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Resampling methods are frequently used to adjust critical values of
nonparametric tests. In practice these two-step testing procedures benefit from the
strong computational efforts of the new computer generation. In this talk we will
discuss permutation tests, the m(n) out of k(n) data points bootstrap tests, the weighted
bootstrap and wild bootstrap tests.

A comprehensive and unified theory for the analysis of two-step linear
resampling statistics is presented. Under fairly mild assumptions tightness of the
underlying resampling statistics is proved. The weak accumulation points of their
conditional weak limit distribution are derived. From this representation it becomes
clear which part of the resampling statistic is responsible for asymptotic normality.
Based on this discussion we find equivalent conditions for the asymptotic normality of
the resampling statistics. In this case it is shown that resampling tests work which
means that the resampling tests are asymptotically equivalent to unconditional tests.
The results can also be applied to power functions of tests. In the normal case, we
derive the asymptotic power under local alternatives and consistency under non
contiguous sequences of alternatives. Special attention is devoted to two-sample
testing problems. Here we show what conditional tests are really doing. In this case it
turns out that permutation tests are better than bootstrap tests. In order to cover this
sort of example we present results for arbitrary non-i.i.d. triangular arrays of random
variables. Further examples are distributional convergent partial sums of infinitesimal
rowwise independent random variables. In this case the limit variable can be
compared with the unconditional limit law of the resampling variable. In this
connection we prove the following result.

The unconditional limit variable coincides in distribution with the unconditional
resampling variable iff the limit variable is normal or when it is symmetric and the
resampling scheme is asymptotically given by random signs as resampling scheme.

The results about permutation tests continue earlier work of Janssen (1997). The
research is joint work with T. Pauls from Duesseldorf University.

We are grateful for a DFG-grant.
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Consider a random sample from a distribution with density f(x,è), differentiable
with respect to the components of è. Let L(x,è) be its likelihood function and l(x,è) the
vector of its partial derivatives with respect to the components of è, i.e. the (Fisher)
score function corresponding to f(x,è).

This function plays a basic role in the statistical inference. Some of its basic
features are well known; e.g., because the score function of the normal distribution is
linear in the location and quadratic in the scale, the score function plays a similar role
as the mean and scale also for other distributions. We shall give some further
illustratations of its basic role, as

(1) a characterization of the score function by a constant regression with respect
to the maximal invariant;

(2) possible skrinkage of the score function in the multivariate location model;
(3) an expression of the score function of an arbitrary statistic by means of the

score function of  the observations, and various applications of this identity,
e.g. in (finite sample) approximations of powers of tests and of moments of
estimators.
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1. Gibbs Distributions

The statistical inference for Gibbs distributions has been recently widely studied
because of its relevance for image processing and spatial statistics. The Gibbs
distributions were originally used in the frame of statistical physics to describe the
equilibrium states of large systems. They can be also understood as a infinite-
dimensional generalization of the usual exponential families of distributions or the
log-linear models for contingency tables.

The role of exponential statistics is played by  systems of interactions. But, and
that is the main difference to compare with finite systems or random sequences, the
Gibbs random fields may not be given uniquely by the system of interactions (the
phenomenon is called as “phase transitions”), and, moreover, there may be a non-
translation-invariant Gibbs distribution with respect to a translation invariant system
of interactions (“symmetry breakdown”) - cf., e.g., Georgii (1988).

2. Maximum Pseudolikelihood Estimation

A natural parametrization, given by the system of interactions, turns the
statistical inference problems to standard parametric procedures. Since the ML
estimate meets both the theoretical and numerical limitations,  the maximum pseudo-
likelihood (MPL) method was introduced (Besag (1975)) as an alternative. It consists
in replacing the likelihood

( )V Vp xθ

where kRθ ∈ Θ ⊂  is the parameter, dV Z⊂  is the observation region and Vx χ∈  is
the data configuration (observed image), by its pseudo likelihood counterpart

( )cc t tt t
t V

p x xθ
Λ+ Λ +Λ+ Λ +

∈
∏

where dZΛ ⊂  is „small“ (usually { }0Λ = ). The MPL estimate is consistent (cf., e.g.,
again Comets (1992)), in general it is not efficient (Janžura (1997)), but, to the
contrary to the ML estimate, it is asymptotically normal for every parameter
regardless of phase transition or symmetry breakdown (Comets and Janžura (1998)).
The latter includes proving a proper version of the central limit theorem (CLT) for
non-translation-invariant random fields.

3. Testing Hypotheses

Now, we would like to test the submodel, i.e. the composite hypothesis
0 1 2: 0kH θ θ θ+ += = = =l l L

for some k<l . We shall construct the test statistics in the standard 2χ  form, namely
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( ) ( )T
2 ˆ ˆˆ  Mχ θ θ θ θ= − −% %

where θ̂  and θ%  are the MPL estimates in the full model and undepr the hypothesis,
respectively, and M  is a suitable random matrix of order k − l , making 2χ̂

asymptotically 2
kχ −l  distributed. The proof is based on a further generalized version of

4. Ising Model

The (two dimensional) Ising model is the most elementary non-trivial case of the
Gibbs random fields. It can be defined by specifying the local characteristics

{ } { }( ) ( ){ }
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where ( ) 2
1 2, Rθ θ ∈  is the parameter, { }1,1tx ∈ −  for every 2t Z∈ , and 2t Z∂ ⊂  is the

nearest neighborhood of the site 2t Z∈  (for a detailed treatment cf., e.g., Georgii
(1988)).

Let us consider the hypothesis
0

2: 0H θ =

which, using the statistical physics terminology, means the absence of an external
field.

The above method was applied and tested with simulated data. It was shown
that for a sufficiently large observation region ( )200 200×  the procedure works

reliably even in the phase transitions area, i.e. for 2 0θ =  and 1 0.44.cθ θ> =&
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The problem considered in the paper belongs to a class of problems for which
the aim is to predict the value of a random variable Y  on the basis of the observation
of a random variable X , where X  and Y  have a distribution dependent on the same
unknown parameter.

The paper deals with a special form of such problems - namely, with the
problem of finding a minimax predictor of  the random variable Y  having the
multinomial distribution Μ ( ),m p , where m  is known and  ( )1, , rp p p P= ∈K ,

( )1
1

, , : 0, 1, , , 1
r

r i i
i

P p p p p i r p
=

 = = ≥ = = 
 

∑K K , is an unknown parameter, or

multivariate hypergeometric distribution Η ( ),m w , where m  is known and

( ) ( )1 1
1

, , , , : , 1, , ,
r

r r i i
i

w w w W w w w w N i r w m
=

 = ∈ = = ∈ = ≥ 
 

∑K K K  is an unknown

parameter.  The random variable X  is such that X N n=  has the multinomial

distribution Μ ( ),n p , or multivariate hypergeometric distribution Η ( ),n w ,
respectively.

We assume that the loss function connected with the predictor ( )d X  is of the
form

(1) ( )( ) ( )( ) ( )( ),
T

L Y d X Y d X C Y d X= − − ,

where C  is a nonnegative matrix.
We have solved this problem in two cases, namely, when the sample size N  is

a random variable, whose distribution is known and in the case when it is unknown. In
both cases we assume that this distribution does not depend on the unknown parameter
p  or w , i.e., that N  is an ancillary statistic.

Contrary to the widely hold notion that the appearance of an ancillary statistic
should not change the statistical inference, the following results are obtained: the
minimax predictor of Y  in the case when the sample size is fixed (Wilczynski (1985),
Jokiel-Rokita (1998)) is seen to be neither minimax nor admissible if a random sample
size is considered. The first example of such an ancillarity paradox was given by
Brown (1990). He showed that in multiple linear regression the admissibility of the
ordinary estimator of the constant term depends on the distribution of the design
matrix, which is an ancillary statistic. Next example was presented by He (1990) who
considered estimation of the multinomial probabilities with respect to the loss function
given by (1), in which C  was the identity matrix and the distribution of a random
sample size is known.  He proved that the estimator of ,p  obtained by Steinhaus
(1957), which is minimax when the sample size is fixed, is neither minimax nor
admissible when the sample size is random except for some trivial cases. Analogous
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results were presented by Amrhein (1995) who studied minimax estimation of the
multivariate hypergeometric proportions with respect to the same loss as He. He also
proved that the minimax estimator obtained by Trybula (1958) in the fixed sample size
case is neither minimax nor admissible when the sample size is random except for
some trivial cases.

The following two situations explain the importance of considering of a random
sample size and which lead to a random sample size in a natural way. First, suppose
that a sample is drawn at random from a frame that contains the original population -
also called the target or the domain of interest - as a subset. Then the size of the
subsample belonging to the target has a hypergeometric distribution. This may happen
in connection with telephone surveys, if households are selected by random-digit
dialing with a preassigned number of calling attempts. Second, there are so-called
nonrensponse models that take into account that for certain units in the sample, it may
not be clear to which stratum they belong. Nonrensponse typically occurs in surveys
concerning sensitive data, such drug abuse or tax evasion. But even in general the
facility of nonrensponse can never be ruled out, because the selected units may just
not be available during the investigation. To model this so-called phenomenon of non-
at-homes, we assume that the selected units independent of each other and
independent of their strata fail to answer with the same probability. The effective
sample size is then an ancillary statistic with a binomial distribution. In practice we
are often faced with those and similar problems simultaneously.
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Marginal regression models are an extension of the usual generalised linear
model (GLM) to the case of longitudinal data. Beginning with the stimulating paper of
Liang and Zeger (1986) a lot of methods for handling correlated data were proposed.
The generalised estimating equations (GEE) approach of Liang and Zeger (1986) is a
semiparametric quasi-likelihood approach for correlated data using the correlation as a
measure of association. It was extended to several measures for the association and
several methods for estimating the parameters. An overview of these methods is given
e.g. by Ziegler, Kastner and Blettner (1998).

Many studies suffer from missing or incomplete data. In this situation, either all
available cases or the complete cases are used by most computer programs. The GEE
approach may yield biased estimates if data are not missing completely at random
(Robins, Rotnitzky and Zhao, 1995).

In literature, two different approaches have been proposed to deal with the
problem of missing data. Imputation methods impute missing data. By contrast,
weighting methods discard the incomplete data but weight observations inversely
proportional to their observation probability (Paik, 1997). Thus, the weighting
estimating equations (WEE) generally follow the classical Horvitz-Thompson
approach. They have been extensively discussed in recent years (Robins et al., 1995;
Robins and Rotnitzky, 1995; Rotnitzky and Robins, 1995) but have rarely been
applied in practice.

While the GEE was implemented in some software packages during the last
years (Ziegler and Grömping, 1998), the WEE are not available in accessible form
with computer software.

MAREG and WinMAREG implement these methods with our requirements for
user friendly software, easy to handle for the user, run as stand alone program, support
a standard database file format, coding of categorical variables, give online help and
chance to handle big data sets.
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MAREG is the programm for estimating the marginal regression models. It is
available for DOS and UNIX platforms (currently Sun Solaris).

WinMAREG is the WINDOWS user-interface to specify the model you want to
analyse.

The first step is to open the data file in WinMAREG. Currently supported file
formats are dBase and Paradox database tables. The data will then be displayed in a
grid .After this the estimation procedure can be chosen through the menu, specifying
GEE or ML and the type of the link function depending on the kind of response.
Available link functions are the identity link (continuous response), the logit link
(binary response), the cumulative logit link (multi-categorical, especially ordinal
response) and the multinomial logit link (for general multicategorical response).
WinMAREG then opens the dialog for model specification.

Here the mean model and the association structure can be specified. For the
GEE approach the IEE and the method of Prentice (correlation method) are
implemented, the ML procedure supplies the IEE and the conditional odds ratio
method. As a next step a design matrix has to be created from the selected variables.

WinMAREG provides automatic construction of design matrices including an
intercept, that allow the user to specify models with fixed effects, varying intercepts,
varying covariate effects, varying intercepts and covariate effects and a user defined
design. For the association structure exchangeable, stationary, unspecified or a user-
defined association structure is available. Categorical variables are usually coded as
1,2,... . For marginal regression models these variables have to be coded. WinMAREG
gives you the opportunity to do this automatically. Dummy and effect coding are
available. Another point in the analysis of real data sets is the problem of missing data.
As in standard software packages any numeric value can be specified to represent a
missing value. MAREG then performs a complete case analysis. For the GEE
approach the WEE method is also available.

If the model is chosen, WinMAREG produces a plain text file of the data,
where the categorical variables chosen in the model, are already coded as specified. It
also writes a so-called CAI file (plain text), containing the information that is needed
by MAREG.

Finally it runs MAREG in a DOS-window. As MAREG is also available for
UNIX platforms, WinMAREG gives you the opportunity to write the data and the CAI
file without starting MAREG. By transferring the data and CAI files to a UNIX
machine, they can be used with the UNIX version of MAREG. This is very helpful
when the data sets are large.

As there is no software tool that is able to handle marginal regression models in
an easy way we hope MAREG and WinMAREG will come up to the requirements for
an easy to use software. WinMAREG requires MS Windows 95 or above. There are
no restrictions concerning the number of variables or cases. Clearly there are a lot of
features not available in this version of MAREG, but we hope that new features as
diagnostic methods and new approaches can be implemented soon.

The latest version of MAREG and WinMAREG is available from the authors or
at http://www.stat.uni-muenchen.de/~andreas/mareg/winmareg.html.
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1. Introduction

The decisive, innovative step forward in extreme value statistics during the last
decades was the parametric modeling of distribution functions (dfs) of exceedances
over a threshold u, which are  left-truncated dfs at u, by means of generalized Pareto
(GP) dfs. The special modeling of such truncated dfs by means of GP dfs is motivated
by the fact that the possible, continuous limiting  dfs - as the threshold u goes to the
upper endpoint of the support of the original df F - are GP dfs.

The exceedances over the threshold u can be distributionally represented by a
binomial point process. In this context, we are interested in the overall error which
occurs when the truncated df is replaced by an appropriate GP df. More precisely,
given n iid rvs with common df F, the exceedances over a threshold u can be
distributionally described by a binomial point process N(0) (cf. Reiss (1993)). The
original binomial process N(0) will be replaced by a  binomial process N(1), where the
truncation of F is  replaced by a GP df  W.

By computing remainder terms one is also able to discuss the concept of
penultimate distributions.  Within the GP model one may find a df which provides a
more accurate approximation to the left truncation of F than the limiting one. Such a
GP df is called penultimate df.

2. The Ultimate Approximation

The aim is to establish an upper bound on the variational distance

∆(n,u) = sup |P {N(0) ∈ M }  - P {N(1) ∈ M } |

between the processes N(0) and N(1), where M ranges over all  measurable sets in the
space of point measures. Thus, one gets a  bound on the overall error which occurs,
when F is replaced  by W.

To obtain a sharp upper bound on the variational distance between the
distributions of the point processes one must deduce a bound on the Hellinger distance
between the left truncation of F and W (cf. Corollary 1.2.4 in Falk et al. (1994)). If a
corresponding inequality is applied, which is formulated in  terms of the variational
distance between the left truncation of F and W, one gets an inaccurate  rate (cf. Reiss
(1993)).

An upper bound on the Hellinger distance will be established in terms of an
auxiliary function which  is based on the hazard function. Thus, our bound is related to
the well-known von Mises condition which is sufficient for F to belong to the pot-
domain of attraction of W.

                                                       
* representing the paper
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3. The Penultimate Approximation

The starting points are the conditions which  determine an upper bound for the
ultimate rate. Under these conditions  a penultimate approximation exists if, and only
if, the auxiliary  function, based on the hazard function, is slowly varying  (cf.
Kaufmann (2000)).

Under some additional condition we compute a bound on the  remainder term in
the penultimate GP approximation which corresponds to that in the ultimate
approximation.

4. Concluding Remarks

An extended outline of these results and applications in  real world problems
may be found in the recent 2nd edition of the  book by Reiss and Thomas (2001).
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Modeling and forecasting of dynamics of stochastic systems are always based
on a set of prior assumptions (hypothetical models). The validity of these assumptions
can have important consequences for the validity of the final forecasting results.
Forecasting procedures are called robust if “they are not affected much by small
changes in the assumptions”. Robustness is a topical subject from both a theoretical
and a practical point of view (Hampel et al., 1986), (Huber, 1981), (Kharin, 1996),
(Kharin and Staleuskaya, 1997), (Krishnakumar J. and Ronchetti E., 1997) (Lucas,
1996). From a theoretical perspective, robustness stimulates researchers to determine
the crucial assumptions underlying their results. The practical relevance of robustness
is easily illustrated by considering, for example, the development of economic policy
recommendations based on statistical forecasts. If a forecast alters dramatically when
the model assumptions are changed only slightly, the policy maker might be just off as
without any forecast.

This paper is devoted to the problems of robustness analysis, robust estimation
and forecasting by regression models and systems of simultaneous equations.

We consider a complete linear system of simultaneous equations in N jointly
dependent variables and K predetermined variables, observed for T successive time
periods. Let ty  be the tth observation on the N-vector of jointly dependent variables;

tx  be the tth observation on the K-vector of predetermined variables; N
tξ ∈R

represents the disturbance term at the tth observation. Then the system of
simultaneous equations is written as (Greene, 1983)

(1) ' 't t tA y B x ξ+ = ,

where A and B are N N×  and K N×  matrices of unknown coefficients respectively
under prior restrictions:

(2) ( )vec ,
A

R b
B

 
Γ = Γ =  

 
,

where R  is a fixed matrix and b  is a fixed vector.
Assuming that A is nonsingular matrix we can solve (1) to obtain its reduced

form, which is the well-known multivariate regression model:

(3) 't t ty x uθ= + ,
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where 1BAθ −= − , ( )'1
t tu A ξ−= .

We consider the family of “plug-in” algorithms of forecasting of ( )1Ty τ τ+ ≥ :

(4) ( )'1ˆ ˆˆˆ ' ,T T Ty x BA xτ τ τθ −
+ + += = −

where ˆ ˆ,A B  are some statistical estimators of the coefficients.
The classical estimators are sensitive to deviations from the model distribution,

to outlying observations, to model misspecifications, etc. We concentrate our attention
mainly on the most typical cases of these distortions: errors-in-variables, Tukey-Huber
outliers and additive distortions (Kharin Yu., Staleuskaya S., 1998).

We use the following quantitative characteristics of robustness. Let Ψ̂  denotes
a statistical estimators of the ( )1 2m m× -matrix Ψ  (e.g., Ψ = Γ  or θΨ = ). Then as
measures of robustness we consider the following functionals (Hampel et al., 1986),
(Kharin, 1996):

( )1 2m m× -matrix of bias: { } { }ˆ ˆEb Ψ = Ψ − Ψ ;

( )1 1m m× -mutual covariance matrix of the i th and j th column vectors 1ˆ ˆ, mi jΨ Ψ ∈ R

of the matrix Ψ̂ : { } ( )( ) { }2
ˆ ˆ ˆE , , 1,2, ,i i j j

ijV i j m
′ Ψ = Ψ − Ψ Ψ − Ψ ∈ 

 
K ;

mean square risk of forecasting: { }2ˆE   0Tô T ôr y y+ += − ≥ .

We construct exact formulas and asymptotic expansions of these functionals
under distortions. To robustify the forecasting algorithm we consider the family of M-
estimators for coefficients of simultaneous equations (1), (2):

( ) ( )
,

1

' ' min,  vec ,
T

t t
A B

t

A y B x R bρ
=

+ → Γ =∑

where ( )ρ ⋅  is a specially chosen function.
The theoretical analysis is illustrated by the results of computer modeling.

References

Greene W.M., (1993). Econometric Analysis. Macmillan Publishing Company, N.Y.
Hampel F.P., Ronchetti E.M., Rousseeuw P.J., and Stahel W.A., (1986). Robust Statistics: The

Approach Based on Influence Functions. Wiley, N.Y.
Huber P., (1981). Robust Statistics. Wiley, N.Y.
Kharin Yu., (1996). Robustness in Statistical Pattern Recognition. Kluwer Academic

Publishers, Dordrecht/Boston/London.
Kharin Yu., Staleuskaya S., (1997). On stability of multivariate linear regression forecasting.

Proceedings of the Academy of Sciences of Belarus (Series of Phys.-Math. Sciences), 4,
pp. 9–13.

Kharin Yu., Staleuskaya S., (1998). Robustness in statistical analysis of regression and
simultaneous equations models. Prague Stochastics’98, UCMP, pp. 289–293.

Krishnakumar J. and Ronchetti E. (1997). Robust estimators for simultaneous-equations
models. J. of Econometrics. Vol. 78, p. 295–314.

Lucas A., (1996.) Outliers Robust Unit Root Analysis. Thesis Publishers, Amsterdam.
Staleuskaya S., Kharin Yu., (2000). Robustness of approximating approach in simultaneous

equations models. New Trends in Probability and Statistics, vol. 5. TEV, Vilnius, pp.
143–150.



2º  QU A D R I M E S T R E  D E  2001

R E V I S T A  D E
E S T A T Í S T I C A

Extremal Behaviour of Stochastic Processes in Finance

Claudia Klüppelberg
Munich University

Center for Mathematical Sciences of Technology
D-81290 München, Germany

cklu@matematik.tu-muenchen.de

One of the most prominent problems of the financial industry is the
measurement of portfolio risk. Two standard methods use the empirical or normal
method for estimation; both methods have been heavily criticised for not capturing
risk sufciently. Alternative risk measures are based on quantiles, as for instance the
Value-at-Risk (VaR) or the shortfall. The VaR, for instance, is based on the
1%-quantile of the profit-loss distribution and has become a benchmark risk measure,
also accepted by regulators.

Estimation methods for quantiles have been developed under the acronym let
the tails speak for themselves; it only uses such data which are responsible for the
extremal behaviour. Standard procedures exist for iid observations anal are applicable
to estimate VaR, shortfall and other quantile risk measures [see e.g. Embrechts,
Klüppelberg and Mikosch (1997) for mathematical and statistical background and
Emmer, Klüppelberg and Trüstedt (1998) for an explicit example].

Financial data, however, are not iid but exhibit a rather complex dependence
structure, which can be modelled by diffusion models or (G)ARCH models. We
describe the extremal behaviour of such volatility models and explain the estimation
procedure of risk measures in this context [Borkovec (2000), Borkovec, M. and
Klüppelberg, C. (1999), Borkovec, M. anal Kluppelberg, C. (1997)].

Figure 1. Simulated sample path of the Cox Ingesoll-Ross term structure model,
given as solution to the SDE ( ) , 0,t t t tdX c dX dt X dB tσ= − + >

with ( tB ) standard Browmsche motion and parameters 1c d σ= = = .
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Multivariate skew normal distribution has been defined by Azzalini, Dalla Valle
(1996) as a two-parameter distribution. We observe it in a slightly different way
defined in Gupta, Kollo (2000).

A random p-vector Z is distributed skew-normally, ~ ( , ),pZ SN αΣ  with

parameters α : p-vector and : p pΣ × positive definite matrix if its density has the
form

(0, )( ) 2 ( ) ( ),T
Z Nf x f x xαΣ= Φ

where (0, ) ( )Nf xΣ  is the density of (0, )N Σ  and ( )Φ ⋅  denotes the distribution function

of (0,1)N . The distribution has several favourable properties. Its moment generating
function

1 / 2

1
( ) 2 exp ( ) ( )

2 (1 )

T
T

T

t
M t t t

α
α α

Σ
= Σ Φ

+ Σ
,

makes it easy to find moments and cumulants. The expectation, dispersion matrix  and
the third central matrix moment 3( )m Z are:

1 2
( )

EZ
c

µ α
α π

= = Σ ,

TDZ µ µ= Σ − ,

2
3 3

1 2 4
( ) ( 1) ( )

( )
Tm Z

c
α α

α π π
⊗= − Σ Σ ,

where 1 /2
.( ) ( 1 )Tc α α α= + Σ   In the  presentation we will give  also expressions

of higher order moments and cumulants.  The simulation of Z is also very convenient

0, 0,

, ,

X if X
Z

X otherwise

>
= −
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where

0 *
1~ (0, )p

X
N

X +
 

Σ 
 

,

with the dispersion matrix

* 1 Tσ
σ

 
Σ =  Σ 

and 0( , )Cov X Xσ =  being a function of α  and Σ .
In the talk estimators of the parameters α  and Σ  will be examined  with the

emphasis on their asymptotic properties. In  Azzalini, Dalla Valle (1996) and Azzalini,
Capitanio (1999) the correlation matrix is considered as a parameter of a skew normal
distribution instead of the dispersion matrix in our presentation. Our parameterization
makes  it possible to describe the distributions of estimators of the parameters in a
simpler way.  Results of an simulation experiment will be also presented and the
possibilities of approximation by the skew normal distribution examined.
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In this paper we are concerned with parameter estimation of distributed
systems, specified by a stochastic partial differential equation (SPDE). As an
illustrating example, we consider a groundwater flow through a porous medium which
is modeled by the continuity equation

(1) ( ) ( )q ,x ,x
h

S s t t
t

ξ
∂

+ ∇ ⋅ = +
∂

and Darcy's law

q K h= − ∇

where h = hydraulic head, q = fluid velocity vector, S = specific storage coefficient,
K = hydraulic conductivity, s = deterministic source term and ξ = stochastic forcing
term. Equations (1) and (2) can be combined to give a stochastic partial differential
equation (SPDE) for the hydraulic head

(2) ( ) ( ) ( ), , .
h

S K h s t x t x
t

ξ
∂

= ∇ ⋅ ∇ + +
∂

The equation may be adapted to 1D, 2D or 3D-flow, subject to some initial and
boundary conditions.

The hydraulic conductivity K  is a measure how freely the fluid is flowing in
the medium. Since the medium is heterogenous, the hydraulic conductivity depends on
the position x . The lack of information about ( )xK  makes it natural to represent it as
a random field. In the simplest case the log-conductivity is a homogeneous and
isotropic Gaussian random field, which can be written as

(3) ( ) ( )Yx Y xY µ= + % ,

where ( )xY E Yµ =     and ( )xY%  is the fluctuation part with ( )x 0E Y  = 
% . In the

literature, the following covariance function is often used to represent the spatial
variability of hydraulic conductivity:

(4) ( ) 2 x x
x,x exp .Y

Y

R
l

σ
′− 

′ = − 
 

2
Yσ  is the variance of Y  and Yl  the correlation length.

We are concerned with the identification of the mean and covariance parameters
of the log conductivity field. Usually only few measured values of the conductivity are
available, which can not provide reliable estimates of the unknown parameters.
Therefore estimation has be based on the noisy measurements of the hydraulic heads.
The problem under consideration is an inverse problem of the SPDE (2).
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For this task we propose an EM algorithm of the type, investigated by Dembo
and Zeitouni (1986). The algorithm involves iterations of fixed interval smoothing and
the maximization of some pseudolikelihood function. Since we have a linear state
equation and Gaussian system-and measurement noise, we are in the realm of the
Kalman smoother, which is applied to the augmented state equation. The
implementation of the smoother requires the solution of a Riccati differential equation
for the smoother covariance and a stochastic linear differential equation to obtain the
optimal estimate of the augmented state. We shall discuss finite dimensional
approximations of the smoothing problem and the implementation of the EM
algorithm. The filter is tested by application to a hypothetical aquifer.
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1. Introduction

Combine-harvesters are generally used for harvesting grains and other plants.
To increase their effectiveness, multi-drum threshing and separating complexies are
applied. Threshing and subsequent separation of grain by the concave grate depend on
many factors . Reliable determination of the effect of these factors is carried out
experimentally. In two previous papers of the author ([Kornacki , A (2000)],[
Kornacki , A (2000)]) the mathematical model of the process of threshing and
separating of grain in multi-drum threshing device was constructed. In the present
paper we examine the goodness of fit of this model.

2. Results Symbols

1,2, ,k n= K the number of yielding drum
l coordinate of the point on the concave grate

( )k kX X l= unthreshed grain on kth-drum
( )k kY Y l= free grain on the kth-drum
( )k kZ Z l= separating grain on the kth-drum

kL the length of the concave grate of the kth-drum
* ( )k k kX X L= unthreshed grain at the output of the kth-drum

* ( )k k kY Y L= free grain at the output of the kth-drum
* ( )k k kZ Z L= separated grain at the output of the kth-drum

kA the coefficient of intensity of threshing in the I stage on kth-drum

kA kB  the coefficient of intensity of threshing in the II stage on kth-
drum

kµ  the coefficient of intensity of separation on kth-drum

kN the mass of cereal introduced into the kth-drum

The mathematical model of threshing and separating of grain in multi-drum
threshing device can be described (cf 3,23,25 in [Kornacki , A (2000)]):

(1) 1
k kA B l

k kX X e− −∗
−= ,

(2) ( ) ( ) *
11 11 1

k k k k k k

k k k k

A B L A L
A L A k k

kk k k
k k

e B e
Z X e Y e X e

B

µ
µ µ

µ

− − − −
− − −∗ ∗

−− −

 − = − + − + +   − 

(3) 1

k k k k

k

A B l A l
l k k

k k k
k k

e B e
Y N e X

B

µ
µ µ

µ

− − − −
− ∗

−

 −
= +  − 

.

Moreover, the coefficients of intensity we can get from equations (cf 3.5, 3.7,
3.11 in [2]):
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*
0

1 *
0

ln( ) ln( )
s X

A
sX

= − = ;     

*
1

1
1

ln( )
X
sB

L
=

−
;    1 1

* * *
1 1 1 1 1

*
0 1 1 1

( )L Y B X Y
e

Y N B
µ µ

µ
− − +

=
−

Now, we test a mathematical model for a real experimental data. Experiment
was carried out in Department of Agricultural Engineering in Academy of Agriculture
in Lublin in 1989-1990. Was examined on a bay eight-drum threshing device on
threshing wheat Gran’s. Using results from proceeding paper of the author
(Kornacki,[2]) we can estimate coefficients 1 1 1, ,A B µ . Because a course of the
process of threshing and separating is identical on a next drums so we assume

1 2 1 2 1 2, ,n n nA A A B B B µ µ µ= = = = = = = = =K K K
On the basis of model we can forecast the mass of separating grain in next

drums. Then we can compare obtained results with  experimental data using
coefficients of determination:

8 8
2 2

2 1 1
8

2

1

( ) ( )

( )

i i i
i i

i
i

z z z Z
R

z z

= =

=

− − −
=

−

∑ ∑

∑
In our case we have 81 observations. The values of determination coefficient

varies from 73,36% to 93,01%. So, meaningful part of the changeability is explained
by the mathematical model given by formulas (1)-(3). The histogram of values of the
coefficient of determination is shown in figure below:
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Suppose the sample {(X1,Z1),…,(Xn,Zn)} consists of realizations Xi of two
random variables ξ1 and ξ2 with possibly different distributions and values Zi

indicating whether  Xi  is a realization from ξ1 or ξ2. We consider the situation where
Xi becomes a realization of ξ1 or ξ2 randomly with probability p or (1-p). In this
classical situation there are a lot of advanced methods to test the hypothesis H0 “ξ1 and
ξ2 are identically distributed” against any kind of alternative, but we want to test this
hypothesis in the situation of interval censoring.

Suppose that instead of the random variable X we observe another random
variable T (that is independent of X) and the indicator of the event {X<T}.  The
sample then consists of the vectors (Ti, iδ ,Zi), where Ti is the censoring variable,

1
i ii X Tδ <= and Zi are either 0 or 1. We will consider testing procedures for the

hypothesis H0 in this setup, which are needed for some practical applications.

The procedures we consider most are intuitively obtained as a result of “non-
formal” differentiating. Suppose we restrict ourselves to the case of the Lehmann
alternative (this means: ξ1∼F0, ξ2∼ 1

oF θ+ , 1θ > − ). Also suppose that the loglikelihood

( ) ( ) ( ) ( )( )1

1

, 1 log ( ) 1 log 1 ( ) i

n
Z

i i i i i
i

l F Z F T F T θθ δ θ δ +

=

= + + − −∑

is maximized by ˆˆ( , )n nF θ .  Since the maximum likelihood estimator is consistent we

can suppose that under the null hypothesis θ=0 should more or less maximize ( )ˆ ,nl F θ

as a function of θ (here and later n̂F is the maximum likelihood estimator of the
distribution function under the null hypothesis) or

1

1ˆ ˆ( )log ( ) ˆ ˆ( ) 1 ( )

n
i i

i n i n i
i n i n i

Z F T F T
F T F T

δ δ

=

 −
− − 

∑

should be small. Notice that ˆ ˆ( )log ( )n i n iF T F T  is a “good” function of n̂F . One can
suppose that something of that kind should hold in more general case.  Our first
theorem states:

Theorem 1 Suppose distributions of X (F0) and of T (G) have a finite interval of
support [0,M]  and finite positive densities. Let the function w(t)=t|log(t)|m for m>0 or
let 0w ≥  be a Lipschitz function with w(0)=w(1)=0. Then under the null hypothesis



I

T R E  D E  2001

( ) 2

1

1ˆ ( ) (0, )ˆ ˆ( ) 1 ( )

n
Di i

i n i
i n i n i

n Z w F T N
F T F T

δ δ
σ

=

 −− → − 
∑ .

The analogous theorem holds for the interval censoring, case II as well.

This theorem allows to construct the testing procedure. To determine the
asymptotic power of the test we can make use of the following:

Theorem 2 In the conditions of Theorem 1 under the contiguous Lehmann

alternative with 0

1
n

n
θ θ=  (so for Z=0 X∼F0 and for Z=1 X∼ 1

0
nF θ+ )

( ) 2

1

1ˆ ( ) ( , )ˆ ˆ( ) 1 ( )

n
Di i

i n i
i n i n i

n Z w F T N
F T F T

δ δ
µ σ

=

 −− → − 
∑

Nothing like the last theorem holds for the case of the location shift alternative;
computer simulations show that immediately.

Computer simulations made for the testing procedures proposed by the
Theorems 1 and 2 showed correctness of our results and really fast convergence to the
limiting distributions. A big advantage of the method is that we only have to calculate
the MLE under the null hypothesis. This makes application of it simpler and the
computer program much faster.

The proof of Theorems 1 and 2 is mostly based on the chaining lemma,
Hoeffding’s inequality and partly relies on the ideas of Geskus and Groeneboom
(1999). Some representations make it only necessary to prove the stochastic
equicontinuity of the loglikelihood and finish the proof by the application of the
central limit theorem.

If time allows some aspects of the likelihood ratio test will be considered.
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A Stochastic model is usually formulated from a given data, after several important
IDA and EDA, normally seen as the stepping stone to a model based analysis. Many
models may be tried involving appropriate inference procedures till the winner model,
passing through the theory of inferences is selected from the rest.

Inference is based on a probability model having specific Statistical equilibrium of
the form,

DATA = FIT + NOISE
Where general interest is concerned on fit or forecasts, the Systematic

component, in the presence of residuals or noise, the Random component (Chatfield,
1995).

To fit a suitable model to the mathematical series [yti] in Synodic time scale, part l
(STAT’2000, Poland) modified to [ytpi] in Synodic time scale, part ll (Stability Problem in
Stochastic Model, 2001, Hungary) with exponential smoothing, forecasts for linear and
non-linear models, were not found to fit the series well.

Fitting a quadratic polynomial model, followed by a cubic polynomial model,
with the pre whitened series, failed the tests to fit the data well.

Attempting to the class of ARIMA models (Box & Jenkins, 1976), following the
principle of parsimony, with (p,d,q) lying between 0 and 2, allowing for total 27 possible
models ( Chatfield, 1996), a 2 parameter model, fitted the series well, with periodicity S,
the number of phases in one Synodic month.

The 2parameter seasonal moving average ARIMA model successfully passed
through the Box-Pierce test Statistics with smaller RMSE.

The ARIMA model selection was checked by over fitting with a 3parameter
model, which did not show significant improvement over the 2parameter model.

1. The ARIMA (0,1,2) (0,1,1)S

The 2parameter model, for the discrete series, [yti] changed to Synodic time scale,
[ytpi], with periodicity S, in the difference equation form is given as,

(1) (1-BS) Wtp = (1-θ1B- θ2B
S) (1- θSB

S) âtp

Wtp = (1-B)lnytp, the non seasonal difference of the loge transformed data in
removing trend. The seasonality is taken as one Synodic month of S phases in its modified
form when similarities in the series occur after S time interval, θ1, θ2 are the non seasonal
moving average parameters, (1-Bs)Wtp, the seasonal difference in removing seasonality,
θS seasonal moving average parameter and âtp, the normally distributed uncorrelated
random shock with zero mean and constant variance, which generates the process.
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The model is multiplicative in the sense that the observed series results from the
successive filtering of the random noise series atp, through the non seasonal filter (between
adjacent phases), then the seasonal filter (between Synodic months).

2. The Difference Equations of ARIMA (0,1,2) (0,1,1)S

From equation (1), the forecast for origin = tp, in the difference equation form is,

(2) Wtp–W tp-s = â tp - θ1 â tp-1 - θ2 â tp-2 - θS â tp-s + θ s+1 â tp-s-1 + θ s+2 â tp-s-2

The forecast for lead time T, is the mathematical expectation of y(tp+T), given as,
Ytp(T) = E [ y(tp+T)  | I tp], where Itp = ytp,ytp-1, ytp-3,

Wtp(T) = [W(tp+T)]
or,

(3) W(Tp) = W(Tp-s) - θ1 â Tp-1 - θ2 â Tp-2 - θS â Tp-s + θ s+1 â Tp-s-1 + θ s+2 â Tp-s-2  +  â Tp

The forecasts are affected by the moving average terms θθ, through (S+2) phases
and the successive forecasts are the changes forecasted (-S) phases earlier. This way, the
forecasts for the first phase of the ns Synodic month is estimated from the observed value
of the first phase of the (n-1)s Synodic month.
(4) [W(ns+1)]=

W((n-1)s+1)  - θ1 â ( ns ) - θ2 â (ns-1) - θs â ((n-1) s+1 + θ (s+1) â (n-1) s + θ (s+2) â ((n-1) s-1) +  â (ns+1)

3. The Forecasting Methodology & Confidence Interval
To forecast the phase k data from a discrete mathematical series [zti] changed to the

modified Synodic time scale [ztpi] upto phase (k-1), is added to [ytpi]. This now increases
the data counts to (ns+(k-1)) phases, and then the ARIMA model is once again fitted, once
again the parameters estimated and after checking the residual acfs, the forecast for the
phase k is computed.
(5) [W(ns+k-1)] = W(n-1) s - θ1â ( ns+k-2 ) - θ2â (ns+k-3) - θsâ ((n-1) s+k-1) + θ(s+1) â ((n-1) s+k-2)

    + θ(s+2) â ((n-1) s+k-3) + â (ns+k-1)

The accuracy of forecast are checked by calculating 95% convenient set of
probabilities. The confidence intervals are constructed with the variance of the forecast
error, to find how reliable the forecasts are. The forecast error for origin tp and leadtime T
is given by,
(6) etp(T) = W(tp+T) - Wtp(T) = â (tp+T)

Where W(tp+T)  is the observed value for period (tp+T) and  Wtp(T) is the forecast
value for that period. The 95% confidence interval is calculated by the expression,
(7) Wtp(T)  ± 1.96ó [e tp(T) ]

The ARIMA model Suitability, will be presented in the paper, with the Statistical
Inferences on NOISE, as the one step ahead forecast error, which generated the process
and the possible nature of model inadequacy, if any.
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1. Introduction

The methodology was developed for analysis of data from a biological experiment
since standard statistical methodology was inappropriate or not applicable. The
peculiarities of the experiment were: 1. The outcome W:=X/(Y⋅Z) could not be measured
in the same experimental unit. Each of its components had to be measured in different
subjects because for measuring the subject was destroyed. 2. The distribution of X, Y, and
Z was unknown and some outliers might have occurred.

A test statistic is proposed to compare two treatments in W for differences in
location. The statistic is based on robust measures of location and dispersion in order to
account for outliers in the data.

2. Robust Measures of Location and Dispersion

Assume that the outcome W:=X/(Y⋅Z) is unmeasurable and its components X, Y,
and Z cannot be derived from the same experimental unit since it will have been destroyed
after determination of either X, Y, or Z. Therefore, the distribution of W must be described
by location and scale parameters of X, Y, and Z which have to be derived from
independent experimental units.

Approximate formulas for E(X/Y) and Var(X/Y) are given in Mood et al. (1974).
This approach can be extended to three stochastically independent variables X, Y, and Z.
Thus, mean and variance of W can be approximated by

(1) ( )2 2

2 2( ) 1X Y Z

Y Z Y Z
E W µ σ σ

µ µ µ µ
≈ + +  and ( ) ( )2 2 2

2 2 2

2
( ) X X Y Z

Y Z X Y Z
Var W µ σ σ σ

µ µ µ µ µ
≈ ⋅ + + ,

where µX, µY, µZ and σX, σY, σZ are mean and standard deviation of X, Y, and Z.
The existence of E(W) and Var(W) is not generally guaranteed by the finiteness of

E(X) and E(Y⋅Z). However, E(W) and Var(W) exist if measurements are positive, have
finite upper bounds, and are bounded away from 0.

Mean and variance of W can be estimated by using measures of location and
dispersion for realisations of X, Y, and Z. If outliers might be observed, robust measures
should be preferred. Appropriate robust and strongly consistent measures of location and
dispersion are the (α,β)-trimmed mean

(2) [ ] [ ] ( )
[ ]

[ ]
1

,
1

:
n n

in n n
i n

x x
β

α β α β
α

−

− −
= +

= ∑
and the adjusted (α,β)-trimmed standard deviation
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2 2

, 1 1
:
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i ii i n n
SSQ u u

α
α β β= = − +

= +∑ ∑  and ui is the 1 100%i
n+ ⋅ -quantile of the

standard normal distribution (Hampel et al. 1986, Högel et al. 1994).
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3. Comparisons in Location

In experiments, a primary aim is to compare two experimental groups in location.
Thus, e.g. the one-sided hypothesis

(4)
1 20 : 0W WH µ µ− ≤

shall be tested and the asymptotically normally distributed test statistic
(5)

1 2 1 2,ˆ ˆ ˆ: ( )W W W WT µ µ τ= −
is proposed, where ˆ

iWµ , i=1,2, is the estimator for the mean of W in group i and

(6)
1 2 1 2

2 2
,ˆ ˆ ˆ:W W W Wτ τ τ= + , with ( ) ( )2 2 2

, , , , , , ,
2 2 2

, , , , ,

2
2ˆ : x y z

i x y z

x
W y z n x n y n z

α β α β α β α β

α β α β α β α β α β

σ σ στ = ⋅ + + ,

is the estimator for the standard deviation of W in group i, and nX, nY, nZ are the
number of realisations of the random variables X, Y and Z.

4. Simulation Study

A simulation study with the following design was conducted: Normally distributed
random variables X, Y, and Z were generated according to the parameter sets of the
biological experiment. Realisations less than 1.0 or greater than mean plus 4 standard
deviations were dropped. The test statistic T was calculated and simulations were repeated
50,000 times. The results show an approximate standard normal distribution.

5. Conclusion

A statistical test was proposed applicable if the outcome is the quotient of three
independently measured random variables. A robust statistic was constructed to take care
for outliers in the data. Simulations show that the test statistic is approximately normally
distributed.
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In this work we give first a generalization of the results by Alsina and
Schweizer. In addition we study ∑ -products and finally, the product topologies in PN
spaces which are products of countable families of PN spaces.

1. Finite τ -Products of PN spaces

Definition l Let ( )1 1, , , *V v τ τ  and ( )2 2, , , *V v τ τ  be two PN spaces under the

same triangle functions τ  and *τ . Let 1τ  be a triangle function. The 1τ -product of
both PN spaces is the pair

( )1 2 1 1 2,V V v vτ×

where

1 1 2 1 2:v v V Vτ +× → ∆

is a probabilistic seminorm given by

( ) ( ) ( ) ( )( )1 1 2 1 1 2, : ,v v p q v p v qτ τ=

for any ( ) 1 2,p q V V∈ × .

Definition 2 Let ( ){ }*, , , |i
i i iV v t iτ ∈¥  be a countable family of PN spaces. The

∑ -product of this family is the space ( )1 ii
V v

∞ ∑
=∏  where 

1
: ii

v V
∞∑ +
=

→ ∆∏  is a map

given by

1

: 2
i

i i
p p

i

v v
∞

∑ −

=

= ∑

for every sequence ( )
1i ii

p p V
∞

=
= ∈∏ .

In order to simplify the writing of this paper we replace pv∑ , by pv .

Theorem 1 Let ( )1 1, , , *V v τ τ , ( )2 2, , , *V v τ τ  and 1τ  be two PN spaces under the

same triangle functions and a triangle function 1τ  respectively. Assume that 1*τ τ?

and 1τ τ? , then the 1τ -product ( )1 2 1 1 2,V V v vτ×  is a PN space under τ  and *τ .

Theorem 2 Let ( )1 1
,   , , ,MV G Mτ⋅  and ( )2 2

,   , , ,MV G Mτ⋅  and 
3

  ⋅  be the

two above mentioned PN spaces and the classical norm defined on 1 2V V×  by

1 23 1 2
: ,p p p= ∨
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with ( )1 2 1 2,p p p V V= ∈ × . Then ( )1 2 3
,   , , ,MV V G Mτ× ⋅  is a PN space, which

coincide with the M-product of both simple spaces.

Theorem 3 The Mτ -product of two simple PN spaces ( )1 1
,   , ,V G M⋅  and

( )2 2
,   , ,V G M⋅  is the simple space under M generated by ( )1 2 ,   

s
V V× ⋅  and the

same d.d.f G, namely, ( )1 2 ,   , ,
s

V V G M× ⋅ , where   
s

⋅  is the classic norm defined

via

1 2
  :     ,

s
⋅ = ⋅ + ⋅

whatever the norms 
1

  ⋅  and 
2

  ⋅  may be.

2. Countable ∑ -Products of PN Spaces

Theorem 4 Let ( ){ }*, , , |i
i i iV v iτ τ ∈¥  be a countable family of PN spaces and

let i Wτ τ≥  and *
*i Wτ τ≤  for all i ∈¥ , then the ∑ -product of this family denoted by

*
1

, , ,i W W
i

V v τ τ
∞

∑

=

 
 
 
∏

is a Menger space under W.

3. Product Topology for Countable τ -Products

Theorem 5 Let each of the PN spaces ( )*, , ,i
i i iV v τ τ  endowed with the strong

topology corresponding to ,iv i ∈¥ , and +∆  with the topology of weak convergence.
Then the product topology is weaker than the strong topology in (V, G).

Theorem 6 Let ( ){ }*, , , |i
i i WV v iτ τ ∈¥  and ,V v∑  be as in Theorem 8. Let each

iV  be endowed with the strong topology induced by iv . Then the strong topology on V

induced by v∑  is the product topology.
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Let X1,…,Xn be i.i.d. random variables with common density f  belonging to L2

(R). We propose an adaptive estimator of the quantity 2 ( )
R

f x dx∫  which is based on

model selection via some penalized criterion. Bickel and Ritov (1988) and Laurent
(1996) have built estimators of 2 ( )

R
f x dx∫  in a density model but these estimators

depend on some prior information on f. Bickel and Ritov assumed that f belongs to

some class of Hölderian functions of order α. They built an estimator θ
∧

α of
2 ( )

R
f x dx∫  that is efficient if  α> 1/4  and achieves the rate n-4α/(1+4α) if α≤1/4. They

also proved that this rate of convergence is optimal. Similar results are obtained by
Laurent (1996) with a simpler method of estimation based on projection estimators.

Following the ideas given in Laurent and Massart (2000) to estimate quadratic
functionals in a Gaussian framework, we propose here an adaptive estimator of

2 ( )
R

f x dx∫  in a density model. To define this estimator, we introduce some notations.

Let

φ(x)=1[0,1](x),   ψ(x) = 1[0,1/2[(x)- 1[1/2,1[(x),

for any k ∈ Z and j ∈ N, we define

φj,k(x)=2j/2φ(2jx-k),  ψj,k(x)=2j/2ψ(2jx-k).

The functions (φ0,k,ψj,k, j∈N, k∈Z) form the Haar basis of L2 (R). For any J ∈ N,
the decomposition of f  onto this basis can be written as

, , , ,J k J k j k j k
k Z j J k Z

α φ β ψ
∈ ≥ ∈

+∑ ∑∑

where  , ,j k j kfα φ= ∫  and , ,j k j kfβ ψ= ∫  and thus

2 2 2
, ,( ) J k j k

k Z j J k ZR

f x dx α β
∈ ≥ ∈

= +∑ ∑∑∫ .

We consider an unbiased estimator of  2
,J k

k Z

α
∈
∑  namely

, , '
' 1

1
( ) ( )

( 1)

n

J J k l J k l
k Z l l

X X
n n

θ φ φ
∧

∈ ≠ =

=
− ∑ ∑ .
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Our adaptive estimator of 2 ( )
R

f x dx∫  is defined as

sup ( )J
J

pen Jθ θ
∧ ∧

∈ℑ

 = −  
,

where ℑ  is a subset of N and ( )pen J is a penalty term that has to be conveniently
chosen.

We give a non asymptotic risk bound for this estimator. We derive from this
bound adaptive properties in the minimax sense over classes of functions including
Hölderian classes and functions such that the sequence of coefficients , 0,( )j k j k Zβ β ≥ ∈=

belongs to some Besov body ,2, ( )B Rα ∞ . Up to a logarithmic factor, our procedure is

rate optimal simultaneously over all these classes. A crucial point in the proof of our
results is an exponential inequality for U-statistics of order 2 due to Bretagnolle
(1999).
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The objective of this paper is to estimate the covariance matrix of stock returns.
This is a fundamental question in empirical Finance with implications for portfolio
selection and for tests of asset pricing models such as the CAPM.

The traditional estimator, the sample covariance matrix, is seldom used because
it imposes too little structure. When the number of stocks N is larger than the sample
size T, the sample covariance matrix is always singular (that is, not invertible) and in
typical applications, there can be over a thousand stocks to choose from, but rarely
more than ten years of monthly data, that is, N = 1000  and T = 120. Since the standard
methods of portfolio selection as well as of testing asset pricing models require an
estimate of the inverse of the covariance matrix of stock returns, this situation is
clearly problematic.

The cure is to impose some structure on the estimator. Ideally, the particular
form of the structure should be dictated by the problem at hand. In the case of stock
returns, a low-dimensional factor structure seems natural. But this leaves two very
important questions: How much structure should we impose? And what factors should
we use?  The first factor model to be suggested dates back to Sharpe (1963) who
proposed the market (that is, a portfolio of all stocks) as the single factor. The market
model implies a certain covariance matrix of stock returns that can be easily estimated
from the data. Unfortunately, the market model is rejected by the data and therefore
the ensuing covariance matrix estimator is not reliable. Intuitively, the market model
imposes too much structure to be compatible with real data. The common solution, so
far, has been to impose less structure buy building models with several factors. One
approach is to use factors with economic interpretation (such as industry factors, P/E
ratio, book-to-market, etc.) as is done by the financial services firm BARRA; e.g., see
Kahn (1994). Another approach is to use statistical factors (such as principal
components) without economic interpretation as is done by the firm APT; e.g., see
Connor and Korajczyk (1992). Still, the exact nature and number of the factors to be
included in a multi-factor model remains an open question.

This is why we propose a different approach to impose structure on the estimation
of the covariance matrix of stock returns. Our idea is to take a weighted average of the
sample covariance matrix and Sharpe’s market-model covariance matrix, that is, to shrink
the sample covariance matrix towards the market-model matrix. The idea of shrinking an
unbiased but very variable estimator towards a  biased estimator with little variation has a
long and successful history in statistics, dating back to the seminal work of James and
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Stein (1961). The intuition is that by properly combining an estimator with no bias but
high variance and an estimator with high bias but small variance, one can obtain a new,
improved estimator (in the mean squared error sense). The only remaining problem is to
determine the shrinkage intensity, that this, the amount by which we should shrink the
unbiased estimator towards the biased estimator. This is a problem which needs to be
solved in a case-by-case analysis. In the paper, we develop a method to determine the
optimal shrinkage intensity by a fully automatic procedure from the data. It should be
noted that our methodology is very flexible, meaning it can be easily adapted to shrinkage
targets different from the market-model covariance matrix as seen fit by the portfolio
manager.

To see how well our method works in practice, we compare it to a number of
existing covariance matrix estimators using real data from 1962 to 1995; the data
consist of monthly returns of all the stocks contained in the NYSE and the AMEX
stock exchanges. Using the well-known Markowitz (1952) portfolio selection
algorithm, we consider the problems of constructing the minimum global variance
portfolio as well as the minimum variance portfolio with an expected return of 20%.
Starting in 1972, we use the last ten years of data to estimate the covariance matrix (by
the different estimators included in the study) and the mean vector (by a unique
method) of stock returns; then we construct the optimal portfolio and hold it for one
year, keeping track of the resulting monthly returns; we repeat this procedure the next
year until year 1994. This gives us a total of 23 years of monthly data, which allows us
to estimate with high precision the portfolio variance corresponding to the various
covariance matrix estimators. It turns out that our shrinkage estimator, for both
portfolio selection problems, yields the portfolio with the smallest variance. The
improvement over the other estimators, among them the market-model estimator, the
industry-factor estimator, and the principal-components estimator, is significant both
in statistical and economical terms.

In summary, we have proposed a new estimator for the covariance matrix of
stock returns that is rooted in a statistical technique with a proven track record
(namely, the shrinkage methodology), can be implemented easily, and appears to be
superior to the commonly used estimators from a study using historical data. For
details, the reader is referred to Ledoit and Wolf (2000).
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The traditional theory of parametric statistical inference is primarily concerned
with the statistical properties of estimators or inference procedures, like tests or
confidence sets, under the central assumption of an a priori given model. That is, it is
assumed that the model is known to the researcher prior to the statistical analysis,
except for the value of the true parameter vector. In practice, however, the
specification of the model (choice of functional form, choice of regressors, number of
lags, etc.) is often also determined only after the data have been observed, violating
the central assumption of an a priori given parametric model. As a consequence, the
actual statistical properties of estimators or inference procedures following such a
data-driven model selection step are not described by the traditional theory which
relies on an a priori given model; in fact, they may differ substantially from the
properties predicted by traditional theory; cf. Pötscher (1991). Ignoring the additional
uncertainty originating from the data-based model selection step and (inappropriately)
applying traditional theory can hence result in very misleading conclusions.

Only recently, the distribution of parameter estimators computed after a data-
driven model selection step, i.e., the distribution of what we call post-model-selection
estimators, has been investigated. Sen (1979) obtained the large-sample distribution of
a post-model-selection estimator in an iid maximum likelihood framework, when there
are two competing models. In Pötscher (1991), the asymptotic properties of post-
model-selection estimators (based on a sequence of tests) were studied in a rather
general setting covering non-linear models, dependent processes, and more than two
competing models. In particular, the asymptotic distribution of the post-model-
selection estimator, both unconditional as well as conditional on having chosen a
correct model (minimal or not), was derived. While constituting an important step
towards understanding the statistical properties of post-model-selection estimators,
these results appear to be limited in at least two ways:

♦ They do not provide information on the distribution of the post-model-
selection estimator conditional on selecting an incorrect model. (Although,
asymptotically, such models are never selected by any reasonable model
selection procedure, the finite-sample probability of selecting an incorrect
model can be substantial; see, e.g., Table III in Pötscher and Novak (1998).

♦ The convergence of the finite-sample distributions to the asymptotic
distributions is not uniform over the parameter space (cf. Pötscher (1991)),
which indicates potential problems with the accuracy of these approximations.
(This is confirmed by a simulation study in Pötscher and Novak (1998); see
also Kabaila (1995) and Pötscher (1995) for further discussions.)

The first part of this talk addresses these two issues. For simplicity, we restrict
the discussion to linear regression problems. We begin by deriving the unconditional
as well as the conditional finite-sample distribution of the post-model-selection
estimator, which turns out to be quite complicated and difficult to interpret. Then we
present approximations to the finite-sample distributions that are as simple and easy to
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interpret as the asymptotic distributions obtained in Pötscher (1991), but at the same
time are close to the finite-sample distributions uniformly with respect to the
underlying parameters. As a by-product, we also obtain the asymptotic distribution
conditional on choosing an incorrect model.

Having thus obtained satisfactory theoretical approximations to the distribution
of the post-model-selection estimator, we next turn to the issue of obtaining
`computable' approximations. Indeed, the large-sample distribution of the post-model-
selection estimator as well as our uniform approximation still depend on unknown
parameters and therefore have to be estimated. As described in Pötscher (1991), one
can construct consistent estimators for, say, the finite-sample (unconditional)
distribution of the post-model-selection estimator, even in the very general setting
considered in that paper. This is, if the finite-sample cdf of the post-model-selection
estimator is denoted by Gn,θ(t) , where n is the sample size and θ is the unknown
parameter, one can construct a consistent estimator Gn(t), i.e., one which satisfies

(1) Pn,θ( | Gn,θ(t) - Gn(t) | > ε ) → 0

as n → ∞ for each ε>00, where Pn,θ denotes the distribution of a sample of size n with
the true parameter being θ. In the second part of this talk we describe a fundamental
flaw of such consistent estimators: We show that the finite-sample quality of any such
consistent estimatorGn(t) varies heavily with the unknown parameter θ. In fact, under
very mild conditions, we show that

(2) supθPn,θ( | Gn,θ(t) - Gn(t) | > ε ) → 1

as n→∞ for some ε>00. As the true parameter is unknown, this implies that (1) does
not guarantee a small estimation error at any given sample size (however large). In
particular, (2) implies that no uniformly consistent estimator for the cdf of the post-
model-selection estimator can exist. Results similar to (1) and (2) also hold for
estimators for the conditional distribution of the post-model-selection estimator,
conditional on having chosen a fixed model. Extensions to other model selection
procedures are also discussed.

In light of Hajek's famous quote: ``Especially misinformative can be those limit
results that are not uniform. Then the limit may exhibit features that are not even
approximately true for any finite n'' (cf. Hajek (1970)), the lower bound result (2)
raises fundamental questions concerning inference after model selection, most of
which are still open.
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Ozone has been known as a constituent of the atmosphere since the middle of
the nineteenth century and its presence was then a cause of much interest to
professional people with a basic knowledge of science (Bojkov, 1986). Using simple
inorganic chemical techniques for analysis, many studies of its behavior were made
but few deductions were ever drawn from the large data base that was assembled.

Much of the increase in knowledge of atmospheric ozone in the early part of the
twentieth century had to do with the ozone layer. Its preponderance in the stratosphere
was clearly recognized, leading to the suggestion that ozone would make an excellent
tracer of stratospheric air.

Against this background it was perhaps surprising to find that ozone could be
produced in the troposphere, leading in extremis to the infamous Los Angeles smog.
Since that observation was made over 40 years ago, ozone production in the lower
atmosphere has been observed world-wide as a predominant type of regional air
pollution.

There is good experimental evidence that the tropospheric ozone concentrations
in the Northern Hemisphere is increasing (Bojkov, 1986; Volz and Kley, 1987).
Plausible reasons can be advanced that this is associated with increased emissions of
precursor molecules, particularly nitrogen oxides, from anthropogenic sources.

But the field of atmospheric science is at least as large as the field of statistics.
Nowadays, in the literature of atmospheric sciences are many examples of the
application of statistical methods. The involvement of statisticians in atmospheric
science, and of atmospheric physicists and chemistries in statistical science, which has
certainly not been negligible, is growing. This can only improve the standard of
statistics in the field of atmospheric sciences.

Several reviews of ozone trends have been recently formulated (Logan, 1985;
Bojkov, 1986). Probably the longest recent record of data on ozone, which is still
actively being collected, is that from the network of Germany meteorological service.
This was commissioned in 1952 and has been maintained until the present (Feister and
Warmbt, 1987).



I

T R E  D E  2001

Another example of the application of statistical analysis to characterize ground
level ozone is reported to Castilla-León (Spain), where a network of 26 urban,
suburban and rural stations have been providing data to analyze atmospheric
contamination in a regional scale and its temporal evolution (Alvarez et al., 2000).

Ozone concentrations at ground level has been collected in Portugal only from
the first half of last decade, in Lisbon and Oporto (Environmental Governmental
Services), both situated in the Atlantic coast. We have been analyzing this ozone data
by applying the adequate statistical methodology.

In this presentation some results of the statistical analysis of ozone data
collected at six measurement stations in Oporto (Figure 1) are shown. The common
period of data record is used in this presentation, that is from January 1, 1999 to
December 31, 1999. Annual evolution of maximum and mean monthly values are
analyzed, as well as the seasonal variation of the daily evolution. Particularly, winter
(December, January and February) and summer (June, July and August) ozone
concentration data are compared. Finally, seasonal variation of weekly evolution of
ozone concentration is analyzed.

Figure 1. Geographical location of the six measurement stations in Oporto
(source: Direcção Regional do Ambiente-Norte).
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1. Introduction

The Skew Normal (SN, hereafter) class of densities has been introduced by
Azzalini (1985) and recently generalised to the multivariate case (Azzalini and Dalla
Valle, 1996; Azzalini and Capitanio, 1999). This class of densities extends the Normal
model by allowing a shape parameter to account for skewness.  The density function of the
generic element of the class is

(1)
2

( ; , , ) ( )
x x

f x
µ µ

λ µ σ ϕ λ
σ σ σ

− − = Φ  
 

where ϕ and Φ represents the pdf and the cdf of the standard Normal density,
respectively, and λ is a real parameter. Positive (negative) values of λ indicate positive
(negative) skewness; when λ=0, one gets back to the Normal density.

The SN class enjoys remarkable properties in terms of mathematical  tractability
and it proved itself quite useful in modelling real data sets (see Azzalini and Capitanio,
1999). The SN class of densities plays a role in a Bayesian context too: it has been
considered as a sampling model in Liseo (1990) and as a class of prior densities in
O'Hagan and Leonard (1976).

Despite its nice properties, problems arises in the estimation of the parameters. For
simplicity consider the standard case (σ=1, µ=0). From (1) one sees that the  likelihood
function associated to a n-dimensional sample, is the product of n cdf's of the standard
normal density: if all the observed xi's are positive (negative) then the likelihood function
will be monotonically increasing (decreasing) and the maximum likelihood estimate for λ
will be (minus) infinite! This is maybe the worst case: even with positive and negative
observations, the behaviour of the MLE is not satisfactory. In the general three-parameters
case things can be even more difficult because the Fisher information matrix is singular as
λ → 0. Then "an alternative estimation method is called for…" (Azzalini and Capitanio,
1999).

2. A Bayesian Approach

In this paper we propose a fully Bayesian approach to the estimation of the
parameters of the SN class of densities, when it is used as a sampling model.

Here we list the main results of the paper

Standard case (σ=1, µ=0).

We calculate the Jeffreys' prior for λ and we prove that it is a proper density with
tails of order O( n-3/2). This is a quite unusual fact because noninformative priors for real
parameters are usually improper. In the SN model, the propriety of the Jeffreys' prior
seems to compensate the unusual behaviour of the likelihood function.
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This enables us to use a simple Metropolis-Hastings algorithm to obtain a sample
from the posterior distribution of λ. Simulation results indicates that the behaviour of the
Bayes estimate (i.e. the posterior mean of λ) is better than that of MLE, even from a
frequentist viewpoint.

The propriety of the Jeffreys' prior also enables us to obtain a simulation based
approximation of the Bayes factor for testing the null hypothesis H0:λ=λ0 against the
alternative H1:λ≠λ0.

General Case

We derive the reference prior (Berger and Bernardo, 1992) for the three-parameter
case. This is given by the product of the usual noninformative prior for the location-scale
parameters (πR(µ,σ)=1/σ) times a complicated (but marginally proper!) density for λ.

We obtain a nice form of the integrated likelihood for λ, after that the location and
scale parameters are eliminated with respect a Normal-Gamma type prior (which includes,
as a special case, πR(µ,σ)).

We compare the frequentist behaviour of the Bayes estimates with the ML
estimates, as obtained in Azzalini and Capitanio (1999)
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1. Thurstone-Mosteller Model

In 1927 L. Thurstone published the following description of a model for paired
comparisons and suggested a corresponding estimation procedure:

1. There is a set of stimuli that can be located on a subjective continuum (a
sensation scale, usually not having a measurable physical characteristic).

2. Each stimulus when presented to an individual gives rise to a sensation in the
individual.

3. The distribution of sensations from a particular stimulus for a population of
individuals is normal.

4. Stimuli are presented in pairs to an individual, thus giving rise to a sensation
for each stimulus. The individual compares these sensations and reports
which is greater.

5. The standard deviations of the stimuli are equal and correlations are zero.
6. Our task is to space the stimuli (the sensation means), except for a linear

transformation
The model also assumes that the data is balanced, i.e. each pair is compared the

same number of times. In 1951 F. Mosteller suggested a generalization of the above model
for correlated stimuli (equal correlations) and the model is now known now as the
Thurstone-Mosteller model. Since then various other models for paired comparisons were
developed (e.g. Bradley-Terry model, etc., see David (1988) and references).

However the Thurstone-Mosteller model remains one of the most popular models
for various applications. Numerous extensions of this model include cases of order effects,
possibility of ties, within pair effects, unequal correlations, unequal number of
comparisons, etc.

This paper suggests two new generalizations of the Thurstone-Mosteller model.

2. Method of Payoff Functions for Incomplete Data

This method was suggested by Chebotarev (1989) for the row sum method. The
idea of the method is to replace the actual and missing scores with so-called payoff
functions f(xi , xj, rij) of unknown weights xi and xj and known scores rij.

Eventually the weights are found from a system of linear equations
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(1) ( ( ))i ij j i ij
j

x r e x x r mn= + − +∑

Where n is the number of objects (stimuli) compared, m is the number of
observations per pair (if the two were compared), e is a positive constant and
summation is taken over such j that rij is defined. While the row sum method uses
actual observed scores rij, in case of the Thurstone-Mosteller model we find them from
the equation:

(2) ( )ij ijp r= Φ

where Ö is the CDF of Standard Normal Distribution and pij is the observed relative
frequency of event that stimulus i was preferred to stimulus j.

3. Bayesian Solution to the Thurstone-Mosteller Model

This approach allows us easily to accommodate for cases of unbalanced data,
missing comparisons, etc. As an example we suggest the following theorem.

Theorem. Let prior distributions of the weights be Standard Normal
Distributions for all stimuli. Then the Bayesian estimates of the unknown weights xi

may be found as solutions to the following system of the linear equations:

(3) 2 1

k
ij

i j

r
x x

σ
− =

+

where ó is the common standard deviation of the stimuli.
It should be noted that the knowledge of the actual ó is not necessary to find the

estimates. We can use instead any positive number, because “our task is to space the
stimuli (the sensation means), except for a linear transformation” (see item 6 of the model
description.

References

Thurstone, L.L. (1927). Phychophysical Analysis, Ame. Journal of Phychology.  38, 363.
Mosteller, F. (1951). Remarks on the Method of Paired Comparisons: I. The Least Squares

Solution Assuming Equal Standard Deviations and Equal Correlations, Phychometrica.
16, 3-9.

David, H. A. (1988). The Method of Paired Comparisons. Oxford University Press. New York.
Chebotarev, P. Yu. (1989). Generalization of the Row Sum Method for Incomplete Paired

Comparisons, Automatika i Telemekhanika.  8(50), 125-137.



2º  QU A D R I M E S T R E  D E  2001

R E V I S T A  D E
E S T A T Í S T I C A

Bootstrapping the Chambers-Dunstan Estimate of a
Finite Population Distribution Function

M.J. Lombardía, W. González-Manteiga, J.M. Prada Sánchez
Santiago de Compostela University, Dpt. of Statistics and Operation Research

Faculty of Mathematics. Campus South, Santiago de Compostela, Spain
majose@zmat.usc.es, wences@zmat.usc.es, prada@zmat.usc.es

1. The Chambers-Dunstan Estimator and Bootstrap Schemes

It is of interest to estimate the distribution of a random variable, Y, defined for a
finite population. Let P be the set of integers {1,…, N}; S an n-element subset of P and
P\S the complement of S in P. We consider a finite population P = {(Yk, xk)}k∈P, where the
values xk of an auxiliary variable X are known for all population elements and the random
variable Y is related to X by the model
(1) ξ:   Yk =α +βxk + εk

where α and β are unknown parameters and εk (k ∈ P) are independent and identically
distributed random variables with zero mean. The Yk are only known for a sample
S = {(Yi,xi)}i∈S,  which is taken without replacement from P.

The objective is to estimate the finite population distribution function of Y,

(2) ( ) ( ) ( )1 1( )N k i j
k P i S j P S

F t N I Y t N I Y t I Y t− −

∈ ∈ ∈ −

 
= ≤ = ≤ + ≤ 

 
∑ ∑ ∑    t∈R,

where I(ζ) is the indicator function of the event ζ. The ξ-based estimator proposed by
Chambers and Dunstan (1986) is

(3) ( ) ( )1

\

ˆˆˆ ˆ( ) i j
i S j P S

F t N I Y t G t a bx−

∈ ∈

 
= ≤ + − − 

 
∑ ∑

where â , b̂  are the S-based least-squares estimates of α and β respectively, and Ĝ  is the
empirical distribution of the residuals.

Given an estimate ˆ ( )G u• of the distribution G(u) of ε (see below), a bootstrap finite

population P* = {( kY ∗ , xk)}k∈P conforming to the model

(4) ξ∗:   ˆˆk k kY a bx ε∗ ∗= + +

can be generated by sampling ˆ ( )G u•  to obtain the kε ∗  (k∈P). The distribution

(5) ( ) ( ) ( )1 1
, ( )N k k j

k P i S j P S

F t N I Y t N I Y t I Y t
∗ ∗

∗ − ∗ − ∗ ∗
•

∈ ∈ ∈ −

 
= ≤ = ≤ + ≤ 

 
∑ ∑ ∑

of the variable Y* can be estimated from an n-member sample S*= ( ){ } *
,i i i S

Y x∗

∈
of P*

using the corresponding Chambers-Dunstan estimate:

(6) ( ) ( )1 *

\

ˆˆˆ ˆ( ) i j
i S j P S

F t N I Y t G t a b x
∗ ∗
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•

∈ ∈

  = ≤ + − − 
  
∑ ∑

where â∗ , b̂∗  are the S*-based least squares estimates of â and b̂ respectively, and

where ˆ ( )G u∗  is the empirical distribution of the residuals ˆˆ ˆi i iY a b xε ∗ ∗ ∗ ∗= − − .
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In this research we used two different estimators Ĝ• of G. One was obtained by

recentring the empirical distribution of the errors îε on their mean ε̂ , thus:

(7) ( )1ˆ ˆ ˆ( )e i
i S

G u n I uε ε−

∈

= − ≤∑ .

The other was a smoothed version:

(8)
( )1

ˆ ˆ
ˆ ( )

i

h
i S

u
G u n K

h

ε ε
−

∈

 − −
 =
 
 

∑ .

The next theorems show that the smoothed bootstrap estimator ˆ
hF ∗  is consistent.

Some regularity conditions are necessary:

Theorem (Chambers, Dorfman and Hall, 1992)

{ } ( ) ( ) ( )( ){ 221 2 2ˆ ( ) ( ) 1 ( )NMSE F t F t n x g t x d x dxπ τ σ µ α β− −− = − − − −∫ +

( ) ( ){ } ( )( ) }2
( ) ( ) ( )G t x t y d x d y dx dy G t x d x dxα β α β α β+ − − ∧ − − − − − +∫ ∫ ∫

( ) ( ) ( ){ }21 11 ( ) ( )N G t x G t x d x dx o nπ α β α β− −+ − − − − − − +∫ .

Theorem

{ } ( ) ( ) ( )( ){ 221 2 2
,

ˆˆ ˆ ˆ ˆ( ) ( ) 1 ( )h N h hMSE F t F t n x g t a bx d x dxπ τ σ µ∗ ∗ − −
∗ − = − − − −∫ +

( ) ( ){ } ( )( ) }2
ˆ ˆ ˆˆ ˆˆ ˆ ˆ( ) ( ) ( )h hG t a bx t a by d x d y dxdy G t a bx d x dx+ − − ∧ − − − − − +∫ ∫ ∫

( ) ( ) ( ){ }2
1 1ˆ ˆˆ ˆˆ ˆ1 ( ) ( )h h pN G t a bx G t a bx d x dx o nπ− −+ − − − − − − +∫ .

2. Simulation Study

A big simulation study was made. We have not distinguished between both
bootstraps since they both gave identical results within the level of precision used. In
general, the behaviour of the ˆMSE∗  imitates MSE%  at all points regardless of error
distribution, population size or sampling fraction (n/N). As N and n increase, the
discrepancy between ˆMSE∗  and MSE%  decreases, reaching zero at several points within

this level of precision, and remaining as ˆMSE∗  in the majority of cases - slightly lower

than MSE% .
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1. Introduction
We propose a formal method for obtaining a relationship between two arbitrary

distribution functions. The method can be extended also to density functions an to
probability mass functions in the discrete case.

Given two arbitrary distribution functions F and G we propose the following
formal approximation

(1)
( ]

[ ]
0 ,

( ) ( ) ( ) ( ) ,k F k
k x

F x s dG s E Xψ ψ
≥ −∞

  ≈  
  

∑ ∫

where X is a random variable having the distribution function F and { }kψ  is an
orthonormal system with respect to the measure dG(s).  The symbol ' ≈ ' means here
formal approximation. The convergence and the sense in which the formal series in
the right hand side of (1) converges to the left hand side of (1) should be stated in each
particular case.

2. Applications

As an application of (1), we give the following exact formulas relating:
An arbitrary binomial distribution and an arbitrary poisson distribution:

(2)
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An arbitrary hypergeometric distribution and an arbitrary binomial distribution:

(3)
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1
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N
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=

 
=  

 
∑

where b(x; N, p), p(x; λ  ) and h(x; N, 1N ,n) denote the pmf of binomial, poisson and
hypergeometric distributions respectively; C and k denote, respectively, the Charlier
and Meixner polynomials of the first kind, see Chihara (1978)

It is possible to obtain some of the classical approximations and some new ones
from (2) and (3). For instance, if in (2) we put λ =Np and we use only one or two
terms of the series in the right-hand side we obtain the classical approximation of the
binomial to the poisson distribution. If we use three terms, we obtain the Kolmogorov
approximation. With a similar argument, in (3) if we put and truncate adequately the
series in the right hand side of (3), we obtain the classical binomial approximation to
the hypergeometric distribution, (when only one term is used). Improvements in the
approximations can be obtained if more terms are used, see López-Blázquez and

Some other applications of our results include an exact relationship between the
negative binomial and the negative hypergeometric distributions, Gram-Charlier type
A and B expansions, etc.
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1. Introduction

We consider 
1

n

n i i
i

Q Xα
=

= ∑  where iα  are known positive constants and iX  are

independent chi-square variables with iν  degrees of freedom respectively. Our aim is

to obtain the density and distribution functions of nQ . We also derive bounds on the
truncation error in the given expansions.

The method that we present is based on the inverse Laplace transform. The
method of inversion that we propose in section 2 is based on the property of
uniqueness of minimum variance unbiased estimators (MVUE) in the gamma
distribution. Then, in section 3, we apply this method for the obtention of the density
and distribution functions of nQ .

2. The Inversion of Laplace Transforms

Let ( )h λ be a parametric function MVU-estimable in a distribution following a

( , )Ga p λ  distribution with 0p >  known and 0λ >  the unknown parameter, i.e.

there exits a function T such that: ( )2E T Yλ   < ∞  and [ ] ( )( ( )E T Y hλ λ= , for all

0λ > .
In such case, T is the minimum variance unbiased estimator, MVUE, of ( )h λ .

The set of all the MVU-estimable functions will be denoted by U.
From the uniqueness of the UMVU estimators, we can obtain the following

result which gives an expression for the inversion of Laplace transforms:

Theorem Let ( )G λ , 0λ > , be a function such that for certain 0p > ,

( ) ( )ph Gλ λ λ=  is MVU-estimable function, then:

(1) ( )( ) ( ) ( )
( ) ( )

( )
( )

)1
10 0-1 

0 0

p jp
p
j

j j

gx px
G x L

p p

µ µ
λ

µ

− ∞
−

=

−  
=  Γ  

∑L

for any 0 0µ > , with ( )( ) /g h pµ µ= , and with ( 1)p
jL −  denoting the j-th generalized

Laguerre polynomial.
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Note that the choice of 0µ  is arbitrary, so adecuate choices of the parameters in
(1) may yield formulas computationally efficient.

3. The Distribution of nQ
As an application of the previous theorem, we will obtain the density and

distribution functions of nQ .

Let f and F be the density and distribution function of nQ  respectively, then:

(2)
( ) ( ) ( )
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where kc  and kd  are some constants that can be easily obtained by recurrence
formulas.

As our objective is to implement these formulas in a computer, we study the
errors produced when the infinite series given in (2) and (3) are truncanted. We also
compare our results with those given by Kotz  et al. (1967).
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A large part of the theory of extreme value index estimation is developed for
positive extreme value indices. The best known estimator for that case is the Hill
estimator (see [3]).This estimator can be considered to be either a moment estimator or
a (quasi) maximum likelihood estimator and was generalized to a kernel-type
estimator, still only valid for positive extreme value indices.

The Hill estimator has been extended to a moment-type estimator valid for all
extreme value indices (see [2]). Also the quasi-maximum likelihood estimators (see
[4]) based on the generalized Pareto distribution have been given for a restricted
region of negative extreme value indices. Both the moment-type approach and the
likelihood approach lead to estimators that are based on the k largest observations. A
major drawback of both approaches is the discrete character of the behavior of these
estimators: adding a single large order statistic in the calculation of the estimator, i.e.
increasing k by one, can change the actual value of the estimate considerably. Plotting
these estimators as a function of the order statistics used, therefore often results in a
zigzag figure. In [1], the Hill estimator is smoothed by a kernel in order to obtain a
more stable figure. Unfortunately, this kernel type estimator is still valid only for
positive extreme value indices.

In this talk we present kernel-type estimators valid for all real extreme value
indices and compare their performance with the (generalized) moment estimator and
(quasi) maximum likelihood estimator. It should be emphasized that our estimator is
not a smoothed version of the moment estimator introduced in [2], but is based on the
so-called von Mises conditions. The resulting estimator is shown to be consistent
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under the single condition that the underlying distribution function is in the domain of
attraction of an extreme value distribution. Under additional assumptions on the
underlying distribution, asymptotic normality will be derived and sufficient conditions
are provided under which the asymptotic bias vanishes.
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Quantile regression constitutes a natural and flexible framework for the analysis of
duration data in general and unemployment duration in particular (Koenker and Basset,
1978). For instance, comparison of the quantile regressions for lower and upper tails of the
duration distribution may shed important insights on the different determinants of short or
long-term unemployment. Using quantile regression techniques, we estimate conditional
quantile functions of US unemployment duration and the implied hazard functions.  One
of the most interesting conclusions pertains the role of ``advanced notice of firing", which
was found to impact short durations---low quantiles---but not relatively long durations.
Overall, the results provide clear indications of the interest of quantile regression to the
analysis of duration data The number of applications of quantile regression techniques has
greatly increased in recent years. Labor economics has been one of the most popular fields
for applications, but attention has been almost exclusively devoted to the study  of wage
equations (see, for example and with no claim to being exhaustive, Buchinsky (1994),
Chamberlain (1994), Fitzenberger (1997) and Machado and Mata (2001)). Yet, quantiles
seem quite appropriate to analyze unemployment duration for, at least, two main reasons.
First, they provide a natural way of characterizing important concepts as short or long-
term unemployment by focusing on the relevant tails of the duration distribution.
Consequently, comparison of the quantile regressions for the 20th and for the 80th
percentiles (say) may shed important insights on the different determinants of short or
long-term unemployment. From a methodological vintage point, it is worth noticing that
quantile regression enable the performance of the aforementioned comparisons within a
unified and flexible framework. Moreover, quantile regression, as the seminal work of
Powell (1984) reveals, is particularly well equipped to perform consistent inferences with
censored data, a typical situation in duration studies.

The present paper has two chief aims. The first one is to explore the potential of
models for conditional quantile functions as a tool to analyze duration data. Second, we
wish to illustrated the approach with a well known and important data set--the U.S.
``Displaced Workers Survey"--in order to highlight the potential information gains from
using quantile regression in duration analysis (Addison and Portugal, 1987). The works by
Horowitz and Neuman (1987, 1989) constitute early attempts of using quantile estimates
for unemployment duration. However, somehow, they do not appear to have made their
way into the mainstream econometric analysis of duration. Be as it may, the emphasis
there was the consistent estimation of a parameter vector in presence of censoring rather
than exploitiong the full potential of quantile regression as a tool to the statistical analysis
of conditional distributions.

In this paper it is argued that quantile regression analysis offers a fruitful semi-
parametric alternative to study transition data. On one hand,  the censored quantile
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regression estimator enables the accommodation of incomplete duration data. And on the
other hand, quantile regression renders itself naturally to estimation of Accelerated Failure
Time models without imposing any distributional assumptions. Given the decreasingly
costs of computer intensive statistical methods such as these, it is puzzling to realize that
just a few empirical studies have applied quantile regression models to duration data.

Apart from being a distribution-free model, there are other advantages accruing
from using quantile regression models. First, it is flexible approach in the sense that it
allows for the covariates to have different impacts at diferent points of the distribution.
Second, the estimators of the regression coefficients are robust to the presence of
unobserved individual heterogeneity. Third, the estimators are resilient to misspecification
of the functional form. And fourth, in comparison with conventional models, the quantile
regression approach provides a much more complete characterization of the duration
distribution.

It is arguable that a reason  why researchers shy away from using the quantile
regression estimator is its uneasiness in dealing with standard survival analysis concepts. It
is shown, however, that it is straightforward to obtain typical survival outputs from
quantile regression estimates (e.g., hazard and survival functions, mean residual life,
conditional mean duration, etc.).

Finally, in some instances, the quantile regression approach offers a natural and
intuitive way to deal with some economic concepts. This is clearly the case of earnings
inequality. It is, in our view, also the case of unemployment duration. In particular, the
notions of short and long-term unemployment can be given an unambiguous empirical
content. In the empirical illustration with US unemployment duration, it was shown that
some covariates impact differently at distinct regions of the unemployment duration
distribution. The usefulness of the quantile regression approach is suggested by the
conclusion that some variables impact solely at short durations (e.g., advance notice,
schooling, and previous wage), other variables fade significantly over the course of the
spell of unemployment (plant closing), while the effect of other variables remain constant
across the board (gender and race). Those varying effects would be ignored if
conventional duration models were to be employed.
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The problem of estimating unknown parameters of a Markov-additive process from
data observed up to a random stopping time is considered in the case when the set of prior
distributions of the parameters is restricted.

Let ( ( ), ( )), 0,A t X t t ≥  (the time parameter t  is continuous) be a Markov-
additive process (in accordance with the definition of Pacheco and Prabhu (1995))
with the state space R I× , where {1,2,..., }I m= . It is assumed that the conditional
distribution of ( ) ( )A t A s− , given ( )X u i=  for all [ , ]u s t∈ , is given by the density

exp[ ( )( )]i i iv x f v t s− −

with respect to a σ -finite measure which may depend on the state i  in general, and iv

is a real parameter, iv iV R∈ ⊂ . This means that the sojourn time distributions belong

to one-dimensional exponential families. Let , , 1( )m
i j i jλ =  be the transition intensity

matrix of the embedded m -state Markov chain ( )X t .
The model of processes considered is a class of the Markov-additive processes

which have important applications to queueing and data communication models. They
are used to model queueing-reliability systems, arrival processes in telecommunication
networks, environmental data, neural impulses etc. A particularly important class of
the Markov-additive processes is the class of Markov-additive processes ( ( ), ( ))A t X t
of arrivals, i.e., those ones with the additive component ( )A t  taking values in the set
of nonnegative integers. A typical example is that of arrivals at a queueing system.

Sequential estimation procedures of the form ( , ( ))dδ τ τ=  will be considered,
where τ  is a stopping time and ( )d τ  is an estimator based on the observation of the

process up to τ . The parameter , 1( , , 1,..., ; ,..., )i j mi j m v vϑ λ= =  of the Markov-additive

process considered is unknown and the problem is to find optimal sequential
procedures, i.e., optimal stopping times τ  and the corresponding sequential estimators

( )d τ  for ϑ . It is supposed that if the observation is stopped at time τ  and the
estimate ( )d τ  is reported, then the loss incurred is

( , ( )) ( , ( )) ( ),L d L d cτ ϑ τ ϑ τ τ= +

where ( , ( ))L dϑ τ  denotes the loss function (representing the error of estimation) and
( )c τ  is the cost function. The loss function is defined by a weighted squared error

loss. The cost for a given procedure is determined by a function of one of the
components of the Markov-additive process; for example, it is the cost depending on
arrivals at a queueing system up to the moment of stopping.
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Let π  be a prior distribution on Θ . Then the Bayes risk of the sequential

procedure ( , ( ))dδ τ τ=  is ( , ) [ ( , ( ))] ( ).r E L d dϑ τπ δ ϑ τ π ϑ
Θ

= ∫
If there is precise prior information on the distribution of the unknown

parameter ϑ  which can be described by a prior π , then usually the Bayes principle is
used. If on the other hand no prior information is available, then the minimax principle
can be applied. In the paper, to find optimal sequential estimation procedures, the
intermediate approach between the Bayes and the minimax principle is chosen. The
use of the Γ-minimax principle is appropriate if vague prior information is available
which can be described by a subset Γ of a set Π of all priors. The problem is to find
stopping times τ  and the corresponding sequential estimators ( )d τ  subject to the

minimax criterion: a sequential procedure 0 0 0( , )dδ τ=  is said to be Γ-minimax if i.e.,
if it minimizes the maximum of the total Bayes sequential risk when the set of prior

0sup ( , ) inf sup ( , ),
D

r r
δπ π

π δ π δ
∈∈Γ ∈Γ

=

distributions of the unknown parameter is restricted to a subset Γ  of all priors. D  is a
class of all sequential procedures δ  having finite Bayes risk for each .π ∈ Γ

The set Γ  is determined by certain conditions imposed on the moments of the
prior distributions. The idea and tools are exhibited to obtain Γ -minimax sequential
procedures for estimating important quantities of the unknown parameters of the
Markov-additive process. As one of the tools for solving the problem, a minimax
theorem, which is a considerable generalization of a theorem of Dvoretzky, Kiefer and
Wolfowitz (1953), is given for a general class of  stochastic processes and a wide class
of stopping times.

Several classes of Γ-minimax sequential procedures for estimating the unknown
parameters of the Markov-additive process are presented. For example, a class of Γ-
minimax sequential procedures is derived explicitly in the case when for a fixed state
i  the ratios of , , 1,...,i j j mλ = ; ,j i≠  to '( )i if v  are of interest. In particular, the results

presented are applicable for the Markov-additive processes of arrivals most frequently
involved in the literature, i.e., for the Markov-modulated Poisson processes. The
results obtained constitute a generalization of the results given by Magiera (1999).
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Statistical tools may be an effective help in deciding disputed authorship
(Mosteller and Wallace, 1983) and in many other linguistic and stylistic studies. Zipf’s
law, for instance, may be used to characterize the vocabular wealth of a text or of an
author (Kruskal and Tanur, 1978), and multidimensional scaling is an effective tool to
investigate the stylistic evolution of an author (Malva and Pestana, 1999).

In 1974, Barreno, Horta and Costa (1974) published a collection of texts; the
three authors never wanted to reveal who wrote what. We used word and phrase
lengths, paragraph structure and length, and tagged noncontextual words and a random
selection of texts in that and in other books by the authors, published in the same
decade, to try to give a tentative answer to the problem of authorship identification,
using some new statistics whose distribution we studied.

In particular, we put forward an objective rule to select discriminant
noncontextual words: to any noncontextual word we associate (x,y,z), the number of
occurences in the reference texts by Barreno, Horta and Costa, respectively, and we
retained only those whose score max(x,y,z) − min(x,y,z) > 2. For the retained words,
we have calculated

R =
2 2 2( ) ( ) ( )x y x z y z

x y x z y z
− − −

+ +
+ + +

Under the hypothesis that this does not discriminate among authors, it has a chi-
square distribution with 3 d.f. Using this, only 3o words have been retained as
potential indicators. These have been used, together with paragraph, sentence and
word lengths, to make author identifications.

With our approach we could compute the probability of each of the writers
being the author of each of the selected texts. One of the authors confirmed that our
solution was the right one in a vast majority of cases.
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1. Introduction

Tweedie Laws (or Tweedie exponential dispersion models) generalize an
important subclass of infinitely invisible distributions, induding positive and extreme
stable Laws. It was can jetured in Jorgensen (1997) and proved in Winogradov (1999)
that under some assemptions, the results on weak convergence to certain Tweedie
Laws can be derived from those on weak convergence to stable laws.

In this paper, we prove a result that relates regular variation of the variance
function for a natural exponential family to regular variation of a miltably defined
generating measure for the family. In particular this enables us to interpret the
Tweedie convergence condition directly in terms of the asymptatic behavion of the
under lying probability measures, and we have this characterized an important part of
the domain of attraction to the Tweedie models.

2. Exponential Dispersion Models and Regular Variation.

Consider  a particular univariate nonnegative natural exponential family given
by the following probability density function:

(2.1) p(y;è)dy = 1/b0(è)eèy v(dy)

for y � 0, where v is a ó-finite measure on [0,�), and for a fixed ä � 0,

bä(è) = �[0,�)e
èyyäv(dy),

Here, canonical parameter ���, the canonical parameter domain �, in

the present case,  is an interval finite or infinite.

Clearly, the exponential family (2.1) has mean

µ = ô(è) = b1(è)/b0(è),

with mean domain Ù = (0, µ0), where µ0 is either be infinite (the steep case) or finite
(the non-steep case). The variance function for (2.1) is

V(µ) = ô ´{ ô -1 (µ)} with the same domain Ù.

The reproductive exponential dispersion model ED (µ,ó2) generated by the
natural exponential family (2.1) is given by densities of the following form:

P( y;µ,ó2)dy = 1/bë(è).eëèy õë(dy),

for suitable measures õë . Here, µ = ô (è) is the mean mapping and ó2 = 1/ë is the
dispersion parameter. Also, the variance is ó2 V(µ). Here V(.) is understood as the unit
variance function.
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The Tweedie exponential dispersion model with power parameter p å R\
(0,1), denoted by Twp(µ,ó2), is defined in term of the following unit variance function:

V (µ) = µp

Here, the domain for µ is R+, with one exception p = 0, for which it is R.
A ó – finite measure v en [0,�) is said to be (bounded) regularly  varying with

exponent   ñ > 0 if function x �{(0,x)}is (bounded) regularly varying with  exponent
ñ at either zero or in finity, as the case may be. Here in after we refer to regular
(bounded) variation with exponent ñ as ñ -variation.

Given a natural exponential family represented by (2.1), the measure mi(dy) =
yiv(dy), for i = 1,2 are called the first–and second–moment measures of the family,
respectivy.

3. Main Results

Theorem 3.1 Consider the natural exponential family (2.1) generated by
0). Then

1 -
varying at infinity if and only if the unit variance function V(.) is bounded
p(á)-varying at ì0. For á ª {1,2}, the result remains valid with bounded
regular variation replaced by regular variation.

2 - A particular variance function V(.) is bounded 2-varying at infinity if and
only if corresponding generating measure í is (-á)-varying at infinity for

Theorem 3.2 The second-moment measure m2 is (bounded) regularly varying at
zero with exponent 2 – á > 2 if and only if the corresponding unit variance function
V(.) is (bounded) regularly varying at zero either with exponent p(á) ª (1,2) if
í(0) > 0 or exponent 2 if í(0) = 0, where paramet á on p are related as follows:
p = (á – 2) / (á –1), with the convertion p = �      when á = 1

Theorem 3.3 (Jorgensen, Martínez, Tsao). Suppose the unit variance function
V is regular of order p at either zero or infinity. Then p å R\ (0,1) and for any ì > 0

2 > 0,

c-1ED(cì,ó2c2-p)�Tw p(ì,coó
2)

as c � 0 or c � �, respectively, where the convergence is through values of c such that
2 å Ë. The latter condition requires the model to be infinitely

divisible if c2-p��
This is a Joint work with Ben Jorgensen (Odense University, Denmark) and

Wladimir Vinogradov (Athens University, USA).
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1. Introduction

The statistical study of random functions is a quite new but promising area in
modern statistics. The monograph by Ramsay and Silverman (1991) underlines its
practical aspects whereas, for instance, Dauxois Pousse and Romain (1982) provided a
solid abstract framework to this topic.

We focus on the covariance operators of random (hilbertian) functions, which
are basic tools for the statistical inference (principal component analysis, canonical
covariance analysis, decomposition of gaussian curves…).

These empirical covariance operators are usually studied as Hilbert-Schmidt
operators for several reasons related to the particular geometry of Hilbert spaces. Yet,
the « natural » space should be the space of trace class operators since any Hilbert-
valued random variable has second order strong moment (in other words the
expectation of its square norm is finite) if and only if its covariance operator is of trace
class (see for instance Ledoux and Talagrand, (1991)).

This separable Banach space, denoted C1 in the following, is of cotype 2 as was
proved by Tomczack-Jaegerman (1974). We give a sufficient condition, which may be
easily checked, for a random operator to satisfy the CLT in this space. These results
are applied to covariance operators of independent and time dependent random
functions.

2. Main Results

All the random elements considered are centered.
The first result deals with independent random operators, the second one is

more general and connected with m-dependance. We denote (A) the following
assumption :

Σp (⊗|T(ep)| 2)1/2 is a convergent series,

where ep denotes any basis in H, T a random trace class operator and ⊗ stands for the
expectation.

Theorem 1 Let T be a random operator in C1, satisfying (A), then T also
satisfies the CLT.

Theorem 2 Let T1,…,Tn be a stationnary sequence of m-dependent random
operators in C1. If (A) holds for T1, the CLT is still satisfied.

The first theorem was proved without any type or cotype argument. Assumption
(A) suffices to ensure that the corresponding sequence of measures is tight and the
conclusion follows by Prohorov’s Theorem. Note the (A) is really quite close to the
condition for a random variable with values in the sequence space l1 to be pre-
gaussian.
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3. Application to Covariance Operators of Random Functions

The previous results may be applied to a sample X1,…,Xn of random variables
on H. Set Ti=<Xi,.>Xi-C where <.,.> denotes the inner product on H and C the
covariance operator of Xi. or T’i=<Xi,.>Yi where Xi and Yi are independent (T’i is the
cross-covariance operator of the couple(Xi,Yi)). We refer to Bosq (2000) (functional
ARMA processes) and Cardot, Ferraty, Sarda (2000) (functional linear regression) for
interesting examples of models where such operators are studied. A crucial point is to
express assumption (A) by means of the data (namely the Xi‘s) only.

Proposition Let λi be the eigenvalues of C. If the two following conditions
hold:

Σi (λi)
1/2 is finite and ⊗< X1,ep>

4=O(λp
2),

Ti satisfies the CLT.
A similar result may be obtained with T’i instead of Ti and for many linearly

dependent processes.
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This talk deals with two different but  inter-connected topics on stopping times
τ  in Brownian Motion     B(t),  t ≥ 0  that are related to its cumulative maximum

    M(t) = sups ≤t B(s) :

♦ The distribution of the first time Brownian Motion  differs from its
cumulative maximum by some fixed amount, the drawdown, gap  (Dubins
and Schwarz, 1988) or extent (Goldhirsch and Noskovicz, 1990).

♦ Optimal stopping when the sampling cost is linear  in time and the  reward
upon stopping is a non-decreasing function  φ  of the cumulative maximum.
This can be viewed as pricing and management of a type of look-back
American option ( )( )   M cφ τ τ− . The case of linear reward function was
studied by Dubins and Schwarz.

It is possible to see on general principles that these optimal stopping times must
be Azéma-Yor-type stopping times  (Azéma and Yor, 1978a, 1978b),  to embed  à la
Skorokhod (1965) distributions  in Brownian Motion,  a notion to be briefly
introduced in the talk.

The solution will be explicitely presented for step functions φ  by a Dynamic
Programming construction, to be taken more generally  to the limit under finer and
finer discretizations.  This limit identifies the differential equation

( )21
( )  ’( )   ( )

4
H x H x x

c
φ− =

for the (always absolutely continuous) optimal reward function

( )( ) sup ( )H x E x M c
τ

φ τ τ= − −  

and allows the representation of the solution as: stop as soon as the gap     M(t)  −  B(t)

reaches the value  
    

H ' M (t)( )
c

.
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1. Generalization of Kolmogorov's Strong Law

We start by establishing the following Lemma;

Lemma 1 Consider the random variables 1, , nV VK , ..., i.i.d., and the real

constants, 1, , nc cK , ..., whose absolute values are less than c . If [ ] 0,  1, ,iE V i n= = K ,

and [ ]2

1
lim

n

ii
n V V−

=
< ∞∑ , then . .1

1
lim 0

n a s
i ii

n cV−
=

→∑ .

Proof With i i iW cV= , we have, [ ] 0iE W = , as well as,

[ ] [ ]2 2 2

1 1
lim lim

n n

i ii i
n V W c n V V− −

= =
≤ < ∞∑ ∑ , so, by [Williams, D. (1991), page 118],

. .1 1

1 1
lim lim 0

n n a s
i i ii i

n cV n W− −
= =

= →∑ ∑ .

Let us now consider the (classic) linear model, ,
n s n

n sy X eβ= +
rr r

. We may now
state

Theorem 2 If 1limn X X W− ′ = , a positive definite matrix, the lines of the matrix
X  belong to a compact (contained in s¡ ) and the components ,  1, ,ie i n= K , of the

error's vector are i.i.d. with [ ] 0iE e = . Then ( ) 1 . .a ss n
n X X X yβ β−′ ′= →

r r% .

Proof With Xµ β=  we have,

(1) ( ) ( )( ) ( ) ( )1 11 1 1 1 .n X X n X y n X X n X eβ β µ
− −− − − −′ ′ ′ ′− = − =%

If the elements of matrix X  are the , ,  1, , ;  1, ,i jx i n j s  = =  K K , the generic

component of the vector 1n X e− ′ , will be 1
,1

,  1, ,
n

i j ii
n x e j s−

=
=∑ K . Let us now

consider the random vector nu
r

 originated by truncating the components of ne
r

, in the
form

[ ] ( ), ,  1, , .i i ii iu e I e i n−= = K

By the Kolmogorov's Truncation Lemma (see Williams, D. (1991), page 118]),
we have, for n large enough

(2) [ ]" " 1n nP u e eventually= =  as well as [ ]2

1

n

i
i

n V u−

=

< ∞∑ .
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Thus Lemma (1) implies . .1
,1

0,  j=1, ,s
n a s

i j ii
n x u−

=
→∑ K . Hence, by (2) we

know that, . .1
,1

0,  j=1, ,s
n a s

i j ii
n x e−

=
→∑ K , as well as

(3)  ( ) . .1 1
, ,

1 1

0,  j=1, ,s.
n n

a s
i j i i i j i

i i

n x y n x eµ− −

= =

− = →∑ ∑ K

Now, with ( )Wρ  the spectral radius of matrix W , we have

( )( ) ( ) ( )1 11 1n X X W Wρ ρ ρ
− −− −′ → = < ∞ . So, an m ∈¥  exists, such that, for all

n m≥  we have ( )( ) ( )11 12n X X Wρ ρ
−− −′ < .

Then, using (1), we get,

( ) ( )1 12 W n X yβ β ρ µ− − ′− < −%

and the thesis follows immediately from (3).

If we make , ,1 1n
n s nX X= =

r
, we have exactly the case considered by

Kolmogorov, so we can look at Theorem (2) as a generalization of the classical
Kolmogorov's Law of Large Numbers.
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The control of traffic lights at a bottleneck will be understood as a
(non-standard) queueing problem assuming Poisson arrival processes. One lane of a
two-lane road is blocked, so that the traffic from both sides has to share the one
remaining lane. The organisation of the traffic flow is realized by traffic lights, which
give mutually free course to at most one side. The control parameters in the hand of
the operator of the traffic lights are the green times for the both sides.

The study of the bottleneck case is insofar important, as it can be generalized to
more complicated forms of traffic organisation as roundabouts and junctions.

The technical part of a bottleneck is described for the imsymmetric case by
, ,  1,2

ii Rt i∆ = . i∆  in [veh/s] denotes the passage capacities, 
iRt  in [s] the clearance

time for side i.
The arrival process for the both sides are assumed as Poisson processes over

( ), ,Ω A P  with intensities ,  1,2iI i = . 0,  1,2
iFt i> = , are the times of free passage

(signalized by 'Green' or 'Yellow'), acting as control variables.
Define

( ) : ,
ii F F it tα  = ⋅ ∆ 

[.] denoting the Gaussbrackets and

( ) ( )
1 2 1 2 1 2
, : .i F F i F F R Rt t I t t t tλ = + + +

Basing on a detailed modeling of the control of the bottleneck the sequence
( )( )i
jq  of the distributions of the queue lengths ( )i

jL  (in the j-th period), j ∈¥ , follow a

recursion with the operator

( ) ( ): ,iT ∞ + ∞ +→M M¢ ¢

( ( )∞ +M ¢  denoting the set of probability measures over +¢  with finite support),

defined by

( )
( )( )( )

( )

( )( ) ( )( )
1 2

1 2

0

* , for 0
:

* , for 1,  1,2.

Fi

i i

t

F F
ki

F F i F

q t t k l
T q l

q t t l t l i

α

λ

λ

π

π α

=


== 

 + ≥ =

∑

For ( ) ( )
1 2
, ,  1,2

ii F i F Ft t t iα λ> =  it follows from the properties of iT  (together

with E. Grycko), that the operators  1,2iT i =  enjoy a fixed point, i.e. the queueing
process on both sides are ergodic; moreover it holds
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( ) ( )lim dP ,  1,2.iL t i< ∞ =∫
Calling a pair ( )

1 2
,F Ft t  of times of free passage ergodic, the obtained results

give rise to the following

Definition An ergodic pair ( )
1 2
,F Ft t  is called optimal, if

( ) ( )( )2
1

1
max lim lim dP ,

u ci

i

j t jt ti
I L t−

→∞ + += ∫

where ( )1 2 3: ,  1,2C R R F it t t t i−= + + =  and ( ): 2
i iu F Rt t t= + , i.e. ut  is the duration of a full

period while 
iCt  is the closed time signalized by 'Red', 1,2i = . It can be proved on one

hand that the (asymptotic) efficiencies (throughput per time unit) equals the intensities
,  1,2iI i = ; on the other hand by computer experimentation it yields, that

( ) ( )( )1 dPiI L t− ∫
is a good estimate of the expected time a newly arriving vehicle from side i has to
wait, which justifies the definition of an optimal pair of times of free passage.

Under stronger assumptions the results hold true even for renewal processes as
arrival processes; the proof (together with C. Poppinga) is based on a dominance
principle for stochastic processes.
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Let 1 2, ,..., nX X X  be n consecutive observations generated by a stationary time

series ( )t t
X

∈¢
 with ( )2

tE X < ∞ . We discuss the problem of testing the null hypothesis

0H  that the data is generated by a specified linear process linear process of the form

t i t jj
X ψ ε

∞
−=−∞

= ∑ , where the ( )tε  are i.i.d random variables with mean zero and

variance 2σ ; we assume that ( )4
tE ε < ∞  and jj

j
βψ

∞

=−∞
< ∞∑ . More precisely, let

( ),n XI ω  denote the periodogram of { }1,..., nX X  and let ( )Xf w  be the spectral density

of  ( )tX . Suppose that 10 ... mλ λ π< < < < , we give an asymptotic distribution of the

random variables , ,/i i n m nU R R= , where ( ) ( ){ }, ,1
/ , 1,..., 1

i

i n n X k X kk
R I f i mλ λ

=
= = −∑ ,

and two corollaries wich can be used to construct two tests of the null hypothesis 0H .

The first idea is to reject the null hypothesis 0H  if the "mormalized periodogram"

( ) ( ){ }, /n X k X kI fλ λ  contains a value substantially larger than the average value. The

second corollary suggests another test of the null hypothesis 0H  applying the theory
of well known KolmogorovSmirnov test. Note that AR, MA and ARMA models may
be regarded as special cases of the null hypothesis. We give a numerical illustration of
our test applied to simulated series.
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Let F be a nondegenerate distribution with finite fourth moment. The
coefficient of kurtosis of F is defined as

4 4( ) 3F F FE X E X σ −− −

and denoted by κF  with σF the standard deviation. We will denote the coefficient
of skewness

3 3( )F F FE X E X σ −−

by τF.
For different classes of distributions sharp inequalities have been derived for the

squared skewness minus the kurtosis. For instance, Pearson (1916) derived an upper
bound of 2, with equality iff X takes on two distinct values a.s. under F.

If F belongs to the class of unimodal distributions for which the mean and mode
coincide, the inequality has an upper bound of 6/5, which is attained iff F is uniform.
Consequently, the kurtosis has a lower bound of -6/5 for symmetric unimodal
distributions.

We have derived a sharp inequality for all nondegenerate unimodal distributions
with finite fourth moment. This is given by

2 186
125 ,F Fτ κ≤ +

which holds with equality iff F is a one-sided boundary-inflated uniform distribution
with mass 1/2 at the atom.
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1. Introduction

Deciding upon the optimal sample size in advance is a difficult problem in
general. Often, the investigator regrets not having drawn a larger sample; in many
cases additional observations are done. This implies that the actual sample size is no
longer deterministic; hence, even if all sample elements are drawn at random, the final
sample is not a simple random sample. Although this fact is widely recognized, its
consequences are often grossly underrated in our view. Too often, these consequences
are ignored: the usual statistical procedures are still applied.

This paper shows in detail the dangers of applying standard techniques to
extended samples. To allow theoretical derivations only some elementary situations
are considered. More precisely, the following features hold throughout the paper:

• The population variable of interest is normally distributed,
• Estimation concerns population mean and variance,
• All sample elements are drawn at random, with replacement,
• Only standard estimators, like sample mean and sample variance, will

be considered.

2. Fixed Sample Extension

An initial sample of size 1n  is drawn from ( ,N µ σ 2), with µ  and σ  unknown;

sample mean and variance are denoted by 1y  and 2
1s , respectively. An additional

sample of again size 1n  is drawn if some criterion iC  is satisfied; here we consider:

2 1{ },C y c= > 2
3 1{ }C s d= >

with c  and d  given constants. (Note that 1C  may be applied when 0 0:H µ µ≥  is

'nearly' rejected, while 2C  is used when the attained accuracy of a sample proves to be
unsatisfactory.)

Let 3y  and 2
3s  denote mean and variance of the extended sample (of size 12n );

then for 2C  as well as 3C , the natural estimator y  for µ  and the natural estimator
var( )y  of its variance are given by

1

3

if

if
i

i

y C
y

y C

′
= 



2
1 1
2
3 1

/ if
var( )

/(2 ) if
i

i

s n C
y

s n C

′
= 



Table 1 presents some worst-case results: the extreme relative bias that these
two estimators may have.
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Criterion ( )ERB y [var( )]ERB y

2C
1

0.20 /
n

σ µ−
0.18

3C 0
1

0.42
n

−

Table 1. Extreme relative bias ( )ERB  of y  and var( );y 2C  and 3C .

3. Stochastic Sample Extension

Now two independent samples of size 1n  are drawn independently from
2

1( , )N µ σ  and 2
2( , ),N µ τσ  leading to sample variances 2

1s  and 2
1t , respectively.

Extension criterion 2 2
4 1 1{ }C s t= >  is used; if 4C  occurs, the second step sample size

2n  for population 1 is

2 1n n=  2 2
1 1ent( / 1)s t −

(Criterion 4C  is useful when the two populations means 1µ  and 2µ  have to be
estimated with about equal accuracy.) Table 2 presents the (simulated) relative bias of
the variance estimator of the final sample mean y .

τ 1n 5 9 13 17 25 50

1/3 -7.5 -2.3 1.2 -1.0 0.0 -1.5

1/2 -12.3 -5.0 -3.7 -1.4 -3.9 -1.0

1 -21.5 -13.9 -10.5 -9.5 -7.3 -6.4

2 -30.5 -19.8 -17.2 -12.2 -9.3 -2.9

3 -32.3 -19.9 -14.6 -11.2 -5.0 -2.9

Table 2. Relative bias (in %) of var ;(y) 4C .
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One of the potential risks of using joint schemes for the process mean ( )µ  and
standard deviation ( )σ  is the emission of what is called misleading signal (MS) by St.
John and Bragg (1991) and Morais and Pacheco (2000a).  Two possibilities of triggering a
MS are as follows: (1) A signal is only triggered by the scheme for µ , although this
parameter is on-target and σ  is out-of-control (MS of Type III); (2) µ  is off-target and σ
is in-control; however, a signal is exclusively given by the chart for σ  (MS of Type IV).

This sort of signal can send the user of the joint scheme to try to diagnose and to
correct a non-existent assignable cause - and, thus, increase inspection costs -, because the
diagnostic procedures that follow an out-of-control signal can differ depending on whether
the signal was given by the scheme for µ  or the scheme for σ .

In this extended abstract we use the probability of a misleading signal (PMS) to
assess the impact of MS’s in the joint monitoring of µ  and σ . Another possibility that
also springs to mind is the run length to a misleading signal (RLMS); for a further
discussion on this alternative performance measure please refer to Morais and Pacheco
(2001). We provide convincing examples that alert the user - namely of five joint schemes
for the mean and standard deviation of a quality characteristic with normal distribution - to
the phenomenon of MS’s of Types III and IV.

The individual schemes for µ  which constitute the joint schemes with acronyms
SS+, CC+, EE+, CCS+ and CES+ are the upper one-sided X-bar, CUSUM, EWMA,
combined CUSUM-Shewhart and combined EWMA-Shewhart schemes, respectively. As
for the individual schemes for σ , the joint schemes SS+, CC+, EE+, CCS+ and CES+ are
associated to the upper one-sided S2, CUSUM, EWMA, combined CUSUM-Shewhart and
combined EWMA-Shewhart schemes, respectively.

Let the increase in µ  and in σ  be measured in terms of 0 0( ) /nδ µ µ σ= −  and

0/θ σ σ= , respectively. Then the PMS’s of Types III and IV are equal to:

PMS(III;θ )=P[RL ( )σ θ >RL (1, )µ θ ], 1θ > , and PMS(IV;δ )= P[RL ( ,1)µ δ >RL (1)σ ],

0δ >  (respectively), where RL ( , )µ δ θ  and RL ( )σ θ  repre-sent the run lengths of the

individual schemes for µ  and σ .
To illustrate the occurrence of MS’s of Types III and IV in the joint scheme EE+,

we consider an example with two simulated data sets; their corresponding sample means,
variances and statistics of the individual schemes for µ  and σ  can be found in Table 1.
This table also has PMS’s of Types III and IV for the five joint schemes considered here.
(For further considerations on the parameters of these joints schemes see Morais and
Pacheco (2000b).) The results in Table 1 suggest that the scheme SS+ compares
                                                       
* This research was partially supported by Fundação para a Ciência e a Tecnologia, the Project

PRAXIS/P/MAT/10002/1998 ProbLog, the SAPIENS Project CPS/34826/99-00 SCALE and was
done under the SAPIENS Project 40004/2001 TOWN initiative.
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unfavorably to the joint schemes CC+, EE+, CCS+ and CES+, in terms of MS’s of both
types, in most cases. They also give the distinct impression that the values of PMS’s are
far from negligible, especially for small and moderate shifts in µ  and σ . All these
schemes but SS+ tend to give more MS’s due to changes in δ  (i.e. MS’s of Type IV) than
due to changes in θ  (MS’s of Type III).

( ,µ σ )=(100,1.3) ( ,µ σ )=(100.075,1)
N

mean var stat µ stat σ mean var stat µ stat σ

1 100.597 0.668 0.067 0.000 100.02 0.804 0.002 0.000
2 99.992 3.268 0.063 0.059 100.337 2.604 0.040 0.048
3 100.386 0.644 0.103 0.034 99.945 1.759 0.032 0.074
4 100.400 0.471 0.142 0.000 100.666 1.777 0.105 0.099
5 98.796 0.517 0.001 0.000 100.036 2.229 0.103 0.134
6 100.144 3.345 0.017 0.060 99.975 0.985 0.095 0.126
7 101.531 1.039 0.187 0.059 99.918 1.896 0.082 0.152
8 100.507 2.143 0.234* 0.094 99.931 2.030 0.070 0.180***
9 100.259 2.711 0.252* 0.140 100.138 1.300 0.082 0.184***
10 99.893 4.136 0.227 0.204** 99.705 0.555 0.045 0.145

*MS of Type ΙΙΙ;�** Non MS; *** MS of Type IV;

0µ =100; 0σ =1; n=5;  [LCL µ , UCL µ ]=[0,0.195597]; [LCL σ , UCL σ ]=[0,0.157079]

Table 1. Example, and PMS's of Types III and IV for five joint schemes.
PMS III PMS IV

θ SS+ CC+ EE+ CCS+ CES+ δ SS+ CC+ EE+ CCS+ CES+

1.05 .4319 .3486 .2981 .3650 .3278 0.05 .4611 .4381 .3911 .4502 .4154
1.10 .3771 .2603 .1821 .2770 .2031 0.10 .4238 .3828 .2970 .4021 .3304
1.20 .2976 .1874 .0810 .1969 .0888 0.25 .3214 .2406 .1319 .2581 .1551
1.30 .2452 .1660 .0449 .1735 .0488 0.50 .1919 .0980 .0463 .1075 .0569
1.40 .2091 .1607 .0294 .1682 .0318 0.75 .1115 .0375 .0213 .0436 .0286
1.50 .1827 .1610 .0216 .1693 .0232 1.00 .0650 .0139 .0108 .0186 .0169
2.00 .1106 .1762 .0118 .1892 .0120 1.50 .0237 .0017 .0031 .0047 .0077

We strongly believe that the probability of MS’s of Types III and IV should be
taken in consideration not only as an additional performance measure in the design of joint
schemes for µ  and σ  as suggested by Morais and Pacheco (2000a), but also as a
guideline in diagnosing which parameter(s) has (have) changed after the emission of a
signal (see Reynolds Jr. and Stoumbos (2000)). An analytical justification - from a
stochastic ordering point of view - for the monotonic behaviour (and other monotonicity
properties) of the PMS’s and other monotonic properties of these five joint schemes is
given in Morais and Pacheco (2000b).
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There is wide evidence that wage inequality has grown in western countries for
the period covering the eighties and the first half of the nineties. A very common
belief rests on the assumption that a more educated society would strongly reduce this
inequality. Using data from the Portuguese Employment Survey covering the years
1998 to 2000, I intend to show that there is no empirical evidence supporting this
view.

There are basically two alternative economic theories to explain the
phenomenon of growing inequality. The first rests on labour demand and supply
framework. A very fast technological evolution has induced a growing demand for
high skilled workers but not accompanied with a larger supply. The second theory
emphasises the importance of world trade. In a world of growing competition,
exchange of technology has become essential to many countries and also easier. Thus,
both theories assert that the increase in wage inequality was caused mainly by the
pressure for high skilled workers' wages to rise.

Usually, mean regression results (usually estimated by ordinary least squares)
are used to study the effects of a predefined set of variables on the dependent variable.
However, this technique only gives the effects on the mean of the conditional
distribution. This approach seems insufficient when the aim is to uncover the effects
of a set of characteristics on the workers’ wages. In fact, it is not reasonable to expect
the impact of each variable to be the same on the wages of two people standing on
opposite extremes of the distribution. Therefore, it is important to use a technique that
gives more information concerning the conditional distribution of the wages instead of
just its mean. Quantile regression techniques are used inasmuch as they will provide
information on the effects of any variable on the dependent variable at any desired
quantile of the conditional distribution. This technique has another advantage over the
traditional mean regression in that it allows the implicit control for workers'
heterogeneity.

In this framework, log hourly wages will depend on the degree of scholarity
attained, experience, tenure and workplace area. This specification involved separate
estimation for working males and females. Nonetheless, the sample selection bias
problem is also addressed in a joint estimation setting.

From the list of empirical results obtained, some deserve a small comment.
Working in ‘Lisboa e Vale do Tejo’ (hereafter, LVT) is clearly beneficial in wage
terms. As an example, considering only the year 2000, paid male employees of the
region ‘Norte’ receive, in average, less 17% than their counterparts of LVT. However,
the wage gap along the conditional distribution is not uniform. In the first decile, the
gap is about 13% whereas at last decil the gap widens to 22,5%.
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Experience and tenure, in spite of being well defined, are shown to have little
influence on wages formation. Still, they have positive impact which fades away in
time. Concerning these two variables, there is not large variation between deciles.

Finally, special attention is paid to returns to education. The effect of education
on workers' wages is not constant along the whole conditional wage distribution, as
there are clear benefits for the workers standing on the top deciles. As suspected, the
returns vary greatly from decile to decile and even for different number of years of
experience. Results, based on the functional form described earlier or on a simpler
form, both reveal that an increase in wage inequality should be expected if the level of
education of the population significantly increases. Hence, for people with up to 6
years of education, an eventual additional schooling year would lead to a decrease in
inequality, while for people with more than 9 years of education, it would contribute
to strengthen the inequality. In fact, if one has studied no more than 6 years,
education,contributes to a contraction of the wage inequality as its impact is smaller in
upper deciles. On the other hand, if one has at least 9 years of education, its impact is
bigger on the upper deciles. These results confirm that the conditional quantile
regression approach is appropriate whereas sticking to the usual mean regression
would have been clearly insufficient and perhaps misleading.

The findings herein are not as surprising as they may seem at first sight. Raising
the education level of a population leads implicitly to the widening the wage range as
dispersion is larger within higher education levels.
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Evidence from several different regions suggests that the major coastal
upwelling systems of the world have been growing in upwelling intensity as
greenhouse gases have accumulated in the earth’s atmosphere. Effects of enhanced
upwelling on the marine ecosystem are uncertain but potentially dramatic.

The upwelling indexes, measured through some of the most reliable Portuguese
coastal stations, are very important variables to establish the climatic framework of
coastal upwelling off Portugal. From 1 January 1985 to 31 December 1999 the wind
regime at the meteorological stations of Cabo Carvoeiro, Sagres and Sines was
analysed. The variables correspond to climatological averages of the mean daily
values of speed and frequency. Unfortunately, there are some missing values that are
related to damages in the equipment.

In order to estimate the seasonal and long term trend of each time series in the
presence of missing values, we had applied two different approaches: the first one was
related with the concept of local and seasonal moving averages; secondly we had
developed an sine-cosine wave at some significant frequencies. To compare the results
obtained from those meteorological stations, we had applied the Bootstrap
Methodology. Afterwards, we had established a linear model to describe the
relationship between Sagres / Cabo Carvoeiro and Sines / Cabo Carvoeiro.

                                                       
* Research partially supported by FCT/POCTI/FEDER
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We consider the following problems:

1. testing cell probabilities in sparse multinomial data sets, that is to test
H: pnj =πnj      for all   j=1,…,kn   versus  K: pnj'  � πnj’    for some j', where
the pnj's are unknown  and the πnj's are given cell probabilities. The
number of cells kn is assumed to tend to infinity as the sample size n tends
to infinity.

2. testing independence in contingency tables, i.e. we check whether
H: pn ij = q ni rn j    for all i=1,…,k1n,  j=1,…,k2n    versus   K: pn i'j’  � qn i' rn j'

for some  (i',j'), where the pn ij 's are cell probabilities in a two-
dimensional contingency table. Here  qn i and rn j are the corresponding
marginal probabilities. Sparseness is described by the condition k1n → ∞
and k2n  →  ∞ as n→  ∞ .

The unknown cell probabilities are estimated by kernel smoothing, and the
application of  central limit theorems for the sum of squares of errors  of local
polynomial estimators for cell probabilities in sparse data sets leads to  asymptotic  α -
tests for both problems.

The behavior of the power under local alternatives of the proposed test
procedures is investigated, the influence of sparseness and comparisons with other
tests are discussed. An analogy to L2-type test procedures for densities is considered.
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This poster  is concerned  with  the problem of the linear mean-square estimation of
a signal or system process based upon  noisy observations. Series representations of
stochastic processes by means of deterministic functions and uncorrelated random
coefficients are one of the most used techniques to solve this problem. Several types of
series representations with uncorrelated coefficients can be found in the literature:
Karhunen-Loève expansion, simultaneous  orthogonal expansions (Kadota,  1967),
Cambanis representation (Cambanis, 1973), etc. The most general representation has been
given by Cambanis, since the only assumptions are that the process is of second-order,
measurable and defined on any interval of the real line. If a double orthogonality is
imposed in this representation, then it becomes a series expansion depending on the
eigenvalues and eigenfunctions of the integral operator whose kernel is the autocorrelation
of the process, generalizing the  Karhunen-Loève expansion. Moreover, it is the optimal
representation in the sense that the mean-square error resulting from a finite representation
of the process is minimized.

From the practical standpoint, this optimal expansion is very limited because
there is no standard method to find the eigenvalues and eigenfunctions of the
autocorrelation function. Navarro et al. (2000) have recently developed a methodology
to clear up this difficulty. This approach provides a class of finite expansions, called
approximate expansions. Such finite expansions are based on the approximate
eigenvalues and eigenfunctions calculated from the Rayleigh-Ritz method in order to
solve numerically the associated Fredholm integral equation and they have similar
properties to the optimal expansion. Moreover, this solution includes, as a particular
case, the approximate Karhunen-Loève expansions given by Gutiérrez et al. (1992)
and Ruiz-Molina et al. (1999).

Our aim is to apply these approximate expansions to the linear mean-square
estimation problem. Thus, a new solution will be provided overcoming the difficulty
of computing the true eigenvalues and eigenfunctions. The advantage of this solution
is that it is  easily implementable on a computer.

                                                       
* This  work was supported in part by Project BFM2000-1103 of the Plan Nacional de Investigación

Científica,  Desarrollo e Innovación Tecnológica (I+D+I), Ministerio de Ciencia y Tecnología, Spain.
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1. Introduction

Let X  be a positive random variable having absolutely continuous distribution
function ( )XF t , survival function ( ) 1 ( )X XF t F t= − , probability density function ( )Xf t ,

failure rate function ( ) ( ) / ( )X X Xr t f t F t=  and mean residual life function
( ) ( )Xe t E X t X t= − > . It is well known that ( ),  ( ) X XF t r x and ( )Xm t  are equivalent, in

the sense that given one of them, the other two can be determined.

Let ( )w t  be a positive real function with 0 ( ( ))E w X< < ∞ . The random variable
Y  with probability density function

( ) ( )
( )

( ( ))
X

Y

w t f t
f t

E w X
=

is called the weighted random variable corresponding to X , and its distribution in
relation to that of X is called the weighted distribution with weight function w . The
concept of weighted distribution was formulated by Rao (1965) to model various
situations in which the recorded observations cannot be considered as a random
sample form the original distribution. In particular, the weighted distribution with
weighted function ( )w t t=  is called the length-biased distribution. A similar definition
can be given when X  is a discrete random variable, replacing ( )Xf t  by

[ ]( ) PrXp t X t= = .

In this paper we obtain general characterizations of probability distributions
from relationships between failure rate and mean residual life from the original
random variable X  and the associated weighted random variable Y .

2. Characterization Results

Nair and Sankaran (1991) characterized the Pearson system of distributions
(P.s.d.) defined by

2
0 1 2

( )
'( ) ( )

t a
f t f t

b b t b t
− +

=
+ +

through the relation 2
0 1 2( ) ( ) ( )m t a a t a t r tµ= + + + .This result was generalized by Ruiz

and Navarro (1994), giving a general way to obtain ( )f x  from the relation
( ) ( ) ( )m t k q t r t= + , where k is a real number and ( )q t is a real function.
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Asadi (1998) (using the result of Nair and Sanckaran (1991)) has characterized
the distributions of the P.s.d. with 0 0b =  through the relation

( ) ( ) ( )
,

( ) ( ) ( )
Y Y

X X

r t m t E Y
r t m t E X

δ
−

=
−

where δ is a constant and Y  is the weighted distribution associated to X  and
( )  ( 0)w t tα α= > .

In this paper, using the results given in Ruiz and Navarro (1994), we extend the
result of Asadi (1998) to obtain a general result, characterizing any density function
from a similar relationship by using the weighted distribution.

Theorem Let X  be a random variable, let ( )w t  be a positive, differentiable and
non constant real function and let Y  be the weighted r.v. associated to X  and ( )w t . If
X  has a differentiable density function ( )f t , 1k  and 2k  are two real numbers and

2

1

( ) ( )
( )

( ) ( )
Y Y

X X

r t m t k
t

r t m t k
δ

−
=

−

then ( )tδ  uniquely determines ( )f t . Moreover,

1 1

1

'( ) ' ( )
( ) ( )

f t k t q t
f t q t

− −
=

where

2 1
1 '

( ) / ( )
( ) ( )

( ( ) / ( ))
k t k t t

q t w t
w t t

δ
δ

− − −
=

Using this theorical result we obtain characterizations of some usual distributions
(see Navarro, del Aguila and Ruiz (2001)).
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1. Introduction

The linear regression as a main tool often is affected by missing values within
statistical analyses. Binary variables however prevent using standard methods, e.g.
conditional mean imputation. Some of these standard procedures are adapted to this
problem, seven procedures are compared when missing data are confined to one
independent binary variable: complete case analysis, zero order regression,
categorical zero order regression, pi imputation, single imputation, multiple
imputation and a single imputation based on a modified first order regression.
Assuming a continuous and completely observed response vector y  the  partially

incomplete regressor 1KX − could without restriction to generality be reorganized

according to 1 ( , ) ,K c misX x x− ′=  where c and mis indicate complete and missing.

2. Standard Methods

The unconditional mean imputation, also known as zero order regression
(ZOR) is a simple alternative to the complete case analysis (CCA) which discards
all cases containing at least one missing value. The ZOR (Wilks [1932]) imputes the
empirical mean of the observed values of 1KX − for all missing values which leads to
an underestimated variance, however. It should be adapted to the non-continuous
scaling, i.e. for a dummy variable the mode should be used. The so-called first order
regression (FOR), also known as conditional mean imputation, incorporates the
structure of the design matrix X (Buck [1960]). An auxiliary regression based on
the complete cases where the incompletely observed variable is the new response
vector and all complete variables are the independent part of this regression realizes
the consideration of the X - structure. Including the complete response vector
y leads to the modified first order regression (mFOR). In general, the auxiliary

regression is formulated according to

0 1,
,

K

ij j i j ij jj
x x u iµ µµ µ

θ θ
= ≠

= + + ∉ Φ∑
where ijx is the missing value and jΦ the index set of missing values. Thus, ijx  can

be replaced by

0 1,
ˆ ˆˆ ,

K

ij j i j jj
x x iµ µµ µ

θ θ
= ≠

= + ∈ Φ∑
Having a binary ijx  however prevents the modelling of the auxiliary regression

using the classical linear model. Logistic regression, solves this problem. Before
estimating, it could be written as
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, 1

exp( )
( 1 | )

1 exp( )i K ij iP x x
η

π
η− = = =

+
where 0 2 , 2K i Kxη β β − −= + +K ,

i ∉ Φ  and 0, , 2j K= −K . Based on iπ , several procedures can be built.

3. The Methods

The idea of a probability imputation is realized in the hence called pi
imputation. As within the classical prediction the estimate β  - here based on the
complete cases - is used to get substitutes for the missing values ( i ∈ Φ ).

For the Single imputation conditional distribution of the incomplete variable
given the complete variables has to be estimated line-by-line. From these (binomial)
distributions a random draw has to be made for every missing case. The multiple
imputation consists of M  imputations leading to M  completed data sets. The
estimate of the multiple imputation is the average of the different parameters.

4. A Simulation Experiment

Considering the MSE-Ratios (ratio between the scalar MSE of the CCA and the
MSE of the alternative) showed that the pi imputation was the only method which had
a minor MSE than the CCA for all settings, i.e. for 10, 30 and 50% missingness, each
correlation structure and for both models (two binary covariates, two binary plus one
continuous). MFOR shows reverse trends concerning its behavior dependent on the
missing percentage (see Figure 1), multiple imputation decreases its MSE within
severe correlation (Figure 2), ZOR decreases ist MSE with increasing percentage of
missingness (Figure 3). Analyzing variance and bias confirmed that mean imputation
underestimates variance, mFOR shows maximal variances within severe correlation
and pi imputation has the smallest biases within imputation methods. Multiple
imputation didn’t have higher variances than single imputation. Despite more or less
individual deviations it can be stated that variances will increase with increasing
percentages of missingness. The pi imputation has the smallest biases within the
imputation methods. Multiple and single imputation underestimate the true parameter,
mFOR overestimates.

Figure 1 Figure 2       Figure 3
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1. Introduction

We can say that a weather forecast is incomplete unless it is accompanied by a
predictive statement about the skill of the forecast.  Stochastic-dynamic prediction is
considered for predicting the skill of dynamical forecasts made through numerical
models.  The Liouville equation (LE) is the basis of the temporal evolution of the pdf
of the model state vector.  Although, it is a linear partial differential equation, its
explicit solution may pose a substantial problem from the analytical and numerical
viewpoints.  The approach currently under investigation concentrate on providing only
partial information about the temporal development of pdf without explicitly solving
the Liouville equation.  This equation provides the theoretical framework and
summarizes the information obtained.  In this paper we consider the properties of
Liouville equation for a simple, one-dimensional autonomous dynamical system.

2. The Liouville Equation

Let N be a finite number of variables Xi at a particular instant of the state of a
dynamical system which pdf of the state vector  X(t)  is phase space in denoted byρ
(X,t).  Let:

 •      •
2.1 Xi = Xi (X(t), t)

The LE is represented by the pdf ñ, and it is valid as long as no realizations are
created or destroyed:

N                                •
2.2 ∂ρ(X,t) + ∑    ∂   (ρ(X,t)Xk(X,t)) = 0

∂t       k=1 ∂Xk

The LE describing the temporal development of the pdf 〉(X, t) in phase space is
a homogenous quasi-linear first-order partial differential equation.  Further,
knowledge of ρ permits the solution of (2.2) which depends crucially on the
dynamical system (2.1) under consideration through the direct insertion of the model
dynamics into the LE.  Thus, its solution must be expected to reflect qualitatively the
characteristic behavior of the system.

3. Analytical and Numerical Results

Several features of the LE, and as well its usefulness in the context of
forecasting skill are investigated.  Let a simple, though nonlinear, one-dimensional
autonomous dynamical system in the form of a Riccati equation:

•
3.1 X= aX2 + bX + c
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with constant coefficients a, b, c such that:

3.2 ∆= b2 - ac > 0
 4

For the system (3.1) under consideration of LE, written in its general form in
eq. (2.2), takes on the following specific form:

3.3 ∂ρ + ∂  (ρ(aX2 + bX + c)) = 0
  ∂ t    ∂ X

This equation describes the temporal evolution of the role dependent variable,
namely the pdf ρ(X,t) as a function of the two independent variables X and t.  The
analytical solution of the LE (3.3) is explicitly found to be employing the method of
characteristic (Zwillinger, 1989).

To study the analytical results in the context of predicting forecast skill,
consider in the Ricatti equation (3.1) the case when the parameters take on the
following values:

a = -1; b = 1 ; c = 2

In this situation the two steady-state solutions to eq. (3.1) are Xs,1 = 2 (stable)
and Xs,2 = -1 (unstable).  For Xo ≥ 2 all trajectories approach the stable steady-state
solution Xs, 1 without undergoing any singularity.

4. Conclusions

The Liouville equation represents the theoretical basis for dealing with
imperfect initial conditions and model errors in the context of forecasting kill.  Both
kinds of uncertainty can be accounted for within the Liouville equation that describes
the temporal evolution of the probability density function of the model state vector in
phase space.  The explicit analytical solution of the Liouville equation and its behavior
have been derived and illustrated for a simple nonlinear model.  It is found that the pdf
reflects the basic characteristics of the dynamical model under consideration.  The
explicit solution is extreme valuable to check the validity of other approaches to
assessing the statistics of the pdf. So, to investigate in greater detail the analytical
approaches to solve the Liouville equation may be of considerable interest in more
general situations than that considered in this paper, much results could be especially
useful in identifying successful procedures for the purpose of forecasting forecast
skill.
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Epidemiologic studies of environmental exposures and their impacts on disease
risk are an important and increasingly applied approach in health effects assessment
(Nurminen, et al., 2000). However, environmental epidemiology often uses data that
have been collected as temporal-spatial and demographic statistics, and thus are only
available for analysis at the level of aggregate information (e.g. average exposure
intensities and disease rates). The need to conduct aggregate-level studies springs
primarily from the difficulty of obtaining high-quality, individual-level data on
environmental exposures and extraneous covariates. Because of the special
characteristics of grouped data, methodologic care must be exercised when links
between environment and heath are analyzed.

The foremost requirement for valid inferences when one is linking and
analyzing of environmental and health data is to ensure that the collected aggregate
data are of good quality (Nurminen and Nurminen, 2000). Differences among datasets
that have been constructed from publicly available databases may have arisen, for
example, from variation in procedures for the selection of data items and in methods
for handling missing data. However, in environmental epidemiology, considerable
natural variation in the data may be expected, even for data relating to short time
periods and distances (for example, in exposure measurements). Such variation is an
intrinsic part of the environment-health system, and must be retained. Conversely,
sampling and measurement errors must be identified, and either eliminated or assessed
and controlled for. This may present major problems since the genealogy and quality
of the data used in environment and health analysis are often unknown.

Although one of the premises in health and hazard surveillance is that existing
data should be used when possible, this should not be seen as a justification for using
inappropriate or invalid data. Typically, the use of erroneous data leads to further
propagation of error, and even sophisticated and innovative statistical analysis cannot
compensate for intrinsically poor data. At best, the results are uncertain, and allow no
conclusions to be drawn. Moreover, even if the investigators discuss the limitations of
the data when presenting their results to the scientific community, they may not
always take these into account when making their policy recommendations. Data
known to be faulty should therefore be rejected; data of uncertain quality should be
evaluated carefully and then rejected if they cannot be validated adequately.

Suitable methods for linking aggregated environmental and health data must
meet two criteria. First, they must be simple, inexpensive to implement and operable
with the available data, thus allowing rapid assessment. Second, they must produce
statistically valid and scientifically credible results if they are to be used as a basis for
interventive action. This means that they should be unbiased and sensitive to the
variations in the data at hand. Ideally, they should yield results that agree with those
that would be obtained from individual-level studies, for which the statistical precision
can be quantified in more detail. Applicable statistical methods include ecologic
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analysis, time series analysis, and multilevel modeling (For a discussion of the
application of these methods, see Nurminen, 2000). Recently, health risk assessment
has accepted the use of epidemiologic (cohort and case-referent analysis) methods to
quantify the impact of environmental and occupational exposures on public health
(Nurminen, et al., 1999).

 Unlike in traditional epidemiology, the aim of linking grouped environmental
and health data aim is not to seek new environmental-health relations or confirm
hypotheses; rather it is to use existing knowledge on such relations to help inform
management and policy decisions, and raise awareness about the associations between
environment and health. The linkage methods are thus used essentially as a means of
describing and monitoring the relations between environment and health, and to help
assess and demonstrate the existing risks to the population concerned (Corvalán, et al,
1997).

 Any such data analysis must nevertheless be undertaken with care, for the
relations between environment and health are often complex and fraught by
uncertainties. On the one hand, this may lead to complacency and lack of action, if
risks are not correctly identified. Assessing the risk of lung cancer due to exposure to
diesel exhaust provides a current example of a situation in which the regulatory
agencies appear to be in a state of 'paralysis by analysis' (Stayner, 1999). On the other
hand it may cause unnecessary anxiety and fear, if non-existent risks are inferred. Data
linkage thus needs to be recognized as a powerful but treacherous tool. Applied
carefully and correctly, it can greatly strengthen decision-making; used carelessly, it
will mislead. It is incumbent on the analyst, therefore, to ensure not only that
environment and health linkage is conducted rigorously, but also that the results are
presented and explained clearly and unambiguously.

Despite its limitations, aggregate data analysis may be the only feasible
approach to estimating health outcomes of environmental exposures, for example, in
regions where health monitoring is not undertaken, or for obtaining crude estimates of
health impacts among very large populations. Many researchers are also faced with
the problem of wishing to investigate individual-level relations, but having to use
aggregate-level data, because of confidentiality or other restrictions on the availability
of individual data. The application of aggregate data analysis as well as the
development of new study designs and methods for data analysis are therefore
important research needs in environmental epidemiology.
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1.  A Censored Partial Regression Model:

In this work, we propose a new method to consider situations where we have:
(i) a response variable T  with unknown probability distribution, (ii) censored
observations, and (iii) several covariates where the effect of one of these, on the
response variable is introduced in a nonparametric way. Let us assume that 1, , nT TK

are independent observations from some unknown distribution function F and,
because of the censoring, not all of the T ’s are available. That is, rather than
observing iT , we observe min( , )i i iY T C=  and the indicator iδ , which takes value 1 if

the observation is not censored (i.e., if i iT C≤ ), and takes value 0 if the observation is
censored. We are assuming that 1, , nC CK  are the values of the censoring variable C ,
which is independent of the variable T .

We consider a model where the effect of the covariates can be separated in two
components: a parametric one and a nonparametric one,

ln ( )i i i iT X h rβ ε= + +

This proposal allows us to model situations where we do not know the
functional form of the effect of one covariate on the response variable, or situations
where the assumption of a lineal dependence, or any other different one is a restrictive
assumption, or, maybe, it does not make any sense.

In order to estimate the model, we need to consider the goodness of the fit and
the smoothness of the h  function.  This can be handled by minimizing the following
penalized weighted least squares expression
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As for the goodness of the fit, this is controlled through the sum of the weighted

squared residuals using the Kaplan-Meier weights inW , where
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∏ ,

being n̂F a Kaplan-Meier (Kaplan and Meier (1958)) estimator of the distribution

function F  and ( )ln iY  is the i-th ordered value of the observed response variable.

Thus, using these weights we take into account the existence of censored observations
in the sample (Stute (1993)). As for the smoothness of h , we measure it using the
integral of the square of the second derivatives. It can be shown that a smoothing
cubic spline function is chosen to minimize (1) and, in this way, we can rewrite (1) as
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(ln ) (ln ) ,T TY X Nh W Y X Nh h Khβ β α− − − − +

where h is a vector with the different values for each value of the covariate R. The
estimation is carried out by taking derivatives with respect to both β and h .

The inference on the estimates can be carried out using bootstrap techniques. In
order to do this, we propose a new procedure to generate the bootstrap resamples for
the case of random censorship and heterogeneous model. The proposed bootstrap
procedure is a very general one because it does not assume any model for the relation
between the censoring mechanism and the covariates.

2. Aplication and Conclusions:

We illustrate the proposed methodology by analyzing the effect of several
factors on the duration or time that firms spend under Chapter 11 of the U.S.
Bankruptcy Code. After estimating the model and, using the posterior bootstrap study
of the estimates, we can summarize the most relevant results. In relation with the
estimation of the effect of the covariables introduced in a parametric way, we obtain,
that the firms which have filed for prepackaged Chapter 11 spend less time in Chapter
11, the length of time negotiating before filing for Chapter 11 reduces the duration in
Chapter 11, the more profitable  firms emerge sooner from this situation, if the firm is
involved in different disputes, it has more difficulties to leave Chapter 11, the firms
that have realized highly leveraged transactions in the past leave bankruptcy before
others. As for the estimation of the nonparametric component (the period of default),
we obtain an increasing function up to 1985, then a decreasing function but with a
deceleration on this decrease in the final part. Thus, this decreasing tendency indicates
that the length of time spent in Chapter 11 is going to be shorter when we move the
default date from the beginnings of the period under study, early eighties, to the end of
the study in the early nineties. Thus, it seems that the reasons leading towards an
effect of reduction of the duration in Chapter 11 are stronger than the reasons to
increase the time spent  under this situation. Therefore, this result may suggest that the
courts and bankruptcies professionals have been acquiring more experience resolving
different conflicts and this derives in faster negotiations. Other possible positive factor
is the growing participation of vulture  funds in reorganizations procedures. The final
deceleration in the decrease could be reflecting the increment effect (larger durations)
provoked by the sentence of the LTV firm and the change of tax treatments in 1990.

As a conclusion, we have to indicate that in the literature this problem has been
studied using different approaches (Bandopadhyaya (1994), Li (1999), Helwege
(1999), Orbe et al. (2001)). However, if we compare our work with the previous ones,
here we propose a more flexible approach because: (i) we have not assumed any
distribution for the duration, (ii) we have not assumed proportional hazard functions,
(iii) the nonparametric component allows for more flexible study than if we had used
indicator variables, and (iv) our method allows to have censored observations in the
sample.
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1. Introduction

The regression curve models have received much attention in the literature of
optimal designs for nonlinear models. We consider a specific case of these models,
included in the growth curves model and it is expressed by:

(1) 1 2Y x xαβ β ε= + + + .

The response variable  is Y  and ε  is  the experimental error, with mean zero and
variance 2σ , which is assumed to be 1  without loss of generality. The controlled
variable x  is chosen from the interval [ ],a b , with 0 a b< < and ( )1 2, ,Tθ β β α=  a

vector of unknown parameters, α  a integer nonnegative value.
The information matrix for nonlinear models depends on some unknown

parameters and additional information about these parameters is necessary to calculate the
optimal design. If this additional information is an initial value of the parameters, the
optimal design is said to be Locally optimal design. If a prior distribution of the parameters
is used then Bayesian optimal designs are obtained.

In this paper Locally and Bayesian three-point D-optimal designs are characterized
and their support points are calculated for model (1). These designs have the minimum
number of support points, equal to the number of unknown parameters. So these D-
optimal designs are equally supported (Fedorov, 1972).

2. D-optimal Designs

Let be ( , )Y f x θ ε= + , and ( , )f x θ∇  the gradient vector, then for an approximate
design ξ  with n  support points 1 2 ... nx x x< < <  and weight ( )ixξ  for each, for the best
guess for the parameter 0θ θ= , the information matrix is written

( ) ( )0 0 0

1

, ( , ) ( , )
n

T
i i i

i

M x f x f xξ θ ξ θ θ
=

= ∇ ∇∑
and the variance function is defined as

( ) ( ) ( )0 0 1 0 0, , , , ( , )
T

d x f x M f xξ θ θ ξ θ θ−= ∇ ∇ .

D-optimality criterion searches the design that maximizes the determinant of the
information matrix. For independent observations, 1( , )M ξ θ−  is proportional to the
asymptotic covariance matrix for the maximum likelihood estimate for θ . So, this
criterion minimizes the generalized variance of the parameter estimates.

For the model (1), to obtain D-optimal designs, only additional information about
the parameter α  is necessary, because the information matrix is only function of this
parameter.
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Proposition The Locally D-optimal design supported at three different points for
the guess 0α α=  in the design space [ ],a b , 0 a b< < , is equally supported on the points

{ }1 2 3, ,x x x , two of which are the extremes of the interval, i.e. 1x a=  and 3x b= , and 2x
is the solution of the following equation:

( )
0 0

0 1 0
2 2

 ln( )  ln( )
1  ln( )

b b a a
x x

b a

α α
α α− −+ =

−
.

The value 2x  depends on the extremes of the design space and the parameter α .
Locally D-optimal designs have been calculated for different values of parameter α . In
Figure 1, the different values of 2x  are shown for several integer nonnegative values of
α , with design space [ ]0.1 , 5 .

Figure 1. Support point 2x  as function of α .

Bayesian D-optimal designs maximize the expectation of the determinant of the
information matrix over a prior distribution on the parameters. If the prior distribution
used is discrete consists of p  points, then the Bayesian D-optimal design for a model

with k  unknown parameters is supported at most at ( 1) 2pk k +  different points
(Dette and Neugebauer, 1996). There is not a similar property for a continuous prior
distribution.

Several numerical examples have been considered for different discrete prior
distributions for the parameter α . In all these cases, Bayesian D-optimal designs
obtained are supported at three different points with equal weights.
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Consider a 2-dimensional Brownian motion 0( )t tZ ≥  starting from 0 (1,0)Z =
(for simplicity), and let 0( )t tθ ≥  denote the continuous determination of the argument of

( )u u tZ ≤  around (0,0)  as t  evolves in [0, )∞  such that 0 0θ = .
Spitzer (1958) proved the celebrated result:

0lim ( ),         ,
log

t

t
P x G x x

t

θ
→∞

 
< = ∈ 

 
R

where 0G  denotes the standard Cauchy distribution function:

( )
'

0 0 2

1 1 1
( ) arctan ,         ( ) ,         .

2 1
G x x G x x

xπ π
= + = ∈

+
R

Pap and Yor (2000) showed that for all k ∈ N  the following estimate is valid:
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with an absolute constant kc , with
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and with some coefficients ka  which can be computed explicitly. We remark that the

Fourier-Stieltjes transform of the function jG  is

( )( ) .
ji x

je dG x e λλ λ
∞ −

−∞
= −∫

The aim of the present paper is to prove the following nonuniform bound for the
remainder terms in Spitzer's theorem.
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Theorem For every k ∈ N  we have

( ) ( )
( )

1

0
1

( )
sup 1 ( ) ( ) log

log log

k
k kjt

j kj
x j

a t
x P x G t G x c t

t t

θ −
−

∈ =

 
+ < − − ≤ 

 
∑

%

R

with an absolute constant kc  and with

1/(2 ) ( ) / 2

1

(0) 2 (1 / 2)
( ) ,         ( ) .

! ! (1 )

t j u l
l

j ll
l

e h l u
a t h u

j l t l u

− −∞

=

Γ + −
= =

Γ + −∑%

We note that the bound in our theorem is optimal in the sense that it is

impossible to replace 1
k

x+  by 1
k

x
ε++  (respectively ( )log

k
t

−
 by ( )log

k
t

ε− −
 ) with

an 0ε > . We also note that the functions ja% , 0j ≥  are bounded and lim ( )j j
t

a t a
→∞

=% ,

j ∈ N .
The spirit of our expansion is close to the Edgeworth type expansions in the

central limit theorems, that is, to the asymptotic expansions of the distribution function

nF  of 1( ) /n n nX X a b+ + −L , where ( )nX  is a sequence of independent identically
distributed random variables, and ( )na , ( )nb  with 0nb >  are sequences of constants

such that nF  tends to some stable law. The question of asymptotic expansion in case
of a non-normal stable law is less studied; see, e.g., Christoph (1981), Christoph and
Wolf (1993). For example, under some condition on the distribution of 1X , nF  tends
to the standard Cauchy law 0G  as n → ∞  where 0na =  and nb n= , and

( )
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where the functions jQ%  are linear combinations of lG , 1, ,2l j j= + K . Particularly,
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but in our Theorem we have slightly slower speed:
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Considering feature selection in discriminant analysis can be useful in situations
where measuring all features relevant to the classifcation is "expensive". It is likely
that the omission of certain features or sets of features, while naturally destroying the
possible optimality of standard discriminant analysis, will not seriously effect the error
probability (or any other criterion of interest). The effect of such selection on the
discrimination error is evaluated in a growing dimension asymptotics, i.e., in the case
when the relationship between dimensionality of observations p and population
sample size n satisfy the condition lim /n p n p→∞ = , where p is a certain constant. We
consider the case in which the populations are represented by densities of the form

( ) ( )1
x, x , , 1,2

K

i ii
L Lν νθ θ ν

=
= =∏ , which means that both the observed vector x and

vector of parameters νθ  are decomposable into a family of K mutually disjoint,
independent subsets (blocks) of size m. In this case the optimal decision rule
minimizing the overall error probability can be obtained by applying Bayes theorem,
which gives the discriminant rule

( ) ( )
( )

( )
( ) ( )

1 1
1 2 1 2

2 2
1 1
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x, , ln ln x, ,

x, x ,

K
i i

i i
i ii i

L L

L L

θ θ
θ θ θ θ

θ θ= =

= = =∑ ∑
K

D D � 0d ,

where 0d  is a specifed point independent of x.
The common need for subset selection procedures, is an evaluation function by

which a discriminating power of a feature, or a subset of features, is assessed. We
consider an evaluation function based on a distance measure and focus on the Jeffreys
distance, which under the preceding assumptions turns out to be

( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

1

1 2 1 2

2
1 1

x,
ln x, x, x ,
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K K
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L
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θ = =

= − = == −∑ ∑∫

where ( ) ( )
( ) ( ) ( )

1

2

x ,

x ,
ln x, x , 1,2, 1,...,i i i

i i i

L

i L
J n L d i K

θν ν
θ

θ µ ν= = =∫ . The discriminating power

the ith set of features (or ith block) is assessed by its informativeness, ( )
2
inJ n . Then the

threshold based feature selection procedure is represented by means of an inclusion-

exclusion factor defined by { }
( )( )2

ˆ

2,
1 i

n

nJ n

ψ ∞
 where ( )ˆ

i
J n  is the plug-in estimate of

( )
i

J n  and 2
nψ  is a given threshold such that 2 2limn nψ ψ→∞ = . This procedure is

embedded into the discriminant function by the following modification
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It is clear that using factor { }2 ,
1

nψ ∞
 in the discrimination procedure we retain only

the sets of features whose informativeness exceed the given threshold 2
nψ . For this

type of discrimination problem, the following limiting relationship between the

fraction of selected features, ( ) ( )2
2 : lim nk

n K

ψ
η ψ →∞=  and the given threshold

2 2limn nψ ψ→∞=  is established in the growing dimension asymptotics:

( ) ( )( ) ( )2 2 2 21 ; , ,m dHη ψ ψ γ γ= −∫ F

where ( )2 2; ,mψ γF  is the non-central 2χ  distribution with m degrees of freedom and

non-centrality parameter 2γ  and H is the distribution of feature informativeness.
Furthermore, the asymptotic normality of the modified discriminant function is

proved, which makes it possible to establish the limiting error rate,
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ε
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as n → ∞ , where Φ  is the standard normal distribution function and

( ) ( ) ( )2 2 2 2 21 ; 2, ,E m dHψ ρ γ ψ γ γ = − + ∫ F

( ) ( )( ) ( )( ) ( )2 2 2 2 2 2 22 1 ; , 1 ; ,D m m m dHψ ρ γ ψ γ ψ γ γ = − + − ∫ F F

are the moments of the asymptotic distribution of 2
nψ

D . Note that 2 11ε ε= − . When

selecting features by means of function { }2 ,
1

nψ ∞
, the discrimination errors are affected

by two factors: one is the selection itself and the other reflects the estimation error
induced by high dimensionality. This combined effect is studied using obtained
asymptotic expressions for 1ε  and 2ε .
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We propose a new strategy for analysing spatial point patterns. Algorithms of
classical multivariate cluster analysis are applied to the point pattern data, and the
output of the algorithms is used as a spatial summary statistic. In this paper we apply
hierarchical clustering algorithms to the Euclidean distances between the points of a
pattern, and take the resulting list of `fusion distances' as a summary statistic. It is
demonstrated that this statistic is very good at discriminating between different types
of spatial patterns. Several graphical techniques are proposed for exploratory data
analysis, and formal inference is made using a modification of the standard Monte
Carlo test.

1. Statistics of Spatial Point Patterns

A spatial point pattern is a set of points irregularly distributed within a region of
interest. Statistical methods for such datasets (e.g. Diggle, 1983) are usually based on
`summary statistics' of the point pattern. Most of the popular summary statistics are
functions, for example, the empirical distribution function of the Euclidean distances
between all pairs of points of the pattern. They are usually motivated by intuition, but
have a rigorous interpretation as unbiased estimators of characteristics of the point
process, under the assumption of spatial homogeneity. They may also be sufficient
statistics under a parametric model. However, very little is known about the statistical
behaviour of these summary functions, and in practice they often perform poorly at
discriminating between different types of point patterns. Hence there is an interest in
alternative methods.

2. Multivariate Clustering

Clustering algorithms (e.g. Everitt, 1993) are designed to partition a multivariate
dataset into groups or clusters. Hierarchical clustering algorithms make a series of
successively coarser partitions, starting with the lowest level in which each cluster
consists of a single data point, and ending with a single cluster containing the entire
dataset. At each intermediate stage the algorithm fuses the two clusters that are most
similar according to some criterion. Important examples are the Single Linkage,
Average Linkage and Complete Linkage criteria. These classical multivariate
clustering techniques usually do not have a rigorous statistical interpretation in terms
of a stochastic model. However, they have a strong pragmatic advantage in that the
most popular clustering techniques have been found to work well on a large variety of
real datasets.
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3. New Strategy

In the hope of developing effective practical techniques for discriminating
between different types of point pattern, we propose the following `hybrid' strategy.

1. A classical multivariate clustering algorithm is applied to the point pattern
dataset, using the Euclidean distances between the points as the dissimilarity
measures.

2. The output of the clustering algorithm is used as a spatial summary statistic.
3. For exploratory data analysis or formal inference, this summary statistic is

compared with the results of the same statistic applied to simulations from
the Poisson point process.

In the present paper, step 2 is implemented by taking the summary statistic to be
the list of `fusion distances' chosen by the hierarchical algorithm. The k-th fusion
distance is the dissimilarity between the two clusters that are fused at level k+1, for k =
1,…, n-1 where n is the number of points in the dataset. Although the fusion distances
are stochastically dependent, the empirical cumulative distribution function (edf) of
the fusion distances, H(t), may be regarded as a summary statistic in the same sense as
the popular spatial statistics F(t), G(t) and K(t).

Initial experiments show that H(t) is very good at discriminating between
different types of spatial pattern in standard, real, datasets.

We argue that H(t) should be compared with H (t),  the average of the edf's of
fusion distances from m simulations of the binomial point process (n independent
uniform points in the same observation region). For graphical comparisons one may
use a P-P or Q-Q style plot, angular transformations of the P-P plot, or relative
distribution plots (Handcock and Morris, 1999). Formal inference can be performed
using a version of the Monte Carlo hypothesis test. We describe graphical methods for
performing this test on the P-P and Q-Q style plots.

In conclusion it appears that this approach is a very effective alternative to
currently accepted methods in spatial statistics, with the disadvantage that we lack
theoretical insight into its performance.
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A repairable unit-system with repair not “so good as new”, replacement policy
N (when the system has just repaired N times, in the next failure is replaced for a new
one), submitted to three types of failures, is considered. Successive operational times
define a geometric process, repair times define a renewal process, and the operational
and repair times follow phase-type distributions. When the unit is operational a reward
of A0 m.u per unit time is obtained, when it is in repair there is a loss of AR m.u per
unit time, and when it is replaced for a new one a loss of A* m.u. is produced. The
optimal replacement policy N is determined in the long-run average cost per unit time.

1. The model

Assumptions 1 Unit undergoes three types of failures. External failures occur
according to a Poisson process of rate λ. Bernoulli trials determine whether these
failures are repairable (with probability p) or non-repairable (with probability q =
1−p). The unit can also fail by ageing.  That is always a non-repairable failure. A
repairman attends to the repairable failures. Non-repairable failures require replacing
the unit by a new one. We assume that all failures occur independently of each other.

Assumptions 2 We represent by Xn operating times after (n-1)-repair.
Following repair the unit returns to service but it is not as good as new and suffers
deterioration in its lifetime modelled by a Geometric Process. We assume Xn follows a
PH distribution with representation (α, an-1T), where T ∈ Mm a >1.

Assumptions 3 {Yn} is repair time after n-failure. We assume {Yn} is a renewal
process and Yn follows a PH distribution with representation (β, S) where S ∈ Mn and
E(Yn) = µr. We assume {Xn, n=1,2,..} and {Yn, n=1,2,…} are independent.

Assumptions 4 When unit is operating is obtained a reward (Ao) u.m./u.t , when
unit is repairing is produced a cost of (Ar) u.m/u.t. When the unit is replaced by a new
one, it is produced a cost of (A*) u.m.

Let {X(t), t ≥ 0} be the stochastic process that represents the state of the system
in time t.{X(t), t ≥ 0} is a Markov Process (Neuts et. al 2000). Its space state is given
by S={0, 1R, 2, 2R, … N}. We said the process is in state i when unit is operative and it
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has completed i repairs, and the process is in state iR when unit is being repaired and it
has completed (i-1) repairs before. Steady state distribution is given by

i
i 1

i k
k o

ë
ð e Kp ë 1-ö

a
−

=

  =     
∏    i =0, …, N,

R

i-1
i

i r k
k 0

ë
ð e Kp ì 1-ö i 1, ...N

a=

  = =    
∏

where ϕ(λ;a) is the Laplace Transform of the density of a PH distribution with

representation (α,T). We note by 
i

i
i k

k 0

ë
D p 1 ö

a=

  = −     
∏

2. Reward Problem

We call R(t) the reward function per unit time at the time t. It is known (Ross,
1983) that

R(t) E(R)
t E(T)

→ ,

where E(R) is the  reward expected in a cycle  and E(T) is the expected time of the

cycle. We want to find N that maximizes 
E(R)

R(N)
E(T)

=  where R(N) is given by

* 1
o 0

1
0

A A ë D
R(0)

ë D

−

−

− +=

N N-1
* -1

o i r r i
i 0 i 0
N N-1

1
i r i

i 0 i 0

A A ë D A pì D
R(N) N 1

ë D pì D

= =

−

= =

− + −
= ∀ ≥

+

∑ ∑

∑ ∑
* 1 2

0 r
1

r o 1 r 0

Aë D pì
R(1)-R(0)  0 B(0)

(A A ) ë D pì D

−

−≥ ⇔ ≥ =
+ +

N N-1
1

* r N i N 1 i
i 0 i 0

1
r o N 1 r N

ë pì (D D D D )
A

R(N 1) R(N) 0 B(N)
A A ë D pì D

−
+

= =
−

+

−
+ − ≥ ⇔ ≥ =

+ +

∑ ∑

It is showed that B(N) are positives and strictly increasing for all N.
Therefore

*

opt N 0
0 r

A
N min B(N)

A A≥

 
= ≤ + 

.
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1. Introduction

One of the most important problems in Bayesian analysis is computing the posterior
distributions. As Berger (2000) points out most Bayesian computations are focused on the
calculation of posterior expectations, which are mainly integrals. Let π be a prior
distribution, l the likelihood function, and x the observation from an experiment. Then the
posterior distribution is:

(1)
( | ) ( ) ( | ) ( )

( | )
( )( | ) ( )

l x l x
x

m xl x d

θ π θ θ π θ
π θ

θ π θ θ
Θ

= =
∫

and there are several methods to compute ∫∫Θ g(θ )π(θ|x)dθ  for some functions g(θ ).
In this work we compare some stochastic simulation methods for one-dimensional

posterior distributions. Furthermore, we improve some of the methods. First, we adapt
quasi-Monte Carlo (QMC) aproximations. Second, we apply the ratio of uniform deviates
method in order to approximate posterior distributions. This technique allows us to
compute posterior quantities generating values directly from the posterior distribution.

2. Quasi-Monte Carlo methods

Monte Carlo (MC) methods are statistical sampling techniques that have been
extensively applied to approximate integrals and other purposes. QMC methods can be
considered as deterministic versions of those. In the integration problem, an advantage of
QMC methods is that they provide deterministic error bounds, as given by the Koksma-
Hlawka inequality, with a better order than the Monte Carlo´s, which is probalistic, see
Niederreiter (1992). QMC methods emphasize “uniformity” of the points, instead of
“randomness” of them. The concept of discrepancy, which measures the uniformity of a
set of points, is crucial to these methods. The more general concept of F-discrepancy, a
measure of the representation of a set of points with respect to a distribution F, was
suggested by Wang and Fang (1990). The so-called low-discrepancy point sets are used.

We compare the results obtained by using pseudo-random and quasi-random
numbers applying methods like inverse transformation, ratio of uniforms and weighted
bootstrap. The low-discrepancy point sets are used to compute quasi-random numbers,
which yield better approximations to the posterior distribution. These improved
approximations are reflected by the attainment of better estimations of posterior
expectations.
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3. Ratio of Uniform

The method of ratio of uniform deviates is based on the following result:

Theorem Let Ch={(u,v): 0≤ u≤ (h(v/u))1/2} for any nonnegative function h such that
0<∫ h <∞. Then Ch has finite volume and if we can generate (U,V) uniformly over Ch, then
X=V/U has density function f=h/∫h.

Notice that when applying this method in order to generate from posterior
distributions we don’t need to compute m(x) in (1). This is a very important fact because in
many problems it is impossible to compute analytically m(x). In this work, we apply the
method to unidimensional posterior distributions, but it is easy to extend, at least
theoretically, to multidimensional settings. Note that actually there are too many
researchers working on Monte Carlo methods based on Markov chains to compute
posterior distributions. But these methods only approximate posterior distributions. We
provide several methods to generate uniformly from Ch. One of them is based on
adaptative sampling, see Thompson (1992). We also use quasi-random numbers to
generate uniformly on Ch.. Although the theoretical results are not encouraging, the
applications to some examples produce better results than using pseudo-random numbers.

4. An example

Consider a prior Beta(1,10). Assume that the likelihood is Binomial(20,θ). Then we
know that the posterior distribution is Beta(x+1, 20+10-x). We apply the proposed
methods. For example, Figure 1 shows posterior distribution using ratio of uniform
variates with pseudo-random numbers and quasi-random numbers for x=2.
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Figure 1. Histogram of the posterior distribution using ratio of uniforms.

We provide comparative results from different approximation methods in this and
other examples. The empirical work shows that the QMC approximations improve the
results obtained using pseudo-random numbers in terms of the F-discrepancy and the error
of the estimation.

This work has been supported by the grant number IPR00A075 from the Junta de
Extremadura.
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Reciprocal pairs of characteristic functions such as 
    

e
− x

,
1

1 + t2

 

 
 
 

 

 
 
 
 and self-

reciprocal characteristic functions such as the Gaussian characteristic function     e
− t2

2  are
well-known, and have been studied by Lévy (1967), Feller (1971), Teugels (1975),
Lewis (1975), Shanbhag (1977) and Pestana (1978).

The topological properties of the convex pointed cone of positive and integrable
characteristic functions could be the basis for an Krein-Milman-Choquet integral
representation, but unfortunatelly extremal rays are not easily identified. An
interesting characterization of random variables Y having self-reciprocal characteristic
function uses the characteristic function of ZY, where Z is standard Gaussian

independent of Y: ϕ  satisfies the functional equation 
    
ϕ(t) = 1

| t| ϕ
1
t( ) for some non-

empty set (t0,t1)-{0}.
If a reciprocal pair [f,g] is known, we can derive a self-reciprocal characteristic

function,

    
ϕ(t) =

g(0) f (t) + f (0)g(t)

f (0) + g(0)
,

and this accounts for the fact that self-reciprocal characteristic functions are in general
the sum of two very different analytic expressions. The only exceptions we have found

are the Gaussian,     e
− t2

2 , and the hyperbolic cosine characteristic function

    

1

cosh π
2

t( ).

Besides their intrinsic interest, self-reciprocal characteristic functions may be
used to establish important results in Probability Theory. For instance, using

Parseval’s relation 
    

e− ityϕ X (t)dFY (t) = ϕY (x − y)dFX (x)
−∞

∞

∫
−∞

∞

∫  with Y=Z/σ, Z the

standard Gaussian random variable, in view of the fact that     e
− t2

2  is the characteristic

function corresponding to the probability density function 
    
e

− t2

2

2π
, we obtain

                                                       
* Research partially supported by FCT/POCTI/FEDER.
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1
2π e−ityϕ X (t)e

−σ 2t 2

2 dt = f X+σZ

−∞

∞

∫ (y),

one of the most elegant ways of establishing the unicity, inversion formula and
continuity theorems for the characteristic functions.

We use Parseval’s relation together with the self-reciprocal characteristic

function 

    

1

cosh π
2

t( ) an alternative  inversion theorem, and correlated results in

Probability Theory.
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Let ( )1,...,d dX X X=  denote a d -dimensional random variable with a

nondegenerate distribution. We suppose that dX  has a polynomial-Gaussian
distribution ( dPGD ), i.e. the density of dX  is the product of a non-negative

polynomial in 1x  and a d -dimensional Gaussian density. It is known that every

polynomial can be represented as a linear combination of Hermite polynomials rH .
Thus throughout the paper the density of dX  will be

(1) ( )
( )

( ) ( ) ( )
22

2
1

2 1
0 1111

det 1
exp ,

22
d r

l
r

X X X Xd r d d l d
r

c xA
f H A p x f

kkπ =

   = − =       
∑ %

where [ ]1
, 1

,  
d

rs r s
A K K k−

=
= =  is a symmetric, positive definite d d×  matrix,

( )1 2,..., ,  d
X d d lx x p= ∈¡  is a non-negative polynomial in 1x  of degree ( )2 ,  X dl f%

denotes a d -dimensional Gaussian density, rH  is the Hermite polynomial of degree
r .

The characteristic function of dX  has the following form:

( ) ( )exp ,d d dE i Xϕ ξ ξ= =  

(2) ( ) ( ) ( ) ( )
2

2
0

1
exp ,

2

l
r

r d d l d
r

c i Kη ξ ξ η ϕ ξ
=

 = − = Ψ  
∑ % ,

where [ ] ( )1 11 1 2
11

1
... ,  d d lk k

k
η ξ ξ η= + + Ψ  is a polynomial of degree 2l  and ( )dϕ ξ%

denotes the characteristic function of a Gaussian distribution.
We say that ( ), 0tX tχ = ≥  is a polynomial Gaussian process ( PGP ) if for

every 1d ≥  and every 1 ... dt t< <  the vector ( )
1
,...,

dd t tX X X=  has dPGD  given by

(1) where ( )K ,rs r sk t t= . We denote by tF  the natural filtration of χ .

Every one-dimensional distribution of PGP  is 1PGD . The ch.f. of 
st

X  has the

folllowing from

(3) ( ) ( )
2

21

0 11

1
exp exp

2s

r
l

s
s s t r s ss s

r

k
E i X c i k

k
ϕ ξ ξ ξ ξ

=

   = = −   
  

∑

Now we are going to construct quite general examples of PGP .

Let ( ), 0tX tχ = ≥%%  be a centred Gaussian process with covariance function

( )K ,rs r sk t t= . Let 
st

X  be a r.v. with ch.f. given by (3) where 11 0k > . For 11 0k =  we
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put ( )
1

0 1tP X = = . We suppose that 
1

, tXχ%  are idependent. We define a stochastic

process χ  in the following way:

(4) ( ) ( ) ( )
1 1 1

1
1 1

11

K ,
, 0 , 0t t t t

t t
X t t X X X t t

k
χ

 
= ≥ ≥ = − − ≥ ≥ 

 
% %

for 11 0k > . If 11 0k =  we put ( )1

11

K , 1t t
k = .

Proposition 1 The stochastic process defined by (4) is a PGP .
Now let us consider a special case of (4), namely

( )K ,rs r sk t t= = ( )min ,r st tα α+ + , 10,  t 0α ≥ = . For 0α =  we put ( )0 0 1P X = = .

Moreover let ( )W , 0tW t= ≥  be a Wiener process. Then χ  defined by (4) has the

following form: ( )0 , 0tW X tχ = + ≥ . Now we are going to give a slightly modified
version of P. Lévy's characterization theorem for martingales.

Proposition 2 If a stochastic process ( ), 0tX tχ = ≥  has continuous

trajectories, is square integrable, 0X  is a r.v, with ch.f. given by (3) where

00 ,  0k α α= ≥

( ) ( )( )2
,  t s s t s sE X F X E X X F t s= − = −  for all s t≤ ,

then χ  is PGP  with ( ) ( )K , min ,rs r s r sk t t t tα α= = + + .

For 0α =  we put ( )0 0 1P X = = .

Proposition 3 If a stochastic process ( ), 0tX tχ = ≥  has continuous

trajectories, is square intergrable, there exist a function g  such that

( ) ( )
( ) ( ),  g t

t s s t sg sE X F X Var X F=  is non random for all 0,  s X≤  is a r.v. with ch.f.

given by (3) then χ  is a PGP .

Proposition 4 Let ( )1,tX t tχ = ≥  be a PGP  with densities given by (1). Let

( )
r srs t tq E X X= . Then 2

2 1 1 112rs rs s rq k c k k k −= + . Moreover χ  is a Markov process iff for

1 s r ut t t t≤ ≤ ≤  one of the following equivalent conditions holds:

,

.
sr ru su rr

sr ru su rr

k k k k

q q q q

=
=

We say that χ  is a process with independent linear forms if there exist
functions ( )1,..., ,  rs rs sa a t t r s= ≤  such that 

1 1 1 1 112 1 1,,..., ...
d dt t t t d t d d tX X a X X a X a X

−−+ + + + +

are independent for 2,3,...d =  .
Proposition 5 If χ  is a process with independent linear forms and for every

1rt t≥  the ch.f. of 
rt

X , is given by (3) then χ  is a PGP .

Proposition 6 Let [ ]( )1, ,tX t t Tχ = ∈ be a separable PGP  with ch.f. given by

(2) where 1K ∈£ . Then χ  has a continuous modification.
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We propose a test for testing that the regression function of a Gaussian regression
model belongs to a parametric family against a nonparametric alternative. The testing
procedure is free from any knowledge on f and on the variance of the observations. The
test is asymptotically of level α  and we characterise a class of vectors over which the test
is asymptotically powerful.

1. Statistical Model

We observe 1, , nY YL  given by the regression model

( )i i iY f x ε= +

where f is an unknown real valued function defined on dR , i.e. f ∈ ( )F ,dR R ,

1, , nx xL  are deterministic points belonging to dR and 1, , nε εL is an i.i.d. sample of

centred Gaussian variables with an unknown variance 2 .σ
We propose a test for testing that the regression function f belongs to the

parametric family ( ){ }F ., ,F θ θΘ = ∈Θ , where F is a known function and Θ is a subset

of pR . We denote by f% the vector of ( )( )
1i i n

f x
≤ ≤

and by Fθ
% the vector of ( )( )

1
,i i n

F x θ
≤ ≤

.

We test the null hypothesis

0 0: ,H θ∃ ∈Θ such that ( ) ( )0, ,dx R f x F x θ∀ ∈ =

against the alternative

( ) ( ): ,F infn n nn
H d f f F fθθ

ρΘ ∈Θ
= − ≥% %

where .
n

n denotes the Euclidean norm in nR and ( )n fρ depends on f and on the

errors of first and second kind that we choose for the test.

2. The Testing Procedure

In the particular case of testing that f is a linear in the parameters, the testing
procedure is similar to that proposed by Y.Baraud, B.Laurent and S. Huet.

We estimate f by ( )ˆ
ˆ., FF F

θ
θ Θ= ∈ where θ̂  is the least square estimator of θ . We

assume that the usual assumptions for θ̂  to converge to *θ  that minimises
2

n
f Fθ−% % are

true. The idea of the proposed test is to construct several Fisher tests of the hypothesis
“ ˆ 0Y F

θ
− =% ” against alternatives of the form “ ˆ mY F S

θ
− ∈ %% ” where mS%  is a linear
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subspace of nR . Noting that ( )*

2

ˆ
n

P f F
θθ

−% %  is close to 0 where *P
θ

 is the projection

matrix on the columns of 
*F

θ

θ
∂
∂

%
, we consider spaces mS%  such that * 0.mP S

θ
=%

For example, assuming for the sake of simplicity that [ ]( )F 0 ; 1 ,f ∈ R  and

that i
ix n= , we can take mS% as

( )( ) ,m n mS I P Eθθ = −% %

where
1. nI is the identity matrix,

2. m belongs to some set { } { }{ }1, , , 2 ,0j
n nM m n m j J= ∈ ∈ ≤ ≤L  such

that 12 nJn−  tends to 0 when n  tends to +∞ .

3. mE%  is the n p× matrix defined by : ( ) 1, ;i
m j ji j x

m m

E δ − ∈  

=%  with 1 ,i n≤ ≤

1 j p≤ ≤ and δ denotes the Dirac function.

We denote by ˆ
mΠ  the orthogonal projection onto ˆ( )mS θ%  and by mD  the

dimension of ˆ( )mS θ% . Let us fix [ ]0;1α ∈ . We associate to each nm M∈ a level

[ ]0;1mα ∈  such that

.
n

m
m M

α α
∈

=∑

Denoting by , ( )D NF u the probability for a Fisher statistic with D and N degrees of

freedom to be larger than ,u we define the test statistic by

( ) ( )

( )
( )

2

ˆ 1
,2

ˆ

ˆ
ˆ sup .

ˆ m m
n

m m
n

D n D m
m M

m m
n

Y F n D
T F

Y F D

θ
α

θ

α−
−

⊥∈

 Π − − = −  Π − 

%

%

We reject the null hypothesis 0H  if ˆ 0.Tα >

3. The Results

The test is asymptotically of levelα and we characterise a class of vectors over
which the test is asymptotically powerful. More precisely, for any [ ]0;1β ∈  we compute

( )n fρ  such that the asymptotic power of the test is greater than 1 β− for all f provided

that ( ) ( ),F .n nd f fρΘ ≥  If we consider the local alternative “ ( )1.,
g

f F
n

θ= + ” for

some bounded function g and some 1 ,θ ∈Θ then we show that for an adequate choice of

{ },m nE m M∈%  the separation rate of testing is the parametric rate. A simulation study

shows that the test is powerful even for small samples.
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1. Notation and Definitions
Let (Θ,B) (the parameter space) and (X,A) (the sample space) be two measurable

spaces. Denote by µ on B the prior distribution and by {Pθ:θ∈Θ} the family of sampling
distributions. A Bayesian experiment is the (unique) probability space Eµ=(Θ×X, B×A, Πµ)
such that ∀ B∈B and ∀ X∈A

(1) ( ) ( ) ( ) 
B

B X P X dθ
µ µ θΠ × = ∫ .

The predictive distribution is the probability measure Pµ  on A

X∈ A ( ) ( ) ( ) ( ) P X X P X dθ
µ µ µ θ

Θ

= Π Θ× = ∫a ;

the experiment Eµ is regular if a family {µx: x ∈X} of probability measures on B exists
such that ∀ B∈B and ∀ X∈A

(2) ( ) ( ) ( ) x

X

B X B dP xµ µµΠ × = ∫ .

The statistical experiment {Pθ:θ∈Θ} is dominated (by a σ-finite measure λ) if the
sampling distributions are all absolutely continuous w.r.t. a σ-finite measure λ.

In such case a function fλ (the likelihood) exists such that
∀θ ∈Θ    ( ) ( ) ( );  P dx f x dxθ

λ θ λ= ,
and, for any prior µ, the marginal distribution Pµ can be written as

( ) ( ) ( )[ ; ]f x d dxλ θ µ θ λ
Θ
∫ ; moreover, the Bayes' theorem holds, in that

Pµ




x∈X: B∈B ( )
( ) ( )

( ) ( )

;  

;  
x B

f x d
B

f x d

λ

λ

θ µ θ
µ

θ µ θ
Θ

=
∫

∫
a





=1.

(On the other hand, the Bayesian experiment Eµ is said to be dominated (e.g. Florens et al.,
1990, page 30, Definition 1.2.4) if Πµ  ≈µ×Pµ.)

As in non-dominated models one cannot refer to the likelihood and the Bayes'
formula, in order to derive the posterior, expressions (1) and (2) need be used directly. The
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posterior µx is hence derived via the relation:

(3) ( ) ( ) ( ) ( ) ( )  .x

B X

B X P X d E dP xθ
µ µµ θ µΠ × = =∫ ∫

Note also that neither of the previous formulae for the marginal and the Bayes
theorem are valid under a non-dominated statistical model, and that their misuse can
result in paradoxes, e.g. Christensen and Utts (1992) and Blachman et al. (1996).
2. The Bayes Factor

In Bayesian hypothesis testing, the evidence provided by the data to a null
hypothesis H0 versus an alternative H1 is usually carried by the Bayes factor of H0 vs H1.
For an extensive review, see Kass and Raftery (1995). In Macci and Polettini (2001) we
investigate use of the Bayes factor in non-dominated statistical models and illustrate its
behaviour by a very simple example (e.g. Berger and Wolpert, 1988).

For a given statistical experiment, consider the hypothesis testing problem:

0 0 1 1:  vs :H Hθ θ∈Θ ∈Θ ,   0 1,Θ Θ ∈ B : 0 1 0Θ ∩ Θ = / .
Set µk=µ(Θk), assuming µk>0, k=0,1. The Bayes factor (BF) in favour of H0 vs H1 is

defined (e.g. Kass and Raftery, 1995) as the posterior to prior odds ratio:

(4) ( ) ( )
( )

0 0

1 1

 /

 /

x

x
BF xµ

µ µ
µ µ

Θ
=

Θ
;

when the statistical model is dominated, denoting by ( )kµ ⋅%  the prior conditional to Θk

(k=0,1), the BF may be written in terms of the likelihood as follows:

(5) ( )
( ) ( )

( ) ( )
0

1

0

1

,  

,  

f x d

BF x
f x d

λ

µ
λ

θ µ θ

θ µ θ
Θ

Θ

=
∫

∫

%

%

When both hypotheses are simple, formula (5) returns the likelihood ratio.
We express BFµ as a ratio between suitable densities of probability measures on the

sample space:

(6) ( ) ( ) ( )
( ) ( )

0

1

| /

| /

dP dP x
BF x

dP dP x
µ µ

µ
µ µ

⋅ Θ
=

⋅ Θ
Formula (6) shows that the BF only depends on the conditional distributions; in this

sense, the definition enjoys the same property as the dominated case. Moreover,  when the
model is dominated, formula (5) can be recovered from the definition in (6).

Formula (6) also gave us the start for investigating a non dominated analogous of
the likelihood function. We discuss results of work in progress on this topic, based on the
Lebesgue decomposition of a measure with respect to a reference.
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More than one hundred years ago, Appell introduced a polynomial class
characterized by the exponential form of its generator function. This class is well
known on R and the aim of this work is to offer a multi-dimensional analysis in two
directions: we indicate a classical characterization of the d-dimensional Appell
polynomials via their generator function and we investigate their orthogonality. Two
types of orthogonality are characterized with respect to Gaussian distributions. We
relate this study to the theory of Lie algebras and martingales.
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The purpose of numerical taxonomy can be briefly defined as the construction
of objective clusters of units by means of a quantitative measure of their affinity. Its
name comes from the fact that the first methods were proposed for, and essentially
applied to, biological classification.

Numerical taxonomy methods present a very powerful multiple comparison
instrument. More generally, cluster analysis is the name given to various procedures
whereby a set of individuals or units, termed as "Operational Taxonomic Units"
(OTU). Techniques of cluster analysis can be applied in different fields of medicine:
the recognition of various clinical forms of a disease, separation of distinctive racial
groups, treatment of quantitative biogeographical data, etc.

An important case for statistical data processing deals with OTUs described by
binary attributes. Homogeneities for binary and for ordered multistates data are
presented. Methods of automatic classification are described and two types of
homogeneities for the classification in biology and the genetics of the human
populations are given.

The new extension concerns the inference in contingency table and it is
applicable in any field. The connection between numerical taxonomy, one side, and
the cluster analysis, as well as the discriminant analysis, on the other side, is useful to
be considered
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It is known that the classical Efron bootstrap when applied to linear
regression models with heterogeneous errors does not estimate consistently the
variances of the least squares estimators of regression parameters. It is also known
that the wild bootstrap is robust procedure against heteroscedasticity, i.e. it
provides consistent estimators, but it  is less efficient than the classical  procedure
in the case of  homogeneous errors  (see Liu and Singh (1992)).

In this  contribution we will study the problem of consistency and efficiency
of bootstrap in case of a causal autoregression process with independent but
heterogeneous innovations. It will be shown that the (Efron)  bootstrap based on
estimated residuals does not yield consistent estimators of the variance of the
least-squares estimators of the autoregression parameters, while the wild bootstrap
is robust against heteroscedasticity. On the other hand,  the efficiency of the wild
bootstrap with respect to the Efron bootstrap  varies  with the values of the
parameters of the model.The obtained results follow from asymptotic
representation of the estimators and their mean square errors and from central limit
theorems for martingales.

Alternatively, parameters of autoregression can be estimated by using
subsampling, dividing the observed series into overlapping blocks. General theory
for subsampling stationary and nonstationary  strong mixing sequences is
presented  in Politis, Romano and Wolf (1999). We formulate conditions on the
error process under which the sampling distribution of least-squares estimators of
autoregressive heteroscedastic sequence is consistently estimated by subsampling
(Praskova (2001)).

Subsampling variance estimators will be also considered and their efficiency
will be studied  in dependence on the block size.
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From the inception of the proportional representation movement, it has been an
issue whether a given apportionment method favors larger parties at the expense of
smaller parties. For three parties that are ordered by their vote counts form largest to
smallest, we calculate the expected difference between the seat numbers and the ideal
share of seats, as a function of the district magnitude, for three traditional methods.
These are (i) the divisor method with standard rounding, also called the Webster
method or the method of Sainte-Laguë; (ii) the quota method with fit by largest
remainders (Hamilton method, method of Hare); and (iii) the divisor method with
rounding down (Jefferson method, method d’Hondt). The first two methods are seen
to be practically unbiased, whereas the last is clearly biased in favoring larger parties
at the expense of smaller parties. The theoretical findings are confirmed by empirical
election results from the Swiss Canton of Solothurn, and from the German State of
Bavaria. Some historical remarks draw attention to three Europeans who contributed
to the subject about eighty years ago, André Sainte-Laguë, Ladislaus von Bortkiewicz,

1. Overview

In proportional representation electoral systems, one important problem is how
to compare the various methods of translating votes into specific seat apportionments.
The seat numbers are, of course, integer numbers while, by comparison, the votes are
almost continuous quantities. The translation of votes into seats nearly always
involves adjusting, in some manner, the fractional seats that would arise if a naive
calculation were made to obtain the actual seat apportionment. See Balinski/Young
(1982) for an excellent exposition of apportionment methods and their structural
properties. For an application of these principles to the electoral systems in Germany,
both on the federal level and state levels, see Pukelsheim (2000 a-c).

A particular issue is whether an allocation method is biased in favor of larger
parties at the expense of smaller parties, or vice versa. Here we discuss a statistical
approach to the problem, assuming three parties are involved, and concentrating on
three traditional apportionment methods. For repeated applications of each method, we
evaluate the biases of the seat numbers for the various parties. The biases here
considered are the averages, over all possible electoral outcomes, of the differences
between the (integer) seats actually apportioned, and the (fractional) ideal share of
seats that would have been awarded had fractional seats been possible.

Section 2 specifies this bias concept. Section 3 to 5 give, respectively for the
three methods chosen, a description of the method and formulas for the theoretical
biases of the seat numbers for the largest party, the second-largest party, and the third-
largest party, the ranking being determined by vote counts.
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Section 6 applies these formulas to empirical election data, confirming that the
theoretical findings are sensible. Combination of the theoretical and empirical results
leads to our main conclusion, that the divisor method with standard rounding
(Webster, Sainte-Laguë), and the quota method with fit by largest remainders
(Hamilton, Hare) have “practically unbiased” seat numbers for all three parties. In
contrast, the divisor method with rounding down (Jefferson, Hondt) is visibly biased,
in favoring larger parties at the expense of smaller parties.

Section 7 lists the bias formulas for a larger family of divisor methods that
includes the two divisor methods of Section 3 and 5 as special cases. Section 8
provides an alternative approach to the comparison of apportionment methods, in
terms of the majorization ordering. Section 9 reviews some often neglected
contributions made about eighty years ago, by the three European scientists André
Sainte-Laguë, Ladislaus von Bortkiewicz, and Georg Pólya.
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1. Background and Estimation

Let us consider a multivariate process counting N = (N1,...,Nk) with intensity
process λλ = (λ1,...,λk). We suppose that the intensity process λh(t) = λh(t;θθ) is a
predictable process with respect to some filtration (Ft : t ∈ T = [0,τ)) (for a given
terminal time τ, 0 < τ ″ ∞) on a probability space (Ω,F,P), which may be specified by a
parameter θθ belonging to an open subset of the q-dimensional Euclidean space
θθ = (θ1,...,θq) ∈ Θ.

We suppose that there are n individuals and a vector of covariates Zi(t), i=1,...,n,
observed for individual i, where the process Zi(.) is Ft-predictable and we consider the
additive intensity model.

i( ) ( ;Z (t))    ;    h 1,...,k      ;      i 1,...,n     ,hi hi hiY t tθ θλ α= = =

where αhi
θ(t; Zi(t)) is of the form

T
i h0 hi( ;Z (t))  (t, ) r( Z (t))  ;    h 1,...,k      ;      i 1,...,n     ,hi tθα α γ β= + = =

and
• r(ββ,Z) is a non-negative function. This function may accept different

parameterizations with the condition r(ββ,0) = 0.
• The Yhi(.) are predictable and do not depend on θθ. Usually Yhi(t) contains

information on whether individual i is observed to be at risk for experiencing
a type h event just before time t.

Once we set the model, our aim is to estimate the parameters using the log-
partial likelihood whose expression is

{ }( )0 0
,

( ) log ( ) ( ) ( ) ,hi hi hi
h i

C t dN t t dt
τ τθ θ

τ θ λ λ= −∑ ∫ ∫

in this way we get the vector of derivates with respect to ββ given by
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0 0
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1
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where r(1)(x) = dr(x)/dx  and
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S t
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β
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∑
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Below we have calculated the information matrix and analyzed some aspects of
the additive intensity model.

The information matrix for β is given by

( )
( )

U
I E τ β

β
β

 ∂
= −  ∂ 

being

( ){ } ( )
( ){ }

{ }
2(2) (1)

0 2

20
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τ
τ
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β α γ β ββ
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β

⊗+ −∂
= −

∂ +

−
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∑∫

with r(2)(x) = dr(1)(x)/dx

{ } 2 (2)

(2)

( ) ( ) ( ( ))
( , )

T
hi hi hi

i
h

Y t Z t r Z t
S t

n

β
β

⊗

=
∑

and X⊗2 for an X  vector representing XXT.
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1. Introduction

Two populations are considered and a signal, which can be modeled as a
stationary process, is evaluated over all its elements. The aim of this paper is to
examine if the considered signal has predictive value for both populations. We analyse
this problem through of the frequency domain. A sequential test is proposed for the
spectral comparison of both poputlations. For prefixed errors alpha and beta, the
regions of acceptance, rejection and continuation are determinated by means of an
equations system. Since this equations can not be resolved analytically, we give a
computational method which is valid for gaussian linear processes. A such method is
based on the known asymptotic results for the periodogram of these processes.
However, we also examine the robustness of this method by means of  the application
to non gausiann linear processes.

2. The Sequential Spectral Test

Let ( ){ }; 1,2; 1, , ; 1, ,liX t l i r t N= = =L L  be a set of time series evaluated at the

same times on random samples of r objects choosen from populations 1C  and 2C . The
periodogram of each time serie for jth Fourier frequency is defined as:

(1) ( ) ( )
2

1

1
2

j

N
t

li j li
t

I X t e
N

ωω
π

−

=

= ∑ i

Suppose that each individual periodogram verifies the model:

(2) ( ) ( ) N
li j l j lijI f Uω ω= ⋅

being ( )lf ω  the spectral density function corresponding to lth population and { }N
lijU , for

each l=1,2 e 1, ,i r= L , independent random variables for [ ]1, , 2j Nν= =L  and
exponentially distributed of parameter one. This model is based on the asymptotic
representation for the periodogram of gausiann linear processes. (Priestley, 1981).
This model can be transformed as:

(3) ( )lij l j lijY Cµ ω ξ= + −

being ( )loglij li jY I Cω= − , ( ) ( )logl j l jfµ ω ω= , log 0.57721lijC E U = ≈ −   (Euler

constant) and loglij lijUξ = . It is easy to see that ( ) 2var 1.648124lijξ σ= = .

For testing the null hypothesis ( ) ( )0 1 2:H µ ω µ ω≡ , we consider the statistic test:
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(4) ( ) ( )2

1. 2.
1

1
j j

j

J r Y Y
ν

ν =

= −∑  where .
1

r

l j lij
i

Y Y
=

= ∑ .

In order to define a sequential test we consider ( ) ( ) 0m r E J r H=    ,

( ) ( )( )2
0varr J r Hτ =  and for adecuate constants a, b and c the actions:

- Accept 0H  if ( ) ( )( )J r c m r b rτ< + − ⋅

- Reject 0H  if ( ) ( ) ( )J r m r a rτ> + ⋅
- Take a new observation in each group if

( ) ( ) ( ) ( )( )c m r b r J r m r a rτ τ+ − ⋅ ≤ ≤ + ⋅
Let R be the stopping time. The acceptance and reject regions are respectively:

(5) A = 
max

0

{ ; ( ) ( ) ( )}
r

r r

R r J r c m r b rτ
=

= < + − ⋅U   and

(6) B = ( )
max

0

{ ; ( ) ( )}
r

r r

R r J r m r a rτ
=

= > + ⋅U ,

being r0 the number of initial observations. Thus, for errors � and ��defined as:

(7)(7) α = P(B | H0) 
max

0

0

( ; ( ) ( ) ( ))
r

H
r r

P R r J r m r a rτ
=

= = > + ⋅∑

(8) β�= P(A | H1) 
max

1

0

( ; ( ) ( ) ( ))
r

H
r r

P R r J r c m r b rτ
=

= = < + − ⋅∑
the values of a, b and c are determinated.

The method for approaching this constants is as follows:
Step one: Random variables { }N

lijU , exponentially distributed of parameter one are

simullated for l=1,2; i=1,…, r and [ ]1, , 2j Nν= =L

Step two: Let ( ) ( )2

1. 2.
1

1 r r
j j

j

J r e e
ν

ν =

= −∑  be the statistical test, where

1

1
log( )

r
r N

lj lij
i

e U
r =

= ∑
Step three: For fixed α and β,�we have considered an specificed difference

( ) ( ) ( )1 1 2:H d ω µ ω µ ω= − , being ( )22

1

1
j

j

D d
ν

ω
ν =

= ∑ . By means of doing several

repetitions of the test, on each simulation, we look for the values a, b and c that let us
accept 0H  if ( ) ( )( )J r c m r b rτ< + − ⋅  or reject 0H  if ( ) ( ) ( )J r m r a rτ> + ⋅ .
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1. Introduction

Auditing a large population of recorded values is usually done by means of
sampling. Based on the number of incorrect records that is detected in the sample, a
point estimate and a confidence limit for the population fraction of incorrect values
can be determined. In general it is (implicitly) assumed that the auditor does not make
mistakes while judging the correctness of the values. However, in practice this
assumption does not necessarily hold: auditors are human and can make errors. To
take this possibility into account, a subsample of the audited records is checked once
more by a second auditor who is assumed never to make mistakes. The information
obtained from these two samples should be combined to derive an estimate for the
error rate in the population.

The starting point for this type of double checking was Moors et al. (2000).
Only one posssible error type was considered: auditors could only miss (fail to detect)
existing errors. For the case of random sampling, the maximum likelihood estimator as
well as an upper confidence limit for the error rate were derived, treating the
probability of an unnoticed error as a nuisance parameter. It was shown that the
introduction of the possible error type causes a considerably increase of the upper
limits, even if the second auditor finds not a single additional error. Based on data
from one of the Dutch institutions for social security payments the estimate for the
error rate in social securtiy payments proved to be 5% with an upper 95% confidence
limit of 12%.

2. The Second Error Type

In our paper, we first introduce a second error type: the auditor may consider a
correct value as an error. Again, the sample information of both auditor and infallible
expert is combined to give point and interval estimates for the fraction of errors in the
population, while treating the two probabilities of errors of judgement by the first
auditor as nuisance parameters. The impact of the second error type on the upper
confidence limit of the error rate in the population turns out to be considerably smaller
than the impact of the first error type. Moreover, the introduction of the second
possible error type does not lead to a decrease of the upper limit.  This may be
explained from the constrution of the confidence interval: for all possible values of the
nuisance parameters the upper confidence limits (given these values) are determined;
subsequently the ‘all over’ confidence limit is defined as the maximum of these
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In both the model with one error type and the extended model, the upper limit is
realized for a very high value of a nuisance parameter. In reality, such high values will
not often occur, so the Bayesian approach for both models is desirable.

3. The Bayesian Approach

In our Bayesian approach independent beta distributions were used as priors for
the three parameters involved, leading to beta posteriors as well. Integration over the
nuisance parameters then gives the (marginal) posterior for the population error rate.
A Bayes estimate and Bayes upper limit for this main parameter follow.

In a sense, a weighted average over all possible values of the nuisance
parameters is taken. Hence, the Bayes upper confidence limit is in general lower than
according to the classical approach.

Extending the model with the second error type causes a reduction of the
Bayesian upper limits; this in constrast to the classical approach where the extension
did not have much influence at all.
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The aim of this paper is to derive bounds on the error in the multivariate CLT
for sums of random vectors in mR  with a certain type of dependence structure.
Namely, for 1 nW X X= + +K  with var( )W = I and 0iX =E , we have:

1( ) ( ) ( , )m nf W f Z X Xε− ≤E E K

uniformly in f  belonging to a ‘good’ class of non-smooth test functions (e. g. the

indicators of measurable convex sets), where mZ  is the standard normal vector in mR

and 1( , )nX Xε K  is usually of order 1 /2( )O n− , which in general cannot be improved.
Decomposable random variables were studied in Barbour, Karoñski and

Ruciñski (1989), where sharp bounds for Lipschitz test functions were derived. The
idea is to find decompositions i iW U W= + , where iW  is independent of iX  and the

iU ’s are sufficiently small. The next step is to split the iU ’s to i ijj
U X= ∑ and to find

further decompositions ij ijW U W= +  with ijW  independent of ijX . The error in the

CLT is of order ( ), i ij iji j
O X X U∑ E . As shown by Barbour, Karoñski and Ruciñski

(1989), this concept can be applied in numerous problems related to random graphs.
Many other problems, such as random permutations and U -statistics, can also be
treated this way.

In order to derive bounds in the CLT, we use Stein’s method, which is a
powerful tool in treating dependent random variables. Unfortunately, Stein’s method
only works well for sufficiently smooth test functions. There has been a lot of effort to
extend it to non-smooth functions. For independent random vectors and random
permutation statistics, this was achieved by Bolthausen (1984), Götze (1991)
Bolthausen (1984). In more general case, sharp bounds have only been obtained for
bounded random vectors. Moreover, an additional factor of order (log )O n  appears in
the bounds in the multivariate case (see Rinott and Rotar (1996)).

In this paper, we refine the argument of Götze (1991) to derive bounds which
are, under some uniformity conditions, of the same order as those appearing in
Barbour, Karoñski and Ruciñski (1989). In particular, the random vectors need not be
bounded – only third moments are required. We apply our result to local dependence
(in particular U -statistics) and random graph degree statistics.
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In a recent work, Ollero and Ramos (1995) using the description of the Pólya
distribution as a generalised binomial distribution, compared the cumulative
distribution functions (cdf) of the Pólya distribution P(N,p,n,c) when c<0 and the
binomial distribution B(p,n). This comparison is done everywhere but in an interval
with amplitude equal to 1.

In this work, using the expression of the cdf of the Pólya distribution P(N,p,n,c)
when c<0 and two auxiliary functions, we present this comparison everywhere but in
an interval with amplitude less than 1, that is included in the one obtained by Ollero
and Ramos (1995).

1. Introduction

The Pólya distribution (Eggenberger and Pólya, 1923), is generally presented in
terms of random drawings of balls from an urn. Initially, it is assumed that there are N
balls in the urn, M white balls (p=M/N) and N-M black balls. One ball is drawn at
random and then replaced with c additional balls of the same colour. This procedure is
repeated n times. The total number X of white balls in the sample will have the Pólya
distribution P(N,p,n,c). The constant c is interpreted as a parameter of contagion. To
obtain the following results, we are going to use two auxiliary functions in the way

FN,p,n,c(x) is,

( ) ( )( , ) ( , )

, , , ( , )
0

0  ;   0

( )   ;  1  ( : 0,1, , )

1  ;  

m c n m ck

N p n c n c
m

x

n pN qN
F x k x k k n

m N

x n

−

=

<


 = ≤ < +  
 

 ≥

∑ L

If c<0, then we will assume (-c)(n-1)<min{M;N-M}. The expression A(u,v) is a
factorial polynomial of the u-th degree with respect to A, which is given by:
A(u,v)=A(A+c)(A+2c)…(A+(u-1)c); A(0,v)=1. If c=0 the outcome is the cdf of the
binomial distribution B(p,n).
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2. The Comparison

Lemma 2.1 is a previous result that is necessary to obtain the main result,
Theorem 2.1. The interval

( 1)( ) ( 1) ( 1)( )
;

p n N c c n p n N c
N N

− − + − − − 
 
 

is strictly included in the one obtained by Ollero and Ramos (1995).

Lemma 2.1 Let the Pólya distribution P(N,p,n,c) (c<0) and the binomial
distribution B(n,p), with cdfs FN,p,n,c(x) and Fp,n(x) respectively, then:

(i) FN,p,n,c(0) < Fp,n(0)

(ii) FN,p,n,c(n-1) > Fp,n(n-1)
Theorem 2.1 Let the Pólya distribution P(N,p,n,c) (c<0) and the binomial

distribution B(n,p), it is verified for all x = 0, 1, 2, …, n-1 (n > 1), that:

 , , , ,

( 1)( ) ( 1)
0 ; 

( ) ( )
( 1)( )

0 ;              
N p n c p n

p n N c c n
x

NF x F x
p n N c

x
N

− − + −< ≤− =  − − > ≥
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1. Introduction

Let  X be a non-negative random variable with distribution function F and survival
function 1F F= −  . We say that X  is an increasing failure rate (IFR) random variable if
F  is log-concave and we say that  it is a decreasing failure rate (DFR) random variable if
F  is log-convex. The IFR and DFR random variables are of interest in reliability theory
(see, v.g.,  Barlow and Proschan (1975) and Ross (1983)).

Several authors have studied characterizations of random variables that have IFR
and DFR properties in terms of stochastic orders (see, for example, Ross (1983) or
Belzunce et al. (1996)). From this note, characterizations of random variables that their
logarithmic transformation have the IFR (DFR) properties are obtained by means of the
star ordering. We apply these results to comparisons of truncated income random variables
in terms of the variance of the logarithm of income.

For non-negative random variables X and Y with distribution functions F and G,
respectively, we say that X is smaller than Y  in star order (denoted as *X Y≤ ) if

( ) ( )
1 1

1 1

( ) ( )
, whenever 0 1.

F G
F G

β β α β
α α

− −

− −≤ < ≤ <

Basic references describing star ordering are Barlow and Proschan (1975) and
Arnold (1987).

Let X  be a non-negative random variable. Denote by ( ),aX ∞   and ( )0,aX ,

respectively, the left and the right truncated random variables of X in a.

2. Characterizations

Theorem 1 Let X be a non-negative random variable with strictly increasing
distribution function F. Then

( ) ( )( ) ( )* *, ,log   is IFR (DFR) for all  , , suppa bX X X a b a b X∞ ∞⇔ ≥ ≤ < ∈
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Theorem 2 Let X be a non-negative random variable with strictly increasing
distribution function F. The following conditions are equivalent:

1. log X  has a log-concave (log-convex) distribution function.

2. ( ) ( ) ( )* *0, 0, for all , , suppa bX X a b a b X≤ ≥ < ∈

Theorems 1 and 2 generalize  the characterizations given by Belzunce et al.
(1995), which were restricted to absolutely continuous random variables.

3. Application

In economics, a number of hypotheses concerning the shape of the income
distributions may be interpreted in terms of the logarithm of income. For instance, a
conventional measure of income inequality is the variance of the logarithm of income. If a
non-negative random variable X represents the income of a community, the variance of
logarithms is defined as

[ ]22
log logX X XJ E X mσ= = −

where Xm  is the mean of the logarithm of income. The properties of XJ  have been
discussed by Atkinson (1970) and Creedy (1977) among others. On the other hand, the
effect of truncation upon certain inequality measures has been studied in the literature (see
Ord et al (1983) and Belzunce et al. (1995)). In the next theorems, we obtain sufficient
conditions for truncated income distributions to be ordered in terms of the variance of the
logarithms of incomes.

Theorem 3 Let X be a non-negative random variable with strictly increasing
distribution function F. Then,

( ) ( )
( )

, ,
log   is  IFR (DFR)  for all .

a bX XX J J a b
∞ ∞

⇒ ≥ ≤ <

Theorem 4 Let X be a non-negative random variable with strictly increasing
distribution function F. If log  X has a log-concave (log-convex) distribution function

then 
( )

( )
(0 , )0,

   for all .
baX XJ J a b≤ ≥ <

Conditions of theorems 3 and 4 are satisfied for many income distributions. Some
of the most widely used models of income distributions, the logarithms of which have the
IFR property, are the well-known Lognormal and Gamma distributions and the models
proposed by Singh and Maddala (1976) and Dagum (1979).

References
Arnold, B. C. (1987). Majorization and the Lorenz order: A brief Introduction. Springer, New York.
Atkinson, A.B. (1970). On the measurement of inequality. J. Econ. Theory 2, 244-263.
Barlow, R. E and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing. Holt,

Rinehart and Winston, New York.
Belzunce, F., Candel, J. and Ruiz, J. M. (1995). Ordering of truncated distributions through

concentration curves. Sankhya 57, Series A, 375-383.
Belzunce, F., Candel, J. and Ruiz, J. M. (1996). Dispersive orderings and characterizations of

ageing classes. Statist. Probab. Lett. 28, 321-327.
Creedy, J. (1977). The principle of transfers and the variance of logarithms. Bull. Econ. Statist. 39,

153-158.
Dagum, C. (1980). The generation and distribution of income, the Lorenz curve and the Gini ratio.

Economie Appliquee 33, 327-367.
Ord, J. K., Patill, G. P. and Taillie (1983). Truncated distributions and measures of income

inequality. Sankhya 45, Series B, 413-430.
Ross, S. M. (1983) Stochastic Processes. Wiley, New York.
Singh, S. K. and Maddala, G. S. (1976). A function for size distribution of incomes. Econometrica

44, 963-970.



2º  QU A D R I M E S T R E  D E  2001

R E V I S T A  D E
E S T A T Í S T I C A

Generalised Inverse versus Factor Analysis

Raquel Redondo
Universidad Complutense de Madrid, Dpto. Estadística e I.O. II

Madrid, Spain
eciop27@sis.ucm.es

The use of analysis methods in different areas to the one they were created for,
has meant, in several occasions, new solutions to old problems. This paper is devoted
to show how has occurred so with Generalised Inverse (GI) and Factor Analysis (FA),
both multivariate methods, but with different applications. This paper shows how
these two answers to different problems have a common methodology.

1. Generalised Inverse

Definition Let A: Xn→Ym  a linear application. We define the GI matrix of A,

and denote A+, as the matrix given by *

1

1r

i i
i i

A u w
λ

+

=

= ∑  , where λi is a non-zero

eigenvalue of A*A, ui  is an unitary eigenvector of A*A associated to λi, wi is an
unitary eigenvector of AA* associated to λi  and  A*  is A transposed matrix .

Other expressions are: * *

1 1

1 1
* *

r r

i i i i
i ii i

A u u A A w w
λ λ

+

= =

   
= =   

   
∑ ∑

By generalised inverse matrix, a point x∈Xn is transformed in other point
A+Ax∈Xn, who is expressed by its coordinates in the original base B={e1,…,en} of the
space: x→ A+Ax. Developing the expression A+Ax, we have:

( )* *

1 1

1 1
* *

r r

i i i i
i ii i

A Ax u u A Ax u u A A x
λ λ

+

= =

   
= =   

   
∑ ∑

Since  ui*A*A = (A*A ui)* = (λi ui)* = λi ui*, then *

1

1r

i i i
i i

A Ax u u xλ
λ

+

=

 
=  

 
∑

(1) *

1

r
GI

i i
i

x A Ax u u x+

=

 → =  
 
∑

 

Ax 

x 

A+Ax 

A 

A+ 

N(A) 
R(A+) 

N(A+) 

R(A) 

Xn Ym 

Figure 1. Generalised inverse transformation. Graphical description.
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2. Factor Analysis

Let m points xi, i=1,2,…,m and n characteristics yj, j=1,2,…,n, where  xij is the value

of characteristic yj on point xi. We build matrix A=(xij) and *

1

*
n

i i
i

A A x x
=

= ∑ .

By FA, a point x∈Xn is transformed in other point belonging to the same space,
whose coordinates give the initial point projection on the new axes, called Factorial Axes:
x→(x*ui)i=1,…,k, referred to base B’={u1,…,uk}, composed by unitary eigenvectors of A*A
(this implies that, if we consider the whole space and the base B’={u1,…,uk,…,un}, the
corresponding coordinates for vectors uk+1,…,un are zero).

Taking matrix C = ( u1,…,uk,…,un) for base change, so that CxB’ = xB , as x*ui∈R
and coincides with its transposed, we have x*ui = (x*ui)* = ui*x and then  

*
'

1

k

B i i
i

Cx u u x
=

 =  
 
∑ . That is:

(2) *

1

k
FA

i i
i

x u u x
=

 → 
 
∑

 

x*ui 

x 

E1 

E2 

Xn 
Figure 2. Factor analysis transformation. Graphical description.

With the notation used, if  r = k the resulting point of applying a FA projecting on
the largest r factorial axes is coincident with the resulting point of applying transformation
A+A, but that transformed point is given in different bases of the space.

3. Conclusions

In the case  r<k, some factorial axes associated to zero-eigenvalues have been
considered. So we can get the identity of both expressions eliminating those axes.
In the case r=k, factorial axes considered are associated to non-zero eigenvalues, and
exactly those. In this situation the identity of transformed point and expressions is
guaranteed by expressions (1) and (2).

In the case r>k, the expressions and the resulting points are not coincident. So, next
papers  will get the coincidence, in a result already got.
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New technologies are being increasingly applied in many areas, including learning.
Due to that, the authors intend to contribute in computer aided learning with a computer
software that will allow pupils learn or confirm knowledge in a more didactical and
amusing way. This software is a game in which the hero has to climb Mount Sigma in
order to achieve the secrets of Statistics.

1. Introduction

The introduction of new technologies nowadays has opened many possibilities for
learning since these new technologies are able to aid the teaching-learning process. That is
the reason why the authors work is devoted to search for new ways of applying these new
technologies to foment self-learning and pupil personal work.

In this paper the authors intend to introduce the result of their work that consists on
a interactive instrument for pupils that keeps away failure and gives support for their
studies, particularly in Statistics.

2. Objective

The new instrument designed consists on a software program presented as a game,
that allows pupils to fix and apply the knowledge acquired during lessons in a more
interactive, didactical and attractive way for them. This software does not intend to
substitute traditional and practical lessons, but to complement them.

The contents of the prototype are presented in a sequential way similarly as done in
traditional lessons. But it is also possible to ''walk through'' the different difficulty stages in
order to test the level of knowledge on the subject, being able to pass all the barriers that
take place in the development of the game.

As mentioned before, the version presented is a prototype and therefore only
includes a part of the basic Statistics contents. Specifically, the prototype is only devoted
to the teaching of the probability calculus, including events algebra, probability
axiomatization and properties and Total Probability and Bayes theorems. Anyway the
possibilities are immense. The authors are already preparing the other parts, but it has to be
pointed out that it can be also used in any other subject.

The prototype presented is designed to be used in every PC with Windows 95 or
superior and it has very limited software and hardware requirements.

One of the advantages of the software the authors want to highlight is the possibility
of easy translation into every language. In fact, the original software has been done in
Spanish, but the translation into English is in process in order to make the software
demonstration in this meeting understandable for every one attending the conference.
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3. Final Aspect of the Prototype

The objective of the game is shown at the beginning and consists on getting to the
top of Mount Sigma and achieving the secret of Statistics. The student plays the role of the
hero, a pupil who is being taught by his master. The pupil wants to get the secret of
knowledge and martial arts so, along with his lessons, he tries to scale Mount Sigma.

The game is divided into steps, each one representing a Statistical set of concepts as
Probability Calculus, Ramdom Variable, Probability Distribution Models, etc. Each step
has the following structure: the theoretical concepts are given at the beginning as if they
were instructions to climb that step of the mount, then the hero gets into the lane. In order
to get closer to the top the hero must pass some obstacles, represented as test questions that
the hero must solve. If he is able to solve it he will go on, but if the hero fails the program
will take him right to the beginning in order to let him firmly fix the knowledge.

Each time he passes a level of knowledge his master gives him a colored belt,
simulating his martial arts abilities. The belt colors go from white to black.

As the authors teach in a Business School the questions are full of economical
meaning and describe real examples.

In case the pupil fails, as it has being already said, the hero is taken to the base of
Mount Sigma and he has to start again. In order to avoid repetitions in the questions
proposed, the program is provided with a large base of questions aleatorily chosen each
time a question is required.

Meanwhile the game is amusing, full of color, sound and animation. The pupil may
read the instructions, but he can also listen to them. Besides the rhythm of contents and
questions presentations is adaptable to each pupil because they are who establish that
rhythm clicking the mouse when ready to continue.
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Once the appropriate variables for socioeconomical knowledge of different
regions have been established and reduced into factors, it is proposed to group regions
with similar characteristics into clusters so that different clusters are formed by
regions with dissimilar behavior patterns attending to socioeconomical characteristics.

1. Introduction

The future development of European Union (EU) regions could be greatly
influenced by the economical and political decisions involving local economies made
at Brussels. In that sense, to make fair, balanced and homogeneous decisions, it is
necessary to acquire adequate quantitative mechanisms that allow to get precise
knowledge of the socioeconomical reality.

Once the search for suitable socioeconomical variables, the reduction of their
dimension, the conversion of them into factors and the interpretation of those factors
have been done, it is pretended to classify different regions so areas with similar
characteristics will be integrated in a cluster and different clusters will then show
different patterns of behavior in socioeconomical terms.

The fact that a region belongs to a concrete cluster with particular
characteristics would be very useful for future decision making.

2. Methodology

Cluster Analisys (CA) is a technique that allows to classify the different
elements in a sample (villages of the Spanish province of Segovia in this particular
case) into groups called clusters, so, on one hand, each cluster is as homogeneous as
possible and, on the other hand, the clusters are as heterogeneous as possible among
them.

In our particular case and due to the large number of elements considered (207)
the hierarchical method of the k-averages have been applied. This method splits the
whole set of elements into k groups, where k is a value previously fixed. The metric
used to evaluate the distance among the elements  has been the Euclidean one.
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3. An Application

The previous methodology has been applied to determine patterns of
socioeconomical behavior in the Spanish province of Segovia. With the 17 factors
achieved from the previously done Factor Analysis, six clusters have been obtained.

Cluster 1: 1 element (Segovia, the province capital). Focuses, with great
difference from the rest, on economic activity due to tourism, basically.

Cluster 2: 1 element  (La Granja). Focuses on forest, young populations and
important economic activity.

Cluster 3: 69 elements. Focuses on non agriculture living style and old
population.

Cluster 4: 5 elements.  Focuses on economic activity with similar levels to
cluster 2. These 5 elements are the biggest villages, apart from the capital, in the
province.

Cluster 5: 19 elements. Focuses on new housing percentage because there is a
lot of weekend and holidays visitors.

Cluster 6: 112 elements. Focuses on agriculture living style and pig feeding
with low economic activity. This pattern represents the most common description of
Segovian villages.

In order to compose the clusters the factor that makes the biggest differences
has been “Economic Activity”, that has divided the province into three very different
groups:

group 1: cluster 1
group 2: clusters 2 and 4
group 3:clusters 3, 5 and 6.
The factor that makes smallest differences is “Medical Attention”, where no

significant differences have been found.
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The distribution of the sizes (population) of towns and cities exhibits a
remarkable degree of regularity both over time and across different regions and
jurisdictions.  When cities are ranked in descending  order by size and the rank plotted
against size, the resulting points lie close to a straight line.   This empirical property is
known as the rank-size law, or in the special case when the slope of the line is
negative one, as Zipf’s law.    It is easy to show that the rank-size property will hold
when the distribution of sizes follows  a power-law  or Pareto distribution in the upper
tail.  Not surprisingly there have been many attempts to explain the the rank-size
property.  These fall mainly into two classes : (a) the so-called hierarchical models,
(based upon micro-economic assumptions concerning production, consumption,
congestion etc.) ; and  (b) statistical models based  on simple assumptions concerning
the underlying stochastic mechanisms generating the size distribution.

While there have been many models from both classes which can replicate the
rank-size property, they all apear to be limited in that they only explain the upper tail
of the size distribution.  This paper offers an explanation for the size distribution of
human settlements over the full range of sizes.

The explanation is based  on simple stocahstic models for the growth in time of
settlements (geometric Brownian motion) and for the foundation of settlements (Yule
process).  When combined these components lead to a distribution of settlement sizes
following a distribution known as the double Pareto-lognormal distribution.  This
distribution has Paretian (power-law) behaviour in both tails.  Whether or not
observed size distributions exhibit power-law behaviour in the lower tail as well as in
the upper tail, can be checked empirically.  Furthermore the double-Pareto-lognormal
distribution can be fitted to the observed size distribution by maximum likelihood and
the adequacy of the fit assessed.   This provides two separate tests for the adequacy of
the model as an explanation for the rank-size property and the overall size distribution.

In the paper a brief description of the components of the model is followed by
an outline of the derivation of the double Pareto-lognormal distribution.  The model
predictions are discussed along with an examination of four datasets for settleement
sizes in two provinces in Spain and two states in the U.S.A.   Also a brief discussion
of the use of statistical models for explaining distributional phenomena is given.  It is
argued that to explain the size of any individual settlement, economic and
geographical factors must be considered, but that this may not be necessary to explain
the distribution of sizes,  since variations in these factors lead to variations in growth
rates and times since foundation, which in turn can be regarded as random components
in a stochastic model.



I

T R E  D E  2001

A Bayesian Approach to Optimal Alarm

Marília Reis,
Fac. de Ciências da Univ. de Lisboa, Dep. de Estatística e Inv. Oper.l, CEAUL

Cidade Universitária, Bloco C2, piso 2, 1749-016 Lisboa, Portugal
marilia.reis@fc.ul.pt

M.A. Amaral Turkman
Fac. de Ciências da Univ. de Lisboa, Dep. de Estatística e Inv. Oper.l, CEAUL

Cidade Universitária, Bloco C2, piso 2, 1749-016 Lisboa, Portugal
antonia.turkman@fc.ul.pt

K.F. Turkman
Fac. de Ciências da Univ. de Lisboa, Dep. de Estatística e Inv. Oper.l, CEAUL

Cidade Universitária, Bloco C2, piso 2, 1749-016 Lisboa, Portugal
kamil.turkman@fc.ul.pt

Let {Xt} be a stationary sequence. The upcrossing of a level u at time n+j is an

event { }1

u

n j n jn j
uC X X+ − ++

= < ≤ , which we will refer to as a catastrophe. In these

situations there is much interest in getting an accurate prediction of the time at which
the catastrophe will occur so that an alarm can be given in advance and action in order
to prevent major damage can be taken.

The most straightforward procedure is to consider the naive alarm system, which is
based on linear prediction of the stochastic process. In this case the alarm is given when
the predictor exceeds a certain alarm level. This alarm system will not necessarily perform
well since it is optimised to produce good predictions of the level of the process and not to
predict the occurrence of an upcrossing.

An alarm system is evaluated by it’s Operating Characteristics (size of the alarm
region, probability of correct alarm, probability of detecting the catastrophe, probability of
false alarm and probability of not detecting the event) and is said to be optimal if, for a
given probability of detecting catastrophes, it gives the minimum number of false alarms.

In this paper the optimal alarm policy for detecting future upcrossings of the
sequence is studied in a Bayesian predictive context for a general AR(p) process and
particular calculations are carried for an AR(2) process.
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1. Overview of Xtremes

Xtremes is a statistical software package specially tailored for extreme value
analysis. It provides an arsenal of visualization tools  and parametric procedures,
ranging from classical Gaussian models to multivariate extreme value and generalized
Pareto distributions.

It is embedded in the statistical environment Risktec which includes a textual
and a graphical programming language. A CORBA-based client/server architecture,
supported by a DLL-wrapper, facilitates access to the statistical components of
Risktec from clients like R or MS Excel.

2. New Statistical Methods in Xtremes

Recently, we were particularly interested in the following questions:

• the statistical modeling of tails in conjunction with the global modeling of
distributions with special emphasis laid on heavy-tailed distributions such as
sum-stable and Student distributions;

• the Bayesian methodology with applications to  regional flood frequency
analysis and credibility estimation in reinsurance business;

• conditional extremes;

• multivariate extreme value and peaks-over-threshold models;

• risk assessment of financial assets and portfolios in the presence of fat and
heavy-tailed distributions by means of the Value-at-Risk (VaR); also VaR
under the Black-Scholes pricing and for general derivative contracts.

3. Features of the Risktec Environment

The Risktec environment suggests innovative ways for the implementation of a
user-friendly and extensible statistical software system. It can be used at different
levels:

• The menu system of Xtremes  is accomponied by a context-sensitve help
system and provides an easy access even for the unexperienced user.

• An integrated formula interpreter allows simple enhancements of the menu
system.

• The Pascal-based programming language StatPascal can be employed to
implement extensions to the Risktec environment. StatPascal provides vector
and matrix operations like other statistical languages, while retaining
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compatibility to standard Pascal for an easy adoption of existing statistical
procedures and allowing compilation for an efficient execution.

• A CORBA-based component architecture enables external clients to utilize
the statistical components of the Risktec environment. Further components
can be added to the environment easily.

• The graphical programming environment XGPL is a visual tool for the
combination of statistical components of the Risktec environment.

In the poster session, we demonstrate the application of the Risktec
environment and discuss details of its component architecture.
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The nonparametric probability density estimation plays a significant role in the
statistical inference. In this paper we are interested in 1L  convergence of the kernel
estimator nf  of a common probability density f  of weakly dependent random vectors,

not necessarily stationary. As pointed by Devroye and Györfi (1985), in addition to 1L  is

the natural space of the densities, the study of the 1L  error ( ) ( ) d
dn nIR

J f x f x x= −∫  is

justified by its characteristic properties such invariance by some one-one onto
transformations (e. g. scaling), its aspect visual and it is 2 times the total variation of
associated probability measures; see also Devroye (1987). This quantity, nJ , was largely
studied for independent observations; Devroye (1983,87,91), Györfi and Devroye (1985)
and Pinelis (1990) and the references therein. But, within the dependent framework it was
treated little, one can quote for example Györfi (1987), Györfi et al. (1989), Tran (1989)
and Danga (1992,94).

By considering at the same time strongly mixing and absolutely regular processes
(α  and β -mixing), we prove the almost sure convergence or in probability of nJ  to 0
under weak conditions and we also specify their rates. We show for example that for
regular processes (i.e. ( ) 0nβ → ) the density kernel estimate is 1L  consistent in
probability for a suitable smoothing parameter, without any condition on the density.
Moreover the conditions and the rates are optimal as soon as the coefficients ( )β ⋅  are
summable; they are the same that the independent case. But in the α -mixing case the
conditions and the rate are almost optimal when the coefficients decrease geometrically.
Some of our results improve and extend those of Györfi (1987), Györfi et al. (1989), Tran
(1989) and Danga (1992,94) obtained for weakly dependent and strictly stationary
processes.

More precisely, let 1, , nX XK  be n  observations from the unknown density f

on dIR , the kernel estimator nf  is defined for dx IR∈  by:
1

1
( )

n
t

n d
tn n

x X
f x K

nh h=

 −
=  

 
∑ ,

where K  is a real function on dIR , integrable of integral 1 and ( )nh  a sequence of
positive numbers.

Under some conditions on the mixing coefficients related to the smoothing
parameter nh  we show that 0nJ →  as 0n → . These conditions are very weak that

1( ) ( )n o nα −=  or ( ) (1)n oβ =  suffices to have probability consistence for a suitable
parameter smoothing. When the β -mixing coefficients are summable we find the
optimal conditions of independent case; this class of processes contains among others,
the m -dependent, ARMA, some linear, nonlinear and functional AR processes.
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* For example if ( ) ( ), 0nn O e τα τ−= > , then 0h →  and / logdnh n → ∞  imply

0nJ →  as 0n →  and if in addition f  has a regularity s  (as Holder regularity) then

1/(2 )( / log ) s d
nh n n − +≈  yields ( )

. .
/(2 )( / log )

a s
s s d

nJ O n n − += . So the loss compared to the

optimal rate of the independent case is only logarithmic.
* But in β -mixing case the conditions are simpler than the previous and close to

those under independence. We prove that for any density f we have (with

/ 2np p n= ≤ ), ( ) 1

1
0  and  ( )  0

pd
ni

h nh i Jβ
−

=
→ → ∞ ⇒ →∑ , i) in probability if

/ 0p n →  and ( / ) ( ) 0n p pβ →  and ii) almost surely if log / 0p n n →  and

( / ) ( )
n

n p pβ < ∞∑ . Thus

1) If  ( )
n

nβ < ∞∑  then 0 and 0d
nh nh J→ → ∞ ⇔ → , a.s. and

( )
. .

/(2 )
a s

s s d
nJ O n− +=  with s  the regularity of f  and 1/(2 )s d

nh n− +≈ .

2) If 1( ) ( )n O nβ −=  then 0 and / log 0d
nh nh n J→ → ∞ ⇒ → , and

( )/(2 )( / log ) s s d
n PJ O n n − +=  for 1/(2 )( / log ) s d

nh n n − +≈ .

3) If ( ) ( ), 0 1,n O n τβ τ−= < <  then for all  0,n nJε → =

{ }( )/(2 )2 /(1 )(1 )
s s d

P nO n τ ττ ε
− ++− .

4) If ( ) (1)n oβ =  there exists 0h →  such that 0nJ → .
We note that all the constants in the above ( )O ⋅ ’s are explicit and that similar

results are valid for , 1pL p ≥  and in mean for pL . The principal tools to prove these
results are Bernstein type inequalities for dependent processes with values in a
separable Banach space due to Rhomari (2000).
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1.  Foreword

Down the centuries several theories have been proposed but the debate on the
roots of probability and statistics is still open. Specialists are used to present and
discuss their theories in the whole; the scientific analysis is lacking. The debate
between the schools becomes a philosophical confrontation and we do not get results
in this dialog of the deaf.

All the probability theories assume the random event as the argument of
probability therefore a logical order requires that first we must discuss the argument
and then its measure. This procedure traces an analytical way out and the random
event modeling is a right start for clarifying the foundations of probability. A
contribution in this direction comes from Quantum Physics that since years put to light
several experiments critical to mathematical modeling.

As first we remember Kolmogorov who affirms the random event X is a set of
the particular events Ex

(1) X = {Ex}

when X is a subset of the sample space ��and the probability is the measure of  X

(2) P = P(X)

1. Kolmogorov interprets the set X as the "result" of the event. However the
result is a part and the event is the whole. The properties of the event are quite
different from the properties of the result and we cannot merge the set of events and
the set of results without a logical justification.

2. The set model cannot refer to all the results. Quantum Physics brings up the
“two slits experiment” as an exception of significant importance.

Several subjectivists and bayesians appreciate the linguistic model for the
random event. However

a. Several terms of the natural language are generic and ambiguous thus
the sentence X appears inadequate to represent the random event in general.

b. From the sentence X we cannot formally derive the result, in other
words X is a qualitative model inadequate to a mathematical theory.

We find conclusive confirmations of the inadequate theoretical models of
events in applied calculations. E.g. The probability that the variable y is greater the
constant k is written

(3) P(y > k)

In such a way we refuse the linguistic and set models and we prove their failing.

2.  Structural Model

We searched for a solution of the above written difficulties and we designed a
theoretical framework based on a new model for the random event.
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We was convinced that interacting and connecting is the inner nature of events
and we make the following assumption

2.1. The idea of relating, of connecting, of linking is a primitive.
This primitive suggests two elements specialized in relating and in being related

that we define as such
2.2. The relationship R connects the entities and we say R has the property of

connecting.
2.3. The entity E is connected by R and we say E has the property of being

connected.
They are symmetric and complete since they exhaust the Primitive 2.1). From

Definitions 2.2) and 2.3) follows that the relationship R links the entity E and they
give the ensemble

(4) S = (E; R)

which is an algebraic structure.
The expression (4) provides an accurate model for events since E and R

describe the parts of an event. As an example an entity is a dice, a spade, heads, tails, a
product. The relationship that connects two or more entities is, for instance, a
mechanism producing  the output from the input, a force, a physical interaction.
The introductory presentation of (4) is to be completed. In (4) the event is given as a
whole that is S; then it is defined in terms of the details E and R. This analysis can be
insufficient and we reveal the entities (E1,E2..,Em) and the relations (R1, R2..,Rp);
these are exploded at a greater level, and so forth

S =
= (E;R) =
= (E1,E2...,Em;R1,R2...,Rp) =

(5) = (E11,E12.....,Em1,Em2..,Emk;R11,R12.....,Rp1,Rp2..,Rph)

In conclusion the structure of levels (5) is the complete and rigorous model of
any event. The levels can also be written as

level 0                                                  S
level 1                                                E;R
level 2                              E1,E2...,Em;R1,R2...,Rp

(6) level 3    E11,E12.....,Em1,Em2..,Emk;R11,R12.....,Rp1,Rp2..,Rph

The multiple level decomposition is already used in software methodologies, in
modern ontology and in various other sectors. The  progressive explosion is also
known in Probability Calculus E.g. We use the tree in detailing a decisional event.

The structure of levels meets the Kolmogorov theory when the result Ej is a set
and Ej1…,Ejs are the subsets of Ej. E.g. The assumption is largely valid in gambles.
The structure is compatible with the linguistic representation and in some cases is
exactly symmetrical. E.g.

“The coin | comes down | heads”
(7) Ein R Eout
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With the usual notations for the mean, 
    
X n =

1
n

X i

i =1

n

∑  and for the sum of

squares
    
SSn = (X i

i=1

n

∑ − X n)
2 , and from the recurrence relations

    
X n+1 =

n
n +1

X n +
1

n +1
X n+1 and SSn+1   =  

    
SSn +

n
n +1

X n − X n+1( )2
 it is easy to get

that the joint probability density function fn+1 of ( )1 1,n nX SS+ +  may be expressed in

terms of fn  and of the probability density function f of the parent population:

f n+1(w,s)  = 
n + 1

n
s

( ) ( )
1

2

1

, 1 .
1 1n

s ns
f w v s v f w v dv

n n n

+

−

   
+ − −   

+ +    
∫

From this expression, and from the easily established formula

f 2(w,s) = 2
s

f w + s
2

 
  

 
 
 f w − s

2

 
  

 
 
 , w ∈ IR , s > 0

we derive

f 3(w,s) = 3
( ) ( )2 21

2
1

3 1 3 11 2
1 6 6 6

v v v v v
f w s f w s f w s dv

v

+    + − − −     + + −    −     
   

∫

that can be  rewritten in the form f 3(w,s) = 3 ( )( )
1 3

32
11

1
1 i

i

f w v s dv
v

α
+

=−

+
− ∏∫ with

α13(v) =
v + 3(1− v2 )

6
, α23(v) =

v − 3(1− v2)
6

, α33(v) = −
2v

6
 , i. e.,

αi3(v) = 0
i =1

3
∑  and αi3

2 (v) = 1
i =1

3
∑ .

From there we may obtain the general expression,
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f n+1(w,s)=
(n +1)s
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2n−2 n 1− ξ i

2( )
i− 4
2

i=3

n
∏

 

 
 
 

 

 
 
 

s

n−3
2

( )
( )

3
2

1
2 2

11

1 1
11

n n

in
i

v ns
v f w v s f w dv

nn n
α

−+

=−

        − + + − −    + +      
∏∫ .

From that, under mild regularity conditions, we may obtain an approximate

expression for internally studentized statistics 
    

T(n−1) = n(n −1)
X n
SSn

, that in the

case of gaussian populations (a special case, where the studentization is external) is
exact:

f T(n −1)
(t) ∝

( ) ( )

2 2 2
1 2 2

10

1
exp 2

2 1 1

n
n in

in
i

t u t u
u u du

n n n n

α
α

∞
−

=

  − + + − −  
∑∫  with αin

i=1

n
∑ = 0  and

αin
2

i=1

n
∑ = 1, and hence f T(n −1)

(t)   ∝  
2 2

1

0

exp 1
2 1

n u t
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n

∞
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∫ ∝ 1+
t2

n −1

 

  
 

 
 

− n
2

.

Hotteling’s (1961) expressions for Cauchy and Laplace parent distributions, and
many others, may be obtained via the general expression.
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It is obvious the interest for the detection of outliers in samples from normal
populations, since they can be contaminated by “surprising” observations. The
treatment to give to outlying observations were, for a long time, subjected to study.
Traditionally the approach to its study was in the sense of discovering them through
subjective discordancy tests.

The tests of outliers as any other tests of hypotheses, should have a null and an
alternative hypotheses. The null hypotheses it should express some probabilistic basic
model for the generation of the whole sample without outliers contemplation and the
alternative expresses one way in which the model should be modified to explain or
incorporate them.

The construction of the tests depends therefore, in first analysis, of the
alternative hypothesis formulated in the discordancy model. The study of the power of
the test, the construction of tests with certain desirable properties, always demands
that the outliers model is specified.

The most studied tests consider alternative hypotheses like: the inherent,
contamination, slippage, and natural generative alternative (GAN). This last model is
more general in the sense of the non restriction from initial alternative.

To each alternative model, it correspond a very special situation to the tests that
have been formulated, in most of the cases it has not been possible to present
discordancy tests that use in full such hypotheses without any restriction.

Many tests have been proposed in the literature, more than forty only for
populations with normal distribution. In most of the statistics of test proposal its
construction resulted of the application of an obvious beginning, use of extreme order
statistics with the unknown parameters substituted by extreme order statistics
sufficient for them. Later on, for many of those statistics they were discovered optimal
properties, generally long after they have been proposed.

The outliers detection in most of the cases has not been done by rigorous and
objective methods, not only in terms of construction of the test statistics as in the
selection of the observations to test, having been used above all intuitive processes
(for example candidates to outliers are chosen empirically firstly). Only with the
method GAN the problem is been treated on an objective form, being the observation
rejected as outlier chosen a posteriori, once rejected the homogeneity of the
observations.

In the great diversity of discordancy tests it is fundamental to gauge its
performance. To chose between rival tests we need to have some useful measures of
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their relative performance, for example their power. The comparison of tests with the
same power should depend on the alternative hypothesis that we have in mind to
explain the outliers and demand other performance measures. It then requires
knowledge of the distributional behaviour of the test statistic under this alternative
hypothesis. This often presents difficult and complicated problems, and in the past
many people have either ignored it or have confined themselves to simulated results.

In view of the central position which the normal distribution occupies in
statistical theory, it is not surprising to find that the question of outliers from normal
samples has received both the earliest and the most concentrated study in the outlier
theory. However, in spite of the great variety of discordancy tests proposed in the
literature, they are quite limited the performance studies that allow to compare them
and the ones that exist are restricted to simulated results of the power of the tests.

With this communication we intend to identify significant performance
measures in the field of the normal distribution, we also discusses some of the
problems placed to outliers detection and to the construction of test statistics that
drove to its great diversity.
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A socioeconomical characterization of local economies is looked for in this paper.
The first thing to be done consists on selecting, defining and describing the appropriated
socioeconomical variables. Afterwards, in order to allow an easier interpretation, a factor
analysis is applied to reduce data dimension and detect variable relations. Finally an exam
the different resulting factors is required.

1. Introduction

We are involved in a complicated political, social and economical structure as a
result of the integration of villages in counties, counties in regions, regions in countries
inside European Union. This complexity interferes with decision making what has effects
on local economies. When making those decisions it is always possible to chose wrongly
due to the absence of objective information about the real socioeconomical situation of
that local economy. Then disposing of objective quantitative methods to get that
knowledge becomes necessary so that decisions will be just, balanced and homogeneous.
The main objective of this paper is to set an appropriated methodology in order to
characterize socioeconomicaly regions inside European Union. Therefore it is necessary
to:

1. Search for suitable socioeconomical variables, reduce their dimension,
converting them into factors and interpret those factors.

2. Classify different regions so that areas with similar characteristics would be
integrated in a cluster and different clusters would suppose different
patterns of behaviour in socioeconomical terms.

First point will be developed in the present communication, while the second one
will be the main subject of contribution entitled “Cluster setting of socioeconomical
patterns in local economies. An application”, also presented to this meeting.

2. Data

The starting point of the analysis must be an appropriated database, official statistics
if possible. In order to detect possible missing data, a revision of that base is
recommended. If collect information present missing data for any variable, this lack of
information can be completed using multiple regression with other related variables with
“bondad de ajuste” greater than 75%. Afterwards, to avoid scale problems, ratios should
be defined. So it is useful to group the variables into different sets, for example,
demography, activity and unemployment, R&D, agriculture, energy, transport, living
conditions and so on. To define ratios,  it is necessary to have control variables, commonly
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those control variables are population and extension. Then the ratios are made as:
ratio=variable/control variable and all the ratios are classified in the same groups as the
original variables.

3. Methodology

Principal Component Analysis (PCA) and Factor Analysis (FA) are both
multidimensional methods to examine the interdependence among variables. PCA
pretends to reduce the sets of original ratios into a new smaller set of variables called
Principal Components so that the minimum possible number of components explains the
maximum ratio variability. That is the reason why it must be used with exploratory
intention. Meanwhile FA is used with confirmatory intention and defines factors that show
interaction among ratios, and the meaning of factors is very close to components. Then
PCA must be applied on data first and, if the analysis shows that is appropriated a
dimension reduction FA will be applied to get the factors that summarize the variables
information.

Factors must be interpreted related to the variables with largest scores in the factor.

4. An Application

The previous methodology has been applied to determine patterns of
socioeconomical behavior in the Spanish province of Segovia. A number of 58 variables
has been defined and classified into seven groups: control, demography, activity,
economy, living conditions, agriculture and tourism. PCA had shown it was possible to
reduce data dimension and FA had confirmed it. A number of 17 factors had been
obtained explaining more than 75% of the total variance. The most important factors have
been named: ageing, living style, economic activity, public expenses,  medical attention
and unemployment.
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1. Introduction

The consistency of several bootstrap procedures related to longitudinal data analysis
require to estimate any probability covergence orders corresponding to Mallows distance.
This distance, in our paper, is considered between the probability distribution of a random
vector with increasing dimension ν and its empirical probability distribution for a random
sample with also increasing size r. This paper gives the conditions under which the above
mentioned metric converges to zero in probability. Bickel and Freedman (1981) prove that
the Mallows distance between a probability distribution defined on a Banach Space and its
corresponding empirical distribution converges to zero almost sure, but they do not give
the convergence order. In section 2 a condition is given under which the convergence in
probability order for distributions on R is 1 2r−  , being r the sample size. A such condition
is satisfied by the uniform distribution over [ ]0,1 . Using this result, in section 3 a theorem
gives the convergence order of Mallows distance between the probability distribution of a
random vector with increasing dimension ν and its empirical distribution based on random
sample with increasing size r.

2. Convergence of Mallows Metric for Distributions on R

First, we gives some definitions and notations. For 1p ≥ , let ( )Rp
νΓ  be the set of

probability distributions F on Rν  such that ( )p
x dF x < ∞∫ . For the probability

distribution functions F and G in ( )Rp
νΓ , the Mallows distance ( ) ( ),pd F Gν  is defined as

the inferior of 
1/ pp

E X Y −   over the pairs of random vectors X and Y, such that X has

law F and Y has law G. If X and Y are ν-dimensional random vectors with the probability
distributions F and G respectively, we can understand ( ) ( ),pd X Yν  for ( ) ( ),pd F Gν .

According to lemma (4) of Bickel and Freedman (1981), ( )1
2 , 0rd F F → almost

sure. We now give a condition under which this order is 1 2r− .

Theorem 1 Let 1, , rX XK  be independent and R-valued random variables, with

law F and density function f. Let rF  be the empirical distribution function corresponding
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to the random sample 1, , rX XL  and ( ) ( ),1 ,, ,r r rX XL  the order statistics. If

( )( ) ( )
( )( )

( ) ( )
1

1

2
1

,1
1

r F i r

r iF i r
i

E X x f x dx O r
−

−

−

−
=

 − ⋅ =  ∑∫  is satisfied then ( ) ( )1 1 2
2 ,r pd F F O r−= .

3. Convergence of the Mallows Metric for Probability Distributions on Rν

Finally, the follow result gives the form of Mallows metric between the probability
distribution of a random vector, with incorrelated and identically distributed components
and increasing dimension ν and its empirical probability distribution. 

Theorem 2 Let 1 2, , , rX X XK  be independent ν-dimensional random vectors

( )1, ,i i iX X ν=X L  with law ( )Fν ν∈ Γ R  and being F the law of the components ijX .

Let rFν be the empirical distribution of 1 2, , , rX X XK  and rF  the empirical

distribution of 1 2, , ,j j rjX X XL . Then ( ) ( )1 2 1
2 2, ,v

r rd F F d F Fν ν ν≤ .
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Much of environmental research has dwelt on average behavior, as well as
possible changes in these averages. Nevertheless, some of the principal impacts of
environment on society arise throughout its variability and, in particular, the
occurrence of extreme events (Wigley, 1985). Moreover, temperature plays an
important role, especially when assessing the impacts of extreme values variability in
agriculture, safety, infrastructure, health, energy, economy, etc.

For instance, crop yield is dependent partly on extreme weather events. The
relationships are difficult to unravel, however, because other factors are important.
Sometimes, the occurrence of a single rare event such as a hail storm is the limiting
stress. The investigator must recognize the existence of weather-sensitive factors,
which produce significant correlations between yield and particular meteorological
elements but which do not participate in a direct cause-effect relation. Accident rates
are also weather dependent. For instance, traffic accidents are most frequent during
fog and freezing rain. Many common diseases also show seasonal cycles but there is
no obvious explanation in most cases. As a particular example, a number of
investigators have suggested that ulcers are aggravated by temperature changes (Rao
and Chakraborty, 1991).

Extreme temperature events elsewhere in the world will have global
implications through geophysical, socio-economic and political mechanisms.
Improved understanding of these occurrences is essential to assess the likely range of
future climate extreme events and the extent to which these extreme events are
predictable (Mearns et al., 1984; Katz and Brown, 1992; Sánchez et al., 1997).

Keeping this issues in mind, a statistical analysis of extreme temperature events
will be performed in this presentation.

This presentation will focuse on the extremes of temperature of four weather
stations in North-Western Iberian Peninsula. Monthly and annual absolute temperature
maxima and minima observed at four weather stations for the period 1941-1999 were
used. The selection of these four weather stations intended to bring prominence to the
contrast in climatic types, which is a basic goal of extreme value analysis in
Climatology. Salamanca and Zamora, the two Spanish weather stations selected, are
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plainly continental, while Braga and Coimbra, the two Portuguese weather stations
selected, clearly present oceanic characteristics. This is easily confirmed by the
difference between the mean maximum temperature of the hottest and the mean
minimum temperature of the coldest month, for all the period analyzed. Generally
speaking, higher values of the thermal amplitude link with continental places, while
maritime regions present lower values of the thermal amplitude.

Geographical parameters of the four weather stations are presented in Table 1.

Weather Station Latitude (ºN) Longitude (ºW) Altitude (m) Year

Braga 41º 33' 08º 24' 190 1941-88

Coimbra 40º 13' 08º 27' 35 1941-88

Salamanca 40º 56' 05º 29' 789 1945-97

Zamora 41º 31' 05º 44' 667 1933-99

Table 1. Geographical parameters of the four selected weather stations in North-
Western Iberian Peninsula.

Monthly and annual extreme temperatures are analyzed using the non-
parametric Spearman test in search for possible significant trends. In spite of the
impossibility to succeed in deterministic forecasting for temporal scales longer than
some days, it is necessary to simulate climatic variability on a wide range of time
scales, by means of probabilistic techniques.

For now, we present the results obtained by applying the classical Gumbel
distribution function to annual maximum and minimum temperature series, the risk of
occurrence for several return periods and the best-fitting distribution.
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1. Introduction

Frequently a response variable is measured to several fixed time points. We deal
with the following multivariate Gauss model:

(1)  
1 1

~ ,
j

j k

jk k

x

N

x

µ

µ

    
    =     

       

x M M ΣΣ

for 1,...,j n=  independent sample vectors and 1,...,i k=  dependent time points. The
variances ( 1,..., )ii i kσ =  will often be equal in applications.

For small k, usually a multivariate analysis of variance is applied, where all
elements of the covariance matrix are estimated. Under the compound symmetry
assumption, one can alternatively use a univariate ANOVA test (Timm,1980).

In addition to the global test of H0: 1 2 ... kµ µ µ= = = , usually orthogonal contrasts,
such as Helmert contrasts or polynomial contrasts, are calculated from statistical packages
as SPSS or SAS.

The so-called experimentwise error rate of a multiple comparison method is the
supremum of the probability of making at least one incorrect assertion (Hsu, 1996) in all
decisions of the procedure. The simplest way to ensure this experimentwise error rate is
the Bonferroni adjustment, where each single test of the procedure uses the local level á/m
for m simultaneous tests. Frequently, especially for  nonlinear curves, the user wishes to

m may be small.
Subsequently an alternative procedure for multiple comparisons is developed. We

start with the principle of a-priori ordered hypotheses (Maurer, Hothorn and Lehmacher,
1995). Testing the hypotheses in the given a-priori order, we can use the full level á in
each comparison, however, we have the stop the procedure when for the first time a
hypothesis cannot be rejected. The remaining hypotheses are considered as not significant
at the experimentwise level regardless of their results in the local tests.

The problem of defining a useful a-priori order of the hypothesis can be avoided by
a theorem of Kropf (2000) which considers tests for the univariate hypotheses H : 0i iµ =
(i=1,…,k) in the above Gauss model (1)  (i.e., the time points are considered separately,
not the differences among different points in time):

• The k time points are ordered for decreasing values of 2

1

n

ji
j

x
=

∑   for i = 1, …, k.
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• In this order, the usual two-tailed t tests for the hypothesis 0iµ =  are applied
at the full level á as long as all tests are significant. The procedure stops with
the first non-significant result.

variances at different time points. However, the assumption of equal variances is necessary
in order to have an indication for a convenient order of hypotheses, i.e. for the power of
the multiple procedure.

The theorem is now applied to the all-pair comparisons between the different time
points.

2. A New Procedure for All-Pairwise Comparisons of Dependent Samples

We consider the ( 1) / 2p k k= −  pairs (1,1), (1,2),…,( 1,k k− ) of different time
points and calculate the corresponding differences dj1,…, djp  for each sample vector jx  ( j

= 1,…, n):                  1 1 2 , 1, ... ,j j j jp j k jkd x x d x x−= − = − .

For j = 1,…, n the vectors 1( ,..., )j jpd d ′  are independent from each other and have a

multivariate normal distribution with expectation ( )1,..., pθ θ
′
. Under the additional

compound symmetry assumption for the vectors jx , the p components of the vector of
differences have also equal variances. Therefore the above theorem is applicable for the
hypotheses 0lθ = , 1,...,l p= , resulting in the following procedure:

• Order the ( 1) / 2p k k= −  differences of time points for decreasing values of

2

1

n

jl
j

d
=

∑ , 1,...,l p= .

• In this order, carry out the usual two-tailed t tests (corresponding to the usual
t test for pair differences)  for the hypotheses 0lθ = , 1,...,l p=  at the full

significant result.

hypotheses may be useful because  2 2 2

1

1
/

n

jl l l
j

n
d n s d

n=

−= +∑   for each 1,...,l p= .

Therefore with equal variances for all differences, the order of hypotheses is mainly
determined by the mean differences. Pairs of time points with large mean differences and
hence large t values should be in the front part of the ordered sequence of pairs.

Again, if the variances or correlations in model (1) are unequal, then the procedure
keeps the experimentwise error rate á nonetheless but the power of the tests may be
insufficient.
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1. Introduction
In bridge competitions for pairs two pairs meet at a table and play a number of

deals. These deals are kept in a board and played also by other pairs at other tables.
This is repeated for a number of different boards. For each deal and table a score,
measuring the difference in skill for the two pairs, NS and EW, is calculated.

Statistically this set up can be seen as a design with the pairs as ‘treatments’ and
with a ‘block structure’ containing the factor boards, deals within boards and  tables within
boards. In a round the tables may share the n deals from the same board or different boards
may be played at some or all of the tables. If there are p=2t or p=2t+1 pairs, t tables will be
used for each round and usually also for each of b boards. The scores y may be modeled as
a linear mixed model

(1) y = Xαα +  u,

where y is a columnvector with  btn rows. The design matrix X has btn rows and p
columns and specifies how each pair contributes to the score and the columnvector αα
contains the p unknown skill-scores that we wish to estimate. There is also a  vector u with
btn residuals which has mean E(u) = 0 and variance Var(u) = V. Thus
E(y) = Xαα and Var(y) = V.

2. Model

The vector of residuals, u, includes possible effects of boards, deals within boards
and tables within boards. Thus V contains variances and covariances referring to boards,
deals and tables. The model (1) can in principle be written as

(2) y=Xαα+ZbBo+ZtTa+ZdD+e,

where  Bo stands for board effects, Ta for table effects within boards, D for deal effects
within boards and e for uncorrelated residuals (including an interaction between deals and
tables). In order to allow negative covariances we introduce the following variance matrix:

(3) V =  σ2ρbZbZ´b  + σ2ρtZtZ t́  + σ2ρdZdZ´d  + σ2ρΙ,Ι,

where σ2ρd , σ2ρt and σ2ρb denote the covariances between scores within deal, within table
within board and within board and ρ = 1-ρb- ρt -ρd.  If we have a proper game, i.e. if there
really are b boards and n deals per board without any accidental rotations ZdZ´d=Ib*Jt*In,
ZtZ t́=Ib*It*Jn and ZbZ´b = Ib*Jt*Jn. Ib is a b by b identity matrix,  Jt a t by t matrix with 1
in every position and * denotes the Kronecker product.

If we use raw scores or some direct transformation of them the fixed part of the
score, Xαα, can be said to depend on the difference between skills for the NS-pair and the
EW-pair at the table corresponding to the row in question. In a row of X there is a 1 for the
NS-pair at the table, -1 for the EW-pair and 0 for the other p-2 pairs.

3. Analysis

Using generalized least squares, gLS, we get the normal equations (X´V-1X)αα0 =
X´V-1y, where αα0 is a solution to the equations. In a proper game, i.e. with n deals and t
tables for each of b boards V-1 can be expressed simply as

(4)(4) σ2ρV-1 = I -k2ZbZ´b  - k3ZtZ t́ - k4ZdZ´d
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where ki are functions of the correlations that can be solved from the equations ρb = k2(tnρb

+ nρt + tρd + 1) + k3(nρb + ρd) + k4(tρb + ρt), ρt = k3(ρ + nρt) and ρd = k4(ρ + tρd). Then we
can write the normal equations as Aαα0 =By with B = X´- k2X´ZbZ´b - k3X´ZtZ t́ -
k4X´ZdZ´d   and  A = BX.

With n deals per table and board we can write X = X1*1n where X1 is the design
matrix for n=1 and 1n a column vector of 1s. Then X´ZbZ´b = nX´ZdZ´d and X´ZtZ t́ =
nX´. This means that the normal equations can be written with B = X´- KX´ZdZ´d , where
K = (nk2+k4)/(1-nk3). Replacing the ki by their respective functions of the correlations it
takes some straightforward algebra to show that K = γ/(1+γt), where γ = (ρd+nρb)/(ρ+nρt).
If γ were known a solution could be obtained as αα0 = A-By where A- is a generalized
inverse of A. The variance matrix would then be Var(αα0) = σ2(ρ+nρt)A

-.
The constant γ is unknown and we have to estimate or guess it. With a positive ρd

and with ρb and ρt not far from zero, γ could be large or even unlimited. This case
corresponds to K=1/t and thus we obtain the oLS-estimator as a limit of the gLS-estimator
as we are used to.

Although the scores are hardly normally distributed, especially not for small p, we
have used a normal likelihood as an approximation. To get REML estimates of σ2, ρb, ρd

and ρt , we have written a program in Matlab. In fact, for proper games we get the same
results for contrasts c´αα0 and its variance by using least squares and the anova method
which does not use the normality assumption.

The vector αα0 = A-By is not really an estimator of αα, which is not estimable.
However certain contrasts in αα are, and if all pairwise contrasts αi - αj are estimable we
can use αα0 to rank the pairs. To see the estimability, we can check if C = CA-A, where C
is the matrix of contrasts.

The matrix A in the normal equations is called information matrix and is especially
easy to use when it is on the form cIp - dJp. Then the generalized inverse A- and Var(αα0)
are on the same form and are easily expressed with help of c and d. Such designs are said
to be balanced. In this case it is easy to derive formulas for pairwise variances, PV, in gLS
(true γ known) and oLS (K=1/t). If a guessed Kg = γg/(1+tγg) is used ,ggLS, some algebra
is needed to find PV. The results are for PV/(σ2(ρ+nρt)):

gLS (2(p-1)(1+γt))/(pr(1+γ(t-1)))
ggLS (2(p-1)(1+γ+γg(t-1)(2+γgt)))/(pr(1+γg(t-1))2)
oLS (2(p-1)t)/(pr(t-1)),

where r is the number of deals played by each pair. To illustrate the possible efficiencies
of oLS and ggLS we consider the case t=3 and the true γ=1.5 see Table 1.

γg -1 0 .5 1 1.5 2 2.5 3 5 10 ∞
4.5 2.5 1.5 1.39 1.375 1.38 1.39 1.40 1.43 1.46 1.50

(=oLS) (=gLS)

Table 1. prPV/(2(p-1)σσ2(ρρ+nρρt)) for different guessed values of γγ

Apparently ggLS performs better than oLS with a large guess of  γ.

4. Discussion

Applying a statistical linear model, generally used for block experiments, is
useful for understanding the computations in bridge competitions. The method of least
squares can be used to estimate differences in skill between the pairs.

If we are interested in the statistical error margins in the estimates and to reduce
these errors by using gLS the detailed specification of the linear model becomes more
important.The model used here contains a random part and a fixed part. Both positive and
negative covariances are allowed in the random part. The pairs-design-matrix is defined in
such a way that the factor pair is orthogonal to boards and deals. The generalized least
squares estimates of pair differences are then independent of the random part of the model.
Thus there is no difference between gLS- and oLS-estimators, the information matrix is
simply X´X.
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1. Introduction

Quasi-copulæ were introduced in Alsina et al. (1993) in order to characterize, in
a class of operations on distribution functions, those ones that derive from
corresponding operations on random variables defined on the same probability space.
The concpet of quasi-copula turned out to be useful, but the original definition was
impractical.

By a track  B it is meant a subset of the unit square [0,1]×[0,1] that can be
written in the form B={(F(t),G(t)): t∈[0,1]}, for some continuous distribution
functions F and G such that F(0)=G(0)=0 and F(1)=G(1)=1. A quasi-copula is a
function Q from [0,1]×[0,1] to [0,1] such that for every track B there exists a copula
CB that coincides with Q on B, namely

Q(x,y)= CB(x,y),     (x,y)∈B.

This definition makes it very hard to recognize wether a given function Q from
[0,1]×[0,1] to [0,1] is in fact a quasi-copula.

2. Characterization of Bivariate Quasi-Copulas

The following characterization was proved in Genest  et al. (1999)

Theorem 1 A function Q from [0,1]×[0,1] to [0,1] is a quasi-copula if, and only
if, it satisfies the following conditions:

(1) Q(0,x)=Q(x,0)=0 and Q(x,1)=Q(1,x)=x for all x∈[0,1];

(2) Q(x,y) is nondecreasing in each of its arguments;

(3) Q satisfies a Lipschitz condition, that is, for all x,x’,y,y’ in [0,1],

≤ |x’ - x| + |y’ – y|.

The proof is based on an existence argument and relies on the following  crucial
Lemma 1 Let  (x1 ,y1),…,(x n ,y n) be distinct points in [0,1]×[0,1] with  0≤x1

≤…≤xn ≤1 and 0≤y1 ≤…≤y n≤1. Let also q1 ,…,q n  be reals with 0≤q1 ≤…≤q n≤1 and
suppose that

(a) 0 ≤ qi+1 – qi  ≤  (xi+1 – xi) + (yi+1  – yi)             1 ≤ i ≤ n-1;
(b)  max{0, xi + yi – 1} ≤ q  ≤ min{xi ,yi),             1 ≤ i ≤ n.

Then there exists a copula C such that C(xi ,yi)= qi  for every i=1,…,n.
It will be recalled that a copula satisfies, along with the boundary conditions

(1), also the condition, which is stronger than (2),

(4) Q(x’,y’) – Q(x’,y) – Q(x,y’) + Q(x,y) ≥ 0,



I

T R E  D E  2001

for all x,x’,y,y’ in [0,1] such that x ≤ x’ and y ≤ y’. Then a second characterization of
a quasi copula is provided by the following

Theorem 2 A function Q:[0,1] × [0,1] → [0,1] is a quasi-copula if, and only if,
it satisfies condition (1) and inequality (4) holds true whenever at least one of x, x’, y,

By means of the above characterizations it is possible to construct absolutely
continuous quasi-copulas.

The results of Theorems 1 and 3 for two-dimensional quasi-copulas can be
extended to the n-dimensional case. However the proofs turn out to be more delicate
than in the two-dimensional case (see Genest  et al. (2001)). For n�3, an n-copula C
satisfies the analogue of  inequality (4). For an n-box

[x,y]:=[x1, y1] × [x2,y2] × … ] × [x n,yn],

let v = (v1,v2,…,v n) with vi ∈ {xi,yi} (i=1,2,…,n) denote a vertex of [x,y] and let s(v)
be equal to 1 or to –1 if vi = xi for an even (respectively, odd) number of i’s. Then the
C-volume of the box [x,y] is defined by

VC ([x,y]) := Σ s(v) C(v),

where the summation is over all the vertices v of the box. By definition, an n-copula C
satisfies the inequality

(5) VC ([x,y]) ≥ 0,

for every box [x,y].

Theorem 3 A function Q: [0,1]n → [0,1] is an n-quasi-copula if, and only if, it
satisfies the following conditions:

(6) Q(x1,…,xi-1,0,xi+1,…,xn) = 0 and Q(1,…,1,xi,1,…,1) = xi  for all xi∈[0,1]
(i=1,2,…,n).

(7) Q is nondecreasing in each variable;

(8) Q satisifes the Lipschitz condition

|Q(x1,x2,…,x n) - Q(y1,y2,…,yn )| ≤ Σi=1,2…,n 
 |xi – yi|

for all(x1,x2,…x n) and (y1,y2,…,yn ) in [0,1]n.

A characterization analogous to that provided in Theorem 2 holds.

Theorem 4 A function Q: [0,1]n → [0,1] is an n-quasi-copula if, and only if, it
satisfies condition (6), condition (5) for every n-box [x,y] such that all the components
xi  of x, but for at most one of them, are equal to zero, and moreover the inequality

Q(x1,…, xi-1, x i , x i+1,…,x n) - Q(y1,…,yi-1,yi ,yi+1,…,y n) ≤ yi - xi

for all xi   and yi   in [0,1] with xi  ≤ yi  (i=1,2,…,n).
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1. Introduction

This research work studies the entropy and the mutual information as uncertainty
measures applied to the Portuguese stock market. The utilization of variance as measure of
uncertainty is well entrenched by tradition in statistics. The mean-variance approach is
appropriate only for distributions that are unimodal and symmetrical, since the first two
moments of a population can be estimated from the respective moments of the sample
distributions. When there are distributions that are non-symmetric, a different measure of
uncertainty is required. This measure of uncertainty must be more dynamic and general
than variance. This study proposes another measure of uncertainty called entropy or
expected information to make a portfolio management. It is intended with this study to
verify the entropy as uncertainty measure is adapted to the financial theory, more properly
to the portfolio theory.

2. Mean-Variance Model versus  Mean-Entropy Model

The efficiency frontiers obtained by the mean-variance model and the mean-
entropy model is compared, where entropy is calculated from the stock portfolio selected
by the mean-variance model. As it is unknown the true distribution of probability followed
by the earnings yields of the stocks, the calculation of the conditional probabilities
becomes an uncertainty source and to overcome such difficulty, the portfolio return is
calculated from their stocks. If the mean-variance model for a specific coefficient risk
aversion (K) is run a couple of times, it is possible to generate a return rate for the different
selected portfolios and then to compute a relative frequency curve. The relative frequency
is used here as a close approximation of the probability of occurrence of the return rate of
each one of the portfolios. The entropy of the portfolio is calculated as follows:

n

p p 2 p
p 1

(1)                                               H   - p  Log  p
=

= ∑
Where: pH - Entropy of the portfolio; and, pp - Probability of occurrence of the

return rate of each one of the portfolio selected by Mean-Variance model.

K Mean  (%) Variance Entropy (bits)

0.000 0.2700 5.8515 3.0291

0.005 0.2647 4.2798 2.8469

0.008 0.2627 3.9523 2.8533

0.010 0.2620 3.8767 2.8482

0.050 0.1866 1.7263 2.3343

0.100 0.1003 0.4315 1.5639

0.200 0.0572 0.1078 1.0996

1.000 0.0226 0.0043 0.9226

Table 1. Mean, variance and entropy for the selection portfolios
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For the analysis of the Table 1 an attendance of the entropy is verified relatively to
the variance, that is, as the variance decreases due to the diversification effect, the entropy
also tends to decrease, in spite of form no so significant, being revealed sensitive to the
diversification effect. Such tendency is verified in all of the portfolios except in the third
where the variance decreases and the entropy increases.

3. Conclusions

The Portuguese stock market has a small dimension and a weak liquidity that move
away it of the applicability of the traditional models of portfolio selection and
management, where risk is simply measured by the variance. Through statistical analysis
realized to all stocks that constitute the sample and to the BVL 30 index, it was verified
that the normal probability distribution doesn't represent the empirical data faithfully, what
at once puts in cause the application of the mean-variance model as an efficient model of
portfolio selection.

In order to verify if the selection made by the empirical model provides all
information to the investor about the true uncertainty, it was calculated the mean-entropy
for each one of the optimal portfolios. The entropy is independent of the type of
probability distribution, measuring the global dispersion unlike the variance that is limited
to measure the dispersion around the mean. So the entropy provides correct information
about dispersion of each one of the selected portfolios. Model results allowed to verify that
the variance and the entropy goes in the same way, however the entropy doesn't represent
the traditional curve of the efficiency frontier, being denoted the existence of a bias in the
measure of the risk and the uncertainty. Such bias will only be able to be due to the fact of
the empirical distribution for the data not to be normal, what at once demonstrates the
inadequacy of the mean and of the variance as the only measures used to characterize a
distribution. The entropy appears then as a new form of measuring the uncertainty for any
type of probability distribution, constituting a source of privileged information for the
investor. As the entropy is calculated through a logarithm, the events with smaller
occurrence probability are more valued that in the calculation of the variance, what
constitutes an advantage for the entropy, because more importance is given to the
possibility of occurrence of rare events, namely “crash's”.  So the “mean-entropy frontier”
is more robust of the statistical point of view and it promotes more trustworthy
information for the investor. It was also verified, for the analysis of model results, that the
entropy is sensitive to the diversification effect, what at once facilitates the acceptance as a
global dispersion measure in the portfolio theory.
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1. Introduction

In this paper, I introduce two optimal linear discriminant functions (OLDF)
using integer programming  (IP) and linear programming (LP).  Those are called as
IP-OLDF and LP-OLDF. In order to evaluate these new methods with the Fisher's
linear discriminant function (Fisher’s method) and the quadratic discriminant function
(Quadratic’s methods), I applied these ones to three data sets such as - the iris data, a
medical data, and 115 data sets of random number data.

2. Algorithm of OLDF

Miyake & Shinmura (1976) proposed a new criterion of the linear discriminant
function, which minimises the sample miss-classify rate (error rate). And the heuristic
algorithm was proposed. This one was applied for the above medical data, but only 6-
variables model could be solved because of the restriction of CPU time. In this paper,
I propose a new algorithm using IP and LP for OLDF.

LP-OLDF minimises the summation of distances of miss-classify samples from
critical point.  On the other hand, IP-OLDF minimises the sample error rate directly.

3.  Data and Results

These new methods were applied to three kinds of data in order to show its
usefulness by comparing these methods with Fisher’s and Quadratic methods.
The analysis was done by the following procedure. First, all possible models were
computed as a frame of analysis. And the forward and the backward basic sequences
were derived from these models. Next, the error rates were computed on these basic
sequences for the four discriminant functions. And lastly, these values denoted by (IP,
LP, FP, QP) were evaluated by various statistical methods such as the t-tests for the
differences in the averages and the regression analyses.

3.1 Iris Data

1. Error Rate
The error rates by IP-OLDF (IP), LP method (LP), Fisher’s method (FP) and

Quadratic method (QP) are obtained on 15 models that are composed of all
combinations of four independent variables.

2. T-test for the differences in the means
The order of the means of 4 error rates is IP (8.933) < LP (9.733) < FP (10.667)

< QP (11.267).  T-tests of IP with (LP, FP, QP) are rejected. T-test of LP with QP is
rejected too. In any case, IP-OLDF is superior to other methods.

3. Examination of regression lines and discriminant coefficients
In this paper, we propose a new idea to evaluate 4 discriminant methods by IP-

OLDF. The error rates of FP, QP and LP are predicted by that of IP-OLDF. The
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regression results are as follows; FP = 1.582 + 1.003 * IP   (r=0.989), QP = 1.617 +
1.064 * IP  (r=0.987), LP = 0.934 + 0.971 * IP (r=0.996).

The order of predicted values is IP < LP < FP < QP. So, this result is as same as
t-test although the differences of the four methods are very small for small values of
IP and large for larger values of IP.

3.2 Medical Data

Important results were obtained in the analysis of medical data, and they will be
reported at the conference.

3.3 Random Number Data

The following results are obtained about the random number data. This data is
designed to evaluate the influence about rotation and transportation, and the relation
between the internal and external samples. The error rates for 115 data sets were
computed. The range of those is [0,71]. Effects by the rotation are observed in the
cases such as ‘D10Ak’ in which two groups are very close or sample error rates are
high.
The order of the averages for the internal sample is IP < QP < FP <LP. All t-tests are
rejected. The order of the averages for the external sample is QP < IP < FP <LP. T-
tests are rejected except for IP and FP. QP is better than IP in the external sample
whereas IP is better than QP in the internal sample.

(IP, LP, FP, QP) were regressed by IP. The order of predicted values of (IP, LP,
FP, QP) are as same as the average.

4. Conclusion

To summarize above result, IP-OLDF is the best method for three kinds of data,
but Quadratic method is the best for the external check of the random number data.

In the future, we intend to design a random number data with more than three
variables and evaluate IP-OLDF on various points.
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Monte Carlo algorithms for optimal pricing of American type options are
described. These algorithms are based on new theoretical results, which show that
optimal stopping strategies for American options have a threshold structure for general
dynamical models of pricing processes and convex pay-off functions. The results of
theoretical and experimental studies show that the direct simulation approach has
advantages with respect to traditional numerical methods. It is much more flexible and
less sensitive to the modifications of models of underlying pricing processes, pay-off
functions and other characteristics of the models. The optimising Monte Carlo pricing
algorithms give also opportunity to estimate some important statistical characteristics
that are hardly available in the case of the use of traditional numerical methods. For
example, profit histograms and dynamical quintile diagrams for optimal stopping
strategies, confidence intervals, etc. can be effectively estimated.

The PC based programs have been elaborating at present time. They show
promising results by accuracy, computing time and other characteristics. Results of
computer experiments are displayed and discussed as well as prospective of
application of Monte Carlo methods to problems of option pricing.
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Let Aå be for every å  > 0 a non-negative m x m matrix with one
communicative non-periodic class of positive entries. In this case, as is known, there

å and a non-negative matrix Ðå å n}·
Aå

n � Ð å as n � �. It is further assumed that matrix Aå is a nonlinear perturbation of
matrix A0 in the sence that Aå  = A0 + A[1]å + …+ A[k]å

k
 +  o(åk). The explicit algorithm

å 0+ ñ[1] å +… +ñ[k] å
k + o(åk)

and Ðå  = Ð0 + Ð [1]å + …+ Ð [k]å
k
 +  o(åk).  Applications to Markov chains with

absorption and asymptotical expansions in mixed large deviation and ergodic
theorems for lifetime functionals and quasi-stationary distributions for models of
population dynamics, queueing systems and risk processes are discussed.
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1. Introduction

The Glaucoma is a very serious and extended illness. It may in time result in
damage to the optic nerve, loss of peripheral vision and finally in blindness. Patients are
usually unaware of peripheral vision loss and they may remain undiagnosed until central
vision is severely affected. The most extended way to detect Glaucoma and to assess the
extent of visual field loss is to perform a visual field test, a set of fixed locations in the
visual field is chosen and they are randomly exposed to light stimulus with different
intensities. When the patient perceives a stimulus, he pushes a button and his response is
saved. There are different modalities of perimetric test. Our data set is the output from an
Automated Static Perimetry Test. The output consists in a map with n numerical values.
Each value represents the brightness intensity perceived in each point. The device used has
been a Humphrey Field Analyzer.

Up to now the study of Glaucoma has been restricted to the study and modelling of
only one visual field. In this paper a model is proposed for the spatio-temporal distribution
of visual fields, the ML parameter estimators are obtained and the goodness of fit is
checked.

2. Notation and Data Description

Let P be the number of patients, pN  the number of visual field test from patient

number p and n the grid size. We define two variables on each visual field position. The
first variable S ∈{1, -1} is called defect status. This variable allows each visual field point
to be classified as "normal" or "disease". The second variable Z gives the threshold
intensity. We denote 1 2( , , , )tp tp tp ntpS s s s= K  and 1 2( , , , )tp tp tp ntpZ z z z= K , with itps  and

itpz the observed value of the defect status and threshold intensity respectively at site i,

time t and patient p.
In the literature we can find a set of assumptions about visual field distribution. A

previous descriptive analysis of data has been done in order to check them. They are:
• The evolution of the disease is highly correlated with ocular nerve fibre

directions.
• The threshold values decrease with age linearly.
• The rate of loss of sensitivity with age is higher in the periphery than in the

middle of the visual field.
• The variability of the thresholds increases with distance from the fixation

point.
• After a Box-Cox transformation the threshold distribution is Gaussian.

These assumptions will be incorporated in the models in sections 3 and 4.
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3. A Constrained Autologistic Model for Modelling Defect Status
Olsson and Rootzen (Olsson et al., 1994) proposed an autologistic model for the

defect status vector at time t. In order to introduce the temporal dependence we take into
account that if a point is defective at time t this status should remain unchanged for s>t.

We define C (S)= 1
2

(1 )(1 )
pN

itp it p
p i t

s s −
=

− +∑∑∑  and { : ( ) 0}c S C SΩ = = . We

propose the following model for the joint defect status distribution:

( )cf S = 1 1 1 1

1 1 1 1

exp{ }
1 ( )

exp{ }

p

c p

c

NP n n

ij jtp itp
p t i j

NP n n

ij jtp itp
U p t i j

s s
S

u u

β

β

= = = =
Ω

∈Ω = = = =

∑∑∑∑

∑ ∑∑∑∑

with   if ,   0  ij
ij

b
i iβ

ρ
= ∈∂ otherwise; iδ  is the first order neighbourhood of i,

||
ij ij ijd kdρ ⊥= + ; being || ,ij ijd d ⊥ the decomposition of the Euclidean distance into a part

parallel to the retina nerve fibre trajectory and a part perpendicular to it.

4. Threshold Modelling

A VARI (1,1) model is assumed, 0 1 1tp tp t p tpZ C S c Z ε−∆ = + ∆ + Ψ∆ + ,

being ∆ the first difference operator; 1

1
~ (0, ( ) ),

tp
n

t p p
N M IZ S

ε −

−
− Γ∆  with

tpε  independent of tqε if p q≠ , ( (1), , ( ))M diag nσ σ= K , ( )iσ  denotes a function of

the distance between i and the fixation point, 1( )I −− Γ is a symmetric and positive defined

matrix, , 1, ,( )ij i j nγ =Γ = K with 2  if  ,   0    otherwiseij j iγ γ δ= ∈  and 2iδ  is the second order

neighbourhood of site i; , 1, ,( )ij i j nψ =Ψ = K with 2  if ,   if , ij j i i jψ ψ δ ψ= ∈ =%

0 otherwise; 0 01 0( , , )nC c c= K ; finally, 1c  is the parameter that incorporates the change in
the mean due to a change in the defect status variable.

5. Parameter Estimation: Stochastic EM Algorithm
The defect status data are missing and the normalisation constant of the probability

distribution of defect status vector is unknown. So we must use the stochastic EM
algorithm (Celeux and Diebolt, 1985) in order to obtain the Maximum Conditional
Likelihood estimators of the parameters. The simulation of the defect status vector given
the thresholds will be obtained using the Gibbs Sampler.

6. Model Checking
Models in section 3 and 4 were chosen on the basis of medical knowledge, some

statistical tools have been used for investigating the goodness of the fit. Two hypotheses
have been checked: the order of the VAR model by means of the Portmanteau test and the
whiteness of the residuals through the quantile-quantile and autocorrelations plots of the
residuals.
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When constructing a method of surveillance, optimality criteria are of interest.
The most commonly used is the minimal ARL1 (the minimal average run length when
the process is out-of-control when the surveillance starts) for a fixed ARL0 (average
in-control run length). However, as a formal optimality criterion, the ARL-criterion
has severe drawbacks. Degenerated methods, which cannot be recommended in
practice are ARL-optimal. The other criterion studied is the minimal expected delay
(from a change to the detection) for a fixed probability of a false alarm. This criterion
is appropriate for most applications, since it takes into account also the possibilities of
later changes. This is important since the ability of detection depends on the time-
point of the change. Special attention is given to the EWMA method and different
suggested variants. In this case important differences between one- and two-sided
versions exists.
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An asymptotic expansion of the expectation of an irregular functional of a
diffusion process that is perturbed around a random limit is derived by means of
Malliavin calculus. We consider in detail the particular example given by a stochastric
volatility model where the noise of the volatility process is small. In this case a third
order expansion is presented. Also models with a random discounting factor are
considered. A typical application is to the pricing of  options, where we study
European options in particular. A result of some financial interest is that the classical
Black-Scholes formula for the price of a European option turns out to be correct to
second order also for stochastic volatility models provided that there is no leverage
effect, i.e. no correlation between the noise of the volatility process and the noise
driving the price process.
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The structural relation model is a measurement error model that describes a
relationship of dependence of the form η = g(ξ; ββ) where both ξ and η�are
unobservable random variables. The model assumes that these variables are observed
with additional additive errors, which makes it adequate for the modelling of many
real situations in different scientific areas.

Assuming that g is a linear function of the variable ξ�and of the vectorial
parameter ββ, there are many known methods to estimate ββ provided it is identifiable.
But when g is a nonlinear function in at least one of the arguments, the estimation
procedure has yet to be properly studied.

Herein it is admitted that the function g has a polynomial form. Following the
conditional approach to the estimation problem suggested by Gleser (1990), the values
of the dependent observable variable are expressed in terms of its regression on the
other observable variable. When the parameter is identifiable this way of treating the
problem can lead to a question of estimation in an heteroscedastic nonlinear regression
model, as noted in Cheng and Van Ness (1999). The usual methods for the estimation
of the parameters of the nonlinear regression model can then be applied.

However, the resulting estimators are very sensitive to violations of the
assumptions of the model and it is convenient to look for robust estimation
procedures. Bounded influence estimators for the polynomial structural relation model
are developed from robust regression methods and their properties are studied.
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In this paper we present a way to compute the Fisher information matrix of an
ARMA process. The computation is based on the fact that this matrix satisfies a Stein
equation.

The coefficients of the Stein equation under consideration turn out to be
matrices in companion form and  a basis of eigenvectors of companion matrices can
be represented as the columns of a (confluent) Vandermonde matrix. Therefore, also
from a statistical perspective there is an interest in analyzing (confluent)
Vandermonde matrices. Solutions of this Stein equation are relatively easy to compute
as soon as one knows how to invert a Vandermonde matrix (in the generic case where
all zeros and poles of the transfer function  have multiplicity one) or a confluent
Vandermonde matrix (in the general case).

Therefore we present some general technical results on companion matrices and
confluent Vandermonde matrices, the main results concerning inversion of
Vandermonde matrices. Then we apply these results to describe solutions to Stein
equations and investigate the special case where the solutions are given by blocks of
the asymptotic Fisher matrix of an ARMA process.
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This paper investigates the local influence assessment in generalized linear
models. The concept of local influence was introduced by Cook (1986) and modified
by Billor and Loynes (1993). Cook's local influence was motivated by the Cook
measure (1977); so they only study the local influence on the regression coefficient
and they are not resistant to masking and swamping effects. In this article we propose
a new locally influential measure to mitigate these difficulties. We demonstrate the
need to make it by giving examples where existing measures may fail to detect extrem
points.

1. Introduction

We assume the observations consist of a vector y of n independent responses
from the exponential family

( ) ( ) ( ) ( ){ }; exp ,y i i i i if y y b a c yθ θ θ φ φ= − +  

with ( ) ,i igθ η=  i ixη β= , where x is an n × p matrix covariates, β is a p-dimensional
column vector of unknown parameters, and a(·), b(·), c(·) are known functions. The
dispersion parameter φ is usually regarded as a nuisance parameter. Let β̂  be the
maximum likelihood estimate (MLE) of β.

The idea of influence assessment is to monitor the sensitivity of statistical
analysis when the subjected to minor changes in the model. For a review of GLM
diagnostics, see e.g. Davison and Tsai (1992). Most attention in this area has in
practice been focused on global influence mainly the case deletion method. The
generalized Cook’s distance (McCullagh and Nelder, 1989,p. 407) is defined by

( )( ) ( ) ( )( )'ˆ ˆ ˆ ˆ ˆ'i i iD x Wxβ β β β φ= − −

where { }iW diag W= , ( ) ( ) ( ) ( )2 1 2ˆ ˆi i iW b gθ η =   , ˆ
iβ  denotes the estimate of β

without case i and the superscript (k) denotes the kth derivative of the function.
The purpose of this study is to gain additional insight regarding the local

influence analysis and its implications on global influence.

2. A New Local Influence Measure in Generalized Linear Models

Cook (1986) developed a general technique for the assessment of local
influence. Billor and Lyones (1993) show some practical and theoretical difficulties
which arise in Cook’s approach. To avoid these difficulties Billor and Loynes (1993)
suggest, an alternative likelihood displacement:
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* ˆ( ) 2 ( ) ( | )wLD w L L wβ β
∧ = − −  

  ,

where wβ
∧

 is the MLE from the perturbed model and ( | )wL wβ
∧

 is the log-likelihood
of the perturbed model, while Cook (1986), uses only  the perturbation in the
estimation of the parameters. Both proposes are not resistant to masking and
swamping effects. So, to try to mitigate these effects we propose a new measure based
on the following likelihood displacement:

( ) ( )( ) 2 ( ) ( | ) var var
i ii i i i iw wLD w L L wβ β µ µ

∧ ∧ ∧ ∧      = − − + −           

where ( ) ( )( )1 ˆˆi ib g xµ β=  and ( ) ( ) ( )( )2 ˆˆi iVar b g xµ β= .
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1.  Introduction

Several approaches have taken in the literature to the ordering of probability
distributions in terms of stochastic or variability properties. Lewis and Thompson (LT)
(1981) studied the dispersion ordering. We say that X is less dispersed than Y in the
LT sense, if any pair of quantiles of Y are at least more widely separated as
corresponding quantiles of X. Shaked (1982) gave some characterizations of this
partial ordering which can be used to a new interpretation of the dispersion ordering
by the number of sign changes of the distribution functions. Muñoz-Pérez (1990)
characterized the dispersion ordering by the concept of Q-addition of random
variables and by the spread function under certain restriction on the respective quantile
functions. Finally, Pellerey and Shaked (1997) characterized the IFR and DFR aging
notions by means of the dispersive ordering.

Hickey (1986) studied a partial ordering in the majorisation sense, this ordering
is called in randomness. Shaked and Shantikumar (1994)  showed applications of the
stochastic and variability orders in reability theory.

Suarez et al. (1998) studied the notion of comparing the probability in “Equally
Lebesgue Measurable Intervals” to define a  new dispersion ordering weaker than the
dispersion ordering in the LT sense, they also obtained, under certain restrictions on
the distribution functions, the equivalence between  this weak dispersion ordering and
the concept of majorisation.



I

T R E  D E  2001

2.  Results

A lot of different stochastic orderings have been studied in the literature to
characterize aging concepts using the stochastic process {Xt , t > 0}, where Xt = { X-t |
X>t } is the additional residual life. We introduce a new aging concept for a lifetime
distribution.

Definition 1 The stochastic process  {Xt , t > 0} is said to be increasing in
randomness (decreasing in randomness) if Xt2 is less (more) in randomness  than Xt1

for all 0< t1 < t2.

Note that the concept of increasing in randomness means that the randomness of
lifetime is increasing when lifetime is increasing too.

Since the equivalence, under certain restrictions,  between the majorisation
concept and the weak ordering we characterize this new aging concept by the IFR
distributions and we propose several examples of classic stochastic processes as shock
models and continuous wear.
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1. What is a Semi-Variogram?

The semi-variogram is a measure of average dissimilarities between all possible
points within a field F, for a certain variable of concern. It is defined as

(0.1) })]()({[)( 2
2
1 hxQxQEh +−=γ

 where Q is a random function representing the distribution of a value of concern, x is
a point, and h is a distance vector in a field of study. Equation (1.1) can be expressed
as a spatial integral defined over the field F.

(0.2) 21
( ) _

( ) [ ( ) ( )]F F h F F h
h Q x Q x h dxγ = − +∫ I

Here hF F−I  is the intersection of F and its translate  F-h by vector –h. If

hx F F−∈ I , then both x and x+h are in F, in which case  F(h) becomes the measure
of that intersection.

In nature it is anticipated that phenomena occurring in close proximity will tend
to be very similar, while increasing distance will reduce the similarity. Over a field F
the true but unknown dissimilarity defined in equation (1.2), can be estimated by the
experimental semi-variogram ˆ( )hγ , that is given by (Rendu)

(0.3)
( )

2 21 1
( ) ( )

1 1

ˆ( ) [ ( ) ( )]
n hn

i i in h n h
i i

h d q x q x hγ
= =

= = − +∑ ∑

2. Computation of ˆ( )hγ

Data obtained from a field of study representing a certain variable (mineral
content, porosity, contaminants, etc.) is used in the computation of ˆ( )hγ given in
equation (1.3). Graphs, where distance versus ˆ( )hγ values are plotted, gives an

estimate of the true spatial function ( )F hγ .
In application problems such as the irregular location of data values, and the

extreme values in the data set are encountered in computing ˆ( )hγ . Locations of the
data points are determined by the technicalities of the operation and can not be
changed. On the other hand extreme values in a data set cause wild fluctuations in the
computed ˆ( )hγ  values. This is a handicap in producing a spatial model for the
variable under study. Effect of the extreme values can partially be alleviated by the
use of the smoothing technique given below.
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3. Smoothing a Semi-Variogram

Model fitting to an experimental semi-variogram (obtained from data) is a very
demanding job, as the model parameters will have great influence on the estimation
process. In application transitional models are widely used. For these models the
nugget variance (S), the structural variance (C) and the range of influence (a)
parameters are estimated using ˆ( )ihγ , where i is an integer between 5 and 20
depending on the size of data. It can be shown that S+C takes a value around the true
variance 2

Fσ  of the field F, (Goovaerts, Journel). The data variance s2 can be used as

an estimator of 2
Fσ . Confidence limits for 2

Fσ   determined using well known
statistical methods give a good idea about the lower and upper boundaries for the sill.
During modeling it is preferred that the sill value is closer to the lower confidence
limit. This can be achieved either by excluding data pairs that result in very large

2
id values (Equation 1.3) or preferably reducing these 2

id values down to the upper

confidence limit of 2
Fσ . This is the smoothing process of the experimental semi-

variogram.

3.1. Case Study

A data set consisting of 359 data points containing the x, y coordinates and an
attribute of concern (A) was used. Histogram of A has indicated that approximate
normality can be assumed.  Directional semi-variograms indicated that isotropy can be
considered for attribute A, with variance 2 65.901As = . Figure 1 shows the

omnidirectional ˆ( )hγ , the smooth ˆ( )hγ obtained by reducing the extreme 2
id  values

down to the upper confidence limit of 2

AFσ ,    and the upper and lower confidence

limits of 2

AFσ  at 99% confidence level.

Figure 1. Experimental and smooth semi-variograms
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1. The Test Statistic

Let Sn denote a sample of n i.i.d. p-variate observations Xi=(Xi1, …, Xip)
(i=1,…,n). The CDF of the joint distribution is denoted by Fx, which is assumed to be
continuous throughout this paper. The sample space is denoted by S. We are interested
in testing the hypothesis of independence between all components of X against any
alternative (an omnibus test). Thus,

0 1 1 1: ( ,..., ) ( )... ( )x p p pH F x x F x F x=

for all x in the sample space S. Further, let [A] denote a partition of the p-dimensional
sample space S, i.e. [A] is a sample space partition (SSP). The, a partition construction
rule may be defined such that each subsample P of q observations determines a r1× r2

× … × rp SSP [A]P (q=max(r1,…,rp)-1). The set of all such subsamples that are
induced by the sample, is denoted by Π, and N=#Π. Conditional on any SSP [A]P the
null hypothesis of component-wise independence may be tested by means of a simple
Pearson χ2-test, which is denoted by φ2(P).

Before the data-driven test is discussed, a family of test statistics, indexed by
r1… rp, is introduced:

1

2
... ,

1
( )

pr r n
P

T P
N

φ
∈Π

= ∑ .

Note that this statistic is a rank statistic. Since, furthermore, the null hypothesis
implies an invariance property, the exact null distribution of the test statistic is the
permutational distribution. It may be interesting to note that this statistic is a
generalisation of the test statistic introduced by Hoeffding (1948) and later formulated
in terms of sample space partitions of size 2 × 2 × … × 2 by Blum et al. (1961). They
used however another measure for dependence in each table induced by the SSPs. Our
test statistic may be considered as a generalisation of an Anderson-Darling statistic
towards arbitrary SSP sizes as well.

We have shown that, under mild conditions, under H0

1 1

1

2
... , ...

1 1
1

1
... ,

( 1)p p

p

d
r r n j jp

j j k kk

T Z
j j

∞ ∞

= =
=

→
+

∑ ∑
∏

where the Z2 are i.i.d. chi-squared distributed random variables with (r1-1)…(rp-1)
degrees of freedom. Simulation experiments have shown, however, that the
convergence is too slow to be useful for moderate sample sizes. Therefore, we suggest
to use the (approximate) exact permutational null distributions. We will refer to this
test as the SSP-test.
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For p=2 this test is discussed in detail in Thas and Ottoy (2001). It may be
shown that in a limiting case the test statistic becomes equivalent to a test statistic that
was studied by Eubank et al. (1987) and Kallenberg and Ledwina (1999).

2. The Data-Driven Test

In the previous section a family of statistics was introduced, indexed by the size of
the SSP. The arbitrariness of the SSP size may be considered as a flexible feature of the
corresponding statistical test. This is clearly illustrated in a simulation in which the power
of the SSP-test is estimated: by changing the SSP size the power may be considerably
increased or decreased, depending on the alternative under study. Though, omnibus tests
are often used in situations where the user does not have any idea on how the true
dependence may look like, or, more specifically, he may be interested in all alternatives to
independence equally well. In such cases, choosing a “wrong” SSP size may results in a
power which is lower than optimal. In order to overcome this problem, we have made the
test data-driven in the sense that the SSP size is estimated from the data. The estimated
SSP size is given by

{ }
1 11 ( ,..., ) ... , 1( ,..., ) Argmax 2( 1)...( 1) ln( ) ,

p pp r r r r n p nR R T r r a∈Γ= − − −

where Γ is a set of permissible SSP sizes, and an, which determines the penalty in the
selection rule, is such that anà � as n à �. We have considered an=n1/2 (cf. BIC),
an=(ln(n))1/2  and an=0.725 ln(n).

The data-driven test statistic now becomes

1... , .
pR R nT

3. Power Characteristics

We have proven that both the family of SSP-tests and the data-driven test are
consistent against essentially any alternative. For moderate sample sizes (n=20 to 50), we
have performed many simulation experiments in which the powers of the SSP-tests, as
well as the powers of many other tests for independence are estimated and compared. The
results suggest that the power of the SSP-tests with arbitrary SSP size are rather sensitive
to the exact choice of the SSP size. With a good choice of the size the power can be made
larger then almost any other test, but with a bad choice low powers may be obtained. The
data-driven SSP-test solved this problem to a large extend, especially when the penalty
based on an=0.725ln(n) is used.
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We consider the family ,X λ
ελ ∈ Λ , { }0: : ,h h Kε λ λ λ εΛ = = + ∈ , 0ε >

(small parameter) of diffusions describing the misspecified discounted prices of a
risky assets in a frictionless financial market, adapted to the filtration ( )0t t T

F F
≤ ≤

= . A

contingent claim is an TF -measurable square integrable random variable, H , and a
trading strategy θ  is a F -predictable process such that the stochastic integral

( , ) :G dX λλ θ θ= ∫ , ελ ∈ Λ  is a well-defined real-valued square integrable

semimartingale.
For each ελ ∈ Λ  the total loss of a hedger who starts with initial capital x , uses

the strategy θ , belives that the stock price process follows X λ  and has to pay a
random amount H  at the date T , is thus ( ; )TH x G λ θ− − . Denote

2( , ) ( ( , ))TJ E H x Gλ θ λ θ= − − .
The robust mean-variance hedging means solving the optimization problem:

minimize ( , )supJ
ελ

λ θ
∈Λ

 over all strategies θ .

We solve this optimization problem approximating it (in the leading order ε )
by the problem:

minimize 0( , )J λ θ  over all strategies subject to constraint

0

0

( , ; )
sup

( , )h K

DJ h
c

J
λ θ
λ θ∈

≤ ,

where 0( , ; )DJ hλ θ  is the Gateaux differential of the functional J  at the point 0λ  in
the direction h , c  is some general constant.
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Since the introduction of the deconvolution kernel density estimator there has
been a great deal of results, such as asymptotic normality of the kernel density
estimator and optimal rates for the density estimator and the distribution function
estimator. However, the results concerning asymptotic normality of the deconvolution
estimator of the distribution function are none too clear. Our results are related to
those of Zhang (1990).

For simplicity we consider the estimation of F(b)-F(a), -∞<a<b<∞, in the
normal deconvolution problem, where we have observations from the convolution of
the normal density and an unknown density f with distribution F. The estimator
Fnh(a,b) is defined as

( , ) ( ) ,
b

nh nh

a

F a b f x dx= ∫

where

2
1/

/ 2

1/

1
( ) ( ) ( ) ,

2

h
itx t

nh w emp

h

f x e ht e t dtφ φ
π

−

−

= ∫

and  φemp is the empirical characteristic function of the observations. Note that fnh(x) is
the usual deconvolution kernel density estimator based on Fourier transform.

Under certain conditions we show that Fnh(a,b) is asymptotically normally
distributed with a standard deviation that is, apart from a constant, asymptotically
equivalent to

22(1 ) 1/(2 )
2

1
max(sin( ), ),h b a

hh e h
n

α+ −

as n→∞ and h→0. Note the special role played by the bandwidths h for which the
value sin((b-a)/2h) vanishes.

It turns out that the estimator can asymptotically be written as the sum of two
means. Neither of them dominates for all bandwidths.
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1. Introduction

It is very well-known that long unemployment duration greatly contributes to
explain the high unemployment rates in Spain. On the other hand, unemployment is a
particularly serious problem for Spanish women, mainly for those who are married. In
this work we analyze the duration of unemployment spells for married women in
Spain by using I. N. E. (the Spanish Institute for Statistics) data. The endpoint of the
spell is defined by the transition to the “employed” and “out of the labour force”
states.

Our data concern unemployment spells of 9950 Spanish women. This
information was collected by means of repeated inquiries at the individuals’ homes
from 1987 to 1997. We included in the sample just those women being unemployed at
the first inquiry time. As a result, each spell is sampled with a probability that is
proportional to its length. This is typically referred as the length-bias problem. See, for
example, Vardi (1982).

Moreover, because of the design of the inquiries, each individual was followed
during no more than 18 months, so there was a risk of right-censoring for the
unemployment duration time. Actually, 3774 spells were censored at the end of the
period of observation, giving a censoring percentage of 38%. The statistical analysis
of right-censored data is an old topic in theoretical and applied research. The product-
limit Kaplan-Meier estimator has become the standard tool for inference from
censored information. However, under length-bias, the product-limit is no longer
consistent, and a suitable correction is needed. This problem, quite related to that of
left-truncation, was considered by de Uña-Álvarez (2000), who introduced and
analyzed a product-limit type estimate for length-biased censored data. His
“corrected” version of the Kaplan-Meier curve allows for nonparametric estimation
along with the fitting of parametric models. Parametric fits are useful, e. g., for
displaying in a smooth way curves such as the hazard rate and the density functions.



I

T R E  D E  2001

2. Main Results

Table 1 below summarizes our main results. This Table includes values for
nonparametric estimates of the survival function and mean residual time functions. It
also provides density and hazard rate values fitted under a loglogistic specification.
The loglogistic model was found quite suitable for our data, at least during the first
eleven years of unemployment.

Time (months) Survival Residual Density Hazard

3 0.9531 20 0.5534 0.6109

6 0.7321 23 0.5961 0.7868

9 0.5779 25 0.5108 0.8264

12 0.4673 28 0.4057 0.8055

15 0.3916 30 0.3150 0.7609

18 0.3354 32 0.2443 0.7093

21 0.2930 33 0.1911 0.6581

24 0.2653 33 0.1513 0.6104

27 0.2185 37 0.1213 0.5670

30 0.1903 39 0.0985 0.5281

33 0.1709 40 0.0810 0.4933

36 0.1616 39 0.0674 0.4622

Table 1. Unemployment duration of married women in Spain (1987-1997):
survival, mean residual time (in months), density and hazard rate functions.

We see that the probability of staying unemployed for married women
decreases quite rapidly at the beginning, this decreasement being much smoother after
the first 2 years. The estimated mean unemployment duration time was 22 months.
Compare this to the usual Kaplan-Meier mean (61 months!) and conclude about the
importance of taking the length-bias problem into account. The increasing shape of the
mean residual time function reveals how the possibilities of leaving unemployment
disappear as time passes. Also, we outstand that the modal value of the density
function is located at 6 months. Finally, note that the intensity of the transition to the
“employed” and “out of the labour force” states (given by the hazard rate values)
increases on the interval 3-9 months, then decreasing in a monotone way.
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1. Introduction

We consider independent observations X1,…,Xn, each distributed according to an
unknown density f on the real line RR..  It is assumed that f is dominated by a known
reference density f0.  Barron (1988) proposed a density estimate fn(⋅)  = fn(⋅;X1,⋅⋅⋅,Xn),
which uses the reference density f0 as a prior estimate of f.  Let {An1,⋅⋅⋅,Anm} be a partition
of RR into m = mn < n a priori equiprobable intervals Anj.  Let N(Anj) be the datacount in the
bin Anj.  Then gn, defined by ngn(x) = mN(Anj)f0(x) if x ∈ Anj, represents a histogram
density estimate of f, which is shaped on each bin by the prior information f0.  The Barron
density estimate fn is defined as the convex mixture fn = αgn + (1-α)f0, with (n+m)α = n.
Barron introduced the estimate fn in his search for a density estimate which is consistent in
information divergence, also called Kullback-Leibler distance and denoted by I(f,fn).
Barron (1988) proved that if I(f,f0) is finite, and both m → ∞ and m/n → 0 as n → ∞, then
EI(f,fn) tends to zero as n → ∞.  Barron, Györfi and van der Meulen (1992) generalized
and extended this result.  These authors considered general convex mixtures of gn and f0 as
possible density estimates, focused on distribution estimation (rather than density
estimation), and proved a.s. consistency in information divergence of the Barron-type
estimates.  They also proved the consistency of these density estimates in reversed order
information divergence under suitable conditions.  Györfi et al. (1998) proposed to
investigate the behaviour of the Barron density estimate fn with the chi-square divergence
χ2(f,fn) between f and fn as error criterion.  The chi-square divergence is topologically
stronger than the information divergence.  Györfi et al. (1998) proved the consistency in
expected chi-square divergence of the Barron density estimate fn, i.e. that Eχ2(f,fn) tends to
zero as n → ∞, if χ2(f,f0) is finite, m satisfies the same condition with respect to n as
above, and some additional conditions are fulfilled.  They also showed that fn is a.s.
consistent in chi-square divergence if some stronger conditions are made.  Berlinet, Györfi
and van der Meulen (1997) showed that I(f,fn) − EI(f,fn) is asymptotically normal, and
Vajda and van der Meulen (1998a) proved the corresponding asymptotic normality of the
chi-square divergence error.  For consistency results of Barron-type density estimates with
general divergence measures as error criterion see Berlinet, Vajda and van der Meulen
(1998).
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2. Main Results

In this paper we consider the problem of the optimization of partition sizes mn, and
of the selection of prior densities f0 for Barron estimators fn.  First, new conditions are
derived for the consistency of the Barron estimator in expected chi-square error, which are
in particular satisfied for exponential f and f0.  This allows us later to apply our results to
the case where both the unknown and the reference density are exponential.  By showing
that the maximum likelihood estimator of an exponential f is not consistent in expected
chi-square error, we demonstrate the need for the nonparametric Barron estimator in this
case.  In solving the first problem we make use of a tight upper bound B(n,mn) on the
expected chi-square error derived by Györfi et al. (1998), from which it can be concluded
that the best rate of convergence of B(n,mn) to zero is achieved by mn = cn1/3 for some c >
0.  In Vajda and van der Meulen (1998b) a begin was made with the optimisation of the
constant c.  Let m0

n denote the value of mn for which B(n,mn) achieves its minimum.  We
are interested in approximating the sequence m0

n.  Under the assumption that f and f0 are
more regular than required in the previous two papers we prove that, for the optimal
sequence m0

n, n
2/3B(n,m0

n) tends to a value d0 as n → ∞, where 16d3
0 = 9J(f,f0) and J(f,f0)

denotes a Fisher information type distance between f and f0.  Moreover we prove that, with
c0 = (2/3)d0,

B(n,mn) = d0n
-2/3 + o(n-2/3)        iff            mn = c0n

1/3 + o(n1/3).

Our results are illustrated by numerical studies carried out for several examples.  For
exponential f and f0 satisfying our regularity assumptions and sample sizes 100 ≤ n ≤
10.000, the approximations m*n = c0n

1/3 are shown to coincide or almost coincide with
exactly numerically calculated optima m0

n.  These conclusions remain valid for Rayleigh
and Weibull densities f and f0.  The second problem, the optimization of f0, is solved under
the assumption that there is available an auxiliary estimate f* of f.  In that case we either
choose f0 = f*, or f0 as the regular density different from f* which minimizes J(f*,f0).  This
leads to two different versions fn

I  and fn
II

  of the Barron estimator.  The error bounds
B(n,mn) achieved by these two versions are compared according to different preference
criteria.  The method and the results are illustrated by considering again the family of
exponential densities.  The complete version of this paper will appear as Vajda and van der
Meulen (2001).
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The concept of a structural distribution function originates from linguistics. A
certain author has a vocabulary of words at his disposal and each text he writes is
considered as a random collection of words from the vocabulary. Each word is
assigned a probability of being used in the text. These probabilities are considered to
be typical for the author and they are summarised in the so-called structural
distribution function, i.e. an empirical distribution function of the word probabilities.
For reasons of identification or comparison of texts it is desirable to be able to
estimate this structural distribution function.

The basic probabilistic model we assume for the word counts consists of a
Multinomial(n,p1M,...,pMM) random vector ν=(ν1M,..., νMM) with typically large n, the
number of words in the text, and a large M, the size of the authors vocabulary. We
assume n→∞, M→∞ and n/M→λ, for some 0<λ<∞. The structural distribution
function FM is given by

1

1
( ) [ ], 0.

M

M jMj
F x I Mp x x

M =
= ≤ >∑

Additionally we assume that FM converges weakly to a fixed distribution
function F that we want to estimate.

The empirical distribution function of the word frequencies multiplied by M, the
natural estimator, given by

1

1ˆ ( ) [ ], 0,
M

M jMj

M
F x I x x

M n
ν

=
= ≤ >∑
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is a straightforward estimator of F. However, this estimator turns out to be inconsistent, cf.
Klaassen and Mnatsakanov (2000). We use the method of Poissonization to give a simple
proof of the inconsistency.

Next we review several alternative weakly consistent methods, such as grouping
of cells, an estimator based on Laplace inversion, and a kernel type estimator. The
extra conditions, unfortunately needed to establish weak consistency, will be
discussed.

References

Klaassen, C. A. J. and Mnatzakanov, R. M. (2000). Consistent estimation of the structural
distribution function, Scand. J. Statist. 27, 733-746.



2º  QU A D R I M E S T R E  D E  2001

R E V I S T A  D E
E S T A T Í S T I C A

Semiparametric Estimation of Fractionally
Cointegrated Time Series

Carlos Velasco
Universidad Carlos III de Madrid, Department of Statistics and Econometrics

Avenida de la Universidad 30, 28911 Leganés, Spain
cavelas@est-econ.uc3m.es

1. Nonstationary Time Series and Fractional Cointegration

Since the introduction of the concept of cointegration by Granger (1981), a vast
literature has developed for the analysis of dynamic relationships among nonstationary
time series. For nonstationary trending series with covariance stationary increments,
cointegration implies that a (linear) combination of the observed series is stationary, at
least less nonstationary, describing a long run equilibrium relationship. This idea of
cointegration fits naturally in the broad field of fractionally integrated processes,
generalising earlier analyses of integer integrated time series. Thus a series tz  is integrated
of order ( 0.5,0.5),zd ∈ −  i.e. ( )zI d , if its spectral density satisfies

(1) ( )zf λ  ∼ 2 zd
zG λ −  as 0.λ →

If tz  is nonstationary but has zero mean ( 1)zI d −  stationary increments ,tz∆  then

tz  is ( )zI d , [0.5,1.5).zd ∈  This characterisation of memory properties only attends to
the relevant properties of the power spectrum, avoiding restrictions at high frequencies and
covering the traditional (1)I  and (0)I  paradigms.

In this paper we consider that the observable ( )I d  series ty  and tx  satisfy

(2) ,t t ty x uβ= +

where tu  is ( )I δ , dδ < , and propose semiparametric methods for the estimation
of the degree of memory δ  of the residuals, the degree of cointegration ,d δ−  and the
regression coefficient β . Only the simple bivariate case is analysed. We first consider the

situation where a preliminary consistent estimate β%  is available to obtain residuals tu% .
Semiparametric estimation avoids specification of short run system dynamics, being
simpler to implement in practice.

2. Gaussian Semiparametric Residual Memory Estimation

Robinson and Marinucci (1998) and de Jong and Davidson (2000) show that least
squares estimates of β  in (2) given T  observations of ty  and tx  are consistent under
different regularity conditions. We take on their results and assume that

(3) ( ),r
pO Tβ β −− =%   0,r >

r  depending on d  and δ . For example, r d δ= −  if 1d δ+ >  or 1, 0.d δ= =  We
propose the estimate ( )uδ% %  that minimises the following local Gaussian Whittle likelihood
in the frequency domain

(4) 2
2

1

1 ( )
( , , ) log ,

m
uu j

m u u j
j u j

I
Q G u G

Gm
δ

δ
λ

δ λ
λ
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where ( )uu jI λ% %  is the periodogram of the residuals .t tu y xβ= − %%  Alternatively, when

nonstationary of tu  is suspected, it is possible to define ( )uδ ∆% %  based on the increments of
residuals through ( 1, , )m uQ G uδ − ∆ % . This Gaussian estimate was analysed in Robinson

(1995), whose set up we follow here, including linear assumptions for .tu  The bandwidth

m , growing with ,T  determines the number of Fourier frequencies jλ  where the

semiparametric model (1) is regarded as appropriate. An alternative semiparametric
procedure is studied in Hassler et al. (2000), and despite its widespread use, it has less neat
properties than ours.

We obtain that both versions of δ%  are consistent and maintain the same asymptotic
distribution as if the tu  where observed, ( ) (0,1/ 4),dm Nδ δ− →%  as long as the order
of cointegration d δ−  is large enough, which implies a sufficiently fast rate of
convergence in (3). This readily facilitates approximate inference rules for .δ  We remark
that ( )uδ% %  is also consistent for moderate nonstationary ,tu  1,δ <  as was shown in
Velasco (1999) for observed series.

3. Joint Model Estimation

We also consider joint estimation of the vector parameter ( , , ) 'dθ δ β=  through a

multivariate version of the likelihood (4) for ( ( ), ) 't tu xβ ∆ .  This involves a generalisation
of the semiparametric model (1) as in Lobato (1999). Following this reference, the joint
estimate is based on a Newton-Raphson step,

1ˆ (L ( )) L ( ),θθ θθ θ θ θ−= −% % %

where L( )θ% is the local likelihood evaluated at a preliminary estimate .θ%  To develop

asymptotic theory for ˆ,θ  the initial estimates in θ%  have to converge fast enough, and
these can be based indeed on the residual estimates of the previous section.

The memory estimates in θ̂  have the same asymptotic distribution as (residual)

multivariate estimates, while β̂  automatically corrects for the endogeneity bias that shows
up in ordinary least squares estimates. This benefit is clearly reflected in a simulation
study, where our estimates outperform other local proposals, e.g. in Robinson and
Marinucci (1998), designed also to avoid this bias. The procedures of this paper and other
issues regarding model specification are illustrated in an empirical
analysis of US monetary aggregates.
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An important feature of the exponential distribution is that the spacings X1:n,
X2:n- X1:n,…, Xn:n- Xn-1:n, where Xk:n denotes the k-th ascending order statistic of the

random sample X1,…,Xc, are independent, and that Xn:n-Xn-1:n

d

= X; on the other hand,

nX1:n

d

= X. The simple way of expressing a standard Pareto random variable Y as eX, X
an exponential random variable with appropriate shape parameter, may be used to
establish similar results about quotients of consecutive order statistics of Pareto
populations.

Brilhante (1996), and Brilhante et al. (1996) studied studentization in the two-
parameter family of exponential random variables, establishing results about

1:
1

: 1:

n
n

n n n

X
T

X X
λ

−
−

=
−

where λ is the location parameter,  and
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−
=

−
;

thus inference on the location parameter may be performed using her results.
We establish results in the situation we have two independent exponential

samples with location parameters  λ� and λ2 respectively.
Our aim is to compare location parameters of two exponential populations.

Assuming that both populations have the same scale parameter σ, we first study the
distribution of

( ) ( ): 1 : 2
1

: 1:

k n j n
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and of
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+
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+

and their moments,  where ZI:m+n denotes the i-th order statistic of the combined
sample, and the implications we may get for Pareto populations.
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We discuss several possible ways of estimating the common scale parameter σ;
in case of different scale parameters, we use Welsh (1938) and Satterthwaite  (1946)
as guidelines.
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The known growth curve model given by Potthoff and Roy (1964) as follows

np nm mq qp np
Y A B T E= +

under the assumptions ( )Y ABTε =  and ( )vec Y npp
IΣ = Σ⊗  where Σ  is a covariance

matrix for each of row-vectors of the observations matrix Y. The estimator of the
matrix B of unknown coefficients in growth curves is

1 1 1ˆ ˆ ˆ( ) ( )B A A A Y T T T− − − −′ ′ ′ ′= Σ Σ

where

1ˆ [ ( ) ]nY I A A A A Y
n

−′ ′ ′Σ = − .

If the experimental units on which the explored feature was measured are
divided into a homogeneous groups ( )m a= , the matrix A is of full column rank and

then ( )A A −′  is the usual inverse matrix.

But for a certain group of problems the measurements are obtained from
experiments that are conducted in the complete block designs. Then the matrix A
consists of two submatrices 1A  and 2A  defining the membership of each of the row-
vectors of observations from the matrix Y in one of the a treatment groups and one of

the b blocks and then 1 2, [ ]m a b A A A= + = M  and 
1

2

B
B

B
 

=  
 

. 1B  and 2B  are

submatrices of coefficients of polynomials of 1q −  degree for the treatments and
blocks respectively.

The polynomials for the blocks are not interesting for the experimenter. What is
interesting, the question whether it is possible to omit block effects in the growth
curve model and what are the consequence of it.

Kala (1983). In this paper an attempt at the explanation of this problem is undertaken.
The study is based on the real-life data obtained from experiments on fruit-

bearing of raspberries. The experiments were conducted in the complete block
designs.

Two different cases are considered in this paper. First, when in the analysis of
total yields from the entire fruit-bearing period the block effects are not significant and
second, when these effects are significant.
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The determination coefficients adapted into growth curves presented by
Weso³owska-Janczarek (2000) are used as a measure of fitting of the curves assessed
by Potthoff-Roy’s method.

Generally, in both cases the calculated values of determination coefficients and
mean determination coefficients when the block effects are ignored are a little higher.
In the example, when block effects were unsignificant, the mean determination
coefficient for the curves assessed, ignoring blocks is amounts to 22,6% whereas
while taking block effects into consideration it is equal to 22,3%. In the latter case the
same mean determination coefficients are equal to 41,6% and 36,2% respectively. The
correlation coefficients calculated for the determination coefficients obtained without
block effects and with them are equal to 0,965 in the former case and 0,734 in the
latter one.

The conclusions are the following:
1o. Before the application of Potthoff-Roy’s method to the estimation of the

growth curves, when the experiment was conducted in the complete block
design it is necessary to verify whether the block effects are significant.

2o. If the block effects are not significant, it is possible to ignore the block
effects in the estimation of the growth curves.
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The distribution function of the Generalized Pareto Distribution (GPD) is given
by:

1/k1 (1 k / )       , if  k  0 

F(x  k, ) =  

1 exp( / )         , if  k = 0

x

x

σ
σ

σ

 − − ≠


 − −

where k and σ>0 are respectively the shape and scale parameters of the distribution.
For k � 0, then x > 0 and when k > 0, then 0 < x < σ/k.

The GPD was introduced by Pickands in 1975, who showed that the excesses
above a sufficiently high threshold are distributed according to a GPD, provided the
underlying distribution belongs to the domain of attraction of the generalized extreme
value distribution.

Several methodologies have been used for estimating the parameters of the
GPD, namely maximum likelihood (ML), the method of moments (MOM) and the
probability-weighted moments (PWM). It is known that for these estimators to exist,
certain constraints should be imposed on the range of the shape parameter k.
Moreover, particularly for small sample sizes, the most efficient method to apply in
any practical situation highly depends on a previous knowledge of the most likely
values of k. This situation clearly suggests the use of Bayesian techniques as a way of
introducing prior information on k.

Bayesian techniques have seldom been used for estimating the parameters of the
GDP, probably due to the computational burden that generally comes associated with
the implementation of Bayesian models. However, the development of powerful
omputational tools during the last years has definitely enlarged the applicability of
Bayesian procedures.

In the present work, we propose a simple Bayesian approach for estimating the
parameters of the GPD. The Bayesian approach is compared, through a simulation
study, with ML, PWM and with the elemental percentile method (EPM) developed by
Castillo and Hadi (1997). The simulation study follows the same general lines as the
ones performed by Hoskings and Wallis (1987) and Castillo and Hadi (1997). We
                                                       
* The authors were partially supported by FCT, PRAXIS XXI and FEDER
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consider sample sizes ranging from very small to very large (n = 15, 50, 100 and 550)
and values of k (-2.0, -1.0, -0.4, -0.2, 0.2, 0.4, 1.0, 2.0) reflecting distributions going
from very heavy-tailed to distributions with positive finite endpoints. As in the
simulation studies performed by Hoskings and Wallis (1987) and Castillo and Hadi
(1997), we set σ equal to one.

The quality of the estimates of k and σ is assessed by using bias and root mean
squared error (RMSE).

Our main conclusion is that the Bayesian approach works extremely well to
estimate the shape parameter of the GPD for k<0, both in terms of bias and RMSE.
The results are particularly good for very large negative values of k (k = -2.0 and k = -
1.0) for all sample sizes and when k = -0.4 and k = -0.2 for small sample sizes.
Although the estimates of σ tend to have larger bias than the estimates produced by
the other methods, the variances are smaller and hence they compare better in terms of
RMSE. For k > 0 the performance of the Bayesian procedure is not as good as when k
< 0, although it produces estimates of k and σ which are very reasonable in terms of
RMSE.

The proposed estimation method is applied to two real data sets. The first set
consists on a Norwegian fire insurance portfolio in 1981. These data are listed in
Beirlant et al. (1996). The second data set, listed in Castillo and Hadi (1997),
corresponds to zero-crossing hourly mean periods of the sea waves measured in the
Bilbao buoy, in Spain. For both data sets several thresholds are considered and the
excesses over the thresholds are modeled according to the GPD.
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Informações: Dinis Pestana, University of Lisbon and Rita Vasconcelos,

University of Madeira,
E-mail: dinis.pestana@fc.ul.pt

rita@dragoeiro.uma.pt
URL: http://www.fc.ul.pt/cea/ems2001
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Informações: Dr Chris Reading, Department of Curriculum Studies, University of

New England, Armidale NSW 2351, Australia,
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Fax: +02-67735078,
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Kong.
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Arrangements Chair: Wai Keung Li, University of Hong Kong
Email: htong@hku.hk

hrntlwk@hkucc.hku.hk
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22nd Annual Conference of ISCB (The International Society for Clinical
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E-mail: Theresa.Westerstrom@iscb.stockholm2001.org
URL: http://www.iscb.stockholm2001.org/.
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Email: icann@ai.univie.ac.at
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International Statistical Institute, 53rd Biennial Session (includes meetings of
the Bernoulli Society, The International Association for Statistical Computing, The
International Association of Survey Statisticians, The International Association for
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Informações: ISI Permanent Office, Prinses Beatrixlaan 428,
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Fax: +31–70–386–0025;
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IAOS Satellite Meeting on Statistics for Information Society, to be held in
Tokyo, Japan.
Informações: Akihito ITO, Japan Statistical Association, 2-4-6 Hyakunin-cho,

Shinjuku-ku, Tokyo 169-0073, Japan.
Tel: +81-3-5332-3151;
Fax: +81-3-5389-0691;
Email: jsa@jstat.or.jp or Ito@jstat.or.jp

q 30 August-1 September
International Conference on Statistical Challenges in Environmental Health
Problems, to be held at the Soft Research Park, Fukuoka City, Japan.
Information: The Chairman, Organizing Committee, Takashi Yanagawa,

Graduate School of Mathemathics, Kyushu University, Fukuoka
812-8581, Japan.
E-mail: yanagawa@math.kyushu-u.ac.jp

q 30 August-1 September
ICNCB −− International Conference on New Trends in Computational
Statistics with Biomedical Applications (ISI 2001 Satellite Meeting, co-
sponsored by IASC), to be held at the Osaka University Convention Center, Osaka,
Japan.
Informações: ICNCB Office, Division of Mathematical Science, Graduate School

of Engineering Science, Osaka University. 1-3 Machikaneyama-cho,
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q 1-4 September
The annual meeting of Japan Statistical Society will be held at Seinan Gakuin
University.
Informações: URL: http://sunyht2.ism.ac.jp

q 6-12 September
International Association for MATHEMATICAL GEOLOGY 6th Int'l
Conference Cancún, Mexico.
Informações: Gina Ross, Kansas Geological Survey.

Email: aspiazu@kgs.ukans.edu
URL: http://www.kgs.ukans.edu/Conferences/IAMG

q 17-19 September
Methodology and Statistics, to be held in Ljubljana, Slovenia at the Faculty of
Social Science, University of Ljubljana, Kardeljeva pl. 5, Ljubljana.
Information: Anuska Ferligoj.

E-mail: anuska.ferligoj@uni-lj.si
URL: http://vlado.fmf.uni-lj.si/trubar/preddvor/2001/.

q 20-22 September
Rasch Symposium, in honour of Professor Georg Rasch 100 years birthday, to be
held at the Copenhagen Business School, Copenhagen, Denmark.
Informações: Marianne Andersen

Email: ma.mes@cbs.dk
URL: http://www.cbs.dk/news/200701.shtml

q 24-25 September
Statistical methods in biopharmacy, 4th international meeting: "Integrating
issues of efficacy, safety and cost-effectiveness", to be held in Paris, France.
Informações: Jean Auclair, IRI Servier, 6 place des pléiades, 92415 Courbevoie

cedex, France. Fax: 33 1 55 72 68 27.
Email: sfds.2001@curie.net
URL: http://www.sfds.asso.fr/groupes/congresbiophar/congres2001.htm

q 24-27 September
Statistical Week 2001, to be held in Dortmund, Germany.
Informações: URL: http://g2.www.dortmund.de/inhalt/statistik/statwoch/intro.htm

q 25-29 September
32nd European Mathematical Psychology Group Meeting, to be held in Lisbon,
Portugal. Includes a workshop on Teaching and Training Mathematical Psychology
in an Interdisciplinary and International Context. An Introductory Course on
"Mathematical Psychology and Data Analysis" will be held on September 25th.
Information: Prof. Dr. Helena Bacelar-Nicolau, Tel: +351 21 793 45 54; Fax:
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E-mail: hbacelar@fc.ul.pt
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empg2001@fpce.ul.pt
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q 1-3 October
2nd International Symposium on PLS and Related Methods (PLS'01) to be
held at Capri Palace, Island of Capri (Naples, Italy).
Information: Dr. Vincenzo Esposito, Dipartimento di Matematica e Statistica,

Facoltà di Economia, Università "Federico II" di Napoli, via Cintia,
Monte Sant'Angelo. Tel. +39 081 675112, fax: + 39 081 675113;
E-mail: binci@unina.it
URL: www.dms.unina.it/PLS2001.html

q 29-31 October
Statistics as bases of creation the economic policy and the economic
development in the South-East Europe, to be held in Skopje, Republic of
Macedonia.
Information: Mr. Sasho Kjosev - Faculty of Economics, University " Sts. Cyril

and Methodius", Skopje, Republic of Macedonia or Mrs. Biljana
Apostolovska - State Statistical Office of the Republic of
Macedonia.
E-mail: skosev@eccf.ukim.edu.mk

or
biljanaa@stat.gov.mk

q 1-4 November
Euroworkshop on Statistical Modelling - Nonparametric Models, to be held in
Schloss Hoehenried, Bernried, near Munich, Germany.
Information: Göran Kauermann (coordinator of the project) University of

Glasgow, Dep of Statistics & Robertson Centre, Boyd Orr Building,
Glasgow G12 8QQ.
E-mail: goeran@stats.gla.ac.uk
URL: http://www.stat.uni-muenchen.de/euroworkshop.

q 4-7 November
IX Annual Congress of the Portuguese Statistical Society to be held at  the
Universidade dos Açores, Ponta Delgada, Portugal.
Information: Comissão Organizadora Local do IX Congresso da SPE, Dep.

Matemática, Universidade dos Açores, Apartado 1422 9501-801
Ponta Delgada, Portugal.
E-mail: ix_congresso_spe@alf.uac.pt
URL: http://www.ixcongressospe.uac.pt

q 12-16 November
VIII Latin-American Congress in Probability and Mathematical Statistics, to
be held at the University of Havana, Cuba.
Information: Gonzalo Perera (Chairman Program Committee), Pablo Olivares

(Chairman Local Organizing Committee).
E-mail: gperera@fing.edu.uy

or
clapem@matcom.uh.cu

URL: http://www.uh.cu/eventos/clapem/ehome.htm.
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q 14-16 November
The Federal Committee on Statistical Methodology, which is composed of the
senior statisticians from several U.S. federal statistical agencies and is sponsored
by the U.S. Office of Management and Budget is planning a research conference in
Arlington, Virginia.
Information: The conference will feature papers and software demonstrations on

topics related to a broad range of government statistical research
interests.
URL: http://www.fcsm.gov/

q 21-22 November
9th Conference on National Accounting: the measurement of the new economy;
Paris, France. Simultaneous translation French-English.
Information: Michel Boëda (INSEE) - Simultaneous translation French-English

E-mail: michel.boeda@insee.fr
URL: http://www.insee.fr/fr/av_service/colloques/cnat_accueil.html

or
http://www.insee.fr/en/av_service/colloques/cnat_accueil.html
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International Conference on "Characterization Problems and Applications",
tentative Venue: Antalya, Turkey.
Information: Omer L. Gebizlioglu, Ankara, Turkey; N. Balakrishnan, McMaster

University, Canada; Ismihan Bayramov, Ankara, Turkey.
E-mail: Omer.L.Gebizlioglu@science.ankara.edu.tr

bala@mcmail.cis.mcmaster.ca
Ismihan.Bayramov@science.ankara.edu.tr

q 19-22 December
International Conference on Statistics, Combinatorics and Related Areas and
The Eighth International Conference of the Forum for Interdisciplinary
Mathematics, to be held at the University of Wollongong, Australia.
Information: Chandra M. Gulati, School of Mathematics and Applied Statistics,

University of Wollongong, Wollongong, NSW 2522, Australia.
Telephone:+61-2-4221-3836, fax:+61-2-4221-4845.
E-mail: chandra_gulati@uow.edu.au

or
cmg@uow.edu.au

URL: http://www.uow.edu.au/informatics/maths/statconference.

q 20-22 December
Statistical Analysis for Global Environment, to be held at the Siam
Intercontinental Hotel, Bangkok, Thailand.
Information: Dr.Supol Durongwatana.

E-mail: fcomsdu@phoenix.acc.chula.ac.th
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q 20-23 December
International Conference on History of Mathematical Sciences, to be held in
Delhi, India.
Information: Dr. Y. P. SABHARWAL, Department of Mathematics & Statistics,

Ramjas College, University of Delhi, Delhi 110 007, India; Tel :
(011) 294 1119.
E-mail: ypsabharwal@yahoo.com

or
ichm2001rjc@yahoo.com

2002

q 15-18 January
First International ICSC Congress on Neuro-Fuzzy NF'2002 to be held at The
Capitolio de la Habana, Cuba.
Informações: INTERNATIONAL COMPUTER SCIENCE CONVENTIONS

Head Office: 5101C-50 Street, Wetaskiwin AB, T9A 1K1, Canada
(Phone: +1-780-352-1912 / Fax: +1-780-352-1913)
Email: operating@icsc.ab.ca

or
planning@icsc.ab.ca

URL: http://www.icsc.ab.ca/NF2002.htm
or
http://www.icsc.ab.ca/

q 16-18 January
Food-Industry and Statistics, to be held in Villeneuve d'Ascq (LILLE), France.
Bât. EUDIL IAAL - Cité Scientifique, F 59655.
Information: E-mail: agrostat2002@eudil.fr

URL: http://www.eudil.fr/~agrostat.

q 4-8 February
ProbaStat 2002, the 4th International Conference on Mathematical Statistics,
to be held at Smolenice Castle, Smolenice, Slovak Republic.
Information: E-mail: probastat@savba.sk

URL: http://www.um.savba.sk/lab_15/probastat.html.

q 12-15 February
First International ICSC-NAISO Congress on Autonomous Intelligent
Systems ICAIS 2002 to be held at Deakin University, Geelong, Australia.
Information: E-mail: icais02@itstransnational.com

URL: http://www.icsc-naiso.org/conferences/icais2002/index.html
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q 15-21 March
ENAR/IMS Eastern Regional to be held in Washington, DC, USA.
Informações: Program Chair: Jiayang Sun, Case Western Reserve University

Local Arrangements Chair: Colin Wu, John Hopkins University
Contributed Papers Chair: Nidhan Choudhuri;
E-mail: jiayang@sun.STAT.cwru.edu

colin@mts.jhu.edu
nidhan@nidhan.cwru.edu

URL: http://sun.cwru.edu/ims

q 2-5 June
Annual Meeting of the Statistical Society of Canada, Hamilton, Ontario,
Canada.
Informações: Peter Macdonald, Department of Mathematics and Statistics,

McMaster University, 1280  Main Street West, Hamilton, Ontario,
L8S 4K1, Canada.
E-mail: pdmmac@mcmail.cis.mcmaster.ca

q 17-20 June
MMR 2002, Third International Conference on Mathematical Methods in
Reliability, to be held at the Norwegian University of Science and Technology,
Trondheim, Norway.
Informações: Professor Bo Lindqvist, Department of Mathematical Sciences,

Norwegian University of Science and Technology, N-7491
Trondheim, Norway. Tel.: +47-73 59 35 20 - Fax: +47-73 59 35 24.
E-mail: mmr2002@math.ntnu.no
URL: http://www.math.ntnu.no/mmr2002/

q 23-29 June
The 8th International Vilnius Conference on Probability Theory and
Mathematical Statistics, Vilnius, Lithuania.
Informações: Professor Vytautas Statulevicius, Institute of Mathematics and

Informatics, Akademijos str. 4, 2600 Vilnius, Lithuania.
E-mail: conf@ktl.mii.lt

q 2-5 July
MCQT'02 - First Madrid Conference on Queueing Theory, to be held at the
Department of Statistics and OR, Faculty of Mathematics, University Complutense
of Madrid, Spain.
Information: Jesus R. Artalejo.

E-mail: mc_qt@mat.ucm.es
URL: http://www.mat.ucm.es/deptos/es/mcqt/conf.html.
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q 7-12 July
The Sixth International Conference on Teaching Statistics (ICOTS6), to be
held in Durban, South Africa.
Information: Maria-Gabriella Ottaviani - IPC Chair; Brian Phillips - International

Organizer; , Dani Ben-Zvi - IPC Scientific Secretary.
E-mail: mariagabriella.ottaviani@uniroma1.it;

bphillips@swin.edu.au;
dani.ben-zvi@weizmann.ac.il.

URL: http://icots.itikzn.co.za/.

q 15-19 July
Current Advances and Trends in Nonparametric Statistics, to be held on Crete,
Greece.
Informações: Michael G. Akritas and Dimitris N. Politis IMS Representative:

Michael G. Akritas,
E-mail: mga@stat.psu.edu
URL: http://www.stat.psu.edu/~npconf/

q 21-26 July
IBC 2002 - International Biometric Conference 2002, to be held at the
University of Freiburg, Germany.
Information: Chair: Robert Curnow; Chair Local Organizing Committee: Martin

Schumacher.
E-mail: r.n.curnow@reading.ac.uk

ms@imbi.uni-freiburg.de
URL: http://www.ibc2002.uni-freiburg.de/.

q 22-24 July
26th Annual Conference of the Gesellschaft für Klassifikation (GfKl), to be
held at the University of Mannheim, Germany.
Informações: local organizer Prof. Dr. Martin Schader.

URL: http://www.gfkl.de/gfkl2002

q 27 July – 1 August
IMS Annual Meeting/Fourth International Probability Symposium, to be held
in Banff, Canada.
Informações: IMS Program Chair Tom DiCiccio, Cornell, Symposium Chair: Tom

Kurtz, U. Wisconsin, IMS Local Chair: Subhash Lele, U. Alberta.
E-mail: tjd9@cornell.edu

Kurtz@math.wisc.edu
slele@ualberta.ca

q 4-9 August
Fourth International Conference on Statistical Data Analysis based on the L1-
Norm and Related Methods - to be held at the University of Neuchâtel,
Switzerland.
Information: Prof. Yadolah Dodge, Conference Organizer Statistics Group, Case

Postale 1825, CH-2002 Neuchatel. Phone +41 32 718 13 80 Fax +41
32 718 13 81.
E-mail: Yadolah.Dodge@unine.ch
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q 11-15 August
Joint Statistical Meetings, New York, Hilton and Sheraton New York.
Sponsored by ASA, ENAR, WNAR, IMS, and SCC.
Informações: ASA, 1429 Duke St., Alexandria, VA 22314-3415;

Tel. (703) 684-1221;
Email meetings@amstat.org

q 16-18 August
Symposium on Stochastics and Applications (SSA) to be held at the National
University of Singapore.
Informações: E-mail: ssa@math.nus.edu.sg

URL: http://www.math.nus.edu.sg/ssa

q 19-23 August
24th European Meeting of Statisticians, Prague, Czech Republic.
Informações: Martin Janzura, Institute of Information Theory and Automation,

POB 18, 182 08 Praha 8, Czech Republic.
Tel: 420 2 6605 2572.
Fax: 420 2 688 4903.
Email: janzura@utia.cas.cz

q 24-28 August
Compstat2002 to be held in Berlin, Germany.
E-mail: info@compstat2002.de, website http://www.compstat2002.de
Informações: E-mail: info@compstat2002.de

URL: http://www.compstat2002.de

q 25-28 August
International Conference on Improving Surveys (ICIS-2002), to be held at the
University of Copenhagen.
Information: International Conference Services, P.O. box 41, Strandvejen 171,

DK-2900 Hellerup, Copenhagen, Denmark. Telephone: +45 3946
0500, Fax +45 3946 0515.
E-mail: ICIS2002@ics.dk

q 2-6 September
RSS 2002 Conference to be held at the University of Plymouth, Plymouth,
England.
Information: The 2002 Conference of the Royal Statistitical Society (4-6

September) will preceded by short courses (2-3 September).
E-mail: J.Stander@plymouth.ac.uk

q 13-17 November
International Conference on Questionnaire Development, Evaluation, and
Testing, probably to be held in the southeastern United States.
Information: URL: http://www.jpsm.umd.edu/
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q 28-30 December
International Conference on "Ranking and Selection, Multiple Comparisons,
Reliability, and Their Applications". Tentative Venue: Hotel Savera, Chennai,
Tamilnadu, India.
Organizers: bala@mcmail.cis.mcmaster.ca;, NKannan@utsa.edu; H. N. Nagaraja,
Ohio State University, mailto:hnn@stat.ohio-state.edu
Information: N. Balakrishnan, McMaster University; N. Kannan, University of

Texas at San Antonio; H. N. Nagaraja, Ohio State University.
E-mail: bala@mcmail.cis.mcmaster.ca

NKannan@utsa.edu
mailto:hnn@stat.ohio-state.edu

2003

q 10-20 August
International Statistical Institute, 54th Biennial Session (includes meetings of
the Bernoulli Society, The Intern. Assoc. for Statistical Computing, The Intern.
Assoc. of Survey Statisticians, The Intern. Assoc. for Official Statistics and The
Interna. Assoc. for Statistical Education), to be held in Berlin, Germany.
Informações: ISI Permanent Office, Prinses Beatrixlaan 428,

P.O. Box 950, 2270 AZ Voorburg, The Netherlands.
Tel.: +31–70–337–5737;
Fax: +31–70–386–0025;
E-mail: isi@cbs.nl
or visit the Session website at http://www.isi–2003.de
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FUNDAMENTO, OBJECTO E ÂMBITO DA REVISTA

O INE, consciente de como uma cultura estatística é essencial para a
compreensão da maioria dos fenómenos do mundo actual, e da sua responsabilidade
na divulgação do conhecimento estatístico, fazendo-o chegar ao maior número
possível de leitores, tendo reconhecido a necessidade de dar um passo nesse sentido,
passou a editar quadrimestralmente a presente Revista de Estatística destinada a
divulgar:

a) Numa perspectiva científica, artigos originais sobre temas especializados
da estatística, tanto pura como aplicada, bem como sobre estudos e
análises nos domínios económico, social e demográfico;

b) Informações sobre actividades e projectos importantes do Sistema

c) Informações sobre acções desenvolvidas pelo INE no âmbito da

d) Informações sobre congressos, seminários, colóquios e conferências de

Para tal, são adoptadas as seguintes formas de contribuição para publicação na
Revista:

- Quanto aos artigos referidos em a), contribuições da iniciativa dos
próprios autores e por convite do Conselho Editorial, pertencentes ou não
ao INE;

- Quanto às informações referidas em b), c) e d), contribuições dos
departamentos do INE.

As contribuições de artigos por iniciativa dos próprios autores serão objecto
de avaliação de mérito científico pelo Conselho Editorial, que decidirá ou não pela sua

Para a elaboração e envio das contribuições de artigos para publicação na
Normas de Apresentação de Originais

Os autores dos artigos publicados, a que se refere a alínea a), receberão uma
contribuição financeira paga pelo INE, de montante a fixar por despacho da Direcção
mediante proposta do Director da Revista.

OS PONTOS DE VISTA EXPRESSOS PELOS AUTORES DOS ARTIGOS PUBLICADOS NA REVISTA

NÃO REFLECTEM NECESSARIAMENTE A POSIÇÃO OFICIAL DO INE.
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FOUNDATION, SUBJECT MATTER AND SCOPE OF THE REVIEW

INE is conscious of how statistical awareness is essential to the understanding
of the majority of phenomena in the present world and is aware of its responsibility to
disseminate statistical knowledge, making it available to the widest possible range of
readers. INE has recognised the need to take a step in that direction and will begin
publication of this Statistical Review three times yearly, designed to provide the
following:

a) Within a scientific perspective, original articles on specialised areas of
statistics, both pure and applied, as well as studies and analyses within
the sphere of economics, social issues and demographics;

b) Information on activities and projects of the National Statistical System;

c) Information on activities developed by INE within the scope of co-
operation;

d) Information on congresses, seminars and conferences of a statistical or
related nature;

The following approaches for contributing material for publication in the
review have been adopted:

- In relation to the articles referred to in section a), contributions are made
by the authors themselves and by invitation of the Editorial Committee,
whether they are employees of INE or not;

- In relation to the information referred to in section b), c) and d);
contributions are from departments of INE.

The Editorial Committee who has sole discretion in deciding whether or not
the material will be published will assess the scientific merit of contributions made on
the initiative of the authors themselves.

The preparation and delivery of material for publication in the Review are
subject to the Rules for Submitting Originals presented on the last page.

The authors of the published articles referred to in section a) will receive
pecuniary compensation from INE in an amount to be determined by resolution of the
Board on the recommendation of the Director of the Review.

THE VIEWPOINTS EXPRESSED BY THE AUTHORS OF THE ARTICLES PUBLISHED IN THE REVIEW

DO NOT NECESSARILY REFLECT THE OFFICIAL POSITION OF I.N.E.



I

T R E  D E  2001

NORMAS DE APRESENTAÇÃO DE ORIGINAIS

Nos termos do Regulamento da Revista de Estatística, o Conselho Editorial
aprovou as seguintes Normas de Apresentação de Originais:

1. Os originais dos artigos serão enviados ao Director da Revista pelos
respectivos autores, devendo ser escritos em português e não terem sido
ainda totalmente publicados, ou estar em processo de edição em outra

2. Poderão também ser apresentados artigos escritos em , cabendo ao
Director da Revista a decisão sobre a sua aceitação.

3. Quanto à avaliação do mérito científico dos artigos:

a) Os artigos apresentados por iniciativa dos respectivos autores serão
submetidos à avaliação do mérito científico pelo Conselho Editorial,
com garantia do anonimato tanto do autor como dos avaliadores;

b) Os autores receberão a informação sobre o resultado da avaliação
num prazo máximo de trinta dias, com indicação, nos casos de
avaliação positiva, do número da Revista em que serão publicados, e
nos casos de avaliação negativa com a devolução do original
apresentado.

4. Os artigos aceites para publicação na Revista de Estatística serão
igualmente divulgados no site do INE na Internet.

5. Os originais, com uma extensão não superior a trinta páginas, serão
processados em Word for Windows, integralmente a preto e branco, com
indicação do(s) software(s) adicional(ais) eventualmente utilizado(s) na
produção do documento original, e entregues em suporte papel
acompanhado da respectiva disquette, ou enviados por E-mail para o
seguinte endereço: liliana.martins@ine.pt

6.Na apresentação dos originais, os autores respeitarão ainda as seguintes
normas:

6.1. Quanto à estrutura:

a) O texto deve ser processado em formato A4, com utilização do
tipo de letra Times New Roman 11, espacejamento at least 12, e
com as seguintes margens: top: 4 cm, bottom: 3 cm, left: 2,5
cm, right: 5 cm, header: 1,25cm, footer: 1,25cm;

b) A primeira página conterá exclusivamente o título do artigo,
bem como o nome, morada e telefone, fax e E-mail do autor,
com indicação das funções exercidas e da instituição a que
pertence, devendo, no caso de vários autores, ser indicado a
quem deverá ser dirigida a correspondência da Revista;

c) A segunda página conterá, em português e inglês, unicamente o
resumo do artigo, com um máximo de 100 palavras,
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seguido de um parágrafo com indicação de palavras-chave até
ao limite de 15;

d) Na terceira página começará o texto do artigo, sendo as suas
eventuais secções ou capítulos numeradas sequencialmente;

6.2. Quanto a referências bibliográficas:

a) Os autores eventualmente citados no texto do artigo serão
indicados entre parênteses curvos pelo seu nome seguido da
data da respectiva publicação e, se for caso disso, do número de
página (p. ex.: Malinvaud, 1989, 23);

b) As Referências Bibliográficas serão listadas, por ordem
alfabética dos apelidos dos respectivos autores, imediatamente
a seguir ao final do texto, de acordo com a fórmula seguinte:

GREENE, W. H., “Econometric Analysis”, Prentice-Hall, New
Jersey, 1993.

6.3. Quanto à revisão de provas e publicação:

a) Uma vez aceite o artigo e antes da sua publicação, receberá o
autor provas para revisão, as quais serão devolvidas ao Director
da Revista no prazo máximo de uma semana contado da data da

b) Serão da responsabilidade dos respectivos autores as
consequências de eventuais modificações da versão inicial
aceite, bem como de atrasos na revisão das provas, que
impossibilitem a publicação no número da Revista previsto,
reservando-se o Director o direito de decidir a data da sua
publicação futura;

c) Uma vez publicado o artigo, o autor receberá vinte exemplares
da sua versão impressa e um exemplar do respectivo número da
Revista.

7. Para informações adicionais contactar o Secretariado de Redacção:

Eduarda Liliana Martins
Instituto Nacional de Estatística
Avª. António José de Almeida, n.º 5 – 9º.
1000-043  Lisboa - Portugal

q Tel.:    +351 21 842 62 05

q Fax.:   +351 21 842 63 66

q e-mail: liliana.martins@ine.pt
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RULES FOR SUBMITTING ORIGINALS

Within the terms of the Regulation of the Statistical Review, the Editorial
Committee has approved the following Rules for Submitting Originals:

1. The original articles will be sent to the Review Director by the respective
authors.  They should be written in Portuguese, they should not have
already been published in their entirety nor should they be in the process
of being published in any other publication.

2. Articles may also be submitted in English to the Review’s Director who
will decide whether to accept them.

3. In relation to the evaluation of the scientific merit of the articles:

a) The Editorial Committee will assess the articles submitted on the
initiative of the authors on the basis of their scientific merit.  The
identity of both the author and the Committee members will be
strictly confidential;

b) The authors will receive information regarding the results of the
evaluation of scientific merit within a maximum period of 30 days.
If the article is accepted, the Committee will indicate the issue
number of the Review in which the article will be published.  If the
article is not accepted, the original will be returned to the author.

4. The articles accepted for publication in the Statistical Review will also be
made public on the Internet site of the INE.

5. The original articles having no more than thirty pages must be processed
in Word for Windows, completely at black and white, with the
information on the addicional(s) software(s) eventually used in the
production of the original document, and they will be delivered in hard
copy as well as on diskette, or sent by E-mail to: liliana.martins@ine.pt

6. With the presentation of the original articles, the authors must also
respect the following rules:

6.1 In relation to the structure:

a) The text shall be printed on A4 format paper utilising the font
Times New Roman size 11, spacing at least 12, and with the
margins: top 4cm, bottom 3cm, left 2,5cm, right 5cm, header
1,25cm, footer 1,25cm;

b) The first page shall contain only the title of the article as well as
the name, address and telephone, fax and E-mail number of the
author, indicating the position held and the institution that
he/she belongs to.  In the case of various authors, it is necessary
to indicate the person to whom all correspondence received
should be forwarded;

c) The second page shall contain in Portuguese and English only
the title and an abstract of the article with the maximum of 100
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words followed by a paragraph indicating key words up to the
limit of 15;

d) The third page will begin the text of the article with its
respective sections or chapters sequentially numbered;

6.2 Regarding Bibliographical References:

a) Authors who are cited in the text of the article shall be indicated in
parentheses with their name followed by the date of the respective
publication and, if necessary, the page number (ex.: Malinvaud,
1989, 23);

b) All bibliographical references will be listed in alphabetical order by
the surnames of the respective authors, immediately following the
end of the text, as in the following example:

GREENE, W. H., “Econometric Analysis”, Prentice-Hall, New Jersey,
1993.

6.3 Regarding proof-reading and publication:

a) Once the article is accepted and prior to its publication, the
author will receive a copy for review.  These copy will be
returned to the Director of the Review within a maximum
period of one week from the date of its reception;

b) The consequences of subsequent changes to the accepted first
version are the responsibility of the respective authors as well
as any delays in proof-reading that make its publication in the
planned issue of the Review impossible.  The Director reserves
the right to decide upon the date for future publication;

c) Once the article is published, the author will receive twenty
copies of his/her printed version and a copy of the respective
issue of the Review.

7. For further information kindly contact the Editorial Secretary:

Eduarda Liliana Martins
Instituto Nacional de Estatística
Avª. António José de Almeida, nº. 5 – 9º.
1000-043  Lisbon - Portugal

q Tel.:    +351 1 21 842 62 05

q Fax.:   +351 1 21 842 63 66

q e-mail: liliana.martins@ine.pt


