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ABSTRACT:

• The main goal of this paper is to enhance the role of two well-known re-sampling
methodologies, the Bootstrap of Efron (1979) and the Jackknife of Quenouile (1956) and
Tukey (1958), in the Statistical Theory of Extreme Values. The Bootstrap will be used here
to estimate the optimal sample fraction to be taken in semi-parametric estimation of
parameters of rare events, and the Jackknife will be used to reduce the asymptotic Bias of
estimators, without increasing Mean Square Error. The methodologies developed will be
applied both to simulated and real data.
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RESUMO:

• O principal objectivo deste trabalho é enaltecer a importância de duas metodologias
estatísticas bem conhecidas, o Bootstrap de Efron (1979) e o Jackknife de Quenouile
(1956) e Tukey (1958), em Teoria Estatística de Valores Extremos. O Bootstrap será aqui
usado para estimar a fracção óptima de estatísticas ordinais a considerar na estimação
semi-paramétrica de parâmetros de acontecimentos raros, e o Jackknife será usado para
reduzir o Viés assintótico dos estimadores, sem aumentar o Erro Quadrático Médio. As
metodologias desenvolvidas serão aplicadas a dados simulados e a dados reais.
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1. INTRODUCTION AND PRELIMINARIES

In Statistical Extreme Value Theory we are mainly interested in the estimation of
parameters of rare events, like the return period of high levels, i.e. the mean time a stochastic
process remains above the high level u, as ∞→u , the high quantiles of the model F(.)
associated to an underlying stationary stochastic process, i.e., functionals

)(:)( pFFp
←=χ , 1→p , where { }yxFxyF ≥=← )(:inf:)(  is the generalized inverse

function of F(.), the extremal index )(Fθ , which in a certain sense measures the mean size of
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the clusters of exceedances of high levels and, primarily, the tail index )(Fγγ = , the basic
parameter of rare events, directly related to the right tail weight of the model F(.), the right
tail 1−F(.) being heavier and heavier as γ  increases. For γ = 0  we have a Gumbel model,
with an exponential-type tail.

The tail index γ  may be easily defined in terms of the asymptotic behaviour of the
sequence of maximum values, { } { } 1211: ,,,max( ≥≥ …= nnnnn XXXX  of a random sample from a

model F(.). Indeed, the sequence nnX :  converges almost surely to the right endpoint

{ }1)(:sup: <= xFxxF  of the model F(.), but if there exists attraction coefficients { } 10 ≥> nna

and { } 1≥ℜ∈ nnb  such that

[ ] )(: xGbxaXP
n

nnnn
∞→

→+≤ , for all x in the set of continuity points of G(.), (1.1)

where G(x) is a non-degenerate distribution function (d.f.) then, up to location and scale, G
has the functional form

{ } ℜ∈>++−=≡ − γγγ γ
γ ,01,)1(exp:)()( /1 xxxGxG , (1.2)

where γγ /1)1( −+ x  is to be taken equal to { }x−exp  for 0=γ  (Gnedenko, 1943).

Whenever (1.1) holds, with G(.) given in (1.2), we say that F is in the domain of
attraction of γG , and write )( γGDF ∈ . A unified necessary and sufficient condition for

)( γGDF ∈ , expressed in terms of the quantile function

( )
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was given by de Haan (1984):

)( γGDF ∈  iff there is a function )(ta :  
γ

γ 1
)(
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where, once again, γγ /)1( −x  is to be taken equal to its limit, log x , whenever 0=γ .
In Statistical Theory of Extremes the estimation of the tail index γ  is usually done in a

semi-parametric context, where we merely assume that )( γGDF ∈  and base the estimation

on a suitable number of top order statistics (o.s.), say nknnnnn XXX ::1: −− ≥…≥≥ , where

niX ni ≤≤1,: , is the sample of the ascending o.s. associated to our original sample

),,,( 21 nn XXXX …= , and nkk = , must be suitably chosen, depending heavily on the
estimator we intend to use and on the model underlying the data. Hence, an important
question in Statistical Extreme Value Theory has been for a long time the choice of the
“nuisance” parameter nkk = , where k + 1 is the number of top o.s. considered.

We shall assume here, for sake of simplicity, that we are dealing with heavy tails
( 0>γ ). We then have

)( γGDF ∈  ( 0>γ )    iff   γ/11 −∈− RVF     iff   γRVU ∈ , (1.5)



where αRV  stands for the class of regularly varying functions at infinity with index of regular

variation equal to α, i.e., functions g(.) with infinite right endpoint, and such that
αxtgtxg

t ∞→
→)(/)( , for all x > 0. The conditions in (1.5) characterize completely the first order

behaviour of F(.) [Gnedenko (1943), de Haan (1970)]. The second order theory has been
worked out in full generality by de Haan and Stadtmüller (1996). Indeed, for a large class of
models there exists a function A(t )  of constant sign for large values of t, such that
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for every x > 0, where ρ ( ≤  0) is a second order parameter, which eventually also needs to be
properly estimated from the original sample. The limit function in (1.6) must be of the stated
form, and ρRVtA ∈)(  (Geluk and de Haan, 1987).

From the above mentioned second order behaviour of F(.) it follows that

ln U ( tx ) − ln U ( t ) = γ ln x + A ( t)
x ρ −1

ρ
(1 + o(1)),  as t→∞ . (1.7)

The consideration of the empirical counterpart of the quantile function U defined in
(1.3), leads then to Hill estimator (Hill, 1975)
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For a more complete study of Hill estimator, see Martins et al (1997).

In order to have consistency of Hill estimator, given in (1.8), we need to work with an
intermediate number of o.s., i.e. we need to have k = ∞→nk , 0/ →nkn . Indeed, since we

have that for every r.v. X with d.f. F(.), )(
1

1 YU
Y

FX =





 −= ← , where Y is a Pareto(1) r.v

with d.f 1,/11)( ≥−= yyyGY , U(.) an increasing function, we thus have )( :: nini YUX = ,
ni ≤≤1 . This property, together with (1.7), enables us to write the following distributional

representation for Hill estimator (de Haan and Peng, 1995),

))/(()/(
1

1
)( knAoknAP

k
k pn

d

n +
−

++=
ρ

γ
γγ , (1.9)

where nP  is asymptotically a standard Normal r.v., i.e., 
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sequence of unit exponential r.v.'s. It thus follows that if k = ∞→nk , 0/ →nkn , in such a

way that λ→)/( knAk , as n→ ∞ , then

[ ] 







−

→−
∞→

2,
1

)( γ
ρ

λ
γγ Nkk

n

d
n ,

i.e., we may have an Asymptotically Normal estimator of γ  with a non-null asymptotic bias,
)1/( ρλ − .



On the other side, if +∞→)/( knAk , then 
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Under the validity of (1.9), we have an Asymptotic Mean Square Error (AMSE) given
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where ))1(1()()(2 oduustA
t

+= ∫
+∞

. For the existence of this function s(.) see lemma 2.9 of

Dekkers and de Haan (1993).

This semi-parametric estimator of the tail index and almost all usual semi-parametric
estimators of parameters of rare events (and this happens more generally in Statistics, like for
instance in the semi-parametric or non-parametric methods of density estimation (Devroye,
1985) have the same type of behaviour: high variance for small values of k, high bias for large
values of k, and consistency only for intermediate ranks, i.e., we need to have k = ∞→nk ,

0/ →nkn , as n→ ∞ .



And what does this mean from a practical point of view?

Consequently there are immediately two main questions put forward:

1. How to estimate the optimal sample fraction, i.e., given generally a semi-parametric
estimator )(knξ  of the functional of rare events )(Fξ , based on the k top o.s. of

nX , how is it possible to estimate { })(minarg:)(0 kMSEnk n
k

n ξξ = , in order to

estimate )(Fξ  by means of ))(( 0 nk n
n

ξξ ? This question has been addressed in
several papers , among which we refer Dekkers and de Haan (1993), Berlaint et al
(1996a, 1996b), Peng (1998), Drees and Kaufmann (1998), Gomes(1998).

2. Is it possible to reduce the bias of these semi-parametric estimators, and find other
semi-parametric estimators of the parameter of rare events under consideration, with
smaller BIAS and also smaller MSE, being conscious that then we eventually have to
go further in the tail, and pay a price for the need to collect more observations?
Under this context we refer here the papers of Peng (1998) and Gomes et al(1998).

In section 2 of this paper we shall address the first question, and for data from a Cauchy
model we shall illustrate the use of bootstrap methodology for the estimation of the optimal
sample fraction by means of a bootstrap estimator of )(0 nk , of the type of the ones studied by
de Haan et al (1997) and by Danielson et al (1997), but with the use of an auxiliary statistic
of the type introduced in Gomes (1998), which is merely the difference of two estimators with
the same functional form of the estimator under study, computed at two intermediate levels.
De Haan’s methodology has over Hall’s bootstrap methodology (Hall(1990), Gomes (1994,
1998)) the advantage of overpassing the need of an initial consistent estimator of the tail
index γ  by the consideration of an auxiliary statistic, with null mean value, which
consequently has a MSE equal to its variance, and whose asymptotic properties are intimately
close to the ones of the estimator under study. More than that: the estimated value of )(0 nk
may be used for the initial consistent estimation of the tail index γ , needed in Hall’s
methodology.

In section 3 we shall consider the reduction of bias by means of the Generalized
Jackknife theory (Gray and Schucany, 1972), and we study the behaviour of a Generalized
Jackknife estimator of the type of the ones introduced by Gomes et al (1998), but where Bias
is going to be estimated by means of the Bootstrap methodology developed in section 2.

Finally, in section 4, we shall consider an application to real data in the field of finance.

2. THE BOOTSTRAP METHODOLOGY AND THE ESTIMATION OF THE
OPTIMAL SAMPLE FRACTION

The bootstrap methodology enables us to estimate the optimal sample fraction
nnk /)(0 , )]([arg:)(0 kMSEminnk n

k
γ= , in the following way [de Haan et al (1997),

Danielson et al (1997), Gomes (1998)]: given the sample ),,( 1 nn XXX …=  from an

unknown model F, and the functional )(knγ , nk ≤≤1 , a consistent estimator of γ , consider
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the empirical d.f. associated to the original sample nX , to which we may associate the

corresponding estimator )( 1
*

1
knγ , 11 11 −≤≤ nk .

Consider then an auxiliary statistic with null mean value, which consequently has a
MSE equal to its variance, and whose asymptotic properties are intimately close to the ones of
the estimator under study. We shall here consider

)()2/(:)( kkkT nnn γγ −= . (2.1)

From the joint behaviour of Hill estimator at two intermediate levels (Gomes (1998),
Gomes et al (1998)) we get the distributional representation
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From (1.10) and (2.2), and from the fact that )21/(1 ρ−−
← ∈ RVs , it follows that

( ) ))1(1)((21)( 00

21
2

onknk T +−=
− ρ

ρ , as n→ ∞ . (2.3)

If we bootstrap )(kTn , getting Tn
* (k) | X n , [ ] 





= nn

k
T XkTEminnk |)(arg:)(

2**
0 , it is

immediate to ask if it is possible to replace )(0 nk T  by )(*
0 nk T  in (2.3). Theoretically, that is

not possible. We must deal with samples of size 10),( 1
1 <<= − εεnOn , and with ∞→1k ,

0/ 11 →nk , in order to have, as ∞→1n ,

[ ] ))1(1(

)21(

1)1(
|)(minarg:)(

2
1

22
1

1
*

1
*
0 1

1

o

n
s

n
XkTMSEnk nn

k
T +









−

−
==

←
ρ

ργ
. (2.4)

(see Peng (1998) for a proof).
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Thus, for another sample size 
n

n
n

2
1

2 =  (chosen in this way in order to have

independence of ρ), we have
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Several estimators of ρ have been proposed in the literature. We use here the bootstrap

estimator of Danielson et al (1997), also used in Gomes (1998): since )21/(2
*
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We then have
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In Gomes (1998) the robustness of the estimator in (2.8), regarding the choice of the
sub-sample size 1n , was exhibited by simulation in a Fréchet model. Here, we generate a
sample of size 1000 from a Cauchy model with null mean value, and we present in Figures 1

and 2 the sample path of ),|(ˆ
10 ρnnk  and of *);( 1

)1*( ργ nn , respectively — both for ρ
estimated through (2.7) and for ρ  assumed to be known and equal to –2, just as happens in a
Cauchy model, and for values of 1n = 50(5)1000. We have used a multi-sample Bootstrap
procedure of 10 replicates of B = 100 runs each. Comparatively to a one-sample procedure,
the multi-sample procedure provided a higher stability of the sample paths. The simulated
mean value of )(0 nk , on the basis of 20 replicas of 5000 runs each, for n = 1000 and for a
Cauchy model is 132.85, with a 95% confidence interval given by (130.64, 135.06). The
simulated mean value of Hill estimator at the optimal level is given by 1.0411, being the 95%
confidence interval, (1.0397, 1.0425).

Figure 1. Sample path of ),|(ˆ
10 ρnnk  for estimated ρ  (through *ρ ) and for ρ  assumed

to be known ( 2−=ρ ), and for values of 1n = 50(5)1000.
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Figure 2. Sample path of );( 1
)1*( ργ nn  for estimated ρ  (through *ρ ) and for ρ  assumed to

be known ( 2−=ρ ), and for values of 1n = 50(5)1000.

As pointed out in Gomes (1998) the high stability obtained along the sub-sample size

1n , both for the optimal sample fraction and for Hill estimator at the optimal level, enhanced

in Figures 1 and 2, together with a high stability of the MSE of *);( 1
)1*( ργ nn , quite close to

the minimal MSE of Hill estimator (see Gomes (1998) for details) suggest the real practical
importance of this estimation procedure of the optimal sample fraction to be taken in a semi-
parametric estimation of a parameter of rare events.

We now suggest the following more intrincate procedure: after using an auxiliary
statistic to estimate the optimal level, just as done before, use that optimal value as auxk  in
Hall’s Bootstrap methodology (Hall (1990), Gomes (1994, 1998)), and then estimate the MSE
and the BIAS of the estimator under study. The value auxk  is the number of top o.s. needed
initially to get a first rough consistent estimate of the tail index γ .

We would like to point out the following: the bootstrap estimator )(* knγ  "smooths" the

sample path of the original estimator )(knγ , 11 −≤≤ nk — in a way similar to what does the
moving average procedure of Resnick and Starica (1997); we may easily obtain bootstrap
estimates of the MSE and of the BIAS of )(knγ :
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We have here used two different values for kaux
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which turn out to be appealing from a practical point of view, due to the stability of the
sample path in Figure 1.

In case we had not such a stability, we might use the value suggested by Danielson et al
(1998) in such situations, and given by
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After removing bias, we obtain the new estimators
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Always working with the same sample of size n = 1000 underlying Figure 1, from a
Cauchy model, for which γ =1, we present in Figure 3 (A) the sample path of Hill estimates

)(knγ , of Hill bootstrap estimates )(* knγ , and of )|( )1()2*(
auxn kkγ  and )|( )2()2*(

auxn kkγ , in (2.10),
both for *: ρρ =  and for 2−=ρ . Figure 3 (B) is a zoom of Figure 3 (A). In these Figures, we

show also two other sample paths of Jackknife estimators )(1
, kG
Bnγ  and )(2

, kG
Bnγ , described in

the next section.

Figure 3. Sample path of Hill estimate γ n (k ) , Bootstrap Hill estimate γ n
* (k ) , γ n

*( 2 ) (k | k aux
(i ) )

and γ n ,B
G i (k ) , i = 1, 2 for a Cauchy sample, n=1000 and k = 1(1)n-1.

In Figure 4 we show the Bootstrap estimates, given in (2.9), of )]([ kMSE nγ  and of

)]([ kBIAS nγ , respectively. For comparison, we show also the simulated MSE and BIAS of

Hill estimator at different levels.
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Figure 4. Bootstrap estimates of )]([ kMSE nγ  and of )]([ kBIAS nγ  for estimated ρ  and ρ
= -2 (one-sample), and simulated MSE [γ n (k )]  and BIAS [γ n (k )]  (5000 runs), for a
Cauchy sample, n=1000 and k = 1(1) n-1.

This procedure is easy to implement and the new estimator has, from a practical point
of view, a much more appealing sample path than that of Hill estimate, which is often referred
to as “the Horror show of Hill estimates”. It is also appealing to have bootstrap estimates of
MSE and BIAS on the basis of the available sample, as we shall partially see in the next
section.

3. THE JACKKNIFE METHODOLOGY AND THE REDUCTION OF THE BIAS TERM

The Jackknife methodology (Tukey, 1958) is a non-parametric re-sampling technique,
essentially in the field of exploratory data analysis, largely used to reduce the bias of an
estimator, by means of the construction of an auxiliary estimator based on Quenouille's re-
sampling technique (Quenouille, 1956), and the consideration of a suitable combination of the
two estimators. The Generalized Jackknife statistic of Gray and Schucany (1972) is, more
generally, based on two different estimators of the same functional, with similar bias
properties. More precisely, and as a particular case of the Jackknife theory, if we have two

different biased consistent estimators 
)1(
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nγ  of the functional )(Fγ , and if
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γγγ , which is an unbiased consistent estimator of )(Fγ , provided

1≠nq , for every n. (For a detailed application of the Jackknife methodology to the estimation
of parameters of rare events, see Gomes et al (1998)).

In Statistical Theory of Extremes, whenever we are dealing with semi-parametric
estimators of the tail index, or even other parameters of rare events, we have usually
information about the asymptotic bias of those estimators, just as we have seen in (1.9) for
Hill estimator. We may thus choose estimators with similar asymptotic properties, and
construct the associated Generalized Jackknife estimator.

Let us now think on Hill estimator at two different levels, k1 < k2 , and let
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be the quotient of the asymptotic bias of Hill estimators at those intermediate levels. Consider
then
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As was shown in Gomes et al (1998) this estimator is asymptotically normal with a null

asymptotic bias whenever we choose k1  in such a way that 111 )/( λ
∞→

→
n

knAk , finite, but we

have degeneracy at γ , whenever ∞+→
∞→n

knAk )/( 11  , i.e. we have
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The key to get a better estimator seems then to be: choose 1k  > )(0 nk , where )(0 nk
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γ=  may be estimated by means of the bootstrap techniques of the

previous section, and study the properties of 1221 ),,( kkkkG
n >γ . We are here going to work

with the estimator
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where )),(ˆ(ˆ
0 knkQn , a suitable estimator of the quotient of biases in (3.1), is going here to be

estimated also by means of the bootstrap techniques of section 2.

We have considered the bootstrap estimators of Bias obtained in the previous section,
and we have obtained the sample paths shown in Figure 3, where the index i = 1, 2 refers to
the use of an estimate of ρ  or the assumption of a known ρ , respectively.

The sample path of these estimators is even smoother than the sample paths of the
estimators in (2.10), and although a justification for this is beyond the scope of this paper, we
would like to refer here that the bootstrap estimator of Bias is not sufficiently accurate to
increase, in terms of MSE, the performance of the estimator in (3.4) relatively to Hill
estimator at the optimal level. Anyway, the sample path is indeed quite appealing from a
practical point of view.

4. AN APPLICATION TO EXCHANGE RATES

For a long time, and essentially due to the mathematical tractability of the Gumbel
model ( 0=γ ), statisticians have developed a strong bias towards this particular limiting
model in the max-scheme. This is similar to what happens towards the Normal model as a
limiting model in an additive scheme, although such indiscriminate use has been
sistematically questioned by economists and financial analysts. This is particularly so in what
concerns the distribution of log stock price changes (Fama, 1963). From Fama’s analysis of



monthly stock price changes — )/log( 1−tt pp  — it is evident that an appropriate model must
be highly peaked and heavy tailed when compared either to Normal or to Gumbel models, i.e.,
there is empirical evidence of “heavy tails” ( 0>γ ).

In Fraga Alves and Gomes (1996) the analysis of the observed values of Gumbel
statistical choice test statistic (Gomes, 1987), when applied to data published by Banco de
Portugal (1984-1993), namely on changes of the monthly exchange rate of  the U.S. Dollar
and the Dutch Guilder, enhanced that although there is not any strong evidence against 0=γ ,
there is a slight indication of an heavy tail, particularly for the Dutch Guilder.

We here apply the re-sampling techniques of sections 2 and 3. In Figures 5 and 6 it is
shown the stability of the sample paths of the estimate of the optimal sample fraction and of
Hill’s estimate at that optimal level for the exchange rate returns of the US Dollar and of the
Dutch Guilder, respectively. In Figure 7 we show the sample paths of the different estimates
of the tail index, for both sets of data.

Figure 5 Sample path of estimates of optimal sample fraction and Hill estimates at optimal

levels, for the US Dollar exchange rate returns and for sub-sample sizes 1n =

25(1)163.

Figure 6. Sample path of estimates of optimal sample fraction and Hill estimates at those
optimal levels, for the Dutch Guilder exchange rate changes and for sub-sample sizes
n1 = 25(1)163.
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Figure 7. Sample path of Hill estimate, Bootstrap Hill estimate, Unbiased Bootstrap Hill
estimate and Jackknife Hill estimates of the tail index for US Dollar and Dutch
Guilder exchange rate changes, and for k = 1(1)n-1.

The second order parameter is around 1−=ρ  for both sets of data, and we are in the
presence of heavy tails. The estimate of the tail index γ  is equal to 0.4 for the US Dollar and
equal to 0.58 for the Dutch Guilder. Despite the shortness of the size of the samples under
study, n = 164, the stability of the sample path of the new estimates is quite striking!
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