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Abstract:

• In this paper, and in a context of regularly varying tails, we suggest new tail index
estimators, which provide interesting alternatives to the classical Hill estimator of the
tail index γ. They incorporate some extra knowledge on the pattern of scaled top
order statistics and seem to work generally pretty well in a semi-parametric context,
even for cases where a second order condition does not hold or we are outside Hall’s
class of models. We shall give particular emphasis to a class of statistics dependent
on a tuning parameter τ , which is merely a change in the scale of our data, from X
to X/τ . Such a statistic is non-invariant both for changes in location and in scale,
but compares favourably with the Hill estimator for a class of models where it is not
easy to find competitors to this classic tail index estimator. We thus advance with a
slight “controversial” argument: it is always possible to take advantage from a non-
invariant estimator, playing with particular tuning parameters — either a change in
the location or in the scale of our data —, improving then the overall performance of
the classical estimators of extreme events parameters.
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1. INTRODUCTION AND PRELIMINARIES

Let X1, X2, ..., Xn be independent random variables (r.v.’s) with common

distribution function (d.f.)F , with a heavy upper tail, i.e., for large x, there exists

γ > 0 such that

F (x) := 1− F (x) = x−1/γL
F
(x) ,

where L
F
(x) is a slowly varying function, i.e., for every x > 0, L

F
(tx)/L

F
(t)→ 1

as t→∞. F is thus in the max-domain of attraction of an ExtremeValue (EV )

d.f.,

EVγ(x) :=

⎧⎨⎩ exp
{−(1+ γ x)−1/γ

}
, 1 + γ x > 0 if γ �= 0

exp
(− exp(−x)), x ∈ R if γ = 0

,

with γ > 0. We shall denote this fact by F ∈ D
M
(EVγ).

Recall that, for γ > 0,

(1.1) F ∈ D
M
(EVγ) iff F ∈ RV−1/γ iff U ∈ RVγ ,

where U(t) := F←(1−1/t), t > 1 (Gnedenko, 1943; de Haan, 1970). RVα stands

for the class of regularly varying functions at infinity with index of regular vari-

ation equal to α, i.e., positive functions g with infinite right endpoint, and such

that limt→∞ g(tx)/g(t) = xα, for all x > 0, and the notation F← is used for the

generalized inverse function of F , i.e., F←(t) = inf{x : F (x) ≥ t}.

The function A(t) measures the rate of convergence of {lnU(tx)− lnU(t)}
towards {γ lnx} in (1.1), and it is a function of constant sign, such that

(1.2) lim
t→∞

lnU(tx)− lnU(t)− γ lnx
A(t)

=
xρ − 1

ρ
,

for every x > 0, where ρ (≤ 0) is a second order parameter. The limit function in

(1.2) must be of the stated form, and |A(t)| ∈ RVρ (Geluk and de Haan, 1987).

1.1. The new estimation procedures

Let Xi:n denote the i-th ascending order statistic (o.s.), 1 ≤ i ≤ n, associ-

ated to the sample Xn = (X1, X2, ..., Xn). Under the validity of the first order

framework in (1.1), with U(t) = tγ L
U
(t), L

U
∈RV0, and for intermediate k, i.e.,

(1.3) k = kn →∞, k/n→ 0, as n→∞ ,
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the classic tail index estimator for a positive γ is Hill’s estimator (Hill, 1975),

with the functional expression

(1.4) γ̂H
n (k) :=

1

k

k∑
i=1

[
lnXn−i+1:n − lnXn−k:n

]
.

For this estimator, and whenever (1.3) holds, we have the validity of the distri-

butional representation,

γ̂H
n (k)

d
= γ +

γ√
k
Pk +

1

1− ρ A(n/k)
(
1+ op(1)

)
,

with Pk asymptotically standard normal (de Haan and Peng, 1998).

Also, under the validity of (1.3), it is possible to scaleXn−k:n (orXn−k+1:n),

with an= U(n), so that

(1.5) ln
Xn−k+1:n

an
+ γ ψ(k)

p−→
n→∞

0 .

And for every fixed i, 1 ≤ i < n, there exists a non-degenerate r.v. εi, such that

E[εi] = 0, and

(1.6) ln
Xn−i+1:n

an
+ γ ψ(i)

d−→
n→∞

εi .

As usual, ψ denotes the digamma function, i.e. ψ(t) = d ln Γ(t)/dt = Γ′(t)/Γ(t),

being Γ the complete Gamma function, Γ(t) =
∫∞
0 xt−1e−x dx, t > 0. For a jus-

tification of these results see Lemma 4.1. For details on the Γ and ψ functions,

see Abramowitz and Stegun (1975??).

Let us then think on the least-squares’ type estimators of γ and b := ln a,

which come from the minimization, jointly in γ and b, of

k∑
i=1

{
lnXn−i+1:n − b+ γ ψ(i)

}2
.

Straightforward computations lead us to

(1.7) b̃n(k) = l̃n a(k) =
1

k

k∑
i=1

lnXn−i+1:n + γ̃n(k)

(
1

k

k∑
i=1

ψ(i)

)
,

with

(1.8) γ̃n(k) =

(
k∑

i=1
ψ(i)

)(
k∑

i=1
lnXn−i+1:n

)
− k

k∑
i=1

ψ(i) lnXn−i+1:n

k
k∑

i=1
ψ2(i)−

(
k∑

i=1
ψ(i)

)2 .



Improvements in the Estimation of a Heavy Tail 85

Remark 1.1. Notice that the replacement of ψ(i) by {ln i} in the

γ-estimator in (1.8) leads us to the estimator, based on a QQ-plot, studied in

Kratz and Resnick (1996) and independently in Schultze and Steinbach (1996),

and given by

(1.9) γ̃(K)
n (k) :=

(
k∑

i=1
ln i

)(
k∑

i=1
lnXn−i+1:n

)
− k

k∑
i=1

(ln i) lnXn−i+1:n

k
k∑

i=1
ln2 i−

(
k∑

i=1
ln i

)2 .

Since ψ(x) = lnx+O(1/x), as x→∞, the difference between the estimators

γ̃n and γ̃(K)
n is asymptotically negligible. However, for finite samples, their per-

formance differs significantly, because the approximation in terms of the digamma

function ψ(i) is usually better than the use of {ln i} for all i between 1 and k.

We may easily simplify the expressions of b̃n(k) and of γ̃n(k) in (1.7)

and (1.8), respectively, through the use of the following relations involving the

digamma function,

(1.10)
k∑

j=1

ψ(j) = k ψ(k)− (k−1) = k
(
ψ(k+1)− 1

)
,

k∑
j=1

ψ2(j) = k ψ2(k+1) + 2k − (2k + 1)ψ(k+1) + ψ(1)

and

k

j∑
j=1

ψ2(j)−
( k∑

j=1

ψ(j)

)2

= k
{
k − ψ(k+1) + ψ(1)

}
= k

k∑
j=1

(
1− 1

j

)
.

We then get the following linear combination of the top log-observations,

(1.11) γ̃n(k) =

k∑
i=1

(
ψ(k+1)− ψ(i)− 1

)
lnXn−i+1:n

k − ψ(k+1) + ψ(1)
,

and we may also write

(1.12) ãn(k) = Xn−k:n exp
(
γ̂H

n (k) + γ̃n(k)
(
ψ(k+1)− 1

))
,

where γ̂H
n (k) and γ̃n(k) are given in (1.4) and (1.11), respectively.

We shall next assume that we are in Hall’s class of models (Hall and Welsh,

1985), where

(1.13) U(t) = C tγ
(
1 +

A(t)

ρ

(
1+ o(1)

))
, A(t) = γ β tρ, as t→∞ ,
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or equivalently that the tail function is of the type

1− F (x) =
( x
C

)−1/γ
{
1 +

β

ρ

( x
C

)ρ/γ
+ o

(
xρ/γ

)}
, as x→∞ ,

where γ > 0, C > 0, ρ < 0 and β �= 0.

We may then choose a = an= C nγ , as n→∞, and, from (1.12), we get

a least-squares’ estimator of C given by

C̃n(k) := Xn−k:n exp

{
γ̂H

n (k)− γ̃n(k)
(
lnn− ψ(k+1) + 1

)}
(1.14)

∼ Xn−k:n

(
k

n

)
�γn(k)

exp
{
γ̂H

n (k)− γ̃n(k)
}
, as k →∞ ,(1.15)

again with γ̂H
n (k) and γ̃n(k) given in (1.4) and (1.11), respectively.

Although aware that C is a parameter of the model, which may be estimated

for instance through any of the asymptotically equivalent estimators in (1.14) or

(1.15), we shall consider τ ≡ C as a tuning parameter. This has been done in a

way similar to the one used by Csörgő and Viharos (1998), when they consider a

kernel estimator as a function of a tuning parameter τ ≡ ρ, also a model parame-

ter, the second order parameter in (1.2). Notice that if UX(t) = C tγ(1 + o(1)),

then for Y = X/C, UY (t) = tγ (1+ o(1)). This means that a proper scaling of

our data enables us to choose a = nγ , i.e., γ = ln a/ lnn, a particular situation

which will merely help us to build a class of statistics, dependent of the control

parameter τ = C, which should be regarded as a possible change in the scale of

our data. Such a class is got from the least-squares type estimator of {ln a} in
(1.7), and is given by

˜̃γ(τ)

n (k) :=
1

k lnn

{
k∑

i=1

ln
Xn−i+1:n

τ
+ γ̃n(k)

k∑
i=1

ψ(i)

}

=
1

lnn

{
ln
Xn−k:n

τ
+

(
ψ(k+1)− 1

)
γ̃n(k) + γ̂H

n (k)

}
.(1.16)

As a particular member of the class in (1.16), we shall consider the estimator

(1.17) ˜̃γn(k) ≡ ˜̃γ(1)
n (k) =

lnXn−k:n +
(
ψ(k+1)− 1

)
γ̃n(k) + γ̂H

n (k)

lnn
.

We shall also consider the estimation of C, and its use in the class of

statistics in (1.16), but we are aware that then we are going to get a poorer

estimator of the tail index γ, unless the C-estimator is highly efficient. For

instance, should we have used C̃n(k), in (1.14), as τ , in (1.16), would we have

been led to γ̃n in (1.11), i.e., ˜̃γ( �Cn(k))

n (k) ≡ γ̃n(k). We have here decided to follow

Hall and Welsh (1985), and to consider the C-estimator

(1.18) Ĉn(k) :=

(
k

n

)
�γH

n (k)

Xn−k:n .
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Since in Hall’s class of models, in (1.13), the mean squared error of both non-

degenerate limiting distributions of γ̂H
n (k) and Ĉn(k) are minimized by taking

k0 =

(
(1− ρ)2
−2 ρ β2

n−2ρ

)1/(1−2ρ)

(Theorem 4.1 in Hall and Welsh, 1985), we shall also consider, in the simulations,

and whenever we are in Hall’s class of models in (1.13), the estimator of the tail

index γ, given by

(1.19) ˜̃γ( �C)

n (k), where Ĉ = Ĉn(k̂0), k̂0 =

(
(1−ρ̂)2
−2 ρ̂ β̂2

n−2�ρ

)1/(1−2�ρ)

,

with Ĉn given in (1.18) and ρ̂ and β̂ adequate estimators of ρ and β, respectively,

already considered in Gomes and Martins (2002). In the simulations of models

outside Hall’s class, due to the difficulties in the estimation of k0, we shall exhibit

the behaviour of

(1.20) ˜̃γ( �C0)

n , where Ĉ0 = Ĉn(k0), k0 = argmin
k

MSE
[
γ̂H

n (k)
]
,

again with Ĉn given in (1.18) and k0 obtained through simulation.

Remark 1.2. In practice, it is sensible to consider τ in (1.16) as a tuning

parameter, choosing τ through a data-driven estimation of the mean squared

error of ˜̃γ(τ)

n (k) as a function of k, for adequately chosen fixed values of τ (Oliveira,

2002). The value of τ may be any value τ∗ such that

M̂SE
[˜̃γ(τ∗)

n (k)
]
≤ M̂SE

[
γ̂H

n (k)
]
, for every k .

When we consider

k(τ∗)

n0 := argmin
k

M̂SE
[˜̃γ(τ∗)

n (k)
]
,

it is then sensible to choose the value τ∗0 providing the minimum

M̂SE
[˜̃γ(τ∗)

n

(
k(τ∗)

n0

)]
, i.e.,

τ∗0 := argmin
τ∗

M̂SE
[˜̃γ(τ∗)

n

(
k

(τ∗)
n0

)]
.

We choose then (see also Remark 5.1)

k̂n0 = k
τ∗0
n0 and ˜̃γn0 :=

˜̃γ(τ∗0 )

n

(
k̂n0

)
.

This is an open problem, beyond the scope of the present paper, where we

intend essentially to present the potentialities of the class of statistics in (1.16)

to estimate a positive tail index.
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In section 2, we shall briefly review the Peaks Over Threshold (POT )

methodology, a classical method of estimation of a tail index, to be also com-

pared with the new estimation procedures considered, as well as the estimation

of the second order parameters ρ and β in A(t) = γ β tρ. In section 3 we shall

compare asymptotically the estimator in (1.11) (or equivalently, the estimator in

(1.9)) with the Hill estimator in (1.4). Section 4 is devoted to the asymptotic

behaviour of the class of estimators in (1.16). Sections 5 and 6 are devoted to

the illustration of the behaviour of these estimators for finite samples, through

the use of Monte Carlo simulation techniques.

2. REVIEW OF WELL-ESTABLISHED ESTIMATION PROCE-

DURES OF FIRST AND SECOND ORDER PARAMETERS

2.1. The link between the Hill estimator and the POT methodology

Let us think on the excesses over a high random threshold Xn−k:n,

Vik := Xn−i+1:n −Xn−k:n , 1 ≤ i ≤ k .

Since X
d
= U(Y ), Y a standard unit Pareto r.v. with d.f. 1− 1/y, y ≥ 1,

Yn−i+1:n/Yn−k:n
d
= Yk−i+1:k, 1≤ i≤k, and, for k intermediate, Yn−k:n =

(n/k)(1+op(1)), we may write, under the validity of the first order condition

in (1.1),

Vik = Xn−i+1:n −Xn−k:n = Xn−k:n

(
Xn−i+1:n/Xn−k:n − 1

)
d
= Xn−k:n

(
U
(
Yn−k:n Yk−i+1:k

)/
U(Yn−k:n)− 1

)
d
= Xn−k:n

(
Y γ

k−i+1:k

(
1+op(1)

)− 1
)

= Xn−k:n

((
Y γ

k−i+1:k − 1
) (
1+op(1)

)
+ op(1)

)
.

Consequently, we may say that there exists δ such that we have approximately

Vik/δ ≈
(
Y γ

k−i+1:k−1
)
/γ, i.e., Vik, 1 ≤ i ≤ k, are approximately the k o.s. of

a sample of size k from a Generalized Pareto (GP) model,

GPγ(x; δ) = 1− (
1 + γ x/δ

)−1/γ
, x ≥ 0 (γ, δ > 0) .

The estimation of γ through maximum likelihood (ML) in a GP model has been

thoroughly studied in Davison (1984) and Smith (1984a,b). Davison (1984)

suggested a re-parameterization of the GP model in (γ, α) = (γ, γ/δ), which

enables us to get only one ML equation to be solved iteratively. Such a re-

parameterization has also been used in Gomes and Oliveira (2003a), where a com-

putational study of this methodology has been undertaken. The ML-estimator
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of γ has, with such a re-parameterization, an explicit expression as a function of

the ML-estimator α̂ of α = γ/δ and the sample of the excesses. We have

(2.1) γ̂GP
n (k) :=

1

k

k∑
i=1

ln
(
1 + α̂ Vik

)
,

and α is such that αVik ≈ Y γ
k−i+1:k−1. Notice that an obvious choice for α is

1/Xn−k:n. Then 1 + αVik = Xn−i+1:n/Xn−k:n, and the estimator in (2.1) is the

Hill estimator γ̂H
n (k) in (1.4). Smith (1987) has got the asymptotic behaviour of

the estimator in (2.1) for a fixed threshold u. The conclusion of his Theorem

3.2 may be easily rephrased in this set-up (Gomes, 2002; Drees et al., 2004), and,

under the second order framework in (1.2), we get the asymptotic distributional

representation

(2.2) γ̂GP
n (k)

d
= γ +

(1 + γ)√
k

Qk +
(1 + γ) (γ + ρ)A(n/k)

γ (1− ρ) (1− ρ+ γ)

(
1 + op(1)

)
,

with Qk asymptotically standard normal.

Remark 2.1. Note that the result in (2.2), although appearing to produce

a different bias term, agrees with the one in Drees et al. (2004). Indeed, whereas

we here assume (1.2), the most common second order condition for heavy-tailed

models, Drees et al. (2004) consider the general case γ ∈ R, and assume that there

exists a∗(·) and A∗(·) such that
U(tx)−U(t)

a∗(t) − xγ−1
γ

A∗(t)
−→
t→∞

1

ρ∗

(
xγ+ρ∗− 1

γ + ρ∗
− xγ − 1

γ

)
.

If we consider ρ∗ < 0, we may then guarantee that, with A0(t) = A∗(t)/ρ∗ and

a0(t) = a∗(t) (1−A∗(t)/ρ∗), we get,

(2.3)

U(tx)−U(t)
a0(t) − xγ−1

γ

A0(t)
−→
t→∞

xγ+ρ∗− 1

γ + ρ∗
.

For γ > 0 (and ρ∗< 0), condition (2.3) is equivalent to saying that, as t→∞,

(2.4) U(t) = C tγ
(
1 +Atρ∗ + o

(
tρ∗

))
.

Then

U(tx)− U(t) = C γ tγ

(
xγ − 1

γ
+
A(γ + ρ∗) tρ

∗

γ

(
xγ+ρ∗− 1

γ + ρ∗

)
+ o

(
tρ∗

))
.

If γ + ρ∗ �= 0, we then need to choose a0(t) = C γ tγ , A0(t) = A(γ+ρ∗) tρ
∗

/γ.

Then

U(tx)

U(t)
= 1 +

U(tx)− U(t)
C tγ

(
1−Atρ∗+ o

(
tρ
∗))

= xγ
(
1 +Atρ

∗(
xρ∗− 1

)
+ o

(
tρ
∗))

= xγ

(
1 +Aρ∗ tρ

∗

(
xρ∗− 1

ρ∗

)
+ o

(
tρ
∗))

,
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and consequently,

lnU(tx)− lnU(t) = γ lnx+Aρ∗ tρ
∗

(
xρ∗− 1

ρ∗

)
+ o

(
tρ
∗)
,

i.e., provided that γ + ρ∗ �= 0, and with A(t) = γ ρ∗A0(t)
γ+ρ∗ ,

(2.5)
lnU(tx)− lnU(t)− γ lnx

A(t)
−→
t→∞

xρ∗− 1

ρ∗
=
xρ − 1

ρ
,

i.e., ρ∗ in (2.3) is equal to ρ in (1.2). Consequently, if
√
k A(n/k)→ λ,√

k A0(n/k)→ λ(γ+ρ)/(γ ρ). The bias provided in Drees et al. (2004) for the

POT-ML tail index estimator is then

λ(γ + ρ)

γ ρ

(
ρ(1 + γ)

(1− ρ) (1− ρ+ γ)

)
=

λ(1 + γ) (γ + ρ)

γ(1− ρ) (1− ρ+ γ)
,

the values provided in both Smith (1987) and Gomes (2002).

We shall now make explicit the term o(tρ
∗

) in (2.4), assuming that

U(t) = C tγ
(
1 +Atρ∗ +B tρ∗+ρ′ + o

(
tρ∗+ρ′

))
, ρ′ < 0 .

If γ + ρ∗ = 0, i.e., ρ∗ = −γ,

U(tx)− U(t) = C γ tγ

(
xγ − 1

γ
+
2B ρ∗ tρ

∗+ρ′

γ

(
xρ∗+ρ′− 1

ρ∗ + ρ′

)
+ o

(
tρ
∗+ρ′

))
,

and

a0(t) = C γ tγ , A0(t) =
2B ρ∗ tρ

∗+ρ′

γ
.

But for the model in (2.4), we may choose for any ρ < 0, A(t) = ρA tρ, and

we get

lim
t→∞

lnU(tx)− lnU(t)− γ lnx
A(t)

=
xρ − 1

ρ
.

If
√
k A(n/k)→ λ,

√
k A0(n/k)→ 0. So, both from Smith (1987) and from

Drees et al. (2004), we get a null dominant component for the bias term of the

POT-ML tail index estimator, whenever γ + ρ∗ = 0, as expected.
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2.2. Estimators of the second order parameters ρ and β

The estimation of the second order parameter ρ, in A(t) = γ β tρ, is

going to be done through particular members of the class of ρ-estimators in

Fraga Alves et al. (2003). Those estimators are given by

(2.6) ρ̂(i)
n (k) := min

(
0 ,

3
(
T (i)

n (k)− 1
)

T (i)
n (k)− 3

)
, i = 0, 1 ,

where

T (i)
n (k) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M (1)
n (k)− (

M (2)
n (k)/2

)1/2(
M (2)

n (k)/2
)1/2 − (

M (3)
n (k)/6

)1/3
if i = 1

ln
(
M (1)

n (k)
)− 1

2 ln
(
M (2)

n (k)/2
)

1
2 ln

(
M (2)

n (k)/2
)− 1

3 ln
(
M (3)

n (k)/6
) if i = 0

.

The statistics is (2.6) are consistent for the estimation of ρ whenever the

second order condition (1.2) holds and k is such that k →∞, k = o(n) and√
k A(n/k)→∞, as n→∞.

Remark 2.2. The theoretical and simulated results in Fraga Alves et al.

(2003), together with the use of these estimators in the Generalized Jackknife

statistics of Gomes et al. (2000), as done in Gomes and Martins (2002), has led

these authors to advise the consideration of the level

(2.7) k1 = min
(
n−1, [2n/ ln lnn])

and of the ρ-estimators

ρ̂0 := min
(
0, 3

(
T (0)

n (k1)− 1
)/(

T (0)
n (k1)− 3

))
if ρ ≥ −1 ,(2.8)

and

ρ̂1 := min
(
0, 3

(
T (1)

n (k1)− 1
)/(

T (1)
n (k1)− 3

))
if ρ < −1 .(2.9)

For the estimation of β we have here considered the estimator of β

in Gomes and Martins (2002) and based on the scaled log-spacings Ui =

i {lnXn−i+1:n − lnXn−i:n}, 1 ≤ i ≤ k. Let us denote ρ̂ any of the estimators

either in (2.8) or in (2.9) (or even in (2.6)). The β-estimator is given by

(2.10) β̂(k) :=
1

n�ρ

(
k∑

i=1
i−�ρ

)(
k∑

i=1
Ui

)
− k

(
k∑

i=1
i−�ρ Ui

)
(

k∑
i=1

i−�ρ
)(

k∑
i=1

i−�ρ Ui

)
− k

(
k∑

i=1
i−2�ρ Ui

) .

We have then considered β̂ = β̂(k1), k1 given in (2.7).
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3. ASYMPTOTIC PROPERTIES OF γ̃n

3.1. The estimator γ̃n as a linear combination of Hill’s estimators

We first state the following:

Lemma 3.1. A semi-parametric estimator of the tail index γ which is a

linear combination of the k top log-observations, i.e.,

(3.1) γn(k) =
k∑

i=1

ai lnXn−i+1:n

is scale invariant if and only if
k∑

i=1
ai = 0.

Proof: If we consider a change in scale, moving from X to X/C, C > 0,

C �= 1, the estimator in (3.1) changes to
∑k

i=1 ai lnXn−i+1:n − lnC
∑k

i=1 ai,

which equals γn(k) =
∑k

i=1 ai lnXn−i+1:n if and only if
∑k

i=1 ai = 0.

Lemma 3.2. A semi-parametric estimator of the type (3.1) may be ex-

pressed as a linear combination of Hill’s estimators, i.e.,

(3.2) γn(k) =
k∑

i=1

ai lnXn−i+1:n =
k−1∑
j=1

bj γ̂
H
n (j) ,

where

(3.3) bj = −aj+1 − 1

j+1

k∑
i=j+2

ai, j=1, ..., k−2 , bk−1 = −ak ,

if and only if it is scale invariant, i.e., if and only if
∑k

i=1 ai = 0.

Proof: We may write

k−1∑
j=1

bj γ̂
H
n (j) =

k−1∑
j=1

bj

{
1

j

j∑
i=1

lnXn−i+1:n − lnXn−j:n

}

=
k−1∑
i=1

(
k−1∑
j=i

bj
j

)
lnXn−i+1:n −

k∑
i=1

bi−1 lnXn−i+1:n (b0 ≡ 0)

=
k−1∑
i=1

(
k−1∑
j=i

bj
j
− bi−1

)
lnXn−i+1:n − bk−1 lnXn−k+1:n ,
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i.e., ai =
∑k−1

j=i bj/j − bi−1, 1 ≤ i ≤ k−1, and ak = −bk−1. This linear system

has a unique and possible solution if and only if
∑k

i=1 ai = 0. Then we just need

to solve the linear system of equations:⎡⎢⎢⎣
a2

a3

· · ·
ak

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−1 1

2
1
3 · · · 1

k−1

0 −1 1
3 · · · 1

k−1

· · · · · · · · · · · · · · ·
0 0 0 · · · −1

⎤⎥⎥⎦
⎡⎢⎢⎣

b1
b2
· · ·
bk−1

⎤⎥⎥⎦ =: A b .

Since the inverse matrix of A is

A−1 =

⎡⎢⎢⎣
−1 −1

2 −1
2 · · · −1

2
0 −1 −1

3 · · · −1
3

· · · · · · · · · · · · · · ·
0 0 0 · · · −1

⎤⎥⎥⎦ ,
the result follows.

Then, from the relation (1.10) and from Lemma 3.2, it follows straightfor-

wardly that:

Proposition 3.1. The estimator in (1.11), which may be written as

(3.4) γ̃n(k) =
k∑

i=1

ai lnXn−i+1:n , ai =
ψ(k+1)− ψ(i)− 1

k − ψ(k+1) + ψ(1)
, 1≤ i≤k ,

is scale invariant, i.e.
k∑

i=1
ai = 0, and we may write it as the following linear

combination of Hill’s estimator,

(3.5) γ̃n(k) =
k−1∑
j=1

bj γ̂
H
n (j) , bj =

j

(j+1)
(
k − ψ(k+1) + ψ(1)

) .

3.2. The asymptotic behaviour of γ̃n(k)

Theorem 3.1. Under the first order framework (1.1) and for k such that

(1.3) holds, the estimator in (1.11) is a consistent estimator of γ. Moreover,

under the second order framework in (1.2), we have the validity of the following

distributional representation,

(3.6) γ̃n(k)
d
= γ +

γ
√
2√
k
Pk +

1

(1− ρ)2 A(n/k)
(
1 + op(1)

)
,

where Pk is asymptotically standard normal.
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Proof: Since in the linear combination in (3.5),
∑k−1

j=1 bj = 1, γ̃n(k) is,

under the conditions of the theorem, a consistent estimator of γ. The linear

combination of Hill’s estimators,
∑k−1

j=1 bj γ̂
H
n (j) may be written as

k−1∑
j=1

bj γ̂
H
n (j) =

k−1∑
j=1

bj
j

j∑
i=1

i
[
lnXn−i+1:n − lnXn−i:n

]

=
k−1∑
i=1

i

(
k−1∑
j=i

bj
j

)[
lnXn−i+1:n − lnXn−i:n

]
,

and consequently, with {Ei}i≥1 i.i.d. standard exponential r.v.’s, we may write

k−1∑
j=1

bj γ̂
H
n (j)

d
= γ

k−1∑
i=1

(
k−1∑
j=i

bj
j

)
Ei(3.7)

+ A(n/k) kρ
k−1∑
i=1

i1−ρ

(
k−1∑
j=i

bj
j

)
eρEi/i− 1

ρ

(
1 + op(1)

)
.

For the particular linear combination under study we have

k−1∑
i=1

(
k−1∑
j=i

bj
j

)
=

k−1∑
j=1

bj = 1 ,
k−1∑
j=i

bj
j
=

ψ(k+1)− ψ(i+1)
k − ψ(k+1) + ψ(1)

,

and

k−1∑
i=1

(
k−1∑
j=i

bj
j

)2

=
2k − ψ2(k+1) +

(
2ψ(1)−1)ψ(k+1) + ψ(1)− ψ2(1)(

k − ψ(k+1) + ψ(1)
)2

=
2

k

(
1 + o(1)

)
.

Since E
{(
eρEi/i− 1

)
/ρ

}
= 1/(i− ρ), and

∑k−1
i=1 i

−ρ
{
ψ(k + 1)− ψ(i+ 1)

}
=

O(k−ρ+1)/(1− ρ)2, we finally get (3.6).

Remark 3.1. The result in Theorem 3.1 has already been obtained for

the estimator in (1.9) by Csörgő and Viharos (1997), who have shown that for in-

termediate sequences k, and with μn(k) = −n
k

∫ k/n
0 (1 + ln(ns/k)) lnU(1/s) ds,

√
k

{
γ̃(K)

n (k)− μn(k)
}

d−→
n→∞

Normal (0, 2γ2) .

But under the second order framework in (1.2), μn(k) may be written as

μn(k) = γ +
A(n/k)

(1− ρ)2
(
1 + o(1)

)
,

which agrees with the result in (3.6).

Remark 3.2. Notice that, relatively to the Hill estimator, the asymptotic

variance of γ̃n(k) duplicates, but the bias decreases by a factor 1/(1− ρ).
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3.3. Asymptotic comparison at optimal levels

Now we proceed to an asymptotic comparison of the estimators γ̃n, γ̂
H
n and

γ̂GP
n at their optimal levels in the lines of de Haan and Peng (1998), Gomes et al.

(2000, 2002) for sets of Generalized Jackknife statistics, Gomes and Martins

(2001) and also Caeiro and Gomes (2002), for specifically built “asymptotically

unbiased” estimators of the tail index. Suppose γn(k) is a general semi-parametric

estimator of the tail index, for which the distributional representation

(3.8) γn(k) = γ +
σ√
k
Zk + bA(n/k) + op

(
A(n/k)

)
holds for any intermediate k, and where Zk is an asymptotically standard normal

r.v.; then we have

√
k
[
γn(k)− γ

] d→ N
(
λb, σ2

)
, as n→∞ ,

provided k is such that
√
k A(n/k)→ λ, finite, as n→∞. In this situation

we write Bias∞[γn(k)] := bA(n/k) and Var∞[γn(k)] := σ2/k. The so-called

Asymptotic Mean Squared Error (AMSE ) is then given by

AMSE
[
γn(k)

]
:=

σ2

k
+ b2A2(n/k) .

Using regular variation theory it may be proved that, whenever b �= 0, there

exists a function ϕ(n), dependent only on the underlying model, and not on the

estimator, such that

lim
n→∞

ϕ(n)AMSE [γn0] =
2ρ− 1

2ρ

(
σ2

)− 2ρ
1−2ρ

(
b2

) 1
1−2ρ := LMSE [γn0] ,

where γn0 := γn(k0(n)), k0(n) := argmink AMSE [γn(k)].

It is then sensible to consider the following measure of efficiency, defined in

a way that the larger such a measure is the better is the estimator.

Definition 3.1. Given two biased estimators γ(1)
n (k) and γ(2)

n (k), both com-

puted at their optimal levels, and for which distributional representations of the

type (3.8) hold, with constants (σ1, b1) and (σ2, b2), respectively, b1, b2 �= 0, the

Asymptotic Root Efficiency (AREFF ) of γ(2)

n0 relatively to γ(1)

n0 is

AREFF2|1 ≡ AREFF
γ
(2)
n0 |γ

(1)
n0

:=
√

LMSE
[
γ(1)

n0

]
/LMSE

[
γ(2)

n0

]
=

((
σ1

σ2

) ∣∣∣∣b1b2
∣∣∣∣
) 1

1−2ρ

.

The comparison of the estimator γ̃n with the Hill estimator γ̂
H
n , both com-

puted at their optimal levels, leads us to the following result:



96 Orlando Oliveira, M. Ivette Gomes and M. Isabel Fraga Alves

Proposition 3.2. The asymptotic root efficiency of γ̃n relatively to the

Hill estimator γ̂H
n , both computed at their optimal levels, is given by

(3.9) AREFF
�γn|�γH

n
=

(
2ρ(1− ρ)) 1

1−2ρ ,

being thus greater than 1 iff ρ > −1, and equal to 1 at ρ = 0 and ρ = −1.

The comparison of the three estimators γ̃n, γ̂
H
n and γ̂GP

n is done graphically

in Figure 1, where the “best” estimator, in terms of minimum LMSE at the

optimal level, is exhibited. As expected, all depends on the region (γ, ρ), but

for values of ρ close to 0, say ρ > −1, a region where Hill’s estimator exhibits

“disturbing” sample paths, the new estimator γ̃n, at its optimal level, not only

overpasses the Hill estimator for all γ, as stated in Proposition 3.2, but also

overpasses the GP -estimator, at their respective optimal levels, for a wide region

of (γ, ρ)-values.

Figure 1: Mimum LMSE among the estimators γ̂H , γ̃ and γ̂GP

in (1.4), (1.11) and (2.1), respectively.

4. THE ASYMPTOTIC BEHAVIOUR OF ˜̃γ(τ)

n (k)

Notice first of all that we no longer have linear combinations of the top

log-observations, unless τ = 1, and then:

Proposition 4.1. If we consider τ=1 in (1.16), the statistic ˜̃γ(k)≡ ˜̃γ(1)

n (k),

in (1.17), may be written as

(4.1) ˜̃γn(k) =
k∑

i=1

a∗i lnXn−i+1:n ,
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where

(4.2) a∗i =
1

k lnn

{
1 +

k
(
ψ(k+1)− 1

) (
ψ(k+1)− ψ(i)− 1

)
k − ψ(k+1) + ψ(1)

}
.

The statistic ˜̃γn(k) is only asymptotically scale invariant, and consequently can-

not be expressed as a linear combination of Hill’s estimators.

Proof: To get the coefficients of the linear combination in (4.1) we just

need to use again Lemma 3.2. Since
∑k

i=1 a
∗
i =

1
ln n �= 0, but converging towards 0,

as n→∞, ˜̃γn(k) is not scale invariant, but it is asymptotically scale invariant.

The asymptotic behaviour of ˜̃γ(τ)

n (k) in (1.16) is not directly related to that

of the Hill estimator. Indeed the dominant term of ˜̃γ(τ)

n (k) is {lnXn−k:n}, and
we shall base the proof of the asymptotic behaviour of this estimator on the

following:

Lemma 4.1. If i ≥ 1 is fixed, and under the first order condition (1.1),

(4.3) ln
Xn−i+1:n

U(n)

d−→
n→∞

γ Wi ,

where Wi is a non-degenerate r.v. with a probability density function (p.d.f.)

gi(w) = Λ(w) (− ln Λ(w))i/Γ(i), Λ(w) = e−e−w
, w ∈ R. For k intermediate, and

under the validity of the second order condition (1.2), the distributional repre-

sentation

(4.4) ln
Xn−k:n

U(n/k)
=

γ√
k
Bk + op

(
A(n/k)

)
holds, with Bk an asymptotically standard normal r.v.

Proof: The result in (4.3) is well-known from the field of Extreme Value

Theory (see, for instance, Galambos, 1987). Indeed, since Yn−i+1:n/n converges

towards a non-degenerate r.v. Zi = exp(Wi), and

ln
Xn−i+1:n

U(n)
= ln

U
(
n(Yn−i+1:n/n)

)
U(n)

= γ lnZi + op(1) ,

(4.3) follows.

For k intermediate (Ferreira et al., 2003),

Xn−k:n

U(n/k)
=

U(Yn−k:n)

U(n/k)
= 1 +

γ√
k
Bk + op

(
A(n/k)

)
,

with Bk asymptotically standard normal r.v., and consequently (4.4) holds true.
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Remark 4.1. Notice that Wi
d
= − lnGama(i), where Gama(i) denotes

a gamma r.v., with p.d.f. f(w) = wi−1 exp(−w)/Γ(i), w ≥ 0. Consequently

E(Wi) = −ψ(i), and hence (1.6). The relation (1.5) is also a direct consequence
of (4.4), together with the fact that ψ(k) = ln k +O(1/k), as k →∞.

We thus have, for every τ > 0, consistency of ˜̃γ(τ)

n (k) for the estimation of

the tail index γ, but we cannot guarantee asymptotic normality. We may however

state the following:

Theorem 4.1. In Hall’s class of models, where (1.13) holds, and both for

fixed and intermediate k, ˜̃γ(τ)

n (k) is consistent for the estimation of γ, for every

τ > 0. For intermediate k we have

(4.5) ln n
{˜̃γ(τ)

n (k)− γ
}

p−→
n→∞

ln
{
C/τ

}
,

i.e., ˜̃γ(τ)

n (k) exhibits a degenerate behaviour. For models where C=1 (or if we

scale our data, dividing them by the appropriate scale C �=1, so that we have a

unit scale), we get

(4.6)

√
k lnn

ln k

(˜̃γ(1)

n (k)− γ
)

d
= γ

√
2 Pk +

√
k A(n/k)

(1− ρ)2
(
1 + op(1)

)
,

i.e., ˜̃γ(1)

n (k) is asymptotically normal, at a rate of convergence of the order of

ln k/(
√
k lnn), with an asymptotic variance equal to 2 γ2 and an asymptotic bias

equal to λ/(1− ρ)2, whenever
√
k A(n/k) −→

n→∞
λ, finite.

Proof: The expression of ˜̃γ(τ)

n (k) in (1.16) enables us to get, for fixed k,

˜̃γ(τ)

n (k)
d
= γ +

lnC − ln τ + γ
(
Wk + H̃k +Hk

)
+ op(1)

ln n
,

with Wk, H̃k and Hk non-degenerate r.v.’s. Hence, consistency follows.

For intermediate k,

˜̃γ(τ)

n (k)
d
= γ +

lnC − ln τ

lnn
+ γ

√
2

ln k√
k lnn

Pk +
ln k A(n/k)

(1−ρ)2 lnn
(
1 + op(1)

)
.

Consequently (4.5) follows and, for C = 1, (4.6) follows, as well as the remaining

of the theorem.

Remark 4.2. Note again that the value C = 1 may be achieved through

a change in the scale of our data. Indeed, as said from the beginning, if for the

original r.v. X we have a quantile function UX(t) = C tγ(1 + o(1)), for Y =X/C,

UY (t) = UX(t)/C = tγ(1 + o(1)), and (4.6) holds.

Remark 4.3. Note also that the rate of convergence in (4.6) is of the

order of ln k/(
√
k lnn), which is a o(1/

√
k), for k intermediate and such that

ln k = o(lnn). The rate of convergence 1/
√
k is the usual rate of convergence for

the most common tail index estimators. The rate of convergence here is also the

usual one, whenever k = O(nε).
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5. PATTERNS OF MEAN VALUES AND MEAN SQUARE ER-

RORS OF THE ESTIMATORS

From Figure 2 till Figure 7, and with the obvious notation H, GP , H̃

and
˜̃
H instead of γ̂H

n , γ̂GP
n , γ̃n and ˜̃γn, respectively, we present, in the top, the

simulated mean values and MSE ’s of γ̃(K)
n , γ̃n and γ̂GP

n in (1.9), (1.11) and (2.1),

respectively. In the bottom part of each figure we picture the same characteristics

of ˜̃γ(1)

n |C = 0.5, ˜̃γ(C)

n ≡ ˜̃γ(1)

n |C = 1 and ˜̃γ(1)

n |C = 2, as well as of ˜̃γ( �C)

n , in (1.19),

for models in Hall’s class and ˜̃γ( �C0)

n , in (1.20), for models outside Hall’s class.

We place in all Figures the same characteristics of the Hill estimator γ̂H
n , for

an easier comparison. Simulations related to these Figures are based on 2000

runs, due to the computational time associated to the Peaks Over Threshold

methodology. For some of the models, and due the erratic behaviour of the

GP estimator for small values of k, we picture its mean value only for k ≥ 100.

The sample size is n = 1000 and we have considered the following set of models:

1. the Fréchet model, F (x;C) = exp
(−(x/C)−1/γ

)
, x ≥ 0, with γ = 1 and

C = 0.5, 1 and 2, for which ρ = −1 (Figure 2);

Figure 2: Fréchet parent with γ = 1.

When we look at Figure 2, we immediately notice that the expected changes

have obviously occurred, despite the asymptotic scale invariance of ˜̃γn(k).

Indeed, the changes in C induce a “shift” in the sample paths of our es-

timator. Note that for a scale C, we should get a dominant term of bias
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given by lnC/ lnn = −0.10, 0 and+0.10 for C = 0.5, 1 and 2, respectively,

which really agrees with the simulated mean values’ patterns presented in

Figure 2 (bottom, left).

Remark 5.1. Looking at the mean squared error patterns, presented also

at the Figure 2 (bottom, right), we think that we may play with the tuning

parameter τ in our benefit, in the lines of the work developed in Gomes

and Oliveira (2003b), where, the use of a control parameter {a}, which
is merely a shift, artificially imposed to the data, and the choice of the

adequate value of {a} improves greatly the performance of our original

estimator. The criterion used there for the choice of {a} is a stability

criterion of sample paths. Here the methodology must be different, and

further research is under development, but we have already the adequate

methodologies to deal with this problem. As said before, in Remark 1.2,

we think that the best way to proceed (Oliveira, 2002) is to estimate the

mean squared errors of our estimators as functions of k, merely on the

basis of the available sample, proceeding next to the adaptive choice of the

k and τ -values providing the minimum mean squared error: we already

have access to suitable procedures of estimation of MSE(k), either through

the regression diagnostic methodology of Beirlant et al. (1996a, 1996b) or

through the use of the bootstrap methodology in Draisma et al. (1999),

Danielsson et al. (2001) and Gomes and Oliveira (2001). Such a computer

intensive study is however beyond the scope of this paper.

2. the Burr model, F (x;C) = 1− (
1+(x/C)−ρ/γ

)1/ρ
, x≥0, γ>0, ρ<0, with

γ=1, C=0.5, 1 and 2 and for ρ =−0.5, −1 and −2 (Figures 3, 4 and 5);

Figure 3: Burr parent with γ = 1 and ρ = −.5.
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Figure 4: Burr parent with γ = 1 and ρ = −1.

Figure 5: Burr parent with γ = 1 and ρ = −2.

a model outside Hall’s class,

3. the Out-Hall model, with a quantile function F←(1−t) = C t−1 e−2t(ln t−1),

for all 0 < t ≤ 1, C = 0.5, 1 and 2 (Figure 6);
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Figure 6: Out-Hall parent with γ = 1.

and the following model for which the second order condition in (1.2) does not

hold:

4. the sin-Burr model, with a quantile function given by F←(1− t) =
C
(
tρ − sin(tρ)

)−γ/ρ
, 0 < t ≤ 1, with γ = 1, C = 0.5, 1 and 2 and for

ρ = −0.5 (Figure 7).

Figure 7: Sin-Burr parent with γ = 1 and ρ = −.5.
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Figures 8 and 9 are equivalent to the previous figures, but for standard

models with C �= 1, in (1.13) — the Student models with ν = 4, and 2 de-

grees of freedom. Notice that for the Student model with ν degrees of freedom,

Figure 8: Student(4) parent with γ = .25 and ρ = −.5 (C = 1.32).

Figure 9: Student(2) parent with γ = .5 and ρ = −1 (C = 0.71).
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C=(−cν ν ν/2)1/ν , where cν is given for instance in Martins (2000). For ν=4, and 2

we have c4=−3/16, and−1/4, respectively. Consequently, for these models C=
1.32 and 0.71, respectively. Such as in Figure 2, it is clear the existence of a bias

close now to lnC/lnn = 0.04, and −0.05 for ν=4 (Figure 8) and ν=2 (Figure 9),
respectively. For a more exhaustive simulation study see Oliveira (2002).

6. FINITE SAMPLE BAHAVIOUR AND ROBUSTNESS OF THE

ESTIMATORS

The estimators γ̂H
n , γ̃n, γ̃

(K)
n and ˜̃γ( �C)

n (or ˜̃γ( �C0)

n , whenever we are outside

Hall’s class) will be also denoted γ(1)
n , γ(2)

n , γ(3)
n and γ(4)

n , respectively. The r.v.˜̃γ(C)
will be denoted γ(5)

n . For the comparison of γ(j)
n , j = 1, 2, 3, 4 and 5, at their

optimal levels, we have implemented a multi-sample simulation of size 5000×10
in order to guarantee small standard errors (not presented in the tables, but

available from the authors) for the simulated characteristics, the Mean Value

(E•), the Mean Squared Error (MSE•), the Optimal Sample Fraction, k
•
0/n, with

k•0 := argmink MSE•(k), and the Relative Efficiency (REFF•), defined as

(6.1) REFF• = REFF
[
γ•n0

]
=

√
MSEs

[
γ(1)

n

(
k(1)

0s (n)
)]/

MSEs

[
γ•n

(
k•0s(n)

)]
,

with γ•n0 = γ•n(k
•
0s(n)), and where MSEs denotes the simulated MSE of the

estimator at its simulated optimal level. The simulator of for instance k•0(n),

denoted by k•0s(n), is Ê10

[
k
•
0(n)

]
, the average of the 10 independent replicates of

k
•
0(n) = argmink

∑5000
j=1

(
γ•nj(k) − γ

)2
. The simulated mean values of these five

estimators, at their optimal levels, are presented in Table 1 (Fréchet and Burr

parents), Table 3 (Student parents) and Table 5 (Out-Hall, Sin-Fréchet and Sin-

Burr parents). Tables 2, 4 and 6 are equivalent to tables 1, 3 and 5, respectively,

with simulated mean values replaced by simulated mean squared errors.

Finally in Table 4 we present the REFF’s of the estimator ˜̃γ(1)
at its op-

timal level, for models with a scale C �= 1. Note that the lost in efficiency

is very high for the Fréchet, Sin-Fréchet and Burr models with a large scale,

as it is the scale C = 2, used here for illustration.
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Table 1: Simulated mean values and mean squared errors of �γH
n , �γn, �γ(K)

n , ��γ( �C)
n , and �

�γ
(C)

n

at the simulated optimal levels, for Fréchet and Burr parents.

n E(1) E(2) E(3) E(4) E(5) MSE(1) MSE(2) MSE(3) MSE(4) MSE(5)

Fréchet parent: ρ = −1, γ = 1

100 1.0987 1.0863 1.1682 1.0877 1.0347 0.0423 0.0365 0.0624 0.0393 0.0188
500 1.0628 1.0597 1.0958 1.1062 1.0297 0.0135 0.0130 0.0192 0.0131 0.0062

1000 1.0490 1.0487 1.0739 1.0501 1.0252 0.0083 0.0082 0.0115 0.0081 0.0039
2000 1.0380 1.0388 1.0565 1.0453 1.0207 0.0051 0.0050 0.0068 0.0050 0.0024
5000 1.0294 1.0286 1.0397 1.0375 1.0159 0.0027 0.0027 0.0035 0.0027 0.0013

Burr parent: ρ = −0.5, γ = 1

100 1.2920 1.2825 1.4944 1.5005 1.0308 0.2286 0.1966 0.3745 0.2342 0.0329
500 1.1851 1.1785 1.2876 1.2718 1.0342 0.0834 0.0736 0.1245 0.0826 0.0121

1000 1.1545 1.1488 1.2321 1.2147 1.0330 0.0557 0.0500 0.0808 0.0555 0.0083
2000 1.1329 1.1236 1.1872 1.1861 1.0303 0.0374 0.0339 0.0527 0.0379 0.0057
5000 1.1021 1.0980 1.1424 1.0858 1.0266 0.0228 0.0207 0.0306 0.0228 0.0035

Burr parent: ρ = −1, γ = 1

100 1.1361 1.1331 1.2424 1.2034 1.0452 0.0705 0.0648 0.1138 0.0664 0.0246
500 1.0782 1.0776 1.1266 1.1207 1.0336 0.0216 0.0206 0.0316 0.0207 0.0080

1000 1.0640 1.0625 1.0968 1.0699 1.0286 0.0132 0.0128 0.0188 0.0129 0.0050
2000 1.0498 1.0494 1.0741 1.0664 1.0238 0.0082 0.0080 0.0112 0.0079 0.0032
5000 1.0373 1.0368 1.0523 1.0330 1.0185 0.0043 0.0043 0.0057 0.0042 0.0017

Burr parent: ρ = −2, γ = 1

100 1.0660 1.0648 1.1301 1.0179 1.0333 0.0294 0.0295 0.0469 0.0319 0.0181
500 1.0376 1.0385 1.0639 1.0655 1.0232 0.0077 0.0085 0.0118 0.0098 0.0052

1000 1.0290 1.0299 1.0465 1.0534 1.0186 0.0044 0.0049 0.0065 0.0059 0.0030
2000 1.0218 1.0228 1.0338 1.0290 1.0146 0.0025 0.0028 0.0036 0.0030 0.0017
5000 1.0148 1.0160 1.0222 0.9970 1.0103 0.0012 0.0013 0.0016 0.0013 0.0008

Table 2: Simulated mean values and mean squared errors of �γH
n , �γn, �γ(K)

n , ��γ( �C)
n , and �

�γ
(C)

n

at the simulated optimal levels, for Student parents.

n E(1) E(2) E(3) E(4) E(5) MSE(1) MSE(2) MSE(3) MSE(4) MSE(5)

Student(4) parent: ρ = −0.5, γ = 0.25

100 0.3559 0.3548 0.4400 0.4435 0.2539 0.0316 0.0269 0.0557 0.0395 0.0029
500 0.3171 0.3137 0.3580 0.3287 0.2575 0.0109 0.0095 0.0174 0.0123 0.0010

1000 0.3037 0.3027 0.3365 0.3355 0.2576 0.0072 0.0063 0.0111 0.0081 0.0007
2000 0.2956 0.2939 0.3197 0.3228 0.2574 0.0048 0.0043 0.0072 0.0054 0.0005
5000 0.2860 0.2844 0.3025 0.2947 0.2569 0.0029 0.0026 0.0041 0.0031 0.0003

Student(2) parent: ρ = −1, γ = 0.5

100 0.5988 0.5937 0.6832 0.6047 0.5235 0.0374 0.0329 0.0640 0.0381 0.0081
500 0.5556 0.5545 0.5959 0.5295 0.5187 0.0114 0.0104 0.0174 0.0107 0.0029

1000 0.5448 0.5425 0.5721 0.5426 0.5155 0.0069 0.0063 0.0101 0.0064 0.0018
2000 0.5356 0.5335 0.5546 0.5238 0.5127 0.0042 0.0039 0.0059 0.0040 0.0011
5000 0.5253 0.5235 0.5370 0.5240 0.5096 0.0022 0.0020 0.0029 0.0021 0.0006

Student(1) parent: ρ = −2, γ = 1

100 1.0929 1.0642 1.1866 0.7481 1.0334 0.0608 0.0601 0.1019 0.0261
500 1.0557 1.0551 1.0985 1.0848 1.0305 0.0163 0.0174 0.0258 0.0187 0.0081

1000 1.0410 1.0431 1.0722 1.0340 1.0239 0.0093 0.0101 0.0143 0.0112 0.0048
2000 1.0314 1.0332 1.0526 1.0656 1.0184 0.0053 0.0059 0.0079 0.0066 0.0028
5000 1.0217 1.0231 1.0342 1.0151 1.0132 0.0025 0.0028 0.0036 0.0031 0.0014
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Table 3: Simulated mean values and mean squared errors of �γH
n , �γn, �γ(K)

n , ��γ( �C0)
n , and �

�γ
(C)

n

at the simulated optimal levels, for Out-Hall, Sin-Fréchet and Sin-Burr parents.

n E(1) E(2) E(3) E(4) E(5) MSE(1) MSE(2) MSE(3) MSE(4) MSE(5)

Out-Hall parent: ρ = −1, γ = 1

100 0.7178 0.7228 0.7881 0.7320 0.9248 0.1574 0.1568 0.1289 0.1517 0.0146
500 0.8255 0.8325 0.8808 0.8368 0.9569 0.0653 0.0644 0.0502 0.0625 0.0103

1000 0.8613 0.8657 0.9062 0.8704 0.9618 0.0437 0.0431 0.0333 0.0418 0.0076
2000 0.8892 0.8922 0.9252 0.8961 0.9669 0.0291 0.0286 0.0220 0.0278 0.0055
5000 0.9166 0.9189 0.9436 0.9220 0.9728 0.0169 0.0166 0.0128 0.0161 0.0034

Sin-Fréchet parent: γ = 1

100 1.0284 1.0680 1.1263 1.0629 1.0391 0.0359 0.0380 0.0593 0.0347 0.0209
500 1.0067 1.0223 1.0372 1.0184 1.0155 0.0073 0.0091 0.0114 0.0078 0.0056

1000 1.0025 1.0133 1.0204 1.0107 1.0098 0.0036 0.0047 0.0055 0.0040 0.0031
2000 1.0011 1.0075 1.0104 1.0060 1.0058 0.0018 0.0024 0.0027 0.0021 0.0016
5000 1.0007 1.0033 1.0041 1.0027 1.0027 0.0007 0.0010 0.0010 0.0009 0.0007

Sin-Burr parent: ρ = −0.5, γ = 1

100 1.0459 1.1088 1.2267 1.0873 1.0382 0.1601 0.1314 0.2380 0.1498 0.0296
500 1.0116 1.0301 1.0480 1.0286 1.0184 0.0323 0.0290 0.0378 0.0277 0.0100

1000 1.0042 1.0168 1.0235 1.0150 1.0115 0.0163 0.0151 0.0179 0.0140 0.0059
2000 1.0030 1.0091 1.0110 1.0078 1.0066 0.0081 0.0077 0.0085 0.0070 0.0033
5000 1.0011 1.0037 1.0041 1.0033 1.0028 0.0032 0.0031 0.0033 0.0028 0.0015

Table 4: Relative efficiencies of �

�γ
(1)

n relatively to �γH
n , at their optimal levels,

for models with C �= 1.

n 100 500 1000 2000 5000

Fréchet (γ =1, ρ=−1, C = .5) 1.5713 1.9344 2.0609 2.1933 2.4099

Fréchet (γ =1, ρ=−1, C =2) 0.9726 0.7781 0.7039 0.6304 0.5422

Burr (γ =1, ρ=−.5, C = .5) 2.8678 3.2438 3.4208 3.5979 3.9156

Burr (γ =1, ρ=−.5, C =2) 2.0830 1.7470 1.6127 1.4894 1.3433

Burr (γ =1, ρ=−1, C = .5) 1.9624 2.1431 2.2474 2.3686 2.5641

Burr (γ =1, ρ=−1, C =2) 1.1404 0.9347 0.8472 0.7660 0.6569

Burr (γ =1, ρ=−2, C = .5) 1.3344 1.4941 1.5549 1.6196 1.7241

Burr (γ =1, ρ=−2, C =2) 0.8069 0.6189 0.5436 0.4719 0.3808

Student(4) (γ =0.25, ρ=−0.5, C =1.32) 2.5488 1.9430 1.7554 1.5875 1.3802

Student(2) (γ =0.5, ρ=−1, C = .71) 2.0645 2.4684 2.5236 2.6085 2.7371

Student(1) (γ =1, ρ=−2, C = .32) 0.9243 1.0394 1.3273 1.8245 1.9260

Out-Hall (γ =1, C = .5) 1.9073 1.5357 1.4122 1.2991 1.1562

Out-Hall (γ =1, C =2) 3.2856 3.8498 3.6741 3.6192 3.6691

Sin-Fréchet (γ =1, C = .5) 1.4649 1.4346 1.3653 1.3087 1.2586

Sin-Fréchet (γ =1, C =2) 0.8766 0.6537 0.5592 0.4720 0.3658

Sin-Burr (γ =1, ρ=−.5, C = .5) 2.5707 2.0930 1.9252 1.7945 1.6664

Sin-Burr (γ =1, ρ=−.5, C =2) 1.6669 1.2783 1.1763 1.1088 1.0713
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A few final remarks:

1. The class of statistics ˜̃γ(τ)

n (k) revealed a surprisingly good behaviour among

the estimators considered both for small and for large sample sizes, and

for all the simulated models (most of them in the class of models where

(1.13) holds, with C = 1). Indeed, for every k, we have got MSE
[ ˜̃γn(k)

]
smaller than MSE

[
γH

n (k)
]
and also smaller than MSE

[
γ̃n(k)

]
for all models

simulated. This class of statistics also enables us to find an estimator of the

tail index γ, which behaves better than the maximum lilelihood estimator

based on the Generalized Pareto excesses, for most of the models simulated.

2. Particularly astonishing is the behaviour of ˜̃γ(τ)

n (k) for small values of ρ,

like the value ρ = −2 used herein for illustration, a region where has been
claimed to be difficult to find good competitors for the Hill estimator. Also,

the results obtained for models for which the second order condition does

not hold deserve further investigation, and are interesting from a point of

view of a more general application.

3. It may be claimed that such a good behaviour is due to the fact that˜̃γn(k) is not only non-invariant for location, like the Hill statistic, but also

non-invariant for scale. The adequate estimation of the parameter C is a

possible way out, but that induces an increase in the variance of our final

tail index estimator, and the nice features of this estimator will disappear.

Alternatively, the best way to proceed is to estimate the mean squared

errors of our estimators as functions of k, merely on the basis of the available

sample, proceeding next to the adaptive choice of the k and a τ -value

providing a mean squared error smaller than that of the Hill estimator for

every k. It is perhaps also sensible to use an extra tuning parameter a,

a shift in the location of our data, like in Gomes and Oliveira (2003b).

All this work is essentially computational, and as said before, overpasses

the scope of this paper.
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1. INTRODUCTION

We consider multivariate data with n individuals described by p variables.

In the classical approach it is usual to assume that the p variables are fixed and

the n individuals are randomly selected from a population of individuals. Now, we

consider that the n individuals are fixed and the p variables are randomly selected

from a population of variables. We standardise the variables to be points on the

unit sphere in Rn, denoted by Sn−1 = {x ∈ Rn : x′x = 1}.

We suppose that the group of available variables on Sn−1 is composed of

k subgroups of variables and each subgroup comes from a bipolar Watson distri-

bution. So we associate the sample of variables to a mixture of k bipolar Watson

distributions defined on the hypersphere, as in Gomes [9]. This author consid-

ers an approach, based on the sampling of variables, and introduces some new

results concerning the estimation of the parameters of the bipolar Watson distri-

bution, taking into account not a sample of individuals but, a sample of variables.

This type of ideas was referred to by Hotelling [10] who, in the context of Princi-

pal Components, studied the convergence of the eigenvalues and eigenvectors of

the covariance matrix of groups of variables randomly chosen from a population

of variables, when the dimension of the groups increases. Escoufier [5] also pro-

posed a new coefficient for evaluating the proximity of two groups of variables,

but supposing that the variables are observed.

For the identification of the mixture, we use the well-known EM algo-

rithm proposed in Dempster, Laird and Rubin [3] (see Redner and Homer [14]).1

This algorithm was developed to solve the likelihood equations in problems of

incomplete data and we apply it to estimate the parameters of a mixture of

k bipolar Watson distributions (see Figueiredo [7]).

The bipolar Watson distribution has been much used for axial data on the

sphere (see Watson [16], Fisher, Lewis and Embleton [8] and Mardia and Jupp

[13]). This distribution is denoted by Wn(u, ξ) and it has density probability

function given by

(1.1) f(x) =

{
1F1

(
1

2
,
n

2
, ξ

)}−1

exp
{
ξ
(
u′x

)2
}
, x ∈ Sn−1, u ∈ Sn−1, ξ > 0 ,

where the normalising constant is the reciprocal of a confluent hipergeometric

function defined by

(1.2) 1F1

(
1

2
,
n

2
, ξ

)
=

Γ
(

n
2

)
Γ
(

1
2

)
Γ
(

n−1
2

) 1∫
0

eξt t−0.5(1− t)(n−3)/2 dt .

1Another possible method for the identification of the mixture is the k-means method pro-
posed in Diday and Schroeder [15] (see Gomes [9]).
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This distribution has two parameters: a directional parameter u and

a concentration parameter ξ, which measures the concentration about ±u.

As ξ increases, the distribution becomes more concentrated about ±u. This is

a rotationally symmetric distribution about the principal axis ±u and it is

bimodal, with modes u and −u.

Let X =
[
x1|x2|...|xp

]
be a random sample of variables from the bipolar

Watson distribution Wn(u, ξ). The maximum likelihood estimator of u is the

eigenvector associated with the largest eigenvalue ŵ of XX ′=
p∑

i=1
xi xi ′, that

is, û is defined by (XX ′) û = ŵ û. So, it follows that the maximum likelihood

estimator of the directional parameter u based on the sample of variables is the

first principal component of the sample. The maximum likelihood estimator of ξ

is the solution of the equation Y (ξ̂) = ŵ/p, where the function Y (ξ) is defined by

Y (ξ) = d
dξ ln 1F1(1/2, n/2, ξ).

The estimators ξ̂ and ŵ have asymptotic Gaussian distribution (see Gomes

[9] and Bingham [1]):

(1.3) ξ̂
.∼ N

(
ξ,

1

p Y 2
11(ξ)

)
and

ŵ

p

.∼ N

(
Y (ξ),

Y 2
11(ξ)

p

)
.

where the function Y 2
11(ξ) is defined by Y

2
11(ξ) =

d2

dξ2 ln 1F1(
1
2 ,

n
2 , ξ).

In this study we consider the particular case of a bipolar Watson distri-

bution. If we had assumed ξ < 0 in (1.1), we would obtain a girdle Watson

distribution and the study of this distribution would be similar to the one that

is done in this paper.

In Section 2 we present the identification of the mixture of k bipolar Watson

distributions through the EM algorithm. In Section 3 we carry out a simu-

lation study to compare the behaviour of the estimators obtained through the

EM algorithm for moderate samples with the respective asymptotic estimators.

In Section 4 we give some concluding remarks.

2. IDENTIFICATION OF A MIXTURE OF k BIPOLAR WAT-

SON DISTRIBUTIONS DEFINED ON THE HYPERSPHERE

The density function of a mixture of k bipolar Watson components C1, ..., Ck

defined on the hypersphere, whose identifiability was proved by Kent [12], is given

by

g(x|φ) =
k∑

j=1

πjf(x|θj) , x∈Sn−1, 0<πj<1, j=1, ..., k,
k∑

j=1

πj=1 ,

(2.1)
φ=

(
u1, ...,uk, ξ1, ..., ξk, π1, ..., πk

)
, θj=(uj , ξj) ,
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where (π1, ..., πk) are the proportions of the mixture and f(x|θj) is the density

function corresponding to the Cj component.

As a mixture of distributions may be seen as a problem of incomplete

data (see Everitt and Hand [6]), the EM algorithm may be applied to solve the

likelihood equations in the estimation of the parameters of a mixture of k bipolar

Watson distributions.

Let
[
x1|x2|...|xp

]
be a random sample from the mixture and let Z=

[
z1|...|zp

]
be the missing data, where the indicator vector zi = (Zi1, Zi2, ..., Zik) with

Zij =

{
1 if xi∈Cj

0 if xi /∈Cj
,

k∑
j=1

Zij = 1 indicates the component of the variable xi of

the mixture.

The log likelihood associated with the complete sample
[
x1|...|xp|Z]

is given

by

(2.2) L
(
φ|x1, ...,xp, Z

)
=

p∑
i=1

k∑
j=1

tj(x
i) ln

{
πjf

(
xi|θj

)}
,

where tj(x
i) is the posterior probability of xi belonging to Cj defined by

(2.3) tj(x
i) =

πj f(x
i|θj)

k∑
h=1

πh f(xi|θh)

.

The log likelihood associated with the complete sample given by (2.2) may

be written as

L
(
φ|x1, ...,xp, Z

)
= L

(
φ1|x1, ...,xp, Z

)
+ L

(
φ2|x1, ...,xp, Z

)
,

where

L
(
φ1|x1, ...,xp, Z

)
=

p∑
i=1

k∑
j=1

tj(x
i) ln f(xi|θj) , φ1 = (θ1, ..., θk)

and

L
(
φ2|x1, ...,xp, Z

)
=

p∑
i=1

k∑
j=1

tj(x
i) lnπj , φ2 = (π1, ..., πk) .

To estimate the vector of unknown parameters φ of the mixture, the

EM algorithm proceeds iteratively in two steps:

E – Estimation and M – Maximisation .

The algorithm starts with the initial solution:

φ0 =
(
u0

1, ...,u
0
k, ξ

0
1 , ..., ξ

0
k, π

0
1, ..., π

0
k

)
.
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In the m-th iteration, the two steps are:

E -Step

Use estimates φ(m) of the parameters of the mixture in the m-th iteration

for j=1, ..., k and i=1, ..., p to estimate the posterior probability of xi belonging

to the j -th component of the mixture

(2.4) t
(m)
j (xi) =

π
(m)
j f

(
xi|θ(m)

j

)
k∑

h=1

π
(m)
h f

(
xi|θ(m)

h

) .

M -Step

Use estimates t
(m)
j (xi) to maximise the logarithm of the likelihood function

L(φ1|x1, ...,xp, Z).

First, we consider the function L(φ1), subject to the constraint u′juj = 1:

L(φ1) =

p∑
i=1

k∑
j=1

t
(m)
j (xi)

[
− ln{1F1(1/2, n/2, ξj)

}
+ ξj(u

′
jx

i)2
]
− λ1(u

′
juj − 1) ,

where λ1 is a Lagrange multiplier and t
(m)
j (xi) is defined in (2.4).

The maximum likelihood estimate of uj is the solution of the following

equation:

(2.5)
∂L(φ1)

∂uj
=

p∑
i=1

t
(m)
j (xi) 2 ξj xixi ′uj − 2λ1uj = 0 .

We premultiply the last expression by uj ′ to obtain

λ1 = ξj

p∑
i=1

t
(m)
j (xi)uj ′xixi ′uj .

Then, the maximum likelihood estimator of uj ′ in the (m+1)-th iteration,
û

(m+1)
j is the eigenvector associated with the eigenvalue ŵj , that is

(2.6)

(
p∑

i=1

t
(m)
j (xi)xixi ′

)
û

(m+1)
j = ŵj û

(m+1)
j , j = 1, .., k ,

where ŵj is a eigenvalue of
p∑

i=1
t
(m)
j (xi)xixi ′ and it is given by

ŵj =

p∑
i=1

t
(m)
j (xi) û

(m+1)
j ′ xixi ′ û

(m+1)
j .



Performance of the EM Algorithm 117

Next, we show that we maximise L(φ1) if we consider the largest eigenvalue

of the matrix. In fact, the function L(φ1) can be written in the form

L(φ1) = −
p∑

i=1

k∑
j=1

t
(m)
j (xi) ln

{
1F1(1/2, n/2, ξj)

}
+

k∑
j=1

ξj ŵj .

As ln 1F1(1/2, n/2, ξj) > 0, we have
p∑

i=1

k∑
j=1

t
(m)
j (xi) ln 1F1(1/2, n/2, ξj) > 0.

We also have ŵj ≥ 0 because
p∑

i=1
t
(m)
j (xi)xixi ′ is a positive definite matrix.

Consequently, the function L(φ1) is maximised if ŵj is maximum.

Second, the maximum likelihood estimator of ξj is the solution of the fol-

lowing equation

∂L(φ1)

∂ξj
=

p∑
i=1

t
(m)
j (xi)

{
−Y (ξj) + (uj ′xi)2

}
= 0 ,

where the function Y (.) is defined in Section 1. The solution of this equation

leads to the maximum of L(φ1) as we show that ∂2L(φ1)/∂ξ
2
j < 0, ∀ξj

. In fact,

∂2L(φ1)/∂ξ
2
j = −

p∑
i=1

t
(m)
j (xi) dY (ξj)/ξj and Y (ξ) is an increasing function (see

Gomes [9]).

Then, the maximum likelihood estimator of ξj in the (m+1)-th iteration,

ξ̂
(m+1)
j , is the solution of the equation

(2.7) Y
(
ξ̂
(m+1)
j

)
=

ŵj
p∑

i=1
t
(m)
j (xi)

, j = 1, ..., k .

Third, we consider the function L(φ2), subject to the constraint
k∑

j=1
πj = 1:

L(φ2) =

p∑
i=1

k∑
j=1

t
(m)
j (xi) lnπj − λ2

( k∑
j=1

πj − 1

)
,

where λ2 is a Lagrange multiplier. The maximum likelihood estimator of πj

is the solution of the following equation

∂L(φ2)

∂πj
=

p∑
i=1

t
(m)
j (xi)

πj
− λ2 = 0 .

We sum the last equation for j from 1 to k to obtain λ2 = p. Then, the

maximum likelihood estimator of πj in the (m+1)-th iteration, π̂
(m+1)
j is given by

(2.8) π̂
(m+1)
j =

p∑
i=1

t
(m)
j (xi)

p
, j = 1, ..., k .
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The estimation of the parameters uj and ξj associated with the j -th com-

ponent gives us a privileged direction as well as a measure of dispersion of the

j -th cluster around this direction.

A partition (P1, ..., Pk) of the sample of variables is obtained assigning the

variable xj to the component for which the posterior probability is the largest,

that is,

(2.9) Pj =
{
xi : tj(x

i) = max
h

th(x
i), h=1, ..., k

}
and when tj(x

i) = th(x
i) consider xi∈Pj if j<h.

3. SIMULATION STUDY

We considered a mixture with equal proportions (π1= π2 = 0.5) of two

bipolar Watson distributions: Wn(u1, ξ1) and Wn(u2, ξ2), with ξ1 = ξ2 = ξ,

u1 = (0, ..., 0, 1) and u2 = (0, ...0, (1−cos2 θ)1/2, cos θ), where θ is the angle be-

tween u1 and u2. The bipolar Watson distribution is rotationally symmetric

about the directional parameter, so if we had used, for each θ, other directional

parameters u1 and u2, we would have obtained the same results in our study. For

the simulation of the bipolar Watson distribution we used a rejection-type method

(see Huo [11] and Bingham [2]). We considered two dimensions of the sphere

n=10,30. For each n, we assumed equal samples size p1= p2 = p = 30(10)100 ,

several values of the concentration parameter ξ=10(10)50,100 and several val-

ues of the angle θ = 18◦, 54◦, 90◦. For each case, we considered 2500 replicates of

the EM algorithm. In each replicate, we used a randomly chosen initial solution

and a sufficiently large number of iterations (100 ) to obtain the final solution.

We supposed that the algorithm converged, in a certain replicate, if the condition:∣∣∣∣(L(φ(m+1)
)− L(φ(m)

))/
L
(
φ(m+1)

)∣∣∣∣ ≤ 10−5

holds in the last five iterations, where L(φ(m)) denotes the likelihood of the sample

in the m-th iteration. For each n and p, the EM algorithm converged in most

part of the replicates, it did not converge only in very few replicates when ξ is

very small or θ is small.

In each replicate we determined the following estimates ξ̂j , ŵj/pj , j=1, 2,

θ̂, π̂j , j = 1, 2 of the parameters ξj , Y (ξj), j = 1, 2, θ, πj , j = 1, 2, respectively,

where pj is the dimension of the j -th group, which is equal to
p∑

i=1
tj(x

i). Then,

we calculated the average and the standard deviation of the estimates obtained

in all replicates, denoted by ξ̂j , ŵj/pj , j=1, 2, θ̂, π̂j , j=1, 2 and s(ξ̂j), s(ŵj/pj),

j = 1, 2, s(θ̂), s(π̂j), j = 1, 2, respectively. If in a replicate the EM algorithm
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did not converge we excluded that replicate for calculating the average and the

standard deviation of the estimates.

By (1.3) the asymptotic expected value of ξ̂j and ŵj/pj are ξj and Y (ξj)

respectively, j =1, 2. In Table 1 and Figure 1, we indicate the values of Y (ξ) 2

for each n and ξ.

Table 1: Values of Y (ξ) for each n and ξ.

n�ξ 10 20 30 40 50 60 70 80 90 100

10 0.500 0.766 0.847 0.886 0.909 0.924 0.935 0.943 0.950 0.955
30 0.074 0.241 0.496 0.630 0.706 0.756 0.791 0.817 0.838 0.854

�
Figure 1: Values of Y (ξ) for n = 10 and n = 30.

As expected for each n, Y (ξ) is an increasing function with ξ, which tends

to 1, when ξ increases (see Gomes [9], p. 43–45). For each ξ, the function Y (ξ)

increases when n decreases.

We determined the estimated relative bias of the estimators given by the

expressions: (ξ̂j− ξj)/ξj , (ŵj/pj−Y (ξj))/Y (ξj), j=1, 2, (θ̂−θ)/θ, (π̂j− πj)/πj ,

j=1,2 and the estimated mean squared error (MSE ) given by: s2(ξ̂j)+(ξ̂j−ξj)2,
s2(ŵj/pj)+(ŵj/pj−Y (ξj))2, j=1, 2, s2(θ̂)+(θ̂−θ)2, s2(π̂j)+(π̂j−πj)

2, j=1, 2.

2We obtained the function Y (ξ) using the Kummer function, which is defined by M(a, b, z) =

1 +
∞�

i=1

�
a(a + 1)...(a + i − 1)zi

�Æ�
b(b + 1)...(b + i − 1) i!

�
or by the integral M(a, b, z) =

Γ(b)
Æ�

Γ(b− a)Γ(a)
� � 1

0
ezt ta−1(1− t)b−a−1dt, where 1F1(1/2, n/2, ξ) = M(1/2, n/2, ξ).
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We indicate the results of our simulation study in the Tables A1–A4 of the

Appendix and in the Figures 2–8. In the tables of the Appendix, the algorithm

converged in all replicates for each case. We have also produced another 4 tables,

which were not included: two tables for the relative bias (for n=10 and n=30 )

and two tables for the MSE (for n=10 and n=30 ) of the estimators when the

concentration parameter ξ varies.

In Figure 2 we observe that

• As expected, the estimators ξ̂1 and ξ̂2 are asymptotically unbiased, that

is the estimated relative bias of these estimators tends to 0 as the sample

size p increases. For fixed ξ and p, the relative bias of ξ̂1 and ξ̂2 tends

to decrease when θ increases. For an angle θ = 90◦ or θ = 54◦, the bias

of the estimators ξ̂1 and ξ̂2 is relatively small and when θ = 90◦ the bias

is not greater than 10% of the true value of the concentration parameter

(for n=10,30, ξ=30,100 and p=30(10)100 ).

�
Figure 2: Relative bias of the estimators ξ̂1 and ξ̂2 when p varies

(in top: n = 10, in bottom: n = 30 and from left to right:
angle 90◦, 54◦, 18◦).
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In Figure 3 we observe that

• As expected, in general the estimators ξ̂1 and ξ̂2 become more efficient

as p increases. When the angle is large or moderate (θ = 90◦ or θ = 54◦)

and ξ = 30, these estimators have relatively small MSE and become less

efficient when ξ increases.

�
Figure 3: Mean squared error of the estimators ξ̂1 and ξ̂2 when p varies

(in top: n = 10, in bottom: n = 30 and from left to right:
angle 90◦, 54◦, 18◦).

In Figure 4 we observe that

• When the angle is moderate or large (θ = 54◦ or θ = 90◦), the bias of ξ̂1
and ξ̂2 is very small and maintains approximately constant or increases

slightly as ξ increases for ξ ≥ 20 when n = 10 and for ξ ≥ 30 when n = 30.

When n = 10 and θ = 18◦, the bias of the estimators is relatively large,

but it decreases when ξ increases.
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�
Figure 4: Relative bias of the estimators ξ̂1 and ξ̂2 when ξ varies (in top: n = 10,

in bottom: n = 30 and from left to right: angle 90◦, 54◦, 18◦).

In Figure 5 we observe that

• When the angle is moderate or large (θ = 54◦ or θ = 90◦), the MSE of the

estimators ξ̂1 and ξ̂2 increases when ξ increases for ξ ≥ 30 and so these

estimators become less efficient.

• The estimators ŵ1/p1 and ŵ2/p2 are unbiased or have very small bias for

every p and ξ. When θ = 90◦ the bias of these estimators is not greater

than approximately 3% of the respective parameter. The estimators ŵ1/p1

and ŵ2/p2 are asymptotically unbiased, that is, the estimated relative bias

of the estimators tends to 0 as the sample size p increases. See Tables

A1–A2 of the Appendix.

In Figure 6 we observe that

• The estimators ŵ1/p1 and ŵ2/p2 have bias approximately equal to 0 for

ξ ≥ 20 when n = 10 and for ξ ≥ 30 when n = 30.

• As the MSE of the estimators ŵ1/p1 and ŵ2/p2 are 0 or approximately 0,

these estimators are very efficient. See Tables A3–A4 of the Appendix.
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�Figure 5: Mean squared error of the estimators ξ̂1 and ξ̂2 when ξ varies (in top: n=10,
in bottom: n = 30 and from left to right: angle 90◦, 54◦, 18◦).

�Figure 6: Relative bias of the estimators ŵ1/p1 and ŵ2/p2 when ξ varies (in top: n=10,
in bottom: n = 30 and from left to right: angle 90◦, 54◦, 18◦).
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In Figure 7 we observe that

• The estimator θ̂ has relatively small MSE, except for n = 30 and ξ = 30
when the relative bias and the standard deviation of θ̂ are relatively large.
The MSE of the estimator θ̂ decreases when p increases.

�
Figure 7: Mean squared error of the estimator θ̂ when p varies

(from left to right: angle 90◦, 54◦, 18◦).

In Figure 8 we observe that

• For every θ and ξ ≥ 20, the MSE of the estimator θ̂ decreases when
ξ increases.

• The estimators π̂1 and π̂2 are unbiased or present very small bias for the
analysed cases, except in some cases when θ = 18◦. See Tables A1–A2 of
the Appendix.

• The estimators π̂1 and π̂2 have MSE equal to 0 or approximately 0, and
so these estimators are very efficient. See Tables A3–A4 of the Appendix.

�
Figure 8: Mean squared error of the estimator θ̂ when ξ varies

(from left to right: angle 90◦, 54◦, 18◦).
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4. CONCLUSION

The simulation study has revealed a good identification of a mixture of
bipolar Watson distributions defined on the hypersphere through the EM algo-
rithm.

The performance of this algorithm is good for moderate sample sizes, es-
sentially on the estimation of the prior probabilities and on the estimation of the
directional parameters of the mixture. For a large or moderate angle θ between
the directional parameters of the mixture, the efficiency of the estimators of the
concentration parameters of the mixture is better for moderate values (neither
very small nor very large) of the true concentration parameters. The estimation
of the angle θ is very efficient in general and the efficiency of θ̂ improves as the
concentration parameter increases.
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APPENDIX

Table 2: Relative bias of the estimators for n=10 with the sample size p

ξ θ p �ξ1
�ξ2 �w1/p1 �w2/p2

�θ �π1 �π2

30 0.071 0.071 0.008 0.008 0.000 0.005 −0.005
40 0.041 0.041 0.004 0.004 −0.001 −0.001 0.001
50 0.027 0.024 0.002 0.002 −0.001 0.004 −0.004

90◦ 60 0.018 0.017 0.001 0.001 0.000 −0.005 0.005
70 0.011 0.009 0.000 0.000 0.000 0.001 −0.001
80 0.008 0.005 0.000 −0.001 0.001 0.001 −0.001
90 0.003 0.002 −0.001 −0.001 0.000 0.000 0.000

100 0.001 −0.001 −0.001 −0.002 0.002 0.001 −0.001

30 0.061 0.109 0.006 0.013 −0.002 0.002 −0.002
40 0.042 0.080 0.004 0.010 −0.002 0.001 −0.001
50 0.025 0.065 0.002 0.008 −0.004 0.000 0.000

30 54◦ 60 0.020 0.051 0.001 0.006 −0.005 −0.002 0.002
70 0.011 0.044 0.000 0.005 −0.006 0.000 0.000
80 0.002 0.040 −0.001 0.005 −0.007 0.000 0.000
90 0.002 0.037 −0.001 0.005 −0.007 −0.001 0.001

100 −0.004 0.033 −0.002 0.005 −0.007 −0.001 0.001

30 0.152 0.398 0.011 0.030 0.256 0.116 −0.116
40 0.116 0.331 0.006 0.027 0.192 0.086 −0.086
50 0.086 0.269 0.003 0.023 0.157 0.070 −0.070

18◦ 60 0.070 0.262 0.004 0.022 0.125 0.061 −0.061
70 0.055 0.259 0.000 0.018 0.107 0.049 −0.050
80 0.044 0.173 −0.001 0.016 0.086 0.030 −0.030
90 0.034 0.161 −0.002 0.016 0.077 0.031 −0.031

100 0.018 0.132 −0.004 0.014 0.068 0.020 −0.020

30 0.088 0.092 0.002 0.003 0.000 0.000 0.000
40 0.059 0.063 0.002 0.002 0.000 −0.003 0.003
50 0.045 0.046 0.001 0.001 0.000 0.003 −0.003

90◦ 60 0.035 0.038 0.001 0.001 0.000 0.001 −0.001
70 0.027 0.029 0.001 0.001 0.000 0.000 0.000
80 0.024 0.024 0.000 0.000 0.000 0.000 0.000
90 0.021 0.019 0.000 0.000 0.000 0.002 −0.002

100 0.016 0.017 0.000 0.000 0.000 −0.001 0.001

30 0.088 0.156 0.002 0.005 −0.003 0.000 0.000
40 0.057 0.125 0.001 0.004 −0.003 0.002 −0.002
50 0.048 0.109 0.001 0.004 −0.004 −0.001 0.001

100 54◦ 60 0.036 0.099 0.001 0.003 −0.004 0.000 0.000
70 0.027 0.091 0.001 0.003 −0.004 0.001 −0.001
80 0.022 0.083 0.000 0.003 −0.005 0.000 0.000
90 0.018 0.081 0.000 0.003 −0.005 −0.001 0.001

100 0.014 0.080 0.000 0.003 −0.005 −0.001 0.001

30 0.103 0.116 0.003 0.003 0.041 −0.001 0.001
40 0.064 0.081 0.002 0.002 0.032 0.000 0.000
50 0.054 0.064 0.001 0.002 0.027 −0.002 0.002

18◦ 60 0.040 0.052 0.001 0.001 0.023 −0.001 0.001
70 0.029 0.046 0.001 0.001 0.021 0.001 −0.001
80 0.024 0.037 0.000 0.001 0.019 0.000 0.000
90 0.020 0.034 0.000 0.001 0.018 −0.002 0.002

100 0.015 0.032 0.000 0.001 0.017 −0.002 0.002



128 Adelaide Figueiredo and Paulo Gomes

Table 3: Relative bias of the estimators for n=30 with the sample size p

ξ θ p �ξ1
�ξ2 �w1/p1 �w2/p2

�θ �π1 �π2

30 0.036 0.038 0.029 0.031 −0.001 0.001 −0.001
40 0.017 0.018 0.012 0.012 0.000 0.000 0.000
50 0.009 0.007 0.005 0.003 0.001 0.003 −0.003

90◦ 60 0.001 0.000 −0.004 −0.005 0.000 0.004 −0.004
70 −0.004 −0.002 −0.008 −0.006 0.000 −0.001 0.001
80 −0.006 −0.008 −0.011 −0.020 0.001 −0.005 0.005
90 −0.011 −0.010 −0.015 −0.014 0.000 0.001 −0.001

100 −0.011 −0.013 −0.016 −0.017 0.000 0.001 −0.001

30 0.040 0.067 0.028 0.053 0.048 0.009 −0.009
40 0.017 0.043 0.008 0.035 0.038 0.008 −0.008
50 0.003 0.026 −0.012 0.019 0.031 0.006 −0.006

30 54◦ 60 −0.005 0.019 −0.012 0.013 0.025 0.007 −0.007
70 −0.010 0.011 −0.017 0.007 0.022 0.006 −0.006
80 −0.014 0.007 −0.021 0.002 0.021 0.006 −0.006
90 −0.018 0.005 −0.025 0.001 0.017 0.006 −0.006

100 −0.020 0.001 −0.027 −0.003 0.016 0.004 −0.004

30 0.085 0.166 0.065 0.113 0.994 0.218 −0.218
40 0.049 0.156 0.033 0.106 0.857 0.243 −0.243
50 0.025 0.157 0.011 0.106 0.773 0.274 −0.274

18◦ 60 0.020 0.153 0.006 0.100 0.700 0.274 −0.274
70 0.009 0.144 −0.006 0.096 0.629 0.286 −0.286
80 −0.003 0.148 −0.018 0.100 0.581 0.292 −0.292
90 −0.005 0.151 −0.021 0.100 0.531 0.290 −0.290

100 −0.006 0.140 −0.023 0.092 0.493 0.275 −0.275

30 0.070 0.074 0.010 0.011 0.000 0.001 −0.001
40 0.049 0.053 0.007 0.008 −0.001 0.005 −0.005
50 0.038 0.039 0.006 0.006 0.000 0.003 −0.003

90◦ 60 0.030 0.031 0.004 0.005 0.000 −0.001 0.001
70 0.026 0.025 0.004 0.004 0.000 0.001 −0.001
80 0.020 0.021 0.003 0.003 0.000 0.003 −0.003
90 0.018 0.017 0.003 0.003 0.000 −0.002 0.002

100 0.015 0.014 0.002 0.002 0.000 0.000 0.000

30 0.075 0.087 0.011 0.012 0.003 0.004 −0.004
40 0.051 0.065 0.008 0.009 0.002 −0.004 0.004
50 0.039 0.052 0.006 0.008 0.001 0.002 −0.002

100 54◦ 60 0.029 0.042 0.004 0.006 −0.001 0.002 −0.002
70 0.025 0.036 0.004 0.006 −0.001 0.002 −0.002
80 0.021 0.033 0.003 0.005 −0.002 0.000 0.000
90 0.018 0.028 0.003 0.004 −0.002 0.000 0.000

100 0.016 0.027 0.002 0.004 −0.002 −0.002 0.002

30 0.078 0.091 0.011 0.013 0.119 0.006 −0.007
40 0.054 0.067 0.008 0.010 0.095 −0.005 0.005
50 0.040 0.052 0.006 0.008 0.080 0.001 −0.001

18◦ 60 0.030 0.041 0.004 0.006 0.066 0.001 −0.001
70 0.026 0.034 0.004 0.005 0.059 0.001 −0.001
80 0.021 0.030 0.003 0.005 0.052 −0.002 0.002
90 0.016 0.025 0.002 0.004 0.047 0.001 −0.001

100 0.015 0.022 0.002 0.003 0.044 −0.004 0.004
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Table 4: Mean squared error of the estimators for n=10 with the sample size p

ξ θ p �ξ1
�ξ2 �w1/p1 �w2/p2

�θ �π1 �π2

30 28.39 29.34 0.001 0.001 8.8 0.01 0.01
40 17.49 18.51 0 0 6.81 0.01 0.01
50 12.99 12.57 0 0 5.47 0.01 0.01

90◦ 60 10.00 10.14 0 0 4.67 0 0
70 8.41 8.52 0 0 3.92 0 0
80 7.14 6.90 0 0 3.25 0 0
90 6.40 6.53 0 0 2.92 0 0

100 5.77 5.47 0 0 2.67 0 0

30 29.61 42.68 0.001 0.001 6.43 0.01 0.01
40 20.20 29.07 0 0.001 4.89 0.01 0.01
50 13.51 21.59 0 0.001 3.80 0 0

30 54◦ 60 11.28 16.18 0 0.001 3.22 0 0
70 8.94 14.29 0 0.001 2.70 0 0
80 7.32 11.97 0 0.001 2.40 0 0
90 6.38 9.97 0 0.001 2.09 0 0

100 5.87 8.59 0 0.001 1.94 0 0

30 188.76 987.30 0.001 0.002 34.48 0.04 0.04
40 163.08 526.42 0.001 0.002 22.30 0.03 0.03
50 120.85 309.95 0.001 0.002 16.37 0.03 0.03

18◦ 60 66.77 299.22 0.001 0.002 10.97 0.03 0.03
70 83.52 214.79 0.001 0.001 9.52 0.03 0.03
80 75.39 167.57 0.001 0.001 7.45 0.02 0.02
90 77.56 133.97 0.001 0.001 6.14 0.02 0.02

100 47.93 86.04 0.001 0.001 5.42 0.02 0.02

30 391.95 393.74 0 0 2.34 0.01 0.01
40 233.19 258.01 0 0 1.82 0.01 0.01
50 172.30 181.35 0 0 1.37 0 0

90◦ 60 132.61 133.23 0 0 1.17 0 0
70 108.59 118.57 0 0 0.98 0 0
80 94.51 96.45 0 0 0.81 0 0
90 81.51 82.20 0 0 0.81 0 0

100 71.97 72.44 0 0 0.66 0 0

30 380.48 620.53 0 0 1.70 0.01 0.01
40 239.14 407.87 0 0 1.30 0.01 0.01
50 183.84 304.88 0 0 0.98 0.01 0.01

100 54◦ 60 140.48 263.35 0 0 0.88 0 0
70 112.76 209.09 0 0 0.79 0 0
80 93.25 179.25 0 0 0.64 0 0
90 79.89 164.52 0 0 0.64 0 0

100 71.10 150.27 0 0 0.56 0 0

30 554.58 560.82 0 0 2.79 0.01 0.01
40 309.45 342.75 0 0 2.07 0.01 0.01
50 231.62 238.22 0 0 1.51 0.01 0.01

18◦ 60 169.17 186.41 0 0 1.27 0 0
70 138.87 151.15 0 0 1.13 0 0
80 110.62 121.23 0 0 0.92 0 0
90 97.90 106.03 0 0 0.82 0 0

100 83.85 92.72 0 0 0.77 0 0
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Table 5: Mean squared error of the estimators for n=30 with the sample size p

ξ θ p �ξ1
�ξ2 �w1/p1 �w2/p2

�θ �π1 �π2

30 8.99 9.33 0.002 0.002 26.27 0.01 0.01
40 5.36 5.82 0.002 0.002 18.66 0.01 0.01
50 3.83 3.78 0.001 0.001 8.85 0 0

90◦ 60 3.03 3.13 0.001 0.001 7.78 0 0
70 2.52 2.52 0.001 0.001 6.81 0 0
80 2.17 2.10 0.001 0.001 5.92 0 0
90 1.97 1.96 0.001 0.001 5.06 0 0

100 1.74 1.85 0.001 0.001 4.67 0 0

30 13.87 19.54 0.004 0.004 17.86 0.01 0.01
40 8.14 11.07 0.002 0.003 12.06 0.01 0.01
50 5.24 7.29 0.002 0.002 9.08 0.01 0.01

30 54◦ 60 4.14 5.72 0.001 0.002 6.97 0 0
70 3.48 4.12 0.001 0.001 5.58 0 0
80 3.02 3.55 0.001 0.001 5.23 0 0
90 2.92 3.19 0.001 0.001 4.33 0 0

100 2.61 2.73 0.001 0.001 3.83 0 0

30 29.40 84.02 0.005 0.011 370.63 0.03 0.03
40 19.16 74.94 0.004 0.011 265.15 0.03 0.03
50 14.18 77.88 0.003 0.011 226.23 0.04 0.04

18◦ 60 14.27 80.57 0.003 0.011 200.45 0.04 0.04
70 12.62 72.60 0.003 0.011 148.84 0.04 0.04
80 11.84 72.02 0.003 0.010 134.46 0.05 0.05
90 11.80 78.76 0.003 0.011 112.28 0.23 0.23

100 12.62 73.23 0.003 0.010 104.27 0.05 0.05

30 139.69 154.52 0 0 2.92 0.01 0.01
40 85.91 92.13 0 0 2.08 0.01 0.01
50 65.74 65.13 0 0 1.59 0.01 0.01

90◦ 60 48.48 50.47 0 0 1.17 0 0
70 39.77 39.20 0 0 1.17 0 0
80 33.22 32.60 0 0 0.98 0 0
90 28.12 27.72 0 0 0.81 0 0

100 25.01 24.67 0 0 0.81 0 0

30 154.06 189.17 0 0 1.86 0 0
40 89.81 120.39 0 0 1.43 0.01 0.01
50 62.23 84.41 0 0 1.06 0.01 0.01

100 54◦ 60 46.53 63.51 0 0 0.84 0 0
70 40.38 52.90 0 0 0.75 0 0
80 32.60 44.35 0 0 0.67 0 0
90 29.15 37.53 0 0 0.58 0 0

100 25.36 33.66 0 0 0.58 0 0

30 196.39 234.80 0 0 7.18 0.01 0.01
40 113.25 141.25 0 0 4.67 0.01 0.01
50 76.84 96.11 0 0 3.39 0.01 0.01

18◦ 60 58.06 69.951 0 0 2.57 0 0
70 49.88 55.35 0 0 2.15 0 0
80 39.48 45.93 0 0 1.74 0 0
90 33.79 38.03 0 0 1.50 0 0

100 30.11 32.01 0 0 1.37 0 0
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1. INTRODUCTION

In the insurance area, the main goals of the risk theory are to study, an-

alyze, specify dimensions and quantify risks. The risk theory is also responsible

for fitting models of pricing and insurance company ruin, especially based on

observations of the random variables for the number of claims, N(w), and the

total amount of claims incurred, Y (w), defined as

(1.1) Y (w) =

N(w)∑
i=1

Zi I(N(w)>0)

where the Zi’s are random variables representing the individual claims, w = vt

corresponds to the exposure, v denotes the value insured and t is the period

during which the value v is exposed to the risk of claims.

Assuming that N(w), Z1, Z2, ... are independent and the individual claims

are identically distributed, Jorgensen and Souza ([4]) discussed the estimation

and inference problem concerning the parameters considering the situation in

which the number of claims follows a Poisson process and the individual claims

follow a gamma distribution.

Using the properties of the Tweedie family for exponential dispersion mod-

els ([8]; [3]), Jorgensen and Souza ([4]) determined, using the convolution formula,

that Y (w) |N(w) follows an exponential dispersion model and the joint distribu-
tion of N(w) and Y (w)/w follows a Tweedie compound Poisson distribution.

For more details about exponential dispersion models read [2] and [3].

In spite of the distribution of the individual claim values being very well

represented in some situations by the gamma distribution, in other cases it could

be more suitable to attribute a lognormal distribution for Z1, Z2, ... . For instance,

in collision situations in car insurances and in common fires, where the individual

claim values can increase almost without limits but cannot fall below zero, with

most of the values near the lower limit and where the natural logarithm of the

individual claim variable yields a normal distribution.

The aim of this paper is to estimate the parameters of Y (w)=
N(w)∑
i=1
ZiI(N(w)>0)

and N(w) distributions, where N(w), Z1, Z2, ... are independent, Z1, Z2, ... is a se-

quence of random variables with lognormal(μ, σ2) distribution and N(w) follows

a Poisson distribution with rate λ.

Simulated examples are given to illustrate the methodology. The use of

a real dataset is not possible due to the high confidentiality with which the

companies deal with their database.
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2. LOGNORMAL MODEL

A positive random variable Z is lognormally distributed if the logarithm of

the random variable is normally distributed. Hence Z follows a lognormal(μ, σ2)

distribution if its density function is given by

(2.1) fZ(z;μ, σ
2) =

(2π σ2)−
1
2

z
exp

{
− 1

2σ2

(
log(z)− μ)2

}
,

for z > 0, −∞ < μ <∞ and σ > 0.

The moments of the lognormal distribution can be calculated from the

moment generating function of the normal distribution and are defined as

(2.2) E[Zk] = exp

(
kμ+

1

2
k2σ2

)
.

Thus, the mean of the lognormal distribution is given by

(2.3) E[Z] = exp

(
μ+

1

2
σ2

)
and the variance is given by

(2.4) Var[Z] = exp
(
2μ+ 2σ2

)− exp
(
2μ+ σ2

)
.

Products and quotients of lognormally distributed variables are themselves

lognormally distributed, as well as Zb and bZ, for b �= 0 and Z following a

lognormal(μ, σ2) distribution ([1]). However, the distribution of the sum of inde-

pendent lognormally distributed variables, that appears in many practical prob-

lems and describes the distribution of Y (w)|N(w), is not lognormally distributed
and does not present a recognizable probability density function ([7]).

Approximations for the distribution of the sum of lognormally distributed

random variables are suggested by Levy ([5]) and Milevsky and Posner ([6]).

3. PARAMETER ESTIMATION

As described in the previous section, the distribution function for Y (w),

where the claims Zi are independently and identically lognormal(μ,σ
2) distributed,

is not known. Consequently, the joint distribution for (N(w), Y (w)) and the cor-

responding likelihood function for the parameters μ, σ2 and λ cannot be exactly

defined.
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However, since the lognormal distribution was defined with reference to the

normal distribution, estimate μ, σ2 and λ from the likelihood function for these

parameters considering the variables N(w) and Y (w) is equivalent to estimate μ,

σ2 and λ from the likelihood function based on the variables N(w) and

X+(w) =

N(w)∑
i=1

Xi I(N(w)>0) ,

where N(w) follows a Poisson(wλ), Xi = log(Zi) follows a Normal(μ,σ
2) and the

Zi’s are independent identically lognormal(μ,σ
2).

Then, we have

(3.1) X+(w)|N(w) = n ∼ Normal(nμ, nσ2), for n ≥ 1 .

The joint density of X+(w) and N(w), for n ≥ 1, is defined as

f(X+(w),N(w))

(
x+, n;μ, σ

2, λ
)
=

(3.2)

=
(wλ)n

n!
√
2πnσ2

exp

{
− 1

2nσ2
(x+− nμ)2 − wλ

}
I(0,∞)(x+)

and

(3.3) f(X+(w),N(w))

(
x+, 0;μ, σ

2, λ
)
= exp{−wλ} I(0,∞)(x+) .

In this work, without loss of generality, w is assumed to be equal to 1.

Considering (x+1, n1), (x+2, n2), ..., (x+m, nm) observations from the independent

random vectors (X+1, N1), (X+2, N2) ..., (X+m, Nm), where Ni ∼ Poisson(λ),

X+i | (Ni=ni) ∼ Normal(niμ, niσ
2), i=1, 2, ...,m, and m is the number of groups

present in the portfolio and considering δi = 0 for Ni = 0 and δi = 1 for Ni > 0,

the log likelihood function for the parameters μ, σ2 and λ is given by

l(μ, σ2, λ) =(3.4)

=

m∑
i=1

{
δi

(
−1
2
log

(
2πni σ

2
)
+ ni log(λ)− 1

2ni σ2

(
x+i − niμ

)2− λ
)
+ (1−δi) (−λ)

}

If σ2=σ2
0 is known the maximum likelihood estimates of μ and λ are given

by

(3.5)
∧
μ =

m∑
i=1

δiX+i

m∑
j=1

δjNj

=

m∑
i=1

X+i

m∑
j=1

Nj

if
m∑

j=1

Nj > 0 ,

and

(3.6)
∧
λ =

m∑
i=1

δiNi

m
=

m∑
i=1

Ni

m
.
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Let S =
m∑

i=1
Ni be the total number of claims and U =

m∑
i=1

X+i. Hence,

S follows a Poisson(mλ) and U | (N=n) follows a Normal
(
μ

m∑
i=1
ni, σ

2
0

m∑
i=1
ni

)
,

where N = (N1, N2, ..., Nm) and n = (n1, n2, ..., nm) is the observed vector of
number of claims for m groups. Thus U | (S=s) follows a Normal(μs, σ2

0s) and

the exact distribution of
∧
λ is given by

(3.7) P

(
∧
λ=

c

m

)
= P

(
S=c

)
=

exp(−mλ) (mλ)c
c!

for c = 0, 1, 2, ... .

The cumulative distribution function of
∧
μ given S>0, F∧

μ|S>0
(v), for v∈R

is

P
(
∧
μ ≤ v|S > 0

)
= P

[(∧
μ ≤ v

) ∩ ∞⋃
j=1

(
S=j

)|S > 0

]

=

P

(
∧
μ ≤ v,

∞⋃
j=1

(
S=j

)
, S > 0

)
P
(
S > 0

)

=

P

(
∧
μ ≤ v,

∞⋃
j=1

(
S=j

))
P
(
S > 0

)
=

∞∑
j=1

P
(
∧
μ ≤ v, S = j

)
P
(
S > 0

)
=

∞∑
j=1

P
(
∧
μ ≤ v|S = j

)
P
(
S = j

)
P
(
S > 0

)(3.8)

=

∞∑
j=1

P
(

U
S ≤ v|S = j

)
P
(
S = j

)
P
(
S > 0

)
=

∞∑
j=1

P
(

U
j ≤ v|S = j

)
P
(
S = j

)
P
(
S > 0

)
=

∞∑
j=1

P
(
U ≤ jv|S = j

)
P
(
S = j

)
P
(
S > 0

)
=

∞∑
j=1

FU (jv)
exp(−mλ) (mλ)j
j!

(
1− exp(−mλ)) ,

where FU is the cumulative distribution function of the Normal(μj, σ2
0j) distri-

bution, for j = 1, 2, ... .
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The corresponding probability density function is defined as

f∧
μ|S>0

(v) =
dF∧

μ|S>0
(v)

dv

=
∞∑

j=1

fU (jv)
exp(−mλ) (mλ)j
j!

(
1− exp(−mλ)) j

=
exp(−mλ)

1− exp(−mλ)
∞∑

j=1

fU (jv)
(mλ)j

(j−1)!(3.9)

=
exp(−mλ)

1− exp(−mλ)
∞∑

r=0

fU

(
(r+1)v

) (mλ)r+1

(r)!

=
(mλ) exp(−mλ)
1− exp(−mλ)

∞∑
r=0

fU

(
(r+1)v

) (mλ)r
(r)!

,

where fU is the probability density function of the Normal
(
μ(r+1), σ2

0(r+1)
)

distribution.

Let k be the number of groups with number of claims greater that zero.
If σ2 is unknown, the maximum likelihood estimate of σ2 is

∧

σ2 =

m∑
i=1

δi

(
(X+i−Ni

∧
μ)

2

Ni

)
m∑

i=1
δi

(3.10)

=

k∑
j=1

(
(X+j −Nj

∧
μ)

2

Nj

)
k

if Nj > 0, for all j = 1, 2, ..., k .

Using the invariant principle of maximum-likelihood estimation, the esti-
mates of E[Z], Var[Z], E[N ] and Var[N ], where Z represents the individual claims
and N the number of claims, are, respectively

Ê[Z] = exp

(
∧
μ+

1

2

∧

σ2

)
,

V̂ar[Z] = exp

(
2
∧
μ+ 2

∧

σ2

)
− exp

(
2
∧
μ+

∧

σ2

)
,

Ê[N ] =
∧
λ

and

V̂ar[N ] =
∧
λ .
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4. THE LOCATION PARAMETER μ AS A FUNCTION OF

A COVARIATE

Suppose that (x+1, n1), (x+2, n2), ..., (x+m, nm) are observations of the in-
dependent random vectors (X+1, N1), (X+2, N2) ..., (X+m, Nm), m is the number
of groups present in the insurance portfolio, Ni ∼ Poisson(λ), and X+i | (Ni=ni)
∼ Normal(μi, niσ

2), i = 1, 2, ...,m, with the following regression structure for the
location parameter

μi = αni + β

ni∑
j=1

vij ,

where vij represents the covariate of the j-th individual claims of the i-th group,
for i = 1, 2, ...,m and j = 1, 2, ..., ni.

Defining ri =
ni∑

j=1
vij , the log likelihood function for the parameters α, β, σ

2

and λ is given by

l
(
α, β, σ2, λ

)
=

=
m∑

i=1

{
δi

(
−1
2
log

(
2πni σ

2
)
+ ni log(λ)− 1

2ni σ2

(
x+i − αni − β ri

)2
)
+ (−λ)

}
.

Let k, k ≤ m, be the number of groups with the number of claims greater

that zero, so that
k∑

j=1
Nj > 0. The maximum likelihood estimates of α, β, σ2 are

obtained through the data of only these k groups and are given by

∧
α =

k∑
j=1

X+j −
∧
β

k∑
j=1

rj

k∑
j=1

Nj

,(4.1)

∧
β =

k∑
j=1

X+j rj

Nj
−

k�

j=1
X+j

k�

j=1
rj

k�

j=1
Nj

k∑
j=1

r2
j

Nj
−

(
k�

j=1
rj

)2

k�

j=1
Nj

,(4.2)

∧

σ2 =

k∑
j=1

(
(X+j −

∧
μj)

2

Nj

)
k

, Nj > 0, for all j ,(4.3)

where
∧
μj =

∧
αnj +

∧
β rj .

The maximum likelihood estimates of λ is defined as (3.6).
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5. APPLICATIONS

In order to illustrate the methods outlined in this article, two simulated
data set, with 20 insurance groups each, are presented. For the i-th group we
generated one observation of N following Poisson(λ) and ni observations of Z
following lognormal(μ, σ2) and we considered Xj=log(Zj) for j=1, 2, ..., Ni and

X+i =
Ni∑
j=1

Xj for each group. These observations, together with the values of N ,

are used in the estimation of the parameters. The first data set was simulated
considering a small rate of occurrence of claims in each insurance group and,
consequently, a large probability of groups with zero claims. The second data set
was simulated considering a large rate of occurrence of claims and, consequently,
a small number of groups with zero claims. In both cases the values of μ and σ2

considered in the simulation of the data was 7.1 and 0.1, respectively. Thus

E[Z] = 1274.11 and Var[Z] = 170728.8 ,

that is, the expected individual claim value is 1274.11MU with a variance of
170728.8MU.

5.1. Portfolio with small rate of occurrence of claim

Considering m = 20, N∼ Poisson(2), and the Zi’s iid lognormal(7.1, 0.1),
we have

P
[
N=0

]
= exp(−2) = 0.135 ,

that is, the probability of occurrence of no claims in each group is equal to 0.135.

The simulated individual claim values vary between 634.48MU and
2819.6MU and the observed values of N , X+ and δ are presented in Table 1.
Note that four of the twenty groups have no occurrence of claims.

Table 1: Observed values of N , X+ and δ for a simulated insurance portfolio

N X+ δ N X+ δ N X+ δ

1 1 6.79 1 8 2 14.63 1 15 3 21.58 1
2 3 21.12 1 9 1 6.89 1 16 0 0.00 0
3 0 0.00 0 10 1 7.29 1 17 2 13.54 1
4 3 20.98 1 11 1 6.54 1 18 2 14.48 1
5 2 13.56 1 12 3 21.97 1 19 0 0.00 0
6 0 0.00 0 13 1 7.03 1 20 2 14.24 1
7 3 21.82 1 14 4 27.69 1 Total 34 240.17 16
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The estimates of λ, μ and σ2, calculated by (3.6), (3.5) and (3.10), respec-
tively, as well as a comparison between the true values of the parameters and
their estimates are presented in Table 2.

Table 2: The parameters true values and their estimates

True value Estimate Difference

λ 2 1.7 0.3
μ 7.1 7.06 0.04
σ2 0.1 0.09 0.01

From the distribution function of
∧
μ given S > 0, defined in (3.8), we can

calculate P
(∧
μ ≤ v|S > 0

)
for different values of v ∈ R. Table 3 shows the prob-

ability of
∧
μ ≤ v given S > 0, considering λ = 2, μ = 7.1, σ2 = 0.1 (used for the

data simulation) and s = 34 (observed in this dataset).

Table 3: P
( ∧

μ ≤ v|S > 0
)
for λ = 2, μ = 7.1, σ2 = 0.1 and s = 34

v P
(
∧

μ ≤ v|S > 0
)

v P
(
∧

μ ≤ v|S > 0
)

v P
(
∧

μ ≤ v|S > 0
)

4 0.0013 7 0.8063 10 0.9960
4.25 0.0060 7.25 0.8529 10.25 0.9974
4.5 0.0193 7.5 0.8913 10.5 0.9980
4.75 0.0484 7.75 0.9208 10.75 0.9986
5 0.0980 8 0.9424 11 0.9990
5.25 0.1721 8.25 0.9585 11.25 0.9993
5.5 0.2656 8.5 0.9709 11.5 0.9995
5.75 0.3687 8.75 0.9804 11.75 0.9996
6 0.4718 9 0.9863 12 0.9997
6.25 0.5787 9.25 0.9892 12.25 0.9998
6.5 0.6635 9.5 0.9925 2.5 0.9998
6.75 0.7473 9.75 0.9952 12.75 0.9999

Note that, from the results of Table 3,

P
[
4.5 ≤ ∧

μ ≤ 9.25
]
= 0.9699 .

5.2. Portfolio with large rate of occurrence of claim

In the second dataset, twenty observations of N were generated from the
Poisson(100) distribution and the Zi’s were generated from the lognormal(7.1, 0.1)
distribution. Consequently,

P
[
N= 0

]
= exp

(−100) � 0 ,
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that is, the probability of occurrence of no claims in each group is practically null.
The observed values of N , X+ and δ are presented in Table 4 and the simulated
individual claim values vary between 440.91MU and 3212.9MU.

Table 4: Observed values of N , X+ and δ for a simulated insurance portfolio

N X+ δ N X+ δ N X+ δ

1 95 676.0 1 8 86 606.6 1 15 79 553.4 1
2 104 739.3 1 9 108 762.0 1 16 95 674.5 1
3 85 601.6 1 10 85 601.1 1 17 87 619.8 1
4 92 652.6 1 11 98 695.8 1 18 105 747.6 1
5 106 749.6 1 12 86 612.0 1 19 101 717.3 1
6 111 791.9 1 13 83 586.1 1 20 100 714.6 1
7 85 600.8 1 14 100 709.8 1 Total 1891 13412.5 20

The estimates of λ, μ and σ2, calculated by (3.6), (3.5) and (3.10), respec-
tively, as well as a comparison between the true values of the parameters and its
estimates are displayed in in Table 5.

Table 5: The parameters true values and their estimates

True value Estimate Difference

λ 100 94.55 5.45
μ 7.1 7.093 0.007
σ2 0.1 0.096 0.004

Table 6 shows the probability of
∧
μ ≤ v given S > 0, considering λ = 100,

μ = 7.1, σ2 = 0.1 (used for the data simulation) and s = 1891 (observed in this
dataset).

Table 6: P
( ∧

μ ≤ v|S > 0
)
for λ = 100, μ = 7.1, σ2 = 0.1 and s = 1891

v P
(
∧

μ ≤ v|S > 0
)

v P
(
∧

μ ≤ v|S > 0
)

v P
(
∧

μ ≤ v|S > 0
)

6.1 0.0000 6.6 0.2216 7.1 0.9929
6.2 0.0001 6.7 0.4639 7.2 0.9989
6.3 0.0019 6.8 0.7152 7.3 0.9999
6.4 0.0150 6.9 0.8873 7.4 1.0000
6.5 0.0722 7.0 0.9671 7.5 1.0000

From the results of Table 6 we have P [6.4 ≤ ∧
μ ≤ 7.1] = 0.978.
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6. CONCLUDING REMARKS

The theory for exponential dispersion models cannot be applied to estimate
the parameters μ, σ2, that specify the lognormal distribution of the individual
claim value (Z), and λ, the occurrence rate of claims, because the lognormal dis-

tribution and, consequently, the joint distribution of Y (w) =
∑N(w)

i=1 Zi I(N(w)>0)

and N(w) does not belong to the class of the exponential dispersion model.

However, from the joint distribution of X+(w) =
N(w)∑
i=1

log(Zi) I(N(w)>0) and N(w),

maximum likelihood estimates of μ, σ2 and λ can be defined and applied to an
insurance portfolio dataset, in which N(w) follows a Poisson(wλ) distribution
and Z is lognormally distributed.

ACKNOWLEDGMENTS

We would like to thank the associate editor and referees for their valuable
suggestions and comments on an earlier version of this paper.

REFERENCES

[1] Crow, E.L. and Shimizu, K. (Eds.) (1988). Lognormal Distributions: Theory

and Application, Dekker, New York.

[2] Jorgensen, Bent (1986). Some properties of exponential dispersion models,
Scand. J. Statist., 13, 187–198.

[3] Jorgensen, Bent (1987). Exponential dispersion models (with discussion),
J. Royal Statistical Society Ser. B, 49, 127–162.

[4] Jorgensen, B. and Souza, M.C.P. de (1994). Fitting Tweedie’s compound
poisson model to insurance claims data, Scandinavian Actuarial Journal, 69–93.

[5] Levy, E. (1992). Pricing European average rate currency options, Journal of

International Money and Finance, 14, 474–491.

[6] Milevsky, M.A. and Posner, S.E. (1998). Asian Options, the sum of lognormal,
and the Reciprocal Gamma distribution, Journal of Financial and Quantitative

Analysis, 33, 3.

[7] Slimanc, S.B. (2001). Bounds to the distribution of a sum of independent log-
normal random variables, IEEE Transations on Communications, 20, 6.

[8] Tweedie, M.C.K. (1947). Functions of a statistical variate with given means,
with special reference to Laplacian distributions, Proc. Camb. Phil. Soc., 49,
41–49.



REVSTAT – Statistical Journal

Volume 4, Number 2, June 2006, 143–151

A NEW DEPENDENCE CONDITION FOR TIME

SERIES AND THE EXTREMAL INDEX OF

HIGHER-ORDER MARKOV CHAINS

Authors: Helena Ferreira

– Department of Mathematics, University of Beira Interior,
6200 Covilhã, Portugal
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1. INTRODUCTION

Let X = {Xn}n≥1 be a stationary sequence with common distribution func-
tion F in the domain of attraction of an extreme value distribution G. Therefore
there exist real sequences a = {an > 0}n≥1 and b = {bn}n≥1 such that

Fn
(
un(x)

) −−−→
n→∞

G(x) , x ∈ R ,

where un(x) = anx+ bn.

Let {εXn (.)}n≥1 be the sequence of functions satisfying

P
(
X1≤ y, ..., Xn≤ y

)
= F εXn (y)(y) , y ∈ (αF , ωF ), n ≥ 1 ,

where αF and ωF denote the left and right end points of F .

This sequence of extremal functions {εXn (.)}n≥1 associated to X is inspired
by the extremal coefficients considered in Buishand (1984), Tiago de Oliveira
(1989) and Smith (1990), among others, to model the dependence of marginals
of a multivariate extreme value distribution.

Here we will consider a stability condition for this sequence of extremal
functions in order to obtain limiting results for the distribution of maxima
Mn = max{X1, ..., Xn} and the existence of the extremal index of X.

We first point out some properties of εXn (.) coming directly from the defi-
nition.

The Fréchet bounds for Fn(y) = P (X1≤ y, ..., Xn≤ y), given by the
inequalities max

{
0, nF (y)−(n−1)} ≤ Fn(y) ≤ F (y), enables the conclusion

that εXn (y) ≥ 1, y ∈ R.

In particular, if X has a positive dependence structure (Joe (1997)) then

F εXn (y)(y) ≥ Fn(y) ,

and it would follow that εXn (y) ≤ n, y ∈ R.

Finally, if (X1, ..., Xn) has a multivariate extreme value distribution then
the stability equation for its dependence function DFn (Deheuvels (1978), Hsing
(1989)),

Dt
Fn
(y1, ..., yn) = DFn(y

t
1, ..., y

t
n) ,

t > 0, y1, ..., yn ∈ [0, 1], leads to εXn (y) = εXn , y ∈ R. Moreover, this constant
εXn ∈ [1, n] takes the extreme values 1 or n if and only if Fn has perfect posi-
tive dependence or independent marginals, respectively.
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In this paper we will only assume that the sequences
{
εXn (un(x))

}
n≥1

, x∈R,
satisfy a stability condition introduced in section 2. Such condition is sufficient
to conclude that if Fn(un(x)) converges to a non degenerate distribution G∗ then
G∗ is in the class of max-stable distributions.

Moreover, we recall the definition of extremal index θ and prove that it
can be computed from the limit of εXn (u

τ0
n )/n, for some τ0 > 0, where {uτ

n}n≥1

denotes a real sequence such that n(1−F (uτ
n)) −−−→n→∞

τ > 0.

In section 3 we apply the results to Markov chains in discrete time with con-
tinuous state space. After the calculation of the extremal index of a Markov chain
of order 1 based on a given bivariate dependence (copula) function, we demon-
strate a sufficient condition for the existence of extremal index of a d th-order
Markov chain and compute its value. For such sequences, when the distribution
of d+1 consecutive variables is in the domain of attraction of a (d+1)-multivariate
extreme distribution Hd+1, it holds

θ = − lnDHd+1
(e−1, ..., e−1) + lnDHd

(e−1, ..., e−1) ,

where DHd+1
, DHd

denote the dependence functions of the multivariate distribu-
tion functions Hd+1, Hd, respectively, and

Hd(y1, ..., yd) = Hd+1(y1, ..., yd,+∞) .

The notation introduced in this paragraph will be used throughout the
paper.

2. STABLE EXTREMAL FUNCTIONS

We now introduce a stability condition for the sequence {εXn (.)}n≥1 under
which we can, asymptotically, relate the dependence measure εXn (.) for (X1, ..., Xn)
to the analogous measure εX[n/k](.) for

(
X(i−1)[n/k]+1, ..., Xi[n/k]

)
, 1 ≤ i ≤ k.

Definition. The sequence {εXn (.)}n≥1 is stable over the real sequence
{un}n≥1 if, for each k ≥ 1, it holds∣∣∣εXn (un)− k εX[n/k](un)

∣∣∣ −−−→
n→∞

εk ≥ 0 .(2.1)

We shall pursue the direction of this dependence condition and extend
the extremal types theorem (Leadbetter et al. (1983)). Although the dependence
between Xi and Xj does not necessarly fall off when |i− j| increases, as occurs in
the condition D(un) of Leadbetter (1974), the condition (2.1) is still appropriate
for the argument of extremes.
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Proposition 2.1. Let X = {Xn}n≥1 be a stationary sequence with com-

mon distribution function F and a = {an> 0}n≥1, b = {bn}n≥1 real sequences

such that Fn(un(x)) −−−→
n→∞

G(x), x ∈ R, where un(x) = anx+ bn and G is a non

degenerate distribution function.

If Fn(un(x)) −−−→
n→∞

G∗(x), x ∈ R, for some non degenerate distribution G∗

and {εXn (.)}n≥1 is stable over the real sequence {un(x)}n≥1, for all x ∈ R, then

G∗ is of extreme value type.

Proof: Since every max-stable distribution is of extreme value type, it is
sufficient to prove that there are real sequences {αn > 0}n≥1 and {βn}n≥1 such
that

Gn
∗ (αnx+ βn) = G∗(x) , n ≥ 1 .(2.2)

We follow essentially the proof of Theorem 1.3.1 of Leadbetter et al. (1983):

if Fn(unk(x)) −−−→
n→∞

G
1/k
∗ (x), x ∈ R, k ≥ 1, then (2.2) holds. To obtain this last

convergence we note that Fnk(unk(x)) −−−→
n→∞

G∗(x) and∣∣∣Fnk

(
unk(x)

)− F k
n

(
unk(x)

)∣∣∣ =

=
∣∣∣F εX

nk
(unk(x))

(
unk(x)

)− F kεXn (unk(x))
(
unk(x)

)∣∣∣
= F εX

nk
(unk(x))

(
unk(x)

)∣∣∣1− F kεXn (unk(x))−εX
nk

(unk(x))
(
unk(x)

)∣∣∣ = o(1) ,

by applying (2.1).

The proof points out that the convergence in (2.1) can be weakned. The
result holds for bounded sequences

∣∣εXn (un(x))− k εX[n/k](un(x))
∣∣, x ∈ R, k ≥ 1.

As a corollary we provide a relation between the sequence of extremal
coefficients {εXn (uτ

n)}n≥1 and the extremal index θ of X.

Specifically, X has extremal index θ (Leadbetter et al. (1983)) if, for each
τ >0, there exists {uτ

n}n≥1 such that lim
n→+∞

n(1−F (uτ
n))=τ and lim

n→+∞
Fn(u

τ
n)=e

−θτ.

If θ exists then is given by

θ =
ln lim

n→+∞
Fn(u

τ
n)

ln lim
n→+∞

Fn(uτ
n)

.

Proposition 2.2. Let X be a stationary sequence with common distri-

bution function F such that, for each τ > 0, there exists {uτ
n}n≥1 satisfying

n(1−F (uτ
n)) −−−→n→∞

τ > 0. If, for each τ > 0, {εXn (.)}n≥1 is stable over {uτ
n}n≥1

then:

(i) there are constants θ′ and θ′′ satisfying lim infn→+∞ Fn(u
τ
n) = e−θ′τ and

lim supn→+∞ Fn(u
τ
n) = e−θ′′τ , for all τ > 0;
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(ii) the convergence of {Fn(u
τ0
n )}n≥1, for some τ0 > 0, implies θ′ = θ′′ and

limn→+∞ Fn(u
τ
n) = e−θτ , for all τ > 0.

We omit the proof since it follows the same discussion used in Theorem3.7.1
of Leadbetter et al. (1983) from the result∣∣∣Fn(u

τ
n)− F k

[n/k](u
τ
n)

∣∣∣ = o(1) .

Since limn→+∞ Fn(u
τ
n) = limn→+∞ F εXn (uτ

n)(uτ
n) and limn→+∞ Fn(uτ

n) = e−τ

the second statement of the above result can be rewritten as follows.

Corollary 2.1. Let X be a stationary sequence with common distribu-

tion function F such that, for each τ > 0, there exists {uτ
n}n≥1 satisfying

n(1−F (uτ
n)) −−−→n→∞

τ > 0.

If, for each τ > 0, {εXn (.)}n≥1 is stable over {uτ
n}n≥1 then X has extremal

index θ if and only if θ = limn→+∞
εXn (u

τ0
n )

n , for some τ0 > 0.

This surprisingly simple result presents a new method for computing the
extremal index, through a limit of a sequence of extremal coefficients, and relates
the extremal index with the dependence structure of X.

3. CALCULATING THE EXTREMAL INDEX OF MARKOV

CHAINS

The stationary Markov chains are important both from the applied and
theoretical points of view and a sizeable literature on its extremal behaviour is
available. There are stationary Markov sequences for which the condition D(uτ

n)
fails and, in general, it is not easy to show directly from the functional form of its
distributions thatD(uτ

n) holds for each τ > 0. O’Brien (1987) and Rootzen (1988)
propose instead a general method by considering X as a measurable function of
a Harris chain.

Since
εXn (u

τ
n)

n
=

lnDFn

(
F (uτ

n), ..., F (u
τ
n)

)
lnFn(uτ

n)
,

the above corollary seems to be suitable for the computation of θ in stationary
sequences constructed from a given dependence function and a univariate margin.

We will apply the previous results to Markov models which can be defined
from families of dependence functions. We start by illustrating the results with
a Markov chain of order 1.
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Example 3.1. Let X = {Xn}n≥1 be a stationary Markov chain of order 1
with common distribution function F such that, for each τ > 0, there exists
{uτ

n}n≥1 satisfying n(1−F (uτ
n)) −−−→n→∞

τ > 0.

Suppose that the dependence functionDF2 of (X1, X2) is defined (Kimeldorf
and Sampson (1975)) by

DF2(u, v) = u+ v − 1 +
(
(1−u)−1 + (1−v)−1 − 1

)−1
, u, v ∈ [0, 1] .

We get, for each τ > 0,

εXn (u
τ
n) =

lnDn−1
F2

(
F (uτ

n), F (u
τ
n)

)− lnFn−2(uτ
n)

lnF (uτ
n)

=
lnFn(uτ

n)− ln
(

1+F (uτ
n)

2

)n−1

lnF (uτ
n)

and, for each k ≥ 1,

lim
n→+∞

∣∣∣εXnk(u
τ
nk)− k εXn (uτ

nk)
∣∣∣ = lim

n→+∞

(k−1) ln
(

1+F (uτ
nk

)
2

)
lnF (uτ

nk)
=

k − 1

2
.

Therefore, for each τ > 0, {εXn (.)}n≥1 is stable over {uτ
n}n≥1 and

θ = lim
n→+∞

lnFn(uτ
n)− ln

(
1+F (uτ

n)
2

)n−1

lnFn(uτ
n)

=
1

2
.

The following result is a contribution to compute θ for the special cases
where the dependence struture of X is given. Smith (1992) and Perfekt (1994),
among others, present a technique for calculating the extremal index of Markov
chains under the assumption that a multivariate extreme limit distribution exists
for the joint distribution of sucessive variables and suitable conditions on the
transition probabilities.

We also assume here that the joint distribution of d+1 consecutive variables
is in the domain of attraction of some multivariate extreme value distribution
Hd+1 and prove that this is sufficient for the stability condition to hold and
compute θ from Hd+1.

Proposition 3.1. Let X be a d th order stationary Markov chain with the

joint distribution Fd+1 of d+1 sucessive variables in the domain of attraction of

a (d+1)-multivariate extreme value distribution Hd+1. Then:

(i) {εXn (.)}n≥1 is stable over {uτ
n}n≥1, for each τ > 0;

(ii) X has extremal index θ = − lnDHd+1
(e−1, ..., e−1) + lnDHd

(e−1, ..., e−1).
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Proof: We first note that if Fd+1 is in the domain of attraction of an
extreme value distribution then the same holds for the common distribution F
of variables in X and for each τ >0 there exists {uτ

n}n≥1 satisfying n(1−F (uτ
n))

−−−→
n→∞

τ > 0.

It follows from the Markov property (Joe, 1997) that

lim
n→+∞

∣∣∣εXnk(u
τ
nk)− k εXn (uτ

nk)
∣∣∣ =

= lim
n→+∞

∣∣∣∣∣∣ lnD
(k−1)d
Fd+1

(
F (uτ

nk), ..., F (u
τ
nk)

)− lnD
(k−1)(d+1)
Fd

(
F (uτ

nk), ..., F (u
τ
nk)

)
lnF (uτ

nk)

∣∣∣∣∣∣
= lim

n→+∞
(k−1)

∣∣∣∣∣d lnD
nk
Fd+1

(
F (uτ

nk), ..., F (u
τ
nk)

)− (d+1) lnDnk
Fd

(
F (uτ

nk), ..., F (u
τ
nk)

)
−τ

∣∣∣∣∣ .
Since

Dnk
Fd+1

(
F (uτ

nk), ..., F (u
τ
nk)

)
= DF nk

d+1

(
Fnk(uτ

nk), ..., F
nk(uτ

nk)
)

converges to DHd+1
(e−τ , ..., e−τ ), we find

εk = (k−1)
∣∣∣∣d lnDHd+1

(e−τ , ..., e−τ ) − (d+1) lnDHd
(e−τ , ..., e−τ )

−τ
∣∣∣∣

= (k−1) (−d lnDHd+1
(e−1, ..., e−1)

)
+ (d+1) lnDHd

(e−1, ..., e−1) .

Then, by applying the corollary 2.1, we get

θ = lim
n→+∞

lnDn−d
Fd+1

(
F (uτ

n), ..., F (u
τ
n)

)− lnDn−d−1
Fd

(
F (uτ

n), ..., F (u
τ
n)

)
lnFn(uτ

n)

= lim
n→+∞

lnDF n
d+1

(
Fn(uτ

n), ..., F
n(uτ

n)
)− lnDF n

d

(
Fn(uτ

n), ..., F
n(uτ

n)
)

−τ
= − lnDHd+1

(e−1, ..., e−1) + lnDHd
(e−1, ..., e−1) .

One can easily construct examples to illustrate the result. We note instead
that F2 in the previous example defined by

F2(x, y) = DF2

(
F (x), F (y)

)
= F (x) + F (y)− 1 +

((
1−F (x))−1

+
(
1−F (y))−1 − 1

)−1
,

x, y ∈ R, is in the domain of attraction of

H2(x, y) = DH2

(
G(x), G(y)

)
= G(x)G(y) exp

((− lnG(x)
)−1

+
(− lnG(y)

)−1
)−1

,

where G(x) = H2(x,+∞) = H2(+∞, x) (Joe (1997)).

Therefore, we can apply directly (ii) above and find θ=− lnDH2(e
−1, e−1)−1

= 3
2 − 1 = 1

2 .
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1. INTRODUCTION

For an r×r square contingency table with ordered categories, let pij denote
the probability that an observation will fall in the ith row and jth column of the
table (i = 1, 2, ..., r; j = 1, 2, ..., r). The symmetry (S) model is defined by

pij = pji for i = 1, 2, ..., r; j = 1, 2, ..., r .

See Bishop, Fienberg, and Holland ([2], p. 282). This model indicates that the
probability that an observation will fall in cell (i, j) of the table is equal to
the probability that it falls in cell (j, i). Namely, this describes a structure of
symmetry of the cell probabilities {pij} with respect to the main diagonal of the
table.

Let X1 and X2 denote the row and column variables, respectively.
The marginal homogeneity (MH) model is defined by

Pr(X1= i) = Pr(X2 = i) for i = 1, 2, ..., r ,

namely
pi ·= p· i for i = 1, 2, ..., r ,

where pi · =
∑r

t=1 pit and p· i =
∑r

s=1 psi (Stuart, [8]). This indicates that the
row marginal distribution is identical with the column marginal distribution.

Let

Gij = Pr
(
X1≤ i, X2 ≥ j

)
=

i∑
s=1

r∑
t=j

pst for i < j ,

and

G∗ij = Pr
(
X1≥ i, X2 ≤ j

)
=

r∑
s=i

j∑
t=1

pst for i > j .

Then the S model may be expressed as

(1.1) Gij = G∗ji for i < j .

The MH model may be expressed as

(1.2) Gi,i+1 = G∗i+1,i for i = 1, 2, ..., r−1 .
The S model implies the MH model. So, from (1.1) and (1.2), we are interested
in decomposing (1.1) into (1.2) and the structure of

Gij = G∗ji for j − i = 2, 3, ..., r−1; i < j .

The purpose of this paper is to give the decompositions of the S model into
some new models. The decompositions may be useful for seeing the reason for
the poor fit when the S model fits the data poorly.
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2. DECOMPOSITIONS OF SYMMETRY MODEL

This section proposes some new models based on {Gij} and based on {pij},
and gives the decompositions of the S model.

2.1. Distance Cumulative Subsymmetry Model

Consider a model defined by

(2.1) Gij = G∗ji for j − i = 2, 3, ..., r−1; i < j ,

which is equivalent to

pij = pji for j − i = 2, 3, ..., r−1; i < j .

This model indicates that the probability that an observation will fall in cell (i, j),
which is one of cells such that the distance from the main diagonal is greater than
or equal to 2, is equal to the probability that the observation falls in cell (j, i).
We shall refer to (2.1) as the subsymmetry (SS) model.

Next, for fixed k (k = 2, 3, ..., r−1), consider a model defined by

(2.2) Gi,i+k = G∗i+k,i for i = 1, 2, ..., r−k .

This model indicates that the cumulative probability that an observation will
fall in row category i or below and column category i + k or above, is equal
to the cumulative probability that the observation falls in column category i or
below and row category i + k or above. We shall refer to (2.2) as the model of
the distance cumulative subsymmetry with the difference k between the diagonal
containing the cutpoint [i and i+ k] and the main diagonal (denoted by the
DCS-k model).

2.2. Distance Subsymmetry Model

For fixed k (k = 1, 2, ..., r−1), consider a model defined by

(2.3) pij = pji for j − i = k; i < j .

This model indicates that the probability that an observation will fall in cell (i, j)
with the distance k from the main diagonal, is equal to the probability that the
observation falls in cell (j, i) with the same distance k. We shall refer to (2.3) as
the distance subsymmetry with distance k (DS-k) model. We obtain the following
theorem.
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Theorem 2.1. The following four statements are equivalent:

(1) the S model holds,

(2) the MH and SS models hold,

(3) the MH and {DCS-k} (k = 2, 3, ..., r−1) models hold,

(4) all the {DS-k} (k = 1, 2, ..., r−1) models hold.

2.3. Goodness-of-Fit Test

Assume that a multinomial distribution is applied to the r×r table.
The maximum likelihood estimates (MLEs) of expected frequencies under the S,
SS and DS-k models are obtained in the closed-forms. The MLEs of them under
the MH and DCS-k models could not be obtained in the closed-forms, however,
they could be obtained using the Newton–Raphson methods in the log-likelihood
equations.

The likelihood ratio statistic for testing the goodness-of-fit of the model is

G2 = 2
r∑

i=1

r∑
j=1

nij log

(
nij

m̂ij

)
,

with the corresponding degrees of freedom (df), where nij is the observed fre-
quency in cell (i, j), and m̂ij is the MLE of expected frequency mij under the
model. The numbers of df for the MH and SS models are r−1 and (r−1)(r−2)/2.
Also the numbers of df for the DCS-k model (k = 2, 3, ..., r−1) are r−k, and
those for the DS-k model (k = 1, 2, ..., r−1) are r−k.

3. EXAMPLES

We shall analyze the data in Tables 1 and 2.

3.1. Analysis of Table 1

Consider the data in Table 1, taken directly from Goodman [5]. These data
relate the father’s and his son’s occupational status category in Britain. These
data have been analyzed by some statisticians, including Agresti ([1], p. 206) and
Tomizawa [9].
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Table 1: The father’s and son’s occupational mobility data in Britain;
from Goodman [5].

Father’s Son’s status
Total

status (1) (2) (3) (4) (5)

(1) 50 45 8 18 8 129

(2) 28 174 84 154 55 495

(3) 11 78 110 223 96 518

(4) 14 150 185 714 447 1510

(5) 3 42 72 320 411 848

Total 106 489 459 1429 1017 3500

Table 2: Unaided distance vision of 7477 women aged 30-39 employed in Royal
Ordnance factories in Britain from 1943 to 1946; from Stuart [8].

Right eye Left eye grade
Total

grade Best (1) Second (2) Third (3) Worst (4)

Best (1) 1520 266 124 66 1976

Second (2) 234 1512 432 78 2256

Third (3) 117 362 1772 205 2456

Worst (4) 36 82 179 492 789

Total 1907 2222 2507 841 7477

Table 3 presents the likelihood ratio chi-square values G2 for the models
applied to these data. The S model fits these data poorly, yielding G2 = 37.46
with 10 df (Table 3). By using the decompositions of the S model, we shall
consider the reason why the S model fits these data poorly.

The MH model fits these data poorly, however, the SS model fits these data
well (Table 3). Therefore we can see from Theorem 2.1 that the poor fit of the
S model is caused by the poor fit of the MH model (rather than the SS model).

Moreover, all the DCS-k (k = 2, 3, 4) models fit the data in Table 1 well.
Therefore we can also see from Theorem 2.1 that the poor fit of the S model
is caused by the poor fit of the MH model (rather than the DCS-k (k = 2, 3, 4)
models). The DCS-k (k = 2, 3, 4) models provide that the probability that the
occupational status category of the father in a pair is k or above higher than that
of his son, is estimated to equal the probability that the status category of the
son is k or above higher than that of his father.
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Table 3: Likelihood ratio chi-square values for models
applied to the data in Table 1.

Applied Degrees of Likelihood ratio

models freedom chi-square

S 10 37.46*

MH 4 32.80*

SS 6 8.58

DCS-2 3 6.89

DCS-3 2 4.29

DCS-4 1 2.36

DS-1 4 28.89*

DS-2 3 3.97

DS-3 2 2.25

DS-4 1 2.36

* means significant at the 0.05 level.

In addition, the DS-k (k=2, 3, 4) models fit these data well, but the DS-1
model fits these data poorly. Therefore we can see from Theorem 2.1 that the
poor fit of the S model is caused by the poor fit of the DS-1 model (rather than
the DS-k (k = 2, 3, 4) models). The DS-k (k = 2, 3, 4) models provide that the
probability that the occupational status of the father in a pair is k categories
higher than that of his son, is estimated to equal the probability that the status
of the son is k categories higher than that of his father.

3.2. Analysis of Table 2

Consider the data in Table 2, taken directly from Stuart [8]. These data are
constructed from the unaided distance vision of 7477 women aged 30–39 employed
in Royal Ordnance factories in Britain from 1943 to 1946. These data have
been analyzed by many statisticians, including Caussinus [3], Bishop et al. ([2],
p. 284), McCullagh [6], Goodman [4], Tomizawa [10], and Miyamoto, Ohtsuka
and Tomizawa [7].

From Table 4, we see that the S model fits these data poorly, yielding
G2 = 19.25 with 6 df. By using the decompositions of the S model, we shall
consider the reason why the S model fits these data poorly.

Both the MH and SS models, being the decomposed models of the S model,
fit these data poorly. So, in order to analyze these data in more details, we shall
apply Theorem 2.1. The DCS-2 model fits these data well, however, the DCS-3
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model fits them poorly (Table 4). Therefore we can see from Theorem 2.1 that
the poor fit of the S model is caused by the poor fits of the MH and DCS-3 models
(rather than the DCS-2 model). The DCS-2 model provides that the probability
that a woman’s right eye is 2 or 3 grades better than her left eye is estimated to
equal the probability that the woman’s left eye is 2 or 3 grades better than her
right eye.

Table 4: Likelihood ratio chi-square values for models
applied to the data in Table 2.

Applied Degrees of Likelihood ratio

models freedom chi-square

S 6 19.25*

MH 3 11.99*

SS 3 9.26*

DCS-2 2 5.00

DCS-3 1 8.96*

DS-1 3 9.99*

DS-2 2 0.30

DS-3 1 8.96*

* means significant at the 0.05 level.

The DS-2 model fits these data very well, however, the DS-1 and DS-3
models fit them poorly (Table 4). Therefore we can see from Theorem 2.1 that
the poor fit of the S model is caused by the poor fits of the DS-1 and DS-3 models
(rather than the DS-2 model). The DS-2 model provides that the probability that
a woman’s right eye is 2 grades better than her left eye is estimated to equal the
probability that the woman’s left eye is 2 grades better than her right eye.

Therefore, these indicate that there are the structures of subsymmetry
(not the complete symmetry) in these data.

4. CONCLUDING REMARKS

Theorem 2.1 gives the decompositions of the S model into some distance
subsymmetry models including the MH model. These decompositions would be
useful for seeing which structures of distance subsymmetry are lacking when the
S model does not hold for analyzing the data.

Finally we note that Caussinus [3] gave the decomposition of the S model
into the quasi-symmetry model, which indicates the symmetry of odds-ratios,
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and the MH model. Caussinus’s decomposition would be useful for seeing which
of the structure of symmetry of odds-ratios and the structure of marginal
homogeneity is lacking when the S model does not hold for analyzing the data
(although Caussinus’s decomposition could not see which structures of some
distance subsymmetry are lacking).
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1. INTRODUCTION

Let X1, X2, ..., Xn be a sequence of independent and identically distributed
random variables with cumulative distribution function F . We denote by X1,n ≤
... ≤ Xn,n their associated order statistics. We address the problem of estimating
the Weibull tail-coefficient θ > 0 defined when the distribution tail satisfies

(A.1) 1− F (x) = exp
(−H(x)) , H←(t) = inf

{
x, H(x) ≥ t

}
= tθ�(t) ,

where � is a slowly varying function, i.e.,

�(λx)/�(x)→ 1 as x→∞ for all λ > 0 .

The inverse cumulative hazard function H← is said to be regularly varying at
infinity with index θ and this property is denoted by H← ∈ Rθ, see [7] for
more details on this topic. As a comparison, Pareto type distributions satisfy
(1/(1−F ))← ∈ Rγ , and γ > 0 is the so-called extreme value index. Weibull
tail-distributions include for instance Gamma, Gaussian and, of course, Weibull
distributions.

Let (kn) be a sequence of integers such that 1 ≤ kn < n and (Tn) be a
positive sequence. We examine the asymptotic behavior of the following family
of estimators of θ:

(1.1) θ̂n =
1

Tn

1

kn

kn∑
i=1

(
log(Xn−i+1,n)− log(Xn−kn+1,n)

)
.

Following the ideas of [10], an estimator of the extreme quantile xpn can be
deduced from (1.1) by:

(1.2) x̂pn = Xn−kn+1,n

(
log(1/pn)

log(n/kn)

)θ̂n

=: Xn−kn+1,n τ
θ̂n
n .

Recall that an extreme quantile xpn of order pn is defined by the equation

1− F (xpn) = pn , with 0 < pn < 1/n .

The condition pn< 1/n is very important in this context. It usually implies that
xpn is larger than the maximum observation of the sample. This necessity to
extrapolate sample results to areas where no data are observed occurs in relia-
bility [8], hydrology [21], finance [9], ... We establish in Section 2 the asymptotic
normality of θ̂n and x̂pn . The asymptotic mean-square error of some particu-
lar members of (1.1) are compared in Section 3. In particular, it is shown that

family (1.1) encompasses the estimator introduced in [12] and denoted by θ̂
(2)
n

in the sequel. In this paper, the asymptotic normality of θ̂
(2)
n is obtained under

weaker conditions. Furthermore, we show that other members of family (1.1)
should be preferred in some typical situations. We also quote some other estima-
tors of θ which do not belong to family (1.1): [4, 3, 6, 19]. We refer to [12] for

a comparison with θ̂
(2)
n . The asymptotic results are illustrated in Section 4 on

finite sample situations. Proofs are postponed to Section 5.
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2. ASYMPTOTIC NORMALITY

To establish the asymptotic normality of θ̂n, we need a second-order con-
dition on �:

(A.2) There exist ρ ≤ 0 and b(x)→ 0 such that uniformly locally on λ ≥ 1

log

(
�(λx)

�(x)

)
∼ b(x)Kρ(λ) , when x→∞ ,

with Kρ(λ) =
∫ λ
1 u

ρ−1du.

It can be shown [11] that necessarily |b| ∈ Rρ. The second order parameter
ρ ≤ 0 tunes the rate of convergence of �(λx)/�(x) to 1. The closer ρ is to 0,
the slower is the convergence. Condition (A.2) is the cornerstone in all proofs
of asymptotic normality for extreme value estimators. It is used in [18, 17, 5]
to prove the asymptotic normality of estimators of the extreme value index γ.
In regular case, as noted in [13], one can choose b(x) = x �′(x)/�(x) leading to

(2.1) b(x) =
x e−x

F−1(1−e−x) f
(
F−1(1− e−x)

) − θ ,
where f is the density function associated to F . Let us introduce the following
functions: for t > 0 and ρ ≤ 0,

μρ(t) =

∫ ∞

0
Kρ

(
1 +

x

t

)
e−x dx ,

σ2
ρ(t) =

∫ ∞

0
K2

ρ

(
1 +

x

t

)
e−x dx − μ2

ρ(t) ,

and let an = μ0(log(n/kn))/Tn − 1. As a preliminary result, we propose an
asymptotic expansion of (θ̂n− θ):

Proposition 2.1. Suppose (A.1) and (A.2) hold. If kn →∞, kn/n→ 0,

Tn log(n/kn)→ 1 and k
1/2
n b(log(n/kn))→ λ ∈ R then,

k1/2
n (θ̂n − θ) =

= θξn,1 + θμ0

(
log(n/kn)

)
ξn,2 + k1/2

n θan + k1/2
n b

(
log(n/kn)

)(
1 + oP(1)

)
,

where ξn,1 and ξn,2 converge in distribution to a standard normal distribution.

Similar distributional representations exist for various estimators of the
extreme value index γ. They are used in [16] to compare the asymptotic properties
of several tail index estimators. In [15], a bootstrap selection of kn is derived
from such a representation. It is also possible to derive bias reduction method
as in [14]. The asymptotic normality of θ̂n is a straightforward consequence of
Proposition 2.1.
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Theorem 2.1. Suppose (A.1) and (A.2) hold. If kn→∞, kn/n→ 0,

Tn log(n/kn)→ 1 and k
1/2
n b(log(n/kn))→ λ ∈ R then,

k1/2
n

(
θ̂n − θ − b

(
log(n/kn)

)− θan

)
d→ N (0, θ2) .

Theorem 2.1 implies that the Asymptotic Mean Square Error (AMSE) of θ̂n

is given by:

(2.2) AMSE (θ̂n) =
(
θan + b

(
log(n/kn)

))2
+
θ2

kn
.

It appears that all estimators of family (1.1) share the same variance. The bias
depends on two terms b(log(n/kn)) and θan. A good choice of Tn (depending
on the function b) could lead to a sequence an cancelling the bias. Of course,
in the general case, the function b is unknown making difficult the choice of a
“universal” sequence Tn. This is discussed in the next section.

Clearly, the best rate of convergence in Theorem 2.1 is obtained by choosing
λ �= 0. In this case, the expression of the intermediate sequence (kn) is known.

Proposition 2.2. If kn →∞, kn/n→ 0 and k
1/2
n b(log(n/kn))→ λ �= 0,

kn ∼
(

λ

b
(
log(n)

))2

= λ2
(
log(n)

)−2ρ
L
(
log(n)

)
,

where L is a slowly varying function.

The “optimal” rate of convergence is thus of order (log(n))−ρ, which is
entirely determined by the second order parameter ρ: small values of |ρ| yield slow
convergence. The asymptotic normality of the extreme quantile estimator (1.2)
can be deduced from Theorem 2.1:

Theorem 2.2. Suppose (A.1) and (A.2) hold. If moreover, kn →∞,

kn/n→ 0, Tn log(n/kn)→ 1, k
1/2
n b(log(n/kn))→ 0 and

(2.3) 1 ≤ lim inf τn ≤ lim sup τn < ∞
then,

k
1/2
n

log τn

(
x̂pn

xpn

− τ θan
n

)
d→ N (0, θ2) .

3. COMPARISON OF SOME ESTIMATORS

First, we propose some choices of the sequence (Tn) leading to different
estimators of the Weibull tail-coefficient. Their asymptotic distributions are pro-
vided, and their AMSE are compared.
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3.1. Some examples of estimators

– The natural choice is clearly to take

Tn = T (1)
n =: μ0

(
log(n/kn)

)
,

in order to cancel the bias term an. This choice leads to a new estimator of θ
defined by:

θ̂(1)
n =

1

μ0

(
log(n/kn)

) 1

kn

kn∑
i=1

(
log(Xn−i+1,n)− log(Xn−kn+1,n)

)
.

Remarking that

μρ(t) = et
∫ ∞

1
e−tu uρ−1 du

provides a simple computation method for μ0(log(n/kn)) using the Exponential
Integral (EI), see for instance [1], Chapter 5, pages 225–233.

– Girard [12] proposes the following estimator of theWeibull tail-coefficient:

θ̂(2)
n =

kn∑
i=1

(
log(Xn−i+1,n)− log(Xn−kn+1,n)

)/ kn∑
i=1

(
log2(n/i)− log2(n/kn)

)
,

where log2(x) = log(log(x)), x > 1. Here, we have

Tn = T (2)
n =:

1

kn

kn∑
i=1

log

(
1− log(i/kn)

log(n/kn)

)
.

It is interesting to remark that T
(2)
n is a Riemann’s sum approximation of

μ0(log(n/kn)) since an integration by parts yields:

μ0(t) =

∫ 1

0
log

(
1− log(x)

t

)
dx .

– Finally, choosing Tn as the asymptotic equivalent of μ0(log(n/kn)),

Tn = T (3)
n =: 1/ log(n/kn)

leads to the estimator:

θ̂(3)
n =

log(n/kn)

kn

kn∑
i=1

(
log(Xn−i+1,n)− log(Xn−kn+1,n)

)
.

For i = 1, 2, 3, let us denote by x̂
(i)
pn the extreme quantile estimator built

on θ̂
(i)
n by (1.2). Asymptotic normality of these estimators is derived from Theo-

rem 2.1 and Theorem 2.2. To this end, we introduce the following conditions:
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(C.1) kn/n→ 0,

(C.2) log(kn)/ log(n)→ 0,

(C.3) kn/n→ 0 and k
1/2
n / log(n/kn)→ 0.

Our result is the following:

Corollary 3.1. Suppose (A.1) and (A.2) hold together with kn → ∞
and k

1/2
n b(log(n/kn))→ 0. For i = 1, 2, 3:

i) If (C.i) hold then

k1/2
n

(
θ̂(i)
n − θ) d→ N (0, θ2) .

ii) If (C.i) and (2.3) hold, then

k
1/2
n

log τn

(
x̂

(i)
pn

xpn

− 1

)
d→ N (0, θ2) .

In view of this corollary, the asymptotic normality of θ̂
(1)
n is obtained under

weaker conditions than θ̂
(2)
n and θ̂

(3)
n , since (C.2) implies (C.1). Let us also high-

light that the asymptotic distribution of θ̂
(2)
n is obtained under less assumptions

than in [12], Theorem 2, the condition k
1/2
n / log(n/kn)→ 0 being not necessary

here. Finally, note that, if b is not ultimately zero, condition k
1/2
n b(log(n/kn))→0

implies (C.2) (see Lemma 5.1).

3.2. Comparison of the AMSE of the estimators

We use the expression of the AMSE given in (2.2) to compare the estimators
proposed previously.

Theorem 3.1. Suppose (A.1) and (A.2) hold together with kn →∞,

log(kn)/ log(n)→ 0 and k
1/2
n b(log(n/kn))→ λ∈R. Several situations are possi-

ble:

i) b is ultimately non-positive. Introduce α=−4 lim
n→∞

b(log n)
kn

log kn
∈ [0,+∞].

If α > θ, then, for n large enough,

AMSE
(
θ̂(2)
n

)
< AMSE

(
θ̂(1)
n

)
< AMSE

(
θ̂(3)
n

)
.

If α < θ, then, for n large enough,

AMSE
(
θ̂(1)
n

)
< min

(
AMSE

(
θ̂(2)
n

)
,AMSE

(
θ̂(3)
n

))
.
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ii) b is ultimately non-negative. Let us introduce β = 2 lim
x→∞

xb(x) ∈ [0,+∞].

If β > θ then, for n large enough,

AMSE
(
θ̂(3)
n

)
< AMSE

(
θ̂(1)
n

)
< AMSE

(
θ̂(2)
n

)
.

If β < θ then, for n large enough,

AMSE
(
θ̂(1)
n

)
< min

(
AMSE

(
θ̂(2)
n

)
,AMSE

(
θ̂(3)
n

))
.

It appears that, when b is ultimately non-negative (case ii)), the conclu-
sion does not depend on the sequence (kn). The relative performances of the

estimators is entirely determined by the nature of the distribution: θ̂
(1)
n has the

best behavior, in terms of AMSE, for distributions close to the Weibull distribu-

tion (small b and thus, small β). At the opposite, θ̂
(3)
n should be preferred for

distributions far from the Weibull distribution.

The case when b is ultimately non-positive (case i)) is different. The value
of α depends on kn, and thus, for any distribution, one can obtain α = 0 by
choosing small values of kn(for instance kn = −1/b(logn)) as well as α = +∞ by
choosing large values of kn (for instance kn = (1/b(log n))2 as in Proposition 2.2).

4. NUMERICAL EXPERIMENTS

4.1. Examples of Weibull tail-distributions

Let us give some examples of distributions satisfying (A.1) and (A.2).

Absolute Gaussian distribution: |N (μ, σ2)|, σ > 0.

From [9], Table 3.4.4, we have H←(x) = xθ�(x), where θ = 1/2 and an
asymptotic expansion of the slowly varying function is given by:

�(x) = 21/2σ − σ

23/2

log x

x
+O(1/x) .

Therefore ρ = −1 and b(x) = log(x)/(4x) +O(1/x). b is ultimately positive,
which corresponds to case ii) of Theorem 3.1 with β = +∞. Therefore, one
always has, for n large enough:

(4.1) AMSE
(
θ̂(3)
n

)
< AMSE

(
θ̂(1)
n

)
< AMSE

(
θ̂(2)
n

)
.



Comparison of Weibull Tail-Coefficient Estimators 171

Gamma distribution: Γ(a, λ), a, λ > 0.

We use the following parameterization of the density

f(x) =
λa

Γ(a)
xa−1 exp (−λx) .

From [9], Table 3.4.4, we obtain H←(x) = xθ�(x) with θ = 1 and

�(x) =
1

λ
+
a−1
λ

log x

x
+O(1/x) .

We thus have ρ = −1 and b(x) = (1−a) log(x)/x+O(1/x). If a > 1, b is ulti-
mately negative, corresponding to case i) of Theorem 3.1. The conclusion depends
on the value of kn as explained in the preceding section. If a < 1, b is ultimately
positive, corresponding to case ii) of Theorem 3.1 with β = +∞. Therefore,
we are in situation (4.1).

Weibull distribution: W(a, λ), a, λ > 0.

The inverse failure rate function is H←(x) = λx1/a, and then θ = 1/a,
�(x)=λ for all x>0. Therefore b(x)=0 and we use the usual convention ρ=−∞.
One may apply either i) or ii) of Theorem 3.1 with α = β = 0 to get for n large
enough,

(4.2) AMSE
(
θ̂(1)
n

)
< min

(
AMSE

(
θ̂(2)
n

)
,AMSE

(
θ̂(3)
n

))
.

4.2. Numerical results

The finite sample performance of the estimators θ̂
(1)
n , θ̂

(2)
n and θ̂

(3)
n are inves-

tigated on 5 different distributions: Γ(0.5, 1), Γ(1.5, 1), |N (0, 1)|, W(2.5, 2.5) and
W(0.4, 0.4). In each case, N = 200 samples (Xn,i)i=1,...,N of size n = 500 were

simulated. On each sample (Xn,i), the estimates θ̂
(1)
n,i(k), θ̂

(2)
n,i(k) and θ̂

(3)
n,i(k) are

computed for k = 2, ..., 150. Finally, the associated Mean Square Error (MSE)
plots are built by plotting the points(

k,
1

N

N∑
i=1

(
θ̂
(j)
n,i(k)− θ

)2
)
, j = 1, 2, 3 .

They are compared to the AMSE plots (see (2.2) for the definition of the AMSE):(
k,

(
θa(j)

n + b
(
log(n/k)

))2
+
θ2

k

)
, j = 1, 2, 3 ,

and where b is given by (2.1). It appears on Figure 1 –Figure 5 that, for all
the above mentioned distributions, the MSE and AMSE have a similar quali-
tative behavior. Figure 1 and Figure 2 illustrate situation (4.1) corresponding



172 Laurent Gardes and Stéphane Girard

to ultimately positive bias functions. The case of an ultimately negative bias
function is presented on Figure 3 with the Γ(1.5, 1) distribution. It clearly ap-

pears that the MSE associated to θ̂
(3)
n is the largest. For small values of k, one

has MSE (θ̂
(1)
n ) < MSE (θ̂

(2)
n ) and MSE (θ̂

(1)
n ) > MSE (θ̂

(2)
n ) for large value of k.

This phenomenon is the illustration of the asymptotic result presented in
Theorem 3.1i). Finally, Figure 4 and Figure 5 illustrate situation (4.2) of asymp-

totically null bias functions. Note that, the MSE of θ̂
(1)
n and θ̂

(2)
n are very similar.

As a conclusion, it appears that, in all situations, θ̂
(1)
n and θ̂

(2)
n share a similar

behavior, with a small advantage to θ̂
(1)
n . They provide good results for null and

negative bias functions. At the opposite, θ̂
(3)
n should be preferred for positive bias

functions.

5. PROOFS

For the sake of simplicity, in the following, we note k for kn. We first give
some preliminary lemmas. Their proofs are postponed to the appendix.

5.1. Preliminary lemmas

We first quote a technical lemma.

Lemma 5.1. Suppose that b is ultimately non-zero. If k →∞, k/n→ 0
and k1/2 b(log(n/k))→ λ ∈ R, then log(k)/ log(n)→ 0.

The following two lemmas are of analytical nature. They provide first-order
expansions which will reveal useful in the sequel.

Lemma 5.2. For all ρ ≤ 0 and q ∈ N∗, we have∫ ∞

0
Kq

ρ

(
1 +

x

t

)
e−x dx ∼ q!

tq
as t→∞ .

Let a
(i)
n = μ0(log(n/kn))/T

(i)
n − 1, for i = 1, 2, 3.

Lemma 5.3. Suppose k →∞ and k/n→ 0.

i) T
(1)
n log(n/k)→ 1 and a

(1)
n = 0.

ii) T
(2)
n log(n/k)→ 1. If moreover log(k)/ log(n)→ 0 then a

(2)
n ∼ log(k)/(2k).

iii) T
(3)
n log(n/k) = 1 and a

(3)
n ∼ −1/ log(n/k).
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The next lemma presents an expansion of θ̂n.

Lemma 5.4. Suppose k →∞ and k/n→ 0. Under (A.1) and (A.2), the

following expansions hold:

θ̂n =
1

Tn

(
θU (0)

n + b
(
log(n/k)

)
U (ρ)

n

(
1+oP(1)

))
,

where

U (ρ)
n =

1

k

k−1∑
i=1

Kρ

(
1 +

Fi

En−k+1,n

)
, ρ ≤ 0

and where En−k+1,n is the (n−k+1)-th order statistics associated to n indepen-

dent standard exponential variables and {F1, ..., Fk−1} are independent standard

exponential variables and independent from En−k+1,n.

The next two lemmas provide the key results for establishing the asymptotic
distribution of θ̂n. Their describe they asymptotic behavior of the random terms
appearing in Lemma 5.4.

Lemma 5.5. Suppose k →∞ and k/n→ 0. Then, for all ρ ≤ 0,

μρ(En−k+1,n)
P∼ σρ(En−k+1,n)

P∼ 1

log(n/k)
.

Lemma 5.6. Suppose k →∞ and k/n→ 0. Then, for all ρ ≤ 0,

k1/2

σρ(En−k+1,n)

(
U (ρ)

n − μρ(En−k+1,n)
)

d→ N (0, 1) .

5.2. Proofs of the main results

Proof of Proposition 2.1: Lemma 5.6 states that for ρ ≤ 0,

k1/2

σρ(En−k+1,n)

(
U (ρ)

n − μρ(En−k+1,n)
)
= ξn(ρ) ,

where ξn(ρ)
d→ N (0, 1) for ρ ≤ 0. Then, by Lemma 5.4

k1/2(θ̂n− θ) =

= θ
σ0(En−k+1,n)

Tn
ξn(0) + k1/2θ

(
μ0(En−k+1,n)

Tn
− 1

)
+ k1/2 b

(
log(n/k)

)(σρ(En−k+1,n)

Tn

ξn(ρ)

k1/2
+
μρ(En−k+1,n)

Tn

)(
1 + oP(1)

)
.
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Since Tn ∼ 1/ log(n/k) and from Lemma 5.5, we have

k1/2(θ̂n− θ) =
(5.1)

= θξn,1 + k1/2 θ

(
μ0(En−k+1,n)

Tn
− 1

)
+ k1/2 b

(
log(n/k)

)(
1 + oP(1)

)
,

where ξn,1
d→ N (0, 1). Moreover, a first-order expansion of μ0 yields

μ0(En−k+1,n)

μ0

(
log(n/k)

) = 1 +
(
En−k+1,n − log(n/k)

) μ
(1)
0 (ηn)

μ0

(
log(n/k)

) ,
where ηn ∈

]
min(En−k+1,n, log(n/k)), max(En−k+1,n, log(n/k))

[
and

μ
(1)
0 (t) =

d

dt

∫ ∞

0
log

(
1 +

x

t

)
e−x dx =:

d

dt

∫ ∞

0
f(x, t) dx .

Since for t ≥ T > 0, f(., t) is integrable, continuous and∣∣∣∣∂f(x, t)∂t

∣∣∣∣ = x

t2

(
1 +

x

t

)−1
e−x ≤ x

e−x

T 2
,

we have that

μ
(1)
0 (t) = −

∫ ∞

0

x

t2

(
1 +

x

t

)−1
e−x dx .

Then, Lebesgue Theorem implies that μ
(1)
0 (t) ∼ −1/t2 as t→∞. Therefore,

μ
(1)
0 is regularly varying at infinity and thus

μ
(1)
0 (ηn)

μ0

(
log(n/k)

) P∼ μ
(1)
0

(
log(n/k)

)
μ0

(
log(n/k)

) ∼ − 1

log(n/k)
.

Since k1/2(En−k+1,n − log(n/k))
d→ N (0, 1) (see [12], Lemma 1), we have

(5.2)
μ0(En−k+1,n)

μ0

(
log(n/k)

) = 1− k−1/2

log(n/k)
ξn,2 ,

where ξn,2
d→ N (0, 1). Collecting (5.1), (5.2) and taking into account that

Tn log(n/k)→ 1 concludes the proof.

Proof of Proposition 2.2: Lemma 5.1 entails log(n/k) ∼ log(n). Since
|b| is a regularly varying function, b(log(n/k)) ∼ b(log(n)) and thus, k1/2 ∼
λ/b(log(n)).

Proof of Theorem 2.2: The asymptotic normality of x̂pn can be de-

duced from the asymptotic normality of θ̂n using Theorem 2.3 of [10]. We are
in the situation, denoted by (S.2) in the above mentioned paper, where the limit
distribution of x̂pn/xpn is driven by θ̂n. Following, the notations of [10], we denote
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by αn= k
1/2
n the asymptotic rate of convergence of θ̂n, by βn= θan its asymptotic

bias, and by L = N (0, θ2) its asymptotic distribution. It suffices to verify that

(5.3) log(τn) log(n/k)→∞ .

To this end, note that conditions (2.3) and pn < 1/n imply that there exists
0 < c < 1 such that

log(τn) > c(τn − 1) > c

(
log(n)

log(n/k)
− 1

)
= c

log(k)

log(n/k)
,

which proves (5.3). We thus have

k1/2

log τn
τ−θan
n

(
x̂pn

xpn

− τ θan
n

)
d→ N (0, θ2) .

Now, remarking that, from Lemma 5.2, μ0(log(n/k)) ∼ 1/ log(n/k) ∼ Tn, and
thus an → 0 gives the result.

Proof of Corollary 3.1: Lemma 5.3 shows that the assumptions of

Theorem2.1 and Theorem2.2 are verified and that, for i=1, 2, 3, k1/2a
(i)
n →0.

Proof of Theorem 3.1:

i) First, from (2.2) and Lemma 5.3 iii), since b is ultimately non-positive,

(5.4) AMSE
(
θ̂(1)
n

)−AMSE
(
θ̂(3)
n

)
= −θ(a(3)

n

)2
(
θ + 2

b
(
log(n/k)

)
a

(3)
n

)
< 0 .

Second, from (2.2),

(5.5) AMSE
(
θ̂(2)
n

)−AMSE
(
θ̂(1)
n

)
= θ

(
a(2)

n

)2
(
θ + 2

b
(
log(n/k)

)
a

(2)
n

)
.

If b is ultimately non-zero, Lemma 5.1 entails that log(n/k) ∼ log(n) and conse-
quently, since |b| is regularly varying, b(log(n/k)) ∼ b(log(n)). Thus, from Lemma
5.3 ii),

(5.6) 2
b
(
log(n/k)

)
a

(2)
n

∼ 4 b(logn)
k

log(k)
→ −α .

Collecting (5.4)–(5.6) concludes the proof of i).

ii) First, (5.5) and Lemma 5.3 ii) yields

(5.7) AMSE
(
θ̂(2)
n

)−AMSE
(
θ̂(1)
n

)
> 0 ,
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since b is ultimately non-negative. Second, if b is ultimately non-zero, Lemma 5.1
entails that log(n/k) ∼ log(n) and consequently, since |b| is regularly varying,
b(log(n/k)) ∼ b(log(n)). Thus, observe that in (5.4),

(5.8) 2
b
(
log(n/k)

)
a

(3)
n

∼ −2 b(logn)(logn) → −β .

Collecting (5.4), (5.7) and (5.8) concludes the proof of ii). The case when b
is ultimately zero is obtained either by considering α = 0 in (5.6), or β = 0 in
(5.8).
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APPENDIX: PROOF OF LEMMAS

Proof of Lemma 5.1: Remark that, for n large enough,∣∣∣k1/2 b
(
log(n/k)

)∣∣∣ ≤ ∣∣∣k1/2 b
(
log(n/k)

)− λ∣∣∣+ |λ| ≤ 1 + |λ| ,
and thus, if b is ultimately non-zero,

(5.9) 0 ≤ 1

2

log(k)

log(n/k)
≤ log (1 + |λ|)

log(n/k)
− log

∣∣b(log(n/k))∣∣
log(n/k)

.

Since |b| is a regularly varying function, we have that (see [7], Proposition 1.3.6.)
log

∣∣b(log(x))∣∣
log(x)

→ 0 as x→∞ .

Then, (5.9) implies log(k)/ log(n/k)→ 0 which entails log(k)/ log(n)→ 0.

Proof of Lemma 5.2: Since for all x, t > 0, tKρ(1+x/t) < x, Lebesgue
Theorem implies that

lim
t→∞

∫ ∞

0

(
tKρ

(
1 +

x

t

))q

e−x dx =

∫ ∞

0
lim
t→∞

(
tKρ

(
1 +

x

t

))q

e−x dx

=

∫ ∞

0
xq e−x dx = q! ,

which concludes the proof.
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Proof of Lemma 5.3:

i) Lemma 5.2 shows that μ0(t) ∼ 1/t and thus T
(1)
n log(n/k)→ 1.

By definition, a
(1)
n = 0.

ii) The well-known inequality −x2/2 ≤ log(1 + x)− x ≤ 0, x > 0 yields

(5.10) −1
2

1

log(n/k)

1

k

k∑
i=1

log2(k/i) ≤ log(n/k)T (2)
n − 1

k

k∑
i=1

log(k/i) ≤ 0 .

Now, since when k →∞,

1

k

k∑
i=1

log2(k/i)→
∫ 1

0
log2(x) dx = 2 and

1

k

k∑
i=1

log(k/i)→ −
∫ 1

0
log(x) dx = 1 ,

it follows that T
(2)
n log(n/k) → 1. Let us now introduce the function defined on

(0, 1] by:

fn(x) = log

(
1− log(x)

log(n/k)

)
.

We have:

a(2)
n = − 1

T
(2)
n

(
T (2)

n − μ0

(
log(n/k)

))
= − 1

T
(2)
n

(
1

k

k−1∑
i=1

fn(i/k) −
∫ 1

0
fn(t) dt

)

= − 1

T
(2)
n

k−1∑
i=1

∫ (i+1)/k

i/k

(
fn(i/k)−fn(t)

)
dt +

1

T
(2)
n

∫ 1/k

0
fn(t) dt .

Since

fn(t) = fn(i/k) + (t− i/k) f (1)
n (i/k) +

∫ t

i/k
(t− x) f (2)

n (x) dx ,

where f
(p)
n is the pth derivative of fn, we have:

a(2)
n =

1

T
(2)
n

k−1∑
i=1

∫ (i+1)/k

i/k
(t− i/k) f (1)

n (i/k) dt

+
1

T
(2)
n

k−1∑
i=1

∫ (i+1)/k

i/k

∫ t

i/k
(t− x) f (2)

n (x) dx dt +
1

T
(2)
n

∫ 1/k

0
fn(t) dt

=: Ψ1 +Ψ2 +Ψ3 .
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Let us focus first on the term Ψ1:

Ψ1 =
1

T
(2)
n

1

2k2

k−1∑
i=1

f (1)
n (i/k)

=
1

2k T
(2)
n

∫ 1

1/k
f (1)

n (x) dx +
1

2k T
(2)
n

(
1

k

k−1∑
i=1

f (1)
n (i/k)−

∫ 1

1/k
f (1)

n (x) dx

)

=
1

2k T
(2)
n

(
fn(1)− fn(1/k)

)
− 1

2k T
(2)
n

k−1∑
i=1

∫ (i+1)/k

i/k

(
f (1)

n (x)− f (1)
n (i/k)

)
dx

=: Ψ1,1 −Ψ1,2 .

Since T
(2)
n ∼ 1/ log(n/k) and log(k)/ log(n)→ 0, we have:

Ψ1,1 = − 1

2k T
(2)
n

log

(
1 +

log(k)

log(n/k)

)
= − log(k)

2k

(
1 + o(1)

)
.

Furthermore, since, for n large enough, f
(2)
n (x) > 0 for x ∈ [0, 1],

O ≤ Ψ1,2 ≤ 1

2k T
(2)
n

k−1∑
i=1

∫ (i+1)/k

i/k

(
f (1)

n

(
(i+ 1)/k

)− f (1)
n (i/k)

)
dx

=
1

2k2 T
(2)
n

(
f (1)

n (1)− f (1)
n (1/k)

)
=

1

2k2 T
(2)
n

(
− 1

log(n/k)
+

k

log(n/k)

(
1+

log(k)

log(n/k)

)−1
)

∼ 1

2k
= o

(
log(k)

k

)
.

Thus,

(5.11) Ψ1 = − log(k)
2k

(
1 + o(1)

)
.

Second, let us focus on the term Ψ2. Since, for n large enough, f
(2)
n (x) > 0 for

x ∈ [0, 1],

0 ≤ Ψ2 ≤ 1

T
(2)
n

k−1∑
i=1

∫ (i+1)/k

i/k

∫ (i+1)/k

i/k
(t− i/k) f (2)

n (x) dx dt

(5.12)

=
1

2k2 T
(2)
n

(
f (1)

n (1)− f (1)
n (1/k)

)
= o

(
log(k)

k

)
.

Finally,

Ψ3 =
1

T
(2)
n

∫ 1/k

0
− log(t)

log(n/k)
dt +

1

T
(2)
n

∫ 1/k

0

(
fn(t) +

log(t)

log(n/k)

)
dt =: Ψ3,1 +Ψ3,2 ,
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and we have:

Ψ3,1 =
1

log(n/k)T
(2)
n

1

k

(
log(k) + 1

)
=

log(k)

k

(
1 + o(1)

)
.

Furthermore, using the well known inequality: |log(1 + x)− x| ≤ x2/2, x > 0,
we have:

|Ψ3,2| ≤ 1

2T
(2)
n

∫ 1/k

0

(
log(t)

log(n/k)

)2

dt

=
1

2T
(2)
n

1

k
(
log(n/k)

)2

((
log(k)

)2
+ 2 log(k) + 2

)
∼

(
log(k)

)2

2k log(n/k)
= o

(
log(k)

k

)
,

since log(k)/ log(n)→ 0. Thus,

(5.13) Ψ3 =
log(k)

k

(
1 + o(1)

)
.

We conclude the proof of i) by collecting (5.11)–(5.13).

iii) First, T
(3)
n log(n/k) = 1 by definition. Besides, we have

a(3)
n =

μ0

(
log(n/k)

)
T

(3)
n

− 1

= log(n/k)μ0

(
log(n/k)

)− 1

=

∫ ∞

0
log(n/k) log

(
1 +

x

log(n/k)

)
e−x dx − 1

=

∫ ∞

0
x e−x dx − 1

2

∫ ∞

0

x2

log(n/k)
e−x dx − 1 +Rn = − 1

log(n/k)
+Rn ,

where

Rn =

∫ ∞

0
log(n/k)

(
log

(
1 +

x

log(n/k)

)
− x

log(n/k)
+

x2

2
(
log(n/k)

)2

)
e−x dx .

Using the well known inequality: |log(1+x)− x+ x2/2| ≤ x3/3, x > 0, we have,

|Rn| ≤ 1

3

∫ ∞

0

x3(
log(n/k)

)2 e
−x dx = o

(
1

log(n/k)

)
,

which finally yields a
(3)
n ∼ −1/ log(n/k).

Proof of Lemma 5.4: Recall that

θ̂n =:
1

Tn

1

k

k−1∑
i=1

(
log(Xn−i+1,n)− log(Xn−k+1,n)

)
,
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and let E1,n, ..., En,n be ordered statistics generated by n independent standard
exponential random variables. Under (A.1), we have

θ̂n
d
=

1

Tn

1

k

k−1∑
i=1

(
logH←(En−i+1,n)− logH←(En−k+1,n)

)
d
=

1

Tn

(
θ
1

k

k−1∑
i=1

log

(
En−i+1,n

En−k+1,n

)
+

1

k

k−1∑
i=1

log

(
�(En−i+1,n)

�(En−k+1,n)

))
.

Define xn = En−k+1,n and λi,n = En−i+1,n/En−k+1,n. It is clear, in view of [12],

Lemma 1 that xn
P→∞ and λi,n

P→ 1. Thus, (A.2) yields that uniformly in
i = 1, ..., k−1:

θ̂n
d
=

1

Tn

(
θ
1

k

k−1∑
i=1

log

(
En−i+1,n

En−k+1,n

)
+

(
1+op(1)

)
b(En−k+1,n)

1

k

k−1∑
i=1

Kρ

(
En−i+1,n

En−k+1,n

))
.

The Rényi representation of the Exp(1) ordered statistics (see [2], p. 72) yields

(5.14)

{
En−i+1,n

En−k+1,n

}
i=1,...,k−1

d
=

{
1 +

Fk−i,k−1

En−k+1,n

}
i=1,...,k−1

,

where {F1,k−1, ..., Fk−1,k−1} are ordered statistics independent from En−k+1,n and
generated by k − 1 independent standard exponential variables {F1, ..., Fk−1}.
Therefore,

θ̂n
d
=

1

Tn

(
θ
1

k

k−1∑
i=1

log

(
1 +

Fi

En−k+1,n

)

+
(
1 + op(1)

)
b(En−k+1,n)

1

k

k−1∑
i=1

Kρ

(
1 +

Fi

En−k+1,n

))
.

Remarking that K0(x) = log(x) concludes the proof.

Proof of Lemma 5.5: Lemma 5.2 implies that,

μρ(En−k+1,n)
P∼ 1

En−k+1,n

P∼ 1

log(n/k)
,

since En−k+1,n/ log(n/k)
P→ 1 (see [12], Lemma 1). Next, from Lemma 5.2,

σ2
ρ(En−k+1,n) =

2

E2
n−k+1,n

(
1 + oP(1)

)− 1

E2
n−k+1,n

(
1 + oP(1)

)
=

1

E2
n−k+1,n

(
1 + oP(1)

)
=

1(
log(n/k)

)2

(
1 + oP(1)

)
,

which concludes the proof.
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Proof of Lemma 5.6: Remark that

k1/2

σρ(En−k+1,n)

(
U (ρ)

n − μρ(En−k+1,n)
)
=

=
k−1/2

σρ(En−k+1,n)

k−1∑
i=1

(
Kρ

(
1+

Fi

En−k+1,n

)
− μρ(En−k+1,n)

)
− k−1/2 μρ(En−k+1,n)

σρ(En−k+1,n)
.

Let us introduce the following notation:

Sn(t) =
(k−1)−1/2

σρ(t)

k−1∑
i=1

(
Kρ

(
1 +

Fi

t

)
− μρ(t)

)
.

Thus,

k1/2

σρ(En−k+1,n)

(
U (ρ)

n − μρ(En−k+1,n)
)
= Sn(En−k+1,n)

(
1 + o(1)

)
+ oP(1) ,

from Lemma 5.5. It remains to prove that for x ∈ R,

P
(
Sn(En−k+1,n) ≤ x

)
− Φ(x) → 0 as n→∞ ,

where Φ is the cumulative distribution function of the standard Gaussian distri-
bution. Lemma 5.2 implies that for all ε ∈ ]0, 1[, there exists Tε such that for all
t ≥ Tε,

(5.15)
q!

tq
(1− ε) ≤ E

((
Kρ

(
1 +

F1

t

))q
)
≤ q!

tq
(1 + ε) .

Furthermore, for x ∈ R,

P
(
Sn(En−k+1,n) ≤ x

)
− Φ(x) =

=

∫ Tε

0

(
P
(
Sn(t) ≤ x

)− Φ(x)
)
hn(t) dt +

∫ ∞

Tε

(
P
(
Sn(t) ≤ x

)− Φ(x)
)
hn(t) dt

=: An +Bn ,

where hn is the density of the random variable En−k+1,n. First, let us focus on
the term An. We have,

|An| ≤ 2P
(
En−k+1,n ≤ Tε

)
.

Since En−k+1,n/ log(n/k)
P→ 1 (see [12], Lemma 1), it is easy to show that An→ 0.

Now, let us consider the term Bn. For the sake of simplicity, let us denote:{
Yi = Kρ

(
1 +

Fi

t

)
− μρ(t), i = 1, ..., k−1

}
.
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Clearly, Y1, ..., Yk−1 are independent, identically distributed and centered random
variables. Furthermore, for t ≥ Tε,

E
(|Y1|3

) ≤ E

((
Kρ

(
1 +

F1

t

)
+ μρ(t)

)3
)

= E

((
Kρ

(
1 +

F1

t

))3
)
+

(
μρ(t)

)3
+ 3E

((
Kρ

(
1 +

F1

t

))2
)
μρ(t)

+ 3E

(
Kρ

(
1 +

F1

t

))(
μρ(t)

)2

≤ 1

t3
C1(q, ε) < ∞ ,

from (5.15) where C1(q, ε) is a constant independent of t. Thus, from Esseen’s
inequality (see [20], Theorem 3), we have:

sup
x

∣∣∣P(
Sn(t) ≤ x

)− Φ(x)
∣∣∣ ≤ C2 Ln ,

where C2 is a positive constant and

Ln =
(k − 1)−1/2(
σρ(t)

)3 E
(|Y1|3

)
.

From (5.15), since t ≥ Tε,

(
σρ(t)

)2
= E

((
Kρ

(
1 +

F1

t

))2
)
−

(
E

(
Kρ

(
1 +

F1

t

)))2

≥ 1

t2
C3(ε) ,

where C3(ε) is a constant independent of t. Thus, Ln ≤ (k − 1)−1/2C4(q, ε)
where C4(q, ε) is a constant independent of t, and therefore

|Bn| ≤ C4(q, ε) (k−1)−1/2 P
(
En−k+1,n ≥ Tε

) ≤ C4(q, ε) (k−1)−1/2 → 0 ,

which concludes the proof.
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Figure 1: Comparison of estimates θ̂
(1)

n (solid line), θ̂
(2)

n (dashed line) and θ̂
(3)

n

(dotted line) for the |N (0, 1)| distribution. Up:MSE, down:AMSE.
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Figure 2: Comparison of estimates θ̂
(1)

n (solid line), θ̂
(2)

n (dashed line) and θ̂
(3)

n

(dotted line) for the Γ(0.5, 1) distribution. Up:MSE, down:AMSE.
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Figure 3: Comparison of estimates θ̂
(1)

n (solid line), θ̂
(2)

n (dashed line) and θ̂
(3)

n

(dotted line) for the Γ(1.5, 1) distribution. Up:MSE, down:AMSE.
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Figure 4: Comparison of estimates θ̂
(1)

n (solid line), θ̂
(2)

n (dashed line) and θ̂
(3)

n

(dotted line) for the W(2.5, 2.5) distribution. Up:MSE, down:AMSE.
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Figure 5: Comparison of estimates θ̂
(1)

n (solid line), θ̂
(2)

n (dashed line) and θ̂
(3)

n

(dotted line) for the W(0.4, 0.4) distribution. Up:MSE, down:AMSE.








