




           Catalogação Recomendada 
 

REVSTAT. Lisboa, 2003-     
Revstat : statistical journal  / ed. Instituto Nacional 
de Estatística. - Vol. 1, 2003-         . - Lisboa I.N.E.,  
2003-        . - 30 cm 
Semestral. - Continuação de : Revista de Estatística = 
ISSN 0873-4275. - edição exclusivamente em inglês 

           ISSN 1645-6726 

 
 

CREDITS 

- EDITOR-IN-CHIEF 
- M. Ivette Gomes 

- CO-EDITOR 
- M. Antónia Amaral Turkman 

- ASSOCIATE EDITORS 
- Barry Arnold  
- Jan Beirlant  
- Graciela Boente  
- João Branco 
- Carlos Agra Coelho (2017-2018) 
- David Cox 
- Isabel Fraga Alves  
- Wenceslao Gonzalez-Manteiga  
- Juerg Huesler  
- Marie Husková  
- Victor Leiva  
- Isaac Meilijson  
- M. Nazaré Mendes- Lopes  
- Stephen Morghenthaler  
- António Pacheco  
- Carlos Daniel Paulino  
- Dinis Pestana 
- Arthur Pewsey  
- Vladas Pipiras  
- Gilbert Saporta  
- Julio Singer  
- Jef Teugels 
- Feridun Turkman 

- EXECUTIVE EDITOR 
- Pinto Martins 

- FORMER EXECUTIVE EDITOR 
- Maria José Carrilho 
- Ferreira da Cunha 

- SECRETARY 
- Liliana Martins 

- PUBLISHER 
- Instituto Nacional de Estatística, I.P. (INE, I.P.) 

Av. António José de Almeida, 2 
1000-043 LISBOA 
PORTUGAL 
Tel.: + 351 21 842 61 00 
Fax: + 351 21 845 40 84 
Web site: http://www.ine.pt 
Customer Support Service 
+ 351 218 440 695 

- COVER DESIGN 
- Mário Bouçadas, designed on the stain glass 

window at INE by the painter Abel Manta 

- LAYOUT AND GRAPHIC DESIGN 
- Carlos Perpétuo 

- PRINTING 
- Instituto Nacional de Estatística, I.P. 

- EDITION 
- 140 copies 

- LEGAL DEPOSIT REGISTRATION 
- N.º 191915/03 

- PRICE  [VAT  included] 
- € 9,00 

 

 
 
 
 

© INE,  Lisbon. Portugal, 2018* Reproduction authorised except for commercial purposes by indicating the source. 

http://www.ine.pt/


PREFACE

This special issue of REVSTAT — Statistical Journal features specially

invited papers from those who presented at the International Conference on

Advances in Interdisciplinary Statistics and Combinatorics held at the University

of North Carolina at Greensboro, USA during September 30 – October 2, 2016.

The contributions to this special issue cover several very significant areas of

statistics such as Bayesian mixture models, non-parametric predictive inference,

sampling, and survival analysis.

The guest editors are grateful to the contributors to this issue as well as the

editors of REVSTAT for their support during the review process. We also wish

to acknowledge the help of the referees who reviewed the papers very promptly

and diligently.

Guest Editors:

Sat Gupta

Professor

Department of Mathematics and Statistics,

University of North Carolina at Greensboro,

Greensboro, NC, USA

Kumer Pial Das

Professor

Department of Mathematics,

Lamar University,

Beaumont, TX, USA





INDEX

Nonparametric Predictive Inference for Reproducibility of Two

Basic Tests Based on Order Statistics

Frank P.A. Coolen and Hana N. Alqifari . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Modified Systematic Sampling with Multiple Random Starts

Sat Gupta, Zaheen Khan and Javid Shabbir . . . . . . . . . . . . . . . . . . . . . . . . 187

Improving Bayesian Mixture Models for Multiple Imputation of

Missing Data Using Focused Clustering

Lan Wei and Jerome P. Reiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Semi-Parametric Likelihood Inference for Birnbaum–Saunders

Frailty Model

N. Balakrishnan and Kai Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Association Measures in the Bivariate Correlated Frailty Model

Ramesh C. Gupta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Abstracted/indexed in: Current Index to Statistics, DOAJ, Google Scholar, Journal Citation
Reports/Science Edition, Mathematical Reviews, Science Citation Index Expandedr, SCOPUS
and Zentralblatt für Mathematic.





REVSTAT – Statistical Journal

Volume 16, Number 2, April 2018, 167–185

NONPARAMETRIC PREDICTIVE INFERENCE

FOR REPRODUCIBILITY OF TWO BASIC TESTS

BASED ON ORDER STATISTICS

Authors: Frank P.A. Coolen

– Department of Mathematical Sciences, Durham University,

Durham, UK

frank.coolen@durham.ac.uk

Hana N. Alqifari

– Department of Mathematics, Qassim University,

Buraidah, Saudi Arabia

Received: February 2017 Revised: June 2017 Accepted: July 2017

Abstract:

• Reproducibility of statistical hypothesis tests is an issue of major importance in ap-

plied statistics: if the test were repeated, would the same overall conclusion be reached,

that is rejection or non-rejection of the null hypothesis? Nonparametric predictive

inference (NPI) provides a natural framework for such inferences, as its explicitly pre-

dictive nature fits well with the core problem formulation of a repeat of the test in the

future. NPI is a frequentist statistics method using relatively few assumptions, made

possible by the use of lower and upper probabilities. For inference on reproducibility

of statistical tests, NPI provides lower and upper reproducibility probabilities (RP).

In this paper, the NPI-RP method is presented for two basic tests using order statis-

tics, namely a test for a specific value for a population quantile and a precedence

test for comparison of data from two populations, as typically used for experiments

involving lifetime data if one wishes to conclude before all observations are available.

Key-Words:

• lower and upper probabilities; nonparametric predictive inference; precedence test;

quantile test; reproducibility.
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1. INTRODUCTION

Testing of hypotheses is one of the main tools in statistics and crucial in

many applications. While many different tests have been developed for a wide

range of scenarios, the aspect of reproducibility of tests has long been neglected:

the question addressed is whether or not a test, if it were repeated under the

same circumstances, would lead to the same overall conclusion, that is rejection

or non-rejection of the null hypothesis. Recently, this topic has started to gain

attention, in particular through the publication of a ‘handbook on reproducibil-

ity’ [4] which provides a collection of papers on the issue. Nevertheless, whilst

hypothesis testing is mainly seen as a frequentist statistics procedure, the classic

frequentist framework is not suited for inference on reproducibility as this is nei-

ther an estimation nor a testing problem. The very nature of reproducibility is

predictive, namely given the results of one test one wishes to predict the outcome

of a possible future test. Coolen and Bin Himd [11] presented nonparametric

predictive inference (NPI) for reproducibility of some basic tests, with more at-

tention to this topic in the PhD thesis of Bin Himd [8], these publications also

provide a critical discussion of earlier methods for reproducibility presented in

the literature.

This paper contributes to development of NPI for reproducibility by con-

sidering two tests based on order statistics, namely a one sample quantile test

and a two sample precedence test. Central to these inferences are NPI results for

future order statistics [12]. This paper provides a concise presentation of NPI for

the quantile and basic precedence test, further details, examples and discussion

are included in the PhD thesis of Alqifari [1].

This paper is organized as follows. Section 2 provides a brief introduction to

NPI, including key results on NPI for future order statistics as used in this paper.

Section 3 discusses aspects of reproducibility of statistical tests and explains the

NPI perspective on such inferences. Section 4 presents the NPI approach to

reproducibility of a basic quantile test. Section 5 considers a precedence test

used for comparison of two populations. Some concluding remarks are given in

Section 6. All computations in this paper were performed using the statistical

software R.

2. NONPARAMETRIC PREDICTIVE INFERENCE

Nonparametric predictive inference (NPI) [5, 10] is a statistical framework

which uses few modelling assumptions, with inferences explicitly in terms of fu-

ture observations. For real-valued random quantities attention has thus far been
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mostly restricted to a single future observation, although multiple future obser-

vations have been considered for some NPI methods, e.g. in statistical process

control [2, 3].

Assume that we have real-valued ordered data x(1) < x(2) < ··· < x(n), with

n ≥ 1. For ease of notation, define x(0) = −∞ and x(n+1) = ∞, or at other known

lower and upper bounds of the range of possible values for these random quan-

tities. The n observations create a partition of the real-line into n + 1 intervals

Ij = (x(j−1), x(j)) for j = 1, ..., n + 1. We assume throughout this paper that ties

do not occur. If we wish to allow ties, also between past and future observations,

we could use closed intervals [x(j−1), x(j)] instead of these open intervals Ij , the

difference is rather minimal and to keep presentation easy we have opted not to do

this here. We are interested in m ≥ 1 future observations, Xn+i for i = 1, ..., m.

We link the data and future observations via Hill’s assumption A(n) [17], or,

more precisely, via A(n+m−1) (which implies A(n+k) for all k = 0, 1, ..., m − 2; we

will refer to this generically as ‘the A(n) assumptions’), which can be considered

as a post-data version of a finite exchangeability assumption for n + m random

quantities. The A(n) assumptions imply that all possible orderings of the n data

observations and the m future observations are equally likely, where the n data ob-

servations are not distinguished among each other and neither are the m future

observations. Let Sj = #{Xn+i ∈ Ij , i = 1, ..., m}, then the A(n) assumptions

lead to

(2.1) P

(

n+1
⋂

j=1

{Sj = sj}

)

=

(

n + m

n

)

−1

where sj are non-negative integers with
∑n+1

j=1 sj = m. Another convenient way

to interpret the A(n) assumptions with n data observations and m future observa-

tions is to think that n randomly chosen observations out of all n + m real-valued

observations are revealed, following which you wish to make inferences about the

m unrevealed observations. The A(n) assumptions then imply that one has no

information about whether specific values of neighbouring revealed observations

make it less or more likely that a future observation falls in between them. For

any event involving the m future observations, Equation (2.1) implies that we can

count the number of such orderings for which this event holds. Generally in NPI

a lower probability for the event of interest is derived by counting all orderings

for which this event has to hold, while the corresponding upper probability is

derived by counting all orderings for which this event can hold [5, 10].

In NPI, the A(n) assumptions justify the use of resulting inferences directly

as predictive probabilities. Using only precise probabilities, such inferences can-

not be used for many events of interest, but in NPI we use the fact, in line with

De Finetti’s Fundamental Theorem of Probability [14], that corresponding opti-

mal bounds can be derived for all events of interest [5]. These bounds are lower

and upper probabilities in the theory of imprecise probability [6]. NPI provides



Reproducibility of Tests Based on Order Statistics 171

exactly calibrated frequentist inferences [18], and it has strong consistency prop-

erties in theory of interval probability [5]. In NPI the n observations are explicitly

used through the A(n) assumptions, yet as there is no use of conditioning as in

the Bayesian framework, we do not use an explicit notation to indicate this use

of the data. The m future observations must be assumed to result from the same

sampling method as the n data observations in order to have full exchangeability.

NPI is totally based on the A(n) assumptions, which however should be considered

with care as they imply e.g. that the specific ordering in which the data appeared

is irrelevant, so accepting A(n) implies an exchangeability judgement for the n

observations. It is attractive that the appropriateness of this approach can be de-

cided upon after the n observations have become available. NPI is always in line

with inferences based on empirical distributions, which is an attractive property

when aiming at objectivity [10].

Let X(r), for r = 1, ..., m, be the r-th ordered future observation, so X(r) =

Xn+i for one i = 1, ..., m and X(1) < X(2) < ··· < X(m). The following probabili-

ties are derived by counting the relevant orderings and use of Equation (2.1). For

j = 1, ..., n + 1 and r = 1, ..., m,

(2.2) P
(

X(r) ∈ Ij

)

=

(

j + r − 2

j − 1

)(

n − j + 1 + m − r

n − j + 1

)(

n + m

n

)

−1

.

For this event NPI provides a precise probability, as each of the
(

n+m
n

)

equally

likely orderings of n past and m future observations has the r-th ordered fu-

ture observation in precisely one interval Ij . As Equation (2.2) only specifies the

probabilities for the events that X(r) belongs to intervals Ij , it can be consid-

ered to provide a partial specification of a probability distribution for X(r), no

assumptions are made about the distribution of the probability masses within

such intervals Ij .

Analysis of the probability in Equation (2.2) leads to some interesting

results, including the logical symmetry P (X(r) ∈ Ij) = P (X(m+1−r) ∈ In+2−j).

For all r, the probability for X(r) ∈ Ij is unimodal in j, with the maximum prob-

ability assigned to interval Ij∗ with
(

r−1
m−1

)

(n + 1) ≤ j∗ ≤
(

r−1
m−1

)

(n + 1) + 1.

A further interesting property occurs for the special case where the number

of future observations is equal to the number of data observations, so m = n.

In this case, P (X(r) < xr) = P (X(r) > xr) = 0.5 holds for all r = 1, ..., m. This

fact can be proven by considering all
(

2n
n

)

equally likely orderings, where clearly

in precisely half of these orderings the r-th future observation occurs before the

r-th data observation due to the overall exchangeability assumption. The special

case m = n plays an important role in this paper as it naturally occurs in analysis

of reproducibility of statistical hypothesis tests.
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3. REPRODUCIBILITY OF STATISTICAL TESTS

Statistical hypothesis testing is used in many application areas and nor-

mally results in either non-rejection of the stated null hypothesis or its rejection

in favour of a stated alternative, at a predetermined level of significance. Whilst

this procedure is embedded in the successful long-standing tradition of statistics,

a related aspect that had received relatively little attention in the literature until

recently is the reproducibility of such tests: if the test were repeated, would it

lead to the same overall conclusion? Attention to problems with reproducibility,

including problems with understanding of concepts by practitioners in applica-

tion areas, was raised by Goodman [16] and Senn [21]. Methods for addressing

reproducibility, proposed in the literature since then, have mainly shown that

the classical frequentist framework of statistics may not be immediately suitable

for inference on test reproducibility (see [11] for a discussion of such proposed

methods). Recently, many aspects of reproducibility, including some attention to

statistical methods, have been discussed in a volume dedicated to this topic [4].

The reproducibility probability (RP) for a test is the probability for the

event that, if the test is repeated based on an experiment performed in the same

way as the original experiment, the test outcome, that is either rejection of the

null-hypothesis or not, will be the same. In practice, focus may often be on repro-

ducibility of tests in which the null-hypothesis is rejected, for example because

significant effects tend to lead to new treatments in medical applications. How-

ever, also if the null-hypothesis is not rejected it is important to have a meaningful

assessment of the reproducibility of the test. Note that RP is assessed knowing

the outcome of the first, actual experiment, which consists of the actual observa-

tions, so not only the value of a sufficient test statistic or even just the conclusion

on rejection or non-rejection of the null-hypothesis. This is important as the

RP will vary with different experiment outcomes, which is logical and will lead

to higher RP if the data supported the original test conclusion more strongly.

A sufficient test statistic, if of reduced dimension compared to the full data set,

does not provide suitable input for the NPI method, hence the use of the full

data set is required for the inferences considered in this paper.

Coolen and Bin Himd [11] introduced NPI for RP, denoted by NPI-RP, by

considering some basic nonparametric tests: the sign test, Wilcoxon’s signed rank

test, and the two sample rank sum test. For these inferences NPI for Bernoulli

quantities [9] and for real-valued observations [5] were used. This did not lead

to precise valued reproducibility probabilities but to NPI lower and upper re-

producibility probabilities, denoted by RP and RP , respectively. For these tests

analytic methods were presented to calculate the NPI lower and upper probabil-

ities for test reproducibility. To enable NPI for more complex test scenarios, the

NPI-bootstrap method can be used, as introduced and illustrated by Bin Himd [8]

for the Kolmogorov–Smirnov test.
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This paper presents NPI-RP for two classical tests which are based on

order statistics, namely a one sample quantile test (Section 4) and a two sample

precedence test (Section 5). For these inferences, NPI for future order statistics

[12] is used, as briefly reviewed in Section 2. We assume that the first, actual

experiment led to ordered real-valued observations x(1) < x(2) < ··· < x(n). As we

consider an imaginary repeat of this experiment, we use NPI for m = n future

ordered observations, henceforth denoted by X
f

(1) < X
f

(2) < ··· < X
f

(n), with the

superscript f used to emphasize that we consider future order statistics.

4. QUANTILE TEST

The quantile test is a basic nonparametric test for the value of a population

quantile [15]. Let κp denote the 100×p-th quantile of an unspecified continuous

distribution, for 0 ≤ p ≤ 1. On the basis of a sample of observations of indepen-

dent and identically distributed random quantities Xi, i =1, ..., n, we consider the

one-sided test of null-hypothesis H0: κp = κ0
p versus alternative H1: κp > κ0

p, for

a specified value κ0
p. We restrict attention in this paper to NPI for reproducibility

of this one-sided quantile test. The corresponding methodology for the two-sided

test follows the same steps and is included in the PhD thesis of Alqifari [1], where

also some more discussion and examples are given of the tests presented in this

paper. Actually, there is an interesting issue about two-sided tests in such sce-

narios, that requires some further thought. If the original test leads to rejection

of the null hypothesis due to a relatively small value of the test statistic, would

one consider the test result to be reproduced if a future test leads to rejection due

to a relatively large value of the test statistic, so in the other tail of the statistic’s

distribution under H0? Technically perhaps this is the case, but on the basis of

the combined evidence of the two tests one would probably want to investigate

the whole setting further and not regard the second test as confirming the results

of the first test. This is left as a topic for consideration.

Under H0, κ0
p is the 100×p-th quantile of the distribution function of the

Xi, so P (Xi ≤ κ0
p |H0) = p. Define the random variable K as the number of Xi

in the sample of size n that are less than or equal to κ0
p, that is

K =

n
∑

i=1

1
{

Xi ≤ κ0
p

}

with 1{A} = 1 if A is true and 1{A} = 0 if A is not true. A logical test rule is to

reject H0 if X(r) > κ0
p, where X(r) is the r-th ordered observation in the sample

(ordered from small to large), for a suitable value of r corresponding to a chosen

significance level, so if K ≤ r − 1. For significance level α, r is the largest integer
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such that

P
(

X(r) > κ0
p |H0

)

=

r−1
∑

i=0

(

n

i

)

pi(1 − p)n−i ≤ α .

For large sample sizes the Normal distribution approximation to the Binomial

distribution can be used in order to determine the appropriate value of r.

For a given data set x1, ..., xn, the test statistic of the one-sided quantile test

as defined above is the number of observations less than or equal to κ0
p, denoted

by

k =

n
∑

i=1

1
{

xi ≤ κ0
p

}

.

For the value r derived as discussed above, H0 is rejected if and only if k ≤ r − 1.

Based on such data and the result of the actual hypothesis test, that is

whether the null hypothesis is rejected in favour of the alternative hypothesis

or not, NPI can be applied to study the reproducibility of the test. First we

consider the case where k ≤ r − 1, so the original test leads to rejection of H0.

Reproducibility of this test result is therefore the event that, if the test were

repeated, also leading to n observations, then that would also lead to rejection

of H0. Using the notation for future observations introduced in Section 3, this

would occur if the r-th ordered observation of the future sample exceeds κ0
p. The

NPI lower and upper reproducibility probabilities for this event, as function of

k ≤ r − 1, are

RP (k) = P
(

X
f

(r) > κ0
p |k
)

=

n+1
∑

j=1

1
{

xj−1 > κ0
p

}

P
(

X
f

(r) ∈ Ij

)

and

RP (k) = P
(

X
f

(r) > κ0
p |k
)

=

n+1
∑

j=1

1
{

xj > κ0
p

}

P
(

X
f

(r) ∈ Ij

)

,

respectively. Note that the dependence of these lower and upper probabilities

on the value k is not explicit in the notation used for the terms on the right-

hand side, but is due to the number of data xj that exceed κ0
p. It is easily shown

that P (X
f

(r) > κ0
p |k) = P (X

f

(r) > κ0
p |k+1), which leads to RP (k) = RP (k +1) for

values of k leading to rejection of H0.

If the original test does not lead to rejection of H0, so if k ≥ r, then re-

producibility of the test is the event that the null hypothesis would also not get

rejected in the future test. The NPI lower and upper reproducibility probabilities

for this event, as function of k ≥ r, are

RP (k) = P
(

X
f

(r) ≤ κ0
p |k
)

=

n+1
∑

j=1

1
{

xj ≤ κ0
p

}

P
(

X
f

(r) ∈ Ij

)
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and

RP (k) = P
(

X
f

(r) ≤ κ0
p |k
)

=

n+1
∑

j=1

1
{

xj−1 ≤ κ0
p

}

P
(

X
f

(r) ∈ Ij

)

,

respectively. It is easily seen that RP (k) = RP (k − 1) for values of k such that

k − 1 leads to H0 not being rejected. If an actual observation in the original test

is exactly equal to the specified value κ0
p, then the NPI method would actually

provide a precise reproducibility probability. We do not consider this further

as the test hypotheses must always be specified without consideration of the

actual test data, hence this case is extremely unlikely to occur; for some further

discussion see [1].

The minimum value that can occur for the NPI lower reproducibility prob-

abilities for this one-sided quantile test, following either rejection or non-rejection

of the null hypothesis in the original test, is equal to 0.5. This follows directly

from the formulae for the NPI lower reproducibility probabilities given above,

together with P (X(r) < xr) = P (X(r) > xr) = 0.5 as explained in Section 2. The

NPI upper reproducibility probabilities can be equal to one. This occurs when

all observations in the original test are less than κ0
p, so k = n, in which case the

original test let to H0 not being rejected for all values of r (so for all order statis-

tics considered, hence for any level of significance); this reflects that, with no

evidence in the original data in favour of the possibility that the data values can

actually exceed κ0
p, one cannot exclude the possibility that no future observations

could exceed this value. Note that the corresponding NPI lower reproducibility

probability will be less than one, reflecting that the original data set only provides

limited information, this lower probability will increase towards one as function

of n. The upper reproducibility probability is also equal to one if all observations

in the original test are greater than κ0
p, so k = 0, for which case the reasoning is

similar to that above but of course now with H0 being rejected.

Example 1. Suppose that the original test has sample size n = 15 and we

are interested in testing the null hypothesis that the third quartile, so the 75%

quantile, of the underlying distribution is equal to a specified value κ0
0.75 against

the alternative hypothesis that this third quartile is greater than κ0
0.75, tested

at significance level α = 0.05. Using the Binomial distribution for the classical

quantile test, this leads to the rule that H0 is rejected if x(8) > κ0
0.75 and H0 is not

rejected if x(8) < κ0
0.75. Note that we do not discuss the case x(8) = κ0

0.75 which

is slightly different as the NPI approach leads to precise probabilities instead of

lower and upper probabilities (see [1]), it is also of little practical relevance.

Table 1 presents the NPI lower and upper reproducibility probabilities for

all values of k, which is the number of observations in the original test which

are less than κ0
0.75. If k ≤ 7 then the original test leads to H0 being rejected

while it is not rejected for k ≥ 8. Hence, the NPI lower and upper reproducibility

probabilities are for the events X
f

(8) > κ0
0.75 and X

f

(8) < κ0
0.75, respectively. This
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table illustrates the logical fact that the worst reproducibility is achieved for k at

the threshold values 7 and 8, with increasing RP values when moving away from

these values, leading to maximum NPI-RP values for k = 0 and k = 15. Because

for this test the threshold between rejecting and not rejecting H0 is between k = 7

and k = 8 out of n = 15 observations, the NPI-RP values are symmetric, that is

the same for k = j and k = 15 − j for j = 0, 1, ..., 7 in Table 1.

Table 1: NPI-RP for third quartile, n = 15 and α = 0.05.

k RP (k) RP (k) k RP (k) RP (k) k RP (k) RP (k)

0 0.9989 1 6 0.6424 0.7689 12 0.9359 0.9749
1 0.9929 0.9989 7 0.5 0.6424 13 0.9749 0.9929
2 0.9749 0.9929 8 0.5 0.6424 14 0.9929 0.9989
3 0.9359 0.9749 9 0.6424 0.7689 15 0.9989 1
4 0.8682 0.9359 10 0.7689 0.8682
5 0.7689 0.8682 11 0.8682 0.9359

Table 2 presents NPI-RP values for the quantile test considering the me-

dian, so the 50% quantile, again with sample size n = 15 and testing the null

hypothesis that the median is equal to a specified value κ0
0.5 against the one-sided

hypothesis that it is greater than κ0
0.5, at level of significance α = 0.05. This leads

to the test rule that H0 is rejected if the number k of observations that are smaller

than κ0
0.5 is less than or equal to 3, and H0 is not rejected if k ≥ 4. Note that

throughout this paper, precise values 0.5 and 1 are presented without additional

decimals, so the values 1.0000 are actually less than 1 but rounded upwards.

Of course, these NPI-RP values are not symmetric, and reproducibility becomes

very likely for initial test results with a substantial number of observations less

than κ0
0.5. But rejection of H0, which occurs for k ≤ 3 and is often of main

practical relevance, has relatively low NPI-RP values.

Table 2: NPI-RP for median, n = 15 and α = 0.05.

k RP (k) RP (k) k RP (k) RP (k) k RP (k) RP (k)

0 0.9502 1 6 0.7865 0.8775 12 0.9986 0.9997
1 0.8352 0.9502 7 0.8775 0.9359 13 0.9997 0.9999
2 0.6743 0.8352 8 0.9359 0.9698 14 0.9999 1.0000
3 0.5 0.6743 9 0.9698 0.9873 15 1.0000 1
4 0.5 0.6592 10 0.9873 0.9954
5 0.6592 0.7865 11 0.9954 0.9986

Tables 3 and 4 present the NPI-RP results for the same one-sided quantile

test on the third quartile for n = 30, at significance levels α = 0.05 and α =
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0.01, respectively. Using the Normal distribution approximation, the test rule

for α = 0.05 is to reject H0 that this third quartile is equal to κ0
0.75 in favour

of the alternative hypothesis that it is greater than κ0
0.75 if k ≤ 18 and not to

reject it if k ≥ 19, where k is again the number of observations less than κ0
0.75.

For α = 0.01, H0 is rejected if k ≤ 16 and not rejected if k ≥ 17. The change in

level of significance α leads obviously to change of the rejection threshold, with

H0 being rejected for a smaller range of values k in case of smaller value of α.

Comparison of Table 3 with Table 1 shows that the larger sample size tends to lead

to slightly less imprecision, that is the difference between corresponding upper

and lower probabilities, this is e.g. shown by considering the upper probabilities

RP (k) for the values of k next to the rejection thresholds, so corresponding to

RP (k) = 0.5.

Table 3: NPI-RP for third quartile, n = 30 and α = 0.05.

k RP (k) RP (k) k RP (k) RP (k) k RP (k) RP (k)

0 1.0000 1 11 0.9651 0.9811 22 0.7941 0.8666
1 1.0000 1.0000 12 0.9398 0.9651 23 0.8666 0.9210
2 1.0000 1.0000 13 0.9023 0.9398 24 0.9210 0.9580
3 1.0000 1.0000 14 0.8503 0.9023 25 0.9580 0.9805
4 0.9999 1.0000 15 0.7826 0.8503 26 0.9805 0.9923
5 0.9998 0.9999 16 0.6995 0.7826 27 0.9923 0.9976
6 0.9993 0.9998 17 0.6038 0.6995 28 0.9976 0.9995
7 0.9981 0.9993 18 0.5 0.6038 29 0.9995 0.9999
8 0.9956 0.9981 19 0.5 0.6054 30 0.9999 1
9 0.9905 0.9956 20 0.6054 0.7056

10 0.9811 0.9905 21 0.7056 0.7941

Table 4: NPI-RP for third quartile, n = 30 and α = 0.01.

k RP (k) RP (k) k RP (k) RP (k) k RP (k) RP (k)

0 1.0000 1 11 0.9023 0.9406 22 0.9101 0.9483
1 1.0000 1.0000 12 0.8493 0.9023 23 0.9483 0.9731
2 1.0000 1.0000 13 0.7805 0.8493 24 0.9731 0.9875
3 0.9999 1.0000 14 0.6971 0.7805 25 0.9875 0.9949
4 0.9995 0.9999 15 0.6019 0.6971 26 0.9949 0.9983
5 0.9986 0.9995 16 0.5 0.6019 27 0.9983 0.9995
6 0.9964 0.9986 17 0.5 0.6026 28 0.9995 0.9999
7 0.9916 0.9964 18 0.6026 0.6995 29 0.9999 1.0000
8 0.9824 0.9916 19 0.6995 0.7852 30 1.0000 1
9 0.9664 0.9824 20 0.7852 0.8559

10 0.9406 0.9664 21 0.8559 0.9101
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5. PRECEDENCE TEST

As a second example of NPI for reproducibility of a statistical test based on

order statistics we consider a basic nonparametric precedence test. Such a test,

first proposed by Nelson [19], is typically used for comparison of two groups of

lifetime data, where one wishes to reach a conclusion before all units on test have

failed. The test is based on the order of the observed failure times for the two

groups, and typically leads to, possibly many, right-censored observations at the

time when the test is ended. Balakrishnan and Ng [7] present a detailed introduc-

tion and overview of precedence testing, including more sophisticated tests than

the basic one considered in this paper. NPI for precedence testing was presented

by Coolen-Schrijner et al. [13], without consideration of reproducibility. It should

be emphasized that we consider here the NPI approach for reproducibility of a

classical precedence test, so not of the NPI approach to precedence testing [13].

We consider the classical scenario with two independent samples. Let

X(1) < X(2) < ··· < X(nx) be the ordered real-valued observations in a sample of

size nx drawn randomly from a continuously distributed population, which we re-

fer to as the X population, with a probability distribution depending on location

parameter λx. Similarly, let Y(1) < Y(2) < ··· < Y(ny) be the ordered real-valued

observations in a sample of size ny drawn randomly from another continuously

distributed population (the Y population) with a probability distribution which

is identical to that of the X population except for its location parameter λy.

The hypothesis test for the locations of these two populations considered here is

H0 : λx = λy versus H1: λx < λy, which is to be interpreted such that, under H1,

observations from the Y population tend to be larger than observations from the

X population.

The precedence test considered in this paper, for this specific hypothesis

test scenario, is as follows. Given nx and ny, one specifies the value of r, such

that the test is ended at, or before, the r-th observation of the Y population. For

specific level of significance α, one determines the value k (which therefore is a

function of α and of r) such that H0 is rejected if and only if X(k) < Y(r). The

critical value for k is the smallest integer which satisfies

P
(

Xk < Yr|H0

)

=

(

nx + ny

nx

)

−1 r−1
∑

j=0

(

j + k − 1

j

)(

ny − j + nx − k

ny − j

)

≤ α .

Note that the test is typically ended at the time T = min(X(k), Y(r)), with the

conclusion that H0 is rejected in favour of the one-sided alternative hypothesis

H1 specified above if T = X(k) and H0 is not rejected if T = Y(r). It is of interest

to emphasize this censoring; continuing with the original test would make no

difference at all to the test conclusion, but further observations would make a

difference for the NPI reproducibility results, as will be discussed later.
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The NPI approach for reproducibility of this two-sample precedence test

considers again the same test scenario applied to future order statistics, and

derives the lower and upper probabilities for the event that the same overall test

conclusion will be derived, given the data from the original test. This involves

the earlier described NPI approach for inference on the r-th future order statistic

Y
f

(r) out of ny future observations based on the data from the Y population, and

similarly for the k-th future order statistics X
f

(k) out of the nx future observations

based on the data from the X population, where the values of r and k are the

same as used for the original test (as we assume also the same significance level for

the future test). Note, however, that there is a complication: for full specification

of the NPI probabilities for these future order statistics, we require the full data

from the original test to be available. But, as mentioned, the data resulting from

the original precedence test typically has right-censored observations for at least

one, but most likely both populations, and these are all just known to exceed the

time T at which the original test had ended.

Before we proceed, we discuss this situation in more detail as it is important

for the general idea of studying reproducibility of tests. We should emphasize

that we have not come across this issue before in the literature, but it seems

to be important and more details are provided by Alqifari [1]. There are two

perspectives on the study of reproducibility of such precedence tests. First, one

can study the test outcome assuming that actually complete data were available,

so all nx and ny observations of the X and Y populations, respectively, in the

original test are assumed to be available. Secondly, one can consider inference for

the realistic scenario with the actual data from the original test, so including right-

censored observations at time T . The first scenario is the most straightforward

for the development of NPI-RP, and we start with this scenario. Then we explain

how this first scenario, without additional assumptions, leads to NPI-RP for the

second scenario.

The starting point for NPI-RP for the precedence test is to apply NPI for

nx future observations, based on the nx original test observations from the X

population, which are assumed to be fully available, and similarly for ny future

observations based on the ny observations from the Y population. Using the

results presented in Section 2, with notation adapted to indicate the specific

populations, the following NPI lower and upper reproducibility probabilities are

derived. First, if H0 is rejected in the original test, so x(k) < y(r), then

RP = P
(

X
f

(k) < Y
f

(r)

)

=

nx+1
∑

jx=1

ny+1
∑

jy=1

1
{

x(jx) < y(jy−1)

}

P
(

X
f

(k) ∈ Ix
jx

)

P
(

Y
f

(r) ∈ I
y
jy

)

,

RP = P
(

X
f

(k) < Y
f

(r)

)

=

nx+1
∑

jx=1

ny+1
∑

jy=1

1
{

x(jx−1) < y(jy)

}

P
(

X
f

(k) ∈ Ix
jx

)

P
(

Y
f

(r) ∈ I
y
jy

)

.
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If H0 is not rejected in the original test, so x(k) > y(r), then

RP = P
(

X
f

(k) > Y
f

(r)

)

=

nx+1
∑

jx=1

ny+1
∑

jy=1

1
{

x(jx−1) < y(jy)

}

P
(

X
f

(k) ∈ Ix
jx

)

P
(

Y
f

(r) ∈ I
y
jy

)

,

RP = P
(

X
f

(k) > Y
f

(r)

)

=

nx+1
∑

jx=1

ny+1
∑

jy=1

1
{

x(jx) < y(jy−1)

}

P
(

X
f

(k) ∈ Ix
jx

)

P
(

Y
f

(r) ∈ I
y
jy

)

.

The following general results for this NPI lower and upper reproducibility

probabilities are easily derived [1]. Both in case of rejecting and not rejecting

H0, the maximum possible value of the NPI upper reproducibility probability

is 1. If H0 was rejected this occurs if x(nx) < y(1), while if H0 was not rejected

this occurs if x(1) > y(ny), so both cases lead to maximum reproducibility if the

original test data were entirely separated in the sense that either all observations

from X population occurred before all observations from the Y population, or

the other way around.

In both cases of rejecting or not rejecting H0 in the original test, the min-

imum value of the NPI lower reproducibility probability is 0.25. If H0 was re-

jected, this occurs if y(r−1) < x(1) and x(k) < y(r) and y(ny) < x(k+1). If H0 was

not rejected, this occurs if x(k−1) < y(1) and y(r) < x(k) and x(nx) < y(r+1). Both

these smallest possible values for RP result from data orderings that, whilst

leading to a test conclusion, are least supportive for it, together with the fact

that P (X
f

(k) < x(k)) = P (X
f

(k) > x(k)) = 0.5 (and similar for Y
f

(r)) as discussed in

Section 2.

The effect of local changes to the combined ordering of the data of the

two populations in the original test is important. Suppose that, for given data

for the X and Y populations for the original test, observations y(u) and x(v) are

such that y(u) < x(v) and in the combined ordering of all nx + ny data they are

consecutive. Now suppose that we change these observations, and denote them

by ỹ(u) and x̃(v), respectively, such that they keep their order in the data from

their own population but between them change their order, so x̃(v) < ỹ(u). Then

this local change to the combined ordering of the data leads to increase of both

the NPI lower and upper probabilities for the event X(k) < Y(r), that is

P
(

X(k) < Y(r) | y(u) < x(v)

)

< P
(

X(k) < Y(r) | x̃(v) < ỹ(u)

)

,

P
(

X(k) < Y(r) | y(u) < x(v)

)

< P
(

X(k) < Y(r) | x̃(v) < ỹ(u)

)

.

This implies that the NPI-RP inferences for the precedence test depend monoton-

ically on the combined ordering of the original test data, which is an important

property to derive such inference for actual tests including right-censored obser-

vations, as discussed after the next example.
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Example 2. Nelson [20] presents data consisting of six groups of times

(in minutes) to breakdown of an insulating fluid subjected to different levels of

voltage. To illustrate NPI-RP for the basic precedence test as discussed above,

we assume that sample 3 provides data from the X population and sample 6 from

the Y population, these times are presented in Table 5. Both samples are of size

10, and we assume that the precedence testing scenario discussed in this section

is followed, so we assume that the population distributions may only differ in

location parameters, with H0 : λx = λy tested versus H1: λx < λy. We assume

that r = 6, so the test is set up to end at the observation of the sixth failure time

for the Y population. We discuss both significance levels α = 0.05 and α = 0.1.

The missing values in Table 5 are only known to exceed 3.83.

Table 5: Times to insulating fluid breakdown.

X sample 0.94 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 *

Y sample 1.34 1.49 1.56 2.10 2.12 3.83 * * * *

For significance level α = 0.05, the critical value is k = 10, while for α = 0.1

this is k = 9. Therefore, the provided data will lead, in this precedence test, to

rejection of H0 at 10% level of significance but not to rejection of H0 at 5%

level of significance. For both scenarios, the NPI lower and upper reproducibility

probabilities are presented in Table 6, for all of the possible orderings of the

right-censored observations. Note that in total 15 observations are available, with

1 value of the X sample and 4 values of the Y sample only known to exceed 3.83.

Table 6: NPI-RP for precedence test on insulating fluid breakdown data.

rank of x10

α = 0.05 α = 0.1

RP RP RP RP

16 0.3871 0.7814 0.3885 0.7079
17 0.4746 0.8209 0.3490 0.6665
18 0.5496 0.8484 0.3215 0.6309
19 0.6019 0.8627 0.3072 0.6062
20 0.6290 0.8669 0.3029 0.5934

In this table, we give the rank, from the combined ordering of all 20 observations,

of the right-censored observation x(10), for example when this is 17 it implies that

y(7) < x(10) < y(8). Table 6 presents both the results for α = 0.05, in which case

H0 was not rejected in the original test, hence reproducibility is achieved if H0

is also not rejected in the future test, and the results for α = 0.05, in which case
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H0 was rejected so reproducibility also implies rejection of H0 in the future test.

Note that for α = 0.1 we still assume that y(6) = 3.83 was actually observed, even

though the test could have been concluded at time x(9) = 2.57 because x(9) < y(6)

was conclusive for the test in this case. Table 6 shows that the NPI-RP values are

increasing in the combined rank of x(10) for α = 0.05 and decreasing for α = 0.1,

which illustrates the monotonicity of these inferences with regard to changes in

ranks of the data as discussed above, as increasing combined rank of x(10) provides

more evidence in support of H0, hence in favour of reproducing the original test

result for α = 0.05 but against doing so for α = 0.1. We notice that the actual

rank that x(10) would have among the 20 combined observations has substantial

influence on the NPI-RP values. In this example, the imprecision RP − RP is

large. This is due to the relatively small data sets and the fact that two groups of

data are compared, with imprecision for the predictive inferences for both groups

through the A(n) assumptions for each group.

Thus far, we have studied reproducibility of the basic precedence test from

the perspective of having the complete data available, in Example 2 this was

illustrated by considering all possible orderings for the right-censored data in

the two samples. However, a more realistic perspective is to only use the actual

test outcome, without any assumptions on the ordering of the right-censored

observations. Using lower and upper probabilities, this can be easily achieved by

defining RP as the minimum of all NPI lower probabilities for reproducibility over

all possible orderings for the right-censored observations, and similarly by defining

RP as the maximum of all NPI upper probabilities for reproducibility over all

possible orderings for the right-censored observations. Hence, in Example 2,

this leads to RP = 0.3871 and RP = 0.8669 for α = 0.05, and RP = 0.3029 and

RP = 0.7079 for α = 0.1. Of course, this leads to increased imprecision compared

to every possible specific ordering of the right-censored observations, but it is

convenient as no further assumptions about those right-censored observations

are required. Furthermore, to derive the NPI-RP values for this perspective one

does not need to calculate the corresponding values for each possible combined

ordering of right-censored observations, due to the above discussed monotonicity

of these inferences. Hence, we always know for which specific ordering of right-

censored observations these NPI-RP values are obtained, that is either with all

right-censored observations from the X sample occurring before all right-censored

observations from the Y sample, or the other way around, depending on the actual

outcome of the original test. This perspective is illustrated further in Example 3.

Example 3. We consider again NPI-RP for the precedence test as pre-

sented in this section, so with one-sided alternative hypothesis H1: λx < λy. Sup-

pose that nx = 10 units of the X population and ny = 8 units of the Y population

are put on a life test, where one wants at most two Y units to actually fail, so

the value r = 2 is chosen. Testing at significance level α = 0.05, the critical value

is k = 7, so H0 is rejected if x(7) < y(2) while H0 is not rejected if y(2) < x(7).



Reproducibility of Tests Based on Order Statistics 183

Note that, with the test ending at time min(x(7), y(2)), there are least 3 right-

censored X observations and at least 6 right-censored Y observations; this leads

to large imprecision in the NPI-RP values. Table 7 presents the NPI lower and

upper reproducibility probabilities for this test, for all possible data in the orig-

inal test, which are indicated through the rankings of all observations until the

test is ended, in the combined ranking of the X and Y samples. As indicated,

the columns to the left relate to the cases where H0 is not rejected while the

columns to the right relate to the cases where H0 is rejected. All these NPI-RP

values are calculated using the monotonicity with regard to the combined ranks

of the right-censored observations, as explained above. These results illustrate

the earlier discussed maximum value 1 for RP and minimum value 0.25 for RP .

It is particularly noticeable that the NPI lower reproducibility probabilities for

this test tend to be small, which is not really surprising due to the large number

of right-censored observations resulting from the choice r = 2.

Table 7: NPI-RP for precedence test with nx = 10, ny = 8,

r = 2, k = 7 and α = 0.05.

H0 not rejected H0 rejected

X ranks Y ranks RP RP X ranks Y ranks RP RP

— 1,2 0.4992 1 1–7 — 0.3833 1
1 2,3 0.4951 0.9988 1–6,8 7 0.3367 0.8833
2 1,3 0.4970 0.9992 1–5,7,8 6 0.2993 0.8425
1,2 3,4 0.4826 0.9924 1–4,6–8 5 0.2739 0.8098
1,3 2,4 0.4884 0.9946 1–3,5–8 4 0.2593 0.7875
2,3 1,4 0.4903 0.9951 1,2,4–8 3 0.2526 0.7748
1–3 4,5 0.4553 0.9733 1,3–8 2 0.2504 0.7690
1–4 5,6 0.4075 0.9314 2–8 1 0.25 0.7670
1–5 6,7 0.3375 0.8582
1–6 7,8 0.25 0.7509
2–7 1,8 0.3663 0.8375

6. CONCLUDING REMARKS

The NPI approach to reproducibility of tests provides many research chal-

lenges. It can be developed for many statistical tests, while for some data types

(e.g. multivariate data) first NPI requires to be developed further. The test sce-

narios studied for particular tests may require careful attention, as illustrated

by the different perspectives discussed for the precedence test in Section 5. As

mentioned, the precedence test scenario discussed in this paper is very basic.

Balakrishnan and Ng [7] present a detailed introduction and overview of prece-

dence testing, including more sophisticated tests than the basic one considered
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in this paper. In practice, it is important for such tests, and also in general, to

also consider the power of the test; thus far this has not yet been considered in

the NPI approach for reproducibility of testing. With further development of

this approach, we are aiming at guidance on selection of test methods which, for

specified level of significance, have good power and good reproducibility prop-

erties. This may often require more test data than needed following traditional

guidance, but the assurance of good reproducibility is important for many ap-

plications and may lead to savings in the longer run by reducing processes, such

as development of new medication, to continue on the basis of false test results

which may later turn out not to be reproduced in repeated tests under similar

circumstances. Further details, examples and discussion of the tests presented in

this paper are given in the PhD thesis of Alqifari [1].
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• Systematic sampling has been facing two problems since its beginning; situational

complications, e.g., population size N not being a multiple of the sample size n, and

unavailability of unbiased estimators of population variance for all possible combi-

nations of N and n. These problems demand a sampling design that may solve the

said problems in a practicable way. In this paper, therefore, a new sampling design

is introduced and named as, “Modified Systematic Sampling with Multiple Random

Starts”. Linear systematic sampling and simple random sampling are the two extreme

cases of the proposed design. The proposed design is analyzed in detail and various
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atic sampling and simple random sampling may be extracted from these expressions.

Finally, a detailed efficiency comparison is also carried out in this paper.

Key-Words:

• Modified Systematic Sampling; Linear Systematic Sampling; Simple Random Sam-
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1. INTRODUCTION

Systematic sampling is generally more efficient than Simple Random Sam-

pling (SRS) because SRS may include bulk of units from high density or low

density parts of the region, whereas the systematic sampling ensures even cover-

age of the entire region for all units. In many situations, systematic sampling is

also more precise than stratified random sampling. Due to this, researchers and

field workers are often inclined towards systematic sampling.

On the other hand, in Linear Systematic Sampling (LSS), we may obtain

sample sizes that vary when the population size N is not a multiple of the sample

size n, i.e., N 6= nk, where k is the sampling interval. However, this problem can

be dealt by Circular Systematic Sampling (CSS), Modified Systematic Sampling

(MSS) proposed by Khan et al. (2013), Remainder Linear Systematic Sampling

(RLSS) proposed by Chang and Huang (2000) and Generalized Modified Lin-

ear Systematic Sampling Scheme (GMLSS) proposed by Subramani and Gupta

(2014). Another well-known and long-standing problem in systematic sampling

design is an absence of a design based variance estimator that is theoretically

justified and generally applicable. The main reason behind this problem lies

in the second-order inclusion probabilities which are not positive for all pairs

of units under systematic sampling scheme. It is also obvious that population

variance can be unbiasedly estimated if and only if the second-order inclusion

probabilities are positive for all pairs of units. To overcome this problem, several

alternatives have been proposed by different researchers. However, the simplest

one is the use of multiple random starts in systematic sampling. This procedure

was adopted by Gautschi (1957) in case of LSS. Later on, Sampath (2009) has

considered LSS with two random starts and developed an unbiased estimator

for finite-population variance. Sampath and Ammani (2012) further studied the

other versions (balanced and centered systematic sampling schemes) of LSS for

estimating the finite-population variance. They also discussed the question of

determination of the number of random starts. Besides these attempts, the other

approaches proposed by different researchers in the past are not much beneficial

due to the considerable loss of simplicity.

From the attempts of Gautschi (1957), Sampath (2009), Sampath and Am-

mani (2012) and Naidoo et al. (2016), unbiased estimation of population variance

becomes possible just for the case in which N = nk. Therefore, to avoid the diffi-

culty in estimation of population variance for the case N 6= nk, practitioners are

unwillingly inclined towards SRS instead of systematic sampling. Such limita-

tions demand a more generalized sampling design which can play wide-ranging

role in the theory of systematic sampling. Thus, in this paper we propose Modi-

fied Systematic Sampling with Multiple Random Starts (MSSM). The MSSM en-

sures unbiased estimation of population variance for the situation where N 6= nk.
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As one can see, MSS proposed by Khan et al. (2013) nicely arranges the popula-

tion units into k1 systematic groups each containing s number of units. In MSS,

initially a group is selected at random and other (m − 1) groups are systemat-

ically selected. In this way, a sample of size n consisting of m groups of size s

is achieved. Whereas in MSSM, we propose to select all m systematic groups at

random to get a sample of size n. Such selection enables us to derive the unbiased

variance estimator in systematic sampling. It is interesting to note that LSS and

SRS become the extreme cases of MSSM. The MSSM becomes LSS in a situation

when N itself is the least common multiple (lcm) of N and n or equivalently

N = nk, and becomes SRS if lcm is the product of N and n. Because in the

case when N = nk we are selecting m = 1 group at random which resembles LSS.

Whereas, if lcm is the product of N and n we have N groups each containing

only one unit from which we are selecting n groups at random in MSSM, which

is similar to SRS. In case of LSS, variance estimation can be easily dealt with

by Gautschi (1957), Sampath (2009), Sampath and Ammani (2012) and Naidoo

et al. (2016); whereas the worst case of MSSM is SRS, where unbiased variance

estimation can be done using SRS approach.

2. MODIFIED SYSTEMATIC SAMPLING WITH MULTIPLE

RANDOM STARTS

Suppose, we have a population of size N , the units of which are denoted

by {U1, U2, U3, ..., UN}. To select a sample of size n from this population, we will

arrange N units into k1 = L/n (where L is the least common multiple of N and n)

groups, each containing s = N/k1 elements. The partitioning of groups is shown

in Table 1. A set of m = L/N groups from these k1 groups are selected using

simple random sampling without replacement to get a sample of size ms = n.

Table 1: Labels of population units arranged in MSSM.

Labels of Sample units

G1 U1 Uk1+1 . . U(s−1)k1+1

G2 U2 Uk1+2 . . U(s−1)k1+2

Groups G3 U3 Uk1+3 . . U(s−1)k1+3

Gi Ui Uk1+i . . U(s−1)k1+i

Gk1
Uk1

U2k1
. . Usk1=N

Thus sample units with random starts ri(i = 1, 2, ..., m) selected from 1 to

k1 correspond to the following labels:

(2.1) ri + (j − 1)k1, i = 1, 2, ..., m and j = 1, 2, ..., s.
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2.1. Estimation of Population Mean and its Variance in MSSM

Consider the mean estimator

ȳMSSM =
1

ms

m
∑

i=1

s
∑

j=1

yrij =
1

m

m
∑

i=1

(1

s

s
∑

j=1

yrij

)

.

where yrij is the value of the jth unit of the ith random group.

Taking expectation on both sides, we get:

E (ȳMSSM ) =
1

m

m
∑

i=1

E
(1

s

s
∑

j=1

yrij

)

=
1

m

m
∑

i=1

1

k1

k1
∑

i=1

(1

s

s
∑

j=1

yij

)

=
1

sk1

k1
∑

i=1

s
∑

j=1

yij = µ,

where yij is the value of the jth unit of the ith group and µ is the population

mean.

The variance of ȳMSSM is given by

V (ȳMSSM ) = E (ȳMSSM − µ)2 =
1

m2
E

[ m
∑

i=1

(ȳri. − µ)

]2

,

where ȳri. is the mean of ith random group.

After simplification, we have:

(2.2) V (ȳMSSM ) =
1

mk1

(k1 − m)

(k1 − 1)

k1
∑

i=1

(ȳi. − µ)
2
,

where ȳi. is the mean of ith group.

Further, it can be observed that in a situation when MSSM becomes LSS,

the variance expression given in Equation (2.2) reduces to variance of LSS, i.e.,

V (ȳMSSM ) =
1

k

k
∑

i=1

(

ȳi. − µ
)2

= V (ȳLSS).

Similarly, in the case when MSSM becomes SRS, V (ȳMSSM ) reduces to

variance of SRS without replacement, i.e.,

V (ȳMSSM ) =
(N − n)

nN

1

(N − 1)

N
∑

i=1

(

yi − µ
)2

= V (ȳSRSWOR) .

The alternative expressions for V (ȳMSSM ) have been presented in Theo-

rems 2.1, 2.2 and 2.3:
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Theorem 2.1. The variance of sample mean under MSSM is:

V (ȳMSSM ) =
1

mN

(k1 − m)

(k1 − 1)

[

(N − 1)S2 − k1(s − 1)S2
wg

]

,

where S2 =
1

N − 1

k1
∑

i=1

s
∑

j=1

(yij − µ)2, and S2
wg =

1

k1(s − 1)

k1
∑

i=1

s
∑

j=1

(yij − ȳi)
2 is

the variance among the units that lie within the same group.

Proof: From analysis of variance, we have:

N
∑

i=1

(yi − µ)2 = s

k1
∑

i=1

(ȳi − µ)2 +

k1
∑

i=1

s
∑

j=1

(yij − ȳi)
2 , or

(N − 1)S2 = s

k1
∑

i=1

(ȳi − µ)2 + k1(s − 1)S2
wg.

Thus

(2.3) V (ȳMSSM ) =
1

mN

(k1 − m)

(k1 − 1)

[

(N − 1)S2 − k1(s − 1)S2
wg

]

.

Theorem 2.2. The variance of sample mean under MSSM is:

V (ȳMSSM ) =
1

n

(

k1 − m

k1 − 1

) (

N − 1

N

)

S2
[

1 + (s − 1)ρw

]

,

where

ρw =

k1
∑

i=1

s
∑

j=1

s
∑

j′=1
j′ 6=j

(yij − µ)(yij′ − µ)/s(s − 1)k1

k1
∑

i=1

s
∑

j=1
(yij − µ)2/sk1

.

Proof: Note that

V (ȳMSSM ) =
1

mk1

(k1 − m)

(k1 − 1)

k1
∑

i=1

(ȳi − µ)2

=
1

s2mk1

(k1 − m)

(k1 − 1)

k1
∑

i=1

[

s
∑

j=1

(yij − µ)
]2

=
1

s2mk1

(k1 − m)

(k1 − 1)

[

k1
∑

i=1

s
∑

j=1

(yij − µ)2 +

k1
∑

i=1

s
∑

j 6=1

(yij − µ)(yiu − µ)
]

=
1

s2mk1

(k1 − m)

(k1 − 1)

[

(sk1 − 1)S2 + (sk1 − 1)(s − 1)S2ρw

]

.
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Hence

(2.4) V (ȳMSSM ) =
1

n

(k1 − m)

(k1 − 1)

(N − 1)

N
S2

[

1 + (s − 1)ρw

]

,

where ρw is the intraclass correlation between the pairs of units that are in the

same group.

Theorem 2.3. The variance of ȳMSSM is:

V (ȳMSSM ) =
(k1 − m)

mN
S2

wst

[

1 + (s − 1)ρwst

]

,

where

S2
wst =

1

s(k1 − 1)

s
∑

j=1

k1
∑

i=1

(yij − ȳ.j)
2

and

ρwst =

k1
∑

i=1

s
∑

j=1

s
∑

j′=1
j′ 6=j

(yij − ȳj) (yij′ − ȳj′)

s(s − 1) (k1 − 1)S2
wst

.

Proof: Note that

V (ȳMSSM ) =
1

mk1

(k1 − m)

(k1 − 1)

k1
∑

i=1

(ȳi − µ)
2

=
1

mk1

(k1 − m)

(k1 − 1)

k1
∑

i=1

[1

s

s
∑

j=1

yij −
1

s

s
∑

j=1

ȳj

]2

=
1

s2mk1

(k1 − m)

(k1 − 1)

k1
∑

i=1

[

s
∑

j=1

(yij − ȳj)
]2

=
1

smN

(k1−m)

(k1−1)

[

s
∑

j=1

k1
∑

i=1

(yij− ȳj)
2 +

k1
∑

i=1

s
∑

j=1

s
∑

j′=1
j′ 6=j

(yij− ȳj)(yij′− ȳj′)

]

=
1

smN

(k1 − m)

(k1 − 1)
s(k1 − 1)S2

wst

[

1 + (s − 1)ρwst

]

.

Hence

(2.5) V (ȳMSSM ) =

(

k1 − m

mN

)

S2
wst

[

1 + (s − 1)ρwst

]

.
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3. MEAN, VARIANCE AND EFFICIENCY COMPARISON OF

MSSM FOR POPULATIONS EXHIBITING LINEAR TREND

Generally the efficiency of every new systematic sampling design is evalu-

ated for populations having linear trend. Therefore, consider the following linear

model for the hypothetical population

(3.1) Yt = α + βt, t = 1, 2, 3, ..., N,

where α and β respectively are the intercept and slope terms in the model.

3.1. Sample Mean under MSSM

ȳMSSM = α +
β

ms

m
∑

i=1

s
∑

j=1

{

ri + (j − 1)k1

}

, or

(3.2) ȳMSSM = α +
β

m

{

m
∑

i=1

ri +
m

2
(s − 1)k1

}

.

(3.3) E (ȳMSSM ) = α + β
(N + 1)

2
= µ.

V (ȳMSSM ) = E {ȳMSSM − E(ȳMSSM )}2
= β2E

[ 1

m

m
∑

i=1

ri −
(k1 + 1)

2

]2
.

Hence

(3.4) V (ȳMSSM ) = β2 (k1 + 1)(k1 − m)

12m
.

Note that m = 1 and k1 = k in situations when MSSM is LSS; therefore

(3.5) V (ȳMSSM ) = β2 (k2 − 1)

12
= V (ȳLSS) .

Similarly, m = n and k1 = N in situations when MSSM is SRS, so

(3.6) V (ȳMSSM ) = β2 (N + 1)(N − n)

12n
= V (ȳSRS) .

The efficiency of MSSM with respect to SRS can be calculated as below:

(3.7) Efficiency =
V (ȳSRS)

V (ȳMSSM )
=

m(N + 1)(N − n)

(k1 + 1)(k1 − m)n
=

(sk1 + 1)

(k1 + 1)
≥ 1,

as s ≥ 1. One can see that MSSM is always more efficient than SRS if s > 1 and

is equally efficient if s = 1.



Modified Systematic Sampling with Multiple Random Starts 195

4. ESTIMATION OF VARIANCE

Sampath and Ammani (2012) have considered LSS, Balanced Systematic

Sampling (BSS) proposed by Sethi (1965), and Modified Systematic Sampling

(MS) proposed by Singh et al. (1968) using multiple random starts. They have

derived excellent expressions of unbiased variance estimators and their variances

for these schemes. However, these schemes are not applicable if N 6= nk. Fortu-

nately, MSSM nicely handles this by producing unbiased variance estimator and

its variance for the case, where N 6= nk. Adopting the procedure mentioned in

Sampath and Ammani (2012), we can get an unbiased variance estimator and its

variance in MSSM for the case where N 6= nk.

In MSSM, the probability that the ith unit will be included in the sam-

ple is just the probability of including the group containing the specific unit in

the sample. Hence, the first-order inclusion probability that corresponds to the

population unit with label i, is given by

πi =
m

k1
=

ms

sk1
=

n

N
, i = 1, 2, 3, ..., N.

In the second-order inclusion probabilities, the pairs of units may belong to

the same or the different groups. The pairs of units belong to the same group only

if the respective group is included in the sample. Thus, the second-order inclusion

probabilities for pairs of units belonging to the same group are equivalent to the

first-order inclusion probabilities, i.e.,

πij =
m

k1
=

ms

sk1
=

n

N
, i, j ∈ sru

for some ru (ru = 1, 2, ..., k1).

On the other hand, pairs of units belonging to two different groups occurs

only when the corresponding pair of groups is included in the sample. Hence, the

second-order inclusion probability is given by

πij =
m(m − 1)

k1(k1 − 1)
, if i ∈ sru

and j ∈ srv
for some u 6= v.

Thus

πij =
m(m − 1)

k1(k1 − 1)
=

ms(ms − s)

sk1(sk1 − s)
=

n(n − s)

N(N − s)
.

Since the second-order inclusion probabilities are positive for all pairs of

units in the population, an unbiased estimator of population variance can be

established. To accomplish this, the population variance

S2 =
1

N − 1

N
∑

i=1

(Yi − µ)2
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can be written as

S2 =
1

2N(N − 1)

N
∑

i=1

N
∑

j=1
j 6=i

(Yi − Yj)
2.

By using second-order inclusion probabilities, an unbiased estimator of the pop-

ulation variance can be obtained as

Ŝ2
MSSM =

1

2N(N − 1)

n
∑

i=1

n
∑

j=1
j 6=i

(yi − yj)
2

πij

.

As n = ms, it means that there are m random sets each containing s units. There-

fore, taking ru (u = 1, 2, ...m) as the random start for the uth set, the expression

for Ŝ2
MSSM can be rewritten as:

Ŝ2
MSSM =

1

2N(N − 1)

[ m
∑

u=1

{ s
∑

i=1

s
∑

j=1
j 6=i

(yrui − yruj)
2

πij

}

+

m
∑

u=1
v=1
u6=v

{ s
∑

i=1

s
∑

j=1

(yrui − yrvj)
2

πij

}]

=
1

2N(N − 1)

[

N

n

m
∑

u=1

{ s
∑

i=1

s
∑

j=1
j 6=i

(yrui − yruj)
2

}

+
N(N − s)

n(n − s)

m
∑

u=1
v=1
u6=v

{ s
∑

i=1

s
∑

j=1

(yrui − yrvj)
2

}]

=
1

2N(N − 1)

[

N

n

m
∑

u=1

{

2s

s
∑

i=1

(yrui − ȳru
)2

}

+
N(N−s)

n(n−s)

m
∑

u=1
v=1
u6=v

{ s
∑

i=1

s
∑

j=1

(

(yrui− ȳu)2 +(yrvj − ȳrv
)2 +(ȳru

− ȳrv
)2

)

}]

=
1

2N(N − 1)

[

N

n

m
∑

u=1

{

2s2σ̂2
ru

}

+
N(N − s)

n(n − s)

m
∑

u=1
v=1
u6=v

{(

s2σ̂2
ru

+ s2σ̂2
rv

+ s2(ȳru
− ȳrv

)2
)}

]

,

where ȳru
and σ̂2

ru
=

1

s

s
∑

i=1

(yrui − ȳru
)2 are the mean and variance of the uth group
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(u = 1, 2, ..., m). Further,

Ŝ2
MSSM =

1

2N(N − 1)

[

N

n

{

2s2
m

∑

u=1

σ̂2
ru

}

+
N(N − s)

n(n − s)

{(

2(m − 1)s2
m

∑

u=1

σ̂2
ru

+ s2
m

∑

u=1

m
∑

v=1
u6=v

(ȳru
− ȳrv

)2
)}

]

=
1

2N(N − 1)

[

N

n

{

2s2
m

∑

u=1

σ̂2
ru

}

+
N(N − s)

n(n − s)

{(

2(m − 1)s2
m

∑

u=1

σ̂2
ru

+ s22

m−1
∑

u=1

m
∑

v=u+1

(ȳru
− ȳrv

)2
)}

]

=
s2

ms(N − 1)

[ m
∑

u=1

σ̂2
ru

{

1 +
(N − s)

(ms − s)
(m − 1)

}

+
(N − s)

(ms − s)

m−1
∑

u=1

m
∑

v=u+1

(ȳru
− ȳrv

)2
]

.

Hence

(4.1) Ŝ2
MSSM =

1

(N − 1)

[ m
∑

u=1

σ̂2
ru

N

m
+

(N − s)

m(m − 1)

m−1
∑

u=1

m
∑

v=u+1

(ȳru
− ȳrv

)2
]

.

For simplicity, Equation (4.1) can be written as

Ŝ2
MSSM =

1

(N − 1)

[

N

m

m
∑

u=1

σ̂2
ru

+
(N − s)

(m − 1)

m
∑

u=1

(ȳru
− ȳMSSM )2

]

.

The resulting estimator obtained in Equation (4.1) is an unbiased estimator of

population variance S2. It is mentioned in Section 2, if lcm of N and n is the

product of N and n, i.e., L = N × n, then MSSM becomes SRS.

Consequently, σ̂2
ru

= 0(u = 1, 2, ..., m) and

Ŝ2
MSSM = Ŝ2

SRS =
1

(n − 1)

n
∑

i=1

(yi − ȳ)2,

which is a well-known unbiased estimator of S2 in SRS without replacement.
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4.1. Variance of Ŝ2
MSSM

The variance of Ŝ2
MSSM is given by

(4.2)

V
(

Ŝ2
MSSM

)

=
1

m (N − 1)2

[

N2 (k1 − m)

(k1 − 1)
σ2

0

+
(N − s)

2
k1

(m − 1)

[

{

(m − 1)

(k1 − 1)
−

(m − 2) (m − 3)

(k1 − 2) (k1 − 3)

}

µ4

+

{

(k1−3) − (m−2) (k1 +3)

(k1−1)
2 +

(m−2) (m−3)
(

k2
1 −3

)

(k1−1)
2
(k1−2) (k1−3)

}

µ2
2

]

+ 2
N (N − s) (k1 − m)

(k1 − 1) (k1 − 2)

{ k1
∑

r=1

σ̂2
r

(

ȳr − Ȳ
)2

− k1σ̄
2µ2

}

]

(see details in Appendix A).

Note that, if L = N , then MSSM becomes LSS and the above formula is not

valid in this case. Fortunately, in LSS, due to Gautschi (1957), the population is

divided into m′k groups of n/m′ elements, and m′ of these groups will randomly

be selected to get a sample of size n. Thus, one can easily modify the above

formula by just putting m = m′, k1 = m′k and s = n/m′ in Equation (A.9) and

get V
(

Ŝ2
LSS

)

as below:

(4.3)

V
(

Ŝ2
LSS

)

=
1

m′ (N − 1)2

[

N2m′ (k − 1)

(m′k − 1)
σ2

0

+
(m′N − n)

2
k

m′ (m′ − 1)

[

{

(m′ − 1)

(m′k − 1)
−

(m′ − 2) (m′ − 3)

(m′k − 2) (m′k − 3)

}

µ4

+

{

(m′k − 3) − (m′ − 2) (m′k + 3)

(m′k − 1)2

+
(m′ − 2) (m′ − 3)

(

m′2k2 − 3
)

(m′k − 1)2 (m′k − 2) (m′k − 3)

}

µ2
2

]

+ 2
N (m′N − n) (k − 1)

(m′k − 1) (m′k − 2)

{ m′k
∑

r=1

σ̂2
r (ȳr − µ)

2 − m′kσ̄2µ2

}

]

.

This is the general formula for the variance of unbiased variance estimator

with m′ random starts for LSS. Further, one can also easily deduce the following
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formula of V
(

Ŝ2
SRS

)

by putting k1 = N , m = n and s = 1 in Equation (A.9):

(4.4)

V
(

Ŝ2
SRS

)

=
N

n (n − 1)

[

{

(n − 1)

(N − 1)
−

(n − 2) (n − 3)

(N − 2) (N − 3)

}

µ4

+

{

(N − 3) − (n − 2) (N + 3)

(N − 1)2

+

(

N2 − 3
)

(n − 2) (n − 3)

(N − 1)2 (N − 2) (N − 3)

}

µ2
2

]

.

5. EFFICIENCY COMPARISON OF VARIANCE ESTIMATORS

In this section, we compare Ŝ2
MSSM with Ŝ2

SRS by using natural and sim-

ulated populations. Furthermore, this study is carried out for those choices of

sample sizes in which the condition “N < L < (N × n)” is satisfied. It has al-

ready been mentioned that MSSM becomes LSS when L = N . On the other

hand, MSSM becomes SRS when L = (N × n).

5.1. Natural Populations

In Population 1 (see Murthy, 1967, p. 131–132), the data on volume of tim-

ber of 176 forest strips have been considered. In this data, the volume of timber

has been arranged with respect to its length. In Population 2 (see Murthy, 1967,

p. 228), the data of output along with the fixed capital of 80 factories have been

considered. Here, output is arranged with respect to fixed capital. It is observed

that the data considered in Population 1 and Population 2 approximately follow

a linear trend. In this empirical study, the variances of Ŝ2
MSSM and Ŝ2

SRS are

computed for various sample sizes and efficiency is computed using the expression:

Efficiency =
V

(

Ŝ2
SRS

)

V
(

Ŝ2
MSSM

) .

The population size N, sample size n, number of random starts m, number of

elements in each group s, the number of groups k1 containing the N units of

the population and efficiency of MSSM over SRS are respectively presented in

Columns 1 to 6 for Population 1 and Columns 7 to 12 for Population 2 in Table

2. From the efficiency comparison presented in Table 2, it has been observed

that MSSM is more efficient than SRS. Moreover, one can also see that as the

number of elements s in each group are increased, the efficiency of MSSM also

increases. Such increase in efficiency is due to the fact that in MSSM, the units
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within the groups are arranged in a systematic pattern. So, more number of units

with systematic pattern will cause increase in efficiency.

Table 2: Efficiency comparison of Ŝ2

MSSM
and Ŝ2

SRS
in both natural populations.

Population 1 Population 2

N n m s k1 Efficiency N n m s k1 Efficiency

176

10 5 2 88 1.41

80

6 3 2 40 2.31
12 3 4 44 3.69 12 3 4 20 3.56
14 7 2 88 2.04 14 7 2 40 2.29
18 9 2 88 2.03 15 3 5 16 5.91
20 5 4 44 3.64 18 9 2 40 2.28
24 3 8 22 5.79 22 11 2 40 2.27
26 13 2 88 2.01 24 3 8 10 14.11
28 7 4 44 3.61 25 5 5 16 5.91
30 15 2 88 2.00 26 13 2 40 2.27
32 2 16 11 6.22 28 7 4 20 3.50
34 17 2 88 2.00 30 3 10 8 10.85
36 9 4 44 3.59 32 2 16 5 15.14
38 19 2 88 2.00 34 17 2 40 2.26
40 5 8 22 5.70 35 7 5 16 5.89
42 21 2 88 1.99 36 9 4 20 3.49
46 23 2 88 1.99 38 19 2 40 2.26
50 25 2 88 1.99

5.2. Simulated Populations

The simulation study, two populations of sizes 160 and 280 are generated

for the following distribution with variety of parameters by using R-packages:

(i) Uniform distribution: Here only three sets of the parametric values

are considered, i.e., (10, 20), (10, 30) and (10, 50).

(ii) Normal distribution: In this case, six sets of parametric values are

considered with means 20, 40 and 60 and standard deviations 5 and 8.

(iii) Gamma distribution: Eight sets of parametric values are considered

in this case. Here, 1, 3, 5 and 10 are considered as the values of scale

parameter with 2 and 4 as the values of shape parameter.

In each distribution, using each combination of the parametric values for each

choice of the sample size, each population with and without order is replicated

1000 times. V
(

Ŝ2
MSSM

)

and V
(

Ŝ2
SRS

)

are computed for each population (with

and without order) for the various choices of sample sizes. The average of 1000

values of the variances of Ŝ2
MSSM and Ŝ2

SRS is then computed for each population.
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The efficiencies, Eff 1 and Eff 2 of MSSM compared to SRS are computed using

the following expressions:

Eff 1 =
Average

{

V
(

Ŝ2
SRSWOR

)}

Average
{

V
(

Ŝ2
MSSM

)} without ordered population

and

Eff 2 =
Average

{

V
(

Ŝ2
SRSWOR

)}

Average
{

V
(

Ŝ2
MSSM

)} with ordered population.

The efficiencies, Eff 1 and Eff 2 for Uniform distribution, Normal distribu-

tion and Gamma distribution are presented in Tables 3, 4 and 5 respectively.

It is observed that Eff 1 is approximately equal to 1 for almost all choices of

parametric values and sample sizes. This mean that MSSM and SRS are equally

efficient in case of random populations. Thus, for such populations, MSSM can be

preferred over SRS due to the qualities that there are no more issues of unbiased

estimation of population variance.

Furthermore, it is also observed from Tables 3, 4 and 5 that Eff 2 is greater

than 1 in all cases. It indicates that MSSM is more efficient than SRS in ordered

populations. The discussion of Eff 2 in Tables 3, 4 and 5 is as follows:

In Table 3, the efficiency (Eff 2) is not effected much by the different combi-

nations of parametric values of the uniform distribution and changes are caused

by the number of groups k1. It is also observed that MSSM is much more efficient

for the ordered populations of uniform distribution as compared to the normal

and gamma distributions.

In Table 4, the efficiency Eff 2 is also not much changed like uniform distri-

bution for different combinations of parametric values of the normal distribution.

However, Eff 2 is mainly changed due to the formation of number of groups k1

of the population units in MSSM. Efficiency will increase with the decrease in

the number of groups k1, and it will decrease with the increase in the number of

groups k1.

In Table 5, the efficiency Eff 2 is effected by the number of groups k1 along

with the shape parameter of the Gamma distribution. However, change in scale

parameter has no significant effect on efficiency of MSSM. Here also the efficiency

increases with decrease in the number of groups k1.

From the above discussion, it is obvious that MSSM performs better than

SRS for the populations that follow uniform and parabolic trends. However,

such populations must be ordered with certain characteristics. To know further

about the performance of MSSM, it would be interesting to study the variances

of Ŝ2
MSSM and Ŝ2

SRS in the presence of linear trend. This study has been carried

out in the following section.
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Table 3: Efficiency of MSSM over SRS using uniform distribution.

Uniform Distribution

N n m s k1

a = 10, b = 20 a = 10, b = 30 a = 10, b = 50

Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2

160

12 3 4 40 0.94 24.17 0.94 24.67 0.94 24.33
14 7 2 80 1.00 5.99 0.99 6.04 0.98 6.05
15 3 5 32 0.95 39.72 0.96 38.39 0.95 39.85
18 9 2 80 0.99 6.19 0.99 6.16 1.00 6.15
22 11 2 80 1.00 6.17 1.00 6.26 1.00 6.25
24 3 8 20 0.94 91.20 0.95 90.56 0.98 89.22
25 5 5 32 0.99 44.66 0.99 44.24 0.98 45.01
26 13 2 80 1.00 6.30 1.00 6.37 1.00 6.26
28 7 4 40 0.99 29.47 1.00 30.36 0.99 28.90
30 3 10 16 0.98 125.89 0.98 125.98 0.96 120.79
34 17 2 80 1.00 6.33 1.00 6.50 1.00 6.44
35 7 5 32 1.00 43.94 0.99 46.98 0.99 45.59
36 9 4 40 0.99 30.19 1.00 30.60 0.99 30.23
38 19 2 80 1.00 6.44 1.00 6.45 0.99 6.37

280

12 3 4 70 0.94 28.07 0.94 28.44 0.93 28.48
15 3 5 56 0.94 47.65 0.94 47.37 0.94 47.68
16 2 8 35 0.89 102.47 0.89 104.25 0.90 103.83
18 9 2 140 0.99 6.41 0.99 6.50 0.99 6.51
22 11 2 140 0.99 6.61 0.99 6.48 1.00 6.60
24 3 8 35 0.96 123.18 0.96 121.88 0.96 124.69
25 5 5 56 0.98 55.48 0.98 56.05 0.99 54.97
26 13 2 140 0.99 6.74 0.99 6.77 1.00 6.62
30 3 10 28 0.96 189.18 0.97 182.58 0.97 184.39
32 4 8 35 0.97 135.94 0.98 131.74 0.99 134.95
34 17 2 140 1.00 6.75 1.00 6.88 1.00 6.84
36 9 4 70 0.99 38.04 1.00 36.47 0.99 36.59
38 19 2 140 1.00 6.82 1.00 6.85 1.00 6.83
42 3 14 20 0.99 292.91 0.98 320.06 0.96 310.45
44 11 4 70 1.00 38.00 0.99 37.56 1.00 37.28
45 9 5 56 1.00 61.45 1.00 60.35 1.00 59.46
46 23 2 140 1.00 7.02 1.00 6.86 1.00 6.95
48 6 8 35 0.99 144.63 0.99 148.64 1.01 141.89
49 7 7 40 1.00 111.72 1.00 118.32 1.00 114.09
50 5 10 28 0.99 195.80 0.99 199.00 0.99 207.92
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Table 4: Efficiency of MSSM over SRS using normal distribution.

Normal distribution

σ = 5 σ = 10

N n m s k1 µ = 20 µ = 40 µ = 60 µ = 20 µ = 40 µ = 60

Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2 Eff1 Eff 2 Eff 1 Eff 2

160

12 3 4 40 0.97 3.33 0.97 3.34 0.98 3.35 0.96 3.34 0.97 3.31 0.97 3.28
14 7 2 80 0.99 1.79 1.00 1.80 1.00 1.79 1.01 1.79 0.99 1.80 1.00 1.80
15 3 5 32 0.98 4.01 0.97 4.11 0.98 4.11 0.97 4.00 0.97 4.02 0.99 4.06
18 9 2 80 1.00 1.78 0.99 1.78 0.99 1.80 0.99 1.79 1.00 1.78 1.00 1.79
22 11 2 80 1.00 1.79 0.99 1.80 0.99 1.78 1.00 1.79 1.00 1.78 0.99 1.77
24 3 8 20 0.98 6.04 0.98 6.33 0.98 6.19 0.98 6.23 1.00 6.19 0.97 6.16
25 5 5 32 0.99 3.98 0.99 4.04 0.99 4.05 0.98 4.06 0.99 4.07 1.00 4.03
26 13 2 80 1.00 1.79 1.00 1.79 1.00 1.77 1.00 1.78 1.00 1.79 0.99 1.79
28 7 4 40 0.99 3.30 0.99 3.28 1.00 3.27 1.00 3.32 0.99 3.30 0.99 3.32
30 3 10 16 0.98 7.49 0.98 7.67 0.99 7.72 0.99 7.54 1.00 7.41 0.99 7.77
34 17 2 80 1.00 1.78 1.00 1.78 1.00 1.79 0.99 1.79 1.00 1.79 1.00 1.78
35 7 5 32 1.00 4.00 1.00 4.03 0.99 4.03 0.99 4.04 0.99 3.99 1.01 4.01
36 9 4 40 1.00 3.34 1.00 3.25 1.00 3.28 1.01 3.32 0.99 3.30 1.00 3.29
38 19 2 80 0.99 1.81 1.00 1.79 1.00 1.77 1.00 1.78 1.00 1.78 1.00 1.79

280

12 3 4 70 0.96 3.34 0.97 3.31 0.96 3.33 0.97 3.33 0.97 3.35 0.97 3.33
15 3 5 56 0.96 4.12 0.98 4.03 0.97 4.05 0.97 4.14 0.99 4.09 0.97 4.01
16 2 8 35 0.95 6.30 0.95 6.16 0.94 6.26 0.95 6.31 0.95 6.29 0.94 6.35
18 9 2 140 1.00 1.79 0.99 1.79 1.00 1.80 0.99 1.79 1.00 1.79 1.00 1.79
22 11 2 140 1.00 1.79 1.00 1.78 1.00 1.80 0.99 1.79 1.00 1.80 1.00 1.80
24 3 8 35 0.98 6.17 0.99 6.35 0.99 6.06 0.98 6.25 0.98 6.14 0.98 6.26
25 5 5 56 0.99 4.01 1.00 4.11 1.00 4.05 1.00 4.07 0.99 4.04 0.99 4.02
26 13 2 140 1.00 1.80 0.99 1.79 1.00 1.80 1.00 1.78 1.00 1.81 1.00 1.79
30 3 10 28 0.98 7.53 0.98 7.73 0.99 7.72 0.99 7.98 1.00 7.78 0.99 7.71
32 4 8 35 0.99 6.17 1.00 6.38 1.00 6.16 1.00 6.35 0.99 6.16 0.99 6.37
34 17 2 140 1.00 1.78 1.00 1.79 0.99 1.78 1.00 1.78 1.00 1.79 1.00 1.79
36 9 4 70 1.00 3.33 0.99 3.33 1.00 3.33 0.99 3.28 1.00 3.34 0.99 3.38
38 19 2 140 1.00 1.78 1.00 1.78 1.00 1.79 1.00 1.79 1.00 1.79 1.00 1.80
42 3 14 20 0.98 10.32 0.98 10.12 0.99 10.35 1.00 10.55 1.00 10.36 0.99 10.53
44 11 4 70 1.00 3.30 1.00 3.31 1.00 3.36 1.00 3.28 0.99 3.30 1.00 3.30
45 9 5 56 0.99 4.07 0.99 4.08 1.01 4.01 1.00 4.07 0.99 4.03 1.00 4.10
46 23 2 140 1.00 1.78 1.00 1.79 0.99 1.79 1.00 1.79 1.00 1.79 0.99 1.78
48 6 8 35 0.99 6.22 0.98 6.24 1.00 6.16 0.99 6.19 1.01 6.39 1.00 6.21
49 7 7 40 1.00 5.66 1.00 5.52 1.00 5.49 0.99 5.49 0.99 5.48 1.00 5.50
50 5 10 28 1.00 7.89 0.99 7.54 1.00 7.82 0.99 7.59 0.99 7.54 1.01 7.72
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Table 5: Efficiency of MSSM over SRS using gamma distribution.

Gamma distribution

shape = 2 shape = 4

N n m s k1 scale=1 scale=3 scale=5 scale=10 scale=1 scale=3 scale=5 scale=10

Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2

160

12 3 4 40 1.00 1.50 0.98 1.48 0.99 1.45 0.98 1.42 0.98 1.77 0.99 1.75 0.97 1.77 0.99 1.74
14 7 2 80 0.99 1.21 0.99 1.20 1.00 1.21 1.00 1.21 1.00 1.34 0.99 1.34 1.00 1.33 1.00 1.34
15 3 5 32 1.01 1.54 0.98 1.57 0.99 1.54 1.00 1.59 0.99 1.89 1.00 1.89 0.97 1.90 0.98 1.89
18 9 2 80 0.99 1.21 0.99 1.20 1.00 1.21 1.00 1.20 1.00 1.33 1.00 1.34 1.00 1.33 1.00 1.34
22 11 2 80 1.01 1.20 1.01 1.21 1.00 1.21 1.00 1.20 0.99 1.32 0.99 1.33 1.00 1.32 1.00 1.33
24 3 8 20 0.99 1.81 1.00 1.79 1.00 1.77 1.00 1.86 0.99 2.32 1.00 2.27 1.00 2.25 1.00 2.26
25 5 5 32 1.01 1.55 0.99 1.57 1.00 1.53 0.99 1.56 0.99 1.92 1.00 1.87 0.99 1.89 1.00 1.87
26 13 2 80 1.00 1.20 1.00 1.19 1.00 1.20 1.00 1.20 0.99 1.33 1.00 1.32 1.00 1.33 1.00 1.32
28 7 4 40 1.00 1.45 1.00 1.44 1.00 1.46 0.99 1.44 0.99 1.76 1.00 1.72 1.00 1.73 0.99 1.72
30 3 10 16 0.99 1.91 1.00 1.98 1.00 1.90 0.98 1.98 0.98 2.53 0.98 2.44 0.99 2.51 1.01 2.44
34 17 2 80 1.00 1.20 1.00 1.21 1.00 1.20 1.00 1.19 1.00 1.33 1.00 1.33 1.00 1.33 1.00 1.31
35 7 5 32 0.99 1.55 0.99 1.56 1.00 1.53 1.01 1.56 1.00 1.86 1.00 1.89 0.98 1.89 1.00 1.89
36 9 4 40 0.99 1.43 1.00 1.45 1.00 1.47 1.01 1.45 1.00 1.75 0.99 1.76 1.00 1.76 0.99 1.76
38 19 2 80 0.99 1.20 1.00 1.21 0.99 1.20 1.00 1.20 1.01 1.32 1.00 1.32 1.00 1.32 1.00 1.33

280

12 3 4 70 0.98 1.48 0.99 1.46 0.99 1.46 0.99 1.46 0.98 1.76 0.98 1.78 0.99 1.76 0.99 1.76
15 3 5 56 0.99 1.57 0.98 1.58 0.99 1.56 1.00 1.57 0.98 1.92 0.98 1.95 0.99 1.89 0.99 1.94
16 2 8 35 0.99 1.82 0.98 1.80 0.98 1.77 0.97 1.85 0.98 2.29 0.98 2.26 0.98 2.32 0.96 2.29
18 9 2 140 1.00 1.21 1.00 1.20 1.00 1.21 1.00 1.20 1.00 1.33 1.00 1.33 1.00 1.34 1.00 1.34
22 11 2 140 1.00 1.21 0.99 1.21 1.00 1.20 1.00 1.21 1.00 1.33 1.00 1.32 1.00 1.32 1.00 1.34
24 3 8 35 0.98 1.84 0.99 1.79 0.99 1.82 1.00 1.82 0.99 2.31 0.98 2.27 0.99 2.29 0.99 2.24
25 5 5 56 0.99 1.55 1.01 1.56 1.00 1.53 1.00 1.55 0.99 1.92 1.00 1.88 1.00 1.89 1.00 1.87
26 13 2 140 1.00 1.20 0.99 1.20 1.00 1.20 1.00 1.21 1.00 1.33 1.00 1.32 1.00 1.32 1.00 1.32
30 3 10 28 1.00 1.93 0.99 1.91 0.99 1.89 1.00 1.96 0.99 2.48 0.98 2.53 0.98 2.52 0.99 2.47
32 4 8 35 1.00 1.81 0.99 1.79 1.00 1.80 1.00 1.80 1.00 2.24 1.00 2.27 1.01 2.28 0.98 2.26
34 17 2 140 1.00 1.20 1.00 1.20 1.00 1.21 1.00 1.19 1.00 1.33 1.00 1.33 1.00 1.33 1.00 1.32
36 9 4 70 0.99 1.44 1.00 1.44 1.00 1.44 0.99 1.44 0.99 1.71 1.00 1.75 1.00 1.75 1.00 1.70
38 19 2 140 1.00 1.20 1.00 1.20 1.00 1.19 1.00 1.20 1.00 1.34 1.00 1.32 1.01 1.32 1.00 1.33
42 3 14 20 0.97 2.13 0.98 2.19 0.99 2.19 0.98 2.13 1.00 2.81 0.98 2.93 1.00 2.83 0.99 2.80
44 11 4 70 1.00 1.46 1.00 1.46 1.00 1.47 0.99 1.46 0.99 1.71 1.00 1.74 1.00 1.72 1.01 1.74
45 9 5 56 1.01 1.56 1.00 1.55 1.00 1.54 1.00 1.53 0.99 1.90 1.01 1.91 0.99 1.88 0.98 1.90
46 23 2 140 1.00 1.20 1.00 1.19 1.00 1.20 1.00 1.20 1.00 1.33 1.00 1.33 1.00 1.32 1.00 1.32
48 6 8 35 1.01 1.79 1.01 1.82 0.98 1.76 1.01 1.78 1.00 2.27 1.00 2.30 1.00 2.29 1.00 2.26
49 7 7 40 1.00 1.72 0.99 1.70 0.99 1.70 0.99 1.74 1.00 2.13 1.00 2.16 0.99 2.11 1.00 2.12
50 5 10 28 1.00 1.92 0.99 1.96 1.00 1.96 0.98 1.94 1.01 2.47 0.99 2.48 1.00 2.46 1.00 2.42
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6. VARIANCE OF Ŝ2
MSSM IN THE PRESENCE OF LINEAR TREND

The variance of Ŝ2
MSSM under the linear Model (3.1) is given by

(6.1)

V
(

Ŝ2
MSSM

)

=
β4

(

k2
1 − 1

)

m (N − 1)
2

(N − s)
2
k1

(m − 1)

×

[

(

3k2
1 − 7

)

240

{

(m − 1)

(k1 − 1)
−

(m − 2) (m − 3)

(k1 − 2) (k1 − 3)

}

+
1

144

(

k2
1 − 1

)

×

{

(k1 − 3) − (m − 2) (k1 + 3)

(k1 − 1)
2

(m − 2) (m − 3)
(

k2
1 − 3

)

(k1 − 1)
2
(k1 − 2) (k1 − 3)

}

]

(see details in Appendix B).

Substituting m = n, s = 1 and k1 = N in (B.7), the variance of Ŝ2
SRS can

be obtained in the presence of linear trend, i.e.,

(6.2)

V
(

Ŝ2
SRS

)

=
β4

(

N2 − 1
)

N

n(n − 1)

[

(

3N2 − 7
)

240

{

(n − 1)

(N − 1)
−

(n − 2) (n − 3)

(N − 2) (N − 3)

}

+
1

144

(

N2 − 1
)

{

(N − 3) − (n − 2) (N + 3)

(N − 1)
2

+
(n − 2) (n − 3)

(

N2 − 3
)

(N − 1)2 (N − 2) (N − 3)

}

]

.

Similarly, substituting m = m′, k1 = m′k and s = n/m′ in Equation (B.7), one

can get the following formula of variance of unbiased variance estimator with m′

random starts for LSS in the presence of linear trend.

(6.3)

V
(

Ŝ2
LSS

)

=
β4

(

m′2k2 − 1
)

(N − 1)
2

(m′N − n)
2
k

m′2 (m′ − 1)

×

[

(

3m′2k2 − 7
)

240

{

(m′ − 1)

(m′k − 1)
−

(m′ − 2) (m′ − 3)

(m′k − 2) (m′k − 3)

}

+
1

144

(

m′2k2 − 1
)

{

(m′k − 3) − (m′ − 2) (m′k + 3)

(m′k − 1)2

+
(m′ − 2) (m′ − 3)

(

m′2k2 − 3
)

(m′k − 1)2 (m′k − 2) (m′k − 3)

}

]

.
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6.1. Efficiency Comparison of Ŝ2
MSSM and Ŝ2

SRS in the Presence of

Linear Trend

Due to complicated expressions given in Equation (B.7) and (6.2), the-

oretical comparison of Ŝ2
MSSM and Ŝ2

SRS is not easy. Therefore, a numerical

comparison is carried out by considering the linear Model (3.1) and results are

presented in Table 6.

Table 6: Efficiency of MSSM over SRS using linear model.

N n m s k1 Efficiency N n m s k1 Efficiency

160

12 3 4 40 34.76

280

12 3 4 70 34.81
14 7 2 80 6.72 15 3 5 56 65.24
15 3 5 32 65.13 16 2 8 35 169.87
18 9 2 80 6.98 18 9 2 140 6.98
22 11 2 80 7.15 22 11 2 140 7.15
24 3 8 20 250.30 24 3 8 35 250.80
25 5 5 32 84.36 25 5 5 56 84.56
26 13 2 80 7.27 26 13 2 140 7.27
28 7 4 40 49.07 30 3 10 28 479.29
30 3 10 16 478.57 32 4 8 35 299.77
34 17 2 80 7.42 34 17 2 140 7.43
35 7 5 32 94.01 36 9 4 70 52.04
36 9 4 40 51.92 38 19 2 140 7.49
38 19 2 80 7.48 42 3 14 20 1282.26

44 11 4 70 53.96
45 9 5 56 100.13
46 23 2 140 7.57
48 6 8 35 356.73
49 7 7 40 252.94
50 5 10 28 641.04

In Table 6, one can easily see that the lower the number of groups k1, the

higher is the efficiency, and vice versa. Note that different choices of α and β do

not have any effect on the efficiencies as the parameters α and β will drop out

from variance and efficiency expressions respectively.
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7. CONCLUSION

The proposed MSSM design is based on adjusting the population units

in groups. Thus, except the two extreme cases of this design, MSSM is neither

completely systematic nor random but displaying the amalgamation of systematic

and simple random sampling. In the two extreme cases, one of them becomes LSS

and other SRS. The MSSM makes it possible to develop the modified expressions

of all the results that relates to the LSS. A few such modifications are reported

in Sections 2 and 3. A theoretical efficiency comparison of MSSM and SRS using

the variances of mean in the presence of linear trend is carried out and is shown

in Equation (3.1). This comparison clearly indicates that MSSM is more efficient

than SRS.

In this study, population variance is unbiasedly estimated in MSSM for all

possible combinations of N and n. An explicit expression for variance of unbiased

variance estimator is also obtained in the proposed design. Moreover, it enables

us to deduce the expressions for variance of unbiased variance estimator for LSS

and SRS. Due to the complex nature of these expressions, theoretical comparison

is not an easy task. Therefore, numerical comparison of MSSM and SRS is carried

out in Sections 5 and 6. This numerical efficiency comparison is done for natural

population, simulated population and linear model having a perfect linear trend.

The results show that if populations (with linear or parabolic trend) are arranged

with certain characteristics then MSSM is more efficient than SRS. However, in

simulated populations, MSSM is almost equally efficient to SRS as units are not

arranged in specific order. In this case, one can benefit from MSSM due to

its simplicity and economical status. Furthermore, the findings reveal that the

efficiency of MSSM is quite high for those combinations of N and n in which all

population units are arranged in minimum number of groups.
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APPENDIX A — Variance of Ŝ2
MSSM

The variance of Ŝ2
MSSM can be written as

(A.1)

V
(

Ŝ2
MSSM

)

=
1

(N − 1)2

[

(N

m

)2
V

(

m
∑

u=1

σ̂2
ru

)

+
( (N − s)

m(m − 1)

)2
V

(

m−1
∑

u=1

m
∑

v=u+1

(ȳru
− ȳrv

)2
)

+ 2
N

m

(N − s)

m(m − 1)
Cov

(

m
∑

u=1

σ̂2
ru

,

m−1
∑

u=1

m
∑

v=u+1

(ȳru
− ȳrv

)2
)

]

.

Note that

V
(

m
∑

u=1

σ̂2
ru

)

=

m
∑

u=1

V
(

σ̂2
ru

)

+

m
∑

u=1

m
∑

v=1
v 6=u

Cov
(

σ̂2
ru

, σ̂2
rv

)

,

where

V (σ̂2
ru

) =
1

k1

k1
∑

u=1

(

σ̂2
ru

− σ̄2
)2

=
1

k1

k1
∑

r=1

(

σ̂2
r − σ̄2

)2
= σ2

0 (say)

such that

σ̄2 =
1

k1

k1
∑

u=1

σ̂2
ru

=
1

k1

k1
∑

r=1

σ̂2
r and Cov

(

σ̂2
ru

, σ̂2
rv

)

= −
σ2

0

(k1 − 1)
.

Thus

(A.2) V
(

m
∑

u=1

σ̂2
ru

)

= mσ2
0

(

k1 − m

k1 − 1

)

.
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V
[

m−1
∑

u=1

m
∑
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(ȳru
− ȳrv

)
2
]

=(A.3)

=
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∑
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m
∑
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V
{

(ȳru
− ȳrv
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}
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m
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m
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∑
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6=u,v

m
∑

v′=1
v′
6=u,v,u′

Cov
{

(ȳru
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)
2
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ȳr
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}

]
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where

(A.4) V (ȳru
− ȳrv

)2 =
2k1

(k1 − 1)

{

µ4 +
k1 − 3

(k1 − 1)
µ2

2

}

,

such that

µ2 =
1

k1

k1
∑

u=1

(ȳru
− µ)

2
=

1

k1

k1
∑

r=1

(ȳr − µ)
2

and µ4 =
1

k1

k1
∑

r=1

(ȳr − µ)
4
.

(A.5) Cov
{

(ȳru
− ȳrv

)
2
,
(

ȳru
− ȳr

u′

)2
}

=
k1

(k1 − 1)

[

µ4 −
k1 + 3

(k1 − 1)
µ2

2

]

.
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{
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ȳr
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=
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1 − 3
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2

]

.

Putting (A.4), (A.5) and (A.6) in (A.3), we have

V
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m−1
∑
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(ȳru
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=

(

m

2
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2
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(
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2
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2

)
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2

2
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(
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2

)
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×
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(
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2 µ2

2

)

}

]

,

or

(A.7)

V
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)
2

]
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{
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−
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2
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.
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m
∑
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∑
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m
∑
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2
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where

E

( m
∑
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ru
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=

m
∑

u=1

E
(

σ̂2
ru
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∑
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∑
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∑
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=
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∑
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=
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∑
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+
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,
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=
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.

Putting (A.1), (A.7) and (A.8) in (A.1) and then simplifying, we have

(A.9)
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APPENDIX B — Variance of Ŝ2
MSSM

Assuming the linear Model (3.1), the mean of the rth (r = 1, 2, ..., k1) group

can be written as

ȳr =
1

s

s
∑

i=1

{

α + β
(

r + (i − 1)k1

)

}

,

(B.1) ȳr = α + β
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1

2
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)

,

(B.2)

σ̂2
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1

s

s
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{
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(
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)
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(
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1

2
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)

}2

=
1

s

s
∑
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{
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2
(s − 1)k1

)
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=
1
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(B.3) σ̄2
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1
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β2k2
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1
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2

=
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(

k2
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and
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4
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(

k4
1
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−

k2
1

24
+

7

240

)

,

where

µ = α + β
N + 1

2
.

Putting Equations (B.1)–(B.6) in (A.9), we have

(B.7)

V
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Abstract:

• We present a joint modeling approach for multiple imputation of missing continu-

ous and categorical variables using Bayesian mixture models. The approach extends

the idea of focused clustering, in which one separates variables into two sets before

estimating the mixture model. Focus variables include variables with high rates of

missingness and possibly other variables that could help improve the quality of the

imputations. Non-focus variables include the remainder. In this way, one can use a

rich sub-model for the focus set and a simpler model for the non-focus set, thereby

concentrating fitting power on the variables with the highest rates of missingness.

We present a procedure for specifying which variables with low rates of missingness

to include in the focus set. We examine the performance of the imputation proce-

dure using simulation studies based on artificial data and on data from the American

Community Survey.
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• incomplete; nonparametric; nonresponse; survey; tensor.
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1. INTRODUCTION

Nonparametric Bayesian (NB) mixture models are useful tools for analyzing

complicated data ([13], [5], [14], [3], [2]). They are especially useful as engines for

multiple imputation (MI, [16], [11], [18], [9], [12], [10], [7]). NB mixture models

are flexible enough to capture complex relationships among the variables, which

is advantageous in MI contexts where one seeks to create completed datasets for

use in multiple analyses.

In many contexts, only a few variables have high rates of missingness, and

other variables are nearly or completely observed. This can create estimation

difficulties when using mixture models as MI engines. In particular, with modest

sample sizes and many variables, mixture models have the potential to fit the

distribution of some variables well at the expense of others ([6], [19], [4]). The

mixture model easily could expend its fitting power on the marginal distribution

of the (nearly) completely observed variables at the expense of the distribution

of the variables with high rates of missingness ([4],[20]), which could lead to poor

quality imputations.

To get around this, [4] suggest using mixture models with focused clus-

tering. Using the nomenclature in [4], the variables with high rates of missing

data are called focus variables, and the others are called remainder variables. In

focused clustering, the mixture model includes one set of cluster indicators for

focus variables and a second set for remainder variables. The two sets are con-

nected using a tensor factorization prior ([15]). In this way, one can use a rich

sub-model for the focus set and a simpler model for the remainder set, thereby

concentrating fitting power on the variables with the highest rates of missingness.

In this article, we enhance the focused clustering approach for MI to facili-

tate higher quality imputations. In particular, we expand the definition of focus

variables to include variables with high fractions of missing data and (nearly)

completely observed variables that could improve the quality of the imputations

for the variables with high rates of missingness; we label the resulting set with

F . We define the non-focus variables to include those not in F ; we label these as

NF . We specify the variables to include in F as follows. First, we automatically

put all variables with high fractions of missing values in F . For each variable

not automatically in F , we compute its mutual information with the variables

automatically in F . We move variables with high mutual information values into

F ; the remaining variables we put in NF . We make these decisions in one step,

including all variables with high mutual information values in F . We refer to this

strategy as Move. We use Stay to refer to the strategy of putting only variables

with high fractions of missingness in F . Because Move allows local dependence

among the variables with high amounts of missing values and (nearly) completely
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observed variables that can be used to predict the missing values, it can improve

accuracy and, in some cases, computational efficiency.

The remainder of this article is organized as follows. In Section 2, we

present the focused clustering model, which we abbreviate as HCMM-FNF for

hierarchically coupled mixture model with focus/non-focus variables, and mo-

tivate the potential benefits of Move. In Section 3, we illustrate when Move

engenders benefits using four simple simulation scenarios. In Section 4, we apply

the strategies to data sampled from the American Community Survey. In Section

5, we conclude with a brief summary of findings.

2. SPECIFICATION OF HCMM-FNF

We indicate continuous variables with Y and categorical variables with X.

We use a superscript F to denote focus variables and the superscript NF to

denote non-focus variables. Thus, Y (F ), X(F ), Y (NF ) and X(NF ) are the focus

continuous, focus categorical, non-focus continuous, and non-focus categorical

variables, respectively. For purposes of explaining HCMM-FNF, here we assume

that F and NF have been pre-specified.

For each observation i = 1, ..., n, we have Y
(F )
i =

(

Y
(F )
i1 , ..., Y

(F )

iq(F )

)T
,

X
(F )
i =

(

X
(F )
i1 , ..., X

(F )

ip(F )

)T
, Y

(NF )
i =

(

Y
(NF )
i1 , ..., Y

(NF )

iq(NF )

)T
, and X

(NF )
i =

(

X
(NF )
i1 ,

..., X
(NF )

ip(NF )

)T
. Let Di be a regression design matrix containing the main effects

of X
(F )
i , Y

(NF )
i , and X

(NF )
i . A similar regression approach is proposed by [15].

HCMM-FNF can be described as follows.
(

Y
(F )
i |Di, H

(FY )
i = a,−

)

∼ N
(

y
(F )
i |DiB

(F )
a ,Σ(F )

a

)

,(2.1)

Pr
(

X
(F )
i = x

(F )
i |H

(FX)
i = b,−

)

=

p(F )

∏

j=1

ψ
(F )(j)

b,x
(F )

ij

,(2.2)

(

Y
(NF )
i |H

(NF )
i = h,−

)

∼ N
(

y
(NF )
i |B

(NF )
h ,Σ

(NF )
h

)

,(2.3)

Pr
(

X
(NF )
i = c

(NF )
i |H

(NF )
i = h,−

)

∼

p(NF )

∏

j=1

ψ
(NF )(j)

h,x
(NF )

ij

,(2.4)

Pr
(

H
(FY )
i = a, H

(FX)
i = b |Zi = z

)

= φ(FY )
z,a φ

(FX)
z,b ,(2.5)

Pr
(

H
(NF )
i = h |Zi = z) = φ

(NF )
z,h ,(2.6)

Pr
(

Zi = z
)

= λz.(2.7)

H
(FY )
i ∈ {1, ..., k(FY )} is the mixture component index of Y

(F )
i . H(FX) ∈

{1, ..., k(FX)} is the mixture component index of X
(F )
i . H

(NF )
i ∈ {1, ..., k(NF )}
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is the mixture component index of Y
(NF )
i and X

(NF )
i . Zi ∈ {1, ..., k(Z)} is the

mixture component index of H
(F )
i and H

(NF )
i . B

(F )
a and Σ

(F )
a are the matrix

of regression coefficients and the covariance matrix in H
(FY )
i = a. ψ

(F )(j)

b,x
(F )

ij

is the

probability of X
(F )
ij = x

(F )
ij in H

(FX)
i = b. B

(NF )
h and Σ

(NF )
h are the mean vec-

tor and the covariance matrix in H
(NF )
i = h. Here, Σ

(NF )
h is a diagonal matrix

with non-zero entries
(

η
(NF )
h,1 , ..., η

(NF )

h,q(NF )

)

. Thus, the variables in Y
(NF )
i are con-

ditionally independent. Finally, ψ
(NF )(j)

h,x
(NF )

ij

is the probability of X
(NF )
ij = x

(NF )
ij in

H
(FX)
i = h.

To allow closed-form expressions for the posteriors, we take conjugacy into

consideration when specifying the prior distributions. For the multinomial vari-

ables, we have

ψ
(F )(j)
b

i.i.d.
∼ Dir

(

γ
(j)
b,1 , ..., γ

(j)

b,d
(F )

j

)

,(2.8)

ψ
(NF )(j)
h

i.i.d.
∼ Dir

(

γ
(j)
h,1, ..., γ

(j)

h,d
(NF )

j

)

(2.9)

(

γ
(j)
b,1 , ..., γ

(j)

b,d
(F )

j

)T
=
(

1/d
(F )
j , ..., 1/d

(F )
j

)T
,(2.10)

(

γ
(j)
h,1, ..., γ

(j)

h,d
(NF )

j

)T
=
(

1/d
(NF )
j , ..., 1/d

(NF )
j

)T
,(2.11)

For the multivariate normal variables, we have

Pr
(

B(F )
a ,Σ(F )

a

)

= N
(

B
(F )
0 , I, T

(F )
B

)

× IW
(

ν(F ),Σ(F )
)

,(2.12)

Pr
(

B
(NF )
h

)

= N
(

B
(NF )
0 , T

(NF )
B

)

,(2.13)

Pr
(

η
(NF )
h,j

)

= IG
(

ν(NF ), η
(NF )
j

)

,(2.14)

where T
(F )
B =Diag

(

τ
(F )
1 , ..., τ

(F )

q(F )

)

and T
(NF )
B =Diag

(

τ
(NF )
1 , ..., τ

(NF )

q(NF )

)

, and

τ
(F )
j

i.i.d.
∼ G

(

ατ (F ) , βτ (F )

)

,(2.15)

τ
(NF )
j

i.i.d.
∼ G

(

ατ (NF ) , βτ (NF )

)

.(2.16)

For the hyper-prior distributions, we have

(

B
(F )
0 ,Σ(F )

)

∼ N
(

0, I, σ
(F )2

0 I
)

×W
(

ω(F ),Σ
(F )
0

)

,(2.17)
(

B
(NF )
0

)

∼ N
(

0, σ
(NF )2

0 I
)

,(2.18)
(

η
(NF )
j

)

∼ IG
(

ν(NF ), η
(NF )
0

)

.(2.19)

We let ν(F ) = q(F ) +2, ν(NF ) = 2, ω(F ) = q(F )+1, ω(NF ) =1, Σ
(F )
0 = I/(q(F )+1),

and η
(NF )
0 = 1.
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The hierarchical priors for the latent variables follow a truncated version

of the stick-breaking construction of the Dirichlet process ([17], [8]). We have

φ(FY )
z,a = V (FY )

z,a

∏

l<a

(

1−V
(FY )
z,l

)

, V (FY )
z,a

i.i.d.
∼ B(1, β(FY )), V

(FY )

z,k(FY )
=1,(2.20)

φ
(FX)
z,b = V

(FX)
z,b

∏

l<b

(

1−V
(FX)
z,l

)

, V
(FX)
z,b

i.i.d.
∼ B(1, β(FX)), V

(FX)

z,k(FX)
=1,(2.21)

φ
(NF )
z,h = V

(NF )
z,h

∏

l<h

(

1−V
(NF )
z,l

)

, V
(NF )
z,h

i.i.d.
∼ B(1, β(NF )), V

(NF )

z,k(NF )
=1,(2.22)

λz = Wz

∏

l<z

(1−Wl), Wz
i.i.d.
∼ B(1, α), Wk(Z) = 1.(2.23)

Details about the method of fitting the model can be found in Chapter 4 of [20].

Figure 1 is a graphical representation of HCMM-FNF. It is apparent that

dependence between X(F ) and all variables in NF is captured only by the low-

est level of mixture components, which could make accurate estimation of these

associations difficult. Dependence between Y (F ) and all variables in NF is cap-

tured via the component regressions and the lowest level of mixture components.

Figure 1: Graphical model representation of HCMM-FNF. X(F ), Y (F ),

X(NF ), and Y (NF ) are the observed categorical and continuous

variables. H(F ) and H(NF ) are the mixture components of F
and NF variables, respectively. Z is the mixture component

for H(F ) and H(NF ).

While this encodes dependence between Y (F ) and all variables in NF , we expect

HCMM-FNF to do a better job capturing the joint distribution among variables

within F than the relationships of Y (F ) with variables in NF , as the variables

within F share mixture components directly. This suggests that when the as-

sociations between some variables in Y (F ) and Y (NF ) are strong or nonlinear, it

may be advantageous to put all those variables in F . Similarly, when Y (F ) and
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X(NF ) are highly associated, moving X(NF ) to F may improve the estimation

of the associations between Y (F ) and X(NF ). Similarly, when some variables in

Y (NF ) are highly associated with X(F ), or when some variables in X(NF ) are

highly associated with X(F ), moving them to F could help the model estimate

the associations.

These observations motivate why Move could lead to improved estimation

over Stay. We now explore that possibility using simulation studies.

3. SIMULATION STUDIES

We investigate the potential of Move to improve the quality of imputations

using four simple scenarios. To describe each scenario, let (F0) index the focus

variables automatically included in F , i.e., those with high rates of missing values,

and (NF0) index the other variables. The sets of variables defined by (F0) and

(NF0), which we call F0 and NF0, respectively, are those used in Stay. In Move,

we put some variables in NF0 in F .

3.1. Simulation scenarios and evaluation metrics

In Scenario 1, we make variables in X(NF0) highly associated with some

variables in X(F0). We generate six binary X(NF0) variables from an arbitrarily

chosen joint distribution, constructed from a mixture of products of multino-

mial distributions. To create the dependencies between the categorical variables

in F0 and NF0, we generate four X(F0) variables according to Bernoulli dis-

tributions with Pr
(

X
(F0)
j = x |X

(NF0)
j = x

)

= 0.9, with x ∈ {1, 2} for j = 1, ..., 4.

Under Move, we put
(

X
(NF0)
1 , ..., X

(NF0)
4

)

in F .

In Scenario 2, we make some variables in Y (NF0) highly associated with

variables in X(F0). We generate six Y (NF0) variables from an arbitrary mixture

of normal distributions. We create four binary X(F0) variables from Bernoulli

distributions with

log

(

Pr
(

X
(F0)
j = 2 |Y

(NF0)
j = y

(NF0)
j

)

Pr
(

X
(F0)
j = 1 |Y

(NF0)
j = y

(NF0)
j

)

)

= y
(NF0)
j ,(3.1)

for j = 1, ..., 4. Under Move, we put
(

Y
(NF0)
1 , ..., Y

(NF0)
4

)

in F .

In Scenario 3, we make some variables in X(NF0) highly associated with

Y (F0). We generate six binaryX(NF0) variables from an arbitrarily chosen mixture

of products of multinomial distributions. We generate four Y (F0) according to
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(

Y
(F0)
j |X

(NF0)
j = x

(NF0)
j

)

∼ N
(

y
(F0)
j |x

(NF0)
j , 0.005

)

, with j = 1, ..., 4. Under Move,

we put
(

X
(NF0)
1 , ..., X

(NF0)
4

)

in F .

In Scenario 4, we make some variables in Y (NF0) highly associated with

Y (F0). We generate six Y (NF0) variables from an arbitrarily chosen mixture

of normal distributions. We generate four Y (F0) according to
(

Y
(F0)
j |Y

(NF0)
j =

y
(NF0)
j

)

∼ N
(

0.9y
(NF0)
j , 0.005

)

, for j = 1, ..., 4. Under Move, we put
(

Y
(NF0)
1 , ...,

Y
(NF0)
4

)

in F .

We use two evaluation metrics in the simulations. Let q
(s)
k,j,l be the kth quan-

tity of interest in the jth repeated sample for the lth imputation. The superscript

(s) indicates that the estimate is from Stay. Similarly, we define q
(m)
k,j,l for the

estimate obtained from Move. Notations without any superscripts and subscript

l, such as qk,j , stand for the quantities from the truth, defined as the complete

data without any missing values.

Metric I: We define the absolute differences as d
(s)
k,j,l = |q

(s)
k,j,l − qk,j | for

Stay and d
(m)
k,j,l = |q

(m)
k,j,l − qk,j | for Move. We compute d

(s)
k,j = (1/L)

∑L
l=1 d

(s)
k,j,l and

d
(m)
k,j = (1/L)

∑L
l=1 d

(m)
k,j,l. For each quantity, we conduct a paired t-test of the

hypothesis H0 : µ
(s)
k = µ

(m)
k , where µ

(s)
k is the population mean of d

(s)
k,j and µ

(m)
k

is the population mean of d
(m)
k,j . When the p-value is below 0.01, we consider the

difference between Stay and Move statistically significant.

Metric II: We define the percentage changes as ∆d
(s)
k,j,l =

q
(s)

k,j,l
−qk,j

qk,j

×100%

for Stay and ∆d
(m)
k,j,l =

q
(m)

k,j,l
−qk,j

qk,j

× 100% for Move. This metric is useful when the

quantities of interest are not in the same units. For each quantity k, we let

∆d
(s)
k = (1/JL)

∑J
j=1

∑L
l=1 ∆d

(s)
k,j,l and ∆d

(m)
k = (1/JL)

∑J
j=1

∑L
l=1 ∆d

(m)
k,j,l. We

then draw box plots for all {∆d
(s)
k } and {∆d

(m)
k } of the same type. For example,

we draw box plots of {∆d
(s)
k } and {∆d

(m)
k } for all possible correlations between

Y (F ) and Y (NF ).

3.2. Results

For each scenario, we generate 100 independent datasets comprising n =

1, 000 observations. For some variables, we make 50% of values missing completely

at random (MCAR) and automatically put them in F0; for the remainder, we

make only 1% MCAR and put them in NF0. In each incomplete dataset, we

fit HCMM-FNF with Move and Stay, using 25, 000 iterations as burn-in, which

is sufficient based on standard diagnosis of MCMC convergence. After burnin,

we run the chains for 1, 000 iterations, and from these keep L = 10 imputations

spaced 100 iterations apart.
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Figure 2 displays results from Scenario 1 for bivariate probabilities between

the categorical variables in F0 and NF0. Generally, the cell probabilities are es-

timated more accurately under Move than Stay. The improvements are most

noticeable in the probabilities involving
(

X
(NF0)
j , X

(F0)
j

)

where j = 1, ..., 4. De-

tailed investigation of the box plots for small values of Metric II indicates that

the percentage changes under Move are generally smaller than those under Stay.

Figure 2: Bivariate cell probabilities for Stay and Move in Scenario 1.

The left plot shows Metric I, where triangles correspond to p-

values below 0.01 when testing for average differences in the

two strategies. The right plot shows Metric II. The median of

the relative differences is 0.0 for both Stay and Move.

In Scenario 2, we examine the coefficients of the logistic regressions of each

X(F0) variable on each Y (NF0) variable. As evident in Figure 3, these coefficients

are estimated more accurately in Move than in Stay. The accuracy gains are

largest for the coefficients involving
(

X
(F0)
j , Y

(NF0)
j

)

where j = 1, ..., 4.

Figure 3: Coefficients in logistic regressions for Stay and Move in Scenario 2.

The left plot shows Metric I, where triangles correspond to p-values

below 0.01 when testing for average differences in the two strategies.

The right plot shows Metric II. The median of the relative differences

is −44.8 for Stay and −9.9 for Move.
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In Scenario 3, we are interested in the associations between the variables

in Y (F0) and X(NF0). We measure these associations using logistic regressions of

X
(NF0)
j on Y

(F0)
k for j ∈ {1, ..., 4} and k ∈ {1, ..., 6}. As evident in Figure 4, there

are no significant differences between Move and Stay on Metric I. The box plots

for Metric II show that the two medians are close, although the spread of values

for Move is smaller than that for Stay.

Figure 4: Coefficients in logistic regressions for Stay and Move in Scenario 3.

The left plot shows Metric I, and the right plot shows Metric II. The

median of the relative differences is −0.09 for Stay and −0.10 for

Move.

For Scenario 4, Figure 5 displays results for the pairwise correlations of

variables in Y (F0) and Y (NF0). There are no significant differences between Move

and Stay for Metric I or Metric II.

Figure 5: Pairwise correlations for Move and Stay in Scenario 4. The

left plot shows Metric I, and the right plot shows Metric II.

The median of the relative differences is −12.4 for Stay and

−4.3 for Move.
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3.3. Summary of results

When using Stay, associations between X(F0) and X(NF0) are estimated

only through the tensor factorization. Apparently, in Scenario 1 this is not suf-

ficient to capture the dependence. In contrast, by using common mixture com-

ponents for all the categorical variables in F , Move captures the dependence

structure in Scenario 1 more effectively than Stay. We reach similar findings

for Scenario 2, in which the local dependence enabled by Move captures associa-

tions involving X(F0) and Y (NF0) more effectively than relying only on the tensor

factorization to capture the dependence. These results are in accord with the

motivation we gave at the end of Section 2 for moving some (nearly) completely

observed variables to F .

For the associations between Y (F0) and NF0, Move does not offer sig-

nificant benefits over Stay in Scenarios 3 and 4. Apparently, Stay adequately

incorporates the dependence between Y (F0) and
(

X(F0), X(NF0), Y (NF0)
)

through

the mixture component regressions, so that moving variables to F does not no-

ticeably improve the imputation quality. We also tried four modifications of these

scenarios that use nonlinear associations between Y (F0) and variables in NF0; see

[20] for details of the designs. The performances of Move and Stay were qualita-

tively similar. Apparently, by using mixture distributions for the focus variables,

we potentially can capture nonlinear relationships among the continuous focus

variables.

4. EMPIRICAL STUDY

The findings in Section 3.3 are based on stylized simulation scenarios de-

signed to clarify when Move can be advantageous. Further, in the studies we

moved the nearly completely observed variables known to have strong associa-

tions with the variables in F0; in genuine settings we need empirical measures to

identify these variables. In this section we present such measures and investigate

whether or not similar behavior holds for genuine data.

4.1. Illustrative Data: The American Community Survey

The American Community Survey (ACS), an ongoing survey conducted by

the U.S. Census Bureau, collects demographic, housing, social, and economic data

from sampled households along with information on the people who live in these

households. It is a rich and dynamic resource for public policy decision making
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and analysis. Researchers can access public use files from the Integrated Public

Use Microdata Series (IPUMS, usa.ipums.org). Relationships among variables in

the ACS can be complex and difficult to capture with standard imputation models

([15]). Thus, we can benefit from using HCMM-FNF for imputation modeling.

We subset the ACS data to include only household heads who own their

living units, were employed during the year of 2010 in the state of North Car-

olina, and have complete data; this subset has 19, 492 cases. We systematically

sample 1, 026 household heads as our working dataset. To facilitate reasonable

computation time, we choose the 16 variables in Table 1. Since IPUMS processes

the raw data, the percentage of missing values for each variable in the IPUMS file

is less than 2%. We therefore introduce additional missing values for purposes of

the empirical study.

Before presenting results, we note that we repeated both studies on a second

random sample of 1, 026 qualifying household heads. The patterns are very similar

to the ones presented here; see Chapter 4 of [20] for details.

Table 1: Variables in ACS empirical study. First four variables are for

households; the remainder are for the head of the household.

Cts is short for continuous, and Cat is short for categorical.

# Levels is the number of levels of the categorical variable.

PROPTX99 is categorical with a large number of levels, and

is modeled as such. It is treated as continuous when we report

results.

Name Label Cts./Cat.[#Levels]

PROPTX99 Annual property taxes Cat[67]

COSTELEC Annual electricity cost Cts

COSTGAS Annual gas cost Cts

COSTWATR Annual water cost Cts

AGE Age Cts

SEX Sex Cat[2]

MARST Marital status Cat[6]

RACE Race Cat[7]

HCOVANY Any health insurance coverage Cat[2]

EDUC Educational attainment Cat[9]

SCHLTYPE Public or private school Cat[3]

INCTOT Total personal income Cts

OCCSCORE Occupational income score Cts

PWTYPE Place of work: metropolitan status Cat[5]

MIGRATE1 Migration status, 1 year Cat[4]

DIFFSENS Vision or hearing difficulty Cat[2]
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4.2. Studies

As the measure to determine which variables to move into F , we use the

relative mutual information. For any two continuous variables A and B, the

mutual information is

I(A,B) =

∫

B

∫

A

p(a, b) log

(

p(a, b)

p(a)p(b)

)

da db.(4.1)

The relative mutual information with respect to a variable A is a ratio of I(A,B)

over I(A,A). For categorical variables, we replace the integrals with summations.

We run two studies, which we call the high and low mutual information

studies. In each study, we impute the missingness in the working dataset using

three models: HCMM-FNF with Stay, HCMM-FNF with Move, and the mixture

model of [15], which we label HCMM-LD. HCMM-LD does not use any focused

clustering, essentially putting all variables in F . We use the performance of

HCMM-LD as a benchmark for Stay and Move.

High Mutual Information (HMI) Study

We begin with a study in which variables in NF0 are predictive of variables

in X(F0), i.e., they share high amounts of mutual information. From the categor-

ical variables in Table 1, we assign EDUC and PROPTX99 to have 50% values

MCAR and thus to be in F′ automatically. We assign INCTOT, OCCSCORE,

AGE, COSTELEC, COSTGAS, and COSTWATR as Y (NF0), and the remaining

variables as X(NF0). Variables in NF0 have 1% values MCAR.

INCTOT and OCCSCORE have relatively high mutual information with

EDUC and PROPTX99 with values at 0.26 and 0.22, respectively. All other

values are 0.11 or lower, with all but two being below 0.05. Thus, we add INCTOT

and OCCSCORE to the focus variables under Move. We analyze the marginal

probabilities of PROPTX99 and EDUC, and pay special attention to associations

between the variables in F after Move.

Figure 6 displays contour plots from the kernel density estimates of the

standardized values of log(1 + INCTOT ) and PROPTX99 for the missing obser-

vations. The true density is unimodal, concentrated in the area with PROPTX99

from (5, 45) and log(1 + INCTOT ) from (−1.5, 1.2). By comparison, the com-

pleted data density estimates under HCMM-LD and Stay have a large spread

and distorted contours. The density estimate under Move looks most similar to

the truth.
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(a) True (b) HCMM-LD

(c) Stay (d) Move

Figure 6: Contour plots from the kernel density estimates of log(1 + INCTOT )

(standardized) and PROPTX99 for the missing observations in the HMI

study. Each completed-data plot is from one randomly selected dataset.

Figure 7 displays the kernel density estimate of the standardized

OCCSCORE and PROPTX99 for the missing observations. The true density

has two high density, connected modes and one low density, isolated mode.

The small mode reflects household heads whose occupational score is around

1 (41 on the original scale) and pay a high amount for their property taxes. Both

HCMM-LD and Stay have trouble capturing this isolated mode; Move captures

it more effectively than the other models. There are no significant differences

among the three models for other quantities, including the marginal cell counts

of EDUC and the bivariate associations involving EDUC. Details can be found

in Chapter 4 of [20].
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(a) True (b) HCMM-LD

(c) Stay (d) Move

Figure 7: Contour plots from the kernel density of OCCSCORE (stan-

dardized) and PROPTX99 for the missing observations in the

HMI study. Each completed-data plot is from one randomly

selected dataset.

Low Mutual Information (LMI) Study

We next consider a study where we treat EDUC and DIFFSENS as X(F0),

INCTOT and OCCSCORE as Y (F0), PROPTX99, SEX, RACE, MARST,

MIGRATE1, HCOVANY, and PWTYPE as X(NF0), and the remaining vari-

ables as Y (NF0). We again make 50% of values MCAR for variables in F0 and 1%

of values MCAR for variables in NF0. The four variables in F0 frequently are

used to assess socioeconomic status, which motivates why we create a simulation

where they are the variables with high rates of missing data.
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PROPTX99 has high relative mutual information with INCTOT and

OCCSCORE as described previously. It also has relative mutual information

values of 0.16 for EDUC and DIFFSENS, the two categorical focus variables.

Other relationships are comparatively weak, with only one value exceeding 0.10

(AGE and DIFFSENS at 0.13). Thus, we add only PROPTX99 to the focus

variables under Move.

Based on results in Section 3, we do not expect moving PROPTX99 to F to

improve the quality of imputations substantially. In the simulations of Scenario

3 where we moved categorical variables highly associated with continuous Y (F0),

which most closely matches the characteristics of the LMI setting, Move and

Stay had similar performances. The results from LMI bear this out. We compare

the marginal probability densities of INCTOT and OCCSCORE, the marginal cell

counts of EDUC and DIFFSENS, the joint distributions of (INCTOT,

OCCSCORE), (INCTOT, PROPTX99), and (OCCSCORE, PROPTX99), and

the associations of (INCTOT, EDUC), (OCCSCORE, EDUC), (PROPTX99,

EDUC), (INCTOT, DIFFSENS), (OCCSCORE, DIFFSENS), and (PROPTX99,

DIFFSENS). We find that Stay and Move perform very similarly. They also are

not very different from HCMM-LD. To save space, we do not present these results

here; details are in Chapter 4 of [20].

5. CONCLUSION

In general, the results of the artificial data simulations and the empirical

study tell a consistent story. Compared to Stay, Move can improve estimation of

the distribution of focus categorical variables, particularly for their associations

with the variables moved to F . Move improved the estimate of the association

between INCTOT and PROPTX99, as well as OCCSCORE and PROPTX99,

in HMI. The degree of improvement depends on the strength of the association

between X(F0) and NF0. This is evident in the result that Move did not sub-

stantially improve the accuracy of estimates involving EDUC in both HMI and

LMI, as well as those involving DIFFSENS in LMI. For continuous variables in

F0, Stay and Move performed similarly, suggesting that Move does not help much

in terms of accuracy when the initial focus variables are continuous.

As a final comment, we note that Move and Stay can offer computational

advantages over HCMM-LD. With HCMM-LD, one models all continuous vari-

ables with a multivariate normal distribution, which can result in a large number

of covariance parameters when there are many continuous variables. In contrast,

both Stay and Move assume that Y (NF ) are locally independent, thereby remov-

ing them from the multivariate normal distributions.
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Abstract:

• Cluster failure time data are commonly encountered in survival analysis due to dif-

ferent factors such as shared environmental conditions and genetic similarity. In such

cases, careful attention needs to be paid to the correlation among subjects within same

clusters. In this paper, we study a frailty model based on Birnbaum–Saunders frailty

distribution. We approximate the intractable integrals in the likelihood function by

the use of Monte Carlo simulations and then use the piecewise constant baseline haz-

ard function within the proportional hazards model in frailty framework. Thereafter,

the maximum likelihood estimates are numerically determined. A simulation study is

conducted to evaluate the performance of the proposed model and the method of infer-

ence. Finally, we apply this model to a real data set to analyze the effect of sublingual

nitroglycerin and oral isosorbide dinitrate on angina pectoris of coronary heart disease

patients and compare our results with those based on other frailty models considered

earlier in the literature.
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1. INTRODUCTION

It is of natural interest in medical or epidemiological studies to examine

the effects of treatments. Proportional hazards model, proposed by Cox [5], is

the most popular model for the analysis of such survival data which models the

hazard function as

h(t) = h0(t) exp(β′x),

where t, x and h0 are the time to certain event, set of covariates and baseline

hazard function, respectively. This model makes a critical assumption of inde-

pendent observations from the subjects. However, correlation commonly exists

in survival data due to shared environmental factors or genetic similarity. There-

fore, neglecting this correlation may lead to biased results. A convenient choice

for modeling these kinds of correlation in survival data is the frailty model. The

terminology frailty was first introduced by Vaupel et al. [20], while accounting

for the heterogeneity of individuals in distinct clusters. Generally speaking, the

more frail an individual is, the earlier the event of interest will be. A shared

frailty model introduces multiplicative random effects, which is referred to as the

frailty term, in the proportional hazards model, and is defined as follows. Let

(tij , δij , xij), i = 1, ..., n, j = 1, ..., mi, be the failure time, censoring indicator, and

the covariate vector of the jth individual in the ith cluster, where δij is 1 if tij is

not censored and 0 otherwise. Let yi be the frailty shared commonly by all the

subjects in the ith cluster. Then, given yi, tij are assumed to be independent

with hazard function

(1.1) h(tij |yi) = yih0(tij) exp(β′xij).

The frailties yi are assumed to be independent and identically distributed with

a distribution, called the frailty distribution. The baseline hazard h0(tij) is arbi-

trary. A common parametric choice of the baseline hazard is Weibull. Klein [13]

proposed a non-parametric estimate of the cumulative hazard function of baseline

distribution and then used a profile likelihood function.

The most prevailing choice of the frailty distribution is gamma distribution

due to its mathematical simplicity and the mathematical tractability of ensuing

inference [13]. It has a closed-form for the conditional likelihood function, given

the observed data, so that EM algorithm can be applied effectively to obtain

the maximum likelihood estimates. Another possibility is the positive stable

distribution proposed by Hougaard [10]. Furthermore, Hougaard [11] derived

power variance function from the positive stable distribution, which contains the

preceding frailty distributions as special cases. All these distributions have simple

Laplace transforms and therefore facilitates convenient computation of maximum

likelihood estimates. However, there is no real biological reason for their use.

Nevertheless, when the Laplace transform of the frailty distribution is unknown,
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the likelihood function becomes intractable. Lognormal distribution is one such

example. McGilchrist and Aisbett [16] developed a best linear unbiased prediction

(BLUP) estimation method in this case of lognormal frailty model. Balakrishnan

and Peng [2] proposed the generalized gamma frailty model since the generalized

gamma distribution contains the gamma, Weibull, lognormal and exponential

distributions all as special cases. Consequently, the generalized gamma frailty

model becomes more flexible and tend to provide good fit to data as displayed

by Balakrishnan and Peng [2].

The two-parameter Birnbaum–Saunders (BS) family of distributions was

originally derived as a fatigue model by Birnbaum and Saunders [3] for which

a more general derivation from a biological viewpoint was later provided by

Desmond [7]. This distribution possesses many interesting distributional prop-

erties and shape characteristics. In the present work, we use this BS model as

the frailty distribution along with a piecewise constant baseline hazard function

within the proportional hazards model to come up with a flexible frailty model.

The precise specification of this model is detailed in Section 2. An estimation

method to obtain the maximum likelihood estimates of model parameters is pre-

sented in Section 3. A simulation study is conducted in Section 4 to assess the

performance of the proposed method and then the usefulness of the proposed

model and the method of inference is illustrated with a real data in Section 5.

Discussions and some concluding remarks are finally made in Section 6.

2. MODEL SPECIFICATION

2.1. BS distribution as frailty distribution

The BS distribution was originally derived to model fatigue failure caused

under cyclic loading [3]. The fatigue failure is due to the initiation, growth

and ultimate extension of a dominant crack. It is assumed that the total crack

extension Yj due to the jth cycle, for j = 1, ..., are independent and identically

distributed random variables with mean µ and variance σ2. Then, the distribution

of the failure time (i.e., time for the crack to exceed a certain threshold level) is

given by

(2.1) F (t; α, β) = Φ

[

1

α

{

( t

β

)1/2
−

(β

t

)1/2
}

]

, 0 < t < ∞, α, β > 0,

where Φ is the standard normal cumulative distribution function (CDF), and α

and β are the shape and scale parameters, respectively. We now assume that the

frailty random variable Yi in (1.1) follows the BS distribution defined in (2.1).
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Since 1
α

{

(

T
β

)1/2
−

(

β
T

)1/2
}

is a standard normal random variable, the random

variable T is simply given by

(2.2) T = β

{

αZ

2
+

[

(αZ

2

)2
+ 1

]1/2
}2

,

where Z ∼ N(0, 1). The probability density function (PDF) of T , derived from

(2.1), is given by

(2.3) f(t; α, β) =
1

2
√

2παβ

[

(β

t

)1/2
+

(β

t

)3/2
]

exp

[

−
1

2α2

( t

β
+

β

t
− 2

)

]

, t > 0.

The relation between T and Z in (2.2) enables us to obtain the mean and

variance of T easily as

E(T ) = β
(

1 +
1

2
α2

)

,(2.4)

V (T ) = (αβ)2
(

1 +
5

4
α2

)

.(2.5)

In the frailty model in (1.1), if the frailty term yi is assumed to follow the

BS distribution, for ensuring identifiability of model parameters, the mean of the

frailty distribution needs to be set as 1. More specifically, let Y1 be a BS random

variable with shape parameter α and scale parameter β with its mean as 1. Let

Y2 = cY1. Then, E(Y2) = cE(Y1) = c. Besides, we know that if Y1 ∼ BS(α, β),

then cY1 ∼ BS(α, cβ). Therefore, Y2 ∼ BS(α, cβ) with mean c. Then, given the

frailty term y2, the lifetime of the patients are modeled by the hazard function

h(t|y2) = y2h0(t) exp(β′x) = c y1h0(t) exp(β′x).

Let us define ch0(t) to be a new baseline hazard function h1(t), which is nothing

but rescaling the original baseline hazard function. Then, the model can be

rewritten as

h(t|y2) = y1h1(t) exp(β′x),

which is identical to a frailty model with frailty variable Y1 and baseline hazard

function h1(t) = ch0(t).

Thus, the scale parameter β can be written in terms of the shape parameter

α as

(2.6) β =
2

2 + α2
,

so that the variance of the frailty variable Yi becomes

(2.7) V (Yi) =
4α2 + 5α4

α4 + 4α2 + 4
,

which is constrained to be in the interval (0, 5).

Some important discussions on inferential issues for BS distribution can be

found in [1, 4, 8, 9, 15, 17, 18, 19].
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2.2. Piecewise constant hazard as baseline hazard function

The baseline hazard h0(t) in (1.1) is normally assumed in the parametric

setting to be that of exponential or Weibull distribution [11]. However, such a

strong parametric assumption is not always desirable as the resulting inference

may become non-robust. For this reason, we use a piecewise constant hazard func-

tion to approximate the baseline hazard so that it could capture inherent shape

and features of the hazard function better. Let J be the number of partitions

of the time interval, i.e., 0 = t(0) < t(1) < ··· < t(J), where t(J) > max(tij). The

points t(1), ..., t(J) are called cut-points. The piecewise constant hazard function

is then given by

h0(t) = γk for t(k−1) ≤ t < t(k) for k = 1, ..., J.

The corresponding cumulative hazard function is

(2.8) H0(t) =

k−1
∑

q=1

γq

(

t(q) − t(q−1)
)

+ γk

(

t − t(k−1)
)

for t(k−1) ≤ t < t(k),

where γk is a constant hazard for interval
[

t(k−1), t(k)
)

, k = 1, ..., J .

3. ESTIMATION METHOD

Let (tij , δij , xij), i = 1, ..., n, j = 1, ..., mi, be the failure time, censoring in-

dicator, and the covariate vector for the jth individual in the ith cluster and yi

be the frailty term. Then, the full likelihood function of the BS frailty model is

obtained from (1.1) as

L =

n
∏

i=1

∫

∞

0

( mi
∏

j=1

h(tij |yi)
δij S(tij |yi)

)

f(yi) dyi

=

n
∏

i=1

∫

∞

0

[ mi
∏

j=1

(

yih0(tij) exp(β′xij)
)δij

× exp
(

− yiH0(tij) exp(β′xij)
)

]

f(yi) dyi

=

n
∏

i=1

[ mi
∏

j=1

(

h0(tij) exp(β′xij)
)δij

(3.1)

×

∫

∞

0
yδi·

i exp
(

− yi

mi
∑

j=1

H0(tij) exp(β′xij)
)

f(yi) dyi

]

=

n
∏

i=1

[ mi
∏

j=1

(

h0(tij) exp(β′xij)
)δij

Ii

]

,
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where δi· =
∑mi

j=1 δij , H0 is the cumulative baseline hazard function with parame-

ter γ as given in (2.8), f is the PDF of the BS distribution with shape parameter

α and scale parameter β = 2
2+α2 as given in (2.3), and

Ii =

∫

∞

0
yδi·

i exp
(

− yi

mi
∑

j=1

H0(tij) exp(β′xij)
)

f(yi) dyi.

The above expression of Ii can be rewritten as

(3.2) Ii =

∫

∞

−∞

g(zi)
δi· exp

(

− g(zi)

mi
∑

j=1

H0(tij) exp(β′xij)
)

fZ(zi) dzi,

where fZ is the PDF of the standard normal distribution and

g(zi) =
2

2 + α2

{

1 +
α2z2

i

2
+ α zi

(

1 +
α2z2

i

4

)1/2
}

.

The maximum likelihood estimates are hard to determine due to the in-

tractable integral in (3.2) present in the likelihood function in (3.1). A direct and

convenient way is to use Monte Carlo simulation to approximate the integral in

(3.2) as follows:

Ii = EZ

[

g(Z)δi· exp
(

− g(Z)

mi
∑

j=1

H0(tij) exp(β′xij)
)

]

=
1

N

N
∑

k=1

g(z(k))
δi· exp

(

− g(z(k))

mi
∑

j=1

H0(tij) exp(β′xij)
)

,

where z(k), k = 1, ..., N , are the realizations of standard normal random variable.

The log-likelihood function can then be approximated from (3.1) as

(3.3)

l =

n
∑

i=1

[

mi
∑

j=1

δij

(

log h0(tij) + β′xij

)

+ log
1

N

N
∑

k=1

g(z(k))
δi· exp

(

− g(z(k))

mi
∑

j=1

H0(tij) exp(β′xij)
)

]

.

Once the approximate log-likelihood function is obtained as in (3.3), Fisher’s

score function and the Hessian matrix with respect to the parameters α,β, γ can

be obtained readily upon taking partial derivatives of first- and second-order, and

pertinent details are presented in Appendix A. The MLEs of model parameters

can then be obtained by Newton–Raphson algorithm iteratively as
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The iterations need to be continued until the desired tolerance level is achieved,

say, |θ̂i+1 − θ̂i| < 10−6. Finally, the standard errors of the estimates of α,β, γ can

be obtained from the inverse of the Hessian matrix evaluated at the determined

MLEs.

4. SIMULATION STUDY

An extensive simulation study is carried out here to assess the performance

of the proposed model and the method of estimation. We consider 4 scenarios:

(1) n = 100, m = 2, (2) n = 100, m = 4, (3) n = 100, m = 8 and (4) n = 400,

m = 2. Here, the clusters can be considered as hospitals and each subject as a

patient in these hospitals. The patients are randomly assigned to either a treat-

ment group or a control group with equal probability. The frailty term follows (1)

the BS distribution with shape parameter
(2
√

10−2)1/2

3 and scale parameter 9
8+

√

10
,

(2) gamma distribution (GA) with shape parameter 2 and scale parameter 0.5,

(3) lognormal (LN) distribution with µ = − log(1.5)
2 and σ2 = log(1.5). With these

choices of parameters, the mean and variance of the frailty distribution become 1

and 0.5, respectively, for all these frailty distributions. The standard exponential

distribution and the standard lognormal distribution are considered for baseline

distributions. We then set β = − log(2) = −0.6931 so that the hazard rate of

patients in the treatment group is half of those in the control group. Finally, the

censoring times are generated from the uniform distribution in [0, 4.5].

The simulation procedure is as follows:

(1) Generate n frailty values from frailty distributions, i.e., yi, i = 1, ..., n,

and assign each subject in the same cluster with same frailty value.

(2) Assign each patient to treatment group or control group with proba-

bility 0.5.

(3) Given the frailty term, the survival function is

S(tij |yi) = exp
(

−yiH0(tij) exp(βxij)
)

and the cumulative distribution function is

F (tij |yi) = 1 − exp
(

−yiH0(tij) exp(βxij)
)

,

which follows a uniform distribution (0,1). Therefore we generate uij

from Uniform(0,1) and set F (tij |yi) = uij .

(4) Calculate the baseline cumulative hazard function, which is

H0(tij) = −
log(1 − uij)

yi exp(βxij)
.

(5) Solve for the lifetime according to the true baseline distribution, i.e.:

for standard exponential, tij = H0(tij); for standard lognormal, tij =

exp
(

Φ−1(1 − exp(−H0(tij)))
)

since 1 − exp(−H0(tij)) = Φ(log(tij)).
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(6) Now, we generate censoring time cij from Uniform[0,4.5].

(7) Compare tij and cij . If tij <= cij , then set tij to be the observed time

and the censoring indicator δij = 1. If tij > cij , we set cij to be our

observed time and δij = 0.

We generated 1000 data sets under each setting and applied the proposed

semi-parametric BS frailty model to these data sets. For comparative purposes,

we fitted the simulated data sets with the parametric BS frailty model along with

gamma and lognormal frailty models. Thus, we fitted 6 models for each simu-

lated data with frailty distribution to be one of BS, gamma or lognormal, and

the baseline hazard function to be either piecewise constant hazard function or

Weibull hazard function. The primary parameters of interest are the treatment

effect and the frailty variance, and so our attention will focus on these parame-

ters. The estimates of the treatment effect are summarized in Figures 1 and 2,

while Figures 3 and 4 demonstrate how the estimates of the frailty variance dif-

fer under different models. The horizontal black lines are the true values of the

parameters of interest, while the vertical bars give 95% confidence intervals. The

three numbers on the top of each plot are the rejection rate and coverage proba-

bilities at confidence levels of 95% and 90%. The two numbers at the bottom of

each plot provide bias and mean square error for the different models considered.

Figures 1 and 2 clearly show that the choice of frailty distribution has little

impact on the estimate of treatment effect. When the true baseline distribution is

exponential, either Weibull baseline hazard or piecewise constant hazard function

will result in accurate estimation of the treatment effect. However, when the

true baseline distribution is lognormal, use of piecewise constant hazard baseline

distribution results in smaller bias and mean square error than when using the

Weibull distribution as baseline. This reveals that misspecification of the baseline

hazard function impacts the estimate of treatment effect and the semi-parametric

frailty models are therefore better than the parametric frailty models based on

robustness consideration.

The heterogeneity among clusters is explained by the frailty variance and

so it is important to investigate the frailty variance. The estimates of frailty

variance are shown in Figures 3 and 4. BS frailty model always has less mean

square error than the lognormal frailty model no matter what the true frailty

model is. Even though the gamma frailty model generally has smallest bias and

mean square error, its coverage probabilities are quite small and considerably

below the nominal level. Both parametric and semi-parametric BS frailty models

have coverage probabilities close to the nominal level, and so does the lognormal

frailty model. Furthermore, as the sample size gets larger, the estimates become

more precise. When the sample size is small, the rejection rate is small for BS and

lognormal frailty models, but they become larger when the sample size increases.
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Figure 1: Estimate of treatment effect when the true baseline distribution

is exponential.
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Figure 2: Estimate of treatment effect when the true baseline distribution

is lognormal.
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Figure 3: Estimate of frailty variance when the true baseline distribution

is exponential.
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Figure 4: Estimate of frailty variance when the true baseline distribution

is lognormal.
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Table 1 summarizes the selection rate of the models based on the log-

likelihood value. When the true baseline distribution is exponential, the models

with correct frailty distributions generally have the largest selection rate except

when the true frailty distribution is lognormal and the number of clusters is 100.

Table 1: Observed selection rates based on log-likelihood value.

Fitted models True models

baseline frailty
BS GA LN

Exp LN Exp LN Exp LN

n = 100, m = 2

BS 0.385 0.587 0.285 0.296 0.399 0.580
Weibull GA 0.262 0.283 0.418 0.633 0.232 0.280

LN 0.353 0.130 0.297 0.071 0.369 0.140

BS 0.378 0.500 0.282 0.385 0.394 0.532
Piecewise GA 0.242 0.325 0.400 0.489 0.224 0.294

LN 0.380 0.175 0.318 0.126 0.382 0.174

n = 100, m = 4

BS 0.386 0.512 0.227 0.435 0.392 0.506
Weibull GA 0.287 0.322 0.563 0.463 0.249 0.305

LN 0.327 0.166 0.210 0.102 0.359 0.189

BS 0.385 0.449 0.224 0.289 0.381 0.455
Piecewise GA 0.282 0.338 0.571 0.590 0.244 0.286

LN 0.333 0.213 0.205 0.121 0.375 0.259

n = 100, m = 8

BS 0.518 0.594 0.189 0.318 0.467 0.539
Weibull GA 0.203 0.190 0.676 0.579 0.162 0.194

LN 0.279 0.216 0.135 0.103 0.371 0.267

BS 0.510 0.576 0.204 0.209 0.439 0.497
Piecewise GA 0.203 0.225 0.666 0.690 0.186 0.202

LN 0.287 0.199 0.130 0.101 0.375 0.301

n = 200, m = 2

BS 0.362 0.668 0.251 0.673 0.337 0.642
Weibull GA 0.254 0.275 0.508 0.293 0.251 0.290

LN 0.284 0.057 0.241 0.034 0.412 0.068

BS 0.339 0.518 0.268 0.356 0.354 0.548
Piecewise GA 0.284 0.376 0.501 0.597 0.250 0.334

LN 0.377 0.106 0.231 0.047 0.396 0.118

n = 400, m = 2

BS 0.365 0.755 0.221 0.774 0.345 0.714
Weibull GA 0.237 0.237 0.561 0.217 0.214 0.272

LN 0.398 0.008 0.218 0.009 0.441 0.014

BS 0.340 0.545 0.221 0.285 0.339 0.594
Piecewise GA 0.239 0.413 0.546 0.697 0.228 0.352

LN 0.421 0.042 0.233 0.018 0.433 0.054
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Under this situation, the BS frailty models have slightly greater selection rates

than the lognormal frailty model. In fact, the log-likelihood values are quite close

for BS and lognormal frailty models. When the number of clusters increases,

the selection rate of the lognormal frailty model increases and indeed becomes

the largest in the case when the true frailty distribution is lognormal. On the

other hand, when the true baseline distribution is lognormal, the parametric BS

frailty model becomes more likely to be selected, especially when the number of

clusters increases. Use of the piecewise constant hazard baseline function results

in increasing selection probability of the true frailty distribution when the frailty

distribution is gamma. However, the semi-parametric BS frailty model often has

the highest selection rate when the true frailty distribution is lognormal. This

suggests that the semi-parametric BS frailty model often results in MLEs with

larger likelihood values than the semi-parametric lognormal frailty model and

thus provide a better fit to observed data.

In summary, the choice of frailty distribution and the baseline distribution

is a critical issue in frailty modeling. An inappropriate baseline distribution

seems lead to larger errors in the estimation of both treatment effect and the

frailty variance. However, the choice of the frailty distribution has less influence

on estimating the treatment effect, but it highly impacts the estimation of frailty

variance. Finally, the proposed BS frailty model provides a robust estimate of

treatment effect and the frailty variance overall, and generally results in larger

likelihood values among all fitted models. The R codes are available upon request

from the authors.

5. ILLUSTRATIONWITHACORONARYHEARTDISEASESTUDY

In this section, we fit the proposed semi-parametric BS frailty model to a

real data set from Danahy et al. [6] concerning a study of oral administration of

isosorbide dinitrate on 21 coronary heart disease patients, presented in Table 2.

In the study, the patients were treated initially with sublingual nitroglycerin

(SLN) and sublingual placebo (SLP) and then two tests of bike pedalling were

conducted on the patients. Then, they took oral isosorbide dinitrate (OI) and

oral placebo (OP) after which eight bike pedalling tests were given right after

(OI0, OP0) and 1h (OI1, OP1), 3h (OI3, OP3), 5h (OI5, OP5). The times to

angina pectoris were then recorded. Some of the times were censored because the

patients were too exhausted (times with ∗ are the censoring times).

Hougaard [12] studied the effects of the treatments with the proportional

hazards model. In addition, several frailty models with gamma, stable and

power variance function as the frailty distribution, along with non-parametric

and Weibull hazard functions, were fitted to these data. The analyses carried
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out demonstrated that a frailty model fitted the data better than the classical

proportional hazards model, and the power variance function frailty distribution

was more suitable than the gamma frailty distribution. Balakrishnan and Peng

[2] analyzed the same data with a generalized gamma frailty model (GG) with

both parametric and semi-parametric baseline hazard functions. These authors

showed that the generalized gamma frailty model provided a better fit than the

gamma, Weibull and lognormal frailty models, which are all special cases of the

generalized gamma frailty model.

Table 2: Exercise times to Angina Pectoris (in seconds).

ID SLP SLN OP0 OP1 OP3 OP5 OI0 OI1 OI3 OI5

1 155 431 150 172 118 143 136 445∗ 393∗ 226
2 269 259 205 287 211 207 250 306 206 224
3 408 446 221 244 147 250 215 232 258 268
4 308 349 150 290 205 210 235 248 298 207
5 135 175 87 157 135 105 129 121 110 102
6 409 523 301 357 388 388 425 580 613 514
7 455 488 342 390 441 468 441 504∗ 519∗ 484∗

8 182 227 215 210 188 189 208 264 210 172
9 141 102 131 125 99 115 154 110 123 105
10 104 231 108 114 136 111 89 145 172 123
11 207 249 228 224 251 206 250 230 264 216
12 198 247 190 199 243 222 147 403 290 208
13 274 397 234 249 267 241 231 540∗ 370 316
14 191 251 218 194 197 223 224 432 291 212
15 156 401 199 329 197 176 152 733∗ 492 303
16 458 766 406 431 448 328 417 743∗ 566 391
17 188 199 194 168 168 159 213 250 150 180
18 258 566∗ 277 264 276 251 490 559∗ 557∗ 439
19 437 552 424 512 560 478 406 651 624 554
20 115 237 234 232 281 237 229 327 280 321
21 200 387 227 199 223 227 265 565∗ 504∗ 517∗

We first investigate the feature of the data through the cumulative haz-

ard plot, presented in Figure 5. The cumulative hazard after taking placebo is

seen to be higher than that after taking sublingual nitroglycerin or isosorbide

dinitrate. The hazard rate is increasing after taking placebo while it looks to

be increasing and then decreasing after taking isosorbide dinitrate. We then

fitted these data with the parametric and semi-parametric BS frailty models.

The obtained results are presented in Tables 3 and 4. In addition, we fit-

ted the parametric and semi-parametric gamma (GA), lognormal (LN) and in-

verse Gaussian (IG) frailty models to these data. Furthermore, for compara-

tive purpose, we also include estimates of the generalized gamma frailty model

(GG) from [2]. The minimum and maximum time to angina pectoris were

87s and 766s, respectively. Figure 6 is a histogram of observed times and it
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shows that the data is sparse at the tail. So, we chose the cutpoints to be

t(0) = 87, t(1) = 150, t(2) = 200, t(3) = 250, t(4) = 300, t(5) = 400, t(6) = 766 to cap-

ture changes in the piecewise constant hazard baseline function.
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Figure 5: Cumulative hazard plot of the treatments.

Table 3: Fitted frailty models with Weibull baseline hazard function.

BS GA LN IG GG

SLN −1.54(0.34) −1.51(0.34) −1.55(0.34) −1.43(0.34) −1.51(0.34)
OP0 0.69(0.33) 0.69(0.33) 0.69(0.33) 0.7(0.33) 0.67(0.33)
OP1 0.12(0.32) 0.13(0.32) 0.12(0.32) 0.17(0.32) 0.11(0.33)
OP3 0.26(0.33) 0.28(0.33) 0.26(0.33) 0.24(0.33) 0.27(0.32)
OP5 0.63(0.33) 0.64(0.33) 0.63(0.33) 0.57(0.33) 0.66(0.32)
OI0 0.13(0.33) 0.15(0.33) 0.13(0.33) 0.15(0.33) 0.19(0.32)
OI1 −2.67(0.41) −2.64(0.41) −2.68(0.41) −2.55(0.4) −2.54(0.39)
OI3 −1.38(0.36) −1.37(0.36) −1.40(0.36) −1.36(0.36) −1.31(0.35)
OI5 −0.35(0.35) −0.35(0.35) −0.37(0.35) −0.41(0.35) −0.38(0.33)

log(p) 1.59(0.06) 1.58(0.05) 1.59(0.06) 1.56(0.05) 1.59(0.06)
log(λ) −25.66(1.53) −25.44(1.44) −25.49(1.66) −25.34(1.58) −25.40(8.14)

Frailty variance 3.35(0.45) 2.51(0.07) 49.33(54.78) 10.87(1.19) 232.27(617.98)

Log−likelihood −1121.86 −1124.86 −1122.12 −1123.00 1120.92
AIC 2267.71 2273.72 2268.23 2270.00 2267.82
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Table 4: Fitted frailty models with piecewise constant baseline

hazard function.

BS GA LN IG GG

SLN −1.38(0.34) −1.38(0.33) −1.38(0.34) −1.43(0.33) −1.37(0.34)
OP0 0.57(0.33) 0.59(0.33) 0.58(0.33) 0.50(0.32) 0.56(0.33)
OP1 −0.004(0.32) 0.01(0.32) −0.01(0.32) −0.07(0.31) −0.06(0.31)
OP3 0.20(0.33) 0.22(0.32) 0.20(0.33) 0.12(0.32) 0.17(0.33)
OP5 0.50(0.32) 0.52(0.32) 0.50(0.32) 0.42(0.32) 0.48(0.32)
OI0 0.05(0.32) 0.06( 0.32) 0.05(0.32) −0.02(0.32) 0.09(0.32)
OI1 −2.18(0.38) −2.24(0.38) −2.17(0.39) −2.21(0.38) −2.16(0.38)
OI3 −1.29(0.35) −1.32(0.35) −1.29(0.35) −1.34(0.35) −1.28(0.35)
OI5 −0.39(0.34) −0.41(0.34) −0.40(0.34) −0.46(0.33) −0.41(0.41)

log(γ1) −5.42(0.42) −5.37(0.43) −5.64(0.77) −5.48(0.48) −4.76(0.49)
log(γ2) −3.96(0.48) −3.95(0.46) −4.15(0.76) −3.98(0.44) −3.24(0.48)
log(γ3) −2.49(0.49) −2.48(0.46) −2.70(0.78) −2.52(0.42) −1.79(0.51)
log(γ4) −1.83(0.52) −1.79(0.49) −2.05(0.80) −1.91(0.42) −1.14(0.57)
log(γ5) −2.08(0.55) −1.98(0.50) −2.30(0.83) −2.19(0.43) −1.38(0.61)
log(γ6) −0.57(0.56) −0.43(0.50) −0.79(0.84) −0.71(0.41) 0.08(0.62)

Frailty variance 3.02(0.47) 2.34(0.07) 16.67(17.45) 10.52(1.17) 56.18(105.16)

Log−likelihood −1111.88 −1116.58 −1112.16 −1111.562 −1111.39
AIC 2255.75 2265.16 2256.31 2255.12 2256.78

Figure 6: Histogram of observed times.

All the models result in similar estimates of the treatment effects, which

are consistent with the results of Hougaard [12] and Balakrishnan and Peng [2].

Among all the frailty models fitted, the parametric BS frailty models provided the

best fit since they had the smallest AIC values compared to other parametric mod-

els, even compared to the parametric generalized gamma frailty model possessing

one extra shape parameter. Among the semi-parametric models, even though

the inverse Gaussian model has the smallest AIC, the AIC of semi-parametric BS

frailty model is quite close. Upon comparing the parametric and semi-parametric

frailty models, we note that the semi-parametric frailty model has smaller AIC

than its parametric counterparts. It is of interest to notice that estimates of
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frailty variance are quite large for parametric lognormal and generalized gamma,

and so are their standard errors. It is because we estimate the parameter of

the frailty distribution (i.e., shape parameter for BS, gamma and inverse Gaus-

sian and standard deviation of logarithm for lognormal), the estimates of frailty

variance and its standard error are obtained by delta method. Small changes of

estimate of parameter for lognormal distribution results in large change in esti-

mate of its variance. The estimated CDF is presented in Figure 7. The black

step curve is the non-parametric CDF obtained from the Kaplan–Meier estimates.
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Figure 7: Fitted cumulative distribution functions.

We can see all the eight models fit the data well. To quantify the goodness-of-

fit, we calculate the Kolmogorov–Smirnov distance (KSD) between the CDF of

fitted models and the non-parametric CDF, presented in Table 5. It is defined

as D = sup|F̂ (t) − F̂km(t)|. It is seen clearly that piecewise linear baseline is

better than Weibull baseline for all the models considered. This is also seen in

the maximized log-likelihood and AIC values in Tables 3 and 4. Overall, the fits

as measured by KSD are all quite similar with those by AIC indicating BS and

IG models to be better. We also should examine the residuals to check the error.

Figure 8 presents the deviance residuals, which is defined as

Drij
= sign(rij)

√

−2
[

rij + δij log(δij − rij)
]

,

where rij = δij + log(Ŝ(tij)). It can be seen that the deviance residuals are ran-

domly distributed along 0. The deviance residuals should follow a standard nor-

mal distribution. For checking this, the QQ plot and envelopes of the deviance

residuals are presented in Figure 9. It seems that all the models satisfy the nor-

mality assumption and the semi-parametric models are slightly better than the
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parametric ones. The right tail of semi-parametric gamma frailty model deviates

from the straight line more than the others. Semi-parametric BS, lognormal and

inverse Gaussian frailty models are quite similar. Overall, semi-parametric BS is

seen to be quite a robust model for modeling these clustered failure time data.

Table 5: KSD between estimated CDF and non-parametric CDF.

Frailty Baseline OI0 OI1 OI3 OI5 OP0 OP1 OP3 OP5 SLN SLP Overall

BS piecewise 0.15 0.22 0.22 0.12 0.19 0.11 0.07 0.17 0.16 0.12 0.22
GA piecewise 0.19 0.21 0.18 0.15 0.23 0.14 0.11 0.20 0.19 0.12 0.23
IG piecewise 0.13 0.18 0.21 0.12 0.13 0.07 0.10 0.13 0.11 0.20 0.21
LN piecewise 0.12 0.19 0.20 0.10 0.12 0.06 0.09 0.11 0.09 0.19 0.20
BS Weibull 0.13 0.25 0.23 0.12 0.18 0.11 0.12 0.15 0.11 0.14 0.25
GA Weibull 0.16 0.19 0.19 0.12 0.23 0.15 0.10 0.18 0.12 0.12 0.23
IG Weibull 0.24 0.25 0.22 0.23 0.24 0.14 0.21 0.25 0.23 0.28 0.28
LN Weibull 0.17 0.22 0.21 0.15 0.18 0.10 0.15 0.18 0.18 0.20 0.22
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Figure 8: Deviance residuals.
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Figure 9: QQ plots for deviance residuals.

6. DISCUSSION AND CONCLUDING REMARKS

In this work, we have proposed a semi-parametric frailty model with BS frailty

distribution. The non-parametric choice of baseline hazard function provides a ro-

bust and flexible way to model the data. The determination of MLEs becomes

very difficult due to the intractable integrals present in the likelihood function.

For this reason, Monte Carlo simulations are used to approximate the likelihood

function upon exploiting the relationship between BS and standard normal distri-

butions and then expressing those integrals as expectations of some functions of

standard normal variables. From the simulation study carried out and the illus-

trative example analyzed, the semi-parametric BS frailty model is seen to be quite

robust in estimating the covariate effects as well as the frailty variance. Interest-

ingly, it is seen to be even better than the three-parameter generalized gamma

frailty model though the latter has an extra shape parameter. It is of interest to

mention that the work carried out here can be generalized in two different direc-

tions. The BS distribution can be generalized by assuming that the variable Z in

(2.2) follows a standard elliptically symmetric distribution, including power expo-

nential, Laplace, Student t and logistic distributions. SuchageneralizedBirnbaum–

Saunders (GBS) distribution (see [14]) could be assumed for the frailty term yi

in (1.1) and then the resulting GBS frailty model could be studied in detail.

Next, we could allow for the possibility of a cure of patients within the context of

BS frailty model and develop the corresponding analysis. Work is currently under

progress on these problems and we hope to report these findings in a future paper.
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APPENDIX A — FIRST- AND SECOND-ORDER DERIVATIVES

OF THE LOG-LIKELIHOOD FUNCTION

The first- and second-order derivatives of the log-likelihood function with

respect to α,β and γ are as follows:

∂l

∂α
=

n
∑

i=1

1

Ii

∂Ii

∂α
,

∂l

∂β
=

n
∑

i=1

[

mi
∑

j=1

δij xij +
1

Ii

∂Ii

∂β

]

,

∂l

∂γ
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n
∑

i=1

[ mi
∑
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δij

h0(tij)
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1
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]
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1
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i

(
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1
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∂2Ii

∂α2

]

,

∂2l

∂α∂βT
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where
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in the above expressions, the quantities El,i (l = 1, ..., 10) are given by
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1. INTRODUCTION

Cox (1972) proportional hazard model (PHM) is commonly used to model

survival data as a function of the covariates. Sometimes the observed source

of variation in the explanatory variables fail to account for the true differences

in risk. That is,in addition, there are other important but omitted unobserved

variables present. These unobserved random effects are modeled by introducing a

frailty variable Z. More precisely we assume that (T, Z) is a pair of non-negative

random variables such that for each z in the support of the distribution of Z, the

conditional distribution of T given Z = z is absolutely continuous with hazard

rate λ(t|z) given by

(1.1) λ(t|z) = zλ0(t), t > 0,

where λ0(t) is the base line hazard rate independent of z. It will be helpful to

think of T as the age at death and λ(t|z) as the hazard rate at age t for a person

with frailty Z, see Vaupel et al. (1979).

The model (1.1) states that the hazard rate of an individual is the product

of the specific quantity z and the base line hazard λ0(t) describing the age.

In addition to introducing the unobserved random effects in a multiplicative

manner, various other forms have been studied in the literature in the context

of random effect models. More recently, there has been an interest in studying

additive frailty models. Tomazalla et al. (2006) have analyzed recurrent event

data considering a homogeneous Poisson process with additive frailty intensity.

Silva and Amaral Turkman (2004) have considered Bayesian analysis of an ad-

ditive survival model with frailty. Yin and Ibrahim (2005) presented a class of

Bayesian shared Gamma frailty models with multivariate failure time data.

In this paper, we shall study a very general frailty model where the condi-

tional failure rate λ(t|z) = λ(t, z), is an appropriate general function of t and z.

Obviously, the multiplicative (proportional hazards) as well as the additive model

can be studied under this umbrella.

A basic problem in a frailty model is the modeling of the probability distri-

bution of Z. The choice of the frailty distribution strongly affects the estimate of

the base line hazard as well as that of the conditional probabilities, see Hougaard

(1984, 19991, 1995, 2000), Heckman and Singer (1984) and Agresti et al. (2004).

Agresti et al. (2004) have demonstrated that a considerable loss of efficiency

can result from assuming a parametric distribution for a random effect that is

substantially different from that of the true population.These authors observed

that the misspecification of random effect has the potential for a serious drop

of efficiency in the prediction of random effects and the estimation of other pa-

rameters. In the absence of a theoretical basis for selecting the distribution of
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frailty, the choice of the distribution of Z is often made on the basis of math-

ematical tractability and the nice properties of the resulting distributions. For

this reason, frailty distributions having a tractable Laplace transform are natu-

ral choices. The gamma distribution, the inverse Gaussian distribution and the

family of stable distributions are popular choices for modeling the distribution of

Z. Some researchers propose nonparametric modeling of the frailty distribution,

see Heckman and Singer (1984) and Anderson et al. (1992).

Hougaard (2000) provides some guidelines for choosing an appropriate frailty

distribution.The comparison is made in three directions:

(1) Theoretical comparison describing the nice properties of the frailty

distribution. For example, the gamma distribution and the inverse

Gaussian distribution are easibly tractable.

(2) Comparison of fit: The fit and the flexibility of the models are im-

portant factors in comparison. The stable frailty distribution implies

high early dependence, whereas the gamma frailty model describes

high late dependence.

(3) Various measures of dependence: The measures of dependence depend

on the frailty distribution. The expressions for various dependence

measures depend on the frailty distribution. For some frailty distri-

butions, it is simple to evaluate these measures.

For more discussion, see Hougaard (2000).

Since different level distributions of frailty give rise to different population

level distribution for analyzing survival data, it is appropriate to investigate how

the comparative effect of two frailties translates into the comparative effect on

the survival distribution. The stochastic orderings on various characteristics of

the model can be studied by using the general results contained in Gupta and

Gupta (2009, 2010). Also see Gupta and Kirmani (2006).

The aim of this paper is to study a general bivariate correlated frailty model

and the association measure due to Clayton (1978). The bivariate correlated

model and its derivatives have been studied in the literature in the context of

twin’s survival, see for example Yashin and Iachine (1995a, 1995b) and Yashin et

al. (1995). The idea of using the shared relative risk in bivariate survival models

was first discussed by Clayton (1978) who suggested an approach to the analysis

of association between two survival times based on the limiting properties of

certain contingency tables. Later this approach was followed by Oakes (1989) in

the proportional hazards shared frailty model. He introduced the notion of the

local association measure which characterizes the limiting behaviour of the odds

ratio statistics for the dependent life spans. The properties of this measure were

studied by Anderson et al. (1992).
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We obtain a general expression for the population level survival function.

The proportional hazards as well as the additive hazards case is studied. General

expressions for the Clayton’s(1978) association measure are obtained.The results

are illustrated for the gamma frailty model and the inverse Gaussian frailty model.

The organization of this paper is as follows: Section 2 contains the gen-

eral bivariate correlated frailty model and an expression for the population level

survival function. Explicit expressions are obtained for the bivariate gamma cor-

related model. The Clayton’s association measure is studied in Section 3. Results

are derived for the multiplicative as well as the additive frailty models. Several

examples are provided. It also contains the results for the shared frailty model.

Section 4 contains some practical examples from the literature. Finally, some

conclusions and comments are provided in Section 5.

2. BIVARIATE CORRELATED FRAILTY MODEL

Let Ti and Zi, i = 1, 2 be the life spans and frailty variables for the two

related individuals with dependent individual hazards µi(xi,Zi), i = 1, 2. The

functional form of µi(xi,Zi) is assumed to be the same for both individuals. We

assume that the life spans T1 and T2 are conditionally independent given Z1

and Z2. Also the joint, conditional and marginal distributions are absolutely

continuous.

Then the joint conditional survival function of T1 and T2 is given by

S(x1, x2|z1, z2) = exp
{

−
(

H1(x1, z1) +H2(x2, z2)
)}

,

where

Hi(xi,zi) =

∫ xi

0
µi(ui, zi)dui, i = 1, 2.

The unconditional survival function is given by

S(x1, x2) =

∫ ∫

exp
{

−
(

H1(x1, z1) +H2(x2, z2)
)}

g(z1, z2) dz1 dz2,

where g(z1, z2) is the joint probability density function (pdf) of (Z1, Z2).

This gives

Si(x1, x2) =
∂

∂xi

S(x1, x2)

= − EZ1,Z2

[

µi(xi, Zi) exp
{

−
(

H1(x1, Z1) +H2(x2, Z2)
)}]

, i = 1, 2,

and

f(x1, x2) =
∂2

∂x1∂x2
S(x1, x2)

= EZ1,Z2

[

µ1(x1, Z1)µ2(x2, Z2) exp
{

−
(

H1(x1, Z1) +H2(x2, Z2)
)}]

.
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Thus

f(x1, x2)

S(x1, x2)
=

1

S(x1, x2)

∫ ∫

µ1(x1, z1)µ2(x2, z2)

× exp
{

−
(

H1(x1, z1) +H2(x2, z2)
)}

g(z1, z2) dz1 dz2

=

∫ ∫

µ1(x1, z1)µ2(x2, z2) g
(

z1, z2 |T1>x1, T2>x2

)

dz1 dz2(2.1)

= ρµ1,µ2
(x1,x2)σµ1

(x1,x2)σµ2
(x1, x2) + µ1(x1, x2)µ2(x1, x2),

where

µi(x1, x2) = E
[

µi(xi,Zi) |T1>x1, T2>x2

]

, i = 1, 2,

ρ(., .) is the conditional correlation coefficient and σµii
|T1>x1, T2>x2, i = 1, 2

is the conditional standard deviation.

Also

g
(

z1, z2 |T1>x1, T2>x2) =
exp

{

−
(

H1(x1, z1) +H2(x2, z2)
)}

S(x1, x2)
g(z1, z2)

is the conditional pdf of Z1, Z2 given T1 > x1, T2 > x2.

The hazard components are given by

hi(x1, x2) = −
∂

∂xi

lnS(x1,x2)

= −

∫ ∫

µi(xi,zi) g
(

z1, z2 |T1>x1, T2>x2

)

dz1 dz2

= −E
[

µi(xi, Zi) |T1>x1, T2>x2

]

= −µi(x1, x2), i = 1, 2.

Note that the expectations are taken with respect to the conditional distribution

of the joint distribution of the frailty given T1 > x1, T2 > x2.

Define

φ(x1, x2) =
∂2

∂x1∂x2
lnS(x1, x2)

=
f(x1, x2)

S(x1, x2)
− h1(x1, x2)h2(x1, x2)

= E
[

µ1(x1, Z1)µ2(x2, Z2) |T1>x1, T2>x2

]

− E
[

µ1(x1, Z1) |T1>x1, T2>x2)
][

E
[

µ2(x2, Z2) |T1>x1, T2>x2

]]

= Cov
[

µ1(x1, Z1), µ2(x2, Z2) |T1>x1, T2>x2

]

= ρ
[

µ1(x1, Z1), µ(x2, Z2) |T1>x1, T2>x2

]

×
[

σµ1(x1,Z1) |T1>x1, T2>x2

][

σµ2(x2,Z2) |T1>x1, T2>x2

]

.

Let

A(x1, x2) =

∫ x2

0

∫ x1

0
φ(u1, u2) du1 du2.
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Thus

lnS(x1, x2) =

∫ x2

0

∫ x1

0
φ(u1, u2) du1 du2 −

∫ x1

0
ψ1(u) du −

∫ x2

0
ψ2(u) du,

for some appropriate functions ψ1(.) and ψ2(.).

Finally,

S(x1, x2) = exp

{
∫ x2

0

∫ x1

0
φ(u1, u2) du1 du2 −

∫ x1

0
ψ1(u) du −

∫ x2

0
ψ2(u) du

}

= S1(x1)S2(x2) exp{A(x1, x2)},

where

Si(xi) = exp

{

−

∫ xi

0
ψi(u) du

}

, i = 1, 2.

We now present a bivariate gamma correlated frailty model.

2.1. Bivariate Gamma Correlated Frailty Model

Suppose Y0, Y1 and Y2 are independent random variables and Z1 =Y0+Y1,

Z2 = Y0 + Y2. Then Z1 and Z2 are correlated since they contain the common

part Y0. This constitutes one of the ways of constructing bivariate distributions,

see Marshall and Olkin (1988). Let

(2.2) S(x1, x2|z1, z2) = exp
{

−
(

H1(x1)z1 +H2(x2)z2
)}

,

i.e., given Z1 and Z2, the life spans T1 and T2 are independent. This is the

proportional hazards bivariate correlated model. The unconditional distribution

is given by

(2.3)
S(x1, x2) =

∫∫∫

exp
{

−
(

(y0 + y1)H1(x1) + (y0 + y2)H2(x2)
)}

× g0(y0) g1(y1) g2(y2) dy0 dy1dy2,

where g0(.), g1(.) and g2(.) are the pdf ′s of Y0, Y1 and Y2. Denoting by LY0
(.),

LY1
(.) and LY2

(.) the Laplace transform of Y0, Y1 and Y2, it can be seen that

(2.4) S(x1, x2) = LY0

[

H1(x1) +H2(x2)
]

LY1
[H1(x1)]LY2

[H2(x2)].

We shall now derive the correlated frailty model of Yashin et al. (1995); see

also Korsgaard and Anderson (1998).

Let Y0, Y1, Y2 have independent gamma distribution with parameters (α0, β0),

(α1, β1) and (α2, β2) having pdf ′s

(2.5) gi(yi) =
1

βαi

i Γ(αi)
e−yi/βi yαi−1

i , yi > 0, i = 0, 1, 2.
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To ensure that Z1 and Z2 are gamma distributed, we make the assumption

(on the scale parameters) that β0 = β1 = β2 = β (say). Note that this assump-

tion is not a restriction for population of unrelated individuals since gamma

distributed variables Zi, i = 1, 2 can be decomposed this way. Thus

E(Z1) = (α0 + α1)β, E(Z2) = (α0 + α2)β,

V ar(Z1) = (α0 + α1)β
2, V ar(Z2) = (α0 + α2)β

2.

We now assume that Z1 and Z2 have the same gamma distribution. To do

this, we assume that α1 = α2 = α (say). This condition is relevant in twin studies

when there is no reason to assume different distributions of frailty for the twins.

The correlation coefficient between Z1 and Z2 is

ρZ =
V ar(Y0)

√

V ar(Z1)V ar(Z2)
=

α0

α0 + α
.

This implies that α0 = αρZ/(1 − ρZ).

We now use the standard assumption that the mean frailty of the individ-

uals is 1. This condition is typical for proportional hazards models which do not

contain a frailty term, but covariates. This will imply that V ar(Z1) = V ar(Z2) =

β = σ2
Z (say) and hence α0 = ρZ/σ

2
Z . Note that the formulated assumptions sig-

nificantly restrict the class of frailty models which we propose here. However, this

class is still wide enough to include individual frailty models and shared frailty

models with gamma distributed random effects as particular cases.

Noting that LY0
(t) = (1 + βt)−α0 , LY1

(t) = LY2
(t) = (1 + βt)−α, it can be

verified that

(2.6)
S(x1, x2) =

[

1 + σ2
Z

(

H1(x1) +H2(x2)
)]

−ρZ/σ2

Z

×
[(

1 + σ2
Z(H1(x1))

) (

1 + σ2
z(H2(x2))

)]

−(1−ρZ)/σ2

Z .

Shared Frailty Model

In the shared frailty model, the two shared components are identical and,

therefore, ρZ = 1. The survival function is given by

(2.7) S(x1, x2) =
[

1 + σ2
Z

(

H1(x1) +H2(x2)
)]

−(1/σ2

Z
)
.

Remark 2.1. Recently Hanagal and Dabade (2015) have considered four

shared frailty models. These models have been illustrated with real life bivariate

survival data related to kidney infection.
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3. CLAYTON’S ASSOCIATION MEASURE

In the context of bivariate survival models induced by frailties, Oakes (1989)

studied the following association measure

θ(x1, x2) =
SS12

S1S2
,

where S = S(x1, x2) is the survival function, S12 = ∂2S(x1, x2)/∂x1∂x2, S1 =
∂

∂x1
S(x1, x2) and S2 = ∂

∂x2
S(x1, x2); see also Clayton (1978).

Clayton (1978) presented the above association measure, deriving from the

Cox model, in a study of the association between the life spans of fathers and

their sons.

It can be easily seen that

θ(x1, x2) =
r(x1|T2 = x2)

h1(x1, x2)
.

The numerator is the hazard rate for sons at time x1 given that their fathers died

at x2. The denominator is the hazard rate for sons at time x1 given that their

fathers live past x2. Also

r(x1|T2 = x2) = −S12/S2 and h1(x1, x2) = −S1/S.

For the bivariate frailty model considered before, we have from (2.1)

f(x1, x2)

S(x1, x2)
= ρµ1,µ2

(x1,x2)σµ1
(x1,x2)σµ2

(x1, x2) + µ1(x1, x2)µ2(x1, x2),

and
S1(x1, x2)

S(x1, x2)

S2(x1, x2)

S(x1, x2)
= µ1(x1, x2)µ2(x1, x2).

Thus

θ(x1, x2) = 1 +
σµ1

(x1,x2)σµ2
(x1, x2)

µ1(x1, x2)µ2(x1, x2)
ρµ1,µ2

(x1,x2)(3.1)

= 1 + [CVµ1
(x1, x2)] [CVµ2

(x1, x2)] ρµ1,µ2
(x1,x2),

where CVµi
(x1, x2) is the coefficient of variation, i = 1, 2.

Note that all expectations are taken with respect to the conditional distri-

bution of (Z1, Z2) given T1 > x1, T2 > x2.
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It is, therefore, clear that

θ(x1, x2) > 1, if ρµ1,µ2
(x1,x2) > 0

< 1, if ρµ1,µ2
(x1,x2) < 0

= 1, if ρµ1,µ2
(x1,x2) = 0.

It is also clear that

θ(x1, x2) > 1, if φ(x1,x2) > 0

< 1, if φ(x1, x2) < 0

= 1, if φ(x1,x2) = 0.

3.1. Proportional Hazards Bivariate Correlated Frailty Model

In this case

µ1(x1, Z1) = Z1µ1(x1),

µ2(x2, Z2) = Z2µ2(x2).

It can be verified that

ρµ1,µ2
(x1,x2) =

Cov
(

µ1(x1, Z1), µ2(x2, Z2)
)

√

V ar(µ1(x1, Z1))V ar(µ2(x2, Z2))

=
µ1(x1)µ2(x2) ρZ1,Z2

(x1, x2)σZ1
(x1, x2)σZ2

(x1, x2)

µ1(x1)µ2(x2)σZ1
(x1, x2)σZ2

(x1, x2)

= ρZ1,Z2
(x1, x2).

Also

CVµi
(x1, x2) = CVZi

(x1, x2), i = 1, 2.

Hence

(3.2) θ(x1, x2) = 1 + ρZ1,Z2
(x1, x2)CVZ1

(x1, x2)CVZ2
(x1, x2).

Shared Bivariate Frailty Model

In this case Z1 = Z2 = Z (say) and ρZ1,Z2
(x1, x2) = 1, giving

θ(x1, x2) = 1 + CV 2
Z (x1, x2).
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We now try to give an explicit expression for θ(x1, x2).

The conditional survival function of T1 and T2 given Z = z is

S
(

x1, x2|Z= z) = exp
{

−z
(

H1(x1) +H2(x2)
)}

.

The unconditional survival function is given by

S(x1, x2) =

∫

∞

0
exp

{

−z
(

H1(x1) +H2(x2)
)}

g(z) dz

= LZ

(

H1(x1) +H2(x2)
)

,

where LZ(.) is the Laplace transform of Z.

Thus, the conditional density of Z given T1 > x1, T2 > x2 is given by

g
(

z|T1>x1, T2>x2

)

=
exp

{

−z
(

H1(x1) +H2(x2)
)}

LZ

(

H1(x1) +H2(x2)
) g(z).

It can be verified that

E
[

Z |T1>x1, T2>x2

]

=
−L

′

Z

(

H1(x1) +H2(x2)
)

LZ

(

H1(x1) +H2(x2)
)

and

E
[

Z2 |T1>x1, T2>x2

]

=
L

′′

Z

(

H1(x1) +H2(x2)
)

LZ

(

H1(x1) +H2(x2)
) .

Hence

V ar
[

Z |T1>x1, T2>x2

]

=

[

L
′′

Z

(

H1(x1) +H2(x2)
)

LZ

(

H1(x1) +H2(x2)
)

]

−

[

L
′

Z

(

H1(x1) +H2(x2)
)

LZ

(

H1(x1) +H2(x2)
)

]2

.

Using the above expressions, one can obtain θ(x1, x2).

We now consider some examples

Example 3.1. Z has a gamma distribution with probability density func-

tion ( pdf)

(3.3) g(z) =
1

βαΓ(α)
e−z/β zα−1, z > 0, α > 0, β > 0.

The Laplace transform of Z is given by

LZ(t) =
1

(1 + βt)α
.
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This gives

L
′

Z(t)

LZ(t)
=

−αβ

1 + βt

and
L

′′

Z(t)

LZ(t)
=
αβ2 (α+ 1)

(1 + βt)2
.

It can be easily verified that in this case

(3.4) θ(x1, x2) = 1 +
1

α
.

Note that, in this case, θ(x1, x2) is independent of (x1, x2); see Hanagal

(2011, page 83) Wienke (2010) and Duchateau and Janssen (2008).

Example 3.2. Z has an inverse Gaussian distribution with pdf

(3.5) g(z) =

(

1

2πaz3

)1/2

exp
[

−(bz − 1)2/(2az)
]

, z, a, b > 0.

The Laplace transform of Z is given by

LZ(t) = exp

[

b

a

(

1 −

(

1 +
2a

b2
t

)1/2)]

.

This gives

−L
′

Z(t)

LZ(t)
=

1

(b2 + 2at)1/2

and
L

′′

Z(t)

LZ(t)
=

1 + a(b2 + 2at)−1/2

b2 + 2at
.

It can be verified that, in this case

(3.6) θ(x1, x2) = 1 +
a2

[

b2 + 2a
(

H1(x1) +H2(x2)
)]1/2

.

Remark 3.1. Recently Hanagal and Bhanbure (2016) considered inverse

Gaussian distribution as frailty distribution and three baseline distributions.

They applied these three models to the analysis of kidney infection data.
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Example 3.3. Z has a positive stable distribution with pdf

(3.7) fZ(z) = −
1

πz

∞
∑

k=1

Γ(kα+ 1)

k!
(−z−α)k sin(αkπ), z > 0, 0 < α < 1,

see Duchateau and Janssen (2008) for more explanation and justification of this

distribution as frailty distribution. Note that this density has infinite mean.

Therefore, the variance is undetermined.

The Laplace transform of Z is given by

LZ(t) = e−tα , 0 < α < 1,

whose derivatives are given by

L
′

Z(t) = −αtα−1LZ(t)

and

L
′′

Z(t) = LZ(t)
[

α2t2α−2 − α(α− 1)tα−2
]

.

It can be verified that

(3.8) θ(x1,x2) = 1 +
(1 − α)

α
[

H1(x1 +H2(x2)
]α .

Bivariate Gamma Correlated Proportional Hazards Model

We follow the notations and assumptions given in section 2.1. The condi-

tional survival function is given by

S
(

x1, x2|Z1 = z1, Z2 = z2
)

= S
(

x1, x2 |z1, z2
)

= exp
{

−
(

H1(x1)z1 +H2(x2)z2
)}

.

Here Z1 and Z2 have been taken with the same marginal distribution, but cor-

related. This means that V ar(Z1) = V ar(Z2) = σ2
Z (say). Also the correlation

coefficient between Z1 and Z2 will be denoted by ρZ .

We have

ρZ1,Z2
(x1, x2) =

V arY0
(x1, x2)

σZ1
(x1, x2)σZ2

(x1, x2)
.

Under our assumptions

α0 = ρZ/σ
2
Z , α = (1 − ρZ)/σ2

Z , β = σ2
Z ,

V arY0
(x1, x2) =

α0σ
4
Z

[

1 + σ2
Z

(

H1(x1) +H2(x2)
)]2 =

ρZ σ
2
Z

[

1 + σ2
Z

(

H1(x1) +H2(x2)
)]2 ,
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V arYi
(x1, x2) =

ασ4
Z

[

1 + σ2
ZHi(xi)

]2 =
(1 − ρZ)σ2

Z
[

1 + σ2
ZHi(xi)

]2 , i = 1, 2.

These give

V arZi
(x1, x2) = V arYo

(x1, x2) + V arYi
(x1, x2)

=
ρZσ

2
Z

[

1+σ2
ZHi(xi)

]2
+(1−ρZ)σ2

Z

[

1+σ2
Z

(

H1(x1)+H2(x2)
)]2

[

1 + σ2
ZHi(xi)

]2[
1 + σ2

Z

(

H1(x1) +H2(x2)
)]2 ,

i = 1, 2.

Thus

ρZ1,Z2
(x1, x2) =

=
V arY0

(x1, x2)

σZ1
(x1, x2)σZ2

(x1, x2)

=
ρZ

[

1 + σ2
ZH1(x1)

(

1 + σ2
ZH2(x2)

)]

[

∏i=2
i=1

{

ρZ

[

1+σ2
ZHi(xi)

]2
+(1−ρZ)

[

1+σ2
Z

(

H1(x1)+H2(x2)
)]2

}]1/2
,

(3.9)

Now

E
(

Zi|T1>x1, T2>x2

)

=

= E
(

Y0|T1>x1, T2>x2

)

+ E
(

Yi|T1>x1, T2>x2

)

(3.10)

=
ρZ

[

1 + σ2
ZHi(xi)

]

+ (1 − ρZ)
[

1 + σ2
Z

(

H1(x1) +H2(x2)
)]

[

1 + σ2
ZHi(xi)

][

1 + σ2
Z

(

H1(x1) +H2(x2)
)] , i = 1, 2.

Using the above expressions, the CVZi
(x1, x2) is given by

(3.11)

[

CVZi
(x1, x2)

]2
=

=
ρZσ

2
Z

[

1+σ2
ZHi(xi)

]2
+ (1−ρZ)σ2

Z

[

1+σ2
Z

(

H1(x1) +H2(x2)
)]2

{

ρZ

[

1 + σ2
ZHi(xi)

]

+ (1 − ρZ)
[

1 + σ2
Z

(

H1(x1) +H2(x2)
)]}2 ,

i = 1, 2.

Using the expressions of ρZ1,Z2
(x1, x2), CVZ1

(x1, x2) and CVZ2
(x1, x2),

θ(x1, x2) can be obtained.

Remark 3.2. Eriksson and Scheike (2015) have mentioned a similar for-

mula, in the competing risk set up, in a more complex form. See also Gorfine and

Hsu (2011) where they provide a new class of frailty based competing risk model

for clustered failure time data.

Shared Frailty Model

In this case ρZ = 1 and hence ρZ1,Z2
(x1, x2) = 1 and the expression for

θ(x1, x2) simplifies to

θ(x1, x2) = 1 + σ2
Z .
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3.2. Additive Bivariate Correlated Frailty Model

In this case

µ1(x1, Z1) = Z1 + µ1(x1),

µ2(x2, Z2) = Z2 + µ2(x2).

It can be verified that

ρµ1,µ2
(x1,x2) =

Cov
(

µ1(x1, Z1), µ2(x2, Z2)
)

√

V ar(µ1(x1, Z1))V ar(µ2(x2, Z2))

= ρZ1,Z2
(x1, x2).

Also

CVµi
(x1, x2) =

√

V arZi
(x1, x2)

µi(xi) + E
(

Zi|T1>x1, T2>x2

) , i = 1, 2.

Hence

θ(x1, x2) = 1 + ρZ1,Z2
(x1, x2)

√

V ar(Z1|T1>x1, T2>x2)
(

µ1(x1) + E(Z1|T1>x1, T2>x2)
)

×

√

V ar(Z2|T1>x1, T2>x2)
(

µ2(x2) + E(Z2|T1>x1, T2>x2)
) .(3.12)

Shared Additive Bivariate Frailty Model

In this case Z1 = Z2 = Z (say) and ρZ1,Z2
(x1, x2) = 1, giving

(3.13)

θ(x1, x2) =

= 1 +
V ar

(

Z |T1>x1, T2>x2)
[

µ1(x1)+E
(

Z|T1>x1, T2>x2

)][

µ2(x2)+E
(

Z|T1>x1, T2>x2

)] .

We now try to give an explicit expression for θ(x1, x2).

The conditional survival function of T1 and T2 given Z = z is

S(x1, x2|Z= z) = exp
{

−
(

Λ1(x1) + Λ2(x2) + z(x1 + x2)
)}

where Λ1(x1) and Λ2(x2) are the integrated hazards.



272 Ramesh C. Gupta

The unconditional survival function is given by

S(x1, x2) =

∫

∞

0
exp

{

−
(

Λ1(x1) + Λ2(x2) + z(x1 + x2)
)}

g(z) dz

= H1(x1)H2(x2)LZ(x1 + x2),

where H1(x1) = e−Λ1(x1), H2(x2) = e−Λ2(x2) and LZ(.) is the Laplace transform

of Z.

Thus, the conditional density of Z given T1 > x1, T2 > x2 is given by

g
(

z|T1>x1, T2>x2

)

=
exp

{

−z(x1 + x2)
}

LZ(x1 + x2)
g(z).

It can be verified that

E
[

Z |T1>x1, T2>x2

]

=
−L

′

Z(x1 + x2)

LZ(x1 + x2)

and

E
[

Z2|T1>x1, T2>x2

]

=
L

′′

Z(x1 + x2)

LZ(x1 + x2)
.

Hence

V ar
[

Z |T1>x1, T2>x2

]

=
L

′′

Z(x1 + x2)

LZ(x1 + x2)
−

(

L
′

Z(x1 + x2)

LZ(x1 + x2)

)2

.

The above expressions yield

(3.14) θ(x1, x2) = 1 +

L
′′

Z
(x1+x2)

LZ(x1+x2) −
(

L
′

Z
(x1+x2)

LZ(x1+x2)

)2

[

µ1(x1) −
L
′

Z
(x1+x2)

LZ(x1+x2)

][

µ2(x2) −
L
′

Z
(x1+x2)

LZ(x1+x2)

]
.

We now present some examples

Example 3.4. Suppose Z has a gamma distribution with pdf given by

(3.3). Also its Laplace transform and its derivatives are given in Example 3.1.

It can be verified that

(3.15) θ(x1, x2) = 1 +
αβ2

[

1+β(x1+x2)
]2

[

A(x1, x2) +

{

αβ
[

1+β(x1+x2)
]

}2 ]

−1

,

where

A(x1, x2) = µ1(x1)µ2(x2) +
αβ

[

1+β(x1+x2)
]

(

µ1(x1) + µ2(x2)
)

.

Thus θ(x1, x2) > 1. Also as x1 → ∞ or x2 → ∞, θ(x1, x2) → 1. It is sym-

metric in x1 and x2 and is a decreasing function of x1 or x2.
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Remark 3.3. Note that, in the multiplicative case, the value of θ(x1, x2)

is independent of x1 and x2; see Hanagal (2011, page 83).

Example 3.5. Suppose Z has inverse Gaussian distribution with pdf given

by (3.5). Also its Laplace transform and its derivatives are given in Example 3.2

It can be verified that

(3.16) θ(x1, x2) = 1 +
a
[

b2 + 2a(x1 + x2)
]

−3/2

A(x1, x2) +
[

b2 + 2a(x1 + x2)
]

−1/2
,

where

A(x1, x2) = µ1(x1)µ2(x2) +
[

b2 + 2a(x1 + x2)
]

−1/2(

µ1(x1) + µ2(x2)
)

.

Thus θ(x1, x2) > 1. Also as x1 → ∞ or x2 → ∞, θ(x1, x2) → 1. It is sym-

metric in x1 and x2 and is a decreasing function of x1 or x2.

Example 3.6. Suppose Z has positive stable distribution with pdf given

by (3.7). Also its Laplace transform and its derivatives are given in Example 3.3

It can be verified that

(3.17) θ(x1, x2) = 1 +
α(1 − α) (x1 + x2)

α−2

A(x1 + x2) + α2(x1 + x2)2α−2
,

where

A(x1, x2) = µ1(x1)µ2(x2) + α(x1 + x2)
α−1

(

µ1(x1) + µ2(x2)
)

.

Thus θ(x1, t2) > 1. Also as x1 → ∞ or x2 → ∞, θ(x1, x2) → 1. It is sym-

metric in x1 and x2 and is a decreasing function of x1 or x2.

Bivariate Gamma Correlated Additive Hazards Rate Model

Suppose Y0, Y1 and Y2 are independent random variables and Z1 = Y0 +Y1,

Z2 = Y0 + Y2. Then Z1 and Z2 are correlated.

The conditional survival function is given by

S
(

x1, x2|Z1 = z1, Z2 = z2
)

= H1(x1)H2(x2) e
−(z1x1+z2x2).

We follow the notations and assumptions given in section 2.1. Here Z1

and Z2 have been taken with the same marginal distribution, but correlated.
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This means that V ar(Z1) = V ar(Z2) = σ2
Z (say). Also the correlation coefficient

between Z1 and Z2 will be denoted by ρZ .

We have

ρZ1,Z2
(x1, x2) =

V arY0
(x1, x2)

σZ1
(x1, x2)σZ2

(x1, x2)
.

Under our assumptions

α0 = ρZ/σ
2
Z , α = (1 − ρZ))/σ2

Z , β = 1/σ2
Z ,

V arY0
(x1, x2) =

α0σ
2
Z

[

1 + σ2
Z(x1 + x2)

]2 =
ρZ σ

2
Z

[

1 + σ2
Z(x1 + x2)

]2 ,

V arYi
(x1, x2) =

ασ2
Z

[

1 + σ2
Z xi)

]2 , i = 1, 2.

These give

V arZi
(x1, x2) = V arYo

(x1, x2) + V arYi
(x1, x2)

=
ρZσ

2
Z

[

1+σ2
Z(xi)

]2
+(1−ρZ)σ2

Z

[

1+σ2
Z(x1+x2)

]2

[

1 + σ2
Z(xi)

]2[
1 + σ2

Z(x1 + x2)
]2 , i = 1, 2.

Thus

ρZ1,Z2
(x1, x2) =

V arY0
(x1, x2)

σZ1
(x1, x2)σZ2

(x1, x2)
(3.18)

=
ρZ

[(

1 + σ2
Z(x1)

)(

1 + σ2
Z(x2)

)]

[

∏i=2
i=1

{

ρZ [1+σ2
Z(xi)]2+(1−ρZ)[1+σ2

Z(x1+x2)]2
}

]1/2
.

Now

E
(

Zi|T1>x1, T2>x2) =

= E
(

Y0|T1>x1, T2>x2) + E
(

Yi|T1>x1, T2>x2

)

(3.19)

=
ρZ

[

1+σ2
Z(xi)

]

+ (1−ρZ)
[

1+σ2
Z(x1+x2)

]

[

1 + σ2
Z(xi)

][

1 + σ2
Z(x1 + x2)

] , i = 1, 2.

Using the above expressions, the CVZi
(x1, x2) is given by

(3.20)

[

CVZi
(x1, x2)

]2
=
ρZσ

2
Z

[

1+σ2
Z(xi)

]2
+(1−ρZ)σ2

Z

[

1+σ2
Z(x1+x2)

]2

{

ρZ

[

1+σ2
Z(xi)

]

+ (1−ρZ)
[

1+σ2
Z(x1+x2)

]

}2 , i = 1, 2.

Using the expressions of ρZ1,Z2
(x1, x2), CVZ1

(x1, x2) and CVZ2
(x1, x2),

θ(x1, x2) can be obtained.
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Shared Frailty Model

In this case ρZ = 1 and hence ρZ1,Z2
(x1, x2) = 1 and the expression for

θ(x1, x2) simplifies to

θ(x1, x2) = 1 + σ2
Z .

4. SOME APPLICATIONS

In medical and epidemiological studies, the primary object is to study the

effect of concomitant information on the time to event such as death or recurrence

of a disease. Cox proportional hazard model is commonly used in the analysis of

survival time data.

As has been indicated earlier, there is some amount of unobserved hetero-

geneity among individuals that is not accounted for by the Cox model. Failing

to account this form of heterogeneity between individuals may lead to distorted

results. Models, which account for this form of unobserved heterogeneity, are

known as frailty models. The models are formulated based on the idea that

individuals who are most frail will experience the event of interest earlier than

others.

Price and Manatunga (2000) analyzed the leukemia patients data. In this

data, leukemia patients receive either an allogenic transplant or an autologous

transplant. Patients are followed and time to recurrence is recorded. They ap-

plied, cure models, frailty models and frailty mixture models to analyze this data.

Specifically, the cure models, gamma frailty, gamma frailty mixture, inverse Gaus-

sian frailty, inverse Gaussian mixture and compound Poisson models are utilized

to model the data.

Xue and Ding (1999) applied the bivariate frailty model to inpatients mental

health data. One frailty is used to represent heterogeneity across all hospital stays

and another to represent heterogeneity across all community stays. These two

frailties are jointly distributed. They show that this model offers much more

flexibility than the univariate frailty model in modelling heterogeneity for the

analysis of bivariate survival times.

Hens et al. (2009) considered multisera data on hepatitis A and B. They

applied the bivariate correlated gamma frailty model for type I interval censored

data. They showed that applying a shared rather than a correlated frailty model

to this cross-sectionally collected serological data on hepatitis A and B leads to

biased estimate for the baseline hazards and variance parameters. Weinke et

al. (2003) point out that the shared frailty explains correlation within clusters.

However, it does have some limitations.
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Wienke et al. (2003) applied the correlated gamma frailty model to fit

bivariate time to event (occurrence of breast cancer) data. They fitted the model

for left truncated and right truncated censored data and the analysis accounts

for heterogeneity as well as insusceptible (cure fraction) in the study population.

This approach includes the shared gamma frailty model as a special case. The

correlated gamma model provides a specific parameter for correlation between

the two frailties. They also observed that individual frailties in twin pairs could

not be observed, but their correlation could be estimated by application of the

gamma frailty model.

Weinke et al. (2006) used three correlated frailty models to analyze survival

data by assuming gamma, log-normal and compound Poisson distributed frailty.

All approaches allow to deal with right censored data and account for hetero-

geneity as well as non susceptible (cure fraction) in the study population. Breast

cancer incidence data of Swedish twin pairs illustrate the practical relevance of the

models, which are used to estimate the cure fraction and the correlation between

the frailties of the twin partners.

We have described some applications of frailty models and correlated frailty

models. For more applications, the reader is referred to the bibliography in these

papers and the books on frailty models.

5. SOME CONCLUSION AND COMMENTS

Multivariate survival distributions are used in the analysis of life spans of

related individuals. An important class of such distributions can be derived by

using the concept of random hazards. The randomness is modeled as a frailty

random variable having an appropriate distribution. This paper presents a gen-

eral bivariate correlated frailty model and unifies various results available in the

literature. A bivariate gamma correlated frailty model is studied. Clayton’s as-

sociation measure is derived for the general model under study. Proportional

hazards as well as additive hazards bivariate frailty model is investigated along

with several examples. We hope that the results presented here will be found

useful for researchers dealing with various problems involving frailty.
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to achieve a larger diffusion, and to encourage foreign contributors to submit their 
work. 

At the time, the Editorial Board was mainly composed by Portuguese university 
professors, being now composed by national and international university professors, 
and this has been the first step aimed at changing the character of Revista de 
Estatística from a national to an international scientific journal. 

In 2001, the Revista de Estatística published three volumes special issue containing 
extended abstracts of the invited contributed papers presented at the 23rd 
European Meeting of Statisticians. 

The name of the Journal has been changed to REVSTAT - STATISTICAL 
JOURNAL, published in English, with a prestigious international editorial board, 
hoping to become one more place where scientists may feel proud of publishing 
their research results. 

— The editorial policy will focus on publishing research articles at the highest level 
in the domains of Probability and Statistics with emphasis on the originality and 
importance of the research. 

— All research articles will be refereed by at least two persons, one from the 
Editorial Board and another external. 



— The only working language allowed will be English. — Four volumes are 
scheduled for publication, one in January, one in April, one in July and the other 
in October. 

 

Aims and Scope 

The aim of REVSTAT is to publish articles of high scientific content, in English, 
developing innovative statistical scientific methods and introducing original 
research, grounded in substantive problems. 

REVSTAT covers all branches of Probability and Statistics. Surveys of important 
areas of research in the field are also welcome. 

 

Abstract and Indexing Services 

The REVSTAT is covered by the following abstracting/indexing services: 

- Current Index to Statistics 

- Google Scholar 

- Mathematical Reviews 

- Science Citation Index Expanded 

- Zentralblatt für Mathematic 

 

Instructions to Authors, special-issue editors and publishers 

The articles should be written in English and may be submitted in two different 
ways: 

-  By sending the paper in PDF format to the Executive Editor (revstat@ine.pt) 
and to one of the two Editors or Associate Editors, whose opinion the author 
wants to be taken into account, together to the following e-mail 
address: revstat@fc.ul.pt 

mailto:revstat@ine.pt
mailto:revstat@fc.ul.pt


-  By sending the paper in PDF format to the Executive Editor (revstat@ine.pt), 
together with the corresponding PDF or PostScript file to the following e-
mail address: revstat@fc.ul.pt. 

Submission of a paper means that it contains original work that has not been nor is 
about to be published elsewhere in any form. 

Manuscripts (text, tables and figures) should be typed only in black on one side, in 
double-spacing, with a left margin of at least 3 cm and with less than 30 pages.  
The first page should include the name, institution and address of the author(s) and 
a summary of less than one hundred words, followed by a maximum of six key 
words and the AMS 2000 subject classification. 

Authors are obliged to write the final version of accepted papers using LaTeX, in 
the REVSTAT style. This style (REVSTAT.sty), and examples file 
(REVSTAT.tex), which may be download to PC Windows System (Zip format), 
Macintosh, Linux and Solaris Systems (StuffIt format), and Mackintosh System 
(BinHex Format), are available in the REVSTAT link of the Statistics Portugal 
Website: http://www.ine.pt/revstat/inicio.html 

Additional information for the authors may be obtained in the above link. 

 
 

Accepted papers 

Authors of accepted papers are requested to provide the LaTeX files and also a 
postscript (PS) or an acrobat (PDF) file of the paper to the Secretary of 
REVSTAT: revstat@ine.pt. 

Such e-mail message should include the author(s)’s name, mentioning that it has 
been accepted by REVSTAT. 

The authors should also mention if encapsulated postscript figure files were 
included, and submit electronics figures separately in .tiff, .gif, .eps or .ps format. 
Figures must be a minimum of 300 dpi. 
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Copyright 

Upon acceptance of an article, the author(s) will be asked to transfer copyright of 
the article to the publisher, Statistics Portugal, in order to ensure the widest 
possible dissemination of information, namely through the Statistics Portugal 
website (http://www.ine.pt). 

After assigning copyright, authors may use their own material in other 
publications provided that REVSTAT is acknowledged as the original place of 
publication.  The Executive Editor of the Journal must be notified in writing in 
advance. 
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