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1. INTRODUCTION

Inference about the regression coefficients in a standard linear regression

model under the usual assumptions of normality, independence and homoscedas-

ticity of errors and without any constraints on the regression parameters is quite

old. A good amount of research has also been done in this set up under some linear

inequality constraints on the regression coefficients (see Liew (1976), Gourieroux

et al. (1982), Self and Liang (1985), Mukerjee and Tu (1995), Andrews (1999),

Andrews (2001), Meyer (2003) and Kopylev and Sinha (2010)). Most of the dis-

cussions in these papers are asymptotic in nature, and also under the assumption

that the underlying dispersion matrix of errors is either completely known or

asymptotically estimated and hence used as if it were known. It turns out that,

under linear inequality constraints on the regression coefficients, quite often the

null distribution of the likelihood ratio test statistic for the nullity of a regression

coefficient is a linear combination of several independent chisquares rather than

being just one chisquare. We add that the proofs in some papers are geometric

in nature while in others it is algebraic in nature, but they are quite involved in

both the cases due to the very nature of the model and the testing problem.

A brief literature review is in order. The first paper on this topic seems

to be due to Gourieroux et al. (1982), followed by the celebrated paper by Self

and Liang (1985). The emphasis in both the papers is the derivation of the

asymptotic properties of the maximum likelihood estimates and the associated

LRT when some parameters lie on their boundaries. In an excellent paper by

Mukerjee and Tu (1995), the exact small sample LRT is derived and its properties

have been studied in the special case of a simple linear regression model with the

nonnegativity restriction on both the intercept and the slope parameters, and

inference being on an arbitrary linear function of the two parameters. The paper

by Meyer (2003) discusses a test for linear regression versus convex regression

while Kopylev and Sinha (2010), primarily motivated by Self and Liang (1985),

develop explicit and useful expressions of the MLEs and LRTs in dimensions two

and three, the entire treatment being asymptotic in nature.

In this paper we revisit this important inference problem in the case of

a standard linear regression model with some linear inequality constraints on

the regression coefficients and develop the LRT for the nullity of just one linear

function when the variance is unknown. Our treatment is exact, and we offer two

solutions. This is in the same spirit as in Mukerjee and Tu (1995). The paper

is organized as follows. In Section 2 we consider the linear regression problem

with two regression coefficients, both being nonnegative, and derive the LRT

for the nullity of one of them. In Section 3 we consider the case of a linear

regression with three regression coefficients, all of which are nonnegative, and

describe the LRT for the nullity of one of them. In both the settings, normality

and independence of errors with an unknown variance are assumed. In each case
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we derive the likelihood ratio test and discuss some aspects of the corresponding

null distribution of the LRT. Results of some simulation studies are reported in

Section 4 in the case of two regression coefficients, comparing the Type I errors of

the usual LRT (without taking into account any correction due to nonnegativity

of regression coefficients) and the proposed LRT, clearly showing the benefit of

the corrections. Such benefits have also been observed and reported in Mukerjee

and Tu (1995).

We end this section with a general observation that in the context of a

linear model

(1.1) y ∼ Nn(Xβ, σ2W) ,

if there are known linear inequality constraints on the regression coefficients β,

and the inference problem is to test the equality of such a linear constraint versus

it is bigger (or smaller), under a suitable (known) matrix transformation we can

always assume without any loss of generality that the inequality constraints as

well as the testing problem depend solely on the regression coefficients themelves.

This is precisely the formulation we adopt in the remainder of the paper. We also

observe an important point from Self and Liang (1985) and Kopylev and Sinha

(2010). Under normality and independence of errors, the maximization of the

likelihood with respect to the entire regression coefficients β, which is is equiva-

lent to the minimization of the familiar normal quadratic form (β− β̃)
′ V(β− β̃)

with respect to the regression coefficients β, where V is the estimates covariance

matrix, can be safely carried out only with respect to the subset of the regres-

sion coefficients which satisfy the inequality constraints, thus completely ignoring

the minimization aspect with respect to the unrestricted regression coefficients.

Hence, although our proposed solutions in this paper are derived for linear re-

gression models with two nonnegative regression coefficients, this formulation can

be adapted for any number of unrestricted regression coefficients!

These results can be very useful in econometrics, extending, for example,

the results of Andrews (1999) and Andrews (2001). Similar methodologies can

also be applied in environmental risk analysis, as it can be seen in Sinha, Kopylev

and Fox (2012).

2. TWO REGRESSION COEFFICIENTS ON THE BOUNDARY

2.1. Model

Consider the linear model

(2.1) y ∼ Nn(Xβ, σ2W) ,
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with unknown parameters β and σ2
, and known matrices X and W. Then the

usual maximum likelihood (ML) estimators of β and σ2
are given by

β̃ = (X′W−1X)
−1X′ W−1y ,(2.2)

σ̃2
=

S

n
, S = (y − Xβ̃)

′ W−1
(y − Xβ̃) .(2.3)

We assume without any loss of generality that β = (β1, β2), and derive

below the likelihood ratio test (LRT) statistic for the hypothesis

(2.4) H0 : β1 = 0 vs. H1 : β1 > 0 ; β1, β2 ≥ 0 .

As mentioned earlier, we point out that any linear regression model with

a linear inequality constraint on the original regression coefficients and a linear

hypothesis on another linear function of them can be reduced to the above setup

by suitable linear transformations of y
¯
. Let Vψ be the inverse of the Fisher

information matrix for ψ = [β1 β2 σ2
], which will have the form

(2.5) Vψ =

[

σ2
(X′ W−1X)

−1 0

0′ 2σ4

n

]

.

All throughout we assume that σ2
is unknown, and we proceed in two ways

to develop a test for H0. Our first approach is based on taking σ2
to be known and

deriving an LRT for H0, and then replacing σ2
by its natural estimate, namely,

the sample residual variance, and checking what kind of properties the resultant

test statistic would possess. This is done by extensive simulation carried out in

Section 4. The second approach is to derive the genuine LRT when σ2
is unknown.

Although the latter test statistic has an explicit form, its null distribution is rather

complicated. We study its properties again by simulation in Section 4. A point

of caution is in order here. Unlike the asymptotic treatments in Self and Liang

(1985) and Kopylev and Sinha (2010), the null distributions of the test statistics

in both the above cases depend on the nuisance parameter β2 (in fact, via β2/σ).

This is in sharp contrast with the contents of all the previous papers!

2.2. σ2 known

The derivation of the LRT in this case essentially follows from Kopylev and

Sinha (2010) who derived it algebraically. We provide below an alternative proof

using some geometrical arguments. Following the results presented in [5], the

LRT statistic for known σ will have the exact form:

(2.6) L = min
β∈C

(β̃−β)
′
(XW−1X′

)(β̃−β) − min
β∈C0

(β̃−β)
′
(X′W−1X′

)(β̃−β) ,
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where C is the cone represented by R
+
0 =

∏2

i=1[0, +∞[ and C0 is the cone repre-

sented by {0}× [0, +∞[.

Upon simplification, we get an equivalent expression for L:

L0 = min
β1,β2≥0

[

v11(β1 − β̃1)
2 − 2 v12(β1 − β̃1)(β2 − β̃2) + v22(β2 − β̃2)

2
]

− min
β2≥0

[

v11β̃
2
1 − 2 v12 β̃1(β2 − β̃2) + v22(β2 − β̃2)

2
](2.7)

where v11, v12 and v22 come from

(2.8) V = (X′W−1X)
−1

=

[

v11 v12

v12 v22

]

.

Note that dividing the estimators β̃1 and β̃2 as well as the parameters β1

and β2 by
√

v11 and
√

v22, respectively, we can rewrite L0 as

ℓ = min
θ1,θ2≥0

[

(θ1 − θ̃1)
2 − 2 ρ(θ1 − θ̃1)(θ2 − θ̃2) + (θ2 − θ̃2)

2
]

− min
θ2≥0

[

(1 − ρ2
) θ̃2

1 + (θ2 − θ̃2.1)
2
](2.9)

where θ = diag

(

1√
v11

, 1√
v22

)

β and θ̃ = diag

(

1√
v11

, 1√
v22

)

β̃, and θ̃2.1 = θ̃2 − ρθ̃1.

It is easy to see that the hypotheses H0 and H1 remain invariant under this

transformation.

2.3. Minimization

Let us assume that ρ > 0 and start with the minimization of Q(θ1, θ2) =

(θ1− θ̃1)
2−2 ρ(θ1− θ̃1)(θ2− θ̃2)+(θ2− θ̃2)

2
. When min{θ̃1, θ̃2} < 0 and θ̃2 ≥ ρθ̃1,

putting

(2.10)

{

x = θ1 − θ̃1

y = θ2 − θ̃2

,

the level curves of the ellipsoid for the d-level curve are given by

(2.11) x2 − 2 ρxy + y2
= d2

and, choosing the positive value,

(2.12) x = ρy +

√

d2 − (1−ρ2)y2 ,

we get

(2.13)
dx

dy
= ρ − (1 − ρ2

)y
√

d2 − (1−ρ2)y2
.
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To have
dx
dy = 0, one must have y = ± ρd√

1−ρ2
. Since the solution we seek is

positive, so

(2.14) x =
d

√

1 − ρ2
.

In order that the vertical tangent coincides with the vertical axis one must

have x = −θ̃1, and so d = −θ̃1

√

1 − ρ2 and y = −θ̃1ρ. Thus,

(2.15)

{

θ1 = 0

θ2 = θ̃2 − ρθ̃1 = θ̃2.1

.

We also have that Q(0, θ̃2.1) = (1 − ρ2
) θ̃2

1. Under these assumptions, sup-

pose we can attain a value smaller than (1− ρ2
) θ̃2

1, say
(

−θ̃1

√

1 − ρ2 − ǫ
)2

, with

ǫ > 0. In that case, the largest value possible for x would be

(2.16) x = −θ̃1 −
ǫ

√

1 − ρ2
,

which implies that

(2.17) θ1 = − ǫ
√

1 − ρ2
< 0 ,

which is not a valid solution for θ1.

Analogously, when min{θ̃1, θ̃2}< 0 and θ̃2 ≤ ρ−1θ̃1 we have (θ1, θ2) = (θ̃1,2, 0)

and Q(θ̃1.2, 0) = (1 − ρ2
) θ̃2

2.

On the other hand, when ρ−1θ̃1 < θ̃2 < ρθ̃1, we take (θ1, θ2) = (0, 0) and

get Q(0, 0) = θ̃2
1 − 2 ρθ̃1θ̃2 + θ̃2

2. If we take any other valid solution, say (ǫ1, ǫ2),

with ǫ1, ǫ2 > 0, it is easy to see that

(2.18) Q(ǫ1, ǫ2) − Q(0, 0) = −2 θ̃2.1ǫ1 − 2 θ̃1.2 ǫ2 + ǫ2
1 + ǫ2

2 − 2 ρǫ1ǫ2 > 0 ,

and so the optimal solution is in fact (0, 0). Summing up the various cases, the

first term of ℓ, written as Q1, simplifies to

(2.19)
Q1

σ2(1 − ρ2)
=































0 ; θ̃1 > 0, θ̃2 > 0

θ̃2
1 ; θ̃2.1 > 0, θ̃1 < 0

θ̃2
2 ; θ̃1.2 > 0, θ̃2 < 0

θ̃2
1 − 2ρθ̃1θ̃2 + θ̃2

2

1 − ρ2
; θ̃1.2 < 0, θ̃2.1 < 0

.

Under the null hypothesis, i.e., when θ1 = 0, one gets the likelihood

(2.20) ℓ0 = (1 − ρ2
) θ̃2

1 + (θ2 − θ̃2.1)
2 .
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It is easy to see that the minimum for this ℓ0 is achieved when θ2 = θ̃2.1 for

θ̃2.1 ≥ 0, and θ2 = 0 for θ̃2.1 < 0. So, the second term of ℓ define Q0 as

(2.21)
Q0

σ2(1 − ρ2)
=











θ̃2
1 ; θ̃2.1 > 0

θ̃2
1 − 2 ρθ̃1θ̃2 + θ̃2

2

1 − ρ2
; θ̃2.1 < 0

.

2.4. Likelihood ratio with known σ2

Combining the above results, it follows that the LRT rejects H0 for large

values of λ given by

(2.22) λ =



















































θ̃2
1 ; θ̃2.1 > 0, θ̃1 > 0

θ̃2
2.1 + (1 − ρ2

)θ̃2
1

2(1 − ρ2)
; θ̃2.1 < 0, θ̃2 > 0

0 ; θ̃2.1 > 0, θ̃1 < 0

θ̃2
1.2

1 − ρ2
; θ̃1.2 > 0, θ̃2 < 0

0 ; θ̃2.1 < 0, θ̃1.2 < 0

.

The above representation of the difference of the minimum of the two

quadratic forms is exactly similar to what appears in Kopylev and Sinha (2010).

At this point two things need to be settled. First, the null distribution of λ, and

then the fact that σ2
is unknown and it needs to be replaced by an estimate.

Since under H0 : β1 = 0 and β2 ≥ 0 is unknown, it is obvious that the exact null

distribution of our LRT λ will depend on β2! This is indeed a major difference

between our result and that of Kopylev and Sinha (2010) where the argument is

asymptotic in nature, resulting in the null distribution of LRT being independent

of σ as well as any nuisance parameter. Below we assume that β2 = 0 and derive

the null distribution of LRT still assuming that σ2
is known, and then rescale

λ to take care of unknown σ2
. We will call this the modified LRT. Simulation

studies carried out in Section 4 about the Type I error of the modified LRT for

unknown β2 and unknown σ2
reveal that the performance of the modified LRT

is quite good.

Write V1 = θ̃1, V2 = θ̃2, W1 =
θ̃1.2√
1−ρ2

and W2 =
θ̃2.1√
1−ρ2

, and note that under

H0, V1 ∼ N(0, 1), cov[V1, W2] = cov[V2, W1] = 0, and V2 ∼ N [δ, 1] with δ > 0.
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We now express

P
[

λ < x
]

= P
[

V 2
1 < x ∧ V1 > 0 ∧ W2 > 0

]

+ P

[

V 2
1 +W 2

2 < x ∧ W2 >− ρ

1−ρ
V1 ∧ W2 > 0

]

+ P
[

W 2
1 < x ∧ V2 < 0 ∧ W1 > 0

]

+ P
[

V1 < 0 ∧ W1 > 0 ∧ W2 < 0
]

.

(2.23)

The computation of the above probabilities can be somewhat complicated

using Cartesian coordinates. Below we use the familiar polar coordinates.

It is well known that a random two dimensional vector whose components

are two independent normal vectors with null mean value and variance σ2
has

the same distribution as the vector

(2.24)

(

R cos U
R sin U

)

where

R ∼
√

σ2χ2
2 ,(2.25)

U ∼ Unif(0, 2π) ,(2.26)

these variables being independent. In fact, the following equality can be obtained:

(2.27)

∫∫

A

e
x
2
+y

2

2σ2

2πσ2
dx dy =

∫∫

Λ

r
e

r
2

2σ2

2πσ2
du dr ,

where A is a subset of R
2

and Λ is a subset of Ω = [0,∞[×[0, 2π[. The polar

coordinate transformation

(2.28) p(r, u) =

{

x = r cos u

y = r sin u

guarantees a bijective function between R
2

and Ω (for (0, 0), take r = u = 0).

Hence, applying the polar transformation on the pair (V1, W2) 7→ (R, U)

and noting that (V1, W2) and (V2, W1) are pairs of independent standard normal

variables, one can rewrite (2.23) as

P

[

ℓ

σ2
< x

]

= P
[

V1 < 0 ∧ W1 > 0 ∧ W2 < 0
]

+
1

2
P
[

χ2
1 < x

]

+ P
[

R2 < x ∧ 2π−arcsin ρ < U < 2π
]

,

P

[

ℓ

σ2
< x

]

=
1

2
− arcsin ρ

2π
+

1

2
P
[

χ2
1 < x

]

+
arcsin ρ

2π
P
[

χ2
2 < x

]

,

(2.29)

noting that arctan
−ρ
1−ρ = arcsin ρ. It is then established the following.
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Theorem 2.1. The exact distribution of the LRT statistic under H0 : θ1=0

vs H1 : θ1 > 0, for θ2 = 0 and known σ2 is a mixture of χ2
0, χ2

1 and χ2
2 with

coefficients 1
2
− p, 1

2
and p, respectively, with

p =
arcsin(ρ)

2π
,

where ρ the correlation coefficient between θ̃1 and θ̃2.

Up until now, it was assumed that the variance component σ2
was known,

which in practice is rarely the case. Take

(2.30) S0 =
nS

n − p
,

where S, defined in (2.3) is the maximum likelihood estimator for σ2
, which is

independent of θ̃1 and θ̃2, and observe that

(2.31) (n − p)S ∼ σ2χ2
n−p .

Hence, one can use S0 to enable the computation of the distribution of ℓ.

Thus, taking the expression in (30) and multiplying ℓ by S0, one gets

P
[

ℓ < (1−ρ2
)x

]

= P
[

V1 < 0 ∧ W1 > 0 ∧ W2 < 0
]

+
1

2
P
[

F1,n−p < (1−ρ2
)x

]

+ P

[

R2

S0

< (1−ρ2
)x ∧ 2π−arcsin ρ < U < 2π

]

,

P
[

ℓ < x
]

=
1

2
− arcsin ρ

2π
+

1

2
P
[

F1,n−p < (1−ρ2
)x

]

+
arcsin ρ

2π
P
[

F2,n−p < (1−ρ2
)x

]

.

(2.32)

So, another version of Theorem 2.1 for the rescaled or modified LRT is

given by

Theorem 2.2. The exact distribution of the LRT under H0 : θ1 = 0 vs

H1 : θ1 > 0, for θ2 = 0, is a mixture of F0, F1,n−p and F2,n−p with coefficients
1
2
− p, 1

2
and p, respectively, with

p =
arcsin(ρ)

2π
,

where ρ the correlation coefficient between θ̃1 and θ̃2.

Tables 1, 2 and 3 represent the rejection probability for some values of β1,

taking α = 0.05.
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2.5. LRT when σ2 is unknown

In this section we derive the LRT for H0 when the error variance σ2 > 0 is

unknown. Write

(y − Xβ)
′W−1

(y − Xβ) = (y − Xβ̂)
′W−1

(y − Xβ̂) + Q(β)

= SSres + Q(β)
(2.33)

where β̂ is the usual weighted least squares estimate of β defined in (3), and

Q(β) = (β̂−β)
′
(XW−1X′

)(β̂−β). Then it easily follows that the LRT statistic λ

for H0 defined as the ratio of null-restricted maximum of the likelihood of y to

the unrestricted maximum of the same likelihood is given by

(2.34) λ =

[

SSres + Q1

SSres + Q0

]n/2

where Q1 and Q0 are the unrestricted and restricted values of the quadratic Q(β)

under the conditions β1, β2 ≥ 0 and β1 = 0, β2 ≥ 0, respectively.

Using the expressions for Q1 and Q0 from (20) and (22), respectively, and

noting that our exact LRT rejects H0 for large values of ∆ =
SSres+Q0

SSres+Q1
, we simplify

∆ as

(2.35) ∆ =



































































SSres

SSres + θ̃2
1

; θ̃2.1 > 0, θ̃1 > 0

SSres

SSres +
θ̃2
1
−2ρθ̃1θ̃2+θ̃2

2

1−ρ2

; θ̃2.1 < 0, θ̃2 > 0

1 ; θ̃2.1 > 0, θ̃1 < 0

SSres + θ̃2
2

SSres +
θ̃2
1
−2ρθ̃1θ̃2+θ̃2

2

1−ρ2

; θ̃1.2 > 0, θ̃2 < 0

1 ; θ̃2.1 < 0, θ̃1.2 < 0

.

The crux of the problem now is to derive the null distribution of ∆. It is

obvious that although the null distribution of ∆ is independent of σ2
, it does de-

pend on the unknown second regression coefficient β2 ≥ 0 as in the previous case.

Finding this null distribution even for a specified β2 turns out to be extremely

difficult, and we can present only some simulation results for this purpose.

Tables 7, 8 and 9 represent the rejection probability for some values of β1

and β2, taking α = 0.05.

Based on these simulation results, we conclude that this test behaves very

good, maintaining test size and gaining power compared to the usual F test and

the ad-hoc test described earlier.
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3. NUMERICAL RESULTS

3.1. Ad-hoc test

A set of simulations was performed to evaluate the power performance of

the ad-hoc test when σ2
is unknown. The model assumed was

(3.1) yj = β0 + β1x1,j + β2x2,j + ej ,

with j = 1, ..., 33 and β1, β2 ≥ 0. Considering that ej ∼ N(0, σ2
), the procedure

consists in generating values for θ̃1, θ̃2 and S0, comparing the result of the usual

F test with the derived test for H0 : β1 = 0 vs H1 : β1 > 0. The procedure was

repeated 10000 times to obtain an empirical rejection probability. The chosen

values for the parameters were:

β1 = 0, 1, 3, 10

β2 = 0, 1, 3, 10, 30

ρ = 0, 0.1, 0.25, 0.5

σ2
= 1 .

(3.2)

The results appear in Tables 1 through 3.

Table 1: Rejection probability of ad-hoc test: ρ = 0.

β1\β2 0 1 3 10 30

0 0.062 0.041 0.056 0.052 0.055

1 0.232 0.275 0.251 0.228 0.243

3 0.900 0.891 0.899 0.905 0.913

10 1.000 1.000 1.000 1.000 1.000

Table 2: Rejection probability of ad-hoc test: ρ = 0.25.

β1\β2 0 1 3 10 30

0 0.053 0.045 0.044 0.053 0.045

1 0.218 0.229 0.232 0.266 0.238

3 0.879 0.853 0.904 0.900 0.860

10 1.000 1.000 1.000 1.000 1.000
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Table 3: Rejection probability of ad-hoc test: ρ = 0.5.

β1\β2 0 1 3 10 30

0 0.045 0.035 0.053 0.053 0.050

1 0.263 0.225 0.224 0.237 0.232

3 0.917 0.865 0.892 0.899 0.901

10 1.000 1.000 1.000 1.000 1.000

For comparison sake, we also present simulation results for the usual F test

(Tables 4 to 6).

Table 4: Rejection probability of F test: ρ = 0.

β1\β2 0 1 3 10 30

0 0.0477 0.0471 0.0468 0.0481 0.0460

1 0.1646 0.1554 0.1653 0.1675 0.1592

3 0.8320 0.8293 0.8273 0.8276 0.8210

10 1.0000 1.0000 1.0000 1.0000 1.0000

Table 5: Rejection probability of F test: ρ = 0.25.

β1\β2 0 1 3 10 30

0 0.0471 0.0512 0.0460 0.0474 0.0491

1 0.1634 0.1648 0.1624 0.1588 0.1577

3 0.8240 0.8296 0.8297 0.8258 0.8317

10 1.0000 1.0000 1.0000 1.0000 1.0000

Table 6: Rejection probability of F test: ρ = 0.5.

β1\β2 0 1 3 10 30

0 0.0464 0.0504 0.0490 0.0494 0.0500

1 0.1544 0.1551 0.1694 0.1593 0.1630

3 0.8308 0.8275 0.8253 0.8280 0.8288

10 1.0000 1.0000 1.0000 1.0000 1.0000

The power increase for the ad-hoc test over the F test is evidently very

significant for β1 > 0.
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3.2. Exact LR test with unknown σ2

A batch of simulations was run for the exact test ∆. The set of parameters

considered, the same as for the previous batch of simulations, was:

β1 = 0, 1, 3.10

β2 = 0, 1, 3, 10, 30

ρ = 0, 0.25, 0.5

σ2
= 1 .

(3.3)

The results appear in Tables 7 to 9.

Table 7: Rejection probability of exact LR test: ρ = 0.

β1\β2 0 1 3 10 30

0 0.0470 0.0526 0.0495 0.0495 0.0498

1 0.2476 0.2548 0.2485 0.2493 0.2466

3 0.9030 0.9015 0.9000 0.8961 0.8998

10 1.0000 1.0000 1.0000 1.0000 1.0000

Table 8: Rejection probability of exact LR test: ρ = 0.25.

β1\β2 0 1 3 10 30

0 0.0490 0.0499 0.0484 0.0521 0.0443

1 0.2702 0.2773 0.2512 0.2552 0.2514

3 0.9133 0.9063 0.8963 0.9012 0.8943

10 1.0000 1.0000 1.0000 1.0000 1.0000

Table 9: Rejection probability of exact LR test: ρ = 0.5.

β1\β2 0 1 3 10 30

0 0.0486 0.0592 0.0452 0.0459 0.0541

1 0.2769 0.2647 0.2511 0.2403 0.2564

3 0.9485 0.9324 0.8949 0.8934 0.9031

10 1.0000 1.0000 1.0000 1.0000 1.0000

Again, there is a clear gain of power over the usual F test for β1 > 0.
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3.2.1. Critical Values

The critical values for the exact likelihood ratio test were also obtained

(Table 10).

Table 10: 5% quantiles.

β2\ρ 0 0.25 0.5

0 0.9126540 0.9045819 0.8939074

1 0.9136219 0.9139177 0.9121665

3 0.9120875 0.9121392 0.9100027

10 0.9111222 0.9145002 0.9092603

30 0.9108427 0.9106236 0.9129284

It is easy to see that the critical values across the different values of β2 are

similar, and stabilize as this parameter increases. This leads us to believe that

the use of these critical values would be valid for a wide range of unknown values

of β2.
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bronicer@up.poznan.pl

Ma lgorzata Graczyk

– Department of Mathematical and Statistical Methods,
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1. INTRODUCTION

Let us suppose we want to estimate the weights of v objects by weighing

them b times using a spring balance, v ≤ b. Suppose, that the results of this

experiment can be written as

(1.1) y = Xw + e ,

where y is an b × 1 random vector of the observations, X ∈ Φb×v(0, 1), where

Φb×v(0, 1) denotes the class of b× v matrices X = (xij) of known elements xij = 1

or 0 according as in the ith weighing operation the jth object is placed on the

pan or not. Next, w is a v × 1 vector of unknown measurements of objects and e

is a b× 1 random vector of errors. We assume, that E(e) = 0b and Var(e) = σ2G,

where 0b denotes the b× 1 vector with zero elements everywhere, G is the known

b × b diagonal positive definite matrix of the form

(1.2) G = g
[

(1 − ρ) Iv + ρ1v 1
′

v

]

, g > 0,
−1

b − 1
< ρ < 1 .

It should be noticed that the conditions on the values of g and ρ are equivalent

to the matrix G being positive definite. From now on, we will consider G on

the form 1.2 only. Moreover, let note, G−1
=

1

g(1−ρ)

[

Ib − ρ
1+ρ(b−1)

1b1
′

b

]

. For

the estimation of w we use the normal equations Mw = X
′

G−1y, where M =

X
′

G−1X is called the information matrix of ŵ. A spring balance weighing design

is singular or nonsingular, depending on whether the matrix M is singular or

nonsingular, respectively. From the assumption that G is positive definite it

follows that matrix M is nonsingular if and only if matrix X is full column rank.

If matrix M is nonsingular, then the generalized least squares estimator of w is

given by formula ŵ = M−1X
′

G−1y and Var(ŵ) = σ2M−1. Some considerations

apply to determining the optimal weighing designs are shown in many books
1
.

Some problems related to optimality of the designs are presented in several papers
2

for G = In, whereas in Katulska and Rychlińska ([9]) for the diagonal matrix G.

In this paper, we emphasize a special interest of the existence conditions

for E-optimal design, i.e. minimizing the maximum eigenvalue of the inverse of

the information matrix. The statistical interpretation of E-optimality is the fol-

lowing: the E-optimal design minimizes the maximum variance of the compo-

nent estimates of the parameters. It can be described in terms of the maximum

eigenvalue of the matrix M−1
as λmax(M

−1
) or equivalently as λmin(M). Hence,

for the given variance matrix of errors σ2G, any design X ∈ Φb×v(0, 1) is

E-optimal if λmax(M
−1

) is minimal. Moreover, if λmax(M
−1

) attains the lowest

bound, then X ∈ Φb×v(0, 1) is called regular E-optimal. Notice that if the design

1See, Raghavarao ([13]), Banerjee ([1]), Shah and Sinha ([15]), Pukelsheim ([12]).
2Jacroux and Notz ([8]), Neubauer and Watkins ([11]).
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X ∈ Φb×v(0, 1) with the variance matrix of errors σ2G is regular E-optimal then

is also E-optimal. But the inverse implication may not be true. Moreover, the

E-optimal design in the set of all design matrices Φb×v(0, 1) exists but the regular

E-optimal design may not exist.

The problem presented in this paper is focused to determining such matrix

that λmax(M
−1

) takes the minimal value over all possible matrices in Φb×v(0, 1)

for given matrix G.

2. REGULAR E-OPTIMAL SPRING BALANCE WEIGHING

DESIGN

In this section we give some new results concerning the lower bound for

λmax(M
−1

) depending on ρ and number of objects v is even or odd. Additionally,

let Π be the set of all v × v permutation matrices. We shall denote by M̄ the

average of M over all elements of Π, i.e. M̄ =
1
v!

∑

P∈Π
P

′

MP. It is not difficult

to see that

M̄ =
v tr(M) − 1

′

vM1v

v(v − 1)
Iv +

1
′

vM1v − tr(M)

v(v − 1)
1v 1

′

v ,

moreover, tr(M) = tr(M̄) and 1
′

vM1v = 1
′

vM̄1v. The matrix M̄ has two eigen-

values µ1 =
v tr(M)−1

′

v
M1v

v(v−1)
with the multiplicity v − 1 and µ2 =

1
′

v
M1v

v with the

multiplicity 1. Let

(2.1) M =
1

g(1 − ρ)

[

X
′

X − ρ

1 + ρ(b − 1)
X

′

1b1
′

bX

]

.

For X ∈ Φb×v(0, 1) and G we have tr(M) =
1

g(1−ρ)

[

1
′

vr − ρ
1+ρ(b−1)

r
′

r
]

and

1
′

vM1v =
1

g(1−ρ)

[

k
′

k − ρ
1+ρ(b−1)

(

1
′

bk
)2

]

, where X1v = k, X
′

1b = r, 1
′

vr = 1
′

bk.

From above, eigenvalues of M̄ are

µ1 =
1

v(v − 1) g(1 − ρ)

[

v1
′

bk − k
′

k +
ρ

1 + ρ(b − 1)

(

(1
′

bk)
2 − v r

′

r
)

]

,

µ2 =
1

v g(1 − ρ)

[

k
′

k − ρ

1 + ρ(b − 1)

(

1
′

bk
)2

]

.

Thus the matrix M̄−1
has also two eigenvalues λ1 =

1
µ1

and λ2 =
1
µ2

. Next,

comparing these two eigenvalues we become following lemma.

Lemma 2.1. For any nonsingular spring balance weighing design X ∈
Φb×v(0, 1) with the variance matrix of errors σ2G, the matrix M̄−1 has two

eigenvalues λ1 and λ2 and moreover
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(i) λ1 > λ2 if and only if ρ <
k
′

k−1
′

b
k

(b−1) (1
′

b
k−k

′
k)+(1

′

b
k)2−r

′
r

,

(ii) λ1 = λ2 if and only if ρ =
k
′

k−1
′

b
k

(b−1) (1
′

b
k−k

′
k)+(1

′

b
k)2−r

′
r

,

(iii) λ1 < λ2 if and only if ρ >
k
′

k−1
′

b
k

(b−1) (1
′

b
k−k

′
k)+(1

′

b
k)2−r

′
r

.

Proof: We have

µ1−µ2 =
1

gv(v−1)(1−ρ)
·

·
[

v1
′

bk−k
′

k+
ρ

1+ρ(b−1)

(

(1
′

bk)
2− vr

′

r
)

− 1

gv(1−ρ)

(

k
′

k− ρ
1+ρ(b−1)

(1
′

bk)
2
)

]

=
1

g(v−1)(1−ρ) (1+ρ(b−1))

[

(

1
′

bk − k
′

k
)(

1 + ρ(b − 1)

)

+ ρ
(

(1
′

bk)
2 − r

′

r
)

]

.

Because g(v − 1)(1 − ρ)(1 + ρ(b − 1)) > 0 then µ1 − µ2 > 0 if and only if

ρ
[

(b− 1)(1
′

bk− k
′

k) + (1
′

bk)
2 − r

′

r
]

> k
′

k− 1
′

bk and we obtain the Lemma.

Lemma 2.1 imply that in order to determine E-optimal design we have to

delimit the lowest bound of eigenvalues of M̄−1
according to the value of ρ.

Theorem 2.1. Let v be even. In any nonsingular spring balance weighing

design X ∈ Φb×v(0, 1) with the variance matrix of errors σ2G

(i) if ρ ∈
(

−1
b−1

, v−2
b+v−2

)

then λmax(M
−1

) ≥ 4g(v−1)(1−ρ)

bv and the equality

is fulfilled if and only if X1v =
v
2
1b ,

(ii) if ρ ∈
(

v−2
b+v−2

, 1

)

then λmax(M
−1

) > g(1+ρ(b−1))

bv .

Proof: In order to determine regular E-optimal spring balance weighing

design we have to give the lowest bound of the maximal eigenvalue of the matrix

M−1
. Let M̄ denote the average of M over all elements of Π for the design X ∈

Φb×v(0, 1) with the variance matrix of errors σ2G. From the monotonicity theo-

rem given by Rao and Rao (2004) it follows λmax(M̄
−1

) ≤ λmax(M
−1

). The proof

falls naturally in two parts according to the value ρ in 1.2. If ρ ∈
(

−1
b−1

, v−2
b+v−2

)

then λmax(M̄
−1

) =
gv(v−1)(1−ρ)(1+ρ(b−1))

v(1+ρ(b−1))1
′

b
k−(1+ρ(b−1))k

′
k+ρ(1

′

b
k)2−ρvr

′
r
. As we want to min-

imize λmax(M̄
−1

), we should find the maximum value for

A = v
(

1 + ρ(b − 1)
)

1
′

bk −
(

1 + ρ(b − 1)
)

k
′

k + ρ(1
′

bk)
2 − ρ vr

′

r .
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If p is even

(2.2) A ≤ v
(

1 + ρ(b − 1)
)

1
′

bk −
(

1 + ρ(b − 1)
)

bk2
+ ρ(1

′

bk)
2 − ρ v2r2

=

(2.3) v
(

1+ρ(b−1)
)

bk−
(

1+ρ(b−1)
)

bk2
+ρbk2−ρv2r2 ≤ 1

4
bv2

(

1+ρ(b−1)
)

.

Hence λmax(M
−1

) ≥ 4g(v−1)(1−ρ)

bv . The equality in inequality 2.2 holds if and

only if k1 = k2 = ··· = kb = k and r1 = r2 = ··· = rv = r, whereas the equality

in 2.3 is fulfilled if and only if k =
v
2
. If ρ ∈

(

v−2
b+v−2

, 1

)

then λmax(M̄
−1

) =

gv(1−ρ)(1+ρ(b−1))

k
′
k+ρ(b−1)k

′
k−ρ(1

′

b
k)2

. So, we obtain λmax(M
−1

) > g(1+ρ(b−1))

bv . Thus the result.

Theorem 2.2. Let v be odd. In any nonsingular spring balance weighing

design X ∈ Φb×v(0, 1) with the variance matrix of errors σ2G

(i) if ρ ∈
(

−1
b−1

, v(v−3)

b(v+1)+v(v−3)

)

then λmax(M
−1

) ≥ 4gv(1−ρ)

b(v+1)
and the equal-

ity is satisfied if and only if X1v =
v−1
2

1b or X1v =
v+1
2

1b ,

(ii) if ρ ∈
(

v(v−3)

b(v+1)+v(v−3)
, v

b+v

)

then λmax(M
−1

) ≥ 4gv(1−ρ)

b(v+1)
and the equal-

ity is satisfied if and only if X1v =
v+1
2

1b ,

(iii) if ρ ∈
(

v
b+v , 1

)

then λmax(M
−1

) > g(1+ρ(b−1)

bv .

Proof: The proof is similar to given in Theorem 2.1 one.

Now, we can formulate the definition of the regular E-optimal spring bal-

ance weighing design. So, we have

Definition 2.1. Any nonsingular spring balance weighing design X ∈
Φb×v(0, 1) with the variance matrix of errors σ2G is regular E-optimal if the

eigenvalues of the information matrix attains the bounds of Theorems 2.1 and

2.2, i.e.

(i) v is even and ρ ∈
(

−1
b−1

, v−2

b+v−2)

)

if λmax(M
−1

) =
4g(v−1)(1−ρ)

bv ,

(ii) v is odd and ρ ∈
(

−1
b−1

, v
b+v

)

if λmax(M
−1

) =
4gv(1−ρ)

b(v+1)
.

A direct consequence of above considerations is

Theorem 2.3. Any nonsingular spring balance weighing design X ∈
Φb×v(0, 1) with the variance matrix of errors σ2G is regular E-optimal design

if and only if

(1) v is even and ρ ∈
(

−1
b−1

, v−2

b+v−2)

)

X
′

G−1X =
1

g(1−ρ)

[

bv
4(v−1)

Iv +
b(v−2)

4(v−1)
1v1

′

v − ρb2

4(1+ρ(b−1))
1v1

′

v

]

and

X1v =
v
2
1b,
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(2) p is odd and

(2.1) ρ ∈
(

−1
b−1

, v(v−3)

b(v+1)+v(v−3)

)

(2.1.1) X
′

G−1X =
1

g(1−ρ)

[

b(v+1)

4v Iv +
b(v−3)

4v 1v1
′

v− ρb2(v−1)2

4v2(1+ρ(b−1))
1v1

′

v

]

and X1v =
v−1
2

1b , or

(2.1.2) X
′

G−1X =
1

g(1−ρ)

[

b(v+1)

4v Iv +
b(v+1)

4v 1v1
′

v − ρb2(v+1)2

4v2(1+ρ(b−1))
1v1

′

v

]

and X1v =
v+1
2

1b ,

(2.2) ρ ∈
(

v(v−3)

b(v+1)+v(v−3)
, v

b+v

)

X
′

G−1X =
1

g(1−ρ)

[

b(v+1)

4v Iv +
b(v+1)

4v 1v1
′

v − ρb2(v+1)2

4v2(1+ρ(b−1))
1v1

′

v

]

and X1v =
v+1
2

1b.

Proof: Since the proofs for even and odd v are similar, we give the proof

only for the case of even v and ρ ∈
(

−1
b−1

, v−2
b+v−2

)

. Notice, that λmax(M
−1

) at-

tains the lowest bound in Theorem 2.1(i) if equalities λmax(M
−1

) = λmax(M̄
−1

)

and v =
k
2

hold. It follows easily that tr(M) =
bv(2+ρ(b−2))

4g(1−ρ)(1+ρ(b−1))
and 1

′

vM1v =

bv2

4g(1+ρ(b−1))
. We apply formulas on µ1 and µ2 to give the form of M. Thus the

Theorem.

It can be noted that g = 1, ρ = 0 and G = Ib, we become the equalities

given by Jacroux and Notz ([8]).

Theorem 2.4. In any nonsingular spring balance weighing design X ∈
Φb×v(0, 1) with the variance matrix of errors σ2G, if

(i) v is even and ρ ∈
(

v−2
b+v−2

, 1

)

or

(ii) v is odd and ρ ∈
(

v
b+v , 1

)

,

then regular E-optimal spring balance weighing design does not exist.

Proof: Since the proofs for even v and odd v are similar, we shall only

give the proof for the case odd v. If ρ ∈
(

v
b+v , 1

)

then the lowest bound of the

maximal eigenvalue of the design matrix X is given in Theorem 2.2(iii). The

lowest bound is attained if and only if k = v. It means X = 1b1
′

v. Such matrix

is singular one. Thus the regular E-optimal design does not exist.

Theorem 2.5. Any nonsingular spring balance weighing design X ∈
Φb×v(0, 1) with the variance matrix of errors σ2G for ρ =

p(k−1)

n(p−k)+p(k−1)
, k =

1, 2, ..., v
2

for even v or k = 1, 2, ..., v+1
2

for odd v is regular E-optimal design if

and only if

X
′

X =

(

nk

p
− nk(k − 1)

p(p − 1)

)

Iv +
nk(k − 1)

p(p − 1)
1

′

v1v .
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Proof: Let us take into consideration the case given in Lemma 2.1(ii).

λ1 = λ2 = λ =
1
µ if and only if ρ =

k
′

k−1
′

b
k

(b−1)(1
′

b
k−k

′
k)+(1

′

b
k)2−r

′
r
. Now, we have to

consider two cases v is even and v is odd. For both v the proofs are similar, so we

give the case for even v, only. According to the proof of Theorem 2.1, the equal-

ity in 2.2 holds if and only if k1 = k2 = ··· = kb = k and r1 = r2 = ··· = rv = r,

for k = 1, 2, ..., v
2
. Hence ρ =

p(k−1)

n(p−k)+p(k−1)
. From the above results M̄ = µIv.

Thus µIv =
1

g(1−ρ)

(

X
′

X − ρn2k2

v2(1+ρ(b−1))
1v1

′

v

)

and X
′

X =
nk(p−k)

p(p−1)
I+

nk(k−1)

p(p−1)
1v1

′

v.

Putting ρ and µ =
nk(p−k)

g(1−ρ)p(p−1)
we obtain the form of the matrix X

′

X. If k > v
2
,

then from Theorem 2.4 regular E-optimal spring balance weighing design does

not exist.

3. CONSTRUCTION OF THE REGULAR E-OPTIMAL DESIGN

For the construction of the regular E-optimal spring balance weighing de-

sign, from all possible block designs, we choose the incidence matrices of the

balanced incomplete block designs and group divisible designs. The definitions

of these block designs are given in Raghavarao and Padgett ([14]).

Theorem 3.1. Let N be the incidence matrix of the balanced incomplete

block design with the parameters

(i) v = 2t, b = 2(2t − 1), r = 2t − 1, k = t, λ = t − 1 or

(ii) v = 2t, b =
(

2t
t

)

, r =
(

2t−1

t−1

)

, k = t, λ =
(

2(t−1)

t−2

)

,

t = 2, 3, ... . Then, any X = N
′∈Φb×v(0, 1) with the variance matrix of errors σ2G

for ρ ∈
(

−1
b−1

, v−2
b+v−2

)

is the regular E-optimal spring balance weighing design.

Proof: An easy computation shows that the matrix X = N
′

satisfies (1)

of Theorem 2.3.

Now, let

(3.1) X =

[

N
′

1

N
′

2

]

,

where Nu is the incidence matrix of the group divisible design with the same as-

sociation scheme with the parameters v, bu, ru, k =
v
2
, λ1u, λ2u, u = 1, 2. Fur-

thermore, let the condition

(3.2) λ11 + λ12 = λ21 + λ22 = λ
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be satisfied. For X in 3.1, b = b1 + b2. The limitation on the t and s given in next

Theorem 3.2 follow from the restrictions: r, k ≤ 10 given in Clatworthy ([5]).

Theorem 3.2. Let Nu, u = 1, 2, be the incidence matrix of the group

divisible block design with the same association scheme and with the parameters

(1) v = 4, k = 2 and

(1.1) b1 = 2(3t+1), r1 = 3t+1, λ11 = t+1, λ21 = t, t = 1, 2, 3, and

b2 = 2(3s + 2), r2 = 3s + 2, λ12 = s, λ22 = s + 1, s = 0, 1, 2,

(1.2) b1 = 2(3t + 2), r1 = 3t + 2, λ11 = t + 2, λ21 = t, t = 1, 2, and

b2 = 2(3s + 4), r2 = 3s + 4, λ12 = s, λ22 = s + 2, s = 0, 1, 2,

(1.3) b1 = 2(t + 3), r1 = t + 3, λ11 = t + 1, λ21 = 1 and b2 = 4t,

r2 = 2t, λ12 = 0, λ22 = t, t = 1, 2, ..., 5,

(1.4) b1 = 16, r1 = 8, λ11 = 0, λ21 = 4 and b2 = 2(3s+4), r2 = 3s+4,

λ12 = s + 4, λ22 = s, s = 1, 2,

(1.5) b1 = 18, r1 = 9, λ11 = 5, λ21 = 2 and b2 = 6(s+2), r2 = 3(s+2),

λ12 = s, λ22 = s + 3, s = 0, 1,

(2) v = 6, k = 3 and

(2.1) b1 = 4t, r1 = 2t, λ11 = 0, λ21 = t and b2 = 6t, r2 = 3t, λ12 = 2t,

λ22 = t, t = 1, 2, 3,

(2.2) b1 = 2(2t+5), r1 = 2t+5, λ11 = t+1, λ21 = t+2 and b2 = 6t,

r2 = 3t, λ12 = t + 1, λ22 = t, t = 1, 2,

(2.3) b1 = 12, r1 = 6, λ11 = 4, λ21 = 2 and b2 = 2(5s+4), r2 = 5s+4,

λ12 = 2s, λ22 = 2(s + 1), s = 0, 1,

(2.4) b1 = 16, r1 = 8, λ11 = 4, λ21 = 3 and b2 = 2(5s+2), r2 = 5s+2,

λ12 = 2s, λ22 = 2s + 1, s = 0, 1,

(3) v = 8, k = 4 and

(3.1) b1 = 4(t+1), r1 = 2(t+1), λ11 = 0, λ21 = t+1 and b2 = 4(6−t),

r2 = 2(6 − t), λ12 = 6, λ22 = 5 − t, t = 1, 2, 3,

(3.2) b1 = 2(3t + 2), r1 = 3t + 2, λ11 = t + 2, λ21 = t + 1 and b2 =

6(4 − t), r2 = 3(4 − t), λ12 = 4 − t, λ22 = 5 − t, t = 1, 2,

(4) v = 10, k = 5 and b1 = 8t, r1 = 4t, λ11 = 0, λ21 = 2t and b2 = 10t,

r2 = 5t, λ12 = 4t, λ22 = 2t, t = 1, 2,

(5) v = 2(2t + 1), k = 2t + 1 and b1 = 4t, r1 = 2t, λ11 = 0, λ21 = t and

b2 = 2(2t + 1), r2 = 2t + 1, λ12 = 2t, λ22 = t, t = 1, 2, 3, 4,

(6) v = 4(t + 1), k = 2(t + 1) and b1 = 2(2t + 1), r1 = 2t + 1, λ11 = 2t + 1,

λ21 = t and b2 = 4(t+1), r2 = 2(t+1), λ12 = 0, λ22 = t+1, t = 1,2,3,4.

Then any X ∈ Φb×v(0, 1) in the form 3.1 with the variance matrix of errors σ2G

for ρ ∈
(

−1
b−1

, v−2
b+v−2

)

is the regular E-optimal spring balance weighing design.
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Proof: This is proved by checking that the matrix X in 3.1 satisfies (1) of

Theorem 2.3.

Theorem 3.3. Let N be the incidence matrix of balanced incomplete

block design with the parameters

(i) v = 2t + 1, b = 2(2t + 1), r = 2(t + 1), k = t + 1, λ = t + 1,

(ii) v = b = 4t2 − 1, r = k = 2t2, λ = t2,

(iii) v = b = 8t + 7, r = k = 4(t + 1), λ = 2(t + 1),

(iv) v = b = 4t − 1, r = k = 2t, λ = t,

(v) v = 4t + 1, b = 2(4t + 1), r = 2(2t + 1), k = λ = 2t + 1,

(vi) v = 2t + 1, b =
(

2t+1

t+1

)

, r =
(

2t
t

)

, k = t + 1, λ =
(

2t−1

t−1

)

,

t = 1, 2, ... . Then any X = N
′ ∈ Φb×v(0, 1) with the variance matrix of errors

σ2G for ρ ∈
(

−1
b−1

, v
b+v

)

is the regular E-optimal spring balance weighing design.

Proof: For X = N
′ ∈ Φb×v(0, 1) the equalities (2.1.2) and (2.2) of Theo-

rem 2.3 are satisfied.

Theorem 3.4. Let N be the incidence matrix of balanced incomplete

block design with the parameters

(i) v = 2t + 1, b = 2(2t + 1), r = 2t, k = t, λ = t − 1, t = 2, 3, ...

(ii) v = b = 4t2 − 1, r = k = 2t2 − 1, λ = t2 − 1, t = 2, 3, ...

(iii) v = b = 8t + 7, r = k = 4t + 3, λ = 2t + 1, t = 1, 2, ...

(iv) v = b = 4t − 1, r = k = 2t − 1, λ = t − 1, t = 2, 3, ...

(v) v = 4t + 1, b = 2(4t + 1), r = 4t, k = 2t, λ = 2t − 1, t = 1, 2, ...

(vi) v = 2t + 1, b =
(

2t+1

t+1

)

, r =
(

2t
t−1

)

, k = t, λ =
(

2t−1

t−2

)

, t = 2, 3, ...

Then any X = N
′ ∈ Φb×v(0, 1) with the variance matrix of errors σ2G for ρ ∈

(

−1
b−1

, v(v−3)

b(v+1)+v(v−3)

)

is the regular E-optimal spring balance weighing design.

Proof: It is obvious that for X = N
′ ∈ Φb×v(0, 1) the equality (2.1.1)

given in Theorem 2.3 is fulfilled.
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1. INTRODUCTION

Nowadays, the methods of statistical process control (SPC) are frequently

used in order to detect changes in model parameters of multivariate time series.

Many applications can be found in various scientific fields, e.g. engineering, eco-

nomics, medicine, and environmental sciences. The main idea of SPC is to detect

deviations of an observed process from a predefined target process as soon as

possible after their occurrence. The most important tools of SPC are control

charts. A control chart consists of the control statistic and the control limits.

The data are sequentially examined. If at a certain point of time the control

statistic lies within the control limits, we conclude the process is still in control

and the procedure continues at the next point of time. If the control statistic

exceeds the control limit, the algorithm stops and the process is considered to be

out of control.

In current literature on SPC the underlying multivariate process is assumed

to consist of independent random vectors and the parameter of interest is chosen

to be the mean vector of the process (cf. [4, 14, 12, 13, 8]). Mean charts for

multivariate time series are considered in [17, 11, 1]. In [10] multivariate control

charts for nonlinear autocorrelated processes are introduced using the support

vector regression approach.

The monitoring of the covariance matrix of multivariate time series is dis-

cussed only in a few papers. In [15, 16] several types of exponentially weighted

moving average (EWMA) charts are proposed. The underlying process is as-

sumed to be either a multivariate Gaussian process or a multivariate GARCH

process in the sense of [5].

However, in the present paper the aim is to jointly monitor the means and

the variances of multivariate time series. The target process is assumed to be

a constant conditional correlation (CCC) model (cf. [3]). A CCC process is a

multivariate nonlinear time series turning out to be quite attractive for practical

purposes. Although the amount of parameters is not too high, the model is still

sufficiently flexible.

Subsequently, we introduce several new control charts. They are based on

combining local measures for the means and the variances of the target process

or the residual process, e.g. current observations and conditional variances with

an EWMA recursion or a cumulative sum (CUSUM). In order to avoid the curse

of dimensionality variances are monitored using the squared Euclidean distance

of present observations and residuals from their in-control mean as well as the

trace of the conditional covariance matrix. These schemes seem to be very useful

even for higher dimensions. Via an extensive Monte Carlo study the charts are

compared with schemes proposed in [6]. In order to assess the performance of

the schemes the average run length (ARL) is applied.
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The paper is structured as follows. In Sect. 2 we describe the CCC model

and the modeling of the out-of-control process. In Sect. 3 characteristic quantities

are presented. Their in-control means as well as their in-control covariances are

derived. In Sect. 4 multivariate EWMA and CUSUM type schemes based on

the former characteristic quantities are described. In Sect. 5 the results of the

simulation study are presented. Finally, we draw a conclusion in Sect. 6.

2. THE MODEL

Below, the target process is denoted by {Yt} and the observed process by

{Xt}. Next, we describe the modeling of both processes.

2.1. Modeling dynamics of the conditional covariance matrix

The p-dimensional target process {Yt} assumed to be a nonlinear CCC

model is given by

(2.1) Yt = µ + Σ
1/2

t εt .

Hence, εt is assumed to be an independent and normally distributed random

sequence with zero mean and a covariance matrix equal to the identity matrix.

Further, µ denotes the overall mean vector which is independent of time. The

matrix Σt = Cov(Yt | It−1) = Et−1

[

(Yt − µ) (Yt − µ)
′]

denotes the conditional co-

variance matrix of {Yt} conditioned on the information set It−1. It−1 is equal to

the smallest σ-algebra generated by Yt−1, Yt−2, ... . As a consequence,

(2.2) Yt | It−1 ∼ Np (µ,Σt) ,

i.e. the conditional distribution of Yt = (Y1t, ..., Ypt)
′
is a normal distribution.

The CCC model is introduced in [3] where the conditional correlation ma-

trix is assumed to be time invariant. The conditional covariance matrix of Yt is

given by

(2.3) Σt = Dt RDt =
(

σit ̺ij σjt

)

i,j=1,...,p

with σ2
it = Var(Yit | It−1) for i = 1, ..., p and Dt = diag(σ1t, ..., σpt). The condi-

tional variances of Yit usually follow a GARCH model (cf. [2])

(2.4) σ2
it = ωi +

Mi
∑

m=1

αim (Yi,t−m − µi)
2
+

Ni
∑

n=1

βin σ2
i,t−n ∀ i ∈ {1, ..., p} .
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The conditional correlation matrix R = (̺ij)i,j=1,...,p of Yt is assumed to be time

invariant and positive definite.

A unique weakly stationary solution of (2.1), strictly stationary and ergodic

as well, exists if the polynomials fulfill the condition

(2.5) 1 −
Mi
∑

m=1

αimzm −
Ni
∑

n=1

βinzn 6= 0 for |z| ≤ 1

with i = 1, ..., p (cf. [9]). Moreover, E(Yt) = µ and

(2.6) Var(Yit) =
ωi

1 −
Mi
∑

m=1

αim −
Ni
∑

n=1

βin

∀ i ∈ {1, ..., p} .

2.2. Modeling the out-of-control behavior

We are faced with a sequential problem where we check at each point of

time t whether a shift in mean or variances has occurred or not. The respective

decision problem is therefore

H0,t : E(Xt) = µ ∧ Cov(Xt) = Σ

against(2.7)

H1,t : E(Xt) 6= µ ∨ Cov(Xt) 6= Σ

where Σ = Cov(Yt). The relationship between the target process {Yt} and the

observed process {Xt} is given by

(2.8) Xt =

{

Yt for t < τ
µ + a + ∆(Yt − µ) for t ≥ τ

.

The parameters a ∈ R
p\{0} and ∆ = diag(d1, d2, ..., dp) 6= Ip, where Ip denotes

the identity matrix of dimension p × p, are unknown. Here we focus on the

detection of increases in variances. For that reason we assume that di ≥ 1 for

i = 1, ..., p. The position of the change point is denoted by τ ∈ N ∪ {∞}. If a

change is present, i.e. τ < ∞, the process is said to be out of control. Hence,

changes in mean or in variances can be observed. On the contrary, τ = ∞ means

that the change point never occurs and therefore the process is in control.

3. CHARACTERISTIC QUANTITIES

In order to monitor the means and the variances of a multivariate process

we need several local measures for these characteristics. We reduce the number of
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characteristic quantities because we monitor the sum of variances. Since we are

exclusively interested in detecting increases of variances, the following procedures

can be applied. Below, the characteristic quantities are denoted by Tt. We derive

several properties of these quantities in this section (see Propositions 3.1 to 3.3).

In order to shorten the paper we do not present the proofs here. They can be

found in [7]. Further, the notation µ = (µi)i=1,...,p, Σt = (σij,t), Σ = (σij), and

σ2
i = σii = Var(Yit), i = 1, ..., p, is used.

3.1. Characteristics based on current observations and residuals

As already mentioned, current observations are local measures for the mean

vector. To monitor the covariance matrix we can use the squared Euclidean

distance between Xt and µ. This leads to

(3.1) T
(1)

t =

(

Xt − µ
(Xt − µ)

′
(Xt − µ)

)

.

Further, the in-control mean vector and the in-control covariance matrix have

to be derived. If {Yt} is a weakly stationary process with the mean µ and the

covariance matrix Var(Yt) = Σ = (σij),

E
(

Tt
(1)

)

=





0
p
∑

i=1

σ2
i



 for t < τ and E
(

Tt
(1)

)

=





a
p
∑

i=1

d2
i σ

2
i



 for t ≥ τ .

Apparently, the quantity T
(1)

t reflects changes in the mean and the variances of

{Yt} but no changes in the covariances of {Yt}. If values smaller than 1 are

permitted for di, values larger and smaller than 1 might overlap. As a conse-

quence, a change in
∑p

i=1 d2
i σ

2
i is not observed. Since we only consider increases

in variances, we avoid this problem. Next, the underlying target process is a CCC

process.

Proposition 3.1. Assume that (2.1) and (2.2) hold and that E(Y 4
it) < ∞

for all i and t. Then

Covτ=∞
(

T
(1)

t

)

=

(

Σ 0

0
′ a1t

)

and Covτ=∞
(

T (1)
s , T

(1)

t

)

=

(

Op×p 0

c1,st b1,st

)

for s < t where

a1t =

p
∑

i=1

p
∑

j=1

[

Eτ=∞
(

σ2
itσ

2
jt + 2 σ2

ij,t

)

− σ2
i σ2

j

]

,

b1,st =

p
∑

i=1

p
∑

j=1

[

Eτ=∞
(

Xis − µi

)2
σ2

jt − σ2
i σ2

j

]

and

c1,st = Eτ=∞

[

(Xs − µ)

p
∑

i=1

σ2
it

]

.
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These quantities can be explicitly calculated only for less complex pro-

cesses, otherwise they have to be estimated via a simulation study. However,

in order to apply these results the underlying process has to be strictly station-

ary. Then these quantities do not depend on t. Note that Covτ=∞
(

T
(1)
s , T

(1)

t

)

=
[

Covτ=∞
(

T
(1)

t , T
(1)
s

)

]′
so that the covariances can be computed for s > t as well.

Another simple characteristic quantity is based on the transformed observed

process ηt = (ηit)i=1,...,p. In this case the respective mean and the covariance

matrix of the residual vector are monitored. The residual vector is given by

(3.2) ηt = Σ
−1/2

t (Xt − µ) =

{

εt , t < τ ,

Σ
−1/2

t a + Σ
−1/2

t ∆Σ
1/2

t εt , t ≥ τ .

Note that ηt |Σt ∼ Np

(

Σ
−1/2

t a, Σ
−1/2

t ∆Σt ∆Σ
−1/2

t

)

. Thus, E
(

ηt

)

= E
(

Σ
−1/2

t

)

a .

The characteristic quantity based on residuals is given by

(3.3) T
(2)

t =

(

ηt

η′tηt

)

.

In the following proposition we compute the in-control mean and the in-control

covariance matrix.

Proposition 3.2. Assume that (2.1) and (2.2) hold and that R is positive

definite. Then

Eτ=∞
(

Tt
(2)

)

=

(

0

p

)

as well as

Covτ=∞
(

T
(2)

t

)

=

(

I 0

0
′

2p

)

and Covτ=∞
(

T (2)
s , T

(2)

t

)

= O(p+1)×(p+1)

for s 6= t.

The application of control charts to residuals is much easier than the appli-

cation to the original process, because ηt is independent and normally distributed

with zero mean and a covariance matrix equal to the identity matrix as long as

the process is in control. In the out-of-control state the process ηt is neither

independent nor identically distributed. In Proposition 3.2 only the existence of

the first two moments of the target process is required while in Proposition 3.1

the first four moments are needed.

3.2. Characteristics based on the conditional variances

Regarding characteristics based on conditional variances we compute the

trace of Σt at each point of time t. The characteristic quantity referring to the
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trace of the conditional covariance matrix is given by

(3.4) T
(3)

t =

(

Xt − µ
tr(Σt)

)

=





Xt − µ
p
∑

i=1

σ2
it



 .

Note that Eτ=∞
(
∑p

i=1 σ2
it

)

=
∑p

i=1 E
[

Var
(

Yit | It−1

)]

=
∑p

i=1 σ2
i . Thus, the quan-

tity is able to detect changes in variances of the target process. The derivation of

the in-control mean vector and the in-control covariance matrix of T
(3)

t is straight

forward.

Proposition 3.3. Assume that (2.1) and (2.2) hold and that R is positive

definite then

Eτ=∞
(

Tt
(3)

)

=





0
p
∑

i=1

σ2
i



 .

If additionally E(Y 4
it) < ∞ for all i and t,

Covτ=∞
(

T
(3)

t

)

=

(

Σ 0

0
′ a3t

)

and Covτ=∞
(

T (3)
s , T

(3)

t

)

=

(

Op×p 0

c3,st b3,st

)

for s < t, where

a3t =

p
∑

i=1

p
∑

j=1

[

Eτ=∞
(

σ2
itσ

2
jt

)

−σ2
i σ2

j

]

,

b3,st =

p
∑

i=1

p
∑

j=1

[

Eτ=∞
(

σ2
isσ2

jt

)

− σ2
i σ2

j

]

and c3,st = c1,st.

As in the case of present observations these quantities can be explicitly de-

termined only for special cases. For more general processes they can be estimated

using a simulation study if the underlying target process is strictly stationary.

4. CONTROL SCHEMES FOR MULTIVARIATE TIME SERIES

In this section we propose several new control charts. They are obtained

applying univariate or multivariate EWMA recursions and cumulative sums to

the characteristic quantities considered in Sect. 3. The control statistics are based

on the Mahalanobis distance between the weighted characteristics and the corre-

sponding in-control means.

Since these control statistics are distance measures, the charts are one-

sided. Therefore, the charts give a signal if the control statistic exceeds the
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control limit. The first signal occurs at a certain point of time which is said to

be the run length. The control limit is usually chosen such that the in-control

expectation of the run length is equal to a pre-specified value A. In practice A
is frequently chosen to be equal to 500. Below, the quantity Tt stands for one of

the characteristic quantities T
(i)
t for i ∈ {1, 2, 3}.

4.1. Multivariate EWMA charts

Here we follow the procedure in [15, 16]. We apply a multivariate EWMA

(MuE) recursion to Tt. This leads to

(4.1) Zt = (I − Λ) Zt−1 + Λ Tt for t ≥ 1 .

Hence, Λ = diag(λ1, λ2, ..., λp, λp+1) is a diagonal matrix of smoothing parameters

of dimension (p+1)× (p+1). It is assumed that 0 < λi ≤ 1 for i ∈ {1, ..., p, p+1}.
We presume that the starting value is equal to the target value such that Z0 =

Eτ=∞(Tt). The mean vector of the considered quantity Zt is then

(4.2) Eτ=∞(Zt) = Eτ=∞(Tt) .

Introducing Covτ=∞(Tt−i, Tt−j) = Γ(j − i) and assuming Λ = λ Ip+1 the respec-

tive limit of the covariance matrix for t → ∞ simplifies to

(4.3) lim
t→∞

Covτ=∞(Zt) =
λ

2 − λ

[

Γ(0) +

∞
∑

v=1

(1 − λ)
v
[

Γ(v) + Γ(v)
′]

]

.

Since {Yt} is assumed to be a strictly stationary CCC model with existing fourth

moments, the quantities T
(1)

t and T
(3)

t are weakly stationary. Since Covτ=∞(ηs, ηt)

= O(p+1)×(p+1) for s 6= t in the case Λ = λ Ip+1, the respective limit equals

(4.4) lim
t→∞

Covτ=∞
(

Z
(2)

t

)

=
λ

2 − λ

(

Ip 0

0
′

2p

)

.

Eventually, the control statistic equals the Mahalanobis distance between Zt and

its in-control mean. This leads to

(4.5) Tt =
[

Zt − Eτ=∞(Zt)
]′ [

Covτ=∞(Zt)
]−1 [

Zt − Eτ=∞(Zt)
]

.

In order to implement a less time-consuming procedure one may use the asymp-

totic covariance matrix instead of the exact one

(4.6) Tt =
[

Zt − Eτ=∞(Zt)
]′

{

lim
t→∞

[

Covτ=∞(Zt)
]

}−1
[

Zt − Eτ=∞(Zt)
]

.

On the contrary, the Mahalanobis EWMA (MaE) chart scheme is based

on the Mahalanobis distance of the vector Tt from its in-control mean Eτ=∞(Tt).

The control statistic is specified as

(4.7) Zt = (1 − λ)Zt−1 + λTt for t ≥ 1
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where

(4.8) Tt =
[

Tt − Eτ=∞(Tt)
]′ [

Covτ=∞(Tt)
]−1 [

Tt − Eτ=∞(Tt)
]

.

The quantity λ ∈ (0, 1] is said to be the memory parameter. The starting value

Z0 is chosen to be equal to the in-control expectation of Tt, i.e. Z0 = Eτ=∞(Tt) =

p + 1.

4.2. Multivariate CUSUM control schemes

In [14] two multivariate control schemes based on the cumulative sum of

{Xt} are introduced. We extend this approach to the CCC model. Regarding

the first multivariate CUSUM (MC1) chart the cumulative sum is determined be-

fore computing the respective standardized distance which represents a quadratic

form. The cumulative sum is specified as

(4.9) St−nt,t =

t
∑

i=t−nt+1

[

Ti − Eτ=∞(Ti)
]

, t ≥ 1 .

Accordingly, the relevant control statistic is based on a suitable norm of the

cumulative sum given by

(4.10) ‖St−nt,t‖Γ(0) =

√

S′
t−nt,t Γ(0)−1 St−nt,t .

The control statistic is equal to the norm of the cumulative sum subtracted by a

reference value

(4.11) MC 1t = max
{

0 , ‖St−nt,t‖Γ(0) − k nt

}

, t ≥ 1 .

Thus, k ≥ 0 is said to be the reference parameter. Further, the quantity nt

denotes the number of observations since the last restart given by

(4.12) nt =

{

nt−1 + 1 , MC1t−1 > 0 ,

1 , MC1t−1 = 0 ,

where t ≥ 1 with MC 10 = 0.

Regarding the second multivariate CUSUM (MC2) control chart we have

to determine the cumulative sum after computing the standardized distance, the

Mahalanobis distance of the quantity Tt from its in-control mean

(4.13) D2
t =

[

Tt − Eτ=∞(Tt)
]′

Γ(0)
−1

[

Tt − Eτ=∞(Tt)
]

.

Eventually, the control statistic of the second multivariate CUSUM scheme equals

(4.14) MC 2t = max
{

0 , MC2t−1 + D2
t − (p + 1) − 2 k2

}

where k ≥ 0 and MC 20 = 0.
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5. COMPARISON STUDY

We intend to jointly monitor the mean vector and the variances of a bivari-

ate nonlinear process. Initially, a CCC model must be chosen for a simulation

study. Via a Monte Carlo simulation explicitly dominated control schemes should

be identified. Eventually, the detection speed of the control schemes presented in

the previous section should be evaluated. As a performance measure for control

charts the ARL is used. In order to compute the ARLs we implement a program

written in C++. The solutions are obtained using the bisection algorithm where

10
6

Monte Carlo replications are submitted for each algorithm iteration. This

algorithm is interrupted when the numerical error of the ARL is less than ±10
−6

or the change in the control limits does not exceed ±10
−6

.

5.1. Configuration of the Monte Carlo study

First of all, we need to calibrate the considered control charts such that the

ARL in the in-control state is equal to a pre-specified value A. Here we choose

A = 120, i.e. we consider approximately a half a year on the capital market.

In the following section we want to focus on charts based on residuals. The

control limits do not depend on the parameters of the underlying target process

but only on the smoothing parameter for EWMA type charts and the reference

value for CUSUM type schemes. Therefore, the calculation of the control de-

sign appears to be much easier for these schemes. In this comparison study

we choose the smoothing parameter λ ∈ {0.1, 0.2, ..., 1.0} and the reference value

k ∈ {0.0, 0.1, ..., 1.0}. Here we present our results for the target process with

(5.1) σ2
1t = 0.2 + 0.2 Y 2

1,t−1 + 0.1 σ2
1,t−1

(5.2) σ2
2t = 0.1 + 0.1 Y 2

2,t−1 + 0.2 σ2
2,t−1 .

The constant conditional correlation ̺ equals 0.5. We take into account shifts in

the mean vector, shifts in the covariance matrix, as well as simultaneous shifts.

Although we study all three cases only one table referring to the joint monitoring

of means and variances is presented. Moreover, we choose a1 = a2 and d1 = d2.

The elements of the vector a take the values a1 ∈ {0.0, 0.25, ..., 2.0}. Further, the

scale transformation ∆ is specified by the parameter d1 ∈ {1.0, 1.1, ..., 1.4}.

5.2. Detection of changes in means and variances

The out-of-control ARLs for the considered process are given in Table 1.

The smallest out-of-control ARLs are printed in bold. The parameter values for
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each scheme and each type of change leading to the smallest out-of-control ARLs

are presented in parentheses.

Table 1: Out-of-control ARL of the CCC model based on an in-control

ARL equal to A = 120; ARLs refer to different shifts in means

and variances (m = 10
6
, p = 2).

a1/d1 1.0 1.1 1.2 1.3 1.4

MuE 36.00 (0.3) 18.98 (0.3) 11.90 (0.3) 8.40 (0.3)
0.0 MaE 40.70 (0.1) 20.03 (0.1) 12.29 (0.1) 8.57 (0.1)

MC1 44.15 (0.4) 21.85 (0.4) 13.29 (0.5) 9.20 (0.5)
MC2 40.99 (0.2) 21.19 (0.4) 13.32 (0.6) 9.36 (0.7)

16.73 (0.1) 13.50 (0.2) 10.16 (0.2) 7.94 (0.2) 6.37 (0.3)
0.25 39.81 (0.1) 20.45 (0.1) 12.80 (0.1) 9.01 (0.1) 6.84 (0.1)

14.80 (0.3) 12.68 (0.3) 10.21 (0.4) 8.19 (0.5) 6.62 (0.5)
39.55 (0.2) 21.58 (0.4) 13.90 (0.5) 9.88 (0.6) 7.49 (0.7)

5.94 (0.2) 5.36 (0.2) 4.84 (0.2) 4.36 (0.3) 3.91 (0.3)
0.5 10.14 (0.1) 7.66 (0.1) 6.12 (0.1) 5.10 (0.1) 4.37 (0.1)

5.56 (0.5) 5.15 (0.5) 4.74 (0.5) 4.34 (0.6) 3.95 (0.6)
11.19 (0.5) 8.50 (0.6) 6.76 (0.7) 5.59 (0.8) 4.75 (0.8)

3.19 (0.3) 3.01 (0.3) 2.85 (0.3) 2.71 (0.3) 2.58 (0.3)
0.75 4.21 (0.1) 3.70 (0.1) 3.34 (0.1) 3.05 (0.1) 2.82 (0.1)

3.06 (0.7) 2.94 (0.7) 2.81 (0.7) 2.70 (0.7) 2.59 (0.7)
4.72 (0.8) 4.11 (0.8) 3.64 (0.9) 3.29 (1.0) 3.01 (1.0)

2.01 (0.3) 1.97 (0.4) 1.93 (0.4) 1.89 (0.4) 1.86 (0.4)
1.0 2.28 (0.1) 2.18 (0.1) 2.10 (0.1) 2.02 (0.1) 1.96 (0.1)

1.96 (0.9) 1.93 (0.9) 1.91 (0.8) 1.88 (0.9) 1.85 (0.9)
2.49 (1.0) 2.35 (1.0) 2.23 (1.0) 2.14 (1.0) 2.06 (1.0)

1.42 (0.4) 1.43 (0.4) 1.44 (0.4) 1.44 (0.4) 1.45 (0.4)
1.25 1.49 (0.1) 1.49 (0.1) 1.49 (0.1) 1.49 (0.1) 1.48 (0.1)

1.41 (1.0) 1.42 (1.0) 1.43 (1.0) 1.44 (1.0) 1.44 (1.0)
1.56 (1.0) 1.56 (1.0) 1.55 (1.0) 1.54 (1.0) 1.54 (1.0)

1.14 (0.5) 1.16 (0.5) 1.18 (0.5) 1.20 (0.5) 1.21 (0.5)
1.5 1.16 (0.1) 1.18 (0.1) 1.20 (0.1) 1.21 (0.1) 1.23 (0.1)

1.15 (1.0) 1.17 (1.0) 1.18 (1.0) 1.20 (1.0) 1.22 (1.0)
1.18 (1.0) 1.21 (1.0) 1.22 (1.0) 1.24 (1.0) 1.25 (1.0)

1.04 (0.6) 1.05 (0.6) 1.06 (0.5) 1.08 (0.5) 1.09 (0.5)
1.75 1.04 (0.2) 1.05 (0.3) 1.07 (0.2) 1.08 (0.1) 1.09 (0.2)

1.04 (1.0) 1.05 (1.0) 1.07 (1.0) 1.08 (1.0) 1.09 (1.0)
1.05 (1.0) 1.06 (1.0) 1.08 (1.0) 1.09 (1.0) 1.11 (1.0)

1.01 (0.6) 1.01 (0.6) 1.02 (0.5) 1.03 (0.5) 1.03 (0.5)
2.0 1.01 (0.4) 1.01 (0.3) 1.02 (0.3) 1.03 (0.4) 1.03 (0.4)

1.01 (1.0) 1.01 (1.0) 1.02 (1.0) 1.03 (1.0) 1.04 (1.0)
1.01 (1.0) 1.02 (1.0) 1.02 (1.0) 1.03 (1.0) 1.04 (1.0)

Regarding Table 1 none of the introduced charts exclusively dominates all

the other schemes. For small changes in means and variances the MuE chart

provides the smallest out-of-control ARLs. For medium-sized changes, the MC1

chart turns out to be the best scheme. Finally, for larger changes again the MuE

scheme appears to be the best control chart. Since the deviations between MC1
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and MuE are small for larger changes, the MC1 control chart seems to be the

most suitable scheme.

Accordingly, the optimal values of the parameters λ and k increase with in-

creasing mean and variance changes. If we concentrate on the MC1 and the MC2

scheme, in many situations the optimal k is on the boundary k = 1.0. Conse-

quently, their performance could be improved choosing a higher upper bound for k.

Additionally, we compare these findings with the results in [6]. In that paper

we propose control charts where changes in means, variances, and covariances

are taken into account. The characteristic quantities of these schemes are of

dimension p(p + 3)/2. Neglecting covariances in the present approach we reduce

the dimension to p + 1. Nevertheless, the residual charts monitoring means and

variances provide smaller out-of-control ARLs. Consequently, the reduction of

the dimension does not lead to a loss of efficiency. In our study we analyze

processes up to dimension 5. The charts seem to be useful for higher dimensions

as well. However, further research is necessary in order to assess their behavior

for high-dimensional processes.

6. CONCLUSION

Multivariate nonlinear time series are very attractive for practical applica-

tions in finance because of their time dependent conditional covariance matrix.

In this paper we propose new control charts for the joint surveillance of the means

and the variances of such processes. Therefore, characteristic quantities based on

current observations and residuals as well as characteristics based on conditional

variances are introduced. Several multivariate EWMA and CUSUM schemes in

connection with these characteristic quantities are proposed. The dimension of

the characteristics is reduced compared to the schemes proposed in [6]. As a

consequence, these control charts can be applied to nonlinear processes with an

explicitly higher dimension. Since the schemes based on residuals are much eas-

ier to handle, we recommend the application of residual charts. First the control

design does not depend on the parameters of the target process. Therefore, the

control limits can be easily determined. Second the residual schemes can be ap-

plied assuming weaker conditions on the underlying process. Eventually, financial

processes usually do not fulfill conditions on higher moments.

Via a Monte Carlo simulation study we compare the detection speed of each

control scheme using the out-of-control ARL as a reliable indicator. In many cases

we find that the MC1 control chart appears to be the best chart for joint shifts

in means and variances.
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1. INTRODUCTION

Starting from the fundamental results of Engle and Smith [4], who were the

first who had introduced the stochastic process of permanent fluctuations, named

STOPBREAK process, we had defined a new, modified version of the well known

generalization of STOPBREAK process. In our model, we set the threshold noise

indicator as we had recently done in the time series of ARCH type, described

in Popović and Stojanović [12] and Stojanović and Popovíc [15]. Our model,

named the General Split-BREAK process or, simply, GSB process, is at the same

time the generalization of so called Split-BREAK model introduced in Stojanović

et al. [16].

In the next section, Section 2, we shall briefly present the definition and

the main stochastic properties of GSB model, described in detail in Stojanović

et al. [17], and we will define the sequence of increments of the GSB process, called

Split-MA process. Beside the standard investigation of the stochastic properties

of Split-MA model, we will particularly give the conditions of its invertibility. The

main result of this paper, procedures of the parameters estimation of GBS process,

are described in Section 3. We will pay the special attention to the estimation of

the threshold parameter, named critical value of the reaction. We shall prove the

asymptotic properties of evaluated estimates. The following section, Section 4,

is devoted to the Monte Carlo simulations of the innovations of GSB process.

Section 5 describes an application of the estimation procedures on the real data

of some trading volumes on Belgrade Stock Exchange. Finally, Section 6 is the

conclusion.

2. THE GSB PROCESS. DEFINITION AND MAIN PROPERTIES

We shall suppose that (yt) is the time series with the known values at

time t ∈ {0, 1, ...T} and F = (Ft) is a filtration defined on the probability space

(Ω,F , P ). Following Engle and Smith [4], the sequence (yt) will be a General

STOPBREAK process if it satisfies the recurrent relation

(2.1) A(L)B(L) yt = qt−1A(L) εt + (1−qt−1)B(L) εt , t = 1, ..., T ,

where, A(L) = 1 −∑p
j=1 αj Lj

, B(L) = 1 −∑r
k=1 βk Lk

, and L is the backshift

operator. On the other hand, (εt) is a white noise, i.e. the i.i.d. sequence of

random variables adapted to the filtration F , which satisfies

E
(

εt |Ft−1

)

= 0 , Var
(

εt |Ft−1

)

= σ2 , t = 1, ..., T .

At last, (qt) represents the sequence of random variables which depends on the

white noise (εt), and in addition, P
{

0 ≤ qt ≤ 1
}

= 1 for each t = 0, 1, ..., T . The
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sequence (qt) displays the (permanent) reaction of the STOPBREAK process,

because its values determine the amount of participation of previous elements of

white noise process engaged in the definition of (yt).

In that way, the structure of the sequence (qt) determines the character

and the properties of the STOPBREAK process, which vary among the well

known linear stochastic models. This model was investigated later by several

authors, for instance Gonzáles [6], or Diebold [3], whose works were based on

certain variations of the reaction (qt). On the other hand, many authors, for

instance Huang and Fok [9] or Kapetanios and Tzavalis [10], have studied mainly

the practical application of the STOPBREAK (and some similar) processes.

Similarly as in the definition of Split-ARCH model [12, 15], we shall suppose

in the following that

(2.2) qt = I(ε2
t−1 > c) =

{

1 , ε2
t−1 > c

0 , ε2
t−1 ≤ c ,

t = 1, ..., T ,

i.e., that the permanent reaction (2.2) represents, so-called a Noise indicator.

Remark that, according to (2.2), it follows that

E
(

qtεt |Ft−1

)

= qtE
(

εt |Ft−1

)

= 0 ,

and it can be seen that the sequence (qt εt) is a martingale difference, as in the

definition of basic STOPBREAK model [4].

However, it seems that in the case of general STOPBREAK process this

formulation of reaction (qt) is inadequate. The primary reason for such opinion is

the fact that the model (2.1) includes only “directly previous” realizations of (qt),

which are obtained at the moment t − 1. Therefore, the general STOPBREAK

process (2.1) with the reaction (2.2) operates in (only) two different regimes

(2.3) εt =

{

A(L) yt , qt−1 = 0 (w.p. bc)

B(L) yt , qt−1 = 1 (w.p. ac) ,

where ac = E(qt) = P{ε2
t−1 > c}, bc = 1−ac and“w.p.” stands for “with probabil-

ity”. Therefore, the equality (2.3) defines the well known Thresholds Autoregres-

sive (TAR) model introduced by Tong [18] and discussed in details, for instance

by Chan [2], Hansen [8] and, in the newest time, Scarrott and MacDonald [13] and

some other authors. Based on this, here we discuss the different generalization

of Split-BREAK process, more general than that of Engle and Smith [4].

Definition 2.1. Let L be a backshift operator, A(L) = 1 −∑m
i=1 αiL

i
,

B(L) = 1 −∑n
j=1 βj Lj

, C(L) = 1 −∑p
k=1

γk Lk
, and (qt) the noise indicator de-

fined with (2.2). Then, the sequence (yt) represents the General Split-BREAK

(GSB) process if it satisfies

(2.4) A(L) yt = B(L) qt εt + C(L)(1 − qt) εt , t ∈ Z .
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Note that the definition above represents the general stochastic model which

as its specific forms, contains the most of other, well known models. In depen-

dence of A(L), B(L) and C(L) we have, for example, the following processes:

A(L) = B(L) = C(L) = 1 : yt = εt (White Noise)

A(L) = 1, B(L) = C(L) 6= 1 : yt = B(L)εt (MA model)

A(L) 6= 1, B(L) = C(L) = 1 : A(L)yt = εt (AR model) .

Finally, in the case when A(L) = C(L) = 1 − L and B(L) = 1 we get the Split-

BREAK process introduced by Stojanović et al. [16]. In the following, we shall

analyze some specificity of the model (2.4) and suppose A(L) = C(L) 6= 1 and

B(L) = 1. Thus, the defined model can be written in the form

(2.5) yt −
p
∑

j=1

αj yt−j = εt −
p
∑

j=1

αj θt−j εt−j , t ∈ Z ,

where αj ≥ 0, j = 1, ..., p, and θt = 1 − qt = I(ε2
t−1 ≤ c). Obviously, this repre-

sentation is close to linear ARMA time series, except that it has the indicators

of noise (εt) in its own structure. They indicate the realizations of noise which

have statistically significant weights in “previous” time. These “temporary” com-

ponents change the ARMA structure of GSB model (2.5). In this way, they make

some difficulties in the usage of well known procedures in investigation of the

properties of our model .

On the other hand, similarly to the basic STOPBREAK process, the equal-

ity (2.4) enables that the sequence (yt) can be presented in the form of additive

decomposition

(2.6) yt = mt + εt , t ∈ Z ,

where

(2.7) mt =

p
∑

j=1

αj

(

yt−j − θt−j εt−j

)

=

p
∑

j=1

αj

(

mt−j + qt−j εt−j

)

is the sequence of random variables which we named the martingale means. It is

general case of analogous equality of Engle and Smith [4], which is obtained from

(2.7), for p = α1 = 1. According to (2.6) it follows

(2.8) E
(

yt |Ft−1

)

= mt + E
(

εt |Ft−1

)

= mt ,

from which it follows E(yt) = E(mt) = µ (const.), i.e. the means of these two

sequences are equal and constant. The variance of GSB process can be determined

in a similar way. As

(2.9) Var
(

yt |Ft−1

)

= E
(

y2
t |Ft−1

)

− m2
t = σ2 ,

we can conclude that the conditional variance (volatility) of the sequence (yt) is a

constant and it is equal to the variance of the noise (εt). Let us remark that the
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equalities (2.8) and (2.9) explain the stochastic nature of (2.4). As the sequence

(mt) is predictable, it will be a component which demonstrates the stability of

the process itself. Contrary, the sequence (εt) is the factor which represents the

deviations (or random fluctuations) from values (mt). On the other hand, the

variances of sequences (mt) and (yt) satisfy the relation

Var(yt) = Var(mt) + σ2

and, in the non-stationary case, these are not constants, i.e., depend on the

observation time t.

In the following, we shall describe stochastic structure of the increments

Xt
def
= A(L) yt , t ∈ Z ,

which, according to (2.4) and (2.5), we can write in the form of recurrent relation

(2.10) Xt = εt −
p
∑

j=1

αj θt−j εt−j , t ∈ Z .

Obviously, the sequence (Xt) has the multi–regime structure, which depends on

the realizations of indicators (θt). If all fluctuations of the white noise in time

t − j are large, an increment Xt will be equal to the white noise. On the other

hand, the fluctuations of the white noise which do not exceed the critical value c

will produce a “part of” MA(p) representation of (Xt). In this way, the similarity

of this model to the standard linear MA model is noticeable, and the sequence

(Xt) we shall call the general Split-MA model (of order p) or, simply, Split-MA(p)

model. It represents the generalization of the model defined in Stojanović et al.

[16], and the threshold integrated moving average (TIMA) model introduced by

Gonzalo and Martinez [7]. The main properties of this process can be expressed

as follow.

Theorem 2.1. The sequence (Xt), defined by (2.10), is stationary, with

mean E(Xt) = 0 and covariance γ
X

(h) = E(XtXt+h), h ≥ 0, which satisfies the

equality

(2.11) γ
X

(h) =







































σ2

(

1 + bc

p
∑

j=1

α2
j

)

, h = 0

σ2 bc

(

p−h
∑

j=1

αj αj+h − αh

)

, 1 ≤ h ≤ p − 1

−σ2 bc αp , h = p

0 , h > p .

Proof: Elementary.
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Similarly to the basic STOPBREAK model, we can, under some conditions,

show the invertibility of increments (Xt). This property is analyzed from different

aspects by many authors who explored the STOBREAK models. We shall do

the same concerning our model in order to proceed estimation of the unknown

parameters of the model and apply our model to real data. As we shall see later,

only realizations of invertible Split-MA process can give strong consistent and

asymptotically normal estimates.

Theorem 2.2. The sequence (Xt), defined by (2.10), is invertible iff the

roots rj , j = 1, ..., p, of characteristic polynomial

Q(λ) = λp − bc

p
∑

j=1

αj λp−j

satisfy the condition |rj | < 1, j = 1, ..., p, or, equivalently, bc

p
∑

j=1

αj < 1. Then,

(2.12) εt =

∞
∑

k=0

ωk(t)Xt−k , t ∈ Z ,

where
(

ωk(t)
)

is the solution of stochastic difference equation

(2.13) ωk(t) = θt−k

p
∑

j=1

αj ωk−j(t) , k ≥ p , t ∈ Z ,

with the initial conditions ω0(t) = 1, ωk(t) = θt−k
∑k

j=1 αj ωk−j(t), 1 ≤ k ≤ p− 1.

Morever, the representation (2.12) is almost surely unique and the sum converges

with probability one and in the mean-square sense.

Proof: First of all, for any t ∈ Z, we define the vectors and matrices

Vt =
(

εt εt−1 ··· εt−p+1

)′
, Xt =

(

Xt 0 ··· 0
)′

,

At =





















α1θt α2 θt−1 ··· αp−1θt−p+2 αp θt−p+1

1 0 ··· 0 0

0 1 ··· 0 0

.

.

.
.
.
.

.

.

.
.
.
.

0 0 ··· 1 0





















,

and we can write the model (2.10) in the form of stochastic difference equation

of order one

(2.14) Vt = At−1Vt−1 + Xt , t ∈ Z .
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From here, we have

Vt = Xt +

k
∑

j=1

(

At−1 ···At−j

)

Xt−j +

(

k+1
∏

j=1

At−j

)

Vt−k−1 ,

where k = 1, 2, ... . It can be proven (see, for instance Francq et al. [5]) that the

existence of almost sure unique, stationary solution of equation (2.14), in the

form

(2.15) Vt = Xt +

∞
∑

k=1

(

At−1 ···At−k

)

Xt−k , t ∈ Z ,

is equivalent to the convergence

k+1
∏

j=1

At−j
a.s.−→ 0 , k −→ ∞ ,

i.e., to the fact that the eigenvalues rj , j = 1, ..., p, of the matrix

A = E(At) =















α1 bc α2 bc ··· αp−1 bc αp bc

1 0 ··· 0 0

.

.

.
.
.
.

.

.

.
.
.
.

0 0 ··· 1 0















satisfy the conditions |rj | < 1, j = 1, ..., p . According to the representation

det
(

A − λI
)

= (−1)
p Q(λ) ,

it is obvious that the eigenvalues rj , j = 1, ..., p , are the roots of the characteristic

polynomial Q(λ). Then, the condition |rj | < 1, j = 1, ..., p, is necessary and suffi-

cient for the almost sure uniqueness of the representation (2.15), and the almost

sure convergence of the corresponding sum. In the similar way, we can prove that

the same conditions are equivalent to the mean square convergence of the sum in

(2.15). From this point on, by simple computation, we can obtain the equations

(2.12) and (2.13).

Based on the proposition above, it is clear that the presence of the se-

quence (θt) in (2.10) enables the conditions of invertibility of increments (Xt)

to be weaker than corresponding conditions that are related to the stationarity

of the series (yt) and (mt) (see, for more details [17]). In that way, even non-

stationary time series (yt) and (mt) can form invertible Split-MA process which

is always stationar. This situation is particularly interesting in the case of so

called integrated (standardized) time series, where

(2.16)

p
∑

j=1

αj = 1 .
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If the value of parameter bc is non-trivial, i.e., bc ∈ (0, 1), then the sequence (Xt)

will be invertible although (yt) and (mt) are non-stationary time series. We will

further assume that the “normality condition” (2.16) is always fulfilled, because it

will be of dual importance below. Primarily, the condition (2.16), which defines

series (yt) and (mt) as the non-stationary ones, allows us, as opposed to the

stationary case, that these two series have non-zero means, which is particularly

important in applications (see, for instance, Section 5). Finally, another reason

for introducing the“normality condition” (2.16) lays in simplifying the estimation

procedure of unknown parameters of GSB model. As the sequences (yt) and (Xt),

in general, do not depend on the coefficients α1, ..., αp only, but also of the critical

level of reaction c > 0, the presumption (2.16) will be an additional “functional”

relationship between the unknown parameters which allows us to compute them

uniquely. In the next section there will be more discussion about such an idea of

parameters estimation when GSB model is standardized GSB model.

3. PARAMETERS ESTIMATION

Procedure of estimation of the unknown parameters α1, ..., αp, c of GSB

model will be based on the realization of a stationary Split-MA(p) process (Xt).

For this purpose, we suppose that X
1
, ..., X

T
is the part of a realization of this time

series for which we define two kinds of estimates. First, equating the covariance

γ
X

(h), h = 0, ..., p, defined by equality (2.11), with its empirical value

γ̂
X

(h) =
1

T − h

T−h
∑

t=1

Xt Xt+h , h = 0, ..., p ,

we get the, so called, initial estimates of unknown parameters. We denote these

estimates with α̃1, ..., α̃p, respectively, i.e., in the case of critical value, with c̃.

Obviously, these are continuous functions of estimates γ̂
X

(h), and according to

the well known properties of continuity the almost sure convergence and the

convergence in distribution (see, for instance Serfling [14]) it can be easily proved

that α̃1, ..., α̃p, c̃ are the consistent and the asymptotically normal estimates of

α1, ..., αp, c.

In spite of good stochastic properties of these estimates, it can be proven

that these are not the efficient estimates of unknown parameters. In order to

achieve better estimates of unknown parameters we introduce the regression es-

timates α̂1, ...α̂p, ĉ based on the regression of sequence

(3.1) Wt =

p
∑

j=1

αj θt−j+1Wt−j + εt−1 , t ∈ Z .

For this reason, we will firstly show that the necessary and sufficient stationarity
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conditions of a series of (Wt) are equivalent to the conditions of invertibility of

(Xt), described in Theorem 2.2.

Theorem 3.1. The sequence (Wt), defined by (3.1), is the stationary and

ergodic iff the roots rj , j = 1, ..., p, of characteristic polynomial

Q(λ) = λp − bc

p
∑

j=1

αj λp−j

satisfy the condition |rj | < 1, j = 1, ..., p, or, equivalently, bc

p
∑

j=1

αj < 1.

Proof: If we introduce the vectors and matrices

Wt =
(

Wt Wt−1 ··· Wt−p+1

)′
, Et =

(

εt 0 ··· 0
)′

,

At =





















α1θt α2 θt−1 ··· αp−1θt−p+2 αp θt−p+1

1 0 ··· 0 0

0 1 ··· 0 0

.

.

.
.
.
.

.

.

.
.
.
.

0 0 ··· 1 0





















,

then the equality (3.1) can be written in the form of recurrent relation

(3.2) Wt = AtWt−1 + Et−1 , t ∈ Z .

From here, completely analogously to the Theorem 2.2, it can be shown that the

equation (3.2) has the strictly stationary, almost sure unique and ergodic solution

Wt = Et−1 +

∞
∑

k=1

(

At ···At−k+1

)

Et−k−1 , t ∈ Z ,

if and only if the eigenvalues r1, ..., rp of matrix A = E(At) satisfy the condition

|rj | < 1, j = 1, ..., p.

Now, let us define, using the procedure described in [11], the residual se-

quence

(3.3) Rt = Wt −
p
∑

j=1

aj Wt−j , t ∈ Z ,

where we denoted aj = bc αj , j = 1, ..., p . We shall prove the following proposition.
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Theorem 3.2. If the sequence (Wt), defined by (3.1) is stationary, then

the sequence (Rt), defined by (3.3) is the sequence of uncorrelated random vari-

ables.

Proof: If we introduce the vectors Rt =
(

Rt 0 ··· 0
)′

, t ∈ Z, then it is

valid

Rt = Wt − AWt−1 , t ∈ Z ,

where Wt and A are the matrices that we defined earlier. For arbitrary h > 0

the covariance matrix ΓR(h)
def
= E(RtR

′
t−h) of the vectors (Rt) can be written

as

(3.4) ΓR(h) = ΓW(h) − AΓW(h + 1) − AΓW(h − 1) + AΓW(h)A′ ,

where

ΓW(h) =















γ
W

(h) γ
W

(h + 1) ··· γ
W

(h + p − 1)

γ
W

(h − 1) γ
W

(h) ··· γ
W

(h + p − 2)

.

.

.
.
.
.

.

.

.

γ
W

(h − p + 1) γ
W

(h − p + 2) ··· γ
W

(h)















is covariance matrix of the vector series (Wt), and

γ
W

(h) = E(WtWt−h) , γ
W

(−h) = γ
W

(h)

is covariance of the stationary series (Wt). Using simple calculation it can be

shown that there is AΓW(h) = ΓW(h)A′
= ΓW(h + 1), and by substituting this

equality in (3.4) immediately follows ΓR(h) = Op×p.

Notice that in the equality (3.3) we defined the sequence
(

Wt

)

as a linear

autoregressive process of order p, with noise
(

Rt

)

. Then, by using standard

regression procedure, we can obtain the estimate â
T

= (â1, ..., âp)
′
of parameter

a = (a1, ..., ap)
′
, in the form of equality

(3.5) â
T

= W−1

T
·b

T
,

where

W
T

=































T
∑

t=p+1

W 2
t−1

T
∑

t=p+1

Wt−1Wt−2 ···
T
∑

t=p+1

Wt−1Wt−p

T
∑

t=p+1

Wt−1Wt−2

T
∑

t=p+1

W 2
t−2 ···

T
∑

t=p+1

Wt−2Wt−p

.

.

.
.
.
.

.

.

.

T
∑

t=p+1

Wt−1Wt−p

T
∑

t=p+1

Wt−2Wt−p ···
T
∑

t=p+1

W 2
t−p































,
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b
T

=

(

T
∑

t=p+1

WtWt−1

T
∑

t=p+1

WtWt−2 ···
T
∑

t=p+1

WtWt−p

)′

.

Now we are able to show the asymptotic properties of obtained estimates. In this

order, we define the set

A =

{

a = (a1, ..., ap)
′ ∈ Rp

∣

∣

∣

p
∑

j=1

aj < 1

}

which, obviously, is a set of parameter values a for which the invertibility condi-

tion of Split-MA process (Xt), i.e. the stationarity condition of the series (Wt) is

satisfied. In the mentioned assumptions, the following assertion is valid.

Theorem 3.3. Let, for some T0 > 0 and any T ≥ T0, the condition â
T
∈A

is fulfilled. Then â
T

is strictly consistent and asymptotically normal estimate of

parameter a ∈ Rp.

Proof: According to equality (3.5), it is valid

(3.6) â
T
− a =

(

1

T − p
W

T

)−1

·
(

1

T − p
r

T

)

,

where

r
T

=

(

T
∑

t=p+1

RtWt−1

T
∑

t=p+1

RtWt−2 ···
T
∑

t=p+1

RtWt−p

)′
.

According to ergodicity of (Wt), which is valid to the set A, follows the ergodicity

of residuals (Rt). Then, under conditions of the theorem, using the ergodic

theorem we have

(3.7)
1

T − p
W

T

a.s.−→ D , T → ∞ ,

where D = E
(

gtg
′
t

)

, gt =
(

Wt−1 ··· Wt−p

)′
and the moment-matrix D does

not depend on t ∈ Z, for any a from the stationarity set A. According to ergodic

theorem, also, it is valid that

1

T − p
r

T

a.s.−→ 0p×1 , T → ∞ ,

and these two convergences, applied to equality (3.6), give

(3.8) â
T
− a

a.s.−→ 0p×1 , T → ∞ ,

i.e. the strict consistency of estimate â
T

is proved.

Note further that the decomposition (3.6) can be written in the form of

equality

(3.9)

√

T − p
(

â
T
− a
)

=

(

1

T − p
W

T

)−1

·
(

1√
T − p

r
T

)

.
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As for any c = (c1 ··· cp)
′ ∈ Rp

the sequence

c′r
T

=

T
∑

t=p+1

Rt

(

p
∑

j=1

cj Wt−j

)

is martingale, using the central limit theorem for martingale ([1]), we have

1√
T − p

c′r
T

d−→ N (0, c′Λc) , T → ∞ ,

where Λ = E(utu
′
t), ut = Rt

(

Wt−1 ··· Wt−p

)′
and Λ does not depend on t, for

any a ∈ A. Now, using this convergence and the Cramér–Wold decomposition,

we get

1√
T − p

r
T

d−→ N (0,Λ) , T → ∞ .

Finally, according to (3.7) it is valid

(

T − p
)

W−1

T

a.s.−→ D−1 , T → ∞ ,

and, according to equality (3.9) and the last two convergences, we obtain

(3.10)

√

T − p
(

â
T
− a
) d−→ N

(

0,D−1ΛD−1
)

, T → ∞ ,

thus the theorem is completely proved.

According to the obtained estimate â
T
, under the condition (2.16), the

estimates of unknown parameters α1, ..., αp, bc of GSB processes can be expressed

as

(3.11)











b̂c =

p
∑

j=1

âj

α̂j = âj b̂
−1
c , j = 1, ..., p .

Using the showed properties of estimate â
T
, we can prove that the estimates of

“true” parameters have similar properties, which we formulate in the following

assertion.

Theorem 3.4. Let ϑ̂
T

= (α̂1, ..., α̂p, b̂c)
′ be estimate of the unknown pa-

rameter ϑ = (α1, ..., αp, bc)
′ ∈ Rp+1, obtained according to estimate â

T
and equal-

ity (3.11). If, for some T0 > 0 and any T ≥ T0 is satisfied the condition

b̂c

p
∑

j=1

α̂j < 1 ,

then ϑ̂
T

is strictly consistent and asymptotically normal estimate of ϑ.
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Proof: According to convergence (3.8) and the continuity properties of

almost sure convergence (see, for instance Serfling [14]) it is obviously valid that

ϑ̂
T
− ϑ

a.s.−→ 0p×1 , T → ∞ .

Notice that, for any a = (a1, ..., ap)
′ ∈ Rp

, the expression (3.11) defines a mapping

g : Rp → Rp+1
, by

ϑ = g(a) =

(

a1

(

p
∑

j=1

aj

)−1

, ···, ap

(

p
∑

j=1

aj

)−1

,
p
∑

j=1

aj

)′

.

Then, applying the convergence (3.10) and continuity properties of asymptotically

normal distributed random vectors (see, for instance Serfling [14]) we have

√

T − p
(

ϑ̂
T
− ϑ

) d−→ N (0,V) , T → ∞ ,

where V = GD−1ΛD−1G′
and G =

(

∂g(a)

∂a

)
∣

∣

∣

∣

a=â

.

At the end of this section, let us remark some more facts that directly follow

from the estimation procedure described above and the theorems we have just

proven.

Remark 3.1. Asymptotic variances D−1ΛD−1
and V are commonly

used as measures of bias of estimates â
T

and ϑ̂
T
, compared to the true values of

parameters a = (a1, ..., ap)
′

and ϑ = (α1, ..., αp, bc), where
∑p

j=1 aj = bc. Based

on the introduced assumptions and the proof of previous theorem we have that

G(a) =

(

∂g(a)

∂a

)

=





















b−1
c − a1b

−2
c −a1b

−2
c ··· −a1b

−2
c

−a2 b−2
c b−1

c − a2 b−2
c ··· −a2 b−2

c

.

.

.
.
.
.

.

.

.

−ap b−2
c −ap b−2

c ··· b−1
c − ap b−2

c

1 1 ··· 1





















,

and taking the standard matrix norms, we conclude that for all a ∈ Rp
is valid

‖G(a)‖1 =
∥

∥G(a)
′∥
∥

∞ = b−1
c − b−2

c

p
∑

j=1

aj + 1 = 1 .

Then, according to the previous equalities, for any matrix norm ‖·‖ which is

sub–multiplicative to ‖·‖1 and ‖·‖∞, we get

‖V‖ =
∥

∥G(â)D−1ΛD−1 G(â)
′∥
∥ ≤

∥

∥D−1ΛD−1
∥

∥ .

Therefore, asymptotic variance of estimates ϑ̂
T
, obtained by (3.11), does not

exceed the asymptotic variance of â
T
, under which they were calculated. In this

way, the method of parameters estimation of the GSB model is formally justified.
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Remark 3.2. If we apply estimates ˜bc and b̂c, we can make a modeled

values of (εt), and thereby, we can estimate the variance σ2
of the sequence (εt).

To do this, we can use the sample variance, i.e. the estimates

(3.12) σ̃2
=

1

T

T
∑

t=1

ε2
t (X, ˜θ) or σ̂2

=
1

T

T
∑

t=1

ε2
t (X, θ̂) ,

where εt(X, ˜θ) and εt(X, θ̂) are modeled values of the white noise which we ob-

tained by applying estimates ˜bc and b̂c, respectively (see, for more details, the

following section). In the case of the Gaussian noise (εt), these estimates are

identical to those which we can get applying the maximum likelihood procedure,

as it was shown in Stojanović et al. [16]. Namely, under the assumption that (εt)

is the Gaussian white noise, the log-likelihood function will be

L(y
1
, ..., y

T
; σ2

) = −T

2
ln(2πσ2

) − 1

2σ2

T
∑

t=1

(

yt − mt

)2
,

and we can easily see that the estimated value of the variance is identical to

the sample variance (3.12) of the series (εt). The consistency and asymptotic

normality of estimates σ̃ and σ̂ can be easily shown.

4. MONTE CARLO STUDY OF THE MODEL

In this section we will demonstrate some applications of the above described

estimation procedure of Split-MA(1) and Split-MA(2) models. For the white noise

(εt) it was used a simple random sample from with Gaussian N (0, 1) distribution,

so that the elements of the sequence (ε2
t ) were χ2

1 distributed, which has been used

for solving the critical value of the reaction c̃ and ĉ.

In the case of Split-MA(1) process, as it is shown in Stojanović et al. [16],

these estimates are based on 100 independent Monte Carlo simulations for each

sample size T = 50, T = 100 and T = 500 for the model

(4.1) Xt = εt − θt−1εt−1 , t = 1, ..., T ,

where θt = I(ε2
t−1 ≤ 1) and ε0 = ε−1

a.s.
= 0. Firstly, according to the correlation

(4.2) ρ(h) = Corr(Xt+h, Xt) =







1 , h = 0

−bc/(bc + 1) , h = ±1

0 , otherwise .

it obtained the estimates ˜bc = −ρ̂
T
(1)
(

1 + ρ̂
T
(1)
)−1

, where ρ̂
T
(1) is the empirical

first correlation of the sequence (Xt). After that, solving the equation P
{

ε2
t ≤ c

}

= ˜bc with respect to c, we obtained the estimates for the critical value c̃.
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In the next estimation stage, using the equality (4.1) in the “functional”

form εt(X, θ) = Xt + θt−1εt−1(X, θ) and ˜bc as the initial (estimated) value of the

parameter bc ∈ (0, 1), the regression estimates b̂c are computed as

(4.3) b̂c =

[

T−1
∑

t=0

Wt+1(X, ˜θ) Wt(X, ˜θ)

]

·
[

T−1
∑

t=0

W 2
t (X, ˜θ)

]−1

,

where

Wt(X, ˜θ) = ˜θt Wt−1(X, ˜θ) + εt−1(X, ˜θ) , ˜θt = I(ε2
t−1 ≤ c̃) ,

and ε0(X, ˜θ) = ε−1(X, ˜θ) ≡ 0. Finally, the regression estimates of the (true) crit-

ical value c = 1 are solutions of the equation P
{

ε2
t ≤ c

}

= b̂c with respect to c.

The average values of these estimates are set, together with the correspondent

estimating errors (the numeric values set in the parentheses) in the rows of Table 1.

Table 1: Estimated values of Monte Carlo simulations

of the Split-MA(1) process.

Sample

size

Averages of estimated values

ρ̂
T
(1) ebc ec b̂c ĉ eσ2 σ̂2

T = 50
−0.376 0.614 0.894 0.647 0.944 1.216 1.042
(0.139) (0.219) (0.726) (0.192) (0.571) (0.292) (0.202)

T = 100
−0.386 0.634 0.894 0.671 1.039 1.168 1.016
(0.097) (0.156) (0.444) (0.141) (0.427) (0.184) (0.124)

T = 500
−0.394 0.664 0.916 0.676 0.992 1.135 0.997
(0.056) (0.091) (0.259) (0.068) (0.194) (0.102) (0.099)

True values −0.406 0.683 1.000 0.683 1.000 1.000 1.000

The second column of Table 1 contains the estimated values of the coeffi-

cient of the first correlation ρ̂
T
(1) of the Split-MA(1) model. The average values

of that column are somewhat smaller in the absolute value of the true value, which

is the case here ρ(1) = −bc(1 + bc)
−1 ≈ −0.406. In that way, estimates ˜bc and c̃,

showed in the next two columns, will be a proper estimates if −0, 5 < ρ̂
T
(1) < 0.

Then, we showed the regression estimates b̂c and ĉ which average values are closer

to the true value than previously mentioned, initial estimates c̃. This is due to the

fact, formally proved in Remark 3.1, that estimates ĉ are more efficient than c̃.

The histograms of empirical distributions of the estimates c̃ and ĉ are shown in

Figure 1. It can be seen that ĉ has the asymptotically normal distribution even

for the sample of a “small” sample size. Finally, the averages of estimated values

of σ2
, based on modeled values of the white noise (εt) and equations (3.12), are
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displayed in the last two columns of Table 1. Their average values differ from the

true value σ2
= 1 as a consequence of two stage estimating procedure that was

used. In spite of that, it can be seen that the average values of σ̂2
are closer to

the true value one than the average values of σ̃2
.

Figure 1: Empirical distributions of estimated parameters c̃ and ĉ
of Split-MA(1) model

As in the case of of Split-MA(1) process, we are able to apply the above

procedure for estimating the unknown parameters of Split-MA(2) process

(4.4) Xt = εt − α1 θt−1 εt−1 − α2 θt−2 εt−2 , t = 1, ..., T .

For this purpose, we used 45 independent Monte Carlo simulations of this series

of the length T = 500, with values of parameters α1 = 0.6, α2 = 0.4 and c = 1.
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Firstly, by equating the correlation functions γ
X
(h) of the model above with its

empirical correlations γ̂
X
(h), where h = 0, 1, 2, we get the estimate

α̃1 =

− γ̂
X
(1) −

√

γ̂2
X
(1) + 4 γ̂

X
(1) γ̂

X
(2)

2 γ̂
X
(2)

,

α̃2 = 1 − α̃1 =

2 γ̂
X
(1) + γ̂

X
(1) +

√

γ̂2
X
(1) + 4 γ̂

X
(1) γ̂

X
(2)

2 γ̂
X
(2)

,

˜bc =
−γ̂

X
(2)

(

α̃2
1 + α̃2

2

)

γ̂
X
(2) + α̃2 γ̂

X
(0)

.

After that, using α̃1, α̃2 and c̃ as initial estimates we can generate the sequences











εt(X, ˜θ, α̃) = Xt + α̃1
˜θt−1εt−1(X, ˜θ, α̃) + α̃2

˜θt−1εt−2(X, ˜θ, α̃)

˜θt = I
(

ε2
t−1(X, ˜θ, α̃) ≤ c̃

)

Wt(X, ˜θ, α̃) = α̃1
˜θtWt−1(X, ˜θ, α̃) + α̃2

˜θt−1Wt−2 + εt−1(X, ˜θ, α̃) ,

where t = 1, ..., 500 and ε0 = ε−1
a.s.
= 0. Finally, according to the equalities (3.5)

and (3.11) we obtain the regression estimates of appropriate parameters α̂1, α̂2, ĉ

of Split-MA(2) model.

Table 2: Estimated values of Monte Carlo simulations

of the Split-MA(2) process.

Estimators

type

Parameters

a1 a2 α1 α2 bc c σ2

Initial
estimates

— — 0.597 0.403 0.673 0.993 1.016
— — (0.043) (0.043) (0.075) (0.162) (0.219)

Regression
estimates

0.421 0.274 0.605 0.394 0.685 1.006 1.045
(0.025) (0.025) (0.029) (0.029) (0.031) (0.145) (0.143)

True values 0.420 0.273 0.600 0.400 0.683 1.000 1.000

The Table 2 shows the average values of obtained estimates, corresponding

estimating errors and the true values of parameters. At the first glance, there are

no major differences in the quality of the obtained estimates. Moreover, regres-

sion estimates are slightly more different from the real values of the parameters,

previously obtained from the initial evaluations. However, the dispersion of the

regression estimates is much smaller than the dispersion of the initial estimates,

and this is one of the important advantages of this estimation method. This

fact is clearly visible in Figure 2, which shows the histograms of empirical dis-

tributions of both types of estimates. Obviously, the histograms of regression

estimates (panels below) have much more pronounced asymptotic tendencies in

relation to the initial estimates of parameters (panels above).
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Figure 2: Empirical distributions of estimated parameters of Split-MA(2) model.

5. APPLICATION OF THE MODEL

Here we describe some of the possibilities of practical application the GSB

process in the modeling dynamics of financial series. We observe Split-MA(1) and

Split-MA(2) models, described by equalities (4.1) and (4.4), as stochastic models

of dynamics the total values of stocks trading on the Belgrade Stock Exchange.

As a basic financial sequence we observe the realization of log-volumes

(5.1) yt = ln(St · Ht) , t = 0, 1, ..., T ,

where St is the share price and Ht is the volume of trading of the same share at

time t = 1, ..., T . (The price is in dinars and the volume is the number of shares

that were traded on the certain day. The days of trading are used as successive

data.) Firstly, we applied iterative equations

(5.2)

{

εt = yt − mt

mt = mt−1 + εt−1I(ε2
t−2 > ĉ)

, t = 1, ..., T ,

to generate the corresponding values of sequences (εt) and (mt) of Split-BREAK

process of order p = 1. As estimates of the critical value ĉ, we used the previous

estimating procedure, and as initial values of the iterative procedure (5.2) we use

m0 = y0 = yT , ε0 = ε−1
a.s.
= 0, where yT is the empirical mean of (yt). We use the

basic empirical series defined by (5.1) in solving the series of increments (Xt),

i.e. the realized values of Split-MA(1) described above. The similar procedure

can be used to estimate the parameters of Split-MA(2) model. In that case, we
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substitute the second equation in (5.2) with

mt = α̂1

(

mt−1 + εt−1I(ε2
t−2 > ĉ)

)

+ α̂2

(

mt−2 εt−2 I(ε2
t−3 > ĉ)

)

, t = 2, ..., T ,

where α̂1, α̂2 is the estimated values of model’s parameters, with α̂1 + α̂2 = 1 and

ε0 = ε−1
a.s.
= 0. Table 3 contains the number of observations for the company (T ),

and estimated values of Split-MA(1) and Split-MA(2) models in the case of six

Serbian eminent companies.

Table 3: Estimated values of the GSB parameters of real data.

Companies Cities T
p = 1

ρ̂
T
(1) ebc ec b̂c ĉ

HEMOFARM Vršac 54 −0.346 0.530 0.582 0.613 0.836
METALAC Milanovac 174 −0.449 0.816 4.929 0.829 5.223
SUNCE Sombor 157 −0.424 0.735 2.836 0.784 3.132

Companies Cities T
p = 2eα1 eα2 ec α̂1 α̂2 ĉ

ALFA PLAM Vranje 50 0.640 0.360 2.628 0.690 0.310 3.331
DIN Nǐs 56 0.715 0.285 1.393 0.816 0.184 1.202

T. MARKOVIĆ Kikinda 277 0.824 0.176 1.396 0.830 0.170 1.392

The following, Table 4 contains estimated values of means and variances

of previously defined sequences: log–volumes (yt), martingale means (mt), the

Split-MA process (Xt) and the white noise (εt). If we analyze empirical values of

these series, we can recognize the relations that could be explained the theoretical

results above. Namely, the averages of the log–volumes are close to the averages of

martingale means, which is in accordance with (2.8), i.e. to the fact that the real-

izations of (yt) are “close” to the sequence (mt). On the other hand, the averages

of (Xt) and (εt) are “close” to zero, which is consistent with previous theoret-

ical results. Also, the estimates of the empirical variances of Split-MA series

are generally higher than the corresponding values of the noise variances, which

is consistent with the theoretical properties of these sequences (see Theorem 2.1).

Table 4: Estimated values of real data.

Companies
Log-volumes Mart. means Split-MA White noise

Mean Var Mean Var Mean Var Mean Var

HEMOFARM 15.250 0.814 15.310 0.694 0.022 1.786 −0.042 1.576
METALAC 13.665 2.788 13.798 2.731 0.001 3.979 −0.005 3.614
SUNCE 12.748 2.282 12.730 2.151 −0.024 1.978 −0.028 1.981
ALFA PLAM 15.320 1.505 15.354 1.457 −0.126 2.410 −0.005 1.590
DIN 14.485 4.998 14.628 6.071 −0.126 3.003 −0.139 2.868

T. MARKOVIĆ 13.816 2.295 13.830 1.977 0.001 4.002 −0.078 3.611
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A high correlation between the log-volumes and the martingale means can

be seen in Figure 3, which represents the realizations of these sequences. Obvi-

ously, this fact concurs with the definition of the GSB process, i.e., the equation

(2.6), and justifies the application of the GSB process as an appropriate stochastic

model of the dynamics of empirical time series.

Figure 3: Comparative graphs of the real and modeled data.

Finally, Figure 4 shows that there is also a strong correlation between the

white noise (εt) and the increments (Xt). It is clear that the concurrence of

realizations of these two sequences will be better if, in addition to the great

fluctuation of (Xt), the critical value of the reaction c is relatively small (see,

for instance, Section 4). In fact, small values of c point out to the possibility

that the true value of this parameter is c = 0, when increments (Xt) are equal

to the noise (εt). In that case (yt) is the sequence with independent increments

and the whole statistical analysis is made easier. According to the previous facts

about asymptotic normality of obtained estimates, testing the null hypothesis

H0 : c = 0, ( i.e. bc = 0), in the case of the “large” sample size, will be based on

the normal distribution, i.e. standard, well known statistical tests.
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Figure 4: Comparative graphs of real and modeled data.

6. CONCLUSION

As we know, the non-linear stochastic models of financial time series usually

give excellent results in explaining many aspects of their behavior. In this sense,

various modifications of the STOPBREAK process enable successful description

of the dynamics of financial time series with emphatic permanent fluctuations.

We should point out once again Stojanović et al. [16], where were compared the

efficiency between the simplest GSB model (named Split-BREAK model) of order

p = 1 and some well known models which are standardly used in the real data

modeling. Using the same data set as in the section above, it is shown that our

process represents these time series better, and that fewer coefficients need to be

estimated in comparison with well known models used so far.
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Abstract:

• Joint modeling of longitudinal measurements and survival time has an important role

in analyzing medical data sets. For example, in HIV data sets, a biological marker

such as CD4 count measurements is considered as a predictor of survival. Usually,

longitudinal responses of these studies are severely skew. An ordinary method for

reducing the skewness is the use of square root or logarithm transformations of re-

sponses. In most of the HIV data sets, because of high rate of missingness, skewness

is remained even after using the transformations. Therefore, a general form of dis-

tributions for considering skewness in the model should be used. In this paper, we

have used multivariate skew-normal distribution to allow a flexible model for consid-

ering non-symmetrically of the responses. We have used a skew-normal mixed effect

model for longitudinal measurements and a Cox proportional hazard model for time

to event variable. These two models share some random effects. A Bayesian approach

using Markov chain Monte Carlo is adopted for parameter estimation. Some simu-

lation studies are performed to investigate the performance of the proposed method.

Also, the method is illustrated using a real HIV data set. In these data, longitu-

dinal outcomes are skew and death is considered as the event of interest. Different

model structures are developed for analyzing this data set, where model selection is

performed using some Bayesian criteria.
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• Bayesian approach; Cox proportional model; joint modeling; longitudinal data; skew-

normal distribution; time to event data.
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1. INTRODUCTION

In most of the HIV and cancer studies a longitudinal biological marker such

as CD4 count or immune response can be an important predictor of survival. In

these studies a time to an event may also be a variable of interest. Patients are

monitored longitudinally and some longitudinal measurements are gathered until

the interest event occur. Often the longitudinal outcomes and time to event of inter-

est are analyzed jointly using joint modeling of longitudinal and time to event data.

Joint modeling of longitudinal measurements and time to event data has

been studied by DeGruttola and Tu (1994), Tsiatis et al. (1995) and Wulfsohn

and Tsiatis (1997). Henderson et al. (2000) and Hashemi et al. (2003) discussed

joint modeling of longitudinal measurements and event time data using latent

class of Gussian process, Tsiatis and Davidian (2001), Yu et al. (2004) and Sousa

(2011) provide reviews of this joint modeling. Tseng et al. (2005) used accelerated

failure time model for joint modeling of longitudinal and survival data and applied

Monte Carlo EM approach to estimate unknown parameters. Also, Diggle et al.

(2008) discussed different approaches to estimate unknown parameters of joint

modeling of longitudinal measurements and event time data and then applied

a fully parametric approach to modeling Schizophrenic patients data set. Joint

Modeling of longitudinal measurements and time to event data at the presence

of informative dropout in a HIV study was discussed by Wu et al. (2008). They

considered an additional missingness mechanism for missing values. Rizopoulos

(2010) presented the R package “JM ” that can be used to fit the joint modeling

of longitudinal measurements and survival data. Also, Guo and Carlin (2004)

discussed the implementation of the joint models in SAS and WinBUGS under

normal distributional assumption.

In the above mentioned references, usually a mixed effect model with nor-

mality or other symmetric distributional assumption is used for longitudinal part

of the model. However, in the most of such studies longitudinal measurements are

severely skew or have some outliers. For the latter problem, some models, which

are robust in the existence of outliers, have been considered by Lachos et al. (2010)

and Bandyopadhyay et al. (2010). They have used skew-normal/independent dis-

tribution assumptions in linear mixed effect models. However, the problem of

skewness, to our best of knowledge has not yet been considered in joint model-

ing of longitudinal and time to event data. The idea is that a parametric skew

distribution may be considered for this regard.

Skew-normal (SN) family is an important class of non-symmetric distribu-

tion for analyzing abnormal data set. The distribution includes normal one as a

special case. The first version of the distribution which is in the univariate form

is introduced by Azzalini (1985). More discussion about univariate skew-normal
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distribution can be found in Azzalini (1986) and Henez (1986). Generalizations

to the multivariate case are given in Azzalini and Dalla-Valle (1996), Azzalini and

Capitanio (1999), Branco and Dey (2001) and Sahu et al. (2003). For examples,

some applications of skew-normal in regression model can be found in Lachos et

al. (2007), Cancho et al. (2010) and Arellano-Valle et al. (2005b). Multivariate

skew-normal mixed effect model have discussed by Arellano-Valle et al. (2005a)

and Lin and Lee (2008), also, discussion about multivariate skew-normal with

incomplete data can be found in Lin et al. (2009) and Baghfalaki and Ganjali

(2011, 2012). Recently, there are some applications of skew-normal distribu-

tion for analysing HIV data. For examples: Ghosh and Branco (2007) develop

a Bayesian approach to bivariate random effect model with application to HIV

studies. Huang and Dagne (2011) used skew-normal distribution in a Bayesian

approach to joint modeling mixed effect and measurement error for a HIV study.

Huang and Dagne (2010) developed a Bayesian nonlinear mixed effect model

with skew-normal random effect and within subject errors for providing a better

fit to HIV data set, Huang et al. (2011a) suggested linear, nonlinear and semi-

parametric mixed-effect model using skew-normal distribution with measurement

error in covariates for analyzing an AIDS data set and Lachos et al. (2011) devel-

oped a Bayesian framework for analyzing censored data using linear or non-linear

model under skew-normal/independent distributional assumption with applica-

tion in HIV studies. Huang et al. (2011b) used skew-normal distribution for

joint modeling of CD4 process and time to increase CD4/CD8 ratio. They used

a mixed effect model for analyzing the longitudinal measurements alongside a

log-normal model for analyzing event time data.

In this paper, we have discussed Bayesian joint modeling of longitudinal

and survival data when skewness exists in the data set. We have used multi-

variate skew-normal distribution introduced by Sahu et al. (2003) for considering

skewness of the data. Implementation of the Bayesian approach using this form

is easier than other forms of skew-normal distributions. A non-ignorable missing-

ness mechanism is considered for missingness. Also, a skew-normal mixed effect

model and a Cox proportional hazard model (as a semiparametric model) with

step baseline hazard in a frailty model structure are considered for the joint mod-

eling. We have performed some simulation studies to investigate the performance

of the proposed method with different sample sizes and different rates of drop

out. We have used the proposed method for analyzing a HIV study, where CD4

count measurements are longitudinal measurements and time to death is consid-

ered as the interest event. The aim of the study was to compare the efficacy and

safety of two alternative antiretroviral drugs, namely didanosine (ddI) and zal-

citabine (ddC). In this data set CD4 count measurement is a skew variable which

is gathered along side with the time to the event of interest. We have used the

proposed model and pure normal model for analyzing the data set. The results

of using these distributional assumptions are compared using some criteria; also

some influential observations are detected using Kullback–Leibler divergence.
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The rest of this paper is organized as follows. In Section 2, we introduce

multivariate skew-normal distribution which we will use in this paper. Section 3

includes the model and notations of the paper. In that Section, the model for

longitudinal and survival part is described separately. In Section 4 Bayesian

approach of joint modeling of longitudinal measurements and event time data

using multivariate skew-normal distribution is discussed. Section 5 includes some

simulation studies for investigating the proposed model. In Section 6, we apply

the proposed approach to the HIV data set and finally concluding remarks are

given in Section 7.

2. MULTIVARIATE SKEW-NORMAL DISTRIBUTION

Multivariate skew-normal distributions have different forms, some of these

distributions have been introduced by: Azzalini and Dalla-Valle (1996), Azzalini

and Capitanio (1999), Arellano-Valle and Genton (2005) and Arellano-Valle et al.

(2005b). One of the commonly used multivariate skew-normal distributions, in

Bayesian context, is introduced by Sahu et al. (2003). In this section, we review

this form.

Let φk(y|µ,Σ) and Φk(y|µ,Σ) be the probability density function and

cumulative density function of the Nk(µ,Σ) evaluated at y, respectively. A k-

dimensional random vector Y follows a k-variate skew-normal distribution with

location vector µ ∈ Rk
, k×k positive definite scale matrix Σ and k×k skewness

matrix ∆ = diag(δ1, ..., δk), where diag(a1, ..., ak) denotes a diagonal matrix with

elements a1, ..., ak, if its density function is given by:

f
(

y|µ,Σ,∆
)

= 2
k φk

(

y|µ,Σ+∆∆′)

× Φk

(

∆′(Σ+∆∆′)−1
(y−µ)

∣

∣0 ,
(

Ik +∆′Σ−1∆
)−1
)

.
(2.1)

We denote this by Y ∼ SNk(µ,Σ,∆). The mean and covariance matrix of Y

are given, respectively, by:

E[Y ] = µ+

√

2

π
δ and cov(Y ) = Σ +

(

1 − 2

π

)

∆2 ,

where δ = (δ1, ..., δk)
′
. The use of the following proposition which is called stochas-

tic representation, makes it possible to generate a sample from skew-normal dis-

tribution using available software.

Proposition 2.1. Let Y ∼ SNk(µ,Σ,∆), then Y
d
=∆|X0| +X1, X0 ∼

Nk(0, Ik), X1 ∼ Nk(µ,Σ) and X0 and X1 are independent. The notation
d
=

means “distributed as”. |X0| is the vector of the absolute values of each compo-

nent of X0.
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For proof of this proposition see Sahu et al. (2003) and Arellano-Valle

et al. (2007).

This proposition is used for obtaining a hierarchical set-up, that is Y |U =

u ∼ Nk(µ+ ∆u,Σ) and U ∼ Nk(0, Ik). This hierarchical set-up has been used

broadly in Bayesian context of skew-normal model.

3. NOTATION AND SEPARATE MODELS

In this section the notations and models for each part of JM are described.

The next section will discuss joint modeling (JM) of longitudinal responses and

time to event data with skew-normal distribution assumption for responses.

For longitudinal model, let yi(s) denote the value of longitudinal outcome at

time point s for the ith individual where the observed times are sij , i = 1, 2, ..., n,

j = 1, 2, ..., ni. In this case we shall write yi(sij) = yij . We consider the following

linear mixed effect model for describing longitudinal outcome:

yij = x′
1i(sij)β1 + z′1i(sij)b1i + εij , i = 1, 2, ..., n , j = 1, 2, ..., ni ,

where components of εi=(εi1, ..., εini
)
′
are measurement errors, β1=(β11, ..., β1p1

)
′

is a p1-dimensional vector of longitudinal fixed-effect parameters. b1i = (b1i1, ...,

b1iq1
)
′

is a q1-dimensional vector of random effects and is independent of εi.

x1 and z1 are p1-dimensional and q1-dimensional vectors of explanatory vari-

ables, respectively. In the matrix notation

Yi = X1i β1 +Z1i b1i + εi ,(3.1)

where in this notation Yi is the longitudinal vector of response variable for

the ith subject. X1i =
(

x1i(si1), ...,x1i(sini
)
)′

and Z1i =
(

z1i(si1), ...,z1i(sini
)
)′

.

We assume that εi
iid∼ SNni

(

−
√

2
π δe,Ψ,∆e

)

and b1i
iid∼ Nq1

(0,D1). Note that

these assumptions gives E[εi] = E[b1i] = 0. Thus, this model considers the ran-

dom effects b1i to be symmetrically distributed, while the distribution of the

within subject errors εi to be asymmetric with mean zero. To seek for identifia-

bility (Arellano-Valle et al., 2007), we assume Ψ = σ2
eIni

, also, ∆e = δeIni
.

In survival model, let T ∗
i be the true event time and Ci be the censoring

time. Ti = min(T ∗
i , Ci) denotes the observed survival time for the ith individual,

i = 1, 2, ..., n. Also, δi = I(T ∗
i ≤Ci) is a censoring indicator, which is 0 for right-

censored and 1 for complete observed individuals. Therefore, the observed data

for the survival outcome consist of the pairs
{

(Ti, δi), i = 1, 2, ..., n
}

.

For survival modeling a frailty model which is linked to the longitudinal

model through some shared random effects is considered. The hazard function in



Joint Modeling of Skew-normal Longitudinal Measurements 175

our proposed model is given by:

h
(

ti|x2i, z2i, b2i

)

= h0(ti) exp
{

x′
2i β2 + z′2i b2i

}

,(3.2)

where h0(ti) is the baseline hazard function. Thus, the density function of survival

time for the ith individual can be written as:

hδi

(

ti|x2i, z2i, b2i

)

× exp

{

−H0(ti) exp
{

x′
2i β2 + z′2i b2i

}

}

,

where H0(t) =
∫ t
0

h0(u) du, x2 and z2 are p2- and q2-dimensional vectors of ex-

planatory variables, respectively. β2 = (β21, ..., β2p2
)
′
is a p2-dimensional vector of

time to event fixed effect parameters and b2i = (b2i1, ..., b2iq2
)
′
is a q2-dimensional

of random effects of time to event process where we assume, b2i
iid∼ Nq2

(0,D2).

In the next section, for getting sure of identifiability we shall impose b2i to share

some components with b1i.

The longitudinal outcome yi can be partitioned into yi,obs={yi(sij): sij <Ti,

j = 1, 2, ..., ni}, which contains all observed longitudinal measurements for the

ith individual before the observed event time Ti, and yi,mis = {yi(sij) : sij ≥ Ti,

j = 1, 2, ..., ni} which contains the longitudinal measurements that should have

been taken until the end of the study and has to be considered as a vector con-

taining missing values.

4. THE SKEW-NORMAL JOINT MODELING (SNJM) OF LON-

GITUDINAL AND SURVIVAL DATA

In our proposed joint modeling, we have considered a skew-normal dis-

tribution for error terms of longitudinal measurements. However, because of

non-identifiability of some parameters, we have not considered skew-normal dis-

tribution assumption for random effects in these models. The skew-normal joint

modeling (SNJM) of longitudinal and survival data, as an extension of the usual

normal joint modeling, leads us to the following hierarchical model:

Yi|b1i,β1, σ
2
e , δe

ind.∼ SNni

(

X1iβ1 +Z1ib1i −
√

2

π
δe1ni

, σ2
eIni

, δeIni

)

,

b1i|D1

ind.∼ Nq1
(0,D1) ,

h
(

ti|x2i, z2i, b2i

)

= h0(t) exp
{

x′
2iβ2 + z′2ib2i

}

,

b2i|D2

ind.∼ Nq2
(0,D2) ,

(4.1)

where some components of random effects are shared between two models. The

stochastic representation of the skew-normal distribution can be used for simpli-

fying Markov Chain Monte Carlo (MCMC) approach in Bayesian specification.
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Therefore, the first line of equation (4.1) can be written as:

Yi|b1i,β1, σ
2
e ,U i = ui

ind.∼ Nni

(

X1iβ1 +Z1ib1i + δeui −
√

2

π
δe1ni

, σ2
eIni

)

,

U i
ind.∼ Nni

(0, Ini
) I(ui > 0) ,

where ui is the observed value of U i. Some components of longitudinal measure-

ments may be missing due to dropout. We consider a non-ignorable missingness

mechanism for them. In order to complete the Bayesian specification, prior dis-

tributions for all unknown parameters should be defined. The vector of unknown

parameter is θ = (β′
1,β

′
2, σ

2
e , δe,D1,D2). To ensure to have proper posteriors in

the model we consider proper but diffuse conditionally conjugate priors (Hobert

and Casella, 1996). We assume that components of θ are mutually independent

and the prior distributions are given by

β1 ∼ Np1
(β01,Σ01) , β2 ∼ Np2

(β02,Σ02) ,

D1 ∼ IWq1
(η01,ψ01) , D2 ∼ IWq2

(η02,ψ02) ,(4.2)

σ2
e ∼ IΓ(α0, τ0) , δe ∼ N(µδe

, σ2
δe

) .

The hyperparameters of these priors are selected such that they lead to the

low-informative prior distributions. As all of these priors are proper but, low-

informative in view of their variances.

For Bayesian implementation, one may use Gibbs sampling and Metropolis–

Hastings algorithm via WinBUGS package.

4.1. Models comparison

For models comparison, we have used some famous criteria which are

Deviance Information Criterion (DIC), Expected Akaike Information Criterion

(EAIC), Expected Bayesian Information Criterion (EBIC, Carlin and Louis, 2000;

Brooks, 2002) and Log Pseudo Marginal Likelihood (LPML).

Let Θ and Z = (z1, ..., zN )
′
be the entire model parameters and data, re-

spectively. Define: D(Θ) = −2 ln f(z|Θ) = −2

N
∑

i=1

ln f(zi|Θ), where f(zi|Θ) is

marginal distribution of zi, then E [D(Θ)] is a measure of fit and can be approx-

imated by using the MCMC output in a Monte Carlo integration. This index is

given by D̄ =
1
K

K
∑

k=1

D(Θ(k)
). Where Θ(k)

is the kth
iteration of MCMC chain of

the model and K is the number of iterations.

Therefore the Bayesian criteria are given by D̂IC = D̄+ p̂D, ÊAIC = D̄+2p

and ÊBIC = D̄ + p ln(N), where p is the number of parameters and N is the



Joint Modeling of Skew-normal Longitudinal Measurements 177

total number of observations. The smaller DIC, EAIC and EBIC, the better fit

of the model.

Another popular criterion, which is usually used for model comparison in

Bayesian context is Conditional Predictive Ordinate (CPO) statistic. Let Z(−i)
,

i = 1, 2, ..., N , denote the data set without its ith individual, and let π(θ|Z(−i)
)

denote posterior distribution of θ givenZ(−i)
, then CPOi =

∫

Θ

f(zi|θ)π(θ|z(−i)
)dθ.

Gelfand and Dey (1994) show that CPOi can be estimated by

CPOi =

(

1

K

K
∑

k=1

1

f
(

zi|θ(k), z
)

)−1

.

For collecting information of CPOis, the LPML statistic is defined by LPML =
N
∑

i=1

log(CPOi). In this concept, unlike that of DIC, EAIC or EBIC, the larger

value of LPML criterion indicates a better fitted model.

4.2. Convergence diagnostics

Gelman and Rubin (1992) have suggested a diagnostic test for assessing

convergence. Their method recommends that two or more parallels (denoted

by m) chains be generated, each with different starting values. For assessing

convergence of individual model parameters the potential scale reduction factor

(PSRF) may be used. The PSRF is calculated by PSRF =

√

n−1
n +

m+1
nm

B
W ,

where B/n is the between-chain variance

[

B
n =

1
m−1

m
∑

j=1

(

θj − θ̄
)2

]

and W is the

within-chain variance

[

W =
1

m(n−1)

m
∑

j=1

n
∑

i=1

(

θij − θ̄j

)2

]

. As chains converge to a

common target distribution, the between-chain variability should become small

relative to the within-chain variability and consequently PSRF should be close

to 1. Conversely, PSRF value larger than 1 indicates non-convergence.

5. SIMULATION STUDY

To investigate the performance of the proposed model, we conducted a

simulation study. In this simulation study, we generate 500 samples with sample

size n = 100, moderate sample size, and n = 500, large sample size. We have

considered the following joint modeling:

yij = β11 + β12sij + β13xi + b1i + b2isij + εij , i = 1, 2, ..., n , j = 1, 2..., 5 .
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In this model sij = j, xi ∼ Ber(0.2), β11 = 10, β12 = −3, β13 = −2, εij ∼
SN

(

−
√

2
π δe, σ

2
e , δe

)

, where σe = 1 and δe = 3. Also, we have used a Cox pro-

portional hazard model in a frailty structure with a Weibull baseline hazard as

follows:

h(t) = h0(t) exp
{

β21 + β22xi + ρ1b1i + ρ2b2i

}

.

In this model, β22 = −2, ρ1 = 1 and ρ2 = 2. We have considered three rates of

random dropout, 10%, 30% and 50%, which are generated by using different val-

ues for β21. Therefore, we have a non-ignorable mechanism in the model, such

that when sij > Ti then ith individual dropouts from the study. In this simu-

lation study β21 = 3 leads to 10% rate of non-random dropout, β21 = −1 leads

to 30% and β21 = −2 leads to 50% rate of non-random dropout of longitudinal

outcomes. Also, bi = (b1i, b2i) ∼ N2(0,D), where D is considered to be a 2×2

matrix, where d11 = d22 = 1 and d21 = d12 = 0.5. d11, d12 and d22 are distinct

elements of the matrix D. Let β1 = (β11, β12, β13)
′
and β2 = (β21, β22)

′
, we have

used the following low-informative priors for unknown parameters.

β1 ∼ N3(0, 10
3I3) , β2 ∼ N2(0, 10

3I2) ,

σe ∼ IΓ(0.01, 0.01) , δe ∼ N(0, 100) ,(5.1)

ρk ∼ N2(0, 10
2I), k = 1, 2 , D ∼ IW2(100I2, 2) .

We have used “R2WinBUGS” package for implementation of this simulation

study. We have implemented 10,000 iterations and have used the last 5000 iter-

ations to obtain some summary of posterior. We have analysed these simulated

data set under two distributional assumptions for within subject error: normal

distributional assumption and skew-normal distributional assumption. The re-

sults of this simulation study are presented in Tables 1 to 3 for the rate of miss-

ingness 10%, 30% and 50%, respectively. The relative bias and mean square error

of parameter θ are defined as

Rel.Bias(θ) =
1

N

N
∑

i=1

(

θ̂i

θ
− 1

)

, MSE(θ) =
1

N

N
∑

i=1

(

θ̂i − θ
)2

,

where θ̂i is the estimate of θ for the ith sample and N = 500. These tables

show that when real data have skew-normal distribution, some parameters of

joint modeling under normal assumption are estimated with some biases. These

parameters are variance of error term of longitudinal model, variance of random

effects and coefficients of random effects of survival model. For comparison of

the performance of two models results of relative bias and mean square error of

estimators are considered. Based on results given in Tables 1–3, we can conclude

that skew-normal model leads to better inference in general. Also, these tables

show that increasing of sample size in skew-normal scenario is an effective measure

in decreasing standard errors, relative bias and MSE of the parameters.
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6. HIV DATA SET

As an illustrative example of our Bayesian joint modeling, we use a lon-

gitudinal study on 467 HIV patients. Data were collected by Goldman et al.

(1996). HIV infection results in a progressive destruction of immune function,

which may be indicated by a decrease of CD4 (Stevens et al., 2006). A count of

CD4 cells of a person gives a general measure of the health of him/her immune

system, and is a good measurement of immunosuppression. A normal CD4 cell

count is more than 500 cells per cubic millimeter (mm3) of blood. If one has a

CD4 count of fewer than 300, one will be diagnosed as having AIDS, therefore,

CD4 count measurement is an important index which provides a way of gauging

the progression from HIV to acquired immune deficiency syndrome (AIDS) for

prognostic purposes. Thus, in this study, the CD4 count measurements over time

are chosen as response variable.

This study is done for comparing the efficacy and safety of two alternative

antiretroviral drugs, namely didanosine (ddI) and zalcitabine (ddC). The patients

met another entry conditions which is AIDS diagnosis or two CD4 counts of 300

or fewer, also they randomly assigned to receive either ddI or ddC, and CD4 cell

counts were recorded at study entry and again at the 2, 6, 12, and 18 months.

Another variable which is recorded in this study is time to death.

Before this Guo and Carlin (2004), Rizopoulos (2010) and some other au-

thors had suggested that, for analysing this data set, a square root transformation

for CD4 counts be used instead of Gaussian model. Figure 1 shows histogram

and q-q plot of
√

CD4 which shows that there are right skewness
√

CD4 even

after root transformation. We have used the same transformation in our analy-

sis, but under skew-normal distribution assumption for the error term. Figure 2

presents the subject-specific profile for fifty randomly selected individuals given

each drug. Panels of this figure show a sharply increasing degree of missing data

over time due to death, dropout, and missed clinic visits. In this figure the pro-

files of those individuals who remain and those of individuals who do not remain

are indicated using gray and black colors, respectively. This figure underlines

that those who do not remain had smaller
√

CD4 than others. Figure 3 presents

Kaplan–Meier survival curve estimates for both treatment groups. The plot sug-

gests longer survival times in the ddC group compared to the ddI group, from

month 6 onwards.

We have used a skew-normal JM of longitudinal and time to event data for

analysing the data set. The linear mixed effect model with random intercept and

slope is:

yij = β11 + β12 tij + β13 tij Drugi + β14Genderi

+ β15PrevOIi + β16Stratumi + b1i + b2i tij + σeεij .
(6.1)
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For the time to event process, we have used a Cox proportional hazard model,

the hazard function for this model is given by

h(ti) = h0(ti) exp

{

β21 + β22Drugi + β23Genderi

+ β24PrevOIi + β25Stratumi + ρ1b1i + ρ2 b2i

}

.
(6.2)

In models (6.1) and (6.2) the vector of random effects bi = (b1i, b2i)
′

is shared

between two models. Also, we consider normal and skew-normal distribution as-

sumptions on the longitudinal mixed model. Random effects are assumed to have

a bivariate normal distribution, that is, bi∼N2(0,D) and εij∼SN
(

−
√

2
π δe, σ

2
e , δe

)

.

In this model, yij is the squared root of the jth
CD4 count measurement on the

ith individual in the trial, j = 1, 2, ..., 5 and i = 1, 2, ..., 467. Genderi is a gender

indicator (0= female, 1 =male), also other three explanatory variables are Drugi

(0 =ddC, 1 =ddI), PrevOIi, previous opportunistic infection, (1 =AIDS diag-

nosis, 0 =no AIDS diagnosis), and Stratumi (1=AZT failure, 0 =AZT intoler-

ance).

In Bayesian MCMC implementation, we ran two parallels MCMC chains

with different starting values for 100, 000 iterations each. Then, we discarded

the first 20, 000 iterations as pre-convergence burn-in and retained 80, 000 for the

posterior analysis. Let βk = (βk1, ..., βkpk
)
′

where k = 1, 2, p1 = 6, p2 = 5. In

all models, we consider βk ∼ Npk
(0, 10000Ipk

), σ2
e ∼ IΓ(0.1, 0.1), ρk ∼ N(0, 100),

D ∼ IW2(100I2, 2) and δe ∼ N(0, 100). For the piecewise baseline hazard func-

tion [hl, l = 1, 2, 3, 4 (the number of piecewise baseline=4)] the gamma(1, 1)

prior distribution is considered for each piece (hi, i = 1, 2, 3, 4). Hyperparameters

are chosen such that the priors of the parameters tend to be weakly informa-

tive. We have considered joint modeling of equations (7)–(8) under two different

distribution assumptions.

After checking Gelman–Rubin diagnosis test for convergence, Bayesian pa-

rameter estimates including posterior mean, standard deviation and 95% highest

posterior density of all parameters are given in Table 4. According to DIC, EAIC,

EBIC and LPML criteria the skew-normal model has a better fit to these data.

This table shows that time and previous opportunistic infection are two signifi-

cant covariates in longitudinal model, also skewness parameter of error term is

significant, where the more time and previous opportunistic infection, the less

CD4 count measurements. In survival model ρ1 and ρ2 are significant which

shows that two models are dependent. Also, Table 4 shows that skewness param-

eter is significant and ignoring this parameter and using normal model leads to

overestimating of variance of the error in longitudinal model.

An important criterion for finding the influential observations is Kullback–

Leibler divergence criterion between π(θ|Z) and π(θ|Z(−i)
), i = 1, 2, ..., n, where

Z and Z(−i)
are all data and the data set without its ith individual, respectively.
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It is defined by

Ki =

∫

π(θ|y, t) log

(

π(θ|y, t)

π
(

θ|y(−i), t(−i)
)

)

dθ .

This can be approximated by: (Christensen et al., 2011; page 341)

Ki = log





1

m

m
∑

j=1

1

L
(

θj |yi, ti
)



− 1

m

m
∑

j=1

log

(

1

L
(

θj |yi, ti
)

)

.

An observation with large Ki is considered as an influential observation. Figure 4

shows Kullback–Leibler divergence for both skew-normal and normal models.

This figure shows that the skew-normal model detects some individuals as influ-

ential observations, but normal model does not detect any. Individuals 131 and

353 have large values of the response in the second observed time in comparison

with the largest value in this time. These individuals have observed survival times

12.23 and 12.53, respectively. There is so much increase in CD4 count measure-

ments at 3
th

to 4
th

observed time for individuals 188 and 245. Other individuals

detected in Figure 3 are 417, 171 and 319. Except observation 417 who is died at

time 10.60, the other individuals dropped out from the study at times 17.33 and

15.97, respectively, where the length of the period of the study is equals to 18.

The longitudinal measurements for individuals 417 and 171 are close to the lowest

value of the CD4 measurements at each time of the study.

Also, a sensitivity analysis is performed to see the modification of posterior

distribution with respect to changes in the hyperparameters of prior distributions

of σ2
e . For this purpose, we assume σ2

e =
1

τ2
e

, where τ2
e ∼ Γ(ǫ, ǫ) (see Gelman,

2006) and Var(τ2
e ) =

1
ǫ = 10

k
, k = −3,−2, ..., 2, 3. Sensitivity of the posterior

mean of all parameters for different values of k is investigated. This shows that

our inferences, containing the results of posterior means, standard deviations and

DIC value, are not sensitive to the change of value of k after k = 1 (the results

are not given here to save space).

7. CONCLUSION

In this paper, we have used a multivariate skew-normal distribution family,

which includes normal distribution, for analysing skew longitudinal responses

in joint modeling of longitudinal and survival times. We have used Bayesian

approach and WinBUGS software for implementing the proposed model. We

have performed some simulation studies to investigate the performance of the

proposed method. Also, the proposed method is used for analysing a real HIV

data set. Our analysis shows that these data set are severely skew, and the

skew-normal model has a better performance than normal model based on the
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DIC, EAIC, EBIC and LPML criteria. The program codes for analysing the

data set are available under request from the authors. If a data set includes

outliers and skew longitudinal responses a joint model with assumption of skew-

normal/independent distribution for responses may be defined to analyse the

data.
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Figure 1: Histogram and q-q plot of
√

CD4 in HIV data set.
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Figure 2: Profiles of
√

CD4 measurements over time for all individuals from

each drug, bold black lines are mean profile for all observed indi-

viduals on each drug, gray color indicates those individuals who

remain and black color represents those who do not remain.
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Figure 3: Kaplan–Meier estimates of the probability of survival

for individuals on each drug.

Figure 4: Kullback–Leibler divergence for the skew-normal and normal models.
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Table 4: Bayesian parameter estimates, posterior means (standard de-

viations, s.d.), and 95% HPDs for analysing the HIV data set

using skew-normal distribution (Skew-normal model) and the

normal distribution for error (Normal model).

Skew-normal model Normal model

parameters mean(s.d.) 95% HPD mean(s.d.) 95% HPD

Intercept (β11) 10.351(0.591) (9.186,11.589) 10.589(0.713) (9.212,11.921)
Time (β12) -0.362(0.048) (-0.461,-0.274) -0.352(0.052) (-0.451,-0.241)

Time × Drug (β13) 0.019(0.071) (-0.119,0.148) 0.023(0.072) (-0.119,0.172)
Gender (β14) -0.021(0.583) (-1.209,1.198) -0.255(0.673) (-1.506,1.093)
PrevOI (β15) -4.516(0.429) (-5.459,-3.749) -4.642(0.517) (-5.704,-3.661)
Stratum (β16) -0.194(0.422) (-0.974,0.651) -0.127(0.451) (-0.938,0.818)
Intercept (β21) -4.769(0.699) (-6.168,-3.402) -4.767(0.713) (-5.975,-3.171)

Drug (β22) 0.423(0.296) (-0.141,1.003) 0.373(0.292) (-0.213,0.939)
Gender (β23) -0.498(0.407) (-1.292,0.326) -0.295(0.449) (-1.146,0.568)
PrevOI (β24) 2.271(0.358) (1.603,2.992) 2.230(0.389) (1.502,2.964)
Stratum (β25) 0.098(0.281) (-0.441,0.674) 0.076(0.288) (-0.467,0.626)

ρ1 -0.314(0.044) (-0.405,-0.229) -0.299(0.042) (-0.381,-0.216)
ρ2 -3.722(0.448) (-4.711,-2.903) -3.865(0.422) (-4.633,-3.026)
d11 15.281(1.195) (13.078,17.710) 16.131(1.192) (13.940,18.591)
d12 -0.033(0.155) (-0.340,0.271) -0.040(0.156) (-0.346,0.262)
d22 0.468(0.037) (0.399,0.547) 0.472(0.039) (0.401,0.554)
δe 2.674(0.422) (1.457,3.062) – –
σ2

e 0.706(0.570) (0.071,2.244) 3.052(0.175) (2.742,3.410)
h1 0.146(0.088) (0.038,0.376) 0.119(0.077) (0.028,0.325)
h2 0.519(0.271) (0.158,1.183) 0.439(0.244) (0.127,1.082)
h3 1.397(0.706) (0.431,3.142) 1.207(0.643) (0.369,2.881)
h4 1.819(0.931) (0.545,4.069) 1.623(0.862) (0.488,3.827)

Model Comparison Criteria

DIC 6734.76 9425.89
EAIC 5290.922 8810.331
EBIC 5306.314 8165.494
LPML -3004.761 -3952.432

d11, d12 and d22 are distinct elements of the matrix D.
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or a PDF file of the paper to the e-mail: revstat@fc.ul.pt.

Submission of a paper means that it contains original work that has not
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Copyright
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