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Abstract:

• A common measure of tail dependence is the so-called tail-dependence coefficient.

We present a nonparametric estimator of the tail-dependence coefficient and prove

its strong consistency and asymptotic normality in the case of known marginal dis-

tribution functions. The finite-sample behavior as well as robustness will be assessed

through simulation. Although it has a good performance, it is sensitive to the extreme

value dependence assumption. We shall see that a block maxima procedure might im-

prove the estimation. This will be illustrated through simulation. An application to

financial data shall be presented at the end.

Key-Words:

• extreme value theory; stable tail dependence function; tail-dependence coefficient.

AMS Subject Classification:

• 62G32.



2 Marta Ferreira



TDC Estimation 3

1. INTRODUCTION

Modern risk management is highly interested in assessing the amount of tail

dependence. Many minimum-variance portfolio models are based on correlation,

but correlation itself is not enough to describe a tail dependence structure and

often results in misleading interpretations (Embrechts et al., [7]). Multivariate

extreme value theory (EVT) is the natural tool to measure and model such ex-

tremal dependence. The importance of this issue has led to several developments

and applications in literature, e.g., Sibuya ([25]), Tiago de Oliveira ([27]), Joe

([16]), Coles et al. ([5]), Embrechts et al. ([8]), Frahm et al. ([11]), Schmidt and

Stadtmüller ([23]), Ferreira and Ferreira ([9]); see de Carvalho and Ramos ([6])

for a recent survey.

The tail-dependence coefficient (TDC) measures the probability of occur-

ring extreme values for one random variable (r.v.) given that another assumes

an extreme value too. More precisely, it is defined as

λ = lim
t→∞

P
(
F1(X1) > 1 − 1/t | F2(X2) > 1 − 1/t

)
,(1.1)

where F1 and F2 are the distribution functions (d.f.’s) of r.v.’s X1 and X2, re-

spectively. Observe that it can be formulated as

λ = lim
α→0

P
(
X1 > VaR1−α(X1) | X2 > VaR1−α(X2)

)
,

where VaR1−α(Xi) (i = 1, 2) is the Value-at-Risk of Xi at probability level 1− α

given by the quantile function evaluated at 1 − α, F−1
i (1 − α) = inf{x : Fi(x) ≥

1 − α} (see e.g., Schmidt and Stadtmüller, [23]). The TDC can also be defined

via the notion of copula, introduced by Sklar ([26]). A copula C is a cumulative

distribution function whose margins are uniformly distributed on [0, 1]. If C is

the copula of (X1, X2) having joint d.f. F , i.e., F (x1, x2) = C
(
F1(x1), F2(x2)

)
,

observe that

λ = 2 − lim
t→∞

tP
(
F1(X1) > 1 − 1/t or F2(X2) > 1 − 1/t

)

= 2 − lim
t→∞

t
{

1 − C
(
1 − 1/t, 1 − 1/t

)}
.

(1.2)

The TDC was the first tail dependence concept appearing in literature in a

Sibuya’s paper, where it was shown that, no matter how high we choose the

correlation of normal random pairs, if we go far enough into the tail, extreme

events tend to occur independently in each margin (Sibuya, [25]). It character-

izes the dependence in the tail of a random pair (X1, X2), in the sense that,

λ > 0 corresponds to tail dependence whose degree is measured by the value of λ,

whereas λ = 0 means tail independence. The well-known bivariate t-distribution

presents tail dependence, whereas the above mentioned bivariate normal is an

example of tail independent model.
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The conventional multivariate extreme value theory has emphasized the

asymptotically dependent class resulting in its wide use. However, if the series are

truly asymptotically independent, i.e., λ = 0, an overestimation of extreme value

dependence, and consequently of the risk, will take place (see, e.g., Poon et al.,

[21]; for further details about asymptotically independent class and respective

models and coefficients, see also Ledford and Tawn, [19, 20]). Therefore, it is

important to conclude whether (X1, X2) is tail dependent or not. In practice,

this is not an easy task and one must be careful by inferring tail dependence

from a finite random sample. Tests for tail independence can be seen in, e.g.,

Zhang ([28]), Hüsler and Li ([15]) and references therein. Frahm et al. ([11])

presents illustrations of misidentifications of the dependence structure. The bad

performance of several nonparametric TDC estimators under tail independence

was also shown in this latter paper through simulation. We remark that the

examples that were used only concern models whose dependence function is not

of the extreme value type. Here we present a nonparametric estimator for the

TDC derived from Ferreira and Ferreira ([10]) and thus under an extreme value

dependence, which we denote λ̂(FF)
. Strong consistency and asymptotic normality

are proved (this latter in the case of known marginal d.f.’s). The finite-sample

behavior and robustness are analyzed through simulation. We also compare with

other existing methods. The simulation studies reveal some sensitivity to an

extreme value dependence assumption and a large bias problem in the particular

case of tail independence. In practice this may be overcome by taking block

maxima, but one must be careful with a bias-variance trade-off arising from the

number of block maxima to be considered: the larger this number the smaller

the variance but the larger the bias (Frahm et al., [11]). The simulation studies

present improvements in estimates in some cases and allow to conclude the best

block length choice. We end with an application to financial data.

2. EVT AND TAIL DEPENDENCE

Let
{(

X
(n)
1 , X

(n)
2

)}
n≥1

be i.i.d. copies of 2-dimensional random vector,

(X1, X2), with common d.f. F, and let M
(n)
j = max1≤i≤n X

(i)
j , j = 1, 2, be the

partial maxima for each marginal. If there exist sequences of constants a
(n)
j > 0,

b
(n)
j ∈ R, for j = 1, 2, and a distribution function G with non-degenerate margins,

such that

P
(
M

(n)
1 ≤ a

(n)
1 x1 + b

(n)
1 , M

(n)
2 ≤ a

(n)
2 x2 + b

(n)
2

)
=

= Fn
(
a

(n)
1 x1 + b

(n)
1 , a

(n)
2 x2 + b

(n)
2

)
−→
n→∞

G(x1, x2) ,
(2.1)
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for all continuity points of G(x1, x2), then it must be a bivariate extreme value

distribution, given by

(2.2) G(x1, x2) = exp

[
−l
{
− log G1(x1), − log G2(x2)

}]
,

for some bivariate function l, where Gj , j = 1, 2, is the marginal d.f. of G.

We also say that F belongs to the max-domain of attraction of G, in short,

F ∈ D(G). The function l in (2.2) is called stable tail dependence function,

sometimes denoted extreme value dependence. It can be verified that l is con-

vex, is homogeneous of order 1, and that max(x1, x2) ≤ l(x1, x2) ≤ x1 + x2 for all

(x1, x2) ∈ [0,∞)
2
, where the upper bound is due to the positive dependence of

extreme value models and corresponds to independence whilst the lower bound

means complete dependence (see, e.g. Beirlant et al. [1], Section 8.2.2). These

properties also hold in the d-variate case, with d > 2. The statement in (2.1) has

a similar formulation for the respective copulas, say CX and C:

Cn
X(u

1/n
1 , u

1/n
2 ) −→

n→∞
C(u1, u2) ,(2.3)

where

(2.4) C(u1, u2) = exp

{
−l
(
− log u1, − log u2

)}

is called a bivariate extreme value copula. In the sequel it will be denoted BEV

copula and we will also refer the extreme value dependence context as a BEV

dependence. The defining feature of a BEV copula is the max-stability property,

i.e., C(u1, u2) = C(u
1/m
1 , u

1/m
2 )

m
for every integer m ≥ 1, ∀ (u1, u2) ∈ [0, 1]

2
. The

max-domain of attraction condition (2.1) implies (2.3) but the reciprocal is not

true since it must also be imposed that each marginal belongs to some max-

domain of attraction. Since we have

lim
t→∞

t P
(
F1(X1) > 1 − 1/t, F2(X2) > 1 − 1/t

)
=

= 2 − lim
t→∞

t
{

1 − C
(
1 − 1/t, 1 − 1/t

)}

= 2 − lim
t→∞

log Ct
(
1 − 1/t, 1 − 1/t

)

= 2 − lim
t→∞

log C
(
(1 − 1/t)t, (1 − 1/t)t

)

= 2 − l(1, 1) ,

(2.5)

the TDC of a BEV copula can be obtained through the function l as

(2.6) λ = 2 − l(1, 1) .

In the following we list some examples of stable tail dependence functions

of BEV copulas and respective tail dependence:

• Logistic: l(v1, v2) = (v
1/r
1 + v

1/r
2 )

r
, with vj ≥ 0 and parameter 0 < r ≤ 1;

complete dependence is obtained in the limit as r → 0 and independence

when r = 1.
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• Asymmetric Logistic: l(v1, v2) = (1 − t1)v1 + (1 − t2)v2 +
{
(t1v1)

1/r
+

(t2v2)
1/r
}r

, with vj ≥ 0 and parameters 0 < r≤ 1 and 0≤ tj ≤ 1, j = 1, 2;

when t1 = t2 = 1 the asymmetric logistic model is equivalent to the logis-

tic model; independence is obtained when either r = 1, t1 = 0 or t2 = 0.

Complete dependence is obtained in the limit when t1 = t2 = 1 and

r approaches zero.

• Hüsler–Reiss: l(v1, v2) = v1Φ
(
r−1

+
1
2 r log(v1/v2)

)
+ v2Φ

(
r−1

+
1
2 r ·

log(v2/v1)
)
, with parameter r > 0 and where Φ is the standard nor-

mal d.f.; complete dependence is obtained as r → ∞ and independence

as r → 0.

Non-BEV copulas cannot be obtained in the limit in (2.3), i.e., do not

satisfy max-stability and cannot be expressed through formulation (2.4) based

on the extreme value dependence function l with the given properties.

Examples of non-BEV copulas correspond, for instance, to the class of

elliptical ones. The bivariate normal and the symmetric generalized hyperbolic

distributions are tail independent models within this class. On the other hand,

the bivariate t-distribution presents tail dependence with TDC,

λ = 2Ftν+1

{
−
√

(ν + 1) (1 − ρ)/(1 + ρ)

}
,

where ρ > −1 and Ftν+1 is the d.f. of the one dimensional tν+1 distribution. See,

e.g., Schmidt ([22]) and Frahm et al. ([11]).

Bivariate Archimedean copulas are another wide class that includes some

tail independent non-BEV copulas such as Clayton, C(u1,u2)=(u−θ
1 +u−θ

2 −1)
−1/θ

with θ ≥ 0. Another special type which do not belong to either one of the three

classes above is the tail independent Plackett-copula

C(u1, u2) =

1 + (θ−1)(u1+u2) −
[{

1+(θ−1)(u1+u2)
}2 − 4u1u2θ(θ−1)

]1/2

2 (θ−1)
,

with parameter θ ∈ R
+\{1}, and C(u1, u2) = u1u2, if θ = 1. For more details,

see Joe ([16]).

3. ESTIMATION

The use of (semi)parametric estimators bears a model risk and may lead

to wrong interpretations of the dependence structure. Nonparametric procedures

avoid this type of misspecification but usually come along with a larger vari-

ance. Frahm et al. ([11]) confirms this assertion and shows that (semi)parametric

estimators may have disastrous performances under wrong model assumptions.
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So, in practice, if we are not sure about the type of model underlying data,

nonparametric approach can be an alternative. Here we focus on nonparametric

methods.

Huang ([14]), considered an estimator derived from the definition in (1.2)

by plugging-in the respective empirical counterparts:

(3.1) λ̂(H)
= 2 − 1

kn

n∑

i=1

1{ bF1(X
(i)
1 )>1− kn

n
or bF2(X

(i)
2 )>1− kn

n

} ,

where F̂j is the empirical d.f. of Fj , j = 1, 2. Concerning estimation accuracy,

some modifications of this latter may be used, like replacing the denominator n

by n + 1, i.e., considering

F̂j(u) =
1

n + 1

n∑

i=1

1{
X

(i)
j ≤u

}

(Beirlant et al. [1], Section 9.4.1). A similar procedure was considered in Schimdt

and Stadtmüler ([23]). For asymptotic properties, see the more recent results in

Bücher and Dette ([2]). The consistency and asymptotic normality of the estima-

tor λ̂(H)
are derived with the asymptotics holding for an intermediate sequence

{kn}, kn → ∞ and kn/n → 0, as n → ∞. The choice of k ≡ kn that allows for the

‘best’ bias–variance tradeoff is of major difficulty, since small values of k come

along with a large variance whenever an increasing k results in a strong bias. A

similar problem exists for univariate tail index estimations of heavy tailed dis-

tributions, for estimators of the stable tail dependence function l (Krajina, [18])

and other TDC estimators (e.g., Frahm et al. [11] and Schmidt and Stadtmüller

[23]).

Under a BEV copula assumption, i.e., a copula with formulation (2.4), and

given (2.6), estimators for the TDC can be obtained through the ones of the

stable tail dependence function l. Within this context and motivated in Capéraà

et al. ([4]), Frahm et al. ([11]) presented the estimator

2 − 2 exp

[
1

n

n∑

i=1

log

(√
log

1

F̂1(X
(i)
1 )

log
1

F̂2(X
(i)
2 )

/
log

1

max
{
F̂1(X

(i)
1 ), F̂2(X

(i)
2 )
}2

)]
.

This rank-based estimator was shown to have the best performance among all

nonparametric estimators considered in Frahm et al. ([11]). Optimally corrected

versions can be seen in Genest and Segers ([12]) and alternative estimators are

presented in Bücher et al. ([3]). In the sequel, we shall use a corrected version

satisfying the boundary condition l(1, 0) = l(0, 1) = 1 considered in Genest and

Segers ([12]), and here denoted λ̂(CFG-C)
.

Our approach is motivated by Ferreira and Ferreira ([10]) and has the same

assumption of a BEV copula dependence structure. More precisely, it is based
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on the following representation of the stable tail dependence function:

(3.2) l(x1, x2) =

E
[
max

{
F1(X1)

1/x1 , F2(X2)
1/x2

}]

1 − E
[
max

{
F1(X1)

1/x1 , F2(X2)
1/x2

}] ,

where the expected values are estimated using sample means. Observe that the

d.f. of max
(
F1(X1)

1/x1 , F2(X2)
1/x2

)
is given by

P
(
max

{
F1(X1)

1/x1 , F2(X2)
1/x2

}
≤ u

)
= C

(
ux1 , ux2

)

= exp

(
−l
(
− log ux1 ,− log ux2

))

= exp

(
−
(
− log u

)
l
(
x1, x2

))

= ul(x1,x2) ,

(3.3)

where the penultimate step is due to the first order homogeneity property of

function l. Hence

E
[
max

{
F1(X1)

1/x1 , F2(X2)
1/x2

}]
=

l(x1, x2)

1 + l(x1, x2)
.

Therefore, based on (2.6) and (3.2), we propose the estimator

λ̂(FF)
= 3 −

[
1− max

{
F̂1(X1), F̂2(X2)

} ]−1
,(3.4)

where max
{
F̂1(X1), F̂2(X2)

}
is the sample mean of max

{
F̂1(X1), F̂2(X2)

}
, i.e.,

max
{
F̂1(X1), F̂2(X2)

}
=

1

n

n∑

i=1

max
{
F̂1(X

(i)
1 ), F̂2(X

(i)
2 )
}

.

Proposition 3.1. The estimator λ̂(FF) in (3.4) is strongly consistent.

Proof: Observe that

∣∣∣∣∣
1

n

n∑

i=1

max
j∈{1,2}

{
F̂j

(
X

(i)
j

)}
− E

[
max

j∈{1,2}

{
Fj

(
Xj

)}]
∣∣∣∣∣ ≤

≤
∣∣∣∣∣
1

n

n∑

i=1

max
j∈{1,2}

{
F̂j

(
X

(i)
j

)}
− 1

n

n∑

i=1

max
j∈{1,2}

{
Fj

(
X

(i)
j

)}
∣∣∣∣∣

+

∣∣∣∣∣
1

n

n∑

i=1

max
j∈{1,2}

{
Fj

(
X

(i)
j

)}
− E

[
max

j∈{1,2}

{
Fj

(
Xj

)}]
∣∣∣∣∣ ,

(3.5)

where the second term converges almost surely to zero by the Strong Law of

Large Numbers (by (3.3), maxj∈{1,2}

{
Fj(Xj)

}
∼ Beta

(
l(1, 1), 1

)
, 1 ≤ l(1, 1) ≤ 2,

and all the moments exist).
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The first term in (3.5) is upper bounded by

1

n

n∑

i=1

∑

j∈{1,2}

∣∣∣F̂j

(
X

(i)
j

)
− Fj

(
X

(i)
j

)∣∣∣ ,

which converges almost surely to zero according to Gilat and Hill ([13]; Theorem

1.1). See also Ferreira and Ferreira ([10], Proposition 3.7).

The asymptotic normality in case the marginal d.f.’s are known is derived

from Ferreira and Ferreira ([10], Proposition 3.3) and the delta method. More

precisely, denoting this version as λ̂
(FF)
∗ , we have

√
n
(
λ̂

(FF)
∗ −λ

)
→ N(0, σ2

) ,

where

σ2
=

l(1, 1)
(
1 + l(1, 1)

)2

2 + l(1, 1)
.

In the case of unknown marginals, we believe that the asymptotic normality of√
n
(
λ̂(FF) −λ

)
may be derived from the weak convergence of the empirical copula

process (Segers, [24]). This will be addressed in a future work.

Observe that estimators λ̂(FF)
and λ̂(CFG-C)

are obtained under the more

restrictive assumption of an extreme value dependence but have a convergence

rate of
√

n. On the other hand, estimator λ̂(H)
has no restrictive assumptions

but has to pay the price of a slower convergence rate
√

kn, since only the largest

kn = o(n) observations can be taken into account.

4. SIMULATION STUDY

In this section we analyze the finite-sample behavior of our estimator.

We simulate 1000 independent random samples of sizes n = 50, 100, 500, 1000

from three BEV copulas with stable tail dependence functions: logistic, asym-

metric logistic and Hüsler–Reiss. We consider the two types of dependence:

tail dependence (Table 1) and tail independence (Table 2). The results ob-

tained from the logistic and asymmetric logistic under tail independence are

quite similar and thus we omit the latter case. In order to assess robustness

we also analyze the case of non-BEV copulas, by considering, for tail depen-

dence, a bivariate t-distribution with ν = 1.5 degrees of freedom and, for tail

independence, a BSGH distribution (Table 3). In both cases we take a correla-

tion parameter of ρ = 0.5. Since the t-distribution is somewhat ‘close’ to being

an extreme value copula (see Bücher, Dette and Volgushev [3], Section 2), we

also consider a convex combination of a rotated Clayton copula (correspond-

ing to negative dependence) and a t-distribution, more precisely, Cα(u1, u2) =

α
(
u2 − CClayton(1 − u1, u2)

)
+ (1 − α) Ctν (u1, u2). For comparison, we compute

estimator λ̂(CFG-C)
which works under the same assumptions (i.e, an extreme
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value dependence) and the more general estimator λ̂(H)
which has no model re-

strictions (the required choice of k to balance the variance-bias problem is based

on an heuristic procedure in Frahm et al. [11]). Absolute empirical bias and

the root mean-squared error (rmse) for all implemented TDC estimations are in

Tables 1, 2 and 3.

Table 1: Tail dependent (λ > 0) BEV copulas with stable tail depen-

dence functions: Logistic and Asym. Logistic with r = 0.4 and

Hüsler–Reiss with r = 3.

λ̂(FF) λ̂(CFG-C) λ̂(H)

bias (rmse) bias (rmse) bias (rmse)

λ = 0.6805 Logistic

(n = 50) 0.0019 (0.0994) 0.0050 (0.0556) 0.0395 (0.1962)

(n = 100) 0.0052 (0.0711) 0.0044 (0.0395) 0.0389 (0.1412)

(n = 500) 0.0006 (0.0330) 0.0005 (0.0180) 0.0216 (0.0883)

(n = 1000) 0.0002 (0.0232) 0.0004 (0.0122) 0.0099 (0.1379)

λ = 0.3402 Asym. Logistic

(n = 50) 0.0085 (0.1147) 0.0332 (0.1122) 0.0527 (0.1836)

(n = 100) 0.0053 (0.0824) 0.0203 (0.0754) 0.0635 (0.1363)

(n = 500) 0.0020 (0.0389) 0.0045 (0.0355) 0.0335 (0.0847)

(n = 1000) 0.0014 (0.0287) 0.0031 (0.0245) 0.0038 (0.1193)

λ = 0.7389 Hüsler–Reiss

(n = 50) 0.0040 (0.0484) 0.0057 (0.0462) 0.0202 (0.1697)

(n = 100) 0.0003 (0.0331) 0.0020 (0.0323) 0.0075 (0.1094)

(n = 500) 0.0002 (0.0152) 0.0007 (0.0140) 0.0011 (0.0655)

(n = 1000) 0.0002 (0.0292) 0.0005 (0.0097) 0.0103 (0.0342)

Table 2: Tail independent (λ = 0) BEV copulas with stable tail dependence

functions: Logistic with r = 1 and Hüsler–Reiss with r = 0.03.

λ̂(FF) λ̂(CFG-C) λ̂(H)

bias (rmse) bias (rmse) bias (rmse)

λ = 0 Logistic

(n = 50) 0.0230 (0.1284) 0.0900 (0.1389) 0.1040 (0.1644)

(n = 100) 0.0062 (0.0956) 0.0467 (0.0952) 0.1004 (0.1348)

(n = 500) 0.0036 (0.0415) 0.0140 (0.0361) 0.0492 (0.0650)

(n = 1000) 0.0017 (0.0296) 0.0077 (0.0257) 0.0502 (0.0578)

λ ≈ 0 Hüsler–Reiss

(n = 50) 0.0254 (0.1370) 0.0875 (0.1353) 0.1002 (0.1660)

(n = 100) 0.0084 (0.0966) 0.0412 (0.0883) 0.0991 (0.1336)

(n = 500) 0.0009 (0.0415) 0.0100 (0.0361) 0.0492 (0.0653)

(n = 1000) 0.0003 (0.0299) 0.0061 (0.0265) 0.0081 (0.0298)
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Table 3: Non-BEV tail dependent case: tν with ν = 1.5 and ρ = 0.5
and a convex combination of a rotated Clayton and tν (RC&T),

C0.5(u1, u2) = 0.5
(
u2 − CClayton(1 − u1, u2)

)
+ 0.5Ctν

(u1, u2);

non-BEV tail independent case: BSGH distribution with ρ = 0.5.

λ̂(FF) λ̂(CFG-C) λ̂(H)

bias (rmse) bias (rmse) bias (rmse)

λ = 0.4406 t-distribution

(n = 50) 0.0099 (0.1043) 0.0318 (0.1022) 0.0084 (0.1970)

(n = 100) 0.0087 (0.0711) 0.0213 (0.0743) 0.0094 (0.1393)

(n = 500) 0.0124 (0.0339) 0.0130 (0.0348) 0.0044 (0.0884)

(n = 1000) 0.0122 (0.0267) 0.0123 (0.0266) 0.0120 (0.1403)

λ = 0.3669 RC&T

(n = 50) 0.4396 (0.6562) 0.2832 (0.4736) 0.2990 (0.3064)

(n = 100) 0.4052 (0.6440) 0.2879 (0.4282) 0.1371 (0.2779)

(n = 500) 0.3800 (0.6411) 0.2793 (0.4681) 0.1350 (0.2772)

(n = 1000) 0.3791 (0.6342) 0.2650 (0.4571) 0.1314 (0.2743)

λ = 0 BSGH

(n = 50) 0.4288 (0.4396) 0.4305 (0.4544) 0.3730 (0.4238)

(n = 100) 0.4287 (0.4346) 0.4239 (0.4294) 0.3704 (0.3926)

(n = 500) 0.4248 (0.4259) 0.4030 (0.4052) 0.3130 (0.3232)

(n = 1000) 0.4238 (0.4243) 0.4001 (0.4008) 0.2188 (0.2489)

Estimators λ̂(FF)
and λ̂(CFG-C)

behave well within BEV copulas (or ‘close’

of being BEV as t-distribution). Yet, they performed poorly on a non-BEV de-

pendence context (see Table 3). Estimator λ̂(H)
tends to present a slight larger

bias but performs better under non extreme value dependence. This is consistent

with a slower rate of convergence and the fact that it holds in a general frame-

work, as discussed in the previous section. All estimators also performed poorly

on tail independent non-BEV copulas. Our results do not contradict however the

ones in Frahm et al. ([11]), where the misbehavior of nonparametric estimation

concerned tail independence within non-BEV copulas. By considering a block

maxima procedure, i.e., divide n-length data into m blocks of size b = ⌊n/m⌋
(⌊x⌋ denotes the largest integer not exceeding x) and take only the maximum

observation within each block, we obtain a sample of maximum, which is more

consistent with an extreme values model and thus a BEV copula. This method-

ology involves a bias–variance tradeoff arising from the number of block maxima

(block length) to be considered: the larger (smaller) this number the smaller

the variance but the larger the bias (Frahm et al., [11]). It requires not too

small sample sizes to also provide not too small maxima samples. A simulation

study to find the value(s) of b that better accommodates this compromise will be

implemented in the next section.
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4.1. Block maxima procedure for non-BEV dependence

We consider 1000 independent random samples of sizes n = 500, 1000, 1500,

2000, 5000 generated from the tail independent and non-BEV copulas: bivariate

normal (BN), BSGH and Plackett-copula (BPC). We estimate the TDC through

a block maxima procedure for block lengths b = 15, 30, 60, 90. The absolute em-

pirical bias and the rmse of all implemented TDC estimations are presented in

Tables 4 and 5, for BN and BPC, respectively. The results obtained for the BSGH

case (omitted here) were not good in all the three estimators and, in practice,

Table 4: Block maxima samples with given length b of BN model with ρ = 0.5
(the case b = 1 correspond to the whole sample).

BN λ̂(FF) λ̂(CFG-C) λ̂(H)

(n = 500) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.4025 (0.4036) 0.3702 (0.3733) 0.3244 (0.3294)

(b = 15) 0.2319 (0.2578) 0.2520 (0.2966) 0.1986 (0.2594)

(b = 30) 0.2081 (0.2924) 0.2958 (0.3351) 0.2241 (0.3825)

(b = 60) 0.2798 (0.4187) 0.3703 (0.4486) 0.1900 (0.4594)

(b = 90) 0.2887 (0.4275) 0.3734 (0.4937) 0.3816 (0.7975)

(n = 1000) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.4023 (0.4029) 0.3587 (0.3692) 0.3238 (0.3262)

(b = 15) 0.2046 (0.2297) 0.2201 (0.2438) 0.2037 (0.2498)

(b = 30) 0.1941 (0.2428) 0.2251 (0.2720) 0.2185 (0.3012)

(b = 60) 0.1724 (0.2695) 0.2625 (0.3234) 0.2000 (0.3578)

(b = 90) 0.2888 (0.3582) 0.3692 (0.4259) 0.3625 (0.5874)

(n = 1500) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.4024 (0.4028) 0.3562 (0.3663) 0.3236 (0.3253)

(b = 15) 0.2011 (0.2180) 0.2114 (0.2242) 0.1848 (0.2165)

(b = 30) 0.1612 (0.2015) 0.2001 (0.2328) 0.1682 (0.2309)

(b = 60) 0.1546 (0.2311) 0.2310 (0.2760) 0.2064 (0.3200)

(b = 90) 0.1708 (0.2696) 0.2674 (0.3093) 0.1964 (0.3480)

(n = 2000) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.3230 (0.3243) 0.3559 (0.3661) 0.3230 (0.3243)

(b = 15) 0.2012 (0.2141) 0.2013 (0.2155) 0.2054 (0.2312)

(b = 30) 0.1601 (0.1912) 0.1628 (0.2116) 0.1810 (0.2293)

(b = 60) 0.1600 (0.2172) 0.1600 (0.2111) 0.2047 (0.2887)

(b = 90) 0.1829 (0.2535) 0.2029 (0.2986) 0.2269 (0.3489)

(n = 5000) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.4024 (0.4025) 0.3603 (0.3644) 0.3234 (0.3240)

(b = 15) 0.1936 (0.1988) 0.1801 (0.1884) 0.1973 (0.2068)

(b = 30) 0.1595 (0.1730) 0.1519 (0.1717) 0.1762 (0.1952)

(b = 60) 0.1348 (0.1648) 0.1550 (0.1846) 0.1701 (0.2093)

(b = 90) 0.1283 (0.1744) 0.1677 (0.1948) 0.1742 (0.2288)
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Table 5: Block maxima samples with given length b of BPC (Plackett-copula)

with θ = 2 (the case b = 1 correspond to the whole sample).

BPC λ̂(FF) λ̂(CFG-C) λ̂(H)

(n = 500) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.2028 (0.2062) 0.1766 (0.1805) 0.1676 (0.1741)

(b = 15) 0.0894 (0.1779) 0.1592 (0.2026) 0.1555 (0.2462)

(b = 30) 0.0801 (0.2341) 0.1954 (0.2565) 0.1329 (0.2833)

(b = 60) 0.1981 (0.3407) 0.3397 (0.3913) 0.1244 (0.3718)

(b = 90) 0.2189 (0.3892) 0.2695 (0.4624) 0.3942 (0.4507)

(n = 1000) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.2012 (0.2030) 0.1708 (0.1733) 0.1684 (0.1720)

(b = 15) 0.0538 (0.1249) 0.0906 (0.1313) 0.1134 (0.1613)

(b = 30) 0.0701 (0.1668) 0.1457 (0.1880) 0.1579 (0.2459)

(b = 60) 0.0955 (0.2315) 0.2122 (0.2623) 0.1517 (0.3090)

(b = 90) 0.2262 (0.3168) 0.3295 (0.3714) 0.3000 (0.5177)

(n = 1500) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.2019 (0.2031) 0.1695 (0.1705) 0.1684 (0.1708)

(b = 15) 0.0547 (0.1081) 0.0798 (0.1089) 0.1053 (0.1408)

(b = 30) 0.0514 (0.1389) 0.1068 (0.1452) 0.1042 (0.1667)

(b = 60) 0.0545 (0.1943) 0.1504 (0.2077) 0.1480 (0.2647)

(b = 90) 0.1000 (0.2250) 0.2077 (0.2610) 0.1535 (0.3084)

(n = 2000) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.2012 (0.2021) 0.1684 (0.1692) 0.1695 (0.1712)

(b = 15) 0.0539 (0.0967) 0.0713 (0.0971) 0.1141 (0.1141)

(b = 30) 0.0384 (0.1175) 0.0887 (0.1252) 0.1135 (0.1613)

(b = 60) 0.0642 (0.1728) 0.1390 (0.1831) 0.1405 (0.2262)

(b = 90) 0.0953 (0.2072) 0.1819 (0.1861) 0.1678 (0.2942)

(n = 5000) bias (rmse) bias (rmse) bias (rmse)

(b = 1) 0.2015 (0.2018) 0.1665 (0.1669) 0.1697 (0.1704)

(b = 15) 0.0430 (0.0671) 0.0404 (0.0641) 0.1108 (0.1215)

(b = 30) 0.0345 (0.0807) 0.0495 (0.0781) 0.1065 (0.1283)

(b = 60) 0.0366 (0.1079) 0.0729 (0.1065) 0.1210 (0.1629)

(b = 90) 0.0397 (0.1376) 0.0895 (0.1323) 0.0970 (0.1407)

may lead to wrongly infer tail dependence. If this is an adequate model for data,

then (semi)parametric estimators considered in Frahm [11]) are a more sensible

choice. We have also implemented a block maxima procedure for the non-BEV

case of the convex combination copula considered in Table 3 with similar results

of the BPC and thus omitted. Observe that block maxima procedure improves

estimates in some cases, in particular for estimators λ̂(FF)
and λ̂(CFG-C)

. The

adequate choices for block-length b in sample sizes ranging from, approximately,

500 and 1000, are b = 15, 30, while for sample sizes between 1000 and 2000 we

can choose b = 30, 60, and for larger sample sizes (ranging from 2000 to 5000)

a block-length b = 60, 90 seems appropriate.
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4.2. Application to financial data

We consider the negative log-returns of Dow Jones (USA) and FTSE100

(UK) indexes for the time period 1994–2004. The corresponding scatter plot

and TDC estimate plot of λ̂(H)
for various k (Figure 1) show the presence of

tail dependence and the order of magnitude of the tail-dependence coefficient.
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Figure 1: Scatter plot of Dow Jones versus FTSE100 negative log-returns

(n = 2529 data points) and the corresponding TDC estimates λ̂H

for various k/n.

Moreover, the typical variance-bias problem for various threshold values k can

be observed, too. In particular, a small k induces a large variance, whereas an

increasing k generates a strong bias of the TDC estimate. The threshold choosing

procedure of k leads to a TDC estimate of λ̂(H)
= 0.3397 and from our estimator

we derive λ̂(FF)
= 0.3622. In computing λ̂(CFG-C)

we obtain 0.354. The results

from the three considered estimators are quite close, leading to a tail-dependence

estimate that should be approximately 0.35.

5. DISCUSSION

One must be careful by inferring tail dependence/independence from a finite

random sample and (semi)parametric and nonparametric procedures have pros

and cons. Thus, the message is that there is no perfect strategy and the best way

to protect against errors is the application of several methods to the same data set.

A test of tail independence is advised (see, e.g., Zhang [28], Hüsler and Li [15] and

references therein). The proposed estimator has revealed good performance even
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in the independent case. However the simulation results showed sensitivity to the

assumption of an extreme value dependence structure and we recommend to test

in advance for this hypothesis. See Kojadinovic, Yan and Segers ([17]) or Bücher,

Dette and Volgushev ([3]) and references therein. A block maxima procedure

may improve the estimates. A study focused on the asymptotic properties will

be addressed in a future work.
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[27] Tiago de Oliveira, J. (1962–1963). Structure theory of bivariate extremes:
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1. INTRODUCTION

We propose a noncentral generalized multivariate beta type II distribution

constructed from independent noncentral chi-squared random variables using the

variables in common technique. This is a new contribution to the existing beta

type II distributions considered in the literature. Tang (1938) studied the dis-

tribution of the ratios of noncentral chi-squared random variables defined on the

positive domain. He considered the ratio, consisting of independent variates,

where the numerator was a noncentral chi-squared random variable while the de-

nominator was a central chi-squared random variable, as well as the ratio where

both the numerator and denominator were noncentral chi-squared random vari-

ables — this was applied to study the properties of analysis of variance tests

under nonstandard conditions. Patnaik (1949) coined the phrase noncentral F

for the first ratio mentioned above. The second ratio is referred to as the doubly

noncentral F distribution. An overview of these distributions is given by John-

son, Kotz & Balakrishnan (1995). More recently Pe and Drygas (2006) proposed

an alternative presentation for the doubly noncentral F by using the results on

the product of two hypergeometric functions. In a bivariate context Gupta et al.

(2009) derived a noncentral bivariate beta type I distribution, using a ratio of

noncentral gamma random variables, that is defined on the unit square; applying

the appropriate transformation will yield a noncentral beta type II distribution

defined on the positive domain. The noncentral Dirichlet type II distribution

was derived by Troskie (1967) as the joint distribution of Vi =
Yi

Yr+1
, i = 1, 2, ..., r

where Yi is chi-squared distributed and Yr+1 has a noncentral chi-squared distri-

bution. Sánchez and Nagar (2003) derived the version where both Yi and Yr+1

are noncentral gamma random variables.

Section 2 provides an overview of the practical problem which is the gene-

sis of the random variables U0 =
λW0
X and Uj =

λWj

X +λ
∑j−1

k=0Wk

, j = 1, 2, ..., p with

λ > 0 where X and Wi, i = 0, 1, ..., p are noncentral chi-squared distributed.

In Section 3 the distribution of the first three random variables, i.e. U0, U1, U2 is

derived. Bivariate densities and univariate densities of (U0, U1, U2) also receive at-

tention. Section 4 proposes a multivariate extension, followed by shape analysis,

an example and probability calculations in Sections 5 and 6, respectively.

2. PROBLEM STATEMENT

Adamski et al. (2012) proposed a generalized multivariate beta distribution;

the dependence structure and construction of the random variables originate in

a practical setting where the process mean is monitored, using a control chart



20 Adamski, Human, Bekker and Roux

(see e.g. Montgomery, 2009), when the measurements are independent and iden-

tically distributed having been collected from an Exp(θ) distribution, where θ

was assumed to be unknown.

Monitoring the unknown process variance assuming that the observations

from each independent sample are independent identically distributed (i.i.d.) nor-

mal random variables with the mean known was introduced by Quesenberry

(1991). To gain insight into the performance of such a control chart, in other

words, to determine the probability of detecting a shift immediately or after a

number of samples, the joint distribution of the plotting statistics is needed.

Exact expressions for the joint distribution of the plotting statistics for the chart

proposed by Quesenberry (1991) can be obtained from the distribution derived

by Adamski et al. (2012), the key difference is the fact that it is only the degrees

of freedom of the chi-squared random variables that changes.

Monitoring of the unknown process variance when the known location pa-

rameter sustained a permanent shift leads to a noncentral version of the gen-

eralized multivariate beta distribution proposed by Adamski et al. (2012). To

derive this new noncentral generalized multivariate beta type II distribution we

proceed in two steps. First we describe the practical setting which motivates

the derivation of the distribution, and secondly we derive the distributions in

sections 3 and 4. To this end, let (Xi1, Xi2, ..., Xini
), i = 1, 2, ... represent suc-

cessive, independent samples of size ni ≥ 1 measurements made on a sequence of

items produced in time. Assume that these values are independent and identi-

cally distributed having been collected from a N(µ0, σ
2
) distribution where the

parameters µ0 and σ2
denotes the known process mean and unknown process

variance, respectively. Take note that a sample can even consist of an individual

observation because the process mean is assumed to be known and the variance of

the sample can still be calculated as S2
i = (Xi1 −µ0)

2
. Suppose that from sample

(time period) κ > 1 the unknown process variance parameter has changed from

σ2
to σ2

1 = λσ2
(also unknown) where λ 6= 1 and λ > 0, but the known process

mean also encountered an unknown sustained shift from sample (time period)

h > 1 onwards, i.e. it changed from µ0 to µ1 where µ1 is also known. To clarify,

the mean of the process at start-up is assumed to be known and denoted µ0 but

the time and the size of the shift in the mean will be unknown in a practical

situation. In order to incorporate and/or evaluate the influence of these changes

in the parameters on the performance of the control chart for the variance, we

assume fixed/deterministic values for these parameters — essentially this implies

then that the mean is known following the shift, i.e. denoted by µ1. Therefore,

the main interest is monitoring the process variance when the process mean is

known, although this mean can suffer at some time an unknown shift. In prac-

tice it is important to note that even though the mean and the variance of the

normal distribution can change independently, the performance of a Shewhart

type control chart for the mean depends on the process variance and vice versa.
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This dependency is due to the plotting statistics and the control limits used. The

proposed control chart could thus be useful in practice when the control chart

for monitoring the mean fails to detect the shift in the mean. For example, in

case a small shift in the mean occurs and a Shewhart-type chart for the mean is

used (which is known for the inefficiency in detecting small shifts compared to

the EWMA (exponentially weighted moving average) and CUSUM (cumulative

sum) charts for the mean which are better in detecting small shifts (Montgomery,

2009)) the shift might go undetected.

Based on the time of the shift in the process mean, this problem can be

viewed in three ways, as illustrated in Figure 1.

Figure 1: The different scenarios.

From Figure 1 we see the following:

Scenario 1: The mean and the variance change simultaneously from µ0 to

µ1 and from σ2
to σ2

1, respectively. Note that, it is assumed

that the shift in the process parameters occurs somewhere

between samples κ − 1 and κ.

Scenario 2: The change in the mean from µ0 to µ1 occurs before the

change in the variance from σ2
to σ2

1.
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Scenario 3: The change in the variance from σ2
to σ2

1 occurs before the

change in the mean from µ0 to µ1.

Because it is assumed that the process variance σ2
is unknown, the first

sample is used to obtain an initial estimate of σ2
. Thus, in the remainder of

this article σ2
is assumed to denote a point estimate of the unknown variance.

This initial estimate is continuously updated using the new incoming samples as

they are collected as long as the estimated value of σ2
does not change, i.e. is

not detected using the control chart. The control chart and the plotting statis-

tic is based on the in-control distribution of the process. The two sample test

statistic for testing the hypothesis at time r that the two independent samples

(the measurements of the rth
sample alone and the measurements of the first

r − 1 samples combined) are from normal distributions with the same unknown

variance, is based on the statistic

U∗
r =

S2
r

S
2pooled

r−1

for r = 2, 3, ... ,

(2.1)

where S
2pooled

r−1 =

r−1∑
i=1

niS
2
i

r−1∑
i=1

ni

and S2
i =

1

ni

ni∑

k=1

(Xik−µi)
2

for i=1, 2, ..., r .

[Take note: µi denotes the known population mean of sample i.]

The focus will be on the part where the process is out-of-control, i.e. encountered

a shift, since the exact distribution of the plotting statistic is then unknown.

To simplify the notation used in expression (2.1), following a change in the process

variance between samples κ − 1 and κ, define the random variable

(2.2) U∗
0 = U∗

κ =
S2

κ

S
2pooled

κ−1

.

The subscript of the random variable U∗
0 indicates the number of samples after the

parameter has changed, with zero indicating that it is the first sample after the

process encountered a permanent upward or downward step shift in the variance.

Note that, the three scenarios can theoretically occur with equal probabil-

ity as there would be no reason to expect (without additional information such

as expert knowledge about the process being monitored) that the mean would

sustain a change prior to the variance (and vice versa). In fact, it might be more

realistic to argue that in practice the mean and variance would change simulta-

neously in the event of a “special cause” as such an event might change the entire

underlying process generating distribution and hence both the location and vari-

ability might be affected. Having said the aforementioned, the likelihood of the

three scenarios will most likely depend on the interaction between the underlying

process distribution and the special causes that may occur. The focus of this
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article is on scenario 2 since the results for the other scenarios follow by means

of simplifications (by setting the noncentrality parameter equal to zero) and will

be shown as remarks.

Suppose that the process variance has changed between samples (time peri-

ods) κ− 1 and κ > 1 from σ2
to σ2

1 = λσ2
where λ is unknown, λ 6= 1 and λ > 0,

but the process mean also encountered an unknown sustained shift between sam-

ples (time periods) h−1 and h where 1 < h < κ. Note that, in practice h, κ and λ

would be unknown (but deterministic) values. Consider the sample variance, i.e.

S2
i , before and after the shifts in the process mean and variance took place:

Before the shift in the mean:

Samples: i = 1, 2, ..., h − 1 .

Distribution: Xik ∼ N
(
µ0, σ

2
)
.

S2
i =

1

ni

ni∑

k=1

(Xik − µ0)
2 ,

niS
2
i

σ2
∼ χ2

ni
.

After the shift in the mean:

Samples: i = h, ..., κ − 1 .

Distribution: Xik ∼ N
(
µ1 = µ0 + ξ0σ, σ2

)
.

[Take note: The observer is unaware of the shift in the process mean and

therefore still wrongly assumes Xik ∼ N(µ0, σ
2
).

This is the key to the noncentral case because the plotting statistic and

transformations (see Section 6) depends on the in-control distribution.]

S2
i =

1

ni

ni∑

k=1

(Xik − µ0)
2 ,

niS
2
i =

ni∑

k=1

(Xik − µ1 + µ1 − µ0)
2 ,

niS
2
i

σ2
=

ni∑

k=1

(
Xik − µ1

σ
+

µ1 − µ0

σ

)2

=

ni∑

k=1

(Zik + ξ0)
2

where Zik ∼ N(0, 1)

∼ χ′2
ni

(
ni∑

k=1

ξ2
0

)
= χ′2

ni
(δi) where δi =

ni∑

k=1

ξ2
0 = ni ξ

2
0 > 0

with ξ0 =
µ1 − µ0

σ
.
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After the shift in the mean and variance:

Samples: i = κ, κ + 1, ... .

Distribution: Xik ∼ N
(
µ1 = µ0 + ξ1σ1, σ2

1 = λσ2
)
.

[Take note: The observer is unaware of the shifts in the process parameters

and therefore still wrongly assumes Xik ∼ N(µ0, σ
2
).]

S2
i =

1

ni

ni∑

k=1

(Xik − µ0)
2 ,

niS
2
i =

ni∑

k=1

(Xik − µ1 + µ1 − µ0)
2 ,

niS
2
i

σ2
1

=

ni∑

k=1

(
Xik − µ1

σ1
+

µ1 − µ0

σ1

)2

=

ni∑

k=1

(Zik + ξ1)
2

where Zik ∼ N(0, 1)

∼ χ′2
ni

(
ni∑

k=1

ξ2
1

)
= χ′2

ni
(δi) where δi =

ni∑

k=1

ξ2
1 = ni ξ

2
1 > 0

with ξ1 =
µ1 − µ0

σ1
.

Remark 2.1.

(i) χ2
ni

denotes a central χ2
random variable with degrees of freedom ni

(see Johnson et al. (1995), Chapter 18).

(ii) χ′2
ni

(δi) denotes a noncentral χ2
random variable with degrees of free-

dom ni and noncentrality parameter δi (see Johnson et al. (1995),

Chapter 29).

(iii) The degrees of freedom is assumed to be ni, since the mean is not es-

timated because it is assumed that the mean is a fixed / deterministic

value before and after the shift. In case the mean is unknown and

has to be estimated too, the degrees of freedom changes from ni to

ni − 1 and the µ0 would be replaced by µ̂0, i.e. an estimate of µ0.

(iv) The shift in the mean, before the variance changed, is modelled as

follows: ξ0 =
µ1−µ0

σ , i.e. µ1 = µ0 + ξ0σ.

(v) The shift in the mean, after the variance changed, is modelled as

follows: ξ1 =
µ1−µ0

σ1
, i.e. µ1 = µ0 + ξ1σ1.

(vi) The pivotal quantity
niS

2
i

σ2
1

∼ χ′2
ni

(δi) after the shift in the variance

reduces to a central chi-squared random variable if the process mean

did not change, i.e. when µ1 = µ0 (see Adamski et al. (2012)).
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Following a change in the variance between samples κ− 1 and κ, define the

following random variable:

U∗
0 =

S2
κ

S
2pooled

κ−1

=

κ−1∑

i=1

ni ×
S2

κ∑h−1
i=1 niS2

i +
∑κ−1

i=h niS2
i

=

∑κ−1
i=1 ni

nκ
×

nκS2
κ

σ2
1

× σ2
1

σ2

∑h−1
i=1

niS2
i

σ2 +
∑κ−1

i=h
niS2

i

σ2

=

∑κ−1
i=1 ni

nκ
× λχ′2

nκ
(δκ)

∑κ−1
i=1 χ′2

ni
(δi)

,

where λ =
σ2
1

σ2 indicates the unknown size of the shift in the variance

and δi =






0 for i = 1, ..., h − 1 ,

ni ξ
2
0 > 0 with ξ0 =

µ1−µ0

σ for i = h, ..., κ − 1 ,

nκ ξ2
1 > 0 with ξ1 =

µ1−µ0

σ1
for i = κ .

[
Take note:

∑h−1
i=1 χ2

ni

d
=
∑h−1

i=1 χ′2
ni

(0).
]

In general, at sample κ+ j, where κ > 1 and j = 1, 2, ..., p, we define the following

sequence of random variables (all based on the two sample test statistic for testing

the equality of variances):

U∗
j =

S2
κ+j

S
2pooled

κ+j−1

=

κ+j−1∑

i=1

ni ×
S2

κ+j∑h−1
i=1 niS2

i +
∑κ−1

i=h niS2
i +

∑κ+j−1
i=κ niS2

i

=

∑κ+j−1
i=1 ni

nκ+j
×

nκ+j S2
κ+j

σ2
1

× σ2
1

σ2

∑h−1
i=1

niS2
i

σ2 +
∑κ−1

i=h
niS2

i

σ2 +
∑κ+j−1

i=κ
niS2

i

σ2
1

× σ2
1

σ2

=

∑κ+j−1
i=1 ni

nκ+j
×

λχ′2
nκ+j

(δκ+j)

∑κ−1
i=1 χ′2

ni
(δi) + λ

∑κ+j−1
i=κ χ′2

ni
(δi)

with λ =
σ2

1

σ2
,

where δi =






0 for i = 1, ..., h − 1 ,

ni ξ
2
0 > 0 with ξ0 =

µ1−µ0

σ for i = h, ..., κ − 1 ,

ni ξ
2
1 > 0 with ξ1 =

µ1−µ0

σ1
for i = κ, ..., κ + j .

To simplify matters going forward and for notational purposes we omit the factors∑κ−1
i=1 ni/nκ and

∑κ+j−1
i=1 ni/nκ+j , respectively, in U∗

0 and U∗
j , since they do not

contain any random variables, and also drop the * superscript, and therefore the

random variables of interest are:

(2.3)

U0 =
λW0

X
,

Uj =
λWj

X + λ
∑j−1

k=0Wk

, j = 1, 2, ..., p and λ > 0 ,
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where

λ =
σ2
1

σ2 indicates the unknown size of the shift in the variance ,

X =
∑κ−1

i=1 χ′2
ni

(δi) ∼ χ′2
a (δa), i.e. X is a noncentral chi-squared random var-

iable with degrees of freedom, a=
∑κ−1

i=1 ni and noncentrality parameter

δa =
∑κ−1

i=h δi, h < κ where δi = ni ξ
2
0 with ξ0 =

µ1−µ0

σ ,

Wi ∼ χ′2
vi

(δi), i.e. Wi is a noncentral chi-squared random variable with deg-

rees of freedom vi = nκ+i and noncentrality parameter δi = nκ+i ξ
2
1 with

ξ1 =
µ1−µ0

σ1
, i = 0, 1, ..., p .

Take note that X represents the sum of κ− 1 independent noncentral χ2
random

variables, i.e. χ′2
n1

, ..., χ′2
nκ−1

since we assume the samples are independent.

Remark 2.2. Scenarios 1 and 3 can be obtained as follows:

(i) When theprocess mean and variance change simultaneously (scenario 1),

i.e. h = κ, then δa = 0. The superscript (S1) in the expressions that

follow indicate scenario 1 as discussed and shown in Figure 1. From

(2.3) it then follows that

U
(S1)
0 =

λW0

X
,

U
(S1)
j =

λWj

X + λ
∑j−1

k=0Wk

, j = 1, 2, ..., p and λ > 0 ,

where

X =
∑κ−1

i=1 χ2
ni

∼ χ2
a with a =

∑κ−1
i=1 ni ,

Wi∼χ′2
vi
(δi) with vi = nκ+i, δi = nκ+i ξ

2
1 and ξ1=

µ1−µ0

σ1
, i=0,1, ..., p .

(ii) For scenario 3, the process variance has changed between samples

(time periods) κ − 1 and κ > 1, but the process mean encountered

a sustained shift between samples (time periods) h − 1 and h where

h > κ, i.e. the mean changed after the variance. The random variables

in (2.3) will change as follows:

U
(S3)
0 =

λW0

X
,

U
(S3)
j =

λWj

X + λ
∑j−1

k=0Wk

, j = 1, 2, ..., p and λ > 0 ,

where

X =
∑κ−1

i=1 χ2
ni

∼ χ2
a with a =

∑κ−1
i=1 ni ,

Wi∼χ′2
vi
(δi) with vi = nκ+i, δi =






0 for i = 0, 1, ..., h−1 ,

nκ+i ξ
2
1 and ξ1 =

µ1−µ0

σ1

for i = h, h+1, ..., p .
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(iii) If the process mean remains unchanged and only the process variance

encountered a sustained shift, the components X and Wi in (2.3) will

reduce to central chi-squared random variables. The joint distribution

of the random variables (2.3) will then be the generalized multivari-

ate beta distribution derived by Adamski et al. (2012), with the only

difference being the degrees of freedom of the chi-squared random

variables. This shows that the solution to the run-length distribution

of a Q-chart used to monitor the parameter θ in the Exp(θ) distribu-

tion (when θ is unknown) is similar to the solution to the run-length

distribution when monitoring the variance with a Q-chart in case of

a N(µ0, σ
2
) distribution where µ0 is known and σ2

is unknown.

3. THE EXACT DENSITY FUNCTION

In this section the joint distribution of the random variables U0, U1, U2

(see (2.3)) is derived, i.e. the first three random variables following a change

in the variance. In section 4 the multivariate extension is considered with a

detailed proof. The reason for this unorthodox presentation of results is to first

demonstrate the different marginals for the trivariate case.

Theorem 3.1. Let X,Wi with i = 0, 1, 2 be independent noncentral chi-

squared random variables with degrees of freedom a and vi and noncentrality

parameters δa and δi with i = 0, 1, 2, respectively. Let U0 =
λW0
X , U1 =

λW1
X+λW0

and U2 =
λW2

X+λW0+λW1
(see (2.3)) and λ > 0. The joint density of (U0, U1, U2) is

given by

f(u0, u1, u2)

=
e−
(

δa+δ0+δ1+δ2
2

)
λ

a
2 Γ
(

a+v0+v1+v2
2

)

Γ
(

a
2

)
Γ
(

v0
2

)
Γ
(

v1
2

)
Γ
(

v2
2

) u
v0
2 −1

0 u
v1
2 −1

1 u
v2
2 −1

2 (1 + u0)

v1
2 +

v2
2

(3.1)

× (1 + u1)

v2
2
[
λ + u0 + u1(1 + u0) + u2 (1 + u0) (1 + u1)

]−
(

a+v0+v1+v2
2

)

× Ψ
(4)
2

[
a+v0+v1+v2

2 ;
a
2 , v0

2 , v1
2 , v2

2 ;
λδa

2z , δ0u0
2z , δ1u1 (1+u0)

2z , δ2u2 (1+u0) (1+u1)
2z

]
,

uj > 0 , j = 0, 1, 2 ,

where z = λ + u0 + u1(1 + u0) + u2 (1 + u0) (1 + u1) and Ψ
(4)
2 the confluent hy-

pergeometric function in four variables (see Sánchez et al. (2006) or Srivastava &

Kashyap (1982)).

Proof: The expression for the joint density of (U0, U1, U2) is obtained by

setting p = 2 in (4.1) and applying result A.2 of Sanchez et al. (2006).
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Remark 3.1.

(i) For the special case when λ = 1 (i.e. the process variance did not

encounter a shift although the mean did), this trivariate density (3.1)

simplifies to

f(u0, u1, u2)

=
e−
(

δa+δ0+δ1+δ2
2

)
Γ
(
a+v0+v1+v2

2

)

Γ
(

a
2

)
Γ
(

v0
2

)
Γ
(

v1
2

)
Γ
(

v2
2

) u
v0
2 −1

0 u
v1
2 −1

1 u
v2
2 −1

2 (1+u0)

v1
2 +

v2
2

(1+u1)

v2
2

×
[
(1 + u0) (1 + u1) (1 + u2)

]−
(

a+v0+v1+v2
2

)

× Ψ
(4)
2

[
a+v0+v1+v2

2 ;
a
2 , v0

2 , v1
2 , v2

2 ;
δa

2y , δ0u0
2y , δ1u1(1+u0)

2y , δ2u2 (1+u0) (1+u1)
2y

]
,

where y = (1 + u0) (1 + u1) (1 + u2).

(ii) When the shift in the mean and the variance occurs simultaneously

(scenario 1), we have that δa = 0, and it follows that the trivariate

density (3.1) is given by

f(u0, u1, u2)

=
e−
(

δ0+δ1+δ2
2

)
λ

a
2 Γ
(
a+v0+v1+v2

2

)

Γ
(

a
2

)
Γ
(

v0
2

)
Γ
(

v1
2

)
Γ
(

v2
2

) u
v0
2 −1

0 u
v1
2 −1

1 u
v2
2 −1

2 (1+u0)

v1
2 +

v2
2

(1+u1)

v2
2

×
[
λ + u0 + u1(1 + u0) + u2 (1 + u0)(1 + u1)

]−
(

a+v0+v1+v2
2

)

× Ψ
(3)
2

[
a+v0+v1+v2

2 ;
v0
2 , v1

2 , v2
2 ;

δ0u0
2z , δ1u1 (1+u0)

2z , δ2u2 (1+u0) (1+u1)
2z

]
,

where z = λ+u0 +u1(1+u0)+u2 (1+u0)(1+u1) with Ψ
(3)
2 the con-

fluent hypergeometric function in three variables.

(iii) When monitoring the variance and the mean did not change, i.e.

δa = δ0 = δ1 = δ2 = 0, the trivariate density (3.1) simplifies to the

generalized multivariate beta distribution, derived by Adamski et al.

(2012):

f(u0, u1, u2)

=
λ

a
2 Γ
(
a+v0+v1+v2

2

)

Γ
(

a
2

)
Γ
(

v0
2

)
Γ
(

v1
2

)
Γ
(

v2
2

) u
v0
2 −1

0 u
v1
2 −1

1 u
v2
2 −1

2 (1 + u0)

v1
2 +

v2
2

(1 + u1)

v2
2

×
[
λ + u0 + u1(1 + u0) + u2 (1 + u0) (1 + u1)

]−
(

a+v0+v1+v2
2

)
.
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3.1. Bivariate cases

Theorem 3.2. Let X, Wi with i = 0, 1, 2 be independent noncentral chi-

squared random variables with degrees of freedom a and vi and noncentrality

parameters δa and δi with i = 0, 1, 2, respectively. Let U0 =
λW0
X , U1 =

λW1
X+λW0

and U2 =
λW2

X+λW0+λW1
and λ > 0.

(a) The joint density of (U0, U1) is given by

f(u0, u1)(3.2)

=
e−
(

δa+δ0+δ1
2

)
λ

a
2 Γ
(

a+v0+v1
2

)

Γ
(

a
2

)
Γ
(

v0
2

)
Γ
(

v1
2

) u
v0
2 −1

0 u
v1
2 −1

1 (1+u0)

v1
2
[
λ+u0 +u1(1+u0)

]−
(

a+v0+v1
2

)

×Ψ
(3)
2

[
a+v0+v1

2 ;
a
2 , v0

2 , v1
2 ;

λδa

2
[
λ+u0+u1(1+u0)

] , δ0 u0

2
[
λ+u0+u1(1+u0)

] , δ1u1 (1+u0)

2
[
λ+u0+u1(1+u0)

]
]
,

uj > 0 , j = 0, 1 .

(b) The joint density of (U0, U2) is given by

f(u0, u2)(3.3)

=
e−
(

δa+δ0+δ1+δ2
2

)
λ

a
2 Γ
(

a+v0+v1+v2
2

)
Γ
(

a+v0
2

)

Γ
(

a
2

)
Γ
(

v0
2

)
Γ
(

v2
2

)
Γ
(

a+v0+v1
2

) u
v0
2 −1

0 (1 + u0)
−

(
a+v0

2

)
u

v2
2 −1

2

× (1 + u2)
−

(
a+v0+v1+v2

2

)
∞∑

k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

∞∑
k5=0

(
a+v0+v1+v2

2

)
k1+k2+k3+k4+k5(

a
2

)
k1

(
v0
2

)
k2

(
v2
2

)
k4

×
(

a+v0
2

)
k1+k2+k5(

a+v0+v1
2

)
k1+k2+k3+k5

k1! k2! k3! k4! k5!

(
λδa

2 (1+ u0) (1+ u2)

)k1

×
(

δ0u0

2 (1+ u0) (1+ u2)

)k2
(

δ1

2 (1+ u2)

)k3
(

δ2u2

2 (1+ u2)

)k4
(

1 − λ

(1+ u0)(1+ u2)

)k5

,

uj > 0 , j = 0, 2 .

(c) The joint density of (U1, U2) is given by

f(u1, u2)(3.4)

=
e−
(

δa+δ0+δ1+δ2
2

)
λ

a
2 Γ
(

a+v0+v1+v2
2

)

Γ
(

v1
2

)
Γ
(

v2
2

)
Γ
(

a+v0
2

) u
v1
2 −1

1 (1 + u1)
−

(
a+v0+v1

2

)
u

v2
2 −1

2

× (1 + u2)
−

(
a+v0+v1+v2

2

)
∞∑

k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

∞∑
k5=0

(
a+v0+v1+v2

2

)
k1+k2+k3+k4+k5(

a
2

)
k1

(
v1
2

)
k3

(
v2
2

)
k4

×
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×
(

a
2

)
k1+k5(

a+v0
2

)
k1+k2+k5

k1! k2! k3! k4! k5!

(
λδa

2 (1+ u1) (1+ u2)

)k1

×
(

δ0

2 (1+u1)(1+u2)

)k2
(

δ1u1

2 (1+u1)(1+u2)

)k3
(

δ2u2

2 (1+u2)

)k4
(

1 − λ

(1+u1)(1+u2)

)k5

,

uj > 0 , j = 1, 2 .

Proof: (a) Expanding Ψ
(4)
2 (·) in equation (3.1) in series form and inte-

grating this trivariate density with respect to u2, yields

f(u0, u1)

=
e
−

�
δa+δ0+δ1+δ2

2

�
λ

a
2 Γ

�
a+v0+v1+v2

2

�
Γ(a

2
)Γ(

v0
2

)Γ(
v1
2

)Γ(
v2
2

)
u

v0
2 −1

0 u
v1
2 −1

1 (1 + u0)

v1+v2
2

(1 + u1)

v2
2

×
∞∑

k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

�
a+v0+v1+v2

2

�
k1+k2+k3+k4

(
a
2 )k1

(
v0
2 )

k2
(

v1
2 )

k3
(

v2
2 )

k4
k1!k2!k3!k4!

(
λδa

2

)k1

×
(

δ0u0
2

)k2
(

δ1u1(1+u0)
2

)k3
(

δ2(1+u0)(1+u1)
2

)k4

×
∞∫

0

u
v2
2 +k4−1

2

[
λ+u0+u1 (1+u0) +u2(1+u0)(1+u1)

]−
�

a+v0+v1+v2
2

+k1+k2+k3+k4

�
du2 .

Take note:

∞∫

0

u
v2
2 +k4−1

2

[
λ+u0+u1(1+u0)+u2(1 + u0)(1 + u1)

]−
�

a+v0+v1+v2
2

+k1+k2+k3+k4

�
du2

=

[
λ + u0 + u1(1 + u0)

]−
�

a+v0+v1+v2
2

+k1+k2+k3+k4

�
×

∞∫

0

u
v2
2 +k4−1

2

[
1+

u2(1 + u0)(1 + u1)

λ + u0 + u1 (1 + u0)

]−
�

a+v0+v1+v2
2

+k1+k2+k3+k4

�
du2 .

Using Gradshteyn and Ryzhik (2007) Eq. 3.194.3 p. 315, the joint density of

U0 and U1 in expression (3.2) follows after simplification.

Remark 3.2.

(i) Alternatively, the proof of this theorem can be derived by substituting

p = 1 in (4.1).

(ii) If δa = δ0 = δ1 = 0, the density simplifies to the bivariate distribution

derived by Adamski et al. (2012):
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f(u0, u1)

=
λ

a
2 Γ

�
a+v0+v1

2

�
Γ(a

2
)Γ(

v0
2

)Γ(
v1
2

)
u

v0
2 −1

0 (1 + u0)
−(

a+v0
2 )

u
v1
2 −1

1 (1 + u1)
−(

a+v0+v1
2 )

×
[

λ+u0+u1(1+u0)
(1+u0)(1+u1)

]−
�

a+v0+v1
2

�
.

This can be rewritten using the binomial series 1F0(α; z) = (1 − z)
−α

,

for |z| < 1 (Mathai (1993) p. 25) with 1−z =
λ+u0+u1(1+u0)
(1+u0)(1+u1) . Therefore

f(u0, u1)

=
Γ(

a+v0+v1
2

)λ
a
2

Γ(a
2
)Γ(

v0
2

)Γ(
v1
2

)
u

v0
2 −1

0 (1 + u0)
−(

a+v0
2 )

u
v1
2 −1

1 (1 + u1)
−(

a+v0+v1
2 )

× 1F0

(
a+v0+v1

2 ;
1−λ

(1+u0)(1+u1)

)
.

(b) Expanding Ψ
(4)
2 (·) in equation (3.1) in series form and integrating the

trivariate density (3.1) with respect to u1, it follows that

f(u0, u2)

=
e
−

�
δa+δ0+δ1+δ2

2

�
λ

a
2 Γ

�
a+v0+v1+v2

2

�
Γ(a

2
)Γ(

v0
2

)Γ(
v1
2

)Γ(
v2
2

)
u

v0
2 −1

0 (1 + u0)

v1+v2
2

u
v2
2 −1

2

×
∞∑

k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

�
a+v0+v1+v2

2

�
k1+k2+k3+k4

(
a
2 )k1

(
v0
2 )

k2
(

v1
2 )

k3
(

v2
2 )

k4
k1!k2!k3!k4!

(
λδa

2

)k1
(

δ0u0
2

)k2

×
(

δ1(1+u0)
2

)k3
(

δ2u2(1+u0)
2

)k4

∞∫

0

u
v1
2 +k3−1

1 (1 + u1)

v2
2 +k4

×
[
λ + u0 + u1 (1 + u0) + u2(1 + u0)(1 + u1)

]−
�

a+v0+v1+v2
2

+k1+k2+k3+k4

�
du1 .

Using Gradshteyn and Ryzhik (2007) Eq. 3.197.5 p. 317 and Eq. 9.131.1 p. 998,

it follows that

f(u0, u2) =
e
−

�
δa+δ0+δ1+δ2

2

�
λ

a
2 Γ

�
a+v0+v1+v2

2

�
Γ(a

2
)Γ(

v0
2

)Γ(
v1
2

)Γ(
v2
2

)
u

v0
2 −1

0 (1 + u0)

v1+v2
2

u
v2
2 −1

2

×
∞∑

k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

�
a+v0+v1+v2

2

�
k1+k2+k3+k4

(
a
2 )k1

(
v0
2 )

k2
(

v1
2 )

k3
(

v2
2 )

k4
k1!k2!k3!k4!

×
(

λδa

2(1+u0)(1+u2)

)k1
(

δ0u0
2(1+u0)(1+u2)

)k2
(

δ1(1+u0)
2(1+u0)(1+u2)

)k3
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×
(

δ2u2(1+u0)
2(1+u0)(1+u2)

)k4 Γ(
v1
2

+k3)Γ
�

a+v0
2

+k1+k2

�
Γ
�

a+v0+v1
2

+k1+k2+k3

� [(1 + u0)(1 + u2)]
−
�

a+v0+v1+v2
2

�
× 2F1

(
a+v0+v1+v2

2 +k1+k2+k3+k4,
a+v0

2 +k1+k2;
a+v0+v1

2 +k1+k2+k3;
1−λ

(1+u0)(1+u2)

)
.

Expanding the Gauss hypergeometric function, 2F1(·) (see Gradshteyn and Ryzhik

(2007)), in series form, the desired result (3.3) follows after simplification.

(c) Proof follows similarly as in (b).

3.2. Univariate cases

Theorem 3.3. Let X, Wi with i = 0, 1, 2 be independent noncentral chi-

squared random variables with degrees of freedom a and vi and noncentrality

parameters δa and δi with i = 0, 1, 2, respectively. Let U0 =
λW0
X , U1 =

λW1
X+λW0

and U2 =
λW2

X+λW0+λW1
and λ > 0. The marginal density of

(a) U0 is given by

f(u0) =
e
−
�

δa+δ0
2

�
λ

a
2 Γ
(

a+v0
2

)

Γ(
a
2 )Γ(

v0
2 )

u
v0
2 −1

0 (u0+λ)

−(
a+v0

2 )
(3.5)

× Ψ2

(
a + v0

2
;
a

2
,
v0

2
;

λδa

2 (u0 + λ)
,

δ0u0

2 (u0 + λ)

)
, u0 > 0 ,

with Ψ2 the Humbert confluent hypergeometric function of two vari-

ables (see Sanchez et al. (2006)),

(b) U1 is given by

f(u1) =
e
−
�

δa+δ0+δ1
2

�
λ

a
2 Γ
(

a+v0+v1
2

)

Γ(
v1
2 )Γ

(
a+v0

2

) u
v1
2 −1

1 (1 + u1)
−(

a+v0+v1
2 )

×
∞∑

k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

(
a+v0+v1

2

)
k1+k2+k3+k4

(
a
2

)
k1+k4(

a
2

)
k1

(
v1
2

)
k3

(
a+v0

2

)
k1+k2+k4

k1!k2!k3!k4!
(3.6)

×
(

λδa

2 (1 + u1)

)k1
(

δ0

2 (1 + u1)

)k2
(

δ1u1

2 (1 + u1)

)k3
(

1 − λ

(1 + u1)

)k4

,

u1 > 0 ,
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(c) U2 is given by

f(u2) =
e
−
�

δa+δ0+δ1+δ2
2

�
λ

a
2 Γ
(

a+v0+v1+v2
2

)

Γ(
v2
2 )Γ

(
a+v0+v1

2

) u
v2
2 −1

2 (1 + u2)
−(

a+v0+v1+v2
2 )

×
∞∑

k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

∞∑
k5=0

(
a+v0+v1+v2

2

)
k1+k2+k3+k4+k5

(
a
2

)
k1+k5(

a
2

)
k1

(
v2
2

)
k4

(
a+v0+v1

2

)
k1+k2+k3+k5

k1!k2!k3!k4!k5!
(3.7)

×
(

λδa

2(1 + u2)

)k1
(

δ0

2(1 + u2)

)k2
(

δ1

2(1 + u2)

)k3
(

δ2u2

2(1 + u2)

)k4
(

1 − λ

(1 + u2)

)k5

,

u2 > 0 .

Proof: (a) Using Gradshteyn and Ryzhik (2007) Eq. 3.194.3 p. 315, the

result (3.5) follows after simplification.

Remark 3.3. If δa = δ0 = 0, the density simplifies to the univariate dis-

tribution derived by Adamski et al. (2012), namely

f(u0) =
λ

a
2 Γ
(

a+v0
2

)

Γ
(

a
2

)
Γ
(

v0
2

) u
v0
2 −1

0 (u0 + λ)
−(

a+v0
2 )

.

(b) Using the definition of the beta type II integral function (see Prudnikov

et al. (1986) Eq. 2.2.4(24) p. 298) yields the desired result.

(c) Proof follows similarly as in (b).

4. MULTIVARIATE EXTENSION

In this section the noncentral generalized multivariate beta type II distri-

bution is proposed.

Theorem 4.1. Let X, Wi with i = 0, 1, 2, ..., p be independent noncentral

chi-squared random variables with degrees of freedom a and vi and noncentrality

parameters δa and δi with i = 0, 1, 2, ..., p, respectively. Let U0 =
λW0
X , and Uj =

λWj

X+λ
∑j−1

k=0Wk

where j = 1, 2, ..., p, and λ > 0. The joint density of (U0, U1, ..., Up)
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is given by

(4.1)

f (u0, u1, ..., up)

=

e
−

�
δa+δ0+δ1+...+δp

2

�
Γ

 
a
2
+

pP
j=0

vj

2

!
λ

a
2

Γ(
a
2 )Γ(

v0
2 ) ···Γ(

vp

2 )

(
p∏

j=0
u

vj

2
−1

j

)


p−1∏
k=0

(1 + uk)

pP
j=k+1

vj

2





×
(

λ + u0 +

p∑
j=1

uj

j−1∏
k=0

(1 + uk)

)−

 
a
2
+

pP
j=0

vj

2

!
× Ψ

(p+2)
2


a

2 +

p∑
j=0

vj

2 ;
a
2 , v0

2 , ...,
vp

2 ;
λδa

2z , δ0u0
2z , δ1u1(1+u0)

2z , ...,
δpup

j−1Q
k=0

(1+uk)

2z


 ,

uj > 0, j = 1, 2, ..., p ,

where z = λ + u0 +

p∑
j=1

uj

j−1∏
k=0

(1 + uk) and Ψ
(p+2)
2 the confluent hypergeometric

function in p + 2 variables.

Proof: The joint density of X, W0, W1, ..., Wp is

f (x, w0, w1, ..., wp)

=
e
−

�
δa+δ0+δ1+...+δp

2

�
2

a+v0+...+vp
2 Γ(

a
2 )Γ(

v0
2 ) ···Γ(

vp

2 )

0F1

(
a
2 ;

δax
4

)
0F1

(
v0
2 ;

δ0w0
4

)
0F1

(
v1
2 ;

δ1w1
4

)

× 0F1

(
v2
2 ;

δ2w2
4

)
··· 0F1

(
vp

2 ;
δpwp

4

)

× x
a
2 −1

w
v0
2 −1

0 w
v1
2 −1

1 w
v2
2 −1

2 ··· w
vp
2 −1

p e
−

1
2 (x+w0+w1+w2+...+wp)

where 0F1 (a; z) =

∞∑
j=0

Γ(a)
Γ(a+j)

zj

j! =

∞∑
j=0

zj

(a)jj! where (α)j is the Pochhammer co-

efficient defined as (α)j = α (α + 1) ··· (α + j − 1) =
Γ(α+j)
Γ(α) (see Johnson et al.

(1995), Chapter 1).

Let U = X, U0 =
λW0
X and Uj =

λWj

X+λ
Pj−1

k=0 Wk

where j = 1, 2, ..., p.

This gives the inverse transformation: X = U , W0 =
1
λU0U and Wj =

1
λUj

(
U + λ

∑j−1
k=0 Wk

)
=

1
λUjU

∏j−1
k=0 (1 + Uk) where j = 1, 2, ..., p, with Jacobian

J (x, w0, .., wp → u, u0, .., up) =
u
λ

p∏
j=1

u
j−1Q
k=0

(1+uk)

λ =
(

u
λ

)p+1
p−1∏
k=0

(1 + uk)
p−k

.
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Thus, the joint density of U, U0, U1, ..., Up is

f (u, u0, .., up) =
e
−

�
δa+δ0+δ1+...+δp

2

�
λ

0�−

pP
j=0

vj
2

1A
2

a+v0+...+vp
2 Γ(

a
2 )Γ(

v0
2 )...Γ(

vp

2 )

0F1

(
a
2 ;

δau
4

)
0F1

(
v0
2 ;

δ0u0u
4λ

)

×




p∏
j=1

0F1


vj

2 ;

δjuju
j−1Q
k=0

(1+uk)

4λ





u

a
2 +

pP
j=0

vj
2 −1

u
v0
2 −1

0

(
p∏

j=1
u

vj

2
−1

j

)

×




p−1∏
k=0

(1 + uk)

pP
j=k+1

vj

2



 e

−
u
2

0�1+
u0
λ

+
pP

j=1

uj
λ

j−1Q
k=0

(1+uk)

1A
.

Note that
∏p

j=1

[∏j−1
k=0 (1 + uk)

] vj

2
−1

=
∏p−1

k=0 (1 + uk)

Pp

j=k+1

vj

2
−(p−k)

. Expand-

ing the 0F1 (·) expressions in series form, integrating with respect to u and us-

ing the definition of the gamma integral function (see Prudnikov et al. (1986)

Eq. 2.3.3(1), p. 322) yields the result (4.1).

Remark 4.1. If δa = δ0 = δ1 = ... = δp = 0, the distribution with density

given in (4.1) simplifies to the multivariate distribution derived by Adamski et al.

(2012)

f (u0, u1, ..., up) =

Γ

 
a
2
+

pP
j=0

vj

2

!
λ
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2

Γ(
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2 )Γ(
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2 )...Γ(
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2 )

(
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j=0
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vj
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p−1∏
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(1 + uk)
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×
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λ + u0 +

p∑
j=1

uj

j−1∏
k=0

(1 + uk)

)−

 
a
2
+

pP
j=0

vj

2

!
.

5. SHAPE ANALYSIS

In this section the shape of the univariate and bivariate marginal densi-

ties will be illustrated and the influence of the noncentrality parameters will be

investigated.

Panels (i) and (ii) of Figure 2 illustrate the effect of the noncentrality pa-

rameters δa and δ0 on the univariate marginal density of U0 (see equation (3.5)).
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(i) Role of δa for δ0 = 2. (ii) Role of δ0 for δa = 0.

Figure 2: The marginal density function for different values of the parameters

δa and δ0 for λ = 1.5, κ = 3, a = 20 and ν0 = 10.

In terms of the process control application the parameters can be inter-

preted as follows:

a: pooled number of observations before the shift in the unknown variance

took place,

v0: sample size at time period κ, the first sample following the shift in the

variance; the shift in the variance took place between samples κ − 1

and κ,

δa: noncentrality parameter that quantifies the change in the mean before

the change in the variance took place,

[Take note: if the mean and variance changes simultaneously, then δa = 0.]

δ0: noncentrality parameter that quantifies the change in the mean after

the change in the variance took place,

λ: size of the unknown shift in the variance.

Panel (i) shows the effect of δa; we observe that as δa increases the density

initially moves towards the vertical axis and then towards the horizontal axis. In

panel (ii) the density moves towards the horizontal axis for bigger values of δ0.

The influence of the parameters a, v0 and λ on the marginal density is discussed

in detail in Adamski et al. (2012).

Panels (i) to (iv) of Figure 3 illustrate the effect of the noncentrality pa-

rameters δa, δ0 and δ1 on the bivariate density of U0, U1 (see equation (3.2)) for

λ = 1.5, κ = 3, a = 20, v0 = v1 = 10. For λ < 1 the pattern is similar. The effect

of λ is addressed in Adamski et al. (2012).
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(i) δa = δ0 = δ1 = 2. (ii) δa = 4, δ0 = δ1 = 2.

(iii) δa = 2, δ0 = 4, δ1 = 2. (iv) δa = δ0 = 2, δ1 = 4.

Figure 3: The bivariate density of U0, U1.

6. PROBABILITY CALCULATIONS

A practical example (based on simulated data) of calculating the probability

that a control chart will signal after the process variance and mean encountered

a sustained shift, is considered.

At time period κ the plotting statistic for the Q-chart is constructed by

calculating the statistic U∗
0 =

S2
κ

S
2pooled
κ−1

, transforming this statistic to obtain a stan-

dard normal random variable, denoted Q (U∗
0 ) and plotting Q (U∗

0 ) on a Shewhart-

type chart where the control limits are UCL/LCL = ±3 and the centerline is

CL = 0 (see Human and Chakraborti (2010)). When transforming the statis-
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tic to a normal random variable, Q-charts make use of the classical probability

integral transformation theorem (see Quesenberry (1991)).

The marginal density of U0 can be used to determine the probability of

detecting the shift in the process variance immediately, i.e. when collecting the

first sample after the shift took place. Once a shift in the process parameter

occurred, the run-length is the number of samples collected from time κ (i.e. first

sample after the change) until an out-of-control signal is observed (i.e. a plotting

statistic plots on or outside the control limits). The discrete random variable

defining the run-length is called the run-length random variable and typically

denoted by N . The distribution of N is called the run-length distribution. The

probability of detecting a shift immediately, in other words, the probability of

a run-length of one, is the likelihood that a signal is obtained at time κ. The

probability that the run-length is one, is one minus the probability that the

random variable, U∗
0 , plots between the control limits,

(6.1) Pr(N = 1) = 1 −
∫ UCL

LCL
f(u∗

0) du∗
0 = 1 −

∫ UCLκ

LCLκ

f(u0) du0 .

Take note that the difference between the random variables U∗
0 and U0 (refer to

the definitions on page 7 and 8 of the introduction) will be incorporated in the

control limits of the control chart.

When the process is in-control, i.e. λ = 1 and the process mean did not en-

counter a shift, U∗
0 =

W0/nκ

X/
∑κ−1

i=1 ni

∼ F
(
nκ,
∑κ−1

i=1 ni

)
, then the Q plotting statistic

is given by Q (U∗
0 ) = Φ

−1
[F (U∗

0 )] and the control limits UCLκ and LCLκ are

determined as follows:

−3 < Φ
−1

[F (U∗
0 )] < 3

⇐⇒ Φ (−3) < F (U∗
0 ) < Φ (3)

⇐⇒ F−1
[Φ (−3)] < U∗

0 < F−1
[Φ (3)]

⇐⇒ F−1
[Φ (−3)]

∑κ−1
i=1 ni

nκ

< U0 <
F−1

[Φ (3)]
∑κ−1

i=1 ni

nκ

where

F (·) denotes the cumulative distribution function of the F distribution,

F−1
(·) denotes the inverse of the cumulative distribution function of the

F distribution,

Φ (·) denotes the standard normal cumulative distribution function,

Φ
−1

(·) denotes the inverse of the standard normal cumulative distribution

function.
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Therefore UCLκ =
F−1[Φ(3)]∑κ−1

i=1 ni

nκ

and LCLκ =
F−1[Φ(−3)]∑κ−1

i=1 ni

nκ

. Note that LCLκ and UCLκ

depend on κ whereas LCL and UCL equals −3 and 3, respectively (regardless

the value of κ).

The probability that the run-length is two can be calculated by defining

the following two events:

Let A = {LCLκ < U0 < UCLκ} and B = {LCLκ+1 < U1 < UCLκ+1}. Then,

Pr(N = 2) = Pr(A ∩ BC
) = Pr(A) − Pr(A ∩ B)(6.2)

=

∫ UCLκ

LCLκ

f(u0) du0 −
∫ UCLκ+1

LCLκ+1

∫ UCLκ

LCLκ

f(u0, u1) du0 du1 .

The run-length probabilities for higher values of N can be calculated in a similar

fashion.

Consider the following data set to illustrate the control chart and the use of

the proposed density functions to determine the run-length probabilities. Twenty

samples of size 5 were generated. The first 10 samples were generated from a

N (10, 1) distribution. Between samples 10 and 11 the process mean and variance

encountered a sustained shift, therefore the last 10 samples were generated from

a N (11.5, 1.5) distribution. Take note that when calculating the sample variance,

the practitioner is unaware of the change in the mean. The simulated data set is

given in Table 1 and the control chart in Figure 4. Note that there is no plotting

Table 1: Simulated data set.

Sample Sample Plotting
(i)

Xi1 Xi2 Xi3 Xi4 Xi5 variance
U

∗

i statistic

1 9.672 10.328 9.061 9.606 10.471 0.295 NA NA
2 12.064 10.689 10.332 8.618 9.949 1.352 4.581 −1.553
3 10.085 10.603 9.986 9.634 10.866 0.251 0.305 1.276
4 8.653 9.371 8.830 10.893 11.324 1.226 1.940 −1.049
5 10.187 9.001 9.234 10.266 8.701 0.676 0.865 0.054
6 9.560 10.738 10.617 8.831 12.225 1.487 1.957 −1.173
7 8.387 11.668 9.590 10.064 9.204 1.238 1.405 −0.672
8 11.194 9.137 7.822 10.723 11.034 1.701 1.825 −1.110
9 10.181 10.413 11.128 10.890 8.524 0.889 0.865 0.033

10 10.761 9.953 11.530 9.330 10.034 0.674 0.666 0.388
11 11.175 11.963 13.257 12.327 13.857 7.227 7.382 −4.012
12 12.850 12.132 11.727 10.362 11.309 3.499 2.262 −1.548
13 9.964 12.275 10.585 11.670 11.529 2.129 1.245 −0.525
14 11.955 11.450 12.625 11.627 11.306 3.434 1.971 −1.312
15 11.981 12.890 11.306 11.725 9.372 3.470 1.863 −1.216
16 10.184 8.689 11.045 11.428 11.687 1.546 0.785 0.160
17 10.651 10.974 10.282 11.372 9.324 0.758 0.390 1.055
18 10.375 12.098 10.711 11.556 9.884 1.496 0.799 0.134
19 10.480 11.489 12.726 12.910 10.191 3.677 1.984 −1.350
20 12.701 11.517 10.126 11.659 11.727 3.069 1.575 −0.936
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statistic that corresponds to sample number / time 1 as this sample is used to

obtain an initial estimate of the process variance. The process is effectively mon-

itored from sample 2 onwards. This process is declared out-of-control at sample

number 11 since this is the first sample where a plotting statistic plots on or

outside the control limits.

Figure 4: Control chart.

The software package Mathematica was used to calculate the probabilities

by using the summation form of the Humbert function in equation (3.5). Based

on the information of the simulated data set, we have (i) vi = ni = n = 5 (equal

sample sizes at each point in time), (ii) κ = 11, (iii) δa = 0 (i.e. the mean and

variance changed simultaneously between sample number 10 and 11), (iv) δ0 = 5

and (v) λ = 1.5. The probability of detecting the shift in the process variance

immediately at time period 11 is calculated using (6.1):

Pr(N = 1) = 1 −
∫ UCLκ=11

LCLκ=11

f(u0) du0 = 1 −
∫ 0.470157314

0.004632685
f(u0) du0

= 0.177224

where

UCLκ=11 =
F−1

5,50 [Φ (3)]

10
=

F−1
5,50 [0.998650102]

10
=

4.701573136

10

= 0.470157314 ,

LCLκ=11 =
F−1

5,50 [Φ (−3)]

10
=

F−1
5,50 [0.001349898]

10
=

0.04632684922

10

= 0.004632685 .
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The probability of detecting the shift in the process variance at time period

12 is calculated using (6.2):

Pr(N = 2) =

∫ 0.470157314

0.004632685
f(u0) du0 −

∫ 0.420758373

0.004221604

∫ 0.470157314

0.004632685
f(u0, u1) du0 du1

= 0.090598 .

These run-length probabilities can then be used to estimate the average run-

length (ARL) using the formula E(N) = ARL =

∞∑
k=1

k Pr(N=k)≈
M∑

k=1

k Pr(N=k).

The accuracy of the ARL estimate will depend on the cut-off M . The probabilities

can be evaluated using the multivariate density function in (4.1) or using Monte

Carlo simulation. The evaluation of high dimensional multiple integrals become

increasingly more complex (i.e. time consuming and resource intensive) as the

dimension increases and is beyond the scope of this article.

Table 2 summarises the effect of the different parameters on the probability

to detect the shift in the variance immediately.

Table 2: Probabilities for different parameter values.

Role of δa δ0 ni κ λ Pr(N= 1) Comment

0.5 0.015147
The larger the step shift,

λ =
σ

2
1

σ2
0 5 5 11 1 0.048686

the higher the probability.
1.5 0.177224

3 0.057861 The more historical samples
κ 0 5 5 5 1.5 0.110475 available before the shift took

11 0.177224 place, the higher the probability.

1 0.166158 The larger the sample size,
n 0 5 5 11 1.5 0.177224 the probability initially increases

10 0.171251 and then decreases.

0 0.015941 The larger δ0 (i.e. the relative
δ0 0 2 5 11 1.5 0.060114 change in the mean), the higher

5 0.177224 the probability.
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7. CONCLUDING REMARKS

Adamski et al. (2012) recently introduced a new generalized multivariate

beta distribution with density in closed form, where a distribution is needed for

the run-length of a Q-chart that monitors the process mean when measurements

are from an exponential distribution with unknown parameter. In this paper the

distributions are proposed for the case when measurements from each sample

are independent and identically distributed normal random variables and we are

monitoring the unknown spread when the known mean encountered a sustained

shift. We have generalized the proposed model to the multivariate case and we

hope that the results presented in this paper will be useful in the Statistical

Process Control field.
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1. INTRODUCTION

As industries became more competitive, their methods to improve results

are intimately related to efficiency. Although efficiency can be achieved with

technology, it only can be reliable based on the fact that the system is prepared

for failures, managing them the best way. Failures can be classified as follows:

avoided, predictable or inevitable. In each case, knowing equipment behaviour

helps companies to manage spare parts, man-hours and maintenance issues that

will improve reliability and save money [12]. Reliability studies are then a priority

and this work has been written to support decisions based on reliability models

and according to standards [8].

Sines refinery has been concerned with the shut-downs made by the Turbo-

Expander equipment in the FCC unit (Fluid Catalytic Cracking). As it was

having problems due to a vibration failure mode causing FCC unit shut-down

since year 2000, it was decided to investigate the origin of the vibration. Ex-

pander manufacturers and other entities that have this kind of equipment have

investigated this problem as it is a big economical issue for the companies as we

can see in [4] and [6]. They highly recommend investigating efficiency in order to

detect scaling deposition in expander rotor blades. It is believed that the com-

position of some particles resulting from process reaction are the key for scaling,

not just erosion. On 2011 turnaround, the procedure of changing the expander’s

rotor and shroud was not complete. Only the rotor was changed. This has caused

a slight gap between the shroud and the rotor blades due to shroud erosion. This

gap is believed to cause less resistance and then, less particles deposition. How-

ever, results of Cox Proportional Hazards [2] [3] demonstrate components in these

particles to be linked with high values of expander vibration and with times to

failure. In Section 3 we have a brief description of the equipment and contextu-

alization of the subject. In Section 4 we will refer to the goal of this work and

variables definition. Then we will present some parametric and non-parametric

approaches using Kaplan–Meier estimator and Cox Proportional Hazards in Sec-

tion 5, and a parametric adjustment to the null model with parametric models.

Finally, Section 6 is dedicated to some general considerations of this work.

2. MODELS

Several approaches were tried and reviews for different models were stud-

ied, although not all of them could fit on the data and conditions of our study.

Cox Proportional Hazards had a strong focus because of its flexibility, but some

approaches using Competing Risks Theory as we can see in Fine and Gray [5]

or Lunn and McNeil [11] were not possible due the complexity of the system.
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As we have both time-dependent and independent events it was very difficult to

articulate a model and find covariates that could meet the assumptions needed.

Additive interaction used by Li and Chambless [10] was proposed but due to

the nature of the data and the way that some covariates are monitored make it

impossible to use. We will then use the best possible models to fit our data that

meet the required conditions for the assumptions needed.

3. FRAMING AND DEFINITIONS

3.1. Configuration of the FCC Power Recover Unit at Sines refinery

A PRU (Power Recover Unit) is composed of an expander, a main air

blower, a turbine, a gear box and a motor/generator which recovers the flue gas

from the process to generate energy and steam. At Sines refinery we can find a

particular configuration of the PRU as we can see in Figure 1. This configuration

Figure 1: FCC and PRU train.
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brings an additional problem to the system. The fact that the expander is cou-

pled with the other equipment leads to unwanted shut-downs of all FCC units

whenever the expander has a shut-down. As a shut-down implies high costs, the

main goal is to avoid it. Pareto analysis was done on all PRU failure modes so the

main failure mode can be easily identified. It was clear that the vibration failure

mode was the principal reason for the problems in the expander. Actually, this

equipment is supposed to have a reliability of 99%, and its only intrinsic failure

is vibration.

3.2. Expander — What is it and how does it work?

The Turbo-Expander (Figure 2) is composed of the nose cone, the rotor

blades, the stator ring, the shaft and the casings. Process flue gas reaches the

expander rotor blades at a pressure of about 2.1 barg and a temperature of 700
◦

Celsius degrees. The flow at this pressure and temperature is here transformed

Figure 2: Turbo-Expander.

into mechanical energy, making the rotor blades rotate as well as the shaft at

approximately 5700 rpm, held by the steam turbine. This mechanical energy

is thus transformed in electrical energy through the generator that is coupled

with the expander in the same shaft. In Figure 3 we can see process flue gas

come inside the expander casing (grey arrows) that reaches the rotor blades be-

ing cooled (white arrow), and then, exhausting through the exhaust casing (black

arrows). During this process some particles can set down on the rotor blades.
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As deposition may not be uniformly distributed by the blades, it will cause im-

balance at high rotation, and thus, cause vibration. The trip value is set to v µm

(microns) — where v is a predefined target — and when this value is reached,

either the trip (shut-down due to go beyond the threshold values) can occur or

operational staff can choose to try to make a controlled shut-down once it is

unavoidable.

Figure 3: Turbo-Expander flue gas flow.

4. TIMES TO EXPANDER VIBRATION FAILURE MODE

In order to investigate the root cause of the problem, all shut-down events

were recorded and variables that were suspected to be related with the expander

vibration were recorded through the on-line monitoring system of all instrumented

variables, since year 2000. There were also concerns with the fact that vibration

due to imbalance in the rotor blades caused by deposition can be due to me-

chanical reasons, chemical reasons, or a combination of both. As flue gas is the

product of combustion of coke, compounds that are produced in this reaction

can be carried out with flue gas and reach the expander. Tiny particles as well

as some chemical combinations that can produce a kind of glue effect can cause

deposition. This is a theory supported by the industrial community [4] and the

present work has demonstrated some compounds and their characteristics to be

important reasons. However, in the past, some internal mechanical damage either

in the regenerator and 3
rd

stage separator have been shown to be a good reason

for particles to easily reach the turbo expander and cause vibration. To explain

the reasons that lead to scaling is not the subject of this work, but the fact that

it may exist. However, it is important to refer that we have several hypotheses

for scaling and none must be rejected.
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Reasons for scaling:

a) Erosion combined with more tiny particles can cause deposition;

b) Some chemical compounds combined with each other can act as glue

and cause deposition;

c) Vapour is not at the correct temperature/pressure and will cause scal-

ing combined with flue gas particles;

Reasons for high concentrations of tiny particles to reach the expander:

a) Internal damage in the regenerator, or internal damage in the 3
rd

stage

separator.

Internal damage is not easily detected which makes this a major challenge. Scaling

can be due a combination of factors that we actually don’t know if they are

happening or not at the same time. Another problem is that the point of collection

of particles for analysis is not immediately before the expander so, in practice, we

can only infer what’s reaching expander from particles that are being regenerated.

From all possible variables that can influence the system, we have:

Table 1: Variables description.

variable description variable description

vnd Vanadium (ppm) c Carbon (%)

ni Nickel (ppm) re RE2O3 – Rare-earth oxides (%)

fe Iron (%) abd Apparent Bulk Density (g/cc)

cu Copper (ppm) alo Al2O3 Alumina Oxide (%)

pb Lead (%) aps Average Particle Size (microns)

na Sodium (%) pv Particules’ Pore Volume (cc/g)

po P2O5 – Phosphorus Pentoxide (%) mat Micro activity Test

mgo MgO – Magnesium Oxide (ppm) sa Particles’ Surface Area (m2/g)

cf Coke Factor vpb Vapour pressure (barg)

gf Gas factor vib Vibration Values (microns)

pin Inlet Pressure (barg) car Main Air Blower Flow (%)

pout Exhaust Pressure (barg) cr Reactor Feedstock (t/h)

tpin Inlet Temperature (◦C) bp Bypass Valve (%)

tpout Exhaust Temperature (◦C) pt Particles Size (%)
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5. SURVIVAL MODELS

Several approaches were tried to correlate some particles’ compounds and

attributes as well as with process variables such as temperature, pressure, among

others, with times to vibration failures using survival models.

1. First approach — Use the times to expander failure and correlate them

with particles’ compounds and attributes and with process physical

variables. For this, we have recorded all shut-down events since year

2000, censoring those that were not by vibration. Whenever there is a

shut-down, a “as good as new condition” is reached for turbo-expander

due to the thermal shock produced by equipment cooling.

2. Second approach — Use times to high vibration and correlate them

with particles’ compounds and attributes and with process physical

variables, as high vibration values can end in a shut-down or not. High

vibration values are harmful for the equipment, and they may not cause

a shut-down but they must be avoided, and are here treated as an event.

For this, we have recorded all shut-down events and high vibration val-

ues (higher than v/3 µm) since year 2000, censoring shut-downs that

were not by vibration. Whenever there is a shut-down or a high vibra-

tion value and the value drops again after some short time, a good as

new condition is considered.

5.1. Kaplan–Meier estimators

First, we have made a non-parametric approach using the Kaplan–Meier

estimator [9] (using software R) to obtain the survival curves for times to expander

vibration failure mode. As we have right censored data and the intervals between

events are typically non uniform, Kaplan–Meier is a good approach.

Let R(t) be the probability that a member from a given population will

have a lifetime exceeding t. For a sample of size N from the list of observations,

let the observed times until the shut-down of the N sample observations be t1 ≤
t2 ≤ t3 ≤ ··· ≤ tn. Corresponding to each ti is ni, the number “at risk” just prior

to time ti, and di, the number of shut-downs at time ti. The Kaplan–Meier

estimator is the non-parametric maximum likelihood estimate of R(t). It is a

product of the form:

(5.1) R̂(t) =

∏

ti<t

ni − di

ni
.
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5.1.1. First Approach — Only shut-downs are considered

In these Kaplan–Meier curves for times to expander vibration failure mode,

we know that reliability keeps high for values under v/2 µm. Therefore, one of the

goals here is to predict when vibration values become dangerous and a potential

spark for the fast increase in its values. Although reliability never drops below

50% (Figure 4), it is important to find the reasons for the shut-downs as they are

an important economical factor.

0
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Figure 4: Kaplan–Meier for the null model — Approach 1.

5.1.2. Second Approach — High vibration values are considered

The curve in Figure 5 shows us that high vibration values are recurrent

although shut-downs are not. The reliability values quickly decrease and when

t1 is reached, we have less than 50% of reliability for high vibration values.
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Figure 5: Kaplan–Meier for the null model — Approach 2.
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The question here, is that high vibration values can lead to one of two situations:

— particles deposited in rotor blades can drop due to imbalance caused by high

vibration, or — imbalance can increase as a result of high vibration and get out

of control leading to trip vibration values and cause a shut-down. Here is just a

matter of “mechanical free will”. That’s why it is important to check causes for

high vibration values.

5.2. Cox Proportional Hazards Model

Survival models were studied, first with a non-parametric approach with

Kaplan–Meier, and then, a semi-parametric approach was tried using Cox pro-

portional hazards. Cox model allows analysis of life times in which the outcome

variable is the time until the latest event, being censoring or failure, and is char-

acterised by the coefficients (β’s) which measure the effects of covariates on the

hazard rate:

(5.2) h(t) = h0(t) exp
{
β1x1 + ··· + βpxp

}
,

with:

• h0: baseline hazard rate function;

• β1, ..., βp: model parameters;

• x1, ..., xp: explanatory covariates.

Let Yi denote the observed time (either censoring time or event time) for obser-

vation i, and let Ci be the indicator that the time corresponds to an event (i.e.

if Ci = 1 the event occurred and if Ci = 0 the time is a censoring time, which is,

a general shut-down). We used the partial likelihood method for the parameters

using Breslow’s [1] estimate:

(5.3) L(β) =

∏

i:Ci=1

θi∑
j:Yj≤Yi

θj
,

with

(5.4) θj = exp
{
β̂j

}

As it is a multivariate regression, correlation between covariates must be carefully

studied. Once vibration can be consequence of the other covariates, it was not

included for now in our models. Models were developed in order to avoid joining

correlated covariates, which had a Pearson’s correlation value above 0.75 or be-

cause experts show us that chemically speaking, when some covariate increases,

another one will also increase (or vice-versa). All variables here presented are con-

tinuous, and whenever a covariate is as significant as when categorized as when
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continuous, it will be used in its categorized form, in order to simplify model

interpretation. Models adjustments were made according Hosmer and Lemeshow

[7] modelling stages.

5.2.1. First Approach — Only shut-downs are considered

Univariate analysis was made to the covariates and those with significance

below 25% were considered in the multivariate model. Both forward and back-

ward methods were tested using R software, and the best fit was achieved for each.

Because this is a dynamic system, each time there is a shut-down, the event is

uploaded to the database and the model is tested again. Some variables were

added to the initial tested model because they were shown to be relevant, and

have, individually, good explanatory values. However, sometimes when together,

they have poor explanatory values. Variable vib corresponds to the vibration and

shall not be accompanying other variables in the same model due to collinearity.

From the possible 28 covariates, only 22, according the criterion of correlation,

can be used. Only 10 from these variables are significant at 10%. Choosing only

those variables with p-values below 25% of significance and after using backward

and forward techniques, only 8 of them were used, and Model 1 was reached as

shown in Table 2. Previously, in an initial approach we have used two differ-

ent models, one for chemical and another one for physical variables, but with

the introduction of new variables, this has shown not to be the best solution.

Table 2: Cox model 1.

variable β se(β) p-value

nix −3.12 0.88 0.0004

fe −11.18 5.68 0.0492

sa 0.11 0.03 0.0003

na −24.01 6.63 0.0003

vpb 0.86 0.36 0.0179

mgo 43.53 20.26 0.0316

cfx −328.5 97.29 0.0007

tpin −0.24 0.06 0.0000

cfx:tpin 0.46 0.14 0.0007

62.8% of the variation can be explained by this model, with a concordance value

of 0.899 and a likelihood ratio test with a p-value effectively zero. Variable sa is

the surface area of the particles and seems to be an important variable to take

into consideration. This variable explains about 18.4% of data variation in its
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univariate analysis. An increase in the surface area of the particles means that

they are more able to break and produce fine particles, and the increase of one

unit of sa increases the risk by about 5.5%. Coke factor (cf) and vanadium vnd

are important variables as well as they explain 15% and 11.5% of data variation

respectively in the univariate analysis. In Model 1 sa has an associated risk of

11.6%. Except for sa, mgo and vpb covariates, all the other covariates that are not

in an interaction (ni, fe, na), are indicating that if they are trending downward,

the risk will largely increase. We know also that for the increase in one unit of

vpb the associated risk increases almost 2.5 times keeping the other covariates

constant. Magnesium can be a contaminant metal when combined with other

components, and makes sense that the increase of one unit will exponentially

increase the covariate effect. Variable cfx is the categorized variable (0 and 1) for

coke factor and the cut-off point used for it was its mean because of its better

interpretation, and if it is trending downward it may indicate a higher risk. Inlet

temperature tpin can be a good monitoring variable for the same reason as cf.

Coke factor is related with temperature in the regenerator and thus, also with the

quantity of contaminant metals, so this interaction makes all sense. Statistically

speaking, we can say that for the cfx value of 0, the risk will decrease regardless

of the value of the inlet temperature (tpin), but if the cfx value is 1, the risk

will increase, with a higher risk (287 times) for inlet temperature values under

the 1
st

quartile. Also this means that for inlet temperatures above its mean, and

when cfx goes from 0 to 1, the risk starts to increase as we can see in Figure 6.
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Figure 6: Interaction cfx:tpin, tpin fixed.

In Figure 7a we have the survival estimates for the quartiles and in Figure 7b we

have the Kaplan–Meier estimate of model 1. Model 1 is quite satisfactory, with

good results in its residuals analysis, and linear correlation tests were made and

they suggest that none of the covariates violate the proportional hazards assump-

tions (see Appendix A). Realistic possible scenarios can be used and the survival

estimates are given for two examples in Figure 8a and Figure 8b. As we can see,

when the magnesium variable increases its concentration, reliability decreases.
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(Model 1).
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Figure 7: Estimate analysis for model 1.
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Figure 8: Reliability for different scenarios.

5.2.2. Second Approach — High vibration values are considered

Model 2 uses the second approach and supports the idea that our event is

“high vibration”. Times to high vibration values and shut-downs are here analysed

instead of only times to shut-down failures. Thus, using the same process vari-

ables, we achieve the Cox model 2 in Table 3. In this model, more than finding the

reasons for shut-downs, is to find the reasons for scaling. High vibrations can be a

spark for a shut-down and the line that bounds the two situations (shut-down or

not) is just a question of the way the scaling is being heterogeneously distributed

on the rotor blades, and how much imbalance it will cause. Comparing these

results with the previous model (model 1), we found some variables in common.
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Table 3: Cox model 2.

variable β se(β) p-value

fe −6.49 2.01 0.0013

tpin −0.05 0.01 0.0002

tpout −0.01 0.01 0.0278

re −0.95 0.28 0.0008

mgo −66.48 21.33 0.0018

na −202.8 58.24 0.0005

cf −3.22 1.77 0.0691

gf −2.81 0.69 0.0000

mgo:na 240.2 68.87 0.0005

cf:gf 1.65 0.49 0.0008

Nevertheless, some covariates that are not in common seem to have individually,

a high significance in both models, such as sa and vpb. However, when together in

the models they lose their significance. Approximately 35% of data variation are

explained by this model, with a concordance value of 0.74 and a likelihood ratio

test with a p-value effectively zero. We can see that the common covariates with

model 1 (fe, tpin, mgo, na and cf), are monitoring variables as well as exhaust

temperature (tpout). Magnesium oxide (mgo) is a very problematic component

when combined with sodium (na, which is a poison for the process and combined

with some metals can act as “glue”). For mgo and na interaction (Figure 9) we

(a) Interaction mgo:na, mgo fixed.

(b) Interaction mgo:na, na fixed.

Figure 9: Interaction mgo:na for model 2.
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have that for magnesium values fixed above the 3
rd

quartile, the risk can increase

from 22% to 4 times as much depending on sodium increase, but we have a clear

interaction when we set na at its maximum value and we see that the risk increases

18 times for values below mgo’s 1
st

quartile, although it always increases for all

mgo quartiles’ variations. Coke factor (cf) indicates the amount of produced coke

in the process and it can be a monitoring variable as it isn’t a protective factor.

Gas factor gf is concerned with the amount of produced gases and it can be read

as a monitoring variable as well. In Figure 10 we can see that for coke factor and

gas factor interaction, if we set cf value for its maximum, we will have a large

risk increase when we increase gf. At the same time, when we set the values for

gf and make cf increase, the hazard rates will increase for high values of gf.

(a) Interaction cf:gf, gf fixed.

(b) Interaction cf:gf, cf fixed.

Figure 10: Interaction cf:gf for model 2.

We can see in Figure 11a, that we have a better survival estimate than in

model 1, with a good fit to the quartiles. Linear correlation suggest that none

of the covariates violate the proportional hazards assumption as for model 1,

and the residual analysis didn’t show problematic points that may be interfering

in the model (see Appendix B). As with model 1, two different scenarios were

considered for model 2. We can see in Figure 12a the reliability curve for model 2

considering the mean for all variables. As we increase cf (Figure 12b) keeping all

other variables constant, we see that the reliability curve have a higher slope and

decreases faster.
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Figure 11: Estimate analysis for model 2.
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Figure 12: Reliability for different scenarios.

5.3. Parametric Models

In order to have a first parametric model, we have proceeded to parametric

approaches for the baseline hazard rate determination. As we can see, none of

the tested distributions are presenting a good fit, however, the log-normal has

the lowest AIC (Figure 13). In order to find a better parametric fit, only times

before t1 were considered. We can see a better approach is achieved with the

log-normal distribution in Figure 14, which has the lowest AIC. According to the

AIC value we also have the log-normal distribution as a good fit for the baseline

hazard as shown in Figure 15.



Use of Survival Models in a Refinery 61

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

R
(t

)

Time

Kaplan−Meier
Exponential
Weibull
Log−normal

AICExponential = 294.0934

AICWeibull = 296.0915

AICLog−normal = 286.9723

t1

Figure 13: Parametric models for the null model (model 1).
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62 Śılvia Madeira, Paulo Infante and Filipe Didelet

6. CONCLUDING REMARKS

For the proposed problem in Section 4, the consistency of some covariates

in tested models make them a subject of investigation. Some covariates such

as surface area should be definitely monitored, as well as the inlet and exhaust

temperatures trend. It seems that sodium, magnesium and iron are influential

variables for the increase of the risk of high vibration values, and should be

monitored, although all these variables are very difficult to control as they depend

on the reactor feedstock and reactor temperatures. Investigation on this subject

will be ongoing as it can help to find the reasons for the so non-welcome shut-

downs. Future work will be done to mechanical equipment in order to optimize,

if possible, predictive maintenance scenarios.
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APPENDIX A

Here we have the residual analysis for model 1. We can see that proportion-

ality assumption is verified when we analyse Figure 16. Deviance residuals and

martingale residuals where analysed as well as score residuals and for all cases

possible outliers or influential observations where removed to check the availabil-

ity of the model. In all cases the coefficients never changed their values above

25%.
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Figure 16: Schoenfeld residuals for model 1.
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APPENDIX B

As for model 1 the proportionality assumption was checked via Schoenfeld

residuals.We can see that proportionality assumption is verified when we analyse

Figure 17. Just like model 1, model 2 has been checked for influential observations

with no significant change in its coefficients.
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Figure 17: Schoenfeld residuals for model 2.
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Abstract:

• In the quality control of a production process (of goods or services), from a statistical

point of view, the focus is either on the process itself with application of Statistical

Process Control or on its frontiers, with application of Acceptance Sampling (AS) and

Experimental Design. AS is used to inspect either the process output (final product)

or the process input (raw material). The purpose of the design of a sampling plan is

to determine a course of action that, if applied to a series of lots of a given quality,

and based on sampling information, leads to a specified risk of accepting/rejecting

them. Thus AS yields quality assurance. The classic AS by variables is based on the

hypothesis that the observed quality characteristics follow the Gaussian distribution

(treated in classical standards). This is sometimes an abusive assumption that leads

to wrong decisions. AS for non-Gaussian variables, mainly for variables with asym-

metric and/or heavy tailed distributions, is a relevant topic. When we have a known

non-Gaussian distribution we can build specific AS plans associated with that distri-

bution. Alternatively, we can use the Gaussian classical plans with robust estimators

of location and scale — for example, the total median and the sample median as

location estimates, and the full range, the sample range and the interquartile range,

as scale estimates. In this work we will address the problem of determining AS plans

by variables for Extreme Value distributions (Weibull and Fréchet) with known shape

parameter. Classical plans, specific plans and plans using the robust estimates for

location are determined and compared.

Key-Words:

• quality control; acceptance sampling; acceptance sampling by variables; robust methods.
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1. INTRODUCTION

Acceptance Sampling (AS) is used to inspect either the output process —

final product — or the input — initial product. On a lot-by-lot basis, a random

sample is taken from the lot and based on the information given by the sample a

decision is taken: to accept or to reject the lot. The purpose of AS is to determine

a course of action, not to estimate lot quality. It prescribes a procedure that, if

applied to a series of lots, will give a specified risk of accepting lots of given

quality. An AS plan indicates the rules for accepting or rejecting a lot that is

being inspected. Acceptance sampling is a compromise between no inspection

and 100% inspection. It is likely to be used under the following conditions:

• When 100% inspection is tiring the percentage of nonconforming items

passed may be higher than under a scientifically designed sampling plan.

• When the cost of inspection is high and the loss arising from the passing

of a nonconforming unit is not great. It is possible in some cases that

no inspection at all will be the cheapest plan.

• When inspection is destructive. In this case sampling must be employed.

There are two approaches to AS in the literature. The first approach is AS

by attributes, in which the product is specified as conforming or nonconforming

(defective) based on a certain criteria and the number of nonconforming units is

counted. The other approach is AS by variables, if the item inspection leads to

a continuous measurement. In comparison to sampling plans by attributes, sam-

pling plans by variables have the advantage of usually resulting in considerable

savings in sample size for comparable assurance. The main disadvantage of the

classical case of the acceptance sampling by variables is that it is based on the hy-

pothesis that the observed quality characteristic follows a Gaussian distribution.

References to this section are ([4]), ([12]), ([9]), ([13]).

In Acceptance Sampling there are two kinds of decisions based on the sam-

ple, to accept or to reject the lot, and two kinds of errors associated:

• Type I error: consists of incorrectly rejecting a lot that is really accept-

able. The probability of making a type I error is α, also called producer’s

risk.

• Type II error: consists of incorrectly accepting a lot that is really un-

acceptable. The probability of making a type II error is β, also called

consumer’s risk.

The producer wishes the acceptance of “good” lots with high probability (1 − α)

and the consumer wishes the acceptance of “bad” lots with small probability (β).
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In the determination of an AS plan the aim is to calculate the sample size, n, to

be taken from the lot and the acceptability constant, k, that satisfy the conditions

referred to as the producer’s risk and the consumer’s risk. There are two quality

values that we need to define ([14]):

• AQL — Acceptable Quality Level — the worst quality level that is still

considered acceptable. The AQL is a percent defective that is the base

line requirement for the quality of the producer’s product.

• LTPD — Lot Tolerance Percent Defective — the poorest quality in an

individual lot that should be accepted, the level of quality where it is

desirable to reject most lots. The LTPD is a designated high defect level

that would be unacceptable to the consumer.

To prevent “good” lots from being rejected and “bad” lots from being accepted,

we calculate the values of n and k by solving the system

(1.1)

{
Pac(ω = AQL) = 1 − α ,

Pac(ω = LTPD) = β ,

where Pac(ω) = P(accept the lot | ω) designates the acceptance probability (func-

tion of n and k) and ω the non conforming proportion. If we let ω vary in [0, 1],

we can establish the operating characteristic curve, OC-curve, Pac(ω). This curve

shows the lot acceptance probability in accordance with its quality, given by the

nonconforming proportion. This is the most used way of determining an AS plan:

to specify 2 desired points on the OC-curve and solve for the (n, k) that uniquely

determines the OC-curve going through these points (AQL, 1−α) and (LTPD , β)

([8]). Alternatively the above system can be solved for k and LTPD , as will be

used later for comparison purposes.

In AS, sampling plans can be built up with a single specification limit (the

upper or lower) or with two specification limits (the upper and the lower). This

latter situation is theoretically more complex since the two previous procedures

have to be added into one. For more details see ([3]).

Let X denote the random variable that represents the quality character-

istic inspected. For simplicity, in the next sections we will assume that there

is a single specification limit, the upper limit U , so the nonconforming propor-

tion is given by ω = P (X ≥U). In section 2 we will review the classical case

where X is assumed to follow a Gaussian distribution. In section 3 we will derive

AS plans when X follows an Extreme Value distribution (Weibull and Fréchet).

As a particular case of Weibull distribution we obtain the results for the expo-

nential distribution studied in ([2]) and ([11]). In the section 4 robust estimators

for location are presented. In section 5, classical plans, specific plans and plans

using the robust estimates for location are compared by means of the OC-curve.

The main conclusions are driven in section 6.



Robust Methods in AS 71

2. ACCEPTANCE SAMPLING FOR GAUSSIAN VARIABLES

The acceptance sampling by variables in the Gaussian case was solved in

theory and for application in American Standard, MIL-STD 414 (updated several

times in details). The most recent international version is ([1]).

Consider that the quality characteristic of interest, X, follows a Gaussian

distribution, with mean µ and standard deviation σ, X ⌢ N(µ, σ) and that a sam-

ple of size n is taken from the lot for AS purposes. The nonconforming proportion

is given by ω = P (X ≥U) = 1 − Φ
(U−µ

σ

)
. The lot is accepted if the estimated

nonconforming proportion based on the sample is “small” or an associated quality

index Q is “big”. The definition of Q depends on the standard deviation of X

being known or unknown, as follows.

2.1. σ known

If σ is known the quality index Q is defined as Q =
U−X

σ and the criterion

of acceptance is Q =
U−X

σ ≥ k. The values of n and k are the solution of the

system {
P

(
Q≥ k |ω = AQL

)
= 1 − α ,

P
(
Q≥ k |ω = LTPD

)
= β ,

and are given by 




k =
z1−α zLTPD − zβ zAQL

zβ − z1−α
,

n =

(
z1−α − zβ

zLTPD − zAQL

)2

,

where zp denotes the p-probability quantile of the standard Gaussian distribution.

For details see ([4]) and ([12]).

2.2. σ unknown

If σ is unknown the criterion of acceptance is Q =
U−X

S ≥ k, with S2
=

∑n
i=1

(Xi−X)2

n−1 the unbiased estimator of σ2
. The values of n and k result from

the resolution of the system{
Pac

(
Q≥ k |ω = AQL

)
= 1 − α ,

Pac

(
Q≥ k |ω = LTPD

)
= β ,

or from the equivalent{
Ft,ν=n−1,δ=

√
n zAQL

(
−k

√
n
)

= 1 − α ,

Ft,ν=n−1,δ=
√

n zLTPD

(
−k

√
n
)

= β ,

where Ft,ν,δ(·) represents the distribution function of the non-central t variable

with ν degrees of freedom and non-centrality parameter δ ([4]) and ([12]).
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3. ACCEPTANCE SAMPLING FOR NON-GAUSSIAN

VARIABLES

At this point, we will take a closer look at two specific distributions that

are widely used in Statistical Quality Control, namely the Weibull and Fréchet

distributions.

The procedure to be used for non-Gaussian variables is analogous to that

used for the Gaussian case. We start by defining the quality index for each case

and compare its observed value with the constant k of acceptance, considering

the situations of known and unknown parameters. To define the AS plan for each

case, we must solve system (1.1).

Let us consider the Weibull distribution, Weibull(θ, δ), with probability

density function (pdf) fX(x) =
θ
δ

(
x
δ

)θ−1
e−

(
x

δ

)θ

, x > 0, δ > 0, θ > 0, and the Fréchet

distribution, Fréchet(θ, δ), with pdf fX(x) =
θ
δ

(
x
δ

)−θ−1
e−

(
x

δ

)
−θ

, x > 0, δ > 0, θ > 0,

and let θ̂ and δ̂ represent the maximum likelihood estimators of their respective

dispersion and shape parameters based on a random sample of size n. Consider-

ing that Y =
2nδ̂θ

δθ ⌢ χ2
2n, in the Weibull case, and that Y =

2nδ̂−θ

δ−θ ⌢ χ2
2n, in the

Fréchet case, the results of Table 1 are obtained (for details see ([3])).

Table 1: Non-Conforming proportion, Criterion of acceptance and

Acceptance Sampling plans for the Weibull and Fréchet cases.

Distribution Weibull(θ, δ) Fréchet(θ, δ)

Non-Conforming Proportion
e
−(U

δ
)θ

1 − e
−(U

δ
)−θ

ω = P
�
X > U

�
Criterion of
acceptance

θ known QU =

�
Ubδ �θ

≥ k QU =

�
Ubδ �−θ

≤ k

θ unknown QU =

�
Ubδ �bθ≥ k QU =

�
Ubδ �−bθ

≤ k

AS plans:
values of k and n

θ known

8>>><>>>: n = −

k χ
2
2n;β

2 ln(LTPD)

k = −

2n ln(AQL)

χ2
2n;1−α

∗

8>>><>>>: n = −

k χ
2
2n;1−β

2 ln(1−LTPD)

k = −

2n ln(1−AQL)

χ2
2n;α

θ unknown ∗∗ ∗∗

* Note that, this system is equal to the exponential case, ([2]).

** Since the exact distribution of QU is unknown analytically, to determine the values
of n and k that satisfy the system (1.1) we have to proceed with simulation methods.



Robust Methods in AS 73

4. ROBUST ESTIMATORS FOR LOCATION

As we referred previously, when we have a non-Gaussian distribution we

can build specific AS plans associated with that distributions.

As also mentioned, the classical plans (Gaussian case) assume normality

of the data and they use X as an estimator of µ. However, when data is Non-

Gaussian, X may not be the best estimator, mainly when the distribution is

asymmetric and/or has heavy tails.

Thus, alternatively, as robust estimators for µ, we suggest the sample me-

dian
(
X̃

)
and total median

(
X̃T

)
, respectively, given by

X̃ =






X(m) if n = 2m − 1 ,

Xm + Xm+1

2
if n = 2m,

m ≥ 1 and X̃T =
∑n

i=1 aiX(i), such that ai = an−i+1,∀ i = 1, ..., n, 0 < a1 < a2 <

... < a
[

n
2 ]

,
∑n

i=1 ai = 1.

Considering these estimators for the mean value, the quality index of clas-

sical plans is, respectively Q
′

N =
U− eX

σ and Q
′′

N =
U− eXT

σ , and the criterion of ac-

ceptance, for each case is Q
′

N =
U− eX

σ ≥ k
′

n and Q
′′

N =
U− eXT

σ ≥ k
′′

n. When we work

with Q
′

N , we use the distribution of X̃. When we work with Q
′′

N , we need to use

simulation methods, since its distribution is unknown.

For calculating the weight of the tails, we used the index, τ ,([10]),

τ(F ) =
1

2

(
F−1

(0.99) − F−1
(0.5)

F−1(0.75) − F−1(0.5)
+

F−1
(0.5) − F−1

(0.01)

F−1(0.5) − F−1(0.25)

)/(
z0.99 − z0.5

z0.75 − z0.5

)
,

where F−1
(p) represents the p-quantile of the distribution F and zp represents

de the p-quantile of the standard Gaussian distribution.

To assess the degree of skewness, Fisher’s skewness coefficient, c1, was used,

given by c1(F ) =
µ3

σ3 , where F represents the distribution of the data, µ3 repre-

sents the third-order central moment of the distribution F and σ represents the

standard deviation of the distribution F .

According to ([7]), for asymmetric distributions, the best estimator for the

mean value is

• X, if c1 < 0.9 independently of the value of n or if n > 16 indepen-

dently of the value of c1;
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• X̃T , if 0.9 ≤ c1 ≤ 3.69 and n ≤ 16;

• X̃, if c1 > 3.69 and n = 3 or 4;

• X̃T , if c1 > 3.69 and 5 ≤ n ≤ 16.

For the tail weight index (τ), the best estimator for the mean value is

• X, if τ < 1.01 independently of the value of n;

• X̃T , if 1.01 ≤ τ ≤ 1.8 and n ≥ 5;

• X̃, if τ > 1.8 and n = 3 or 4;

• X̃T , if τ > 1.8 and n ≥ 5.

5. SOME RESULTS

Our main questions are: what miscalculations occur if X is Weibull and we

use a standard AS plan for Gaussian X instead? What alternatives can we use?

Can we use robust estimators for the location in the Gaussian case?

As we said before, the determination of the specific sampling plan is based

on the solution of the System (1.1). Usually α, β, AQL and LTPD are fixed

and the system is solved for n and k. For comparison of the plans it is more

convenient to fix n (taken from the standard) and solve the system to calculate

k and LTPD . The comparison of the results will, essentially, be based on LTPD

or/and the OC-curve.

To exemplify what we propose, we consider distributions with different

degrees of asymmetry and tail weight index. So we are going to compare the

Gaussian case with the Weibull (θ = 7 and θ = 1) and Fréchet (θ = 5) cases.

We will consider α = 5%, β = 10%, AQL = 1% and several values of n, taken

from the standard.

5.1. Comparisons of Gaussian and specific plans

If the quality characteristic is a non-Gaussian variable and if we use the

values of the standard (apply the classical plans), the producers risk (5%) is

miscalculated and misleading. We have, therefore, to carry out the adjustment

of the α’s for the OC-curves which pass in the point (AQL, 1−α), and so we can

compare the sampling plans. For more details see ([3]). Table 2 shows the results

for the exponential case.
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Table 2: Results of α’s adjustment, exponential case.

Sample size, n Adjusted α

10 0.036

15 0.038

20 0.039

30 0.041

35 0.041

50 0.043

75 0.044

100 0.045

150 0.046

200 0.046

Table 3 shows the comparison results of the Gaussian case (given by the

standard) versus the exponential case, based on LTPD and k.

Table 3: Comparison of LTPD and k, between Gaussian case (σ known)

and exponential case.

AQL = 1%

Sample

size,

n

Standard

(α is not 5%)

Gaussian data

Gaussian fit

Exponential data

Gaussian fit

Exponential data

Exponential fit

LTPDN (%) kN LTPDEN (%) kEN LTPDE(%) kE

10 8.06 1.81 16.13 1.76 16.13 2.93

15 5.81 1.90 11.45 1.87 11.45 3.16

20 4.73 1.96 9.08 1.93 9.08 3.30

30 3.66 2.03 6.68 2.01 6.68 3.49

35 3.35 2.05 5.99 2.03 5.99 3.56

50 2.79 2.09 4.73 2.08 4.73 3.70

75 2.34 2.14 3.73 2.13 3.73 3.85

100 2.10 2.16 3.20 2.16 3.20 3.94

150 1.84 2.19 2.65 2.19 2.65 4.05

200 1.70 2.21 2.36 2.21 2.36 4.12

Examining the results presented in Tables 2 and 3, it can be seen that

if the quality characteristic is an exponential variable and if we use the values

of the standard (classic case), the producer’s risk (as well as the consumer’s) is

miscalculated. For example, given AQL = 1%, n = 10 and if we want a producer’s

risk of 5%, standards give the values of k and LTPD , respectively, 1.81 and 8.06%.



76 Carolino and Barão

But in fact, with this k the real risk of the producer is 6.36% (the risk of 5%

is illusory and misleading) and the real consumer’s non-conforming fraction is

16.13% (instead of 8.06%). Therefore, to ensure a risk of 5% the standard shall

be calculated with a risk of 3.6%, yielding the acceptance constant, k, in the last

but one column of Table 3.

Tables 4 and 5 show the results of the Weibull case with θ = 7. These

results show, once again, that abusively using AS plans for Gaussian variables,

Table 4: Simulation results: estimated α for Gaussian case when α of Weibull

(θ = 7, δ = 10) case is 0.05 and 95% Confidence Interval for α.

Sample size, n Adjusted α
95% Confidence Interval for α

Lower limit Upper limit

10 0.055 0.042 0.069

15 0.053 0.041 0.068

20 0.053 0.040 0.067

30 0.053 0.041 0.067

35 0.052 0.039 0.066

50 0.052 0.040 0.066

75 0.052 0.040 0.065

100 0.051 0.039 0.065

150 0.051 0.039 0.066

200 0.051 0.038 0.066

Table 5: Comparison of LTPD and k, between the Gaussian case

and the Weibull (θ = 7, δ = 10) case.

AQL = 1%

Sample

size,

n

Standard

(α is not 5%)

Gaussian data

Gaussian fit

Weibull data

Gaussian fit

Weibull data

Weibull fit

LTPDN (%) kN LTPDWN (%) kWN LTPDW (%) kW

10 8.06 1.81 21.00 1.76 16.13 2.93

15 5.81 1.90 14.00 1.87 11.45 3.16

20 4.73 1.96 12.00 1.93 9.08 3.30

30 3.66 2.03 9.00 2.01 6.68 3.49

35 3.35 2.05 7.50 2.03 5.99 3.56

50 2.79 2.09 6.00 2.08 4.73 3.70

75 2.34 2.14 5.00 2.13 3.73 3.85

100 2.10 2.16 4.00 2.16 3.20 3.94

150 1.84 2.19 3.00 2.19 2.65 4.05

200 1.70 2.21 2.36 2.21 2.36 4.12
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when we have an exponential or Weibull variable, implies serious risks for the

consumer and/or the producer. Comparing the last column of Tables 3 and 5,

we can see that the results for the exponential and Weibull cases are equal, i.e.,

the plans are θ invariant.

The same kind of precautions has to be taken in the Fréchet distribution

for the calculation of the risks α and β, and the constants k and LTPD .

5.2. Comparisons of specific and robust AS plans

The plots in Figures 1 and 2 show, for n = 5, the operating characteristic

curves, OC-curves, Pac(ω) for:

• the Gaussian case with sample mean (−◦−);

• the Gaussian case with sample median (Figure 1) and total median

(Figure 2) (−�−) with Weibull data;

• Weibull case with θ = 7, δ = 10 (−•−). This distribution has c1 = −0.463

and τ = 0.990.

Observing the graphs of Figures 1 and 2, it appears that the mean sample

produces better results than the sample median or the total median. The OC-curve

of the Gaussian case with sample mean is closer to the specific case and is below

of the OC-curves of the Gaussian case with sample median and total median.

For other values of n, the results are similar. X is the best estimator for this type

of distribution.

Figure 1: Comparison of OC-curves, Pac(p), p ∈ [0; 1] — range of non-conforming

proportion — between Weibull (simulated values) and Gaussian case, n = 5:

(−�−) Gaussian case with σ known and sample median;

(−◦−) Gaussian case with σ known and sample mean;

(−•−) Weibull case with θ known.
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Figure 2: Comparison of OC-curves, Pac(p), p ∈ [0; 1] — range of non-conforming

proportion — between Weibull (simulated values) and Gaussian case, n = 5:

(−�−) Gaussian case with σ known and total median;

(−◦−) Gaussian case with σ known and sample mean;

(−•−) Weibull case with θ known.

The plots in Figures 3 and 4 show, for n = 5, the OC-curves, Pac(ω) for:

• the Gaussian case with sample mean (−◦−);

• the Gaussian case with sample median (Figure 3) and total median

(Figure 4) (−�−) with Weibull data;

• Weibull case with θ = 1, δ = 10 (exponential case) (−•−). This distri-

bution has c1 = 6.619 and τ = 2.260.

Figure 3: Comparison of OC-curves, Pac(p), p ∈ [0; 1] — range of

non-conforming proportion — between Weibull (θ = 1)

(simulated values) and Gaussian case, n = 5:

(−�−) Gaussian case with σ known and sample median;

(−◦−) Gaussian case with σ known and sample mean;

(−•−) Weibull case with θ known.
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Figure 4: Comparison of OC-curves, Pac(p), p ∈ [0; 1] — range of

non-conforming proportion — between Weibull (θ = 1)

(simulated values) and Gaussian case, n = 5:

(−�−) Gaussian case with σ known and total median;

(−◦−) Gaussian case with σ known and sample mean;

(−•−) Weibull case with θ known.

In this special case (exponential) X is the best estimator for this type of

distribution, it produces the best results. This is a special case, since it contra-

dicts the results obtained by ([7]). We can see that, after adjusting for the α’s, the

OC-curves of the specific case and the classic case with mean sample are coin-

cident, and there is, therefore no alternative to improve the results. For other

values of n, the results are similar.

The plots in Figures 5 and 6 show, for n = 5, the OC-curves, Pac(ω) for:

• the Gaussian case with sample mean (−◦−);

• the Gaussian case with sample median (Figure 5) and total median

(Figure 6) (−�−) with Fréchet data;

• Fréchet case with θ = 5, δ = 10 (−•−). This distribution has c1 = 3.535

and τ = 1.357.

In this case X̃T is the best estimator for this type of distribution, i.e., we

get the best results relatively to X̃ and X. For other values of n, the results are

similar.
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Figure 5: Comparison of OC-curves, Pac(p), p ∈ [0; 1] — range of

non-conforming proportion — between Fréchet (θ = 1)

(simulated values) and Gaussian case, n = 5:

(−�−) Gaussian case with σ known and sample median;

(−◦−) Gaussian case with σ known and sample mean;

(−•−) Fréchet case with θ known.

Figure 6: Comparison of OC-curves, Pac(p), p ∈ [0; 1] — range of

non-conforming proportion — between Fréchet (θ = 1)

(simulated values) and Gaussian case, n = 5:

(−�−) Gaussian case with σ known and total median;

(−◦−) Gaussian case with σ known and sample mean;

(−•−) Fréchet case with θ known.
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6. CONCLUSIONS

It is important to note that standard sampling plans by variables are not

to be used indiscriminately, when the normality assumption may be questioned.

Application of an incorrect sampling plan can cause damage to the producer and

to the consumer.

If data comes from the Weibull model with θ = 1, i.e., the exponential case,

and if we apply the standard k determined for the Gaussian case, the producer’s

risk (level) of the AS plan will no longer be 5%, but will be lower, what is con-

venient for the producer. The values of the LTPD , important for the consumer,

are also miscalculated when using the wrong model. However, after adjusting the

α’s, the AS plans are equal.

If data comes from the Weibull model with θ 6= 1 and we use the appropriate

AS plan (considering this distribution), as expected, we get better results than if

we use the standard AS plan (assuming Gaussian case), as the OC-curve for the

Weibull plan is below the one for the standard plan (Figure 1).

The results of using the statistics Q
′

N and Q
′′

N are (except in the exponential

case) in agreement with those obtained by ([7]), ([5]) and ([6]), i.e., the efficiency of

the robust estimators for location depends on the asymmetry and the tail weight

of the data distribution. When the distribution of the quality characteristic is

Weibull, θ = 7, so has a low skewness coefficient and a low tail weight index

(Figures 1 and 2), X produces better results than the X̃ and the X̃T , as expected.

When the distribution of the quality characteristic is Fréchet, θ = 5, so has a high

skewness coefficient and a high tail weight index (Figures 5 and 6), X̃T produces

better results than the X and the X̃.

So, when faced with the problem of determining AS plans for quality char-

acteristics with non-Gaussian variables but we are able to adequately model the

data and estimate its parameters, which usually is not easy, we can use specific AS

plans. Alternatively, mainly for variables with asymmetric and/or heavy tailed

distributions, robust AS plans are to be considered as a good alternative to the

classical plans.

ACKNOWLEDGMENTS

We want to thank Professor Fernanda Figueiredo for the valuable sugges-

tions. We also acknowledge the valuable suggestions from the referees.



82 Carolino and Barão

REFERENCES

[1] ANSI/ASQC Z1.9-2011 (2011). Sampling Procedures and Tables for Inspection

by Variables for Percent Nonconforming, ASQ, Milwaukee, WI (USA).

[2] Carolino, E.; Casquilho, M. and Barão, M. (2007). Amostragem de

aceitação para uma variável assimétrica: a Exponencial, Actas do XIV Congresso

Anual da Sociedade Portuguesa de Estat́ıstica, 281–292.

[3] Carolino, Elisabete (2012). Amostragem de Aceitação para Variáveis não
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Abstract:

• Modeling real data sets, even when we have some potential (as)symmetric models for

the underlying data distribution, is always a very difficult task due to some uncon-

trollable perturbation factors. The analysis of different data sets from diverse areas

of application, and in particular from statistical process control (SPC), leads us to

notice that they usually exhibit moderate to strong asymmetry as well as light to

heavy tails, which leads us to conclude that in most of the cases, fitting a normal

distribution to the data is not the best option, despite of the simplicity and popu-

larity of the Gaussian distribution. In this paper we consider a class of skew-normal

models that include the normal distribution as a particular member. Some properties

of the distributions belonging to this class are enhanced in order to motivate their use

in applications. To monitor industrial processes some control charts for skew-normal

and bivariate normal processes are developed, and their performance analyzed. An

application with a real data set from a cork stopper’s process production is presented.
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1. INTRODUCTION

The most commonly used standard procedures of statistical quality control

(SQC), control charts and acceptance sampling plans, are often implemented un-

der the assumption of normal data, which rarely holds in practice. The analysis

of several data sets from diverse areas of application, such as, statistical process

control (SPC), reliability, telecommunications, environment, climatology and fi-

nance, among others, leads us to notice that this type of data usually exhibit

moderate to strong asymmetry as well as light to heavy tails. Thus, despite

of the simplicity and popularity of the Gaussian distribution, we conclude that

in most of the cases, fitting a normal distribution to the data is not the best

option. On the other side, modeling real data sets, even when we have some

potential (as)symmetric models for the underlying data distribution, is always a

very difficult task due to some uncontrollable perturbation factors.

This paper focus on the parametric family of skew-normal distributions

introduced by O’Hagan and Leonard (1976), and investigated with more detail

by Azzalini (1985, 1986, 2005), among others.

Definition 1.1. A random variable (rv) Y is said to have a location-scale

skew-normal distribution, with location at λ, scale at δ and shape parameter α,

and we denote Y ∼ SN(λ, δ2, α), if its probability density function (pdf) is given

by

(1.1) f(y; λ, δ, α) =
2

δ
φ

(
y −λ

δ

)
Φ

(
α

y −λ

δ

)
, y ∈R (α, λ∈R, δ ∈R

+
) ,

where φ and Φ denote, as usual, the pdf and the cumulative distribution function

(cdf) of the standard normal distribution, respectively. If λ = 0 and δ = 1, we

obtain the standard skew-normal distribution, denoted by SN(α).

This class of distributions includes models with different levels of skewness

and kurtosis, apart from the normal distribution itself (α = 0). In this sense, it

can be considered an extension of the normal family. Allowing departures from

the normal model, by the introduction of the extra parameter α that controls the

skewness, its use in applications will provide more robustness in inferential meth-

ods, and perhaps better models to fit the data, for instance, when the empirical

distribution has a shape similar to the normal, but exhibits a slight asymmetry.

Note that even in potential normal situations there is some possibility of hav-

ing disturbances in the data, and the skew-normal family of distributions can

describe the process data in a more reliable and robust way. In applications it

is also important to have the possibility of regulating the thickness of the tails,

apart of the skewness.
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The cdf of the skew-normal rv Y defined in (1.1) is given by

(1.2) F (y; λ, δ, α) = Φ

(
y −λ

δ

)
−2 T

(
y −λ

δ
, α

)
, y ∈R (α, λ∈R, δ ∈R

+
) ,

where T (h, b) is the Owen’s T function (integral of the standard normal bivariate

density, bounded by x = h, y = 0 and y = b x), tabulated in Owen (1956), and

that can be defined by T (h, b) =
1

2π

∫ b

0

{
e
−

1
2 h2(1+x2)/(1+ x2

)

}
dx, (b, h) ∈ R×R.

Although the pdf in (1.1) has a very simple expression the same does not

happen with the cdf in (1.2), but this is not a problem that leads us to avoid

the use of the skew-normal distribution. We have access to the R package ‘sn’

(version 0.4-17) developed by Azzalini (2011), for instance, that provides func-

tions related to the skew-normal distribution, including the density function, the

distribution function, the quantile function, random number generators and max-

imum likelihood estimates. The moment generating function of the rv Y is given

by MY (t) = 2 exp
(
λt + δ2t2/2

)
Φ(θδ t), ∀ t ∈ R, where θ = α/

√
1 + α2 ∈ (−1, 1),

and there exist finite moments of all orders.

Other classes of skew normal distributions, for the univariate and the mul-

tivariate case, together with the related classes of skew-t distributions, have been

recently revisited and studied in the literature. For details see Fernandez and

Steel (1998), Abtahi et al. (2011) and Jamalizadeb et al. (2011), among others.

In this paper some control charts based on the skew-normal distribution are pro-

posed. They still are parametric control charts, and should be compared with

the so-called nonparametric or distribution-free control charts that require even

less restrictive assumptions, a topic out of the scope of this paper. We merely

mention that the nonparametric charts have the same in-control run-length dis-

tribution for every continuous distribution, and thus, are by definition robust. In

the literature several Shewhart, CUSUM and EWMA type nonparametric control

charts have been proposed. Most of them are devised to monitor the location and

are based on well-known nonparametric test statistics. For a recent overview on

the latest developments on nonparametric control charts, see Chakraborti et al.

(2011) and references therein.

This paper is organized as follows. Section 2 provides some information

about the family of skew-normal distributions, in what concerns properties, ran-

dom sample generation and inference. Section 3 presents bootstrap control charts

for skew-normal processes and some simulation results about their performance.

Control charts based on specific statistics with a skew normal distribution are

considered to monitor bivariate normal processes, and their properties evaluated.

In Section 4, an application in the field of SQC is provided. The paper ends with

some conclusions and recommendations in Section 5.



The Skew-Normal Distribution in SPC 87

2. THE UNIVARIATE SKEW-NORMAL FAMILY OF DISTRI-

BUTIONS

Without loss of generality, we are going to enhance some properties of this

family of distributions by considering a standard skew-normal rv X, with pdf

(2.1) f(x; α) = 2φ(x) Φ(αx) , x∈R (α∈R) .

Note that, if Y ∼ SN(λ, δ2, α) then X =
Y − λ

δ
∼ SN(α).

2.1. An overview of some properties

In Figure 1 we illustrate the shape of the pdf of X for several values of α. We

easily observe the shape parameter α controls the direction and the magnitude

of the skewness exhibited by the pdf. As α → ±∞ the asymmetry of the pdf

increases, and if the sign of α changes, the pdf is reflected on the opposite side of

the vertical axis. For α > 0 the pdf exhibits positive asymmetry, and for α < 0

the asymmetry is negative.
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Figure 1: Density functions of standard skew-normal distributions with shape

parameter α and the negative and positive half-normal pdf’s.

From the Definition 2.1, we easily prove the following results:

Proposition 2.1. As α → ±∞ the pdf of the rv X converges to a half-

normal distribution. If α → +∞, the pdf converges to f(x) = 2φ(x), x ≥ 0, and

if α → −∞, the pdf converges to f(x) = 2φ(x), x ≤ 0.
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Proposition 2.2. If X ∼ SN(α) then the rv W = |X| has a half-normal

distribution with pdf given by f(w) = 2φ(w), w ≥ 0, and the rv T = X2, the

square of a half-normal distribution, has a pdf given by f(t) =
1√
2π

t−1/2 e−t2/2,

t ≥ 0, i.e., has a chi-square distribution with 1 degree of freedom.

Denoting the usual sign function by sign(·) and taking θ = α/
√

1 + α2, the

rv X with a standard skew-normal distribution SN(α) has mean value given by

E(X) =

√
2

π
θ −→

α→±∞
sign(α) × 0.79788 ,

and variance equal to

V(X) = 1 − 2

π
θ2 −→

α→±∞
0.36338 .

The Fisher coefficient of skewness is given by

β1 =
(4 − π)

√
2 θ6/π3

√
−8θ6/π3 + 12 θ4/π2 − 6θ2/π + 1

−→
α→±∞

sign(α) × 0.99527 .

From these expressions we easily observe that the mean value and the de-

gree of skewness of the SN(α) distribution increases with |α| while the variance

decreases, but they all converge to a finite value.

Taking into consideration the large asymmetry of the SN(α) distribution

when α → ±∞, and the fact that the kurtosis coefficient expresses a balanced

weight of the two-tails, we shall here evaluate separately the right-tail weight and

the left-tail weight of the SN(α) distribution through the coefficients τR and τL

defined by

τR :=

(
F−1

(0.99) − F−1
(0.5)

F−1(0.75) − F−1(0.5)

)(
Φ
−1

(0.99) − Φ
−1

(0.5)

Φ−1(0.75) − Φ−1(0.5)

)−1

and

τL :=

(
F−1

(0.5) − F−1
(0.01)

F−1(0.5) − F−1(0.25)

)(
Φ
−1

(0.5) − Φ
−1

(0.01)

Φ−1(0.5) − Φ−1(0.25)

)−1

,

where F−1
and Φ

−1
denote the inverse functions of the cdf of the SN(α) and of

the cdf of the standard normal distributions, respectively. These coefficients are

based on the tail-weight coefficient τ defined in Hoaglin et al. (1983) for symmetric

distributions. For the normal distribution, τL = τR = 1. If the distribution F has

a right (left) tail heavier than the normal tails, τR > 1 (τL > 1), and if F has a

right (left) tail thinner than the normal tails, τR < 1 (τL < 1).
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Table 1 presents the mean value, the standard deviation, the median, the

skewness coefficient, the left-tail weight and the right-tail weight of the SN(α)

distribution for several values of α > 0. From the values of Table 1 we notice

that when α increases from 0 to +∞, the mean value, the median and the coef-

ficient of skewness increase, but the variance decreases, as expected. The SN(α)

distribution has a right-tail heavier than the normal tail, and a left-tail thin-

ner than the normal tail. Moreover, the right tail-weight of the SN(α) quickly

converges to 1.1585, the right tail-weight of the half-normal distribution, while

the left tail-weight of the SN(α) converges more slowly to the left tail-weight of

the half-normal distribution, 0.5393, a value very smaller than the tail-weight of

the normal distribution. When α decreases from 0 to −∞ we easily obtain the

values of these parameters (coefficients) from the values of this table, taking into

consideration that if the sign of α changes, the pdf is reflected on the opposite

side of the vertical axis.

Table 1: Mean value (µ), standard deviation (σ), median (µe), skewness

coefficient (β1), left-tail weight (τL) and right-tail weight (τR)

of the SN(α) distribution.

α µ σ µe β1 τL τR

0 0 1 0 0 1 1

0.3 0.2293 0.9734 0.2284 0.0056 0.9986 1.0017

0.5 0.3568 0.9342 0.3531 0.0239 0.9946 1.0077

1 0.5642 0.8256 0.5450 0.1369 0.9718 1.0457

2 0.7136 0.7005 0.6554 0.4538 0.9008 1.1284

3 0.7569 0.6535 0.6720 0.6670 0.8291 1.1540

5 0.7824 0.6228 0.6748 0.8510 0.7222 1.1584

10 0.7939 0.6080 0.6745 0.9556 0.6124 1.1585

+∞ 0.7979 0.6028 0.6745 0.9953 0.5393 1.1585

2.2. Inference

Regarding the estimation of the parameters in the location-scale skew-

normal family of distributions, SN(λ, δ2, α), we are only able to obtain numerical

maximum likelihood estimates (MLE), and thus, a closed form for their sampling

distribution is not available.

Let (Y1, ..., Yn) be a sample of size n from a SN(λ, δ2, α) distribution. The

likelihood function is given by

(2.2) LSN (λ, δ, α) =
2

n

δn

n∏

i=1

φ

(
yi −λ

δ

) n∏

i=1

Φ

(
α

yi −λ

δ

)
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and the log-likelihood is given by

ln LSN (λ, δ, α) = n ln 2 − n ln δ +

n∑

i=1

lnφ

(
yi −λ

δ

)
+

n∑

i=1

ln Φ

(
α

yi −λ

δ

)
,

where ln(·) denotes the natural logarithm function.

The MLE estimates of λ, δ and α, denoted λ̂, δ̂ and α̂, are the numerical

solution of the system of equations

(2.3)






δ2
=

1

n

n∑

i=1

(yi −λ)
2 ,

α
n∑

i=1

φ
(
α yi−λ

δ

)

Φ

(
α yi−λ

δ

) =

n∑

i=1

yi −λ

δ
,

n∑

i=1

yi−λ
δ φ

(
αyi−λ

δ

)

Φ

(
α yi−λ

δ

) = 0 .

We may have some problems to obtain these estimates in the case of small-

to-moderate values of the sample size n as well as for values of α close to zero.

Note that if all the values of the sample are positive (negative), for fixed values

of λ and δ, the log-likelihood function is an increasing (decreasing) function of α,

producing therefore boundary estimates, and for α = 0, the expected Fisher

information matrix is singular.

Several authors have given important suggestions to find these estimates.

For instance, for a fixed value of α, solve the last two equations of (2.3) for

obtaining λ and δ, taking into account the first equation, and then, repeat these

steps for a reasonable range of values of α. Another suggestion to get around

these problems of estimation is to consider another re-parametrization for the

skew-normal distributions SN(λ, δ2, α) in (1.1), in terms of the mean value µ, the

standard deviation σ and the asymmetry coefficient β1. For details in this topic

see, for instance, Azzalini (1985), Azzalini and Capitanio (1999) and Azzalini and

Regoli (2012), among others.

To decide between the use of a normal or a skew-normal distribution to fit

the data, apart from the information given by the histogram associated to the

data sample and the fitted pdf estimated by maximum likelihood, we can advance

to the confirmatory phase with a likelihood ratio test.

To test the normal distribution against a skew-normal distribution, i.e.,

the hypotheses H0 : X ∼ SN(λ, δ2, α = 0) versus H1 : X ∼ SN(λ, δ2, α 6= 0), the
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likelihood ratio statistic Λ is given by

(2.4) Λ =
LSN

(
λ̂, δ̂, α = 0)

LSN

(
λ̂, δ̂, α̂

) ,

where LSN(λ,δ,α), given in (2.2), denotes the likelihood function for the SN(λ,δ2,α)

distribution. Under the null hypothesis, −2 logΛ is distributed as a chi-square

distribution with 1 degree of freedom. For a large observed value of −2 logΛ, we

reject the null hypothesis, i.e., there is a strong evidence that the SN
(
λ̂, δ̂2, α̂

)

distribution presents a better fit than the normal N(µ̂, σ̂2
) distribution to the

data set under consideration.

2.3. Other stochastic results

Among other results valid for the skew-normal distribution, we shall refer

the following ones:

Proposition 2.3. If Z1 and Z2 are independent random variables with

standard normal distribution, then Z1|Z2≤αZ1 ∼ SN (α). Also,

X :=

{
Z2 if Z1 < αZ2

−Z2 otherwise
∼ SN(α) .

Proposition 2.3 allows us to write the following algorithm for the generation

of random samples, (Y1, ..., Yn), of size n, from a SN(λ, δ2, α) distribution.

Algorithm 2.1. Repeat Steps 1.–4. for i = 1 to n:

1. Generate two independent values, Z1 and Z2, from a N(0,1) distribution;

2. Compute T = α Z2;

3. The value Xi =

{
Z2 if Z1 < T

−Z2 otherwise
comes from a SN(α);

4. The value Yi = λ + δXi comes from a SN(λ, δ2, α).

Figure 2 presents four histograms associated to samples of size one thou-

sand generated from a SN(α) distribution with shape parameter α = 0, 1, 2, 3,

respectively, together with the pdf’s of a normal and of a skew normal distribu-

tion fitted to the data by maximum likelihood. From Figure 2 we easily observe

that as α increases the differences between the two estimated pdf’s become larger,
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and the normal fit is not the most appropriate to describe the data. Note that,

even in potential normal processes, real data are not exactly normal and usually

exhibit some level of asymmetry. Thus, in practice, we advise the use of the

skew-normal distribution to model the data.
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Figure 2: X1 ∼ SN(0), X2 ∼ SN(1), X3 ∼ SN(2), X4 ∼ SN(3).

Histograms and estimated pdf’s, SN(λ̂, δ̂, α̂) and N(µ̂, σ̂).

Another result with high relevance for applications, which allows us to

design, in Section 4, control charts to monitor specific bivariate normal processes,

is the one presented in Proposition 2.4.

Proposition 2.4. Let (Z1, Z2) be a bivariate normal variable, with E(Z1)

= E(Z2) = 0, V (Z1) = V (Z2) = 1 and corr(Z1, Z2) = ρ. Let Tm = min(Z1, Z2)

and TM = max(Z1, Z2), where min(·) and max(·) denote the minimum and the

maximum operators, respectively.

i. If ρ = 1, Tm and TM have a N(0, 1) distribution.

ii. If ρ =−1, Tm and TM have half-normal distributions, being Tm ≤ 0, ∀m

and TM ≥ 0, ∀M.

iii. If |ρ| 6= 1, Tm ∼ SN(−α) and TM ∼ SN(α), with α =

√
1 − ρ

1 + ρ
.

In particular, if Z1 and Z2 are independent variables, ρ = 0, and then,

Tm ∼ SN(−1) and TM ∼ SN(1).
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3. CONTROL CHARTS BASED ON THE SKEW-NORMAL DIS-

TRIBUTION

The most commonly used charts for monitoring industrial processes, or

more precisely, a quality characteristic X at the targets µ0 and σ0, the desired

mean value and standard deviation of X, respectively, are the Shewhart con-

trol charts with 3-sigma control limits. More precisely, the sample mean chart

(M -chart), the sample standard deviation chart (S-chart) and the sample range

chart (R-chart), which are usually developed under the assumptions of indepen-

dent and normally distributed data. Additionally, the target values µ0 and σ0 are

not usually fixed given values, and we have to estimate them, in order to obtain

the control limits of the chart.

The ability of a control chart to detect process changes is usually measured

by the expected number of samples taken before the chart signals, i.e., by its

ARL (average run length), together with the standard deviation of the run length

distribution, SDRL.

Whenever implementing a control chart, a practical advice is that 3-sigma

control limits should be avoided whenever the distribution of the control statistic

is very asymmetric. In such a case, it is preferable to fix the control limits of

the chart at adequate probability quantiles of the control statistic distribution, in

order to obtain a fixed ARL when the process is in-control, usually 200, 370.4, 500

or 1000, or equivalently, the desired FAR (false alarm rate), i.e., the probability

that an observation is considered as out-of-control when the process is actually

in-control, usually 0.005, 0.0027, 0.002 or 0.001. General details about Shewhart

control charts can be found, for instance, in Montgomery (2005).

In the case of skew-normal processes we do not have explicit formulas for

the MLE estimators of the location, scale and shape parameters, and thus, a

closed-form for their sampling distribution is not available. The same happens

for other statistics of interest, such as, the sample mean, the sample standard

deviation, the sample range and the sample percentiles, among others. Thus,

to monitor skew-normal processes, the bootstrap control charts are very useful,

despite of the disadvantages of a highly time-consuming Phase I. Moreover, many

papers, see for instance, Seppala et al. (1995), Liu and Tang (1996) and Jones

and Woodall (1998), refer that for skewed distributions, bootstrap control charts

have on average a better performance than the Shewhart control charts. Other

details about the bootstrap methodology and bootstrap control charts can be

found, for instance, in Efron and Tibshirani (1993), Bai and Choi (1995), Nichols

and Padgett (2006) and Lio and Park (2008, 2010).
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3.1. Bootstrap control charts for skew-normal processes

To construct a bootstrap control chart we only use the sample data to

estimate the sampling distribution of the parameter estimator, and then, to ob-

tain appropriate control limits. Thus, only the usual assumptions of Phase II

of SPC are required: stable process and independent and identically distributed

subgroup observations. The following Algorithm 3.1, similar to the ones proposed

in Nichols and Padgett (2006) and Lio and Park (2008, 2010), can be used to im-

plement bootstrap control charts for subgroup samples of size n, to monitor the

process mean value and the process standard deviation of a skew-normal distri-

bution, respectively. This algorithm can be easily modified in order to implement

bootstrap control charts for other parameters of interest.

Algorithm 3.1.

Phase I: Estimation and computation of the control limits

1. From in-control and stable process, observe k, say 25 or 30, random

samples of size n, assuming the observations are independent and come

from a skew-normal distribution, SN(λ, δ2, α).

2. Compute the MLE estimates of λ, δ and α, using the pooled sample of

size k×n.

3. Generate a parametric bootstrap sample of size n, (x∗
1, ..., x

∗
n), from a

skew-normal distribution and using the MLEs obtained in Step 2. as

the distribution parameters.

4. Select the Step associated to the chart you want to implement:

i. Two-sided bootstrap M-chart to monitor the process mean

value µ: from the bootstrap subgroup sample obtained in Step 3.,

compute the sample mean, µ̂∗
= x∗

.

ii. Upper one-sided bootstrap S-chart to monitor the process

standard deviation σ: from the bootstrap subgroup sample ob-

tained in Step 3., compute the sample standard deviation, σ̂∗
= s∗.

5. Repeat Steps 3.–4., a large number of times, say B = 10 000 times,

obtaining B bootstrap estimates of the parameter of interest, in our

case, the process mean value or the standard deviation.

6. Let γ be the desired false alarm rate (FAR) of the chart. Using the B

bootstrap estimates obtained in Step 5.,

i. Find the 100(γ/2)th and 100(1−γ/2)th quantiles of the distribu-

tion of µ̂∗
, i.e., the lower control limit LCL and the upper control

limit UCL for the bootstrap M -chart of FAR=γ, respectively.

ii. Find the 100(1−γ)th quantile of the distribution of σ̂∗
, i.e., the

upper control limit UCL for the bootstrap S-chart of FAR=γ. The

lower control limit LCL is placed at 0.
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Phase II: Process monitoring

7. Take subgroup samples of size n from the process at regular time in-

tervals. For each subgroup, compute the estimate x and s.

8. Decision:

i. If x falls between LCL and UCL, the process is assumed to be in-

control (targeting the nominal mean value); otherwise, i.e., if the

estimate falls below the LCL or above the UCL, the chart signals

that the process may be out-of-control.

ii. If s falls below the UCL, the process is assumed to be in-control

(targeting the nominal standard deviation); otherwise, the chart

signals that the process may be out-of-control.

In order to get information about the robustness of the bootstrap control

limits, we must repeat Steps 1.–6. of Algorithm 3.1 a large number of times, say

r = 1000, and then, compute the average of the obtained control limits, UCL

and LCL, and their associated variances. The simulations must be carried out

with different subgroup sample sizes, n, and different levels of FAR, γ. From

this simulation study one would expect that, when the subgroup sample size

n increases, the control limits get closer together, and when FAR decreases, the

limits become farther apart.

In this study, using Algorithm 3.1, we have implemented M and S bootstrap

control charts for subgroups of size n = 5, to monitor the process mean value of

a skew-normal process at a target µ0, and the process standard deviation at a

target σ0. Without loss of generality we assume µ0 = 0, σ0 = 1 and α = 0. The

main interest is to detect increases or decreases in µ and to detect increases in σ

(and not decreases in σ). The FAR of the charts is equal to γ = 0.0027, which

corresponds to an in-control ARL of approximately 370.4. In Phase I we have

considered k = 25 subgroups of size n = 5.

The performance of these bootstrap control charts to detect changes in the

process parameters is evaluated in terms of the ARL, for a few different magnitude

changes. When the process changes from the in-control state to an out-of-control

state we assume that µ = µ0 → µ1 = µ0 + δσ0, δ 6= 0 and/or σ = σ0 → σ1 = θσ0,

θ > 1. In this work we have repeated 30 times Steps 1.–6. of Algorithm 3.1, and

then, we have chosen a pair of control limits that allow us to obtain an in-control

ARL approximately equal to 370.4, discarding the most extreme upper and lower

control limits. Our goal, although out of the scope of this paper, is to improve

this algorithm in order to obtain more accurate control limits without replication.

Table 2 presents the ARL values of the bootstrap M -chart and S-chart, and

the associated standard deviation SDRL. Indeed, as can be seen from Table 2,

the bootstrap control charts present an interesting performance, even when we
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consider small changes. As the magnitude of the change increases, the ARL values

decrease fast. Despite of the fact that, in SPC, the classical M and S control

charts are much more popular, these charts are good competitors, even for the

case of normal data if we have to estimate the target process values.

Table 2: ARL and SDRL of the bootstrap M and S charts for subgroups

of size n = 5. In-control, µ = µ0 (δ = 0) and σ = σ0 (θ = 1);

when the process is out-of-control we assume either µ → µ1 = δ 6= 0

or σ → σ1 = θ > 1.

M -chart (µ → µ1) S-chart (σ → σ1)

δ ARL SDRL θ ARL SDRL

0.0 370.5 (371.8) 1.0 370.7 (369.0)

0.1 371.7 (377.2) 1.1 112.8 (112.3)

0.3 168.3 (169.7) 1.2 45.1 (44.4)

0.5 61.5 (61.2) 1.3 22.5 (22.0)

1.0 8.4 (7.8) 1.4 12.9 (12.2)

1.5 2.4 (1.8) 1.5 8.4 (7.9)

2.0 1.3 (0.6) 1.6 6.1 (5.5)

2.5 1.0 (0.2) 1.7 4.6 (4.1)

−0.1 261.9 (261.4) 1.8 3.7 (3.2)

−0.3 90.7 (89.9) 1.9 3.1 (2.5)

−0.5 33.4 (32.4) 2.0 2.6 (2.1)

−1.0 5.0 (4.6) 2.5 1.6 (1.0)

−1.5 1.8 (1.2)

−2.0 1.1 (0.4)

−2.5 1.0 (0.1)

3.2. Control charts for bivariate normal processes

Let (X1, X2) be a bivariate normal process and, without loss of generality,

assume that the quality characteristics X1 and X2 are standard normal variables,

possibly correlated, denoting ρ the correlation coefficient. The result presented

in Proposition 2.4 allows us to design control charts based on the statistics Tm =

min(X1, X2) and TM = max(X1, X2) to monitor this bivariate normal process.

These univariate statistics permit the implementation of control charts,

here denoted Tm-chart and TM -chart, to monitor simultaneously two related qual-

ity characteristics, alternatives to the multivariate control charts based on the

Hotelling (1947) statistic and its variants.
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Moreover, these charts can be used when in each time of sampling we only

have available one observation from each variable of interest, X1 and X2, but can

be extended to other situations. For instance, when the distributions of X1 and X2

have different parameters, replacing X1 and X2 by standardized data, and also

when we have samples of size greater than one from each of the variables X1 and

X2, replacing the observations of the samples by the standardized sample means.

First we have implemented a two-sided TM chart to detect changes in µ,

from µ0 = 0 to µ1 = µ0 + δ σ0, δ 6= 0, assuming that the standard deviation is

kept at σ0 = 1. We have considered different magnitude changes, and apart from

independent data we have also considered correlated data with different levels

of positive and negative correlation. The obtained ARL values are presented in

Table 3.

Table 3: ARL of the two-sided TM -chart. Xi ∼ N(µ, σ), i = 1, 2, corr(X1, X2) = ρ.

In-control: µ = µ0 (δ = 0) and σ = σ0 = 1; when the process is out-of-

control, we assume that only µ → µ1 = δ 6= 0.

H
H

H
H

H
δ

ρ 0.0 0.1 0.25 0.5 0.9 1.0 −0.25 −0.5

0.0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

0.1 361.6 359.5 357.1 354.2 352.7 352.9 368.4 379.6

0.3 249.7 248.6 247.4 247.0 251.0 253.1 253.5 258.7

0.5 144.1 144.0 144.4 145.9 152.5 155.2 144.7 145.5

1.0 36.7 36.9 37.3 38.6 42.5 43.9 36.5 36.4

1.5 11.6 11.7 12.0 12.7 14.4 15.0 11.4 11.3

2.0 4.6 4.7 4.9 5.2 6.0 6.3 4.5 4.4

2.5 2.4 2.4 2.5 2.7 3.1 3.2 2.2 2.2

−0.1 330.8 334.7 339.6 345.9 352.1 352.9 318.2 298.2

−0.3 196.1 204.6 215.9 231.6 249.9 253.1 170.6 135.9

−0.5 100.8 107.9 117.9 132.6 151.5 155.2 80.6 56.8

−1.0 21.7 24.1 27.7 33.5 42.0 43.9 15.7 9.7

−1.5 6.7 7.5 8.8 10.9 14.2 15.0 4.8 3.1

−2.0 2.9 3.2 3.7 4.6 6.0 6.3 2.2 1.7

−2.5 1.7 1.9 2.1 2.4 3.1 3.2 1.4 1.2

From these values we observe that as the magnitude changes increases, the

ARL decreases, as expected, and that reductions in µ are detected faster than

increases. We easily observe that the level of correlation ρ does not have a great

impact on the performance of the chart. However, if the quality characteristics,

X1 and X2, are positively correlated, the ARL’s become larger as the level of

correlation increases, i.e., the chart becomes less efficient to detect the change.
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Table 4: ARL of the upper one-sided TM -chart. Xi ∼N(µ,σ), i = 1, 2, corr(X1,X2) = ρ.

In-control: µ = µ0 (δ = 0) and σ = σ0 (θ = 1); when the process is out-of-

control, µ → µ1 = δ > 0 and/or σ → σ1 = θ > 1.

P
P

P
P

P
P

PP
δ θ

ρ 0.0 0.1 0.25 0.5 0.9 1.0 −0.25 −0.5

0.0 1.0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

1.1 156.7 156.9 157.4 159.3 167.1 175.0 156.6 156.6

1.5 22.2 22.4 22.8 23.8 27.6 31.4 22.0 22.0

2.0 7.7 7.9 8.1 8.6 10.4 12.2 7.6 7.5

2.5 4.6 4.7 4.9 5.2 6.4 7.5 4.5 4.4

0.1 1.0 268.0 268.1 268.4 269.3 272.3 273.4 268.0 268.0

1.1 119.5 119.7 120.2 122.2 129.2 135.5 119.3 119.3

1.5 19.0 19.2 19.5 20.5 23.8 27.1 18.8 18.8

2.0 7.1 7.2 7.4 7.9 9.5 11.1 6.9 6.8

2.5 4.3 4.4 4.6 4.9 6.0 7.1 4.2 4.1

0.3 1.0 144.4 144.5 145.0 146.6 151.4 153.1 144.2 144.2

1.1 71.1 71.3 71.8 73.4 79.0 83.2 70.9 70.9

1.5 14.2 14.3 14.6 15.4 18.0 20.4 14.0 13.9

2.0 5.9 6.0 6.2 6.6 8.0 9.3 5.7 5.7

2.5 3.8 3.9 4.1 4.4 5.3 6.2 3.7 3.6

0.5 1.0 80.7 80.9 81.4 82.9 87.4 89.0 80.0 80.5

1.1 43.6 43.8 44.3 45.6 49.8 52.6 43.4 43.4

1.5 10.7 10.8 11.1 11.7 13.8 15.6 10.5 10.5

2.0 5.0 5.1 5.3 5.6 6.8 7.9 4.8 4.8

2.5 3.4 3.5 3.6 3.9 4.7 5.5 3.3 3.2

1.0 1.0 22.2 22.4 22.7 23.6 26.0 26.8 22.0 22.0

1.1 14.7 14.9 15.2 15.9 17.9 19.0 14.5 14.5

1.5 5.7 5.8 6.0 6.4 7.6 8.5 5.6 5.5

2.0 3.4 3.5 3.6 3.9 4.7 5.4 3.3 3.2

2.5 2.6 2.7 2.8 3.0 3.6 4.2 2.5 2.4

1.5 1.0 7.7 7.8 8.1 8.5 9.6 10.0 7.6 7.5

1.1 6.1 6.1 6.3 6.7 7.7 8.2 5.9 5.8

1.5 3.4 3.5 3.6 3.9 4.6 5.1 3.3 3.2

2.0 2.5 2.5 2.6 2.9 3.4 3.8 2.4 2.3

2.5 2.1 2.2 2.2 2.4 2.9 3.3 2.0 1.9

2.0 1.0 3.4 3.5 3.6 3.9 4.4 4.6 3.3 3.2

1.1 3.0 3.1 3.2 3.4 4.0 4.2 2.9 2.8

1.5 2.3 2.3 2.4 2.6 3.0 3.3 2.1 2.1

2.0 1.9 2.0 2.1 2.2 2.6 2.9 1.8 1.7

2.5 1.8 1.8 1.9 2.0 2.4 2.7 1.7 1.6

2.5 1.0 1.9 2.0 2.0 2.2 2.5 2.6 1.8 1.7

1.1 1.8 1.9 2.0 2.1 2.4 2.5 1.7 1.6

1.5 1.7 1.7 1.8 1.9 2.2 2.4 1.6 1.5

2.0 1.6 1.6 1.7 1.8 2.1 2.3 1.5 1.4

2.5 1.5 1.5 1.6 1.7 2.0 2.2 1.4 1.3
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On the other hand, the best performance of the chart is obtained when there is a

decrease in the process mean value and the quality characteristics are negatively

correlated. This control chart is ARL-biased, and maybe due to this fact, we

have observed the chart is not appropriate to detect simultaneous changes in µ

and σ. Then, we think sensible to implement an upper one-sided TM -chart to

detect changes in µ and/or σ.

From the ARL values presented in Table 4, we conclude that the upper

one-sided TM -chart presents an interesting performance to detect increases in

one of the process’ parameters, µ or σ, but also to detect simultaneous changes in

these parameters. We observe again that the level of correlation, ρ, between the

quality characteristics X1 and X2, has a small impact on the performance of the

chart. Finally, the lower one-sided Tm-chart has a similar performance to detect

changes from µ → µ1 < 0 and/or σ → σ1 > 1.

4. AN APPLICATION IN THE FIELD OF SPC

In this section we consider an application to real data from a cork stopper’s

process production. The objective is modeling and monitoring the data from this

process, for which we know the corks must have the following characteristics:

Table 5: Technical specifications: cork stoppers caliber 45mm×24mm.

Physical quality

characteristic

(mm)

Mean

target

Tolerance

interval

Length 45 45 ± 1

Diameter 24 24 ± 0.5

For this purpose we have collected from the process production a sample,

of size n = 1000, of corks’ lengths and diameters. First, we fitted a normal and

a skew-normal distribution to the data set. Looking to the histograms obtained

from the sample data, presented in Figure 3, both fits seem to be adequate, and

the differences between the two pdf’s are small.

Then, to test the underlying data distribution, we have used the Shapiro

test of normality and the Kolmogorov–Smirnov (K-S) for testing the skew-normal

distribution. Unexpectedly, although the fits seem to be similar, from these tests

of goodness-of-fit the conclusions are different: the normality for the length’s and

diameter’s data is rejected, for the usual levels of significance (5% and 1%), while
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Figure 3: Histograms and estimated pdf’s of the normal and skew-normal

fit to the length and diameter data.

the skew-normal distribution is not rejected. The p-values for the Shapiro and

K-S tests are presented in Table 6. Looking to the maximum likelihood estimates

of some parameters of interest of the fitted distributions, presented in Table 7, we

observe that there exist some differences between the estimates obtained for the

mean value and the location, as well as between the estimates obtained for the

standard deviation and the scale. Moreover, the data exhibit some skewness and

the estimate of the shape parameter is not very close to zero, as it may happen

in the case of normal data.

Table 6: P-value’s of the Shapiro test of normality and of the

Kolmogorov–Smirnov (K-S) for testing a skew-normal.

Length Diameter Decision

Shapiro 0.0018 0.0052 Normality rejected*

K-S 0.2376 0.2923 The skew-normal distribution is not rejected*

* Conclusion for a level of significance of 5% and 1%.

Table 7: Maximum likelihood estimates of some parameters

of interest of the fitted distributions.

Data Location Scale Shape Mean
Standard

deviation
Skewness

Length 44.7329 0.2907 1.0720 44.9025 0.2361 0.1591

Diameter 23.9526 0.1830 1.1358 24.0622 0.1466 0.1795
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To confirm the conclusions obtained by the previous tests of goodness-of-fit

we have used the likelihood ratio test presented in subsection 2.2. As we obtained

an observed value −2 ln Λobs > 3.84 (for length’s and diameter’s data), there is

a strong evidence that the SN
(
λ̂, δ̂, α̂

)
distribution presents a better fit than the

normal N(µ̂, σ̂2
) distribution, for a level of significance of 5%.

Finally, based on Algorithm 3.1, we illustrate the implementation of the

M and S bootstrap control charts for subgroups of size n = 10 to monitor the

process mean value and the process standard deviation of the corks’ diameter.

The Phase I data set consists of k = 25 subgroups of size n = 10, and we have

been led to the following control limits: LCL = 23.936484 and UCL = 24.215071

for the M -chart, and UCL = 0.249708 for the S-chart. From these subgroups

we have also estimated the control limits of the corresponding Shewhart charts,

assuming normality, here denoted by LCLsh and UCLsh, and the center line, CL.

We obtained LCLsh = 23.947788, UCLsh = 24.200532 and LC = 24.07416 for the

M -chart, and UCLsh = 0.223152 and CL = 0.129573 for the S-chart.

In Figure 4 we picture the M and S bootstrap control charts together

with the corresponding Shewhart charts with estimated control limits, for use

in Phase II of process monitoring. We immediately observe that the bootstrap

control limits, LCL and UCL, are set up farther apart than the control limits of

the Shewhart M and S charts, LCLsh and UCLsh.

23,9
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24

24,05

24,1

24,15

24,2

24,25

0 10 20 30 40 50

M LCLsh UCLsh CL LCL UCL

0

0,05

0,1

0,15

0,2

0,25

0,3

0 10 20 30 40 50

S UCLsh CL UCL

Figure 4: Bootstrap M and S charts together with the corresponding

Shewhart charts with estimated control limits.

The Phase II data set used in this illustration consists of m = 50 subgroups

of size n = 10, supposed to be in-control. We have computed the statistics x

and s associated to these 50 subgroups, and we have plotted them in the charts

(here denoted M and S). While the bootstrap charts do not signal changes in

the process parameters, the Shewhart charts indicate that the process is out-of-

control, due to changes in the process mean value and standard deviation.
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5. SUMMARY AND RECOMMENDATIONS

Designing a control chart under the assumption of skew-normal data and

with control limits estimated via bootstrapping adds a relevant contribution to

the SPC literature in what concerns the implementation of robust control charts.

The use of this family of distributions, that includes the Gaussian as a particular

member, allows more flexibility to accommodate uncontrollable disturbances in

the data, such as some level of asymmetry or non-normal tail behavior. Moreover,

despite of the fact that, in SPC, the classical M and S control charts are much

more popular, these charts are good competitors, even for the case of normal data

if we have to estimate the target process values.

In order to integrate it within a quality process control system, we can

suggest, for instance, an a priori analysis of the process data. A simple boxplot

representation with the Phase I data subgroups can anticipate an underlying data

distribution that exhibits some level of asymmetry, possibly with some outliers,

and in this case, we suggest the use of the proposed bootstrap control charts

instead of the traditional Shewhart-type charts implemented for normal data.

Among other issues not addressed in this paper, the proposed control charts

should be compared to the existing parametric and nonparametric control charts.

Also important is to study the effect of increasing the Phase I sample on the

performance of the chart, as well as the determination of the minimum number m

of subgroups in Phase I, the sample size n and the number of replicates bootstrap r

we must consider in order to have charts with the same performance for the

scenarios of known and unknown process parameters. Finally, an exhaustive and

comparative study about the performance of control charts based on the skew-

normal and on the normal distributions must be carried out to have an idea about

the range of values of the shape parameter α of the skew-normal distribution for

which the performance of the two charts differ significantly. This will help a

practitioner to make a decision on which control chart is preferable to suit his

needs.
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1. INTRODUCTION

Singular spectrum analysis (SSA) is a recently popularized tool for time

series analysis, cf. [10]. The origins of SSA can be traced to [2, 4, 6]. More infor-

mation about the history of SSA can be found in [22]. It is a model free approach

to time series analysis and literally any time series with a notable structure can be

analysed using SSA. Indeed it has a wide area of applications ranging from mathe-

matics and physics [10], to economics and financial mathematics [13, 14], environ-

mental sciences [15], social sciences [12], and medicine [7]. It is now implemented

under various software platforms, here we use Rssa, see [9] and a program called

CaterpilarSSA as can be downloaded from http://www.gistatgroup.com/cat/

programs.html. The aim of SSA is twofold:

i) To make a decomposition of the original series into a sum of a small

number of independent and interpretable components such as a slowly

varying trend, oscillatory components and a structure less noise;

ii) To reconstruct the decomposed series so as to make predictions without

the noise component.

MSSA is an extension of SSA and takes advantage of the (delay) embedding

procedure to obtain a similar formulation as SSA, albeit with larger matrices for

multidimensional time series. It has previously been successfully applied to the

study of climate fields, see [18]. Here we will employ it to jointly model an original

time series with a spatial average of which we believe will improve predictions by

pooling spatially dependent information.

One of the simplest but effective ways of generating spatial averages is

inverse distance weighting, which was first introduced, incidentally also for the

analysis of rainfall data in [11]. It was subsequently propagated in [20] and

became thereafter one of the most popular spatial interpolation techniques

(cf. eg. [16]).

Section 2 is devoted to reviewing the basics of SSA. Section 3 discusses

forecasting, while Section 4 briefly presents MSSA, an extension of the SSA tech-

niques to multivariate data and introduces a method of incorporating spatial

dependence to improve forecasts. The application is presented in Section 5 and

conclusions appear in Section 6.

2. SINGULAR SPECTRUM ANALYSIS

Most classical time series models devised for analysis and forecasting are

based on restrictive assumptions of normality, linearity and stationarity, cf. [3].
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A number of time series are deterministic, linear and dynamical systems thus

allowing linear models to be used for modelling and forecasting. However, many

time series exhibit nonlinear behaviour and therefore would require a method

that works well for both linear and nonlinear, stationary and nonstationary data

sets. SSA is one such technique.

2.1. A brief review of SSA

The Basic SSA, as it is commonly referred to, has two main stages: De-

composition and Reconstruction; each of which consists of two steps as described

below. The main concept in SSA is the aspect of separability of the original time

series into signal and noise so that the analysis and forecasting can be done on

signal in the absence of noise. Separability will be mentioned again later. In the

following discussion, we follow the approach in [10, Chapter 1].

Let FN = {f1, f2, ..., fN} be a real valued, nonzero (at least one fi 6= 0)

time series data of sufficient length N without missing values.

Stage 1: Decomposition

Step 1: Embedding

This (standard) time series procedure maps the one dimensional time series,

FN into multidimensional lagged vectors, X1 : ··· : XK , where

Xi = (f1, ..., fi+L−1)
T ∈ RL , 1 ≤ i ≤ K and K = N − L + 1 .

The single most important parameter of embedding is the window length, L, an

integer such that 2 < L < N . This parameter should always be large enough to

permit reasonable separability. It should not be greater the N/2 for optimum

results. See [8] for more on the choice of parameters for SSA. The vectors Xi,

called the lagged vectors or L lagged vectors (to emphasize their dimension) form

the K columns of the trajectory matrix X, i.e. X = [X1 : ··· : XK ].

Specifically X is given as follows:

X =




f1 f2 f3 ··· fK

f2 f3 f4 ··· fK+1

f3 f4 f5 ··· fK+2
.
.
.

. . .
.
.
.

. . .
.
.
.

fL fL+1 fL+2 ··· fN




.

The L×K matrix X is a Hankel matrix, i.e. the elements along the anti-diagonal,

i + j = constant are equal, for the ith row and j th
column.
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Step 2: Singular Value Decomposition, SVD

This decomposes the trajectory matrix X and represents it as a sum of

elementary matrices (rank-one bi-orthogonal). This is done by:

i) Calculating the matrix S = XXT
.

ii) Obtaining eigenvalues, λi of S such that λ1 ≥ λ2 ≥ ··· ≥ λL ≥ 0. Since

S is positive definite, the eigenvalues are positive.

iii) For each λi, calculate Ui and Vi, the left and right singular vectors

of X. The Ui s are orthonormal system of eigenvectors corresponding

to each λi such that 〈Ui, Uj〉 = 0, i 6= j (orthogonality) and ‖Ui‖ = 1

(unit norm property) and Vi = XT Ui/
√

λi.

iv) Set d = max(i : λi > 0) = rank(X). Then Xi =
√

λi UiV
T
i (i = 1, ..., d),

and the SVD of the trajectory matrix represents it as a sum of the Xi,

i.e.:

X =

d∑

i=1

Xi

= X1 + X2 + ··· + Xd .

(2.1)

The collection (
√

λi, Ui, Vi) is called the ith eigentriple of X,
√

λi are the singular

values of X and the set
{√

λi

}d

i=1
is the spectrum of X.

The ratio λi

/ d∑
i=1

λi is the characteristic contribution (or its share) of Xi to (2.1).

The first eigenvalue has the largest contribution and the last has the smallest.

If all the eigenvalues have multiplicity one, then (2.1) is uniquely determined.

Stage 2: Reconstruction

Step 3: Grouping

This corresponds to splitting the elementary matrices Xi into several groups

and summing the matrices within each group. If I = i1, ..., ip be one such group,

then the matrix XI corresponding to the group I is defined as:

XI = Xi1 + ··· + Xip .

For m such groups (disjoint), then X will be given as:

(2.2) X = XI1 + ··· + XIm
.

Matrices XIi
are called resultant matrices and the procedure of choosing the sets

I1, ..., Im is called the eigentriple grouping.

The contribution of component XI in (2.2) is measured by the share of the cor-

responding eigenvalues, i.e.
∑
i∈I

λi

/ d∑
i=1

λi.
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Step 4: Diagonal Averaging

This (last) step transfers each resultant matrix into a time series, which

is an additive component of the initial (original) series, FN . If zij stands for an

element of a matrix Z, then the kth
term of the resulting series is obtained by

averaging zij over all i, j such that i+ j = k +2 ([10, page 17, 24], [12, page 242]).

This is diagonal averaging or Hankelization of the matrix Z. The result of the

Hankelization of a matrix Z is the matrix HZ. Diagonal averaging is a linear

operation and maps the trajectory matrix of the initial series into the original

series itself, i.e. it transfers each matrix I into a time series which is an additive

component of the initial series FN .

2.2. Separability

As mentioned earlier, the main concept in studying SSA properties is sepa-

rability. This entails how well the components of the time series can be separated

from each other to allow forecasting to be meaningfully done and also reliable

construction of confidence bounds. Any time series may comprise trend (slowly

varying component), periodic or quasi periodic components (like seasonal varia-

tions or harmonics generally) and noise. These may be generalized into signal and

noise components. SSA decomposition of the series FN can only be successful if

the resulting additive components of the series are approximately separable from

each other, [10, 12].

If a time series FN can be split as FN = F
(1)
N + F

(2)
N , then the matrix terms

of the SVD step can be split into X(1)
and X(2)

respectively, i.e. X = X(1)
+X(2)

.

This would imply that each row of X(1)
is orthogonal to each row of X(2)

. Since

rows (and columns) of the trajectory matrix X are themselves subseries of the

initial series, the orthogonality condition of the rows of X(1)
and X(2)

is the condi-

tion of orthogonality of any subseries of length L and K = N −L + 1 of the series

F
(1)
N to any subseries of the same length, F

(2)
N . If this holds, then F

(1)
N and F

(2)
N

are said to be weakly separable.

In geometrical terms, F
(1)
N and F

(2)
N are separable if and only if the subspace

ℓ(L,1)
spanned by the columns of X(1)

is orthogonal to the subspace ℓ(L,2)
spanned

by the columns of X(2)
. One way to enhance separability of the series is auxiliary

information about the series to help in choosing the window length, for example,

if it is known that there is a seasonal component whose period is an integer,

it is advisable to choose the window length which is a factor of the period, [10,

page 44]. To choose eigentriples, one may use the graph of the logarithms of

eigenvalues in which explicit plateau in the eigenvalue spectra prompts ordinal

numbers of the eigentriple and a slowly decreasing sequence of singular values

corresponds to noise components.
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Another way to measure the separability between two series components,

F
(1)
N and F

(2)
N (i.e. if FN = F

(1)
N + F

(2)
N ) is to calculate the weighted correlation or

w-correlations between the two using the formula

ρw
12 =

〈
F

(1)
N , F

(2)
N

〉
w∥∥F

(1)
N

∥∥
w

∥∥F
(2)
N

∥∥
w

,

where
∥∥F

(i)
N

∥∥
w

=

√〈
F

(i)
N , F

(i)
N

〉
w
, i = 1, 2,

〈
F

(1)
N , F

(2)
N

〉
w

=

N−1∑
i=0

wif
(1)
i f

(2)
i , and

the weights wi defined as follows:

Let L⋆
= min(L, K) and K⋆

= max(L, K). Then,

wi =






i + 1 for 0 6 i 6 L⋆ − 1 ,

L⋆
for L⋆ 6 i 6 K⋆ ,

N − i for K⋆ 6 i 6 N − 1 .

A natural hint for grouping is the matrix of the absolute values of the w-corre-

lations corresponding to a full decomposition. If the absolute value of the

w-correlation is small then the corresponding series are almost w-orthogonal

and is said to be weakly separable. The series F (1)
and F (2)

are w-orthogonal if〈
F

(1)
N , F

(2)
N

〉
w

= 0, [10, 12].

Separability is analogous to independence of random variables whence the

covariance and correlation between such random variables are zero, [5, Section 4.5].

3. FORECASTING WITH SSA

Details of SSA Forecasting can be found in [10, Chapter 2, 5] and in [19].

We have three basic conditions:

1) Time series has structure.

2) A mechanism identifying this structure is found.

3) A method of time series continuation, based on the identified structure

is available.

In SSA, forecasting is done through application of linear recurrent formulae

(LRF) or equations. The class of series governed by LRF is rather wide; it

contains harmonics, polynomials and exponential series and is closed under term-

by-term addition and multiplication, [12]. An infinite series is governed by some

LRF if and only if it can be represented as a linear combination of products
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of exponential, polynomial and harmonic series. (The signal component of a

separable time series is always a linear combination of these series.)

An important property of SSA decomposition is that the original series

satisfies an LRF of the form fn = a1fn−1 + ··· + adfn−d for some dimension d;

a1, ..., ad are constants.

Thus for any N and L, there are at most d nonzero singular values in the

SVD of the trajectory matrix X and so even if L and K = N − L + 1 are larger

than d, we need at most d matrices Xi to reconstruct the series. If fn satisfies the

LRF above, it will always be represented as a sum of products of exponentials,

polynomials and harmonics, [10].

Alternatively put, if r < L, (r = number of terms in the SVD step), then

the series satisfies some LRF of some dimension d 6 r. This result also implies

that if dim(ℓr) < L, then the series satisfies a natural LRF of dimension L − 1.

Any such series satisfying an LRF can then be forecast for an arbitrary number

of steps using the LRF.

The selection of the resultant matrices in the third step of Basic SSA algo-

rithm implies selection of the r-dimensional space ℓr ∈ RL
spanned by the corre-

sponding left singular vectors and if ℓr is non-vertical, it produces an appropriate

LRF which can be used in forecasting.

An LRF that governs a series with the help of SSA may be found as follows.

Let d be minimal dimension of all LRFs governing a time series FN . If the window

length L is greater than d and N is large enough, then the trajectory space of FN

is d dimensional. The trajectory space determines an LRF of dimension L − 1

that governs the time series. If this LRF is applied to the last terms of the

series, a forecast of the series is obtained. The same idea works for an additive

component F
(1)
N of FN . The assumption here is that F

(1)
N is (strongly) separable

from the residual F
(2)
N = FN − F

(1)
N for the selected window length L. Normally

(strong) separability of the components of a series implies that each component

satisfies some LRF, [10, Chapter 6]. If F
(2)
N is noise, then forecasting is done

for F
(1)
N . Thus using a selected set of eigentriples, estimation can be performed

on F
(1)
N and its trajectory space. The basic inputs for the SSA LRF for a series

FN include the window length L, N , linear space ℓv which is not a vertical space

and the number M of points to forecast. The linear space is used to obtain an

orthonormal basis P1, ..., Pr used in the forecasting process.

Forecasting is also closely linked to separability of the series as mentioned

above. If FN = F
(1)
N + F

(2)
N , then forecasting is done for the signal F

(1)
N in the

presence of the noise component F
(2)
N which is given as F

(2)
N = FN − F

(1)
N .
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[10, pages 95–107] gives an account of the forecasting algorithm and prop-

erties of LRFs.

Construction of confidence bounds can be done by either the empirical

method or the bootstrap technique. The empirical confidence intervals are con-

structed for the entire series, which is assumed to have the same structure in the

future. Bootstrap bounds are obtained for the continuation of the signal, [10, 12].

4. MSSA WITH INVERSE DISTANCE WEIGHTING

Data mining is an automated search for knowledge hidden in large col-

lections of data set attributes. In environmental science and other areas where

space-time behaviour is an important focus of investigation, it is not uncommon

to have attributes whose values change with space and time and quite often, due

to spillovers or unobservable variables or omitted factors. This leads to spatial

dependence that subsequently influence data analysis.

In light of spatial dependence, an inverse distance weighting technique, see

[1, 20], is proposed as a means of incorporating spatial information to improve the

prediction. We construct an additional explanatory variable by taking spatially

weighted averages

ȳt =

n∑

i=1

wi yit where wi =
1/di

n∑
i=1

(1/di)

,

with di denoting distances between the target location and the i th
measurement

site.

Multivariate (or multichannel) Singular Spectrum Analysis (MSSA) is an

extension of SSA to multidimensional data.

Assume that yj =
(
y

(1)
j , ..., y

(m)
j

)
is an m-variate time series, L the window

length, X(i)
(i = 1, ..., m) the trajectory matrices of the one dimensional time

series {y(i)
j } (i = 1, ..., m), the trajectory matrix X of the multivariate series is

given as X = (X(1), ..., X(r), ..., X(m)
); [10, 17]. Note that X is now an L × mK

block Hankel matrix (there are m blocks of X(i)
matrices).

The aims and techniques of MSSA are straightforward extensions to those

of SSA and so are the algorithms. Hence we refrain from any further discussion

regarding the theory of MSSA. For more details see [21, 17]. The advantage of

MSSA over SSA, however, is that it automatically utilizes dependencies among

the time series in the analysis. Consequently, the quality of MSSA forecasts are

typically improved when the series are more strongly correlated.
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The above pooling of the spatial information by inverse distance weighting

leads to a new time series ȳt that can be used as a kind of covariable to the Linz

rainfall series to improve the predictions. We thus now employ a MSSA with the

original Linz series complemented by the pooled one, i.e. m = 2 in this case. Of

course this can be performed for all the time series, not only the Linz one and

even jointly, but we will refrain from this for the sake of expository simplicity.

5. THE APPLICATION

The complete data set consisted of N = 192 monthly recordings of rainfall

at several locations in Upper Austria for the period 1994 Jan to 2009 Dec (see

Figure 1 for a depiction of the measurement locations with the solid dot indicating

Linz). The data is provided by the Zentralanstalt für Meteorologie in Austria and

is described in more detail in [15].

Figure 1: Upper-Austrian rainfall measurement network.

Empty circle indicate measurement locations, solid circle Linz.

The time series graph Figure 2 shows the general behaviour of the logarithm

of Linz rainfall series and the reconstructed series for the period above. Since it is

annual data, it provides auxiliary information for the choice of the window length

as a factor of the period, 12 monthlies, hence the choice of L = 96 = N/2 as the

standard window length for the analysis. It can be inferred from the figure that

the grouping employed yielded a reconstructed series fairly close to the original

hence rather reliable in-sample predictions.
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Figure 2: Initial (grey) and SSA reconstructed (black) series for

Linz monthly rainfall data in logs; residuals below.

The plot in Figure 3 gives the eigenvalue graph. This graph is a plot of log-

arithms of the first 42 eigenvalues used in the reconstruction stage. As mentioned

earlier, it shows the plateau for ordinal numbers in the eigentriple grouping. The

remaining eigenvalues constitute the noise series and have not been included here.

This graph shows a high percentage contribution of the first eigenvalue with a

plateau for the second and third eigenvalues implying a particular type of sig-

nal. The other eigenvalues are gradually and slowly decreasing implying a strong

tendency to noise after the 42
nd

eigenvalue.

Figure 3: Eigenvalue graph for the first 42 eigenvalues used

in the reconstruction stage of MSSA.
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The graph in Figure 4 shows the w-correlations for the reconstructed com-

ponents on a 20 grade grey scale from white to black corresponding to absolute

values of correlations from 0 to 1, see [12, 10]. It shows the different eigenvalue

groupings, even for the eigenvalues corresponding to the noise. This graph further

illustrates the results of the grouping step and confirms the separation of signal

from the noise for the original series as it clearly marks off the lags below 42.

Furthermore some other possible eigentriple groupings were tried but the predic-

tions were not better than for this particular grouping.

Figure 4: Matrix of w-correlations from the reconstructed

components (1–42) and error (43–96) in the MSSA.

The following graphs in Figure 5 show the time series for the spatially

pooled series and its effect on the Linz data series for the MSSA analysis. For

the MSSA analysis we used two series, the Linz data and the inverse distance

weighted average by employing the Euclidean distances di between Linz and each

of the 36 other locations. Thus the nearer the locations to Linz, the stronger

the weighting and vice versa. For missing values in the data, a new weight is

calculated by excluding the corresponding distance measure from the wi s.

The in-sample SSA prediction was done with solely the Linz data to obtain

the SSA prediction of Figure 1. Its root mean square error (RMSESSA) was found

to be 0.247. The weighted average, using the inverse distance technique, was then

included as a second series to study its effects, due to spatial spillover, on the

Linz data for the MSSA prediction. This is shown in Figure 5. Its RMSEMSSA

was found to be 0.245 and slightly less than RMSESSA. This indicates that the
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suggested technique of including spatial dependence in the SSA analysis may ac-

tually improve the forecasts. However, our results from other groupings show a

less clear picture, particularly if not the standard window length of L = N/2 was

used, and in further work, we want to investigate the capabilities of MSSA per-

forming ensemble spatio-temporal predictions for the whole network of stations.

Figure 5: Time series for the inversely distance weighted data.

Initial (black) and MSSA reconstructed (grey) series

for Linz monthly rainfall data in logs; residuals below.

6. CONCLUSION

This short presentation illustrates the basic capabilities of SSA in separat-

ing the components of a time series and in forecasting without any assumptions

about the time series data. It brings out the key advantage of the methodology of

SSA in applied statistics: that of inference and prediction without specifying any

particular model structure. Its extension to multidimensional data analysis, the

MSSA is yet another elegant procedure to handle multidimensional data analysis

without necessarily pre-specifying dependence structures. The suggested method

of exploiting spatial dependence within the concept of MSSA is promising, par-

ticularly for the in-sample imputation of missing data. As mentioned earlier,

we require further studies and refinements for assessing the capabilities of the

technique for the out-of-sample predictions.
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