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Abstract:

• To forecast future values of a time series is one of the main goals in times series anal-

ysis. Many forecasting methods have been developed and its performance evaluated.

In order to make a selection among an avalanche of such emerging methods they have

to be compared in a kind of forecasting competition. One of these competitions is the

M3 competition with its 3003 time series. The competition results in Makridakis and

Hibon (2000) paper are frequently used as a benchmark in comparative studies.

The Boot.EXPOS approach developed by the authors, combines the use of exponen-

tial smoothing methods with the bootstrap methodology to forecast time series. The

idea is to join these two approaches (bootstrap and exponential smoothing) and to

construct a computational algorithm to obtain forecasts. It works in an automatic

way and can be summarized as follows: (i) choose an exponential smoothing model,

among several proposed using the mean squared error, and obtain the model compo-

nents; (ii) fit an AR to the residuals of the adjusted model; the order of the AR is

selected by AIC criterion; (iii) center the new residuals obtained in previous step and

resample; (iv) obtain a bootstrapped replica of the time series according to the AR

model and exponential smoothing components found in first step; (v) forecast future

values according to model in (i); (vi) compute the point forecast as the mean or as

the median of the predicted values. The performance of the procedure here proposed

is evaluated by comparing it with other procedures presented in the M3 competition.

Some accuracy measures are used for that comparison. All computational work is done

using the R2.8.1 software (R Development Core Team, 2008).
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• bootstrap; exponential smoothing; forecasting accuracy; M3 competition.
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1. INTRODUCTION

In our days it is well known the importance of time series studies. These

studies provide indicators about a country economy, the unemployment rate, the

export and import product rates, etc. A time series is a set of observations usually

ordered in equally spaced intervals. The first step in the analysis of any time

series is the description of the historic series. It includes the graphical rep-

resentation of the data. When a time series is plotted, common patterns are

frequently found. These patterns might be explained by many possible cause-

and-effect relationships. Common components are the trend, seasonal effect,

cyclic changes and randomness. The more interesting and ambitious task is to

forecast future values of a series on the basis of its recorded past, and more

specifically to calculate forecast intervals. Classical procedures to obtain forecast

intervals assume that the distribution of the error process is known. Bootstrap

approaches have been proposed to compute distribution free forecast intervals.

The authors here propose a procedure (Boot.EXPOS) to forecast time series that

is inspired on sieve bootstrap approach (Bühlmann, 1997). The Boot.EXPOS

procedure starts by selecting the best exponential smoothing method accord-

ing to the characteristics that a times series reveals, among a set of methods.

After adjusting the best model, our attention is drawn to the residual part.

The bootstrap is then used after an autoregressive adjustment, selected by AIC

criterion. The time series is then reconstructed, adding the initial components (if

they exist) to the bootstrapped residuals, see Cordeiro and Neves (2007a, 2007b)

for more details. Forecasts are finally obtained using the model initially selected.

The procedure runs automatically, so its possible to test it on large data sets.

Surely there are advantages and disadvantages in this automatic process, but

for now we are not discussing this. The issue here is to discuss measures of its

performance, results and progress achieved. The computational work was done

using the R software. Some of the R packages and functions were used, but new

functions needed to be constructed.

2. EXPONENTIAL SMOOTHING METHODS

Exponential smoothing (EXPOS) refers to a set of forecasting methods,

several of which are widely used. The EXPOS is a procedure that continually

updates a forecast emphasizing the most recent experience, that is, recent ob-

servations are given more weight than the older observations. Single exponential

smoothing, Holt’s linear trend, Holt–Winters seasonal smoothing with either ad-

ditive or multiplicative seasonality are some examples of EXPOS methods, see

DeLurgio (1998) for more details. The forecasting performance of exponential
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smoothing methods has been addressed by several authors. A very good reviewing

of the past 25 years of time series forecasting is given by De Gooijer and Hynd-

man (2006). These methods are relatively simple but reveal robust approaches to

forecasting and are accurate in model identification. The classical Box–Jenkins

ARIMA models require the user to identify an appropriate model and to use at

least 50 observations to have a good chance of success (Chatfield, 1978).

Table 1 shows four EXPOS methods addressed here, where data with or

without trend and/or with or without seasonal components are considered. The

goal is to choose the EXPOS model using the mean squared error criterion and

then separate the pattern (trend or/and seasonality) components from the error

term.

Table 1: The EXPOS methods considered.

Classification Method

1 Single exponential smoothing

2 Holt’s linear trend

3 Holt–Winters seasonal smoothing with additive seasonality

4 Holt–Winters seasonal smoothing with multiplicative seasonality

2.1. Holt–Winters method

The Holt–Winters forecasting method is applied whenever the data behav-

ior is trendy and is seasonally. Relatively to the seasonal factor it can be additive

or multiplicative, depending on the oscillatory movement along the time period.

The additive Holt–Winters (classification 3 in Table 1) has the following recursive

equations to estimate the trend and the seasonal factor at time t

Tt = α(Xt − St−s) + (1 − α) (Tt−1 + bt−1)

bt = β (Tt − Tt−1) + (1 − β)bt−1

St = γ (Xt − Tt) + (1 − γ)St−s

with α, β, γ ∈ [0, 1] and

Tt smoothed value at end of period t after adjusting for seasonality

Xt value of actual demand at end of period t

St−s smoothed seasonal index, s periods ago

bt smoothed value of trend through period t
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α smoothing constant used for Tt

β smoothing constant used to calculate the trend (bt)

γ smoothing constant used for calculate the seasonal index in period t.

The prediction equation is

(2.1) X̂t(h) = Tt + h×bt + St+h−rs

where h = 1, 2, 3, ... is the forecast horizon and r = 1 if 1 ≤ h ≤ s, r = 2 if

s < h ≤ 2s, etc.

The multiplicative Holt–Winters (classification 4 in Table 1) has as recursive

equations

Tt = α(Xt/St−s) + (1 − α) (Tt−1 + bt−1)

bt = β (Tt − Tt−1) + (1 − β)bt−1

St = γ (Xt/Tt) + (1 − γ)St−s

and prediction equation

(2.2) X̂t(h) = (Tt + h×bt)×St+h−rs ,

where the parameters are defined above.

The exponential smoothing parameters (α, β, γ) are estimated by mini-

mizing the sum of squared errors and are restricted to values in (0,1). Simple

exponential smoothing and Holt’s method (classification 1 and 2 in Table 1)

are derived from the above equations considering the corresponding exponential

smoothing parameters (β, γ) to be set to zero.

3. ABOUT BOOTSTRAP

The bootstrap resampling technique (Efron, 1979) is a very popular method-

ology in independent data because of its simplicity and nice properties. It is a

computer-intensive method that presents solutions in situations where the tradi-

tional methods fail. Efron’s bootstrap classical approach has revealed inefficient

in the context of dependent data, such as in the case of time series, where the

dependence data arrangement should be kept during the resampling scheme. But

for dependent data the generating process is often not fully specified. Then there

exists no unique way for resampling.

A great development in the resampling methods area for dependent data

has been observed, see Lahiri (2003). The majority of those methods suggests

the use of blocks, in order to keep the dependence structure. Different versions
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of blocking differ in the way as blocks are constructed. The most well known

versions are: Nonoverlapping Block Bootstrap (Carlstein, 1992); Moving Block

Bootstrap (Künsch, 1989); Circular Block Bootstrap (Politis and Romano, 1992)

and Stationary Block Bootstrap (Politis and Romano, 1994). For a large class of

stationary processes, Bühlmann (1997) presents the sieve bootstrap method based

on a sieve of autoregressive processes of increasing order. Recently Alonso et al.

(2002) extended the sieve approach in order to obtain prediction intervals.

In Cordeiro and Neves (2006) several bootstrap methodologies for dependent

data were compared in constructing forecast intervals and the sieve bootstrap

has revealed as a good compromise for obtaining forecast intervals.

3.1. Particular approach: sieve bootstrap

In 1997, Bühlmann proposed a bootstrap scheme called sieve bootstrap.

This method is based on the idea of fitting parametric models first and after-

wards resampling from the residuals. However the model is chosen adaptively

rather than considering a pre-fixed model. This approach is different from other

bootstrap methods, the sample bootstrap is (conditionally) stationary and does

not present structure of dependence. Another different feature is that the sieve

bootstrap sample is not a subsample from the original data, as in other methods.

Given a sample X1, ..., Xn, from a stationary process, select the order p = p(n)

of an autoregressive approximation by AIC criterion. The autoregressive coeffi-

cients are Yule–Walker estimates. The AR(p) model is used to filter the residuals

series. The residuals are then centered and the empirical cumulative distribution

function of these residuals is obtained. From this distribution we get an i.i.d.

resample of the centered residuals. Use the AR for obtaining a new series X∗

t

by recursion. Given X∗

1 , ..., X∗

T
compute the estimation of the autoregressive

coefficients and then obtain future bootstrap observations by recursion from the

new series.

3.2. Boot.EXPOS procedure

Here a different approach is proposed: first fit an EXPOS model to the data

and then to proceed like the above procedure over the residuals — Boot.EXPOS

(Cordeiro and Neves, 2008). The Boot.EXPOS procedure starts by selecting

the best forecasting method, section 2. The seasonality and trend components

(if they exist) are removed from the initial series and only added at the end to

reconstruct the series. In between, the procedures go on like the sieve bootstrap

approach. This general steps are described in Table 2, where it is also established

a comparison between the previous and the new approach.
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Table 2: The previous and the new approach.

Sieve bootstrap Boot.EXPOS

Step 0: Select the best EXPOS method;
components are removed and the
residuals obtained;

Step 1: Adjust an autoregressive model
with increasing order p using AIC
criterion;

Step 1: Adjust an autoregressive model
with increasing order p using AIC
criterion;

Step 2: Obtain the residuals; Step 2: Obtain the residuals;

For B replicates: For B replicates:

Step 3: Resample the centered residuals; Step 3: Resample the centered residuals;

Step 4: Use AR for obtaining a new series
by recursion;

Step 4: Use AR for obtaining a new series
by recursion;

Step 5: Fit AR(p) to the new series; Step 5: Add the components in Step 0 to
the new series; fit EXPOS method
(same type as in Step 0);

Step 6: Obtain the predicted values from
the new series using the previous
AR(p) fit.

Step 6: Obtain the predicted values from
the new series using the previous
EXPOS fit.

3.2.1. Dealing with some statistical issues

The initial step in the Boot.EXPOS procedure is to fit an EXPOS method

selected by MSE, section 2. Then the random part is separated from the other

patterns, such as trend or/and seasonality (these patterns are added at the end).

Next, a test on the stationarity of the random part is performed, before the AR

adjustment. If the stationarity is not accepted, transformation to the data is

required.

Statistical tests used to study stationarity and data transformations:

• Test for a unit root in a time series when the model under considera-

tion in the null hypothesis does not present autocorrelation in the error

term. In such case, simple version of the Dickey–Fuller test is the most

appropriate (Halkos and Kevork, 2005).

• Box–Cox transformations (Box and Cox, 1964) can impose stability on

data variance stability and can make seasonal effect additive. Trans-

formation is used whenever data exhibit multiplicative seasonality, i.e.,
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when EXPOS model choice is 4 according to Table 1. Although the use

of these transformations are not worthwhile in some cases, for exam-

ple in economic data (Nelson and Granger, 1979), there can be some

advantages in using it. Computational work with λ = 0, −1 ≤ λ ≤ 1,

0 ≤ λ ≤ 1, 0 ≤ λ ≤ 0.5, 0 ≤ λ ≤ 0.9 and 0 ≤ λ ≤ 0.99, was performed

and it has revealed a good option when 0 ≤ λ ≤ 1.

• Differencing can transform a non-stationary series to a stationary se-

ries. The KPSS (Kwiatkowski et al., 1992) procedure tests for the null

hypothesis that a time series has a stationary root against a unit-root.

Boot.EXPOS application makes all these procedures whenever the non-

stationarity is detected. But if the data goes over to the above processes and

the presence of the non-stationarity is still detected in the data, the best EXPOS

method is used to obtain forecast without bootstrapping.

4. FORECAST ACCURACY MEASURES

To evaluate the performance of Boot.EXPOS procedure some accuracy

measures are used. In M3 competition some of those measures are calculated.

Concerning this subject it is also interesting to read the article proposed by

Hyndman and Koehler (2006).

Let Xt denote the observation at time t and X̂t the forecast of Xt. The fore-

cast error is defined by et = Xt − X̂t. The forecasts are computed for a hold-out

period. Thus the out-of-sample forecasts X̂n(1), ..., X̂n(h) are computed based on

the data from time t = 1, ..., n. Accuracy measures are then computed in order

to compare our results with those presented in Makridakis and Hibon (2000) in

http://www.forecastingprinciples.com/m3-competition.html. The following ac-

curacy measures are here considered:

Table 3: Two accuracy measures.

Acronyms Name Definition

sMAPE Symmetric Mean Absolute mean

(

200
|et|

Xt +X̂t

)

Percentage Error

RMSE Root Mean Squared Error

√

mean(e2
t
)
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5. A COMPETITIVE EXAMPLE

In this section, the performance and evaluation of the Boot.EXPOS proce-

dure is analyzed. A 3003 time series data — M3 Competition — is used in this

analysis. This huge data set has been used by many researchers as a powerful

tool to test new forecasting methods and this is what we shall present next.

5.1. The competing data

The M3 Competition data set involves 3003 time series selected on a quota

basis of 6 different types of series: micro, industry, finance, demographic and

other; and 4 different time intervals between successive observations: yearly,

quarterly, monthly and other. The historical values of each series are at least

14 observations for yearly data, 16 for quarterly data, 48 for monthly data and

60 observations for other data. The time horizons of forecasting are 6 periods for

yearly data, 8 periods for quarterly and other data, and 18 periods for monthly

data. Table 4 shows the number of series in each category and Figure 1 shows

the plot of examples of some types.

Table 4: The 3003 time series distribution.

Period
Type of times series data

Total

Demographic Finance Industry Macro Micro OTHER

Monthly 111 145 334 312 474 52 1428

OTHER 0 29 0 0 4 141 174

Quarterly 57 76 83 336 204 0 756

Yearly 245 58 102 83 146 11 645

Total 413 308 519 731 828 204 3003

5.2. Some tools use in competition

An automatic procedure to analyze each time series is necessary as there is

a large set of time series. All the intensive computational work is performed using

R 2.8.1 software (R DevelopmentCoreTeam, 2008). Packages such as car, FitAR,

forecast, Mcomp, tseries, among others, are widely used in the implementation

of the new procedures in R language: best.EXPOS() to select the best EXPOS

method and boot.EXPOS() a procedure using bootstrap and EXPOS.
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Figure 1: M3 competition category: monthly (a), quarterly (b),

yearly (c) and “other” (d).

5.3. EXPOS vs Boot.EXPOS

All time series considered are strictly positive. For each category, different

forecasting periods are considered: 6 for yearly, 8 for quarterly and“other”, 18 for

monthly. For the M3 competition a comparison between the forecasts produced

by any of the four EXPOS methods and the forecast produced by Boot.EXPOS

procedure is showed in Figure 2. Symmetric mean absolute percentage error is

one of the accuracy measures used in this study. It can be seen that for the

time period interval yearly and Other the resampling technique is not a favorable

procedure. In the monthly and quarterly cases the scenario is better. It seems

that for time series with components trend and seasonality the Boot.EXPOS

procedure can be a good compromise in forecasting.
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Figure 2: EXPOS and Boot.EXPOS comparison using M3 competition data.

5.4. Boot.EXPOS vs six competition methods

Each M3 competition series was classified according to Table 1, using func-

tion best.EXPOS(). This function selects the model that presents the minimum

MSE. For monthly time series the distribution is showed in Table 5. Here, to il-

lustrate Boot.EXPOS only monthly time series will be considered. For each

series the procedure scheme in Table 2, right, goes from Step 0 to Step 6. One

thousand replications (B = 1000) are carried out and forecasts are obtained for

each replication. Two forecast estimates are obtained: the average and median

of the B forecasted values. Only the average is used here and is based in the 95%

central forecast simulations.

Table 5: Number of monthly time in each method.

Category
Classification

1 2 3 4

Monthly 515 300 345 268
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In these competitions the participating experts are asked to obtain a given

number of forecast values for each data period. Their forecasts are latter com-

pared with the actual values and the accuracy of such forecasts is calculated.

Makridakis and Hibon (2000) lists 24 methods of forecasting used in the M3

competition. Naive2, Box–Jenkins automatic, ForecastPro, THETA, RBH and

ForecastX are the six methods that present the best performance in M competi-

tion (Makridakis et al., 1982) and M3 competition (Makridakis and Hibon, 2000).

These well behaved 6 methods (Hyndman et al., 2002) are used in comparison

to our approach. For the monthly case the sMAPE and RMSE are present in

Tables 6 and 7, respectively.

Table 6: Average symmetric MAPE: 1428 monthly series.

Method
Forecasting horizon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Naive2 15.0 13.5 15.7 17.0 14.9 14.4 16.0 15.6 15.9 16.0 16.7 16.0 18.1 18.4 19.3 21.3 19.6 20.7

B-J automatic 12.3 11.7 12.8 14.3 12.7 12.3 13.6 13.0 13.4 13.4 14.5 14.1 16.2 16.9 17.8 19.7 18.1 19.3

ForecastPRO 11.5 10.7 11.8 13.0 11.9 12.0 13.0 12.7 13.0 13.0 13.9 13.3 15.3 15.4 16.4 18.2 16.8 18.3

THETA 11.2 10.7 11.8 12.4 12.2 12.2 13.6 12.7 13.2 13.4 13.5 13.2 15.4 15.3 16.5 17.9 17.0 18.5

RBF 13.7 12.3 13.7 14.3 12.3 12.5 14.6 13.5 14.2 14.5 14.1 14.1 16.1 15.8 17.3 18.3 16.8 17.8

ForecastX 11.6 11.2 12.6 14.0 12.4 12.0 13.0 12.8 13.1 13.4 13.9 14.0 15.8 16.6 17.8 19.4 18.1 18.8

Boot.EXPOS 11.6 11.5 12.0 13.6 13.7 14.2 15.4 14.1 14.4 14.4 14.4 13.6 16.0 15.7 16.9 18.9 18.3 19.7

Table 7: Root mean squared error: 1428 monthly series.

Method
Forecasting horizon Average

1 2 3 4 5 6 8 12 15 18 1–18

Naive2 1144 1367 1466 1643 1363 1201 1453 1329 1766 1673 1448

B-J automatic 864 942 934 1061 1006 1100 1107 1208 1454 1563 1185

ForecastPRO 812 905 913 1068 1032 990 1157 1135 1411 1463 1146

THETA 810 936 1067 1181 1130 979 1170 1138 1445 1487 1168

RBF 984 1636 1468 1850 1503 1000 1355 1197 1764 1651 1459

ForecastX 794 977 920 1087 1008 966 1175 1169 1457 1510 1163

Boot.EXPOS 840 988 1214 1627 1370 1540 1702 1149 1580 1828 1405

In a first look the results have a reasonable classification among the six

methods in study. But if the results are separated into classification 1, 2, 3 and 4

(Table 1) the scenario gets better. Results for the above six methods and for

the Boot.EXPOS procedure are given in Tables 8, 9, 10 and 11, corresponding to

each classification.

The performance of the various methods depends upon the length of the

forecasting horizon. Our method presents sMAPE among the values of the se-

lected methods (Table 6), particularly it has a very good performance when the

time series model classification is 4 (Table 11). When the time series model is the

Holt–Winters additive (classification 3) Table 10 shows a reasonable behavior.

Regarding the other classification (1 and 2) Tables 8 and 9 show poor results.
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It is evident that the procedure is best succeeded when the time series is seasonal

and trendy. For time series in classifications 1 and 2, the authors thought that the

classical EXPOS methods could produce accurate forecasts but in fact a simula-

tion computational study has revealed the opposite. For some of these time series

whenever stationarity was achieved the Boot.EXPOS forecasts were better values.

Table 8: Average symmetric MAPE: 1.

Method
Forecasting horizon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Naive2 16.2 16.2 17.9 20.5 18.5 18.4 20.8 20.4 19.2 19.3 20.4 19.4 21.5 22.2 23.5 26.3 22.7 26.0

B-J automatic 12.3 12.9 15.3 16.8 16.3 16.3 17.4 18.0 18.3 17.0 18.4 17.1 20.4 20.5 22.6 23.4 21.5 24.7

ForecastPRO 12.1 12.4 14.5 16.1 15.3 15.9 16.6 17.8 17.2 16.5 17.8 16.4 20.0 19.8 21.7 23.0 20.7 23.8

THETA 12.0 12.8 15.0 15.9 15.8 15.8 17.7 17.9 16.8 16.5 17.3 16.1 19.9 19.6 21.3 22.6 19.9 23.5

RBF 14.9 14.8 16.8 18.3 16.2 16.8 18.7 18.7 17.2 17.3 17.6 17.0 20.4 20.0 22.3 23.5 20.4 22.8

ForecastX 11.1 12.9 14.3 16.2 15.3 15.9 16.6 17.7 16.6 16.4 17.2 16.5 19.4 19.6 21.9 23.2 20.7 23.3

Boot.EXPOS 14.8 14.8 15.5 17.6 16.5 15.9 17.2 17.2 16.8 17.0 19.2 17.4 20.1 21.2 21.7 24.4 21.8 24.4

Table 9: Average symmetric MAPE: 2.

Method
Forecasting horizon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Naive2 1.4 2.0 2.7 3.8 3.9 4.3 4.9 5.2 5.4 5.9 6.5 7.2 7.7 7.6 8.6 9.1 9.5 10.1

B-J automatic 1.3 1.7 2.3 3.4 3.5 3.7 4.3 4.6 4.7 5.2 5.6 6.2 6.6 6.6 7.5 8.2 8.5 9.0

ForecastPRO 1.3 1.7 2.1 3.2 3.2 3.6 4.0 4.4 4.5 5.0 5.6 5.9 6.5 6.3 7.5 8.1 8.6 9.3

THETA 1.3 1.7 2.3 3.3 3.3 3.6 4.2 4.4 4.6 5.1 5.8 6.3 6.7 6.7 7.8 8.2 8.6 9.2

RBF 3.0 3.3 3.7 4.3 3.9 4.1 4.7 4.9 4.8 5.4 6.0 6.2 6.6 6.4 7.3 7.6 7.7 8.3

ForecastX 1.3 1.7 2.3 3.4 3.5 3.8 4.5 4.8 5.0 5.5 6.0 6.6 7.1 7.2 8.2 8.8 9.3 9.9

Boot.EXPOS 4.6 5.0 5.8 6.9 6.2 7.7 7.6 7.8 8.3 7.6 8.3 9.2 10.6 10.5 12.0 11.7 11.6 12.3

Table 10: Average symmetric MAPE: 3.

Method
Forecasting horizon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Naive2 12.8 13.3 13.9 16.0 13.7 12.7 14.8 13.8 15.4 15.7 16.7 14.0 16.8 15.7 17.6 17.3 17.4 18.3

B-J automatic 11.0 11.4 10.5 12.6 11.4 10.7 12.3 11.6 13.2 12.7 13.8 12.7 14.3 14.1 15.7 15.8 15.2 16.2

ForecastPRO 10.5 10.6 10.4 12.4 11.0 10.7 11.9 11.3 13.3 12.9 13.7 12.0 13.6 13.4 14.8 15.6 14.8 15.9

THETA 10.5 10.6 10.7 12.2 11.6 11.0 12.5 11.4 14.1 12.7 14.1 12.2 13.6 13.3 15.0 15.2 15.3 16.7

RBF 12.8 12.5 12.3 13.5 11.1 11.2 14.3 12.3 14.7 14.8 15.3 13.6 16.1 15.1 16.6 17.0 16.1 17.1

ForecastX 10.7 10.9 10.4 12.7 11.4 10.4 12.3 11.6 13.2 12.9 14.3 12.9 14.5 14.0 15.9 15.6 16.3 16.7

Boot.EXPOS 9.5 10.3 10.9 12.8 14.6 15.4 17.9 15.7 16.4 13.6 13.4 12.0 13.9 12.2 15.5 16.8 17.7 19.2

Table 11: Average symmetric MAPE: 4.

Method
Forecasting horizon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Naive2 23.7 18.1 23.0 22.8 19.3 18.5 19.6 19.3 19.7 19.4 19.8 20.1 22.5 24.0 23.7 27.7 25.0 24.8

B-J automatic 19.8 16.9 18.9 20.0 16.2 15.6 17.3 15.3 14.8 15.9 17.3 17.4 20.3 22.6 21.6 26.8 23.6 23.5

ForecastPRO 17.9 14.6 16.5 16.7 14.9 14.8 16.2 14.7 14.4 15.0 15.8 16.3 18.1 19.0 18.8 22.5 20.2 21.2

THETA 16.8 14.4 15.8 15.1 15.0 15.2 16.7 14.4 14.6 16.5 14.5 15.8 18.5 18.6 19.0 21.9 21.1 21.6

RBF 19.6 15.4 18.3 17.6 15.2 15.2 17.4 15.4 16.7 17.2 15.2 16.6 18.3 18.6 19.7 21.5 19.7 19.8

ForecastX 18.6 15.4 19.1 19.4 16.1 15.0 15.8 14.6 14.8 16.2 15.6 17.2 19.0 22.0 21.9 25.6 22.8 22.2

Boot.EXPOS 16.2 14.0 13.6 14.2 15.7 16.5 17.2 13.4 14.2 18.1 13.5 13.7 17.0 15.5 15.2 18.9 20.0 19.7
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6. CLOSING COMMENTS

An automatic procedure based on EXPOS and bootstrap methodology is

presented. Our methodology was applied to the M3 competition data. Accuracy

measures such as sMAPE, RMSE were calculated and compared with the mea-

sures obtained for the best six competition methods. The method revealed a very

good performance for series with seasonal and trendy components. Short length

time series showed difficulties in the forecasting procedure. In fact Billah et al.

(2006) decide to separate the short series in order to obtain... plausible results

with satisfactory level of statistical reliability.

Some research is in progress for improving the results obtained, as well as

for considering new methods for the initial fitting.
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[17] Künsch, H. (1989). The Jackknife and the Bootstrap for general stationary

observations, The Annals of Statistics, 17(3), 1217–1241.

[18] Kwiatkowski, D.; Phillips, P.; Schmidt, P. and Schin, Y. (1992). Testing

the null hypothesis of stationarity against the alternative of a unit root, Journal

of Econometrics, 54, 159–178.

[19] Lahiri, S.N. (2003). Resampling Methods for Dependent Data, Springer Verlag.

[20] Makridakis, S.; Anderson, A.; Carbone, R.; Fildes, R.; Hibon, M.;

Lewandowski, R.; Newton, J.; Parzen, E. and Winkler, R. (1982). The

accuracy of extrapolation (time series) methods: results of a forecasting compe-

tition, Journal of Forecasting, 1, 111–153.

[21] Makridakis, S. and Hibon, M. (2000). The M3-Competition: results, conclu-

sions and implications, International Journal of Forecasting, 16, 451–476.

[22] Nelson, H.L. and Granger, C. (1979). Experience with using the Box–Cox

transformation when forecasting economic time series, Journal of Econometrics,

10, 57–69.

[23] Politis, D.R. and Romano, J.P. (1992). A Circular Block-Resampling Proce-

dure for Stationary Data, Wiley, New York, Springer, 225–270.

[24] Politis, D.R. and Romano, J.P. (1994). The stationary bootstrap, Journal of

the American Statistical Association, 89(428), 1303–1313.

[25] R development core team (2008). R: A language and environment for sta-

tistical computing, R Foundation for statistical computing, Vienna, Austria,

http://CRAN.R-project.org.



REVSTAT – Statistical Journal

Volume 7, Number 2, June 2009, 151–170

MONITORING INDUSTRIAL PROCESSES WITH

ROBUST CONTROL CHARTS

Authors: Fernanda Figueiredo

– C.E.A.U.L. and Fac. de Economia da Universidade do Porto, Portugal

otilia@fep.up.pt

M. Ivette Gomes

– F.C.U.L. (D.E.I.O.) and C.E.A.U.L., Universidade de Lisboa, Portugal

ivette.gomes@fc.ul.pt

Received: July 2008 Revised: October 2008 Accepted: December 2008

Abstract:

• The Shewhart control charts, used for monitoring industrial processes, are the most

popular tools in Statistical Process Control (SPC). They are usually developed under

the assumption of independent and normally distributed data, an assumption rarely

true in practice, and implemented with estimated control limits. But in general, we

essentially want to control the process mean value and the process standard deviation,

independently of the data distribution. In order to monitor these parameters, it thus

seems sensible to advance with control charts based on robust statistics, because these

statistics are expected to be more resistant to moderate changes in the underlying

process distribution. In this paper, we investigate the advantage of using control

charts based on robust statistics. Apart from the traditional control charts, the sample

mean and the sample range charts, we consider robust control charts based on the

total median and on the total range statistics, for monitoring the process mean value

and the process standard deviation, respectively. Through the use of Monte Carlo

simulations, we compare these charts in terms of robustness and performance.
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1. INTRODUCTION

The most commonly used charts for monitoring industrial processes, or

more precisely, a quality characteristic X at the targets µ0 and σ0, the desired

mean value and standard deviation of X, respectively, are the Shewhart control

charts with 3-sigma control limits. These charts are usually developed under

the assumptions of independent and normally distributed data, and have control

limits (CL’s) of the form

LCLW = E(W ) − 3

√

V(W ) , UCLW = E(W ) + 3

√

V(W )

where W , LCL, UCL, E and V denote the control statistic, the lower control limit,

the upper control limit, the expected value operator and the variance operator,

respectively. More precisely, to monitor the process mean value µ at µ = µ0, it is

common to implement a two-sided sample mean chart, X, also denoted M -chart,

with lower and upper control limits given by

(1.1) LCLM = µ0 − 3 σ0/
√

n , UCLM = µ0 + 3σ0/
√

n .

To monitor the process standard deviation σ at σ = σ0, it is common to implement

a sample range chart, R, with lower and upper control limits given by

(1.2) LCLR = d2σ0 − 3 d3σ0 , UCLR = d2σ0 + 3 d3σ0 ,

where d2 and d3 are constants tabulated for standard normal data, and presented

in Table 2 (Section 2.1) for the most common rational subgroups size, n. General

details about control charts can be found in Ryan (2000) and Montgomery (2005),

among others.

For normal data and when it is not necessary to estimate the control lim-

its, the Shewhart control charts exhibit a reasonable high performance to detect

moderate to large changes in the process parameters. However, despite of the

importance of the normal distribution in Statistical Process Control (SPC), the

experience tells us that even in potential normal situations there is some possi-

bility of having an underlying non-normal distribution, with moderate to strong

asymmetry and with tails heavier than the normal tail, as well as a significant

correlation between the observations.

Additionally, the target values µ0 and σ0 are not usually fixed given values,

and we have to estimate them, in order to determine the control limits of the chart.

Several studies refer that, even for normal data, we are able to obtain control

charts with estimated control limits with the same properties as the corresponding

charts with true limits, only if we use a large number of initial rational subgroups

in the estimation. Moreover, we should determine the control limits in a robust

way, in order to minimize the effect of possible outliers in the initial subgroups.
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The effect of the estimation of the control limits and of the non-normality in

the performance of the usual control charts can be found in Rocke (1989, 1992),

Quesenberry (1993), Amin and Lee (1999), Chakraborti (2000, 2006), Nedumaran

and Pignatiello (2001), Champ and Jones (2004), Figueiredo and Gomes (2004,

2006) and Jensen et al. (2006), among others. Schilling and Nelson (1976), Bai

and Choi (1995) and Castagliola (2000), also among others, provide different

corrections to the control limits of the usual control charts in order to maintain

the expected false alarm rate, whenever monitoring non-normal data.

To sum up, the traditional control charts must be used carefully. If the

model underlying the process is far from the normal, we can decide for the imple-

mentation of a control chart associated with the specific distribution underlying

the process, whenever this seems necessary and feasible. Alternatively, we can

decide for the implementation of a robust control chart, less sensitive to the nor-

mality assumption. In this paper, we shall investigate the benefits of using control

charts based on robust control statistics, so that we do not have either a very

high or a very low false alarm rate whenever the parameters to be controlled are

close to the targets, although the data is no longer normal, together with the use

of robust estimates of the upper and lower control limits. Some considerations

about “robust” estimation can be found in Hampel (1971), Hoaglin et al. (1983),

Lax (1985), Hampel et al. (1986), Figueiredo (2003a, 2003b) and Figueiredo and

Gomes (2004), among others.

In Section 2, we provide some information about the total median and the

total range statistics, analyzing the robustness and efficiency of these location

and scale estimators, as well as their sampling distribution. These are the robust

statistics considered in this study, used in the estimation and monitoring of the

process mean value and the process standard deviation, respectively, alternatively

to the usual sample mean and sample range statistics. In Section 3, we present

some simulation results about the robustness and the comparative performance

of control charts based on classical and robust estimation of mean values and

standard deviations.

2. THE TOTAL MEDIAN AND THE TOTAL RANGE STATISTICS

Let us denote (X1, X2, ..., Xn) a random sample of size n taken from a

process X with distribution function (d.f.) F , and (X1:n, X2:n, ..., Xn:n) the ran-

dom sample of the associated ascending order statistics (o.s.). Given an observed

sample (x1, x2, ..., xn), the associated bootstrap random sample, (X∗

1 , X∗

2 , ..., X∗

n),

is a random sample of independent, identically distributed replicates from a ran-

dom variable X∗
, with d.f. equal to the empirical d.f. of our observed sample, i.e.,
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given by

F ∗

n(x) =
1

n

n
∑

i=1

I
{xi≤x} , with IA =

{

1 if A occurs

0 otherwise

the indicator function of the set A. We next define the bootstrap median and

the bootstrap range as the median and the range, respectively, of the bootstrap

random sample. The bootstrap median is thus given by

BMd =

{

X∗

m:n if n = 2m −1 ,
(

X∗

m:n + X∗

m+1:n

)

/2 if n = 2m, m = 1, 2, ...

and the bootstrap range is given by BR = X∗

n:n−X∗

1:n.

Remark 2.1. Note that given an observed sample (x1, x2, ..., xn), the sup-

port of the bootstrap median is the set
{

(xi:n + xj:n)/2, 1 ≤ i ≤ j ≤ n
}

, and the

support of the bootstrap range is the set
{

xj:n− xi:n, 1 ≤ i ≤ j ≤ n
}

.

Let us denote αij and βij the following probabilities:

αij := P

(

BMd =
xi:n + xj:n

2

)

, 1 ≤ i ≤ j ≤ n ,(2.1)

βij := P

(

BR = xj:n− xi:n

)

, 1 ≤ i < j ≤ n ,(2.2)

with P(A) denoting the probability of the event A.

Definition 2.1. The total median statistic, denoted TMd , is given by

(2.3) TMd :=

n
∑

i=1

n
∑

j=i

αij

(

Xi:n +Xj:n

2

)

=:

n
∑

i=1

aiXi:n ,

and the total range statistic, denoted TR, is given by

(2.4) TR :=

n−1
∑

i=1

n
∑

j=i+1

βij

(

Xj:n−Xi:n

)

=:

n
∑

i=1

biXi:n ,

where the coefficients ai and bi are thus given by

(2.5) ai =
1

2

(

n
∑

j=i

αij +

i
∑

j=1

αji

)

and bi =

i−1
∑

j=1

βji −
n
∑

j=i+1

βij , 1 ≤ i ≤ n .

Cox and Iguzquiza (2001) and Figueiredo and Gomes (2004, 2006) present

explicit expressions for αij and βij in (2.1) and (2.2), respectively, which enable

the computation of the weights ai and bi, 1 ≤ i ≤ n, in (2.3) and (2.4), respec-

tively, through the use of (2.5).
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Remark 2.2. Note that the coefficients ai and bi are independent of the

underlying model F , and only depend on the sample size n. A linear combination

of the sample o.s., with weights given by these coefficients, such as the TMd

and the TR statistics, in (2.3) and (2.4), respectively, define a kind of “robust”

trimmed-mean, where the percentage of trimming is determined independently

of the underlying distribution of the data, and a “robust” range. The extreme

observations have a smaller influence in these statistics than in the sample mean

and in the sample range. They can thus be used to estimate the location and the

scale parameters whenever there is a possibility of disturbances in the data, such

as outliers or contaminated data. In Table 1 we present, for each entry i, the

values of the coefficients ai and bi with three decimal figures, for the most usual

rational subgroups size, n, in SPC.

Table 1: Coefficients ai and bi, ai = an−i+1 and bi =−bn−i+1, 1≤ i ≤n.

i

.
n 3 4 5 6 7 8 9 10

1
ai 0.259 0.156 0.058 0.035 0.010 0.007 0.001 0.001
bi −0.750 −0.690 −0.672 −0.666 −0.661 −0.657 −0.653 −0.652

2
ai 0.482 0.344 0.259 0.174 0.098 0.064 0.029 0.019
bi 0.000 −0.198 −0.240 −0.246 −0.245 −0.244 −0.242 −0.241

3
ai 0.366 0.291 0.239 0.172 0.115 0.078
bi 0.000 −0.058 −0.073 −0.077 −0.078 −0.079

4
ai 0.306 0.257 0.221 0.168
bi 0.000 −0.016 −0.020 −0.022

5
ai 0.268 0.234
bi 0.000 −0.004

2.1. Location and scale estimators: robustness and efficiency

The skewness of a model is often measured through two different coeffi-

cients, the Fisher and the Bowley skewness coefficients. The Fisher skewness

coefficient of a d.f. F , denoted γ, is given by

(2.6) γ := µ3/µ
3/2

2
,

where µr denotes the r-th central moment of F . The Bowley skewness coefficient

(also called quartile skewness coefficient), denoted γ
B
, is given by

(2.7) γ
B

:=

(

F−1
(0.75) − F−1

(0.5)
)

−
(

F−1
(0.5) − F−1

(0.25)
)

F−1(0.75) − F−1(0.25)
,

where F−1
denotes the inverse functions of F .
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The tail-weight coefficient of a distribution F here considered, and denoted τ,

is given by

(2.8) τ :=
1

2

F
−1(0.99)−F

−1(0.5)

F−1(0.75)−F−1(0.5)
+

F
−1(0.5)−F

−1(0.01)

F−1(0.5)−F−1(0.25)

Φ−1(0.99)−Φ−1(0.5)

Φ−1(0.75)−Φ−1(0.5)

,

where F−1
and Φ

−1
denote the inverse functions of F and of the stan-

dard normal d.f. Φ, respectively. For symmetric distributions we have τ =
(

F−1
(0.99)/F−1

(0.75)
)/(

Φ
−1

(0.99)/Φ
−1

(0.75)
)

, the tail-weight coefficient de-

fined in Hoaglin et al. (1983).

Several Monte Carlo simulation studies have been carried out to evaluate

the efficiency and the robustness of different location and scale estimators, in-

cluding the total median and the total range statistics. Some of these studies

have been presented in Figueiredo (2003a, 2003b) and in Figueiredo and Gomes

(2004, 2006), for a reasonably large set of symmetric and asymmetric distribu-

tions, with different skewness and tail-weight. It was then possible to conclude

that the TMd statistic can be used to estimate the median value of a distribu-

tion F , as well as the mean value of a symmetric or approximately symmetric

distribution. The TR statistic can be used to estimate the process standard de-

viation, in the case of rational subgroups of small to moderate size. However,

both R and TR are biased estimators of the standard deviation. In order to get

unbiased estimates, whenever the underlying model F is normal, it is necessary

to consider, as usual, standardized versions of these statistics, obtained by the

division of R = Xn:n−X1:n and TR = X∗

n:n−X∗

1:n by appropriate scale constants.

These constants are equal to the expected values of the statistics for the standard

normal distribution (here denoted by d2 ≡ d2,R and d2,TR, respectively). For the

most common values of n, they are given in Table 2, together with the statistics

standard deviations (here denoted by d3 ≡ d3,R, d3,TR and d3,TMd ).

Table 2: Expected value, d2,•, and standard deviation, d3,•, of R, TR and TMd

for a standard normal distribution (d2,TMd = 0).

Constants 3 4 5 6 7 8 9 10

d2 1.693 2.059 2.326 2.534 2.704 2.847 2.970 3.078
d2,TR 1.269 1.538 1.801 2.027 2.210 2.364 2.491 2.610
d3 0.888 0.880 0.864 0.848 0.833 0.820 0.808 0.797
d3,TR 0.666 0.653 0.657 0.659 0.656 0.650 0.641 0.636
d3,TMd 0.583 0.507 0.464 0.425 0.401 0.375 0.359 0.340
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2.1.1. The class of models under consideration

To analyze the robustness of the above mentioned statistics to slight devia-

tions of the normal model, and following the methodology presented in Figueiredo

(2003b) and Figueiredo and Gomes (2004), we have considered several symmetric

distributions, related with the standard normal distribution, and with different

tail-weights τ , the indicator defined in (2.8). More precisely, we have considered

standardized data from the following set D of symmetric distributions:

1. the standard normal, N(0, 1);

2. the standard Laplace, Laplace(0, 1);

3. the contaminated normal distributions, CN(α × 100%), in which each

observation has a (1− α)×100% probability of being drawn from the

N(0, 1) and α×100% probability of being drawn from the N(0, k), with

a standard deviation k = 3 and percentages of contamination α = 0.01,

0.025, 0.05, 0.075, 0.10, 0.125 and 0.15.

The d.f. of the standard Laplace model is given by

F (x) =

{

ex/2 , x ≤ 0

1 − e−x/2 , x > 0

and the d.f. of the contaminated normal model CN(α ×100%), is given by

F (x) = α Φ(x/k) + (1−α) Φ(x) ,

where Φ denotes the d.f. of the standard normal distribution, given by Φ(x) =
∫

x

−∞
exp(−t2/2) dt/

√
2π, x ∈ R.

Remark 2.3. Note that even in potential normal situations there is some

possibility of having disturbances in the data, and one of the previous distribu-

tions in D, for instance, can describe the process data in a more reliable way.

2.1.2. The methodology

• To compare the efficiency of the different location estimators, we have

used their mean square error. Since this measure is affected by the

scaling of the estimator, we have used the variance of the logarithm of

the estimator in the comparison of the scale estimators. Details about

performance measures of scale estimators can be found in Lax (1985).

• To select the most robust estimator among the estimators under study,

in the set D of models under consideration, we have applied a Max/Min

criterion, following the steps below:
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S1 – for every distribution in D, obtain the most efficient estimator,

among the ones considered;

S2 – then, compute the efficiency of the other estimators relatively to

the best one, previously selected in step S1;

S3 – next, for each estimator, save the obtained minimum relative ef-

ficiency along all the considered distributions in D, the so-called

“degree of robustness” of the estimator;

S4 – finally, the most robust estimator is the one with the highest

“degree of robustness”.

2.1.3. Results

Apart from the sample mean M ≡ X and the total median TMd , both

location estimators, we have considered another location estimator, the sample

median Md . Apart from the range R and the total range TR, both scale es-

timators, we have also considered the sample standard deviation estimator, S.

In Figure 1 we present the most efficient estimator for the mean value (at the

left) and for the standard deviation (at the right) of a distribution F in D, for

rational subgroups of size n = 3 up to 10.

sample size sample size

!F F 3 4 5 6 7 8 9 10 !F F 3 4 5 6 7 8 9 10

1,717 CN(15%) Md Md TMd TMd TMd TMd TMd M 1,717 CN(15%) TR TR TR TR TR TR S S

1,642 CN(12,5%) TMd Md TMd TMd TMd TMd TMd M 1,642 CN(12,5%) TR TR TR TR TR TR S S

1,636 Laplace TMd Md TMd TMd TMd TMd TMd TMd 1,636 Laplace TR TR TR TR TR S S S

1,532 CN(10%) TMd Md TMd TMd TMd TMd TMd M 1,532 CN(10%) TR TR TR TR TR TR S S

1,376 CN(7,5%) TMd Md TMd TMd TMd TMd TMd M 1,376 CN(7,5%) TR TR TR TR TR TR S S

1,205 CN(5%) TMd TMd TMd TMd TMd TMd TMd M 1,205 CN(5%) TR TR TR TR TR TR S S

1,08 CN(2,5%) TMd TMd TMd TMd TMd TMd M M 1,08 CN(2,5%) S TR TR TR TR TR S S

1,028 CN(1%) M TMd M M M M M M 1,028 CN(1%) S S S S S S S S

1 N(0,1) M M M M M M M M 1 N(0,1) S S S S S S S S

Figure 1: Most efficient estimator for the mean value (left)

and for the standard deviation (right).

The TMd and the TR estimators are the most efficient to estimate the

mean value and the standard deviation, respectively, of a moderate-to-heavy-

tailed distribution, whenever we consider rational subgroups of moderate size.

We advise the use of the M and the S estimators only for distributions with

small tail-weight and moderate-to-large sample sizes. In the extreme case of

small samples and too heavy-tailed distributions, the sample median Md and the

total range TR turn out to be the most efficient location and scale estimators,

respectively. For n = 3, the Md estimator is worse than the TMd -estimator for

high degrees of contamination of a normal model, due to the fact that there is

only one central observation, instead of the two central observations when n = 4.
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This is the reason for the discontinuity point in the graph of Figure 1 (left).

The R-estimator is not at all competitive, despite of the fact that, in SPC, the

range control chart based on the R-statistic is much more popular to monitor

the standard deviation than the standard deviation control chart, based on the

S-statistic.

In Figure 2 we picture the degree of robustness of the above-mentioned

estimators.

   Degree of robustness
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Figure 2: Degree of robustness of the location (left) and scale (right)

estimators under study.

From Figure 2 (left), we can observe that the TMd -estimator is much more

robust to changes in the underlying distribution F than the sample mean and

the sample median estimators, M and Md , respectively. Indeed, the degree of

robustness of TMd is always higher than the ones of either M or Md . The TR-

estimator and the S-estimator present a similar degree of robustness, whenever

we consider any d.f. F in D, and are more robust than the R-estimator.

2.2. The sampling distribution

In order to get information about the sampling distribution of the previous

location and scale statistics M ≡ X, TMd , R and TR, here generically denoted

by W, we have generated 50,000 values of each of the statistics W, for rational

subgroups of size n = 5 and n =10 from d.f.’s in D. We have simulated their sam-

pling distribution, and we have estimated the tail-weight, τ , defined in (2.8), as

well as the asymmetry, through the use of the Fisher and of the Bowley skewness

coefficients, γ and γ
B
, defined in (2.6) and (2.7), respectively.

The obtained estimates of τ , γ and γ
B
, and of the quantiles χp ≡ F−1

(p),

p = 0.1%, 1%, 25%, 50%, 75%, 99% and 99.9%, of the sampling distribution of the

different statistics under study, are presented in Tables 3–6.
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Table 3: Estimates of the mean values of τ , γ, γ
B
, χ0.1%, χ1%, χ25%, χ50%, χ75%,

χ99%, χ99.9%, for the statistic M and subgroups of size n = 5, 10.

F n τ γ γ
B

χ0.1% χ1% χ25% χ50% χ75% χ99% χ99.9%

N(0,1)
5 1.00 0.01 0.00 −1.398 −1.039 −0.302 −0.001 0.297 1.046 1.410

10 0.99 −0.01 0.00 −0.977 −0.733 −0.217 −0.001 0.212 0.734 0.962

CN(1%)
5 1.03 0.02 −0.01 −1.582 −1.090 −0.312 0.000 0.305 1.099 1.576

10 1.00 −0.02 0.00 −0.968 −0.746 −0.212 0.002 0.216 0.731 0.975

CN(2.5%)
5 1.08 0.02 −0.00 −1.772 −1.175 −0.322 −0.003 0.312 1.192 1.801

10 0.99 −0.01 0.01 −0.995 −0.736 −0.213 −0.001 0.214 0.730 0.956

CN(5%)
5 1.14 −0.02 0.01 −2.025 −1.316 −0.331 0.001 0.336 1.309 1.942

10 0.99 −0.01 0.01 −0.999 −0.737 −0.213 0.000 0.215 0.731 0.975

CN(7.5%)
5 1.19 −0.00 −0.01 −2.114 −1.447 −0.352 0.000 0.347 1.427 2.169

10 0.99 −0.01 0.00 −0.982 −0.739 −0.216 −0.002 0.214 0.737 0.964

CN(10%)
5 1.21 0.00 −0.01 −2.370 −1.523 −0.373 −0.007 0.355 1.526 2.235

10 0.99 0.00 0.00 −0.957 −0.736 −0.214 0.000 0.214 0.733 0.964

Laplace(0,1)
5 1.13 −0.01 0.01 −2.241 −1.547 −0.391 0.001 0.403 1.538 2.205

10 1.06 0.01 0.00 −1.455 −1.062 −0.293 0.001 0.293 1.074 1.448

CN(12.5%)
5 1.21 0.03 0.01 −2.280 −1.598 −0.377 0.002 0.392 1.617 2.449

10 1.00 0.01 0.00 −0.969 −0.741 −0.216 −0.003 0.211 0.734 0.992

CN(15%)
5 1.21 −0.00 0.01 −2.426 −1.703 −0.407 −0.004 0.403 1.688 2.484

10 1.00 0.00 0.00 −0.971 −0.739 −0.215 −0.002 0.213 0.729 0.977

From the values in Table 3 we observe that the sampling distribution of the

M -statistic is approximately symmetric for the models under study. When we

consider underlying models F with small tail-weight, such as the normal and the

CN(1%) models, the sampling distribution of M presents the same tail-weight as

the normal distribution; for distributions F with moderate-to-heavy tails, such as

the CN(10%), the CN(12.5%), the CN(15%) and the Laplace(0,1), the sampling

distribution of M has tails heavier than the normal tail, but not so heavy as

the tails of the underlying distribution. Moreover, this tail-weight decreases as

the sample size n increases. Note that although the Laplace and the CN(10%)

distributions have similar tail-weight, the tail-weight of the sampling distribu-

tion of M is similar when we consider the Laplace and the CN(5%) distribution

instead of the CN(10%). For non-normal models, the obtained lower quantiles

of the sampling distribution of M , χ0.1% and χ1%, are smaller than the corre-

sponding quantiles obtained in the normal case, and the upper quantiles, χ99%

and χ99.9%, are larger than the corresponding normal quantiles. This reveals the

weak robustness of the M statistic to changes in the underlying model, mainly for

small values of n. Finally, the interval of variation of the sampling distribution

of the M statistic for non-normal data is larger than in the normal case, but the

inter-quartile range is almost the same for all the distributions, except in the case
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of distributions with very heavy tails. The main differences between the several

sampling distributions are in the tails, and this is a very important feature when

we are interested in the estimation of high quantiles, as usually happens in SPC.

From Table 4, we notice that the sampling distribution of the TMd -statistic

is approximately symmetric for all the models under study, even when we con-

sider heavy-tailed underlying models F , such as the CN(15%), for instance. The

chance of having an extreme value from the TMd sampling distribution is smaller

than the chance of obtaining it from the M sampling distribution. For large ra-

tional subgroups size of contaminated normal data, say n = 10, the lower and the

upper quantiles of the TMd distribution are similar to the corresponding normal

quantiles, but for n = 5 there are significant differences. Consequently, we do

not advise the use of the TMd statistic in SPC for very small values of n, when

there is some possibility of having contaminated normal data. For the contam-

inated normal models the interval of variation of the sampling distribution of

the TMd statistic is larger than in the normal case, as well as the interquartile

range for small values of n, but even so, the differences to the normal case are

smaller when we consider the TMd instead of the M statistic. Note also that

the sampling distribution of TMd presents the highest tail-weight for the Laplace

distribution.

Table 4: Estimates of the mean values of τ , γ, γ
B
, χ0.1%, χ1%, χ25%, χ50%, χ75%,

χ99%, χ99.9%, for the statistic TMd and subgroups of size n = 5, 10.

F n τ γ γ
B

χ0.1% χ1% χ25% χ50% χ75% χ99% χ99.9%

N(0,1)
5 1.01 0.01 0.00 −1.445 −1.080 −0.312 0.000 0.310 1.088 1.457

10 1.00 0.00 0.00 −1.044 −0.797 −0.231 0.000 0.229 0.791 1.055

CN(1%)
5 1.01 0.01 −0.01 −1.489 −1.100 −0.321 0.000 0.313 1.105 1.498

10 1.01 −0.02 −0.01 −1.052 −0.805 −0.228 0.004 0.232 0.792 1.052

CN(2.5%)
5 1.02 0.02 0.00 −1.545 −1.126 −0.328 −0.005 0.316 1.140 1.538

10 1.00 −0.01 −0.01 −1.043 −0.791 −0.230 0.001 0.230 0.790 1.055

CN(5%)
5 1.03 −0.01 0.01 −1.686 −1.183 −0.328 0.000 0.335 1.179 1.633

10 0.99 0.00 0.01 −1.050 −0.790 −0.229 0.000 0.231 0.784 1.052

CN(7.5%)
5 1.06 −0.01 0.00 −1.765 −1.246 −0.344 −0.003 0.339 1.246 1.723

10 0.99 −0.01 0.00 −1.052 −0.791 −0.232 −0.002 0.229 0.787 1.034

CN(10%)
5 1.07 −0.02 0.00 −1.879 −1.297 −0.357 −0.001 0.341 1.276 1.887

10 1.00 −0.01 0.01 −1.052 −0.793 −0.229 0.000 0.232 0.795 1.030

Laplace(0,1)
5 1.19 −0.02 0.00 −2.080 −1.429 −0.342 0.004 0.352 1.418 2.054

10 1.14 0.02 0.00 −1.275 −0.923 −0.236 0.001 0.236 0.932 1.344

CN(12.5%)
5 1.08 0.03 0.01 −1.966 −1.330 −0.354 0.004 0.368 1.363 2.041

10 1.00 0.01 0.00 −1.066 −0.802 −0.232 −0.004 0.227 0.787 1.079

CN(15%)
5 1.09 0.00 0.00 −2.132 −1.413 −0.378 −0.003 0.373 1.421 2.138

10 0.99 0.00 0.01 −1.039 −0.786 −0.230 −0.003 0.229 0.776 1.078
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From Tables 5–6, we notice that the sampling distributions of the R and of

the TR statistics are highly positively skewed, even in the normal case. For con-

taminated normal models, even with a moderate percentage of contamination, the

sampling distributions of R and TR are heavy-tailed, with high positive skew-

ness, and present some asymmetry even in the central part of the distribution,

as it is indicated by the obtained value of the quartile skewness coefficient, γB.

However, the distribution of the TR statistic is less asymmetric than the distribu-

tion of the R statistic, with a not so long right tail. In all the cases the skewness

as well as the tail-weight decrease with the increase of the sample size n, and we

thus advise the use of the TR statistic for large rational subgroups size. The tail-

weight of the sampling distribution of the statistics R and TR is approximately

equal to the tail-weight of the normal distribution when we consider the Laplace

model, and its asymmetry is much smaller than the asymmetry of the sampling

distribution of R and TR for the contaminated normal models here considered.

The histograms obtained, not pictured, confirm the symmetry of the sam-

pling distributions of M and TMd , and the visible asymmetry of the distributions

of R and TR, mainly for small samples. The increase of n leads us, in some cases,

to a quasi-symmetric distribution.

Table 5: Estimates of the mean values of τ , γ, γ
B
, χ0.1%, χ1%, χ25%, χ50%, χ75%,

χ99%, χ99.9%, for the statistic R and subgroups of size n = 5, 10.

F n τ γ γ
B

χ0.1% χ1% χ25% χ50% χ75% χ99% χ99.9%

N(0,1)
5 0.97 0.48 0.06 0.351 0.663 1.699 2.252 2.875 4.628 5.542

10 1.00 0.39 0.04 1.057 1.459 2.513 3.028 3.582 5.151 5.985

CN(1%)
5 1.08 1.19 0.06 0.351 0.664 1.719 2.289 2.927 5.204 8.039

10 0.98 0.38 0.04 1.080 1.473 2.514 3.028 3.591 5.133 5.922

CN(2.5%)
5 1.25 1.59 0.08 0.355 0.670 1.749 2.332 3.015 6.287 9.222

10 0.99 0.40 0.05 1.076 1.479 2.516 3.026 3.584 5.160 5.930

CN(5%)
5 1.38 1.82 0.10 0.387 0.707 1.793 2.413 3.164 7.477 10.383

10 0.99 0.39 0.05 1.059 1.470 2.515 3.026 3.589 5.156 5.974

CN(7.5%)
5 1.35 1.78 0.13 0.399 0.708 1.840 2.499 3.352 8.115 11.121

10 0.99 0.39 0.04 1.072 1.464 2.514 3.026 3.585 5.139 6.020

CN(10%)
5 1.30 1.68 0.16 0.400 0.723 1.901 2.585 3.536 8.516 11.470

10 0.99 0.38 0.05 1.075 1.464 2.515 3.027 3.589 5.144 5.973

Laplace(0,1)
5 1.03 1.11 0.12 0.379 0.677 2.011 2.902 4.034 8.151 10.823

10 1.06 0.95 0.10 1.068 1.602 3.253 4.227 5.409 9.692 12.152

CN(12.5%)
5 1.23 1.61 0.18 0.419 0.744 1.953 2.697 3.770 9.013 11.929

10 0.99 0.39 0.04 1.082 1.466 2.518 3.033 3.589 5.156 5.957

CN(15%)
5 1.17 1.50 0.20 0.423 0.755 2.016 2.809 4.007 9.385 12.268

10 1.00 0.39 0.04 1.106 1.456 2.514 3.030 3.586 5.159 5.917



164 Fernanda Figueiredo and M. Ivette Gomes

Table 6: Estimates of the mean values of τ , γ, γ
B
, χ0.1%, χ1%, χ25%, χ50%, χ75%,

χ99%, χ99.9%, for the statistic TR and subgroups of size n = 5, 10.

F n τ γ γ
B

χ0.1% χ1% χ25% χ50% χ75% χ99% χ99.9%

N(0,1)
5 0.95 0.43 0.05 0.273 0.519 1.321 1.749 2.223 3.507 4.143

10 0.99 0.28 0.02 0.924 1.277 2.164 2.583 3.023 4.219 4.830

CN(1%)
5 1.05 1.00 0.06 0.282 0.524 1.339 1.775 2.264 3.910 5.808

10 0.98 0.27 0.02 0.946 1.283 1.163 2.585 3.025 4.199 4.753

CN(2.5%)
5 1.20 1.35 0.07 0.280 0.526 1.361 1.810 2.329 4.616 6.615

10 0.99 0.29 0.03 0.943 1.286 2.165 2.581 3.024 4.221 4.767

CN(5%)
5 1.31 1.59 0.10 0.307 0.551 1.401 1.871 2.440 5.420 7.326

10 0.98 0.27 0.03 0.939 1.276 2.167 2.584 3.029 4.209 4.801

CN(7.5%)
5 1.28 1.61 0.12 0.299 0.555 1.433 1.937 2.577 5.834 8.040

10 0.98 0.28 0.04 0.944 1.280 2.166 2.580 3.026 4.203 4.830

CN(10%)
5 1.25 1.52 0.15 0.318 0.562 1.477 2.000 2.711 6.157 8.100

10 0.98 0.27 0.03 0.937 1.280 2.163 2.583 3.029 4.198 4.859

Laplace(0,1)
5 1.01 1.01 0.11 0.290 0.528 1.555 2.221 3.060 5.949 7.812

10 1.06 0.95 0.10 0.929 1.386 2.723 3.493 4.383 7.394 8.995

CN(12.5%)
5 1.20 1.48 0.16 0.333 0.582 1.517 2.086 2.875 6.554 8.518

10 0.98 0.28 0.03 0.941 1.282 2.164 2.585 3.030 4.215 4.819

CN(15%)
5 1.14 1.39 0.19 0.330 0.592 1.569 2.165 3.046 6.786 8.821

10 0.98 0.28 0.03 0.965 1.280 2.162 2.581 3.028 4.218 4.796

3. CONTROL CHARTS SIMULATED BEHAVIOUR

Whenever implementing a control chart, a practical advice is that 3-sigma

control limits should be avoided whenever the distribution of the control statistic

is very asymmetric. In such a case, it is preferable to fix the control limits of

the chart at adequate probability quantiles of the control statistic distribution.

However, the analytical determination of these quantiles is in general impossible

to obtain, as well as its estimation, because we do not have sufficient observations

for doing it accurately.

The results presented in Subsection 2.2 justify the use, in this study, of

two-sided control charts with 3-sigma control limits to monitor the process mean

value at a target µ0. Thus, to detect increases or decreases in the process mean

value µ, we have implemented the classical M -chart with control limits given in

(1.1), and the TMd chart with lower and upper control limits given by

LCLTMd = E(TMd) − 3

√

V(TMd) , UCLTMd = E(TMd) + 3

√

V(TMd) .
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For standard normal data the limits of the TMd -chart are given by

(3.1) LCLTMd = −3 d3,TMd , UCLTMd = 3 d3,TMd ,

where d3,TMd has been tabulated in Table 2. Here in order to obtain the same

false alarm rate for the M and the TMd charts, whenever the underlying model

F is normal, we have replaced in (3.1), d3,TMd by d∗
3,TMd

= 0.4643 for n = 5 and

d∗
3,TMd

= 0.3407 for n = 10.

To monitor the process standard deviation at a target σ0, and noting that

the main interest is to detect increases in σ and not decreases in σ, we have

implemented one-sided control charts, with lower control limits placed at 0. The

R-chart has an upper control limit given in (1.2), and the TR chart has the upper

control limit given by

UCLTR = E(TR) + 3

√

V(TR) .

For standard normal data the upper control limits of the TR-chart is thus given

by

(3.2) UCLTR = d2,TR + 3 d3,TR ,

where d2,TR and d3,TR have also been tabulated in Table 2. To obtain the same

false alarm rate for the R and the TR charts, whenever the underlying model F

is normal, we have considered a slightly different value for d3,TR. More precisely,

we have replaced in (3.2), d3,TR by d∗
3,TR

= 0.6465 for n = 5 and d∗
3,TR

= 0.611

for n = 10.

3.1. Robustness versus performance

The ability of a generic W control chart to detect process changes is usually

measured by the expected number of samples taken before the chart signals, i.e.,

by its ARL (Average Run Length), or alternatively, in some cases, by its power

function, together with the standard deviation of the Run Length distribution,

SDRL.

When the successive values of the control statistic W are independent, and

when we do not have to estimate the control limits of the chart, the RL vari-

able (i.e., the number of samples taken before the chart signals) has a geometric

distribution, and the ARL is given by

(3.3) ARL
W

(θ) =
1

1 − P
(

W ∈ C | θ
) =:

1

π
W

(θ)
,

where θ denotes the parameter to be controlled at θ = θ0, with π
W

(θ) the power

function of the W-chart. The SDRL is given by

(3.4) SDRL
W

(θ) =

√

1 − π
W

(θ)

π
W

(θ)
.
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Remark 3.1. Assuming that the process changes from the in-control state,

θ = θ0, to an out-of-control state, θ, a value in the space parameter, the power

function of the chart is thus the probability of detection of that change in any

arbitrary sample.

When the process is in-control, the power function gives us the false alarm

rate of the chart, also called the α-risk, given by

(3.5) α = P
(

W /∈ C | IN
)

= P
(

W /∈ C | θ = θ0

)

= π
W

(θ0) = 1/ARL(θ0) .

Remark 3.2. The control limits of a W-chart are usually determined in

order to have a chart with a small fixed false alarm rate (a large in-control ARL)

and we hope to obtain high power function values (small out-of-control ARL) for

the shifts the chart must detect.

Remark 3.3. When we have to estimate process parameters in order to

obtain the control limits of the chart or when the successive values of the control

statistic W are not independent, the distribution of the random variable RL is

not geometric, but a more right-skewed distribution. Some authors, see for in-

stance Chakraborti (2006, 2007), refer that in this case the ARL and the SDRL

parameters in (3.3) and (3.4), respectively, are not the best measures of perfor-

mance of a control chart. They also suggest the use of the Median Run Length,

MRL, as a measure of performance, and the 5-th and the 95-th percentiles of the

RL distribution to represent the spread of the RL. Additionally, for a more com-

plete understanding of the chart performance, Chakraborti (2000, 2006, 2007) and

Jensen et al. (2006) suggest the analysis of the RL distribution conditional on the

observed estimates (i.e., the conditional RL distribution), together with the anal-

ysis of the marginal RL distribution. Such a marginal distribution is computed

by integrating the conditional RL distribution over the range of the parameter

estimators, and thus, it takes into account the random variability introduced

into the charting procedure through parameter estimation, without requiring the

knowledge of the observed estimates.

In the following study, to analyze the robustness to the normality assump-

tion of any of the previous control charts, implemented with exact control limits,

we have implemented the following algorithm:

S∗

1 – consider standardized data of the symmetric distributions in set D

(see Subsection 2.2), as adequate to describe the data process;

S∗

2 – next, implement the charts with the control limits given in (1.1), (1.2),

and the mentioned modifications of (3.1) and (3.2), for rational sub-

groups of sizes n = 5 and n = 10;

S∗

3 – compute the false alarm rates, α, defined in (3.5), through the use of

Monte Carlo simulation techniques, using a sample of 500,000 values
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of the control statistic for each of the 30 replicates of the simulation

experiment (such a procedure allows us to present the α values with

a precision of 4 decimal figures);

S∗

4 – finally, compare them with the expected value α, obtained for normal

data, and register the smallest α-risk.

The obtained simulated false alarm rates are presented in Tables 7–8 for

rational subgroups of sizes n = 5 and 10. In each line we underline the α-value

associated with the most robust chart, i.e., the one with smallest α-risk. From the

obtained values we conclude that neither the TMd -chart nor the TR-chart can

be considered robust to the normality assumption, but even so, they are more ro-

bust than the X and the R charts, respectively. We also conclude that we should

preferably consider rational subgroups of size n = 10, instead of n = 5. Conse-

quently, when there is a chance of having contaminated normal data, it is better

to implement the TMd and the TR charts for rational subgroups of size n = 10.

The α-values of the charts X and TMd (R and TR) for the Laplace distribution

are similar to the α-values of these charts for the CN(1%) (CN(2.5%)) distribu-

tion, although the Laplace model has much heavier tails than these contaminated

normal models.

Table 7: False Alarm rates of the X and TMd charts.

Model F τ Xn=5 TMdn=5 Xn=10 TMdn=10

N(0,1) 1.000 .00270 .00270 .00270 .00270

CN(1%) 1.028 .00540 .00334 .00478 .00300
Laplace(0,1) 1.636 .00618 .00283 .00474 .00088
CN(2.5%) 1.080 .00849 .00443 .00725 .00346
CN(5%) 1.205 .01198 .00588 .01018 .00426
CN(7.5%) 1.376 .01409 .00723 .01213 .00506
CN(10%) 1.532 .01543 .00841 .01347 .00586
CN(12.5%) 1.642 .01621 .00938 .01442 .00662
CN(15%) 1.717 .01668 .01019 .01505 .00731

Table 8: False Alarm rates of the R and TR charts.

Model F τ Rn=5 TRn=5 Rn=10 TRn=10

N(0,1) 1.000 .00453 .00453 .00423 .00423

CN(1%) 1.028 .01397 .01323 .02175 .01994
Laplace(0,1) 1.636 .02679 .02236 .04608 .03589
CN(2.5%) 1.080 .02538 .02377 .04268 .03890
CN(5%) 1.205 .03905 .03646 .06734 .06185
CN(7.5%) 1.376 .04788 .04477 .08294 .07699
CN(10%) 1.532 .05354 .05022 .09269 .08702
CN(12.5%) 1.642 .05684 .05356 .09820 .09334
CN(15%) 1.717 .05848 .05536 .10057 .09690
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The analysis of the performance of the previous charts to detect changes

in the process parameters is evaluated in terms of the simulated power function

πW (θ) = 1/ARLW (θ) for a few different magnitude changes θ, with ARLW (θ)

defined in (3.3).

The obtained simulated power function values are presented in Tables 9–10

for rational subgroups of size n = 10. For every magnitude of change and each

model, we underline the highest obtained value, which corresponds to the most

powerful chart. These results lead us to the following conclusions: the TMd (the

TR) chart is more robust than the X (the R) chart, with smaller false alarm rates.

Consequently, we were not at all expecting higher values for the power. However,

the TR-chart overpass the R-chart in terms of performance to detect small to

large changes for all the contaminated normal models, and even for normal data.

Only for the Laplace distribution the R-chart overpass the TR-chart to detect

very small changes. In this case the TMd -chart is able to overpass the X-chart to

detect large changes. Despite of the fact that the X-chart presents higher power

function values than the TMd -chart, we cannot conclude that the X-chart is the

most powerful chart, because the α-values of the TMd -chart are smaller than

the α-values of the X-chart. The conclusions are similar for n = 5, although we

obtain larger power function values when the charts are implemented for rational

subgroups of size n = 10. However the differences between the power function

values of the X and of the TMd charts are smaller when we consider n = 5

instead of n = 10.

Table 9: Power function values of the charts (n = 10, µ → µ1, σ = 1).

µ1

X TMd X TMd X TMd X TMd

N(µ1,1) Laplace(0,1) CN(1%) CN(2.5%)

0.5 .0780 .0626 .0758 .0273 .0841 .0640 .0917 .0662
1 .5646 .4741 .5670 .4641 .5630 .4745 .5612 .4745
2 .9996 .9980 .9990 .9994 .9990 .9977 .9983 .9974
2.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CN(5%) CN(7.5%) CN(10%) CN(15%)

0.5 .1010 .0699 .1076 .0735 .1122 .0764 .1180 .0816
1 .5591 .4747 .5573 .4753 .5561 .4759 .5547 .4761
2 .9975 .9969 .9970 .9964 .9966 .9959 .9962 .9950
2.5 .9999 1.000 .9999 1.000 .9999 1.000 .9999 .9999
3.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 10: Power function values of the charts (n = 10, µ = 0, σ → σ1).

σ1

R TR R TR R TR R TR

N(0,σ1) Laplace(0,1) CN(1%) CN(2.5%)

1.25 .0616 .0758 .1481 .1379 .0904 .1044 .1269 .1409
1.5 .2277 .2800 .2949 .2962 .2589 .3100 .2990 .3489
2 .6458 .7178 .5899 .6126 .6636 .7323 .6871 .7516
2.5 .8730 .9114 .7864 .8117 .8799 .9162 .8891 .9227
3 .9564 .9721 .8928 .9116 .9588 .9738 .9621 .9759

CN(5%) CN(7.5%) CN(10%) CN(15%)

1.25 .1734 .1882 .2074 .2235 .2320 .2500 .2626 .2847
1.5 .3519 .4007 .3924 .4409 .4235 .4721 .4659 .5159
2 .7185 .7776 .7433 .7983 .7629 .8147 .7912 .8385
2.5 .9016 .9317 .9114 .9388 .9194 .9445 .9309 .9529
3 .9666 .9788 .9702 .9812 .9731 .9830 .9773 .9858
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1. INTRODUCTION

The ‘time of failure’ and ‘average life’ of a component, measured from

some specified time until it fails, is represented by a continuous random variable.

Extensively in recent years, one distribution that has been used as a model to deal

with such problems for product life is the Weibull distribution. Its applications in

life-testing problems and survival analysis have been widely advocated (Weibull,

1951; Berrettoni, 1964). It has been used as model with diverse types of items

such as ball bearing (Lieblein & Zelen, 1956), vacuum tube (Kao, 1959) and

electrical isolation (Nelson, 1972). Mittnik & Reachev (1993) found that the

Weibull distribution might be an adequate statistical model for stock returns.

Mann (1968) gave a variety of situations in which the distribution is used for

other types of failure data. Whittemore & Altschuler (1976) used it as a model

in biomedical applications.

The probability density function of the Weibull distribution is given by

(1.1) f(x; v, θ) =
v

θ
xv−1e−

xv

θ , x > 0, v > 0, θ > 0 ,

where the parameters v and θ are referred to as the shape and scale parameters

of the distribution, respectively.

For the special case v = 1, the Weibull distribution is the Exponential

distribution. For v = 2, is the Rayleigh distribution. For shape parameter values

in the range 3 ≤ v ≤ 4, the shape of the Weibull distribution is close to that of

the Normal distribution and for a large values of v, say v ≥ 10, the shape of the

Weibull distribution is close to that of a smallest extreme value distribution.

Pandey (1983), Pandey et al. (1989), Pandey & Singh (1993) considered

the estimation of the Weibull shape parameter in censored data. The prediction

problems in the Weibull distribution have been discussed by Engelhardt & Bain

(1973), Nigm (1989), Dellaportas & Wright (1991) and others. Montanari et al.

(1997), Singh & Shukla (2000), Hisada & Arizino (2002), Singh et al. (2002),

Tsionas (2002) and others considered the Weibull distribution in different con-

texts.

In many situations, the experimenter has some prior information about the

parameter in the form of a point guess value. To utilize this guess value, the

shrinkage estimators have been discussed by a number of authors, for details see

the article Casella & Lehmann (1998), Prakash & Singh (2006, 2008), Singh et al.

(2007). The shrinkage estimator performs better than the usual estimator when

a guess value is approximately the true value of the parameter and sample size

is small. A shrinkage estimator (Thompson, 1968) for the parameter θ when a
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prior point guess value θ0 of θ is available, is defined as

(1.2) S = k θ̂ + (1− k) θ0 , 0 ≤ k ≤ 1 .

Here θ̂ is any usual estimator of the parameter θ. The shrinkage procedure has

been applied in numerous problems, including mean survival time in epidemio-

logical studies (Harries & Shakarki, 1979), forecasting of the money supply (Tso,

1990), estimating mortality rates (Marshall, 1991) and improved estimation in

sample surveys (Wooff, 1985).

When positive and negative errors have different consequences, the use of

squared error loss function (SELF) in Bayesian estimation may not be appro-

priate. To overcome this difficulty, Varian (1975) and Zellner (1986) proposed an

asymmetric loss function known as the LINEX loss function (LLF). The invariant

version of LLF for any parameter θ is given by

(1.3) L(∆) = ea∆ − a∆ − 1 , a 6= 0 and ∆ =
θ̂ − θ

θ
.

The sign and magnitude of ‘a’ represents the direction and degree of asymmetry

respectively. The positive (negative) value of ‘a’ is used when overestimation is

more (less) serious than underestimation. The loss function (1.3) is approximately

square error and almost symmetric if |a| is near to zero. A number of authors have

discussed the estimation procedures under LLF criterion. A Few recent works

under the Bayesian and/or the LLF criterions are Nigm et al. (2003), Bellhouse

(2004), Xu & Shi (2004), Ahmadi et al. (2005), Prakash & Singh (2006), Son &

Oh (2006), Singh et al. (2007), Ahmad et al. (2007), Prakash & Singh (2008),

among others.

Let x1, x2, ..., xn be the life times of n items put to test under model (1.1).

The maximum likelihood estimate of θ (when v is known) is given by

(1.4) θ̂ =

n
∑

i=1

xv
i

n
.

Consider Type-II censored sampling, where the test terminates as soon as the

rth
item fails (r ≤ n). Let x1, x2, ..., xr be the observed failure times for the first

r components. Then the likelihood function for the r failure items is

(1.5) L
(

x1, x2, ..., xr | θ
)

=
vr

θr

r
∏

i=1

xv−1

i
exp

{

−
r Tr

θ

}

,

where Tr =
1

r

{

∑

r

i=1
xv

i
+ (n− r)xv

(r)

}

is a UMVU estimator (Sinha, 1986) of

the parameter θ and
2 rTr

θ
∽ χ2

2r
.

The risks under the SELF and the LLF for Tr are given as

R(S)(Tr) =
θ2

r
and R(L)(Tr) = e−a

(

r

r− a

)r

− 1 ,
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where suffix S and L respectively, denote the risk taken under the SELF and the

LLF criterions.

If parameter v is known, the natural family of conjugate prior of θ is taken

as the inverted Gamma distribution with probability density function

(1.6) g1(θ) =
βα

Γ(α)
θ−α−1e−

β

θ , α > 0, β > 0 .

In the situation where the researchers have no prior information about the pa-

rameter θ, one may use the uniform, quasi or improper prior. A family of priors

is given by

(1.7) g2(θ) = θ−d e−
c d
θ , d > 0, c > 0 .

If d = 0, we get a diffuse prior and if d = 1, c = 0 a non-informative prior is

obtained. For a set of values of d and c, that satisfies the equality Γ(d− 1) =

(c d)
d−1, makes g2(θ) as a proper prior.

If both of the parameters θ and v are unknown in model (1.1), the joint

prior distribution (Sinha, 1986) is considered as

(1.8) g(θ, v) = g1(θ) . h(v), h(v) =
1

ϑ
, 0 < v < ϑ, ϑ > 0 .

In the present paper, we suggest some Bayes shrinkage estimators for the scale

parameter of the two-parameter Weibull distribution in presence of a prior point

information when Type-II censored data is available under the SELF and the

LLF. The properties have been studied in terms of the relative efficiencies when

compared with the UMVU estimator. The properties of the minimax estimator

are also discussed in the last section.

2. THE BAYES SHRINKAGE ESTIMATORS (KNOWN SHAPE

PARAMETER)

The posterior density of the parameter θ under prior density g1(θ), is

(2.1) Z1(θ) =
(r Tr + β)

α+r

Γ(α + r)
e−

(r Tr+β)

θ θ−α−r−1 ,

which is again an inverted Gamma distribution with the parameters (α + r) and

(r Tr + β). The Bayes estimator of the parameter θ under the SELF is obtained

as

(2.2) θ̂1 = Ep(θ) = ϕ1(r Tr + β) , ϕ1 = (α + r − 1)
−1 .

Here, the suffix p indicates that the expectation is taken under posterior density.

We choose the parameters of the prior distribution g1(θ) such that E(θ̂1) = θ0,
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where θ0 is the point guess value of θ. This gives β = (α −1)θ0. Substituting β

in (2.2), we obtain the Bayes estimator for θ as

(2.3) θ̄1 = λ1 Tr + (1− λ1) θ0 , λ1 = r ϕ1, (α + r) > 1 .

This is similar to the shrinkage estimator defined in (1.2). We termed θ̄1 as the

Bayes shrinkage estimator.

The Bayes estimate of θ under the LLF (1.3) is obtained by simplifying the

equality

Ep

(

1

θ
e

a bθ2
θ

)

= ea Ep

(

1

θ

)

=⇒

(2.4)

=⇒ θ̂2 = ϕ2(r Tr + β), ϕ2 =
1

a

(

1 − exp

(

−
a

α + r +1

)

)

.

Again,

E(θ̂2) = θ0 =⇒ β = θ0 (1 − rϕ2)ϕ
−1

2
.

Hence, the Bayes shrinkage estimator for θ under the LLF with this choice of

constant is given by

(2.5) θ̄2 = λ2 Tr + (1− λ2) θ0 , λ2 = r ϕ2 .

The expressions of the risks of these estimators under the SELF and the LLF are

obtained as

R(S)(θ̂i) = r θ2 ϕ2
i +

(

θ (r ϕi − 1) + β ϕi

)2
,(2.6)

R(L)(θ̂i) = exp

(

a

(

ϕi β

θ
−1

))

(

1− a ϕi

)

−r
− 1 − a

(

r +
β

θ
− 1

)

,(2.7)

R(S)(θ̄i) = θ2

{

λ2
i

(

r + 1

r
+ δ (δ − 2)

)

+ (1− δ)2 (1− 2 λi)

}

(2.8)

and

R(L)(θ̄i) = ea((1−λi) δ− 1)
(1 −

a λi

r
)
−r − 1 + a (1 − δ) (1 − λi) ,(2.9)

where δ =
θ

θ0
, i = 1, 2.

The posterior density of θ corresponding to g2(θ) is given as

(2.10) Z2(θ) =
(r Tr + c d)

r+d−1

Γ(r + d − 1)
e−

(r Tr+c d)

θ θ−r−d .

This posterior distribution has the same form as the posterior (2.1). The only

change is that in the place of α and β there are d − 1 and c d, respectively. All

the results discussed in Section 3 hold if we substitute d = (α +1) and c =
β

(α+1)
.
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3. NUMERICAL ANALYSIS

The relative efficiencies of the Bayes shrinkage estimator θ̄i (i =1, 2) relative

to the UMVU estimator Tr under the SELF and the LLF criterions are defined

as

RE(S)(θ̄i, Tr) =
R(S)(Tr)

R(S)(θ̄i)

and

RE(L)(θ̄i, Tr) =
R(L)(Tr)

R(L)(θ̄i)
, i = 1, 2 .

The expressions of relative efficiencies are the functions of r, a, δ and α whereas

RE(S)(θ̄i, Tr) is independent with ‘a’. For the selected set of values r = 04(02)10;

a = 0.50(0.50)2.00; δ = 0.25(0.25)1.75 and α = 1.25, 1.50, 2.50, 5.00, 10, 20, the

relative efficiencies have been calculated and presented in Tables 1–4, respectively.

The numerical findings are presented here only for r = 04 when risk criterion is

the LLF.

Table 1: RE(S)(θ̄1, Tr).

r δ
α

1.25 1.50 2.50 5.00 10.00 20.00

0.25 1.1191 1.2226 1.4362 1.2308 0.8525 0.6387

0.50 1.1245 1.2462 1.6575 2.0000 1.7423 1.4032

0.75 1.1278 1.2607 1.8264 3.2000 4.6621 4.9788

04 1.00 1.1289 1.2656 1.8906 4.0000 10.562 33.062

1.25 1.1278 1.2607 1.8264 3.2000 4.6621 4.9788

1.50 1.1245 1.2462 1.6575 2.0000 1.7423 1.4032

1.75 1.1191 1.2226 1.4362 1.2308 0.8525 0.6387

0.25 1.0787 1.1467 1.2903 1.1111 0.7273 0.4983

0.50 1.0823 1.1615 1.4286 1.6667 1.4286 1.0823

0.75 1.0844 1.1706 1.5267 2.3810 3.3898 3.6470

06 1.00 1.0851 1.1736 1.5625 2.7778 6.2500 17.361

1.25 1.0844 1.1706 1.5267 2.3810 3.3898 3.6470

1.50 1.0823 1.1615 1.4286 1.6667 1.4286 1.0823

1.75 1.0787 1.1467 1.2903 1.1111 0.7273 0.4983

0.25 1.0588 1.1094 1.2175 1.0588 0.6744 0.4317

0.50 1.0614 1.1202 1.3175 1.5000 1.2788 0.9275

0.75 1.0630 1.1267 1.3858 2.0000 2.7656 2.9816

08 1.00 1.0635 1.1289 1.4102 2.2500 4.5156 11.390

1.25 1.0630 1.1267 1.3858 2.0000 2.7656 2.9816

1.50 1.0614 1.1202 1.3175 1.5000 1.2788 0.9275

1.75 1.0588 1.1094 1.2175 1.0588 0.6744 0.4317

0.25 1.0469 1.0872 1.1739 1.0316 0.6497 0.3947

0.50 1.0490 1.0957 1.2521 1.4000 1.1934 0.8389

0.75 1.0502 1.1008 1.3042 1.7818 2.3967 2.5827

10 1.00 1.0506 1.1025 1.3225 1.9600 3.6100 8.4100

1.25 1.0502 1.1008 1.3042 1.7818 2.3967 2.5827

1.50 1.0490 1.0957 1.2521 1.4000 1.1934 0.8389

1.75 1.0469 1.0872 1.1739 1.0316 0.6497 0.3947



178 Gyan Prakash and D.C. Singh

Table 1 shows that the Bayes shrinkage estimator θ̄1 performs uniformly

well for small α ≤ 5.00 with respect to the UMVU estimator Tr under the SELF.

The effective interval (the interval in which the relative efficiency is more than

one) decreases with the sample size r as well as α increases under the SELF.

The efficiency attains maximum at the point δ = 1.00 and the gain in efficiency

decreases as r increases for all considered values of δ when other parametric values

are fixed. Further, the gains in efficiencies increase as α increases in the interval

0.75 ≤ δ ≤ 1.25 with other fixed parametric values.

On the other hand, when the risk criterion is the LLF (Table 2) the esti-

mator θ̄1 performs uniformly well with respect to Tr when sample size is small

r (≤ 06) for all considered values of parametric space but for a large sample size,

this property holds in the interval 0.50 ≤ δ ≤ 1.50. The gain in efficiency increases

when ‘a’ increases for all considered values of δ with small sample size r (≤ 06)

and in the interval δ ≤ 1.25 otherwise, under other fixed parametric values. Other

properties are similar to the SELF-criterion.

Table 2: RE(L)(θ̄1, Tr).

r = 04 α

a δ 1.25 1.50 2.50 5.00 10.00 20.00

0.25 1.1374 1.2835 1.6460 1.4888 1.0422 1.0173

0.50 1.1448 1.2954 1.8404 2.3580 2.0777 1.6762

0.75 1.1501 1.2968 1.9546 3.6144 5.4006 5.7685

0.50 1.00 1.1534 1.3007 1.9569 4.2400 11.414 36.177

1.25 1.1281 1.2613 1.8306 3.2413 4.8409 5.2728

1.50 1.1169 1.2311 1.6228 1.9921 1.7805 1.4433

1.75 1.1039 1.1738 1.3638 1.2135 1.1517 1.1352

0.25 1.1540 1.3182 1.9506 1.8884 1.3370 1.0178

0.50 1.1702 1.3510 2.0770 2.9135 2.6054 2.1057

0.75 1.1847 1.3757 2.1064 4.2662 6.5833 7.0413

1.00 1.00 1.1975 1.3914 2.1565 4.6862 12.955 41.695

1.25 1.1363 1.2782 1.8866 3.4259 5.2801 5.8795

1.50 1.1172 1.2321 1.6349 2.0697 1.9090 1.5603

1.75 1.1068 1.1814 1.3725 1.2466 1.1890 1.1618

0.25 1.1845 1.3822 2.3035 2.5672 1.8402 1.4108

0.50 1.2102 1.4372 2.4297 3.8543 3.5120 2.8440

0.75 1.2348 1.4861 2.4822 5.3708 8.6319 9.2565

1.50 1.00 1.2582 1.5275 2.5244 5.5108 15.782 51.739

1.25 1.1580 1.3225 2.0301 3.8550 6.1813 7.0553

1.50 1.1307 1.2594 1.7207 2.2881 2.1938 1.8118

1.75 1.1128 1.1942 1.4223 1.3606 1.1996 1.1738

0.25 1.2425 1.5052 2.7492 3.8948 2.8309 2.1846

0.50 1.2790 1.5879 3.0769 5.6791 5.3001 4.3013

0.75 1.3153 1.6677 3.2667 7.1635 12.675 13.647

2.00 1.00 1.3512 1.7432 3.2835 7.4945 21.480 71.977

1.25 1.2060 1.4211 2.3516 4.7975 8.0839 9.4870

1.50 1.1695 1.3370 1.9500 2.7951 2.8120 2.3530

1.75 1.1332 1.2540 1.5866 1.6381 1.2402 1.1918
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The Bayes shrinkage estimator θ̄2 performs well for all considered values

of the parametric space when α ≤ 10.00 with respect to Tr under the SELF.

The gain in efficiency increases when ‘a’ increases in the interval 0.75 ≤ δ ≤ 1.25

for all considered parametric values when α ≤ 10.00. Other properties of the

estimator θ̄2 are similar to the estimator θ̄1 under the SELF.

Table 3: RE(S)(θ̄2, Tr).

r = 04 α

a δ 1.25 1.50 2.50 5.00 10.00 20.00

0.25 1.4051 1.3797 1.2604 1.0111 1.0132 0.6178

0.50 1.8994 1.9341 1.9980 1.9079 1.6312 1.3636

0.75 2.4076 2.5485 3.0790 4.0782 4.8817 4.9465

0.50 1.00 2.6433 2.8504 3.7566 6.5691 14.537 39.850

1.25 2.4076 2.5485 3.0790 4.0782 4.8817 4.9465

1.50 1.8994 1.9341 1.9980 1.9079 1.6312 1.3636

1.75 1.4051 1.3797 1.2604 1.0111 1.0132 0.6178

0.25 1.3786 1.3502 1.2295 1.0921 1.0766 0.6157

0.50 1.9353 1.9611 2.0000 1.8922 1.6203 1.3596

0.75 2.5542 2.6919 3.2053 4.1529 4.8971 4.9425

1.00 1.00 2.8589 3.0737 4.0111 6.9016 15.026 40.651

1.25 2.5542 2.6919 3.2053 4.1529 4.8971 4.9425

1.50 1.9353 1.9611 2.0000 1.8922 1.6203 1.3596

1.75 1.3786 1.3502 1.2295 1.0921 1.0766 0.6157

0.25 1.3482 1.3183 1.1988 1.1738 1.0991 0.6137

0.50 1.9626 1.9806 1.9978 1.8760 1.6096 1.3557

0.75 2.7013 2.8351 3.3291 4.2240 4.9113 4.9383

1.50 1.00 3.0888 3.3113 4.2797 7.2479 15.528 41.465

1.25 2.7013 2.8351 3.3291 4.2240 4.9113 4.9383

1.50 1.9626 1.9806 1.9978 1.8760 1.6096 1.3557

1.75 1.3482 1.3183 1.1988 1.1738 1.0991 0.6137

0.25 1.3153 1.2850 1.1687 1.2563 1.1524 0.6117

0.50 1.9820 1.9930 1.9919 1.8595 1.5991 1.3518

0.75 2.8480 2.9772 3.4498 4.2914 4.9241 4.9341

2.00 1.00 3.3336 3.5638 4.5629 7.6084 16.044 42.293

1.25 2.8480 2.9772 3.4498 4.2914 4.9241 4.9341

1.50 1.9820 1.9930 1.9919 1.8595 1.5991 1.3518

1.75 1.3153 1.2850 1.1687 1.2563 1.1524 0.6117

Under the LLF criterion (Table 4), the estimator θ̄2 also performs well for

α ≤ 10.00 with respect to Tr and the gain in efficiency increases as ‘a’ increases

for all considered values of parametric space. Other properties of θ̄2 are similar

to the Bayes shrinkage estimator θ̄1 under the LLF criterion.

The gain in efficiency is larger for the Bayes shrinkage estimator θ̄2 under

the LLF-criterion with respect to the SELF-criterion.

Remark 3.1. One may obtain the results for the complete sample case

by replacing only the censored sample size r with the complete sample size n.
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Table 4: RE(L)(θ̄2, Tr).

r = 04 α

a δ 1.25 1.50 2.50 5.00 10.00 20.00

0.25 1.6696 1.6475 1.5223 1.2316 1.0475 0.7625

0.50 2.1863 2.2395 2.3499 2.2710 1.9461 1.6295

0.75 2.6513 2.8215 3.4666 4.6905 5.6626 5.7285

0.50 1.00 2.7676 2.9917 3.9753 7.0418 15.778 43.665

1.25 2.4211 2.5656 3.1147 4.1820 5.1063 5.2472

1.50 1.8671 1.9049 1.9857 1.9310 1.6731 1.4025

1.75 1.3451 1.3242 1.2403 1.0074 1.0002 0.6137

0.25 2.0557 2.0308 1.8866 1.5459 1.2075 0.9837

0.50 2.7072 2.7745 2.9142 2.8197 2.4254 2.0421

0.75 3.2546 3.4681 4.2746 5.7837 6.9391 6.9833

1.00 1.00 3.2684 3.5344 4.7001 8.3263 18.629 51.436

1.25 2.6878 2.8427 3.4322 4.5902 5.6420 5.8586

1.50 1.9502 1.9870 2.0702 2.0351 1.7908 1.5118

1.75 1.3584 1.3390 1.2455 1.0308 1.0102 0.6363

0.25 2.7217 2.6918 2.5135 2.0847 1.6518 1.3611

0.50 3.6007 3.6926 3.8833 3.7633 3.2503 2.7518

0.75 4.2805 4.5695 5.6579 7.6678 9.1522 9.1678

1.50 1.00 4.3134 4.6534 5.9421 10.564 23.661 65.268

1.25 3.1686 3.3496 4.0386 5.4076 6.7074 7.0433

1.50 2.1639 2.2055 2.3070 2.3004 2.0581 1.7507

1.75 1.4374 1.4204 1.3358 1.1282 1.0425 0.7064

0.25 4.0363 3.9961 3.7493 3.1458 2.5266 2.1040

0.50 5.3596 5.5001 5.7924 5.6237 4.8782 4.1525

0.75 6.2841 6.7235 8.3740 11.384 13.536 13.598

2.00 1.00 6.7483 6.8356 8.3882 14.978 33.669 92.906

1.25 4.1355 4.3749 5.2875 7.1208 8.9341 9.4941

1.50 2.6588 2.7148 2.8614 2.9034 2.6444 2.2679

1.75 1.6843 1.6704 1.5919 1.3743 1.0963 0.8737

4. THE BAYES SHRINKAGE ESTIMATORS

(UNKNOWN SHAPE PARAMETER)

When both parameters of the model (1.1) are unknown, the joint posterior

density with respect to g(θ, v), in (1.8), is obtained as

(4.1) Z3(θ, v) =
v′ θ−(α+r+1) e−

(r Tr+β)

θ

Γ(α + r)

∫

ϑ

0

v′(r Tr + β)
−α−r dv

, v′ = vr

r
∏

i=1

xv−1

i
.
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The marginal density of θ is obtained as

(4.2) Z4(θ) =

θ−(α+r+1)

∫

ϑ

0

v′e−
(r Tr+β)

θ dv

Γ(α + r)

∫

ϑ

0

v′(r Tr + β)
−α−r dv

.

Hence, the Bayes estimate of the parameter θ under the SELF is obtained as

(4.3) θ̂3 =
I
(

v′, (α + r − 1)
)

(α + r − 1) I
(

v′, (α + r)
) ,

where I(ω1, ω2) =
∫

ϑ

0
(ω1) (r Tr + β)

−ω2 dv.

Similarly, the Bayes estimate of the parameter θ under the LLF is

(4.4) I
(

v′′, (α + r−1)
)

= ea I
(

v′′, (α + r)
)

, v′′ = v′
(

1−
a θ̂4

r Tr + β

)

−α−r+1

.

The Bayes estimates of the parameter θ under the SELF and the LLF criterions

do not exist in the close form. Therefore, the risks under both risks criterion also

do not exist. Hence, the Bayes shrinkage estimator is not obtained in this case.

However, the numerical findings of the Bayes estimates and their risks under both

risks criterion are presented here by using the following example.

Example 4.1. Mann and Fertig (1973) give failure times of airplane com-

ponents subjected to a life test. The Weibull distribution has often been found a

suitable model in such situations. The data are Type-II censored: 13 components

were placed on test and test was terminated at time of 10
th

failure. Failure times

(in hours) of the 10 components that failed were

0.22 0.50 0.88 1.00 1.32 1.33 1.54 1.76 2.50 3.00 .

The expressions of the Bayes estimates of θ and their risks under the SELF

and LLF risk criterion involve a, α, β, θ, n, ϑ and r. For the similar set of selected

values of ‘a’ and α as considered earlier with β = 0.50, 2.00, 5.00, 10.00, 20.00;

θ = 02, 04, 06 and ϑ = 02, 04, 06, 10, the numerical findings have been obtained

and we present them in Table 5–6.

Table 5 presents the numerical values of the Bayes estimate θ̂3 (SELF)

only for θ = 2.00 and their risks under the SELF and the LLF for (θ, ϑ, a) = 2.00

only. It is observed form the table that the magnitude of the risks under both

risk criterion increase (decrease) as β(α) increases when other considered values

of the parametric space are fixed. It also has been seen that the risks under

the LLF-criterion increases when ‘a’ increase with other fixed parametric values.

It is noted that there is a smaller magnitude of the risks under the LLF-criterion

than under the SELF-criterion.
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Table 5: The values of the Bayes estimate θ̂3.

ϑ β↓ α→ 1.25 1.50 2.50 5.00 10.00 20.00

0.50 3.0896 2.9711 2.5581 1.8471 1.1469 0.6381

2.00 3.3315 3.2086 2.7774 2.0228 1.2637 0.7056

2.00 5.00 3.7889 3.6581 3.1954 2.3646 1.4946 0.8398

10.00 4.4901 4.3479 3.8411 2.9064 1.8722 1.0612

20.00 5.7463 5.5829 4.9988 3.8992 2.6010 1.4982

0.50 3.2633 3.1129 2.6198 1.8538 1.1469 0.6380

2.00 3.5547 3.3931 2.8622 2.0336 1.2637 0.7059

4.00 5.00 4.1258 3.9425 3.3383 2.3879 1.4950 0.8400

10.00 5.0506 4.8327 4.1115 2.9660 1.8744 1.0611

20.00 6.8305 6.5474 5.6050 4.0890 2.6171 1.4983

0.50 3.2631 3.1126 2.6195 1.8548 1.1446 0.6430

2.00 3.5546 3.3929 2.8618 2.0341 1.2629 0.7096

6.00 5.00 4.1260 3.9426 3.3382 2.3873 1.4966 0.8390

10.00 5.0507 4.8328 4.1118 2.9657 1.8749 1.0581

20.00 6.8306 6.5474 5.6047 4.0894 2.6163 1.5010

0.50 3.2469 3.0962 2.6104 1.8782 1.1311 0.6470

2.00 3.5399 3.3760 2.8443 2.0500 1.2632 0.7035

10.00 5.00 4.1247 3.9370 3.3183 2.3802 1.5201 0.8204

10.00 5.0715 4.8522 4.1168 2.9371 1.8978 1.0412

20.00 6.8295 6.5524 5.6308 4.1048 2.5871 1.5249

The values of risks of the Bayes estimator

(a, ϑ) = 2.00 β↓ α→ 1.25 1.50 2.50 5.00 10.00 20.00

R(S)(θ̂3)
0.50

64.744 63.185 57.786 48.327 38.039 29.313

R(L)(θ̂3) 2.9978 2.9517 2.7875 2.4814 2.1149 1.7671

R(S)(θ̂3)
2.00

67.093 65.451 59.765 49.816 39.013 29.874

R(L)(θ̂3) 3.0694 3.0215 2.8510 2.5331 2.1525 1.7912

R(S)(θ̂3)
5.00

71.919 70.104 63.826 52.862 41.000 31.011

R(L)(θ̂3) 3.2130 3.1615 2.9784 2.6369 2.2278 1.8396

R(S)(θ̂3)
10.00

80.342 78.222 70.896 58.142 44.421 32.956

R(L)(θ̂3) 3.4530 3.3957 3.1915 2.8106 2.3540 1.9205

R(S)(θ̂3)
20.00

98.617 95.818 86.170 69.469 51.678 37.022

R(L)(θ̂3) 3.9354 3.8663 3.6201 3.1603 2.6083 2.0837

Table 6 presents the numerical values of the Bayes estimate θ̂4 (LLF) only

for θ = 2.00, ϑ = 2.00, 10.00 and a = 0.50, 2.00 and their risks under the SELF

and the LLF for (θ, ϑ, a) = 2.00 only. It is observed form the table that the

magnitudes of the risks under both risk criterions increase when ‘a’ increases

with other fixed parametric values. Other properties are similar to the Bayes

estimator θ̂3.
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Table 6: The values of the Bayes estimate θ̂4.

ϑ a β↓ α→ 1.25 1.50 2.50 5.00 10.00 20.00

0.50 2.1562 2.2002 2.3762 2.8162 3.6963 5.4564

2.00 2.0055 2.0465 2.2102 2.6195 3.4381 5.0752

2.00

0.50 5.00 1.7637 1.7997 1.9436 2.3036 3.0234 4.4632

10.00 1.4743 1.5044 1.6248 1.9256 2.5274 3.7309

20.00 1.1174 1.1402 1.2314 1.4595 1.9156 2.8278

0.50 0.5390 0.5500 0.5940 0.7040 0.9241 1.3641

2.00 0.5014 0.5116 0.5525 0.6549 0.8595 1.2688

2.00 5.00 0.4409 0.4499 0.4859 0.5759 0.7559 1.1158

10.00 0.3686 0.3761 0.4062 0.4814 0.6318 0.9327

20.00 0.2794 0.2851 0.3079 0.3649 0.4789 0.7069

0.50 2.6221 2.6756 2.8896 3.4247 4.4950 6.6354

2.00 2.4649 2.5152 2.7164 3.2195 4.2255 6.2377

10.0

0.50 5.00 2.2106 2.2557 2.4362 2.8874 3.7897 5.5942

10.00 1.9024 1.9412 2.0965 2.4848 3.2613 4.8143

20.00 1.5133 1.5442 1.6677 1.9766 2.5942 3.8296

0.50 0.6555 0.6689 0.7224 0.8562 1.1237 1.6589

2.00 0.6162 0.6288 0.6791 0.8049 1.0564 1.5594

2.00 5.00 0.5527 0.5639 0.6091 0.7218 0.9474 1.3986

10.00 0.4756 0.4853 0.5241 0.6212 0.8153 1.2036

20.00 0.3783 0.3860 0.4169 0.4941 0.6486 0.9574

The values of risks of the Bayes estimator

(a, ϑ) = 2.00 β↓ α→ 1.25 1.50 2.50 5.00 10.00 20.00

R(S)(θ̂4)
0.50

13.445 13.395 13.198 12.713 11.774 10.022

R(L)(θ̂4) 0.9928 0.9899 0.9785 0.9501 0.8941 0.7853

R(S)(θ̂4)
2.00

13.550 13.502 13.313 12.846 11.939 10.241

R(L)(θ̂4) 0.9989 0.9961 0.9852 0.9580 0.9042 0.7995

R(S)(θ̂4)
5.00

13.734 13.690 13.514 13.079 12.232 10.634

R(L)(θ̂4) 1.0095 1.0070 0.9969 0.9717 0.9219 0.8246

R(S)(θ̂4)
10.00

13.983 13.944 13.786 13.395 12.632 11.179

R(L)(θ̂4) 1.0237 1.0215 1.0125 0.9901 0.9457 0.8586

R(S)(θ̂4)
20.00

14.341 14.308 14.177 13.853 13.215 11.987

R(L)(θ̂4) 1.0440 1.0421 1.0348 1.0164 0.9798 0.9078

5. THE MINIMAX ESTIMATORS AND THEIR PROPERTIES

The basic principle of this approach is to minimize the loss. The derivation

depends primarily on a theorem, which is due to Hodge & Lehmann (1950) and

can be stated as follows.
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Let τ = {Fθ : θ ∈Θ} be a family of distribution functions and D be a class

of estimators of the parameter θ. Suppose that d∗∈D is a Bayes estimator against

a prior distribution π(θ) on the parameter space Θ. Then the Bayes estimator d∗

is said to be the Minimax estimator if the risk function of d∗ is independent on Θ.

When the shape parameter v is considered to be known, the Bayes estimator

for the parameter θ corresponding to the SELF and LLF are given respectively

in equations (2.2) and (2.4). Further, the expressions of the risk for these Bayes

estimators corresponding to the considered loss criterion are given in equations

(2.6) and (2.7) respectively.

Both expressions of the risk involve the parameter θ. Hence, the Bayes

estimators θ̂1 and θ̂2 are not Minimax estimators. Thus, under the natural family

of the conjugate prior the Minimax estimators do not exist.

Now, the Bayes estimators corresponding to the posterior Z2(θ), given in

(2.10), are obtained respectively under both loss criteria as

θ̂5 = ϕ5 r Tr , ϕ5 = (d + r − 2)
−1

(5.1)

and

θ̂6 = ϕ6 r Tr , ϕ6 =
1

a

(

1− exp

(

−
a

d + r

)

)

.(5.2)

The risks of these Bayes estimators corresponding to the SELF and the LLF are

given respectively as

R(S)(θ̂i) = θ2
(

r (r +1)ϕ2
i + 1 − 2 r ϕi

)

(5.3)

and

R(L)(θ̂i) = e−a
(1− a ϕi)

−r − 1 − a(r ϕi −1) , i = 5, 6 .(5.4)

It is observed that the Bayes estimators θ̂5 and θ̂6 are not the minimax estimators

corresponding to the loss criterion SELF. However, the risk of Bayes estimators

θ̂5 and θ̂6 are independent of the parameter θ under the LLF criterion. Hence,

both estimators θ̂5 and θ̂6 are Minimax estimators under the LLF loss criterion.

The following statistical problem (Minimax Estimation) is equivalent to

some two person zero sum game between the Statistician (Player-II) and Nature

(Player-I). Here the pure strategies of Nature are the different values of θ in the

interval (0,∞) and the mixed strategies of Nature are the prior densities of θ in

the interval (0,∞). The pure strategies of Statistician are all possible decision

functions in the interval (0,∞).

The expected value of the loss function is the risk function and it is the

gain of the Player-I. Further, the Bayes risk is defined as

R∗
(η, θ̂B) = Eθ R(θ̂B) .
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Here, the expectation has been taken under the prior density of parameter θ.

If the loss function is continuous in both the estimator θ̂B and the parameter θ,

and convex in θ̂B for each value of θ then there exist measures η∗ and θ̂∗
B

for all

θ and θ̂B so that, the following relation holds:

R∗
(η, θ̂∗B) ≤ R∗

(η∗, θ̂∗B) ≤ R∗
(η∗, θ̂B) .

The number R∗
(η∗, θ̂∗

B
) is known as the value of the game, and η∗ and θ̂∗

B
are

the corresponding optimum strategies of the Player I and II. In statistical terms

η∗ is the least favorable prior density of θ and the estimator θ̂∗
B

is the minimax

estimator. In fact, the value of the game is the loss of the Player-II. Hence, the

optimum strategy of Player-II and the value of game are given as

Optimum Strategy Corresponding Loss Value of Game

θ̂5 = ϕ5 r Tr LLF e−a
(1− a ϕ5)

−r − 1 − a(r ϕ5−1)

θ̂6 = ϕ6 r Tr LLF e−a
(1− a ϕ6)

−r − 1 − a(r ϕ6−1)
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1. INTRODUCTION

Testing hypotheses is one of the most important challenges in performing

nonparametric statistics. Various nonparametric statistics have been proposed

and discussed over the course of many years. However, the single most chal-

lenging testing problem lies in calculating the exact critical test statistic value

for small data sets. It is also difficult to obtain the exact critical value when

the sample sizes are moderate to large in size. Under these circumstances, we

must estimate the exact critical value with an approximation method. Hence,

considering approximations for evaluating the density or distribution function of

the test statistic remains one of the most important topics in statistics. For the

approximation presented in this study, we used a saddlepoint formula proposed

by Daniels (1954, 1987) and of the type developed by Lugannani and Rice (1980).

The saddlepoint approximation can be obtained for any statistic that admits a

cumulant generating function. Additionally, for small sample sizes, the saddle-

point can generate accurate probabilities in the distribution tails. Saddlepoint

approximations have been used with great success by many authors, and excel-

lent discussions of their applications to a range of distributional problems are

provided by Reid (1988), Jensen (1995), Goutis and Casella (1999), Huzurbazar

(1999), Kolassa (2006) and Butler (2007). Additionally, Easton and Ronchetti

(1986) have discussed saddlepoint approximations by using expansions of the cu-

mulant generating function. For conducting a distribution-free test, Giles (2001)

and Chen and Giles (2008) compared saddlepoint approximations with the limit-

ing distribution of the Anderson–Darling (1952, 1954) and the Sinclair and Spurr

(1988) tests and found that the saddlepoint approximations were better than

both. In nonparametric statistics, researchers are very interested in considering

approximations under finite sample sizes. Froda and van Eeden (2000) proposed

a uniform saddlepoint expansion to the null distribution of the Wilcoxon–Mann–

Whitney test (Gibbons and Chakraborti, 2003). Additionally, Bean et al. (2004)

compared a saddlepoint approximation of the Wilcoxon–Mann–Whitney test with

that of Edgeworth, and determined normal and uniform approximations under

finite sample sizes.

In addition to assessing distributions, nonparametric statistics are used to

test the competing risks model. Various authors have proposed the test statistics

for the case in which there are competing risks and without censoring. For exam-

ple, Bagai et al. (1989) developed distribution-free rank tests for stochastic order-

ing in the two independent competing risks model. Yip and Lam (1992) suggested

a class of weighted log-rank-type statistics, and Neuhaus (1991) constructed the

asymptotically optimal rank tests for q competing risks against stochastic order-

ing without censoring. Hu and Tsai (1999) considered the linear rank tests for

a competing risks model. In this paper, we considered a saddlepoint approxima-

tion to the small size sample distribution of the statistic proposed by Bagai et al.

(1989), and we estimated the exact critical value of the Bagai statistic for large
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sample sizes, also using a saddlepoint approximation. We expect to apply the

saddlepoint approximation to the other statistics for testing stochastic ordering

in the competing risks model. In Section 2, we introduce Bagai’s (1989) statistic,

namely V , and the moment-generating function of the V statistic. In Section 3,

we report on a saddlepoint approximation to the distribution of the V statistic

and compare a saddlepoint approximation with that of Bagai. In addition, we

extend the table of the critical values of the Bagai statistic using the saddlepoint

approximation. In Section 4, we report on the derivation of the orders of the

errors of a saddlepoint approximation.

2. THE BAGAI STATISTIC

In this section, we introduce a distribution-free test for stochastic ordering

in a two independent competing risks model. We assumed that X and Y are

independent and absolutely continuous random variables. Let X1, ..., Xn and

Y1, ..., Yn be two random samples of independent observations of size n, each of

which has a continuous distribution described as F and G, respectively, denoting

the hypothetical times to failure of the n individuals in the sample under the two

risks. We observed only (T1, δ1), ..., (Tn, δn), where Ti = min(Xi, Yi) denotes the

time to failure and δi = I(Xi > Yi) indicates the cause of failure of the i-th unit.

On the basis of these data types, we were interested in testing the hypothesis:

H0 : F (x) = G(x) against H1 : F (x) 6 G(x) .

Subsequently, Bagai et al. (1989) proposed a test statistic, namely V , as

V = 2

n
∑

i=1

(2 n−1−Ri)δi −
3 n(n−1)

2
.

Here, Ri denotes the rank of Ti among T1, ..., Tn. In addition, the moment-gen-

erating function of the V statistic is given by Bagai et al. (1989) as follows:

M∗
(s) = 2

−n
exp

(

−3 n(n−1)s

2

) n+1
∏

j=2

{

1− exp
(

2s(2n− j)
)

}

.

However, there is a typo in the M∗
(s) formula given by Bagai et al. (1989), and

we should use the moment-generating function M(s) as follows:

M(s) = 2
−n

exp

(

−3 n(n−1)s

2

) n+1
∏

j=2

{

1+ exp
(

2s(2n− j)
)

}

.

By using the moment-generating function M(s), the mean and variance of the V

statistic are respectively given by

E(V ) = 0 and var(V ) =
n(n−1) (14n −13)

6

under the null hypothesis. We consider a saddlepoint approximation by using the

moment-generating function M(s) in the next section.
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3. SADDLEPOINT APPROXIMATION

3.1. Saddlepoint approximation to Bagai statistic

In this section, we considered a saddlepoint approximation (Daniels, 1954,

1987) to the distribution of the V statistic. In the previous section, the moment-

generating function M(s) was given by

M(s) = 2
−n

exp

(

−3 n(n−1)s

2

) n+1
∏

j=2

{

1+ exp
(

2s(2n− j)
)

}

.

The cumulant generating function of the V statistic, namely κ(s), is

κ(s) = log
[

M(s)
]

= −n log 2 −
3 n(n−1)s

2
+

n+1
∑

j=2

log

{

1+ exp
(

2s(2n− j)
)

}

.

To obtain the saddlepoint approximation, we evaluated the first two derivatives

of the cumulant generating function as

κ(1)
(s) = −

3 n(n−1)

2
+

n+1
∑

j=2

2(2n− j) exp
(

2s(2n− j)
)

1 + exp
(

2s(2n− j)
)

and

κ(2)
(s) =

n+1
∑

j=2

4(j − 2n)
2
exp

(

2s(j + 2n)
)

(

exp(2 j s) + exp(4ns)
)2

,

where κ(i)
(·) denotes the i-th derivative. A highly lucid account of the generalized

Lugannani and Rice formula for nonnormal distributions was suggested by Wood

et al. (1993). Then, to determine the saddlepoint approximation to Pr(V ≥ v),

we solved the saddlepoint equation, κ(1)
(s) = v, and used the unique solution

(s = ŝ) to calculate

ŵ =

√

2
(

ŝ v −κ(ŝ)
)

sgn(ŝ) =

√

2
(

ŝκ(1)(ŝ)−κ(ŝ)
)

sgn(ŝ) and û = ŝ
√

κ(2)(ŝ) ,

given by Wood et al., where sgn(ŝ) = ±1, 0 if ŝ is positive, negative, or zero.

The saddlepoint approximation to the cumulative distribution function of the

V statistic is

Pr(V ≥ v) ≈ 1 − Φ(ŵ) + φ(ŵ)

{

1

û
−

1

ŵ

}

,

where φ(·) is the standard normal density function and Φ(·) is the corresponding

cumulative distribution function.
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3.2. Numerical results

In this section, we report on the evaluation of the tail probability using the

saddlepoint approximation. For this test, we listed the exact probability of the

V statistic derived by Bagai et al., namely EP , the Bagai’s approximation, namely

AB, and a saddlepoint approximation, namely AS , given in Tables 1 and 2.

Table 1-1: Numerical results for 1% significance level.

n v EP AB AS

7 51 0.0156 0.0183 0.016256

8 68 0.0117 0.0126 0.010587

9 84 0.0117 0.0113 0.009430

10 99 0.0107 0.0117 0.010029

11 115 0.0102 0.0118 0.010393

12 134 0.0105 0.0186 0.009538

13 152 0.0102 0.0109 0.009701

14 169 0.0106 0.0116 0.010537

15 191 0.0103 0.0107 0.009674

16 210 0.0105 0.0111 0.010161

17 232 0.0100 0.0181 0.009895

18 255 0.0100 0.0105 0.009595

19 275 0.0104 0.0110 0.010205

20 298 0.0104 0.0109 0.010201

Table 1-2: Difference between EP and approximations.

n |EP − AB | |EP − AS |

7 0.0027 0.000656

8 0.0009 0.001113

9 0.0004 0.002270

10 0.0010 0.000671

11 0.0016 0.000193

12 0.0081 0.000962

13 0.0007 0.000499

14 0.0010 0.000063

15 0.0004 0.000626

16 0.0006 0.000339

17 0.0081 0.000105

18 0.0005 0.000405

19 0.0006 0.000195

20 0.0005 0.000199
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The numeric results for 1% and 5% significance levels are listed in Tables 1-1 and

2-1, respectively. The difference between the exact probability of the V statistic

and the approximations is given in Tables 1-2 and 2-2, respectively, where the

best result is in bold. Note that v and n denote the exact critical value of the

Bagai statistic and the sample size, respectively. We treated the cases 7 ≤ n ≤ 20

at a 1% significance level and 5 ≤ n ≤ 20 at 5% significance, which represent the

same cases as presented in Bagai et al. (1989).

Table 2-1: Numerical results for 5% significance level.

n v EP AB AS

5 22 0.0625 0.0522 0.057870

6 31 0.0625 0.0499 0.051279

7 41 0.0547 0.0463 0.047075

8 50 0.0508 0.0499 0.050831

9 62 0.0508 0.0461 0.046546

10 73 0.0508 0.0472 0.047642

11 83 0.0527 0.0513 0.051902

12 98 0.0500 0.0467 0.046961

13 108 0.0528 0.0516 0.052143

14 123 0.0511 0.0494 0.049753

15 137 0.0516 0.0495 0.049831

16 150 0.0523 0.0512 0.051650

17 166 0.0519 0.0500 0.050448

18 181 0.0516 0.0506 0.050878

19 197 0.0516 0.0505 0.050748

20 214 0.0511 0.0499 0.050178

Table 2-2: Difference between EP and approximations.

n |EP − AB | |EP − AS |

5 0.0103 0.004630

6 0.0126 0.011221

7 0.0084 0.007625

8 0.0009 0.000031

9 0.0047 0.004254

10 0.0036 0.003158

11 0.0014 0.000798

12 0.0033 0.003039

13 0.0012 0.000657

14 0.0017 0.001347

15 0.0021 0.001769

16 0.0011 0.000650

17 0.0019 0.001452

18 0.0010 0.000722

19 0.0011 0.000852

20 0.0012 0.000922
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The results of Table 1 revealed that the saddlepoint approximation to the

distribution of the V statistic is more suitable than the Bagai’s approximation

at a 1% significance level. For the cases of n = 8, 9 and 15, Bagai’s approxi-

mation is better than the saddlepoint approximation. However, the saddlepoint

approximation is conservative for the exact probability of the V statistic for n = 8

and 15. In addition, Table 2 indicates that the saddlepoint approximation to the

distribution of the V statistic is better than the Bagai’s approximation at the

5% significance level. We then estimated the exact critical values of the Bagai

statistic using the approximation AS for large sample sizes because it is difficult

to derive an exact critical value otherwise.

Table 3: Critical values of the V statistic by saddlepoint approximation.

n v Probability v Probability

21 323 0.00991 231 0.05002

22 347 0.00997 248 0.05017

23 372 0.00994 266 0.04992

24 397 0.01001 284 0.04994

25 423 0.01000 302 0.05018

30 561 0.00997 400 0.04999

35 711 0.00998 506 0.05012

40 872 0.01001 621 0.04993

45 1044 0.01001 743 0.04993

50 1226 0.01002 872 0.04994

4. ORDERS OF ERRORS OF SADDLEPOINT APPROXIMATION

In this section, we consider the error orders of a saddlepoint approximation.

From Section 3, we developed a standardized cumulant generating function of the

V statistic as follows:

κ∗(s) = −n log 2 −
3 n(n−1)s

2 σ
+

n+1
∑

j=2

log

{

1+ exp
(

2s(2n− j)/σ
)

}

,

where

σ2
=

n(n−1) (14n−13)

6
.

Then, we obtained the first four derivatives of the standardized cumulant gener-

ating as follows:

κ
(1)
∗ (s) = −

3 n(n−1)

2 σ
+

n+1
∑

j=2

Cj exp(s Cj)

1+ exp(s Cj)
,
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κ
(2)
∗ (s) =

n+1
∑

j=2

C2
j

exp(s Cj)

{

1+ exp(s Cj)
}2

,

κ
(3)
∗ (s) =

n+1
∑

j=2

C3
j

exp(s Cj)
{

1− exp(s Cj)
}

{

1+ exp(s Cj)
}3

and

κ
(4)
∗ (s) =

n+1
∑

j=2

C4
j

exp(s Cj)
{

1− 4 exp(s Cj) + exp(2s Cj)
}

{

1+ exp(s Cj)
}4

,

where

Cj =
2 (2 n− j)

σ
.

The standardized skewness and standardized kurtosis was then given by

standardized skewness :
κ

(3)
∗ (0)

κ
(2)
∗ (0)

3/2
= 0

standardized kurtosis :
κ

(4)
∗ (0)

κ
(2)
∗ (0)

2
=

−12
(

186 n3 − 489 n2
+ 421n − 119

)

5 n(n−1) (14n −13)2
.(4.1)

Bagai et al. noted that the normal approximation was appropriate for n > 20 but

that the difference of the standardized kurtosis from zero is (4.1).

We next derived the orders of the errors of the V statistic. By using an

expansion for the standardized cumulant generating function, we approximated

the κ∗(s) as follows:

κ∗(s) ≈ −n log 2 −
3 n(n−1)s

2 σ
+

n+1
∑

j=2

{

log 2 +
2s(2n− j)

2 σ
+

4s2
(2n− j)2

8 σ2

−
16s4

(2n− j)4

192 σ4
+

64s6
(2n− j)6

2880 σ6
+ · · ·

}

≈
ns2

(n−1)(14n−13)

12 σ2
−

ns4
(n−1)(186n3− 489 n2

+ 421n −119)

360 σ4

+
ns6

(n−1)(76n5− 3207n4
+ 5256n3− 494n2

+1637n− 253)

1890 σ6

≈
s2

2
−

1

n

{

s4
(

186 n3− 489 n2
+ 421n−119

)

10(n−1)(14n−13)2

}

+
1

n2

{

4s6
(

762 n5− 3207n4
+ 5256n3− 4194n2

+1637n− 253
)

35(n−1)2 (14n−13)3

}

+ O(n−3
) .
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We then approximated the first four derivatives of the standardized cumulant

generating function by

κ
(1)
∗ (s) ≈ s −

1

n

{

2s3
(

186 n3− 489 n2
+ 421n−119

)

5(n−1)(14n−13)2

}

+
1

n2

{

24s5
(

762 n5− 3207n4
+ 5256n3− 4194n2

+1637n− 253
)

35(n−1)2 (14n−13)3

}

+ O(n−3
) ,

κ
(2)
∗ (s) ≈ 1 −

1

n

{

6s2
(

186 n3− 489 n2
+ 421n−119

)

5(n−1)(14n−13)2

}

+
1

n2

{

24s4
(

762 n5− 3207n4
+ 5256n3− 4194n2

+ 1637n− 253
)

7(n−1)2 (14n−13)3

}

+ O(n−3
) ,

κ
(3)
∗ (s) ≈ −

1

n

{

12s
(

186 n3− 489 n2
+ 421n−119

)

5(n−1)(14n−13)2

}

+
1

n2

{

96s3
(

762 n5− 3207n4
+ 5256n3− 4194n2

+1637n− 253
)

7(n−1)2 (14n−13)3

}

+ O(n−3
)

and

κ
(4)
∗ (s) ≈ −

1

n

{

12
(

186 n3− 489 n2
+ 421n−119

)

5(n−1)(14n−13)2

}

+
1

n2

{

288s2
(

762 n5− 3207n4
+ 5256n3− 4194n2

+1637n− 253
)

7(n−1)2 (14n−13)3

}

+ O(n−3
) .

By expanding for κ∗(s) in a Taylor series, we then determined

0 = κ∗(0) = κ∗(s) − sκ
(1)
∗ (s) +

s2κ
(2)
∗ (s)

2
−

s3κ
(3)
∗ (s)

6
+

s4κ
(4)
∗ (s)

24
+ · · · .

Then, substituting to the w, we determined

w2
= 2

{

sκ
(1)
∗ (s) − κ∗(s)

}

= 2

{

sκ
(1)
∗ (s) − sκ

(1)
∗ (s) +

s2κ
(2)
∗ (s)

2
−

s3κ
(3)
∗ (s)

6
+

s4κ
(4)
∗ (s)

24
+ · · ·

}

= s2κ
(2)
∗ (s)

{

1−
sκ

(3)
∗ (s)

3 κ
(2)
∗ (s)

+
s2κ

(4)
∗ (s)

12 κ
(2)
∗ (s)

+ · · ·

}

.
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Therefore, we obtained

1

w
=

1

s

√

κ
(2)
∗ (s)

{

1 −
sκ

(3)
∗ (s)

3κ
(2)
∗ (s)

+
s2κ

(4)
∗ (s)

12 κ
(2)
∗ (s)

+ · · ·

}

−
1
2

=
1

s

√

κ
(2)
∗ (s)

{

1 +
sκ

(3)
∗ (s)

6κ
(2)
∗ (s)

−
s2κ

(4)
∗ (s)

24 κ
(2)
∗ (s)

+
s2

(

κ
(3)
∗ (s)

)2

24
(

κ
(2)
∗ (s)

)2
+ · · ·

}

=
1

s

√

κ
(2)
∗ (s)

+ O(n−1
)

by applying the binomial theorem and substituting the i-th standardized cumu-

lant. To determine the saddlepoint approximation to Pr
(

(V − E(V ))/σ ≥ v∗
)

,

we solved the saddlepoint equation, κ
(1)
∗ (s) = v∗, and used the unique solution

(s = ŝ) to calculate

ŵ =

√

2
(

ŝ v∗ − κ∗(ŝ)
)

sgn(ŝ) and û = ŝ

√

κ
(2)
∗ (ŝ) ,

where sgn(ŝ) = ±1, 0 if ŝ is positive, negative, or zero. Therefore, we determined

Pr

(

V − E(V )

σ
≥ v∗

)

≈ 1− Φ(ŵ) + φ(ŵ)

{

1

û
−

1

ŵ
+ O(n−1

)

}

= 1− Φ(ŵ) + φ(ŵ)

(

1

û
−

1

ŵ

)

+ O(n−1
) .

Note that φ(ŵ) ≈ Constant + O(n−1
). Typically, an approximation of the above

form has the relative error O(n−3/2
). However, the exact distribution of the

standardized Bagai statistic is discrete, so the discrete distribution of the stan-

dardized Bagai statistic may be approximated at its support point by a smooth

function that behaves similarly to a distribution function. Therefore, Φ(r∗(w))

approximates the distribution function of the Bagai statistic with a relative er-

ror of O(n−1
) in a normal deviation region in which r∗(w) = w + w−1

log(u/w);

Barndorff-Nielsen and Cox (1994). The use of saddlepoint approximation as a

technique for smoothing discrete distributions is discussed by Davison and Wang

(2002).

5. CONCLUDING REMARKS

In this paper, we considered the saddlepoint approximation to the distri-

bution of the Bagai statistic V (1989). The standard saddlepoint formula pro-

vided an accurate approximation to the distribution of the V statistic. From the

numerical results, we determined that the approximation precision of the saddle-

point approximation is superior to the Bagai’s approximation using finite sample
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sizes. The orders of the errors of a saddlepoint approximation were also derived.

In future work, we intend to 1) compare the orders of the errors of the higher-order

saddlepoint approximation, Bagai’s approximation, and other approximations,

2) be able to apply the saddlepoint approximation to other statistics for testing

the independent competing risks model, and 3) consider the saddlepoint approxi-

mation to the distribution of the V statistic for cases of dependent competing risks

models, e.g. Aly, Kochar and McKeague (1994), Dykstra, Kochar and Robertson

(1995).
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