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Abstract:

• For the analysis of square contingency tables, Tomizawa, Miyamoto and Ashihara

(2003) considered a measure to represent the degree of departure from marginal ho-

mogeneity. However, the maximum value of this measure cannot distinguish two

kinds of marginal inhomogeneity. This paper proposes a measure which can distin-

guish two kinds of marginal inhomogeneity for square tables with ordered categories.

The measure is constructed using the arc-cosine function of symmetric cumulative

probabilities. Especially the proposed measure is useful for representing the degree

of departure from marginal homogeneity when the extended marginal homogeneity

model holds. Examples are given.

Key-Words:

• average marginal homogeneity; extended marginal homogeneity; measure; ordinal data.

AMS Subject Classification:
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1. INTRODUCTION

Consider an R×R square contingency table with the same row and column

classifications. Let pij denote the probability that an observation will fall in the

i-th row and j-th column of the table (i = 1, ..., R; j = 1, ..., R), and let X and Y

denote the row and column variables, respectively. The marginal homogeneity

model is defined by

Pr(X= i) = Pr(Y = i) for i = 1, ..., R ,

namely

pi· = p· i for i = 1, ..., R ,

where pi · =
∑R

k=1 pik and p· i =
∑R

k=1 pki. See, for example, Stuart (1955), Bishop,

Fienberg and Holland (1975, p. 294).

Let

G1(i) =

i
∑

s=1

R
∑

t=i+1

pst

[

= Pr(X≤ i, Y ≥ i + 1)
]

,

and

G2(i) =

R
∑

s=i+1

i
∑

t=1

pst

[

= Pr(X≥ i + 1, Y ≤ i)
]

,

for i = 1, ..., R −1. Then, by considering the difference between the cumulative

marginal probabilities, FX
i − F Y

i for i = 1, ..., R −1, where FX
i = Pr(X≤ i) and

F Y
i = Pr(Y ≤ i), we see that the marginal homogeneity model may also be ex-

pressed as

G1(i) = G2(i) for i = 1, ..., R −1 .

Namely, this model also states that the cumulative probability that an observation

will fall in row category i or below and column category i + 1 or above is equal

to the cumulative probability that the observation falls in column category i or

below and row category i + 1 or above for i = 1, ..., R −1.

When the marginal homogeneity model does not hold, we are interested in

measuring the degree of departure from the marginal homogeneity model.

For square contingency tables with ordered categories, Tomizawa, Miyamoto

and Ashihara (2003) proposed the following measure Γ
(λ)

to represent the degree

of departure from marginal homogeneity: assuming that {G1(i) + G2(i) 6= 0}, for

λ > −1,

Γ
(λ)

=
λ(λ + 1)

2λ − 1

R−1
∑

i=1

(

G∗

1(i) + G∗

2(i)

)

I
(λ)
i

(

{

Gc
1(i), G

c
2(i)

}

;

{

1

2
,
1

2

})

,
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where

∆ =

R−1
∑

i=1

(

G1(i) + G2(i)

)

,

G∗

1(i) =
G1(i)

∆
, G∗

2(i) =
G2(i)

∆
,

Gc
1(i) =

G1(i)

G1(i) + G2(i)
, Gc

2(i) =
G2(i)

G1(i) + G2(i)
,

with

I
(λ)
i (·; ·) =

1

λ(λ + 1)

[

Gc
1(i)

{

(Gc
1(i)

1/2

)λ

− 1

}

+ Gc
2(i)

{

(Gc
2(i)

1/2

)λ

− 1

}]

,

and the value at λ = 0 is taken to be the limit as λ → 0. Note that I
(λ)
i (·; ·) is

the Cressie and Read (1984) power-divergence between two distributions (also

see Read and Cressie, 1988, p. 15).

The measure Γ
(λ)

has characteristics that:

(i) it lies between 0 and 1;

(ii) Γ
(λ)

= 0 if and only if the marginal homogeneity model holds;

(iii) Γ
(λ)

= 1 if and only if the degree of departure from marginal homo-

geneity is maximum (that is, G1(i) = 0 (then G2(i) > 0) or G2(i) = 0

(then G1(i) > 0) for all i = 1, ..., R−1).

However, using the measure Γ
(λ)

, we cannot distinguish two kinds of marginal

inhomogeneity, namely, that the marginal inhomogeneity is which of

(i) G1(i) = 0 (then FX
i < F Y

i ) for all i = 1, ..., R −1,

or

(ii) G2(i) = 0 (then FX
i > F Y

i ) for all i = 1, ..., R −1.

Since these two kinds of marginal inhomogeneity indicate the opposite differ-

ent maximum departures from marginal homogeneity, we are now interested in

proposing a measure which can take the different values for them.

The purpose of this paper is to propose such a measure which can distin-

guish two kinds of marginal inhomogeneity for square contingency tables with

ordered categories. We note that Tahata, Yamamoto, Nagatani and Tomizawa

(2009) investigated average symmetry. In the present paper, we consider the

average marginal homogeneity using a similar ideas to Tahata et al. (2009) and

using as example the same data.
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2. A MEASURE FOR MARGINAL HOMOGENEITY

Consider an R×R table with ordered categories. Let

∆ =

R−1
∑

i=1

(

G1(i) + G2(i)

)

,

and

G∗

1(i) =
G1(i)

∆
, G∗

2(i) =
G2(i)

∆
, for i = 1, ..., R −1 .

Assuming that
{

G1(i) + G2(i) 6= 0
}

, consider a measure defined by

Ψ =
4

π

R−1
∑

i=1

(

G∗

1(i) + G∗

2(i)

)

(

θi −
π

4

)

,

where

θi = cos
−1





G1(i)
√

G2
1(i) + G2

2(i)



 .

Noting that the range of θi is 0 ≤ θi ≤ π/2, we see that the measure Ψ lies

between −1 and 1. The measure Ψ has characteristics that:

(i) Ψ =−1 if and only if G2(i) = 0 (then FX
i > F Y

i ) for all i = 1, ..., R−1,

[marginal inhomogeneity with all probabilities zero of lower left trian-

gle (say, L-marginal inhomogeneity)];

(ii) Ψ = 1 if and only if G1(i) = 0 (then FX
i < F Y

i ) for all i = 1, ..., R −1,

[marginal inhomogeneity with all probabilities zero of upper right tri-

angle (say, U-marginal inhomogeneity)].

In addition, Ψ = 0 indicates that the weighted average of {θi − π
4 } equals zero.

Thus when Ψ = 0, we shall refer to this structure as the average marginal ho-

mogeneity. We note that if the marginal homogeneity holds then the average

marginal homogeneity holds, but the converse does not hold.

Therefore, using the measure Ψ, we can see whether the average marginal

homogeneity departs toward the L-marginal inhomogeneity or toward the

U-marginal inhomogeneity. As the measure Ψ approaches −1, the departure

from the average marginal homogeneity becomes greater toward the L-marginal

inhomogeneity. While as the Ψ approaches 1, it becomes greater toward the

U-marginal inhomogeneity.
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3. RELATIONSHIPS BETWEEN THE MEASURE AND SOME

MODELS

First, we consider the relationship between the measure Ψ and the extended

marginal homogeneity model. The extended marginal homogeneity model con-

sidered by Tomizawa (1984), is defined by

G1(i) = τ G2(i) for i = 1, ..., R −1 .

A special case of this model obtained by putting τ = 1 is the marginal homo-

geneity model. If the extended marginal homogeneity model holds true, then the

measure Ψ can be expressed as

Ψ =
4

π
cos

−1

(

τ√
τ2 + 1

)

− 1 .(1)

Therefore, Ψ = 0 if and only if the marginal homogeneity model holds, i.e., τ = 1,

thus G1(i) = G2(i) for i = 1, ..., R −1. As the value of τ approaches the infinity, the

measure Ψ approaches−1. While as the value of τ approaches zero, Ψ approaches1.

Thus when the extended marginal homogeneity model holds in a table, the mea-

sure Ψ represents the degree of departure from marginal homogeneity toward the

L-marginal inhomogeneity or toward the U-marginal inhomogeneity.

Next, consider the conditional symmetry model (McCullagh, 1978) defined

by

pij = τ pji for i < j .

This model implies the extended marginal homogeneity model. Therefore, if the

conditional symmetry model holds true, then the measure Ψ can also be expressed

as (1).

Therefore for comparisons in several tables, if it can be estimated that there

is a structure of extended marginal homogeneity or conditional symmetry in each

table, then the measure Ψ would be adequate for representing and comparing

the degree of departure from the marginal homogeneity toward the L-marginal

inhomogeneity and U-marginal inhomogeneity.

The measure Ψ should be applied to the ordinal data of square tables with

the same row and column classifications because the Ψ is not invariant under

arbitrary similar permutations of row and column categories.
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4. APPROXIMATE CONFIDENCE INTERVAL FOR THE MEA-

SURE

Let nij denote the observed frequency in the i-th row and j-th column

of the table (i = 1, ..., R; j = 1, ..., R). Assuming that a multinomial distribution

applies to the R×R table, we shall consider the approximate variance for es-

timated measure and large-sample confidence interval for the measure Ψ using

delta method, the descriptions of which are given by, e.g., Bishop et al. (1975,

Sec. 14.6). The sample version of Ψ, i.e., Ψ̂, is given by Ψ with {pij} replaced by

{p̂ij}, where p̂ij = nij/n and n =
∑∑

nij . Using delta method,
√

n(Ψ̂−Ψ) has

asymptotically (as n → ∞) a normal distribution with mean zero and variance,

σ2
[Ψ] =

∑∑

k<l

(

pkl D
2
kl + plk D2

lk

)

,

where for k < l,

Dkl =
4

π∆

l−1
∑

i=k



cos
−1





G1(i)
√

G2
1(i)+G2

2(i)



−
G2(i)

(

G1(i) + G2(i)

)

G2
1(i) + G2

2(i)



− (l− k) (Ψ +1)

∆
,

Dlk =
4

π∆

l−1
∑

i=k



cos
−1





G1(i)
√

G2
1(i)+G2

2(i)



+
G1(i)

(

G1(i) + G2(i)

)

G2
1(i) + G2

2(i)



− (l− k) (Ψ +1)

∆
.

Let σ̂2
[Ψ] denote σ2

[Ψ] with {pij} replaced by {p̂ij}. σ̂[Ψ]/
√

n is an es-

timated standard error for Ψ̂, Ψ̂ ± zp/2 σ̂[Ψ]/
√

n is an approximate 100(1− p)%

confidence interval for Ψ, where zp/2 is the percentage point from the standard

normal distribution that corresponds to a two-tail probability equal to p.

The maximum likelihood estimates of expected frequencies under each of

the marginal homogeneity, extended marginal homogeneity and average marginal

homogeneity models can be obtained using the Newton–Raphson methods to the

log-likelihood equations. The marginal homogeneity, extended marginal homo-

geneity and average marginal homogeneity models can be tested for goodness-

of-fit by, e.g., the likelihood ratio chi-squared statistic with R −1, R − 2, and 1

degrees of freedom, respectively.
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5. ANALYSIS OF DATA

5.1. Analysis of Table 1(a)

Consider the data in Table 1(a) taken from Stuart (1955). These are data

on unaided distance vision of 7477 women aged 30 to 39 employed in Royal

Ordnance factories in Britain from 1943 to 1946. These data have been analyzed

by many statisticians, e.g., including Stuart (1955), Caussinus (1965), Bishop et

al. (1975, p. 284), McCullagh (1978), Goodman (1979), Agresti (1983), Tomizawa

(1993), and Tomizawa and Tahata (2007), etc.

Table 1: The unaided vision data of

(a) 7477 women in Britain (from Stuart, 1955),

(b) 3242 men in Britain (from Stuart, 1953),

(c) 4746 students in Japan (from Tomizawa, 1984).

(a) Women in Britain

Right eye
grade

Left eye grade

Best (1) Second (2) Third (3) Worst (4)
Total

Best (1) 1520 266 124 66 1976
Second (2) 234 1512 432 78 2256
Third (3) 117 362 1772 205 2456
Worst (4) 36 82 179 492 789

Total 1907 2222 2507 841 7477

(b) Men in Britain

Right eye
grade

Left eye grade

Best (1) Second (2) Third (3) Worst (4)
Total

Best (1) 821 112 85 35 1053
Second (2) 116 494 145 27 782
Third (3) 72 151 583 87 893
Worst (4) 43 34 106 331 514

Total 1052 791 919 480 3242

(c) Students in Japan

Right eye
grade

Left eye grade

Best (1) Second (2) Third (3) Worst (4)
Total

Best (1) 1291 130 40 22 1483
Second (2) 149 221 114 23 507
Third (3) 64 124 660 185 1033
Worst (4) 20 25 249 1429 1723

Total 1524 500 1063 1659 4746
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We see from Table 2 that for the data in Table 1(a), the value of estimated

measure Ψ̂ is −0.102 and all values in the confidence interval for Ψ are nega-

tive. Therefore, the average marginal homogeneity for the women’s right and

left eyes departs toward the L-marginal inhomogeneity. Table 3 gives the values

of likelihood ratio chi-squared statistic for testing goodness-of-fit of each model.

Table 2: The estimates of Ψ, estimated approximate standard errors

for Ψ̂, and approximate 95% confidence intervals for Ψ,

applied to Tables 1(a), 1(b) and 1(c).

Applied Estimated Standard Confidence
data measure error interval

Table 1(a) −0.102 0.029 (−0.160, −0.045)
Table 1(b) 0.038 0.044 (−0.048, +0.123)
Table 1(c) 0.128 0.040 (+0.049, +0.206)

We see from Table 3 that each model of marginal homogeneity and average

marginal homogeneity fits the data in Table 1(a) poorly, but the extended marginal

homogeneity model fits these data well. So we can see from the estimated mea-

sure that the degree of departure from marginal homogeneity for the vision data

in Table 1(a) is estimated to be 10.2 percent of the maximum departure toward

the L-marginal inhomogeneity. This indicates that the right eye is better than

her left eye for all women.

Table 3: The values of likelihood ratio chi-squared statistic for the models of

marginal homogeneity, average marginal homogeneity and extended

marginal homogeneity, applied to Tables 1(a), 1(b) and 1(c).

Table 1(a)

Applied models degrees of freedom Likelihood ratio chi-square

Marginal homogeneity 3 11.99∗

Average marginal homogeneity 1 11.98∗

Extended marginal homogeneity 2 0.005

Table 1(b)

Applied models degrees of freedom Likelihood ratio chi-square

Marginal homogeneity 3 3.68
Average marginal homogeneity 1 0.73
Extended marginal homogeneity 2 2.94

Table 1(c)

Applied models degrees of freedom Likelihood ratio chi-square

Marginal homogeneity 3 11.18∗

Average marginal homogeneity 1 9.94∗

Extended marginal homogeneity 2 0.56

∗ means significant at the 0.05 level.
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5.2. Analysis of Table 1(b)

Consider the data in Table 1(b) taken from Stuart (1953). These are data

on unaided distance vision of 3242 men in Britain.

We see from Table 2 that for the data in Table 1(b), the value of measure Ψ̂

is 0.038 and the confidence interval for Ψ includes zero. So this would indicate that

there is a structure of average marginal homogeneity in the data in Table 1(b).

Also we see from Table 3 that the marginal homogeneity model fits these data

well, and each model of average marginal homogeneity and extended marginal

homogeneity also fits these data well. Therefore, it is estimated that there is

a structure of marginal homogeneity for the data in Table 1(b), and also the

estimated measure Ψ̂ would indicate it.

5.3. Analysis of Table 1(c)

Consider the data in Table 1(c) taken from Tomizawa (1984). These are

data on unaided distance vision of 4746 students aged 18 to about 25 including

about 10% women in Faculty of Science and Technology, Science University of

Tokyo in Japan examined in April 1982.

For the data in Table 1(c), we see from Table 2 that the value of Ψ̂ is

0.128 and all values in the confidence interval for Ψ are positive. Therefore, the

average marginal homogeneity for the students’ right and left eyes departs toward

the U-marginal inhomogeneity. This is a contrast to the women’s vision data

in Table 1(a). We see from Table 3 that each model of marginal homogeneity

and average marginal homogeneity fits the data in Table 1(c) poorly, but the

extended marginal homogeneity model fits these data well. So we can see from

the estimated measure that the degree of departure from marginal homogeneity

for the vision data in Table 1(c) is estimated to be 12.8 percent of the maximum

departure toward the U-marginal inhomogeneity. This indicates that the left eye

is better than his/her right eye for all students.

In addition, when we compare the data in Tables 1(a) and 1(c) using the

estimated measure Ψ̂, the degree of departure from the marginal homogeneity for

the right and left eyes is greater in the students data in Table 1(c) than in the

women data in Table 1(a) (see Table 2). Since the Ψ̂ is negative for the women

vision data and positive for the students vision data, a woman’s right eye tends

to be greater than her left eye, and a student’s left eye tends to be greater than

his/her right eye.
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Abstract:

• TV shows on any athletic event make clear that those who want gold medals cannot

dispense statistics. And the statistics more appealing to champions and coachers are

the extreme order statistics, and in particular maximum (or minimum) values and

records. The models in statistics of extremes are usually semi-parametric or even

non-parametric in nature, with the imposition of a few regularity conditions in the

appropriate tail of the unknown model underlying the available data. The primordial

parameter is the extreme value index, the shape parameter in the (unified) extreme

value distribution. The estimation of the extreme value index is one of the basis

for the estimation of other parameters of rare events, like the right endpoint of the

model underlying the data, a high quantile, the return period and the probability of

exceedance of a high level. In this paper, we are interested in an application of statistics

of extremes to the best personal marks in a few athletic events. Due to the way data

are collected, we begin with a parametric data analysis, but we pay special attention

to the semi-parametric estimation of the extreme value index and the right endpoint

whenever finite, the possible world record, given the actual conditions. In order to

achieve a better decision we consider a few alternative semi-parametric estimators

available in the literature, and heuristic rules for the choice of thresholds.
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1. INTRODUCTION AND OUTLINE OF THE PAPER

Statistical facts are quite commonly used by sports commentators. We all

have listened to programs on different athletic events, showing that statistics is an

instrument that champions instructors need to use. It is without doubt a subject

which cannot be dispensed by those who want gold medals, and the statistics

more appealing to the champions are the extreme order statistics (o.s.’s), and in

particular maximum (or minimum) values and records.

The models in statistics of extremes are usually semi-parametric or even

non-parametric in nature, with the imposition of a few “regularity conditions” in

the right-tail
(

or left-tail
)

, F (x) := 1−F (x), as x→+∞
(

or F (x), as x→−∞
)

,

of an unknown model F underlying the available data, whenever we are inter-

ested in large (or small) values. The primordial parameter is the extreme value

index. For large values, the extreme value index is the shape parameter γ in the

distribution function (d.f.)

(1.1) Gγ(x) =

{

exp
(

−(1 + γx)
−1/γ

)

, 1 + γx > 0 , if γ 6= 0 ,

exp
(

− exp(−x)
)

, x ∈ R , if γ = 0 ,

the (unified) extreme value distribution. The extreme value index needs to be

estimated in a “precise” way, because such an estimation plays a major role in

the estimation of other parameters of extreme and large events, like the right

endpoint of the model F underlying the data,

(1.2) x∗ := sup

{

x : F (x) <1

}

,

a high quantile with probability 1− p, p small, i.e., χ1−p := inf
{

x : F (x)≥ 1− p
}

,

p < 1/n, with n the available sample size, the return period and the probability

of exceedance of a high level.

In this paper, we shall be interested in an application of statistics of ex-

tremes to the best personal marks attained at a few athletic events, in a context

similar to the one used in Einmahl and Magnus (2008). We shall pay special

attention to the estimation of γ, in (1.1), as well as of the right endpoint x∗, in

(1.2), whenever finite, and of an indicator of the “excellence” of the level xn:n,

the maximum of the n available observations. The right endpoint provides an

estimate of the possible “world record” given the actual conditions, and the closer

to one the “excellence” indicator of the level xn:n is, the better is the actual world

record. In Section 2, we present some preliminary results in extreme value theory.

In Section 3, we refer a few details on the semi-parametric estimation of a few

parameters of extreme events. In Section 4, we provide heuristic choices of the

thresholds for an adaptive semi-parametric estimation of the parameters of inter-

est. Such heuristic choices take essentially into account the similarities of a few

simple and alternative estimators of those parameters. In Section 4, we analyze

data related to six athletic events and draw some final comments.
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2. PRELIMINARY RESULTS IN EXTREME VALUE THEORY

Let us think on any athletic event, like for instance the women marathon.

Let us denote the best personal marks of n different athletes by X1, X2, ..., Xn

and by

X1:n ≤ X2:n ≤ · · · ≤ Xn:n

the associated ascending o.s.’s. Under this set-up, (X1, X2, ..., Xn) can be consid-

ered as independent, identically distributed (i.i.d.) observations from an under-

lying model F , obviously unknown. Let us also assume that, if necessary, data

are transformed so that we can speak of maximum values
(

and not of minimum

values
)

. Indeed, any result for maxima can be easily reformulated for minima,

due to the fact that min(X1, X2, ..., Xn) = −max(−X1,−X2, ...,−Xn). However,

this is not the transformation used later on in this paper for the analysis of data

in athletics, where we shall convert running times in speeds, so that the higher

the speed, the better. We shall thus work with upper o.s.’s.

One of the main results in extreme value theory is related to the possible

limiting laws of the sequence Xn:n := max(X1, X2, ..., Xn), of maximum values,

as n → ∞. Since

P
(

Xn:n ≤ x
)

= P

(

n
⋂

i=1

{Xi≤ x}
)

= Fn
(x) −→

n→∞

{

0 if F (x) <1 ,

1 if F (x) =1 ,

we obviously have

Xn:n
p−→

n→∞
x∗ ,

with x∗ given in (1.2).

In order to obtain a possible non-degenerate behaviour for Xn:n, we thus

need to normalize it. Similarly to the central limit theorem for sums or means,

we know that if the maximum Xn:n, linearly normalized, converges to a non-

degenerate random variable (r.v.), then there exist real constants {an}n≥1 (an >0)

and {bn}n≥1, the so-called attraction coefficients of F to Gγ , in (1.1), such that

(2.1) lim
n→∞

P

(

Xn:n− bn

an
≤ x

)

= lim
n→∞

Fn
(anx + bn) = Gγ(x) ,

for some γ ∈R (Gnedenko, 1943; de Haan, 1970). We then say that F is in the

domain of attraction (for maxima) of Gγ and we use the notation F ∈ DM(Gγ).

The extreme value index γ, in (1.1), measures essentially the weight of the

right-tail F = 1−F . If γ < 0, the right-tail is light, i.e., F has a finite right

endpoint (x∗< +∞). If γ > 0, the right-tail is heavy, of a negative polynomial

type, i.e., F has an infinite right endpoint. If γ = 0, the right-tail is of an expo-

nential type and the right endpoint can be either finite or infinite. In Figure 1,
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we represent graphically the probability density function (p.d.f.) associated with

the extreme value d.f., in (1.1), i.e. gγ(x) = dGγ(x)/dx, for γ =−0.5, 0 and 0.5.

We also picture the standard normal p.d.f., ϕ(x) = exp(−x2/2)/
√

2π, x∈R, as

well as a “zoom” of the right-tails of these four models. It is clear the lightness of

the right-tail of Gγ for γ < 0 (finite right endpoint), followed by the normal tail

and next the Gumbel tail (γ = 0). It is also clear the heaviness of the right-tail

of Gγ for γ > 0.

0
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0.5
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g0(x)
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!0.5(x)
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g0.5(x)!(x)

x

Figure 1: Extreme value p.d.f.’s, gγ(x), with γ = −0.5, 0 and 0.5,

and normal p.d.f., ϕ(·).

Remark 2.1. Note that to say that F ∈ DM(Gγ) is equivalent to say-

ing that for all x real and such that 0 < Gγ(x) < 1, limn→∞ n lnF (anx + bn) =

lnGγ(x) = −(1 + γx)
−1/γ

. Consequently, F (anx + bn) → 1 for those values of x.

Since limn→∞

(

− lnF (anx + bn)
)/(

1 − F (anx + bn)
)

= 1, we equivalently have

(2.2) lim
n→∞

n
(

1 − F (anx + bn)
)

= − lnGγ(x) = (1 + γx)
−1/γ .

Let us define

(2.3) U(t) := F←(1 − 1/t) (t >1) , F←(x) := inf
{

y : F (y)≥ x
}

,

with F← denoting thus the generalized inverse function of F . It is reasonably

easy to prove (de Haan, 1984) that, with G−1
γ denoting the inverse function of

the extreme value d.f. Gγ in (1.1),

lim
t→∞

U(tx) − bt

at
= G−1

γ

(

exp(−1/x)
)

=
xγ −1

γ
,

for all x > 0, with at ≡ a(t) ≡ a[t], [t] = integer part of t and an the scale at-

traction coefficient in (2.1). Also bt ≡ b(t) ≡ b[t], with bn the location attraction
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coefficient, also in (2.1). Moreover, we can choose bt = U(t), with U(·) defined in

(2.3) (see Theorem 1.1.2 of de Haan and Ferreira, 2006). More generally,

(2.4) F ∈ DM(Gγ) ⇐⇒ lim
t→∞

U(tx) − U(t)

a(t)
=

xγ −1

γ
,

for all x > 0, with U(·) defined in (2.3).

Remark 2.2. When γ = 0, and by continuity arguments, the functions

− lnGγ(x) = (1 + γx)
−1/γ

and G−1
γ

(

exp(−1/x)
)

= (xγ −1)/γ should be inter-

preted as exp(−x) and lnx, respectively.

3. SEMI-PARAMETRIC ESTIMATION OF A FEW RELEVANT

PARAMETERS OF EXTREME EVENTS

On the basis of the available random sample, (X1, X2, ..., Xn), let us see

how to estimate the extreme value index γ, the primordial parameter in statistics

of extremes, the scale a, the location b, the right endpoint x∗ and the return

period of a high level xH, usually defined as the expected number of exceedances

of such a level.

3.1. Estimation of the extreme value index

For any integer j ≥ 1, let us denote

L
(j)
k,n :=

1

k

k
∑

i=1

{

1 − Xn−k:n

Xn−i+1:n

}j

(3.1)

and

M
(j)
k,n :=

1

k

k
∑

i=1

{

lnXn−i+1:n − lnXn−k:n

}j
.(3.2)

These statistics have revealed to be fundamental in statistics of extremes. For

the estimation of γ, we shall first refer three estimators, valid, i.e. consistent,

for all γ ∈ R:

1. The moment (M) estimator (Dekkers et al., 1989), with the functional

form

(3.3) γ̂M
k,n ≡ Mk,n := M

(1)
k,n +

1

2







1 −
(

M
(2)
k,n

[

M
(1)
k,n

]2
−1

)

−1






,

M
(j)
k,n, j =1, 2, defined in (3.2).
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2. The generalized Hill (GH) estimator introduced in Beirlant et al. (1996),

further studied in Beirlant et al. (2005), and based on the Hill estimator

(Hill, 1975), the statistic M
(1)
k,n, in (3.2), also denoted

(3.4) γ̂H
k,n ≡ Hk,n :=

1

k

k
∑

i=1

{

lnXn−i+1:n − lnXn−k:n

}

,

and valid only for γ ≥ 0. The GH-estimator, valid for all γ ∈ R, and

with γ̂H
k,n given in (3.4), has the functional form

(3.5) γ̂GH
k,n ≡ GHk,n := γ̂H

k,n +
1

k

k
∑

i=1

{

ln γ̂H
i,n − ln γ̂H

k,n

}

.

3. The mixed moment (MM) estimator (Fraga Alves et al., 2009), with

the functional form

(3.6) γ̂MM
k,n ≡ MMk,n :=

ϕ̂k,n−1

1 + 2 min(ϕ̂k,n−1, 0)
, ϕ̂k,n :=

M
(1)
k,n − L

(1)
k,n

(

L
(1)
k,n

)2
,

L
(1)
k,n and M

(1)
k,n defined in (3.1) and (3.2), respectively.

The three estimators in (3.3), (3.5) and (3.6) are consistent in DM(Gγ), γ ∈R,

if k = kn is an intermediate sequence, i.e., a sequence of integers such that

(3.7) k = kn → ∞ and kn = o(n) , as n → ∞ .

Due to the specificity of the data, we shall also consider another simple estimator:

4. The location invariant estimator (F ) introduced in Falk (1995),

(3.8) γ̂F
k,n ≡ Fk,n :=

1

k

k−1
∑

i=1

ln
Xn:n−Xn−i:n

Xn:n−Xn−k:n
,

valid only for a negative extreme value index smaller than −0.5.

We still would like to refer the so-called “maximum likelihood” (ML) es-

timator, introduced in Smith (1987) and further studied in Drees et al. (2004).

Such an estimator is valid and asymptotically normal for all γ > −1 (see Zhou,

2009, 2010, for details in the region −1 < γ ≤ −1/2). The extreme value index

ML-estimator is based on the application of the maximum likelihood methodology

to the excesses Xn−i+1:n −Xn−k:n, 1 ≤ i ≤ k. These excesses are approximately

the k top o.s.’s of a sample of size k from a generalized Pareto model, strongly

related to the extreme value d.f. Gγ in (1.1), through the relation

(3.9) GP (x; γ, α) = 1 + lnGγ(αx/γ) = 1 − (1+αx)
−1/γ , 1+αx > 0, x > 0 ,

with α, γ ∈R. This is a re-parametrization due to Davison (Davison, 1984).
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Then, with such a re-parametrization, the ML-estimator of γ has an explicit

expression as a function of the ML-estimator α̂ = α̂ML of α and the sample of

the excesses. We have

(3.10) γ̂ML
k,n = γ̂ML

k,n,α̂ ≡ MLk,n :=
1

k

k
∑

i=1

ln
(

1 + α̂(Xn−i+1:n−Xn−k:n)
)

.

The estimates α̂ = α̂ML are obtained through numerical iterative methods, usually

computationally time-consuming. This is the reason why we shall not consider

these estimators in the Monte Carlo simulation in Section 4, related to heuristic

choices of thresholds. We shall however consider the ML-estimators in the data

analysis provided in Section 5.3.2, due to their nice asymptotic properties for

−1/2 < γ < 0 (see, for instance, Gomes and Neves, 2008, among others).

For a large variety of models, and under mild second-order conditions, we

can guarantee the asymptotic normality of all the above mentioned estimators

and can build approximate confidence intervals (CI’s) for γ, as well as for all

other parameters of extreme events, like the ones discussed next in Section 3.2.

We merely need to assume the existence of a function A(t), converging to 0, as

t → ∞, which measures the rate of convergence of the sequence of maximum

values to a non-degenerate limit r.v. and that “measures” also the bias of the

estimators in a great variety of situations (see de Haan and Ferreira, 2006, for

details). Such a second-order condition can be written as

(3.11) lim
t→∞

U(tx)−U(t)
a(t) − xγ

−1
γ

A(t)
= Hγ,ρ(x) :=

1

ρ

(

xγ+ρ −1

γ + ρ
− xγ −1

γ

)

,

for all x > 0, where ρ ≤ 0 is a second order parameter controlling the speed of con-

vergence in the first-order condition, (2.4), and |A(t)| ∈RVρ, with RVa standing

for the class of regularly varying functions at infinity with an index of regular vari-

ation a, i.e. positive measurable functions g such that limt→∞ g(tx)/g(t) = xa
,

for all x > 0. Note that for the extreme value d.f., in (1.1), condition (3.11)

holds, with ρ = −1 if γ 6= 1 and ρ = −2 if γ = 1. For the Generalized Pareto

d.f., in (3.9), U(t) = (tγ − 1)/γ, and we can say that condition (3.11) holds with

A(t) ≡ 0 (ρ = −∞).

3.2. Semi-parametric estimation of other parameters of interest

3.2.1. Estimation of location and scale

As mentioned before, we have bt = U(t), with U(·) defined in (2.3). On

another side, the universal uniform transformation enables us to guarantee that

∀F , unknown and underlying the r.v. X, X
d
= U(Y ), with Y a unit Pareto r.v.,
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i.e. a r.v. with d.f. FY (y) = 1 − 1/y, y ≥ 1. Consequently,

Xn−k:n
d
= U(Yn−k:n) , and since Yn−k:n

p∼ n/k , as n →∞ ,

where Xn
p∼ Yn means that Xn/Yn converges in probability to one, as n → ∞,

it is sensible to consider

b̂ = b̂k,n = ̂U(n/k) = Xn−k:n .

And for any extreme value index estimator, γ̂• ≡ γ̂•

k,n, we can consider (de Haan

and Ferreira, 2006)

â•
= â•

k,n = Xn−k:nM
(1)
k,n

(

1 − min(0, γ̂•
)
)

,

with M
(1)
k,n given in (3.2).

3.2.2. Estimation of the right endpoint for γ < 0

For large values of t and γ 6= 0, if we take into account the validity of

condition (2.4), we can write the approximation U(tx) ≈ U(t) + a(t) (xγ −1)/γ.

But x∗= U(∞) and for all γ < 0, (xγ −1)/γ → −1/γ, as x→∞. If we consider

t = n/k, with k intermediate, we can thus guarantee that, whenever γ̂• < 0,

x∗ ≈ U(n/k) − a(n/k)/γ =⇒ x̂∗
•

:= b̂ − â•/γ̂• .

As we have the obvious restriction xn:n ≤ x∗, we shall instead consider the right

endpoint estimator

(3.12) x̂∗k,n|• = max

(

Xn:n , Xn−k:n

(

1 − M
(1)
k,n

(

1− min(0, γ̂•

k,n)
)/

γ̂•

k,n

)

)

.

3.2.3. Estimation of the return period of a high level xH and similar indicators

In a pure framework of i.i.d. observations, if we think on the number of

observations NH needed to reach a value higher than xH, such a r.v. has support

{1, 2, ...} and P(NH = r) = pH(1− pH)
r−1

, r ≥ 1, with pH = P(X > xH) = 1−F (xH),

i.e. NH is a geometric r.v.. The return period of the high level xH is usually defined

as the mean value of NH , being given by

R(xH) :=
1

pH

=
1

1−F (xH)
.

In the framework of this paper, it is perhaps sensible to think on the n athletes

under consideration, and to define an indicator associated with a high level xH
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as the mean number of athletes, among the n, who will have in the future a

personal mark larger than xH. We thus have the mean value of a Binomial
(

n, pH =

1−F (xH)
)

r.v., given by

MN(xH) := n
(

1 − F (xH)
)

,

with MN standing for mean number.

On the basis of the limiting relation in (2.2), we can then consider the

estimators

̂R
•

(xH) :=
n

k



min

(

+∞, 1 + γ̂•

(

xH − b̂

â•

)

)





1/γ̂•

and

̂MN
•

(xH) ≡ n p̂•

H := k



max

(

0, 1 + γ̂•

(

xH − b̂

â•

)

)





−1/γ̂•

of R(xH) and MN(xH), respectively.

Note that for xH = xn:n, F absolutely continuous, and denoting (U1, ..., Un)

a random sample from a uniform d.f. in (0, 1), we have

MN(Xn:n) = n
(

1 − F (Xn:n)
) d

= n U1:n ,

which converges weakly towards a unit exponential r.v., as n → ∞. Consequently,

the sequence of r.v.’s exp
(

−MN(Xn:n)
)

converges weakly towards a uniform r.v.

in (0, 1). In the data analysis provided in Section, 5.3.2 we shall thus consider

(3.13) ̂E•

n ≡ ̂E•

k,n := exp
(

−̂MN
•

(Xn:n)
)

as an estimator of an indicator of the “excellence” of the world record Xn:n,

given by En := exp
(

−MN(Xn:n)
)

. Note that the E-indicator was chosen merely

because it lies in the finite support [0,1]. The closer to 1 this indicator is, the

better is the actual world record. Such an indicator is strongly related to the

quality of the current world record ’s indicator Q :=− lnEn = n
(

1−F (Xn:n)
)

of

Einmahl and Magnus (2008), the expected number of exceedances of the current

world record, Xn:n, conditional on this world record.

For further details on most of the subjects of this Section, see Chapters 1 and 4

of de Haan and Ferreira (2006).
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4. HEURISTIC CHOICES OF THRESHOLDS IN THE SEMI-

PARAMETRIC EXTREME VALUE INDEX, RIGHT END-

POINT AND EXCEEDANCE PROBABILITY ESTIMATION:

A MONTE-CARLO STUDY

For any arbitrary estimator, γ̂•

k,n, of γ, like the ones in (3.3), (3.4), (3.5),

(3.6), (3.8) and (3.10), and under the validity of a second-order condition like the

one in (3.11), we get an asymptotic distributional representation of the type

(4.1) γ̂•

k,n
d
= γ +

σ• P •

k√
k

+ v• A(n/k)
(

1 + op(1)
)

,

with P •

k
a∼ Normal(0, 1). Consequently, for intermediate levels k, i.e., levels such

that (3.7) holds, and also such that
√

k A(n/k) → λ, finite, ∃ v• ∈R and σ• ∈R
+

such that

(4.2)

√
k (γ̂•

k,n− γ)
d−→

n→∞
Normal(λv•, σ2

•
) .

The “asymptotic mean squared error” (AMSE) is defined as

AMSE
(

γ̂•

k,n

)

:=
σ2
•

k
+ v2

•
A2

(n/k) ,

i.e. we get asymptotic bias and variance given by BIAS∞
(

γ̂•

k,n

)

:= v• A(n/k) and

Var∞

(

γ̂•

k,n

)

:= σ2
•
/k, respectively. If λ = 0, the mean value of the limiting normal

law in (4.2) is equal to zero.

Let us define k•

0 = k•

0(n) := arg mink MSE
(

γ̂•

k,n

)

∼ arg mink AMSE
(

γ̂•

k,n

)

,

the level associated with a minimal AMSE, as the optimal level for the estimation

of γ through γ̂•

k,n, and let us denote γ̂•

n0 := γ̂•

k•
0 ,n, the estimator computed at its

optimal level. With the notation A(t) = β tρ, ρ < 0, the value σ• is a function of γ

and v• is usually a function of β and ρ (possibly also of γ). We then get

(4.3) k•

0 =
(

σ2
•
/(−2 ρ v2

•
β2

)
)1/(1−2ρ)

n−2ρ/(1−2ρ) .

In order to estimate k•

0 in (4.3), in a simple and precise way, we thus need to

have “nice” estimates of the second-order parameters (β, ρ). However, whereas

such an estimation is reliable for γ > 0 (see, for instance, Caeiro et al., 2005;

Gomes and Pestana, 2007; Gomes et al., 2007, 2008, among others), this is not

the case for γ ≤ 0. Notice however that we can estimate ρ, for a general γ ∈ R,

through the estimators in Fraga Alves et al. (2003). Even so, the optimal level,

in (4.3), depends often not only on β but also on γ. The estimation of k0 can

then be made recursively, but it induces a high volatility in the estimates and a

drastic loss of efficiency. Alternatively, we could also use, for instance, bootstrap
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methods (Draisma et al., 1999; Danielson et al., 2001; Gomes and Oliveira, 2001)

for an optimal adaptive choice of k. Here, after deciding on a negative value for γ,

as will be the case in Section 5, we propose the following heuristic choice of the

threshold k. Let us denote γ̂
(i)
k,n, i ∈ K = {1, 2, 3, 4}, the set of alternative (and

computationally simple to obtain) EVI-estimators in (3.3), (3.5), (3.6) and (3.8).

Then, consider

(4.4) k∗min := arg min
k

∑

(i,j)∈K, i6=j

(

γ̂
(i)
k,n − γ̂

(j)
k,n

)2

and

(4.5) T ∗ := Tk∗
min,n , with T = M or GH or MM or F ,

Mk,n, GHk,n, MMk,n, Fk,n and k∗min given in (3.3), (3.5), (3.6), (3.8) and (4.4),

respectively. We cannot claim any kind of asymptotic optimality for the choice

k∗min, in (4.4), in the sense that we would like to have k∗min/k•

0 → 1, as n → ∞.

However, if b• 6= 0, we can guarantee that the value k∗min in (4.4) is of the order of

n−2ρ/(1−2ρ)
, i.e., of the same order of the optimal value k•

0 in (4.3). Consequently,

(4.2) holds whenever we there replace k by k∗min. Moreover, the value in (4.4)

seems to be heuristically appealing whenever we want to take into account a

set of alternative semi-parametric estimators of a parameter of extreme events.

It is expected that there will be a region where all estimators work, and in such a

region we surely get close values for all estimates and the smallest possible value

for the indicator in (4.4). If we enlarge the set K, in order to include the extreme

value index ML-estimator, in (3.10), as we shall do in the data analysis performed

in Section 5.3.2, we shall use the notations k∗∗min and T ∗∗ for the entities equivalent

to the ones in (4.4) and (4.5), respectively.

We shall also consider the same type of heuristic procedure for the esti-

mation of the right endpoint x∗, in (1.2), done through similar adaptive right

endpoint estimators,

(4.6) x̂∗T := x̂∗k∗x
min,n|T , again with T = M or GH or MM or F ,

x̂∗k,n|• given in (3.12), and where, for the same set K and the same notation as

before,

(4.7) k∗xmin := arg min
k

∑

(i,j)∈K, i6=j

(

x̂∗k,n|(i) − x̂∗k,n|(j)

)2
=: k∗x .

Similarly, we shall use the notations k∗∗xmin and x̂∗∗T , whenever we include in K
the ML-estimator, in (3.10), for the estimation of the right endpoint. A similar

method was also applied to the estimators of the “excellence” indicators, in (3.13)

(or equivalently to the exceedance probability of Xn:n). We shall use the obvious

similar notations ̂E∗
•
, ̂E∗∗

•
for those adaptive estimators and k∗Emin ≡ k∗E, k∗∗Emin ≡

k∗∗E for the adaptive choices of k.
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In order to obtain distributional properties of the adaptive estimators under

consideration, we have performed simulation studies of size 5000×10 for sample

sizes n = 100, 200, 300, 400, 500, 1000, 2000 and 5000, from a reasonably large

variety of models. Due to characteristics of the data, which are maxima of a cer-

tain number of marks, and should consequently be associated with an underlying

d.f. quite close to the extreme value (EV ) model, we shall uniquely present, as an

illustration, the results associated with an underlying model F (x) = Gγ(x), with

Gγ(x) given in (1.1), γ = −0.1 and −0.3.

For each value of n, we have simulated not only the mean values and root

mean squared errors of the four estimators in (4.5), but also of the similar adap-

tive right endpoint estimators in (4.6). A similar method was also applied to

the estimators of the “excellence” indicators, in (3.13) (or equivalently to the ex-

ceedance probability of Xn:n). As mentioned before, we shall use the obvious

notation ̂E∗
•

for those adaptive estimators and k∗Emin ≡ k∗E for the adaptive choice

of k. Due to the stability of the sample paths of the estimators in (3.8), even

when we cannot guarantee their consistency, the results do not depend on either

the inclusion or the non-inclusion of such an estimator.

For underlying EV models, with γ = −0.1 and −0.3, the estimates of the

absolute bias (|BIAS|) and root mean squared error (RMSE) of the adaptive

EVI-estimators are presented in Figures 2 and 3, respectively. We also present

in these figures the corresponding values of at least one of the estimators at its

simulated optimal level, denoted T0, with T = M , GH, MM or F. For the bias

structure, we present only one T0, the one with the lowest absolute bias for large

values of n. The introduction of the ML-estimator, in (3.10), does not lead to

very different conclusions, but increases drastically the time of computation and

consequently the loss of precision associated with the REFF indicators. Similar

patterns have been obtained for underlying GP and reversed-Burr parents, and

we see no need to present those extra results.
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Figure 2: Absolute values of bias (left) and root mean squared errors (right)

of the adaptive extreme value index estimators in (4.5), for an

extreme value model with γ = −0.1.
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Figure 3: Absolute values of bias (left) and root mean squared errors (right)

of the adaptive extreme value index estimators in (4.5), for an

extreme value model with γ = −0.3.

A few remarks related with the adaptive estimators in (4.5) for underlying

EV models:

• For γ = −0.1, the absolute bias of MM∗
is the smallest one, except for

n = 100. For this sample size, and regarding absolute bias, GH∗ beats

MM∗
. Regarding MSE, the best of the adaptive estimates is MM∗

, for

all n. As γ decreases, and regarding bias, MM∗
is replaced by GH∗ for

moderate n and by M∗
for small n.

• For γ = −0.3, the absolute bias of MM∗
is the smallest one, only for

n ≥ 2000. For 300 ≤ n ≤ 1000, GH∗ beats the other estimators. For

n ≤ 200, the smallest absolute bias is the one of M∗
. Regarding MSE,

the best of the estimates is GH∗, quite close to MM∗
for all n.

• Notice the overall worst performance of the estimator F ∗, essentially

due to the region of γ-values under consideration.

Regarding the “potential” estimators T0 at simulated optimal levels, with

T = M, GH, MM or F , we draw the following comments:

• At simulated optimal levels, GH0 achieves the minimum MSE for all n,

if γ = −0.3. For the other values of γ, GH0 is the best one for small n,

but M0 becomes the best for large n (n≥ 1000 for γ = −0.1).

• Regarding smallest absolute bias at simulated optimal levels, M0 is the

best for all n, if γ =−0.1. For the other values of γ, M0 is the best for

n≥ 200. For n = 100, GH0 overpasses all other ones.

In Table 1, for EV underlying parents, for a few values of n, and for T =

M, GH, MM and F , we present two relative efficiency indicators of T ∗, in (4.5),

relatively to T0, and to S0, the best T0-estimator, i.e. the one with smallest MSE
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at optimal level. With the notation MSEs(S0) = min
(

MSEs(M0), MSEs(GH0),

MSEs(MM0), MSEs(F0)
)

, we have simulated

REFF1 :=

√

MSEs(T0)

MSEs(T ∗)
and REFF2 :=

√

MSEs(S0)

MSEs(T ∗)
,

the values placed in the first and second line, respectively, of any entrance T ∗.

Note that the higher than one these indicators are, the better T ∗ performs.

Moreover, we obviously have REFF1 ≥ REFF2. For all n, the highest REFF1-

indicator is written in bold and the highest REFF2 indicator is written in italic.

The results obtained are consistent with the remarks made above.

Table 1: Simulated REFF ’s of the adaptive EVI-estimators under study, together

with associated 95% CI’s, for extreme value underlying parents.

EV parent, γ =−0.1

n 100 200 500 1000 2000

M∗ 1.403± 0.015 0.921± 0.011 0.508± 0.130 0.404± 0.002 0.289± 0.003
0.762± 0.008 0.632± 0.006 0.491± 0.006 0.404± 0.002 0.289± 0.003

MM∗ 1.212± 0.009 1.116± 0.016 0.973± 0.016 0.874± 0.013 0.771± 0.014
1.212 ± 0.009 1.050 ± 0.014 0.833 ± 0.014 0.677 ± 0.010 0.469 ± 0.007

GH∗ 1.021± 0.010 0.877± 0.010 0.700± 0.009 0.599± 0.009 0.506± 0.006
1.015± 0.010 0.877± 0.010 0.700± 0.009 0.579± 0.009 0.410± 0.004

F ∗ 1.023± 0.009 0.898± 0.002 0.768± 0.003 0.695± 0.004 0.628± 0.003
0.587± 0.006 0.496± 0.004 0.395± 0.002 0.332± 0.003 0.243± 0.001

EV parent, γ =−0.3

n 100 200 500 1000 2000

M∗ 1.932± 0.020 1.355± 0.020 0.896± 0.013 0.657± 0.006 0.489± 0.003
0.978± 0.011 0.807± 0.005 0.621± 0.006 0.509± 0.008 0.428± 0.003

MM∗ 1.060± 0.006 1.121± 0.009 1.214± 0.008 1.245± 0.014 1.246± 0.012
0.962± 0.008 0.871± 0.005 0.780± 0.006 0.711± 0.007 0.645± 0.006

GH∗ 1.038± 0.010 0.959± 0.006 0.847± 0.010 0.757± 0.007 0.670± 0.008
1.038 ± 0.010 0.959 ± 0.006 0.847 ± 0.010 0.757 ± 0.007 0.670 ± 0.008

F ∗ 1.097± 0.010 0.959± 0.005 0.788± 0.007 0.693± 0.145 0.597± 0.006
0.895± 0.009 0.718± 0.006 0.544± 0.005 0.452± 0.005 0.388± 0.004

The behaviour of the right endpoint semi-parametric estimators is quite

erratic, even when we consider equation (3.12), to make them coherent with the

data. Such a behaviour is even more catastrophic when we do not make them

coherent with the data, and the most usual estimators in the literature are in

fact “raw”, in the sense that they have not been modified in order to be larger

than the maximum in the sample, as needed. Indeed, alternative semi-parametric

estimators of the right endpoint are urgently needed. The bias and the RMSE

of the estimators in (4.6) almost overlap, and we see no reason to present figures

similar to the ones drawn for the adaptive EVI-estimators in (4.5). A similar

comment applies to the adaptive estimators of the “excellence indicator”.



142 Ĺıgia Henriques-Rodrigues, M. Ivette Gomes and Dinis Pestana

Table 2 is equivalent to Table 1, but for the adaptive right endpoint es-

timation. Similarly, Table 3 is equivalent to Table 1, now for the exceedance

probability estimation (or equivalently, for the “excellence” indicator).

Table 2: Simulated REFF ’s of the adaptive right endpoint estimators under study,

together with associated 95% CI’s, for extreme value underlying parents.

EV parent, γ =−0.1

n 100 200 500 1000 2000

M∗ 3.272± 0.771 2.786± 0.569 1.660± 0.293 1.001± 0.002 0.998± 0.000
0.877 ± 0.006 0.865 ± 0.005 0.866 ± 0.007 0.863 ± 0.008 0.858 ± 0.005

MM∗ 1.819± 0.483 1.000± 0.000 1.000± 0.294 1.000± 0.000 1.000± 0.000
0.877 ± 0.006 0.865 ± 0.005 0.866 ± 0.007 0.863 ± 0.008 0.858 ± 0.005

GH∗ 5.454± 1.139 2.106± 0.698 1.000± 0.000 1.000± 0.000 1.000± 0.000
0.877 ± 0.006 0.865 ± 0.005 0.866 ± 0.007 0.863 ± 0.008 0.858 ± 0.005

F ∗ 0.877± 0.006 0.865± 0.005 0.866± 0.007 0.863± 0.008 0.858± 0.005
0.877 ± 0.006 0.865 ± 0.005 0.866 ± 0.007 0.863 ± 0.008 0.858 ± 0.005

EV parent, γ =−0.3

n 100 200 500 1000 2000

M∗ 8.116± 1.817 3.586± 0.728 1.001 ± 0.001 0.988± 0.007 0.947± 0.004
0.810± 0.003 0.793± 0.005 0.779± 0.006 0.773 ± 0.005 0.765 ± 0.005

MM∗ 8.118± 1.926 1.429± 0.440 1.002± 0.003 1.000± 0.000 1.000± 0.000

0.844± 0.005 0.809± 0.006 0.779± 0.006 0.773 ± 0.005 0.765 ± 0.005

GH∗ 0.875± 0.007 0.822± 0.009 0.779± 0.006 0.773± 0.005 0.765± 0.005
0.828± 0.003 0.804± 0.006 0.779± 0.006 0.773 ± 0.005 0.765 ± 0.005

F ∗ 0.875± 0.007 0.822± 0.009 0.779± 0.006 0.773± 0.005 0.768± 0.003
0.875 ± 0.007 0.822 ± 0.009 0.779 ± 0.006 0.773 ± 0.005 0.765 ± 0.005

Table 3: Simulated REFF ’s of the adaptive estimators of exceedance probabilities

of xn:n, and associated 95% CI’s, for extreme value underlying parents.

EV parent, γ =−0.1

n 100 200 500 1000 2000

M∗ 4.149± 0.899 5.265± 0.923 2.257± 0.293 1.259± 0.021 1.048± 0.021
0.698± 0.005 0.700± 0.009 0.657± 0.015 0.590± 0.011 0.537± 0.004

MM∗ 3.343± 1.369 1.518± 0.043 1.453± 0.294 1.394± 0.016 1.371± 0.011
0.733± 0.008 0.702± 0.014 0.641± 0.015 0.579± 0.011 0.533± 0.004

GH∗ 7.690± 1.944 3.349± 1.020 1.498± 0.036 1.422± 0.017 1.387± 0.012
0.702± 0.007 0.680± 0.013 0.629± 0.015 0.570± 0.011 0.525± 0.004

F ∗ 0.858± 0.010 0.793± 0.016 0.710± 0.017 0.637± 0.013 0.580± 0.005
0.858 ± 0.010 0.793 ± 0.016 0.710 ± 0.017 0.637 ± 0.013 0.580 ± 0.005

EV parent, γ =−0.3

n 100 200 500 1000 2000

M∗ 12.177± 3.181 5.746± 1.475 1.774± 0.149 1.111± 0.040 0.920± 0.039
0.587± 0.006 0.601± 0.018 0.580± 0.022 0.545± 0.029 0.540± 0.022

MM∗ 24.493± 6.833 8.523± 3.839 6.527± 0.426 6.928± 0.343 4.865± 0.305
0.702± 0.015 0.722± 0.038 0.692± 0.039 0.633± 0.048 0.623± 0.034

GH∗ 8.535± 3.339 9.516± 5.754 1.840± 0.095 0.812± 0.047 0.601± 0.034
0.518± 0.008 0.583± 0.024 0.614± 0.033 0.586± 0.041 0.592± 0.029

F ∗ 0.865± 0.012 0.787± 0.029 0.712± 0.031 0.641± 0.040 0.618± 0.029
0.865 ± 0.012 0.787 ± 0.029 0.712 ± 0.031 0.641 ± 0.040 0.618 ± 0.029
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On the basis of the simulated results, the adaptive estimation procedure

seems to provide interesting results, in the sense that we have obtained REFF

indicators reasonably high for small n and all parameters of interest. Regarding

EVI-estimation, and despite of the fact that it is not possible to claim that MM∗

has, for all models in DM(Gγ), γ < 0, the best performance among the four

adaptive estimators in (4.5), it is clear that if we have to elect one of these four

adaptive estimators, we are inclined to the choice of MM∗
. This is particularly if

the model is not a long way from an EV model, and we have a light indication for

this underlying parent, not only on the basis of the undertaken parametric data

analysis in Section 5.1, but also due to the nature of the data. This is the reason

why in Section 5.3.2, we shall compute the final estimates of γ on the basis of

MM∗
. Note however that, for small n, GH∗ is also a serious alternative. For the

right endpoint estimation all adaptive estimators in (4.6) are almost equivalent,

and we thus see no reason not to use also x∗MM . A similar comment applies to

the estimators of the exceedance probability (or equivalently, of the excellence

indicator).

5. DATA ANALYSIS OF INDOOR ATHLETIC EVENTS

The data under analysis are related to three running and three jumping

events, all for men, the 60 Metres Hurdles (60MH), 400 (400M) and 1500 Me-

tres (1500M), as well as the high jump (HJ), long jump (LJ) and pole vault (PV).

The sources were http://www.iaaf.org/statistics/toplists/index.htmx and

http://hem.bredband.net/athletics/athletics_all-time_best.htm. Data was

collected until the end of 2007 and for any athlete only the best mark was taken

into account. As mentioned before, we are dealing with right-tails. Consequently,

for all running events we have converted running times into speeds, i.e., 10.00

seconds in the 60MH (equal to 0.06 kilometers) is transformed to a speed of

3600×0.06/10 = 21.6 km/h. Like this, the higher the speed, the better, just as

the higher the jump, the better. Contrarily to what has been done in Einmahl

and Smeets (2009), we have not paid attention to doping related times, and we

are conscious that slightly different estimates could then be obtained, despite of

the usual robustness of the methods to a few outliers in the data.

5.1. Parametric data analysis

Prior to a semi-parametric analysis of the data, the most common frame-

work of statistics of extremes, we shall proceed to a parametric data analysis, in

the lines of Robinson and Tawn (1995) and Barão and Tawn (1999), who consid-

ered the annual best times in the women’s 3000m event. Also Smith (1988) has



144 Ĺıgia Henriques-Rodrigues, M. Ivette Gomes and Dinis Pestana

proposed a maximum likelihood method of fitting models to a series of records,

and applied his method to athletics records for the mile and the marathon.

The attempts made in these papers to predict an ultimate world record are based

on the development of top performances over time. This is not the case in this

paper. Here, as in Einmahl and Magnus (2008), as well as in Einmahl and Smeets

(2009), we are not interested in predicting the world record in the future. We are

using only the top performances associated with a set of n athletes, and conse-

quently, our estimated ultimate record tells us what, in principle, is possible at

this moment, given today’s knowledge and material.

We first illustrate in Figures 4 and 5, the Gumbel QQ-plots associated

with all data sets under analysis. In all figures we have thus plotted the points
(

xi:n, pΛ
i = − ln(− ln(i/(n +1)))

)

, 1 ≤ i ≤ n, and proceeded to the fitting of a

least-squares line.
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Figure 4: Gumbel QQ-plot related to the running events under analysis

— 60 Metres Hurdles, 400 and 1500 Metres.
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Figure 5: Gumbel QQ-plot related to the jumping events under analysis

— High Jump, Long Jump and Pole Vault.

Apart from the Long Jump event, where γ = 0 can perhaps provide a rea-

sonable fit to the right-tail, despite of a slight deviation of top o.s.’s smaller than

the third largest value, all other events exhibit a light right-tail, i.e. a negative

extreme value index, and consequently a finite right endpoint x∗.
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Due to the fact that the observed data considered are already maxima,

possibly of a small and dependent number of marks associated with any of the

n athletes, but the extreme value limiting law, in (1.1), is “robust” to changes of

the i.i.d. assumption, we have first tried the fitting, through maximum likelihood,

of an extreme value model F (x;λ,δ,γ) = Gγ

(

(x−λ)/δ
)

, with Gγ(x) given in (1.1).

We have used the EVIR package in the R-software. The estimate of the right

endpoint is then provided by x̂∗ = max(xn:n, λ̂− δ̂/γ̂), with (λ̂, δ̂, γ̂) the maximum

likelihood estimates of the unknown parameters, (λ, δ, γ). The results obtained

are presented in Table 4.

Table 4: Maximum likelihood estimates of (λ, δ, γ, x∗
) for an underlying model

Gγ

(

(x−λ)/δ
)

, with Gγ(x) given in (1.1):
′
– Km/h,

′′
– metres.

Event n (x1:n, xn:n) λ̂ δ̂ γ̂ (95% CI) x̂

∗

60MH 312 (27.52, 29.59)′ 27.84 0.28 −0.21 (−0.328,−0.090) 29.59

400M 380 (30.38, 32.31)′ 30.70 0.25 −0.15 (−0.277,−0.024) 32.36

1500M 296 (23.84, 25.57)′ 24.23 0.26 −0.06 (−0.166, +0.042) 28.33

HJ 235 (2.20, 2.43)′′ 2.24 0.03 −0.09 (−0.223, +0.040) 2.61

LJ 340 (7.70, 8.79)′′ 7.81 0.11 −0.26 (−0.392,−0.130) 8.79

PV 205 (5.45, 6.15)′′ 5.58 0.09 −0.15 (−0.342, +0.041) 6.21

As expected, all estimates of γ are negative. But for the 1500 Metres, High

Jump and Pole Vault, the upper limits of the associated 95% CI’s are positive,

suggesting that the value γ = 0 could possibly be adequate. The estimation of

the right endpoint, which provides estimates equal to the maximum value in the

data, the value xn:n, for two of the athletic events, 60 Metres Hurdles and Long

Jump, can be considered slightly problematic.

5.2. Fitting the extreme value model

In Figure 6, we picture in light grey the asymptotic 95% critical values

(CV), 1.36/
√

n, of the Kolmogorov–Smirnov statistic for testing a model without

unknown parameters. The observed values of the Kolmogorov–Smirnov statistic,

KSn := max1≤i≤n

(

∣

∣Gγ̂

(

(xi:n− λ̂)/δ̂
)

− i/n
∣

∣,
∣

∣Gγ̂

(

(xi:n− λ̂)/δ̂
)

− (i−1)/n
∣

∣

)

are

pictured in black. The simulated 95% critical points of the Kolmogorov–Smirnov

statistic, for testing an extreme value model Gγ̂

(

(x− λ̂)/δ̂
)

, have been based on

1000 runs, and are pictured in grey, showing again the “conservative property”

of the Kolmogorov–Smirnov test — if we are led to rejection of a model without

taking into account the maximum likelihood estimation of the parameters, we

are a fortiori led to a rejection of the same model whenever we appropriately

estimate the unknown parameters through the maximum likelihood approach.
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Figure 6: Asymptotic critical values CV= 1.36/
√

n (light grey), simulated critical

values (grey) and observed values (black) of the Kolmogorov–Smirnov

statistic, for all athletic events under analysis.

At the significance level α = 0.05, the hypothesis of a (unified) extreme

value model has thus been rejected by the Kolmogorov–Smirnov test for all data

sets, as could also have been inferred graphically from Figure 7 and Figure 8,

where we picture the empirical d.f., in grey, and the fitted extreme value d.f.,

in black.
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Figure 7: Empirical d.f. (grey) and fitted extreme value d.f. (black)

for the running events under analysis.
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Figure 8: Empirical d.f. (grey) and fitted extreme value d.f. (black)

for the jumping events under analysis.
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Alternative parametric models have even provided worse fitting results.

There is thus a claim for the need of a semi-parametric data analysis, to be

developed next, in Section 5.3.

5.3. A semi-parametric data analysis

5.3.1. Testing the extreme value index sign

As mentioned before, whenever we place ourselves under a semi-parametric

framework, we assume only that (2.4) holds, or equivalently, that F ∈ DM(Gγ),

for a certain γ, being γ the primordial parameter of extreme events.

In many areas where extremes are relevant, the simplest case γ = 0 is often

considered. Moreover, if we clearly think that γ < 0 or that γ > 0, we have specific

procedures for the estimation of γ, possibly more reliable than the procedures

valid for a general γ ∈ R. Prior to a deeper semi-parametric analysis of the tail

associated with this type of data, it thus seems sensible to test

H0 : F ∈ DM(Gγ)γ=0

(

or F ∈ DM(Gγ)γ≥0

)

versus

H1 : F ∈ DM(Gγ)γ<0 ,

(5.1)

through the use of any semi-parametric test statistic.

We shall consider here two test statistics of a similar type, i.e. both based

on the excesses over a high random threshold Xn−k:n, with k satisfying (3.7). The

first one was introduced by Greenwood (1946) and the second one by Hasofer and

Wang (1992). These two statistics were further studied, under a semi-parametric

framework, by Neves and Fraga Alves (2007). They are given by

Gk,n :=

1
k

k
∑

i=1

(

Xn−i+1:n−Xn−k:n

)2

(

1
k

k
∑

i=1
Xn−i+1:n−Xn−k:n

)2

and

Wk,n :=
1

k(Gk,n−1)
.

Under the null hypothesis H0 in (5.1) and extra mild conditions on the right-

tail of F and on the growth of k = kn, they both have an asymptotic normal

behaviour. More specifically,

G∗k,n :=

√

k/4
(

Gk,n−2
) ∣

∣

F∈DM(G0)

d−→
n→∞

N(0, 1)(5.2)

and

W ∗

k,n :=

√

k/4
(

k Wk,n−1
) ∣

∣

F∈DM(G0)

d−→
n→∞

N(0, 1) .(5.3)
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Motivated by the important contribution of the maximum to the sum of the

k excesses, Xn−i+1:n −Xn−k:n, 1 ≤ i ≤ k, Neves et al. (2006) introduced the

following complimentary statistic,

Rk,n :=
Xn:n−Xn−k:n

1
k

k
∑

i=1
Xn−i+1:n−Xn−k:n

,

also considered in the analysis of the data under study. The asymptotic behaviour

of Rk,n is provided by the Gumbel d.f., Λ = G0, with Gγ given in (1.1). More

specifically,

(5.4) R∗k,n := Rk,n− ln k
∣

∣

F∈DM(G0)

d−→
n→∞

Z ⌢ G0 .

As a function of k both G∗k,n and R∗k,n tend to have a slope with the sign of γ.

The statistic W ∗

k,n works the other way round.

As an illustration, we present, in Figure 9, the sample paths of the three

test statistics G∗k,n, W ∗

k,n and R∗k,n in (5.2), (5.3) and (5.4), respectively, associated

with the Long Jump. In this figure we also picture the quantiles
(

χ•

0.025, χ•

0.975

)

of the standard normal Φ, equal to (−1.96, +1.96), and of the standard Gumbel

Λ ≡ G0, equal to (−1.31, +3.68).
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Figure 9: Sample paths of the test statistics for the Long Jump event.

For all other data sets under analysis the graphs are quite similar, showing

clearly a decreasing trend of R∗k,n and G∗k,n (with G∗k,n below χΦ
0.025 for a large

number of k-values), as well as an increasing trend of W ∗

k,n (above χΦ
0.975 for

moderate up to large values of k). Such a trend is mainly related to bias, but

bias is strongly related to the extreme value index sign. These results provide a

strong suggestion of a negative extreme value index, as expected. Despite of that,

notice that, in Figure 9, the sample path of R∗k,n is within the 95% CI for almost

all k-values. This was also expected, because it is well known (see, for instance,

Neves and Fraga Alves, 2008) that R∗k,n tends to be a conservative test and the

true value of γ is for sure close to zero.



Statistics of Extremes in Athletics 149

5.3.2. Semi-parametric estimates of the extreme value index and the right endpoint

In Table 5 we present a summary of the performed data analysis, with

estimates and 95% CI’s for the extreme value index γ. These estimates of γ were

obtained through the mixed moment (MM) estimates, computed at the value

k∗min, in (4.4), i.e. they are the adaptive estimate MM∗
in (4.5).

Table 5: Estimates of the extreme value index,

based on M∗
:

′
– Km/h,

′′
– metres.

Event n (x1:n, xn:n) MM

∗ (95% CI) k

∗
min

60MH 312 (27.52, 29.59)′ −0.34 (−0.469,−0.214) 305

400M 380 (30.38, 32.31)′ −0.26 (−0.445,−0.080) 128

1500M 296 (23.84, 25.57)′ −0.38 (−0.520,−0.241) 275

HJ 235 (2.20, 2.43)′′ −0.32 (−0.468,−0.173) 219

LJ 340 (7.70, 8.79)′′ −0.20 (−0.315,−0.087) 296

PV 205 (5.45, 6.15)′′ −0.31 (−0.472,−0.151) 182

In this semi-parametric data analysis, we have also considered the adap-

tive estimators MM∗∗
and ML∗∗, the estimators in (3.6) and (3.10), respec-

tively, computed at the value k∗∗min, obtained through a minimization procedure

of the type of the one in (4.4), but including also the ML-estimator. The reason

for the consideration of the ML-estimator lies on the fact that in the region

−1/2 < γ < 0, where the estimates lie, σ2
ML = (1 + γ)

2
is smaller than σ2

MM =

σ2
M = (1− γ)

2
(1− 2 γ) (1− γ + 6 γ2

)/
(

(1− 3 γ) (1− 4 γ)
)

for all γ, with σ• the

asymptotic standard deviation in the asymptotic representation (4.1) (see Gomes

and Neves, 2008, for further details). These estimates are presented in Table 6.

For the LJ athletic event k∗min = k∗∗min. Then, the estimates MM∗
= MM∗∗

and

associated CI’s are written in italic.

Table 6: Estimates of the extreme value index,

based on ML∗∗
and MM∗∗

.

Event n ML

∗∗ (95% CI) MM

∗∗ (95% CI) k

∗∗
min

60MH 312 −0.30 (−0.377,−0.216) −0.31 (−0.438,−0.186) 294

400M 380 −0.22 (−0.351,−0.085) −0.26 (−0.434,−0.077) 133

1500M 296 −0.32 (−0.400,−0.239) −0.31 (−0.440,−0.180) 273

HJ 235 −0.29 (−0.387,−0.201) −0.31 (−0.456,−0.165) 220

LJ 340 −0.17 (−0.262,−0.073) −0.20 (−0.315,−0.087) 296

PV 205 −0.29 (−0.396,−0.191) −0.30 (−0.458,−0.142) 183
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As it can be seen from Tables 5 and 6, there is only a small difference be-

tween k∗min and k∗∗min, as expected. All semi-parametric γ-estimates at k = k∗∗min

are within the CI’s provided in Table 5 and based on MM∗
. Similarly, all esti-

mates in Table 5 are within the CI’s provided in Table 6. However, apart from the

parametric estimates of γ associated with the 400 Metres and Long Jump events,

the parametric estimates in Table 4 are outside the CI’s provided in Table 5,

as well as the other way round. The parametric estimates are above the semi-

parametric estimates for the six events considered. Note also that, contrarily to

what generally happens, the values k∗min and k∗∗min are quite large, comparatively

with the sample size n. This is essentially due to the fact that, for large k, the

samples paths of the different estimators are reasonably stable as functions of k

and close to each other (a small bias, contrarily to the most common situations

in practice) and volatile for small k (large variance for small k, as usual).

Also as an illustration, we present, in Figure 10, the estimates M ≡ Mk,n,

GH ≡ GHk,n, MM ≡ MMk,n, and F ≡ Fk,n of γ, defined in (3.3), (3.5), (3.6) and

(3.8), respectively, again for the Long Jump athletic event. We also picture the

sample paths of the γ-estimator ML ≡ MLk,n, in (3.10).

M

-0.4

-0.3

-0.2

-0.1

290 300 310

MM

ML

GH

k

M

F

MM ** = "0.20

"0.262 | ML **

"0.073 | ML **

"0.315 | MM **

"0.087 | MM **

ML ** = "0.17

kmin
*

= kmin
**

= 296

Figure 10: Sample paths of the extreme value index estimates under consideration,

for the Long Jump event.

Analogously, and for the estimation of the right endpoint, apart from the

adaptive estimators x̂∗MM , the estimators x̂∗k,n|•, in (3.12), for • ≡ MM , computed

at the value k∗x, in (4.7), we have also considered the adaptive estimators x̂∗∗MM

and x̂∗∗ML, the estimators x̂∗k,n|• in (3.12) for • ≡ MM and ML, computed at the

value k∗∗xmin ≡ k∗∗x, obtained through a minimization procedure of the type of the

one used for the adaptive endpoint estimators in (4.6), but including also the
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ML-estimator. Similarly, and as mentioned before, for the estimation of the

excellence indicator, we use the notation ̂E∗∗
•

for the estimator ̂E•

k,n, in (3.13),

computed at the value k∗∗Emin ≡ k∗∗E . Next, in Table 7 we present the estimates of

the right endpoints of the models underlying the different data sets under study.

Table 7: Estimates of the right endpoint:
′
– km/h,

•

– minutes,
′′
– metres.

Event xn:n k

∗x
x̂

∗
MM k

∗∗x
x̂

∗∗
ML

60MH
29.59′ 53 29.81′ 53 29.71′

(00 : 07.30)• (00 : 07.25)• (00 : 07.27)•

400M
32.31′ 32 32.45′ 128 32.68′

(00 : 44.57)• (00 : 44.37)• (00 : 44.06)•

1500M
25.57′ 119 25.63′ 119 25.70′

(03 : 31.18)• (03 : 30.69)• (03 : 3012)•

HJ 2.43′′ 219 2.44′′ 219 2.46′′

LJ 8.79′′ 144 8.84′′ 281 9.12′′

PV 6.15′′ 82 6.16′′ 182 6.22′′

In Table 8 we present the estimates of the associated“excellence” indicators of the

levels xH = xn:n, provided in (3.13). Note that for all data sets we got k∗E = k∗∗E ,

smaller than expected for some of the data sets (60MH, 1500M and LJ).

Table 8: Estimates of an “excellence” indicator of the level xn:n.

Event k

∗x b
E

MM
k∗x,n k

∗∗x b
E

ML
k∗∗x,n k

∗E
min = k

∗∗E
min

b
E

∗
MM | bE∗

ML

60MH 53 0.66 53 0.67 11 0.62 | 0.72

400M 32 0.98 128 0.88 148 0.99 | 0.90

1500M 119 0.95 119 0.82 36 0.89 | 0.81

HJ 219 0.98 219 0.90 222 0.91 | 0.89

LJ 144 0.99 281 0.92 39 0.80 | 0.78

PV 82 0.98 182 0.94 132 0.99 | 0.94

Despite of slight discrepancies of the different estimates of the relevant

parameters of extreme events, the results in Tables 5, 6, 7 and 8 mean that, under

the present conditions, there are finite upper limits for all jumping events under

analysis, as well as finite lower limits in the times associated with all running

events under analysis. From the “excellence” indicators of the world records, we

can say that the current 400 Metres, High Jump and Pole Vault world records

are very good (indicators above 89%). The lowest “excellence” indicator, around

65%, corresponds to the 60 Metres Hurdles.
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1. INTRODUCTION

Sample survey data are extensively used to provide reliable direct estimates

of parameters of interest for the whole population and for domains of different

kinds and sizes. When the domains were not originally planned, they usually are

poorly represented in the sample or even not represent at all. These domains

are called small areas and they usually correspond to small geographical areas,

such as a municipality or a census division, or a small subpopulation like a par-

ticular economic activity or a subgroup of people obtained by cross-classification

of demographic characteristics. Traditionally, sample sizes are chosen to provide

reliable estimates for large domains and the lack of sample data from the target

small area seriously affects the precision of estimates obtained from area-specific

direct estimators. This fact has given rise to the development of various types

of estimators that combine both the survey data for the target small areas and

auxiliary information from sources outside the survey, often related to recent cen-

suses and current administrative data, in order to increase precision. Under this

context, the use of indirect estimators has been extensively applied. Such indirect

estimators are based on either implicit or explicit models that provide a link to

related small areas through auxiliary data.

Although traditional indirect estimators based on implicit models, which in-

clude synthetic and composite estimators, are easy to apply, they usually present

undesirable properties. For that reason, other model based methods of small area

estimation have been suggested in the literature. These methods can make spe-

cific allowance for local variation through complex error structures in the models

that link the small areas, can be validated from the sample data and can handle

complex cases such as cross-sectional, time series and spatial data. Such meth-

ods are often based on explicit Linear Mixed Models. The Best Linear Unbiased

Prediction (BLUP) approach, using Henderson’s method ([13]), is the most pop-

ular technique for estimating small area parameters of interest (usually the mean

or the total). Under this approach and from the model point of view the small

area parameters of interest are functions of fixed (β) and random (u) effects.

Consequently, the prediction of small area parameters of interest is based on the

estimation/prediction of these model effects. In practice this type of models al-

ways involves unknown variance components in the variance-covariance structure

of random effects. When these unknown components are substituted by consis-

tent estimates the resulting estimator is usually named as Empirical Best Linear

Unbiased Predictor (EBLUP).

In the context of unit level spatial data, little work has been done on

model-based methods of small area estimation. [25], [26] and [5] proposed a

spatial unit level random effects model with spatial dependence incorporated in

the error structure through a simultaneous autoregressive (SAR) error process.
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Other findings are due to [4], [36], [30], [31], [32] and [40]. All these approaches

consider a contiguity matrix to describe the neighbourhood structure between

small areas. Nevertheless, there has been a lack of work regarding the explicit

modeling of spatial correlation as a function of the distance between observations

or small areas.

The main aim of this paper is to propose an approach to the problem of

small area estimation in circumstances in which the sample data are of a spa-

tial nature (or in other contexts in which it is possible to establish some kind

of proximity between the domains of study), using an estimator that explicitly

consider spatial correlation as a function of distance between small areas of study.

This estimator, applicable to unit level data, exploits both auxiliary information

relating to other known variables on the population and structures of spatial

correlation between the sample data through the specification of an adequate

non-diagonal structure for the variance-covariance matrices of random effects.

It is based on a general class of models that includes some of the existing models

as special cases and can be understood as an EBLUP of the small area totals.

Consequently, it does not require the specification of a specific prior distribution

for model random effects. We also aim to evaluate this estimator in comparison

with traditional synthetic and composite estimators that do not explicitly con-

sider spatial variability. The paper is organized under five sections. Section 1

introduces the context of the small area estimation and the goals of the paper.

Section 2 reviews some traditional indirect estimators. Section 3 proposes an

EBLUP estimator for small area totals based on spatial unit level data. The

estimator is assisted by a class of models that fits into the general linear mixed

theory. Section 4 describes the design of the Monte Carlo simulation study and

presents empirical results. This study analyzes the performance of the proposed

estimator over the direct and indirect estimators using a real data set from an

agricultural survey conducted by the Portuguese Statistical Office. Discussion of

the main findings of this study, along with some of its limitations and possible

future developments are the subject of Section 5.

2. INDIRECT ESTIMATORS

One possible approach for “borrow information” in the context of small

area estimation based on implicit models is to use direct modified estimators.

These estimators maintain certain design-based properties such as approximately

unbiased. This is the case of the regression estimator ([37])

(2.1) τ̂d,reg = τ̂d + (τxd − τ̂xd)
′ β̂ , d = 1, ..., D ,

where τ̂d is an estimator of the d th
domain total of the interest variable, usu-

ally the Horvitz–Thompson or a post-stratified estimator and τ̂xd have the same
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meaning in relation to the vector of auxiliary variables xi = (xi1, ..., xip)
′
,

β̂ =
[
∑

d∈U

∑

i∈sd
υ−2

i π−1
i xix

′

i

]

−1 ∑

d∈U

∑

i∈sd
υ−2

i π−1
i xi yi are estimators of the

regression coefficients obtained using data from the whole sample, υ2
i are regres-

sion weights and πi the inclusion probabilities resulting from the sampling design.

Estimator (2.1) is approximately unbiased, since E(τ̂d,reg) = τd + τ ′

xdE(β̂) −
E(τ̂ ′

xdβ) ≈ τd (supposing E
[

(τ̂xd − τxd)
′
(β̂ − b)

]

≪ τxdb, where b = E(β̂) from

the design-based perspective
1
). Although using information from outside the do-

main for estimating the regression coefficients, usually these estimators still show

low precision.

An alternative is the synthetic estimation (whose properties depend on the

assumptions of a postulated model). From the design-based point of view these

estimators can be biased and inconsistent. A synthetic regression estimator can

be presented as:

(2.2) τ̂d,sreg = τ ′

xd β̂ , d = 1, ..., D ,

where β̂ is obtained as before. A more extreme attitude under a pure model-based

approach would ignore the inclusion probabilities in estimating the regression pa-

rameters. The design-based bias of estimator (2.2) is B(τ̂d,sreg) ≈ τ ′

xd(b − bd),

assuming the regression weights are such that υ2
i ∝

∑p
j=1 aj xij , i ∈ Ud, where

aj , j = 1, ..., p, are arbitrary constants. This condition is always assured in the

most typical situation of a non-weighted regression where the parameters υ2
i are

assumed constant. Further, typically estimator (2.2) has smaller variance than

the direct modified regression estimator but it is biased from the design-based

point of view. When dealing with small areas the reduction in variance associated

with the synthetic estimator can be such that it will assure a mean square error

(MSE) lower than the one obtained through the use of the direct modified esti-

mator. There will always be a risk of a high bias and consequently the invalidity

of any confidence intervals obtained under repeated sampling. A significant ad-

vantage of synthetic estimation lies in the fact that it is always possible to obtain

domain estimates, even in situations where the sample is very small or even zero.

In order to prevent the quality of the estimator being totally dependent on the

postulated model, some combined or composite estimators have been proposed.

A combined estimator typically presents the form of the weighted average of a

design-based estimator (approximately unbiased but with high variance) and a

synthetic estimator (biased but with low variance):

(2.3) τ̂d,com = λd τ̂d,des + (1−λd) τ̂d,syn , d = 1, ..., D ,

with 0 ≤ λd ≤ 1. These estimators can be classified in two main types (according

to the way the weights λd are chosen): sample-size dependent weights and data

dependent weights. It is also possible to assume that the weights are chosen in

1This condition supposes there is a sufficiently week correlation between τ̂xd and β̂ what is
usually easily achieved as τ̂xd and β̂ are estimated at different aggregation levels.
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a deterministic way using, for example, some previous knowledge or an informed

guess. This would result in what [39] call weights fixed in advance. A good

example of a combined regression estimator where the weights depend on sample

size is the dampened regression estimator ([38]):

(2.4) τ̂d,dreg = λd τ̂d,reg + (1−λd) τ̂d,sreg , d = 1, ..., D ,

where λd = 1 if N̂d ≥ Nd and λd = 0 otherwise, where Nd is the d th
domain

population size and h is a positive constant. The authors suggested to use h = 2.

The basic idea for choosing h is to assure that the bias contribution from the

synthetic component of the estimator is kept within acceptable limits. Another

possible approach for“borrow information”in the context of small area estimation

is to use a data-dependent combined estimator, through the modeling of the

bias of the synthetic part of the estimator, thus producing indirect estimates

for the weights. Many of the models that have been proposed include random

area effects and can be seen as particular cases of linear mixed models. One

of the best known models applicable at unit level is the nested error regression

model ([8], [3]). All these approaches implicitly consider some kind of sectional

correlation and the domain estimators are obtained through EBLUP, empirical

Bayes or hierarchical Bayes approaches. The well-known nested error regression

model ([3]) has the form ydi = x′

diβ + ud + ǫdi, d = 1, ..., D, i = 1, ..., Nd, where

ud and ǫd are assumed to be iid with zero means. It is also assumed that ud

and ǫdi are mutually independent, Vm(ud) = σ2
u and Vm(ǫdi) = σ2 υ2

di where υdi

are known constants. Here a common covariance between any two observations

in the same small area is assumed, Covm(ydi, ydj) = σ2
u (i 6= j). In this kind of

models it is assumed that there is no sample selection bias, resulting that they

are assumed to hold both for the population and for the sample. This may be a

very limiting assumption since small domain estimation is frequently needed in

the context of informative sampling designs.

An alternative to the EBLUP in the context of informative sampling designs

is the pseudo-EBLUP estimator ([29]). This estimator, based on the nested error

regression model, depends on survey weights and it is design-consistent.

3. A COMBINED ESTIMATOR FOR SPATIAL DATA

3.1. A class of models

Let ydi be the value of the interest variable for unit i (i = 1, ..., nd) in small

area d (d = 1, ..., D) and let x′

di = (xdi1, ..., xdip) a vector of p unit level explana-
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tory variables referring to the same unit. Consider the following class of models:

(3.1) ydi = x′

diβ+

H
∑

h=1

x′

(1)di qh,diu
(1)
h +x′

(2)diu
(2)
d +ǫdi , d =1, ...,D, i =1, ...,nd ,

where β is a vector of p fixed effects; x′

(j)di is a vector of pj explanatory variables

(typically a subvector of x′

di) for the i th
unit in small area d; qh,di are design

variables used to take into account the sampling design and indicate that unit di

belongs to a stratum or a sampling unit h (h = 1, ..., H); u
(1)
h = col1≤j≤p1(uhj) is

a vector of p1 random (or fixed) design effects associated with stratum (or sam-

pling unit) h; u
(2)
d = col1≤j≤p2(udj) is a vector of p2 random effects associated with

domain d; ld represents the geographical location associated to the centroid of do-

main d; f(ld − le) is a function of the vector ld − le and ǫdi is the residual term as-

sociated with unit di. We assume that Em

(

u
(1)
h

)

= 0, Em

(

u
(2)
d

)

= 0, Em(ǫdi) = 0,

Em

(

u
(1)
h u

′(1)
g

)

=

{

Σ(1), h = g
0, otherwise

, Em(ǫdi ǫej) =

{

σ2
di, d = e, i = j

0, otherwise
, Em

(

u
(2)
d u

′(2)
e

)

=

Σ(2)f(ld − le), with Σ(1)
=

{

σ2

U
(1)

jk

}

(j, k =1, ..., p1), σ2

U
(1)
jk

= E(uhj uhk), Σ(2)
=

{

σ2

U
(2)
jk

}

(j, k =1, ..., p2), and σ2

U
(2)
jk

= E(udj udk). The model is applied to data

from a sample of total size n =
∑D

d=1 nd, where nd is the number of sampling

units in area d. It is also assumed that random effects associated with different

aggregation levels are not correlated, E
(

u(j)u′(k)
)

= 0 for j 6= k, and that the

errors are non-correlated with random effects, E
(

u(j)ǫ′
)

= 0, ∀j.

In the proposed model, domain effects show a structure of spatial vari-

ability. The covariance between the random effects associated with domains d

and e depends on the vector defined by their geographical coordinates ld − le.

Some functions that can be applied to this context are presented in [28]. When

the spatial covariance only depends on the distance |ld − le|, then the function

f(|ld − le|) is said to be isotropic ([6]) and is typically such that lim
|ld−le|→0 f = 1.

As the domains are not points in space, but areas, these coordinates are defined

by their centroids. The assumption is that the lowest level of aggregation for

which the georeferencing is available is the domain. Situations where the level

of aggregation for which the referencing is available does not coincide with the

domains of study can generate special cases of model (3.1). In particular, when

georeferencing is possible at unit level, spatial variation can be modeled through

variances-covariances of the errors vector ǫ.

Domain random effects represent the characteristics specific to the domain

of study that affect the values of the interest variable and are not represented

by the fixed effects at a higher level of aggregation. They can be thought of

as modeling the bias of the synthetic part of the model. Moreover, these do-

main random effects will now have the additional role of bringing information

from other domains, to explain the values of the interest variable in each domain.
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Design effects are used to take into account the sampling design. The goal is to

allow the model to be applied to contexts with informative sampling designs, over-

coming the limitations ([27], [20]) of other data-dependent combined estimators

that implicitly assume that the sampling design is ignorable.

The methodology proposed can therefore be seen as model assisted. The

sample s is the result of a two-step procedure. First it is supposed that the

finite population can be approximately described by a superpopulation model.

In the second step it is assumed that a sample is drawn from the finite pop-

ulation through a specific sampling design. It is assumed that the sample can

be approximately described by model (3.1), which has taken into account the

existence of these two steps.

3.2. Estimation of model parameters

The model 3.1 can be presented as a special case of the general linear mixed

model, grouping the unit-specific models over the population:

(3.2) y = Xβ + Zu + ǫ ,

where y is a vector of the target variable, X is a design matrix of explana-

tory variables with rows given by x′

di , Z =
[

Z(1)Z(2)

]

is a design matrix, u =

col1≤j≤2

(

u(j)
)

is a vector of random effects and ǫ is a vector of errors. The covari-

ance matrix of u is given by G = Vm(u) = blockdiag1≤j≤2

[

G(j)
]

, where G(1)
=

blockdiag1≤h≤H

{

Σ(1)
}

and G(2)
= F⊗Σ(2)

with F =
{

f(ld − le)
}

, d,e = 1, ..., D.

Further, R = Vm(ǫ) = diag 1≤i≤nd
1≤d≤D

{σ2
di}, Em

(

u(1)
)

= 0, Em

(

u(2)
)

= 0 and Em(ǫ) = 0.

Both covariance matrices G and R involve unknown variance components, rep-

resented by θ. Also the flexibility of the proposed class of models recommends

proceeding in each application to the selection of a specific model, i.e. to the choice

of the explanatory variables and appropriate variance-covariance structures to u

and ǫ. This step in model selection and diagnosis is crucially important to obtain-

ing a model that can adequately describe the behavior of the target population

and can be performed as a systematic procedure like those proposed by [7] or

[43].

Once a specific model has been selected, the variance components θ need to

be estimated in order to assess the variability of estimators or to predict the fixed

and random effects. Several methods are available for estimating variance com-

ponents, such as the analysis of variance (ANOVA) method ([12]), the minimum

norm quadratic unbiased estimation (MINQUE) method ([33], [34], [35]) and the

likelihood methods. Some references about the maximum likelihood estimation

(MLE) method due to Fisher may be found in [9], [1], [23], [21], [15] and [18].

On the other hand, references about the residual maximum likelihood estimation
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(RMLE) method proposed by [41] and its extensions can be found in [24], [10],

[11], [2], [42], [14], [16], [17], among others. For details about estimation general

linear mixed models see [19].

Now consider the decomposition of all matrices into sample and non-sample

components, where the subscript s is associated with the n sample units and

r is associated with the (N−n) non-sample units. The omission of the subscript

indicates that the respective matrices allude to the whole population U ≡ s ∪ r.

Assuming model 3.2 holds and variance components are known, the best linear

unbiased estimator of β and the best linear unbiased predictor of θ are given by

˜β =
(

X′

sV
−1

s Xs

)

−1
X′

sV
−1

s ys ,(3.3)

ũ = GZ′

sV
−1

s

(

ys − Xs
˜β
)

,(3.4)

where Vs = E
[

(ys − Xsβ) (ys − Xsβ)
′

]

= ZsGZ′

s + Rss. The vectors u(j)
may

be predicted using ũ(j)
= G(j)Z′

(j)sV
−1

s (ys − Xs
˜β), while the predictors of the

errors ǫ, can be obtained as ǫ = R ·sV
−1

s (ys − Xs
˜β), where R ·s = [R′

ss R′

rs]
′
.

When the covariance matrix R =

[

Rss Rsr

Rrs Rrr

]

is block-diagonal, i.e. when

there is no correlation between errors associated with the observations inside and

outside the sample, then Rrs = 0 and ǫ̃r = 0. This is the case for model (3.1).

Nevertheless, it should be noted that some situations can be devised, particularly

when the spatial correlation can be established at unit level, where there is a

correlation between model errors that can be used in the prediction of ǫr.

3.3. Estimation of domain totals

The objective of the inference can be seen as to predict the total of an

interest variable, τd , that under the model corresponds to the summation of the

realizations of the variable of interest over all the elements in the small area d:

(3.5) τd =

∑

i∈Ud

ydi = τ ′

x,dβ +

H
∑

h=1

τ ′

x(1),hdu
(1)
h + τ ′

x(2),du
(2)
ad + τǫ,d ,

where τǫ,d =
∑

i∈Ud
ǫdi. It should be noted that, from the model-based point of

view, (3.5) is a predictable function producing inference in the narrow inference

space [22]. An estimator for the small area total, τd, can be obtained as

(3.6) τ̃d = 1′

Nd
ỹd =

∑

i∈Ud

ỹdi = τ ′

xd
˜β + v′

τsV
−1
s

(

ys − Xs
˜β
)

,

where ỹd is the EBLUP of the vector yd and v′

τs = τ ′

zdGZ′

s + 1′

Nd
Rd·,s is the

line vector of the model-based covariances between the small area total τd and
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the observable vector ys , Rd·,s = E(ǫadǫs), and 1′

Nd
is a unit vector of size Nd . It

should be noted that the estimator τ̃d is the EBLUP of τd , given the observable

random vector ys (cf. Appendix 1).

When Rd,rs is a null matrix, then the EBLUP of the total is τd is given by

a simplified expression:

(3.7) τ̃d = ˜E(τd,r|u) = τy,d,s + τ ′

x,d,r
˜β + τ ′

z,d,r GZ′

sV
−1

s

(

ys − Xs
˜β
)

,

where τy,d,s is the observed sample total in small area d (cf. Appendix 2). It should

also be noted that many of the regression estimators that have been proposed for

small area estimation may be viewed as EBLUP of domain totals for particular

cases of the class of models (3.1). For instance, the form of the nested error

regression model and the random coefficient model presented in Section 2 accord

with class (3.1), with u
(2)
d scalar, G(1)

= 0, G(2)
= σ2

u ID and R = σ2 In. Also,

the model underlying the synthetic regression estimator (2.2) is equivalent to

considering (3.1) with u
(1)
h scalar and taken as a fixed effect, G(2)

= 0 and R=

σ2 In. Moreover, the direct modified regression estimator (2.1), can be obtained

considering u
(1)
h and u

(2)
d scalars and taken as a fixed effects and R = σ2 In.

3.4. Domains not represented in the sample

Situations may arise where some domains are not represented in the sample.

If no sample falls into small area d, then the respective random effects u
(2)
d may

still be predicted if there is covariance between u
(2)
d and at least one of the small

area random effects represented in the sample u
(2)
e (e = 1, ..., D; e 6= d). We have

then

(3.8) ũ
(2)
d = G

(2)
d,· Z′

(2)sV
−1

s

(

ys − Xs
˜β
)

,

where G
′(2)
d,· = col ne 6=0

1≤e≤D

[

G
′(2)
d,e

]

= E
[

u(2)u
′(2)
d

]

and G
(2)
d,e = Σ(2)f(ld− le). In an

extreme situation where the small area effects u
(2)
d are not correlated with any

other small area effect for a domain represented in the sample, i.e. when G
(2)
d,e = 0,

∀ e 6= d : ne 6= 0, then ũ
(2)
d = 0. The estimator τ̃d is then reduced to a form similar

to a following synthetic estimator:

(3.9) τ̃d = τy,d,s + τ ′

x,d,r
˜β +

H
∑

h=1

τ ′

x(1),dh,r ũ
(1)
h .

It may be noted that this estimator may be written in the same generic form

(3.10) τ̂d = τ ′

x,d β̂ + f ′
(

ys − Xs β̂
)

,
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where f is used to weight the regression residuals. This form puts in evidence

that estimator (3.9) can be seen as a combined estimator where the weights in

f ′ allow a correction of the synthetic part of the estimator τ ′

x,d
˜β through the

prediction errors in the domain that is the target of inference, but also in other

domains spatially correlated. When no correlation between domains is specified,

the correction factor depends only on the prediction errors in the target small area

and the estimator is reduced to a similar form to the data-dependent combined

estimators presented in Section 2.

These characteristics seem to be particularly interesting when estimating in

small domains, where the available sample size is small, since it borrows informa-

tion from outside the domain of study in order to assist the estimation. Moreover,

taking advantage of the potential spatial correlation of data it is possible to avoid

the reduction of the proposed estimators to pure synthetic estimators even when

the sample size in the domain is null.

4. MONTE CARLO SIMULATION STUDY

4.1. Generation of the pseudo-population

For the simulation a pseudo-population is used. This population is obtained

from a real data set containing the responses to the 1993 wave of the Agricul-

tural Structure Survey. It is an agricultural survey conducted by the Portuguese

Statistical Office in the period between agricultural censuses. The responses for

the variable total production of cereals were extracted and circumscribed to the

NUTSII of Alentejo. The total sample size in this region is 7,060 and the pop-

ulation size 47,049. The design for the Agricultural Structure Survey is based

on stratified sampling. The sample is first stratified using the região agrária as

the level for geographic stratification. A região agrária is an administrative di-

vision used for agricultural purposes. In each região agrária a new stratification

is established based on Used Agricultural Surface (UAS) classes. In the same

região agrária some other strata are defined based on the value of other variables

considered weakly correlated with UAS. In Alentejo there are 19 strata.

For simulation purposes a pseudo-population is generated by replicating the

agricultural establishments in the sample proportionally to the inverse of their in-

clusion probabilities. The sampling frame resulting from this replication includes

the value of production of cereals for each establishment in 1993, and the same

value reported for 1989 (year of the agricultural census). The production in 1989

is used as an auxiliary variable in the models used in the simulation. Also, geo-

graphical coordinates associated with the centroids of freguesias were recorded.
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This was the lowest level of aggregation for which geographical referencing was

available. This means that geographical differentiation between establishments

included in the same freguesia is not available. A freguesia is an administrative

division that segments the Alentejo into 284 sub-regions.

4.2. Description of the simulations

Using the sampling frame corresponding to the pseudo-population of agri-

cultural establishments we have run a Monte Carlo simulation. The goal is to

evaluate the design-based properties of a set of alternative estimators. Note that

the approach followed in this paper is to evaluate the properties and relative

merits of the proposed estimators through simulation. In fact, due to the com-

plexity of these estimators their design-based properties (e.g. bias, variance) are

impossible to obtain through analytical methods. Also, their model-based prop-

erties would be of limited interest from the point of view of a benchmark with

alternative direct estimators used in this simulation whose properties only make

sense to evaluate from the design-based perspective. The target parameter is

the total of the variable production of cereals at freguesia level. The number

of simulations performed is 560. In each simulation a sample is drawn from the

pseudo-population U∗
, using a stratified design similar to the one used in the Agri-

cultural Structures Survey. The only difference in relation to that survey design

is that the sample size by stratum was reduced to 30% of the original size (2,118

establishments). The goal is to simulate a framework similar to that survey, but

with a smaller sample size, enabling the evaluation of the estimators’ behavior in

“critical” situations where the domain sample size is very small (sometimes only

a few units or even none). This sampling design leads to a relative precision of

7.5% (for a 95% confidence-level) in the estimation of the total of the interest

variable at the population level, using the Horvitz–Thompson estimator. The

expected sample sizes for the 284 domains of interest vary from 0.3 to 45.8 units.

4.3. Estimators

The estimators analyzed in the simulation are presented in this section.

They are mainly implementations of the direct, synthetic and combined regression

estimators presented in Sections 2 and 3. It should be noted that all the regression

estimators include the same auxiliary variables (associated with the fixed effects),

allowing a fair comparison of their relative merits. In what follows, the notation

ad is used to represent the small area d of region a, where the regions correspond

to the level of aggregation of NUTSIII and the small area of interest to freguesia.

Table 1 summarizes the estimators used in the simulation.
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Table 1: Estimators used in the simulation study.

Estimator Description

τ̂ad1 Horvitz–Thompson estimator

τ̂ad2 Direct modified regression estimator (2.1)

τ̂ad3 Dampened regression estimator (2.4)

τ̂ad4 Pure synthetic regression estimator (2.2) with fixed effects
estimated ignoring the sampling design

τ̂ad5 Synthetic regression estimator where the sampling design is
explicitly considered through the inclusion of a vector of design
variables Ehi indicating the belonging of each establishment i

to the strata h =1, ..., Heτad6 Data-dependent combined regression estimator based on the
nested error unit level regression modeleτad7 Data-dependent combined regression estimator, similar to eτad6

but including fixed strata effects βh0, h =1, ..., Heτad8 Data-dependent combined regression estimator, based on a
model included in the proposed class of models (3.1), with
random small area effects presenting a spatial covariance
structure following an isotropic exponential model.

The isotropic exponential model used to represent spatial variability in τ̂ad8

was suggested in the model diagnosis phase. We have tested several structures

(exponential, spherical, linear, log-linear and Gaussian), through the evaluation

the significance of covariance parameters (using Wald tests) and information cri-

teria (such as AIC and BIC). Among the structures that showed statistical sig-

nificance we retained the one that minimized the several information criteria.

Although we have chosen the exponential model, some of the other structures re-

sulted in very similar adjustments. Also note that for the data-dependent regres-

sion estimators the variance components are estimated through REML method.

The only exception regards estimator τ̃ad8 , where the parameter ce was estimated

a priori through the adjustment of an exponential semivariogram to an empirical

semivariogram.

Note that the estimators included in the simulation vary in nature: τ̂ad1 and

τ̂ad2 are design-based estimators, τ̂ad4 and τ̂ad5 are synthetic estimators, while the

others can be classified as combined estimators as described in previous sections.

The included estimators also differentiate in the way the sampling design is (or

not) taking into account: in τ̂ad1, τ̂ad2 and τ̂ad3 the sampling design information

is taking into account using sampling weights, τ̂ad5, τ̂ad7 and τ̂ad8 include fixed

strata effects, while in τ̂ad4 and τ̂ad6 the sampling design information is ignored.
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4.4. Precision and bias measures

The estimators under consideration are evaluated using a set of precision

and bias measures. In what follows K represents the number of simulations,

and τ̂kd the d th
small area estimate of the total obtained from the simulation k

(k = 1, ..., K).

4.4.1. Unconditional analysis

Taking into account the high number of small areas in the population (284)

and in order to facilitate the presentation of the simulation results, the small

areas are divided into six groups. Each group g contains Dg small areas. Table 2

presents the definition of each group and the number of small areas involved.

Table 2: Small area groups in the simulation study.

Group Expected sample size Number of small areas

0 — 20

1 [0; 2] 20

2 [2; 3.5] 43

3 [3.5; 5] 49

4 [5; 10] 87

5 [10;+∞] 65

Groups 1 to 5 were defined according to the expected sample size of the small

areas. Group 0 includes small areas for which the total of the interest vari-

able is zero (freguesias where there is no cereal production) regardless their size.

The goal is to separate these small areas from the other groups to prevent them

from changing the conclusions regarding the relative merits of the estimators.

The Monte Carlo relative error for the estimators’ expected value is on average

8.0% in group 1 and varies between 3.4% and 4.1% in groups 2 to 5.

For the unconditional analysis the following measures were considered for

each group g:

Average absolute bias: AABg = D−1
g

Dg
∑

d=1

ABd , where ABd = K−1
K
∑

j=1
|τ̂jd− τd| ;

Average MSE: AMSEg = D−1
g

Dg
∑

d=1

MSEd , where MSEd = K−1
K
∑

j=1
(τ̂jd− τd)

2
;
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Average variance: AVg = D−1
g

Dg
∑

d=1

Vd , where Vd = K−1
K
∑

j=1
(τ̂jd− ¯̂τd)

2
;

Average absolute bias ratio: AABRg =D−1
g

Dg
∑

d=1

ABRd , where ABRd =ABd/
√

Vd ;

Average coverage rate for a design-based

100(1−α) confidence interval: ACRg = D−1
g

Dg
∑

d=1

TCd ,

where TCd = 100×Rd/K and Rd represents the number of simula-

tions for which the confidence interval τ̂jd ± tα/2

√
Vd contains the

true parameter τd .

4.4.2. Conditional analysis

A conditional analysis was also conducted using a set of precision and bias

measures for each small area d. The superscript (nd) indicates that the respective

measure is conditioned to the realized sample size, nd, in small area d. They are:

Conditional relative bias: CRB
(nd)
d = K−1

nd

Knd
∑

j=1

(τ̂jd − τd)
/

τd ;

Conditional relative standard error: CRSE
(nd)
d =

√

√

√

√

√K−1
nd

Knd
∑

j=1

(τ̂jd − τd)
2
/

τd ;

Conditional variation coefficient: CVC
(nd)
d =

√

V
(nd)

d

/

τd ,

where V
(nd)

d = K−1
nd

Knd
∑

j=1
(τ̂jd− ¯̂τd)

2
is the conditional variance ;

Conditional bias ratio: CBR
(nd)
d = B

(nd)
d

/

√

V nd

d ,

where B
(nd)
d = K−1

nd

Knd
∑

j=1
(τ̂jd − τd) is the conditional bias ;

Coverage rate of the conditional design-based

confidence interval: CR
(nd)
d = 100×R

(nd)
d /Knd

,

where R
(nd)
d represents the number of simulations

for which the confidence interval τ̂jd ± tα/2

√

V
(nd)

d

contains the true parameter τd .
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4.5. Results

4.5.1. Unconditional analysis

Table 3 summarizes the unconditional results of the simulation study.

The values for absolute bias, variance and MSE are presented relatively to the

respective value associated with τ̂ad2.

Table 3: Unconditional results.

Group τ̂ad1 τ̂ad2 τ̂ad3 τ̂ad4 τ̂ad5 eτad6 eτad7 eτad8

Absolute bias

0 0.00 1.00 2.39 96.54 19.67 91.80 15.50 11.07
1 0.60 1.00 3.44 23.64 10.32 22.57 9.63 9.46
2 1.13 1.00 4.15 22.72 15.14 24.30 12.07 12.59
3 1.33 1.00 4.65 45.75 18.54 44.16 13.72 13.55
4 1.46 1.00 4.40 51.13 20.76 49.14 13.60 14.47
5 1.09 1.00 3.36 77.28 22.51 68.04 14.14 18.14

Variance

0 0.00 1.00 1.07 0.67 0.03 0.60 0.21 0.29
1 1.10 1.00 0.79 0.03 0.01 0.09 0.06 0.09
2 2.06 1.00 0.76 0.06 0.02 0.26 0.18 0.25
3 1.77 1.00 0.80 0.10 0.03 0.45 0.34 0.40
4 2.01 1.00 0.79 0.19 0.05 1.18 0.94 1.10
5 1.84 1.00 0.85 0.45 0.10 2.29 1.91 2.13

MSE

0 0.00 1.00 1.08 14.74 0.68 13.18 0.63 0.61
1 1.09 1.00 0.85 0.93 0.40 0.91 0.37 0.39
2 2.06 1.00 0.79 0.92 0.45 1.21 0.47 0.57
3 1.77 1.00 0.82 1.67 0.45 1.89 0.58 0.63
4 2.01 1.00 0.82 3.36 0.63 3.99 1.20 1.46
5 1.84 1.00 0.87 7.88 0.76 7.39 2.27 2.76

Bias ratio

0 0.01 0.04 0.09 5.39 4.55 5.15 2.29 1.68
1 0.03 0.04 0.19 5.36 6.40 3.86 2.58 1.63
2 0.03 0.03 0.18 3.64 3.70 2.18 1.44 1.26
3 0.03 0.03 0.14 3.45 3.05 2.13 0.85 0.71
4 0.04 0.03 0.15 3.74 3.58 2.11 0.75 0.62
5 0.03 0.03 0.12 3.70 2.60 1.76 0.40 0.42

Coverage Rate

0 1.00 0.96 0.96 0.01 0.16 0.00 0.59 0.71
1 0.97 0.97 0.95 0.07 0.32 0.21 0.51 0.69
2 0.96 0.96 0.94 0.28 0.37 0.48 0.65 0.70
3 0.96 0.95 0.94 0.23 0.46 0.50 0.82 0.84
4 0.96 0.95 0.95 0.23 0.35 0.48 0.84 0.86
5 0.96 0.95 0.95 0.18 0.44 0.60 0.91 0.91
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As expected the two design-based estimators τ̂ad1 and τ̂ad2 are approxi-

mately unbiased, even for very small areas. For these estimators the average

coverage rate is very near the nominal confidence level (95%). Nevertheless,

especially in the smallest domains, they show variance and MSE substantially

higher than those observed for the synthetic and combined estimators. It is also

to be noted that τ̂ad2 brings significant precision gains when compared with the

Horvitz–Thompson estimator.

On the other hand, the two synthetic estimators show very different be-

havior. τ̂ad4, which can be viewed as a pure synthetic estimator shows disastrous

behavior both in terms of bias and precision. These results are clear evidence

of the effects of ignoring an informative sampling design. On the other hand,

the synthetic estimator with fixed strata effects, τ̂ad5 , shows significant precision

gains when compared to the direct regression estimator. These precision gains

show a tendency to decrease as the expected sample size in the small areas in-

creases. Its major drawback is related to the high bias, which originates average

bias ratios that are always above 2.6, compromising the construction of design-

based confidence intervals. In fact the average coverage rate for this estimator is

always below 0.46, and in many cases near 0.30.

The combined regression estimator with sample-size dependent weights,

τ̂ad3 , shows a systematic precision gain when compared to the direct regression

estimator (with the exception of group 0, the ratio between the average MSE

of the two estimators is between 0.79 and 0.87). Nevertheless, these gains are

always moderate and substantially lower than the ones observed for the synthetic

regression estimator. This estimator also shows a very good behavior in what

regards bias. In fact, although having an absolute bias higher than those ob-

served for the direct estimators, the average bias ratio is always lower than 0.2,

which originates an average coverage rate very near the nominal confidence level.

With regard to the combined estimators with data-dependent weights it can once

again be observed that disregard of the sampling design, as in estimator τ̃ad6,

produces undesirable properties both in terms of bias and precision. In fact, τ̃ad6

systematically shows higher MSE than the direct regression estimator (with the

exception of group 1). It also exhibits dramatic biases (of the same magnitude as

the synthetic estimator τ̂ad4) and bias ratios that on average are situated between

1.76 and 5.15.

The combined estimators τ̃ad7 and τ̃ad8 , which explicitly consider strata

effects, show very different behavior. These estimators show average MSE that

for the smallest small areas (groups 0 to 3) is near those observed for the best

synthetic estimator, while allowing significant reduction in bias and bias ratio.

In particular, τ̃ad7 based on a nested error model with fixed strata effects re-

veals important precision gains when compared to the direct regression estimator,

τ̂ad2 , or the sample-size dependent regression estimator, τ̂ad3 , in groups 0 to 3.
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It is to be noted that for groups 4 and 5 (corresponding to expected sample sizes

higher than 5 units) τ̃ad7 shows some precision loss regarding the direct regression

estimator, which is particularly important in group 5. It is also significant that,

in the groups 0 to 3, τ̃ad7 exhibits a MSE that is similar or even smaller than

that associated with the synthetic estimator τ̂ad5 . In these groups the increase

in variance in τ̃ad7 is more than compensated by the reduction in bias. In what

regards bias measures, the estimator τ̃ad7 shows a behavior that is situated be-

tween those recorded for the direct and the synthetic estimators. The average

absolute bias ratios vary from 0.40 to 2.58 (increasing with the reduction of the

expected sample size) and are strikingly lower than the ones associated with the

synthetic estimators (varying between 15% and 50% of those obtained for the

best synthetic estimator). This results in average coverage rates for a design-

based confidence interval that are substantially higher than those observed for

the synthetic estimators.

The estimator τ̃ad8 considers a spatial covariance based on an isotropic

exponential structure at the small area level. For all small area groups (with the

exception of group 0) it shows a small loss of precision when compared to τ̃ad7 ,

but still allows important precision gains regarding the direct estimators and the

sample-size dependent regression estimator, τ̂ad3 , in groups 0 to 3. It is worth

noting that this decline in precision is mainly induced by an increase in variance,

since τ̃ad8 shows average absolute bias that is very near or even smaller than for

τ̃ad7 (mainly in the smaller areas). The bias ratios for τ̃ad8 are, for groups 0

to 4, substantially smaller than those observed for τ̃ad7 , varying now from 0.42

to 1.68. The reduction in the bias ratio tends to diminish with the increase in

the expected sample size, resulting that in group 5 the bias ratio of the two

estimators is similar. In fact it is in smaller areas that τ̃ad7 approximates more

closely a synthetic estimator, allowing the additional sample information used in

τ̃ad8 (from other spatially correlated small areas) to contribute to bias reduction.

Between the combined estimators that allow precision gains in small areas groups

0 to 3, τ̃ad8 is the one that shows the best behavior in terms of average bias ratio,

which varies from 16% to 37% of those obtained for the best synthetic estimator.

4.5.2. Conditional analysis

Figure 1 and Table 4 summarize the simulation’s conditional results for one

small area in the study. Considering the large number of small areas in the study

(284), these data are only intended to illustrate typical results associated with

one of the smallest areas. The results refer to a small area with expected sample

size of 4.2 units, thus belonging to group 3.
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Figure 1: Conditional results.

Table 4: Unconditional coverage rates.

Sample size τ̂ad1 τ̂ad2 τ̂ad3 τ̂ad4 τ̂ad5 eτad6 eτad7 eτad8

2 0.52 0.90 0.51 0.80 0.31 0.83 0.81 0.84

3 0.88 0.89 0.81 0.74 0.32 0.77 0.90 0.88

4 0.98 0.95 0.95 0.61 0.29 0.72 0.91 0.90

5 0.91 0.96 0.96 0.66 0.35 0.89 0.94 0.94

6 0.88 0.97 0.96 0.78 0.27 0.89 0.92 0.92

The two design-based estimators τ̂ad1 and τ̂ad2 show bad conditional prop-

erties, namely in what regards bias. In fact, both estimators show important

conditional biases and bias ratios when the effective sample size departs from the

expected sample size. This phenomenon is particularly notable in the Horvitz–

Thompson estimator. This bias tends to be negative for effective sample sizes

that are smaller than expected and positive for expected sample sizes that are

larger than expected. Also, when effective sample size is smaller than the ex-

pected sample size, the conditional variation coefficients tend to show a rising

pattern with the increase in the effective sample size. The combined result of

this bias and variance behavior is a conditional relative standard error that for

both estimators tends to increase with the effective sample size (for sample sizes

above the expected). When the effective sample size is significantly smaller or

greater than the expected sample size, these estimators (and mainly τ̂ad1) show

a significant degradation in precision. These patterns are particularly notable in

the small areas with a very small sample size.
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On the other hand, although the synthetic estimators show very high bias

and bias ratios (resulting in very low conditional coverage rates for a design-based

confidence interval), they are seen to be approximately constant and therefore

independent of the effective sample size for each small area. The conditional

variation coefficient is clearly constant showing independence from the sample

size in the small area. The combined result of these patterns is a relative standard

error which is also approximately invariant with the effective sample size. From

this conditional point of view, the synthetic regression estimator can still be

considered one of the most precise estimators.

For effective sample sizes that are smaller than the expected sample size the

combined regression estimator with sample-size dependent weights, τ̃ad3, shows

important conditional biases and bias ratios that for significant departures are

similar to those observed for the synthetic estimators. For sample sizes that

are greater than expected τ̃ad3 tends to show a behavior similar to the direct

regression estimator τ̂ad2. Therefore, the resulting conditional coverage rates

for a design-based confidence interval also show a behavior similar to a synthetic

estimator for sample sizes that are smaller than expected and similar to the direct

regression estimator when they are higher than expected. The relative standard

error also tends to show the bad property observed for the direct estimator,

characterized by an increase with the effective sample size, mainly for the smallest

areas.

The combined estimators τ̃ad7 and τ̃ad8 show interesting conditional prop-

erties as they show a mixed behavior between the direct regression estimator τ̂ad2

and the synthetic regression estimator τ̂ad5 . This behavior is characterized by

a significant resistance of precision and bias to departures between the effective

sample size and the expected sample size.

It can be observed that τ̃ad7 shows a conditional bias and bias ratio that

are approximately constant, although with a slight tendency to increase with

the reduction of the effective sample size. As to bias, this estimator shows a

clear advantage when compared to the synthetic estimators and even when com-

pared to the direct estimators and the sample-size dependent combined estimator,

particularly when the sample size departs from the expected sample size. This

results in conditional coverage rates which in extreme situations are closer to

the confidence level than those associated with some design-based estimators.

The conditional variance only shows a very slight tendency to rise with an in-

crease in the effective sample size, resulting in a conditional relative standard

error that is approximately constant. From the precision point of view it can be

seen that this estimator is still competitive with the best synthetic estimator and

maintains important precision gains when compared to the direct estimators and

the sample-size dependent combined estimator (especially when the effective and

expected sample sizes are different).
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The estimator τ̃ad8 magnifies these bias and bias ratio reductions as it

continues to show smaller conditional bias and bias ratios than τ̃ad7. Although

not seen in this illustrative small area, global results showed that these bias

reductions are particularly notable for effective sample sizes smaller than the

expected sample sizes. In fact, it is in the smaller areas and particularly when

the effective sample sizes are smaller than expected that there is an opportunity

to reduce bias by borrowing information from other domains through the use of

spatial correlations. The conditional variation coefficient still shows significant

resistance to departures from the expected sample size. For sample sizes below

the expected the variation coefficient tends to be slightly higher than the one

obtained for τ̃ad7, and still shows a pattern of a slight increase with the growth of

the effective sample size. This increase is now lessened since a part of the variance

is due to data provided by small areas in the neighborhood of the target small

area. The conditional relative standard error continues to be reasonably constant

and not substantially higher than the one obtained for τ̃ad7 . Overall, it can be

concluded that among the combined estimators analyzed τ̃ad8 is the estimator

that exhibits the best conditional properties for bias and coverage rates for a

design-based confidence interval.

5. MAIN FINDINGS AND DISCUSSION

The results of the empirical study show that the combined estimators ob-

tained from the model classes proposed can compete in precision with the best

synthetic estimators analyzed, while also allowing large reductions at the level

of bias and, particularly, the bias ratio. They manage to show better precision

than synthetic estimators for very small domains, and thus provide an important

alternative to such estimators. The results attained seem to confirm that the

combination of a synthetic and a direct component manages to take into account

a significant part of the bias in the purely synthetic estimator, trading it for an

increase in variance.

It should be noted that for this population the proposed estimators only

prove interesting for inference related to domains of a small expected sample size

(up to 5–10 units for the population analyzed). For larger sample sizes they cease

to show precision gains in comparison with the best direct estimators (particularly

with some direct modified regression estimators).

When the adjusted data displays spatial variability, the estimators that

take advantage of the spatial correlation between observations tend to present

reductions in bias (and mainly bias ratio) when compared with estimators that

ignore this variability. These reductions are usually accompanied by a modest
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loss of precision, resulting in bias ratios that are generally substantially lower

than those obtained for these other estimators. This fact is easy to understand if

we take into account that the consideration of spatial information implies the use

of observations that are exogenous to each small area when estimating its random

effect. It is natural that the inclusion of such information will also introduce some

additional variability in the resulting estimator. The spatial information permits

a repositioning of the estimator, which will display behavior that is further away

from that presented by a synthetic estimator and gain the characteristics of a

direct estimator. It should be pointed out that when the sample size in the

inference target domain is very small or even non-existent, the introduction of

spatial information relating to other domains can prevent the estimators being

reduced to ‘pure’ synthetic estimators and maintain mixed characteristics between

a synthetic and a design-based estimator. This fact helps to explain the good

behavior of these estimators in domains with a very small sample size.

The proposed estimators clearly show interesting conditional characteris-

tics, as they tend to behave in a way that is typified by strong robustness, both

in precision and bias, to differences in effective and expected sample size. Their

remarkable conditional behavior is clearly demonstrated by the fact that their

conditional bias ratios are in many cases lower than those registered for direct es-

timators, specially when there are significant discrepancies between the effective

and expected sample size. In particular, estimators that exploit spatial correlation

continued to show reductions in conditional bias and conditional bias ratios when

compared with estimators that ignore this variability. In fact, we can conclude

that while the proposed estimator shows interesting unconditional properties, it is

within a conditional point of view that its advantage over competitive estimators

strikes.

One of the main limitations of this study lies on the fact that only the

specification of isotropic spatial covariance structures was considered. In fact, in

a context where the differences between the coast and the hinterland are presum-

ably very different from those between the north and south, resort to anisotropic

spatial models can allow the reality to be more satisfactorily represented. How-

ever, the sheer complexity of calculation presented by these structures, arising

from the need to process a considerable amount of data, rendered the estima-

tion of these models unviable. Although the proposed estimator is thought to

be applicable to the context where data of spatial nature is present, it would

be interesting to test its application to other contexts, whenever is possible to

establish some kind of proximity between the small areas of study.

It should be also stressed that the conclusions presented are depended of

the used data set. Although we have used a realistic data set based on real

data from a National Statistical Office, the use of different data sets, for example

exhibiting different spatial correlation, can lead to different results and possibly

different conclusions. Therefore, the proposed estimators should be tested with
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other sets of real and artificial data before they are selected for application in

other contexts. In fact, empirical studies have revealed to be a fundamental

stage in the process of choosing an estimator. The results of such studies can,

moreover, help to create greater confidence on the part of potential users of these

kinds of estimators.

A. APPENDIX 1

The estimation of τd is performed thought the prediction of the realizations

of the vector yd. Under the model (3.2) the EBLUP is:

ỹd = Xd
˜β + Zd ũ + ǫ̃d

= Xd
˜β + ZdGZ′

sV
−1

s

(

ys − Xs
˜β
)

+ Rd,sV
−1

s

(

ys − Xs
˜β
)

= Xad
˜β + Vad,sV

−1
s

(

ys − Xs
˜β
)

,

where the subscript d indicates that the respective matrices only include observa-

tions from the small area d, Rd,s =E(ǫdǫs) and Vad,s =E
[

(yd−Xdβ)(yd−Xdβ)
′

]

= E(Zduu′Z′

s) + E(ǫdǫs) = ZdGZ′

s +Rd,s . With the EBLUP ỹd, the estimator

of τd may be obtained as:

τ̃d =

∑

i∈Ud

ỹdi = τ ′

xd
˜β + τ ′

z,dGZ′

sV
−1

s

(

ys − Xs
˜β
)

+ 1′

Nd
Rd·,sV

−1
s

(

ys − Xs
˜β
)

= τ ′

xd
˜β + v′

τsV
−1

s

(

ys − Xs
˜β
)

,

where Rd·,s = E(ǫadǫs) and v′

τs = E
[

(τd − τ ′

x,dβ) (ys − Xsβ)
′

]

= τ ′

z,dGZ′

s +

1′

Nd
Rd·,s .

B. APPENDIX 2

The vector ỹd may be decomposed into ỹ′

d = (ỹ′

d,s, ỹ
′

d,r)
′
. From mixed model

theory it is straightforward that ỹd,s = yd,s , with the unobservable part of yd

predicted by

ỹd,r = Xd,r
˜β + Zd,rũ + ǫ̃d,r = Xd,r

˜β + Vdr,sV
−1

s

(

ys − Xs
˜β
)

,

where Rdr,s = E(ǫd,r ǫs) and Vdr,s = E
[

(yd,r−Xd,r β) (ys−Xsβ)
′

]

= E(Zd,ruu′Z′

s)

+E(ǫd,r ǫs) = Zd,r GZ′

s+Rdr,s . When Rdr,s is a null matrix, then the covariances

between the unobservable vector yd,r and the observable vector ys are uniquely

determined by the random effects u. Consequently the EBLUP of yd,r coincides

with the EBLUP of E(yd,r|u):

ỹd,r = ˜E(yd,r|u) = Xd,r
˜β + Zd,rGZ′

sV
−1

s

(

ys − Xs
˜β
)

.
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The EBLUP total for the unobservable part of the small area τd,r is now equal

to the EBLUP of E(τd,r|u), with

τ̃d,r = ˜E(τd,r|u) = τ ′

x,d,r
˜β +

H
∑

h=1

τ ′

x(1),dh,rũ
(1)
h + τ ′

x(2),d,rũ
(2)
d

= τ ′

x,d,r
˜β + τ ′

z,d,r GZ′

sV
−1

s

(

ys − Xs
˜β
)

,

and the estimator of τd is given in a simplified expression by

τ̃d = τy,d,s + τ ′

x,d,r
˜β + τ ′

z,d,r GZ′

sV
−1

s

(

ys − Xs
˜β
)

,

where τy,d,s is the observed sample total in small area d.
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1. INTRODUCTION

In order to estimate a tail index using k upper order statistics, one needs

to determine an appropriate value of k. There exist a variety of diagnostic plots

and adaptive estimation methods that assist in threshold selection. The list of

plots includes Zipf, Hill, empirical mean-excess and sum plots. Adaptive selection

procedures are listed for instance in Beirlant et al. (2005). The aim of this paper

is to generalize the graphical tool developed by Sousa and Michailidis (2004)

assisting in choosing a sensible estimate or a value of k. Their sum plot is based

on the assumption that the distribution is heavy tailed. We extend the approach

to all estimators which use a set of extreme order statistics in the estimation

of a real valued extreme value index. Here we illustrate the approach using the

generalized Hill estimator introduced in Beirlant et al. (1996b) and the moment

estimator proposed by Dekkers et al. (1989).

In this paper we also propose new estimators of the extreme value index

based on the regression associated to the estimates of the (generalized) Hill esti-

mator for various k = 1, ..., K for some K.

The article is organized as follows. In section 2, we first specify the original

sum plot in subsection 2.1. Then we generalize it using the generalized Hill

estimator in subsection 2.2 and using the moment estimator in subsection 2.3.

In subsection 2.4 we illustrate the method with some simulation results. The

new estimators based on regression models are introduced in section 3, first for

the original Hill sum plot in subsection 3.1 and then for the generalized Hill sum

plot in 3.2. Finally, some simulations and practical examples are presented in

subsections 3.3 and 3.4.

2. SUM PLOTS

The sum plot by Sousa and Michailidis (2004) and Henry III (2009), are

examples of the following principle. Let γ̂k,n (which uses k upper order statistics

from the total sample of size n) be a consistent estimator of γ as k, n → ∞ and

k/n → 0. Assume first that γ̂k,n is an unbiased estimator i.e. Eγ̂k,n = γ. Define

the random variables Sk, for k = 1, 2, ..., n −1, by

(2.1) Sk := k γ̂k,n

then ESk = k γ. Therefore the plot (k, Sk) is approximately linear for the range

of k where γ̂k,n ≈ γ, i.e. γ̂k,n is constant in k. The slope of the linear part

of the graph (k, Sk) can then be used as an estimator of γ. Assume now that

γ̂k,n is a consistent estimator but biased, that is Eγ̂k,n = γ + (bias), then ESk =
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k γ+k(bias). If the bias is constant in k then (k, Sk) is again linear with the slope

equal to γ + (bias). Typically though the bias is not constant in k and hence the

path of (k, Sk) will depend on the non constant function in k defining the bias.

The sum plot introduced in Sousa and Michailidis (2004) is based on the Hill

estimator (Hill, 1975). The sum plot by Henry III (2009) is based on a harmonic

moment estimator. Both proposals were limited to the family of Pareto-type

distributions.

So given γ̂k,n, any consistent estimator of γ based on k top order statistics,

we propose a sum plot (k, Sk) based on γ̂k,n with Sk defined in (2.1). The only

strong assumption on γ̂k,n is consistency which is a natural requirement on any

estimator. This plot could be helpful in identifying an appropriate region of k,

the number of order statistics to be used in γ̂k,n. One could argue that the plots

(k, Sk) and (k, γ̂k,n) are statistically equivalent. The sum plot naturally leads to

the estimation of the slope whereas (k, γ̂k,n) leads to horizontal plots and hence

estimation of the intercept. Here we consider the case of a real-valued γ and

hence increasing or decreasing sum plots allow to assess the sign of γ.

Since each estimator will have its own sum plot, we hereafter name the

associated sum plot along the name of the estimator. For example the sum plot

based on the Hill estimator is named the Hill sum plot.

In the following subsections we illustrate the proposed sum plot principle

using the Hill, the generalized Hill and the moment estimator. We also illustrate

the performance of these sum plots on simulated data and on some real data sets.

2.1. The Hill sum plot

Let X1,n < X2,n < · · · < Xn,n denote the order statistics of a random

sample (X1, X2, ..., Xn) from a heavy tailed distribution F with

(2.2) 1 − F (x) = x−1/γ lF (x) , x > 0 ,

where lF is a slowly varying function at infinity satisfying

lF (λx)/lF (x) → 1 when x → ∞ , for all λ > 0 .

Let the random variables SH
k,n (k = 1, ..., n) be defined as

(2.3) SH
k,n =

k
∑

j=1

Zj :=

k
∑

j=1

j log
Xn−j+1,n

Xn−j,n
.

Sousa and Michailidis (2004) introduced the diagnostic plot (k, SH
k,n), the sum

plot for estimating the tail index γ. This plot is called the Hill sum plot since
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the Hill (1975) estimator Hk,n satisfies

(2.4) Hk,n =
1

k

k
∑

j=1

log Xn−j+1,n − log Xn−k,n =
1

k
SH

k,n .

To understand the behavior of the Hill sum plot we rely on a representation

of the variables Zj from (2.3) (j = 1, ..., n) provided in Beirlant et al. (2001).

We remind that the model (2.2) is well-known to be equivalent to

(2.5) U(x) = xγ lU (x) ,

where U(x) = inf
{

y : F (y) ≥ 1 − 1/x
}

(x > 1) and with lU again a slowly varying

function. Often, the following second order condition on lU is assumed

lU (tx)

lU (x)
= 1 + b(x)

tρ−1

ρ

(

1 + o(1)
)

,

where b is a rate function satisfying b(x) → 0 as x → ∞ and ρ < 0. Under this

second order condition, Beirlant et al. (2001) have shown that

(2.6)

∣

∣

∣

∣

∣

Zj −
(

γ + bn,k

( j

k + 1

)

−ρ
)

Ej + βj

∣

∣

∣

∣

∣

= oP (bn,k) ,

uniformly in j ∈ {1, ..., k}, as k, n → ∞ with k/n → 0, where (E1, ..., Ek) is a

vector of independent and standard exponentially distributed random variables,

bn,k := b
(

(n +1)/(k +1)
)

, 2 ≤ k ≤ n −1 and
1
k

∑k
j=1 βj = oP (bn,k).

Hence, for SH
k =

∑k
j=1Zj ,

∣

∣

∣

∣

∣

∣

SH
k −

(

k γ + k bn,k/(1− ρ) + γ
k
∑

j=1

(Ej −1) + oP (k bn,k)

)

∣

∣

∣

∣

∣

∣

= oP (k bn,k)

since
1
k

∑k
j=1

( j
k+1

)

−ρ ∼ 1
1−ρ as k, n → ∞ with k/n → 0, where as usual, an ∼ bn

is equivalent to an/bn → 1 as n → ∞.

In the specific case where b(x) = Cxρ
(

1 + o(1)
)

for some real constant C

(Hall, 1982), then we obtain

(2.7)

∣

∣

∣

∣

∣

∣

SH
k −

(

k γ + Cnρk1−ρ
+ γ

k
∑

j=1

(Ej −1)

)

+ oP (k bn,k)

∣

∣

∣

∣

∣

∣

= oP (k bn,k) .

Sousa and Michailidis (2004) only considered the case C = 0.

The Hill sum plot is a graphical tool in which one is searching for a range

of k where the sum plot is linear, or equivalently where Hk,n is constant in k,

if such a behaviour becomes apparent. Whereas the Hill estimator can be seen as
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an estimator of the slope in a Pareto quantile plot (see for instance Beirlant et al.

(1996a) and Kratz and Resnick (1996)), the sum plot now can be viewed as a

regression plot from which new estimators can be constructed by regression of SH
k,n

on k, as suggested by (2.7). As the regression error will turn out smaller on the

sums of noise variables γ(Ej −1) rather than on extreme log-data, regression on

the sum plot appears to be an interesting alternative approach. In practice we put

ρ =−1 so that in that case we will fit a quadratic regression model as discussed

in Section 3. The second order parameter could be replaced by estimators such

as discussed in Fraga Alves et al. (2003). In the simulation study the case of the

Burr distribution with ρ = −0.5 gives an idea of the loss of accuracy by setting

ρ = −1.

2.2. The generalized Hill sum plot

Using a similar approach we derive the generalized sum plot for γ ∈ R based

on the generalized Hill estimator by Beirlant et al. (1996b). Here the underlying

model is that the distribution belongs to a maximum domain of attraction: there

exist sequences of constants (an; an > 0) and (bn) such that

lim
n→∞

P

(

Xn,n − bn

an
≤ x

)

= exp
(

−(1 + γx)
−1/γ

)

, 1 + γx > 0 .

Define the function UH as follows

(2.8) UH := U(x) E
(

log X − log U(x)
∣

∣ X > U(x)

)

.

This function possesses the regular variation property for the full range of γ.

The empirical counterpart of UH at x = n/k is given by

(2.9) UHk,n := Xn−k,n

(

1

k

k
∑

i=1

log Xn−i+1,n − log Xn−k,n

)

= Xn−k,n Hk,n .

Using the property of regular variation of UH, Beirlant et al. (1996b) proposed

an estimator of γ ∈R by fitting a constrained least-squares line to the points

with coordinates (− log(j/n), log UHj,n) (j = 1, ..., k) to obtain the generalized

Hill estimator H∗

k,n. Similarly as in (2.4), H∗

k,n is given by

(2.10) H∗

k,n =
1

k

k
∑

i=1

(

(i +1) log
UHi,n

UHi+1,n
+

i +1

i
− (i +1) log

i +1

i

)

.

Define random variables SUH
k , for k = 1, ..., n − 2, as

(2.11) SUH
k :=

k
∑

i=1

(i +1)

(

log

(

Xn−i,n

Xn−i−1,n

Hi,n

Hi+1,n

)

+
1

i
+ log

i +1

i

)

.
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Since SUH
k = kH∗

k,n, we obtain the generalized Hill sum plot (k, SUH
k ), and we

expect that for the range of k where H∗

k,n is constant (or stable) the plot will

be linear. Note that the range of k where the Hill estimator is constant, the

term Hj,n/Hj+1,n → 1, and (2.11) is almost reduced to SH
k , except that the term

including the largest observation is deleted.

Under general second order regular variation conditions, in Dierckx (2000)

it is shown that for 1 ≤ j ≤ k, 2 ≤ k ≤ n − 2, it holds for

Z∗

j := (j +1)

(

(

log UHj,n − log UHj+1,n

)

+
1

j
+ log

j +1

j

)

that

∣

∣

∣

∣

∣

∣

Z∗

j −





(

γ + b̃n,k

(

j +1

k +1

)

−ρ
)

Ej+1 + γ (Ej+1−1)(2.12)

+ (j +1)

(

log
Ēj

Ēj+1
− log

j +1

j
+

1

j

)



+ β̃j

∣

∣

∣

∣

∣

∣

= oP

(

b̃n,k

)

as k, n → ∞ with k/n → 0, where (E1, ..., Ek) is a vector of independent and

standard exponentially distributed random variables, Ēj denotes the sample mean

of (E1, ..., Ej), b̃n,k is some generic notation for a function decreasing to zero, ρ < 0

and
1
k

∑k
j=1 β̃j = oP (bn,k). Note also that for γ < 0, the above expression only

holds for j → ∞.

Let us denote ej := γ (Ej+1−1) + (j +1)

(

log
Ēj

Ēj+1
− log

j+1
j +

1
j

)

. In Dierckx

(2000) it is shown that

Eei = 0 ,

Cov(ei, ej) =
γ

j
, i < j ,(2.13)

Var(ei) = (γ − 1)
2
+

1 + 2 i

i2
.

Model (2.12) is a direct generalization of the regression model (6) used in

the Hill sum plot, leading to a generalized Hill sum plot regression approach.

In practice we fit the regression model

(2.14) SUH
k = k γ + Cρk1−ρ

+

k
∑

j=1

ej .

In the simulations below we will replace ρ by the canonical choice −1 so that

later on we fit a quadratic regression model to the responses SUH
k , k = 1, ..., K for

some K > 0.
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2.3. The moment sum plot

Let H
(2)
k,n be defined as follows

H
(2)
k,n :=

1

k

k
∑

i=1

(

log Xn−i+1,n − log Xn−k,n

)2
.

The moment estimator Mk,n (Dekkers et al. (1989)) is given by

(2.15) Mk,n := Hk,n + 1 − 1

2

(

1 −
H2

k,n

H
(2)
k,n

)

−1

where Hk,n is the Hill estimator from (2.4).

Let the random variables SM
k , for k = 1, ..., n −1, be defined as

(2.16) SM
k :=

(

k
∑

i=1

log Xn−i+1,n − log Xn−k,n

)

+ k − k

2

(

1 −
H2

k,n

H
(2)
k,n

)

−1

.

Definition (2.16) is equivalent to writing SM
k = k Mk,n, hence (k, SM

k ) is the mo-

ment sum plot. However here a regression model has not been established to the

best of our knowledge.

2.4. Simulation results

The different sum plots have been applied to some simulated data sets.

Six distributions are considered:

• The strict Pareto distribution given by F (x) = 1− x−1/γ
, x > 1, γ > 0.

We have chosen γ = 1. Here b(x) = 0.

• The standard Fréchet distribution given by F (x) = exp(−x−1/γ
), x > 0,

γ > 0. We have chosen γ = 1. Here ρ = −1.

• The Burr distribution F (x) = 1−
(

η
η+x−τ

)λ
, x > 0, η, τ, λ > 0. We have

chosen η = 1, τ = 0.5, λ = 2, such that γ = 1. Here ρ = −1/λ = −0.5.

• The gamma distribution F (x)=
1

ba Γ(a)

∫ x
0 ta−1

exp(−t/b) dt, x>0, a,b>0.

Here we have chosen a = 2, b = 1. Always, γ = 0.

• The uniform distribution F (x) = x (0 < x < 1). Here γ = −1.

• The reversed Burr distribution F (x) = 1−
(

β
β+(x+−x)−τ

)λ
, x>0, η,τ,λ>0,

x+ denotes the right endpoint of the distribution. We have chosen η = 1,

τ = 0.5, λ = 2, x+ = 2, such that γ = −1. Here ρ = −1/λ = −0.5.
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The Hill sum plots, the generalized Hill sum plots and the moment sum plots of

these distributions are shown in Figure 1.
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Figure 1: The Hill sum plot (full line); generalized Hill sum plot (dashed line) and

the moment sum plot (dotted line) are plotted for simulated data sets of

size n=500 from the: (a) strict Pareto; (b) Fréchet; (c) Burr; (d) gamma;

(e) uniform; (f) reversed Burr distribution.

For γ > 0, the three sum plots are comparable for the linear parts of the plots.

For γ = 0 and γ < 0, the generalized Hill sum plot and the moment sum plot are

comparable on these particular data sets. However the generalized Hill sum plot

seems to be less volatile. The sum plots can be used to identify the sign of γ
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for a given data set: increase in k indicates γ > 0, a horizontal pattern indicates

γ = 0 and decrease in k indicates γ < 0. In future work this could be used to test

the domain of attraction condition. For an overview of this problem we can refer

to Neves and Fraga Alves (2008). Moreover, the linear part of these generalized

sum plots can be used to estimate the value of tail index.

3. REGRESSION ESTIMATORS

As indicated before, we propose regression estimators for the extreme value

index γ based on the slope of the Hill and the Generalized Hill sum plots.

3.1. Hill sum plot estimators

Huisman et al. (2001) introduced a new estimator for γ > 0 based on the

Hill sum plot which can be understood from (6). It indeed follows from (6) that

for some constant D

(3.1)

∣

∣

∣Hk,n −
(

γ + Dk−ρ
+ ǫk

)

∣

∣

∣ = oP (bn,k)

where ǫk = γ/k
∑k

j=1(Ej −1), leading to the regression model

(3.2) Hk,n = γ + Dk−ρ
+ ǫk , k = 1, ..., K .

Since the variance of the error term Var(ǫk) = γ2/k is not constant, a weighted

least squares regression is applied with a K×K diagonal weight matrix W =

diag
√

1, ...,
√

K. Note that in this way, Huisman et al. (2001), did not take into

account that the error terms are not independent.

In practice, we put ρ = −1. Huisman et al. (2001) assumed that ρ = −1/γ

which is the case for an extreme value distribution.

Remark that when deleting the second order term Dk−ρ
in the regression

model, one obtains a simple average of K Hill estimators. Due to the volatile

behaviour of Hill estimators Hk,n as a function of k it is known that a robust

average of Hill estimators provides better estimators. This will be discussed in

more detail in case of the generalized Hill sum plot where we apply weighted

trimmed least squares regression.
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3.2. Generalized Hill sum plot estimators

In a similar way, a new estimator can be introduced for real valued γ based

on the generalized Hill sum plot. Indeed from (2.14)

(3.3) H∗

k,n = γ + Dk−ρ
+ ǫ̃k , k = 1, ..., K .

with ǫ̃k =
∑k

j=1 ej/k. The variance of ǫ̃k is asymptotically equal to the asymptot-

ical variance AVar(H∗

k,n) which, according to Beirlant et al. (2005) is equal to

AVar(H∗

k,n) =
1 + γ2

k
; γ > 0

=
(1 − γ) (1 + γ + 2 γ2

)

(1 − 2 γ) k
; γ < 0 .

Since the variance of the error term Var(ǫk) = Cγ/k is not constant, a weighted

least square regression is applied with the same K×K weight matrix W as in

case of the Hill sum plot. Here again we ignore the fact that the error terms are

not independent. We also put ρ = −1.

We also apply weighted trimmed least squares regression minimizing the

sum of the ⌊n/2⌋ +1 smallest squared residuals. For more information we refer

to Rousseeuw and Leroy (1987).

3.3. Simulation results

In Figures 2 till 5 we show the simulation results we obtained concerning

weighted least squares regression estimators, trimmed and non trimmed, for some

of the distributions considered in Section 2.4. For each distribution 100 repetitions

of samples of size n = 500 were performed.

Weighted trimmed least squares yields less bias but somewhat higher mean

squared error compared with the non robust regression algorithm. In case γ > 0

we also show the results for the weighted least squares estimators based on the

Hill sum plot. Hill sum plots then yield better results than the generalized Hill

sum plot. Also the trimmed regression algorithm is typically better than the

non-robust version in case of the generalized Hill sum plot.
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Figure 2: Fréchet distribution: (a) means of Hk,n (full line), H∗

k,n
(dashed line) and

Mk,n (dotted line) as a function of k; (b) MSE of the estimators in (a);

(c) means of weighted least squares estimators based on the regression model

of the Hill sum plot (full line) and generalized Hill sum plot (dashed line);

(d) MSE of the estimators in (c); (e) same as in (c), but now weighted

trimmed least squares is used; (f) MSE of the estimators in (e).
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Figure 3: Burr distribution with ρ =−0.5: (a) means of Hk,n (full line), H∗

k,n
(dashed

line) and Mk,n (dotted line) as a function of k. (b) MSE of the estimators in (a).

(c) means of weighted least squares estimators based on the regression model

of the Hill sum plot (full line) and generalized Hill sum plot (dashed line);

(d) MSE of the estimators in (c); (e) same as in (c), but now weighted

trimmed least squares is used; (f) MSE of the estimators in (e).
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Figure 4: Gamma distribution: (a) means of H∗

k,n
(dashed line) and Mk,n (dotted line)

as a function of k; (b) MSE of the estimators in (a); (c) means of weighted

least squares estimators based on generalized Hill sum plot (dashed line);

(d) MSE of the estimators in (c); (e) same as in (c), but now weighted

trimmed least squares is used; (f) MSE of the estimators in (e).
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Figure 5: Reversed Burr: (a) means of H∗

k,n
(dashed line) and Mk,n (dotted line)

as a function of k; (b) MSE of the estimators in (a); (c) weighted least

squares estimators based on the generalized Hill sum plot (dashed line);

(d) MSE of the estimators in (c); (e) same as in (c), but now weighted

trimmed least squares is used; (f) MSE of the estimators in (e).
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3.4. Some practical examples

We end this paper showing the proposed methods into action. We apply

the methods to two data sets proposed earlier in Beirlant et al. (2004). The data

sets themselves can be found on http://lstat.kuleuven.be/Wiley.

The first data set contains daily maximal wind speeds at Brussels airport

(Zaventem) from 1985 till 1992.
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Figure 6: Zaventem daily maximum wind speed data: (a) Hk,n (full line), H∗

k,n

(dashed line) and Mk,n (dotted) as a function of k; (b) weighted least

squares estimators based on the regression model of the Hill sum plot

(full line) and generalized Hill sum plot (dashed line); (c) same as in (b),

but now weighted trimmed least squares is used; (d) sum plots.

In Example 1.1 in Beirlant et al. (2004) the authors come to the conclusion that

the data follow a simple exponential tail beyond 80 km/hr, and hence γ equals 0.

The weighted (trimmed) least squares estimates based on the generalized Hill

sum plot indeed indicates a zero valued extreme value index. Also the moment

and generalized Hill sum plots indeed exhibit an overall horizontal behaviour for

K = 1, ..., 80. The generalized Hill sum plot is less volatile however.
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Finally we consider the AoN Re Belgium fire portfolio data introduced in

section 1.3.3 in Beirlant et al. (2004). Here we omit the covariate information

concerning sum insured and type of building. Here the estimate γ̂ = 1 follows

from the weighted trimmed least squares regression analysis. These estimates are

indeed quite stable over K-values compared to the non-robust version. The sum

plots in Figure 7(d) are quite comparable for K = 1, ..., 80.
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Figure 7: AoN claim size data: (a) Hk,n (full line), H∗

k,n
(dashed line) and

Mk,n (dotted line) as a function of k; (b) weighted least squares

estimators based on the regression model of the Hill sum plot (full

line) and generalized Hill sum plot (dashed line); (c) same as in (b),

but now weighted trimmed least squares is used; (d) sum plots.
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