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Abstract:

• The Illumina BeadArrayTM platform is a novel microarray technology based on ran-
domly assembled arrays of beads. Each bead on the array carries copies of a single
gene-specific probe with, on average, about 30 replicates of each bead type on an array.
Given the encouraging results regarding the reproducibility of BeadArrayTM data
and high profile studies already being carried out using the BeadArrayTM technol-
ogy, there is likely to be an increase in the volume of BeadArrayTM data available.
A major advantage of BeadArrayTM technology is the high degree of replication of
beads of a given type. However, current analysis methods give summarised informa-
tion for each bead type as output rather than information for each individual bead on
the array. The beadarray R package is able to recreate individual bead information for
arrays using raw images as input. Here, we use a particular experiment to illustrate
the image processing steps used by Illumina and corresponding methods available in
beadarray. Our investigations into BeadArrayTM data have demonstrated a high de-
gree of reproducibility both within and between arrays. However, we identified some
aspects of the low-level analysis that could be improved.

Key-Words:

• Illumina; BeadArray; beadarray; Bioconductor; microarray.

AMS Subject Classification:

• 62P10, 92C40, 92-08.



2 M. Dunning, N. Thorne, I. Camilier, M. Smith and S. Tavaré
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1. BACKGROUND

A BeadArrayTM is an array of randomly positioned, three micron diameter,
silica beads. Around 105 copies of a particular DNA sequence of interest are
covalently attached to each bead ([15]). The position and identity of each bead
on the array is determined using an automatic registration algorithm ([5]) and a
molecular address ([7]). The DNA sequences attached to the beads are 75 base
pairs in length, with 25 base pairs used for decoding and 50 base pairs for target
hybridisation. This long-oligonucleotide approach has been shown to agree well
with the popular short-oligonucleotide technology used by Affymetrix ([2]).

A pool of different bead types is created, beads of the same type having
the same probe sequence attached. Separately, a fibre-optic bundle is treated
with acid to create wells for individual beads to fit in ([10]). The fibre-optic
bundle is exposed to the bead pool, causing the beads to be randomly sampled
and assembled in the wells on the surface of the bundle.

Illumina have developed two different platforms which combine multiple
BeadArrays. A SentrixTM Array Matrix (SAM) contains 96 arrays, each of
which has approximately 50,000 beads and around 1500 distinct bead types.
A BeadChipTM allows either 24,000 bead types to be interrogated on eight sam-
ples simultaneously or 48,000 bead types across six samples. These multiple
array technologies make the BeadArrayTM platform especially suitable for high
throughput experiments ([3], [1], [8]). The distribution of bead types on an array is
effectively Poisson due to the random sampling of beads from the very large bead
pool. Each bead type is represented about 30 times on average with extremely
low probability of any bead type being represented less than five times ([9], [7]).

Large volumes of data can be generated using a single BeadArrayTM.
Given these various new array technologies, there is clearly a need for statistical
tools to analyse such data. There is already a wealth of software for statisti-
cal analysis of microarray data available in R packages on Bioconductor ([6],
www.bioconductor.org). One of the most commonly used packages is limma

(Linear Models for Microarray Analysis, [12]), which is an analysis package for
two-colour microarrays. beadarray uses a similar programming style to limma

and has recently been submitted as a development package to Bioconductor.
The source for the package can be obtained at

http://www.bioconductor.org/packages/bioc/1.8/html/beadarray.html .

We used the data described in [16] to demonstrate the functionality of
beadarray and to investigate the low-level analysis, processing and quality of
BeadArrayTM data. [16] studied the expression levels of some 700 genes measured
in cell lines from 60 CEU individuals used in the Hapmap project ([3], [1]). The
experiment comprises five SAMs with each of the 60 individuals replicated 6–8
times. Each array on the SAM had 1471 bead types with multiple (usually two)
bead types for each gene under investigation and included various control probes.
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2. PROCESSING OF BEADARRAYTM DATA BY ILLUMINA

In this section we describe the steps involved in the analysis of BeadArrayTM

data.

2.1. Image processing

The image processing steps used by Illumina to calculate bead intensities
from raw images are described in [9]. These are given below:

(i) All pixel intensities are altered using a sharpening transformation.
The intensity of a particular pixel is made higher / lower if its intensity
is high / low in comparison to the intensities of the pixels surrounding it.

(ii) Foreground intensities are calculated as a weighted average of signals
obtained using the four pixels nearest to each bead centre as a virtual
bead centre. Sharpened pixel intensities are used in the calculation.

(iii) The local background, an average of the five dimmest pixels (unsharpened
intensities) within the 17×17 pixel area around each bead centre, is sub-
tracted.

Currently, raw TIFF images (see Figure 1) are read by an Illumina Bead-
Array Reader, giving bead-level data which can be read into the software package
BeadStudio for analysis. At present, these bead-level data are encrypted and
cannot be viewed directly. Bead-summary data can be output from BeadStudio
with an unlogged, averaged intensity given for each bead type along with the
number of beads used to calculate the average and the standard deviation of
unlogged bead intensities.

2.2. Outlier removal and creation of bead-summary data

Outliers for each bead type are detected using the unlogged intensities of
all beads of the same type. Any beads with intensity more than three median
absolute deviations (MAD) from the mean are classed as outliers and excluded.
The background measure reported for all beads is a single value, the mean of the
negative controls on an array, rather than the local background values that are
subtracted from each bead intensity.
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Figure 1: A raw image scanned from a BeadArrayTM and viewed through BeadStudio.
As with images scanned from conventional microarrays, each pixel intensity
on the image represents the amount of hybridisation detected at each point
on the array. Each three micron bead on the array is represented by nine
pixels in a 3×3 square and are located roughly six microns apart.

2.3. Quality control of bead-summary data

Visualisation tools provided by BeadStudio include:

(i) plots of the unlogged intensities of control probes across all arrays;

(ii) scatter plots for comparing bead-summary data between two arrays;

(iii) interactive image plots of raw images with information about the intensity
of each pixel (rather than bead intensity) on the image;

(iv) agglomerative clustering (average linkage method) of genes or samples using
various distance and similarity measures.

The statistical analysis incorporated in BeadStudio for assessing differential ex-
pression between samples includes a Mann-Whitney test, Illumina custom (iter-
ative robust least squares fit) or standard t-test. Normalisation choices include
scaling by array averages, qspline [17] or scaling based on controls or rank invari-
ant genes. Intensities may also have an additional background correction applied.
This is based on the average of negative control genes and is called the method
of background normalisation by Illumina.



6 M. Dunning, N. Thorne, I. Camilier, M. Smith and S. Tavaré

3. PROCESSING OF BEADARRAY DATA using beadarray

The beadarray package was written to implement the analysis of Bead-
ArrayTM data in R in the same manner as two-colour microarrays or Affymetrix
data, and to investigate image processing. An important feature of beadarray is
the ability to access full bead-level detail for arrays rather than the bead-summary
data given by BeadStudio. beadarray can also be used to analyse pre-processed
bead-summary data created by BeadStudio.

3.1. Image processing

beadarray is able to create bead-level data by using the raw images scanned
from BeadArrays, the locations of the bead centres and by implementing the steps
described in Section 2.1. However, local background correction and sharpening
are optional within beadarray, as is the background normalisation using negative
controls. beadarray supports some of the background correction methods avail-
able in the limma R package, along with a selection of standard normalisation
methods ([14]) found in limma and the affy packages.

3.2. Spatial plots

beadarray includes methods to identify automatically and to investigate
any spatially dependent problems which may occur on BeadArrays. Users are
able to screen all arrays in an ad-hoc manner to identify any arrays with unusual
distributions of beads and these arrays can then be viewed in more detail.

We have implemented a test statistic to investigate the spatial randomness
of a set of bead coordinates on an array. For this we divide the hexagonal array
into eight sections and use a χ2 goodness-of-fit test to assess the randomness of
the number of beads found in each section (see Figure 2).

We use the χ2 statistic to identify bead types on an array with appar-
ent non-randomness and investigate these further with a spatial plot function.
We also find it useful to apply similar χ2 tests on the positions of the outliers so
that arrays with spatial clustering of outliers can be quickly and easily identified.
The raw images corresponding to the arrays can then be viewed through beadar-

ray and the location of outliers in a region can be highlighted (see Figure 3).
The function for displaying images can also be run interactively; clicking on a
particular bead displays information such as the local background level, unsharp-
ened intensity and identity of the bead.
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Figure 2: Using beadarray to assess randomness of bead positioning.
(A) The array is divided into eight sections of roughly equal area. The
coordinates for a particular bead type are used to find the number of beads
located in each of the sections. These are then compared to the expected
number of beads if the beads were randomly distributed among all sections.
The beads in this example are uniformly spread. (B) For this bead type
there is a tendency for beads to be located in the lower half of the array.

Figure 3: Viewing TIFF Images. Figure produced by beadarray.
beadarray allows regions on the original TIFF images to be viewed in
more detail. The intensity of each pixel is given on the log2 scale with
a brighter shade of green indicating a larger intensity. Bead centres are
indicated by black crosses. This screenshot shows a region on an ar-
ray with many outliers. Beads which are outliers are indicated by blue
or red dots if their intensities are higher or lower than the mean for
their bead type. Any beads which failed the decoding process can also
be highlighted if desired. An interactive mode is also available whereby
clicking on a particular bead gives information about that bead, such
as the identity of the bead type and the foreground and background
intensities. For colour picture see Supplementary Figures available at
http://www.damtp.cam.ac.uk/user/jcm68/beadarray.html
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3.3. Outlier removal

To visualise the variability of beads of the same type on the same array
we plot the distance of each bead from the centre of the array against the log2

or unlogged intensity (see Figure 12). beadarray allows outliers to be identified
using either unlogged or log2 intensities and using arbitrary numbers of MADs
from the mean (the default is the Illumina setting of three MADs from the mean).

3.4. Quality Control

The average intensities of each bead type can be compared between multiple
arrays using MA plots and scatter plots [4]. We can also compare the average
intensity for any given bead type (not just control probes as in BeadStudio)
between different arrays in the experiment and relate this information to the
position of each array on the SAM using a “SAM Summary plot” (see Figure 4).
The function used to create this SAM Summary plot can use any set of 96 values
as input rather than just the values of control probes. For instance, one could
plot the number of outliers found on each array to summarise the number of
outliers on arrays over the SAM.
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Figure 4: The SAM summary plot available in beadarray.
In this plot we show the bead average values for a particular control across
all arrays on a SAM. In the left-hand plot the (unlogged) bead average
value is plotted against array index. On the right-hand plot, 96 hexagons
are shown in the same arrangement they appear on the SAM. The colour
of each hexagon is related to the value of the bead average on that array;
darker shades of grey indicate lower values. For this case we can see that
the lowest bead average values occur on the left side of the SAM.

At present, beadarray is a package for quality control and low-level analysis
only and does not provide any methods for determining differentially expressed
genes. However, since beadarray was developed in the same programming style as
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limma it should be straightforward to adapt existing methods for linear modeling
([11]). Accessibility to full bead-level data also makes it easier to combine the
data from different arrays in a more flexible way. In particular, it is possible to
produce weighted averages for each bead type over different replicates on either
the log2 or unlogged scales. In BeadStudio, only unlogged values are available
and therefore averages can only be combined on the unlogged scale.

4. RESULTS

In this section we show the results of our investigation into the methods
used by Illumina for low-level analysis and image processing. This section also
demonstrates some of the functionality available within beadarray.

4.1. Numbers and positioning of beads

The random sampling used in the construction of BeadArrays gives a ran-
dom placement of beads and an average of approximately 30 of each bead type on
an array. This randomness minimises the influence of spatially localised effects
and lends robustness to the calculation of bead-summary data. The diagnos-
tic tests described in Section 3 can be used to confirm the random nature of
BeadArrays (see Figure 5). For every array under investigation, the mean num-
ber of beads of each bead type was found to be approximately 30 as expected.
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Figure 5: Random properties of BeadArrays. Figures produced by beadarray.
(A) Histogram of the number of times each bead type is found on an ar-
ray before outlier removal. The dotted line indicates the expected Poisson
frequencies. (B) Distribution of the χ2 statistics calculated for each bead
type on an array. The dotted line indicates the expected χ

2 distribution.
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The Poisson distribution of counts of each bead type shows that the probability

of a bead type being represented less than five times is extremely low. Moreover,

Illumina will not release an array where this has occurred. Even after outlier

removal, no bead type on the five SAMs was found to have less than 11 beads

on any array. Calculating the χ2 statistic for all bead types on an array and

repeating for all arrays confirms the random distribution of the beads.

4.2. Image processing

We used one array at a time from one SAM to look closely at the image

processing steps used by Illumina. For each of these arrays, we took the raw im-

age for the array and bead centre information provided by Illumina to calculate

the foreground and local background intensities for each bead using the beadar-

ray implementation of the steps described in Section 2.1. We did not perform

background correction on the foreground intensities so that we could analyse the

foreground and local background levels separately. Foreground intensities were

also calculated without using the sharpening mask prior to averaging pixels for

each bead (unsharpened intensities).

Figure 6 shows the effect of image processing on five arrays from the same

SAM. Similar results were obtained for all arrays on the same SAM. From box-

plot 6A we see that the unsharpened log2 intensities have a very low dynamic

range and most of the bead intensities are concentrated between 10 and 11.

As we are reading 16-bit images the maximum value for unsharpened log2 inten-

sities is 16. However, if we apply sharpening to all pixels in the image and then

calculate bead intensities, we affect the range of bead intensities produced. From

the boxplots in 6B we see that the maximum values of bead intensities are now

greater than 16 and the minimum values in the boxplots are lower than the min-

imum of boxplots in 6A. This implies that sharpening is increasing some bead

intensities while decreasing others. The inter-quartile range of boxplots in 6B

appear to be the same as for boxplots in 6A. In the boxplots in 6C we can see that

the local background levels calculated for individual beads are virtually constant.

Performing a local background correction on the sharpened intensities gives the

intensities seen in boxplots in 6D. Similar results were produced using a global

background correction (median of all local background measures). We notice that

the dynamic range of boxplots in 6D are much higher than both boxplots in 6A

and 6B.

Figure 7A confirms the results seen in boxplots in 6B. For most beads

we see a positive difference between the sharpened and unsharpened intensities.

However, it is also possible for sharpening to cause a decrease in bead intensities.

This is most likely to happen for beads with low unsharpened intensities.

For some beads with low intensity the effect of sharpening is very dramatic,
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making the beads have very low intensity. Note from Figure 6A that most un-

sharpened beads lie within the range 10–11 on the log2 scale so could be highly

altered by sharpening. Figure 7B also shows that background correction can have

a very different effect depending on the unsharpened intensity. Local background

correction is done using unlogged intensities. Therefore, it is not surprising that

the higher intensity beads are less affected by local background correction. Lower

intensities are affected much more dramatically by local background correction.

For beads less than log2 intensity 11 the effect is nearly always negative, coun-

teracting the increased intensity generally caused by sharpening. It seems that

sharpening and local background correction have a non-linear effect on the data

even on the log2 scale. This phenomenon is consistent on all arrays we investi-

gated.
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Figure 6: Effects of sharpening and background correction on raw intensities.
Figures produced by beadarray.
(A) Boxplot of the unsharpened foreground intensities of all beads on the
array. (B) Boxplot of foreground intensities of all beads on the array calcu-
lated using the sharpening mask. (C) Local background levels calculated
for all beads on the array. (D) Boxplots of sharpened foreground intensities
which have been background corrected by subtracting the local background.
(These are the foreground intensities calculated by Illumina.)
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Figure 7: The effect of sharpening and local background correction on raw intensities
for a particular array.
(A) The x axis represents the unsharpened intensities of all beads on an
array and the y axis represents the difference in unsharpened and sharp-
ened intensities for each bead. (B) Here, the y axis represents the differ-
ence between the unsharpened intensities of each bead and the intensity
after sharpening and background correction. See Supplementary Figures at
http://www.damtp.cam.ac.uk/user/jcm68/beadarray.html for a larger
version of this figure.

4.3. Variability within bead types

Figures 6 and 7 demonstrate the global effect of sharpening and background

correction on all beads on the array, but it is also of interest to know the effect on

beads of the same type. In Figure 8 we show the standard deviation (SD) for all

replicates of the first 50 bead types on an array both with and without sharpening

and on the unlogged scale. Note that no outliers have been removed at this stage.

The lowest SD is seen when foreground intensities are calculated without using

sharpening or background correction. If we apply sharpening to all pixels in the

image prior to calculating foreground intensities we see a slight increase in SD

on the log2 scale. Background correction on the foreground intensities calculated

using the sharpening mask results in a marked increase in SD.
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Figure 8: Effect of sharpening and local background correction on standard
deviation of beads.
For the first 50 bead types on an array we show the standard
deviation of all beads using log2 intensities which are unsharpened,
sharpened or sharpened and background corrected.

4.4. Variability within and between arrays

We used one-way ANOVA on the unlogged foreground intensities on three

replicate arrays to calculate the mean square error (MS) of each bead type within

and between arrays. We repeated this using both sharpened and unsharpened

intensities (see Figure 9). We again see that sharpening has the effect of increasing

the variability between beads of the same type, both within and between arrays.

The result is the same even when we use CV to measure the variability relative

to the overall increased intensity due to sharpening. As would be expected, the

variability between arrays is higher than the variability within arrays.
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Figure 9: Within and between (replicate) array variability.
(A) log (base 2) of mean square error (MS) of bead types. (left to right)
We show the log2 values of MS within arrays using unsharpened intensities,
MS within arrays using sharpened intensities, MS between arrays using
unsharpened intensities and MS between arrays using sharpened intensities.
(B) Coefficient of variation (CV) of bead types. (left to right) We show the
CV within arrays using unsharpened intensities, CV between arrays using
sharpened intensities, CV between arrays using unsharpened intensities and
CV between arrays using sharpened intensities. Calculations were made on
unlogged data, then the MS and CV statistics were transformed to the log2

scale.

4.5. Effect of sharpening on outliers

Since sharpening has been shown to increase the variability of beads of the

same type, we might also expect sharpening to have an effect on the outliers on

an array. To investigate this in more detail we first used the unsharpened (log2)

bead intensities and calculated the MAD for each bead. This was repeated using

sharpened intensities and the MADs before and after sharpening were plotted
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(see Figure 10). Most beads are seen to have MADs < 3 both with and without

sharpening. However, some beads which have MADs > 3 without sharpening

have MADs < 3 with sharpening (dark grey). In other words these beads were

outliers without sharpening and the process of sharpening has made them no

longer outliers. Similarly, some outliers are created by sharpening (light grey).

The number of outliers created and removed by sharpening seems to be about

the same. In general, we observe that beads have a lower MAD after sharpening.

Further investigation revealed that out of the 1420 outliers detected on this array

using sharpened intensities, 366 were removed by sharpening and 255 outliers

were created by sharpening.
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Figure 10: The effect of sharpening on outliers.
For all beads on an array we show the MAD of the bead calculated with
and without using sharpening. The horizontal and vertical lines indicate
3 MADs (i.e. the cut-off that Illumina use to determine outlier beads).
Dark grey spots indicate beads that are outliers without using sharpening
but not outliers after sharpening whilst light grey spots indicate beads that
are not outliers before sharpening but are outliers after sharpening.

In Figure 11 we show the total number of outliers on 12 arrays and how

many outliers are created or removed by sharpening. It can be seen that the num-

ber of outliers created by sharpening is slightly higher than the number removed

by sharpening. The majority of outliers for a particular array are unaffected by

sharpening.
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Figure 11: The effect of sharpening on outliers.
For 12 arrays we show the number of outliers which are removed
and created by sharpening along with the total number of outliers
on the array and outliers unchanged by sharpening.

4.6. The number of outliers on arrays

The number of outliers on each array is on the order of 1000–3000 beads;

roughly one to two outliers per bead type or 1%–6% of total beads. These

numbers are consistent across all arrays in the 96 array SAM and for all SAMs.

In rare cases, as many as six or seven outliers were found for some bead types.

However, only 0.5% of bead types on the 96 arrays had more than five outliers

detected.

4.7. Outlier detection

As described in Section 3, beadarray offers a more flexible method for

determining the outliers for a given bead type. We now use the sharpened,

non-background corrected intensities for a particular bead type on an array to
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demonstrate this flexibility (see Figure 12). The number of outliers detected for a

particular bead type is dependent on the choice of scale used (unlogged or log2).

In Figure 12 it can be seen that this choice has little effect on the total number

of outliers that are detected on an array.
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Figure 12: Outlier detection using beadarray and the effect of the choice of scale.
(A) Unlogged intensities of all beads of a particular type on the same array
are plotted on the y axis. The dotted horizontal lines represent a shift of
3 MADs from the mean (solid horizontal line). Beads outside the dotted
lines are outliers for this bead type. Plotting the distance of each bead from
the centre along the x axis allows for the possibility of identifying spatial
effects on the array. (B) Intensities for the same bead type shown on the
log2 scale. As before dotted lines represent a shift of 3 MADs from the mean.
(C) The number of outliers detected in the sharpened, non-background
corrected intensities on 24 arrays using either the log2 or unlogged scale.

4.8. Spatial plots of outliers

It is important to know where outliers are located on arrays as this can

indicate possible spatial artifacts. Figure 3 shows a region on the far left tip of

one of the arrays under investigation. It is quite apparent that this part of the

array contains a significant spatial artifact. The consequence of this artifact is

that beads lying within the affected area show an increased hybridisation level and

are subsequently classified as outliers. Note that Figure 3 serves as an extreme

example and spatial artifacts were only detected on a small number of arrays.

Spatial artifacts were found more often around the edges of arrays and can be

automatically identified through the beadarray package using the χ2 statistic

without systematically viewing each array in the experiment.
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4.9. Effect of image processing on bead averages

We have previously shown that sharpening and background correction have
the effect of increasing the SD of replicate beads. We now ask if this increase in
SD among replicates has an effect on the resultant bead averages. In Figure 13
we plot the average log2 values (with outliers on the log2 scale removed) for four
control probes across 12 arrays without sharpening, with sharpening and with
both sharpening and background correction. Although the averages calculated
using sharpened intensities and averages calculated using sharpened and back-
ground corrected intensities are lower, we can clearly see the same trend in all
sets of averages. Controls A, B and C are housekeeping controls so show high
intensity across all arrays. The effect of background correction on these averages
seems minimal. The final control is a negative control and therefore we would
expect it to have low intensity across all arrays. The averages calculated using
background corrected intensities are much lower. As we saw previously, the effect
of background correction is much greater on lower intensity beads.
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Figure 13: Effect of sharpening on bead summaries for particular control probes.
Figures produced by beadarray.
The (unlogged) variation in bead-summary values calculated using
unsharpened, sharpened and sharpened background corrected bead
intensities for 12 arrays (x axes) in the same experiment. A, B and C
show the results for three hybridisation controls respectively and
D shows the results for a negative control across the 12 arrays.

For each bead type on each array we calculated the difference between
the bead averages obtained using unsharpened and sharpened intensities
(see Figure 14). This shows that the difference between the averages calculated
using sharpened or unsharpened intensities is around 0.2. Furthermore, for par-
ticular bead types, the difference between averages is fairly constant across arrays
(the SD is 0.01).
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Figure 14: Effect of sharpening on all bead averages on an array.
For 12 arrays we show the difference between the log2 bead
averages calculated using unsharpened or sharpened inten-
sities for every bead type on the array.

4.10. Variability between arrays

The generation of bead-summary data allows for conventional plots to be
used to compare probe intensities between arrays. We used the bead-summary
data from the first four arrays on the SAM (the first three of which are replicate
arrays) to make MA and scatter plots (Figure 15) and density plots (Figure 16).
Comparing replicate arrays allows us to observe both random and systematic
sources of variation. In Figure 15, the majority of points lie along the diagonal
for the scatter plots and along the central line for the MA plots. There is little
noise in the MA plots between replicate arrays and only some intensity dependent
bias is apparent (i.e. between Arrays 1 and 2). Comparisons involving the fourth
array show more variation as this array is a different sample to the other three.
In Figure 16 we see that the distribution of bead-summary intensities for these ar-
rays are similarly shaped. Apart from the obvious need for location normalisation
between these arrays, non-linear effects in the bead-summary intensities between
them are minimal. Similar observations were made between arrays across the
whole SAM. Comparing the average intensities of beads on the first array to all
other 95 arrays gave a median correlation coefficient of 0.98.
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Figure 15: Comparing average bead-type intensities. Figures produced by beadarray.
Scatter and MA-plots for the first four arrays on a SAM are shown.
The intensities shown have been sharpened but not normalised or back-
ground corrected. The first three arrays are replicates of the same sample,
hence display less variation.
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Figure 16: Comparing density plots.
We show the density plots of the bead averages for
the four arrays shown in Figure 15.
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5. DISCUSSION

Our preliminary investigations suggest a high degree of reproducibility with
BeadArrayTM data. Arrays are seen to exhibit highly similar distributions even
before any normalisation has taken place. The precision of replicates of the same
bead type is high both within and between arrays. Given the low variability of
BeadArrays there might be a danger of over-normalising the data and remov-
ing important biological information. Preliminary investigations suggest that
a quantile or qspline [17] normalisation is sufficient (data not shown [16]) for
bead-summary data. However, we feel that in general such normalisation op-
tions should be investigated and performed on the bead-level rather than bead-
summary data.

Our main finding concerning image processing was that the sharpening
transformation used prior to calculating foreground intensities causes an increase
in variability. The transformation is designed in such a way that high intensity
pixels (with respect to their neighbours) are made even higher and low intensity
pixels are made lower. Therefore, it is not surprising to find intensities greater
than 16 on the log2 scale after sharpening. However, it appears that the intensities
of beads of the same type are being altered independently of each other and this
causes an increase in variance. As a result of sharpening, we observed that the
bead type averages increase by around 0.2 and their SD’s increase by 0.01.

The background values for beads were found to be virtually constant within
arrays and also across arrays. Correcting using the local background measure is
effectively equivalent to using a global value. Background corrected data show
much more variability among beads of the same type. Automatic background
correction on BeadArrayTM data cannot therefore be recommended. beadarray

does not perform correction automatically, thereby allowing foreground and back-
ground levels to be analysed separately. It should be emphasised that the bead-
summary data produced by BeadStudio is automatically background corrected
using the local background measures. Therefore any attempts to correct pre-
processed bead-summary data (as given by the normalisation methods supplied
by BeadStudio) may have an adverse effect.

The beadarray package can be used to highlight and understand problems
that can occur with BeadArrays. We found random numbers and positioning
of beads on all arrays. The random positioning minimises the effects of spatial
artifacts on bead-summary data; such artifacts were rare. Due to the high repli-
cation of beads, any beads which occur inside such regions of unusual intensity
are declared as outliers and can be removed from analysis without affecting the
bead average values too much. The distribution of beads gives, on average, about
30 beads of each type. Depending on the scale of intensities used to detect out-
liers (either unlogged or log2) we might expect one or two of these beads to be
detected as outliers. For the five SAMs in the investigation, no bead type on any
array was found to have less than 11 replicates after outlier removal.
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The number of outliers for each bead type can be detected by using either
unlogged or log2 intensities. If we apply a log2 transformation to the data we

decrease the range of the intensities. The purpose of such a transformation is

to make changes in intensity comparable across the whole intensity range. Con-

verting to the log2 scale also tends to make the variability more constant ([13]).
Outliers which appear extreme on the unlogged scale will be much closer to the

mean on the log2 scale. Therefore, it might be more consistent to use log2 in-

tensities to calculate outliers if the intention is to use log2 intensities in analysis.

In practice, the decision to use unlogged or log2 intensities to determine outliers
had very little effect on the bead averages produced. Bead averages show very

low variability across replicate arrays of the same sample.

We believe that beadarray offers a very flexible platform for the analy-

sis of BeadArrayTM data. By recreating bead-level data from scratch, users

are given access to more information about each individual bead on an array.
Making sharpening and background correction optional gives the opportunity to

use diagnostic checks and make an informed choice about how data should be

pre-processed. As the amount of BeadArrayTM data available is relatively small

we can only make recommendations for how data should be pre-processed based
on our experience whilst developing the package. Analysing bead-summary data

using beadarray offers a greater range of plotting tools than existing methods.

Most importantly, all functions can deal with intensities on the log2 scale as is

common for microarray analysis. Whilst beadarray does not currently provide
any methods for detecting differential expression, these will be implemented in

future versions. beadarray can also provide a more flexible analysis of bead-

summary data pre-processed by Illumina.

In our study we have demonstrated how beadarray can be used for qual-

ity control and low-level analysis. We have presented some findings about the

impact of the image processing steps used by Illumina on a particular experi-
ment. The conclusions we reach in this paper may not indeed be valid in all cases

and subsequent experiments will need to be analysed in a similar manner before

more general conclusions can be reached. At the time of developing the package,

only SAM data were available to us. We are currently expanding the package
to include the analysis of BeadChipTM data. An investigation into normalisation

methods will be linked with an implementation of methods for assessing differ-

ential expression. It will be of interest to see how sharpening and background
correction affect the genes that are selected as differentially expressed.
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6. APPENDIX

The purpose of this appendix is to give an outline of the R functions for
analysing bead-level data. Descriptions of how to read and analyse bead-summary

data are provided in the Vignette distributed with beadarray. Those who are

familiar with the R statistical language, and in particular the limma package,

should be able to adapt easily to our new methods of analysis. Wherever possible
we used objects that are similar to those used by limma. Example files to read

bead-level data are provided at

http://www.damtp.cam.ac.uk/user/jcm68/beadarray.html
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6.1. Reading bead-level data

There are two sets of files that are required by our package in order to
create bead-level data.

• TIFF images — These are the raw images scanned directly from each in-
dividual array on a 96-well SAM. These are provided by Illumina.

• csv files — These define the location and bead type of each individual bead

on a particular array on a 96-well SAM.

Before these files can be read into R, we first convert the TIFF files into

PGM files. This can be done be using the ImageMagick utility 1. A batch file
is included with this library to convert automatically all the TIFF files in a

directory.

If the correct csv and pgm files are available we can read these data into

R using readBeadImages. This function requires a beadTargets object that can

be read directly from a beadTargets.txt file. This beadTargets object specifies

the filename of each image and csv file to be read.

In our example dataset we have two single channel BeadArrayTM hybridisa-
tions. Since the arrays are hybridised with one target only (one-colour), we need

only to specify one image file for each array. The beadTargets.txt file, pgm and csv

files are provided at http://www.damtp.cam.ac.uk/user/jcm68/beadarray.html.

Once downloaded, these files can be read into R. The R working directory can be
set to the folder containing these files using the setwd function or the file menu

(GUI implementation only). Alternatively the path argument in readBeadImages

can be set to the current directory. The commands to read the data into R are

then as follows:

> library(limma)

> library(beadarray)

> beadTargets = readBeadTargets()

> beadTargets

Image1 xyInfo SAMPLE

1269941_R001_C001.pgm 1269941_R001_C001.csv 6

1269941_R001_C002.pgm 1269941_R001_C002.csv 6

> BLData = readBeadImages(beadTargets)

Calculating foreground intensities for 1269941_R001_C001.pgm

Calculating background intensities.

Calculating foreground intensities for 1269941_R001_C002.pgm

Calculating background intensities.

1available from www.imagemagick.org — version 6.2.2 or later is required.
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The default setting for readBeadImages is to recreate the foreground and
background intensities for each bead in the same way in which they are calculated

by Illumina. However, the use of sharpening and local background correction are

optional (see section 3). To create unsharpened bead intensities one would use:

> BLData.ns = readBeadImages(beadTargets, sharpen = FALSE)

6.2. The BLData Object

The data object (BLData) is in fact a list object but behaves like a complex
sort of matrix. It can be subsetted or treated like a matrix in lots of ways.

We can use the names command to see what items can be found in the list.

BLData is an BeadLevelList object and like the RGList object in limma can

contain R, Rb, G and Gb objects (i.e. foreground and background intensities of
two colour data).

> is(BLData)

[1] "BeadLevelList" "list" "LargeDataObject" "vector"

> names(BLData)

[1] "R" "Rb" "x"

[4] "y" "probeID" "targets"

[7] "sharpened" "backgroundSize" "normalised"

[10] "backgroundCorrected"

Individual items in the list can then be accessed by using the $ operator

in R. In our example we have the matrices R and Rb which are the foreground
and background intensities for each bead (row) and each array (column). The

example shown here is for a single channel experiment, hence we only have a

foreground intensity value in the red channel and the green channel is not used.

If we had two channel data then BLData$R and BLData$G would be the red and
green channels respectively. The number of rows in the matrix is the same as the

number of beads present on the array and the number of columns is the same as

the number of arrays. In this example we only read in two arrays, so we only have

two columns. In other words, each column of the matrix represents intensities of
all beads on the same array. However, due to the random placement of beads on

the array, each row of the matrix does not relate to intensities of a bead of the

same type (as one might expect having dealt with conventional microarray data).

Since BeadArrayTM technology uses randomly assembled beads it is impor-

tant to know the location and identity of every bead on the array. Therefore the

BeadLevelList we are using in this library also contains the x and y co-ordinates
for each bead and an identifier (ProbeID) for the bead type of each bead.



Quality Control of BeadArrays 27

6.3. Background correction and normalisation

Using the boxplot function in R allows boxplots of foreground and back-
ground intensities to be compared (see Figure 6).

> boxplot(log2(BLData$R)~col(BLData$R))

Background correction can be be performed on the data by:

> BLData.c = backgroundCorrectBeads(BLData)

By default, the backgroundCorrectBeads function subtracts the values in
BLData$Rb from BLData$R and stores the result in the R matrix of the result-

ing BeadLevelList object. Other methods are available such as minimum which

ensures that no negative values are produced. The only normalisation methods

currently supported for bead-level data are median and quantile normalisation.

> BLData.med = medianNormalise(BLData)

> BLData.q = quantileNormalise(BLData)

6.4. Numbers of beads

Figure 5A can reproduced using the command

> histBeadCounts(BLData, array=1)

Additonally we can also see which bead types are represented less than 24

times (the 5th percentile for the appropriate Poisson distribution) on the array

using findLowestCounts. For the first array that we use:

> findLowestCounts(BLData, 1)[1:10]

[1] 10 23 30 42 87 119 182 185 585 607

For clarity only the first 10 results returned by the function are shown.

6.5. Outliers for each bead type

The plotBeadIntensities function was used to produce Figure 12. This

function shows the intensity of every bead of a particular type against the distance
of the bead from the centre of the array. Any outliers which exist for the bead
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type are marked on the plot by a red cross. As an example we can plot the
intensities of all beads with ProbeID 2 on array 1 and determine outliers using

unlogged or log2 intensities. This function also has the option of changing the

number of MADs from the mean used to determine outliers by changing the

n parameter.

> par(mfrow = c(1, 2))

> plotBeadIntensities(BLData, probe=2, array=1)

> plotBeadIntensities(BLData, probe=2, array=1, log = TRUE)

The function findOutliers is used within plotBeadIntensities to
determine the outliers for a particular bead type on an array. The function

findMostOutliers can be used to find which bead types have more than a set

number of outliers (the default is 5 outliers).

> findMostOutliers(BLData, array=1)

[1] 807 1702 2458 5244 5917 6015 6117

We can find all the beads on an array which are outliers for their bead type

by using the findAllOutliers function. The output of the function is an index

between 1 and 49777 which refers to a particular bead on the array (beadID).

> o = findAllOutliers(BLData, array=1)

> o[1:10]

[1] 44634 1263 8245 342 23176 6270 8898 31023 4273 15610

The length of the list can be easily found (length) and compared be-

tween different arrays as a diagnostic measure for the quality of the array.

Additionally, the location of all the outliers on an array can be plotted using
the plotBeadLocations function.

6.6. Spatial plots

The plotBeadLocations function can be used to plot the location of a set

of beads on an array. Beads can be specified by a list of ProbeIDs or beadIDs.

Figure 2A can be generated by using:

> plotBeadLocations(BLData, probeIDs=2, array=1)

The function plots all beads on the first array with ProbeID 2. By using

the o object created above we can also plot the location of all outliers on the first
array.
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> plotBeadLocations(BLData, beadIDs=o, array=1)

The plotBeadLocations provides a quick diagnostic check for the distri-

bution of a set of beads. As described in Section 3.2, we have also implemented

a χ2 statistic to quantify the non-randomness of bead distributions. This χ2 test

can be applied to all bead types on an array and the ProbeID of those with the
highest value can be returned by:

> findHighestChis(BLData, array=1)[1:10]

[1] 213 278 606 658 791 800 936 960 961 1071

Shown above are the ProbeIDs for the first 10 bead types with a χ2 statistic

greater than 14 (chosen because this is the 5th percentile of the appropriate

χ2 distribution). Any of these bead types can be investigated further by using
the plotBeadLocations function.

Any regions on an array found to have a high proportion of outliers can be
investigated further by the displayTIFFImage function.

> displayTIFFImage(BLData, array=1, a = 1000:1400, b=1200:1400)

The example above loads the original image for array 1 (the name of which
is stored in the targets object) and displays the intensities of pixels with x in the

range from 1000:1400 and y in the range 1200:1400.

The intensity of every pixel in the plot is represented by a shade of green,

with brighter colours indicating a higher value. The blue and red spots indicate

the position of outliers in the particular region with blue indicating beads with

intensity higher than the mean for that bead type and red being beads with in-
tensity lower than the average for their bead type. Yellow spots on the picture

represent beads which have been calculated to have a negative foreground in-

tensity. The black crosses show where the bead centres are located. Any beads

which failed the decoding process can also be highlighted by setting the showUn-

registered parameter.

The plot can also be made interactive by setting the locateBeads parameter
to TRUE. We can then click on any bead centre and display the foreground and

background intensities for this bead as well as a measure of the raw intensity.

We feel that displayTIFFImage gives more useful information about the

raw images than the equivalent function included in BeadStudio. In BeadStudio,

the user can explore the TIFF images and see the intensity of each individual

pixel. However, the identity of each bead on the image is not given and there is
no information about outliers.
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6.7. Creating bead-summary data

Bead-summary data can be created using the bead-level data. In producing
these summaries we must first remove outliers for each bead type as described

in Section 3.3. This averaging is done by the createBeadSummaryData func-

tion and the method of detecting outliers can be specified by changing the log

(for unlogged or logged parameters) and n (number of MADs) parameters.

> BSData = createBeadSummaryData(BLData)

The structure of the resulting object is described in greater detail in the

Vignette supplied with beadarray.



REVSTAT – Statistical Journal

Volume 4, Number 1, March 2006, 31–51

NETWORK MOTIFS: MEAN AND VARIANCE FOR

THE COUNT

Authors: C. Matias

– UMR CNRS 8071, Laboratoire Statistique et Génome,
91000 Evry, France
matias@genopole.cnrs.fr

S. Schbath
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1. INTRODUCTION

A cellular system can be described by a web of relationships between pro-

teins, genes or more generally metabolites. Studying its basic structural elements,

also called motifs, is a first step in the understanding of these networks that goes

beyond global features (such as the small world or scale-free properties, see [2, 12]).

For instance, motifs that occur more frequently than expected in random net-

works may reveal particular structures corresponding to biological phenomena.

Several definitions exist for a network motif. Here we consider the most com-

monly used: a simple pattern of interconnection in a graph. Detection of signif-

icant motifs [7] may be based on two different approaches: either by comparing

the observed network with appropriately randomized networks (this requires the

simulation of a large number of networks), or by the comparison with expected

quantities in some well-chosen probabilistic model. Up to now, only the first

approach has been explored ([8], [11], [13]) because no satisfactory probabilistic

model has yet been proposed for an analytical approach. The simplest model

is the well-known Erdös model, where the probability of appearance of an edge

between two different vertices is equal to some fixed p ∈ (0, 1). This model only

concerns undirected networks. Its major drawback lies in the fact that the num-

bers of edges per vertex, so-called vertex degrees, are distributed according to a

Binomial distribution, generally approximated by a Poisson distribution, whereas

biological networks appear to be scale-free, meaning a power law for the number

of edges per vertex [1] (for more details on random graphs, we refer to [4, 6, 5]).

Randomized networks (obtained by simulation, see [10] for instance) rely on the

knowledge of the number of (incoming and outcoming, when dealing with directed

graphs) edges for each vertex. In the same spirit, we provide a probabilistic model

that fits these vertex degrees. Depending on the specified sequence of edges per

vertex, our model may describe scale-free networks. This probabilistic model

enables us to derive exact formulas for the mean and variance of the number of

occurrences of a motif, in a graph specified by a sequence of degrees. One of the

advantages of this approach is that we do not need computationally expensive

simulations of a large number of graphs, for each fixed sequence of numbers of

edges per vertex.

Let us mention another approach developped in [3] where “groups of mo-

tifs” are detected using an heuristic algorithm based on a probabilistic model.

The main difference between this approach and our work lies in the definition

of a motif. Berg and Lässig’s motifs are groups of vertices which are highly inter-

connected in a sparse graph, whereas we consider sets of inter-connected vertices

with a given topology.

Section 2 presents the definitions of motifs and their occurrences. To decide

whether a given motif m has an unexpected frequency in a given observed graph,

one has first to consider random graphs having some similar properties with the

observed graph (Section 3), and then to calculate the expected count of m in such
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random graphs, and eventually its variance (Section 4). Since the derivation of

the exact distribution of a motif count is still an open problem, its exact mean and

variance can be used to calculate a z-score directly. This avoids heavy simulations

used in the literature to evaluate the significance of motif counts [9]. Indeed, from

our knowledge, current methods to assess significance of motif counts are based on

a large number of simulations for each type of graph (namely, a fixed sequence of

degrees). Our approach is simple to implement and leads to a generic procedure

(valid for any type of graph).

2. MOTIFS AND OCCURRENCES

Recall that, in this paper, a motif m of size k is simply a connected sub-

graph with k vertices. We will essentially focus on undirected graphs and motifs,

but the generalization to a directed framework will be discussed in the conclusion.

Therefore, there are only two motifs of size 3 (triangle and “V”) and six motifs

of size 4 (see Figure 1).

m1 m2 m3 m4 m5 m6 m7 m8

Figure 1: Motifs of size 3 and 4.

Let us fix an undirected graph G with N vertices labelled by {1, 2, ..., N}.

Ik denotes the set of positions {i1, i2, ..., ik} in graph G where a motif of size k

may occur. Namely, Ik is the set of all subsets of {1, 2, ..., N} with cardinality k:

Ik =

{
{i1, i2, ..., ik} ⊂ {1, ..., N}

k such that ij �= i�, ∀ 1�j �=��k

}
.

In the same way, for any subset J ⊂ {1, ..., N}, define the sets of positions among

the restricted number of vertices {1, ..., N}\J ,

Ik(J) =

{
{i1, i2, ..., ik} ⊂

(
{1, ..., N}\J

)k
such that ij �= i�, ∀ j �=�

}
.

We say that a given motif m occurs at position α = {i1, i2, ..., ik} ∈ Ik in G if

and only if the sub-graph with vertices {i1, i2, ..., ik} in G either has the same

topology as m, or contains a subgraph with the same topology as m. For instance,

the triangle (motif m2 from Figure 1) occurs once in the graph in Figure 2

(position {2, 3, 4}), and the “V” motif (m1 from Figure 1) occurs 5 times (3 times

at position {2, 3, 4}, once at position {1, 2, 3} and once at position {1, 2, 4}).

To define N(m) the number of occurrences of m in a graph G, we introduce

variables Yα(m), α∈Ik, defined as the number of occurrences of motif m in the sub-
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graph with vertices α. Thus, for any motif of size k, we have N(m)=
∑

α∈Ik
Yα(m).

If α = {i1, i2, ..., ik}, the variable Yα(m) can be reformulated as Yi1,i2,...,ik(m).

1 2

3 4

Figure 2: A graph containing 5 occurrences of motif m1

and 1 occurrence of motif m2.

3. RANDOM GRAPH MODEL

Undirected graphs are quite properly described by the sequence of the

number of edges per node. Let us consider a graph G with N vertices labelled

by {1, ..., N} and a sequence of integers (d1, ..., dN ) such that 0 � di � N − 1.

In practice, when analyzing a given graph, di is chosen as the observed degree

of vertex i. We consider the following probabilistic model for graph G. Random

variables Zij indicating presence/absence of an edge between vertices i and j

(i �= j) are independent Bernoulli variables with mean πij (they are not iden-

tically distributed). Moreover, this probability πij of appearance of an edge

between vertices i and j is related to the observed number of edges at node i and

the observed number of edges at node j:

πij = πji =
didj

C
and πii = 0 .

C is a normalizing constant such that πij ∈ [0, 1]. For instance, C = maxi�=j didj .

If the degrees are not too large with respect to the total number N of vertices,

one may use C0 =
∑N

j=1
dj(d+− dj)/d+ with d+ =

∑
i di. With such a choice,

the expected number of edges is equal to the observed total number of edges.

Moreover, the expected number of edges at node i is almost equal to di. Note that

we do not allow direct loops from an edge to itself (πii = 0).

The advantage of this model is that its parameters are easy to choose

from an observed graph, contrary to more general πij’s, and it almost fits the

observed sequence of degrees when choosing C0 as the normalizing constant.

It relies on the same idea of preserving the sequence degrees as the commonly

used simulation approach [8]. Our probabilistic model appears as a rigorous for-

malization of the simulation method. [8] suggest generating graphs that preserve

the number of occurrences of all (k−1)-node sub-graphs when studying motifs

of size k. Taking into account the counts of the (k−1)-node sub-graphs would

be better than only preserving the sequence of degrees but such a generalization

appears to be difficult at this stage.
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4. FIRST AND SECOND MOMENTS FOR THE COUNT

Motifs of size 1 or 2 are of no interest here because they are the vertices

and the edges, respectively, and their frequencies are set by the graph model.

Let m be a motif of size k � 3. Since the variance of N(m) is equal to

EN2(m) − (EN(m))2, we will calculate the first and second moments of the

count, i.e. EN(m) and EN2(m). As we will see, these moments depend on m,

both through its size and its topology. No general formula is provided but we

propose a general methodology that can be applied to any topological motifs

without theoretical difficulties. Because of technical reasons, we will restrict our-

selves to motifs of size 3 and 4. More precisely, for each motif m, we provide

a simple description of variable Yα(m) using indicator random variables (RVs).

This description enables us to derive explicit formulas for the moments EN(m)

and EN2(m). Before detailing the different cases, we state a common framework

that will point out the basic quantities to calculate systematically.

Getting the expected count just requires the calculation of EYα(m) for

α ∈ Ik since we have

EN(m) =
∑
α∈Ik

EYα(m) .

Getting the second moment is a little more involved. By definition,

EN
2(m) = E

(∑
α∈Ik

Yα(m) ×

∑
β∈Ik

Yβ(m)

)
=
∑
α∈Ik

∑
β∈Ik

E
(
Yα(m)Yβ(m)

)
.

Let us break down the sums over α and β into (k+1) sums depending on the

cardinality of the intersection α ∩ β, denoted by |α ∩ β|. Note that

(i) when |α ∩ β| = k, then α = β and E(Yα(m)Yβ(m)) = EY 2
α (m),

(ii) when |α∩ β|�1 (disjoint occurrences or a unique vertex in common),

then Yα(m) and Yβ(m) are independent random variables, leading to

E(Yα(m)Yβ(m)) = EYα(m) EYβ(m).

It gives

EN
2(m) =

∑
|α∩β|=0

E
(
Yα(m)
)

E
(
Yβ(m)
)

+
∑

|α∩β|=1

EYα(m) EYβ(m)(4.1)

+
∑

2�n�k−1

∑
|α∩β|=n

E
(
Yα(m)Yβ(m)

)
+
∑
α∈Ik

EY
2

α (m) .

Additionally to quantities EYα(m), we have to calculate terms in the form

E(Yα(m)Yβ(m)) when α and β share between 2 and k elements. The next two

subsections provide explicit formulas for motifs of size 3 and 4. The generic

method is to write Yα(m) as a sum of Bernoulli RVs whose expectations are

straightforward to calculate.
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4.1. Motifs of size 3

When k = 3, Equation (4.1) reduces to

EN
2(m) =

∑
{i,j,k}∈I3

∑
{�,u,v}∈I3(ijk)

EYi,j,k(m) EY�,u,v(m)

+
∑

1�i�N

∑
{j,k}∈I2(i)

∑
{�,u}∈I2(ijk)

EYi,j,k(m) EYi,�,u(m)(4.2)

+
∑

{i,j}∈I2

∑
k∈I1(ij)

∑
�∈I1(ijk)

E
(
Yi,j,k(m)Yi,j,�(m)

)
+
∑

{i,j,k}∈I3

EY
2

i,j,k(m) .

Motif m1 (“V”)

Our approach is based on the split of variable Yi,j,k(m1) into the sum of

three Bernoulli RVs

Yi,j,k(m1) = Zij,ik + Zij,jk + Zik,jk , ∀ i, j, k ∈ {1, ..., N} ,

where Zij,ik = 1 if both edges ij and ik occur, and 0 otherwise. The expectation

EZij,ik is the probability πijπik. Thus we obtain

EYi,j,k(m1) = πijπik + πijπjk + πikπjk =
didjdk

C2
(di + dj + dk) ,

(4.3)

EN(m1) =
∑

{i,j,k}∈I3

didjdk

C2
(di + dj + dk) =

∑
1�i�N

∑
{j,k}∈I2(i)

d2

i djdk

C2
.

Similarly, we denote by Zij,ik,jk the indicator RV of the presence of edges ij, jk

and ik (note that Zij,ik Zij,jk = Zij,ik,jk). To calculate E(Yi,j,k(m1)Yi,j,�(m1)),

we write

E
(
Yi,j,k(m1)Yi,j,�(m1)

)
=

= E

{[
Zij,ik + Zij,jk + Zik,jk

] [
Zij,i� + Zij,j� + Zi�,j�

]}
= πij(πik + πjk) (πi� + πj� + πi�πj�) + πikπjk(πijπi� + πijπj� + πi�πj�)(4.4)

=
didjdkd�

C3
(di + dj)

2 +
d2

i d
2

jdkd�

C4

{
(di + dj)(dk + d�) + dkd�

}
.
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Now, we focus on the term EY 2

i,j,k(m1). We get

EY
2

i,j,k(m1) = EZij,ik + EZij,jk + EZik,jk + 6 EZij,ik,jk

= EYi,j,k(m1) + 6πijπikπjk(4.5)

=
didjdk

C2
(di+dj +dk) + 6

d2

i d
2

jd
2

k

C3
.

Finally, by using Equations (4.2), (4.3), (4.4) and (4.5), we obtain

EN
2(m1) =

=
∑

{i,j,k,�,u,v}∈I6

didjdkd�dudv

C4
(di+dj +dk) (d�+du+dv)

+
∑

1�i�N

∑
{j,k}∈I2(i)

∑
{�,u}∈I2(ijk)

d2

i djdkd�du

C4
(di+dj+dk) (di+d�+du)

+
∑

{i,j}∈I2

∑
k∈I1(ij)

∑
�∈I1(ijk)

didjdkd�

C3
(di+dj)

2 +
d2

i d
2

jdkd�

C4

{
(di+dj)(dk+d�) + dkd�

}
+
∑

{i,j,k}∈I3

didjdk

C2
(di + dj + dk) + 6

d2

i d
2

jd
2

k

C3
.

Motif m2 (triangle)

Calculations are simpler for triangles. Motif m2 occurs at position {i, j, k}

if and only if the 3 edges ij, jk and ik are present, and Yi,j,k(m2) reduces to the

indicator RV Zij,ik,jk. Thus we have

EYi,j,k(m2) = πijπjkπik =
d2

i d
2

jd
2

k

C3
; EN(m2) =

∑
{i,j,k}∈I3

d2

i d
2

jd
2

k

C3
.(4.6)

Moreover, the product Yi,j,k(m2)Yi,j,�(m2) is equal to the indicator RV

Zij,jk,ik,i�,j� of presence of the 5 edges ij, jk, ik, i� and j�. Therefore,

(4.7) E
(
Yi,j,k(m2)Yi,j,�(m2)

)
= πijπjkπikπj�πi� =

d3

i d
3

jd
2

kd
2

�

C5
.

Since Yi,j,k(m2) is an indicator RV, we have Y 2

i,j,k(m2) = Yi,j,k(m2) and∑
{i,j,k}∈I3

EY 2

i,j,k(m2) = EN(m2).

By plugging the formulas given by (4.6) and (4.7) in Equation (4.2),

we obtain the result.
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4.2. Motifs of size 4

When k = 4, Equation (4.1) reduces to

EN
2(m) =

∑
{i,j,k,�}∈I4

∑
{u,v,w,x}∈I4(ijk�)

EYi,j,k,�(m) EYu,v,w,x(m)

+
∑

1�i�N

∑
{j,k,�}∈I3(i)

∑
{u,v,w}∈I3(ijk�)

EYi,j,k,�(m) EYi,u,v,w(m)

+
∑

{i,j}∈I2

∑
{k,�}∈I2(ij)

∑
{u,v}∈I2(ijk�)

E
(
Yi,j,k,�(m)Yi,j,u,v(m)

)
(4.8)

+
∑

{i,j,k}∈I3

∑
�∈I1(ijk)

∑
u∈I1(ijk�)

E
(
Yi,j,k,�(m)Yi,j,k,u(m)

)
+
∑

{i,j,k,�}∈I4

EY
2

i,j,k,�(m) .

Following the approach used for motifs of size 3, we detail how to calculate

terms in the form EYi,j,k,�(m), E(Yi,j,k,�(m)Yi,j,u,v(m)), E(Yi,j,k,�(m)Yi,j,k,u(m))

and EY 2

i,j,k,�(m), but only for motif m4. However, all final formulas are gathered

in Tables 1, 2, 3 and 4. Before, we give the split of variables Yα(mi) for 3� i�8,

as sums of indicator RVs (see Equations (4.9) to (4.14)). These splits directly de-

rive from the topology of the motif under consideration. Combined with Equation

(4.8), they are the basis for obtaining the final formulas presented in the tables.

There are 12 different occurrences of motif m3 at position {i, j, k, �}, which

correspond to different orders of the nodes:

Yi,j,k,�(m3) = Zij,jk,k� + Zjk,k�,�i + Zk�,�i,ij + Z�i,ij,jk + Zik,k�,�j + Zij,j�,�k(4.9)

+ Z�j,ji,ik + Z�k,ki,ij + Zi�,�j,jk + Z�i,ik,kj + Zki,i�,�j + Zik,kj,j� .

Different occurrences of motif m4 appear depending on the central node (bottom

left node in Fig. 1, motif m4):

Yi,j,k,�(m4) = Zij,ik,i� + Zji,jk,j� + Zki,kj,k� + Z�i,�j,�k .(4.10)

There are only 3 different ways for motif m5 to occur:

Yi,j,k,�(m5) = Zij,jk,k�,�i + Zij,j�,�k,ki + Zik,kj,j�,�i .(4.11)

Occurrences of motif m6 are obtained through occurrences of motif m4.

When motif m4 occurs, there are 3 different ways of adding a vertex in order

to obtain motif m6. This leads to a total of 12 different possible occurrences of

motif m6 at {i, j, k, �}:

Yi,j,k,�(m6) = Zij,ik,i�,jk + Zij,ik,i�,j� + Zij,ik,i�,k� + Zji,jk,j�,ik(4.12)

+ Zji,jk,j�,k� + Zji,jk,j�,i� + Zki,kj,k�,ij + Zki,kj,k�,i�

+ Zki,kj,k�,j� + Z�i,�j,�k,ij + Z�i,�j,�k,ik + Z�i,�j,�k,jk .
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Motif m7 is obtained from motif m5 by adding a diagonal:

Yi,j,k,�(m7) = Zij,jk,k�,�i,j� + Zij,jk,k�,�i,ik + Zij,j�,�k,ki,jk(4.13)

+ Zij,j�,�k,ki,i� + Zik,kj,j�,�i,ij + Zik,kj,j�,�i,k� .

Finally, motif m8 corresponds to a complete sub-graph on vertices {i, j, k, �} and

is thus equal to an indicator RV:

Yi,j,k,�(m8) = Zij,jk,k�,i�,ik,j� .(4.14)

Detailed calculations for motif m4 (star)

Let us start by calculating the expectation EYi,j,k,�(m4). We use Equation

(4.10) and the fact that EZij,ik,i� equals πijπikπi� = d3

i djdkd�/C
3. Thus,

EYi,j,k,�(m4) =
didjdkd�

C3
(d2

i + d
2

j + d
2

k + d
2

� )(4.15)

and EN(m4) =
∑

1�i�N

∑
{j,k,�}∈I3(i)

d3

i djdkd�

C3
.(4.16)

We now calculate E(Yi,j,k,�(m4)Yi,j,u,v(m4)) by using the product of the

sums of indicator RVs:

E
(
Yi,j,k,�(m4)Yi,j,u,v(m4)

)
=

= πij (πikπi� + πjkπj�) (πiuπiv + πjuπjv + πiuπjuπuv + πivπjvπuv)

+ πk� (πikπjk + πi�πj�) (πijπiuπiv + πijπjuπjv + πiuπjuπuv + πivπjvπuv)(4.17)

=
didjdkd�dudv

C5

×

{
(d2

i +d
2

j )
2 +

didj

C

(
(d2

k+d
2

�) (d2

u+d
2

v) + (d2

i +d
2

j ) (d2

u+d
2

v+d
2

k+d
2

�)
)}

.

In the same way, we have

E
(
Yi,j,k,�(m4)Yi,j,k,u(m4)

)
=

didjdkd�du

C4

{
d

2

i

(
di+

d2

jdk

C
+

djd
2

k

C

)
+ d

2

j

(
d2

i dk

C
+dj+

did
2

k

C

)
+ d

2

k

(
d2

i dj

C
+

did
2

j

C
+dk

)}
(4.18)

+
d2

i d
2

jd
2

kd�du

C6

{
(d2

i +d
2

j +d
2

k) (d2

u+d
2

�) + d
2

�d
2

u

}
.
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We finally compute expectation EY 2

i,j,k,�(m4):

EY
2

i,j,k,�(m4) = EYi,j,k,�(m4)

+ 2
d2

i d
2

jd
2

kd
2

�

C5

(
didj + didk + did� + djdk + djd� + dkd�

)
,(4.19)

∑
{i,j,k,�}∈I4

EY
2

i,j,k,�(m4) = EN(m4) + 2
∑

{i,j}∈I2

∑
{k,�}∈I2(ij)

d3

i d
3

jd
2

kd
2

�

C5
.

Finally, the second moment EN2(m4) is obtained by plugging the expressions

given by (4.15), (4.16), (4.17), (4.18) and (4.19) in Equation (4.8).

5. CONCLUSION

We provide a rigorous probabilistic model for undirected graphs which fits

the vertex degrees of an observed graph and thus partially describes real-world

networks. This model allows us to derive explicit formulas for the mean and

variance of the number of occurrences of the 2 motifs of length 3 and the 6 motifs

of length 4. Here, a motif is a simple pattern of interconnexion in a graph.

Our methodology can be extended to longer motifs through straightforward cal-

culations. Indeed, one just needs to describe the motif as a sum of indicator vari-

ables of Z-type (see decomposition (4.9)–(4.14) for instance). Then the second

moment EN2(m) given in equation (4.1) reduces to sums of products of expect-

ations of independent Binomial random variables (the Zij ’s for single edges (ij)),

easy to compute. Heavy simulations are usually done so far to study over-repre-

sentation of motifs. Thus, our formulas are of great interest in practice.

We think that no general formula depending only on the total numbers of

edges and vertices of the motif exists; additional topological information on the

motif is required (m3 and m4 both have 4 vertices and 3 edges, but they clearly

have different expected counts).

Our methodology can also be generalized to directed motifs and directed

graphs. This is an important issue when analyzing biological networks where

the orientation of the edges may be known (direction of a reaction in metabolic

networks or activation/regulation in gene interaction networks). This will be the

matter of a forthcoming paper. Briefly, the probability πij that an edge goes from

i toward j is proportional to the product εi ρj where εi is chosen as the observed

outcoming degree of vertex i and ρj is chosen as the observed incoming degree

of vertex j. Therefore, this model fits to the incoming and outcoming vertex

degrees. Note that this expression for πij has already been considered by [3] as

part of a more general model to detect groups of highly inter-connected vertices

which share some similarity.
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Finally, one may be interested in counting exact occurrences of a motif m

in graph G. For instance, no “V” motif is counted in a triangle. Our results

can be easily extended by defining new indicator RV Xi1,...,ik(m) which is equal

to 1 if the sub-graph with vertices {i1, ..., ik} has exactly the same topology

as m and 0 otherwise. We then write Xi1,...,ik(m) as a linear combination of

ad-hoc edge indicators Z. For instance, if m is the “V”motif, we just write

Xi,j,k(m1) = Zij,ik(1 − Zjk) + Zij,jk(1 − Zik) + Zik,jk(1 − Zij).

Table 1: Mean count EN(m)
for non oriented motifs of size 4.

m EN(m)

m3

EN(m3) = 2 C
−3
∑

{i,j}∈I2

∑
{k,�}∈I2(ij)

d
2

i d
2

jdkd�

m4

EN(m4) = C
−3

N∑
i=1

∑
{j,k,�}∈I3(i)

d
3

i djdkd�

m5

EN(m5) = 3 C
−4
∑

{i,j,k,�}∈I4

d
2

i d
2

jd
2

kd
2

�

m6

EN(m6) = C
−4
∑

1�i�N

∑
j �=i

∑
{k,�}∈I2(ij)

d
3

i djd
2

kd
2

�

m7

EN(m7) = C
−5
∑

{i,j}∈I2

∑
{k,�}∈I2(ij)

d
3

i d
3

jd
2

kd
2

�

m8

EN(m8) = C
−6
∑

{i,j,k,�}∈I4

d
3

i d
3

jd
3

kd
3

�
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Table 2: Formulas giving E(Yijk�(m)Yijuv(m))
for non oriented motifs of size 4.

m E
(
Yijk�(m)Yijuv(m)

)

m3

C
−5

didjdkd�dudv

[
(di+dj)

2 (dk+d�) (du+dv)
{
1 + 3 C

−1
didj

}
+ 2 didj(di+dj)

{
(du+dv)

(
2 + C

−1(didj +2 dkd�)
)

+ (dk+d�)
(
2 + C

−1(didj + 2 dudv)
)}

+ 4 d
2

i d
2

j

(
1 + C

−1(dudv+dkd�)
)

+ 4 C
−1

didjdudvdkd�

]
m4

see formula (4.17)

m5

4 C
−7

d
3

i d
3

jd
2

kd
2

�d
2

ud
2

v + 5 C
−8

d
4

i d
4

jd
2

kd
2

�d
2

ud
2

v

m6

didjdkd�dudv

C7

[
d
2

i d
2

j(di+dj)
2 (dk+d�) (du+dv)

(
1+

dkd�

C
+

dudv

C

)
+ d

2

i d
2

j (di+dj)

{
(d2

k+d
2

�) (du+dv)

(
1+

dudv

C

)
+ (d2

u+d
2

v) (dk+d�)

(
1+

dkd�

C

)}
+ didj(di+dj) (d2

i +d
2

j)

{
dkd�(du+dv)

(
1+

dudv

C

)
+ dudv(dk+d�)

(
1+

dkd�

C

)}
+ didj(d

2

i +d
2

j)
{
dkd�(d

2

u+d
2

v)+dudv(d2

k+d
2

�)
}
+d

2

i d
2

j (d
2

k+d
2

�)(d
2

u+d
2

v)

+ (d2

i +d
2

j)
2
dkd�dudv + didj(di+dj)

2
dkd�dudv(dk+d�)(du+dv) / C

]

m7

C
−7

d
3

i d
3

jd
2

kd
2

�d
2

ud
2

v

{
C
−2(di+dj)

2 (du+dv) (dk+d�)

+ C
−2

didj(di+dj)

[(
1+

dudv

C

)
(dk+d�)+

(
1+

dkd�

C

)
(du+dv)

]
+ C

−3
d
2

i d
2

j (dudv+dkd�) + C
−3

didjdkd�dudv

}

m8

C
−11

d
5

i d
5

jd
3

kd
3

�d
3

ud
3

v
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Table 3: Formulas giving E(Yijk�(m)Yijku(m))
for non oriented motifs of size 4.

m E
(
Yijk�(m)Yijku(m)

)

m3

didjdkd�du

C4

[
6 didjdk

{
1 + (di+dj+dk) (d�+du) / C

+ (didj+didk+djdk+d�du) / C +
didjdk

C2
(d�+du)

}
+ (d2

i dj +did
2

j +d
2

i dk+did
2

k+djd
2

k+d
2

jdk)

(
1+

d�du

C
+

didjdk

C2
(d�+du)

)
+ 2

d2

i d
2

j +d2

i d
2

k+d2

jd
2

k

C
(du+d�) + 2(d2

i +d
2

j +d
2

k)
didjdk

C

(
1+

d�du

C

)
+ 6 didjdkd�du/C

2(didk+didj+djdk)

]

m4

see formula (4.18)

m5

C
−6

d
2

i d
2

jd
2

kd
2

�d
2

u

{
didj + didk + djdk + 2 C

−1
didjdk(di+dj+dk)

}

m6

d
2

i d
2

jd
2

kd�du

C5

[
(di+dj+dk)2 + 2

dud�

C2
(d2

i d
2

j +d
2

i d
2

k+d
2

jd
2

k)

+ 2(di+dj+dk) (didj +didk+djdk)
(du+d�)

C

+ 2
dud�

C2
(du + d�)

{
d
2

i (dj +dk) + d
2

j(di+dk) + d
2

k(di+dj)
}]

+
d
3

i d
3

jd
3

kd�du

C7

[
3(di+dj+dk) (du+d�)

2

+ 2
d�du

C
(du+d�) (didj +djdk+didk)

]
+

didjdkd2

�d
2

u

C6

[
d
3

i (dj +dk)2 + d
3

j (di+dk)2 + d
3

k(di+dj)
2

]

m7

C
−6

d
2

i d
2

jd
2

kd
2

�d
2

u

{
3C

−2(didj +didk+djdk) didjdk (d�+du)

+ C
−2(di+dj+dk) didjdkdud� + 6 C

−3
d
2

i d
2

jd
2

kd�du

+ C
−1(didj +didk+djdk)2

}
m8

C
−9

d
4

i d
4

jd
4

kd
3

�d
3

u



Mean and Variance for Network Motif Counts 45

Table 4: Formulas giving EY 2

ijk�(m)
for non oriented motifs of size 4.

m EY 2

ijk�(m)

m3

EYi,j,k,�(m3) + C
−4

d
2

i d
2

jd
2

kd
2

�

[
12 (3 + C

−2
didjdkd�)

+ 10 C
−1
(
didj + didk + did� + djdk + djd� + dkd�

)]
+ 2 didjdkd�C

−4

{
didjdk(di+dj+dk) + didjd�(di+dj+d�)

+ didkd�(di+dk+d�) + djdkd�(dj +dk+d�)

}
m4

see formula (4.19)

m5

EYi,j,k,�(m5) + 6 C
−6

d
3

i d
3

jd
3

kd
3

�

m6 EYi,j,k,�(m6) + 12 C
−5

d
2

i d
2

jd
2

kd
2

�

{
5 C

−1
didjdkd�

+ didj +didk+did�+djdk+djd�+dkd�

}
m7

EYi,j,k,�(m7) + 30 EYi,j,k,�(m8)

m8

C
−6

d
3

i d
3

jd
3

kd
3

�
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APPENDIX

This appendix contains some indications in order to prove the formulas put

in Tables 1, 2, 3 and 4 for the motifs m3, m5, m6, m7 and m8 of length 4.

Motif m3

We use the split of Yi,j,k,�(m3) into the sum of 12 different terms. Some

symmetrical terms appear and we obtain

EYi,j,k,�(m3) = 2
didjdkd�

C3

(
didj + didk + did� + djdk + djd� + dkd�

)
and EN(m3) = 2

∑
{i,j}∈I2

∑
{k,�}∈I2(i,j)

d2

i d
2

jdkd�

C3
.

Let us now compute E(Yi,j,k,�(m3)Yi,j,u,v(m3)). This is a big product but a large

number of terms may be grouped together and we have

E
(
Yi,j,k,�(m3)Yi,j,u,v(m3)

)
=

=
didjdkd�dudv

C5

{
(di+dj) (du+dv)

(
1+

didj

C

)
+ 2 didj

(
1+

dudv

C

)}
×

{
(di+dj)(dk+d�) + 2 didj

}
+ 2

d2

i d
2

jdkd�dudv

C6

{
(di+dj) (du+dv) + dudv + didj

}
×

{
(di+dj)(dk+d�) + 2 dkd�

}
.

After some simplifications, we obtain,

E
(
Yi,j,k,�(m3)Yi,j,u,v(m3)

)
=

=
didjdkd�dudv

C5

[
(di+dj)

2 (dk+d�) (du+dv)

{
1+3

didj

C

}
+ 2didj(di+dj)

×

{
(du+dv)

(
2+

didj

C
+2

dkd�

C

)
+ (dk+d�)

(
2+

didj

C
+2

dudv

C

)}
+ 4 d

2

i d
2

j

(
1+

dudv

C
+

dkd�

C

)
+ 4

didjdudvdkd�

C

]
.
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To get EY 2

i,j,k,�(m3), we write

Y
2

i,j,k,�(m3) = Yi,j,k,�(m3)

+ 2

{
6Zij,jk,k�,�i + 6Yi,j,k,�(m8) + 6Zij,j�,�k,ki + 6Zi�,�j,jk,ki

+ 5Zik,i�,jk,j�,k� + 5Zij,i�,jk,j�,k� + 5Zij,ik,jk,j�,k� + 5Zij,ik,i�,j�,k�

+ 5Zij,ik,i�,jk,k� + 5Zij,ik,i�,jk,j� + Zi�,jk,j�,k� + Zik,i�,jk,k�

+ Zij,i�,jk,j� + Zij,ik,i�,jk + Zij,ik,i�,k� + Zij,ik,jk,k� + Zij,i�,j�,k�

+ Zij,ik,jk,k� + Zik,i�,j�,k� + Zik,jk,j�,k� + Zij,ik,i�,j� + Zij,ik,jk,j�

}
.

This leads to

EY
2

i,j,k,�(m3) = EYi,j,k,�(m3)

+
d2

i d
2

jd
2

kd
2

�

C4

[
12

(
3+

didjdkd�

C2

)
+

10

C

(
didj + didk + did� + djdk + djd� + dkd�

)]
+ 2

didjdkd�

C4

{
didjdk(di+dj+dk) + didjd�(di+dj +d�)

+ didkd�(di+dk+d�) + djdkd�(dj +dk+d�)

}
.

Motif m5 (square)

First, let us calculate the probability EYi,j,k,�(m5) that the motif m5 occurs

at position {i, j, k, �}. Write Yi,j,k,�(m5) = Zij,jk,k�,�i+Zij,j�,�k,ki+Zik,kj,j�,�i. Each

one of these indicator RVs has same expectation equal to d2

i d
2

jd
2

kd
2

�/C
4. Therefore,

we have

EYi,j,k,�(m5) = 3
d2

i d
2

jd
2

kd
2

�

C4
and EN(m5) = 3

∑
{i,j,k,�}∈I4

d2

i d
2

jd
2

kd
2

�

C4
.

We now calculate E(Yi,j,k,�(m5)Yi,j,u,v(m5)) like E{(Zij,jk,k�,�i+Zij,j�,�k,ki+

Zik,kj,j�,�i) (Zij,ju,uv,vi + Zij,jv,vu,ui + Ziu,uj,jv,vi)}. We get

(5.1) E
(
Yi,j,k,�(m5)Yi,j,u,v(m5)

)
= 4

d3

i d
3

jd
2

kd
2

�d
2
ud2

v

C7
+ 5

d4

i d
4

jd
2

kd
2

�d
2
ud2

v

C8
.
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Now we provide the calculation of E(Yi,j,k,�(m5)Yi,j,k,u(m5)).

E
(
Yi,j,k,�(m5)Yi,j,k,u(m5)

)
=

= πijπjkπk�πi�

{
πkuπiu + πjuπkuπik + πikπjuπiu

}
+ πijπj�πk�πik

{
πjkπkuπiu + πjuπku + πjkπjuπiu

}
(5.2)

+ πikπjkπj�πi�

{
πijπkuπiu + πijπjuπku + πjuπiu

}
=

d2

i d
2

jd
2

kd
2

�d
2
u

C6

{
didj + didk + djdk + 2

didjdk

C
(di+dj+dk)

}
.

Easy computation of EY 2

i,j,k,�(m5) is allowed since all 3 products of

two different indicator RVs appearing in Yi,j,k,�(m5) are equal to Zij,jk,k�,�i,j�,ik

(indicator RV of the complete graph with vertices {i, j, k, �}), whose expectation

equals d3

i d
3

jd
3

kd
3

�/C
6

(5.3) EY
2

i,j,k,�(m5) = EYi,j,k,�(m5) + 6
d3

i d
3

jd
3

kd
3

�

C6
.

Motif m6

According to the split of Yi,j,k,�(m6) into the sum of 12 terms with

symetrical expectations in the form d3

i djd
2

kd
2

�/C
4, we have,

∑
{i,j,k,�}∈I4

EYi,j,k,�(m6) = C
−4

N∑
i=1

∑
{i,j}∈I2

∑
{k,�}∈I2(ij)

d
3

i djd
2

kd
2

� .

Concerning EY 2

i,j,k,�(m6), we have

Y
2

i,j,k,�(m6) = Yi,j,k,�(m6) + 2

{
30Yijk�(m8) + 6

(
Zik,i�,jk,j�,k� + Zij,i�,jk,j�,k�

+ Zij,ik,jk,j�,k� + Zij,ik,i�,j�,k� + Zij,ik,i�,jk,k� + Zij,ik,i�,jk,j�

)}
.

Finally,

EY
2

i,j,k,�(m6) = EYi,j,k,�(m6) + 12
d2

i d
2

jd
2

kd
2

�

C5

{
5

didjdkd�

C

+ didj + didk + did� + djdk + djd� + dkd�

}
.
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Motif m7

Using the split Yi,j,k,�(m7) = Zij,ik,i�,jk,j� + Zij,ik,i�,kj,k� + Zij,ik,i�,�j,�k +

Zji,jk,j�,ik,i�, we obtain

EYi,j,k,�(m7) =
d2

i d
2

jd
2

kd
2

�

C5

(
didj + didk + did� + djdk + djd� + dkd�

)
,

EN(m7) =
∑

{i,j}∈I2

∑
{k,�}∈I2(ij)

d3

i d
3

jd
2

kd
2

�

C6
.

E
(
Yi,j,k,�(m7)Yi,j,u,v(m7)

)
=

=
d2

i d
2

jd
2

kd
2

�

C4

(
djd�

C
+

didk

C
+

djdk

C
+

did�

C
+

didj

C

)
×

didjd
2
ud2

v

C3

(
djdv

C
+

didu

C
+

djdu

C
+

didv

C
+

didj

C
+

didjdudv

C2

)
+

d2

i d
2

jd
2

kd
2

�

C4
×

dkd�

C
×

d2

i d
2

jd
2
ud2

v

C4

(
djdv

C
+

didu

C
+

djdu

C
+

didv

C
+

didj

C
+

dudv

C

)
.

After simplifications, we have

E
(
Yi,j,k,�(m7)Yi,j,u,v(m7)

)
=

=
d3

i d
3

jd
2

kd
2

�d
2
ud2

v

C7

{
(di+dj)

2
(du+dv) (dk+d�)

C2

+
didj

C2
(di+dj)

[(
1+

dudv

C

)
(dk+d�) +

(
1+

dkd�

C

)
(du+dv)

]
+

d2

i d
2

j

C3
(dudv+dkd�) +

didjdkd�dudv

C3

}
.

Now we focus on E(Yi,j,k,�(m7)Yi,j,k,u(m7)).

E
(
Yi,j,k,�(m7)Yi,j,k,u(m7)

)
=

=
d2

i d
2

jd
2

kd
2

�

C5

{
djd�didkd

2
u

C3

[
djdu+ didk+ djdk+

didjdkdu

C
+ didj +

didjdkdu

C

]
+

did�djdkd
2
u

C3

[
didjdkdu

C
+ didk + djdk + didu+ didj +

didjdkdu

C

]
+

dkd�didjd
2
u

C3

[
didjdkdu

C
+ didk + djdk +

didjdkdu

C
+ didj + dkdu

]
+
(
didk+ djdk+ didj

) d2
u

C2

×

[
didjdkdu

C
+ didk + djdk +

didjdkdu

C
+ didj +

didjdkdu

C

]}
.
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After simplifications, we have

E
(
Yi,j,k,�(m7)Yi,j,k,u(m7)

)
=

=
d2

i d
2

jd
2

kd
2

�d
2
u

C6

{
3 (didj + didk+ djdk)

didjdk

C2
(d� + du)

+ (di+dj+dk)
didjdkdud�

C2
+ 6

d2

i d
2

jd
2

kd�du

C3
+

(didj + didk+ djdk)
2

C

}
.

Now, we compute EY 2

i,j,k,�(m7). Any product of two different indicator RVns

appearing in m7 is equal to indicator RV of the complete graph on {i, j, k, �}.

Thus,

EY
2

i,j,k,�(m7) = EYi,j,k,�(m7) + 30 EYi,j,k,�(m8) ,

where EYi,j,k,�(m8) is given below.

Motif m8

Motif m8 corresponds to a totally connected subgraph. In particular,

Yi,j,k,�(m8) is an indicator RV, which simplifies calculations. We have

EYi,j,k,�(m8) =
d3

i d
3

jd
3

kd
3

�

C6
,

E
(
Yi,j,k,�(m8)Yi,j,u,v(m8)

)
=

d5

i d
5

jd
3

kd
3

�d
3
ud3

v

C11
,

E
(
Yi,j,k,�(m8)Yi,j,k,u(m8)

)
=

d4

i d
4

jd
4

kd
3

�d
3
u

C9
,

EY
2

i,j,k,�(m8) = EYi,j,k,�(m8) .
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1. INTRODUCTION

The identification of networked genetic interdependencies that form the ba-
sis of cellular regulation is one of the key issues in systems biology. Consequently,
many authors have investigated statistical approaches such as graphical models
to estimate genetic networks from high-throughput data [e.g., 8, 7, 11].

A graphical model is a representation of stochastic conditional dependen-
cies between the investigated variables. Among the simplest graphical models
is the class of graphical Gaussian models (GGMs) — see, e.g., Whittaker [13].
In this framework gene network may be constructed as follows. First, a positive
definite and well-conditioned estimate R = (rkl) of the linear correlation matrix
P =(ρkl) is inferred from the data. Second, the standardized inverse of this ma-
trix gives an estimate R̃=(r̃kl) of the partial correlations P̃ =(ρ̃kl). The strength
of these coefficients indicate the presence or absence of a direct association be-
tween each pair of genes. For large sample size computation of covariances and
GGM selection can be conducted using classical estimation and testing theory
as outlined in Whittaker [13]. However, the small sample size relative to the
large number of genes typically considered in genome experiments requires the
additional application of shrinkage and other regularization techniques [2, 12].

A drawback shared by the GGM approach and other graphical models such
as Bayesian networks is that these methods rely on the assumption of identically
and independently distributed (i.i.d.) data. However, an increasing proportion of
microarray expression experiments are concerned with longitudinal measurements
of mRNA and protein concentrations. For instance, stress response and cell cycle
experiments by design produce time course data. A further characteristic of these
data is that the time points at which the experiments are conducted are almost
always not equidistant but irregularly spaced.

In order to avoid these issues, in this paper we investigate GGM network
inference from the perspective of functional data analysis [9]. Specifically, we
describe a graphical model that treats the observed gene expression over time
as realizations of random curves, rather than to describe the individual time
points separately. This approach is based on the notion of dynamical correlation

which provides a similarity score for pairs of groups of randomly sampled curves.
Subsequently, it allows computation of partial dynamical correlations and the
identification of the associated network structure.

The remainder of the paper is organized as follows. In the next section we
summarize the basic notation for functional data analysis and also introduce the
functional inner product. Next, we discuss the concept of dynamical correlation
of which we describe two different variants, one introduced in this paper and one
by Dubin and Müller [3]. Subsequently, the dynamical correlation is employed
for GGM network selection. Finally, in order to compare the traditional GGM
method with the present approach we reanalyze data from a human T-cell exper-
iment with 58 genes, 10 time points, and 44 replications [10], and compare the
networks resulting from dynamical correlation with those from static correlation.
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2. METHODS

2.1. Setup and notation

We consider data from a typical gene expression time course experiment.
For p genes (variables) and n subjects (replications) mRNA concentrations are
measured over a time interval [A,B]. This results in functional observations
fik(t) where 1 ≤ i ≤ n and 1 ≤ k, l ≤ p. We assume all functions fik(t) to be
square-integrable so that the functional inner product

(2.1)
〈
g(t), h(t)

〉
=

1

B − A

∫ B

A

g(t)h(t) dt

exists, where g(t) and h(t) are any of the observed functions. The time average
of fik(t) may then be conveniently expressed by 〈fik(t), 1〉. The average over the
n replicates gives the empirical mean function f̄k(t) = 1

n

∑n
i=1

fik(t).

In practice, however, the functions fik(t) are not continuously measured
but rather obtained by experiments at discrete time points tj, with 1 ≤ j ≤ m

and A = t1 < t2 < . . . < tm−1 < tm = B. Note that the time points need not
be equidistant. If one assumes a linear approximation of g(t) and h(t) the inner
product of Eq. 2.1 turns into the weighted sum

(2.2)
〈
g(t), h(t)

〉
≈

m∑
j=1

g(tj)h(tj)
δj + δj+1

2(B − A)

where the δj = tj − tj−1 are the time differences between subsequent measure-
ments (with δ1 = δm+1 = 0).

In the random effects representation of Dubin and Müller [3] each observed
fik(t) is a realization of the random function

(2.3) fk(t) = μk(t) + μ0k + ε0k +
∞∑

u=1

εuk ηu(t) ,

where ε0k and εuk are random variables with E(ε0k) = 0 and E(εuk) = 0, μk(t)
is the fixed time dependent mean function with zero time average 〈μk(t), 1〉 = 0,
μ0k + ε0k represents the static random part and the remaining terms describe the
dynamic random part. In Eq. 2.3 the ηu(t) are orthonormal basis functions with
zero time average 〈ηu(t), 1〉 = 0.

In this notation the empirical mean function f̄k(t) is an estimate of
E(fk(t)) = μk(t)+μ0k. As μk(t) has time average zero we are also able to identify
the two components of E(fk(t)) by using μ̂0k = 〈f̄k(t), 1〉 and μ̂k(t) = f̄k(t)− μ̂0k.
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2.2. Dynamical correlation

2.2.1. Measuring similarity between two exactly known curves

Suppose for a moment that we have sufficient data to estimate the expres-
sion levels through time of two genes k and l exactly, i.e. that we know the mean
functions E(fk(t)) and E(fl(t)). In order to understand the functional connec-
tion between these two variables a measure of similarity between the two curves
is required. Dubin and Müller [3] suggest to introduce the notion of dynamical

correlation with the informal proposition that “if both trajectories tend to be
mostly on the same side of their time average (a constant) then the dynami-
cal correlation is positive; if the opposite occurs, then dynamical correlation is
negative”.

This immediately leads to the following straightforward definition of dy-
namical correlation between two curves g(t) and h(t). First, compute the time-
centered functions gC(t) = g(t) − 〈g(t), 1〉 and hC(t) = h(t) − 〈h(t), 1〉. Then
define the variances as

Var
(
g(t)
)

=
〈
g

C(t), gC (t)
〉

and
Var
(
h(t)
)

=
〈
h

C(t), hC(t)
〉

.

Finally, compute the the standardized functions gS(t) = gC(t)/
√

Var(g(t)) and
hS(t) = hC(t)/

√
Var(h(t)), and obtain the correlation by

Cor
(
g(t), h(t)

)
=
〈
g

S(t), hS(t)
〉

.

2.2.2. The general case including sampling error

The above definition of dynamical correlation for a single curve extends in a
straightforward fashion to the case where each observed time course fik represents
a noisy realization of the mean function E(fk).

In order to estimate the correlation between two variables k and l we
first define the simultaneously time- and space-centered functions according to
fC

ik(t) = fik(t)−〈f̄k(t), 1〉. Note that here the inner product is computed over the
mean function f̄k(t). Based on the fC

ik(t) an estimate of the variance of variable
k is then given by

(2.4) V̂ark = σ̂kk = skk =
1

n − 1

n∑
i=1

〈
f

C
ik(t), fC

ik(t)
〉

.
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This allows to compute standardized residual functions fS
ik(t) = fC

ik/
√

skk that
form the basis for the estimate of dynamical correlation

(2.5) Ĉorkl = ρ̂kl = rkl =
1

n − 1

n∑
i=1

〈
f

S
ik(t), f

S
il (t)
〉

.

Correspondingly, the estimated dynamical covariance between variables k and l

is simply

(2.6) Ĉovkl = σ̂kl = skl = rkl

√

skksll .

This simple estimator of dynamical correlation exhibits several attractive
properties. In particular, it is a generalization of the standard correlation for
cross-sectional data. Specifically, if m = 1 and n > 1 then it reduces to the usual
maximum-likelihood estimator of correlation. Furthermore, it is also applicable
if there is only a single realization of each time series available (n = 1, m > 1).

2.2.3. The Dubin–Müller definition of dynamical correlation

Another related but different definition of dynamical correlation is given
by Dubin and Müller [3]. They propose to compute the standardized residual
functions according to

(2.7) f
S
ik(t) = qik(t)/

√〈
qik(t), qik(t)

〉
using

(2.8) qik(t) = fik(t) − f̄ik(t) −
〈
fik(t), 1

〉
+
〈
f̄ik(t), 1

〉
.

This definition has the drawback that it is only defined if both m > 1 and n > 1.
As we will exemplify below, it also produces counter-intuitive correlations.

2.3. Estimating gene association networks using dynamical correlation

The basic idea to infer a network from the pairwise dynamical correlation
is to refer to the genes as the nodes and to the correlations as the connectivity
strengths assigned to the edges of the network. However, we cannot use the cor-
relations directly, because they represent only marginal dependencies and also
include indirect interactions between two variables. Instead, we need to rely on
the concept of partial correlation which describe the correlation between any two
variables i and j conditioned on all the other variables. It is straightforward to
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compute the matrix of partial dynamical correlations P̃ = (ρ̃kl) from the corre-
lation coefficients P = (ρkl) via the inverse relationship

Ω = P
−1 = (ωij)(2.9)

ρ̃kl = −

ωkl
√

ωkk ωll

(2.10)

[4]. Applying these equations to estimates R = (rkl) of (dynamical) correlations
allows to obtain estimates R̃ = (r̃kl) of the associated partial (dynamical) corre-
lations.

In order to test the significance of the correlations and to decide which of
the possible edges to include in the resulting gene association network statistical
tests are needed. In this paper we employ the “local fdr” network search as
proposed by Schäfer and Strimmer [11, 12]. The false discovery rate (fdr) is the
expected proportion of false positives among the proposed edges. The local fdr
is an empirical Bayes estimator of the false discovery rate proposed by Efron
[5, 6]. This method computes the posterior probability for an edge to be present
or absent, and takes account of the multiplicity in the simultaneous testing of
edges. The final network is obtained by visualizing all significant edges in an
undirected graph.

3. RESULTS

In the following section we first apply our method of computing dynamical
correlation to example data to clarify our definition and to compare it with the
related concept of Dubin and Müller [3]. Subsequently, we infer the gene asso-
ciation network for a longitudinal gene expression data set described in Rangel
et al. [10].

3.1. Illustrative example

In order to understand the concept of dynamical correlation and to illus-
trate the difference between our definition (Eq. 2.5) and that of Dubin and Müller
[3] we first consider a set of artificial examples. These are shown in Fig. 1 where
two negatively dependent variables are depicted. For instance, this may represent
the case where one gene is up-regulated and the other is correspondingly down-
regulated. For each gene there are two measured curves, and there are three
slightly different ways in which the sampled curves relate to each other (Fig. 1a,
b, and c). The exact definition of the curves can be found in Tab. 1. Note that
the two realizations are paired, i.e. the upper lines belong to individual 1 and the
lower ones to individual 2.
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Figure 1: Toy example to illustrate the concept of dynamical correlation
between two variables (“genes”). In all three cases a), b) and c)
there are two realizations (“individuals”). See main text for details,
and Tab. 1 for the underlying data.

Table 1: Data points of the toy examples in Fig. 1.

Data Variable 1 Variable 2

Time points 0 5 10 0 5 10

Fig. 1a
Realization 1 0 3 0 3 0 3
Realization 2 0.5 3.5 0.5 3.5 0.5 3.5

Fig. 1b
Realization 1 0 3.25 0 3 0.25 3
Realization 2 0.5 3.25 0.5 3.5 0.25 3.5

Fig. 1c
Realization 1 0 3.25 0 3 − 0.25 3
Realization 2 0.5 3.25 0.5 3.5 0.75 3.5
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Intuitively, one would expect that the dynamical correlation between the
two variables is strongly negative in all three cases. For our definition of dynami-

cal correlation according to Eq. 2.5 this is indeed the case: the correlations for the

three examples cases Fig. 1a, b, and c are − 0.946, − 0.982, and − 0.947, respec-

tively. In contrast, the dynamical correlation of Dubin and Müller [3] behaves in
a completely different fashion. For Fig. 1a it is not defined, for case b) it is equal

to +1 and for case c) it is equal to −1.

Therefore, it is easy to see that the Dubin and Müller [3] estimator is not

suited for detecting functional dependencies in genomic longitudinal data. This is
because that estimator is geared towards detecting changes in the relative trends

of the individual realizations, rather than between the common trend. However,

note that this is generally not the effect one wants to identify when looking for

gene interaction. In addition, the Dubin and Müller [3] definition of dynamical
correlation has the additional disadvantage over that of Eq. 2.5 that it is not

defined if there is only a single time course per gene available. In contrast, the

above toy examples show that our definition of dynamical correlation is able to
detect the main trend of positive or negative dependency between two variable,

and is not susceptible to the small changes in the sampled curves.

3.2. Gene expression time course data

We now employ our method of estimation of the (partial) dynamical corre-

lation to a real world example and compare it with the results of the traditional

GGM method. Specifically, we reanalyzed a microarray time series data set de-

scribed in detail in Rangel et al. [10]. These data characterize the response of
a human T-cell line (Jirkat) to a treatment with PMA and ioconomin. After

preprocessing the time course data consist of 58 genes measured across 10 time

points with 44 replications. Rangel et al. [10] used a state space model to estimate

the influence between genes and measured a genetic network by combining direct
effects and indirect effects via hidden states. This approach is generally very

time-consuming due to the necessity of using of the EM algorithm for optimiza-

tion. A peculiarity of the Rangel et al. [10] data is also that the measurements in

the experiment were taken at unequally spaced time points, i.e. after 0, 2, 4, 6, 8,
18, 24, 32, 48, and 72 hours after treatment. This was neglected in the original

state-space analysis which assumed equally spaced data. In contrast, note that

the present functional data approach allows the incorporation of arbitrary time

distances between subsequent measurements.

As approximation of the temporal expression of the 58 genes we used a

linear spline and employed Eq. 2.2 for the functional inner product. After es-

timating the dynamical correlations with Eq. 2.5 we computed the associated

partial correlation coefficients employing Eq. 2.9 and Eq. 2.10. Fig. 2 shows the
histogram of the estimated partial correlation coefficients after Fisher’s normaliz-
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ing z-transformation. Also depicted in this plot are the fitted overall distribution
(fat line) and the null (dashed line) and alternative distribution (filled histogram)

as estimated by the locfdr algorithm [5, 6]. The 0.2 local fdr cut-off values for

the partial correlations are indicated by the black triangles. As expected, the

distribution of the partial correlations is centered around zero and most of the
coefficients are not significant. Consequently, the resulting network is sparse and

there are only 54 significant edges. The network itself is displayed in Fig. 3b.

Figure 2: Histogramm of the Fisher z-transformed estimated partial dynamical
correlations. Values left and right the two black triangles are considered
significantly different from zero, and thus correspond to edges in a gene
dependency network.

It is instructive to compare the genetic network inferred with dynamical cor-

relation to the gene association network obtained by the classic GGM approach.
For this analysis we ignored the dynamic aspects of the data and assumed that

all measurements were taken at the same time point, which leads to 440 obser-

vations (44 replications times 10 time points) for each of the 58 genes. As this

number of observations is not small in comparison to the number of the genes
no regularization is needed (cf. Schäfer and Strimmer [12] for the opposite case).



A Functional Data Approach for Gene Network Inference 63

From the empirical correlation matrix we proceeded as above, obtaining estimates
of partial correlation and a static GGM network. This is displayed on the left side

of figure 3. For comparison, the network estimated with dynamical correlation

in shown on its right side. For clarity only the nodes which have at least one

connection are displayed.

Figure 3: Gene dependency networks inferred from human T-cell data [10]
using (a) static correlation and (b) dynamical correlation.

The network calculated with static correlation consists of 17 nodes with

12 edges, a smaller network than the one based on dynamical correlation.

This indicates that our dynamical estimator is able to identify additional time-
varying components of the interaction between the investigated genes.

4. DISCUSSION

A growing interest in genetics lies in observing and inferring the gene in-

teractions over time. Here, we introduced a method to infer a gene dependency
network from functional data. In this approach time course experiments are seen

as a realization of random curves. The method described generalizes the widely

used static GGM approach (see the corresponding references in [11]) and is able

to unravel the dependency structure of longitudinal data across the whole time
series rather than at single time points. Furthermore, unlike many other time

series method the functional approach does not require equally spaced measure-

ments. In addition, our algorithm is easily implemented and computationally

inexpensive (the calculation of the above gene dependency network takes only a
fraction of a second).
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In order to further develop our approach many extensions are conceivable.
For instance, in the above analysis of human T-cells the data was highly repli-

cated. In genomics, however, it is more typical that the sample size is very

small compared to the number of genes (this is the so-called “small n, large p”

paradigm). In this case, the empirical covariance is a highly inefficient estimator,
and needs to be regularized [12]. For small n this will also be the case with our

estimate of dynamical correlation (Eq. 2.5). Thus, shrinkage techniques similar

to those of Schäfer and Strimmer [12] are needed.

A further important extension is the inclusion of autoregressive aspects [1].
While our method covers the dynamical correlation through time it is not able

to account, e.g., for a time shift between any two variables. This is illustrated in

Fig. 4 which is a variation of the toy examples presented in section 3. For this

data the Dubin and Müller [3] estimate is (again) not defined and our suggested
dynamical estimator results in very small correlation close to zero, even though

it is clear by inspection that the two depicted variables are strongly connected.

These dependencies and the associated time shifts could be accounted for by mod-
eling the temporal mean via a system of differential equation (or in the discrete

case by some autoregressive process). We also note that for this reason we have

also refrained here from a comparison of the gene association network inferred

from dynamical correlation (Fig. 3b) with the state space network presented by
Rangel et al. [10]. Future work should regard for these aspects.

Figure 4: Example with a fixed time lag between the two variables.
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Abstract:

• In this article, we analyze time dependent protein expression data obtained from
a proteome study of a neuroblastoma cell line. Neuroblastoma are common solid
tumors which occur in early childhood. The expression data was obtained by differ-
ence gel electrophoresis (DIGE). It is known that the clinical outcome of neuroblas-
toma depends on the activation of different neurotrophin receptors by their ligands.
Here, we are looking for proteome changes resulting from the activation of Tyrosine
Kinase (TrkA) receptors by their ligand NGF (nerve growth factor). Before analyzing
the data by longitudinal data analysis we do data preprocessing and apply a method
for the imputation of missing values.
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1. INTRODUCTION

The term ‘proteome’ stands for all proteins, which are coded by a genome

at specific time points and under certain conditions. It is known that in addition

to the analysis of the genome investigation of the highly complex and dynamic

proteome will provide a far more detailed description of biological processes. To

this end a number of proteomic techniques have been developed which allow

the analysis of complex protein mixtures. Currently the two-dimensional elec-

trophoresis (2-DE) is the separation method with highest resolution power for

protein samples. Up to 10,000 proteins can be separated in one gel and therefore

are accessible for quantitative analysis (cf. Klose and Kobalz ([11])). Statisti-

cal methods for the analysis of protein expression data from 2-DE comprise data

preprocessing, multiple hypothesis testing and nearly the whole spectrum of mul-

tivariate techniques. In Jung et al. ([8]) we reviewed and presented some methods

for data preprocessing, missing values imputation and longitudinal data analysis.

Here, we apply and evaluate these techniques by analyzing protein expression data

from a proteome study of the neuroblastoma cell line SY5Y. Neuroblastoma are

common solid tumors which occur in early childhood. The proteome of neurob-

lastoma depends on the activation of different neurotrophin receptors (TrkA and

TrkB) by their ligands (cf. Nakagaware et al. ([13])). In this article, we compare

proteome samples of the SY5Y cell line when the TrkA receptors are activated by

their ligand NGF (nerve growth factor) and when they are not activated. Hence,

we have a treatment and a control group. The experiment is detailed in Sitek

et al. ([16]). The protein expression in the two groups was measured at 5 time

points (0, 0.5, 1, 6 and 24h) with 4 biological replicates at time 0 and 5 biological

replicates at each of the other time points. The data was obtained using the lat-

est improvement of 2-DE, the so called Difference Gel Electrophoresis (DIGE).

This technique allows one to put up to three different samples on the same gel.

These samples (usually treatment, control and an internal standard) are tagged

by different fluorophores (Cy2, Cy3 and Cy5). The internal standard is used to

standardize all gels to the same level. 2-DE separates the proteins of a mixture by

their isoelectric point (pI) and molecular size to distinct spots. After separation

the proteins are detected using a confocal fluorescence scanner where fluorescence

intensity of a spot can be regarded as a measure of expression for its respective

protein. For quantitative proteome analysis image analysis software (DeCyder

V5.0, Amersham Biosciences ([3])) automatically determines the boundaries and

sizes of the spots.

Our article is organized as follows. In section 2 we analyze the performance

of the preprocessing methods like calibration, normalization and standardization.

In section 3 we evaluate the k nearest neighbour method for the estimation of

missing values with respect to an estimation error. Furthermore, we apply an

analysis of variance model for longitudinal data to the neuroblastoma data in

section 4 and discuss the biological implications. Finally, we will mention future

challenges in statistical proteomics.
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2. DATA PREPROCESSING

Before starting the actual statistical analysis of expression values from

2-D fluorescence difference gel electrophoresis (DIGE) several preprocessing steps

are required. In this chapter we examine procedures for calibration, normaliza-

tion and standardization of such expression values. In particular, we evaluate

the performance of the preprocessing methods that were proposed by Karp et al.

([10]). The figures in this chapter are based on the measurements taken from

the ‘master gel’ of the TrkA experiment, i.e. the gel with the greatest number of

detected spots (3562, here). Nevertheless, we obtained the same results from all

other gels of the experiment.

2.1. Calibration

An impression of the necessity of calibration can be obtained from figure 1

were the raw background subtracted spot volumes (that have been obtained from

the DeCyder software) of the Cy2, Cy3 and Cy5 labelled samples are plotted

against each other. The plots show linear dependencies between the different
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Figure 1: Raw background subtracted spot volumes spot volumes of the
Cy2, Cy3 and Cy5 labelled samples plotted against each other.

labelled samples. However, the point clouds appear not on the line of gradient

unity, so it can be assumed that the scatter is not only due to biological variation

but also to some dye effect. To remove this technical variation given by these dye

effects Karp et al. ([10]) and Kreil et al. ([12]) proposed to use the calibration

model

(2.1) yij = aj + bj ỹij ,

separately for each gel, with i=1, ..., n and j =1, 2, 3, where ỹij is the measured

background subtracted spot volume of the ith spot from the sample that has
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been labelled with the jth dye. The calibrated value of this spot volume is yij.

The dye effects are adjusted by the scaling factors bj and the additive offsets aj

compensate for any constant additive bias present after background subtraction.

This calibration model was developed by Huber et al. ([7]) for the calibration

of DNA microarrays. A corresponding software package, called ’vsn’, for the

open source statistic software R (available at http://cran.r-project.org) uses

a robust version of maximum likelihood estimation for the estimation of the

model parameters. We will call this preprocessing method the ‘vsn-method’, here.

After calibration the spot volumes scatter around the bisecting line (figure 2) and

the scatter should now represent only the biological variation. This calibration
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Figure 2: Spot volumes, calibrated by the vsn-method, of the Cy2, Cy3
and Cy5 labelled samples plotted against each other.

method raises the question whether the dye effects were the same for all gels,

so we compared the estimated parameters when calibrating each gel of the TrkA

experiment. Table 1 shows the mean and its percentage deviation of the calibra-

tion factors and offsets for all gels of the experiment. As we can see the percentage

deviations from the means are higher than 100%, so there are obviously different

dye effects from gel to gel. Hence, the calibration has to be done separately for

each gel.

Table 1: The mean and its percentage deviation of the calibration factors
and offsets, respectively, when using calibration model (2.1)
for each gel of the TrkA experiment.

j μ1 = mean(aj) deviation(μ1) μ2 = mean(bj) deviation(μ2)

1 0.0006 128.0% 4.45 166.7%

2 0.0003 134.3% 6.67 155.1%

3 0.0001 125.8% 7.34 154.9%
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2.2. Variance stabilization and normalization

In figure 2 it can be seen that the deviations of the spot volumes from the

different labelled samples calibrated by the two methods is bigger for big values

than the deviation for small values. For all five gels that have been prepared with

the samples taken at time five (24h) we calibrated the expression values by the

above method. From these values we calculated the mean and the variance of

each spot. We analyzed only those spots which have been detected on at least

three gels of time five, i.e. 1910 spots. The ranks of the means are plotted against

the variances in figure 3a. Here, it can also be seen that the variance for big values
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Figure 3: Rank of the mean versus the variance of a) the calibrated spot volumes,
b) the calibrated and log-transformed spot volumes and c) the calibrated
and asinh-transformed spot volumes.

is larger than the variance for small values. For this reason, in the standardisation

process (cf. next section) where the internal standard is subtracted from the

treatment and from the control, respectively, we also apply a transformation

to stabilise the variance. One can either apply the logarithm or the asinh on

the calibrated values to get a uniformly distributed variance. Figure 4 shows

the calibrated spot volumes with the logarithm applied on them. However,
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Figure 4: Calibrated and log-transformed spot volumes.
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the logarithm goes very fast to −∞ for small values and can thus causes

a bias for small values. Instead of the logarithm one can also use the asinh.

This is a function that is similar to the logarithm but smoother for small values.

The calibrated and asinh-transformed values are plotted in figure 5. The effect
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Figure 5: Calibrated and asinh-transformed spot volumes.

of these transformations on the variance-mean-dependencies can be seen in

figure 3. Fig. 3b and c show that after applying the logarithm or the asinh

transformation to the calibrated values the variance is stabilised with respect to

the mean.

2.3. Standardization

The benefit of the DIGE method is to have an internal standard on each gel.

The internal standard is a sample consisting of aliquots from all other samples

of the experiment. Subtracting the values of the internal standard from values

from the treated and untreated samples brings all gels on the same level and thus

reduces the gel-to-gel variance. The complete preprocessing for the treatment

values is thus given by either

(2.2) log(a2 + b2 ỹi2) − log(a1 + b1 ỹi1) ,

or by

(2.3) asinh(a2 + b2 ỹi2) − asinh(a1 + b1 ỹi1) ,

and similarly for the control values. In figure 6 the density histogram of the

vsn-processed and standardized values for the treatment values is given.

This distribution is symmetric and nearly normally distributed as can also be

seen in the QQ-plot.
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Figure 6: a) Density histogram of the preprocessed spot volumes from
the treatment sample. b) QQ-plot from these values.

3. ESTIMATION OF MISSING VALUES

Many statistical methods, especially those for multivariate data, are based

on the assumption that the data set to be analyzed is complete. However, in 2-D

DIGE studies with gel replicates between 10 to 30 % of the values are missing.

This is due to the fact that not all spots are detected or matched on each gel.

In this section we compare two methods for the estimation of missing values, the

‘row-mean method’ and the ‘k-nearest neighbour (knn) method’. The latter one

has already been successfully applied to microarray data (cf. Troyanskaya et al.

([17])). To illustrate these two methods we consider a simple example with arti-

ficial data of six spots on four gels (cf. table 2). In this example spot 2 on gel 3

Table 2: Artificial gel data with a missing value for spot 2 on gel 3.

gel 1 gel 2 gel 3 gel 4

spot 1 24.21 28.87 21.59 22.79
spot 2 26.43 18.07 23.84
spot 3 238.42 270.97 258.74 233.63
spot 4 27.53 30.05 25.35 28.50
spot 5 132.58 152.61 144.09 148.82
spot 6 250.41 277.93 273.65 264.53

has not been detected, so the value is missing. The row mean method simply

uses the average of all available measurements in the row where the value is

missing as estimator for this missing value. For the example in table 2 the

estimated value for spot 2 on gel 3 is then (26.43 + 18.07 + 23.84) / 3 = 22.78.

The underlying idea of the knn method is that there is a relationship between

the expression profiles of some proteins. So, if a value for spot x is missing, the
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method uses the values from those spots which are strongly related to this spot x.

To determine the relationships of spot x to all other spots of the data set one can

use a distance measure like the Euclidean, the Mahalanobis or the Chebyshev

distance (cf. Jung et al. ([8])). If the value for spot x is missing on gel y, these

distances are calculated by using only the values from the gels other than gel y.

In the example, we use the values from gel 1, 2 and 4 to calculate the distances of

spot 2 to all other spots. Spots 1 and 4 have a very short distance to spot 2, here,

so we take the values from spot 1 and 4 on gel 3 to estimate the missing value,

for example by taking the average of these values: (21.59 + 25.35) / 2 = 23.47.

Other possible estimators are the median or some weighted mean. An important

question that appears when using the knn method is, how many neighbours

should be used for the estimation. To determine the estimation error we used

the five gels from the fifth time point in the TrkA experiment, removed all rows

with missing values, so that a complete data set A with 526 rows and 5 columns

remained. From this data set we generated 4 incomplete data sets B1 to B4 with

5, 10, 20 and 30 % of randomly chosen missing values, respectively. Then we

applied the knn method using different numbers k of neighbours. The resulting

filled up data sets C1 to C4 were then compared to the original complete data

set A by calculating the normalized root mean square (RMS) error:

(3.1) normalized RMS error =

√
n∑

i=1

m∑
j=1

(Aij − Cij)2/(n ∗ m)

m∑
i=1

m∑
j=1

Aij/(n ∗ m)

,

where n is the number of spots and m is the number of replicates. A plot of this

error is given in figure 7. Plot 7a shows the error when using the knn method
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Figure 7: a) Normalized RMS error in dependence of k. The knn method applied
a) to data with different proportions of missing values, b) with different
distance measures and c) with different missing values estimators.

with the Euclidean distance and the mean applied to data sets with different

proportions of missing values. The error increases with increasing proportion of

missing values and the minimum of the curves is between 5 and 20 neighbours.

We compared also the performance of the difference measures (figure 7b) and
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of the estimators (figure 7c). For both plots a data set with 30% of missing

values was analyzed. Furthermore, for figure 7b the mean was used as missing

values estimator and for figure 7c the Euclidean distance was used as distance

measure. These plots show that using the Euclidean distance is slightly better

than using the Mahalanobis or the Chebyshev distance and that the mean is a

better estimator than the median or a weighted mean. We obtained the same

results from plots with other combinations of difference measures and estimators.

Compared to the row-mean method the knn method results in smaller errors.

The minima of the error-curves of figure 7a and the errors of the row-mean method

are given in table 3. As further research activity it would also be of interest to

compare the knn method to other imputation methods given in Nguyen et al.

([14]). They use for example Partial Least Square (PLS) regression to impute

missing values.

Table 3: Comparison of the normalized RMS error when using
the row mean method and the knn method, respectively.

proportion of 5% 10% 20% 30%
missing values

row mean error 0.13 0.19 0.26 0.32

min (knn error) 0.02 0.04 0.05 0.07

4. LONGITUDINAL DATA ANALYSIS

4.1. Analysis of variance

Before doing the statistical analysis we preprocessed the data by the vsn-

method described in chapter 2. We also filled up the missing values by the knn

method described in chapter 3. The interest of the statistical analysis was to

find those proteins for which the expression profiles over the time were different

in the treated and untreated sample, respectively. In order to find differences in

the temporal course of the treated and untreated samples we used an analysis of

variance model for longitudinal data (cf. Jung et al. ([8]) and Diggle et al. ([5])).

Such a model should take the time dependence of the measurements into account.

Using F-tests one can detect time/treatment-interactions of spots. For our analy-

sis we used only those spots for which at least three values were available at each

time point. The detected significant spots are presented in table 4. The p-values

in this table are not corrected for multiple testing (cf. Dudoit et al. ([6])), because

the number n of spots is not clearly fixed in a 2-DE experiment. Biochemist often

decide to exclude a great number of spots still after the statistical analysis.
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Table 4: Spots with a time/treatment interaction.

rank spot-no. p-value

1 1136 0.0023
2 910 0.0055
3 988 0.0075
4 1669 0.0255
5 1054 0.0428

The expression profiles of the two most significant spots are plotted in figure 8.

Both spots have a similar expression at the beginning of the experiment and the

profiles drift at the end.
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Figure 8: a) Temporal courses of the expression values of the
spot numbers 910 (a) and 1136 (b) in the treated
(solid line) and untreated (dashed line) samples.

4.2. Biological implications

This biological experiment was performed to identify candidate proteins

contributing to neuroblastoma clinical outcome. We identified 5 proteins with

a time/treatment-interaction upon addition of neurotrophin in SY5Y-TrkA cells

(table 4). These proteins were identified using MALDI (matrix assisted laser

desorption and ionization) mass spectrometry. For instance protein 910 with a

changed temporal course after neurotrophin receptor activation consists to a fam-

ily of heat shock proteins known to be involved in a number of cellular processes.

Regarding cancer research the increased expression of heat shock protein 70 (Hsp

70) has been reported in a variety of tumor tissues. Hsp 70 has also been detected

in plasma and therefore could potentially be used as a biomarker for diagnosis.

It has been demonstrated, that patients suffering from prostate cancer have an

increased level of Hsp 70 in the blood plasma (cf. Abe et al. ([1])). Based on this

knowledge Hsp 70 could be a candidate tumor marker for neuroblastoma. To test

this hypothesis further experiments have to be performed.
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5. FUTURE CHALLENGES IN STATISTICAL PROTEOMICS

The statistical analysis of protein expression data is similar to the analysis

of gene expression data from DNA microarrays. A future challenge for statisti-

cians is the adaption of the methods for the analysis of gene expression data to

be applicable to protein expression data. An important question of genomics was

to find genes with differential expression in samples from different tissue types

(cf. Jung et al. ([9])). Statistical tools for this purpose can also be applied to

protein expression data from 2-DE when having estimated the missing values

before. Of interest are also protein expression data from mass spectrometry (cf.

Aebersold and Goodlett ([2]) and Pusch et al. ([15])). Statistical applications

for those data span the whole range of multivariate methods like classification

problems or multivariate outlier detection.

Furthermore, interactions between biomolecules are important in many im-

portant processes, such as cell proliferation and cell signalling. When pathogens

(e.g. bacteria) attack our body, it responds by producing many antibodies. They

bind to a part of pathogen, called antigen. Biochemists have studied how and

where a given antibody binds to an antigen by investigation of a single point

mutant of the antibody. Andersson ([4]) describes a different strategy for such

mutation experiments. Instead of mutating each antibody at one position only,

several modifications are made in the same antibody. Using statistical tools like

Partial Least Squares regression he could find out which modification was relevant

for establishing the binding. Also the investigation of the impact of environmental

changes on the binding strength of an antibody-antigen interaction is important

for antibodies used in diagnostic tests for cancer.

In both situations the binding properties of the interaction of biomolecules

can be characterized by association and dissociation rates. These parameters can

be measured by surface plasmon resonance detectors. New multivariate methods

should be developed to analyze the relationships between these kinetic parame-

ters and all the factors that influence these measures and to predict the kinet-

ics of biomolecular interactions for new combinations of explanatory variables.

There is also need for new statistical tools which allow the inclusion of structural

and sequence information from nuclear magnetic resonance spectra and Fourier

transform ion cyclotron resonance mass spectra for generating new biological and

clinical knowledge. Such extensions of available methods could be of consider-

able importance in drug development for improving the binding of a drug to the

desired target and for decreasing unwanted side reactions.
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