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Abstract:
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1. INTRODUCTION

Technological progress in collecting and storing data provides datasets recorded at finite
grids of points that become denser and denser over time. Although in practice data always
comes in the form of finite dimensional vectors, from the theoretical point of view, the classic
multivariate techniques are not well suited to deal with data which, essentially, is infinite
dimensional and whose observations within the same curve are highly correlated.

From a practical point of view, a commonly used technique to treat this kind of data
is to transform the (observed) discrete values into a function via smoothing or a series ap-
proximations (see [5], [21], [24, 25, 26], or chapter 9 of [13] and the references therein). For
the analysis, we can use the intrinsic infinite dimensional nature of the data and assume the
existence of continuous underlying stochastic processes which are observed ideally at every
point. In this context, the theoretical analysis is performed on the functional space where
they take values (see [15]). In what follows, we will refer to this last setting as the full model.

Nonparametric regression is an important tool in functional data analysis (FDA) which
has received considerable attention from different authors in both settings. For the full model,
consistency results have been obtained by, among others, [1], [3], [4], [7], [10], [15], [22], and
[23]. In particular, [16] (see also the Corrigendum [17]) prove a consistency result close to
universality for the kernel (with random bandwidth) estimator. The first contribution of the
present paper will be to prove the consistency of the k-nearest neighbor with kernel regression
estimator (Proposition 2.2) when the full trajectories are observed. This family, considered
by [12], combines the smoothness properties of the kernel function with the locality properties
of the k-nearest neighbors distances.

Regarding regression when discretized curves are available, [19] study the mean square
consistency of the kernel estimator when the sample size as well as the grid size discretization
go to infinity. More precisely, from independent realizations of a random process with con-
tinuous covariance structure, they estimate the regression function, assuming its smoothness.
Under the same assumptions, but using interpolation of the data, [27], in a mainly practical
approach, propose a method to estimate the regression function via smoothing splines (see
also [20]). More recently, [8] establish minimax rates of convergence of estimators of the mean
based on discretized sampled data while [9] establish the minimax rates of convergence for
the covariance operator when data are observed on a lattice (see also [18] for the problem of
principal components analysis for longitudinal data). In this context it is natural to assess
the relation between the ideal nonparametric regression estimator constructed with the entire
set of curves and the one computed with the discretized sample. In this direction, we are
interested in addressing the following question:

• Under what conditions can the consistency (and rates of convergence) of the estimate
computed with the discretized trajectories be derived from the consistency of the
estimate based on the full curves?

Clearly, the asymptotic results for estimates computed with the discretized sample will
not be a direct consequence of those for the full model. However, we provide reasonable
conditions in order to still get the consistency and find rates of convergence of the estimator.
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In this context we state the results for the well known kernel and k-nearest neighbor with
kernel estimators. These results are a consequence of a more general result, which, besides
discretization, also includes the cases of regularization via smoothing and basis representation.

This paper is organized as follows: In Section 2 we state the consistency of the k-nearest
neighbor with kernel estimator in the infinite dimensional setting (for the full model). This
result is not only interesting by itself but also, it will be used to prove consistency results when
discretely sample data are available. In Section 3 we provide conditions for the consistency of
the kernel and k-nearest neighbor with kernel estimators when we do not observe the whole
trajectories but only a function of them (Theorems 3.1 and 3.2). In Section 4 the results for
discretization, smoothing and basis representation are obtained as a consequence of Theorems
3.1 and 3.2. Finally, in Section 5 we perform a small simulation study where we compare
the behaviour of the estimators computed with the discretized trajectories and with the full
curves. Proofs are given in Appendices A and B.

2. CONSISTENCY RESULTS FOR FULLY OBSERVED CURVES

In this section we provide two L2-consistency results for the full model, i.e., when ideally
all trajectories are observed at every point of the interval [0, 1]. The first one corresponds
to kernel estimates, and was obtained in [16], while the second one for k-NN with kernel
estimates is derived in the present paper. Both results will be used, in Section 3, to prove
the consistency of that estimators when only discretely sampled curves in [0, 1] are observed.

We will use the notation f . g when there exists a constant C > 0 such that f ≤ Cg

and f ≈ g if there exists a constant C > 0 such that f = Cg.

Let (H, d) be a separable metric space and let (X1, Y1), ...(Xn, Yn) be independent iden-
tically distributed (i.i.d.) random elements in H×R with the same law as the pair (X , Y )
fulfilling the model:

(2.1) Y = η(X ) + e ,

where the error e satisfies Ee|X (e|X ) = 0 and vare|X (e|X ) = σ2 < ∞. In this context, the
regression function E(Y |X ) = η(X ) can be estimated by

(2.2) η̂n(X ) =
n∑

i=1

Wni(X ) Yi ,

where the weights Wni(X ) = Wni(X ,X1, ...,Xn) ≥ 0 and
∑n

i=1 Wni(X ) = 1. In this paper, we
first consider the weights corresponding to the family of kernel estimators given by

(2.3) Wni(X ) =
K
(

d(X ,Xi)
hn(X )

)
∑n

j=1 K
(

d(X ,Xj)
hn(X )

) ,

where K is a regular kernel, i.e., there are constants 0 < c1 < c2 < ∞ such that c1I[0,1](u) ≤
K(u) ≤ c2 I[0,1](u). Here 0/0 is assumed to be 0. In this general setting, [16] proved the
following result.
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Proposition 2.1 (Theorem 5.1 in [16]). Assume that

K1) K is a regular and Lipschitz kernel;

F1) (H, d) is a separable metric space;

F2) {(Xi, Yi)}i≥1 are i.i.d. random elements with the same law as the pair (X , Y ) ∈
H×R fulfilling model (2.1) with, for each i = 1, ..., n, joint distribution PX ,Xi ;

F3) µ is a Borel probability measure of X and η ∈ L2(H, µ) =
{
f : H → R :∫

H f2(z) dµ(z) < ∞
}

is a bounded function which satisfies the Besicovitch con-
dition:

(2.4) lim
δ→0

1
µ
(
B(X , δ)

) ∫
B(X ,δ)

|η(z)− η(X )| dµ(z) = 0 ,

in probability, where B(X , δ) is the closed ball of center X and radius δ with

respect to d.

For any x ∈ supp (µ) and any sequence hn(x) → 0 such that nµ(B(x,hn(x))
log n →∞, the estimator

given in (2.2) with weights given in (2.3) satisfies

lim
n→∞

E
(
(η̂n(X )− η(X ))2

)
= 0 .

Remark 2.1. The Besicovitch condition in F3 is a differentiation type condition which,
as is well known, in finite dimensional spaces automatically holds for any integrable function
η. Unfortunately, it is no longer true in infinite dimensional spaces and it can be proved,
for instance, that it is necessary in order to get the L1-consistency of uniform kernel esti-
mates (see Proposition 5.1 in [16]). However, it holds in a general setting if, for instance, the
function η is continuous. For a deeper reading on this topic see [10] or [16].

Remark 2.2. Note that for x ∈ supp (µ) the consistency of this estimator holds for
every sequence h̃n(x) → 0 such that h̃n(x) ≥ hn(x), where hn(x) is given in Proposition 2.1,
since if h̃n(x) ≥ hn(x), then nµ(B(x,h̃n(x))

log n ≥ nµ(B(x,hn(x))
log n →∞.

The existence of a sequence verifying nµ(B(x,hn(x))
log n →∞ in Proposition 2.1 follows from

the next lemma.

Lemma 2.1 (Lemma A.5 in [16]). For any x ∈ supp (µ), there exists a sequence of

positive real numbers hn(x) → 0 such that nµ(B(x,hn(x))
log n →∞.

Let Hn(x) be the distance from x to its kn-nearest neighbor among {X1, ...,Xn}. Recall
that the kn-nearest neighbor of x among {X1, ...,Xn} is the sample point Xi reaching the
kn-th smallest distance to x in the sample. Then, when the bandwidth in (2.3) is given by
Hn(x), we obtain the family of kn-nearest neighbor (k-NN) with kernel estimates. For the
uniform kernel, the consistency of the estimator was proven in [16], Theorem 4.1. For more
general kernels, the consistency could be a consequence of Proposition 2.1 if we can prove
that Hn(x) → 0 and nµ(B(x,Hn(x))

log n →∞. Although it can be proved that Hn(x) → 0 (see [16],

Lemma A.4 stated below) the condition nµ(B(x,Hn(x))
log n →∞ is not necessary true for Hn(x).

However, as we will see in Proposition 2.2, we can still prove the mean square consistency of
this estimator under the same weak conditions as in Proposition 2.1.
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Lemma 2.2 (Lemma A.4 in [16]). Let H be a separable metric space, µ a Borel prob-

ability measure, and {Xi}n
i=1 a random sample of X . If x ∈ supp (µ) and kn is a sequence of

positive real numbers such that kn →∞ and kn/n → 0, then Hn(x) → 0.

Proposition 2.2. Assume K1, F1–F3 hold. Let kn be a sequence of positive real

numbers such that kn →∞, kn/n → 0 and let Hn(x) be the distance from x to its kn-nearest

neighbor among {X1, ...,Xn}. Then, the estimator given by (2.2) with weights given in (2.3)

is mean square consistent for any sequence hn(x) → 0 such that hn(x) ≥ Hn(x), x ∈ supp (µ).

Remark 2.3. Observe that, unlike [15] or [7], we ask d to be a metric not a semi-
metric (which is a milder condition). Nevertheless, we do not ask for conditions neither on
small ball probabilities nor on the smoothness of the regression function as in the cited papers.
Further study is needed to extend ours results to the case of semi-metrics.

3. CONSISTENCY RESULTS FOR DISCRETELY SAMPLED CURVES

In this section we will assume that we are not able to observe the whole trajectories Xi

in H given in F2, but only a function of them. As we will see in Section 4, different choices
of that function will correspond to discretizations, eigenfunction expansions, or smoothing.
In this context, the weights of the estimator given in (2.3) cannot be computed because we
have not a distance d defined for the discretized sample curves (as a consequence, we do not
have the validity of the Besicovitch condition (2.4) for the discretized data) or a bandwidth
hn.

We are interested in defining an estimator and proving its consistency in this setting.
For that, let us consider the following assumptions:

H1) (H, d) is a separable (metric) Hilbert space and F : H → H is a function such

that, for each i = 1, ..., n, F (Xi) = X p
i ;

H2) dp : H×H → R is a semi-metric in H defined by dp(X ,Y) = d(X p,Yp) such that

there exists a sequence cn,p → 0 as n, p →∞ satisfying, for each i = 1, ..., n,

(3.1) n2 EX
(
P2
Xi|X

(
|d(X ,Xi)− dp(X ,Xi)| ≥ cn,p

∣∣∣ X ∈ supp (µ)
))

→ 0 .

Here, P2
Y|X (·) means the square of PY|X (·).

Remark 3.1. Observe that in H1 neither H nor F change with the sample. This
implies that in this case, the functional data falls into the category of sparsely and regularly
sampled data.

The estimator of η based on {(X p
i , Yi)}n

i=1 will be defined as in (2.2) and (2.3) but with
the semi-metric dp instead of the metric d. More precisely, for hn,p(X ) > 0, we define

(3.2) η̂n,p(X ) =

∑n
i=1 K

(
dp(X ,Xi)
hn,p(X )

)
Yi∑n

j=1 K
(

dp(X ,Xj)
hn,p(X )

) .
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For this estimator, we state the following two asymptotic results.

Theorem 3.1. Assume K1, F2, F3, H1 and H2 hold.

(a) (Kernel estimator) For any x ∈ supp (µ), let h∗n(x) → 0 be a sequence of pos-

itive real numbers such that nµ(B(x,h∗n(x))
log n →∞. Then, for cn,p given in H2 and

hn,p(x) → 0 such that there exists a sequence hn(x) → 0, hn(x) ≥ h∗n(x) satisfying:

(H3.1) EX
(
c2
n,p/h2

n(X )
)
→ 0 as n, p →∞;

(H3.2) cn,p ≤ hn,p(x)− hn(x) ≤ C2 cn,p for C2 ≥ 1;

we have
(3.3) lim

n,p→∞
E
(
(η̂n,p(X )− η(X ))2

)
= 0 .

(b) (kn-NN with kernel estimator) Let cn,p given in H2 and Hn(x) the distance from x

to its kn-nearest neighbor among {X1,...,Xn}. For any x ∈ supp (µ), let hn,p(x)→ 0
be such that there exists a sequence hn(x) → 0, hn(x) ≥ Hn(x) satisfying assump-

tions (H3.1) and (H3.2). Then, for kn →∞ and kn/n → 0 we have (3.3).

Remark 3.2. Observe that the sequence h∗n(x) in Theorem 3.1 always exists by
Lemma 2.1. In addition, under H2, it is always possible to choose a sequence hn,p(x) → 0
fulfilling the conditions in Theorem 3.1. Indeed, taking hn(x) = max{h∗n(x),√cn,p} and
hn,p(x) = hn(x) + Ccn,p, with C ≥ 1, we have that hn(x) → 0, hn,p(x) → 0, hn(x) ≥ h∗n(x),
(H3.1) holds since hn(x) ≥ √

cn,p and (H3.2) holds by definition of hn,p(x). The same happens
if instead of taking h∗n(x) we take Hn(x).

Theorem 3.2. Under the assumptions of Theorem 3.1, let γn →∞ as n →∞ be such

that, as n, p →∞,

(a) EX
(

γn

(
cn,p

hn(X )

)2)
→ 0;

(b) γn n2 EX
(
P2
Xi|X

(
|d(X ,Xi)− dp(X ,Xi)| ≥ cn,p

∣∣∣X ∈ supp (µ)
))

→ 0, for each

i = 1, ..., n.

Then

lim
n→∞

E
(
γn(η̂n(X )− η(X ))2

)
= 0

implies

lim
n,p→∞

E
(
γn(η̂n,p(X )− η(X ))2

)
= 0 .

4. PARTICULAR CASES

In this section we provide definitions of H and dp for discretization, smoothing, and
eigenfunction expansions, which satisfy conditions H1 and H2. Then, for any sequence
hn,p(x) → 0 satisfying (H3.1) and (H3.2) in Theorem 3.1, we get the consistency of η̂n,p

as a consequence of the consistency results for η̂n in the full model.
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Consider the case where the elements of the dataset are curves in L2([0, 1]) that are
only observed at a discrete set of points in the interval [0, 1]. More precisely, let us assume
that {Xi}n

i=1 are observed only at some points: (Xi(t1), ...,Xi(tp+1)) where 0 = t1 < t2 < ··· <
tp+1 = 1, which for simplicity we will assume are equally spaced, i.e., ∆t = ti+1 − ti = 1/p.
In this case, we will need to require the trajectories to satisfy some regularity condition. More
precisely, we will assume that X is a random element of H .= H1([0, 1]), the Sobolev space
defined as

H1([0, 1]) =
{

f : [0, 1] → R : f and Df ∈ L2([0, 1])
}

,

where Df is the weak derivative of f , i.e., Df is a function in L2([0, 1]) which satisfies∫ 1

0
f(t)Dφ(t) dt = −

∫ 1

0
Df(t)φ(t) dt , ∀φ ∈ C∞

0 .

In this space, the norm is defined by

‖f‖H1([0,1]) = ‖f‖L2([0,1]) + ‖Df‖L2([0,1]) .

In this setting, we will prove consistency for the semi-metrics dp given below.

4.1. Discretization

Consider the semi-metric

dp(X ,X1) = d(X p,X p
1 ) =

1
p

p∑
j=1

|X (tj)−X1(tj)|2
1/2

,

where X p(t) = F (X )(t) =
∑p

j=1 φj(t)X (tj) with φj(t) = I[tj ,tj+1)(t). In this case, consistency
will hold for any sequence cn,p→ 0 as n, p→∞ such that n2PX,X1 (‖X‖H+‖X1‖H ≥ pcn,p) → 0.

4.2. Kernel smoothing

Let us consider now the semi-metric

dp(X ,X1) = d(X p,X p
1 ) =

(∫ 1

0
|X p(t)−X p

1 (t)|2 dt

)1/2

,

where X p(t) = F (X )(t) =
∑p

j=1 φj(t)X (tj) with φj(t) = K(|t−tj |/h)
Pp

i=1 K(|t−ti|/h)
and K is a regular

kernel supported in [0, 1]. In this case, consistency will be true for any sequence cn,p → 0 as
n, p →∞ satisfying n2PX ,X1 (‖X‖H + ‖X1‖H ≥ pcn,p) → 0.

Let us note that if EX (‖X‖2
H) < ∞, the consistency for the cases given in Sections 4.1

and 4.2 will hold for any sequence cn,p such that n
pcn,p

→ 0.
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4.3. Eigenfunction expansions

Let X ,X1 be i.d. random elements on H = L2[0, 1]. Let v1, v2, ... be the orthonormal
eigenfunctions of the covariance operator EX (X (t)X (s)) (without loss of generality we have
assumed that E (X (t)) = 0) associated with the eigenvalues λ1 ≥ λ2 ≥ ... such that

EX (X (t)X (s)) =
∞∑

k=1

λk vk(t)vk(s) .

If E
(∫
X 2(s) ds

)
<∞ is finite, using the Karhunen–Loève representation, we can write X as

(4.1) X (t) =
∞∑

k=1

(∫
X (s)vk(s) ds

)
vk(t)

.=
∞∑

k=1

ξk vk(t) ,

with E (ξk) = 0, E (ξkξj) = 0 (i.e., ξ1, ξ2, ... uncorrelated) and var (ξk) = E
(
ξ2
k

)
= λk =

E
((∫

X (s)vk(s) ds
)2). The classical L2-norm in H can be written as

(4.2) d(X ,X1) =

√√√√ ∞∑
k=1

(∫ (
X (t)−X1(t)

)
vk(t) dt

)2
.

If we consider the truncated expansion of X as given in [15],

(4.3) X p(t) =
p∑

k=1

(∫
X (s)vk(s) ds

)
vk(t) ,

we can define the parametrized class of seminorms from the classical L2-norm given by

‖X‖p =

√∫ (
X p(t)

)2
dt =

√√√√ p∑
k=1

(∫
X (t)vk(t) dt

)2
,

which leads to the semi-metric

(4.4) dp(X ,X1) = d(X p,X p
1 ) =

√√√√ p∑
k=1

(∫
(X (t)−X1(t))vk(t) dt

)2
.

In this case, the consistency will hold for any sequence cn,p → 0 such that n2

c2n,p

∑∞
k=p+1 λk → 0

as n, p →∞.

5. SIMULATION STUDY

In order to illustrate the results given in Theorems 3.1 and 3.2, we perform a small
simulation study where we compare the behaviour of the estimators, η̂n and η̂n,p for finite
sample sizes settings. Following [7], we simulate n pairs {(Xi(t), Yi)}n

i=1 where, for t ∈ [0, π],
and for each i = 1, ..., n,

Xi(t) = ai cos(2t) , ai ∼ N(0, σ = 0.1) .

The plot of n = 100 curves is shown in Figure 1.
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Figure 1: Simulated curves for n = 100.

The responses were generated following the model

Yi = η(Xi) + εi , εi ∼ N(0, σ = 0.4) ,

for different regression functions η as listed below:

Setting 1: η(Xi) = a2
i (see [7]);

Setting 2: η(Xi) =
(∫ π

0 sin(4πt)Xi(t) dt
)2 (see [11]);

Setting 3: η(Xi) =
∫ π
0 |Xi(t)| log(|Xi(t)|) dt (see [14]);

Setting 4: η(Xi) =
∫ π
0 X

2
i (t) dt (see [2]).

For the full model we used the classical L2-metric which in this case gives

d(Xi,Xj) =
(∫ π

0

(
Xi(t)−Xj(t)

)2
dt

)1/2

=
(∫ π

0
(ai − aj)2 cos2(2t) dt

)1/2

=
(∫ π

0
cos2(2t) dt

)1/2

|ai − aj | =
√

π

2
|ai − aj | .

For the discretized model, we divided the interval of time [0, π] in p+1 subintervals of length π
p .

The semimetric in this case is given by

dp(X ,X1) = d(X p,X p
1 ) =

(∫ π

0
|X p(t)−X p

1 (t)|2 dt

)1/2

≈

(
1
p

p∑
k=1

(
Xi(tk)−Xj(tk)

)2)1/2

.

For both estimators η̂n and η̂n,p, we used the Epanechnikov kernel K(u) = 3
4 (1− u2)I[0,1](u)

and the bandwidths hn and hn,p were chosen via cross validation.

In both cases the sample of size n was divided in two samples of the same size, the
learning sample, used to compute the optimal smoothing parameter and the testing sample,
used to measure the power of both methods by the Mean Square Error (MSE). For different
combination of n and p we repeated 250 times the procedure of building n/2 learning sam-
ples and n/2 testing samples and computing the MSE’s for the full and discretized models.
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The following tables show the mean over the 250 MSE’s for all estimators. As we can see,
the simulations confirm our theoretical results since, for the four different settings we can see
the consistency as n, p →∞ stated in Theorem 3.1 and also the equal order or convergence
stated in Theorem 3.2.

Table 1: MSE’s for Setting 1.

n
Discretized model

Full model
20 40 60 80

50 0.1871725 0.1829381 0.1819154 0.1817674 0.1818614
100 0.1784129 0.1661579 0.1661309 0.1660854 0.1659922
150 0.1727869 0.1674195 0.1675846 0.1674071 0.1672996
200 0.1671014 0.1629972 0.1629855 0.1630360 0.1631458
250 0.1646048 0.1631582 0.1631817 0.1632266 0.1632193
300 0.1653583 0.1638297 0.1637960 0.1638118 0.1637993

Table 2: MSE’s for Setting 2.

n
Discretized model

Full model
20 40 60 80

50 0.1919580 0.1796157 0.1795600 0.1789984 0.1789860
100 0.1787471 0.1684685 0.1684097 0.1684710 0.1685058
150 0.1731875 0.1661859 0.1661971 0.1663508 0.1663451
200 0.1695872 0.1646054 0.1646025 0.1646861 0.1646566
250 0.1658714 0.1622371 0.1621559 0.1621067 0.1621016
300 0.1655437 0.1633919 0.1634236 0.1634164 0.1634100

Table 3: MSE’s for Setting 3.

n
Discretized model

Full model
20 40 60 80

50 0.1875816 0.1752962 0.1744660 0.1751941 0.1748388
100 0.1797477 0.1672346 0.1671503 0.1671671 0.1671481
150 0.1706658 0.1662048 0.1661369 0.1661024 0.1660888
200 0.1696802 0.1683357 0.1681568 0.1681344 0.1681435
250 0.1666817 0.1651802 0.1652298 0.1652369 0.1652162
300 0.1626991 0.1622967 0.1623146 0.1622935 0.1623169

Table 4: MSE’s for Setting 4.

n
Discretized model

Full model
20 40 60 80

50 0.1951465 0.1867710 0.1872990 0.1870323 0.1869950
100 0.1824836 0.1694453 0.1694464 0.1695669 0.1695569
150 0.1717909 0.1655053 0.1656256 0.1657503 0.1657367
200 0.1692647 0.1657557 0.1655030 0.1655163 0.1655050
250 0.1651644 0.1630851 0.1631351 0.1630439 0.1630378
300 0.1665684 0.1655066 0.1655070 0.1654343 0.1654715
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APPENDIX A – Proofs of auxiliary results

To prove the consistency of the examples given in sections 4.1 and 4.2 we need the
following result.

Proposition A.1. Let X p(t) =
∑p

j=1 φj(t)X (tj) with φj satisfying:

(a) for each t ∈ [0, 1],
∑p

j=1 φj(t) = 1;

(b) for each t ∈ [0, 1],
∑p

j=i φ
2
j (t) ≤ C3 for some constant C3;

(c) supp (φj) ⊂ [t(j−m), t(j+m)] with m independent of p.

If cn,p → 0 as n, p →∞ is such that n2PX ,X1 (‖X‖H + ‖X1‖H ≥ pcn,p) → 0, H2 is fulfilled.

Proof of Proposition A.1: Using the Fundamental Theorem of Calculus (FTC)
(see Theorem 8.2 in [6]) for H1([0, 1]), we get

d2(X p,X ) =
∫ 1

0

∣∣∣∣∣∣
p∑

j=1

X (tj)φj(t)−X (t)

∣∣∣∣∣∣
2

dt

=
∫ 1

0

∣∣∣∣∣∣
p∑

j=1

(X (tj)−X (t))φj(t)

∣∣∣∣∣∣
2

dt (by (a))

=
∫ 1

0

∣∣∣∣∣∣
p∑

j=1

(∫ t

tj

DX (s) ds

)
φj(t)

∣∣∣∣∣∣
2

dt (from FTC)

≤
∫ 1

0

 p∑
j=1

(∫ t

tj

DX (s) ds

)2

I{supp(φj)}(t)

 p∑
j=1

φ2
j (t)

 dt (by C-S Ineq.)

.
∫ 1

0

p∑
j=1

(∫ t

tj

DX (s) ds

)2

I{supp(φj)}(t) dt (by (b))

.
∫ 1

0

p∑
j=1

(∫ t

tj

(DX (s))2 ds

)
|t− tj |I{supp(φj)}(t) dt (by C-S Ineq.)

=
p∑

i=1

∫ ti+1

ti

p∑
j=1

j:|j−i|≤m

(∫ t

tj

(DX (s))2 ds

)
|t− tj | dt (by (c))

.
p∑

i=1

p∑
j=1

j:|j−i|≤m

∫ ti+m

ti−m

(DX (s))2
(∫ tj+1

tj

|t− tj | dt

)
ds

.
m

p2

p∑
i=1

p∑
j=1

j:|j−i|≤m

∫ ti+m

ti−m

(DX (s))2 ds



12 L. Forzani, R. Fraiman and P. Llop

.
m2

p2

p∑
i=1

∫ ti+m

ti−m

(DX (s))2 ds

=
m2

p2

∫ 1

0

p∑
i=1

I[ti−m,ti+m](s)(DX (s))2 ds .
1
p2
‖X‖2

H ,

from where we get d(X p,X ) . 1
p ‖X‖H. Analogously we can prove that d(X p

1 ,X1) . 1
p ‖X1‖H.

By triangular inequality,

n2EX
(
P2
X1|X

(
|d(X ,X1)− dp(X ,X1)| ≥ cn,p

∣∣∣X ∈ supp (µ)
))

≤ n2PX ,X1 (‖X‖H + ‖X1‖H ≥ pcn,p) ,

and therefore, for any cn,p → 0 such that n2PX ,X1(‖X‖H+‖X1‖H ≥ pcn,p)→ 0 H2 is fulfilled.

A.1. Consistency for the example in Section 4.1

Since the functions φj(t)= I[tj ,tj+1)(t) satisfy trivially conditions (a)–(c)of PropositionA.1,
H2 is fulfilled and therefore, for any sequence hn,p(x) → 0 satisfying (H3.1) and (H3.2) in
Theorem 3.1, we get the consistency of η̂n,p.

A.2. Consistency for the example in Section 4.2

Observe that φj(t) = K(|t−tj |/h)
Pp

i=1 K(|t−ti|/h)
satisfies conditions (a)–(c) in Proposition A.1:

(a) for each t ∈ [0, 1],
∑p

j=1 φj(t) =
∑p

j=1
K(|t−tj |/h)

Pp
i=1 K(|t−ti|/h)

= 1;

(b) since K is nonnegative and K(|t−tj |/h)
Pp

i=1 K(|t−ti|/h)
≤ 1, for each t ∈ [0, 1], there exists

C3 = 1 such that

p∑
j=1

φ2
j (t) =

p∑
j=1

(
K(|t− tj |/h)∑p
i=1 K(|t− ti|/h)

)2
≤

p∑
j=1

K(|t− tj |/h)∑p
i=1 K(|t− ti|/h)

= 1;

(c) supp (φj) = supp (K(|t− tj |/h)) = [tj−h, tj +h], which implies that, for h ≤ m/p,
supp (φj) ⊂ [t(j−m), t(j+m)].

This implies that H2 is fulfilled then, for any sequence hn,p(x) → 0 satisfying (H3.1) and
(H3.2) in Theorem 3.1, we get the consistency of η̂n,p.
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A.3. Consistency for the example in Section 4.3

Let us consider the truncated expansion of X , X p(t), given by (4.3) and the pseudo-
metric dp(X ,X1) = d(X p,X p

1 ) given by (4.4). In order to prove H2, let us consider cn,p such
that n2

c2n,p

∑∞
k=p+1 λk → 0. Using Chebyshev’s Inequality in (3.1) followed by Cauchy Schwartz,

we get

n2EX
(
P2
X1|X

(
|d(X ,X1)− dp(X ,X1)| ≥ cn,p

∣∣∣X ∈ supp (µ)
))

(A.1)

≤ n2

c2
n,p

EX ,X1

(
(d(X ,X1)− dp(X ,X1))

2 ).
Now, since d(X ,X1)≥ dp(X ,X1) we have that 0≤ d(X ,X1)−dp(X ,X1) = d(X ,X1)−d(X p,X p

1 )
and, by triangular inequality d(X,X1)≤ d(X,X p)+d(X p,X p

1 )+d(X p
1,X1) which implies that

(A.2) 0 ≤ d(X ,X1)− dp(X ,X1) ≤ d(X ,X p) + d(X p
1 ,X1)

and, taking squares,

0 ≤ (d(X ,X1)− dp(X ,X1))2 ≤ (d(X ,X p) + d(X p
1 ,X1))2 ≤ 2

(
d2(X ,X p) + d2(X p

1 ,X1)
)
.

As a consequence, to proof this proposition it will sufficient to bound EX
(
d2(X ,X p)

)
(equiv-

alently, EX1

(
d2(X1,X p

1 )
)
). Since vk are orthonormal,

d2(X ,X p) =
∫ (

X (s)−
p∑

k=1

(∫
X (t)vk(t) dt

)
vk(s)

)2

ds

=
∞∑

k=p+1

(∫
X (t)vk(t) dt

)2

.

Then, we have

EX
(
d2(X ,X p)

)
= EX

 ∞∑
k=p+1

(∫
X (t)vk(t) dt

)2


=
∞∑

k=p+1

λk (from (4.1)) .

Analogously we can prove that EX1

(
d2(X1,X p

1 )
)

=
∑∞

k=p+1 λk. Therefore, in (A.1) we get

n2EX
(
P2
X1|X

(
|d(X ,X1)− dp(X ,X1)| ≥ cn,p

∣∣∣X ∈ supp (µ)
))

.
n2

c2
n,p

∞∑
k=p+1

λk → 0 .

This implies that H2 is fulfilled then, for any sequence hn,p(x) → 0 satisfying (H3.1) and
(H3.2) in Theorem 3.1, we get the consistency of η̂n,p.
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APPENDIX B – Proof of Proposition 2.2 and Theorems 3.1 and 3.2

To prove Proposition 2.2 we need some preliminary results whose proofs can be found
in [16].

Theorem B.1 (Theorem 3.4). If η ∈ L2(H, µ) and η̂n is the estimator given in (2.2)

with weights Wn(X ) = {Wni(X )}n
i=1 satisfying the following conditions:

(i) there is a sequence of nonnegative random variables an(X ) → 0 a.s. such that

lim
n→∞

E

(
n∑

i=1

Wni(X )I{d(X ,Xi)>an(X )}

)
= 0 ;

(ii)
lim

n→∞
E
(

max
1≤i≤n

Wni(X )
)

= 0 ;

(iii) for all ε > 0 there exists δ > 0 such that for any η∗ bounded and continuous

function fulfilling EX ((η(X )− η∗(X ))2) < δ we have that

E

(
n∑

i=1

Wni(X )(η∗(Xi)− η(Xi))2
)

< ε ;

then η̂n is mean square consistent.

Corollary B.1 (Corollary 3.3). Let Un be a sequence of probability weights satisfy-

ing conditions (i), (ii) and (iii) of Theorem B.1. If Wn is a sequence of weights such that∑n
i=1 Wni(X ) = 1 and, for each n ≥ 1, |Wn| ≤ MUn for some constant M ≥ 1, then the esti-

mator given in (2.2) with weights Wn(X ) is mean square consistent.

Lemma B.1 (Lemma A.1). Let H be a separable metric space. If A = supp (µ) =
{x ∈ H : µ

(
B(x, ε)

)
> 0,∀ ε > 0)} then µ

(
A
)

= 1.

Proof of Proposition 2.2: Let x ∈ supp (µ) be fixed. Let us observe that, since K

is regular, there exist constants 0 < c1 < c2 < ∞ such that, for each i,

(B.1) Wni(x) =
K
(

d(Xi,x)
hn(x)

)
∑n

j=1 K
(

d(Xj ,x)
hn(x)

) ≤ c2

c1

I{d(Xi,x)≤hn(x)}∑n
j=1 I{d(Xj ,x)≤hn(x)}

.=
c2

c1
Uni(x) .

Let hn(x) → 0 such that hn(x) ≥ Hn(x) (Hn(x) → 0 by Lemma 2.2, for x ∈ supp (µ)). From
(B.1) and Corollary B.1, it suffices to prove that the weights Uni satisfy conditions (i), (ii)
and (iii) of Theorem B.1. To prove (i) let us take an(x) = h

1/2
n (x) → 0. Then, by Lemma B.1,

E

(
n∑

i=1

Uni(X )I{d(Xi,X )>hn(X )1/2}

)

= EX

(
EDn|X

(
I{X∈supp(µ)}

n∑
i=1

Uni(X )I{d(Xi,X )>hn(X )1/2}
∣∣∣X ∈ supp (µ)

))
.
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Given ε > 0, let x ∈ supp (µ) be fixed. Since hn(x) → 0, there exists N1 = N1(x) such that if
n ≥ N1, I{hn(x)1/2<d(xi,x)≤hn(x)} = 0 for all i and, consequently,

EDn

(
1∑n

j=1 I{d(xj ,x)≤hn(x)}

n∑
i=1

I{hn(x)1/2<d(xi,x)≤hn(x)}

)
< ε .

In addition,

Pn
i=1 I{hn(x)1/2<d(xi,x)≤hn(x)}
Pn

j=1 I{d(xj,x)≤hn(x)}
≤ 1, from what follows that

EDn

(
1∑n

j=1 I{d(xj ,x)≤hn(x)}

n∑
i=1

I{hn(x)1/2<d(xi,x)≤hn(x)}

)
≤ 1 .

Therefore, by the dominated convergence theorem we have that condition (i) is satisfied.
Now, since hn(x) ≥ Hn(x),

n∑
j=1

I{d(Xj ,x)≤hn(x)} ≥
n∑

j=1

I{d(Xj ,x)≤Hn(x)} = kn → ∞ .

Therefore,

max
1≤i≤n

Uni(x) ≤ max
1≤i≤n

1∑n
j=1 I{d(Xj ,x)≤hn(x)}

≤ 1
kn

→ 0 ,

from what we derive (ii) using the dominated convergence theorem. It remains to verify that
condition (iii) holds. Since η ∈ L2(H, µ) which is separable and complete, there exists η∗

continuous and bounded such that, for all δ > 0, EX ((η(X )− η∗(X ))2) < δ. Then,

E

(
n∑

i=1

Uni(X )(η∗(Xi)− η(Xi))2
)

= EX

(
EDn|X

(
I{X∈supp(µ)}

n∑
i=1

Uni(X )(η∗(Xi)− η(Xi))2|X ∈ supp (µ)

))
.

Let x ∈ supp (µ) be fixed. From [16], Lemma A.7, for any nonnegative bounded measurable
function f , we have

EDn

(
n∑

i=1

Uni(x)f(Xi)

)
≤ 12

1
µ
(
B(x, hn(x))

) ∫
B(x,hn(x))

f(y) dµ(y) .

Then, applying the inequality to f(Xi) = (η∗(Xi)− η(Xi))2, we get

EDn

(
n∑

i=1

Uni(x)(η∗(Xi)− η(Xi))2
)

.
1

µ
(
B(x, hn(x))

) ∫
B(x,hn(x))

(η∗(y)− η(y))2 dµ(y)

≤ 1
µ
(
B(x, hn(x))

) ∫
B(x,hn(x))

(η∗(y)− η∗(x))2 dµ(y)

+
1

µ
(
B(x, hn(x))

) ∫
B(x,hn(x))

(η∗(x)− η(x))2 dµ(y)

+
1

µ
(
B(x, hn(x))

) ∫
B(x,hn(x))

(η(x)− η(y))2 dµ(y)

.= f1,n(x) + f2,n(x) + f3,n(x)) .
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This part will be complete if we show that the expectation with respect to X of these three
functions converges to zero. For this, let ε > 0 and δ ≤ ε. Since η∗ is continuous, there
exists r = r(x, ε) > 0 such that if d(x, y) < r then |η∗(x)− η∗(y)| < ε. On the other hand,
since hn(x) → 0, for that r(x, ε) > 0, there exists N2 = N2(x, r(x, ε)) such that if n ≥ N2,
hn(x) < r. Then, f1,n(x) = 1

µ
(
B(x,hn(x))

) ∫
B(x,hn(x))(η

∗(y)− η∗(x))2 dµ(y) < ε for n ≥ N2 and

in addition it is bounded so, by the dominated convergence theorem we have that

EX (f1,n(X )) → 0 .

For the second term, since δ ≤ ε, we have that

EX (f2,n(X )) = EX ((η(X )− η∗(X ))2) < ε .

Finally, since η is bounded,

EX (f3,n(X )) . EX

(
1

µ
(
B(X , hn(X ))

) ∫
B(X ,hn(X ))

|η(X )− η(y)| dµ(y)

)
,

which converge to zero if the bounded random variables

1
µ
(
B(X , hn(X ))

) ∫
B(X ,hn(X ))

|η(X )− η(y)| dµ(y)

converge to zero in probability. To see this, let λ > 0 be fixed. For every δ0 > 0,

PX

(
1

µ
(
B(X , hn(X ))

) ∫
B(X ,hn(X ))

|η(X )− η(y)| dµ(y) > λ

)

≤ PX (hn(X ) > δ0) + sup
δ≤δ0

PX

(
1

µ
(
B(X , δ)

) ∫
B(X ,δ)

|η(X )− η(y)| dµ(y) > λ

)
.

Since hn(X ) → 0 a.s. the first term converges to zero while the second term does thanks to
the truth of the Besicovitch condition (2.4).

Proof of Theorem 3.1:

Proof of (a): Let us define Dn = {X1, ...,Xn} and Cn = {Y1, ..., Yn}. In order to prove
the mean square consistency, we consider

E
(
(η̂n,p(X )− η(X ))2)

)
= EX

(
EDn,Cn|X

(
(η̂n,p(X )− η(X ))2)

∣∣X )) .

Let x ∈ supp (µ) be fixed. To simplify the notation, we set E (·) = EDn,Cn|X (·). Then, for a
particular hn(x) ≥ h∗n(x) to be defined later, let us define the theoretical quantities

K

(
d(x,Xi)
hn(x)

)
.= Ki(x) .= Ki and K

(
dp(x,Xi)
hn,p(x)

)
.= Ki,p(x) .= Ki,p ,

and, as in (2.3),
Ki∑n

j=1 Kj

.= Wi and
Ki,p∑n

j=1 Kj,p

.= Wi,p .

Let us consider the following auxiliary unobservable quantities:

η̂n(x) =
n∑

i=1

WiYi , ηn(x) =
n∑

i=1

Wiη(Xi) and ηn,p(x) =
n∑

i=1

Wi,pη(Xi) .
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Then, we have

η̂n,p(x)− η(x) = [η̂n,p(x)− ηn,p(x)] + [ηn,p(x)− ηn(x)] + [ηn(x)− η̂n(x)] + [η̂n(x)− η(x)]

=
n∑

i=1

Wi,p(Yi − η(Xi)) +
n∑

i=1

(Wi,p −Wi)η(Xi) +
n∑

i=1

Wi(η(Xi)− Yi)

+ [η̂n(x)− η(x)]

=
n∑

i=1

(Wi,p −Wi)(Yi − η(Xi)) +
n∑

i=1

(Wi,p −Wi)η(Xi)

+ [η̂n(x)− η(x)] .

Taking squares and expectation in Dn, Cn, we have

E
(
(η̂n,p(x)− η(x))2)

)
. E

( n∑
i=1

(Wi,p −Wi)(Yi − η(Xi))

)2


+ E

( n∑
i=1

(Wi,p −Wi)η(Xi)

)2


+ E
(
([η̂n(x)− η(x)])2

)
.= I + II + III .

By Proposition 2.1 and Remark 2.2 (since hn(x) → 0 and hn(x) ≥ h∗n(x)), taking expectation
on X we have that term III converges to zero. For the first term, we have

I ≈ E

( n∑
i=1

(Wi,p −Wi)(Yi − η(Xi))

)2


= E

 n∑
i=1

n∑
j=1

(Wi,p −Wi)(Wj,p −Wj)eiej

 (Yi − η(Xi) = ei)

= E

 n∑
i=1

n∑
j=1

(Wi,p −Wi)(Wj,p −Wj)ECn|Dn
(eiej |Dn)


= E

(
n∑

i=1

|Wi,p −Wi|2ECn|Dn

(
e2

i |Dn

))
(cond. ind.)

= σ2E

(
n∑

i=1

|Wi,p −Wi|2
)

.

On the other hand, since η is bounded, in II we have

II = E

( n∑
i=1

(Wi,p −Wi)η(Xi)

)2
 . E

( n∑
i=1

|Wi,p −Wi|

)2
 .
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We will see that terms I and II converge to zero by splitting the sum in different pieces:

(1) A1
.=
{

i : dp(x,Xi) > hn,p(x), d(x,Xi) > hn(x)
}

;

(2) A2
.=
{

i : dp(x,Xi) > hn,p(x), d(x,Xi) ≤ hn(x)
}

;

(3) A3
.=
{

i : dp(x,Xi) ≤ hn,p(x), d(x,Xi) > 3hn(x)
}

;

(4) A4
.=
{

i : dp(x,Xi) ≤ hn,p(x), d(x,Xi) ≤ 3hn(x)
}

.

Case (1) is trivial since in this case K is supported in [0, 1] which implies that Wi,p = Wi = 0.
Let us start, therefore, with case (2).

(2) Let A2
.=
{
i : dp(x, X i) > hn,p(x), d(x, X i) ≤ hn(x)

}
. Observe that in this

case Wi,p = 0 since K is supported in [0, 1]. Therefore, since |Wi| ≤ 1 we get

IA2

.= E

(
n∑

i=1

|Wi|2I{i∈A2}

)
≤ E

(
n∑

i=1

I{i∈A2}

)

and

(B.2) IIA2

.= E

( n∑
i=1

|Wi|I{i∈A2}

)2
 ≤ E

( n∑
i=1

I{i∈A2}

)2
 .= CA2 .

Observe that the i.i.d. random variables I{i∈A2} have a Bernoulli distribution with parameter

p = PX1 (dp(x,X1) > hn,p(x), d(x,X1) ≤ hn(x))

≤ PX1 (dp(x,X1)− d(x,X1) ≥ hn,p(x)− hn(x))

≤ PX1 (|dp(x,X1)− d(x,X1)| ≥ cn,p) (by H3.2) .

As a consequence, the random variable Z
.=
∑n

i=1 I{i∈A2} has Binomial distribution with
parameters n and p and expectation E (Z) = np. This implies that

(B.3) IA2 . E (Z) ≤ nPX1 (|dp(x,X1)− d(x,X1)| ≥ cn,p) ,

and, since E
(
Z2
)

= np(1− p) + n2p2 ≤ np + (np)2,

IIA2 ≤ CA2 . E
(
Z2
)
≤ nPX1 (|dp(x,X1)− d(x,X1)| ≥ cn,p)(B.4)

+
(
nPX1 (|dp(x,X1)− d(x,X1)| ≥ cn,p)

)2
.

(3) Let A3
.=
{
i : dp(x, X i) ≤ hn,p(x), d(x, X i) > 3hn(x)

}
. Observe that in this

case Wi = 0 since K is supported in [0, 1]. Then, since ∀ i, |Wi,p| ≤ 1, we get

IA3

.= E

(
n∑

i=1

|Wi,p|2 I{i∈A3}

)
≤ E

(
n∑

i=1

I{i∈A3}

)
,

and

(B.5) IIA3

.= E

( n∑
i=1

|Wi,p| I{i∈A3}

)2
 ≤ E

( n∑
i=1

I{i∈A3}

)2
 .
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Now, the i.i.d. random variables I{i∈A3} have Bernoulli distribution with parameter

p = PX1 (dp(x,X1) ≤ hn,p(x), d(x,X1) > 3hn(x))

≤ PX1 (d(x,X1)− dp(x,X1) ≥ 3hn(x)− hn,p(x)) .

As a consequence, the random variable Z
.=
∑n

i=1 I{i∈A3} has Binomial distribution with
parameters n and p. But from (H3.1), for n large enough, hn(x) ≥

(
1+C2

2

)
cn,p which, together

with H3.2 implies that

3hn(x)− hn,p(x) ≥ 2hn(x)− C2cn,p ≥ cn,p ,

and then, for n large enough,

p ≤ PX1 (|dp(x,X1)− d(x,X1)| ≥ cn,p) .

Therefore, since E (Z) = np we have

(B.6) IA3 . E (Z) ≤ nPX1 (|dp(x,X1)− d(x,X1)| ≥ cn,p) ,

and since E
(
Z2
)

= np(1− p) + n2p2 ≤ np + (np)2,

IIA3 . E
(
Z2
)
≤ nPX1 (|dp(x,X1)− d(x,X1)| ≥ cn,p))(B.7)

+
(
nPX1 (|dp(x,X1)− d(x,X1)| ≥ cn,p))

)2
.

(4) Let A4
.=
{
i : dp(x, X i) ≤ hn,p(x), d(x, X i) ≤ 3hn(x)

}
. In this case we write,

Wi,p −Wi =
Ki,p∑n

j=1 Kj,p
− Ki∑n

j=1 Kj

=
Ki,p∑n

j=1 Kj,p
− Ki∑n

j=1 Kj,p
+

Ki∑n
j=1 Kj,p

− Ki∑n
j=1 Kj

= (Ki,p −Ki)
1∑n

j=1 Kj,p
+ Ki

∑n
j=1(Kj −Kj,p)∑n

j=1 Kj
∑n

j=1 Kj,p

= (Ki,p −Ki)
1∑n

j=1 Kj,p
+ Wi

∑n
j=1(Kj −Kj,p)∑n

j=1 Kj,p
.

Then,

IA4

.= E

(
n∑

i=1

|Wi,p −Wi|2I{i∈A4}

)

. E

(
n∑

i=1

|Ki,p −Ki|2
I{i∈A4}

(
∑n

j=1 Kj,p)2

)

+ E

 n∑
i=1

W 2
i I{i∈A4}

(∑n
j=1(Kj −Kj,p)∑n

j=1 Kj,p

)2
(B.8)

. E

(
n∑

i=1

|Ki,p −Ki|2
I{i∈A4}

(
∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)})2

)
(K regular)

+ E

(∑n
j=1 |Kj −Kj,p|∑n

j=1 Kj,p

)2
 (

|Wi| ≤ 1,

n∑
i=1

Wi = 1

)
.= I1

A4
+ I2

A4
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and

IIA4

.= E

( n∑
i=1

|Wi,p −Wi|I{i∈A4}

)2


. E

( n∑
i=1

|Ki,p −Ki|
I{i∈A4}∑n
j=1 Kj,p

)2


+ E

( n∑
i=1

WiI{i∈A4}

∑n
j=1(Kj −Kj,p)∑n

j=1 Kj,p

)2
(B.9)

. E

( n∑
i=1

|Ki,p −Ki|
I{i∈A4}∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)}

)2
 (K regular)

+ E

(∑n
j=1 |Kj −Kj,p|∑n

j=1 Kj,p

)2
 (|Wi| ≤ 1)

.= II1
A4

+ II2
A4

.

Observe that if
∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)} = 0 then ∀ j, I{j∈A4} = 0 so in this case, I1
A4

and II1
A4

are zero. Then, in what follows we will assume that
∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)} 6= 0. Since K is
Lipschitz and we are only considering the indexes i such that dp(x,Xi) ≤ hn,p(x), we get

|Ki,p −Ki| =
∣∣∣∣K (

dp(x,Xi)
hn,p(x)

)
−K

(
d(x,Xi)
hn(x)

)∣∣∣∣
.

∣∣∣∣dp(x,Xi)
hn,p(x)

− d(x,Xi)
hn(x)

∣∣∣∣
=
|dp(x,Xi)hn(x)− d(x,Xi)hn,p(x)|

hn,p(x)hn(x)

≤ |dp(x,Xi)− d(x,Xi)|
hn(x)

+
dp(x,Xi)|hn(x)− hn,p(x)|

hn(x)hn,p(x)

.
|dp(x,Xi)− d(x,Xi)|

hn(x)
+

cn,p

hn(x)
(by H3.2) .

Therefore,

I1
A4

.
1

h2
n(x)

E

(
n∑

i=1

|dp(x,Xi)− d(x,Xi)|2
I{i∈A4}(∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)}
)2
)

+
(

cn,p

hn(x)

)2

E

(
n∑

i=1

I{i∈A4}(∑n
j=1 I{j:dp(x,Xj)≤hn,p(x)}

)2
)

(B.10)

.
1

h2
n(x)

E

(
n∑

i=1

|dp(x,Xi)− d(x,Xi)|2
I{j∈A4}(∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)}
)2
)

+
(

cn,p

hn(x)

)2
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and

II1
A4

.
1

h2
n(x)

E

( n∑
i=1

|dp(x,Xi)− d(x,Xi)|
I{i∈A4}∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)}

)2


+
(

cn,p

hn(x)

)2
E

( n∑
i=1

I{i∈A4}∑n
j=1 I{j:dp(x,Xj)≤hn,p(x)}

)2
(B.11)

.
1

h2
n(x)

E

( n∑
i=1

|dp(x,Xi)− d(x,Xi)|
I{i∈A4}∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)}

)2


+
(

cn,p

hn(x)

)2
.

(4.1) Let A41
.= A4 ∩

{
i : |dp(x, X i) − d(x, X i)| ≤ cn,p

}
. In this case, by (H3.1)

we get

I1
A41

.=
c2
n,p

h2
n(x)

E

( ∑n
i=1 I{i∈A4}(∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)}
)2
)

+
(

cn,p

hn(x)

)2
.

(
cn,p

hn(x)

)2
(B.12)

and

II1
A41

.=
c2
n,p

h2
n(x)

E

( ∑n
i=1 I{i∈A4}∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)}

)2
+

(
cn,p

hn(x)

)2
.

(
cn,p

hn(x)

)2
.(B.13)

(4.2) Let A42
.= A4 ∩

{
i : |dp(x, X i)−d(x, X i)| > cn,p

}
. Let us define the i.i.d. ran-

dom variables Zi
.= dp(x,Xi)− d(x,Xi), i = 1, ..., n. Since dp(x,Xi) ≤ hn,p(x) and d(x,Xi) ≤

3hn(x) we have that |Zi| ≤ hn,p(x) + 3hn(x). Observe that, from (H3.2) and (H3.1), respec-
tively, for n large enough we have

hn,p ≤ hn(x) + C2cn,p ≤ Chn(x) .

Which implies that, for n large enough, |Zi| ≤ Chn(x). Therefore,

I1
A42

.=
1

h2
n(x)

E

(
n∑

i=1

|Zi|2I{i:cn,p≤|Zi|≤Chn(x)}

)
+
(

cn,p

hn(x)

)2
≤ 1

h2
n(x)

E

(
n∑

i=1

|Zi|2I{i:cn,p≤|Zi|≤Chn(x)}

)
+
(

cn,p

hn(x)

)2
(B.14)

≤ n

h2
n(x)

E
(
|Z1|2I{cn,p≤|Z1|≤Chn(x)}

)
+
(

cn,p

hn(x)

)2
(#A42 ≤ n)

.
n

hn(x)
E
(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

)
+
(

cn,p

hn(x)

)2
(|Z1| . hn(x)) .

On the other hand,

II1
A42

.=
1

h2
n(x)

E

( n∑
i=1

|Zi|I{i:cn,p≤|Zi|≤Chn(x)}

)2
+

(
cn,p

hn(x)

)2

≤ 1
h2

n(x)
E

( n∑
i=1

|Zi|I{i:cn,p≤|Zi|≤Chn(x)}

)2
+

(
cn,p

hn(x)

)2
.(B.15)
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Observe that, for i 6= j, Zi is independent of Zj , then

E

( n∑
i=1

|Zi|I{i:cn,p≤|Zi|≤Chn(x)}

)2


= E

 n∑
i=1

n∑
j=1

|Zi||Zj |I{i:cn,p≤|Zi|≤Chn(x)}I{j:cn,p≤|Zj |≤Chn(x)}


= E

(
n∑

i=1

|Zi|2I{i:cn,p≤|Zi|≤Chn(x)}

)

+ E

(
n∑

i=1

n∑
j=1
j 6=i

|Zi||Zj |I{i:cn,p≤|Zi|≤Chn(x)}I{j:cn,p≤|Zj |≤Chn(x)}

)

≤ nE
(
|Z1|2I{cn,p≤|Z1|≤Chn(x)}

)
+ n2E

(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

)
E
(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

)
. nhn(x)E

(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

)
+ n2

(
E
(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

))2 (|Z1| . hn(x)) .

Using this bound in (B.15), we get

II1
A42

.
n

hn(x)
E
(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

)
(B.16)

+
n2

h2
n(x)

(
E
(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

))2 +
(

cn,p

hn(x)

)2
.

We need to compute the expectation E
(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

)
, which is

E
(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

)
=
∫ hn(x)

cn,p

P (|Z1| > t) dt

≤ P (|Z1| > cn,p)
∫ hn(x)

cn,p

dt

≤ P (|Z1| > cn,p) hn(x) .

Therefore, with this inequality in (B.14), we have

I1
A42

. nP (|Z1| > cn,p) +
(

cn,p

hn(x)

)2
(B.17)

= nP (|dp(x,X1)− d(x,X1)| > cn,p) +
(

cn,p

hn(x)

)2
and, with the same inequality in (B.16),

II1
A42

. nP (|Z1| > cn,p) + (nP (|Z1| > cn,p))2 +
(

cn,p

hn(x)

)2
(B.18)

= nP (|dp(x,X1)− d(x,X1)| > cn,p)

+
(
nP (|dp(x,X1)− d(x,X1)| > cn,p)

)2
+
(

cn,p

hn(x)

)2
.



Nonparametric Regression Based on Discretely Sampled Curves 23

Then, with (B.12) and (B.17) in (B.10) we get

(B.19) I1
A4

.

(
cn,p

hn(x)

)2
+ nP (|dp(x,X1)− d(x,X1)| > cn,p)

and, with (B.13) and (B.18) in (B.11),

II1
A4

.

(
cn,p

hn(x)

)2
+ nP (|dp(x,X1)− d(x,X1)| > cn,p)(B.20)

+
(
nP (|dp(x,X1)− d(x,X1)| > cn,p)

)2
.

On the other hand, observe that I2
A4

= E
((Pn

j=1 |Kj−Kj,p|Pn
j=1 Kj,p

)2)
. Since Ac

4 = {j : d(x,Xj) >

3hn(x)} ∪ {j : dp(x,Xj) > hn,p(x)}, we can write

∑n
j=1 |Kj −Kj,p|∑n

j=1 Kj,p
≤
∑n

j=1 |Kj −Kj,p|I{j∈A4}∑n
j=1 Kj,p

+

∑n
j=1 |Kj −Kj,p|I{j:d(x,Xj)>3hn(x)}∑n

j=1 Kj,p

+

∑n
j=1 |Kj −Kj,p|I{j:dp(x,Xj)>hn,p(x)}∑n

j=1 Kj,p
.

Using that K is regular and that
∑n

j=1 Kj,p ≥ 1 (this is since {j : dp(x,Xj) ≤ hn,p(x)} 6= ∅),
we get

I2
A4

= E

(∑n
j=1 |Kj −Kj,p|∑n

j=1 Kj,p

)2


. II1
A4

+ E

 n∑
j=1

|Wj,p|I{j:dp(x,Xj)≤hn,p(x),d(x,Xj)>3hn(x)}

2
+

∑n
j=1 KjI{j:dp(x,Xj)>hn,p(x)}∑n

j=1 Kj,p

. II1
A4

+ IIA3 + E

 n∑
j=1

I{j:dp(x,Xj)>hn,p(x),d(x,Xj)≤hn(x)}

2
≤ II1

A4
+ IIA3 + CA2 ,

where II1
A4

was defined in (B.9), IIA3 in (B.5), and CA2 in (B.2). Then, from (B.20), (B.7)
and (B.4), we have

I2
A4

.

(
cn,p

hn(x)

)2
+ nP (|dp(x,X1)− d(x,X1)| > cn,p)(B.21)

+
(
nP (|dp(x,X1)− d(x,X1)| > cn,p)

)2
.
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Therefore, with (B.19) and (B.21) in (B.8) we have

IA4 .

(
cn,p

hn(x)

)2
+ nP (|dp(x,X1)− d(x,X1)| > cn,p)(B.22)

+
(
nP (|dp(x,X1)− d(x,X1)| > cn,p)

)2
,

and with (B.20) and (B.21) in (B.9),

IIA4 .

(
cn,p

hn(x)

)2
+ nP (|dp(x,X1)− d(x,X1)| > cn,p)(B.23)

+
(
nP (|dp(x,X1)− d(x,X1)| > cn,p)

)2
.

Finally, to complete the proof of this result (i.e. that I and II converge to zero) we
need to show that the expectation on X of(

cn,p

hn(x)

)2
+ nPX1 (|dp(x,X1)− d(x,X1)| > cn,p) + (nP2

X1
|dp(x,X1)− d(x,X1)| > cn,p)

converges to zero. In order to show it, recall that from H2 we have

n2EX
(
P2
X1|X

(
|dp(X ,X1)− d(X ,X1)| ≥ cn,p

)∣∣X ∈ supp (µ)
)
→ 0 ,

and consequently, by Cauchy Schwartz inequality,

nEX
(
PX1|X (|dp(X ,X1)− d(X ,X1)| ≥ cn,p))

∣∣X ∈ supp (µ)
)
→ 0 .

In addition, from (H3.1) we have

EX

((
cn,p

hn(X )

)2)
→ 0 .

Therefore, taking expectation with respect to X in (B.3), (B.4), (B.6), (B.7), (B.22) and
(B.23), we prove Part (a) of the Theorem.

Proof of (b): The only difference with item (a) is the convergence of term III to zero
which is ensured by Proposition 2.2.

Proof of Theorem 3.2: Let γn →∞ as n →∞ a sequence such that, as n, p →∞,

EX
(

γn

(
cn,p

hn(X )

)2)
→ 0 and, for each i = 1, ..., n,

γnn2EX
(
P2
Xi|X

(
|d(X ,Xi)− dp(X ,Xi)| ≥ cn,p

∣∣∣X ∈ supp (µ)
))
→ 0 .

From proof of Theorem 3.1 we get

E
(
γn(η̂n,p(X )− η(X ))2

)
. γnnEX (PX1 (dp(x,X1)− d(x,X1) ≥ cn,p))

+ EX

(
γn

(
cn,p

hn(X )

)2)
+ E

(
γn(η̂n(X )− η(X ))2

)
,

from what follows that

lim
n,p→∞

E
(
γn(η̂n,p(X )− η(X ))2

)
= 0 .
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1. INTRODUCTION

In modeling many count longitudinal clinical studies, the excess of zero is a common
problem. For example, in a study about acute renal allograft rejection, many patients may
have no acute rejection episodes at some follow-up times or in an asthma-related study, if
the response variable is the number of asthma-related hospitalizations at each follow-up time,
many patients may report no asthma-related hospitalizations. In these examples, the response
variable for the patient can be considered as a count variable which may be recorded with
extra zeros. Useful models for describing these kinds of data sets are zero-inflated models.
In these models a special probability is allocated to zero observations (see Section 2 for more
details).

Several approaches are proposed for analyzing these data sets. For example, hurdle
model [25, 15, 16] and zero-inflated Poisson (ZIP) model [19, 12] are two well-known ap-
proaches for analysing zero-inflated (ZI) count data. Also, zero-inflated generalized Poisson
(ZIGP) and zero-inflated negative binomial (ZINB) models are two other well-known ap-
proaches for considering overdispersion of which ZIGP model can also consider underdisper-
sion to analyse inflated count data. [7] proposed a ZIGP model to analyse the data set of
outsourcing of patent applications.

The analysis of longitudinal ZI count data are discussed frequently in literature.
[4] proposed ZIP and ZINB models for analysing data of a study of growth. They describe
their approaches as mixture models with a proportion P of subjects not at risk, and a pro-
portion of 1–P at risk subjects who take on outcome values following a Poisson or negative
binomial distribution. [21] used the ZIP and ZINB models to analyze longitudinal studies
in epidemiology. [23] proposed a random effect model to analysis the ZI longitudinal count
data. [28] discussed application of the ZI and hurdle models for longitudinal studies concern-
ing vaccination safety. [14] used ZIP regression for analysing longitudinal data. [2] proposed a
two-part regression model for analysing ZI longitudinal count data. They used their proposed
approach for analysing an healthcare utilization data set. [26] discussed a Bayesian paradigm
for ZIP and ZINB model for analysing data set of a study of psychiatric outpatient service.
[27] provided a review of the literature and tests the Poisson, the ZIP, the negative binomial
(NB) and the ZINB models in the context of longitudinal count data. [3] give many examples
of the use of ZI distributions to model longitudinal data and consider this approach as a
conventional one. [22] described a mixed-effect hurdle model for ZI longitudinal count data,
where a baseline variable is included in the model specification. They used their proposed
approach to analyse a healthcare utilization data.

A common problem in the practice of studying count data is overdispersion or under-
dispersion. The use of Poisson distribution to analyze count data has a lack of fit because of
ignoring to consider these problems. To deal with overdispersion the use of NB distribution is
proposed. But, this distribution has a lack of fit for considering the possible underdispersion.
A distribution function which considers both the overdispersion and underdispersion is the
generalized Poisson distribution [6, 5]. Note that the zero-inflation generally involve overdis-
persion or underdispersion. Here, the use of ZIGP distribution is recommended to consider
both problems of underdispersion and overdispersion. Underdispersion is rarely occurred in
practice. Therefore, the most concern of this paper is on the overdispersion in zero-inflated
longitudinal data.
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Three main modeling families are introduced to model longitudinal data: marginal
models, subject-specified models and conditionally specified models [9, 24]. In a marginal
model, marginal distributions are used to describe the longitudinal outcomes vector given a
set of predictor variables. The correlation among the components of the longitudinal mea-
surements can be captured by a fully parametric approach or by modeling a limited number
of lower-order moments such as generalized estimating equations (GEE). In random effects
or subject-specified models the longitudinal outcome vector is modeled by a vector of random
effects. Several software and programs, for instance SAS and Mplus, make it possible to fit
ZIP and ZINB distributions to longitudinal ZI data using random effects models. Finally
in a conditionally specified model any response within the sequence of longitudinal measure-
ments is modeled conditional upon the outcome on the previous time or a subset of previous
outcomes. A particular relevant class of conditional models is the so-called autoregressive or
transition models. In a transition model a current measurement in a longitudinal study is
described as a function of the previous outcomes [9]. In this paper, our focus is on transition
models. For some applications of the transition models in repeated measurement outcomes
see [1, 18, 11]. Also, for reviews of transition models for analyzing the longitudinal data see
[9], [30] and [10].

In this paper, we use the ZIGP transition models to analyze longitudinal count data
with extra zeros. We use the usual EM algorithm for parameters estimation. The proposed
model is illustrated using some simulation studies, where the performance of the proposed
distributional assumption for transition model is compared with ZIP, ZINB, NB and GP
distributional assumptions. Also, the proposed method is used for analyzing a real data set
of a kidney allograft rejection study in application section where the best fitting model is
selected by using Akaike information criterion (AIC), Bayesian information criterion (BIC)
and Hannan–Quinn criterion (HQC).

This paper is organized as follows: Section 2 is a review on generalized Poisson and
zero-inflated generalized Poisson distributions and the relation of these distributions with
Poisson and zero-inflated Poisson distributions. Section 3 includes some notation, defini-
tions of models, likelihood functions, the EM algorithm and our illustration of the proposed
transition model for analyzing zero-inflated longitudinal data. In Section 4, some simulation
studies are performed. In this section four different structures are considered for generating
data and performance of ZIGP, ZINB, ZIP, NB and GP transition models are compared for
each structure. The description and the analysis of a real data set using the proposed model
are given and comparison of the performance of our approach with some other distributional
assumptions is given in Section 5. The last section includes some conclusions and discussions.

2. ZERO-INFLATED GENERALIZED POISSON DISTRIBUTION

The random variable Y is said to have a generalized Poisson distribution, if its proba-
bility mass function is given by

(2.1) f(y; ξ, ω) =
ξ(ξ + ωy)y−1

y!
e−(ξ+ωy) , y = 0, 1, 2, ...
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where ξ > 0 and max(−1,−ξ/4) < ω < 1 [13]. The mean and variance of this distribution
are given by

E(Y ) =
ξ

1− ω
, Var(Y ) =

ξ

(1− ω)3
=

1
(1− ω)2

E(Y ) ,

therefore, the term 1
(1−ω)2

plays the role of a dispersion factor. Clearly, when ω = 0, the
generalized Poisson distribution reduces to the usual Poisson distribution with parameter ξ.
Further, when ω > 0, we have overdispersion in the model; when ω < 0, we have underdis-
persion.

A parameterization of this distribution is given by setting λ = ξ
1−ω and φ = ω

ξ , denoted
by Y ∼ GP (λ, φ), and its probability mass function is given by

fGP (y;λ, φ) =
(

λ

1 + φλ

)y (1 + φy)y−1

y!
exp

(
−λ(1 + φy)

1 + φλ

)
, y = 0, 1, 2, ... , λ > 0 ,(2.2)

where φ is a real value parameter such that for all y, 1 + φy > 0 and 1 + φλ > 0. These
restrictions are confirmed by the restriction on the distribution (2.1). The generalized Pois-
son distribution (2.2) is a natural extension of the Poisson distribution. If φ = 0, then the
probability function (2.2) reduces to the Poisson distribution, denoted by Y ∼ P (λ). By the
above mentioned parameterization, the mean of Y is given by E(Y ) = λ and the variance
of Y is given by Var(Y ) = λ(1 + φλ)2. In the generalized Poisson distribution, the φ pa-
rameter is called dispersion parameter. When φ > 0, the overdispersion is presented in the
model, whereas when φ < 0, the underdispersion is included in the model. The generalized
Poisson distribution is a more flexible distribution than the negative binomial distribution
for considering possibility of underdispersion or overdispersion. This property is one of the
well-known properties of generalized Poisson distribution. [17] proved that the generalized
Poisson distribution, the same as negative binomial distribution, can be considered as a mix-
ture of the Poisson distribution. [17] show that there are some differences between the fits of
the generalized Poisson and negative binomial distributions. When the first two moments are
fixed, the negative binomial distribution have larger mass at zero than the generalized Pois-
son distribution. This means their zero-inflated variations tend to have larger discrepancy.
However, the fits of their zero-inflated variations may differ when there is a large zero fraction
[17]. For more details about generalized Poisson distribution see [6] and [5]. Also, VGAM
and HMMpa packages of R can be applied to use the generalized Poisson distribution.

A zero-inflated generalized Poisson distribution for a positive value π (0 ≤ π ≤ 1) is
defined as follows:

fZIGP (y;λ, φ, π) =

{
π + (1− π)fGP (0;λ, φ) , y = 0 ,

(1− π)fGP (y;λ, φ) , y > 0 ,
(2.3)

where fGP ( · ;λ, φ) is the probability mass function of (2.2). We will use the notation
Y ∼ ZIGP (λ, φ, π) to denote the distribution of (2.3). The mean and variance of this dis-
tribution are given by E(Y ) = (1− π)λ and var(Y ) = E(Y )[(1 + φλ)2 + πλ], respectively.
The variance of this distribution shows that for π > 0 and φ > 0 the distribution of Y ex-
hibits overdispersion. The distribution (2.3) reduced to the generalized Poisson distribution
when π = 0 and it reduced to zero-inflated Poisson distribution when φ = 0, denoted by
Y ∼ ZIP (λ, π). When π is allowed to be negative, the distribution (2.3) presents a zero-
deflated generalized Poisson distribution which rarely occurs in practice.
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3. ZERO-INFLATED TRANSITION MODELS FOR COUNT RESPONSES

Suppose N individuals are participated in a longitudinal study and for each individual
ni (i = 1, 2, ..., N) repeated measurements are recorded as response variables. Also, let Yij ,
i = 1, 2, ..., N and j = 1, 2, ..., ni be the longitudinal measurements for the ith individual at
jth time point and let Wij , i = 1, 2, ..., N and j = 1, 2, ..., ni be indicator variables as follows:

Wij =

{
1 , Yij is from the perfect state ,

0 , Yij is from the Poisson state .

where by perfect we means that the sample is from a degenerated distribution at 0. It is clear
that Wij is a latent variable. Also, let hij = (Yi1, ..., Yi,j−1) be the previous outcomes up to
time j or in other words history of outcomes for the ith individual.

In a transition model, the outcome Yij is modeled in term of hij [9]. The order of a
transition model is the number of the previous measurements that are considered for modeling
the measurement of the current time. We consider a first order zero-inflated transition model
as follows:

PZI

(
Yij = yij |πij , λij , φ,xij ,zij , yi,j−1

)
=

=

{
πij + (1− πij)P

(
Yij = yij |λij , φ,xij , yi,j−1

)
, yij = 0 ,

(1− πij)P
(
Yij = yij |λij , φ,xij , yi,j−1

)
, yij 6= 0 ,

(3.1)

where

log(λi1) = x′
i1β ,(3.2)

logit(πi1) = z′
i1α ,(3.3)

and, for j = 2, 3, ..., ni,

log(λij) = x′
ijβ + γ1I{0}(Yi,j−1) + γ2yi,j−1(1− I{0}(Yi,j−1)) ,(3.4)

logit(πij) = z′
ijα + τ1I{0}(Yi,j−1) + τ2yi,j−1(1− I{0}(Yi,j−1)) , j = 2, ..., ni ,(3.5)

where πij = P (Yij = 0 |α,zij ,hij) = P (Yij = 0 |α,zij , yi,j−1) is the rate of zeros given some
covariates and the history of outcomes. In this model the effect of the previous zero response
on current measurement (γ1) and the effect of the non-zero previous response on current
mean (γ2) are separately considered. This is due to the fact that one expects to have the
current mean to be close to the previous values of responses.

We will use the notation Y ∼ ZIGP (λij , πij , φ) to denote model (3.1). Note that
(3.1) is reduced to zero-inflated Poisson model when φ = 0. We will use the notation Y ∼
ZIP (λij , πij) to denote model (3.1) when φ = 0. Let θ = (α,β,γ, τ , φ) be the vector of all
the unknown parameters in the model where α = (α1, α2)′ and γ = (γ1, γ2)′. The likelihood
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function of the model can be written as:

L(θ|y,x,z) =
N∏

i=1

f(yi1)×
ni∏

j=2

f(yij |yi,j−1)


=

N∏
i=1

ni∏
j=1

(
πij + (1− πij)P

(
Yij = 0 |λij , φ,xij ,hij

))I(yij=0)

×
(
(1− πij)P

(
Yij 6= 0 |λij , φ,xij ,hij

))1−I(yij=0)
,

where hi1 = 0 and it will not be considered in the model. This likelihood function can be
maximized using some numerical methods such as Newton–Raphson [20].

Another approach for obtaining parameter estimates is the use of the Expectation-
Maximization (EM) [8] algorithm. To obtain the EM estimates of the parameters, we use
the indicator variable, Wij , i = 1, 2, ..., N , j = 1, 2, ..., ni. As mentioned earlier Wij is a latent
variable for indicating the perfect state versus the Poisson state outcome. Therefore, the
log-likelihood function of (Y ,W ) as complete data is given by

`c(θ|y,w,x,z) =
N∑

i=1

ni∑
j=1

wij log(πij) +
N∑

i=1

ni∑
j=1

(1− wij) log(1− πij)

+
N∑

i=1

ni∑
j=1

(1− wij)
{
yij log(λij)− yij log(1 + φλij)

+ (yij − 1) log(1 + φyij)− log(yij !)− λij
1 + φyij

1 + φλij

}
.

The EM algorithm contains two steps: in the first step (E-step), the expectation of the
complete likelihood function (here `c(θ|y,w,x,z)) given the observed data (here Y ) and
the current value of the parameters in the rth step (called θ(r)) is calculated, by defining
Q(θ|θ(r)) = E

[
`c(θ|y,w,x,z) |y,x,z,θ(r)

]
. We have

Q(θ|θ(r)) =
N∑

i=1

ni∑
j=1

E[Wij |y,x,z,θ(r)] log(πij)

+
N∑

i=1

ni∑
j=1

(1− E[Wij |y,x,z,θ(r)]) log(1− πij)

+
N∑

i=1

ni∑
j=1

(1− E[Wij |y,x,z,θ(r)])
{
yij log(λij)− yij log(1 + φλij)

+ (yij − 1) log(1 + φyij)− log(yij !)− λij
1 + φyij

1 + φλij

}
.

For computing the EM algorithm, the following expectation is needed:

E[Wij |y,w,x,z,θ(r)] = P (Wij = 1|yi,j−1,x,z,θ
(r))

=


π

(r)
ij

π
(r)
ij +(1−π

(r)
ij )P (Yij=0|λ(r)

ij ,φ(r),xij ,yi,j−1)
, yij = 0 ,

0 , yij 6= 0 ,

where π(r)
ij = P (Yij = 0|zij ,θ

(r), yi,j−1) and λ(r)
ij is the current Poisson rate at the rth iteration.
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In the second step (M-step), we define

θ(r+1) = arg max
θ∈Θ

Q(θ|θ(r)) .

The algorithm is converged and is stopped when∥∥∥θ(r) − θ(r+1)
∥∥∥ < ε ,

where ‖·‖ is a pre-specified measure.

4. SIMULATION STUDIES

In this section some simulation studies are performed for investigating the performance
of the proposed approach. At first, the data are generated from ZIGP and the performance of
ZIGP, GP, ZINB, NB and ZIP are compared on analyzing these data. Two other simulated
data are generated under ZINB and ZIP where the performance of analyzing ZIGP, ZINB
and ZIP are investigated in each case. Note that ZIP model is a ZIGP model with φ = 0.
The last simulation study is used to examine the performance of ZIGP, ZINB and ZIP in the
presence of underdispersion.

4.1. Zero-inflated generalized Poisson model

In this simulation study the data set is generated from a transition model under ZIGP.
The simulation study contains two sample sizes N = 100 and 500 where M = 1000 iterations
are performed. For generating data, we consider a ZIGP model as follows:

Yij |λij , πij ∼ ZIGP (λij , πij , φ) ,(4.1)

where

log(λi1) = β0 + β1xi + β2t1 ,

logit(πi1) = α0 + α1xi + α2t1 ,

log(λij) = β0 + β1xi + β2tj + γ1I{0}(Yi,j−1) + γ2yi,j−1(1− I{0}(Yi,j−1)) , j = 2,3,4 ,

logit(πij) = α0 + α1xi + α2tj + τ1I{0}(Yi,j−1) + τ2yi,j−1(1− I{0}(Yi,j−1)) , j = 2,3,4 .

(4.2)

For this simulation study, two sets of real values are considered as follows:

1) α0 = −1, α1 = 1, α2 = 0, β0 = −3, β1 = β2 = 1, γ1 = −1, γ2 = 0, τ1 = 0, τ2 = 1
and φ = 1.

2) α0 = −1, α1 = −1, α2 = 0, β0 = −3, β1 = β2 = 1, γ1 = 1, γ2 = −1, τ1 = 1, τ2 = −1
and φ = 0.5.

The results of these simulation studies are summarized in Tables 1 and 2, respectively.



34 T. Baghfalaki and M. Ganjali

T
ab

le
1:

R
es

ul
ts

of
si

m
ul

at
io

n
st

ud
y

fo
r
ge

ne
ra

te
d

da
ta

un
de

r
Z
IG

P
m

od
el

,e
st

im
at

e
(E

st
.)
,

st
an

da
rd

er
ro

r
(S

.E
.)
,
re

la
ti
ve

bi
as

(B
ia

s)
an

d
m

ea
n

sq
ua

re
er

ro
r

(M
SE

)
fo

r
M

=
10

00
si

m
ul

at
ed

da
ta

w
it
h

sa
m

pl
e

si
ze

s
10

0
an

d
50

0
an

d
th

e
fir

st
se

t
of

re
al

va
lu

es
.

N
P
a
ra

.
R

ea
l

Z
IG

P
G

P
Z
IN

B
N

B
Z
IP

E
st

.(
S
.E

.)
B

ia
s

M
S
E

E
st

.(
S
.E

.)
B

ia
s

M
S
E

E
st

.(
S
.E

.)
B

ia
s

M
S
E

E
st

.(
S
.E

.)
B

ia
s

M
S
E

E
st

.(
S
.E

.)
B

ia
s

M
S
E

α
0

−
1
.0

0
−

1
.2

6
(0

.3
9
)

0
.2

6
0
.4

6
—

—
—

−
1
5
.3

5
(2

8
.7

1
)

1
4
.3

5
1
0
2
.3

7
—

—
—

0
.5

3
(0

.7
1
)
−

1
.5

3
2
.8

4
α

1
1
.0

0
1
.1

8
(0

.9
7
)

0
.1

8
0
.9

1
—

—
—

8
.5

1
(1

8
.1

3
)

7
.5

1
3
.8

2
—

—
—

0
.0

5
(0

.1
2
)
−

0
.9

4
0
.9

0
α

2
0
. 0

0
−

0
. 0

4
(0

.3
9
)

∗
0
.1

4
—

—
—

0
. 4

8
(2

.8
1
)

∗
8
.1

1
—

—
—

0
. 0

2
(0

.0
3
)

∗
0
.0

0
τ 1

0
.0

0
0
.1

4
(0

.3
5
)

∗
0
.4

8
—

—
—

1
.1

9
(2

3
.8

2
)

∗
5
6
4
.3

9
—

—
—

0
.1

6
(0

.1
3
)

∗
0
.2

1
τ 2

−
1
.0

0
−

0
.9

3
(0

.6
9
)
−

0
.0

6
0
.8

5
—

—
—

−
3
.4

2
(9

.7
7
)

2
.4

2
1
0
0
.7

5
—

—
—

−
0
.0

2
(0

.0
4
)
−

0
.9

7
0
.9

5
1
0
0

β
0

−
3
.0

0
−

2
.9

8
(0

.5
9
)
−

0
.0

0
0
.3

2
−

3
.3

5
(0

.4
6
)

0
.1

1
0
.3

3
−

3
.3

3
(0

.6
4
)

0
.1

1
0
.5

3
−

3
.1

6
(0

.5
0
)

0
.0

5
0
.2

6
−

0
.0

5
(0

.2
9
)
−

0
.9

8
8
.7

6
β

1
1
.0

0
1
.0

3
(0

.4
2
)

0
.0

3
0
.1

7
0
.6

2
(0

.2
8
)
−

0
.3

7
0
.2

1
1
.0

2
(0

.4
1
)

0
.0

2
0
.1

6
0
.6

4
(0

.2
7
)
−

0
.3

5
0
.1

9
0
.1

1
(0

.1
8
)
−

0
.8

8
0
.8

1
β

2
1
.0

0
0
.9

9
(0

.2
1
)
−

0
.0

0
0
.0

4
1
.0

2
(0

.2
1
)

0
.0

2
0
.0

4
1
.0

4
(0

.1
8
)

0
.0

4
0
.0

3
1
.0

4
(0

.1
4
)

0
.0

4
0
.0

2
0
.3

6
(0

.1
5
)
−

0
.6

3
0
.4

2
γ
1

−
1
.0

0
−

0
.9

6
(0

.4
5
)
−

0
.0

3
0
.1

9
−

1
.1

7
(0

.5
5
)

0
.1

7
0
.3

3
−

1
.0

7
(0

.4
8
)

0
.0

7
0
.2

3
−

1
.3

4
(0

.3
1
)

0
.3

4
0
.2

1
−

0
.0

5
(0

.2
0
)
−

0
.9

4
0
.9

3
γ
2

0
.0

0
0
.0

9
(0

.3
9
)

∗
0
.1

5
−

0
.0

0
(0

.0
2
)

∗
0
.0

0
−

0
.0

2
(0

.0
9
)

∗
0
.1

0
0
.0

1
(0

.0
8
)

∗
0
.0

0
0
.0

1
(0

.0
7
)

∗
0
.0

0
φ

1
.0

0
0
.8

5
(0

.1
6
)
−

0
.1

4
0
.0

4
1
.8

6
(0

.2
7
)

0
.8

6
0
.8

6
0
.2

7
(0

.1
0
)
−

0
.7

2
0
.5

4
0
.1

6
(0

.0
2
)
−

0
.8

3
0
.6

9
—

—
—

α
0

−
1
.0

0
−

0
.9

5
(0

.2
3
)
−

0
.0

5
0
.3

9
—

—
—

−
1
1
.9

2
(7

.0
1
)

1
0
.9

2
1
6
6
.6

1
—

—
—

0
.0

9
(0

.2
1
)
−

1
.0

9
1
.2

3
α

1
1
.0

0
1
.0

6
(0

.4
0
)

0
.0

6
0
.1

6
—

—
—

1
0
.0

1
(7

.3
9
)

9
.0

1
1
3
3
.7

5
—

—
—

0
.0

8
(0

.1
4
)
−

0
.9

1
0
.8

4
α

2
0
. 0

0
−

0
. 0

3
(0

.1
0
)

∗
0
.0

1
—

—
—

0
. 4

1
(0

.2
4
)

∗
0
.2

2
—

—
—

−
0
. 0

8
(0

.1
7
)

∗
0
.0

3
τ 1

0
.0

0
0
.0

9
(0

.4
0
)

∗
0
.1

6
—

—
—

−
0
.5

1
(1

.0
7
)

∗
1
.3

7
—

—
—

0
.2

4
(0

.3
1
)

∗
0
.1

5
τ 2

−
1
.0

0
−

0
.9

7
(0

.4
5
)
−

0
.0

3
0
.2

5
—

—
—

−
1
.8

9
(2

.2
2
)

0
.8

9
5
.5

3
—

—
—

−
0
.0

2
(0

.0
3
)
−

0
.9

7
0
.9

5
5
0
0

β
0

−
3
.0

0
−

2
.9

9
(0

.3
1
)
−

0
.0

0
0
.0

9
−

3
.2

1
(0

.2
8
)

0
.0

7
0
.2

6
−

3
.3

5
(0

.1
9
)

0
.1

1
0
.1

6
−

3
.3

3
(0

.2
6
)

0
.1

1
0
.1

8
−

0
.4

0
(0

.6
5
)
−

0
.8

6
7
.1

6
β

1
1
. 0

0
1
. 0

0
(0

.1
7
)

0
.0

0
0
.0

3
0
. 6

5
(0

.2
6
)
−

0
.3

4
0
.1

8
0
. 9

2
(0

.1
4
)
−

0
.0

7
0
.0

2
0
. 7

1
(0

.1
6
)
−

0
.2

8
0
.1

0
0
. 2

7
(0

.3
3
)
−

0
.7

2
0
.6

2
β

2
1
.0

0
1
.0

1
(0

.0
8
)

0
.0

1
0
.0

0
1
.0

2
(0

.2
1
)

0
.0

2
0
.0

4
1
.0

8
(0

.0
6
)

0
.0

8
0
.0

1
1
.0

7
(0

.0
6
)

0
.0

7
0
.0

1
0
.4

9
(0

.2
1
)
−

0
.5

0
0
.3

0
γ
1

−
1
.0

0
−

1
.0

2
(0

.1
8
)

0
.0

2
0
.0

3
−

1
.1

7
(0

.5
7
)

0
.1

7
0
.3

4
−

1
.2

3
(0

.1
6
)

0
.2

3
0
.0

8
−

1
.2

8
(0

.1
7
)

0
.2

8
0
.1

0
−

0
.2

5
(0

.3
9
)
−

0
.7

4
0
.7

0
γ
2

0
.0

0
−

0
.0

0
(0

.0
2
)

∗
0
.0

0
0
.2

7
(0

.5
2
)

∗
0
.3

4
−

0
.0

0
(0

.0
2
)

∗
0
.0

0
0
.0

0
(0

.0
3
)

∗
0
.0

0
0
.0

1
(0

.0
6
)

∗
0
.0

0
φ

1
.0

0
0
.9

3
(0

.1
1
)
−

0
.0

6
0
.0

1
1
.7

6
(0

.2
8
)

0
.7

6
0
.6

6
0
.2

1
(0

.0
2
)
−

0
.7

8
0
.6

2
0
.4

5
(0

.0
1
)
−

0
.5

5
0
.5

2
—

—
—



Transition Model for Zero-Inflated Longitudinal Count Data 35

T
ab

le
2:

R
es

ul
ts

of
si

m
ul

at
io

n
st

ud
y

fo
r

ge
ne

ra
te

d
da

ta
un

de
r

Z
IG

P
m

od
el

,e
st

im
at

e
(E

st
.)
,

st
an

da
rd

er
ro

r
(S

.E
.)
,

re
la

ti
ve

bi
as

(B
ia

s)
an

d
m

ea
n

sq
ua

re
er

ro
r

(M
SE

)
fo

r
M

=
10

00
si

m
ul

at
ed

da
ta

w
it
h

sa
m

pl
e

si
ze

s
10

0
an

d
50

0
an

d
th

e
se

co
nd

se
t
of

re
al

va
lu

es
.

N
P
a
ra

.
R

ea
l

Z
IG

P
G

P
Z
IN

B
N

B
Z
IP

E
st

.(
S
.E

.)
B

ia
s

M
S
E

E
st

.(
S
.E

.)
B

ia
s

M
S
E

E
st

.(
S
.E

.)
B

ia
s

M
S
E

E
st

.(
S
.E

.)
B

ia
s

M
S
E

E
st

.(
S
.E

.)
B

ia
s

M
S
E

α
0

−
1
.0

0
−

1
.1

9
(0

.7
2
)

0
.0

9
0
.8

1
—

—
—

6
5
.7

6
(1

9
8
.2

9
)
−

6
6
.7

6
3
7
2
2
1
.0

0
—

—
—

0
.1

1
(0

.3
3
)
−

1
.1

1
1
.3

1
α

1
−

1
. 0

0
−

0
. 9

8
(0

.5
3
)
−

0
.0

2
0
.2

2
—

—
—

−
8
2
.5

1
(2

0
0
.4

1
)

8
1
.5

1
4
0
1
1
3
.7

2
—

—
—

−
0
. 5

8
(0

.7
1
)
−

0
.4

2
0
.5

6
α

2
0
.0

0
0
.0

3
(0

.1
7
)

∗
0
.0

2
—

—
—

0
.9

3
(0

.5
1
)

∗
1
.0

8
—

—
—

−
0
.0

6
(0

.1
2
)

∗
0
.0

1
τ 1

1
.0

0
1
.1

4
(0

.4
0
)

0
.1

4
0
.5

5
—

—
—

−
7
0
.9

4
(1

9
9
.7

9
)
−

7
1
.9

4
3
8
4
3
9
.7

6
—

—
—

0
.4

9
(0

.5
9
)
−

0
.5

1
0
.5

2
τ 2

−
1
.0

0
−

1
.0

1
(0

.2
1
)
−

0
.0

1
0
.1

6
—

—
—

−
8
2
.8

7
(1

9
3
.3

1
)

8
1
.8

7
3
7
8
4
4
.4

6
—

—
—

0
.3

1
(0

.3
4
)
−

1
.3

1
1
.8

1
1
0
0

β
0

−
3
.0

0
−

3
.1

1
(0

.4
0
)

0
.0

4
0
.1

4
−

3
.4

0
(0

.3
5
)

0
.1

3
0
.2

7
−

3
.6

2
(0

.6
8
)

0
.2

1
0
.7

6
−

3
.5

7
(0

.6
5
)

0
.1

9
0
.5

3
−

0
.7

9
(1

.1
5
)
−

0
.7

4
5
.8

7
β

1
1
.0

0
1
.0

8
(0

.2
3
)

0
.0

8
0
.0

5
1
.2

2
(0

.1
8
)

0
.2

2
0
.0

8
1
.2

2
(0

.4
8
)

0
.2

2
0
.2

4
1
.4

0
(0

.5
6
)

0
.4

0
0
.3

2
0
.2

0
(0

.1
8
)
−

0
.8

0
0
.6

6
β

2
1
.0

0
0
.9

8
(0

.1
5
)
−

0
.0

2
0
.0

2
1
.0

3
(0

.1
2
)

0
.0

3
0
.0

1
1
.1

5
(0

.0
8
)

0
.1

5
0
.0

3
0
.9

5
(0

.1
1
)
−

0
.0

5
0
.0

1
0
.5

5
(0

.1
7
)
−

0
.4

5
0
.2

3
γ
1

1
.0

0
1
.1

4
(0

.1
5
)

0
.1

4
0
.0

4
0
.6

2
(0

.3
9
)
−

0
.3

8
0
.2

8
0
.7

5
(0

.3
1
)

−
0
.2

5
0
.1

4
1
.0

6
(0

.2
2
)

0
.0

6
0
.0

3
0
.7

2
(0

.7
6
)
−

0
.2

8
0
.5

1
γ
2

−
1
.0

0
−

1
.0

5
(0

.2
6
)

0
.0

5
0
.0

6
−

0
.9

8
(0

.2
8
)
−

0
.0

2
0
.0

7
−

1
.2

2
(0

.3
3
)

0
.2

2
0
.1

4
−

0
.8

4
(0

.2
5
)
−

0
.1

6
0
.0

6
−

0
.1

4
(0

.1
9
)
−

0
.8

6
0
.7

7
φ

0
.5

0
0
.4

7
(0

.0
3
)
−

0
.0

6
0
.0

0
0
.9

1
(0

.1
1
)

0
.8

2
0
.1

8
0
.3

4
(0

.0
6
)

−
0
.3

3
0
.0

3
0
.2

8
(0

.0
1
)
−

0
.4

4
0
.0

5
—

—
—

α
0

−
1
.0

0
−

1
.0

8
(0

.3
2
)

0
.0

8
0
.3

7
—

—
—

−
2
0
.9

5
(5

.8
9
)

1
9
.9

5
4
2
6
.9

2
—

—
—

1
.4

5
(0

.2
9
)
−

2
.4

5
6
.0

6
α

1
−

1
. 0

0
−

1
. 1

2
(0

.0
3
)

0
.1

2
0
.0

1
—

—
—

−
0
. 8

4
(0

.2
8
)

−
0
.1

6
0
.0

9
—

—
—

−
1
. 0

2
(0

.0
9
)

0
.0

2
0
.0

0
α

2
0
.0

0
−

0
.1

0
(0

.0
6
)

∗
0
.0

1
—

—
—

0
.4

4
(0

.1
2
)

∗
0
.2

1
—

—
—

−
0
.2

5
(0

.0
0
)

∗
0
.0

6
τ 1

1
.0

0
1
.0

1
(0

.1
0
)

0
.0

1
0
.1

1
—

—
—

1
8
.6

4
(5

.9
4
)

1
7
.6

4
3
4
0
.3

8
—

—
—

0
.1

7
(0

.2
8
)
−

0
.8

3
0
.7

3
τ 2

−
1
.0

0
−

1
.0

4
(0

.1
3
)
−

0
.0

4
0
.1

1
—

—
—

−
0
.4

2
(3

.0
5
)

−
0
.5

8
8
.0

7
—

—
—

0
.2

3
(0

.1
7
)
−

1
.2

3
1
.5

3
5
0
0

β
0

−
3
. 0

0
−

3
. 0

0
(0

.3
1
)

0
.0

0
0
.0

5
−

3
. 4

6
(0

.0
4
)

0
.1

5
0
.2

1
−

3
. 2

5
(0

.1
3
)

0
.0

8
0
.0

8
−

3
. 3

9
(0

.1
9
)

0
.1

3
0
.1

8
−

1
. 1

7
(0

.0
3
)
−

0
.6

1
3
.3

4
β

1
1
.0

0
1
.0

1
(0

.0
1
)

0
.0

1
0
.0

0
1
.2

9
(0

.0
4
)

0
.2

9
0
.0

9
1
.1

4
(0

.1
1
)

0
.1

4
0
.0

3
1
.3

2
(0

.1
6
)

0
.3

2
0
.1

2
0
.3

2
(0

.3
0
)
−

0
.6

8
0
.5

0
β

2
1
.0

0
0
.9

8
(0

.0
1
)
−

0
.0

2
0
.0

0
1
.0

5
(0

.0
1
)

0
.0

5
0
.0

0
1
.0

2
(0

.0
7
)

0
.0

2
0
.0

0
0
.9

7
(0

.0
4
)
−

0
.0

3
0
.0

0
0
.7

5
(0

.0
7
)
−

0
.2

5
0
.0

7
γ
1

1
.0

0
1
.1

1
(0

.2
5
)

0
.1

1
0
.0

4
0
.6

1
(0

.0
6
)
−

0
.3

9
0
.1

5
0
.8

2
(0

.1
5
)

−
0
.1

8
0
.0

5
0
.7

9
(0

.0
8
)
−

0
.2

1
0
.0

5
0
.6

8
(0

.0
5
)
−

0
.3

2
0
.1

0
γ
2

−
1
.0

0
−

0
.9

8
(0

.1
0
)

0
.0

2
0
.0

2
−

0
.9

8
(0

.0
6
)
−

0
.0

2
0
.0

0
−

0
.9

8
(0

.1
1
)

−
0
.0

2
0
.0

1
−

0
.8

9
(0

.0
8
)
−

0
.1

1
0
.0

2
−

0
.7

2
(0

.0
1
)
−

0
.2

8
0
.0

8
φ

0
.5

0
0
.4

7
(0

.0
2
)
−

0
.0

5
0
.0

0
0
.9

2
(0

.0
3
)

0
.8

5
0
.1

8
0
.3

8
(0

.0
2
)

−
0
.2

5
0
.0

2
0
.2

6
(0

.0
1
)
−

0
.4

9
0
.0

6
—

—
—



36 T. Baghfalaki and M. Ganjali

The simulated data set are analyzed using NB, GP, ZIP, ZINB and ZIGP models, such that

Yij |λij , φ ∼ NB

(
φ,

φ

φ+ λij

)
,

Yij |λij , φ ∼ GP
(
λij , φ

)
,

Yij |λij , πij ∼ ZIP
(
λij , πij

)
,

Yij |λij , πij , φ ∼ ZINB

(
φ,

φ

φ+ λij
, πij

)
,

Yij |λij , πij , φ ∼ ZIGP
(
λij , φ, πij

)
.

(4.3)

Note that Y∼NB(φ,κ) if theprobabilitymass function is givenby fNB(y;φ,κ)= Γ(y+φ)
Γ(φ)y! κ

φ(1−κ)y,
y = 0, 1, ..., r and r > 0. Also, Y ∼ ZINB(φ, κ, π) is a zero-inflated negative binomial distri-
bution which can be obtained by (2.3) by replacing fGP ( · ;λ, φ) by fNB( · ;φ, κ). In order to
compare the results, the mean of the estimated values, the standard errors, relative biases
and mean of square errors (MSEs) are used. The latter two criteria are defined as follows:

Bias(θ) =
1
M

M∑
k=1

(
θ̂k

θ
− 1

)
,

MSE(θ) =
1
M

M∑
k=1

(
θ̂k − θ

)2

,

where θ̂k is the estimate of θ for the kth sample, k = 1, 2, ...,M .

The results of Tables 1 and 2 show that the performance of the ZIGP in parameter
estimation is better than those of the other models. The performance of ZINB in estimating
parameters of the logistic model is not well while in estimating the other parameters is almost
good. The GP and NB models do not have good performances in this simulation study and
the ZIP has a good performance in estimating some parameters. The results of the simulation
study for ZIGP show that the increase in the sample size is an effective way of decreasing
biases and standard deviations of parameters estimates. As shown in these tables, relative
biases and MSEs are reduced by increasing the sample size. This suggests that the method
in finding estimates is consistent.

4.2. Zero-inflated Poisson model

In this simulation study, we simulate data from the following model:

Yij |λij , πij ∼ ZIP (λij , πij) ,(4.4)

such that the parameterizations and real values of parameters in λij and πij are the same as
the first set of real values and those described in equation (4.2). The results of this simulation
study are summarized in Table 3. The results show the well performance of the ZIP model.
Also, the results show that the performance of ZIGP is as good as ZIP model. The ZINB
model dose not have a good performance when the sample size is 100 while for N=500 has
a performance which is as good as the other two models. The overdispersion parameter φ
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is estimated zero in ZIGP model but it has a large value in ZINB (note that in negative
binomial distribution the dispersion index is proportion to φ−1 and overdispersion presents
in the data when the value of φ is very large). As a conclusion, this simulation study shows
that the use of ZIGP model is preferred to the use of ZINB model. The ZIGP has a similar
performance to ZIP and, for moderate sample size, a much better performance than ZINB
model.

Table 3: Results of simulation study for generated data under ZIP model, estimate (Est.),
standard error (S.E.), relative bias (Bias) and mean square error (MSE) for M=
1000 simulated data with sample sizes 100 and 500.

N Para. Real
ZIP ZIGP ZINB

Est. (S.E.) Bias MSE Est. (S.E.) Bias MSE Est. (S.E.) Bias MSE

α0 −1.00 −1.06 (0.86) 0.06 0.74 −1.20 (0.98) 0.20 0.95 <−103 (>103) >103 >103

α1 1.00 1.03 (0.50) 0.03 0.24 1.23 (0.57) 0.23 0.55 >103 (>103) >103 >103

α2 0.00 0.02 (0.20) ∗ 0.04 −0.00 (0.19) ∗ 0.00 0.02 (0.20) ∗ 0.04
τ1 0.00 −0.07 (0.56) ∗ 0.32 −0.04 (0.61) ∗ 0.03 −0.09 (0.64) ∗ 0.42
τ2 1.00 −1.26 (0.91) 0.26 0.96 −1.05 (0.36) 0.05 0.01 −1.07 (0.37) 0.07 0.14

100 β0 −3.00 −3.00 (0.22) 0.00 0.05 −2.98 (0.33) −0.00 0.00 −3.04 (0.25) 0.01 0.06
β1 1.00 1.00 (0.08) 0.00 0.00 0.99 (0.14) −0.01 0.00 1.01 (0.08) 0.01 0.01
β2 −1.00 0.99 (0.05) −0.00 0.00 0.99 (0.06) −0.00 0.00 1.00 (0.05) 0.00 0.00
γ1 −1.00 −0.99 (0.08) −0.00 0.00 −0.99 (0.09) −0.00 0.00 −1.00 (0.09) 0.00 0.00
γ2 0.00 −0.00 (0.01) ∗ 0.00 0.00 (0.01) ∗ 0.00 −0.00 (0.01) ∗ 0.00
φ 0.00 — — — −0.00 (0.00) ∗ 0.00 >103 (>103) >103 >103

α0 −1.00 −1.02 (0.36) 0.02 0.13 −1.02 (0.36) 0.02 0.13 −1.03 (0.36) 0.03 0.13
α1 1.00 1.02 (0.21) 0.02 0.04 1.02 (0.21) 0.02 0.04 1.02 (0.21) 0.02 0.04
α2 0.00 0.00 (0.07) ∗ 0.00 0.00 (0.07) ∗ 0.00 0.00 (0.07) ∗ 0.00
τ1 0.00 −0.02 (0.24) ∗ 0.06 −0.02 (0.24) ∗ 0.06 −0.02 (0.24) ∗ 0.06
τ2 1.00 −1.01 (0.17) 0.01 0.02 −1.01 (0.17) 0.01 0.02 −1.02 (0.17) 0.02 0.06

500 β0 −3.00 −3.00 (0.11) 0.00 0.01 −3.00 (0.11) 0.00 0.01 −3.00 (0.11) 0.00 0.01
β1 1.00 1.00 (0.04) 0.00 0.00 1.00 (0.04) 0.00 0.00 1.00 (0.04) 0.00 0.00
β2 −1.00 0.99 (0.02) −0.00 0.00 0.99 (0.02) 0.00 0.00 1.00 (0.02) 0.00 0.00
γ1 −1.00 −1.00 (0.03) 0.00 0.00 −0.99 (0.03 0.00 0.00 −1.00 (0.03) 0.00 0.00
γ2 0.00 −0.00 (0.00) ∗ 0.00 −0.00 (0.00) ∗ 0.00 −0.00 (0.00) ∗ 0.00
φ 0.00 — — — −0.00 (0.00) ∗ 0.00 >103 (>103) >103 >103

4.3. Zero-inflated negative binomial model

In this simulation study, we simulate data from the following model:

Yij |λij , πij ∼ ZINB

(
φ,

φ

φ+ λij
, πij

)
,(4.5)

such that the parameterizations and real values of parameters in λij and πij are the same
as the first set of real values and those described in equation (4.2), also, we consider φ = 1.
The results of this simulation study are summarized in Table 4. The results show the well
performance of the ZINB model in large sample size. Also, the results show that the perfor-
mance of ZIGP is as good as ZINB model expect for estimating intercept and the overdis-
persion parameters. Also, in moderate sample size the performance of ZIGP model is better
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than those in ZINB model. The results show that the ZIP model dose not have a good
performance.

Table 4: Results of simulation study for generated data under ZINB model, estimate (Est.),
standard error (S.E.), relative bias (Bias) and mean square error (MSE) for M=
1000 simulated data with sample sizes 100 and 500.

N Para. Real
ZINB ZIGP ZIP

Est. (S.E.) Bias MSE Est. (S.E.) Bias MSE Est. (S.E.) Bias MSE

α0 −1.00 −1.47 (1.29) 0.47 1.87 −0.20 (0.89) −0.79 1.41 0.69 (0.77) −1.69 3.47
α1 1.00 1.24 (0.91) 0.24 0.88 0.67 (0.51) −0.32 0.36 0.42 (0.37) −0.57 0.47
α2 0.00 0.06 (0.27) ∗ 0.08 −0.09 (0.17) ∗ 0.04 −0.32 (0.19) ∗ 0.14
τ1 0.00 −0.03 (1.10) ∗ 1.20 0.10 (0.64) ∗ 0.42 0.59 (0.51) ∗ 0.61
τ2 −1.00 −1.61 (3.28) 0.61 11.05 −0.82 (0.48) −0.17 0.26 −0.37 (0.26) −0.62 0.46

100 β0 −3.00 −3.13 (0.45) 0.04 0.21 −2.73 (0.50) −0.08 0.32 −2.13 (0.63) −0.28 1.14
β1 1.00 1.03 (0.26) 0.03 0.06 0.98 (0.22) −0.01 0.05 0.87 (0.28) −0.12 0.09
β2 1.00 1.02 (0.09) 0.02 0.00 0.95 (0.10) −0.04 0.01 0.84 (0.14) −0.15 0.04
γ1 −1.00 −0.97 (0.21) −0.02 0.04 −0.95 (0.20) −0.04 0.04 −0.85 (0.28) −0.14 0.09
γ2 0.00 −0.00 (0.03) ∗ 0.00 −0.00 (0.03) ∗ 0.00 0.00 (0.04) ∗ 0.00
φ 1.00 1.11 (0.25) 0.11 0.07 0.22 (0.03) −0.77 0.60 — — —

α0 −1.00 −1.00 (0.50) 0.00 0.24 −0.07 (0.37) −0.92 1.00 0.72 (0.34) −1.72 3.10
α1 1.00 1.03 (0.33) 0.00 0.11 0.66 (0.22) −0.33 0.16 0.34 (0.18) −0.65 0.46
α2 0.00 −0.01 (0.10) ∗ 0.01 −0.15 (0.08) ∗ 0.03 −0.33 (0.07) ∗ 0.11
τ1 0.00 0.02 (0.34) ∗ 0.11 0.25 (0.24) ∗ 0.12 0.69 (0.20) ∗ 0.52
τ2 −1.00 −0.99 (0.29) 0.00 0.08 −0.73 (0.20) −0.26 0.11 −0.29 (0.10) −0.70 0.50

500 β0 −3.00 −3.00 (0.20) 0.00 0.04 −2.65 (0.20) −0.11 0.16 −2.20 (0.33) −0.26 0.75
β1 1.00 1.00 (0.07) 0.00 0.00 0.95 (0.08) −0.04 0.00 0.88 (0.13) −0.11 0.03
β2 1.00 0.99 (0.04) 0.00 0.00 0.93 (0.04) −0.06 0.00 0.86 (0.08) −0.13 0.02
γ1 −1.00 −0.99 (0.09) −.00 0.00 −0.91 (0.09) −0.08 0.01 −0.86 (0.13) −0.13 0.03
γ2 0.00 −0.00 (0.01) ∗ 0.00 −0.00 (0.01) ∗ 0.00 0.00 (0.03) ∗ 0.00
φ 1.00 1.01 (0.10) 0.00 0.01 0.23 (0.01) −0.76 0.57 — — —

4.4. Zero-inflated underdispersion generalized Poisson model

For investigating the performance of the proposed transition model, the data set of
this subsection are generated from a zero-inflated underdispersed generalized Poisson model
and the performance of the ZIGP, ZINB and ZIP models are compared. The data set
are generated from a ZIGP (λij , πij , φ) such that log(λi1) = β0, logit(pi1) = α0, log(λij) =
β0 + γ1I{0}(Yi,j−1) + γ2yi,j−1(1− I{0}(Yi,j−1)), j = 2, 3, 4, logit(pij) = α0 + τ1I{0}(Yi,j−1) +
τ2yi,j−1(1− I{0}(Yi,j−1)), j = 2, 3, 4, where α0 = −1, τ1 = −1, τ2 = 1, β0 = 1, γ1 = 0, γ2 = −1
and φ = −0.3. Also, two sample sizes N=500 and 1000 are selected where M = 1000 itera-
tions are performed. The results of this simulation study are summarized in Table 5. These
results show the well performance of the ZIGP model as the best fitting model while the
performance of ZINB model is poor. Also, the results show that the performance of ZIP is
better than those of ZINB model. Note that the underdispersion rarely occur in practice.
The well performance of ZIGP model are only satisfied in large sample size as described in
this simulation study.
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Table 5: Results of simulation study for generated data under ZIGP model in
the presence of underdispersion, estimate (Est.), standard error (S.E.),
relative bias (Bias) and mean square error (MSE) for M=1000 simu-
lated data with sample sizes 500 and 1000.

N Para. Real
ZIGP ZINB ZIP

Est. (S.E.) Bias MSE Est. (S.E.) Bias MSE Est. (S.E.) Bias MSE

α0 −1.00 −0.97 (0.11) −0.03 0.01 <−103 (>103) 3618.73 >103 −4.47 (4.31) 3.47 29.19
τ1 −1.00 −1.03 (0.15) 0.03 0.02 <−103 (>103) 12854.74 >103 −18.20 (9.03) 17.20 371.03
τ2 1.00 1.15 (0.17) 0.15 0.15 <−103 (>103) −63370.51 >103 −11.15 (6.46) −12.15 186.23

500 β0 1.00 0.93 (0.01) −0.07 0.14 0.84 (0.05) −0.18 0.04 0.84 (0.10) −0.18 0.15
γ1 0.00 0.00 (0.01) ∗ 0.00 0.16 (0.04) ∗ 0.03 0.13 (0.05) ∗ 0.02
γ2 −1.00 −1.20 (0.75) 0.20 0.65 −1.55 (0.33) 0.55 0.50 −1.39 (0.45) 0.39 0.46
φ −0.30 −0.37 (0.00) 0.24 0.03 >103 (>103) <−103 >103 — — —

α0 −1.00 −0.97 (0.05) −0.03 0.00 <−103 (>103) 3537.27 >103 −3.78 (3.78) 2.78 21.80
τ1 −1.00 −1.03 (0.10) 0.03 0.01 <−103 (>103) 12912.70 >103 −18.35 (4.68) 17.35 322.60
τ2 1.00 1.06 (0.09) 0.06 0.08 <−103 (>103) −83788.10 >103 −13.00 (6.35) −14.00 235.61

1000 β0 1.00 0.98 (0.01) −0.02 0.04 0.92 (0.06) −0.08 0.06 0.95 (0.05) −0.05 0.06
γ1 0.00 0.00 (0.01) ∗ 0.00 0.17 (0.03) ∗ 0.03 0.14 (0.02) ∗ 0.02
γ2 −1.00 −1.12 (0.32) 0.12 0.29 −1.47 (0.40) 0.47 0.31 −1.52 (0.35) 0.52 0.44
φ −0.30 −0.32 (0.00) 0.07 0.03 >103 (>103) <−103 >103 — — —

5. APPLICATION

The data set of this paper is extracted from a longitudinal study on kidney transplant
patients in Imam Khomeini hospital of Urmia in Iran. The data set contains some information
about N = 129 patients who have kidney transplant in this hospital. The response variable
in this study is the number of acute rejections which is count response with extra zeros. The
data are recorded in one year period which contain the number of acute rejection each four
months. The barchat of the response variable for each time point (month 4, 8 and 12) is
showed in Figure 1. In this figure, Yk, k = 1, 2, 3, is used for indicating the response variable
at the kth time point. The number of extra zeros is clear in these charts.

Figure 1: Barcharts of the number of acute rejections for time point at month 4
(first panel), month 8 (middle panel) and month 12 (third panel).
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The collected explanatory variables which are considered in our analysis are creatinine
index as a continuous covariate and having hyperacute rejection of kidney (rejection in the
first 24 hours after surgery) as a categorical covariate. Figure 2 presents the boxplots of the
creatinine index versus the number of acute rejections for each time. Also, Table 6 summarizes
frequency of the number of acute rejections for each category of this variable for each time
point.

Figure 2: Boxplots of creatinine index versus the number of acute rejections
for all time points.

For analyzing this data set, we use the proposed zero-inflated generalized Poisson tran-
sition model, also, Poisson (PM), negative binomial (NBM), generalized Poisson (GPM),
zero-inflated Poisson (ZIPM), zero-inflated generalized Poisson (ZIGPM) and zero-inflated
negative binomial (ZINBM) models under the transition structure are used for analyzing the
data set. The explanatory variables which are considered for analysing the data are creatinine
index (CRAT), having early acute rejection (EAR) and time (t = 4, 8, 12).

Table 6: Frequency of early acute rejection of kidney on the total number of acute rejection
at each time point. “Yes” is used for having early acute rejection and “No” is used
for not having early acute rejection.

Early acute rejection

Number
1st time point 2nd time point 3rd time point

Yes No Yes No Yes No

0 19 82 31 89 28 88
1 7 9 1 4 5 3
2 5 1 1 0 1 1
3 3 2 1 0 0 0
4 0 0 1 0 0 1
5 1 0 0 1 1 1
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We consider models (4.3) for analysing this data, where

log(λij) = β0 + β1CRATi + β2Timej + β3EARi

+ γ1I{0}(Yi,j−1) + γ2

(
1− I{0}(Yi,j−1)

)
yi,j−1 ,

(5.1)

and

logit(πij) = α0 + α1CRATi + α2Timej + α3EARi

+ τ1I{0}(Yi,j−1) + τ2
(
1− I{0}(Yi,j−1)

)
yi,j−1 .

(5.2)

For model comparison, we evaluate different model fits by considering some information
criteria. These criteria are AIC, BIC and HQC, which are defined as follows:

Let θ be the vector of unknown parameters, then

AIC = −2`(θ̂|Y ) + 2|θ| ,

BIC = −2`(θ̂|Y ) + |θ| ln(N) ,

HQC = −2`(θ̂|Y ) + 2 ln(ln(N)) ,

where |θ| is the number of unknown parameters in vector θ, N is the number of
subjects and θ̂ is the vector of parameters estimates. The smaller values of AIC,
BIC and HQC indicate a better fitting model.

We use the EM algorithm, as described in Section 3, for parameters estimation of
zero-inflated models, also, the usual maximum likelihood approach is used for parameter
estimation of other models. In the EM algorithm, the initial values for unknown parameters
were set equal to the estimates obtained by analysing separate models. The results of the
above mentioned models are summarized in Table 7. This table contains parameter estimates
and their standard errors for the first order transition model where standard deviations for
zero-inflated models are estimated using a Bootstrap approach with 10000 iterations and for
the others we use inverse of the Hessian matrix. The results show, based on the values of
different criteria, that for this data set, the performance of ZIGP and ZINB models are similar
and the difference between them is negligible. After them ZIP has the best fitting model and
the worst fitting model based on these criteria is the PM. The results show some evidence
for existence of mild overdispersion.

The results show that for zero-inflated models creatinine index (CRAT), having early
acute rejection (EAR) and time are significant variables such that the more the creatinine
index is, the larger is the estimated probability of nonzeros. Also, two covariates time and
early acute rejection are positively significant, i. e. by increasing them the probability of zero
increases. The results of zero-inflated models also show that only transition parameter τ1 is
significant. The results show that significant covariates in non-inflated models are similar to
those in modeling zero probability in zero-inflated models, that is, the significant parameters
in modeling zero probability of zero-inflated models have similar interpretation to those in
modeling the rate of distributions in non-inflated models. Also, φ and τ1 are the other
significant parameters in these models.

Note that in a first order transition model the first response of each individual should
be modeled given its previous response which is not recorded. How to face this issue, called
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the initial condition problem [11, 10]. This problem does not exit in this study, because the
number of acute rejections before the time of study is zero. In other words, the patients have
been entered in the study from the time of kidney transplant and they have been followed
for one year. Also, in this paper, we consider the first order transition model for modeling
the data set, because the number of replications in our real data is three and a first order
transition model for considering between-group dependence in data is adequate.

Table 7: Results of fitting (parameter estimations and standard errors in parenthesis)
the Poisson model (PM), negative binomial model (NBM), generalized Poisson
model (GPM), zero-inflated Poisson model (ZIPM), zero-inflated generalized
Poisson model (ZIGPM) and zero-inflated negative binomial model (ZINBM)
to kidney transplant study (significant parameters are highlighted in bold).

Parameter
ZIGPM ZINBM ZIPM GPM NBM PM

Est. (S.E.) Est. (S.E.) Est. (S.E.) Est. (S.E.) Est. (S.E.) Est. (S.E.)

α0 2.66 (1.13) 2.62 (1.16) 3.10 (0.91) — — —
α1 (CRAT) −3.43 (1.09) −3.42 (1.09) −3.35 (0.92) — — —
α2 (Time) 0.11 (0.04) 0.12 (0.05) 0.11 (0.05) — — —
α3 (EAR) 1.10 (0.58) 1.12 (0.59) 1.01 (0.44) — — —
β0 −0.71 (0.82) −0.72 (0.83) −0.18 (0.54) −3.57 (0.94) −3.19 (0.77) −2.49 (0.46)
β1 (CRAT) 0.55 (0.67) 0.58 (0.69) 0.32 (0.52) 2.19 (0.73) 2.08 (0.66) 1.99 (0.37)
β2 (Time) −0.25 (0.40) −0.24 (0.39) −0.21 (0.29) −0.93 (0.34) −0.87 (0.32) −0.79 (0.23)
β3 (EAR) 0.79 (1.35) 0.70 (1.28) 0.60 (0.98) 3.03 (1.93) 2.10 (1.27) 0.41 (0.65)
τ1 1.83 (0.62) 1.85 (0.63) 1.69 (0.49) — — —
τ2 0.04 (0.31) 0.04 (0.32) 0.02 (0.25) — — —
γ1 −0.35 (1.01) −0.29 (0.96) −0.24 (0.72) −2.82 (1.18) −2.27 (0.78) −1.34 (0.41)
γ2 0.00 (0.19) 0.00 (0.19) −0.01 (0.14) −0.17 (0.28) −0.13 (0.23) −0.02 (0.14)
φ 0.21 (0.07) 2.11 (0.99) — 1.22 (0.36) 0.34 (0.10) —

AIC 384.04 384.98 386.19 392.96 392.51 441.87

BIC 419.16 419.20 417.64 412.98 412.53 459.03

HQC 364.00 364.05 367.35 382.13 381.67 433.03

6. CONCLUSION AND DISCUSSION

In this paper, we have discussed a new transition model for analysing longitudinal out-
comes with extra zeros. We compare the performance of different distributional assumptions:
zero-inflated generalized Poisson, zero-inflated negative binomial and zero-inflated Poisson
and we conclude that zero-inflated generalized Poisson is a flexible distributional assumption.

We have used the EM algorithm for parameter estimation. For illustration of the
proposed models some simulation studies have been conducted. Also, a real data set of a
kidney allograft rejection study has been analyzed as an illustrative example. Based on the
results the creatinine index, having early acute rejection and time are significant covariates
such that the more the creatinine index is, the larger is the estimated probability of nonzeros
acute rejection. Also, two covariates time and early acute rejection are positively significant,
i. e. by increasing them the probability of zero acute rejection increases. The results show
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that the significant parameters in modeling zero probability of zero-inflated models have
similar effect to parameters in the modeling rate of distributions in non-inflated models. We
have considered a first order transition model for considering within-group dependence in
longitudinal measurements, because the number of repeated longitudinal measurements has
been small in our real data set. As a future work, illustration of the proposed approach
for higher order of transition model for analyzing data set with larger number of repeated
measures and comparison of the performance of it with that of the first order transition
model may be performed. For this purpose (3.2) and (3.4) can be improve to be log(λi1) =
x′

i1β, logit(πi1) = z′
i1α, log(λij) = x′

ijβ + γ ′hi,j and logit(πij) = z′
ijα + τ ′hi,j , j = 2, ..., ni.

Another parameterizations for λij and πij of (3.2) and (3.4) may be the use of the first order
transition model along with some random effects, that is, log(λi1) = x′

i1β + bi1, logit(πi1) =
z′

i1α + bi2, log(λij) = x′
ijβ + γ1I{0}(Yi,j−1) + γ2yi,j−1(1− I{0}(Yi,j−1)) + bi1 and logit(πij) =

z′
ijα + τ1I{0}(Yi,j−1) + τ2yi,j−1(1− I{0}(Yi,j−1)) + bi2, j = 2, ..., ni. where bi = (bi1, bi2)′ is a

bivariate random effects. As a parameterization for the random effects, one can write b1i ∼
N(0, σ2

1), b2i|b1i ∼ N(ψb1i, σ
2
2). We have used the EM algorithm for parameter estimation,

one can use a Bayesian paradigm using MCMC for parameter estimation [29]. The priors
elicitation are an important issue for performing this paradigm. The data set which analyzed
in this paper has not had any missing values. The proposed method can be extended for
modeling data sets in the presence of missing values as a future work. For this purpose, an
ignorable or non-ignorable missing mechanism should be selected. The modeling of missing
data mechanism for modeling non-ignorable missing data mechanism is necessary and these
a sensitivity analysis is commonly suggested.
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1. INTRODUCTION AND PRELIMINARY RESULTS

It seems that Bates and Neyman [3] were first to introduce Negative multinomial (NMn)
distribution in 1952. They obtained it by considering a mixture of independent Poisson dis-
tributed random variables (r.vs) with one and the same Gamma distributed mixing variable.
Their first parameter could be a real number. Wishart [25] considers the case when the first
parameter could be only integer. He calls this distribution Pascal multinomial distribution.
At the same time Tweedie [24] obtained estimators of the parameters. Sibuya et al. [18] make
a systematic investigation of this distribution and note that the relation between Binomial
distribution and Negative binomial (NBi) distribution is quite similar to that between the
Multinomial distribution and NMn distribution. The latter clarifies the probability structure
of the individual distributions. The bivariate case of the compound power series distribution
with geometric summands (i.e. n = 1 and k = 2) is partially investigated in [12]. Another
related work is [10].

A version of k-variate negative binomial distribution with respect to risk theory is
considered in [2, 26]. The authors show that it can be obtained by mixing of iid Poisson
random variables with a multivariate finite mixture of Erlang distributions with one and
the same second parameter. Further on they interpret it as the loss frequencies and obtain
the main characteristics. Due to covariance invariance property, the corresponding counting
processes can be useful to model a wide range of dependence structures. See [2, 26] for
examples. Using probability generating functions, the authors present a general result on
calculating the corresponding compound, when the loss severities follow a general discrete
distribution. The similarity of our paper and papers [2, 26] is that both consider the aggregate
losses of an insurer that runs through several correlated lines of business. In (2.1) and (2.2)
[2] consider Mixed k-variate Poisson distribution (with independent coordinates, given the
mixing variable) and the mixing variable is Mixed Erlang distributed. More precisely the
first parameter in the Erlang distribution is replaced with a random variable. The mixing
variable is multivariate and the coordinates of the compounding vector are independent.
In our case the mixing variable is one and the same and the coordinates of the counting
vector are dependent.

Usually Negative Multinomial (NMn) distribution is interpreted as the one of the num-
bers of outcomes Ai, i = 1, 2, ..., k before the n-th B, in series of independent repetitions,
where Ai, i = 1, 2, ..., k and B form a partition of the sample space. See e.g. Johnson et al. [7].
Let us recall the definition.

Definition 1.1. Let n ∈ N, 0 < pi, i = 1, 2, ..., k and p1 + p2 + ···+ pk < 1. A vector
(ξ1, ξ2, ..., ξk) is called Negative multinomially distributed with parameters n, p1, p2, ..., pk,
if its probability mass function (p.m.f.) is

P
(
ξ1= i1, ξ2 = i2, ..., ξk = ik

)
=

=
(

n + i1 + i2 + ···+ ik − 1
i1, i2, ..., ik, n− 1

)
pi1
1 pi2

2 ··· p
ik
k (1− p1 − p2 − ··· − pk)n ,

is = 0, 1, ... , s = 1, 2, ..., k .

Briefly (ξ1, ξ2, ..., ξk) ∼ NMn(n; p1, p2, ..., pk).
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If A1, A2, ..., Ak describe all possible mutually exclusive “successes” and the event A1 ∩
A2 ∩ ··· ∩Ak presents the “failure”, then the coordinates ξi of the above vector can be inter-
preted as the number of “successes” of type Ai, i = 1, 2, ..., k until n-th “failure”.

This distribution is a particular case of Multivariate Power series distribution. (The
definition is recalled below.) Considering this distribution for k = 1, we obtain a version of
NBi distribution used in this paper. We denote the membership of a random variable ξ1 to
this class of distributions by ξ1 ∼ NBi(n; 1− p1).

Notice that the marginal distributions of NMn distributed random vector are
NBi(n, 1− ρi), ρi = pi

1−
P

j 6=i pj
. More precisely their probability generating function (p.g.f.)

is Gξ(z) = Ezξi =
( 1−ρi

1−ρiz

)n, |z| < 1
ρi

, i = 1, 2, ..., k.

The distribution in Definition 1.1 is sometimes called Multivariate Negative Binomial
distribution.

For n = 1 the NMn distribution is a Multivariate geometric distribution. Some prop-
erties of the bivariate version of this distribution are considered e.g. by Phatak et al. [15].
A systematic investigation of multivariate version could be found e.g. in Srivastava et al. [21].

If (ξ1, ξ2, ..., ξk) ∼ NMn(n; p1, p2, ..., pk), its probability generating function (p.g.f.) is

(1.1) Gξ1,ξ2,...,ξk
(z1, z2, ..., zk) =

{
1− p1 − p2 − ··· − pk

1− (p1z1 + p2z2 + ···+ pkzk)

}n

,

|p1z1 + p2z2 + ···+ pkzk| < 1.

For m = 2, 3, ..., k−1, its finite dimensional distributions (f.d.ds) are, (ξi1 , ξi2 , ..., ξim) ∼
NMn(n; ρi1 , ρi2 , ..., ρim), with

(1.2) ρis =
pis

1−
∑

j 6∈{i1,i2,...,im} pj
, s = 1, 2, ...,m ,

and for the set of indexes i1, i1, ..., ik−m that complements i1, i2, ..., im to the set 1, 2, ..., k

its conditional distributions are(
ξi1

, ξi2
, ..., ξik−m

∣∣ ξi1= n1, ξi2 = n2, ..., ξim = nm

)
∼

∼ NMn
(
n + n1 + n2 + ···+ nm; pi1

, pi2
, ..., pik−m

)
.

(1.3)

More properties of NMn distribution can be found in Bates and Neyman [3] or Johnson et

al. [7].

The set of all NMn distributions with one and the same p1, p2, ..., pk is closed with
respect to convolution.

Lemma 1.1. If r.vs Si ∼ NMn(ni; p1, p2, ..., pk), i = 1, 2, ...,m are independent, then

the random vector

(1.4) S1 + S2 + ···+ Sm ∼ NMn
(
n1 + n2 + ···+ nm; p1, p2, ..., pk

)
.

One of the most comprehensive treatments with a very good list of references on
Multivariate discrete distributions is the book of Johnson et al. [7].
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The class of Power Series (PS) Distributions seems to be introduced by Noack (1950) [13]
and Khatri (1959) [11]. A systematic approach on its properties could be found e.g. in
Johnson et al. [8]. We will recall now only the most important for our work.

Definition 1.2. Let ~a = (a0, a1, ...), where ai ≥ 0, i = 0, 1, ... and θ ∈ R is such that

(1.5) 0 < g~a(θ) =
∞∑

n=0

anθn < ∞ .

A random variable (r.v.) X is Power series distributed, associated with the function g~a and
the parameter θ (or equivalently associated with the sequence ~a and the parameter θ), if it
has p.m.f.

(1.6) P (X= n) =
anθn

g~a(θ)
, n = 0, 1, ...

Briefly X∼PS (a1, a2, ...; θ) or X∼PS (g~a(x); θ). The radius of convergence of the series (1.5)
determines the parametric space Θ for θ. Further on we suppose that θ ∈ Θ.

Notice that given a PS distribution and the function g~a the constants θ and a1, a2, ... are
not uniquely determined, i.e. it is an ill-posed inverse problem. However, given the constants
θ and a0, a1, ... (or the function g~a(x) and θ) the corresponding PS distribution is uniquely
determined. In this case, it is well known that:

• The p.g.f. of X is

(1.7) EzX =
g~a(θz)
g~a(θ)

, zθ ∈ Θ .

• The type of all PS distributions is closed under convolution and more precisely if
X1 ∼ PS (g1(x); θ) and X2 ∼ PS (g2(x); θ) are independent and θ ∈ Θ1 ∩Θ2, then

(1.8) X1 +X2 ∼ PS
(
g1(x) g2(x); θ

)
.

• The mean is given by

(1.9) EX = θ
g′~a(θ)
g~a(θ)

= θ
[
log
(
g~a(θ)

)]′
.

From now on we denote the first and the second derivative of g(x) with respect to x

briefly by g′(x) and g′′(x).

• The variance of X has the form

(1.10) Var X = θ2
[
log
(
g~a(θ)

)]′′ + EX ;

• The Fisher index is given by

FIX = 1 + θ

[
log
(
g~a(θ)

)]′′[
log
(
g~a(θ)

)]′ .
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We show that the class of Compound Power Series Distributions with Negative Multi-
nomial Summands is a particular case of Multivariate Power series distribution (MPSD)
considered by Johnson et al. [7]. Therefore let us remind the definition and its main proper-
ties.

Definition 1.3. Let θj > 0, j = 1, 2, ..., k be positive real numbers and a(i1,i2,...,ik),
ij = 0, 1, ..., be non-negative constants such that

(1.11) A~a(θ1, θ2, ..., θk) =
∞∑

i1=0

···
∞∑

ik=0

a(i1,i2,...,ik) θi1
1 θi2

2 ··· θ
ik
k < ∞ .

The distribution of the random vector ~X = (X1, X2, ..., Xk) with probability mass function

P
(
X1 = n1, X2 = n2, ..., Xk = nk

)
=

a(n1,n2,...,nk) θn1
1 θn2

2 ··· θnk
k

A~a(θ1, θ2, ..., θk)

is called Multivariate Power Series Distribution (MPSD) with parameters A~a(~x), a(i1,i2,...,ik)

and ~θ = (θ1, θ2, ..., θk). Briefly ~X ∼ MPSD(A~a(~x), ~θ). As follows, Θk denotes the set of all
parameters ~θ = (θ1, θ2, ..., θk) that satisfy (1.11).

This class of distributions seems to be introduced by Patil (1965) [14] and Khatri (1959)
[11]. A very useful necessary and sufficient condition that characterise this family is obtained
by Gerstenkorn(1981). It is well known (see e.g. Johnson et al. [7]) that the p.g.f. of ~X is

(1.12) EzX1
1 zX2

2 ··· zXk
k =

A~a(θ1z1, θ2z2, ..., θkzk)
A~a(θ1, θ2, ..., θk)

, (θ1z1, θ2z2, ..., θkzk) ∈ Θk .

Through the paper k = 2, 3, ..., is fixed and it corresponds to the number of the coordi-
nates. We denote by d= the coincidence in distribution, by “∼” the fact that a r.v. belongs to

a given class of distributions, by Gξ1,ξ2,...,ξk
(z1, z2, ..., zk) = E(zξ1

1 ··· z
ξk
k ), the joint p.g.f. of a

random vector (ξ1, ξ2, ..., ξk) and by FI ξ the index of dispersion of the r.v. ξ (i.e. the variance
of ξ divided by the corresponding mean).

One can consider the different concepts for compounds. We use the following one.

Definition 1.4. Let
−→
ξi =

(
ξ
(1)
i , ξ

(2)
i , ..., ξ

(k)
i

)
, i = 1, 2, ..., be i.i.d. random vectors and

N be a discrete r.v. independent on them. We call compound, a random vector ~XN =(
X

(1)
N , X

(2)
N , ..., X

(k)
N

)
, defined by

X
(j)
N = I{N>0}

N∑
i=1

ξ
(j)
i =

{∑N
i=1 ξ

(j)
i if N > 0 ,

0 otherwise ,
j = 1, 2, ..., k .

The distribution of ξ is called compounding distribution.

Further on we are going to use the following properties:

1. G~XN
(z) = GN (G~ξ

(z)).

2. If EN < ∞ and E~ξ < ∞, then E ~XN = ENE~ξ (see [17], Cor. 4.2.1).
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3. If VarN < ∞ and coordinate-wise Var ~ξ < ∞, Var ~XN = Var N(E~ξ)2 + EN Var ~ξ

(see [17], Cor. 4.2.1).

4. FI ~XN = FI N E~ξ + FI ~ξ.

Notice that properties 2. and 3. are particular cases of the well known Wald’s equations.

Here we consider a multivariate distribution which coordinates are dependent com-
pounds. In the notations of the Definition 1.4, N is PS distributed and ~ξ is NMn distributed.
The cases when N is Poisson distributed is partially investigated in 1962, by G. Smith [20].
In Section 2, following the traditional approach about definition of distributions, first we
define this distribution through its p.m.f., then we investigate its properties. We consider the
case when the summands are NMn distributed. We obtain its main numerical characteristics
and conditional distributions. Finally explain its relation with compounds and mixtures.
We prove that the class of Compound Power Series Distributions with Negative Multinomial
Summands is a particular case of Multivariate Power series distribution and find the explicit
form of the parameters. We show that considered as a Mixture this distribution would be
(possibly Zero-inflated) Mixed Negative Multinomial distribution with possibly scale changed
Power series distributed first parameter. Using these relations we derive several properties
and its main numerical characteristics. In Section 3 the risk process application is provided,
together with simulations of the risk processes and estimation of ruin probabilities in a finite
time interval.

2. DEFINITION AND MAIN PROPERTIES OF THE COMPOUND
POWER SERIES DISTRIBUTION WITH NEGATIVE MULTINOMIAL
SUMMANDS

Let us first define Compound Power series distribution with Negative multinomial sum-
mands and then to investigate its properties.

Definition 2.1. Let πj ∈ (0, 1), j = 1, 2, ..., k, π0 := 1 − π1 − π2 − ··· − πk ∈ (0, 1),
as ≥ 0, s = 0, 1, ... and θ ∈ R be such that

(2.1) 0 < g~a(θ) =
∞∑

n=0

anθn < ∞ .

A random vector ~X = (X1, X2, ..., Xk) is called Compound Power series distributed with neg-
ative multinomial summands and with parameters g~a(x), θ; n, π1, ..., πk, if for i = 1, 2, ..., k,
mi = 0, 1, 2, ..., and (m1,m2, ...,mk) 6= (0, 0, ..., 0),

P
(
X1 = m1, X2 = m2, ..., Xk = mk

)
=

=
πm1

1 πm2
2 ···πmk

k

g~a(θ)

∞∑
j=1

aj θj

(
jn + m1 + m2 + ···+ mk − 1

m1,m2, ...,mk, jn− 1

)
πnj

0 ,

P
(
X1 = 0, X2 = 0, ..., Xk = 0

)
=

g~a(θπn
0 )

g~a(θ)
.

(2.2)

Briefly ~X ∼ CPSNMn
(
g~a(x), θ; n, π1, π2, ..., πk

)
or ~X ∼ CPSNMn

(
~a, θ; n, π1, π2, ..., πk

)
. 1

1For n = 1 and k = 2 see [12].
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In the next theorem we show that this distribution is a particular case of MPSD(A(~x), ~θ)
considered in Johnson et al. [7].

Theorem 2.1. Suppose πi ∈ (0, 1), i = 1, 2, ..., k, π0 := 1− π1 − π2 − ··· − πk ∈ (0, 1),
ai ≥ 0, i = 0, 1, ... and θ ∈ R are such that (2.1) is satisfied. If

~X ∼ CPSNMn
(
g~a(x), θ;n, π1, π2, ..., πk

)
,

then:

1. ~X ∼MPSD(A(~x), ~θ), where ~θ = (π1, π2, ..., πk), a(0,...,0) = g~a(θπn
0 ).

For (i1, i2, ..., ik) 6= (0, 0, ..., 0),

a(i1,i2,...,ik) =
∞∑

j=1

aj θj

(
jn + i1 + i2 + ···+ ik − 1

i1, i2, ..., ik, jn− 1

)
πnj

0 ,

A(x1, x2, ..., xk) = g~a

{
θ

πn
0

[1− (x1 + x2 + ···+ xk)]n

}
,

xi ∈ (0, 1), i = 1, 2, ..., k and x1 + x2 + ···+ xk ∈ (0, 1).

2. For |π1z1 + π2z2 + ···+ πkzk| < 1,

GX1,X2,...,Xk
(z1, z2, ..., zk) =

g~a

[
θ
(

π0
1−(π1z1+π2z2+···+πkzk)

)n ]
g~a(θ)

=
g~a

[
θ
(

π0
π0+π1(1−z1)+π2(1−z2)+···+πk(1−zk)

)n ]
g~a(θ)

.

3. For all r = 2, 3, ..., k,

(Xi1 , Xi2 , ..., Xir) ∼ CPSNMn
(

g~a(x), θ; n,
πi1

π0 + πi1 + πi2 + ···+ πir

,

πi2

π0 + πi1 + πi2 + ···+ πir

, ...,
πir

π0 + πi1 + πi2 + ···+ πir

)
.

4. For i = 1, 2, ..., k,

Xi ∼ CPSNBi
(

g~a(x), θ; n,
πi

π0 + πi

)
,

GXi(zi) =
g~a

[
θ
(

π0
π0+πi(1−zi)

)n ]
g~a(θ)

, |πizi| < π0 + πi ,

EXi = n θ
[
log
(
g~a(θ)

)]′ πi

π0
= n θ

πi

π0

g′~a(θ)
g~a(θ)

,

VarXi = n
πiθ

π2
0

[
n πi θ

[
log
(
g~a(θ)

)]′′+ [log
(
g~a(θ)

)]′ (
π0 + πi(n + 1)

)]
,

FIXi = 1 +
πi

π0

(
n θ

[
log
(
g~a(θ)

)]′′[
log
(
g~a(θ)

)]′ + n + 1

)
.
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5. For i 6= j = 1, 2, ..., k,

(Xi, Xj) ∼ CPSNMn
(

g~a(x), θ; n,
πi

π0 + πi + πj
,

πj

π0 + πi + πj

)
,

GXi,Xj (zi, zj) =
g~a

[
θ
(

π0
π0+(1−zi)πi+(1−zj)πj

)n ]
g~a(θ)

, |πizi + πjzj | < π0 + πi + πj ,

cov(Xi, Xj) =
nπiπj θ

π2
0

{
n θ
[
log g~a(θ)

]′′+ (n + 1)
[
log g~a(θ)

]′}
,

cor(Xi, Xj) =

√
(FIXi − 1) (FIXj − 1)

FIXi FIXj
.

6. For i, j = 1, 2, ..., k, j 6= i,

(a) For mj 6= 0,

P
(
Xi =mi |Xj =mj

)
=
(

π0 + πj

π0 + πi + πj

)mj πmi
i

mi! (π0 + πi + πj)mi

·

∑∞
s=1 asθ

s (sn+mi+mj−1)!
(sn−1)!

(
π0

π0+πi+πj

)ns

∑∞
s=1 asθs (sn+mj−1)!

(sn−1)!

(
π0

π0+πj

)ns , mi = 0, 1, ...

(b)
(
Xi |Xj = 0

)
∼ CPSNMn

[
as, θ̃ = θ

(
π0

π0 + πj

)n

; n,
πi

π0 + πi + πj

]
,

P
(
Xi = mi |Xj = 0

)
=

πmi
i

mi! (π0 + πi + πj)mi

·

∑∞
s=1 as

(sn+mi−1)!
(sn−1)!

[
θ
(

π0
π0+πj

)n ]s
g~a

[
θ
(

π0
π0+πj

)n ] , mi ∈ N ,

P
(
Xi = 0 |Xj = 0

)
=

g~a

[
θ
(

π0
π0+πi+πj

)n]
g~a

[
θ
(

π0
π0+πj

)n] .

(c) For i, j = 1, 2, ..., k, j 6= i, mj = 1, 2, ...,

E
(
zXi
i |Xj = mj

)
=
(

π0 + πj

π0 + πj + πi − ziπi

)mj

·

∑∞
s=1 as

(sn+mi−1)!
(sn−1)!

[
θ
(

π0
π0+πj+πi−ziπi

)n]s
∑∞

s=1 as
(sn+mj−1)!

(sn−1)!

[
θ
(

π0
π0+πj

)n]s ,

E
(
zXi
i |Xj = 0

)
=

g~a

[
θ
(

π0
π0+πj+(1−zi)πi

)n]
g~a

[
θ
(

π0
π0+πj

)n] .
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(d) For zj = 1, 2, ...,

E
(
Xi |Xj = zj

)
=

πi

π0 + πj

∑∞
s=1 as

(sn+zj)!
(sn−1)!

[
θ
(

π0
π0+πj

)n]s
∑∞

s=1 as
(sn+zj−1)!

(sn−1)!

[
θ
(

π0
π0+πj

)n]s ,

E
(
Xi |Xj = 0

)
=

nπi

π0 + πj

∑∞
s=1 sas

[
θ
(

π0
π0+πj

)n]s
∑∞

s=0 as

[
θ
(

π0
π0+πj

)n]s
=

n θπn
0 πi

(π0 + πj)n+1

g′~a

[
θ
(

π0
π0+πj

)n]
g~a

[
θ
(

π0
π0+πj

)n] .

7. X1 + X2 + ···+ Xk ∼ CPSNBi
(
g~a(x), θ; n, 1− π0

)
.

8. For i = 1, 2, ..., k

(
Xi, X1 + X2 + ···+ Xk −Xi

)
∼ CPSNMn

(
g~a(x), θ; n, πi, 1− π0 − πi

)
.

9. For i = 1, 2, ..., k, m ∈ N

(
Xi |X1 +X2 + ···+Xk = m

)
∼ Bi

(
m,

πi

1− π0

)
.

Sketch of the proof :

1. We substitute of the considered values and function A in the necessary and sufficient
condition, given in p. 154, Johnson et al. [7], for MPSD and prove that the following two
conditions are satisfied:

P
(
X1 = 0, X2 = 0, ..., Xk = 0

)
=

a(0,0,...,0)

A(θ1, θ2, ..., θk)
,

P
(
X1= n1+m1, X2 = n2 +m2, ..., Xk = nk +mk

)
P
(
X1= n1, X2 = n2, ..., Xk = nk

) =

=
a(n1+m1,n2+m2,...,nk+mk)

a(n1,n2,...,nk)
θm1
1 θm2

2 ··· θmk
k , mi, ni = 0, 1, ..., i = 1, 2, ..., k .

2.–3. Analogously to [12], who works in case n = 1 and k = 2. Here we have used the
definition of p.g.f., the definition of g~a(x) and the formula

∞∑
i1=0

∞∑
i2=0

···
∞∑

ik=0

(i1 + i2 + ···+ ik + r − 1)!
i1! i2! ··· ik! (r − 1)!

xi1
1 xi2

2 ···x
ik
k =

1
(1− x1 − x2 − ··· − xk)r

.
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6.(a) For mi = 0, 1, ... we substitute the proposed parameters and function in the
formula of p.m.f. of PS distribution and obtain the above formula

P
(
Xi = mi |Xj = mj) =

∑∞
s=1 asθ

s (sn+mi+mj−1)!
(sn−1)!mi!

(
π0

π0+πi+πj

)ns (
πi

π0+πi+πj

)mi

∑∞
k=0

∑∞
s=1 asθs (sn+k+mj−1)!

(sn−1)!k!

(
π0

π0+πi+πj

)ns (
πi

π0+πi+πj

)k

=

∑∞
s=1 asθ

s (sn+mi+mj−1)!
(sn−1)!mi!

(
π0

π0+πi+πj

)ns (
πi

π0+πi+πj

)mi

∑∞
s=1

as
(sn−1)!θ

s
(

π0
π0+πi+πj

)ns∑∞
k=0

(sn+k+mj−1)!
k!

(
πi

π0+πi+πj

)k

=

∑∞
s=1 asθ

s (sn+mi+mj−1)!
(sn−1)!mi!

(
π0

π0+πi+πj

)ns (
πi

π0+πi+πj

)mi

∑∞
s=1

as
(sn−1)!θ

s
(

π0
π0+πi+πj

)ns (sn+mj−1)!�
1−
�

πi
π0+πi+πj

��sn+mj

=
1

mi!

(
πi

π0 + πi + πj

)mi
(

π0 + πj

π0 + πi + πj

)mj

·

∑∞
s=1 asθ

s (sn+mi+mj−1)!
(sn−1)!

(
π0

π0+πi+πj

)ns

∑∞
s=1

asθs(sn+mj−1)!
(sn−1)!

(
π0

π0+πj

)ns .

6.(c) and 6.(d) are analogous to [12], who work in case n = 1 and k = 2.

9. For i = 1, 2, ..., k, m ∈ N, we use 7., 8., the definitions about CPSNMn distribution
and conditional probability, and obtain

P (Xi = s |X1 +X2 + ···+Xk = m
)

=
P (Xi = s,X1 + X2 + ···+ Xk = m)

P (X1 + X2 + ···+ Xk = m)

=
P (Xi = s,X1 + X2 + ···+ Xk −Xi = m− s)

P (X1 + X2 + ···+ Xk = m)

=
πs

i (1− π0 − πi)m−s
∑∞

j=1 ajθ
j

(
jn + m− 1

s,m− s, jn− 1

)
πnj

0

(1− π0)m
∑∞

j=1 ajθj

(
jn + m− 1
m, jn− 1

)
πnj

0

=
πs

i (1− π0 − πi)m−s
∑∞

j=1 ajθ
j (jn+m−1)!

s!(m−s)!(jn−1)!π
nj
0

(1− π0)m
∑∞

j=1 ajθj (jn+m−1)!
m!(jn−1)! πnj

0

=
(

m
s

)(
πi

1− π0

)s(
1− πi

1− π0

)m−s

, s = 0, 1, ...,m .

We use the definition of Binomial distribution and complete the proof.

Note 2.1. The conclusion 1. in this theorem states that also in the univariate case
the CPSMNn distribution is just a particular case of PSD with more complicated coefficients.

The next theorem presents this distribution as a mixture.
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Theorem 2.2. Suppose n∈N , πi ∈ (0,1), i = 1, 2, ..., k, π0 := 1−π1−π2− ··· −πk ∈
(0,1), aj ≥ 0, j = 0, 1, ..., θ ∈R are such that (2.1) is satisfied and ~X ∼CPSNMn

(
g~a(x), θ;

n, π1, π2, ..., πk

)
. Then there exists a probability space (Ω,A, P), a r.v. M ∼ PSD(g~a(x), θ)

and a random vector ~Y = (Y1, Y2, ..., Yk) defined on it, such that ~Y |M = m ∼ NMn(nm, π1,

π2, ..., πk), m = 1, 2, ...,

P
(
Y1 = 0, Y2 = 0, ..., Yk = 0 |M = 0

)
= 1 ,

and ~X
d= ~Y . Moreover

1. For |π1z1 + π2z2 + ···+ πkzk| < 1,

GX1,X2,...,Xk
(z1, z2, ..., zk) = GM

[(
π0

π0 +π1(1−z1)+π2(1−z2)+ ···+πk(1−zk)

)n
]

.

2. For i = 1, 2, ..., k,

EXi = n EM
πi

π0
, i = 1, 2, ..., k ,

VarXi = VarM n2 π2
i

π2
0

+ EM n
πi(π0 + πi)

π2
0

= n
πi

π0
EM

[
πi

π0
(nFI M + 1) + 1

]
,

FIXi = 1 +
πi

π0
(nFI M + 1) .

3. For i 6= j = 1, 2, ..., k,

cov(Xi, Xj) = n
πiπj

π2
0

{nFI M + 1}EM,

cor(Xi, Xj) =

√
(FI Yi − 1) (FI Yj − 1)

FI Yi FI Yj
.

Note 2.2. Following analogous notations of Johnson et al. [7], the above two theorems
state that CPSNMn distribution coincides with

I{M>0}NMn(nM, π1, π2, ..., πk)
∧
M

PSD
(
g~a(x); θ

)
,

where IM>0 is a Bernoulli r.v. or indicator of the event “M > 0”.

The following representation motivates the name of CPSNMn distribution.

Theorem 2.3. Suppose πi ∈ (0, 1), i = 1, 2, ..., k, π0 = 1−π1− ···−πk ∈ (0, 1), ak ≥ 0,

k = 0, 1, ..., and θ ∈ R are such that such that (2.1) is satisfied. Let M ∼ PS (g~a(x); θ) and

(Y (1), ..., Y (k)) ∼ NMn(n; π1, ..., πk) be independent. Denote by I{M>0} the Bernoulli r.v. that

is an indicator of the event {M > 0} and defined on the same probability space. Define a

random vector (T (1)
M , T

(2)
M , ..., T

(k)
M ) by

(2.3) T
(j)
M = I{M>0}

M∑
i=1

Y
(j)
i =

{∑M
i=1 Y

(j)
i if M > 0 ,

0 otherwise ,
j = 1, 2, ..., k .
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Then

1. For m ∈ N,
(
T

(1)
M , T

(2)
M , ..., T

(k)
M |M = m

)
∼ NMn

(
nm; π1, π2, ..., πk

)
;

2.
(
T

(1)
M , T

(2)
M , ..., T

(k)
M

)
∼ CPSNMn

(
g~a(x), θ;n, π1, π2, ..., πk

)
;

3.
(
T

(1)
M , T

(2)
M , ..., T

(k)
M |M > 0

)
∼ CPSNMn

(
g~ea(x), θ;n, π1, π2, ..., πk

)
,

where ã0 = 0, ãi = ai, i = 1, 2, ...

Sketch of the proof : We apply (1.4) and Theorem 2.2. 2. is analogous to [12], who
work in case n = 1 and k = 2.

If we have no weights at coordinate planes we need to consider the following distribution.

Definition 2.2. Let πj ∈ (0, 1), j = 1, 2, ..., k, π0 := 1−π1−π2−···−πk ∈ (0, 1), as≥ 0,
s = 0, 1, ..., and θ ∈ R be such that

g~a(θ) =
∞∑

n=0

anθn < ∞ .

A random vector ~X = (X1, X2, ..., Xk) is called Compound Power series distributed with
negative multinomial summands on Nk and with parameters g~a(x), θ; n, π1, ..., πk, if for
i = 1, 2, ..., k, mi = 1, 2, ...,

P
(
X1 = m1, X2 = m2, ..., Xk = mk

)
=

=
1
ρ

πm1
1 πm2

2 ···πmk
k

g~a(θπn
0 )

∞∑
j=1

aj θj

(
jn + m1 + m2 + ···+ mk − 1

m1,m2, ...,mk, jn− 1

)
πnj

0 ,

ρ = 1 −
k∑

m=1

(−1)m+1
∑

1≤i1<i2<···<im≤k

g~a

[
θπn

0 (π0 + πi1 + ···+ πim)−n
]

g~a(θ)
.

(2.4)

Briefly ~X ∼ CPSNMnNk

(
g~a(x), θ;n, π1, π2, ..., πk

)
.

The relation between CPSNMn and CPSNMnNk distributions is given in the following
theorem.

Theorem 2.4. If ~X ∼ CPSNMn
(
g~a(x), θ;n, π1, π2, ..., πk

)
, then(

X1, X2, ..., Xk |X1 6= 0, X2 6= 0, ..., Xk 6= 0
)
∼ CPSNMnNk

(
g~a(x), θ; n, π1, π2, ..., πk

)
.

3. APPLICATIONS TO RISK THEORY

In [9] we obtained the approximations of Compound Poisson risk process mixed with
Pareto r.v. and provide a brief summary of previous results about risk process approximations.
In this section we provide risk process application of the CPSNMn. Here k, n∈N, pM ∈ (0, 1),
πi ∈ (0, 1), i = 1, 2, ..., k, π1 + ···+ πk < 1 and π0 = 1− π1 − π2 − ··· − πk.
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3.1. The counting process

Here we consider a discrete time counting process, satisfying the following conditions:

C1. The insurance company have no claims at moment t = 0.

C2. In any other moments of time t = 1, 2, ... a group of claims can arrive with
probability pM independently of others. We denote the number of groups of
claims, arrived in the insurance company over an interval [0, t] by M(t) and by
0 < TG,1 < TG,2 < ··· the moments of arrivals of the corresponding group, i.e. TG,k

is the occurrence time of the k-th group. By definition M(0) = 0.

C3. The claims can be of one of k mutually exclusive and totally exhaustive different
types A1, A2, ..., Ak, e.g. claims of one individual having several pension insur-
ances.

C4. In any of the time points 0 < TG,1 < TG,2 < ···, we denote the number of claims
of type i = 1, 2, ..., k, arrived in the insurance company by Yi,j , j = 1, 2, ... .
We assume that the random vectors (Y1,j , Y2,j , ..., Yk,j), j = 1, 2, ... are i.i.d. and

(Y1,j , Y2,j , ..., Yk,j) ∼ NMn(n, π1, π2, ..., πk) .

Note 3.1. Conditions C1–C2 means that the counting process of the groups of claims
up to time t > 0 is a Binomial process. In case when the claim sizes are discrete they are
considered e.g. in [5, 19, 4, 22]. The number of groups arrived up to time t is M(t) ∼
Bi(t, pM ) and the intervals TG,1, TG,2−TG,1, TG,3−TG,2, ... between the groups arrivals are
i.i.d. Geometrically distributed on 1,2,..., with parameter pM .

C4 means that it is possible to have zero reported losses of one or of all k-types of
insurance claims within one group. In that case there is a group arrived, however, the
number of participants in the group is zero. This can happen e.g. when there is a claim, but
it is not accepted, or it is estimated by zero value by the insurer.

Let us denote the number of claims of type i = 1, 2, ..., k, arrived in the company in
the interval [0, t] by Ni,t. Conditions C1–C4 imply that (N1(0), N2(0), ..., Nk(0)) = (0, 0, ..., 0)
and, for all t = 1, 2, ...,

Ni(t) = I {M(t) > 0}
M(t)∑
j=1

Yi,j , j = 1, 2, ..., k .

Therefore

(
N1(t), N2(t), ..., Nk(t)

)
∼ CPSNMn

(
(1 + x)t,

pM

1− pM
; n, π1, π2, ..., πk

)
and

P
(
N1(t) + N2(t) + ···+ Nk(t) = 0

)
=

(1− pM )t

(1− pM πn
0 )t

.
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3.2. The total claim amount process and its characteristics

Consider the total claim amount process defined as

(3.1) S(t) = I{N1(t)>0}

N1(t)∑
j1=1

Z1,j1 + I{N2(t)>0}

N2(t)∑
j2=1

Z2,j2 + ···+ I{Nk(t)>0}

Nk(t)∑
jk=1

Zk,jk
,

t = 1, 2, ..., satisfying C1–C4.

We impose the following conditions on the claim sizes:

C5. In any of the time points 0 < TG,1 < TG,2 < ···, we denote the claim sizes of the
claims of type i = 1, 2, ..., k by Zi,j , j = 1, 2, ... . We assume that the random
vectors (Z1,j , Z2,j , ..., Zk,j), j = 1, 2, ..., are i.i.d. and the coordinates of this vec-
tor are also independent, with absolutely continuous c.d.fs. correspondingly Fi,
i = 1, 2, ..., k, concentrated on (0,∞).

C6. The claim arrival times and the claim sizes are assumed to be independent.

Proposition 3.1. Consider the total claim amount process defined in (3.1) and sat-

isfying conditions C1–C6.

1. If EZi,j = µi < ∞, i = 1, 2, ..., k, then

(3.2) ES(t) =
n t pM (1− pM )

π0
(µ1π1 + µ2π2 + ···+ µkπk) .

2. If additionally VarZi,j = σ2
i < ∞, i = 1, 2, ..., k, then

VarS(t) = n t
pM

π0


k∑

i=1

πi (σ2
i + µ2

i ) +
(1− pM )n + 1

π0

(
k∑

i=1

µiπi

)2
 ,

FI S(t) =

∑k
i=1 πi(σ2

i + µ2
i ) + (1−pM )n+1

π0

(∑k
i=1 µiπi

)2

(1− pM ) (µ1π1 + µ2π2 + ···+ µkπk)
.

(3.3)

Proof: [1.] is a consequence of the double expectation formula.

[2.] Using the double expectation formula, the facts that EM(t) = tpM , VarM(t) =
tpM (1− pM ) and Theorem 2.2 we obtain:

VarS(t) =
k∑

i=1

ntpM
πi

π0
σ2

i + ntpM

k∑
i=1

[
(1− pM )n

π2
i

π2
0

+
πi(π0 + πi)

π2
0

]
µ2

i

+ 2
∑

1≤i<j≤k

µiµj cov(Ni(t), Nj(t)) =
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= nt
pM

π0

{
k∑

i=1

πiσ
2
i +

k∑
i=1

[
(1− pM )n

π2
i

π0
+

πi(π0 + πi)
π0

]
µ2

i

}
+ 2

∑
1≤i<j≤k

µiµj cov(Ni(t), Nj(t))

= nt
pM

π0

{
k∑

i=1

πi(σ2
i + µ2

i ) +
k∑

i=1

[
(1− pM )n

π2
i

π0
+

π2
i

π0

]
µ2

i

}
+ 2

∑
1≤i<j≤k

µiµj cov(Ni(t), Nj(t))

= nt
pM

π0

{
k∑

i=1

πi(σ2
i + µ2

i ) +
(1− pM )n + 1

π0

k∑
i=1

µ2
i π

2
i

}
+ 2

∑
1≤i<j≤k

µiµj cov(Ni(t), Nj(t))

= nt
pM

π0

{
k∑

i=1

πi(σ2
i + µ2

i ) +
(1− pM )n + 1

π0

k∑
i=1

µ2
i π

2
i

}

+ 2ntpM
[n(1− pM ) + 1]

π2
0

∑
1≤i<j≤k

µiµjπiπj

= nt
pM

π0


k∑

i=1

πi(σ2
i + µ2

i ) +
(1− pM )n + 1

π0

(
k∑

i=1

µiπi

)2
 ,

FI S(t) =
VarS(t)
E S(t)

=

∑k
i=1 πi(σ2

i + µ2
i ) + (1−pM )n+1

π0

(∑k
i=1 µiπi

)2

(1− pM )(µ1π1 + µ2π2 + ···+ µkπk)
.

3.3. The risk process and probabilities of ruin

Consider the following discrete time risk process

(3.4) Ru(t) = u + c t− I{N1(t)>0}

N1(t)∑
j1=1

Z1,j1 − I{N2(t)>0}

N2(t)∑
j2=1

Z2,j2 − ··· − I{Nk(t)>0}

Nk(t)∑
jk=1

Zk,jk
,

t = 0, 1, ..., satisfying C1–C6. If we consider the claims in a group as one claim, we can see
that it is a particular case of the Binomial risk process. 2

The r.v. that describes the time of ruin with an initial capital u ≥ 0 is defined as

τu = min
{
t > 0: Ru(t) < 0

}
.

The probability of ruin with infinite time and initial capital u ≥ 0 will be denoted by
Ψ(u) = P (τu <∞). The corresponding probability to survive is Φ(u) = 1−Ψ(u). Finally,
Ψ(u, t) = P (τu ≤ t) is for the probability of ruin with finite time t = 1, 2, ... .

2See e.g. [5, 19, 4, 22].
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If we assume that EZi,j = µi < ∞, i = 1, 2, ..., k, and in a long horizon, the expected
risk reserve for unit time is positive:

lim
t→∞

ERu(t)
t

> 0 .

The last is equivalent to

c > lim
t→∞

ES(t)
t

,

c >
npM (1− pM )

π0
(π1µ1 + π2µ2 + ···+ πkµk) .

Note that this condition does not depend on u and it means the incomes at any t = 1, 2, ...

to be bigger that the mean expenditures at that time:
cπ0

npM (1− pM )(π1µ1 + π2µ2 + ···+ πkµk)
> 1 .

Therefore, the safety loading ρ should be defined as usually as the proportion between the
expected risk reserve at time t with zero initial capital, i.e. ER0(t), and the expected total
claim amount at same moment of time, for any fixed t = 1, 2, ... :

ρ =
cπ0

npM (1− pM )(π1µ1 + π2µ2 + ···+ πkµk)
− 1 .

Thus the above condition is equivalent to the safety loading condition ρ > 0. If this condition
is not satisfied, the probability of ruin in infinite time would be 1, for any initial capital u.

The proof of the next theorem is analogous to the corresponding one in the Cramer–
Lundberg model3 and in particular to those of the Polya–Aepply risk model4.

Theorem 3.1. Consider the Risk process defined in (3.4) and satisfying conditions

C1–C6. Given the Laplace transforms lZi,1(s) = Ee−sZi,1, of Zi,1, i =1, 2, ..., k, are finite in −s,

1. The Laplace transform of the risk process is

Ee−sR0(t) = e−g(s)t , t = 0, 1, 2, ... ,

where

g(s) = sc− log

{
1− pM + pM

[
π0

1− [π1lZ1,1(−s) + ···+ πklZk,1
(−s)]

]n
}

.

2. The process R∗
0(t) = e−sR0(t)+g(s)t, t≥ 0, is an AR0(≤t) = σ{R0(s), s≤ t}-martingale.

3. Ψ(u, t) ≤ e−su sup
y∈[0,t]

e−yg(s) , t = 1, 2, ...

4. Ψ(u) ≤ e−su sup
y≥0

e−yg(s) .

5. If the Lundberg exponent ε exists, it is a strictly positive solution of the equation

(3.5) g(s) = 0.

In that case, Ψ(u) ≤ e−εu.

3See e.g. [1] or [6], p. 10, 11.
4[23], Proposition 6.3.
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Proof: [1.]

Ee−sR0(t) = Ee
−s{ct−I{N1(t)>0}

PN1(t)
j1=1 Z1,j1

−···−I{Nk(t)>0}
PNk(t)

jk=1 Zk,jk
}

= e−sctGN1(t),N2(t),...,Nk(t)(lZ1,1(−s), lZ2,1(−s), ..., lZk,1
(−s))

= e−sctGM(t)

[(
π0

1− (π1lZ1,1(−s) + π2lZ2,1(−s) + ···+ πklZk,1
(−s))

)n]
= e−sct

{
1− pM + pM

(
π0

1− (π1lZ1,1(−s) + π2lZ2,1(−s) + ···+ πklZk,1
(−s))

)n}t

= e−scte
t log

(
1−pM+pM

 
π0

1−(π1lZ1,1
(−s)+π2lZ2,1

(−s)+···+πklZk,1
(−s))

!n)

= e
−t

(
sc−log

"
1−pM+pM

 
π0

1−(π1lZ1,1
(−s)+π2lZ2,1

(−s)+···+πklZk,1
(−s))

!n#)
= e−tg(s) .

[2.] Consider t = 0, 1, 2, ... and y ≤ t. Then, because the process {S(t), t = 0, 1, 2, ...}
has independent and time homogeneous additive increments,

E(R∗
0(t)|AR0(≤y)) = E(e−sct+sS(t)+g(s)t|AR0(≤y))

= E(e−scy+sS(y)+g(s)y−sc(t−y)+s(S(t)−S(y))+g(s)(t−y)|AR0(≤y))

= E(R∗
0(y)e−sc(t−y)+s(S(t)−S(y))+g(s)(t−y)|AR0(≤y))

= R∗
0(y)E(e−sc(t−y)+sS(t−y)+g(s)(t−y))

= R∗
0(y)E(e−sR0(t−y)+g(s)(t−y))

= R∗
0(y)E(e−sR0(t−y))eg(s)(t−y)

= R∗
0(y)e−g(s)(t−y)eg(s)(t−y) = R∗

0(y) .

[3.] Following the traditional approach we start with the definition of R∗
0 and use that

for R∗
0(0) = 1. Because τu is a random stopping time, by Doob’s martingale stopping theorem,

the stopped process R∗
0(min(τu, t)), is again a martingale. Therefore, for any 0 ≤ t < ∞, by

the double expectations formula,

1 = R∗
0(0) = ER∗

0(0) = ER∗
0(min(τu, t))

= E(R∗
0(min(τu, t))|τu ≤ t)P (τu ≤ t) + E(R∗

0(min(τu, t))|τu > t)P (τu > t)

≥ E(R∗
0(min(τu, t))|τu ≤ t)P (τu ≤ t)

= E(e−sR0(min(τu,t))+g(s) min(τu,t)|τu ≤ t)P (τu ≤ t)

= esuE(eg(s) min(τu,t)|τu ≤ t)P (τu ≤ t)

≥ esuE(eg(s)τu |τu ≤ t)P (τu ≤ t)

= esuE(eg(s)τu |τu ≤ t)Ψ(u, t) ≥ esu inf
y∈[0,t]

eg(s)yΨ(u, t) .

[4.] This is an immediate consequence of 3., when t →∞.

[5.] This is an immediate consequence of the inequality

1 ≥ E
(
e−εR0(min(τu,t))+g(ε) min(τu,t) | τu ≤ t

)
P (τu ≤ t) ,

applied for t →∞ and the fact that R0(s) = Ru(s)− u.
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Remark 3.1. In general, to compute solution of the equation (3.5) is a difficult task
and it can be done only numerically, since e.g. for exponential claims it involves roots of alge-
braic equations of high order. These solutions can be however also negative or/and complex
conjugates. To illustrate the complexity of this setup, let us consider k = 1 and respective
equation (for special choice of parameters) s = log

(
1− 0.5 + 0.5

(
(1−p)/(1−p/(1−s))

)n).
Then, real solutions are plotted at Figure 1 for n = 1, ..., 10, p ∈ (0, 1), therein we can see the
complexity of such computations.
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Figure 1: Real solutions of equation (3.5) for πM = π0 = π1 = 0.5.
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3.4. Simulations of the risk processes and estimation of the probabilities of ruin

In this subsection we provide a brief simulation study on probabilities of ruin in
a finite time in the model (3.4). For any of them 10 000 sample paths were created and
the relative frequencies of those which goes at least once below zero was determined.
The number of groups is k = 20. The parameters of the NMn distribution are n = 40 and
p = (0.002, 0.004, 0.006, 0.008, 0.01, 0.012, 0.014, 0.016, 0.018, 0.02, 0.022, 0.024, 0.026, 0.028,

0.03, 0.032, 0.034, 0.036, 0.038, 0.04). Different parameters on different coordinates allow
higher flexibility of the model. The probability of arrival of a group in a fixed time point is
pM = 0.4, and premium income rate is c = 0.1.

Example 3.1. Exponential claim sizes. For computations of ruin probabilities un-
der exponential claims we consider parameter vector λ = (10, 20, 30, 40, 50, 60, 70, 80, 90, 100,

110, 120, 130, 140, 150, 160, 170, 180, 190, 200). The i-th coordinate describe the parameter of
the Exponential distribution of the claim sizes within the i-th group. The resulting probabili-
ties for ruin for different initial capitals u and time intervals [0, t] are presented in the Table 1.
The corresponding 10 000 sample paths of the risk process are depicted on Figure 2.

Table 1: Probabilities of ruin for exponential claims.

u
t

2 5 10 20 50 100

0 0.3224 0.5581 0.7037 0.8053 0.9016 0.9515
1 0.0001 0.0036 0.0370 0.1546 0.4234 0.6586
2 0 0 0.0005 0.0072 0.1131 0.3386
3 0 0 0 0.0001 0.0159 0.1366
4 0 0 0 0 0.0012 0.0364
5 0 0 0 0 0 0.0081

Figure 2: 10 000 sample paths of the risk process (3.4)
for Exponential individual claim sizes, t = 100.
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Example 3.2. Gamma claim sizes. Table 2 presents the probabilities for ruin in
case when the claim sizes are Gamma distributed with parameters α = seq (from = 0.001,

to = 0.001+(k−1) ∗ 0.005, by = 0.005) and β = seq (from = 1, to = 1+(k−1) ∗ 0.2, by = 0.2),
where seq is the function for creating a sequence in R software, see [16]. The corresponding
10 000 sample paths of the risk process are depicted on Figure 3.

Table 2: Probabilities of ruin for gamma claims.

u
t

2 5 10 20 50 100

0 0.164 0.294 0.442 0.529 0.706 0.787
1 0.042 0.085 0.183 0.273 0.490 0.578
2 0.017 0.046 0.086 0.160 0.317 0.458
3 0.010 0.024 0.051 0.098 0.202 0.358
4 0.003 0.008 0.019 0.057 0.139 0.248
5 0.000 0.002 0.013 0.027 0.071 0.171

Figure 3: 10 000 sample paths of the risk process (3.4)
for Gamma individual claim sizes, t = 100.

Example 3.3. Uniform claim sizes. The ruin probabilities presented in the Table 3
are calculated under assumption for uniform claim sizes with left and right bounds of the
intervals, presented correspondingly via parameter vectors Umin = seq (from = 0.0001, to =
0.0001 + (k−1) ∗ 0.0001, by = 0.0001) and Umax = Umin + 0.01.

The corresponding 10 000 sample paths of the risk process are depicted on Figure 4.

Analogously, the probabilities for ruin in a finite time interval, for different claim sizes
with finite variance, and related with the risk process (3.4) can be estimated. The corre-
sponding confidence intervals can be calculated using the Central Limit Theorem, applied to
relative frequencies.
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Table 3: Probabilities of ruin for uniform claims.

u
t

2 5 10 20 50 100

0 0.133 0.253 0.361 0.402 0.392 0.412
1 0.000 0.000 0.000 0.001 0.001 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000

Figure 4: 10 000 sample paths of the risk process (3.4)
for Uniform individual claim sizes, t = 100.

4. CONCLUSIONS

The paper shows that CPSMNn distribution is easy to work with, and it be can be very
useful for modelling of the number of claims in Risk theory. Recently [26] and [2] have published
another important application of multivariate negative binomial distribution in actuarial risk
theory. Both models show that they are suitable for capturing the overdispersion phenomena.
These distributions provide a flexible modelling of the number of claims that have appeared
up to time t. The number of summands of the random sum reflects the number of groups of
claims that have occurred up to this moment. The negative multinomial summands and their
dependence structure describe types of claims within a group which are different from those
given by [26] and [2]. From mathematical point of view our paper describes completely novel
presentations of the CPSNMn distributions. Thus we can conclude by following conclusions:

• These distributions are a particular case of Multivariate PSD.

• Considered as a mixture, CPSMNn would be called (possibly Zero-inflated) Mixed
NMn with scale changed PSD first parameter. More precisely,

I{M>0}NMn
(
nM, π1, π2, ..., πk

) ∧
M

PSD
(
g~a(x); θ

)
,

where IM>0 is a Bernoulli r.v. or indicator of the event “M > 0”.
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• CPSMNn is particular case of compounds or random sums
(
T

(1)
M , T

(2)
M , ..., T

(k)
M

)
,

where

T
(j)
M = I{M>0}

M∑
i=1

Y
(j)
i =

{∑M
i=1 Y

(j)
i if M > 0 ,

0 otherwise ,
j = 1, 2, ..., k .

These observations allow us to make the first complete characterization of Compound
power series distribution with negative multinomial summands and to give an example of
their application in modelling the main process in the Insurance risk theory.
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1. INTRODUCTION

Let X = {xij} denote an r×c contingency table, with xij ∈N the entry in row i

and column j, and let R1, ..., Rr be the sums of rows, C1, ..., Cc the sums of columns and
N =

∑
i

Ri =
∑
j

Cj . Given the marginal sums Ri and Cj , i = 1, ..., r, j = 1, ..., c, let

F =

{
X

∣∣ c∑
j=1

xij = Ri ,
r∑

i=1

xij = Cj

}

be the reference set of all possible r×c tables with the aforementioned marginal sums. Then,
under the hypothesis of row and column independence, it is well known that for X ∈ F ,

(1.1) P
(
X

)
=

∏
i

Ri!
∏
j

Cj !

N !
∏
ij

xij !
.

A problem that is of interest is that of obtaining a table X ∈ F which maximizes (1.1), i.e.
a maximum probability fixed marginals r×c table (MPT). This problem arises, for example,
as part of the best known and most efficient algorithm for calculating the p-value of Fisher’s
exact test in unordered r×c contingency tables: the network algorithm of Mehta and Patel [2].
The application of this algorithm to an observed r×c table requires, for many of the nodes in
the network, the calculation of the longest subpath from each node to the terminal node, and
this involves (many) repeated applications of the calculation of maximum probability r×c′

tables (c′ ≤ c) for given fixed marginal sums.

Methods for obtaining these MPTs have been proposed by Mehta and Patel [2] and
by Joe [1]. The most general is that of Joe, which is based on a necessary condition for
the MPTs, and generally involves the (recursive) construction of a subset of F in which the
MPTs are contained, and obtaining these by inspecting the probabilities of the tables of this
subset. However, the computation time for the Joe method grows exponentially when r or c

increase, and it is practically unviable for relatively large values of r and c.

In the particular case of 2×c tables, Requena and Mart́ın [3] present a necessary and suf-
ficient condition for the MPTs. Based on this characterization, Requena and Mart́ın [4] pro-
pose a general and very efficient method for obtaining the MPTs, and Requena and Mart́ın [5]
present some modifications in the network algorithm of Mehta and Patel for 2×c tables, which
produce a drastic reduction in computation time.

In order to obtain general and more efficient methods for obtaining the MPTs, in the
general case of r×c tables, it is important that these methods are based on necessary and
sufficient conditions for the MPTs. In this sense, in this paper, two necessary and sufficient
conditions are presented in order to characterize the MPTs. However, this characterization
is not a generalization of the one previously shown in Requena and Mart́ın [3]; it is com-
pletely different, although logically in the particular case of 2×c tables, the characterization
presented in this paper is equivalent to that of Requena and Mart́ın [3].

In Section 2 of this paper, we define and study the concepts of sequence and loop which
we will use in the characterization of the MPTs, which is presented in Sections 3 and 5.
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In Section 3 we present the characterization as a more theoretical result, while in Section 5,
with a more applied purpose, the characterization is presented in terms of a particular type
of tables (U tables), which we define and study in Section 4. Finally, in Section 6 we provide
a necessary and sufficient condition of the uniqueness of the MPT.

2. SEQUENCES AND LOOPS

The characterization of the MPTs which we set out in the following sections is based on
the concepts of sequence and loop. In order to define these concepts, we will start by defining
some operators, which are applied to an r×c table X = {xij}.

We define the operator i[j] whose effect on X is to subtract 1 from xij leaving all the
other entries unchanged, and the operator [j]k whose effect on X is to add 1 to xkj leaving
all the other entries unchanged. Based on these operators, we define the operator i[j]k as the
composition of i[j] with [j]k (i[j] ◦ [j]k = i[j]k = [j]k ◦ i[j]). It is clear that i[j]k changes the
j-th column of the table without altering its sum. Also, as i[j]i is the identity operator, i[j]
and [j]i are inverse of each other.

Definition 2.1. Given an r×c table X = {xij}, and given the rows i0, i1, ..., ik (with
ih−1 6= ih) and columns j1, ..., jk (not all equal), a sequence is the composition of i0[j1]i1
with i1[j2]i2, ... with ik−1[jk]ik, which for simplicity we denote by i0[j1]i1[j2]i2 ··· ik−1[jk]ik
(1 ≤ ih ≤ r and 1 ≤ jh ≤ c).

Definition 2.2. Given an r×c table X = {xij}, a loop is a sequence in which ik = i0,
i.e. i0[j1]i1[j2]i2···ik−1[jk]i0.

From this point onward in the text, when we write a sequence as

i0[ · ]i1 ··· ik−1[ · ]ik

it will be understood that it is a sequence for an unspecified set of columns j1, ..., jk.

In terms of the effect of applying a sequence or a loop to a table X, we can understand
a sequence or a loop as a succession of operators ih−1[jh] and [jh]ih (or as a succession of
operators ih−1[jh]ih), h = 1, 2, ..., k, applied in a successive manner: each operator is applied
to the table obtained by applying the previous one (the first one is applied to X). For
example, applying the sequence 1[2]2[3]4 to a 4×4 table has the effect of adding 1 in x43,
subtracting 1 in x23, adding 1 in x22 and subtracting 1 in x12. A sequence applied to X does
not alter the column sums, but it alters the i0-th and the ik-th row sum. However a loop
does not alter neither the column sums nor the row sums.

Logically, if one removes pairs of inverse operators from a sequence (or loop) in an
appropriate way, one would obtain a new and more reduced sequence (or loop), but one
which would have the same effect on X as the previous one. In this sense, we give the
following definition:



74 F. Requena

Definition 2.3. Given an r×c table X = {xij}, two sequences (or two loops) are
equivalent when they have the same effect on X.

Thus, we have classes of equivalent sequences (or loops). Within a same class, the
difference between two sequences (or two loops) is a set of pairs of inverse operators.

In the same way, we will define the equivalence between a sequence (or loop) and a
group of several sequences (or loops), based on the understanding that the sequences (or
loops) which compose the group are applied in a successive manner: each sequence (or loop)
is applied to the table obtained by applying the previous one.

Because the effect of an operator [j]i on X is to add 1 to xij , and the effect of an
operator i[j] is to subtract 1 from xij , and denoting the number of operators [j]i and i[j]
in the loop by nij and n′ij , respectively, any loop can be represented by means of a table
D = {dij}, defined as dij = nij −n′ij , i = 1, ..., r and j = 1, ..., c. It is easy to see that a table D

defined thus has all its marginal sums equal to 0. Reciprocally, any table D = {dij}, with dij

being integer numbers and marginal sums equal to 0, will represent a loop or a group of loops.
Moreover, applying a loop to a table X is equivalent to adding the corresponding table D to
it, thereby obtaining a new table X ′ with entries x′ij = xij + dij , and with the same marginal
sums as X. But X ′ is not necessarily an r×c table, because some of the entries x′ij could be
negative. If this happens (although we can consider such a loop) we would not consider that
table X ′. This is taken into account in Section 3.

Example 2.1. Let us consider the loop 2[1]3[4]1[1]3[2]4[3]2. Applying this loop to a
4×4 table X, we will obtain a new 4×4 table X ′. Let us see it for some i’s and j’s. For i = 2
and j = 1, because there is only one operator 2[1] (n′21 = 1) and no operator [1]2 (n21 = 0),
d21 = 0− 1 = −1 and we have to subtract 1 from x21 (x′21 = x21 − 1). Likewise, for i = 3
and j = 1 there are two operators [1]3 (n31 = 2) and no operator 3[1] (n′31 = 0), therefore
d31 = 2− 0 = 2 and we have to add 2 to x31 (x′31 = x31 + 2). In a similar way for the other
i’s and j’s. The complete table D that represent this loop is

−1 0 0 1
−1 0 1 0

2 −1 0 −1
1 1 −1 0

and adding this table D to the table X we obtain the table X ′.

If in a sequence (or loop) B we invert the order of the ih’s and also of the jh’s (each
operator would be substituted by its inverse one), we will obtain a new sequence (or loop):
we will call it inverse of B. For example, the sequence inverse of 1[2]2[3]4 is 4[3]2[2]1.
Furthermore, if D = {dij} represents a loop B, then −D = {−dij} will represent the inverse
of B.

Let us now define a particular type of loop which we will use in the characterization of
the MPTs.
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Definition 2.4. For 1 < k ≤ min(r, c), an order k simple loop, is a loop i0[j1]i1[j2] ···
ik−1[jk]i0 in which all the k rows i0, i1, ..., ik−1 are different and all the k columns j1, ..., jk

are different. We will call these the k rows and the k columns of the loop.

Observe that such simple loop leaves r–k rows and c–k columns of X unchanged.

In order to distinguish them from the general case, we will write the tables D which
represent order k simple loops as E = {eij}. In an order k simple loop, since all of its rows
ih (and all of its columns jh) are different, both nij and n′ij can only be equal to 1 or 0, and
nij + n′ij ≤ 1. Therefore, the corresponding table E will have all of its entries eij equal to 0,
except for a 1 and a −1 in each of the k rows and in each of the k columns of the loop.
Moreover, any table E of this type will represent an order k simple loop. For example, the
table

0 −1 0 1 0
−1 1 0 0 0

1 0 0 −1 0
0 0 0 0 0

represents the order 3 simple loop 2[1]3[4]1[2]2.

It is obvious that if one subtracts from a table D (different to any table E) a table E

whose eij 6= 0 have the same sign as the corresponding dij in D, this will result in another
type D table (or type E). Therefore, it is easy to deduce that any table D is the sum of
several type E tables, i.e. any loop (represented by D) can be broken down into a group of
simple loops, which together are equivalent to D. For example:

0 0 1 −1
−1 3 −2 0

0 −1 0 1
1 −2 1 0

=

0 0 0 0
−1 1 0 0

0 0 0 0
1 −1 0 0

+

0 0 0 0
0 1 −1 0
0 0 0 0
0 −1 1 0

+

0 0 1 −1
0 1 −1 0
0 −1 0 1
0 0 0 0

The loop represented by the table D on the left-hand side is broken down into the
(equivalent) group of three simple loops on the right-hand side (the first and the second are
order 2 and the third order 3).

Finally, for any r×c table X = {xij} and for any loop, from this point onward we will
use expressions of the type

(2.1) Q =
∏
j∈J

xbj + 1
xaj

,

where J represents the set of columns j’s (which are not necessarily all different) correspond-
ing to the [j]’s of the operators a[j]b in the loop, and a and b are the rows of these operators.
In this type of expression, a one-to-one relation between the terms of the product and the set
of operators a[j]b of the loop is established. For example, for the loop 2[1]4[5]1[3]2

Q =
x41 + 1

x21
· x15 + 1

x45
· x23 + 1

x13
.
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3. CHARACTERIZATION OF THE MAXIMUM PROBABILITY
r×c TABLES

The simple loops defined in the previous section are used in the following result to
characterize the MPTs.

Theorem 3.1. The necessary and sufficient condition for X = {xij} ∈ F to be an MPT

is that

(3.1)
∏
j∈J

xbj + 1
xaj

≥ 1

for every order k simple loop E = {eij} and every k, 1 < k ≤ min(r, c), where J is the set of

the k columns of the loop, and for each j ∈ J , b and a are the rows such that ebj = 1 and

eaj = −1.

Proof: Let X be an MPT, and let us consider X ′= X+E, for any order k simple loop E,
1 < k ≤ min(r, c). All of the elements of X and X ′ will be identical, except x′bj = xbj + 1
and x′aj = xaj − 1 for j ∈ J , and a, b and J previously defined. Firstly, if E is an order k

simple loop such that x′aj is a negative integer (for some a and j), that is, X ′ is not an r×c

table, then xaj = 0 and, hence, the condition (3.1) is fulfilled for that E. Secondly, if (on
the contrary) E is such that X ′ is an r×c table (X ′ ∈ F), then from expression (1.1), and
because P(X) ≥ P(X ′), we obtain

P(X)
P(X ′)

=
∏
j∈J

(xbj + 1)! (xaj − 1)!
xbj ! xaj !

=
∏
j∈J

xbj + 1
xaj

≥ 1 .

Therefore, for an MPT, (3.1) is fulfilled for all E of order k.

In order to prove the sufficient condition one must note, in the first place, that if an
r×c table fulfils (3.1) for every simple loop, it will fulfil said expression for an order k simple
loop E, and also for the inverse loop −E (which is also an order k simple loop). For this
reason

(3.2)
∏
j∈J

xaj + 1
xbj

≥ 1

will also be fulfilled with a, b and J defined for E as in the formulation of the theorem.
Thus, for each E, (3.1) and (3.2) will be fulfilled. The proof of the sufficient condition in
the case that there is only one r×c table of F fulfilling (3.1) is trivial. Therefore, we will
assume that there is more than one. Let X ∈ F be an MPT which will obviously fulfil (3.1).
It will be necessary to prove that for any X ′ ∈ F satisfying (3.1) for all order k simple loops,
P(X ′) = P(X) must be fulfilled.

It is clear that X ′ can always be written as X ′ = X +D, when D is a table representing
a loop (or group of loops), which can be broken down into a group of tables E’s (simple loops).
According to this type of decomposition (as we have seen in the previous section), for any
of these E’s, considering j ∈ J , a and b defined as before, the signs of eaj and ebj should be
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the same as those of their corresponding daj and dbj in table D. Moreover, because X ′ fulfils
(3.1) and (3.2) for any of these E’s, we can write

(3.3)
∏
j∈J

x′bj
x′aj + 1

=
∏
j∈J

xbj + dbj

xaj + daj + 1
≤ 1

for each E, and because X also fulfils (3.1), we have that

(3.4)
∏
j∈J

xbj + 1
xaj

≥ 1

for each E. From this expression, and because the dbj ’s are positive and the daj ’s are negative,

(3.5) Q′ =
∏
j∈J

xbj + dbj

xaj + daj + 1
≥ 1

will be fulfilled. Moreover, if any dbj > 1 or any |daj | > 1 we will obtain Q′ > 1, which would
contradict (3.3). Hence dbj = 1 and daj = −1, and from (3.3) and (3.5) we obtain

(3.6)
∏
j∈J

xbj + 1
xaj

= 1 .

Since the above is valid for any of the E’s in which D is broken down, on the one hand we
will obtain |dhl| ≤ 1 for all h and l, hence for every dhl 6= 0 there will be one and only one of
the loops E’s such that ehl = dhl. On the other hand, considering the expression (3.6) for all
the E’s in which D has been broken down, we will obtain

(3.7)

∏
hl∈D+

(xhl + 1)∏
hl∈D−

xhl
= 1

where D+ and D− are the sets of subindices hl such that dhl = 1 and dhl = −1, respectively.
Finally, from (1.1)

P(X)
P(X ′)

=

∏
hl∈D+

(xhl + 1)!
∏

hl∈D−
(xhl − 1)!∏

hl∈D+

xhl!
∏

hl∈D−
xhl!

=

∏
hl∈D+

(xhl + 1)∏
hl∈D−

xhl

is obtained, and from (3.7) we will obtain P(X ′) = P(X).

From this theorem, and from what has been said in the proof, the two following results
are easily deduced:

Theorem 3.2. If X is an MPT and E an order k simple loop for which

(3.8)
∏
j∈J

xbj + 1
xaj

= 1

holds, where J , a and b are defined as in Theorem 3.1, then X ′ = X + E is also an MPT.
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Theorem 3.3. If two tables, X and X ′, belonging to F are MPTs, then the difference

between both tables is one or several simple loops, such that (3.8) holds for X and for each

of these simple loops. Moreover the following always holds

|x′hl − xhl| ≤ 1 , ∀h, l .

Finally, the following result extends expression (3.1) to any loop.

Theorem 3.4. Given the expression Q defined in (2.1), if X is an MPT, for any loop

the following always holds

(3.9) Q =
∏
j∈J

xbj + 1
xaj

≥ 1

where J is the set of columns j’s corresponding to the [j]’s of the loop, and a[j]b are the

operators that compose the loop.

Proof: From Theorem 3.1, for simple loops it is obvious that (3.9) is fulfilled. In the
case of non-simple loops, if the loop is represented by a table D, it can be decomposed into
a set of n simple loops. Representing the expression (2.1) for the simple loop h (1 ≤ h ≤ n)
by Qh, we will obtain that

Q =
n∏

h=1

Qh

and because Qh ≥ 1 for all h (from Theorem 3.1), we obtain Q ≥ 1. Finally, if the loop
is not represented explicitly by any type D table, there will always be an equivalent loop
represented by a table D, and the difference between both loops will only be a set of pairs
of inverse operators. Without loss of generality, let us suppose that the difference is the pair
a[b], [b]a. Then, according to what was said when defining expression (2.1), and decomposing
(as before) the loop D into n simple loops, we will obtain

Q =
xab + 1

xab

n∏
h=1

Qh > 1 .

Therefore, to sum up, (3.9) is fulfilled for every loop.

4. A PARTICULAR TYPE OF TABLES: THE U TABLES

We will now proceed to define and study a type of tables (U tables) that is particularly
important in a new characterization of the MPTs.

Definition 4.1. A U table is a table {uij} with r rows and c columns (1 ≤ i ≤ r and
1 ≤ j ≤ c), in which uij are strictly positive real values (uij > 0) and such that, for a given
set of values rh, 1 ≤ h < r, uh+1,j = rhuhj for all j.
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Given this definition, from this point onward rh = uh+1,j/uhj will represent the ratio
between the consecutive rows h and h + 1 of the U table. On the other hand, it is obvious
that for any two rows h and i, the ratio rhi = uij/uhj is constant for all j, and rih = 1/rhi.
In particular, rh,h+1 = rh. Moreover, for h < i, rhi coincides with the product of the ratios
between consecutive rows from row h to row i, i.e., rhi = rh rh+1 ··· ri−1. So we will also denote
this product by rhi. For example, r14 = r1 r2 r3. Furthermore, it will always be understood
that rhh = 1.

Let us consider some properties of this type of table, the proofs for which are very
straightforward.

Property 4.1. If any row or column of a U table is multiplied by a constant, or the
rows (or columns) of a U table are interchanged, another U table is obtained.

Property 4.2. For any two rows h and i of a U table, rhi = 1/rih is always fulfilled.
Moreover, given the rows h, s and i (h ≤ s ≤ i) of a U table, rhi = rhs rsi will always hold.

Property 4.3. In a U table {uij} the following always holds:∏
j∈J

ubj

uaj
= 1

for every order k simple loop E = {eij}, and every k, 1 < k ≤ min (r, c), where J is the set
of the k columns of the loop, and for each j ∈ J , b and a are the rows such that ebj = 1 and
eaj = −1.

The following are two examples of U tables.

Example 4.1. A table {uij} in which all the elements in each row are equal (that is,
uij = Ai > 0 for all j) is a U table.

Example 4.2. Given an r×c table, with marginal sums {Ri} and {Cj}, the table of
expected frequencies {Eij}, defined as Eij = RiCj/N , is a U table. In this case, the ratios
between the rows are rhi = Ri/Rh. It would also be a U table if Ri and Cj were strictly
positive real values.

The following definition establishes a link between the U tables and the r×c tables.

Definition 4.2. We say that a U table {uij} is associated with an r×c table X = {xij}
if the following holds

(4.1) 0 ≤ uij − xij ≤ 1 , ∀ i, j, 1 ≤ i ≤ r, 1 ≤ j ≤ c .

From this definition and from the definition of U tables, it is easy to deduce that the
U table associated with an r×c table, if it exists, is not necessarily unique (and generally it
is not so).
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Given an r×c table X = {xij}, is there always a U table {uij} associated with it?
In order for such a U table to exist, uij = xij + εij would have to be fulfilled for all i and j,
with 0 ≤ εij ≤ 1. Now, because the ratios between the rows in the U table would be

rhi = uij/uhj = (xij + εij)/(xhj + εhj) , ∀ j ,

and so, for a given j, the minimum and the maximum value for rhi would be xij/(xhj + 1)
and (xij + 1)/xhj , respectively, then, rhi should fulfil

mo
hi ≤ rhi ≤ Mo

hi ,

where
mo

hi = max
j

{
xij/(xhj + 1)

}
and Mo

hi = min
j

{
(xij + 1)/xhj

}
.

In the particular case of consecutive rows (i.e., i = h + 1), the limits for the ratios rh would
be

(4.2) mo
h,h+1 ≤ rh ≤ Mo

h,h+1 , 1 ≤ h < r .

Moreover, because rhi = rhrh+1 ··· ri−1, the limits for the products of ratios rhi should likewise
be

(4.3) mo
hi ≤ rhi ≤ Mo

hi , 1 ≤ h < i− 1 < r .

Therefore, in principle, in order for the said U table to exist, there must be a set of ratios rh

that fulfil (4.2) and whose products rhi fulfil (4.3).

Remark 4.1. If X = {xij} is an MPT, applying expression (3.1) to all order 2 simple
loops, we obtain xij′/(xhj′ + 1) ≤ (xij + 1)/xhj for all h, i, j and j′. Hence the following will
always be fulfilled

mo
hi ≤ Mo

hi , ∀h, i, 1 ≤ h < i ≤ r .

Remark 4.2. For any two rows h and i, and from the definition of the limits mo
hi

and Mo
hi, we easily obtain that

Mo
hi = 1/mo

ih .

We can use this expression to obtain mo
pq and Mo

pq for p > q.

We will call these limits mo
h,h+1, Mo

h,h+1, mo
hi and Mo

hi (for each ratio rh and each
product rhi) initial limits and, in general, we will refer to them (without specifying the
subindices) as limits mo’s and limits Mo’s.

Example 4.3. In order for there to be a U table associated with the 3×3 table

16 10 6
11 7 5
5 2 2

there must be a set of ratios, r1 and r2, that fulfils (4.2) and whose product r13 = r1r2

fulfils (4.3). In this case, the initial limits are: 0.714 ≤ r1 ≤ 0.750, 0.417 ≤ r2 ≤ 0.429 and
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0.294 ≤ r13 ≤ 0.300. In principle, we can take appropriate values of r1 and r2 in order to
construct an associated U table.

If there are appropriate values of rh such that (4.2) and (4.3) are fulfilled, and consider-
ing the initial limits mo’s and Mo’s as the current limits for rh and rhi, they can be redefined
(in the sense that we will show below) given the limits of the other products and ratios, thus
obtaining new and more accurate limits for rh and rhi. In general we will denote these new
limits as mhi and Mhi.

For example, in 3×c tables, for the product r13, because r13 = r1r2, the restriction
mo

12mo
23 ≤ r13 ≤ Mo

12Mo
23 must also be fulfilled, which means r13 should fulfil m13 ≤ r13 ≤

M13, and the new limits will be

m13 = max
{
mo

13, mo
12mo

23

}
and M13 = min

{
Mo

13, Mo
12Mo

23

}
.

Likewise, for the ratio r1, because r1 = r13/r2, the restriction mo
13mo

32 ≤ r1 ≤ Mo
13Mo

32 must
also be fulfilled, and the new limits for r1 will be

m12 = max
{
mo

12, mo
13mo

32

}
and M12 = min

{
Mo

12, Mo
13Mo

32

}
.

In a similar way, the new limits for r2 are

m23 = max
{
mo

23, mo
21mo

13

}
and M23 = min

{
Mo

23, Mo
21Mo

13

}
.

Example 4.3 revisited. Starting from the previously calculated initial limits in Ex-
ample 4.3, we calculate the new limits at the second stage as indicated in the previous
paragraph, and we obtain

0.298 ≤ r13 ≤ 0.300 , 0.714 ≤ r1 ≤ 0.720 and 0.417 ≤ r2 ≤ 0.420 .

In 4×c tables, for the product r13, because from Property 4.2 r13 = r1r2 and r13 =
r14/r3, the restrictions mo

12m
o
23 ≤ r13 ≤ Mo

12M
o
23 and mo

14m
o
43 ≤ r13 ≤ Mo

14M
o
43 must also be

fulfilled, which means r13 has to fulfil m13 ≤ r13 ≤ M13, and the new limits will be:

m13 = max
{
mo

13, mo
12mo

23, mo
14mo

43

}
and

M13 = min
{
Mo

13, Mo
12Mo

23, Mo
14Mo

43

}
.

Likewise, for the ratio r2, because r2 = r13/r1, r2 = r24/r3 and r2 = r14/(r1r3), the following
restrictions must be fulfilled:

mo
21m

o
13 ≤ r2 ≤ Mo

21M
o
13 ,

mo
24m

o
43 ≤ r2 ≤ Mo

24M
o
43 ,

mo
21m

o
14m

o
43 ≤ r2 ≤ Mo

21M
o
14M

o
43 .

Thus r2 must fulfil that m23 ≤ r2 ≤ M23, and the new limits will be:

m23 = max
{
mo

23, mo
21mo

13, mo
24mo

43, mo
21m

o
14m

o
43

}
,

M23 = min
{
Mo

23, Mo
21Mo

13, Mo
24Mo

43, Mo
21M

o
14M

o
43

}
.

In a similar way for r1, r3, r14 and r24.
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Remark 4.3. It is evident that the new limits will fulfil mo
hi ≤ mhi and Mhi ≤ Mo

hi,
and if mhi ≤ Mhi, the new intervals (mhi , Mhi) will be contained in the corresponding initial
(current) intervals (mo

hi , Mo
hi), both for the ratios rh and for the products rhi.

Remark 4.4. For any two rows h and i, from Remark 4.2 and from the definition of
the new limits, we easily obtain that Mhi = 1/mih.

Now, taking the limits mhi and Mhi as the current limits for the ratios and products,
we can recalculate the limits in the same sense as before, obtaining new limits (for the ratios
and products) which we will also denote as mhi and Mhi. Thus we will have a recursive
process, where, at each stage, the newly calculated limits will have the same property as the
current limits. At each stage, we always obtain the new limits mhi and Mhi for h < i, and
we can use Remark 4.4 for h > i. In general, and at any stage of the process, we will refer to
these limits (without specifying the subindices) as limits m’s and limits M ’s.

In this process, because from Property 4.2, rhi = rhsrsi, 1 ≤ h < s < i ≤ r, and rhi =
rh′i′/(rh′hrii′), 1 ≤ h′ ≤ h < i ≤ i′ ≤ r, it is easy to see that the general expressions of the
new limits, mhi and Mhi, for rhi (1 ≤ h < i ≤ r) in terms of the current limits can be written
as:

mhi = max
i′,h′,s

{
mhsmsi , h < s < i ; mhh′ mh′i′ mi′i , 1 ≤ h′ ≤ h < i ≤ i′ ≤ r

}
,(4.4)

Mhi = min
i′,h′,s

{
MhsMsi , h < s < i ; Mhh′ Mh′i′ Mi′i , 1 ≤ h′ ≤ h < i ≤ i′ ≤ r

}
,(4.5)

where the terms on the right-hand side of the expressions correspond to the current limits of
the ratios and products (these will coincide with the initial limits mo’s and Mo’s in the first
stage of the process), and where we understand that mqq = Mqq = 1.

In particular, taking i = h+1 in (4.4) and (4.5) we will obtain the limits for the ratios
rh:

mh,h+1 = max
i′,h′

{
mhh′ mh′i′ mi′,h+1 , 1 ≤ h′ ≤ h < i′ ≤ r

}
,(4.6)

Mh,h+1 = min
i′,h′

{
Mhh′ Mh′i′ Mi′,h+1 , 1 ≤ h′ ≤ h < i′ ≤ r

}
.(4.7)

If all the intervals (mhi , Mhi) are not empty (mhi ≤Mhi) (this we will see in Section 5),
and because the new intervals (mhi , Mhi) are contained in the corresponding current inter-
vals, the process will converge and we will be able to obtain final limits for the ratios and
products, and we will continue to represent these by mhi and Mhi.

Example 4.3 revisited. For the 3×3 table of Example 4.3, given the second stage
limits, the new limits obtained at the third stage are the same limits as at the second stage.
Therefore, the final limits are

0.298 ≤ r13 ≤ 0.300 , 0.714 ≤ r1 ≤ 0.720 and 0.417 ≤ r2 ≤ 0.420 .

Once the final limits have been obtained, we can answer the question posed previously more
precisely. Given an r×c table X, in order for there to be a U table associated with it, there
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must be a set of ratios rh that fulfils (4.2) and whose products rhi fulfil (4.3), but taking
(in these expressions) the final limits mhi and Mhi instead of the initial ones. In greater
detail, and taking rh successively, there must be: first, a value r1 such that m12 ≤ r1 ≤ M12;
second, a value r2 such that m23 ≤ r2 ≤ M23 and with the product r1r2 = r13 such that
m13 ≤ r1r2 ≤ M13, i.e. a value r2 such that

max
{
m23, m13/r1

}
≤ r2 ≤ min

{
M23, M13/r1

}
,

and so on. Moreover, the associated U table {uij} would be of the form: u1j = x1j + ε1j

(0 ≤ ε1j ≤ 1) and uij = u1jr1i, 1 < i ≤ r, 1 ≤ j ≤ c.

We can express all this in general form by saying that, given an r×c table X, in order
for there to be a U table associated with X, it must be possible to take successively a set of
ratios rh, h = 1, 2, ..., r−1, such that

(4.8) max
1≤s≤h

{
ms,h+1/rsh

}
≤ rh ≤ min

1≤s≤h

{
Ms,h+1/rsh

}
(in which rsh = rsrs+1 ··· rh−1 and we understand that rhh = 1) and a set of ε1j (1 ≤ j ≤ c)
(for the first row of the U table) such that (4.1) is fulfilled.

Further on in this paper, we will see that an associated U table exists for the MPTs,
and only for these.

Example 4.3 revisited. Given the final limits we have calculated in this example, in
order to obtain a U table associated with the 3×3 table, we can take r1 = 0.716 (for example).
In this case, from (4.8) we have to take a value r2 such that 0.417 ≤ r2 ≤ 0.419: it may be
r2 = 0.418. With these ratios, and taking appropriate values for ε1j , for example, ε11 = 0.74,
ε12 = 0.02 and ε13 = 0.99 (we will see how to take these values in Section 5) we obtain the
associated U table

16 + 0.74 10 + 0.02 6 + 0.99
16.74 · 0.716 10.02 · 0.716 6.99 · 0.716

16.74 · 0.716 · 0.418 10.02 · 0.716 · 0.418 6.99 · 0.716 · 0.418
=

16.74 10.02 6.99
11.98 1.174 5.005
5.010 2.999 2.092

5. CHARACTERIZATION OF THE MPTs IN TERMS OF THE U TABLES

In order to characterize the MPTs in terms of the U tables we will use products of limits
M ’s, m’s, Mo’s and mo’s (which we will denote by ΠM , Πm, ΠMo and Πmo, respectively),
the subindices of which are chained in the sense that we are going to define.

Definition 5.1. We will say that ΠM is a product whose subindices are chained if it
can be written as Mi0i1Mi1i2 ···Mih−1ih . When ih = i0 we will say that the subindices of the
product are circularly chained. We will say the same for products Πm, ΠMo and Πmo.
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From this definition we see that the chained subindices of a product

Mi0i1 Mi1i2 ···Mih−1ih

form a sequence i0[ · ]i1[ · ]i2 ··· ih−1[ · ]ih (without specifying the columns), and if ih = i0 they
would form a loop. Let us give some examples. The subindices of the product M23M35M54 are
chained, and they form the sequence 2[ · ]3[ · ]5[ · ]4. The subindices of the product m13m34m42m21

are circularly chained, and they form the loop 1[ · ]3[ · ]4[ · ]2[ · ]1. Logically there will be some
products whose subindices are not chained, e.g. M12M34.

We will now provide a result about products of terms M ’s, which we will use in the
characterization of the MPTs in terms of the U tables.

Theorem 5.1. Given an MPT X = {xij}, for a product of terms M ’s (ΠM) whose

subindices are circularly chained, the following will always hold

(5.1) ΠM ≥ 1 .

Proof: As we have seen previously, the terms M ’s and m’s are obtained by a recursive
process from the M ’s and m’s of the previous step. Specifically, from (4.5), Mhi is either a
product MhsMsi or a product Mhh′Mh′i′Mi′i of terms of the previous step, whose subindices
(in both cases) are chained, and they form a sequence beginning in row h and ending in row i.
Now, by going back one step in the recursive process, the same can be applied to each of
these Mhs, Msi, Mhh′ , ... . In this way, by going back to the initial step in the process, we
will obtain that Mhi can always be written as a product of terms Mo’s whose subindices are
chained, and they form a sequence beginning in row h and ending in row i.

Thus, and in accordance with what has just been said, the product on the left-hand
side of (5.1), whose subindices are circularly chained, can always be expressed as a product
ΠMo whose subindices are circularly chained. Therefore, in order to demonstrate the theorem
we will have to prove that ΠMo ≥ 1 whenever the subindices of the product are circularly
chained, and they form a loop. Let the product be

ΠMo = Mo
i0i1M

o
i1i2 ···M

o
is−1i0

which, according to the definition of the terms Mo’s, can be written as

ΠMo =
s∏

h=1

xihjh
+ 1

xih−1jh

where j1, j2, ..., js are columns that correspond to the terms Mo’s of the product, and where
is = i0. Then, if j1 = j2 = ··· = js it is evident that ΠMo > 1. Otherwise, we can consider
the loop i0[j1]i1[j2]i2 ··· is−1[js]i0, which is determined by the subindices of the product, and
from the expression (3.9) of the Theorem 3.4 one will obtain ΠMo ≥ 1.

The following result characterizes the MPTs in terms of the U tables.

Theorem 5.2. An r×c table X = {xij} is an MPT if, and only if, a U table {uij}
exists associated with it.
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Proof: Let {uij} be a U table associated with X. From the Property 4.3,∏
j∈J

ubj

uaj
= 1

for every order k simple loop, 1 < k ≤ min (r, c) , and J , a and b defined as in the said
property. In addition, from (4.1) we will obtain

xaj ≤ uaj , xbj ≤ ubj and xbj + 1 ≥ ubj .

Hence, for every order k simple loop, 1 < k ≤ min (r, c),

1 =
∏
j∈J

ubj

uaj
≤

∏
j∈J

xbj + 1
xaj

and, therefore, X fulfils the condition of Theorem 3.1 and will be an MPT.

It remains to be demonstrated that if X is an MPT, there will always be a U table
associated with it. For this purpose, and in accordance with what was said previously in
Section 4, on the one hand we must demonstrate that there will always be a set of ratios rh,
1 ≤ h < r, which fulfil (4.8).

Firstly, in order to demonstrate that we can always take at least one value for each of
the ratios rh, 1 ≤ h < r, within the respective intervals (mh,h+1 , Mh,h+1), which would be
true if mhi ≤ Mhi for h < i, it will be sufficient to prove that any of the expressions which
appear on the right-hand side of (4.4) is less than or equal to any of those on the right-hand
side of (4.5), i.e.

Mhs′Ms′i/(mhsmsi) = Mhs′Ms′iMisMsh ≥ 1 ,

Mhh′Mh′i′Mi′i/(mhsmsi) = Mhh′Mh′i′Mi′iMisMsh ≥ 1 ,

MhsMsi/(mhh′mh′i′mi′i) = MhsMsiMii′Mi′h′Mh′h ≥ 1 ,

Mhh′Mh′i′Mi′i/(mhh′′mh′′i′′mi′′i) = Mhh′Mh′i′Mi′iMii′′Mi′′h′′Mh′′h ≥ 1 ,

for all s, h′ and i′ within the established limits in (4.4) and (4.5), and all s′, h′′ and i′′ with the
same limits of s, h′ and i′, respectively. But all these inequalities are true from Theorem 5.1,
because the subindices of each one of the products are circularly chained.

Secondly, we will demonstrate by induction that, given the final limits, there will al-
ways be at least one set of these ratios (taken successively, r1, r2, ..., rr−1) that fulfil (4.8).
We can always take one value for the first ratio r1 from inside (m12 , M12), and it is obvious
that this r1 fulfils (4.8).

Now we have to prove that if we take a subset of ratios r1, r2, ..., rh−1 (1 < h < r) such
that they fulfil (4.8), we can always take an rh which also fulfils (4.8). It is easy to see that
if r1, r2, ..., rh−1 fulfil (4.8), we will have

(5.2) mss′ ≤ rss′ ≤ Mss′ , 1 ≤ s < s′ ≤ h .

Now, for an rh that fulfils (4.8) to exist it will be enough to prove that

(5.3) ms,h+1/rsh ≤ Ms′,h+1/rs′h , ∀ s, s′, 1 ≤ s ≤ h, 1 ≤ s′ ≤ h .
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For s = s′ it is obvious that this inequality is fulfilled, because we have already proved that
mhi ≤ Mhi. For s < s′, and taking into account Remark 4.4, expression (5.3) is reduced to

ms,h+1mh+1,s′ ≤ rss′ , 1 ≤ s < s′ ≤ h ,

which is true, because from (4.4) and (5.2) we have

ms,h+1mh+1,s′ ≤ mss′ ≤ rss′ , 1 ≤ s < s′ ≤ h .

This is proved in a similar way for s > s′.

Finally, given a set of ratios r1, r2, ..., rr−1 that fulfil (4.8), we must demonstrate that
there will always be a U table {uij}, with u1j = x1j + ε1j (0 ≤ ε1j ≤ 1) and uij = u1j r1i,
1 < i ≤ r, 1 ≤ j ≤ c, which is associated with X. In other words, we have to prove that there
will always be values ε1j , 1 ≤ j ≤ c, such that (4.1) is fulfilled, i.e., such that

0 ≤ (x1j + ε1j) r1i − xij ≤ 1 , 1 ≤ i ≤ r ,

from which it follows that the ε1j , 1 ≤ j ≤ c, should satisfy

(5.4) max
1≤ i≤r

{
xij

r1i
− x1j

}
≤ ε1j ≤ min

1≤ i≤ r

{
xij + 1

r1i
− x1j

}
.

Let us see that for every j there is a value ε1j which satisfies (5.4). For this purpose, it is
enough to prove that for any j and any i and i′ the following holds:

xij/r1i ≤
(
xi′j + 1

)
/r1i′ .

For i = i′ it is trivial that this is true. For i < i′ it is also true, because r1i′/r1i = rii′ , and
because from (4.8) (taking s = i and h + 1 = i′) and from the definition of the limits M ’s and
the limits Mo’s we can obtain

rii′ ≤ Mii′ ≤ Mo
ii′ ≤

(
xi′j + 1

)
/xij , ∀ j .

This is proved in a similar way for i > i′.

The last part of the proof of the Theorem 5.2 shows us how we can easily obtain a
U table associated with an MPT. This is summarized in the next result.

Corollary 5.1. Given an MPT X = {xij} and a set of ratios rh, 1 ≤ h < r, fulfilling

(4.8), a table {uij} with

uij =

{
x1j + ε1j , i = 1, 1 ≤ j ≤ c ,

u1j r1i , 1 < i ≤ r, 1 ≤ j ≤ c ,

where r1i = r1r2 ··· ri−1 and ε1j satisfies (5.4) for all j, is a U table associated with X.
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6. ON THE UNIQUENESS OF A MAXIMUM PROBABILITY r×c TABLE

The following result, based on the previous results, is a necessary and sufficient condi-
tion which characterizes the uniqueness of an MPT.

Theorem 6.1. An MPT X = {xij} is unique if and only if

(6.1)
∏
j∈J

xbj + 1
xaj

> 1

for every order k simple loop E = {eij} and every k, 1 < k ≤ min (r, c), where J is the set

of the k columns of the loop, and for each j ∈ J , b and a are the rows such that ebj = 1 and

eaj = −1.

Proof: Let X be the unique MPT, which obviously will fulfil (3.1). If (3.8) is fulfilled
for a simple order k loop E, then, from Theorem 3.2, X ′ = X + E would be an MPT, which
would contradict the initial hypothesis and, thus, (6.1) is fulfilled. Reciprocally, let X be an
MPT fulfilling (6.1), and let us suppose that X ′ is also an MPT. Then, from Theorem 3.3,
the difference between both will be one or several simple loops, such that (3.8) will be fulfilled
for X and for each of these simple loops, which would contradict (6.1). Hence, X is the only
MPT.

7. CONCLUSIONS

The most efficient algorithm (network algorithm) to calculate the p-value of the Fisher’s
exact test in an r×c table requires us to calculate many times maximum probability r×c′

(c′ ≤ c) contingency tables, and to perform a great amount of comparisons in which the
probabilities of these tables are involved. At present, the general method to obtain maximum
probability fixed marginals contingency tables is based on a necessary condition for these
tables, which makes that method insufficiently efficient, especially for a relatively large r

or c. In this paper, we present two necessary and sufficient conditions for these maximum
probability tables. This characterization, especially that which is expressed based on U tables,
will allow us to construct a general algorithm for obtaining the aforementioned maximum
probability contingency tables.
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1. INTRODUCTION

Contingency tables with fully observed counts and partially classified margins (nonre-
sponses) are called incomplete tables. The following three types of missing data mechanisms
have been proposed in the literature ([8]): missing completely at random (MCAR), missing
at random (MAR) and not missing at random (NMAR). The missing mechanism is said to be
(a) MCAR when missingness is independent of both observed and unobserved data,
(b) MAR when missingness depends only on observed data, and (c) NMAR if missing-
ness depends on unobserved data. Nonresponses are called ignorable when the missing data
mechanism is MAR or MCAR, and the parameters governing the missing data mechanism are
distinct from those to be estimated. They are nonignorable when the missing data mechanism
is NMAR.

Log-linear models have generally been used to study missing data mechanisms in in-
complete tables (see [9] and references therein). However, under nonignorable models, a
boundary solution occurs when the cell probabilities of non-respondents are estimated to be
zeros for certain levels of the missing variables. That is, the maximum likelihood estimators
(MLE’s) of the parameters lie on the boundary of the parameter space. Note that the prob-
lem of boundary solutions is an important one as it has serious consequences for statistical
inference. For example, the observed counts cannot be reproduced by a perfect fit model (a
model for which the estimated expected counts are equal to the observed counts) if boundary
solutions occur. This implies that the fit is inadequate and the parameter estimates are im-
precise. The log likelihood function is flat and, therefore, convergence of the EM algorithm
to the boundary MLE’s requires a lot of iterations. Also, the eigenvalues of the covariance
matrix are inappropriate (either around zero or negative), which implies some parameter esti-
mates have large estimated standard errors and wide confidence intervals. Hence, it is useful
to study various forms of boundary solutions and explore conditions for their occurrence in
incomplete tables.

Consider two categorical variables with I and J levels. Then an I×J×2 table and
an I×J×2×2 table represent two-way incomplete tables with data on one of the variables
and data on both the variables missing respectively. The problem of boundary solutions
was first considered by [1] who proposed a sufficient condition for their occurrence in a
2×2×2 incomplete table. [2] studied the problem for an I×J×2×2 incomplete table, which
has non-monotone missing value patterns. For an I×J×2 incomplete table with simple
monotone missing value patterns, [10] and [3] described the problem geometrically, while
[4] discussed properties of MLE’s in case of boundary solutions. [9] proposed sufficient condi-
tions for the occurrence of boundary solutions under various NMAR models in an I×I×2×2
incomplete table. Recently, [5] provided forms of boundary solutions in arbitrary three-way
and n-dimensional incomplete tables with one or more variables missing, and also established
sufficient conditions for their occurrence under various NMAR models. In this paper, we
consider the above and other related issues for an I×J×2×2 table. Note that a lower di-
mensional incomplete table is not a special case of a higher dimensional one and hence any
result for the former cannot be obtained directly from that for the latter.

The purpose of this paper is to provide a comprehensive treatment of the problem of
boundary solutions in two-way incomplete tables with both variables missing. To this effect,
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we first introduce some notations and consider various identifiable NMAR log-linear models
(Models [M1]–[M5]) for an I×J×2×2 incomplete table. The problem of boundary solutions,
along with their forms under the above models, is discussed in Section 3. We formally define
boundary solutions for an I×J×2×2 incomplete table by extending the definition of [1], which
are unavailable in the literature. A novel result (Proposition 3.1) is provided, which gives
the relationship among forms of boundary solutions according to various parameterizations
for the missing data models. This helps us to theoretically justify and deduce the exact
boundary solutions in those models directly without having to obtain them empirically (see
pp. 39–40 of [9]) using the EM algorithm. In Section 4, we illustrate this result using some
data analysis examples from [2], thereby improving a claim made by them on the forms of
boundary solutions in I×J×2×2 tables, which also eliminates computations.

In Section 5, we provide a result (Theorem 5.1) on sufficient conditions for the occur-
rence of boundary solutions in the above tables, which is similar to Theorem 1 of [9] but
proved using direct arguments instead of contrapositive ones used in [9]. While [9] consider
only Model [M5] in Theorem 1, we consider Models [M1]–[M5] in Theorem 5.1. A coun-
terexample is provided to show that the sufficient conditions for the occurrence of boundary
solutions are not necessary, which refutes a conjecture due to [7].

Finally, we propose new necessary conditions in Theorem 5.2 for the occurrence of
boundary solutions under Models [M1]–[M5] in square two-way incomplete tables, and later
show that they are not sufficient through a counterexample. Such conditions do not exist in
the literature. Note that these conditions help us to identify the non-occurrence of boundary
solutions, which is very useful for fitting appropriate models to the incomplete data (model
selection). Also, these conditions involve only the observed cell counts and their sums in the
tables, and hence can be easily verified. Section 6 provides some concluding remarks.

2. NMAR LOG-LINEAR MODELS

Suppose Y1 and Y2 are two categorical variables having I and J levels respectively.
For i = 1, 2, let Ri denote the missing indicator for Yi so that Ri = 1 or 2 if Yi is observed
or unobserved. Then we have an I×J×2×2 incomplete table, corresponding to Y1, Y2, R1

and R2, with cell counts y = {yijkl} where 1 ≤ i ≤ I, 1 ≤ j ≤ J and 1 ≤ k, l ≤ 2. The vec-
tor of observed counts is yobs = ({yij11}, {yi+12}, {y+j21}, y++22), where {yij11} are the fully
observed counts and {yi+12}, {y+j21}, y++22 are the partially classified counts also known as
the supplementary margins. All cell counts are assumed to be positive. The fully observed
counts are those for which data on both Y1 and Y2 is available, while data on at most Y1

or Y2 is available for the supplementary margins. Note that ‘+’ denotes summation over
levels of the corresponding variable. For example, y+j21 denotes the number of observations
corresponding to Y2 = j for which data on Y2 is observed but data on Y1 is missing. Let
π = {πijkl} be the vector of cell probabilities, µ = {µijkl} be the vector of expected counts
and N =

∑
i,j,k,l yijkl the total number of cell counts. For I = J = 2, we have the 2×2×2×2

incomplete table given by Table 1.
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Table 1: 2×2×2×2 Incomplete Table.

R2 = 1 R2 = 2

Y2 = 1 Y2 = 2 Y2 missing

R1 = 1
Y1 = 1 y1111 y1211 y1+12

Y1 = 2 y2111 y2211 y2+12

R1 = 2 Y1 missing y+121 y+221 y++22

We consider Poisson sampling for convenience, that is, Yijkl ∼ P (µijkl). The likelihood
function of µ is

L(µ;yobs) =
e−
P

i,j,k,l µijkl
∏

i,j µ
yij11

ij11

∏
i µ

yi+12

i+12

∏
j µ

y+j21

+j21 µ
y++22

++22∏
i,j,k,l yijkl!

(2.1)

so that the log-likelihood function of µ is

l(µ;yobs) =
∑
i,j

yij11 log µij11 +
∑

i

yi+12 log µi+12 +
∑

j

y+j21 log µ+j21

+ y++22 log µ++22 − µ++++ + ∆ ,
(2.2)

where ∆ is independent of µijkl’s. For an I×J×2×2 incomplete table, [2] proposed the
following log-linear model (with no three-way or four-way interactions):

log µijkl = λ + λY1(i) + λY2(j) + λR1(k) + λR2(l) + λY1Y2(i, j)

+ λY1R1(i, k) + λY2R1(j, k) + λY1R2(i, l) + λY2R2(j, l) + λR1R2(k, l) ,
(2.3)

where the sum over any argument of a log-linear parameter is zero, for example,
∑

iλY1Y2(i,j)=∑
j λY1Y2(i, j) = 0. To study the various missing mechanisms of Y1 and Y2, [2] introduced the

following notations:

aij =
P (R1 = 2, R2 = 1 |Y1 = i, Y2 = j)
P (R1 = 1, R2 = 1 |Y1 = i, Y2 = j)

=
πij21

πij11
=

µij21

µij11
,

bij =
P (R1 = 1, R2 = 2 |Y1 = i, Y2 = j)
P (R1 = 1, R2 = 1 |Y1 = i, Y2 = j)

=
πij12

πij11
=

µij12

µij11
, mij11 = Nπij11 ,

g =
P (R1 = 1, R2 = 1 |Y1 = i, Y2 = j) P (R1 = 2, R2 = 2 |Y1 = i, Y2 = j)
P (R1 = 1, R2 = 2 |Y1 = i, Y2 = j) P (R1 = 2, R2 = 1 |Y1 = i, Y2 = j)

.

Remark 2.1. Under (2.3), it can be shown that aij = exp[−2{λR1(1) + λY1R1(i, 1) +
λY2R1(j, 1)+λR1R2(1, 1)}] and bij = exp[−2{λR2(1)+λY1R2(i, 1)+λY2R2(j, 1)+λR1R2(1, 1)}].
Also, we have g = πij11πij22

πij12πij21
= µij11µij22

µij12µij21
. Hence

log g = log µij11 + log µij22 − log µij12 − log µij21

=⇒ log g = λR1R2(1, 1) + λR1R2(2, 2)− λR1R2(1, 2)− λR1R2(2, 1) (from (2.3))

=⇒ log g = 4λR1R2(1, 1)
(
∵ λR1R2(1, 2) = −λR1R2(2, 2) = λR1R2(2, 1) = −λR1R2(1, 1)

)
=⇒ g = exp[4λR1R2(1, 1)] ,

which is independent of i and j.
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Note that mij11 = µij11 and g denotes the odds ratio between the missing indicators of
Y1 and Y2. Also, µij21 = mij11aij , µij12 = mij11bij and µij22 = mij11aijbijg. Note that aij is
the conditional odds of Y1 being missing given Y2 is observed, while bij is the conditional odds
of Y2 being missing given Y1 is observed. Here, aij and bij describe the missing mechanisms
of Y1 and Y2, respectively. Denote aij (bij) by αi. (βi.) or α.j (β.j) or α.. (β..) if it depends
only on i or j or none, respectively. Then we have the following definition.

Definition 2.1. The missing mechanism of Y1 under (2.3) is NMAR if aij = αi.,
MAR if aij = α.j and MCAR if aij = α... Similarly, the missing mechanism of Y2 is NMAR
if bij = β.j , MAR if bij = βi. and MCAR if bij = β...

Using Definition 2.1 and the above notations, there are nine possible identifiable models
(see pp. 647–648 of [2]) based on different missing mechanisms for Y1 and Y2. The equivalent
log-linear models can be obtained as submodels of (2.3). As an example, consider the model
(αi., βi.), for which the missing mechanism is NMAR for Y1 and MAR for Y2. Using the
expressions of aij and bij in Remark 2.1, the corresponding log-linear model is obtained from
(2.3) by substituting λY2R1(j, k) = λY2R2(j, l) = 0. The following are the five models when
the missing mechanism is NMAR for Y1 or Y2.

1. Model M1 (NMAR for Y1, MCAR for Y2):

log µijkl = λ + λY1(i) + λY2(j) + λR1(k) + λR2(l) + λY1Y2(i, j)

+ λY1R1(i, k) + λR1R2(k, l) .

2. Model M2 (NMAR for Y2, MCAR for Y1):

log µijkl = λ + λY1(i) + λY2(j) + λR1(k) + λR2(l) + λY1Y2(i, j)

+ λY2R2(j, l) + λR1R2(k, l) .

3. Model M3 (NMAR for Y1, MAR for Y2):

log µijkl = λ + λY1(i) + λY2(j) + λR1(k) + λR2(l) + λY1Y2(i, j) + λY1R1(i, k)

+ λY1R2(i, l) + λR1R2(k, l) .

4. Model M4 (NMAR for Y2, MAR for Y1):

log µijkl = λ + λY1(i) + λY2(j) + λR1(k) + λR2(l) + λY1Y2(i, j) + λY2R1(j, k)

+ λY2R2(j, l) + λR1R2(k, l) .

5. Model M5 (NMAR for both Y1 and Y2):

log µijkl = λ + λY1(i) + λY2(j) + λR1(k) + λR2(l) + λY1Y2(i, j) + λY1R1(i, k)

+ λY2R2(j, l) + λR1R2(k, l) .

Note that for Models [M1]–[M5], there is an association term between a variable and its
missing indicator if the missing mechanism is NMAR for that variable (for example, the
term λY1R1(i, k) in Model [M1]), between a variable and the other missing indicator if the
missing mechanism is MAR for that variable (for example, the term λY2R1(j, k) in Model
[M4]) and none if the missing mechanism is MCAR for a variable (for example, λY1R1(i, k)
and λY2R1(j, k) are absent in Model [M2]).
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3. BOUNDARY SOLUTIONS IN NMAR MODELS

In this section, we consider boundary solutions under non-ignorable nonresponse
(NMAR) models for an I×J×2×2 incomplete table. We first define boundary solutions
under the above models and then present a result relating the forms of boundary solutions
in terms of various parameterizations of the models.

For an incomplete table, boundary solutions in NMAR models occur when the MLE’s
of nonresponse cell probabilities are all zeros for certain levels of the missing variables. For
an I×J×2 incomplete table, where data on only Y2 is missing, [1] defined boundary solutions
in the NMAR model for Y2 as π̂ij2 = 0 for at least one pair (i, j). For the same model, [4]
showed that boundary solutions are given by π̂+j2 = 0 for at least one and at most (J−1) values
of Y2. [1] defined a nonresponse boundary solution under NMAR models in general to be a
stationary point that lies on a boundary of the space of parameters modeling the nonignorable
nonresponse. Using this, we may extend their definition to an I×J×2×2 table as follows.

Definition 3.1. Consider an I×J×2×2 incomplete table, and let 1≤ i≤ I, 1≤ j ≤ J

and k, l = 1, 2. Then we have the following:

1. A nonresponse boundary solution under the NMAR models for Y1 only, that is,
Models [M1] and [M3], is an MLE given by π̂ij2l = 0 for at least one combination
(i, j, l).

2. A nonresponse boundary solution under the NMAR models for Y2 only, that is,
Models [M2] and [M4], is an MLE given by π̂ijk2 = 0 for at least one combination
(i, j, k).

3. A nonresponse boundary solution under the NMAR model for both Y1 and Y2, that
is, Model [M5], is an MLE given by π̂ij2l = 0 for at least one combination (i, j, l)
or π̂ijk2 = 0 for at least one combination (i, j, k).

Note that in the literature, boundary solutions have usually been defined in terms of
cell probabilities because the cell probabilities are in some sense natural to the model for the
incomplete table, whereas the loglinear parameters are not. The next proposition explores
the relationships among boundary solutions under Models [M1]–[M5] in terms of MLE’s of
nonresponse cell probabilities, some specific log-linear parameters and αi. or β.j for two-way
incomplete tables with both variables missing.

Proposition 3.1. For an I×J×2×2 incomplete table, we have the following:

1. For Models [M1] and [M3], if boundary solutions occur, then they are given by

λ̂Y1R1(i, 2) =−∞ ⇔ π̂i+2+ = 0 ⇔ α̂i. = 0 for at least one and at most (I−1) values

of Y1.

2. For Models [M2] and [M4], if boundary solutions occur, then they are given by

λ̂Y2R2(j, 2) =−∞ ⇔ π̂+j+2 = 0 ⇔ β̂.j = 0 for at least one and at most (J−1) values

of Y2.

3. For Model [M5], if boundary solutions occur, then they are given by λ̂Y1R1(i, 2) =
−∞ or λ̂Y2R2(j, 2) =−∞ ⇔ π̂i+2+ = 0 or π̂+j+2 = 0 ⇔ α̂i. = 0 for at least one and

at most (I−1) values of Y1 or β̂.j = 0 for at least one and at most (J−1) values of Y2.
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Proof: See Appendix A.1.

From the proof of Proposition 3.1 in Appendix A.1, note that the one-to-one relation
between the cell probabilities and the log-linear parameters cannot be used to derive the
connection between the different forms of boundary solutions. This is because it is not obvious
which specific log-linear parameters have infinite MLE’s just by noting the zero MLE’s of the
nonresponse cell probabilities when boundary solutions occur.

4. SOME EXAMPLES OF BOUNDARY SOLUTIONS IN NMAR MODELS

In this section, we reanalyze some examples in [2], illustrating the result in Section 3.
We use Proposition 3.1 to investigate a claim made by [2] regarding forms and occurrence
of boundary solutions in an I×J×2×2 incomplete table. This improvement is useful as
it avoids computation and provides the exact boundary solutions under a NMAR model
by simply noting the level(s) of the variable(s) for which the MLE’s of the parameters are
negative or infinite.

First, we present the correct expression of the likelihood ratio statistic for missing data
models in such a table. Consider testing the goodness of fit of a null model (here one of
the Models [M1]–[M5]) against the alternative model (perfect fit model). Let {µ̂ijkl} and
{µ̃ijkl} denote the MLE’s of the expected counts under a null model and a perfect fit model
respectively. Also, let L0 and L1 denote the log-likelihoods for the null and the alternative
models, respectively. Then the likelihood ratio statistic is given by

G2 = − 2(L0 − L1)

= − 2

∑
i,j

yij11 ln
(

µ̂ij11

µ̃ij11

)
+
∑

i

yi+12 ln
(

µ̂i+12

µ̃i+12

)
+
∑

j

y+j21 ln
(

µ̂+j21

µ̃+j21

)
+ y++22 ln

(
µ̂++22

µ̃++22

)
− µ̂++++ + µ̃++++

]

= − 2

∑
i,j

yij11 ln
(

m̂ij11

yij11

)
+
∑

i

yi+12 ln

(∑
j m̂ij11b̂ij

yi+12

)

+
∑

j

y+j21 ln
(∑

i m̂ij11âij

y+j21

)
+ y++22 ln

(∑
i,j m̂ij11âij b̂ij ĝ

y++22

)

−
∑
i,j

m̂ij11(1 + âij + b̂ij + âij b̂ij ĝ) + N

 .

(4.1)

Note that the last two terms of (4.1) are missing in the expression of G2 in [2] (see p. 646).
Observe that in general,

∑
i,j m̂ij11(1 + âij + b̂ij + âij b̂ij ĝ) 6= N , unless the hypothetical (null)

model is a perfect fit model for example, in which case G2 = 0.

Using Definition 2.1 and the notations in Section 2, Models [M1]–[M5] can be represented
as follows — Model [M1]: (αi., β..), Model [M2]: (α.., β.j), Model [M3]: (αi., βi.), Model [M4]:
(α.j , β.j) and Model [M5]: (αi., β.j). Accordingly, the expression of G2 in (4.1) for each of the
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above models may be obtained by making suitable substitutions and using the MLE’s in [2]
(see pp. 647–648). For example, the MLE’s under the model (αi., β..) are

m̂ij11 =
yij11 yi+1+ y++11

yi+11 y++1+
,
∑

i

m̂ij11 α̂i. = y+j21 , β̂.. =
y++12

y++11
, ĝ =

y++11 y++22

y++12 y++21
.

Hence, from (4.1), the likelihood ratio statistic is

G2 = − 2

∑
i,j

yij11 ln
(

yi+1+ y++11

yi+11 y++1+

)
+
∑

i

yi+12 ln
(

yi+1+ y++12

yi+12 y++1+

) .

[2] mentioned that if any solution α̂i. or β̂.j to the systems of equations
∑

i Nπ̂ij11 α̂i. =
y+j21 and

∑
j Nπ̂ij11 β̂.j = yi+12 respectively is negative, then boundary solutions occur, that

is, the MLE lies on the boundary of the parameter space. Closed-form boundary MLE’s
under Models [M1]–[M5] may then be obtained (see p. 649 of [2]) by setting certain parameter
estimates (α̂i. or β̂.j) to 0 in the likelihood equations obtained from (2.2) for the models. They
claimed that counterintuitively, the parameter estimate set to 0 need not be the estimate
with a negative value as the solution to the above systems of equations. In particular, for a
2×2×2×2 incomplete table, they suggested examining both boundaries α̂1. = 0 and α̂2. = 0;
similarly β̂.1 = 0 and β̂.2 = 0 to determine the minimum value of G2, which corresponds to
the MLE. We improve this claim and thereby obviate computations by showing that the MLE
indeed always occurs on the specific boundary (level(s) of the variable(s)) for which α̂i. or
β̂.j is negative. In the next three examples, we use Proposition 3.1 to illustrate this point for
Models [M1]–[M5].

Example 4.1. Consider the data in Table 2 discussed in [2], which cross-classifies
mother’s self-reported smoking status (Y1) (Y1 = 1(2) for smoker (non-smoker)) with new-
born’s weight (Y2) (Y2 = 1(2) if weight < 2500 grams (≥ 2500 grams)). The supplementary
margins contain data on only smoking status, data on only newborn’s weight and missing
data on both variables.

Table 2: Birth weight and smoking: observed counts.

R2 = 1 R2 = 2

Y2 = 1 Y2 = 2 Y2 missing

R1 = 1
Y1 = 1 4512 21009 1049
Y1 = 2 3394 24132 1135

R1 = 2 Y1 missing 142 464 1224

[2] mentioned that α̂2. < 0 is obtained on fitting models [M1], [M3] and [M5] to the data
in Table 2. Also, the value of G2 corresponding to α̂2. = 0 is larger than that corresponding
to α̂1. = 0 for all the above models, which is incorrect as shown below. When we fit the same
models to the data in Table 2 using the ‘MASS’ package in R software, we obtain α̂1. = 0.0493
and α̂2. = −0.0237 under Models [M1], [M3] and [M5], that is, boundary solutions occur in
each of the models.
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Also, G2=55.2198 (12.4682) under Model [M1], G2=55.2168 (12.4638) under Model [M3]
and G2 = 55.214 (12.464) under Model [M5] when α̂1. = 0 (α̂2. = 0). The G2 values for α̂2. = 0
upon rounding off in each of the models match those given in Table V of [2]. Hence, G2 is
minimum for α̂2. = 0 in each case, which implies that boundary solutions are given by α̂2. = 0
or equivalently π̂2+2+ = 0. This result is consistent with points 1 and 3 of Proposition 3.1.
Further, it is the exact form of boundary solutions that we obtain on fitting Models [M1],
[M3] and [M5] to the data in Table 2 using the EM algorithm (see the ‘ecm.cat’ function of
‘cat’ package in R software).

Example 4.2. Consider the example given in the last paragraph of p. 646 in [2]. The
model [M1] was fitted to the following data: y1111 = 100, y1211 = 40, y2111 = 50, y2211 = 1000,
y1+12 = 0, y2+12 = 0, y+121 = 100, y+221 = 10 and y++22 = 0. They mentioned that though
α̂1. < 0, G2 is minimum for α̂2. = 0 implying that the MLE is on the boundary α̂2. = 0.
However, we obtain α̂1. = 1.0153 (> 0) and α̂2. = −0.0306 on fitting Model [M1] to the above
data. Also, note that ĝ = y++11y++22

y++12y++21
(see p. 649 of [2]) is undefined since y++12 = 0. Hence,

we introduce the following changes: y1+12 = 1, y2+12 = 1 and y++22 = 2 as shown in Table 3.

Table 3: Modified 2×2×2×2 table.

R2 = 1 R2 = 2

Y2 = 1 Y2 = 2 Y2 missing

R1 = 1
Y1 = 1 100 40 1
Y1 = 2 50 1000 1

R1 = 2 Y1 missing 100 10 2

On fitting models [M1], [M3] and [M5] to the data in Table 3, we obtain α̂1. = 1.0098 un-
der [M1], and α̂1. = 1.0153 under [M3] and [M5], along with α̂2. = −0.0306 under all the above
models, which implies boundary solutions occur in each case. Also, G2 = 426.1604 (17.4704)
under Model [M1], G2 = 424.3288 (15.669) under Model [M3] and G2 = 424.3188 (15.664)
under Model [M5] when α̂1. = 0 (α̂2. = 0). Hence, G2 is minimum for α̂2. = 0 in each model,
which implies that boundary solutions are given by π̂2+2+ = 0. This result is consistent with
points 1 and 3 of Proposition 3.1. Further, it is the exact form of boundary solutions that we
obtain on fitting Models [M1], [M3] and [M5] to the data in Table 3 using the EM algorithm.

Example 4.3. Consider the data in Table 2 discussed in Example 4.1. We introduce
the following changes corresponding to supplementary margins in Table 2: 464 → 700 and
1135 → 750. The modified table is shown in Table 4.

Table 4: Birth weight and smoking: observed counts (modified).

R2 = 1 R2 = 2

Y2 = 1 Y2 = 2 Y2 missing

R1 = 1
Y1 = 1 4512 21009 1049
Y1 = 2 3394 24132 750

R1 = 2 Y1 missing 142 700 1224



98 S. Ghosh and P. Vellaisamy

When we fit the models [M2], [M4] and [M5] to the data in Table 4, we obtain
β̂.1 = 0.2538 under [M2], and β̂.1 = 0.2543 under [M4] and [M5] along with β̂.2 = −0.0047
under all the above models, that is, boundary solutions occur in each of the models. Also,
G2 = 98.5962 (3.3548) under Model [M2], G2 = 96.1622 (0.922) under Model [M4] and G2 =
96.162 (0.9276) under Model [M5] when β̂.1 = 0 (β̂.2 = 0). The G2 values in brackets above
match those obtained using the EM algorithm. Hence, G2 is minimum for β̂.2 = 0 in each
case, which implies that boundary solutions are given by β̂.2 = 0 or equivalently π̂+2+2 = 0.
This result is consistent with points 2 and 3 of Proposition 3.1. Further, it is the exact form
of boundary solutions that we obtain on fitting Models [M2], [M4] and [M5] to the data in
Table 4 using the EM algorithm.

5. CONDITIONS FOR THE OCCURRENCE OF BOUNDARY SOLUTIONS

In this section, we discuss sufficient conditions and also propose necessary conditions
for the occurrence of boundary solutions in two-way incomplete tables with both variables
missing. We show that the sufficient conditions are not necessary, which disproves a conjecture
made by [7]. Further, we prove that the proposed necessary conditions are not sufficient.
Both sets of conditions are simple to verify since they involve only the observed cell counts
in the tables. The sufficient conditions and the necessary conditions are of practical utility
in identifying the occurrence and non-occurrence, respectively of boundary solutions in such
tables.

5.1. Sufficient conditions for the occurrence of boundary solutions

Following [9], define the four odds based on the observed (joint/marginal) cell counts
for any pair (j, j′) of Y2:

νi(j, j′) =
π̂ij11

π̂ij′11
, νn(j, j′) = min

i
{νi(j, j′)} , νm(j, j′) = max

i
{νi(j, j′)} ,

ν(j, j′) =
y+j21

y+j′21
.

(5.1)

Similarly, for a given pair (i, i′) of Y1, define the four odds using the observed cell counts:

ωj(i, i′) =
π̂ij11

π̂i′j11
, ωn(i, i′) = min

j
{ωj(i, i′)} , ωm(i, i′) = max

j
{ωj(i, i′)} ,

ω(i, i′) =
yi+12

yi′+12
.

(5.2)

Note that νi(j, j′) and ωj(i, i′) are called the response odds, while ν(j, j′) and ω(i, i′) are called
the nonresponse odds. Using the MLE’s of {πij11} under Models [M1]–[M5] (see pp. 647–648
of [2]), we deduce that νi(j, j′) = yij11

yij′11
and ωj(i, i′) = yij11

yi′j11
, which involve only the fully

observed counts.
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Theorem 1 of [9] deals with sufficient conditions for the occurrence of boundary solutions
only under Model [M5]. However, in the next result, we provide such conditions for the
occurrence of boundary solutions under Models [M1]–[M5]. Also, we provide a proof which
is similar to that of Theorem 1 of [9], but we give direct arguments, which are different from
the contrapositive ones used by [9].

Theorem 5.1. Consider the following conditions for an I×I×2×2 contingency table:

1. ν(j, j′) 6∈ (νn(j, j′), νm(j, j′)) for at least one pair (j, j′) of Y2,

2. ω(i, i′) 6∈ (ωn(i, i′), ωm(i, i′)) for at least one pair (i, i′) of Y1.

Then we have the following:

(a) Boundary solutions in NMAR models for only Y1 (Models [M1] and [M3]) occur

if Condition 1 holds.

(b) Boundary solutions in NMAR models for only Y2 (Models [M2] and [M4]) occur

if Condition 2 holds.

(c) Boundary solutions in the NMAR model for both Y1 and Y2 (Model [M5]) occur

if Condition 1 or Condition 2 holds.

Proof: See Appendix A.2.

5.2. The sufficient conditions are not necessary

The next example shows that the sufficient conditions for the occurrence of boundary
solutions mentioned in Theorem 5.1 are not necessary. This result has not been discussed in
the literature earlier. In fact, [7] proved that the above conditions are both necessary and
sufficient for a 2×2×2×2 incomplete table. They conjectured that a similar result would
hold for general two-way incomplete tables as well.

Example 5.1. Consider Table 5 discussed in [9], which cross-classifies data on bone
mineral density (Y1) and family income (Y2) in a 3×3×2×2 incomplete table. Both variables
Y1 and Y2 have three levels. The total count is 2998 out of which data on Y1 and Y2 are
available for 1844 persons, data on Y1 only for 231 persons, data on Y2 only for 878 persons,
and data on neither of them for 45 persons.

Table 5: Bone mineral density (Y1) and family income (Y2).

R2 = 1 R2 = 2

Y2 = 1 Y2 = 2 Y2 = 3 Missing

Y1 = 1 621 290 284 135
R1 = 1 Y1 = 2 260 131 117 69

Y1 = 3 93 30 18 27

R1 = 2 Missing 456 156 266 45
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Now, we introduce the following changes corresponding to supplementary margins in
Table 5: 266 → 125, 69 → 60 and 27 → 20. The modified table is shown in Table 6.

Table 6: Modified Table 5.

R2 = 1 R2 = 2

Y2 = 1 Y2 = 2 Y2 = 3 Missing

Y1 = 1 621 290 284 135
R1 = 1 Y1 = 2 260 131 117 60

Y1 = 3 93 30 18 20

R1 = 2 Missing 456 156 125 45

From Table 6, ν(1,2) = 456/156 = 2.92, ν(1,3) = 456/125 = 3.65, ν(2,3) = 156/125 = 1.25,
ω(1, 2) = 135/60 = 2.25, ω(1, 3) = 135/20 = 6.75 and ω(2, 3) = 60/20 = 3.00. Let Iν(j, j′) =
(νn(j, j′), νm(j, j′)) and Iω(i, i′) = (ωn(i, i′), ωm(i, i′)). Then from Table 6, it can be shown
that ν(1,2)∈ Iν(1,2) = (260/131, 93/30), ν(1,3)∈ Iν(1,3) = (621/284, 93/18), ν(2,3)∈ Iν(2,3) =
(290/284, 30/18), ω(1,2)∈ Iω(1,2) = (290/131, 284/117), ω(1, 3)∈ Iω(1,3) = (621/93, 284/18)
and ω(2, 3) ∈ Iω(2, 3) = (260/93, 117/18) so that the sufficient conditions for the occurrence of
boundary solutions in Theorem 5.1 are not satisfied. The MLE’s of the parameters obtained
on fitting Models [M1]–[M5] in various subtables of Table 6 are shown in Table 7.

Table 7: MLE’s of parameters in subtables of Table 6.

Subtable
NMAR

MLE’s
Boundary

model solutions

Y1 [M1] α̂1. = 0.6556, α̂2. =−1.0537, α̂3. = 3.4109 π̂2+2+ = 0

Y2 [M2] β̂.1 = 0.1355, β̂.2 = 0.3420, β̂.3 =−0.1846 π̂+3+2 = 0

Y1Y2
[M1] α̂1. = 0.6556, α̂2. =−1.0537, α̂3. = 3.4109 π̂2+2+ = 0
[M3] α̂1. = 0.6534, α̂2. =−1.0551, α̂3. = 3.4874 π̂2+2+ = 0

Y1Y2
[M2] β̂.1 = 0.1355, β̂.2 = 0.3420, β̂.3 =−0.1846 π̂+3+2 = 0

[M4] β̂.1 = 0.1421, β̂.2 = 0.3289, β̂.3 =−0.1712 π̂+3+2 = 0

Y1Y2 [M5]
α̂1. = 0.6534, α̂2. =−1.0551, α̂3. = 3.4874 π̂2+2+ = 0

β̂.1 = 0.1421, β̂.2 = 0.3289, β̂.3 =−0.1712 π̂+3+2 = 0

From Table 7, note that in each subtable, at least one of α̂i. and β̂.j is negative, which
imply that boundary solutions occur. The forms of boundary solutions under the Models
[M1]–[M5] are also the same as described in Section 3. This shows that for an I×J×2×2
incomplete table, where I, J ≥ 3, the sufficient conditions for the occurrence of boundary
solutions under Models [M1]–[M5] in Theorem 5.1 are not necessary.

5.3. Necessary conditions for the occurrence of boundary solutions

We next state below a result due to [6], which will be used later to obtain a result on
the occurrence of boundary solutions.
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Lemma 5.1. Suppose A = (aij) is a matrix with aij ≥ 0 for i 6= j = 1, 2, ..., n and

aii > 0. Also, let b = (bj), where bj > 0 for 1 ≤ j ≤ n. If

(5.3) bi >
n∑

j 6=i=1

aij
bj

ajj
, ∀ 1 ≤ i ≤ n ,

then A is invertible and A−1b > 0.

Using Lemma 5.1, the next result provides necessary conditions for the occurrence of
boundary solutions under Models [M1]–[M5] in square two-way incomplete tables.

Theorem 5.2. For an I×I×2×2 incomplete table, consider the following conditions:

1. y+j21 ≤
∑I

i6=j=1 µ̂ji11
y+i21

µ̂ii11
for at least one j = 1, 2, ..., I,

2. yi+12 ≤
∑I

j 6=i=1 µ̂ij11
yj+12

µ̂jj11
for at least one i = 1, 2, ..., I,

where µ̂ij11 is the MLE of µij11. Also, let {µ̂ij11} > 0, {yi+12} > 0 and {y+j21} > 0. Then we

have the following:

(a) If boundary solutions under Models [M1] and [M3] occur, then only Condition 1

holds.

(b) If boundary solutions under Models [M2] and [M4] occur, then only Condition 2

holds.

(c) If boundary solutions under the Model [M5] occur, then Condition 1 or Condition 2

holds.

Proof: See Appendix A.3.

Henceforth, we denote A = (aij) = (µ̂ij11), b = (bj) = (y+j21) and b∗ = (b∗i ) = (yi+12)
for 1 ≤ i ≤ I, 1 ≤ j ≤ I. The example below is an application of Theorem 5.2.

Example 5.2. From Table 6 in Example 5.1, we have the following:

A =

621 290 284
260 131 117
93 30 18

, b = (456, 156, 125) , b∗ = (135, 60, 20) .

The MLE’s α̂ = (α̂i.) and β̂ = (β̂.j) under Model [M5] satisfy respectively the systems ATα =b
from (A.11) and Aβ = b∗ from (A.12) for i, j = 1, 2, 3. From Table 7, we observe that if
Model [M5] is fitted to the data in Table 6, then we obtain α̂2. < 0 and β̂.3 < 0, that is,
boundary solutions occur. Now we need to verify if both Conditions 1 and 2 of Theorem 5.2
hold. For the matrix AT and the vector b, we have

456 < a12×
b2

a22
+ a13×

b3

a33
= 260× 156

131
+ 93× 125

18
= 955.4516 ,

156 < a21×
b1

a11
+ a23×

b3

a33
= 290× 456

621
+ 30× 125

18
= 421.2802 ,

125 < a31×
b1

a11
+ a32×

b2

a22
= 284× 456

621
+ 117× 156

131
= 347.8693 ,
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so that Condition 1 in Theorem 5.2 is satisfied. Also, for the matrix A and the vector b∗,
we have

135 < a12×
b∗2
a22

+ a13×
b∗3
a33

= 290× 60
131

+ 284× 20
18

= 448.38 ,

60 < a21×
b∗1
a11

+ a23×
b∗3
a33

= 260× 135
621

+ 117× 20
18

= 186.5217 ,

20 < a31×
b∗1
a11

+ a32×
b∗2
a22

= 93× 135
621

+ 30× 60
131

= 33.9578 ,

so that Condition 2 in Theorem 5.2 is satisfied. Further, from Table 7, we observe that
boundary solutions also occur if Models [M1]–[M4] are fitted to data in Table 6. Then
only Condition 1 is satisfied if boundary solutions under [M1] and [M3] occur, while only
Condition 2 is satisfied if boundary solutions under [M2] and [M4] occur. This is because the
MLE α̂ = (α̂i.) under Models [M1] and [M3] satisfies the system ATα = b, while the MLE
β̂ = (β̂.j) under Models [M2] and [M4] satisfies the system Aβ = b∗.

5.4. The necessary conditions are not sufficient

The next example shows that the necessary conditions for the occurrence of boundary
solutions in Theorem 5.2 are not sufficient.

Example 5.3. In Example 5.2, replace 456 by 366 in b and 20 by 15 in b∗ so that
b = (366, 156, 125) and b∗ = (135, 60, 15) now. For the matrix AT and the vector b, we have

366 < a12×
b2

a22
+ a13×

b3

a33
= 260× 156

131
+ 93× 125

18
= 955.4516 ,

156 < a21×
b1

a11
+ a23×

b3

a33
= 290× 366

621
+ 30× 125

18
= 379.2512 ,

125 < a31×
b1

a11
+ a32×

b2

a22
= 284× 366

621
+ 117× 156

131
= 306.7099 ,

so that Condition 1 in Theorem 5.2 is satisfied. Also, for the matrix A and the vector b∗,
we have

135 < a12×
b∗2
a22

+ a13×
b∗3
a33

= 290× 60
131

+ 284× 15
18

= 369.4911 ,

60 < a21×
b∗1
a11

+ a23×
b∗3
a33

= 260× 135
621

+ 117× 15
18

= 154.0217 ,

15 < a31×
b∗1
a11

+ a32×
b∗2
a22

= 93× 135
621

+ 30× 60
131

= 33.9578 ,

so that Condition 2 in Theorem 5.2 is satisfied. Now, when we solve the system ATα = b, then
we obtain the MLE’s α̂1. = 0.0133, α̂2. = 0.7796 and α̂3. = 1.6671. So, there are no boundary
solutions under Model [M3]. Similarly, the system Aβ = b∗ yields the MLE’s β̂.1 = 0.041,
β̂.2 = 0.3655 and β̂.3 = 0.0126, that is, there are no boundary solutions under Model [M4].
Since the MLE’s in Model [M5] satisfy both the systems ATα = b and Aβ = b∗, there are no
boundary solutions under [M5] as well. Similar results hold for Models [M1] and [M2]. Hence,
the conditions in Theorem 5.2 are not sufficient for the occurrence of boundary solutions under
Models [M1]–[M5].
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5.5. Importance of the necessary conditions

Here, we discuss additional details about Theorem 5.2 and discuss its simplicity and
effectiveness.

From Theorem 5.2, note that if {yi+12}, {y+j21}, and/or {µ̂ii11} are large, then Condi-
tions 1 and 2 may not hold. Indeed, if the inequalities in Conditions 1 and 2 are reversed for
all 1 ≤ i ≤ I and 1 ≤ j ≤ I, then from statements (a), (b) and (c) of Theorem 5.2, boundary
solutions do not occur on fitting Models [M1]–[M5] in an I×I×2×2 incomplete table.

It is known that when boundary solutions occur, perfect fit models (here Models [M3],
[M4] and [M5]) cannot reproduce the observed counts, indicating poor fit and imprecision
of the parameter estimates. The MLE’s of the parameters under NMAR models lie on the
boundary of the parameter space and the log likelihood function tends to be flat, which makes
derivation of the MLE’s computationally intensive. Also, the corresponding covariance matrix
has unreasonable eigenvalues (close to either zero or negative), which implies the estimated
standard errors for some parameter estimates are large. Hence, for model selection, we prefer
NMAR models which don’t yield boundary solutions upon fitting them to the given data.

Theorem 5.1 provides conditions, which help us identify the occurrence of boundary
solutions. However, boundary solutions may occur under some NMAR models if any of the
sufficient conditions in Theorem 5.1 does not hold. This implies that Theorem 5.1 cannot
always provide us the set of plausible NMAR models for model selection. However, note that
Theorem 5.2 is very useful in this regard since it gives us an insight into verifying the non-
occurrence of boundary solutions under each of the NMAR models [M1]–[M5]. That is, if any
of the necessary conditions in Theorem 5.2 does not hold, then we know for sure that boundary
solutions do not occur. This always helps us to obtain the list of candidate NMAR models
suitable for fitting the given data. Hence, Theorem 5.2 is more reliable than Theorem 5.1
for the purpose of model selection in square two-way incomplete tables.

The non-boundary MLE’s of µij11 are µ̂ij11 = yij11yi+1+y++11

yi+11y++1+
under Model [M1], µ̂ij11 =

yij11y+j+1y++11

y+j11y+++1
under Model [M2], and µ̂ij11 = yij11 under Models [M3], [M4] and [M5]

(see pp. 647–648 of [2]), which involve only the observed cell counts and their sums. Hence,
from Theorem 5.2, there is no need to solve any system of likelihood equations, use the EM
algorithm or compute odds (based on the observed (joint/marginal) cell counts) to check for
the non-occurrence of boundary solutions in an I×I×2×2 incomplete table.

Remark 5.1. If AD = diag(a11, ..., aii), then from [6], the solutions α = (αi.) of the
system ATα = b may be obtained iteratively as follows:

α(0) = A−1
D b

α(n+1) = α(n) + A−1
D

(
b−ATα(n)

)
, n = 0, 1, 2, ... .

(5.4)

Similarly, the solutions β = (β.j) of the system Aβ = b∗ may be obtained iteratively as
follows:

β(0) = A−1
D b∗

β(n+1) = β(n) + A−1
D

(
b∗ −Aβ(n)

)
, n = 0, 1, 2, ... .

(5.5)

Both the sequences (5.4) and (5.5) converge to the solutions of the respective systems.
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6. CONCLUSIONS

In this paper, we have discussed the problem of boundary solutions that occur under
various NMAR models for an I×J×2×2 table. We formally define boundary solutions for
such a table and provide a result (Proposition 3.1) that theoretically connects and justifies
various forms of these solutions under alternative parametrizations of the missing data models.
This eliminates the need of using the EM algorithm (see pp. 39–40 of [9]) to empirically obtain
the forms of the solutions in two-way incomplete tables. The above result is then used to
improve a claim in [2] regarding the occurrence of boundary solutions. We give the precise
forms of such solutions by just noting the corresponding level(s) of the variable(s) in the
table, which reduces computational burden.

As discussed earlier, boundary solutions pose a lot of problems for estimation and
inference under NMAR models in incomplete tables. Hence, it is important to investigate
sufficient and necessary conditions for their occurrence in such tables. We have provided
a result (Theorem 5.1) on sufficient conditions for the occurrence of boundary solutions in
an I×J×2×2 table. While [9] consider only Model [M5], we consider Models [M1]–[M5] in
Theorem 5.1. We use a similar approach but give direct arguments instead of contrapositive
ones used in Theorem 1 of [9] for proving Theorem 5.1. [7] conjectured that these conditions
would also be necessary for general two-way incomplete tables. However, we show by a
counterexample that this is not the case for I, J ≥ 3, thereby disproving the conjecture.

We have also established necessary conditions in Theorem 5.2 for the occurrence of
boundary solutions in an I×J×2×2 table, which have not been discussed in the literature
so far. As discussed in Section 5.5, these conditions are of practical utility to identify the
non-occurrence of boundary solutions and hence for model selection. However, we show by
a counterexample that these conditions are not sufficient. Note that a major advantage
of the proposed sufficient conditions and necessary conditions is that they depend only on
the observed cell counts in the table or their sums. As mentioned in [9], this makes the
verification process much easier, and avoids using the EM algorithm or solving likelihood
equations. Finally, all the above results are illustrated using six data analysis examples.
It would be helpful to obtain a set of conditions involving only the observed cell counts,
which are sufficient as well as necessary for the occurrence of boundary solutions in two-way
incomplete tables with both variables missing.
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APPENDIX

A.1. Proof of Proposition 3.1

From Definition 3.1, it follows that if boundary solutions occur under the Models
[M1]–[M5], then the MLE’s of the cell probabilities except some of the nonresponse ones
are all non-zero. On substituting k = l = 1 (for response cell probabilities) in the above mod-
els and using the parameter constraints, we can then deduce that the MLE’s of the constant,
the main effects and the association terms between Yi’s, between Ri’s, and between Yi and Rj

for i 6= j are all finite. This is because non-zero terms (response cell probabilities) on the LHS
of the log-linear models imply that the log-linear parameters on the RHS are finite.

Consider part 1 first. For the Models [M1] and [M3], the log-linear parameters mod-
elling the non-ignorable nonresponse (NMAR) mechanism of Y1 are λR1(k) and λY1R1(i, k).
If boundary solutions occur, then they are of the form π̂ij2l = 0 (see point 1 of Definition 3.1),
which implies λ̂Y1R1(i, 2) = −∞ for at least one i since the other parameters are finite as
mentioned above. Then under Model [M1], we have

π̂i+2+ =
∑
j,l

π̂ij2l

=
1
N

∑
j,l

exp
{

λ̂ + λ̂Y1(i) + λ̂Y2(j) + λ̂R1(2) + λ̂R2(l) + λ̂Y1R1(i, 2)

+ λ̂Y1Y2(i, j) + λ̂R1R2(2, l)
}

= 0

for at least one i. Conversely, we have

π̂i+2+ = 0 (for at least one i) =⇒

=⇒
∑
j,l

exp
{

λ̂ + λ̂Y1(i) + λ̂Y2(j) + λ̂R1(2) + λ̂R2(l) + λ̂Y1R1(i, 2)

+ λ̂Y1Y2(i, j) + λ̂R1R2(2, l)
}

= 0

=⇒ λ̂Y1R1(i, 2) = −∞ for at least one i ,

so that λ̂Y1R1(i, 2) = −∞ ⇔ π̂i+2+ = 0 for at least one i under Model [M1]. The same can
be shown for Model [M3]. Under Models [M1] and [M3], aij = exp

[
2
{
λR1(2) + λY1R1(i, 2) +

λR1R2(2, 1)
}]

. Since aij depends only on i, we have aij = αi.. It is clear that α̂i. = 0 ⇔
λ̂Y1R1(i, 2) =−∞. Also, note that by definition of aij , if α̂i. = 0 for all 1≤ i≤ I, then y+j21 = 0
for all 1≤j≤J, which is a contradiction since supplementarymargins are assumed to be positive.
Hence, under Models [M1] and [M3], boundary solutions are given by λ̂Y1R1(i, 2) = −∞ ⇔
π̂i+2+ = 0 ⇔ α̂i. = 0 for at least one and at most (I − 1) values of Y1.

Consider part 2 now. Under Models [M2] and [M4], the log-linear parameters modelling
the NMAR mechanism of Y2 are λR2(l) and λY2R2(j, l). Also, bij = exp

[
2
{
λR2(2)+λY2R2(j,2)+

λR1R2(1, 2)
}]

. Since bij depends only on j, we have bij = β.j . Then it can be shown similarly
as above that boundary solutions in this case are given by λ̂Y2R2(j, 2) =−∞ ⇔ π̂+j+2 = 0 ⇔
β̂.j = 0 for at least one and at most (J − 1) values of Y2.
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Finally, consider part 3. Under Model [M5], the log-linear parameters modelling the
NMAR mechanisms of Y1 and Y2 are λR1(k), λR2(l), λY1R1(i, k) and λY2R2(j, l). The proof
for the form of boundary solutions under Model [M5] follows on similar lines as for Models
[M1]–[M4] shown above.

A.2. Proof of Theorem 5.1

From [2], the MLE’s α̂i. under the NMAR model for only Y1 (Models [M1] and [M3])
satisfy

(A.1)
∑

i

N π̂ij11 α̂i. = y+j21 , ∀ 1 ≤ j ≤ I,

while the MLE’s β̂.j under the NMAR model for only Y2 (Models [M2] and [M4]) satisfy

(A.2)
∑

j

N π̂ij11 β̂.j = yi+12 , ∀ 1 ≤ i ≤ I.

The MLE’s α̂i. and β̂.j under the NMAR model for both Y1 and Y2 (Model [M5]) satisfy
both (A.1) and (A.2). Note that boundary solutions in Models [M1] and [M3] occur if α̂i. ≤ 0
for at least one and at most (I − 1) values of Y1, while boundary solutions in Models [M2]
and [M4] occur if β̂.j ≤ 0 for at least one and at most (I − 1) values of Y2. Also note that
boundary solutions under [M5] occur if at least one of the following holds:

(i) α̂i. ≤ 0 for at least one and at most (I − 1) values of Y1,

(ii) β̂.j ≤ 0 for at least one and at most (I − 1) values of Y2.

From (5.1) and (A.1), we have

ν(j, j′) =
y+j21

y+j′21
=
∑

i π̂ij11 α̂i.∑
i π̂ij′11 α̂i.

,

νm(j, j′)− ν(j, j′) =

∑
i6=m1

(
π̂m1j11 π̂ij′11 − π̂m1j′11 π̂ij11

)
α̂i.

π̂m1j′11
∑

i π̂ij′11 α̂i.
,(A.3)

ν(j, j′)− νn(j, j′) =

∑
i6=n1

(
π̂n1j′11 π̂ij11 − π̂n1j11 π̂ij′11

)
α̂i.

π̂n1j′11
∑

i π̂ij′11 α̂i.
,(A.4)

where m1 and n1 are the levels of Y1 corresponding to νm(j, j′) and νn(j, j′) respectively.
From (5.1), we get

(A.5) νn(j, j′) =
π̂n1j11

π̂n1j′11
< νi(j, j′) =

π̂ij11

π̂ij′11
< νm(j, j′) =

π̂m1j11

π̂m1j′11
.

From (A.5), we have the following inequalities:

(A.6) π̂m1j11 π̂ij′11 > π̂m1j′11 π̂ij11 , π̂n1j′11 π̂ij11 > π̂n1j11 π̂ij′11 for i 6= m1, n1 .

Consider part (a). Suppose Condition 1 holds, which implies that (A.3) and (A.4) are
of opposite signs. Using this fact and (A.6), we observe that α̂i. < 0 for at least one and at
most (I − 1) values of Y1, that is, boundary solutions of the form π̂i+2+ = 0 occur.
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Again from (5.2) and (A.2), we have

ω(i, i′) =
yi+12

yi′+12
=

∑
j π̂ij11 β̂.j∑
j π̂i′j11 β̂.j

,

ωm(i, i′)− ω(i, i′) =

∑
j 6=m2

(
π̂im211 π̂i′j11 − π̂i′m211 π̂ij11

)
β̂.j

π̂i′m211

∑
i π̂i′j11 β̂.j

,(A.7)

ω(i, i′)− ωn(i, i′) =

∑
j 6=n2

(
π̂i′n211 π̂ij11 − π̂in211 π̂i′j11

)
β̂.j

π̂i′n211

∑
i π̂i′j11 β̂.j

,(A.8)

where m2 and n2 are the levels of Y2 corresponding to ωm(i, i′) and ωn(i, i′) respectively.
From (5.2), we get

(A.9) ωn(i, i′) =
π̂in211

π̂i′n211
< ωj(i, i′) =

π̂ij11

π̂i′j11
< ωm(i, i′) =

π̂im211

π̂i′m211
.

From (A.9), we have the following inequalities:

(A.10) π̂m2j11 π̂ij′11 > π̂m2j′11 π̂ij11 , π̂n2j′11 π̂ij11 > π̂n2j11 π̂ij′11 for j 6= m2, n2 .

Now consider part (b). Assume Condition 2 holds, which implies that (A.7) and (A.8)
are of opposite signs. Using this fact and (A.10), we observe that β̂.j < 0 for at least one and
at most (I − 1) values of Y2, that is, boundary solutions of the form π̂+j+2 = 0 occur.

Finally consider part (c). Assume at least one of Conditions 1 and 2 holds. The cases
when only Condition 1 holds or only Condition 2 holds follow from the proofs of part (a)
and part (b), respectively. So it is sufficient here to assume both Conditions 1 and 2 hold.
This implies, from part (a), α̂i. < 0 for at least one and at most (I − 1) values of Y1, that is,
boundary solutions of the form π̂i+2+ = 0 occur. Also from part (b), we have β̂.j < 0 for at
least one and at most (I − 1) values of Y2, that is, boundary solutions of the form π̂+j+2 = 0
occur. This completes the proof.

A.3. Proof of Theorem 5.2

From Theorem 5.1, the MLE’s α̂i. and β̂.j under Model [M5] satisfy∑
i

µ̂ij11 α̂i. = y+j21 for j = 1, ..., I ,(A.11)

∑
j

µ̂ij11 β̂.j = yi+12 for i = 1, ..., I .(A.12)

Also, the MLE α̂i. under Models [M1] and [M3] satisfy (A.11) only, while the MLE β̂.j under
Models [M2] and [M4] satisfy (A.12) only. Note that boundary solutions under [M5] occur if
at least one of the following conditions hold:

(i) α̂i. ≤ 0 for at least one and at most (I − 1) values of Y1,

(ii) β̂.j ≤ 0 for at least one and at most (I − 1) values of Y2.

Also, boundary solutions in Models [M1] and [M3] are given by only Condition (i), while
boundary solutions in Models [M2] and [M4] are given by only Condition (ii). In Lemma 5.1,
take A = (µ̂ij11), b = (bj) = (y+j21) and b∗ = (b∗i ) = (yi+12) for 1 ≤ i ≤ I, 1 ≤ j ≤ I.
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Then (A.11) may be written as ATα = b, while (A.12) may be written as Aβ = b∗, where
α = (αi.) and β = (β.j). We prove Theorem 5.2 by contrapositive.

Consider part (a) first. Suppose Condition 1 in Theorem 5.2 does not hold. Then by
Lemma 5.1, α = (AT)−1b > 0. In other words, α̂i. > 0 for all 1 ≤ i ≤ I, that is, boundary
solutions under Models [M1] and [M3] do not occur.

Consider part (b) now. Assume Condition 2 in Theorem 5.2 does not hold. Then by
Lemma 5.1, β = A−1b∗ > 0. In other words, β̂.j > 0 for all 1 ≤ j ≤ I, that is, boundary
solutions under Models [M2] and [M4] do not occur.

Finally consider part (c). Assume both Conditions 1 and 2 in Theorem 5.2 do not hold.
Then by Lemma 5.1, both α̂i. > 0 and β̂.j > 0 for all 1 ≤ i ≤ I, 1 ≤ j ≤ I, that is, boundary
solutions under Model [M5] do not occur.

Hence, the result follows.
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1. INTRODUCTION

Let X1, ...,Xn denote independent copies of the bivariate random vector X = (X1, X2)
T

from a continuous bivariate population. One problem which has been considered in the litera-
ture is to test whether the distribution is symmetric about an unknown center against the alter-
native that the symmetry is lost (Heathcote et al. [16], Koltchinskii and Li [22], Neuhaus and
Zhu [33], Manzotti et al. [30] and Henze et al. [17]). Moreover, in the univariate case, we can
mention to Cassart et al. [6]. Unlike the univariate case, there are several concepts of multivari-
ate symmetry including spherical, elliptical, central and angular symmetry. It is worth noting
that the mentioned arrangement of the multivariate symmetry concepts are ordered in increas-
ing generality. To read more about different types of multivariate symmetry see Serfling [38].

A different problem is the testing of the hypothesis that the bivariate distribution is
symmetric about a known center µ0 against the alternative that the distribution is symmetric
about µ 6= µ0. There is a substantial literature for this problem. Under the multivariate
normality assumption, it is common to use Hotelling’s T 2 test [20]. A multivariate affine-
invariant sign test based on counts called interdirections has been presented by Randles
[35]. In the sequence, Peter and Randles [41] based on the notion of interdirection, provided
affine invariant signed rank test and signed sum test, respectively. Optimal affine invariant
tests based on interdirections and pseudo-Mahalanobis ranks have been developed by Hallin
and Paindaveine [12]. Hallin and Paindaveine [11] also presented an alternative version of
these procedures in which interdirections are replaced by angles between the observations
standardized via Tyler’s estimator of scatter [40]. Mottonen and Oja [32] developed the
tests based on spatial signs and ranks. Hettmansperger et al. [18] and Hettmansperger et

al. [19] extended the bivariate tests of Brown and Hettmansperger [5] to the multivariate
case. An affine invariant sign test by applying the Tyler’s transformation on data points
has been presented by Randles [36]. The affine invariant signed rank test, modified from
sign test of Randles [36], was suggested by Mahfoud and Randles [29]. The tests described in
preceding paragraph can serve as important preliminaries before applying these corresponding
location tests. Moreover, there are several tests for testing of the hypothesis that the bivariate
distribution is symmetric against not only location parameter but also regression and serial
dependence alternatives e.g. Hallin and Paindaveine [13], [14] and [15].

Another problem that has received attention is to test whether the distribution is sym-
metric about known center µ0 against the alternative that either the symmetry is lost or the
location parameter is changed. Our paper deals with the latter problem. Indeed, the purpose
of this paper is to develop affine invariant tests for testing the central symmetry of the bivari-
ate distribution about a known center µ0. Baringhaus [4] introduced the rotation invariant
tests, for testing the spherical symmetry of the multivariate distribution about known center.
For central symmetry that it is a weaker assumption than spherical and elliptical symmetry,
the tests have been developed employing the empirical characteristic functions by Ghosh and
Ruymgaart [10]. Aki [1] proposed a rotation invariant test based on the empirical distribution
function. An extension of McWilliams’ univariate run test (Mcwilliams [31]) into a test of
bivariate central symmetry based on the depth function have been presented by Dyckerhoff et

al. [8]. Although, this test is affine invariant, it suffers from low power in distinguishing most
of the alternative hypotheses to central symmetry. Recently Einmahl and Gan [9] proposed
two versions of a rotation invariant test based on empirical measures of opposite regions.
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In this paper, we aim to propose test statistics for central symmetry in such a way that
they would be affine invariant, distribution-free and have good power against alternatives to
the null hypothesis. The test statistics are created based on sum of the signed-ranks where
the sign and rank functions are determined through the depth function. Based on a given
depth function, this procedure results in an orthogonal invariant test statistic. An affine
invariant version of this test is provided by applying Tyler’s transformation (Tyler [40]) on
data points. The affine invariance property ensures that the performance of the test does not
depend on the underlying coordinate system.

The word of depth has been used for the first time by Tukey [39] to introduce the
halfspace depth function. In the sequence, different depth functions have been introduced
and the multivariate data have been ordered as center-outward based on them. This center-
outward ranking has been widely applied in multivariate nonparametric inference. Liu and
Singh [27] presented a quality index and provided some multivariate rank tests for difference
between two independent distributions based on it. In the following, a distribution-free test
was presented based on both the depth function and the principal components by Rousson
[37] for the multivariate two-sample location-scale model. Based on DD plots (depth vs.
depth plots) introduced by Liu et al. [26], two tests have been provided by Li and Liu
[24] for location difference between two multivariate distributions. In addition, Liu and
Singh [28] introduced some rank tests for multivariate scale difference between two or more
independent populations. Depth-based run tests for bivariate central symmetry is introduced
by Dyckerhoff et al. [8].

The remainder of this paper is organized as follows. In Section 2, we review briefly
the concept of depth function and ranking based on it. The proposed test statistics will be
described in Section 3 and the asymptotic properties of those are also investigated. Finally, in
Section 4, a Monte Carlo study evaluates the finite sample performance of the proposed test
statistics in accordance with other tests. All technical proofs are deferred to the Appendix.

2. DEPTH FUNCTION

Let X be a p-dimensional random vector defined on a probability space (Ω,F , P ).
We denote F as a distribution function corresponding to P . A depth function associated
with a distribution function F on Rp is defined to provide a center-outward ordering of
points of Rp relative to F . Based on depth function, a corresponding notion of center or
multidimensional median could be defined. The higher depth values refer to the points near
to the center, whereas the lower values refer to the outer points of the center. A formal
definition of “statistical depth function” is presented by Zuo and Serfling [42] as a function
D( · , F ) : Rp → R satisfying the following properties:

P1. Affine invariance: for any nonsingular p×p matrix A and p-vector b, D(Ax + b,

FAx+b) = D(x, F ).

P2. Maximality at center: if F is symmetric about θ in some sense, then D(θ, F ) =
supx∈Rp D(x, F ).

P3. Monotonicity relative to deepest point: if D(θ,F )≥D(x,F ) for any x∈Rp then
D(θ + α(x− θ), F ) ≥ D(x, F ) for each α ∈ [0, 1] and x ∈ Rp.

P4. Vanishing at infinity: as ‖x‖ → ∞, D(x, F ) → 0.
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Let X1, ...,Xn be a random sample from p-dimensional distribution function F . The sam-
ple version of the depth function D( · , F ) will be obtained by replacing F with the sample
distribution Fn.

Remark 2.1. If the sample depth function D( · , Fn) satisfies property P1, then it will
also be invariant under data-dependent nonsingular transformations.

Different depth functions have been proposed by some authors, which the definition of
some of them that we deal with in this paper are given as follows.

Definition 2.1 (Tukey [39]). The halfspace depth of x ∈ Rp with respect to F is
defined as

HD (x, F ) = inf
H

{
P (H) : H is a closed halfspace in Rp and x ∈ H

}
and the sample halfspace depth function is

HD (x, Fn) =
min‖u‖=1 #

{
i : uTXi ≤ uTx, i =1, ..., n

}
n

.

Definition 2.2 (Liu [25]). The simplicial depth of x with respect to F is defined as

SD (x, F ) = PF

(
x ∈ S [X1, ...,Xp+1]

)
,

where S [X1, ...,Xp+1] is a closed simplex with X1, ...,Xp+1 vertics. The sample version of
SD(x, F ) is given by the fraction of the sample random simplices containing the point x.

Definition 2.3 (Liu [27]). The Mahalanobis depth of x with respect to F is given by

MD (x, F ) =
1

1 + (x− µ)T Σ−1(x− µ)
,

where µ and Σ are the mean vector and dispersion matrix of F distribution, respectively.
The sample version of Mahalanobis depth is provided by replacing µ and Σ with their sample
estimates.

Additionally, some other depth functions have been introduced such as Oja depth (Oja
[34]) and zonoid depth (Koshevoy and Mosler [23]). A more recent proposal for data depth
is the Monge–Kantorovich depth (Chernozhukov et al. [7]) based on the Monge–Kantorovich
theory of measure transportation.

Now, we present the definition of center-outward ranking of data points.

Definition 2.4. Assume that X1, ...,Xn is a random sample from distribution func-
tion F in Rp. The center-outward rank Xi within the sample X1, ...,Xn is

#
{

Xj ∈ {X1, ...,Xn} : D(Xj , Fn) ≥ D(Xi, Fn)
}

,

where Fn is the sample distribution function.

Thus, the center-outward ranking is defined in such a way that a larger rank is assigned
to a more outlying point w.r.t. X1, ...,Xn. If there are no ties, rank 1 and rank n are assigned
to the deepest point and the most outlying point, respectively.
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3. THE PROPOSED TESTS

Let X1, ...,Xn be independently and identically distributed as X = (X1, X2)
T, where

X has an arbitrary bivariate continuous distribution F . The null hypothesis of interest is
that, the random vector X has a distribution centrally symmetric about the known point µ0.
The random vector X is centrally symmetric around µ0 provided X − µ0 and µ0 −X have
the same distribution. Since it is assumed that the symmetry point is known, it is possible to
take µ0 = 0, without loss of generality. So, the hypothesis that the probability distribution

is centrally symmetric about µ0, reduces to the hypothesis H0 : X
d=−X, where

d= denotes
“equal in distribution”. We now describe the procedure for defining affine invariant tests. Let
us look at tests that they are only invariant with respect to orthogonal transformations of
the data in Subsection 3.1, and then proceed to provide our main affine-invariant tests in
Subsection 3.2.

3.1. The orthogonal invariant tests

Let D( · , F ) be a depth function on R2 associated with a distribution function F . Now,
under the given depth function D( · , F ), we derive a test statistic using depth-based ranks
and signs of X1, ...,Xn. To define the proposed test statistic, we need to order the points
X1, ...,Xn in terms of the evidence they provide against the null hypothesis. To this end,
we order the points X1, ...,Xn as center-outward, such that the larger ranks correspond to
the closer points to the null symmetry center and the smaller ranks correspond to the outer
ones. Let Fn and F s

n denote the sample distribution function of random sample X1, ...,Xn

and the symmetrized sample (±X1, ...,±Xn), respectively. Employing property P2 of the
depth function, to obtain center-outward rank of points relative to the null symmetry center
instead of the median of X1, ...,Xn, the points are ordered based on D( · , F s

n) rather than
D( · , Fn). More precisely, define

Ri = #
{

Xj ∈ {X1, ...,Xn} : D(Xj , F
s
n) ≥ D(Xi, F

s
n)
}

, i = 1, ..., n .(3.1)

If ties occur in this ranking, the ranks within each ties-class have been assigned based on
increasing values at the corresponding index set of that. This assignment is allocated to
induce invariance property on proposed test statistic.

The test statistic is sum of the signed-ranks of points. The sign of each bivariate point
can be determined as the sign of the first or second component of it. Specifically, the sign of
a bivariate point is equal to 1 if its first (or second) component is nonnegative and otherwise
is equal to −1. This definition of sign, leads to a test statistic which is not only noninvariant,
but also it is not able to detect all different types of departures from the null hypothesis.
Moreover, the sign of Xi, i = 1, ..., n, could be defined as the spatial sign vector Xi/‖Xi‖
with ‖ · ‖ denoting the Euclidean norm in R2. By this definition of sign, the resulted test
statistic is not strictly distribution-free. To overcome these limitations, we will determine sign
of points based on a data-dependent line passing through the origin instead of the horizontal
or vertical axis of the coordinate plane. In what follows, we will describe how to obtain this
line.
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Let sample median Mn be a point among X1, ...,Xn with maximum sample depth
D( · , F s

n). If there is more than one sample point with the highest depth value D( · , F s
n),

Mn will be the point with minimum index among those data points. Let

θMn = − arctan
(

Mn1

Mn2

)
+

π

2

be the angle between the bivariate vector Mn = (Mn1,Mn2)T and the horizontal-axis. Note
that θMn ∈ [0, π). Related point Zni = (Zni1, Zni2)

T is given by rotating Xi counter-clockwise
by angle

π

2
− θMn , for all i = 1, ..., n. Based on the sample depth function D( · , Fn), the

proposed test statistic is defined as

(3.2) Tn,D =
6

n (n + 1) (2n + 1)

(
n∑

i=1

δniRi

)2

,

where Ri is expressed in (3.1) and the random variable δni is defined as

δni =

{
1 , Zni2 ≥ 0 ,

−1 , Zni2 < 0 ,
(3.3)

for all i = 1, ..., n. The large values of the test statistic Tn,D reject H0 in favor of alternative
hypothesis.

Note that the sign of bivariate points is determined based on a data-dependent line
passing through the origin that is perpendicular to depth based median. Indeed, the reason
for restricting to dimension two is that this procedure is employed to divide plane R2 into
two unique halfspaces based on two points (the origin and the depth based median), whereas
by this procedure dividing hyperplane Rp (p > 2) into two unique halfspaces would not be
possible.

In what follows, we present the desirable property of orthogonal invariance of Tn,D

and asymptotic distribution of Tn,D under the null hypothesis is developed. The proofs are
provided in the Appendix.

Theorem 3.1. If the sample depth function D( · , Fn) satisfies property P1, then the

test statistic Tn,D will be invariant under orthogonal transformations; that is,

Tn,D (X1, ...,Xn) = Tn,D (AX1, ...,AXn)

for any 2×2 orthogonal matrix A.

Theorem 3.2. If the sample depth function satisfies property P1, then under the

null hypothesis of centrally symmetric about 0, Tn,D converges in distribution to a chi-square

random variable with 1 degree of freedom.

By applying this theorem, the null hypothesis will be rejected at level α when

Tn,D ≥ χ2
1,1−α ,

where χ2
1,1−α denotes the 1−α quantile of the chi-square distribution with 1 degree of freedom.
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As mentioned in Theorem 3.2, the asymptotic null distribution of the test statistics
presented here is chi-square with one degree of freedom. One would expect, for location
alternatives, a chi-square with two degrees of freedom (the dimension of the information
matrix for location). It should be remembered that the main object of this paper is proposing
several test statistics for testing that the distribution is symmetric about a specified value
against the alternative that either the symmetry is lost or the location parameter is changed.
Indeed, this alternative is different from location alternatives.

In our proof of Theorem 3.2 we show that Ri’s, i = 1, ..., n, are identically and uniformly
distributed on the set {1, 2, ..., n} and δni’s, i = 1, ..., n, are i.i.d. random variables as dis-
tributed independently of Ri and taking the values 1 and −1 each with probability 1/2. These
traits immediately imply that under the null hypothesis and the conditions of Theorem 3.2,
our test statistic Tn,D is strictly distribution-free.

3.2. The affine invariant tests

As shown, Theorem 3.1 indicates that Tn,D is orthogonal invariant. In this subsection,
we would extend Tn,D to be affine invariant, preserving the asymptotic behavior of Tn,D.
To achieve the affine invariant version of the proposed test statistics, we can apply the
Tyler’s auxiliary transformation (Tyler [40]) on data points. Tyler [40] proposed the data-
dependent p×p scatter matrix Vn, that is a positive definite and symmetric matrix, satisfying
trace(Vn) = p and

1
n

n∑
i=1

(
ΓnXi

‖ΓnXi‖

)(
ΓnXi

‖ΓnXi‖

)T
=

1
p

Ip ,(3.4)

where Xi, i = 1, ..., n, is a random vector in Rp, ΓT
n Γn = V −1

n such that Γn is an upper trian-
gular nonsingular matrix with 1 on the first element on the diagonal and Ip is the p-dimen-
sional identity matrix. This scatter matrix is unique up to multiplication by a positive con-
stant if the sample comes from a continuous p-dimensional distribution and n > p(p− 1)
(Tyler [40]). An iterative computation scheme has been developed to compute this matrix
by Randles [36].

We define Wni = ΓnXi, i =1, ...,n, and F s
wn

as the sample distribution of the symmetrized
sample (±Wn1, ...,±Wnn). Let

Rni = #
{

Wnj ∈ {Wn1, ...,Wnn} : D(Wnj , F
s
wn

) ≥ D(Wni, F
s
wn

)
}

, i = 1, ..., n ,(3.5)

and
θMwn

= − arctan
(

Mwn1

Mwn2

)
+

π

2
,

where Mwn = (Mwn1,Mwn2)T refers to the sample median among Wn1, ...,Wnn based on
D( · , F s

wn
). In the following, points Wn1, ...,Wnn are rotated counter-clockwise by angle

π

2
− θMwn

, which we call them as Vn1, ...,Vnn.

Now, based on D( · , Fn), the affine invariant test statistic is defined as

(3.6) T ∗n,D =
6

n (n + 1) (2n + 1)

(
n∑

i=1

γniRni

)2

,

where γni is specified in the same way as δni, through Vni instead of Zni, for all i = 1, ..., n.
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It is worth to note that, the test statistic T ∗n,D is also distribution-free. The affine
invariance property and asymptotic null distribution of T ∗n,D are presented in the following
Theorems.

Theorem 3.3. If the sample depth function D( · , Fn) satisfies property P1 and n > 2,

the test statistic T ∗n,D will be affine invariant; that is,

T ∗n,D (X1, ...,Xn) = T ∗n,D (AX1, ...,AXn)

for any 2×2 nonsingular matrix A.

Theorem 3.4. If the sample depth function satisfies property P1, then under the

null hypothesis of centrally symmetric about 0, T ∗n,D converges in distribution to a chi-square

random variable with 1 degree of freedom.

4. SIMULATION STUDY

In this section, an extensive simulation study is conducted to evaluate the finite sample
behavior of the proposed test procedure. Two characteristics of interest are the empirical
level and power of the proposed testing procedure. To assess the effects of different depth
rankings on the performance of our test statistic, we determined three versions of Tn,D,
derived from the simplicial, halfspace, and Mahalanobis depth functions as Tn,SD , Tn,HD and
Tn,MD , respectively. In the same way, T ∗n,SD , T ∗n,HD , T ∗n,MD will be defined corresponding to
T ∗n,D. The performance of our test statistics is compared with the affine invariant run test
based on the simplicial depth function that we refer to Rn,SD hereafter (Dyckerhoff et al. [8])
and the two rotation invariant tests Q1

n and Q2
n proposed by Einmahl and Gan [9]. Q1

n refers
to their main test, and Q2

n is given by Q1
n adding a weight function to it (we avoid presenting

the details of these test statistics).

To illustrate the effect of the sample size on the finite sample behavior of our proposed
test statistics, we set the sample sizes as n = 100 and 200. Moreover, the nominal level was
set at 0.05 throughout. In each setting, 2000 independent random samples were generated to
calculate the proportion of replications for which the null hypothesis is rejected. To examine
the finite sample behavior of test statistics under the null and alternative hypotheses, we
have simulated samples from several bivariate distribution families, including Azzalini’s skew-
normal distribution (Azzalini and Dalla Valle [3]), Azzalini’s skew-t distribution (Azzalini and
Capitanio [2]), perturbed symmetric beta distribution (Azzalini and Capitanio [2]) and sinh–
arcsinh distribution (Jones and Pewsey [21]). Indeed, we consider different types of skewness
over very light-tailed distributions to very heavy-tailed ones. In what follows, we provide an
overview of these families.

• Bivariate skew-normal distribution: Let X be defined as

X =

{
Y , if Z > ∆TY ,

−Y , if Z ≤ ∆TY ,

where Y ∼ N2(0,Σ), ∆ = (∆1,∆2)T is the shape parameter, and Z is distributed
independently of Y according to N(0, 1). The random vector X is known as bivari-
ate skew-normal random vector and it may be written as X ∼ SN2(0,Σ, ∆).
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• Bivariate skew-t distribution: Let T = V − 1
2 X, where the random vector X follows

the distribution SN2(0,Σ,∆) and νV is distributed independently of X according
to a chi-squared distribution with ν degrees of freedom. We will say that T has a
bivariate skew-t distribution and write T ∼ ST2(0,Σ,∆, ν).

• Bivariate perturbed symmetric beta distribution: Let Y = (2B1−1, 2B2−1)T, where
B1 and B2 have beta distributions B(a, a) and B(b, b), respectively. The random
vector Y can be treated as a central and non-elliptical symmetric random vector.
Define the random vector X as

X =

{
Y , if Z < w(Y ) ,

−Y , if Z > w(Y ) ,

where Z (independently of Y ) has distribution function G( ·). The distribution
function G( ·) and function w( ·) are given as

G(z) =
ez

1 + ez
and w(y) =

sin(p1y1 + p2y2)
1 + cos(q1y1 + q2y2)

,

where p1, p2, q1 and q2 are additional parameters. Then, we will say that X has a
perturbed symmetric beta distribution.

• Bivariate sinh–arcsinh distribution: This family is generated by sinh–arcsinh trans-
formation on a primary symmetric distribution. We consider the bivariate normal
distribution as the primary distribution. The desirable property of this transfor-
mation is to induce skewness on the primary distribution and distributions with
heavier/lighter tails than the primary one. Suppose random vector Z = (Z1, Z2)T

follows N2(0,Σ). Define the bivariate vector X = (X1, X2)T as

Xj = sinh
[

1
δj

(
sinh−1(Zj) + ∆j

)]
, j = 1, 2 ,(4.1)

where ∆j and δj denote the measure of skewness and tail weight in direction of j-th
component of Z, respectively. Amount of skewness increases with increasing positive
∆j or decreasing negative ∆j . Additionally, distributions with heavier and lighter
tails than the bivariate normal distribution are generated by taking 0 < δj < 1 and
δj > 1, respectively.

In this study, we generate samples from the aforementioned distribution families with
Σ = (1− ρ)I2 + ρJ2 with ρ = −0.5, 0 and 0.5, and J2 denoting the 2×2 matrix with all
entries equal 1 and ∆i = kη, i =1,2, with η = (0.15, 0.15)T and k = 0, 1, 2 and 3. We consider
ν = 1, 3, 6, 10 and 20 for bivariate skew-t distribution and δi = 0.5, 0.75, 1, 2 and 5, i =1, 2,
for bivariate sinh–arcsinh distribution.

Table 1 and Figures 1 and 2 provide the empirical rejection probabilities for sample size
n = 100 and for bivariate skew-normal, skew-t and sinh–arcsinh distribution, respectively.
Inspection of the table and figures confirms that the performance of our test statistics is
not affected by different depth ranking. In all of them, the empirical rejection probabilities
corresponding to k = 0 represents the proportion of rejection under the null hypothesis. These
results demonstrate that all the tests would be accurate in estimating the nominal level,
except Rn,SD which it has been underestimated in some cases. Since the performance of test
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statistics, even affine invariant test statistics are affected by correlation structure of primary
distribution, we provide three possibilities for ρ as −0.5, 0 and 0.5. From the represented
results in Table 1 and Figure 1, it is obvious that all empirical powers will be increased by
increasing the value of ρ for bivariate skew-normal and skew-t distributions. This situation
is reversed for bivariate sinh–arcsinh distribution in Figure 2 except for Tn,D.

Table 1: Empirical rejection probabilities (out of 2000 replications) for bivariate skew-
normal distribution with n = 100, ρ = −0.5, 0 and 0.5, and ∆i = kη, i =1, 2,
with η = (0.15, 0.15)T and k = 0, 1, 2, 3.

Test
ρ = −0.5 ρ = 0 ρ = 0.5

k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3

T ∗
n,SD 0.046 0.105 0.294 0.520 0.046 0.175 0.488 0.694 0.046 0.245 0.607 0.763

T ∗
n,HD 0.047 0.107 0.295 0.518 0.047 0.169 0.484 0.692 0.047 0.244 0.602 0.766

T ∗
n,MD 0.048 0.103 0.291 0.511 0.048 0.177 0.486 0.688 0.048 0.241 0.604 0.760

Tn,SD 0.047 0.072 0.175 0.282 0.043 0.171 0.469 0.658 0.047 0.336 0.779 0.877
Tn,HD 0.044 0.074 0.169 0.280 0.044 0.171 0.462 0.644 0.044 0.340 0.779 0.881
Tn,MD 0.049 0.076 0.172 0.282 0.048 0.172 0.466 0.648 0.049 0.337 0.774 0.876
Rn,SD 0.043 0.048 0.081 0.159 0.043 0.057 0.135 0.320 0.043 0.070 0.190 0.460
Q1

n 0.049 0.098 0.269 0.544 0.050 0.155 0.439 0.783 0.049 0.182 0.572 0.883
Q2

n 0.054 0.080 0.173 0.355 0.048 0.098 0.250 0.507 0.053 0.127 0.342 0.657
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Figure 1: Empirical rejection probabilities (out of 2000 replications) for bivariate skew-t
distribution with n = 100, ρ = −0.5, 0 and 0.5, ν = 1, 6, 20 and ∆i = kη, i =1, 2,
with η = (0.15, 0.15)T and k = 0, 1, 2, 3.
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Table 1 shows that T ∗n,D outperforms Rn,SD and Q2
n in all cases, performs virtually

as well as Q1
n for k = 1 and 2 and has slightly lower power than Q1

n for k = 3. Moreover,
Tn,D outperforms Rn,SD in all cases, Q2

n when ρ = 0 and 0.5 and Q1
n when ρ = 0.5. Figure 1

indicates that T ∗n,D and Tn,D outperform Rn,SD for all values of ν and ρ. In addition T ∗n,D has
higher power than Q2

n except when ν = 1, and Tn,D overcomes Q2
n except when ν = 1 and

ρ = −0.5. In comparison on Q1
n, T ∗n,D performs better when k = 1, 2, v = 6, 20 and all values

of ρ, and Tn,D performs better when k = 1 and 2, v = 6, 20 and ρ = 0 and 0.5. Indeed, the
empirical power of our tests increases as degrees of freedom increases. In Figure 2, superiority
of our affine invariant tests is clear in most cases especially for ρ = 0.5 and k = 1 and 2.
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Figure 2: Empirical rejection probabilities (out of 2000 replications) for bivariate sinh–arcsinh
distribution with n = 100, ρ = −0.5, 0 and 0.5, δi = 0.75, 1, 5 and ∆i = kη, i =1, 2,
with η = (0.15, 0.15)T and k = 0, 1, 2, 3.

Table 2 provide the empirical rejection probabilities for sample size n = 200 and for
bivariate skew-normal distribution. In Figures 3 and 4, we plot the empirical rejection prob-
abilities against k corresponding to some values of parameters of the same populations and
tests with Figures 1 and 2 respectively, for sample size n = 200. Note that, as expected, the
empirical powers increase with the sample size. These simulations lead to almost the same
conclusions as in n = 100.

These simulations demonstrate that our tests are more powerful for small and moder-
ate departures from the null hypothesis and for light-tailed distributions. As expected, the
performance of affine invariant tests T ∗n,D is less affected by changing the value of ρ rather
than the orthogonal invariant tests Tn,D. The results show that, compared to T ∗n,D test, Tn,D

performs better when ρ = 0.5, is comparable when ρ = 0 and performs worse when ρ = −0.5.
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Table 2: Empirical rejection probabilities (out of 2000 replications) for bivariate skew-
normal distribution with n = 200, ρ = −0.5, 0 and 0.5, and ∆i = kη, i =1, 2,
with η = (0.15, 0.15)T and k = 0, 1, 2, 3.

Test
ρ = −0.5 ρ = 0 ρ = 0.5

k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3

T ∗
n,SD 0.052 0.204 0.486 0.690 0.052 0.317 0.681 0.813 0.052 0.414 0.747 0.834

T ∗
n,HD 0.047 0.200 0.486 0.692 0.047 0.313 0.678 0.808 0.047 0.419 0.740 0.828

T ∗
n,MD 0.052 0.206 0.488 0.696 0.052 0.319 0.680 0.804 0.052 0.420 0.748 0.832

Tn,SD 0.050 0.122 0.276 0.387 0.053 0.311 0.652 0.776 0.050 0.554 0.888 0.921
Tn,HD 0.048 0.121 0.283 0.391 0.050 0.305 0.645 0.770 0.048 0.560 0.879 0.918
Tn,MD 0.052 0.125 0.279 0.391 0.051 0.313 0.645 0.769 0.052 0.559 0.886 0.920
Rn,SD 0.049 0.061 0.117 0.250 0.049 0.076 0.218 0.519 0.049 0.093 0.347 0.754
Q1

n 0.054 0.162 0.506 0.850 0.053 0.257 0.766 0.984 0.054 0.318 0.875 0.998
Q2

n 0.056 0.130 0.342 0.665 0.053 0.156 0.500 0.856 0.056 0.212 0.647 0.942
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Figure 3: Empirical rejection probabilities (out of 2000 replications) for bivariate skew-t
distribution with n = 200, ρ = −0.5, 0 and 0.5, ν = 1, 6, 20 and ∆i = kη, i =1, 2,
with η = (0.15, 0.15)T and k = 0, 1, 2, 3.

Finally, to complete our simulations, for sample sizes n = 100 and 200, we generate
samples from bivariate perturbed symmetric beta distribution with several choices of the
parameters such that different situations of asymmetry can be considered. A thorough in-
vestigation of Table 3 and 4 indicated that our tests overcome Rn,SD and Q2

n in all cases and
Q1

n in some cases.
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Figure 4: Empirical rejection probabilities (out of 2000 replications) for bivariate sinh–arcsinh
distribution with n = 200, ρ = −0.5, 0 and 0.5, δi = 0.75, 1, 5 and ∆i = kη, i =1, 2,
with η = (0.15, 0.15)T and k = 0, 1, 2, 3.

Table 3: Empirical rejection probabilities (out of 2000 replications) for bivariate
perturbed symmetric beta distribution with n = 100, a, b = 0.5, 1 and 3,
p1 = q1 = 1 and p2 and q2 = 0.5, 1 and 2.

a, b p2 q2

Test

T ∗
n,SD T ∗

n,HD T ∗
n,MD Tn,SD Tn,HD Tn,MD Rn,SD Q1

n Q2
n

2 0.5 0.194 0.194 0.194 0.175 0.184 0.175 0.060 0.170 0.112
3, 3 1 1 0.147 0.149 0.147 0.134 0.145 0.137 0.048 0.110 0.078

0.5 2 0.165 0.168 0.164 0.147 0.158 0.154 0.051 0.098 0.073

2 0.5 0.238 0.237 0.205 0.355 0.349 0.332 0.069 0.319 0.232
3, 0.5 1 1 0.284 0.290 0.270 0.364 0.351 0.340 0.077 0.265 0.177

0.5 2 0.598 0.604 0.619 0.636 0.632 0.618 0.163 0.415 0.216

2 0.5 0.241 0.244 0.244 0.221 0.215 0.222 0.076 0.320 0.223
1, 1 1 1 0.305 0.315 0.323 0.300 0.297 0.306 0.077 0.277 0.165

0.5 2 0.581 0.593 0.606 0.558 0.573 0.585 0.165 0.397 0.201

2 0.5 0.222 0.214 0.218 0.200 0.192 0.191 0.069 0.381 0.301
0.5, 0.5 1 1 0.470 0.474 0.486 0.445 0.453 0.464 0.113 0.505 0.324

0.5 2 0.815 0.838 0.869 0.779 0.807 0.833 0.353 0.835 0.563
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Table 4: Empirical rejection probabilities (out of 2000 replications) for bivariate
perturbed symmetric beta distribution with n = 200, a, b = 0.5, 1 and 3,
p1 = q1 = 1 and p2 and q2 = 0.5, 1 and 2.

a, b p2 q2

Test

T ∗
n,SD T ∗

n,HD T ∗
n,MD Tn,SD Tn,HD Tn,MD Rn,SD Q1

n Q2
n

2 0.5 0.310 0.303 0.310 0.300 0.299 0.300 0.087 0.329 0.204
3, 3 1 1 0.252 0.250 0.250 0.235 0.237 0.233 0.083 0.194 0.120

0.5 2 0.279 0.278 0.279 0.268 0.265 0.266 0.089 0.173 0.098

2 0.5 0.399 0.399 0.338 0.624 0.619 0.595 0.111 0.611 0.471
3, 0.5 1 1 0.469 0.472 0.444 0.631 0.627 0.608 0.112 0.491 0.310

0.5 2 0.791 0.810 0.808 0.896 0.893 0.875 0.283 0.729 0.400

2 0.5 0.370 0.369 0.380 0.364 0.363 0.365 0.105 0.578 0.411
1, 1 1 1 0.509 0.520 0.531 0.499 0.499 0.505 0.117 0.512 0.315

0.5 2 0.793 0.816 0.819 0.788 0.801 0.812 0.262 0.694 0.378

2 0.5 0.352 0.350 0.352 325 0.336 0.339 0.101 0.656 0.559
0.5, 0.5 1 1 0.700 0.738 0.747 0.686 0.725 0.733 0.175 0.804 0.592

0.5 2 0.916 0.935 0.931 0.913 0.934 0.943 0.594 0.993 0.891

A second Monte Carlo study is provided in order to evaluate the performance of our
tests for pure location alternatives. In this study the performance of tests considered in
first Monte Carlo study compared with the Hotelling’s T 2 and the tests due to Hallin and
Paindaveine [12] computed with the sign score function, van der Waerden score function and
Wilcoxson score function and denoted by HSn, HNn and HRn, respectively.

We set the sample size as n = 50. In each setting, 2000 independent random sam-
ples were generated to calculate the proportion of replications for which the null hypothesis
is rejected. For each replication, the all tests were performed at the significance level α = 0.05.
To examine the finite sample behavior of test statistics under the null and alternative
hypotheses, we have simulated samples from the t family of distributions and the exponential
power family of distributions. In what follows, we provide an overview of these families.

A p-dimensional random vector X has a multivariate t-distribution with ν degree of
freedom if its density function has the form

fµ,Σ(x) =
Γ
(
(p + υ)/2

)
Γ(υ/2) (πυ)p/2

|Σ|−1/2

[
1 +

1
υ

(x− µ)T Σ−1(x− µ)
]−(p+υ)/2

,

where µ = (µ1, ..., µp)T ∈ Rp and Σ is a symmetric p×p positive definite matrix.

The density function of a p-dimensional random vector X from the exponential power
family of distributions is

fµ,Σ(x) =
υ Γ(p/2)

Γ(p + 2υ) (πc0)
p/2

|Σ|−1/2 exp
{
−(x− µ)T Σ−1(x− µ)

c0

}υ

,

where
c0 =

p Γ(p/2υ)
Γ
(
(p + 2)/2υ

)
and µ and Σ are defined as above.



Depth-Based Signed-Rank Tests 123

We generate samples from the aforementioned distribution families with Σ = I and
µ = k∆ with ∆ = (0.2, 0.2)T and ∆ = (0.1, 0.1)T for the t family of distributions and the
exponential power family of distributions, respectively and k = 0, 1, 2, 3. We consider ν = 1,
6 and 10 for t-distribution family and ν = 0.5, 1 and 2 for the exponential power family of
distributions.

Inspection of Tables 5 and 6 demonstrated that the performance of our tests is com-
parable to the other tests. The proposed tests overcome Rn,SD and Q2

n in most cases and
Q1

n in some cases. It worth to note that all tests which are defined in the similar way of our
proposed test e.g. Rn,SD , Q1

n and Q2
n are not expected to perform as well as T 2, HSn, HNn

and HRn. In other hand, the results confirm that the performance of our test statistics is not
affected by different depth ranking.

Table 5: Empirical rejection probabilities (out of 2000 replications) for bivariate t-distribution
with n = 50, Σ = I, ν = 1, 6, 20 and µ = k∆ with ∆ = (0.2, 0.2)T and k = 0, 1, 2, 3.

Test
ν = 1 ν = 6 ν = 20

k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3

T 2 0.015 0.033 0.084 0.164 0.058 0.287 0.809 0.987 0.056 0.374 0.911 1
HSn 0.050 0.203 0.634 0.902 0.053 0.285 0.805 0.993 0.054 0.322 0.851 1
HNn 0.040 0.122 0.351 0.622 0.048 0.270 0.801 0.988 0.049 0.345 0.894 1
HRn 0.044 0.120 0.343 0.599 0.049 0.279 0.804 0.988 0.057 0.354 0.901 1
T ∗

n,SD 0.042 0.085 0.150 0.431 0.050 0.212 0.542 0.757 0.056 0.236 0.601 0.7715
T ∗

n,HD 0.040 0.083 0.146 0.425 0.053 0.204 0.541 0.750 0.056 0.223 0.592 0.768
T ∗

n,MD 0.039 0.093 0.156 0.432 0.051 0.205 0.526 0.724 0.060 0.234 0.593 0.762
Tn,SD 0.052 0.100 0.171 0.429 0.046 0.188 0.523 0.749 0.047 0.219 0.570 0.762
Tn,HD 0.050 0.104 0.173 0.435 0.047 0.182 0.520 0.746 0.048 0.216 0.575 0.761
Tn,MD 0.051 0.090 0.155 0.389 0.045 0.183 0.510 0.722 0.048 0.223 0.567 0.749
Rn,SD 0.038 0.073 0.105 0.342 0.040 0.085 0.229 0.569 0.040 0.090 0.287 0.650
Q1

n 0.057 0.223 0.450 0.937 0.066 0.203 0.671 0.945 0.058 0.197 0.661 0.946
Q2

n 0.039 0.160 0.338 0.862 0.049 0.121 0.412 0.791 0.038 0.106 0.386 0.787

Table 6: Empirical rejection probabilities (out of 2000 replications) for bivariate power family
of distributions with n = 50, Σ = I, ν = 0.5, 1, 2 and µ = k∆ with ∆ = (0.1, 0.1)T

and k = 0, 1, 2, 3.

Test
ν = 0.5 ν = 1 ν = 2

k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3

T 2 0.044 0.161 0.515 0.867 0.048 0.392 0.940 1 0.043 0.468 0.981 1
HSn 0.043 0.203 0.633 0.930 0.044 0.311 0.873 1 0.047 0.317 0.868 0.999
HNn 0.036 0.158 0.528 0.864 0.038 0.348 0.917 1 0.036 0.447 0.978 1
HRn 0.040 0.155 0.519 0.849 0.044 0.361 0.922 1 0.038 0.467 0.982 1
T ∗

n,SD 0.053 0.127 0.355 0.601 0.054 0.241 0.619 0.782 0.048 0.282 0.669 0.793
T ∗

n,HD 0.056 0.133 0.363 0.605 0.057 0.240 0.612 0.775 0.051 0.282 0.671 0.779
T ∗

n,MD 0.054 0.130 0.349 0.570 0.055 0.248 0.618 0.761 0.044 0.289 0.685 0.793
Tn,SD 0.049 0.118 0.344 0.583 0.047 0.214 0.605 0.777 0.036 0.273 0.646 0.784
Tn,HD 0.046 0.120 0.343 0.596 0.046 0.210 0.604 0.772 0.041 0.268 0.648 0.772
Tn,MD 0.048 0.123 0.335 0.565 0.048 0.222 0.600 0.758 0.035 0.273 0.660 0.786
Rn,SD 0.044 0.057 0.133 0.322 0.038 0.095 0.288 0.676 0.042 0.090 0.362 0.763
Q1

n 0.049 0.179 0.524 0.854 0.045 0.185 0.640 0.949 0.059 0.141 0.533 0.935
Q2

n 0.035 0.118 0.366 0.670 0.037 0.099 0.350 0.763 0.041 0.070 0.233 0.683
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5. CONCLUSION

This paper concerns with the problem of detecting central symmetry of a bivariate
distribution. To this end, based on depth function, we introduced a family of signed-rank
test which is orthogonal invariant and distribution-free. Affine invariant tests were obtained
by applying our proposed test to the standardized data with Tyler’s matrix. The proposed
orthogonal and affine invariant tests have the same asymptotic properties. In simulation
study, the finite sample behavior of the proposed test procedure was evaluated over distribu-
tions family from very light to very heavy-tailed distributions with different kinds of skewness.
The simulations confirmed that our affine invariant tests successfully can distinguish different
asymmetries and shifting the location parameter. Moreover, we observed that they performed
as good as their competitors and actually in many cases they even outperform them.

A. APPENDIX

Proof of Theorem 3.1: According to the construction of Zni, it is clear that Zni =
BXnXi, i = 1, ..., n, where

BXn =

[
cos
(

π
2 − θMn

)
− sin

(
π
2 − θMn

)
sin
(

π
2 − θMn

)
cos
(

π
2 − θMn

) ] .(A.1)

Let A be an arbitrary 2×2 orthogonal matrix. Define Z̃ni = BAXnAXi for all i = 1, ..., n,
where

BAXn =

[
cos
(

π
2 − θ

eMn

)
− sin

(
π
2 − θ

eMn

)
sin
(

π
2 − θ

eMn

)
cos
(

π
2 − θ

eMn

) ] ,

with θ
eMn
∈ [0, π), as the angle between horizontal-axis and the sample median M̃n that is ob-

tained in the same way as Mn, through AXi’s instead of Xi’s, i = 1, ..., n. The orthogonality
of matrix A implies that there exists an angle α ∈ [0, 2π) such that

A =

[
cos (α) − sin (α)

sin (α) cos (α)

]
or A =

[
cos (α) sin (α)

sin (α) − cos (α)

]
.(A.2)

Property P1 of the sample depth function shows that

M̃n = AMn .(A.3)

Let matrix A be defined as the left side of (A.2), then (A.3) results in

θ
eMn

=


α + θMn , 0 ≤ α + θMn < π ,
α + θMn − π , π ≤ α + θMn < 2π ,
α + θMn − 2π , 2π ≤ α + θMn < 3π .

Using the trigonometric relationships, it is straightforward to verify that BAXnA = BXn , or
BAXnA = −BXn . Thus

Z̃ni = Zni or Z̃ni = −Zni , i = 1, ..., n .(A.4)
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Now, let matrix A be according to the right side of (A.2), similarly we have

θ
eMn

=


α− θMn + π , −π < α− θMn < 0 ,
α− θMn , 0 ≤ α− θMn < π ,
α− θMn − π , π ≤ α− θMn < 2π ,

and

BAXnA =
[
−1 0
0 1

]
BXn or BAXnA =

[
1 0
0 −1

]
BXn .

Hence

Z̃ni = (−Zni1,Zni2)
T or Z̃ni = (Zni1,−Zni2)T , i = 1, ..., n .(A.5)

The proof of affine invariance of Tn,D will be completed by using (A.4), (A.5) and property P1
of the sample depth function.

Proof of Theorem 3.2: Under the null hypothesis, X1, ...,Xn are i.i.d. from F ,
where F ( ·) is centrally symmetric distribution about the origin. Hence, we have

(X1, ...,Xn)
d= (η1X1, ..., ηnXn) ,(A.6)

where ηi’s, i = 1, ..., n, are i.i.d. random variables taking the values 1 and −1 each with
probability 1/2. It is clear that

(±X1, ...,±Xn) = (±η1X1, ...,±ηnXn) .(A.7)

Additionally, Mn ≡M(X1, ...,Xn) is considered as a point with maximum sample depth
with respect to the symmetrized sample (±X1, ...,±Xn) (if there is more than one sample
point with the highest depth value, Mn will be defined as the point with minimum index
among those data points). By this definition of Mn, there exists i ∈ {1, ..., n} such that

M(X1, ...,Xn) = Xi .(A.8)

From property P1 and equation (A.7),

M(η1X1, ..., ηnXn) = ηiXi .(A.9)

Hence from (A.8) and (A.9), we have

M(X1, ...,Xn) = ηM(η1X1, ..., ηnXn) ,(A.10)

where η = 1 or −1. Thus BXn where is defined as (A.1) will be same whether it is obtained
from either X1, ...,Xn or η1X1, ..., ηnXn. Hence (A.6) implies that

(BXnX1, ...,BXnXn)
d= (η1BXnX1, ..., ηnBXnXn) .(A.11)

This yields that δni’s, i = 1, ..., n, are independent and identically distributed random variables
that take the values 1 and −1 with probability 1/2. Let Zni = δniYni, where Yni = (Yni1, Yni2)T



126 S. Dehghan and M.R. Faridrohani

for all i = 1, ..., n. (A.11) denotes that Zn1, ...,Znn distributed as centrally symmetric random
vectors about origin. Thus, for y = (y1, y2)T ∈ R2 and i = 1, ..., n,

PH0

(
Yni1≤ y1, Yni2 ≤ y2, δni = 1

)
= PH0

(
δniYni1≤ y1, δniYni2 ≤ y2, δni = 1

)
= PH0

(
Zni1≤ y1, Zni2 ≤ y2, δni = 1

)
= PH0

(
Zni1≤ y1, Zni2 ≤ y2, Zni2 > 0

)
= PH0

(
Zni1≤ y1, 0 < Zni2 ≤ y2

)
= PH0

(
−Zni1≤ y1, 0 <−Zni2 ≤ y2

)
= PH0

(
Zni1≥−y1, −y2 ≤Zni2 < 0

)
= PH0

(
Zni1≥−y1, Zni2 ≥−y2, Zni2 < 0

)
= PH0

(
−Zni1≤ y1, −Zni2 ≤ y2, δni =−1

)
= PH0

(
δniZni1≤ y1, δniZni2 ≤ y2, δni =−1

)
= PH0

(
Yni1≤ y1, Yni2 ≤ y2, δni =−1

)
and, for j 6= i,

PH0

(
Yni1≤ y1, Yni2 ≤ y2, δnj = 1

)
= PH0

(
Yni1≤ y1, Yni2 ≤ y2, δni = 1, δnj = 1

)
+ PH0

(
Yni1≤ y1, Yni2 ≤ y2, δni =−1, δnj = 1

)
= PH0

(
Zni1≤ y1, Zni2 ≤ y2, Zni2 > 0, Znj2 > 0

)
+ PH0

(
Zni1≥−y1, Zni2 ≥−y2, Zni2 < 0, Znj2 > 0

)
= PH0

(
Zni1≤ y1, Zni2 ≤ y2, Zni2 > 0, Znj2 < 0

)
+ PH0

(
Zni1≥−y1, Zni2 ≥−y2, Zni2 < 0, Znj2 < 0

)
= PH0

(
Yni1≤ y1, Yni2 ≤ y2, δni = 1, δnj =−1

)
+ PH0

(
Yni1≤ y1, Yni2 ≤ y2, δni =−1, δnj =−1

)
= PH0

(
Yni1≤ y1, Yni2 ≤ y2, δnj =−1

)
.

Hence these imply that δni, for i = 1, ..., n, is independent of Yn1, ...,Ynn. Now, suppose that
F s

Zn
and F s

Yn
be the sample distribution functions of {±Zn1, ...,±Znn} and {±Yn1, ...,±Ynn},

respectively. Since {±Zn1, ...,±Znn}= {±Yn1, ...,±Ynn}, it is clear that F s
Zn

= F s
Yn

. This equal-
ity, along with D(Zni, F

s
Zn

) = D(−Zni, F
s
Zn

) (resulted from property P1 by considering A=
−I2 and b = 0) conclude that D(Zni, F

s
Zn

) = D(Yni, F
s
Yn

), for all i = 1, ..., n. Additionally,
from property P1 of the sample depth function and Remark 2.1, we see that D(Xi, F

s
n) =

D(Zni, F
s
Zn

). Hence D(Xi, F
s
n) = D(Yni, F

s
Yn

). This shows that Ri is a function of Yn1, ...,Ynn

and thus is independent of δni, i=1,2, ...,n. Under null hypothesis, R1, ...,Rn have the discrete
uniform distribution on {1, ..., n}. Then the expectation and variance of T

1/2
n,D are given as

E
(
T

1/2
n,D

)
=

√
6

n(n + 1) (2n + 1)
E

(
n∑

i=1

δinRi

)
= 0

and

Var
(
T

1/2
n,D

)
=

6
n(n +1) (2n +1)

n∑
i=1

E(Ri
2) +

6
n(n +1) (2n +1)

n∑
i=1

n∑
j=1
i 6=j

E(δni δnj RiRj) = 1 ,

respectively. Because of the dependency between summands in T
1/2
n,D, the central limit theory
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is not applied. In the other hand, T
1/2
n,D is equal in distribution to

Kn =

√
6

n(n + 1) (2n + 1)

n∑
i=1

δi i ,

where δi’s, i =1, ..., n, are independent random variables with probability 1/2 of being 1 or −1.
Since Kn is sum of independent random variables and the Lyapunov’s condition

lim
n→∞

(√
6

n(n + 1) (2n + 1)

)(2+δ) n∑
i=1

(
E |δi i|

)(2+δ) = lim
n→∞

(
n3

3

)−(2+δ)/2 n∑
i=1

i2+δ = 0

is satisfied for δ = 1, then the asymptotic null distribution is obtained by Lyapunov’s central
limit theorem.

Proof of Theorem 3.3: It is clear that Vni = BWnWni, i = 1, ..., n, where

BWn =

[
cos
(

π
2 − θMWn

)
− sin

(
π
2 − θMWn

)
sin
(

π
2 − θMWn

)
cos
(

π
2 − θMWn

) ] .(A.12)

Let A be an arbitrary 2×2 nonsingular matrix and define Ṽni = BAWnW̃ni, where

BAWn =

 cos
(

π
2 − θ

eMWn

)
− sin

(
π
2 − θ

eMWn

)
sin
(

π
2 − θ

eMWn

)
cos
(

π
2 − θ

eMWn

)
 ,

with θ
eMWn

∈ [0, π), as the angle between horizontal-axis and the sample median M̃Wn that is

obtained in the same way as MWn , through W̃ni’s instead of Wni’s, i = 1, ..., n. Moreover,
W̃ni = ΓAXnAXi, where ΓAXn is Tyler’s matrix defined in terms of the transformed data
points AXi, for all i = 1, ..., n.

If n > 2, Randles [36] indicated that Γn satisfies the condition

(A.13) AT ΓT
AXn

ΓAXnA = k ΓT
n Γn ,

where k is a positive scalar that may depends on A and the data. This equation clearly shows
that there exists an orthogonal matrix H = k−1/2 ΓAXnAΓ−1

n such that

(A.14)
√

k H Γn = ΓAXnA .

It follows easily that

W̃ni = ΓAXnAXi =
√

k H ΓnXi =
√

k H Wni .(A.15)

Additionally, property P1 of the sample depth function along with Remark 2.1 and equation
(A.15) show that M̃Wn =

√
k HMWn . Thus, the result follows from Theorem 3.1.

Proof of Theorem 3.4: The Tyler’s matrix Γn ≡ Γ(X1, ...,Xn) is invariant under
sign changes among the Xi’s (Randles [36]), that is

Γ(X1, ...,Xn) = Γ(η1X1, ..., ηnXn) .(A.16)

Hence, by (A.6) we have(
BWnΓnX1, ..., BWnΓnXn

) d=
(
η1BWnΓnX1, ..., ηnBWnΓnXn

)
.(A.17)

where BWn is defined as (A.12). Additionally, from property P1 of the sample depth function
and Remark 2.1, it is straightforward to verify that Rni = Ri for all i = 1, ..., n. The rest of
the proof proceeds as in Theorem 3.2.
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1. INTRODUCTION

We propose to obtain prediction intervals of a time series by constructing interval-
valued time series (ITS) models. The proposed method is used to integrate the information
of the daily high, low and closing prices of a stock and is applied to the problem of portfolio
selection. Optimal portfolio selection has been extensively discussed in the fields of financial
investment and risk management. Markowitz [22, 23] introduced a mean-variance portfo-
lio optimization procedure by using the standard deviation of a portfolio as the measure of
risk and assuming that the returns of the underlying assets are independent and identically
distributed (i.i.d.). During the past decade, risk measures other than the standard devia-
tion have been considered for selecting investment portfolios. For example, the value-at-risk
(VaR), conditional VaR (CVaR) and spectral risk measure (SRM) are commonly used risk
measures by market practitioners and analysts in the recent literature on portfolio selection
(Rockafellar and Uryasev [25, 26], Acerbi [1], Krokhmal et al. [20] and Adam et al. [2]).
However, many empirical findings indicate that the return processes of the underlying assets
in financial markets usually exhibit autocorrelation, negative skewness, kurtosis, conditional
heteroscedasticity and tail dependence (Tsay [30]). To reflect these features, time series mod-
els are used to depict the dynamics of the underlying asset returns for portfolio selection
(Harris and Mazibas [16]). However, the development of the above portfolio selection issue
uses only information about the closing prices of the underlying assets. The daily high and
low prices of a stock are public information and can be observed in the market. The main
purpose of this study is to apply daily high and low price information to portfolio selection
by ITS models.

One of the main techniques for analyzing ITS is to fit univariate time series models
to the interval bounds (Teles and Brito [28]). Maia et al. [21] proposed fitting univariate
ARIMA models to the midpoints and ranges of the observed interval process and used these
models to forecast the interval bounds. Recently, many more complicated ITS models have
been proposed and applied to solve problems in various fields. For example, He and Hu [17]
used the interval computing approach to forecast the annual and quarterly variability of the
stock market. Arroyo et al. [3, 4] discussed financial applications based on forecasting with
ITS data. Garćıa-Ascanio and Maté [13] used vector autoregressive (VAR) models to forecast
electric power demand. Yang et al. [32] proposed autoregressive conditional interval-valued
models with exogenous explanatory interval variables to forecast crude oil prices. Rodrigues
and Salish [27] used threshold models to analyze and forecast ITS and applied their model
to a weekly sample of S&P500 index returns. Fischer et al. [12] predicted stock return
volatility using regression models for return intervals. The results of these studies showed
that the interval forecasts obtained by ITS perform better than those obtained by the classic
approach based on fitting a single time series model to closing prices.

Following Markowitz’s [22, 23] approach, the basic idea of various portfolio selection
criteria is to determine asset allocations by maximizing the expected investment returns sub-
ject to a risk limit of the investment. In addition to daily high and low prices, we also
consider the closing prices of a stock. Subsequently, the daily high (low) log returns should
be defined as the differences between the logarithms of the daily high (low) price and the
last closing price. Therefore, we propose fitting time series models to the daily high and
low log returns rather than fitting ITS models directly to the interval bounds of stock prices.



Prediction Intervals for Time Series and Their Applications to Portfolio Selection 133

Furthermore, an innovative criterion for portfolio selection is proposed based on the predicted
interval of the log returns. Specifically, we maximize the expected high log returns of a port-
folio subject to a limitation on the predicted low log returns. We also introduce the concept
of a coherent risk measure for the interval of returns, which extends the axioms of the coher-
ent risk measure proposed by Artzner et al. [6] for classic financial risk management. In the
empirical investigation, we employ the stocks of the companies on the Dow Jones Industrial
Average Index (DJIA Index) during the financial crisis period (from July 2, 2007 to
June 24, 2009) and under improved market conditions (from July 1, 2014 to June 23, 2016).
For each time period, the first 250 daily data are used to fit a time series model to deter-
mine the initial trading strategy. A self-financing trading strategy is constructed by daily
reallocating the holding weights of the optimal portfolio via the proposed scheme, where a
rolling scheme is employed and the time series model is updated with the previous 250 daily
historical data. The numerical results indicate that the proposed interval estimation has
promising coverage, efficiency and accuracy for predicting high and low prices. Moreover,
the proposed portfolio suggests conservative investments during 2008–2009 but aggressive
investments during 2015–2016.

The rest of this paper is organized as follows. Section 2 introduces the model assump-
tions and the prediction interval for ITS. The proposed criterion for portfolio selection using
the prediction intervals is introduced in Section 3. Section 4 presents a study to compare the
coverage, efficiency and accuracy of the proposed interval estimation for ITS data with those
of various approaches in the literature. An empirical study to assess the performance of the
self-financing trading strategy constructed by the proposed criterion of portfolio selection is
presented in Section 5. Conclusions are given in Section 6.

2. THE PROPOSED INTERVAL TIME SERIES MODEL

Let PC
m,t be the daily closing price of the m-th underlying stock price at time t, and let

PH
m,t and PL

m,t be the intraday high and low stock prices, respectively, m = 1, ..., p. Denote the
set of information up to time t by Ft. To obtain a one-step-ahead prediction interval of the
price of the m-th underlying stock for a given Ft, a classic approach is to fit a time series model
for the historical closing prices, PC

m,s, s = 1, ..., t, and then derive a 95% prediction interval,
for example, for PC

m,t+1, from the fitted model. Recently, many studies have proposed fitting
ITS models for interval observations [PL

m,s, P
H

m,s], s = 1, ..., t, and then obtaining an interval
estimation of [PL

m,t+1, P
H

m,t+1] from the fitted ITS model (see Arroyo et al. [3, 4], Teles and
Brito [29] and the references therein).

We propose an alternative approach to obtain an estimate of [PL
m,t+1, PH

m,t+1] conditional
on Ft based on the following daily low and high log returns at time t:

(2.1) X
(CL)
m,t = log

(
PL

m,t/PC
m,t−1

)
and X

(CH)
m,t = log

(
PH

m,t/PC
m,t−1

)
.

The definitions of X
(CL)
m,t and X

(CH)
m,t are similar to the classic daily log returns, Xm,t =

log(PC
m,t/PC

m,t−1) discussed widely in the literature of finance and statistics. X
(CL)
m,t and

X
(CH)
m,t are capable of depicting realistic investment characteristics. Suppose that an investor

buys a given stock on the previous day with closing price PC
m,t−1 and sells it on day t.
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Then, the investor’s return belongs to the interval
[
X

(CL)
m,t , X

(CH)
m,t

]
depending on when he/she

sells the stock during day t. According to the definitions of X
(CL)
m,t and X

(CH)
m,t in (2.1), we

have the following inequality

(2.2) X
(CL)
m,t ≤st X

(CH)
m,t

since PL
m,t ≤st PH

m,t, for all t = 0, 1, ..., and m = 1, ..., p, where the notation A ≤st B means that

random variable A is stochastically less than or equal to random variable B. Hence, X
(CI)
m,t =[

X
(CL)
m,t , X

(CH)
m,t

]
, t = 1, 2, ..., also form an ITS, and the prediction interval of [PL

m,t+1, P
H

m,t+1]
can be obtained. For example, let

[
P̂L

m,t+1, P̂
H

m,t+1

]
denote the prediction of [PL

m,t+1, P
H

m,t+1]
conditional on Ft. By using (2.1), our proposed scheme is to model the interval observations,[
X

(CL)
m,s , X

(CH)
m,s

]
, s = 1, ..., t, and then estimate

[
P̂L

m,t+1, P̂
H

m,t+1

]
by[

PC
m,t exp

{
X̂

(CL)
m,t+1

}
, PC

m,t exp
{
X̂

(CH)
m,t+1

}]
,

where X̂
(CL)
m,t+1 and X̂

(CH)
m,t+1 are the predictions of X

(CL)
m,t+1 and X

(CH)
m,t+1, respectively, which can

be obtained from the time series models defined below. Traditionally, ITS data are formed by
only the high and low prices (Arroyo et al. [3, 4] and Maia et al. [21]). This study includes
the closing prices in the model and investigates whether this additional information can
improve the interval prediction.

To jointly model X
(h)
m,t, h =CL,CH, we need to capture the features inherent in the data.

For example, X
(h)
m,t, h = CL,CH could be conditionally heteroscedastic and auto- and cross-

correlated. To characterize these features, a two-stage procedure is proposed to model the
dynamics of X

(h)
m,t, h = CL,CH. The first stage is to adjust the conditional heteroscedasticity

of X
(h)
m,t marginally for h = CL,CH. The second stage is to simultaneously model the auto-

and cross-correlation of the adjusted time series.

In the first stage, we propose to de-GARCH X
(h)
m,t to obtain volatility-adjusted returns.

De-GARCHing is a widely used technique for modeling multivariate time series. For exam-
ple, Engle [10, 11] proposed a dynamic conditional correlation (DCC) model to capture time-
varying correlations. The first step of their scheme is to de-GARCH the data. Härdle et al. [15]
also used de-GARCHing with a GARCH(1,1) model to analyze the multi-dimensional de-
pendencies of time series data with a hidden Markov model for hierarchical Archimedean
copulae. Grigoryeva et al. [14] proposed a method based on various state space models to
extract global stochastic (GST) financial trends from non-synchronous financial data. They
mentioned that de-GARCHing is commonly used for GST. In this study, we propose to fit
X

(h)
m,t with a univariate ARMA-GARCH model and let

(2.3) X̃
(h)
m,t =

(
X

(h)
m,t − µ(h)

m

)/
σ

(h)
m,t

be the de-GARCHed process of X
(h)
m,t, h = CL,CH, where µ

(h)
m is the stationary (uncon-

ditional) mean of X
(h)
m,t and σ

(h)
m,t is the conditional standard deviation of X

(h)
m,t, which is

estimated from the univariate GARCH-type model

(2.4) σ
(h)
m,t = g

(h)
m,t−1

(
X(h)

m,s, σ
(h)
m,s, s<t

)
,

which is Ft−1-measurable. This type of model (2.4) is capable of describing many features
of financial data, for example, conditional heteroscedasticity, volatility clustering and asym-
metry. It also includes various univariate financial time series models that are widely used
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by practitioners in economics, statistics and finance (see Engle [9], Bollerslev [8], Nelson [24],
Tsay [30] and the references therein). In particular, we employ the stationary mean (not the
conditional mean) to define the proposed de-GARCHed process in (2.3). The main reason
for this design is to retain the autocorrelation in X̃

(h)
m,t, h = CL,CH and to model the auto-

and cross-correlation of X̃
(h)
m,t, h = CL,CH simultaneously in the second stage of the proposed

procedure.

In the second stage, we employ the following vector autoregressive-moving-average
model of orders p and q, denoted by VARMA(p,q), to depict the dynamics of the two
de-GARCHed processes,

{
X̃

(h)
m,t, t = 1, ..., T

}
, h = CL,CH, X̃

(CL)
m,t

X̃
(CH)
m,t

 =
p∑

i=1

(
φLL

m,i φLH
m,i

φHL
m,i φHH

m,i

) X̃
(CL)
m,t−i

X̃
(CH)
m,t−i


+

 ε
(CL)
m,t

ε
(CH)
m,t

+
q∑

j=1

(
θLL
m,j θLH

m,j

θHL
m,j θHH

m,j

) ε
(CL)
m,t−j

ε
(CH)
m,t−j

,

(2.5)

for m=1, ..., p, where
(
ε
(CL)
m,t , ε

(CH)
m,t

)T, t=1, ...,T , are uncorrelated random vectors of a bivariate

normal distribution with mean zero and covariance matrix Σ. In addition,
(
ε
(CL)
m,t , ε

(CH)
m,t

)T,

t = 1, ..., T , are assumed to be independent of
(
X̃

(CL)
m,s , X̃

(CH)
m,s

)T, s < t.

Denote the 1-step-ahead predictions of X
(h)
m,t+1 conditional on Ft by X̂

(h)
m,t(1)=Et(X

(h)
m,t+1

)
,

h = CL,CH, where Et(X) denotes the conditional expectation of X given Ft. From (2.3)–
(2.5), we have

X̂
(CL)
m,t (1) = Et

(
X

(CL)
m,t+1

)
= µ(CL)

m + σ
(CL)
m,t+1Et

(
X̃

(CL)
m,t+1

)
= µ(CL)

m + σ
(CL)
m,t+1

{
p∑

i=1

(
φLL

m,i X̃
(CL)
m,s−i + φLH

m,i X̃
(CH)
m,s−i

)
+

q∑
j=1

(
θLL
m,j ε

(CL)
m,s−j + θLH

m,j ε
(CH)
m,s−j

)}(2.6)

and

X̂
(CH)
m,t (1) = Et

(
X

(CH)
m,t+1

)
= µ(CH)

m + σ
(CH)
m,t+1Et

(
X̃

(CH)
m,t+1

)
= µ(CH)

m + σ
(CH)
m,t+1

{
p∑

i=1

(
φHL

m,i X̃
(CL)
m,s−i + φHH

m,i X̃
(CH)
m,s−i

)
+

q∑
j=1

(
θHL
m,j ε

(CL)
m,s−j + θHH

m,j ε
(CH)
m,s−j

)}
.

(2.7)

To guarantee the mathematical coherence X̂
(CL)
m,t+1 ≤st X̂

(CH)
m,t+1 in their predictions, let

X̂
(CL)
m,t+1 = min

{
X̂

(CL)
m,t (1), X̂(CH)

m,t (1)
}

and
X̂

(CH)
m,t+1 = max

{
X̂

(CL)
m,t (1), X̂(CH)

m,t (1)
}

,
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and
[
X̂

(CL)
m,t+1, X̂

(CH)
m,t+1

]
forms a prediction interval of Xt+1 conditional on Ft. In our empirical

study, there are 250(days)× 30(companies)× 2(time periods) = 15,000 prediction intervals,
and the situation of X̂

(CL)
m,t (1) > X̂

(CH)
m,t (1) occurs only 8 times. The numerical results indicate

that the proposed scheme is capable of guaranteeing X̂
(CL)
m,t+1 ≤st X̂

(CH)
m,t+1 in most cases.

3. APPLICATION OF THE ITS PREDICTION
TO PORTFOLIO SELECTION

In this section, we propose an innovative portfolio selection scheme on the basis of the
ITS prediction with models (2.6) and (2.7). The literature contains many different models
from models (2.6) and (2.7) for analyzing ITS. Nevertheless, the proposed portfolio selection
scheme is not restricted to our considered model.

The classic portfolio optimization problem is represented as follows:

(3.1) max
ct

Et

(
p∑

m=1

cm,tXm,t+1

)
subject to ct ≥ 0,

p∑
m=1

cm,t ≤ 1 and ρt ≤ L ,

where ct = (c1,t, ..., cp,t)T, cm,t denotes the holding position of Xm,t at time t, ct ≥ 0 is the no
short-selling constraint,

∑p
m=1 cm,t ≤ 1 is the budget constraint, ρt is the value of a prede-

termined risk measure at time t, and L is a pre-specified upper bound of the investment risk.
The main objective is to select the holding positions ct at time t. In the portfolio selection
literature, when Xm,t, t = 1, 2, ..., are assumed to be i.i.d. for each m = 1, ..., p, Markowitz
[22, 23] used the standard deviation of a portfolio, Rockafellar and Uryasev [25, 26] and
Krokhmal et al. [20] employed the CVaR, and Adam et al. [2] considered the SRM as the
risk measure to determine ct. Recently, Harris and Mazibas [16] and Huang et al. [18] fur-
ther considered fitting time series models for the underlying asset returns, Xm,t, m = 1, ..., p,
t = 1, 2, ..., with the CVaR and SRM to solve (3.1).

In this study, we determine the allocations of the underlying assets with the following
criterion:

max
ct

Et

(
p∑

m=1

cm,tX
(CH)
m,t+1

)
subject to ct ≥ 0,

p∑
m=1

cm,t ≤ 1

and −
p∑

m=1

cm,tEt

(
X

(CL)
m,t+1

∣∣∣X(CL)
m,t+1≤ qα,m,t+1

)
≤ L ,

(3.2)

where X
(h)
m,t+1 = µ

(h)
m + σ

(h)
m,t+1X̃

(h)
m,t+1, h = CH,CL, follows models (2.3)–(2.5), and qα,m,t+1

is the α-th quantile of X
(CL)
m,t+1 conditional on Ft. In practice, since the expected values

of daily stock returns are usually very close to 0, one can select a sufficiently small α

such that qα,m,t+1 < 0. The main concept behind (3.2) is to maximize the potential high
portfolio returns subject to a predetermined limitation, L, on the corresponding potential
low and nonpositive returns. In contrast to (3.1), we use Et

(∑p
m=1 cm,tX

(CH)
m,t+1

)
to replace

Et

(∑p
m=1 cm,tXm,t+1

)
and use

(3.3) −
p∑

m=1

cm,tEt

(
X

(CL)
m,t+1

∣∣∣X(CL)
m,t+1≤ qα,m,t+1

)
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as the risk measure ρt in (3.1). In addition, the values of Et

(
X

(CH)
m,t+1

)
and Et

(
X

(CL)
m,t+1

)
,

m = 1, ..., p, are estimated by the models defined in (2.5). Moreover, the optimal allocations
cm,t, m = 1, ..., p, are in linear forms in the objective function and constraints in (3.2). Con-
sequently, the optimal allocations in (3.2) can be obtained by linear programming, which is a
popular technique for various portfolio selection criteria (Markowitz [22, 23], Rockafellar and
Uryasev [25, 26], Adam et al. [2] and Huang et al. [18]).

In the following, we introduce the concept of a coherent risk measure for the intervals
of returns, which provides economic and financial reasons to use (3.3) as a risk constraint in
(3.2). In financial risk management, Artzner et al. [6] introduced the following concept of
the coherent risk measure for classic portfolio selection. Let G be the set of random portfolio
returns, ρ be a risk measure, which is a mapping from G into R, and X denote the return of
an asset. A risk measure is called coherent if it satisfies the following properties:

(A1) Translation invariance: If A is a deterministic portfolio with guaranteed return α,
then for all X ∈ G, we have ρ(X + A) = ρ(X)−α.

(A2) Subadditivity: For all X and Y ∈ G, ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

(A3) Positive homogeneity: For all λ ≥ 0 and all X ∈ G, ρ(λX) = λρ(X).

(A4) Monotonicity: For all X and Y ∈ G with X ≤ Y , we have ρ(Y ) ≤ ρ(X).

The economic explanations of these four properties are as follows. Translation invariance
implies that the addition of a definite amount of capital reduces the risk by the same amount.
Subadditivity implies that diversification is beneficial. Positive homogeneity implies that the
risk of a position is proportional to its size. Monotonicity implies that a portfolio with greater
future returns has less risk.

In this study, we consider an interval of returns denoted by XI = [XL,XH ], where XL

and XH are the low and high returns of an asset, respectively. To extend the concepts of
(A1)–(A4) from random variables to random intervals, we propose the following properties
for a risk measure of the interval of returns. Let G1 be the set of random intervals of portfolio
returns and ρI : G1 → R be a corresponding risk measure.

(A1′) Translation invariance for the interval of returns: If A is a deterministic portfolio
with guaranteed return α, then for all XI∈ G1, we have ρI(XI+A) = ρI(XI)−α,
where we use XI +A to denote [XL+A,XH +A].

(A2′) Subadditivity for the interval of returns: For all XI and Y I ∈ G1, ρI(XI +Y I) ≤
ρI(XI)+ ρI(Y I), where XI +Y I = [XL +Y L,XH +Y H ]. In addition, one can
also use the Cartesian join of XI and Y I , denoted by XI⊕Y I =

[
min(XL,Y L),

max(XH ,Y H)
]
, to define the subadditivity, that is, ρI(XI⊕Y I) ≤ ρI(XI) +

ρI(Y I).

(A3′) Positive homogeneity for the interval of returns: For all λ ≥ 0 and all XI ∈ G1,
ρI(λXI) = λρI(XI).

(A4′) Monotonicity for the interval of returns: For all XI and Y I ∈ G1 with XI ≤
Y I , where XI ≤ Y I if and only if XL ≤ Y L and XH ≤ Y H , we have ρI(Y I) ≤
ρI(XI).
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The economic explanations of (A1′)–(A4′) are similar to those of (A1)–(A4). Specifically, the
monotonicity for the interval of returns (A4′) implies only that a portfolio with greater future
interval of returns has less risk. For the case of XI ⊂ Y I , the relationship between ρI(Y I)
and ρI(XI) is not clear. If a risk measure for the interval of returns satisfies (A1′)–(A4′),
we call it a coherent risk measure for the interval of returns. In the following proposition, a
coherent risk measure for the interval of returns is proposed.

Proposition 3.1. Let XI = [XL,XH ] be an interval of returns, and let

ρI(XI) = −E
(
X(L) |X(L)≤ qα

)
,

where qα is the α-th quantile of X(L). Then, ρI(·) is a coherent risk measure for the interval

of returns.

Proof: Note that for a random variable XL, −E(XL |XL≤ qα) is the so-called ex-
pected shortfall, which is a coherent risk measure. Therefore, it is straightforward to obtain
that ρI(XI) = −E(XL |XL≤ qα) satisfies (A1′), (A2′), (A3′), and (A4′), where the interval
addition in (A2′) is defined by the usual way XI+Y I = [XL+Y L,XH +Y H ]. In the following,
we prove that ρI(XI) also satisfies ρI(XI⊕Y I) ≤ ρI(XI) + ρI(Y I).

Let qα,0, qα,X and qα,Y be the α-th quantile of min(XL,Y L), XL and Y L, respec-
tively. Apparently, qα,0 ≤ min(qα,X , qα,Y ) for any α ∈ (0,1). Let α be small enough such that
max(qα,X , qα,Y ) < 0. Consequently, for all XI and Y I ∈ G1, we have

ρI(XI⊕Y I) = −E
[
min(XL,Y L)

∣∣ min(XL,Y L)≤ qα,0

]
= − 1

α
E
[
min(XL,Y L) I

(
min(XL,Y L)≤ qα,0

)]
≤ − 1

α

{
E
[
XLI

(
XL≤ qα,X

)]
+ E

[
Y L I

(
Y L≤ qα,Y

)]}
= −

{
E
(
XL |XL≤ qα,X

)
+ E

(
Y L | Y L≤ qα,Y

)}
= ρI(XI) + ρI(Y I) ,

where I(·) is an indicator function and the inequality holds by using the facts that

−min(XL,Y L) I
(
min(XL,Y L)≤ qα,0

)
≤ −XL I(XL≤ qα,X) − Y L I(Y L≤ qα,Y ) ,

almost surely, for qα,0 ≤ min(qα,X , qα,Y ) ≤ max(qα,X , qα,Y ) < 0. Thus, (A2′) with the Carte-
sian join also holds and the proof is complete.

By Proposition 3.1, the measurement defined in (3.3) can be rewritten as

p∑
m=1

cm,t ρI

(
X

(CI)
m,t+1 | Ft

)
,

which is a linear combination of coherent risk measures for the interval of returns, where

(3.4) ρI

(
X

(CI)
m,t+1 | Ft

)
= −Et

(
X

(CL)
m,t+1

∣∣X(CL)
m,t+1≤ qα,m,t+1

)
.
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Due to the convexity of the coherent risk measure, we have

(3.5) ρI

(
p∑

m=1

cm,tX
(CI)
m,t+1| Ft

)
≤

p∑
m=1

cm,t ρI

(
X

(CI)
m,t+1 | Ft

)
.

For a portfolio with allocations cm,t, m = 1, ...,p, set up at time t, the left side of (3.5)
represents the risk of the worst case occurring at time t + 1 since each underlying return
reaches the bottom of the corresponding prediction interval. However, if a limitation is set
on ρI

(∑p
m=1 cm,tX

(CI)
m,t+1 | Ft

)
in the portfolio selection criterion (3.2), the optimal allocations

cm,t, m = 1, ...,p, are difficult to obtain directly using linear programming since ρI( · |Ft) is
a nonlinear function of cm,t, m = 1, ...,p. A similar situation is encountered in the classic
portfolio selection problem shown in (3.1) when using the expected shortfall as the risk
measure. Rockafellar and Uryasev [25, 26] proposed a method to overcome this difficulty by
considering more latent variables, but the computational cost also increased. Therefore, we
set a limitation on the right side of (3.5), and the optimal allocations can be obtained directly
using linear programming.

In the following sections, we consider several scenarios to investigate the coverage, effi-
ciency and accuracy of the proposed interval estimation and the performance of the proposed
criterion for portfolio selection.

4. EVALUATION OF THE PROPOSED INTERVAL ESTIMATION METHOD

Let Yt = [PL
t ,PH

t ] denote the realized ITS of the stock prices and Ŷt be an estimation
of Yt, t = 1, ...,T . In this section, we use the four measures to evaluate the performance of the
proposed interval estimation (He and Hu [17], Rodrigues and Salish [27] and Xiong et al. [31]).
The first measure is the coverage rate

RC =
1
T

T∑
t=1

w(Yt ∩ Ŷt)
w(Yt)

,

where w(·) denotes the width of the interval, RC indicates what part of the realized ITS of
the stock prices is covered by its forecast.

The second measure is the efficiency rate

RE =
1
T

T∑
t=1

w(Yt ∩ Ŷt)

w(Ŷt)
,

which provides information about what part of the forecast covers the realized ITS. It should
be noted that RC and RE must be considered simultaneously; otherwise, incorrect conclusions
may be drawn. For example, if Yt is a subinterval of Ŷt, then RC will be 1, but RE might
be much less than 1, which indicates that the predicted interval is much wider than the
realized ITS. Therefore, we only conclude that the forecast is satisfactory when RC and RE

are reasonably high and the difference between them is small.

The third measure is the accuracy ratio

RA =
1
T

T∑
t=1

w(Yt ∩ Ŷt)

w(Yt ∪ Ŷt)
.
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A prediction with a larger RA performs better than a prediction with a smaller one.

The fourth measure is the UI criterion

UI =

√√√√ ∑T
t=1

(
PH

t −P̂H
t

)2 +
∑T

t=1

(
PL

t −P̂L
t

)2∑T
t=1

(
PH

t −PH
t−1

)2 +
∑T

t=1

(
PL

t −PL
t−1

)2 ,

which is derived from Theil’s U statistic and compares the performance of an estimated
method with a näıve estimate [PL

t−1,P
H
t−1] of [PL

t ,PH
t ]. The UI statistic is less than one if the

predictor performs better than the näıve predictor.

In addition to the proposed interval estimation Ŷ
(p)
t , three commonly used interval

predictors are considered in our comparison studies. One is fitting time series models to the
log return process Xt = log(PC

t /PC
t−1) and then deriving the corresponding 95% confidence

interval of PC
t+1. We denote this estimation of Yt by Ŷ

(1)
t .

The second estimation of Yt is the popular center-range prediction interval, which is
obtained by separately fitting time series models to the processes of the center, PM

t = (PH
t +

PL
t )/2, and the range, PR

t = (PH
t −PL

t )/2, of the price intervals and then deriving an interval
estimation of [PL

t+1,P
H
t+1] conditional on Ft. We denote the second estimation by Ŷ

(2)
t .

The third alternative estimation of Yt is derived from a linear interval-data model
motivated from Fischer et al. [12]. The center-range-representation of interval data can also
be expressed as the following regression model

Yt = β0 + β1Y
C
t−1 + β2Y R

t−1 + δt ,(4.1)

where Y C
t = [PM

t ,PM
t ], Y R

t = [−PR
t ,PR

t ], δt is an interval-valued random error, and β0 = [a,a]
and (a,β1,β2) are unknown parameters. Blanco-Fernández et al. [7] derived the estimation
procedures for (4.1), and the obtained predictor is denoted as Ŷ

(3)
t .

We conduct the comparison study using the stock prices of the 30 companies of the
DJIA Index during the financial crisis period (from July 2, 2007 to June 24, 2009) and
under improved market conditions (from July 1, 2014 to June 23, 2016). The 1-step-
ahead prediction intervals during the two time periods (from June 27, 2008 to June 24,
2009 and from June 29, 2015 to June 23, 2016) are obtained with the previous 250 daily
historical high and low returns. We adopt an ARMA(p,q)-GARCH(p0,q0) model, where
p, q ∈ {0,1,2,3,4,5} and p0, q0 ∈ {0,1}, to obtain the de-GARCHed process defined in (2.3)
for h = CL and CH, separately. The multivariate portmanteau test (Tsay [30], Chapter 8)
is used for testing the auto- and cross-correlation in

{(
X̃

(CL)
m,t , X̃

(CH)
m,t

)
, t =1, ...,T

}
. If the

de-GARCHed processes have significant auto- and cross-correlation, we model the vector
time series

(
X̃

(CL)
m,s , X̃

(CH)
m,t

)T with VARMA(p1, q1) defined in (2.5), where (p1, q1) are selected
from

{
(1,0), (0,1) and (u,v), u,v = 1,2,3

}
based on the Bayesian information criterion (BIC).

Table 1 summarizes the p-values of the multivariate portmanteau test for the de-GARCHed
processes and the residual processes

{(
ε
(CL)
m,t ,ε

(CH)
m,t ), t=1, ...,T

}
. In Table 1, all the de-GARCHed

processes have significant auto- and cross-correlation during 2008–2009, and most (around
96.2%) of the de-GARCHed processes have significant auto- and cross-correlation during
2015–2016. More than 99.4% of the p-values of the fitted residual processes during the
two time periods are greater than 0.01, which indicates that the above scheme is capa-
ble of removing most of the auto- and cross-correlation of the de-GARCHed processes.
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Table 1: The proportions of the p-values of the multivariate portmanteau test for testing auto-
and cross-correlation in the de-GARCHed processes

{(
X̃

(CL)
m,t , X̃

(CH)
m,t

)
, t = 1, ...,T

}
(shown in rows) and the residual processes

{(
ε
(CL)
m,t , ε

(CH)
m,t ), t =1, ...,T

}
(shown in columns).

(a) 2008–2009

``````````````̀de-GARCHed

residual
p-value < 0.01 p-value ≥ 0.01

p-value < 0.01 0.001 0.999
p-value ≥ 0.01 0.000 0.000

(b) 2015–2016

``````````````̀de-GARCHed

residual
p-value < 0.01 p-value ≥ 0.01

p-value < 0.01 0.011 0.951
p-value ≥ 0.01 0.000 0.038

Figure 1 summarizes the proportions of selected orders (p1, q1) in the two time periods,
where the 3.8% de-GARCHed processes without significant auto- and cross-correlation during
2015–2016 are denoted by VARMA(0,0). VARMA(1,1) is the most commonly selected model
during the financial crisis period, whereas VARMA(1,0) and VARMA(1,1) are frequently
selected under improved market conditions.

Table 2: The average values of RC , RE , RA and UI of Ŷ
(1)
t , Ŷ

(2)
t , Ŷ

(3)
t and Ŷ

(p)
t in

June 27, 2008 – June 24, 2009 and June 29, 2015 – June 23, 2016, in the top panel.
The bottom panel presents the improvement of Ŷ

(p)
t for each Ŷ

(i)
t , i = 1,2,3, by

calculating
(
Ŷ

(p)
t −Ŷ

(i)
t

)
/Ŷ

(i)
t for RC , RE , and RA, and

(
Ŷ

(i)
t −Ŷ

(p)
t

)
/Ŷ

(i)
t for UI .

Average values

2008–2009 2015–2016

bY
(1)

t
bY

(2)
t

bY
(3)

t
bY

(p)
t

bY
(1)

t
bY

(2)
t

bY
(3)

t
bY

(p)
t

RC 0.57 0.96 0.61 0.63 0.53 0.96 0.55 0.60
RE 0.55 0.34 0.53 0.60 0.51 0.30 0.51 0.56
RA 0.42 0.33 0.41 0.46 0.39 0.30 0.39 0.44
UI 0.98 1.70 0.99 0.87 0.99 1.82 0.97 0.88

Improvement of bY
(p)

t for each bY
(i)

t , i = 1,2,3

2008–2009 2015–2016

bY
(1)

t
bY

(2)
t

bY
(3)

t
bY

(1)
t

bY
(2)

t
bY

(3)
t

RC 10.4% −35.0% 1.7% 14.6% −37.3% 9.4%
RE 8.5% 75.5% 13.0% 9.0% 85.6% 10.5%
RA 9.8% 38.5% 12.3% 12.4% 47.3% 10.9%
UI 9.8% 47.9% 10.99% 10.5% 51.4% 9.2%
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Figure 1: Summaries of the selected orders of VARMA for 15,000 prediction intervals in the
two time periods (June 27, 2008 to June 24, 2009 and June 29, 2015 to June 23, 2016).

Table 2 presents the average values of RC , RE , RA and UI of Ŷ
(p)
t and Ŷ

(i)
t , i = 1,2,3,

in the top panel. In the bottom panel, we present the improvement of Ŷ
(p)
t for each Ŷ

(i)
t ,

i = 1,2,3, by calculating (Ŷ (p)
t −Ŷ

(i)
t )/Ŷ

(i)
t for RC , RE , and RA and (Ŷ (i)

t −Ŷ
(p)
t )/Ŷ

(i)
t for UI .

The numerical results indicate that Ŷ
(p)
t performs better than Ŷ

(i)
t , i = 1,2,3, in terms

of RE , RA and UI . Although Ŷ
(2)
t has a larger RC than Ŷ

(p)
t , the improvement of Ŷ

(p)
t

in RE is much greater than the loss of Ŷ
(p)
t in RC . In particular, the popular center-range

prediction interval Ŷ
(2)
t has UI greater than 1, which indicates that the proposed predic-

tion interval Ŷ
(p)
t is more reliable than Ŷ

(2)
t . By contrast, Ŷ

(p)
t outperforms Ŷ

(1)
t and Ŷ

(3)
t ,

especially in 2015–2016, with an improvement in the 4 measures of at least 9.0%.
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Figure 2 presents the average values of RC ,RE ,RA and UI for the four prediction intervals for the
30 companies of the DJIA Index from June 27, 2008 to June 24, 2009. The results of the time
period from June 29, 2015 to June 23, 2016 are given in Figure 3. These figures reveal similar
findings as those in Table 2. The proposed prediction interval Ŷ

(p)
t has the best performance

with respect to RA and UI and performs robustly in RC and RE , especially in 2015–2016.
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Figure 2: The average values of RC , RE , RA and UI of Ŷ
(p)
t (solid line), Ŷ

(1)
t (dashed line), Ŷ

(2)
t

(dotted line) and Ŷ
(3)
t (dash-dotted line) for 30 different time series from June 27, 2008

to June 24, 2009.
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Figure 3: The average values of RC , RE , RA and UI of Ŷ
(p)
t (solid line), Ŷ

(1)
t (dashed line), Ŷ

(2)
t

(dotted line) and Ŷ
(3)
t (dash-dotted line) for 30 different time series from June 29, 2015

to June 23, 2016.

The main reason for the good performance of Ŷ
(p)
t is that Ŷ

(p)
t uses more information than the

other predictors. All the other predictors involve (traditional) ITS, that is, they are formed
exclusively with the high and low returns and do not consider past closing prices. Therefore,
the predictors Ŷ

(i)
t , i = 1,2,3, have a clear disadvantage relative to Ŷ

(p)
t ; consequently, the

latter should show much better performance.
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5. EMPIRICAL STUDY

In this section, an empirical study is designed to investigate the performance of the
proposed criterion for selecting the optimal portfolio using the stock prices of the companies
of the DJIA Index. The DJIA Index was launched on October 29, 2002. This Index covers
the top 30 companies by total market capitalization and is reviewed quarterly in January,
April, July and October every year. Suppose that a self-financing trading strategy, which
daily reallocates the holding weights of the portfolio, is employed from the beginning of
each period. The proposed criterion is used to reallocate the optimal portfolios daily during
the financial crisis period and under improved market conditions by fitting the time series
models defined in (2.5) with the previous 250 daily historical high and low returns for each
underlying asset. Then, the corresponding 250 one-day-ahead returns of the optimal portfolios
are computed and compared with the DJIA Index. In the following, we illustrate the details
of the construction of the self-financing trading strategy during the financial crisis period:

1. Let DJt be the value of the DJIA Index at time t, where t = 0 stands for the date
of June 27, 2008.

2. Let Vt denote the value of the self-financing portfolio at time t. Further, let V0

be the value of the DJIA Index on June 27, 2008. The initial allocations of the
underling assets, cm,0, are obtained by solving (3.2), where the high and low return
processes of each underlying asset are fitted by model (2.5) based on X

(CH)
m,t and

X
(CL)
m,t for t = −250, ...,−1, m = 1, ...,p and p = 30. Moreover, since

∑p
m=1 cm,0 can

be less than 1, the amount V0
∑p

m=1 cm,0 is invested in risky assets and the rest of
the portfolio value, denoted by C0 = V0(1−

∑p
m=1 cm,0), is invested in the risk-free

market.

3. At time t = 1, the value of the portfolio is

V1− = b(0)
p∑

m=1

cm,0 PC
m,1 + erdC0 ,

prior to the adjustment of the holding portfolio, where

b(0) =
V0
∑p

m=1 cm,0∑p
m=1 cm,0 PC

m,0

and rd is the daily risk-free interest rate. We reestimate the dynamic models of
each return process using the data Pm,t, t = −249, ...,0, and compute the updated
optimal allocations, which are proportional to cm,1 obtained by solving (3.2), where
the value of the updated portfolio, denoted by V1, is the same as V1− to satisfy self-
financing. That is,

V1 = V1− = b(1)
p∑

m=1

cm,1PC
m,1 + C1 ,

where

b(1) =
V1−

∑p
m=1 cm,1∑p

m=1 cm,1PC
m,1

and C1 = V1−(1−
∑p

m=1 cm,1) denotes the amount invested in the risk-free market
after reallocation.

4. Repeat Step 3 until June 24, 2009.
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In addition to adjusting the allocations of the above self-financing trading strategy
daily, we proposed dynamic adjustment of the risk limitation L in (3.2) by considering

(5.1) L =
k

p

p∑
m=1

ρI

(
X

(CI)
m,t+1 | Ft

)
at time t, where k is a positive constant and ρI

(
X

(CI)
m,t+1 | Ft

)
is defined in (3.4). The L

defined in (5.1) is a special case of (3.3) with cm,t = 1/p, for m = 1, ...,p, multiplied by k.
In other words, we set the limitation of the investment risk in (3.2) by considering the
trading strategy of an equally weighted portfolio. Moreover, conditional on Ft and by (2.3)–
(2.5), X

(CL)
m,t+1 = µ

(CL)
m +σ

(CL)
m,t+1 X̃

(CL)
m,t+1 is normally distributed with conditional mean X̂

(CL)
m,t (1)

defined in (2.6) and conditional standard deviation σ
(CL)
m,t+1. Consequently, (3.4) yields

ρI

(
X

(CI)
m,t+1 | Ft

)
= −Et

(
X

(CL)
m,t+1

∣∣X(CL)
m,t+1≤ qα,m,t+1

)
= −X̂

(CL)
m,t (1) + σ

(CL)
m,t+1 φ

((
qα,m,t+1− X̂

(CL)
m,t (1)

)
/σ

(CL)
m,t+1

)/
α ,

where φ(·) is the density function of the standard normal distribution.

The numerical results are presented in Figures 4 and 5 with α = 0.05, 0.20 and 0.35
and rd = 0. Figure 6 presents the values of L in 2008–2009 and 2015–2016 with different
settings of α and k = 1. Figure 6 shows that a portfolio constructed by (3.2) with a large
α is more conservative than a portfolio constructed with a small α since the values of L

with α = 0.35 are smaller than their counterparts. In Figure 4, the solid, dashed and dash-
dotted lines denote the ratios of the capitals of the proposed trading strategy with k = 0.75,
1 and 1.25, respectively, to the DJIA Index in 2008–2009, and the results for 2015–2016 are
presented in Figure 5. For a fixed α, a portfolio with a small k is more conservative than one
with a large k. In Figure 4, the proposed portfolio selection criterion (3.2) with L defined in
(5.1) suggests a conservative portfolio during the financial crisis in 2008–2009 since the case
with k = 0.75 performs better than the others for each α. In particular, the portfolio with
(α,k) = (0.35,0.75) has the best performance among all scenarios. For 2015–2016, compared
with the portfolios selected in 2008–2009, the results presented in Figure 5 indicate that
(3.2) suggests aggressive portfolios, decreasing α from 0.35 to 0.05 or 0.20 with k = 0.75 or
increasing k from 0.75 to 1.00 with α = 0.35. In view of the results in Figures 4 and 5, the
proposed portfolio selection criterion (3.2) is capable of adjusting its suggestions according
to the economic conditions.
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Figure 4: The ratios of the capitals of different trading strategies to
the Dow Jones Industrial Average Index in 2008–2009.
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Figure 5: The ratios of the capitals of different trading strategies to
the Dow Jones Industrial Average Index in 2015–2016.
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Figure 6: The values of L in 2008–2009 and 2015–2016.

6. CONCLUSION

In this study, we propose a prediction interval for future stock prices by fitting time
series models to the high and low return processes. The proposed interval estimator is shown
to have promising coverage, efficiency and accuracy. In particular, the numerical results of
the UI index indicate that the proposed interval estimator reduces the prediction error of the
näıve interval predictor more remarkably than three popular interval estimators discussed in
the literature. Consequently, an innovative criterion for portfolio selection is proposed on
the basis of our interval estimator. The allocations of the underlying assets in the proposed
optimal criterion are determined by maximizing the potential high portfolio returns subject
to a predetermined limitation on the corresponding potential low and nonpositive returns.
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An empirical study is conducted to investigate the investment returns of the proposed optimal
portfolio. A dynamic self-financing trading strategy is established by investing in the stocks
of the 30 companies of the DJIA Index and adjusting the asset allocations by the proposed
method daily during the financial crisis period and a period with improved market conditions.
The numerical results indicate that the proposed portfolio selection criterion constructed from
the prediction intervals is capable of suggesting an optimal portfolio according to the economic
conditions.

This study demonstrates that ITS data, including daily closing, high, and low prices,
are capable of improving the performance of investment decisions and risk management by
means of the proposed scheme. Additionally, better prediction performance is expected if
intra-daily ITS data are available. This is an interesting direction for future studies.
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