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Abstract:

e This paper studies the general multivariate dependence and tail dependence of a ran-
dom vector. We analyse the dependence of variables going up or down, covering the
2¢ orthants of dimension d and accounting for non-positive dependence. We extend
definitions and results from positive to general dependence using the associated cop-
ulas. We study several properties of these copulas and present general versions of the
tail dependence functions and tail dependence coefficients. We analyse the perfect
dependence models, elliptical copulas and Archimedean copulas. We introduce the
monotonic copulas and prove that the multivariate Student’s ¢ copula accounts for
all types of tail dependence simultaneously while Archimedean copulas with strict
generators can only account for positive tail dependence.
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1. INTRODUCTION

A great deal of literature has been written on the analysis of the depen-
dence structure between random variables. There is an increasing interest in the
understanding of the dependencies between extreme values in what is known as
tail dependence. However, the analysis of multivariate tail dependence in copula
models has been exclusively focused on the positive case. Only the lower and
upper tail dependence have been considered, leaving a void in the analysis of
dependence structure implied by the use of these models. In this paper we tackle
this issue by considering the dependence in the 2¢ different orthants of dimension
d for a random vector.

The use of the tail dependence coefficient (TDC) and the tail dependence
function comes as a response to the inability of other measures when it comes to
tail dependence (see [22, 13] and [20, Chapter 5]). This includes the Pearson’s
correlation coefficient and copula measures such as the Spearman’s p, Kendall’s 7
and the Blomqvist’s 3.

The analysis of lower tail dependence has been derived using the copula,
C, see e.g. [13, 22, 23]. In the context of nonparametric statistics, it is possible
to measure upper tail dependence by using negative transformations or rotations.
However, presenting a formal definition of upper tail dependence in the multi-
variate case and analysing it in copula models can not be achieved by the use
of such methods. Also, trying to define it in terms of C' becomes cumbersome
in higher dimensions. By using the survival copula, the results and analysis of
lower tail dependence have been generalised to upper tail dependence. For more
on the analysis of the use of the survival copula for upper tail dependence, see
[10, 23, 14, 15, 20, 27]. The study of non-positive tail dependence is also rele-
vant when dealing with empirical data and in copula models analysis, see e.g.
[32, 4]. In the case of copula models, the study of tail dependence helps in the
understanding of the underlying assumptions implied by the use of these models.
For example, the Student’s ¢ copula is often used to model data with only posi-
tive tail dependence. However, although this model accounts for the positive tail
dependence, it also assumes the existence of negative tail dependence. Table 1
illustrates positive and negative tail dependence in the bivariate case which we
generalise to the multivariate one.

Table 1: Tail dependence in the four different orthants of dimension two
for variables X and Y.

Lower Tail of X | Upper Tail of X

. classical lower upper-lower
Lower Tail of Y tail dependence | tail dependence

. lower-upper classical upper
Upper Tail of Y tail dependence | tail dependence
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Although much has been written on the need to understand multivariate
non-positive tail dependence, no formal definition has been presented. In this
work we define the necessary concepts to study non-positive tail dependence
in multivariate copula models. We use a copula approach and base our study
on the associated copulas (see [13, p.15]). If a copula is the distribution of
U= (Uy,...,Uy), the associated copulas are the distribution functions of vectors of
the form (Uy,1—Us, Us, ...,1—=Uy_1,1—Uy). The use of copulas of transformations
for non-positive dependence is also suggested in [5, 30].

The reasoning behind the use of associated copulas is the same as for the
use of the survival copula for upper tail dependence analysis. Similarly to that
case, the definition and study of non-positive tail dependence is simplified by the
use of these copulas. They enable us to present a unified definition of multivariate
general tail dependence. This definition is consistent with generalisations from
dimension 2 to d of positive tail dependence. The study of the associated copulas
to analyse non-positive tail dependence is then a generalisation of the use of the
copula and the survival copula for lower and upper tail dependence respectively.

The reminder of this work is divided in three sections: In the second section
we present the concepts we use to study dependence in all the orthants. This
includes general definitions of dependence and probability functions. We present
a version of Sklar’s theorem that proves that the copulas that link these gen-
eral probability functions and its marginals are the associated copulas. We then
present four propositions regarding these copulas. At the end of this section we
present general definitions of the tail dependence functions and TDCs. In the
third section we use the results obtained in Section 2 to study the perfect de-
pendence models, elliptical copulas and Archimedean copulas. We present the
copulas of the perfect dependence cases, which include non-positive perfect de-
pendence. We call these copulas the monotonic copulas. We then characterise
the associated elliptical copulas and obtain an expression for the associated tail
dependence functions of the Student’s ¢t copula model. This model accounts for
all 2¢ types of tail dependence simultaneously. After that, we prove that, by
construction, Archimedean copulas with strict generators can not account for
non-positive tail dependence. We then present three examples with non-strict
generators which account for negative tail dependence. At the end of this section
we discuss a method for modelling arbitrary tail dependence using copula models.
Finally, in the fourth section, we conclude and discuss future lines of research for
general dependence.

Unless we specifically state it, all the definitions and results presented re-
garding general dependence are a contribution of this work.
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2.  ASSOCIATED COPULAS, TAIL DEPENDENCE FUNCTIONS
AND TAIL DEPENDENCE COEFFICIENTS

In this section we analyse the dependence structure among random variables
using copulas. Given a random vector X = (X1, ..., Xg4), we use the corresponding
copula C' and its associated copulas to analyse its dependence structure. For this
we introduce a general type of dependence D, one for each of the 2¢ different
orthants. This corresponds to the lower and upper movements of the different
variables.

To analyse different dependencies, we introduce the D-probability function
and present a version of Sklar’s theorem that states that an associated copula
is the copula that links this function and its marginals. We present a formula
to link all associated copulas and three results on monotone functions and asso-
ciated copulas. We then introduce the associated tail dependence function and
the associated tail dependence coefficient for the type of dependence D. These
functions generalise the positive (lower and upper) cases (extensively studied in
[12, 13, 23]). With the concepts studied in this section, we aim to provide the
tools to analyse the whole dependence structure among random variables, includ-
ing non-positive dependence.

2.1. Copulas and dependence

The concept of copula was first introduced by [29], and is now a cornerstone
topic in multivariate dependence analysis (see [13, 22, 20]). We now present the
concepts of copula, general dependence and associated copulas that are funda-
mental for the rest of this work.

Definition 2.1. A multivariate copula C(uq, ..., uq) is a distribution func-
tion on the d-dimensional-square [0, 1]¢ with standard uniform marginal distribu-
tions.

If C is the distribution function of U = (U, ...,Uy), we denote as C the
distribution function of (1—Uj, ..., 1—Uy). C is used to link distribution functions
with their corresponding marginals, accordingly we refer to C' as the distributional
copula. On the other hand, C is used to link multivariate survival functions with
their marginal survival functions, this copula is known as the survival copula.!
Let X = (X1, ..., Xg4) be a random vector with joint distribution function F', joint
survival function F, marginals F; and marginal survival functions Fj, for i €

We use the term distributional for C, to distinguish it from the other associated copulas.
The notation for the survival copula corresponds to the one used in the seminal work of [13].
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{1, ...d}. Two versions of Sklar’s theorem guarantees the existence and uniqueness
of a copulas C' and C which satisfy

(2.1) F(z1,...,zq) = C(Fi(x1),..., Fa(zq))

(22) F(:cl,...,a:d) = a(Fl(a:l),...,fd(xd)) y

see [13, 22]. In the next section we generalise these equations using the concept
of general dependence, which we now define.

Definition 2.2. In d dimensions, we call the vector D = (Dy, ..., Dg) a
type of dependence if each D; is a boolean variable, whose value is either L
(lower) or U (upper) for i € {1,...d}. We denote by A the set of all 2¢ types of
dependence.

Each type of dependence corresponds to the variables going up or down
simultaneously. Tail dependence, which we define later, refers to the case when
the variables go extremely up or down simultaneously. Two well known types
of dependence are lower and upper dependence. Lower dependence refers to the
case when all variables go down at the same time (D; = L for i € {1, ...,d}) and
upper dependence to the case when they all go up at the same time (D; = U
for i € {1,...,d}). These two cases are examples of positive dependence and
they have been extensively studied for tail dependence analysis, see e.g. [13, 22].
In the bivariate case the dependencies D = (L,U) and D = (U, L) correspond
to one variable going up while the other one goes down. These are examples of
negative dependence. Negative tail dependence is often present in financial time
series, see [32, 4, 14]. Hence, in dimension 2 there are four types of dependence
that correspond to the four quadrants. Note that, in dimension d, for each of the
2¢ orthants we define a dependence D.

Using the concept of dependence, we now present the associated copulas,
see [13, Chapter 1, p.15].

Definition 2.3. Let X = (Xj,..., X4) be a random vector with corre-
sponding copula C, which is the distribution function of the vector (Uy,...,Uy)
with uniform marginals. Let A denote the set of all types of dependencies of
Definition 2.2. For D = (Dy,...,Dq) € A, let Vp = (Vp, 1, ..., Vp,.4) with

{m if D; =L
Vpii =

1-U; ifD;=U"

Note that Vp also has uniform marginals. We call the distribution function of
Vp, which is a copula, the associated D-copula and denote it Cp. We denote Ax
= {Cp| D € A}, the set of 2¢ associated copulas of the random vector X. Also,
for any ) #£ .S C I, let D(S) denote the corresponding |S|-dimensional marginal
dependence of D. Then the copula Cp g, the distribution of the |S|-dimensional
marginal vector (Vp, ;| i € S), is known as a marginal copula of Cp.
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Note that the distributional and the survival copula are C'= C(z, . 1) and
C = Cw,...,v) respectively.

2.1.1. The D-probability function and its associated D-copula

The distributional copula C' and the survival copula C are used to explain
the lower and upper dependence structure of a random vector respectively. We
use the associated D-copula to explain the D-dependence structure of a random
vector. For this, we first present the D-probability functions, which generalise
the joint distribution and survival functions.

Definition 2.4. Let X = (X7,..., Xy) be a random vector with marginal
distributions F; for i € {1,...d} and D = (D, ..., Dg) a type of dependence ac-
cording to Definition 2.2. Define the event B;(x;) in the following way

MY VX s ) D= U

Then the corresponding D-probability function is

d
Fp(x1,...,xq) = P ( N Bi(xi)> .
=1

We refer to

F, fD;=1L
Fp,i =4—= . )
Fi if Di =U

for i € {1, ...d} as the marginal functions of Fp (note that the marginals are either
univariate distribution or survival functions).

In the bivariate case for example, there are four D-probability functions:
F(x1,22), F(z1,22), Fru(zi,x2) = P(X1<z1, Xo>22) and Fyp(xi,z2) =
P(X1> x1, Xy <z2). In general, these functions complement the use of the
joint distribution and survival functions in our analysis of dependence in the

24 orthants.

The following theorem presents the associated copula Cp in terms of the
Fp and its marginals. It is because of this theorem that we can use the associated
copula Cp to analyse D-dependence. We restrict the proof to the continuous case
(for Sklar’s theorem for distribution functions see [20, 13, 22]).
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Theorem 2.1. Sklar’s theorem for D-probability functions and
associated copulas.

Let X = (X1, ..., X4) be a random vector, D = (D, ..., Dg) a type of de-
pendence, Fp its D-probability function and Fp,; for i € {1,...d} the marginal
functions of Fp as in Definition 2.4. Let the marginal functions of Fp be contin-
uous and F'~ denote the generalised inverse of F', defined as F~ (u) := inf{z € R|
F(z) > u}. Then the associated copula Cp: [0,1]%— [0, 1], satisfies, for all x1, ..., T2
in [—o0, 0],

(2.3) Fp(z1,....,zq) = Cp(Fp,1(z1), ..., Fp,a(za)) ,
which is equivalent to
(2.4) Cp(ui,...,uq) = FD(Fb_l,l(ul),...,Fgchd(ud)) :

Conversely, let D = (Dx, ..., Dgq) be a dependence and Fp, ; a univariate distribu-
tion, if D; = L, or a survival function, if D; = U, for i € {1,...d}, then:

(a) If Cp is a copula, then Fp in (2.3) defines a D-probability function
with marginals Fp, ;, i € {1, ...d}.

(b) If Fp is any D-probability function, then Cp in (2.4) is a copula.

Proof: The proof of this theorem is analogous to the proof of Sklar’s
theorem for distribution functions. When two random variables have the same
probability functions, we say they are equivalent in probability and denote it as L
In this general version of the theorem, we have that for the distribution function

F,, the events {X; < z;} © {Fi(X;) < Fy(z:)} and {X; >z} X {Fi(X:) < Fi(2:)},
for i € {1,...,d} and x; € [—00,00]. This implies
for i € {1,...,d}.

Considering equation (2.5) and Definition 2.4, we have that for any 1, ..., z4
in [—o0, 00|

(26) FD(H,’l, ...,%d) = P<FD1,1<X1) SFD1,1($1)7 ceey FDd,d(Xd) SFDd,d($d)) .

Using the continuity of Fj, we have that F;(X;) is uniformly distributed (see
[20, Proposition 5.2(2)]). Hence, if we define U = (Fi(X1), ..., Fa(Xq)), its
distribution function is a copula C. Note that in this case Vp, defined as in
Definition 2.3, is equal to (Fp, 1(X1), ..., Fp,a(Xaq)). It follows that the distribu-
tion function of (Fp, 1(X1), ..., Fp,.qd(Xq)) is the associated copula Cp, in which
case equation (2.5) implies

Co (Fpy1(21), .., Fpga(za)) = P(FD1,1(X1) < Fp,1(x1), ..., Fp,,a(Xa) < FDd,d(de)) ;

and equation (2.3) follows.
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Now, one of the properties of the generalised inverse is that, when T is
continuous, T'o T (z) = z (see [20, Proposition A.3]). Hence, if we evaluate Fp
in (Fp, 1(w1),.... Fpp, 4(ua)), using equation (2.3), we get equation (2.4). This
equation explicitly represents Cp in terms of Fp and its marginals implying its
uniqueness.

For the converse statement of the theorem, we have

(a) Let U= (Uy,...,Ug) be the random vector with distribution function C.
Define X = (X, ..., Xq) = (Fp, 1(U1), ..., Fpy, 4(Ua)) and

TV X s ) D =U

fori € {1,...d}. Considering that F(z) <y <= x < F~(y), wehave I (2) <y
<= 1z > F(y). Using these properties, we get
P
{U; < Fp,i(z:)} ~ Bi(w),

for i € {1,...d}. Using this, the D-probability function of X is

d
P (ﬂ B,(a:ﬁ) = C(FDl’l(t’El), couy FDd,d(xd)) .
i=1

This implies that Fp defined by (2.3) is the D-probability function of X with
marginals

P(Bi(z;)) = P(Ui < Fp,i(z:)) = Fp,i(xi) ,
for i € {1,...d}.

(b) Similarly, let (X3, ..., X4) be the random vector with D-probability
function FD- Define U = (Ul, ceuy Ud) = (FDl,l(X1)7 -~-7FDd,d(Xd)) (note that the
vector is uniformly distributed). Again, using the properties of the generalised
inverse, we have

P —
{Ui < wi} ~ Bi(Fp,i(ui)) ,
for i € {1, ...d}. Hence the distribution function of U is FD(FD:l(ul), ceey F[;d(ud)),
which implies that the function is a copula.

For the properties of the generalised inverse function used in this proof, see
[20, Proposition A.3]. O

For this theorem we referred to generalised inverse functions as they are
more general than inverse functions. However, whenever we are not proving a
general property, we assume distribution functions have inverse functions.

Note that this theorem implies that in the continuous case Cp is the
D-probability function of (Fp, 1(X1), ..., Fp,qd(Xq)) characterised in (2.3). This
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theorem implies the importance of the associated copulas to analyse dependencies.
It also implies the Fréchet bounds for the D-probability functions of Definition
2.4. The bounds can also be obtained similarly to [13, Theorems 3.1 and 3.5],

maX{O, Fpi(z1) + -+ Fpya(za) — (d—l)} < Fp(z1, ..., Ta)

(2.7) < min{FDl,l(ml), FDd’d(:pd)} .

2.1.2. Properties of the associated copulas

In the bivariate case, [13, Chapter 1], and [22, Chapter 2|, presented the
expressions to link the associated copulas with the distributional copula C. In the
multivariate case [14, Equation 8.1] and [10, Theorem 3|, presented the expression
between the distributional and the survival copula and [5, Theorem 2.7] proved
that is possible to express the associated copulas in terms of the distributional
copula C. We now present a general equation for the relationship between any
two associated copulas Cp+ and Cp+ in the multivariate case. The equation is
based on all the subsets of the indices where the D* and DT are different.

Proposition 2.1. Let X = (X1,..., X4) be a random vector with associ-
ated copulas Ax and D*= (D5, ...,D}) and DT = (D{,...,D}) any two types
of dependence. Consider the following sets and notations: I={1,...,d}; I =
{ieI|Df =D} and Iy={i € I| D} # D/ }; di=|I1| and ds = |I|; S; = {the
subsets of size j of Is} and S;j = {The k-th element of S;} for j € {1,...,da}
and k € {1, e (df)} We define Sy = () and Sy = 0; for each S;, define Wj;, =
(W/},k.h ey M/j,k,d) with

U; if ielh
V[/},k:,i = 1—wu; Iif i€ Sng ,
1 if i¢IUS;,

for i € {1,..d}, j € {0, ....ds} and k € {1, (Cg?)}.

Then the associated D*-copula Cp+ is expressed in terms of the D™-copula
Cp+ according to the following equation

ds (?)

(2.8) Cps(u1, - ug) = Y _(—1)7 Y Cp+(Wjp) .
k=1

Jj=0

Note that in the cases when at least a 1 appears in Wj, Cp+(W; ) becomes a
marginal copula of Cp+.
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Proof: Throughout this proof, it must be borne in mind that Cp« is
the distribution function of the random vector Vp+ and Cp+ of Vp+, defined
according to Definition 2.3. Note that, for i € I, Vps; =1 — Vj,+; and they are
equal otherwise. '

In the case dy = 0, we have D* = DT, j € {0} and k € {1} (), hence (2.8)
holds. We prove (2.8) by induction on d, the dimension; it can also be proven
by induction on dz, the number of elements in which D} # D;r . Note that in
dimension d =1, a copula becomes the identity function. If D} # Df, the ex-
pression becomes u; =1 — (1 —uy); the case D} = Df has already been covered
in dy = 0, and expression (2.8) holds.

Now, in dimension d, we prove the formula works if it works in dimension
d — 1. We obtain an expression for Cp=(u1, ..., u4) using the induction hypothesis.
Consider the dependencies, on the (d — 1)-dimension, F* = (D7, ..., D} ;) and
Ft=(Df,..., D;ltl). We use an apostrophe on the sets and notations of F* and
F* to differentiate them from those of D* and DT. It follows that d’ = d — 1 and
I' =1 —{d}. By the induction hypothesis, equation (2.8) holds to express Cp-
in terms of Cp+. In terms of probabilities this is equivalent to

P<VD;,1 Sut, -, Vpyd-1 < qu) =
do—1 (dzjil)
_ _ ] ! /
=D 0 )] P<VD1+,1 <Wikn - Vot a1 S Wj,k,d—l) :
=0 k=1

(2.9)

There are two cases to consider depending on whether D is equal to D; or not.

Case 1. D) = D;‘.
In this case, it follows that, I{ = I —{d}, I}, = I>, d} = d2 and Vpsa= VDI .
If we intersect the events in equation (2.9) with the event {Vp=q < uq} we get

P<VD;,1 Sty oo Vpi a1 S Ud-1, Vpra < Ud) =

(2.10) @ ()
= > WY P(Vopa S Wiks o Vg aa S Wkaons Vog g S ua) -
k=

d—1’
§=0 1

Because I, = Iy, in this case, for j € {1,...,d2} and k € {1, very (‘?)}, the events
ijk, are equal to S; . Considering this, and I} = I} — {d}, we have

(W(,k, Ud)i = Wik,

J
for i € {1,...d}, so (W], uq) = W;y for j€{l,...d2} and k € {1,.., (d]?)}
Equation (2.10) then implies:
do 4(dj2)
Cp-(ur, - uq) = Y (1) > Cp+ (W) -
=0 k=1

2Note that we are using the convention 0! = 1
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Case 2. D) # D;.
In this case, it holds that, I{ = I, I}, = Iy — {d}, dj = da — 1. 'To obtain an

expression for Cp«(u1, ..., uq) = P(VD;,l < Uy, Vpza < ugq), we use the induc-
tion hypothesis. Considering P(A) = P(AN B) + P(AN B€), we have

P<VD;‘,1 Sty - Vps a1 < Udfl) =

d—1

= P<VD;,1 <ut, o Vs d-1 S ud-1, Vpra < Ud)

+ P<VD;,1 Sty - Vpr a1 < Ug—1, Vprd = Ud) ,

d—1

which implies

Cp+(u1,...,uq) = P(VD;J <ug, .,V < Ud—l)
(2.11)
- P(VD;J <ty ey Viig S Ug1, Vpra 2 Ud) .

Note that, in this case Vp= g = 1— VD; 4 This implies that the event {VD;d > ug}
is equivalent to {VD; g <1 —wug}. If we intersect the events involved in equation
(2.9) with the event {Vps: 4 > uq} we get

P(VDIJ <y, ..., Vi

d—1
(212) a1 (%)
:Z Z ( D1 1S Wik - Vor 4 1<W§fk,dfl’%j,d§1_“d)'
k=

d—1 < Ud—1, VD a > w) =

d—1

Combining equations (2.9), (2.11) and (2.12), we obtain

(2.13) do—1 (d2 ) do—1 (d2 Y
C’D*(ul,...,ud) Z ZCD+ ]k? Z ZCDJr ]kvl ud)
j=0 7=0

Note that, in this case, the sets I and I}, satisfy Io = I}, U {d}.

The rest of the proof is based on the fact that for j € {1,...,d —1} the
elements of size j of Iy are the elements of size j of I}, plus the elements of size
j —1 of I} attaching them {d}. Considering our notation, this means

(2.14) S;=8;US}

with 7, = {9/ |, =9 | U{d}| ke {1,...(?)}} forj € {1,...d—1}.
Further to this, by deﬁmtlon of Wj ;. we have the following three equalities:

U; if’iGIl U if’iGIl
( J{yk’ 1)i = L—w; itie S;,k ’ V[/}',k,i = 1—u;, ifie Sj—l,k’
1 ifi@fIlUS;Jﬁ 1 ifiifIlUSj,k
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U; if i€ lh
and (WJ{—Lk’ 1— ud)l = 1-— U; lf ) € S‘;‘/—l,k s
1 ifig LUS!

forie{1,..d}, je{l,...d=1}and k € {1, .., (632)} These three equalities and
equation (2.14) imply that, for a fixed j, if we sum Cp+ evaluated in all of the
(W), 1) and (W, 1 —ug) for different k, we get the sum of Cp+ evaluated on
W; . for different &, that is:

(%) () (%)
(2.15) ZCD+ (W), 1) + ZCD+ (W _y s 1—ua) = ZCD+(VV}',I@) ;
k=1 k=1 k=1
for j € {1,...,d — 1}. Also, the equalities
(Wé,l’ 1)1' = Wo and (Wé—1,17 1- ud)i = Wa,i

hold for i € {1,...d}; the result is implied by these two equalities and equations
(2.13) and (2.15). O

Note that this expression is reflexible, meaning that it yields the same for-
mula to express Cp+ in terms of Cp+. As a particular case, equation (2.8) can
be used to express any associated copula in terms of the distributional copula C,
which is the expression found in literature for copula models. A copula is said
to be exchangeable if for every permutation P: i — p; of I = {1,...,d}, we have
C(u,...,uq) = C(up,, ..., up,). In order to analyse the symmetry and exchange-
ability of copula models, we use the following definition.

Definition 2.5. Let D = (Dq,..., D) be a type of dependence, the com-
plement dependence is defined as Dt = (DG7 - Dg), with

Df =

U if D=L
L ifD,=U"

for i € {1,...,d}. We say that the random vector X, with associated copulas Ax,
is complement (reflection or radial) symmetric, if there exists D* € A, such that

Cp+ = Cp.t.

Note that X is symmetric if there exists one dependence which satisfies
Cp+ = Cp.c. Along with other important properties, in the following proposition
we prove that, if it holds for one dependence, it holds for them all.

Proposition 2.2. Let X be a vector with corresponding associated cop-
ulas Ax, and let D*, DT, D° and D* be types of dependencies. Denote as
I; (D', D?) and I5(D', D?) the elements where the corresponding dependencies
are equal or different respectively. Then the following equivalences hold:
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(i) If Cp+=Cp+ and I;(D*,D") = I,(D*,D°) then Cpx = Cpeo. In par-
ticular, Cp~ = Cp.c¢, for some D*, implies Cp = Cpye for all D € A.

(ii) If Cpe is exchangeable, then Cp- is exchangeable over the elements
of I;(D*,D°) and over the elements of Iy(D*,D°). In particular, if
Cpe is exchangeable, then Cryo¢ is exchangeable.

Proof: (i) This follows from the fact Ir(D*,D')=I,(D*,D°) =
I,(D*,D*) = I,(D°,D™), which is easily verified considering the different cases.
From Proposition 2.1, we have that the vectors Wj ; are the same in both cases,

which implies 0 (dj2)

Cpx (u1, .y ug) = Y _(=1)7 Y Cp+ (W)
=0 k=1
7)

Cp+(Wjii)
1

n

=y
j=0 k=

= CDo(ul,...,ud) .

In particular, note that IQ(D*,D*C) = IQ(D,DC) ={1,...,d} for every D € A.
Then, Cp+ = Cp.¢ implies Cp = Cpe for every D € A.

(ii) From Proposition 2.1 we have

do (‘?)
(2.16) Cp-(u1, . tg) = Y _(=1)7 Y Cpe(Wjp) .

j=0 k=1
Consider j € {0, ...,d2} and k € {1, e (Cg?)}, from the way it is defined, W . ; = u;
for every i € I;(D*,D°). The exchangeability of Cpe implies that Cpo(W; )
is exchangeable over I;(D*,D°). Hence, equation (2.16) implies that Cp- is
exchangeable over I;(D*,D°). Now, let j € {0,...,d2} be fixed, note that each

Wi, ke {1,.., (Cé?)}, is based on a different subset of size j of Ir(D* D°).
2

Consider the sum ), 71 Cpe(W; ;) as a function, given that Cpe is exchangeable

and that the sum considers all the subsets of size j of I3(D*, D°), it follows that

this function is exchangeable over I3(D*,D°). Equation (2.16) then implies that

Cp-+ is exchangeable over I>(D*,D°). In particular Cp.e is exchangeable over

I,(D°, D°%) = {1, ..., d}. O

It is well known that elliptical copulas satisfy C = C. Hence, it follows
that in the bivariate case, Cy = C'yr, and in three dimensions, for instance,
Curv = Cryr. Also, from (ii), it follows that the survival copulas of Archimedean
families are exchangeable in all dimensions. These examples illustrate some of
the applications of this proposition.

In the following proposition we prove that, same as the distributional cop-
ula, all associated copulas are invariant under strictly increasing transformations.



General Multivariate Dependence Using Associated Copulas 15

Proposition 2.3. Let 11,..., T be strictly increasing functions and X =
(X1,...,X4) a random vector with corresponding distribution function and
marginals, D a type of dependence and D-copula Cp. Then, in the continuous
case,

X = (Ti(X0), o Tal X))

also has the same corresponding D-copula Cp.

Proof: This result follows straightforwardly from the fact that the dis-
tributional copula is invariant under strictly increasing transformations (see [20,
Proposition 5.6]) as all associated copulas are implied by this copula using
Proposition 2.1. O

In the bivariate case, [22, Theorem 2.4.4] and [5, Theorem 2.7], charac-
terised the copula after the use of strictly monotone functions on random vari-
ables. In the multivariate case, this can be done using the associated copulas as
we show in the following proposition.

Proposition 2.4. Let T71,..., Ty be strictly monotone functions and X =
(X1,...,X4) a random vector with corresponding distributional copula C. Then
the distributional copula of X = (T1(X1), ..., Ty(X4)) is the associated D-copula
Cp of X, with

D L if T; is strictly increasing
’ U if T; is strictly decreasing ’

for i € {1,..,d}, whose expression is given by Proposition 2.1.

Proof: By using the inverse functions of 7; and Fj, i € {1,...,d} we have:
T P —
T(X:) < (F7 (w)) ~ Bi(Fp, ;(ui)) ,

for i € {1, ...,d}, with B; as in Definition 2.4, which implies that the distributional

copula of X is Cp. O

2.2. Associated tail dependence functions and tail dependence coeffi-
cients

Considering the results obtained so far, it is possible to introduce a general
definition of tail dependence function and tail dependence coefficients considering
the dependence D. For the analysis of the conditions of the existence of the tail
dependence function see [21]. The general expression of the tail dependence
function is the following (for the positive case, see [23])
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Definition 2.6. Let I = {1,...,d}, X = (X1, ..., X4) be a random vector
with copula C, D a type of dependence and Cp the corresponding associated
copula. For any () # S C I, let Cp(s) denote the corresponding marginal copula.
Define the associated D(S)-tail dependence functions bpg) of Cp, ) # S C I as

CD(S)(U’LUZ‘, 1€ S)

bps)(wi,i€S) = 15?8 ” , Yw = (w1, ..., wq) € R

Given that these functions come from the associated copulas, we call the set of
all D-tail dependence functions the associated tail dependence functions. When
S = {1, ...,d} we omit such subindex.

In particular, the corresponding TDCs are presented in the following defi-
nition (for the positive TDCs, see [23, 12]).

Definition 2.7. Consider the same conditions of Definition 2.6. Define
the associated D(S)-tail dependence coefficients Ap(gy of Cp,  # S C I as

. COps(u,...,u)
Ap(s) = lim— S

We say that D(5)-tail dependence exists whenever Ap(g) > 0.

Note that
CD(S)(U, ,u) = CD(ul, ...,ud) > CD(U, ,u) s
with u; = {1{ i ;; g , 1 €{1,...,d}. Because of this, AD(s) = AD, so D-tail
dependence implies D(S)-tail dependence for all ) £ S C I.

3. MODELLING GENERAL DEPENDENCE

In this section we analyse general dependence and tail dependence in three
examples of copula models. To this end we use the definitions and results ob-
tained on the previous section. We first analyse the perfect dependence cases and
obtain their corresponding copulas, this includes perfect non-positive dependence.
We then study the elliptical copulas for which we characterise the associated cop-
ulas. Using this characterisation, we obtain an expression for the associated tail
dependence functions of the Student’s ¢ copula, which accounts for all types of
tail dependence simultaneously. After that we study the Archimedean copulas,
we prove that they can only account for non-positive tail dependence when their
generator is non-strict and present three examples when they do. At the end
of the section we discuss a method for modelling general tail dependence us-
ing copula models. The analysis of general dependence presented in this section
complements the analysis of positive tail dependence for these models.
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3.1. Perfect dependence cases

We now analyse the most basic examples of copula models. They corre-
spond to all the variables being either independent or perfectly dependent.

For the independence case, let U = (Uy,...,Uy) be a random vector with

{U;}4_, independent uniform random variables. The distribution function of U
d

is the copula C(uy,...,uq) = Hui, which is known as the independence copula.
i=1
It follows that the associated copula are also equal to the independence copula.

This is the copula of any random vector formed by independent variables.

Our analysis of perfect dependence corresponds to the distribution of vec-
tors of the form (W, —W,—W, ..., W, —W) with W a uniform random variable.
From Definition 2.3 and Proposition 2.4 it follows that the distribution of
a vector of this form is an associated copula of the vector W = (W,...,W).
The distributional copula of W is

(3.1) Clug, ..., uq) = min{u;}4_; .

Given that 1 — W is also uniform it follows that this is also the survival copula, so
the vector is symmetric. This copula is the comonotonic copula. Now, let D be
a type of dependence and I = {1,...,d}. Define I, ={i € I| D; =L} and Iy =
{i € I| D; = L}. Let us assume that neither I;, nor Iy are empty. That is, we
assume perfect non-positive dependence (the case of perfect positive dependence
is covered in equation (3.1)). Then the associated D-copula is

Cp(u1,...,uq) = P((WS min{ui}ieh) N (Wz max{l—ui}ier)) .

It follows that, for min{w; };c;, > max{l—u;}icr,, this probability is equal to zero;
therefore, a general expression is

(3.2) Cp(u1,...,uq) = maX{O, min{u; }ier, +min{u; }icr, — 1} .

In the bivariate case the associated (L,U)-copula CLy is equal to the Fréchet
lower bound for copulas, also known as the countermonotonic copula. Copulas
of this form appear in perfect non-positive dependence, see [20, Example 5.22].
In the following proposition we prove that, in d dimensions, the copulas of (3.1)
and (3.2) correspond not only to vectors of the form (W, —W, W, ..., W, —W), but
to the use of strictly monotone transformations on a random variable. Because
of this, we call these copulas the monotonic copulas.

Proposition 3.1. Let Z be a random variable, and let {T;}_, be strictly
monotone functions, then the distributional copula of the vector X =
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(T (Z),...,T4(Z)) is one of the monotonic copulas of equations (3.1) or (3.2)
with D = (Dl, ...,Dd),

D L if T; is strictly increasing
"\ U if Ty is strictly decreasing

Conversely, consider a random vector X = (X1, ..., X4) whose distributional
copula is a monotonic copula of equation (3.1) or (3.2) for certain D. Then there
exist monotone functions {T;}%_, and a random variable Z such that

(3.3) (X1, Xa) £ (TV(2), ..., Tu(2)) ,

the {Ti}?:l satisfy that T; is strictly increasing if D; = L and strictly decreasing
if D;=U fori€ {1,...,d}. In both cases the vector X is complement symmetric.

Proof: Let F be the distribution function of Z. Considering the uniform
random variable F(Z) it is clear that the copula of the d-dimensional vector
(Z,...,Z) is the Fréchet upper bound copula min{u;}¢_; of equation (3.1). The
result is then implied by Proposition 2.4.

The converse statement is a generalisation of [5, Theorem 3.1]. We have
that the distributional copula of X is a monotonic copula for certain D. Note that
the associated D-copula of X is the Fréchet upper bound copula. Let {ai}?zl be
any invertible monotone functions that satisfy «; is strictly increasing if D; =L
and strictly decreasing if D; =U for i € {1,...,d}. Proposition 2.4 implies that the
copula of A = (ai1(X1),...,q(Xg)) is the Fréchet upper bound copula.
According to [9, 6], there exists a random variable Z and strictly increasing
{B:}4_, such that

d
(01(X0), e 0a(Xa) L (Bi(2), o Ba(2)) |
By defining T; = a;loﬁi for i € {1,...,d} we get the result.

In both cases the associated copulas of X are the monotonic copulas im-
plying that the vector is complement symmetric. O

Regarding tail dependence, suppose the vector X has distributional copula
C* equal to a monotonic copula Cp of equations (3.1) or (3.2) for certain D.
Considering Definition 2.3 of the associated copulas, this implies that CTy is the
comonotonic copula. It follows that the D and DO tail dependence functions of
the vector X are

bp (w1, .y wa) = bpyg (w1, ... wa) = min{wy, ..., wq} .

The other associated copulas satisfy equation (3.2) for some D°. It follows that
the corresponding tail dependence functions are equal to zero.
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3.2. Elliptically contoured copulas

We now analyse the dependence structure of elliptically contoured copulas.
We present the definition of this model, a result for its corresponding associated
copulas and the associated tail dependence functions of the Student’s ¢ copula.

Elliptical distributions, were introduced by [17] and have been analysed by
several authors (see e.g. [8, 11]). They have the following form.

Definition 3.1. The random vector X = (X1, ..., X4) has a multivariate
elliptical distribution, denoted as X ~ Elg(u, 3,), if for x = (21, ..., x4)" its char-
acteristic function has the form

1
o 11, %) = exp(ix'p) ¢d(2 X's x) |

with p a vector, ¥ = (045)1<i,j<a & symmetric positive-definite matrix and 14(t)
a function called the characteristic generator.

Elliptical contoured distributions include a large number of distributions
(see [31, Appendix]). In the case when the joint density exists, several results
have been obtained (see [11, 2, 19]). The corresponding copula is referred to as
elliptical copula. This copula has also been subject to numerous analysis (see
[7, 1, 5, 3]). Note that the process of standardising the marginal distributions of
a vector uses strictly increasing transformations. From Proposition 2.3, we have
that the copulas associated to X ~ Elg(u, X, 1) are the same as the copulas asso-
ciated to X* ~ El4(0, R, ). Here R = (p;; = ——2

Voo ) 1<i j<d
“correlation” matrix implied by ¥ = (0yj)1<i j<d (see [5, Theorem 5.2] or [7, 3]).

is the corresponding

Hence, we always assume X ~ Elg(R, ) with R = (pij)1<i j<d-

In general, there is no closed-form expression for elliptical copulas but they
can be expressed as multivariate integrals of the joint density. In the following
proposition we prove an identity for the associated copulas of the elliptical copula.

Proposition 3.2. Let X ~ El4(R,1) as in Definition 3.1, with correlation
matrix R = (pij)1<i j<d, and let D be a type of dependence. Then the associated
D-copula of X is the same as the distributional copula of Xt ~ Elg(pp R, ¥),
with pp a diagonal matrix (all values in it are zero except for the values in its
diagonal) pp € Myxq, whose diagonal is p = (p1, ..., pg) with

(1 D=L
Pi=_1 D, =U"

for i € {1,...,d}.
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Proof: The vector ppX is equal to (T1(X1), ..., Tg(Xq)) with T;(x) = p; z,
i €{1,...,d}. Using Proposition 2.4, the distributional copula of ppX is the
associated D-copula of X. From the stochastic representation of X (see [8]), it
follows that ppX ~ Eli(ppRep,¥) (see [5, Theorem 5.2]). O

Given that C = C in elliptical copulas, we have that these copulas are
symmetric. This can be easily verified considering that ppec = —pp, for every
dependence D. This implies ppc - - ¢ = pp - 12 - pp. Hence, both Cp and
Cpe are equal to the distributional copula of X ~ Ely(ppRpp, ).

Proposition 3.2 makes it possible to use the results of elliptical copulas in
associated copulas. This includes the analysis of tail dependence. In the bivariate
case [18, 26] studied positive tail dependence in elliptical copulas under regular
variation conditions. The Gaussian copula does not account for positive tail
dependence, Proposition 3.2 implies that it does not account for tail dependence
for any D. In contrast the Student’s ¢ copula does account for tail dependence
(see e.g. [14, 23, 3, 20]). The Student’s ¢ copula with v degrees of freedom and
correlation matrix R is expressed in terms of integrals and density #, r as

ty M(u) o (ug)

o= [ | L

withu = (uq, ..., uq) and x = (z1, ..., z4)". [23] analysed in detail the extreme value
properties of this copula and obtained an expression for the lower and upper tail
dependence functions among other results. More recently, in the bivariate case,
[14] obtained an expression for the D = (L,U) and the D = (U, L) tail depen-
dence coefficients proving that this copula accounts for negative tail dependence.
We now present the expression for the associated D-tail dependence function of
the multivariate Student’s ¢ copula. This result follows from [23, Theorem 2.3]
and Proposition 3.2.

Proposition 3.3. Let X = (Xj,..., X4) have multivariate t distribution
with v degrees of freedom, and correlation matrix R = (p;j)1<; j<d, that is X ~
Tavr- Let D = (Dq,..., Dg) be a type of dependence. Then the associated D-tail

dependence function bp is given by
d _1
v+1 w; \ ¥ .
bp(w) = § wj Tg—1,041,R: ( — _<w;> + pz‘pjpz‘j], 26];‘) ;

2
j=1 1- Pij
with
% * *k
Lo pljony Plgry 0 Play
* * *
e | P b Py Piag |
p= | s o i o ;
Pj+1,155 Pj+1,5-1;5 Pj+1,5-1;5

% * *
Paiy 0 Paj-1j Pty 1
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Pik —Pij Pkj

s = DiDk———=—2EE | the modified partial correlations; I; = 1 — {j} and
plyk’.] 7 /T_p?j /71—0% ’ » ] { }

(1 D=L
Pi=Y -1 itpj=U"’

for j € {1,...,d}.

Proof: Proposition 3.2 implies that the associated D-tail dependence
function of the random vector X ~ Ty, r is the lower tail dependence function of
the vector X+ ~ T4, 0pRel - The modified correlation matrix is pp Rplp = R* =
(pz})lgi,jgda it follows that

(p;‘kj)léi,jgd = (pipjpij)lgi,jgd-
Hence (p;kj)2 = p?pjzp?j =1-1- p?j = p?j. Under this change, the partial correla-
tions are modified as follows:

* . Pik — Pij Pkj
Pik;; = PiPk 5 5
\/1_pij \/1_ij
The result is then implied by [23, Theorem 2.3]. O

This proposition implies that the Student’s ¢ copula accounts for all 2¢
dependencies simultaneously. It can happen that we have negative dependence
and positive tail dependence. In that case, the variables might generally exhibit
negative dependence but, when it comes to extreme values, they can also be
positively dependent.

3.3. Archimedean copulas

Now we analyse the dependence structure of Archimedean copulas. We
present the bivariate and multivariate definition of these copulas. We then prove
that, when the generator is strict, they can only account for positive tail depen-
dence. Finally, we present three examples with non-strict generators that account
for negative tail dependence. For the analysis of positive tail dependence in these
copulas we refer to [15, Propositions 2.5 and 3.3], [13, Theorems 4.12 and 4.15]
and [22, Corollary 5.4.3]

Much has been written on Archimedean copulas and their applications to
different areas of statistics. [28] provide an excellent monography of their history.
For further references on their analysis we refer to the seminal works of [13, 22].
[13] analyses several examples with strict generators and [22] extends the analysis
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to non-strict generators. In order to consider both cases, we follow the notation
used in [22].

A bivariate Archimedean copula is defined in terms of a generator, which
we denote g, in the following way:

(3.4) Clur,uz) = o (p(ur) + p(un)) |
-1 .
1,y e (W) i 0<u<p0) . . :
where @7 (u) {O i o(0) < u < 00’ is the pseudo-inverse of ¢. In or

der for this function to be a copula, the generator must satisfy the following
properties:

i) ¢:[0,1] - Rt Uoo,
ii) ¢ is continuous, strictly decreasing and convex,
iii) (1) =0.
@ is called a strict generator when ¢(0) = co. Note that, when ¢ is strict,
el =71 (%)

[16] proved that a strict generator gives a copula in any dimension d if

1

and only if the generator inverse ¢~ is completely monotonic. In that case, the

multivariate Archimedean copula is defined as

d
(3.5) Clut,....,uq) = ¢~ (Zgo(m)) ;
=1

In the next proposition we prove that, by construction, Archimedean copulas
with strict generators, do not account for any non-positive tail dependence.

Proposition 3.4. Let C be an Archimedean copula with differentiable
strict generator ¢ and let D be a non-positive type of dependence. Then, if the
corresponding tail dependence function bp exists, it is equal to zero.

Proof: Let C be a bivariate Archimedean copula with strict generator ¢.
As we pointed out before, given that ¢ is strict, 90[_1} = ¢~ . We begin this proof

with the bivariate case and prove that Ay = 0.

e (e(h) + ¢(1—h))

Let G(h) = . , by definition
)\LU — lim CLU(hv h)
h—0
 h—C(h,1—h)
. = lim———=

(36) B h

=1-1 .
e

3In [13], the construction of Archimedean copulas covers the strict generator case when ™*

is a Laplace transform, they denote such Laplace transform as ¢.
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Along with the three properties of the generator ¢ mentioned above, in this

case it is strict and differentiable. This implies the following for ¢!

i) o !is differentiable,
ii) ! is strictly decreasing and convex,
iii) lim p~1(s) = 0.
S§— 00
Note that property iii) is only satisfied when the generator is strict, the

behaviour of ¢!

around oo is fundamental in this proof. If we visualise the
graphic of a function with such three features, it is intuitively straightforward

that the slope of its tangent will tend to zero as s — oo, that is lim (¢~1)(s) = 0.
S§—0OQ

To prove this, note that, from ii), (¢ ') is always negative and increasing. This

implies (¢~ 1)(s) converges, as s — 00, to ¢ < 0. Suppose ¢ < 0, this would imply

that ¢! crosses the x-axis. So it follows that lim (o»~1)'(s) = 0. Hence, we have
S§—00

ez +y) -9 (z)

(3.7) lim (o7 1) (s) = lim lim
5—00 r—00 y—0 Yy
=0.

Also, ¢ is differentiable, strictly decreasing and (1) = 0, hence we have
(3.8) —00 < ¢'(1) < 0.
If we take x(h) = p(h) and y(h) = ¢(1 — h) in equation (3.7), we get:

e (e(h) + (1 —h)) — o~ (o(h))

0= lim, (1= h)
, hG(h) — h
= lim
h—0 (1 —h) — (1)
lim1 — G(h)
)

From equation (3.6) and inequality (3.8), this this implies Ay = 0. Analo-
gously, we get Ayz, = 0. The multivariate extension is straightforward: let C be a
multivariate Archimedean copula and D a non-positive dependence. Then, there
exist 71 < ig such that D;, # D;,. Let C
Hence A, i) (D

i1,io) b€ the bivariate marginal copula of C'.

i) Diy) = Ap and, given that C;, ;,)
fies )\(z‘l,ig),(L,U) = /\(il,ig),(U,L) = 0. Then )\D = 0 follows. O

is also Archimedean, it satis-

The same holds for other multivariate constructions based on nesting of
Archimedean copulas, such as the ones described in [13, Section 4.2].

When the generator is non-strict, Archimedean copulas can account for
non-positive tail dependence. This is the case in the three bivariate examples
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presented in Table 2. These examples can be found in [22, Section 4.2]. The first
two examples are the one-parameter copulas 4.2.7 and 4.2.8 in [22]. The third
example is a two-parameter family of copulas known as the rational Archimedean
copulas. The construction of these copulas can be found in [22, Subsection 4.5.2].
The expression is equation (4.5.9) and the generator is studied in p. 149 therein.

Table 2: FExamples of Archimedean copulas with non-strict generators
that account for negative tail dependence.

Generator ¢(s) | Copula | bry and byr ‘
—In(@s+1-0), min{w1, (1 — 0wz},
0 o0<t max{&uluQJr(lf@)(m+uQ71),O} min{(1 ) wr, we}
1- : B
1+(951)s ) max{ 0?uruz — (1 — u1) (1 — uz) O} min{w1, 5% },
oo #0107 —u)(—u) S | min{2,w)
see [22, p. 149, ma {U1u2 — B —u1) (1 —u2) } min{ws, fw:},
0<B<1—|of 1—a(l —u)(1—wu) ’ min{Bw:, ws}

3.4. Use of rotations to model general tail dependence

We now discuss a method to model an arbitrary type of tail dependence
using a copula model. The condition on the copula model is to account for, at
least, one type of tail dependence. Similar procedures have been suggested in
[25, Section 2.4] and [14, Example 8.1]. To illustrate how this procedure works,
consider the bivariate Generalised Clayton copula, C%¢ (4). This Archimedean
copula accounts for upper tail dependence. Suppose that we are trying to model
data that exhibits lower-upper tail dependence with a model C* and want to use
C%C and the fact that it accounts for upper tail dependence. The use of this
procedure implies defining C7 ;; = CGC. And it holds that C* accounts for lower-
upper tail dependence. Using Proposition 2.1, C*(uy, ug) = u1 — CFC (1 — uy, us).
Note that the fact that C“C also accounts for lower tail dependence implies that
C* accounts for upper-lower tail dependence. So, before using this technique, the
whole dependence structure of the model and the data must be analysed.

We generalise this idea to model arbitrary D°-tail dependence using a cop-
ula model C' that accounts for D*-tail dependence. Let Ax = {Cp| D € A} be

the associated copulas of model C, we know that limw > 0. Now, define

—0

a D°-associated copula as Cfy, = Cp+. By construction, as in the example, this

* g ) = ([ 1 + @017 11}
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copula model accounts for D°-tail dependence. The associated copulas, Ay =
{C5| D e A}, of this model can be obtained from Cf., using Proposition 2.1.
Note that the set Ay is the same as Ax, but with rotated dependencies. The
whole dependence structure of model C* is implied by C.

4. CONCLUSIONS AND FUTURE WORK

In this section we discuss the main findings of this work and some future
lines of research. In Section 2 we introduce the concepts to analyse, in the mul-
tivariate case, the whole dependence structure among random variables. We
consider the 2% different orthants of dimension d. We first introduce general
dependence, the D-probability functions and the associated copulas. We then
present a version of Sklar’s theorem that proves that the associated copulas link
the D-probability functions with their marginals. It is through this result that we
are able to generalise the use of the distributional and survival copulas for positive
dependence. In this generalisation we use the associated copulas to cover general
dependence. We introduce an expression for the relationship among all associated
copulas and present a proposition regarding symmetry and exchangeability. After
that, we prove that they are invariant under strictly increasing transformations
and characterise the copula of a vector after using monotone transformations.
At the end of this section, we introduce the associated tail dependence functions
and associated tail dependence coefficients of a random vector. With them we
can analyse tail dependence in the different orthants.

In Section 3 we use the concepts and results obtained in Section 2 to anal-
yse three examples of copula models. The first example corresponds to the per-
fect dependence models. We begin this analysis with the independence case
and then consider perfect dependence, including perfect non-positive dependence.
We find and expression for their copulas, which are a generalisation of the Fréchet
copula bounds of the bivariate case. Given that they correspond to the use of
strictly monotone transformations on a random variable, we call them the mono-
tonic copulas. The second example corresponds to the elliptical copulas. In this
case, we characterise the corresponding associated copulas. We then present an
expression for the associated tail dependence function of the Student’s ¢ copula.
This result proves that this copula model accounts for tail dependence in all
orthants. The third example corresponds to Archimedean copulas. In this case,
we prove that, if their generator is strict, they can only account for positive tail
dependence. We then present three examples of Archimedean copulas with non-
strict generators that account for negative tail dependence. After that we discuss
a method for modelling arbitrary tail dependence using copula models.

There are several areas where future research regarding general dependence
is worth being pursued. For instance, the use of D-probability functions is not
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restricted to copula theory. The analysis of probabilities in the multivariate case
has sometimes been centered in distribution functions, but, just like survival
functions, D-probability functions can serve different purposes in dependence
analysis. Another possibility is the use of nonparametric estimators to measure
non-positive tail dependence, as the use of these estimators has been restricted
to the lower and upper cases. The results obtained in this work are useful in the
understanding of the dependence structure implied by different copula models.
As we have seen, without analysing general dependence, the analysis of these
models is incomplete. Therefore, it is relevant to extend this analysis to models
such as the hierarchical Archimedean copulas and vine copulas. The use of vine
copulas has proven to provide a flexible approach to tail dependence and account
for asymmetric positive tail dependence (see e.g. [24, 15]).
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1. INTRODUCTION

Goodness of fit tests (GOFTs) validate the closeness of the theoretical dis-
tribution function to the empirical distribution function. They are also known as
empirical distribution function tests. These tests determine how well the distri-
bution under study fits to a data set. They are used to test simple hypothesis
which completely specifies the model and also the composite hypotheses where
only the name of the model/distribution is stated but not its parameters. In the
latter case, the parameters are estimated from the data. The common GOFTs
are Kolmogorov—Smirnov, Cramér—von Mises and Anderson—Darling.

In literature, many authors have studied the goodness of fit tests. Nikulin
[21,22] studied Chi-squared test for continuous distributions. Rao and Robson
[25] studied Chi-squared statistic for exponential family. Power of a series of
goodness of fit tests for simple and complex hypotheses have been analyzed by
Lemeshko et al. [14,15]. Lemeshko et al. [16] analyzed the goodness of fit test for
Inverse Gaussian family. Goodness of fit tests for testing composite hypotheses,
using maximum likelihood estimators (MLESs) of double exponential distribution,
have been given in Lemeshko and Lemeshko [17].

The idea of weighted distributions was conceptualized by Fisher [6] and
studied by Rao [24] in a unified manner who pointed out that in many situations,
the recorded observations cannot be considered as a random sample from the orig-
inal distribution. This can be due to one or the other reason viz non-observability
of some events, damage caused to original observations and adoption of unequal
probability sampling. In observational studies for human, wild-life, insect, plant
or fish population, it is not possible to select sampling units with equal proba-
bilities. In such cases, there are no well-defined sampling frames and recorded
observations are biased. These observations do not follow the original distribu-
tion and hence their modelling uses the theory of weighted distributions. It is,
therefore, important to study the stochastic orderings and ageing properties of
the weighted random variables with respect to the original random variables.

For a non-negative random variable X with pdf f(x), the weighted random
variable X has the pdf given by
w(z) f(x)
(1.1) ) = —n
Ew(X)]
where w(z) is a non-negative weight function such that E[w(X)] is non-zero and
finite. The distribution of X" is called the weighted distribution corresponding

to X.

The weighted distribution with w(x) = x is called the length-biased (size-
biased) distribution which finds various applications in biomedical areas such as
early detection of a disease. Rao [24] used this distribution in the study of human
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families and wild-life populations. Various other important weighted distributions
and their properties have been discussed by Mahfoud and Patil [19], Jain et al.
[12], Gupta and Kirmani [10], Nanda and Jain [20], Patil [23] and Gupta and
Kundu [11].

A brief discussion of weighted version of Gamma distribution labelled as
Weighted Gamma (WG) distribution is provided in Section 2. This distribution
has been introduced by Jain et al. [13]. The Weighted Gamma (WG) distribution
has Weighted exponential, Gamma and Exponential distributions as its submod-
els. This distribution can also be interpreted as a hidden upper truncation model
as in case of skew-normal distribution (Arnold and Beaver [2]). The pdf of WG
distribution is also expressible as a linear combination of two Gamma pdfs. This
distribution accommodates increasing and upside-down bathtub shaped failure
rate function and hence has wider applicability in reliability and survival analy-
sis.

The motive of this study is to carry out goodness of fit tests viz Kolmogorov—
Smirnov, Cramér—von Mises and Anderson—Darling and to compare their pow-
ers for Weighted Gamma and some competing distributions namely Weighted
Weibull, Weighted Exponential and Gamma distributions. Using the calculated
powers of these goodness of fit tests, we can determine the sample size at which
these various closely related distributions can be distinguished from each other.

The paper is organized as follows. In Section 2, we provide a brief de-
scription of Weighted Gamma (WG) distribution. Various goodness of fit tests
have been described in Section 3. Testing of simple and composite hypotheses for
WG versus Weighted Weibull (WW), Weighted Exponential (WE) and Gamma
is presented in Section 4. This section also consists of results and power studies
based on simulations and real data set analysis. Section 5 includes the concluding
remarks.

2. WEIGHTED GAMMA DISTRIBUTION

The random variable X is said to follow Weighted Gamma distribution
with scale parameter A and shape parameters a and [ if the probability density
function (pdf) of X is given by

(1 _ e—an) )\B xﬁ—l e—)\:c
I'(3) ’

(2.1) fx(z;0,08,0) = k x>0, a,6,A>0,

where k=1 =1-— (ﬁ)ﬂ

If X is a random variable with pdf given in (2.1), we use the notation
X ~WG(a, B, N).
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The distribution function of X can be written as

G(w: 3N — (Hla)ﬁ Gla: A A1+ a)) |

(1+a)’

(2.2) F(z) = m

pe fox efbttafldt

I'(a)

Gamma, distribution with shape parameter a and scale parameter b.

where G(z;a,b) = is the cumulative distribution function of

Remark 2.1. (2.1) is the weighted version of the Gamma pdf with weight
function
w(z) =1—e a,A>0.

The choice of the weight function has been made so that Weighted Expo-
nential (Gupta and Kundu [11]), Gamma and Exponential distributions can be
obtained as special cases of WG distribution for particular values of parameters.
The special cases are:

e Weighted Exponential (WE) distribution obtained by putting 5 = 1,

e the Gamma distribution when o — oo.

e For a — oo and 8 = 1, Exponential distribution can be obtained.

Suppose X follows WG distribution and let 8 = («, 3, )\)T be the parameter
vector. The log likelihood based on the observed sample (z1, xa, ..., ) is

I =1(a,3,N)

(23) =n {log(l +a)? —log{(1+ )’ - 1}} + anlog(l — e i) 4 Blog A
i=1

+ (B-1) Zlogwi — )\in — nlog{I'(3)} .
i=1 i=1

The first derivative of the log likelihood function is called Fisher’s score function
and is written as

o
00

Score is a vector of first partial derivatives, one for each element of 8. If the

u(0)

log likelihood is concave, then MLEs can be obtained by solving the system of
equations

where elements of u(0) are given by

o B-1 L - E
24 5 = AT {{(1+a)ﬁ—1}(1+a)ﬁ}+ Azl_eﬂm ’
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n(1+a)?log(1+a)
{(1+a)f—1}

+nlog A +Zlog$i —ny(F),
i=1

(2.5) = nlog(l4+a)—

al
op
—aAx;

ol " ze np S
(26) w\—agl_e_a)wi—i-)\—;ﬂfz,

where ¢(-) denotes the digamma function, the logarithmic derivative of the
gamma, function.

As these equations are difficult to be solved, Newton—Raphson method
can be used for finding ML estimates. Using this method, the score function is
evaluated at the MLE @ around an initial value 0y, using a first order Taylor
series which gives

du(0)

(2.7) u(0) ~ u(fy) +

Equating (2.7) to zero and solving for 6 leads to first approximation:

(2.8) 6 = 0y— H (6)u(8y) ,
where 02 5 (0)
u
H(0) = 5000 = 50

denotes the Hessian matrix.

Given a trial value, (2.8) is employed for obtaining an improved estimate
and the process is repeated until the differences between successive estimates are
sufficiently close to zero. The estimates obtained are considered as maxima if the
Hessian matrix is negative definite, that is, all its eigenvalues are negative.

As sometimes, it is computationally difficult to invert the Hessian matrix,
hence we use the quasi Newton method in R for finding the ML estimates as this
method usually generates an estimate of H~! directly. The results have been
included in Table 2 of Section 4.

3. GOODNESS OF FIT TESTS

For a random sample of size n, let z(y), ..., z(,,) be ordered observations. The
empirical distribution function (edf) F),(x) is a step function with a step of height
1 at each ordered sample observation. Empirical Distribution Function (EDF)
tests measuring the distance between the edf and theoretical cdf are described by
Dufour et al. [6]. Arshad et al. [3] and Seier [26] claimed that the widely used
EDF tests are Kolmogorov—Smirnov, Cramér—von Mises and Anderson—Darling
tests.
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For a random variable X, we let F(z) to be the theoretical cumulative
distribution function (cdf). F(z,0) denotes the cdf for a particular distribution
with parameter 6. The focus shall be on testing the following types of null
hypotheses:

e Simple null hypothesis:
HQZ F(J?) = F(x,@) s
where the form of F(z,0) is completely specified;

e Composite null hypothesis:
Hy: F(z) € {F(a:,@), 0 e @} ,

where O is the domain of unknown parameter # which is replaced by its

estimator.

We will use the tests explained in the subsequent discussion.

Kolmogorov—Smirnov Test:

This test is based upon the largest vertical distance between empirical dis-
tribution function F,,(x) and theoretical distribution function F'(x, 6). The statis-
tic is

(3.1) D, = sup|F,(z) — F(x,0)| , feco.

|n|<oco

If the value of KS statistic is greater than critical point, we reject the null hy-
pothesis (Gibbons and Chakraborti [9]).

Cramér—von Mises and Anderson—Darling statistics belong to the class of
quadratic EDF statistics (Stephens [28]) defined as

(3.2) n / h (Fu(z) — F(2))*w(z) dF ()

—0o0

where w(z) is a weighting function.

Cramér—von Mises Test:

For w(x) =1, (3.2) gives n times the Cramér—von Mises (CVM) statistic.
This statistic can be computed using the sum of squared differences between
the empirical distribution function (EDF) and theoretical CDF (Anderson and
Darling [1]) and is defined as

1 & 2i —1\?
(3.3) CVM = m+; (F(mi,é)— 5 > .
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If the value of CVM test statistic is greater than the critical point, we reject the
null hypothesis. According to Conover [5], CVM is more powerful than KS test
because it uses more sample data.

Anderson—Darling test:

It is a modification of the CVM Test. It gives more weightage to the tails
of the distribution (Farrel and Stewart [7]).

By taking w(x) = [F(z) (1—F(z))]~! in (3.2), Anderson-Darling (AD) test
statistic (Anderson and Darling [1]) is obtained as

2

oo [F(2) (1= F(2))]

It can also be written as

(34) AD — —n—2§:{22_1 In F(;,0) + ( - 22_1> 1n(1—F(%‘79))}

n

(Lewis [18]).

If the value of AD test statistic is greater than critical point, we reject the
null hypothesis.

The critical points (C.P.) of these tests have been calculated by generating
random samples from the distribution under null hypothesis, calculating value of
test statistics and arranging values of test statistic in increasing order. (1 — )t
largest order test statistic gives the critical point corresponding to « level of
significance. These values have been calculated for sample sizes n = 50, 100, 200,
500, 1000 and 2000 at o = .20,.15,.10 and .05 and are shown in Table 1.

Table 1: Critical points for Kolmogorov—Smirnov, Cramér—von Mises
and Anderson—Darling tests.

Kolmogorov—Smirnov Cramér—von Mises Anderson—Darling

n Level of significance Level of significance Level of significance
.20 .15 .10 .05 .20 .15 .10 .05 .20 .15 .10 .05

50 | .151 .161 .172 .192 | .241 281 .344 455 | 1.427 1.619 1.900 2.422
100 | .107 .114 122 136 | .244 .286 .361 .475 | 1.388 1.603 1.909 2.412
200 | .076 .081 .086 .096 | .237 .282 .339 .453 | 1.39 1.59 1.92 2.49
500 | .048 .051 .055 .061 | .232 .275 .334 444 | 1.405 1.609 1.932 2.500
800 | .038 .040 .043 .048 | .241 .286 .347 469 | 1.410 1.617 1.904 2.399

1000 | .034 .036 .039 .043 | .245 .286 .347 .449 | 1.423 1.638 1.945 2.514
2000 | .024 .026 .027 .030 | .241 .287 .349 476 | 1.395 1.588 1.914 2438
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4. APPLICATION

4.1. Simulations for estimation and applying GOFTs

Weighted Exponential and Gamma distributions are considered as compet-
ing distributions for WG. The Weighted Weibull (WW) distribution with three
parameters «, 3 and A\ (Shahbaz et al. [27]) has also been considered as one of
the competing distributions for WG. The cdf and pdf of WW are

(1—e=(1+a?)

X
(1+a) [1 —e A" — iTa

F(z;o,8,\) = -

and (1+ ))\ﬂ B—1 —Xzf (1_ _a)\xﬁ)
flwsa,B,0) =~ 2 -

@
A random sample of size 200 from Weighted Gamma (WG) distribution with
parameters a =5, 3 = 2.5 and A = 2 is generated. The empirical cumulative
distribution function (ecdf) based on the data and the theoretical cdf of WG
distribution are plotted in Figure 1. This figure depicts that ecdf and exact cdf
of WG distribution are quite close to each other.

empirical cdf
exact cdf .

0.8F

0.6

cdf
(=)
W

0.4

0.2F

Figure 1: Plots for ecdf and exact cdf of WG distribution.
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For the generated data set, maximum likelihood estimates (MLEs) of parameters
of WG, WW, WE and Gamma distributions and the corresponding AIC and
AICc values are given in Table 2. In quasi Newton algorithm in R, the Broyden—
Fletcher—Goldfarb Shanno (BFGS) method has been used by applying optim
routine. Hessian matrices have been checked for all the distributions and found
to be negative definite as all the eigenvalues of each Hessian matrix come out to
be negative. This implies that the estimates obtained are maximum likelihood

estimates.

Table 2: Estimates of the parameters and AIC and AICc values

Neetu Singla, Kanchan Jain and Suresh Kumar Sharma

for different distributions.

MLE
Distribution — — AIC AICc
a 8 A
WG 3.0230 2.1688 1.7399 | 432.9696 | 433.092
WWwW 53.0360 1.6025 0.5560 | 437.9989 | 438.121
WE 0.0006 1 1.5444 | 438.4732 | 438.534
Gamma — 2.4871 1.9212 | 433.4271 | 433.488

From the above table, we can conclude that:

a) Since AIC and AICc values are the lowest for WG distribution, it can
be considered to be the best fit.

b) Since AIC values of WG and Gamma distributions are close, hence
a large sample size shall be required to distinguish between WG and

Gamma distributions.

cdf

0.5F

0.4

03

02

0.1r

exact cdf

empirical cdf |

Figure 2: Plots of ecdf and estimated cdf of WG distribution.
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Figure 2 displays the plots of empirical cdf and theoretical cdf using esti-
mates of parameters of WG distribution for generated data set.

Weighted Weibull (WW), Weighted Exponential (WE) and Gamma distri-
butions are taken up as the competing distributions for WG distribution. The
estimates of parameters for all these distributions are found for generated data set.

To check whether the generated data set fits well to WG distribution (with
assumed and estimated parameters), WW, WE and Gamma distributions, the
simple and composite hypotheses have been tested in the sequel.

Testing of simple hypothesis:

The aim is to test the simple hypothesis

Hy: WG (a=5, f=2.5, A=2) distribution fits well to the generated data set

versus
Hy1: It does not fit well.

The values of KS, CVM and AD test statistics and critical points (extracted
from Table 1) are given in Table 3.

Table 3: Values of test statistic and critical points for testing Hyy versus Hyj.

’ Test Statistic values | C.P. at 0.05 level of significance
Kolmogorov—Smirnov 0.0447 .096
Cramér—von Mises 0.0779 453
Anderson—Darling 0.5654 2.49

It is observed that for all the tests, the null hypothesis is not rejected at
0.05 level of significance implying that WG distribution fits well to the generated
data set under all testing procedures.

Testing of composite hypotheses:

We consider testing of composite hypotheses

Hy: WG (a, 3, /)\\) distribution fits the generated data well

versus
Hio: It does not fit the data well,

where @ = 3.0230, 3 = 2.1688 and \ = 1.7399.

The following table gives calculated values of test statistics.

Table 4: Values of test statistic and critical points for testing Hyo versus His.

Test Statistic values | C.P. at 0.05 level of significance
Kolmogorov—Smirnov 0.0422 .096
Cramér—von Mises 0.0546 453

Anderson—Darling 0.3480 2.49
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It is observed that values of test statistics for KS, CVM and AD are less than

C.Ps. at 0.05 level of significance for n = 200. This means that WG distribution
with estimated parameters fits the data well.

Next, we consider testing of composite hypotheses:

i) Hos: Generated data set is fitted well by WW (@ =53.0360, B: 1.6025,

A =.5566)
versus
Hy3: compliment to Hys, that is, data is not fitted well.

ii) Hos: WE (@ =.0006, A= 1.5444) distribution fits the generated data well

Versus
Hyy: WE (a=.0006, A= 1.5444) distribution does not fit the data well.

iii) Hos: Gamma (322.4871, X:1.9212) distribution fits the generated data well

versus
Hi5: Gamma distribution with estimated parameters does not fit the data
well.

Tables 5-7 display the values of test statistics for KS, CVM and AD tests

and corresponding critical points at 0.05 level of significance for testing the com-

posite hypotheses.

Table 5: Values of test statistic and critical points for testing Hys versus Hs.

Test Statistic values | C.P. at 0.05 level of significance
Kolmogorov—Smirnov 0.0576 .096
Cramér—von Mises 0.1489 .453
Anderson-Darling 0.8541 2.49

Table 6: Values of test statistic and critical points for testing Hyy versus Hiy.

Test Statistic values | C.P. at 0.05 level of significance
Kolmogorov—Smirnov 0.0540 .096
Cramér—von Mises 0.0786 453
Anderson—Darling 0.8263 2.49

Table 7: Values of test statistic and critical points for testing Hys versus Hys.

Test Statistic values | C.P. at 0.05 level of significance
Kolmogorov—Smirnov 0.0464 .096
Cramér—von Mises 0.0822 453

Anderson—Darling 0.5203 2.49
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The values in Tables 3-7 help us to conclude that:

a) All the distributions fit well to the given data set at 0.05 level of signif-
icance because the values of test statistics are less than critical points.

b) WG distribution fits best to the data set because the values of test
statistics are lowest in case of WG distribution.

In the next subsection, we find the powers of goodness of fit tests viz KS,
CVM and AD for comparing WG distribution with WW, WE and Gamma dis-
tributions. The values of power for GOFTs help us in differentiating among the
distributions under consideration and also in determining the optimal sample size
for differentiation.

4.1.1. Powers of goodness of fit tests for WG

To differentiate among different distributions, we carry out the power study
for testing of hypotheses about belonging of the sample to WG distribution,
considering WW, WE and Gamma distributions as competing distributions.

For power analysis, we use the technique of Bootstrapping to generate the
samples. We generate 10,000 copies of random sample under alternative hy-
potheses. The values of the test statistics have been calculated using estimates
of parameters for different distributions. The power analysis has been carried
out for sample sizes n = 50, 100, 200, 500, 1000, 2000 at .20, .15, .10, .05 levels of
significance.

Using estimated parameters, Tables 810 give the power of KS, CVM and
AD tests for testing about belonging of the samples to WG distribution against
that sample is from WW, WE and Gamma distributions.

Power of Anderson—Darling test is more than those of Cramér—von Mises
and Kolmogorov—Smirnov tests in all cases. Hence, AD is the most powerful and
KS is the least powerful test.

From Tables 8-10, it is observed that at 0.10 level of significance to obtain
low probability of type II error (less than or equal to 0.1):

a) A sample size greater than or equal to 2000 is required to differentiate
WG distribution from WW distribution, since the power of AD test is
.9630 implying that probability of type II error is .0370;

b) A sample of at least 2000 observations is required to distinguish WG
distribution from WE and Gamma distributions.
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Table 8: Power of tests for testing goodness of fit of WG versus WW
with estimated parameters.
Level of Sample size
significance | —50 =100 n=200 n=500 n=1000 n=2000
Power of Anderson—Darling
.20 14993 .5834 .6253 7351 .9005 .9899
.15 4321 4995 .bb35 7032 .8622 .9869
.10 .2557 .3072 .4993 .5938 .8123 .9630
.05 .1540 .2505 .3857 4887 7945 .8756
Power of Cramér—von Mises
.20 4286 14993 .5b47 .5790 .8750 .9666
.15 4274 4740 .5038 5732 .8443 9311
.10 1571 .2946 4586 .5606 7801 .8959
.05 1243 2815 2783 14043 7278 .8322
Power of Kolmogorov—Smirnov
.20 4078 4551 .5013 .5485 .8539 19521
.15 3451 4738 .5008 .5308 .8123 .9222
.10 .1526 .2574 4165 .5243 .6959 7898
.05 1182 .2299 .2439 .2858 5557 .6345
Table 9: Power of tests for testing goodness of fit of WG versus WE
with estimated parameters.
Level of Sample size
significance |, _50 =100 n=200 n=500 ~n=1000 n=2000
Power of Anderson—Darling
.20 .5947 .6543 .7686 .8504 .9404 .9969
.15 4928 .5689 .7038 .8153 .8935 9851
.10 .3853 .4537 .6583 .7328 .8589 .9708
.05 .1549 .3839 .b841 .6685 .8040 9146
Power of Cramér—von Mises
.20 .4899 .5251 .6493 .8039 .8991 9784
.15 4518 .0103 5552 6751 .8599 .9485
.10 .2538 .3840 .4993 .5998 .8328 9113
.05 .1959 .3014 .3547 4853 7943 .8993
Power of Kolmogorov—Smirnov
.20 4286 4865 D878 .6438 .8689 .9663
.15 .3945 4793 .bH84 .5991 .8402 .9365
.10 .2090 .2940 4738 .5344 7556 8734
.05 1547 .2591 2973 .3905 .6938 7488
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Table 10: Power of tests for testing goodness of fit of WG versus Gamma

with estimated parameters.

Level of Sample size
significance |, —50 =100 n=200 n=500 n=1000 n=2000
Power of Anderson—Darling
.20 .4037 4270 .4408 .6728 .8875 .8993
.15 3018 .3363 .3401 .5556 .8543 8775
.10 .2134 .2627 .2800 .3959 .8024 .8543
.05 1172 .1498 .2268 .3463 7738 .8345
Power of Cramér—von Mises
.20 .3535 .3889 4229 .5389 .8198 .8856
.15 .3008 3232 4113 .4458 .7993 .8691
.10 1418 .2138 .2542 .3304 .7583 .8434
.05 .1004 1184 .2034 .3183 7234 .8138
Power of Kolmogorov—Smirnov
.20 .3038 .3359 .3947 .5126 .8057 .8535
.15 .2857 .3015 .3998 .4032 7328 .8119
.10 1218 .2028 .2238 3123 .6888 7735
.05 .0926 .1039 1727 .2485 5311 .6188

Further, it can also be concluded on the basis of Tables 810 that:
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a) Power in case of testing goodness of fit of WG versus WE distribution

is more than in other cases. Hence, the tests are detecting the gap
between WG and WE distributions with high power and hence a small
sample is sufficient to differentiate WG from WE.

b) The power of all GOFTs for all sample sizes and levels of significance is

least when comparing WG and Gamma distributions. This means that
the GOFTs are not detecting the difference between these two distribu-
tions as efficiently as in other cases. It implies that these distributions

are quite close to each other. So, large sample sizes are required to
differentiate these distributions.

4.2. Real data set illustration

We consider a data set consisting of survival times of guinea pigs injected
with different amount of tubercle bacilli and studied by Bjerkedal [4]. The obser-
vations in the data set are: 12 15 22 24 24 32 32 33 34 38 38 43 44 48 52 53 54
54 55 56 57 58 58 59 60 60 60 60 61 62 63 65 65 67 68 70 70 72 73 75 76 76 81
83 84 85 87 91 95 96 98 99 109 110 121 127 129 131 143 146 146 175 175 211 233
258 258 263 297 341 341 376.
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This data set was also considered by Gupta and Kundu [9] for fitting of
Weighted Exponential (WE) distribution. The estimates of parameters, AIC and
AICc values for above considered data set are reported in Table 11.

Table 11: Estimates of the parameters, AIC and AICc values
for different distributions.

MLE
Distribution — — AIC AICc
a 8 A
WG 2.274 1513 .0172 | 791.438 | 791.784
WWwW 139.4  1.39 .0014 | 799.271 | 799.624
WE 1.624 1 0138 | 791.138 | 791.312
Gamma — 2.081 .0208 | 792.495 | 792.669

From Table 11, it is seen that there is not a significant difference in AIC and
AICc values for WG and WE models, hence both the models can be considered
for fitting to this real data set. As WG provides generalization to many existing
distributions viz WE, Gamma and Exponential distributions, hence it can be
considered as a better choice for this data set.

4.2.1. Powers of goodness of fit tests for real data set

For power calculation, we generate random samples of sizes 100, 200, 500,
1000 and 2000 under alternative hypothesis. Test statistics are calculated using
the estimates of parameters. By comparing these values with critical points, we
either reject or do not reject the null hypothesis. Repeating this process 10,000
times and dividing the total number of rejections by 10,000, gives power.

Powers for goodness of fit tests for the following hypotheses have been
reported in Tables 12, 13 and 14 respectively:

Hos: WG (@=2.274, B=1.513, A=.0172) fits the data set well

versus
i) Hys: WW (@=139.4, 3=1.39, A=.0014) fits the data set well,
ii) H/;: WE (@=1.624, A=.0138) distribution fits the data well,

m

iii) H4: Gamma (322.081, X:.0208) distribution fits the data well.

From the Tables 12-14, it can be concluded that:
a) Anderson-Darling (AD) is the most powerful and Kolmogorov—-Smirnov
(KS) is the least powerful test.

b) Power for testing GOF of WG versus WW is more than for testing in
other cases.
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c) Power is least when comparing WG distribution versus WE distribu-
tion. This means that for the considered data set, the GOFT’s are not
detecting the difference between these two models.

Table 12: Power of tests for testing goodness of fit of WG versus WW
with estimated parameters.

Level of Sample size

significance | , _ 100 =200 n=500 n=1000 n=2000

Power of Anderson—Darling

.20 4829 .6238 7812 .8524 .9423
.15 .4458 .5744 7123 .8047 .8850
.10 .3943 .5209 .6838 1773 .8595
.05 3451 4753 .6552 .7239 .8391

Power of Cramér—von Mises

.20 4467 .5924 .6874 .7955 .8620
.15 4139 .5251 .6193 7338 .8354
.10 .3533 4435 .5366 .6940 .7889
.05 .2669 .3981 4921 .6569 7495

Power of Kolmogorov—Smirnov

.20 .3999 .5099 .6434 .7809 .8345
.15 .3458 4875 .5701 .7051 .8003
.10 .3049 4223 4959 .6532 7448
.05 2225 .3801 4153 .6034 7115

Table 13: Power of tests for testing goodness of fit of WG versus WE
with estimated parameters.

Level of Sample size

significance | , _ 100 =200 n=500 n=1000 n=2000

Power of Anderson—Darling

.20 4145 .5125 .6720 .7518 .8498
.15 .3509 .4809 .6548 .7285 .8156
.10 2877 4053 .5740 .6893 7632
.05 2329 .3069 4169 .6673 7253

Power of Cramér—von Mises

.20 .3595 .4430 .5407 .6863 .8002
.15 .3250 4018 4933 .6545 .7803
.10 .2589 .2944 4356 .6187 7234
.05 .2055 .2882 .3204 .5522 .6868

Power of Kolmogorov—Smirnov

.20 .3486 .3997 .4407 .6562 7259
.15 .3058 .3449 4113 .5328 .6885
.10 2137 .2507 .3876 .4935 .6138

.05 1851 .2187 .3092 4580 .5609
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Table 14: Power of tests for testing goodness of fit of WG against Gamma
with estimated parameters.

Level of Sample size

significance | , _ 100 =200 n=500 n=1000 n=2000

Power of Anderson—Darling

.20 4277 .5459 7032 .8089 .8927
.15 .3639 .4994 .6633 7746 .8558
.10 3073 4227 .6118 .7268 7982
.05 2857 .3998 .5844 .6934 7639

Power of Cramér—von Mises

.20 4008 .4935 .6632 .7604 .8239
.15 .3401 4349 .6110 .7093 .7994
.10 2831 .3970 .5256 .6859 .7530
.05 2217 .3239 5012 .6221 7126

Power of Kolmogorov—Smirnov

20 3603 4158 5728 6953 7649

15 3041 .3945 4592 5889 7325

10 2859 .3567 4182 5234 7049

.05 2130 3018 .3993 .5008 6532
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Abstract:

We develop a hierarchical dynamic Bayesian beta model for modelling a set of time
series of rates or proportions. The proposed methodology enables to combine the
information contained in different time series so that we can describe a common un-
derlying system, which is though flexible enough to allow the incorporation of random
deviations, related to the individual series, not only through time but also across se-
ries. That allows to fit the case in which the observed series may present some degree
of level shift. Additionally, the proposed model is adaptive in the sense that it incor-
porates precision parameters that can be heterogeneous no only over time but also
across the series. Our methodology was applied to both real and simulated data.
The real data sets used in this article include three time series of Brazilian monthly
unemployment rates, observed in the cities of Recife, Sdo Paulo and Porto Alegre, in
the period from March 2002 to March 2012. A new parametrization of the precision
parameter makes possible the use of the same type of link function for both the mean
and the precision parameters, which are then expressed in the (0, 1) interval, providing
a more meaningful interpretation in terms of the magnitude of the scale.
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1. INTRODUCTION

The beta regression models, proposed by Ferrari and Cribari-Neto (2004),
have attracted the attention of many researchers. Those models are useful in
situations where the response is restricted to the standard unit interval. In this
seminal work the authors developed generalized linear models (GLM) theory for
dealing with the situation where only the parameter related to the mean of the
beta distribution was allowed to vary.

In the context of GLM’s Nelder and Lee (1991) and Smyth and Verbyla
(1999) describe a class of joint generalized linear models which allow both the
mean and the dispersion parameters in the GLM model to vary with the response.

Nelder and Lee (1991) argue that it is necessary to use two GLM’s when
both mean and dispersion are to be modeled, i.e., we would have the so called
mean process and the dispersion process. Pregibon (1984) was the first to suggest
this kind of specification. Other articles related to such perspective, in which the
dispersion parameter of the beta model is allowed to vary, include Cuervo-Cepeda
and Gamerman (2004), Smithson and Verkuilen (2006), Espinheira (2007), Simas
et al. (2010) and Bayer (2011). These works emphasize the need of correctly
modelling the dispersion parameter of the beta regression in order to achieve
efficient estimation.

Based on the class of beta regressions introduced by Ferrari and Cribari-
Neto (2004), Rocha and Cribari-Neto (2009) proposed a dynamic model for con-
tinuous random variates whose range is described by the standard unit interval
(0,1). The proposed frequentist FARMA model includes both autoregressive and
moving average dynamics, and also includes a set of regressors. Da-Silva et al.
(2011) proposed a dynamic Bayesian beta model for modelling and forecasting
single time series of rates or proportions. In such work only the mean parameter
of the beta model was allowed to vary with time.

In the present work we build upon the dynamic Bayesian beta model in-
troduced by Da-Silva et al. (2011) and upon the class of conditionally Gaussian
dynamic models (see Cargnoni et al., 1997; Gamerman and Migon, 1993) to pro-
pose a hierarchical dynamic Bayesian beta model in which both the mean and
the dispersion parameters of the beta model can vary with time. Since the pro-
posed model is hierarchical, the parameters in the model are related both through
time and hierarchically across several series, which supposedly share a common
underlying trend.

Even though it is possible to individually fit time series that share common
features, gains are obtained when those series are analyzed jointly (Gamerman
and Migon, 1993). Naturally, by disregarding existing common features shared
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by a given set of time series (e.g. trends, seasonal behavior, etc) one could end
up with poorer analyses and forecasts.

We also would like to stress the fact that Cargnoni et al. (1997) and Gamer-
man and Migon (1993) do not deal with the situation of fitting the dispersion
process, a feature that we introduce in our present model formulation. Thus, in
this paper we address the issues of formulating a hierarchical dynamic beta model
that allows dealing with a set of related time series, each one following related
beta models that may present time-evolving mean and precision parameters.

We motivate our study with the problem of forecasting monthly Brazilian
unemployment rates in different cities. The Brazilian Institute of Geography and
Statistics (IBGE) implemented the Monthly Unemployment Survey (PME) in
1980, but since 2002 a new survey methodology has been adopted.

The PME is a monthly survey about workforce and income. The most
important metropolitan regions in Brazil are included in such survey: Sao Paulo,
Rio de Janeiro, Belo Horizonte, Porto Alegre, Recife and Salvador. The data can
be found at http://www.ibge.gov.br/.

In Figure 1 we present the PME data for the cities of Recife, Sdo Paulo and
Porto Alegre. As we can observe, the three series have similar underlying trends
but distinct levels and, possibly, distinct dispersions, specially in the case of the
city of Recife.

_— Recife
fffffff Sao Paulo
Porto Alegre

Unemployment rates

2002 2004 2006 2008 2010 2012

Year

Figure 1: Observed unemployment rates in the cities of Recife,
Sao Paulo and Porto Alegre — Brazil.

This article is organized as follows. In Section 2 we introduce the hierarchi-
cal dynamic beta model. In Section 3 we describe a fully Bayesian methodology
to analyze data from a hierarchical dynamic beta process. In Sections 4 to 6 we
apply the methods to simulated and real data.
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2. THE HIERARCHICAL DYNAMIC BETA MODEL

In this section we present a methodology for modelling a set of I time series
of rates or proportions, y;, ¢ = 1, ..., I, which share certain characteristics which
allows us to treat them in the class of the hierarchical models.

Da-Silva et al. (2011) used the parametrization of the beta distribution
given by Ferrari and Cribari-Neto (2004) to describe a dynamic beta model in
which the precision parameter { was considered fixed. However, a more general
model can be described by considering both the mean and the precision param-
eters varying with time. In such case, the observation equation of the dynamic
model is given by

. L) = I'(Git) Girpir=1 o _ o0 \Git(1—pie)—1
(21) p(yzt | :u‘ltacmf) - F(Czt/,tzt)r(clt(l—,ult)) Yt (1 yzt) H )

and we have E(yit | ptit, Git) = pie and V(yir | pies Gie) = pae(L — pae) /(1 + Gie),
with 0 < py <land ¢ >0,t=1,...,Nandi=1,..., 1.

Another parametrization for ¢, proposed by Bayer (2011), can be used in
our context, since it allows us to use link functions for the transformed ¢ which
are easier to interpret than, say, a log link function, whose the upper limit is
unbounded.

In equation (2.1), let ¢y = ﬁ so that G = % Thus, 0 < ¢ < 1, and
the observation equation of the model is now written as

Observation equation: Let

e () 71 (O ()
(22) p(yt | it qbt) _ Yit Yit
! SR 1—dit 1-¢it ’
B (e (455 ) (= ) (152

it

withi=1,..,I, t=1,..,N and B(a,b) = Fr(gigg), be the observation equation

of the dynamic model. Let y = (y1,...,yn) with v = (y1¢, ...,yre)’, t =1,..., N.

The model structure is such that we have I time series in study, in which
(it | e, die) is independent of (yj; | pje, ¢j¢) for @ # j. Equation (2.2) incorpo-
rates heterogeneity in the precision parameter that may occur both over time or
across the series.

Other components which are essential in the description of our hierarchical
dynamic beta model include

(i) the definition of real transformations applied to p;; and ¢;, allowing
the use of some simplifying Gaussian properties;
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(ii) the description of structural equations represented in terms of lin-
ear models relating the transformed parameters and the latent states
and

(iii) the representation of the system equation of the dynamic model
in which the state parameters are related to surrogate observation
equations described by the structural equations.

In order to describe the structural equation, two link function, h(-) and
ha(+), associated to, respectively, the mean process and the dispersion process,
should be defined. These are real valued transformations and are useful in the
model construction since some of the nice properties of the Gaussian dynamic
linear models (DLM’s) follow from that.

Take it = hy (i) and 19 = ho(gi) with i = (19146, m2:¢)’ such that 7y is
a real valued vector. Let ny = (114, ..., 1) s .., m¢ is @ 21 x 1 vector of structural
parameters for all the I series at time ¢ with n;; = (m14¢, 72:¢)’, thus n = (91, ..., NN ).

Now, y;¢ is parametrized by n;t, i.e., (yit|nit) ~ Beta(yit [nit)-

Structural equations: Let
(2.3) m = Fiby + v, vy~ N(0,V),

with ;¢ = Fy0s 4+ vy be the structural equation in our model formulation. The
error term vy in the structural equation is assumed to follow a Gaussian distri-
bution with zero mean vector and covariance matrix V;, i.e., vy ~ N(0,V;), with
t=1,..,Nandie{l,..1}.

In equation (2.3) the term 6, representing the state parameter of the dy-
namic model at time ¢, is a real valued s-dimensional vector of latent states.
Besides, F; = (F}, ..., F},)" is the 21 x s design matrix for all the I series at time ¢,
v = (Vyy, ..o, vp,)" 1S the 21 x1 vector of errors for the structural equations and
V = block-diag(V4, ..., V7) is a (21 x21) block diagonal matrix.

System Equation: Let
(2.4) Oy = Hibp1 +wy we ~ (0, W),
with t = 1,..., N, be the system equation of the dynamic model.

The error term w;y in the system equation is assumed to follow a Gaussian
distribution with zero mean vector and covariance matrix W, i.e., w; ~ N(0, W),
with ¢t = 1,..., N. Additionally, we assume that the error terms w; and v; are all
mutually independent.

The s-dimensional covariance matrix W (for the s-dimensional vector of
latent states, 6;), is assumed to be block-diagonal including & blocks, with k < s.
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Those blocks are associated to the effects included in the latent states. Thus,
W = block-diag(W1, ..., Wx). The matrix H; is a specified sxs state evolution
matrix.

The hierarchical dynamic beta model (HDBM) requires the specification of
a (2Ix21) covariance matrix V in the structural equations and another covari-
ance matrix W for the state vector. That might become complicated for large
matrix dimensions. In many applications it may be sufficient to model simpler
dependences, in particular to allow individual random effects. That is why in our
proposed model both V' and W are block-diagonal matrices.

Notice that equations (2.3) and (2.4) represent a standard dynamic linear
model for the state vector #;. Additionally, 6 is conditionally independent of y
given 7. These combined features imply a substantial simplification in the pos-
terior computations of the parameters 1 and 6, as described in Cargnoni et al.

(1997).

3. MODELLING THE LATENT COMPONENTS OF THE HDBM

In this section we set up the hierarchical beta model for a hypothetical case
in which y;; represents a given rate or proportion at region ¢ and time ¢,7=1,...,
and t =1,...,N. We take the logit transformation of both u; and ¢; and, to
Nt and 79;¢, we fit dynamic models considering, respectively, a second-order
polynomial trend seasonal effects and a second-order polynomial trend effects.
The formulation of the structural equations is given below:

Mit = 10g<1m;> = Fieb: +vie vite ~ N(0, Vi) ,
— it
(3.1)
Mit = 108;(1 ¢Z; ) = Fiot0r +vior vioe ~ N (0, Via) ,
— it

with V; = diag(Vi1, Vi2).

In equation (3.1) the term Fj;46;, on the right-hand side of 7;14, is the
linear predictor of the logit transformed expected value of the beta model for
time ¢ and region i. We use a second-order polynomial trend seasonal effects
model with offset term in order to describe 7;1¢, that is

(3.2) it = B + Mo + Yie + vt -
The DLM representation of the model for 7y is

Second-order polynomial effects for the level with respect to p;:

Bt = Br—1 + 6—1 + wg, ,

(3.3)
0 = O0p—1 + ws, ,
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Free-form Seasonal effects:

(3.4) Atr = M—141 + W r=0,..,.p—2,
Atp—1 = Ai—1,0 + Wep-1 ,

First-order polynomial effects for the offset term:
(3.5) Vit = Vig—1 + Wy,
where
e [ represents an underlying level at time ¢, with respect to hq(u4), that
is common to the I series;
e §; is the incremental growth;

e )\ represents a seasonal effect that is common to the I series.
We denote the size of the seasonal cycle as p.

e ~; is an offset parameter representing deviations of the observed rate in
region ¢ at time t with respect to the average (;

e v;1; represents the region i series-specific stochastic deviation.

In equation (3.1) the term Fjo.0;, on the right-hand side of 72, is the linear
predictor of the logit transformed term related to the precision of the beta model
for time t and region 7. We use a second-order polynomial effects model with
offset term in order to describe 724, that is

(3.6) M2it = Y + i + Vi .

The DLM representation of the model for 7o is

Second-order polynomial effects for the level with respect to ¢;:
Yr = Y1+ &1+ wy,

3.7
(3.7) & = &1+ wg,

First-order polynomial effects for the offset term:
(3.8) it = Q-1 + Way, »
where
e 1)y represents an underlying level at time ¢, with respect to ha(¢;), that
is common to the I series;
o & is the incremental growth;

e (y is an offset parameter representing deviations of the observed rate
in region 7 at time ¢ with respect to the average 1;

e ;9 represents the region i series-specific stochastic deviation.
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Identifiability restrictions:

p—2 -1 -1
Atp—1 = — E Atr s Vit = — g Vit ap = — g it .
r=0 i=1 i=1

In order to exemplify the construction of the model, we consider I =3
regions where the rates are measured over time. Thus, the vector (914, n2i¢)" is

described by
<771it) _ (ﬁt + Ao + %-t) I <Uz'1t> ’ 1=1,2,3.
123t Yy + iy Vit

nit:Et9t+vit7 Z‘:172737

That is,

where y3; = — (71t + 72¢), agt = — (a1t + agt). For example, for seasonal cycles of
size p = 4 (quarters), then A3 = —(Ajo + A1 + A2)-

The state vector 6; for generic-sized p cycles is represented by

0 = (57&, Oty AMt0s Aty -oos Atp—25 Yty &ty V1ts Y2ty Ot 042t> :

Consider the following design matrices:

1 1 -1/ -1
_ _ p—2
J—(O 1) and P—(Ip_2 0).

Matrices J and P are essential in the description of our dynamic model.
Suppose a DLM such that the observation equation is y; = (; + €; and the system
equation is given by the pair of equations in expression (3.3). Such model is
called a linear growth model and it includes a time-varying slope 3;. If we define
0 = (B¢, 0:) and F = (1,0)’, then the observation equation can be represented
by y: = F'6; + €;, while the system equation, by 6; = Jb;_1 + (wg,, ws,)’.

Matrix J allows us to write a linear growth model such the permutation
matriz P is p-cyclic, so that P"P = I, and phtne — ph for h=1,...,p, and
any integer n > 0. For example, suppose, for simplicity, a DLM model with
yr = F0y + ¢; describing the observation equation and 6; = 6;_1 + w;, the system
equation. Additionally, suppose a purely seasonal series and quarterly data y,
t=1,2,..., so that when y;_1 refers to the first quarter of the year, y; refers to
the second one.

Due to the restriction Z?Zl a; = 0, the series might be described by sea-
sonal deviations from the zero. Thus assume that ;1 = a1 + €1, Yy = a2 + €,
and so on, so that to (Ye—1, Yt, Yt+1, Yt+2s Ye+3, Y44, Y45, Ye+6) are associated the
respective seasonal deviations from zero, (a, ag, ag, oy, a1, ag, ag, ag). Consider
now that 0,1 = (a1, a4, a3, az) and that F' = (1,0,0,0). Then, the successive
application of matrix P makes possible to formulate the desired quarterly seasonal
pattern.
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Considering I = 3 sub-populations or regions, the design matrices associ-
ated to the hierarchical beta dynamic model given by expressions (2.3), (2.4) and
(3.1) to (3.8) are given by

(3.9) H = block-diag(J, P, J,15,15),

B (101012 001000)
0000542100010

= (L0101 000100)

0000542100001

g (1010542 00-1-10 0
57 \00005,4 910 0 0-1-1)

The incorporation of seasonal components in the model can also be done by

using the Fourier Representation Theorem (see Pole, West and Harrison, 1994,
pp-49) in which any cyclical function of period p defined by a set of p effects
Y1, ...,1p, can be expressed as a linear combination of sine and cosine terms.
Let w = 27 /p, then there exist (p — 1) real numbers aq,...,ap; b1,...,bp—1 such
that, for j =1, ..., p,

h—1
(3.10) Y = apcos(mj) + Z [ar cos(wrj) + by sin(wry)] ,

r=1
where p = 2h if p is even, and p = 2h — 1 with ap = 0 if p is odd. The Fourier
coefficients a, and b, are known quantities and we usually set ap = 0. Thus
equation (3.10) can be written as 1); = Z?:l Sy(7), where

Sr(j) = apcos(wrj) + bysin(wrj) = Ay cos(wrj + ) ,
A, = (@2 4+ and 4, = arctan(—b,/a,) .

The terms S, (7) is called the r-th harmonic. A,, wr and =, describe, respectively,
the amplitude, the frequency and the phase of S, (7).

For seasonal cycles of even size p (say quarters), we replace matrix P by G
where G = block-diag(J2(1,w), Ja(1,2w), ..., J2(1, (p/2 — 1)), —1), with GP =G

and
Jo(Lw) = <_C;SIEL(2) Zféiﬁ)

For a second-order polynomial trend two harmonic model, the design ma-
trices are given by

G = block—diag(JQ(l,w), J2(1,2w)) ,

(3.11) H = block-diag(J, G, J, I5,15) ,
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000010100010

101010000100
000010100001)"

no_ (1010100011 0 0
57\00001010 0 0 —1-1/"

Fl_(101010001000)’

3.1. Estimated proportions and forecasting

The estimated proportions are calculated using the following procedure:

exp(n1it) o _exp(n2it)
1+exp(n1it) and ¢ = 1+exp(n2it)
evaluated at the estimated values (posterior means) of n1;; and 72,

fori=1,...,]landt=1,...,N.

(1) The inverse transformations p; = are

(2) Fori=1,..,I andt=1,..., N we simulate n (say, n = 1,000) samples
from a beta distribution Beta (,Uz't (1;32”), (1 — pit) (%)) and then
we take the average value of those draws.

(3) For the confidence bands we repeat steps (1) and (2) for calculating
the 2.5% and 97.5% percentiles of the posterior distribution of 7;;.

The k-step-ahead forecasts for the states are obtained by the repeated
application of the system equation (see expression (2.3)), that is,

k
Orrr = HHyyp (k) 0; + Z HHy (k= 1) wigr

r=1

where HHyyj(r) = Hyy o Hyy g1 X -+ X Hyg_pyq for all ¢ and integer r < k, with
HH,;,(0) = I. Thus, by linearity and independence and also taking into account
the Bayesian linear estimation method,

0t+k ~ (at(k)aRt(k)) )

with a¢(k) = Hiyp ai(k —1) and Ry(k) = Hyqp Ry H{ |}, + Wigg, and ag(0) = my
and R;(0) = C;. Therefore the “future” 6; values are obtained by successively
sampling from the system equation followed by the evaluation of the structural
equation (see expression (2.4)). The forecast rates are then obtained by running
steps (1) to (3) given above.



60 Cibele Queiroz Da-Silva and Helio S. Migon

4. BAYESIAN ANALYSIS

In the prior specification for 8y, V and W we assume that 6y, V1, ..., Vi and
Wh, ..., Wi are mutually independent, with 6y ~ N (mq,Cy), Vi, i =1,...,I have a
common inverse Wishart prior and W be block-diagonal with an inverse Wishart
prior for each block.

It is more convenient to work with the precision matrices instead of with
the covariances matrices. Let ®y; = Vfl, i=1,...,1, &= I/Vfl, l=1,..k,
®y = block-diag(®Po1, ..., Por) and ® = block-diag(®y, ..., Pr). Suppose that Py;,
i=1,...,1, follow independent Wishart distributions such that ®o; ~ W (v;, Soi),
where Sy; is a symmetric positive definite matrix of dimensions p; X p;. Similarly,
&, ~ W(s, Z;), follows independent prior distributions for [ = 1, ..., k, where Z;

is a symmetric positive definite matrix of dimensions ¢; X g;.

The joint posterior distribution is given by

p(n,0,®0,® | y) [H(H Beta(yit |1i¢) N(mit; Fitb, o, )N (0 Hyfp 1, @71)

t=1

E?v

1
(4.1) x N (0o;mo, Co) [ W (®os; o, Soi)
i=1 =1

W(®s;,2)

The Markov chain Monte Carlo (MCMC) procedure used for the inferential
processes involves sampling from the full conditional posteriors p(n | 6, @, D, y),
p(9 | 7, q)Oa (I), y) and p((I>07 @ ‘ 7, 9’ y)

4.1. Sampling from p(9 \ 77,<I)0,<I>,y)

As mentioned before, the equations (2.3) and (2.4) represent a standard
dynamic linear model for the state vector 6;. In such setting, the fact that
0 is conditionally independent of y given 7 implies that p(0 | n, ®o, P, y) = p(0 |
7, ®g, ®). Then, in a regular DLM, 7 has the same rule as y, so that in the
sequential updating formulations of the DLM, y will be replaced by 7.

The representation of the full conditional posterior distribution of p(@ |
n, ®g, @), considering the conditional independence structure of the DLM as well
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the Bayes theorem is given by
N

-1
p(0 |1, ®0,@) = p(On | 9,00, ®) ] p(6s | 0141, O, 7, Bo, @)
t=0
-1

(

P)
N:
= p(GN | 777@07‘1)) H p 9t ’ ‘9t+17"77q)07q>)
t=0
N-1
(42) X p(@N ‘ m, q)()uq)) H p(gt-‘rl ’ 9t7777 q)()v(I))p(et ‘ 7, q)();q)) .
t=0

Thus, all the state vectors can be sampled from p(6 | n, @, ®) using the
FFBS (Forward-filtering, backward-sampling) algorithm (Carter and Kohn, 1994;
Frithwirth-Schnatter, 1994). Conditionally on the “observed values” of 7, the
algorithm below allows us to draw a sample Oy, 0n_1,...,00 from p(0 | n, ®g, P)
as follows:

(1) Filtering
Using the Kalman filter (de Jong, 1991), compute the moments my
and Cy of the joint posterior p(6; | n, o, P), t =1,..., N, by applying
the standard DLM sequential updating formulae with y replaced by 7.
For more details see West and Harrison (1997).
o my=a;+ Arey, Cp =Ry — AiQiAy;
o A=REQ;, e=mn— fi
e a=Hymy_1, R =HC,_1H +&
o fi=Fa, Q =FRF+o;"

(2) Smoothing
At time t = N, sample the vector state Oy from p(Oy | 7, Po, @), i.e.,
sample Oy from (Oy | n, @g, P) ~ N(my,Cy). For timest=N—1, ..., 0,
sample 6, from p(0; | 6141, 7, Po, P) conditionally on the just sampled
value ;1. That is performed by sampling 6, from (6; | 6.+1, 1, Po, ) ~
N (ut, Up), where
o w=my+ By(0i11 — ary1);
o U, =C;— BRi1By;
e B, =CHR.

4.2. Sampling from p(n | 0, Py, D, y)

Given 6, &y and P, the n;;’s are mutually independent. That implies that
a sample from the conditional posterior of (1|6, ®o, ®,y) is obtained through
I x N independent samples from the respective distributions given by

(4.3) p(mie | 0s, Poi, @, i) o< p(yae | mit) p(mie | O, Pos) -
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The second term on the right-hand side of the full conditional (4.3) is the normal
prior 7 ~ N (Fy0;, ®o;), while the first term is given by the beta model described
by expression (2.2), such that 11 = hi(pi) and n2i = ha(dir).

Since the distribution p(n; | 0¢, ®i0, yit) does not have a closed form, it is
necessary to use the Metropolis—Hastings algorithm (M-H) (Metropolis et al.,
1953; Hastings, 1970) in order to draw samples from such distribution. Let m
represent the m-th MCMC draw. We use the following M-H random-walk with
symmetric normal proposal for 7:

* -1 % d -1 ;-1 * -1 % d
(a) Draw ny;, ~ a1(nfi; S ni) = Ny o) and 05 ~ q2(ni; 5 m5:) =

N (s @ap)-
(b) Calculate the acceptance probability a(n~!n%) = min{1, R,,, }, where

_ 77(772;:|') q(”;t’n;?_l) 77(77;‘;")

Tl el ) w )

with m(n|-) =p(yitln;'})lp(nftwt,%zl), () = p(yae |0l ) p(nly
0r, Do), and q(n,niy ) = a0l 0i) 2Ny s i)
(c) Set

ny,  with probability a(ngffl, n)

m

Mg = .
* { ni—1 otherwise .

4.3. Sampling from p(Py, P | n,0,y)

Considering that ®,=Dblock-diag(®g1,...,Por) and & =Dblock-diag(®,...,Px)
where (I)O'L' = ‘/iil, 1= 1, ,I and CI)l = I/Vlil, l= 1, ceny ]{3, with (I)Oi ~ W(I/ol', SO’L)

and ®; ~ W(s, Z;), 1 =1, ..., k, the full conditional distribution of ®; is given by

N k
1
p(@ 7.0, %0,9) [H I] 12 exp{—th ~H )T (6 - Htem}]

t=1m=1
X | @yt @HED/2 exp{ —tr(2,8;)}
1 N
(4.4) oc | @y N/ pi /2 eXP{_tr <2 ZZle,t(I)l> - tr(Zz@z)}
t=1

1
x |@Z|N/2+§l_(17l+1)/2 exp{—tr<<2 ZZl + Zl> (I)l> } )

with ZZ; = (8; — Hy0;_1) (6 — Hi0:1)" and 22, = SN | ZZy,. Thus,

N 1
(@1 | n,0,P0,y) ~ Wishart<2 +q, §ZZl. +Z,> , l=1,...k.
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The full conditional distribution of ®;q is given by

N
p(®io | 7,0, P0,y) x [HN(nitQFit‘gta(I)Oil)] W (®os; v0i, Sos)
=1
N 1
(4.5) N [H |Poi /2 exp{—2 (nit — Funbe)" @i (e — Fitet)}]
=1

« ’(I)0i|l’0i_(p0i+1)/2 exp{— tl"(SOi‘POi)}

1
oc |, |N/2 o (ot D)/2 eXP{— tr<<2 55y + 501’) (I)Oi> } )
with SSm = (nit — Fl-tQt) (nit — Fitet)T. Thus,

N 1
((I)Oi ‘ n,e,@,y) ~ Wishart (2 + vpi, 555772 + So,) , 1=1,..,1.

4.4. The case of static dispersion parameters

It is also possible to describe a beta hierarchical model such that the dis-
persion process does not vary with time, i.e., the precision parameters are static.
In such case, the vector 7 on the left-hand side of the structural equation (2.3)
will only include the term related to the mean process and 7;; = 11t = h1(4t).
However, we can still associate a link function to the precision parameters, and
we will denote it by n9; = hao(¢;), i =1, ..., I.

The observation equation for such case is then (yi; | mit, n2:) ~ Beta(yi |
Nit;M2i), © = 1,...,1. The Bayesian analysis for such situation can be adapted
from the one we just described in the previous sections.

The MCMC developments for n;; are largely the same described in Section
4.2, but now they will be conditioned upon the current values of 7. Addi-
tionally, for a given prior distribution for n;, the corresponding full conditional
distribution is

N

(4.6) p(n2i | 1,0, ®0,2,y) o | [ Betalyir | mie n2i) | p(n2:) -
t=1

In this work the prior p(n2;) was set to be a Gaussian distribution, with
parameters chosen as the average mean and average variance of the initial esti-
mated values of 79;, i = 1, ..., I, that were obtained from separate MCMC runs
for each of the individual time series.
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5. A SIMULATION STUDY

We applied the model described in Section 3 to simulated data in which we
considered N = 72 time points (say, six years), I = 3 sub-populations and cycles
of size p = 4.

In order to obtain initial values for the MCMC procedure, we estimated the
parameters involved by running separate DLM models (described by equations
(2.3) and (2.4)) for each of the sub-populations. All the routines were written
using the R language (http://www.r-project.org/). We also made extensive use
of the excellent dlm R library by Petris (2010).

In such DLM setting the 7;’s have the same rule as the observed data.

Thus, in order to run those initial models we estimated 71, by log (ﬂ—’;) and

=2
n2it by log (f‘;zt
(2.1)).

For the simulated data we considered a hierarchical dynamic beta model in

) with 62 = var(y;)/(yit(1 — yir)) (see properties of expression

which a second-order polynomial trend seasonal effects were fitted to the param-
eters related to the mean, u;;, and a second-order polynomial effects was fitted
to the parameters related to the precision, ¢;;. We run chains of size 50,000 with
burn-in period of 20,000. The autocorrelations could be significantly controlled
by using gaps of size 30.

Figure 2 shows the true values (in red) used in the simulations, the esti-
mated values of the parameters involved in expressions (3.2), and the respective
confidence bands for the main effects of level, growth and seasonality. Figure 3
shows the estimated proportions for each of the sub-populations and their cor-
responding confidence bands. As we can observe all the effects and probabilities
are well estimated.
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Figure 2:

Simulated data — estimated values and 95% credibility bounds for the

components of 71;¢: (a) Level (8;), (b) Growth (d:), (c) Seasonality (A¢).
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Figure 3: Simulated data — estimated proportions and 95% credibility bounds
for the three sub-populations.
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6. APPLYING THE HIERARCHICAL DYNAMIC BETA MODEL
TO BRAZILIAN UNEMPLOYMENT RATES

In this section we apply our methods to fit the three time series of Brazilian
monthly unemployment rates that were described in the Introduction (see Section 1).
The three sub-populations in our the analysis are Recife, Sao Paulo and Porto
Alegre, i.e., I =3. We analyze monthly unemployment rates (MUR) based on
PME data in the period from March 2002 to July 2011 (N = 113 observations).
As a procedure for checking the performance of the model, forecast rates are also
provided. We used MUR data for the months of August 2011 to March 2012.

The Brazilian Institute of Geography and Statistics acknowledges the ne-
cessity of incorporating seasonal components in any analyses based on MUR data
(http://www.ibge.gov.br). In fact the MURs are affected by yearly cycles caused
by factors such as climatic changes, Christmas festivities and school vacations.

To the mean process, we considered a hierarchical dynamic beta model
in which a second-order polynomial trend seasonal effects model (with cycles
of p =12 months) was fitted to the parameters related to the mean, pu; (see
expressions (3.1) to (3.5)). The model structure was similar to the one used in
Da-Silva et al. (2011), and we opted for using a free-form seasonal effects model
(see equation (3.9)) instead of using harmonic analysis via Fourier representation
(see equation (3.10)), just to be consistent with Da-Silva et al. (2011).

To the dispersion process we used two models: Model 1 describes a static
hierarchical model with respect to the precision parameter (see Section 4.4).
Model 2 adds dynamics to the precision parameter of the beta model. For that
purpose we use a second-order polynomial trend effects model (see expressions
(3.6) to (3.8)).

Considering Model 2 and the parameters of both mean and dispersion pro-
cesses, the design matrices H and F = (Fy, F, F3)" are the ones defined by ex-
pression (3.9). For Model 1 those matrices are:

H = block-diag(J, P,1Io) ,
Fi=(1010144,-210), Fo=(1010,;,-2 01) and
F3=(1010p-2 -1 -1).

We used the mean absolute deviation (MAD), the mean square error (MSE)
and the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) to
compare the forecasting accuracies of Model 1 and Model 2. The MAD and
MSE are defined, respectively, by the following formulae: MAD = %Z?:l e
and MSE = %Z?:l e?, where e, = Y; — E(Y;|y1.4-1) (see Section 4.1 for details).
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According to Spiegelhalter et al. (2002), the DIC is a measure of fit based
on a trade-off between the fit of the data to the model and the corresponding
complexity of the model: DIC = goodness of fit + complexity. The fit for model
M; is measured in terms of the posterior distribution of the deviance statistic,
D(6;) = —2log L(Y |6;), while complexity is measured by an estimate of the ef-
fective number of parameters:

4 = Di— D(@) = B(D(6; | Y, My) = D(E: | Y, M),

i.e., the posterior mean deviance minus deviance evaluated at the posterior mean
of the parameters. The DIC is defined as:

DIC(M;) = D(6;) + 2d; .

The DIC generalizes the AIC (Akaike, 1973) in the sense that it explicitly
applies to non nested non IID problems. Besides that, DIC can be approximated
via MCMC samples from the posterior density. For the reasons exposed so far,
in this work we used DIC instead of either AIC or BIC (Schwarz, 1978).

Models with smaller DIC are better supported by the data. The DIC is
a positive number, in general. However, it can be negative but such occurrence
does not pose any difficulty in terms of model comparison, since the focus is in
the difference between two values and not in the DIC value itself.

In general, the d; component is a positive value. However, it can be negative
in cases where the likelihood function is not log-concave, when there is a conflict
between the prior and the likelihood or when the posterior distribution of the
parameters is too skewed or symmetric and multi-modal, so that the posterior
mean/median are poor measures of central tendency. In those cases, the use of
the posterior mode can be a fair alternative.

Table 1 displays the MAD, MSE, the effective number of parameters, d;,
and DIC values for Model 1 and Model 2. As we observe, the total MAD and to-
tal MSE values for Model 2 are somewhat smaller than those values for Model 1.
However, the DIC for Model 2 is much smaller than the DIC for Model 1, giving
strong indication that Model 2 provides a superior fit compared to Model 1. Ad-
ditionally, the effective number of parameters, d;, for both, Model 1 and Model 2,
are positive. Thus besides of the limitations of the DIC, in our applications it
seems to be performing properly.

Table 1: MSE, MAD, d; and DIC values for Models 1 and 2.

Model MSE MAD d; DIC

Model 1 | 0.00158 0.03934  36.602 —1510.622
Model 2 | 0.00150 0.03559 229.819 —2445.007
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In order to gain a better perspective of the real advantages of using Model 2
as opposed to Model 1, we present Figures 4 and 5 which display the estimated
proportions or rates for each of the sub-populations and their corresponding con-
fidence bands.
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Figure 4: MUR data (Model 1 with static precision parameter) — estimated pro-
portions and 95% credibility bounds for the three sub-populations:
(a) Recife, (b) Sdo Paulo and (c) Porto Alegre.
The forecast rates are presented after the dotted vertical lines.
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Figure 5: MUR data (Model 2 with dynamic precision parameter) — estimated
proportions and 95% credibility bounds for the three sub-populations:
(a) Recife, (b) Sao Paulo and (c) Porto Alegre.
The forecast rates are presented after the dotted vertical lines.

It is really reassuring the superiority of Model 2 compared to Model 1 in
terms of both the precision of the credibility intervals, and how well Model 2 is
able of describing the observed proportions for each of the sub-populations.
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7. DISCUSSION

In this article we propose an extension to the Bayesian beta dynamic model
developed by Da-Silva et al. (2011). We develop a hierarchical dynamic Bayesian
beta model for modelling a set of time series of rates or proportions. The proposed
methodology enables to combine the information contained in different time series
so that we can describe a common underlying system, which is though flexible
enough to allow the incorporation of random deviations, related to the individual
series, not only through time but also across series. That allows to fit the case in
which the observed series may present some degree of level shift. Additionally, the
proposed model is adaptive in the sense that it incorporates precision parameters
that can be heterogeneous no only over time but also across the series. The use
of two link functions, one for the mean process and another to the dispersion
process, makes such extension possible. Additionally, the choice of the matrices
F; and H; allow for a multiplicity of ways of specifying the model, even allowing
for the inclusion of covariates.

Missing observations can be easily accommodated: if the observation at
time ¢ is missing, then y; = NA and y; does not carry any information. Then, we
set p(0¢| Dy) = p(0¢] D).

Our methodology was applied to both real and simulated data. The real
data set used are three time series of Brazilian monthly unemployment rates,
observed in the cities of Recife, Sdo Paulo and Porto Alegre, in the period from
March 2002 to March 2012. We used a second-order polynomial trend seasonal
effects to the parameters related to the mean, p;, and a second-order polynomial
effects to the parameters related to the precision, ¢;;. The very good features of
the proposed model can be appreciated by the inspection of the graphs presented.
The new parametrization of the precision parameter that was proposed by Bayer
(2011) was used in the model formulation. It is very convenient since both, the
link functions for p; and ¢y, are expressed in the (0,1) interval, which gives us
a more meaningful interpretation in terms of the magnitude of the scale.

For future work we envision the possibility of extending the current model
to enable the inclusion of different type of regimes for both, the level of the mean
process and the level of the dispersion process.
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On the Bounds for Diagonal and Off-diagonal Elements of the Hat Matrix 7

1. INTRODUCTION

In the least squares approach, any sensitivity analysis is essentially re-
lated to how points are observed, so reflected on the elements of the Hat matrix.
As the most widely used concepts in regression diagnostics, influential observa-
tions and outliers are identified by the size of these quantities. Consider the
general linear regression model

(1.1) v =X B+ei, (i=1,2,..,n),

where y; is the i-th observed response, x; is a p X1 deterministic vector, 3 € RP
is an unknown p x 1 vector of parameters, and the ;’s are uncorrelated errors
2. Writing y = (y1,...,un)’, € = (€1, ...,&n)’, and
X = (X1,...,X,)", model (1.1) can be written as:

(1.2) y=X03+¢.

with mean zero and variance o

The matrix X is called design matriz, which contains the column one in the
intercept model. We assume throughout that X is full-rank matrix, so X'X is
nonsingular. In this case the ordinary least squares estimator of 3 is

(1.3) B =XX)"'Xy.

The n x1 vector of ordinary predicted values of the response variable is y = Hy,
where the nxn prediction or Hat matrix, H, is given by

(1.4) H = X(X'X)'X".

The residual vector is given by e = (I,, — H)y with the variance-covariance matrix
V = (I, — H)o?, where I, is the identity matrix of order n. The matrix H plays
an important role in the linear regression analysis. Let h;; indicate the (¢, j)-th
element of H. Hence,

(1.5) hij = x((X'X) " 1x; | (i,7=1,2,...,n) .

The diagonal element h;; is so-called the leverage of the i-th data point and
measures how far the observation x; is from the rest of points in the X-space.
Any point with large values of h;; tends to be an influential observation. Such
a point is called high-leverage. Cook and Weisberg (1982, p.13) point to the
following conditions, to h;; be large:

e X)x; is large relative to the square of the norm xx; of the vectors x;;
i.e. x; is far removed from the bulk of other points in the data set, or

e X/x; is substantially in the direction of an eigenvector corresponding to
a small eigenvalue of X'X.

The various criteria are suggested for the size of h;; to x; being high-leverage
(see Chatterjee and Hadi, 1988, p. 100-101).
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On the other hand, off-diagonal elements of the Hat matrix may be re-
garded as another criterion in the regression analysis. Ignoring the constant o2,
these elements are covariances of any pair of the estimated residuals, so can be
useful to check the independency assumption. From theoretical point of view,
there may exist situations in which observations are jointly but not individually
influential (Chatterjee and Hadi, 1988, p. 185). Huber (1975) mentions that large
values of h;; typically correspond to outlying design points. Hadi (1990) proposed
two graphical displays of the elements of H, that are useful in the detection of
potentially influential subsets of observations.

In this paper we discuss the necessary and sufficient conditions for the de-
sign matrix to have some extreme values of Hat matrix elements, in the intercept
and no-intercept linear regression models. We obtain a sharper lower bound for
off-diagonal elements of the Hat matrix in the with intercept linear model, which
is shorter than those for no-intercept model by 1/n.

Repeated application of the following first lemma is made. Part (a) of this
lemma is due to Chipman (1964).

Lemma 1.1. Let A be a matrix of nxp with rank p — my, (my; > 0).

(a) If B, of order my x p and full row rank, has it’s rows LIN (linearly
independent) of those of A, then

AA'A+B'B)"'B'=0,x,n, and B(A’'A+B'B)"'B'=1,, .

(b) If R, of order mgy X p; (m2 < mq) and rank 1, has the first row ¢’ of the
form R = ér’, where § = (1,02, ...,0p,)", and r be LIN of rows of A,

then
66’

811> -

R(A'/A+R'R)'R =

Lemma 1.2. Let A and B be nxp matrices. Then, rank(A —B) =
rank(A) — rank(B), if and only if AA"B =BAA~ =BA"B =B, where A™ is
a generalized inverse of A satisfying AA~ A = A (see Seber, 2007).

Throughout this paper we use the notation (i) written as a subscript to
a quantity to indicate the omission of the i-th observation. For example, X;
and X;;) are matrix X with the i-th row and (7, j)-th rows omitted, respectively.
The vector X denotes the mean of X’s rows and J,, is a pxp matrix of ones.
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2. BOUNDSFORDIAGONALELEMENTS OF THEHAT MATRIX

This section is allotted to determine the lower and upper bounds of h;;,
along with necessary and sufficient conditions for observation matrix X to take
those values. These conditions are fundamentally on the basis of some special
forms of x; and X(;. We consider two customary full rank linear regression
models; without and with intercept.

Lemma 2.1. Let X,,«x be full column rank matrix without column one.
Then,
(i) 0<hy <1,

(ii) hy=0, if and only if x; = 0.
(iii) hyu=1, if and only if rank(X(;)) =k — 1.

Proof: Part (i) is immediately proved since H and I,, — H are positive

semi-definite (p.s.d.) matrices. Similarly part (ii) is obtained since (X'X)~! is a

p.d. matrix. To verify part (iii), without loss of generality, suppose that x; is the
last row of X, i.e. X' = [X'(Z) x; |. If hy=1, then
X (XIX)1X0y 0
2.1) a1 | XoXX)7 X 0p-1)x
01x(n—1) 1
Since H is an idempotent matrix, X ;) (X’ X)*IX'@-) is also idempotent. Hence,
rank(X(;)) = rank(X; (X'X)_IX'@)) = trace(X; (X’X)_IX'(Z-)) =k—-1.
Conversely, let rank(X;)) = k — 1. Since, rank[ X{;) x; | = rank(X’) = k, it fol-
lows that x; is LIN from the rows of X{;). Using part (a) of Lemma 1.1,
xi (X{5) X @) + xixt) " xi(= ha) = 1,

and proof is completed. ]

Lemma 2.2. If the full column rank matrix X, 1) contains column
one, then

i) 7
(li) h” = %, if and OI]]y if X; = X.
(iii) hy=1, if and only if rank(X ;) = k.

< h; <1

Proof: In this case H — %Jn and I,, — H are both p.s.d. matrices, so part
(i) holds. To verify part (ii) note that in the with intercept model, we have:

(2.2) (X'X) 1% = % [01 ] .
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The sufficient condition is established by noting that
(2.3) X (X'X) % = R(X'X) % = % |
Conversely, if hy; = 1/n, we have:

(xi — %) (X'X) '(x; —%) = 0

which satisfies x; = X. Part (iii) is verified similar to part (iii) of Lemma 2.1. [

Example 2.1. Consider the simple linear regression model y; = Gy +
B1x; + €; with usual assumption. In this case,
1 (zi — 2)°
no Yoz — 1)
It is clear that x; = & satisfies hy; = 1/n. Also, if for all k # i, we have xy, = ¢ (# x;),
then = ¢+ (x; — ¢)/n and hy; = 1. Figures 1 and 2 show two examples of these

hii =

situations. In Figure 1, the i-th observation gives minimum possible value h;;,
and the fitted slope is not affected by this observation. Conversely, Figure 2
shows an example with maximum possible value for h;. In this case, the slope
of fitted line is determined by y;, and deleting such observation changes X'(i)X(i)
to a singular matrix.

EE N

Figure 1: A simple linear regression model Figure 2: A simple linear regression model
with intercept for which h;; = % with intercept for which h;; = 1.

3. BOUNDS FOR OFF-DIAGONAL ELEMENTS OF THE HAT
MATRIX

In this case we assume two situations with and without intercept term in the
linear regression model. Part (i) of the following lemma is shown by Chatterjee
and Hadi (1988, p.18). (They have appreciated Professor J. Brian Gray for
bringing part (i) of this lemma).
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Lemma 3.1. Let X, be full column rank matrix without column one.
Then,

ij = —%, if and only if x; = —x; and rank(X(;;)) =k — 1.
, if and only if x; = x; and rank(X(;;)) =k — 1.

Proof: Since H is idempotent, we have:

i=1 k(i)
which implies that h?j = hii(1 — hy) + Zk;é(z‘,j) hfk. Since 0 < h;; < 1, part (i)
is obtained by conditions h; = hj; = 1/2 and hy, = hj, = 0 for all k(#1i,j) =
1,2,...,n. To verify sufficient condition of part (ii), let h;; = —1/2. From (3.1)
we have hj; = hj; = 1/2, so
(Xi + Xj)/(X/X)_l (Xi + X]’) =0,
which holds only if x; = —x;. Again, if X' = [X’(ij) X; Xj |, then
X(ip) XX) " Xlij)  On-2)x2
(3.2) H= o1
02X(7L—2) § _1 1
Since H is idempotent, it follows from equation (3.2) that X;;(X'X)~1X{;;) is
also idempotent. Hence,
rank(X;;)) = rank (X (X'X)"'X{;;)) = trace(X;(X'X) ' X{;;)) = k—1.
Conversely, if x; = —x; and rank(X(;;) =k — 1, since rank|[ X{;;) x; x; | =
rank(X) = k, it follows that x; is LIN from the rows of X(;;). Applying part (b)
of Lemma 1.1 with replacing A and R by X(;; and [Xi —X; }, with § = (1, -1)
gives

. hii hij 1/2 —1/2
R A1A+C/C IR/ — |: 11 ’L]:| — |: :|
( ) hij hj; ~1/2 1/2

Part (iii) is proved similarly by multiplying x; by —1. O

The following lemma gives the boundary of h;; in the with intercept model.
We will find its upper bound similar to the case of the no-intercept model, whereas
its lower bound has sharpened by the constant 1/n.

Lemma 3.2. If X, (341) is full column rank matrix with column one,
then
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Proof: In this case H is idempotent and has the property of a transition
probability matrix, i.e. H1=1. Thus, we should minimize h;; with restriction
(3.1) along with

(33) S i = 1.
i=1
Using A as a Lagrangian multiplier, we minimize
(3.4) hij = 1 — hy — Z hir, + A [ hi(1 — hyi) — h?j _Z h?k J

k#(4,5) k]

with respect to the A and elements h;y, for k # j = 1,2, ...,n. Clearly 0h;;/OX =0

gives (3.1), and Oh;;/0hy; =0 gives hy; = % — % On the other hand setting

Oh;j/Oh;, = 0 results to hi, = —%. Substituting in (3.1) gives:

1 n—1
2 _

and so (3.3) yields

1 n—1
(3.6) hij = 2<1+ h\ >

Solving equations (3.5) and (3.6) with respect to A gives the boundary of h;; as

[t

S|
N

—5 < hiy <

[\

In order to prove part (ii), note that h;; = 1/n —1/2 produces all hy, (k # 1, j)
be equal to 1/n, which leads to hy = hj; = 1/n+1/2. Hence,

(Xi + x5 — 2)_()’ (X’X)fl (x; + X; — 2%) =0,
which holds only if x; + x; = 2X. Furthermore, we have

Xij) X'X) ' Xlijy = 5 In—2  Opm_2)x2

1
n 02><(TL72) 2 _1 1
Since H— 1J,, is idempotent, equation (3.7) results to X ;) (X'X) ™' X{;;y — 1J,, 5

is idempotent, also. Hence,
_ 1
k—1 = trace (X(m (XX) ™ X — Jn2>
_ 1
= rank (X(m (X'X) ™' X — an_2> :

We now show that the last rank of difference matrix is equal to the difference
of corresponding rank of matrices. Let A = X;;)(X'X)7'X{;;y and B=1J,_,.
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Since A is symmetric, we have AA~™ = A~ A, resulting A2A~ = A. Using equa-
tion (3.7) and noting that (H — 1J)1 = 0, we have

n—2
n

)B and A2:A—EB.
n

AB:BA:BQZ(

Therefore,

2
(3.8) <A — B) A" =A.

n
Multiplying (3.8) by A from the left side, we find ABA~ = B. Similarly, the
equality A"BA = B is verified. It remains to show that BA™B = B. Multi-
plying (3.8) by B to the right hand side and noting that A~ B is symmetric, we
have

-2
BA B = _(AA"B-AB) = = [B— <” )B} =B.
2 2 n
Using Lemma 1.2, we have rank (X ;;)(X'X) ' X{;;)) — rank(J,_o) = k — 1, and
thus rank(X(ij)) =k.

Conversely, suppose X ;;) of order (n—2)x (k+1) has rank k and x; +x; =
2x. Then X = X(if)s the row means of X(ij)- In this case h;j = 2/n — hi;. Now,
since X(;) is full column rank, then x; is LIN from the rows of X;;. Using part
(a) of the Lemma 1.1, we have:

- _ -1 6=
xi (X X))  xi = (2% —x;) (X{i5X ) +x5%5) (2% —x;)
_ -1 _
= 4%(;;) (X{ap Xy +%7%5) " Xiy)
4
-
% (X{iy) Xig) +%5%) 7 %

—1
51X (X Xy +x5%5) %,

_ 1_
= 4X (i) (X(U)X(w) + XJXJ) X(ij) + 1

( + X / -1 (n_ 1)}_(/@) X
— 4 X[y X(; 1
< >( X)) - +

:4{)( (@) 1) n—{—l}—l—l.

Hence, x}(X{; X)) 'x; = lf’,; = 242 which implies h;; = 1/n —1/2.

i n—27

Proof of part (iii) is analogous to part (iii) of Lemma 3.1. O

Example 3.1. Consider the simple linear regression model y; = Gp+ 12 +¢€;
with usual assumptions. In this model,

1 (@-®) (- 9)
o S A S 2
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Now if ; = z; = ¢ and zj, = d # ¢ (for every k # i,j) then T = d+ 2(c — d)/n.
It is easy to show that h;; = 1/2. On the other hand, if x; # z;, 2 = d # x4, 2;
(for every k # i,j) and z; + z; = 2Z = 2d, then h;; = 1/n —1/2. Figures 3 and 4
show two examples of mentioned situations, in the case when h;; gives its maxi-
mum and minimum possible values.

HK K O\FKX X ¥
*¥ X ¥ X

*
*

Figure 3: A simple linear regression model Figure 4: A simple linear regression model

with intercept for which h;; = %f % with intercept for which h;; = % + %

Example 3.2. Suppose the multiple linear regression model y; = Gy +
Grxi1 + Poxio + B3xi3 + €; with design matrix X as

1
—_
=~ = Ot O
NN OO O =

—_ = e e e e e
—_
—_

N — = =W W
S N ©
(G20 )

Hat matrix is

© 0.625 —0.375 0.125 0.125 0.125 0.125 0.125 0.1257
—-0.375 0.625 0.125 0.125 0.125 0.125 0.125 0.125
0.125 0.125 0.298 0.133 —0.161 0.335 —0.003 0.148
0.125 0.125 0.133 0.618 —0.196 —0.235 0.242 0.188
0.125 0.125 —0.161 —0.196 0.791 0.008 0.296 0.049
0.125 0.125 0.335 —0.235 0.008 0.658 —0.123 0.106
0.125 0.125 —0.003 0.242 0.260 —0.123 0.250 0.124
0.125 0.125 0.148 0.188 0.049 0.106 0.124 0.126 |

It is observed that h1a = —0.375 = 1/n — 1/2, and this is because of x; +x; = 2%
and for any 7 > 3: x;3 = 3x;1 — 1.
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4. CONCLUDING REMARKS

A large number of statistical measures, such as Mahalanobis distance,
weighted square standardized distance, PRESS, etc, have been proposed in the

literatures of diagnosing influential observations, which are typically based on

hij’s. Removing the i-th point or (4, j)-th points jointly may be useful to detect
the leverage in regression diagnostics. The following outcomes are obtained from

the previous lemmas in sections 2 and 3:

hii =0 (or hy; = 1/n in the intercept model). In this case the i-th ob-
servation potentially is an outlier, recognized by large distance between
y; and g. This point has no effect on the estimation of unknown param-
eter (3, except constant term in the with intercept model (see Figure 1).
In this situation, y; has minimum effect to determine g;.

hi; = 1. Presence of such point obviates full collinearity of some columns
of X, so it is likely to be an influential observation. This point is capable
to elongate the regression line itself. In other words, the fitted regression
line passes through other data points to place of the i-th observation.
In this case we see e; = 0 (see Figure 2).

hij = —=1/2 (or hij; = 1/n — 1/2 in the intercept model). This case may
be declared as a competition between i-th and j-th observations. Using
Lemma 3.1 and Lemma 3.2, it can be shown that if any of these points
removed, then other point has the maximum value 1 of diagonal element
of corresponding Hat matrix constructed based on the remaining n — 1
observations, so will be an influential observation. In this case, e; = e;,
so p(i,y;) = —1. This situation occurs when (7, j)-th points are at the
different sides of the bulk of other points (see Figure 3).

hij = 1/2. Contrary to the previous case, in this case the i-th and the
j-th observations are at the same side of the bulk of other points. It can
be shown that predicted values of these observations are at the same
direction, i.e. p(g;, 9;) = 1 (see Figure 4).
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APPENDIX: Proof of Lemma 1.1

(a): Without loss of generality, let the first p — m; rows Aj of A be full
row rank; then the last (n +m; — p) rows Ay of A may be written as Ay = NAj,
where N is (n +m1 — p) x (p —mq). Since B has its rows LIN of those of A, we

may define:
A
[ Bl} =[c D],

where C; and D are p X (p —m1) and p X m; matrices, respectively. Then,

A _[ACi AD] _ [L,,, O
[B][ClD][Bcl BD}[ 0 L |

Now define the p x (n+mj — p) matrix Cg as Cy = C1N’. So, we have

_ Ay _ Ipfm1
RS

and
C = [Cl CQ] = Cl[Ip_m1 N’].

From the solutions we obtain

— Ip—ml N/
AC _[ N NN

} , AD = 0,5, = (BC), BD=1,,,

where rank(AC) = rank(A) = p—m;. Now since [ A B | hasrank p, A’A + B'B
is positive definite and therefore invertible. From above we have expressions

(A'/A+B'B)D = B’ .

Premultiplying by (A(A’A + B’B)~!), and then by (B(A’A +B’B)~!) we ob-
tain

AA'/A+B'B)"'B' = AD = 0,4,
and
B(AAA+BB)"'B'=BD =1, .
(b): Equalizing R = dr’ results to:
R(A’A+R'R)"'R’ = or' (A’A +réd8't) " 'rd .
Now using part (a) and substituting B by Vo't give

88

R(A'A+R'R) 'R/ = T8 -
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1. INTRODUCTION AND MOTIVATION

One of the common problems in applications is to check whether the
mean value of an investigated phenomena equals a given number, i.e. testing the
hypothesis Hy: u = pp. For example, for econometrical applications see [5], for
biological applications [8], for engineering [11], for medical applications [7].
See also [1], [2], [4], [6].

To test the hypothesis Hy, the classical ¢ test is used. However, this test
requires the assumption of normality of the phenomena, so it is advised (see
statistical packages such as SAS, Statistica, Statgraphics) to check normality
first, for example with the Shapiro-Wilk W test. If normality is rejected, tests
other than ¢ are recommended (e.g. the sign test). So, the procedure of testing
the hypothesis Hy: ;1 = pg becomes a little complicated, and should be conducted
in two steps:

1. check normality with the W test,

2. if normality is not rejected then use the ¢ test else use the sign test.

In this paper we propose a modification of the Shapiro—-Wilk W test, dedi-
cated to checking normality with known mean value p, i.e. to testing the hypoth-
esis Hy: X ~ N (Mo,O’Q), where X is the random variable of interest. This test
could have very wide applications. For example, when we apply the paired t-test,
the differences are assumed to be normally distributed with a given mean value
po = p1 — po. The other application can be measurement errors which should
be distributed as N(0,0?), i.e. a measurement should be unbiased and normally
distributed. Also, dimensions or weight of manufactured products should be nor-
mally distributed with given mean value. Another application is in the analysis
of linear models, where one has to verify that residuals are normally distributed
with null mean.

The modification of the W test and its properties are described in Section 2.
The simulation results on its power are given in Section 3. Some concluding
remarks are given in Section 4.

2. DERIVATION OF THE W, STATISTIC AND ITS PROPERTIES

Suppose that a random variable X is observed and we are interested in
testing the hypothesis

Hy: X ~ N(u,0?%) .



92 Zofia Hanusz, Joanna Tarasinska and Wojciech Zielinski

Shapiro and Wilk ([12]) proposed the W test based on the statistic
(2.1) W= =7

where X (1) < X9y <--- < X(;,) are the ordered values of a sample X1, Xs, ..., Xp,
and a; are tabulated coefficients. A lower tail of W indicates nonnormality.

Now, let us assume that the expected value u, say pg, is known. Thus it is
of interest to test the null hypothesis

(2.2) Hy: X ~ N(ug,0?) .

Application of Shapiro and Wilk’s technique to the problem of testing (2.2) gives

the statistic
n 2
< ain(i))
i=1

Wy = - .
>~ (Xi = po)

i=1

The null hypothesis (2.2) is rejected when Wy < Wy(a, n), where Wy(a, n) is the
critical value at significance level «.

The statistic Wy has properties similar to the W statistic, namely, Wy is

scale invariant and the maximum value of Wy is one. As it is known, the minimum
2

na
lue of W is e = —L ([12]).
value o is € n—l([ D

Lemma 2.1. The minimum value of Wy is zero.

Proof: Since Wj is scale invariant it suffices to consider the maximization
n n
of 3 (X; — puo)? subject to 3 a; Xy = 1. The lemma follows from the fact that
i=1 i=1
(X; — po)? may be arbitrarily large. O

n
=1

Shapiro and Wilk ([12]) gave an analytic form of the probability density
function for the W statistic in the case of sample size n = 3. It is

N[

w

[N

A w
o

for <w<1.

(2.3) glw) = — (1 —w)"

— n —
They also establish that W is statistically independent of X and of > (Xi - X )2
i=1
for samples from a normal distribution.
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Thus, it is easy to obtain the probability density function of Wy for samples
of size n = 3. Let us notice that Wy =W -C, where

S (X - X)? (X, - X)?
C _ z;l = — =1
;(Xi*,uo)Q :Zl(Xi*X)2+TL(X*,U,0)2

is a random variable distributed as Beta (”T_l, %), independent of W. Thus in the

case of n = 3, under Hy, we have the probability density function of C', namely,

1
f(c):§(1—c)_% for 0<c<1.
Taking the new variable Wy = W-C in the joint probability density function
g(w) f(c) and integrating this function over ¢, we get the probability density

function for Wy in the following form

( %wo
3 -1 1 _1 3
27_‘_-11}02‘/(1—0)2(6—100)2(10 for 0 <wy<7y,
p(wo) = 1
3 -1 _1 1
2~w02-/(1—c)2(c—w0)2dc for %Swogl.
i
\ wo

Finally, after integrating, we get

3 -1 . 511)0—3 T
27T.w02.<arcsm3(1_wo)+2> for ngog%,

@ (wo) =

N

g . wo_ for

=~
A
S
(=)
A
—

The plot of ¢ (wp) is shown in Figure 1.

14}

—_
d
T

Figure 1: Plot of probability density function of Wy for n = 3.
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For sample size n > 3 the analytical form of the null distribution of Wy is
not available. Hence, to obtain any information about the distribution, Monte
Carlo simulations were performed. In simulations, for each n = 3,4,...,50, N =
1,000,000 samples from the distribution N (0, 1) were drawn and for each sample
the value of Wy was calculated, thus the sample w1y, wo, ..., wy of values of the W
statistic was obtained. The critical value Wy(«, n) was taken as the a-th quantile
of wi,ws,...,wy. All calculations were done in the R program ([9]) using the
procedure shapiro.test in which Royston’s procedure is used ([10]). The same
calculations were also done independently in Mathematica. The results are given
in Table 1.

Table 1: Critical values of Wy statistic for sample sizes n and significance level a.

] n \ a =001 \ a =005 \ a=01 \ ] n \ o =001 \ a=0.05 \ a=01 \
3| 00184 | 00881 | 0.1714 27 | 07379 | 08232 | 08601
4] 00721 | 02037 | 03127 28 | 0.7463 | 0.8287 | 0.8645
5| 01419 | 03086 | 0.4190 29 | 07539 | 08340 | 0.8688
6| 02000 | 03867 | 04952 30 | 07611 | 08394 | 0.8730
7| 02742 | 04525 | 0.5543 31 | 07677 | 08437 | 0.8765
8| 03209 | 05051 | 0.5998 32 | 07746 | 08482 | 0.8300
9| 03785 | 05493 | 0.6374 33 | 07804 | 08524 | 0.8834
10| 04233 | 05852 | 0.6682 34 | 07871 | 08565 | 0.8363
11| 04606 | 0.6165 | 0.6935 35 | 07917 | 08602 | 0.8394
12| 04940 | 06431 | 0.7154 36 | 0.7969 | 08634 | 0.8921
13| 05246 | 0.6661 | 0.7346 37 | 0.8008 | 0.8670 | 0.8947
14| 05494 | 06862 | 0.7504 38 | 0.8063 | 08701 | 0.8972
15| 05739 | 07038 | 0.7651 39 | 08109 | 08731 | 0.8996
16 | 05954 | 0.7196 | 0.7778 40 | 08145 | 08760 | 0.9018
17 | 06126 | 07337 | 0.7890 a1 | 08194 | 08787 | 0.9040
18 | 06319 | 0.7476 | 0.7998 42 | 08227 | 08816 | 0.9061
19 | 06478 | 0.7590 | 0.8088 43 | 08271 | 08839 | 0.9081
20 | 06626 | 0.7696 | 0.8176 44 | 08301 | 0832 | 0.9100
21 | 06761 | 07792 | 0.8250 45 | 08343 | 08887 | 0.9120
22 | 06876 | 07875 | 0.8319 46 | 08374 | 08911 | 0.9138
23 | 07008 | 0.7965 | 0.8390 47 | 08403 | 08931 | 0.9154
24 | 07104 | 08034 | 0.8446 48 | 08433 | 08951 | 0.9169
95 | 0.7205 | 08103 | 0.8501 49 | 08470 | 08974 | 0.9187
2 | 0.7296 | 08170 | 0.8553 50 | 0.8491 | 0.8989 | 0.9200

Shapiro and Wilk ([13]) approximated the distribution of the W statistic
by a Johnson curve. For each n they made the least squares regression of the
empirical sampling value of
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on the p-th quantile of the standard normal distribution z,, where € was the
minimum value of the W statistic and W(p) was the p-th empirical sampling
quantile. They took the following values of p:

p = 0.01, 0.02, 0.05 (0.05) 0.25, 0.5, 0.75 (0.05) 0.95, 0.98, 0.99 ,

€
has approximately

and gave the tables for ¢, and  such that z = v+ In W

standard normal distribution.

In our study, a similar approach was applied for the W) statistic for sample

sizes n = 3,4,...,50. As € =0 (see Lemma 2.1), the least squares regression of

n Wo(p)
1 —Wo(p)

The values of § and -, such that Z =~ + 4§ In

on z, was based on 1,000,000 pseudorandom samples from N (0, 1).

Wo )
has approximately stan-
1-Wy
dard normal distribution are listed in Table 2. The lower tail of Z’s indicates
nonnormality.

Table 2: The normalizing constants for Wy for sample sizes n.

[ [ ] [ [ o] [ 7]
3 | —0.3137 | 0.5551 19 | —3.2563 | 1.3698 35 | —4.4593 | 1.5241
4 | —0.6479 | 0.7282 20 | —3.3584 | 1.3847 36 | —4.5088 | 1.5272
5 | —0.9586 | 0.8510 21 | —3.4511 | 1.3983 37 | —4.5621 | 1.5336
6 | —1.2299 | 0.9384 22 | —3.5365 | 1.4095 38 | —4.6152 | 1.5382
7| —1.4778 | 1.0092 23 | —3.6320 | 1.4236 39 | —4.6749 | 1.5467
8 | —1.6950 | 1.0671 24 | —3.7067 | 1.4319 40 | —4.7186 | 1.5495
9 | —1.8960 | 1.1157 25 | —3.7869 | 1.4431 41 | —4.7771 | 1.5574
10 | —2.0790 | 1.1573 26 | —3.8624 | 1.4520 42 | —4.8195 | 1.5597
11 | —2.2470 | 1.1929 27 | —3.9346 | 1.4606 43 | —4.8711 | 1.5659
12 | —2.4039 | 1.2238 28 | —4.0077 | 1.4703 44 | —4.9137 | 1.5693
13 | —2.5513 | 1.2517 29 | —4.0770 | 1.4783 45 | —4.9706 | 1.5769
14 | —2.6821 | 1.2755 30 | —4.1538 | 1.4891 46 | —5.0118 | 1.5797
15 | —2.8104 | 1.2979 31 | —4.2084 | 1.4935 47 | —5.0512 | 1.5826
16 | —2.9320 | 1.3181 32 | —4.2782 | 1.5030 48 | —5.0908 | 1.5858
17 | —3.0400 | 1.3350 33 | —4.3354 | 1.5086 49 | —5.1470 | 1.5935
18 | —3.1553 | 1.3542 34 | —4.4017 | 1.5172 50 | —5.1795 | 1.5954

To check the goodness of approximation, another N = 1,000,000 pseudo-

random samples from N(0,1) were generated. For each of them Wy, and Z; =

Woi Zi: Zy <
7—1—5111173;/' were calculated (i = 1,2, ..., N). The ratios # 12 N < %l with

— VVog
p = 0.01, 0.02, 0.05, 0.1, 0.5, 0.9, 0.95, 0.98, 0.99 are given in Table 3.
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Wo
1-Wy

Table 3: The simulated probabilities P (’y +dIn < zp> for sample sizes n.

Probability
0.01 \ 0.02 \ 0.05 \ 0.10 \ 0.5 \ 0.90 \ 0.95 \ 0.98 \ 0.99

3 | 0.015 | 0.023 | 0.047 | 0.06 0.458 | 0.919 | 0.957 | 0.979 | 0.987
4 1 0.014 | 0.024 | 0.049 | 0.091 | 0.453 | 0.912 | 0.957 | 0.981 | 0.989
5 | 0.014 | 0.024 | 0.051 | 0.094 | 0.453 | 0.908 | 0.955 | 0.982 | 0.990
6 | 0.013 | 0.024 | 0.051 | 0.095 | 0.454 | 0.906 | 0.956 | 0.983 | 0.991
7 | 0.013 | 0.024 | 0.052 | 0.096 | 0.456 | 0.905 | 0.956 | 0.983 | 0.991
8 | 0.013 | 0.024 | 0.053 | 0.097 | 0.457 | 0.903 | 0.955 | 0.983 | 0.992

9 | 0.013 | 0.024 | 0.052 | 0.097 | 0.457 | 0.902 | 0.955 | 0.983 | 0.992
10 | 0.013 | 0.024 | 0.053 | 0.098 | 0.457 | 0.90 | 0.955 | 0.983 | 0.992
11 | 0.013 | 0.024 | 0.054 | 0.099 | 0.456 | 0.900 | 0.954 | 0.983 | 0.992
12 | 0.013 | 0.024 | 0.054 | 0.099 | 0.458 | 0.900 | 0.954 | 0.984 | 0.992
13 | 0.013 | 0.024 | 0.054 | 0.100 | 0.459 | 0.900 | 0.954 | 0.984 | 0.993
14 | 0.013 | 0.024 | 0.054 | 0.099 | 0.458 | 0.899 | 0.954 | 0.984 | 0.992
15 | 0.013 | 0.024 | 0.053 | 0.099 | 0.456 | 0.898 | 0.954 | 0.984 | 0.993
16 | 0.013 | 0.024 | 0.054 | 0.100 | 0.458 | 0.899 | 0.954 | 0.984 | 0.993
17 | 0.013 | 0.024 | 0.054 | 0.099 | 0.457 | 0.898 | 0.954 | 0.984 | 0.993
18 | 0.013 | 0.024 | 0.054 | 0.099 | 0.457 | 0.897 | 0.953 | 0.984 | 0.993
19 | 0.013 | 0.024 | 0.054 | 0.100 | 0.457 | 0.897 | 0.953 | 0.984 | 0.993
20 | 0.013 | 0.024 | 0.054 | 0.100 | 0.458 | 0.897 | 0.953 | 0.984 | 0.993
21 | 0.013 | 0.024 | 0.054 | 0.100 | 0.457 | 0.897 | 0.953 | 0.984 | 0.993
22 | 0.013 | 0.024 | 0.054 | 0.100 | 0.457 | 0.897 | 0.953 | 0.984 | 0.993
23 | 0.013 | 0.024 | 0.055 | 0.100 | 0.458 | 0.897 | 0.953 | 0.984 | 0.993
24 | 0.013 | 0.024 | 0.054 | 0.101 | 0.459 | 0.897 | 0.954 | 0.984 | 0.993
25 | 0.013 | 0.024 | 0.054 | 0.100 | 0.458 | 0.897 | 0.954 | 0.984 | 0.993
26 | 0.013 | 0.024 | 0.054 | 0.100 | 0.459 | 0.898 | 0.953 | 0.984 | 0.993
27 | 0.013 | 0.024 | 0.055 | 0.100 | 0.458 | 0.897 | 0.954 | 0.985 | 0.993
28 | 0.013 | 0.024 | 0.054 | 0.100 | 0.457 | 0.897 | 0.953 | 0.984 | 0.993
29 | 0.013 | 0.024 | 0.054 | 0.100 | 0.458 | 0.898 | 0.954 | 0.984 | 0.993
30 | 0.013 | 0.024 | 0.055 | 0.101 | 0.458 | 0.897 | 0.953 | 0.984 | 0.993
31 | 0.013 | 0.024 | 0.054 | 0.100 | 0.458 | 0.897 | 0.954 | 0.985 | 0.993
32 | 0.013 | 0.024 | 0.055 | 0.101 | 0.459 | 0.900 | 0.953 | 0.984 | 0.993
33 | 0.013 | 0.024 | 0.054 | 0.100 | 0.457 | 0.897 | 0.953 | 0.984 | 0.993
34 | 0.013 | 0.024 | 0.055 | 0.101 | 0.459 | 0.897 | 0.954 | 0.984 | 0.993
35 | 0.013 | 0.024 | 0.054 | 0.101 | 0.458 | 0.896 | 0.953 | 0.984 | 0.993
36 | 0.013 | 0.024 | 0.054 | 0.100 | 0.458 | 0.897 | 0.954 | 0.985 | 0.993
37 | 0.013 | 0.024 | 0.054 | 0.100 | 0.457 | 0.896 | 0.953 | 0.984 | 0.993
38 | 0.013 | 0.024 | 0.054 | 0.101 | 0.458 | 0.897 | 0.953 | 0.985 | 0.993
39 | 0.013 | 0.024 | 0.054 | 0.100 | 0.456 | 0.896 | 0.953 | 0.984 | 0.993
40 | 0.013 | 0.024 | 0.055 | 0.100 | 0.457 | 0.897 | 0.954 | 0.985 | 0.993
41 | 0.013 | 0.024 | 0.054 | 0.100 | 0.456 | 0.896 | 0.953 | 0.984 | 0.993
42 | 0.013 | 0.024 | 0.055 | 0.101 | 0.458 | 0.897 | 0.954 | 0.985 | 0.993
43 | 0.013 | 0.024 | 0.054 | 0.100 | 0.457 | 0.896 | 0.954 | 0.985 | 0.993
44 | 0.013 | 0.024 | 0.054 | 0.099 | 0.456 | 0.896 | 0.953 | 0.984 | 0.993
45 | 0.013 | 0.024 | 0.055 | 0.100 | 0.457 | 0.896 | 0.953 | 0.984 | 0.993
46 | 0.013 | 0.024 | 0.055 | 0.100 | 0.458 | 0.897 | 0.954 | 0.984 | 0.993
47 | 0.013 | 0.024 | 0.055 | 0.101 | 0.458 | 0.897 | 0.954 | 0.985 | 0.994
48 | 0.013 | 0.024 | 0.054 | 0.100 | 0.457 | 0.897 | 0.954 | 0.985 | 0.994
49 | 0.013 | 0.025 | 0.055 | 0.101 | 0.458 | 0.896 | 0.954 | 0.985 | 0.994
50 | 0.013 | 0.024 | 0.054 | 0.100 | 0.457 | 0.896 | 0.953 | 0.984 | 0.993
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3. POWER COMPARISONS

Suppose that the hypothesis Hy: X ~ N (10, 0?) is verified using the Wy test.
Three kinds of alternative hypothesis are considered:

a) X ~ N (u,0%) with pu # uo;
b) X is not normal with p = puo;
c) X is not normal with pu # up.

We focus on the power of the Wy test. The Shapiro-Wilk W test was
investigated against different nonnormal alternatives. Very exhaustive research
was done by Shapiro et al. ([14]) and Chen ([3]). It was showed that the W test
is very powerful in comparison to other normality tests such as Kolmogorov,
chi-square, (31, B2 and against very different distributions including Student’s t,
Gamma, Beta or Uniform.

As the construction of Wy is similar to the W test, it may be expected
that the Wy test will also be powerful against alternatives of kind b) and c).
Hence, in our study we confine ourselves to the a) alternative, i.e. when the true
distribution is normal with a mean other than pg. The Wy test is compared with
two other procedures. The first one is the Kolmogorov test (modified to the case
of known mean). The test statistic of the Kolmogorov test is given by

1—1 1
gg{’F(X(o)— [ FXe) - }
X(@)—ro 1 < 2 .
where F(X(i)) =0 (T)’ S = - > (X — po)” and @ is the CDF of the
i=1

standard normal distribution.

The second procedure, denoted by W + t, is a two-step one. In the first
step the normality is verified by the classical W test. If normality is not rejected,
then the hypothesis of equality of the mean to a given number pg is verified by
the ¢ test.

All three tests are calculated at the significance level . In the case of the
W 4t test we need to apply two significance levels ap and oz for both tests.
Those numbers were chosen in such a way that the overall significance level is «,
ie.

Py, {W accepts normality and ¢ accepts mean uo} >1l—(aw+a) =1—a.

Because there are no preferences to the W or ¢ test, aw = oy = § were taken.
The power comparison of the three tests was performed by the Monte Carlo
method. A sample of size n from the standard normal distribution was generated
and this sample was used in all tests. The sample was then shifted to differ-

ent values of p and then each of the tests was applied to the shifted sample.
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This procedure was repeated 10,000 times. The number of rejections of the hy-
pothesis Hy: X ~ N (ug, 02) was calculated. It should be added that critical points
for Kolmogorov test were also determined by Monte Carlo method. In the sim-
ulations the hypothesis Hy was verified for samples of sizes 10, 20, 30, 40, 50 and
significance levels o = 0.01, 0.05, 0.1. The simulated powers are given in Table 4.

Table 4: Power of W, Kolmogorov and W+t tests.

a=0.01 a = 0.05 a=0.1
Wo K W4t Wo K W+t Wo K W+t

0.0 0.011  0.010 0.010 | 0.0560 0.049 0.048 | 0.101 0.100 0.098
0.3 0.034 0.030 0.023 | 0.129 0.112 0.097 | 0.216 0.198 0.176
0.6 0.148 0.115 0.097 | 0.386 0.326  0.287 | 0.526 0.464  0.422
0.9 0.392 0.310 0.287 | 0.705 0.610 0.585 | 0.829 0.746  0.727
10 1.2 0.687 0.565 0.560 | 0.916 0.845 0.847 | 0.964 0.925 0.924
1.5 0.892 0.789  0.813 | 0.987 0.957 0.965 | 0.996 0.985  0.989
1.8 0.974 0.920 0.943 | 0998 0.991 0.995 | 1.000 0.998  0.999
2.1 0.996 0.978 0.990 | 1.000 0.999 1.000 | 1.000 1.000  1.000
2.4 1.000 0.993 0.997 | 1.000 1.000 1.000 | 1.000 1.000  1.000

0.0 0.011  0.011  0.010 | 0.049 0.050 0.051 | 0.096 0.099 0.096
0.2 0.036  0.031  0.027 | 0.131 0.113 0.106 | 0.214 0.189  0.179
0.4 0.165 0.123 0.121 | 0.383 0.313  0.297 | 0.515 0.442  0.424
0.6 0.435 0.329 0.344 | 0.709 0.602 0.610 | 0.808 0.732  0.733
0.8 0.741 0.601 0.656 | 0.916 0.842 0.861 | 0.960 0.913  0.955
20 1.0 0.924 0.835 0.879 | 0988 0.959 0976 | 0.995 0.984 0.991
1.2 0.988 0.950 0.978 | 0.999 0.994 0.997 | 1.000 0.998  0.999
1.4 0.999 0.991 0.997 | 1.000 1.000 1.000 | 0.999 0.991 1.000
1.6 1.000 0.999 1.000 | 1.000 1.000  1.000 | 1.000 0.999  1.000
1.8 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000  1.000

0.00 | 0.012 0.009 0.012 | 0.054 0.053 0.051 | 0.105 0.103  0.097
0.15 | 0.039 0.030 0.028 | 0.124 0.107 0.099 | 0.201 0.182  0.165
0.30 | 0.150 0.111  0.106 | 0.350 0.285  0.267 | 0.478 0.408 0.388
0.45 | 0.398 0.290 0.312 | 0.657 0.550 0.565 | 0.762 0.679  0.683
0.60 | 0.693 0.540 0.608 | 0.876 0.793  0.817 | 0.930 0.878  0.889
30 | 0.75 | 0.891 0.777 0.844 | 0972 0.932 0.952 | 0.987 0.968  0.977
0.90 | 0975 0922 0959 | 0996 0.985 0.992 | 0.999 0.994 0.997
1.05 | 0.997 0.981 0.994 | 1.000 0.998 1.000 | 1.000 0.999  1.000
1.20 | 1.000 0.997 0.999 | 1.000 1.000 1.000 | 1.000 1.000  1.000
1.35 | 1.000 1.000  1.000 | 1.000 1.000 1.000 | 1.000 1.000  1.000
1.50 | 1.000 1.000  1.000 1.000 1.000 1.000 | 1.000 1.000  1.000

0.00 | 0.011 0.009 0.010 | 0.051 0.051 0.050 | 0.098 0.101 0.101
0.15 | 0.042 0.034 0.033 | 0.144 0.125 0.114 | 0.236 0.206  0.196
0.30 | 0.213 0.152  0.159 | 0.440 0.364 0.357 | 0.565 0.486  0.486
0.45 | 0.539 0402 0459 | 0.776 0.672 0.702 | 0.861 0.789  0.802
40 | 0.60 | 0.837 0.706 0.785 | 0.953 0.900 0.924 | 0.978 0.951 0.963
0.75 | 0.972 0910 0955 | 0.995 0.981 0.991 | 0.998 0.993 0.996
0.90 | 0.997 0981 0.995 | 1.000 0.998 1.000 | 1.000 1.000  1.000
1.05 | 1.000 0.998  1.000 1.000 1.000 1.000 | 1.000 1.000  1.000
1.20 | 1.000 1.000  1.000 | 1.000  1.000  1.000 | 1.000 1.000  1.000

0.00 | 0.010 0.008 0.011 | 0.050 0.050 0.050 | 0.099 0.100  0.099
0.15 | 0.064 0.048 0.044 | 0.179 0.150 0.141 | 0.272 0.237  0.225
0.30 | 0.301 0.212 0.224 | 0.538 0.444 0.452 | 0.661 0.579  0.578
50 | 0.45 | 0.691 0.542 0.609 | 0.872 0.784  0.817 | 0.927 0.872  0.891
0.60 | 0.937 0.840 0905 | 0.983 0.956 0.973 | 0.993 0.978 0.986
0.75 | 0.994 0968 0988 | 0.999 0.996 0.999 | 1.000 0.999  1.000
0.90 | 1.000 0.998  1.000 1.000 1.000 1.000 | 1.000 1.000  1.000
1.05 | 1.000 1.000  1.000 | 1.000 1.000 1.000 | 1.000 1.000  1.000
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The relative powers of Wy with respect to the Kolmogorov and W + ¢ tests
are shown in Figure 2. On the z-axis there are values of i > 0 and on the y-axis
there are values of

power of Wy test
power of W + t test

power of Wy test

(solid line) and (dashed line) .

power of Kolmogorov test

One can see that generally the lines are above 1, which shows that W} is more
powerful than the other two tests.
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Figure 2: Relative power of Wy with respect to Kolmogorov and W+t tests.
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4.

CONCLUDING REMARKS

In many statistical models it is assumed that random variables are normally

distributed with known mean. Thus the W} test is more adequate and should be
used instead of the classical Shapiro-Wilk W test.

In the paper it is shown via a simulation study that the Wy test is generally

more powerful than the Kolmogorov, and W and Student ¢ tests combined.
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