but these not associated with each other.
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4.1. Model based joint models

We review full likelihood methods for exact estimation of model parameters

in the joint distribution of repeated measurements and time-to-event. These

are what we will call joint models, which model the joint distribution [Y ,F ],

for Y and F the random variables of repeated measurements and failure time,

respectively. Inference on model parameters is done through the decomposition

of the full likelihood. Nevertheless, it is not clear a joint distribution for the two

random variables. Therefore, in joint models the joint distribution is factorised

using Bayes rule.

The two different factorisations of the joint distribution generates differ-

ent model strategies that contrast model interpretations, and consequently their

suitability for individual problems. These are pattern-mixture and selection mod-

els [4, 22] that factorise:

pattern-mixture models selection models

[Y ,F ] = [F ] [Y |F ] [Y ,F ] = [Y ] [F |Y ] .

The parameters involved in each of the model components have different

interpretations, in one model they are the parameters of the conditional distribu-

tion in the other they are the parameters of the marginal distribution. Depend-

ing on the context, the parameters of interest for inference will also be different.

Notice that, if event is drop-out, F =D in the terminology of section 2, and if

the missing process is MCAR the two model strategies are equivalent, as the two

processes are independent.

The model strategy depends mostly on the nature of the statistical prob-

lem and the scientific questions to be answered. Although mathematically the

models describe exactly the same joint distribution, they have different statistical

interpretations. Selection models are mainly used when inference is on time-to-

event model parameters, improving the inference by allowing for correlation in

the longitudinal measurements. In opposition, when primary interest is on the

longitudinal trajectory, which might be associated with an event pattern, the

pattern-mixture models are more commonly used. Therefore, the two different

approaches lead to different understanding and inferences of the model parame-

ters, together with different views on how to store the data.

Pattern-mixture models stratify regression models by missing pattern co-

hort, then model the marginal distribution of the response as a mixture of dis-

tributions over the patterns. These models are useful as an exploratory tool to

check on longitudinal profile differences between drop-out groups. Selection mod-

els assume a model for the complete longitudinal data and then multiply by the
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probability of observing the event given the complete data, though the observed

data does not match the complete data.

Selection models can be seen as an alternative to pattern-mixture models

for data with many complex missing patterns. The terminology of these models

is clear for pattern-mixture models, they model a mixture of conditional distri-

butions each for each missing pattern data. For selection models they model the

selection of drop-outs condition on the measurement history.

The models above can be extended to incorporate random effects, in this

case they are called random pattern-mixture models and random selection models.

The individual unobserved random effects in the selection models are included

in the marginal longitudinal model, whereas in the pattern-mixture models these

come in the marginal distribution of the event times. Therefore, when jointly

modelling repeated measurements Y , event times F and random effects U , the

joint distributions are:

random pattern-mixture models random selection models

[Y ,F ,U ] = [U ] [F |U ] [Y |F ] [Y ,F ,U ] = [U ] [Y |U ] [F |Y ] .

Diggle [23] defines one different class of joint models, these as random effects

models. Random effects joint models assume that both repeated measurements

and event time depend on a unobserved random effect, these specified through

a certain bivariate distribution. The random effects joint model is described by

assuming conditional independence between Y and F given the random effects

U = (U1, U2), as

random effects model

[Y ,F ,U ] = [U ] [Y |U1] [F |U2] .

In random effects joint models the association between longitudinal mea-

surements and time-to-event is completely determine by the correlation structure

between the two random effects U1 and U2. The three different strategies to

model the joint distribution, can be distinguish visually by diagrams presented

by Diggle [23] and shown here in Figure 2.

The diagrams in Figure 2 represent conditional independence graphs for

the three random variables. The absence of an edge indicates conditional inde-

pendence between the two vertices of the edge, given the third vertice involved

in the graph. In Figure 2(a) it is represented the saturated model, where all the

associations are possible. Figure 2(b) represents selection models, where longi-

tudinal measurements are influenced by their individual random effects, and it

is the realisation of the measurement process that will influence the event, and

not the random effect. On the contrary, in pattern-mixture models in Figure 2(c)
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the individual random effects will determine the time of event, which after being

predefined develops the individual longitudinal profile with some error. Regard-

ing random effects joint models, Figure 2(d) suggests that both processes are a

joint response to an unobserved individual specific process, and conditional on

the responses being independent of each other.

Figure 2: Graphical representation of saturated, selection, pattern-mixture
and random effects models as in [23].

Little [5] produces a detailed review on selection and pattern-mixture mod-

els, when different missing mechanisms are present, in parallel with examples of

data sets. Hogan and Laird [24] give a good comparison between pattern-mixture

and selections models, and refers to random effect pattern-mixture and random

effect selection models, but not with the same definition as we introduce here.

We refer to this below, when giving examples of random effects models.

4.1.1. Pattern-mixture models

In mixture models it is necessary to specify a model for the marginal dis-

tribution of the event times [F ] and the conditional distribution of [Y |F ]. For

the former, standard distributions would be the multinomial, or through mod-

elling the hazard function with a Cox model, additive model or accelerated life

model. The latter distribution is not always established, as the sample space

of drop-out patterns can be integrated out of the conditional distribution, and

inferences are made directly on the marginal distribution of [Y ]. The main goal

of pattern-mixture models is to adjust the inference about Y for the effects of

drop-out, with the convenience of not having to specify the event time marginal

distribution.
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One of the first pattern-mixture models was proposed by Wu and Bai-

ley [25] whose aim was to compare rates of change of a continuous variable under

informative missingness, for k different treatment groups. A conditional linear

random effects model is proposed for the continuous variable, where the random

effects Ui = (U1i, U2i) are conditional on the event time. Especially the random

slope is a polynomial function of some degree, on the event time,

(U2i|F i = fi) =

L
∑

l=0

γlk s
l
i .

Two alternative estimation methods based on simple linear regression are

proposed for the expected values of the random slope in the k group, namely linear

minimum variance unbiased estimator and linear minimum mean squared errors

estimator. These are compared by simulation studies with three other estimates

and found to be more efficient. Testing for MNAR in this model, corresponds to

test for the alternative hypothesis HA : γl 6= 0, for all l, when the null hypothesis

is H0 : γl = 0, for all l. Wu and Bailey [26] consider the particular case of l = 1.

Little [22] proposes a pattern-mixture model, where the drop-out patterns

are considered realisations of a multinomial model, such that model parameters

are the probabilities of having each of the drop-out patterns. For each drop-

out pattern, the conditional distribution of the longitudinal measurements are

assumed to be multivariate Gaussian. Usually, pattern-mixture models have a

large number of parameters due to possible high number of drop-out patterns,

which can cause identifiability problems. Therefore, it is mentioned the need

to have at least one more longitudinal complete case than number of response

variables to obtain consistent estimates for each pattern.

For a saturated model, where each multivariate distribution has distinct

parameters, not all the parameters are possible to estimate. For example, the

model parameters of missing patterns with no observed measurements, will not

come out in the likelihood. The work of Little proposes parameter restrictions to

the conditional models, which would reflect a certain missing process. The same

approach is extended to categorical response variables, where the multinomial

distribution is defined through a contingency table. However, it is noticed that

the methodology can be inefficient because it requires a reasonable large number

of complete cases.

The model proposed by Little does not allow for observed censored sur-

vival times, because it specifically models the probability of observing an event.

Nevertheless, this can be extended to different multinomial distributions for each

subsets of subjects with failure and censored times. This is a reasonable model

when we want to assume independence between censoring and failure processes.
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The work by Hogan and Laird [27] is motivated by limitations of the pre-

vious models that assume fully observed events, and parametric models for the

drop-out process. Accordingly, the distribution [F ] is specified non-parametrically

by estimating multinomial probabilities with incomplete data, and the conditional

distribution [Y |F ] is assumed a linear regression with individual random effects bi.

An advantage of using a Gaussian model for the conditional distribution is

that the unconditional distribution is a mixture of conditional normal distribu-

tions. When the event times are completely observed the maximum likelihood

estimates are easily obtained by maximising the likelihood.

The work of Li and Schluchter [28] examines different conditional models for

the random effects bi|Fi. Firstly, they consider a conditional quadratic and linear

models, where random effects follow quadratic or linear regression curves on sur-

vival times. Secondly, a pattern-mixture model is described in the general form of

the mixed effects model, using a single parameter for each missing pattern. These

models differ on the design matrix di, and many other models can be defined

depending on the observed survival time allowing for censoring. For example,

for a non-parametric model it is possible to use a piecewise linear or spline model.

In the opinion of Hogan and Laird [24] pattern-mixture models appeared

to approximate selection models, as these are difficult to fit, have problems with

identifiability and sensitivity to parametric assumptions. In addition, they con-

sidered pattern-mixture models not very appealing, because they mainly focus on

the stratification of the sample by time of drop-out. However, they consider their

main advantage over selection models, to be able to integrate out the cumulative

distribution of F . Therefore, it is possible to make inference on the marginal lon-

gitudinal parameters, without specifying a model for the drop-out process. When

specifying a model for the drop-out, non-parametric estimators are usually use,

like Kaplan–Meier as in [27].

All pattern-mixture models presented here make the assumption that can-

not be verified of fYobs|F = fY |F , which is not equivalent to fYobs
= fY [27]. Other

authors discuss more carefully about identification problems of pattern-mixture

models, generated by unverifiable assumptions between the distribution of the

complete data and only the observed measurements.

Thijs and co-authors [29] look at sensitivity analysis for pattern-mixture

models, and propose three different strategies to fit pattern-mixture models un-

der identified restrictions. The model strategies allow extrapolation beyond the

time of drop-out, and inference on the distribution of the unobserved outcomes

given the observed ones is possible. When restrictions are made it is plausible to

perform a sensitivity analysis as the model assumptions are well identified. Birm-

ingham et al. [30] present three class of restrictions that identify marginal distri-

butions of the outcome, and are comparable to restrictions in selection models.
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4.1.2. Selection models

In selection models the marginal distribution of longitudinal measurements

is modelled, whereas the model for event time is conditional on the response

variable. The most common approach for the distribution of repeated measure-

ments is a linear mixed effects model, usually only random intercept and slope.

Generally, choices for the conditional time-to-event distribution are logistic lin-

ear regression, probit regression, where probabilities are modelled as function of

some longitudinal measurements. However, in some works the Cox proportional

hazards model and accelerated life model are proposed.

One of the earliest proposals on selection models, as defined here, is [31]

where the event time depends directly on the repeated measurements. The prob-

ability of drop-out at any time tk is a parametric logistic linear model, with re-

gression parameters on all the history of the observed measurements (y1, ..., yk−1)

and on the unobserved measurement at drop-out time yk, that is,

logit
{

P (F = k|y)
}

= β0 + β1yk +
k

∑

j=2

βj yk+1−j .

If β1 = β2 = ... = βk = 0 the missing process is completely at random, and

if only β1 = 0 and all other different from 0 the missing values are missing at

random.

This same model is used in [23], and likelihood ratio tests are performed on

the β parameters to test for random drop-out and informative drop-out. A draw-

back of this model is the restriction on a monotone drop-out. This model does

not deal with censoring times, but the model can be extended to accommodate

for that.

Scharfstein and colleagues [32] refer to a general logistic regression model,

in the context of a selection model, for the probability of drop-out given the

complete vector of measurements,

logit
{

P (drop-out|Y )
}

= β0 + q(Y ) ,

where q(·) can be any function. For the particular application, they consider the

class of functions Q = {α log(Y ) : α ∈ R}, where α is a selection bias parameter.

That is, it is possible to test for the value of α to be zero to understand the

missing process, as before for the values of β.

In this paper the advantage of having a methodology that depends on a

general function q(·) is discussed. The flexibility of function q(·) quantifies the

influence of the response on the probability to drop-out, which allows a straight-

forward sensitivity analysis, where different assumptions can be tested.
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Most of the joint models described here model repeated measurements data

with the popular parametric linear mixed effects model. However, in many appli-

cations the data may not fit well by linear models, or it is of interest to model the

response non-parametrically. Brown et al. [33] propose a cubic B-spline to model

the longitudinal data, so that there is no parametric assumption on the trajectory

of subject’s longitudinal profile. This approach is relevant when inference on the

effect of the longitudinal measures on the time-to-event is of interest, but not

on the longitudinal process or its trajectory over time. Therefore, this approach

allows a much more flexible modelling of the longitudinal data. Bayesian meth-

ods are used for the estimation, and the B-spline is extended to accommodates

estimation on multiple response variables.

4.1.3. Random effects models

There are many models called selections models, that we include in our clas-

sification of random effects models. Although, the conditional distribution of time-

to-event is modelled, this is conditional on a latent process, and the longitudinal

and time-to-event processes are assumed independent conditional on the latent

process. Therefore, we include these models in the class of random effects joint

models. These models are also called shared parameter models, because the longi-

tudinal response and missing mechanisms are modelled by sharing random effects.

In random effects joint models we assume both event time and longitudinal

process dependent on a underlying disease or illness progression, defined by a

random effect, rather than to the actual outcome. Moreover, the two processes

are independent conditional on the unobserved random effects. For example,

in [24] the joint distribution is defined as

[Y ,F ] =

∫

U

[U ] [Y |U ] [F |U ] dU .

Wu and Carroll [34] propose a random effects model called an “informative

right censoring” model. In this model it is assumed that the repeated measure-

ments follow a linear mixed effect model, with subject specific random effects, in

particular random intercept and random slope. They further assume a general

density function M(t) for the failure process, conditional on the subject specific

random effects. In particular they use a probit drop-out model for M(t), and

estimation of model parameters is obtained by maximising a pseudo-likelihood.

Testing for non-informative missingness under this model, is equivalent to

test for the regression parameters that relate the conditional probability with

the random effects to be zero. A test statistic is proposed for testing for non-

informative missing process.
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The model propose by Schluchter [35] is also a random effects model, as

they use a trivariate Gaussian distribution to model the joint distribution of log-

arithm transformation of time-to-event, and the random intercept and random

slope. These are random effects in a linear mixed effects model for the longi-

tudinal measurements, and it is assumed that the event time is associated with

an underlying process that is unobserved. The parameter estimates are acquired

with an EM algorithm on the complete log-likelihood of the parameters given the

observed data.

Some of the advantages of this model enumerated by the author are, the

allowance for unbalanced data due to staggered entries or unequally-time visits,

it is possible to use all the data available and possibility to apply likelihood

ratio tests on the model parameters. In particular, on the correlation parameters

of the trivariate distribution, which represent the association between random

effects and event time. However, there is the computational disadvantage of this

model, that may require large amounts of data to obtain convergence in the

EM algorithm. We think this models simplifies the association structure, by only

having two cross-correlation parameters, between the event time and two random

effects, initial value and slope.

DeGruttola and Tu [36] propose to extend the two random effects joint

model to include a general structure for the random effects. The conditional

distribution of any transformation of failure times is modelled as a linear mixed

effects model, and longitudinal and time-to-event processes share the random

effects. Thus, this model assumes that both processes are measurements with

error of the same unobserved latent process that represent health deterioration.

The estimation of the model parameters is by an EM algorithm.

In all random effects models mentioned before, the survival time is modelled

parametrically. Another very popular approach to the conditional distribution of

the event times is by semiparametric survival models, such as the Cox propor-

tional hazards model. Faucett and Thomas [37] propose one of the first random

effects models with proportional hazards for the event time. They consider the

joint analysis of longitudinal measurements and survival time as the joint dis-

tribution of two models, covariate tracking model and disease risk model. The

former models the longitudinal response as a linear mixed model with subject

specific random effects, intercept and slope, as in a linear growth curve model,

Yij = U1i + U2i tij + ǫij .

The latter allows a Cox proportional hazards model for the disease risk,

with the same random effects as in the longitudinal model, assuming that these

describe the true latent process

λ(t|Ui) = λ0(t) exp
{

β(U1i + U2it)
}

.
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Wulfsohn and Tsiatis [38] consider the same model as Faucett and Thomas,

as an alternative to the two-stage model. In this proposal, they notice that the

normality of the random effects is on the overall subjects, and constant over time,

which does not imply normality on the random effects of the subjects at risk at

a certain time point.

In the two stage model the random effects are estimated in the first stage, by

fitting a longitudinal model, and these are input to the Cox proportional hazards

model in a second stage. In the model propose by Wulfsohn and Tsiatis [38] the

parameters are estimated using all the information available at each time point,

by maximising the full likelihood of the joint distribution. Although, the models

by Faucett and Thomas and by Wulfsohn and Tsiatis are the same, they use

different approaches for the parameter estimation. Faucett and Thomas follow a

MCMC approach, with a Gibbs sampling whereas Wulfsohn and Tsiatis use an

EM algorithm for the estimation.

Henderson and colleagues [39] propose an extension to the previous model,

including a Gaussian stochastic process to each longitudinal response linear model

Yij = µ(tij) + Ω1i(tij) + ǫij

and event time hazard model

λ(t|Ω) = λ0(t) exp
{

α(t) + Ω2i(t)
}

.

The stochastic processes are components of a bivariate Gaussian process

Ω(t) = {Ω1(t),Ω2(t)}. This is an extension of the previous model as each Gaus-

sian stochastic process is assumed as in [40],

Ω1i(t) = diUi +Wi(t) ,

where Ui are the associated Gaussian random effects and Wi(t) is a stationary

Gaussian process that introduces serial autocorrelation. The last component is

not considered in any of the previous models. It is then assumed that both

processes are independent given Ω(t). Therefore, the association between the

two processes is interpreted by the correlation between the two latent variables.

Moreover, in the absence of association between the two processes, the analysis

becomes as two independent longitudinal and survival analyses.

Guo et al. [41] propose a model which they call a random pattern-mixture

model, that incorporates aspects from both selection and mixture models. This

model considers random subject-specific effects on the conditional longitudinal

response, as in most of the cases, and a random pattern specific effects V . The

model implies the factorisation

[Y ,F ,U ] =

∫

V

[V ] [F |V ] [U |V ] [Y |U,V ] dV .
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5. DISCUSSION

The approach for the analysis of repeated measurements and time-to-event

data, depends on research interests and on the assumptions we are ready to make

on the available data. We have seen how these models can incorporate extra

information. However, the assumption on association between processes need

to be tested and we have seen that, for example MAR is not testable without

additional assumptions. If the primary interest is on the time-to-event process,

repeated measurements are used as time-dependent covariates in a Cox propor-

tional hazards model. Conversely, if the interest is to make inference on the

longitudinal profile, the missing pattern has to be considered.

We reviewed different methods for joint modelling of longitudinal and time-

to-event data, based on the full likelihood of the joint distribution of the two

processes. Different factorisations of the joint distribution lead to different model

interpretations, namely pattern-mixture and selection models. We argue the

approach of the analysis depends on scientific questions that need to be answered,

and on the nature of association between processes. Cox [42] describes four

different types of relation between a longitudinal process and failure times, not

only in medical context and shows the implication of these on appropriate analysis

in each case.

The model specification of selection models is more intuitive, usually with

linear mixed effects model for the marginal distribution of the repeated measure-

ments and a proportional hazards model for the conditional time-to-event distri-

bution. However, these models usually involve intensive computational methods,

as numerical integration and convergence difficulties.

The most common model for the longitudinal response variable, in pattern-

mixture and selection models, is the general linear mixed effects model. Though,

we notice the model proposals mainly differ in the random effects to use. Tsiatis

and Davidian [43] give an interesting discussion on the philosophical issues of

which of the fixed effects, random effects and stochastic processes should be

included to model the longitudinal measurements. Their arguments are mainly

related with biological processes that are involved in the specific data sets.

In particular we are not aware of pattern-mixture models that include a

stochastic process in the conditional distribution of the longitudinal measure-

ments. This could be related with model restrictions to include a stochastic pro-

cesses on a conditional distribution which already has a time dependent process.

In this work, the focus is on the informative missingness of longitudinal

measurements, due to an event. However, subjects do not always experience the

event, and a censoring time is the only information available. The censoring
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mechanism is always assumed non-informative and independent of time-to-event

and longitudinal processes. In more complex models the censoring mechanism

can be considered informative with an associated distribution, which would imply

different models.
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1. INTRODUCTION

In many cancer studies, the main outcome under assessment is the time to

death. However, other types of events can be observed during the follow-up pe-

riod. For example, in colon cancer studies more than one event is often observed

such as “local recurrence”, “distant metastasis” and “dead”. The occurrence of

these intermediate events often affect patient’s prognosis and can be modeled

using a Cox proportional hazards model with a time-dependent covariate. Alter-

natively, a natural way to model such data is by using a multi-state model with

states based on the values of these categorical-valued time-dependent covariates.

A multi-state model is a model for a stochastic process which occupies one

of a set of discrete states at any time. These models are well adapted for modeling

complex event histories (Andersenet al. [1]; Hougaard [2]; Meira-Machadoet al. [3]).

The use of such models is very useful for describing event history data offering a

better understanding of the process of the illness, and leading to a better knowl-

edge of the evolution of the disease over time. Issues of interest include the esti-

mation of progression rates, assessing the effects of individual risk factors, survival

rates or prognostic forecasting.

The complexity of a multi-state model greatly depends on the number

of states defined and by the transitions allowed among these states. The sim-

plest form of multi-state model is the “two-state model”, or mortality model,

for survival analysis (with only two states, “Alive” and “Dead”, and a single

transition). Splitting the “Alive” state from the simple mortality model for sur-

vival data into two transient states, we therefore obtain the simplest progres-

sive three-state model, illustrated in Figure 1. Graphically, multi-state models

may be illustrated using diagrams with rectangular boxes to represent possible

states and with arrows between the states representing the allowed transitions.

States can be transient or absorbing. A state is said to be an absorbing state

if no transitions can emerge from the state (e.g. death). Irreversible illness-

death models are often used to model disease processes in medical cancer studies.

Figure 1: Progressive three-state model. 

State 1 State 2 State 3State 1 State 2 State 3

Figure 1: Progressive three-state model.

In these models, individuals may pass from the initial state (e.g. disease-free;

state 1), to the intermediate event or disease state (e.g. recurrence; state 2) and

then to the absorbing state (e.g. dead; state 3). Individuals are at risk of death
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in each transient state (states 1 and 2). Figure 2 shows the schematic diagram

of transitions involved in the illness-death model.

1. Healthy 2. Diseased

3. Dead

1. Healthy 2. Diseased

3. Dead

Figure 2: Progressive illness-death model.

The inference in multi-state models is traditionally performed under a

Markov assumption for which past and future are independent given its present

state (see e.g. [4] and [5]). However, this assumption may fail in some applica-

tions, leading to inconsistent estimators. In such cases, alternative (non-Markov)

estimators are needed. In this work we review some recent developments in this

area, focussing on the estimation of several quantities such as the bivariate dis-

tribution function and the transition probabilities. Specifically, we focus on the

three-state model of Figure 1 and the illness-death model depicted in Figure 2.

In the progressive three-state model, the times between consecutive events (which

define states 2 and 3) are often of interest. In Section 2 we present several estima-

tors of the bivariate distribution function of the gap times. Some related problems

as estimation of the marginal distribution of the second gap time is discussed.

In the framework of the illness-death model, several estimators for the transition

probabilities are presented in Section 3. In Section 4, an example of application

on bladder tumor recurrence data is re-analyzed to assess the proposed models

and methodologies. We also apply our estimation procedures to data from one of

the first successful trials of adjuvant chemotherapy for colon cancer. Finally we

conclude with a discussion section.

2. ESTIMATION OF THE BIVARIATE DISTRIBUTION

2.1. Notation

Assume the progressive three-state model of Figure 1. Let (T12, T23) be a

pair of gap times of successive events, which are observed subjected to random

right-censoring. Let C be the right-censoring variable, assumed to be indepen-

dent of (T12, T23) and let Y = T12 + T23 be the total time. Because of this, we only
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observe ( ˜T12i, ˜T23i, ∆1i, ∆2i), 1 ≤ i ≤ n, which are n independent replications of

( ˜T12, ˜T23, ∆1, ∆2), where ˜T12 = T12 ∧ C, ∆1 = I(T12 ≤C), and ˜T23 = T23 ∧C2,

∆2 = I(T23 ≤C2) with C2 = (C − T12) I(T12 ≤C) the censoring variable of the

second gap time. Since ∆2 = 1 implies ∆1 = 1 then ∆2 = ∆2∆1 = I(Y ≤C) is

the censoring indicator pertaining to the total time. Define ˜Y = Y ∧C and let

F1 and G denote the distribution functions of T12 and C, respectively. Since

T12 and C are independent, the Kaplan–Meier estimator based on the pairs

( ˜T12i, ∆1i)’s, consistently estimates the distribution F1. Similarly, the distri-

bution of the total time may be consistently estimated by the Kaplan–Meier

estimator based on ( ˜T12i + ˜T23i, ∆2i)’s. Because T23 and C2 will be in general

dependent, the estimation of the marginal distribution for the second gap time

is not a simple issue. The same applies to the bivariate distribution function

F12(x, y) = P (T12 ≤ x, T23 ≤ y). This issue have received much attention recently.

Among others it was investigated by Lin et al. [6], Van Keilegom [7], de Uña-

Álvarez and Meira-Machado [8] or de Uña-Álvarez and Amorim [9].

In this section we present four estimators for the bivariate distribution

function of the gap times. All estimator are somehow related since all use (in

different ways) the Kaplan–Meier estimator [10].

2.2. Methods

A simple estimator for the bivariate distribution function of the gap times is

based on the Kaplan–Meier survival function (Conditional Kaplan–Meier, CKM).

Since F12(x, y) = P (T12 ≤ x, T23 ≤ y) = P (T23 ≤ y |T12 ≤ x)P (T12 ≤ x) one

simple estimator for the bivariate distribution is given by

(2.1) ̂F12(x, y) = ̂F1(x) ̂FKM

(

y |T12 ≤ x, ∆1 =1
)

where ̂F1(x) is the Kaplan–Meier product-limit estimator based on the pairs

( ˜T12i, ∆1i)’s. The ̂FKM(y |T12 ≤ x,∆1 = 1) is the conditional distribution function

for the subset of T12 ≤ x and ∆1 = 1 (the Kaplan–Meier estimator based on the

subset ( ˜T23i, ∆2i)’s such that ˜T12i ≤ x and ∆1i = 1).

Another estimator for the bivariate distribution function was proposed by

Lin et al. [6]. This estimator is based on inverse probability of censoring weighted

(IPCW) and is expressed as

(2.2)
∽

F12(x, y) =
∽

H(x, 0) −
∽

H(x, y)

where
∽

H(x, y) =
1

n

n
∑

i=1

I
(

˜T12i ≤ x, ˜T23i > y
)

1 − ̂G
(

( ˜T12i + y)−
)
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and where ̂G stands for the Kaplan–Meier estimator of the censoring distribution

based on the (˜Yi, 1−∆2i)’s.

Recently de Uña-Álvarez and Meira-Machado [8] proposed a simple esti-

mator for the bivariate distribution. The idea behind the estimator is using the

Kaplan–Meier estimator pertaining to the distribution of the total time to weight

the bivariate data. The proposed estimator (Weighted Kaplan–Meier, WKM) is

given by

(2.3) ˜F12(x, y) =

n
∑

i=1

Wi I
(

˜T12i ≤ x, ˜T23i ≤ y
)

where

Wi =
∆2i

n − Ri + 1

i−1
∏

Rj=1

[

1 − ∆2j

n − Rj + 1

]

are the Kaplan–Meier weights attached to ˜Yi when estimating the marginal dis-

tribution of Y from (˜Yi, ∆2i)’s, and for which the ranks of the censored ˜Yi’s, Ri,

are higher than those for uncensored values in the case of ties.

An estimator related to (2.3) was recently proposed by de Uña-Álvarez and

Amorim [9]. In this estimator they assume a presmoothed version of the Kaplan–

Meier estimator (see [11] and [12] for more details). Presmoothing goes back at

least to Dikta (1998) and the idea is to replace the censoring indicators by some

smooth fit. This smooth can be based on a certain parametric family (yielding

a semiparametric estimator) or using a nonparametric binary regression curve.

The term “presmoothing” comes from the fact that smoothing is simply used to

get a modified version of the Kaplan–Meier weights, but the final estimator is

not smooth itself. Throughout this paper we will assume that the probability of

censoring for the second gap time, T23, given the (possibly censored) gap times be-

longs to a parametric family of binary regression curves. Put m(x, y) = P (∆2 =1 |
˜T12 = x, ˜Y = y), that is, the probability of uncensoring for the total time Y given

the observable information on both gap times. Then the new estimator (Smooth

Weighted Kaplan–Meier, SWKM) is expressed as

(2.4) F 12(x, y) =
n

∑

i=1

W ⋆
i I

(

˜T12i ≤ x, ˜T23i ≤ y
)

where

W ⋆
i =

m( ˜T12i, ˜Yi)

n − Ri + 1

i−1
∏

Rj=1

[

1 − m( ˜T12j , ˜Yj)

n − Rj + 1

]

are the presmoothed Kaplan–Meier weights where each censoring indicator ∆2j

in Wi is replaced by the conditional probability of censoring for the second gap

time, given the available information. The m function stands for a (smooth)

parametric binary regression model, e.g. logistic. In practice, we assume that
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m(x, y) = m(x, y; β) where β is a vector of parameters which typically will be

computed by maximizing the conditional likelihood of the ∆2’s given ( ˜T12, ˜T23) for

those with ∆1 = 1. Thus, we introduce the parametrically presmoothed Kaplan–

Meier weights as

W ⋆
i (β) =

m( ˜T12i, ˜Yi; β)

n − Ri + 1

i−1
∏

Rj=1

[

1 − m( ˜T12j , ˜Yj ; β)

n − Rj + 1

]

.

Note that, unlike (2.3), the SWKM estimator may attach positive mass

to pair of gap times with censored second gap time; but only for those with

uncensored first gap time. Conditions under which both estimators are consistent

is fully discussed in papers by de Uña-Álvarez and Meira-Machado [8] and de Uña-

Álvarez and Amorim [9]. Note that without presmoothing, the estimator (2.4)

reduces to (2.3). Without censoring both reduce to the empirical estimator.

It is also important to mention that estimators (2.2), (2.3) and (2.4) are

only estimable on {(x, y) : x + y ≤ Cmax} where Cmax is the maximum follow-up

time. This means that consistency of these estimators is only guaranteed on the

triangle shown in Figure 3.

T23

Cmax

t

T12CmaxCmax – t  

Figure 3: Estimable area of estimators (2.2), (2.3) and (2.4).

We note that the estimates produced via Kaplan–Meier (CKM) may not

produce a valid bivariate distribution since it does not guarantee that the bivariate

distribution function is monotone. The problem can be explained to the fact that,

as the conditioning set T12≤ x changes, the redistribution to the right of the prob-

ability mass associated with censored observations also changes. In contrast to

the other two methods, the estimators by de Uña-Álvarez and Meira-Machado [8]

and de Uña-Álvarez and Amorim [9] are a proper distribution function, in the

sense that it attaches positive mass to each observation.
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Results of an extensive simulation study comparing the four methods are

reported in Meira-Machado and Moreira [13]. The main conclusions are the

following:

(a) the CKM estimator has larger bias for higher values of the first gap

time, but in some cases is one of the estimators with less variance;

(b) the WKM estimator has less bias than its smooth version (SWKM);

however as expected the later obtained less variance (and less mean

square error);

(c) the WKM and IPCW estimator are almost unbiased but the last one

obtains higher levels of variance for small values of the second gap time.

From the introduced estimators we can obtain an estimator for the marginal

distribution of the second gap time, F2(y) = P (T23 ≤ y), namely

̂F2(y) = ̂F12(+∞, y) = ̂FKM(y |∆1 = 1) ,(2.5)

˜F2(y) = ˜F12(+∞, y) =
n

∑

i=1

Wi I( ˜T23i ≤ y) .(2.6)

Note that estimator (2.5), obtained from the CKM, is the Kaplan–Meier estima-

tor based on (˜T23i, ∆2i)’s such that ∆1 = 1 (i.e., for which the first gap time is

uncensored). Estimator (2.6) is different because the Kaplan–Meier weights Wi

in this estimator are based on the ˜Yi-ranks rather than on the ˜T23i-ranks. Indeed,

since T23 and C2 are expected to be dependent, the ordinary Kaplan–Meier esti-

mator of F2 (estimator (2.5)) will be in general inconsistent. The corresponding

estimators for (2.2) and (2.4) are obtained using the same ideas.

2.3. Alternative estimators based on the location-scale model

Other estimators were proposed to estimate the bivariate distribution func-

tion. A valid estimator of the bivariate distribution function was provided by Van

Keilegom [7] which is based on Akritas [14] estimator. However this approach

has some limitations since some smoothing is required. Alternative estimators for

the above quantities were also given in Van Keilegom et al. [15]. This method-

ology assumes that the vector of gap times (T12, T23) satisfies the nonparametric

location-scale regression model T23 = m(T12) + σ(T12)ε, where the functions m

and σ are“smooth”, and ε is independent of T12. On the basis of the idea of trans-

fer of tail information, the estimator of the error distribution is used to introduce

nonparametric estimators for the bivariate distribution function. As shown by

the authors, these estimators will be more efficient than the previous, since it

allows for the transfer of tail information from lightly censored areas to heavily

ones. More details about these methods can be found in the independent paper

by Van Keilegom et al. [15].
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3. ESTIMATION OF THE TRANSITION PROBABILITIES

3.1. Notation

One major goal in longitudinal multi-state studies is the estimation of tran-

sition probabilities. Traditionally these quantities are estimated via a nonpara-

metric model (using e.g. the Aalen–Johansen estimator [4]). In a recent paper,

Meira-Machado et al. [16] introduce a substitute for the Aalen–Johansen estima-

tor in the case of a non-Markov illness-death model. They showed that the new

estimator may behave much more efficiently than the Aalen–Johansen when the

Markov assumption does not hold. More recently, Amorim et al. [17] propose

a modification of Meira-Machado et al. [16] estimator based on presmoothing

ideas which allows for a variance reduction in the presence of censoring. These

estimators will be presented in this section, assuming an illness-death model.

In this section we consider the illness-death model depicted in Figure 2 and

we assume that all subjects are in state 1 (‘healthy’) at time t = 0. The illness-

death model is fully characterized by three transitions: two competing transitions

leaving state 1 and one transition to the absorbing ‘dead’ state for those subjects

visiting state 2. Therefore, we have three potential transition times, Thj , from

state h to state j. This means that a subject not visiting state 2 will reach the

absorbing state at time T13, while this time will be T12 +T23 if the subject passes

through state 2 before. We denote by ρ = I(T12 ≤ T13) the indicator of visiting

state 2 at some time. Let Z = T12 ∧ T13 be the sojourn time in state 1, and let

Y = T12 + ρ T23 be the total survival time of the process. In practice, several

issues influence the observation of these variables Thj . Whenever T13 ≤ T12, one

gets a right censored value of T12 and no information on T23 is available. Similarly,

the value of T13 will be censored for those individuals entering state 2. Further,

right censoring may appear due to time limitation in following-up or to other

causes. This extra censoring is modeling by considering a censoring variable C

which is assumed to be independent of the process; finally, we put ˜Z = Z ∧ C

and ˜Y = Y ∧ C for the censored versions of Z and Y, and ∆1 = I(Z ≤C) and

∆2 = I(Y ≤C) for the respective censoring indicators.

3.2. Estimators based on the Kaplan–Meier weights

Meira-Machado et al. [16] derived estimators for the transition probabilities

p11(s, t), p12(s, t), p22(s, t), for a general non-Markov illness-death process without

recovery as follows. Let H denote the survival function for Z then the transition
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probabilities are written as

p11(s, t) =
P (Z > t)

P (Z > s)
=

H(t)

H(s)
,(3.1)

p12(s, t) =
P (s < Z ≤ t < Y )

P (Z > s)
=

E
[

ϕst(Z, Y )
]

H(s)
,(3.2)

p22(s, t) =
P (Z ≤ s, t < Y )

P (Z ≤ s < Y )
=

E
[

ϕ̃st(Z, Y )
]

E
[

ϕ̃ss(Z, Y )
] ,(3.3)

where ϕst(u, v) = I(s < u≤ t, v > t) and ϕ̃st(u, v) = I(u≤ s, v > t).

Then, (3.1) and the denominator of (3.2) only involve the Z variable, and

they can be estimated by the ordinary Kaplan–Meier estimator, ̂H, based on the

pairs ( ˜Zi, ∆1i)’s. The transition probability (3.3) and the numerator of the (3.2)

involve expectations of particular transformations of the pair (Z, Y ) that can be

estimated in different ways. In this section we present two methods to empirically

approximate these expectations from the data
{(

˜Zi, ˜Yi,∆1i,∆2i,∆1iρi

)

, 1≤ i≤ n
}

,

which are assumed to form a random sample of the vector ( ˜Z, ˜Y,∆1, ∆2, ∆1ρ).

In Meira-Machado et al. [16], the expectations E
(

ϕst(Z,Y )
)

and E
(

ϕ̃st(Z,Y )
)

were estimated by Kaplan–Meier integrals of the form

n
∑

i=1

Wi ϕst( ˜Zi, ˜Yi)

where Wi are the Kaplan–Meier weight attached to ˜Yi when estimating the

marginal distribution of Y from the (˜Yi, ∆2i)’s.

Note that, without right-censoring, the estimator of the transition proba-

bilities reduces to the relative frequency of processes in state j at time t among

those in state h at time s < t. Meira-Machado et al. [16] derived large sample

properties of these estimators which may be generalized to more complicated

non-Markov processes.

The main weakness of this method [16] is that it provides large standard

errors in estimation, specially when there is a large proportion of censored data.

In order to overcome this issue Amorim et al. [17] propose a modification of

Meira-Machado et al. (2006)’s estimator based on presmoothing ideas, in the

presence of censoring. The implementation of these ideas is straightforward in

the case of the progressive three-state model (see Section 2) but not so simple for

the illness-death model (as explained below).

In the presmoothed version [17], the expectations in (3.2) and (3.3) are

estimated by
n

∑

i=1

W ⋆
i ϕst( ˜Zi, ˜Yi)
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where

W ⋆
i =

m( ˜Zi, ˜Yi)

n − Ri + 1

i−1
∏

Rj=1

[

1 − m( ˜Zj , ˜Yj)

n − Rj + 1

]

and where m(z, t) stands for an estimator of the binary regression function

m(z, t) = P
(

∆2 = 1 | ˜Z = z, ˜Y = t
)

.

The problem in the illness-death model is that the function m(z, t) will

typically be discontinuous along the line t = z, that is, for those values ( ˜Z, ˜Y )

corresponding to subjects who are censored while being in state 1 or who suffer a

direct transition to the absorbing state. To construct m(z, t) the authors propose

to estimate independently two functions: m1(z, t) such that m1( ˜Z, ˜Y ) is the

conditional probability of censoring on Y given ( ˜Z, ˜Y ) and given that a transition

to state 2 is observed; and m2(t) which is the conditional probability of observing

a direct transition from state 1 to state 3 given ˜Z = t (or ˜Y = t) and given that

a transition to state 2 is never observed. These functions can be fitted by some

smooth models, so we finally have

m(z, t) = m1(z, t) I(z < t) + m2(t) I(z = t) .

The estimator m1(z, t) is based on the subsample {i : ∆1iρi = 1}, while

m2(t) is computed from {i : ∆1iρi = 0}. The only condition which is assumed

on these two functions is that they should approximate well their targets in a

uniform sense (see [17] for more details).

Results from a simulation study comparing the two methods is reported in

Amorim et al. [17], revealing that the semiparametric estimator is more efficient.

4. EXAMPLES OF APPLICATION

The methods described in Section 2 and Section 3 are illustrated through

two real data sets. First, we use data from a bladder cancer study (Byar (1980))

conducted by the Veterans Administration Cooperative Urological Research Group.

In addition to this data set we also use the well-known and widely studied colon

cancer database. In both data sets, a nonfatal event (recurrence) is observed

during the disease course. Also, in both data sets, recurrence is a time-dependent

covariate that can be re-expressed as a multi-state model, with states based on

the values of the covariate. In the first database all deceased patients died after

having a recurrence making it possible for the progressive three-state model to

be used (Figure 1). In the second database some subjects died without having a

recurrence, making feasible for the illness-death model, depicted in Figure 2, to

be used.
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4.1. Bladder cancer data

In this study, patients had superficial bladder tumors that were removed

by transurethral resection. Many patients had multiple recurrences (up to a

maximum of 9) of tumors during the study, and new tumors were removed at

each visit. For illustration purposes we re-analyze data from 85 individuals in the

placebo and thiotepa treatment groups; these data are available as part of the

R survival package. Here, only the first two recurrence times and the corre-

sponding gap times T12 and T23 are considered. From the total of 85 patients,

47 relapsed at least once and, among these, 29 experienced a new recurrence.

We have a total amount of censoring of 66% from which 44.7% is obtained from

censored observations on the first gap time. We have about 38% of censored Y ’s

among the uncensored first gap time.

We computed the estimated values for all the estimators of the bivariate

distribution function, F12(x, y), introduced in Section 2, for x equal to 3, 13, 29

and 49 and y values 3, 10, 17.75 and 36.75, corresponding to marginal survival

probabilities of 0.25, 0.5, 0.75 and 0.95. The estimated values of F12(x, y) are

reported in Table 1. In this case it is clearly seen that the four methods can pro-

vide quite different results, specially at the right tail of the bivariate distribution,

where the censoring effects are stronger.

Table 1: Estimated values of the bivariate distribution function F12(x, y)
for different pairs of values. Bladder cancer data.

y

x Estimator
3 10 17.75 36.75

3

CKM 0.0364 0.0607 0.1261 0.1746
IPCW 0.0320 0.0432 0.1240 0.1726
WKM 0.0128 0.0427 0.1045 0.1167
SWKM 0.0328 0.0556 0.1089 0.1203

13

CKM 0.0763 0.1684 0.2533 0.3284
IPCW 0.0668 0.1510 0.2540 0.3154
WKM 0.1036 0.1742 0.2511 0.2633
SWKM 0.1193 0.1814 0.2565 0.2679

29

CKM 0.1513 0.2703 0.3680 0.4499
IPCW 0.1677 0.2902 0.3830 0.4932
WKM 0.1729 0.2436 0.3205 0.3482
SWKM 0.2331 0.2952 0.3704 0.3913

49

CKM 0.1571 0.2801 0.3803 0.4764
IPCW 0.1556 0.2336 0.4355 0.5457
WKM 0.2294 0.3001 0.3932 0.4209
SWKM 0.2652 0.3273 0.4109 0.4318
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4.2. Colon cancer data

For illustration, we apply the proposed methods of Section 3 to data from

a large clinical trial on patients affected by colon cancer. All subjects underwent

a curative surgery for colo-rectal cancer. Unfortunately, some of these patients

have residual cancer, which lead to disease recurrence and death (in some cases).

From the total of 929 patients, 468 (about 50%) developed recurrence and among

these 414 (88%) died. Only 38 patients died without recurrence. The rest of the

patients (423) remained alive and disease-free up to the end of the follow-up. The

presence of patients that experienced a direct transition from the initial state to

the absorbing state leads to the need of using the illness-death model with states

“Alive and disease-free” (State 1), “Alive with recurrence” (State 2) and “dead”

(State 3). Using Cox proportional hazards models, we verified that the transition

rate from state 2 to state 3 is affected by the time spent in the previous state [19].

This allowed us to conclude that the Markov assumption may be unsatisfactory

for the colon cancer data set. Note that both methods presented in Section 3 do

not make use of the Markov information. We will present estimated transition

probabilities calculated using these two approaches.

Figure 4: Estimated transition probabilities for phj(s, t) with s = 1095
based on the Kaplan–Meier weights (dashed line) and based
on presmoothed Kaplan–Meier weights (solid line).
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In Figure 4 we illustrate differences between the estimated transition proba-

bilities, phj(s, t), 1 ≤ h ≤ j ≤ 3, based on presmoothing the Kaplan–Meier weights

(semiparametric) and the estimator corresponding to no presmoothing [16]. The

semiparametric estimator was obtained using a standard logistic model for the

parametric estimation of m. The value s was chosen to be as 3 years (1095 days).

From this figure we see that the semiparametric estimator have more jump points

but with smaller steps. The additional jump points correspond to patients with

censored values of the total time that underwent a transition from state 1 to state 2

before time s (uncensored sojourn time in state 1). The number of jump points

and the size of the steps are strictly related to the amount of censoring and to the

sample size. As expected, both methods provide similar point estimates at small

time values while some departures are appreciated for higher time values. In sum,

the semiparametric approach provides more reliable curves with less variability,

specially in the right tail.

5. DISCUSSION

In this paper we present nonparametric and semiparametric estimators for

quantities of interest in multi-state survival modeling. The interest is focused

on the estimation of the bivariate distribution function for censored gap times

and the estimation of transition probabilities. For both quantities we present two

methods based on the Kaplan–Meier estimator pertaining to the distribution of

the total time to weight the data. One of these methods is based on presmoothing

the Kaplan–Meier estimator. For this, we assume that the probability of censoring

for total time given the (possibly censored) gap times belongs to a parametric

family of binary regression curves. Some of these estimators may behave much

more efficiently than the competing ones. These methods are illustrated using

data from two cancer studies.
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1. INTRODUCTION

The literature in spatial epidemiology contains a growing number of refer-

ences to multivariate modelling of the geographical distribution of morbidity or

mortality rates for potentially related diseases. Dabney and Wakefield [9] suggest

that the two main motivations for this interest are firstly, to explore similarities

or dissimilarities in the geographical risk distribution for the different diseases,

and, secondly, to ‘borrow strength’ across disease rates to shrink the uncertainty

in geographical risk assessment for any one of the individual diseases. Regardless

of the relative balance of interest between these two motivations, it is clear that

achievement of either objective will be limited if the structure of the multivari-

ate model used is inadequate and/or its related assumptions are unrealistic. In

particular, the possible dependency structure (either between diseases, or across

geographical units) should not be overly constrained by the model structure.

For example, it may not be the case that relationships between diseases are the

same in, say, rural versus urban environments, nor that dependency between

disease rates in neighbouring small areas will be homogeneous at a larger geo-

graphical scale where spatial discontinuities may well be present. The model

structure should provide a sufficiently rich range of dependency structures to

encompass such possibilities.

Various approaches to spatial modelling of multivariate disease rates have

been proposed. Many of these may be characterised as generalised linear mixed

models (GLMMs) of varying descriptions in which the dependence structure not

explained by covariates is represented in terms of random effects which are cor-

related between diseases and across geographical units. The Multivariate Condi-

tional Autoregressive (MCAR) model is one popular approach for dealing with

multivariate disease rates in small areas (e.g. [13, 26, 10]) but some have com-

mented that MCAR formulations remain difficult to fine tune because the cor-

relations in random effects between diseases and/or across spatial units are not

easy to disentangle. Models which incorporate more explicit latent structure also

feature in multivariate modelling of disease rates. Held et al. [22] review a range

of approaches to joint disease modelling including shared latent processes. Early

examples include that used by Knorr-Held and Best [24] to identify a shared

spatial component in the geographical distribution of bivariate disease rates and

the simple latent variable formulation employed by Wang and Wall [36] to model

Minnesota cancer rates. More recently, Liu et al. [27] have proposed a Structural

Equation Model (SEM) for cancer rates where the three cancers have a single

shared spatially structured latent variable. Latent structure models are not re-

stricted to area applications. Christensen and Amemiya [6] have suggested an

approach applicable to point data which has been illustrated by Minozzo and

Fruttini [30] who examined bivariate point measures of types of diabetes morbid-

ity.
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MCAR versus explicit latent structure aside, there are two assumptions

which dominate most of these previously described multivariate models. First,

that spatial dependency across small areas is essentially ‘smooth’ and not subject

to global spatial discontinuities. Second, that it is reasonable to assume that a

single relationship between diseases counts applies to all types of areas. In some

(perhaps many) applications the dependence structure may well be more com-

plex than that implied by these rather broad assumptions. Normand et al. [31]

highlight that in the absence of adequate covariate information, simple exchange-

ability assumptions across areas may not be valid in many of the GLMMs used

to analyse healthcare provision. In a multivariate setting these exchangeability

concerns across areas remain, but are compounded by additional concerns over

whether the dependence structure between diseases varies geographically.

We therefore propose a model for use in such contexts which potentially

provides a richer range of dependency structures than those encompassed by

previous approaches. Rather than representing the dependence structure not

explained by covariates in terms of correlated random effects, we suggest that it is

preferable to formulate correlations in terms of an explicit latent structure similar

to that arising in factor analysis. Our model is based on latent structure mixtures

and we argue that incorporating a discrete mixture into the latent structure

loadings in the model simultaneously provides potential to represent an enhanced

range of correlation structures between diseases, at the same time as allowing for

less restrictive spatial correlation structures between geographical units.

The structure we propose could be considered similar to a ‘mixture of factor

analysers’. Such models (mostly for Gaussian responses) have been reported in

other contexts in the statistical literature and elsewhere. For example, Mclachlan

and Peel [29] discuss mixtures of factor analysers, Lee and Song [25] report on

mixtures in relation to Structural Equation Modelling, and Viroli [35] describes

‘independent factor analysis’ based upon approaches developed in the signal pro-

cessing literature. Many insights into the properties of GLMMs for multivariate

disease rates can be gained from studying recent developments in factor anal-

ysis which has been enjoying somewhat of a methodological renaissance in a

Bayesian setting [1] with a number of useful results emerging. The development

of our latent structure mixture model for joint disease modelling in this paper

is encouraged by these results and draws upon our belief in the value of viewing

correlated random effects in a factor analysis framework.

In Section 2 we develop our model and describe fitting strategy. In Sec-

tion 3 we introduce an illustrative data set on which to demonstrate results which

concerns four cancers in some 300 geographical units in England, Scotland and

Wales. We present model results for these data in Section 4 and then go on to

discuss conclusions in Section 5.
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2. MODEL FORMULATION

The basic structure of the problem we consider is that we have data, yij ,

representing the number of cases in area i for disease j (i = 1, ..., n; j = 1, ..., p).

The corresponding expected number of cases eij is also known, this being based

on age/sex standardised rates for the whole of the study region, or for some

appropriate alternative reference population (equivalently, we may know yij along

with the standard morbidity ratio (SMR) yij/eij , for disease j in area i). Where

appropriate we will refer to the vector of disease counts in each area as yi =

(yi1, ..., yip) and the corresponding vector of expected counts as ei = (ei1, ..., eip).

In a practical setting we may well also have a vector of covariates xi (i = 1, ..., n)

measured in each area, but for simplicity of exposition we will assume throughout

this paper that such covariates are not available. If required these can be included

into the models we develop in an obvious and straightforward fashion.

It is usual to assume disease counts are Poisson distributed viz: yij |λij ∼
Pois(eijλij), with the mean vector, λi = (λi1, ..., λip), in each area then being

modelled through an appropriate link function by a suitable linear predictor.

In developing our modelling framework we build upon proposals made by Wang

and Wall [36] mentioned in Section 1 which used a log link and a simple linear

predictor involving a single area specific latent variable with a disease specific

loading, so that: log(λij) = φi δj , where δj is the disease specific loading and

φi is the area specific latent (unmeasured) variable which was in turn assumed

to follow a Conditional Auto-Regressive Gaussian (CAR) distribution over the

areas. In this model correlation between diseases within an area is reflected

through the shared latent variable and spatial correlation across areas is achieved

via the CAR). However, the simple structure only provides for a limited range of

correlation structures between diseases (same for all areas) and makes possibly

unrealistic assumptions about the spatial dependence (it is ‘smooth’ — there is no

possibility of global spatial discontinuity). We therefore consider ways to provide

more complex possibilities for dependencies between diseases and across areas.

First, to allow potential for a more complex dependence structure between

diseases, we include q latent variables. So that the model becomes

(2.1) log(λij) =

q
∑

h=1

φih δjh ,

where δjh is a disease specific loading for area specific latent variable φih (h=1,...,q).

We can express this more succinctly as

(2.2) log(λi) = φi∆ ,

where it is understood that log(λi)=(logλi1, ..., logλip) and where φi =(φi1, ..., φiq)
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is the vector of latent variables for area i and ∆ is the q×p matrix of loadings:

∆ =







δ11 · · · δp1

...
. . .

...
δ1q · · · δpq






.

This formulation raises identifiability problems (e.g. rotational indeterminacy) so

we follow Lopes and West [28] and constrain the loading matrix ∆ so that it is

upper triangular with the diagonal strictly positive, i.e.:

∆ =













δ11 δ21 · · · δp1

0 δ22

. . . δp2

...
...

. . .
...

0 0 · · · δpq













.

To incorporate a richer range of dependency across areas we then further

extend model (2.2) to a mixture model across s sets of q latent variables in each

area, with φ
(k)

i =
(

φ
(k)

i1 , ..., φ
(k)

iq

)

denoting the kth set of latent variables. So that

the model becomes

yij |λ(1)

ij , ..., λ
(s)
ij ∼

s
∑

k=1

πik Pois
(

eijλ
(k)

ij

)

,

with πik denoting mixing probabilities (
∑

k πik = 1) and with

log
(

λ
(k)

i

)

= φ
(k)

i ∆(k) ,

where ∆(k) is a q×p matrix of loadings for the the kth set of latent variables

(k = 1, ..., s) and with each such matrix is subject to the constraints described

earlier. The latent variables φ
(k)

ih are assumed to follow independent Gaussian

distributions with means µ
(k)

h for k = 1, ..., s, h = 1, ..., q and i = 1, ..., n.

So each area is now a mixture of s types of areas, with each type of area

being associated with a different set of q latent variables and corresponding load-

ings. Note there is no explicit spatial dependence (e.g. CAR or MCAR) in the

above formulation. However, implicit spatial dependence arises through groups

of areas being free to share a similar pattern of mixing probabilities over the sets

of latent variables and loadings. This type of spatial dependence is potentially

very flexible since it does not necessarily impose undue global spatial smoothness.

Finally, we incorporate additional unstructured area and disease specific

random effects into the linear predictor of our formulation above in order to

deal with possible overdispersion. These additional random effects are effectively

equivalent to ‘uniqueness’ in the traditional factor analysis literature.

So the final model then becomes

(2.3) log
(

λ
(k)

i

)

= φ
(k)

i ∆(k) + ζi ,
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where the random effects, ζi = (ζi1, ..., ζip), are independent zero mean Gaussian

with variances drawn from inverse Gamma hyperpriors.

Using mixture models as in the above formulation, raises a number of fitting

and identifiability issues Mclachlan and Peel [29]. We use an MCMC fitting ap-

proach with a flat hyperprior for the group means µ
(k)

h of the latent variables; and

with loadings δjh (subject to the identifiability constraints described earlier) given

zero mean Gaussian priors with inverse Gamma hyperpriors for their distinct as-

sociated variances. The model involves both unknown numbers of latent variables

and mixture components, but there is considerable complexity in using dimension

changing methods (e.g. RJMCMC) even with just unknown numbers of latent

variables (e.g. [28]) let alone when this is compounded with an unknown number

of mixture components. We therefore follow suggestions made by Green [19] and

use a strategy whereby distinct models are fitted to distinct dimensionalities. In

selecting the number of mixture components we draw on similarities between our

latent structure mixture and the ‘mixture of factor analysers’ model [29, Chap 8].

We note that in the machine learning literature, ‘Variational Bayes’ approaches

are used to fit ‘mixtures of factor analysers’ [17, 3] which are essentially equivalent

to minimising the Kullback–Leibler distance between the factorised approxima-

tion and the joint posterior. We have therefore selected a strategy based on the

Kullback–Leibler distance in order to select the number of mixture components.

We use this measure to assess the distance between our fitted model and a model

which assumes the two closest mixture components have been merged. An ap-

proximation to the Kullback–Liebler distance can be generated as a byproduct of

Gibbs sampling [32] and we use this to guide model selection with respect to the

number of substantive mixture components which may be supported by the data.

We follow Celeux et al. [5] by not placing any constraints on the ordering of the

mixture group means and deal with label-switching by post-processing the output

of our MCMC sampler. Mixture group memberships for loadings and latent vari-

ables (where applicable) were assumed to be categorical variables with a Dirichlet

prior for the probabilities, πi = (πi1, ..., πis), of belonging to the different groups,

i.e.

p(πi1, ..., πis) =
Γ(α1 · · ·αs)

Γ(α1) · · · Γ(αs)
πα1−1

i1 · · · παs−1

is ,

where αk represents the prior group weights for each of the k = 1, ..., s mixing

components.

Routine checks for MCMC convergence were used involving Gelman and

Rubin’s R [15], Geweke’s statistic [16] and Heidelberger and Welch’s statistic [21].

These are slow models to fit, running multiple chains is therefore somewhat time

consuming but it is essential given the level of cross-correlation possible due the

model formulation. Whilst somewhat slower than using customised code, we used

the widely accessible WinBUGs software package [34] to fit models.
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Overall model fit was assessed by a number of measures. In addition to

assessing mixture group membership in terms of Kullback–Leibler distance, we

also considered Posterior Predictive Loss as proposed by Gelfand and Ghosh [14]

as well as a variant on this proposed by Gneiting and Raftery [18] which enjoys

the advantage of being a proper scoring rule and has been examined specifically

in respect of count data by Czado et al. [8]. We refer to this proper score as

the ‘Dawid and Sebastiani score’ following earlier work reported in Dawid and

Sebastiani [11].

We also validated the performance of our model by means of out of sample

predictions using the posterior predictive distribution of the relative risks for

each disease for each area studied. We removed one tenth of the observations

at random, and fitted the model to these data. The posterior predictive density

for these deleted observations was collected during the model fitting process, and

compared with the observed data.

3. DATA

As an illustrative application to demonstrate model performance, we con-

sider data on reported numbers of cases of four types of cancer in some 300

geographical units covering England, Wales and Scotland. These data were ob-

tained from the 9 cancer registries in England as well as the cancer registries in

Scotland and Wales and comprise the number of cases reported between 1999 and

2001 of, ‘Lung cancer’ (ICD-10 classified sites C33-C34, i.e. Trachea, Bronchus

and Lung cancer), ‘Oral cancer’ (C00-C14, i.e. Lip, Oral Cavity and Pharynx),

Breast cancer (C50) and Cancer of the Cervix (C53). Data were collected on

prevalence for males and females for the first two cancers, but only for females

in respect of breast and cervical cancer. Direct standardisation [7] was used to

estimate associated expected morbidity based on quinary age bands for the whole

of the study region.

These data refer to the smallest administrative geographical unit available,

i.e. the 303 Primary Care Trusts (PCT) in England, the 22 Local Health Boards in

Wales and the 14 National Health Service Boards in Scotland. For convenience we

will subsequently refer to all such units by the name given to the majority, namely

‘PCTs’. The English and Welsh entities are comparable in size, for example the

mean population within an English PCT is 163,000 with a minimum 63,700 and

a maximum 372,600 whereas the Welsh Local Health Board mean population

was 131,900 with a minimum of 56,500 and a maximum of 310,300. Scotland

is dominated by a couple of very large NHS Boards, the mean population was

720,320 with a minimum of 38,400 and a maximum of 1,736,300. Some caution

may therefore be needed when comparing results from England and Wales with
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those of Scotland due to aggregation effects alone. We concentrate here on those

335 ‘PCTs’ which are entirely based on the mainland, i.e we exclude islands.

It should be noted for later reference that one of the mainland PCTs in Cornwall

(the far South West of our maps) contains an aggregate of data from the Isles of

Scilly.

Basic information about the number of cancers registered under each diag-

nosis in each PCT are contained in Table 1. As is usual with administratively

collected data, there are some provisos over accuracy. Particular problems with

UK cancer registry data are documented in Best and Wakefield [4], and we note

that it may not be entirely reasonable to assume that each cancer registry collects

the data in exactly the same way.

Table 1: Summary information on the mean, standard deviation,
minimum and maximum number of cancer cases regis-
tered for each of the six diagnosis groups in each of the
335 non-island PCTs in England, Scotland and Wales.

Oral (F) Lung (F) Oral (M) Lung (M) Breast Cervix

Mean 16.25 132.81 28.65 205.06 359.99 26.68

Std. Dev. 11.62 107.06 23.04 136.67 184.47 17.62

Minimum 1 29 3 41 107 4

Maximum 133 1333 276 1653 1832 175

Table 2 gives the observed correlation coefficients between the various can-

cer rates. It can be seen for example that Lung cancer rates are highly correlated

between males and females (0.88), the same is not so true of oral cancer rates

(0.31). Figure 1 provides the same information in graphical form.

Table 2: Observed correlation between cancer rates for the four cancers,
male and female data shown separately.

Oral (F) Lung (F) Oral (M) Lung (M) Breast Cervix

Oral (F) 1.00 0.23 0.31 0.24 0.04 0.22

Lung (F) 0.23 1.00 0.52 0.88 −0.32 0.47

Oral (M) 0.31 0.52 1.00 0.52 −0.18 0.35

Lung (M) 0.24 0.88 0.52 1.00 −0.39 0.49

Breast 0.04 −0.32 −0.18 −0.39 1.00 −0.18

Cervix 0.22 0.47 0.35 0.49 −0.18 1.00



108 T.C. Bailey and P.J. Hewson

OralF

0.5 1.0 1.5 2.0 0.5 1.5 0.5 1.0 1.5 2.0

0
.5

1
.5

0
.5

1
.0

1
.5

2
.0

LungF

Breast

0
.7

0
.9

1
.1

1
.3

0
.5

1
.5

Cervix

OralM

0
.5

1
.5

0.5 1.5

0
.5

1
.0

1
.5

2
.0

0.7 0.9 1.1 1.3 0.5 1.5

LungM

Pairwise scatter plots of SMR for 

 six cancer site:gender variables

Figure 1: Pairwise scatter plots for the six age standardised cancer rates.

4. RESULTS

Models were fitted as described in Section 2, using the priors and conver-

gence criteria indicated there. A standard burn in period of 50,000 iterations was

used, a further 100,000 samples thinned by a factor of 20 were used for posterior

inference. As mentioned previously, all results reported here were obtained using

the WinBUGs software package [34].

We fitted a range of models with differing numbers of latent variables and

differing numbers of mixture components. Given p = 6 disease counts we con-

sidered all the classically identifiable possibilities, i.e. k = 1, ..., 3 latent variables.

It was found feasible to fit a three latent variable model and we prefer that both

because it has the greatest potential to model a complex dependence structure

and because it has the lowest posterior predictive score. In general, the posterior

predictive Dawid and Sebastiani score tends to favour models with a larger num-

ber of mixture components. However, Kullback–Leibler tends to favour a two

component solution. Figure 2 contains a density plot of the sampled values for

the approximate Kullback–Leibler distance between a two component mixture

and a one component model and indicates a considerable distance between the

two and one component means of the second latent variable. Given this support

from the Kullback–Leibler distance we accept a two component solution despite
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the fact that this fits slightly less well than higher numbers of components on the

Dawid and Sebastiani score.
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Figure 2: Approximate Kullback–Leibler distance between two and one
component latent structure mixture model with three latent
variables when considering each of the latent variables.

Figure 3 presents maps of the geographical distribution of raw and model

estimated posterior mean relative risk for Breast cancer. The model achieves

a degree of shrinkage in terms of the posterior mean of the relative risks when

compared with the raw data. Maps for the other cancer counts reveal a similar

story.

Observed RR

Posterior median

0.72  to  0.93

0.93  to  0.99

0.99  to  1.02

1.02  to  1.07

1.07  to  1.30

Latent Structure Mixture Model posterior RR

Posterior median

0.84  to  0.96

0.96  to  0.99

0.99  to  1.02

1.02  to  1.06

1.06  to  1.22

Figure 3: Breast cancer raw rates and posterior mean relative risk
from latent structure mixture model.
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Perhaps more interesting, is that with this model it is possible to examine

posterior mean mixing probabilities for each PCT. Figure 4 gives the posterior

groupings of PCTs associated with this measure. It is clear that although no

explicit spatial structure is imposed in this model, the mixture groups appear to

be highlighting a spatial pattern that has a substantive interpretation (Scotland

and industrial areas in England and Wales). There does therefore appear appear

to be some interesting possibilities in using this type of model formulation.

Posterior probability for group 1 memberships

ππ(Group 1)

<33%

33 to 66%

>67%

Figure 4: Posterior probability of PCT group membership for
latent structure mixture model with two components
and three latent variables.

Finally, we present illustrative results demonstrating the out of sample

performance of the model. A random 35 PCTs had data removed for a a randomly

selected cancer site (Female Lung Cancer). Results are depicted in Figure 5 which

contrasts the posterior predictive density for the omitted data with the actual

data that had been excluded from the model.
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Figure 5: Out of sample posterior predictive density for 35 ‘PCTs’
randomly removed from the Female Lung Cancer site.
The actual removed data points have been superimposed.

5. DISCUSSION

We believe that the latent structure mixture model developed in this paper

provide a tractable approach to handling situations in joint disease modelling

where it may be anticipated that a single dependence structure, either between

diseases or across geographical units, is overly restrictive. We also believe that

such situations are not uncommon and that aspects of the illustrative cancer mor-

bidity data we have examined substantiate the argument for employing mixture

models as a way of avoiding unreasonable exchangeability assumptions.

Our primary focus has been on statistical methodology, rather than iden-

tifying any substantive epidemiological issues arising from the particular cancer

morbidity data we have examined. That said, there could well be interesting

epidemiological distinctions between the areas discriminated using our approach

as reported in Section 4. It is quite striking that the areas with lowest proba-

bility of group 1 membership tending to correspond to former industrial areas of

Scotland, North England and Wales, those PCTs with the highest probability of

group 1 membership tending to correspond to more affluent and rural areas in

Southern England. This fits well with the epidemiology of these diseases, lifestyle

factors such as alcohol and tobacco consumption being more dominant in the
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non-group 1 areas (hence greater lung and oral cancer) and other factors being

responsible for greater breast cancer risk in the group 1 areas. However, we are

cautious of over-interpretation in this regard. Further work is needed to deal with

these models in such a way that the mixtures on the loadings can be disentangled

from the mixtures on the latent variables, but it does appear from our results

that the two structures do act differently.

We have concentrated on modelling dependency structure and not explicitly

addressed use of additional covariate information on geographical units other

than routine standardisation for age/sex population structure. We appreciate

that in practice it is very likely that relevant additional covariate information

will be available on the geographical units concerned. If so, then this can easily

be handled by simply including relevant fixed effects into the linear predictor of

the model we have proposed and does not present any additional methodological

challenges.

In summary, we believe that incorporating a mixture distribution into a la-

tent structure model has considerable potential in modelling multivariate disease

rates. The advantages of using a latent structure model relate to the transpar-

ent way in which correlation structure is represented in the model allowing the

modeller to tune this accordingly. It is less obvious how to do this within, say,

the MCAR formulation where the latent structure is not explicit. We appreciate

that in this paper we have not carried out any formal comparison of the fit of our

proposed model to other formulations such as the MCAR. This topic is taken up

and reported elsewhere in an expanded version of this paper (see [23]).
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1000-043 LISBOA
PORTUGAL

Copyright

Upon acceptance of an article, the author(s) will be asked to transfer copy-
right of the article to the publisher, the INE, I.P., in order to ensure the widest
possible dissemination of information, namely through the Statistics Portugal’s
website (http://www.ine.pt).

After assigning the transfer copyright form, authors may use their own
material in other publications provided that the REVSTAT is acknowledged as
the original place of publication. The Executive Editor of the Journal must be
notified in writing in advance.


	rs110100_impr.pdf
	rs110101_impr.pdf
	rs110102_impr.pdf
	rs110103_impr.pdf
	rs110104_impr.pdf
	rs110105_impr.pdf
	rs110106_impr.pdf
	rs110199_impr.pdf



