Artigo 2º_ página <mark>35</mark>

Mortalidade: Compressão, Deslocamento e Causas de Morte (Portugal 1950-2005)*

Estudo elaborado no âmbito do Projecto PTDC/ SDE/68126/2006 - "O futuro da população portuguesa: a importância da estimação da mortalidade e das migrações a nível regional" — financiado pela Fundação para a Ciência e Tecnologia (2007-2010) e coordenado por Maria Filomena Mendes.

Autora:

Isabel Tiago de Oliveira ISCTE-IUL Isabel.oliveira@iscte.pt

Resumo:

Esta abordagem sobre a mortalidade em Portugal, entre 1950 e 2005, discute duas perspectivas sobre a evolução da mortalidade: a hipótese da concentração-rectangularização e a perspectiva, mais recente, da deslocação da mortalidade. Em Portugal, o aumento da esperança de vida, nos últimos anos, foi acompanhado por uma diminuição da dispersão, se considerados todos os óbitos; e, por outro lado, por uma manutenção da dispersão, se isolado o efeito da diminuição da mortalidade infantil.

O efeito das diferentes causas de morte na dispersão da mortalidade é também analisado, com base nas tábuas com eliminação de causas de morte, o que permite perceber as consequências da diminuição de cada uma das causas sobre a dispersão etária dos óbitos.

Palavras Chave: Mortalidade, Compressão, Deslocamento, Causas de Morte.

Abstract

This analysis on Portuguese mortality, between 1950 and 2005, examine two different perspectives about mortality evolution: the idea of concentration-rectangularization and the proposal of the shifting mortality. In Portugal, the increase in life expectancy is associated with the decrease of the dispersion, if all deaths are considered; but, on the other hand, there is stability in the dispersion, if the mortality before 10 years old is excluded.

The death causes effect in the mortality dispersion is also examined by means of a cause elimination life tables, express the diversity of consequences in age mortality distribution draw from each death cause.

Key words: Mortality, Compression, Shifting, Death causes.

Mortality: compression, shifting and causes of death (Portugal:1950-2005)

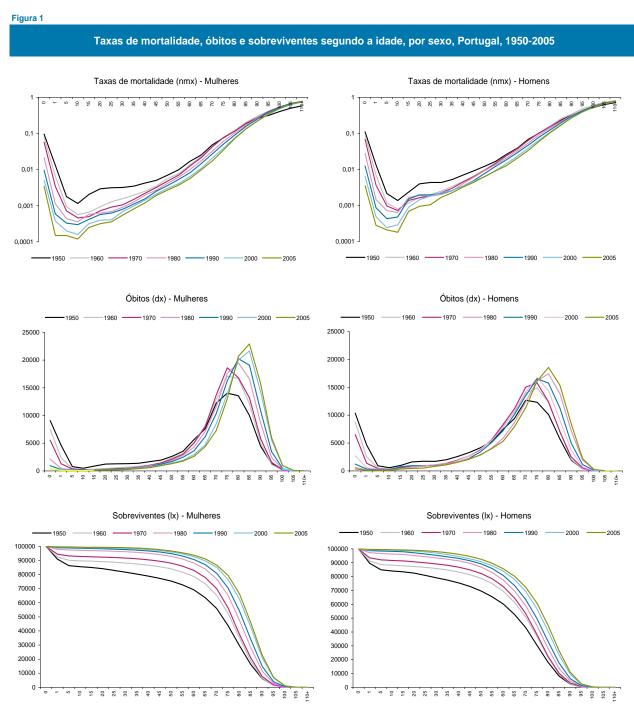
O aumento da esperança de vida verificado nos últimos séculos foi acompanhado por um processo de concentração dos óbitos numa faixa etária, progressivamente, mais estreita e tardia.

A mortalidade das populações tradicionais era marcada pela importância determinante da morte nas idades mais jovens, em particular no primeiro ano de vida, mas também muito significativa durante os primeiros anos de vida. Depois da infância, no início da juventude, encontram-se a mais baixas taxas de mortalidade. A partir de meados da vida adulta, a incidência da mortalidade aumenta, de forma acentuada, à medida que a idade avança. Este padrão de mortalidade, em U, claramente determinado pela dificuldade de sobreviver nos primeiros anos de vida, era característico da dinâmica demográfica das populações tradicionais. Nestas sociedades, a prevalência das doenças infecciosas constituía um cenário particularmente adverso à sobrevivência dos mais frágeis.

A transição epidemiológica (Omran, 1971), definida fundamentalmente a partir da mudança das causas de morte, está, por isso mesmo, estreitamente associada ao aumento da sobrevivência nas idades mais jovens. A época das fomes e das pestes, segundo a designação de Omran, é marcada por uma mortalidade elevada e com fortes flutuações, por vezes crises, por uma baixa esperança de vida e por riscos acrescidos para os recém-nascidos, as crianças e as mulheres em idade reprodutiva. Progressivamente, a diminuição da importância das mortes por doenças infecciosas e parasitárias faz diminuir a mortalidade em geral e, em particular, os picos de mortalidade, resultando num aumento gradual da esperança de vida das populações. O aumento progressivo das probabilidades de sobrevivência traduziu-se em aumentos sucessivos da esperança de vida à nascença, em particular quando se verificaram fortes reduções na mortalidade das crianças e jovens. Depois desta fase, iniciase um terceiro estádio, o das doenças crónicas e degenerativas, no qual os óbitos estão concentrados nas idades mais avançadas e a esperança de vida é elevada. Actualmente, a morte ocorre fundamentalmente nas idades mais avançadas e o padrão de mortalidade, segundo a idade, pode ser mais adequadamente descrito como um J. Por um lado, as taxas de mortalidade nas idades mais jovens são muito reduzidas e, por outro lado, os óbitos concentram-se nas idades mais avançadas.

A transição epidemiológica constitui uma visão global das mudanças da mortalidade num tempo de longa duração. No período mais recente, as mudanças parecem ser no sentido da definição de um quarto estádio baseado no adiamento da mortalidade para idades mais tardias, sem que se verifique uma mudança nas principais causas de morte (Olshansky e Ault, 1986).

A transformação do modelo de mortalidade, que acompanha a transição epidemiológica, traduz-se no aumento da idade média em que ocorrem os óbitos, mas também num processo de concentração dos óbitos sobre uma faixa etária cada vez mais estreita e tardia (Fries, 1980), à medida que as populações se aproximam de um potencial limite biológico da sobrevivência (segundo Fries, a esperança de vida limite da população seria de 85 anos associada a um desvio padrão nos 4 anos). Este processo de compressão da mortalidade está, inevitavelmente, associado à rectangularização das curvas de sobrevivência.


A transição epidemiológica, proposta por Omran, com a ênfase na análise das causas de morte, e a hipótese de Fries sobre a compressão da mortalidade e rectangularização da função de sobrevivência, cujo foco incide sobre a distribuição etária da mortalidade, traduzem as principais tendências observadas na evolução da mortalidade numa perspectiva de longo prazo.

1. A compressão da mortalidade em Portugal de 1950 a 2005

Esta análise sobre a compressão da mortalidade em Portugal inicia-se centra-se no período entre 1950 e 2005. Neste período, é ainda possível observar os últimos passos do longo processo de transição epidemiológica e de compressão dos óbitos, iniciado anteriormente. Por outro lado, permite-nos trabalhar, para todo este período, com base em tábuas de mortalidade calculadas segundo o mesmo tipo de metodologia a partir da Human Mortality Database (HMD).

Nesta primeira análise, podemos observar, as taxas de mortalidade, os óbitos da tábua e os sobreviventes segundo a idade, em Portugal em 1950 e 2005, de acordo com os dados sobre mortalidade disponibilizados na HMD.

Embora em 1950 a população portuguesa já não se pudesse considerar como tendo uma mortalidade característica das populações tradicionais, a comparação entre 1950 e 2005 permite, ainda assim, verificar a mudança de um padrão de mortalidade em U para o actual modelo em J. As mudança na forma das curvas das taxas específicas de mortalidade segundo a idade mostra que essa transformação decorre fundamentalmente da diminuição da mortalidade infantil e juvenil.

Nota: os grupos etários adoptados são os seguintes: 0; 1-4; 5-9; 10-14; 15-19; 20-24; 25-29; 30-34; 35-39; 40-44; 45-49; 50-54; 55-59; 60-64; 65-69; 70-74; 75-79; 80-84; 85-89; 90-94; 95-99; 100-104; 105-109; 110+

Do mesmo modo, é possível verificar como a distribuição dos óbitos passa de uma bimodal, em 1950, para uma curva unimodal, em 2005. Tal facto vai repercutir-se necessariamente nas medidas de dispersão da mortalidade, como se verá adiante.

A comparação das curvas de sobrevivência segundo a idade em 1950 e 2005 revela, de forma expressiva, o processo de rectangularização da função de sobrevivência associado à concentração da mortalidade nas idades mais avançadas.

A ideia de Fries sobre a concentração da mortalidade em idades sucessivamente mais avançadas tem sido discutida à medida que as análises sobre esta questão vão apresentando resultados contraditórios. Esta perspectiva não é consensual. Pelo contrário, em muitos estudos, as tendências recentes parecem mostrar uma deslocação das taxas de mortalidade e das curvas de sobrevivência para idades mais tardias sem que se continue a verificar uma maior concentração dos óbitos. Mais do que um processo de compressão esta tendência recente traduz, segundo alguns, um deslocamento da mortalidade para idades cada vez mais tardias (Wilmoth e Horiuchi, 1999; Canudas-Romo, 2008; Zureich, 2009).

Em geral, as investigações sobre esta questão baseiam-se em medidas de dispersão que não incluem a mortalidade dos mais jovens ou que estão focadas sobre a mortalidade dos adultos. Dada a enorme importância da mortalidade infantil e juvenil sobre a evolução histórica da mortalidade e, em particular, da esperança de vida, é compreensível que se tente isolar o seu efeito de forma a perceber se, na actualidade, a evolução da mortalidade dos adultos mostra uma tendência para a diminuição ou para o aumento da dispersão na idade em que ocorrem os óbitos. Esta questão é tanto mais importante se pensarmos que a diminuição da mortalidade dos jovens foi um factor muito importante na evolução da esperança de vida, mas que nas populações actuais já não há muitos ganhos a esperar com esta origem. Tanto quanto é possível prever, a evolução da esperança de vida no futuro deve estar associada fundamentalmente aos ganhos na saúde dos adultos e idosos.

O trabalho de Wilmoth e Horiuchi (1999) mostra uma fortíssima correlação (acima de 0.90) entre dez indicadores utilizados para medir a dispersão da idade em que ocorrem os óbitos. A sua análise, baseada na evolução do intervalo inter-quartilico, mostra que a amplitude do intervalo no qual ocorrem os 50% de óbitos centrados sobre a mediana teve uma evolução no sentido do aumento da concentração das idades até aos anos 50 e que, desde aí, se assiste a uma relativa estabilização da variabilidade.

Numa perspectiva diferente, podemos encontrar os trabalhos de Kannisto (2000), que propõe outro tipo de indicadores de concentração. A dispersão das idades é medida a partir do intervalo mais estreito em que ocorrem os 50% ou os 90% de óbitos mais concentrados. A utilização deste tipo de medidas (C50 e C90) mostra que o processo de concentração se prolonga até ao final do período analisado. Por outro lado, Kannisto (2001) mostra também que o deslocamento da idade modal em que ocorrem os óbitos é acompanhado por uma concentração dos óbitos acima desta idade (SDM+).

Os resultados contraditórios, no que respeita a compressão versus deslocamento da mortalidade, devem-se, segundo Robine (2001), às diferentes medidas utilizadas para quantificar a variabilidade da idade em que se morre: o intervalo inter-quartilico; as medidas C (amplitude em que ocorre a percentagem dos óbitos mais concentrado); o desvio-padrão acima de determinada idade (frequentemente acima dos 10 ou dos 30 anos); mas também o desvio padrão acima da idade modal. Mais recentemente, Thatcher, Cheung, Horiuchi e Robine (2010) retomam o indicador proposto por Kannisto, combinando-o com um modelo logístico, e verificam que a concentração dos óbitos acima da idade modal continua na actualidade num conjunto de países caracterizados por elevadas esperanças de vida.

2. Concentração ou deslocamento dos óbitos em Portugal?

Nesta investigação, sobre a mortalidade em Portugal, iremos analisar a evolução das medidas de variabilidade da idade. Numa primeira etapa, as medidas de dispersão foram calculadas relativamente ao conjunto total dos óbitos; posteriormente, as mesmas medidas foram recalculadas excluindo os óbitos até aos 10 anos de forma a isolar o efeito da diminuição da mortalidade dos jovens na evolução da dispersão (o desvio padrão dos óbitos acima dos 10 anos é uma das medidas de dispersão mais frequentemente usadas). Finalmente, foi estimada a importância relativa de cada grupo etário na evolução da variância da idade em que ocorrem os óbitos.

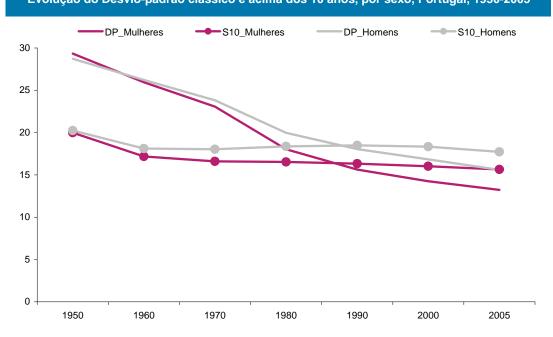
Recorde-se que a esperança de vida à nascença é um indicador que traduz o número médio de anos que um recém-nascido poderia esperar viver, se as probabilidades de sobrevivência observadas num dado período se mantivessem inalteradas ao longo do tempo. Em termos práticos, corresponde à média das idades em que ocorrem os óbitos de uma tábua de mortalidade. Trata-se, portanto, de uma medida de tendência central. Se se pretender medir a dispersão etária da mortalidade, a variância e o desvio-padrão constituem a solução mais simples para perceber a variabilidade da idade em que ocorrem os óbitos.

Na tabela seguinte, podemos observar a evolução da variância, do desvio-padrão, considerados todos os óbitos e apenas os óbitos acima dos 10 anos (S10) em Portugal entre 1950 e 2005.

Quadro 1

Medidas de dispersão da idade em que se morre segundo o sexo, Portugal, 1950-2005										
	Mulheres			Homens						
Anos	Variância	Descida	Anos	Variância	Descida					
1950	860,5		1950	825,2						
1960	673,4	187,1	1960	687,7	137,5					
1970	532,0	141,4	1970	567,4	120,3					
1980	325,0	207,0	1980	398,7	168,7					
1990	244,4	80,6	1990	325,6	73,1					
2000	203,3	41,1	2000	283,3	42,3					
2005	174,9	28,4	2005	243,4	39,9					
Anos	Desvio-padrão	Descida	Anos	Desvio-padrão	Descida					
1950	29,3		1950	28,7						
1960	25,9	3,4	1960	26,2	2,5					
1970	23,1	2,8	1970	23,8	2,4					
1980	18,0	5,1	1980	20,0	3,8					
1990	15,6	2,4	1990	18,0	2,0					
2000	14,3	1,3	2000	16,8	1,2					
2005	13,2	1,1	2005	15,6	1,2					
Anos	Desvio-padrão (S10)	Descida	Anos	Desvio-padrão (S10)	Descida					
1950	20,0		1950	20,2						
1960	17,2	2,8	1960	18,1	2,1					
1970	16,6	0,6	1970	18,0	0,1					
1980	16,5	0,1	1980	18,4	-0,4					
1990	16,3	0,2	1990	18,5	-0,1					
2000	16,0	0,3	2000	18,3	0,2					
2005	15,6	0,4	2005	17,7	0,6					

Fonte: cálculos próprios a partir da Human Mortality Database (HMD)


Podemos observar como, em Portugal, o aumento da esperança de vida foi acompanhado pela diminuição da dispersão da mortalidade, se esta dispersão for medida através do desvio-padrão considerando todos os óbitos. Esta descida da dispersão é particularmente clara durante os anos até 1980, em especial durante os anos 70, e é menos acentuada desde os anos 90.

No entanto, se ao invés de serem considerados todos os óbitos, fossem efectuados os cálculos relativos à variância e desvio-padrão dos que ocorrem acima dos 10 anos, a tendência nos últimos 50 anos teria sido diferente. A diminuição da dispersão existe, mas é muito menos expressiva e parece traduzir, nas últimas décadas, uma situação de estabilidade na dispersão etária da mortalidade.

Como podemos ver no gráfico seguinte, a comparação das tendências verificadas na dispersão da idade é fortemente determinada pela amplitude de idades considerada. Se a dispersão for medida considerando todos os óbitos, então a tendência para a concentração é evidente. Por outro lado, se os efeitos da mortalidade infantil e juvenil forem isolados, o resultado é pouco claro: mais do que uma diminuição da dispersão, assiste-se a uma manutenção dos seus níveis com pequenas flutuações.

Figura 2

Evolução do Desvio-padrão clássico e acima dos 10 anos, por sexo, Portugal, 1950-2005

A importância determinante da mortalidade infantil e juvenil na análise da dispersão da mortalidade é indiscutível e a diferença entre estas duas medidas de dispersão não traduz mais do que a passagem de um modelo de mortalidade bi-modal para um uni-modal, como pudemos observar nas curvas referentes aos padrões de mortalidade apresentadas inicialmente.

Uma outra forma de abordar a questão da importância relativa da mortalidade dos mais jovens sobre a dispersão da mortalidade é a análise segundo as metodologias de decomposição. Neste caso, este tipo de método é usado para perceber duas questões: 1) qual a contribuição de cada grupo etário para a dispersão total em cada momento; 2) qual a contribuição dos mesmos grupos etários para a diminuição das dispersão total perceptível na evolução do desvio-padrão e da variância.

3. Decomposição da dispersão da mortalidade

Para compreender melhor o processo de descida da dispersão da idade em que se morre, é importante perceber a composição dessa dispersão. A dispersão, medida através da variância ou do desvio-padrão, pode ser analisada em função da contribuição dos óbitos em cada grupo etário para o computo total¹. Nesta abordagem, a análise da dispersão será efectuada com base na análise da variância e não do desvio-padrão por uma questão de facilidade de cálculos: uma vez que o desvio-padrão corresponde à raiz quadrada da variância, a análise de uma ou de outra medida de dispersão traduzirá a mesmo tipo de contribuições etárias.

¹ Recorde-se que estas duas medidas de dispersão se baseiam na diferença entre os valores observados e a média da distribuição, ponderada pela respectiva frequência. Neste caso, a dispersão da mortalidade é calculada a partir da idade em que ocorrem os óbitos (x+ax) e a esperança de vida à nascença (e0), ponderada pelo número de óbitos da tábua de mortalidade.

Quadro 2

Contri	Contribuição relativa (%) dos vários grupos etários para a composição da variância mortalidade,Portugal, 1950-2005													
Idades			N	lulheres							Homens			
luades	1950	1960	1970	1980	1990	2000	2005	1950	1960	1970	1980	1990	2000	2005
0	39,0	49,3	50,8	36,6	23,6	16,3	13,1	38,7	47,3	46,6	31,7	19,0	12,0	8,1
1-14	22,5	18,2	14,9	12,3	11,2	8,8	6,2	20,2	16,3	13,2	11,7	9,9	7,1	5,8
15-29	5,7	3,6	4,1	7,8	9,7	9,1	9,0	5,6	4,4	6,5	13,4	18,4	17,7	14,5
30-44	2,8	3,2	4,1	8,1	10,6	13,0	13,1	2,5	3,4	4,9	8,7	12,6	17,4	18,9
45-59	0,7	1,9	3,5	8,5	12,9	15,6	18,0	0,3	1,2	2,5	6,7	9,6	12,9	17,2
60-74	2,3	0,8	0,8	3,5	6,9	10,5	12,9	6,3	3,2	2,3	1,3	1,9	3,3	5,2
75-90	19,5	16,3	14,1	11,1	9,3	6,5	6,1	22,5	20,6	19,3	19,4	18,8	15,9	14,8
90+	7,6	6,6	7,8	12,0	15,7	20,1	21,6	4,0	3,5	4,7	7,1	9,7	13,6	15,5
total	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0

Fonte: cálculos próprios a partir da Human Mortality Database (HMD)

Como podemos verificar, tanto nas mulheres como nos homens, a mortalidade até ao 15º aniversário é grande fonte de variabilidade da idade em que se morre até 1970: mais de 60% da variância total no caso das mulheres e cerca de 60% no caso dos homens. Em 1980, a contribuição relativa da mortalidade infantil e juvenil não chega a atingir os 50% nas mulheres e é ligeiramente superior a 40% nos homens. De facto, como veremos adiante, a descida da dispersão da idade em que se morre verificada até 1980 é largamente explicada pela diminuição da importância relativa da mortalidade infantil e juvenil.

Na actualidade, a variância da mortalidade depende fundamentalmente da distribuição dos óbitos na idade adulta e nas idades mais avançadas. No caso das mulheres, as maiores contribuições acontecem entre os 30 e os 74 anos e acima dos 90 anos e, no caso dos homens, entre os 15 e os 59 anos e acima dos 75 anos. Os grupos etários que menos contribuem para a dispersão da mortalidade são, naturalmente, os que se aproximam mais da esperança de vida (porque nessa situação a diferença entre a idade observada x+ax e e0 é pequena) ou as idades mais jovens (porque, sendo actualmente esta mortalidade tão baixa o número de óbitos da tábua é reduzido).

Do mesmo modo que se pode analisar a contribuição de cada grupo etário para a variância da idade em que se morre, ou para a diferença de esperanças de vida, é possível estender este tipo de análise de decomposição de diferenças outras diferenças (Kitagawa, 1955; Das Gupta, 1978; Canudas-Romo, 2003). Neste caso, vamos estimar a importância relativa da evolução da mortalidade em cada grupo etário para a diminuição da dispersão em torno da idade média em que se morre².

Quadro 3

	Contribu	ıições re	elativas (em perc	entagem) para a	diferen	ça de va	riâncias,	Portuga	I, 1950-200)5
			Mulho	eres					Н	omens		
	1950-60	1960-70	1970-80	1980-90	1990-00	2000-05	1950-60	1960-70	1970-80	1980-90	1990-00	2000-05
0	-1,7	-43,6	-73,1	-76,1	-59,8	-35,7	4,4	-50,5	-81,8	-88,2	-66,0	-35,9
1-14	-37,8	-30,7	-19,0	-15,6	-23,1	-25,3	-39,6	-30,7	-16,8	-19,9	-28,1	-15,3
15-29	-13,3	-1,8	1,7	-1,9	-12,5	-10,0	-11,5	5,5	9,7	9,3	-23,6	-36,8
30-44	-1,2	-0,2	2,2	-0,4	1,3	-12,3	2,2	3,4	4,1	8,8	19,4	-8,2
45-59	3,9	3,7	4,5	4,8	0,2	-1,1	4,2	4,6	7,5	6,4	11,9	13,4
60-74	-7,7	-0,7	3,5	6,9	10,7	4,6	-21,7	-7,5	-4,6	1,2	8,1	8,1
75-90	-31,0	-24,7	-18,8	-16,7	-23,2	-9,0	-32,0	-26,5	-19,1	-22,2	-38,1	-22,9
90+	-11,2	-2,0	-1,2	-0,9	6,5	-11,2	-6,0	1,8	1,0	4,6	16,4	-2,3
Total	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0

Fonte: cálculos próprios a partir da Human Mortality Database (HMD)

² Este tipo de análise, sobre a contribuição de cada grupo etário para a diferença de na variabilidade etária da mortalidade, foi já efectuado, para outros países, por Wilmoth e Horiuchi, 1999 e por Zureik, 2009).

Nas mulheres, durante os anos 50 e 60, a diminuição da variância decorre da contribuição de todos os grupos etários, excepto na faixa dos 45 aos 59 anos. Durante os anos 70, a diminuição da mortalidade dos mais jovens e da mortalidade acima dos 75 anos contribui para a diminuição da dispersão; em simultâneo, a mortalidade entre os 15 e os 74 anos tem o efeito contrário e faz aumentar a variância da idade em que se morre. Durante os anos 80, 90 e no início do século XXI, a maioria dos grupos etários tem uma contribuição no sentido de fazer diminuir a dispersão, mas em algumas faixas etárias o efeito acontece ao contrário: é o caso dos 45 aos 74 anos, durante os anos 80; dos 30 aos 74 anos, nos anos 90; e apenas dos 60 aos 74 anos, no último quinquénio.

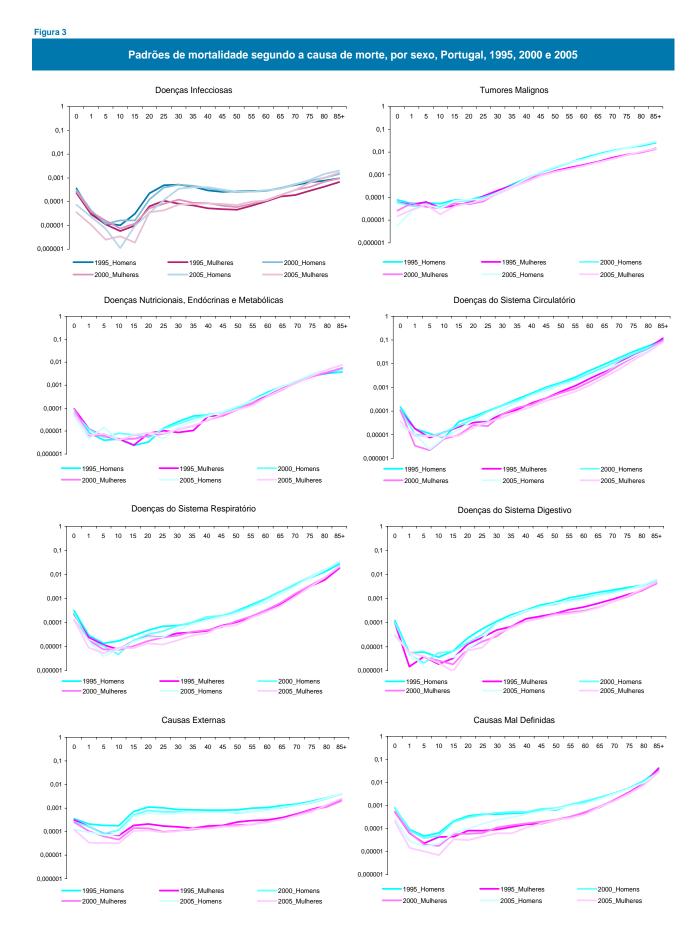
No caso dos homens, é possível encontrar uma situação diferente. Nos anos 50, a maioria dos grupos etários contribui para a diminuição da variância, mas a mortalidade durante o primeiro ano de vida e entre os 30 e os 59 anos têm o efeito contrário, fazendo aumentar a dispersão relativa. Entre os anos 60 e 2000 a diminuição da variância etária da mortalidade decorre das contribuições dos grupos etários até ao 15º aniversário e entre os 60 e os 89 anos; a mortalidade dos grupos etários entre os 15 e os 59 anos (nos anos 80 e 90 até aos 74 anos) e acima dos 90 anos têm o efeito contrário. Nos últimos cinco anos, todos os grupos de idade contribuem para a diminuição da variância da mortalidade, excepto entre os 45 e os 74 anos.

5. A dispersão da mortalidade e as causas de morte

A evolução no padrão etário da mortalidade, que se traduz no aumento da esperança de vida mas também na compressão dos óbitos em idades mais avançadas, está associada à transformação progressiva das causas de morbilidade e da mortalidade. A análise das causas de morte é fundamental para perceber a mudança nos padrões etários da mortalidade na medida em que as diferentes causas apresentam características muito próprias no que respeita à distribuição etária dos óbitos.

Nesta análise sobre a realidade portuguesa, foram consideradas as causas de morte de acordo com a versão 10 da Classificação Internacional das Doenças (ICD-10), disponibilizada pelo Eurostat para o período mais recente.

Quadro 4		
Causas de Morte em Portugal (%) (valores médios de 2004	4 a 2006)	
	Mulheres	Homens
Doenças Infecciosas (A00 -B99)	1,6	2,5
Tumores Malignos (C00-D48)	18,3	24,5
Doenças Nutricionais, Endócrinas e Metabólicas (E00-E90)	5,7	3,9
Doenças do Sistema Circulatório (100-199)	38,9	29,6
Doenças do Sistema Respiratório (J00-J99)	9,9	11,0
Doenças do Sistema Digestivo (K00-K93)	3,6	5,0
Causas Externas (V01-Y89)	2,4	5,9
Outras causas	7,3	6,2
Causas mal definindas (R00-R99)	12,3	11,4
Total	100,0	100,0


Fonte: Eurostat, European shortlist

Como podemos verificar, as doenças do sistema circulatório constituem a principal causa de morte em Portugal tanto nos homens como, de forma ainda mais acentuada, no caso das mulheres onde rondam os 40%. A segunda causa é constituída, na actualidade, pelos tumores malignos com uma expressão ligeiramente mais acentuado nos homens. Em conjunto, estas duas causas de morte representam cerca de 60% dos óbitos nas mulheres e quase 60% nos homens.

As causas mal definidas são, ainda, em Portugal, um problema nas análises de mortalidade, uma vez que a proporção de óbitos cuja causa não é especificada é muito elevada, em especial se comparada com os outros países europeus. Mais de 10% das mortes estão nesta situação e, caso estes óbitos, tivessem sido objecto de uma classificação correcta, todas os outros valores seriam reescritos³.

Nos gráficos seguintes podemos observar a incidência de cada um destas causas de morte segundo a idade e o sexo no período recente.

³ A categoria "Outras causas" refere-se a causas claramente especificadas, mas que foram agrupadas uma vez que a sua importância é muito pequena (a sua soma ronda os 5% em ambos os sexos).

Como podemos verificar, as causas de mortalidade predominantes na actualidade – as doenças do sistema circulatório e os tumores malignos – têm padrões etários distintos.

Os tumores malignos apresentam uma distribuição ascendente, sendo a expressão deste tipo de problemas muito reduzido na infância e verificando-se um aumento da sua incidência à medida que a idade avança.

Relativamente aos óbitos decorrentes de problemas do sistema circulatório, encontramos uma curva mais similar a um J, com uma maior incidência destas situações logo após o nascimento, à qual se segue uma descida e a partir da adolescência assiste-se ao seu aumento constante com a idade.

Esta curva em J, encontrada nas mortes por falência do sistema circulatório é, como já foi apontado, característica do modelo de mortalidade actual e manifesta-se em quase todas as outras causas consideradas, à excepção dos tumores malignos. Mas, se em alguns casos as curvas são bastante similares (doenças nutricionais, endócrinas e metabólicas; doenças do sistema respiratórios, doenças do sistema digestivo), noutras situações as curvas apresentam acentuadas diferenças no início da idade adulta

É o caso das doenças infecciosas, cuja prevalência no início da idade adulta é particularmente forte, em particular no caso dos homens; o mesmo acontece, embora de forma menos acentuada nas mortes por causas externas. Estas duas causas deixam um padrão claro nas curvas de mortalidade: um aumento muito acentuado na juventude, sempre muito mais expressivo no caso dos homens, seguido por uma estabilidade dos valores durante várias décadas com uma subida muito ligeira nas idades mais avançadas.

As causas mal definidas parecem revelar a diminuição no início da curva característica da maioria das causas de morte mas também a subida na juventude revelada pelas duas última – trata-se naturalmente de uma situação para a qual concorrem múltiplas situações pelo que é de esperar que o seu padrão não seja particularmente claro.

Dado que as várias causas de morte apresentam padrões etários distintos, é possível tentar perceber de que forma cada uma das causas de morte afecta a dispersão da mortalidade. Para avaliar o impacto das causas de morte na dispersão etária da mortalidade podemos recorrer às tábuas de mortalidade com eliminação de causas de morte. Habitualmente a utilização deste tipo de métodos tem como objectivo o cálculo da esperança de vida se uma causa de morte for eliminada.

No cálculo destas tábuas de mortalidade, com eliminação de uma causa de morte, é retirada a proporção de óbitos decorrentes da causa eliminada, em cada idade, de forma a obter as probabilidades de sobrevivência que resultaria da inexistência de óbitos devido a essa afecção. A partir daí, é recalculado o número de sobreviventes e de óbitos em cada idade e todas as outras funções da tábua, nomeadamente a esperança de vida (Preston, Heuveline e Guillot, 2001; Chiang, 1984)⁴.

Podemos ensaiar este tipo de análise para a situação recente em Portugal de forma a perceber, não apenas como a esperança de vida é afectada por cada uma das causas de morte, mas fundamentalmente como a dispersão é afectada pelas diferentes causas de morte.

Esta análise baseia-se nas tábuas de mortalidade disponibilizadas pela HMD em conjugação com os dados relativos ao número de óbitos por idade e segundo a causa de morte apresentados pelo Eurostat para 2005⁵.

Nos quadros seguintes, podemos observar o efeito da eliminição de cada uma das causas de morte sobre a esperança de vida e sobre a dispersão etária da mortalidade. (as tábuas de mortalidade com eliminação de causas de morte são apresentadas apenas em anexo).

Como podemos verificar, o impacto das doenças do sistema circulatório é bastante expressivo. No caso de ser eliminada esta causa de morte, a esperança de vida aumentaria de 81,3 anos para 86,7 anos no caso das mulheres e de 74,9 anos para 78,7 anos no caso dos homens.

⁴ O cálculo de tábuas com eliminação de uma causa de morte tem com pressuposto a hipótese de que a eliminação de uma causa de morte não tem influência nas taxas de incidência das restantes causas de morte. Embora esta simplificação não corresponda à realidade, este tipo de exercício permite percepcionar, de forma comparativa, o impacto de cada uma das afecções sobre a duração da vida das populações.

⁵ Para obviar os problemas decorrentes das flutuações dos pequenos números, para o cálculo das proporções de óbitos devidos a cada uma das causas de morte foram considerados os valores médios de 2004, 2005 e 2006; estas proporções foram depois aplicadas a tábua de 2005 da HMD. No quadro relativo à impoirtância relativa de cada uma das causas de morte em 2005, apresentado anteriormente, são também estes os valores que foram apresentados.

Quadro 5

Esperança média de vida à nascença (anos) com eliminação de causas de morte, Portugal, 2005											
Occurs de made	Esperaça	a de Vida	EFEITO) na e₀							
Causas de morte	Mulheres	Homens	Mulheres	Homens							
C/ todas as causas de morte	81,3	74,9									
S/óbitos por causas infecciosas	81,6	75,4	0,2	0,5							
S/óbitos por tumores malignos	83,8	78,3	2,5	3,4							
S/óbitos por doenças endócrinas, nutr. e met.	81,9	75,3	0,6	0,4							
S/óbitos por doenças do sistema circulatório	86,7	78,7	5,3	3,8							
S/óbitos por doenças do sistema respiratório	82,2	76,0	0,9	1,1							
S/óbitos por doenças do sistema digestivo	81,8	75,6	0,4	0,7							
S/óbitos por causa externas	81,8	76,3	0,5	1,4							
S/óbitos devidos às restantes causa de morte	82,3	75,7	0,9	0,9							
S/óbitos por causas mal definidas	82,6	76,3	1,2	1,4							

Fonte: Cálculos próprios a partir da Human Mortality Database (HMD) e Eurostat

Consideremos, agora, de forma comparativa, o impacto da eliminação de cada uma das causas de morte sobre a esperança de vida⁶.

No caso das mulheres podemos perceber que as doenças do sistema circulatório têm um impacto fortíssimo na esperança de vida. Se estas causas de morte fossem eliminadas a expectativa média de vida feminina aumentaria mais de cinco anos. Todas as outras causas de morte apresentam um impacto claramente inferior. Mas os tumores malignos são também uma afecção com um impacto muito significativo, uma vez que a eliminação dos óbitos decorrentes deste tipo de problemas faria subir a esperança de vida em cerca de dois anos e meio.

Nos homens, o impacto das mortes por problemas circulatórios e por tumores malignos é bastante similar. A eliminação destes óbitos resultaria num aumento de cerca de 3.4 e 3.8 anos. As causas de morte externa e as mortes por afecções mal definidas têm, nos homens, um impacto maior do que a sua percentagem do total faria supor, justamente porque o padrão etário associado a estas causas de morte é claramente diferente das restantes. Estas duas causas de morte apresentam, ambas, taxas de mortalidade relativamente elevadas logo no final da adolescência e início da idade adulta. Esta subida mais precoce da mortalidade decorrente destas duas causas, tem como consequência que grande parte dos óbitos poupados, nas tábuas com eliminação destas causas, acontecem em idades mais jovens, acrescentando, por isso, mais anos de vida à tábua do que acontece com outras causas onde a subida das taxas de mortalidade é mais tardia.

Para além do efeito da eliminação de cada uma das causas de morte sobre a esperança de vida, o cálculo destas estas tábuas permite perceber qual o efeito de cada uma das causas sobre a dispersão etária da mortalidade. Para isso é necessário calcular a variância e o desvio-padrão da idade com base nos óbitos destas tábuas.

⁶ Recorde-se que cada uma destas estimativas constitui uma estimativa independente e que, consequentemente, os efeitos da eliminação de cada uma das causas sobre a esperança de vida não são aditivos. Do ponto de vista conceptual, não faria sentido estimar a esperança de vida se todas as causas de morte fossem eliminadas

Quadro 6

Dispersão da mortalidade com eliminação de causas de morte, Portugal, 2005											
acusas da marta	Desvio	Padrão	EFEITO	NO DP							
causas de morte	Mulheres	Homens	Mulheres	Homens							
C/ todas as causas de morte	13,2	15,6									
S/óbitos por causas infecciosas	12,8	15,2	-0,4	-0,4							
S/óbitos por tumores maligno	12,0	15,5	-1,2	-0,1							
S/óbitos por doenças endócrinas, nutr. e met.	13,0	15,6	-0,3	0,0							
S/óbitos por doenças do sistema circulatório	15,4	17,0	2,2	1,4							
S/óbitos por doenças do sistema respiratório	13,2	15,9	-0,1	0,3							
S/óbitos por doenças do sistema digestivo	12,9	15,4	-0,4	-0,2							
S/óbitos por causa externas	12,5	14,2	-0,8	-1,4							
S/óbitos devidos às restantes causa de morte	12,1	15,0	-1,1	-0,6							
S/óbitos por causas mal definidas	13,1	15,4	-0,1	-0,2							

Fonte: Cálculos próprios a partir da Human Mortality Database (HMD) e Eurostat

Tanto no caso das mulheres como no dos homens, todas as causas de morte têm o mesmo tipo de efeito sobre a dispersão das curvas de mortalidade, à excepção dos óbitos por afecções associadas ao sistema circulatório. Se fossem eliminadas as mortes decorrentes deste tipo de problema a dispersão da mortalidade aumentaria de forma clara. Pelo contrário, a generalidade das outras causas de morte têm um efeito comparativamente menor sobre a dispersão da mortalidade e a sua eliminação levaria a uma maior concentração, se bem que ligeira.

Se, a eliminação de uma causa de morte mostra um efeito sobre a dispersão que vai num determinado sentido, é possível pensar que a sua manutenção tem o efeito contrário. Nesta perspectiva, em termos comparativos, as mortes ligadas ao sistema circulatório contribuem no sentido da concentração da mortalidade enquanto todas as outras contribuem, pelo contrário, para a maior variabilidade da idade em que ocorrem os óbitos.

Conclusão

Esta abordagem sobre a compressão da mortalidade, em Portugal, mostra como o aumento da esperança de vida, nos últimos anos, foi acompanhado por uma diminuição da dispersão, se considerados todos os óbitos, mas também por uma manutenção da dispersão da idade em que ocorrem os óbitos, se forem excluídas as mortes dos jovens. Esta diferença entre os resultados destas duas medidas de dispersão é particularmente importante no contexto da discussão sobre as tendências futuras da mortalidade.

A ideia original de Fries, sobre a compressão da mortalidade em idades cada vez mais avançadas, à medida que as populações se aproximavam do limite biológico da longevidade, está associada ao processo de rectangularização das curvas de sobrevivência, que tenderiam a ser, cada vez mais, caracterizadas apenas por uma primeira linha quase horizontal até à idade próxima da esperança de vida, e depois por uma descida brusca, quase vertical, indicando que quase todas as mortes ocorrem numa pequena amplitude etária. Compressão da mortalidade e rectangularização das curvas de sobrevivência são duas ideias inseparáveis, tal como foi proposto por Fries.

Esta hipótese tem sido discutida e nem todos estão de acordo com a ideia de que a continuação da concentração dos óbitos é inevitável. Consideram, pelo contrário, que não existe uma razão substantiva para que isso aconteça e que os resultados dos vários estudos são contraditórios. A manutenção dos níveis de dispersão observados na mortalidade adulta, que tem acompanhado a continuação do aumento da esperança de vida, parece indiciar que estamos actualmente perante um processo de deslocamento das curvas de sobrevivência para idades mais tardias, e não face a um processo de compressão.

A discussão entre a rectangularização versus a deslocação, das curvas de sobrevivência, mantém-se actual e continua estreitamente associada à aceitação ou recusa da ideia de um limite biológico para a longevidade humana. O aumento da duração de vida observado nas últimas décadas (White, 2002; Oeppen e Vaupel, 2002; Vallin e Meslé, 2007) obriga a manter em aberto a discussão sobre o futuro da esperança de vida.

Bibliografia

CANUDAS_ROMO, V. 2003. Decomposition Methods in Demography. Amsterdam, The Netherlands: Rozenberg.

CANUDAS-ROMO, V., 2008. The modal age at death and the shifting mortality hypothesis. Demographic Research, 19(30):1179–1204.

CHEUNG, S. L. K. e ROBINE, J. M., 2007. Increase in common longevity and the compression of mortality: The case of Japan. *Population Studies*, 61(1):85–97.

CHEUNG, S. L. K., ROBINE, J. M., JOW_CHING T, E., and CASELLI, G., 2005. Three dimensions of the survival curve: Horizontalization, verticalization, and longevity extension. *Demography*, 42(2):243–258.

EDWARDS, R.D. e TULJAPURKAR, S. 2005. "Inequality in life spans and mortality convergence across industrialised countries", Morrison Institute for Population and Resource Studies working paper n. 108, http://www.stanford.edu/group/morrinst/pdf/108.pdf

FERNANDES, A. A., 2007. "Determinantes da mortalidade e da longevidade: Portugal numa perspectiva europeia (EU 15, 1991-2001)", *Análise Social*, XLIII (183): 419-443.

FRIES, J.F. 1980. "Aging, natural death, and the compression of morbidity", N. Engl. J. Med. 303: 130–135

FRIES, J.F., 2005. "The Compression of Morbidity", Milbank Quarterly, Vol. 83, No. 4, 2005 (pp. 801–23)

HORIUCHI, S., WILMOTH, J. R., e PLETCHER, S., 2008. A decomposition method based on a model of continuous change. Demography, 45(4):785–801.

KANNISTO, V., 2000. "Measuring the compression of mortality", Demographic Research, 3(6).

KANNISTO, V., 2001. Mode and dispersion of the length of life. *Population: An English Selection*, 13:159–71.

KITAGAWA, E.M. 1955. "Components of a Difference between Two Rates", *Journal of the American Statistical Association*, 50:1168-1194.

MORAIS, M. G., 2001. "Variação Espacial das Principais Causas de Morte durante o Século XX no Continente Português", *Economia e Sociologia*, 71: 5-39.

MORAIS, M. G., 2002. *Morte no Século XX: A Transição da Mortalidade e Estruturas de Causa de Morte em Portugal Continental*. Lisboa, Edições Colibri.

OEPPEN J. e J.W. VAUPEL J.W., 2002. "Broken Limits to Life Expectancy", Science 296: 1029-1031.

OLSANSKY, S.J. e B. AULT, 1986. "The Fourth Stage of the Epidemiologic Transition: the Age of Delayed Degenerative Diseases", *The Milbank Quarterly* 64: 355-391.

OMRAN, A.R., 1971. "The Epidemiologic Transition. A theory of the Epidemiology of Population Change", *The Milbank Quarterly*, 49 (4): 509-538.

PRESTON, S. H., Heuveline, P. e Guillot, M., 2000. *Demography. Mesuring and Modeling Populayion Processes*. Blackwell Publishing.

PRESTON, S. H., 1976. Mortality Patterns in National Populations. New York: Academic Press.

ROBINE, J. M., 2001. "Redefining the stages of the epidemiological transition by a study of the dispersion of life spans: The case of France", *Population: An English Selection*, 13:173–93.

ROBINE, J.-M., 2008. Between compression and shifting mortality the longevity revolution. In European Papers on the New Welfare, number 9, The Turin Conference on the New Welfare. The Risk Institute.

SANTANA, P., 2002. "A Mortalidade 'Evitável' em Portugal Continental, 1989 a 1993", *Revista de Estudos Demográficos*, 32: 107-146.

SANTANA, P., 2005. Geografias da Saúde e do Desenvolvimento. Evolução e Tendências em Portugal. Coimbra, Almedina.

VALLIN, J. e MESLÉ, F. 2009. "The segmented trend line of highest life expectancies", Population and Developement Review 35(1): 159-187.

VEIGA, T.R., GUARDADO MOREIRA, M.J. e FERNANDES, A.A., 2004. "Social Changes and Better Health Conditions of the Portuguese Population 1974-200), Hygiea Internationalis, 4 (1): 255-276.

WHITE, Kevin M, 2002. "Longevity Advances in High-Income Countries, 1955–96", Population and Development Review, 28, 1, 59-76.

WILMOTH, J. e HORIUCHI, S., 1999. Rectangularization revisited: Variability of age at death within human populations. *Demography*, 36(4):475–95.

ZUREICK, S., 2009. "Shifting mortality: inevitable or anomaly?", paper presented at PAA 2010 (paa2010.princeton.edu/download.aspx?submissionId=100909)

Anexos

Tábuas abreviadas de mortalidade com eliminação de causa de morte

Designações e conceitos:

R (-i) - Proporção de óbitos decorrentes de outras causas de morte diferente de i

Funções da tábua de mortalidade base (inclui todas as causas de morte)

lx - Sobreviventes na idade x

npx - Probabilidade de sobreviver, até x+n, para quem tem a idade x

nax - Número médio de anos vividos, entre x e x+n, por aqueles que morrem entre x e x+n

ex - Numero médio de anos de vida para quem tem a idade x

Funções da tábua de mortalidade com eliminação de uma causa de morte

npx (-i) - Probabilidade se sobreviver até x+n, para quem tem a idade x, se for eliminada a causa i

nlx (-i) - Sobreviventes na idade x, se a causa i for eliminada

nax (-i) - Número médio de anos vividos entre x e x+n, por aqueles que morrem entre x e x+n, se a causa i for eliminada

Anexo 1

		Táb	ouas abrev	viadas de l	Mortalidad	e							
	Tabua Base - Mulheres, Portugal, 2005												
Idade	mx	qx	ax	lx	dx	Lx	Тх	ex					
0	0,00349	0,00348	0,06	100 000	348	99 674	8 133 393	81,33					
1	0,00015	0,00061	1,71	99 652	61	398 468	8 033 719	80,62					
5	0,00015	0,00076	2,09	99 591	75	497 735	7 635 252	76,67					
10	0,00012	0,00061	2,40	99 515	61	497 419	7 137 516	71,72					
15	0,00025	0,00123	2,56	99 455	123	496 974	6 640 097	66,77					
20	0,00032	0,00162	2,49	99 332	161	496 256	6 143 124	61,84					
25	0,00036	0,00179	2,49	99 171	177	495 411	5 646 868	56,94					
30	0,00055	0,00277	2,71	98 994	274	494 342	5 151 457	52,04					
35	0,00082	0,00409	2,66	98 720	403	492 656	4 657 115	47,18					
40	0,00121	0,00601	2,71	98 316	591	490 228	4 164 460	42,36					
45	0,00194	0,00966	2,70	97 725	944	486 456	3 674 232	37,60					
50	0,00271	0,01347	2,63	96 781	1 304	480 816	3 187 776	32,94					
55	0,00377	0,01868	2,65	95 477	1 783	473 200	2 706 960	28,35					
60	0,00566	0,02792	2,71	93 694	2 616	462 485	2 233 760	23,84					
65	0,00989	0,04836	2,68	91 078	4 404	445 186	1 771 275	19,45					
70	0,01746	0,08401	2,74	86 673	7 282	416 935	1 326 090	15,30					
75	0,03542	0,16368	2,68	79 392	12 994	366 819	909 155	11,45					
80	0,07298	0,31168	2,66	66 397	20 695	283 564	542 335	8,17					
85	0,13503	0,50116	5,66	45 703	22 904	169 623	258 771	5,66					

			Tabua Base	- Homens, Po	rtugal, 2005			
Idade	mx	qx	ax	lx	dx	Lx	Тх	ex
0	0,00353	0,00352	0,05	100 000	352	99 668	7 488 230	74,88
1	0,00028	0,00112	1,35	99 648	111	398 299	7 388 562	74,15
5	0,00021	0,00105	2,19	99 537	104	497 392	6 990 263	70,23
10	0,00018	0,00091	2,75	99 433	91	496 958	6 492 871	65,30
15	0,00069	0,00347	3,00	99 342	345	496 020	5 995 913	60,36
20	0,00095	0,00472	2,57	98 997	467	493 853	5 499 893	55,56
25	0,00105	0,00522	2,70	98 530	514	491 469	5 006 040	50,81
30	0,00169	0,00843	2,72	98 016	826	488 200	4 514 570	46,06
35	0,00226	0,01125	2,64	97 190	1 093	483 369	4 026 370	41,43
40	0,00325	0,01614	2,63	96 097	1 551	476 802	3 543 001	36,87
45	0,00444	0,02196	2,68	94 546	2 076	467 909	3 066 199	32,43
50	0,00639	0,03143	2,51	92 469	2 906	455 121	2 598 289	28,10
55	0,00911	0,04461	2,64	89 563	3 995	438 402	2 143 169	23,93
60	0,01273	0,06179	2,61	85 568	5 288	415 207	1 704 767	19,92
65	0,02070	0,09866	2,63	80 280	7 920	382 640	1 289 560	16,06
70	0,03384	0,15671	2,64	72 360	11 339	335 079	906 920	12,53
75	0,06050	0,26413	2,60	61 020	16 117	266 377	571 841	9,37
80	0,10421	0,41397	2,52	44 903	18 589	178 385	305 464	6,80
85	0,16920	0,58463	4,83	26 315	15 384	90 923	127 079	4,83

Anexo 2

Anexo 2											
		1	Гábuas Ab	reviadas	de Morta	lidade					
	Tábus	oom Eliminaaã	io das Mortos	nor Doongo	s Infoncioso	a Mulharaa I	Portugal 2005				
Tábua com Eliminação das Mortes por Doenças Infecciosas - Mulheres, Portugal, 2005											
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)		
0	0,98975	100 000	0,99652	0,06	81,33	0,99656	100 000	0,060	81,57		
1	0,93080	99 652	0,99939	1,71	80,62	0,99943	99 656	1,710	80,8		
5	0,98333	99 591	0,99924	2,09	76,67	0,99925	99 599	2,090	76,90		
10	0,97072	99 515	0,99939	2,40	71,72	0,99941	99 525	2,666	71,98		
15	0,99242	99 455	0,99877	2,56	66,77	0,99878	99 466	2,645	67,00		
20	0,88946	99 332	0,99838	2,49	61,84	0,99856	99 344	2,550	62,07		
25	0,87811	99 171	0,99821	2,49	56,94	0,99843	99 201	2,625	57,16		
30	0,86230	98 994	0,99723	2,71	52,04	0,99761	99 045	2,684	52,25		
35	0,90247	98 720	0,99591	2,66	47,18	0,99631	98 808	2,679	47,36		
40	0,92926	98 316	0,99399	2,71	42,36	0,99441	98 444	2,705	42,53		
45	0,95902	97 725	0,99034	2,70	37,60	0,99073	97 894	2,666	37,75		
50	0,97337	96 781	0,98653	2,63	32,94	0,98689	96 987	2,637	33,08		
55	0,97372	95 477	0,98132	2,65	28,35	0,98181	95 715	2,656	28,49		
60	0,98010	93 694	0,97208	2,71	23,84	0,97263	93 973	2,710	23,96		
65	0,98109	91 078	0,95164	2,68	19,45	0,95253	91 401	2,722	19,56		
70	0,98179	86 673	0,91599	2,74	15,30	0,91746	87 063	2,747	15,40		
75	0,98234	79 392	0,83632	2,68	11,45	0,83896	79 876	2,718	11,54		
30	0,98599	66 397	0,68832	2,66	8,17	0,69193	67 013	2,666	8,23		
85	0,99055	45703	0,49884	5,66	5,66	0,50213	46 368	5,714	5,7		

	Tábua	ı com Eliminaç	ão das Mortes	s por Doenç	as Infeccios	as - Homens, I	Portugal, 2005		
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)
0	0,97913	100 000	0,99648	0,05	74,88	0,99655	100 000	0,050	75,37
1	0,91955	99 648	0,99888	1,35	74,15	0,99897	99 655	1,350	74,63
5	0,96499	99 537	0,99895	2,19	70,23	0,99899	99 553	2,190	70,71
10	0,99371	99 433	0,99909	2,75	65,30	0,99910	99 452	3,054	65,78
15	0,98627	99 342	0,99653	3,00	60,36	0,99658	99 362	2,721	60,83
20	0,96469	98 997	0,99528	2,57	55,56	0,99545	99 022	2,554	56,03
25	0,88595	98 530	0,99478	2,70	50,81	0,99537	98 571	2,594	51,28
30	0,79324	98 016	0,99157	2,72	46,06	0,99331	98 115	2,642	46,50
35	0,82371	97 190	0,98875	2,64	41,43	0,99072	97 458	2,664	41,80
40	0,87748	96 097	0,98386	2,63	36,87	0,98582	96 554	2,658	37,17
45	0,92772	94 546	0,97804	2,68	32,43	0,97961	95 185	2,655	32,66
50	0,95807	92 469	0,96857	2,51	28,10	0,96987	93 245	2,647	28,29
55	0,97100	89 563	0,95539	2,64	23,93	0,95666	90 435	2,628	24,08
60	0,97611	85 568	0,93821	2,61	19,92	0,93964	86 515	2,658	20,06
65	0,98324	80 280	0,90134	2,63	16,06	0,90291	81 293	2,661	16,17
70	0,98402	72 360	0,84329	2,64	12,53	0,84559	73 400	2,653	12,63
75	0,98627	61 020	0,73587	2,60	9,37	0,73898	62 067	2,596	9,45
80	0,98606	44 903	0,58603	2,52	6,80	0,59041	45 866	2,528	6,87
85	0,99019	26 315	0,41537	4,83	4,83	0,41897	27 080	4,878	4,88

Anexo 3

			Tábuas Ab	reviadas	de Morta	lidade					
Tábua com Eliminação das Mortes por Tumores Malignos - Mulheres, Portugal, 2005											
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)		
0	0,99584	100 000	0,99652	0,06	81,33	0,99653	100000	0,060	83,82		
1	0,80770	99 652	0,99939	1,71	80,62	0,99951	99653	1,710	83,11		
5	0,68408	99 591	0,99924	2,09	76,67	0,99948	99604	2,090	79,15		
10	0,85022	99 515	0,99939	2,40	71,72	0,99948	99553	2,703	74,19		
15	0,83467	99 455	0,99877	2,56	66,77	0,99897	99501	2,667	69,23		
20	0,82826	99 332	0,99838	2,49	61,84	0,99866	99399	2,558	64,30		
25	0,78478	99 171	0,99821	2,49	56,94	0,99859	99265	2,607	59,38		
30	0,74608	98 994	0,99723	2,71	52,04	0,99793	99126	2,630	54,46		
35	0,66012	98 720	0,99591	2,66	47,18	0,99730	98921	2,618	49,57		
40	0,60127	98 316	0,99399	2,71	42,36	0,99638	98654	2,640	44,69		
45	0,53369	97 725	0,99034	2,70	37,60	0,99483	98297	2,632	39,85		
50	0,51391	96 781	0,98653	2,63	32,94	0,99305	97789	2,636	35,04		
55	0,52130	95 477	0,98132	2,65	28,35	0,99022	97110	2,689	30,27		
60	0,57072	93 694	0,97208	2,71	23,84	0,98397	96160	2,769	25,54		
65	0,63761	91 078	0,95164	2,68	19,45	0,96889	94618	2,786	20,91		
70	0,71647	86 673	0,91599	2,74	15,30	0,93907	91675	2,815	16,49		
75	0,79475	79 392	0,83632	2,68	11,45	0,86757	86088	2,772	12,38		
80	0,85712	66 397	0,68832	2,66	8,17	0,72605	74688	2,718	8,85		
85	0,91928	45 703	0,49884	5,66	5,66	0,52764	54227	6,157	6,16		

	Tábua	com Eliminaç	ão das Morte	s por Tumore	es Malignos	- Homens, Poi	rtugal, 2005		
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)
0	0,99841	100000	0,99648	0,05	74,88	0,99649	100000	0,050	78,25
1	0,90792	99648	0,99888	1,35	74,15	0,99898	99649	1,350	77,52
5	0,76240	99537	0,99895	2,19	70,23	0,99920	99547	2,190	73,60
10	0,82129	99433	0,99909	2,75	65,30	0,99925	99468	3,145	68,66
15	0,89787	99342	0,99653	3,00	60,36	0,99688	99393	2,737	63,71
20	0,91210	98997	0,99528	2,57	55,56	0,99569	99083	2,581	58,90
25	0,92481	98530	0,99478	2,70	50,81	0,99517	98657	2,641	54,14
30	0,90346	98016	0,99157	2,72	46,06	0,99238	98180	2,632	49,39
35	0,86577	97190	0,98875	2,64	41,43	0,99025	97432	2,608	44,75
40	0,79391	96097	0,98386	2,63	36,87	0,98716	96483	2,586	40,17
45	0,69625	94546	0,97804	2,68	32,43	0,98466	95244	2,596	35,65
50	0,64409	92469	0,96857	2,51	28,10	0,97964	93783	2,614	31,17
55	0,60704	89563	0,95539	2,64	23,93	0,97268	91874	2,630	26,76
60	0,62232	85568	0,93821	2,61	19,92	0,96109	89364	2,682	22,44
65	0,64214	80280	0,90134	2,63	16,06	0,93547	85886	2,705	18,24
70	0,69240	72360	0,84329	2,64	12,53	0,88868	80344	2,711	14,31
75	0,74581	61020	0,73587	2,60	9,37	0,79553	71400	2,653	10,77
80	0,79548	44903	0,58603	2,52	6,80	0,65371	56802	2,642	7,85
85	0,86085	26315	0,41537	4,83	4,83	0,46939	37132	5,611	5,61

Anexo 4

			Tábuas Ab	reviadas	de Morta	lidade			
Tábua	a com Eliminação	o das Mortes p	oor Doenças E	Endócrinas,	Nutriciciona	is e Metabólica	as - Mulheres,	Portugal, 20	05
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)
0	0,98411	100 000	0,99652	0,06	81,33	0,99658	100 000	0,060	81,88
1	0,95429	99 652	0,99939	1,71	80,62	0,99942	99 658	1,710	81,17
5	0,94936	99 591	0,99924	2,09	76,67	0,99928	99 600	2,090	77,21
10	0,96659	99 515	0,99939	2,40	71,72	0,99941	99 528	2,668	72,27
15	0,97399	99 455	0,99877	2,56	66,77	0,99880	99 469	2,671	67,31
20	0,97368	99 332	0,99838	2,49	61,84	0,99842	99 350	2,572	62,38
25	0,97818	99 171	0,99821	2,49	56,94	0,99825	99 193	2,634	57,48
30	0,97834	98 994	0,99723	2,71	52,04	0,99729	99 019	2,672	52,58
35	0,97859	98 720	0,99591	2,66	47,18	0,99600	98 751	2,663	47,71
40	0,97549	98 316	0,99399	2,71	42,36	0,99414	98 356	2,689	42,89
45	0,97082	97 725	0,99034	2,70	37,60	0,99062	97 779	2,656	38,13
50	0,96716	96 781	0,98653	2,63	32,94	0,98697	96 862	2,633	33,46
55	0,96519	95 477	0,98132	2,65	28,35	0,98196	95 600	2,646	28,87
60	0,94078	93 694	0,97208	2,71	23,84	0,97371	93 876	2,702	24,35
65	0,93018	91 078	0,95164	2,68	19,45	0,95494	91 408	2,720	19,94
70	0,92642	86 673	0,91599	2,74	15,30	0,92192	87 289	2,749	15,75
75	0,92639	79 392	0,83632	2,68	11,45	0,84740	80 474	2,725	11,85
80	0,93526	66 397	0,68832	2,66	8,17	0,70517	68 193	2,686	8,50
85	0,95549	45 703	0,49884	5,66	5,66	0,51452	48 088	5,924	5,92

Tábu	ua com Eliminaç	ção das Mortes	s por Doenças	Endócrinas	, Nutricicion	ais e Metabólio	as - Homens,	Portugal, 20	05
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)
0	0,98757	100 000	0,99648	0,05	74,88	0,99652	100 000	0,050	75,28
1	0,98324	99 648	0,99888	1,35	74,15	0,99890	99 652	1,350	74,54
5	0,92933	99 537	0,99895	2,19	70,23	0,99902	99 543	2,190	70,62
10	0,97784	99 433	0,99909	2,75	65,30	0,99911	99 445	3,075	65,69
15	0,98956	99 342	0,99653	3,00	60,36	0,99657	99 357	2,729	60,74
20	0,99166	98 997	0,99528	2,57	55,56	0,99532	99 016	2,577	55,94
25	0,99545	98 530	0,99478	2,70	50,81	0,99480	98 552	2,645	51,20
30	0,99108	98 016	0,99157	2,72	46,06	0,99164	98 040	2,645	46,45
35	0,98822	97 190	0,98875	2,64	41,43	0,98888	97 221	2,637	41,82
40	0,98617	96 097	0,98386	2,63	36,87	0,98408	96 140	2,631	37,26
45	0,98361	94 546	0,97804	2,68	32,43	0,97840	94 610	2,635	32,82
50	0,98061	92 469	0,96857	2,51	28,10	0,96917	92 566	2,636	28,49
55	0,97638	89 563	0,95539	2,64	23,93	0,95642	89 712	2,621	24,31
60	0,96555	85 568	0,93821	2,61	19,92	0,94027	85 802	2,652	20,30
65	0,95832	80 280	0,90134	2,63	16,06	0,90525	80 678	2,658	16,42
70	0,95142	72 360	0,84329	2,64	12,53	0,85030	73 034	2,653	12,86
75	0,94751	61 020	0,73587	2,60	9,37	0,74781	62 101	2,601	9,65
80	0,95421	44 903	0,58603	2,52	6,80	0,60055	46 440	2,548	7,03
85	0,96355	26 315	0,41537	4,83	4,83	0,42889	27 889	5,013	5,01

Anexo 5

			Tábuas Ab	reviadas	de Morta	lidade			
	Tábua com E	liminação das	Mortes por Do	oenças do S	Sistema Circ	ulatório - Mulh	eres, Portugal	, 2005	
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)
0	0,98960	100 000	0,99652	0,06	81,33	0,99656	100000	0,060	86,67
1	0,94089	99 652	0,99939	1,71	80,62	0,99943	99656	1,710	85,97
5	0,94101	99 591	0,99924	2,09	76,67	0,99928	99598	2,090	82,02
10	0,93040	99 515	0,99939	2,40	71,72	0,99943	99527	2,672	77,07
15	0,96433	99 455	0,99877	2,56	66,77	0,99881	99471	2,666	72,12
20	0,93665	99 332	0,99838	2,49	61,84	0,99848	99353	2,559	67,20
25	0,90528	99 171	0,99821	2,49	56,94	0,99838	99202	2,625	62,30
30	0,90162	98 994	0,99723	2,71	52,04	0,99750	99041	2,665	57,39
35	0,88385	98 720	0,99591	2,66	47,18	0,99638	98794	2,657	52,53
40	0,87429	98 316	0,99399	2,71	42,36	0,99474	98437	2,685	47,71
45	0,86185	97 725	0,99034	2,70	37,60	0,99167	97919	2,651	42,95
50	0,84612	96 781	0,98653	2,63	32,94	0,98859	97103	2,625	38,29
55	0,82404	95 477	0,98132	2,65	28,35	0,98458	95996	2,635	33,70
60	0,78124	93 694	0,97208	2,71	23,84	0,97812	94515	2,680	29,19
65	0,72536	91 078	0,95164	2,68	19,45	0,96468	92447	2,692	24,78
70	0,66735	86 673	0,91599	2,74	15,30	0,94312	89183	2,717	20,59
75	0,60048	79 392	0,83632	2,68	11,45	0,89823	84110	2,722	16,67
80	0,55790	66 397	0,68832	2,66	8,17	0,81190	75550	2,837	13,25
85	0,53113	45 703	0,49884	5,66	5,66	0,69116	61339	10,657	10,66

	Tábua com	Eliminação da	as Mortes por I	Doenças do	Sistema Cir	culatório - Hon	nens, Portugal	, 2005	
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)
0	0,99316	100 000	0,99648	0,05	74,88	0,99650	100000	0,050	78,71
1	0,96277	99 648	0,99888	1,35	74,15	0,99892	99650	1,350	77,99
5	0,98879	99 537	0,99895	2,19	70,23	0,99896	99543	2,190	74,07
10	0,95988	99 433	0,99909	2,75	65,30	0,99913	99440	3,059	69,14
15	0,97581	99 342	0,99653	3,00	60,36	0,99661	99353	2,723	64,20
20	0,95718	98 997	0,99528	2,57	55,56	0,99548	99016	2,574	59,41
25	0,96202	98 530	0,99478	2,70	50,81	0,99498	98569	2,636	54,67
30	0,93043	98 016	0,99157	2,72	46,06	0,99215	98074	2,633	49,93
35	0,89889	97 190	0,98875	2,64	41,43	0,98988	97304	2,620	45,30
40	0,85800	96 097	0,98386	2,63	36,87	0,98614	96320	2,621	40,74
45	0,84086	94 546	0,97804	2,68	32,43	0,98150	94984	2,622	36,28
50	0,80474	92 469	0,96857	2,51	28,10	0,97463	93227	2,630	31,91
55	0,79495	89 563	0,95539	2,64	23,93	0,96437	90862	2,615	27,67
60	0,76150	85 568	0,93821	2,61	19,92	0,95259	87625	2,649	23,60
65	0,74366	80 280	0,90134	2,63	16,06	0,92566	83471	2,653	19,64
70	0,70234	72 360	0,84329	2,64	12,53	0,88718	77266	2,653	16,01
75	0,66339	61 020	0,73587	2,60	9,37	0,81590	68548	2,622	12,70
80	0,63444	44 903	0,58603	2,52	6,80	0,71246	55929	2,735	9,98
85	0,61125	26 315	0,41537	4,83	4,83	0,58448	39847	7,902	7,90

Anexo 6

Allexo		1	Гábuas Ab	reviadas	de Morta	lidade			
	Tábua com Eli	minação das l	Mortes por D	oenças do S	istema Res	piratório - Mulh	neres, Portuga	I, 2005	
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)
0	0,96184	100 000	0,99652	0,06	81,33	0,99665	100 000	0,060	82,22
1	0,94121	99 652	0,99939	1,71	80,62	0,99943	99 665	1,710	81,49
5	0,96536	99 591	0,99924	2,09	76,67	0,99927	99 608	2,090	77,54
10	0,92697	99 515	0,99939	2,40	71,72	0,99943	99 535	2,667	72,59
15	0,96641	99 455	0,99877	2,56	66,77	0,99881	99 479	2,672	67,63
20	0,95756	99 332	0,99838	2,49	61,84	0,99845	99 360	2,572	62,71
25	0,96618	99 171	0,99821	2,49	56,94	0,99827	99 206	2,635	57,80
30	0,96776	98 994	0,99723	2,71	52,04	0,99732	99 035	2,671	52,90
35	0,96529	98 720	0,99591	2,66	47,18	0,99605	98 769	2,665	48,03
40	0,97119	98 316	0,99399	2,71	42,36	0,99416	98 379	2,689	43,21
45	0,96438	97 725	0,99034	2,70	37,60	0,99068	97 805	2,659	38,45
50	0,97194	96 781	0,98653	2,63	32,94	0,98691	96 894	2,632	33,79
55	0,95944	95 477	0,98132	2,65	28,35	0,98207	95 625	2,650	29,20
60	0,95305	93 694	0,97208	2,71	23,84	0,97337	93 910	2,708	24,69
65	0,95124	91 078	0,95164	2,68	19,45	0,95394	91 410	2,715	20,29
70	0,93281	86 673	0,91599	2,74	15,30	0,92141	87 200	2,741	16,14
75	0,91623	79 392	0,83632	2,68	11,45	0,84894	80 347	2,716	12,28
80	0,89860	66 397	0,68832	2,66	8,17	0,71489	68 209	2,701	8,98
85	0,87287	45 703	0,49884	5,66	5,66	0,54495	48 762	6,484	6,48

	Tábua com	Eliminação da	s Mortes por D	oenças do	Sistema Res	spiratório - Hor	mens, Portugal	, 2005	
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)
0	0,96756	100 000	0,99648	0,05	74,88	0,99659	100 000	0,050	75,96
1	0,93955	99 648	0,99888	1,35	74,15	0,99895	99 659	1,350	75,22
5	0,98138	99 537	0,99895	2,19	70,23	0,99897	99 555	2,190	71,29
10	0,95866	99 433	0,99909	2,75	65,30	0,99913	99 452	3,063	66,37
15	0,97757	99 342	0,99653	3,00	60,36	0,99661	99 365	2,728	61,42
20	0,97368	98 997	0,99528	2,57	55,56	0,99540	99 028	2,576	56,62
25	0,97713	98 530	0,99478	2,70	50,81	0,99490	98 573	2,644	51,87
30	0,97211	98 016	0,99157	2,72	46,06	0,99180	98 070	2,643	47,12
35	0,96218	97 190	0,98875	2,64	41,43	0,98917	97 266	2,636	42,49
40	0,96144	96 097	0,98386	2,63	36,87	0,98448	96 213	2,632	37,93
45	0,96203	94 546	0,97804	2,68	32,43	0,97886	94 720	2,637	33,48
50	0,96452	92 469	0,96857	2,51	28,10	0,96967	92 718	2,635	29,15
55	0,95311	89 563	0,95539	2,64	23,93	0,95744	89 906	2,621	24,98
60	0,94625	85 568	0,93821	2,61	19,92	0,94143	86 079	2,649	20,97
65	0,92653	80 280	0,90134	2,63	16,06	0,90824	81 037	2,654	17,11
70	0,90623	72 360	0,84329	2,64	12,53	0,85688	73 602	2,648	13,57
75	0,88017	61 020	0,73587	2,60	9,37	0,76342	63 068	2,600	10,40
80	0,85659	44 903	0,58603	2,52	6,80	0,63271	48 147	2,606	7,81
85	0,82723	26 315	0,41537	4,83	4,83	0,48346	30 463	5,839	5,84

Anexo 7

	Tábuas Abreviadas de Mortalidade										
	Tábua com E	Eliminação das	s Mortes por	Doenças do	Sistema Di	gestivo - Mulhe	eres, Portugal,	2005			
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)		
0	0,99167	100 000	0,99652	0,06	81,33	0,99655	100 000	0,060	81,75		
1	0,96067	99 652	0,99939	1,71	80,62	0,99941	99 655	1,710	81,03		
5	0,97368	99 591	0,99924	2,09	76,67	0,99926	99 596	2,090	77,08		
10	0,98260	99 515	0,99939	2,40	71,72	0,99940	99 523	2,668	72,14		
15	0,99621	99 455	0,99877	2,56	66,77	0,99877	99 463	2,667	67,18		
20	0,97817	99 332	0,99838	2,49	61,84	0,99842	99 341	2,568	62,26		
25	0,97466	99 171	0,99821	2,49	56,94	0,99826	99 184	2,620	57,35		
30	0,93652	98 994	0,99723	2,71	52,04	0,99741	99 011	2,664	52,45		
35	0,92866	98 720	0,99591	2,66	47,18	0,99620	98 754	2,656	47,58		
40	0,90813	98 316	0,99399	2,71	42,36	0,99454	98 379	2,694	42,75		
45	0,92470	97 725	0,99034	2,70	37,60	0,99106	97 842	2,660	37,97		
50	0,92494	96 781	0,98653	2,63	32,94	0,98753	96 967	2,638	33,29		
55	0,93714	95 477	0,98132	2,65	28,35	0,98248	95 759	2,660	28,67		
60	0,94997	93 694	0,97208	2,71	23,84	0,97346	94 081	2,714	24,14		
65	0,95718	91 078	0,95164	2,68	19,45	0,95366	91 584	2,723	19,72		
70	0,95702	86 673	0,91599	2,74	15,30	0,91945	87 340	2,751	15,55		
75	0,96465	79 392	0,83632	2,68	11,45	0,84162	80 305	2,720	11,67		
80	0,96664	66 397	0,68832	2,66	8,17	0,69695	67 587	2,674	8,35		
85	0,97217	45 703	0,49884	5,66	5,66	0,50859	47 105	5,822	5,82		

	Tábua com l	Eliminação da	s Mortes por [Doenças do	Sistema Dig	gestivo - Homei	ns, Portugal, 2	2005	
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)
0	0,99055	100 000	0,99648	0,05	74,88	0,99651	100 000	0,050	75,56
1	0,98082	99 648	0,99888	1,35	74,15	0,99890	99 651	1,350	74,82
5	0,99259	99 537	0,99895	2,19	70,23	0,99896	99 542	2,190	70,90
10	1,00000	99 433	0,99909	2,75	65,30	0,99909	99 438	3,051	65,98
15	0,99483	99 342	0,99653	3,00	60,36	0,99655	99 348	2,727	61,03
20	0,99163	98 997	0,99528	2,57	55,56	0,99532	99 005	2,573	56,23
25	0,98100	98 530	0,99478	2,70	50,81	0,99488	98 541	2,632	51,49
30	0,94626	98 016	0,99157	2,72	46,06	0,99202	98 037	2,634	46,74
35	0,92175	97 190	0,98875	2,64	41,43	0,98963	97 254	2,629	42,09
40	0,90402	96 097	0,98386	2,63	36,87	0,98540	96 245	2,629	37,51
45	0,90196	94 546	0,97804	2,68	32,43	0,98017	94 840	2,636	33,02
50	0,90113	92 469	0,96857	2,51	28,10	0,97163	92 960	2,644	28,64
55	0,91670	89 563	0,95539	2,64	23,93	0,95903	90 323	2,631	24,40
60	0,92617	85 568	0,93821	2,61	19,92	0,94264	86 622	2,662	20,33
65	0,93598	80 280	0,90134	2,63	16,06	0,90735	81 653	2,668	16,40
70	0,95013	72 360	0,84329	2,64	12,53	0,85049	74 088	2,660	12,80
75	0,96022	61 020	0,73587	2,60	9,37	0,74490	63 011	2,602	9,59
80	0,96626	44 903	0,58603	2,52	6,80	0,59669	46 937	2,540	6,98
85	0,96958	26 315	0,41537	4,83	4,83	0,42662	28 007	4,982	4,98

Anexo 8 Tábuas Abreviadas de Mortalidade Tábua com Eliminação das Mortes por Causas Externas - Mulheres, Portugal, 2005 Idade R(-i) npx(-i) lx(-i) nax(-i) ex(-i) 100 000 100 000 0,96556 0,99652 0,06 81,33 0,060 81,80 81,08 0,77654 99 652 0,99939 1,71 80,62 0,99953 99 664 1,710 5 0,77943 99 591 0,99924 2,09 76,67 0,99941 99 617 2,090 77,12 10 0,73757 99 515 2.40 0,99955 2.553 0,99939 71,72 99 558 72,16 15 0,57561 99 455 2.56 0,99929 2,676 67,19 0,99877 66,77 99 513 0,64776 99 332 20 0,99838 2.49 61,84 0,99895 99 442 2,623 62.24 2,686 25 0,74340 99 171 2,49 57,30 0,99821 56,94 0,99867 99 338 30 0,80864 98 994 0,99723 2,71 52,04 0,99776 99 206 2,693 52,37 35 2,688 0,83532 98 720 0,99591 2,66 47,18 0,99658 98 984 47,48 0,89059 98 316 2,710 40 0.99399 2.71 42.36 0.99465 98 645 42.64 45 0,91743 97 725 2,668 37,85 0.99034 2.70 37.60 0,99113 98 117 0,93791 96 781 2,63 97 247 2,640 50 0.98653 32.94 0.98736 33.17 55 0,94601 95 477 0,98132 2,65 28,35 0,98232 96 018 2,658 28,56 60 0,95550 93 694 0,97208 2,71 23,84 0,97331 94 320 2,715 24,03 65 0,96584 91 078 0,95164 2,68 19,45 0,95325 91 803 2,725 19,61 70 86 673 2,74 2,751 0,97315 0,91599 15,30 0,91815 87 511 15,44 75 0,97992 79 392 0,83632 2,68 2,719 11,57 11,45 0,83933 80 348 0,98180 66 397 0,68832 2,66 67 439 2,667 8,26 80 8,17 0,69301 85 0,98584 45 703 0,49884 5,66 5,66 0,50378 46 736 5,741 5,74

	Táb	ua com Elimir	ação das Mor	tes por Cau	sas Externa	s - Homens, Po	ortugal, 2005		
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)
0	0,96550	100 000	0,99648	0,05	74,88	0,99660	100 000	0,050	76,27
1	0,66731	99 648	0,99888	1,35	74,15	0,99925	99 660	1,350	75,53
5	0,66166	99 537	0,99895	2,19	70,23	0,99931	99 586	2,190	71,59
10	0,57937	99 433	0,99909	2,75	65,30	0,99947	99 516	2,706	66,64
15	0,35058	99 342	0,99653	3,00	60,36	0,99878	99 464	2,703	61,67
20	0,36369	98 997	0,99528	2,57	55,56	0,99828	99 343	2,655	56,74
25	0,47920	98 530	0,99478	2,70	50,81	0,99750	99 172	2,807	51,84
30	0,64224	98 016	0,99157	2,72	46,06	0,99458	98 924	2,710	46,96
35	0,71186	97 190	0,98875	2,64	41,43	0,99198	98 387	2,689	42,20
40	0,79400	96 097	0,98386	2,63	36,87	0,98716	97 598	2,669	37,52
45	0,85267	94 546	0,97804	2,68	32,43	0,98124	96 345	2,663	32,97
50	0,89553	92 469	0,96857	2,51	28,10	0,97181	94 538	2,655	28,55
55	0,92345	89 563	0,95539	2,64	23,93	0,95873	91 873	2,634	24,30
60	0,93757	85 568	0,93821	2,61	19,92	0,94195	88 082	2,662	20,24
65	0,94687	80 280	0,90134	2,63	16,06	0,90633	82 969	2,668	16,32
70	0,96158	72 360	0,84329	2,64	12,53	0,84883	75 197	2,659	12,73
75	0,97060	61 020	0,73587	2,60	9,37	0,74254	63 829	2,600	9,52
80	0,97490	44 903	0,58603	2,52	6,80	0,59394	47 396	2,535	6,92
85	0,98061	26 315	0,41537	4,83	4,83	0,42251	28 150	4,926	4,93

Anexo 9

Tábuas Abreviadas de Mortalidade										
Tábua com Eliminação das Mortes por Causas Mal Definidas - Mulheres, Portugal, 2005										
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)	
0	0,94146	100 000	0,99652	0,06	81,33	0,99672	100 000	0,060	82,57	
1	0,90221	99 652	0,99939	1,71	80,62	0,99945	99 672	1,710	81,84	
5	0,93138	99 591	0,99924	2,09	76,67	0,99929	99 617	2,090	77,89	
10	0,94024	99 515	0,99939	2,40	71,72	0,99943	99 547	2,627	72,94	
15	0,86058	99 455	0,99877	2,56	66,77	0,99894	99 490	2,674	67,98	
20	0,90067	99 332	0,99838	2,49	61,84	0,99854	99 385	2,571	63,05	
25	0,87081	99 171	0,99821	2,49	56,94	0,99844	99 240	2,632	58,14	
30	0,88477	98 994	0,99723	2,71	52,04	0,99755	99 085	2,688	53,23	
35	0,92403	98 720	0,99591	2,66	47,18	0,99622	98 842	2,664	48,35	
40	0,90736	98 316	0,99399	2,71	42,36	0,99455	98 468	2,690	43,52	
45	0,91237	97 725	0,99034	2,70	37,60	0,99118	97 931	2,658	38,75	
50	0,91153	96 781	0,98653	2,63	32,94	0,98771	97 068	2,638	34,07	
55	0,92406	95 477	0,98132	2,65	28,35	0,98273	95 875	2,657	29,46	
60	0,92544	93 694	0,97208	2,71	23,84	0,97413	94 219	2,705	24,93	
65	0,91251	91 078	0,95164	2,68	19,45	0,95578	91 782	2,721	20,52	
70	0,91009	86 673	0,91599	2,74	15,30	0,92325	87 723	2,749	16,34	
75	0,90637	79 392	0,83632	2,68	11,45	0,85043	80 990	2,721	12,47	
80	0,89455	66 397	0,68832	2,66	8,17	0,71597	68 877	2,703	9,19	
85	0,83707	45 703	0,49884	5,66	5,66	0,55869	49 314	6,762	6,76	

	Tábua d	com Eliminaçã	o das Mortes	por Causas	Mal Definida	as - Homens, F	ortugal, 2005		
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)
0	0,92707	100 000	0,99648	0,05	74,88	0,99674	100 000	0,050	76,25
1	0,89942	99 648	0,99888	1,35	74,15	0,99899	99 674	1,350	75,50
5	0,91840	99 537	0,99895	2,19	70,23	0,99904	99 573	2,190	71,57
10	0,87828	99 433	0,99909	2,75	65,30	0,99920	99 477	3,068	66,64
15	0,90696	99 342	0,99653	3,00	60,36	0,99685	99 398	2,727	61,69
20	0,89909	98 997	0,99528	2,57	55,56	0,99576	99 085	2,561	56,87
25	0,84578	98 530	0,99478	2,70	50,81	0,99558	98 664	2,637	52,11
30	0,85400	98 016	0,99157	2,72	46,06	0,99280	98 228	2,651	47,33
35	0,86359	97 190	0,98875	2,64	41,43	0,99028	97 521	2,642	42,65
40	0,86710	96 097	0,98386	2,63	36,87	0,98599	96 573	2,635	38,04
45	0,87148	94 546	0,97804	2,68	32,43	0,98084	95 220	2,644	33,55
50	0,88869	92 469	0,96857	2,51	28,10	0,97202	93 395	2,643	29,15
55	0,89059	89 563	0,95539	2,64	23,93	0,96017	90 782	2,630	24,91
60	0,90270	85 568	0,93821	2,61	19,92	0,94405	87 166	2,661	20,84
65	0,90500	80 280	0,90134	2,63	16,06	0,91028	82 289	2,664	16,91
70	0,90327	72 360	0,84329	2,64	12,53	0,85731	74 906	2,661	13,32
75	0,90884	61 020	0,73587	2,60	9,37	0,75673	64 218	2,606	10,09
80	0,90421	44 903	0,58603	2,52	6,80	0,61681	48 596	2,577	7,50
85	0,86940	26 315	0,41537	4,83	4,83	0,46587	29 974	5,556	5,56

Anexo 10

Tábuas Abreviadas de Mortalidade											
Tábua com Eliminação das Mortes por Outras Causas - Mulheres, Portugal, 2005											
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)		
0	0,18017	100 000	0,99652	0,06	81,33	0,99937	100 000	0,061	82,27		
1	0,78569	99 652	0,99939	1,71	80,62	0,99952	99 937	1,710	81,32		
5	0,79236	99 591	0,99924	2,09	76,67	0,99940	99 889	2,090	77,36		
10	0,69471	99 515	0,99939	2,40	71,72	0,99958	99 829	2,709	72,41		
15	0,83577	99 455	0,99877	2,56	66,77	0,99897	99 787	2,705	67,44		
20	0,88779	99 332	0,99838	2,49	61,84	0,99856	99 684	2,586	62,50		
25	0,90788	99 171	0,99821	2,49	56,94	0,99837	99 541	2,642	57,59		
30	0,92124	98 994	0,99723	2,71	52,04	0,99745	99 379	2,676	52,68		
35	0,92780	98 720	0,99591	2,66	47,18	0,99620	99 125	2,670	47,81		
40	0,94311	98 316	0,99399	2,71	42,36	0,99433	98 749	2,698	42,98		
45	0,95623	97 725	0,99034	2,70	37,60	0,99076	98 189	2,658	38,21		
50	0,95311	96 781	0,98653	2,63	32,94	0,98716	97 282	2,633	33,54		
55	0,94909	95 477	0,98132	2,65	28,35	0,98226	96 033	2,651	28,94		
60	0,94320	93 694	0,97208	2,71	23,84	0,97364	94 330	2,707	24,42		
65	0,93900	91 078	0,95164	2,68	19,45	0,95452	91 843	2,720	20,01		
70	0,93492	86 673	0,91599	2,74	15,30	0,92124	87 667	2,747	15,83		
75	0,92887	79 392	0,83632	2,68	11,45	0,84702	80 762	2,720	11,95		
80	0,92215	66 397	0,68832	2,66	8,17	0,70863	68 407	2,692	8,61		
85	0,93560	45 703	0,49884	5,66	5,66	0,52169	48 475	6,050	6,05		

Tábua com Eliminação das Mortes por Outras Causas - Homens, Portugal, 2005										
Idade	R(-i)	lx	npx	nax	ex	npx(-i)	lx(-i)	nax(-i)	ex(-i)	
0	0,19106	100 000	0,99648	0,05	74,88	0,99933	100 000	0,051	75,74	
1	0,73942	99 648	0,99888	1,35	74,15	0,99917	99 933	1,350	74,80	
5	0,80045	99 537	0,99895	2,19	70,23	0,99916	99 850	2,190	70,86	
10	0,83096	99 433	0,99909	2,75	65,30	0,99924	99 766	3,148	65,91	
15	0,92054	99 342	0,99653	3,00	60,36	0,99681	99 691	2,741	60,96	
20	0,94628	98 997	0,99528	2,57	55,56	0,99553	99 372	2,580	56,15	
25	0,94865	98 530	0,99478	2,70	50,81	0,99505	98 928	2,653	51,39	
30	0,96718	98 016	0,99157	2,72	46,06	0,99185	98 438	2,648	46,63	
35	0,96404	97 190	0,98875	2,64	41,43	0,98915	97 635	2,636	41,99	
40	0,95787	96 097	0,98386	2,63	36,87	0,98453	96 576	2,633	37,42	
45	0,96342	94 546	0,97804	2,68	32,43	0,97883	95 083	2,637	32,97	
50	0,96263	92 469	0,96857	2,51	28,10	0,96973	93 070	2,639	28,63	
55	0,96677	89 563	0,95539	2,64	23,93	0,95684	90 253	2,624	24,44	
60	0,96184	85 568	0,93821	2,61	19,92	0,94050	86 357	2,654	20,42	
65	0,95827	80 280	0,90134	2,63	16,06	0,90526	81 219	2,658	16,55	
70	0,94861	72 360	0,84329	2,64	12,53	0,85071	73 524	2,651	13,00	
75	0,93720	61 020	0,73587	2,60	9,37	0,75018	62 547	2,598	9,82	
80	0,92785	44 903	0,58603	2,52	6,80	0,60906	46 922	2,563	7,22	
85	0,92735	26 315	0,41537	4,83	4,83	0,44275	28 578	5,208	5,21	