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Abstract:

• Difference gel electrophoresis (DIGE) is the new gold standard analysing complex
protein mixtures in proteomics. It is used for measuring the expression levels of
proteins in different mixtures on the same two-dimensional electrophoresis (2-DE)
gel. In this paper we review a method for the calibration and normalization of those
protein expression measurements. Further we show how to find treatment effects and
time-treatment-interactions in longitudinal data obtained from DIGE experiments.
A problem in those data sets is the existence of a lot of missing values. Therefore,
we propose a method for the estimation of missing data points.
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1. INTRODUCTION

While the focus of biochemical research was addressed on the genome in
the last decade the view is now turned onto the proteome. Big data sets of
gene expression obtained from DNA-microarrays made the development of sta-
tistical methods necessary to make correct inferences from these measurements.
For quantitative protein expression analysis either mass spectrometry (cf. Aeber-
sold and Goodlett ([1]) and Gygi et al. ([7])) or two-dimensional gel electrophore-
sis (2-DE) (cf. Westermeier et al. ([14])) is applied. In this paper we focus on
the analysis of protein expression data obtained from a new detection method
(DifferenceGel Electrophoresis, DIGE) based on fluorescence labelling before 2-DE.
2-DE separates the proteins of a mixture by their isoelectric point (pI) and
molecular size to distinct spots. After separation the proteins are detected using
a confocal fluorescence scanner whereas fluorescence intensity of a spot can be
regarded as a measure of expression for its respective protein. DIGE enables the
user to put up to three different mixtures of proteins on the same gel. The dif-
ferent mixtures are labelled by different fluorescence dyes (Cy2, Cy3 and Cy5).
For quantitative proteome analysis image analysis software automatically deter-
mines the boundaries and sizes of the spots. Usually, a DIGE experiment is
designed such that m independent replications of treatment and control mixtures
are put on the same m gels. The internal standard, a mixture of same amounts
of all m treatment and m control probes, is also put on each gel. This internal
standard allows high accuracy calibration of the expression values. Calibration
and normalization of protein expression data is reviewed in section 2. In or-
der to obtain information about interactions of treatment and control with the
time, DIGE experiments often include measurements over several time points.
Known statistical methods for the analysis of longitudinal data can be used to
analyze those experiments. One possible method for such an analysis is detailed
in section 3. Often, 2-DE data contains up to 50% of missing values. The
missing values occur because not each protein is visible on each gel when repli-
cating probes on several gels. For example, on gel number one there are 1732
protein spots and 1967 spots are on gel number two, but only 1447 of these
spots belong to proteins commonly represented on both gels. Some statistical
methods, however, need complete data sets, for example, some methods for the
detection of differentially expressed genes (cf. Gannoun et al. ([6])) or the corre-
spondence analysis for microarray data (cf. Fellenberg et al. ([5])). These methods
could also be applied to protein expression data if the data sets were complete.
One possible method to overcome this problem is to estimate the missing values
by using the available measurements from other proteins. In section 4, we inves-
tigate how the k nearest neighbor method behaves when being applied to DIGE
data. This method was also applied for the estimation of missing values in gene
expression data by Troyanskaya et al. ([13]). The idea of this method is that
there are groups of proteins with similar expression profiles. A missing value of
a protein can then be estimated by available values from the proteins of the
same group.
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2. CALIBRATION, NORMALIZATION AND STANDARDIZA-
TION OF DIGE DATA

A usual DIGE experiment results in three values for each spot on a gel,
i.e. treated, untreated and internal standard. From the DeCyderTM software one
can obtain the background subtracted spot volumes (cf. Amersham Biosciences
([2])). In this software, a borderline for each spot is automatically detected
and the sum of the pixel intensities within the spot boundary is the spot volume.
The background is subtracted by excluding the lowest 10th percentile pixel values
on the spot boundary. As we will see in this section the statistical analysis
cannot be done with this raw data material. Data obtained from analytical
instruments are always affected by technical and biological variation. To make
correct inferences on the biological variation preprocessing of data is necessary.
In this section we discuss the features of the background subtracted spot volumes
and describe how to calibrate and transform the values for further actual analysis.
One source of technical variation comes from the different dyes. In figure 1
the Cy5 and Cy3 spot volumes of a DIGE gel are plotted against each other.
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Figure 1: Scatterplot of the Cy5 versus the Cy3 spot volumes
of a DIGE gel.

It can be seen that the Cy5 dye causes higher volume values than the Cy3 dye.
To calibrate the spot volumes Karp et al. ([9]) proposed to use a scaling fac-
tor which adjusts for the dye-specific gain, and to use an additive offset which
compensates for any constant additive bias present after background subtraction.
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The additive offset is used because the different dyes result in different background
fluorescence. This calibration method was originally introduced by Huber et al.
([8]) for the preprocessing of DNA-microarray data. Having n spots on a gel with
three different mixtures (internal standard, treated, untreated) this calibration
can be modelled by

(2.1) ỹih = ah + bhyih

with i = 1, ..., n and h = 1, 2, 3. For h = 1 we have the value for the treated
probe, h = 2 for the untreated probe and h = 3 for the internal standard.
In this model ỹih are the measured background subtracted spot volumes, ah are
the additive offsets and bh are the scaling factors. Hence, 2 ∗ 3 parameters have
to be estimated. How to do this will be explained below. Some more features of
the raw data require a second transformation. The scanning of the fluorescent
gels results in lognormal distributions of the spot volumes. However, a normal
distribution would be more appropriate for most statistical applications so the
data has to be normalized. Furthermore, the variance of the spot volumes is
dependent on the mean of the spot volumes. This is illustrated in figure 2.
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Figure 2: Scatterplot of the variance of the Cy3 and Cy5 spot
volumes versus the rank their mean.

The variance of the spot volumes increases when the mean also increases.
One possibility to normalize the data and to stabilize the variance would be to
apply the logarithm on the data. But the logarithm results in a bias for low spot
volumes as can be seen in in figure 3 where the Cy3 and Cy5 spot volumes with
the logarithm applied on them are plotted against each other. Instead of using
the logarithm we will use the arsinh for normalization and variance stabilization.
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Figure 3: Scatterplot of the log-transformed Cy5 spot volumes
versus the log-transformed Cy3 spot volumes.

The graphs of the logarithm and the arsinh are plotted in figure 4.
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Figure 4: Graphs of the arsinh and the logarithm.

The relationship between the two functions can be expressed by

lim
ξ→∞

(arsinh ξ − log ξ − log 2) = 0 .

Hence, for big values the arsinh is equivalent to the logarithm, but it has not a
singularity at zero and it is smooth for small values. Now, using the calibration
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transformation and the arsinh, the true protein abundance xih can be modelled
by

(2.2) arsinh
ỹih − ah

bh
= xih + εih

where εih ∼ N(0, σε). To estimate (a1, a2, a3, b1, b2, b3) Huber et al. ([8]) pro-
posed a robust version of maximum likelihood estimation. The robust version is
necessary because maximum likelihood estimation itself is very sensitive to devia-
tions from the normal distribution and to the presence of differentially expressed
proteins. The above estimation algorithm is implemented in the vsn-package for
the software R (both free available at http://cran.r-project.org). The resulting
benefits of calibration and normalization can be seen in the figures 5 and 6.
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Figure 5: Calibrated and transformed Cy3 spot volumes versus
calibrated and transformed Cy5 spot volumes.

In figure 5 it is shown that there is no more dye-specific gain for the cal-
ibrated and transformed spot volumes. Further, the bias for low spot volumes
has disappeared. The variance of the calibrated and transformed volumes versus
the rank of their mean is plotted in figure 6. It can be seen that there is no
more dependence between variance and mean. Now, after calibration and nor-
malization, we can use the benefit of the internal standard to reduce the gel-to-gel
variation and bring all gels on the same level. This means we set the calibrated
and arsinh-transformed treatment and control values in relation to the internal
standard value. More precisely we have to subtract the internal standard from
the treatment and control value, respectively, because ratios become differences
when the logarithm or the arsinh is applied on them. Hence, the standardized
treatment value is xi1 − xi3 and the standardized control value is xi2 − xi3.
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Figure 6: Variance of the calibrated and normalized spot vol-
umes versus the rank of their mean.

3. ANALYSIS OF LONGITUDINAL DIGE DATA

A frequent subject of DIGE studies is the comparison of the temporal
course of the protein expression in some treated probes to the temporal course
of the protein expression in some untreated probes. Since there are only a few
time points to be regarded such a study can be analyzed by using methods of
longitudinal data analysis. Here, we adapt such a method, given in Diggle et al.
([4]), to the situation of a DIGE experiment. The design for a time dependent
DIGE experiment is given in table 1. For each spot, which has been detected

Table 1: Design of a time dependent DIGE experiment.

replication 1 replication 2 ... replication m

time 1 gel11 gel12 ... gel1m

time 2 gel21 gel22 ... gel2m
...

...
...

. . .
...

time p gelp1 gelp2 ... gelpm

on each of the pm gels, the analysis is done separately. Recall, that for each spot
and each gel we get a standardized volume value for the treated probe and a
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standardized value for the untreated probe. We denote yhiq as the standardized
volume value for the spot in question on the jth gel at the qth time point within
the hth group (treated, untreated), where j = 1, ..., m , q = 1, ..., p and h = 1, 2.
Since we analyze the same protein over the time we need a model which heeds
the time-dependence of the values. Therefore, we regard the mixed linear model

(3.1) yhjq = βh + γhq + Uhj + Zhjq

where βh is the main effect of the hth group, γhq is the interaction between group
and time, Uhj ∼ N(0, ν2) is the random effect of the jth replication and Zhjq ∼
N(0, σ2) are the random errors. With the given distribution assumptions for
the random effects the vector Yhj = (Yhj1, Yhj2, ..., Yhjp) is normally distributed
with covariance matrix V = σ2I + ν2J . That means that the correlation between
two time points is given by ρ = ν2/(ν2 + σ2). At first we want to test the null
hypothesis that there is no treatment effect, i.e. testing βh = β for h = 1, 2,
meaning that the temporal course for the protein in the treated and untreated
probe are on the same level. The F -statistic for testing this hypothesis is given by
F1 = {BTSS1/(2 − 1)}/{RSS1/(2m − 2)} ∼ F(2−1),(2m−2). The sums of squares
are given in the corrected ANOVA table 2 below. We are further interested in
the question if there is a treatment-time interaction, i.e. the temporal courses
are not parallel. This can be answered by testing the null hypothesis γhq = γq

for h = 1, 2 and for q = 1, ..., p. This null hypothesis means that the response
profiles of the group means are parallel. The according test statistic is given by
F2 = {ISS2/[(2−1)(p−1)]}/{RSS2/[(2m−2)(p−1)]} ∼ F(2−1)(p−1),(2m−2)(p−1).

Table 2: ANOVA table for the Analysis of longitudinal DIGE data.

source of variance sums of squares d.o.f.

between treatment BTSS1 = p
∑2

h=1 m(yh·· − y···)2 2 − 1

whole plot residual RSS1 = TSS1 − BTSS1 2m − 2

whole plot total TSS1 = p
∑2

h=1

∑m
j=1(yhj· − y···)2

between time BTSS2 = 2m
∑p

q=1(y··q − y···)2 p − 1

treatment-time ISS2 =
∑p

q=1

∑2
h=1 m(yh·q − y···)2 (2 − 1)×

interaction −BTSS1 − BTSS2 (p − 1)

split plot residual RSS2 = TSS2 − ISS2 (2m − 2)×
−BTSS2 − TSS1 (p − 1)

split plot total TSS2 =
∑2

h=1

∑m
j=1

∑p
q=1(yhjq − y···)2 2pm − 1
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4. MISSING VALUE ESTIMATION

As mentioned in the beginning missing values are a general problem in 2-DE
data. In this section we present a method for the estimation of missing data, using
the k nearest neighbor method. We begin with some notation. Let E = (eij) be
the matrix of observations, where the rows are referred to protein spots and the
columns are referred to replications (gels). Hence, eij is the expression value of
protein i on gel j, with i = 1, ..., n and j = 1, ..., m, as given below.

(4.1)

⎛⎜⎜⎜⎜⎜⎜⎝
e11 ... e1m
...

...
ei1 eij eim
...

...
en1 ... enm

⎞⎟⎟⎟⎟⎟⎟⎠
Now, we can define distances between each pair of rows of E (Ei = (ei1, ..., eim)′,
Ei′ = (ei′1, ..., ei′m)′). The Euclidean distance is given by

(4.2) d1(Ei, Ei′) =
√

(ei1 − ei′1)2 + (ei2 − ei′2)2 + ...(eim − ei′m)2 ,

the Tschebyscheff distance is given by

(4.3) d2(Ei, Ei′) = sup |eij − ei′j | ,

j = 1, ..., m, and the Mahalanobis distance is given by

(4.4) d3(Ei, Ei′) =
√

(Ei − Ei′)T A−1(Ei − Ei′) ,

where A is the empirical covariance matrix of the m gels. The principle of the
k nearest neighbor method is now the following. For the row Ei the k nearest
neighbors are those rows of E with the k smallest distances to Ei. More details
on the k nearest neighbor method can be found in Ripley ([11]). This method
was used in nonparametric estimation of the density (see for example Rosenblatt
([12]) and regression (see for example Devroye ([3])) as well as in classification
problems (see for example Ketskemety ([10])). With the above given notations
missing protein measurements can be estimated as follows. Let Ei be the row
where the value eij is missing. Let Qi be the set of non missing values of Ei.
We denote these values by e′ip, p = 1, ..., q, and E′

i = (e′i1, ..., e
′
iq)

T . Let Es, s �= i,
be the row s of the Matrix E. We suppose that esj is available and at least
q other esp are available, too, in the same columns as in Ei. Then we denote
E′

s = (e′s1, ..., e′sq)T and give the
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Definition 4.1. Ei and Es are neighbors if d(E ′
i, E

′
s) is small.

and

Definition 4.2. The k rows Es (s �= i) with the k smallest distances to
Ei are the k nearest neighbors to Ei.

To estimate the missing value eij let es1j , es2j , ..., eskj be the esj such that
Es belongs to the k nearest neighbors of Ei. The missing value eij can now be
estimated by

(4.5) êmean
ij =

1
k

k∑
l=1

eslj ,

(4.6) êwmean
ij =

1
k

k∑
l=1

wisl
eslj ,

with

(4.7) wisl
=

1

d(E′
i, E

′
sl

)
k∑

t=1

1
d(E′

i,E
′
st

)

,

or by

(4.8) êmedian
ij = median(es1j , es2j , ..., eskj) .

We applied the k nearest neighbor algorithm to protein expression data from a
neuroblastoma DIGE study. To get an idea of how good the method works, we
took a complete matrix A from which we generated an incomplete matrix B with
40% of randomly chosen missing values. The missing values where estimated
with the k nearest neighbor method by using different combinations of distances
(d1, d2, d3) and estimators (êmean

ij , êwmean
ij , êmedian

ij ) as well as different ks.
For each estimated matrix B we calculated the normalized root mean square
(RMS) error

(4.9)

√
m∑

j=1

n∑
i=1

(Aij − Bij)2/(n ∗ m)

mean(A)
,

to compare it to the complete matrix A. By comparing the errors for the different
ways of estimation we came to the result that êmean

ij , êwmean
ij and êmedian

ij have a
similar performance. Further, we found out that the error is nearly the same
when the Euclidean or Mahalanobis distance is used, but it is higher when the
sup-distance is used. For the appropriate number of neighbors, we saw that the
error was smallest between 5 and 20 neighbors. We applied this missing value
estimation to get a balanced data structure for the analysis of the longitudinal
DIGE data using the mixed linear model described in section 3.
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1. INTRODUCTION AND MOTIVATION FOR THE NEW TAIL
INDEX ESTIMATORS

In Statistics of Extremes, the tail index γ is the basic parameter of extreme
events. Such a parameter plays a relevant role in other extreme events’ parame-
ters, like high quantiles and return periods of high levels, among others. The tail
index is a real-valued parameter and the heavier the tail, the larger the tail index
γ is. Heavy-tailed models have revealed to be quite useful in most diversified
fields, like computer science, telecommunication networks, insurance and finance.
In the field of Extremes, we usually say that a model F is heavy-tailed whenever
the tail function, F := 1 − F , is a regularly varying function with a negative
index of regular variation equal to {−1/γ}, γ > 0, or equivalently, the quantile
function U(t) = F←(1 − 1/t), t ≥ 1, with F←(x) = inf{y : F (y) ≥ x}, is of
regular variation with index γ. This means that, for every x > 0,

(1.1) lim
t→∞

F (tx)
F (t)

= x−1/γ ⇐⇒ lim
t→∞

U(tx)
U(t)

= xγ .

We shall here concentrate on these Pareto-type distributions. Note that (1.1) is
equivalent to saying that

(1.2) 1 − F (x) = x−1/γ LF (x) ⇐⇒ U(x) = xγ LU (x) ,

with LF and LU slowly varying functions, i.e., functions L• such that
L•(tx)/L•(t) → 1, as t → ∞, for all x > 0.

The second order parameter ρ (≤ 0), rules the rate of convergence in the first
order condition (1.1) (or equivalently, (1.2)), and is the non-positive parameter
appearing in the limiting relation

(1.3) lim
t→∞

lnU(tx) − lnU(t) − γ lnx

A(t)
= lim

t→∞
lnLU (tx) − ln LU (t)

A(t)
=

xρ − 1
ρ

,

which we assume to hold for all x > 0 and where |A(t)| must then be of regular
variation with index ρ (Geluk and de Haan, 1987). We shall assume everywhere
that ρ < 0.

Remark 1.1. For the strict Pareto model, F (x) = 1 − C x−1/γ , x ≥ Cγ ,
and indeed only for this model, the numerator of the fraction in the left hand-side
of (1.3) is null, i.e., lnU(tx) − lnU(t) − γ lnx ≡ 0.

Remark 1.2. For Hall’s class of Pareto-type models (Hall, 1982; Hall and
Welsh, 1985), with a tail function

(1.4) 1 − F (x) = Cx−1/γ
(
1 + Dxρ/γ + o

(
xρ/γ

))
, as x → ∞ ,

C > 0, D ∈ R0, ρ < 0, (1.3) holds and we may choose A(t) = γρDCρtρ.
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This is a class of models where (1.2) (or equivalently, (1.1)) holds true, with an
asymptotically constant slowly varying function LF (or equivalently, LU ).

To obtain information on the distributional behaviour of the second order
parameters’ estimators, we shall further assume that the rate of convergence in
(1.3) is ruled by a function B(t) such that |B(t)| is also of regular variation with
the same index ρ, i.e., we assume that

(1.5) lim
t→∞

ln U(tx)−ln U(t)−γ ln x
A(t) − xρ−1

ρ

B(t)
=

x2ρ − 1
2ρ

holds for all x > 0.

Remark 1.3. Condition (1.5) holds true for models with a tail function

(1.6) 1 − F (x) = Cx−1/γ
(
1 + D1x

ρ/γ + D2x
2ρ/γ + o

(
x2ρ/γ

))
, as x → ∞ .

For the most common heavy-tailed models, like the Fréchet and the Student’s t,
condition (1.5) holds true, i.e., these models belong to the class in (1.6).

For intermediate k, i.e., a sequence of integers k = kn, 1 ≤ k < n, such that

(1.7) k = kn → ∞ , kn = o(n) , as n → ∞ ,

we shall consider, as basic statistics, both the log-excesses over the random high
level {lnXn−k:n}, i.e.,

(1.8) Vik := lnXn−i+1:n − lnXn−k:n , 1 ≤ i ≤ k < n ,

and the scaled log-spacings,

(1.9) Ui := i
{
lnXn−i+1:n − ln Xn−i:n

}
, 1 ≤ i ≤ k < n ,

where Xi:n denotes, as usual, the i-th ascending order statistic (o.s.), 1 ≤ i ≤ n,
associated to a random sample (X1, X2, ..., Xn).

We may write Xi:n
d= U(Yi:n), where {Yi} denotes a sequence of unit Pareto

random variables (r.v.’s), i.e., P (Y ≤ y) = 1 − 1/y, y ≥ 1. Also, for j > i,
Yj:n/Yi:n

d= Yj−i:n−i, lnYi:n
d= Ei:n, where {Ei} denotes a sequence of indepen-

dent standard exponential r.v.’s, i.e., P (E ≤ x) = 1 − exp(−x), x ≥ 0, and for
intermediate k, Yn−k:n ∼ n/k → ∞, as n → ∞. Consequently, whenever we are
under the first order framework in (1.1), we get

Vik
d= ln

U(Yn−i+1:n)
U(Yn−k:n)

= ln
U(Yn−k:n Yk−i+1:k)

U(Yn−k:n)
∼ γ Ek−i+1:k , 1 ≤ i ≤ k ,
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i.e., Vik, 1 ≤ i ≤ k, are approximately the k o.s.’s from an exponential sample of
size k and mean value γ. Also, since ln Y1:i

d= E1:i
d= Ei/i,

Ui
d= i

(
ln

U(Yn−i+1:n)
U(Yn−i:n)

)
= i

(
ln

U(Yn−i:n Y1:i)
U(Yn−i:n)

)
∼ γ Ei , 1 ≤ i ≤ k ,

i.e., the Ui’s, 1 ≤ i ≤ k, are approximately independent and exponential with
mean value γ. Then the Hill estimator of γ (Hill, 1975),

(1.10) H(k) ≡ Hn(k) =
1
k

k∑
i=1

Vik =
1
k

k∑
i=1

Ui ,

is consistent for the estimation of γ whenever (1.1) holds and k is intermediate,
i.e., (1.7) holds.

Under the second order framework in (1.3) the asymptotic distributional
representation

(1.11) H(k) d= γ +
γ√
k

Z
(1)
k +

1
1 − ρ

A(n/k)
(
1 + op(1)

)
holds true (de Haan and Peng, 1998), where Z

(1)
k =

√
k
(∑k

i=1 Ei/k − 1
)

is an
asymptotically standard normal r.v.

Remark 1.4. If the underlying model is the strict Pareto model in Re-
mark 1.1, lnXi:n =γ Ei:n + γ lnC, and the use of Rényi’s representation of expo-
nential order statistics, as a linear combination of independent unit exponential
r.v.’s (Rényi, 1953), Ei:n =

∑i
j=1 Ej/(n − j + 1), 1 ≤ i ≤ n, leads us to

H(k) d=
γ

k

k∑
i=1

{En−i+1:n− En−k:n} d=
γ

k

k∑
i=1

k∑
j=i

Ej

j

d=
γ

k

k∑
j=1

Ej
d=

γ

k
Ga(k) ,

where Ga(k) denotes a Gamma r.v. with a shape parameter equal to k, i.e., a r.v.
with probability density function (p.d.f.) xk−1 exp(−x)/Γ(k), x ≥ 0, with Γ(t)
denoting the complete gamma function, Γ(t) =

∫∞
0 xt−1e−x dx. Then for every k,

the Hill estimator in (1.10) is unbiased for the estimation of γ, i.e., E (H(k)) = γ

for any k, and
√

k (H(k) − γ) /γ is asymptotically standard normal, as k → ∞.

We shall assume that we are in the class of models in (1.6). Consequently,
we may choose

(1.12) A(t) = α tρ =: γ β tρ, B(t) = β′ tρ , β, β′ �= 0, ρ < 0 .

The adequate accommodation of the bias of Hill’s estimator has been ex-
tensively addressed in recent years by several authors. The idea is to go further
into the second order framework in (1.3). Then,

V
ik

d= ln
U(Yn−k:n Yk−i+1:k)

U(Yn−k:n)
d≈ γ Ek−i+1:k +A(n/k)

Y ρ
k−i+1:k − 1

ρ
, 1 ≤ i ≤ k ,
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and

Ui
d= i ln

U(Yn−i:n Y1:i)
U(Yn−i:n)

d≈ γ

(
1 +

A(n/k)
γ

(k

i

)ρ)
Ei , 1 ≤ i ≤ k .

Beirlant et al. (1999) and Feuerverger and Hall (1999) work with the scaled log-
spacings Ui, 1 ≤ i ≤ k, in slightly different but equivalent ways, and consider the
joint estimation of the first order parameter γ and the second order parameters
at the same level k; in a similar set-up, Gomes and Martins (2002) advance with
the “external” estimation of the second order parameter ρ, i.e., the estimation of
ρ at a lower level (larger k) than the one used for the tail index estimation, being
then able to reduce the asymptotic variance of the proposed tail index estimator,
but they pay no special attention to the extra “scale” parameter β �= 0 in the A

function in (1.12). More recently, Gomes et al. (2004b) deal with a joint external
estimation of both the “scale” and the “shape” parameters in the A function,
being able to reduce the bias without increasing the asymptotic variance, which
is kept at the value γ2, the asymptotic variance of Hill’s estimator, for an adequate
choice of the level k. Such an estimator, also considered here for comparison with
two new proposed estimators, is based on a linear combination of the excesses
Vik in (1.8), and is given by

(1.13) WH
̂β, ρ̂

(k) :=
1
k

k∑
i=1

e
̂β (n/k)ρ̂ ((i/k)−ρ̂−1)/(ρ̂ ln(i/k)) Vik ,

for adequate consistent estimators β̂ and ρ̂ of the second order parameters
β and ρ, respectively, and with WH standing for Weighted Hill. In the same
spirit, Gomes and Pestana (2004) study, mainly computationally, the estimator

(1.14) H
̂β, ρ̂

(k) := H(k) − β̂

1 − ρ̂

(n

k

)ρ̂
H

((
(1 − ρ̂)2 n−2ρ̂

−2 ρ̂ β̂2

)1/(1−2ρ̂)
)

,

with H the Hill estimator in (1.10).

We shall here consider the estimator

(1.15) H̃
̂β, ρ̂

(k) := H(k)
(

1 − β̂

1 − ρ̂

(n

k

)ρ̂)
,

together with the asymptotically equivalent variant,

(1.16) H
̂β, ρ̂

(k) := H(k) exp
(
− β̂

1 − ρ̂

(n

k

)ρ̂)
.

The dominant component of the bias of Hill’s estimator, A(n/k)/(1− ρ) =
γ β (n/k)ρ/(1− ρ), is thus estimated through H(k) β̂ (n/k)ρ̂/(1− ρ̂) and directly
removed from Hill’s classical tail index estimator, through two asymptotically
equivalent expressions, provided that k is intermediate, i.e., provided that (1.7)
holds true.
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Remark 1.5. Note that the estimator H in (1.14) has been built in
a way similar to the estimator H̃ in (1.15). The difference is that the bias
γ β (n/k)ρ/(1 − ρ) is estimated through H

(
k̂0

)
β̂ (n/k)ρ̂/(1− ρ̂), with k̂0 an esti-

mate of the “optimal” level for the Hill estimator, in the sense of minimum mean
squared error in Hall’s class of models.

Remark 1.6. The reason to consider the two asymptotically equivalent
estimators in (1.15) and (1.16) — also asymptotically equivalent to the estimator
in (1.14) — lies in the fact that we have the clear experience that asymptoti-
cally equivalent estimators may exhibit quite different sample paths’ properties.
In practice, one never knows the peculiarities of the underlying models, and it is
thus sensible to work with a set of a few estimators of the primary parameter of
rare events, in order to take “the best decision”.

1.1. A technical motivation

In the lines of Gomes and Martins (2004):

Lemma 1.1. Under the second order framework in (1.3), and for levels k

such that (1.7) holds, the distributional representation

(1.17)
α

k

k∑
i=1

( i

k

)α−1
Ui

d= γ +
γ α√

(2α − 1) k
Z

(α)
k +

α A(n/k)
α − ρ

(
1 + op(1)

)
holds true for any α ≥ 1, where

(1.18) Z
(α)
k =

√
(2α − 1) k

(
1
k

k∑
i=1

( i

k

)α−1
Ei − 1

α

)

are asymptotically standard normal r.v.’s. The asymptotic covariance structure

between the r.v.’s in (1.18) is given by

(1.19) Cov∞
(
Z

(α)
k , Z

(β)
k

)
=

√
(2α − 1) (2β − 1)

α + β − 1
.

If we assume that only the tail index parameter γ in unknown, and similarly
to the result in Gomes and Pestana (2004), we shall now state and prove a theorem
that provides an obvious technical motivation for the estimator in (1.15) (or in
(1.16)):
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Theorem 1.1. Under the second order framework in (1.3), further assum-

ing that A(t) may be chosen as in (1.12), and for levels k such that (1.7) holds, we

get, for H̃β, ρ(k) in (1.15) (or for Hβ, ρ(k) in (1.16)), an asymptotic distributional

representation of the type

(1.20) γ +
γ√
k

Z
(1)
k + Rk , with Rk = op

(
A(n/k)

)
,

where Z
(1)
k is the asymptotically standard normal r.v. in (1.18) for α = 1.

Consequently, both
√

k (H̃β, ρ(k) − γ) and
√

k (Hβ, ρ(k) − γ) are asymptotically

normal with variance equal to γ2, and with a null mean value not only when√
k A(n/k) −→ 0, but also when

√
k A(n/k) −→ λ �= 0, finite, as n → ∞.

Proof: The results related to the estimator in (1.15) come straighfor-
wardly from the fact that if all parameters are known, apart from the tail index γ,
we get from (1.11),

H̃β, ρ(k) d=
(

γ +
γ√
k

Z
(1)
k +

A(n/k)
1 − ρ

(
1 + op(1)

))×
(

1 − A(n/k)
γ(1 − ρ)

)
d= γ +

γ√
k

Z
(1)
k + op(A(n/k) ,

i.e., (1.20) holds. Since, for intermediate k,

exp
(
−A(n/k)

1 − ρ

)
= 1 − A(n/k)

1 − ρ
+ op

(
A(n/k)

)
,

the same distributional representation in (1.20) holds true for the tail index esti-
mator in (1.16). The remaining of the theorem follows then straightforwardly.

1.2. A graphical motivation

For the second order parameters’ estimators, discussed later on, in section 2,
and as a supporting example of the technical motivation given in 1.1, we exhibit
in Figure 1, the differences between the sample paths of the estimators H̃•(k)
in (1.15), for a sample of size n = 10,000 from a Fréchet model, with d.f.
F (x) = exp(−x−1/γ), x ≥ 0, with γ = 1, when we compute β̂ and ρ̂ at the
same level k used for the estimation of the tail index γ (left), when we compute
only β̂ at that same level k, being ρ̂ computed at a larger k-value, let us say
an intermediate level k1 such that

√
k1 A(n/k1) → ∞, as n → ∞ (center) and

when both ρ̂ and β̂ are computed at that high level k1 (right). For the notation
used in Figure 1, see subsection 4.2. The high stability, around the target value
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γ = 1, of the sample path in Figure 1 (right), is for sure related to the result
in Lemma 1.1, and not purely coincidential. It thus seems sensible to compare
asymptotically these estimation procedures, in order to detect the reasons for
the differences in behaviour.

Figure 1: Sample paths of the Hill estimates H in (1.10) and the tail index

estimates ˜H in (1.15), obtained through the estimation of (β, ρ) at the
level k1 := min(n − 1, 2n0.995/ ln ln n) (right) versus the estimation at
the same level both for β and ρ (left) and only for β (center).

1.3. Scope of the paper

When we look at the expression of the estimators from (1.13) till (1.16),
we see that one of the topics to deal with is the adequate estimation of (β, ρ)
in order to get the tail index estimators H̃

̂β, ρ̂
(k) and H

̂β, ρ̂
(k). In section 2 of

this paper, we shall thus briefly review the estimation of the two second order
parameters β and ρ. Section 3 is devoted to the derivation of the asymptotic
behaviour of the estimator H̃

̂β, ρ̂
(k) in (1.15) (equivalently, H

̂β, ρ̂
(k) in (1.16)),

estimating β and ρ at a larger k value than the one used for the tail index
estimation. We also do that only with the estimation of ρ, estimating β at
the same level k used for the tail index estimation. In section 4, and through
the use of simulation techniques, we shall exhibit the performance of the new
estimators in (1.15) and (1.16), comparatively to the WH estimator in (1.13),
to the classical Hill estimator and to H̃

̂βρ̂(k),ρ̂
(k), for the β-estimator, β̂ρ̂(k), in

Gomes and Martins (2002). We have here considered only an external estimation
of the second order parameter ρ. Such a decision is related to the discussion
in Gomes and Martins (2002) on the advantages of an external estimation of
the second order parameter ρ (or even their misspecification, as in Gomes and
Martins (2004)) versus an internal estimation at the same level k. Indeed, the
estimation of γ, β and ρ at the same level k leads to very volatile mean values
and mean squared error patterns. Finally, in section 5, some overall conclusions
are drawn.
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2. SECOND ORDER PARAMETER ESTIMATION

2.1. The estimation of ρ

We shall first address the estimation of ρ. We have nowadays two general
classes of ρ-estimators, which work well in practice, the ones introduced in Gomes
et al. (2002) and Fraga Alves et al. (2003). We shall consider here particular
members of the class of estimators of the second order parameter ρ proposed
by Fraga Alves et al. (2003). Under adequate general conditions, they are semi-
parametric asymptotically normal estimators of ρ, whenever ρ < 0. Moreover,
for a large diversity of models, they give rise, for a wide range of large k-values,
to highly stable sample paths, as functions of k, the number of top o.s.’s used.
Such a class of estimators has been parameterised by a tuning parameter τ ≥ 0,
and may be defined as

(2.1) ρ̂τ (k) ≡ ρ̂(τ)
n (k) := −

∣∣∣∣∣3
(
T

(τ)
n (k) − 1

)
T

(τ)
n (k) − 3

∣∣∣∣∣ ,

where

T (τ)
n (k) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
M

(1)
n (k)

)τ −
(
M

(2)
n (k)/2

)τ/2

(
M

(2)
n (k)/2

)τ/2 −
(
M

(3)
n (k)/6

)τ/3
if τ > 0

ln
(
M

(1)
n (k)

)
− 1

2 ln
(
M

(2)
n (k)/2

)
1
2 ln
(
M

(2)
n (k)/2

)
− 1

3 ln
(
M

(3)
n (k)/6

) if τ = 0 ,

with

M (j)
n (k) :=

1
k

k∑
i=1

{
ln

Xn−i+1:n

Xn−k:n

}j

, j ≥ 1
[
M (1)

n ≡ H in (1.10)
]
.

We shall here summarize a particular case of the results proved in Fraga
Alves et al. (2003), now related to the asymptotic behaviour of the ρ-estimator
in (2.1), under the second order framework in (1.3):

Proposition 2.1. Under the second order framework in (1.3), with ρ < 0,

if (1.7) holds, and if
√

k A(n/k) → ∞, as n → ∞, the statistic ρ̂
(τ)
n (k) in (2.1)

converges in probability towards ρ, as n →∞, for any τ ∈ R. More than this:

ρ̂
(τ)
n (k)−ρ = Op

(
1/
(√

k A(n/k)
))

, provided that, under the third order framework

in (1.5),
√

k A(n/k) B(n/k) → λB , finite. If
√

k A(n/k) B(n/k) → ∞, then

ρ̂
(τ)
n (k) − ρ = Op (B(n/k)) = Op (A(n/k)).
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Remark 2.1. The theoretical and simulated results in Fraga Alves et al.
(2003), together with the use of these estimators in the Generalized Jackknife
statistics of Gomes et al. (2000), as done in Gomes and Martins (2002), as well
as their use in the estimator in (1.13) (Gomes et al., 2004b) and in the estimator
in (1.14) (Gomes and Pestana, 2004), led us to advise in practice the consider-
ation of the tuning parameters τ = 0 for the region ρ ∈ [−1, 0) and τ = 1 for
the region ρ ∈ (−∞,−1), together with the level k0 = min (n − 1, [2n/ ln lnn]).
As done before, we however advise practitioners not to choose blindly the value
of τ . It is sensible to draw a few sample paths of ρ̂τ (k) in (2.1), as functions of k,
electing the value of τ which provides higher stability for large k, by means of
any stability criterion. For more details, see Gomes and Figueiredo (2003).

Remark 2.2. When we consider the level k0 suggested in Remark 2.1,
together with any of the ρ-estimators in this section, computed at that level k0,
{ρ̂(k0) − ρ} is of the order of B(n/k0) = (ln lnn)ρ, a very slow rate of convergence
towards zero. We shall here work with a level

(2.2) k1 = min
(
n − 1,

[
2n0.995/ ln lnn

])
.

Then ρ̂ − ρ = Op((n0.005 ln lnn)ρ) (provided that ρ > −49.75), and con-
sequently, for any intermediate level k, (ρ̂ − ρ) ln(n/k) = op(1), and√

k A(n/k) (ρ̂ −ρ) ln(n/k) = op(1) whenever
√

k A(n/k) → λ, finite. This is
going to be a fundamental result in the proof of Theorem 3.1, enabling the
replacement of ρ by ρ̂, without disturbing the distributional result in Theo-
rem 1.1, provided we estimate β adequately. In all the Monte Carlo simulations,
we have considered the level k1 in (2.2) and the following ρ-estimators in (2.1):
ρ̂0 = ρ̂0(k1) if ρ ≥ −1 and ρ̂1 = ρ̂1(k1) if ρ < −1.

2.2. Estimation of the second order parameter β

We have considered the estimator of β obtained in Gomes and Martins
(2002) and based on the scaled log-spacings Ui = i {lnXn−i+1:n − lnXn−i:n} in
(1.9), 1 ≤ i ≤ k. Let us denote ρ̂ any of the estimators in (2.1) computed at the
level k1 in (2.2). The β-estimator is given by

(2.3) β̂ρ̂(k) :=
(k

n

)ρ̂
(

1
k

k∑
i=1

(
i
k

)−ρ̂
)(

1
k

k∑
i=1

Ui

)
−
(

1
k

k∑
i=1

(
i
k

)−ρ̂
Ui

)
(

1
k

k∑
i=1

(
i
k

)−ρ̂
)(

1
k

k∑
i=1

(
i
k

)−ρ̂
Ui

)
−
(

1
k

k∑
i=1

(
i
k

)−2ρ̂
Ui

) .
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In Gomes and Martins (2002) and later in Gomes et al. (2004b), the fol-
lowing result has been proved:

Proposition 2.2. If the second order condition (1.3) holds, with

A(t) = γ β tρ, ρ < 0, if k = kn is a sequence of intermediate positive integers,

i.e. (1.7) holds, and if
√

k A(n/k) −→
n→∞∞, then β̂ρ̂(k) in (2.3) is consistent for the

estimation of β, whenever ρ̂ − ρ = op(1/ ln n). Moreover, if ρ is known,

(2.4) β̂ρ(k) d= β +
γ β (1 − ρ)

√
1 − 2ρ

ρ
√

k A(n/k)
W

B

k + R
B

k , with R
B

k = op(1)

and W
B

k asymptotically standard normal. More precisely we may write

(2.5) W
B

k =
(1 − ρ)

√
1 − 2ρ

|ρ|

(
Z

(1)
k

1 − ρ
− Z

(1−ρ)
k√
1 − 2ρ

)
,

with Z
(α)
k , α ≥ 1, given in (1.18).

The asymptotic distributional representation (2.4) holds true as well

for β̂ρ̂(k), with ρ̂ any of the consistent ρ-estimators in (2.1) computed at the

level k1 in (2.2). If
√

k A(n/k)R
B

k → λ
B

R, finite, we may further guarantee the

asymptotic normality of β̂ρ̂(k). If we consider β̂ρ̂(k)(k), then

(2.6) β̂ρ̂(k)(k) − β
p∼ −β ln(n/k)

(
ρ̂(k) − ρ

)
.

Remark 2.3. Note that when we consider the level k1 in (2.2), the same
restrictions for ρ as in Remark 2.2, and β̂ ≡ β̂ρ̂(k1), with ρ̂ any of the estimator
in (2.1), computed also at the same level k1, we may use (2.6) and derive that{
β̂−β

}
is of the order of ln(n/k1)B(n/k1) = O

(
lnn

(
n0.005 ln lnn

)ρ). This result
will also be needed in the proof of Theorem 3.1 and will enable us to keep the
distributional result in Theorem 1.1.

Remark 2.4. Note also that if we estimate β through β̂ρ̂(k), since{
β̂ρ̂(k) − β

}
is of the order of 1/

(√
k A(n/k)

)
, we shall no longer be able to

guarantee the distributional result in Theorem 1.1 (for details see Remark 3.2).

3. ASYMPTOTIC BEHAVIOUR OF THE ESTIMATORS

Let us assume first that we estimate both β and ρ externally at the level
k1 in (2.2). We may state the following:
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Theorem 3.1. Under the conditions of Theorem 1.1, let us consider the

tail index estimators H̃
̂β, ρ̂

(k) and H
̂β, ρ̂

(k) in (1.15) and (1.16), respectively, for

any of the estimators ρ̂ and β̂ in (2.1) and (2.3), respectively, both computed at

the level k1 in (2.2) and such that ρ̂ − ρ = op(1/ ln n). Then,
√

k
{

H̃
̂β, ρ̂

(k) − γ
}

as well as
√

k
{

H
̂β, ρ̂

(k) − γ
}

are asymptotically normal with variance equal to

γ2 and null mean value, not only when
√

k A(n/k) → 0, but also whenever√
k A(n/k) → λ, finite, as n → ∞.

Proof: If we estimate consistently β and ρ through the estimators β̂ and
ρ̂ in the conditions of the theorem, we may use Taylor’s expansion series, and
write,

H̃
̂β, ρ̂

(k) d= H(k) ×
(

1 − β

1 − ρ

(n

k

)ρ−
(
β̂ − β

) 1
1 − ρ

(n

k

)ρ (
1 + op(1)

)
− β

1 − ρ
(ρ̂ − ρ)

(n

k

)ρ
(

1
1 − ρ

+ ln(n/k)
)(

1 + op(1)
))

d= H̃β, ρ(k) − A(n/k)
1 − ρ

(
β̂ − β

β
+ (ρ̂ − ρ) ln(n/k)

)(
1 + op(1)

)
.

Since β̂ and ρ̂ are consistent for the estimation of β and ρ, respectively, and
(ρ̂ − ρ) ln(n/k) = op(1) (see Remark 2.2), the summands related to

(
β̂ − β

)
and (ρ̂ − ρ) are both op(A(n/k)), and the result in the theorem, related to

the H̃-estimator, follows immediately, provided that
√

k A(n/k) → λ, finite.
The reasoning is exactly the same for the H-estimator.

Remark 3.1. Note however that the levels k such that
√

k A(n/k) → λ,
finite, are sub-optimal for this type of estimators.

If we consider γ and β estimated at the same level, we are going to have
an increase in the variance of our final tail index estimator H̃

̂βρ̂(k), ρ̂
(k)

(
or equiv-

alently, H
̂βρ̂(k), ρ̂

(k)
)
. Similarly to Corollary 2.1 of Theorem 2.1 in Gomes and

Martins (2002), there in connection with a ML-tail index estimator, as well as in
Theorem 3.2 in Gomes et al. (2004b), in connection with the tail index estimator
in (1.13), we may also get:

Theorem 3.2. If the second order condition (1.3) holds, if k = kn is a

sequence of intermediate integers, i.e., (1.7) holds, and if
√

k A(n/k)−→
n→∞λ, finite,

non necessarily null, then

(3.1)
√

k
(
H̃

̂βρ̂(k), ρ̂
(k) − γ

)
d−→

n→∞ Normal
(

0, σ2
H2

:= γ2
(1 − ρ

ρ

)2
)

,
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i.e., the asymptotic variance of H̃
̂βρ̂(k), ρ̂

(k) increases of a factor ((1 − ρ)/ρ)2,

greater than one, for every ρ ≤ 0. The same result holds obviously true for

H
̂βρ̂(k), ρ̂

(k).

Proof: If we consider

H̃
̂βρ̂(k), ρ̂

(k) := H(k)

(
1 − β̂ρ̂(k)

1 − ρ̂

(n

k

)ρ̂
)

,

we now get

H̃
̂βρ̂(k), ρ̂

(k) = H̃β, ρ(k) − A(n/k)
1 − ρ

(
β̂ρ̂(k) − β

β
+ (ρ̂ − ρ) ln(n/k)

)(
1 + op(1)

)
.

Since
(
β̂ρ̂(k)− β

)
/β is now of the order of 1/

(√
k A(n/k)

)
, the term of the order

of 1/
√

k is going to be, from (1.20), (2.4) and (2.5),

γ√
k

(
Z

(1)
k +

(1 − ρ) (1 − 2ρ)
ρ2

(
Z

(1)
k

1 − ρ
− Z

(1−ρ)
k√
1 − 2ρ

))
,

which may be written as

γ√
k

((
1 − ρ

ρ

)2
Z

(1)
k − (1 − ρ)

√
1 − 2ρ

ρ2
Z

(1−ρ)
k

)
,

with Z
(α)
k the asymptotically standard normal r.v. in (1.18). Taking into

account the fact that from (1.19), the asymptotic covariance between Z
(1)
k

and Z
(1−ρ)
k is given by

√
1 − 2ρ / (1 − ρ), together with the fact that√

k A(n/k) (ρ̂ − ρ) ln(n/k) → 0 (see Remark 2.2), (3.1) follows.

Remark 3.2. If we compare Theorems 3.1 and 3.2 we see that the esti-
mation of the two parameters γ and β at the same level k induces an increase in
the asymptotic variance of the final γ-estimator of a factor given by ((1− ρ)/ρ)2,
greater than 1 for all ρ ≤ 0. As may be seen in Gomes and Martins (2002) the
asymptotic variance of the estimator in Feuerverger and Hall (1999) (where the
three parameters are computed at the same level k) is given by

σ2
FH

:= γ2

(
1 − ρ

ρ

)4

.

In Figure 2 we provide both a picture and some values of σH1
/γ ≡ 1, σH2

/γ

and σFH /γ, as functions of |ρ|.

It is obvious from Figure 2 that, whenever possible, it seems convenient to
estimate both β and ρ “externally”, at a k-value higher than the one used for the
estimation of the tail index γ.
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Figure 2: “Rulers” of the asymptotic standard deviations, σH1
and σH2

of the estimators under study, together with σF H , for γ = 1.

Remark 3.3. More generally, to obtain information on the asymp-
totic bias of H̃

̂β, ρ̂
(k), H̃

̂βρ̂(k), ρ̂
(k) and H̃

̂βρ̂(k)(k), ρ̂(k)
(k) — or equivalently,

of H
̂β, ρ̂

(k), H
̂βρ̂(k), ρ̂

(k) and H
̂βρ̂(k)(k), ρ̂(k)

(k) — we need to go further into a
third order framework, specifying, like has been done in (1.5), the rate of conver-
gence in the second order condition in (1.3). This is however beyond the scope
of this paper.

4. FINITE SAMPLE BEHAVIOUR OF THE ESTIMATORS

4.1. Underlying models

In this section we shall consider the following models in the class (1.6):

• the Fréchet model, with distribution function (d.f.) F (x) = exp(−x−1/γ),
x ≥ 0, γ > 0, for which ρ = −1;

• the Generalized Pareto (GP ) model, with d.f. F (x) = 1 − (1 + γx)−1/γ ,
x ≥ 0, γ > 0, for which ρ = −γ;

• the Burr model, with d.f. F (x) = 1 − (1 + x−ρ/γ)1/ρ, x ≥ 0, γ > 0, ρ < 0;

• the Student’s tν-model with ν degrees of freedom, with a probability density
function (p.d.f.)

ftν (t) =
Γ
(
(ν + 1)/2

)
√

πν Γ(ν/2)

[
1 +

t2

ν

]−(ν+1)/2

, t ∈ R (ν > 0) ,

for which γ = 1/ν and ρ = −2/ν.
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4.2. The simulation design

We have here implemented multi-sample simulation experiments of size
50,000 = 5,000(runs)×10(replicates), in order to obtain, for the above mentioned
models, the distributional behaviour of the new estimators H̃

̂β, ρ̂
and H

̂β, ρ̂
in

(1.15) and (1.16), respectively, based on the estimation of β at the level k1 in (2.2),
the same level we have used for the estimation of ρ, again not chosen in an optimal
way. For details on multi-sample simulation, see Gomes and Oliveira (2001).
We use the notation β̂j1 = βρ̂j

(k1), j = 0, 1, with ρ̂j , j = 0, 1 and βρ̂(k) given in
(2.1) and (2.3), respectively. Similarly to what has been done in Gomes et al.
(2004b) for the WH-estimator in (1.13), these estimators of ρ and β, for j = 0, 1,
have been incorporated in the estimators under study, leading to H̃

̂β01, ρ̂0
(k) /

H
̂β01, ρ̂0

(k) and to H̃
̂β11, ρ̂1

(k) / H
̂β11, ρ̂1

(k), respectively. The simulations show

that the tail index estimators H̃
̂βj1, ρ̂j

(k) and H
̂βj1, ρ̂j

(k), j equal to either 0 or 1,
according as |ρ| ≤ 1 or |ρ| > 1 seem to work reasonably well, as illustrated in
the sequel. In the simulation we have also included the Hill estimator in (1.10),
the “Weighted Hill” estimator in (1.13) and H̃

̂βρ̂(k), ρ̂
. The estimator H in (1.14)

exhibits a behaviour quite similar to that of H in (1.16), as may be seen from the
results in Gomes and Pestana (2004), and was not pictured, for sake of simplicity.

We have simulated four different indicators. Let us denote generically H̃n

any of the estimators in (1.13), (1.15) and (1.16), and let

kH
0s(n) := arg min

k
MSE s

[
Hn(k)

]
be the simulated optimal k (in the sense of minimum simulated mean squared
error) for the Hill estimator Hn(k) ≡ H(k) in (1.10). The two first indicators are
related to the behaviour of the new estimators at Hill’s optimal simulated level,
i.e.,

(4.1) REFF ˜H|H0
n :=

√√√√√MSE s

[
Hn

(
kH

0s(n)
)]

MSE s

[
H̃n

(
kH

0s(n)
)]

and

(4.2) BRI ˜H|H0
n :=

∣∣∣∣∣∣∣
Es

[
Hn

(
kH

0s(n)
)− γ

]
Es

[
H̃n

(
kH

0s(n)
)− γ

]
∣∣∣∣∣∣∣ .

The two additional indicators are related to the comparison of mean squared
errors and bias of the new estimators with those of the Hill’s estimators, when
all the estimators are considered at their optimal levels. Denoting

Hn0 := Hn

(
kH

0 (n)
)

and H̃n0 := H̃n

(
k

˜H
0 (n)

)
,
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with the obvious meaning for k•
0(n), the two extra simulated indicators are

(4.3) REFF
˜H|H
n0 :=

√
MSE s

[
Hn0

]
MSE s

[
H̃n0

]
and

(4.4) BRI
˜H|H
n0 :=

∣∣∣∣∣∣ Es [Hn0 − γ]

Es

[
H̃n0 − γ

]
∣∣∣∣∣∣ .

Remark 4.1. Note that an indicator higher than one means a better per-
formance than the Hill estimator. Consequently, the higher these indicators are,
the better the new estimators perform, comparatively to the Hill estimator.

Remark 4.2. Note also that whereas we have appropriate techniques to
deal with the estimation of the optimal level for Hill’s estimator, in the sense of
minimum mean squared error, we do not have yet equivalent techniques for the
reduced bias’ estimators. Consequently, the indicators in (4.3) and (4.4) are not
useful in practice, but they give us an indication of the potentialities of this type
of estimators.

4.3. Mean values and mean squared error patterns

In Figures from 3 till 9, and on the basis of the first replicate, with 5000
runs, we picture for the different underlying models considered, and a sample of
size n = 1000, the mean values (E[•]) and the mean squared errors (MSE [•]) of
the Hill estimator H, together with H̃

̂βj1, ρ̂j
, H

̂βj1, ρ̂j
, WH

̂βj1, ρ̂j
and H̃

̂βj(k), ρ̂j
,

j = 0 or j = 1, according as |ρ| ≤ 1 or |ρ| > 1. For comparison, we also
picture the analogue behaviour of the r.v. H̃β, ρ for the models where there is
a big discrepancy between the behaviour of the estimators and that of the r.v.’s.
Such a discrepancy suggests that some improvement in the estimation of second
order parameters β and ρ is still welcome.

Remark 4.3. For a Burr model and for any of the estimators considered,
BIAS/γ and MSE/γ2 are independent of γ, for every ρ. And we have seen
no reason to picture the mean value and mean squared error patterns of the
estimators for a GP underlying model because for all the estimators considered,

E |GP (γ) = γ × E |BURR(γ = 1, ρ = −γ)

and
MSE |GP (γ) = γ2 × MSE |BURR(γ, ρ = −γ) .
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Figure 3: Underlying Fréchet parent with γ = 1 (ρ = −1).

Figure 4: Underlying Burr parent with γ = 1 and ρ = −1.

Figure 5: Underlying Student parent with ν = 2 degrees of freedom
(γ = 0.5 and ρ = −1).
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Figure 6: Underlying Burr parent with γ = 1 and ρ = −0.5.

Figure 7: Underlying Student parent with ν = 4 degrees of freedom
(γ = 0.25 and ρ = −0.5).

Figure 8: Underlying Burr parent with γ = 1 and ρ = −2.
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Figure 9: Underlying Student parent with with ν = 1 degrees of freedom
(γ = 1 and ρ = −2).

Remark 4.4. We may further draw the following specific comments:

• For a Fréchet model (with ρ = −1) (Figure 3) the bias of H is the smallest
one, being the one of H̃ the largest one, for small to moderate values of k.
All the three reduced bias’ statistics overestimate the true value of γ for
very small as well as very large values of k, whereas, for moderate values of
k, they all underestimate γ.

• For an underlying Burr parent with ρ = −1 (Figure 4), the three reduced
bias’ statistics are negatively biased for small values of k. Again, as for a
Fréchet underlying parent, the H-statistic exhibits then the smallest bias
and H̃ the largest one. The H̃ statistic is the best one regarding MSE at
the optimal level, but the WH-statistic is the one with the smallest mean
squared error for not too large values of k, followed by H. Quite similar
results may be drawn for a Student model with ρ = −1 (Figure 5 ), but
for this model, the mean squared error of H̃ is smaller than that of WH,
which on its turn is smaller than that of H, for all values of k.

• For values of ρ > −1 (Figures 6 and 7), the three reduced bias’ statis-
tics are positively biased for all k. The H̃-statistic is better than the
WH-statistic, which on its turn behaves slightly better than the H-statistic,
both regarding bias and mean squared error.

• For ρ < −1 (Figures 8 and 9), we need to use ρ̂1 (instead of ρ̂0). In all the
simulated cases the H̃ and the WH-statistics are the best ones and exhibit
quite similar properties, but they are not a long way from the H-statistic.
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Remark 4.5. For a Student model with ν degrees of freedom (Figures
5, 7 and 9), and whenever we assume β and ρ known, the most stable sample
path around the target value γ is achieved by the statistic H̃β, ρ, presented in the
figures. And such a fact leads this statistic to have the smallest mean squared
error, followed by the H and next the WH statistics, for all values of ν. If we need
to estimate β and ρ, the H̃-statistic is the one with the smallest mean squared
error at the optimal level, also for every ν. Next comes the WH-statistic, quite
close to the H-statistic when ν < 2, i.e., when ρ < −1.

4.4. Relative efficiency and bias reduction indicators

In Table 1 we present the REFF indicators, in (4.1) and (4.3), and the
BRI indicators in (4.2) and (4.4). For each model, the first, second and third
rows are related to the WH-estimator in (1.13), the H̃-estimator in (1.15) and
the H-estimator in (1.16), respectively. Each entry has two numbers: the first
one is either the indicator in (4.1) or in (4.2) and the second one is either the
indicator in (4.3) or in (4.4), according as we refer to the REFF -indicators (left
hand-side table) or to the BRI -indicators (right hand-side table).

5. OVERALL CONCLUSIONS

• Generally, we may say that there is not a big difference between the esti-
mators, WH, H, H̃ and H in (1.13), (1.14) (1.15) and (1.16), respectively.
Anyway, whenever confronted with real data, the drawing of a few sample
paths may help us in the choice of the most adequate estimate of the tail
index γ.

• The H̃
̂βρ̂(k), ρ̂

statistic may perhaps help us in the choice of the optimal
sample fraction of Hill’s estimator, and for some of the models exhibits
sample paths more stable around the target value γ for a wider region of k-
values. This is however a topic which deserves further investigation, being
outside the scope of the present paper.

• The main advantage of these estimators lies on the fact that we may es-
timate β and ρ adequately through β̂ and ρ̂ so that the MSE of the new
estimator is smaller than the MSE of Hill’s estimator for all k, even when
|ρ| > 1, a region where it has been difficult to find alternatives for the Hill
estimator. And this happens together with a higher stability of the sample
paths around the target value γ.
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Table 1: REFF and BRI indicators.

REFF indicators BRI indicators

n n

200 500 1000 200 500 1000

Fréchet parent: ρ = −1, γ = 1

1.07/1.53 1.11/1.69 1.12/1.86 4.56/25.40 7.16/13.12 11.50/10.22

1.06/1.39 1.10/1.53 1.12/1.67 4.18/45.93 6.33/31.87 9.99/69.15

1.08/1.52 1.12/1.67 1.12/1.85 5.85/5.56 8.92/47.70 14.28/22.89

Burr parent: ρ = −0.5, γ = 1

1.20/1.39 1.26/1.35 1.23/1.33 1.83/1.32 1.76/1.23 1.67/1.24

1.19/1.39 1.26/1.35 1.22/1.33 1.73/1.25 1.73/1.22 1.64/1.24

1.18/1.35 1.25/1.32 1.22/1.31 1.69/1.30 1.69/1.20 1.62/1.22

Burr parent: ρ = −1, γ = 1

1.19/2.09 1.23/2.42 1.23/2.69 2.25/11.26 1.91/10.31 1.70/30.21

1.18/2.27 1.22/2.63 1.21/2.94 2.14/306.29 1.74/22.55 1.55/28.80

1.20/2.02 1.24/2.34 1.24/2.61 2.67/9.35 2.07/24.51 1.79/13.63

Burr parent: ρ = −2, γ = 1

1.05/1.18 1.08/1.18 1.11/1.21 2.75/1.08 2.29/1.12 2.09/1.10

1.05/1.17 1.08/1.18 1.10/1.21 2.60/1.09 2.25/1.10 2.07/1.09

1.05/1.16 1.08/1.17 1.10/1.20 2.54/1.10 2.22/1.10 2.05/1.06

Student parent: ρ = −0.5, γ = 0.25

1.35/1.42 1.25/1.35 1.22/1.32 2.27/1.54 1.90/1.47 1.73/1.30

1.32/1.41 1.24/1.34 1.21/1.32 2.17/1.49 1.87/1.39 1.68/1.26

1.30/1.36 1.23/1.31 1.20/1.30 1.99/1.41 1.80/1.42 1.64/1.26

Student parent: ρ = −1, γ = 0.5

1.07/1.56 1.02/1.70 1.15/1.86 3.17/3.40 1.68/3.94 1.25/4.85

1.03/1.51 1.02/1.75 1.14/1.97 2.77/7.88 2.03/7.15 1.25/8.71

1.08/1.51 1.02/1.65 1.16/1.82 4.58/2.84 2.26/3.31 1.24/4.65

Student parent: ρ = −2, γ = 1

0.87/1.18 1.07/1.16 1.04/1.16 2.00/7.00 13.80/1.67 3.81/1.48

0.91/1.12 1.06/1.16 1.04/1.15 1.71/15.65 11.52/1.71 3.64/1.47

0.88/1.18 1.07/1.15 1.04/1.15 2.43/8.52 8.83/1.51 3.50/1.45
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1. INTRODUCTION

In biomedical research, studies in which repeated measurements are taken
on a series of individuals or experimental animals play an important role. Models
including random effects to model this kind of data enjoy an increasing popular-
ity. In these models it is assumed that all responses follow a similar functional
form, but with parameters that vary among individuals. The increasing popular-
ity of mixed-effects models lies in the flexible modeling of correlation structures,
where the total variation is specifically split in within-group and between-group
variation. This will often lead to more precise estimation of population parame-
ters. Especially in pharmacokinetic/pharmacodynamic (PK/PD) modeling most
studies include random effects in the models, thereby improving population pa-
rameter estimation.

Continuous biological processes are often described by systems of ordinary
differential equations (ODE), which unfortunately cannot account for noisy com-
ponents often present in biological systems, representing the parts of the dynamics
that we cannot predict or understand, or that we choose not to include in the ex-
plicit modeling. A natural extension is given by systems of stochastic differential
equations (SDE), where system noise is modeled by including a diffusion term of
some suitable form in the driving equations. In PK/PD modeling the focus is
most often on the infinitesimal changes of substances, which naturally leads to a
ODE-system. The inter-individual variability is modeled with the random effect,
and the intra-individual variability with an additive noise term (possibly after
some convenient transformation). However, noise in the differential equations
describing the behavior of the system requires an extension of the model class to
SDE models.

The theory for mixed-effects models is well developed for deterministic mod-
els (without system error), both linear and non-linear ([2, 3, 14, 25]), and stan-
dard software for model fitting is available, see e.g. ([18]) and references therein.
Early and important references in the pharmacokinetic field are ([21, 22]).
Estimating parameters in SDE models is not straightforward, except for simple
cases. A natural approach would be likelihood inference, but the transition den-
sities are rarely known, and thus it is usually not possible to write the likelihood
function explicitly. A variety of methods for statistical inference in discretely
observed diffusion processes has been developed during the past decades, see e.g.
([1, 4, 5, 6, 7, 9, 10, 13, 16, 17, 20, 23, 24]). However, to our knowledge there is
practically no theory at present for SDE models with random effects. In ([15]) it
is suggested to apply the Kalman filter to approximate the likelihood function for
a SDE model with random effects, with a non-linear drift term and a constant
diffusion term. Eventually, as SDE models will be more commonly applied to
biomedical data, there will be an increasing need for developing a theory includ-
ing mixed effects, and for results on the estimation of model parameters. In ([8])
methods for PK/PD population modeling are reviewed, but the authors regret
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that system noise is not considered since it is difficult to estimate, and that there
exists no software at present in the pharmacokinetic field.

In the present paper a class of statistical models is proposed where ran-
dom effects are incorporated into a diffusion model, and an expression for the
likelihood function is derived. In general, though, it is not possible to find an
explicit expression for the likelihood function, but in a very simple example it is
derived and explicit maximum likelihood estimators are found. The estimators
are evaluated in a simulation study and illustrated on experimental data.

2. THE MODEL

Consider the one-dimensional SDE model for some continuous process evolv-
ing in M different subjects randomly chosen from a population:

dX i
t = g(X i

t , θ,bi) dt + σ(X i
t , θ,bi) dW i

t ; i = 1, ..., M(2.1)

bi ∼ N(0,Σ)

Xi
0 = xi

0

where θ is a p-dimensional fixed effects parameter (the same for the entire pop-
ulation) and bi is a q-dimensional random effects parameter (subject specific),
which is assumed to follow a normal distribution in the population, with covari-
ance matrix Σ that is assumed known up to the parameter vector Ψ. The W i

t are
standard Brownian motions. The W i

t and bj are assumed mutually independent
for all 1 ≤ i, j ≤ M , and independent of X i

0. The drift and the diffusion coeffi-
cient functions g(·) and σ(·) are assumed known up to the parameters, and are
assumed sufficiently regular to ensure a unique solution. Let E ⊆ R denote the
state space of X i

t . Assume that the distribution of X i
t given bi and X i

s = x, t > s,
has a strictly positive density w.r.t. the Lebesgue measure on E, which we denote
by

y �→ p
(
y, x, t − s|bi, θ

)
> 0 , y ∈ E .(2.2)

Assume the M subjects each are observed at the (ni + 1) discrete time points
(ti0, t

i
1, ..., t

i
ni

). Let yi be the (ni + 1)-dimensional response vector for the i’th
subject: yi = (yi

0, ..., y
i
ni

), y(tij) = yi
tij

= yi
j , and let y be the N -dimensional total

response vector, N =
∑M

i=1(ni+1). Write tij−tij−1 = Δi
j for the distance between

observation j − 1 and j for subject i.

Parameters of the model are θ and Ψ, which we wish to estimate.
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3. MAXIMUM LIKELIHOOD ESTIMATION IN SDE MIXED
EFFECTS MODELS

To obtain the marginal density, we integrate the conditional density of the
data given the non-observable random effects bi with respect to the marginal
density of the random effects, using the fact that W i

t and bi are independent.
This yields the likelihood

L(θ,Ψ|y) =
M∏
i=1

p(yi|θ,Ψ) =
M∏
i=1

∫
p(yi|bi, θ) p(bi|Ψ) dbi(3.1)

where L(·) is the likelihood and p(·) are densities. Now

p(yi|bi, θ) =
ni∏

j=1

p(yi
j , y

i
j−1, Δ

i
j |bi, θ)(3.2)

since X i
t given bi is Markov, where the transition densities are as in (2.2), and,

by hypothesis,

p(bi|Ψ) =
exp

{−(bi)TΨ−1bi/2
}√|Ψ|(2π)q/2

,(3.3)

where T denotes transposition. Substituting (3.2) and (3.3) into (3.1) we obtain

L(θ,Ψ|y) =
M∏
i=1

∫ ni∏
j=1

p(yi
j , y

i
j−1, Δ

i
j |bi, θ)

exp
{−(bi)TΨ−1bi/2

}√|Ψ|(2π)q/2
dbi .(3.4)

Solving the integral yields the marginal likelihood of the parameters, independent
of the random effects bi. Note how it is straightforward to generalize to other dis-
tributions for the random effects by letting p(bi|Ψ) be any distribution depending
on the parameter Ψ. In general it will not be possible to find an explicit solution,
but in simple cases we can find an explicit expression for the likelihood, and even
find explicit estimating equations for the maximum likelihood estimators.

3.1. A random effect in Brownian motion with drift

In the simplest pharmacokinetic situation, the metabolism of a compound
is modeled as a mono-exponential decay in the following way (first-order kinetics):

dC(t)
dt

= −kC(t) ; C(0) = D/V(3.5)

with solution

C(t) = C(0) e−kt
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where C(t) is the concentration of the compound in plasma at time t after a bolus
injection, k is the (positive) rate elimination constant, D is the injected dose at
time t = 0, and V the apparent volume of distribution of the compound. Now
assume that we want to model the erratic behavior of the metabolic processes
responsible for the removal of the compound from plasma, by allowing k to vary
randomly as k + ξ(t), where ξ(t) is a white noise process. Then ξ(t) dt = σ dW (t)
where W (t) is Brownian motion and σ a scaling parameter. Incorporating this
into (3.5), writing Xt = C(t) and β = −k, we obtain the equation

dXt = βXt dt + σXt dWt ,

which is the equation of geometric Brownian motion. The state space E is
given by the positive real line. By applying Itô’s formula to the transformation:
Yt = log Xt, we obtain a Brownian motion with linear drift:

dYt =
(
β − 1

2
σ2
)

dt + σ dWt

with solution

Yt = Y0 +
(
β − 1

2
σ2
)
t + σWt .

Assume an experiment is conducted on different subjects where the concentra-
tion of a compound in plasma is measured at different time points after a bolus
injection. We are interested in estimating the parameters in the population,
but expect individual differences in the metabolic processes, and would therefore
consider a random effect in β, which leads to the model:

Y i
t = Y i

0 +
(
β + βi − 1

2
σ2
)
t + σW i

t(3.6)

βi ∼ N(0, σ2
β) .

Another example where this model naturally arises is provided by the initial
growth of bacterial or tumor cell populations, where we expect β > 0.

In this simple example we have θ = (β, σ2) and Ψ = σ2
β. We wish to

estimate ζ = (β, σ2, σ2
β). The conditional distribution (Y i

t |Y i
0 = yi

0; β, σ2, βi) is
Gaussian with

E
[
Y i

t |Y i
0 = yi

0; β, σ2, βi
]

= yi
0 +

(
β + βi − 1

2
σ2
)
t

Var
[
Y i

t |Y i
0 = yi

0; β, σ2, βi
]

= σ2t

so the conditional transition density is given by

p(yi
j , y

i
j−1, Δ

i
j ; β, σ2, βi) =

1√
2πσ2Δi

j

exp

⎧⎪⎨⎪⎩−
(
yi

j − yi
j−1 −

(
β+βi− 1

2σ2
)
Δi

j

)2

2σ2Δi
j

⎫⎪⎬⎪⎭ .

We will find the likelihood (3.4):

L(ζ|y) =
M∏
i=1

∫
p(yi|βi, β, σ2) p(βi|σ2

β) dβi .
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The computation would be much simplified if we assumed equidistant observa-
tions, that is Δi

j = Δ for all times and subjects, but unfortunately this is rarely
the case in real data. Not only will measurements often be taken with varying
time gaps, but different subjects might be measured at different time points.
In general nl �= nk, and Δl

j �= Δk
j �= Δk

i (unbalanced data).

Due to the simplicity of the model, techniques adapted from linear regres-
sion with a random regression coefficient can be applied, (see e.g. [18]). Define
the precision factor: η2 = σ2/σ2

β. The conditional densities can be written as
follows:

p(yi|βi, β, σ2) =
ni∏

j=1

p(yi
j , y

i
j−1, Δ

i
j |βi, β, σ2) =

=
ni∏

j=1

1√
2πσ2Δi

j

exp

⎧⎪⎨⎪⎩−
(
yi

j − yi
j−1 −

(
β + βi − 1

2σ2
)
Δi

j

)2

2σ2Δi
j

⎫⎪⎬⎪⎭
=

1

(2πσ2)
ni
2

exp

⎧⎪⎨⎪⎩−
∑

j
1

Δi
j

(
yi

j − yi
j−1−

(
β + βi − 1

2σ2
)
Δi

j

)2

2σ2

⎫⎪⎬⎪⎭
ni∏

j=1

1√
Δi

j

and

p(βi|σ2
β) =

1√
2πσ2

β

exp

{
−(βi)2

2σ2
β

}
=

(η2)
1
2√

2πσ2
exp

{
−(ηβi)2

2σ2

}
.

For ease of notation we define the parameter function α = β − 1
2σ2 and the

quantities Δi =
(∏ni

j=1 Δi
j

) 1
ni and T i =

∑ni
j=1 Δi

j . The last sum is simply the
length of the observation interval for the i’th subject; tni − t0. We obtain

L(ζ|y)=
M∏
i=1

(η2)
1
2

(2πσ2Δi)
ni
2

∫ exp

⎧⎨⎩−
∑

j
1

Δi
j

(
yi

j− yi
j−1− (α+βi)Δi

j

)2 + (ηβi)2

2σ2

⎫⎬⎭
√

2πσ2
dβi.

Solving the last integral yields the marginal likelihood of the parameters, inde-
pendent of the random effects βi. Define the vectors

ỹi =
(
(Δi

1)
− 1

2 (yi
1 − yi

0), ..., (Δ
i
ni

)−
1
2 (yi

ni
− yi

ni−1), 0
)T

x̃i =
(
(Δi

1)
1
2 , ..., (Δi

ni
)

1
2 , 0
)T

z̃i =
(
(Δi

1)
1
2 , ..., (Δi

ni
)

1
2 , η
)T

where T indicates transposition. Then

‖ỹi − x̃iα − z̃iβi‖2 =
ni∑

j=1

1
Δi

j

(
yi

j − yi
j−1 − (α + βi)Δi

j

)2 + (ηβi)2
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such that, splitting the sum of squares into two parts that are independent of
and dependent on the random effects, respectively, and noting that the integral
of the dependent part is simply the integral of a normal density up to a constant,
the likelihood function can be expressed as

L(ζ|y) =
M∏
i=1

(η2)
1
2

(2πσ2Δi)
ni
2

∫ exp
{
−‖ỹi − x̃iα − z̃iβi‖2

2σ2

}
√

2πσ2
dβi

=
M∏
i=1

(η2)
1
2

(2πσ2Δi)
ni
2

exp

{
−‖ỹi − x̃iα − z̃iβ̂i‖2

2σ2

}
1√

T i + η2

=
(η2)

M
2

(2πσ2)
N−M

2

M∏
i=1

1

(Δi)
ni
2

√
T i + η2

×

exp

⎧⎪⎪⎨⎪⎪⎩−
∑

i

(∑
j

1
Δi

j

(
yi

j − yi
j−1 − (α + β̂i)Δi

j

)2 + (ηβ̂i)2
)

2σ2

⎫⎪⎪⎬⎪⎪⎭
=

(η2)
M
2

(2πσ2)
N−M

2

M∏
i=1

1

(Δi)
ni
2

√
T i + η2

×

exp

⎧⎨⎩−
∑

i,j
1

Δi
j
(yi

j − yi
j−1− αΔi

j)
2 −∑i(y

i
ni
− yi

0 − αT i)2(T i+η2)−1

2σ2

⎫⎬⎭ ,(3.7)

where β̂i minimizes the sum of squares ‖ỹi − x̃iα − z̃iβi‖2 for fixed α, and is
obtained from standard regression theory:

β̂i = ((z̃i)T z̃i)−1(z̃i)T (ỹi − x̃iα) =

∑ni
j=1(y

i
j − yi

j−1 − αΔi
j)∑ni

j=1 Δi
j + η2

=
yi

ni
− yi

0 − αT i

T i + η2
.

These directly provide predictors of the random effects given the parameters.
The log-likelihood is

log L(ζ|y) =
M

2
log η2 − N − M

2
log(2πσ2) − 1

2

M∑
i=1

log
(
(Δi)ni(T i + η2)

)
−
∑

i,j
1

Δi
j
(yi

j − yi
j−1 − αΔi

j)
2 −∑i(y

i
ni

− yi
0 − αT i)2(T i + η2)−1

2σ2
.(3.8)

The derivatives of the log-likelihood function with respect to the parameters yield
the score functions whose zeros will provide the maximum likelihood estimators
of the parameters. Straightforward calculations yield the estimating equations,
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where the estimator of a parameter is indicated with a hat, e.g. β̂:

0 =
M∑
i=1

(
yi

ni
− yi

0 − α̂T i

T i + η̂2

)

0 =
M∑
i=1

(
σ̂β

2T i

T i + η̂2
− (yi

ni
− yi

0 − α̂T i)2

(T i + η̂2)2

)

0 =
M∑
i=1

⎛⎝ ni∑
j=1

(
(yi

j − yi
j−1 − α̂Δi

j)
2

Δi
j

)
− (yi

ni
− yi

0 − α̂T i)2

T i + η̂2

⎞⎠− σ̂2(N − M) .

If we assume that each subject is observed in the same time interval, that is, we
assume T i = T for all 1 ≤ i ≤ M , this simplifies to the explicit estimators:

β̂ = α̂ +
σ̂2

2
(3.9)

σ̂2 =
1

N − 2M
(
(N − M)SSQΔ − MSSQT

)
(3.10)

σ̂2
β =

N − M

T (N − 2M)
(
SSQT − SSQΔ

)
(3.11)

where

α̂ =
1

MT

M∑
i=1

(yi
ni

− yi
0)(3.12)

SSQT =
1

MT

M∑
i=1

(yi
ni

− yi
0 − α̂T )2(3.13)

SSQΔ =
1

N − M

M∑
i=1

ni∑
j=1

⎛⎜⎝
(
yi

j − yi
j−1 − α̂Δi

j

)2

Δi
j

⎞⎟⎠ .(3.14)

The asymptotic variances of the estimators estimated from the inverted Fisher
information evaluated at the optimum is given by:

V̂ar(β̂) =
σ̂2

βT + σ̂2

MT
+

σ̂4

2(N − 2M)
(3.15)

V̂ar(σ̂) =
σ̂2

2(N − 2M)
(3.16)

V̂ar(σ̂β) =
(σ̂2

βT + σ̂2)2

2MT 2σ̂2
β

+
σ̂4

2(N − 2M)T 2σ̂2
β

.(3.17)

There will only be positive solutions for the variance parameters in the data set
if

M

N − M
SSQT < SSQΔ < SSQT .(3.18)



146 S. Ditlevsen and A. De Gaetano

The last inequality ensures existence of the estimator of the random effect vari-
ance parameter σ2

β , and can be interpreted in the following way: For simplicity
assume Δi

j = Δ for all i, j. Define ai
j = (yi

j − yi
j−1 − α̂Δ), the increment for sub-

ject i from observation j − 1 to observation j subtracted the expected increment
in the population. Then

SSQT =
1

MT

M∑
i=1

( ni∑
j=1

ai
j

)2

and SSQΔ =
1

MT

M∑
i=1

ni∑
j=1

(ai
j)

2 .

For SSQΔ to be smaller than SSQT, it is required that at least for one i,∑ni
j=1(a

i
j)

2 < (
∑ni

j=1 ai
j)

2, which e.g. will be the case if all ai
j are of the same

sign. If this is the case it means that all observed increments are either above
or under the expected increments for the population, which indicates that the
decay rate for this specific subject most probably is different from the general
population decay rate β, that is βi �= 0. On the other hand, to estimate the
system noise parameter σ2, we require Δ

T SSQT < SSQΔ. The left hand side
increases when the number of measured points for each subject decreases. In this
case it is natural that we have more information on variation between subjects
than variation within subjects.

Considering model (3.6) with σ2
β = 0, such that βi = 0 for all i (no random

effects), leads to the log-likelihood function

log L(β, σ2|y) = −N − M

2
log(2πσ2) −

∑
i

ni

2
log(Δi) −

∑
i,j

(yi
j − yi

j−1 − αΔi
j)

2

2σ2Δi
j

which could also be derived from (3.8) by letting η2 → ∞. This leads to the
maximum likelihood estimators

β̂ = α̂ + σ̂2/2(3.19)
σ̂2 = SSQΔ .(3.20)

The asymptotic variances of the estimators estimated from the inverted Fisher
information evaluated at the optimum is given by:

V̂ar(β̂) =
σ̂2

MT
+

σ̂4

2(N − M)
(3.21)

V̂ar(σ̂) =
σ̂4

2(N − M)
.(3.22)
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3.2. Simulation results

To check the estimators a simulation study was performed. Six sets of
parameter values were used to investigate the behavior of the estimators for
different relations among the variance components, namely for σ2 � σ2

β, σ2 ≈
σ2

β , and σ2 � σ2
β , respectively, and for two different values of β, consistent

with physiologically observed decay rate values. Moreover, two sets of values for
the experimental designs were investigated, namely for M � n and M � n,
respectively. The values used in the different simulations are reported in Table 1.

Table 1: Values used in the different simulations.

Parameter values used in simulations

β σ2 σ2
β M n

1 -0.02 0.02 0.02 10 50
2 -0.02 0.2 0.02 10 50
3 -0.02 0.02 0.2 10 50
4 -0.02 0.02 0.02 50 10
5 -0.02 0.2 0.02 50 10
6 -0.02 0.02 0.2 50 10
7 -0.2 0.02 0.02 10 50
8 -0.2 0.2 0.02 10 50
9 -0.2 0.02 0.2 10 50
10 -0.2 0.02 0.02 50 10
11 -0.2 0.2 0.02 50 10
12 -0.2 0.02 0.2 50 10

For each of these 12 sets of values, 1.000 data sets were generated from
model (3.6), by simulating trajectories according to the Milstein scheme with a
step size of 0.01, see Kloeden and Platen (1999), and retaining the observation
points at equidistant time points depending on the chosen n. For all simulations
the total length of the simulation interval was 100, and the initial value was
log(100). On the simulated data sets, parameters were estimated using Equations
(3.9) to (3.14). Parameters were also estimated assuming (wrongly) the model
with no random effects by Equations (3.19) and (3.20). Results are reported in
Table 2, where the 95% confidence intervals are the 2.5% and 97.5% empirical
quantiles of estimates, and are given in brackets.

In all 12.000 simulations the estimators existed (σ̂2, σ̂2
β > 0), but for β =

−0.02 a considerable part of the estimates were positive, reflected in the large
97.5% quantiles for β̂. Not surprisingly, β is more difficult to estimate when σ2

β is
large. The diffusion parameter σ2 is well determined with 95% of estimates lying
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no more than 11% from the true value, whereas σ2
β is more difficult to estimate

and depends on the size of M : for small M , the distribution of estimates is
right-skewed with wide confidence limits; for larger M , σ2

β is better determined.

Table 2: Mean of estimates (95% CI) from simulations of model (3.6).
For each set of values, 1.000 data sets were generated and
the parameters were estimated using (3.9) to (3.11) (assum-
ing random effects) and (3.19) and (3.20) (assuming no ran-
dom effects). For all simulations T = 100 and Y i

0 = log(100).
See also main text.

Assuming random effects

β̂ σ̂2 σ̂2
β

1 -0.018 (-0.094;0.060) 0.020 (0.018;0.022) 0.018 (0.006;0.035)
2 -0.019 (-0.097;0.056) 0.200 (0.178;0.222) 0.018 (0.006;0.034)
3 -0.027 (-0.263;0.210) 0.020 (0.018;0.022) 0.178 (0.063;0.317)
4 -0.021 (-0.054;0.012) 0.020 (0.018;0.022) 0.020 (0.013;0.027)
5 -0.021 (-0.057;0.017) 0.200 (0.178;0.221) 0.020 (0.013;0.028)
6 -0.020 (-0.119;0.080) 0.020 (0.018;0.022) 0.197 (0.137;0.267)
7 -0.199 (-0.276;-0.126) 0.020 (0.018;0.022) 0.017 (0.006;0.034)
8 -0.198 (-0.281;-0.123) 0.201 (0.180;0.223) 0.017 (0.005;0.035)
9 -0.198 (-0.440;0.029) 0.020 (0.018;0.022) 0.175 (0.066;0.337)
10 -0.200 (-0.233;-0.167) 0.020 (0.018;0.022) 0.020 (0.013;0.026)
11 -0.201 (-0.236;-0.163) 0.200 (0.178;0.222) 0.020 (0.013;0.027)
12 -0.202 (-0.302;-0.096) 0.020 (0.018;0.022) 0.195 (0.135;0.260)

Assuming no random effects (wrong model)

β̂ σ̂2 -

1 0.000 (-0.076;0.079) 0.057 (0.033;0.091)
2 -0.001 (-0.082;0.076) 0.236 (0.203;0.275)
3 0.155 (-0.089;0.404) 0.384 (0.151;0.667)
4 0.087 ( 0.039;0.141) 0.237 (0.166;0.315)
5 0.088 ( 0.033;0.144) 0.418 (0.339;0.510)
6 1.075 ( 0.729;1.458) 2.209 (1.543;2.985)
7 -0.181 (-0.260;-0.107) 0.056 (0.033;0.089)
8 -0.181 (-0.264;-0.105) 0.236 (0.202;0.277)
9 -0.020 (-0.292;0.257) 0.377 (0.156;0.708)
10 -0.092 (-0.138;-0.042) 0.237 (0.170;0.310)
11 -0.092 (-0.142;-0.039) 0.418 (0.343;0.499)
12 0.884 ( 0.547;1.273) 2.192 (1.519;2.907)

If a model with no random effects is wrongly assumed, both β and σ2 are
poorly estimated. The estimates are worse for large σ2

β and large M , as expected.
This illustrates the need to include random effects in the modelling process if they
are present in the data.
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3.3. Application to Metoprolol Tartrate dissolution data

The method was applied on Metoprolol Tartrate dissolution data taken
from [19], where the percentage of released drug of four types of tablet formu-
lations of 100-mg Metoprolol Tartrate are tabulated at 5-min intervals up to 30
minutes and at 45 minutes after the onset of the experiments, except for the Slow
Dissolving Test Formulation, where measurements were taken up to two hours,
for details see [19]. Each experiment was repeated six times. The data were
also analysed in [12, 13]. In [12], they found that the formulation closest to an
exponential behavior was the Slow Dissolving Test Formulation, which is used
here to illustrate the methods. Only data up to 45 minutes are used.

The data are illustrated in Figure 1. The percentage of Metoprolol not
yet dissolved is modeled as (3.6), where yi

j are the log-transformed measured
percentages for experiment i at time point j. Moreover, the measurement at 30
minutes for experiment four was removed in the analysis since the dissolution
process cannot go backwards, see Figure 1. Finally M = 6 and N = 41.
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Figure 1: Dissolution profiles of Metoprolol Tartrate tablets.
Data is taken from [19].

The data set yields the following quantities: α̂ = −0.026, SSQT = 0.000166
and SSQΔ = 0.0000699 such that condition (3.18) is fulfilled. Estimates and their
standard errors are reported in Table 3. The estimates of β are in agreement with
comparable values found in [12, 13, 19]. Since σ̂2

β is small compared to σ̂2, the
estimates in the model without random effects only change slightly.
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Table 3: Metoprolol data estimates using Equations (3.9) to (3.11)
(assuming random effects) and (3.19) and (3.20) (assuming
no random effects). The standard errors were estimated
using Equations (3.15), (3.16), (3.17), (3.21) and (3.22).

Assuming random effects Assuming no random effects

estimate std error estimate std error

β̂ -0.02594 0.00083 -0.02593 0.00054
σ̂ 0.00707 0.00093 0.00836 0.00001
σ̂β 0.00171 0.00071 - -

Figure 2 shows simulated trajectories from the random effects model with
the estimated parameters, and the observed points from two of the six dissolution
profiles.
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Figure 2: Simulated trajectories from model (3.6), incorporating the
estimated parameters and random effect estimates for two
of the dissolution profiles. The points are the observed data
for the same two dissolution profiles.
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4. SUMMARY

In the present paper we propose to extend random effects techniques to
the estimation of parameters in SDE models. We believe this extension to be
both relevant and needed. It is relevant because as the sophistication of builders
and users of mathematical models of biological processes increases, there will be a
progressive growth of the use of stochastic differential equations to represent noisy
processes. When only few observations can be collected from any given human or
animal experimental subject, as is usually the case, recourse to random or mixed
effects models will be necessary.

Statistical inference for this class of models is not straightforward. In the
present work, a very simple model gave rise to explicit expressions for the likeli-
hood function and for the maximum likelihood estimators. This model is in its
deterministic version frequently employed in pharmacokinetics (e.g. to represent
drug elimination from plasma or initial tumor cell population growth), and the
proposed development is therefore not only of academic interest. However, it is
often the case that more complicated models with nonlinearities and/or several
compartments are necessary to plausibly represent the system under observation.

Unfortunately, in general it will not be possible to find an explicit expression
for the likelihood function (3.4) since the transition densities are rarely known.
One possibility could be to approximate the likelihood function numerically, and
then optimize the approximated likelihood function directly. It is obviously nec-
essary to find other estimation procedures if the proposed model class is to be of
interest to a wider audience.
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– Departamento de Matemática, Universidade de Coimbra, Portugal

(esmerald@mat.uc.pt)

P. Jacob
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156 E. Gonçalves, P. Jacob and N. Mendes-Lopes



Non-Parametric Test for Non-Independent Noises Against a Bilinear Dependence 157

1. INTRODUCTION

In Gonçalves, Jacob and Mendes-Lopes (2000) a new methodology of sta-
tistical decision to discriminate between an error process and a diagonal simple
bilinear model was presented. This methodology was inspired in an asymptotic
separation result obtained, in 1976, by Geffroy, which appeared particularly use-
ful to construct consistent tests and estimators for detecting a signal in a white
noise (Pieczinsky, 1986, Moché, 1989).

Let X = (Xt, t ∈ Z) be a real stochastic process whose law belongs to a set
of parametric laws (Pθ, θ ∈ Θ), with Θ = {θ1, θ2} . Following Geffroy (1976), we
say that the two laws Pθ1 and Pθ2 are asymptotically separated if there exists a
sequence of Borel sets of R

T , (AT , T ∈ N), such that⎧⎨⎩
P T

θ0
(AT ) −→

T→+∞ 1

P T
θ1

(AT ) −→
T→+∞ 0 ,

where P T
θ denotes the probability law of (X1, X2, ..., XT ) .

In this way, a consistent decision rule was defined and studied in Gonçalves,
Jacob and Mendes-Lopes (2000) to separate the hypothesis “H0 : X follows an
error process” against “H1 : X follows a diagonal bilinear model”.

With the aim of improving the rate of convergence of the decision procedure
we present, in this paper, a generalisation of that study in which a smoother
statistics is considered in the definition of the sequence of acceptance regions
(AT )T∈N. In fact, unlike what we have considered in that pioneer study, the
statistics here considered is, in general, a continuous function of the sample.

2. GENERAL PROPERTIES AND HYPOTHESES

Let us consider the diagonal bilinear model X = (Xt, t ∈ Z) defined by

(1) Xt = ϕXt−1 εt−1 + εt ,

where ϕ is a real number and ε = (εt, t ∈ Z) a real stochastic process.

We are going to construct a decision procedure to discriminate between the
hypotheses H0 : ϕ = 0 against H1 : ϕ = β (β > 0, fixed).

Let us denote the process X = (Xt, t ∈ Z) distribution and the correspond-
ing expectation by Pϕ and Eϕ respectively, when the parameter of the model is
equal to ϕ.
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We suppose that

C1: ε = (εt, t ∈ Z) is a strictly stationary and ergodic process.

C2: E
∣∣log |εt|

∣∣ < +∞ and E
(
log |εt|

)
+ log |ϕ| < 0.

Under these conditions, model (1) has a strictly stationary and ergodic
solution, Pϕ-a.s. unique, given by

Xt = εt +
+∞∑
n=1

ϕnεt−n

n−1∏
j=0

εt−1−j (a.s.) , t ∈ Z .

If, in adition, we have

C3: E
∣∣log |Xt|

∣∣ < +∞ and E
(
log |Xt|

)
+ log |ϕ| < 0 ,

then model (1) is invertible and

εt = Xt +
+∞∑
n=1

(−ϕ)nXt−n

n−1∏
j=0

Xt−1−j (a.s.) , t ∈ Z .

Under conditions C1, C2 and C3 we deduce, in view of the two equalities
above, that Xt = εt, Xt and εt denoting the σ-fields generated by (Xt, Xt−1, ...)
and (εt, εt−1, ...) respectively.

Hereafter we assume these general hypotheses concerning the stationarity,
ergodicity, and invertibility of model (1). We also define the process Y=(Yt, t∈Z)
by

Yt = Xt

(
Xt +

∞∑
n=1

(−ϕ)nXt−n

n−1∏
j=0

Xt−1−j

)
(a.s.) .

This process is also strictly stationary and ergodic. We will denote it by Yt (ϕ),
if its dependence on the parameter ϕ is to be emphazised.

We note that Xt = ϕYt−1 +εt, according to (1). Otherwise, taking into ac-
count that E| log |εt|| < +∞ and E| log |Xt|| < +∞, we have Yt (ϕ) �= 0, a.s.,∀ϕ.

3. A CONSISTENT TEST

We are going to construct a decision procedure to distinguish, in model (1),
the hypotheses

H0 : ϕ = 0 against H1 : ϕ = β (β > 0)

from T observations of the process X, denoted by x1, x2, ..., xT .
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The procedure we are proposing is based, as referred above, on the notion of
asymptotic separation of two families of probability laws (Geffroy (1980), Moché
(1989)) and it generalises recent works as, for instance, Gonçalves, Jacob, Mendes-
Lopes (2000), Gonçalves, Martins, Mendes-Lopes (2001).

First of all, we establish the asymptotic separation of the families of prob-
ability laws associated to the hypotheses under investigation by presenting a
sequence of Borel sets of R

T , (AT , T ∈ N) , called separation regions, such that⎧⎨⎩
P T

0 (AT ) −→
T→+∞

1

P T
β (AT ) −→

T−→+∞
0

denoting by P T
ϕ the probability law of (X1, ..., XT ) when the parameter is equal

to ϕ.

We will accept H0 : ϕ = 0 against H1 : ϕ = β > 0 if (x1, ..., xT ) ∈ AT .

The separation regions that we are going to propose are inspired in previous
works. In those papers the test takes into account the number of times that
u
(

β
2 u − v

)
> 0 when (u, v) = (yt−1, xt) , yt denoting the particular value of Yt,

t = 1, ..., T . So, the set

D =
{

(u, v) ∈ R
2 : u > 0, v <

β

2
u

}
∪
{

(u, v) ∈ R
2 : u < 0, v >

β

2
u

}
=
{

(u, v) ∈ R
2 : u

(
β

2
u − v

)
> 0

}
is very important in the construction of a convergent test for the same hypotheses.

The generalization here studied consider a test statistic which is defined
following the same basical idea but using a smoother function, eventually a con-
tinuous one.

From the definition of D we have

(yt−1, xt) ∈ D ⇐⇒
(
yt−1 > 0,

β

2
yt−1−xt > 0

)
or

(
yt−1 < 0,

β

2
yt−1− xt < 0

)
.

So, if we consider a distribution function F of a symmetrical law we have

(yt−1, xt) ∈ D =⇒
(

2F (yt−1) − 1 ≥ 0, 2F
(

β

2
yt−1 − xt

)
− 1 ≥ 0

)
or

(
2F (yt−1) − 1 ≤ 0, 2F

(
β

2
yt−1 − xt

)
− 1 ≤ 0

)
=⇒

[
2F (yt−1) − 1

] [
2F
(

β

2
yt−1 − xt

)
− 1
]
≥ 0 .

The study here presented takes into account this product. Moreover, a
great degree of generality is achieved as the distribution function considered in
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the first factor may be different from that appearing in the second one. So, let
us define

g(u, v) =
[
2G(u) − 1

] [
2F
(

β

2
u − v

)
− 1
]

, (u, v) ∈ R
2 ,

where F and G are distribution functions of symmetrical laws with decreasing
densities on R

+.

Let us consider the following regions

AT =

{
(x1, x2, ..., xT ) ∈ R

T :
T∑

t=2

g
(
yt−1 (β) , xt

) ≥ 0

}
.

In what follows, we take gt = g(yt−1 (β) , xt) and gT = 1
T

∑T
t=2 gt, and we

assume the hypothesis:

C4: the conditional distribution of εt given εt−1 is symmetrical.

We have the following result:

Lemma 3.1.

(i) Under the hypothesis ϕ = 0, lim
T

gT = E0 (g2) > 0.

(ii) Under the hypothesis ϕ = β > 0, lim
T

gT = Eβ (g2) < 0.

Proof: By the ergodic theorem we have

lim
T

gT = Eϕ (g2) (a.s.) ,

with

Eϕ (g2) = Eϕ

(
g
(
Y1 (β) , X2

))
= Eϕ

([
2G (Y1 (β)) − 1

] [
2F
(

β

2
Y1 (β) − X2

)
− 1
])

.

Let us now study the sign of the limit under each one of the hypotheses H0

and H1. In what follows, we take Y1 (β) = Y1.

Under ϕ = 0 we have X2 = ε2 and so

E0 (g2) = E0

(
[2G (Y1) − 1]

[
2F
(

β

2
Y1 − ε2

)
− 1
])

= E0

(
[2G (Y1) − 1] E0

{[
2F
(

β

2
Y1 − ε2

)
− 1
]∣∣∣∣ ε1

})
= E0

(
[2G (Y1) − 1] I{Y1>0}E0

{[
2F
(

β

2
Y1 − ε2

)
− 1
]∣∣∣∣ ε1

})
+

+E0

(
[2G (Y1) − 1] I{Y1<0}E0

{[
2F
(

β

2
Y1 − ε2

)
− 1
]∣∣∣∣ ε1

})
.
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When Y1 > 0, we have 2G (Y1) − 1 > 0 and E0

{[
2F
(

β
2 Y1 − ε2

)
− 1
]∣∣∣ ε1

}
> 0

using the symmetry of the law of -εt given εt−1; if Y1 < 0 then 2G (Y1) − 1 < 0

and E0

{[
2F
(

β
2 Y1 − ε2

)
− 1
]∣∣∣ ε1

}
< 0. So, E0 (g2) > 0.

Under ϕ = β > 0 we have Y1 = X1ε1, X2 = βX1ε1 + ε2 and then

Eβ (g2) = Eβ

(
[2G (X1ε1) − 1]

[
2F
(

β

2
X1ε1 − βX1ε1 − ε2

)
− 1
])

= Eβ

(
[2G (X1ε1) − 1]Eβ

{[
2F
(
−β

2
X1ε1 − ε2

)
− 1
]∣∣∣∣ ε1

})

= Eβ

(
[2G (X1ε1) − 1] I{X1ε1>0}Eβ

{[
2F
(
−β

2
X1ε1 − ε2

)
− 1

]∣∣∣∣ ε1

})
+Eβ

(
[2G (X1ε1) − 1] I{X1ε1<0}Eβ

{[
2F
(
−β

2
X1ε1 − ε2

)
− 1
]∣∣∣∣ ε1

})
.

As previously, 2G (X1ε1) − 1 > 0 and Eβ

{[
2F
(
−β

2 X1ε1 − ε2

)
− 1
]∣∣∣ ε1

}
< 0,

when X1ε1 > 0; on the other hand, if X1ε1 < 0, 2G (X1ε1) − 1 < 0 and
Eβ

{[
2F
(
−β

2 X1ε1 − ε2

)
− 1
]∣∣∣ ε1

}
> 0. Then Eβ (g2) < 0.

We immediately deduce, by the bounded convergence theorem, the follow-
ing result:

Corollary 3.1.

(i) If ϕ = 0, P0 (gT ≥ 0) −→ 1, as T −→ +∞.
(ii) If ϕ = β > 0, Pβ (gT ≥ 0) −→ 0, as T −→ +∞.

Taking into account the definition of regions AT , we conclude that the
probability laws of process (Xt, t ∈ Z) defined by the hypotheses H0 : ϕ = 0 and
H1 : ϕ = β > 0 are asymptotically separated.

So, AT is the acceptance region of a consistent test for these hypotheses.

4. CONVERGENCE RATE OF THE DECISION PROCEDURE

The convergence rate of the decision procedure, presented in the previous
paragraph as a test, may be evaluated when we consider, in the acceptance regions
AT , the true value of Yt, i.e., Yt (ϕ) , and we assume that the null hypothesis is
true. Let us denote these borelians by AT (ϕ) .
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We are going to evaluate the convergence rate of P0

(
AT (ϕ)

)
. We have

P0

(
AT (ϕ)

)
= P0

(
T∑

t=2

gt < 0

)

≤ E0

[
exp

(
−

T∑
t=2

gt

)]

= E0

{
E0

[
exp

(
−

T∑
t=2

gt

)∣∣∣∣∣ εT−1

]}

= E0

{
exp

(
−

T−1∑
t=2

gt

)
E0

[
exp (−gT )| εT−1

]}

Firstly, we study E0

[
gt| εt−1

]
, t ∈ Z.

E0

[
gt| εt−1

]
=
[
2G
(
ε2
t−1

)− 1
]{

2E0

[
F

(
β

2
ε2
t−1 − εt

)∣∣∣∣ εt−1

]
− 1
}

.

Let us suppose that ε verifies the following condition

C5: εt = ηt−1Zt, t ∈ Z

where ηt is a measurable and strictly positive function of εt, εt−1, ... with
0 < m ≤ ηt ≤ M and (Zt, t ∈ Z) is a sequence of independent and identically
distributed real random variables, with distribution function F and density f
that we suppose symmetrical and decreasing on R

+. We also assume that Zt is
independent of εt−1.

So,

E0

[
F

(
β

2
ε2
t−1 − εt

)∣∣∣∣ εt−1

]
= E0

[
F

(
β

2
ε2
t−1 − ηt−1Zt

)∣∣∣∣ εt−1

]
=
∫ +∞

−∞
F

(
β

2
ε2
t−1 − ηt−1u

)
f(u) du

≥
∫ +∞

−∞
F

(
β

2
ε2
t−1 − Mu

)
f(u) du .

Choosing the function

G (v) =
∫ +∞

−∞
F

(
β

2
v − Mu

)
f(u) du ,

we note that, by lemma 5.1 (in the appendix), G is the distribution function of
a law with a symmetrical density, decreasing on R

+. Moreover, we obtain

E0

[
F

(
β

2
ε2
t−1 − εt

)∣∣∣∣ εt−1

]
≥ G

(
ε2
t−1

)
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and so
E0

[
gt| εt−1

] ≥ [2G (ε2
t−1

)− 1
]2

.

From Hoeffding inequality (Hoeffding (1953)),

E0

[
e−gt

∣∣ εt−1

] ≤ e−E0[gt|εt−1]+ 1
2 [2G(ε2

t−1)−1]2

≤ e−
1
2 [2G(ε2

t−1)−1]2 .

Then

P0(AT ) ≤ E0

{
exp

(
−

T−1∑
t=2

gt

)
exp

[
−1

2
(
2G
(
ε2
T−1

)− 1
)2]}

= E0

{
exp

(
−

T−2∑
t=2

gt

)
E0

[
exp(−gT−1) exp

[
−1

2
(
2G(ε2

T−1) − 1
)2]∣∣∣∣ εT−2

]}
.

From lemma 5.5 (see appendix), we have the following inequality, for every
t ∈ Z,

(2) E0

{
exp (−gt−1) exp

[
−1

2
(
2G
(
ε2
t−1

)− 1
)2]∣∣∣∣ εt−2

}
≤

≤ E0

[
exp (−gt−1)| εt−2

]
E0

[
exp

[
−1

2
(
2G
(
ε2
t−1

)− 1
)2]∣∣∣∣ εt−2

]
.

In fact,

i) given εt−2, gt−1 =
[
2G
(
ε2
t−2

)− 1
] [

2F
(

β
2 ε2

t−2 − xt−1

)
− 1
]

has the form
of the function h(x) = c [2R (a − dx) − 1] presented in lemma 5.2 (see the ap-
pendix), as xt−1 = ηt−2Zt−1 under H0 and c = 2G

(
ε2
t−1

) − 1 > 0, R = F,

a = β
2 ε2

t−1 (> 0) , and d = ηt−2 (> 0) .

ii) On the other hand, 1
2

[
2G
(
d2x2

)− 1
]2 = 1

2

[
G
(
d2x2

)− G
(−d2x2

)]2 is
a symmetrical function, increasing on R

+, null in the origin and bounded.

As Zt−1 is independent of εt−2, the inequality (2) takes the form

E0

[
exp

(
−h (Zt−1) − g (Zt−1)

)]
≤ E0

[
exp (−h (Zt−1))

]
E0

[
exp (−g (Zt−1))

]
.

We can then write, with uT = exp
(
−

T−2∑
t=2

gt

)
,

P0

(
AT (ϕ)

) ≤

≤ E0

{
uT E0

[
exp (−gT−1)| εT−2

]
E0

[
exp

[
−1

2

(
2G
(
ε2
T−1

)− 1
)2]∣∣∣ εT−2

]}
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= E0

{
E0

[
exp

(
−

T−1∑
t=2

gt

∣∣∣∣ εT−2

)
E0

[
exp

[
−1

2

(
2G
(
ε2
T−1

)− 1
)2]∣∣∣ εT−2

]]}

≤ E0

{
E0

[
exp

(
−

T−1∑
t=2

gt | εT−2

)
E0

[
exp

[
−1

2

(
2G
(
m2Z2

T−1

)− 1
)2]∣∣∣ εT−2

]]}
.

But E0

[
exp

[
−1

2

(
2G
(
m2Z2

T−1

)− 1
)2]∣∣∣ εT−2

]
is constant as Zt−1 is inde-

pendent of εT−2,∀t ∈ Z. So,

P0

(
AT (ϕ)

) ≤ E0

[
exp

[
−1

2
(
2G
(
m2Z2

T−1

)− 1
)2]]

E0

[
exp

(
−

T−1∑
t=2

gt

∣∣∣∣∣ εT−2

)]
.

Using recursively the procedure leading to

E0

[
exp

(
−

T∑
t=2

gt

)]
≤ cE0

[
exp

(
−

T−1∑
t=2

gt

)]

we obtain

P0

(
AT (ϕ)

) ≤ {E0

[
exp

[
−1

2
(
2G
(
m2Z2

)− 1
)2]]}T−1

where Z is a random variable with the same law of Zt.

Finally, we may state the following result:

Theorem 4.1. Let X = (Xt, t ∈ Z) be a real stochastic process satisfying
the model (1) subject to the general conditions C1, C2 and C3.

If the error process satisfies condition C5 and the function G is defined by

G (v) =
∫ +∞
−∞ F

(
β
2 v − Mu

)
f(u)du then the proposed decision rule satisfies

P0 (AT (ϕ)) ≥ 1 −
{

E0

[
exp

[
−1

2
(
2G
(
m2Z2

)− 1
)2]]}T−1

, ∀T ∈ N .

5. APPENDIX

The convergence rate study has been developped assuming absolute conti-
nuity and symmetry of the distribution laws involved. So, in this appendix we
establish several lemmas concerning distribution functions of symmetrical densi-
ties.
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Lemma 5.1. Let f be a symmetrical density decreasing on R
+ with dis-

tribution function F . Let a and b be fixed real numbers, with a > 0. Then the
function G̃ defined by

G̃ (v) =
∫ +∞

−∞
F (av − bu) f (u) du

is the distribution function of a law with symmetrical density g decreasing on R
+.

Proof: As we can differentiate under the integral sign (Métivier, 1972,
p. 156) we obtain

d

dv
G̃ (v) =

∫ +∞

−∞
af (av − bu) f (u) du .

Then, as f is symmetrical,

d

dv
G̃ (−v) =

∫ +∞

−∞
af (−av − bu) f (u) du

=
∫ +∞

−∞
af (av + bu) f (u) du

=
∫ +∞

−∞
af (av − by) f (y) dy

=
∫ +∞

−∞
af (av − bu) f (u) du

=
d

dv
G̃ (v) .

Denoting d
dv G̃ = g, g is a symmetrical function. Let us prove that g is a

density function and G̃ the distribution function of density g.

From Fubini, we obtain∫ +∞

−∞
dv

∫ +∞

−∞
af (av − bu) f (u) du =

∫ +∞

−∞
f(u)

(∫ +∞

−∞
af (av − bu) dv

)
du .

But ∫ +∞

−∞
af (av − bu) dv =

∫ +∞

−∞
af (z)

1
a
dz = 1 .

Then ∫ +∞

−∞
dv

∫ +∞

−∞
af (av − bu) f (u) du = 1 .



166 E. Gonçalves, P. Jacob and N. Mendes-Lopes

On the other hand, again from Fubini,∫ x

−∞
g(v)dv =

∫ x

−∞

(∫ +∞

−∞
af (av − bu) du

)
dv

=
∫ +∞

−∞
f(u)

[∫ x

−∞
af (av − bu) dv

]
du

=
∫ +∞

−∞
f(u)

[∫ ax−bu

−∞
af (z)

1
a
dz

]
du

=
∫ +∞

−∞
F (ax − bu) f(u)du

= G̃ (v) .

From the definition of g and as f is decreasing on R
+, it is obvious that g

is decreasing on R
+.

Lemma 5.2. Let h (x) = c [2R (a − dx) − 1] , x ∈ R, where c, a, d are pos-
itive numbers and R is the distribution function of a symmetrical and decreasing
on R

+ density, r. Let H(x) = e−h(x). Then H(x) + H(−x) is increasing on R
+.

Proof: We have

d

dx
[H(x) + H(−x)] =

d

dx

[
e−h(x) + e−h(−x)

]
=
[
−h′(x)e−h(x) + h′(−x)e−h(−x)

]
= 2cdr (a − dx) e−h(x) − 2cdr (a + dx) e−h(−x) .

Let us show that this derivative is non negative. As c and d are positive,
it is enough to show that{

r (a − dx) ≥ r (a + dx) , ∀x ≥ 0

e−h(x) ≥ e−h(−x), ∀x ≥ 0 .

As a > 0 and d > 0 and r is decreasing on R
+, we have r (a − dx) ≥

r (a + dx) , for every x ≥ 0 such that a − dx > 0.

But, as r is symmetrical, r is increasing on R
− and if a − dx < 0 we have

r (a − dx) = r (dx − a) ≥ r (a + dx) ,

as 0 ≤ dx − a < dx + a.

Moreover, as r is a symmetrical density, the function

2R (x) − 1 = R (x) − R (−x)
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is odd and obviously increasing on R
+.

As c and d are positive we can conclude, by an analogous way, that for
every x ≥ 0

c
[
2R (a − dx) − 1

] ≤ c
[
2R (a + dx) − 1

]
that is

h(x) ≤ h(−x)

and, in consequence,
e−h(x) ≥ e−h(−x) .

Lemma 5.3. Let ϕ and f be two symmetrical densities and a > 0 such
that ϕ > f on [0, a[ and ϕ < f on ]a,+∞[. Let T be a positive and increasing
function, defined on R

+. Then∫ +∞

0
ϕ (x)T (x) dx <

∫ +∞

0
f (x)T (x) dx .

Proof: We have∫ +∞

0
[ϕ (x) − f (x)]T (x) dx =

=
∫

[0,a[
[ϕ (x) − f (x)] T (x) dx +

∫
]a,+∞[

[ϕ (x) − f (x)] T (x) dx

< T
(
a−
) ∫

[0,a[
[ϕ (x) − f (x)] dx + T

(
a+
) ∫

]a,+∞[
[ϕ (x) − f (x)] dx

as T is an increasing function and where T (a−) denotes the left limit and T (a+)
the right limit on a.

As the first quantity is positive, we have∫ +∞

0
[ϕ (x) − f (x)] T (x) dx < T

(
a+
) ∫

]0,+∞[
[ϕ (x) − f (x)] dx = 0 ,

taking into account that ϕ and f are symmetrical densities.

Lemma 5.4. Let h be the function of lemma 5.2, ϕ and f the probability
densities of lemma 5.3 and Y and Z real random variables with densities f and
ϕ, respectively. Then

E
[
e−h(Z)

]
≤ E

[
e−h(Y )

]
.
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Proof: We have

E
[
e−h(Z)

]
=
∫ +∞

−∞
e−h(z)ϕ (z) dz

=
∫ +∞

−∞
e−h(z)ϕ (−z) dz

=
∫ +∞

−∞
e−h(−u)ϕ (u) du

= E
[
e−h(−Z)

]
.

Then, with H (x) = e−h(x),∫ +∞

−∞
H (x)ϕ (x) dx =

∫ +∞

−∞
H (−x)ϕ (x) dx

=
∫ +∞

−∞
H (x) + H (−x)

2
ϕ (x) dx

=
∫ 0

−∞

H(x)+H(−x)
2

ϕ(x) dx +
∫ +∞

0

H(x)+H(−x)
2

ϕ(x) dx

=
∫ +∞

0
(H (x) + H (−x)) ϕ (x) dx,

as ϕ is symmetrical.

In the same way, we have

E
[
e−h(Y )

]
=
∫ +∞

0
[H (x) + H (−x)] f (x) dx .

As, by lemma 5.2, the function H (x)+H (−x) is increasing on R
+, we can

apply lemma 5.3 to obtain∫ +∞

0
ϕ (x) [H (x) + H (−x)] dx <

∫ +∞

0
f (x) [H (x) + H (−x)] dx ,

that’s to say,

E
[
e−h(Z)

]
< E

[
e−h(Y )

]
.

Lemma 5.5. Let g be a symmetrical function, increasing on R
+, equal

to zero in the origin and bounded. Let Y be a real random variable with a
symmetrical and decreasing on R

+ density f . Let h be the function of lemma
5.2. Then

E
[
e−g(Y )−h(Y )

]
< E

[
e−g(Y )

]
E
[
e−h(Y )

]
.
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Proof: Let us take

1
b

=
∫ +∞

−∞
e−g(x)f (x) dx .

We note that b > 1, as e−g < 1 almost everywhere.

We consider

ϕ (x) = be−g(x)f (x) .

Then ϕ is a symmetrical density.

On the other hand, as b > 1 and g (0) = 0, we obtain

ϕ (0) = be−g(0)f (0) > f (0) .

Moreover

ϕ (x) = f (x) ⇐⇒ be−g(x) = 1 .

As g is monotone increasing, there is a unique root a > 0 such that ϕ > f
in [0, a[ and ϕ < f in ]a, +∞[ .

Let Z be a real random variable with density ϕ. From lemma 5.4 we have

E
[
e−h(Z)

]
≤ E

[
e−h(Y )

]
⇐⇒

∫ +∞

−∞
e−h(x)ϕ (x) dx ≤

∫ +∞

−∞
e−h(x)f (x) dx .

As ϕ (x) = be−g(x)f (x) , we obtain

b

∫ +∞

−∞
e−h(x)e−g(x)f (x) dx ≤

∫ +∞

−∞
e−h(x)f (x) dx

or, using the b definition,

∫ +∞

−∞
e−h(x)e−g(x)f (x) dx ≤

∫ +∞

−∞
e−h(x)f (x) dx

∫ +∞

−∞
e−g(x)f (x) dx

which is equivalent to

E
[
e−g(Y )−h(Y )

]
≤ E

[
e−g(Y )

]
E
[
e−h(Y )

]
.
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