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Abstract:

• This paper studies the general multivariate dependence and tail dependence of a ran-

dom vector. We analyse the dependence of variables going up or down, covering the

2
d

orthants of dimension d and accounting for non-positive dependence. We extend

definitions and results from positive to general dependence using the associated cop-

ulas. We study several properties of these copulas and present general versions of the

tail dependence functions and tail dependence coefficients. We analyse the perfect

dependence models, elliptical copulas and Archimedean copulas. We introduce the

monotonic copulas and prove that the multivariate Student’s t copula accounts for

all types of tail dependence simultaneously while Archimedean copulas with strict

generators can only account for positive tail dependence.
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1. INTRODUCTION

A great deal of literature has been written on the analysis of the depen-

dence structure between random variables. There is an increasing interest in the

understanding of the dependencies between extreme values in what is known as

tail dependence. However, the analysis of multivariate tail dependence in copula

models has been exclusively focused on the positive case. Only the lower and

upper tail dependence have been considered, leaving a void in the analysis of

dependence structure implied by the use of these models. In this paper we tackle

this issue by considering the dependence in the 2
d

different orthants of dimension

d for a random vector.

The use of the tail dependence coefficient (TDC) and the tail dependence

function comes as a response to the inability of other measures when it comes to

tail dependence (see [22, 13] and [20, Chapter 5]). This includes the Pearson’s

correlation coefficient and copula measures such as the Spearman’s ρ, Kendall’s τ

and the Blomqvist’s β.

The analysis of lower tail dependence has been derived using the copula,

C, see e.g. [13, 22, 23]. In the context of nonparametric statistics, it is possible

to measure upper tail dependence by using negative transformations or rotations.

However, presenting a formal definition of upper tail dependence in the multi-

variate case and analysing it in copula models can not be achieved by the use

of such methods. Also, trying to define it in terms of C becomes cumbersome

in higher dimensions. By using the survival copula, the results and analysis of

lower tail dependence have been generalised to upper tail dependence. For more

on the analysis of the use of the survival copula for upper tail dependence, see

[10, 23, 14, 15, 20, 27]. The study of non-positive tail dependence is also rele-

vant when dealing with empirical data and in copula models analysis, see e.g.

[32, 4]. In the case of copula models, the study of tail dependence helps in the

understanding of the underlying assumptions implied by the use of these models.

For example, the Student’s t copula is often used to model data with only posi-

tive tail dependence. However, although this model accounts for the positive tail

dependence, it also assumes the existence of negative tail dependence. Table 1

illustrates positive and negative tail dependence in the bivariate case which we

generalise to the multivariate one.

Table 1: Tail dependence in the four different orthants of dimension two

for variables X and Y .

Lower Tail of X Upper Tail of X

Lower Tail of Y
classical lower
tail dependence

upper-lower
tail dependence

Upper Tail of Y
lower-upper
tail dependence

classical upper
tail dependence
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Although much has been written on the need to understand multivariate

non-positive tail dependence, no formal definition has been presented. In this

work we define the necessary concepts to study non-positive tail dependence

in multivariate copula models. We use a copula approach and base our study

on the associated copulas (see [13, p. 15]). If a copula is the distribution of

U= (U1, ..., Ud), the associated copulas are the distribution functions of vectors of

the form (U1, 1−U2, U3, ..., 1−Ud−1, 1−Ud). The use of copulas of transformations

for non-positive dependence is also suggested in [5, 30].

The reasoning behind the use of associated copulas is the same as for the

use of the survival copula for upper tail dependence analysis. Similarly to that

case, the definition and study of non-positive tail dependence is simplified by the

use of these copulas. They enable us to present a unified definition of multivariate

general tail dependence. This definition is consistent with generalisations from

dimension 2 to d of positive tail dependence. The study of the associated copulas

to analyse non-positive tail dependence is then a generalisation of the use of the

copula and the survival copula for lower and upper tail dependence respectively.

The reminder of this work is divided in three sections: In the second section

we present the concepts we use to study dependence in all the orthants. This

includes general definitions of dependence and probability functions. We present

a version of Sklar’s theorem that proves that the copulas that link these gen-

eral probability functions and its marginals are the associated copulas. We then

present four propositions regarding these copulas. At the end of this section we

present general definitions of the tail dependence functions and TDCs. In the

third section we use the results obtained in Section 2 to study the perfect de-

pendence models, elliptical copulas and Archimedean copulas. We present the

copulas of the perfect dependence cases, which include non-positive perfect de-

pendence. We call these copulas the monotonic copulas. We then characterise

the associated elliptical copulas and obtain an expression for the associated tail

dependence functions of the Student’s t copula model. This model accounts for

all 2
d

types of tail dependence simultaneously. After that, we prove that, by

construction, Archimedean copulas with strict generators can not account for

non-positive tail dependence. We then present three examples with non-strict

generators which account for negative tail dependence. At the end of this section

we discuss a method for modelling arbitrary tail dependence using copula models.

Finally, in the fourth section, we conclude and discuss future lines of research for

general dependence.

Unless we specifically state it, all the definitions and results presented re-

garding general dependence are a contribution of this work.



General Multivariate Dependence Using Associated Copulas 5

2. ASSOCIATED COPULAS, TAIL DEPENDENCE FUNCTIONS

AND TAIL DEPENDENCE COEFFICIENTS

In this section we analyse the dependence structure among random variables

using copulas. Given a random vector X = (X1, ..., Xd), we use the corresponding

copula C and its associated copulas to analyse its dependence structure. For this

we introduce a general type of dependence D, one for each of the 2
d

different

orthants. This corresponds to the lower and upper movements of the different

variables.

To analyse different dependencies, we introduce the D-probability function

and present a version of Sklar’s theorem that states that an associated copula

is the copula that links this function and its marginals. We present a formula

to link all associated copulas and three results on monotone functions and asso-

ciated copulas. We then introduce the associated tail dependence function and

the associated tail dependence coefficient for the type of dependence D. These

functions generalise the positive (lower and upper) cases (extensively studied in

[12, 13, 23]). With the concepts studied in this section, we aim to provide the

tools to analyse the whole dependence structure among random variables, includ-

ing non-positive dependence.

2.1. Copulas and dependence

The concept of copula was first introduced by [29], and is now a cornerstone

topic in multivariate dependence analysis (see [13, 22, 20]). We now present the

concepts of copula, general dependence and associated copulas that are funda-

mental for the rest of this work.

Definition 2.1. A multivariate copula C(u1, ..., ud) is a distribution func-

tion on the d-dimensional-square [0, 1]
d

with standard uniform marginal distribu-

tions.

If C is the distribution function of U = (U1, ..., Ud), we denote as Ĉ the

distribution function of (1−U1, ..., 1−Ud). C is used to link distribution functions

with their corresponding marginals, accordingly we refer to C as the distributional

copula. On the other hand, Ĉ is used to link multivariate survival functions with

their marginal survival functions, this copula is known as the survival copula.
1

Let X = (X1, ..., Xd) be a random vector with joint distribution function F , joint

survival function F , marginals Fi and marginal survival functions Fi, for i ∈

1We use the term distributional for C, to distinguish it from the other associated copulas.
The notation for the survival copula corresponds to the one used in the seminal work of [13].
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{1, ...d}. Two versions of Sklar’s theorem guarantees the existence and uniqueness

of a copulas C and Ĉ which satisfy

F (x1, ..., xd) = C
(
F1(x1), ..., Fd(xd)

)
,(2.1)

F (x1, ..., xd) = Ĉ
(
F1(x1), ..., Fd(xd)

)
,(2.2)

see [13, 22]. In the next section we generalise these equations using the concept

of general dependence, which we now define.

Definition 2.2. In d dimensions, we call the vector D = (D1, ..., Dd) a

type of dependence if each Di is a boolean variable, whose value is either L

(lower) or U (upper) for i ∈ {1, ...d}. We denote by ∆ the set of all 2
d

types of

dependence.

Each type of dependence corresponds to the variables going up or down

simultaneously. Tail dependence, which we define later, refers to the case when

the variables go extremely up or down simultaneously. Two well known types

of dependence are lower and upper dependence. Lower dependence refers to the

case when all variables go down at the same time (Di = L for i ∈ {1, ..., d}) and

upper dependence to the case when they all go up at the same time (Di = U

for i ∈ {1, ..., d}). These two cases are examples of positive dependence and

they have been extensively studied for tail dependence analysis, see e.g. [13, 22].

In the bivariate case the dependencies D = (L,U) and D = (U,L) correspond

to one variable going up while the other one goes down. These are examples of

negative dependence. Negative tail dependence is often present in financial time

series, see [32, 4, 14]. Hence, in dimension 2 there are four types of dependence

that correspond to the four quadrants. Note that, in dimension d, for each of the

2
d

orthants we define a dependence D.

Using the concept of dependence, we now present the associated copulas,

see [13, Chapter 1, p. 15].

Definition 2.3. Let X = (X1, ..., Xd) be a random vector with corre-

sponding copula C, which is the distribution function of the vector (U1, ..., Ud)

with uniform marginals. Let ∆ denote the set of all types of dependencies of

Definition 2.2. For D = (D1, ..., Dd) ∈ ∆, let VD = (VD1,1, ..., VDd,d) with

VDi,i =

{
Ui if Di = L

1 − Ui if Di = U
.

Note that VD also has uniform marginals. We call the distribution function of

VD, which is a copula, the associated D-copula and denote it CD. We denote AX

= {CD| D ∈ ∆}, the set of 2
d

associated copulas of the random vector X. Also,

for any ∅ 6= S ⊆ I, let D(S) denote the corresponding |S|-dimensional marginal

dependence of D. Then the copula CD(S), the distribution of the |S|-dimensional

marginal vector (VDi,i| i ∈ S), is known as a marginal copula of CD.
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Note that the distributional and the survival copula are C = C(L,...,L) and

Ĉ = C(U,...,U) respectively.

2.1.1. The D-probability function and its associated D-copula

The distributional copula C and the survival copula Ĉ are used to explain

the lower and upper dependence structure of a random vector respectively. We

use the associated D-copula to explain the D-dependence structure of a random

vector. For this, we first present the D-probability functions, which generalise

the joint distribution and survival functions.

Definition 2.4. Let X = (X1, ..., Xd) be a random vector with marginal

distributions Fi for i ∈ {1, ...d} and D = (D1, ..., Dd) a type of dependence ac-

cording to Definition 2.2. Define the event Bi(xi) in the following way

Bi(xi) =

{
{Xi ≤ xi} if Di = L

{Xi > xi} if Di = U
.

Then the corresponding D-probability function is

FD(x1, ..., xd) = P

(
d⋂

i=1

Bi(xi)

)
.

We refer to

FDi,i =

{
Fi if Di = L

Fi if Di = U
,

for i ∈ {1, ...d} as the marginal functions of FD (note that the marginals are either

univariate distribution or survival functions).

In the bivariate case for example, there are four D-probability functions:

F (x1, x2), F (x1, x2), FLU (x1, x2) = P (X1≤ x1, X2 > x2) and FUL(x1, x2) =

P (X1 > x1, X2 ≤ x2). In general, these functions complement the use of the

joint distribution and survival functions in our analysis of dependence in the

2
d

orthants.

The following theorem presents the associated copula CD in terms of the

FD and its marginals. It is because of this theorem that we can use the associated

copula CD to analyse D-dependence. We restrict the proof to the continuous case

(for Sklar’s theorem for distribution functions see [20, 13, 22]).
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Theorem 2.1. Sklar’s theorem for D-probability functions and

associated copulas.

Let X = (X1, ..., Xd) be a random vector, D = (D1, ..., Dd) a type of de-

pendence, FD its D-probability function and FDi,i for i ∈ {1, ...d} the marginal

functions of FD as in Definition 2.4. Let the marginal functions of FD be contin-

uous and F← denote the generalised inverse of F , defined as F←(u) := inf{x ∈ R |

F(x) ≥ u}. Then the associated copula CD : [0,1]
d→ [0,1], satisfies, for all x1, ..., x2

in [−∞,∞],

(2.3) FD(x1, ..., xd) = CD

(
FD1,1(x1), ..., FDd,d(xd)

)
,

which is equivalent to

(2.4) CD(u1, ..., ud) = FD

(
F←D1,1(u1), ..., F

←
Dd,d(ud)

)
.

Conversely, let D = (D1, ..., Dd) be a dependence and FDi,i a univariate distribu-

tion, if Di = L, or a survival function, if Di = U , for i ∈ {1, ...d}, then:

(a) If CD is a copula, then FD in (2.3) defines a D-probability function

with marginals FDi,i, i ∈ {1, ...d}.

(b) If FD is any D-probability function, then CD in (2.4) is a copula.

Proof: The proof of this theorem is analogous to the proof of Sklar’s

theorem for distribution functions. When two random variables have the same

probability functions, we say they are equivalent in probability and denote it as
P
∼.

In this general version of the theorem, we have that for the distribution function

Fi, the events {Xi≤ xi}
P
∼ {Fi(Xi)≤Fi(xi)} and {Xi>xi}

P
∼ {Fi(Xi)≤ Fi(xi)},

for i ∈ {1, ..., d} and xi ∈ [−∞,∞]. This implies

(2.5) P
(
Bi(xi)

)
= P

(
FDi,i(Xi) ≤ FDi,i(xi)

)
,

for i ∈ {1, ..., d}.

Considering equation (2.5) and Definition 2.4, we have that for any x1, ..., xd

in [−∞,∞]

(2.6) FD(x1, ..., xd) = P
(
FD1,1(X1)≤FD1,1(x1), ..., FDd,d(Xd)≤FDd,d(xd)

)
.

Using the continuity of Fi, we have that Fi(Xi) is uniformly distributed (see

[20, Proposition 5.2 (2)]). Hence, if we define U = (F1(X1), ..., Fd(Xd)), its

distribution function is a copula C. Note that in this case VD, defined as in

Definition 2.3, is equal to (FD1,1(X1), ..., FDd,d(Xd)). It follows that the distribu-

tion function of (FD1,1(X1), ..., FDd,d(Xd)) is the associated copula CD, in which

case equation (2.5) implies

CD

(
FD1,1(x1), ..., FDd,d(xd)

)
= P

(
FD1,1(X1)≤FD1,1(x1), ..., FDd,d(Xd)≤FDd,d(xd)

)
,

and equation (2.3) follows.
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Now, one of the properties of the generalised inverse is that, when T is

continuous, T ◦ T←(x) = x (see [20, Proposition A.3]). Hence, if we evaluate FD

in (F←D1,1(u1), ..., F
←
Dd,d(ud)), using equation (2.3), we get equation (2.4). This

equation explicitly represents CD in terms of FD and its marginals implying its

uniqueness.

For the converse statement of the theorem, we have

(a) Let U= (U1, ..., Ud) be the random vector with distribution function C.

Define X = (X1, ..., Xd) = (F←D1,1(U1), ..., F
←
Dd,d(Ud)) and

Bi(xi) =

{
{Xi ≤ xi} if Di = L

{Xi > xi} if Di = U
,

for i ∈ {1, ...d}. Considering that F (x) ≤ y ⇐⇒ x ≤ F←(y), we have F
←

(x) ≤ y

⇐⇒ x ≥ F (y). Using these properties, we get

{
Ui ≤ FDi,i(xi)

} P
∼ Bi(xi) ,

for i ∈ {1, ...d}. Using this, the D-probability function of X is

P

(
d⋂

i=1

Bi(xi)

)
= C

(
FD1,1(x1), ..., FDd,d(xd)

)
.

This implies that FD defined by (2.3) is the D-probability function of X with

marginals

P
(
Bi(xi)

)
= P

(
Ui ≤ FDi,i(xi)

)
= FDi,i(xi) ,

for i ∈ {1, ...d}.

(b) Similarly, let (X1, ..., Xd) be the random vector with D-probability

function FD. Define U = (U1, ..., Ud) = (FD1,1(X1), ..., FDd,d(Xd)) (note that the

vector is uniformly distributed). Again, using the properties of the generalised

inverse, we have {
Ui ≤ ui

} P
∼ Bi

(
F←Di,i

(ui)
)

,

for i ∈ {1, ...d}. Hence the distribution function of U is FD

(
F←D1,1

(u1), ...,F
←

Dd,d(ud)
)
,

which implies that the function is a copula.

For the properties of the generalised inverse function used in this proof, see

[20, Proposition A.3].

For this theorem we referred to generalised inverse functions as they are

more general than inverse functions. However, whenever we are not proving a

general property, we assume distribution functions have inverse functions.

Note that this theorem implies that in the continuous case CD is the

D-probability function of (FD1,1(X1), ..., FDd,d(Xd)) characterised in (2.3). This
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theorem implies the importance of the associated copulas to analyse dependencies.

It also implies the Fréchet bounds for the D-probability functions of Definition

2.4. The bounds can also be obtained similarly to [13, Theorems 3.1 and 3.5],

max

{
0, FD1,1(x1) + ··· + FDd,d(xd) − (d−1)

}
≤ FD(x1, ..., xd)

≤ min

{
FD1,1(x1), ..., FDd,d(xd)

}
.(2.7)

2.1.2. Properties of the associated copulas

In the bivariate case, [13, Chapter 1], and [22, Chapter 2], presented the

expressions to link the associated copulas with the distributional copula C. In the

multivariate case [14, Equation 8.1] and [10, Theorem 3], presented the expression

between the distributional and the survival copula and [5, Theorem 2.7] proved

that is possible to express the associated copulas in terms of the distributional

copula C. We now present a general equation for the relationship between any

two associated copulas CD∗ and CD+ in the multivariate case. The equation is

based on all the subsets of the indices where the D∗ and D+
are different.

Proposition 2.1. Let X = (X1, ..., Xd) be a random vector with associ-

ated copulas AX and D∗= (D∗1, ..., D
∗
d) and D+

= (D+
1 , ..., D

+
d ) any two types

of dependence. Consider the following sets and notations: I = {1, ..., d}; I1 =

{i ∈ I | D∗i = D+
i } and I2 = {i ∈ I | D∗i 6= D+

i }; d1 = |I1| and d2 = |I2|; Sj = {the

subsets of size j of I2} and Sj,k = {The k-th element of Sj} for j ∈ {1, ..., d2}

and k ∈
{
1, ...,

(
d2

j

)}
. We define S0 = ∅ and S0,1 = ∅; for each Sj,k define Wj,k =

(Wj,k.1, ...,Wj,k,d) with

Wj,k,i =





ui if i ∈ I1

1 − ui if i ∈ Sj,k

1 if i /∈ I1 ∪ Sj,k

,

for i ∈ {1, ...d}, j ∈ {0, ..., d2} and k ∈
{

1, ...,
(
d2

j

)}
.

Then the associated D∗-copula CD∗ is expressed in terms of the D+-copula

CD+ according to the following equation

(2.8) CD∗(u1, ..., ud) =

d2∑

j=0

(−1)
j

(
d2
j )∑

k=1

CD+(Wj,k) .

Note that in the cases when at least a 1 appears in Wj,k, CD+(Wj,k) becomes a

marginal copula of CD+ .
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Proof: Throughout this proof, it must be borne in mind that CD∗ is

the distribution function of the random vector VD∗ and CD+ of VD+ , defined

according to Definition 2.3. Note that, for i ∈ I2, VD∗

i ,i
= 1 − VD+

i i and they are

equal otherwise.

In the case d2 = 0, we have D∗= D+
, j ∈ {0} and k ∈ {1} (

2
), hence (2.8)

holds. We prove (2.8) by induction on d, the dimension; it can also be proven

by induction on d2, the number of elements in which D∗i 6= D+
i . Note that in

dimension d = 1, a copula becomes the identity function. If D∗1 6= D+
1 , the ex-

pression becomes u1 = 1− (1− u1); the case D∗1 = D+
1 has already been covered

in d2 = 0, and expression (2.8) holds.

Now, in dimension d, we prove the formula works if it works in dimension

d− 1. We obtain an expression for CD∗(u1, ..., ud) using the induction hypothesis.

Consider the dependencies, on the (d− 1)-dimension, F∗ = (D∗1, ..., D
∗
d−1) and

F+
= (D+

1 , ..., D
+
d−1). We use an apostrophe on the sets and notations of F∗ and

F+
to differentiate them from those of D∗ and D+

. It follows that d′ = d− 1 and

I ′ = I − {d}. By the induction hypothesis, equation (2.8) holds to express CF∗

in terms of CF+ . In terms of probabilities this is equivalent to

(2.9)

P
(
VD∗

i ,1 ≤ u1, ..., VD∗

d−1
,d−1 ≤ ud−1

)
=

=

d2−1∑

j=0

(−1)
j

(
d2−1

j )∑

k=1

P
(
VD+

1
,1 ≤W ′j,k,1, ..., VD+

d−1
,d−1 ≤W ′j,k,d−1

)
.

There are two cases to consider depending on whether D∗d is equal to D+
d or not.

Case 1. D∗d = D+
d .

In this case, it follows that, I ′1 = I1−{d}, I ′2 = I2, d
′
2 = d2 and VD∗

d
,d = VD+

d
,d.

If we intersect the events in equation (2.9) with the event {VD∗

d
d ≤ ud} we get

(2.10)

P
(
VD∗

i ,1 ≤ u1, ..., VD∗

d−1
,d−1 ≤ ud−1, VD∗

d
d ≤ ud

)
=

=

d2∑

j=0

(−1)
j

(
d2
j )∑

k=1

P
(
VD+

1
,1≤W ′j,k,1, ..., VD+

d−1
,d−1≤W ′j,k,d−1, VD+

d
,d ≤ ud

)
.

Because I ′2 = I2, in this case, for j ∈ {1, ..., d2} and k ∈
{
1, ...,

(
d2

j

)}
, the events

S′j,k are equal to Sj,k. Considering this, and I ′1 = I1 − {d}, we have
(
W′

j,k, ud

)
i

= Wj,k,i

for i ∈ {1, ..., d}, so (W′
j,k, ud) = Wj,k for j ∈ {1, ..., d2} and k ∈

{
1, ...,

(
d2

j

)}
.

Equation (2.10) then implies:

CD∗(u1, ..., ud) =

d2∑

j=0

(−1)
j

(
d2
j )∑

k=1

CD+(Wj,k) .

2Note that we are using the convention 0! = 1
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Case 2. D∗d 6= D+
d .

In this case, it holds that, I ′1 = I1, I
′
2 = I2 −{d}, d ′2 = d2 − 1. To obtain an

expression for CD∗(u1, ..., ud) = P (VD∗

i ,1 ≤ u1, ..., VD∗

d
,d ≤ ud), we use the induc-

tion hypothesis. Considering P (A) = P (A ∩B) + P (A ∩Bc
), we have

P
(
VD∗

i ,1 ≤ u1, ..., VD∗

d−1
,d−1 ≤ ud−1

)
=

= P
(
VD∗

i ,1 ≤ u1, ..., VD∗

d−1
,d−1 ≤ ud−1, VD∗

d
,d ≤ ud

)

+ P
(
VD∗

i ,1 ≤ u1, ..., VD∗

d−1
,d−1 ≤ ud−1, VD∗

d
,d ≥ ud

)
,

which implies

CD∗(u1, ..., ud) = P
(
VD∗

1
,1 ≤ u1, ..., V

∗
d−1 ≤ ud−1

)

(2.11)

−P
(
VD∗

1
,1 ≤ u1, ..., V

∗
d−1 ≤ ud−1, VD∗

d
,d ≥ ud

)
.

Note that, in this case VD∗

d
,d = 1−VD+

d
,d. This implies that the event {VD∗

d
,d ≥ ud}

is equivalent to {VD+

d
,d ≤ 1 − ud}. If we intersect the events involved in equation

(2.9) with the event {VD∗

d
,d ≥ ud} we get

(2.12)

P
(
VD∗

1
,1 ≤ u1, ..., VD∗

d−1
,d−1 ≤ ud−1, VD∗

d
,d ≥ ud

)
=

=

d2−1∑

j=0

(−1)
j

(
d2−1

j )∑

k=1

P
(
VD+

1
,1≤W ′j,k,1, ..., VD+

d−1
,d−1≤W ′j,k,d−1, VD+

d
,d ≤ 1−ud

)
.

Combining equations (2.9), (2.11) and (2.12), we obtain

(2.13)

CD∗(u1, ..., ud) =

d2−1∑

j=0

(−1)
j

(
d2−1

j )∑

k=1

CD+(W′
j,k,1) −

d2−1∑

j=0

(−1)
j

(
d2−1

j )∑

k=1

CD+(W′
j,k,1−ud) .

Note that, in this case, the sets I2 and I ′2 satisfy I2 = I ′2 ∪ {d}.

The rest of the proof is based on the fact that for j ∈ {1, ..., d−1} the

elements of size j of I2 are the elements of size j of I ′2 plus the elements of size

j −1 of I ′2 attaching them {d}. Considering our notation, this means

(2.14) Sj = S′j ∪ S
′′
j−1 ,

with S′′j−1 =
{
S′′j−1,k = S′j−1,k ∪ {d}

∣∣ k ∈
{
1, ...,

(
d2

j

)}}
for j ∈ {1, ..., d−1}.

Further to this, by definition of Wj,k we have the following three equalities:

(
W′

j,k, 1
)
i

=





ui if i ∈ I1
1 − ui if i ∈ S′j,k
1 if i /∈ I1∪S

′
j,k

, Wj,k,i =





ui if i ∈ I1
1 − ui if i ∈ Sj−1,k

1 if i /∈ I1 ∪ Sj,k
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and
(
W′

j−1,k, 1 − ud

)
i

=





ui if i ∈ I1
1 − ui if i ∈ S′′j−1,k

1 if i /∈ I1 ∪ S
′′
j−1,k

,

for i ∈ {1, ...d}, j ∈ {1, ..., d− 1} and k ∈
{
1, ...,

(
d2

j

)}
. These three equalities and

equation (2.14) imply that, for a fixed j, if we sum CD+ evaluated in all of the

(W′
j,k, 1) and (W′

j,k, 1 − ud) for different k, we get the sum of CD+ evaluated on

Wj,k for different k, that is:

(2.15)

(
d2−1

j )∑

k=1

CD+(W′
j,k, 1) +

(
d2−1

j−1 )∑

k=1

CD+(W′
j−1,k, 1− ud) =

(
d2
j )∑

k=1

CD+(Wj,k) ,

for j ∈ {1, ..., d− 1}. Also, the equalities

(
W′

0,1, 1
)
i

= W0,1,i and
(
W′

d−1,1, 1 − ud

)
i
= Wd,1,i

hold for i ∈ {1, ...d}; the result is implied by these two equalities and equations

(2.13) and (2.15).

Note that this expression is reflexible, meaning that it yields the same for-

mula to express CD+ in terms of CD∗ . As a particular case, equation (2.8) can

be used to express any associated copula in terms of the distributional copula C,

which is the expression found in literature for copula models. A copula is said

to be exchangeable if for every permutation P : i→ pi of I = {1, ..., d}, we have

C(u1, ..., ud) = C(up1
, ..., upd

). In order to analyse the symmetry and exchange-

ability of copula models, we use the following definition.

Definition 2.5. Let D = (D1, ..., Dd) be a type of dependence, the com-

plement dependence is defined as D∁
= (D∁

1, ..., D
∁
d), with

D∁
i =

{
U if Di = L

L if Di = U
,

for i ∈ {1, ..., d}. We say that the random vector X, with associated copulas AX,

is complement (reflection or radial) symmetric, if there exists D∗ ∈ ∆, such that

CD∗ = C
D∗∁ .

Note that X is symmetric if there exists one dependence which satisfies

CD∗ = C
D∗∁ . Along with other important properties, in the following proposition

we prove that, if it holds for one dependence, it holds for them all.

Proposition 2.2. Let X be a vector with corresponding associated cop-

ulas AX, and let D∗, D+, D◦ and D× be types of dependencies. Denote as

I1(D
1,D2

) and I2(D
1,D2

) the elements where the corresponding dependencies

are equal or different respectively. Then the following equivalences hold:
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(i) If CD∗ ≡ CD+ and I2(D
∗,D+

) = I2(D
×,D◦) then CD× ≡ CD◦ . In par-

ticular, CD∗ ≡ C
D∗∁ , for some D∗, implies CD ≡ C

D∁ for all D ∈ ∆.

(ii) If CD◦ is exchangeable, then CD∗ is exchangeable over the elements

of I1(D
∗,D◦) and over the elements of I2(D

∗,D◦). In particular, if

CD◦ is exchangeable, then C
D◦∁ is exchangeable.

Proof: (i) This follows from the fact I2(D
∗,D+

) = I2(D
×,D◦) =⇒

I2(D
×,D∗) = I2(D

◦,D+
), which is easily verified considering the different cases.

From Proposition 2.1, we have that the vectors Wj,k are the same in both cases,

which implies

CD×(u1, ..., ud) =

d2∑

j=0

(−1)
j

(
d2
j )∑

k=1

CD∗(Wj,k)

=

d2∑

j=0

(−1)
j

(
d2
j )∑

k=1

CD+(Wj,k)

= CD◦(u1, ..., ud) .

In particular, note that I2(D
∗,D∗∁) = I2(D,D

∁
) = {1, ..., d} for every D ∈ ∆.

Then, CD∗ ≡C
D∗∁ implies CD ≡C

D∁ for every D∈∆.

(ii) From Proposition 2.1 we have

(2.16) CD∗(u1, ..., ud) =

d2∑

j=0

(−1)
j

(
d2
j )∑

k=1

CD◦(Wj,k) .

Consider j ∈ {0, ..., d2} and k ∈
{
1, ...,

(
d2

j

)}
, from the way it is defined,Wj,k,i = ui

for every i ∈ I1(D
∗,D◦). The exchangeability of CD◦ implies that CD◦(Wj,k)

is exchangeable over I1(D
∗,D◦). Hence, equation (2.16) implies that CD∗ is

exchangeable over I1(D
∗,D◦). Now, let j ∈ {0, ..., d2} be fixed, note that each

Wj,k, k ∈
{
1, ...,

(
d2

j

)}
, is based on a different subset of size j of I2(D

∗,D◦).

Consider the sum
∑(

d2
j )

k=1 CD◦(Wj,k) as a function, given that CD◦ is exchangeable

and that the sum considers all the subsets of size j of I2(D
∗,D◦), it follows that

this function is exchangeable over I2(D
∗,D◦). Equation (2.16) then implies that

CD∗ is exchangeable over I2(D
∗,D◦). In particular C

D◦∁ is exchangeable over

I2(D
◦,D◦∁) = {1, ..., d}.

It is well known that elliptical copulas satisfy C = Ĉ. Hence, it follows

that in the bivariate case, CLU = CUL and in three dimensions, for instance,

CULU = CLUL. Also, from (ii), it follows that the survival copulas of Archimedean

families are exchangeable in all dimensions. These examples illustrate some of

the applications of this proposition.

In the following proposition we prove that, same as the distributional cop-

ula, all associated copulas are invariant under strictly increasing transformations.
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Proposition 2.3. Let T1,..., Td be strictly increasing functions and X =

(X1, ..., Xd) a random vector with corresponding distribution function and

marginals, D a type of dependence and D-copula CD. Then, in the continuous

case,
X̃ =

(
T1(X1), ..., Td(Xd)

)

also has the same corresponding D-copula CD.

Proof: This result follows straightforwardly from the fact that the dis-

tributional copula is invariant under strictly increasing transformations (see [20,

Proposition 5.6]) as all associated copulas are implied by this copula using

Proposition 2.1.

In the bivariate case, [22, Theorem 2.4.4] and [5, Theorem 2.7], charac-

terised the copula after the use of strictly monotone functions on random vari-

ables. In the multivariate case, this can be done using the associated copulas as

we show in the following proposition.

Proposition 2.4. Let T1,..., Td be strictly monotone functions and X =

(X1, ..., Xd) a random vector with corresponding distributional copula C. Then

the distributional copula of X̃ = (T1(X1), ..., Td(Xd)) is the associated D-copula

CD of X, with

Di =

{
L if Ti is strictly increasing

U if Ti is strictly decreasing
,

for i ∈ {1, .., d}, whose expression is given by Proposition 2.1.

Proof: By using the inverse functions of Ti and Fi, i ∈ {1, ..., d} we have:

Ti(Xi) ≤
(
F̃←i (ui)

) P
∼ Bi

(
F←Di,i

(ui)
)

,

for i ∈ {1, ..., d}, with Bi as in Definition 2.4, which implies that the distributional

copula of X̃ is CD.

2.2. Associated tail dependence functions and tail dependence coeffi-

cients

Considering the results obtained so far, it is possible to introduce a general

definition of tail dependence function and tail dependence coefficients considering

the dependence D. For the analysis of the conditions of the existence of the tail

dependence function see [21]. The general expression of the tail dependence

function is the following (for the positive case, see [23])
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Definition 2.6. Let I = {1, ..., d}, X = (X1, ..., Xd) be a random vector

with copula C, D a type of dependence and CD the corresponding associated

copula. For any ∅ 6= S ⊆ I, let CD(S) denote the corresponding marginal copula.

Define the associated D(S)-tail dependence functions bD(S) of CD, ∅ 6= S ⊆ I as

bD(S)(wi, i∈ S) = lim
u↓0

CD(S)(uwi, i∈ S)

u
, ∀w = (w1, ..., wd) ∈ R

d
+ .

Given that these functions come from the associated copulas, we call the set of

all D-tail dependence functions the associated tail dependence functions. When

S = {1, ..., d} we omit such subindex.

In particular, the corresponding TDCs are presented in the following defi-

nition (for the positive TDCs, see [23, 12]).

Definition 2.7. Consider the same conditions of Definition 2.6. Define

the associated D(S)-tail dependence coefficients λD(S) of CD, ∅ 6= S ⊆ I as

λD(S) = lim
u↓0

CD(S)(u, ..., u)

u
.

We say that D(S)-tail dependence exists whenever λD(S) > 0.

Note that

CD(S)(u, ..., u) = CD(u1, ..., ud) ≥ CD(u, ..., u) ,

with ui =

{
u if i ∈ S
1 if i /∈ S

, i ∈ {1, ..., d}. Because of this, λD(S) ≥ λD, so D-tail

dependence implies D(S)-tail dependence for all ∅ 6= S ⊆ I.

3. MODELLING GENERAL DEPENDENCE

In this section we analyse general dependence and tail dependence in three

examples of copula models. To this end we use the definitions and results ob-

tained on the previous section. We first analyse the perfect dependence cases and

obtain their corresponding copulas, this includes perfect non-positive dependence.

We then study the elliptical copulas for which we characterise the associated cop-

ulas. Using this characterisation, we obtain an expression for the associated tail

dependence functions of the Student’s t copula, which accounts for all types of

tail dependence simultaneously. After that we study the Archimedean copulas,

we prove that they can only account for non-positive tail dependence when their

generator is non-strict and present three examples when they do. At the end

of the section we discuss a method for modelling general tail dependence us-

ing copula models. The analysis of general dependence presented in this section

complements the analysis of positive tail dependence for these models.
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3.1. Perfect dependence cases

We now analyse the most basic examples of copula models. They corre-

spond to all the variables being either independent or perfectly dependent.

For the independence case, let U = (U1, ..., Ud) be a random vector with

{Ui}
d
i=1 independent uniform random variables. The distribution function of U

is the copula C(u1, ..., ud) =

d∏

i=1

ui, which is known as the independence copula.

It follows that the associated copula are also equal to the independence copula.

This is the copula of any random vector formed by independent variables.

Our analysis of perfect dependence corresponds to the distribution of vec-

tors of the form (W,−W,−W, ...,W,−W ) with W a uniform random variable.

From Definition 2.3 and Proposition 2.4 it follows that the distribution of

a vector of this form is an associated copula of the vector W = (W, ...,W ).

The distributional copula of W is

(3.1) C(u1, ..., ud) = min{ui}
d
i=1 .

Given that 1−W is also uniform it follows that this is also the survival copula, so

the vector is symmetric. This copula is the comonotonic copula. Now, let D be

a type of dependence and I = {1, ..., d}. Define IL = {i ∈ I | Di = L} and IU =

{i ∈ I | Di = L}. Let us assume that neither IL nor IU are empty. That is, we

assume perfect non-positive dependence (the case of perfect positive dependence

is covered in equation (3.1)). Then the associated D-copula is

CD(u1, ..., ud) = P
((
W ≤ min{ui}i∈IL

)
∩
(
W ≥ max{1− ui}i∈IU

)

)
.

It follows that, for min{ui}i∈IL
>max{1−ui}i∈IU

, this probability is equal to zero;

therefore, a general expression is

(3.2) CD(u1, ..., ud) = max

{
0, min{ui}i∈IL

+ min{ui}i∈IU
−1

}
.

In the bivariate case the associated (L,U)-copula CLU is equal to the Fréchet

lower bound for copulas, also known as the countermonotonic copula. Copulas

of this form appear in perfect non-positive dependence, see [20, Example 5.22].

In the following proposition we prove that, in d dimensions, the copulas of (3.1)

and (3.2) correspond not only to vectors of the form (W,−W,W, ...,W,−W ), but

to the use of strictly monotone transformations on a random variable. Because

of this, we call these copulas the monotonic copulas.

Proposition 3.1. Let Z be a random variable, and let {Ti}
d
i=1 be strictly

monotone functions, then the distributional copula of the vector X =
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(T1(Z), ..., Td(Z)) is one of the monotonic copulas of equations (3.1) or (3.2)

with D = (D1, ..., Dd),

Di =

{
L if Ti is strictly increasing

U if Ti is strictly decreasing
.

Conversely, consider a random vector X = (X1, ..., Xd) whose distributional

copula is a monotonic copula of equation (3.1) or (3.2) for certain D. Then there

exist monotone functions {Ti}
d
i=1 and a random variable Z such that

(3.3) (X1, ..., Xd)
d
=
(
T1(Z), ..., Td(Z)

)
,

the {Ti}
d
i=1 satisfy that Ti is strictly increasing if Di =L and strictly decreasing

if Di =U for i ∈ {1, ..., d}. In both cases the vector X is complement symmetric.

Proof: Let F be the distribution function of Z. Considering the uniform

random variable F (Z) it is clear that the copula of the d-dimensional vector

(Z, ..., Z) is the Fréchet upper bound copula min{ui}
d
i=1 of equation (3.1). The

result is then implied by Proposition 2.4.

The converse statement is a generalisation of [5, Theorem 3.1]. We have

that the distributional copula of X is a monotonic copula for certain D. Note that

the associated D-copula of X is the Fréchet upper bound copula. Let {αi}
d
i=1 be

any invertible monotone functions that satisfy αi is strictly increasing if Di =L

and strictly decreasing if Di =U for i∈ {1, ..., d}. Proposition 2.4 implies that the

copula of A = (α1(X1), ..., αd(Xd)) is the Fréchet upper bound copula.

According to [9, 6], there exists a random variable Z and strictly increasing

{βi}
d
i=1 such that

(
α1(X1), ..., αd(Xd)

) d
=
(
β1(Z), ..., βd(Z)

)
.

By defining Ti = α−1
i ◦βi for i ∈ {1, ..., d} we get the result.

In both cases the associated copulas of X are the monotonic copulas im-

plying that the vector is complement symmetric.

Regarding tail dependence, suppose the vector X has distributional copula

C∗ equal to a monotonic copula CD of equations (3.1) or (3.2) for certain D.

Considering Definition 2.3 of the associated copulas, this implies that C∗
D

is the

comonotonic copula. It follows that the D and D∁
tail dependence functions of

the vector X are

b∗D(w1, ..., wd) = b∗
D∁ (w1, ..., wd) = min{w1, ..., wd} .

The other associated copulas satisfy equation (3.2) for some D0
. It follows that

the corresponding tail dependence functions are equal to zero.
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3.2. Elliptically contoured copulas

We now analyse the dependence structure of elliptically contoured copulas.

We present the definition of this model, a result for its corresponding associated

copulas and the associated tail dependence functions of the Student’s t copula.

Elliptical distributions, were introduced by [17] and have been analysed by

several authors (see e.g. [8, 11]). They have the following form.

Definition 3.1. The random vector X = (X1, ..., Xd) has a multivariate

elliptical distribution, denoted as X ∼ Eld(µ,Σ, ψ), if for x = (x1, ..., xd)
′
its char-

acteristic function has the form

ϕ(x;µ,Σ) = exp(ix′µ) ψd

(
1

2
x′Σx

)
,

with µ a vector, Σ = (σij)1≤i,j≤d a symmetric positive-definite matrix and ψd(t)

a function called the characteristic generator.

Elliptical contoured distributions include a large number of distributions

(see [31, Appendix]). In the case when the joint density exists, several results

have been obtained (see [11, 2, 19]). The corresponding copula is referred to as

elliptical copula. This copula has also been subject to numerous analysis (see

[7, 1, 5, 3]). Note that the process of standardising the marginal distributions of

a vector uses strictly increasing transformations. From Proposition 2.3, we have

that the copulas associated to X ∼ Eld(µ,Σ, ψ) are the same as the copulas asso-

ciated to X∗∼Eld(0, R, ψ). Here R =
(
ρij =

σij√
σiIσjJ

)
1≤i,j≤d

is the corresponding

“correlation” matrix implied by Σ = (σij)1≤i,j≤d (see [5, Theorem 5.2] or [7, 3]).

Hence, we always assume X ∼ Eld(R,ψ) with R = (ρij)1≤i,j≤d.

In general, there is no closed-form expression for elliptical copulas but they

can be expressed as multivariate integrals of the joint density. In the following

proposition we prove an identity for the associated copulas of the elliptical copula.

Proposition 3.2. Let X∼Eld(R,ψ) as in Definition 3.1, with correlation

matrix R = (ρij)1≤i,j≤d, and let D be a type of dependence. Then the associated

D-copula of X is the same as the distributional copula of X+ ∼Eld(℘DR℘
′
D
, ψ),

with ℘D a diagonal matrix (all values in it are zero except for the values in its

diagonal) ℘D ∈Md×d, whose diagonal is p = (p1, ..., pd) with

pi =

{
1 if Di = L

−1 if Di = U
,

for i ∈ {1, ..., d}.
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Proof: The vector ℘DX is equal to (T1(X1), ..., Td(Xd)) with Ti(x) = pix,

i ∈ {1, ..., d}. Using Proposition 2.4, the distributional copula of ℘DX is the

associated D-copula of X. From the stochastic representation of X (see [8]), it

follows that ℘DX ∼ Eld(℘DR℘
′
D
, ψ) (see [5, Theorem 5.2]).

Given that C = Ĉ in elliptical copulas, we have that these copulas are

symmetric. This can be easily verified considering that ℘
D∁ = −℘D, for every

dependence D. This implies ℘
D∁ ·R · ℘′

D∁
= ℘D ·R · ℘′

D
. Hence, both CD and

C
D∁ are equal to the distributional copula of X+ ∼Eld(℘DR℘

′
D
, ψ).

Proposition 3.2 makes it possible to use the results of elliptical copulas in

associated copulas. This includes the analysis of tail dependence. In the bivariate

case [18, 26] studied positive tail dependence in elliptical copulas under regular

variation conditions. The Gaussian copula does not account for positive tail

dependence, Proposition 3.2 implies that it does not account for tail dependence

for any D. In contrast the Student’s t copula does account for tail dependence

(see e.g. [14, 23, 3, 20]). The Student’s t copula with ν degrees of freedom and

correlation matrix R is expressed in terms of integrals and density tν,R as

C(u) =

t−1
ν (u1)∫

−∞

···

t−1
ν (ud)∫

−∞

Γ
(

ν+d
2

)

Γ
(

ν
2

)√
(πν)d |R|

(
1 +

x′R−1x

ν

)− ν+d
2

dx ,

with u = (u1, ..., ud) and x = (x1, ..., xd)
′
. [23] analysed in detail the extreme value

properties of this copula and obtained an expression for the lower and upper tail

dependence functions among other results. More recently, in the bivariate case,

[14] obtained an expression for the D = (L,U) and the D = (U,L) tail depen-

dence coefficients proving that this copula accounts for negative tail dependence.

We now present the expression for the associated D-tail dependence function of

the multivariate Student’s t copula. This result follows from [23, Theorem 2.3]

and Proposition 3.2.

Proposition 3.3. Let X = (X1, ..., Xd) have multivariate t distribution

with ν degrees of freedom, and correlation matrix R = (ρij)1≤i,j≤d, that is X ∼

Td,ν,R. Let D = (D1, ..., Dd) be a type of dependence. Then the associated D-tail

dependence function bD is given by

bD(w) =

d∑

j=1

wj Td−1,ν+1,R∗

j

(√
ν + 1

1 − ρ2
ij

[
−

(
wi

wj

)− 1

ν

+ pipj ρij

]
, i∈ Ij

)
,

with

R∗j =




1 ··· ρ∗1,j−1;j ρ∗1,j+1;j ··· ρ∗1,d;j
...

. . .
...

...
...

...
ρ∗j−1,1;j ··· 1 ρ∗j−1,j+1;j ··· ρ∗j−1,d;j

ρ∗j+1,1;j ··· ρ∗j+1,j−1;j 1 ··· ρ∗j+1,j−1;j
...

...
...

...
. . .

...
ρ∗d,1;j ··· ρ∗d,j−1;j ρ∗d,j+1;j ··· 1




;
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ρ∗i,k;j = pipk
ρik−ρij ρkjq
1−ρ2

ij

q
1−ρ2

kj

, the modified partial correlations; Ij = I − {j} and

pj =

{
1 if Dj = L

−1 if Dj = U
,

for j ∈ {1, ..., d}.

Proof: Proposition 3.2 implies that the associated D-tail dependence

function of the random vector X ∼ Td,ν,R is the lower tail dependence function of

the vector X+ ∼ Td,ν,℘DR℘′

D
. The modified correlation matrix is ℘DR℘

′
D

= R∗ =

(ρ∗ij)1≤i,j≤d, it follows that

(ρ∗ij)1≤i,j≤d = (pipj ρij)1≤i,j≤d .

Hence (ρ∗ij)
2

= p2
i p

2
jρ

2
ij = 1 · 1 · ρ2

ij = ρ2
ij . Under this change, the partial correla-

tions are modified as follows:

ρ∗i,k;j = pipk

ρik − ρij ρkj√
1 − ρ2

ij

√
1 − ρ2

kj

.

The result is then implied by [23, Theorem 2.3].

This proposition implies that the Student’s t copula accounts for all 2
d

dependencies simultaneously. It can happen that we have negative dependence

and positive tail dependence. In that case, the variables might generally exhibit

negative dependence but, when it comes to extreme values, they can also be

positively dependent.

3.3. Archimedean copulas

Now we analyse the dependence structure of Archimedean copulas. We

present the bivariate and multivariate definition of these copulas. We then prove

that, when the generator is strict, they can only account for positive tail depen-

dence. Finally, we present three examples with non-strict generators that account

for negative tail dependence. For the analysis of positive tail dependence in these

copulas we refer to [15, Propositions 2.5 and 3.3], [13, Theorems 4.12 and 4.15]

and [22, Corollary 5.4.3]

Much has been written on Archimedean copulas and their applications to

different areas of statistics. [28] provide an excellent monography of their history.

For further references on their analysis we refer to the seminal works of [13, 22].

[13] analyses several examples with strict generators and [22] extends the analysis
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to non-strict generators. In order to consider both cases, we follow the notation

used in [22].

A bivariate Archimedean copula is defined in terms of a generator, which

we denote ϕ, in the following way:

(3.4) C(u1, u2) = ϕ[−1]
(
ϕ(u1) + ϕ(u2)

)
,

where ϕ[−1]
(u) =

{
ϕ−1

(u) if 0 ≤ u ≤ ϕ(0)

0 if ϕ(0) ≤ u ≤ ∞
, is the pseudo-inverse of ϕ. In or-

der for this function to be a copula, the generator must satisfy the following

properties:

i) ϕ : [0, 1] → R+ ∪∞,

ii) ϕ is continuous, strictly decreasing and convex,

iii) ϕ(1) = 0.

ϕ is called a strict generator when ϕ(0) = ∞. Note that, when ϕ is strict,

ϕ[−1]
= ϕ−1

. (
3
)

[16] proved that a strict generator gives a copula in any dimension d if

and only if the generator inverse ϕ−1
is completely monotonic. In that case, the

multivariate Archimedean copula is defined as

(3.5) C(u1, ..., ud) = ϕ−1

(
d∑

i=1

ϕ(ui)

)
,

In the next proposition we prove that, by construction, Archimedean copulas

with strict generators, do not account for any non-positive tail dependence.

Proposition 3.4. Let C be an Archimedean copula with differentiable

strict generator ϕ and let D be a non-positive type of dependence. Then, if the

corresponding tail dependence function bD exists, it is equal to zero.

Proof: Let C be a bivariate Archimedean copula with strict generator ϕ.

As we pointed out before, given that ϕ is strict, ϕ[−1]
= ϕ−1

. We begin this proof

with the bivariate case and prove that λLU = 0.

Let G(h) =
ϕ−1

(
ϕ(h) + ϕ(1− h)

)

h
, by definition

λLU = lim
h→0

CLU (h, h)

h

= lim
h→0

h− C(h, 1− h)

h
(3.6)

= 1 − lim
h→0

G(h) .

3In [13], the construction of Archimedean copulas covers the strict generator case when ϕ−1

is a Laplace transform, they denote such Laplace transform as φ.
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Along with the three properties of the generator ϕ mentioned above, in this

case it is strict and differentiable. This implies the following for ϕ−1
:

i) ϕ−1
is differentiable,

ii) ϕ−1
is strictly decreasing and convex,

iii) lim
s→∞

ϕ−1
(s) = 0.

Note that property iii) is only satisfied when the generator is strict, the

behaviour of ϕ−1
around ∞ is fundamental in this proof. If we visualise the

graphic of a function with such three features, it is intuitively straightforward

that the slope of its tangent will tend to zero as s→ ∞, that is lim
s→∞

(ϕ−1
)
′
(s) = 0.

To prove this, note that, from ii), (ϕ−1
)
′
is always negative and increasing. This

implies (ϕ−1
)
′
(s) converges, as s→ ∞, to c ≤ 0. Suppose c < 0, this would imply

that ϕ−1
crosses the x-axis. So it follows that lim

s→∞
(ϕ−1

)
′
(s) = 0. Hence, we have

lim
s→∞

(ϕ−1
)
′
(s) = lim

x→∞
lim
y→0

ϕ−1
(x+ y) − ϕ−1

(x)

y
(3.7)

= 0 .

Also, ϕ is differentiable, strictly decreasing and ϕ(1) = 0, hence we have

(3.8) −∞ < ϕ′(1) < 0 .

If we take x(h) = ϕ(h) and y(h) = ϕ(1 − h) in equation (3.7), we get:

0 = lim
h→0

ϕ−1
(
ϕ(h) + ϕ(1− h)

)
− ϕ−1

(
ϕ(h)

)

ϕ(1− h)

= lim
h→0

hG(h) − h

ϕ(1− h) − ϕ(1)

=

lim
h→0

1 −G(h)

ϕ′(1)
.

From equation (3.6) and inequality (3.8), this this implies λLU = 0. Analo-

gously, we get λUL = 0. The multivariate extension is straightforward: let C be a

multivariate Archimedean copula and D a non-positive dependence. Then, there

exist i1< i2 such thatDi1 6=Di2 . Let C(i1,i2) be the bivariate marginal copula of C.

Hence λ(i1,i2),(Di1
,Di2

) ≥ λD and, given that C(i1,i2) is also Archimedean, it satis-

fies λ(i1,i2),(L,U) = λ(i1,i2),(U,L) = 0. Then λD = 0 follows.

The same holds for other multivariate constructions based on nesting of

Archimedean copulas, such as the ones described in [13, Section 4.2].

When the generator is non-strict, Archimedean copulas can account for

non-positive tail dependence. This is the case in the three bivariate examples
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presented in Table 2. These examples can be found in [22, Section 4.2]. The first

two examples are the one-parameter copulas 4.2.7 and 4.2.8 in [22]. The third

example is a two-parameter family of copulas known as the rational Archimedean

copulas. The construction of these copulas can be found in [22, Subsection 4.5.2].

The expression is equation (4.5.9) and the generator is studied in p. 149 therein.

Table 2: Examples of Archimedean copulas with non-strict generators

that account for negative tail dependence.

Generator ϕ(s) Copula bLU and bUL

− ln(θs + 1 − θ) ,
0 < θ ≤ 1

max
n

θu1u2 + (1 − θ) (u1 + u2 − 1), 0
o min

�
w1, (1 − θ)w2

	
,

min
�
(1 − θ) w1, w2

	
1 − s

1 + (θ−1)s
,

θ ≥ 1
max

�
θ2u1u2 − (1 − u1) (1 − u2)

θ2 − (θ − 1)2 (1 − u1) (1 − u2)
, 0

�
min

�
w1,

w2

θ2

	
,

min
�

w1

θ2 , w2

	
see [22, p. 149],

0 ≤ β ≤ 1− |α|
max

�
u1u2 − β(1 − u1) (1 − u2)

1 − α(1 − u1) (1 − u2)
, 0

�
min

�
w1, βw2

	
,

min
�
βw1, w2

	
3.4. Use of rotations to model general tail dependence

We now discuss a method to model an arbitrary type of tail dependence

using a copula model. The condition on the copula model is to account for, at

least, one type of tail dependence. Similar procedures have been suggested in

[25, Section 2.4] and [14, Example 8.1]. To illustrate how this procedure works,

consider the bivariate Generalised Clayton copula, CGC
(
4
). This Archimedean

copula accounts for upper tail dependence. Suppose that we are trying to model

data that exhibits lower-upper tail dependence with a model C∗ and want to use

CGC
and the fact that it accounts for upper tail dependence. The use of this

procedure implies defining C∗
LU

= ĈGC
. And it holds that C∗ accounts for lower-

upper tail dependence. Using Proposition 2.1, C∗(u1, u2) = u1 −C
GC

(1−u1, u2).

Note that the fact that CGC
also accounts for lower tail dependence implies that

C∗ accounts for upper-lower tail dependence. So, before using this technique, the

whole dependence structure of the model and the data must be analysed.

We generalise this idea to model arbitrary D◦-tail dependence using a cop-

ula model C that accounts for D+
-tail dependence. Let AX = {CD | D ∈ ∆} be

the associated copulas of model C, we know that lim
h→0

C
D+ (h,...,h)

h
> 0. Now, define

a D◦-associated copula as C∗
D◦ = CD+ . By construction, as in the example, this

4 CGC
θ,δ (u, v) =

n�
(u−θ −1)δ + (v−θ −1)δ

� 1

δ + 1
o
−

1

θ

.
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copula model accounts for D◦-tail dependence. The associated copulas, A∗
X

=

{C∗
D
| D∈∆}, of this model can be obtained from C∗

D◦ , using Proposition 2.1.

Note that the set A∗
X

is the same as AX, but with rotated dependencies. The

whole dependence structure of model C∗ is implied by C.

4. CONCLUSIONS AND FUTURE WORK

In this section we discuss the main findings of this work and some future

lines of research. In Section 2 we introduce the concepts to analyse, in the mul-

tivariate case, the whole dependence structure among random variables. We

consider the 2
d

different orthants of dimension d. We first introduce general

dependence, the D-probability functions and the associated copulas. We then

present a version of Sklar’s theorem that proves that the associated copulas link

the D-probability functions with their marginals. It is through this result that we

are able to generalise the use of the distributional and survival copulas for positive

dependence. In this generalisation we use the associated copulas to cover general

dependence. We introduce an expression for the relationship among all associated

copulas and present a proposition regarding symmetry and exchangeability. After

that, we prove that they are invariant under strictly increasing transformations

and characterise the copula of a vector after using monotone transformations.

At the end of this section, we introduce the associated tail dependence functions

and associated tail dependence coefficients of a random vector. With them we

can analyse tail dependence in the different orthants.

In Section 3 we use the concepts and results obtained in Section 2 to anal-

yse three examples of copula models. The first example corresponds to the per-

fect dependence models. We begin this analysis with the independence case

and then consider perfect dependence, including perfect non-positive dependence.

We find and expression for their copulas, which are a generalisation of the Fréchet

copula bounds of the bivariate case. Given that they correspond to the use of

strictly monotone transformations on a random variable, we call them the mono-

tonic copulas. The second example corresponds to the elliptical copulas. In this

case, we characterise the corresponding associated copulas. We then present an

expression for the associated tail dependence function of the Student’s t copula.

This result proves that this copula model accounts for tail dependence in all

orthants. The third example corresponds to Archimedean copulas. In this case,

we prove that, if their generator is strict, they can only account for positive tail

dependence. We then present three examples of Archimedean copulas with non-

strict generators that account for negative tail dependence. After that we discuss

a method for modelling arbitrary tail dependence using copula models.

There are several areas where future research regarding general dependence

is worth being pursued. For instance, the use of D-probability functions is not
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restricted to copula theory. The analysis of probabilities in the multivariate case

has sometimes been centered in distribution functions, but, just like survival

functions, D-probability functions can serve different purposes in dependence

analysis. Another possibility is the use of nonparametric estimators to measure

non-positive tail dependence, as the use of these estimators has been restricted

to the lower and upper cases. The results obtained in this work are useful in the

understanding of the dependence structure implied by different copula models.

As we have seen, without analysing general dependence, the analysis of these

models is incomplete. Therefore, it is relevant to extend this analysis to models

such as the hierarchical Archimedean copulas and vine copulas. The use of vine

copulas has proven to provide a flexible approach to tail dependence and account

for asymmetric positive tail dependence (see e.g. [24, 15]).
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3(14), 53–77.

[10] Georges, P.; Lamy, A.G.; Nicolas, E.; Quibel, G. and Roncalli, T.

(2001). Multivariate survival modelling: a unified approach with copulas, Groupe

de Recherche Opérationnelle Crédit Lyonnais France, Unpublished results.

[11] Gupta, A.K. and Varga, T. (1993). Elliptically Contoured Models in Statistics,

Kluwer Academic Publishers, Netherlands.

[12] Joe, H. (1993). Parametric families of multivariate distributions with given mar-

gins, Journal of Multivariate Analysis, 46(2), 262–282.

[13] Joe, H. (1997). Multivariate Models and Dependence Concepts, Chapman &

Hall, London.

[14] Joe, H. (2011). Tail dependence in vine copulae. In“Dependence Modeling: Vine

Copula Handbook, Chapter 8” (D. Kurowicka and H. Joe, Eds.), World Scientific,

Singapore, 165–189.

[15] Joe, H.; Li, H. and Nikoloulopoulos, A.K. (2010). Tail dependence func-

tions and vine copulas, Journal of Multivariate Analysis, 101(1), 252–270.

[16] Kimberling, C.H. (1974). A probabilistic interpretation of complete monotonic-

ity, Aequationes Mathematicae, 10(2-3), 152–164.

[17] Kelker, D. (1970). Distribution theory of spherical distributions and location-

scale parameter generalization, Sankhya: The Indian Journal of Statistics, Series

A, 32(4), 419–430.
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1. INTRODUCTION

Goodness of fit tests (GOFTs) validate the closeness of the theoretical dis-

tribution function to the empirical distribution function. They are also known as

empirical distribution function tests. These tests determine how well the distri-

bution under study fits to a data set. They are used to test simple hypothesis

which completely specifies the model and also the composite hypotheses where

only the name of the model/distribution is stated but not its parameters. In the

latter case, the parameters are estimated from the data. The common GOFTs

are Kolmogorov–Smirnov, Cramér–vonMises and Anderson–Darling.

In literature, many authors have studied the goodness of fit tests. Nikulin

[21,22] studied Chi-squared test for continuous distributions. Rao and Robson

[25] studied Chi-squared statistic for exponential family. Power of a series of

goodness of fit tests for simple and complex hypotheses have been analyzed by

Lemeshko et al. [14,15]. Lemeshko et al. [16] analyzed the goodness of fit test for

Inverse Gaussian family. Goodness of fit tests for testing composite hypotheses,

using maximum likelihood estimators (MLEs) of double exponential distribution,

have been given in Lemeshko and Lemeshko [17].

The idea of weighted distributions was conceptualized by Fisher [6] and

studied by Rao [24] in a unified manner who pointed out that in many situations,

the recorded observations cannot be considered as a random sample from the orig-

inal distribution. This can be due to one or the other reason viz non-observability

of some events, damage caused to original observations and adoption of unequal

probability sampling. In observational studies for human, wild-life, insect, plant

or fish population, it is not possible to select sampling units with equal proba-

bilities. In such cases, there are no well-defined sampling frames and recorded

observations are biased. These observations do not follow the original distribu-

tion and hence their modelling uses the theory of weighted distributions. It is,

therefore, important to study the stochastic orderings and ageing properties of

the weighted random variables with respect to the original random variables.

For a non-negative random variable X with pdf f(x), the weighted random

variable Xw
has the pdf given by

(1.1) fw
(x) =

w(x) f(x)

E
[
w(X)

] ,

where w(x) is a non-negative weight function such that E[w(X)] is non-zero and

finite. The distribution of Xw
is called the weighted distribution corresponding

to X.

The weighted distribution with w(x) = x is called the length-biased (size-

biased) distribution which finds various applications in biomedical areas such as

early detection of a disease. Rao [24] used this distribution in the study of human
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families and wild-life populations. Various other important weighted distributions

and their properties have been discussed by Mahfoud and Patil [19], Jain et al.

[12], Gupta and Kirmani [10], Nanda and Jain [20], Patil [23] and Gupta and

Kundu [11].

A brief discussion of weighted version of Gamma distribution labelled as

Weighted Gamma (WG) distribution is provided in Section 2. This distribution

has been introduced by Jain et al. [13]. The Weighted Gamma (WG) distribution

has Weighted exponential, Gamma and Exponential distributions as its submod-

els. This distribution can also be interpreted as a hidden upper truncation model

as in case of skew-normal distribution (Arnold and Beaver [2]). The pdf of WG

distribution is also expressible as a linear combination of two Gamma pdfs. This

distribution accommodates increasing and upside-down bathtub shaped failure

rate function and hence has wider applicability in reliability and survival analy-

sis.

The motive of this study is to carry out goodness of fit tests viz Kolmogorov–

Smirnov, Cramér–vonMises and Anderson–Darling and to compare their pow-

ers for Weighted Gamma and some competing distributions namely Weighted

Weibull, Weighted Exponential and Gamma distributions. Using the calculated

powers of these goodness of fit tests, we can determine the sample size at which

these various closely related distributions can be distinguished from each other.

The paper is organized as follows. In Section 2, we provide a brief de-

scription of Weighted Gamma (WG) distribution. Various goodness of fit tests

have been described in Section 3. Testing of simple and composite hypotheses for

WG versus Weighted Weibull (WW), Weighted Exponential (WE) and Gamma

is presented in Section 4. This section also consists of results and power studies

based on simulations and real data set analysis. Section 5 includes the concluding

remarks.

2. WEIGHTED GAMMA DISTRIBUTION

The random variable X is said to follow Weighted Gamma distribution

with scale parameter λ and shape parameters α and β if the probability density

function (pdf) of X is given by

(2.1) fX(x;α, β, λ) = k
(1 − e

−αλx
)λβ xβ−1

e
−λx

Γ(β)
, x > 0 , α, β, λ > 0 ,

where k−1
= 1 −

(
1

1+α

)β
.

If X is a random variable with pdf given in (2.1), we use the notation

X ∼WG(α, β, λ).
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The distribution function of X can be written as

(2.2) F (x) =

[
(1 + α)

β

(1 + α)
β − 1

][
G(x;β, λ) −

1

(1 + α)
β
G(x;β, λ(1+α))

]
,

where G(x; a, b) =
ba

∫ x

0 e
−btta−1dt

Γ(a)
is the cumulative distribution function of

Gamma distribution with shape parameter a and scale parameter b.

Remark 2.1. (2.1) is the weighted version of the Gamma pdf with weight

function

w(x) = 1 − e
−αλx , α, λ > 0 .

The choice of the weight function has been made so that Weighted Expo-

nential (Gupta and Kundu [11]), Gamma and Exponential distributions can be

obtained as special cases of WG distribution for particular values of parameters.

The special cases are:

• Weighted Exponential (WE) distribution obtained by putting β = 1,

• the Gamma distribution when α→ ∞.

• For α→ ∞ and β = 1, Exponential distribution can be obtained.

Suppose X follows WG distribution and let θ = (α, β, λ)
T

be the parameter

vector. The log likelihood based on the observed sample (x1, x2, ..., xn) is

l = l (α, β, λ)

= n
{

log(1+ α)
β − log

{
(1+ α)

β −1
}}

+

n∑

i=1

log
(
1 − e

−αλxi
)

+ nβ log λ(2.3)

+ (β − 1)

n∑

i=1

log xi − λ
n∑

i=1

xi − n log
{
Γ(β)

}
.

The first derivative of the log likelihood function is called Fisher’s score function

and is written as

u(θ) =
∂l

∂θ
.

Score is a vector of first partial derivatives, one for each element of θ. If the

log likelihood is concave, then MLEs can be obtained by solving the system of

equations

u(θ) = 0 ,

where elements of u(θ) are given by

(2.4)
∂l

∂α
= −nβ(1+ α)

β−1

{
1{

(1+ α)β −1
}

(1+ α)β

}
+ λ

n∑

i=1

xi e
−αλxi

1 − e−αλxi
,
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(2.5)
∂l

∂β
= n log(1+α)−

n(1+α)
β

log(1+α){
(1+α)β −1

} + n log λ +

n∑

i=1

log xi − nψ(β) ,

(2.6)
∂l

∂λ
= α

n∑

i=1

xi e
−αλxi

1 − e−αλxi
+
nβ

λ
−

n∑

i=1

xi ,

where ψ(·) denotes the digamma function, the logarithmic derivative of the

gamma function.

As these equations are difficult to be solved, Newton–Raphson method

can be used for finding ML estimates. Using this method, the score function is

evaluated at the MLE θ̂ around an initial value θ0, using a first order Taylor

series which gives

(2.7) u(θ̂) ≈ u(θ0) +
∂u(θ)

∂θ
(θ̂ − θ0) .

Equating (2.7) to zero and solving for θ̂ leads to first approximation:

(2.8) θ̂ = θ0 − H
−1

(θ0)u(θ0) ,

where

H(θ) =
∂2l

∂θ ∂θ
′ =

∂u(θ)

∂θ

denotes the Hessian matrix.

Given a trial value, (2.8) is employed for obtaining an improved estimate

and the process is repeated until the differences between successive estimates are

sufficiently close to zero. The estimates obtained are considered as maxima if the

Hessian matrix is negative definite, that is, all its eigenvalues are negative.

As sometimes, it is computationally difficult to invert the Hessian matrix,

hence we use the quasi Newton method in R for finding the ML estimates as this

method usually generates an estimate of H−1
directly. The results have been

included in Table 2 of Section 4.

3. GOODNESS OF FIT TESTS

For a random sample of size n, let x(1), ..., x(n) be ordered observations. The

empirical distribution function (edf) Fn(x) is a step function with a step of height

1
n

at each ordered sample observation. Empirical Distribution Function (EDF)

tests measuring the distance between the edf and theoretical cdf are described by

Dufour et al. [6]. Arshad et al. [3] and Seier [26] claimed that the widely used

EDF tests are Kolmogorov–Smirnov, Cramér–vonMises and Anderson–Darling

tests.
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For a random variable X, we let F (x) to be the theoretical cumulative

distribution function (cdf). F (x, θ) denotes the cdf for a particular distribution

with parameter θ. The focus shall be on testing the following types of null

hypotheses:

• Simple null hypothesis:

H0: F (x) = F (x, θ) ,

where the form of F (x, θ) is completely specified;

• Composite null hypothesis:

H0: F (x) ∈
{
F (x, θ), θ ∈ Θ

}
,

where Θ is the domain of unknown parameter θ which is replaced by its

estimator.

We will use the tests explained in the subsequent discussion.

Kolmogorov–Smirnov Test:

This test is based upon the largest vertical distance between empirical dis-

tribution function Fn(x) and theoretical distribution function F (x, θ). The statis-

tic is

(3.1) Dn = sup

|n|<∞

∣∣Fn(x) − F (x, θ)
∣∣ , θ ∈ Θ .

If the value of KS statistic is greater than critical point, we reject the null hy-

pothesis (Gibbons and Chakraborti [9]).

Cramér–vonMises and Anderson–Darling statistics belong to the class of

quadratic EDF statistics (Stephens [28]) defined as

(3.2) n

∫ ∞

−∞

(
Fn(x) − F (x)

)2
w(x) dF (x) ,

where w(x) is a weighting function.

Cramér–vonMises Test:

For w(x) = 1, (3.2) gives n times the Cramér–vonMises (CVM) statistic.

This statistic can be computed using the sum of squared differences between

the empirical distribution function (EDF) and theoretical CDF (Anderson and

Darling [1]) and is defined as

(3.3) CVM =
1

12n
+

n∑

i=1

(
F (xi, θ) −

2i− 1

2n

)2

.
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If the value of CVM test statistic is greater than the critical point, we reject the

null hypothesis. According to Conover [5], CVM is more powerful than KS test

because it uses more sample data.

Anderson–Darling test:

It is a modification of the CVM Test. It gives more weightage to the tails

of the distribution (Farrel and Stewart [7]).

By taking w(x) = [F (x) (1−F (x))]−1
in (3.2), Anderson–Darling (AD) test

statistic (Anderson and Darling [1]) is obtained as

n

∫ ∞

−∞

(
Fn(x) − F (x)

)2

[
F (x)

(
1−F (x)

)] dF (x) .

It can also be written as

(3.4) AD = −n− 2

n∑

i=1

{
2i−1

2n
lnF (xi, θ) +

(
1−

2i−1

2n

)
ln

(
1−F (xi, θ)

)}

(Lewis [18]).

If the value of AD test statistic is greater than critical point, we reject the

null hypothesis.

The critical points (C.P.) of these tests have been calculated by generating

random samples from the distribution under null hypothesis, calculating value of

test statistics and arranging values of test statistic in increasing order. (1−α)
th

largest order test statistic gives the critical point corresponding to α level of

significance. These values have been calculated for sample sizes n = 50, 100, 200,

500, 1000 and 2000 at α = .20, .15, .10 and .05 and are shown in Table 1.

Table 1: Critical points for Kolmogorov–Smirnov, Cramér–vonMises

and Anderson–Darling tests.

n

Kolmogorov–Smirnov Cramér–vonMises Anderson–Darling

Level of significance Level of significance Level of significance

.20 .15 .10 .05 .20 .15 .10 .05 .20 .15 .10 .05

50 .151 .161 .172 .192 .241 .281 .344 .455 1.427 1.619 1.900 2.422
100 .107 .114 .122 .136 .244 .286 .361 .475 1.388 1.603 1.909 2.412
200 .076 .081 .086 .096 .237 .282 .339 .453 1.39 1.59 1.92 2.49
500 .048 .051 .055 .061 .232 .275 .334 .444 1.405 1.609 1.932 2.500
800 .038 .040 .043 .048 .241 .286 .347 .469 1.410 1.617 1.904 2.399

1000 .034 .036 .039 .043 .245 .286 .347 .449 1.423 1.638 1.945 2.514
2000 .024 .026 .027 .030 .241 .287 .349 .476 1.395 1.588 1.914 2.438
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4. APPLICATION

4.1. Simulations for estimation and applying GOFTs

Weighted Exponential and Gamma distributions are considered as compet-

ing distributions for WG. The Weighted Weibull (WW) distribution with three

parameters α, β and λ (Shahbaz et al. [27]) has also been considered as one of

the competing distributions for WG. The cdf and pdf of WW are

F (x;α, β, λ) =

(1+ α)

[
1 − e

−λxβ
−

(
1−e−(1+α)λxβ

)

1+α

]

α

and

f(x;α, β, λ) =
(1+ α)λβ xβ−1

e
−λxβ(

1− e
−αλxβ)

α
.

A random sample of size 200 from Weighted Gamma (WG) distribution with

parameters α = 5, β = 2.5 and λ = 2 is generated. The empirical cumulative

distribution function (ecdf) based on the data and the theoretical cdf of WG

distribution are plotted in Figure 1. This figure depicts that ecdf and exact cdf

of WG distribution are quite close to each other.

Figure 1: Plots for ecdf and exact cdf of WG distribution.
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For the generated data set, maximum likelihood estimates (MLEs) of parameters

of WG, WW, WE and Gamma distributions and the corresponding AIC and

AICc values are given in Table 2. In quasi Newton algorithm in R, the Broyden–

Fletcher–Goldfarb Shanno (BFGS) method has been used by applying optim

routine. Hessian matrices have been checked for all the distributions and found

to be negative definite as all the eigenvalues of each Hessian matrix come out to

be negative. This implies that the estimates obtained are maximum likelihood

estimates.

Table 2: Estimates of the parameters and AIC and AICc values

for different distributions.

Distribution
MLE

AIC AICcbα bβ bλ
WG 3.0230 2.1688 1.7399 432.9696 433.092
WW 53.0360 1.6025 0.5560 437.9989 438.121
WE 0.0006 1 1.5444 438.4732 438.534

Gamma — 2.4871 1.9212 433.4271 433.488

From the above table, we can conclude that:

a) Since AIC and AICc values are the lowest for WG distribution, it can

be considered to be the best fit.

b) Since AIC values of WG and Gamma distributions are close, hence

a large sample size shall be required to distinguish between WG and

Gamma distributions.

Figure 2: Plots of ecdf and estimated cdf of WG distribution.
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Figure 2 displays the plots of empirical cdf and theoretical cdf using esti-

mates of parameters of WG distribution for generated data set.

Weighted Weibull (WW), Weighted Exponential (WE) and Gamma distri-

butions are taken up as the competing distributions for WG distribution. The

estimates of parameters for all these distributions are found for generated data set.

To check whether the generated data set fits well to WG distribution (with

assumed and estimated parameters), WW, WE and Gamma distributions, the

simple and composite hypotheses have been tested in the sequel.

Testing of simple hypothesis:

The aim is to test the simple hypothesis

H01: WG (α=5, β=2.5, λ=2) distribution fits well to the generated data set

versus

H11: It does not fit well.

The values of KS, CVM and AD test statistics and critical points (extracted

from Table 1) are given in Table 3.

Table 3: Values of test statistic and critical points for testing H01 versus H11.

Test Statistic values C.P. at 0.05 level of significance

Kolmogorov–Smirnov 0.0447 .096
Cramér–vonMises 0.0779 .453
Anderson–Darling 0.5654 2.49

It is observed that for all the tests, the null hypothesis is not rejected at

0.05 level of significance implying that WG distribution fits well to the generated

data set under all testing procedures.

Testing of composite hypotheses:

We consider testing of composite hypotheses

H02: WG (α̂, β̂, λ̂) distribution fits the generated data well

versus

H12: It does not fit the data well,

where α̂ = 3.0230, β̂ = 2.1688 and λ̂ = 1.7399.

The following table gives calculated values of test statistics.

Table 4: Values of test statistic and critical points for testing H02 versus H12.

Test Statistic values C.P. at 0.05 level of significance

Kolmogorov–Smirnov 0.0422 .096
Cramér–vonMises 0.0546 .453
Anderson–Darling 0.3480 2.49
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It is observed that values of test statistics for KS, CVM and AD are less than

C.Ps. at 0.05 level of significance for n = 200. This means that WG distribution

with estimated parameters fits the data well.

Next, we consider testing of composite hypotheses:

i) H03: Generated data set is fitted well by WW (α̂= 53.0360, β̂= 1.6025,

λ̂= .5566)

versus

H13: compliment to H03, that is, data is not fitted well.

ii) H04: WE (α̂= .0006, λ̂= 1.5444) distribution fits the generated data well

versus

H14: WE (α̂= .0006, λ̂= 1.5444) distribution does not fit the data well.

iii) H05: Gamma (β̂=2.4871, λ̂=1.9212) distribution fits the generated data well

versus

H15: Gamma distribution with estimated parameters does not fit the data

well.

Tables 5–7 display the values of test statistics for KS, CVM and AD tests

and corresponding critical points at 0.05 level of significance for testing the com-

posite hypotheses.

Table 5: Values of test statistic and critical points for testing H03 versus H13.

Test Statistic values C.P. at 0.05 level of significance

Kolmogorov–Smirnov 0.0576 .096
Cramér–vonMises 0.1489 .453
Anderson–Darling 0.8541 2.49

Table 6: Values of test statistic and critical points for testing H04 versus H14.

Test Statistic values C.P. at 0.05 level of significance

Kolmogorov–Smirnov 0.0540 .096
Cramér–vonMises 0.0786 .453
Anderson–Darling 0.8263 2.49

Table 7: Values of test statistic and critical points for testing H05 versus H15.

Test Statistic values C.P. at 0.05 level of significance

Kolmogorov–Smirnov 0.0464 .096
Cramér–vonMises 0.0822 .453
Anderson–Darling 0.5203 2.49
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The values in Tables 3–7 help us to conclude that:

a) All the distributions fit well to the given data set at 0.05 level of signif-

icance because the values of test statistics are less than critical points.

b) WG distribution fits best to the data set because the values of test

statistics are lowest in case of WG distribution.

In the next subsection, we find the powers of goodness of fit tests viz KS,

CVM and AD for comparing WG distribution with WW, WE and Gamma dis-

tributions. The values of power for GOFTs help us in differentiating among the

distributions under consideration and also in determining the optimal sample size

for differentiation.

4.1.1. Powers of goodness of fit tests for WG

To differentiate among different distributions, we carry out the power study

for testing of hypotheses about belonging of the sample to WG distribution,

considering WW, WE and Gamma distributions as competing distributions.

For power analysis, we use the technique of Bootstrapping to generate the

samples. We generate 10,000 copies of random sample under alternative hy-

potheses. The values of the test statistics have been calculated using estimates

of parameters for different distributions. The power analysis has been carried

out for sample sizes n = 50, 100, 200, 500, 1000, 2000 at .20, .15, .10, .05 levels of

significance.

Using estimated parameters, Tables 8–10 give the power of KS, CVM and

AD tests for testing about belonging of the samples to WG distribution against

that sample is from WW, WE and Gamma distributions.

Power of Anderson–Darling test is more than those of Cramér–vonMises

and Kolmogorov–Smirnov tests in all cases. Hence, AD is the most powerful and

KS is the least powerful test.

From Tables 8–10, it is observed that at 0.10 level of significance to obtain

low probability of type II error (less than or equal to 0.1):

a) A sample size greater than or equal to 2000 is required to differentiate

WG distribution from WW distribution, since the power of AD test is

.9630 implying that probability of type II error is .0370;

b) A sample of at least 2000 observations is required to distinguish WG

distribution from WE and Gamma distributions.
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Table 8: Power of tests for testing goodness of fit of WG versus WW

with estimated parameters.

Level of
significance

Sample size

n = 50 n = 100 n = 200 n = 500 n = 1000 n = 2000

Power of Anderson–Darling

.20 .4993 .5834 .6253 .7351 .9005 .9899

.15 .4321 .4995 .5535 .7032 .8622 .9869
.10 .2557 .3072 .4993 .5938 .8123 .9630

.05 .1540 .2505 .3857 .4887 .7945 .8756

Power of Cramér–vonMises

.20 .4286 .4993 .5547 .5790 .8750 .9666

.15 .4274 .4740 .5038 .5732 .8443 .9311

.10 .1571 .2946 .4586 .5606 .7801 .8959

.05 .1243 .2815 .2783 .4043 .7278 .8322

Power of Kolmogorov–Smirnov

.20 .4078 .4551 .5013 .5485 .8539 .9521

.15 .3451 .4738 .5008 .5308 .8123 .9222

.10 .1526 .2574 .4165 .5243 .6959 .7898

.05 .1182 .2299 .2439 .2858 .5557 .6345

Table 9: Power of tests for testing goodness of fit of WG versus WE

with estimated parameters.

Level of
significance

Sample size

n = 50 n = 100 n = 200 n = 500 n = 1000 n = 2000

Power of Anderson–Darling

.20 .5947 .6543 .7686 .8504 .9404 .9969

.15 .4928 .5689 .7038 .8153 .8935 .9851
.10 .3853 .4537 .6583 .7328 .8589 .9708

.05 .1549 .3839 .5841 .6685 .8040 .9146

Power of Cramér–vonMises

.20 .4899 .5251 .6493 .8039 .8991 .9784

.15 .4518 .5103 .5552 .6751 .8599 .9485

.10 .2538 .3840 .4993 .5998 .8328 .9113

.05 .1959 .3014 .3547 .4853 .7943 .8993

Power of Kolmogorov–Smirnov

.20 .4286 .4865 .5878 .6438 .8689 .9663

.15 .3945 .4793 .5584 .5991 .8402 .9365

.10 .2090 .2940 .4738 .5344 .7556 .8734

.05 .1547 .2591 .2973 .3905 .6938 .7488
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Table 10: Power of tests for testing goodness of fit of WG versus Gamma

with estimated parameters.

Level of
significance

Sample size

n = 50 n = 100 n = 200 n = 500 n = 1000 n = 2000

Power of Anderson–Darling

.20 .4037 .4270 .4408 .6728 .8875 .8993

.15 .3018 .3363 .3401 .5556 .8543 .8775
.10 .2134 .2627 .2800 .3959 .8024 .8543

.05 .1172 .1498 .2268 .3463 .7738 .8345

Power of Cramér–vonMises

.20 .3535 .3889 .4229 .5389 .8198 .8856

.15 .3008 .3232 .4113 .4458 .7993 .8691

.10 .1418 .2138 .2542 .3304 .7583 .8434

.05 .1004 .1184 .2034 .3183 .7234 .8138

Power of Kolmogorov–Smirnov

.20 .3038 .3359 .3947 .5126 .8057 .8535

.15 .2857 .3015 .3998 .4032 .7328 .8119

.10 .1218 .2028 .2238 .3123 .6888 .7735

.05 .0926 .1039 .1727 .2485 .5311 .6188

Further, it can also be concluded on the basis of Tables 8–10 that:

a) Power in case of testing goodness of fit of WG versus WE distribution

is more than in other cases. Hence, the tests are detecting the gap

between WG and WE distributions with high power and hence a small

sample is sufficient to differentiate WG from WE.

b) The power of all GOFTs for all sample sizes and levels of significance is

least when comparing WG and Gamma distributions. This means that

the GOFTs are not detecting the difference between these two distribu-

tions as efficiently as in other cases. It implies that these distributions

are quite close to each other. So, large sample sizes are required to

differentiate these distributions.

4.2. Real data set illustration

We consider a data set consisting of survival times of guinea pigs injected

with different amount of tubercle bacilli and studied by Bjerkedal [4]. The obser-

vations in the data set are: 12 15 22 24 24 32 32 33 34 38 38 43 44 48 52 53 54

54 55 56 57 58 58 59 60 60 60 60 61 62 63 65 65 67 68 70 70 72 73 75 76 76 81

83 84 85 87 91 95 96 98 99 109 110 121 127 129 131 143 146 146 175 175 211 233

258 258 263 297 341 341 376.
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This data set was also considered by Gupta and Kundu [9] for fitting of

Weighted Exponential (WE) distribution. The estimates of parameters, AIC and

AICc values for above considered data set are reported in Table 11.

Table 11: Estimates of the parameters, AIC and AICc values

for different distributions.

Distribution
MLE

AIC AICcbα bβ bλ
WG 2.274 1.513 .0172 791.438 791.784
WW 139.4 1.39 .0014 799.271 799.624
WE 1.624 1 .0138 791.138 791.312

Gamma — 2.081 .0208 792.495 792.669

From Table 11, it is seen that there is not a significant difference in AIC and

AICc values for WG and WE models, hence both the models can be considered

for fitting to this real data set. As WG provides generalization to many existing

distributions viz WE, Gamma and Exponential distributions, hence it can be

considered as a better choice for this data set.

4.2.1. Powers of goodness of fit tests for real data set

For power calculation, we generate random samples of sizes 100, 200, 500,

1000 and 2000 under alternative hypothesis. Test statistics are calculated using

the estimates of parameters. By comparing these values with critical points, we

either reject or do not reject the null hypothesis. Repeating this process 10,000

times and dividing the total number of rejections by 10,000, gives power.

Powers for goodness of fit tests for the following hypotheses have been

reported in Tables 12, 13 and 14 respectively:

H06 : WG (α̂=2.274, β̂=1.513, λ̂=.0172) fits the data set well

versus

i) H
′

16 : WW (α̂=139.4, β̂=1.39, λ̂=.0014) fits the data set well,

ii) H
′′

16 : WE (α̂=1.624, λ̂=.0138) distribution fits the data well,

iii) H
′′′

16 : Gamma (β̂=2.081, λ̂=.0208) distribution fits the data well.

From the Tables 12–14, it can be concluded that:

a) Anderson–Darling (AD) is the most powerful and Kolmogorov–Smirnov

(KS) is the least powerful test.

b) Power for testing GOF of WG versus WW is more than for testing in

other cases.
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c) Power is least when comparing WG distribution versus WE distribu-

tion. This means that for the considered data set, the GOFT’s are not

detecting the difference between these two models.

Table 12: Power of tests for testing goodness of fit of WG versus WW

with estimated parameters.

Level of
significance

Sample size

n = 100 n = 200 n = 500 n = 1000 n = 2000

Power of Anderson–Darling

.20 .4829 .6238 .7812 .8524 .9423

.15 .4458 .5744 .7123 .8047 .8850

.10 .3943 .5209 .6838 .7773 .8595

.05 .3451 .4753 .6552 .7239 .8391

Power of Cramér–vonMises

.20 .4467 .5924 .6874 .7955 .8620

.15 .4139 .5251 .6193 .7338 .8354

.10 .3533 .4435 .5366 .6940 .7889

.05 .2669 .3981 .4921 .6569 .7495

Power of Kolmogorov–Smirnov

.20 .3999 .5099 .6434 .7809 .8345

.15 .3458 .4875 .5701 .7051 .8003

.10 .3049 .4223 .4959 .6532 .7448

.05 .2225 .3801 .4153 .6034 .7115

Table 13: Power of tests for testing goodness of fit of WG versus WE

with estimated parameters.

Level of
significance

Sample size

n = 100 n = 200 n = 500 n = 1000 n = 2000

Power of Anderson–Darling

.20 .4145 .5125 .6720 .7518 .8498

.15 .3509 .4809 .6548 .7285 .8156

.10 .2877 .4053 .5740 .6893 .7632

.05 .2329 .3069 .4169 .6673 .7253

Power of Cramér–vonMises

.20 .3595 .4430 .5407 .6863 .8002

.15 .3250 .4018 .4933 .6545 .7803

.10 .2589 .2944 .4356 .6187 .7234

.05 .2055 .2882 .3204 .5522 .6868

Power of Kolmogorov–Smirnov

.20 .3486 .3997 .4407 .6562 .7259

.15 .3058 .3449 .4113 .5328 .6885

.10 .2137 .2507 .3876 .4935 .6138

.05 .1851 .2187 .3092 .4580 .5609
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Table 14: Power of tests for testing goodness of fit of WG against Gamma

with estimated parameters.

Level of
significance

Sample size

n = 100 n = 200 n = 500 n = 1000 n = 2000

Power of Anderson–Darling

.20 .4277 .5459 .7032 .8089 .8927

.15 .3639 .4994 .6633 .7746 .8558

.10 .3073 .4227 .6118 .7268 .7982

.05 .2857 .3998 .5844 .6934 .7639

Power of Cramér–vonMises

.20 .4008 .4935 .6632 .7604 .8239

.15 .3401 .4349 .6110 .7093 .7994

.10 .2831 .3970 .5256 .6859 .7530

.05 .2217 .3239 .5012 .6221 .7126

Power of Kolmogorov–Smirnov

.20 .3603 .4158 .5728 .6953 .7649

.15 .3041 .3945 .4592 .5889 .7325

.10 .2859 .3567 .4182 .5234 .7049

.05 .2130 .3018 .3993 .5008 .6532
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Abstract:

• We develop a hierarchical dynamic Bayesian beta model for modelling a set of time

series of rates or proportions. The proposed methodology enables to combine the

information contained in different time series so that we can describe a common un-

derlying system, which is though flexible enough to allow the incorporation of random

deviations, related to the individual series, not only through time but also across se-

ries. That allows to fit the case in which the observed series may present some degree

of level shift. Additionally, the proposed model is adaptive in the sense that it incor-

porates precision parameters that can be heterogeneous no only over time but also

across the series. Our methodology was applied to both real and simulated data.

The real data sets used in this article include three time series of Brazilian monthly

unemployment rates, observed in the cities of Recife, São Paulo and Porto Alegre, in

the period from March 2002 to March 2012. A new parametrization of the precision

parameter makes possible the use of the same type of link function for both the mean

and the precision parameters, which are then expressed in the (0, 1) interval, providing

a more meaningful interpretation in terms of the magnitude of the scale.
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1. INTRODUCTION

The beta regression models, proposed by Ferrari and Cribari-Neto (2004),

have attracted the attention of many researchers. Those models are useful in

situations where the response is restricted to the standard unit interval. In this

seminal work the authors developed generalized linear models (GLM) theory for

dealing with the situation where only the parameter related to the mean of the

beta distribution was allowed to vary.

In the context of GLM’s Nelder and Lee (1991) and Smyth and Verbyla

(1999) describe a class of joint generalized linear models which allow both the

mean and the dispersion parameters in the GLM model to vary with the response.

Nelder and Lee (1991) argue that it is necessary to use two GLM’s when

both mean and dispersion are to be modeled, i.e., we would have the so called

mean process and the dispersion process. Pregibon (1984) was the first to suggest

this kind of specification. Other articles related to such perspective, in which the

dispersion parameter of the beta model is allowed to vary, include Cuervo-Cepeda

and Gamerman (2004), Smithson and Verkuilen (2006), Espinheira (2007), Simas

et al. (2010) and Bayer (2011). These works emphasize the need of correctly

modelling the dispersion parameter of the beta regression in order to achieve

efficient estimation.

Based on the class of beta regressions introduced by Ferrari and Cribari-

Neto (2004), Rocha and Cribari-Neto (2009) proposed a dynamic model for con-

tinuous random variates whose range is described by the standard unit interval

(0,1). The proposed frequentist βARMA model includes both autoregressive and

moving average dynamics, and also includes a set of regressors. Da-Silva et al.

(2011) proposed a dynamic Bayesian beta model for modelling and forecasting

single time series of rates or proportions. In such work only the mean parameter

of the beta model was allowed to vary with time.

In the present work we build upon the dynamic Bayesian beta model in-

troduced by Da-Silva et al. (2011) and upon the class of conditionally Gaussian

dynamic models (see Cargnoni et al., 1997; Gamerman and Migon, 1993) to pro-

pose a hierarchical dynamic Bayesian beta model in which both the mean and

the dispersion parameters of the beta model can vary with time. Since the pro-

posed model is hierarchical, the parameters in the model are related both through

time and hierarchically across several series, which supposedly share a common

underlying trend.

Even though it is possible to individually fit time series that share common

features, gains are obtained when those series are analyzed jointly (Gamerman

and Migon, 1993). Naturally, by disregarding existing common features shared
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by a given set of time series (e.g. trends, seasonal behavior, etc) one could end

up with poorer analyses and forecasts.

We also would like to stress the fact that Cargnoni et al. (1997) and Gamer-

man and Migon (1993) do not deal with the situation of fitting the dispersion

process, a feature that we introduce in our present model formulation. Thus, in

this paper we address the issues of formulating a hierarchical dynamic beta model

that allows dealing with a set of related time series, each one following related

beta models that may present time-evolving mean and precision parameters.

We motivate our study with the problem of forecasting monthly Brazilian

unemployment rates in different cities. The Brazilian Institute of Geography and

Statistics (IBGE) implemented the Monthly Unemployment Survey (PME) in

1980, but since 2002 a new survey methodology has been adopted.

The PME is a monthly survey about workforce and income. The most

important metropolitan regions in Brazil are included in such survey: São Paulo,

Rio de Janeiro, Belo Horizonte, Porto Alegre, Recife and Salvador. The data can

be found at http://www.ibge.gov.br/.

In Figure 1 we present the PME data for the cities of Recife, São Paulo and

Porto Alegre. As we can observe, the three series have similar underlying trends

but distinct levels and, possibly, distinct dispersions, specially in the case of the

city of Recife.
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Figure 1: Observed unemployment rates in the cities of Recife,

São Paulo and Porto Alegre — Brazil.

This article is organized as follows. In Section 2 we introduce the hierarchi-

cal dynamic beta model. In Section 3 we describe a fully Bayesian methodology

to analyze data from a hierarchical dynamic beta process. In Sections 4 to 6 we

apply the methods to simulated and real data.
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2. THE HIERARCHICAL DYNAMIC BETA MODEL

In this section we present a methodology for modelling a set of I time series

of rates or proportions, yit, i = 1, ..., I, which share certain characteristics which

allows us to treat them in the class of the hierarchical models.

Da-Silva et al. (2011) used the parametrization of the beta distribution

given by Ferrari and Cribari-Neto (2004) to describe a dynamic beta model in

which the precision parameter ζ was considered fixed. However, a more general

model can be described by considering both the mean and the precision param-

eters varying with time. In such case, the observation equation of the dynamic

model is given by

p
(
yit | µit, ζit

)
=

Γ(ζit)

Γ(ζitµit) Γ
(
ζit(1−µit)

) yζitµit−1
it (1− yit)

ζit(1−µit)−1 ,(2.1)

and we have E(yit | µit, ζit) = µit and V (yit | µit, ζit) = µit(1 − µit)/(1 + ζit),

with 0 ≤ µit ≤ 1 and ζit > 0, t = 1, ..., N and i = 1, ..., I.

Another parametrization for ζ, proposed by Bayer (2011), can be used in

our context, since it allows us to use link functions for the transformed ζ which

are easier to interpret than, say, a log link function, whose the upper limit is

unbounded.

In equation (2.1), let φit =
1

1+ζit
so that ζit =

1−φit

φit
. Thus, 0 < φit < 1, and

the observation equation of the model is now written as

Observation equation: Let

p
(
yit | µit, φit

)
=

y
µit

�
1−φit

φit

�
−1

it (1 − yit)
(1−µit)

�
1−φit

φit

�
−1

B
(
µit

(
1−φit

φit

)
, (1 − µit)

(
1−φit

φit

)) ,(2.2)

with i = 1, ..., I, t = 1, ..., N and B(a, b) =
Γ(a)Γ(b)
Γ(a+b) , be the observation equation

of the dynamic model. Let y = (y1, ..., yN ) with yt = (y1t, ..., yIt)
′
, t = 1, ..., N .

The model structure is such that we have I time series in study, in which

(yit | µit, φit) is independent of (yjt | µjt, φjt) for i 6= j. Equation (2.2) incorpo-

rates heterogeneity in the precision parameter that may occur both over time or

across the series.

Other components which are essential in the description of our hierarchical

dynamic beta model include

(i) the definition of real transformations applied to µit and φit, allowing

the use of some simplifying Gaussian properties;
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(ii) the description of structural equations represented in terms of lin-

ear models relating the transformed parameters and the latent states

and

(iii) the representation of the system equation of the dynamic model

in which the state parameters are related to surrogate observation

equations described by the structural equations.

In order to describe the structural equation, two link function, h1(·) and

h2(·), associated to, respectively, the mean process and the dispersion process,

should be defined. These are real valued transformations and are useful in the

model construction since some of the nice properties of the Gaussian dynamic

linear models (DLM’s) follow from that.

Take η1it = h1(µit) and η2it = h2(φit) with ηit = (η1it, η2it)
′
such that ηit is

a real valued vector. Let ηt = (η1t, ..., ηIt)
′
, i.e., ηt is a 2I×1 vector of structural

parameters for all the I series at time t with ηit = (η1it, η2it)
′
, thus η = (η1, ..., ηN ).

Now, yit is parametrized by ηit, i.e., (yit |ηit) ∼ Beta(yit |ηit).

Structural equations: Let

ηt = Ftθt + vt , vt ∼ N(0, V ) ,(2.3)

with ηit = Fitθt + vit be the structural equation in our model formulation. The

error term vit in the structural equation is assumed to follow a Gaussian distri-

bution with zero mean vector and covariance matrix Vi, i.e., vit ∼ N(0, Vi), with

t = 1, ..., N and i ∈ {1, ..., I}.

In equation (2.3) the term θt, representing the state parameter of the dy-

namic model at time t, is a real valued s-dimensional vector of latent states.

Besides, Ft = (F1t, ..., FIt)
′
is the 2I×s design matrix for all the I series at time t,

vt = (v1t, ..., vIt)
′

is the 2I×1 vector of errors for the structural equations and

V = block-diag(V1, ..., VI) is a (2I×2I) block diagonal matrix.

System Equation: Let

θt = Htθt−1 + wt , wt ∼ (0,W ) ,(2.4)

with t = 1, ..., N , be the system equation of the dynamic model.

The error term wt in the system equation is assumed to follow a Gaussian

distribution with zero mean vector and covariance matrix W, i.e., wt ∼ N(0,W ),

with t = 1, ..., N . Additionally, we assume that the error terms wt and vit are all

mutually independent.

The s-dimensional covariance matrix W (for the s-dimensional vector of

latent states, θt), is assumed to be block-diagonal including k blocks, with k ≤ s.
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Those blocks are associated to the effects included in the latent states. Thus,

W = block-diag(W1, ...,Wk). The matrix Ht is a specified s×s state evolution

matrix.

The hierarchical dynamic beta model (HDBM) requires the specification of

a (2I×2I) covariance matrix V in the structural equations and another covari-

ance matrix W for the state vector. That might become complicated for large

matrix dimensions. In many applications it may be sufficient to model simpler

dependences, in particular to allow individual random effects. That is why in our

proposed model both V and W are block-diagonal matrices.

Notice that equations (2.3) and (2.4) represent a standard dynamic linear

model for the state vector θt. Additionally, θ is conditionally independent of y

given η. These combined features imply a substantial simplification in the pos-

terior computations of the parameters η and θ, as described in Cargnoni et al.

(1997).

3. MODELLING THE LATENT COMPONENTS OF THE HDBM

In this section we set up the hierarchical beta model for a hypothetical case

in which yit represents a given rate or proportion at region i and time t, i = 1, ..., I

and t = 1, ..., N . We take the logit transformation of both µit and φit and, to

η1it and η2it, we fit dynamic models considering, respectively, a second-order

polynomial trend seasonal effects and a second-order polynomial trend effects.

The formulation of the structural equations is given below:

η1it = log

(
µit

1 − µit

)
= Fi1tθt + vi1t , vi1t ∼ N(0, Vi1) ,

(3.1)

η2it = log

(
φit

1 − φit

)
= Fi2tθt + vi2t , vi2t ∼ N(0, Vi2) ,

with Vi = diag(Vi1, Vi2).

In equation (3.1) the term Fi1tθt, on the right-hand side of ηi1t, is the

linear predictor of the logit transformed expected value of the beta model for

time t and region i. We use a second-order polynomial trend seasonal effects

model with offset term in order to describe ηi1t, that is

η1it = βt + λt0 + γit + vi1t .(3.2)

The DLM representation of the model for η1it is

Second-order polynomial effects for the level with respect to µit:

βt = βt−1 + δt−1 + wβt
,

(3.3)
δt = δt−1 + wδt ,
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Free-form Seasonal effects:

λtr = λt−1,r+1 + wtr , r = 0, ..., p− 2 ,
(3.4)

λt,p−1 = λt−1,0 + wt,p−1 ,

First-order polynomial effects for the offset term:

(3.5) γit = γi,t−1 + wγit
,

where

• βt represents an underlying level at time t, with respect to h1(µit), that

is common to the I series;

• δt is the incremental growth;

• λt0 represents a seasonal effect that is common to the I series.

We denote the size of the seasonal cycle as p.

• γit is an offset parameter representing deviations of the observed rate in

region i at time t with respect to the average βt;

• vi1t represents the region i series-specific stochastic deviation.

In equation (3.1) the term Fi2tθt, on the right-hand side of η2it, is the linear

predictor of the logit transformed term related to the precision of the beta model

for time t and region i. We use a second-order polynomial effects model with

offset term in order to describe η2it, that is

η2it = ψt + αit + vi2t .(3.6)

The DLM representation of the model for η2it is

Second-order polynomial effects for the level with respect to φit:

ψt = ψt−1 + ξt−1 + wψt
,

(3.7)
ξt = ξt−1 + wξt ,

First-order polynomial effects for the offset term:

αit = αi,t−1 + wαit
,(3.8)

where

• ψt represents an underlying level at time t, with respect to h2(φit), that

is common to the I series;

• ξt is the incremental growth;

• αit is an offset parameter representing deviations of the observed rate

in region i at time t with respect to the average ψt;

• vi2t represents the region i series-specific stochastic deviation.
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Identifiability restrictions:

λt,p−1 = −

p−2∑

r=0

λtr , γIt = −
I−1∑

i=1

γit , αIt = −
I−1∑

i=1

αit .

In order to exemplify the construction of the model, we consider I = 3

regions where the rates are measured over time. Thus, the vector (η1it, η2it)
′
is

described by

(
η1it

η2it

)
=

(
βt + λt0 + γit
ψt + αit

)
+

(
vi1t
vi2t

)
, i = 1, 2, 3 .

That is,

ηit = Fitθt + vit , i = 1, 2, 3 ,

where γ3t = −(γ1t + γ2t), α3t = −(α1t + α2t). For example, for seasonal cycles of

size p = 4 (quarters), then λt3 = −(λt0 + λt1 + λt2).

The state vector θt for generic-sized p cycles is represented by

θt =

(
βt, δt, λt0, λt1, ..., λt,p−2, ψt, ξt, γ1t, γ2t, α1t, α2t

)
.

Consider the following design matrices:

J =

(
1 1

0 1

)
and P =

(
−1′

p−2 −1

Ip−2 0

)
.

Matrices J and P are essential in the description of our dynamic model.

Suppose a DLM such that the observation equation is yt = βt + ǫt and the system

equation is given by the pair of equations in expression (3.3). Such model is

called a linear growth model and it includes a time-varying slope βt. If we define

θt = (βt, δt)
′

and F = (1, 0)
′
, then the observation equation can be represented

by yt = F ′θt + ǫt, while the system equation, by θt = Jθt−1 + (wβt
, wδt)

′
.

Matrix J allows us to write a linear growth model such the permutation

matrix P is p-cyclic, so that Pnp = Ip and P h+np = P h, for h = 1, ..., p, and

any integer n ≥ 0. For example, suppose, for simplicity, a DLM model with

yt = Fθt + ǫt describing the observation equation and θt = θt−1 +wt, the system

equation. Additionally, suppose a purely seasonal series and quarterly data yt,

t = 1, 2, ..., so that when yt−1 refers to the first quarter of the year, yt refers to

the second one.

Due to the restriction
∑4

i=1 αi = 0, the series might be described by sea-

sonal deviations from the zero. Thus assume that yt−1 = α1 + ǫt−1, yt = α2 + ǫt,

and so on, so that to (yt−1, yt, yt+1, yt+2, yt+3, yt+4, yt+5, yt+6) are associated the

respective seasonal deviations from zero, (α1, α2, α3, α4, α1, α2, α3, α4). Consider

now that θt−1 = (α1, α4, α3, α2) and that F ′
= (1, 0, 0, 0). Then, the successive

application of matrix P makes possible to formulate the desired quarterly seasonal

pattern.
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Considering I = 3 sub-populations or regions, the design matrices associ-

ated to the hierarchical beta dynamic model given by expressions (2.3), (2.4) and

(3.1) to (3.8) are given by

(3.9) H = block-diag
(
J, P, J, I2, I2

)
,

F1 =

(
1 0 1 01×(p−2) 0 0 1 0 0 0

0 0 0 01×(p−2) 1 0 0 0 1 0

)
,

F2 =

(
1 0 1 01×(p−2) 0 0 0 1 0 0

0 0 0 01×(p−2) 1 0 0 0 0 1

)
,

F3 =

(
1 0 1 01×(p−2) 0 0 −1 −1 0 0

0 0 0 01×(p−2) 1 0 0 0 −1 −1

)
.

The incorporation of seasonal components in the model can also be done by

using the Fourier Representation Theorem (see Pole, West and Harrison, 1994,

pp. 49) in which any cyclical function of period p defined by a set of p effects

ψ1, ..., ψp, can be expressed as a linear combination of sine and cosine terms.

Let ω = 2π/p, then there exist (p− 1) real numbers a1, ..., ah; b1, ..., bh−1 such

that, for j = 1, ..., p,

ψj = ah cos(πj) +

h−1∑

r=1

[
ar cos(ωrj) + br sin(ωrj)

]
,(3.10)

where p = 2h if p is even, and p = 2h− 1 with ah = 0 if p is odd. The Fourier

coefficients ar and br are known quantities and we usually set ah = 0. Thus

equation (3.10) can be written as ψj =
∑h

r=1 Sr(j), where

Sr(j) = ar cos(ωrj) + br sin(ωrj) = Ar cos(ωrj + γr) ,

Ar = (a2
r + b2r)

1/2
and γr = arctan(−br/ar) .

The terms Sr(j) is called the r-th harmonic. Ar, ωr and γr describe, respectively,

the amplitude, the frequency and the phase of Sr(j).

For seasonal cycles of even size p (say quarters), we replace matrix P by G

where G = block-diag
(
J2(1, ω), J2(1, 2ω), ..., J2(1, (p/2 − 1)), −1

)
, with Gp = G

and

J2(1, ω) =

(
cos(ω) sin(ω)

−sin(ω) cos(ω)

)
.

For a second-order polynomial trend two harmonic model, the design ma-

trices are given by

G = block-diag
(
J2(1, ω), J2(1, 2ω)

)
,

(3.11) H = block-diag
(
J,G, J, I2, I2

)
,
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F1 =

(
1 0 1 0 1 0 0 0 1 0 0 0

0 0 0 0 1 0 1 0 0 0 1 0

)
,

F2 =

(
1 0 1 0 1 0 0 0 0 1 0 0

0 0 0 0 1 0 1 0 0 0 0 1

)
,

F3 =

(
1 0 1 0 1 0 0 0 −1 −1 0 0

0 0 0 0 1 0 1 0 0 0 −1 −1

)
.

3.1. Estimated proportions and forecasting

The estimated proportions are calculated using the following procedure:

(1) The inverse transformations µit =
exp(η1it)

1+exp(η1it)
and φit =

exp(η2it)
1+exp(η2it)

are

evaluated at the estimated values (posterior means) of η1it and η2it,

for i = 1, ..., I and t = 1, ..., N .

(2) For i = 1, ..., I and t = 1, ..., N we simulate n (say, n = 1,000) samples

from a beta distribution Beta

(
µit

(
1−φit

φit

)
, (1−µit)

(
1−φit

φit

))
and then

we take the average value of those draws.

(3) For the confidence bands we repeat steps (1) and (2) for calculating

the 2.5% and 97.5% percentiles of the posterior distribution of ηit.

The k-step-ahead forecasts for the states are obtained by the repeated

application of the system equation (see expression (2.3)), that is,

θt+k = HHt+k(k) θt +

k∑

r=1

HHt+k(k − r)wt+r ,

where HHt+k(r) = Ht+kHt+k−1 × ··· ×Ht+k−r+1 for all t and integer r ≤ k, with

HHt+k(0) = I. Thus, by linearity and independence and also taking into account

the Bayesian linear estimation method,

θt+k ∼
(
at(k), Rt(k)

)
,

with at(k) = Ht+k at(k− 1) and Rt(k) = Ht+kRt−kH
′
t+k +Wt+k, and at(0) = mt

and Rt(0) = Ct. Therefore the “future” θt values are obtained by successively

sampling from the system equation followed by the evaluation of the structural

equation (see expression (2.4)). The forecast rates are then obtained by running

steps (1) to (3) given above.
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4. BAYESIAN ANALYSIS

In the prior specification for θ0, V and W we assume that θ0, V1, ..., VI and

W1, ...,Wk are mutually independent, with θ0 ∼ N(m0, C0), Vi, i = 1, ..., I have a

common inverse Wishart prior and W be block-diagonal with an inverse Wishart

prior for each block.

It is more convenient to work with the precision matrices instead of with

the covariances matrices. Let Φ0i = V −1
i , i = 1, ..., I, Φl = W−1

l , l = 1, ..., k,

Φ0 = block-diag(Φ01, ...,Φ0I) and Φ = block-diag(Φ1, ...,Φk). Suppose that Φ0i,

i = 1, ..., I, follow independent Wishart distributions such that Φ0i ∼W (ν0i, S0i),

where S0i is a symmetric positive definite matrix of dimensions pi×pi. Similarly,

Φl ∼W (ςl, Zl), follows independent prior distributions for l = 1, ..., k, where Zl
is a symmetric positive definite matrix of dimensions ql×ql.

The joint posterior distribution is given by

p
(
η, θ,Φ0,Φ | y

)
∝

[
N∏

t=1

(
I∏

i=1

Beta(yit |ηit)N
(
ηit;Fitθt,Φ

−1
0i

)
)
N
(
θt;Htθt−1,Φ

−1
)
]

× N(θ0;m0, C0)

I∏

i=1

W (Φ0i; ν0i, S0i)

k∏

l=1

W (Φl; ςl, Zl) .(4.1)

The Markov chain Monte Carlo (MCMC) procedure used for the inferential

processes involves sampling from the full conditional posteriors p(η | θ,Φ0,Φ, y),

p(θ | η,Φ0,Φ, y) and p(Φ0,Φ | η, θ, y).

4.1. Sampling from p
(
θ | η,Φ0,Φ, y

)

As mentioned before, the equations (2.3) and (2.4) represent a standard

dynamic linear model for the state vector θt. In such setting, the fact that

θ is conditionally independent of y given η implies that p(θ | η,Φ0,Φ, y) = p(θ |

η,Φ0,Φ). Then, in a regular DLM, η has the same rule as y, so that in the

sequential updating formulations of the DLM, y will be replaced by η.

The representation of the full conditional posterior distribution of p(θ |

η,Φ0,Φ), considering the conditional independence structure of the DLM as well
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the Bayes theorem is given by

p
(
θ | η,Φ0,Φ

)
= p

(
θN | η,Φ0,Φ

) N−1∏

t=0

p
(
θt | θt+1, ..., θN , η,Φ0,Φ

)

= p
(
θN | η,Φ0,Φ

) N−1∏

t=0

p
(
θt | θt+1, η,Φ0,Φ

)

∝ p
(
θN | η,Φ0,Φ

) N−1∏

t=0

p
(
θt+1 | θt, η,Φ0,Φ

)
p
(
θt | η,Φ0,Φ

)
.(4.2)

Thus, all the state vectors can be sampled from p(θ | η,Φ0,Φ) using the

FFBS (Forward-filtering, backward-sampling) algorithm (Carter and Kohn, 1994;

Frühwirth-Schnatter, 1994). Conditionally on the “observed values” of η, the

algorithm below allows us to draw a sample θN , θN−1, ..., θ0 from p(θ | η,Φ0,Φ)

as follows:

(1) Filtering

Using the Kalman filter (de Jong, 1991), compute the moments mt

and Ct of the joint posterior p(θt | η,Φ0,Φ), t = 1, ..., N , by applying

the standard DLM sequential updating formulae with y replaced by η.

For more details see West and Harrison (1997).

• mt = at +Atet, Ct = Rt −AtQtA
′
t;

• At = RtFtQ
−1
t , et = ηt − ft;

• at = Htmt−1, Rt = HtCt−1H
′
t + Φ

−1
;

• ft = Ftat, Qt = F ′
tRtFt + Φ

−1
0 .

(2) Smoothing

At time t = N , sample the vector state θN from p(θN | η,Φ0,Φ), i.e.,

sample θN from (θN | η,Φ0,Φ) ∼ N(mN , CN ). For times t=N−1, ..., 0,

sample θt from p(θt | θt+1, η,Φ0,Φ) conditionally on the just sampled

value θt+1. That is performed by sampling θt from (θt | θt+1, η,Φ0,Φ)∼

N(ut, Ut), where

• ut = mt +Bt(θt+1 − at+1);

• Ut = Ct −BtRt+1B
′
t;

• Bt = CtHtR
−1
t+1.

4.2. Sampling from p(η | θ,Φ0,Φ, y)

Given θ, Φ0 and Φ, the ηit’s are mutually independent. That implies that

a sample from the conditional posterior of (η | θ,Φ0,Φ, y) is obtained through

I×N independent samples from the respective distributions given by

p
(
ηit | θt,Φ0i,Φ, yit

)
∝ p

(
yit | ηit

)
p
(
ηit | θt,Φ0i

)
.(4.3)



62 Cibele Queiroz Da-Silva and Helio S. Migon

The second term on the right-hand side of the full conditional (4.3) is the normal

prior ηit ∼ N(Fitθt,Φ0i), while the first term is given by the beta model described

by expression (2.2), such that η1it = h1(µit) and η2it = h2(φit).

Since the distribution p(ηit | θt,Φi0, yit) does not have a closed form, it is

necessary to use the Metropolis–Hastings algorithm (M-H) (Metropolis et al.,

1953; Hastings, 1970) in order to draw samples from such distribution. Let m

represent the m-th MCMC draw. We use the following M-H random-walk with

symmetric normal proposal for ηit:

(a) Draw η∗1it ∼ q1(η
m−1
1it , η∗1it)

d
= N(ηm−1

1it ,Φ−1
1i0) and η∗2it ∼ q2(η

m−1
2it , η∗2it)

d
=

N(ηm−1
2it ,Φ−1

2i0).

(b) Calculate the acceptance probability α(ηm−1
it , η∗it) = min{1, Rηit

}, where

Rηit
=

π
(
η∗it | ·

)

π
(
ηm−1
it | ·

) q
(
η∗it, η

m−1
it

)

q
(
ηm−1
it , η∗it

) =
π
(
η∗it | ·

)

π
(
ηm−1
it | ·

) ,

with π(η∗it |·) = p(yit |η
∗
it) p(η

∗
it |θt,Φ0i), π(ηm−1

it |·) = p(yit |η
m−1
it ) p(ηm−1

it |

θt,Φ0i), and q(η∗it, η
m−1
it ) = q1(η

m−1
1it , η∗1it) q2(η

m−1
2it , η∗2it).

(c) Set

ηmit =

{
η∗it with probability α

(
ηm−1
it , η∗it

)
,

ηm−1
it otherwise .

4.3. Sampling from p(Φ0,Φ | η, θ, y)

Considering that Φ0 =block-diag(Φ01,...,Φ0I) and Φ=block-diag(Φ1,...,Φk)

where Φ0i = V −1
i , i = 1, ..., I and Φl = W−1

l , l = 1, ..., k, with Φ0i ∼W (ν0i, S0i)

and Φl ∼W (ςl, Zl), l = 1, ..., k, the full conditional distribution of Φl is given by

p
(
Φl | η, θ,Φ0, y

)
∝

[
N∏

t=1

k∏

m=1

|Φm|
1/2

exp

{
−

1

2
(θt −Htθt−1)

T
Φ(θt −Htθt−1)

}]

× |Φl|
ςl−(pl+1)/2

exp
{
− tr(ZlΦl)

}

∝ |Φl|
N/2+ςl−(pl+1)/2

exp

{
− tr

(
1

2

N∑

t=1

ZZll,tΦl

)
− tr(ZlΦl)

}
(4.4)

∝ |Φl|
N/2+ςl−(pl+1)/2

exp

{
− tr

((
1

2
ZZl· + Zl

)
Φl

)}
,

with ZZt = (θt −Htθt−1) (θt −Htθt−1)
T

and ZZl· =
∑N

t=1 ZZll,t. Thus,

(
Φl | η, θ,Φ0, y

)
∼ Wishart

(
N

2
+ ςl,

1

2
ZZl· + Zl

)
, l = 1, ..., k .
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The full conditional distribution of Φi0 is given by

p
(
Φi0 | η, θ,Φ0, y

)
∝

[
N∏

t=1

N
(
ηit;Fitθt,Φ

−1
0i

)
]
W (Φ0i; ν0i, S0i)

∝

[
N∏

t=1

|Φ0i|
1/2

exp

{
−

1

2
(ηit − Fitθt)

T
Φ0i(ηit − Fitθt)

}]
(4.5)

× |Φ0i|
ν0i−(p0i+1)/2

exp
{
− tr(S0iΦ0i)

}

∝ |Φ0i|
N/2+ν0i−(p0i+1)/2

exp

{
− tr

((
1

2
SSηi

+ S0i

)
Φ0i

)}
,

with SSηi
= (ηit − Fitθt) (ηit − Fitθt)

T
. Thus,

(
Φ0i | η, θ,Φ, y

)
∼ Wishart

(
N

2
+ ν0i,

1

2
SSηi

+ S0i

)
, i = 1, ..., I .

4.4. The case of static dispersion parameters

It is also possible to describe a beta hierarchical model such that the dis-

persion process does not vary with time, i.e., the precision parameters are static.

In such case, the vector ηt on the left-hand side of the structural equation (2.3)

will only include the term related to the mean process and ηit = η1it = h1(µit).

However, we can still associate a link function to the precision parameters, and

we will denote it by η2i = h2(φi), i = 1, ..., I.

The observation equation for such case is then (yit | ηit, η2i) ∼ Beta(yit |

ηit, η2i), i = 1, ..., I. The Bayesian analysis for such situation can be adapted

from the one we just described in the previous sections.

The MCMC developments for ηit are largely the same described in Section

4.2, but now they will be conditioned upon the current values of η2i. Addi-

tionally, for a given prior distribution for η2i, the corresponding full conditional

distribution is

(4.6) p
(
η2i | η, θ,Φ0,Φ, y

)
∝

[
N∏

t=1

Beta(yit | ηit, η2i)

]
p(η2i) .

In this work the prior p(η2i) was set to be a Gaussian distribution, with

parameters chosen as the average mean and average variance of the initial esti-

mated values of η2i, i = 1, ..., I, that were obtained from separate MCMC runs

for each of the individual time series.
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5. A SIMULATION STUDY

We applied the model described in Section 3 to simulated data in which we

considered N = 72 time points (say, six years), I = 3 sub-populations and cycles

of size p = 4.

In order to obtain initial values for the MCMC procedure, we estimated the

parameters involved by running separate DLM models (described by equations

(2.3) and (2.4)) for each of the sub-populations. All the routines were written

using the R language (http://www.r-project.org/). We also made extensive use

of the excellent dlm R library by Petris (2010).

In such DLM setting the ηit’s have the same rule as the observed data.

Thus, in order to run those initial models we estimated η1it by log

(
yit

1−yit

)
and

η2it by log

(
σ̃2

it

1−σ̃2
it

)
with σ̃2

it = var(yi)/(yit(1 − yit)) (see properties of expression

(2.1)).

For the simulated data we considered a hierarchical dynamic beta model in

which a second-order polynomial trend seasonal effects were fitted to the param-

eters related to the mean, µit, and a second-order polynomial effects was fitted

to the parameters related to the precision, φit. We run chains of size 50,000 with

burn-in period of 20,000. The autocorrelations could be significantly controlled

by using gaps of size 30.

Figure 2 shows the true values (in red) used in the simulations, the esti-

mated values of the parameters involved in expressions (3.2), and the respective

confidence bands for the main effects of level, growth and seasonality. Figure 3

shows the estimated proportions for each of the sub-populations and their cor-

responding confidence bands. As we can observe all the effects and probabilities

are well estimated.
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Figure 2: Simulated data — estimated values and 95% credibility bounds for the

components of η1it: (a) Level (βt), (b) Growth (δt), (c) Seasonality (λt).
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Figure 3: Simulated data — estimated proportions and 95% credibility bounds

for the three sub-populations.
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6. APPLYING THE HIERARCHICAL DYNAMIC BETA MODEL

TO BRAZILIAN UNEMPLOYMENT RATES

In this section we apply our methods to fit the three time series of Brazilian

monthlyunemploymentrates thatweredescribed inthe Introduction(seeSection1).

The three sub-populations in our the analysis are Recife, São Paulo and Porto

Alegre, i.e., I = 3. We analyze monthly unemployment rates (MUR) based on

PME data in the period from March 2002 to July 2011 (N = 113 observations).

As a procedure for checking the performance of the model, forecast rates are also

provided. We used MUR data for the months of August 2011 to March 2012.

The Brazilian Institute of Geography and Statistics acknowledges the ne-

cessity of incorporating seasonal components in any analyses based on MUR data

(http://www.ibge.gov.br). In fact the MURs are affected by yearly cycles caused

by factors such as climatic changes, Christmas festivities and school vacations.

To the mean process, we considered a hierarchical dynamic beta model

in which a second-order polynomial trend seasonal effects model (with cycles

of p = 12 months) was fitted to the parameters related to the mean, µit (see

expressions (3.1) to (3.5)). The model structure was similar to the one used in

Da-Silva et al. (2011), and we opted for using a free-form seasonal effects model

(see equation (3.9)) instead of using harmonic analysis via Fourier representation

(see equation (3.10)), just to be consistent with Da-Silva et al. (2011).

To the dispersion process we used two models: Model 1 describes a static

hierarchical model with respect to the precision parameter (see Section 4.4).

Model 2 adds dynamics to the precision parameter of the beta model. For that

purpose we use a second-order polynomial trend effects model (see expressions

(3.6) to (3.8)).

Considering Model 2 and the parameters of both mean and dispersion pro-

cesses, the design matrices H and F = (F ′
1, F

′
2, F

′
3)

′
are the ones defined by ex-

pression (3.9). For Model 1 those matrices are:

H = block-diag(J, P, I2) ,

F1 =
(
1 0 1 01×(p−2) 1 0

)
, F2 =

(
1 0 1 01×(p−2) 0 1

)
and

F3 =
(
1 0 1 01×(p−2) −1 −1

)
.

We used the mean absolute deviation (MAD), the mean square error (MSE)

and the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) to

compare the forecasting accuracies of Model 1 and Model 2. The MAD and

MSE are defined, respectively, by the following formulae: MAD =
1
n

∑n
t=1 |et|

and MSE =
1
n

∑n
t=1 e

2
t , where et = Yt −E(Yt |y1:t−1) (see Section 4.1 for details).
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According to Spiegelhalter et al. (2002), the DIC is a measure of fit based

on a trade-off between the fit of the data to the model and the corresponding

complexity of the model: DIC = goodness of fit + complexity. The fit for model

Mi is measured in terms of the posterior distribution of the deviance statistic,

D(θi) = −2 logL(Y |θi), while complexity is measured by an estimate of the ef-

fective number of parameters:

di = Di −D(θ̄i) = E
(
D(θi | Y,Mi) −D(E(θi | Y,Mi)

)
,

i.e., the posterior mean deviance minus deviance evaluated at the posterior mean

of the parameters. The DIC is defined as:

DIC (Mi) = D(θ̄i) + 2di .

The DIC generalizes the AIC (Akaike, 1973) in the sense that it explicitly

applies to non nested non IID problems. Besides that, DIC can be approximated

via MCMC samples from the posterior density. For the reasons exposed so far,

in this work we used DIC instead of either AIC or BIC (Schwarz, 1978).

Models with smaller DIC are better supported by the data. The DIC is

a positive number, in general. However, it can be negative but such occurrence

does not pose any difficulty in terms of model comparison, since the focus is in

the difference between two values and not in the DIC value itself.

In general, the di component is a positive value. However, it can be negative

in cases where the likelihood function is not log-concave, when there is a conflict

between the prior and the likelihood or when the posterior distribution of the

parameters is too skewed or symmetric and multi-modal, so that the posterior

mean/median are poor measures of central tendency. In those cases, the use of

the posterior mode can be a fair alternative.

Table 1 displays the MAD, MSE, the effective number of parameters, di,

and DIC values for Model 1 and Model 2. As we observe, the total MAD and to-

tal MSE values for Model 2 are somewhat smaller than those values for Model 1.

However, the DIC for Model 2 is much smaller than the DIC for Model 1, giving

strong indication that Model 2 provides a superior fit compared to Model 1. Ad-

ditionally, the effective number of parameters, di, for both, Model 1 and Model 2,

are positive. Thus besides of the limitations of the DIC, in our applications it

seems to be performing properly.

Table 1: MSE, MAD, di and DIC values for Models 1 and 2.

Model MSE MAD di DIC

Model 1 0.00158 0.03934 36.602 −1510.622

Model 2 0.00150 0.03559 229.819 −2445.007
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In order to gain a better perspective of the real advantages of using Model 2

as opposed to Model 1, we present Figures 4 and 5 which display the estimated

proportions or rates for each of the sub-populations and their corresponding con-

fidence bands.
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Figure 4: MUR data (Model 1 with static precision parameter) — estimated pro-

portions and 95% credibility bounds for the three sub-populations:

(a) Recife, (b) São Paulo and (c) Porto Alegre.

The forecast rates are presented after the dotted vertical lines.
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Figure 5: MUR data (Model 2 with dynamic precision parameter) — estimated

proportions and 95% credibility bounds for the three sub-populations:

(a) Recife, (b) São Paulo and (c) Porto Alegre.

The forecast rates are presented after the dotted vertical lines.

It is really reassuring the superiority of Model 2 compared to Model 1 in

terms of both the precision of the credibility intervals, and how well Model 2 is

able of describing the observed proportions for each of the sub-populations.
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7. DISCUSSION

In this article we propose an extension to the Bayesian beta dynamic model

developed by Da-Silva et al. (2011). We develop a hierarchical dynamic Bayesian

beta model for modelling a set of time series of rates or proportions. The proposed

methodology enables to combine the information contained in different time series

so that we can describe a common underlying system, which is though flexible

enough to allow the incorporation of random deviations, related to the individual

series, not only through time but also across series. That allows to fit the case in

which the observed series may present some degree of level shift. Additionally, the

proposed model is adaptive in the sense that it incorporates precision parameters

that can be heterogeneous no only over time but also across the series. The use

of two link functions, one for the mean process and another to the dispersion

process, makes such extension possible. Additionally, the choice of the matrices

Ft and Ht allow for a multiplicity of ways of specifying the model, even allowing

for the inclusion of covariates.

Missing observations can be easily accommodated: if the observation at

time t is missing, then yt = NA and yt does not carry any information. Then, we

set p(θt |Dt) = p(θt |Dt−1).

Our methodology was applied to both real and simulated data. The real

data set used are three time series of Brazilian monthly unemployment rates,

observed in the cities of Recife, São Paulo and Porto Alegre, in the period from

March 2002 to March 2012. We used a second-order polynomial trend seasonal

effects to the parameters related to the mean, µit, and a second-order polynomial

effects to the parameters related to the precision, φit. The very good features of

the proposed model can be appreciated by the inspection of the graphs presented.

The new parametrization of the precision parameter that was proposed by Bayer

(2011) was used in the model formulation. It is very convenient since both, the

link functions for µit and φit, are expressed in the (0, 1) interval, which gives us

a more meaningful interpretation in terms of the magnitude of the scale.

For future work we envision the possibility of extending the current model

to enable the inclusion of different type of regimes for both, the level of the mean

process and the level of the dispersion process.



72 Cibele Queiroz Da-Silva and Helio S. Migon

ACKNOWLEDGMENTS

The authors are deeply indebted to the Office to Improve University Re-

search (CAPES-Brazil), for financial support via Project PROCAD-NF 2008.

Cibele Q. Da-Silva was supported by CNPq-Brazil, BPPesq. Helio S. Migon was

supported by the National Research Council (CNPq-Brazil, BPPesq) and the

Rio de Janeiro State Research Foundation (Faperj) together with CAPES via the

Pronex project. We also want to thank the anonymous referees for their careful

reading of this manuscript and also for their suggestions and criticisms which lead

to very important improvements.

REFERENCES

[1] Akaike, H. (1973). Information theory and an extension of the maximum likeli-

hood principle. In: “Proceedings of the Second International Symposium on Infor-

mation Theory” (B.N. Petrov and F. Csáski, Eds.), Budapest, Akadémiai Kiadó,
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1. INTRODUCTION

In the least squares approach, any sensitivity analysis is essentially re-

lated to how points are observed, so reflected on the elements of the Hat matrix.

As the most widely used concepts in regression diagnostics, influential observa-

tions and outliers are identified by the size of these quantities. Consider the

general linear regression model

(1.1) yi = x′
i β + εi , (i = 1, 2, ..., n) ,

where yi is the i-th observed response, xi is a p×1 deterministic vector, β ∈ Rp

is an unknown p×1 vector of parameters, and the εi’s are uncorrelated errors

with mean zero and variance σ2
. Writing y = (y1, ..., yn)

′
, ε = (ε1, ..., εn)

′
, and

X = (x1, ...,xn)
′
, model (1.1) can be written as:

(1.2) y = Xβ + ε .

The matrix X is called design matrix, which contains the column one in the

intercept model. We assume throughout that X is full-rank matrix, so X′X is

nonsingular. In this case the ordinary least squares estimator of β is

(1.3) β̂ = (X′X)
−1X′y .

The n×1 vector of ordinary predicted values of the response variable is ŷ = Hy,

where the n×n prediction or Hat matrix, H, is given by

(1.4) H = X(X′X)
−1X′ .

The residual vector is given by e = (In−H)y with the variance-covariance matrix

V = (In −H)σ2
, where In is the identity matrix of order n. The matrix H plays

an important role in the linear regression analysis. Let hij indicate the (i, j)-th

element of H. Hence,

(1.5) hij = x′
i(X

′X)
−1xj , (i, j = 1, 2, ..., n) .

The diagonal element hii is so-called the leverage of the i-th data point and

measures how far the observation xi is from the rest of points in the X-space.

Any point with large values of hii tends to be an influential observation. Such

a point is called high-leverage. Cook and Weisberg (1982, p. 13) point to the

following conditions, to hii be large:

• x′
ixi is large relative to the square of the norm x′

jxj of the vectors xj ;

i.e. xi is far removed from the bulk of other points in the data set, or

• x′
ixi is substantially in the direction of an eigenvector corresponding to

a small eigenvalue of X′X.

The various criteria are suggested for the size of hii to xi being high-leverage

(see Chatterjee and Hadi, 1988, p. 100–101).
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On the other hand, off-diagonal elements of the Hat matrix may be re-

garded as another criterion in the regression analysis. Ignoring the constant σ2
,

these elements are covariances of any pair of the estimated residuals, so can be

useful to check the independency assumption. From theoretical point of view,

there may exist situations in which observations are jointly but not individually

influential (Chatterjee and Hadi, 1988, p. 185). Huber (1975) mentions that large

values of hij typically correspond to outlying design points. Hadi (1990) proposed

two graphical displays of the elements of H, that are useful in the detection of

potentially influential subsets of observations.

In this paper we discuss the necessary and sufficient conditions for the de-

sign matrix to have some extreme values of Hat matrix elements, in the intercept

and no-intercept linear regression models. We obtain a sharper lower bound for

off-diagonal elements of the Hat matrix in the with intercept linear model, which

is shorter than those for no-intercept model by 1/n.

Repeated application of the following first lemma is made. Part (a) of this

lemma is due to Chipman (1964).

Lemma 1.1. Let A be a matrix of n×p with rank p − m1, (m1 > 0).

(a) If B, of order m1×p and full row rank, has it’s rows LIN (linearly

independent) of those of A, then

A(A′A + B′B)
−1B′

= 0n×m1
and B(A′A + B′B)

−1B′
= Im1

.

(b) If R, of order m2×p; (m2 ≤ m1) and rank 1, has the first row r′ of the

form R = δr′, where δ = (1, δ2, ..., δm2
)
′, and r be LIN of rows of A,

then

R(A′A + R′R)
−1R′

=
δδ

′

‖δ‖2
.

Lemma 1.2. Let A and B be n×p matrices. Then, rank(A − B) =

rank(A)− rank(B), if and only if AA−B = BAA−
= BA−B = B, where A− is

a generalized inverse of A satisfying AA−A = A (see Seber, 2007).

Throughout this paper we use the notation (i) written as a subscript to

a quantity to indicate the omission of the i-th observation. For example, X(i)

and X(ij) are matrix X with the i-th row and (i, j)-th rows omitted, respectively.

The vector x̄ denotes the mean of X’s rows and Jp is a p×p matrix of ones.
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2. BOUNDSFORDIAGONALELEMENTSOFTHEHATMATRIX

This section is allotted to determine the lower and upper bounds of hii,

along with necessary and sufficient conditions for observation matrix X to take

those values. These conditions are fundamentally on the basis of some special

forms of xi and X(i). We consider two customary full rank linear regression

models; without and with intercept.

Lemma 2.1. Let Xn×k be full column rank matrix without column one.

Then,

(i) 0 ≤ hii ≤ 1.

(ii) hii=0, if and only if xi = 0.

(iii) hii=1, if and only if rank(X(i)) = k − 1.

Proof: Part (i) is immediately proved since H and In − H are positive

semi-definite (p.s.d.) matrices. Similarly part (ii) is obtained since (X′X)
−1

is a

p.d. matrix. To verify part (iii), without loss of generality, suppose that xi is the

last row of X, i.e. X′
=
[
X′

(i) xi

]
. If hii=1, then

(2.1) H =

[
X(i)(X

′X)
−1X′

(i) 0(n−1)×1

01×(n−1) 1

]
.

Since H is an idempotent matrix, X(i)(X
′X)

−1X′
(i) is also idempotent. Hence,

rank(X(i)) = rank
(
X(i)(X

′X)
−1X′

(i)

)
= trace

(
X(i)(X

′X)
−1X′

(i)

)
= k − 1 .

Conversely, let rank(X(i)) = k − 1. Since, rank
[
X′

(i) xi

]
= rank(X′

) = k, it fol-

lows that xi is LIN from the rows of X′
(i). Using part (a) of Lemma 1.1,

x′
i

(
X′

(i)X(i) + xix
′
i

)−1
xi(= hii) = 1 ,

and proof is completed.

Lemma 2.2. If the full column rank matrix Xn×(k+1) contains column

one, then

(i) 1
n
≤ hii ≤ 1.

(ii) hii =
1
n
, if and only if xi = x̄.

(iii) hii=1, if and only if rank(X(i)) = k.

Proof: In this case H− 1
n
Jn and In −H are both p.s.d. matrices, so part

(i) holds. To verify part (ii) note that in the with intercept model, we have:

(2.2) (X′X)
−1 x̄ =

1

n

[
1

0k×1

]
.
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The sufficient condition is established by noting that

(2.3) x′
i (X′X)

−1 x̄ = x̄′
(X′X)

−1 x̄ =
1

n
.

Conversely, if hii = 1/n, we have:

(xi − x̄)
′
(X′X)

−1
(xi − x̄) = 0

which satisfies xi = x̄. Part (iii) is verified similar to part (iii) of Lemma 2.1.

Example 2.1. Consider the simple linear regression model yi = β0 +

β1xi + ǫi with usual assumption. In this case,

hii =
1

n
+

(xi − x̄)
2

∑n
k=1(xk − x̄)2

.

It is clear that xi = x̄ satisfies hii = 1/n. Also, if for all k 6= i, we have xk = c (6= xi),

then x̄ = c + (xi − c)/n and hii = 1. Figures 1 and 2 show two examples of these

situations. In Figure 1, the i-th observation gives minimum possible value hii,

and the fitted slope is not affected by this observation. Conversely, Figure 2

shows an example with maximum possible value for hii. In this case, the slope

of fitted line is determined by yi, and deleting such observation changes X′
(i)X(i)

to a singular matrix.

ji

*

*

*

*

*

*

*

**

��������������

6

-

ji

*

*

*

*

*

**

*#
#

#
#

#
#

#
#

#
#

#

6

-

Figure 1: A simple linear regression model Figure 2: A simple linear regression model

with intercept for which hii = 1

n
. with intercept for which hii = 1.

3. BOUNDS FOR OFF-DIAGONAL ELEMENTS OF THE HAT

MATRIX

In this case we assume two situations with and without intercept term in the

linear regression model. Part (i) of the following lemma is shown by Chatterjee

and Hadi (1988, p. 18). (They have appreciated Professor J. Brian Gray for

bringing part (i) of this lemma).
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Lemma 3.1. Let Xn×k be full column rank matrix without column one.

Then,

(i) −1
2 ≤ hij ≤

1
2 .

(ii) hij = −1
2 , if and only if xi = −xj and rank(X(ij)) = k − 1.

(iii) hij =
1
2 , if and only if xi = xj and rank(X(ij)) = k − 1.

Proof: Since H is idempotent, we have:

(3.1) hii =

n∑

i=1

h2
ik = h2

ii + h2
ij +

∑

k 6=(i,j)

h2
ik ,

which implies that h2
ij = hii(1 − hii) +

∑
k 6=(i,j) h2

ik. Since 0 ≤ hii ≤ 1, part (i)

is obtained by conditions hii = hjj = 1/2 and hik = hjk = 0 for all k (6= i, j) =

1, 2, ..., n. To verify sufficient condition of part (ii), let hij = −1/2. From (3.1)

we have hii = hjj = 1/2, so

(xi + xj)
′
(X′X)

−1
(xi + xj) = 0 ,

which holds only if xi = −xj . Again, if X′
=
[
X′

(ij) xi xj

]
, then

(3.2) H =




X(ij) (X
′X)

−1X′
(ij) 0(n−2)×2

02×(n−2)
1
2

[
1 −1

−1 1

]

 .

Since H is idempotent, it follows from equation (3.2) that X(ij)(X
′X)

−1X′
(ij) is

also idempotent. Hence,

rank
(
X(ij)

)
= rank

(
X(ij)(X

′X)
−1X′

(ij)

)
= trace

(
X(ij)(X

′X)
−1X′

(ij)

)
= k − 1 .

Conversely, if xi = −xj and rank(X(ij)) = k − 1, since rank
[
X′

(ij) xi xj

]
=

rank(X) = k, it follows that xi is LIN from the rows of X(ij). Applying part (b)

of Lemma 1.1 with replacing A and R by X(ij) and
[
xi −xi

]
, with δ = (1,−1)

gives

R(A′A + C′C)
−1R′

=

[
hii hij

hij hjj

]
=

[
1/2 −1/2

−1/2 1/2

]
.

Part (iii) is proved similarly by multiplying xj by −1.

The following lemma gives the boundary of hij in the with intercept model.

We will find its upper bound similar to the case of the no-intercept model, whereas

its lower bound has sharpened by the constant 1/n.

Lemma 3.2. If Xn×(k+1) is full column rank matrix with column one,

then

(i) 1
n
− 1

2 ≤ hij ≤
1
2 .

(ii) hij =
1
n
− 1

2 , if and only if xi + xj = 2x̄ and rank(X(ij)) = k.

(iii) hij =
1
2 , if and only if xi = xj and rank(X(ij)) = k.
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Proof: In this case H is idempotent and has the property of a transition

probability matrix, i.e. H1=1. Thus, we should minimize hij with restriction

(3.1) along with

(3.3)

n∑

i=1

hik = 1 .

Using λ as a Lagrangian multiplier, we minimize

(3.4) hij = 1 − hii −
∑

k 6=(i,j)

hik + λ


hii(1 − hii) − h2

ij −
∑

k 6=i,j

h2
ik


 ,

with respect to the λ and elements hik for k 6= j = 1, 2, ..., n. Clearly ∂hij/∂λ = 0

gives (3.1), and ∂hij/∂hii = 0 gives hii =
1
2 − 1

2λ
. On the other hand setting

∂hij/∂hik = 0 results to hik = − 1
2λ

. Substituting in (3.1) gives:

(3.5) h2
ij =

1

4

(
1 −

n − 1

λ2

)
,

and so (3.3) yields

(3.6) hij =
1

2

(
1 +

n − 1

λ

)
.

Solving equations (3.5) and (3.6) with respect to λ gives the boundary of hij as

1

n
−

1

2
≤ hij ≤

1

2
.

In order to prove part (ii), note that hij = 1/n − 1/2 produces all hik, (k 6= i, j)

be equal to 1/n, which leads to hii = hjj = 1/n + 1/2. Hence,

(xi + xj − 2x̄)
′
(X′X)

−1
(xi + xj − 2x̄) = 0 ,

which holds only if xi + xj = 2x̄. Furthermore, we have

(3.7) H −
1

n
Jn =




X(ij) (X
′X)

−1X′
(ij) −

1
n
Jn−2 0(n−2)×2

02×(n−2)
1
2

[
1 −1

−1 1

]

 .

Since H− 1
n
Jn is idempotent, equation (3.7) results to X(ij)(X

′X)
−1X′

(ij)−
1
n
Jn−2

is idempotent, also. Hence,

k − 1 = trace

(
X(ij) (X

′X)
−1X′

(ij) −
1

n
Jn−2

)

= rank

(
X(ij) (X

′X)
−1X′

(ij) −
1

n
Jn−2

)
.

We now show that the last rank of difference matrix is equal to the difference

of corresponding rank of matrices. Let A = X(ij) (X
′X)

−1X′
(ij) and B =

1
n
Jn−2.
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Since A is symmetric, we have AA−
= A−A, resulting A2A−

= A. Using equa-

tion (3.7) and noting that (H − 1
n
J)1 = 0, we have

AB = BA = B2
=

(
n − 2

n

)
B and A2

= A −
2

n
B .

Therefore,

(3.8)

(
A −

2

n
B

)
A−

= A .

Multiplying (3.8) by A from the left side, we find ABA−
= B. Similarly, the

equality A−BA = B is verified. It remains to show that BA−B = B. Multi-

plying (3.8) by B to the right hand side and noting that A−B is symmetric, we

have

BA−B =
n

2

(
AA−B − AB

)
=

n

2

[
B −

(
n − 2

n

)
B

]
= B .

Using Lemma 1.2, we have rank
(
X(ij)(X

′X)
−1X′

(ij)

)
− rank(Jn−2) = k − 1, and

thus rank
(
X(ij)

)
= k.

Conversely, suppose X(ij) of order (n−2)×(k+1) has rank k and xi+xj =

2x̄. Then x̄ = x̄(ij), the row means of X(ij). In this case hij = 2/n − hii. Now,

since X(i) is full column rank, then xj is LIN from the rows of X(ij). Using part

(a) of the Lemma 1.1, we have:

x′
i

(
X′

(i)X(i)

)−1
xi = (2x̄ − xj)

′ (X′
(ij)X(ij) + xjx

′
j

)−1
(2x̄ − xj)

= 4x̄′
(ij)

(
X′

(ij)X(ij) + xjx
′
j

)−1
x̄(ij)

−
4

n − 2
1′X(ij)

(
X′

(ij)X(ij) + xjx
′
j

)−1
xj

+ x′
j

(
X′

(ij)X(ij) + xjx
′
j

)−1
xj

= 4x̄′
(ij)

(
X′

(ij)X(ij) + xjx
′
j

)−1
x̄(ij) + 1

= 4

(
(n−1)x̄(i) + xi

n

)′ (
X′

(i)X(i)

)−1

(
(n−1)x̄′

(i) + xi

n

)
+ 1

= 4

[
x′

i

(
X′

(i)X(i)

)−1
n + 1

]
+ 1 .

Hence, x′
i (X

′
(i)X(i))

−1xi =
hii

1−hii
=

n+2
n−2 , which implies hij = 1/n − 1/2.

Proof of part (iii) is analogous to part (iii) of Lemma 3.1.

Example 3.1. Consider the simple linear regression model yi = β0+β1xi+ǫi

with usual assumptions. In this model,

hij =
1

n
+

(xi − x̄) (xj − x̄)∑n
k=1(xk − x̄)2

.
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Now if xi = xj = c and xk = d 6= c (for every k 6= i, j) then x̄ = d + 2(c − d)/n.

It is easy to show that hij = 1/2. On the other hand, if xi 6= xj , xk = d 6= xi, xj

(for every k 6= i, j) and xi + xj = 2x̄ = 2d, then hij = 1/n− 1/2. Figures 3 and 4

show two examples of mentioned situations, in the case when hij gives its maxi-

mum and minimum possible values.

ki

kj

*

*
*

*

*

*

*

*

*

*

��������������

6

-

ki

kj

*

*

*

*

*

*

*

*

*

��������������

6

-

Figure 3: A simple linear regression model Figure 4: A simple linear regression model

with intercept for which hij = 1

n
− 1

2
. with intercept for which hij = 1

n
+ 1

2
.

Example 3.2. Suppose the multiple linear regression model yi = β0 +

β1xi1 + β2xi2 + β3xi3 + ǫi with design matrix X as

X =




1 3 8 4

1 1 6 6

1 3 5 8

1 1 1 2

1 1 14 2

1 4 9 11

1 1 7 2

1 2 6 5




.

Hat matrix is

H =




0.625 −0.375 0.125 0.125 0.125 0.125 0.125 0.125

−0.375 0.625 0.125 0.125 0.125 0.125 0.125 0.125

0.125 0.125 0.298 0.133 −0.161 0.335 −0.003 0.148

0.125 0.125 0.133 0.618 −0.196 −0.235 0.242 0.188

0.125 0.125 −0.161 −0.196 0.791 0.008 0.296 0.049

0.125 0.125 0.335 −0.235 0.008 0.658 −0.123 0.106

0.125 0.125 −0.003 0.242 0.260 −0.123 0.250 0.124

0.125 0.125 0.148 0.188 0.049 0.106 0.124 0.126




.

It is observed that h12 = −0.375 = 1/n− 1/2, and this is because of xi +xj = 2x̄

and for any i ≥ 3: xi3 = 3xi1 − 1.
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4. CONCLUDING REMARKS

A large number of statistical measures, such as Mahalanobis distance,

weighted square standardized distance, PRESS, etc, have been proposed in the

literatures of diagnosing influential observations, which are typically based on

hij ’s. Removing the i-th point or (i, j)-th points jointly may be useful to detect

the leverage in regression diagnostics. The following outcomes are obtained from

the previous lemmas in sections 2 and 3:

• hii = 0 (or hii = 1/n in the intercept model). In this case the i-th ob-

servation potentially is an outlier, recognized by large distance between

yi and ȳ. This point has no effect on the estimation of unknown param-

eter β, except constant term in the with intercept model (see Figure 1).

In this situation, yi has minimum effect to determine ŷi.

• hii = 1. Presence of such point obviates full collinearity of some columns

of X, so it is likely to be an influential observation. This point is capable

to elongate the regression line itself. In other words, the fitted regression

line passes through other data points to place of the i-th observation.

In this case we see ei = 0 (see Figure 2).

• hij = −1/2 (or hij = 1/n − 1/2 in the intercept model). This case may

be declared as a competition between i-th and j-th observations. Using

Lemma 3.1 and Lemma 3.2, it can be shown that if any of these points

removed, then other point has the maximum value 1 of diagonal element

of corresponding Hat matrix constructed based on the remaining n − 1

observations, so will be an influential observation. In this case, ei = ej ,

so ρ(ŷi, ŷj) = −1. This situation occurs when (i, j)-th points are at the

different sides of the bulk of other points (see Figure 3).

• hij = 1/2. Contrary to the previous case, in this case the i-th and the

j-th observations are at the same side of the bulk of other points. It can

be shown that predicted values of these observations are at the same

direction, i.e. ρ(ŷi, ŷj) = 1 (see Figure 4).
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APPENDIX: Proof of Lemma 1.1

(a): Without loss of generality, let the first p − m1 rows A1 of A be full

row rank; then the last (n+m1 − p) rows A2 of A may be written as A2 = NA1,

where N is (n + m1 − p) × (p − m1). Since B has its rows LIN of those of A, we

may define: [
A1

B

]
=
[
C1 D

]
,

where C1 and D are p × (p−m1) and p×m1 matrices, respectively. Then,

[
A1

B

] [
C1 D

]
=

[
A1C1 A1D

BC1 BD

]
=

[
Ip−m1

0

0 Im1

]
.

Now define the p × (n + m1 − p) matrix C2 as C2 = C1N
′
. So, we have

A =

[
A1

A2

]
=

[
Ip−m1

N

]
A1 ,

and

C =
[
C1 C2

]
= C1

[
Ip−m1

N′ ] .

From the solutions we obtain

AC =

[
Ip−m1

N′

N NN′

]
, AD = 0n×m1

= (BC)
′, BD = Im1

,

where rank(AC) = rank(A) = p−m1. Now since
[
A B

]
has rank p, A′A + B′B

is positive definite and therefore invertible. From above we have expressions

(A′A + B′B)D = B′ .

Premultiplying by (A(A′A + B′B)
−1

), and then by (B(A′A + B′B)
−1

) we ob-

tain

A(A′A + B′B)
−1 B′

= AD = 0n×m1

and

B(A′A + B′B)
−1 B′

= BD = Im1
.

(b): Equalizing R = δr′ results to:

R(A′A + R′R)
−1 R′

= δr′ (A′A + rδδ
′r′)−1 rδ′ .

Now using part (a) and substituting B by

√
δδ

′r′ give

R (A′A + R′R)
−1 R′

=
δδ

′

‖δ‖2
.
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1. INTRODUCTION AND MOTIVATION

One of the common problems in applications is to check whether the

mean value of an investigated phenomena equals a given number, i.e. testing the

hypothesis H0 : µ = µ0. For example, for econometrical applications see [5], for

biological applications [8], for engineering [11], for medical applications [7].

See also [1], [2], [4], [6].

To test the hypothesis H0, the classical t test is used. However, this test

requires the assumption of normality of the phenomena, so it is advised (see

statistical packages such as SAS, Statistica, Statgraphics) to check normality

first, for example with the Shapiro–Wilk W test. If normality is rejected, tests

other than t are recommended (e.g. the sign test). So, the procedure of testing

the hypothesis H0 : µ = µ0 becomes a little complicated, and should be conducted

in two steps:

1. check normality with the W test,

2. if normality is not rejected then use the t test else use the sign test.

In this paper we propose a modification of the Shapiro–Wilk W test, dedi-

cated to checking normality with known mean value µ0, i.e. to testing the hypoth-

esis H0 : X ∼ N
(
µ0, σ

2
)
, where X is the random variable of interest. This test

could have very wide applications. For example, when we apply the paired t-test,

the differences are assumed to be normally distributed with a given mean value

µ0 = µ1 − µ2. The other application can be measurement errors which should

be distributed as N(0, σ2
), i.e. a measurement should be unbiased and normally

distributed. Also, dimensions or weight of manufactured products should be nor-

mally distributed with given mean value. Another application is in the analysis

of linear models, where one has to verify that residuals are normally distributed

with null mean.

The modification of the W test and its properties are described in Section 2.

The simulation results on its power are given in Section 3. Some concluding

remarks are given in Section 4.

2. DERIVATION OF THE W0 STATISTIC AND ITS PROPERTIES

Suppose that a random variable X is observed and we are interested in

testing the hypothesis

H0 : X ∼ N(µ, σ2
) .
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Shapiro and Wilk ([12]) proposed the W test based on the statistic

(2.1) W =

(
n∑

i=1
aiX(i)

)2

n∑
i=1

(
Xi − X̄

)2
,

where X(1) ≤ X(2) ≤ ··· ≤ X(n) are the ordered values of a sample X1, X2, ..., Xn,

and ai are tabulated coefficients. A lower tail of W indicates nonnormality.

Now, let us assume that the expected value µ, say µ0, is known. Thus it is

of interest to test the null hypothesis

(2.2) H0 : X ∼ N(µ0, σ
2
) .

Application of Shapiro and Wilk’s technique to the problem of testing (2.2) gives

the statistic

W0 =

(
n∑

i=1
aiX(i)

)2

n∑
i=1

(Xi − µ0)
2

.

The null hypothesis (2.2) is rejected when W0 < W0(α, n), where W0(α, n) is the

critical value at significance level α.

The statistic W0 has properties similar to the W statistic, namely, W0 is

scale invariant and the maximum value of W0 is one. As it is known, the minimum

value of W is ε =
n a2

1

n − 1
([12]).

Lemma 2.1. The minimum value of W0 is zero.

Proof: Since W0 is scale invariant it suffices to consider the maximization

of

n∑
i=1

(Xi − µ0)
2

subject to

n∑
i=1

aiX(i) = 1. The lemma follows from the fact that

n∑
i=1

(Xi − µ0)
2

may be arbitrarily large.

Shapiro and Wilk ([12]) gave an analytic form of the probability density

function for the W statistic in the case of sample size n = 3. It is

(2.3) g(w) =
3

π
(1 − w)

− 1

2 w− 1

2 for
3

4
≤ w ≤ 1 .

They also establish that W is statistically independent of X̄ and of

n∑
i=1

(
Xi − X̄

)2

for samples from a normal distribution.
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Thus, it is easy to obtain the probability density function of W0 for samples

of size n = 3. Let us notice that W0 = W ·C, where

C =

n∑
i=1

(
Xi − X̄

)2

n∑
i=1

(Xi − µ0)
2

=

n∑
i=1

(
Xi − X̄

)2

n∑
i=1

(
Xi − X̄

)2
+ n

(
X̄ − µ0

)2

is a random variable distributed as Beta
(

n−1
2 , 1

2

)
, independent of W . Thus in the

case of n = 3, under H0, we have the probability density function of C, namely,

f(c) =
1

2
(1 − c)−

1

2 for 0 ≤ c ≤ 1 .

Taking the new variable W0 = W ·C in the joint probability density function

g(w) f(c) and integrating this function over c, we get the probability density

function for W0 in the following form

ϕ(w0) =





3

2π
· w

− 1

2

0 ·

4

3
w0∫

w0

(1 − c)−
1

2 (c − w0)
− 1

2 dc for 0 ≤ w0 ≤ 3
4 ,

3

2π
· w

− 1

2

0 ·

1∫

w0

(1 − c)−
1

2 (c − w0)
− 1

2 dc for
3
4 ≤ w0 ≤ 1 .

Finally, after integrating, we get

ϕ (w0) =





3

2π
· w

− 1

2

0 ·

(
arcsin

5w0 − 3

3 (1 − w0)
+

π

2

)
for 0 ≤ w0 ≤ 3

4 ,

3

2
· w

− 1

2

0 for
3
4 ≤ w0 ≤ 1 .

The plot of ϕ (w0) is shown in Figure 1.

Figure 1: Plot of probability density function of W0 for n = 3.
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For sample size n > 3 the analytical form of the null distribution of W0 is

not available. Hence, to obtain any information about the distribution, Monte

Carlo simulations were performed. In simulations, for each n = 3, 4, ..., 50, N =

1,000,000 samples from the distribution N(0, 1) were drawn and for each sample

the value of W0 was calculated, thus the sample w1, w2, ..., wN of values of the W0

statistic was obtained. The critical value W0(α, n) was taken as the α-th quantile

of w1, w2, ..., wN . All calculations were done in the R program ([9]) using the

procedure shapiro.test in which Royston’s procedure is used ([10]). The same

calculations were also done independently in Mathematica. The results are given

in Table 1.

Table 1: Critical values of W0 statistic for sample sizes n and significance level α.

n α = 0.01 α = 0.05 α = 0.1 n α = 0.01 α = 0.05 α = 0.1

3 0.0184 0.0881 0.1714 27 0.7379 0.8232 0.8601
4 0.0721 0.2037 0.3127 28 0.7463 0.8287 0.8645
5 0.1419 0.3086 0.4190 29 0.7539 0.8340 0.8688
6 0.2090 0.3867 0.4952 30 0.7611 0.8394 0.8730
7 0.2742 0.4525 0.5543 31 0.7677 0.8437 0.8765
8 0.3299 0.5051 0.5998 32 0.7746 0.8482 0.8800
9 0.3785 0.5493 0.6374 33 0.7804 0.8524 0.8834

10 0.4233 0.5852 0.6682 34 0.7871 0.8565 0.8863
11 0.4606 0.6165 0.6935 35 0.7917 0.8602 0.8894
12 0.4940 0.6431 0.7154 36 0.7969 0.8634 0.8921
13 0.5246 0.6661 0.7346 37 0.8008 0.8670 0.8947
14 0.5494 0.6862 0.7504 38 0.8063 0.8701 0.8972
15 0.5739 0.7038 0.7651 39 0.8109 0.8731 0.8996
16 0.5954 0.7196 0.7778 40 0.8145 0.8760 0.9018
17 0.6126 0.7337 0.7890 41 0.8194 0.8787 0.9040
18 0.6319 0.7476 0.7998 42 0.8227 0.8816 0.9061
19 0.6478 0.7590 0.8088 43 0.8271 0.8839 0.9081
20 0.6626 0.7696 0.8176 44 0.8301 0.8862 0.9100
21 0.6761 0.7792 0.8250 45 0.8343 0.8887 0.9120
22 0.6876 0.7875 0.8319 46 0.8374 0.8911 0.9138
23 0.7008 0.7965 0.8390 47 0.8403 0.8931 0.9154
24 0.7104 0.8034 0.8446 48 0.8433 0.8951 0.9169
25 0.7205 0.8103 0.8501 49 0.8470 0.8974 0.9187
26 0.7296 0.8170 0.8553 50 0.8491 0.8989 0.9200

Shapiro and Wilk ([13]) approximated the distribution of the W statistic

by a Johnson curve. For each n they made the least squares regression of the

empirical sampling value of

u(p) = ln
W (p) − ε

1 − W (p)
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on the p-th quantile of the standard normal distribution zp, where ε was the

minimum value of the W statistic and W (p) was the p-th empirical sampling

quantile. They took the following values of p :

p = 0.01, 0.02, 0.05 (0.05) 0.25, 0.5, 0.75 (0.05) 0.95, 0.98, 0.99 ,

and gave the tables for ε, γ and δ such that z = γ + δ ln
W − ε

1−W
has approximately

standard normal distribution.

In our study, a similar approach was applied for the W0 statistic for sample

sizes n = 3, 4, ..., 50. As ε = 0 (see Lemma 2.1), the least squares regression of

ln
W0(p)

1−W0(p)
on zp was based on 1,000,000 pseudorandom samples from N(0, 1).

The values of δ and γ, such that Z = γ + δ ln
W0

1−W0
has approximately stan-

dard normal distribution are listed in Table 2. The lower tail of Z’s indicates

nonnormality.

Table 2: The normalizing constants for W0 for sample sizes n.

n γ δ n γ δ n γ δ

3 −0.3137 0.5551 19 −3.2563 1.3698 35 −4.4593 1.5241
4 −0.6479 0.7282 20 −3.3584 1.3847 36 −4.5088 1.5272
5 −0.9586 0.8510 21 −3.4511 1.3983 37 −4.5621 1.5336
6 −1.2299 0.9384 22 −3.5365 1.4095 38 −4.6152 1.5382
7 −1.4778 1.0092 23 −3.6320 1.4236 39 −4.6749 1.5467
8 −1.6950 1.0671 24 −3.7067 1.4319 40 −4.7186 1.5495
9 −1.8960 1.1157 25 −3.7869 1.4431 41 −4.7771 1.5574

10 −2.0790 1.1573 26 −3.8624 1.4520 42 −4.8195 1.5597
11 −2.2470 1.1929 27 −3.9346 1.4606 43 −4.8711 1.5659
12 −2.4039 1.2238 28 −4.0077 1.4703 44 −4.9137 1.5693
13 −2.5513 1.2517 29 −4.0770 1.4783 45 −4.9706 1.5769
14 −2.6821 1.2755 30 −4.1538 1.4891 46 −5.0118 1.5797
15 −2.8104 1.2979 31 −4.2084 1.4935 47 −5.0512 1.5826
16 −2.9320 1.3181 32 −4.2782 1.5030 48 −5.0908 1.5858
17 −3.0400 1.3350 33 −4.3354 1.5086 49 −5.1470 1.5935
18 −3.1553 1.3542 34 −4.4017 1.5172 50 −5.1795 1.5954

To check the goodness of approximation, another N = 1,000,000 pseudo-

random samples from N(0, 1) were generated. For each of them W0i and Zi =

γ +δ ln
W0i

1−W0i
were calculated (i = 1, 2, ..., N). The ratios

# {Zi : Zi ≤ zp}

N
with

p = 0.01, 0.02, 0.05, 0.1, 0.5, 0.9, 0.95, 0.98, 0.99 are given in Table 3.
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Table 3: The simulated probabilities P

(
γ + δ ln

W0

1−W0

≤ zp

)
for sample sizes n.

Probability
n

0.01 0.02 0.05 0.10 0.5 0.90 0.95 0.98 0.99

3 0.015 0.023 0.047 0.06 0.458 0.919 0.957 0.979 0.987
4 0.014 0.024 0.049 0.091 0.453 0.912 0.957 0.981 0.989
5 0.014 0.024 0.051 0.094 0.453 0.908 0.955 0.982 0.990
6 0.013 0.024 0.051 0.095 0.454 0.906 0.956 0.983 0.991
7 0.013 0.024 0.052 0.096 0.456 0.905 0.956 0.983 0.991
8 0.013 0.024 0.053 0.097 0.457 0.903 0.955 0.983 0.992
9 0.013 0.024 0.052 0.097 0.457 0.902 0.955 0.983 0.992

10 0.013 0.024 0.053 0.098 0.457 0.90 0.955 0.983 0.992
11 0.013 0.024 0.054 0.099 0.456 0.900 0.954 0.983 0.992
12 0.013 0.024 0.054 0.099 0.458 0.900 0.954 0.984 0.992
13 0.013 0.024 0.054 0.100 0.459 0.900 0.954 0.984 0.993
14 0.013 0.024 0.054 0.099 0.458 0.899 0.954 0.984 0.992
15 0.013 0.024 0.053 0.099 0.456 0.898 0.954 0.984 0.993
16 0.013 0.024 0.054 0.100 0.458 0.899 0.954 0.984 0.993
17 0.013 0.024 0.054 0.099 0.457 0.898 0.954 0.984 0.993
18 0.013 0.024 0.054 0.099 0.457 0.897 0.953 0.984 0.993
19 0.013 0.024 0.054 0.100 0.457 0.897 0.953 0.984 0.993
20 0.013 0.024 0.054 0.100 0.458 0.897 0.953 0.984 0.993
21 0.013 0.024 0.054 0.100 0.457 0.897 0.953 0.984 0.993
22 0.013 0.024 0.054 0.100 0.457 0.897 0.953 0.984 0.993
23 0.013 0.024 0.055 0.100 0.458 0.897 0.953 0.984 0.993
24 0.013 0.024 0.054 0.101 0.459 0.897 0.954 0.984 0.993
25 0.013 0.024 0.054 0.100 0.458 0.897 0.954 0.984 0.993
26 0.013 0.024 0.054 0.100 0.459 0.898 0.953 0.984 0.993
27 0.013 0.024 0.055 0.100 0.458 0.897 0.954 0.985 0.993
28 0.013 0.024 0.054 0.100 0.457 0.897 0.953 0.984 0.993
29 0.013 0.024 0.054 0.100 0.458 0.898 0.954 0.984 0.993
30 0.013 0.024 0.055 0.101 0.458 0.897 0.953 0.984 0.993
31 0.013 0.024 0.054 0.100 0.458 0.897 0.954 0.985 0.993
32 0.013 0.024 0.055 0.101 0.459 0.900 0.953 0.984 0.993
33 0.013 0.024 0.054 0.100 0.457 0.897 0.953 0.984 0.993
34 0.013 0.024 0.055 0.101 0.459 0.897 0.954 0.984 0.993
35 0.013 0.024 0.054 0.101 0.458 0.896 0.953 0.984 0.993
36 0.013 0.024 0.054 0.100 0.458 0.897 0.954 0.985 0.993
37 0.013 0.024 0.054 0.100 0.457 0.896 0.953 0.984 0.993
38 0.013 0.024 0.054 0.101 0.458 0.897 0.953 0.985 0.993
39 0.013 0.024 0.054 0.100 0.456 0.896 0.953 0.984 0.993
40 0.013 0.024 0.055 0.100 0.457 0.897 0.954 0.985 0.993
41 0.013 0.024 0.054 0.100 0.456 0.896 0.953 0.984 0.993
42 0.013 0.024 0.055 0.101 0.458 0.897 0.954 0.985 0.993
43 0.013 0.024 0.054 0.100 0.457 0.896 0.954 0.985 0.993
44 0.013 0.024 0.054 0.099 0.456 0.896 0.953 0.984 0.993
45 0.013 0.024 0.055 0.100 0.457 0.896 0.953 0.984 0.993
46 0.013 0.024 0.055 0.100 0.458 0.897 0.954 0.984 0.993
47 0.013 0.024 0.055 0.101 0.458 0.897 0.954 0.985 0.994
48 0.013 0.024 0.054 0.100 0.457 0.897 0.954 0.985 0.994
49 0.013 0.025 0.055 0.101 0.458 0.896 0.954 0.985 0.994
50 0.013 0.024 0.054 0.100 0.457 0.896 0.953 0.984 0.993
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3. POWER COMPARISONS

Suppose that the hypothesis H0 : X∼N(µ0, σ
2
) is verified using the W0 test.

Three kinds of alternative hypothesis are considered:

a) X ∼ N
(
µ, σ2

)
with µ 6= µ0;

b) X is not normal with µ = µ0;

c) X is not normal with µ 6= µ0.

We focus on the power of the W0 test. The Shapiro–Wilk W test was

investigated against different nonnormal alternatives. Very exhaustive research

was done by Shapiro et al. ([14]) and Chen ([3]). It was showed that the W test

is very powerful in comparison to other normality tests such as Kolmogorov,

chi-square, β1, β2 and against very different distributions including Student’s t,

Gamma, Beta or Uniform.

As the construction of W0 is similar to the W test, it may be expected

that the W0 test will also be powerful against alternatives of kind b) and c).

Hence, in our study we confine ourselves to the a) alternative, i.e. when the true

distribution is normal with a mean other than µ0. The W0 test is compared with

two other procedures. The first one is the Kolmogorov test (modified to the case

of known mean). The test statistic of the Kolmogorov test is given by

max
1≤i≤n

{∣∣∣∣F
(
X(i)

)
−

i− 1

n

∣∣∣∣,
∣∣∣∣F

(
X(i)

)
−

i

n

∣∣∣∣

}
,

where F
(
X(i)

)
= Φ

(
X(i)−µ0

S

)
, S =

1

n

√
n∑

i=1
(Xi − µ0)

2
and Φ is the CDF of the

standard normal distribution.

The second procedure, denoted by W + t, is a two-step one. In the first

step the normality is verified by the classical W test. If normality is not rejected,

then the hypothesis of equality of the mean to a given number µ0 is verified by

the t test.

All three tests are calculated at the significance level α. In the case of the

W + t test we need to apply two significance levels αW and αt for both tests.

Those numbers were chosen in such a way that the overall significance level is α,

i.e.

PH0

{
W accepts normality and t accepts mean µ0

}
≥ 1 − (αW + αt) = 1 − α .

Because there are no preferences to the W or t test, αW = αt =
α
2 were taken.

The power comparison of the three tests was performed by the Monte Carlo

method. A sample of size n from the standard normal distribution was generated

and this sample was used in all tests. The sample was then shifted to differ-

ent values of µ and then each of the tests was applied to the shifted sample.
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This procedure was repeated 10,000 times. The number of rejections of the hy-

pothesis H0 : X∼N(µ0, σ
2
) was calculated. It should be added that critical points

for Kolmogorov test were also determined by Monte Carlo method. In the sim-

ulations the hypothesis H0 was verified for samples of sizes 10, 20, 30, 40, 50 and

significance levels α = 0.01, 0.05, 0.1. The simulated powers are given in Table 4.

Table 4: Power of W0, Kolmogorov and W + t tests.

α = 0.01 α = 0.05 α = 0.1
n µ

W0 K W + t W0 K W + t W0 K W + t

0.0 0.011 0.010 0.010 0.050 0.049 0.048 0.101 0.100 0.098
0.3 0.034 0.030 0.023 0.129 0.112 0.097 0.216 0.198 0.176
0.6 0.148 0.115 0.097 0.386 0.326 0.287 0.526 0.464 0.422
0.9 0.392 0.310 0.287 0.705 0.610 0.585 0.829 0.746 0.727

10 1.2 0.687 0.565 0.560 0.916 0.845 0.847 0.964 0.925 0.924
1.5 0.892 0.789 0.813 0.987 0.957 0.965 0.996 0.985 0.989
1.8 0.974 0.920 0.943 0.998 0.991 0.995 1.000 0.998 0.999
2.1 0.996 0.978 0.990 1.000 0.999 1.000 1.000 1.000 1.000
2.4 1.000 0.993 0.997 1.000 1.000 1.000 1.000 1.000 1.000

0.0 0.011 0.011 0.010 0.049 0.050 0.051 0.096 0.099 0.096
0.2 0.036 0.031 0.027 0.131 0.113 0.106 0.214 0.189 0.179
0.4 0.165 0.123 0.121 0.383 0.313 0.297 0.515 0.442 0.424
0.6 0.435 0.329 0.344 0.709 0.602 0.610 0.808 0.732 0.733
0.8 0.741 0.601 0.656 0.916 0.842 0.861 0.960 0.913 0.955

20 1.0 0.924 0.835 0.879 0.988 0.959 0.976 0.995 0.984 0.991
1.2 0.988 0.950 0.978 0.999 0.994 0.997 1.000 0.998 0.999
1.4 0.999 0.991 0.997 1.000 1.000 1.000 0.999 0.991 1.000
1.6 1.000 0.999 1.000 1.000 1.000 1.000 1.000 0.999 1.000
1.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.00 0.012 0.009 0.012 0.054 0.053 0.051 0.105 0.103 0.097
0.15 0.039 0.030 0.028 0.124 0.107 0.099 0.201 0.182 0.165
0.30 0.150 0.111 0.106 0.350 0.285 0.267 0.478 0.408 0.388
0.45 0.398 0.290 0.312 0.657 0.550 0.565 0.762 0.679 0.683
0.60 0.693 0.540 0.608 0.876 0.793 0.817 0.930 0.878 0.889

30 0.75 0.891 0.777 0.844 0.972 0.932 0.952 0.987 0.968 0.977
0.90 0.975 0.922 0.959 0.996 0.985 0.992 0.999 0.994 0.997
1.05 0.997 0.981 0.994 1.000 0.998 1.000 1.000 0.999 1.000
1.20 1.000 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000
1.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.00 0.011 0.009 0.010 0.051 0.051 0.050 0.098 0.101 0.101
0.15 0.042 0.034 0.033 0.144 0.125 0.114 0.236 0.206 0.196
0.30 0.213 0.152 0.159 0.440 0.364 0.357 0.565 0.486 0.486
0.45 0.539 0.402 0.459 0.776 0.672 0.702 0.861 0.789 0.802

40 0.60 0.837 0.706 0.785 0.953 0.900 0.924 0.978 0.951 0.963
0.75 0.972 0.910 0.955 0.995 0.981 0.991 0.998 0.993 0.996
0.90 0.997 0.981 0.995 1.000 0.998 1.000 1.000 1.000 1.000
1.05 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.00 0.010 0.008 0.011 0.050 0.050 0.050 0.099 0.100 0.099
0.15 0.064 0.048 0.044 0.179 0.150 0.141 0.272 0.237 0.225
0.30 0.301 0.212 0.224 0.538 0.444 0.452 0.661 0.579 0.578

50 0.45 0.691 0.542 0.609 0.872 0.784 0.817 0.927 0.872 0.891
0.60 0.937 0.840 0.905 0.983 0.956 0.973 0.993 0.978 0.986
0.75 0.994 0.968 0.988 0.999 0.996 0.999 1.000 0.999 1.000
0.90 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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The relative powers of W0 with respect to the Kolmogorov and W + t tests

are shown in Figure 2. On the x-axis there are values of µ ≥ 0 and on the y-axis

there are values of

power of W0 test

power of Kolmogorov test
(solid line) and

power of W0 test

power of W + t test
(dashed line) .

One can see that generally the lines are above 1, which shows that W0 is more

powerful than the other two tests.

Figure 2: Relative power of W0 with respect to Kolmogorov and W + t tests.
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4. CONCLUDING REMARKS

In many statistical models it is assumed that random variables are normally

distributed with known mean. Thus the W0 test is more adequate and should be

used instead of the classical Shapiro–Wilk W test.

In the paper it is shown via a simulation study that the W0 test is generally

more powerful than the Kolmogorov, and W and Student t tests combined.
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