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Abstract:

• In this paper, we study the estimation problems for the generalized inverted exponen-

tial distribution based on progressively type-II censored order statistics and record

values. We establish some theorems to construct the exact confidence intervals and

regions for the parameters. Monte Carlo simulation studies are used to assess the

performance of our proposed methods. Simulation results show that the coverage

probabilities of the exact confidence interval and the exact confidence region are all

close to the desired level. Finally, two numerical examples are presented to illustrate

the methods developed here.
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1. INTRODUCTION

The exponential distribution was the first widely discussed lifetime distri-

bution in the literature. This is because of its simplicity and mathematical feasi-

bility. If the random variable T has an exponential distribution, then the random

variable Y =1/X has an inverted exponential distribution. The exponential distri-

bution was generalized, by introducing a shape parameter, and discussed by sev-

eral researchers such as Gupta and Kundu [11, 12] and Raqab and Madi [19]. By

introducing a shape parameter in the inverted exponential distribution, Abouam-

moh and Alshingiti [1] proposed a generalized inverted exponential (GIE) distri-

bution. The probability density function and cumulative distribution function

of the generalized inverted exponential distribution are given, respectively, by

f (x; β, λ) =
λβ

x2
exp (−λ/x) (1 − exp (−λ/x))

(β−1) , x > 0,

and
F (x; β, λ) = 1 − (1 − exp (−λ/x))

β , x > 0,

where β > 0 is the shape parameter and λ > 0 is the scale parameter.

The properties and inferences for the GIE distribution were investigated

by several authors. Abouammoh and Alshingiti [1] derived some distributional

properties and reliability characteristics as well as maximum likelihood estimators

(MLEs) based on complete sample. Krishna and Kumar [14] obtained the MLEs

and least squares estimators of the parameters of the GIE distribution under pro-

gressively type-II censored sample. Dey and Dey [8] discussed the necessary and

sufficient conditions for existence, uniqueness and finiteness of the MLEs of the

parameters based on progressively type-II censored sample data. Recently, Dey and

Pradhan [9] made Bayesian inference for the GIE parameters under hybrid ran-

dom censoring. Ghitany et al. [10] established the existence and uniqueness of the

MLEs of the parameters for a general class of inverse exponentiated distributions

based on complete as well as progressively type-I and type-II censored data.

In this study, statistical inference for both progressive type-II right censored

sample and record values from the GIE distribution are investigated. Dey and Dey

[8] obtained approximate confidence intervals for the GIE parameters based on

progressive censored sample. However, if the sample size is small, the approximate

confidence interval may not be adequate. Thus, exact confidence intervals and

regions become important when the sample size is small. The method of pivotal

quantity are used to construct the confidence intervals and regions for the model

parameters. The rest of this paper is organized as follows. In Section 2, an

exact confidence interval and an exact confidence region for the parameters are

constructed based on progressive type-II right censored sample. In Section 3, two

theorems are proposed to obtain the exact confidence interval and region for the

parameters based on upper record values. Two numerical examples are presented

in Section 4. Some conclusions are made in Section 5.
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2. INTERVAL ESTIMATION UNDER PROGRESSIVE TYPE-II

CENSORING

Progressive type-II right censoring is of importance in the field of reliability

and life testing. Suppose n identical units are placed on a lifetime test. At the

time of the i-th failure, ri surviving units are randomly withdrawn from the ex-

periment, 1 ≤ i ≤ m. Thus, if m failures are observed then r1 + ···+ rm units are

progressively censored; hence, n = m+ r1 + ···+ rm. Let Xr

1:m:n < Xr

2:m:n < ··· <

Xr

m:m:n be the progressively censored failure times, where r = (r1, ..., rm) denotes

the censoring scheme. As a special case, if r = (0, ..., 0) where no withdrawals are

made, we obtain the ordinary order statistics (Bairamov and Eryılmaz [5]). If

r = (0, ..., 0, n−m), the progressive type-II censoring becomes type-II censoring.

For more details see Balakrishnan and Aggarwala [6].

In this section, we will construct the exact confidence interval and region

for model parameters by using pivotal quantity method. We will also conduct a

simulation study to assess the performance of proposed interval and region.

2.1. Exact confidence interval and region

Suppose that Xr

1:m:n < Xr

2:m:n < ··· < Xr

m:m:n denote progressively type-II

right censored order statistics from a GIE distribution. Let

Y r

i:m:n = −β log (1 − exp (−λ/Xr

i:m:n)) , i = 1, 2, ..., m.

It can be seen that Y r

1:m:n < Y r

2:m:n < ··· < Y r

m:m:n are progressively type-II right

censored order statistics from a standard exponential distribution. It is well

known that, from Thomas and Wilson [21],

π1 = nY r

1:m:n

π2 = (n − r1 − 1)(Y r

2:m:n − Y r

1:m:n)

.

.

.

πm = (n − r1 − ··· − rm−1 − m + 1) (Y r

m:m:n − Y r

m−1:m:n)

are independent and identically distributed as a standard exponential distribu-

tion. Hence,

κ1 = 2π1 = 2nY r

1:m:n

has a chi-squared distribution with 2 degrees of freedom and

ε1 = 2

m
∑

i=2

πi = 2

{

m
∑

i=1

(ri + 1)Y r

i:m:n − nY r

1:m:n

}
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has a chi-squared distribution with 2m − 2 degrees of freedom. It is also clear

that ε1 and κ1 are independent random variables. Let

(2.1) ξ1 =
ε1

(m − 1)κ1
=

∑m
i=1 (ri + 1) Y r

i:m:n − nY r

1:m:n

n (m − 1) Y r

1:m:n

and

(2.2) η1 = ε1 + κ1 = 2

m
∑

i=1

(ri + 1)Y r

i:m:n.

It is easy to show that ξ1 has an F distribution with 2m − 2 and 2 degrees

of freedom and η1 has a chi-squared distribution with 2m degrees of freedom.

Furthermore, ξ1 and η1 are independent (see Johnson et al. [13]).

The following lemma helps us to construct the exact confidence interval for

λ and exact joint confidence region for (λ, β).

Lemma 2.1. Suppose that 0 < a1 < a2 < ··· < am. Let

ξ1 (λ) =
1

n (m − 1)

m
∑

i=1

(ri + 1)
log (1 − exp (−λ/ai))

log (1 − exp (−λ/a1))
−

1

m − 1
,

where ri ≥ 0, i = 1, 2, ..., m, and
∑m

i=1 ri = n−m. Then, ξ1 (λ) is strictly increas-

ing in λ for any λ > 0.

Proof: To prove ξ1 (λ) is strictly increasing, it suffices to show that the

function

g (λ) =
log (1 − exp (−λ/ai))

log (1 − exp (−λ/a1))

is strictly increasing in λ. The derivative of g(λ) is given by

g′ (λ) =

(

h1 (a1)

h2 (ai)
−

h1 (ai)

h2 (a1)

)(

1

h1 (a1)

)2

,

where

h1 (x) = log (1 − exp (−λ/x))

and

h2(x) = x (exp (λ/x) − 1) .

If both h1 (x) and h2 (x) are decreasing, it can be said that

(

h1(a1)
h2(ai)

− h1(ai)
h2(a1)

)

> 0

for ai > a1 and hence g′ (λ) > 0.

It is clear that h1 (x) is strictly decreasing in x. From the second order

Taylor polynomial of exp(a) at a = 0, one has the following inequality, for a < 0,

(2.3) exp (a) > a + 1.
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Let a = −λ/x. Equation (2.3) can be written as

(2.4) 1 − λ/x − exp (−λ/x) < 0, for x > 0.

Note that the first derivative of h2(x) is

h′
2(x) = exp(λ/x) [1 − λ/x − exp(−λ/x)] .

From Equation (2.4), it is easy to see that h′
2(x) < 0 for x > 0. That is, h2(x) is

strictly decreasing in x. Hence, g′(λ) is positive. This completes the proof.

Let Fα(δ1,δ2) be the upper α percentile of F distribution with δ1 and δ2

degrees of freedom. The following theorem gives an exact confidence interval for

the parameter λ.

Theorem 2.1. Suppose that Xr

1:m:n < Xr

2:m:n < ··· < Xr

m:m:n is a pro-

gressively type-II censored sample from the GIE distribution. Then, for any

0 < α < 1,

(

ϕ1

(

Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, F1−α/2;2m−2,2

)

,

ϕ1

(

Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, Fα/2;2m−2,2

)

)

is a 100(1−α)% confidence interval for λ, where ϕ1 (Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, t)

is the solution of λ for the equation

(2.5)
1

n (m − 1)

m
∑

i=1

(ri + 1)
log (1 − exp (−λ/Xr

i:m:n))

log (1 − exp (−λ/Xr

1:m:n))
−

1

m − 1
= t.

Proof: From Equation (2.1), we know that the pivot

ξ1 (λ) =

∑m
i=1 (ri + 1) Y r

i:m:n − nY r

1:m:n

n (m − 1) Y r

1:m:n

=
1

n (m − 1)

m
∑

i=1

(ri + 1)
log (1 − exp (−λ/Xr

i:m:n))

log (1 − exp (−λ/Xr

1:m:n))
−

1

m − 1

has an F distribution with 2m−2 and 2 degrees of freedom. By Lemma 2.1, ξ1(λ)

is strictly increasing function of λ, and hence, ξ1(λ) = t has a unique solution for

any λ > 0. Thus, for 0 < α < 1, the event

F1−α/2;2m−2,2 <
1

n (m − 1)

m
∑

i=1

(ri + 1)
log (1 − exp (−λ/Xr

i:m:n))

log (1 − exp (−λ/Xr

1:m:n))
−

1

m − 1

< Fα/2;2m−2,2
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is equivalent to the event

ϕ1

(

Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, F1−α/2;2m−2,2

)

< λ

< ϕ1

(

Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, Fα/2;2m−2,2

)

.

Then, the proof follows.

Let us now discuss the joint confidence region for (λ, β). Let χ2
α;δ denote

the upper α percentile of a chi-squared distribution with δ degrees of freedom.

An exact joint confidence region for (λ, β) is given in the following theorem.

Theorem 2.2. Suppose that Xr

i:m:n, i = 1, 2, ..., m, are progressive type-

II right censored order statistics from the GIE distribution with censoring scheme

r. Then for any 0 < α < 1, a 100(1 − α)% joint confidence region for (λ, β) is

determined by the following inequalities:



















































ϕ1

(

Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, F(1+
√

1−α)/2;2m−2,2

)

< λ

< ϕ1

(

Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, F(1−
√

1−α)/2;2m−2,2

)

−
χ2

(1+
√

1−α)/2;2m

2
∑m

i=1 (ri + 1) log (1 − exp (−λ/Xr

i:m:n))
< β

< −
χ2

(1−
√

1−α)/2;2m

2
∑m

i=1 (ri + 1) log (1 − exp (−λ/Xr

i:m:n))
,

where ϕ1 (Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, t) is defined in Equation (2.5).

Proof: From Equation (2.1), we know that the pivot

ξ1 (λ) =

∑m
i=1 (ri + 1) Y r

i:m:n − nY r

1:m:n

n (m − 1) Y r

1:m:n

=
1

n (m − 1)

m
∑

i=1

(ri + 1)
log (1 − exp (−λ/Xr

i:m:n))

log (1 − exp (−λ/Xr

1:m:n))
−

1

m − 1

has an F distribution with 2m − 2 and 2 degrees of freedom. From Equation

(2.2), we also know that

η1 = 2

m
∑

i=1

(ri + 1) Y r

i:m:n = −2β
m
∑

i=1

(ri + 1) log (1 − exp (−λ/Xr

i:m:n))

has a chi-squared distribution with 2m degrees of freedom, and it is independent
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of ξ1(λ). Thus, for 0 < α < 1, we have

P

{

ϕ1

(

Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, F(1+
√

1−α)/2;2m−2,2

)

< λ

< ϕ1

(

Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, F(1−
√

1−α)/2;2m−2,2

)

,

−
χ2

(1+
√

1−α)/2;2m

2
∑m

i=1 (ri + 1) log (1 − exp (−λ/Xr

i:m:n))
< β

< −
χ2

(1−
√

1−α)/2;2m

2
∑m

i=1 (ri + 1) log (1 − exp (−λ/Xr

i:m:n))

}

= P
(

F(1+
√

1−α)/2;2m−2,2 < ξ1 < F(1−
√

1−α)/2;2m−2,2

)

P
(

χ2
(1+

√
1−α)/2;2m

< η1 < χ2
(1−

√
1−α)/2;2m

)

=
√

1 − α
√

1 − α

= 1 − α.

The proof is completed.

2.2. Simulation study

The simulation study is performed with 5000 trials to investigate the per-

formance of exact and approximate confidence intervals and confidence regions

under progressive censoring. We consider the values of parameters (λ, β) =

(2, 0.5), (0.5, 2) and different combinations of n, m, and censoring schemes r.

The approximate intervals are considered as in Dey and Dey [8]. The nominal

confidence level is chosen as 95%. The results are given in Table 1 and Table 2.

From these tables, one can conclude that both the coverage probabilities of ap-

proximate and exact confidence intervals are close to the desired level. The cov-

erage probabilities of exact confidence regions are also close to the nominal level.

However, the coverage probabilities of the approximate confidence regions are

lower than the nominal level. When the sample size increases, the coverage prob-

ability of approximate confidence region reaches to nominal level 95%. During

simulation, the authors observed that the MLEs of parameters are not obtained

uniquely for different initials values. However, this problem disappeared for the

large sample size. In this regards, coverage probability of approximate confi-

dence region works for only large sample. As a conclusion, exact confidence

region should be used for the small sample size.
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Table 1: Coverage probabilities for the proposed methods

and the approximations under progressive censoring

when (λ, β) = (2, 0.5).

λ (λ, β)
n m r

approx. exact approx. exact

20 10

(1,1,1,1,1,1,1,1,1,1) 0.9482 0.9494 0.8122 0.9484
(5,0,0,0,0,0,0,0,0,5) 0.9532 0.9500 0.8966 0.9468
(5,5,0,0,0,0,0,0,0,0) 0.9476 0.9500 0.8966 0.9468
(0,0,0,0,0,0,0,0,5,5) 0.9540 0.9480 0.8640 0.9420
(0,0,0,0,5,5,0,0,0,0) 0.9422 0.9492 0.9130 0.9474
(2,2,1,0,0,0,0,1,2,2) 0.9498 0.9456 0.9504 0.9456

40 20

(1,1,1,1,1,...,1,1) 0.9462 0.9526 0.9294 0.9536
(10,0,0,0,...,0,10) 0.9556 0.9518 0.9344 0.9460
(10,10,0,...,0,0) 0.9480 0.9510 0.9380 0.9530
(0,0,0,0,...,10,10) 0.9586 0.9512 0.9156 0.9534
(0,...,0,10,10,0,...,0,0) 0.9508 0.9550 0.9432 0.9526
(2,2,2,2,2,0,...,0,2,2,2,2,2) 0.9520 0.9568 0.9584 0.9562

100 50

(1,1,1,1,1,...,1,1) 0,9506 0.9552 0.8416 0.9574
(25,0,0,0,...,0,25) 0,9544 0.9456 0.9528 0.9496
(25,25,0,0,...,0,0) 0,9530 0.9516 0.9524 0.9488
(0,0,0,0

”
...,25,25) 0,9508 0.9528 0.9404 0.9540

(0,...,0,25,25,0,...,0,0) 0,9464 0.9496 0.9484 0.9500
(2,...,2,1,0,...,0,1,2,...,2) 0.9484 0.9512 0.9594 0.9534

(1,1,1,1,1) 0.9452 0.9468 0.8356 0.9446
(2,1,0,0,2) 0.9486 0.9484 0.9202 0.9468

10 5 (2,2,1,0,0) 0.9436 0.9510 0.9352 0.9484
(0,0,1,2,2) 0.9530 0.9486 0.9016 0.9458
(0,2,1,2,0) 0.9384 0.9462 0.9168 0.9468
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Table 2: Coverage probabilities for the proposed methods

and the approximations under progressive censoring

when (λ, β) = (0.5, 2).

λ (λ, β)
n m r

approx. exact approx. exact

20 10

(1,1,1,1,1,1,1,1,1,1) 0.9538 0.9556 0.8904 0.9522
(5,0,0,0,0,0,0,0,0,5) 0.9534 0.9502 0.9570 0.9514
(5,5,0,0,0,0,0,0,0,0) 0.9540 0.9588 0.9570 0.9514
(0,0,0,0,0,0,0,0,5,5) 0.9526 0.9530 0.9396 0.9510
(0,0,0,0,5,5,0,0,0,0) 0.9474 0.9474 0.9530 0.9534
(2,2,1,0,0,0,0,1,2,2) 0.9452 0.9482 0.9440 0.9482

40 20

(1,1,1,1,1,...,1,1) 0.9460 0.9546 0.8946 0.9482
(10,0,0,0,...,0,10) 0.9534 0.9502 0.9570 0.9514
(10,10,0,...,0,0) 0.9540 0.9488 0.9576 0.9538
(0,0,0,0,...,10,10) 0.9526 0.9472 0.9522 0.9486
(0,...,0,10,10,0,...,0,0) 0.9504 0.9534 0.9534 0.9508
(2,2,2,2,2,0,...,0,2,2,2,2,2) 0.9468 0.9422 0.9330 0.9478

100 50

(1,1,1,1,1,...,1,1) 0.9486 0.9488 0.8988 0.9488
(25,0,0,0,...,0,25) 0.9490 0.9538 0.9530 0.9508
(25,25,0,0,...,0,0) 0.9510 0.9500 0.9514 0.9470
(0,0,0,0

”
...,25,25) 0.9486 0.9504 0.9560 0.9494

(0,...,0,25,25,0,...,0,0) 0.9510 0.9492 0.9534 0.9490
(2,...,2,1,0,...,0,1,2,...,2) 0.9496 0.9514 0.9418 0.9516

(1,1,1,1,1) 0.9466 0.9524 0.8194 0.9528
(2,1,0,0,2) 0.9510 0.9474 0.8292 0.9482

10 5 (2,2,1,0,0) 0.9420 0.9538 0.8694 0.9552
(0,0,1,2,2) 0.9656 0.9544 0.7712 0.9516
(0,2,1,2,0) 0.9390 0.9504 0.8226 0.9464
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3. INTERVAL ESTIMATION UNDER RECORD VALUES

Record values were first introduced by Chandler [7]. A record value is either

the largest or the smallest value obtained from a sequence of random variables.

Ahsanullah and Nevzorov [3] pointed out that records are very popular because

they arise naturally in many fields of studies such as climatology, sports, medicine,

traffic, industry and so on. In reliability studies, Lee et al. [16] indicated that

there are some situations in lifetime testing experiments in which a failure time

of a product is recorded if it exceeds all preceding failure times. These recorded

failure times are the upper record value sequence. An account on record values

can be found in the books by Ahsanullah [2] and Arnold et al. [4].

In this section, we will establish the exact confidence interval and region

for model parameters based on pivotal quantity method. A simulation study is

also conducted to investigate the performance of proposed interval and region.

3.1. Exact confidence interval and region

Let XU(1) < XU(2) < ··· < XU(m) be the first m upper record values from

the GIE distribution. Set

Wi = −β log
(

1 − exp
(

−λ/XU(i)

))

, i = 1, 2, ..., m.

Then, it is easily seen that W1 < W2 < ··· < Wm are the first m upper record

values from a standard exponential distribution. Moreover, Arnold et al. [4]

showed that

ρ1 = W1

ρ2 = W2 − W1

.

.

.

ρn = Wm − Wm−1

are independent and identically distributed random variables from a standard

exponential distribution. Hence,

κ2 = 2ρ1 = 2W1

has a chi-squared distribution with 2 degrees of freedom and

ε2 = 2

m
∑

i=2

ρi = 2 (Wm − W1)
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has a chi-squared distribution with 2m − 2 degrees of freedom. We can also find

that ε2 and κ2 independent. Let

(3.1) ξ2 =
ε2

(m − 1)κ2
=

1

m − 1

Wm − W1

W1

and

(3.2) η2 = ε2 + κ2 = 2Wm.

It is easy to show that ξ2 has an F distribution with 2m − 2 and 2 degrees

of freedom and η2 has a chi-squared distribution with 2m degrees of freedom.

Furthermore, ξ2 and η2 are independent.

Lemma 3.1. Suppose that 0 < a1 < a2 < ··· < am. Let

ξ2 (λ) =
1

m − 1

Wm − W1

W1

=
1

m − 1

(

log (1 − exp (−λ/am))

log (1 − exp (−λ/a1))
− 1

)

.

Then, ξ2(λ) is strictly increasing in λ for any λ > 0.

Proof: The proof is analogous to that of Lemma 2.1.

To construct the exact confidence interval for λ based on record values, we

have the following theorem.

Theorem 3.1. Suppose that XU(1) < XU(2) < ··· < XU(m) are first m up-

per record values from the GIE distribution. Then, for any 0 < α < 1,

(

ϕ2

(

XU(1), XU(2), ..., XU(m), F1−α/2;2m−2,2

)

,

ϕ2

(

XU(1), XU(2), ..., XU(m), Fα/2;2m−2,2

)

)

is a 100(1−α)% confidence interval for λ, where ϕ2

(

XU(1), XU(2), ..., XU(m), t
)

is

the solution of λ for the equation

(3.3)
1

m − 1

(

log
(

1 − exp
(

−λ/XU(m)

))

log
(

1 − exp
(

−λ/XU(1)

)) − 1

)

= t.

Proof: From Equation (3.1), we know that the pivot

ξ2 (λ) =
1

m − 1

Wm − W1

W1

=
1

m − 1

(

log
(

1 − exp
(

−λ/XU(m)

))

log
(

1 − exp
(

−λ/XU(1)

)) − 1

)
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has an F distribution with 2m−2 and 2 degrees of freedom. By Lemma 3.1, ξ2(λ)

is strictly increasing function of λ, and hence, ξ2(λ) = t has a unique solution for

any λ > 0. Thus, for 0 < α < 1, the event

F1−α/2;2m−2,2 <
1

m − 1

(

log
(

1 − exp
(

−λ/XU(m)

))

log
(

1 − exp
(

−λ/XU(1)

)) − 1

)

< Fα/2;2m−2,2

is equivalent to the event

ϕ2

(

XU(1), XU(2), ..., XU(m), F1−α/2;2m−2,2

)

< λ

< ϕ2

(

XU(1), XU(2), ..., XU(m), Fα/2;2m−2,2

)

.

Then, the proof follows.

For the joint confidence region for (λ, β) based on record values, we have

the following result.

Theorem 3.2. Suppose that XU(i), i = 1, 2, ..., m are first i-th upper

record values from the GIE distribution. Then, for any 0 < α < 1, a 100(1−α)%

joint confidence region for (λ, β) is determined by the following inequalities:























































ϕ2

(

XU(1), XU(2), ..., XU(m), F(1+
√

1−α)/2;2m−2,2

)

< λ

< ϕ2

(

XU(1), XU(2), ..., XU(m), F(1−
√

1−α)/2;2m−2,2

)

−
χ2

(1+
√

1−α)/2;2m

2 log
(

1 − exp
(

−λ/XU(m)

)) < β

< −
χ2

(1−
√

1−α)/2;2m

2 log
(

1 − exp
(

−λ/XU(m)

)) ,

where ϕ2 (Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, t) is defined in Equation (3.3).

Proof: From Equation (3.1), we know that the pivot

ξ2 (λ) =
1

m − 1

(

log
(

1 − exp
(

−λ/XU(m)

))

log
(

1 − exp
(

−λ/XU(1)

)) − 1

)

has an F distribution with 2m − 2 and 2 degrees of freedom. From Equation

(3.2), we know that

η2 = −2β log
(

1 − exp
(

−λ/XU(m)

))

.
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has a chi-square distribution with 2m degrees of freedom, and it is independent

of ξ2(λ). For 0 < α < 1, we have

P

{

ϕ2

(

XU(1), XU(2), ..., XU(m), F(1+
√

1−α)/2;2m−2,2

)

< λ

< ϕ2

(

XU(1), XU(2), ..., XU(m), F(1−
√

1−α)/2;2m−2,2

)

,

−
χ2

(1+
√

1−α)/2;2m

2 log
(

1 − exp
(

−λ/XU(m)

)) < β < −
χ2

(1−
√

1−α)/2;2m

2 log
(

1 − exp
(

−λ/XU(m)

))

}

=P
(

F(1+
√

1−α)/2;2m−2,2 < ξ2 < F(1−
√

1−α)/2;2m−2,2

)

P
(

χ2
(1+

√
1−α)/2;2m

< η2 < χ2
(1−

√
1−α)/2;2m

)

=
√

1 − α
√

1 − α

=1 − α.

3.2. Simulation study

It is important to examine how well our proposed method works for construct-

ing confidence interval and region. We consider the values of parameters (λ, β)=

(2, 0.5), (0.5, 2) and different values of m. For each case, we simulated 5000 upper

record samples from the GIE distribution. The nominal confidence level is chosen

as 95%. The results are given in Table 3. From this table, one can see that the

exact confidence intervals and regions have desired coverage probability for small

and large sample sizes. As a conclusion, the proposed methods work well.

Table 3: Coverage probability of exact confidence interval and confidence region

based on upper record values when (λ, β) = (2, 0.5), (0.5, 2).

(λ, β) = (2, 0.5) (λ, β) = (0.5, 2)
m

λ (λ, β) λ (λ, β)

2 0.9502 0.9520 0.9566 0.9540
3 0.9502 0.9488 0.9466 0.9446
4 0.9474 0.9546 0.9548 0.9504
5 0.9510 0.9500 0.9454 0.9498
6 0.9476 0.9526 0.9546 0.9528
7 0.9548 0.9606 0.9502 0.9512
8 0.9522 0.9606 0.9540 0.9548
9 0.9518 0.9604 0.9514 0.9498

10 0.9498 0.9578 0.9512 0.9516
11 0.9476 0.9570 0.9522 0.9526
12 0.9532 0.9600 0.9478 0.9488
13 0.9478 0.9560 0.9472 0.9468
14 0.9494 0.9524 0.9488 0.9452
15 0.9498 0.9490 0.9488 0.9520
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4. ILLUSTRATIVE EXAMPLES

To illustrate the use of our proposed estimation method, the following two

examples are discussed.

Example 4.1 (Progressively Type-II Censored Data). We apply the pro-

posed interval estimation methods to the polished window strengths data set

presented in Abouammoh and Alshingiti [1]. Dey and Dey [8] indicated that the

GIE distribution is acceptable for these data. For the purposes of illustrating the

estimation methods discussed in this paper, we adopt the progressively type-II

censored sample with n = 31 and m = 11 which was generated from this data set

by Dey and Dey [8]. The progressively censored data are reported in Table 4.

To obtain a 95% confidence interval for λ, we need the percentiles

F0.025;22,2 = 39.4479 and F0.975;22,2 = 0.2242.

Then, we can solve Equation (2.5) and get the following values

ϕ1 (xr

1:m:n, xr

2:m:n, ..., xr

m:m:n, F0.975;22,2) = 81.8086,

and

ϕ1 (xr

1:m:n, xr

2:m:n, ..., xr

m:m:n, F0.025;22,2) = 401.0639.

By Theorem 2.1, the 95% confidence interval for λ is obtained as (81.8086,

401.0639).

Table 4: Progressively type-II censored data based on window strength data.

i 1 2 3 4 5 6
ri 0 0 0 0 0 0

xr

i:m:n 18.83 20.8 21.657 23.03 23.23 24.05

i 7 8 9 10 11
ri 0 0 0 0 20

xr

i:m:n 24.321 25.5 25.52 25.8 26.69

Furthermore, to obtain a 95% joint confidence region for (λ, β), we need

the percentiles

F0.9873;22,2 = 0.1825, F0.0127;22,2 = 78.4361,

χ2
.9873;24 = 9.8824, and χ2

.0127;24 = 39.4099.
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By Theorem 2.2, the 95% confidence region for (λ, β) is determined by the fol-

lowing two inequalities:

71.9165 < λ < 458.4111

and

−
9.8824

2
∑11

i=1 (ri + 1) log (1 − exp (−λ/xr

i:m:n))
< β

< −
39.4099

2
∑11

i=1 (ri + 1) log (1 − exp (−λ/xr

i:m:n))
.

Figure 1 shows the 95% joint confidence region for (λ, β) based on progressively

type-II censored data given in Table 1. It can be seen that the region is large

when λ is large.

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5
x 10

7

λ

β

Figure 1: A 95% joint confidence region for (λ, β) based on progressively

type-II censored data given in Table 4.

Example 4.2 (Record Value Data). To illustrate the use of the interval

estimation based on records, we analyze one real data set. Lawless [15, p.3]

presented 11 times to breakdown of electrical insulating fluid subjected to 30

kilovolts. The data, under a logarithm transformation, is 2.836, 3.120, 3.045,

5.169, 4.934, 4.970, 3.018, 3.770, 5.272, 3.856, 2.046. Luckett [18] extracted

the m = 4 upper record values from this data set and indicated that the GIE

distribution is acceptable for this data set. The upper record value data are

presented in Table 5.
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Table 5: Upper record values based on breakdown

of electrical insulating fluid data.

i 1 2 3 4
xu(i) 2.836 3.120 5.169 5.272

To obtain a 95% confidence interval for λ, we need the percentiles

F0.025;6,2 = 39.3315 and F0.975;6,2 = 0.1377.

By Theorem 3.1, we have the following results.

ϕ2

(

xu(1), xu(2), ..., xu(10), F0.975;6,2

)

= 0.8644,

and

ϕ2

(

xu(1), xu(2), ..., xu(10), F0.025;6,2

)

= 29.3207.

That is, the 95% confidence interval for λ is (0.8644, 29.3207).

To obtain a 95% joint confidence region for (λ, β), we need the percentiles

F0.9873;6,2 = 0.1013, F0.0127;6,2 = 78.3196,

χ2
.9873;8 = 1.7670, and χ2

.0127;8 = 19.4433.

0 5 10 15 20 25 30 35
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Figure 2: A 95% joint confidence region for (λ, β)

based on record values given in Table 5.
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By Theorem 3.2, a 95% confidence region for (λ, β) is determined by the

following two inequalities:

0.4484 < λ < 33.5289

and

−
1.7670

2 log (1 − exp (−λ/5.272))
< β < −

19.4433

2 log (1 − exp (−λ/5.272))
.

Figure 2 shows the 95% joint confidence region for (λ, β) based on record data

given in Table 5. It is easy to see that the region is large when λ is large.

5. CONCLUSIONS

Progressive censoring and record values have received attention in the past

few decades. The GIE distribution is a new lifetime distribution and can be

widely used in reliability applications. The main purpose of this study is to

investigate the interval estimation of parameters of the GIE distribution based on

progressive type-II censored sample and record values, respectively. We provide

four theorems based on the method of pivotal quantity to construct the exact

confidence intervals and regions for the parameters. The simulation results show

that the proposed methods perform well. Two numerical examples are used to

illustrate the proposed methods.
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Abstract:

• Partial Least Squares Regression (PLSR) is a linear regression technique developed as

an incomplete or “partial” version of the least squares estimator of regression, applica-

ble when high or perfect multicollinearity is present in the predictor variables. Robust

methods are introduced to reduce or remove the effects of outlying data points. In the

previous studies it has been showed that if the sample covariance matrix is properly

robustified further robustification of the linear regression steps of the PLS1 algorithm

(PLSR with univariate response variable) becomes unnecessary. Therefore, we pro-

pose a new robust PLSR method based on robustification of the covariance matrix

used in classical PLS1 algorithm. We select a reweighted estimator of covariance, in

which the Minimum Covariance Determinant as initial estimator is used, with weights

adaptively computed from the data. We compare this new robust PLSR method with

classical PLSR and four other well-known robust PLSR methods. Both simulation

results and the analysis of a real data set show the effectiveness and robustness of the

new proposed robust PLSR method.
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1. INTRODUCTION

Classical PLSR is a well-established technique in multivariate data analysis.

It is used to model the linear relation between a set of regressors and a set of

response variables, which can then be used to predict the value of the response

variables for a new sample. A typical example is multivariate calibration where

the x-variables are spectra and the y-variables are the concentrations of certain

constituents. Since classical PLSR is known to be severely affected by the presence

of outliers in the data or deviations from normality, several PLSR methods with

robust behaviour towards data contamination have been proposed (Hubert and

Vanden Branden, 2003; Liebmann et al., 2010). NIPALS and SIMPLS are the

popular algorithms for PLSR and they are very sensitive to outliers in the dataset.

For univariate or multivariate response variable several robustified versions of

these algorithms have already been proposed (González et al., 2009).

The two main strategies in the literature for robust PLSR are (1) the down-

weighting of outliers and (2) robust estimation of the covariance matrix. The early

approaches for robust regression by downweighting of outliers are considered semi-

robust: they had, for instance, non-robust initial weights or the weights were not

resistant to leverage points (Hubert and Vanden Branden, 2003). Based on the

first strategy, for example, Wakeling and Macfie (1992) worked with the PLS with

multivariate response variables (which will be called PLS2) and their idea was to

replace the set of regressions involved in the standard PLS2 algorithm by M esti-

mates based on weighted regressions. Griep et al. (1995) compared least median

of squares (LMS), Siegel’s repeated median (RM) and iterative reweighted least

squares (IRLS) for PLS with univariate response variable (PLS1 algorithm), but

these methods are not resistant to high leverage outliers (González et al., 2009).

Based on the second strategy, a robust covariance estimation, the robust PLSR

methods provide resistance to all types of outliers including leverage points (Hu-

bert and Vanden Branden, 2003). For instance, Gil and Romera (1998) proposed

a robust PLSR method based on statistical procedures for covariance matrix ro-

bustification for PLS1 algorithm. They selected the well-known Stahel–Donoho

estimator (SDE) (Gil and Romera, 1998). Since SIMPLS is based on the empirical

cross-covariance matrix between the y-variables and the x-variables and on linear

Least Squares (LS) regression, the results are affected by outliers in the data set.

Hence, Hubert and Vanden Branden (2003) have been suggested a robust version

of this method called RSIMPLS that it is used in case of both univariate and

multivariate response variables. A robust method RSIMPLS starts by applying

ROBPCA on the x- and y-variables in order to replace the covariance matrices

Sxy and Sx by robust estimates and then proceeds analogously to the SIMPLS

algorithm. A robust regression method (ROBPCA regression) is performed in the

second stage. ROBPCA is a robust PCA method which combines projection pur-

suit ideas with Minimum Covariance Determinant (MCD) covariance estimation

in lower dimensions (Engelen et al., 2004; Hubert and Vanden Branden, 2003).
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Serneels et al. (2005) proposed a method called as Partial Robust M (PRM)

regression that it is conceptually different from the other robust PLSR methods:

instead of robust partial least squares, a partial robust regression estimator was

proposed. This method uses SIMPLS algorithm and it could be used in case

of univariate response. In this method, with an appropriately chosen weighting

scheme, both vertical outliers and leverage points were downweighted (Serneels et

al., 2005). As the name suggests, it is a partial version of the robust M-regression.

In an iterative scheme, weights ranging between zero and one are calculated to

reduce the influence of deviating observations in the y space as well as in the

space of the regressor variables. PRM is very efficient in terms of computational

cost and statistical properties (Liebmann et al., 2010). González et al. (2009)

also concentrated in the case of univariate response (PLS1) and showed that if

the sample covariance matrix is properly robustified the PLS1 algorithm will be

robust and, therefore, further robustification of the linear regression steps of the

PLS1 algorithm is unnecessary (González et al., 2009).

In this paper, we concentrate in the case of univariate response (PLS1)

and we present a procedure which applies the standard PLS1 algorithm to a

robust covariance matrix similar to Gil and Romera (1998) and González et al.

(2009) studies. In our study, we estimate the covariance matrix used in PLS1

algorithm robustly by using ‘an adaptive reweighted estimator of covariance using

Minimum Covariance Determinant (MCD) estimators in the first step as robust

initial estimators of location and covariance’.

The rest of the paper is organized as follows. Section 2 reviews briefly

the PLS1 algorithm (PLS with univariate response variable). Section 3 presents

the new proposed robust PLSR method ‘PLS-ARWMCD’. Section 4 contains

a simulation study where the performance of the new robust PLSR method is

compared to classical PLSR method and other four robust PLSR methods existing

in robust PLSR literature. Section 5 illustrates the performance of the new

proposed robust PLSR method ‘PLS-ARWMCD’ in a well known set of real data

in robust PLSR literature. Finally, Section 6 collects some conclusions.

2. THE CLASSICAL PLS1 ALGORITHM

It is supposed that we have a sample of size n of a 1 + p dimensional vector

z = (y,X)
′
which could be decomposed as a set of p independent variables, x and

a univariate response variable y. Throughout this paper, matrices are denoted by

bold capital letters and vectors are denoted by bold lowercase letters. Let Sz, be

the sample covariance matrix of z, consisting of the elements Sz =

[

s2
y s′

y,X

sy,X SX

]

,

where sy,X is the p × 1 vector of covariances between y and the x variables.
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The aim of this study is to estimate the linear regression ŷ = β̂′x, and it is as-

sumed that the response variable can be linearly explained by a set of a compo-

nents t1, ..., tk with k << p, which are linear functions of the x variables. Hence,

calling X the n × p data matrix of the independent variables, and x′
i to its ith

row, the following model showed by (2.1) and (2.2) holds (González et al., 2009):

(2.1) xi = Pti + εi ,

(2.2) yi = q′ti + ηi .

Here, P is the p × k matrix of the loadings of the vector ti = (ti1, ..., tik)
′

and q is the k-dimensional vector of the y-loadings. The vectors εi and ηi have

zero mean, follow normal distributions and are uncorrelated. The component

matrix T = (t1, ..., tk)
′
is not directly observed and should be estimated. Then,

it can be shown that the maximum likelihood estimation of the T matrix is given

as in (2.3) (González et al., 2009):

(2.3) T = XWk .

Here, the loading matrix Wk = [w1, w2, ...,wk] is the p × k matrix of co-

efficients and the vectors wi, 1 ≤ i < k are the solution of (2.4) under the con-

straint in (2.5) with w1αsy,x. Consequently, we can conclude that components

(t1, ..., tk) are orthogonal (González et al., 2009):

(2.4) wi = arg max
w

cov2
(Xw, y) ,

(2.5) w′w = 1 and w′
iSxwj = 0 for 1 ≤ j < i .

It can be shown that vectors wi are found as the eigenvectors linked to the

largest eigenvalues of the matrix is given as in (2.6):

(2.6) (I − Px(i)) sy,xs′y,x .

Px(i) is the projection matrix on the space spanned by SXWi, given by Px(i) =

(SxWi)
[

(SxWi)
′
(SxWi)

]−1
(SxWi)

′
. From these results it is easy to see that

the vectors wi can be computed recursively as in below:

(2.7) w1αsy,x ,

(2.8) wi+1αsy,x − SxWi

(

W ′
i SxWi

)−1
W ′

i sy,x, 1 ≤ i < k .

It could be mentioned that by using the expressions given by (2.7) and

(2.8), it is not necessary to calculate the PLS components ti. In each step of the
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algorithm, wi+1 only depends on the value of the i previous vectors w1, w2, ...,wi,

on Sx and on sy,x. Moreover, as w1 only depends on sy,x, the calculation of

W is completely fixed by the values of Sx and sy,x. Finally, as the regression

coefficients in (2.2) are uncorrelated, due to the uncorrelation of the t variables,

it is easy to see that the regression coefficients β̂PLS
k are given by (2.9) (González

et al., 2009):

(2.9) β̂PLS
k = Wk

(

W ′
kSxWk

)−1
W ′

ksy,x .

The application of this algorithm can be seen as a two step procedure:

(1) the weights wi, defining the new orthogonal regressor ti, are computed with

(2.7) and (2.8) by using the covariance matrix of the observations; (2) the y-

loadings qi are computed by regressing y on individual regressor ti. As it is shown

in (2.9) these two steps depend only on the covariance matrix of the observations

and it may be thought that if this matrix is properly robustified the procedure

will be robust (González et al., 2009).

3. THE NEW PROPOSED ROBUST PLSR METHOD

In this section, the new robust PLSR method, which we proposed based on

‘an adaptive reweighted estimator of covariance using MCD estimators in the first

step as robust initial estimators of location and covariance’, will be introduced.

This adaptive reweighted estimator of covariance will be used in order to robustify

the sample covariance matrix, Sz, in the PLS1 algorithm. Hence, while defining

this estimator, the equations are examined on zi = (yi, xi), i = 1, ..., n ∈ R
p′

,

here, p′ = p + 1. In this method, the MCD estimator is calculated by well-known

‘FAST-MCD’ algorithm. Hence, in this section, firstly, information about MCD

estimator and operation of the FAST-MCD algorithm will be given.

Besides high outlier resistance, if robust multivariate estimators are to be

of practical use in statistical inference they should offer a reasonable efficiency

under the normal model and a manageable asymptotic distribution. However,

Minimum Volume Ellipsoid (MVE) and MCD estimators are not in this cate-

gory. Gervini (2003) stated that by taking care of both robustness and efficiency

considerations, the best choice seems to be a two-stage procedure. In this pro-

cedure, firstly, a highly robust but perhaps inefficient estimator is computed,

which is used for detecting outliers and computing the sample mean and covari-

ance of the ‘cleaned’ data set as in Rousseeuw and Van Zomeren (1990). This

procedure consists of discarding those observations whose Mahalanobis distances

exceed a certain fix threshold value. In the previous studies, the MVE was com-

monly used as initial estimator for these procedures. However, Rousseeuw and

Van Driessen (1999) have proposed an algorithm for calculating MCD estimator,
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although this algorithm does not guarantee that the exact estimator is found,

it is faster and more accurate than previously existing algorithms even for very

large data sets (n >> p′ = p + 1). This fact, added to its 1/
√

n rate of conver-

gence, seems to point to the MCD method using the FAST-MCD algorithm as

the current best choice in comparison to MVE for initial estimator of a two-step

procedure (Gervini, 2003).

MCD method, proposed by Rousseeuw (1984), is searching for those h data

points for which the determinant of the classical covariance matrix is minimal.

Hence, the MCD estimators of location and covariance will be the mean and

covariance matrix of these h data points, respectively. The calculation of MCD

estimation is not simple. Let z′
i = (yi, xi)

′
, i = 1, ..., n be an unified data set. The

MCD estimator can only be applied to data sets where the number of observations

is larger than the number of variables (n > p′ = p + 1). The reason is that if

p′ > n then also p′ > h, and the covariance matrix of any h data points will

always be singular, leading to a determinant of zero. Thus, each subset of h data

points would lead to the smallest possible determinant, resulting in a non-unique

solution (Filzmoser et al., 2009; Polat, 2014).

FAST-MCD algorithm could deal with a sample size n in the tens of thou-

sands. FAST-MCD finds the exact solution for small data sets and it is faster

and more accurate than previously existing algorithms, even for very large data

sets. Rousseeuw and Van Driessen (1999) suggested to use FAST-MCD algorithm

in order to estimate location and covariance as considering the its statistical ef-

ficiency and fastness in computation (Rousseeuw and Van Driessen, 1999). In

FAST-MCD algorithm as the raw MCD estimators of location and covariance

are reweighted in order to improve the finite sample efficiency, they are called as

Reweighted Minimum Covariance Determinant (RMCD) estimators (Hubert and

Vanden Branden, 2003; Moller et al., 2005).

3.1. Construction of the FAST-MCD algorithm

3.1.1. Basic theorem and the C-step for the FAST-MCD algorithm

A key step of the FAST-MCD algorithm is the fact that starting from

any approximation to the MCD, it is possible to compute another approximation

with an even lower determinant. ‘C-step’ procedure, which is used in FAST-MCD

algorithm, given in following Theorem 3.1 (Rousseeuw and Van Driessen, 1999).

Theorem 3.1. Since z′
i = (yi, xi)

′, i = 1, ..., n consider a data set Zn =

{z1, ...,zn} of p′ = p + 1-variate observations. Let a set of observations that de-
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fined as H1 ⊂ {1, ..., n} with |H1| = h. Here, H1 shows the subset of h observa-

tions having the lowest determinant. Hence, as the location and covariance for

subset of h observations µ̂1 := (1/h)
∑

i∈H1
zi and Σ̂1 := (1/h)

∑

i∈H1
(zi − µ̂1) ·

(zi − µ̂1)
′, respectively, if det

(

Σ̂1

)

6= 0 then the relative distances are defined as

d1(i) :=

√

(z1 − µ̂1)
′
Σ̂−1

1 (z1 − µ̂1), i = 1, ..., n. Then, a set of observations H2 is

taken such that {d1(i); i ∈ H2} := {(d1)1:n , ..., (d1)h:n} where (d1)1:n ≤ (d1)2:n ≤
··· ≤ (d1)n:n are the ordered distances, and µ̂2 and Σ̂2 are computed based on H2.

Then, det
(

Σ̂2

)

≤ det
(

Σ̂1

)

with equality if and only if µ̂2 = µ̂1 and Σ̂2 = Σ̂1

(Polat, 2014; Rousseeuw and Van Driessen, 1999).

If det
(

Σ̂1

)

> 0, applying the Theorem 3.1 yields Σ̂2 with det
(

Σ̂2

)

≤

det
(

Σ̂1

)

. In FAST-MCD algorithm the construction in Theorem 3.1 is referred

to as ‘C-step’, where ‘C’ can be taken to stand for ‘covariance’ since Σ̂2 is the

covariance matrix of H2, or for ‘concentration’ since we concentrate on the h

observations with smallest distances, and Σ̂2 is more concentrated (has a lower

determinant) than Σ̂1 (Rousseeuw and Van Driessen, 1999).

Repeating C-steps yields an iteration process. If det
(

Σ̂2

)

= 0 or det
(

Σ̂2

)

=

det
(

Σ̂1

)

we stop; otherwise we run another C-step yielding det
(

Σ̂3

)

, and so on.

The sequence det
(

Σ̂1

)

≥ det
(

Σ̂2

)

≥ det
(

Σ̂3

)

≥ ... is nonnegative and hence

must converge. In fact, since there are only finitely many h subsets there must

be an index m such that det
(

Σ̂m

)

= 0 or det
(

Σ̂m

)

= det
(

Σ̂m−1

)

, hence con-

vergence is reached. In practice, m is often below 10. Afterwards, running the

C-step on

(

µ̂m, Σ̂m

)

no longer reduces the determinant. This is not sufficient

for det
(

Σ̂m

)

to be the global minimum of the MCD objective function, but it is

a necessary condition (Rousseeuw and Van Driessen, 1999). Thus, Theorem 3.1

provides a partial idea for an algorithm: ‘Take many initial choices of H1 and

apply C-steps to each until convergence, and keep the solution with lowest deter-

minant ’. However, several things must be decided to make this idea operational:

how to generate sets H1 to begin with, how many H1 are needed, how to avoid

duplication of work since several H1 may yield the same solution, can’t we do

with fewer C-steps, what about large sample sizes, and so on. These matters will

be discussed in the next sections.

3.1.2. Creating initial subsets H1

In order to apply the algorithmic idea given in the previous section, it must

be decided how to construct the initial subsets H1. For this purpose, first of all, a
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random (p′ + 1)-subset J must be drawn according to method given in Rousseeuw

and Van Driessen (1999) study and then µ̂0 := ave(J) and Σ̂0 := cov(J) must

be computed. If det
(

Σ̂0

)

= 0 then extend J by adding another random ob-

servation, and continue adding observations until det
(

Σ̂0

)

> 0. Then compute

the distances d2
0(i) := (zi − µ̂0)

′
Σ̂−1

0 (zi − µ̂0) for i = 1, ..., n. Sort them into

d0 (π(1)) ≤ ... ≤ d0 (π(n)) and put H1 := {π(1), ..., π(h)}. Rousseeuw and Van

Driessen (1999) mentioned that it would be useless to draw fewer than p′+1

points, since then Σ̂0 is always singular (Polat, 2014; Rousseeuw and Van Driessen,

1999).

3.1.3. Selective iteration

Each C-step calculates a covariance matrix, its determinant, and all relative

distances. Therefore, reducing the number of C-steps would improve the speed.

Rousseeuw and Van Driessen (1999) mentioned that often the distinction between

good (robust) solutions and bad solutions already becomes visible after two or

three C-steps. Moreover, they proposed to take only two C-steps from each initial

subsample, select the 10 different subsets with the lowest determinants, and only

for these 10 to continue taking C-steps until convergence (Rousseeuw and Van

Driessen, 1999).

3.1.4. Nested extensions

For a small sample size n, the above algorithm, which was mentioned in

Section 3.1.1, does not take much time. But when n grows, the computation time

increases, mainly due to the n distances that needed to be calculated each time.

To avoid doing all the computations in the entire data set, Rousseeuw and Van

Driessen (1999) considered a special structure. When n > 1500, the algorithm

generates a nested system of subsets which looks like in Figure 1, where the

arrows mean ‘is a subset of’.

In Figure 1 the five subsets of size 300 do not overlap, and together they

form the merged set of size 1500, which in turn is a proper subset of the data set

of size n. Since the method showed in Figure 1 work with two stages, ‘nested’

name is used. To construct the Figure 1 the algorithm draws 1500 observations,

one by one, without replacement. The first 300 observations, that it encounters,

are put in the first subset, and so on. Because of this mechanism each subset of

size 300 is roughly representative for the data set, and the merged set with 1500

cases even more representative. When n < 600 the algorithm operates as in the
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previous Section 3.1.1. However, when n ≥ 1500 Figure 1 is used (Rousseeuw and

Van Driessen, 1999).

Figure 1: Nested system of subsets generated by the FAST-MCD algorithm.

3.2. The implementation of the FAST-MCD algorithm

Combining all the components of the preceding sections yields the FAST-

MCD algorithm. The steps of the algorithm for p′ = p + 1 dimensional unified

vector z′
i = (yi, xi)

′
, i = 1, ..., n are given as in below (Polat, 2014; Rousseeuw

and Van Driessen, 1999).

Step 1: The MCD estimates can resist (n − h) outliers, hence the number

h (or equivalently the proportion α = h/n) determines the robustness of the esti-

mator. The default h value is [(n + p′ + 1) /2] in FAST-MCD algorithm and the

highest resistance towards contamination is achieved by taking this value. How-

ever, the user may choose any integer h with [(n + p′ + 1) /2] ≤ h < n. When

a large proportion of contamination is presumed in data set, h should thus be

chosen h = [0.5n] with α = 0.5. Otherwise if it is exact that the data contains

less than 25% of contamination, which is usually the case, a good compromise be-

tween breakdown value and statistical efficiency is obtained by putting h = [0.75n]

(Polat, 2014; Rousseeuw and Van Driessen, 1999).

Step 2: From here on h < n and p′ ≥ 2. If n is small (say, n < 600) then,

• repeat (say) 500 times:

– construct an initial h-subset H1 using method in Section 3.1.2, i.e.

starting from a random (p′ + 1)-subset,

– carry out two C-steps described in Section 3.1.1;
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• for the 10 results with lowest det
(

Σ̂3

)

:

– carry out C-steps until convergence;

• report the solution

(

µ̂, Σ̂
)

with the lowest det
(

Σ̂
)

.

Step 3: If n is larger (say, n ≥ 600) then,

• construct up to five disjoint random subsets of size nsub according to

Section 3.1.4 (say, subsets of size nsub = 300);

• inside each subset, repeat 500/5 = 100 times:

– construct an initial subset H1 of size hsub = [nsub (h/n)],

– carry out two C-steps, using nsub and hsub,

– keep the 10 best results

(

µ̂sub, Σ̂sub

)

;

• pool the subsets, yielding the merged set (say, of size nmerged = 1500);

• in the merged set, repeat for each of the 50 solutions

(

µ̂sub, Σ̂sub

)

:

– carry out two C-steps, using nmerged and hmerged = [nmerged (h/n)],

– keep the 10 best results

(

µ̂merged, Σ̂merged

)

;

• in the full data set, repeat for the mfull best results:

– take several C-steps, using n and h,

– keep the best final result

(

µ̂full, Σ̂full

)

.

Here, mfull and the number of C-steps (preferably, until convergence) de-

pend on how large the data set is (Polat, 2014; Rousseeuw and Van Driessen,

1999).

This algorithm called as FAST-MCD. It is affine equivariant: when the data

are translated or subjected to a linear transformation, the resulting

(

µ̂full, Σ̂full

)

will transform accordingly. For convenience, the computer program contains two

more steps (Rousseeuw and Van Driessen, 1999):

Step 4: In order to obtain consistency when the data come from a multivari-

ate normal distribution, µ̂MCD = µ̂full and Σ̂MCD =

medi d2
(µ̂full,ˆΣfull)

(i)

χ2
p′,0.5

Σ̂full

are putted.

Step 5: In order to obtain ‘one-step reweighted’ estimates, each observation

is reweighted as in (3.1). Hence, by using these weights, the RMCD estimators

are obtained as in (3.2):

(3.1) wi =

{

1, if (zi − µ̂MCD)
′
Σ̂−1

MCD (zi − µ̂MCD) ≤ χ2
p′,0.975 ,

0, otherwise .
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µ̂RMCD =

∑n
i=1 wizi

∑n
i=1 wi

,

Σ̂RMCD =

∑n
i=1 wi (zi − µ̂RMCD) (zi − µ̂RMCD)

′

∑n
i=1 wi

.

(3.2)

The FAST-MCD algorithm code named as ‘mcdcov ’ could be found in

MATLAB LIBRA Toolbox which is written by Verboven and Hubert (2005).

The implementation of mcdcov function could be given briefly as in below (Po-

lat, 2014; Verboven and Hubert, 2005):

• The data set contains n observations and p′ = p + 1 variables. When

n < 600, the algorithm analyzes the data set as a whole. When the

data set is analyzed as a whole, a subsample of p′ + 1 observations is

taken, of which of them the mean and covariance matrix are calculated.

The h observations with smallest relative distances are used to calculate

the next mean and covariance matrix, and this cycle is repeated two

C-step times. FAST-MCD algorithm is a resampling algorithm. 500

subsets of size p′ + 1 out of n are drawn randomly. Afterwards, the 10

best solutions (means and corresponding covariance matrices) are used

as starting values for the final iteration. The number of the subsets is

chosen as ‘500’ to ensure a high probability of sampling at least one

clean subset. These iterations stop when two subsequent determinants

become equal. At most three C-step iteration are done. The solution

with smallest determinant (location and covariance) is retained.

• However, when n ≥ 600 (whether n < 1500 or not), the algorithm does

part of the calculations on (at most) 5 non-overlapping subsets of

(roughly) 1500 observations. In this case, the algorithm functions in

three stages.

– Stage 1: For each H1 subsample in each subset, two C-steps iter-

ations are carried out in that subset. In this stage, 5 subsets and

500 subsamples are chosen. For each subset, the 10 best solutions

(location and covariance) are stored.

– Stage 2: Then the subsets are pooled, yielding a merged set with at

most 1500 observations. If n is large, the merged set is a proper sub-

set of the entire data set. In this merged set, each of these (at most

50) best solutions

(

µ̂sub, Σ̂sub

)

of Stage 1 are used as starting values

for C-step iterations. In this stage, starting from each

(

µ̂sub, Σ̂sub

)

,

it is continued taking C-steps by using all 1500 observations in the

merged set. Also here, the 10 best solutions

(

µ̂merged, Σ̂merged

)

are

stored.

– Stage 3: This stage depends on n, the total number of observations

in the data set. Finally, each of these 10 solutions is extended to the
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full data set in the same way and the best

(

µ̂full, Σ̂full

)

solution is

obtained. Since the final computations are carried out in the entire

data set, they take more time when n increases. Rousseeuw and

Van Driessen (1999) mentioned that the number of initial solutions
(

µ̂merged, Σ̂merged

)

and/or the number of C-steps in the full data set

could be limited in order to speed up the algorithm as n becomes

large (Rousseeuw and Van Driessen, 1999; Verboven and Hubert,

2005). Therefore, the default values of ‘mcdcov ’ function are: If

n ≤ 5000, all 10 preliminary solutions are iterated. If n > 5000, only

the best preliminary solution is iterated. The number of iterations

decreases to 1 according to n × p. If n × p ≤ 100000, the number of

C-steps take on the full data set in the Stage 3 iterate three times,

whereas for n × p > 1000000 only one iteration step is taken.

In the next section, information about ‘a robust and efficient adaptive

reweighted covariance estimator’, which was proposed in Gervini (2003), will be

given. This robust covariance estimator is constructed by using MCD estimators

in the first step as robust initial estimators of location and covariance.

3.3. A robust and efficient adaptive reweighted estimator of covariance

In the context of linear regression, many estimators have been proposed

that aim to reconcile high efficiency and robustness. Overall, if one wants to take

care of both robustness and efficiency considerations, the best choice seems to

be a two-stage procedure. Gervini (2003) proposed essentially an improvement

over Rousseeuw and Van Zomeren (1990). It consists of a reweighted one-step

estimator that uses adaptive threshold values. This adaptive reweighting scheme

is able to maintain the outlier resistance of the initial estimator in breakdown and

bias and, at the same time, attain 100% efficiency at the normal distribution.

This kind of adaptive reweighting was first proposed in Gervini (2002) for the

linear regression model. In Gervini (2003), this idea is extended and an adaptive

method is proposed for multivariate location and covariance estimation.

Given a sample z1, ...,zn in R
p′

with p′ = p+1 and initial robust estimators

of location and covariance

(

µ̂0n, Σ̂0n

)

consider the Mahalanobis distances given

in (3.3) (Gervini, 2003; Polat, 2014):

(3.3) di := d
(

zi, µ̂0n, Σ̂0n

)

=

{

(zi − µ̂0n)
′
Σ̂−1

0n (zi − µ̂0n)

}1/2
.

An outlier will typically have a larger Mahalanobis distance than a ‘good’

observation. If one assumes a normal distribution, d2
i is approximately χ2

p′ dis-

tributed and it is reasonable to suspect of those observations with, for instance,
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d2
i ≥ χ2

p′,0.975. What Rousseeuw and Van Zomeren (1990) propose is to skip those

outlying observations and compute the sample mean and covariance matrix of

the rest of the data, obtaining in this way new estimators

(

µ̂1n, Σ̂1n

)

(Gervini,

2003; Polat, 2014).

Since the MCD method calculated by FAST-MCD algorithm is improved

as a good alternative to MVE method, Gervini (2003) stated that MCD estima-

tors could be used as the initial robust estimators of location and covariance in

the ‘adaptive reweighted’ method. Hence, in this study, in ‘adaptive reweighted’

method using the MCD estimators

(

µ̂MCD, Σ̂MCD

)

as initial robust estimators of

location and covariance

(

µ̂0n, Σ̂0n

)

, the obtained robust location and covariance

estimators

(

µ̂1n, Σ̂1n

)

are called as ‘Adaptive Reweighted Minimum Covariance

Determinant/ARWMCD’ estimators

(

µ̂ARWMCD, Σ̂ARWMCD

)

(Gervini, 2003; Po-

lat, 2014).

This reweighting step given in Gervini (2003) is known to improve the effi-

ciency of the initial estimator while retaining (most of) its robustness. However,

the threshold value χ2
p′,0.975 is an arbitrary number. For large data sets a con-

siderable number of observations have to be discarded from the analysis even if

they follow the normal model. One way to avoid this problem is to increase the

threshold value to another arbitrary fix number, however, in this case the bias

of the reweighted estimator will be affected. Hence, a better alternative is to

use ‘an adaptive threshold value’ that increases with n if the data is ‘clean’ but

remains bounded if there are outliers in the sample. Gervini (2003), proposed a

method of constructing such adaptive threshold values. Let (3.4) be the empirical

distribution of the squared Mahalanobis distances (Gervini, 2003; Polat, 2014):

(3.4) Gn(u) =
1

n

n
∑

i=1

I
(

d2
(

zi, µ̂MCD, Σ̂MCD

)

≤ u
)

.

Let Gp′(u) be the χ2
p′ distribution function. For a normally distributed

sample it is expected to Gn to converge to Gp′ . Therefore, a way to detect

outliers is to compare the tails of Gn with the tails of Gp′ . If η = χ2
p′,1−α for a

certain small α, say α = 0.025, (3.5) is defined (Gervini, 2003; Polat, 2014)

(3.5) αn = sup
u≥η

{

Gp′(u) − Gn(u)
}+

,

where {·}+
indicates the positive part. This αn can be regarded as a measure

of outliers in the sample. Since a negative difference would not indicate pres-

ence of outliers, it is only taken into account positive differences in (3.5). If

d2
(i) denotes the ith order statistic of the squared Mahalanobis distances and

i0 = max
{

i : d2
(i) < η

}

, then (3.5) comes down to as in (3.6) (Gervini, 2003; Po-
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lat, 2014):

(3.6) αn = max
i>i0

{

Gp′(d
2
(i)) −

i − 1

n

}+

.

Those observations corresponding to the largest ⌊αnn⌋ distances are con-

sidered as outliers and eliminated in the reweighting step. Here ⌊a⌋, is the largest

integer that is less than or equal to a. The cut-off value is then defined as in

(3.7) where as usual G−1
n (u) = min {s : Gn(s) ≥ u}. Note that cn = d2

(in) with

in = n− ⌊αnn⌋ and that in > i0 as a consequence of the definition of αn. There-

fore, cn > η (Gervini, 2003; Polat, 2014):

(3.7) cn = G−1
n (1 − αn) .

To define the reweighted estimator, weights of the form in (3.8) are used

(Gervini, 2003; Polat, 2014):

(3.8) win = w





d2
(

zi, µ̂MCD, Σ̂MCD

)

cn



 .

Here, the weight function that satisfies (W ) w : [0,∞) → [0, 1] is non-

increasing, w(0) = 1, w(u) > 0 for u ∈ [0, 1) and w(u) = 0 for u ∈ [1,∞). The

simplest choice among those functions satisfying (W ) is the hard-rejection func-

tion w(u) = I(u < 1) which is the one most commonly used in the practice.

Once weights in (3.8) are computed, the one-step reweighted estimators
(

µ̂ARWMCD, Σ̂ARWMCD

)

are defined as in (3.9) and (3.10) (Gervini, 2003; Polat,

2014):

(3.9) µ̂ARWMCD =

∑n
i=1 winzi

∑n
i=1 win

,

(3.10) Σ̂ARWMCD =

∑n
i=1 win (zi − µ̂ARWMCD) (zi − µ̂ARWMCD)

′

∑n
i=1 win

.

It is clear that under appropriate conditions, the threshold values in (3.7)

will tend to infinity under the multivariate normal model and then (3.9) and (3.10)

will be asymptotically equivalent to the common sample mean and covariance,

and thus attain full asymptotic efficiency (Gervini, 2003).

Finally, in this study, first of all, by using robust covariance estimator

Σ̂ARWMCD that it is given in (3.10), the robust covariance estimator Ŝz of Sz =
[

s2
y s′

y,X

sy,X SX

]

is obtained. Then, by using robust covariance estimator Ŝz in
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the alternative definition of PLS1 algorithm given between (2.7)–(2.9), a new

robust PLSR method called ‘PLS-ARWMCD’ is proposed. The steps of the PLS-

ARWMCD algorithm could be given as in (3.11) (Polat, 2014):

w1αŝy,x ,

wi+1αŝy,x − ŜxWi

(

W ′
i ŜxWi

)−1
W ′

i ŝy,x, 1 ≤ i < k ,

β̂PLS−ARWMCD

k = Wk

(

W ′
kŜxWk

)−1
W ′

kŝy,x .

(3.11)

Here, the robust covariance estimations ŝy,x and Ŝx are obtained by de-

composing the robust covariance estimation of unified data set z′
i = (yi, xi)

′
,

i = 1, ..., n , which is calculated by ARWMCD estimator, as in Ŝz =

[

ŝ2
y ŝ′

y,X

ŝy,X ŜX

]

(Polat, 2014).

4. SIMULATION STUDY

In this section, the new proposed robust PLS-ARWMCD method is com-

pared with other four robust PLSR methods RSIMPLS (Hubert and Vanden

Branden, 2003), PRM (Serneels et al., 2005), PLS-SD (Gil and Romera, 1998),

PLS-KurSD (González et al., 2009) and the classical PLSR method in order to

validate the good properties of the new PLSR robustification. The new pro-

posed robust PLS-ARWMCD method and the other five methods (including the

classical method) are compared in terms of efficiency, goodness-of-fit (GOF) and

predictive ability by performing a simulation study on uncontaminated and con-

taminated data sets.

According to the initial models given in (2.1) and (2.2), and following a

simulation design similar as the one described in González et al. (2009), we have

generated the data sets as in (4.1):

T ∼ N2 (02,Σt) ,

X = TI2,p + Np (0p, 0.1Ip) ,

y = TA2,1 + N(0, 1) .

(4.1)

Here, (Ik,p)i,j = 1, for i = j and (Ik,p)i,j = 0, otherwise; Ip is p × p di-

mensional identity matrix; 02 = (0, 0)
′
is a two-dimensional vector of zeros and

A2,1 = (1, 1)
′
is a two-dimensional vector of ones and T is the n × 2 dimensional

component matrix. Furthermore, we select n = 200, p = 5, k = 2 and we set

Σt =

[

4 0

0 2

]

.
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In this simulation study, the performance of the new proposed robust PLS-

ARWMCD method is compared with other four robust PLSR methods existing

in the literature and the classical method in the presence of five types of contam-

ination.

1. Bad leverage points, which occurs when an observation is far away from

the regression hyperplane while its projection onto the regression hy-

perplane falls outside the large majority of the projected observations

(good observations):

Bad Leverage Points :
Tǫ ∼ N2 (102,Σt) ,
Xǫ = TǫI2,p + Np (0p, 0.1Ip) .

2. Vertical outliers, which are observations with large distance from the

hyperplane but with projections within the large majority of the pro-

jected observations:

Vertical outliers : yǫ = TA2,1 + N(10, 0.1) .

3. Good leverage points, which are observations located in the vicinity of

the hyperplane but far away from the cluster of the large majority of

the observations:

Good Leverage Points :
Tǫ ∼ N2 (102,Σt) ,
Xǫ = TǫI2,p + Np ((02,10p−2) , 0.1Ip) .

4. Concentrated Outliers, which are clusters of bad leverage points:

Concentrated Outliers :
Tǫ ∼ N2 (102,Σt) ,
Xǫ = TǫI2,p + Np (10p, 0.001Ip) .

5. Orthogonal outliers, which were first used by Hubert and Vanden Bran-

den (2003). They have the property that they lie far from the t-space,

but they become regular observations after projection in the t-space.

Hence they will not badly influence the computation of the regression

parameters, but they might influence the loadings:

Orthogonal outliers : Xǫ = TI2,p + Np ((02,10p−2) , 0.1Ip) .

For each situation, m = 1000 data sets were generated. The efficiency of

the considered methods is evaluated by means of the MSE of the estimated re-

gression parameters β̂ that is defined as in (4.2). Moreover, it is clear that the

true parameter vector is determined as βp,1 = I ′
p,2A2,1. Here, β̂

(l)
k denotes the

estimated parameter based on k components in the lth simulation. The MSE in-

dicates to what extent the slope and intercept are correctly estimated. Therefore,

the aim is to obtain a MSE value close to zero (Engelen et al., 2004):

(4.2) MSEk

(

β̂
)

=
1

m

m
∑

l=1

∥

∥

∥
β̂

(l)
k − β

∥

∥

∥

2
.
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Furthermore, we are interested on how well the methods fit the regular data

points. Because of the simulation settings, we know exactly their indices as we

store in the set Gr. Then, the GOF criterion is defined as in (4.3). Here ri,k is the

residual of the ith observation when k components are computed. The objective

is to obtain a GOF value close to 1 (Engelen et al., 2004):

(4.3) GOFk = 1 −
var
i∈Gr

(ri, k)

var
i∈Gr

(yi)
.

The predictive ability of the methods could be measured by means of the

Root Mean Squared Error (RMSE). First a test set Gt of uncontaminated data

points with size nt = 100 is generated and then (4.4) is computed. Here, ŷi,k is the

predicted y-value of observation i from the test set when the regression parameter

estimates are based on the training set (X, Y ) of size n and k components are

retained in the model (Engelen et al., 2004):

(4.4) RMSEk =

√

√

√

√

1

nt

nt
∑

i=1

(yi − ŷi,k)
2 .

After m = 1000 replications, the mean angle (denoted by mean(angle)) be-

tween the estimated slope β̂[yǫ,Xǫ],k and the true slope β are also evaluated and

included in the simulation results (González et al., 2009; Hubert and Vanden

Branden, 2003).

The results obtained according to simulation settings given in above for

the data sets uncontaminated and contaminated by replacing first 10% and 20%

of the observations by different types of outliers: bad leverage points, vertical

outliers, good leverage points, concentrated outliers and orthogonal outliers. The

simulation results for the n = 200, p = 5, k = 2 when the proportion of outliers

is 10% given in Table 1. The simulation results for the same simulation setting

when the proportion of outliers is 20% given in Table 2.

Table 1 shows that in case of no contamination is added the new proposed

robust PLS-ARWMCD method and the four robust PLSR methods existing in

the literature (RSIMPLS, PRM, PLS-SD, PLS-KurSD) have nearly close per-

formance to classical PLSR method in terms of efficiency, fitting to data and

predictive ability. However, when the data set is contaminated by different types

of outliers, the four robust PLSR methods existing in literature and the new

proposed robust PLSR method outperform the classical PLSR method especially

in terms of efficiency and predictive ability. Especially when the data contain

bad leverage points or concentrated outliers, the performance of classical PLSR

method in terms of efficiency, fitting to data and predictive ability is much lower

than the new proposed robust PLS-ARWMCD method. The mean angle values
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between the estimated slope and the true slope for the classical PLSR method

are also higher than the new proposed robust PLS-ARWMCD method for these

two types of outliers.

Table 1: The sample size is n = 200, p = 5 and k = 2,

the proportion of outliers is 10%.

PLSR RSIMPLS PRM PLS- SD PLS-KurSD
PLS-

ARWMCD

No Contamination

MSE 0.0092 0.0111 0.0101 0.0104 0.01 0.0105
GOF 0.8312 0.8308 0.8308 0.8308 0.8309 0.8308
RMSE 1.0961 1.0974 1.0969 1.0973 1.0968 1.0974
Mean(angle) 0.0446 0.0519 0.0462 0.0492 0.0477 0.0491

Bad Leverage Points

MSE 1.7184 0.0115 0.0688 0.0969 0.0109 0.0104
GOF 0.2585 0.8306 0.8177 0.8098 0.8307 0.8309
RMSE 2.2892 1.0996 1.1413 1.1654 1.0996 1.0989
Mean(angle) 1.1403 0.0515 0.0796 0.0943 0.0496 0.0478

Vertical Outliers

MSE 0.0489 0.0107 0.0121 0.0118 0.0113 0.0106
GOF 0.817 0.8295 0.8294 0.8296 0.8299 0.83
RMSE 1.1384 1.0989 1.0998 1.0998 1.0987 1.0981
Mean(angle) 0.113 0.0467 0.0516 0.0526 0.0507 0.0485

Good Leverage Points

MSE 1.0282 0.0118 1.0346 0.0162 0.0109 0.0103
GOF 0.6988 0.8307 0.7721 0.8305 0.8307 0.8309
RMSE 1.4658 1.0996 1.2789 1.1002 1.0996 1.0988
Mean(angle) 0.768 0.053 0.7027 0.0583 0.0496 0.0476

Concentrated Outliers

MSE 1.9646 0.0118 1.6318 0.03 0.0109 0.0104
GOF 0.5093 0.8307 0.7503 0.8281 0.8307 0.8309
RMSE 1.8671 1.0996 1.3228 1.1078 1.0996 1.0989
Mean(angle) 1.1031 0.0529 0.6964 0.0707 0.0496 0.0478

Orthogonal Outliers

MSE 0.1815 0.0137 0.1341 0.0107 0.0109 0.0103
GOF 0.7847 0.8295 0.7988 0.8298 0.8298 0.83
RMSE 1.2316 1.1002 1.1917 1.0996 1.0997 1.099
Mean(angle) 0.2821 0.0575 0.2323 0.0494 0.0503 0.0488

Table 1 shows that there are no big differences between the classical method

and the robust PLSR methods (including the new proposed robust PLS-ARWMCD

method) in terms of fitting to data for the contaminated data sets with the

exception of good leverage points, bad leverage points and concentrated outliers.

It could be mentioned that for all the types of outliers the new proposed robust

PLS-ARWMCD method comes to the forefront with robust RSIMPLS and PLS-

KurSD methods existing in the literature especially in terms of efficiency. Overall,

for all the types of outliers the new proposed robust PLS-ARWMCD method with

more or less differences gives better results than robust PRM method in terms
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of efficiency, fitting to data and predictive ability. Furthermore, for all types of

outliers but especially when the data contain bad leverage points or concentrated

outliers, the new proposed robust PLS-ARWMCD method outperforms robust

PLS-SD method in terms of efficiency, fitting to data and predictive ability. The

mean angle values between the estimated slope and the true slope for the PLS-

AWMCD method is also lower than the classical method (as expected) and all

the other four robust PLSR methods for all types of outliers with the exception

of vertical outliers. Because when the data contain vertical outliers RSIMPLS

gives somewhat lower mean(angle) value than the PLS-ARWMCD method.

Table 2 shows that for all the types of outliers with the exception of vertical

outliers when the proportion of outliers increases, it is seen that the performance

of robust PRM method decreases especially in terms of efficiency and predic-

tive ability, moreover, the mean angle values between the estimated slope and

the true slope for this robust method is also higher than the other four robust

PLSR methods (including the new proposed robust PLS-ARWMCD method).

Especially when the proportion of concentrated outliers or orthogonal outliers

is 20% in the data set, PRM method performs worse even than classical PLSR

method in terms of MSE, GOF, RMSE and mean(angle) criterions. Furthermore,

when there is 20% proportion of good leverage points PRM performs worse than

classical PLSR method in terms of efficiency.

It is clear that when there is 20% proportion of bad leverage points or ver-

tical outliers in the data set, the new proposed robust PLS-ARWMCD method,

robust PLS-KurSD and RSIMPLS methods existing in the literature are the three

forefront methods in terms of efficiency and predictive ability. Moreover, the mean

angle values between the estimated slope and the true slope of these three robust

methods are also lower than the robust PRM and PLS-SD methods for these two

types of outliers. The concentrated outliers are the hardest type of outliers to

cope with. It is seen that when there is 20% proportion of bad leverage points or

concentrated outliers in the data set, the new proposed robust PLS-ARWMCD

method performs better than both robust PLS-SD and PRM methods existing

in the literature in terms of efficiency, fitting to data and predictive ability. Fur-

thermore, PLS-ARWMCD method’s mean angle values are also lower than these

two robust methods for these two types of outliers. It could be mentioned that

when the proportion of outliers in the data set gets a high-level as 20%, the new

proposed robust PLS-ARWMCD method still gives better results than classical

PLSR method for all the types of outliers in terms of efficiency, fitting to data

and predictive ability.

Overall, both of from Table 1 and Table 2, it could be concluded that

the new proposed robust PLS-ARWMCD method outperforms especially its two

robust competitors (PRM and PLS-SD) existing in the literature with more or

less differences in terms of efficiency, fitting to data and predictive ability for five

different types of outliers.
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Table 2: The sample size is n = 200, p = 5 and k = 2,

the proportion of outliers is 20%.

PLSR RSIMPLS PRM PLS- SD PLS-KurSD
PLS-

ARWMCD

No Contamination

MSE 0.0092 0.0111 0.0101 0.0104 0.01 0.0105
GOF 0.8312 0.8308 0.8308 0.8308 0.8309 0.8308
RMSE 1.0961 1.0974 1.0969 1.0973 1.0968 1.0974
Mean(angle) 0.0446 0.0519 0.0462 0.0493 0.0477 0.0491

Bad Leverage Points

MSE 1.8946 0.0122 1.7726 0.4134 0.0121 0.0109
GOF 0.1858 0.8309 0.2395 0.7143 0.831 0.8313
RMSE 2.4002 1.1012 2.3205 1.4282 1.1011 1.0998
Mean(angle) 1.3018 0.0537 1.1833 0.2467 0.054 0.05

Vertical Outliers

MSE 0.0791 0.0115 0.0174 0.0176 0.0126 0.0112
GOF 0.8057 0.8278 0.8265 0.8267 0.8282 0.8286
RMSE 1.1681 1.1002 1.106 1.1063 1.1003 1.0989
Mean(angle) 0.1437 0.0471 0.0632 0.0656 0.054 0.0503

Good Leverage Points

MSE 0.9975 0.0128 1.0568 0.044 0.0121 0.0109
GOF 0.6741 0.831 0.6817 0.8282 0.831 0.8313
RMSE 1.5213 1.1011 1.5049 1.1102 1.1011 1.0998
Mean(angle) 0.7739 0.057 0.7813 0.1165 0.0539 0.05

Concentrated Outliers

MSE 1.8527 0.0128 1.926 0.1628 0.0121 0.0109
GOF 0.4929 0.831 0.485 0.8107 0.831 0.8313
RMSE 1.8946 1.1012 1.9104 1.1648 1.1011 1.0998
Mean(angle) 1.1091 0.0569 1.1119 0.2307 0.0539 0.05

Orthogonal Outliers

MSE 0.1987 0.0176 0.2332 0.0108 0.0115 0.0104
GOF 0.7806 0.831 0.7718 0.8319 0.8319 0.8322
RMSE 1.2488 1.1026 1.2739 1.1007 1.101 1.0999
Mean(angle) 0.2982 0.066 0.3247 0.0504 0.0519 0.0491

5. APPLICATION TO FISH DATA

In this section, the new proposed robust PLSR method and four robust

PLSR methods, existing in the literature, will be compared on a real data includ-

ing outliers in terms of goodness-of-fit and predictive ability by using (4.3) and

(4.4). For this purpose, the fish data which was given in Naes (1985) will be used.

The fish data comprise 45 observations and the last 7 are outliers (in the words of

Naes, ‘abnormal samples’). In this example, fat concentration (percentage, %) of

45 fish samples (rainbow trout) and independent variables of the absorbance at

9 Near Infrared Reflectance (NIR) wavelengths measured after sample homogeni-

sation. The aim of the analysis made on this data set is to model the relationships

between the fat concentration (one response variable) and these nine spectrums

(independent variables). In this study, the data set is divided into two parts.
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The first 20 observations are the test set and the other remained 25 samples are

the training set (Gil and Romera, 1998; Hardy et al., 1996; Naes, 1985).

Firstly, similar to the our simulation studies, while computing the GOF val-

ues 7 outliers are removed from training set that occurs of 25 samples. However,

while computing the RMSE values the models are constituted using the training

set including the 7 outliers. Then, by using the regression coefficients obtained

from these models, the predictions are made from clean test set that occurs of

20 samples. Hence, the predictive ability of the new robust PLSR method ‘PLS-

ARWMCD’ is examined especially against the classical PLSR method and the

other four robust methods.

The GOF or RMSE values could be considered while selecting the number

components that will be retained in the model. The optimal number of compo-

nents could be selected as the k for which the GOF values are no more change.

However, as it is mentioned before in Engelen et al. (2004), it is more convenient

to consider the RMSE values while selecting the optimal number of components.

The significant point while selecting the optimal number of components retaining

in the model is that adding one more component whether cause an important

decrease or not in RMSE value. Hence, both the aim of data reduction is not

deviated and an unnecessary component is not added to model. In Figure 2, the

figure of RMSE values against the number of components in the model is drawn.

Figure 2: The RMSE values against the number of components in the model for fish data

with the training set of 25 samples and the test set of 20 samples.

When Figure 2 is examined, it is seen that it is right to select the number

of components retaining in the model as three for this data set. Because from

the figure it is seen that adding the third component to the model causes a
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significant decrease in the RMSE values of all the methods. It could be seen

also much clearly from Table 3 that the optimal number of components should

be selected as kopt = 3, as adding the third component to the model cause an

important decrease in the RMSE values for all the robust methods. Furthermore,

it is clear that the fitting to data also improves for all the methods after adding

the third component to the model. Table 3 shows that the new proposed robust

PLS-ARWMCD method fitting to the data better and it has a higher predictive

ability than both classical PLSR method and robust PRM method for kopt = 3.

Table 3: The GOF and RMSE values for fish data in case of the first 20 observa-

tions are the test set and the other 25 samples are the training set.

Number of
Components

PLSR RSIMPLS PRM PLS-SD PLS-KurSD
PLS-

ARWMCD

k=1
GOF 0.2912 0.4335 0.3777 0.4417 0.4444 0.4397

RMSE 3.0001 2.2937 2.3307 2.2274 2.2029 2.2487

k=2
GOF 0.6927 0.7421 0.2713 0.7853 0.6948 0.7605

RMSE 1.9715 1.8293 2.4072 1.573 1.8935 1.8234

k=3
GOF 0.882 0.9687 0.6166 0.9665 0.9594 0.9579

RMSE 1.4861 1.1401 2.0993 1.0797 1.259 1.3322

k=4
GOF 0.8987 0.971 0.6277 0.9737 0.9447 0.9662

RMSE 1.3742 1.1089 2.0237 1.1198 1.1924 1.2646

k=5
GOF 0.9113 0.979 0.6782 0.9716 0.9777 0.9713

RMSE 1.4874 1.1918 2.0921 1.2705 1.2708 1.5054

k=6
GOF 0.9231 0.9825 0.7705 0.9796 0.9854 0.9816

RMSE 1.5348 1.0543 1.4578 1.3727 1.1129 1.4545

k=7
GOF 0.9299 0.9829 0.7806 0.9714 0.9865 0.9862

RMSE 1.4553 1.519 1.5835 1.2033 1.4528 1.3679

k=8
GOF 0.9463 0.9768 0.8063 0.9769 0.9868 0.9861

RMSE 1.5056 1.7989 1.7409 1.1925 1.4019 1.33

k=9
GOF 0.9463 0.9851 0.8087 0.9812 0.9798 0.987

RMSE 1.5052 1.4874 1.8095 1.2338 1.2843 1.399

6. CONCLUSIONS

In this study, we propose a new robust PLSR method for the linear regres-

sion model with one response variable, PLS-ARWMCD, in order to obtain robust

predictions in case of outliers present in the data set.

In the simulation study, the new proposed robust PLSR method is com-

pared with classical PLSR method and four robust PLSR methods existing in

the literature in terms of efficiency, fitting to data and predictive ability on a

clean data set and on contaminated data sets with bad leverage points, verti-

cal outliers, good leverage points, concentrated outliers or orthogonal outliers.
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The optimal number of components is selected as k = 2 at the beginning of the

simulation study. 10% and 20% proportions of this data set are replaced by out-

liers, respectively. Thus, the increment in the proportion of outliers how affects

on performances of the new proposed robust PLSR method and four robust PLSR

methods (existing in the literature) is examined. When the 10% proportion of the

data set is contaminated by different types of outliers, both the new proposed ro-

bust PLS-ARWMCD method and the four robust PLSR methods existing in the

literature outperform classical PLSR method in terms of efficiency and predictive

ability (exception of PRM method that performs not better than classical PLSR

method in terms of efficiency in case of good leverage points existence). The PLS-

ARWMCD method comes to the forefront as a good alternative method against

robust PRM and PLS-SD methods in terms of efficiency, fitting to data and pre-

dictive ability for all the types of outliers. Moreover, PLS-ARWMCD method

shows a close performance with robust RSIMPLS and PLS-KurSD methods in

terms of efficiency, fitting to data, predictive ability and mean angle measures.

When the proportion of outliers in the data set is reached to a high level as

20%, robust PRM method shows a lower performance than other robust methods

in terms of efficiency, fitting to data and predictive ability for all the types of

outliers except that vertical outliers. Furthermore, if there is 20% proportion of

concentrated outliers or orthogonal outliers in the data set, robust PRM method

looses its performance completely against classical PLSR method. When there

is high proportion of bad leverage points or concentrated outliers in the data

set, robust PLS-SD method is less efficient and it has a lower predictive ability

than the other robust RSIMPLS, PLS-KurSD methods and new proposed robust

PLS-ARWMCD method.

The results obtained from real data analysis show that the optimal number

of components is selected as kopt = 3, as adding the third component to the

model causes a considerably decrease in the RMSE values of robust methods.

It is clear from the results of the model containing k = 3 components that GOF

values of the new proposed robust PLS-ARWMCD method are higher than both

classical PLSR method and robust PRM method. Moreover, when kopt = 3 is

selected, the RMSE value for PLS-ARWMCD is lower than both classical PLSR

method and robust PRM method. Generally, whatever the optimal number of

the components in the model for the fish data set, the new proposed robust PLS-

ARWMCD method gives better models than both classical PLSR method and

robust PRM method in terms of fitting to data and predictive ability.

Consequently, it is seen that the new proposed robust PLS-ARWMCD

method gives more efficient results than especially classical PLSR method in

data sets contaminated by a reasonable amount of outliers. The simulation

study shows that when the data contain 10% or 20% proportion of bad lever-

age points, the new robust PLS-ARWMCD method outperforms both of the

robust PRM and PLS-SD methods in terms of efficiency and predictive ability.
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When the data contain 10% proportion of vertical outliers, the new robust PLS-

ARWMCD method shows a close performance to the other four robust PLSR

methods existing in literature. However, when there is 20% proportion of ver-

tical outliers in the data set; the new robust PLS-ARWMCD method, robust

RSIMPLS and PLS-KurSD methods are the forefront methods in terms of ef-

ficiency and predictive ability. When the data contain 10% or 20% proportion

of good leverage points; the new robust PLS-ARWMCD method has a better

performance than robust PRM method both in terms of efficiency and predictive

ability, however, it is only more efficient than robust PLS-SD method. When

there is 10% proportion of concentrated outliers; the new robust PLS-ARWMCD

method is both more efficient and it has a higher predictive ability than robust

PRM method, however, it is only more efficient than robust PLS-SD method.

When there is 20% proportion of concentrated outliers in the data set, the new

robust PLS-ARWMCD method is both more efficient and it has a higher predic-

tive ability than both robust PRM and PLS-SD methods. When the data contain

10% or 20% proportion of orthogonal outliers; the new robust PLS-ARWMCD

method has a better performance than robust PRM method in terms of efficiency,

fitting to data and predictive ability. Overall, it could be concluded that the new

proposed robust PLS-ARWMCD could cope with different types and proportions

of outliers efficiently and it give robust predictions.
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1. INTRODUCTION

The proportional mean residual life model (PMRLM) was introduced by

[11] and [14] as an alternative to the well-known proportional hazards model

(PHM). These two papers explain the relevance of PMRLM and its advantages

over the PHM. Let X and Y be two non-negative absolutely continuous random

variables with finite expectation and survival functions F̄X(·) and F̄Y (·) respec-

tively. Then the PMRLM is represented by

(1.1) mY (x) = θmX(x) , θ > 0 ,

where mX(x) =
1

F̄X(x)

∫∞
x F̄X(t)dt and mY (x) =

1
F̄Y (x)

∫∞
x F̄Y (t)dt are the mean

residual life functions of X and Y . Unlike the PHM, (1.1) may not be valid for all

θ > 0. If mX(x) is increasing then θ > 0 while for a decreasing mX(x), 0 < θ ≤ θ0,

where θ−1
0 = max (0,−min(mX(x))). The relationship between PMRLM and

PHM, the ageing properties and certain bounds on residual moments and residual

variance of the former in the context of reliability analysis were studied in [4].

In the same direction [9] discussed the closure properties of the ageing classes

related to PMRLM and preservation of certain stochastic orders. The reliability

aspects of a dynamic version of (1.1) obtained by replacing the constant θ in

(1.1) by a non-negative function of x are also investigated in [10]. All the works

mentioned above make use of the identity (1.1), the relationship between the

survival functions derived therefrom and the properties of the mean residual life

function.

An associated concept is the percentile residual life discussed in several

papers like [13], [2] and their references. Instead of the distribution function, a

life distribution and its desired characteristics can also be represented through

the quantile function

QX(u) = inf{x : FX(x) ≥ u} , 0 ≤ u ≤ 1 ,

and various reliability functions evaluated from QX(·). The relevance and advan-

tages of using QX(·) over F̄X(·) in various forms of statistical analysis are well

documented in [3] and the associated methodology for reliability analysis in [8].

The present article focuses attention on studying the reliability implications of

PMRLM using quantile function and the associated reliability concepts.

The factors that motivated the present work are as follows. There are

many quantile functions that have simple forms capable of representing a wide

variety of lifetime data. These are discussed extensively in [8]. Our work en-

ables the induction of such quantile functions as lifetime models in the anal-

ysis of PMRLM. Many of the flexible quantile functions in literature have no

tractable distribution functions to make use of them in the conventional analysis.
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Further, the quantile analogue of (1.1) reads

(1.2) mY (QX(u)) = θmX (QX(u)) , θ > 0 ,

in which the right side is the mean residual quantile function of X while the left

side is not the mean residual quantile function of Y . Thus the analogues of the

mean residual life in the quantile-based analysis are not proportional as in (1.1).

This points out to the possibility of properties of PMRLM that are different

from the conventional one. Because of the special properties of quantile functions

we can obtain results that are difficult to obtain by the distribution function

approach. Various measures of uncertainty in the residual life of a device and

their association with reliability concepts are of recent interest on the premise

that increase in uncertainty implies that the device becomes more unreliable.

We propose two characterizations of PMRLM based on the Kullback–Leibler

divergence and its cumulative form using quantile functions.

The rest of the paper contains four sections. In Section 2 we present some

preliminary results required for the deliberations in the sequence. This is followed

in Section 3 with discussion on the ageing concepts of Y in relation to those of

X. The characterizations of the PMRLM are presented in Section 4. Finally

in Section 5 some quantile-based stochastic orders associated with PMRLM are

discussed.

2. THE PROPORTIONAL MEAN RESIDUAL LIFE MODEL

Let X and Y be as defined in the previous section with strictly decreasing

survival functions, hazard rate functions hX(·) and hY (·) and quantile functions

QX(·) and QY (·). From [4],

(2.1) F̄Y (x) =
[

F̄X(x)
]

1
θ

(

mX(x)

µX

)
1
θ
−1

, µX = E(X) ,

and

(2.2) hY (x) − hX(x) =
1 − θ

θmX(x)
.

The quantile-based reliability functions of X and Y are the hazard quantile func-

tions

HX(u) = hX (QX(u)) =
1

(1 − u)qX(u)

and

HY (u) =
1

(1 − u)qY (u)
,
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and the mean residual quantile functions

MX(u) = mX (QX(u)) =
1

(1 − u)

∫ 1

u
(1 − p)qX(p)dp

and

MY (u) =
1

(1 − u)

∫ 1

u
(1 − p)qY (p)dp ,

where qX(u) =
dQX(u)

du and qY (u) =
dQY (u)

du are the quantile density functions of

X and Y . For the definitions, interpretations of these functions and interrela-

tionships between them, we refer to [7].

Setting x = QX(u) in (2.1) we see that

F̄Y (QX(u)) = (1 − u)
1
θ

(

MX(u)

µX

)
1
θ
−1

or

(2.3) QX(u) = QY

[

1 − (1 − u)
1
θ

(

MX(u)

µX

)
1
θ
−1
]

.

Writing A(u) = 1 − (1 − u)
1
θ

(

MX(u)
µX

)
1
θ
−1

, (2.3) becomes

(2.4) QX(u) = QY (A(u)) .

It is not difficult to see that when (2.3) is satisfied (1.2) also holds. Notice

that A(·) is a distribution function on [0, 1] so that A(u) is increasing in u with

A(0) = 0 and A(1) = 1. One can work with the identity (1.1) and obtain another

relationship involving F̄X(·) and F̄Y (·) in the form

F̄X(x) =
[

F̄Y (x)
]θ
(

mY (x)

µY

)θ−1

, µY = E(Y ) ,

or equivalently

(2.5) QY (u) = QX (B(u)) ,

where B(u) = 1 − (1 − u)
θ
(

MY (u)
µY

)θ−1
. Since QX is an increasing function, it is

easy to see that B(u) = A−1
(u) and A(u) = B−1

(u).

From (2.3) by differentiation,

qX(u) = qY (A(u)) A′
(u) ,

so that

(1 − u)qX(u) =
(1 − u)A′

(u)

1 − A(u)
(1 − A(u)) qY (A(u)) ,
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giving

(2.6) HX(u) =
1 − A(u)

(1 − u)A′(u)
HY (A(u))

and from (1.2)

(2.7) θMX(u) = mY [QY A(u)] = MY (A(u)) = mY (QX(u)) .

Equation (2.7) suggests that in general MX(·) and MY (·) need not be propor-

tional. Therefore unlike the distribution function approach wherein properties of

mY (x) can be directly obtained from equation (1.1), the quantile analysis does

not directly provide characteristics of mean residual quantile function of Y from

that of X. We give an example of the use of quantile function in the analysis of

PMRLM and in modelling real data.

Remark 2.1. When the mean residual quantile function of Y is propor-

tional to that of X,

1

1 − u

∫ 1

u
(1 − p)qY (p)dp =

1

1 − u

∫ 1

u
(1 − p)qX(p)dp

which is equivalent to QY (u) = θQX(u) = QX(θu). This is the case when Y is

obtained as a change of scale in X.

Example 2.1. Let the distribution of X be represented by the quantile

function

(2.8) QX(u) = −(α + µ) log(1 − u) − 2αu , µ > 0 , −µ < α < µ .

Equation (2.8) specifies a family of flexible distributions that includes exponential

and uniform distributions as special cases and approximates well distributions like

Weibull, gamma, beta and half-normal. A detailed discussion of (2.8) is available

in [5]. Notice that the general form of the distribution does not admit a closed

form for its distribution function, except that the distribution function FX(·) and

density function fX(·) are related through

fX(x) =
1 − FX(x)

2αFX(x) + µ − α
.

Thus it becomes difficult to work with mX(·) and more so with mY (·) and con-

clude their general properties using (1.1). From a quantile perspective we have

MX(u) = µ + αu ,

FY (QX(u)) = 1 − (1 − u)
1
θ

(

1 +
αu

µ

)
1
θ
−1

,
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mY (QX(u)) = θ(µ + αu)

and

(2.9) QY (u) = QX

[

A−1
(u)
]

, A(u) = 1 − (1 − u)
1
θ

(

1 +
αu

µ

)
1
θ
−1

.

To illustrate the application of quantile functions in modelling proportional mean

residual life using the above model we consider the data on the time to first failure

of 20 electric carts given in [15].

The methodology used here is described as follows. Let x1 < x2 < ... < xn

be the distinct observations in the sample. We estimate the sample distribution

function as

F̂X(xr) = ur =
r − 0.5

n
, r = 1, 2, ..., n, ur ≤ x < ur+1 ,

by dividing the interval (0, 1) with equal parts and using their midpoints to

symmetrically place the u values. This gives

Q̂X(ur) = xr , ur−1 < u < ur , r = 1, 2, ..., n , u0 = 0 ,

and

F̂Y Q̂X(ur) = F̂Y (xr)

= 1 − (1 − ur)
1
θ

(

MX(ur)

µ

)
1
θ
−1

.

Recall GY (·) = FY (QX(·)) is a distribution function over (0, 1). If gY (·) is the

probability density function of GY (·), then

gY (u) = fY (QX(u)) qX(u) =
fY QX(u)

fXQX(u)
.

We estimate the parameter of the PMRLM by minimizing

E = −
∫ 1

0
gY (u) log gY (u)du .

For the given data gY (·) is replaced by its estimated value

ĝY (u) =

(

F̂Y (xr) − F̂Y (xr−1)

)

ur − ur−1

and the minimization of E is carried out. The estimates obtained are

α̂ = 0.6078 , µ̂ = 1.054 and θ̂ = 0.8438 .

Thus

m̂Y

(

Q̂X(u)

)

= 0.8894 + 0.5129u .

for the minimum of E obtained as 1.54626 × 10
−10

which shows the closeness

of the fit. Further analysis of the data can be accomplished based on GY (·) or

mY (QX(·)) obtained above.
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For all quantile functions equation, (1.2) may not be satisfied for θ > 0.

We present a necessary and sufficient condition for the existence of the PMRLM

for a distribution.

Theorem 2.1. A quantile function QX(·) admits a PMRLM if and only if

θ satisfies

qX(u) + θM ′
X(u) ≥ 0

where the prime denotes differentiation with respect to u.

Proof: The relationship (2.4) is satisfied for some QY (·) if and only if

there exists a quantile function QX(·) for which qX(·) > 0 since QX(·) must be

an increasing function. Now

qX(u) =
qY (A(u)) (1 − u)

1
θ
−1

θ

(

MX(u)

µX

)
1
θ
−1

− qY (A(u)) (1 − u)
1
θ

(

1

θ
− 1

)(

MX(u)

qX(u)

)
1
θ
−2 M ′

X(u)

µX
≥ 0

⇐⇒
MX(u)

θ
−
(

1

θ
− 1

)

M ′
X(u) > 0

⇐⇒ MX(u) − (1 − u)M ′
X(u) + (1 − u)θM ′

X(u) > 0

⇐⇒
1

HX(u)
+ (1 − u)θM ′

X(u) > 0

⇐⇒ qX(u) + θM ′
X(u) > 0 .

Remark 2.2. In view of Theorem 1, we see that

(i) if M ′
X(·) ≥ 0 then PMRLM holds for all θ > 0

and

(ii) if M ′
X(·) < 0, X admits PMRLM only when the range of θ is limited

to [0, θ0], θ0 = max

(

0,−min
qX(u)
M ′

X
(u)

)

.

3. AGEING PROPERTIES

There are situations when the distribution of Y specified by QY (·) may not

have tractable form to study the ageing properties of Y analytically. For example

see QY (·) given in (2.9). This does not pose any problems to data analysis since
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FY (QX(·)) can be employed for inferential purposes. Generally, the baseline

distribution is one for which the ageing criteria is known or can be evaluated

and therefore results that enable the inference of ageing characteristics of Y in

terms of those of X become useful. In this section we prove some theorems

in this direction. For this we need the following definitions. The definitions

and results are given only for positive ageing concepts as it is easy to deduce

their negative ageing counterparts by reversing the monotonicity or the inequality

in each case. The random variable X is said to be (i) increasing hazard rate

(IHR) if HX(·) is increasing (ii) new better than used in hazard rate (NBUHR)

if HX(0) ≤ HX(u) for all u and new better than used in hazard rate average

(NBUHRA) if − log(1−u)
QX(u) ≥ HX(u) (iii) increasing hazard rate average (IHRA) if

QX(u)
− log(1−u) is decreasing in u (iv) decreasing mean residual life (DMRL) if MX(·)
is decreasing (v) decreasing mean residual life in harmonic average (DMRLHA) if

1
QX(u)

∫ u
0

qX(p)
MX(p)dp is decreasing in u, (vi) new better than used (NBU) if QX(u +

v − uv) ≤ QX(u) + QX(v) for 0 ≤ u < v < 1 and (vii) new better than used in

expectation (NBUE) if MX(u) ≤ µX . It may be noticed the definitions of the

above concepts in the distribution function approach and the quantile function

approaches are equivalent. However the results pertaining to PMRLM in the two

differ at least in some cases. For a detailed discussion of the characteristics of

various quantile ageing classes, see [8].

Theorem 3.1. If X is IHR, θ > 1 and MX(·) is logconvex then Y is IHR.

Proof: Recall that

HY (A(u)) =
(1 − u)A′

(u)

1 − A(u)
HX(u) .

Also

T (u) =
(1 − u)A′

(u)

1 − A(u)
=

1

θ
−
(

1

θ
− 1

)

(1 − u)
d log MX(u)

du
,

gives

T ′
(u) =

(

1 −
1

θ

)

(1 − u)
d2

log MX(u)

du2
+

(

1

θ
− 1

)

d log MX(u)

du
.

When X is IHR, it is also DMRL. Under the conditions of the theorem T (·) is

increasing and so is HX(·). Thus HY (A(u)) is an increasing function of A(u) and

hence of u, showing that HY (u) is increasing.

Remark 3.1. It can be shown that if Y is IHR, θ < 1 and MY (·) is logcon-

cave, then X is IHR. To prove this we use (2.5) and work with B(u) in the same

manner as with A(u). Various results concerning other ageing properties proved

below can also have parallel results relating Y with X. Because of similarity they

are not pursued further.
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We give two examples, one demonstrating the usefulness of Theorem 2 and

the other to show that the conditions imposed on the reliability functions of X

are essential.

Example 3.1. Consider the linear hazard quantile function distribution

with quantile function

(3.1) QX(u) =
1

a + b
log

(

a + bu

a(1 − u)

)

, a > 0 , b > 0 .

whose properties and applications are studied in [6]. The hazard and the mean

residual quantile functions of (3.1) are

HX(u) = a + bu

and

MX(u) =
1

b(1 − u)
log

(

a + b

a + bu

)

.

Obviously X is IHR and

d log MX(u)

du
=

1

1 − u
−

b

(a + bu) [log(a + b) − log(a + bu)]

is increasing and hence by Theorem 2, Y is IHR. This method looks easier than

evaluating the reliability aspects directly from

QY (u) =
1

a + b
log

(

a + bA−1
(u)

a(1 − A−1(u))

)

with

A(u) = 1 − (1 − u)
1
θ

[

log(a + b) − log(a + bu)

(1 − u) (log(a + b) − log a)

]
1
θ
−1

derived from (2.4).

Example 3.2. The quantile function

QX(u) =
3αβu2

2
+ αu(2 − β) , α > 0 , β =

1

2
,

has

HX(u) = [α(1 − u) (3βu + 2 − β)]
−1

and

MX(u) = α(1 − u)(1 + βu) .

Differentiating HX(u), the sign of H ′
X(u) depends on the sign of 3βu − 2β + 1

which is positive for β =
1
2 . Hence X is IHR. Further

M ′
X(u) = α(β − 1) − αβu



Reliability Aspects of PMRL Using Quantile Functions 485

so that MX(·) is decreasing and concave. Thus the conditions of the theorem are

not satisfied. From (2.6) and

A(u) = 1 − (1 − u)
1
θ [(1 − u)(1 + βu)]

1
θ
−1 ,

and

HY (A(u)) =

(

2
θ − 1

)

(1 + βu) −
(

1
θ − 1

)

β(1 − u)

α(1 + βu)(1 − u)(3βu + 2 − β)
, β =

1

2
,

splitting up the terms we see that HY (u) is not increasing for all u.

Theorem 3.2.

(i) If X is IHRA, θ > 1 and

(

log
�

M
X

(u)

µ
X

�
log(1−u)

)

is decreasing then Y is IHRA.

(ii) If X is IHR and θ > 1, then Y is NBUHR.

(iii) IF X is NBUHRA, θ > 1 and

(

log
M

X
(u)

µ
X

log(1−u) +
M ′

X
(0)

µX

)

≤ 0, then Y is

NBUHRA.

Proof: (i) First we note that

QY (u)

− log(1 − u)
=

QX

(

A−1
(u)
)

− log(1 − u)
=

QX(u)

− log (1 − A(u))
(3.2)

=
QX(u)

− log(1 − u)

log(1 − u)

log (1 − A(u))
.

The sign of
log(1−u)

log(1−A(u)) depends on

D(u) =
A”(u) log(1 − u)

1 − A(u)
− log

1 − A(u)

1 − u

=

(

1
θ − 1

)

1 − u

[

− log
MX(u)

µX
− (1 − u) log(1 − u)

M ′
X(u)

MX(u)

]

= −
(

1

θ
− 1

)

(log(1 − u))
2 d

du





log

(

MX(u)
µX

)

log(1 − u)



 .

When X is IHRA, the first term on the right of (3.2) increases and the second

term increases when θ > 1 and
log

�
Mx(u)

µ
X

�
log(1−u) increases. Hence Y is IHRA.

(ii) From (2.2)

HY (A(u)) − HX(u) =

(

1

θ
− 1

)

[MX(u)]
−1 .



486 N. Unnikrishnan Nair, P.G. Sankaran and S.M. Sunoj

This gives

HY (A(u)) − HY (A(0)) = HX(u) − HX(0) +

(

1

θ
− 1

)(

1

MX(u)
−

1

µX

)

.

Since IHR implies NBUHR and NBUE HX(u) ≥ HX(0) and
1

MX(u) ≥
1

µX

. Hence

HY (A(u)) ≥ HY (A(0)) = HY (0) for all A(u) implies that HY (u) ≥ HY (0), 0 ≤
u ≤ 1 and Y is NBUHR.

(iii) From (3.2)

QY (u)

− log(1 − u)
=

QY (u)

− log(1 − u)

log(1 − u)

log (1 − A(u))

and

(3.3)
− log(1 − u)

QY (u)
− HY (u) =

− log(1 − u)

QX(u)

log (1 − A(u))

log(1 − u)
− HY (0) .

Also (2.6) leads to

HX(0) =
HY (0)

A′(0)
(since A(0) = 0)(3.4)

=
1

θ
−
(

1

θ
− 1

)

M ′
X(0)

µX

and

(3.5) log (1 − A(u)) =
1

θ
log(1 − u) +

(

1

θ
− 1

)

log
MX(u)

µX
.

Using (3.4) and (3.5) in (3.3),

− log(1 − u)

QY (u)
− HY (u) =

=
− log(1 − u)

QX(u)





1
θ +

(

1
θ − 1

)

log
MX(u)

µX

log(1 − u)



− A′
(0)HX(0)

≥ HX(0)





1
θ +

(

1
θ − 1

)

log
MX(u)

µX

log(1 − u)
−
(

1

θ
−
(

1

θ
− 1

))

M ′
X(0)

µX





= HX(0)

(

1

θ
− 1

)





log

(

MX(u)
µX

)

log(1 − u)
+

M ′
X(0)

µX



 .

Under the conditions assumed in Theorem 3, Y is NBUHRA.
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Theorem 3.3. If X is DMRL and θ < 1, then Y is DMRL.

Proof: First we notice that

A′
(u) =

(1 − u)
1
θ
−1

(MX(u))
1
θ
−2

(µX)
1
θ
−1

[

1

θ
MX(u) − (1 − u)

(

1

θ
− 1

)

M ′
X(u)

]

implies that A(u) is increasing and X is DMRL only when θ < 1. Now

M ′
X(u) = θM ′

Y (A(u)) A′
(u)

provides M ′
Y (A(u)) ≤ 0. When M ′

Y (A(u)) is decreasing so does MY (u) and

hence Y is DMRL.

Remark 3.2. In the distribution function approach Y is DMRL if and

only if X is DMRL ([9]) irrespective of the value of θ. In our case the restriction

on θ cannot be dropped. For example, when X is beta with F̄X(x) = (1−x)
2, 0 ≤

x ≤ 1 and θ = 4

MX(u) =
1

3
(1 − u)

1
2

which is decreasing, while

MY (u) =
4

3
(1 − u)

−4

is increasing.

Theorem 3.4. If X is DMRLHA if and only if Y is DMRLHA.

Proof: X is DMRLHA ⇐⇒
1

QX(u)

∫ u

0

qX(p)dp

MX(p)
is decreasing in u

⇐⇒
1

QY (A(u))

∫ u

0

qY (A(p)) A′
(p)dp

MY (A(p))
is decreasing in u

⇐⇒
1

QY (u)

∫ u

0

qY (p)dp

MY (p)
is decreasing in u

⇐⇒ Y is DMRLHA.

Theorem 3.5. If X is NBU and θ < 1 and − log
MX(u)

µX

is super additive,

then Y is NBU.
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Proof:

− log
(1 − u)MX(u)

µX
= − log(1 − u) − log

MX(u)

µX
.

Since X is NBU, − log
(1−u)MX(u)

µX

is super additive.

SY (QX(u)) = (1 − u)

[

(1 − u)MX(u)

µX

]
1
θ
−1

.

The right side is the product of two survival functions each of which is NBU and

therefore SY (·) is NBU, which proves the result.

4. CHARACTERIZATIONS

In this section we attempt two characterization theorems of the PMRLM by

properties of measures of uncertainty in the residual lives of X and Y . The first

measure is the Kullback–Leibler divergence between the residual life distributions

of X and Y given by

(4.1) i(t) =
1

F̄X(x)

∫ ∞

x

(

log
fX(t)

fY (t)

)

fX(t)dt + log
F̄Y (x)

F̄X(x)
.

The quantile version of (4.1),

(4.2) i (QX(u)) = I(u) = log

(

F̄Y (QX(u))

1 − u

)

+
1

1 − u

∫ 1

u
log

dF̄Y (QX(p))

dp
dp ,

was studied by [12] and several properties including characterization of PHM

were obtained by them. In the following theorem we investigate the distributions

satisfying PMRLM for which I(u) = C, a constant.

Theorem 4.1. Let X and Y be continuous non-negative random variables

as defined in Section 1 satisfying PMRLM. Then I(u) = C, a constant if and only

if the distribution of X is either exponential with quantile function

QE(u) = λ−1
(− log(1 − u)) , λ > 0 ,

or Pareto with

QP (u) = α
[

(1 − u)
− 1

c − 1

]

, c > 1, α > 0 ,

or beta having quantile function

QB(u) = β
[

1 − (1 − u)
1
a

]

, a > 0, β > 0 .
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Proof: In the case of PMRLM, the divergence measure (4.2) reduces to

I(u) = log
1 − A(u)

1 − u
−

1

1 − u

∫ 1

u
log A′

(p)dp .

When X is exponential,

A(u) = 1 − (1 − u)
1
θ

and hence

I(u) = θ − log θ − 1 .

In the case of QP (u), A(u) = 1 − (1 − u)
c+θ−1

cθ and

I(u) =
c + θ − 1

cθ
− log

c + θ − 1

cθ
− 1

and similarly for the beta distribution A(u) = 1 − (1 − u)
a−θ+1

aθ gives

I(u) =
a − θ + 1

aθ
− log

a − θ + 1

aθ
− 1 .

Thus I(u) is a constant for all the three distributions. Conversely, when I(u) = C,

log
1 − A(u)

1 − u
−

1

1 − u

∫ 1

u
log A′

(p)dp = C

takes the form

∫ 1

u
log A′

(p)dp = (1 − u)

[

log
1 − A(u)

1 − u
− C

]

.

Differentiating with respect to u and simplifying

(4.3) P (u) = C + 1 + log P (u)

where P (u) =
(1−u)A′(u)

1−A(u) . Differentiating (4.3)

P ′
(u)

[

1 −
1

P (u)

]

= 0

which leaves two solutions P (u) = K, a constant or P (u) = 1. Of these P (u) = 1

leads to
M ′

X
(u)

MX(u) =
1

1−u or MX(u) =
K

1−u which cannot be mean residual quantile

function of a proper distribution. The second solution P (u) = K, simplifies to

MX(u) = K(1 − u)
−b

which is the mean residual quantile function of the expo-

nential or Pareto or beta distribution according as b = 0 or b > 0 or b < 0. This

completes the proof.

In the second theorem the choice of the uncertainty measure is the cumu-

lative Kullback–Leibler divergence proposed by [1] for the residual lives of X and

Y as

(4.4) j(x) =

(

log
F̄Y (x)

F̄X(x)
− 1

)

mX(x) +
1

F̄X(x)

∫ ∞

x
log

F̄X(t)

F̄Y (t)
F̄X(t)dt + mY (x) .
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In terms of quantile functions, we can write (4.4) in the form

J(u) = j (QX(u)) = MY (u) − MX(u) +
1

1 − u

∫ 1

u

(

1 −
HY (A(p))

HX(p)

)

MX(p)dp .

Here QX(·) is taken as representing the true distribution and QY (·) an arbitrary

reference model. The measure J(·) provides the relative amount of uncertainty

in the residual life of Y in comparison with that of X. We prove a theorem that

identifies the class of distributions for which this relative entropy is a constant.

Theorem 4.2. The cumulative divergence measure J(u) = C for all u in

[0, 1] if and only if the quantile function of Y admits the representation

QY (u) = Q1(u) + Q2(u)

where Q1(·) is the quantile function of the exponential distribution with mean C

and Q2(·) is the quantile function of X
θ .

Proof: When J(u) = C, we have

(4.5) MY (u) − MX(u) +
1

1 − u

∫ 1

u

(

1 −
hY (QX(p))

HX(p)

)

MX(p)dp = C .

From (2.2)

hY (QX(u)) = HX(u) +
1 − θ

θMX(u)

and so 1 − hY (QX(u))
HX(u) =

θ−1
θ

1
MX(u)HX(u) . Hence

∫ 1

u

(

1 −
hY (QX(p))

HX(p)

)

MX(p)dp =
θ − 1

θ

∫ 1

u

1

HX(p)
dp

=
θ − 1

θ

∫ 1

u
−

d

dp
(1 − p)MX(p)dp(4.6)

=
θ − 1

θ
(1 − u)MX(u).

Inserting (4.6) in (4.5) and simplifying

(4.7) MY (u) = C +
MX(u)

θ
,

or
∫ 1

u
(1 − p)qY (p)dp = C(1 − u) +

1

θ

∫ 1

u
(1 − p)qX(p)dp ,

giving

qY (u) =
C

1 − u
+

1

θ
qX(u) .
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Integrating from 0 to u

QY (u) = −C log(1 − u) +
1

θ
QX(u)(4.8)

= Q1(u) + Q2(u) ,

as stated. Conversely assuming (4.8) we have (4.7) and substituting this in the

expression on the left side of (4.5) we have the result stated and this completes

the proof.

Corollary 4.1.

1. When X is exponential (λ), Y is also exponential with parameter
1+Cλθ

λθ .

2. When X has linear mean residual quantile distribution ([5]) with

QX(u) = −(α + µ) log(1 − u) − 2αu , µ > 0, −µ < α < µ ,

and

MX(u) = αu + µ ,

Y also has the same form of distribution with linear mean residual

quantile function

MX(u) =
α

θ
u +

(

C +
µ

θ

)

.

It is noted that (4.8) gives a class of distributions many of which do not

possess a closed form distribution functions, so that it is difficult to arrive such

forms using the distribution function approach.

We conclude this work by noting that here we have proposed an alternative

approach in analysing PMRLM through quantile functions. This brings in some

new results and models that are sometimes difficult to arrive at by using the

traditional approach.
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1. INTRODUCTION

The econometrics literature reveals a type of data called“panel data”, which

refers to the pooling of observations on a cross-section of households, countries,

and firms over several time periods. Pooling this data achieves a deep analysis

of the data and gives a richer source of variation which allows for more efficient

estimation of the parameters. With additional, more informative data, one can

get more reliable estimates and test more sophisticated behavioral models with

less restrictive assumptions. Also, panel data sets are more effective in identifying

and estimating effects that are simply not detectable in pure cross-sectional or

pure time series data. In particular, panel data sets are more effective in studying

complex issues of dynamic behavior. Some of the benefits and limitations of using

panel data sets are listed in Baltagi (2013) and Hsiao (2014).

The pooled least squares (classical pooling) estimator for pooled cross-

sectional and time series data (panel data) models is the best linear unbiased

estimator (BLUE) under the classical assumptions as in the general linear re-

gression model.
1

An important assumption for panel data models is that the

individuals in our database are drawn from a population with a common regres-

sion coefficient vector. In other words, the coefficients of a panel data model must

be fixed. In fact, this assumption is not satisfied in most economic models, see,

e.g., Livingston et al. (2010) and Alcacer et al. (2013). In this article, the panel

data models are studied when this assumption is relaxed. In this case, the model

is called “random-coefficients panel data (RCPD) model”. The RCPD model has

been examined by Swamy in several publications (Swamy 1970, 1973, and 1974),

Rao (1982), Dielman (1992a, b), Beck and Katz (2007), Youssef and Abonazel

(2009), and Mousa et al. (2011). Some statistical and econometric publications

refer to this model as Swamy’s model or as the random coefficient regression

(RCR) model, see, e.g., Poi (2003), Abonazel (2009), and Elhorst (2014, ch.3).

In RCR model, Swamy assumes that the individuals in our panel data are drawn

from a population with a common regression parameter, which is a fixed compo-

nent, and a random component, that will allow the coefficients to differ from unit

to unit. This model has been developed by many researchers, see, e.g., Beran

and Millar (1994), Chelliah (1998), Anh and Chelliah (1999), Murtazashvili and

Wooldridge (2008), Cheng et al. (2013), Fu and Fu (2015), Elster and Wübbeler

(2017), and Horváth and Trapani (2016).

The random-coefficients models have been applied in different fields and

they constitute a unifying setup for many statistical problems. Moreover, several

applications of Swamy’s model have appeared in the literature of finance and

1Dielman (1983, 1989) discussed these assumptions. In the next section in this article, we
will discuss different types of classical pooling estimators under different assumptions.
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economics.
2

Boot and Frankfurter (1972) used the RCR model to examine the

optimal mix of short and long-term debt for firms. Feige and Swamy (1974) ap-

plied this model to estimate demand equations for liquid assets, while Boness and

Frankfurter (1977) used it to examine the concept of risk-classes in finance. Re-

cently, Westerlund and Narayan (2015) used the random-coefficients approach to

predictăthe stock returns at the New York Stock Exchange. Swamy et al. (2015)

applied a random-coefficient framework to deal with two problems frequently en-

countered in applied work; these problems are correcting for misspecifications in

a small area level model and resolving Simpson’s paradox.

Dziechciarz (1989) and Hsiao and Pesaran (2008) classified the random-

coefficients models into two categories (stationary and non-stationary models),

depending on the type of assumption about the coefficient variation. Stationary

random-coefficients models regard the coefficients as having constant means and

variance-covariances, like Swamy’s (1970) model. On the other hand, the coeffi-

cients in non-stationary random-coefficients models do not have a constant mean

and/or variance and can vary systematically; these models are relevant mainly

for modeling the systematic structural variation in time, like the Cooley–Prescott

(1973) model.
3

The main objective of this article is to provide the researchers with general

and more efficient estimators for the stationary RCPD models. To achieve this

objective, we propose and examine alternative estimators of these models under

an assumption that the errors are cross-sectional heteroskedastic and contempo-

raneously correlated as well as with the first-order autocorrelation of the time

series errors.

The rest of the article is organized as follows. Section 2 presents the clas-

sical pooling (CP) estimators of fixed-coefficients models. Section 3 provides

generalized least squares (GLS) estimators of the different random-coefficients

models. In section 4, we examine the efficiency of these estimators, theoretically.

In section 5, we discuss alternative estimators for these models. The Monte

Carlo comparisons between various estimators have been carried out in section 6.

Finally, section 7 offers the concluding remarks.

2The RCR model has been applied also in different sciences fields, see, e.g., Bodhlyera et al.

(2014).
3Cooley and Prescott (1973) suggested a model where coefficients vary from one time period

to another on the basis of a non-stationary process. Similar models have been considered by
Sant (1977) and Rausser et al. (1982).
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2. FIXED-COEFFICIENTS MODELS

Suppose the variable y for the ith cross-sectional unit at time period t

is specified as a linear function of K strictly exogenous variables, xkit, in the

following form:

(2.1) yit =

K
∑

k=1

αkixkit + uit = xitαi + uit , i = 1, 2, ..., N ; t = 1, 2, ..., T ,

where uit denotes the random error term, xit is a 1 ×K vector of exogenous

variables, and αi is the K × 1 vector of coefficients. Stacking equation (2.1) over

time, we obtain:

(2.2) yi = Xiαi + ui ,

where yi = (yi1, ..., yiT )
′
, Xi = (x

′
i1, ..., x

′
iT )

′
, αi = (αi1, ..., αiK)

′
, and

ui = (ui1, ..., uiT )
′
.

When the performance of one individual from the database is of interest,

separate equation regressions can be estimated for each individual unit using the

ordinary least squares (OLS) method. The OLS estimator of αi, is given by:

(2.3) α̂i =
(

X ′
iXi

)−1
X ′

iyi .

Under the following assumptions, α̂i is a BLUE of αi:

Assumption 1: The errors have zero mean, i.e., E(ui) = 0; ∀ i= 1, 2, ..., N.

Assumption 2: The errors have the same variance for each individual:

E
(

uiu
′
j

)

=

{

σ2
uIT if i = j
0 if i 6= j

i, j = 1, 2, ..., N .

Assumption 3: The exogenous variables are non-stochastic, i.e., fixed in

repeated samples, and hence, not correlated with the errors. Also, rank (Xi) =

K < T ; ∀ i = 1, 2, ..., N .

These conditions are sufficient but not necessary for the optimality of the

OLS estimator.
4

When OLS is not optimal, estimation can still proceed equation

by equation in many cases. For example, if variance of ui is not constant, the

errors are either heteroskedastic and/or serially correlated, and the GLS method

will provide relatively more efficient estimates than OLS, even if GLS was applied

to each equation separately as in OLS.

4For more information about the optimality of the OLS estimators, see, e.g., Rao and Mitra
(1971, ch. 8) and Srivastava and Giles (1987, pp. 17–21).
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Another case, If the covariances between ui and uj (i, j = 1, 2, ..., N) do not

equal to zero as in assumption (2) above, then contemporaneous correlation is

present, and we have what Zellner (1962) termed as seemingly unrelated regres-

sion (SUR) equations, where the equations are related through cross-equation

correlation of errors. If the Xi (i = 1, 2, ..., N) matrices do not span the same

column space and contemporaneous correlation exists, a relatively more efficient

estimator of αi than equation by equation OLS is the GLS estimator applied to

the entire equation system, as shown in Zellner (1962).

With either separate equation estimation or the SUR methodology, we ob-

tain parameter estimates for each individual unit in the database. Now suppose it

is necessary to summarize individual relationships and to draw inferences about

certain population parameters. Alternatively, the process may be viewed as build-

ing a single model to describe the entire group of individuals rather than building

a separate model for each. Again, assume that assumptions 1–3 are satisfied and

add the following assumption:

Assumption 4: The individuals in the database are drawn from a popula-

tion with a common regression parameter vector ᾱ, i.e., α1 = α2 = ··· = αN = ᾱ.

Under this assumption, the observations for each individual can be pooled,

and a single regression performed to obtain an efficient estimator of ᾱ. Now, the

equation system is written as:

(2.4) Y = Xᾱ+ u ,

where Y = (y′1, ..., y
′
N )

′
, X = (X ′

1, ..., X
′
N )

′
, u = (u′1, ..., u

′
N )

′
, and ᾱ =

(ᾱ1, ..., ᾱK)
′

is a vector of fixed coefficients which to be estimated. We will

differentiate between two cases to estimate ᾱ in (2.4) based on the variance-

covariance structure of u. In the first case, the errors have the same variance for

each individual as given in assumption 2. In this case, the efficient and unbiased

estimator of ᾱ under assumptions 1–4 is:

̂ᾱCP−OLS =
(

X ′X
)−1

X ′Y.

This estimator has been termed the classical pooling-ordinary least squares

(CP-OLS) estimator. In the second case, which the errors have different variances

along individuals and are contemporaneously correlated as in the SUR framework:

Assumption 5: E
(

uiu
′
j

)

=

{

σiiIT if i = j
σijIT if i 6= j

i, j = 1, 2, ..., N .
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Under assumptions 1, 3, 4 and 5, the efficient and unbiased CP estimator

of ᾱ is:

̂ᾱCP−SUR =

[

X ′
(Σsur ⊗ IT )

−1X
]−1 [

X ′
(Σsur ⊗ IT )

−1Y
]

,

where

Σsur =











σ11 σ12 ··· σ1N

σ21 σ22 ··· σ2N
.
.
.

.

.

.
. . .

.

.

.

σN1 σN2 ··· σNN











.

To make this estimator (̂ᾱCP−SUR) a feasible, the σij can be replaced with

the following unbiased and consistent estimator:

(2.5) σ̂ij =
û′iûj

T −K
; ∀ i, j = 1, 2, ..., N,

where ûi = yi −Xiα̂i is the residuals vector obtained from applying OLS to equa-

tion number i.5

3. RANDOM-COEFFICIENTS MODELS

This section reviews the standard random-coefficients model proposed by

Swamy (1970), and presents the random-coefficients model in the general case,

where the errors are allowed to be cross-sectional heteroskedastic and contem-

poraneously correlated as well as with the first-order autocorrelation of the time

series errors.

3.1. RCR model

Suppose that each regression coefficient in (2.2) is now viewed as a random

variable; that is the coefficients, αi, are viewed as invariant over time, but varying

from one unit to another:

Assumption 6 (for the stationary random-coefficients approach): The

coefficient vector αi is specified as:
6 αi = ᾱ+ µi, where ᾱ is a K × 1 vector of

5The σ̂ij in (2.5) are unbiased estimators because, as assumed, the number of exogenous
variables of each equation is equal, i.e., Ki = K for i = 1, 2, ..., N . However, in the gen-
eral case, Ki 6= Kj , the unbiased estimator is û′

iûj/ [T − Ki − Kj + tr (Pxx)] , where Pxx =

Xi(X
′

iXi)
−1

X ′

iXj

�
X ′

jXj

�
−1

X ′

j . See Srivastava and Giles (1987, pp. 13–17) and Baltagi (2011,
pp. 243–244).

6This means that the individuals in our database are drown from a population with a common
regression parameter ᾱ, which is a fixed component, and a random component µi, allowed to
differ from unit to unit.
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constants, and µi is a K × 1 vector of stationary random variables with zero

means and constant variance-covariances:

E (µi) = 0 and E
(

µiµ
′
j

)

=

{

Ψ if i = j
0 if i 6= j

i, j = 1, 2, ..., N,

where Ψ = diag
{

ψ2
k

}

; for k= 1, 2, ...,K, whereK<N . Furthermore, E (µixjt)= 0

and E (µiujt) = 0 ∀ i and j.

Also, Swamy (1970) assumed that the errors have different variances along

individuals:

Assumption 7: E
(

uiu
′
j

)

=

{

σiiIT if i = j
0 if i 6= j

i, j = 1, 2, ..., N .

Under the assumption 6, the model in equation (2.2) can be rewritten as:

(3.1) Y = Xᾱ+ e; e = Dµ+ u,

where Y,X, u, and ᾱ are defined in (2.4), while µ = (µ′1, ..., µ
′
N )

′
, and D =

diag {Xi}; for i = 1, 2, ..., N .

The model in (3.1), under assumptions 1, 3, 6 and 7, called the ‘RCR

model’, which was examined by Swamy (1970, 1971, 1973, and 1974), Youssef

and Abonazel (2009), and Mousa et al. (2011). We will refer to assumptions 1,

3, 6 and 7 as RCR assumptions. Under these assumptions, the BLUE of ᾱ in

equation (3.1) is:

̂ᾱRCR =
(

X ′
Ω
−1X

)−1
X ′

Ω
−1Y,

where Ω is the variance-covariance matrix of e:

Ω = (Σrcr ⊗ IT ) +D (IN ⊗ Ψ)D′,

where Σrcr = diag {σii}; for i = 1, 2, ..., N . Swamy (1970) showed that the ̂ᾱRCR

estimator can be rewritten as:

̂ᾱRCR =

[

N
∑

i=1

X ′
i

(

XiΨX
′
i + σiiIT

)−1
Xi

]−1 N
∑

i=1

X ′
i

(

XiΨX
′
i + σiiIT

)−1
yi.

The variance-covariance matrix of ̂ᾱRCR under RCR assumptions is:

var
(

̂ᾱRCR

)

=
(

X ′
Ω
−1X

)−1
=

{

N
∑

i=1

[

Ψ + σii

(

X ′
iXi

)−1
]−1
}−1

.

To make the ̂ᾱRCR estimator feasible, Swamy (1971) suggested using the

estimator in (2.5) as an unbiased and consistent estimator of σii, and the following

unbiased estimator for Ψ:

(3.2) Ψ̂ =

[

1

N − 1

(

N
∑

i=1

α̂i α̂
′
i −

1

N

N
∑

i=1

α̂i

N
∑

i=1

α̂′
i

)]

−

[

1

N

N
∑

i=1

σ̂ii

(

X ′
iXi

)−1

]

.
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Swamy (1973, 1974) showed that the estimator ̂ᾱRCR is consistent as both

N,T → ∞ and is asymptotically efficient as T → ∞.
7

It is worth noting that, just as in the error-components model, the estimator

(3.2) is not necessarily non-negative definite. Mousa et al. (2011) explained that

it is possible to obtain negative estimates of Swamy’s estimator in (3.2) in case

of small samples and if some/all coefficients are fixed. But in medium and large

samples, the negative variance estimates does not appear even if all coefficients

are fixed. To solve this problem, Swamy has suggested replacing (3.2) by:
8

Ψ̂
+

=
1

N − 1

(

N
∑

i=1

α̂i α̂
′
i −

1

N

N
∑

i=1

α̂i

N
∑

i=1

α̂′
i

)

.

This estimator, although biased, is non-negative definite and consistent

when T → ∞. See Judge et al. (1985, p. 542).

3.2. Generalized RCR model

To generalize RCR model so that it would be more suitable for most eco-

nomic models, we assume that the errors are cross-sectional heteroskedastic and

contemporaneously correlated, as in assumption 5, as well as with the first-order

autocorrelation of the time series errors. Therefore, we add the following assump-

tion to assumption 5:

Assumption 8: uit = ρiui,t−1 + εit; |ρi| < 1, where ρi (i = 1, 2, ..., N)

are fixed first-order autocorrelation coefficients. Assume that: E (εit) = 0,

E (ui,t−1εjt) = 0; ∀ i and j, and

E
(

εiε
′
j

)

=

{

σεii
IT if i = j

σεij
IT if i 6= j

i, j = 1, 2, ..., N.

This means that the initial time period of the errors have the same prop-

erties as in subsequent periods, i.e., E
(

u2
i0

)

= σεii
/
(

1 − ρ2
i

)

and E (ui0uj0) =

σεij
/ (1 − ρiρj) ∀ i and j.

We will refer to assumptions 1, 3, 5, 6, and 8 as the general RCR assump-

tions. Under these assumptions, the BLUE of ᾱ is:

̂ᾱGRCR =
(

X ′
Ω
∗−1X

)−1
X ′

Ω
∗−1Y,

7The statistical properties of b̄αRCR have been examined by Swamy (1971), of course, under
RCR assumptions.

8This suggestion has been used by Stata program, specifically in xtrchh and xtrchh2 Stata’s
commands. See Poi (2003).
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where

(3.3)

Ω
∗

=











X1ΨX
′
1 + σε11ω11 σε12ω12 ··· σε1N

ω1N

σε21ω21 X2ΨX
′
2 + σε22ω22 ··· σε2N

ω2N
.
.
.

.

.

.
. . .

.

.

.

σεN1ωN1 σεN2ωN2 ··· XNΨX ′
N + σεNN

ωNN











,

with

(3.4) ωij =
1

1 − ρiρj











1 ρi ρ2
i ··· ρT−1

i

ρj 1 ρi ··· ρT−2
i

.

.

.
.
.
.

.

.

.
. . .

.

.

.

ρT−1
j ρT−2

j ρT−3
j ··· 1











.

Since the elements of Ω
∗

are usually unknown, we develop a feasible Aitken

estimator of ᾱ based on consistent estimators of the elements of Ω
∗
:

(3.5) ρ̂i =

∑T
t=2 ûitûi,t−1
∑T

t=2 û
2
i,t−1

,

where ûi = (ûi1, ..., ûiT )
′
is the residuals vector obtained from applying OLS to

equation number i,

σ̂εij
=

ε̂′iε̂j
T −K

,

where ε̂i = (ε̂i1, ..., ε̂iT )
′
; ε̂i1= ûi1

√

1− ρ̂2
i , and ε̂it = ûit− ρ̂iûi,t−1 for t= 2, ..., T .

Replacing ρi by ρ̂i in (3.4), yields consistent estimators of ωij , say ω̂ij ,

which leads together with σ̂εij
and ω̂ij to a consistent estimator of Ψ:

9

(3.6)

Ψ̂
∗

=
1

N−1

(

N
∑

i=1
α̂∗

i α̂
∗′
i − 1

N

N
∑

i=1
α̂∗

i

N
∑

i=1
α̂∗′

i

)

− 1
N

N
∑

i=1
σ̂εii

(

X ′
iω̂

−1
ii Xi

)−1

+















1
N(N−1)

N
∑

i 6= j
i, j = 1

σ̂εij

(

X ′
iω̂

−1
ii Xi

)−1

X ′
iω̂

−1
ii ω̂ijω̂

−1
jj Xj

(

X ′
jω̂

−1
jj Xj

)−1















,

where

(3.7) α̂∗
i =

(

X ′
iω̂

−1
ii Xi

)−1
X ′

iω̂
−1
ii yi.

By using the consistent estimators (σ̂εij
, ω̂ij , and Ψ̂

∗
) in (3.3), and proceed

a consistent estimator of Ω
∗

is obtained, say Ω̂
∗
, that leads to get the generalized

9The estimator of ρi in (3.5) is consistent, but it is not unbiased. See Srivastava and Giles
(1987, p. 211) for other suitable consistent estimators of ρi that are often used in practice.
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RCR (GRCR) estimator of ᾱ:

̂ᾱGRCR =

(

X ′
Ω̂
∗−1X

)−1
X ′

Ω̂
∗−1Y.

The estimated variance-covariance matrix of ̂ᾱGRCR is:

(3.8) v̂ar
(

̂ᾱGRCR

)

=

(

X ′
Ω̂
∗−1X

)−1
.

4. EFFICIENCY GAINS

In this section, we examine the efficiency gains from the use of GRCR

estimator. Under the general RCR assumptions, It is easy to verify that the

classical pooling estimators (̂ᾱCP−OLS and ̂ᾱCP−SUR) and Swamy’s estimator

(̂ᾱRCR) are unbiased for ᾱ and with variance-covariance matrices:

var
(

̂ᾱCP−OLS

)

= G1Ω
∗G′

1;

var
(

̂ᾱCP−SUR

)

= G2Ω
∗G′

2;

var
(

̂ᾱRCR

)

= G3Ω
∗G′

3,

where

G1 =
(

X ′X
)−1

X ′
;

G2 =
[

X ′ (
Σ
−1
sur ⊗ IT

)

X
]−1

X ′ (
Σ
−1
sur ⊗ IT

)

;

G3 =
(

X ′
Ω
−1X

)−1
X ′

Ω
−1.

(4.1)

The efficiency gains, from the use of GRCR estimator, can be summarized

in the following equation:

EGγ = var
(

̂ᾱγ

)

− var
(

̂ᾱGRCR

)

= (Gh −G0) Ω
∗
(Gh −G0)

′
; for h = 1, 2, 3,

where the subscript γ indicates the estimator that is used (CP-OLS, CP-SUR, or

RCR), G0 =
(

X ′
Ω
∗−1X

)−1
X ′

Ω
∗−1

, and Gh (for h = 1, 2, 3) matrices are defined

in (4.1).

Since Ω
∗, Σrcr, Σsur and Ω are positive definite matrices, then EGγ ma-

trices are positive semi-definite matrices. In other words, the GRCR estimator

is more efficient than CP-OLS, CP-SUR, and RCR estimators. These efficiency

gains increase when |ρi| , σεij
, and ψ2

k increase. However, it is not clear to what

extent these efficiency gains hold in small samples. Therefore, this will be exam-

ined in a simulation study.
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5. ALTERNATIVE ESTIMATORS

A consistent estimator of ᾱ can also be obtained under more general as-

sumptions concerning αi and the regressors. One such possible estimator is the

mean group (MG) estimator, proposed by Pesaran and Smith (1995) for estima-

tion of dynamic panel data (DPD) models with random coefficients.
10

The MG

estimator is defined as the simple average of the OLS estimators:

(5.1) ̂ᾱMG =
1

N

N
∑

i=1

α̂i.

Even though the MG estimator has been used in DPD models with random

coefficients, it will be used here as one of alternative estimators of static panel

data models with random coefficients. Note that the simple MG estimator in

(5.1) is more suitable for the RCR Model. But to make it suitable for the GRCR

model, we suggest a general mean group (GMG) estimator as:

(5.2) ̂ᾱGMG =
1

N

N
∑

i=1

α̂∗
i ,

where α̂∗
i is defined in (3.7).

Lemma 5.1. If the general RCR assumptions are satisfied, then ̂ᾱMG

and ̂ᾱGMG are unbiased estimators of ᾱ, with the estimated variance-covariance

matrices of ̂ᾱMG and ̂ᾱGMG are:

v̂ar
(

̂ᾱMG

)

=
1

N
Ψ̂

∗
+

1

N2

N
∑

i=1

σ̂εii

(

X ′
iXi

)−1
X ′

iω̂iiXi

(

X ′
iXi

)−1

+
1

N2

N
∑

i 6= j
i, j = 1

σ̂εij

(

X ′
iXi

)−1
X ′

iω̂ijXj

(

X ′
jXj

)−1
,

(5.3)

(5.4) v̂ar
(

̂ᾱGMG

)

=
1

N (N − 1)























N
∑

i=1
α̂∗

i α̂
∗′
i − 1

N

N
∑

i=1
α̂∗

i

N
∑

i=1
α̂∗′

i

+

N
∑

i 6= j
i, j = 1

σ̂εij

(

X ′
iω̂

−1
ii Xi

)−1

X ′
iω̂

−1
ii ω̂ijω̂

−1
jj Xj

(

X ′
jω̂

−1
jj Xj

)−1























.

10For more information about the estimation methods for DPD models, see, e.g., Baltagi
(2013), Abonazel (2014, 2017), Youssef et al. (2014a,b), and Youssef and Abonazel (2017).
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Proof of Lemma 5.1:

A. Unbiasedness property of MG and GMG estimators:

Proof: By substituting (3.7) and (2.2) into (5.2):

̂ᾱGMG =
1

N

N
∑

i=1

(

X ′
iω

−1
ii Xi

)−1
X ′

iω
−1
ii (Xiαi + ui)

=
1

N

N
∑

i=1

αi +
(

X ′
iω

−1
ii Xi

)−1
X ′

iω
−1
ii ui.

(5.5)

Similarly, we can rewrite ̂ᾱMG in (5.1) as:

(5.6) ̂ᾱMG =
1

N

N
∑

i=1

αi +
(

X ′
iXi

)−1
X ′

iui.

Taking the expectation for (5.5) and (5.6), and using assumptions 1 and 6:

E
(

̂ᾱGMG

)

= E
(

̂ᾱMG

)

=
1

N

N
∑

i=1

ᾱ = ᾱ.

B. Derive the variance-covariance matrix of GMG:

Proof: Note first that under assumption 6, αi = ᾱ+ µi. Add α̂∗
i to the

both sides:

αi + α̂∗
i = ᾱ+ µi + α̂∗

i ,

(5.7) α̂∗
i = ᾱ+ µi + α̂∗

i − αi = ᾱ+ µi + τi,

where τi = α̂∗
i − αi =

(

X ′
iω

−1
ii Xi

)−1
X ′

iω
−1
ii ui. From (5.7):

1

N

N
∑

i=1

α̂∗
i = ᾱ+

1

N

N
∑

i=1

µi +
1

N

N
∑

i=1

τi,

which means that

(5.8) ̂ᾱGMG = ᾱ+ µ̄+ τ̄ ,

where µ̄ =
1
N

N
∑

i=1
µi and τ̄ =

1
N

N
∑

i=1
τi. From (5.8) and using the general RCR
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assumptions:

var
(

̂ᾱGMG

)

= var (µ̄) + var (τ̄)

=
1

N
Ψ +

1

N2

N
∑

i=1

σεii

(

X ′
iω

−1
ii Xi

)−1

+
1

N2

N
∑

i 6= j
i, j = 1

σεij

(

X ′
iω

−1
ii Xi

)−1
X ′

iω
−1
ii ωijω

−1
jj Xj

(

X ′
jω

−1
jj Xj

)−1
.

Using the consistent estimators of Ψ, σεij
, and ωij defined above, then we get

the formula of v̂ar
(

̂ᾱGMG

)

as in equation (5.4).

C. Derive the variance-covariance matrix of MG:

Proof: As above, equation (2.3) can be rewritten as follows:

(5.9) α̂i = ᾱ+ µi + λi,

where λi = α̂i − αi = (X ′
iXi)

−1X ′
iui. From (5.9):

1

N

N
∑

i=1

α̂i = ᾱ+
1

N

N
∑

i=1

µi +
1

N

N
∑

i=1

λi,

which means that

(5.10) ̂ᾱMG = ᾱ+ µ̄+ λ̄,

where µ̄ =
1
N

N
∑

i=1
µi, and λ̄ =

1
N

N
∑

i=1
λi . From (5.10) and using the general RCR

assumptions:

var
(

̂ᾱMG

)

= var (µ̄) + var
(

λ̄
)

=
1

N
Ψ +

1

N2

N
∑

i=1

σεii

(

X ′
iXi

)−1
X ′

iωiiXi

(

X ′
iXi

)−1

+
1

N2

N
∑

i 6= j
i, j = 1

σεij

(

X ′
iXi

)−1
X ′

iωijXj

(

X ′
jXj

)−1
.

As in the GMG estimator, and by using the consistent estimators of Ψ, σεij
, and

ωij , then we get the formula of v̂ar
(

̂ᾱGM

)

as in equation (5.3).

It is noted from lemma 1 that the variance of the GMG estimator is less

than the variance of the MG estimator when the general RCR assumptions are
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satisfied. In other words, the GMG estimator is more efficient than the MG

estimator. But under RCR assumptions, we have:

var
(

̂ᾱMG

)

= var
(

̂ᾱGMG

)

=
1

N (N − 1)

(

N
∑

i=1

αiα
′
i −

1

N

N
∑

i=1

αi

N
∑

i=1

α′
i

)

=
1

N
Ψ

+.

The next lemma explains the asymptotic variances (as T → ∞ with N

fixed) properties of GRCR, RCR, GMG, and MG estimators. In order to justify

the derivation of the asymptotic variances, we must assume the following:

Assumption 9: plim
T→∞

T−1X ′
iXi and plim

T→∞
T−1X ′

iω̂
−1
ii Xi are finite and pos-

itive definite for all i and for |ρi| < 1.

Lemma 5.2. If the general RCR assumptions and assumption 9 are satis-

fied, then the estimated asymptotic variance-covariance matrices of GRCR, RCR,

GMG, and MG estimators are equal:

plim
T→∞

v̂ar
(

̂ᾱGRCR

)

= plim
T→∞

v̂ar
(

̂ᾱRCR

)

= plim
T→∞

v̂ar
(

̂ᾱGMG

)

= plim
T→∞

v̂ar
(

̂ᾱMG

)

= N−1
Ψ

+.

Proof of Lemma 5.2:

Following the same argument as in Parks (1967) and utilizing assumption

9, we can show that:

plim
T→∞

α̂i = plim
T→∞

α̂∗
i = αi, plim

T→∞
ρ̂ij = ρij ,

plim
T→∞

σ̂εij
= σεij

, and plim
T→∞

ω̂ij = ωij ,
(5.11)

and then

plim
T→∞

1

T
σ̂εii

T
(

X ′
iω̂

−1
ii Xi

)−1
= plim

T→∞

1

T
σ̂εii

T
(

X ′
iXi

)−1
X ′

iω̂iiXi

(

X ′
iXi

)−1

= plim
T→∞

1

T
σ̂εij

T
(

X ′
iXi

)−1
X ′

iω̂ijXj

(

X ′
jXj

)−1

= plim
T→∞

1

T
σ̂εij

T
(

X ′
iω̂

−1
ii Xi

)−1
X ′

iω̂
−1
ii ω̂ijω̂

−1
jj Xj

(

X ′
jω̂

−1
jj Xj

)−1
= 0.

(5.12)

Substituting (5.11) and (5.12) in (3.6):

(5.13) plim
T→∞

Ψ̂
∗

=
1

N − 1

(

N
∑

i=1

αiα
′
i −

1

N

N
∑

i=1

αi

N
∑

i=1

α′
i

)

= Ψ
+.
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By substituting (5.11)–(5.13) into (5.3), (5.4), and (3.8):

plim
T→∞

v̂ar
(

̂ᾱMG

)

=
1

N
plim
T→∞

Ψ̂
∗

+
1

N2

N
∑

i=1

plim
T→∞

1

T
σ̂εii

T
(

X ′
iXi

)−1
X ′

iω̂iiXi

(

X ′
iXi

)−1

+
1

N2

N
∑

i 6= j
i, j = 1

plim
T→∞

1

T
σ̂εij

T
(

X ′
iXi

)−1
X ′

iω̂ijXj

(

X ′
jXj

)−1

=
1

N
Ψ

+,

(5.14)

(5.15)

plim
T→∞

v̂ar
(

̂ᾱGMG

)

=
1

N(N−1) plim
T→∞

(

N
∑

i=1
α̂∗

i α̂
∗′
i − 1

N

N
∑

i=1
α̂∗

i

N
∑

i=1
α̂∗′

i

)

+
1

N(N−1)

N
∑

i 6= j
i, j = 1







plim
T→∞

1
T σ̂εij

T
(

X ′
iω̂

−1
ii Xi

)−1

X ′
iω̂

−1
ii ω̂ijω̂

−1
jj Xj

(

X ′
jω̂

−1
jj Xj

)−1






=

1
N Ψ

+,

(5.16) plim
T→∞

v̂ar
(

̂ᾱGRCR

)

= plim
T→∞

(

X ′
Ω̂
∗−1X

)−1
=

[

N
∑

i=1

Ψ
+−1

]−1

=
1

N
Ψ

+.

Similarly, we will use the results in (5.11)–(5.13) in case of RCR estimator:

plim
T→∞

v̂ar
(

̂ᾱRCR

)

= plim
T→∞

[

(

X ′
Ω̂
−1X

)−1
X ′

Ω̂
−1

Ω̂
∗

Ω̂
−1X

(

X ′
Ω̂
−1X

)−1
]

=
1

N
Ψ

+.

(5.17)

From (5.14)–(5.17), we can conclude that:

plim
T→∞

v̂ar
(

̂ᾱGRCR

)

= plim
T→∞

v̂ar
(

̂ᾱRCR

)

= plim
T→∞

v̂ar
(

̂ᾱGMG

)

= plim
T→∞

v̂ar
(

̂ᾱMG

)

=
1

N
Ψ

+.

From Lemma 5.2, we can conclude that the means and the variance-

covariance matrices of the limiting distributions of ̂ᾱGRCR, ̂ᾱRCR, ̂ᾱGMG, and

̂ᾱMG are the same and are equal to ᾱ and N−1
Ψ respectively even if the errors

are correlated as in assumption 8. it is not expected to increase the asymptotic

efficiency of ̂ᾱGRCR, ̂ᾱRCR, ̂ᾱGMG, and ̂ᾱMG. This does not mean that the GRCR

estimator cannot be more efficient than RCR, GMG, and MG in small samples

when the errors are correlated as in assumption 8. This will be examined in our

simulation study.
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6. MONTE CARLO SIMULATION

In this section, the Monte Carlo simulation has been used for making com-

parisons between the behavior of the classical pooling estimators (CP-OLS and

CP-SUR), random-coefficients estimators (RCR and GRCR), and mean group

estimators (MG and GMG) in small and moderate samples. The program to

set up the Monte Carlo simulation, written in the R language, is available upon

request. Monte Carlo experiments were carried out based on the following data

generating process:

(6.1) yit =

3
∑

k=1

αkixkit + uit, i = 1, 2, ..., N ; t = 1, 2, ..., T.

To perform the simulation under the general RCR assumptions, the model

in (6.1) was generated as follows:

1. The independent variables, (xkit; k = 1, 2, 3), were generated as inde-

pendent standard normally distributed random variables. The values

of xkit were allowed to differ for each cross-sectional unit. However,

once generated for all N cross-sectional units the values were held fixed

over all Monte Carlo trials.

2. The errors, uit, were generated as in assumption 8: uit = ρui,t−1 + εit,

where the values of εi = (εi1, ..., εiT )
′ ∀ i = 1, 2, ..., N were generated

as multivariate normally distributed with means zeros and variance-

covariance matrix:












σεii
σεij

··· σεij

σεij
σεii

. . .
.
.
.

.

.

.
. . .

. . . σεij

σεij
··· σεij

σεii













,

where the values of σεii
, σεij

, and ρ were chosen to be: σεii
= 1 or 100;

σεij
= 0, 0.75, or 0.95, and ρ = 0, 0.55, or 0.85, where the values of σεii

,

σεij
, and ρ are constants for all i, j = 1, 2, ..., N in each Monte Carlo

trial. The initial values of uit are generated as ui1 = εi1/
√

1 − ρ2 ∀ i =

1, 2, ..., N . The values of errors were allowed to differ for each cross-

sectional unit on a given Monte Carlo trial and were allowed to differ

between trials. The errors are independent with all independent vari-

ables.

3. The coefficients, αki, were generated as in assumption 6: αi = ᾱ+ µi,

where ᾱ = (1, 1, 1)
′
, and µi were generated from two distributions.

First, multivariate normal distribution with means zeros and variance-

covariance matrix Ψ = diag
{

ψ2
k

}

; k = 1, 2, 3. The values of Ψ
2
k were

chosen to be fixed for all k and equal to 5 or 25. Second, multivari-

ate student’s t distribution with degree of freedom (df): df = 1 or 5.
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To include the case of fixed-coefficients models in our simulation study,

we assume that µi = 0.

4. The values of N and T were chosen to be 5, 8, 10, 12, 15, and 20 to rep-

resent small and moderate samples for the number of individuals and

the time dimension. To compare the small and moderate samples per-

formance for the different estimators, three different samplings schemes

have been designed in our simulation, where each design contains four

pairs of N and T . The first two represent small samples while the mod-

erate samples are represented by the second two pairs. These designs

have been created as follows: First, case of N < T , the pairs of N and T

were chosen to be (N,T ) = (5, 8), (5, 12), (10, 15), or (10, 20). Second,

case of N = T , the pairs are (N,T ) = (5, 5), (10, 10), (15, 15), or (20,

20). Third, case of N > T , the pairs are (N,T ) = (8, 5), (12, 5), (15, 10),

or (20, 10).

5. All Monte Carlo experiments involved 1000 replications and all the

results of all separate experiments are obtained by precisely the same

series of random numbers. To raise the efficiency of the comparison

between these estimators, we calculate the average of total standard

errors (ATSE) for each estimator by:

ATSE =
1

1000

1000
∑

l=1

{

trace
[

v̂ar
(

̂ᾱl

)]0.5
}

,

where ̂ᾱl is the estimated vector of ᾱ in (6.1), and v̂ar
(

̂ᾱl

)

is the

estimated variance-covariance matrix of the estimator.

The Monte Carlo results are given in Tables 1–6. Specifically, Tables 1–3

present the ATSE values of the estimators when σεii
= 1, and in cases of N <

T,N = T , andN > T , respectively. While case of σεii
= 100 is presented in Tables

4–6 in the same cases of N and T . In our simulation study, the main factors that

have an effect on the ATSE values of the estimators are N, T, σεii
, σεij

, ρ, ψ2
k

(for normal distribution), and df (for student’s t distribution). From Tables 1–6,

we can summarize some effects for all estimators in the following points:

• When the values of N and T are increased, the values of ATSE are

decreasing for all simulation situations.

• When the value of σεii
is increased, the values of ATSE are increasing

in most situations.

• When the values of (ρ, σεij
) are increased, the values of ATSE are in-

creasing in most situations.

• When the value of ψ2
k is increased, the values of ATSE are increasing

for all situations.

• When the value of df is increased, the values of ATSE are decreasing

for all situations.
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Table 1: ATSE for various estimators when σεii
= 1 and N < T .�

ρ, σεij

�
(0, 0) (0.55, 0.75) (0.85, 0.95)

(N, T ) (5, 8) (5, 12) (10, 15) (10, 20) (5, 8) (5, 12) (10, 15) (10, 20) (5, 8) (5, 12) (10, 15) (10, 20)

µi = 0

CP-OLS 0.920 0.746 0.440 0.436 0.857 0.888 0.409 0.450 1.107 1.496 0.607 0.641
CP-SUR 0.958 0.767 0.419 0.417 0.829 0.880 0.381 0.384 0.947 1.469 0.453 0.532
MG 0.947 0.765 0.470 0.469 0.886 0.910 0.442 0.468 1.133 1.475 0.608 0.636
GMG 0.702 0.556 0.369 0.375 0.638 0.662 0.289 0.305 0.644 1.098 0.302 0.291
RCR 1.012 30.746 0.517 0.497 1.064 1.130 2.241 0.726 1.365 5.960 0.856 1.326
GRCR 0.754 0.624 0.352 0.357 0.634 0.703 0.302 0.295 0.735 1.141 0.324 0.388

µi ∼ N(0, 5)

CP-OLS 4.933 4.682 2.320 2.742 2.588 2.902 2.598 2.130 3.627 5.079 2.165 2.935
CP-SUR 5.870 5.738 2.852 3.411 3.143 3.456 3.212 2.592 4.011 5.906 2.668 3.549
MG 4.057 4.112 2.086 2.494 2.173 2.478 2.352 1.888 3.094 4.040 1.938 2.626
GMG 4.057 4.110 2.084 2.494 2.176 2.479 2.348 1.879 3.052 4.024 1.908 2.606
RCR 4.053 4.114 2.083 2.493 2.632 3.304 2.352 1.888 3.287 6.422 2.052 2.648
GRCR 4.030 4.092 2.067 2.480 2.104 2.413 2.331 1.855 2.969 3.905 1.865 2.578

µi ∼ N(0, 25)

CP-OLS 7.528 7.680 7.147 6.341 8.293 8.156 6.321 6.739 7.942 7.214 4.691 6.423
CP-SUR 8.866 9.439 8.935 8.046 10.104 9.880 8.028 8.402 9.074 8.482 5.739 7.937
MG 6.272 6.549 6.324 5.597 6.879 6.650 5.541 5.917 6.442 6.083 4.118 5.672
GMG 6.271 6.548 6.324 5.597 6.881 6.650 5.538 5.913 6.422 6.078 4.103 5.662
RCR 6.271 6.548 6.324 5.597 6.885 6.657 5.541 5.917 7.546 6.098 4.122 5.686
GRCR 6.251 6.539 6.319 5.590 6.857 6.626 5.530 5.906 6.389 6.010 4.082 5.649

µi ∼ t(5)

CP-OLS 2.253 1.983 1.562 1.544 1.479 1.977 1.060 1.223 2.115 3.301 1.470 1.439
CP-SUR 2.626 2.419 1.925 1.912 1.694 2.266 1.275 1.454 2.403 3.903 1.717 1.643
MG 1.859 1.776 1.410 1.401 1.324 1.722 0.984 1.078 1.923 2.707 1.335 1.260
GMG 1.856 1.771 1.408 1.400 1.316 1.718 0.970 1.064 1.826 2.666 1.284 1.215
RCR 2.002 1.768 1.452 1.396 2.020 3.260 1.017 1.087 12.328 6.655 2.035 2.650
GRCR 1.788 1.727 1.377 1.375 1.215 1.655 0.926 1.019 1.786 2.552 1.221 1.155

µi ∼ t(1)

CP-OLS 16.112 4.096 2.732 10.189 12.490 24.982 6.424 2.837 6.685 5.668 12.763 1.786
CP-SUR 19.483 5.046 3.365 12.976 14.940 29.854 8.009 3.555 7.807 7.043 15.947 2.126
MG 11.751 3.427 2.432 9.094 9.811 19.875 5.742 2.306 5.568 4.365 11.473 1.620
GMG 11.751 3.423 2.431 9.094 9.811 19.875 5.740 2.298 5.540 4.352 11.468 1.583
RCR 11.751 3.423 2.431 9.094 9.813 19.877 5.742 2.304 5.591 7.730 11.475 1.829
GRCR 11.739 3.403 2.417 9.090 9.795 19.868 5.733 2.271 5.498 4.228 11.462 1.530
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Table 2: ATSE for various estimators when σεii
= 1 and N = T .�

ρ, σεij

�
(0, 0) (0.55, 0.75) (0.85, 0.95)

(N, T ) (5,5) (10,10) (15,15) (20,20) (5,5) (10,10) (15,15) (20,20) (5,5) (10,10) (15,15) (20,20)

µi = 0

CP-OLS 1.671 0.461 0.259 0.174 2.081 0.424 0.274 0.207 3.351 0.678 0.394 0.276
CP-SUR 2.387 0.550 0.299 0.178 3.340 0.478 0.291 0.182 4.301 0.716 0.293 0.192
MG 1.686 0.486 0.280 0.183 2.058 0.474 0.300 0.210 3.093 0.668 0.377 0.255
GMG 1.174 0.395 0.234 0.159 1.669 0.363 0.209 0.149 2.028 0.370 0.190 0.115
RCR 1.905 0.557 0.314 0.179 1.997 0.953 0.411 0.502 3.249 1.982 0.471 0.458
GRCR 1.294 0.320 0.173 0.102 1.678 0.264 0.151 0.093 2.480 0.380 0.145 0.094

µi ∼ N(0, 5)

CP-OLS 4.119 3.404 1.982 1.651 4.593 2.002 1.517 1.474 5.023 2.926 1.847 1.740
CP-SUR 6.478 5.521 3.511 3.097 8.141 3.313 2.735 2.737 7.176 4.951 3.313 3.368
MG 3.480 2.750 1.744 1.520 4.015 1.671 1.295 1.341 4.284 2.531 1.633 1.608
GMG 3.481 2.750 1.743 1.520 4.008 1.664 1.289 1.337 4.034 2.515 1.615 1.599
RCR 5.955 2.749 1.743 1.520 4.232 1.666 1.295 1.342 12.312 2.574 1.651 1.617
GRCR 3.400 2.727 1.730 1.513 3.826 1.622 1.266 1.328 3.913 2.463 1.591 1.590

µi ∼ N(0, 25)

CP-OLS 8.056 6.265 4.022 3.637 7.976 5.496 4.240 3.968 10.264 6.615 4.558 3.733
CP-SUR 12.776 10.403 7.168 6.869 14.233 9.622 7.606 7.540 15.004 11.368 8.361 7.229
MG 6.474 5.145 3.558 3.348 6.491 4.599 3.692 3.623 6.798 5.597 4.042 3.464
GMG 6.476 5.145 3.558 3.348 6.498 4.596 3.690 3.622 6.822 5.589 4.036 3.460
RCR 6.469 5.145 3.558 3.348 6.457 4.597 3.692 3.624 10.576 5.614 4.050 3.468
GRCR 6.412 5.134 3.552 3.345 6.399 4.581 3.683 3.618 6.534 5.566 4.027 3.456

µi ∼ t(5)

CP-OLS 2.017 1.444 1.054 0.818 2.719 2.306 1.452 1.202 3.512 1.374 1.130 0.866
CP-SUR 2.952 2.278 1.848 1.499 4.581 4.002 2.602 2.251 4.784 2.113 1.960 1.584
MG 1.900 1.215 0.933 0.759 2.435 1.892 1.228 1.113 3.241 1.209 1.017 0.800
GMG 1.752 1.214 0.933 0.759 2.369 1.886 1.221 1.108 2.635 1.177 0.989 0.780
RCR 2.987 1.209 0.931 0.758 2.862 1.886 1.229 1.114 11.891 1.760 1.527 0.815
GRCR 1.628 1.165 0.908 0.744 2.193 1.848 1.199 1.097 2.727 1.073 0.951 0.762

µi ∼ t(1)

CP-OLS 2.946 4.082 36.296 32.249 170.833 4.983 7.221 5.545 5.447 14.094 27.076 2.245
CP-SUR 4.663 6.691 70.583 64.229 291.169 8.653 13.554 10.472 7.942 25.514 54.690 4.290
MG 2.569 3.337 23.288 26.932 92.236 4.064 5.831 5.069 4.403 11.428 20.763 2.085
GMG 2.565 3.337 23.288 26.932 92.238 4.060 5.829 5.068 4.362 11.420 20.759 2.078
RCR 5.160 3.337 23.288 26.932 92.238 4.061 5.831 5.069 7.663 11.440 20.767 2.091
GRCR 2.433 3.320 23.280 26.931 92.226 4.042 5.823 5.065 4.024 11.401 20.753 2.072
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Table 3: ATSE for various estimators when σεii
= 1 and N > T .�

ρ, σεij

�
(0, 0) (0.55, 0.75) (0.85, 0.95)

(N, T ) (8, 5) (12, 5) (15, 10) (20, 10) (8, 5) (12, 5) (15, 10) (20, 10) (8, 5) (12, 5) (15, 10) (20, 10)

µi = 0

CP-OLS 1.763 3.198 0.510 0.438 1.254 1.399 0.436 0.536 1.218 1.350 0.688 0.591
CP-SUR 2.504 4.585 0.635 0.518 1.748 1.963 0.497 0.607 1.637 1.808 0.780 0.655
MG 1.856 2.927 0.576 0.475 1.434 1.455 0.501 0.618 1.528 1.523 0.830 0.631
GMG 1.288 1.767 0.452 0.391 1.017 0.995 0.350 0.417 1.014 0.982 0.468 0.433
RCR 7.356 2.702 0.567 0.573 1.353 1.333 0.693 1.625 1.490 1.468 2.432 1.605
GRCR 1.289 2.277 0.342 0.267 0.937 1.010 0.248 0.306 0.865 0.856 0.413 0.312

µi ∼ N(0, 5)

CP-OLS 3.136 4.014 2.525 2.017 3.677 3.352 2.477 3.105 2.146 3.501 1.927 2.415
CP-SUR 4.590 5.845 3.576 2.888 5.279 4.824 3.485 4.396 3.080 4.935 2.687 3.393
MG 2.753 3.418 2.153 1.685 2.972 2.643 2.113 2.628 2.191 2.813 1.724 2.156
GMG 2.665 3.425 2.152 1.684 2.951 2.660 2.106 2.617 2.097 2.748 1.679 2.142
RCR 3.611 3.306 2.146 1.681 2.897 3.034 2.109 2.621 61.169 137.429 2.187 2.147
GRCR 2.400 2.982 2.103 1.636 2.774 2.399 2.066 2.572 1.852 2.550 1.532 2.075

µi ∼ N(0, 25)

CP-OLS 6.919 6.434 6.179 5.259 6.442 5.639 4.972 4.460 6.279 7.428 5.480 5.366
CP-SUR 10.250 9.292 8.750 7.682 9.200 8.224 7.123 6.378 9.507 10.544 7.791 7.698
MG 5.090 5.029 5.092 4.381 4.987 4.505 4.167 3.688 5.353 5.689 4.545 4.756
GMG 5.046 5.031 5.092 4.380 4.971 4.512 4.163 3.680 5.316 5.677 4.530 4.749
RCR 4.986 4.735 5.091 4.380 4.939 4.466 4.165 3.683 5.303 6.219 4.538 4.753
GRCR 4.898 4.588 5.071 4.362 4.874 4.408 4.142 3.645 5.189 5.559 4.479 4.720

µi ∼ t(5)

CP-OLS 1.779 2.367 1.151 1.080 1.780 2.464 1.986 1.308 2.157 2.848 1.473 1.283
CP-SUR 2.541 3.365 1.604 1.493 2.596 3.711 2.929 1.745 3.137 4.179 1.987 1.730
MG 1.839 1.989 1.010 0.943 1.647 2.276 1.603 1.074 2.109 2.401 1.260 1.467
GMG 1.577 1.974 1.008 0.942 1.563 2.245 1.586 1.076 1.730 2.362 1.235 1.255
RCR 2.573 2.327 0.991 0.960 2.785 2.945 1.591 1.097 3.523 3.020 3.322 3.509
GRCR 1.336 1.738 0.924 0.837 1.529 1.893 1.525 0.982 1.652 2.120 1.124 1.049

µi ∼ t(1)

CP-OLS 23.572 9.953 1.708 9.638 9.612 3.030 5.400 4.609 6.932 8.340 25.666 4.259
CP-SUR 35.133 13.767 2.466 14.035 15.207 4.429 8.027 6.816 9.309 12.412 39.880 6.199
MG 17.304 6.568 1.410 6.014 7.568 2.654 4.164 3.451 4.802 6.004 16.848 3.318
GMG 17.295 6.563 1.409 6.014 7.580 2.629 4.155 3.452 4.781 5.991 16.840 3.267
RCR 17.295 6.535 1.398 6.012 7.546 2.499 4.158 3.456 6.130 5.997 16.849 4.158
GRCR 17.263 6.483 1.345 5.979 7.492 2.345 4.128 3.407 4.593 5.877 16.779 3.081
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Table 4: ATSE for various estimators when σεii
= 100 and N < T .�

ρ, σεij

�
(0, 0) (0.55, 0.75) (0.85, 0.95)

(N, T ) (5, 8) (5, 12) (10, 15) (10, 20) (5, 8) (5, 12) (10, 15) (10, 20) (5, 8) (5, 12) (10, 15) (10, 20)

µi = 0

CP-OLS 2.908 2.357 1.389 1.379 2.756 2.863 1.414 1.395 3.798 5.179 2.042 2.208
CP-SUR 3.028 2.422 1.323 1.316 2.806 2.997 1.335 1.302 3.520 5.316 1.692 1.989
MG 2.993 2.419 1.486 1.483 2.830 2.984 1.492 1.503 3.850 4.907 2.010 2.292
GMG 2.221 1.759 1.168 1.187 1.975 2.180 1.027 1.004 2.132 3.466 1.022 1.191
RCR 3.199 97.225 1.634 1.570 3.205 6.691 2.576 2.846 4.711 7.169 2.708 3.170
GRCR 2.381 1.970 1.111 1.128 2.188 2.399 1.061 1.029 2.667 3.872 1.220 1.429

µi ∼ N(0, 5)

CP-OLS 5.096 4.872 2.481 2.890 3.298 3.570 2.732 2.260 4.432 6.390 2.479 3.180
CP-SUR 5.787 5.751 2.856 3.437 3.573 3.960 3.305 2.557 4.449 6.946 2.463 3.524
MG 4.533 4.450 2.361 2.737 3.193 3.448 2.575 2.172 4.327 5.642 2.363 3.076
GMG 4.507 4.427 2.349 2.734 2.869 3.165 2.539 2.101 3.695 5.110 2.150 2.849
RCR 11.579 5.572 2.500 2.702 3.871 8.045 3.278 3.489 7.748 9.539 5.301 22.220
GRCR 4.179 4.294 2.166 2.576 2.755 3.026 2.378 1.911 3.456 5.004 1.879 2.560

µi ∼ N(0, 25)

CP-OLS 7.670 7.803 7.209 6.407 8.362 8.314 6.380 6.781 7.971 7.887 4.852 6.554
CP-SUR 8.833 9.460 8.952 8.050 10.073 10.032 8.245 8.508 9.153 9.160 5.890 8.277
MG 6.570 6.760 6.431 5.714 7.118 7.016 5.653 6.018 6.812 7.017 4.338 5.913
GMG 6.556 6.749 6.426 5.713 7.116 7.013 5.625 5.991 6.658 6.996 4.240 5.795
RCR 10.949 6.908 6.423 5.706 7.103 7.629 5.647 6.008 11.120 16.814 9.260 6.478
GRCR 6.400 6.633 6.370 5.646 6.945 6.826 5.558 5.932 6.286 6.595 4.057 5.661

µi ∼ t(5)

CP-OLS 3.227 2.672 1.820 1.804 2.894 3.067 1.534 1.558 4.052 5.630 2.112 2.299
CP-SUR 3.432 2.879 1.975 1.959 3.045 3.327 1.529 1.560 3.998 6.065 1.838 2.099
MG 3.186 2.654 1.829 1.810 2.924 3.097 1.588 1.617 4.042 5.146 2.071 2.318
GMG 2.816 2.405 1.799 1.782 2.296 2.690 1.394 1.435 2.792 4.288 1.603 1.692
RCR 3.665 3.442 2.592 2.462 4.922 4.147 3.057 4.985 9.667 14.064 3.871 6.113
GRCR 2.666 2.317 1.625 1.543 2.374 2.662 1.232 1.233 3.045 4.365 1.456 1.604

µi ∼ t(1)

CP-OLS 16.193 4.345 2.882 10.228 12.527 25.028 6.481 2.957 6.842 6.962 12.819 2.363
CP-SUR 19.488 5.071 3.383 12.975 14.929 30.583 8.213 3.571 7.803 7.838 16.626 2.317
MG 11.990 3.871 2.673 9.164 9.996 19.985 5.841 2.595 6.095 5.929 11.548 2.434
GMG 11.990 3.832 2.665 9.163 9.979 19.993 5.819 2.524 5.898 5.591 11.512 1.988
RCR 11.965 4.529 2.625 9.162 9.966 19.996 5.839 3.527 13.705 59.015 11.574 14.464
GRCR 11.840 3.650 2.507 9.122 9.862 19.940 5.762 2.360 5.434 5.506 11.460 1.773
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Table 5: ATSE for various estimators when σεii
= 100 and N = T .�

ρ, σεij

�
(0, 0) (0.55, 0.75) (0.85, 0.95)

(N, T ) (5,5) (10,10) (15,15) (20,20) (5,5) (10,10) (15,15) (20,20) (5,5) (10,10) (15,15) (20,20)

µi = 0

CP-OLS 5.284 1.456 0.818 0.548 6.920 1.339 0.904 0.629 11.353 2.314 1.215 0.871
CP-SUR 7.548 1.737 0.942 0.559 10.528 1.580 0.977 0.589 15.654 2.573 0.987 0.625
MG 5.331 1.537 0.886 0.577 6.606 1.417 0.998 0.658 10.554 2.362 1.238 0.839
GMG 3.712 1.250 0.741 0.503 5.470 1.105 0.693 0.466 6.959 1.419 0.602 0.410
RCR 6.023 1.759 0.990 0.564 8.315 2.026 2.034 1.388 10.978 3.817 2.088 1.241
GRCR 4.090 1.007 0.545 0.318 5.497 0.907 0.527 0.318 8.037 1.363 0.525 0.325

µi ∼ N(0, 5)

CP-OLS 5.580 3.519 2.061 1.705 7.429 2.182 1.629 1.543 10.993 3.155 1.991 1.859
CP-SUR 8.237 5.479 3.497 3.091 11.726 3.255 2.651 2.742 15.414 4.585 3.080 3.221
MG 5.622 2.996 1.876 1.592 6.993 1.987 1.522 1.438 10.338 3.017 1.864 1.733
GMG 4.959 2.994 1.876 1.591 6.571 1.968 1.459 1.406 7.682 2.893 1.712 1.649
RCR 8.572 3.064 1.861 1.588 8.773 2.645 2.696 1.435 10.818 6.531 3.172 1.779
GRCR 4.679 2.764 1.747 1.520 6.313 1.727 1.249 1.322 8.234 2.397 1.489 1.558

µi ∼ N(0, 25)

CP-OLS 8.220 6.333 4.056 3.661 9.384 5.567 4.285 3.991 12.808 6.724 4.618 3.788
CP-SUR 12.685 10.388 7.152 6.865 15.219 9.557 7.574 7.573 18.954 11.401 8.194 7.215
MG 7.404 5.282 3.620 3.380 8.388 4.740 3.779 3.657 11.236 5.845 4.138 3.523
GMG 7.257 5.281 3.620 3.380 8.438 4.728 3.754 3.645 9.858 5.787 4.073 3.482
RCR 12.035 5.272 3.618 3.380 9.526 4.731 3.774 3.658 12.921 6.137 4.153 3.545
GRCR 6.703 5.166 3.556 3.347 7.863 4.608 3.688 3.613 9.475 5.537 3.995 3.440

µi ∼ t(5)

CP-OLS 5.268 1.758 1.205 0.930 6.905 2.466 1.566 1.289 11.183 2.322 1.363 1.078
CP-SUR 7.487 2.302 1.826 1.505 10.462 3.902 2.518 2.232 15.445 2.648 1.486 1.354
MG 5.301 1.734 1.173 0.901 6.588 2.197 1.457 1.231 10.371 2.363 1.359 1.024
GMG 3.914 1.688 1.171 0.900 5.741 2.170 1.392 1.193 7.036 1.810 1.138 0.874
RCR 6.313 2.356 1.226 0.885 8.980 4.088 1.806 1.224 10.384 6.372 4.418 4.574
GRCR 4.238 1.313 0.937 0.764 5.796 1.894 1.179 1.094 8.124 1.489 0.823 0.688

µi ∼ t(1)

CP-OLS 5.492 4.176 36.310 32.254 170.969 5.046 7.246 5.564 11.208 14.166 27.093 2.332
CP-SUR 8.085 6.670 70.596 64.232 277.362 8.718 13.502 10.390 15.450 26.068 54.457 4.185
MG 5.469 3.529 23.379 26.943 92.536 4.228 5.898 5.095 10.448 11.655 20.834 2.180
GMG 4.346 3.528 23.378 26.943 92.558 4.213 5.878 5.086 7.748 11.603 20.786 2.114
RCR 7.220 3.503 23.365 26.943 92.513 4.383 5.895 5.096 13.141 12.397 20.840 2.210
GRCR 4.471 3.354 23.296 26.932 92.445 4.050 5.822 5.064 8.345 11.384 20.731 2.046
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Table 6: ATSE for various estimators when σεii
= 100 and N > T .�

ρ, σεij

�
(0, 0) (0.55, 0.75) (0.85, 0.95)

(N, T ) (8, 5) (12, 5) (15, 10) (20, 10) (8, 5) (12, 5) (15, 10) (20, 10) (8, 5) (12, 5) (15, 10) (20, 10)

µi = 0

CP-OLS 5.574 3.501 1.511 1.493 5.616 4.178 1.764 1.546 8.088 9.255 2.325 2.474
CP-SUR 7.919 4.835 1.798 1.840 7.780 5.841 2.229 1.813 11.886 12.804 2.723 2.975
MG 5.868 3.453 1.659 1.676 5.678 4.306 1.908 1.629 9.127 8.473 2.678 2.773
GMG 4.073 2.490 1.349 1.337 3.643 3.717 1.515 1.219 5.788 7.373 1.382 1.581
RCR 23.253 3.498 1.759 1.808 5.403 6.417 5.387 2.286 8.172 11.799 2.744 4.156
GRCR 4.072 2.397 0.931 0.972 3.998 3.241 1.142 0.872 5.937 6.519 1.267 1.352

µi ∼ N(0, 5)

CP-OLS 5.574 4.258 2.867 2.692 5.221 5.014 2.744 2.396 8.256 9.261 2.333 3.037
CP-SUR 7.899 5.954 3.858 3.725 7.202 7.096 3.802 3.166 12.049 12.885 2.782 4.092
MG 5.793 3.775 2.616 2.509 5.407 4.904 2.622 2.241 9.299 8.462 2.682 3.135
GMG 4.753 3.635 2.615 2.503 4.022 4.657 2.663 2.226 6.423 7.531 2.230 2.815
RCR 7.585 5.340 2.525 2.569 25.633 6.314 8.404 2.808 10.171 10.268 15.344 8.355
GRCR 4.220 3.123 2.206 2.063 3.901 3.925 2.101 1.771 6.533 6.464 1.443 2.026

µi ∼ N(0, 25)

CP-OLS 7.383 6.000 5.791 4.700 6.808 7.512 4.220 6.284 7.648 11.202 4.729 4.463
CP-SUR 10.777 8.636 8.118 6.667 9.409 11.012 5.987 8.667 11.213 16.010 6.596 6.367
MG 6.876 4.940 4.816 4.146 6.287 6.642 3.722 5.162 8.635 9.623 4.346 4.168
GMG 6.442 4.902 4.815 4.143 6.205 6.532 3.765 5.156 7.205 9.360 4.171 3.961
RCR 11.741 5.730 4.792 4.090 11.299 7.379 3.776 5.160 12.146 12.980 13.643 7.505
GRCR 5.510 4.310 4.615 3.915 5.288 5.902 3.379 4.983 6.356 8.403 3.669 3.352

µi ∼ t(5)

CP-OLS 5.373 3.666 1.719 1.726 5.575 4.294 1.789 1.805 8.085 9.347 2.373 2.455
CP-SUR 7.646 5.136 2.115 2.217 7.757 5.989 2.248 2.223 11.901 13.041 2.803 2.974
MG 5.706 3.482 1.779 1.837 5.623 4.394 1.926 1.802 9.133 8.456 2.695 2.784
GMG 4.249 3.082 1.722 1.759 3.683 3.907 1.647 1.727 5.933 7.429 1.691 1.879
RCR 9.861 5.223 2.501 2.758 5.421 5.238 3.195 3.158 13.392 14.875 4.908 6.298
GRCR 3.915 2.670 1.150 1.268 4.044 3.334 1.188 1.170 6.032 6.570 1.342 1.415

µi ∼ t(1)

CP-OLS 5.821 3.703 4.328 6.252 6.016 5.931 31.442 4.149 11.344 10.999 5.576 3.013
CP-SUR 8.533 5.188 6.188 9.132 8.500 8.555 47.659 5.806 17.261 15.893 8.562 3.969
MG 5.986 3.550 3.544 5.182 5.876 5.420 21.165 3.416 11.058 9.507 4.826 3.140
GMG 4.941 3.242 3.537 5.179 5.579 5.219 21.177 3.402 8.986 9.203 4.557 2.831
RCR 8.791 13.034 13.254 5.140 7.133 6.561 21.171 3.896 13.086 12.317 10.078 10.717
GRCR 4.403 2.740 3.115 4.987 4.936 4.559 21.041 3.093 8.697 7.876 3.877 2.021
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For more deeps in simulation results, we can conclude the following results:

1. Generally, the performance of all estimators in cases of N 6 T is better

than their performance in case of N > T . Similarly, their performance

in cases of σεii
= 1 is better than the performance in case of σεii

= 100,

but not as significantly better as in N and T .

2. When σεij
= ρ = µi = 0, the ATSE values of the classical pooling es-

timators (CP-OLS and CP-SUR) are approximately equivalent, espe-

cially when the sample size is moderate and/or N 6 T . However, the

ATSE values of GMG and GRCR estimators are smaller than those

of the classical pooling estimators in this situation (σεij
= ρ = µi = 0)

and other simulation situations (case of σεii
, σεij

, ρ, ψ2
k are increasing,

and df is decreasing). In other words, GMG and GRCR are more ef-

ficient than CP-OLS and CP-SUR whether the regression coefficients

are fixed or random.

3. If T ≥ 15, the values of ATSE for the MG and GMG estimators are

approximately equivalent. This result is consistent with Lemma 5.2.

According to our study, this case (T ≥ 15) is achieved when the sample

size is moderate in Tables 1, 2, 4, and 5. Moreover, convergence slows

down if σεii
, σεij

, and ρ are increased. But the situation for the RCR

and GRCR estimators is different; the convergence between them is

very slow even if T = 20. So the MG and GMG estimators are more

efficient than RCR in all simulation situations.

4. When the coefficients are random (whether they are distributed as nor-

mal or student’s t), the values of ATSE for GMG and GRCR are

smaller than those of MG and RCR in all simulation situations (for

any N, T, σεii
, σεij

, and ρ). However, the ATSE values of GRCR are

smaller than those of GMG estimator in most situations, especially

when the sample size is moderate. In other words, the GRCR estima-

tor performs better than all other estimators as long as the sample size

is moderate regardless of other simulation factors.
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7. CONCLUSION

In this article, the classical pooling (CP-OLS and CP-SUR), random-

coefficients (RCR and GRCR), and mean group (MG and GMG) estimators of

stationary RCPD models were examined in different sample sizes for the case

where the errors are cross-sectionally and serially correlated. Analytical efficiency

comparisons for these estimators indicate that the mean group and random-

coefficients estimators are equivalent when T is sufficiently large. Furthermore,

the Monte Carlo simulation results show that the classical pooling estimators are

absolutely not suitable for random-coefficients models. And, the MG and GMG

estimators are more efficient than the RCR estimator for random- and fixed-

coefficients models, especially when T is small (T ≤ 12). But when T ≥ 20, the

MG, GMG, and GRCR estimators are approximately equivalent. However, the

GRCR estimator performs better than the MG and GMG estimators in most sit-

uations, especially in moderate samples. Therefore, we conclude that the GRCR

estimator is suitable to stationary RCPD models whether the coefficients are

random or fixed.
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1. INTRODUCTION

Functional data analysis (FDA) is concerned with data which are viewed as

functions defined over some set T . Examples of functional data can be found in

several application domains such as meteorology, medicine, economics and many

others (for an overview, see Ramsay and Silverman, 2002). Comprehensive sur-

veys about functional data analysis can be found in Ferraty and Vieu (2006),

Horváth and Kokoszka (2012), Ramsay et al. (2009), Ramsay and Silverman

(2002, 2005), Zhang (2013) and in the review papers Cuevas (2014) and Valder-

rama (2007). Many papers available in the literature are devoted to estimation

and classification of functional data, e.g., cluster analysis (Jacques and Preda,

2014; Tokushige et al., 2007; Yamamoto and Terada, 2014), confidence inter-

vals (Lian, 2012), discriminant analysis (Górecki et al., 2014; James and Hastie,

2001; Preda et al., 2007), estimation (Attouch and Belabed, 2014; Chesneau et al.,

2013; Cuevas et al., 2006, 2007; Prakasa Rao, 2010), principal component analysis

(Berrendero et al., 2011; Boente et al., 2014; Boente and Fraiman, 2000; Jacques

and Preda, 2014), variable selection (Gregorutti et al., 2015). Hypothesis testing

problems for functional data are also commonly considered, e.g., heteroscedas-

tic ANOVA problem (Cuesta-Albertos and Febrero-Bande, 2010; Zhang, 2013),

paired two-sample problem (Mart́ınez-Camblor and Corral, 2011), the one-way

ANOVA and MANOVA problem (Abramovich et al., 2004; Cuevas et al., 2004;

Horváth and Rice, 2015; Górecki and Smaga, 2015, 2017), testing equality of

covariance functions (Zhang, 2013), two-sample Behrens–Fisher problem (Zhang

et al., 2010b).

In this paper, the two-sample problem for functional data which are from

the same subject (probably submitted to different conditions) is considered.

We follow the notation of Mart́ınez-Camblor and Corral (2011). Suppose we

have a functional sample consisting of independent trajectories X1(t), ..., Xn(t)

from a stochastic process which may be expressed in the following form

(1.1) Xi(t) = m(t) + εi(t), t ∈ [0, 2],

where εi(t) are random functions with E(εi(t)) = 0 and covariance function C(s, t).

Hence, the null hypothesis is of the form

(1.2) H0 : m(t) = m(t + 1), ∀t ∈ [0, 1].

Concerning t ∈ [0, 2], we ignore (possible) period in which the subject is not

monitored.

To illustrate the testing problem described above, we consider the ortho-

sis data. Seven volunteers (n = 7) were participated in the experiment. First,

they were stepping-in-place without orthosis. Second, they did the same with a

spring-loaded orthosis on the right knee. Under each condition, the moment of
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force at the knee was computed at 256 time points, equally spaced and scaled

to the interval [0, 1]. So the orthosis data can be represented as curves. We are

interested in testing if the mean curves of all volunteers are different under these

two conditions (see Figure 1). As the curves obtained without and with orthosis

are from the same subjects (volunteers), we have a paired two-sample problem

for functional data. The detailed description of the experiment and its analysis

are presented in Section 6.
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Figure 1: The mean curves of all volunteers of the 10 raw orthosis curves

under without orthosis (t ∈ [0, 1]) and with spring 1 (t ∈ [1, 2])

conditions.

For testing (1.2), Mart́ınez-Camblor and Corral (2011) proposed to use the

test statistic

(1.3) Cn = n

∫ 1

0
(X̄(t) − X̄(t + 1))

2 dt,

where X̄(t) = n−1
∑n

i=1 Xi(t), t ∈ [0, 2]. This test statistic is based on a simple

idea that the null hypothesis should be rejected whenever the “between group

variability” measured by the difference between sample means is large enough at

a prescribed significance level. As in the standard ANOVA test statistic, appro-

priate “within group variability” measure may be also contained as denominator

in Cn. However, then it seems to be impossible to find the exact sampling dis-

tribution of such statistic, even under Gaussianity assumption. Moreover, since

Mart́ınez-Camblor and Corral (2011) used an asymptotic test (large sample sizes

may be required) and such a denominator tends to some parameter connected

with covariance function as n → ∞, the denominator could be replaced by that

parameter. Then it could be incorporated to the numerator so that it is only nec-

essary to calculate the asymptotic distribution of the test statistic and replaced
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by an estimator in that distribution. This reasoning can be used in homoscedas-

tic as well as heteroscedastic case. Bearing in mind this motivation, Mart́ınez-

Camblor and Corral (2011) used only the numerator (i.e., Cn), and avoided the

homoscedasticity assumption in such a way (see also Cuevas et al., 2004, for

similar argumentation).

Mart́ınez-Camblor and Corral (2011) derived a random expression of their

test statistic (1.3), and approximated the null distribution by a parametric boot-

strap method via re-sampling some Gaussian process involved in the limit ran-

dom expression of Cn under the null hypothesis. Moreover, Mart́ınez-Camblor

and Corral (2011) considered nonparametric approach and proposed bootstrap

and permutation tests. Although these methods work reasonably well in finite

samples, they may be time-consuming. In this paper, we present the Box-type

approximation (Box, 1954; Brunner et al., 1997; also called two-cumulant ap-

proximation, see Zhang, 2013) for the asymptotic distribution of Cn under the

null, and we propose the new test based on this approximation. It is shown to be

root-n consistent. The new testing procedure is also much less computationally

intensive than the re-sampling and permutation tests of Mart́ınez-Camblor and

Corral (2011). Moreover, it is comparable with these tests in terms of size control

and power.

This paper is organized as follows. Section 2 presents the Box-type approx-

imation for the asymptotic null distribution of test statistic Cn and the new test

based on this approximation. Its root-n consistency is proved in Section 3. In

Section 4, an intensive simulation study providing an idea of the size control and

power of the new testing procedure and the tests proposed by Mart́ınez-Camblor

and Corral (2011) is given. The comparison of computational time required to

perform the considered tests is presented in Section 5. Section 6 contains a real-

data example of the use of those tests to the orthosis data. Some concluding

remarks are given in Section 7. In the Appendix, proofs of theoretical results,

numerical implementation of the new test, R code which performs it and addi-

tional simulations are presented.

2. THE TESTING PROCEDURE

In this section, we describe and discuss the new testing procedure for (1.2)

which is based on the Box-type approximation for the asymptotic distribution of

the test statistic Cn given by (1.3) under the null.

Let X1(t), ..., Xn(t) be independent trajectories from a stochastic process

(with expectation function m(t) and covariance function C(s, t), s, t ∈ [0, 2]) ex-

pressed as in (1.1). For theoretical study, we list the following regularity assump-

tions.
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Assumptions:

A1. The mean function m(t) ∈ L2
[0, 2] and tr(C)

def
=

∫ 2
0 C(t, t) dt < ∞,

where L2
([0, 2]) denotes the set of all square-integrable functions over

[0, 2].

A2. The subject-effect function v1(t)
def
= X1(t) − m(t) satisfies

E‖v1‖4
= E

(
∫ 2

0
v2
1(t) dt

)2

< ∞.

A3. For any t ∈ [0, 2], C(t, t) > 0, and maxt∈[0,2] C(t, t) < ∞.

A4. For any (s, t) ∈ [0, 2]
2
, E

(

v2
1(s)v

2
1(t)

)

< C < ∞, where C is certain

constant independent of any (s, t) ∈ [0, 2]
2
.

The given assumptions are quite common in functional data analysis liter-

ature (see, for instance, Zhang, 2013; Zhang and Liang, 2014). Assumption A1 is

regular. It guarantees that as n → ∞, the sample mean function will converge to

Gaussian process weakly. Assumptions A2–A4 are additionally imposed to obtain

the consistency of estimator of the covariance function. The uniformly bound-

edness of E
(

v2
1(s)v

2
1(t)

)

in assumption A4 is satisfied when the subject-effect

function v1(t) is uniformly bounded in probability over [0, 2].

Under assumption A1, by (4.7) in Zhang (2013), we have E‖X1‖2
= ‖m‖2

+

tr(C) < ∞. Hence, using the central limit theorem for random elements taking

values in a Hilbert space (see, for example, Zhang, 2013, p. 91) and the continuous

mapping theorem as in the proof of Theorem 1 in Mart́ınez-Camblor and Corral

(2011), under the null hypothesis, we obtain Cn
d→ ‖ξ‖2

, as n → ∞, where
d→

denotes convergence in distribution, and ξ(t), t ∈ [0, 1] is a Gaussian process with

mean zero and covariance function

(2.1) K(s, t) = C(s, t) − C(s, t + 1) − C(s + 1, t) + C(s + 1, t + 1), s, t ∈ [0, 1]

(see the proof of Theorem 1 in Mart́ınez-Camblor and Corral, 2011, for more

details). Under assumptions A1 and A3, we have tr(K) is finite, where we use

the fact C(s, t) ≤ (C(s, s)C(t, t))1/2 ≤ maxt∈[0,2] C(t, t) < ∞. Thus, Theorem 4.2

in Zhang (2013) implies ‖ξ‖2
has the same distribution as

∑

k∈N
λkAk, where

Ak, k = 1, 2, ..., is a sequence of independent random variables following a central

chi-squared distribution with one degree of freedom, and λk, k = 1, 2, ..., is the

non-negative sequence, satisfying λ1 ≥ λ2 ≥ ... ≥ λr ≥ ... ≥ 0 and
∑

k∈N
λ2

k < ∞,

of the eigenvalues of K(s, t) given by (2.1). Since Cn
d→ ‖ξ‖2

, as n → ∞, we

conclude that

(2.2) Cn
d→ C∗

0 =

∑

k∈N

λkAk

under the null and assumptions A1 and A3. Hence, the test statistic Cn converges

in distribution to a central χ2
-type mixture (see Zhang, 2005), under the null and
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assumptions A1 and A3. On the basis of (2.2), the asymptotic null distribution

of Cn is known except the unknown eigenvalues λk, k = 1, 2, ..., of K(s, t). These

unknown eigenvalues can be estimated by the eigenvalues λ̂k, k = 1, 2, ..., of the

following estimator of K(s, t):

(2.3) K̂(s, t) = Ĉ(s, t) − Ĉ(s, t + 1) − Ĉ(s + 1, t) + Ĉ(s + 1, t + 1), s, t ∈ [0, 1],

where Ĉ(s, t) = (n − 1)
−1

∑n
i=1(Xi(s) − X̄(s))(Xi(t) − X̄(t)), s, t ∈ [0, 2] is the

unbiased estimator of C(s, t) (see Zhang, 2013, p. 108). Moreover, it is often

sufficient to use only the positive eigenvalues of K̂(s, t). With the sample size n

growing to infinity, the estimator K̂(s, t) is consistent in the sense of the following

lemma. Let
P→ denote convergence in probability.

Lemma 2.1. Under the model (1.1) and assumptions A1–A4, we have

K̂(s, t)
P→ K(s, t) uniformly over [0, 1]

2, as n → ∞.

We now apply Box-type approximation (Box, 1954; Brunner et al., 1997)

for approximating the asymptotic null distribution of Cn. This method is also

known as two-cumulant approximation (see Zhang, 2013). It is an example of the

approximation methods using cumulants, which are often considered in functional

data analysis (see, for example, Górecki and Smaga, 2015; Zhang, 2013; Zhang

and Liang, 2014; Zhang et al., 2010b), so we also may name it “two-cumulant

approximation”. The key idea of this method is to approximate the distribution

of C∗
0 by that of a random variable of the form βχ2

d, where the parameters β and

d are determined by matching the first two cumulants or moments of C∗
0 and βχ2

d.

By the results of Zhang (2013, Sections 4.3 and 4.5), we have

(2.4) β =
tr(K

⊗2
)

tr(K)
, d =

tr
2
(K)

tr(K⊗2)
,

where tr(K) =
∫ 1
0 K(t, t) dt and K

⊗2 def
=

∫ 1
0 K(s, u)K(u, t) du. The approximation

of the distribution of C∗
0 by that of βχ2

d seems to be sensible, since C∗
0 is a χ2

-type

mixture which is nonnegative and generally skewed, and so βχ2
d is. Thus, C∗

0 and

βχ2
d with β and d as in (2.4) have the same range, mean and variance and similar

shapes. However, the distributions of these random variables are usually not the

same. Moreover, the conditional distributions of the parametric and nonparamet-

ric bootstrap and permutation statistics of Mart́ınez-Camblor and Corral (2011)

can be different of the distribution of βχ2
d. Fortunately, these distributions are

very similar to each other, and the distribution of βχ2
d can have flexible shapes

and be adaptive to different shapes of the underlying null distribution of Cn, which

is confirmed by simulation studies of Section 4. From those simulation studies,

we can observe that both the previous and new approximations give very similar

and satisfactory results for small and moderate sample sizes. The same holds for

large samples. For instance, when n = 2000, the empirical sizes of the paramet-

ric and nonparametric bootstrap, permutation and new testing procedures were
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equal to 5.2%, 4.8%, 5.2%, 4.8%, respectively, and the empirical power of all tests

was equal to 100%. These results suggest that the type I error rate (resp. power)

of each test tends to the nominal significance level or to value close to it (resp.

one) as n → ∞.

The natural estimators of β and d are obtained by replacing the covariance

function K(s, t) in (2.4) by its estimator K̂(s, t) given by (2.3), i.e.,

(2.5) β̂ =
tr(K̂

⊗2
)

tr(K̂)
, d̂ =

tr
2
(K̂)

tr(K̂⊗2)
.

Therefore, under the null, Cn ∼ β̂χ2
d̂

approximately, and hence the new test (the

BT test) for (1.2) is conducted by computing the p-value of the form

(2.6) P (χ2
d̂

> Cn/β̂),

or for given significance level α, the estimated critical value of Cn given by

(2.7) Ĉn,α = β̂χ2
d̂,α

,

where χ2
r,α denotes the upper 100α percentile of χ2

r . The critical region of the

new testing procedure is of the form {Cn > β̂χ2
d̂,α

}. In the following theorem,

we show that the estimated critical value Ĉn,α tends to theoretical critical value

C0,α = βχ2
d,α, as n → ∞. The consistency of the estimators β̂ and d̂ is also proved

there.

Theorem 2.1. Under the assumptions of Lemma 2.1, as n → ∞, we have

β̂
P→ β and d̂

P→ d. Moreover, we have Ĉn,α
P→ C0,α = βχ2

d,α, as n → ∞.

Numerical implementation of the BT test is described in the Appendix.

This testing procedure is very easy to implement in the R language (R Core

Team, 2015). In the Appendix, we also present and describe the R code which

performs the new test.

3. ASYMPTOTIC POWER UNDER LOCAL ALTERNATIVES

In this section, we investigate the asymptotic power of the BT test under

two kinds of local alternatives. Power of tests under similar types of alternatives

was studied in the literature concerning the functional data analysis (see, for

example, Zhang et al., 2010a, Zhang and Liang, 2014). The formulas for the

asymptotic powers of the BT test are given in the proofs of Theorems 3.1 and

3.2.
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First, we consider the local alternatives of the form H
(1)
1n : m(t)−m(t+1) =

n−τ/2d(t), t ∈ [0, 1], where τ ∈ [0, 1) is fixed and d(t) is any fixed real function such

that ‖d‖ ∈ (0,∞). So, we study the power behavior when the alternatives tend to

the null hypothesis (1.2) with a rate slightly slower than n−1/2
. In the following

result, we establish the asymptotic power of the BT test tends to one, as n → ∞,

under H
(1)
1n and under gaussianity assumption of processes Xi(t), i = 1, ..., n in

model (1.1).

Theorem 3.1. Under model (1.1), where Xi(t), i = 1, ..., n are Gaussian

processes, assumptions A1–A4 and the local alternatives H
(1)
1n , τ ∈ [0, 1), the

asymptotic power of the BT test tends to 1 as n → ∞.

We now consider the local alternatives, which tend to the null hypothesis

(1.2) with the root-n rate, i.e., H
(2)
1n : m(t)−m(t+1) = n−1/2d(t), t ∈ [0, 1], where

d(t) is any fixed real function such that ‖d‖ ∈ (0,∞). Here, we do not assume

gaussianity of the observations, but the asymptotic power of the BT test tending

to 1 is obtained when the information provided by d(t) diverges to infinity. This

is presented in the following theorem.

Theorem 3.2. Under model (1.1), assumptions A1–A4 and the local al-

ternatives H
(2)
1n , as n → ∞, the asymptotic power of the BT test tends to 1 as

‖d‖ → ∞.

Theorems 3.1 and 3.2 indicate that the BT test can detect the local al-

ternatives H
(1)
1n and H

(2)
1n with probability tending to one under the assumptions

given above. By the definition of Zhang and Liang (2014), we obtain that the

BT test is root-n consistent.

4. SIMULATIONS

Simulations are conducted to compare the empirical sizes (type I error

rates) and powers of the BT test with those of Mart́ınez-Camblor and Corral

(2011). As we mentioned, Mart́ınez-Camblor and Corral (2011) proposed three

approximation methods for the null distribution of Cn based on the asymptotic

distribution (the A test), on bootstrap (the B test), and on permutation (the

P test). Additional simulations considering different dependency structure than

that in this section are given in the Appendix. All simulations were conducted

with the help of the R computing environment (R Core Team, 2015).



532  Lukasz Smaga

4.1. Description of the simulation experiments

To be consistent with the results of Mart́ınez-Camblor and Corral (2011)

for the A, B and P tests, we present similar simulation experiments to those in

that paper. We generated Xi(t) = m1(t) + εi1(t) and Xi(t + 1) = m2(t) + εi2(t)

for t ∈ [0, 1], i = 1, ..., n, where mj(t) and εij(t) are described below. Sample sizes

n = 25, 35, 50 are considered. Let

m0,1(t) =

√

6t/π exp(−6t)I[0,1](t), m1,1(t) =

√

13t/(2π) exp(−13t/2)I[0,1](t),

m2,1(t) =

√

11t/(2π) exp(−11t/2)I[0,1](t), m3,1(t) =
√

5t2/3
exp(−7t)I[0,1](t),

m0,2(t) = (sin(2πt2))5I[0,1](t), m1,2(t) = (sin(2πt2))3I[0,1](t),

m2,2(t) = (sin(2πt2))7I[0,1](t), m3,2(t) = (sin(2πt(9/5)
))

3I[0,1](t).

Figure 2 depicts the shapes of mi,j(t). Because of the choice of mi(t), i = 1, 2,

we considered eight models. In models M0–M3, m1 = m0,1 and m2 = mj,1,

j = 0, ..., 3 respectively, and in models M4–M7, m1 = m0,2 and m2 = mj,2,

j = 0, ..., 3 respectively.
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Figure 2: The shapes of functions mi,j(t), t ∈ [0, 1] used in simulations of Section 4.

Three different types of errors were considered. In the normal case, εi1(t) =

ξBi1(t) and εi2(t) = ρεi1(t) + ξ
√

1 − ρ2Bi2(t), where ρ = 0, 0.25, 0.5, Bi1 and Bi2

are two independent standard Brownian Bridges, and ξ = 0.05 for models M0–M3

and ξ = 0.5 for the remaining. In the lognormal (resp. mixed) case, the error

functions are exp(εij(t)), j = 1, 2 (resp. εi1(t) and exp(εi2(t))), where εij(t) are

as above. The errors functions exp(εij(t)) are adequately centered.
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In practice, the functional data are not usually continuously observed. The

points, at which the functional data are observed, are called the design time

points. So, the processes Xi(t), Xi(t + 1), t ∈ [0, 1] were generated in discretized

versions Xi(tr), Xi(tr + 1), for r = 1, ..., I and for I = 26, 101, 251, where the

values tr were chosen equispaced in the interval [0, 1].

Under various parameter configurations, the empirical sizes and powers (as

percentages) of the tests were calculated at the nominal significance level α = 5%

and based on 1000 replications. In Tables 1–7, the results for models M0–M6

are displayed. For model M7, the empirical powers were always 100%. The

empirical power in the omitted rows in these tables is always 100%. Similarly

as in Mart́ınez-Camblor and Corral (2011), the p-values of the A, B and P tests

were estimated from 1000 replications.

Table 1: Empirical sizes (as percentages) of all tests obtained in model M0.

The column “R” refers to different residual types (N – normal,

L – lognormal, M – mixed).

I 26 101 251
R n

ρ A B P BT A B P BT A B P BT

0.00 6.9 6.8 6.0 6.5 6.1 6.2 4.9 6.1 5.3 5.4 5.0 5.3
25 0.25 6.8 7.1 6.4 6.8 6.8 6.9 5.9 7.1 5.2 5.6 5.1 5.3

0.50 7.2 7.6 6.4 7.1 7.2 7.0 6.2 6.7 5.1 5.7 4.6 5.2

0.00 5.5 6.1 5.7 6.1 4.8 4.5 4.0 4.7 4.3 4.5 4.1 4.3
N 35 0.25 5.4 6.1 5.4 5.5 5.4 5.6 5.1 5.1 4.2 4.4 3.6 4.2

0.50 5.9 6.0 5.1 5.9 5.4 5.6 5.2 5.7 4.4 4.3 3.7 4.2

0.00 5.4 5.2 4.8 5.2 6.0 6.1 5.7 5.8 6.5 5.8 5.7 6.1
50 0.25 5.2 5.7 5.1 5.0 6.3 6.6 6.5 6.4 6.3 5.7 5.9 5.7

0.50 5.3 5.4 5.0 5.0 7.2 7.1 6.3 7.0 5.4 5.1 4.9 5.2

0.00 6.8 6.7 6.7 6.4 5.4 5.7 5.7 5.5 5.1 4.8 5.5 5.0
25 0.25 7.2 7.4 7.2 7.1 5.1 5.3 5.1 4.9 5.7 5.8 5.7 5.6

0.50 7.2 8.0 7.9 7.6 5.2 5.3 5.3 5.4 5.6 5.9 6.0 5.9

0.00 5.4 5.3 4.8 5.3 5.5 5.0 5.2 5.2 4.8 5.0 4.8 4.8
L 35 0.25 4.7 4.3 4.6 4.5 5.2 5.2 5.0 5.2 5.0 4.8 4.8 4.7

0.50 4.7 4.9 4.7 4.6 5.9 5.9 5.7 5.7 4.7 4.6 4.5 4.6

0.00 5.0 5.3 4.9 5.1 5.3 5.3 4.9 4.8 4.9 4.9 5.2 5.3
50 0.25 5.8 5.7 5.7 5.6 5.0 5.1 4.5 4.7 4.7 4.9 4.6 4.8

0.50 5.5 5.5 5.7 5.8 5.0 5.3 5.1 5.1 4.4 4.6 4.4 4.6

0.00 5.1 5.6 4.8 5.2 5.6 6.0 5.6 5.6 5.8 5.6 5.8 5.6
25 0.25 5.7 5.3 5.2 5.0 5.2 5.6 5.4 5.6 6.2 6.0 5.8 5.7

0.50 5.8 6.1 5.6 5.9 5.9 5.9 5.6 6.1 6.1 6.1 5.3 6.0

0.00 5.3 5.5 5.2 5.3 4.9 4.7 4.5 4.7 4.5 4.8 4.7 4.8
M 35 0.25 4.8 5.0 4.7 4.9 4.9 5.3 4.8 5.0 4.8 5.0 4.9 4.6

0.50 4.9 5.3 4.7 4.8 5.1 5.2 4.5 5.3 4.6 5.7 4.4 4.6

0.00 5.1 5.1 5.0 5.1 5.5 5.3 5.4 5.2 5.8 5.7 5.6 5.8
50 0.25 4.9 4.9 4.9 4.7 5.3 5.5 5.0 5.0 6.2 6.1 5.5 6.1

0.50 4.5 4.8 4.5 4.6 5.7 5.8 5.5 5.5 5.9 6.4 5.6 6.0
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Table 2: Empirical powers (as percentages) of all tests obtained in model M1. The col-

umn“R”refers todifferent residual types (N–normal, L– lognormal,M–mixed).

The empirical power in the omitted rows is always 100%.

I 26 101 251
R n

ρ A B P BT A B P BT A B P BT

0.00 40.5 40.4 38.2 39.5 39.8 39.9 36.6 39.5 38.5 38.6 36.7 38.8
25 0.25 49.2 49.6 46.8 48.9 51.4 51.5 48.3 51.0 50.2 49.8 47.4 49.5

0.50 68.5 68.0 66.0 68.0 70.2 71.0 68.7 69.8 69.3 69.6 66.6 69.1

0.00 53.1 53.8 51.6 52.7 52.1 52.0 50.2 52.3 54.4 54.5 53.1 54.5
N 35 0.25 65.7 66.5 65.2 65.9 64.7 65.2 63.2 65.3 66.9 66.8 65.7 66.3

0.50 85.4 85.7 84.6 84.9 81.6 81.3 80.1 81.1 85.0 85.0 84.2 84.8

0.00 69.2 68.9 68.2 68.8 68.7 69.3 68.3 68.6 69.8 68.6 68.4 69.1
50 0.25 81.8 81.1 81.2 81.1 81.0 81.4 80.9 81.1 82.2 82.9 81.7 82.4

0.50 93.9 93.9 93.7 93.9 94.5 94.5 94.1 94.5 94.3 94.0 94.0 94.0

L 25 0.00 98.8 98.1 99.0 98.6 99.0 99.2 99.3 98.9 99.2 99.3 99.6 99.4

0.00 62.6 62.8 61.2 61.8 61.6 61.9 61.3 61.7 61.3 62.0 60.6 61.6
25 0.25 67.2 67.6 65.7 67.1 67.3 68.6 66.4 67.5 67.6 67.6 66.8 67.3

0.50 73.2 74.0 72.1 73.6 74.1 74.6 73.2 74.7 75.0 75.5 73.3 74.3

0.00 76.8 77.5 76.5 76.9 77.2 76.5 76.9 76.7 78.6 79.8 78.4 78.8
M 35 0.25 82.7 82.7 82.0 82.8 82.6 83.0 81.6 82.1 84.7 84.5 83.5 84.8

0.50 87.5 88.1 87.4 87.1 87.3 87.2 86.5 87.0 88.5 88.1 88.2 88.3

0.00 89.9 90.7 90.0 90.0 90.9 91.0 91.2 91.4 91.0 91.1 90.8 91.3
50 0.25 93.7 93.8 92.9 93.6 94.3 94.0 93.9 93.9 94.4 94.3 94.5 94.5

0.50 96.1 96.0 95.8 96.1 97.0 97.1 96.9 97.1 97.3 97.5 97.2 97.4

Table 3: Empirical powers (as percentages) of all tests obtained in model M2. The col-

umn“R”refers todifferent residual types (N–normal, L– lognormal,M–mixed).

The empirical power in the omitted rows is always 100%.

I 26 101 251
R n

ρ A B P BT A B P BT A B P BT

0.00 49.3 49.0 46.9 48.5 50.0 50.1 48.0 49.6 49.1 49.8 46.5 48.7
25 0.25 60.7 62.1 58.8 60.6 61.9 62.5 59.5 61.7 63.0 62.8 59.2 62.2

0.50 78.6 79.0 77.0 78.6 79.5 79.4 78.5 79.3 79.4 79.4 77.7 79.1

0.00 62.4 61.6 60.3 61.2 65.4 65.2 64.1 64.8 63.1 62.2 60.7 62.1
N 35 0.25 76.8 77.3 75.9 77.2 78.1 78.1 77.3 78.0 75.4 75.4 73.5 74.5

0.50 90.9 91.4 90.3 91.0 91.5 91.6 90.7 91.5 89.8 89.9 89.6 90.1

0.00 79.9 80.2 79.2 79.9 79.9 80.1 78.7 79.8 79.7 80.5 79.2 79.6
50 0.25 90.7 90.4 89.6 90.3 90.1 90.0 89.5 90.0 90.2 89.9 89.5 89.7

0.50 97.9 97.8 97.6 97.8 98.5 98.2 98.3 98.3 98.1 98.3 97.8 98.2

L 25 0.00 100 100 100 99.9 99.9 99.9 100 100 100 99.9 100 100

0.00 74.1 74.2 72.8 73.5 75.5 75.4 74.4 74.8 75.4 76.0 74.3 75.3
25 0.25 79.9 79.8 79.2 79.8 81.7 81.5 80.5 81.1 80.9 81.6 81.2 81.1

0.50 85.7 85.6 84.0 85.5 86.8 87.5 85.9 87.2 85.7 85.8 85.1 85.7

0.00 87.5 87.8 87.5 87.4 89.3 89.7 89.2 89.3 87.9 88.0 87.2 88.0
M 35 0.25 92.7 92.5 92.2 92.4 93.0 92.4 92.3 92.9 92.0 91.8 91.8 91.7

0.50 95.9 96.0 95.7 95.9 95.9 95.8 95.8 95.7 95.2 94.8 94.6 95.0

0.00 97.8 97.6 97.8 97.7 97.0 96.9 97.0 96.7 97.6 97.7 97.7 97.5
50 0.25 98.9 98.8 98.8 98.9 98.5 98.5 98.6 98.5 98.7 98.6 98.7 98.6

0.50 99.4 99.2 99.2 99.5 99.3 99.4 99.4 99.3 99.4 99.4 99.4 99.5
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Table 4: Empirical powers (as percentages) of all tests obtained in model M3. The col-

umn“R”refers todifferent residual types (N–normal, L– lognormal,M–mixed).

The empirical power in the omitted rows is always 100%.

I 26 101 251
R n

ρ A B P BT A B P BT A B P BT

0.00 19.3 19.6 18.0 18.4 31.4 31.6 30.9 30.9 31.4 32.7 31.7 31.7
25 0.25 25.1 25.2 23.6 24.3 46.9 46.2 47.3 45.3 46.3 46.3 47.0 44.5

0.50 39.6 39.6 38.9 39.2 76.2 75.9 78.2 75.4 80.0 81.7 81.9 80.5

0.00 26.0 25.7 26.0 26.3 46.6 45.9 47.3 46.1 50.5 50.7 50.1 49.6
N 35 0.25 37.1 37.7 36.8 36.9 67.2 68.3 69.7 67.8 73.2 73.7 74.6 73.3

0.50 60.3 60.4 60.4 59.7 96.2 95.5 96.2 96.0 97.7 97.5 98.2 97.7

0.00 40.3 41.2 40.1 39.8 77.5 77.8 78.5 77.2 82.9 82.9 83.7 82.5
50 0.25 54.1 53.9 54.5 53.3 95.0 94.9 96.1 95.1 97.6 97.7 97.4 97.7

0.50 84.6 84.2 84.6 83.4 100 100 100 100 100 100 100 100

0.00 70.4 71.7 75.6 71.5 97.9 97.9 98.8 98.1 99.2 99.1 99.4 99.3
25 0.25 91.5 91.9 94.4 91.1 99.8 99.8 100 99.7 100 100 100 100

L
0.50 99.9 99.9 99.9 99.8 100 100 100 100 100 100 100 100

35
0.00 93.0 92.7 94.7 92.6 100 100 100 100 100 100 100 100
0.25 99.9 99.9 100 99.7 100 100 100 100 100 100 100 100

50 0.00 100 100 99.9 100 100 100 100 100 100 100 100 100

0.00 33.5 34.1 34.6 32.9 62.8 62.6 64.8 62.2 66.6 67.3 69.9 67.0
25 0.25 39.6 40.4 40.6 39.4 71.1 71.5 75.1 70.6 77.1 77.6 79.4 76.6

0.50 46.8 46.9 47.4 45.6 79.1 80.0 82.0 79.3 84.7 84.4 85.5 84.2

0.00 48.6 48.7 50.0 48.0 87.2 87.0 89.0 87.6 90.7 90.6 92.8 90.6
M 35 0.25 57.2 56.8 58.3 56.9 92.8 93.0 93.5 92.6 95.3 95.6 96.2 95.3

0.50 65.3 65.5 66.1 65.3 96.0 96.1 96.6 96.1 97.9 97.8 98.1 98.0

0.00 75.0 75.1 75.8 74.8 99.4 99.6 99.6 99.6 99.8 99.5 99.8 99.9
50 0.25 83.0 82.8 83.1 81.8 99.8 99.8 100 99.8 100 100 99.9 100

0.50 89.4 89.1 89.3 88.8 99.9 99.9 100 100 100 100 100 100

4.2. Results

In this subsection, we describe the simulation results for the new method

and the tests of Mart́ınez-Camblor and Corral (2011).

Tables 1 and 5 display the empirical sizes of the tests obtained in models M0

and M4. Based on the binomial proportion confidence interval, for the nominal

level α = 5%, the empirical size over the 1000 independent replications should

belong to the interval [3.6%, 6.4%] (resp. [3.2%, 6.8%]) with probability 95% (resp.

99%). Therefore in Tables 1 and 5, when the rejection proportions are outside

the 95% significance limits, they are displayed in bold, and when they are outside

the 99% significance limits they are underlined. The results for the BT test

and the tests proposed in Mart́ınez-Camblor and Corral (2011) are generally

quite satisfactory, and the nominal level is well respected in most cases by the

tests. Their empirical sizes are rarely larger than the upper endpoint of the 95%

confidence interval, and they are not less than lower endpoint of that interval.
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Under normal and mixed cases, the B test is the most liberal of all the tests,

and it is slightly more liberal than the A and BT tests, which are more liberal

than the P test. Nevertheless, the P test is not conservative. Under lognormal

case, the empirical sizes do not express such a tendency in general. In model

M0 and normal case, the empirical sizes of all tests decrease when I increases

for n = 25, 35, and they increase when n = 50. In the other cases of model M0

and in model M4, this observation is not true generally, and the behavior of the

empirical sizes is more complicated when I increases. Summarising, the new test

respects the nominal level a bit better than the A and B tests and may be more

liberal than the P test.

Table 5: Empirical sizes (as percentages) of all tests obtained in model M4.

The column “R” refers to different residual types (N – normal,

L – lognormal, M – mixed).

I 26 101 251
R n

ρ A B P BT A B P BT A B P BT

0.00 5.3 5.2 4.7 5.3 5.7 6.1 5.4 5.5 5.1 5.0 4.2 4.6
25 0.25 5.4 5.4 5.0 5.3 5.2 5.4 5.1 5.4 5.4 5.4 4.3 5.4

0.50 5.2 5.1 4.6 5.2 5.0 5.1 4.5 4.9 5.7 5.8 4.7 5.6

0.00 4.9 5.0 4.3 4.7 6.8 6.7 6.4 6.7 4.7 5.0 4.5 4.8
N 35 0.25 5.5 5.7 4.9 5.7 6.8 7.0 6.5 6.8 4.9 4.8 4.4 4.9

0.50 5.9 6.3 5.6 6.3 6.7 6.6 6.3 6.4 4.9 5.0 5.1 5.2

0.00 6.3 6.1 5.7 6.0 5.8 5.7 5.5 5.9 4.9 5.1 4.9 4.9
50 0.25 6.3 6.4 5.9 6.4 5.3 5.5 4.8 5.2 5.3 5.5 5.0 5.4

0.50 5.9 6.4 5.4 6.2 5.3 5.4 5.0 5.2 5.5 5.8 5.2 5.6

0.00 4.0 4.4 4.4 4.4 5.6 5.6 5.5 5.6 5.4 5.3 5.2 5.2
25 0.25 3.9 4.0 4.0 4.0 6.0 6.0 6.2 5.9 5.6 5.5 5.4 5.4

0.50 3.7 4.1 4.1 3.8 5.9 6.3 6.4 6.1 4.8 5.0 5.1 4.8

0.00 4.4 4.9 4.9 4.9 4.6 4.7 4.9 4.8 5.4 5.7 5.2 5.3
L 35 0.25 4.2 4.1 4.5 4.2 4.2 4.4 4.8 4.5 5.3 5.3 5.5 5.1

0.50 4.4 4.6 4.8 4.5 4.6 4.9 5.6 5.2 5.4 5.2 5.1 5.2

0.00 5.0 5.2 5.2 5.0 4.9 5.4 5.1 5.2 4.8 5.5 5.1 5.2
50 0.25 5.4 5.2 5.7 5.6 5.3 5.2 5.0 5.0 4.9 5.9 5.5 5.4

0.50 5.8 5.7 5.7 5.8 6.2 5.8 5.6 5.7 5.3 5.7 5.6 5.4

0.00 5.6 5.1 5.3 5.4 5.7 6.0 5.9 5.6 6.3 6.2 6.1 6.2
25 0.25 5.5 5.3 5.1 5.4 5.7 6.4 5.4 5.9 6.2 6.2 6.1 6.3

0.50 5.6 5.5 5.3 5.4 6.6 6.8 6.2 6.6 6.6 6.2 6.1 5.9

0.00 5.4 5.8 5.5 5.5 5.8 5.9 5.7 5.8 4.7 4.8 4.6 4.6
M 35 0.25 5.2 5.4 5.1 5.1 5.9 5.8 5.9 5.9 5.1 5.4 4.6 5.1

0.50 5.8 5.6 4.9 5.1 5.9 6.1 5.6 5.8 5.4 5.3 5.2 5.1

0.00 7.8 8.0 7.5 7.5 6.4 7.0 6.6 6.7 5.7 6.1 6.5 5.9
50 0.25 8.6 8.5 7.9 8.6 6.4 6.6 6.4 6.4 6.0 6.5 6.5 6.2

0.50 8.5 8.5 7.9 8.5 6.6 6.7 6.1 6.6 6.2 6.7 6.7 6.5
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Table 6: Empirical powers (as percentages) of all tests obtained in model M5. The col-

umn“R”refers todifferent residual types (N–normal, L– lognormal,M–mixed).

The empirical power in the omitted rows is always 100%.

I 26 101 251
R n

ρ A B P BT A B P BT A B P BT

0.00 71.9 71.9 72.0 71.5 74.3 74.2 73.7 73.3 72.0 73.2 73.9 72.2
25 0.25 89.4 89.2 89.7 89.0 90.5 89.5 90.5 89.6 87.3 88.4 89.0 87.5

N
0.50 99.3 99.2 99.6 99.5 99.2 99.0 99.4 99.2 99.3 99.2 99.4 99.1

35
0.00 91.4 91.8 91.5 91.4 92.2 93.6 93.5 92.8 92.4 92.4 92.5 91.8
0.25 99.1 98.9 99.2 99.1 99.1 99.1 99.4 99.1 99.1 99.1 99.5 99.3

50 0.00 99.4 99.6 99.8 99.7 99.7 99.6 99.7 99.7 99.6 99.8 99.8 99.8

25
0.00 99.4 99.2 99.3 98.9 99.6 99.6 99.7 99.5 99.3 99.3 99.6 99.4

L 0.25 99.9 99.9 99.9 99.9 100 100 100 100 100 100 100 100

35 0.00 99.9 99.9 99.9 99.9 100 100 100 100 100 100 100 100

0.00 95.8 96.6 97.3 96.4 97.4 97.7 98.1 97.9 96.5 96.2 96.6 96.3

M
25 0.25 98.8 98.6 98.7 98.7 99.1 99.2 99.3 99.2 98.5 98.8 99.0 98.7

0.50 99.8 99.8 99.8 99.9 99.8 99.9 99.8 99.8 99.8 99.8 99.7 99.8

35 0.00 99.9 99.9 99.9 99.9 99.9 99.8 100 100 99.9 99.9 99.9 99.9

Table 7: Empirical powers (as percentages) of all tests obtained in model M6. The col-

umn“R”refers todifferent residual types (N–normal, L– lognormal,M–mixed).

The empirical power in the omitted rows is always 100%.

I 26 101 251
R n

ρ A B P BT A B P BT A B P BT

0.00 23.1 23.4 22.6 22.5 23.1 23.0 22.8 23.2 23.3 22.8 22.2 23.0
25 0.25 31.7 32.1 30.8 30.8 32.9 32.3 32.0 31.4 30.6 30.6 30.5 30.3

0.50 51.9 51.9 51.4 50.3 53.8 54.0 55.1 52.8 51.3 52.5 52.1 50.7

0.00 32.3 33.0 32.2 32.1 35.5 35.3 35.0 34.5 33.3 33.0 32.0 33.2
N 35 0.25 47.8 47.8 48.6 47.5 49.2 49.8 49.9 49.6 47.4 48.9 48.9 48.1

0.50 76.3 76.6 76.7 75.4 77.3 77.3 78.9 76.8 75.2 75.2 77.3 75.6

0.00 52.8 50.9 52.9 51.4 54.1 54.7 55.1 53.8 56.9 57.4 56.2 56.7
50 0.25 74.5 73.3 75.6 74.2 75.2 75.4 76.2 75.5 76.3 76.4 76.4 75.7

0.50 95.3 95.4 96.3 95.6 95.4 95.8 96.6 95.9 96.6 96.7 96.9 96.3

0.00 61.4 61.1 63.8 62.2 63.7 64.3 65.7 63.4 61.6 63.2 64.8 61.8
25 0.25 76.8 77.3 79.1 77.6 79.2 79.7 82.1 79.7 78.6 80.2 81.7 79.0

0.50 93.8 94.5 95.7 94.6 95.3 95.7 96.2 95.4 95.8 96.0 96.9 96.0

L
0.00 82.1 82.8 83.9 82.7 82.8 82.7 84.6 83.4 82.5 82.5 84.4 82.7

35 0.25 93.3 93.4 94.0 93.1 95.3 95.1 95.8 95.2 94.3 94.5 95.4 94.5
0.50 99.5 99.9 99.6 99.6 99.7 99.7 99.8 99.7 99.5 99.5 99.6 99.5

50
0.00 95.9 95.7 96.5 95.9 96.6 96.9 97.2 97.1 96.8 96.8 97.6 97.3
0.25 98.9 99.1 99.0 98.8 99.5 99.5 99.6 99.6 99.6 99.6 99.8 99.6

0.00 33.9 34.5 35.4 33.6 34.4 35.7 36.0 34.1 34.7 35.9 36.4 34.3
25 0.25 41.0 40.7 41.4 39.8 41.9 42.2 43.7 42.0 42.1 42.4 43.7 41.8

0.50 47.5 48.0 49.3 47.3 49.7 50.9 51.3 49.1 50.4 49.9 51.5 49.6

0.00 50.8 50.7 52.3 50.4 51.0 51.6 53.6 51.7 51.4 52.0 53.9 51.8
M 35 0.25 60.5 61.7 62.8 60.4 63.4 61.9 64.6 62.3 60.7 60.9 62.2 60.2

0.50 71.8 71.9 73.4 71.6 75.8 76.1 76.9 75.7 72.9 74.0 74.4 73.1

0.00 74.8 74.3 75.8 74.2 73.6 73.3 75.2 73.4 75.4 74.2 76.4 74.6
50 0.25 84.6 85.3 85.9 84.6 84.6 84.0 85.3 83.9 86.9 86.1 87.1 86.2

0.50 92.7 93.6 93.0 92.5 92.8 93.2 93.5 92.8 94.4 94.6 94.4 94.1
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The empirical powers of the testing procedures obtained in models M1–M3

and M5–M6 are given in Tables 2–4 and 6–7. Similarly to the empirical sizes,

the empirical powers are also quite satisfactory. The observed differences among

the empirical powers of all tests are very small. In models M1–M2, the B test is

usually a bit better than the other tests, while in models M3 and M5–M6, the P

test has such property. In models M1–M2 and M5–M6, the empirical powers of

each test are similar among different I’s, while in model M3, they increase when

I increases. They also increase with n or ρ. Since in models M3 and M6 the

functions m1 and m2 are very close to each other, the observed empirical powers

are usually moderate. In the other models, they are generally quite high even for

small n and ρ in all considered situations. Thus, the empirical powers of the BT

test are comparable with those of the tests proposed by Mart́ınez-Camblor and

Corral (2011), and their behavior is quite satisfactory.

5. SPEED COMPARISON

In this section, we study how the computational time required to perform

the A, B, P and BT tests depends on the number of observations n and the

number of design time points.

In the experiments, the functional data were generated under models con-

sidered in Section 4. We changed n = 100, 200, ..., 1000 and I = 500, 1000. As

an example, Figure 3 shows the execution times against n for obtaining the final

p-values of the A, B, P and BT tests when the data were generated as in model

M4 under normal case and ρ = 0.5, I = 500 or I = 1000. The results obtained in

the other models are similar.
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Figure 3: The execution times versus n for obtaining the final p-values of the A,

B, P and BT tests when the number I of design time points in [0, 1]

as well as in [1, 2] is equal to 500 or 1000. The data were generated

as in model M4 under normal case and ρ = 0.5.
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First of all, the BT test is the fastest among all considered ones, as was

expected. It may be extremely faster than the testing procedures of Mart́ınez-

Camblor and Corral (2011), and works at most a few seconds. The execution

time for the A test almost does not depend on the number of observations. This

follows from that in the implementation of the A test, the data are used only

to calculate the value of test statistic and the estimator of covariance function

(This is done only once.). However, the execution time for this testing procedure

increases significantly with an increase of the number of design time points, since

the generation of artificial trajectories of the Gaussian process ξ described in

Section 2 strongly depends on it. In most cases, the nonparametric bootstrap

and permutation methods are the slowest ones. Their execution times are quite

similar and increase much with an increase of n or I.

Summarizing, the BT test works very fast even for big data sets, in contrast

to the other testing procedures under consideration.

6. APPLICATIONS TO THE ORTHOSIS DATA

In this section, we apply the new test and the testing procedures pro-

posed by Mart́ınez-Camblor and Corral (2011) to real-data example, using or-

thosis data, which are available on the website of Professor Jin-Ting Zhang

(http://www.stat.nus.edu.sg/ zhangjt/books/Chapman/FANOVA.htm). These data

were used for illustrative purposes in many problems for functional data (see, for

instance, Abramovich et al., 2004; Górecki and Smaga, 2015; Zhang and Liang,

2014).

Abramovich et al. (2004) reported the orthosis data were acquired and

computed in an experiment by Dr. Amarantini David and Dr. Martin Luc (Lab-

oratoire Sport et Performance Motrice, EA 597, UFRAPS, Grenoble University,

France). The aim of their research was to investigate how muscle copes with

an external perturbation. Seven young male volunteers participated in the ex-

periment. They wore a spring-loaded orthosis of adjustable stiffness under the

following four experimental conditions: a control condition (without orthosis);

an orthosis condition (with orthosis); and two spring conditions (with spring 1

or with spring 2) in which stepping-in-place was perturbed by fitting a spring-

loaded orthosis onto the right knee joint. All volunteers tried all four conditions

10 times for 20 seconds each. In order to avoid possible perturbations in the

initial and final parts of the experiment, only the central 10 seconds were used

in the study. The resultant moment of force at the knee was derived by means

of body segment kinematics recorded with a sampling frequency of 200 Hz. For

each stepping-in-place replication, the resultant moment was computed at 256

time points, equally spaced and scaled to the interval [0, 1] so that a time interval

corresponded to an individual gait cycle.
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For illustrative purposes, we use the orthosis data under the first (without

orthosis) and third (with spring 1) experimental conditions. For each volunteer,

we calculate the mean curve of the 10 raw orthosis curves under these conditions.

Figure 1 depicts the resulting curves. Of interest is to test if the mean curves

of all volunteers are different under these two conditions (t ∈ [0, 1] — without

orthosis; t ∈ [1, 2] — with spring 1). This is a paired two-sample problem for

functional data. We applied the A, B, P and BT tests to this problem and the p-

values of these tests are equal to 0.001, 0, 0, 0.0008123766 respectively. Hence all

testing procedures suggest that the mean curves of all volunteers under without

orthosis and with spring 1 conditions are unlikely the same. From Figure 1,

however, we observe that the mean curves may be the same at the last stage

of the experiment, i.e., for t ∈ [0.8, 1] ∪ [1.8, 2]. In this case, the p-values of the

A, B, P and BT tests are equal to 0.201, 0.204, 0.241, 0.2368321 respectively,

and hence we fail to reject the equality of mean curves of all volunteers under

without orthosis and with spring 1 conditions over [0.8, 1] ∪ [1.8, 2]. Zhang and

Liang (2014) also observed similar behavior of orthosis curves at the last stage of

the experiment and confirmed its evidence by using appropriate tests. However,

they considered the orthosis data under all four experimental conditions in the

context of the functional analysis of variance.

7. CONCLUSIONS

In this paper, we studied the paired two-sample problem for functional

data. We proposed the test for this problem based on the test statistic consid-

ered by Mart́ınez-Camblor and Corral (2011) and the Box-type approximation

for its asymptotic null distribution. This testing procedure is root-n consistent,

easy to implement and much less computationally intensive than the re-sampling

and permutation tests of Mart́ınez-Camblor and Corral (2011). Moreover, it is

comparable with those tests in terms of size control and power, and its finite

sample behavior is very satisfactory. The illustrative real-data example indi-

cates that the decisions suggested by the new test and the testing procedures of

Mart́ınez-Camblor and Corral (2011) seem to be similar in practice.
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APPENDIX

A. Proofs

In the proofs, we use similar techniques as in Zhang et al. (2010a) and

Zhang and Liang (2014).

Proof of Lemma 2.1: Under assumptions A1–A4, from the proof of The-

orem 4.17 in Zhang (2013), it follows that Ĉ(s, t)
P→ C(s, t) uniformly over [0, 2]

2
,

as n → ∞. Hence, by (2.3) and the continuous mapping theorem, we obtain

K̂(s, t)
P→ K(s, t).

Proof of Theorem 2.1: By Lemma 2.1, we obtain K̂(s, t)
P→ K(s, t) uni-

formly over [0, 1]
2
. Hence

lim
n→∞

tr(K̂) =

∫ 1

0
lim

n→∞
K̂(t, t) dt =

∫ 1

0
K(t, t) dt = tr(K),

lim
n→∞

tr(K̂
⊗2

) =

∫ 1

0

∫ 1

0
lim

n→∞
K̂

2
(s, t) dsdt =

∫ 1

0

∫ 1

0
K

2
(s, t) dsdt = tr(K

⊗2
).

Therefore, by (2.5) and (2.7) and the continuous mapping theorem, we conclude

that

β̂ =
tr(K̂

⊗2
)

tr(K̂)

P→
tr(K

⊗2
)

tr(K)
= β, d̂ =

tr
2
(K̂)

tr(K̂⊗2)

P→
tr

2
(K)

tr(K⊗2)
= d

and Ĉn,α = β̂χ2
d̂,α

P→ βχ2
d,α, as n → ∞. The theorem is proved.

Proof of Theorem 3.1: Under the local alternatives H
(1)
1n , we have

Cn = n

∫ 1

0

(

(X̄(t) − m(t)) − (X̄(t + 1) − m(t + 1)) + (m(t) − m(t + 1))
)2

dt

(1.1)

=

∫ 1

0

(

n1/2
(X̄(t) − m(t)) − n1/2

(X̄(t + 1) − m(t + 1)) + n(1−τ)/2d(t)
)2

dt.

Under gaussianity assumption, Theorem 4.14 of Zhang (2013, p. 109) implies

n1/2
(X̄(t)−m(t)), t ∈ [0, 2] is a Gaussian process with mean zero and covariance

function C(s, t). Hence, the processes n1/2
(X̄(t) − m(t)) and n1/2

(X̄(t + 1)−
m(t + 1)) for t ∈ [0, 1] are also Gaussian processes with such parameters.
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Thus, n1/2
(X̄(t)−m(t))− n1/2

(X̄(t + 1)−m(t + 1)) + n(1−τ)/2d(t) is a Gaussian

process with mean n(1−τ)/2d(t) and covariance function K(s, t) given by (2.1).

By the assumption of d ∈ L2
([0, 1]) and since tr(K) is finite as noted in Section 2,

from Theorem 4.2 in Zhang (2013, p. 86), it follows that Cn has the same distribu-

tion as
∑l

r=1 λrAr + n1−τ
∑∞

r=l+1 ∆
2
r , where Ar ∼ χ2

1(n
1−τλ−1

r ∆
2
r) are indepen-

dent, λr are the decreasing-ordered eigenvalues of K(s, t), ∆r
def
=

∫ 1
0 d(t)φr(t)dt,

φr(t) are the associated eigenfunctions of K(s, t), r = 1, 2, ..., and l is the number

of all positive eigenvalues. The possibility of l = ∞ is permitted. Using above

observation and since
∑∞

r=1 ∆
2
r = ‖d‖2

, we calculate the expected value and vari-

ance of the test statistic as follows

E(Cn) =

l
∑

r=1

λrE(Ar) + n1−τ
∞

∑

r=l+1

∆
2
r

=

l
∑

r=1

λr(1 + n1−τλ−1
r ∆

2
r) + n1−τ

∞
∑

r=l+1

∆
2
r

=

l
∑

r=1

λr + n1−τ‖d‖2
= tr(K) + n1−τ‖d‖2,

V ar(Cn) =

l
∑

r=1

λ2
rV ar(Ar) = 2

l
∑

r=1

λ2
r(1 + 2n1−τλ−1

r ∆
2
r) = 2

l
∑

r=1

λ2
r + 4n1−τ

∆
2
λ

= 2tr(K
⊗2

) + 4n1−τ
∆

2
λ,

where ∆
2
λ

def
=

∑l
r=1 λr∆

2
r . The rest of the proof is divided into two cases.

Case 1. Let ∆r = 0 for all r=1, ..., l. Then, Cn has the same distribution as

l
∑

r=1

λrAr + n1−τ
∞

∑

r=1

∆
2
r =

l
∑

r=1

λrAr + n1−τ‖d‖2,

where Ar ∼ χ2
1. Hence, the distributions of Cn and C∗

0 + n1−τ‖d‖2
are the same,

where C∗
0 is given in (2.2). Theorem 2.1 implies the asymptotic power of the BT

test is of the form P (Cn > Ĉn,α) = P (C∗
0 > C0,α − n1−τ‖d‖2

) + o(1), and it is easy

to see that this power tends to 1, as n → ∞.

Case 2. Let ∆r 6= 0 for some r ∈ {1, ..., l}. Since Ar ∼ χ2
1(n

1−τλ−1
r ∆

2
r), it

has the same distribution as (Yr + n(1−τ)/2λ
−1/2
r ∆r)

2
, where Yr ∼ N(0, 1). Thus,

the distribution of Cn is as that of
∑l

r=1 λrY
2
r + 2n(1−τ)/2

∆λY + n1−τ
∑∞

r=1 ∆
2
r ,

where Y
def
=

∑l
r=1 λ

1/2
r ∆rYr/∆λ ∼ N(0, 1). Therefore, (Cn −E(Cn))/V ar(Cn) has

the same distribution as

∑l
r=1 λr(Y

2
r − 1)

√

2tr(K⊗2) + 4n1−τ∆2
λ

+
2n(1−τ)/2

∆λY
√

2tr(K⊗2) + 4n1−τ∆2
λ

.
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Since τ ∈ [0, 1), tr(K
⊗2

) is finite (by the Cauchy–Schwarz inequality) and 0 < ∆
2
λ

< λ1
∑l

r=1 ∆
2
r ≤ λ1‖d‖2 < ∞, we have

∑l
r=1 λr(Y

2
r − 1)

√

2tr(K⊗2) + 4n1−τ∆2
λ

p→ 0,

and

2n(1−τ)/2
∆λY

√

2tr(K⊗2) + 4n1−τ∆2
λ

=
2∆λY

√

2tr(K⊗2)/n1−τ + 4∆2
λ

d→ Y ∼ N(0, 1),

as n → ∞. By Theorem 2.1, we obtain

P (Cn > Ĉn,α) = 1 − Φ





C0,α − tr(K) − n1−τ‖d‖2

√

2tr(K⊗2) + 4n1−τ∆2
λ



 + o(1),

where Φ is the cumulative distribution function N(0, 1). Hence, P (Cn > Ĉn,α) →
1, as n → ∞, because τ ∈ [0, 1) and C0,α, tr(K), tr(K

⊗2
) and ∆

2
λ > 0 are finite.

Proof of Theorem 3.2: Under the local alternatives H
(2)
1n , by (1.1), we

have

Cn =

∫ 1

0

(

n1/2
(X̄(t) − m(t)) − n1/2

(X̄(t + 1) − m(t + 1)) + d(t)
)2

dt.

Similarly as in the proof of Theorem 1 in Mart́ınez-Camblor and Corral (2011), we

obtain n1/2
(X̄(t) − m(t)) − n1/2

(X̄(t + 1) − m(t + 1)) + d(t)
d→ ξd(t), as n → ∞,

where ξd(t), t ∈ [0, 1] is a Gaussian process with mean d(t) and covariance function

K(s, t) given by (2.1). Hence, by the continuous mapping theorem, we have Cn
d→

‖ξd‖2
, as n → ∞. Since d ∈ L2

([0, 1]) and tr(K) < ∞ (see Section 2), Theorem 4.2

in Zhang (2013, p. 86) shows that ‖ξd‖2
has the same distribution as

∑l
r=1 λrAr +

∑∞
r=l+1 δ2

r , where Ar ∼ χ2
1(λ

−1
r δ2

r ) are independent, λr are the decreasing-ordered

eigenvalues of K(s, t), δr
def
=

∫ 1
0 d(t)φr(t)dt, φr(t) are the associated eigenfunctions

of K(s, t), r = 1, 2, ..., and l is the number of all positive eigenvalues (l = ∞ is

possible). Since Ar has the same distribution as (Yr + λ
−1/2
r δr)

2
, Yr ∼ N(0, 1),

the distribution of ‖ξd‖2
is the same as that of

∑l
r=1 λrY

2
r + 2δλY +

∑∞
r=1 δ2

r ,

where δ2
λ

def
=

∑l
r=1 λrδ

2
r and Y

def
=

∑l
r=1 λ

1/2
r δrYr/δλ ∼ N(0, 1). Observing that

∑∞
r=1 δ2

r = ‖d‖2
and by Theorem 2.1, the asymptotic power of the BT test, as

n → ∞, is given by P (Cn > Ĉn,α) = P (C∗
0 + 2δλY + ‖d‖2 > C0,α) + o(1), where C∗

0

and C0,α are given in (2.2) and Theorem 2.1. The rest of the proof runs as in the

proof of Proposition 4 in Zhang and Liang (2014) taking δ2
= ‖d‖2

.
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B. Numerical implementation

As we mentioned in Subsection 4.1, in practice, the n functional observa-

tions are not continuously observed. Each function is usually observed on a grid

of design time points. In this paper, all individual functions Xi(t) for t ∈ [0, 1]

and t ∈ [1, 2] in the simulations and the example (also in the function BT.test

given in the next section) are assumed to be observe on a common grid of de-

sign time points that are equally spaced in [0, 1] and in [1, 2]. To implement

the new test when the design time points are different for different individual

functions, one first has to reconstruct the functional sample from the observed

discrete functional sample using some smoothing technique, then discretize each

individual function of the reconstructed functional sample on a common grid of

time points, and finally apply the test accordingly (see Zhang, 2013, or Zhang

and Liang, 2014, for more details).

Assume that 0 = t1 ≤ t2 ≤ ··· ≤ tp = 1 and 1 = t1 + 1 ≤ t2 + 1 ≤ ··· ≤
tp + 1 = 2 denote a grid of design time points that are equally spaced in [0, 1]

and in [1, 2], at which the data are observed. Then, we have

Cn = n

∫ 1

0
(X̄(t) − X̄(t + 1))

2 dt ≈
n

p

p
∑

i=1

(X̄(ti) − X̄(ti + 1))
2

=
1

p
C0

n,

tr(K̂) =

∫ 1

0
K̂(t, t) dt ≈

1

p

p
∑

i=1

K̂(ti, ti) =
1

p
trace(K̂),

tr(K̂
⊗2

) =

∫ 1

0

∫ 1

0
K̂

2
(s, t) dsdt ≈

1

p2

p
∑

i=1

p
∑

j=1

K̂
2
(ti, tj) =

1

p2
trace(K̂2

),

where K̂ = (K̂(ti, tj))
p
i,j=1. For example, similar approximations have previously

been used by Zhang (2013, p. 117), and Zhang and Liang (2014). If the number

p is very small, then we can first reconstruct the data as described in the last

paragraph and then discretize the reconstructed functions on a greater number of

design time points. The estimated parameters β̂ and d̂ in (2.5) are approximately

expressed as

β̂ ≈
trace(K̂2

)

p · trace(K̂)
=

1

p
β̂0, d̂ ≈

trace
2
(K̂)

trace(K̂2)
,

and hence the approximation of the p-value given in (2.6) is of the form

P (χ2
d̂

> Cn/β̂) ≈ P (χ2
d̂

> C0
n/β̂0

).
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C. R code

The new test is performed by the R function BT.test given below. The

notations in the program are consistent with or similar to those used in the paper.

The argument x is a data frame or matrix of data, whose each row is a discretized

version of a function Xi(t), t ∈ [0, 2], i = 1, ..., n. It means that the columns of

x represent the values of the sample functions at the design time points. The

number of columns is even, and the first half of them is connected with the

design time points in [0, 1], and the second half with those in [1, 2]. As outputs,

we obtain value of test statistic and p-value of the test.

BT.test = function(x){

n = nrow(x); p = ncol(x); CC = var(x)

Cn = n*sum((colMeans(x[, 1:(p/2)]) - colMeans(x[, (p/2+1):p]))^2)

KK = CC[1:(p/2), 1:(p/2)] - CC[1:(p/2), (p/2+1):p] -

CC[(p/2+1):p, 1:(p/2)] + CC[(p/2+1):p, (p/2+1):p]

A = sum(diag(KK)); B = sum(diag(KK%*%KK)); beta = B/A; d = (A^2)/B

p.value = 1 - pchisq(Cn/beta, d)

return(c(Cn/(p/2), p.value))

}

D. Additional simulations

In this section, we present some additional simulations suggested by one

of the reviewers. The simulation models are similar to those in Subsection 4.1,

but we consider the functional autoregressive process of order one (FARf (1))

instead of compound symmetric dependency structure. The FARf (1) process

was considered, for example, by Didericksen et al. (2012) or Horváth and Rice

(2015). The error functions are generated in the following way:

(4.1) εij(t) = η

∫ 1

0
f(t, u)εi,j−1(u) du + ξBij(t), t ∈ [0, 1], i = 1, ..., n, j = 1, 2,

where f is a kernel, η = 0.005, 0.125 and ξ = 0.05, 0.5 for models M0–M3 and

M4–M7, respectively, and Bij are independent standard Brownian Bridges. If

‖f‖ < 1, then (4.1) has a unique stationary and ergodic solution (see Bosq, 2000,

η = ξ = 1). We consider f(t, u) = c exp((t2 + u2
)/2), where c = 0.3416 so that

‖f‖ ≈ 0.5 (see Horváth and Rice, 2015). To obtain εi0, we use εi,−2 = ξBi, where

Bi is a standard Brownian Bridge, and then εi,−1 and εi0 are generated according

to (4.1). The errors functions εij are adequately centered. The results are given

in Table 8. They are very satisfactory. The conclusions are similar to those

obtained in Subsection 4.2.
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Table 8: Empirical sizes and powers (as percentages) of the A, B, P and BT tests

obtained in FARf (1) case. The column “M” refers to different models.

I 26 101 251
M

n A B P BT A B P BT A B P BT

25 4.7 4.6 4.6 4.6 5.5 5.3 5.3 5.4 4.4 4.4 4.5 4.4
M0 35 4.4 4.9 4.5 4.6 5.4 5.6 5.4 5.1 5.3 5.3 5.3 4.9

50 4.9 4.5 5.3 4.8 4.8 4.8 4.3 4.9 6.0 5.2 5.5 5.6

25 99.3 99.2 99.7 99.3 99.5 99.5 99.7 99.6 99.6 99.3 99.7 99.1
M1 35 100 100 100 100 100 100 100 100 100 100 100 100

50 100 100 100 100 100 100 100 100 100 100 100 100

25 100 100 100 100 100 100 100 100 100 100 100 100
M2 35 100 100 100 100 100 100 100 100 100 100 100 100

50 100 100 100 100 100 100 100 100 100 100 100 100

25 69.2 68.5 74.5 69.7 97.9 98.2 99.0 98.0 99.2 99.5 99.4 99.4
M3 35 94.9 94.7 96.5 95.3 100 100 100 100 100 100 100 100

50 100 100 100 100 100 100 100 100 100 100 100 100

25 5.2 5.5 4.9 5.1 4.3 4.4 4.1 4.5 6.1 6.4 5.7 5.9
M4 35 6.6 6.7 6.2 6.6 5.2 5.6 5.3 5.3 4.8 4.8 4.2 4.8

50 5.5 5.4 4.9 5.5 5.9 5.5 5.9 5.7 5.4 5.3 4.8 5.1

25 79.4 79.8 80.3 79.0 84.6 84.1 84.8 84.0 83.9 84.4 84.2 83.5
M5 35 96.1 95.9 96.6 95.8 97.0 97.0 97.5 97.3 96.9 96.8 97.5 97.0

50 100 100 100 100 100 99.9 100 100 100 99.9 100 100

25 30.1 29.7 29.4 29.2 29.7 30.1 29.9 29.4 31.8 32.0 31.6 30.9
M6 35 41.5 41.2 42.2 41.3 43.0 43.6 42.9 42.2 44.7 43.7 44.6 43.4

50 58.7 57.7 58.6 57.4 64.8 65.2 65.9 63.9 65.9 65.8 66.7 65.5

25 100 100 100 100 100 100 100 100 100 100 100 100
M7 35 100 100 100 100 100 100 100 100 100 100 100 100

50 100 100 100 100 100 100 100 100 100 100 100 100
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[22] Horváth, L. and Rice, G. (2015). Testing equality of means when the ob-

servations are from functional time series, Journal of Time Series Analysis, 36,

84–108.

[23] Jacques, J. and Preda, C. (2014). Functional data clustering: a survey, Ad-

vances in Data Analysis and Classification, 8, 231–255.

[24] James, G.M. and Hastie, T.J. (2001). Functional linear discriminant analysis

for irregularly sampled curves, Journal of the Royal Statistical Society. Series B.

Statistical Methodology, 63, 533–550.

[25] Lian, H. (2012). Empirical likelihood confidence intervals for nonparametric

functional data analysis, Journal of Statistical Planning and Inference, 142, 1669–

1677.

[26] Mart́ınez-Camblor, P. and Corral, N. (2011). Repeated measures analysis

for functional data, Computational Statistics & Data Analysis, 55, 3244–3256.

[27] Prakasa Rao, B.L.S. (2010). Nonparametric density estimation for functional

data by delta sequences, Brazilian Journal of Probability and Statistics, 24, 468–

478.
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Abstract:

• The article presents predictive estimation of population mean of the study variable in

Ranked Set Sampling (RSS). It is shown that the predictive estimators in RSS using

mean per unit estimator, ratio estimator and regression estimator as predictor for

non-sampled values are equivalent to the corresponding classical estimators in RSS.

On the other hand, when product estimator is used as predictor, the resulting es-

timator differs from the classical product estimator under RSS. Expressions for the

Bias and the Mean Squared Error (MSE) of the proposed estimators are obtained

up to first order of approximation. A simulation study is conducted to observe the

performance of estimators under predictive approach.
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1. INTRODUCTION

It is very common to construct estimators for population parameters of

a study variable using the information contained only in a sample of the study

variable. However, in many situations, statisticians are interested in using some

auxiliary information from the population itself which helps in finding more ef-

ficient estimators. In literature, a lot of work has been done on how to use the

auxiliary information (see for example, Agrwal and Roy (1999), Upadhyaya and

Singh (1999), Singh (2003), Singh and Tailor (2003), Kadilar and Cingi (2004,

2006), Yan and Tian (2010), and Singh et al. (2014)). In many situations, we may

be interested in estimating the average value of the variable being measured for

non-sampled units on the basis of sample data at hand. This approach is called

predictive method of estimation. This approach is based on superpopulation

models, and hence it is also called model-based approach. The approach assumes

that the population under consideration is a realization of random variables fol-

lowing a superpopulation model. Under this model the prior information about

the population parameters such as the mean, the variance, and other parameters

is utilized to predict the non-sampled values of the study variable.

Basu (1971) constructed predictive estimators for population mean using

mean per unit estimator, regression estimator, and ratio estimator as predictors

for the mean of unobserved units in the population. Srivastava (1983) compared

the estimator obtained by using the product estimator as a predictor for mean

of unobserved units in the population with the customary product estimator.

Recently, Yadav and Mishra (2015) have established predictive estimators using

product estimator as predictor for the mean of unobserved units of the population.

Basic statistical principles play a vital role in making inference about the

population of interest. If these principles are violated, even optimal statistical

procedures will not allow us to make legitimate statistical inferences about the

parameters of interest. Ranked Set Sampling (RSS) technique is a good alter-

native for Simple Random Sampling (SRS) for obtaining experimental data that

are truly representative of the population under investigation. This is true across

all of the sciences including agricultural, biological, environmental, engineering,

physical, medical, and social sciences. This is because in RSS measurements

are likely more regularly spaced than measurements in SRS. The RSS proce-

dure creates stratification of the entire population at the sampling stage, i.e. we

are randomly selecting samples from the subpopulations of small, medium and

large units without constructing the subpopulation strata in advance. Ranked

set sampling method, proposed originally by McIntyre (1952) to estimate mean

pasture yields, has recently been modified by many authors to estimate the pop-

ulation parameters. Dell and Clutter (1972) showed that the mean estimator

is an unbiased estimator of the population mean under RSS for both perfect as
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well as imperfect ranking. Muttlak (1997) suggested median ranked set sampling

(MRSS) for estimation of finite population mean. Al-Saleh and Al-Omari (2002)

used multistage ranked set sampling (MSRSS) to increase the efficiency of the

estimator of the population mean for certain value of the sample size. Jemain

and Al-Omari (2006) suggested double quartile ranked set sampling (DQRSS) for

estimating the population mean. Many other authors have worked on estimation

of parameters in RSS (see Al-Omari and Jaber (2008), Bouza (2002), Al-Nasser

(2007), Ohyama et al. (1999), and Samawi and Muttlak (1996) among others).

In this study, we propose a predictive estimator, using ratio, product and

regression estimators as predictors for non-sampled observations under ranked set

sampling scheme. In Section 2, we review the predictive estimators introduced by

Basu (1971). Section 3 consists of the proposed estimators and their properties.

An efficiency comparison is carried out through simulations in Section 4. Some

concluding remarks are given in Section 5.

2. PREDICTIVE ESTIMATORS IN SIMPLE RANDOM

SAMPLING

Let U = {U1, U2, ..., UN} be a population of size N . Let (yi, xi) be the values

of the study variable y and the auxiliary variable x on the i-th (0 ≤ i ≤ N) unit

of U .

Let S be the set of all possible samples from U using simple random sam-

pling with replacement (SRSWR). For any given s ∈ S, let ϑ(s) be the number

of distinct units in s and let s̄ denote the set of all those units of U which are not

in s. Basu (1971) presented population mean as follows:

Ȳ =
ϑ(s)

N
Ȳs +

N − ϑ(s)

N
Ȳs̄,(2.1)

where Ȳs =
1

ϑ(s)

∑

i∈s yi and Ȳs̄ =
1

N−ϑ(s)

∑

i∈s̄ yi. Under simple random sampling

with size ϑ(s) = n, the predictor for overall population mean is given by

Ȳ =
n

N
Ȳs +

N − n

N
Ȳs̄,(2.2)

where Ȳs =
1
n

∑

i∈s yi and Ȳs̄ =
1

N−n

∑

i∈s̄ yi. An appropriate estimator of the

population mean is then given by

t =
n

N
ȳs +

N − n

N
T,(2.3)

where T is the predictor of Ȳs̄. Basu (1971) used the mean per unit estimator

ȳ =
1
n

∑

i∈s yi, ratio estimator ȳr =
ȳs

x̄s
X̄s̄, product estimator ȳp =

ȳs

X̄s̄

x̄s and re-

gression estimator ȳlr = ȳs +β(X̄s̄− x̄s) as predictors. Here, X̄s̄ =
1

N−n

∑

i∈s̄ xi =
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NX̄−nx̄s

N−n and β = Syx
/

S2
x
, where β is regression coefficient of Y on X, and X̄ is

the population mean of the auxiliary variable based on N units both are as-

sumed to be known in advance. Also, let S2
x =

1
N−1

∑N
i=1(xi − X̄)

2
and Syx =

1
N−1

∑N
i=1(yi − Ȳ )(xi − X̄).

It has been shown by Basu (1971) that while using simple mean per unit

estimator, ratio estimator and regression estimator as T , the predictive estimator

t becomes the corresponding classical simple mean estimator ȳ, ratio estimator

ȳr and regression estimator ȳlrrespectively. However, when product estimator is

used, then t becomes

tp = ȳs
nX̄ + (N − 2n)x̄s

NX̄ − nx̄s
.(2.4)

It can be easily noticed that tp is quite different from the usual product

estimator.

The Bias and Mean Squared Error (MSE) of t with ratio and product

estimators as predictor are given below up to 1
st

order of approximation:

(2.5) Bias(tr) ∼= Ȳ
1

n

(

C2
x − ρCyCx

)

,

Bias(tp) ∼= Ȳ
1

n

(

θC2
x + ρCyCx

)

(2.6)

and

(2.7) MSE(tr) ∼= Ȳ 2 1

n

(

C2
y + C2

x − 2ρCyCx

)

,

(2.8) MSE(tp) ∼= Ȳ 2 1

n

(

C2
y + C2

x + 2ρCyCx

)

,

where Cy =
Sy

Ȳ
, Cx =

Sx

X̄
, ρ =

Syx

SySy

, S2
y =

1
N−1

∑N
i=1(yi − Ȳ )

2
and θ =

n
N−n . Also

the bias and MSE of tp are given by

(2.9) Bias(ȳp)
∼= Ȳ

1

n

(

ρCyCx

)

and

(2.10) MSE(ȳp)
∼= Ȳ 2 1

n

(

C2
y + C2

x + 2ρCyCx

)

.

From Equations (2.8) and (2.10), it is clear that ȳp and tp have same MSE

when first order of approximation is used although they are different estimators.

The variance of tlr is given by

(2.11) V ar(tlr) =
1

n
S2

y

(

1 − ρ2
)

.
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3. PREDICTIVE ESTIMATOR IN RANKED SET SAMPLING

To obtain a Ranked Set Sample from a superpopulation consisting of N units,

an initial sample of m units is selected and ranked according to the attribute of

interest. A variety of mechanisms are used for ranking purpose, i.e. visual inspec-

tion of units, expert opinion, or through the use of some concomitant variables.

If ranking is performed on the auxiliary variable X, the unit that is judged to

be the smallest ranked unit from the selected sample is called the first judgment

order statistic and is denoted by Y [1]. On the other hand, when ranking is per-

formed on the study variable Y itself, the smallest ranked unit (called smallest

order statistic) is selected from the sample and denoted by Y (1). Then a second

sample of size m (independent of the first sample) is selected from the population

and is ranked in the same manner as the first. From the second sample, we select

the unit ranked as the second smallest in the sample (i.e. the second judgment

order statistic) and is denoted by Y [2] or Y (2) according to the above mentioned

definitions. This process continues till inclusion of the largest ranked unit from

the m-th sample selected for judgment. This entire process results into m obser-

vations and is called a cycle. We complete r cycles to obtain a ranked set sample

of size n = rm units.

Let Ω be the all possible samples of size n = rm can be taken from a

superpopulation U using a ranked set sampling scheme. Suppose that ω be a

single set Ω having size n = rm. Let ω̄ denote the set of all those units of U

which are not in ω. Let yi[i] and xi(i) be the values of the study variable Y

and the auxiliary variable X for i-th unit taken from the i-th judgment ranked

sample for actual quantification, where i = 1, 2, ..., m. It is assumed that ranking

is performed with respect to the auxiliary variable X.

For a ranked set sample of size n = rm (for simplicity, we use r = 1), we

obtain the following estimators

trss[j] =
m

N
ȳrss +

N − m

N
T[j], (j = 1, 2, 3, 4),(3.1)

where ȳrss =
1
m

∑

i∈ω yi[i] and T[j] is the predictor for mean of non-sampled ob-

servations (Ȳω̄) which is defined by T[1] = ȳrss, T[2] = ȳrss(r), T[3] = ȳrss(lr) and

T[4] = ȳrss(p), where ȳrss[r] = ȳrss
X̟̄

x̄rss
, ȳrss[lr] = ȳrss + β

(

X̟̄ − x̄rss

)

and ȳrss[p] =

ȳrss
x̄rss

X̟̄

. Here, X̟̄ =
1

N−m

∑

i∈̟ xi(i) =
NX̄−mx̄rss

N−m , and x̄rss =
1
m

∑

i∈ω xi(i).

Inserting T[j] for (j = 1, 2, 3, 4) in Equation (3.1), we have

(3.2) trss[1] = ȳrss,

(3.3) trss[2] = ȳrss
X̄

x̄rss
,
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(3.4) trss[3] = ȳrss + β(x̄rss − X̄),

and

(3.5) trss[4] = ȳrss
mX̄ − (N − 2m)x̄rss

NX̄ − mx̄rss
.

Equations (3.2), (3.3) and (3.4) show that trss[1], trss[2] and trss[3] are equivalent

to ȳrss, ȳrss[r] and ȳrss[lr] respectively. On the other hand trss[4] differs from ȳrss[p]

(usual product estimator under RSS).

To obtain the Bias and the MSE of proposed predictive estimators, we

consider the following error terms

∈0=
ȳrss

Ȳ
− 1 and ∈1=

x̄rss

X̄
− 1

such that E(∈0) = E(∈1) = 0 and

E(∈2
0) = Ȳ −2

(

S2
y

m
−

1

m2

m
∑

i=1

δ2
y[i]

)

,

E(∈2
1) = X̄−2

(

S2
x

m
−

1

m2

m
∑

i=1

δ2
x(i)

)

and

E(∈0∈1) = Ȳ −1X̄−1

(

Syx

m
−

1

m2

m
∑

i=1

δy[i]δx(i)

)

,

where δy[i] = Ȳ[i] − Ȳ and δx(i) = X̄(i) − X̄ for i = 1, 2, ..., m. Here, Ȳ[i] and X̄(i)

are population means of the study variable and the auxiliary variable respectively

for i-th order statistic. It is easy to show that trss[1] is an unbiased estimator of

the population mean Ȳ with

V ar(trss[1]) =
S2

y

m
−

1

m2

m
∑

i=1

δ2
y[i].(3.6)

It is clear that V ar(trss[1]) ≤
S2

y

m . This indicates that trss[1] is more efficient than

ȳs(sample mean under SRSWR). Similarly, the bias and the MSE of trss[2], up

to first order of approximation, are given by

Bias(ȳrss[2])
∼=

Ȳ

m

[

(

C2
x − ρCyCx

)

−
1

m

(

m
∑

i=1

W 2
x(i) −

m
∑

i=1

Wy[i]Wx(i)

)]

(3.7)

and

MSE(trss[2])
∼=

1

m

(

S2
y + R2S2

x − 2RρSySx

)

−
1

m2

m
∑

i=1

κ2
[i],(3.8)
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where κ[i] = Wy[i] − RWx(i), Wy[i] =
δy[i]

Ȳ
, Wx(i) =

δx(i)

X̄
and R =

Ȳ
X̄

. From Equa-

tions (2.7) and (3.8), it is obvious that MSE(trss[2]) ≤ MSE(tr), i.e. trss[2] is

more efficient than the predictive type ratio estimator under SRSWR. Further,

we can show that trss[3] is an unbiased estimator of Ȳ with variance

V ar(trss[3]) =
S2

y

m

(

1 − ρ2
)

−
1

m2

m
∑

i=1

A2
[i],(3.9)

where A[i] = Wy[i] −βWx(i), ∀ i = 1, 2..., m. Equation (3.9) shows the superiority

of the predictive type regression estimator as compared to its counterpart in

SRSWR.

Finally, to compute the Bias and the MSE of trss[4], note that

trss[4] = Ȳ (1+ ∈0)
mX̄ + (N − 2m)X̄(1+ ∈1)

NX̄ − mX̄(1+ ∈1)
,

= Ȳ (1+ ∈0)

(

1 +
(N − 2m) ∈1

N − m

)(

1 +
m ∈1

N − m

)−1

.

Assuming

∣

∣

∣

m
N−m

∣

∣

∣
< 1, and expanding up to first order of approximation using

binomial expansion, we have

(3.10) trss[4] − Ȳ ∼= Ȳ
(

∈0 + ∈1 + ∈0∈1 +φ ∈2
1

)

where φ =
m

N−m . Taking expectation of Equation (3.10), we get

Bias(trss[i])
∼=

Ȳ

m

[

Cyx + φC2
x −

1

m

m
∑

i=1

(

δyx[i] + φδ2
x(i)

)

]

.(3.11)

MSE of trss[4] can be obtained by squaring and taking expectation in Equation

(3.10). This gives

MSE(trss[4])
∼=

1

m

(

S2
y + R2S2

x + 2RρSySx

)

−
1

m2

m
∑

i=1

B2
[i],(3.12)

where B[i] = Wy[i] + RWx(i) for i = 1, 2, ..., m.

From Equations (2.6), (2.8), (3.11) and (3.12) it can be noticed that the

expression for bias of trss[4] is different from that of usual product estimator

although they have the same MSE for first order of approximation.
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4. SIMULATION STUDY

To compare the efficiencies of the proposed estimators, we conduct a sim-

ulation study as follows:

1. Generate a hypothetical population on two variables X and Y , where

X is generated using three different distributions with some specific

values of parameters as described in first row of Table 1.

2. Then Y is generated as Y = ρ × X + e, where e is generated using a

standard normal distribution and ρ is the correlation coefficient between

X and Y which is fixed at 0.5, 0.7 and 0.9.

3. Take an RSS and a SRSWR, each having size n = rm, and compute the

proposed estimators and corresponding estimators in SRSWR, where

r = 5, 10 and m = 2, 4, 6.

4. Repeat Step 2, 10,000 times. Then compute the mean squared error of

each estimator to obtain relative efficiency of the proposed estimators.

Table 1 provides relative efficiency of proposed predictive estimators in RSS

with respect to simple mean estimator in SRS, i.e.

RE[j] =
V ar(ȳs)

MSE(trss[j])
for j = 1, 2, 3, 4.

Table 1 shows that the relative efficiencies of the RSS increases with the increase

of the correlation between the auxiliary variable and the study variable. RE also

increases with the increase of the set size m. Predictive estimator using ratio

estimator and regression estimator as predictors are almost equally efficient for

all the case that considered in this study. However, the product estimator gives

worse performance as the correlation between the study variable and the auxiliary

variable increases. But this because product estimator is not preferable for pre-

diction in ranked set sampling, when ranking is performed based on an auxiliary

variable that has positive correlation with the variable of interest. Efficiencies

of the proposed estimators are significantly higher when uniform distribution is

used to generate data in the interval [0, 10]. Efficiency is at its peak for uniform

distribution with high positive correlation between the study variable and the

auxiliary variable.
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5. CONCLUSION

Assuming a superpopulation model, we developed some predictive type

estimators in ranked set sampling as RSS is more efficient method of sample se-

lection for actual measurements. Properties (bias and efficiency) are examined

up to first order of approximation. It is observed that the predictive estima-

tors are equivalent to the corresponding classical estimators in RSS when simple

mean estimator, ratio estimator and regression estimator are used as predictors

for non-sampled values. On the other hand, predictive estimator has different

form as compared to the corresponding classical product estimator when product

estimator is used as predictor.

This study can be extended by using exponential type estimators and some

other efficient estimators as predictor
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1. INTRODUCTION

The traditional Behrens–Fisher (B-F) [5, 20] problem is to test the equal-

ity of the means µ1 and µ2 of two independent normal populations where the

variances σ2
1 and σ2

2 are unknown and unspecified. The problem arises when

the ratio of the population variances is unknown as well. In the case of known

Importance of this problem is well understood and its application is widespread

[1, 12, 14, 15, 16].

Ever since the solution of this problem by [43], many papers have been writ-

ten. See, for example, [7], [19], and [30]. These and similar other papers [9, 39]

have attempted improvement, in terms of level and power, over the Welch proce-

dure. More recently, non-parametric [14, 16, 21] and Bayesian [24, 46] procedures

have also been developed.

However, independent samples from two two-parameter populations (other

than the normal) arise in many situations. The problem then is to test the

equality of two location (or some analogous) parameters when the dispersion (or

some analogous) parameters are unknown and possibly different. These problems

are analogous to the traditional Behrens–Fisher problem. Prior to 2014 not much

have been written on the solution of the Behrens–Fisher analogous problems.

Some (to our knowledge) problems analogous to the B-F problem that have been

dealt with recently are

(i) testing equality of two negative binomial means in presence of unequal

dispersion parameters [31];

(ii) testing equality of scale parameters of two Weibull distributions in

the presence of unequal shape parameters [2], and

(iii) testing equality of two beta binomial proportions in the presence of

unequal dispersion parameters [3].

When the sample sizes are small the two sample t-test (T1) with Welch’s

[43] degree of freedom and for large sample sizes (N = n1 +n2 > 30) the standard

normal statistic (TN ) (see, Section 2) are recommended by standard text books

[23]. Many evidences have been shown in favour of the preference of the Welch T1

over other procedures. See, for example, [7, 12, 30] for the standard BF problem.

More recently [39] developed a jackknife based procedure and [9] developed a

computationally intensive procedure for the BF problem. However, no systematic

study has been conducted so far to determine the overall sample size required

under which the normal approximation of the statistic TN works.

The primary purpose of this paper is to make a comprehensive review of

the existing procedures, evaluate these for size and power, and make recom-

mendations for the standard BF and its analogous problems in some sense.
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For the standard BF and some of its analogous problems we also investigate

performance of a new Monte-Carlo approach, the bootstrap and the rank coun-

terparts. A recent study [31] suggests that the Welch T1 does well in some non-

normal situations, such as for samples from two negative binomial populations.

Along with some other procedures performances of the Welch T1 and the new

Monte-Carlo approach are investigated for samples from normal, two discrete

models (count data and data in the form of proportions) and a survival model for

a wide range of parameter spaces to reflect comparison of the means for variances

which are same to very different.

The secondary purpose is to investigate and answer a question: does the

same size fit all or in other words is the t-test with Welch’s [43] degree of freedom

correction robust enough for the BF problem analogs and what sample sizes are

appropriate for the normal approximation of the statistic TN .

Review, possible new procedures, simulations, and recommendations for

the standard BF problem are given in Section 2. The BF analogues correspond-

ing to the negative binomial, the beta binomial, and the Weibull are dealt with

in Sections 3, 4 and 5 respectively. The concluding section (Section 6) provides

some guide lines as to which procedure(s) to be used in each case. Some recom-

mendations for possible future study are also provided in this section.

2. THE BEHRENS–FISHER PROBLEM:

TWO NORMAL POPULATIONS

2.1. Welch’s t-Statistic

The well-known Behrens–Fisher (B-H) problem is to test the equality of

the means µ1 and µ2 of two independent normal populations where the variances

σ2
1 and σ2

2 are unknown and possibly unequal.

Let Yi1, ..., Yini
be a random sample from a population, i = 1, 2. Now, let

yi1, ..., yini
be a corresponding sample realization with mean ȳi =

∑ni

j=1 yij/ni

and variance s2
i =

∑ni

j=1(yij − ȳi)
2/(ni − 1). If the samples come from normal

populations with means µ1 and µ2 and unknown and possibly unequal variances

σ2
1 and σ2

2, then

TN =
ȳ1 − ȳ2

√

s2
1

n1
+

s2
2

n2

,

is asymptotically normally distributed with mean 0 and variance 1 when both n1

and n2 are sufficiently large. This is stated in many undergraduate text books in

Mathematical Statistics [23].
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However, when the sample sizes n1 and n2 are smaller the distribution of

TN , henceforth denoted by T1, is approximately distributed as Student’s t with

degrees of freedom

f =

(

s2
1

n1
+

s2
2

n2

)2

(

s4
1

n2
1(n1−1)

+
s4
2

n2
2(n2−1)

)

[43]. It is shown by [19] and [43] using simulations that the statistic

Z =
ȳ1 − ȳ2

√

(n1−1)s2
1

(n2
1−3n1)

+
(n2−1)s2

2

(n2
2−3n2)

might be preferable to the statistic T1 because the former would maintain nominal

level better than the later. However, [19] does not provide a degree of freedom

for the above Z to be used as an approximation to the t-distribution. To this end

[7] derive degrees of freedom and compare performance of T1 with a few other

statistics, such as the Wald, likelihood ratio and score statistics and the statistic

Z, in terms of level and power and find that T1 is still the best. However, there

is an error in the degrees of freedom formula which later was corrected by [30].

After carrying out further simulations [30] finds that in addition to all the reasons

given by [7] to prefer T1 over Z, the former shows better power performance than

the latter. See, [30] for further details.

To the best of our knowledge, to-date, the statistic T1 is the best and is

referred as the statistic to use in recent text books [23]. In this paper we attempt

to do a comprehensive review of all available methods and develop a new Monte

Carlo procedure.

2.2. The Likelihood, Score and Wald Tests [7]

The likelihood ratio statistic (LR), score statistic and Wald statistic, de-

noted by L, S and W, derived by Best and Rayner (1987) are

L = n1log[(n1 − 1)s2
10/((n1 − 1)s2

1)] + n2log[(n2 − 1)s2
20/((n2 − 1)s2

2)],

S = (ȳ1 − ȳ2)
2/((n1 − 1)s2

10/n2
1 + (n2 − 1)s2

20/n2
2),

and

W = (ȳ1 − ȳ2)
2/((n1 − 1)s2

1/n2
1 + (n2 − 1)s2

2/n2
2),

where s2
i0 =

∑ni

j=1(yij −µ0)
2/(ni − 1) and µ0 is the solution to the cubic equation

− (n1 + n2)µ
3
0 + [(n1 + 2n2)ȳ1 + (n2 + 2n1)ȳ2]µ

2
0

− [n1(n2 − 1)s2
2/n2 + n2(n1 − 1)s2

1/n1 + 2(n1 + n2)ȳ1ȳ2 + n2ȳ1
2
+ n1ȳ

2
2]µ0

+ [n1ȳ1{(n2 − 1)s2
2/n2 + ȳ2

2} + n2ȳ2{(n1 − 1)s2
1/n1 + ȳ1

2}] = 0.
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[32] give a brief description on the construction mechanism as well as the advan-

tages of the C(α) or score tests over the LR and the Wald tests (see, [30] for

details).

2.3. A Monte Carlo Procedure developed Using T1

By examining the T1-statistic, it is clear that the denominator is a con-

vex combination of χ2
(n1−1)/(n1 − 1) and χ2

(n2−1)/(n2 − 1), and the combination

proportion depends on the ratio of the two underlying population variances

and the sample sizes. The t-distribution approximation becomes exact when

τ = σ2
2n1/σ2

1n2 = 1, and we expect the Monte Carlo method works better when

τ is very different from 1. Theoretically, the p-value cannot be calculated under

the null unless τ is specified. Under the null, the T1 statistic follows an exact

t distribution with degree of freedom being n1 − 1, n2 − 1 and (n1 + n2 − 2) when

τ takes 0, ∞ and 1. The new statistic, henceforth denoted by T , is

T =

ȳ1−ȳ2√
σ2
1/n1+σ2

2/n2
√

s2
1/n1+s2

2/n2

σ2
1/n1+σ2

2/n2

=
N
√
K

.

Here N ∼ N(0, 1). We now study the distribution of K.

K =
s2
1/n1 + s2

2/n2

σ2
1/n1 + σ2

2/n2

∼

χ2
n1−1

n1 − 1

σ2
1

n1
+

χ2
(n2−1)

n2 − 1

σ2
2

n2

σ2
1/n1 + σ2

2/n2

∼ λκ1 + (1 − λ)κ2,

where λ is a proportion parameter, (σ2
1/n1)/(σ2

1/n1+σ2
2/n2), κ1∼χ2

n1−1/(n1−1),

and κ2 ∼ χ2
n2−1/(n2 − 1).

In order to simulate the Monte Carlo numbers from K, we will need to

provide a value for λ. Clearly, we can estimate λ by

λ̂ =
s2
1/n1

s2
1/n1 + s2

2/n2
.

We therefore obtained an approximate distribution for K,

K̃ ∼ λ̂κ1 + (1 − λ̂)κ2,

whose distribution can be easily obtained. The final distribution, using Monte

Carlo procedure, can be approximated by Z/
√

K̃ which is obtained by a random



The Behrens–Fisher Problem and Some of Its Analogs 569

number from N(0, 1) and two independent random numbers from χ2
(n1−1) and

χ2
(n2−1). Because κ1 and κ2 are independently simulated from λ̂, we have E(K̃) = 1

and var(K̃) = 2λ̂2/(n1 − 1) + 2(1 − λ̂)
2/(n2 − 1).

If the variance ratio σ2
2/σ2

1 is known, the distribution of K above is known as

a mixture of two χ2
distributions and T (§2.3) becomes pivotal but it is generally

not an exact t distribution. However, if the variance ratio is given, one can use

the pooled variance estimator and form a t-statistic with n1 + n2 − 2 degrees of

freedom.

If t-distribution is used to approximate T , i.e., K̃ is approximated by a chi-

square distribution, the “best” degree of freedom by matching the variance (K̃)

to χ2
(d)/d is

d = 2/var(K̃) =
(n1 − 1)(n2 − 1)

(n2 − 1)λ̂2 + (n1 − 1)(1 − λ̂)2
,

which is exactly the same as Welch’s formula!

After developing this procedure we found that [18] also developed the same

statistic. Similar idea has also been explored by [4] and [43]. However, they used

an exact distribution which is complex to use and showed that the Welch approxi-

mation is remarkably accurate, even for small n1 and n2, provided that n1 and n2

are equal or nearly equal. Singh, Saxena, and Srivastava [39] developed a proce-

dure similar to the one given above and [9] developed another Monte Carlo based

procedure “Computational Approach Test” (CAT). Using a simulation study [9]

find that the procedure developed by [39] is not as good as it has been claimed [9].

On the other hand the CAT procedure is quite computationally involved. For

small sample sizes the CAT is quite conservative. In contrast our method, which

is also Monte Carlo, is very easy to use and its performance is much better that

that of CAT. This issue will be dealt with in a separate paper.

2.4. A Bootstrap Procedure [13]

A bootstrap test for the Behrens–Fisher problem is developed by [13].

Among the re-sampling methods, the two sample bootstrap test is the one that

neither assumes equal variances nor does it require any distributional assump-

tions and offer a possible solution to the Behrens–Fisher problem [13]. All we

need is a suitable test statistic and a null distribution under the hypothesis of

equal population means. Manly (1997) recommends to use TN as a test statistic,

where,

TN =
ȳ1 − ȳ2

√

s2
1

n1
+

s2
2

n2

,
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is asymptotically normally distributed with mean 0 and variance 1 when both

n1 and n2 are sufficiently large. The null distribution is approximated by the

distribution of B values of TN evaluated at each of the B bootstrap samples.

The detailed algorithm proceeds as follows:

1. Calculate TN using the observed two sample data.

2. Obtain a bootstrap samples of size ni; say y∗ij , from the adjusted yij ,

that is, from yadj
ij = yij − ȳi + ȳ, where ȳ is the overall mean.

3. Calculate

T ∗
N =

ȳ∗1 − ȳ∗2
√

s2∗
1 /n1 + s2∗

2 /n2

.

4. Repeat step 2 and 3 B times (B = 999); thereby obtaining 999 boot-

strap values of TN∗.

5. For a two sided test, a difference between the means is significant if the

observed value of |TN | > 100(1 − α/2)th values of T ∗
N .

2.5. A Non-Parametric Procedure [21]

To address the Behrens–Fisher problem, the Mann–Whitney–Wilcoxon test

[28, 44] is modified in [21]. Define P1i, the number of y2 observations less than

y1i, for i = 1, ..., n1. Similarly, define P2j , the number of y1 observations less than

y2j , for j = 1, ..., n2. The P1i and P2j are called the placements of y1 and y2,

respectively [21]. Let P̄1 denotes the mean of y1 placements and P̄2 the mean

of y2 placements. Also compute the quantities V1 =
∑n1

i=1(P1i − P̄1)
2

and V2 =
∑n2

j=1(P2j − P̄2)
2
, then the Fligner–Policello statistic (modified Mann–Whitney–

Wilcoxon statistic) is given by

Û =

∑n1
i=1 P2i −

∑n2
j=1 P1j

2(V1 + V2 + P̄1P̄2)
1/2

.

For a two-sided test the null hypothesis of equal medians is rejected if |Û | ≥ uα/2.

The critical value uα/2 can be calculated exactly or estimated using Monte Carlo

simulation for large n1 and n2. The procedure is also available in contributed

R package NSM3 .

2.6. Simulations

We have conducted a simulation study to compare the performance, in

terms of level and power, of 10 statistics, namely, the statistic TN , the Welch

Statistic T1, the new procedure T , the likelihood ratio statistic L, the Wald
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Test W, the score statistic S, the Fenstad statistic Z, the bootstrap procedure

BT, the Wilcoxon two sample non parametric procedure WC and the recent

non-parametric procedure FP by [21]. To perform WC we used R function

wilcox.test().

To compare the statistics in terms of size, we considered µ1 = µ2 = 1, a

range of values of V R = σ2
1/σ2

2 = 1/25, 2/24, 3/23, ..., 24/2, 25/1, and a nominal

level α = .05. Note that this choice of variance ratios ensures comparison of the

means for variances which are same to very different.

For sample sizes we considered equal and unequal n1 and n2. So, for exam-

ple, n1 was fixed at 5, 10, 15, 20, 25, 30. Then, for each fixed n1, empirical levels

were obtained for n2 = 5, 10, 15, 20, 25, 30. These results are all given as graphs

in Figures 1–6 in Appendix A1 in supplementary material. The graphs are in

terms of size against ρ = log(σ2
1/σ2

2). All simulation results are based on 10,000

samples.

We now discuss the size results of the 10 statistics:

i. The statistics TN and T1: The statistic TN is liberal, highly liberal for

smaller n1 and n2. Even for n1 = n2 = 30, for which basic text books

recommend its use, it is liberal, empirical level ranging, on average,

from 0.0504 (when V R ≈ 1) to 0.0618 (as V R is further and further

away from 1). We then wanted to see what happens for larger n1 and

n2. For this we extended the simulation study for (n1, n2)= (35,35),

(40,40), (50,50), (60,60), (70,70), (80,80). Results are presented as

graphs in Figure 7 in Appendix A1 in supplementary material. For

n1 = n2 = 35, it holds level when −1 < ρ < 1. Otherwise, empirical

level improves as the sample size increases. However, even at n1 =

n2 = 80, this statistic is somewhat liberal, specially near ρ = ±3.

For a close comparison between TN and T1 empirical level results for

n1 = n2 = 35, 40, 50, 60, 70, 80 are given as graphs in Figure 1. It shows

that even at n1 = n2 = 80 empirical levels of TN are slightly larger than

those of T1; TN is still slightly liberal.

ii. The statistics T1 and T : For all situations studied, even for n1= n2 = 5,

these two statistics hold level very closely having almost identical em-

pirical levels. For a more close comparison between these two statistics

some graphs containing empirical levels are given in Figure 2. From

these graphs we conclude that T performs better than T1 only

(a) for n1 = n2 and the variance ratio is moderate (−.05 < ρ < .05)

and

(b) for n1 6= n2 and sample size of the sample with larger variance is

larger.

In all other situations, T1, in general, performs better than or same as T.



572 Sudhir Paul, You-Gan Wang and Insha Ullah

0
.0

4
0

0
.0

4
5

0
.0

5
0

0
.0

5
5

0
.0

6
0

0
.0

6
5

0
.0

7
0

−3 −2 −1 0 1 2 3

(a) (n1, n2) = (35, 35)

log(σ
1

2
/ σ

2

2
)

s
iz

e

TN

T1

0
.0

4
0

0
.0

4
5

0
.0

5
0

0
.0

5
5

0
.0

6
0

0
.0

6
5

0
.0

7
0

−3 −2 −1 0 1 2 3

(b) (n1, n2) = (40, 40)

log(σ
1

2
/ σ

2

2
)

s
iz

e

TN

T1

0
.0

4
0

0
.0

4
5

0
.0

5
0

0
.0

5
5

0
.0

6
0

0
.0

6
5

0
.0

7
0

−3 −2 −1 0 1 2 3

(c) (n1, n2) = (50, 50)

log(σ
1

2
/ σ

2

2
)

s
iz

e

TN

T1

0
.0

4
0

0
.0

4
5

0
.0

5
0

0
.0

5
5

0
.0

6
0

0
.0

6
5

0
.0

7
0

−3 −2 −1 0 1 2 3

(d) (n1, n2) = (60, 60)

log(σ
1

2
/ σ

2

2
)

s
iz

e

TN

T1

0
.0

4
0

0
.0

4
5

0
.0

5
0

0
.0

5
5

0
.0

6
0

0
.0

6
5

0
.0

7
0

−3 −2 −1 0 1 2 3

(e) (n1, n2) = (70, 70)

log(σ
1

2
/ σ

2

2
)

s
iz

e

TN

T1

0
.0

4
0

0
.0

4
5

0
.0

5
0

0
.0

5
5

0
.0

6
0

0
.0

6
5

0
.0

7
0

−3 −2 −1 0 1 2 3

(f) (n1, n2) = (80, 80)

log(σ
1

2
/ σ

2

2
)

s
iz

e

TN

T1

Figure 1: Plots of graphs showing empirical levels of the statistics

TN and T1 for large sample sizes.
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Figure 2: Plots of graphs showing empirical levels of the statistics T1 and T
under certain conditions explained in the text.
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iii. The non-parametric procedures WC and FP: The Wilcoxon test WC,

in general, shows extreme behaviour. It is either conservative or liberal

depending on the value of ρ or whether n1 < n2 or n1 > n2 . The

improved non-parametric procedure that is most recently introduced

and is available in the R package, is substantially better than WC.

The extreme behaviour moderates a lot compared to WC. However,

in general, it also does not hold level. Only for n1 = n2 empirical level

performance of this procedure is very close to that of T1 and T (slightly

better than that of T1 and T when n1 = n2 = 5 and ρ is not too far

from zero).

iv. The bootstrap procedure BT: Only in some instances, for example,

for n1 = 5, n2 = 25 and n1 = 5, n2 = 30 and ρ ≤ 0, level performance

of this statistics is similar to those of T1 and T . However, this is a

computer intensive procedure.

v. The Fenstad Statistic Z: This statistic is conservative for smaller

sample sizes and liberal for larger sample sizes. Its best performance

is for n1 = n2 = 20, even then it is conservative.

vi. The Statistics S, LR and W : The statistics LR and W are in general

liberal and the statistic S is conservative. In a lot of situations, for

example, for larger sample sizes the statistic S holds nominal level

reasonably well (empirical size being very close to those of T1 and T ).

Otherwise it is conservative.

For power comparison we considered all combinations of the sample sizes

n1 = 5, 10, 15, 20, 25, 30 and n2 = 5, 10, 15, 20, 25, 30. The variance ratios consid-

ered were V R = 1/16, 1/4, 1, 4, 16. As in the study of performance in terms of

size, the power study was done for the nominal level α = 0.05. We use µ1 = 1

and µ2 = µ1 + τ . The shift parameter τ is calculated as τ = δ
√

σ2
1/n1 + σ2

2/n2

(see, [7]), where δ = 1, 2, 3. Departure from equality of means for fixed but un-

equal variance is measured by τ . The power results are given in Tables 1 to 36

in Appendix A2 in supplementary material.

We now discuss the power results.

i. The statistic TN : It shows highest power which is not surprising as it

is also highly liberal. It is interesting to note that, even though TN is

more liberal than T1 and T for n1 = n2 = 30, it is only slightly more

powerful. For large and equal sample sizes (n1 = n2 = 80) in which its

empirical level is close to the nominal level power of this statistic is

similar to that of T1. A Power graph of TN , T1 and T for n1 = n2 = 80

and δ = 2 against V R = 1/16, 1/4, 1, 4, 16 is given in Figure 3(a). The

statistics T1 and T show almost indistinguishable power, where as TN

shows slightly larger power. This is in line with the finding that TN is

slightly liberal.
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Figure 3: Plots of graphs showing empirical power:

(a) of the statistics TN , T1, and T for (n1, n2) = (80, 80) and δ = 2;

(b) of the statistics T1 and T for (n1, n2) = (15, 15) and δ = 1;

(c) of the statistics T1 and T for (n1, n2) = (15, 15) and δ = 2;

(d) of the statistics T1, T , and FP for (n1, n2) = (5, 5) and V R = 1/1.69;

(e) of the statistics T1 and T for (n1, n2) = (5, 5) and V R = 1/4;

(f) of the statistics T1 and T for (n1, n2) = (5, 15) and V R = 25/1.
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ii. The statistics T1 and T : Both these statistics show similar power.

Power increases as δ increases. See, for instance, power graphs of

both these statistics for n1 = n2 = 15, δ = 1 and δ = 2 against V R =

1/16, 1/4, 1, 4, 16 in Figures 3(b, c).

iii. As expected, power of all the other statistics L, W and Z or the

procedures BT, WC and FP is more or less than that of T1 and T

depending on whether they are liberal or conservative.

We now examine a situation n1 = n2 = 5, ρ = 1/1.69 from n1 = n2 in

which empirical level performance of the procedure FP is very close

to that of T1 and T . The power graph is given in Figure 3(d) (power

against δ = 0, 1, 2, 3). It shows that power of all three procedures

increase as δ increases (as expected). However, as δ increases, power

of FP does not increase as fast as the power of T1 and T. In general,

for smaller and equal sample sizes, level performances of the statistics

T1, T , BT , and FP are similar and hold level reasonably close to the

nominal. However, in these situations power of the procedure FP is

similar or somewhat smaller in comparison to that of the other three

statistics or procedures.

iv. The Statistic S: In all those situations in which (for larger sample

sizes and for ρ < 0) this statistic holds nominal level reasonably well

(empirical size being very close to those of T1 and T ) the power of this

statistic is also close to those of T1 and T . Otherwise it is less powerful

as expected.

2.7. An Example

This is a set of data from [26, p. 83]. The data which refer to driving times

from a person’s home to work, measured for two different routes, are 6.5, 6.8, 7.1,

7.3, 10.2 (n1 = 5, x̄1 = 7.58, s2
1 = 2.237) and 5.5, 5.8, 5.9, 6.0, 6.0, 6.0, 6.3, 6.3,

6.4, 6.5, 6.5 (n2 = 11, x̄2 = 6.136, s2
2 = 0.073). The means are different with very

different variances. By examining the overall findings of the simulation results

above, we see that the only statistic that is appropriate here is the statistic T1

as n1 = 5, n2 = 11, s2
1 = 2.237, s2

2 = 0.073 are contrary to the situation in which

the statistic T or the procedure FP is appropriate.

For these data the p-values of the statistics TN , T1, T , L, W, S, Z, BT,

WC, FP are 0.0321, 0.0968, 0.0961, 0.0500, 0.0167, 0.1009, 0.0327, 0.3395, 0.0030,

0.0000 respectively.

Now, the value of T1 = 2.1426 with p-value = .0968 indicates that means of

the two groups are not different at 10% level of significance.
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However, note that (from Figure 1(b) of the supplementary material) both

T and T1 hold level for n1 = 5, n2 = 10 and ρ > 3 and their p-values (.0968 and

.0961) are also very similar. The same is more or less true for S whose empirical

level is below 0.05 but not too much (again from Figure 1(b) of the supplementary

material). The p-value of 0.10 for S is also not too different from those of T and T1.

The overall conclusion using the p-values coincide with the findings in Figure 1(b)

of the supplementary material. But, since n1 = 5, n2 = 11 and ρ̂ > 3 for these

data the conclusion is that the the hypothesis of equality of the means can be

accepted at 10% level of significance. However, at 5% level of significance there

is evidence that the two means are different.

3. TWO NEGATIVE BINOMIAL POPULATIONS

3.1. The Negative Binomial Formulation

The most convenient form of the negative binomial distribution, henceforth

denoted by NB(µ, c) is

(3.1) f(y|µ, c) = Pr(Y = y|µ, c) =
Γ(y + c−1

)

y!Γ(c−1)

(

cµ

1 + cµ

)y (

1

1 + cµ

)c−1

,

for y = 0, 1, ..., µ > 0 [33, 34]. See, [31] for further details.

Now, let yi1, ..., yini
be a sample realization from NB(µi, ci), i = 1, 2. Our

problem is to test H0 : µ1 = µ2, where c1 and c2 are unspecified. To test this

hypothesis [31] develop a likelihood ratio test L, a likelihood ratio test based

on the bias corrected maximum likelihood estimates of the nuisance parameters

L(bc), a score test T 2
NB (henceforth denoted by S), a score test based on the

bias corrected maximum likelihood estimates of the nuisance parameters S(bc), a

C(α) test based on the method of moments estimates of the nuisance parameters.

[31] show that this later statistic, if Welch’s [43] degree of freedom correction is

applied, becomes identical to Welch’s t-statistic T1.

[31] investigated by simulations, for level and power, the statistics L, L(bc),

S, S(bc), T1, and the statistic TN (pretending that negative binomial data can be

treated as normal N(µ, σ2
) data). Their simulation study showed no advantage of

the bias corrected statistics L(bc) and S(bc) over their uncorrected counterparts.

So, here and in subsequent sections any statistic based on bias corrected estimates

of the nuisance parameters will not be discussed. The remaining four statistics

and the new statistic T developed in Section 2 for normal data are given below.
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3.2. The likelihood Ratio Test

The likelihood ratio test is fully described and all necessary results are

developed in [31]. So, to save space we omit this from presentation in this paper

and refer the reader to that paper.

3.3. The Score Test

The score test statistic (for derivation see, [31]) is

S =

2
∑

i=1

ni(ȳi − µ̃0)
2

µ̃0(1 + µ̃0c̃i0)
,

which has an asymptotic χ2
(1) as n → ∞, where n = n1 + n2.

3.4. The Other Three Statistics TN , T1 and T

These three statistics are given in Section 2.1 for data that come from

normal distribution. Here the same statistics are used for negative binomial data

as if these are normally distributed data.

Apart from the statistic T , which is newly introduced in Section 2.3, [31]

show by simulations that for moderate to large sample sizes, in general, the

statistic T1 shows best overall performance in terms of size and power and it is

easy to calculate. For large sample sizes, for example, for n1 = n2 = 50, all four

statistics, L, S, T1, TN do well in terms of level and their power performances

are also similar.

3.5. Simulations

We have conducted a simulation study to compare the 5 statistics TN , T1,

T , L, and S, the bootstrap procedure BT and the two non-parametric procedures

WC and FP . The three statistics TN , T1, and T and the three procedures BT ,

WC, and the FP are applied here exactly the same way as in the case of normally

distributed data in Sections 2.4 and 2.5 respectively.

To compare the statistics in terms of size, we considered all combinations of

the sample sizes n1 = 5, 10, 15, 20, 25, 30 and n2 = 5, 10, 15, 20, 25, 30, µ1 = µ2 = 2,
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c1 = .10, .25, .40, .55, .70, .85, 1, c2 = .10, .25, .40, .55, .70, .85, 1, and a nominal level

α = .05. These results are all given as graphs in Figures 1–6 in Appendix B1 in

Supplementary Material. The graphs are in terms of size against ρ = log(c1/c2).

All simulation results are based on 10,000 samples. A discussion of the size results

is given in what follows.

i. For n1 = n2 = 5, 10, the L statistic holds level most effectively (though

somewhat conservative for n1 = n2 = 5 and somewhat liberal for n1 =

n2 = 10), This finding is in line with Paul and Alam (2014). In these

situations another statistic that is competing with L having very sim-

ilar level is TN .

ii. For the smaller of n1 and n2 equal to 5 and the other equal to 10

to 30, the L statistic performs best, although consistently somewhat

conservative. In these situations, for all other statistics no consistent

pattern emerges. For example, TN is mainly very highly liberal, only

in a very few situations its empirical level is close to the nominal level.

For the smaller of n1 and n2 equal to 10 and the other equal to 10

to 30, the L statistic performs best, although consistently somewhat

liberal. In these situations the other statistics are either liberal or

conservative. For unequal sample sizes, smaller of n1 and n2 less than

20 and the other up to 30 the L statistic seems to perform best.

iii. For the smaller of n1 and n2 equal to or greater than 20 and the

other also equal to or greater than 20, overall, the best performing

procedures are through the use of the statistic T1 or T or the score test

statistic S. At n1 = n2 = 30 empirical level of all these 3 procedures

are very close to the nominal level.

For power comparison we consider all combinations of the sample sizes

n1 = 5, 10, 15, 20, 25, 30 and n2 = 5, 10, 15, 20, 25, 30. We use µ1 = 1, c1 = .1, c2 =

.10, .25, .40, .55, .70, .85, 1, and µ2 = µ1 + δ, for δ = 1.0, 1.5, 2.0. As in the study

of performance in terms of size, the power study was done for the nominal level

α = 0.05. All simulation results are based on 10,000 samples. A discussion of the

power results is given in what follows.

We first concentrate on the L statistic which seems to be doing better in

terms of size for the smaller of n1 and n2 less than 20 and the other up to 30.

The power results are given in Tables 1 to 27 in Appendix B2 in supplementary

material. In general, the L statistic shows highest power. Only in some situations

the statistic TN or T1 or T show higher power, but in these situations these later

statistics are also liberal.

Now we discuss power performance of the statistics T1, T and S which

perform best in terms of size starting at n1 = 20 and n2 = 20. Here we compare

these only with the L statistic as it is, in general, liberal or conservative but not
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too much. The power results are given in Tables 28 to 36 in Appendix B2 in

supplementary material. The L statistic, in general, is somewhat more powerful

than the other three statistics, but it is also slightly liberal in comparison to the

other three statistics. The other 3 statistic show similar power. For example, for

n1 = n2 = 20 and c2 = .7 empirical level of L is close to 0.06 and those of the

other three are close 0.05 (see, graph for n1 = n2 = 20 in Figure 4). The powers

for L, T1, T and S, δ = 2, are 0.694, 0.554, 0.555 and 0.572 respectively (see,

Table 22).

In general, power decreases as the value of c2 goes further away from c1 =

.10 and increases as the sample size increases.
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Figure 4: Plots of graphs showing empirical levels of all the statistics

for (n1, n2) = (20, 20).

3.6. An Example

[37] presents a set of data, originally given by [6], to see the effectiveness of

a treatment (Cholestyramin), in comparison to a placebo, in reducing the number

of vascular lesions. The data are given in Table 1, which refer to the observed

number of vascular lesions on each patient’s angiogram in the treatment group

as well as in the control group (placebo).
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Table 1: Frequency of patients by number of lesions

on each patient’s angiogram [6].

Number of
lesions (yij)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 µ̂ ĉ

Cholestyramine 5 4 6 5 7 7 6 6 7 2 2 1 0 0 1 4.932 0.250
Placebo 2 4 6 4 6 9 7 5 2 4 4 2 0 2 0 5.509 0.185

The maximum likelihood estimates of µ and c based on a negative binomial

model for the two groups are given in this table as well. The µ̂’s and the ĉ’s

both differ. We now apply the statistics T1, T and T 2
NB to test the equality of

the two means. The values of T1, T and S with p-value in the parenthesis are

−0.379(.705), −0.379(.704), and 0.146(.702) respectively. Based of the p-values

which are very close the difference is not significant.

We now show how to apply the bootstrap critical value method using the

likelihood ratio statistic L for small sample sizes. For this we take a sample of

size n1 = 15 with replacement from the treatment group and a sample of size

n1 = 10 with replacement from the control group which are given below

Treatment group: 8 8 10 5 2 0 0 7 3 1 1 3 8 6 0 ;

Placebo group: 1 1 2 9 13 4 6 9 10 6 .

Suppose these are the observed data for the two groups. For these data the value

of L is 1.26 and the bootstrap 95% critical value is 5.16 which indicates that the

difference between the two means is not significant.

The bootstrap critical value is obtained as: from the sampled data of

n1 = 15 and n2 = 10 above we take 10000 pairs of samples (one sample of size

15 from the treatment group and one sample of size 10 from the control group)

with replacement. For each pair of samples we obtain the value of L. Then

the bootstrap critical value is the 9500
th

value of the ordered (from smallest)

L values.

4. TWO BETA-BINOMIAL POPULATIONS

4.1. The Beta-Binomial Formulation

For modelling data in the form of proportions with extra-dispersion the

most popular model is the extended beta-binomial distribution of [35]. Let y|p ∼
binomial(m, p), where p is a beta random variable with mean π and variance
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π(1 − π)φ, where φ is an extra dispersion parameter. Then the unconditional

distribution of y is the extended beta-binomial distribution of [35] for which the

pmf is given in what follows.

(4.1) Pr(y|π, φ) =

(

m

y

)

y−1
∏

r=0
[π(1 − φ) + rφ]

m−y−1
∏

r=0
[(1 − π)(1 − φ) + rφ]

m−1
∏

r=0
[(1 − φ) + rφ]

with mean mπ and variance mπ(1 − π)(1 + (m − 1)φ), where 0 ≤ π ≤ 1, and

φ ≥ max [−π/(m − 1),−(1 − π)/(m − 1)].

Denote this probability mass function by BB(m, π, φ). Now, let yi1/mi1,

..., yini
/mini

be a sample realization from BB(mij , πi, φi), i = 1, 2, j = 1, ..., mini
.

Our purpose is to test H0 : π1 = π2 with φ1 and φ2 being unspecified. [3] develop

eight tests, namely, a likelihood ratio test, a C(α) (score) test based on the

maximum likelihood estimates of nuisance parameters, a C(α) test based on the

[25] method of moments estimates of the nuisance parameters, a C (α) test based

on the quasi-likelihood and the method of moments estimates of the nuisance

parameters by [8], a C(α) test based on the quasi-likelihood and the method

of moments estimates of the nuisance parameters by [40], a C(α) test based on

extended quasi-likelihood estimates of the nuisance parameters, and two non-

parametric tests by [36]. See, [3] for further details.

By doing an extensive simulation study [3] show that none of the statistics,

except the C(α) statistic CBB, does well in terms of level and power. The statistic

CBB holds nominal level most effectively (close to the nominal level) and it is at

least as powerful as any other statistic which is not liberal. It has the simplest

formula, is based on estimates of the nuisance parameters only under the null

hypothesis and is easiest to calculate. Also, it is robust in the sense that no

distributional assumption is required to develop this statistic.

In this paper we compare the performance CBB with the statistics TN , T1

and T , the bootstrap procedure BT and the two non-parametric procedures WC

and FP . These are described below for the application to data in the form of

proportions.

4.2. The Statistic CBB

The statistic CBB is (detailed derivation is given in [3] CBB = C2/(A−A2/B),

which is distributed as chi-squared, asymptotically, as n → ∞ (n = n1 +n2), with



The Behrens–Fisher Problem and Some of Its Analogs 583

1 degree of freedom, where

C =

n1
∑

j=1

[

1

1 + (m1j − 1)φ1

{

y1j

π
−

m1j − y1j

1 − π

}]

,

A =

n1
∑

j=1

[

1

1 + (m1j − 1)φ1

{

m1j

π(1 − π)

}]

and

B =

2
∑

i=1

ni
∑

j=1

[

1

1 + (mij − 1)φi

{

mij

π(1 − π)

}

]

.

The parameters π, φ1 and φ2 in C, A and B are replaced by the maximum

extended quasi-likelihood estimates π̂, φ̂1 and φ̂2 obtained by solving

2
∑

i=1

ni
∑

j=1

[

1

1 + (mij − 1)φi

{

yij

π
−

mij − yij

1 − π

}]

= 0,

n1
∑

j=1

[

m1j − 1

{1 + (m1j − 1)φ1}2

{

y1j log

(z1j

π

)

+ (m1j − y1j) log

(

1 − z1j

1 − π

)

−
1 + (m1j − 1)φ1

2

}

]

= 0

and

n2
∑

j=1

[

m2j − 1

{1 + (m2j − 1)φ2}2

{

y2j log

(z2j

π

)

+ (m2j − y2j) log

(

1 − z2j

1 − π

)

−
1 + (m2j − 1)φ2

2

}

]

= 0

simultaneously.

4.3. The Bootstrap Procedure

The bootstrap procedure is developed here for data in the form of propor-

tions (e.g. x/n) as follows:

1. Calculate the continuous data in the form of proportions for the two

samples as pij = yij/mij , i = 1, 2, j = 1, ..., mini
. Let p̄i =

∑ni

j=1 pij/ni

and s2
iP =

∑ni

j=1(pij − p̄i)
2/(ni − 1). Then, define a statistic TP , anal-

ogous to TN , as

TP =
p̄1 − p̄2

√

s2
1P

n1
+

s2
2P

n2

.
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2. Obtain a bootstrap sample of size ni; say p∗ij , from the adjusted pij ,

that is, from padj
ij = pij − p̄i + p̄, where p̄ is the overall mean of pij .

3. Calculate

T ∗
P =

p̄∗1 − p̄∗2
√

s2∗
1P /n1 + s2∗

2P /n2

.

4. Repeat step 2 and 3 B times (B = 999); thereby obtaining 999 boot-

strap values of TP ∗.

5. For a two sided test, a difference between the means is significant if the

observed value of |TP | > (100(1 − α/2)th values of T ∗
P .

4.4. The Other Three Statistics TN , T1, and T and the Three Proce-

dures BT , WC, and FP

Calculation of the three statistics TN , T1, and T and the three procedures

BT , WC, and FP proceed by considering the pij , as yij in Section 2.

4.5. Simulations

We have conducted a simulation study to compare, in terms of level and

power, the statistics CBB, TN , T1 and T , the bootstrap procedure BT and the

two non-parametric procedures WC and FP .

To generate data yij from BB(mij , πi, φi), we take random samples with re-

placement of n1 = 5, 10, 15, 20, 25, 30 litters with the litter sizes m1j , j = 1, ..., 27

of the control group (Group 1) and n2 = 5, 10, 15, 20, 25, 30 litters with the litter

sizes m2j , j = 1, ..., 21 of the medium group (Group 2) of Paul (1982). The m1j ,

j = 1, ..., 27 of group 1 were 12, 7, 6, 6, 7, 8, 10, 7, 8, 6, 11, 7, 8, 9, 2, 7, 9, 7,

11, 10, 4, 8, 10, 12, 8, 7, 8 and m2j of group 2 were 4, 4, 9, 8, 9, 7, 8, 9, 6, 4,

6, 7, 3, 13, 6, 8, 11, 7, 6, 10, 6. Note that our simulation study is much more

extensive in comparison to [3]. Where as [3] consider fixed sample sizes (n1 = 27

and n1 = 21), we consider random samples of different sizes given above. The

different combinations of parameter values are also much more extensive in our

study.

For empirical levels we considered π1 = π2 = π = 0.05, 0.10, 0.20, 0.40, 0.50

and (φ1, φ2) = (0.05, 0.50), (0.10, 0.40), (0.15, 0.30), (0.20, 0.20), (0.30, 0.15),

(0.40, 0.10), (0.50, 0.05).
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For power comparison the values of π1 and π2 considered were according to

the formula π2 = π1 + δ with π1 = 0.05, 0.10, 0.20, 0.40 and δ = 0.05, 0.10, 0.20.

That is, for each value of π1 power has been simulated for three increments

0.05, 0.10, 0.20. The same combination of values (φ1, φ2) were chosen as in the

study of level performance.

All simulation results are based on 10,000 good samples. The definition of

good samples here is “those samples for which the estimating equations converged

within the permitted range ∩j (−1/(nij − 1)) < φi < 1, i = 1, 2. For more details

see [3].

The empirical level results are summarized in Figures 1–36 in Appendix C1

and empirical power results are summarized in Tables 1–36 in Appendix C2 in

Supplementary Material. The Level results are graphed against log(φ1/φ2) and

power tables are in terms of VR = (φ1/φ2).

We now discuss the size results of the 7 statistics:

(i) The statistics TN : In general, the statistic TN does not show any

consistent behaviour, although shows mostly highly liberal behaviour.

(ii) The statistics T1 and T : In general, level performance of these two

statistics are similar. These two statistics hold level reasonably well

when n1, n2 and π are all large, for example, for n1 ≥ 20 and n2 ≥ 20

and π (≥ .2). See Figures 22, 23, 24, 28, 29, 30, 34, 35 and 36 in Ap-

pendix C1 of the supplementary material. For some other situations,

for example for n1 = n2 = 10, 15 and π ≥ .20, performance of these

two statistics are also the best and hold nominal level reasonably well.

See Figures 8 and 15 in Appendix C1 of the supplementary material.

(iii) The statistic CBB, recommended by Alam and Paul (2017): In some

small sample size situations this statistic holds level reasonably well.

See, for example, the situations in which one of the sample size is

large and π is not too large (π = .20) (graphs (c) in figures 8–13, 15–

18, 21–24, 28–36 in Appendix C of the supplementary material). For

small π (in case of some of π=.05, .10, and .20) CBB performs best

(see Figures 8(a,b,c), 9(c), 10(c), 11(c), 14(c), 15(c), 16(c), 17(c),

21(c) in Appendix C1 of the supplementary material).

For large sample sizes (n1 ≥ 20 and n2 ≥ 20) level performance of

CBB is close to those of T1 and T for π = .2. However, as π increases

from .2 it shows conservative behaviour (see Figures 22, 23, 24, 28,

29, 30, 34, 35 and 36 in Appendix C1 of the supplementary material).

(iv) Performance of all other statistics are erratic at the best.
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Next we discuss power performance.

(i) Since level performance of the statistic TN , the bootstrap procedure

BT and the two non-parametric procedures WC and FP are, in gen-

eral, not satisfactory, we do not discuss their power performances,

although power results are given in the supplementary material.

(ii) Power of T1 and T are similar in all situations studied. Note from

the level results that for large sample sizes (n1 ≥ 20 and n2 ≥ 20)

level performance of CBB is close to those of T1 and T for π = .2 and

as π increases from .2 it shows conservative behaviour. In all these

situations power of CBB is the best. That means, CBB shows higher

power even in situations where it is conservative but T1 and T hold

level. So, in these situations, unless CBB can be adjusted to hold level

we can not recommend its use. Power of CBB, in most small sample

sizes and small π (< .2) situations in which it holds level, in general,

is larger or similar to those of T1 and T .

4.6. Two Examples

Example 1. Here, for illustrative purposes, we use data from an experi-

ment, given in [41], to identify in utero damage in laboratory rodents after exposer

to boric acid. The study design involved four doses of boric acid. The compound

was administered to pregnant female mice during the first 17 days of gestation,

after which the dams were sacrificed and their litters examined. Table 2 lists

the number of dead embryos and total number of implants at each of the four

exposure doses: d1 = 0 (control), d2 = 0.1, d3 = 0.2, and d4 = 0.4 (as percent

boric acid in feed).

The maximum likelihood estimates of the parameters (π, φ) for the four

dose groups are also given in Table 2. It shows that the estimates of the π̂’s are

different and also the estimates of the φ̂’s are different. Now, suppose we want to

compare π of the control group (d1 = 0) with that of the dose group 4 (d4 = .4).

That is, we want to test H0 : π1 = π4.

Now, the maximum likelihood estimate of π1 is 0.069. If we assume that

0.069 is the true value of π1 and H0 : π1 = π4 is true, then, under the null hy-

pothesis, the value of the common π is 0.069. Further, the sample sizes in the

two groups are 27 and 26 which are between (25,25) and (30,30). Now, looking

at Figures 29, 30, 35 and 36 in Appendix C1 of the supplementary material we

see that none of the statistics hold nominal level for π = 0.069 and sample sizes

n1 = 27 and n2 = 26. So, we apply a Monte Carlo Procedure (MCP) similar to
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the parametric bootstrap. For this we consider

t =
ȳ1 − ȳ2

√

s2
1

n1
+

s2
2

n2

Note that if we apply a t-test with Welch’s degree of freedom, it becomes the

procedure T1. We now do the test by obtaining approximate critical values, for a

two sided test, of the exact distribution of t which are calculated as what is given

below.

Table 2: Per-litter data from Teratological study of boric acid (Stalon, et al. (2000).

(i) Number of dead embryos. (ii) Total number of implants. Doses d1 = 0

(control), d2 = 0.1, d3 = 0.2, d4 = 0.4.

Dose Group π̂ φ̂

d1 = 0

(i) 0 0 1 1 1 2 0 0 1 2 0 0 3

.0692 .0219
1 0 0 2 3 0 2 0 0 2 1 1 0 0

(ii) 15 3 9 12 13 13 16 11 11 8 14 13 14
13 8 13 14 14 11 12 15 15 14 11 16 12 14

d2 = 0.1

(i) 0 1 1 0 2 0 0 3 0 2 3 1 1

.0968 .0058
0 0 0 1 0 2 2 2 3 1 0 1 1 1

(ii) 6 14 12 10 14 12 14 14 10 12 13 11 11
11 13 10 12 11 10 12 15 12 12 12 12 13 15

d3 = 0.2

(i) 1 0 0 0 0 0 4 0 0 1 2 0 1

.0521 .0245
1 0 0 1 0 1 0 0 1 2 1 0 0 1

(ii) 12 12 11 13 12 14 15 14 12 6 13 10 14
12 10 9 12 13 14 13 14 13 12 14 13 12 7

d4 = 0.4

(i) 12 1 0 2 2 4 0 1 0 1 3 0 1

.2234 .2497
0 3 2 3 3 1 1 8 0 2 8 4 2

(ii) 12 12 13 8 12 13 13 13 12 9 9 11 14
10 12 21 10 11 11 11 14 15 13 11 12 12

Keep mij fixed as given in the two groups, j = 1, ..., 27 for i = 1 and j =

1, ..., 26 for i = 2. Now, generate random numbers from BB(m1j , 0.069, 0.0218)

for j = 1, ..., 27 and random numbers from BB(m2j , 0.069, 0.2496) for j = 1, ..., 26.

This gives one sample for which calculate the value of t. Repeat this proce-

dure and generate 100,000 samples and thereby 100,000 values of t. Order these

100,000 values from the smallest to the largest. The 2500
th

and the 97500
th

values

are the 2.5% and the 97.5% critical values.

Now, the value of t from the data in the dose groups d1 = 0 and d4 = .4

is −2.8182. If −2.8182 does not fall between the 2.5% and the 97.5% critical

values reject the null hypothesis of equality of the two proportions at 5% level of

significance.
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Following the procedure described above, the 2.5% and the 97.5% critical

values obtained are −1.673003 and 2.637581 respectively. Since T1 = −2.8182

falls in the rejection region the null hypothesis H0 : π1 = π4 is rejected.

To check whether this procedure works we did some further simulations. For

empirical level we again obtained 100,000 values of t as above with π = 0.069. We

then calculated the proportion of t values that fall outside (−1.673003, 2.637581).

When this proportion is multiplied by 100 we obtain the empirical level. For

power we do exactly the same as above but now take π = 0.069 + δ, where δ =

0.02, .04, ..., .14. The power results are given in Table 3.

Table 3: Power Table of T1 and MCP, π = 0.069 + δ, δ = 0, 02, .04, ..., .14.

δ 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

T1 0.068 0.054 0.119 0.248 0.424 0.604 0.756 0.866
MCP 0.052 0.100 0.227 0.406 0.599 0.757 0.868 0.938

To compare the performance of the above Monte Carlo method with that of

T1 we extended the simulation study by obtaining the proportion of the 100,000

samples for which |t| > the critical value of T1 with Welch’s degree of freedom.

Results are also given in Table 3, which show that the new Monte Carlo procedure

holds level almost exactly, the Welch T1-test is somewhat liberal and yet the new

procedure shows higher power compared to T1.

Example 2. A data set from [45] of an in vivo cytogenetic assay is given

Table 4. In this example, the sample sizes n1 = n2 = 10 are small in which the

extended quasi-likelihood based score test CBB does well (see Figure 8(a,b,c) in

Appendix C1 of the supplementary material). For illustrative purpose, we test the

equality of proportions in the first two groups. For this the value of CBB = 0.0171

with p-value = 0.8660 showing strong support for the null hypothesis of the two

proportions.

Table 4: Data from an in vivo cytogenetic assay [45].

Dose Group No. of aberrant cells in 50 cells per animal π̂ φ̂

Negative control 0 4 0 0 4 0 1 1 0 0 0.0199 0.0447
Low Dose 1 0 3 0 1 0 3 0 0 1 0.0180 0.0125
Medium Dose 6 5 0 3 7 1 1 0 0 0 0.0454 0.0690
High Dose 3 2 1 6 4 0 0 0 0 5 0.0417 0.0476
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5. TWO WEIBULL POPULATIONS

5.1. The Weibull Formulation

Data in the form of survival times arise in many fields of studies such as

engineering, manufacturing, aeronautics and bio-medical sciences. See [29] for

a recent review. The two parameter Weibull random variable Y with shape

parameter β and scale parameter α has the probability density function

(5.1) f(y; α, β) =
β

α

( y

α

)(β−1)
exp

[

−
( y

α

)β
]

; y ≥ 0; β, α > 0.

The mean and variance of Y are µ = αΓ(1+1/β) and σ2
= α2

[Γ(1+2/β)−{Γ(1+

1/β)}2
] respectively.

In some practical data analytic problems lifetimes or survival times data

arise in the form of two samples following two independent Weibull populations

with different shape and scale parameters. Let y11, ..., y1n1 and y21, ..., y2n2 be

samples from two independent Weibull populations with parameters (α1, β1) and

(α2, β2) respectively. In such a situation it may be of interest to test the equality

of the scale parameters with the shape parameters being unspecified. That is to

test the null hypothesis H0 : α1 = α2, where β1 and β2 are unspecified.

For this problem [2] develop four test statistics, namely, a likelihood ratio

statistic, a score statistic, and two C(α) statistics; one of which is based on the

method of moments estimates of the nuisance parameters by [11] and the other

is based on the method of moments estimates of the nuisance parameters by [42].

However, through a simulation study they show that the two statistics based on

the method of moments estimates of the nuisance parameters perform best.

However, the actual analog of the Behrens–Fisher problem is to test H0 :

µ1 = µ2 with σ2
1 and σ2

2 being unspecified. To deal with this problem we develop

a score test in Section 5.2. In Section 5.3 we conduct a simulation study to

compare this statistic for level and power with the statistics TN , T1 and T , and

the procedures BT , WC and the FP .

5.2. The Score Test

A score test statistic (derivation is given in Appendix E of the supple-

mentary material) for testing H0 : µ1 = µ2, where σ2
1 and σ2

2 are unknown and
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unspecified is given by Sw = S2/I, where

S =
1

Γ(1 + β−1
1 )



−
n1β1

µ
+

β1{Γ(1 + β−1
1 )}β1

µβ1+1

n1
∑

j=1

yβ1
1j





+
1

Γ(1 + β−1
2 )





n2β2

µ
−

β2{Γ(1 + β−1
2 )}β2

µβ2+1

n2
∑

j=1

yβ2
2j





and

I =
1

Γ(1 + β−1
1 )







n1β1

µ2
−

β1(β1 + 1){Γ(1 + β−1
1 )}β1

µβ1+2

n1
∑

j=1

E(yβ1
1j )







−
1

Γ(1 + β−1
2 )







n2β2

µ2
−

β2(β2 + 1){Γ(1 + β−1
2 )}β2

µβ2+2

n2
∑

j=1

E(yβ2
2j )







.

In S and I the quantity, such as E(yβi) is calculated as E(yβi) =
∫ ∞
0 yβ

i f(y, µ, βi)dy.

Of course, the parameters µ, β1 and β2 in S and I are to be replaced by their

maximum likelihood estimates µ̂, β̂1 and β̂2 which are obtained by maximizing

the log-likelihood function

l =

2
∑

i=1

[

1

Γ(1 + β−1
i )

{

nilog

(

βiΓ(1 + β−1
i )

µ

)

+ (βi − 1)

{

ni
∑

j=1

log(yij)

− nilog

(

µ

Γ(1 + β−1
i )

)

}}]

−
2

∑

i=1

{

Γ(1 + β−1
i )

}βi−1

µβi

ni
∑

j=1

yβi

ij

with respect to the parameters µ, β1 and β2. The distribution of Sw is asymp-

totically distributed as chi-square with one degrees of freedom.

5.3. Simulations

We have conducted a simulation study to compare the statistic Sw, in

terms of level and power, with the three statistics TN , T1 and T , and the three

procedures BT , WC, and FP . These statistics are applied here exactly the same

way as in the case of normally distributed data studied in Sections 2.4 and 2.5.

As in the two previous sections we use the Weibull data as if the data come from

two normal populations.

To compare the statistics in terms of size and power, we considered the sam-

ple sizes n1 = 5, 10, 15, 20, 25, 30 and n2 = 5, 10, 15, 20, 25, 30. We generate data

from the Weibull (α1, β1) and Weibull (α2, β2) populations. For size comparison,

in order to comply with equal means condition, we fix the values of α1, β1, and β2;



The Behrens–Fisher Problem and Some of Its Analogs 591

and evaluate the expression {α1Γ(1 + 1/β1)}/{α2Γ(1 + 1/β2)} = 1 to obtain the

value of α2. For power comparison, we again fix the values of α1, β1, and β2;

but evaluate the expression {α1Γ(1 + 1/β1)}/{α2Γ(1 + 1/β2)} = 1/(1 + δ) with

δ = .1, .2, .3, to obtain the value of α2. Both the size and power are calculated

for all combinations of β1 = 1, 2, 3, 4, 5 and β2 = 2, 3, 4 while fixing α1 = 1 and

determining α2 from the expressions given above.

The size results are all given as graphs in Figures 1–36 and the power

results are all given in Tables 1–36 in Appendix D2 in supplementary material.

The graphs are in terms of size against ρ = log(σ2
1/σ2

2). All simulation results are

based on 10,000 samples.

We now discuss the size results, of the 7 statistics, given in Figures 1–36 in

Appendix D1 in the supplementary material:

(i) The statistic TN : The statistic TN is liberal, highly liberal for smaller

n1 and n2. Even for n1 = n2 = 30 it is liberal, empirical level ranging,

on average, from 0.0525 (when V R ≈ 1) to 0.0781 (as V R is further

and further away from 1).

(ii) The statistics T1 and T : Overall, these two statistics perform best,

even for smaller sample sizes, holding empirical levels closer to the

nominal. Only exceptions are when the sample size differences are

large as well as when the differences between the variances are large,

also when n2 > n1 as well as σ2
2 > σ2

1. In these situations both of

these statistics can be quite liberal, although T1 is slightly better

than T . See, for example, Figures 4, 5, 11, 12, 25 of Appendix D1 of

the the supplementary material.

(iii) Behaviour of the remaining four statistics or procedures are inconsis-

tent, sometimes very liberal and sometimes very conservative. The

exceptions are for

(a) FP for n1 = n2 which does as well as T1 and T in some cases

(see, for example, Figure 1),

(b) BT , irrespective of sample sizes, which does as well or better

than T1 and T (see, for example, Figure 5).

Next we discuss power performance using the power results given Tables

1–36 in Appendix D2 in the supplementary material.

Since the procedures TN , WC, and Sw have highly inconsistent behaviour

in terms of level, we omit these from power discussion. Power of T1 and T are

similar. However, T shows some edge over T1. In general, these show higher

power than FP and BT . Even in the situations in which FP and BT have slight

advantage in terms level, T1 and T maintain higher power.



592 Sudhir Paul, You-Gan Wang and Insha Ullah

5.4. An Example

[17] give data on survival times (in weeks) for two groups of patients who

died of acute myelogenous leukemia. Patients were classified into the two groups

according to the presence or absence of a morphologic characteristic of white cells.

Patients termed AG positive were identified by the presence of Auer rods and/or

significant granulature of the leukemic cells in the bone marrow at diagnosis.

For the AG negative patients these factors were absent. The survival times for

17 patients in the AG positive group were: 65, 156, 100, 134, 16, 108, 121, 4, 39,

143, 56, 26, 22, 1, 1, 5, 65 and those for 16 patients in the AG negative group

were: 56, 65, 17, 17, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43.

We now test the equality of the mean survival times in the two groups.

As the performance of the five statistics or procedures TN , WC, BT , FP and

CW are far less than satisfactory we do not consider them any further. The values

of T1 and T with corresponding p-values in the parenthesis are 3.1124 (0.0054)

and 3.1124 (0.0047) respectively leading the conclusion that the two means are

not the same.

6. DISCUSSION

We do a comprehensive review of the standard Behrens–Fisher (BF) prob-

lem and some of its analogs. Among the B-F analogous problems we deal with

the two parameters negative binomial, the Beta-binomial, and the two parameter

Weibull. In each case a number of procedures are either reviewed or developed

and extensive simulation studies are conducted to study the properties of the

procedures in terms of size and power. Some new results and findings are shown

and examples of application are given in all cases.

If the variance ratio is known, the mixing parameter λ in K is then known, so

the distribution of T (§2.3) becomes pivotal, which is not an exact t-distribution.

In fact, if the variance ratio is given, one should use the pooled variance esti-

mator which can lead to a t-statistic. For other distributions other than the

normal cases, it is the same story but in an asymptotical sense. The tests based

on t-distributions or chi-square distributions or any other derived from “normal”

distributions all become asymptotical approximations. Therefore, if there is some

reason to specify the variance ratio σ2/σ1, the traditional two independent sam-

ples Student t-test or Welch test are usable but both are approximations.

A review paper can possibly be never complete given that a vast literature

is available. Here also we do not make such a claim. For example, we do not

consider the Bayesian methods [24, 46] to the solve Behrens–Fisher problem.
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For the standard Behrens–Fisher problem we studied 10 procedures TN , T1,

T , L, W , S, Z, BT , WC and FP including a new procedure T . Based on the

finding through extensive simulation study we recommend that the statistic TN

be used only when the two means are visibly different or if the sample sizes are

large, such as, min(n1, n2) ≥ 80 (only at this sample size level the Central Limit

Theorem reasonably takes hold); otherwise use T1 except for

(i) (a) n1 = n2 and the variance ratio is not extreme (close to 1/25 or

25/1 limits),

(b) for n1 6= n2 and sample size of the sample with larger variance

is larger, in which case use T ;

(ii) for smaller and equal sample sizes use the procedure FP .

For the negative binomial BF Problem we studied five statistics TN , T1, T ,

LRNB and T 2
NB and the bootstrap procedure BT and two non-parametric proce-

dures WC and FP . Note that six of these TN , T1, T , BT , WC and FP are the

same as those used for the standardBFproblem. We recommend that for the smaller

of n1 and n2 less than 20 and the other up to 30 the LR statistic, although some-

what liberal or conservative, beused. In these situations, in general, it ismost power-

ful. However, for some extra effort, it would be advisable to use the bootstrap

p-value based on this statistic. For the sample sizes stating at n1 = 20 and n2 = 20

(n1 equal to or not equal to n2) the statistics T1, T and S all hold level reasonably

well and at n1 = n2 = 30 empirical level of all these 3 procedures are very close

to the nominal level. In these situations these statistics are also, in general, most

powerful and therefore recommended. The practitioner can use any one of them.

For the beta-binomial BF problem we have studied seven statistics or pro-

cedures CBB, TN , T1, T , BT , WC, and FP . For larger sample sizes (n1 or n2

≥ 20) and for large π (≥ .2) the statistics T1 and T are the best and therefore

recommended. For small sample sizes and small π (< .2) we recommend to use

the statistic CBB. In all other situations we recommend a procedure similar to

the parametric bootstrap given in example 1 in Section 4.5.

The results of the statistics T1 and T are interesting. Even though here

we are not dealing with normal data, the level properties, for large sample sizes

and large π (n1, n2 ≥ 20, and ≥ .2), show to be similar to those for normally

distributed data. The reason, in our opinion, is that the transformation of the

discrete (binomial) data yij to continuous (proportions) data pij = nij/yij does

the trick in this situation.

For the Weibull BF problem also we have studied seven statistics Sw, TN ,

T1, T , BT , WC and FP . Based on extensive simulation studies we recommend

that the statistic T1 or T be used for larger sample sizes (n1 and n2 both larger

than 25), otherwise use the bootstrap p-value or the approximate critical value

of the exact distribution of the statistic based on T1 or T .
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The interesting overall finding is that the statistic T1 or T can be used for

all the cases studied here for sample sizes larger than 25 except for the beta-

binomial samples in which the additional requirement is that π be large (≥ .2).

For smaller sample sizes, specific recommendations given above, on a case by case

basis, should be followed. The statistic TN should never be used in the BF or BF

analogous problems unless the two sample sizes are very large.

It will be interesting to find through further studies whether these rec-

ommendations are applicable in other BF analogous problems, such as, testing

equality of means of two gamma, extreme value and log-normal or other similar

survival populations having possibly different variances. In some large sample

size situations or in sparse (beta-binomial with π ≤ .1) situations for data in the

form of proportions we recommended using a parametric bootstrap type proce-

dure. Further research in this area should focus on improvements in performance,

specially in terms of levels, of some of the statistics, such as the statistic CBB.

For testing the equality of the scale parameters with the shape parameters

being unspecified of two Weibull populations [2] develop four test statistics of

which they recommend the statistics based on two different method of moments

estimates of the nuisance parameters. It will be of interest to develop these

later two statistics for testing H0 : µ1 = µ2 with σ2
1 and σ2

2 being unspecified and

compare with the statistics recommended in this paper.

SUPPLEMENTARY MATERIAL

Supplementary material for“Empirical level and Power”that includes graphs

of empirical levels and tables of empirical power referred to in Sections 2, 3, 4

and 5 and derivation of the score test referred to in Section 5.2 are available

as Appendix A, Appendix B, Appendix C, Appendix D, and Appendix E in

https://dataverse.scholarsportal.info/dataverse/sudhirpaul. Empirical level

graphs and empirical power tables for the normal BF problem are in Appendix

A1 and Appendix A2 respectively. The (level graphs, power tables) for the neg-

ative binomial, beta-binomial, and the Weibull BF analogous problems are in

Appendices (B1, B2), (C1, C2) and, (D1, D2) respectively.
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1. INTRODUCTION

Exchange rates are among the most important economic indices in the in-

ternational monetary markets, as they powerfully affect cross-border economic

transactions and have the greatest attention in monetary policy debates. There-

fore, central banks should pay special attention to exchange rates and the value

of their domestic currency (Dilmaghani and Tehranchian, 2015). Significant im-

pact of economic growth, trade development, interest rates and inflation rates

on exchange rates make it extremely difficult to predict them (Yu et al., 2007).

Therefore, exchange rates forecasting has become a very important and challenge

research issue for both academic and industrial communities. By now, there is

a vast literature considering the problem of exchange rate forecasting. We cate-

gorise them into three types:

(i) Explanation based methods: In these methods, the economic theory

describes the evolution path of exchange rates based on the variability

of economic variables. Depending on the type of economic variables,

macroeconomic or microeconomic, have been introduced two different

methods:

(a) Monetary exchange rate models that use macroeconomic vari-

ables. Investigation on these methods imply that, over long

horizons, the fluctuations in fundamentals can be used success-

fully for exchange rate forecasting. More informations about

these methods and a literature review can be found for example

in Engle and West (2005), Della Corte and Tsiakas (2011) and

Plakandaras (2015).

(b) Microstructural based models that use microeconomic variables.

In these methods, exchange rate fluctuations are related to short

run changes in microeconomic variables. More details can be

found for example in Papaioannou et al. (2013) and Janetzko

(2014).

(ii) Extrapolation based methods: These methods use only historical data

on the exchange rates and can be categorized in two groups:

(a) Parametric methods: Autoregressive integrated moving average

(ARIMA), generalized autoregressive conditional heteroskedas-

ticity (GARCH) and vector autoregressive (VAR) models are the

most widely used methods in this category. A good review on

related works is provided by Plakandaras (2015).

(b) Non-parametric methods: Machine learning methodologies and

more specifically Artificial Neural Network (ANN) and Support

Vector Machines (SVM) gained significant merit in exchange rate

forecasting (see for example Yu et al., 2007).
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Overall, according to the existing literature, the methods that incorporate

denoised series in the analysis produce better results than other methods (see,

for example, Fu (2010) and Lin et al. (2012)).

In the light of the above discussion, in this study, we apply Singular Spec-

trum Analysis (SSA), which is a powerful non-parametric technique for time

series analysis. SSA incorporates the elements of classical time series analy-

sis, multivariate statistics, multivariate geometry, dynamical systems and signal

processing (Golyandina et al., 2001). SSA is designed to look for nonlinear,

non?stationary, and intermittent or transient behaviour in an observed time se-

ries, and has gained successful application in the various sciences such as meteo-

rological, bio-mechanical, hydrological, physical sciences, economics and finance,

engineering and so on. By now, many studies used SSA and its applications

(see, for example, Hassani et al. (2009a, 2013, 2015), Mahmoudvand et al. (2015,

2017), and Mahmoudvand and Rodrigues (2016, 2017)). In particular, Ghodsi

and Yarmohammadi (2014) and Beneki and Yarmohammadi (2014) evaluated the

forecasting performance of neural networks (NN), and univariate singular SSA, for

forecasting exchange rates in some countries. They concluded that SSA is able to

outperform NN. In addition, Hassani et al. (2009b) used three time series of daily

exchange rates: UK Pound/US Dollar, Euro/US Dollar and Japanese yen/US

Dollar, and found that the multivariate singular spectrum analysis (MSSA) pre-

dictions compare favourably to the random walk (RW) predictions, both for pre-

dicting the value and the direction of changes in the exchange rate.

In this paper we compare the performances of SSA and MSSA in forecasting

exchange rates. The differences between this study and SSA-based related works

are as follows:

• The studies by Ghodsi and Yarmohammadi (2014) and Beneki and

Yarmohammadi (2014) used only the univariate SSA, whereas we con-

sider both univariate and multivariate SSA.

• The study by Hassani et al. (2009) used both univariate and multivariate

SSA, but they considered only one multivariate SSA forecasting algo-

rithm, whereas we apply four multivariate SSA algorithms to produce

forecasts.

The rest of this paper is organised as follows: Section 2 gives a brief de-

scription of MSSA and its forecasting algorithms. Section 3 presents a comparison

between SSA and MSSA with a real data set based on daily currency exchange

rates in four of the BRICS emerging economies: Brazil, India, China and South

Africa. We finish the paper by a summary conclusion in Section 4.
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2. MULTIVARIATE SINGULAR SPECTRUM ANALYSIS

In this section we provide a brief description of MSSA. A more detailed

theoretical description can be found, for example, in Hassani and Mahmoudvand

(2013).

Let Yt =

[

y
(1)
t , ..., y

(M)
t

]

, t = 1, ..., T , denote a sample of a M -variate time

series with length T . We assume that the M -variate time series with T obser-

vations YT , whose rows are Y1, ..., YT , can be written in terms of a signal plus

noise model as YT = ST +NT , where ST and NT are the corresponding matrices

containing the signal and noise, respectively. Then, basic version of MSSA can

be divided in six steps, as briefly described below.

Step 1: Embedding. The results of this step is a block Hankel trajectory

matrix X. Denote by X(m), m = 1, ..., M , the Hankel matrix associated to the

mth
time series, y

(m)
1 , ..., y

(m)
T . Using window length L, where 2 ≤ L ≤ T , and

considering k = T − L + 1, we have:

(2.1) X(m)
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The trajectory matrix X in MSSA can be defined by stacking the trajectory

matrices horizontally or vertically, i.e.

(2.2) X =







X(1)

.

.

.

X(M)






or X =

[

X(1) ... X(M)
]

.

A similar procedure can be done to transform matrices ST and NT in the block

Hankel matrices S and N, respectively. Let

(2.3) S(m)
=
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and

(2.4) N(m)
=
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The block Hankel matrix S can then be defined by stacking the trajectory matrices

horizontally or vertically, i.e.

(2.5) S =







S(1)

.

.

.

S(M)






or S =

[

S(1) ... S(M)
]

,

and the block Hankel matrix N can then be defined by stacking the trajectory

matrices horizontally or vertically, i.e.

(2.6) N =







N(1)

.

.

.

N(M)






or N =

[

N(1) ... N(M)
]

.

The MSSA algorithms that use these forms as their trajectory matrix, are called

HMSSA and VMSSA, respectively.

Step 2: SVD. In this step, X will be decomposed by singular value

decomposition, as follows:

(2.7) X = X1 + ... + Xd,

where Xi’s are unitary matrices and d represents the rank of X. Denoting by λ1 ≥
λ2 ≥ ... ≥ λd ≥ 0 the eigenvalues of XX′

and U1, U2, ..., Ud, the corresponding

eigenvectors, we have:

Xj = UjU
′
jX , j = 1, 2..., d.

Step 3: Grouping. Considering Xi to be associated to the i-th largest

singular value of X, this step intends to separate the signal and noise components

as follows:

X = X1 + ... + Xr
︸ ︷︷ ︸b

S=Signal

+Xr+1 + ... + Xd
︸ ︷︷ ︸b

N=Noise

,(2.8)

where r < d.

Step 4: In this step, using anti-diagonal averaging on each block of ̂S (see

Equation (2.8)), the denoised time series will be reconstructed. We use notation

˜S to show the results of this step.
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Step 5: The forecast engine of MSSA, which is a linear function of the

last L observations of the denoised time series, will be constructed in this step.

Details of these engines are given in the next subsection.

Step 6: In this step, h-steps ahead forecasts will be obtained by using the

forecast engine.

In general we have four different MSSA forecasting algorithms for MSSA,

as shown in Table 1. Computational formulas for these methods are provided in

the next subsection.

Table 1: Possible forecasting algorithms for multivariate SSA.

Trajectory form Forecasting method Abbreviation

Recurrent HMSSA-R
Horizontal

Vector HMSSA-V

Recurrent VMSSA-R
Vertical

Vector VMSSA-V

Note that VMSSA and HMSSA can be used for an univariate time series

and, in this case, are equivalent and equivalent to the univariate SSA. In fact,

there are two different univariate SSA algorithms to obtain forecasts: the recur-

rent SSA (RSSA) and the vector SSA (VSSA).

2.1. Details about the forecasting engine in MSSA

For simplicity in notation, denote by Z[, j] and Z[i, ], the j-th column, and

the i-th row of the matrix Z, respectively. Denote also W h
[ℓ, ] the l-th row of Wh

.

It should be mentioned that the forecasting algorithms presented by Hassani and

Mahmoudvand (2013) are based on the recurrent formulas. Here, we obtained a

new representation of the algorithm by matrix power. This new representation

help us to compute and evaluate the algorithms easier than the forms based on

recurrent formulas.

The main idea to construct the forecast engine for MSSA is based on the

partitioning of the eigenvector matrix into two parts: the first partition as re-

gressor and the second as response. Then, regressing the second part on the first

by the least square method, it produces the forecast model.
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Horizontal form

Let Uj = [u1,j , ..., uL,j ]
′
, j = 1, ..., d, be the j-th eigenvector of XX′

. Denote

by Ur the matrix of its first r eigenvectors, corresponding to the r largest singular

values of X. We can then do the partition as follows:

(2.9) Ur =

















u1,1 u1,2 ··· u1,r

u2,1 u2,2 ··· u2,r
.
.
.

.

.

. ···
.
.
.

uL−1,1 uL−1,2 ··· uL−1,r

uL,1 uL,2 ··· uL,r

















The gray colour row corresponds to the response and the remaining rows are

considered to be the regressors. In the next two subsections we give more details

about the HMSSA-R and HMSSA-V.

HMSSA-R

Assume that U▽
r and U▽r are the first L − 1 rows of Ur and last row of

Ur, respectively (see equation (2.9)). In addition, let us define:

(2.10) W =

[

0 I

0 ̂A

]

, ̂A =
(

1 − U▽rU
′
▽r

)−1
U▽rU

▽
r
′
,

where I is the (L − 1) × (L − 1) identity matrix and 0 is a column vector with

L − 1 zeros. Then, the h-steps ahead forecasts can be obtained by:

(2.11) ŷ
(m)
T+h = Wh

[L, ]˜S[, mK], m = 1, ..., M, h = 1, 2, ....

The coefficients Wh
[L, ] are generated by the whole system of time series, i.e.,

they consider the correlation among time series. In addition, ˜S[, mK] is smoothed

again based on the information of all time series. It should be noticed, however,

that the forecasts for all individual time series are made by using the same coef-

ficients.

HMSSA-V

Considering the same notation as in HMSSA-R, we can define:

(2.12) W =

[

0 Π

0 ̂A

]

, Π = U▽
r U▽

r
′
+ ̂A′

(1 − U▽rU
′
▽r)

̂A,
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where 0 is column vector with L− 1 zeros. Then, the h-steps ahead forecasts can

be obtained by:

(2.13) ŷ
(m)
T+h =

1

L

h+L−1
∑

ℓ=h

W ℓ
[L − ℓ + h, ]̂S[, mK], m = 1, ..., M, h = 1, 2, ...

To better understand how HMSSA-R and HMSSA-V differ, we need to compare

Equations (2.11) and (2.13). Note that ˜S in Equation (2.11) is obtained by

diagonal averaging (see Step 4), and then multiplied by the coefficient Wh
[L, ]

to produce the forecasts. However, ̂S in Equation (2.13) is the result of grouping

(see Step 3), which is then multiplied by the coefficients W ℓ
[L − ℓ + h, ] and the

forecasts are produced by averaging.

Both methods, HMSSA-R and HMSSA-V, employ a fixed coefficients for

all time series to produce the forecasts. In the approach that considers vertical

based methods, we consider different coefficients to produce forecasts for different

time series in the multivariate framework. In what follows, we describe how the

vertical based methods produce forecasts.

Vertical form

Denote by Ur the matrix of the first r eigenvectors of XX′
corresponding

to the r largest singular values of X. This matrix has dimension LM × r and we

can partitioning as follows:

(2.14) Ur =

























































u1,1 u1,2 ··· u1,r
u2,1 u2,2 ··· u2,r

.

.

.
.
.
. ···

.

.

.

uL−1,1 uL−1,2 ··· uL−1,r

uL,1 uL,2 ··· uL,r

uL+1,1 uL+1,2 ··· uL+1,r
uL+2,1 uL+2,2 ··· uL+2,r

.

.

.
.
.
. ···

.

.

.

u2L−1,1 u2L−1,2 ··· u2L−1,r

u2L,1 u2L,2 ··· u2L,r
.
.
.

.

.

. ···
.
.
.

u(M−1)L+1,1 u(M−1)L+1,2 ··· u(M−1)L+1,r
u(M−1)L+2,1 u(M−1)L+2,2 ··· u(M−1)L+2,r
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.
.
. ···
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.

.

u(ML−1,1 uML−1,2 ··· uML−1,r

uML,1 uML,2 ··· uML,r

























































The gray colour rows correspond to the response and the remaining rows are

considered to be the regressors. In the next two subsections we give more details

about the VMSSA-R and VMSSA-V.



608 Rahim Mahmoudvand, Paulo Canas Rodrigues and Masoud Yarmohammadi

VMSSA-R

Assume that U▽
r is constructed by removing the rows L, 2L, ..., ML, from

Ur, and U▽r is the matrix that is constructed by stacking the rows L, 2L, ...,

ML, of Ur (see equation (2.14)). In addition, let us define:

(2.15) W =

























0 I

0 ̂A0[1, ]
0 I

0 ̂A0[2, ]
.
.
.

.

.

.

0 I

0 ̂A0[M, ]

























, ̂A =
(

IM×M − U▽rU
′
▽r

)−1
U▽rU

▽
r
′
,

where I is the (L− 1)× (L− 1) identity matrix, 0 is a column vector with L− 1

zeros and [0, ̂A0[i, ]] is a vector of size LM where, before each L − 1 elements

of ̂A[i, ], i = 1, ..., M , a zero is added. Then, the h-steps ahead forecasts can be

obtained by:

(2.16) ŷ
(m)
T+h = Wh

[mL, ]˜S[, K], m = 1, ..., M, h = 1, 2, ....

VMSSA-V

Considering the notation as in VMSSA-R, we can define:

(2.17) W =

























0 Π1

0 ̂A0[1, ]
0 Π2

0 ̂A0[2, ]
.
.
.

.

.

.

0 ΠM

0 ̂A0[M, ]

























, Π = U▽
r U▽

r
′
+ ̂A′

(IM×M − U▽rU
′
▽r)

̂A,

where 0 is a column vector with L − 1 zeros and Πj represents the rows num-

ber (j − 1)(L − 1) + 1, ..., j(L − 1) of Π, j = 1, ..., M . Then, the h-steps ahead

forecasts can be obtained by:

(2.18) ŷ
(m)
T+h =

1

L

h+L−1
∑

ℓ=h

W ℓ
[mL − ℓ + h, ]̂S[, K], m = 1, ..., M, h = 1, 2, ...
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The comparison between VMSSA-R and VMSSA-V is similar to the com-

parison between HMSSA-R and HMSSA-V, i.e., the part of the time series that

is used to produce forecasts in VMSSA-R comes from an diagonal averaging pro-

cess, whereas the the part of the time series that is used to produce forecasts in

VMSSA-V comes from the grouping step which then is subjected to a weighted

average.

2.2. MSSA choices

There are two main decisions the user has to make while fitting a MSSA

model: the window length, L, and the number of singular values used to recon-

struct the series and to construct the forecast engine, r. Despite of the importance

of these choices, there have been just a few studies about these choices in the

multivariate case. Regarding to the window length, Hassani and Mahmoudvand

(2013) showed that a value close the MT/(M + 1) and T/(M + 1) is optimal for

HMSSA and VMSSA, respectively. There are also several studies in the univari-

ate case that can be used similarly to find a suitable value for the multivariate

case (see for example Golyandina et al. (2001) and Golyandina and Zhigljavsky

(2013)). A weighted correlation and screen plots of the singular values are among

the simplest ways to find a proper value for r.

2.3. Prediction intervals for MSSA forecasts

Prediction intervals can be very useful in assessing the quality of the fore-

casts. There are two different types of prediction interval for SSA forecasts,

but here we will focus on the bootstrap based method. More details can be

found in Golyandina et al. (2001) and Golyandina and Zhigljavsky (2013). To

obtain the bootstrap prediction interval for the h-steps-ahead forecast, the first

step is to obtain the MSSA decomposition YT = ˜ST + ˜NT . Then, we simulate

p independent copies ˜NT,i, i = 1, ..., p, of the residual series NT . Adding each of

these residual series to the signal series ˜ST , we get p time series YT,i = ˜ST + ˜NT,i.

Applying the MSSA forecasting algorithm, keeping unchanged the window

length L and the number r of eigenvalues/eigenvectors used for reconstruction,

to the series YT,i, i = 1, ..., p, we can obtain p forecasting results h-steps-ahead

ŷ
(m)
T+h,i, m =1, ..., M . The empirical α/2 and 1 − α/2 quantiles of the p h-steps-

ahead forecasts ŷ
(m)
T+h,1, ...ŷ

(m)
T+h,p, correspond to the bounds of the bootstrap pre-

diction interval with confidence level 1 − α.
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3. NUMERICAL RESULTS

3.1. Description of the data

In this section, we consider daily currency exchange rate data for the BRICS

countries (Brazil–BRL, Russia–RUB, India–IND, China–CHN and South Africa–

RAND). However the complete data from Russia could not be found which made

us discard this country from our study, which does not interfere with the re-

sults as the recent behaviour is very similar to India. Fourteen years of data,

between September 2001 and September 2015, were considered. The data was

collected from the Board of Governors of the Federal Reserve System (US) —

https://reserach.stlouisfed.org. Figure 1 shows the behaviour of the daily

exchange rates for the four considered countries, between September 2001 and

September 2015, when compared with USD.
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Figure 1: Daily exchange rates for Brazil, India, China and South Africa

between September 2001 and September 2015, when compared

with USD.
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3.2. Preliminary analysis

In this section, we will assess the evidence provided by data in favour of

using methods such as MSSA. In particularly, we check stationarity and causality.

Stationarity testing

We use the Augmented Dickey–Fuller method to test for the presence of unit

root in the exchange rate time series. Results given in Table 2 indicate that the

exchange rates are non-stationary processes. In this way, the non-stationary time

series should be differentiated before using a standard time series approach, or we

might apply directly methods that do not depend on the stationarity assumption

such as SSA and MSSA.

Table 2: Augmented Dickey–Fuller test for the four exchange rates.

BRL IND CHN RAND

Test statistics 0.256 −1.265 −0.239 −0.962
P-value 0.991 0.889 0.992 0.945

Testing causality

A question that frequently arises in time series analysis is whether one eco-

nomic variable can help to forecast another economic variable.Here the question is

whether one exchange rate time series can help us in forecasting other exchange rate

time series andviceversa.OnewaytoaddressthisquestionwasproposedbyGranger.

Table 3: Pairwise Granger causality tests.

Series

Null hypothesis:

Series 2 does not Series 1 does not
Granger-Cause Series 1 Granger-Cause Series 2

Series 1 Series 2 F-Statistics P-value F-Statistics P-value

BRL IND 11.95 0.00061 0.50 0.47771
BRL CHN 1.49 0.22171 1.93 0.16461
BRL RAND 6.50 0.01081 0.99 0.32012
IND CHN 9.82 0.00174 0.89 0.34661
IND RAND 0.04 0.85452 17.89 0.00002
CHN RAND 0.19 0.66181 12.31 0.00051
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The results of this test, for the differentiated time series, are reported in Table 3

for all six pairs of exchange rates series. P -values in Table 3 suggest us to reject

all null hypotheses with a significance level of 10%, except one case which has a

high P -value. So in general, the exchange rates can help to forecast each other

which, again, motivates us to use MSSA.

3.3. Accuracy of forecasts

As it is usual in forecasting literature (see for example Hyndman, 2010),

the mean square error (MSE) of forecasts is used to compare the accuracy of the

methods under analysis. In order to find reliable values for MSE, we divide the

observations into two parts: training and testing sets. Since the length of our data

set is large, we decide to produce the results with several different segmentation:

17, 35, 70 and 140 observations for testing sets and remaining for training sets.

Note that when considering 35 observations in the testing set, we consider about

99% of the observations (3481 observations) for modelling and the remained 1%

are considered for testing.

Let us now explain how we obtain the one-step-ahead forecasts in this case.

We considered 3481 observations and find forecasts for the 3482-th observation by

all methods. Then we considered 3482 observations and forecast the 3483-th obser-

vation by all methods, and repeat until the end of the series (i.e. until observation

3515). In this way, we find 35 predictions for each method that can be compared

with the observed values using the MSE. Note that in this way, we begin with 3477

[3472] observations for 5 [10] steps ahead and we only consider the 5-th [10-th]

forecasts, in each stage, to compute MSE. The results for 1, 5 and 10 steps ahead

forecasts and different sizes of the testing sets are presented in Tables 4, 5, 6 and 7.

The results in these tables, indicate a better performance of the MSSA related

algorithms when compared with the univariate SSA related algorithms. This

improvement of MSSA related algorithms is visible in all time series under con-

sideration, except the 10 steps ahead prediction of the USD/RAND currency.

Table 4: MSE based on 17 forecasts for each combination of forecasting method,

time series and number of steps ahead.

Method

Currency

BRL IND CHN RAND

1 5 10 1 5 10 1 5 10 1 5 10

VMSSA-V 0.0154 0.0228 0.0333 0.2084 0.7419 2.0543 0.0137 0.0155 0.0171 0.0115 0.0234 0.0699
VMSSA-R 0.0234 0.0338 0.0489 0.2604 0.7553 1.9602 0.0138 0.0152 0.0162 0.0119 0.0262 0.0874
HMSSA-V 0.0022 0.0076 0.0110 0.2048 0.8737 1.7994 0.0016 0.0100 0.0186 0.0113 0.0423 0.0714
HMSSA-R 0.0021 0.0058 0.0109 0.2065 0.8752 1.8802 0.0016 0.0097 0.0185 0.0114 0.0372 0.0818
VSSA 0.0025 0.0074 0.0160 0.2946 0.8913 2.0659 0.0017 0.0112 0.0206 0.0138 0.0372 0.0699
RSSA 0.0026 0.0074 0.0119 0.3164 0.8661 2.0407 0.0017 0.0110 0.0206 0.0128 0.0271 0.0639
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Table 5: MSE based on 35 forecasts for each combination of forecasting method,

time series and number of steps ahead.

Method

Currency

BRL IND CHN RAND

1 5 10 1 5 10 1 5 10 1 5 10

VMSSA-V 0.0159 0.0212 0.0292 0.1182 0.3904 1.1842 0.0071 0.0081 0.0090 0.0104 0.0254 0.0816
VMSSA-R 0.0201 0.0267 0.0373 0.1451 0.3934 1.0789 0.0078 0.0084 0.0089 0.0166 0.035 0.0891
HMSSA-V 0.0021 0.0114 0.0241 0.1289 0.5369 1.0701 8e-04 0.0049 0.0092 0.0124 0.0483 0.0854
HMSSA-R 0.0021 0.0104 0.0235 0.1275 0.4897 1.0522 8e-04 0.0047 0.0090 0.0119 0.0400 0.0803
VSSA 0.0032 0.0145 0.0296 0.1692 0.5578 1.3482 8e-04 0.0055 0.0101 0.0148 0.0631 0.0892
RSSA 0.0034 0.0121 0.0248 0.1769 0.4725 1.1398 8e-04 0.0054 0.0100 0.0133 0.0335 0.0636

Table 6: MSE based on 70 forecasts for each combination of forecasting method,

time series and number of steps ahead.

Method

Currency

BRL IND CHN RAND

1 5 10 1 5 10 1 5 10 1 5 10

VMSSA-V 0.0107 0.0136 0.0185 0.0906 0.3247 0.8630 0.0043 0.0049 0.0055 0.0325 0.0755 0.1727
VMSSA-R 0.0139 0.0175 0.0231 0.1044 0.2683 0.6190 0.0059 0.0062 0.0065 0.0443 0.0839 0.1497
HMSSA-V 0.0019 0.0091 0.0169 0.1057 0.3628 0.6917 4e-04 0.0025 0.0047 0.0131 0.0588 0.1220
HMSSA-R 0.0019 0.0081 0.0164 0.1009 0.3196 0.6519 4e-04 0.0024 0.0046 0.0124 0.0507 0.1124
VSSA 0.0023 0.0137 0.0286 0.1189 0.3828 0.9635 4e-04 0.0029 0.0053 0.0154 0.0615 0.0882
RSSA 0.0025 0.0097 0.0194 0.1212 0.3087 0.6991 4e-04 0.0027 0.0051 0.0146 0.0425 0.0815

Table 7: MSE based on 140 forecasts for each combination of forecasting method,

time series and number of steps ahead.

Method

Currency

BRL IND CHN RAND

1 5 10 1 5 10 1 5 10 1 5 10

VMSSA-V 0.0248 0.0296 0.0362 0.0784 0.2743 0.6804 0.0037 0.0042 0.0048 0.0374 0.0807 0.1589
VMSSA-R 0.0309 0.0361 0.0423 0.0882 0.2241 0.512 0.0049 0.0052 0.0056 0.0482 0.0869 0.1448
HMSSA-V 0.0020 0.0102 0.0202 0.0861 0.3171 0.5706 2e-04 0.0015 0.0026 0.0145 0.0789 0.1368
HMSSA-R 0.0020 0.0092 0.0189 0.0831 0.2724 0.5334 2e-04 0.0013 0.0026 0.0141 0.0708 0.1276
VSSA 0.0022 0.0146 0.0343 0.1117 0.4013 0.8755 2e-04 0.0017 0.0033 0.0179 0.0779 0.0991

RSSA 0.0023 0.0109 0.0244 0.1128 0.3083 0.604 3e-04 0.0016 0.0029 0.0177 0.0611 0.1000

In order to show the gains in MSE, one may compare the ratio of the minimum of

MSE by MSSA related algorithms over the minimum of MSE by univariate related

algorithms. The results are reported in Table 8. As it can be seen in this table,

improvement by MSSA when its MSE compare with univariate SSA, varied be-

tween 0.66 to 1.38 and in most of cases MSSA produces an improvement over SSA.

The results for length and coverage ratio for the 95% prediction intervals can

be found in Tables 9 and 10, respectively. The performance of both multivariate

methods in the horizontal form, HMSSA-R and HMSSA-V, is overall better in

terms of coverage ratios, despite having also overall larger length in the prediction

intervals. Although the univariate methods give smaller length for the prediction

intervals, their coverage ratio is, generally, much worse than the multivariate

methods.
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Table 8: Ratio of best MSE by MSSA over the best MSE by univariate SSA

based on 17, 35, 70 and 140 forecasts and 1, 5 and 10 steps ahead.

Testing size

Currency

BRL IND CHN RAND

1 5 10 1 5 10 1 5 10 1 5 10

17 0.84 0.78 0.92 0.70 0.86 0.88 0.94 0.88 0.79 0.88 0.86 1.09
35 0.66 0.86 0.95 0.70 0.83 0.92 1.00 0.87 0.89 0.78 0.76 1.26
70 0.83 0.84 0.85 0.76 0.87 0.89 1.00 0.89 0.90 0.85 1.20 1.36

140 0.91 0.84 0.77 0.70 0.73 0.85 1.00 0.81 0.90 0.80 1.16 1.29

Table 9: Length of 95% prediction interval based on 35 forecasts for each combi-

nation of forecasting method, time series and number of steps ahead.

Method

Currency

BRL IND CHN RAND

1 5 10 1 5 10 1 5 10 1 5 10

VMSSA-V 0.292 0.312 0.324 0.363 0.672 0.660 0.271 0.283 0.296 0.187 0.288 0.359
VMSSA-R 0.261 0.362 0.377 0.335 0.544 0.568 0.332 0.355 0.363 0.179 0.249 0.273
HMSSA-V 0.385 0.608 0.625 0.389 0.605 0.644 0.381 0.598 0.647 0.362 0.595 0.650
HMSSA-R 0.365 0.539 0.592 0.370 0.545 0.607 0.346 0.552 0.573 0.356 0.552 0.618
VSSA 0.063 0.111 0.094 0.621 1.188 1.120 0.020 0.035 0.031 0.247 0.339 0.368
RSSA 0.059 0.101 0.088 0.589 1.008 0.911 0.032 0.029 0.001 0.235 0.315 0.344

Table 10: Coverage ratio for 95% prediction interval based on 35 forecasts for each

combination of forecasting method, time series and number of steps ahead.

Method

Currency

BRL IND CHN RAND

1 5 10 1 5 10 1 5 10 1 5 10

VMSSA-V 0.89 0.88 0.79 0.43 0.51 0.33 0.97 0.95 0.96 0.80 0.76 0.67
VMSSA-R 0.92 0.91 0.91 0.67 0.64 0.60 0.79 0.70 0.69 0.77 0.70 0.64
HMSSA-V 0.99 0.97 0.86 0.49 0.40 0.23 0.99 0.99 0.99 0.91 0.77 0.66
HMSSA-R 0.99 0.99 0.86 0.43 0.40 0.23 0.86 0.99 0.99 0.99 0.83 0.66
VSSA 0.26 0.40 0.26 0.63 0.66 0.37 0.66 0.66 0.60 0.69 0.57 0.54
RSSA 0.29 0.31 0.20 0.66 0.63 0.31 0.66 0.63 0.60 0.69 0.66 0.43

4. CONCLUSION

In this paper, we used univariate and multivariate SSA to forecasts the daily

exchange rates of Brazil, India, China and South Africa. As a preliminary analy-

sis, we conducted the traditional time series analysis of unit root test and found

that all series are non-stationary. We also used Granger test to see whether series

support each other. With the exception of the forecasts for 5 and 10 steps ahead

for RAND, MSSA outperformed SSA in terms of forecasting accuracy. Accord-

ingly, we can conclude that MSSA can be of great help to forecast exchange rates.
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