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ABSTRACT:

The main goa of this paper is to enhance the role of two well-known re-sampling
methodologies, the Bootstrap of Efron (1979) and the Jackknife of Quenouile (1956) and
Tukey (1958), in the Satistical Theory of Extreme Values. The Bootstrap will be used here
to estimate the optimal sample fraction to be taken in semi-parametric estimation of
parameters of rare events, and the Jackknife will be used to reduce the asymptotic Bias of
estimators, without increasing Mean Square Error. The methodologies developed will be
applied both to simulated and real data.
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REsuMoO:

O principal objectivo deste trabalho é enaltecer a importancia de duas metodologias
estatisticas bem conhecidas, o Bootstrap de Efron (1979) e o Jackknife de Quenouile
(1956) e Tukey (1958), em Teoria Estatistica de Valores Extremos. O Bootstrap sera agui
usado para estimar a fraccdo Optima de estatisticas ordinais a considerar na estimacéo
semi-paramétrica de parametros de acontecimentos raros, e o Jackknife sera usado para
reduzir o Viés assintético dos estimadores, sem aumentar o Erro Quadratico Médio. As
metodol ogi as desenvolvidas serdo aplicadas a dados simulados e a dados reais.
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1. INTRODUCTION AND PRELIMINARIES

In Satistical Extreme Value Theory we are mainly interested in the estimation of
parameters of rare events, like the return period of high levels, i.e. the mean time a stochastic
process remains above the high level u, as u® ¥, the high quantiles of the mode F(.)
associated to an underlying stationary stochastic  process, i.e, functionas

c,(F) = F"(p), p®1, where F~ (y) = inf{x: F(x)3 y} is the generalized inverse
function of F(.), the extremal index q(F), which in a certain sense measures the mean size of
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the clusters of exceedances of high levels and, primarily, the tail index g =9(F), the basic
parameter of rare events, directly related to the right tail weight of the model F(.), the right
tail 1- F(.) being heavier and heavier as g increases. For g =0 we have a Gumbel model,
with an exponential-type tail.

The tail index 9 may be easily defined in terms of the asymptotic behaviour of the
sequence of maximum values, {X .} ., ={max(X,, X, %, X,} ., of arandom sample from a

m1 - 1
model F(.). Indeed, the sequence X, converges amost surely to the right endpoint
xe :=sup{x: F(x) <1} of the model F(.), but if there exists attraction coefficients {a, >0} .,
and {b,1 A} ., such that

P[Xn:n £a x+ bn] ((;)¥ G(x), for al xin the set of continuity points of G(.), (1.1)

where G(X) is a non-degenerate distribution function (d.f.) then, up to location and scale, G
has the functional form

G(X)° Gy(x) = exp{- (1+g x)'”g}, 1+g x>0, gT A, (1.2)
where (1+gx) Y9 isto be taken equal to exp{ X} for g =0 (Gnedenko, 1943).

Whenever (1.1) holds, with G(.) given in (1.2), we say that F is in the domain of
attraction of G, and write Fi D(Gy) . A unified necessary and sufficient condition for

Fi D(G,) , expressed in terms of the quantile function

0 tEl

i
u) =i , 13
® TF@-11) t>1 3
was given by de Haan (1984):
- g _
F1 D(G,) iff thereisafunction a(t): 2" YU g X -1 (L4)

a(t)

where, once again, (X° - 1)/9g isto be taken equal to its limit, log x , whenever g =0.

In Satistical Theory of Extremes the estimation of the tail index g isusually donein a
semi-parametric context, where we merely assume that F 1 D(G,) and base the estimation
on a suitable number of top order statistics (0.8), say X, 3 X103 %% X, .k, Where
Xin, 1ET£n, is the sample of the ascending o.s. associated to our origina sample
X, =(X, X,,%, X)), and k=k,, must be suitably chosen, depending heavily on the
estimator we intend to use and on the model underlying the data. Hence, an important

guestion in Statistical Extreme Value Theory has been for a long time the choice of the
“nuisance” parameter k =k, , wherek + 1 is the number of top 0.s. considered.

We shall assume here, for sake of simplicity, that we are dealing with heavy tails
(9 >0). We then have

FT D@G,) (9>0) iff 1- FT RV, iff UT RY,, (1.5)



where RV, standsfor the class of regularly varying functions at infinity with index of regular

variation equal to a, i.e, functions g(.) with infinite right endpoint, and such that

g(tx)/ g(t) ((@@¥ X2, for al x > 0. The conditionsin (1.5) characterize completely the first order
t

behaviour of F(.) [Gnhedenko (1943), de Haan (1970)]. The second order theory has been
worked out in full generality by de Haan and Stadtmuiller (1996). Indeed, for a large class of
models there exists afunction A(t) of constant sign for large values of t, such that

U@tx)/U(t)- x° X' -1

3/,384,® X9 , 1.6
A) i r (16)

for every x> 0, wherer (£ 0) isasecond order parameter, which eventually also needs to be
properly estimated from the original sample. The limit function in (1.6) must be of the stated

form, and |A(t)|T RV, (Geluk and de Haan, 1987).

From the above mentioned second order behaviour of F(.) it follows that

INU(x)- InU(t) =gln x + A(t) x - L a+o@), ast® ¥ . (1.7)

The consideration of the empirical counterpart of the quantile function U defined in
(1.3), leads then to Hill estimator (Hill, 1975)

~

k
gn(k) %é [Ian-i+l'n - Ian-k:n] :%é i[Inxn-i+l'n - Ian-i:n]' (18)

=1 i=1

For a more complete study of Hill estimator, see Martins et al (1997).

In order to have consistency of Hill estimator, given in (1.8), we need to work with an
intermediate number of o0.s., i.e. we need to havek = k, ® ¥ , k,/n® 0. Indeed, since we

have that for every r.v. X with d.f. F(.), X =F~ é‘i —+—U(Y) where Y is a Pareto(1) r.v
Yo

with d.f G,(y)=1-1/y,y2 1, U(.) an increasing function, we thus have X., =U(Y,,),
1£i £n. This property, together with (1.7), enables us to write the following distributional
representation for Hill estimator (de Haan and Peng, 1995),

g, (k) i g+% P, +%A(n/k)+op(A(n/k)), (1.9

where P, is asymptotically a standard Normal r.v., i.e,, P, \/_gka W - 1— with {W} a

sequence of unit exponential r.v.'s. It thus follows that if k = k, ® ¥, kn/n® 0, insuch a
way that VKA(N/K)® | ,asn® ¥ , then

Jklon 0- g]%@ Néell—r 92%

i.e., we may have an Asymptotically Normal estimator of g with a non-null asymptotic bias,
[ /- r).



9. K-9 5o 1

ide if VKIA(N/K)|® +¥
On the other side, if \/_| ( )| , then A(N/K) 11

Under the validity of (1.9), we have an Asymptotic Mean Sguare Error (AMSE) given

I
by AMSEg, (K)] == -+ TR A2(n/k), and then
ko(n) := argmin MSE[g, (K)] = o (@+o), (1.10)
k A T)70
no

+¥
where A?(t) = O S(u)du(1+0(1)) . For the existence of this function s(.) see lemma 2.9 of
t

Dekkers and de Haan (1993).

This semi-parametric estimator of the tail index and almost all usual semi-parametric
estimators of parameters of rare events (and this happens more generaly in Statitics, like for
instance in the semi-parametric or non-parametric methods of density estimation (Devroye,
1985) have the same type of behaviour: high variance for small values of k, high bias for large
values of k, and consistency only for intermediate ranks, i.e., we need to have k = k, ® ¥,

k,/n® 0,asn® ¥ .



And what does this mean from a practical point of view?

Consequently there are immediately two main questions put forward:

1. How to egtimate the optimal sample fraction, i.e., given generally a semi-parametric
estimator x, (k) of the functiona of rare events x (F), based on the k top o.s. of

X, how is it possible to estimate kX" (n) := argmin MSE{x, (k)}, in order to
k

estimate x(F) by means of x,(ky"(n))? This question has been addressed in

severa papers , among which we refer Dekkers and de Haan (1993), Berlaint et al
(19964, 1996b), Peng (1998), Drees and Kaufmann (1998), Gomes(1998).

2. Isit possible to reduce the bias of these semi-parametric estimators, and find other
semi-parametric estimators of the parameter of rare events under consideration, with
smaller BIASand also smaller MSE, being conscious that then we eventually have to
go further in the tail, and pay a price for the need to collect more observations?
Under this context we refer here the papers of Peng (1998) and Gomes et al (1998).

In section 2 of this paper we shall address the first question, and for data from a Cauchy
model we shadll illustrate the use of bootstrap methodology for the estimation of the optimal
sample fraction by means of a bootstrap estimator of k,(n) , of the type of the ones studied by
de Haan et al (1997) and by Danielson et al (1997), but with the use of an auxiliary statistic
of the type introduced in Gomes (1998), which is merely the difference of two estimators with
the same functional form of the estimator under study, computed at two intermediate levels.
De Haan's methodology has over Hall’s bootstrap methodology (Hall(1990), Gomes (1994,
1998)) the advantage of overpassing the need of an initial consistent estimator of the tail
index g by the consideration of an auxiliary statistic, with null mean vaue, which
consequently has a MSE equal to its variance, and whose asymptotic properties are intimately
close to the ones of the estimator under study. More than that: the estimated value of k,(n)
may be used for the initial consistent estimation of the tail index g, needed in Hall's

methodol ogy.

In section 3 we shall consider the reduction of bias by means of the Generalized
Jackknife theory (Gray and Schucany, 1972), and we study the behaviour of a Generalized
Jackknife estimator of the type of the ones introduced by Gomes et al (1998), but where Bias
is going to be estimated by means of the Bootstrap methodology developed in section 2.

Finally, in section 4, we shall consider an application to real datain the field of finance.

2. THE BOOTSTRAP METHODOLOGY AND THE ESTIMATION OF THE
OPTIMAL SAMPLE FRACTION

The bootstrap methodology enables us to estimate the optimal sample fraction
K,(N)/n, ky(n):=argmin MSE[g,(k)], in the following way [de Haan et al (1997),
k

Danielson et al (1997), Gomes (1998)]: given the sample X, =(X;,%,X,) from an
unknown model F, and the functional g,(k), 1EK£n, aconsistent estimator of g, consider

* * * * 1 3
the bootstrap sample X, = (X%, X" ), m£n, from the modd F. (X)==8 ix £
1 1 n i

i=1



the empirical d.f. associated to the original sample X, to which we may associate the
corresponding estimator gy, (), 1£k £n, - 1.
Consider then an auxiliary statistic with null mean value, which consequently has a

MSE equal to its variance, and whose asymptotic properties are intimately close to the ones of
the estimator under study. We shall here consider

T, (k) = 9,(k/2)-g,(k). (21)

From the joint behaviour of Hill estimator at two intermediate levels (Gomes (1998),
Gomes et al (1998)) we get the distributional representation

d _ r
T = Lz, 12

Jk 1-r

where Z is asymptotically a Normal(0,1) r.v., i.e., asymptoticaly, the r.v. T, (k) has a
variance g°/ k, and abias (2" - DA(N/K)/(1- r).

A(n/K)+0, (A(N/K)),

Then, the fact that asymptotically,

(1- 2")
(1-r)°

’

AMSE(T (K)) = g_k2 + A2(n/k)

enables us to derive
n
g’(l-r)> 1
n @-2")g

ko (N) =argmin MSE[T, (k)] = 6(1+ o1). (2.2)

S



From (1.10) and (2.2), and from the fact that s™ T RV. . ,,,, it follows that

2

k(M ={1- 27 ) Koy (N(A+0(D) , aSN® ¥ . 2.3)

It we bootstrap T, (K), getting T, (k) |, K, (n):=argmin Eg{>r; ®[ | X, it is
k

immediate to ask if it is possible to replace ky; (n) by ky; (n) in (2.3). Theoreticaly, that is
not possible. We must deal with samples of size n, =O(n*®), 0<e<1, and with k, ® ¥,
k,/n,® 0,inordertohave, as n, ® ¥

* . * n
kgr (ny) :=argmin MSE[T. (k)| X, |= 1 1+0(D) - (24)
or () =args [, (k) 1%, TS
no @1-2')g
(see Peng (1998) for a proof).
Since kST (nl)T RV 5 2y »
. 2
Kor() @ @214y asne ¥ . (2.5)

Ker (M) éng

2
Thus, for another sample size nzzﬁ (chosen in this way in order to have
n

independence of r ), we have

Kot (N) =EIL((:1)1—(1+ 0()),asn® ¥ . (2.6)
0T \" 2

Severa estimators of r have been proposed in the literature. We use here the bootstrap
estimator of Danielson et al (1997), also used in Gomes (1998): since Ko I RV. 5 /.21 it

Ink, 2 . .
followsthat -9 ® —<'_ asn® ¥ . The bootstrap estimator is
Inn, 2r -1

__ Inkgr () 2.7)
" 2In(kg; (ny) /)

where EST (n,) denotes, the sample counterpart of kg, (n,), i.e. for B generated bootstrap

% OB *
samples we take Ky (n,) =arg kmin a [Tnl,i (k)]2 .
i=1



We then have

ol = Lol (2'1)] b- 277" ad g2 (mir) =g,k (0, r¥)). 28
Kor (N /1)

In Gomes (1998) the robustness of the estimator in (2.8), regarding the choice of the
sub-sample size n,, was exhibited by simulation in a Fréchet model. Here, we generate a
sample of size 1000 from a Cauchy model with null mean value, and we present in Figures 1
and 2 the sample path of K,(n|n,r) and of g ®(n;r*), respectively — both for r
estimated through (2.7) and for r assumed to be known and equal to —2, just as happensin a
Cauchy model, and for values of n, = 50(5)1000. We have used a multi-sample Bootstrap
procedure of 10 replicates of B = 100 runs each. Comparatively to a one-sample procedure,
the multi-sample procedure provided a higher stability of the sample paths. The simulated
mean value of k,(n), on the basis of 20 replicas of 5000 runs each, for n = 1000 and for a
Cauchy model is 132.85, with a 95% confidence interval given by (130.64, 135.06). The
simulated mean value of Hill estimator at the optimal level is given by 1.0411, being the 95%
confidence interval, (1.0397, 1.0425).

CAUCHY model (multi-sample bootstrap)
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Figure 1. Sample path of 120 (n|ng,r) for estimated r (through r *) and for r assumed
to beknown (I = - 2), and for values of N, =50(5)1000.
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Figure 2. Sample path of g~ (n ;1) for estimated I (through I * ) and for r assumed to
be known (I = - 2), and for values of Nn,=50(5)1000.

As pointed out in Gomes (1998) the high stability obtained along the sub-sample size
n,, both for the optimal sample fraction and for Hill estimator at the optimal level, enhanced

in Figures 1 and 2, together with a high stability of the MSE of g @ (n,;r *), quite close to

the minimal MSE of Hill estimator (see Gomes (1998) for details) suggest the real practical
importance of this estimation procedure of the optimal sample fraction to be taken in a semi-
parametric estimation of a parameter of rare events.

We now suggest the following more intrincate procedure: after using an auxiliary
statistic to estimate the optimal level, just as done before, use that optimal value as k,,, in
Hall’ s Bootstrap methodology (Hall (1990), Gomes (1994, 1998)), and then estimate the MSE
and the BIAS of the estimator under study. The value k,, is the number of top o.s. needed
initially to get afirst rough consistent estimate of the tail index g .

We would like to point out the following: the bootstrap estimator g (k) "smooths' the
sample path of the origina estimator g,,(k), 1£k £ n- 1— in away similar to what does the

moving average procedure of Resnick and Starica (1997); we may easily obtain bootstrap
estimates of the MSE and of the BIAS of g, (K):

BIASG () [ K] 12 B0 (0) - G (Kan) | X1}

A B .. ) y (2.9
MSE[g, (k) [ Ky, := E[[gn(k)-gn(kaux)] mho

We have here used two different valuesfor k_ :

aux

k&, = Median (k,(n[n,, 7)), and k2, = Median (k(n|n,,r =-2))

8% 1y=50(5)1000 AX T Z50(5)1000

which turn out to be appealing from a practica point of view, due to the stability of the
sample path in Figure 1.

In case we had not such a stability, we might use the value suggested by Danielson et al
(1998) in such situations, and given by



K, =argmin R(n,),

n
where

MSE2[T;, (ks (n,) | X J

YIS s T R

=n’/n,

is an estimate of MSE[T, (k,; (n))].

After removing bias, we obtain the new estimators

0.7 (Klku) = 0,00~ BASD, (0 k], Ko =k, k2. (210)

Always working with the same sample of size n = 1000 underlying Figure 1, from a

Cauchy model, for which g =1, we present in Figure 3 (A) the sample path of Hill estimates
g, (K), of Hill bootstrap estimates g;,(k), and of g.@ (k%) and g.@ (kk2), in (2.10),

bothfor r :=r * andfor r =-2. Figure 3 (B) isazoom of Figure 3 (A). In these Figures, we

show also two other sample paths of Jackknife estimators gnG}B (k) and gntB (k) , described in
the next section.
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Figure 3. Sample path of Hill estimate g, (k), Bootstrap Hill estimate g, (k), g.® (k |k!))
and gr 5(k), i = 1, 2 for aCauchy sample, n=1000 and k = 1(1)n-1.

In Figure 4 we show the Bootstrap estimates, given in (2.9), of MSE[g,, (k)] and of

BIAY g, (k)], respectively. For comparison, we show also the simulated MSE and BIAS of
Hill estimator at different levels.
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Figure 4. Bootstrap estimates of MSE[g,, (k)] and of BIASg,, (k)] for estimated r and r

= -2 (one-sample), and simulated MSE [g,, (k)] and BIAS[g, (k)] (5000 runs), for a
Cauchy sample, n=1000 and k = 1(1) n-1.

This procedure is easy to implement and the new estimator has, from a practical point
of view, amuch more appealing sample path than that of Hill estimate, which is often referred
to as “the Horror show of Hill estimates’. It is aso appealing to have bootstrap estimates of
MSE and BIAS on the basis of the available sample, as we shall partially see in the next
section.

3. THE JACKKNIFE METHODOLOGY AND THE REDUCTION OF THE BIAS TERM

The Jackknife methodology (Tukey, 1958) is a non-parametric re-sampling technique,
essentialy in the field of exploratory data analysis, largely used to reduce the bias of an
estimator, by means of the construction of an auxiliary estimator based on Quenouille's re-
sampling technique (Quenouille, 1956), and the consideration of a suitable combination of the
two estimators. The Generalized Jackknife statistic of Gray and Schucany (1972) is, more
generally, based on two different estimators of the same functional, with similar bias
properties. More precisely, and as a particular case of the Jackknife theory, if we have two

different biased consistent estimators g\ and g® of the functiona g(F), and if

Elg{"1=g +]j (g)d,(n), ElgP1=9+j (@d,(n),  then,  denoting by

BIASg\"] _ d,(n)

" BIAYGP] d,(n)

2= gy - 9.9
1-

n

, the Generalized Jackknife statistic associated to (g,‘}) ,g,‘f)) is

0°@®,g! , which is an unbiased consistent estimator of g(F), provided
g, * 1, for every n. (For a detailed application of the Jackknife methodology to the estimation
of parameters of rare events, see Gomes et al (1998)).

In Satistical Theory of Extremes, whenever we are dealing with semi-parametric
estimators of the tail index, or even other parameters of rare events, we have usualy
information about the asymptotic bias of those estimators, just as we have seen in (1.9) for
Hill estimator. We may thus choose estimators with similar asymptotic properties, and
construct the associated Generalized Jackknife estimator.

Let us now think on Hill estimator at two different levels, k; <k, , and let



_ BIAS.Jo, (k)] _ An/k) _a, 8" | -
Qn (k. kp) = BIA&[gn(kZ)J_A(n/kZ)_gkzg (1+0(1) (3.1

be the quotient of the asymptotic bias of Hill estimators at those intermediate levels. Consider
then

G — gn(kl) - Qn (kl’kz) gn(kz)
On (K. kp) = 1-Q (k.k,) ’ (3.2

Aswas shown in Gomes et al (1998) this estimator is asymptotically normal with anull
asymptotic bias whenever we choose k, in such away that +/k A(n/k;) ® 1., finite, but we

have degeneracy at g, whenever \/k_1|A(n/k1)| §g¥+¥ , i.e. we have

[0° (k. k) - 0]/ ANTKy) = 0, (1) whenever JAm/i) @ +¥ . (33

The key to get a better estimator seems then to be: choose k; > k, (n), where k, (n)
= argmin MSE[g, (k)] may be estimated by means of the bootstrap techniques of the
k

previous section, and study the properties of g° (k;,k,), K, >k,. We are here going to work
with the estimator

9 (Ko (M) - @y (Ko (M), K) g, (K)

<’ , (), 3.
1- G, (ko (M.K) <>k 54

Ona (k) =

where Qn (Izo(n), k) , a suitable estimator of the quotient of biasesin (3.1), is going here to be
estimated also by means of the bootstrap techniques of section 2.

We have considered the bootstrap estimators of Bias obtained in the previous section,
and we have obtained the sample paths shown in Figure 3, where the index i = 1, 2 refersto
the use of an estimate of r or the assumption of aknown r , respectively.

The sample path of these estimators is even smoother than the sample paths of the
estimators in (2.10), and although ajustification for this is beyond the scope of this paper, we
would like to refer here that the bootstrap estimator of Bias is not sufficiently accurate to
increase, in terms of MSE, the performance of the estimator in (3.4) relatively to Hill
estimator at the optimal level. Anyway, the sample path is indeed quite appealing from a
practical point of view.

4. AN APPLICATION TO EXCHANGE RATES

For a long time, and essentially due to the mathematical tractability of the Gumbel
model (g =0), statisticians have developed a strong bias towards this particular limiting

model in the max-scheme. This is similar to what happens towards the Normal model as a
limiting model in an additive scheme, athough such indiscriminate use has been
sistematically questioned by economists and financia analysts. Thisis particularly so in what
concerns the distribution of log stock price changes (Fama, 1963). From Fama's analysis of



monthly stock price changes — log(p,/ p,.;) — it is evident that an appropriate model must
be highly peaked and heavy tailed when compared either to Normal or to Gumbel models, i.e.,
there is empirical evidence of “ heavy tails’ (g >0).

In Fraga Alves and Gomes (1996) the analysis of the observed values of Gumbel
statistical choice test statistic (Gomes, 1987), when applied to data published by Banco de
Portugal (1984-1993), namely on changes of the monthly exchange rate of the U.S. Dollar
and the Dutch Guilder, enhanced that although there is not any strong evidence against g =0,

thereis adlight indication of an heavy tail, particularly for the Dutch Guilder.

We here apply the re-sampling techniques of sections 2 and 3. In Figures 5 and 6 it is
shown the stability of the sample paths of the estimate of the optimal sample fraction and of
Hill’s estimate at that optimal level for the exchange rate returns of the US Dollar and of the
Dutch Guilder, respectively. In Figure 7 we show the sample paths of the different estimates
of the tail index, for both sets of data.
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Figure5 Sample path of estimates of optimal sample fraction and Hill estimates at optimal
levels, for the US Dollar exchange rate returns and for sub-sample sizes N =
25(1)163.
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The second order parameter is around r =-1 for both sets of data, and we are in the

presence of heavy tails. The estimate of the tail index g is equal to 0.4 for the US Dollar and

equal to 0.58 for the Dutch Guilder. Despite the shortness of the size of the samples under
study, n = 164, the stability of the sample path of the new estimates is quite striking!
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