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Abstract:

• A weighted rank correlation coefficient, inspired by Spearman’s rank correlation coef-
ficient, has been proposed recently by Pinto da Costa & Soares [5]. Unlike Spearman’s
coefficient, which treats all ranks equally, rW weights the distance between two ranks
using a linear function of those ranks, giving more importance to top ranks than
lower ones. In this work we prove that rW has a gaussian limit distribution, using the
methodology employed in [7].
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1. INTRODUCTION

The objective of rank correlation methods is to assess the degree of mono-

tonicity between two or more series of paired data. By monotonicity we mean

a tendency for the values in the series to increase or decrease together (positive

correlation) or for one to increase as the other decreases (negative correlation).

They are applicable to paired data, that is to data where there is some connec-

tion between corresponding members of the samples. To use these methods, we

must first rank the observations in each sample, X andY, from 1 (highest rank)

to n (lowest rank), where n is the number of pairs of observations. We, thus

obtain, r(Xi) and r(Yi) where Xi and Yi are the pair of values corresponding to

observation i in each sample and r(Xi) returns the rank of value i in the first

series. For sake of simplicity, let us use the ranks directly rather than the values

in the series. That is, Ri = r(Xi) and Qi = r(Yi).

There has been a growing interest about weighted measures of rank cor-

relation [5, 1, 10, 6]; that is, measures that unlike Spearman’s [11] coefficient

which treat all ranks equally, weight ranks proportionally to how high they are,

although other types of weight functions could be considered.

In 2005 Pinto da Costa & Soares [5] have introduced a weighted rank corre-

lation coefficient, rW , that weights the distance between two ranks using a linear

function of those ranks, giving more importance to higher ranks than lower ones.

These authors have also analysed the distribution of rW in the case of inde-

pendence between the two vectors of ranks. A table of critical values has been

provided in order to test whether a given value of the coefficient is significantly

different from zero, and a number of applications for this new measure has also

been given.

In this work we start by defining this new measure of correlation in section 2.

Then, in section 3 we analyse the asymptotic distribution of rW for the general

case; that is, we make no assumption of independence between the two vectors of

ranks. To do so, we use the same notation and analogous arguments of those used

by Ruymgaart, Shorack and Van Zwet (1972) in the proof of their Theorem 2.1

(see [7]). We prove that rW has a normal limit distribution.

2. WEIGHTED RANK CORRELATION COEFFICIENT, rW

In this section we describe a weighted measure of correlation that has been

introduced in [5]. rS is the value obtained by calculating Pearson’s linear corre-

lation coefficient of the paired ranks (R1, Q1), (R2, Q2), ..., (Rn, Qn). It is easy
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to see that in the case of no ties,

rS = 1−
6

n∑
i=1

(Ri −Qi)
2

n3 − n = 1−
6

n∑
i=1

D2
i

n3 − n ,

where D2
i = (Ri −Qi)

2. As it is obvious from this expression, rS only takes

into account the differences between paired ranks and not the values of the

ranks themselves. For instance, if D1 = 2, doesn’t matter whether the values

for (R1, Q1) are (1, 3) or (n−2, n). Nevertheless, there are applications where

top ranks are much more important than lower ones, and Spearman’s rank cor-

relation does not take this into account. For instance, when humans state their

preferences, it is obvious that top preferences are more important and accurate

than lower ones. Another example might be the evaluation of stock trading

support systems. A potential invester would like to have a system which gives

a grading of the stocks in question so that he/she can make a decision. In order

to evaluate the output of the system, one can for instance calculate Spearman’s

correlation between the ranking predicted by the system and the true ranking of

the stocks at that time. However, the top ranked alternatives are obviously more

important than the lower ones, which makes weighted measures of correlation

more suitable for this application also.

In [5, 8], Pinto da Costa & Soares propose a measure of correlation —

adapted from Spearman’s rank correlation coefficient — that weighs ranks pro-

portionally to how high they are. Specifically, they propose the following alter-

native distance measure:

W 2
i = (Ri −Qi)

2
(
(n−Ri + 1) + (n−Qi + 1)

)
= D2

i (2n+ 2−Ri −Qi) .

The first factor, D2
i , represents the distance bewteen Ri and Qi, exactly as in

Spearman’s; the second factor represents the importance of Ri and Qi.

The authors then prove that in order to have a coefficient of the form

A+B
∑n

i=1W
2
i that yields values in the range [−1, 1], A must be 1 and

B = −6
n4+n3−n2−n

. Their weighted measure of correlation is therefore,

rW = 1−
6

n∑
i=1

(Ri −Qi)
2
(
(n−Ri + 1) + (n−Qi + 1)

)
n4 + n3 − n2 − n .

In [5] it is proved that under the hypothesis of independence between the

two vectors of ranks, the expected value of rW is 0, which is a desirable property

for a correlation coefficient. Under the same hypothesis, var(rW )= 31n2+60n+26
30(n3+n2−n−1)

.

In addition, the authors have also conducted an experimental evaluation of the

differences between the values obtained by rW and rS in various situations, show-

ing that large differences can occur.
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3. THE ASYMPTOTIC DISTRIBUTION OF rW

Let (X1, Y1), (X2, Y2), ..., (Xn, Yn) represent n i.i.d. random vectors from

a continuous distribution. In this section, we show that rW is asymptotically

normal distributed. We start by showing the results of some simulations that

indicate that this new statistic convergs to the gaussian curve in a particular

case; namely, that the two vectors of ranks are independent. Then, we study

formally the asymptotic distribution of rW for the general case.

We have calculated the exact distribution of rW for n up to 14. Due to

computational limitations, for larger values of n we estimated the distribution

based on a random sample of one million permutations. In Figure 1 we plot

the distribution for n = 14 and n = 15, respectively the last exact and the first

estimated distributions. In the same figure we also plot the estimated distribu-

tions for n = 20 and 40, respectively. In all graphs, the values of rW have been

standardized and we plot the Normal curve for comparison. From these graphs

it seems clear that at least in this special case, the statistic rW converges to the

gaussian as n increases.
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Figure 1: Exact distribution for n = 14 and estimated distribution for
n = 15, 20 and 40, together with the Standard Normal curve.
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Now we make no independence assumptions; that is, we study the asymp-

totic distribution of rW for the general case. First,

rW = 1−
6

n∑
i=1

(Ri −Qi)
2 (2n+ 2−Ri −Qi)

n4 + n3 − n2 − n

= 1− 6

n

n∑
i=1

(
Ri

n+ 1
− Qi

n+ 1

)2(2n+ 2−Ri −Qi

n− 1

)
.

Therefore, the asymptotic behaviour of rW is the same as the one of

1− 6Wn, where

Wn =
1

n

n∑
i=1

(
Ri

n+ 1
− Qi

n+ 1

)2(
2− Ri

n+ 1
− Qi

n+ 1

)
.

Wn is a statistic of the type 1
n

∑n
i=1 an(Ri, Qi), where an(i, j) is a real

number for i, j = 1, 2, ..., n.

If we define J(s, t) = (s− t)2 (2− s− t), 0 ≤ s, t ≤ 1, then J(s, t) is a limit

of the score function

(3.1) Jn(s, t) = an(i, j) = J

(
i

n+ 1
,

j

n+ 1

)
,

for i and j such that i−1
n

< s ≤ i
n

and j−1
n

< t ≤ j
n
. Hence, Wn can be written

as (see [2]),

(3.2) Wn =

∫∫
Jn(Fn, Gn) dHn ,

where Fn and Gn are the empirical marginal distribution functions of F and G,

respectively; Hn is the bivariate empirical distribution function of H. Now, let us

define the population moment μ =
∫∫

J(F,G) dH. By analogy to rW , we define

the population weighted rank correlation coefficient to be

ρW (X,Y ) = 1− 6μ

= 1− 6

∫∫ (
F (x)−G(y)

)2 (
2− F (x)−G(y)

)
dH(x, y) ,

or, by using copulas [4]

ρW (X,Y ) = 1− 6

∫
[0,1]2

(u− v)2 (2− u− v) dc(u, v) ,

where the copula c(u, v) = P
(
F (X) ≤ u, G(y) ≤ v

)
, 0 ≤ u, v ≤ 1.

Next we present the conclusion that rW is assymptotically gaussian dis-

tributed.
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Theorem 3.1. rW is an asymptotic normal and consistent (ANC)

estimator of ρW .

Proof: We want to prove that rW is an asymptotic normal and consistent

(ANC) estimator of ρW ; first,

√
n (rW − ρW ) = − 6

√
n (Wn − μ) = − 6

√
n

[ ∫∫
Jn(Fn, Gn) dHn − μ

]
.

We start by considering the empirical processes Un(F ) =
√
n (Fn − F ),

Vn(G) =
√
n (Gn −G), U∗n(F ) =

√
n (F ∗n − F ), V ∗n (G) =

√
n (G∗n −G), where

F ∗n =
[

n
n+1 Fn

]
and G∗n =

[
n

n+1 Gn

]
. Let now Δ̄n = [X1n, Xnn]× [Y1n, Ynn] where

Xin and Yin denote the i th order statistics and B∗0n =
√
n
∫∫ [

Jn(Fn, Gn) −
J(F ∗n , G

∗
n)
]
dHn.

We will now prove that Jn(Fn, Gn) = J(F ∗n , G
∗
n) and so B∗0n = 0 for all n.

In fact the function Fn, for instance, is a step function and so there is always

an i ∈ {0, 1, ..., n} such that Fn = i
n
; similarly for Gn. This means that by (3.1)

Jn(Fn, Gn)=J
(

i
n+1 ,

j
n+1

)
for some i and j. Now, by the definition above, i

n+1 =F ∗n
and j

n+1 = G∗n. So, B∗0n = 0 for all n.

Because B∗0n = 0 for all n, then an assumption similar to 2.3 b) in [7] (see

Appendix A) is satisfied, that is, B∗0n→p 0. We will now use the same argument

of these authors, adapting it to our situation because our score function an(i, j)

is bivariate and the score functions used in [7], an(i) and bn(i) have just one

variable (see Appendix A). Nevertheless, the adaption follows from the same steps

of their proof. The asymptotic convergence of rW to the Normal distribution may

be uniform over a class of distribution functions. However in this work we are

not interested in proving uniform convergence, but only convergence for a single

distribution.

Now we can write,

√
n (Wn − μ) =

3∑
i=1

Ain +B∗0n +B∗1n ,

where

A1n =
√
n

∫∫
J(F,G) d(Hn−H) ,

A2n =

∫∫
Un(F )

∂J

∂s
(F,G) dH ,

A3n =

∫∫
Vn(G)

∂J

∂t
(F,G) dH ,

B∗0n is defined above ,

B∗1n =
√
n

∫∫ [
J(F ∗n , G

∗
n)− J(F,G)

]
dHn − A2n − A3n .



196 Pinto da Costa and Roque

3.1.
3∑

i=1
Ain is asymptotically normal distributed

As in [7] we can prove the asymptotic normality of A1n, A2n and A3n

based on the fact that J is a continuous function and its partial derivatives are

continuous and bounded on (0, 1)2.

Let us start by noting thatA1n = 1√
n

n∑
i=1
A1in whereA1in =J

(
F (Xi),G(Yi)

)−μ.

In fact,

A1n =
√
n

∫∫
J(F,G) d(Hn−H)

=
√
n

(∫∫
J(F,G) dHn −

∫∫
J(F,G) dH

)
.

Now, as in equation 3.2 we get,

A1n =

√
n

n

n∑
i=1

(
J
(
F (Xi), G(Yi)

)− μ)

=
1√
n

n∑
i=1

(
J
(
F (Xi), G(Yi)

)− μ) .
The random variables A1in are i.i.d. with mean zero. If we choose δ = 1

4 ,

D = p0 = q0 = 2, r(u) = 1
u(1−u) then we have an assumption similar to assump-

tion 2.1 in the statement of Theorem 2.1 in [7] (See Appendix A), that is,

J(F,G) ≤ D
(
r(F )

)a (
r(G)

)b
with a =

δ− 1

2

po
= −1

8 and b =
δ− 1

2

qo
= −1

8 ,

∂J

∂s
(F,G) ≤ D

(
r(F )

)a+1 (
r(G)

)b
with a =

δ− 1

2

p1 = −1
8 and b =

δ− 1

2

q1 = −1
8 ,

∂J

∂t
(F,G) ≤ D

(
r(F )

)b (
r(G)

)a+1
with a =

δ− 1

2

p2 = −1
8 and b =

δ− 1

2

q2 = −1
8 .

Taking this assumption into account and by application of Holder’s inequality,∫∫ ∣∣φ(F )ψ(G)
∣∣ dH ≤

[∫
|φ|p0 dI

] 1

p0

[∫
|ψ|q0 dI

] 1

q0

, ∀ p0>0, qo>0:
1

p0
+

1

q0
=1 ,

where φ and ψ are functions on (0, 1), dI denotes Lebesgue measure restricted to

the unit interval, we note that A1in has a finite absolute moment of order 2 + δ0

for some δ0 > 0 (see appendix B).

Let us consider now A2n. As Un(F ) = 1√
n

∑n
i=1

(
I(Xi ≤ x)− F ) we can

write A2n = 1√
n

∑n
i=1A2in, where A2in =

∫∫ (
I(Xi ≤ x)− F ) ∂J

∂s
(F,G) dH are

i.i.d. with mean zero. If we choose δ = 1
4 , D = p1 = q1 = 2, r(u) = 1

u(1−u) then
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an assumption similar to 2.1 in [7] is satisfied. Again, by applying Holder’s in-

equality and similarly to A1in, it follows that A2in has a finite absolute moment

of order 2 + δ1 for some δ1> 0.

Let us consider now A3n. As Vn(G) = 1√
n

∑n
i=1

(
I(Yi ≤ y)−G) we can

write A3n = 1√
n

∑n
i=1A3in where A3in =

∫∫ (
I(Yi ≤ y)−G) ∂J

∂t
(F,G) dH are

i.i.d. with mean zero. If we choose δ = 1
4 , D = p2 = q2 = 2, r(u) = 1

u(1−u) then

an assumption similar to assumption 2.1 in [7], is satisfied. By application of

Holder’s inequality and similarly to A1in, it follows that A3in has a finite abso-

lute moment of order 2 + δ2 for some δ2 > 0.

From the above conclusions: A1n = 1√
n

∑n
i=1A1in where A1in are i.i.d.

with mean zero; A2n = 1√
n

∑n
i=1A2in where A2in are i.i.d. with mean zero;

A3n = 1√
n

∑n
i=1A3in whereA3in are i.i.d. with mean zero and because A1in, A2in,

A3in have a finite absolute moment of order larger than 2, we get
∑3

i=1Ain →d

N(0, σ2) as n→∞. The expression for the variance corresponds to equation 3.10

in [7] and is given by

σ2 = Var

[
J
(
F (X), G(Y )

)
+

∫∫ (
I(X≤x)− F ) ∂J

∂s

(
F (x), G(y)

)
dH(x, y)

+

∫∫ (
I(Y ≤y)−G) ∂J

∂t

(
F (x), G(y)

)
dH(x, y)

]
.

3.2. B∗1n is asymptotically negligible

We have already seen that an assumption similar to 2.3 b) in [7] is satisfied.

If we consider the mean value theorem (see [9]),

√
nJ(F ∗n , G

∗
n) =

√
nJ(F,G) + U∗n(F )

∂J

∂s
(φ∗n, ψ

∗
n) + V ∗n (G)

∂J

∂t
(φ∗n, ψ

∗
n)

for all (x, y) in Δ̄n with φ∗n = F + α3(F
∗
n−F ) and ψ∗n = G+ α4(G

∗
n−G), where

α3 and α4 are numbers between 0 and 1, then B∗1n can be decomposed as a sum

of seven terms which are all asymptotically negligible by the same arguments

used in section 5 of Ruymgaart et al. (1972) [7].

3.3. rW is asymptotically normal distributed

We have thus that
√
n(Wn − μ) → N(0, σ2) in distribution and it is

immediate that rW is an asymptotic normal and consistent (ANC) estimator of

ρW :
√
n(rW − ρW ) → N(0, 36σ2).
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APPENDIX

A. Asymptotic Normality of Nonparametric Statistics

We present in this appendix Theorem 2.1 of Ruymgaart, Shorack and

Van Zwet, 1972 (see [7]) as it is the fundamental tool used in the proof of our

Theorem 3.1. We start by introducing some notation. Let (X1, Y1), ..., (Xn, Yn)

be a random sample from a continuous bivariate distribution function H(x, y)

(bivariate empirical df is denoted by Hn) having marginal dfs F (x) and G(y)

and empirical df Fn and Gn, respectively. The rank of Xi is denoted by Ri and

the rank of Yi by Qi. Let Tn = 1
n

∑n
i=1 an(Ri) bn(Qi), where an(i), bn(i) are real

numbers for i = 1, ..., n. The standardization of Tn can be written as

√
n(Tn − μ) =

√
n

[∫∫
Jn(Fn)Kn(Gn) dHn − μ

]
,

where Jn(s) = an(i), Kn(s) = bn(i), for i = 1, ..., n such that (i−1)
n

< s ≤ i
n
;

μ =
∫∫

J(F )K(G) dH . The functions J and K can be thought of as limits of the

score functions Jn and Kn. H denote the class of all continuous bivariate dfs H.

Assumption 2.1 (Ruymgaart, Shorack and Van Zwet, 1972). The func-

tions J and K are continuous on (0, 1); each is differentiable except at most at a

finite number of points, and in the open intervals between these points the deriva-

tives are continuous. The function Jn, Kn, J , K satisfy |Jn| ≤ Dra, |Kn| ≤ Dra

and |J (i)| ≤ Dra+i and |K(i)| ≤ Drb+i for i = 0, 1. Here D is a positive constant,

a =
( 1

2
−δ)
p

, b =
( 1

2
−δ)
q

for some 0 < δ < 1
2 and some p, q > 1 with 1

p
+ 1

q
= 1.

Assumption 2.3 b (Ruymgaart, Shorack and Van Zwet, 1972).

B∗0n =
√
n

∫∫ [
Jn(Fn)Kn(Gn)− J(F ∗n)K(G∗n)

]
dHn →︸︷︷︸

p

0 as n→∞

where F ∗n =
[

n
n+1

]
Fn and G∗n =

[
n

n+1

]
Gn.

Theorem 2.1 of Ruymgaart, Shorack and VanZwet, 1972 (see [7]).

If H is in H and if assumptions 2.1 and 2.3 b) are satisfied, then

√
n(Tn − μ) →︸︷︷︸

d

N(0, σ2) as n→∞ ,
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where μ and σ2 are finite and are given by

μ =

∫∫
J(F )K(G) dH (expression 1.3 in [7])

and

σ2 = Var

[
J
(
F (X)

)
K
(
G(Y )

)
+

∫∫
(φX − F )J ′(F )K(G) dH

+

∫∫
(φY −G)J(F )K ′(G) dH

]
(expression 3.10 in [7])

with φXi
(x) = 0 if x < Xi and φXi

(x) = 1 if x ≥ Xi.

B. A1in has a finite absolute moment of order greater than 2

We show here that there exist δ0>0 and δ0< δ = 1
4 such that E |A1in|2+δ0

is bounded. Using Assumption 2.1 in the appendix above we can prove that∫∫ ∣∣J(F (Xi), G(Yi)
)∣∣2+δ0 dH ≤ D

∫∫ ∣∣r(F )
∣∣a(2+δ0) ∣∣r(G)

∣∣b(2+δ0)
dH .

By using now Holder’s Inequality this quantity is

≤ D
1

n

n∑
i=1

{
r(2+δ0)(δ− 1

2
)

(
i

n+1

)} 1

p0

{
1

n

n∑
i=1

r(2+δ0)(δ− 1

2
)

(
i

n+1

)} 1

q0

=
D

n

∑
r(2+δ0)(δ− 1

2
)

(
i

n+1

)
≤ D

∫ 1

0

1(
u(1− u))(2+δ0)( 1

2
−δ)

du

that is finite for 0 < δ0 < δ = 1
4 .
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1. INTRODUCTION

In multivariate discriminant analysis, each object is assumed to arise from

one of K exclusive groups G1, ..., GK with prior probabilities π1, ..., πK , πk ≥ 0,

k=1, ...,K,
∑

k πk = 1. Each object is characterised by a multivariate vector x

of d variables. In this article, all d variables are assumed to be either continuous

or discrete. The conditional density that x belongs to group Gk is denoted by

fk(x). Accordingly to the discrete or continuous case, fk(x) is a probability or

a density probability function which has to be estimated from a n-dimensional

training sample t (ti =(xi, zi), i=1, ..., n), where xi is the d-dimensional vector

measurement for unit i and zi ∈ {1, ...,K}, denotes its group origin. Often, it is

convenient to replace zi with yi, a K-dimensional binary indicator vector of group

membership for unit i : The k-th coordinate of yi is 1 if i arises from group Gk

and 0 otherwise.

The Bayes classifier assigns an individual vector x to Gg if

πg fg(x) = arg max
k

πk fk(x) , k = 1, ...,K .

Usually, the group conditional probability function fk(x) is unknown and has to

be estimated on the basis of the training sample t. For continuous problems, the

parametric paradigm is adopted and these functions are assumed to belong to a

family of densities, in particular fk(x) are assumed to be d-normal with mean

vector μk and covariance matrix Σd.

For discrete problems the most natural model is to assume that the group

conditional probabilities fk(x) where x ∈ {0, 1}d are multinomial probabilities.

(For simplicity, the discrete variables are supposed to be binary variables.)

In this case, the group conditional probabilities are estimated by the observed

frequencies in the training set t. Goldstein and Dillon [14] call this model the

full multinomial model (FMM). One way to deal with the curse of dimensionality

consists of reducing the number of parameters to be estimated. The first-order

independence model (FOIM) assumes that the d binary variables are independent

in each group Gk ([14]).

In many situations M different classifiers are in competition for the same

problem and one of those classifiers is selected, based on some validation criterion.

Acting in such a way, leads to reject several classifiers for which the parameters

have been estimated. Besides, misclassified objects can be different for the dif-

ferent classifiers. Thus, those classifiers may contain useful information about

the supervised classification problem, and this information is lost by selecting a

unique classifier. The idea of combining models is present in a growing number

of papers, hoping to obtain a more robust and more stable model than any of the

competing models ([27], [35], [36], [4], [7], [20], [29] and [25] are examples of such

papers).
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The aim of this paper is to gather and extend combining methods previously

presented ([9], [10], [32] and [34]) and to assess their performances from numerical

comparisons on real data set.

In this paper, two ways of combining classifiers, called serial combination

method and hierarchical combination method, are considered on the basis of

numerical experiments on real data sets. For serial combination, a convex linear

combination of M models is considered

(1.1)
∑
m

cm(x)βm , βm≥0,
∑
m

βm =1, m=1, ...,M ,

where cm(x) indicates the output of model m. Usually, this output is the group

conditional probabilities functions fm
k (x), k= 1, ...,K, or the posterior probabi-

lities pm
k (x)

(1.2) pm
k (x) =

πk f
m
k (x)∑

g

πgfm
g (x)

, g, k=1, ...,K, m=1, ...,M ,

or sometimes the membership estimation zm(x). To define the combining coef-

ficients βm, two strategies are possible: a single coefficient is associated to each

model m (βm is then a scalar) or K coefficients are associated to each model (βm is

then K-dimensional). The latter strategy can be thought of as attractive because

it allows to choose a coefficient by model and by group. It means that it would

be possible to weight differently the groups in the same combination of models.

In fact, many numerical experiments on both real and simulated data ([33] and

[10]) showed that this strategy produce awkward combining vectors. Moreover,

in discrete problems, the training data sets are most often small in regard to

the number of parameters to be estimated, and it is difficult to estimate several

combining coefficients per model in a reliable way ([33]). A better strategy is to

consider a single coefficient for each model. This strategy produces more stable

and more interpretable combined models.

The methods that estimate a single coefficient per model are grouped ac-

cording two different approaches based on least squares minimisation or on likeli-

hood maximisation. In this work several methods have been considered according

both approaches. Those methods are the committee of methods, which is a least

squares minimisation technique and the other ones are based on likelihood ratios.

Hierarchical combining is different in spirit. It applies on polychotomous

classification problems with K>2 groups and leads to nested models. Attention

is focused on a method of combining models by a hierarchical coupling method

related to an approach of Friedman [13]. This method is reducing the multigroup

problem into several two-group problems. The hierarchical combined model is

structured into a binary tree where each branch is associated to a model or a

combination of models and a dichotomy between groups to be classified ([32],

[34] and [9]).
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The paper is organized as follows. In Section 2, the models in compe-

tition for both continuous and discrete classification problems are presented.

In Section 3, the different convex combining strategies are described. Committee

of methods and Likelihood ratios combining methods are presented in this sec-

tion. Section 4 is devoted to the presentation of Hierarchical combining. Section 5

is concerned with the presentation of numerical experiments. The performances

of combining models are compared on both discrete and continuous problems.

For continuous data problems, serial and hierarchical combining methods are

evaluated separately. Thus, when using hierarchical coupling, at each tree level

only one model is chosen. For qualitative data problems, when using hierarchi-

cal combination at each node of the tree, a serial combination of models can be

considered. Two sections, one about computer programs (Section 6) and another

with a short discussion (Section 7) ends the paper.

2. CONTINUOUS AND DISCRETE CLASSIFIERS

In continuous supervised classification problems for assessing combining

classification methods, the fourteen Gaussian models of EDDA ([3]) have been

considered. Defined in the Gaussian setting, each group conditional probability

function is supposed to be a d-dimensional Gaussian distribution with vector

mean μk and covariance matrix Σk.

EDDA makes use of the variance matrix eigenvalue decomposition Σk =

λk DkAkD
T
k where λk = |Σk|1/d, Dk is the eigenvector matrix of Σk and Ak is

a diagonal matrix such that |Ak| = 1, with the normalised eigenvalues of Σk on

the diagonal in a decreasing order. This decomposition can lead to parsimonious

and versatile models. Parameter λk denotes the volume of the k-th group, Ak its

shape and Dk its orientation. Different assumptions on those parameters lead to

fourteen models pooled into three families: eight elliptical models, four diagonal

models and two spherical models. The eight elliptical models are[
λDADT

]
,
[
λk DADT

]
,
[
λDAkD

T
]
,
[
λk DAkD

T
]
,[

λDkADT
k

]
,
[
λk DkADT

k

]
,
[
λDkAkD

T
k

]
,
[
λk DkAkD

T
k

]
.

The absence of subscript k means that the parameter at hand has a fixed value

over the groups and its presence that the parameter is free over the groups.

For instance, models [λDADT ] and [λk DkAkD
T
k ] are respectively, the linear

discriminant analysis model and the quadratic discriminant analysis model.

Assuming that Σk are diagonal lead to the simplification Σk = λkBk, where Bk

is a diagonal matrix where |Bk|=1. The four diagonal models are: [λB], [λkB],

[λBk], [λkBk]. The spherical models are [λI], [λkI], I denoting the identity matrix.

For each model, parameters Dk, Ak or Bk and λk are estimated by maximizing

the likelihood ([3]).
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The output that has been considered for model m, in continuous combin-

ing context, is the posterior group probabilities pm
k (x) ([10]). In the hereunder

considered examples, those probabilities have been derived by (1.2), where the

prior probabilities πk have been replaced with nk/n (nk is the number of units

from Gk in the training set t).

In discrete problems, only two reference models have been considered. They

are the full multinomial model (FMM) and the first order independence model

(FOIM). Those two models are expected to provide different classifiers in many

circumstances. In the full multinomial model (FMM) the conditional probabilities

are estimated with the observed frequencies

(2.1) fk(x) =
N(x | k)
nk

, k=1, ...,K ,

where N(x | k) is the number of observations of the training sample, belonging

to Gk, for which state x occurs. This model involves 2d−1 parameters in each

group. Hence, even for moderate d, not all of the parameters are identifiable.

Since data sets are small or very small in regard to the number of proba-

bilities to be estimated, a problem of sparseness is encountered and some of the

multinomial cells may have no data in the training sets. Thus smoothing the

observed frequencies is desirable. Hand [16] has noticed that the choice of the

smoothing method is not very important so that computationally less demanding

methods may be used. Thus the observed frequencies are smoothed using a single

smoothing parameter λ (0<λ≤ 1) and the conditional densities takes the form

(we omit the index k for simplicity)

(2.2) f(x |λ) =
1

n

∑
i

λd−‖x−xi‖ (1− λ)‖x−xi‖ , i=1, ..., n .

When λ = 1.00 no smoothing is proceeded and the amount of smoothing is in-

creasing as λ decreases to 0. This method will be called KERNEL in the sequel.

The first-order independence model (FOIM) assumes that the d binary

variables are independent in each group Gk, k=1, ...,K. Then, the group proba-

bility function is of the form
∏

j f(xj |Gk), j=1, ..., d, and is estimated by

(2.3) f I
k (x) =

∏
j

N(xj | k)
nk

,

where nk = �Gk and N(xj | k) = �{y∈Gk : yj =xj}. In this model the number

of parameters to be estimated for each group is reduced from 2d − 1 to d.

This method is simple but may be unrealistic in some situations.

The resulting serial combining classifier is using a single coefficient, pro-

ducing an intermediate model between the full multinomial model and the first

order independence model. Combining methods differ in the way this coefficient

is derived.
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3. CONVEX COMBINING STRATEGIES

3.1. Committee of methods

A natural way of deriving the coefficients βm in serial combining is minimi-

sing the fitting error using a least squares criterion. The committee of methods

introduced by Bishop [4] in the neural computing literature is such an approach.

In the committee of methods that will be considered here to get a relevant con-

vex combining of classifiers, the fit of a classifier m is measured with the group

classification probabilities, cm(x). The committee of models is of the form

(3.1) cCOM(x) =
∑
m

cm(x)βm ,

with βm > 0, m = 1, ...,M , and
∑

m βm = 1. Writing cm(x) as

(3.2) cm(x) = c(x) + em(x) ,

where c(x) is the true group probabilities vector and em(x) represents the vector

error of model m, leads to

(3.3) cCOM(x) = c(x) +
∑
m

em(x)βm .

Defining C the error correlation matrix of the models whose general term

is

(3.4) Cml = E
[
em(X) el(X)

]
, m, l = 1, ...M ,

E denoting the expectation under the true distribution of the training dataset,

the committee of methods consists of minimizing the error Er =
∑

m

∑
l βmβlCml

under the constraint that the positive coefficients β are summing to one. Using

standard Lagrangian manipulation leads to

(3.5) βm =

∑
l

(C−1)ml∑
m

∑
l

(C−1)ml

.

The correlation error matrix can be estimated by plug-in empirical values

(3.6) Ĉml =
1

n

∑
i

(
yi − cm(xi)

) (
yi − cl(xi)

)T
.

This formula means that in a natural way, the error vector em(xi) is estimated

with

(3.7) êm(xi) =
(
êkm(xi) = yk

i − ckm(xi)
)
.
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3.2. Likelihood ratios

LeBlanc and Tibshirani [20] presented an interesting combination method

by likelihood ratios although they did not experiment it. It consists of choosing

the combining coefficients as the ratio of the likelihood for model m over the sum

of all models likelihoods,

(3.8) βm =
Lm(θ,x)∑
l

Ll(θ,x)
,

where, recalling that yik is the k-th coordinate of the indicator vector giving the

label of unit i,

Lm(θ,x) =
∏

i

∏
k

[
fm

k (xi)πk

]yik .

In the discrete case the single coefficient β is

(3.9) βm =
LI

LI + LM

,

where LI , LM represents the likelihood for the FOIM and the FMM models,

respectively.

Since the likelihood increases with the model complexity, this weighting

strategy will favour more complex models. Thus, it could be preferable to propose

penalized versions of likelihood ratios.

A natural penalisation is inspired from Akaike Information Criterion (AIC)

([1]). Denoting νm the number of independent parameters of model m, the AIC

criterion is AIC = −2 ln(Lm(θ,x))+2 νm and it leads to the combining coefficients

(3.10) βm =
Lm(θ,x) exp{−νm}∑
l

Ll(θ,x) exp{−νl} .

In the discrete case, it takes the form

(3.11) βm =
LI exp{−Kd}

LI exp{−Kd}+ LM exp{−K(2d−1)} ,

because Kd and K(2d−1) are respectively the number of independent parameters

for the FOIM and the FMM models.

Remark that in the discrete case, it appears that the likelihood ratio stra-

tegy derived from AIC leads always to a single coefficient with value one or zero

and so this strategy is useless because it leads to a single model, FOIM or FMM

(see [34]).
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Another possibility, in the Bayesian model averaging spirit ([23] and [29]),

is to base the combining weights on integrated likelihood ratios. The integrated

or marginal likelihood for model m is

(3.12) L(x |m) =

∫
Lm(θ,x) p(θm) dθm ,

where p(θm) is a prior probability distribution on θm.

Unfortunately, in most continuous cases, integral (3.12) is difficult to calcu-

late. Kass and Wasserman [18] and Raftery [29] showed that integrated likelihood

can be approximated using BIC criterion of Schwarz ([31]). This approximation

leads to the combining coefficient for model m

(3.13) βm =
Lm(θ,x)n−0.5 νm∑
Ll(θ,x)n−0.5 νl

.

In the discrete context, it is possible to get exact calculation of inte-

gral (3.12). In the non informative Bayesian setting, the prior distribution of

FOIM parameters p(ak
j ), k=1, ...,K, j=1, ..., d, are non informative Jeffreys

distribution B(1/2, 1/2) and prior distribution of FMM parameters p(bkh),

k=1, ...,K, h=1, ..., s, where s is the number of states, is a non informative

distribution of Jeffreys D(1/2, 1/2, ..., 1/2). From which, it follows directly that

integrated likelihood for FOIM and FMM are

LI(x) =

∏
k

∏
j

B
(
x

j
k + 0.5nk − xj

k + 0.5
)

B(0.5, 0.5)kd
,(3.14)

and

LM (x) =

Γ(s/2)k
∏
k

∏
h

Γ
(
0.5 + chk

)
Γ(1/2)ks

∏
k

Γ
(
s/2 + nk

) ,(3.15)

where chk is the number of objects of group Gk with state h. And, the resulting

combining coefficient β is estimated by

(3.16) β =
LI(x)

LM (x) + LI(x)
.

4. HIERARCHICAL COMBINING

When the number of groups K to be discriminated is greater than two, as

noted in Friedman [13], it can be advantageous to consider the polychotomous

classification problem as a sequence of two group classification problem to get

classifiers easier to be estimated and to be interpreted. Friedman proposed to
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decompose the K groups in all possible combinations of pairs of groups. For each

pair of groups, a classifier is designed. The overall classifier is derived from all

the pairwise classifiers by a majority vote.

The strategy we now present is different. A polychotomous problem is

decomposed into several dichotomous problems but the dichotomous problems

are nested in a hierarchical binary tree. It is the reason why this strategy is

called hierarchical coupling. Let G = {G1, ..., GK} be the set of groups. Consider

a partition of G in two elements. At this level the best two class partition of

groups is designed according to some criterion and the model or combination of

models leading to the two class classifier minimizing the cross validated error rate

between the two classes is designed. According to the sample size of the learning

sample, leave one out or v-fold cross validation is considered. If available, it is

also possible to assess the error rate with a test sample.

The procedure is repeated until all the elements in the actual partition are

single groups. The combining classifier obtained from this hierarchical coupling

procedure can be represented in a hierarchical tree as exemplified in Figure 1.

�

�����

�������	��
�

�������	����

�������	����

���
� ����� �����

Figure 1: Example of hierarchical combined model
for a four group problem.

The classifier depicted in Figure 1 is as follows. When a new observation

is presented to the hierarchical classifier it passes through model A that classifies

it in G1 or G2 ∪G3 ∪G4. If model A classifies the observation in G1 the analysis

is stopped. Otherwise, the observation passes through model B and the decision

is G4 or G2 ∪ G3. If model B does not classify the observation in G4 it passes

finally through model C that assigns the observation to G2 or G3.

In order to choose, at each level, the best model or combination of models

and the best partition, different strategies for continuous and discrete problems

are employed.
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In continuous data context, it was proceeded as follows:

1. For each possible binary partition all M models are estimated (at the be-

ginning level there are M(2K−1−1) couples (model, partition)).

2. From those couples, the one providing the lowest misclassification error rate

(ME) is chosen. In all the experiments, ME is evaluated by leave one out

cross validation.

In the discrete case, the hierarchical coupling procedure is somewhat

different.

1. At each level of the binary tree, the choice of the two-class decomposition of

groups among the 2K−1−1 possible decomposition is done by minimizing

the basic affinity coefficient ([24] and [2]) between the two classes of groups:

Denoting F1 ={pj} and F2 ={qj}, j=1, ..., d, two discrete distributions

defined on the same space, the affinity coefficient between F1 and F2 is

given by ρ(F1F2) =
∑

j

√
pj
√
qj . Then the two classes of groups minimiz-

ing the affinity coefficient are selected.

2. After the two classes of groups have been chosen, the combining model is

chosen by minimizing the error rate evaluated on a test sample or by v-fold

cross validation.

Consider the example for a four group problem:

�

�����

������
��

���������

������
�

���
� ����� �����

Figure 2: Example of hierarchical combined model for a four group dis-
crete problem with the basic affinity coefficient values displayed.

It can be noticed that hierarchical combining method leads often to simple

models at each step. From this point of view, it can lead to easily interpretable

and stable decision rules, avoiding unnecessary complicated models.
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5. RESULTS ON REAL DATA

In continuous context, combining methods have been applied on benchmark

real datasets. Four of them were taken from the Machine Learning Repository of

California University [5] (MLR), one from the Oxford University Repository [26]

(OR) and another one from [15] (Hab). Table 1 provides a brief description of

each dataset and their source.

Table 1: Continuous datasets description.

Nb Nb Nb
Dataset Source Description of of of

units features groups

Presence/absence of liver
disorders that might arise

Bupa MLR from excessive alcohol 345 6 2
consumption, measured by

blood tests

Morphology of two species,
Crabs OR blue and orange, by sex, 200 5 4

of Australian crabs

Survival of patients
Haberman MLR who had undergone surgery 306 3 2

for breast cancer

Haemo Hab
Presence of haemophilia

75 2 2
on women

Iris MLR

Measurements on the sepal

150 4 3
and petal iris to

determine iris specie
(the famous Fisher dataset)

Medical records to
Thyroid MLR predict the type of 215 5 3

patients thyroidism

In discrete context, several real and simulated binary datasets were used

to evaluate the performance of the considered strategies. Table 2 gives a brief

description of each real dataset.
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Table 2: Discrete datasets description.

Nb Nb Nb
Dataset Source Description of of of

units features groups

Medical
Data

Presence/absence of four
[30] symptoms liver disorders to 20 4 2

predict the type of icterus

Psycho- Scores obtained for each older
logical adult in the six dimensions of
Data [11] the Psychological Well-Being 80 6 2

in older Scale taken as binary data
people into two groups

Psycho-
logical
Data

[28]

Six binary variables of a psycho-

34 6 3
logical test — Rorschach test —

in 3 groups with different
degrees of alexithymia

Psycho-
logical
Coun-
selling
Career
Data

[21]

Students of four
licenciature’s: Vocational
Biology (B), Identity (VI) 600 6 4

Psychology (P), with 6 items
Language and

Literature (LL),
Occupational
Information

(OI)
with 4 items

Engineering (E),
described by the 600 4 4

Psychological
Questionnaire —
My Vocational

Barriers (B)
with 4 items

600 4 4
Situation — that
is organised in
three scales

5.1. Performance of serial combining techniques

The continuous case

Because several of the fourteen EDDA models lead to similar classifiers,

combining all of them is useless. The more different models have been determined

from the Correspondence Analysis of the fourteen models involved in EDDA

described with their posterior densities pm
k (x) (see Brito [9]). For each dataset,

the chosen models are given in Table 3.



214 Isabel Brito, Gilles Celeux and Ana Sousa Ferreira

Table 3: EDDA models chosen for each dataset by a Correspondence Analysis.

Dataset Chosen models

Bupa
[
λB
]
,
[
λkB
]
,
[
λI
]
,
[
λkI
]

Crabs
[
λDADT

]
,
[
λI
]

Haberman
[
λDkADT

k

]
,
[
λBk

]
,
[
λI
]

Haemo
[
λDADT

]
,
[
λkDADT

]
,
[
λI
]

Iris
[
λB
]
,
[
λI
]

Thyroid
[
λB
]
,
[
λI
]

Serial combining methods were evaluated by leave-one-out cross validated

misclassification error rate (ME). The purpose is to compare combining tech-

niques opposite to single model techniques. In Tables 4 to 5, ME on each database

are presented and compared with ME of model chosen with the standard EDDA

strategy.

Table 4: Model and ME for each dataset using the committee of methods
technique and EDDA.

Dataset
Committee of methods EDDA

Model ME Model ME

Bupa .79
[
λB
]
+ .21

[
λI
]

.3971
[
λB
]

.4000

Crabs
[
λDADT

]
.5000

[
λI
]

.0500

Haberman .4
[
λDkADT

k

]
+ .6
[
λI
]

.2549
[
λBk

]
.2516

Haemo
[
λDADT

]
.1600

[
λDADT

]
.1467

Iris .82
[
λB
]
+ .18

[
λI
]

.0400
[
λB
]

.0400

Thyroid .73
[
λB
]
+ .27

[
λI
]

.0930
[
λB
]

.0977

For Bupa and Thyroid datasets, misclassification error rate is slightly

better using the committee of methods technique. Bupa dataset contains infor-

mation on the presence or absence of liver disorders caused by excessive alcohol

consumption. Thyroid dataset resumes medical records in order to predict pa-

tient type of thyroidism. In both cases, the diagonal model [λB] is the model

chosen with EDDA method. And, in both cases, the committee of methods tech-

nique proposes combining that model to the spherical model [λI]. The resulting

shrunk model gives somewhat better predictions than the diagonal model alone.
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Haberman dataset describes survival of women who had undergone surgery to

remove breast cancer. Haemo illustrates the presence or absence of haemophilia

on women. For those two datasets, EDDA strategy is slightly better than the

application of committee of methods. In the other hand, for Crabs dataset which

describes the morphology of males and females of two species of Australian crabs

and for the famous Fisher dataset Iris, both EDDA and committee of meth-

ods lead to the same misclassification error. For two of the six examples, the

Crabs and Haemo datasets, the committee of methods technique, lead to a

single model, the linear discriminant analysis model, and for all other datasets a

combination of models was selected.

Table 5: Model and ME for each dataset using the penalised likelihood ratios
technique and EDDA.

Dataset
Penalised likelihood EDDA

Model ME Model ME

Bupa
[
λBk

]
.4000

[
λB
]

.4000

Crabs
[
λDADT

]
.5000

[
λI
]

.0500

Haberman
[
λBk

]
.2516

[
λBk

]
.2516

Haemo .32
[
λDADT

]
+ .68

[
λkDADT

]
.1600

[
λDADT

]
.1467

Iris
[
λB
]

.0400
[
λB
]

.0400

Thyroid
[
λB
]

.0977
[
λB
]

.0977

Using the penalised likelihood ratios technique did not produce improved

performances on those datasets. The only case where it did not select a single

model, for dataset Haemo, it provided a slightly higher misclassification error

rate.

The discrete case

Since our samples are small the performance of the serial combining me-

thods were evaluated by v-fold cross validation(ME). In Table 6, ME obtained

on dataset Psychological Data in older people using the committee of meth-

ods technique and single models are compared. The performances of the classi-

fiers have been assessed with half-sampling (two-fold cross validation error rate).

Group prior probabilities were assumed to be equal, πk = .5 (k = 1, 2).
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Table 6: Estimated error rate (half-sampling) and parameters values for the
Psychological Data in older people.

FOIM FMM KERNEL C. MET. C. MET.

Half-sampling .30 .41 .32 .25 .25

λ 1.00 .95 1.00 .95

β .555 .493

The goal of the present study is to explore the impact of playing with

pets on psychological well-being among older people [11]. So, the two groups are

constituted by 40 aged persons who have pets (group G1) and 40 aged persons

who don’t have pets (group G2).

Remark that this dataset is not very sparse (26 =64 states and 80 observa-

tions) but, even so, the lowest error rate has been obtained with the committee

of methods. The estimation obtained for β, through this strategy, is quite sta-

ble, producing a really intermediate model between the full multinomial model

and the first order independence model. Also note that this approach seems to

be no sensitive to the sparseness problem and so there is no need to smooth of

the observed frequencies (λ = 1). On the basis of this study we can conclude

that the involvement of playing with pets among older people can contribute for

psychological well-being and thus, perhaps, for a successful ageing.

The numerical experiments performed for the model CMET on simulated

binary data showed that good performances can be expected in a setting for which

sample sizes are small or very small and population structures are identical in

the two classes.

In Table 7, ME using the integrated likelihood ratio techniques and the

single models have been compared on dataset Medical Data. In that case ME

is the five-fold cross validation error rate of compared classifiers. Group prior

probabilities were assumed to be equal, πk = .5 (k = 1, 2).

Table 7: Estimated error rate with five-fold cross-validation and parameters
values for the Medical Data.

FOIM FMM KERNEL INT. LIK. INT. LIK.

Five-fold cross-vali. .45 .55 .55 .45 .45

λ 1.00 .95 1.00 .95

β .832 .985



Combining Methods in Supervised Classification 217

In this study, the goal is to predict the type of icterus, since it’s not easy to

make a diagnosis on the basis of liver disorders. Integrated likelihood ratio tech-

nique and FOIM provide the same performance for this dataset. The numerical

experiments performed for this strategy on simulated binary data have shown

that good performances can be expected with this technique in a moderate or

large sample setting ([34]). In this small dataset setting (20 patients) it is no

surprising that this method does not improve the performance since it involves

the evaluation of an additional parameter β.

5.2. Assessing the performance of hierarchical combining

The continuous case

Hierarchical combining concerns only datasets with more than two groups.

It has been assessed on Crabs, Iris and Thyroid datasets. All the fourteen

models of EDDA were employed to get the hierarchical model. Hierarchical com-

bining and EDDA methods are compared in Table 8.

Hierarchical combining concerns only datasets with more than two groups.

It has been assessed on Crabs, Iris and Thyroid datasets. All the fourteen mod-

els of EDDA were employed to get the hierarchical model. Hierarchical combining

and EDDA methods are compared in Table 8. As it can be seen from Table 8,

the classification error rates of hierarchical methods and EDDA are quite similar.

Here the interest of hierarchical coupling lies essentially in its ability to choose

different models at each step of the classification procedure. Thus it can provide

more subtle and interpretable results. For instance, for Iris dataset, it shows at

a glance that the Setosa group can be easily separated from the two other groups

with the simplest model
[
λI
]
. On the contrary, for Thyroid dataset, it appears

that separating the “hyper” group from the other groups needs a more complex

model than separating the normal group from the “hypo” group.

Hierarchical coupling model for Crabs dataset is also appealing. At the

first level, the linear model
[
λDADT

]
splits the Blue and Orange species.

At the second level, males and females are separated inside each species. For

Blue crabs, hierarchical coupling selects an elliptical model allowing for class of

males and class of females to have different orientations
[
λDkADT

k

]
. For Orange

Crabs, an elliptical model
[
λDAkD

T
]

is preferred which differentiates the shape

of males and females classes.

In contrast with EDDA strategy which selects
[
λDkADT

k

]
for separate the

four groups, hierarchical coupling is less strict, proposing more adequate models
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at the different levels. Only Blue males and females need the
[
λDkADT

k

]
model

to be separated, less complex models being proposed to distinguish other groups.

Table 8: Model and ME for each dataset using the hierarchical coupling
technique and EDDA.

Dataset
Hierarchical coupling EDDA

Model ME Model ME

Crabs

�

��	�����	��

��������
���

�����������

���	�������	�� ����� !����	������ !������	��

����������

.045
[
λDkADT

k

]
.045

Iris

� ��
"
�
�

�����	� 
����
����� �#$�!$ $%��

��
������

.02
[
λDADT

]
.02

Thyroid

� ���������
�
�

�������� ������� �����

����
�
�

.0372
[
λkB
]

.0326
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The discrete case

For the Psychological Data the misclassification error is assessed by half-

sampling. For the Psychological Counselling Career Data it is assessed from

a test sample. A training sample of 200 students was drawn at random and the

rest of the dataset constituted the test sample. Table 9 summarises the results

of the four methods for these datasets and the coefficients of the combination

obtained in each level of the tree.

The Psychological Counselling Career Data set consists of 600 stu-

dents of the 1st and 2nd forms of four licenciature’s degree: Biology (B), Psy-

chology (P), Language and Literature (LL) and Engineering (E). The aim of

the study is to know if those four groups of student are different regarding their

Career Information.

For the Psychological Counselling Career Data the first decomposi-

tion chosen by hierarchical coupling for the several scales, suggest that Biology

students are different from the other students in what concerns the definition

of a clear and stable picture of their goals and interests, Engineering students

revealing a distinct need for vocational information from the other students;

and the students of odd groups show individually perceived external obstacles

or limitations in pursuing occupational goals different from the students of even

groups.

Remark that this dataset is not very sparse (26 = 64 or 24 = 16 states

and 200 observations), but again the hierarchical combining method using the

integrated likelihood (HIER/IL) or committee of methods (HIER/CM) provides

markedly the lowest misclassification error rate. The results of the hierarchical

coupling provide markedly the lowest test estimates of the misclassification risk

for all scales. However, HIER performs poorly for the Barriers scale.

We noted that in some situations, particularly when the groups have very

different sizes, usual methods and even the HIER method perform poorly. More-

over, the choice of the decomposition at each level of the tree may be unrealistic.

Therefore, new developments on the hierarchical coupling approach are required

in such a situation and this is a perspective for future research on this method.

The Psychological Data set consists of 34 dermatology’s patients divided

into three groups — Nonalexithymics Group (G1), Alexithymics Group (G2),

Intermediate Group (G3) — according to the value obtained in a psychological

test (TAS-20: Twenty Item Toronto Alexithymia Scale) conceived to evaluate the

presence of alexithymia1. The goal of the study is to evaluate how alexithymia

influences personality characteristics (evaluated by another psychological test —

Rorschach test).

1Alexithymia means “no words to express emotions”.
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For the Psychological Data the first decomposition chosen by hierarchi-

cal coupling, suggests that the union of the extremes groups forms a class well-

separated from the intermediate group, since these subjects obtained balanced

scores. Since the dataset is very sparse (26 = 64 states and only 17 observations)

the hierarchical combining method using committee of methods (HIER/CM)

provides the lowest estimated error rate.

Table 9: Model and ME for two datasets using the hierarchical coupling technique.

Dataset Hierarchical coupling Model ME λ
β

1st 2nd 3rd

� �
�� �"� �� � �"� �
�
�

�
� ��

�

�� &� ''� (
�

�� &� ''� (�

�� &� ''� (�

VI Scale

FOIM .69 1

FMM .75 1

KERNEL .73 .99

HIER/CM .49 1 .51 .52 .53

HIER/CM .49 .99 .47 .47 .48

HIER/IL .38 1 .98 .99 1

HIER/IL .38 .99 1 1 1

Psycho- OI Scale

logical FOIM .66 1

Coun- FMM .66 1

selling KERNEL .65 .99

Career HIER/CM .45 1 .50 .51 .52

Data HIER/CM .46 .99 .48 .49 .49

HIER/IL .41 1 0 ≈ 0 ≈ 0

HIER/IL .38 .99 0 .02 1

B Scale

FOIM .66 1

FMM .66 1

KERNEL .65 .99

HIER/CM .50 1 .50 .52 .50

HIER/CM .50 .99 .49 .49 .49

HIER/IL .52 1 .99 .99 1

HIER/IL .52 .99 1 1 1

�

����
)	���
�*��� ��
�

���+��
�*��� ����
�,������
�*���

����
)	���
�*��� ��
�

���+��
�*��� ����
�,������
�*�����
�

���+��
�*���

1st 2nd

FOIM .53 1

FMM .71 1

Psycho- KERNEL .65 .99

logical HIER/CM .29 1 .52 .55

Data HIER/CM .29 .99 .47 .50

HIER/IL .35 1 .18 .44

HIER/IL .35 .99 .53 .78
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These results are in accordance with the numerical experiments performed

for CM and IL strategies on simulated binary data that have shown that good

performances can be expected with CM technique in a small or very small sample

setting and with IL technique in moderate or large sample setting.

6. COMPUTER PROGRAMS

The efficiency of the combining approaches presented in this paper has been

investigated on both real and simulated data. The computer programs realizing

these combining approaches were implemented by the authors and are available

from them.

The continuous case

All computer programs for the continuous case are written in Matlab R©
code. The different routines are structured as follows:

• EDDA — estimates all EDDA models and the leave-one-out cross vali-

dated misclassification error of each model;

• COMMITTEE — estimates the serial combined model by a committee

of methods strategy;

• SERIAL — estimates the serial combined model by a penalized likelihood

strategy;

• HIERARCHICAL — evaluates the combination of the models for all

possible two class of groups. It calculates the leave-one-out cross validated

misclassification error of each solution and builds the tree representation.

Run time execution is about five time more important for hierarchical cou-

pling method than for serial combining method. It means that, for most appli-

cations, it remains a reasonable method.

The discrete case

The computer programs implemented for the discrete case use FORTRAN R©
77 Language according to Microsoft FORTRAN Optimizing Compiler Version 5.0

and they use a structure in three main routines:
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• GESTAO — determines the group conditional probabilities associated to

the full multinomial model (FMM) and to the first-order independence

model (FOIM) and their estimative by cross validation;

• CALFA — determines the combining coefficient according to the chosen

combining strategy;

• CRULE — builds the new combining model and determines the error rate

evaluated on a test sample.

For the hierarchical combining, an additional routine is implemented:

• HIERQ — builds the hierarchical binary tree, using the basic affinity

coefficient.

After the selection of the two classes of groups have been chosen at each level

of the binary tree, the combining model is chosen by minimizing the error rate

evaluated on a test sample, using routines GESTAO, CALFA and CRULE.

Finally, it can be noticed that the run time execution for the hierarchical

combining is quite similar to that of the serial combining in the K=3 group case.

Otherwise, when K>3, the run time execution for the hierarchical combining

triplicate or even more, due to the necessary reorganization of the groups for the

evaluation of the basic affinity coefficient for all possible combination of couples

of groups. However, the computational time for hierarchical combining remains

quite reasonable and cannot be regarded as a drawback of this approach.

7. DISCUSSION

It is worth noticing that the combining methods that were considered in

this paper are of different nature than other combining or ensemble methods.

For example, Bagging and Boosting methods which are very efficient to improve

unstable classifiers are committee-based approaches in which a single classification

algorithm is applied to repeatedly modified versions of the data ([7], [8], [12], [17]-

chapter 10). On the contrary the combing methods we considered are combining

several methods but do not modified the weights of the data. On an other hand,

the CRUISE ([19]) and QUEST ([22]) methods are classification tree algorithms

different of the hierarchical combining methods we considered because the tree

we designed is not a classification tree.

Many combining methods of classification have been considered in different

contexts from a practical point of view. The main conclusions of this compa-

rative experimental study are the following. Convex combining appears to be

disappointing in the continuous case. In that case, at best, they lead to the same
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error rate obtained with the better single model. Moreover, they often prefer a

single model to a combination of several models. Convex combining appears to

be more efficient to propose a good compromise between FMM and FOIM models

in discrete data context. Maybe the reason for this more satisfactory behaviour

is that FMM and FOIM are quite different models.

On the contrary hierarchical coupling seems to be a promising technique of

combining classification methods when more than two groups are to be classified.

In different contexts, hierarchical coupling leads to a substantial improvement

of the misclassification error rate and its easily interpretable representation is

appealing. It provides original and parsimonious classification rules. An interest-

ing perspective would be to explore all possible hierarchical coupling solutions.

This is feasible when the number of groups is less than five. Otherwise, a branch

and bound algorithm could be considered in order to search for the optimal tree

solution in a reasonable time.

Finally, it can be noticed that there is a huge literature on combining models.

For instance Bayesian Model Averaging (BMA) (see [23] or [29], among many

others) has received a lot of attention. However, the practical implementation of

Bayesian Model Averaging is far from being simple especially in the continuous

case. Finally, we want to cite the interesting theoretical study of Yang ([37])

which proves that combining models cannot be expected to outperform an opti-

mal single method for large samples.
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1. INTRODUCTION

In this paper we deal with semi-parametric estimators of the tail index γ

and high quantiles χp, which enjoy desirable properties in the presence of linear

transformations of the available data. We recall that a high quantile is a value

exceeded with a small probability. Formally, we denote by F the heavy-tailed

distribution function (d.f.) of a random variable (r.v.) X, the common d.f. of the

i.i.d. sample X := {Xi}n
i=1, for which the high quantile

(1.1) χp(X) := F←(1− p) , p = pn→ 0, as n→∞ , n pn → c ≥ 0 ,

has to be estimated. Here F←(t) := inf{x : F (x) ≥ t} denotes the generalized

inverse function of F .

We consider estimators based on the k + 1 top order statistics (o.s.),

Xn:n ≥ ··· ≥ Xn−k:n, where Xn−k:n is an intermediate o.s., i.e., k is an inter-

mediate sequence of integers such that

(1.2) k = kn →∞ , kn/n→ 0, as n→∞ .

We assume that we are working in a context of heavy tails, i.e., γ > 0 in the

extreme value distribution

(1.3) Gγ(x) =

{
exp
{−(1 + γ x)−1/γ

}
, 1 + γ x > 0, γ �= 0

exp
(−e−x

)
, x ∈ R, γ = 0 ,

the non-degenerate d.f. to which the maximum Xn:n is attracted, after a suitable

linear normalization. When this happens we say that the d.f. F is in the Fréchet

domain of attraction and we write F ∈ D(Gγ)γ>0.

The paper is developed under the first order regular variation condition,

which allows the extension of the empirical d.f. beyond the range of the available

data, assuming a polynomial decay of the tail. This condition can be expressed

by

(1.4) F ∈ D(Gγ)γ>0 iff F := 1−F ∈ RV−1/γ iff U ∈ RVγ ,

where U is the quantile function defined as U(t) := F←(1−1/t), t≥1; the nota-

tion RVα stands for the class of regularly functions at infinity with index of regular

variation α, i.e., positive measurable functions h such that lim
t→∞

h(tx)/h(t) = xα,

for all x > 0.

It is interesting to note that the p-quantile can be expressed as χpn
=

U(1/pn).
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To get asymptotic normality of estimators of parameters of extreme events,

it is usual to assume the following extra second regular variation condition, that

involves a non-positive parameter ρ:

(1.5) lim
t→∞

U(tx)/U(t)− xγ

A(t)
= xγ x

ρ − 1

ρ
,

for all x > 0, where A is a suitably chosen function of constant sign near infinity.

Then, |A| ∈ RVρ and ρ is called the second order parameter (Geluk and de Haan,

1987). For the strict Pareto model, with tail function F (x) = (x/C)−1/γ and

quantile function U(t)=Ctγ , U(tx)/U(t) − xγ ≡ 0. We then consider that (1.5)

holds with A(t) ≡ 0.

More restrictively, we might consider that F belonged to the wide class of

Hall [11], that is, the associated quantile function U satisfies

(1.6) U(t) = Ctγ
(
1+Dtρ +o(tρ)

)
, ρ<0, C>0, D∈R, as t→∞ ,

or equivalently, (1.5) holds, with A(t)=Dρtρ. The strict Pareto model appears

when both D and the remainder term o(tρ) are null.

Returning to the problem of high quantile estimation, we recall the classical

semi-parametric Weissman-type estimator of χpn
(Weissman, 1978),

(1.7) χ̂pn
= χ̂pn

(X) = Xn−kn:n

(
kn

npn

)̂γn

,

with γ̂n = γ̂n(X) some consistent estimator of the tail parameter γ.

In the classical approach one considers for γ̂n the well known Hill estimator

(Hill, 1975),

(1.8) γ̂H
n = γ̂H

n (X) =
1

kn

kn∑
j=1

log
Xn−j+1:n

Xn−kn:n
,

or the Moment estimator (Dekkers et al., 1989),

(1.9) γ̂M
n = γ̂M

n (X) = M (1)
n + 1− 1

2

{
1−
(
M

(1)
n

)2
M

(2)
n

}−1

,

with M
(r)
n , the r-Moment of the log-excesses, defined by

(1.10) M (r)
n = M (r)

n (X) =
1

kn

kn∑
j=1

(
log

Xn−j+1:n

Xn−kn:n

)r

, r = 1, 2 .

We use the following notation:

(1.11) χ̂H
pn

= Xn−kn:n

(
kn

npn

)̂γH
n

, χ̂M
pn

= Xn−kn:n

(
kn

npn

)̂γM
n

.
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Finally, we explain the question that motivated this paper. It is well known

that scale transformations to the data do not interfere with the stochastic be-

haviour of the tail index estimators (1.8) and (1.9), i.e., we can say that they

enjoy scale invariance. The incorporation of (1.8) or (1.9) in the Weissman-type

estimator in (1.7), allows us to obtain the following desirable exact property for

quantile estimators: for any real positive δ,

(1.12) χ̂pn
(δX) = δXn−kn:n

(
kn

npn

)̂γn

= δ χ̂pn
(X) .

But we want a similar linear property in the case of location transformations to

the data, Zj :=Xj +λ, j=1, ..., n, for any real λ. That is, our main goal is that,

for the transformed data Z := {Zj}n
j=1, the quantile estimator satisfies

(1.13) χ̂pn
(Z) = χ̂pn

(X) + λ .

Altogether, this represents the empirical counterpart of the following theoretical

linear property for quantiles,

(1.14) χp(δX+λ) = δχp(X) + λ , for any real λ and real positive δ .

Here we present a class of high quantile-estimators for which (1.12) and (1.13)

hold exactly, pursuing the empirical counterpart of the theoretical linear property

(1.14). For a simple modification of (1.7) that enjoys (1.13) approximately, see

Fraga Alves and Araújo Santos (2004). For the use of reduced bias tail index

estimation in high quantile estimation for heavy tails, see Gomes and Figueiredo

(2003), Matthys and Beirlant (2003) and Gomes and Pestana (2005), where the

second order reduced bias tail index estimator in Caeiro et al. (2005) is used for

the estimation of the Value at Risk.

1.1. The class of high quantile estimators under study

The class of estimators suggested here is function of a sample of excesses

over a random threshold Xnq :n,

(1.15) X(q) :=
(
Xn:n−Xnq :n, Xn−1:n−Xnq :n, ..., Xnq+1:n−Xnq :n

)
,

where nq := [nq]+1, with:

• 0<q<1, for d.f.’s with finite or infinite left endpoint xF := inf{x : F (x)>0}
(the random threshold is an empirical quantile);

• q = 0, for d.f.’s with finite left endpoint xF (the random threshold is the

minimum).
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A statistical inference method based on the sample of excesses X(q) defined in

(1.15) will be called a PORT -methodology, with PORT standing forPeaks Over

Random Threshold. We propose the following PORT-Weissman estimators:

(1.16) χ̂(q)
pn

= (Xn−kn:n−Xnq :n)

(
kn

npn

)̂γ(q)

n

+ Xnq :n ,

where γ̂
(q)
n is any consistent estimator of the tail parameter γ, made location/scale

invariant by using the transformed sample X(q). Indeed, the incorporation in the

Adapted-Weissman estimator in (1.16), of tail index estimators, as function of

the sample of excesses, allows us to obtain exactly the linear property (1.13).

1.2. Shifts in a Pareto model

To illustrate the behaviour of the new quantile estimators in (1.16), we

shall first consider a parent X from a Pareto(γ, λ, δ),

(1.17) Fγ,λ,δ(z) = 1−
(
z − λ
δ

)−1/γ

, z > λ+δ, δ > 0 ,

with λ = 0 and γ = δ = 1. Let us assume that we want to estimate an upper

p = pn = 1
n

-quantile in a sample of size n = 500. Then, we want to estimate

the parameter χp(X) = 500. If we induce a shift λ = 100 to our data, we would

obviously like our estimates to approach χp(X+100) = 600.

In Figure 1 we plot, for the Pareto(λ, 1, 1) parents, with λ= 0 and λ= 100

and for q= 0 in (1.15), the simulated mean values of the Weissman and PORT-

Weissman quantile estimators based on the Hill, denoted χ̂H
p and χ̂

H(q)
p , respec-

tively. These mean values are based on N= 500 replications, for each value k,

5≤ k≤ 500, from the above mentioned models.

Similarly to the Hill horror plots (Resnick, 1997), associated to slowly vary-

ing functions L
U
(t) = t−γ U(t), we also obtain here Weissman–Hill horror plots

whenever we induce a shift in the simple standard Pareto model. Indeed, for

a standard Pareto model (λ = 0 in (1.17)), Weissman type estimators in (1.7)

perform reasonably well, with γ̂n = γ̂H
n . However, a small shift in the data may

lead to disastrous results, even in this simple and specific case. For the PORT-

Weissman estimates, the shift in the quantile estimates is equal to the shift

induced in the data, a sensible property of quantile estimates. Figure 1 also illus-

trates how serious can be the consequences to the sample paths of the classical

high quantile estimators, when we induce a shift in the data, as suggested in

Drees (2003). We may indeed be led to dangerous misleading conclusions, like

a systematic underestimation, for instance, mainly due to “stable zones” far away

of the target quantile to be estimated.
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Figure 1: Mean values of χ̂H
pn

and χ̂
H(0)

pn
, pn = 0.002 for samples of size n=500

from a Pareto(1, 0, 1) parent (target quantile χpn
= 500) and from the

Pareto(1, 100, 1) (target quantile χpn
= 600).

1.3. Scope of the paper

As far as we know, no systematic study has been done concerning asymp-

totic and exact properties of semi-parametric methodologies for tail index and

high quantile estimation, using the transformed sample in (1.15). Somehow re-

lated with this subject, Gomes and Oliveira (2003), in a context of regularly

varying tails, suggested a simple generalization of the classical Hill estimator

associated to artificially shifted data. The shift imposed to the data is determin-

istic, with the aim of reducing the main component of the bias of Hill’s estimator,

getting thus estimates with stable sample paths around the target value. A pre-

liminary study has also been carried out, by the same authors, replacing the

artificial deterministic shift by a random shift, which in practice represents a

transformation of the original data through the subtraction of the smallest ob-

servation, added by one, whenever we are aware that the underlying heavy-tailed

model has a finite left endpoint.

With the purpose of tail index and high quantile estimation there is, in our

opinion, a gap in the literature regarding classical semi-parametric estimation

methodologies adapted for shifted data, the main topic of this paper.

In Section 2, we derive asymptotic properties for the adapted Hill and

Moment estimators, as functions of the sample of excesses (1.15). In Section

3, we propose two estimators for χp that belong to the class (1.16) and prove

their asymptotic normality. In Section 4, and through simulation experiments,

we compare the performance of the new estimators with the classical ones.

Finally, in Section 5, we draw some concluding remarks.
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2. TAIL INDEX PORT-ESTIMATORS

For the classical Hill and Moment estimators, we know that for any interme-

diate sequence k as in (1.2) and under the validity of the second order condition

in (1.5),

γ̂H
n

d
= γ +

γ√
k
PH

k +
A(n/k)

1−ρ
(
1 + op(1)

)
(2.1)

and

γ̂M
n

d
= γ +

√
γ2 +1√
k

PM
k +

(
γ(1−ρ) + ρ

)
A(n/k)

γ(1−ρ)2
(
1 + op(1)

)
,(2.2)

where PH
k and PM

k are asymptotically standard normal r.v.’s.

In this section we present asymptotic results for the classical Hill estimator

in (1.8) and the Moment estimator in (1.9), both based on the sample of excesses

X(q) in (1.15), which will be denoted respectively, by

(2.3) γ̂H(q)
n := γ̂H

n

(
X(q)
)

and γ̂M(q)
n := γ̂M

n

(
X(q)
)
, 0≤ q < 1 .

In the following, χ∗q denotes the q-quantile of F : F (χ∗q) = q (by convention

χ∗0 := xF ), so that

Xnq :n
p−→ χ∗q , as n→∞ , for 0≤ q < 1 .

For the estimators in (2.3) we have the asymptotic distributional representations

expressed in Theorem 2.1.

Theorem 2.1 (PORT-Hill and PORT-Moment). For any intermediate

sequence k as in (1.2), under the validity of the second order condition in (1.5),

for any real q, 0 ≤ q < 1, and with T generally denoting either H or M , the

asymptotic distributional representation

(2.4) γ̂T (q)
n

d
= γ +

σ
T√
k
P T

k +

(
c

T
A(n/k) + d

T

χ∗q
U(n/k)

)(
1 + op(1)

)
holds, where P T

k is an asymptotically standard normal r.v.,

σ2
H

:= γ2 , c
H

:=
1

1−ρ , d
H

:=
γ

γ+1
,(2.5)

σ2

M
:= γ2 +1 , c

M
:=

γ(1−ρ) + ρ

γ(1−ρ)2 and d
M

:=

(
γ

γ+1

)2

.(2.6)
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Remark 2.1. Notice that σ2
M

= σ2
H

+1, c
M

= c
H

+ ρ
γ(1−ρ)2

and d
M

= (d
H
)2.

Consequently, σ
M
> σ

H
, c

M
≤ c

H
and d

M
< d

H
.

The proof of Theorem 2.1 relies on the the following Lemmas 2.1 and 2.2.

Lemma 2.1. Let F be the d.f. of X, and assume that the associated

U -quantile function satisfies the second order condition (1.5). Consider a deter-

ministic shift transformation to X, defining the r.v. Xq := X− χ∗q with d.f.

Fq(x)=F (x)+χ∗q and associated Uq-quantile function given by Uq(t) :=F←q (1−1/t)

= U(t)−χ∗q .

Then Uq satisfies a second order condition similar to (1.5), that is

(2.7) lim
t→∞

Uq(tx)/Uq(t) − xγ

Aq(t)
= xγ

(
xρq − 1

ρ
q

)
, for x> 0, ρ

q
≤ 0 ,

with

(2.8)
(
Aq(t), ρq

)
:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
A(t) , ρ

)
if ρ>−γ ;(

A(t)+
γχ∗q
U(t)

, −γ
)

if ρ=−γ ;(
γχ∗q
U(t)

, −γ
)

if ρ<−γ .

Proof: Under (1.5), for x > 0,

Uq(tx)

Uq(t)
=

U(tx)− χ∗q
U(t)− χ∗q

=
U(tx)

U(t)

{
1− χ∗q /U(tx)

1− χ∗q /U(t)

}

=
U(tx)

U(t)

{
1 + χ∗q

1/U(t)− 1/U(tx)

1− χ∗q /U(t)

}

=
U(tx)

U(t)

{
1 +

χ∗q
U(t)

[
1− U(t)

U(tx)

] (
1+ o(1)

)}

= xγ

{
1 +

xρ−1

ρ
A(t)

(
1+ o(1)

)}{
1 +

γχ∗q
U(t)

x−γ−1

−γ
(
1+ o(1)

)}

= xγ

{
1 +

xρ−1

ρ
A(t) +

γχ∗q
U(t)

x−γ−1

−γ + o
(
A(t)
)

+ o
(
1/U(t)

)}
.

Then Uq satisfies (2.7), for Aq and ρq defined in (2.8) and the result follows.
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Lemma 2.2. Denote by M
(r,q)
n the M

(r)
n statistics in (1.10), as functions

of the transformed sample X(q), 0≤ q < 1 in (1.15); that is,

M (r,q)
n := M (r)

n

(
X(q)
)

=
1

k

k∑
j=1

(
log

Xn−j+1:n−Xnq :n

Xn−k:n−Xnq :n

)r

, r= 1, 2 .

Then, for any intermediate sequence k as in (1.2), under the validity of the second

order condition in (1.5) and for any real q, 0≤ q < 1,

M (r,q)
n − 1

k

k∑
j=1

(
log

Xn−j+1:n− χ∗q
Xn−k:n− χ∗q

)r

= op

(
1

U(n/k)

)
, r= 1, 2 .

Proof: We will consider r = 1. Using the first order approximation

ln(1+ x) ∼ x, as x→ 0, together with the fact that Xnq :n = χ∗q
(
1+ op(1)

)
,

we will have successively

M (1,q)
n − 1

k

k∑
j=1

log
Xn−j+1:n− χ∗q
Xn−k:n− χ∗q

=

=
1

k

k∑
j=1

log
Xn−j+1:n−Xnq :n

Xn−k:n−Xnq :n
− log

Xn−j+1:n− χ∗q
Xn−k:n− χ∗q

=
1

k

k∑
j=1

log
1−Xnq :n/Xn−j+1:n

1−Xnq :n/Xn−k:n
− log

1− χ∗q /Xn−j+1:n

1− χ∗q /Xn−k:n

=
1

k

k∑
j=1

(
Xnq :n

Xn−k:n
− Xnq :n

Xn−j+1:n
+

χ∗q
Xn−j+1:n

− χ∗q
Xn−k:n

)(
1+ op(1)

)
=

Xnq :n− χ∗q
Xn−k:n

1

k

k∑
j=1

(
1− Xn−k:n

Xn−j+1:n

)(
1+ op(1)

)
=

op(1)

Xn−k:n

1

k

k∑
j=1

(
1− Xn−k:n

Xn−j+1:n

)(
1+ op(1)

)
.

Denote by {Yj}k
j=1 i.i.d. Y standard Pareto r.v.’s, with d.f. FY (y) = 1−y−1,

for y > 1 and {Yj:k}k
j=1 the associated o.s.’s.

Since Xn−k:n
d
= U(Yn−k:n), with Yn−k:n the (n−k)-th o.s. associated to an

i.i.d. standard Pareto sample of size n and
(

k
n

)
Yn−k:n

p−→ 1, for any intermediate

sequence k, then
Xn−k:n

U(n/k)

p−→ 1; this together with the fact that

{
Yn−j+1:n

Yn−k:n

}k

j=1

d
=
{
Yk−j+1:k

}k

j=1
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allow us to write

M (1,q)
n − 1

k

k∑
j=1

log
Xn−j+1:n− χ∗q
Xn−k:n− χ∗q

=

=
op(1)

U(Yn−k:n)

1

k

k∑
j=1

⎛⎝1− U(Yn−k:n)

U
(

Yn−j+1:n

Yn−k:n
Yn−k:n

)
⎞⎠(1+ op(1)

)

=
1

k

k∑
j=1

(
1− Y −γ

k−j+1:k

)
op

(
1

U(n/k)

)(
1+ op(1)

)
=

1

k

k∑
j=1

(
1− Y −γ

j

)
op

(
1

U(n/k)

)(
1+ op(1)

)
.

Now E
[
Y −γ
]
= 1

γ+1 and by the weak law of large numbers we obtain

M (1,q)
n − 1

k

k∑
j=1

log
Xn−j+1:n− χ∗q
Xn−k:n− χ∗q

=

=
γ

γ+1

(
1+ op

(
1/
√
k
))

op

(
1

U(n/k)

)
= op

(
1

U(n/k)

)
.

For r= 2 steps similar to the previous ones lead us to the result.

Remark 2.2. Note that if q ∈ (0, 1), Xnq :n− χ∗q = Op(1/
√
n) and for

r= 1, 2,
√
k
[
M

(r,q)
n − 1

k

∑k
j=1

{
log

Xn−j+1:n−χ∗q
Xn−k:n−χ∗q

}r ]
= Op

(√
k/n 1

U(n/k)

)
= op(1)

holds.

Proof of Theorem 2.1: Taking into account Lemma 2.2

γ̂H(q)
n =

1

k

k∑
j=1

log
Xn−j+1:n− χ∗q
Xn−k:n− χ∗q

+ op

(
1

U(n/k)

)
.

Now, considering the result in Lemma 2.1 and representation (2.1) adapted for

the deterministic shift data from Xq :=X− χ∗q model, we obtain the following

representation for PORT -Hill estimator

γ̂H(q)
n

d
= γ +

γ√
k
PH

k +
Aq(n/k)

1−ρ
q

(
1+ op(1)

)
+ op

(
1

U(n/k)

)
,

with Aq(t) provided in (2.8), and the result (2.4) follows with T =H.
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Similarly, considering Lemmas 2.1 and 2.2 and the representation (2.2)

adapted for the deterministic shift data from Xq :=X− χ∗q model, we obtain for

the PORT -Moment estimator the representation

γ̂M(q)
n

d
= γ+

√
γ2+1√
k

PM
k +

(
γ(1−ρ

q
)+ρ

q

)
Aq(n/k)

γ(1−ρ
q
)2

(
1+op(1)

)
+op

(
1

U(n/k)

)
,

and result (2.4) follows with T =M .

Remark 2.3. Note that if we induce a deterministic shift λ to data X

from a model F =:F0, i.e., if we work with the new model Fλ(x) := F0(x−λ), the

associated U -quantile function changes to Uλ(t) = λ+ δU0(t). Then, as expected,

(2.4) holds whenever we replace γ̂
H(q)
n by γ̂H

n |λ (the Hill estimator associated

with the shifted population with shift λ) provided that we replace χ∗q by −λ.

This topic has been handled in Gomes and Oliveira (2003), where the shift λ is

regarded as a tuning parameter of the statistical procedure that leads to the tail

index estimates. The same comments apply to the classical Moment estimator.

Corollary 2.1. For the strict Pareto model, i.e., the model in (1.17) with

λ = 0 and γ = δ = 1, the distributional representations (2.4) holds with A(t)

replaced by 0.

Under the conditions of Theorems 2.1 and with the notations defined in

(2.5) and (2.6), the following results hold:

Corollary 2.2. Let μ1 and μ2 be finite constants and let T generically

denote either H or M .

i) For γ > −ρ,

γ̂T (q)
n

d
= γ +

σ
T√
k
P T

k + c
T
A(n/k)

(
1 + op(1)

)
.

If
√
k A(n/k) → μ1, then

√
k
(
γ̂T (q)

n − γ
)

d−→
n→∞

Normal
(
μ1 cT

, σ2
T

)
.

ii) For γ < −ρ,

γ̂T (q)
n

d
= γ +

σ
T√
k
P T

k + d
T

χ∗q
U(n/k)

(
1+ op(1)

)
.

If
√
k/U(n/k) → μ2, then

√
k
(
γ̂T (q)

n − γ
)

d−→
n→∞

Normal
(
μ2 dT

χ∗q , σ
2
T

)
.
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iii) For γ = −ρ,

γ̂T (q)
n

d
= γ +

σ
T√
k
P T

k +

[
c

T
A(n/k) + d

T

χ∗q
U(n/k)

] (
1+ op(1)

)
.

If
√
k A(n/k) → μ1 and

√
k/U(n/k) → μ2, then

√
k
(
γ̂T (q)

n − γ
)

d−→
n→∞

Normal
(
μ1 cT

+ μ2 dT
χ∗q , σ

2
T

)
.

3. HIGH QUANTILE PORT-ESTIMATORS

On the basis of (1.16), we shall now consider the following estimators of χpn
,

functions of the sample of excesses over Xnq :n, i.e., of the sample X(q) in (1.15):

χ̂H(q)
pn

:=
(
Xn−kn:n−Xnq :n

)( kn

npn

)̂γH(q)

n

+ Xnq :n , 0≤ q < 1 ,(3.1)

χ̂M(q)
pn

:=
(
Xn−kn:n−Xnq :n

)( kn

npn

)̂γM(q)

n

+ Xnq :n , 0≤ q < 1 .(3.2)

For these estimators we have the asymptotic distributional representations pre-

sented in Theorem 3.1.

Theorem 3.1. In Hall’s class (1.6), for intermediate sequences kn that

satisfy

(3.3) log (npn)/
√
kn → 0 , as n→∞ ,

with pn such that (1.1) holds, then, with T denoting either H or M , (c
H
, d

H
, σ

H
)

and (c
M
, d

M
, σ

M
) defined in (2.5) and (2.6), respectively, and for any real q,

0 ≤ q < 1,

√
kn

σT log
(
kn/(npn)

) (χ̂T (q)
pn

χpn

−1

)
= P T

k +
√
kn

(
c

T
A(n/k)+d

T

χ∗q
U(n/k)

)(
1+op(1)

)
,

where P T
k is an asymptotically standard normal r.v.

Proof: From now on, we denote an := kn

npn
. With the underlying condi-

tions in (1.1), an tends to infinity, as n→∞, and the quantile to be estimated

can be expressed as

χpn
= U

(
1

pn

)
= U

(
nan

kn

)
.

We will present the proof for T =H, since for T =M the proof follows

the same steps.
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First notice that

χ̂H(q)
pn

=
(
Xn−kn:n−Xnq :n

)
aγ̂

H(q)

n
n +Xnq :n

= Xn−kn:n

[(
1− Xnq :n

Xn−kn:n

)
aγ̂

H(q)

n
n +

Xnq :n

Xn−kn:n

]
.

Now, since Xnq :n
p−→χ∗q , we have

Xnq :n

Xn−kn:n
= op(1). Then

χ̂H(q)
pn

= Xn−kn:n

[
aγ̂

H(q)

n
n

(
1+ op(1)

)]
,

which means that the proposed estimator χ̂
H(q)
pn is asymptotically equivalent to

the Weissman type estimator (1.7), whenever we use the consistent estimator

γ̂n ≡ γ̂
H(q)
n .

Consider now a convenient representation for the difference,

χ̂H(q)
pn

− χpn
= Xn−kn:n

{
aγ̂

H(q)

n
n − aγ̂

H(q)

n
n

(
Xnq :n

Xn−kn:n

)
+

Xnq :n

Xn−kn:n
− χpn

Xn−kn:n

}
,

and recall that we may write

χpn

Xn−kn:n
=

U
(

n
kn
an

)
U
(

n
kn

) U
(

n
kn

)
U(Yn−kn:n)

.

According to (1.5), for ρ< 0, U
(

n
kn
an

)
/U
(

n
kn

)
= a

γ
n

(
1−A(n/kn)/ρ

) (
1+op(1)

)
.

Considering that for the estimator γ̂
H(q)
n , the representation (2.4) holds,

we get successively, for sequences kn that verify (3.3),

aγ̂
H(q)

n
n = aγ

n

(
1+ log an

(
γ̂H(q)

n − γ)) (1+ op(1)
)

and

χ̂H(q)
pn

− χpn
=

= aγ
nXn−kn:n

{
1+ log an

(
γ̂H(q)

n −γ)(1+op(1)
)− (1−A(n/kn)/ρ

)(
1+op(1)

)}
= aγ

nXn−kn:n

{
log an

(
γ̂H(q)

n −γ)+A(n/kn)/ρ

}(
1+op(1)

)
.

Now, we consider the following representation for intermediate statistics, proved

in Ferreira et al. (2003),

(3.4) Xn−kn:n
d
= U

(
n

kn

)(
1 +

γBk√
kn

+ op

(
1√
kn

)
+ op

(
A(n/kn)

))
,

with Bk an asymptotically standard normal r.v.
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Using (2.4) and (3.4), we may write

χ̂H(q)
pn

− χpn
= U

(
n

kn

)
aγ

n

(
1+Op

(
1/
√
kn

)){
Wn +A

( n
kn

)
/ρ

}(
1+ op(1)

)
,

where

Wn = log an

(
γ̂H(q)

n − γ)
= log an

(
σH√
kn

PH
k +

(
c

H
A(n/k) + d

H

χ∗q
U(n/k)

)(
1+ op(1)

))
,

with PH
k independent of the random sequence Bk in (3.4).

Consequently,

χ̂
H(q)
pn − χpn

a
γ
n U
(

n
kn

) =
{
Wn +A(n/k)/ρ

} (
1+ op(1)

)
and

√
kn

σH log an

(
χ̂

H(q)
pn

χpn

− 1

)
= PH

k +
√
kn

(
c

H
A(n/k) + d

H

χ∗q
U(n/k)

)(
1+ op(1)

)
.

The following result is a direct consequence of Corollary 2.2 and Theorem 3.1.

Corollary 3.1. Under the same conditions of Theorem 3.1, then, with

T replaced byH orM , and (c
H
, d

H
, σ

H
) and (c

M
, d

M
, σ

M
) defined in (2.5) and (2.6),

respectively, the following results hold.

i) For γ > −ρ,
√
kn

σ
T

log
(
kn/(npn)

) (χ̂T (q)
pn

χpn

−1

)
= P T

k +
√
kn

(
c

T
A(n/k)

) (
1+ op(1)

)
,

If
√
knA(n/kn)→ μ1, finite, as n→∞, then the mean value is μ1 cT

.

ii) For γ < −ρ,
√
kn

σ
T

log
(
kn/(npn)

) (χ̂T (q)
pn

χpn

−1

)
= P T

k +
√
kn

(
d

T

χ∗q
U(n/kn)

)(
1+ op(1)

)
,

If
√
kn/U(n/kn)→μ2, finite, as n→∞, then the mean values is μ2dT

χ∗q .
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iii) For ρ = −γ,
√
kn

σ
T

log
(
kn/(npn)

) (χ̂T (q)
pn

χpn

−1

)
=

= P T
k +
√
kn

(
c

T
A(n/k) + d

T

χ∗q
U(n/kn)

)(
1+ op(1)

)
,

If
√
knA(n/kn)→ μ1, finite, and

√
kn/U(n/kn)→ μ2, finite, as n→∞,

then the mean value is μ1 cT
+ μ2 dT

χ∗q .

4. SIMULATIONS

Here, we compare the finite sample behavior of the proposed high quantile

estimators χ̂
H(q)
pn in (3.1) and χ̂

M(q)
pn in (3.2) with the classical semi-parametric

estimators χ̂H
pn

and χ̂M
pn

in (1.11). We have generated N = 200 independent repli-

cates of sample size n = 1000 from the following models:

• Burr Model: X� Burr(γ, ρ), γ = 1, ρ=−2,−0.5, with d.f.

F (x) = 1− (1+ x−ρ/γ
)1/ρ

, x ≥ 0 .

• Cauchy Model: X� Cauchy , γ = 1, ρ=−2, with d.f.

F (x) =
1

2
+

1

π
arctang x , x ∈ R .

At a first stage, we generate samples from the standard models F0 :=F . At a

second stage, we introduce a positive shift λ = χ0.01, i.e., a new location chosen

in a comparable basis as the percentile 99% of the starting point distribution F0.

This defines a new model Fλ(x) := F0(x−λ) from the same family.

We estimate the high quantile χ0.001, for each model F0 or Fλ from the

referred Burr and Cauchy families, and we present patterns of Mean Values and

Root of Mean Squared Errors, plotted against k = 6, ..., 800.

The simulations illustrate the dramatic disturbance on the behavior of the

classical quantile estimators in (1.11), when a shift is introduced. We, again,

enhance that the flat stable zones achieved with these estimators, in the presence

of shifts, could lead us to dangerous misleading conclusions, unless we are aware

of the suitable threshold k or of specific properties of the underlying model.
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Figure 2: Mean values (left) and root mean squared errors (right), of χ̂
H(0)

pn
,

χ̂
M(0)

pn
, χ̂H

pn

and χ̂M
pn

, for a sample size n= 1000, from a Burr model
with γ= 1, ρ=−2 and λ= 0 (target quantile χ0.001 = 1000).

0 200 400 600 800

0
10
00

20
00

30
00

40
00

k

χ̂p
H(0)

χ̂p
M(0)

χ̂p
M

χ̂p
H

0 200 400 600 800

0
20
00

40
00

60
00

80
00

10
00
0

k

χ̂p
H(0)

χ̂p
M(0)

χ̂p
M

χ̂p
H

Figure 3: Mean values (left) and root mean squared errors (right), of χ̂
H(0)

pn
,

χ̂
M(0)

pn
, χ̂H

pn

and χ̂M
pn

, for a sample size n= 1000, from a Burr model
with γ = 1, ρ=−2 and λ= 99.99 (target quantile χ0.001 = 1099.99).
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Figure 4: Mean values (left) and root mean squared errors (right), of χ̂
H(0)

pn
,

χ̂
M(0)

pn
, χ̂H

pn

and χ̂M
pn

, for a sample size n= 1000, from a Burr model
with γ= 1, ρ=−0.5 and λ= 0 (target quantile χ0.001 = 937.731).
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Figure 5: Mean values (left) and root mean squared errors (right), of χ̂
H(0)

pn
,

χ̂
M(0)

pn
, χ̂H

pn

and χ̂M
pn

, for a sample size n= 1000, from a Burr model
with γ = 1, ρ=−0.5 and λ= 81.023 (target quantile χ0.001 = 1018.754).
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Figure 6: Mean values (left) and root mean squared errors (right), of χ̂
H(0.5)

pn
,

χ̂
M(0.5)

pn
, χ̂H

pn

and χ̂M
pn

, for a sample size n= 1000, from a Cauchy model
with γ= 1, ρ=−2 and λ= 0 (target quantile χ0.001 = 319.309).
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Figure 7: Mean values (left) and root mean squared errors (right), of χ̂
H(0.5)

pn
,

χ̂
M(0.5)

pn
, χ̂H

pn

and χ̂M
pn

, for a sample size n= 1000, from a Cauchy model
with γ= 1, ρ=−2 and λ= 31.821 (target quantile χ0.001 = 351.13).

From the figures, in this section, we observe that the classical quantile

estimators diverge a lot from the important linear property (1.13). On the other

hand, the estimators we propose, (3.1) and (3.2), enjoy exactly this property.
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5. CONCLUDING REMARKS

• The PORT tail index and quantile estimators, based on the sample of

excesses, X(q), in (1.15), provide us with interesting classes of estimators,

invariant for changes in location, as well as scale, a property also common

to the classical estimators.

• In practice, whenever we use a tuning parameter q in (0, 1), we are always

safe. Indeed, in such a case, the new estimators may or may not behave

better than the classical ones, but they are consistent and asymptotically

normal for the same type of k-values.

• A tuning parameter q = 0 is appealing but should be used carefully.

Indeed, if the underlying parent has not a finite left endpoint, we are led

to non-consistent estimators, with sample paths that may be erroneously

flat around a value quite far away from the real target.
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1. INTRODUCTION

The analysis of integer-valued time series has become an important area of

research in the last two decades partially because its wide applicability to experi-

mental biology (Zhou and Basawa [34]), social science (McCabe and Martin [24]),

international tourism demand (Nordström [29], Garcia-Ferrer and Queralt [16],

Brännäs et al. [12]), queueing systems (Ahn et al. [7]) and economy (Quoreshi [30]).

We refer to McKenzie [28] for an overview of the early work in this area. Among

the most successful integer-valued time series models proposed in the literature

we mention the INAR(p) model and the INMA(q) model. The former was first

introduced by McKenzie (e.g., [26]) and Al-Osh and Alzaid [1] for the case p=1.

Empirical relevant extensions have been suggested by Brännäs ([9], explanatory

variables), Blundell et al. ([8], panel data), Brännäs and Hellström ([11], extended

dependence structure), and more recently by Silva et al. ([32], replicated data).

Extensions and generalizations were introduced by Du and Li [14] and Latour [22].

The INMA(q) model was proposed by Al-Osh and Alzaid [2] and subsequently

studied by Brännäs and Hall [10]. Related models were introduced by Aly and

Bouzar ([4], [5]) and Zhu and Joe [35].

Within the reasonably large spectrum of integer-valued models proposed

in the literature, little is known about its extremal properties. Anderson [6]

gave a noticeable contribution to the study of the extremal properties of integer-

valued independent and identically distributed (i.i.d.) sequences and as an ex-

ample of application, the author analyzed the behavior of the maximum queue

length for M/M/1 queues. Extensions of Anderson’s results were proposed by

Hooghiemstra et al. [21] who provide bounds and approximations for the distri-

bution of the maximum queue length for M/M/s queues, based on an asymptotic

analysis involving the extremal index. McCormick and Park [25] were the first to

study the extremal properties of some models obtained as discrete analogues of

continuous models, replacing scalar multiplication by random thinning. Hall [17]

analyzed the asymptotic behavior of the maximum term of a particular Markovian

model. [18] provided results regarding the limiting distribution of the maximum

of sequences within a generalized class of integer-valued moving averages driven

by i.i.d. heavy-tailed innovations. Extensions for exponential type-tailed inno-

vations have been studied by Hall [19]. More recently, Hall and Moreira [20]

derived the extremal properties of a particular moving average count data model

introduced by McKenzie [27].

It is worth to mention that all the references given in the previous para-

graph deal with the case of stationary sequences. In contrast, however, the study

of the extremal properties of integer-valued non-stationary sequences has been

overlooked in the literature. This paper aims at giving a contribution towards

this direction. In particular we consider periodic sequences with marginal dis-
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tributions within a particular class of discrete distributions first considered by

Anderson [6]. Potential applications can be found in the analysis of the number

of hotel guest nights where the series exhibit strong seasonal pattern with a peak

in July–August and a trough in December–February, and in the study of the

number of claims of short-term disability benefits made by injured workers since

it is expected to see fewer claims in the winter months and more in the summer

months.

The term periodic is used in this paper in a different sense than in the

literature of periodic stochastic processes in which a sequence (Xn)n∈N is said to

be periodically stationary (in the wide sense) if its mean and covariance struc-

ture are periodic functions of time with the same period. This class of processes,

however, does not appear to be sufficiently flexible to deal with data which ex-

hibit non-standard features like nonlinearity and/or heavy tails. In this paper

by periodic sequence, with period say T , we mean that for a sequence of random

variables (rv’s) (Xn)n∈N there exist an integer T ≥ 1 such that, for each choice

of integers 1 ≤ i1 < i2 < · · · < in, (Xi1 , ..., Xin) and (Xi1+T , ..., Xin+T ) are

identically distributed. The period T will be considered the smallest integer

satisfying the above definition.

The rest of the paper is organized as follows: Section 2 provides the neces-

sary theoretical background; Section 3 includes the main result that leads to the

calculation of the limiting distribution of the maximum term; in Section 4 the

previous results are applied to a particular class of max-autoregressive sequences

generalizing the results of Hall [17]; finally, in Section 5 we look at the distri-

bution of the maximum term of periodic moving average sequences obtained as

discrete analogues of classical moving averages with periodic (but independent)

innovations, generalizing the results given in Hall [19].

In this paper we want to highlight the following issues:

a) Under fairly general dependence conditions, integer-valued T -periodic se-

quences with marginal distribution in Anderson’s class exhibit a quasi-

stable non-degenerate limiting distribution of the maximum term which is

obtained as a generalization of the stationary case.

b) The expression of the extremal index may be obtained from the joint dis-

tribution of a finite number of observations, calculated at T distinct sets of

variables.

c) The results obtained for the integer-valued max-autoregressive and mov-

ing average models generalize the ones obtained for the stationary case:

whereas for the max-autoregressive model the extremal index is less than

unity (reflecting the influence of the dependence structure on the extremes),

for the moving averages the extremal index is equal to one.



Extremes of Integer-Valued Sequences 253

2. PRELIMINARY RESULTS

The study of the extremal properties of stationary sequences is frequently

based on the verification of appropriate dependence conditions which assure that

the limiting distribution of the maximum term is of the same type as the limiting

distribution of the maximum of i.i.d. rv’s with the same marginal distribution F .

For stationary sequences, usual conditions used in the literature are Leadbetter’s

D(un) condition (Leadbetter et al. [23]) and condition D(k)(un), k∈N, (Chernick

et al. [13]). For completeness and reader’s convenience the definition of condition

D(un) is given below.

Definition 2.1. The condition D(un) is said to hold for a stationary se-

quence (Xn)n∈N with marginal distribution F , if for any integers i1< · · ·< ip <

j1< · · ·< jq< n such that j1− ip ≥ ln we have∣∣∣Fi1,...,ip,j1,...,jq
(un, ..., un)− Fi1,...,ip(un, ..., un)Fj1,...,jq

(un, ..., un)
∣∣∣ ≤ αn,ln

with αn,ln−→n→∞
0 for some sequence (ln), ln = o(n).

For periodic sequences the following adaptation of condition D(k)(un) may

be used:

Definition 2.2 (Ferreira and Martins [15]). Let k ≥1 be a fixed integer

and X=(Xn)n∈N a T -periodic sequence verifying D(un) with mixing coefficient

αn,ln . The condition D
(k)
T (un) holds for X if there exists a sequence of integers

(kn)n∈N such that

lim
n→∞

kn = +∞ , lim
n→∞

kn
ln

n
= 0 , lim

n→∞
kn αn,ln = 0 ,

lim
n→∞

S
(k)
[ n
knT

] = 0 ,

where

S
(1)
[ n
knT

] =
n

T

T∑
i=1

[ n
knT

]T∑
j=i+k

P
(
Xi>un, Xj>un

)
,

and for k ≥ 2

S
(k)
[ n
knT

] =
n

T

T∑
i=1

[ n
knT

]T∑
j=i+k

P
(
Xi>un, Xj−1≤un<Xj

)
.
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Remark 2.1. If limn→∞ S
(k)
[ n
knT

] = 0, then

lim
n→∞

n

T

T∑
i=1

P
(
Xi>un≥Mi+1,i+k−1, Mi+k,[ n

knT
]T >un

)
= 0 ,

with Mi,j = maxi≤r≤j(Xr) and Mi,j = −∞ if i > j.

When D(un) and D
(k)
T (un) hold for a particular sequence the limiting dis-

tribution of the maximum term and its corresponding extremal index may be

derived. Following Ferreira and Martins [15] the extremal index is given by

θ = lim
n→∞

n 1
T

T∑
i=1

P
(
Xi>un≥Mi+1,i+k−1

)
n 1

T

T∑
i=1

P
(
Xi>un

) .

Integer-valued sequences require extra care when the analysis of the extremal

properties is in demand since in many cases, there is no non-degenerate limit-

ing distribution for the maximum term. Anderson [6] defined a particular class

of discrete distributions for which the maximum term (under an i.i.d. setting)

possesses an almost stable behavior in the sense of the following theorem:

Theorem 2.1 (Anderson [6]). Let F be a distribution function whose

support consists of all sufficiently large integers. Then, there exists a sequence of

constants (bn) such that⎧⎪⎨⎪⎩
lim sup

n→∞
Fn(x+ bn) ≤ e−e−αx

lim inf
n→∞

Fn(x+ bn) ≥ e−e−α(x−1)

,

for some α > 0 and for every x ∈ R, if and only if

lim
n→∞

1− F (n)

1− F (n−1)
= exp{−α} .

In fact bn may be obtained by bn = F−1
c (1− 1

n
) where Fc is any continuous distri-

bution in the domain of attraction of the Gumbel distribution with Fc([x])=Fx.

Whenever a distribution F satisfies the conditions of the theorem above

we shall denote it by F ∈Dα(Anderson). The study of stationary sequences with

marginal distribution in the class of Anderson [6] was considered by Hall [17],

who obtained the following result:
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Theorem 2.2 (Hall [17]). Suppose that for some k ≥1, conditions D(un)

andD(k)(un) hold for the stationary sequence Xwith marginal F ∈Dα(Anderson),

where un is a sequence of the form un = x + bn. If Mn = max1≤k≤n(Xk), then

there exists a value 0 ≤ θ ≤ 1 such that⎧⎪⎨⎪⎩
lim sup

n→∞
P
(
Mn≤ x+ bn

) ≤ e−θe−αx

lim inf
n→∞

P
(
Mn≤ x+ bn

) ≥ e−θe−α(x−1)

,

if and only if

P
(
M2,k≤ un|X1> un

) −→
n→∞

θ .

Hall refers to the parameter θ as the extremal index due to its similarity

with the conventional extremal index.

3. LIMITING DISTRIBUTION FOR THE MAXIMUM TERM

In this section attention is focused in the extremal behavior of periodic

sequences with marginal distributions in Anderson’s class. The first result extends

Theorem 3 in Hall [17] for T -periodic integer-valued sequences.

Theorem 3.1. Suppose that for k ≥1 the conditions D(un) and Dk
T (un)

hold for the T -periodic integer-valued sequence X, with Fr ∈ Dαr
(Anderson),

for r=1, ..., T where (un)n∈N is a sequence of the form un = x+ bn. If there

exists θ and θ, 0 ≤ θ ≤ θ ≤ 1, such that

θ = lim inf
n→∞

n
T

T∑
r=1

P
(
Xr> un>Mr+1,r+k−1

)
n
T

T∑
r=1

P
(
Xr> un

)

≤ lim sup
n→∞

n
T

T∑
r=1

P
(
Xr> un>Mr+1,r+k−1

)
n
T

T∑
r=1

P
(
Xr> un

) = θ ,

then ⎧⎪⎨⎪⎩
lim sup

n→∞
P
(
Mn≤ x+ bn

) ≤ e−θ 1

T

�T
r=1

e−αrx

lim inf
n→∞

P
(
Mn≤ x+ bn

) ≥ e−θ 1

T

�T
r=1

e−αr(x−1)

.
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Proof: First let us suppose that lim infn→∞ P (Mn ≤ x+ bn) > 0, ∀x.
By Proposition 2.1 in Ferreira and Martins [15] we have that

P
(
Mn≤ un

)− e− n
T

�T
r=1

P (Xr>un>Mr+1,r+k−1) → 0 , n→∞ ,

which is equivalent to

P
(
Mn≤ un

)− (e− n
T

�T
r=1

P (Xr>un)
) n

T

�T
r=1

P (Xr>un>Mr+1,r+k−1
)

n
T

�T
r=1

P (Xr>un) → 0 ,(3.1)

as n→∞. From Theorem 2.1 it follows that

0 < e−
1

T

�T
r=1

e−αr(x−1) ≤ lim inf
n→∞

e−
n
T

�T
r=1

P (Xr>un)

≤ lim sup
n→∞

e−
n
T

�T
r=1

P (Xr>un) ≤ e−
1

T

�T
r=1

e−αrx

< 1 ,

and if we assume

θ = lim inf
n→∞

n
T

T∑
r=1

P
(
Xr> un>Mr+1,r+k−1

)
n
T

T∑
r=1

P (Xr> un)

≤ lim sup
n→∞

n
T

T∑
r=1

P
(
Xr> un>Mr+1,r+k−1

)
n
T

T∑
r=1

P
(
Xr> un

) = θ

then, (3.1) leads to the stated result.

The case P (Mn≤ x + bn) → 0 as n → ∞ is easily handled by the results

above and the arguments in Hall ([17], p. 725). We skip the details.

As a consequence of Theorem 3.1 the extremal index can be computed

as follows:

Corollary 3.1. Suppose that for some k ≥1 the conditions D(un) and

Dk
T (un) hold for the T-periodic integer-valued sequence X, with Fr∈Dαr

(Anderson),

for r=1, ..., T where {un}n∈N is a sequence of the form un = x+ bn. Then, there

exists a value 0 ≤ θ ≤ 1 such that⎧⎪⎨⎪⎩
lim sup

n→∞
P
(
Mn≤ x+ bn

) ≤ e−θ 1

T

�T
r=1

e−αrx

lim inf
n→∞

P
(
Mn≤ x+ bn

) ≥ e−θ 1

T

�T
r=1

e−αr(x−1)

,

if and only if

n
T

T∑
r=1

P
(
Xr> un>Mr+1,r+k−1

)
n
T

T∑
r=1

P
(
Xr> un

) → θ , n→∞ .
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4. MAX-AUTOREGRESSIVE PERIODIC SEQUENCES

Let X=(Xn)n∈N be a T -periodic non-negative integer-valued max-auto-

regressive sequence defined as

(4.1) Xn = max{Xn−1, Zn} − cn ,
where (c1, ..., cT ) ∈ N

T, cn+T = cn for all n ∈ N and Z = (Zn)n∈N is a sequence of

i.i.d. integer-valued rv’s with common distribution F . Let Hn denote the distri-

bution of Xn. The max-autoregressive sequence defined in (4.1) is an extension

of the max-autoregressive model considered by Alpuim [3]. Her ideas will be

extensively used throughout this section. First note that the following relations

hold

Hn(x) = P
(
Xn≤ x

)
= P

(
Xn−1≤ x+ cn, Zn≤ x+ cn

)
=

∞∏
i=0

F

(
x+

i∑
l=0

cn−l

)
=

T−1∏
s=0

∞∏
j=0

F
(
x+ jS + Ss,n

)
,

with S =
∑T

i=1 ci and Ss,n =
∑s

l=0 cn−l. Moreover, it is also true that

(4.2) F (x) =
Hn(x− cn)

Hn−1(x)
, for all n .

Next result shows that if F belongs to Anderson’s class then Hn will also belong

to Anderson’s class for all n.

Lemma 4.1. Let X be a max-autoregressive integer-valued T-periodic

sequence defined by (4.1). If F ∈Dα(Anderson) then Hn∈Dα(Anderson), ∀n∈N.

Let un = x+ bn be such that⎧⎨⎩
lim sup

n→∞
n
(
1− F (un)

) ≤ e−αx

lim inf
n→∞

n
(
1− F (un)

) ≥ e−α(x−1)
.

Choosing u′n = x+ bn + ln C1

α
with C1 =

�T−1

s=0
e
−Ss,1α

1−e−Sα it follows that⎧⎨⎩
lim sup

n→∞
n
(
1−H1(u

′
n)
) ≤ e−αx

lim inf
n→∞

n
(
1−H1(u

′
n)
) ≥ e−α(x−1)

and ⎧⎨⎩
lim sup

n→∞
n
(
1−Hr(u

′
n)
) ≤ γr,1 e

−αx

lim inf
n→∞

n
(
1−Hr(u

′
n)
) ≥ γr,1 e

−α(x−1)
,

where

γi,r = lim
x→∞

1−Hi(x)

1−Hr(x)
, r=1, ..., T, i=0, ..., T−1 .(4.3)
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Furthermore for i = 0, ..., T−1⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
lim sup

n→∞

n

T

T∑
i=1

P
(
Xi>u

′
n

) ≤ 1

T

T∑
i=1

γi,1 e
−αx

lim inf
n→∞

n

T

T∑
i=1

P
(
Xi>u

′
n

) ≥ 1

T

T∑
i=1

γi,1 e
−α(x−1)

.

Proof: First note that for any two integer-valued distribution functions,

say F1 and F2, the following relation hold: If F1∈Dα(Anderson) and lim
n→∞

1−F2(n)
1−F1(n) =

c > 0 then F2 ∈Dα(Anderson). Furthermore, if bn is such that⎧⎨⎩
lim sup

n→∞
n
(
1− F1(x+ bn)

) ≤ e−αx

lim inf
n→∞

n
(
1− F1(x+ bn)

) ≥ e−α(x−1)
,

then for b′n = bn+ ln c
α⎧⎨⎩

lim sup
n→∞

n
(
1− F2(x+ b′n)

) ≤ e−αx

lim inf
n→∞

n
(
1− F2(x+ b′n)

) ≥ e−α(x−1)
.

Now suppose that F ∈Dα(Anderson).

lim
x→∞

1−Hn(x)

1− F (x)
= lim

x→∞

T−1∏
s=0

∞∏
j=0

F
(
x+ jS + Ss,n

)
1− F (x)

= lim
x→∞

T−1∑
s=0

∞∑
j=0

1− F (x+ jS + Ss,n

)
1− F (x)

=
T−1∑
s=0

e−Ss,nα lim
x→∞

∞∑
j=0

1− F (x+ jS)

1− F (x)
.

Since limx→∞
1−F (x)

1−F (x−1) = e−α we may choose α′< α so that there exists x0

such that for all x > x0 then 1−F (x+jS)
1−F (x) < e−jSα′ for all j. By the dominated

convergence theorem, limit and sum can be interchanged providing

lim
x→∞

1−Hn(x)

1− F (x)
=

T−1∑
s=0

e−Ss,nα
∞∑

j=0

e−jSα =

T−1∑
s=0

e−Ss,nα

1− e−Sα
≡ Cn .

Applying the relations stated in the beginning of the proof we conclude that

Hn ∈ Dα(Anderson).



Extremes of Integer-Valued Sequences 259

We shall now obtain the asymptotic behaviour of the maximum term of the

T -periodic non-negative integer-valued max-autoregressive sequence in (4.1).

Theorem 4.1. Let X be the T -periodic non-negative integer-valued mov-

ing average sequence defined in (4.1) with F ∈Dα(Anderson). If Mn = max
1≤k≤n

(Xk)

and un = x+ bn with

bn = b′n +

ln
(

1
T

T∑
i=1

Ci

)
α

where Ci =
�T−1

s=0
e
−Ss,iα

1−e−Sα and b′n is the sequence of normalizing constants of F ,

then ⎧⎪⎨⎪⎩
lim sup

n→∞
P
(
Mn≤un

) ≤ e−θe−αx

lim inf
n→∞

P
(
Mn≤un

) ≥ e−θe−α(x−1)

and the extremal index θ is given by

θ =

T∑
i=1

γi,1

(
1− exp{−α ci+1}

)
T∑

i=1
γi,1

,(4.4)

with γi,1 = Ci/C1.

Proof: First we prove that condition D(un) holds for X. Note that for

any two indexes i1, i2 we obtain the following relations by (4.2):

P
(
Xi1≤ x, Xi2≤ x

)
= P

(
Xi1≤ x

) i2−i1−1∏
l=0

F (x+ Sl,i2)(4.5)

= Hi1(x)
Hi2(x)

Hi1(x+ Si2−i1−1,i2)
.

Using (4.5) we obtain∣∣∣Hi1,...,ip,j1,...,jq
(un, ..., un)−Hi1,...,ip(un, ..., un)Hj1,...,jq

(un, ..., un)
∣∣∣ =

=

∣∣∣∣∣Hi1(un)

p∏
m=2

im−im−1−1∏
l=0

F (un + Sl,im)

q∏
m=2

jm−jm−1−1∏
l=0

F (un + Sl,jm
)

×
( ln−1∏

l=0

F (un+ Sl,j1)−Hj1(un)

)∣∣∣∣∣
≤
∣∣∣∣ Hj1(un)

Hip(un+ Sj1−ip−1)
−Hj1(un)

∣∣∣∣
≤ 1−Hip(un+ Sj1−ip−1) ≤ 1−Hip(un) .

Since 1−Hi(un) ∼ O( 1
n
) for all i, the desired result is obtained.
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Next we show that condition D′′T (un) also holds for X.

P
(
Xi> un≥Xi+1, Xi+j> un

)
=

= P
(
Xi> un, Xi+j> un|Xi+1≤ un

)
Hi+1(un)

= P
(
Xi> un|Xi+1≤ un

)
P
(
Xi+j> un|Xi+1≤ un

)
Hi+1(un) ,

since the events {Xi> un|Xi+1≤ un} and {Xi+j > un|Xi+1≤ un} are indepen-

dent for this type of sequences. Moreover

P
(
Xi> un|Xi+1≤ un

)
=

Hi+1(un)−Hi(un)F (un+ ci+1)

Hi+1(un)

= 1− Hi(un)

Hi+1(un)
F (un+ ci+1) .

Since Hi(un)
Hi+1(un) ≥ Hi+1(un) we have

P
(
Xi> un|Xi+1≤ un

) ≤ 1−Hi(un) = O

(
1

n

)
.

For the second term we have

P
(
Xi+j> un|Xi+1≤ un

)
= 1− Hi+j(un)

Hi+1

(
un +

j−2∑
m=0

ci+j−m

)
≤ 1−Hi+j(un)

= O

(
1

n

)
.

Hence

lim
n→∞

n

T

T∑
i=1

[ n
knT

]T∑
j=i+2

P
(
Xi> un≥Xi+1, Xi+j> un

) ≤ lim
n→∞

nT

[
n

knT

]
O

(
1

n

)
O

(
1

n

)
= 0 .

Note that by Corollary 3.1

θ = lim
n→∞

n
T

T∑
i=1

P
(
Xi> un≥Xi+1

)
n
T

T∑
i=1

P
(
Xi> un

)

= lim
n→∞

T∑
i=1

P
(
Xi> un≥Xi+1

)
/P
(
X1> un

)
T∑

i=1
P
(
Xi> un

)
/P
(
X1> un

) .
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Since

lim
n→∞

T∑
i=1

P
(
Xi> un

)
/P
(
X1> un

)
=

T∑
i=1

γi,1

and

lim
n→∞

T∑
i=1

P
(
Xi> un≥Xi+1

)
/P
(
X1> un

)
=

= lim
n→∞

T∑
i=1

(
P
(
Xi≤ un

)− P (Xi≤ un, Xi+1≤ un

))
/P
(
X1> un

)
= lim

n→∞

T∑
i=1

(
Hi+1(un)−Hi(un)F (un + ci+i)

)
/
(
1−H1(un)

)
= lim

n→∞

T∑
i=1

(
Hi+1(un)−Hi(un)

Hi+1(un)

Hi(un + ci+i)

)
/
(
1−H1(un)

)
= lim

n→∞

T∑
i=1

Hi+1(un)

Hi(un+ ci+1)

(
Hi(un+ ci+1)−Hi(un)

)
/
(
1−H1(un)

)
= lim

n→∞

T∑
i=1

1−Hi(un)

1−H1(un)

(
1− 1−Hi(un+ ci+1)

1−Hi(un)

)

=
T∑

i=1

γi,1

(
1− exp(−α ci+1)

)
,

then

θ =

T∑
i=1

γi,1

(
1− exp(−α ci+1)

)
T∑

i=1
γi,1

,

concluding the proof.

5. MOVING AVERAGE MODELS WITH EXPONENTIAL TYPE-

TAILS

Let Z = (Zn)n∈Z be a sequence of T -periodic integer-valued random vari-

ables. Throughout this section we will assume that

1−FZr
(x) ∼ Kr x

ξr(1+λr)
−x , x→∞, ξ∈R, Kr, λr>0 ,(5.1)

for r=1, ..., T . Furthermore, we assume that Xn admits the representation

Xn =
∞∑

j=−∞
βj ◦ Zn−j , βj ∈ [0, 1] ,(5.2)
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where the discrete operator ◦ denotes binomial thinning defined as β ◦Z =∑Z
s=1 Us(β), where (Us(β)) is a i.i.d. sequence of Bernoulli random variables ver-

ifying P
(
Us(β)=1

)
= β. Moreover, the sequence of coefficients (βj)j∈Z will be

taken to satisfy
∞∑

j=−∞
βj <∞ ,

in order to ensure the almost sure convergence of (5.2). All thinning operations

involved in (5.2) are independent, for each n. Nevertheless, dependence is allowed

to occur between the thinning operators βj ◦Zn and βi ◦Zn, j �= i (which belong

to Xn+j and Xn+i respectively).

Lemma 5.1. Under the conditions set above, the sum

∞∑
j=−∞

βj ◦ Zn−j ,

with

βj = O
(|j|−δ

)
,(5.3)

as j → ±∞, for some δ > 2, converges almost surely to Xn.

Proof: Note that

E

[ ∞∑
j=−∞

βj ◦ Zn−j

]
=

T−1∑
s=0

E
[
Zn−s

] ∞∑
j=−∞

βjT+s < ∞ .

Likewise,

Var

[ ∞∑
j=−∞

βj ◦ Zn−j

]
=

=
T−1∑
s=0

(
Var
[
Zn−s

]− E[Zn−s

]) ∞∑
j=−∞

β2
jT+s + E[Zn−s]

∞∑
j=−∞

βjT+s

< ∞ .

Thus
∑∞

j=−∞ βj ◦ Zn−j → Xn almost surely by the Corollary of page 112 in

Tucker [33].

We now begin with a series of results designed to understand the tail

behavior of X
(s)
r =

∑∞
j=−∞ βjT+s ◦ Zr−jT−s as well as sums of these variables.

The first result we present is a simple modification of Theorem 8 in Hall [19]

for the stationary case, but crucial for the characterization of the tail behavior

of Xr.
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Lemma 5.2. Let Z be a T -periodic sequence verifying (5.1). For fixed

values of s = 0, ..., T−1 and r = 1, ..., T , it holds that, as x→∞

P
(
X(s)

r > x
) ∼ K̆r−s x

ξ̆r−s(1 + λ̆r−s)
−x ,

for ξr−s �=1, with λ̆r−s = λr−s

β(s) , β(s) = max
−∞≤j≤∞

{βjT+s}, ks = #
{
j :

βjT+s

β(s) = 1
}
,

ξ̆r−s =

{
ks ξr−s + ks − 1 ξr−s > −1

ξr−s ξr−s < −1
,

K∗
r−s = β(s)Kr−s

(
1 + λr−s

λr−s + β(s)

)ξr−s+1

,

K̆r−s =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ̆ks−1

r−s K∗ks

r−s

(
Γ(ξr−s+1)

)ks

Γ
(
ks(ξr−s+1)

) E[(1+λ̆r−s)
�

j′ /∈γs
βj′◦Zr−s

]
ξr−s>−1

ksK
∗
r−s

(
E
[
(1+λ̆r−s)

])ks−1
E
[
(1+λ̆r−s)

�
j′ /∈γs

βj′◦Zr−s

]
ξr−s<−1

,

with j′= jT + s and γs =
{
i1, ..., iks

: βih=β
(s), h=1, ..., ks

}
.

We shall now obtain the tail behavior of FXr
. For simplicity in notation

we define i1, ..., iT = 0, 1, ..., T−1, being i1 �= i2 �= ... �= iT .

Lemma 5.3. For the process defined in (5.2) it holds that, for r=1, ..., T ,

as x→∞,

P
(
Xr> x

) ∼ A∗r x
ξ∗r (1+λ∗r)

−x ,(5.4)

with λ∗r =min(λ̆r, ..., λ̆r−T+1). Moreover, the constant A∗r can be calculated

as follows:

1. if λ̆r−i1 = ··· = λ̆r−iT and

(a) ξ̆r−i1 = ··· = ξ̆r−iT < −1 then ξ∗r = ξ̆r−i1 and

A∗r =

{
C2,r T = 2

CT,r T ≥ 3
,

with

C2,r = K̆r−i1E
[
(1+λ∗r)

X
(i2)

r

]
+ K̆r−i2 E

[
(1+λ∗r)

X
(i1)

r

]
,

CT,r = CT−1,r E
[
(1+λ∗r)

X
(iT )

r

]
+ K̆r−iT E

[
(1+λ∗r)

�T−1

s=1
X

(is)

r

]
;
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(b) ξ̆r−i1>−1, ..., ξ̆r−iT >−1 then ξ∗r =
∑T

s=1 ξ̆r−is + T − 1, and

A∗r =

{
C∗2,r T = 2

C∗T,r T ≥ 3
,

with

C∗2,r = λ∗r K̆r−i1K̆r−i2

Γ
(
ξ̆r−i1 + 1

)
Γ
(
ξ̆r−i2 + 1

)
Γ
(
ξ̆r−i1 + ξ̆r−i2 + 2

) ,

C∗T,r = C∗T−1,r λ
∗
r K̆r−iT

Γ

(
T−1∑
s=1

ξ̆r−is + T − 1

)
Γ
(
ξ̆r−iT + 1

)
Γ

(
T∑

s=1
ξ̆r−is + T

) ;

2. if λ̆r−i1< ··· < λ̆r−iT , then ξ∗r = ξ̆r−i1 and

A∗r = K̆r−i1

T∏
h=2

E
[
(1+λ∗r)

X
(ih)

r

]
;

3. if λ̆r−i1 < · · · < λ̆r−il+1
= · · · = λ̆r−il+k

< λ̆r−il+k+1
< · · · < λ̆r−iT , then

ξ∗r = ξ̆r−i1 and

A∗r = Q̆
(k)
r−i1

(
T−k−l∏

h=1

E
[
(1+λ∗r)

X
(il+k+h)

r

])
with

Q̆
(k)
r−i1

= K̆r−i1

(
l∏

h=2

E
[
(1+λ∗r)

X
(ih)

r

])
E
[
(1+λ∗r)

�k
h=1

X
(il+h)

r

]
;(5.5)

4. if λ̆r−i1< ··· < λ̆r−il< λ̆r−il+1
= ··· = λ̆r−iT then ξ∗r = ξ̆r−i1 and

A∗r = Q̆
(T−l)
r−i1

,

with Q̆
(·)
r−i1

defined as in (5.5);

5. if λ̆r−i1 = ··· = λ̆r−il< λ̆r−il+1
< ··· < λ̆r−iT and

(a) ξ̆r−i1 = ··· = ξ̆r−il< −1 then ξ∗r = ξ̆r−i1

A∗r =

⎧⎪⎨⎪⎩
C2,r T = 2

CT,r

T∏
h=l+1

E
[
(1+λ∗r)

X
(ih)

r

]
3 ≤ l < T

;

(b) ξ̆r−i1> −1, ..., ξ̆r−il> −1 then ξ∗r =
∑l

s=1 ξ̆r−is + l − 1

A∗r =

⎧⎪⎨⎪⎩
C∗2,r T = 2

C∗T,r

T∏
h=l+1

E
[
(1+λ∗r)

X
(ih)

r

]
3 ≤ l < T

.
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Proof: The result follows by applying repeatedly Lemma 7 in Hall [19]

which is the discrete version of Theorem 7.1 in Rootzén [31], after some tedious

calculations.

We are now in conditions to obtain the limiting distribution of the maxi-

mum term of X. An explicit expression for the sequence of norming constants (bn)

can be obtained though the following result. For clarification in notation we

define λ̌= min1≤r≤T {λ∗r} and (q1, ..., qk) the set of indices such that λ̌/λ∗ql
= 1,

for l= 1, ..., k (k ≤ T ). In addition, we define ξ̌ = max1≤l≤k{ξ∗ql
} and the set of

indices (p1, ..., ps) such that ξ̌/ξ∗pl
= 1, with l = 1, ..., s, (s ≤ k). Furthermore,

let A = 1
T

∑s
j=1A

∗
pj

.

Lemma 5.4. For the T -periodic integer-valued sequence X given in (5.2)

the normalizing constants bn of Theorem 3.1 are given by

bn =
(
ln(1+λ̌)

)−1
(lnn+ ξ̌ ln lnn+ lnA) .(5.6)

The demonstration of this lemma is based on the following result.

Lemma 5.5. If a distribution function F belongs to the domain of attrac-

tion of an extreme value distribution, (F ∈ D(Gγ(x))) and F∗= F (x)(1 + ε(x))

with limx→xF
ε(x) = 0, then F∗ ∈ D(Gγ(x)).

Proof of Lemma 5.4: By Lemma 5.3, as x→∞
1

T

T∑
r=1

P
(
Xr> x

) ∼ 1

T

T∑
r=1

A∗r x
ξ∗r (1+λ∗r)

−x

= Axξ̌(1+λ̌)−x

[
1 +

T∑
l=s+1

A∗pj

A

(
1 + λ∗ql

1 + λ̌

)−x

x
ξ∗ql
−ξ̌

]
∼ Axξ̌(1+λ̌)−x ,

where the last step is justified by Lemma 5.5.

Let X̂ be the associated independent T -periodic sequence of X, i.e.

X̂1, X̂2, ..., are independent random variables being the tail distribution of X̂r

as in (5.4) for r= 1, ..., T , and define M̂n = max(X̂n). Next result ensures that

condition D(un) holds for X with FZr
given as in (5.1).

Lemma 5.6. Suppose that the T -periodic integer-valued sequence X given

in (5.2) is defined by a.s. convergent sums and satisfies⎧⎪⎨⎪⎩
lim sup

n→∞
P
(
M̂n≤ x+ bn

) ≤ e−
1

T

�T
r=1

(1+λr)−x

lim inf
n→∞

P
(
M̂n≤ x+ bn

) ≥ e−
1

T

�T
r=1

(1+λr)−(x−1)

,

for all x ∈ R and some set of constants λ1, ..., λT > 0, bn ∈ R. Then condition

D(x+ bn) holds for X.
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Proof: For any εn> 0,

sup
i,j

∣∣∣Fi1,...,ip,j1,...,jq
(un, ..., un)− Fi1,...,ip(un, ..., un)Fj1,...,iq(un, ..., un)

∣∣∣ ≤
≤ n

T

T∑
r=1

P
(
x+ bn− 2 εn < Xr ≤ x+ bn + 2 εn

)
+
n

T

T∑
r=1

P

(∣∣∣∣∣
T−1∑
s=0

∞∑
j=[nγT ]+1

βjT+s ◦ Zr−jT−s

∣∣∣∣∣ > εn

)

+
n

T

T∑
r=1

P

(∣∣∣∣∣
T−1∑
s=0

−[nγT ]−1∑
j=−∞

βjT+s ◦ Zr−jT−s

∣∣∣∣∣ > εn

)

where j1− ip ≥ 2nγT , γ ∈ (0, 1). Note that

n

T

T∑
r=1

P
(
x+ bn− 2 εn < Xr ≤ x+ bn + 2 εn

)
=

=
n

T

T∑
r=1

P
(
Xr > x+ bn− 2 εn

)
− n

T

T∑
r=1

P
(
Xr > x+ bn + 2 εn

)
.

Since bn→∞ and ε→ 0, if bn is a normalizing constant for the maximum term,

then b±n =bn±2 εn are also constants for the maximum term. For each n and a fixed

value of r=1, ..., T nP (Xr> x+ b−n ) and nP (Xr> x+ b−n ) are step functions

of x, with the same step width, and different location parameters, but whose

difference converges to zero. Then

n

T

T∑
r=1

P
(
x+ bn− 2 εn < Xr ≤ x+ bn + 2 εn

)
→ 0 , n→∞ ,

for all x ∈ R, providing that

n

T

T∑
r=1

P

(∣∣∣∣∣
T−1∑
s=0

∞∑
j=[nγT ]+1

βjT+s ◦ Zr−jT−s

∣∣∣∣∣ > εn

)
→ 0(5.7)

n

T

T∑
r=1

P

(∣∣∣∣∣
T−1∑
s=0

−[nγT ]−1∑
j=−∞

βjT+s ◦ Zr−jT−s

∣∣∣∣∣ > εn

)
→ 0(5.8)

as n→∞, for some γT ∈ (0, 1) and ε = o(1) as n→∞, are sufficient conditions

for D(un). In proving (5.7) and (5.8) note that by Markov’s inequality

n

T

T∑
r=1

P

(∣∣∣∣∣
T−1∑
s=0

∞∑
j=[nγT ]+1

βjT+s ◦ Zr−s

∣∣∣∣∣ > εn

)
≤

≤ n

T

T∑
r=1

E

[(
T−1∑
s=0

∞∑
j=[nγT ]+1

βjT+s ◦ Zr−s

)2 ]
ε2n

.
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Using the properties of the thinning operation, for a fixed value r=1, ..., T

E

[(
T−1∑
s=0

∞∑
j=[nγT ]+1

βjT+s ◦ Zr−s

)2 ]
=

=
T−1∑
s=0

(
Var
[
Zr−s

]− E[Zr−s

]) ∞∑
j=[nγT ]+1

β2
jT+s

+

(
T−1∑
s=0

E
[
Zr−s

] ∞∑
j=[nγT ]+1

βjT+s

)2

+
T−1∑
s=0

E
[
Zr−s

] ∞∑
j=[nγT ]+1

βjT+s

= O
(
n−γT (δ−1)

)
,

by (5.3). Hence by taking for instance εn = O
(
(lnn)−ζ

)
, ζ > 0 and choosing

γT ∈ (0, 1) such that γT (δ − 1) > 1, we have that condition (5.7) is satisfied.

For the expression in (5.8) the procedure is analogous.

Next result provides sufficient conditions for D′T (un).

Lemma 5.7. Denote n′T = [nγT ] and suppose that for some constants

γT ∈ (0, 1) and ζ > 0 the following conditions hold, for un = x+ bn, ∀x ∈ R,

n

T

T∑
r=1

2n′
T∑

t=r+1

P
(
Xr +Xt > 2un

)
→ 0 , n→∞ ;(5.9)

n2

T

T∑
r=1

P

(
T−1∑
s=0

∞∑
j=n′

T
+1

βjT+s ◦ Zr−jT−s > ζ

)
→ 0 , n→∞ ;(5.10)

n2

T

T∑
r=1

P

(
T−1∑
s=0

−n′
T
−1∑

j=−∞
βjT+s ◦ Zr−jT−s > ζ

)
→ 0 , n→∞ ;(5.11)

T−1∑
s=0

∞∑
j=n′

T
+1

βjT+s ◦ Zr−jT−s
P→ 0 ,

T−1∑
s=0

−n′
T
−1∑

j=−∞
βjT+s ◦ Zr−jT−s

P→ 0 .(5.12)

Then, condition D′T (un) holds for the T -periodic integer-valued sequence X

defined in (5.2).

Proof: First note that, for a fixed value of r=1, ..., T, P (Xr>un, Xt>un)

≤ P (Xr+Xt> 2un) following from (5.9) that

n

T

T∑
r=1

2n′
T∑

t=r+1

P
(
Xr> un, Xt> un

)
→ 0 , n→∞ .
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Next writeX
′

r=
∑T−1

s=0

∑n′
T

j=−∞ βjT+s◦Zr−jT−s andX
′′

t=
∑T−1

s=0

∑∞
j=n′

T
βjT+s◦Zt−jT−s

so that X
′

r and X
′′

t are independent for t > 2n′T . Following Rootzén [31], for

a fixed value of r=1, ..., T it follows that

P
(
Xr> un, Xt> un

)
≤ P

(
X
′

r> un− ζ
)
P
(
X
′′

r > un− ζ
)

+ P

(
T−1∑
s=0

∞∑
j=n′

T
+1

βjT+s ◦ Zr−jT−s > ζ

)

+ P

(
T−1∑
s=0

−n′
T
−1∑

j=−∞
βjT+s ◦ Zt−jT−s > ζ

)
,

and hence, writing u∗n = x− ζ + bn we have that

n

T

T∑
r=1

[n/kT ]T∑
t=2n′

T
+1

P
(
Xr> un, Xt> un

)
≤

≤
T∑

r=1

n2

k T
P

(
T−1∑
s=0

n′
T∑

j=−∞
βjT+s ◦ Zr−jT−s > u∗n

)

× P

(
T−1∑
s=0

∞∑
j=−n′

T

βjT+s ◦ Zr−jT−s > u∗n

)

+
n2

T

T∑
r=1

P

(
T−1∑
s=0

∞∑
j=n′

T
+1

βjT+s ◦ Zr−jT−s > ζ

)

+
n2

T

T∑
r=1

P

(
T−1∑
s=0

−n′
T
−1∑

j=−∞
βjT+s ◦ Zr−jT−s > ζ

)
.

The last two terms tend to zero by (5.10) and (5.11). By the same line of reasoning

as in Rootzén ([31], p. 622) it is easy to check that

lim sup
n→∞

n

T

T∑
r=1

[n/kT ]T∑
t=2n′

T
+1

P
(
Xr> un, Xt> un

)
≤ 1

k
×(constant) → 0 , k→∞ .

The final result is formalized through the following theorem.

Theorem 5.1. For the T -periodic integer-valued sequence X defined in

(5.2), with ks = 1, s = 0, ..., T−1 and ξr−s �= 1 for r = 1..., T , it holds that⎧⎪⎨⎪⎩
lim sup

n→∞
P
(
Mn≤ x+ bn

) ≤ e−
1

T

�T
r=1

(1+λ∗r)−x

lim inf
n→∞

P
(
Mn≤ x+ bn

) ≥ e−
1

T

�T
r=1

(1+λ∗r)−(x−1)

,

with bn defined as in (5.6).
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Proof: First note that for r = 1, ..., T

Xr +Xt =
T−1∑
s=0

∞∑
j=−∞

(
βjT+s ◦ Zr−jT−s + βjT+s+t ◦ Zr−jT−s

)
.

For simplicity in notation we define λmin =min(λr,...,λr−T+1) and for s=0,...,T−1,

β
(s)
1 = maxj

{
βjT+s : j /∈γs

}
<β(s), β

(s)
2 = maxt

{
maxj{βjT+s + βjT+s+t}

}
< 2β(s),

and β̆max = max0≤s≤T−1

{
β̆(s)
}

with β̆(s) = max
{
β

(s)
1 , β

(s)
2 /2
}
.

E
[
(1+h)βjT+s◦Zr−s+ βjT+s+t◦Zr−s

]
= E

[
E
[
(1+h)βjT+s◦Zr−s+ βjT+s+t◦Zr−s |Zr−s

]]
= P̃Zr−s

(
β(jT+s, t)h2 + (βjT+s + βjT+s+t)h

)
with 0 ≤ h < λmin. Since, for h ≥ 0 and s = 0, ..., T−1, β(jT+s, t)h2 + (βjT+s +

βjT+s+t)h ≤ β̆maxh
2 +2 β̆maxh, the existence of E

[
(1+h)βjT+s◦Zr−s+βjT+s+t◦Zr−s

]
will be granted if it is possible to find an h>0 such that β̆maxh

2+2 β̆maxh < λmin.

β̆maxh
2 + 2 β̆maxh− λmin = 0 ⇐⇒ h = −1±

√
1 +

λmin

β̆max

.

Let h1< 0 < h2 be the two solutions of this equation.

E
[
(1+h)Xr+Xt

]
= E

[
(1+h)

�T−1

s=0

�
∞

j=−∞(βjT+s◦Zr−jT−s+βjT+s+t◦Zr−jT−s)
]

=
T−1∏
s=0

(
[t/2]∏

j=−∞
P̃Zr−s

(
β(jT+s, t)h2 + (βjT+s + βjT+s+t)h

)
×

∞∏
j=[t/2]+1

P̃Zr−s

(
β(jT+s, t)h2 + (βjT+s + βjT+s+t)h

))
.(5.13)

Moreover, P̃
′

Zr−s
(ν) = E

[
(1+ ν)Zr−s

]
<∞, if 0 < ν < λmin, and P̃

′

Zr−s
(ν) ≥ 1

for 0 ≤ ν ≤ β̆maxh
2 + 2 β̆maxh. By the mean value Theorem, P̃Zr−s

(ν1 + ν2) ≤
P̃Zr−s

(ν1) (1+Cν2), ν1, ν2 > 0, ν1+ ν2 ≤ β̆maxh
2 + 2 β̆maxh, with

C = sup

{
P̃
′

Zr−s
(ν+x)

P̃Zr−s
(ν)

: s=0, ..., T−1, 0<ν+x<β̆maxh
2+2 β̆maxh, ν>0, x>0

}
< ∞ .

On the basis of this result we have for ν1=h(βjT+s+βjT+s+t) and ν2 =β(jT+s,t)h2

[t/2]∏
j=−∞

P̃Zr−s

(
β(jT+s, t)h2 + (βjT+s +βjT+s+t)h

)
≤

≤
[t/2]∏

j=−∞
P̃Zr−s

(
(βjT+s +βjT+s+t)h

) [t/2]∏
j=−∞

(
1 + CβjT+s β(jT+s, t)h2

)

≤
[t/2]∏

j=−∞
P̃Zr−s

(
βjT+s h

) −[t/2]∏
j=−∞

(
1 + CβjT+s h

) [t/2]∏
j=−∞

(
1 + Cβ(jT+s, t)h2

)
.
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Noticing that P̃Zr−s
(βjT+s h) = 1 + βjT+s hE[Zr−s] (1 + o(1)) and using (5.3),

we may conclude that the last expression is bounded, uniformly in t. Using

a similar argument for the second product in (5.13) we are lead to conclude that

E
[
(1+h)Xr+Xt

]
<∞ for r=1, ...T . By Lemma 5.4, un∼ ln n

ln(1+λ̌)
as n→∞.

By Bernstein’s inequality

P
(
Xr+Xt> 2un

)
≤ E

[
(1+h)Xr+Xt

]
(1+h)−2un

= O
(
(1+h)−2un

)
= O

(
n

ln(1+2h+h2
)

ln(1+λ̌)

)
= o
(
n−(1+γT )

)
,

where the last equality follows by the arguments given in Hall ([19], p. 373). More-

over, in proving (5.10) and (5.11), it suffices to show by Bernstein’s inequality

that

E

[
(1 + h)

�T−1

s=0

�
∞

j=Tn′
T

+1
βjT+s◦Zr−jT−s

]
and

E

[
(1 + h)

�T−1

s=0

�−Tn′
T
−1

j=−∞
βjT+s◦Zr−jT−s

]
,

are bounded as n→∞, for some h = nη − 1, η > 0. We can choose ζ and η

such that 2 < ζ η < ζ γT (δ − 1). By (5.3), we have that

E

[
(1+h)

�T−1

s=0

�
∞

j=n′
T

+1
βjT+s◦Zr−jT−s

]
=

T−1∏
s=0

∞∏
j=Tn′

T
+1

E
[
(1+h)βjT+s◦Zr−jT−s

]

=
T−1∏
s=0

∞∏
j=n′

T
+1

P̃Zr−s
(βjT+s h)

=

T−1∏
s=0

∞∏
j=n′

T
+1

(
1+ βjT+s hE

[
Zr−s

](
1+o(1)

))
< ∞ ,

as n→∞ providing

n2

T

T∑
r=1

P

(
T−1∑
s=0

∞∑
j=n′

T
+1

βjT+s ◦ Zr−jT−s > ζ

)
≤

≤ n2

T
E

[
(1+h)

�T−1

s=0

�
∞

j=n′
T

+1
βjT+s◦Zr−jT−s

]
n−ζη → 0 , n→∞ .

A similar procedure can be carried out to prove (5.11). We skip the details.
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Finally, the proof is completed upon showing (5.12). Note that

E

[
T−1∑
s=0

∞∑
j=n′

T
+1

βjT+s ◦ Zr−jT−s

]
=

T−1∑
s=0

E
[
Zr−s

] ∞∑
j=n′

T
+1

βjT+s

<

T−1∑
s=0

E
[
Zr−s

] ∞∑
j=n′

T
+1

O(j−δ)

= O
(
nγT (−δ+1)

) → 0 , n→∞ .

Moreover

Var

[
T−1∑
s=0

∞∑
j=n′

T
+1

βjT+s ◦ Zr−jT−s

]
=

=
T−1∑
s=0

∞∑
j=n′

T
+1

β2
jT+s

(
Var
[
Zr−s

]− E[Zr−s

])
+

T−1∑
s=0

∞∑
j=n′

T
+1

βjT+sE
[
Zr−s

]

<

T−1∑
s=0

∞∑
j=n′

T
+1

(
O(j−2δ) +O(j−δ)

)
= O

(
nγT (−δ+1)

) → 0 , n→∞ .

Hence, (5.12) holds concluding the proof.
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