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Abstract:

• Singular spectrum analysis (SSA) is a relatively new and powerful non-parametric time

series analysis technique that has demonstrated its capability in forecasting different

time series in various disciplines. In this paper, we study the feasibility of using the

SSA to perform mortality forecasts. Comparisons are made with the Hyndman–Ullah

model, which is a new powerful tool in the field of mortality forecasting, and will be

considered as a benchmark to evaluate the performance of the SSA for mortality fore-

casting. We use both SSA and Hyndman–Ullah models to obtain 10 forecasts for the

period 2000–2009 in nine European countries including Belgium, Denmark, Finland,

France, Italy, The Netherlands, Norway, Sweden and Switzerland. Computational

results show a superior accuracy of the SSA forecasting algorithms, when compared

with the Hyndman–Ullah approach.
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1. INTRODUCTION

With the continuing increase in life expectancy, the mortality forecasting

plays a major role to advice government policy and planning, and in decision

making for pension and insurance industries. Lee and Carter (1992) proposed

a new method which uses singular value decomposition to represent the logs of

mortality rate in terms of two age-dependent factors and a single time-dependent

factor. The time-dependent factor can be extracted and modelled using conven-

tional time series methods so that forecasts could be made. The popular method

of Lee and Carter (1992) to model and forecast mortality rate has undergone

various extensions and modifications. For a review and recent developments, see

Hyndman and Ullah (2007), Hyndman et al. (2011) and references therein. These

methods exhibited a good performance of mortality rate forecasts. However pro-

ducing more accurate forecasts can help, both pension and insurance companies

and governments, to make better decisions.

Singular Spectrum Analysis (SSA) is a relatively new non-parametric ap-

proach for analysing time series data which incorporates elements of classical time

series analysis, multivariate statistics, multivariate geometry, dynamical systems

and signal processing (Golyandina et al., 2001). SSA has the ability to decom-

pose the original time series into the sum of a small number of independent and

interpretable components such as a slowly varying trend, oscillatory components

and a structureless noise. The literature review on SSA shows that there are

more than hundred papers on the application of SSA in the different areas and,

in the majority of them, superiority of SSA compared to other time series anal-

ysis techniques has been demonstrated (e.g. Hassani et al., 2009; Hassani and

Thomakos, 2010, and references therein). Most recent developments in the the-

ory and methodology of SSA can be found in Zhigljavsky (2010) and Golyandina

and Zhigljavsky (2013).

Mahmoudvand et al. (2013) compared the ability of SSA with the Hyndman–

Ullah model for mortality forecast in France. In this paper we extend that

study to nine European countries (Belgium, Denmark, Finland, France, Italy,

The Netherlands, Norway, Sweden and Switzerland); consider two forecasting al-

gorithms for SSA: Recurrent SSA (RSSA, Danilov, 1997a, b) and Vector SSA

(VSSA, Nekrutkin, 1999); and consider the time series until 2009, in a new ap-

proach.

Since the proposal of Hyndman and Ullah (2007) can be seen as a bench-

mark because it achieves more accurate mortality forecasts than many other ap-

proaches, it will be used to compare with SSA forecasting results and, therefore,

to evaluate SSA as a plausible alternative for mortality forecasting.
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The rest of the paper is structured as follows: in Section 2 we give a brief

description of Hyndman and Ullah (2007) model, and in Section 3 present the

generic SSA methodology. The application is presented Section 4 and Section 5

gives some concluding remarks.

2. HYNDMAN–ULLAH APPROACH

The Hyndman–Ullah approach can be expressed using the equation (Hyn-

dman and Ullah, 2007)

(2.1) log mt(x) = a(x) +

K∑

j=1

kt,j bj(x) + et(x) + σt(x) ǫt(x) ,

where mt(x) denotes the mortality rate for age x at time t, a(x) is the average

pattern of mortality by age across years, bj(x) is a basis function and kt,j is

a time series coefficient. The error term σt(x) ǫt(x) accounts for observational

error that varies with age; i.e., it is the difference between the observed rates

and the spline curves. The error term et(x) is modelling error, i.e. the difference

between the spline curves and the fitted curves from the model. By comparison,

the Lee–Carter model (Lee and Carter, 1992)

(2.2) log mt(x) = a(x) + kt b(x) + ǫt(x) ,

has one set of (kt, b(x)), while the Hyndman–Ullah model includes more than

one set of components. This extension presented by Hyndman and Ullah (2007)

gives more flexibility to the model because the additional components capture

non-random patterns, which are not explained by the first principal component.

Other extensions of the Lee–Carter model are discussed in Booth et al. (2006)

and Shang et al. (2011).

3. SINGULAR SPECTRUM ANALYSIS

The basic SSA method consists of three complementary stages: decom-

position, reconstruction and forecasting. In the first stage the time series is

decomposed, in the second stage the noise free time series is reconstructed and

in the third stage the reconstructed time series is used for forecasting new data

points. A short description of the SSA technique is given below. More informa-

tion can be found in Golyandina et al. (2001), Hassani (2007) and Golyandina

and Zhigljavsky (2013).
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3.1. Basic SSA

First Stage: Decomposition

1st step: Embedding. Let x1, ..., xN be a time series of length N .

Considering a window length L the result of this step is a L × K matrix X =

[X1 : ... : XK ], where K = N − L + 1 and Xi = (xi, ..., xi+L−1)
T , 1 ≤ i ≤ K.

2nd step: Singular Value Decomposition (SVD). In this step, matrix

X will be decomposed using SVD as X = X1 + ··· + Xd, where Xi =
√

λiUiVi
T

and Vi = XT Ui/
√

λi with λ1, ..., λL, the eigenvalues of S = XXT
and U1, ..., UL,

the corresponding eigenvectors.

Second Stage: Reconstruction

3rd step: Grouping. The grouping step corresponds to splitting the

elementary matrices into m disjunct subsets I1, ..., Im, and summing the matrices

within each group. In our application we have m = 2, i.e. only two groups. I1 =

{1, ..., r} and I2 = {r + 1, ..., L} are related to the single and noise components,

respectively.

4th step: Diagonal averaging. The purpose of diagonal averaging is

to transform each matrix XIj
into a new series of length N . Using diagonal

averaging we have that X = X̃I1 + ··· + X̃Im
, where X̃Ij

is the hankelized form

of XIj
, j = 1, ..., m. Considering x̃

(Ij)
m,n the (m, n)

th
entry of the estimated matrix

X̃Ij
and denoting by {ỹj1 , ..., ỹjT

} the reconstructed components in the matrix

X̃Ij
, j = 1, ..., m, applying diagonal averaging follows that

ỹjl
=





1

s − 1

s−1∑

n=1

x̃
(Ij)
n,s−n 2 ≤ s ≤ L − 1 ,

1

L

L∑

n=1

x̃
(Ij)
n,s−n L ≤ s ≤ K + 1 ,

1

K + L − s + 1

L∑

n=n−K

x̃
(Ij)
n,s−n K + 2 ≤ s ≤ K + L .

Third Stage. Forecasting

The basic requirement to make SSA forecasting is that the time series

satisfies a linear recurrent formula (LRF). A time series YT = (y1, ..., yT ) satisfies
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LRF of order d if:

(3.1) yt = a1yt−1 + a2 yt−2 + ··· + ad yt−d , t = d + 1, ..., T .

Although there are several versions of univariate SSA forecasting algorithms we

consider here two of the mostly widely used: Recurrent SSA (RSSA, Danilov,

1997a, b) and Vector SSA (VSSA, Nekrutkin, 1999). In what follows, we give a

brief description of these algorithms. Further details can be found in Golyandina

et al. (2001).

Let us assume that U▽
j is the vector of the first L − 1 components of the

eigenvector Uj and πj is the last component of Uj (j = 1, ..., r). Denoting υ2
=∑r

j=1 π2
j we define the coefficient vector R as:

R =
1

1 − υ2

r∑

j=1

πj U▽
j .

Recurrent SSA

Considering the above notation, the RSSA forecasts (ŷT+1, ..., ŷT+M ) can

be obtained by

(3.2) ŷi =

{
ỹi , i = 1, ..., T ,

R
T Zi , i = T + 1, ..., T + M ,

where, Zi = [ŷi−L+1, ..., ŷi−1]
T

and ỹ1, ..., ỹT , are the values for the reconstructed

time series and can be obtained from 4th step in above.

Vector SSA

Define linear operator:

(3.3) P(v)Y =

(
ΠY△

R
T Y△

)
, Y ∈ span{U1, ..., Ur} ,

where Π = U▽U▽T
+ (1− v2

)RR
T

and Y△ denotes the last L− 1 elements of Y .

Suppose the vector Zj is defined as follows

(3.4) Zj =

{
X̃j for j = 1, ..., K ,

P(v)Zj−1 for j = K + 1, ..., K + M + L − 1 ,
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where X̃j are the jth
reconstructed columns of the trajectory matrix of the time

series after grouping and discarding noise components. Now, by constructing the

matrix Z = [Z1, ..., ZK+M+L−1] and performing diagonal averaging, we obtain a

new time series ŷ1, ..., ŷT+M+L−1, where ŷT+1, ..., ŷT+M form the M terms of the

VSSA forecast.

3.2. Forecast accuracy

To evaluate the accuracy and reliability of forecasts in time series, one can

use a suitable combination of the following three approaches: (i) construction of

confidence intervals; (ii) assessment of retrospective forecasts; and (iii) checking

the stability of forecasts. Although the three represent important approaches, in

the present paper we will be interested only in (ii) assessment of retrospective

forecasts. Further information about approaches (i) and (iii) can be found in

Golyandina et al. (2001) and Pepelyshev et al. (2010), respectively.

Retrospective forecasts are usually performed by truncating the time series

and by obtaining forecasts for points temporarily removed. These forecasts can

then be compared with the observed values of the time series to asses their quality

and reliability. Let eT,h(x) = yT+h(x) − ŷT,h(x) denote the forecast error, where

ŷT,h(x) are the forecasts for yT+h(x) using RSSA or VSSA (h = 1, ..., M). Then,

a measure of accuracy such as the Integrated Squared Error of forecast can be

written as

(3.5) ISET,h =

∑

x

e2
T,h(x) .

3.3. SSA parameter selection

The SSA calibration depends upon two basic, but very important, parame-

ters: thewindow lengthL, and the number of eigentriples used for reconstruction r.

The choice of improper values for the parameters L or r yield incomplete recon-

struction and the forecasting results might be misleading. Despite the impor-

tance in choosing proper values for these parameters, no theoretical solution has

been proposed to solve this problem. Some of the techniques to choose the ap-

propriate value of L can be found in Golyandina (2010), Hassani et al. (2011),

Mahmoudvand and Zokaei (2012) and Mahmoudvand et al. (2013). An overall

agreeable suggestion to choose the window length is to have it close to the middle

of the series and proportional to the number of observations per period (e.g. to

12 for monthly time series, to four for quarterly time series, etc.). However, this

choice does not guarantee the best predictions (e.g. Mahmoudvand, et al, 2013).
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For better results, the parameter choice should be made accordingly to available

data and intended analysis.

In practice it is relatively rare that the number of singular values r, needed

to be selected to reconstruct noise free series from a noisy time series, is known

a priori. Among several ways to determine r described in the literature, the

easiest way is done by checking breaks in the eigenvalues spectra. As a rule of

thumb, a pure noise series produces a slowly decreasing sequences of singular

values. Another useful insight is provided by considering separability between

signal and noise components, which is a fundamental concept in studying SSA

properties, by using w-correlations (Golyandina et al., 2001) between two vectors

Y (1)
= [y

(1)
1 , ..., y

(1)
T ]

T
and Y (2)

= [y
(2)
1 , ..., y

(2)
T ]

T
:

(3.6) ρw =

T∑
j=1

wL,T
j y

(1)
j y

(2)
j

√
T∑

j=1
wL,T

j

(
y

(1)
j

)2
×

T∑
j=1

wL,T
j

(
y

(2)
j

)2
,

where, wL,T
j = min{j, L, T − j + 1} and 2 ≤ L ≤ T − 1. According to this mea-

sure, two series are separable if the absolute value of their w-correlation is small.

Therefore, we determine r in such a way that the reconstructed series and resid-

ual have a small w-correlation. Another way to determine r is by examining the

forecast accuracy, i.e. r is determined in such a way that the minimum error in

forecasting will be obtained. Considering L fixed, the choice of r can be done as

(3.7) r = argmin
r<L<T−1

ISET,h(x) .

In this study, we considered L = 10 and employed equation (3.7) to determine

the number of singular values used for reconstruction, r.

4. RESULTS

Following a preliminary study by Mahmoudvand et al. (2013), we intend

to demonstrate the feasibility of SSA for forecasting mortality rates using age-

specific mortality rates from nine European countries: Belgium, Denmark, Fin-

land, France, Italy, The Netherlands, Norway, Sweden and Switzerland. We have

yt(x) = log(mt(x)) where mt(x) denotes the mortality rate for age x in year t.
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4.1. Empirical results: The case of nine European countries

Annual mortality rates of nine European countries for single years of age

were obtained from the Human Mortality Database (http://www.mortality.org/).

These mortality rates are the ratios of death counts to population exposure in

the relevant interval of age and time. Figure 1 shows the typical patterns of log

mortality rates for several ages and years in the considered countries.
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Figure 1: Changes in the total log mortality rates with respect to both

age and year, over the period 1900–2009.
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The plots depicted in Figure 1 show that, from 1900 to 2009, there was

a general pattern of decline in mortality rates for all ages and all countries, as

reported by Mahmoudvand et al. (2013) for the case of France. By analysing

these plots, it can be seem that the decline for infant mortality is steeper than for

adult mortality. The effects of the World War I (1914–1918) and World War II

(1939–1945) are clearly visible in the top right plot of Figure 1, for the age of 25,

being more dramatic for France and Italy, as expected. For the other ages the

same effect is also visible but it not as extreme. Since the number of people with

100 years old is small, the bottom plot of Figure 1 shows a less clear pattern but

a decrease is visible in terms of mortality rate and variability, with the time, for

all countries.

Comparison

The results of our proposal were compared with the results obtained from

the method of Hyndman and Ullah (2007). The comparison was made by consid-

ering the European mortality data between 1900 and 1999, with forecast for the

years 2000–2009. Calculations for the Hyndman–Ullah model were made with the

R package “demography” and for SSA we developed our own R code (available

upon request). The forecasts were compared with the observed values of the time

series, using the integrated squared error (3.5), where the squared errors that

integrated by age, on the log scale.

Forecasts of log mortality rate for the period 2000–2009, using the time se-

ries 1900–1999, for all ages between 0 and 100 years, for both SSA and Hyndman–

Ullah approaches, were computed and compared. This is, for each age, from 0

to 100 years old, and for each of the nine countries, the time series between 1900

and 1999 is used to forecast the next 10 values between 2000 and 2009, which

result in the ten ISE of forecasting reported in Table 1. According to the ISE val-

ues, results in the mortality forecasts by RSSA and VSSA are significantly better

than the results for the Hyndman–Ullah method. Ratios of ISE in the second

and third rows for each country of Table 1 show that SSA provides more than

90% improvement in log mortality forecast for some country–year combinations.

This confirms the superiority of SSA over the Hyndman–Ullah method. More-

over, the VSSA forecasting procedure is slightly better than the RSSA forecasting

procedure, particularly for the long term forecasts. By comparing the results in

Table 1 and the plots in Figure 1, it is clear that, because of its construction,

HU procedure produces good results when the time series are smoother. However

both RSSA and VSSA produce better results when forecasting the most of the

mortality rates in these time series.
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Table 1: ISE of forecasts for the considered countries.

Country Model
Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

HU1 NA NA NA NA NA NA NA NA NA NA
Belgium RSSA 0.65 0.65 0.38 0.60 0.51 0.82 1.44 0.49 0.38 0.99

VSSA 0.90 0.59 0.37 0.79 0.39 0.53 1.00 0.38 0.52 1.08

HU 4.70 1.68 3.31 2.92 2.29 5.48 3.57 7.80 6.72 6.96

Denmark RSSA

HU
0.28 0.54 0.28 0.30 0.38 0.24 0.45 0.33 3.20 0.30

VSSA

HU
0.30 0.43 0.39 0.24 0.45 0.23 0.39 0.28 3.33 0.26

HU 4.15 4.95 5.19 4.55 6.08 5.60 5.92 6.17 5.22 8.27

Finland RSSA

HU
0.21 0.11 0.20 0.20 0.44 0.89 0.15 0.51 0.41 0.32

VSSA

HU
0.25 0.17 0.21 0.21 0.28 0.70 0.19 0.38 0.43 0.30

HU 0.50 0.74 0.61 0.93 1.83 1.61 2.13 2.44 2.50 2.15

France RSSA

HU
0.17 0.21 0.22 0.27 0.17 0.19 0.34 0.34 0.27 0.35

VSSA

HU
0.26 0.21 0.23 0.40 0.14 0.16 0.28 0.26 0.21 0.33

HU 0.70 1.09 1.68 1.35 2.48 2.49 3.37 2.93 2.84 3.39

Italy RSSA

HU
0.16 0.10 0.13 0.14 0.21 0.17 0.27 0.29 0.19 0.27

VSSA

HU
0.16 0.13 0.12 0.11 0.14 0.18 0.17 0.27 0.15 0.21

HU 1.00 0.73 1.05 1.10 1.83 2.44 2.78 3.41 4.39 3.94

Netherlands RSSA

HU
0.24 0.36 0.23 0.23 0.15 0.26 0.22 0.27 0.30 0.26

VSSA

HU
0.23 0.30 0.10 0.32 0.14 0.23 0.19 0.23 0.29 0.22

HU 3.23 5.76 2.71 2.52 4.86 5.07 10.24 12.55 6.11 8.51

Norway RSSA

HU
0.21 0.09 0.58 0.35 0.16 0.21 0.43 0.64 0.20 0.32

VSSA

HU
0.27 0.08 0.35 0.32 0.17 0.20 0.34 0.57 0.24 0.37

HU 4.52 3.17 4.79 2.82 3.38 4.17 3.85 4.37 8.20 6.07

Sweden RSSA

HU
0.30 0.17 0.16 0.36 0.23 0.28 0.32 0.27 0.43 0.40

VSSA

HU
0.29 0.17 0.26 0.27 0.18 0.17 0.19 0.13 0.43 0.25

HU 1.54 6.46 4.94 3.33 2.72 4.05 5.01 4.19 5.48 5.46

Switzerland RSSA

HU
0.23 0.43 0.52 0.32 0.45 0.32 0.37 0.32 0.29 0.40

VSSA

HU
0.31 0.51 0.46 0.31 0.40 0.27 0.40 0.27 0.29 0.41

1Due to a small amount of missing values the HU values were not possible to obtain.
Data imputation techniques (e.g. Rodrigues and de Carvalho, 2013) can be used

to fill in the missing values.

Figure 2 shows the results of a sensitivity analysis to choose the model

parameters, window length L for SSA and K for the Hyndman–Ullah model,

where the mean ISE (MISE) of forecasts over the period 2000–2009 is presented.

Recall that MISE is provided by:

(4.1) MISE =
1

M

M∑

h=1

ISET,h

where M denotes the number of forecasts.

Although the model parameters, Lfor SSA and K for HU, are not directly

comparable, it can be seen in the plots of Figure 2 that, for most of the cases, the
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results of SSA, both RSSA and VSSA, are better than those of Hyndman–Ullah,

in terms of MISE. This confirms the ability of SSA for mortality forecasting,

being the RSSA slightly better than the VSSA, as visible in Table 1.

5 10 15 20

0
.5

1
.0

1
.5

2
.0

2
.5

L and K

M
IS

E

MISE of forecast over period 2000−2009 in Belgium

RSSA

VSSA

5 10 15 20

2
3

4
5

6
7

8

L and K

M
IS

E

MISE of forecast over period 2000−2009 in Denmark

RSSA

VSSA

Hyndman−Ullah

5 10 15 20

1
2

3
4

5
6

7

L and K

M
IS

E

MISE of forecast over period 2000−2009 in Finland

RSSA

VSSA

Hyndman−Ullah

5 10 15 20

0
.5

1
.0

1
.5

2
.0

L and K

M
IS

E

MISE of forecast over period 2000−2009 in France

RSSA

VSSA

Hyndman−Ullah

5 10 15 20

0
1

2
3

4
5

L and K

M
IS

E

MISE of forecast over period 2000−2009 in Italy

RSSA

VSSA

Hyndman−Ullah

5 10 15 20

0
.5

1
.0

1
.5

2
.0

L and K

M
IS

E

MISE of forecast over period 2000−2009 in Netherlands

RSSA

VSSA

Hyndman−Ullah

5 10 15 20

1
2

3
4

5
6

7

L and K

M
IS

E

MISE of forecast over period 2000−2009 in Norway

RSSA

VSSA

Hyndman−Ullah

5 10 15 20

1
2

3
4

5

L and K

M
IS

E

MISE of forecast over period 2000−2009 in Sweden

RSSA

VSSA

Hyndman−Ullah

5 10 15 20

1
2

3
4

5

L and K

M
IS

E

MISE of forecast over period 2000−2009 in Switzerland

RSSA

VSSA

Hyndman−Ullah

Figure 2: Mean integrated squared error (MISE) of total log mortality

rates forecast by RSSA and Hyndman–Ullah model over the

period 2000–2009 for different SSA and HU parameters.

5. CONCLUSION

In this paper, the usefulness and ability of Singular Spectrum Analysis

(SSA) to forecast mortality rates was studied. The results of SSA based forecast-

ing procedures were compared with those of Hyndman and Ullah method, which

can be seen as a benchmark for mortality forecasting. As in the preliminary study
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presented by Mahmoudvand et al. (2013) in this field of research, we can also con-

clude that the forecasting accuracy of SSA is higher than the forecasting accuracy

of the Hyndman and Ullah method, for most of the cases. Within the two SSA

based approaches, the RSSA shows slightly better results than the VSSA.

It should be noticed that our proposal does not take into consideration the

correlations among ages, which certainly can add useful informations to the anal-

yses and improve the forecast accuracy. Multivariate versions of SSA would be a

valid alternative to deal with such correlations and should be considered in fur-

ther studies. Other alternatives for further improvement of mortality forecasting

might be achieved when considering other SSA based forecasting algorithms.
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1. INTRODUCTION

The search for non-trivial empirical regularities in time series, usually called

stylized facts, has been the subject of several studies in order to identify classes

of time series models that conveniently capture such empirical properties.

A stylized fact detected by Taylor ([9]) when he analyzed 40 returns series is

known as the Taylor effect. He observed that, for most of the returns series,

denoted by Xt for instant t, the sample autocorrelations of the absolute re-

turns, ρ̂
|X|

(n) = ĉorr(|Xt|, |Xt−n|), were larger than those of the squared returns,

ρ̂X2(n) = ĉorr(X2
t , X2

t−n), for n ∈ {1, ..., 30}. More recently, Gonçalves et al. ([2])

also recorded Taylor effect in the physical time series of plage region areas de-

scribing solar activity.

We point out that there is still little research on the theoretical counterpart

on this empirical property due to the difficulty of handling the true autocorrela-

tions of time series models. For example, this theoretical counterpart was studied

by He and Teräsvirta ([5]) on conditionally Gaussian absolute value generalized

ARCH (AVGARCH) models, assuring its presence for some of these models.

More precisely, they called the theoretical relation ρ
|X|

(n) > ρX2(n), n ≥ 1, the

Taylor property and concentrated their study on the autocorrelation of lag 1.

Analogously, Gonçalves, Leite and Mendes-Lopes ([1]) studied the presence of

the Taylor property in TARCH models, concluding that this property is satisfied

when n = 1, for some first-order models. Generalizing these papers, Haas ([4])

proposed a methodology for identifying the Taylor property in AVGARCH(1, 1)

models at all lags.

The research of this property within heteroskedastic models is mainly re-

lated to the empirical facts observed and the good fit of those models to financial

time series. The established results have shown a strong connection between the

Taylor property and the kurtosis of the process; in fact, its presence seems to be

more related to the leptokurtic character of those models than to its conditional

heteroskedascity. This interpretation is consistent with the leptokurtic nature of

the real series presenting such stylized fact. Thus, we believe that it is important

to assess the presence of the Taylor property in other classes of processes with

relevance in time series analysis as it is the case of bilinear ones, which have also

been proven to be suitable in financial and physical time series modeling ([3],

p. 181).

In this paper we consider the simple bilinear diagonal model

(1.1) Xt = βXt−k εt−k + εt , k > 0 ,

where β is a real parameter and (εt, t ∈ Z) a sequence of i.i.d. random variables,

designated here by error process.
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We state sufficient conditions for the strict and weak stationarity of the

processes X = (Xt, t ∈ Z) and X2
= (X2

t , t ∈ Z), and we derive expressions for

the moments of X up to the 4th order. We also consider the study of the Taylor

property assuming that β > 0 and that the error process is non-negative. In

fact, there has been considerable interest in non-negative bilinear models. For

instance, Pereira and Scotto ([7]) studied some properties of the simple first-order

bilinear diagonal model (k = 1) driven by exponentially distributed innovations.

Also Zhang and Tong ([10]) have examined some distributional properties of a

simple first-order non-negative bilinear model considering for the error process

the uniform distribution in (0, 1).

The remainder of the paper is organized as follows. In Section 2 we establish

sufficient conditions under which X and X2
are strictly and weakly stationary.

Moreover, the moments of X up to 4th order are evaluated and a working example

on this matter is presented in appendix. In Section 3, the Taylor property in first-

order bilinear diagonal models with non-negative error process is analyzed. This

study is developed considering several distributions for the error process with

significantly different kurtosis values. A simulation study evaluating the Taylor

property in other real-valued simple bilinear models is presented in Section 4.

Some concluding remarks and future developments are given in Section 5.

2. STATIONARITY AND MOMENTS OF X AND X2

In this section we consider the simple bilinear model defined by (1.1) and

we denote µi = E(εi
t), i ∈ N.

Proposition 2.1. Suppose that µ4 and E(ln |εt|) exist. If β2 µ2 < 1 then

the process X is strictly and weakly stationary.

Proof: The strict stationarity of the process X is achieved by proving that

Xt = Yt, a.s., with

Yt = εt +

+∞∑

n=1

Tn ,

where, for each n ∈ N, Tn = Tn(t) is given by

Tn = βnεt−nk

n∏

j=1

εt−jk .

The proof of this result is similar to that of Theorem 1 in Quinn ([8]), as the

condition β2µ2 < 1 implies Quinn’s condition ln |β| + E(ln |εt|) < 0 by applying

Jensen’s inequality to the random variable ε2
t .
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To prove the weak stationarity, we now verify that E(Y 2
t ) < +∞. We have

E(Y 2
t ) = E



(

εt +

+∞∑

i=1

Ti

)2



(2.1)

≤ E(ε2
t ) + 2

∞∑

i=1

E(|εt| |Ti|) +

∞∑

i=1

∞∑

j=1

E(|TiTj |) .

Under the given conditions, each series in (2.1) is convergent. In fact, let us

consider, for example, the series

∞∑

i=1

∞∑

j=1

E(|TiTj |).

For each i, j ∈ N, we have

E(|TiTj |) ≤ |β|i+j

[
E
(
ε4
t−ik ε2

t−k ε2
t−2k ... ε2

t−(i−1)k

)]1/2

[
E
(
ε4
t−jk ε2

t−k ε2
t−2k ... ε2

t−(j−1)k

)]1/2

= µ4µ−1
2

[(
β2µ2

)1/2
]i+j

,

by Schwarz’s inequality and the independence of the r.v.’s εt, t∈Z. As
(
β2µ2

)1/2
<1,

the series is convergent.

Taking into account the equality Xt = Yt, a.s., and the strict stationarity of

the process X, we conclude that E(X2
t ) exists and that X is weakly stationary.

Proposition 2.2. Suppose that E(ln |εt|) and µ8 exist. If β4µ4 < 1 then

the process X2 is strictly and weakly stationary.

Proof: The condition β4µ4 < 1 implies β2µ2 < 1, by Schwarz’s inequality,

which implies in turn the strict stationarity of X and, consequently, of X2
. The

proof of the weak stationarity of X2
is analogous to the previous one. We have

E(Y 4
t ) ≤ E(ε4

t ) +

∞∑

i=1

∞∑

j=1

∞∑

p=1

∞∑

q=1

E(|TiTjTpTq|) + 4

∞∑

i=1

E(|ε3
t | |Ti|)

+ 4

∞∑

i=1

∞∑

j=1

∞∑

p=1

E(|εt| |TiTjTp|) + 6

∞∑

i=1

∞∑

j=1

E(ε2
t |TiTj |) .

Let us consider, for example, the series

∞∑

i=1

∞∑

j=1

∞∑

p=1

∞∑

q=1

E(|TiTjTpTq|), which

is a sum of series of the types
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(i)

∞∑

i=1

∞∑

j=i+1

∞∑

p=1

∞∑

q=p+1

E(|TiTjTpTq|) ,

(ii)

∞∑

i=1

∞∑

p=1

E(T 2
i T 2

p ) ,

(iii)

∞∑

i=1

∞∑

j=i+1

∞∑

p=1

E(|TiTj |T 2
p ) .

Concerning (i), as j > i and q > p, we have

E(|TiTjTpTq|) = E
[
(|TiTj |)(|TpTq|)

]

≤
[
E
(
ε4
t−ikε

4
t−lε

4
t−l−k...ε

4
t−l−(i−1)kε

2
t−jkε

2
t−l−ik...ε

2
t−l−(j−1)k

)]1/2

[
E
(
ε4
t−pkε

4
t−lε

4
t−l−k...ε

4
t−l−(p−1)kε

2
t−qkε

2
t−l−pk...ε

2
t−l−(q−1)k

)]1/2
,

by Schwarz’s inequality.

Taking into account the independence of the random variables εt, we have,

for i, j ∈ N, j > i,

E
(
ε4
t−ik ε4

t−l ε
4
t−l−k ... ε4

t−l−(i−1)k ε2
t−jk ε2

t−l−ik ... ε2
t−l−(j−1)k

)
= µi+1

4 µj−i+1
2 .

Then

∞∑

i=1

∞∑

j=i+1

∞∑

p=1

∞∑

q=p+1

E(|TiTjTpTq|)

≤
∞∑

i=1

∞∑

j=i+1

∞∑

p=1

∞∑

q=p+1

|β|i+j+p+q
(
µi+p+2

4 µj−i+q−p+2
2

)1/2

=

∞∑

i=1

∞∑

j=i+1

∞∑

p=1

∞∑

q=p+1

µ2µ4

[(
β4µ4

)1/2
]i+p[(

β2µ2

)1/2
][(j+q)−(i+p)]

.

As (β4µ4)
1/2 < 1 and (β2µ2)

1/2 < 1, the series in (i) is convergent. The conver-

gence of the series (ii) and (iii) is proved in a similar way. Then we conclude that

E(X4
t ) < +∞, t ∈ Z. As the process X2

is strictly stationary and E(X4
t ) exists,

then it is weakly stationary.

Let us now evaluate the moments up to the 4th order of the process X

given by (1.1).
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Proposition 2.3. If β4µ4 < 1 and µ8 exists then the nth moment of Xt,

n ≤ 4, can be expressed as

(2.2) E(Xn
t ) =

n∑

i=0

(
n

i

)
βn−i µi E(Xn−i

t εn−i
t ) ,

where

(2.3) E(Xn
t εn

t ) =
1

1 − βnµn

n∑

i=1

(
n

i

)
βn−i µn+i E(Xn−i

t εn−i
t ) , n ≤ 4 .

Proof: For n ≤ 4, we have

E(Xn
t ) =

n∑

i=0

(
n

i

)
βn−i E

[
εi
t (Xt−kεt−k)

n−i
]

=

n∑

i=0

(
n

i

)
βn−i µi E(Xn−i

t εn−i
t ) ,

since the process (Xtεt, t ∈ Z) is strictly stationary due to the fact that Xtεt is

a measurable function of εt, εt−1, ... . Now we need to evaluate E(Xn
t εn

t ), n ≤ 4.

E(Xn
t εn

t ) =

n∑

i=0

(
n

i

)
βn−i E

[
εi
t (Xt−k εt−k)

n−i εn
t

]

=

n∑

i=0

(
n

i

)
βn−i E(εn+i

t ) E(Xn−i
t εn−i

t )

= βnµnE(Xn
t εn

t ) +

n∑

i=1

(
n

i

)
βn−i µn+i E(Xn−i

t εn−i
t )

and the result follows.

It is easy to verify that E(Xtεt) = µ2/(1 − βµ1). The values E(Xn
t εn

t ),

n = 1, 2, 3, are obtained recursively by using the previous equation; and finally,

we achieve E(Xn
t ), n ≤ 4. A working example to illustrate these evaluations is de-

veloped in appendix for a first order bilinear model with exponentially-distributed

error process.

We note that β4µ4 < 1 implies |βnµn| < 1, n = 1, 2, 3, by Schwarz’s inequal-

ity.
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3. THE TAYLOR PROPERTY IN FIRST-ORDER

NON-NEGATIVE BILINEAR MODELS

3.1. Preliminary results

In this section we consider the first-order non-negative bilinear model

(3.1) Xt = βXt−1εt−1 + εt , t ∈ Z ,

where β > 0 and (εt, t ∈ Z) is a sequence of non-negative i.i.d. random variables.

We assume that E(ln εt) and µ8 exist and that β4µ4 < 1 in order to guar-

antee that both processes, X and X2
, are strictly and weakly stationary.

In this context, the Taylor property for n = 1 establishes that ρX(1) >

ρX2(1), where ρX(1) and ρX2(1) denote, respectively, the autocorrelations of lag 1

of the processes X and X2
. It is enough to evaluate E(XtXt−1) and E(X2

t X2
t−1)

in order to obtain these autocorrelations since we derived E(Xi
t), i = 1, 2, 3, 4, in

the previous section. Using (3.1) and the stationarity of the involved processes,

we have

E(XtXt−1) = βE(X2
t εt) + E(Xt−1εt)

= βE
(
β2X2

t−1ε
2
t−1εt + 2βXt−1εt−1ε

2
t + ε3

t

)
+ E(Xt−1εt) .

Taking into account the independence of the random variables εt, t ∈ Z, and the

strict stationarity of the related processes, we have E(X2
t−1ε

2
t−1εt) = µ1E(X2

t ε2
t )

and E(Xt−1εt−1ε
2
t ) = µ2E(Xtεt). Then

E(XtXt−1) = β3µ1E(X2
t ε2

t ) + 2β2µ2E(Xtεt) + µ1E(Xt) + βµ3 .

Using an analogous procedure, we obtain

E(X2
t X2

t−1) = β4E1 + 2β3E2 + 2β3µ1E3 + 4β2µ1E4 + β2E5 + 2βµ1E6

+ β2µ2E(X2
t ε2

t ) + 2βµ1µ2E(Xtεt) + µ2
2 ,

where

E1 = E(X2
t X2

t−1ε
2
t ε

2
t−1) = β2µ2E(X4

t ε4
t ) + 2βµ3E(X3

t ε3
t ) + µ4E(X2

t ε2
t ) ,

E2 = E(X2
t Xt−1ε

3
t εt−1) = β2µ3E(X3

t ε3
t ) + 2βµ4E(X2

t ε2
t ) + µ5E(Xtεt) ,

E3 = E(XtX
2
t−1εtε

2
t−1) = βµ1E(X3

t ε3
t ) + µ2E(X2

t ε2
t ) ,

E4 = E(XtXt−1ε
2
t εt−1) = βµ2E(X2

t ε2
t ) + µ3E(Xtεt) ,

E5 = E(X2
t ε4

t ) = β2µ4E(X2
t ε2

t ) + 2βµ5E(Xtεt) + µ6 ,

E6 = E(Xtε
3
t ) = βµ3E(Xtεt) + µ4 .

Finally, the results of the previous section allow us to obtain the values of

E(XtXt−1) and E(X2
t X2

t−1) in terms of the moments of εt.
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3.2. The Taylor property and the error process

In the following, we investigate the presence of the Taylor property in Model

(3.1), considering some non-negative distributions for the error process, namely,

the uniform distribution in ]0, α[, the exponential distribution in ]0, +∞[ with

mean α, and the Pareto distribution with density f(x) =
ναν

xν+1
I]α,+∞[(x), for

ν = 12 and ν = 9. In all cases, α is a non-negative parameter and the condition

E(| ln εt|) < +∞ is satisfied.

The choice of these distributions takes into account the fact that the Taylor

property seems to be related with the kurtosis value of the process. In this paper,

we consider that the kurtosis of a random variable Z is given by KZ = M4/M
2
2 −3,

where Mn is the nth
central moment of Z, n = 2, 4, providing that M4 exists

(KZ is also called “excess kurtosis”). The uniform distribution is platykurtic with

a constant kurtosis value equal to −1.2, while the exponential distribution is

leptokurtic with a constant kurtosis value equal to 6. On the other hand, the

kurtosis of the Pareto distribution depends on the parameter ν and it is given by
6(ν3+ν2

−6ν−2)
ν(ν−3)(ν−4) , ν > 4. This is a decreasing function of ν that goes to 6 when ν

tends to infinity, and to infinity when ν tends to 4. So, the Pareto distribution is

leptokurtic, no matter what is the value of ν.

We also point out that, in all cases, the condition β4µ4 < 1 and the values

of ρX(1) and ρX2(1) can be written in terms of r = αβ.

In each case, we also present the value of the kurtosis of the process X given

by (3.1), which also depends on r = αβ, as well as the corresponding graphic

representation as a function of r. We point out that, in all these models, the

leptokurtosis of the error process implies the same property for the process X.

In what concerns the Taylor property and kurtosis of X, comparisons are made

separately between the first two distributions, uniform and exponential, and also

between the two referred Pareto distributions.

3.2.1. Error process with uniform distribution in ]0, α[

In this case, the condition β4µ4 < 1 is equivalent to 0 < r < 4
√

5 ≃ 1.495

and we obtain

ρX(1) =
r
(
−180 + 120r − 51r2 − 4r3

+ r4
)

−180 + 180r − 177r2 + 12r3 + 7r4
,

ρX2(1) = − r

12

NU (r)

DU (r)
,
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with

NU (r) = −604800 − 480600 r − 155700 r2 − 257400 r3 − 2490 r4
+ 48525 r5

− 6270 r6
+ 6810 r7

+ 10620 r8
+ 11384 r9

+ 4012 r10 − 586 r11

+ 94 r12 − 53 r13
+ 6 r14 ,

DU (r) = 50400 + 12600 r + 35700 r2
+ 40200 r3

+ 13490 r4
+ 14015 r5

+ 8360 r6

− 5210 r7 − 5999 r8 − 2407 r9 − 720 r10
+ 114 r11

+ 177 r12 − 8 r13 .

From Figure 1(a), we can see that the Taylor property is present for values

of r in the interval
1
]
1.1868987, 4

√
5
[
. So, for a fixed α, the Taylor property is

achieved for parameterizations of Model (3.1) such that

β ∈
]

1.1868987

α
,

4
√

5

α

[
.

Figure 1: Graphs from ρX(1) − ρX2(1) (a) and KU (r) (b), 0 < r < 4
√

5.

For Model (3.1) with such an error process, the kurtosis is given by

KU (r) =
−3 (−3 + r2

)

7 (−4 + r3) (−5 + r4)

N∗

U (r)

D∗

U (r)
− 3 ,

where

N∗

U (r) = 907200 − 1814400 r + 4284000 r2 − 4510800 r3
+ 3254460 r4

− 2030520 r5
+ 1973540 r6 − 617175 r7 − 185700 r8

+ 371005 r9

− 236308 r10
+ 78747 r11 − 11496 r12

+ 511 r13 ,

D∗

U (r) =
(
−180 + 180 r − 177 r2

+ 12 r3
+ 7 r4

)2
.

From Figure 1(b), we observe that the kurtosis of this model is an increasing

function of r and that the model is leptokurtic for r > 0.8 (approx.). We also

observe that the Taylor property occurs for large values of the kurtosis, namely

for KU (r) > 4.403 (≃ KU (1.1868987)).

1The value 1.1868987 was obtained with an approximation error inferior to 5×10−9.
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3.2.2. Error process with exponential distribution with mean α (in ]0, +∞[)

The condition β4µ4 < 1 is now equivalent to 0 < r < 1
4
√

24
≃ 0.4518. In this

case,

ρX(1) =
2r (2 − 3r + 7r2 − 6r3

+ 2r4
)

1 − 2r + 19r2 − 20r3 + 6r4
,

ρX2(1) = 2r
NE(r)

DE(r)
.

with

NE(r) = −5 − 80 r + 65 r2 − 112 r3 − 1184 r4 − 5774 r5
+ 10848 r6

+ 12720 r7

− 9408 r8 − 17880 r9 − 16272 r10
+ 52992 r11

+ 9216 r12

− 46656 r13
+ 17280 r14 ,

DE(r) = −5 + 2 r − 21 r2 − 602 r3 − 9060 r4
+ 11126 r5

+ 13252 r6 − 26448 r7

+ 16368 r8
+ 13896 r9 − 12192 r10

+ 13824 r11 − 12672 r12
+ 4032 r13 .

So, when the errors are exponentially distributed with mean α, Model (3.1)

presents the Taylor property for parameterizations such that
2

β ∈
]
0,

0.0695566

α

[
∪
]
0.1437879

α
,

1

4
√

24 α

[
.

This conclusion is illustrated in Figure 2(a). In Figure 2(b), we have the graphic

representation of the kurtosis of Model (3.1) with exponential errors, which is

given by

KE(r) =
−3 (−1 + 2r2

)

(−1 + 6r3) (−1 + 24r4)

N∗

E(r)

D∗

E(r)
− 3 ,

where

N∗

E(r) = 3 − 12 r + 52 r2 − 134 r3
+ 11815 r4 − 36752 r5

+ 44802 r6
+ 1062 r7

− 42648 r8
+ 17028 r9

+ 12240 r10
+ 5616 r11 − 17280 r12

+ 6048 r13 ,

D∗

E(r) =
(
1 − 2 r + 19 r2 − 20 r3

+ 6 r4
)2

.

As in the previous case, the kurtosis of Model (3.1) is an increasing function

of r but the process X is always leptokurtic in this case. Again, we observe that

large kurtosis values correspond to large values of the difference ρX(1) − ρX2(1).

In fact, the Taylor property is clearly present in this model for kurtosis values

greater than 13 (≃ KE(0.16)).

2The values 0.0695566 and 0.1437879 were obtained with an approximation error inferior to
5×10−8.
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Figure 2: Graphs from ρX(1)− ρX2(1) (a) and KE(r) (b), 0 < r < 1
4
√

24
.

We also observe that the kurtosis of the process X is larger when the errors

are exponentially distributed than when they are uniformly distributed, corre-

sponding to an analogous relation between the kurtosis of those error processes.

The Taylor property seems to emerge in a relatively stronger way when the kur-

tosis of X increases.

3.2.3. Error process with Pareto density f(x) =
12 α12

x13
I]α,+∞[(x)

The region of existence of the autocorrelations in terms of r = αβ is now

defined by 0 < r < 4

√
2
3 ≃ 0.9036. We have

ρX(1) =
44 r (6050 − 10230 r + 13035 r2 − 7524 r3

+ 1296 r4
)

3 (36300 − 79200 r + 219255 r2 − 171160 r3 + 29472 r4)
,

ρX2(1) =
r

55

NP12(r)

DP12(r)
,

with

NP12(r) = −7043652000 − 5638479000 r − 1900483200 r2 − 6228372150 r3

− 3064649280 r4
+ 2622844140 r5

+ 24533447400 r6

+ 19854650865 r7
+ 11360213480 r8 − 16340416020 r9

− 30235824828 r10
+ 23037530976 r11

+ 7650162960 r12

− 11215587456 r13
+ 2802615552 r14 ,

DP12(r) = −58697100 + 14229600 r − 142425360 r2 − 468153840 r3

− 218936564 r4
+ 536116224 r5

+ 616017864 r6

+ 374454192 r7
+ 130906149 r8 − 805701976 r9

− 15605040 r10
+ 401099652 r11

− 245871648 r12
+ 48736320 r13 .
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Concerning the kurtosis of this model, it is given by

KP12(r) =
−2(−5 + 6r2

)

49(−3 + 4r3) (−2 + 3r4)

N∗

P12(r)

D∗

P12(r)
− 3 ,

where

N∗

P12(r) = 599933276250 − 2617890660000 r + 4970166270300 r2

− 5546727078200 r3
+ 59041720498845 r4 − 161234870633760 r5

+ 126074334149694 r6
+ 2238307939140 r7

+ 25296348317400 r8

− 57875913071352 r9 − 89078826937116 r10
+ 180941306693040 r11

− 102607682886720 r12
+ 19713391884288 r13

D∗

P12(r) =
(
36300 − 79200 r + 219255 r2 − 171160 r3

+ 29472 r4
)2

.

As can be seen in Figure 3(a), the Taylor property is now achieved for all consid-

ered parameterizations of Model (3.1). From Figure 3(b), we conclude that the

process X is always leptokurtic.

Figure 3: Graphs from ρX(1)−ρX2(1) (a) and KP12(r) (b), 0 < r < 4

√
2

3
.

3.2.4. Error process with Pareto density f(x) =
9α9

x10
I]α,+∞[(x)

We have

β4µ4 < 1 ⇐⇒ 0 < r < 4

√
5
9 ≃ 0.863 and

ρX(1) =
8r (15680 − 27720 r + 39564 r2 − 27864 r3

+ 6561 r4
)

47040 − 105840 r + 343119 r2 − 315504 r3 + 73791 r4

ρX2(1) =
r

48

NP9(r)

DP9(r)
,
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with

NP9(r) = −67737600 − 83339200 r + 19038600 r2 − 88401600 r3

− 148138920 r4 − 511287075 r5
+ 1466330040 r6

+ 1499354145 r7

− 1537629480 r8 − 1966005837 r9 − 602608896 r10

+ 3869347563 r11 − 61620912 r1
2 − 2818841796 r1

3 + 1179090432 r14

DP9(r) = −627200 + 235200 r − 1650600 r2 − 8601600 r3 − 13809280 r4

+ 31729095 r5
+ 27010080 r6 − 23002305 r7 − 21773448 r8

− 24182469 r9
+ 58517640 r10

+ 9248823 r11

− 50143536 r12
+ 19665504 r13 .

The Taylor property is also present for all considered parameterizations

of Model (3.1), as it is illustrated in Figure 4(a), and we point out that the

magnitude of the difference ρX(1)− ρX2(1) is greater in this case than in the case

ν = 12.

Figure 4: Graphs from ρX(1)− ρX2(1) (a) and KP9(r) (b), 0 < r < 4

√
5

9
.

The kurtosis of Model (3.1) is now given by

KP9(r) =
7 − 9r2

9(−2 + 3r3) (−5 + 9r4)

N∗

P9(r)

D∗

P9(r)
− 3 ,

where

N∗

P9(r) = 62449049600 − 281020723200 r + 532657440000 r2 − 582241598400 r3

+ 25718506014670 r4 − 92872063045440 r5
+ 100396353649230 r6

− 6337711636725 r7 − 8536591340550 r8 − 41782534519365 r9

− 62336742758694 r10
+ 195729014255481 r11

− 145385404543008 r12
+ 35664808109193 r13

D∗

P9(r) =
(
15680 − 35280 r + 114373 r2 − 105168 r3

+ 24597 r4
)2

.
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The process X is also leptokurtic for all considered values of r. We observe

that the kurtosis of the process X is greater when ν = 9 than when ν = 12,

corresponding to an analogous relation between the kurtosis of the respective

error processes. In these two examples, it is seen again how the Taylor property

emerges when the process X is leptokurtic.

As regards the Pareto distribution, graphic representations for several val-

ues of ν also suggest that the presence of the Taylor property is stronger for

higher values of the kurtosis of the process X. In fact, as functions of ν, the

difference ρX(1)− ρX2(1) seems to increase when KPν(r) increases, for all values

of r that satisfy the condition β4µ4 < 1. This situation is illustrated in Figure 5

and strongly contributes to conjecture that the Taylor property and leptokurtosis

are highly related in time series.

Figure 5: Graphs from ρX(1) − ρX2(1) (a) and KPν(r) (b),

ν = 100, 50, 20, 10, 9 (from bottom to top), 0 < r < 4

√
5

9
.

4. THE TAYLOR PROPERTY IN THE CASE OF SYMMETRI-

CALLY DISTRIBUTED ERRORS: SIMULATION STUDY

When the errors are symmetrically distributed, the autocorrelation function

of X2
for Model (1.1) verifies ρX2(1) = 0, if k > 1 (Martins, [6]). So, in this

case, the property ρ
|X|

(1) > ρX2(1) is equivalent to ρ
|X|

(1) > 0. However, the

autocorrelation function of the process (|Xt|, t ∈ Z) is not available when the

error process is allowed to assume negative values. To investigate the presence

of the Taylor property in Model (3.1) with symmetrically distributed errors, we

perform a simulation study considering the simple first-order bilinear diagonal

model with an i.i.d. error process (εt, t ∈ Z) with four symmetrical distributions

with unit variance, namely, the uniform distribution in ]−
√

3,
√

3[, the standard

normal distribution, and the distribution of a variable ε =

√
ν−2

ν
Y , where Y has a

Student distribution with ν degrees of freedom (ν = 30 and ν = 9). In each case,
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the condition E(| ln |εt||) < +∞ is satisfied and parameterizations that satisfy

β4µ4 < 1 are considered in the simulations. For each value of the parameter

β and each one of the considered distributions, we generate 500 observations

according to the corresponding model and obtain the 95% confidence intervals

for the probability that such a model satisfies the Taylor property. The results

appear in Table 1 (where NA means “Not Applicable”, due to the fact that the

corresponding value of β does not satisfy the condition β4µ4 < 1). The special

values 0.69, 0.74, 0.75 and 0.863 are the greatest values of β such that β4µ4 < 1

for each one of the considered distributions.

Table 1: 95% confidence intervals for the probability that the model

with symmetrical innovations presents the Taylor property.

β U
��

−
√

3,
√

3
��

N(0, 1)
q

14

15
Y, Y ∼T (30)

q
7

9
Y, Y ∼T (9)

0.01 [0.373, 0.627] [0.459, 0.708] [0.459, 0.708] [0.476, 0.724]

0.05 [0.357, 0.610] [0.373, 0.627] [0.373, 0.627] [0.407, 0.660]

0.1 [0.140, 0.360] [0.292, 0.541] [0.214, 0.453] [0.260, 0.506]

0.2 [0, 0] [0, 0.105] [0, 0.049] [0, 0.049]

0.3 [0, 0] [0, 0] [0, 0] [0, 0.079]

0.4 [0, 0] [0, 0] [0, 0.079] [0.260, 0.506]

0.5 [0, 0] [0.155, 0.379] [0.292, 0.541] [0.699, 0.901]

0.6 [0, 0] [0.566, 0.801] [0.603, 0.831] [0.781, 0.953]

0.69 [0, 0] [0.802, 0.965] [0.802, 0.965] [0.951, 1]

0.74 [0, 0.079] [0.847, 0.987] [0.870, 0.996] NA

0.75 [0.004, 0.130] [0.847, 0.987] NA NA

0.863 [0.566, 0.801] NA NA NA

We can observe that the Taylor property seems to be present for high values

of β and that this presence increases with the kurtosis of the error process, as we

have established and observed in non-negative bilinear models.

The confidence intervals corresponding to small values of β do not allow us

to infer about the presence of the Taylor property, as they certainly correspond

to values of β for which the difference ρX(1) − ρX2(1) is close to zero.

5. CONCLUSIONS

In this paper, we analyze the presence of the Taylor property in first-order

bilinear time series models. For this analysis we evaluate the autocorrelations of

the process X and of X2
. Considering X non-negative, we discuss the presence

of the Taylor property taking several distributions for the error process, chosen

according to the kurtosis value as this property is strongly related with the value
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of this parameter. More precisely, the Taylor property seems to emerge when the

process X is leptokurtic.

Based on a simulation study, we also analyze the presence of the Taylor

property in the class of real valued first-order bilinear diagonal models with sym-

metrical innovations.

The studies presented here show that bilinear models are able to reproduce

the Taylor effect. They also reinforce the connection of the Taylor property to lep-

tokurtic models which has been observed in the few theoretical studies developed

until now. In fact, He and Teräsvirta ([5]), Gonçalves, Leite and Mendes-Lopes

([1]) and Haas ([4]) show the presence of this property in some conditional het-

eroskedastic models, which are leptokurtic processes. Moreover, all the cases

considered in this paper also show that, when the Taylor property occurs, the

model is leptokurtic.

We still observe that leptokurtosis is not enough to induce the Taylor prop-

erty. Examples of bilinear models that are leptokurtic but do not have the Taylor

property are Xt = Xt−1εt−1 + εt, where εt is uniformly distributed in [0, 1], and

Xt = 0.5Xt−1εt−1 + εt, where εt is exponentially distributed with mean 0.2. This

is in line with the simulation results of He and Teräsvirta ([5]) suggesting that

the Taylor property is not present for the standard GARCH(1, 1) process with

normal errors.

In conclusion, our study allows to conjecture that a general assessment of

the Taylor property in the bilinear process is strongly dependent on the magnitude

of its tails weight.

6. APPENDIX

A working example to illustrate the results of Section 2, namely evaluation

of E(Xn
t εn

t ) and E(Xn
t ), n ≤ 4, for a first-order bilinear process is now presented.

Let us suppose that εt, t ∈ Z, is exponentially distributed with density

f(x) =
1
α

e−x/α
I]0,+∞[(x). Then µn = n! αn

, n ∈ N. In this case, the condition

β4µ4 < 1 is equivalent to 0 < r < 1
4
√

24
, where r = αβ. Under this hypothesis,

and taking into account that εt is independent of Xn
t−1ε

n
t−1, t ∈ Z, and that the

process (Xtεt, t ∈ Z) is strictly stationary, we have

E(Xtεt) = E(βXt−1εt−1εt) + E(ε2
t ) = βE(Xtεt) µ1 + µ2

which is equivalent to

(6.1) E(Xtεt) =
2α2

1 − r
.
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Then, by (2.3), we have

E(X2
t ε2

t ) =
1

1 − β2µ2

(
2βµ3E(Xtεt) + µ4

)

(6.2)

= 24 α4 1

(1 − r) (1 − 2r2)
.

Taking into account (2.3), (6.1) and (6.2), we now obtain

E(X3
t ε3

t ) =
1

1 − β3µ3

(
3β2µ4E(X2

t ε2
t ) + 3βµ5E(Xtεt) + µ6

)

=
1

1 − 6r3

(
1728 α6r2

(1 − r) (1 − r2)
+

720 α6r

1 − r
+ 720 α6

)
(6.3)

= 144 α6 2r2
+ 5

(1 − r) (1 − 2r2) (1 − 6r3)
.

Finally, we evaluate E(X4
t ε4

t ) using (2.3), (6.1), (6.2) and (6.3).

E(X4
t ε4

t ) =
1

1 − β4µ4

(
4β3µ5E(X3

t ε3
t ) + 6β2µ6E(X2

t ε2
t ) + 4βµ7E(Xtεt) + µ8

)

=
1

1 − 24 r4

(
69120 α8 r3

(2r2
+ 5)

(1 − r) (1 − r2) (1 − r3)
(6.4)

+
103680 α8r2

(1 − r) (1 − r2)
+

40320 α8r

1 − r
+ 40320 α8

)

= 5760 α8 18r3
+ 4r2

+ 7

(1 − r) (1 − 2r2) (1 − 6r3) (1 − 24r4)
.

The values of E(Xn
t ), n ≤ 4, are then given by (2.2). More precisely,

E(Xt) = βE(Xtεt) + µ1 = α
1 + r

1 − r
,(6.5)

E(X2
t ) = β2E(X2

t ε2
t ) + 2µ1E(Xtεt) + µ2

=
24 α4β2

(1 − r) (1 − 2r2)
+

4α3β

1 − r
+ 2α2

(6.6)

= 2α2 1 + r + 10r2 − 2r3

(1 − r) (1 − 2r2)
,

E(X3
t ) = β3E(X3

t ε3
t ) + 3β2µ1E(X2

t ε2
t ) + 3βµ2E(Xtεt) + µ3

=
144 α6β3

(2r2
+ 5)

(1 − r) (1 − 2r2) (1 − 6r3)
+

72 α5β2

(1 − r) (1 − 2r2)
+

12 α4β

1 − r
+ 6α3

(6.7)

= 6α3 1 + r + 10r2
+ 112r3 − 6r4 − 12r5

+ 12r6

(1 − r) (1 − 2r2) (1 − 6r3)
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and

E(X4
t ) = β4E(X4

t ε4
t ) + 4β3µ1E(X3

t ε3
t ) + 6β2µ2E(X2

t ε2
t ) + 4βµ3E(Xtεt) + µ4

=
15760 α8β4

(8r3
+ 4r2

+ 7)

(1 − r) (1 − 2r2) (1 − 6r3) (1 − 24r4)
+

576 α7β3
(2r2

+ 5)

(1 − r) (1 − 2r2) (1 − 6r3)
(6.8)

+
288 α6β2

(1 − r) (1 − 2r2)
+

48 α5β

1 − r
+ 24 α4

=
24 α4D(r)

(1 − r) (1 − 2r2) (1 − 6r3) (1 − 24r4)
,

with

D(r) = 1 + r + 10 r2
+ 112 r3

+ 1650 r4 − 36 r5
+ 732 r6

+ 1632 r7

+ 144 r8
+ 288 r9 − 288 r10 .
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1. INTRODUCTION

Lai [1] has reviewed the rich variety of parametric families of distributions

that have been suggested for the analysis of survival data. With the exception of

the Weibull distribution and its connection with extreme value theory, most are

essentially empirically-based flexible representations covering the rich variety of

distributional shapes encountered in such contexts. Here we give a distribution

extremely restricted in form but motivated by a very simple model of a data

generating process.

A key element in the analysis of survival data is often the choice of time

origin, for example, for patients, birth, entry into a study, first report of symp-

toms, etc. Appropriate choice may greatly clarify interpretation. Sometimes,

however, the natural time origin is unobserved. In this paper we outline a very

special model for such a situation. Each study individual has an observed time

origin and we assume that for a long time following that there is no possibility

of a critical event. Then an unobserved transition occurs and following that the

critical event rate becomes high. If the processes of transition and occurrence

arise in independent Poisson processes of respectively small rate ρ1 and large rate

ρ2, it follows that the failure-time has the form T = T1 + T2, where T1 and T2

are independently exponentially distributed with rates ρ1 and ρ2, with ρ1 << ρ2.

This inequality is crucial both for separate estimation of the two parameters and

indeed for the interpretation of the model.

Then the probability density function of T can be written as

e−t/µ1 − e−t/µ2

µ1 − µ2
,

where it is convenient to parameterize in terms of the means µi = 1/ρi for i = 1, 2.

2. METHODS OF ESTIMATION

One simple method of estimating the two parameters is from the first two

moments. This requires solving the equations

t̄ = µ̃1 + µ̃2 ,

s2
t = µ̃2

1 + µ̃2
2 ,

where t̄ and s2
t are sample mean and sample variance of observed values of T and

µ̃1 > µ̃2, thus defining the moment estimators. Provided that 1 ≥ s2
t /t̄2 ≥ 1/2,
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as dictated by the special construction of the distribution,

µ̃1 =
t̄

2
+

1

2

√
(2s2

t − t̄2) ,

µ̃2 =
t̄

2
− 1

2

√
(2s2

t − t̄2) .

Notionally more efficient estimates will be given by the method of maximum

likelihood. This involves numerical solution of the following two equations:

n∑

i=1

ti exp(−ti/µ̂1){
exp(−ti/µ̂1) − exp(−ti/µ̂2)

} =
nµ̂2

1

µ̂1 − µ̂2
,

n∑

i=1

ti exp(−ti/µ̂2){
exp(−ti/µ̂1) − exp(−ti/µ̂2)

} =
nµ̂2

2

µ̂1 − µ̂2
,

with µ̂1 > µ̂2. Both sets of estimates are sensible only if the data are consistent

with the constraints on the squared coefficient of variation implied by the model

and if one mean is substantially greater than the other.

3. COMPARISON OF ESTIMATORS

To compare the methods of estimation we compute asymptotic variances.

For the moment estimates we have by local linearization, the delta method, that

var(µ̃1) =
µ2

2

(
2λ4 − 2λ3

+ 2λ2
+ 1

)

n(λ − 1)
2 ,

var(µ̃2) =
µ2

2

(
λ4

+ 2λ2 − 2λ + 2
)

n(λ − 1)
2 ,

where λ = µ1/µ2.

For the maximum likelihood estimates, the inverse of the Fisher information

matrix gives

var(µ̂1) =
µ2

2λ4
{
2λ3ζ − (λ − 1)

2
}

2n
{
λ3

(λ2
+ 1)ζ − (λ2 − λ + 1) (λ − 1)

2
} ,

var(µ̂2) =
µ2

2

{
2λ3ζ + (λ − 1)

2
(λ4 − 2λ3

+ 2λ − 2)
}

2n
{
λ3

(λ2
+ 1)ζ − (λ2 − λ + 1) (λ − 1)

2
} ,

where ζ is the generalized Riemann zeta function

ζ
[
3, 2 + 1/(k−1)

]
=

∞∑

k=0

{
k + 2 + 1/(k−1)

}
−3

.

The efficiencies of the moment estimators for µ1 and µ2 depend only on the ratio

of the two means, i.e., on λ. The efficiencies decrease as λ increases.
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4. NUMERICAL COMPARISON

These results have been explored by simulation. Without loss of generality

we set µ2 = 1 and generate 1000 sets of data for sample sizes 100 and 500 and

for λ = 2, 5, 10. When n = 100 and λ = 2, approaching one-half the samples

fall outside the range of validity of the above results, that is, are descriptively

inconsistent with the model. This falls to about 15% when n = 500. In the

more realistic case of larger λ, the incompatible samples are rare and theoretical

and empirical variances agree reasonably closely, the variance of the maximum

likelihood estimator being appreciably smaller than that of the moment estimate

as λ becomes larger. When λ = 10, the asymptotic efficiency of µ̃1 is close to

50%, its limiting value for large λ, whereas that of µ̃2 is 25%, dropping slowly to

its limiting value of zero.

5. DISCUSSION

The model could be generalized in various ways, for example to include

uninformative censoring or a more complex transition process. With such gen-

eralizations simple estimation by the method of moments would typically not be

possible. If the representation is plausible on general grounds and fits the data

it would be very desirable to find a different type of observation predictive of

the origin of the second component and study of such a marker would lead to a

further generalization of the present model, which will, however, not be discussed

here. If additional explanatory variables were available maximum likelihood es-

timation is likely to be needed. Finally note that the identification of the later

stage parameter µ2 with the smaller of the two estimates depends entirely on the

prior specification.

A quite different approach to this kind of data is investigated in as yet

unpublished paper by Peter McCullagh, University of Chicago to whom we are

grateful for comments on an earlier version of the present note.
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1. MARGINAL HOMOGENEITY MODEL

Square contingency tables often arise in social, behavioral sciences and med-

ical studies [1], and are used to display joint responses of two variables that have

the same category levels. For example, to examine whether there exists any dif-

ference in unaided distance vision between right and left eyes in Royal Ordnance

factories in Britain, 7477 employed women aged 30–39 were sampled between

1943–1946. Based on the data, a square contingency table can be constructed,

with the row variable for the right eye vision grade and the column variable for

the left eye vision grade. The right and left eyes have exactly the same vision

grades, which are ordered based on the same criterion, e.g., from the best to the

worst. Williams (1952) investigated the possibility of assessing association in a

two-way table based on scores, which may be assigned to one or both of the row

and column variables.

To study the symmetry of such square contingency tables, several mod-

els have been developed, including the complete symmetry model, the quasi-

symmetry model, and the marginal homogeneity model [1, 3, 4, 5]. Consider a

two-way r×r square contingency table with the same row and column classifica-

tions, let pij denote the cell probability that an observation falls in the ith row

and jth column of the table (i = 1, 2, ..., r; j = 1, 2, ..., r). Stuart (1955) proposed

the hypothesis of marginal homogeneity that can be expressed in terms of the

marginal cell probabilities

H0 : pi+ = p+i , i = 1, ..., r ,

which is equivalent to the hypothesis that

H0 : The two samples have the same marginal distribution .

The pi+ and p+i are the marginal probabilities of ith row and ith column, re-

spectively. This hypothesis is tested with the test statistic

(1.1) Q = nd′V̂ −1d ,

where d′

= (d1, ..., dr) with di = pi+ − p+i , n is sample size, and V̂ is the maxi-

mum likelihood estimate of the covariance matrix. The elements of V̂ are

(1.2) v̂ij = −(pij + pji) for i 6= j and v̂ii = pi+ + p+i − 2pii .

Q has the chi-square distribution with r − 1 degrees of freedom. Later, Bhapkar

(1979) proposed a similar type of test by taking the elements of covariance matrix

as

v̂ij = −(pij + pji) − (pi+ − p+i) (pj+ − p+j) for i 6= j ,
(1.3)

v̂ii = pi+ + p+i − 2pii − (pi+ − p+i)
2 .
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A main disadvantage of the marginal homogeneity model is that it does not take

into account the ordering information for ordinal variables, i.e. marginal homo-

geneity hypothesis is invariant to change of orders in the variable categories.

However, one may be interested in whether one marginal distribution is stochas-

tically larger or smaller than the other. If the distribution of cases across the row

categories is the same as the distribution of cases across the column categories,

these margins can be referred to as homogeneous and the distributions are the

same; Otherwise, margins would be referred to as heterogeneous.

Agresti (1983) considered testing marginal homogeneity for ordinal cate-

gorical variables by using some fixed scores to weigh the marginal probability

differences between corresponding row and column categories. The test statistics

is:

(1.4) d =

r∑

i=1

wi(pi+ − p+i)

for some fixed scores {wi}. The estimated variance of d is

(1.5) Ŝ2
d =

1

n




∑

i,j

(wi − wj)
2pij − d2


 .

Then for large n

(1.6) z =
d

Ŝd

has approximately standard normal distribution under the null hypothesis [8].

Fleiss and Everitt (1971) also considered different forms of marginal homogeneity

test. Relation of Marginal Homogeneity model with the other models were given

in [1, 10, 11]. Caussinus’ quasi-symmetry model can hold true in contingency

tables in which the row and column marginals are not homogeneous [12].

2. STANDARDIZED SCORES FOR OPEN ENDED CATEGORIES

In the score-based methods, different score choices will lead to different

test statistics and consequently provide different conclusions. Score can be as-

signed either based on distributional assumptions or based on prior knowledge

[11]. Agresti (1983) defined some score sets, for example, for four categories, the

scores 3, 1,−1,−3) to detect differences in location and 1,−1,−1, 1 to detect dif-

ferences in dispersion. In well-balanced data, the impact of the choice of scores

on the final inference is minimal [8]. However, when the data are very unbalanced

or in an open-ended form, results may significantly change with respect to choice

of scores [8].
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Several scores have been suggested in the literatures that they could han-

dle two-way contingency tables with open-ended categories, in which one or both

of categories may take the form of “greater than” or “less than”. For example,

Graubard and Korn (1987) discussed the equally spaced scores for 2×C con-

tingency tables, and found that equally spaced scores might yield conservative

results. In general, midrank is a very useful score choice when there are large dif-

ferences in marginal counts. However, if the distribution is highly skewed within

an interval, midpoints are also poor estimates of the true values. Particularly,

midrank scores can be very unreasonable in applications when the marginals are

far from uniform. Other ways to estimate scores include using latent root analysis

that maximizes the correlation between the two sets [2], and optimizing conven-

tional scores for a particular set of variables by comparing the squared correlation

coefficients with the monotonic correlation ratios [14]. However, all these scores

ignored the open-ended features of the categories.

To overcome the limitations of the equally spaced scores when variables

have open ended categories, here we propose standardized z-scores based on semi-

interquartile range for the row and column variables. The median is not only

an appropriate measure for ordinal, interval, and ratio scale data, but also is

well known to be the most convenient measure of location for the open ended

categories. The standardized z-scores are defined as follows:

zi =
si − Q2

0.5 IQR
,(2.1)

zj =
sj − Q2

0.5 IQR
,(2.2)

where,

IQR: interquartile range, IQR = Q3 − Q1

Q1: first quartile

Q2: second quartile (median)

Q3: third quartile

zi: ith row scores

zj: jth row scores

si & sj: midpoints of row and column categories calculated as

si =
LLi − ULi

2
, sj =

LLj − ULj

2

LL & UL: the lower and upper limits of a class, respectively.

Note that the semi-interquartile range is a good measure of spread for skewed

distributions.
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3. SIMULATION STUDY

Simulation studies have been carried out to investigate the statistical prop-

erties of our newly proposed standardized scores. We used two different schemes

to simulate the data. The first one assumes that the row and column variables

have the same marginal distribution, whereas the second one assumes that the row

and column variables have different marginal distributions. The combinations of

different sample size (n = 50, 100, 500), different table dimensions (R = 5, 8), and

different levels of association between row and column variables (ρ = 0.0, 0.5, 0.9)

were considered. For each simulation scenario, 1000 replications were performed.

The simulated data were analyzed by both the standardized-score methods and

the usual-score method defined in Agresti (1983), which allows the comparisons

between the two methods. Matlab and SAS softwares were used for generating

and analyzing data sets.

Table 1 shows the comparison of Type I errors between the usual and

standardized scores, under the assumption that the row and column variables

have the same marginal distribution. To construct the square contingency table,

we applied the similar simulation strategy in Yang et al (2012). We first generated

random numbers from a bivariate normal distribution with the same means of 25

and common variance of 36, and then the bivariate samples were cross tabulated

into a two-way contingency table. Different correlation coefficient were assumed

(ρ = 0.0, 0.5, 0.9) to evaluate how the association strength may affect the tests.

Random samples were classified into 5×5 or 8×8 cross tables with the following

categories:

X, Y (5×5) : < 9.9, 10–14.9, 15–19.9, 20–24.9, > 25 ; or ,

X, Y (8×8) : < 4.9, 5–9.9, 10–14.9, 15–19.9, 20–24.9, 25–29.9, 30–34.9, > 35 .

Note that X and Y denote the row and column variables, and the first and

last class intervals are open-ended classes. Hence, R×R contingency tables with

open-ended ordinal variables were constructed. The row and column marginals

are expected to be the same. In each simulation scenario, 1000 replication runs

were performed to estimate the Type I error rates for both methods. Three

different significance levels (α = 0.01, 0.05, 0.10) were considered. As shown in

Table 1, the actual Type I errors are very close to the nominal levels in each case,

suggesting the validation of both score methods.

Next, we made the power comparison between the standardized and usual

score methods. Similarly, we generated random numbers from a bivariate normal

distribution with different means of 25 and 36, and common variance of 36, and

the random samples were classified into square tables. In this way, the row and

column variables have the different marginal distributions. Let α = 0.05 denote

the nominal level of significance of the tests, the empirical power of the tests can
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be calculated as the proportion of the test statistic is greater than the critical

value, which is given by P (X2 > C)/t, where t is the number of replications in

the simulation study, and C is the critical value of the chi-square distribution for

α = 0.05 with associated degrees of freedom R − 1.

Table 1: Comparison of Type I errors between the usual and standardized scores.

α
Usual Scores Standardized Scores

ρ n R = 5 R = 8 ρ n R = 5 R = 8

50 0.0062 0.0105 50 0.0082 0.0088

0 100 0.0106 0.0118 0 100 0.0098 0.0086

500 0.008 0.0096 500 0.0101 0.0186

0.01 50 0.0038 0.0048 50 0.008 0.0016

0.5 100 0.0062 0.0054 0.5 100 0.0116 0.0101

500 0.0084 0.0089 500 0.0094 0.0102

50 0.0072 0.0104 50 0.0074 0.0112

0.9 100 0.0076 0.0094 0.9 100 0.0988 0.0093

500 0.0082 0.009 500 0.0099 0.0099

50 0.0352 0.0334 50 0.0398 0.0339

0 100 0.0398 0.0395 0 100 0.0458 0.0444

500 0.0421 0.044 500 0.0482 0.0468

0.05 50 0.0383 0.0323 50 0.0418 0.0482

0.5 100 0.0406 0.0456 0.5 100 0.0433 0.0506

500 0.0456 0.0456 500 0.0439 0.0494

50 0.0392 0.3297 50 0.0483 0.0456

0.9 100 0.0438 0.0431 0.9 100 0.0489 0.0467

500 0.0439 0.0437 500 0.0499 0.0494

50 0.0676 0.0668 50 0.0709 0.0701

0 100 0.069 0.0687 0 100 0.0974 0.0974

500 0.0768 0.0754 500 0.091 0.0905

0.10 50 0.072 0.0651 50 0.0756 0.0756

0.5 100 0.068 0.0954 0.5 100 0.0829 0.0829

500 0.0826 0.1028 500 0.0965 0.0965

50 0.0712 0.0808 50 0.0876 0.0877

0.9 100 0.0823 0.0843 0.9 100 0.0943 0.0949

500 0.0966 0.0985 500 0.0997 0.0996

As shown in Table 2, the proposed standardized scores has much higher

power than the usual score procedures. For both methods, the power is sub-

stantially greater for larger sample size and correlation, that is, the power for
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detecting the marginal heterogeneity is the lowest for ρ = 0, highest for ρ = 0.90,

and lowest for n = 50, highest for n = 500.

Table 2: Empirical power comparison between the usual and standard-

ized scores for α = 0.05.

Usual Scores Standardized Scores

ρ n R = 5 R = 8 ρ n R = 5 R = 8

50 0.5754 0.5308 50 0.7782 0.7689

0 100 0.6106 0.6326 0 100 0.7234 0.7316

500 0.63 0.6596 500 0.7301 0.7886

50 0.6388 0.6768 50 0.7465 0.79

0.5 100 0.7762 0.7754 0.5 100 0. 8065 0.8112

500 0.8884 0.8109 500 0.9008 0.9102

50 0.7172 0.7103 50 0.8874 0.8812

0.9 100 0.8876 0.8594 0.9 100 0.897 0.8711

500 0.9092 0.9008 500 0.9976 0.9576

4. NUMERICAL EXAMPLES

A hypothetical 5×5 square contingency table with both row and column

having open-ended categories is generated to illustrate the utilization and effi-

ciency of the standardized scores (Table 3).

Table 3: A simulated 5×5 table.

R/C ≤ 9.9 10–14.9 15–19.9 20–24.9 ≥ 25 Total

≤ 9.9 24 23 34 12 45 138

10–14.9 37 7 5 25 32 106

15–19.9 48 11 17 37 22 135

20–24.9 28 9 7 17 13 74

≥ 25 6 13 15 5 8 47

Total 143 63 78 96 120 500

The sample quartiles are calculated as:

For row variable: Q1 = 9.47, Q2 = 15.17, Q3 = 19.80.

For column variable: Q1 = 9.32, Q2 = 17.77, Q3 = 24.68.
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Interquartile ranges for the row and column variables are IQR = 19.80 − 9.47 =

10.33; IQR = 24.68 − 9.32 = 15.36, respectively.

Using Equations (2.1) and (2.2), standardized scores are displayed in Table 4.

The scores in Equation (1.4) would be zi×zj due to the nature of open ends.

Table 4: Standardized scores for row and column variables.

Standardized row scores Standardized column scores

(zi) (zj)

−1.49468 −1.34375

−0.52662 −0.69271

0.44143 −0.04167

1.40948 0.609375

2.377541 1.260417

Using the standardized scores we get,

d = 0.085, Ŝ2
d = 0.0053, Ŝd = 0.0728, z =

0.085
0.0728 = 1.1675.

Therefore, the null hypothesis of marginal homogeneity is not rejected.

When we utilize the usual scores as: wi = wj = {−3,−1, 0, 1, 3}, we get,

d = 0.538, Ŝ2
d = 0.01875, Ŝd = 0.13693, z =

0.538
0.13693 = 3.929.

The result indicates that null hypothesis of marginal homogeneity (pi+ = p+i) is

rejected at 0.05 significance level.

5. CONCLUSIONS

Ordinal variables are common in many research areas. Marginal homogene-

ity model tests that the marginal frequencies do not differ significantly between

the row and column variables. Marginal homogeneity model requires assigning

scores through row and column variables. The problem for open ended categories

is to assign the proper scoring. The simplest scoring method is admittedly integer

scoring. The standardized scores employing the marginal homogeneity test in the

presence of an open-ended category is proposed in this paper. Ordinal models

require assigning scores to levels of ordinal variables. When responses are ordered

categories, it is usually important to test the hypotheses of marginal homogeneity

using ordinal information. When the variation of the between variable levels in

contingency tables are large, standardized scores will be appropriate. Different

choices of the row and the column scores can lead to different conclusion con-

cerning association of the rows and columns. When we employ different scores

in the modeling, inferences derived from the analyses would be dependent on the

scoring system.
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The proposed scores give better results than the usual scores with respect

to their statistical power values in detecting marginal heterogeneity. Results

also show that the use of ordinal approach becomes relatively more efficient as

correlation coefficient and the sample size increase. We showed that the usual

score and standardized score methods can achieve similar type I errors when data

were simulated under null hypothesis, while the standardized score method has

larger power than usual score method when data were simulated under alternative

hypothesis. When ordinal variables in a two contingency table are a discretized

form of continuous variables, it is reasonable to use the standardized scores based

on sample quartiles. Our simulation suggests that the proposed method competes

well with alternative.
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1. INTRODUCTION

Poisson distribution has wide spread applications in almost every area of

the sciences, engineering and medicine. Hence, it is important that accurate

estimators are available for its rate parameter.

Many authors have studied estimation of the Poisson mean. A comparison

of nine interval estimators for a Poisson mean when the expected number of events

≤ 5 is given in Barker [2]. An easy to use method to approximate Poisson confi-

dence limits is discussed by Bégaud et al. [4]. Three interval estimators for linear

functions of Poisson rates are given in Stamey and Hamilton [31]. Asymptotic

interval estimators for Poisson regression are studied by Michael and Adam [24].

Swift [32] gives recommendations for choosing between twelve different confidence

intervals for the Poisson mean. Bayesian interval estimation for the difference of

two independent Poisson rates for under reported data is considered in Greer et

al. [18]. Improved prediction intervals for binomial and Poisson distributions are

given in Krishnamoorthy and Jie [20]. Simple approximate procedures for con-

structing binomial and Poisson tolerance intervals are given in Krishnamoorthy

et al. [21]. Interval estimators for the difference between two Poisson rates are

given in Li et al. [22]. Interval estimation for misclassification rate parameters

in a complementary Poisson model is described by Riggs et al. [28]. Patil and

Kulkarni [27] compare nineteen confidence intervals for the Poisson mean. See

also Byrne and Kabaila [7] and Ng et al. [26].

Most studies we are aware of have compared the performances of only classi-

cal interval estimators for the Poisson mean: all of the nine estimators considered

in Barker [2] are classical interval estimators; only one of the estimators consid-

ered in Swift [32] is a Bayesian credible interval estimator; all of the nineteen

estimators considered in Patil and Kulkarni [27] are classical interval estimators;

and so on. Also none of these papers have used a real data set to compare the

performance of the estimators.

The aim of this note is a comparison study of classical interval estimators

as well as Bayesian credible interval estimators for the Poisson mean. We con-

sider equal numbers of classical interval estimators and Bayesian credible interval

estimators with a range of priors considered for the latter. In total, we compare

seventeen different interval estimators for the Poisson mean. Our comparison is

based on simulations as well as a real data set.

The contents of this note are organized as follows. In Sections 2 and 3, sev-

eral interval estimators are described for the Poisson mean. Section 2 describes

the following classical interval estimators: the Wald interval estimator, the score

interval estimator, the exact interval estimator, and the bootstrap interval esti-
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mator. Section 3 describes the following Bayesian credible estimators: the equal

tails credible interval estimator, Jeffreys prior credible interval estimator, the

HPD credible interval estimator and the relative surprise credible interval esti-

mator. Each of the estimators in Section 3 was calculated under four different

priors: uniform prior; exponential prior; gamma prior; chisquare prior. Section

4 performs a simulation study comparing the performance of the estimators of

Sections 2 and 3. The performance is compared in terms of coverage probabilities

and coverage lengths. A real data application is described in Section 5. Finally,

some conclusions are noted in Section 6.

2. INTERVAL ESTIMATORS FOR POISSON MEAN

In this section, some methods to obtain interval estimators for the Poisson

mean are described.

2.1. Approximate interval estimator

Here, we use some large sample methods for constructing interval estima-

tors. Suppose T (X) is an estimator based on sample mean such that

√
n
T (X) − θ√

ν(θ)

L→ Z,

where Z ∼ N(0, 1) and
L→ means convergence in distribution (Chung [10]). Sup-

pose further that there is a statistic S (X) so that ν(θ)
p→ S (X). Then, by Slutsky

’s theorem,

√
n
T (X) − θ√

S (X)

L→ Z .

We can obtain an approximate interval estimator for θ with confidence coefficient

1 − α by inverting the inequality (Rohatgi and Ehsanes Saleh [29]):

∣∣∣∣∣
√
n
T (X) − θ√

S (X)

∣∣∣∣∣ ≤ z1−α/2 .

In the following, we construct approximate interval estimators for the Pois-

son mean. Let X1, X2, ..., Xn be a random sample from a Poisson distribution

with mean λ. We consider two interval estimators.
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a) The score interval. By using

Q =
X − λ√

λ
n

∼ N(0, 1) , n→ ∞ ,

we can write

P


−z1−α

2
<
X − λ√

λ
n

< z1−α
2


 = 1 − α .

So, we have
∣∣∣∣∣∣
X − λ√

λ
n

∣∣∣∣∣∣
< z1−α

2

or

λ2 − λ

(
2X +

z2
1−α

2

n

)
+X

2
< 0 .

By solving this inequality, we see that




(
2X +

z2

1−
α
2

n

)
−
√

∆

2
,

(
2X +

z2

1−
α
2

n

)
+
√

∆

2




is an interval estimator for λ with confidence coefficient 1 − α, where

∆ =

z2
1−α

2

n

(
z2
1−α

2

n
+ 4X

)
,

see Shao [30].

b) The Wald interval. We know that λ̂ = X is the maximum likelihood

estimator for λ, so

Q =
X − λ√

X
n

∼ N(0, 1) , n→ ∞ .

So,


X − z1−α

2

√
X

n
, X + z1−α

2

√
X

n




is an interval estimator for λ with confidence coefficient 1 − α. Sometimes X −
z1−α

2

√
X
n

can be less than zero. In this case, we use the interval estimator


max


0 , X − z1−α

2

√
X

n


, X + z1−α

2

√
X

n


 .
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2.2. Exact interval estimator

Let X1, X2, ..., Xn be a random sample from a Poisson distribution with

mean λ. Let Y =

n∑

i=1

Xi. We know that Y is a sufficient statistic for λ and Y ∼

Poisson(nλ). Then, an exact interval estimator for λ with confidence coefficient

1 − α is given by

(
1

2n
χ2

2y, α
2

,
1

2n
χ2

2(y+1),1−α
2

)
.

For y = 0, we take χ2
0,1−α

2

= 0 (Casella and Berger [9]). Although an exact con-

fidence interval estimator exists, it is still of interest to compare asymptotic and

exact estimators. The readers are referred to Agresti and Coull [1]. They show

that approximate approaches are better than the “exact” approach for interval

estimation of the binomial distribution. Because Poisson distribution is a discrete

distribution similar to the binomial distribution, it is of interest to investigate the

performance of different interval estimators.

2.3. Bootstrap confidence intervals

Here, we use the percentile bootstrap method (see Davison and Hinkley

[11] for details) to construct confidence intervals for λ. The percentile bootstrap

method is popular: for example, Ibrahim and Kudus [19] used it to construct

confidence intervals for the median of a three-parameter Weibull distribution.

The percentile bootstrap method can be applied as follows:

1. For a random sample X1, X2, ..., Xn from a Poisson distribution with

mean λ, compute the maximum likelihood estimate λ̂ = X.

2. Random select n observations from X1, X2, ..., Xn with replacement.

3. Repeat step 2 B times to generate B bootstrap samples, sayXj

1
, Xj

2
,...,Xj

n
,

1 ≤ j ≤ B.

4. Compute the maximum likelihood estimate λ̂j
= X

j
of λ for each of the

bootstrap samples in step 3.

5. Based on λ̂1, λ̂2, ..., λ̂B
, a 100(1− α) percentile bootstrap confidence in-

terval is

(
2λ̂− λ̂b, 2λ̂− λ̂a

)
,

where a = (B + 1)
α
2 and b = (B + 1)

(
1 − α

2

)
.
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3. BAYESIAN CREDIBLE INTERVALS

In this section, we discuss four Bayesian credible intervals for the Pois-

son mean. Bayesian credible intervals incorporate problem-specific contextual

information from the prior distribution into estimates, whereas classical interval

estimators are based solely on the data. In real applications, we should em-

ploy Bayesian approaches whenever strong prior information exist. This could

provide good coverage and relatively narrow intervals for the parameter. We

consider Bayesian credible intervals for the Poisson distribution under different

priors.

3.1. Posterior distributions under different priors

The efficiency of Bayesian framework is largely dependent upon the choice

of an appropriate prior distribution. The prior information is combined to the cur-

rent information to update the belief regarding a particular characteristic of the

data. The prior information can be of two types; informative and non-informative

priors. Though, the choice of a prior depends upon the circumstances of the study,

the search for a suitable prior is always of interest. We utilize both informative

and non-informative priors for our posterior analysis.

Let X1, X2, ..., Xn be a random sample from Poisson(λ). The prior and

posterior distributions considered are as follows:

(a) For the uniform prior,

π(λ) ∝ 1 , λ > 0 ,(3.1)

the posterior distribution is

π (λ|x) =
n
Pn

i=1
xi+1

Γ

(
n∑

i=1

xi

) λ(
Pn

i=1
xi+1)−1e−nλ ,

[
Gamma

(
n∑

i=1

xi + 1, n

)]
.(3.2)

(b) For Jeffreys prior,

π(λ) ∝ λ−
1

2 , λ > 0 ,(3.3)
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the posterior distribution is

π (λ|x) =
n
Pn

i=1
xi+

1

2

Γ

(
n∑

i=1

xi +
1

2

) λ(
Pn

i=1
xi+

1

2
)−1e−nλ ,

[
Gamma

(
n∑

i=1

xi +
1

2
, n

)]
.(3.4)

(c) For the exponential prior,

π(λ) = ae−aλ , λ > 0 , a > 0 ,(3.5)

where a is a hyper parameter, the posterior distribution is

π (λ|x) =
(n+ a)

Pn
i=1

xi+1

Γ

(
n∑

i=1

xi

) λ(
Pn

i=1
xi+1)−1e−(n+a)λ ,

[
Gamma

(
n∑

i=1

xi + 1, n+ a

)]
.(3.6)

(d) For the gamma prior,

π(λ) =
ab

Γ(b)
λb−1e−aλ , λ > 0 , a > 0 , b > 0 ,(3.7)

where a and b are hyper parameters, the posterior distribution is

π (λ|x) =
(n+ a)(

Pn
i=1

xi+b)

Γ

(
n∑

i=1

xi

) λ(
Pn

i=1
xi+b)−1e−(n+a)λ ,

[
Gamma

(
n∑

i=1

xi + b, n+ a

)]
.(3.8)

(e) For the chisquare prior,

π(λ) =
λ

b
2
−1e−

λ
2

Γ
(

b
2

)
2

b
2

, λ > 0 , b > 0 ,(3.9)

where b is a hyper parameter, the posterior distribution is

π (λ|x) =

(
n+

1

2

)(
Pn

i=1
xi+

b
2
)

Γ

(
n∑

i=1

xi

) λ(
Pn

i=1
xi+

b
2
)−1e−(n+ 1

2
)λ ,

[
Gamma

(
n∑

i=1

xi +
b

2
, n+

1

2

)]
.(3.10)
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For more discussion, see Feroze and Aslam [15].

In the following, we find Bayesian credible intervals based on the derived

posteriors.

3.2. Equal tails credible intervals

Table 1 presents the 1 − α equal tails credible intervals.

Table 1: The 1 − α equal tails credible intervals under the different

priors and posteriors.

Priors Pivotal quantity Lower bound Upper bound

Uniform 2nλ 1

2n
χ2

2(
P

n

i=1
xi+1), 1−

α

2

1

2n
χ2

2(
P

n

i=1
xi+1),

α

2

Jeffreys 2nλ 1

2n
χ2

2(
P

n

i=1
xi+

1

2 ), 1−
α

2

1

2n
χ2

2(
P

n

i=1
xi+

1

2 ),
α

2

Exponential 2(n+ a)λ 1

2(n+a)
χ2

2(
P

n

i=1
xi+1), 1−

α

2

1

2(n+a)
χ2

2(
P

n

i=1
xi+1),

α

2

Gamma 2(n+ a)λ 1

2(n+a)
χ2

2(
P

n

i=1
xi+b), 1−

α

2

1

2(n+a)
χ2

2(
P

n

i=1
xi+b),

α

2

Chisquare 2
(
n+

1

2

)
λ 1

2(n+
1

2 )
χ2

2(
P

n

i=1
xi+

b

2 ), 1−
α

2

1

2(n+
1

2 )
χ2

2(
P

n

i=1
xi+

b

2 ),
α

2

3.3. Jeffreys prior credible intervals

The non-informative Jeffreys prior plays a special role in the Bayesian anal-

ysis, see, for example, Berger [5]. In particular, Jeffreys prior is the unique first-

order probability matching prior for a real-valued parameter with no nuisance

parameter, see Ghosh [16]. In our setting, simple calculations show that the

Fisher information about µ is I(µ) = n
(
µ+ bµ2

)
−1

and thus Jeffreys prior is

proportional to

I
1

2 (µ) = n
1

2

(
µ+ bµ2

)
−

1

2 .

Denoting the posterior distribution by J , the (1−α) Jeffreys credible interval for

µ can be written as

(Jα, J1−α) ,(3.11)

where J1−α and Jα are, respectively, the 1 − α and α quantiles of the posterior

distribution based on n observations (Cai [8]). By (3.3) and (3.4), we can rewrite
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(3.11) as

(
Gα/2,

Pn
i=1

xi+
1

2
,n , G1−α/2,

Pn
i=1

xi+
1

2
,n

)
.

For more discussion, see Brown et al. [6].

3.4. HPD credible intervals

The set {θ : π (θ|x) ≥ k} is called highest posterior density, where k is cho-

sen so that

1 − α =

∫

{θ:π(θ|x)≥k}

π(θ|x) dθ .

See Casella and Berger [9]. If the posterior pdf, π(θ|x), is unimodal then the HPD

set would be an interval, say (θHL, θHU ) (Berger [5]). In this case, we construct

HPD credible intervals for parameters of interest in the square:

π(θHL|x) = π(θHU |x) ,

∫ θHU

θHL

π(θ|x) dθ = 1 − α .

3.5. Relative surprise credible intervals

Relative surprise credible intervals for θ, as discussed in Evans [12], are

based on a particular approach to assessing the null hypothesis H0 : θ = θ0. For

this, we compute the observed relative surprise (ORS) defined by

π

(
π (θ|x)

π(θ)
>
π (θ0|x)

π (θ0)

∣∣x
)
.(3.12)

We see that (3.12) compares the relative increase in belief for θ, from a priori to

a posteriori. Other approaches to measuring surprise are discussed in Good [17].

For estimation purposes, one may consider ORS in (3.12) as a function of θ0 and

select a value which minimizes this quantity as the estimator, called the least

relative surprise estimator (LRSE). Moreover, to obtain a 1 − α-credible region

for θ, we simply invert (3.12) in the standard way to obtain the (1 − α)-relative

surprise credible interval provided that

π

(
π (θ|x)

π(θ)
>
π (θ0|x)

π (θ0)

∣∣∣∣x
)

≤ 1 − α .

It can be proved that if the posterior pdf π (θ|x) is unimodal then the credible

set is of the form (θRL, θRU ) such that

π (θRL|x)

π(θ)
=
π (θRU |x)

π(θ)
,

∫ θRU

θRL

π(θ|x) dθ = 1 − α .
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Relative surprise credible regions are shown to minimize, among Bayesian

credible regions, the prior probability of covering a false value from the prior.

Such regions are also shown to be unbiased in the sense that the prior probability

of covering a false value is bounded above by the prior probability of covering

the true value. Relative surprise credible regions are shown to maximize both

the Bayes factor in favor of the region containing the true value and the relative

belief ratio, among all credible regions with the same posterior content (Evans

and Shakhatreh [13]).

3.6. Reparameterizations

A basic principle of inference is that inferences about a parameter of interest

should be invariant under reparameterizations: for example, whatever rule we

use to obtain a (1 − α)-credible region, B1−α, for a parameter of interest, θ, the

rule should yield the region Ψ (B1−α) for any one-to-one, sufficiently smooth,

reparameterization ψ = Ψ(θ). Relative surprise credible inferences satisfy this

principle. For greater detail, see Evans and Shakhatreh [13] and Baskurt and

Evans [3].

4. COMPARISON OF CONFIDENCE INTERVALS

In this section, we compare the interval estimators of Sections 2 and 3: the

Wald (WA) interval estimator, the score (SC) interval estimator, the exact (EX)

interval estimator, Jeffreys (Jef) prior credible estimator, the bootstrap (Boot)

interval estimator, the HPD credible interval estimator, the relative surprise (RS)

credible interval estimator and the equal tails (EQ) credible interval estimator.

Note that the HPD, RS and the EQ credible interval estimators depend on the

chosen prior. Others do not depend on the chosen prior.

The comparison is based on coverage probabilities and coverage lengths

computed by simulation. Each coverage probability and coverage length was

computed over ten thousand replications of the simulated sample. Throughout,

the level of significance was taken to be five percent.

The parameters of the priors can be chosen either arbitrarily or using em-

pirical Bayes (EB) estimation. EB estimation is discussed in the Appendix. But

our simulations showed that both arbitrary choice and EB estimation gave the

same results. So, we choose the prior parameters arbitrarily as a = 3 and b = 2.
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4.1. Comparison based on coverage probability

Here, we compare the interval estimators based on their coverage probabil-

ities. Figures 1 to 9 in Nadarajah et al. [25] show how the coverage probabilities

vary with respect to sample size and λ for the classical interval estimators and

for the priors and posteriors given by (3.1)–(3.10). The following observations

can be drawn from the figures:

• among the classical interval estimators, the WA, SC and EX estimators

have the coverage probabilities acceptably close to the nominal level;

• among the classical interval estimators, the Boot estimator has the cov-

erage probabilities unacceptably further away from the nominal level;

• among the Bayesian credible estimators with the uniform prior, the Jef,

HPD and EQ estimators have the coverage probabilities acceptably close

to the nominal level;

• among the Bayesian credible estimators with the uniform prior, the RS

estimator has the coverage probabilities unacceptably further away from

the nominal level;

• among the Bayesian credible estimators with other priors, the Jef es-

timator has the coverage probabilities acceptably close to the nominal

level;

• among the Bayesian credible estimators with other priors, the RS, EQ

and HPD estimators have the coverage probabilities unacceptably fur-

ther away from the nominal level;

• the Boot estimator and the EQ credible interval estimator generally

underestimate the coverage probability;

• the RS credible interval estimator generally overestimates the coverage

probability;

• the HPD credible interval estimator sometimes underestimates and some-

times overestimates the coverage probability.

Although these observations are limited to the ranges of λ and n specified

by Figures 1 to 9 in Nadarajah et al. [25], they held for other values too.

4.2. Comparison based on coverage length

Here, we compare coverage lengths of the interval estimators. Figures 10

to 18 in Nadarajah et al. [25] show how the coverage lengths vary with respect

to sample size and λ for the classical interval estimators and for the priors and
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posteriors given by (3.1)–(3.10). The following observations can be drawn from

the figures:

• the coverage lengths for each estimator generally increase with increasing

λ;

• the coverage lengths generally decrease with increasing n except for the

HPD and RS credible interval estimators;

• the coverage lengths for the HPD credible interval estimator sometime

increase with n and sometimes decrease with n;

• also the coverage lengths for the RS credible interval estimator sometime

increase with n and sometimes decrease with n;

• the coverage lengths appear largest for the HPD and RS credible interval

estimators;

• the coverage lengths appear smallest for the WA, SC, EX, Jef, Boot and

EQ estimators;

• among the Bayesian credible estimators, the coverage lengths appear

largest for those with the exponential prior.

Although these observations are limited to the ranges of λ and n specified

by Figures 10 to 18 in Nadarajah et al. [25], they held for other values too.

5. REAL DATA APPLICATIONS

Here, we present an analysis of the “Flying-bomb Hits in London During

World War II”data reported by Feller [14]. The city was divided into five hundred

and seventy six small areas of one-quarter square kilometers each, and the number

of areas hit exactly k times was counted. There were a total of five hundred and

thirty seven hits, so the average number of hits per area was 0.93. The observed

frequencies in Table 2 are remarkably close to a Poisson distribution as we shall

show now.

Table 2: Flying-bomb hits in London during World War II.

Hits 0 1 2 3 4 5
+

Observed 229 211 93 35 7 1

We fitted the Poisson, negative binomial and geometric distributions to the

data in Table 2. The smallest chisquared statistic, the smallest Akaike informa-
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tion criterion and the smallest Bayesian information criterion were obtained for

the Poisson distribution. The quantile–quantile plots for the three fits shown in

Figure 19 in Nadarajah et al. [25] show that the Poisson distribution has the

points closest to the straight line.

For the fit of the Poisson distribution, λ̂ = 0.9288194 with standard error

0.04015632. Using these estimates, the confidence intervals of Sections 2 and 3

can be computed. They are shown in Table 3.

Table 3: Bayesian and non-Bayesian confidence intervals

for the mean number of hits.

Intervals Lower bound Upper bound Upper−Lower

WA 0.85338 1.01093 0.15755

SC 0.85011 1.00752 0.15741

EX 0.85343 1.00916 0.15573

Jeffreys 0.8526 1.01006 0.15746

Bootstrap 0.84375 1.01215 0.1684

HPD.u 0.46441 1.39323 0.92882

RS.u 0.46441 1.39323 0.92882

EQ.u 0.85343 1.01097 0.15754

HPD.e 0.46441 1.39323 0.92882

RS.e 0.46441 1.39323 0.92882

EQ.e 0.85048 1.00747 0.15699

HPD.g 0.46441 1.39323 0.92882

RS.g 0.46441 1.39323 0.92882

EQ.g 0.85379 1.01107 0.15728

HPD.c 0.46441 1.39323 0.92882

RS.c 0.46441 1.39323 0.92882

EQ.c 0.85352 1.01099 0.15747

We see that the coverage length is smallest for the EX estimator, second

smallest for the EQ credible interval estimator, third smallest for the SC estima-

tor, fourth smallest for the Jef credible interval estimator, fifth smallest for the

WA estimator, sixth smallest for the bootstrap estimator and the largest for the

HPD and RS credible interval estimators. These observations are consistent with

the results in Section 4.2.

6. CONCLUDING REMARKS

The estimation of Poisson mean is of great importance because of wide

spread applications of the Poisson distribution. We have compared seventeen

different interval estimators for the Poisson mean. They were compared in terms
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of coverage probabilities and coverage lengths computed using simulations and

a real data application. We have given various recommendations for choosing

among the seventeen interval estimators. Some of them are: WA, SC and EX

estimators are the best classical interval estimators in terms of coverage proba-

bilities; Jef estimator is the best Bayesian credible interval estimator in terms of

coverage probabilities; WA, SC, EX, Boot estimators are the best classical inter-

val estimators in terms of coverage lengths; Jef and EQ estimators are the best

Bayesian credible interval estimators in terms of coverage lengths.
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APPENDIX: EMPIRICAL BAYES ESTIMATION

When the prior parameters are unknown, we may use another type of

Bayesian estimation for estimating them without knowing or assessing the prior

(subjective) distribution. The parameters of the (subjective) prior are estimated

from the data. This method of estimation is called empirical Bayes (EB) estima-

tion. For more details on EB estimation, see Maritz and Lwin [23].

In the following, we apply the EB method, in order to obtain an estimator

for θ based on observed data. Suppose X1, X2, ..., Xn ∼ P (λ) is the observed

data. Let λ ∼ Gamma(a, b) denote the prior distribution. Then, λ̂ = X. Using

S = nλ̂ ∼ P (nλ), we can write

f(s|λ) =
e−nλ

(nλ)
s

s!
(6.1)

for s = 0, 1, .... By using (6.1), we have

f(s) =

∫
∞

0
f(s|λ) g(λ) dλ

=

∫
∞

0

e−nλ
(nλ)

s

s!

ba

Γ(a)
λa−1e−bλ dλ

=
(s+ a− 1)!

s!(a− 1)!

(
b

b+ n

)a( n

b+ n

)s
,
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the probability mass function of a negative binomial random variable with pa-

rameters p =
b

b+n
and r = a. The expectation and variance of a negative binomial

random variable with parameters p and r are
rq
p

and
rq

p2 , respectively. Using these,

the EB estimators of the prior parameters can be obtained as

• â =
µ2

σ2
−µ

and b̂ =
nµ

σ2
−µ

for the gamma prior;

• b̂ =
n
µ

for the exponential prior;

• â =
µ
n

for the chisquare prior.
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Abstract:

• Regression procedures are often used for estimating distributional parameters because

of their computational simplicity and useful graphical presentation. However, the re-

sulting regression model may have heteroscedasticity and/or correction problems and

thus, weighted least squares estimation or alternative estimation methods should be

used. In this study, we consider generalized least squares and weighted least squares

estimation methods, based on an easily calculated approximation of the covariance

matrix, for distributional parameters. The considered estimation methods are then

applied to the estimation of parameters of different distributions, such as Weibull,

log-logistic and Pareto. The results of the Monte Carlo simulation show that the

generalized least squares method for the shape parameter of the considered distri-

butions provides for most cases better performance than the maximum likelihood,

least-squares and some alternative estimation methods. Certain real life examples are

provided to further demonstrate the performance of the considered generalized least

squares estimation method.
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• probability plot; heteroscedasticity; autocorrelation; generalized least squares; weighted

least squares; shape parameter.
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1. INTRODUCTION

Regression procedures are often used for estimating distributional param-

eters. In this procedure, the distribution function is transformed to a linear re-

gression model. Thus, least squares (LS) estimation and other regression estima-

tion methods can be employed to estimate parameters of a specified distribution.

In the literature, the parameters of the Pareto and Weibull distributions, in par-

ticular, have been estimated by such methods, since these distributions have been

commonly used in reliability and survival analysis as well as engineering (Aber-

nethy, 1996; Boudt et al. 2011; Kantar and Usta, 2008; Genschel and Meeker,

2010; Hung, 2001; Lu et al. 2004; Baxter 1980). In addition to the Pareto and

Weibull distributions, Burr-type, Gumbel, logistic and log-logistic distributions

have been studied by regression estimation methods (Bergman, 1986; Hossain and

Howlader, 1996; Wang and Cheng, 2010; Zhang et al. 2007; Zhang et al. 2008;

Zyl, 2012; Zyl and Schall, 2012; Usta, 2013; Kantar and Arik, 2014; Kantar and

Yildirim, 2015). One of the main advantages of using regression procedures for

estimating parameters is that their implementation is simple in the case of com-

plete data, censoring data or data with outliers. Nevertheless, as is well known,

the resulting regression model may have unequal variance (heteroscedastic) (En-

geman and Keefe, 1982; Boudt et al. 2011; Zyl, 2012; Zyl and Schall, 2012)

and/or correction problems (Engeman and Keefe, 1982) and thus, the weighted

least squares (WLS) estimation or alternative methods should be used (Engeman

and Keefe, 1982; Lu and Tao, 2007; Zyl, 2012; Zyl and Schall, 2012). For exam-

ple, Engeman and Keefe (1982) consider generalized least squares estimation of

the Weibull distribution by means of a linear regression model. Hung (2001), Lu

et al. (2004), Zyl and Schall (2012) emphasize that a weight function should be

used when performing regression methods, and propose different weights using

large sample properties of the empirical distribution function or order statistics,

to stabilize the variance in order to perform the WLS estimation method for the

Weibull distribution. Zhang et al. (2008) discuss alternative WLS estimation

methods for the Weibull distribution. On the other hand, Malik (1970) stud-

ied the LS method, ridge regression and maximum product of spacing methods

to estimate parameters for the Pareto distribution, while Zyl (2012) considered

the Laplace distributed errors (LAD) (Koenker and Bassett, 1978) and Box–Cox

regression to stabilize variance. It can be seen that Zyl’s (2012) WLS and Lu

and Tao’ (2007) WLS perform almost as well as the maximum likelihood (ML)

estimation method for the Pareto distribution.

In this article, we consider generalized least squares (GLS) and WLS esti-

mation methods for distributional parameters by easily calculating an approxi-

mation of the variance-covariance matrix. GLS and WLS are then applied to the

estimation of the parameters of the Weibull, Pareto and log-logistic distributions.

The simulation results show that the proposed estimation methods, particularly
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GLS for the shape parameter of the considered distributions, provide better per-

formance than the ML, LS and some alternative WLS estimation methods, for

most of the considered sample sizes.

The rest of this paper is organized as follows: Section 2 provides the process

of estimation of distributional parameters via regression models for the Weibull,

Pareto and log-logistic distributions. Section 3 introduces the GLS and WLS

estimation methods and their application to each of these distributions. Alter-

native estimation methods for the Weibull, Pareto or log-logistic distributions

are briefly discussed in Section 4. To show the performance of the considered

GLS and WLS methods, a simulation study is presented in Section 5. A num-

ber of real-data examples are discussed in Section 6 and, finally, the last section

summarizes the conclusions of the study.

2. ESTIMATION OF DISTRIBUTIONAL PARAMETERS

VIA REGRESSION MODELS

Probability plots that use the quantile function of the random variable are

often used for different objectives, such as, (i) to draw conclusions from data,

(ii) to estimate the parameters of the considered distribution, (iii) to apply

to both complete and censored data and (iv) to show graphical presentation.

(For other advantages, see Nelson, 2004)

By taking into account the objective (ii) of probability plots, the distri-

bution function is transformed into a linear regression model, so that various

regression estimation methods can then be used to estimate the parameters of

the specified distribution.

The probability density function (pdf) and cumulative distribution func-

tion (cdf) of the Weibull random variable are respectively given in the following

equations:

f(x, λ, α) =
α

λ

(
x

λ

)α−1

e−( x
λ
)α

, for x > 0 ,(2.1)

F (x, λ, α) = 1 − e−( x
λ
)α

, for x > 0 ,(2.2)

where λ is the scale parameter and α is the shape parameter. The Weibull

distribution is a reversed J-shaped, bell shaped and exponential distribution for

α < 1, α > 1 and α = 1, respectively. The Weibull distribution appears similar

to a normal distribution for α = 3.4 (Kantar and Senoglu, 2008).
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After some algebraic manipulation, equation (2.2) can be expressed as fol-

lows:

(2.3) ln
[
− ln(1 − F (x))

]
= α lnx − α lnλ ,

(2.4) lnx = lnλ +
1

α
ln

[
− ln(1 − F (x))

]
.

For a sample size of n and x(1) ≤ x(2) ≤ ... ≤ x(n) the regression model is rewritten

as:

(2.5) lnx(i) = lnλ +
1

α
ln

[
− ln(1 − F (x(i)))

]
,

where ln x(i) is the ith order statistics of the logarithm of the sample from the

Weibull distribution.
i−a

(n+b) , (0 ≤ a ≤ 0.5, 0 ≤ b ≤ 1) is used as estimate of F (x(i))

where i is the rank of the data point in the sample in ascending order. For

complete samples,
i

(n+1) and
i−0.3

(n+0.4) are generally used (Tiryakioglu and Hudak,

2007; Zyl, 2012, Kantar and Yildirim, 2015).

If we replace ln x(i) with Yi, lnλ with β0,
1
α

with β1 and ln[− ln(1−F (x(i)))]

with Xi, the regression model (2.5) occurs as:

(2.6) Yi = β0 + β1Xi .

By using the regression model given in (2.5), the LS and other regression estima-

tion methods can be easily employed to estimate the parameters of the Weibull

distribution.

The Pareto cdf is given as follows:

(2.7) F (x, k, η) = 1 −
(

k

x

)η

,

where k is the scale parameter and η is the shape parameter. The Pareto distribu-

tion, which is generally used to model extreme values, is skewed and heavy-tailed.

After algebraic manipulation, equation (2.7) can be expressed as follows:

(2.8) lnx = ln k − 1

η
ln(1 − F (x)) .

For the ordered sample, the regression model for the Pareto distribution is

rewritten as:

(2.9) lnx(i) = ln k − 1

η
ln(1 − F (x(i))) .

If we replace ln x(i) with Yi, ln k with β0, − 1
η

with β1 and ln(1 − F (x(i))) with

Xi, the linear regression model is obtained for the Pareto distribution.
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The cdf of the log-logistic random variable is given as follows:

(2.10) F (x) = 1 −
(

1 +

(
x

γ

)δ )
−1

, x ≥ 0 , δ, γ > 0 ,

where γ is the scale parameter and δ is the shape parameter. For δ > 1, the log-

logistic distribution is unimodal and its variance decreases as δ increases. The

log-logistic distribution has been widely-used in hydrology to model stream flow

(Ahmad et al. 1988; Ashkar and Mahdi, 2006; Chen, 2006).

Similar to the Weibull and Pareto distributions, the obtained regression

model for the log-logistic distribution is presented as follows:

(2.11) ln(x) =
1

δ
ln

(
(1 − F (x))

−1 − 1
)

+ ln(γ) ,

which may be written as:

(2.12) ln(x(i)) =
1

δ
ln

(
(1 − F (x(i)))

−1 − 1
)

+ ln(γ) .

In conclusion, the parameters of the Weibull, Pareto and log-logistic distributions

can be estimated respectively using ordinary LS estimation for equations (2.5),

(2.9) and (2.12).

It should be noted that the common LS and other regression estimation

procedures applied in the literature for the Weibull and Pareto distributions use

the least squares regression of X on Y , (Xi = β0 + β1Yi) (Genschel and Meeker,

2010; Hossain and Howlader, 1996; Hung, 2001; Kantar and Arik, 2014; Kantar

and Yildirim, 2015; Lu et al. 2004; Wang and Cheng, 2010; Zhang et al. 2008;

Zyl, 2012; Zyl and Schall, 2012). To the best of our knowledge, only Zhang et al.

(2007) compare these two LS estimation methods for the Weibull using intensive

Monte Carlo simulations, finding that LS of Y on X provides better estimators

than LS of X on Y .

3. GENERALIZED LEAST SQUARES ESTIMATION AND

WEIGHTED LEAST SQUARES ESTIMATION METHODS

FOR DISTRIBUTIONAL PARAMETERS: THE CASES OF

WEIBULL, PARETO AND LOG-LOGISTIC DISTRIBUTIONS

The most obvious point to be noticed is that since the sample is ordered

in the models (2.5), (2.9) and (2.12), lnx(i) is also ordered. For this reason,

the covariance matrices of the dependent variable of these models are not in the

form σ2I, but of σ2V =
∑

, where σ2
is unknown and V is known (White, 1969;

Engeman and Keefe, 1982). In this case, the LS estimates of the coefficients may
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not have minimum variance. In such cases, alternative estimation approaches to

stabilize variances can be used.

Generalized least squares (GLS) estimation is an efficient method for esti-

mating the unknown coefficients of a linear regression model when the observa-

tions have unequal variance and there is a certain degree of correlation between

the observations. In the linear regression model given in (2.6), if the form of the

variance of Y = (Y1, ..., Yn) is σ2V =
∑

, GLS minimizes

(3.1) (Y − Xβ)
′ V−1

(Y − Xβ) ,

which is solved by

(3.2) β̂GLS = (X′V−1X)X′V−1Y ,

where β̂GLS is the vector of the GLS estimates of β = (β1, β2) and X is the ma-

trix of ones and xi. In addition, the GLS estimates are equivalent to applying

ordinary LS to a linearly transformed form of the data. That is, we can write

V = SS′

, where S is a triangular matrix, using Cholesky decomposition. The

LS estimates obtained by regressing S−1Y on S−1X are equal to the GLS es-

timates. Thus, Var(S−1Y) = S−1Var(Y)(S−1
)
′

= σ2S−1V(S−1
)
′

= σ2I. The

transformed form of the data is uncorrelated, with constant variance.

On occasion, the observations are uncorrelated or have a small enough

correlation to be ignored, but have unequal variance. That is, the covariance-

matrix is diagonal, say W, but does not have equal diagonal elements. WLS

estimation can be used in this situation. WLS estimate is obtained as follows:

(3.3) β̂WLS = (X′W−1X)X′W−1Y .

Now, the problem is to estimate the V matrix for the considered distribu-

tions. Taking into account equation (2.5) for the Weibull distribution, it is noted

that the cumulative function F is transformed into ln[− ln(1 − F (x))] and the

random variable X is transformed into lnX. If these transformations are respec-

tively denoted by TF and TX, the regression model for the Weibull distribution

given in (2.5) can be expressed as follows:

(3.4) TX(Xi) = β0 + β1TF (Fi) ,

where β0 = lnλ and β1 =
1
α
. Taking the expectation, variance and covariance of

both sides yields:

(3.5) E(TX(Xi)) = β0 + β1E(TF (Fi)) ,

(3.6) V ar(TX(Xi)) = β2
1V ar(TF (Fi)) ,

(3.7) Cov(TX(Xi), TX(Xj)) = β2
1Cov(TF (Fi), TF (Fj)) .
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By using Taylor expansion, it is possible to approximate the expectation of the

observation and also variance and covariance between the observations. Taylor

series expansion of TF (Fi) about the value F0i =
i

n+1 , i = 1, 2, ..., n, is given by:

(3.8) TF (Fi) ≈ TF (F0i) + TF ′

(F0i)(F − F0i) +
1

2
TF ′′

(F0i)(F − F0i)
2 .

Taking the expectation of both sides yields:

(3.9) E(TF (Fi)) ≈ E(TF (F0i)) +
1

2
TF ′′

(F0i)E((F − F0i)
2
) .

Similarly, taking the variance of both sides yields:

(3.10) V ar(TF (Fi)) ≈ (TF ′

(F0i))
2V ar(F ) = (TF ′

(F0i))
2 F0i(1 − F0i)

n + 2

A similar closed-form approximate formula for the covariance between TF (Fi)

and TF (Fj) is

(3.11) Cov(TF (Fi), TF (Fj)) ≈ TF ′

(F0i)TF ′

(F0j)
F0i(1 − F0j)

n + 2
, i < j .

(See Blom, 1962; White, 1969; Engeman and Keefe, 1982). Thus,

E(TX(Xi)) ≈ β0 + β1(TF (F0i)) +
1

2
TF ′′

(F0i)
F0i(1 − F0j)

n + 2
,(3.12)

V ar(TX(Xi)) ≈ β2

1
(TF ′

(F0i))
2
F0i(1 − F0i)

n + 2
,(3.13)

Cov(TX(Xi), TX(Xj)) ≈ β2

1
TF ′

(F0i)TF ′

(F0j)
F0i(1 − F0j)

n + 2
, i < j ,(3.14)

where TF (F ) = ln(− ln(1 − F )), TF ′

(F ) =
−1

(1−F ) ln(1−F )
and

TF ′′

(F ) =
ln(1−F )+1

((1−F ) ln(1−F ))2

(3.15)

V ar(TX(Xi)) = Cov(TX(Xi), TX(Xj)) ≈ β2

1

n + 2

i

(n + 1 − i)

1

ln(
n+1−i

n+1
)

1

ln(
n+1−j

n+1
)

.

Thus, considering
β

2

1

n+2
as σ2V as in Engeman and Keefe (1982), the approximate formula

for the V matrix can be expressed as follows:

(3.16) vij =
i

(n + 1 − i)

1

ln(
n+1−i

n+1
)

1

ln(
n+1−j

n+1
)

, i ≤ j ,

where vij is an element of the V matrix. Thus, in order to apply GLS and WLS estima-

tion methods for the Weibull distribution, the covariance matrix and the matrix of the

diagonal elements of the covariance matrix are expressed respectively as follows:

(3.17) V =




v11 ... v1n

.

.

.
. . .

.

.

.

vn1 ... vnn


 ,

(3.18) W =




v11 ... 0

.

.

.
. . .

.

.

.

0 ... vnn


 .
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For the Weibull distribution:

β̂GLS1 = (X′V−1X)
−1X′V−1Y ,

β̂WLS = (X′W−1X)
−1X′W−1Y ,

where Y = [ln(x(1)), ..., ln(x(n))], X =




1 ln(− ln(1 − F̂1))

.

.

.
.
.
.

1 ln(− ln(1 − F̂n))


, β̂ = (β̂0, β̂1), where β̂0 =

ln λ̂ and β̂1 =
1

α̂
, λ̂ = exp(β̂0) and α̂ =

1

β̂1

.

It should be noted that independent variables in equations (2.5), (2.9) and (2.12)

are unobserved, but are estimated differently from classical regression analysis. In order

to estimate regression coefficients, we replaced the independent variable with its estimate.

Considering the expected value of E(TF (Fi)) given in (3.9) and (3.12), we can

choose the independent variable as TF (F0i) +
1

2
TF ′′

(F0i)V ar(F ) to reduce bias in the

GLS procedure. Nevertheless, unbiasedness of the resulting estimator is not claimed,

since TX(Xi), as the dependent variable, has an estimate of mean. Consequently, the

considered generalized estimation procedure here is denoted by GLS2 for the purpose of

distinction.

Thereby, the design matrix of the regression model for the Weibull distribution is

given as follows:

(3.19) Z =




1 ln(− ln(1 − F̂1)) − 0.5 − ln(1−F̂1)+1

((1−F̂1) ln(1−F̂1))
2

.

.

.
.
.
.

1 ln(− ln(1 − F̂n)) − 0.5 − ln(1−F̂n)+1

((1−F̂n) ln(1−F̂n))2


 .

Consequently,

β̂GLS2 = (Z′V−1Z)
−1Z′V−1Y .

Taken into account the model given in (2.9) for the Pareto distribution, TF (F) = ln(1−F ),

TF ′

(F ) =
−1

1−F
and TF ′′

(F ) =
−1

(1−F )2

The approximate formula for the V matrix for the Pareto distribution can be

expressed as follows:

(3.20) vij =
1

(n + 1 − i)
, i ≤ j .

Similarly, the V matrix for the log-logistic distribution is:

(3.21) vij =
(n + 1)

2

i(n + 1 − i)
, i ≤ j .

where TF (F ) = ln(
F

1−F
), TF ′

(F ) =
1

1−F
and TF ′′

(F ) =
2F−1

(F (1−F ))2
.

Similar to the Weibull distribution, WSL, GLS1 and GLS2 estimation methods can

be applied to estimate the parameters of the Pareto and log-logistic distributions using

the approximate covariance matrices. It should also be highlighted that the obtained

covariance matrix and the proposed GLS1 estimation method coincide with GLS for the

Weibull studied in (Engeman and Keefe, 1982). However, Engeman and Keefe (1982)
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compare GLS estimation with ML for sample size n = 25 and find that GLS for the shape

parameter of the Weibull distribution performs better than ML estimation. In this study,

we compare GLS1 for the Weibull distribution with existing alternative WLS estimation

methods for different sample sizes and shape parameter cases.

In conclusion, the considered WLS, GLS1 and GLS2 estimation methods are based

on explicit functions of the sample observations and are therefore easy to compute, with-

out the typical computational complexity of ML (Kantar and Senoglu, 2008; Gebizli-

oglu et al. 2011). Also, the standard error of the WLS, GLS1 and GLS2 estimates are

easily calculated taking the square roots of the diagonal elements of (X′W−1X)
−1σ2

,

(X′V−1X)
−1σ2

and (Z′V−1Z)
−1σ2

respectively.

4. DISCUSSION OF OTHER ALTERNATIVE ESTIMATION

METHODS

Many estimators have been proposed in the literature for the parameters of the

Weibull distribution, and these estimators have been compared according to different

criteria (Bergman, 1986; Gebizlioglu et al. 2011; Hassanein 1971; Hossain and Zimmer

2003; Hossain and Howlader, 1996; Hung, 2001; Marks, 2005; Kantar and Senoglu, 2008;

Kantar and Usta, 2008; Zhang et al. 2008; Prakash and Singh, 2009; Zyl and Schall,

2012). The ML estimator, generally preferred due to its good theoretical properties for

large sample sizes (n > 100), (Kantar and Senoglu, 2008), may have poor small sam-

ple performance (Kantar and Senoglu, 2008; Marks, 2005; Teimouri and S. Nadarajah,

2012). Moreover, ML requires an iterative numerical method for most distributions, such

as Newton–Raphson. Among other alternative estimators, the most popular is LS estima-

tion because of its computational simplicity in the case of complete data, censoring data

and data with outliers (Genschel and Meeker, 2010; Hossain and Zimmer, 2003; Hung,

2001; Lu et al. 2004; Zhang et al. 2007). However, it is known that LS estimates for dis-

tributional parameters may give misleading inferences since there is a heteroscedasticity

or correlation problem. With this in mind, GLS (Engeman and Keefe, 1982) and WLS

are proposed in (Hung, 2001; Lu et al. 2004; Zyl and Schall, 2012), demonstrating that

WLS totally outperforms the LS method. Also, Zyl and Schall’s (2012) WLS performs

almost as well as the ML estimation.

The Pareto distribution has been widely-studied in the literature (Quandt, 1966;

Saksena and Johnson, 1984; Likes, 1969; Baxter, 1980). Since ML of its shape parameter

is biased (Baxter, 1980; Saksena and Johnson, 1984), Malik (1970) studied the LS, ridge

regression and maximum product of spacing methods to estimate the parameters for the

Pareto distribution. Hossain and Zimmer (2000) consider LS for the Pareto distribution,

showing the superiority of LS estimation over ML estimation. In addition, Lu and Tao

(2007) provide a new weighting function for WLS, in order to estimate the parameters

of the Pareto distribution. They show that their WLS method demonstrates better

performance than classical LS estimation for the Pareto distribution.

On the other hand, the ML, LS, moment, generalized moment and probability

weighted moment estimators are considered as estimation methods for log-logistic distri-

bution in the literature (Ashkar and Mahdi, 2006; Chen, 2006; Kantar and Arik, 2014;

Rao and Kantam, 2012). The moment estimator for the log-logistic distribution is not

widely-used due to constraints δ > 1 and δ > 2. Among those mentioned, ML is the

most-preferred estimation method.
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5. MONTE CARLO SIMULATION

This section presents Monte Carlo simulation carried out to compare the per-

formance of the proposed GLS1, GLS2 and WLS in comparison with ML, LS estima-

tion methods, and also certain existing WLS estimation methods for the parameters of

Weibull, Pareto and Log-logistic distributions.

Bias and RMSE for parameters are calculated using 20, 000 simulated samples. All

computations for the simulation are performed using MATLAB 10.1. We consider sample

sizes n = 10, 20, 30, 50, 100 and 250. While shape parameters are taken as 0.5, 1, 2, 4
for the Pareto distribution, for log-logistic and Weibull distributions, shape parameters

are taken as 1, 2, 3 and 6 in common with previous studies. Also, without any loss of

generality, the scale parameter is taken to be equal to 1.

Table 1 shows the RMSE and bias values for ML, LS estimation for regression of

X on Y (LS1), known as classical LS in the literature, LS estimation for regression of

Y on X (LS2), which is considered in this study, WLS (Zyl&Schall), WLS (Hung) and

WLS (Lu et al.) and the considered WLS, GLS1 and GLS2 in this study, for the shape

parameter of the Weibull distribution. From the simulation results presented in Table 1,

the following conclusions may be summarized:

According to the RMSE criterion:

(a) GLS1 and GLS2 apparently show better performance than others for most

considered sample sizes.

(b) While GLS1 provides less RMSE than others for n = 10, GLS1 and GLS2

show similar and best performance for n = 20, 30, 50, 100.

(c) WLS estimation performs better than LS1 for all sample sizes and shape

parameter cases.

(d) LS2 performs better than LS1 for all considered sample sizes except n = 10.

The same result is observed in the study of Zhang et al., 2007.

According to bias criterion:

(a) GLS2 is clearly the best estimator in terms of bias. Particularly, a superior

performance of GLS2 is observed for n ≥ 20.

(b) Next to GLS2, LS2, GLS1 and WLS provide similar good performance for

n = 10, 20 with ML being best for other n = 50, 100, 250.

From the simulation results presented in Table 2 for the shape parameter of the

Pareto distribution, the following conclusions may be summarized:

According to RMSE:

(a) While the proposed GLS1 estimation shows better performance than ML,

LS1, LS2, WLS (Lu&Tao) and ELS (Lu&Tao) for most of the considered

sample sizes, GLS2 is the best for n = 250. Also, the considered WLS is the

best performer next to GLS1 for n = 10, 20, 30, 100 with GLS2 presenting

the second best performance after GLS1 for n = 50.

(b) The considered WLS estimation methods and WLS (Lu and Tao) show sim-

ilar performance.

(c) ML shows the worst performance compared with others, in terms of RMSE

for n = 10. This result matches the study of Lu and Tao (2007).

(d) LS2 has smaller RMSE than LS1 for all the considered shape parameter cases

and sample sizes except n = 10.
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Table 1: RMSE and Bias of the estimated shape parameters of the Weibull distribution.

Shape

Methods 1 2 3 6

RMSE Bias RMSE Bias RMSE Bias RMSE Bias

n=10

ML 0.38863 −0.16511 0.76759 −0.33705 1.13419 −0.51566 2.31548 −0.98691
LS1 0.31833 0.13005 0.63634 0.26033 0.95289 0.39420 1.90491 0.78612
LS2 0.31990 0.05931 0.63967 0.11783 0.95616 0.18046 1.91233 0.36114
WLS (Z&S) 0.29821 0.13978 0.58720 0.27390 0.88842 0.40626 1.78828 0.84593
WLS (Hung) 0.30320 0.13897 0.60026 0.27159 0.90529 0.40397 1.81904 0.83832
WLS (Lu) 0.29903 0.14035 0.58920 0.27497 0.89115 0.40837 1.79431 0.84926
WLS 0.31800 0.06117 0.63271 0.11755 0.95065 0.17788 1.92669 0.37458
GLS1 0.29000 0.06362 0.56862 0.12068 0.86533 0.17573 1.73207 0.38308
GLS2 0.35385 −0.06119 0.56109 −0.04698 0.89027 −0.16520 1.96762 −0.38306

n=20

ML 0.22154 −0.07498 0.43758 −0.14731 0.64809 −0.21834 1.33219 −0.44944
LS1 0.23171 0.10663 0.46301 0.21645 0.69459 0.31827 1.38990 0.63916
LS2 0.21958 0.05772 0.43834 0.11909 0.65791 0.17143 1.31574 0.34487
WLS (Z&S) 0.20379 0.09617 0.40523 0.19618 0.60474 0.29597 1.22168 0.57716
WLS (Hung) 0.21225 0.08519 0.41520 0.17664 0.63069 0.26699 1.26565 0.50690
WLS (Lu) 0.20472 0.09610 0.40707 0.19616 0.60777 0.29605 1.22675 0.57687
WLS 0.21970 0.05956 0.43600 0.12022 0.65285 0.18496 1.31841 0.36573
GLS1 0.19204 0.05495 0.37992 0.11169 0.56485 0.17069 1.15498 0.33209
GLS2 0.19931 −0.02895 0.41816 −0.07534 0.55577 −0.05771 1.13999 −0.07700

n=30

ML 0.16694 −0.04893 0.33061 −0.09807 0.50327 −0.14007 0.99289 −0.27909
LS1 0.19433 0.09079 0.38810 0.18201 0.58324 0.27222 1.16341 0.53894
LS2 0.18047 0.05201 0.36069 0.10431 0.54226 0.15547 1.08346 0.30588
WLS (Z&S) 0.16227 0.07152 0.32184 0.14273 0.49135 0.21621 0.97494 0.44393
WLS (Hung) 0.17208 0.05960 0.34207 0.11918 0.52139 0.18016 1.03151 0.37621
WLS (Lu) 0.16303 0.07120 0.32345 0.14211 0.49372 0.21527 0.97947 0.44253
WLS 0.18075 0.05161 0.35854 0.10327 0.54220 0.15931 1.07667 0.33157
GLS1 0.15281 0.04580 0.30270 0.09133 0.46125 0.14013 0.91585 0.28804
GLS2 0.15024 −0.02217 0.30412 −0.01153 0.44822 −0.04302 0.90238 −0.02257

n=50

ML 0.11983 −0.02859 0.24544 −0.06272 0.36191 −0.08748 0.72335 −0.16474
LS1 0.15472 0.07106 0.30869 0.14283 0.46362 0.21366 0.92958 0.42794
LS2 0.14211 0.04228 0.28304 0.08543 0.42558 0.12742 0.85239 0.25580
WLS (Z&S) 0.12252 0.04702 0.24491 0.08928 0.36714 0.14028 0.74707 0.28503
WLS (Hung) 0.13334 0.03707 0.26475 0.07007 0.39962 0.10809 0.81009 0.22344
WLS (Lu) 0.12317 0.04661 0.24597 0.08849 0.36893 0.13909 0.75062 0.28238
WLS 0.14114 0.04233 0.28107 0.07777 0.42417 0.12536 0.85600 0.25945
GLS1 0.11502 0.03513 0.23203 0.06517 0.34612 0.10363 0.70692 0.21860
GLS2 0.11894 −0.01230 0.23650 −0.02100 0.34015 −0.03437 0.68911 −0.06076

n=100

ML 0.08173 −0.01503 0.16438 −0.02775 0.24102 −0.04263 0.47159 −0.07239
LS1 0.11206 0.04903 0.22417 0.09773 0.33142 0.14372 0.66981 0.29164
LS2 0.10253 0.03039 0.20509 0.06024 0.30433 0.08797 0.61356 0.18014
WLS (Z&S) 0.08532 0.02365 0.17234 0.05307 0.25084 0.07527 0.50474 0.16409
WLS (Hung) 0.09497 0.01702 0.18984 0.04145 0.27751 0.05683 0.56174 0.12774
WLS (Lu) 0.08567 0.02331 0.17300 0.05260 0.25179 0.07440 0.50692 0.16229
WLS 0.10173 0.02789 0.20430 0.06213 0.30194 0.09223 0.60435 0.18702
GLS1 0.08068 0.02223 0.16310 0.04667 0.23956 0.06941 0.47439 0.14998
GLS2 0.08112 −0.00479 0.15633 −0.01075 0.23748 −0.01722 0.47863 −0.03175

n=250

ML 0.05067 −0.00450 0.10093 −0.01063 0.15032 −0.01562 0.30313 −0.02655
LS1 0.07090 0.02789 0.14099 0.05622 0.21292 0.08332 0.42111 0.16382
LS2 0.06573 0.01797 0.13096 0.03675 0.19744 0.05341 0.39137 0.10486
WLS (Z&S) 0.05505 0.01139 0.10954 0.02045 0.16313 0.03184 0.32897 0.07036
WLS (Hung) 0.06107 0.00848 0.12296 0.01354 0.18259 0.02266 0.36949 0.05389
WLS (Lu) 0.05514 0.01126 0.10982 0.02018 0.16352 0.03146 0.32979 0.06964
WLS 0.06745 0.01893 0.13191 0.03565 0.19723 0.05478 0.39537 0.11392
GLS1 0.05235 0.01343 0.10281 0.02536 0.15375 0.03858 0.30788 0.08173
GLS2 0.04909 −0.00189 0.09938 −0.00330 0.14755 −0.00684 0.30200 −0.00780
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Table 2: RMSE and Bias of the estimated shape parameters of the Pareto distribution.

Shape

Methods 0.5 1 2 4

RMSE Bias RMSE Bias RMSE Bias RMSE Bias

n=10

ML 0.26682 −0.12505 0.53541 −0.25050 1.06415 −0.49718 2.13514 −1.00263
LS1 0.20968 0.04864 0.41600 0.09824 0.83662 0.19479 1.66619 0.39608
LS2 0.22352 0.01044 0.44241 0.02185 0.89118 0.04120 1.77565 0.08861
ELS 0.24558 −0.04463 0.49464 −0.09034 0.98164 −0.17592 1.96201 −0.36301
WLS (L&T) 0.19586 −0.00777 0.39277 −0.01558 0.78208 −0.02760 1.56403 −0.06245
WLS 0.19118 −0.00860 0.38300 −0.01950 0.76350 −0.00124 1.52641 −0.00795
GLS1 0.18815 0.00937 0.37398 0.01637 0.74324 0.03592 1.48892 0.06459
GLS2 0.21636 −0.04981 0.43160 −0.09986 0.86333 −0.20072 1.72788 −0.39918

n=20

ML 0.14642 −0.05530 0.29084 −0.11156 0.58265 −0.22108 1.16502 −0.44376
LS1 0.14772 0.05070 0.29604 0.09971 0.59634 0.19960 1.18038 0.39813
LS2 0.14621 0.02396 0.29318 0.04620 0.59092 0.09233 1.16898 0.18253
ELS 0.15748 −0.01357 0.31413 −0.02760 0.63213 −0.05491 1.25870 −0.11178
WLS (L&T) 0.12506 0.00255 0.24789 0.00402 0.49643 0.01074 0.99388 0.01982
WLS 0.12426 0.00388 0.24623 0.00693 0.49396 0.01578 0.98857 0.03018
GLS1 0.11975 0.01462 0.23707 0.02849 0.47619 0.05864 0.95094 0.11581
GLS2 0.12905 −0.02108 0.25999 −0.04308 0.51875 −0.09169 1.03973 −0.18273

n=30

ML 0.10913 −0.03567 0.21762 −0.07012 0.43559 −0.14240 0.87266 −0.28254
LS1 0.12375 0.04583 0.24788 0.09080 0.49645 0.18579 0.99177 0.36783
LS2 0.11925 0.02400 0.23871 0.04717 0.47713 0.09810 0.95442 0.19228
ELS 0.12570 −0.00582 0.25086 −0.00965 0.50424 −0.02141 1.01027 −0.04358
WLS (L&T) 0.09935 0.00262 0.19872 0.00624 0.39603 0.01096 0.79497 0.02404
WLS 0.09900 0.00322 0.19817 0.00742 0.39477 0.01342 0.79265 0.02855
GLS1 0.09482 0.01333 0.18955 0.0278 0.37870 0.05361 0.75963 0.10923
GLS2 0.10082 −0.01303 0.20118 −0.02577 0.40632 −0.05303 0.80194 −0.11129

n=50

ML 0.07906 −0.02046 0.15777 −0.04141 0.31351 −0.08160 0.62915 −0.16547
LS1 0.09967 0.03844 0.19854 0.07558 0.39837 0.15476 0.79066 0.30625
LS2 0.09372 0.02144 0.18723 0.04185 0.37493 0.08732 0.74424 0.17248
ELS 0.09798 0.00172 0.19465 −0.00282 0.38897 −0.00561 0.77529 −0.00025
WLS (L&T) 0.07629 0.00218 0.15245 0.00409 0.30287 0.00911 0.60790 0.01549
WLS 0.07616 0.00236 0.15212 0.00452 0.30241 0.00988 0.60706 0.01720
GLS1 0.07273 0.01106 0.14481 0.02164 0.28832 0.04439 0.57757 0.08671
GLS2 0.07446 −0.00845 0.15212 −0.01880 0.30202 −0.03505 0.60540 −0.06028

n=100

ML 0.05310 −0.01009 0.10578 −0.01982 0.21128 −0.04089 0.42800 −0.08124
LS1 0.07279 0.02822 0.14520 0.05607 0.29094 0.11272 0.57808 0.22687
LS2 0.06765 0.01673 0.13485 0.03315 0.26997 0.06692 0.53589 0.13466
ELS 0.06993 0.00239 0.13950 0.00553 0.27776 0.00878 0.55709 0.02359
WLS (L&T) 0.05376 0.00107 0.10691 0.00273 0.21361 0.00432 0.43429 0.00801
WLS 0.05367 0.00108 0.10686 0.00270 0.21335 0.00457 0.43377 0.00810
GLS1 0.05089 0.00726 0.10159 0.01491 0.20246 0.02852 0.41018 0.05789
GLS2 0.05186 −0.00413 0.10262 −0.00746 0.20545 −0.01435 0.41371 −0.03020

n=250

ML 0.03225 −0.00393 0.06527 −0.00813 0.13035 −0.01499 0.26125 −0.03125
LS1 0.04690 0.01701 0.09390 0.03438 0.18550 0.06628 0.37319 0.13153
LS2 0.04376 0.01060 0.08753 0.02151 0.17273 0.04044 0.34929 0.08020
ELS 0.04416 0.00226 0.08871 0.00508 0.17827 0.00943 0.35890 0.01919
WLS (L&T) 0.03376 0.00068 0.06812 0.00093 0.13531 0.00327 0.27164 0.00474
WLS 0.03376 0.00066 0.06804 0.00087 0.13535 0.00327 0.27137 0.00457
GLS1 0.03178 0.00390 0.06419 0.00758 0.12853 0.01631 0.25743 0.03136
GLS2 0.03107 −0.00171 0.06313 −0.00292 0.12684 −0.00505 0.25707 −0.01208
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According to bias criterion:

(a) GLS2 estimation outperforms GLS1 for n = 50, 100, 250.

(b) WLS and GLS1 estimation show better performance than LS1 and LS2.

(c) WLS (Lu and Tao) and the considered WLS present similar bias and display

the best performance of the considered other methods

(d) LS2 performs better than LS1 for all considered sample sizes and shape

parameter cases.

Table 3: RMSE and Bias of the estimated shape parameters

of the log-logistic distribution.

Shape

Methods 1 2 3 6

RMSE Bias RMSE Bias RMSE Bias RMSE Bias

n=10

ML 0.38796 −0.15471 0.78149 −0.3109 1.16347 −0.45895 2.32594 −0.91451
LS1 0.30902 0.15929 0.62230 0.31840 0.92998 0.47446 1.85716 0.95062
LS2 0.29362 0.08694 0.59277 0.17352 0.88646 0.25647 1.76698 0.51585
WLS 0.29648 0.07146 0.59574 0.14163 0.89171 0.21789 1.78314 0.43795
GLS1 0.29472 0.08268 0.59331 0.16425 0.88798 0.25136 1.77551 0.50485
GLS2 0.33087 −0.05343 0.65867 −0.10590 0.97803 −0.14401 1.97124 −0.31417

n=20

ML 0.22390 −0.06861 0.45489 −0.13848 0.67829 −0.20789 1.34570 −0.41794
LS1 0.22448 0.12767 0.44931 0.25450 0.67293 0.38268 1.34322 0.76474
LS2 0.20281 0.07589 0.40629 0.15064 0.60819 0.22676 1.21250 0.45194
WLS 0.19860 0.05444 0.40275 0.10805 0.60008 0.16147 1.18873 0.32162
GLS1 0.19875 0.07033 0.40239 0.13916 0.60100 0.20922 1.19166 0.41605
GLS2 0.20748 −0.02236 0.41765 −0.04474 0.62353 −0.06622 1.24679 −0.13392

n=30

ML 0.17141 −0.04370 0.34395 −0.08501 0.52345 −0.14420 1.03422 −0.27163
LS1 0.18629 0.10648 0.36970 0.21193 0.55713 0.32123 1.11029 0.63844
LS2 0.16603 0.06451 0.32959 0.12839 0.49574 0.19560 0.98802 0.38663
WLS 0.16011 0.04180 0.32274 0.08621 0.48336 0.11330 0.96052 0.24106
GLS1 0.16092 0.05816 0.32357 0.11810 0.48363 0.16259 0.96633 0.34148
GLS2 0.16449 −0.01475 0.32823 −0.02932 0.48997 −0.03890 0.98450 −0.08392

n=50

ML 0.12621 −0.02668 0.25227 −0.04722 0.37653 −0.07609 0.76238 −0.16317
LS1 0.14506 0.08190 0.29183 0.16550 0.43646 0.24620 0.86976 0.48919
LS2 0.12857 0.05090 0.25852 0.10325 0.38689 0.15309 0.77050 0.30204
WLS 0.12240 0.02660 0.24763 0.05935 0.36726 0.08315 0.73900 0.15699
GLS1 0.12289 0.04194 0.24840 0.08941 0.36860 0.12961 0.73981 0.24918
GLS2 0.12421 −0.00941 0.24635 −0.01618 0.36919 −0.02661 0.73388 −0.04230

n=100

ML 0.08709 −0.01411 0.17256 −0.02669 0.25856 −0.04118 0.52055 −0.08304
LS1 0.10268 0.05523 0.20460 0.10987 0.30874 0.16597 0.61404 0.32834
LS2 0.09175 0.03532 0.18259 0.06989 0.27599 0.10623 0.54827 0.20855
WLS 0.08723 0.01382 0.17290 0.02787 0.25850 0.04125 0.52305 0.08135
GLS1 0.08647 0.02528 0.17223 0.05236 0.25759 0.07728 0.51743 0.15365
GLS2 0.08571 −0.00277 0.16993 −0.00706 0.25560 −0.01324 0.50743 −0.01613

n=250

ML 0.05291 −0.00510 0.10644 −0.01131 0.15879 −0.01616 0.32245 −0.03197
LS1 0.06344 0.03021 0.12690 0.06063 0.19083 0.09199 0.38095 0.18491
LS2 0.05809 0.01975 0.11620 0.03977 0.17459 0.06069 0.34850 0.12221
WLS 0.05426 0.00616 0.10873 0.01105 0.16357 0.01762 0.33027 0.03516
GLS1 0.05344 0.01334 0.10712 0.02560 0.15994 0.03929 0.32485 0.07890
GLS2 0.05431 −0.00109 0.10664 −0.00448 0.16027 −0.00499 0.32287 −0.00997
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The results for the shape parameter of the log-logistic distribution are presented

in Table 3.

According to RMSE:

(a) GLS1, GLS2 and WLS show better performance than ML and LS1 in terms

of RMSE for all sample sizes except n = 250.

According to bias criterion:

(a) GLS2 apparently shows the best performance compared with others in terms

of bias.

(b) WLS and GLS1 are the best performers next to GLS2 for all sample sizes.

In summary, it may be concluded that while the proposed WLS, GLS1 and GLS2

for the shape parameter of Pareto and log-logistic distributions are good alternatives

to ML and LS1, the proposed GLS1 and GLS2 for the shape parameter of the Weibull

distribution can be preferable estimators in terms of RMSE. If we only consider bias

criterion, GLS2 is apparently the best alternative estimator for the shape parameter of

the Weibull distribution. In other words, the bias reduction is achieved by GLS2.

Moreover, we found that the LS2 estimation for the shape parameter of Pareto

and log-logistic distributions performs better than LS1 in terms of RMSE, similar to the

result of the Weibull distribution (Zhang et al., 2007).

Additionally, it can be deduced from all the simulation studies for scale param-

eters of the considered distributions that the considered GLS1, GLS2 and WLS are in

competition with existing estimation methods. Simulation results for the scale parameter

are available from the author upon request.

6. REAL LIFE EXAMPLES

In this section, we aim to show the performance of GLS by considering certain real

applications.

Example 1

This example was studied with Pareto distribution in Clark, 2013. The sample

consists of U.S. Weather/Climate Disasters, taken from the National Climatic Data Cen-

ter and represents total economic damage from weather events in the U.S. for 1980–2011,

adjusted to 2012 dollars. The sample size is 36. Using Q–Q plots, Kolmogorov–Smirnov

and Chi-square tests, we show that the Pareto distribution can be used to model this

data.

When we use LS1, LS2, GLS1 and GLS2 to estimate the parameters of the Pareto

distribution, the descriptive statistics concerning their residuals are given in Table 4.

Also, Jarque–Bera (JB) and Durbin–Watson (DW) tests are provided to test normality

and autocorrelation, respectively.

The p-values, 0.075 and 0.080, for the Durbin–Watson (DW) test of null hypothesis

that errors of the linear regression model are uncorrelated, show that there may be

autocorrelation between residuals obtained from LS1 and LS2. On the other hand, the
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p-values, 0.2855 and 0.2805 of the DW for the residuals of GLS1 and GLS2, respectively

show that the null hypothesis cannot be rejected, that is, the residuals of GLS1 and GLS2

are not autocorrelated.

Table 4: Descriptive statistics and normality test results of regression residuals

of the LS1, LS2, GLS1 and GLS2 for the Pareto distribution.

(Note: Regression residuals’ maximum (max), minimum (min), mean,

variance (var), skewness (skew.), kurtosis (kurt.) values, also p-value

and test value of Jarque Bera (JB) and Durbin Watson (DW) tests for

the residuals are presented.)

Descriptive statistics JB Test DW Test
Methods

min max skew. kurt. p-val. Test val. p-val. Test val.

LS1 −0.2638 0.1153 −1.6353 8.1862 0.0010 56.3904 0.0075 1.2658
LS2 −0.2430 0.1090 −1.5279 7.8415 0.0010 49.1681 0.0080 1.2723
GLS1 −0.9217 2.2652 1.1770 3.9269 0.0149 9.6002 0.2855 2.4067
GLS2 −1.1162 2.7486 1.2189 3.9606 0.0130 10.2977 0.2805 2.3987

We now calculate the estimates of the scale and shape parameters of the Pareto

distribution using the estimation methods mentioned in this study. (See Table 7).

Table 5: Parameter estimates for the Pareto distribution.

Parameters ML LS1 LS2 ELS WLS WLS GLS1 GLS2
(Zyl&Schall)

Scale 5.3000 5.0354 5.0623 5.2445 5.0907 5.0891 5.1696 5.1744
Shape 1.1902 1.0680 1.0744 1.1754 1.1069 1.0824 1.0995 1.1577

Example 2

The considered data, taken from (Lawless, 2002), is analyzed by (Gupta and

Kundu, 2001) with Gamma, Weibull and EE distributions. The data arose from results

of tests on the endurance of deep groove ball bearings. We fit the Weibull distribution

to this data set and observe that the Weibull distribution can be a plausible model.

The descriptive statistics of the resulting residuals from LS1, LS2, GLS1 and

GLS2 are given in Table 6. As can be seen from Table 6, while autocorrelation among

the residuals of LS1 and LS2 may be present according to the DW test, with p values

less than 0.05, the p-values of 0.6004 and 0.6457 for the DW test suggests that the GLS1

and GLS2 residuals are not autocorrelated.
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Table 6: Descriptive statistics and normality test results of regression residuals

for the LS1, LS2 and GLS1 for the Weibull distribution.

Descriptive statistics JB Test DW Test
Methods

min max skew. kurt. p-val. Test val. p-val. Test val.

LS1 −1.9634 1.8236 −0.0884 2.6113 0.5000 0.1747 0.0003 0.8454
LS2 −1.7711 2.2547 0.1630 2.8357 0.5000 0.1277 0.0004 0.8856
GLS1 −1.2475 2.1430 0.6942 2.4689 0.1289 2.1178 0.6004 2.3730
GLS2 −1.2786 2.1049 0.6090 2.3733 0.1708 1.7982 0.6457 2.3439

The estimates of the scale and shape parameters of the Weibull distribution, using

estimation methods mentioned in this study, are provided in Table 7.

Table 7: Parameter estimates for the Weibull distribution.

Param. ML LS1 LS2 WLS WLS WLS WLS GLS1 GLS2
(Z&S) (Hung) (Lu)

Scale 81.8958 82.2138 81.6037 81.1957 84.1501 81.0844 81.6037 82.8795 82.9189
Shape 2.1030 2.0430 2.1037 1.8748 1.8743 1.8863 2.1037 1.8756 2.0167

7. CONCLUSIONS

In this article, we consider generalized least squares (GLS1 and GLS2) and weighted

least squares (WLS) estimation methods, based on an easily-calculated approximation

of the covariance matrix, for estimating the parameters of a distribution that can be

converted to a linear regression model. The considered GLS1, GLS2 and WLS methods,

which are computationally easy and provide explicit estimators of the parameters, are

then applied to the estimation of the parameters of different distributions, such as the

Weibull, Pareto and log-logistic. The simulation results show that the considered GLS1,

GLS2 and WLS estimation methods, for the shape parameters of Pareto and log-logistic

distributions, show better performance than ML, LS and certain alternative estimation

methods in terms of RMSE for most of the considered sample sizes and shape cases. In

addition, GLS1 and GLS2 apparently provide an improvement over ML, LS and certain

alternative WLS for the shape parameter of the Weibull distribution in terms of RMSE

and bias. In conclusion, the results of the simulations and real life examples demonstrate

that the considered GLS1 and GLS2 for the shape parameters of log-logistic, Pareto and

Weibull distributions can be considered as good alternative estimators.

Moreover, it is also emphasized that the considered estimation methods can be

applied to Gumbel, Burr XII, Fréchet and other distributions, which have explicit cu-

mulative distribution functions, after calculation of the covariance matrix concerning

them.

In a future study, we plan to investigate the performance of the GLS estimation

method in the case of right censored data and contaminated data.
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