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Abstract:

e A weighted rank correlation coefficient, inspired by Spearman’s rank correlation coef-
ficient, has been proposed recently by Pinto da Costa & Soares [5]. Unlike Spearman’s
coefficient, which treats all ranks equally, ry weights the distance between two ranks
using a linear function of those ranks, giving more importance to top ranks than
lower ones. In this work we prove that ry, has a gaussian limit distribution, using the
methodology employed in [7].
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1. INTRODUCTION

The objective of rank correlation methods is to assess the degree of mono-
tonicity between two or more series of paired data. By monotonicity we mean
a tendency for the values in the series to increase or decrease together (positive
correlation) or for one to increase as the other decreases (negative correlation).
They are applicable to paired data, that is to data where there is some connec-
tion between corresponding members of the samples. To use these methods, we
must first rank the observations in each sample, X and Y, from 1 (highest rank)
to n (lowest rank), where n is the number of pairs of observations. We, thus
obtain, 7(X;) and r(Y;) where X; and Y; are the pair of values corresponding to
observation ¢ in each sample and 7(X;) returns the rank of value i in the first
series. For sake of simplicity, let us use the ranks directly rather than the values
in the series. That is, R; = r(X;) and Q; = r(Y;).

There has been a growing interest about weighted measures of rank cor-
relation [5, 1, 10, 6]; that is, measures that unlike Spearman’s [11] coefficient
which treat all ranks equally, weight ranks proportionally to how high they are,
although other types of weight functions could be considered.

In 2005 Pinto da Costa & Soares [5] have introduced a weighted rank corre-
lation coefficient, ry, that weights the distance between two ranks using a linear
function of those ranks, giving more importance to higher ranks than lower ones.
These authors have also analysed the distribution of ry in the case of inde-
pendence between the two vectors of ranks. A table of critical values has been
provided in order to test whether a given value of the coefficient is significantly
different from zero, and a number of applications for this new measure has also
been given.

In this work we start by defining this new measure of correlation in section 2.
Then, in section 3 we analyse the asymptotic distribution of ry for the general
case; that is, we make no assumption of independence between the two vectors of
ranks. To do so, we use the same notation and analogous arguments of those used
by Ruymgaart, Shorack and Van Zwet (1972) in the proof of their Theorem 2.1
(see [7]). We prove that ry has a normal limit distribution.

2. WEIGHTED RANK CORRELATION COEFFICIENT, ry

In this section we describe a weighted measure of correlation that has been
introduced in [5]. rg is the value obtained by calculating Pearson’s linear corre-
lation coefficient of the paired ranks (R, Q1), (R2,®@2), ..., (Rn,Qn). It is easy
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to see that in the case of no ties,

n n
6 > (R —@:)? 6> D?
i=1 =1
rs = 1- 3 =l-—,
ne —n n’ —n

where Dl-2 = (R; — Q;)%. As it is obvious from this expression, rg only takes
into account the differences between paired ranks and not the values of the
ranks themselves. For instance, if D;= 2, doesn’t matter whether the values
for (R1,Q1) are (1,3) or (n—2,n). Nevertheless, there are applications where
top ranks are much more important than lower ones, and Spearman’s rank cor-
relation does not take this into account. For instance, when humans state their
preferences, it is obvious that top preferences are more important and accurate
than lower ones. Another example might be the evaluation of stock trading
support systems. A potential invester would like to have a system which gives
a grading of the stocks in question so that he/she can make a decision. In order
to evaluate the output of the system, one can for instance calculate Spearman’s
correlation between the ranking predicted by the system and the true ranking of
the stocks at that time. However, the top ranked alternatives are obviously more
important than the lower ones, which makes weighted measures of correlation
more suitable for this application also.

In [5, 8], Pinto da Costa & Soares propose a measure of correlation —
adapted from Spearman’s rank correlation coefficient — that weighs ranks pro-
portionally to how high they are. Specifically, they propose the following alter-
native distance measure:

W7 = (R — Qi)* ((H—Rz‘+1)+(n—Qz‘+1)> = Di(2n+2—-Ri - Qi) .

The first factor, DZ-Q, represents the distance bewteen R; and @;, exactly as in
Spearman’s; the second factor represents the importance of R; and Q);.

The authors then prove that in order to have a coefficient of the form
A+ BY W2 that yields values in the range [—1,1], A must be 1 and

B = ——3%,—. Their weighted measure of correlation is therefore,
n*+n®—n<—n

n

6 5 (R~ Q) ((n— R+ 1)+ (- Qi+1))

=1

rw = 1—
nt+nd—n2—-n

In [5] it is proved that under the hypothesis of independence between the
two vectors of ranks, the expected value of ryy is 0, which is a desirable property
for a correlation coefficient. Under the same hypothesis, var(ry )= %.
In addition, the authors have also conducted an experimental evaluation of the
differences between the values obtained by r and rg in various situations, show-

ing that large differences can occur.



Limit Distribution for the Weighted Rank Correlation Coefficient, ryy 193

3. THE ASYMPTOTIC DISTRIBUTION OF ry

Let (X1,Y1), (X2,Y2), ..., (X5, Y,) represent n i.i.d. random vectors from
a continuous distribution. In this section, we show that ry is asymptotically
normal distributed. We start by showing the results of some simulations that
indicate that this new statistic convergs to the gaussian curve in a particular
case; namely, that the two vectors of ranks are independent. Then, we study
formally the asymptotic distribution of ry for the general case.

We have calculated the exact distribution of ry for n up to 14. Due to
computational limitations, for larger values of n we estimated the distribution
based on a random sample of one million permutations. In Figure 1 we plot
the distribution for n = 14 and n = 15, respectively the last exact and the first
estimated distributions. In the same figure we also plot the estimated distribu-
tions for n = 20 and 40, respectively. In all graphs, the values of ry have been
standardized and we plot the Normal curve for comparison. From these graphs
it seems clear that at least in this special case, the statistic ry converges to the
gaussian as n increases.

n=14 (exact) n=15 (estimated)

0.2 0.3 0.4

0.1

0.0

0.2 0.3 0.4

0.1

0.0

Figure 1: Exact distribution for n = 14 and estimated distribution for
n = 15, 20 and 40, together with the Standard Normal curve.



194 Pinto da Costa and Roque

Now we make no independence assumptions; that is, we study the asymp-
totic distribution of ryy for the general case. First,

i(R Q)2 (2n+2 - R — Q)

TWZI— =1

nt4+nd3—n2—n
_ QZ Qi \/2n+2-Ri—Q
- n = n—|—1 Cn+1 n—1 ’

Therefore, the asymptotic behaviour of ry is the same as the one of
1 —6W,, where

n

1 R; Qi \ R; Qi
W, = — - 2 — — .
né(n%—l n+1> < n+1 n+1>

W, is a statistic of the type 2> | a,(R;,Q;), where an(i,j) is a real
number for 4,7 =1,2,....,n

If we define J(s,t) = (s — )2 (2 —s—1), 0 < s,t < 1, then J(s,t) is a limit
of the score function

(3.1) Tn(s,1) = an(i, ) = J<i, j) ,

for ¢ and j such that % <s<
as (see [2]),

(3.2) W, = / / Jo(Fo, G diH,

where F,, and G, are the empirical marginal distribution functions of F' and G,
respectively; H, is the bivariate empirical distribution function of H. Now, let us
define the population moment = [[ J(F,G)dH. By analogy to ry, we define
the population weighted rank correlation coefficient to be

W(va) = 1-6p

=1- 6// (F(:c) —G(y))2 (2fF($) *G(y)) dH(z,y) ,

or, by using copulas [4]

w(X,)Y) =1- 6/[01]2(u—v)2(2—u—v) de(u,v) ,

where the copula c(u,v) = P(F(X) <u, G(y) < v), 0<u,v<1.

Next we present the conclusion that ry is assymptotically gaussian dis-
tributed.
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Theorem 3.1. ry is an asymptotic normal and consistent (ANC)
estimator of pyy.

Proof: We want to prove that ry, is an asymptotic normal and consistent
(ANC) estimator of pyy; first,

\/ﬁ(TW_pW):_G\/ﬁ(Wn_N):_G\/ﬁ[/ Jn(FnaGn) dHn_

We start by considering the empirical processes U, (F) = /n(F, — F),
Vi(G) = Vn(Gn = G), Up(F) =n(F; = F), V;(G)=n(G}, —G), where
Fr =[5 Fo] and Gy, = [45 Gn]. Let now A, = [X1n, Xnn) X [Yin, Yan] where
Xin and Y, denote the i'h order statistics and Bf, = v/n [J [In(Fn, Gr) —

J(Fy,Gy)| dH,,.

We will now prove that J,,(F,,Gy) = J(Fy,G2) and so B, = 0 for all n.
In fact the function F),, for instance, is a step function and so there is always
an i€ {0,1,...,n} such that F, = %; sumlarly for G,,. Th1s means that by (3.1)
In (F"’G ) J(nil’n+1) _F*
and 45 = G},. So, B, = 0 for all n.

’ n+1

Because B, = 0 for all n, then an assumption similar to 2.3b) in [7] (see
Appendix A) is satisfied, that is, B, —, 0. We will now use the same argument
of these authors, adapting it to our situation because our score function ay (i, )
is bivariate and the score functions used in [7], a,(i) and b,(i) have just one
variable (see Appendix A). Nevertheless, the adaption follows from the same steps
of their proof. The asymptotic convergence of r to the Normal distribution may
be uniform over a class of distribution functions. However in this work we are
not interested in proving uniform convergence, but only convergence for a single
distribution.

Now we can write,

3
i=1
where

Ay = Vi [ / J<F, G) d(H,~H) ,

Ay = //U F.G) dH
Agp = //v FG)

is defined above ,

B, = f// J(F* G — J(F,G)| dH,, — Agp — Asy, .
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3
3.1. A;n, is asymptotically normal distributed
=1

1=

As in [7] we can prove the asymptotic normality of Aj,, As, and As,
based on the fact that J is a continuous function and its partial derivatives are
continuous and bounded on (0,1)2.

n
Let us start by noting that Ay, = % > Ayin where Ay = J(F(Xi),G(K)) — .
i=1
In fact,

A, = Vn / / J(F,G) d(H,—H)

_ \/ﬁ(//J(F,G) dHn—//J(F,G) dH) .

Now, as in equation 3.2 we get,

Ay = V2 i(J (F(X:),G(Y) ~ )
= \/15 i(J (F(X0),G(YD) ~ 1) -

The random variables Ay;,, are i.i.d. with mean zero. If we choose § = %,
D=py=qyo=2,r(u) = ﬁ then we have an assumption similar to assump-

tion 2.1 in the statement of Theorem 2.1 in [7] (See Appendix A), that is,

1 1
J(F,G) < (r(F))a (T(G)) with a = 6p05 e —% and b= 6qo§ e —% ,
1 1
gi(F, G) < D(?“(F))a+1 (’I“(G))b with a = 6;15 =—% and b= 5;15 =-1,
oJ b a+1 . -1 o—1
5 (F,G) < D(r(F)) (r(G@)) 1 with a= = —% and b= o = -3

Taking this assumption into account and by application of Holder’s inequality,

//\¢<F>¢<G>|dﬂ < Uw df]”’ UIWO d[]%, Vpo>0, go>0: =1,

Po Qo

where ¢ and 1) are functions on (0, 1), dI denotes Lebesgue measure restricted to

the unit interval, we note that Aq;, has a finite absolute moment of order 2 + dg
for some dp > 0 (see appendix B).

Let us consider now Ay,. As U,(F) = ﬁELl (I(X; <z)— F) we can

< 8

write Ay, = ﬁ S04 Agin, where Agiy = [ (I(X; <) — F) 2L(F,G) dH are
i.i.d. with mean zero. If we choose ¢ = i, D=p =q =2, r(u) = -~ then

u(l—u)
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an assumption similar to 2.1 in [7] is satisfied. Again, by applying Holder’s in-
equality and similarly to A1;y, it follows that As;, has a finite absolute moment
of order 2 + 47 for some 61> 0.

Let us consider now As,. As V,(G) = ﬁ S (I(Y; <y) — G) we can
write As, = o= D0 Az where Asin = [[ (I(Y; <y) - G) 4/ (F,G) dH are
i.i.d. with mean zero. If we choose § = 1, D = py = qo = 2, r(u) = ﬁ then
an assumption similar to assumption 2.1 in [7], is satisfied. By application of
Holder’s inequality and similarly to Aq;,, it follows that As;, has a finite abso-
lute moment of order 2 + do for some 5 > 0.

From the above conclusions: Aj, = ﬁZ?:l A1 where Ay;, are i.i.d.
with mean zero; Ao, = ﬁZ?zl Ao, where Ag;, are ii.d. with mean zero;
As, = ﬁ S, Asip where As;y, are i.i.d. with mean zero and because Aiip, Agin,

As;ip have a finite absolute moment of order larger than 2, we get Z?:l Ain, —d
N(0,02) as n—o0o. The expression for the variance corresponds to equation 3.10
in [7] and is given by

7 = Var | J(F(0.600) + [[ (10X <) = F) S (Pl Gl) )

+ / / (I(Y <y) - G) %‘Z(F(w),G(y)) dH (z,y)

3.2. Bj, is asymptotically negligible

We have already seen that an assumption similar to 2.3 b) in [7] is satisfied.
If we consider the mean value theorem (see [9]),

for all (z,y) in A, with ¢} = F + a3(F—F ) and ¢} = G + as(G},—G), where
ag and a4 are numbers between 0 and 1, then Bj, can be decomposed as a sum
of seven terms which are all asymptotically negligible by the same arguments
used in section 5 of Ruymgaart et al. (1972) [7].

3.3. rw is asymptotically normal distributed

We have thus that /n(W, —pu) — N(0,02) in distribution and it is
immediate that ry is an asymptotic normal and consistent (ANC) estimator of
PW : \/ﬁ(Tw—pw)HN(O,?)ﬁO'Q). ]
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APPENDIX

A. Asymptotic Normality of Nonparametric Statistics

We present in this appendix Theorem 2.1 of Ruymgaart, Shorack and
Van Zwet, 1972 (see [7]) as it is the fundamental tool used in the proof of our
Theorem 3.1. We start by introducing some notation. Let (X1,Y1),...,(Xp, Yn)
be a random sample from a continuous bivariate distribution function H(x,y)
(bivariate empirical df is denoted by H,) having marginal dfs F(z) and G(y)
and empirical df F;, and G, respectively. The rank of X; is denoted by R; and
the rank of ¥; by Q;. Let T,, = 2 3°7 | a,,(R;) bn(Q;), where a,, (i), b, (i) are real
numbers for ¢ = 1,...,n. The standardlzatlon of T}, can be written as

VAT, - [ [ B K@) att, = ]

where J,,(s) = an(i), Knp(s) =by(i), for i =1,...,n such that (Z;—l) <s< L
p= [[J(F)K(G)dH. The functions J and K can be thought of as limits of the
score functions J,, and K,,. H denote the class of all continuous bivariate dfs H.

Assumption 2.1 (Ruymgaart, Shorack and Van Zwet, 1972). The func-
tions J and K are continuous on (0, 1); each is differentiable except at most at a
finite number of points, and in the open intervals between these points the deriva-
tives are continuous. T he function J,, K, J, K satisty |J,| < Dr¢, |K,| < Dr¢
and |J@| < Drot? and |[K®| < Drbt for i = 0,1. Here D is a positive constant,

1_ 1
a:(pé) b_(q %) f01rsome()<5<2 and somep,q>1vv1th +f—1

Assumption 2.3 b (Ruymgaart, Shorack and Van Zwet, 1972).

B = \/ﬁ// [Jn(Fn)Kn(Gn) - J(F;;)K(G:;)] dH, =, 0 as n—oo

p

where F¥ = [ ;| Fy and G} = | Gn.

n—i—l}

Theorem 2.1 of Ruymgaart, Shorack and Van Zwet, 1972 (see [7]).
If H is in ‘H and if assumptions 2.1 and 2.3 b) are satisfied, then

VT, —p) = N(0,0%)  as n— oo,
d
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where ;i and o? are finite and are given by

po= // J(F)K(G) dH (expression 1.3 in [7])

and

0? = Var [J(F(X))K(G(Y)) +/ (px — F)J'(F)K(G) dH
+ //(d)y -G)J(F)K'(G) dH} (expression 3.10 in [7])

with ¢x,(x) =0ifx < X; and ¢x,(z) =1ifz > X;.

B. Ay, has a finite absolute moment of order greater than 2

We show here that there exist dg>0 and dg< § = i such that F \Alm|2+§°
is bounded. Using Assumption 2.1 in the appendix above we can prove that

/ |J(F(Xz)a ))‘ZJFJO dH < D//‘ a(2+4do) ‘ (G)‘b(2+50) dH .

By using now Holder’s Inequality this quantity is
1
(2+80) i "
D= (24+0)( 0
P feme b ()
_ D Z (2+00)(6-3) (1
n+1

<
=D / (2-1-50)( =

that is finite for 0 < §p < 6 = i.

IN
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potential models, classification rules combining models are considered in this arti-
cle. More precisely two ways of combining models are considered: a serial combining
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1. INTRODUCTION

In multivariate discriminant analysis, each object is assumed to arise from
one of K exclusive groups Gj, ..., Gg with prior probabilities 7y, ..., g, 7 >0,
k=1,..,K, >, m = 1. Each object is characterised by a multivariate vector x
of d variables. In this article, all d variables are assumed to be either continuous
or discrete. The conditional density that x belongs to group Gy is denoted by
fr(x). Accordingly to the discrete or continuous case, fx(x) is a probability or
a density probability function which has to be estimated from a n-dimensional
training sample t (t; = (x;, z;), i=1,...,n), where x; is the d-dimensional vector
measurement for unit ¢ and z; € {1, ..., K}, denotes its group origin. Often, it is
convenient to replace z; with y;, a K-dimensional binary indicator vector of group
membership for unit i: The k-th coordinate of y; is 1 if ¢ arises from group Gy,
and 0 otherwise.

The Bayes classifier assigns an individual vector x to Gy if
Ty fo(x) = arg max fr(x), k=1,..,K.

Usually, the group conditional probability function fi(x) is unknown and has to
be estimated on the basis of the training sample t. For continuous problems, the
parametric paradigm is adopted and these functions are assumed to belong to a
family of densities, in particular fi(x) are assumed to be d-normal with mean
vector u, and covariance matrix .

For discrete problems the most natural model is to assume that the group
conditional probabilities f(x) where x € {0,1}? are multinomial probabilities.
(For simplicity, the discrete variables are supposed to be binary variables.)
In this case, the group conditional probabilities are estimated by the observed
frequencies in the training set t. Goldstein and Dillon [14] call this model the
full multinomial model (FMM). One way to deal with the curse of dimensionality
consists of reducing the number of parameters to be estimated. The first-order
independence model (FOIM) assumes that the d binary variables are independent
in each group Gy, ([14]).

In many situations M different classifiers are in competition for the same
problem and one of those classifiers is selected, based on some validation criterion.
Acting in such a way, leads to reject several classifiers for which the parameters
have been estimated. Besides, misclassified objects can be different for the dif-
ferent classifiers. Thus, those classifiers may contain useful information about
the supervised classification problem, and this information is lost by selecting a
unique classifier. The idea of combining models is present in a growing number
of papers, hoping to obtain a more robust and more stable model than any of the
competing models ([27], [35], [36], [4], [7], [20], [29] and [25] are examples of such

papers).
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The aim of this paper is to gather and extend combining methods previously
presented ([9], [10], [32] and [34]) and to assess their performances from numerical
comparisons on real data set.

In this paper, two ways of combining classifiers, called serial combination
method and hierarchical combination method, are considered on the basis of
numerical experiments on real data sets. For serial combination, a convex linear
combination of M models is considered

(1.1) Zcm(x) B By >0, Zﬁmzl, m=1,..,.M,

where c¢,,(x) indicates the output of model m. Usually, this output is the group
conditional probabilities functions f*(x), k=1,..., K, or the posterior probabi-
lities p}*(x)

(1.2) i) = L) K et M

zg: T fi(x)

or sometimes the membership estimation z™(x). To define the combining coef-
ficients (,,, two strategies are possible: a single coefficient is associated to each
model m (3, is then a scalar) or K coefficients are associated to each model (3, is
then K-dimensional). The latter strategy can be thought of as attractive because
it allows to choose a coefficient by model and by group. It means that it would
be possible to weight differently the groups in the same combination of models.
In fact, many numerical experiments on both real and simulated data ([33] and
[10]) showed that this strategy produce awkward combining vectors. Moreover,
in discrete problems, the training data sets are most often small in regard to
the number of parameters to be estimated, and it is difficult to estimate several
combining coefficients per model in a reliable way ([33]). A better strategy is to
consider a single coefficient for each model. This strategy produces more stable
and more interpretable combined models.

The methods that estimate a single coefficient per model are grouped ac-
cording two different approaches based on least squares minimisation or on likeli-
hood maximisation. In this work several methods have been considered according
both approaches. Those methods are the committee of methods, which is a least
squares minimisation technique and the other ones are based on likelihood ratios.

Hierarchical combining is different in spirit. It applies on polychotomous
classification problems with K >2 groups and leads to nested models. Attention
is focused on a method of combining models by a hierarchical coupling method
related to an approach of Friedman [13]. This method is reducing the multigroup
problem into several two-group problems. The hierarchical combined model is
structured into a binary tree where each branch is associated to a model or a
combination of models and a dichotomy between groups to be classified ([32],
[34] and [9]).
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The paper is organized as follows. In Section 2, the models in compe-
tition for both continuous and discrete classification problems are presented.
In Section 3, the different convex combining strategies are described. Committee
of methods and Likelihood ratios combining methods are presented in this sec-
tion. Section 4 is devoted to the presentation of Hierarchical combining. Section 5
is concerned with the presentation of numerical experiments. The performances
of combining models are compared on both discrete and continuous problems.
For continuous data problems, serial and hierarchical combining methods are
evaluated separately. Thus, when using hierarchical coupling, at each tree level
only one model is chosen. For qualitative data problems, when using hierarchi-
cal combination at each node of the tree, a serial combination of models can be
considered. Two sections, one about computer programs (Section 6) and another
with a short discussion (Section 7) ends the paper.

2. CONTINUOUS AND DISCRETE CLASSIFIERS

In continuous supervised classification problems for assessing combining
classification methods, the fourteen Gaussian models of EDDA ([3]) have been
considered. Defined in the Gaussian setting, each group conditional probability
function is supposed to be a d-dimensional Gaussian distribution with vector
mean py and covariance matrix .

EDDA makes use of the variance matrix eigenvalue decomposition ¥ =
Ak DkAkDg where )\k:\EkP/d, D;, is the eigenvector matrix of X and Ay is
a diagonal matrix such that |Ag| = 1, with the normalised eigenvalues of ¥ on
the diagonal in a decreasing order. This decomposition can lead to parsimonious
and versatile models. Parameter A\; denotes the volume of the k-th group, Ay its
shape and Dy, its orientation. Different assumptions on those parameters lead to
fourteen models pooled into three families: eight elliptical models, four diagonal
models and two spherical models. The eight elliptical models are

(ADAD”], [\,DAD”], [ADA;D’], [)\.DA,DT],
(A\D,AD{], [MDzAD[], [ADyA;D]], [\DyA:D]].

The absence of subscript k& means that the parameter at hand has a fixed value
over the groups and its presence that the parameter is free over the groups.
For instance, models [\DAD”] and [\, DyA;D?] are respectively, the linear
discriminant analysis model and the quadratic discriminant analysis model.
Assuming that Y; are diagonal lead to the simplification ¥ = A\;Byg, where By
is a diagonal matrix where |Bi|=1. The four diagonal models are: [AB], [\;B],
[ABg], [\xBx]. The spherical models are [AI], [A\¢I], I denoting the identity matrix.
For each model, parameters Dy, Ay or B and A\, are estimated by maximizing
the likelihood ([3]).
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The output that has been considered for model m, in continuous combin-
ing context, is the posterior group probabilities p}*(x) ([10]). In the hereunder
considered examples, those probabilities have been derived by (1.2), where the
prior probabilities 7 have been replaced with ng/n (ny is the number of units
from Gy, in the training set t).

In discrete problems, only two reference models have been considered. They
are the full multinomial model (FMM) and the first order independence model
(FOIM). Those two models are expected to provide different classifiers in many
circumstances. In the full multinomial model (FMM) the conditional probabilities
are estimated with the observed frequencies
(2.1) fe(x) = M , k=1,..., K,

ng
where N(x|k) is the number of observations of the training sample, belonging
to G}, for which state x occurs. This model involves 2¢—1 parameters in each
group. Hence, even for moderate d, not all of the parameters are identifiable.

Since data sets are small or very small in regard to the number of proba-
bilities to be estimated, a problem of sparseness is encountered and some of the
multinomial cells may have no data in the training sets. Thus smoothing the
observed frequencies is desirable. Hand [16] has noticed that the choice of the
smoothing method is not very important so that computationally less demanding
methods may be used. Thus the observed frequencies are smoothed using a single
smoothing parameter A (0 <A <1) and the conditional densities takes the form
(we omit the index k for simplicity)

1
2.2 A) = =) adolexill g gyl i=1,..,n .
22 I =Y L
When A = 1.00 no smoothing is proceeded and the amount of smoothing is in-
creasing as A\ decreases to 0. This method will be called KERNEL in the sequel.

The first-order independence model (FOIM) assumes that the d binary
variables are independent in each group Gi, k=1, ..., K. Then, the group proba-
bility function is of the form Hj f(z;|Gr), j=1,...,d, and is estimated by

N(z;j| k)
(2.3) i) =1]——.
; ng
J
where ng =Gy and N(z;|k) =#{y€Gy: yj=x;}. In this model the number
of parameters to be estimated for each group is reduced from 2% —1 to d.
This method is simple but may be unrealistic in some situations.

The resulting serial combining classifier is using a single coefficient, pro-
ducing an intermediate model between the full multinomial model and the first
order independence model. Combining methods differ in the way this coefficient
is derived.
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3. CONVEX COMBINING STRATEGIES

3.1. Committee of methods

A natural way of deriving the coefficients [3,, in serial combining is minimi-
sing the fitting error using a least squares criterion. The committee of methods
introduced by Bishop [4] in the neural computing literature is such an approach.
In the committee of methods that will be considered here to get a relevant con-
vex combining of classifiers, the fit of a classifier m is measured with the group
classification probabilities, ¢ (x). The committee of models is of the form

(3.1) coom(x) = )€™ (x) B .

with B, >0, m=1,..,M, and )  fpn = 1. Writing ¢"*(x) as
(3.2 ¢M(x) = o) +em(x)

where c¢(x) is the true group probabilities vector and € (x) represents the vector
error of model m, leads to

(3.3) ccom(x) = c(x) + Y e™(x) B -

Defining C the error correlation matrix of the models whose general term
is

(3.4) Cp=E[e"X)(X)], mi=1..M,

E denoting the expectation under the true distribution of the training dataset,
the committee of methods consists of minimizing the error Er =% >, BnBiCpy
under the constraint that the positive coefficients § are summing to one. Using
standard Lagrangian manipulation leads to

2(C

o l
39 o

The correlation error matrix can be estimated by plug-in empirical values

(5.6) Ct = + S (v — €™ (x)) (v — ' (x1))”

n =
7

This formula means that in a natural way, the error vector e,,(x;) is estimated
with

(3.7) &) = (ehx) = ol = ch(x0)).
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3.2. Likelihood ratios

LeBlanc and Tibshirani [20] presented an interesting combination method
by likelihood ratios although they did not experiment it. It consists of choosing
the combining coefficients as the ratio of the likelihood for model m over the sum
of all models likelihoods,

L, (0,%)

(3.8) B = ST

where, recalling that v, is the k&th coordinate of the indicator vector giving the

Li(0,x) = [T 1T £ (i) me] ™ .
ik

label of unit 4,

In the discrete case the single coefficient 3 is
L+ Ly’

where Ly, Ljs represents the likelihood for the FOIM and the FMM models,
respectively.

(3.9) Brm

Since the likelihood increases with the model complexity, this weighting
strategy will favour more complex models. Thus, it could be preferable to propose
penalized versions of likelihood ratios.

A natural penalisation is inspired from Akaike Information Criterion (AIC)
([1]). Denoting vy, the number of independent parameters of model m, the AIC
criterion is AIC = —21In(L,,(6,x))+2 v, and it leads to the combining coefficients

_ Lm(ev X) eXp{—I/m}
;Lz(e,x) exp{—-v}

(3.10) Brm

In the discrete case, it takes the form

B Lyexp{—Kd}
~ Lrexp{—Kd} + Ly exp{—K(2¢—1)} ’

(3.11) O

because Kd and K (2d— 1) are respectively the number of independent parameters
for the FOIM and the FMM models.

Remark that in the discrete case, it appears that the likelihood ratio stra-
tegy derived from AIC leads always to a single coefficient with value one or zero
and so this strategy is useless because it leads to a single model, FOIM or FMM
(see [34]).
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Another possibility, in the Bayesian model averaging spirit ([23] and [29]),
is to base the combining weights on integrated likelihood ratios. The integrated
or marginal likelihood for model m is

(3.12) L(x|m) = /Lm(e,x) p(0) dby,
where p(6,,) is a prior probability distribution on 6,,.

Unfortunately, in most continuous cases, integral (3.12) is difficult to calcu-
late. Kass and Wasserman [18] and Raftery [29] showed that integrated likelihood
can be approximated using BIC criterion of Schwarz ([31]). This approximation
leads to the combining coefficient for model m

L (0,x)n=05vm

(3.13) Bm = S L0, %) n 05w

In the discrete context, it is possible to get exact calculation of inte-
gral (3.12). In the non informative Bayesian setting, the prior distribution of
FOIM parameters p(a?), k=1,...K, j=1,...,d, are non informative Jeffreys
distribution B(1/2,1/2) and prior distribution of FMM parameters p(b}),
k=1,..,.K, h=1,...,s, where s is the number of states, is a non informative
distribution of Jeffreys D(1/2,1/2,...,1/2). From which, it follows directly that
integrated likelihood for FOIM and FMM are

[11I B(«} + 0.5n), — ], +0.5)
ko

(3:14) Lix) = B(0.5,0.5)k :
and

L(s/2)* TITI (0.5 4 ch)
(3.15) Ly(x) = k_h

T(1/2)k 1;[ I (s/2 + n)

where cZ is the number of objects of group G with state h. And, the resulting
combining coefficient 3 is estimated by

L[(X)

(3.16) f = Ly(x)+ Li(x)

4. HIERARCHICAL COMBINING

When the number of groups K to be discriminated is greater than two, as
noted in Friedman [13], it can be advantageous to consider the polychotomous
classification problem as a sequence of two group classification problem to get
classifiers easier to be estimated and to be interpreted. Friedman proposed to



210 Isabel Brito, Gilles Celeux and Ana Sousa Ferreira

decompose the K groups in all possible combinations of pairs of groups. For each
pair of groups, a classifier is designed. The overall classifier is derived from all
the pairwise classifiers by a majority vote.

The strategy we now present is different. A polychotomous problem is
decomposed into several dichotomous problems but the dichotomous problems
are nested in a hierarchical binary tree. It is the reason why this strategy is
called hierarchical coupling. Let G = {G1, ..., Gx } be the set of groups. Consider
a partition of G in two elements. At this level the best two class partition of
groups is designed according to some criterion and the model or combination of
models leading to the two class classifier minimizing the cross validated error rate
between the two classes is designed. According to the sample size of the learning
sample, leave one out or wvfold cross validation is considered. If available, it is
also possible to assess the error rate with a test sample.

The procedure is repeated until all the elements in the actual partition are
single groups. The combining classifier obtained from this hierarchical coupling
procedure can be represented in a hierarchical tree as exemplified in Figure 1.

Model A

I
Model B

Model C

OO

Figure 1: Example of hierarchical combined model
for a four group problem.

The classifier depicted in Figure 1 is as follows. When a new observation
is presented to the hierarchical classifier it passes through model A that classifies
it in G1 or Go U G3UGy. If model A classifies the observation in GG1 the analysis
is stopped. Otherwise, the observation passes through model B and the decision
is G4 or G2 U G3. If model B does not classify the observation in G4 it passes
finally through model C that assigns the observation to G or Gj.

In order to choose, at each level, the best model or combination of models
and the best partition, different strategies for continuous and discrete problems
are employed.
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In continuous data context, it was proceeded as follows:
For each possible binary partition all M models are estimated (at the be-
ginning level there are M (25~1—1) couples (model, partition)).

From those couples, the one providing the lowest misclassification error rate
(ME) is chosen. In all the experiments, ME is evaluated by leave one out
cross validation.

In the discrete case, the hierarchical coupling procedure is somewhat

different.

At each level of the binary tree, the choice of the two-class decomposition of

2K—=1_1 possible decomposition is done by minimizing

groups among the
the basic affinity coefficient ([24] and [2]) between the two classes of groups:
Denoting F1={p;} and Fa={q;}, j=1,....d, two discrete distributions
defined on the same space, the affinity coefficient between F1 and Fs is
given by p(F1F2) =3, \/Pj\/q;- Then the two classes of groups minimiz-

ing the affinity coefficient are selected.

After the two classes of groups have been chosen, the combining model is
chosen by minimizing the error rate evaluated on a test sample or by v-fold
cross validation.

Consider the example for a four group problem:

71832

7845

8125

(@) (D@

Figure 2: Example of hierarchical combined model for a four group dis-
crete problem with the basic affinity coefficient values displayed.

It can be noticed that hierarchical combining method leads often to simple

models at each step. From this point of view, it can lead to easily interpretable
and stable decision rules, avoiding unnecessary complicated models.
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5. RESULTS ON REAL DATA

In continuous context, combining methods have been applied on benchmark
real datasets. Four of them were taken from the Machine Learning Repository of
California University [5] (MLR), one from the Oxford University Repository [26]
(OR) and another one from [15] (Hab). Table 1 provides a brief description of

each dataset and their source.

Table 1: Continuous datasets description.
Nb Nb Nb
Dataset Source Description of of of
units | features | groups
Presence/absence of liver
disorders that might arise
Bupa MLR from excessive alcohol 345 6 2
consumption, measured by
blood tests
Morphology of two species,
Crabs OR blue and orange, by sex, 200 5 4
of Australian crabs
Survival of patients
Haberman MLR who had undergone surgery 306 3 2
for breast cancer
Haemo Hab Presence of haemophilia 75 9 9
on women
Measurements on the sepal
Tris MLR and petal Iris to. 150 1 3
determine iris specie
(the famous Fisher dataset)
Medical records to
Thyroid MLR predict the type of 215 5 3
patients thyroidism

In discrete context, several real and simulated binary datasets were used
to evaluate the performance of the considered strategies. Table 2 gives a brief

description of each real dataset.
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Table 2: Discrete datasets description.
Nb Nb Nb
Dataset | Source Description of of of
units | features | groups
) Presence/absence of four
Medical [30] symptoms liver disorders to 20 4 2
Data predict the type of icterus
Psycho- Scores obtained for each older
logical adult in the six dimensions of
Data [11] the Psychological Well-Being 80 6 2
in older Scale taken as binary data
people into two groups
Six binary variables of a psycho-
Psycho- logical test — Rorschach test —
logical 28] in 3 groups with different 34 6 3
Data degrees of alexithymia
Students of four
licenciature’s: Vocational
Biology (B), Identity (VI) | 600 6 4
Psychology (P), | with 6 items
Psycho- Language and
logical Literature (LL), o el
Come | 1y | Enneie (| i
selling described by the 600 4 4
Career Psychological ) (OI)
Data Questionnaire — with 4 items
My Vocational
Si'tuation.— that Barriers (B) 600 4 4
is organised in with 4 items
three scales

5.1. Performance

of serial combining techniques

The continuous case

Because several of the fourteen EDDA models lead to similar classifiers,

combining all of them is useless. The more different models have been determined
from the Correspondence Analysis of the fourteen models involved in EDDA
described with their posterior densities p}*(x) (see Brito [9]). For each dataset,

the chosen models are given in Table 3.
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Table 3: EDDA models chosen for each dataset by a Correspondence Analysis.

Dataset Chosen models
Bupa [)\B], [)\kB], [)\I], [)\kI]
Crabs [ADAD”], [AI]

Haberman [/\DkADﬂ P‘Bk]7 [)‘I]

Haemo [)\DADT}, P\kDADT}v [)‘I]
Tris (AB], [M]

Thyroid [AB], [AI]

Serial combining methods were evaluated by leave-one-out cross validated
misclassification error rate (ME). The purpose is to compare combining tech-
niques opposite to single model techniques. In Tables 4 to 5, ME on each database
are presented and compared with ME of model chosen with the standard EDDA
strategy.

Table 4:  Model and ME for each dataset using the committee of methods
technique and EDDA.

Committee of methods EDDA
Dataset
Model ME Model ME

Bupa 79 [AB] + .21 [AI] 3971 [AB] 4000
Crabs [ADADT] 5000 [M] 0500
Haberman | .4[AD,AD]] + .6[AI] | .2549 | [ABy] 2516
Haemo [ADAD7] 1600 | [ADAD”] | .1467
Iris 82[AB] + .18 [ .0400 [AB] .0400
Thyroid 73[AB] + .27 [AI] .0930 [AB] 0977

For Bupa and Thyroid datasets, misclassification error rate is slightly
better using the committee of methods technique. Bupa dataset contains infor-
mation on the presence or absence of liver disorders caused by excessive alcohol
consumption. Thyroid dataset resumes medical records in order to predict pa-
tient type of thyroidism. In both cases, the diagonal model [AB] is the model
chosen with EDDA method. And, in both cases, the committee of methods tech-
nique proposes combining that model to the spherical model [AI]. The resulting
shrunk model gives somewhat better predictions than the diagonal model alone.
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Haberman dataset describes survival of women who had undergone surgery to
remove breast cancer. Haemo illustrates the presence or absence of haemophilia
on women. For those two datasets, EDDA strategy is slightly better than the
application of committee of methods. In the other hand, for Crabs dataset which
describes the morphology of males and females of two species of Australian crabs
and for the famous Fisher dataset Iris, both EDDA and committee of meth-
ods lead to the same misclassification error. For two of the six examples, the
Crabs and Haemo datasets, the committee of methods technique, lead to a
single model, the linear discriminant analysis model, and for all other datasets a
combination of models was selected.

Table 5: Model and ME for each dataset using the penalised likelihood ratios
technique and EDDA.

Penalised likelihood EDDA

Dataset
Model ME Model ME
Bupa [ABy] 4000 [AB] 4000
Crabs [ADAD”] 5000 [AI] .0500
Haberman [ABy] 2516 [ABy] 2516
Haemo | .32[ADAD”] +.68[\;DAD”] | .1600 | [\DAD”] | .1467
Iris [AB] .0400 [A\B] .0400
Thyroid [A\B] 0977 [A\B] 0977

Using the penalised likelihood ratios technique did not produce improved
performances on those datasets. The only case where it did not select a single
model, for dataset Haemo, it provided a slightly higher misclassification error
rate.

The discrete case

Since our samples are small the performance of the serial combining me-
thods were evaluated by v-fold cross validation(ME). In Table 6, ME obtained
on dataset Psychological Data in older people using the committee of meth-
ods technique and single models are compared. The performances of the classi-
fiers have been assessed with half-sampling (two-fold cross validation error rate).
Group prior probabilities were assumed to be equal, m, = .5 (k= 1,2).
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Table 6: Estimated error rate (half-sampling) and parameters values for the
Psychological Data in older people.

FOIM | FMM | KERNEL | C. MET. | C. MET.

Half-sampling || .30 A1 32 25 25
A 1.00 95 1.00 95
3 555 493

The goal of the present study is to explore the impact of playing with
pets on psychological well-being among older people [11]. So, the two groups are
constituted by 40 aged persons who have pets (group G1) and 40 aged persons
who don’t have pets (group Gs).

Remark that this dataset is not very sparse (26 =64 states and 80 observa-
tions) but, even so, the lowest error rate has been obtained with the committee
of methods. The estimation obtained for 3, through this strategy, is quite sta-
ble, producing a really intermediate model between the full multinomial model
and the first order independence model. Also note that this approach seems to
be no sensitive to the sparseness problem and so there is no need to smooth of
the observed frequencies (A =1). On the basis of this study we can conclude
that the involvement of playing with pets among older people can contribute for
psychological well-being and thus, perhaps, for a successful ageing.

The numerical experiments performed for the model CMET on simulated
binary data showed that good performances can be expected in a setting for which
sample sizes are small or very small and population structures are identical in
the two classes.

In Table 7, ME using the integrated likelihood ratio techniques and the
single models have been compared on dataset Medical Data. In that case ME
is the five-fold cross validation error rate of compared classifiers. Group prior
probabilities were assumed to be equal, 7, = .5 (k= 1,2).

Table 7: Estimated error rate with five-fold cross-validation and parameters
values for the Medical Data.

FOIM | FMM | KERNEL | INT. LIK. | INT. LIK.

Five-fold cross-vali. 45 .55 .55 45 45
A 1.00 .95 1.00 .95
8 .832 .985
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In this study, the goal is to predict the type of icterus, since it’s not easy to
make a diagnosis on the basis of liver disorders. Integrated likelihood ratio tech-
nique and FOIM provide the same performance for this dataset. The numerical
experiments performed for this strategy on simulated binary data have shown
that good performances can be expected with this technique in a moderate or
large sample setting ([34]). In this small dataset setting (20 patients) it is no
surprising that this method does not improve the performance since it involves
the evaluation of an additional parameter 3.

5.2. Assessing the performance of hierarchical combining

The continuous case

Hierarchical combining concerns only datasets with more than two groups.
It has been assessed on Crabs, Iris and Thyroid datasets. All the fourteen
models of EDDA were employed to get the hierarchical model. Hierarchical com-
bining and EDDA methods are compared in Table 8.

Hierarchical combining concerns only datasets with more than two groups.
It has been assessed on Crabs, Iris and Thyroid datasets. All the fourteen mod-
els of EDDA were employed to get the hierarchical model. Hierarchical combining
and EDDA methods are compared in Table 8. As it can be seen from Table 8,
the classification error rates of hierarchical methods and EDDA are quite similar.
Here the interest of hierarchical coupling lies essentially in its ability to choose
different models at each step of the classification procedure. Thus it can provide
more subtle and interpretable results. For instance, for Iris dataset, it shows at
a glance that the Setosa group can be easily separated from the two other groups
with the simplest model [)\I]. On the contrary, for Thyroid dataset, it appears
that separating the “hyper” group from the other groups needs a more complex
model than separating the normal group from the “hypo” group.

Hierarchical coupling model for Crabs dataset is also appealing. At the
first level, the linear model [)\DADT] splits the Blue and Orange species.
At the second level, males and females are separated inside each species. For
Blue crabs, hierarchical coupling selects an elliptical model allowing for class of
males and class of females to have different orientations [)\DkAD%]. For Orange
Crabs, an elliptical model [/\DAkDT] is preferred which differentiates the shape
of males and females classes.

In contrast with EDDA strategy which selects [/\DkADﬂ for separate the
four groups, hierarchical coupling is less strict, proposing more adequate models
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at the different levels. Only Blue males and females need the [)\DkADZ] model
to be separated, less complex models being proposed to distinguish other groups.

Table 8:  Model and ME for each dataset using the hierarchical coupling
technique and EDDA.

Hierarchical coupling EDDA
Dataset
Model ME Model ME
[\DAD']
I |
[\D,AD,'] [\DA,D']
Crabs 045 | [\DzAD]] | .045

Blue Male Orange Femalg

[M]
I
[\DAD']
Iris 02 | [A\ADAD] | .02
ONE
[MD,AD,T]

|
[1:B]
Thyroid ‘ 0372 [\:B] 0326
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The discrete case

For the Psychological Data the misclassification error is assessed by half-
sampling. For the Psychological Counselling Career Data it is assessed from
a test sample. A training sample of 200 students was drawn at random and the
rest of the dataset constituted the test sample. Table 9 summarises the results
of the four methods for these datasets and the coefficients of the combination
obtained in each level of the tree.

The Psychological Counselling Career Data set consists of 600 stu-
dents of the 1%¢ and 2" forms of four licenciature’s degree: Biology (B), Psy-
chology (P), Language and Literature (LL) and Engineering (E). The aim of
the study is to know if those four groups of student are different regarding their
Career Information.

For the Psychological Counselling Career Data the first decomposi-
tion chosen by hierarchical coupling for the several scales, suggest that Biology
students are different from the other students in what concerns the definition
of a clear and stable picture of their goals and interests, Engineering students
revealing a distinct need for vocational information from the other students;
and the students of odd groups show individually perceived external obstacles
or limitations in pursuing occupational goals different from the students of even
groups.

Remark that this dataset is not very sparse (26 =64 or 2* =16 states
and 200 observations), but again the hierarchical combining method using the
integrated likelihood (HIER/IL) or committee of methods (HIER/CM) provides
markedly the lowest misclassification error rate. The results of the hierarchical
coupling provide markedly the lowest test estimates of the misclassification risk
for all scales. However, HIER performs poorly for the Barriers scale.

We noted that in some situations, particularly when the groups have very
different sizes, usual methods and even the HIER method perform poorly. More-
over, the choice of the decomposition at each level of the tree may be unrealistic.
Therefore, new developments on the hierarchical coupling approach are required
in such a situation and this is a perspective for future research on this method.

The Psychological Data set consists of 34 dermatology’s patients divided
into three groups — Nonalexithymics Group (G1), Alexithymics Group (G2),
Intermediate Group (G3) — according to the value obtained in a psychological
test (TAS-20: Twenty Item Toronto Alexithymia Scale) conceived to evaluate the
presence of alexithymia'. The goal of the study is to evaluate how alexithymia
influences personality characteristics (evaluated by another psychological test —
Rorschach test).

! Alexithymia means “no words to express emotions”.
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For the Psychological Data the first decomposition chosen by hierarchi-
cal coupling, suggests that the union of the extremes groups forms a class well-
separated from the intermediate group, since these subjects obtained balanced
scores. Since the dataset is very sparse (20 = 64 states and only 17 observations)
the hierarchical combining method using committee of methods (HIER/CM)
provides the lowest estimated error rate.

Table 9: Model and ME for two datasets using the hierarchical coupling technique.
Dataset Hierarchical coupling Model ME | A b
15t ‘ ond ‘ grd
VI Scale
FOIM .69 1
FMM .75 1
KERNEL 731 .99
HIER/CM | .49 1 bl | .52 | .53
v 0l HIER/CM | .49 | .99 | .47 | .47 | 48
HIER/IL .38 1 98 | .99
HIER/IL 38 | .99 1 1
Psycho- l‘ .1 OI Scale
logical FOIM .66 1
0000 N0 00 AN Y I
selling B KERNEL .65 | .99
Career HIER/CM | .45 1 b0 | .61 .52
Data HIER/CM | .46 | .99 | .48 | .49 | 49
HIER/IL A1 1 0 A ~0
' ' HIER/IL 38 | .99 0 .02 1
oowa B Scale
FOIM .66 1
FMM .66 1
KERNEL .65 | .99
HIER/CM | .50 1 b0 | .52 | .50
HIER/CM | 50 | .99 | .49 | 49 | 49
HIER/IL .52 1 99 | .99
HIER/IL 52 | .99 1 1
15t ond
FOIM .53 1
— FMM .71 1
Psycho- KERNEL .65 | .99
logical HIER/CM | .29 1 .52 .55
Data HIER/CM | .29 | .99 | .47 .50
Soder v hen, v e, | HIER/IL | 35 | 1 | 18 44
HIER/IL 35 | .99 | .53 .78
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These results are in accordance with the numerical experiments performed
for CM and IL strategies on simulated binary data that have shown that good
performances can be expected with CM technique in a small or very small sample
setting and with IL technique in moderate or large sample setting.

6. COMPUTER PROGRAMS

The efficiency of the combining approaches presented in this paper has been
investigated on both real and simulated data. The computer programs realizing
these combining approaches were implemented by the authors and are available
from them.

The continuous case

All computer programs for the continuous case are written in Matlab®
code. The different routines are structured as follows:

e EDDA — estimates all EDDA models and the leave-one-out cross vali-
dated misclassification error of each model;

¢ COMMITTEE — estimates the serial combined model by a committee
of methods strategy;

e SERIAL — estimates the serial combined model by a penalized likelihood
strategy;

¢ HIERARCHICAL — evaluates the combination of the models for all
possible two class of groups. It calculates the leave-one-out cross validated
misclassification error of each solution and builds the tree representation.

Run time execution is about five time more important for hierarchical cou-
pling method than for serial combining method. It means that, for most appli-
cations, it remains a reasonable method.

The discrete case

The computer programs implemented for the discrete case use FORTRAN®
77 Language according to Microsoft FORTRAN Optimizing Compiler Version 5.0
and they use a structure in three main routines:
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¢ GESTAOQO — determines the group conditional probabilities associated to
the full multinomial model (FMM) and to the first-order independence
model (FOIM) and their estimative by cross validation;

e CALFA — determines the combining coefficient according to the chosen
combining strategy;

¢ CRULE — builds the new combining model and determines the error rate
evaluated on a test sample.

For the hierarchical combining, an additional routine is implemented:

¢ HIERQ — builds the hierarchical binary tree, using the basic affinity
coefficient.

After the selection of the two classes of groups have been chosen at each level
of the binary tree, the combining model is chosen by minimizing the error rate
evaluated on a test sample, using routines GESTAQO, CALFA and CRULE.

Finally, it can be noticed that the run time execution for the hierarchical
combining is quite similar to that of the serial combining in the K=3 group case.
Otherwise, when K >3, the run time execution for the hierarchical combining
triplicate or even more, due to the necessary reorganization of the groups for the
evaluation of the basic affinity coefficient for all possible combination of couples
of groups. However, the computational time for hierarchical combining remains
quite reasonable and cannot be regarded as a drawback of this approach.

7. DISCUSSION

It is worth noticing that the combining methods that were considered in
this paper are of different nature than other combining or ensemble methods.
For example, Bagging and Boosting methods which are very efficient to improve
unstable classifiers are committee-based approaches in which a single classification
algorithm is applied to repeatedly modified versions of the data ([7], [8], [12], [17]-
chapter 10). On the contrary the combing methods we considered are combining
several methods but do not modified the weights of the data. On an other hand,
the CRUISE ([19]) and QUEST ([22]) methods are classification tree algorithms
different of the hierarchical combining methods we considered because the tree
we designed is not a classification tree.

Many combining methods of classification have been considered in different
contexts from a practical point of view. The main conclusions of this compa-
rative experimental study are the following. Convex combining appears to be
disappointing in the continuous case. In that case, at best, they lead to the same
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error rate obtained with the better single model. Moreover, they often prefer a
single model to a combination of several models. Convex combining appears to
be more efficient to propose a good compromise between FMM and FOIM models
in discrete data context. Maybe the reason for this more satisfactory behaviour
is that FMM and FOIM are quite different models.

On the contrary hierarchical coupling seems to be a promising technique of
combining classification methods when more than two groups are to be classified.
In different contexts, hierarchical coupling leads to a substantial improvement
of the misclassification error rate and its easily interpretable representation is
appealing. It provides original and parsimonious classification rules. An interest-
ing perspective would be to explore all possible hierarchical coupling solutions.
This is feasible when the number of groups is less than five. Otherwise, a branch
and bound algorithm could be considered in order to search for the optimal tree
solution in a reasonable time.

Finally, it can be noticed that thereisahuge literature on combining models.
For instance Bayesian Model Averaging (BMA) (see [23] or [29], among many
others) has received a lot of attention. However, the practical implementation of
Bayesian Model Averaging is far from being simple especially in the continuous
case. Finally, we want to cite the interesting theoretical study of Yang ([37])
which proves that combining models cannot be expected to outperform an opti-
mal single method for large samples.
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1. INTRODUCTION

In this paper we deal with semi-parametric estimators of the tail index ~y
and high quantiles ,, which enjoy desirable properties in the presence of linear
transformations of the available data. We recall that a high quantile is a value
exceeded with a small probability. Formally, we denote by F' the heavy-tailed
distribution function (d.f.) of a random variable (r.v.) X, the common d.f. of the
iid. sample X := {X;};",, for which the high quantile

(1.1) Xp(X)=F"(1-p), p=p,—0, as n—oo, np,—c>0,

has to be estimated. Here F* (t) := inf{x: F(x) >t} denotes the generalized
inverse function of F'.

We consider estimators based on the k+1 top order statistics (o.s.),
Xnn > o+ > Xy gn, where X,,_r., is an intermediate o.s., i.e., k is an inter-
mediate sequence of integers such that

(1.2) k=k,— o0, ky/n—0, as n — oo .

We assume that we are working in a context of heavy tails, i.e., v > 0 in the
extreme value distribution

{exp{(1+7x)_1/7}, 1+~vx>0, v#0

(13)  Gyla)=
exp(—e_“"”), reR, v=0,

the non-degenerate d.f. to which the maximum X,., is attracted, after a suitable
linear normalization. When this happens we say that the d.f. F' is in the Fréchet
domain of attraction and we write ' € D(G+)y>0-

The paper is developed under the first order regular variation condition,
which allows the extension of the empirical d.f. beyond the range of the available
data, assuming a polynomial decay of the tail. This condition can be expressed
by

(1.4) Fe€D(Gy)yso iff F:=1-FeRV,, iff UE€ERV,,

where U is the quantile function defined as U(t) := F*~(1—1/t), t>1; the nota-

tion RV, stands for the class of regularly functions at infinity with index of regular

variation «, i.e., positive measurable functions h such that tlim h(tx)/h(t) = z°,
— 00

for all z > 0.

It is interesting to note that the p-quantile can be expressed as X, =
U(1/pn).
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To get asymptotic normality of estimators of parameters of extreme events,
it is usual to assume the following extra second regular variation condition, that
involves a non-positive parameter p:

U(tx)/U(t) — xf -1
=z

1. li =z

for all x > 0, where A is a suitably chosen function of constant sign near infinity.
Then, |A| € RV, and p is called the second order parameter (Geluk and de Haan,
1987). For the strict Pareto model, with tail function F(x) = (z/C)~"/7 and
quantile function U(t)=Ct", U(tz)/U(t) — 27 = 0. We then consider that (1.5)
holds with A(t) =

More restrictively, we might consider that F' belonged to the wide class of
Hall [11], that is, the associated quantile function U satisfies

(1.6) U(t)=Ct'(1+Dt’ +0(t")), p<0, C>0, DER, as t—oo,

or equivalently, (1.5) holds, with A(t) = Dpt?. The strict Pareto model appears
when both D and the remainder term o(¢”) are null.

Returning to the problem of high quantile estimation, we recall the classical
semi-parametric Weissman-type estimator of x;, (Weissman, 1978),

k A'fl
1.7 Yoo = Yo (X)) = Xptoon | — |
7 B = Tu(2) = X )

with 4, = 4,,(X) some consistent estimator of the tail parameter ~.

In the classical approach one considers for 4,, the well known Hill estimator
(Hill, 1975),

1 Xy i1
1.8 SH _ sHxy = = g Snoitln
(1.8) = A (X) = - ; B
or the Moment estimator (Dekkers et al., 1989),
-1
1 M(l) 2
(1.9) O R VU o Py el a O
2 M2

with Mff), the r-Moment of the log-excesses, defined by

(1.10) M = MO(x - Z( ’”“"), r=1,2.

nknn

We use the following notation:

A M

(111) SC\]I;,IH = ankn:n <n> 5 SC\pMn - Xnkn:n<n) .
nPn npn
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Finally, we explain the question that motivated this paper. It is well known
that scale transformations to the data do not interfere with the stochastic be-
haviour of the tail index estimators (1.8) and (1.9), i.e., we can say that they
enjoy scale invariance. The incorporation of (1.8) or (1.9) in the Weissman-type
estimator in (1.7), allows us to obtain the following desirable exact property for
quantile estimators: for any real positive d,

- ko " o
(112) 2. 0X) = 0%t (22 ) = 08020
npn
But we want a similar linear property in the case of location transformations to
the data, Z;:=X;+ X, j=1,...,n, for any real \. That is, our main goal is that,
for the transformed data Z:={Z;}7_;, the quantile estimator satisfies

Altogether, this represents the empirical counterpart of the following theoretical
linear property for quantiles,

(1.14) Xp(0X +X) = 0xp(X)+ A, for any real A and real positive 0.

Here we present a class of high quantile-estimators for which (1.12) and (1.13)
hold exactly, pursuing the empirical counterpart of the theoretical linear property
(1.14). For a simple modification of (1.7) that enjoys (1.13) approximately, see
Fraga Alves and Araidjo Santos (2004). For the use of reduced bias tail index
estimation in high quantile estimation for heavy tails, see Gomes and Figueiredo
(2003), Matthys and Beirlant (2003) and Gomes and Pestana (2005), where the
second order reduced bias tail index estimator in Caeiro et al. (2005) is used for
the estimation of the Value at Risk.

1.1. The class of high quantile estimators under study

The class of estimators suggested here is function of a sample of excesses
over a random threshold X, .,

(115) X(q) = (Xn:n_an:na anlsn_an:na ) anJrl:n_an:n) ’

where ng:= [ng]+1, with:
e 0<g<1,ford.f.’s with finite or infinite left endpoint zp:=inf{z: F(z)>0}
(the random threshold is an empirical quantile);

e ¢=0, for d.f’s with finite left endpoint xp (the random threshold is the
minimum,).
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A statistical inference method based on the sample of excesses X (@) defined in
(1.15) will be called a PORT-methodology, with PORT standing for Peaks Over
Random Threshold. We propose the following PORT - Weissman estimators:

~(q)
. ko )
(1'16) XI()%) = (Xn—kn:n_an:n) ( = > + an:n )
NPn

where ’Ayéq) is any consistent estimator of the tail parameter v, made location/scale

invariant by using the transformed sample X (@) Indeed, the incorporation in the
Adapted-Weissman estimator in (1.16), of tail index estimators, as function of
the sample of excesses, allows us to obtain exactly the linear property (1.13).

1.2. Shifts in a Pareto model

To illustrate the behaviour of the new quantile estimators in (1.16), we
shall first consider a parent X from a Pareto(v, A, J),

AN/
(1.17) Foaelz) =1— (Z 5A> . Z>A46, 6>0,

with A=0 and v= 6§ = 1. Let us assume that we want to estimate an upper
D= pPn= %—quantﬂe in a sample of size n = 500. Then, we want to estimate
the parameter x,(X) = 500. If we induce a shift A = 100 to our data, we would
obviously like our estimates to approach x,(X+ 100) = 600.

In Figure 1 we plot, for the Pareto(\,1,1) parents, with A =0 and A =100
and for ¢ =0 in (1.15), the simulated mean values of the Weissman and PORT -
Weissman quantile estimators based on the Hill, denoted )Zf and )25 (q), respec-
tively. These mean values are based on N =500 replications, for each value k,

5 <k <500, from the above mentioned models.

Similarly to the Hill horror plots (Resnick, 1997), associated to slowly vary-
ing functions L, (t) =t~ U(t), we also obtain here Weissman-Hill horror plots
whenever we induce a shift in the simple standard Pareto model. Indeed, for
a standard Pareto model (A =0 in (1.17)), Weissman type estimators in (1.7)
perform reasonably well, with 4,, = 4. However, a small shift in the data may
lead to disastrous results, even in this simple and specific case. For the PORT -
Weissman estimates, the shift in the quantile estimates is equal to the shift
induced in the data, a sensible property of quantile estimates. Figure 1 also illus-
trates how serious can be the consequences to the sample paths of the classical
high quantile estimators, when we induce a shift in the data, as suggested in
Drees (2003). We may indeed be led to dangerous misleading conclusions, like
a systematic underestimation, for instance, mainly due to “stable zones” far away
of the target quantile to be estimated.
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Figure 1: Mean values of )?gb and )?;I,{L(o), pn = 0.002 for samples of size n=>500
from a Pareto(1,0,1) parent (target quantile x,,= 500) and from the
Pareto(1,100,1) (target quantile x,,,= 600).

1.3. Scope of the paper

As far as we know, no systematic study has been done concerning asymp-
totic and exact properties of semi-parametric methodologies for tail index and
high quantile estimation, using the transformed sample in (1.15). Somehow re-
lated with this subject, Gomes and Oliveira (2003), in a context of regularly
varying tails, suggested a simple generalization of the classical Hill estimator
associated to artificially shifted data. The shift imposed to the data is determin-
istic, with the aim of reducing the main component of the bias of Hill’s estimator,
getting thus estimates with stable sample paths around the target value. A pre-
liminary study has also been carried out, by the same authors, replacing the
artificial deterministic shift by a random shift, which in practice represents a
transformation of the original data through the subtraction of the smallest ob-
servation, added by one, whenever we are aware that the underlying heavy-tailed
model has a finite left endpoint.

With the purpose of tail index and high quantile estimation there is, in our
opinion, a gap in the literature regarding classical semi-parametric estimation
methodologies adapted for shifted data, the main topic of this paper.

In Section 2, we derive asymptotic properties for the adapted Hill and
Moment estimators, as functions of the sample of excesses (1.15). In Section
3, we propose two estimators for x, that belong to the class (1.16) and prove
their asymptotic normality. In Section 4, and through simulation experiments,
we compare the performance of the new estimators with the classical ones.
Finally, in Section 5, we draw some concluding remarks.
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2.  TAIL INDEX PORT-ESTIMATORS

For the classical Hill and Moment estimators, we know that for any interme-
diate sequence k as in (1.2) and under the validity of the second order condition
in (1.5),

e Al e p A )
and
vd VPP (v(1=p) + p) A(n/k)
(2.2) A E 4+ TPI?/[ + ~(1=p)? (1+0p(1)) ,

where P,f and P,i\/[ are asymptotically standard normal r.v.’s.

In this section we present asymptotic results for the classical Hill estimator
in (1.8) and the Moment estimator in (1.9), both based on the sample of excesses
X@ in (1.15), which will be denoted respectively, by

(2.3) @ .= 30 (x(@) and  AM@D .= 4M(x@)  0<g<1.

In the following, x; denotes the g-quantile of F': F(x;) =q (by convention
X6 :=2TF), so that

P

Xngn — X as n— oo, for 0<¢g<1.

*
q )
For the estimators in (2.3) we have the asymptotic distributional representations
expressed in Theorem 2.1.

Theorem 2.1 (PORT-Hill and PORT-Moment). For any intermediate
sequence k as in (1.2), under the validity of the second order condition in (1.5),
for any real q, 0 < q¢ <1, and with T" generally denoting either H or M, the
asymptotic distributional representation

2T(q) 4 91 Xg
@0 A0 Lk T (A + b ) (10, (1)

holds, where P,:;F is an asymptotically standard normal r.v.,

1
(2.5) o2 =2, C, = —— d = 1

1— 2
(2.6) 0% == +1, ¢y = yd=p)+p and d,, := (7> .
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Remark 2.1. Notice that 02 =02 +1, ¢, = Cyt 5ty and dy, = (d,)?.

Consequently, o,, > 0, ¢,, <c, and d,, < d,.

The proof of Theorem 2.1 relies on the the following Lemmas 2.1 and 2.2.

Lemma 2.1. Let F be the d.f. of X, and assume that the associated
U-quantile function satisfies the second order condition (1.5). Consider a deter-
ministic shift transformation to X, defining the r.v. X, := X —xj with d.f.
Fy(x) = F(z)+x; and associated Uj-quantile function given by Uy(t) := F,~ (1-1/t)
=U(t) = xg-

Then U, satisfies a second order condition similar to (1.5), that is

t t) — a7 Pqg — 1]
(2.7) Jim Ual x)QUﬁt()) - ﬂ(m ; ) for >0, p,<0,
q q
with
(A(t), p) if p>—7;
Y Xy )
A+ =L, - > f p=—7v;
28  (At).p,) = <(>Uw V)=
Y Xq )
) e

Proof: Under (1.5), for x > 0,

Ug(tz)  Ultz) —x;

Uq(t) B U(t)_XZ

_ Ulta) | 1-x5/U(ta)
UM | 1-xg/U®)

LUt — 1)U (tz)
%*M =X /U) }

v [, [, U
R0 %*U@P‘UWJ“+“W}

- m{1+ -l A(t) (l—i-o(l))} {1+ g,zctq) vl (1+o(1))}

-

x’—1 YXE Y —1
14+ 25— A + 24
p Q uit) -—v

+o(A(t)) + 0(1/U(t))} .

Then U, satisfies (2.7), for A; and p, defined in (2.8) and the result follows. O



236 Paulo Aratjo Santos, M. Isabel Fraga Alves and M. Ivette Gomes

Lemma 2.2. Denote by M the M{" statistics in (1.10), as functions
of the transformed sample X9, 0<¢<1 in (1.15); that is,

k
1 an' ltn_Xn n "
MOD — ) (x@) = = E ] I+ a =1,2.
" " (7 ) k J=1 ©8 Xn—k:n_an:n ’ " ’

Then, for any intermediate sequence k as in (1.2), under the validity of the second
order condition in (1.5) and for any real ¢, 0 < q<1,

k *\T
A9 1 Z(]Qg an+1:an> _ 0p< 1 ) , r=1,2.

Proof: We will consider » = 1. Using the first order approximation
In(14 ) ~z, as 2 — 0, together with the fact that X ., = x}(1+0p(1)),
we will have successively

k *
,q>_,z ”L” Xg _
n k %

n kn Xq
k *
_ l Z Xn— j+1:n an:n —log anj+1:n - )}fq
k n kn — an:n ank:n — Xq
. l Z nqn/Xn —j+1n o Ogl_XZ/Xn—j—‘rl:n
k n n/Xn k:n 1_X2/Xn—k:n
k
1 an:n an:n X; X:; )
= - - + — 1+ o0p(1
k ]:Zl (Xnkn Xn—j+1:n Xn—j+1:n ank:n ( p( ))
an:n - X:; 1 i < KXn—km >
= he 2a 1— 2n=kn ) (14 0,(1
Xn—k::n k ]Z; anjJrl:n ( p( ))
k
Op(l) 1 < Xn—k:n )
= - 1— —=m=Fn ) (14 0,(1)) .
Xn—k:n k Z Xn—j+1:n ( p( ))

Denote by {Yj};“zl i.i.d. Y standard Pareto r.v.’s, with d.f. Fy-(y) =1—y",
for y > 1 and {thk}le the associated 0.8.’s.

Since X, g = U( n—km), With Y, ., the (n—k)-th o.s. associated to an
i.i.d. standard Pareto sample of size n and (%)Yn_k:n L, 1, for any intermediate

sequence k, then )é?;/’“kr)b 2, 1; this together with the fact that

{ Yn—j+1:n }k i {Yk— '+1-k}k
Yn—k:n j=1 I Jj=1




PORT Methodology in Heavy Tails 237

allow us to write

1 i Xn—jt+1n — Xo
MO — = log " 24
k jz; Xn—k:n_ Xq
k
Op(l) 1 U(Ynfk'n)
= ol Ly (14 0,(1)
U(Yn—k:n) k =1 U<Y;l’n7:1 n Y )
1 — 1
= E Z}(l Yk—j—i—l:kz) 0p(U(n/k‘)> (1+ Op(l))
‘7:
1 o 1
- -3 (1- Y.—V) ) (1+0p(1)).
IR on((gugay) (1 o)
Now F [Y “’] 'Tlrl and by the weak law of large numbers we obtain
1 l i K- Jj+lm — XZ _
n k ) n kin — Xq
= 571 Jorl o
= —— (1 1/VEk
1 (e 00) o (75
- "\UW/k))
For r =2 steps similar to the previous ones lead us to the result. O

Remark 2.2. Note that if ¢ € (0,1), an:n— ¥ =0p(1/y/n) and for

r=1,2, vk |M" - Ly {1 g%n,qu}r} = (\/W n/k:)) op(1)
holds.

Proof of Theorem 2.1: Taking into account Lemma 2.2

b i1 — Xy 1

X j+1lin q
E TR M o e )
j=1 Xn—kin— X; p<U(n/k)>

Now, considering the result in Lemma 2.1 and representation (2.1) adapted for
the deterministic shift data from X,:= X — xj model, we obtain the following
representation for PORT-Hill estimator

4@ £ v+ﬁP + 1<_n/q) (1+op(1))+op(U(i/k)> :

with A4(t) provided in (2.8), and the result (2.4) follows with 7= H.
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Similarly, considering Lemmas 2.1 and 2.2 and the representation (2.2)
adapted for the deterministic shift data from X, := X — xj model, we obtain for
the PORT-Moment estimator the representation

M 4 VP o (Wl_pq”pq)Aq(”/k) 0 o (1
0 £ 3 R A (o) o ()

and result (2.4) follows with T'= M. O

Remark 2.3. Note that if we induce a deterministic shift A to data X
from a model F' =: Fy, i.e., if we work with the new model F)(z) := Fy(x — \), the
associated U-quantile function changes to Ux(t) = A + 0 Up(t). Then, as expected,
(2.4) holds whenever we replace A @ by 47|\ (the Hill estimator associated
with the shifted population with shift A\) provided that we replace x; by —A\.
This topic has been handled in Gomes and Oliveira (2003), where the shift A is
regarded as a tuning parameter of the statistical procedure that leads to the tail
index estimates. The same comments apply to the classical Moment estimator.

Corollary 2.1. For the strict Pareto model, i.e., the model in (1.17) with
A=0 and v=§ =1, the distributional representations (2.4) holds with A(t)
replaced by 0.

Under the conditions of Theorems 2.1 and with the notations defined in
(2.5) and (2.6), the following results hold:

Corollary 2.2. Let pu1 and po be finite constants and let T generically
denote either H or M.

i) For v > —p,

91

NG P+ e, A(n/k) (1 +0p(1)) .

@ Ly
If Vk A(n/k) — 1, then

\/%(’Ayg(q) - ’y) N Normal (p ¢, ai) .

n—oo
ii) For v < —p,

*
Or _Xq

~T(q) 4 T
o v+ \/EPk + dTU(n/k:) (14 0p(1)) -
If Vk/U(n/k) — ps, then

VE(3@ =) % Normal(nzd,x;, o2) -

n—oo



PORT Methodology in Heavy Tails 239

iii) For v = —p,

@) 4 Or pT Xq
A v+ \/EP’“ + [CTA(n/k)—FdT T (n/F) (1+0p(1)) -

If Vk A(n/k) — puy and Vk/U(n/k) — ua, then

. d .
\/E(ﬁ@ - 7) - Normal (p1 ¢+ p2 d X5, ai) .

3. HIGH QUANTILE PORT-ESTIMATORS

On the basis of (1.16), we shall now consider the following estimators of x,,,.,
functions of the sample of excesses over X, ., i.e., of the sample X@ in (1.15):

~H(a)
R k Yn
(31) X;I;{n(q) = (Xn—kn:n - an:n) (n;n> + an:n ) 0<g<1,
k :y’fl\/[@l)
(32 7 = (Xnoken— Xngn) (W) + Xngn , 0<q<1.
n

For these estimators we have the asymptotic distributional representations pre-
sented in Theorem 3.1.

Theorem 3.1. In Hall’s class (1.6), for intermediate sequences k,, that
satisfy

(3.3) log (npy) /\/kn — 0, as n—oo ,

with p,, such that (1.1) holds, then, with T denoting either H or M, (c,;,d, ,0,,)
and (c,,,d,,,0,,) defined in (2.5) and (2.6), respectively, and for any real g,
0<qg<1,

<T(q) a
VE; (m _1)_p,z+m<cTA<n/k>+d G ><1+op<1>>7

orlog(kn/(npn)) \ Xpn TU(n/k)

where P];‘F is an asymptotically standard normal r.v.

Proof: From now on, we denote a, := %. With the underlying condi-
tions in (1.1), a, tends to infinity, as n — oo, and the quantile to be estimated

1 nay
w05 = v ()

We will present the proof for T'= H, since for T'= M the proof follows

can be expressed as

the same steps.
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First notice that

H
XgL(Q) = (X"l—k?nm_ an:n) azn + Xn,n

Xngn 5 H(q) Xngn
= X _kn: <]_ — q> a’yn + R S .
" " [ Xn—kn:n " Xn—kn:n

. P * an:n _
Now, since Xy, ., — X3, we have b ewrami op(1). Then

R ~H(q)
RE@D = X, [agn (1+op(1))} ;

n

which means that the proposed estimator )?gfq) is asymptotically equivalent to

the Weissman type estimator (1.7), whenever we use the consistent estimator

. H
A = AL (q)'

Consider now a convenient representation for the difference,

. . X, . X, .
oH(a) _ — xR @ ngn ) 4 _Snein o Xpa
Xpn Xpn b " " ankn:n ankn:n ankn:n ’

and recall that we may write

o UlEe) UE)
Xn—kn:n U(kﬂ) U(Yn—knin) '

According to (1.5), for p<0, U(ﬁ an)/U(ﬁ) =a)(1-A(n/kn)/p) (14 0p(1)).

(@)

we get successively, for sequences k, that verify (3.3),

Considering that for the estimator 'Ayf , the representation (2.4) holds,

aZf<Q) = a) <1+ log an(’yf(q) - fy)) (1+0p(1))

and
SH(q)

Xpn - Xpn =

= ] X pom {1+1ogan(af<q>—v)(1+op<1>) - (1—A<n/kn>/p)(1+op<1>>}

— 6 X {0 G0 =) + A0 ) | (4 0,(1)

Now, we consider the following representation for intermediate statistics, proved
in Ferreira et al. (2003),

(3.4) Xporm 2 U(;) (1 + ?/%’i + o,;(\/%) - op(A(n/kn))> :

with By an asymptotically standard normal r.v.
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Using (2.4) and (3.4), we may write

RA@ —y,, = U(éi) @ (140, (1/ V) ) {W +4( >/p} (14 0,(1)) .

where

W, = logay, (’A)/f(q) - 7)

= log ay (;% PH 4 (cH A(n/k) +d, U(iczq/k)> (1+ op(l))> :

with P,f independent of the random sequence By, in (3.4).

Consequently,

e — x
A AP — (W, + A(n/k)/p} (1+ 0,(1))

an U(g;)

and

Vkn <>?5fq)_>_pk+\ﬁ< Alnfk) + dyy =N )(Hop(l))- -

orlogan \ Xp, "U(n/k)

The following result is a direct consequence of Corollary 2.2 and Theorem 3.1.

Corollary 3.1. Under the same conditions of Theorem 3.1, then, with
T replaced by H or M, and (¢, d,,,0,,) and (c,,, d,,,0,,) defined in (2.5) and (2.6),
respectively, the following resu]ts hold.

i) For v> —p,

VEn Xprg ?
0, 10g (kn/(npn)) (Xpn —1> = P+ Vha (e A(n/R)) (14 0p(1))

If \/k, A(n/ky) — w1, finite, as n— oo, then the mean value is pjc, .

ii) For v < —p,

VEn W\
( ) pr +f< /k )> (1+0,(1)) ,

Or log(k‘n/(npn)) Xpn

If \/kn/U(n/kn) — po, finite, as n— oo, then the mean values is pad, Xy -
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iii) For p= —~,

Vhn (ﬁféq) . 1)

o 1og(kn/(npn)) \ Xpn
= P+ Vk, <cT Aln/k) + dTU(;f;kn)> (1+0,(1)) ,

If /k, A(n/ky) — w1, finite, and 'k, /U(n/ky) — po, finite, as n— oo,
then the mean value is pyc, + p2dp Xy -

4. SIMULATIONS

Here, we compare the finite sample behavior of the proposed high quantile
estimators )?{,{L(Q) in (3.1) and )?%(q) in (3.2) with the classical semi-parametric
estimators )?fn and )?I]J\:L[ in (1.11). We have generated N = 200 independent repli-
cates of sample size n = 1000 from the following models:

e Burr Model: X —~ Burr(y,p), y=1, p=-2,-0.5, with d.f.
F) =1-(1+a?)"  2>0.
e Cauchy Model: X —~ Cauchy, v=1, p=—2, with d.f.

1 1
F(x):§+;arctang:c, r€eR.

At a first stage, we generate samples from the standard models Fy:=F. At a
second stage, we introduce a positive shift A = xg.01, i-e., a new location chosen
in a comparable basis as the percentile 99% of the starting point distribution Fp.
This defines a new model F)(z) := Fy(x — ) from the same family.

We estimate the high quantile xg.og1, for each model Fy or Fy from the
referred Burr and Cauchy families, and we present patterns of Mean Values and
Root of Mean Squared Errors, plotted against k = 6, ..., 800.

The simulations illustrate the dramatic disturbance on the behavior of the
classical quantile estimators in (1.11), when a shift is introduced. We, again,
enhance that the flat stable zones achieved with these estimators, in the presence
of shifts, could lead us to dangerous misleading conclusions, unless we are aware
of the suitable threshold k or of specific properties of the underlying model.
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Figure 2: Mean values (left) and root mean squared errors (right), of Xp,
~M (0)

Xon 5 Xy, and X3!, for a sample size n=1000, from a Burr model
with y=1, p=—2 and A=0 (target quantile x¢.001 = 1000).
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Figure 3: Mean values (left) and root mean squared errors (right), of Xp,. /,

)?%(0), X3 and X)!, for a sample size n = 1000, from a Burr model

with y=1, p=—2 and A =99.99 (target quantile x¢.001 = 1099.99).



244 Paulo Aratjo Santos, M. Isabel Fraga Alves and M. Ivette Gomes

§  AM(O)
AH(O — -+ AM(0
o = IE
AH . 3 s AM
§ — Xp AM(0) ) i
Nl o , :
M 8 |
S 3
8 |
@ o
o _]
3
8 |
& 8 |
S
AH(0)
Xo
o
§ 7 S Xo
- &
o - o 4
T T T T T k T T T T T k
0 200 400 600 800 0 200 400 600 800
. . H(0)
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xpn( ), Xg and XII)VWI, for a sample size n =1000, from a Burr model
with y=1, p=-0.5 and A=0 (target quantile xg.001 = 937.731).
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Figure 5: Mean values (left) and root mean squared errors (right), of Xp, /

)?%(0), X and XM, for a sample size n=1000, from a Burr model

with y=1, p=—0.5 and A =81.023 (target quantile x¢.001 = 1018.754).
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with y=1, p=—-2 and A=0 (target quantile x¢.001 = 319.309).
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a-5) X5 and X3!, for a sample size n = 1000, from a Cauchy model

with v=1, p=—2 and A=31.821 (target quantile x¢.001 = 351.13).

From the figures, in this section, we observe that the classical quantile

estimators diverge a lot from the important linear property (1.13). On the other

hand, the estimators we propose, (3.1) and (3.2), enjoy exactly this property.
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CONCLUDING REMARKS

The PORT tail index and quantile estimators, based on the sample of
excesses, X (Q), in (1.15), provide us with interesting classes of estimators,
invariant for changes in location, as well as scale, a property also common
to the classical estimators.

In practice, whenever we use a tuning parameter q in (0, 1), we are always
safe. Indeed, in such a case, the new estimators may or may not behave
better than the classical ones, but they are consistent and asymptotically
normal for the same type of k-values.

A tuning parameter ¢ =0 is appealing but should be used carefully.
Indeed, if the underlying parent has not a finite left endpoint, we are led
to non-consistent estimators, with sample paths that may be erroneously
flat around a value quite far away from the real target.
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1. INTRODUCTION

The analysis of integer-valued time series has become an important area of
research in the last two decades partially because its wide applicability to experi-
mental biology (Zhou and Basawa [34]), social science (McCabe and Martin [24]),
international tourism demand (Nordstrom [29], Garcia-Ferrer and Queralt [16],
Brénnaés et al. [12]), queueing systems (Ahn et al. [7]) and economy (Quoreshi [30]).
We refer to McKenzie [28] for an overview of the early work in this area. Among
the most successful integer-valued time series models proposed in the literature
we mention the INAR(p) model and the INMA(q) model. The former was first
introduced by McKenzie (e.g., [26]) and Al-Osh and Alzaid [1] for the case p=1.
Empirical relevant extensions have been suggested by Brannas ([9], explanatory
variables), Blundell et al. ([8], panel data), Brénnés and Hellstrom ([11], extended
dependence structure), and more recently by Silva et al. ([32], replicated data).
Extensions and generalizations were introduced by Du and Li [14] and Latour [22].
The INMA(g) model was proposed by Al-Osh and Alzaid [2] and subsequently
studied by Brannés and Hall [10]. Related models were introduced by Aly and
Bouzar ([4], [5]) and Zhu and Joe [35].

Within the reasonably large spectrum of integer-valued models proposed
in the literature, little is known about its extremal properties. Anderson [6]
gave a noticeable contribution to the study of the extremal properties of integer-
valued independent and identically distributed (i.i.d.) sequences and as an ex-
ample of application, the author analyzed the behavior of the maximum queue
length for M/M/1 queues. Extensions of Anderson’s results were proposed by
Hooghiemstra et al. [21] who provide bounds and approximations for the distri-
bution of the maximum queue length for M /M /s queues, based on an asymptotic
analysis involving the extremal index. McCormick and Park [25] were the first to
study the extremal properties of some models obtained as discrete analogues of
continuous models, replacing scalar multiplication by random thinning. Hall [17]
analyzed the asymptotic behavior of the maximum term of a particular Markovian
model. [18] provided results regarding the limiting distribution of the maximum
of sequences within a generalized class of integer-valued moving averages driven
by i.i.d. heavy-tailed innovations. Extensions for exponential type-tailed inno-
vations have been studied by Hall [19]. More recently, Hall and Moreira [20]
derived the extremal properties of a particular moving average count data model
introduced by McKenzie [27].

It is worth to mention that all the references given in the previous para-
graph deal with the case of stationary sequences. In contrast, however, the study
of the extremal properties of integer-valued non-stationary sequences has been
overlooked in the literature. This paper aims at giving a contribution towards
this direction. In particular we consider periodic sequences with marginal dis-
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tributions within a particular class of discrete distributions first considered by
Anderson [6]. Potential applications can be found in the analysis of the number
of hotel guest nights where the series exhibit strong seasonal pattern with a peak
in July-August and a trough in December—February, and in the study of the
number of claims of short-term disability benefits made by injured workers since
it is expected to see fewer claims in the winter months and more in the summer
months.

The term periodic is used in this paper in a different sense than in the
literature of periodic stochastic processes in which a sequence (X,,)nen is said to
be periodically stationary (in the wide sense) if its mean and covariance struc-
ture are periodic functions of time with the same period. This class of processes,
however, does not appear to be sufficiently flexible to deal with data which ex-
hibit non-standard features like nonlinearity and/or heavy tails. In this paper
by periodic sequence, with period say T', we mean that for a sequence of random
variables (rv’s) (X, )nen there exist an integer 7' > 1 such that, for each choice
of integers 1<ij <is <-+-<ipn, (Xij,....,X;,) and (X 47,..., X, +7) are
identically distributed. The period T will be considered the smallest integer
satisfying the above definition.

The rest of the paper is organized as follows: Section 2 provides the neces-
sary theoretical background; Section 3 includes the main result that leads to the
calculation of the limiting distribution of the maximum term; in Section 4 the
previous results are applied to a particular class of max-autoregressive sequences
generalizing the results of Hall [17]; finally, in Section 5 we look at the distri-
bution of the maximum term of periodic moving average sequences obtained as
discrete analogues of classical moving averages with periodic (but independent)
innovations, generalizing the results given in Hall [19].

In this paper we want to highlight the following issues:

a) Under fairly general dependence conditions, integer-valued T-periodic se-
quences with marginal distribution in Anderson’s class exhibit a quasi-
stable non-degenerate limiting distribution of the maximum term which is
obtained as a generalization of the stationary case.

b) The expression of the extremal index may be obtained from the joint dis-
tribution of a finite number of observations, calculated at T' distinct sets of
variables.

c) The results obtained for the integer-valued max-autoregressive and mov-
ing average models generalize the ones obtained for the stationary case:
whereas for the max-autoregressive model the extremal index is less than
unity (reflecting the influence of the dependence structure on the extremes),
for the moving averages the extremal index is equal to one.
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2.  PRELIMINARY RESULTS

The study of the extremal properties of stationary sequences is frequently
based on the verification of appropriate dependence conditions which assure that
the limiting distribution of the maximum term is of the same type as the limiting
distribution of the maximum of i.i.d. rv’s with the same marginal distribution F'.
For stationary sequences, usual conditions used in the literature are Leadbetter’s
D(u,) condition (Leadbetter et al. [23]) and condition D) (u,), k€N, (Chernick
et al. [13]). For completeness and reader’s convenience the definition of condition
D(uy,) is given below.

Definition 2.1. The condition D(u,) is said to hold for a stationary se-
quence (X,)nen with marginal distribution F', if for any integers i;<--- <1i, <
J1<---< jg<mn such that j; —i, > [, we have

El,...,ip,jl,...,jq (UTM teey u?’b) - -F;:l,...,ip (UTM ceey Un) Fj1,...,jq (u’ru (L) un) S an,ln

with ap g, — 0 for some sequence (Iy), ln=o(n).

For periodic sequences the following adaptation of condition D®*) (un) may
be used:

Definition 2.2 (Ferreira and Martins [15]). Let k£ >1 be a fixed integer
and X = (X, )nen a T-periodic sequence verifying D(u,) with mixing coefficient
oy 1,- The condition DgC ) (up) holds for X if there exists a sequence of integers
(kn)nen such that

lim k, = +o0, lim k,— =0, lim %, g, =0,
n—oo n—oo n n—oo

hms[(i}:o,

where
T [knT]

[( Z Z Xi>un, Xj>un),

i=1 j=i+k

and for k£ > 2

T [kn }T

L:TZZ X>un, 31<un<X).
knT i=1 j=i+k
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Remark 2.1. If lim, ., sk 0, then

]
n T
nlLII()lO T ZP(Xi>unZMi+l,i+kfla Mi+kz,[,mLT]T>un) =0,
i=1
with MZ‘J‘ = maXigrgj(Xr) and MZ‘J’ = —o0 if 7 > j.
When D(u,) and Dgc )(un) hold for a particular sequence the limiting dis-

tribution of the maximum term and its corresponding extremal index may be
derived. Following Ferreira and Martins [15] the extremal index is given by

S

7

T
n 7 P(Xi>un> M1 i4k-1)
—1

f = lim
n—o0 1 T
=1

Integer-valued sequences require extra care when the analysis of the extremal
properties is in demand since in many cases, there is no non-degenerate limit-
ing distribution for the maximum term. Anderson [6] defined a particular class
of discrete distributions for which the maximum term (under an i.i.d. setting)
possesses an almost stable behavior in the sense of the following theorem:

Theorem 2.1 (Anderson [6]). Let F be a distribution function whose
support consists of all sufficiently large integers. Then, there exists a sequence of
constants (by) such that
limsup F™(z +b,) < e ¢

n—oo

liminf F"(z +b,) > ee Y

n—oo

for some o > 0 and for every x € R, if and only if

) 1—F(n)
oy — eelet
In fact b, may be obtained by b, = F. (1 — 1) where F, is any continuous distri-
bution in the domain of attraction of the Gumbel distribution with F,([z])=F.

Whenever a distribution F' satisfies the conditions of the theorem above
we shall denote it by F' € D, (Anderson). The study of stationary sequences with
marginal distribution in the class of Anderson [6] was considered by Hall [17],
who obtained the following result:
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Theorem 2.2 (Hall [17]). Suppose that for some k >1, conditions D(uy,)
and D™ (u,,) hold for the stationary sequence X with marginal F € D, (Anderson),
where uy, is a sequence of the form u, = x + b,. If M, = max;<y<,(Xj), then
there exists a value 0 < 0 <1 such that

lim sup P(Mng T+ bn) < 0

n—oo

liminf P(M,<x+bp) > e~

n—oo

ge—a(z—1) ’

if and only if
P(Mg,kﬁ Up | X1 > un) — 0.

Hall refers to the parameter 6 as the extremal index due to its similarity
with the conventional extremal index.

3. LIMITING DISTRIBUTION FOR THE MAXIMUM TERM

In this section attention is focused in the extremal behavior of periodic
sequences with marginal distributions in Anderson’s class. The first result extends
Theorem 3 in Hall [17] for T-periodic integer-valued sequences.

Theorem 3.1. Suppose that for k >1 the conditions D(u,) and D5 (uy,)
hold for the T-periodic integer-valued sequence X, with F, € D, (Anderson),
for r=1,...,T where (up)nen is a sequence of the form wu,= x + b,. If there
exists § and 0, 0 < 0 < 0 < 1, such that

M=

% P(Xr > Up > Mr+1,r+k71)
§ = liminf —"=L
n—o00 n T
r=1
% Z P(XT > Up >Mr+1,r+k71) B
< limsup — =" =0,

n—oo

T
23 P(X, > up)

then
limsup P(M, <z +b,) < RS emore

n—oo

liminf P(M, <z +b,) > o Ok I, emore=D)

n—oo
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Proof: First let us suppose that liminf, .. P(M, <z +b,) >0, V.
By Proposition 2.1 in Ferreira and Martins [15] we have that

T
P(M, < up) — e 1 2=t PEu>Mepiriio1) 00 po oo,

which is equivalent to
% Z?:1 P(XT>'”"VL>1WT'+1,T‘+1€—1)

(3.1) P(M,<u,)— (e—% zLP(me)) 3T P un) 0,
as n — o0o. From Theorem 2.1 it follows that
0 < e T oo Y < liminf e 7T ¥io1 P(Xr>un)
n—oo
< lim sup e_% Zle P(Xr>un) < 6_% Z?:l emare <1 ,
n—oo
and if we assume
T
% Z P(Xr> un>Mr+1,r+k71)
0 = liminf —=1
n—o00 T
L3 P(X, > up)
r=1
% Z P(Xr> un>Mr+1,r+k—1) B
< limsup —=1 =4
n—oo

™M=

23 P(X> up)
r=1

then, (3.1) leads to the stated result.

The case P(M, < x +b,) — 0 as n — oo is easily handled by the results
above and the arguments in Hall ([17], p. 725). We skip the details. O

As a consequence of Theorem 3.1 the extremal index can be computed
as follows:

Corollary 3.1. Suppose that for some k >1 the conditions D(u,) and
DE (uy,) hold for the T-periodic integer-valued sequence X, with F,. € D, (Anderson),
for r=1,...,T where {uy}nen is a sequence of the form u, = x + b,. Then, there
exists a value 0 < 0 < 1 such that
lim sup P(Mn <z+ bn) < e=0T Xroae "

n—oo

lim inf P(Mn <zx+ bn) > 679% Zle e—ar(z—1)

n—oo

if and only if

% Z P(XT> Un>Mr+1,r+k—1)

r=1

— 0, n— oo .

T
7 21 P(Xr> up)
r=



Extremes of Integer-Valued Sequences 257

4. MAX-AUTOREGRESSIVE PERIODIC SEQUENCES

Let X=(Xp)nen be a T-periodic non-negative integer-valued max-auto-
regressive sequence defined as

(4.1) X, = max{X,_1,Z,} —cp ,

where (c1,...,er) € NI, ¢i7 = ¢, for alln € N and Z = (Z,,)nen is a sequence of
i.i.d. integer-valued rv’s with common distribution F'. Let H, denote the distri-
bution of X,,. The max-autoregressive sequence defined in (4.1) is an extension
of the max-autoregressive model considered by Alpuim [3]. Her ideas will be
extensively used throughout this section. First note that the following relations
hold

H,(x) = P(Xng x) = P(Xn_l <z+ep Zpn<lza+ cn)

00 i T—1 oo
=11 F<x +ch_,> = [T 1] Flz+7S+ Ssm).
i=0 1=0 s=0 j=0
with S = 2?21 ¢; and Ssp = > ) o Cn—i- Moreover, it is also true that
H,(z —cp)
4.2 Flz)= ————-, for all n .
42) (@) = Tt

Next result shows that if F' belongs to Anderson’s class then H,, will also belong
to Anderson’s class for all n.

Lemma 4.1. Let X be a max-autoregressive integer-valued T-periodic
sequence defined by (4.1). If F € D(Anderson) then H,, € D, (Anderson), VneN.
Let u, =z + b, be such that

limsup n(1— F(uy,)) < e **

liminfn (1 — F(uy)) > e @Y

n—oo

T-1 7557 «
Choosing ul,= = + b, + % with C1= % it follows that

limsup n(1— Hy(u},)) < ™

n—oo

liminf n(1— Hy(u,)) > e @

n—oo

and

limsup n(1 — Hy(u},)) < vr1e” "

n—oo

liminf n(1 — Hy(u},)) > 1 S

n—oo
where

T 1-— Hz(.%) . -

(43) /yl’r_zh—{Iolol—iI{T(z*) 5 T—l,...,T, ’L—O,...,T—l .
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Furthermore for i =0,...,T—1

hmsup—ZP X >l < —2%16 ar

n—oo

liminf — ZPX>u >—Z'yzleax 1

n—oo

Proof: First note that for any two integer-valued distribution functions,

say F] and F3, the following relation hold: If F; € D, (Anderson) and hm } IZQE ;

¢ >0 then Fy € Dy(Anderson). Furthermore, if b, is such that

limsup n(1— Fy(z +by)) < e

n—oo

liminf n(1— Fi(z +b,)) > e—a(@—1)

n—oo

)

then for b, = b, +12¢

limsup n(1 — Fa(z +1),)) < e

n—oo

liminf n(1— Fy(z +1b),)) > e—a(@=1)

n—oo

Now suppose that F'€ D, (Anderson).

T-1
F(x + ]S + Ss,n
lim 1= Halw) Ho(@) _ lim 51;[0 jl;[O ( )
z—oo 1 — F(x) 200 1—F(x)
T—1 oo
3 Z 1—F(z+3jS+ Ssn)
T s=0 j=
= Am 1 —F()
T-1 [e's) .
_ . 1—F(x+jS)
. Ss,na
= Ze IILH;OZ 1= Flz) .
s=0 7=0
1—F(x) —«

Since limg_, o T=F@-1) = ¢ we may choose o/ < o so that there exists xg
such that for all x > zg then %‘qjg)g) < e 759 for all j. By the dominated

convergence theorem, limit and sum can be interchanged providing

T-1 00 Z Ssnex

. 1-— Hn(l') _S —iS s=0
lim ————= = snd pe == = (C,.
oo 1— F(x) ;6 ;)e 1- "

Applying the relations stated in the beginning of the proof we conclude that
H,, € D,(Anderson). O
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We shall now obtain the asymptotic behaviour of the maximum term of the
T-periodic non-negative integer-valued max-autoregressive sequence in (4.1).

Theorem 4.1. Let X be the T-periodic non-negative integer-valued mov-
ing average sequence defined in (4.1) with F € D, (Anderson). If M, = max (Xk)
and u,= x + b, with - =h=n

ln<% Z C'i)
by = b + ——=1~
ZT71 6—5877‘-(1
where C; = =5 —— and b, is the sequence of normalizing constants of F,
then

lim sup P(Mngun) < e 0
n—oo
liminf P(M,<u,) > e """

n—o0o

and the extremal index 0 is given by

i Yia (1 —exp{—aciy1})
(4.4) g = = ,

T
Z i1
i=1

with Yi,l = CZ/Cl

Proof: First we prove that condition D(u,) holds for X. Note that for

any two indexes i1, i2 we obtain the following relations by (4.2):
ig—i1—1

(4.5) P(Xi <z Xp,<z) = P(X;<z) [] Fla+S.,)
=0
Hi, ()
x :
“( ) H; (z + Siz—h—l,iz)

Using (4.5) we obtain

Hil ..... ip,jl,...,jq (un7 sty un) - Hil,...,ip (U’VM teey un) Hj1,...,jq (un7 teey Un)

m=2 =0 m=2

X <lﬁl F(un+ S1j,) — Hjl(un)> ‘

=0

) 1 q
- ‘Hixun) [T I #5011

Hj1 (un)
— H,
‘Hip(un-i- Si—ip—1) al

< 1-— Hip(un—i- Sjl—ip—l) < 1- Hip(un) .

Since 1—Hj(up) ~ O(2) for all 4, the desired result is obtained.
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Next we show that condition D/.(uy,) also holds for X.
P(Xi>un>Xig1, Xigj> tn) =
= P(Xi> un, Xigj> un|Xip1< up) Hipr(un)

= P(Xi> un|Xit1 < un) P(Xigj > un|Xig1 < up) Hipar(up)

since the events {X; > u,|X;y1 < un} and {Xit; > uy|Xit1 < uy,} are indepen-
dent for this type of sequences. Moreover

Hip1(up) — Hi(up) F(un+ cip1)

P(Xi> up|Xip1 < up) =

Hit1(un)
=1 20 Pl tocign)
Hi(un) ( +)
Since % > Hit1(up) we have

P(XZ'> un\X,-H < un) <1- Hl(un) = O<1> .

n

For the second term we have

H; i (u
P(Xij> un|Xip1 < up) = 1— ’”J,(_Q”)
Hiy (Un + > Ci-‘,—j—m)
m=0
<1- Hz'-‘rj(”n)

()

T [knT}T
i " \ . n 1 1
lim — Z Z P(X¢> Up > Xiy1, Xipj> un) < lim nT[k‘nT] O<> O()

i=1 j=i+2

Note that by Corollary 3.1

n—oo

f P(X;> up) / P(X1> uy)

(2
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Since
T

nlli’%ozlp (Xi> un) / P(X1> up) 2%1
(2

and

lim ZP X >un>Xz+1)/P(X1>u”) =

n—00
=1

= lim Z( (Xi<up) — P(Xi < up, Xip1 < un)>/P(X1> Up)

T
— lim Z(Hm(un) — Hy(un) F(un + cm-)) /(1= Hy(u))

n—oo 4
=1

T ] w
= Jin 3 (Hiatin) =~ Fiua) 3771 ) ) (1= i)

=1

.~ Hii(uy)

= lim ;Hz(uirczﬂ) <H¢(un+ Cit1) — Hi(“n)) /(1= Hi(un))
. T 1 —Hi(un) 1 —Hi(un—i— C; 1)

= Hm 2 1— Hi(up) (1 T Hi(un)+ )

i=1

= Z Yia (1 —exp(—acit1)) ,

then .
> Vit (1 —exp(—«a Ci+1))
= - ,
> Yia
i=1
concluding the proof. O

5. MOVING AVERAGE MODELS WITH EXPONENTIAL TYPE-
TAILS

Let Z = (Zy)nez be a sequence of T-periodic integer-valued random vari-
ables. Throughout this section we will assume that

(5.1) 1—Fy (z) ~ K25 (14)\)"%, z—00, £€R, K, A\>0,

for r=1,...,T. Furthermore, we assume that X,, admits the representation

(5.2) Xn = Z ﬂj © anj ) ﬁj € [07 1] )

j=—o00
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where the discrete operator o denotes binomial thinning defined as foZ =
S22 U(B), where (Uy(8)) is a i.i.d. sequence of Bernoulli random variables ver-
ifying P(Us(ﬁ)zl) = 3. Moreover, the sequence of coefficients (3;);ez will be
taken to satisfy

o0
Z/Bj <00,
j=—00

in order to ensure the almost sure convergence of (5.2). All thinning operations
involved in (5.2) are independent, for each n. Nevertheless, dependence is allowed
to occur between the thinning operators 3; o Z,, and 3; 0 Z,,, j # i (which belong
to Xy4; and X4, respectively).

Lemma 5.1. Under the conditions set above, the sum

> BioZny,

j=—00

with

(5.3) B; = 0(|]7°) ,

as j — +oo, for some d > 2, converges almost surely to X,.

Proof: Note that

00 —1 o)

E Z ﬂ] (e} Zn—j = E[Zn—s] Z /BjT+S < o0 .

j=—00 s= j=—00
Likewise,
(e.)
Var Z Bj o Zn—j
j=—00

T-1 00 00

= > (Var[Zo-s] = E[Za-s]) D Biris + ElZu-s] > By
s=0 j=—00 j=—o00

< 0.

Thus Z;’i_oo Bj o Zn—j — X, almost surely by the Corollary of page 112 in
Tucker [33]. O

We now begin with a series of results designed to understand the tail
behavior of X,gs): Z‘]’i_ oo BjT+s © Zr—jT—s as well as sums of these variables.
The first result we present is a simple modification of Theorem 8 in Hall [19]
for the stationary case, but crucial for the characterization of the tail behavior

of X,.
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Lemma 5.2. Let Z be a T-periodic sequence verifying (5.1). For fixed
values of s =0,...,T—1 and r = 1,...,T, it holds that, as x — 00

P(Xﬁs) > x) ~ K, a:gr—s(l + :\T_S)*x ,

for &._s=#1, with S\T_S:z“(j, B6) = max {Bir+4s}, ks :#{j: ﬁg@t“ = 1},

—00<j<o0

v ks gr—s + ks -1 57‘—5 > -1
3

gr—s §T—S < -1

1 + )\T'—s §7‘75+1
)\rfs + ﬁ(s)) ’

Ky, = p® K<

k
y . (D& _s+1))
)\I:S_—sl K:ES ( (57" s+ ))

E(1 ;\7‘—5 legsﬁ‘,ozris res>—1
i — T (ks(&—s+1)) {( + )2=i'#vs Pi } §ros>

9

)

ksK:,S(E[(HL_S)])ks_lE[(HAr_s)Zwmﬁj/ozr,s} 6 o< —1

with j'=jT + s and vs = {i1, ...,ir;: B, =B, h=1,...ks}.

We shall now obtain the tail behavior of Fl,. For simplicity in notation
we define iq,...,ip =0,1,...,T—1, being iy # iy # ... # ip.

Lemma 5.3. For the process defined in (5.2) it holds that, for r=1,...,T,
as T — o9,
(5.4) P(X,>z) ~ Afab (14577,

% v

with Xf=min(\,, ..., \r—741). Moreover, the constant A} can be calculated

as follows:
1. if 5\7»71‘1 == 5\7"71'71 and
(a) gr—il == gT—iT < —1 then §'= gr—zi and
Car T=2
Ar = ,
Cr, T>3

with

o (ig) o (i1)
Co, = Kr,hE[(le)\:)Xﬂ } +Kr,i2E[(l+)\:)X” } |

)

(i) Y - (is)
Cr = Croa, BN | 4 Kooy B (14 A7) =2 5]
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2.

3.

(5.5)

4.

5.
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() & iy >—1, ..., &y >—1 then & = Zstl &—i.+T —1, and

oo (G T2
Cp, T=3
with
F(§r—i1 + 1) F(gr—zé + 1)
P(gr—il + 57‘—7;2 + 2)

. . .
02,7’ = )\7‘ Ky—iy Ky,

* * * I s=1
CT,T - C(Tflr)‘ r—ip

T-1 o
F( Z Erfis‘k T — 1> F(grfiT + 1)

)

T
r( S E T)
s=1

if S\T_Z.l < < S\T_Z.T, then & = g,,_il and

T
o (i)
A; = Ko, [T BJA+2Y" ]
h=2
if Aoy <o < )‘T*il+1 = ... = )\r,in < )\Tfiurkjrl < e < )\rfiT; then

£=¢ 4 and

v_om (11 oy Xt
r = Qrfil H E[(1+/\r) " :|
h=1

with
l
o o (ip) (z )
o i ( [T £ }) (g Eha x0T
h=2
lf 5\7,_1‘1 < .o < S\T—il < \)J\T—Z'H_l — ... = S\T—iT then 5:: gT—il and
< (T—1)
- Qr 1
with Qf, i, defined as in (5.5);
if )\T—il e = )\r i< )\r i < < )‘r—iT and
(a) g7"_1.1 == g’“—il < —1 then = gr—zd
CQ,T T=2
AF = T (ip) :
") Cry HE[(I-FA:)XT } 3<I<T "’
h=I+1
(b) 51"71‘1 > -1, ., EH-l > —1 then & = le:1 5747%4_ 1—1
cs, T=2
A? T

e 11 E[(1+/\§)X’Eih>} 3<I<T "
h=I[+1
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Proof: The result follows by applying repeatedly Lemma 7 in Hall [19]
which is the discrete version of Theorem 7.1 in Rootzén [31], after some tedious
calculations. O

We are now in conditions to obtain the limiting distribution of the maxi-
mum term of X. An explicit expression for the sequence of norming constants (by,)
can be obtained though the following result. For clarification in notation we
define A = minj<,<7{\:} and (g1, ..., qx) the set of indices such that ;\//\;l =1,
for [=1,....k (k<T). In addition, we define £ =max;<;<x{&; } and the set of
indices (p1,...,ps) such that /&5 =1, with [ =1,...;s, (s < k). Furthermore,
let A= 4 > i1 Ay

Lemma 5.4. For the T-periodic integer-valued sequence X given in (5.2)
the normalizing constants b, of Theorem 3.1 are given by

(5.6) by = (In(1+X)) " (Inn+ & Inlnn +In A) .

The demonstration of this lemma is based on the following result.

Lemma 5.5. If adistribution function F' belongs to the domain of attrac-
tion of an extreme value distribution, (F' € D(G+(z))) and F.= F(z)(1 + €(z))
with limg_.,, €(x) =0, then F, € D(G,(z)).

Proof of Lemma 5.4: By Lemma 5.3, as ¢ — oo
1 « 1 «
P PO ) ~ 1 YA )

r=1 r=1

e - T A* 1+A* - * &
= AL+ 14 Y 2 <ql> 250t
e G

~ Az (14077,
where the last step is justified by Lemma 5.5. O

Let X be the associated independent T-periodic sequence of X, i.e.
Xl, Xg, ..., are independent random variables being the tail distribution of X,
as in (5.4) for r=1,...,T, and define M, = max(X,). Next result ensures that
condition D(uy) holds for X with Fz given as in (5.1).

Lemma 5.6. Suppose that the T-periodic integer-valued sequence X given
in (5.2) is defined by a.s. convergent sums and satisfies

lim sup P(Mng r+ bn) < e_% S (LA™

n—oo
lim inf P(Mn <xz+ bn) > e_% S (A 7Y
n—oo

for all x € R and some set of constants Ay,...,Ar >0, b, € R. Then condition
D(x + by) holds for X.
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Proof: For any ¢, > 0,

SUP | Fiy i jteoersiq(Uns +oos Un) — Fiy iy (U e un) Fjy iy (Un,s --~,Un)‘ <
Z)-]

<

NS
W

P(m+bn—2€n<XT§x—|—bn+26n>

> en>

1

\3
Il

+
N3 N3
M= 1M~

T-1 0o
P(Z Z ﬁJT-}-sOZr —jT—s

s=0 j=[n"T]+

—_

_l’_

T—1 —[n"T]-1
P(Z Z BiT+s © Zr—jT—s

s=0 j=—o¢

ﬁ
Il
i

where j;—i, >2n, v € (0,1). Note that
S
TZP(m+bn—26n<XT§x+bn+2en) =
r=1

T T
= %ZP(XT>ZL‘—|—I)TL—2€”> — % ZP<Xr>$+bn+2€n)-
r=1 r=1

Since b, — oo and € — 0, if b, is a normalizing constant for the maximum term,
then bf =b,£2 ¢, are also constants for the maximum term. For each n and a fixed
value of r=1,....,T nP(X,>xz+b,) and n P(X,> x4+ b;,) are step functions
of x, with the same step width, and different location parameters, but whose
difference converges to zero. Then

T
%ZP(m+bn—2en<XT§a:+bn+26n>—>0, n — 0o ,
r=1

for all x € R, providing that

T T o0
(5.7) ;ZP<Z > Birts 0 Ze_jr—s >en>—>0

r= nWT —+1

—_

T—1 —[n'T]-1
Z Z 6]T+SOZ’I" ]Ts>6n>_>0

s=0 ]7—00

(5.8) % 3 P<

r=1

as n — oo, for some y7 € (0,1) and € = o(1) as n — oo, are sufficient conditions
for D(uy,). In proving (5.7) and (5.8) note that by Markov’s inequality

% ZZ: P( > en> <
< Zl i BiT+s © Zr—s>2]

T-1

Z Z /BJT+S © Zr_s

s=0 ] [n’yT —‘,—1

T
€

r=1

NS
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Using the properties of the thinning operation, for a fixed value r=1,....,T

T-1 00 2
E (Z Z ﬁjT—l—s o er)

s=0 ]:[n'YT}—‘,-]_

—_

= Z(Var[ZT,S} *E[ers}> Z s

=0 J=[PT]+1
T-1 2 71 0o
(ZE rs] Z @T“) + 2 BlZ] ) Bires
S=| j= n'YT s=0 j:[n'YT]+l
_ O(n—"/T(‘;_l)) ,
by (5.3). Hence by taking for instance €, = O((Inn)~¢), ¢ >0 and choosing

~vr € (0,1) such that v7(6 —1) > 1, we have that condition (5.7) is satisfied.
For the expression in (5.8) the procedure is analogous. O

Next result provides sufficient conditions for D/.(u,).

Lemma 5.7. Denote n/, = [n'7] and suppose that for some constants
~vr € (0,1) and ¢ > 0 the following conditions hold, for u,= x + b,, Yz € R,

/
2n7p

(5.9) % S %P

XT+Xt>2un> ~0, n—ooo;

/N

+
T T-1 00
(5.10) ?ZP(Z Zﬂﬂurso rJTs>C>—>0 n — 00 ;

S ]:nT—i—l

T—1 —nT—l

o0 T
n
(611) > P(Z > Biryso Zrjros > g) -0, n-—o0;
r=1

s=0 j=—o0

T—1 —np—1
P P
(5.12) § E BiT+s © Zr—jr—s — 0, § E BiT+s© Zr—jr—s — 0.
s=0 j:n’T+1 s=0 j=—o0

Then, condition D/.(u,) holds for the T-periodic integer-valued sequence X
defined in (5.2).

Proof: First note that, for a fixed value of r=1,..., T, P(X,>uy,, X¢>uy)
< P(X,+X;:> 2uy,) following from (5.9) that

QnT

722 <X7">Un,Xt>un>—>0, n— 00 .

r=1 t=r+1
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Next write X, =>"1_ 2 oo BiT4s0Zr—jr—s and X =>"1- ;?in/TﬁjTJrsOZt—jT—s

so that X, and Xt are independent for ¢t > 2n/.. Followmg Rootzén [31], for
a fixed value of r=1,...,T it follows that

P(XT> Uny Xp> un) < P(X;> U — g) P(X,’f> U — g)

T-1 00
+ P(Z Z BiT+s © Zr—jT—s > C)

s=0 j=nl.+1
T—1 —np—1
P ( S S o g > g) ,
s=0 j=-—o0
and hence, writing u) = x — ( + b, we have that

[n/ET]T

T
DY P(Xr>un, Xt>un) <
TT‘Zl t:2n’T—|—1
n2 T—1 np
<Zﬁ <Z Zﬁ]T+sor]Ts>u>

r=1 s=0 j=—o0

T-1 oo
X P< Z /BjTJrsO r—jT—s > u;)

s=0 ]:—n,/T

2 7 T-1

IO MD o ALY
r=1 s=0 j:n’ +1

T 1—nT—1
T}ZP<Z Z /8jT+SOZT —jT—s > C)

r=1 s=0 j=-—o00

The last two terms tend to zero by (5.10) and (5.11). By the same line of reasoning
as in Rootzén ([31], p.622) it is easy to check that

T [n/kET|T 1
limsup — Z Z <Xr> Uy, Xt > un> < %x(constant) -0, k—oo0. O
e r=1 t=2n/ +1

The final result is formalized through the following theorem.

Theorem 5.1. For the T-periodic integer-valued sequence X defined in
(5.2), with ks =1, s=0,...,T—1 and & _s # 1 for r = 1...,T, it holds that
lim sup P(Mn <x+ bn) < 67% S (A
n—oo

liminf P(M,< x4 by,) > e~ T Zr=a (1A 7Y

n—oo

with b,, defined as in (5.6).
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Proof: First note that for r=1,...,7T

T-1 oo
X+ Xe = Z Z <ﬁjT+s © Zr—jT—s —+ ﬁjT—l—s—&-t o Zr—jT—s) .

s=0 j=—o0

For simplicity in notation we define Ay, =min(Ay,...,Ar—7y1) and for s=0,...,7—1,
5%8) = max; {Bj71s: j¢7s) < B, ﬁ;s) = max; {max;{Bjr1s + Bjrrsie}} < 280,
and Bmax = maxogsggr,l{ﬁv(s)} with B(S) = max{ﬂ%s), ﬂés)/Q}.

E[(1+h)ﬁjT+s°Zr7s+ﬁjT+s+t°ers] = E[E[(1+h)ﬂjT+SOZT*S+ﬁjT”“OZT’S|ersH
= PZT*S([}(J‘T‘F& t)h? + (BjT4s + /BjT+s+t)h)

with 0 < h < Amin. Since, for h > 0 and s = 0,...,T—1, B(jT+s,t)h? + (Bjr+s +
BiT+s+t)h < Bmax % +2 Bmax b, the existence of E [(1—|—h)5JT+S°ZT—S+ﬁJT+S+t°Z’°—S}
will be granted if it is possible to find an h > 0 such that Byax h? 42 Bmaxh < Amin-

3 2 Amin
5maxh2+2ﬂmaxh_)\min:0 < h——lﬂ:H

Let h1 < 0 < hg be the two solutions of this equation.

E[(1+h)XT»+Xt} _ E[(1+h)ZST:_ol Z?i_oo(BjT+sOZ'rijfs""ﬂjTJrertOerijs):|

T—1 / [t/2]
=] < II 2. (ﬂ(ﬂ”rs, t)h2+(ﬂjT+5+ﬂjT+s+t)h)

s=0 \j=—o0

(5.13) x I Pz, <ﬂ(jT+Sa t)h? + (Bj+s + ﬁjT+s+t)h>> :
J=[t/2+1
Moreover, P, (v)=E[(14v)% ] < o0, if 0 <V < A, and P, (v) >

1
for 0<v < Bmaxhz + 2Bmaxh. By the mean value Theorem, ﬁzrﬂ (114 1n) <
Pers (Vl) (1 + CI/Q), vi,v9 >0, v1+ 19 < ﬁmaxhz + 2 Bmax h, with

B PZPS(V—HC)‘ B y 9 3
C=supq————: 5=0,...,T-1, 0<v+z<LBnaxh“+2Pmaxh, v>0, >0
Py, . (v)

——

< 00 .
On the basis of this result we have for v1=h(8j14s+ Bjrys+¢) and vo =G(jT+s, t)h?
t/2)
Py, (BUT+s, )0 + (Bjrss+ Byresri)h) <
R /2]
< I 2o (Birss+ Birrsson) T (14 CBires BGT+5,0)02)

J=—00 J=—00

j=

/2 [t/ 1t/2)
< I1 Pz (Bir+sh) ] (1-|—CBjT+s h) 11 (1+CB(jT+s, t)h2) .

j:—oo j:—OO Jj=—00
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Noticing that Pz, (Bj7+sh) =1+ Bjrrsh E[Z.—s] (1 +0(1)) and using (5.3),
we may conclude that the last expression is bounded, uniformly in ¢. Using
a similar argument for the second product in (5.13) we are lead to conclude that

E[(1+h)*+%] < oo for r=1,..T. By Lemma 5.4, up~ 1n2111j:}\) as m — 00.

By Bernstein’s inequality

P(X4+X,> 2uy) < E[(14+R)S ] (140) 200

::o(u+m*%ﬂ

In(1+2h+h2)

- 0<n Ta(1+) )
_ O(nf(um) ,

where the last equality follows by the arguments given in Hall ([19], p. 373). More-
over, in proving (5.10) and (5.11), it suffices to show by Bernstein’s inequality
that

E [(1 +h) 520 X3y 5J'T+s°erTs]

and

/
—Tnp—1

)

are bounded as n — oo, for some h =n"—1, n > 0. We can choose ¢ and 7
such that 2 < {n < (vyr(d —1). By (5.3), we have that

T—1 o, Bors a0 i T-1 e
E (1—|—h) s=0 j=np+177 +504pr—j s:| _ H H E[(1+h)ﬁjT+s°Zr—jT—s
s=0 j=Tnl+1

T-1 %) ~
= H H PZT‘*S (5]‘T+S h)
s=0 j=nl.+1

T-1 [e's)

=1 II (146 h Bz (1+00)))

s=0 j=nl+1

A
8

9

as n — oo providing

’I’L2 T-1 [e's)
sz<z S GiresoZrs > <) <
r=1 s=0 j:n’T+1

2

< "TE[(Hh)

ZT:lzv,/ BiT+s9Zr—jT— —
s=0 Luj=nl 41 PITHs"4r—=j sngn N 0’ n—00 .

A similar procedure can be carried out to prove (5.11). We skip the details.
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Finally, the proof is completed upon showing (5.12). Note that

T-1 oo T-1 o
Z Z ﬁjT—l—s © Z'r—jT—s = E[ers] Z ﬁjT—l—s
s=0 Jj=nl+1 s=0 Jj=nlp+1
T-1 [e'S)
< Y E[Z-] Y 0G™)
s=0 j=nl+1
= O(n'YT(f‘SH)) — 0, n—oo .
Moreover
T-1 [e%S)
Var Z Z 5]'T+s O Lyr—jT—s| =
SDSID DN S (CEPARNEEVAN) ) S o PN LA
5=0 j=nl+1 5=0 j=n/+1
T-1 [e'S)
< > (0G72) +0()
s=0 j=n/.+1
= O(nWT(f‘sH)) — 0, n—oo .
Hence, (5.12) holds concluding the proof. O
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