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Abstract:

• In this paper, we propose an optimization for the simple step stress accelerated life
test for the Fréchet distribution under type I censoring. The extreme value distribu-
tion has recently become increasingly important in engineering statistics as a suitable
model to represent phenomena with extreme observations. One probability distribu-
tion, that is used to model the maximum extreme events, is the Fréchet (extreme value
type II) distribution. A log-linear relationship between the Fréchet scale parameter
and the stress are assumed. Furthermore, we model the effects of changing stress as
a cumulative exposure function. The maximum likelihood estimators of the model
parameters are derived. By minimizing the asymptotic variance of the desired life
estimate and the reliability estimate, we obtain the optimal simple step stress accel-
erated life test. Finally, the simulation results are discussed to illustrate the effect of
the initial estimates on the optimal values.
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• Fréchet distribution; log-linear relationship; maximum likelihood estimator; optimal

design; reliability; step stress accelerated life test; type I censored data.

AMS Subject Classification:

• 90B25, 62P30.



2 Nooshin Hakamipour and Sadegh Rezaei



Optimizing the Simple Step Stress Accelerated Life Test with Fréchet Data 3

1. INTRODUCTION

Nowadays, manufacturers face strong pressure to rapidly develop new,

higher technology products, while improving the productivity. This has moti-

vated the development of methods such as concurrent engineering and encour-

aged wider use of the designed experiments for product and process improvement.

The requirements for higher reliability have increased the need for more up front

testing of the materials, components, and systems. This is in line with the mod-

ern quality philosophy for producing the high reliability products: achieve high

reliability by improving the design and manufacturing processes; move away from

reliance on inspection (or screening) to achieve high reliability [12].

Estimating the failure time distribution of components including high reli-

ability products is particularly difficult. Most modern products are designed to

operate without failure for years, decades, or longer. Thus, a few units will fail

or degrade in a test under the normal conditions. For example, the design and

construction of a communication satellite, may allow only 8 months to test the

components that are expected to be in service for 10 or 15 years. A method for

obtaining information on the life distribution of a product in a timely fashion,

is to test it on an unusually high level of stress (e.g., high levels of temperature,

voltage, pressure, vibration, cycling rate, or load) in order to provoke early fail-

ures. These methods are called the accelerated life tests. The results of this test

are then used to estimate the life distribution of the product.

Engineers in manufacturing industries have used accelerated life test (ALT)

experiments for many decades. The purpose of ALT experiments is to acquire

reliable information quickly.

According to Bai et al. [4] and Nelson [17], one way of applying stress to the

test is a step-stress scheme which allows the stress setting of a unit to be changed

at pre-specified times or upon the occurrence of a fixed number of failures. This

scheme is called step stress accelerated life test (SSALT), which is considered in

this paper.

To implement the SSALT, we first apply a low stress to all products, if a

product endures the stress (does not fail) we apply a higher stress, if only one

change of the stress level is done, it is called a simple step-stress accelerated life

test.The objective of the SSALT experiment is to estimate the percentile life or

reliability prediction by choosing the optimal time of increasing the level of stress

that leads to the most accurate estimate. Our main objective is to choose the

times to change the stress level in such a way that the variance of estimator of

above parameters is minimized under a natural stress level.

The step-stress procedure was first introduced, with the cumulative expo-

sure model, by Nelson [1]. Miller and Nelson [13] provided the optimum simple
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stress plans for the accelerated life testing, where life products are assumed to have

exponentially distributed lifetimes, Bai et al. [4] extended the results of Miller

and Nelson [13] to the case of censoring. Khamis and Higgins [6, 7] obtained the

stress change time which minimizes the asymptotic variance of maximum likeli-

hood estimate of the log mean life at the design condition. Alhadeed and Yang

[2] discussed the optimal simple step-stress plan for the Khamis–Higgins model.

Most of the available literature on step-stress accelerated life testing deals with

the exponential, and Weibull distributions.

The extreme value distribution becomes increasingly important in engineer-

ing statistics as a suitable model to represent the phenomena with large extreme

observations. In engineering, this distribution is often called the Fréchet model.

It is one of the pioneers in extreme value statistics. The Fréchet distribution is

one of the probability distributions used to model the maxima extreme events.

Thus, the Fréchet distribution is well suited to characterize the random variables

of large features and components with a high reliability products. Therefore,

it is an important distribution for modeling the statistical behavior of material

properties for a variety of engineering applications.

Fréchet distribution is a popular model for lifetimes. Some recent applica-

tions have involved the modeling of failure times of air-conditioning systems in jet

planes [11] and the modeling of the behavior of off-site AC power failure recovery

times at three nuclear plant sites [3] Some results for beta Fréchet distribution

are given by [5].

In spite of its popularity, Fréchet distribution has not been used as a lifetime

distribution in simple step stress accelerated life test analysis. This paper is the

first attempt in this regard. We implement the SSALT analysis and design, by

assuming that the failure time of test products follows the Fréchet distribution.

The contents of this paper are organized as follows. The model and basic

assumptions are presented in section 2. The maximum likelihood estimators

(MLEs) and Fisher information matrix are given in section 3. The optimal test

design is derived in section 4, which is followed by a simulation study.

2. MODEL AND TEST PROCEDURE

The Fréchet distribution is a special case of the generalized extreme value

distribution. The Fréchet distribution has applications ranging from an accel-

erated life testing through to earthquakes, floods, horse racing, rainfall, queues

in supermarkets, sea currents, wind speeds and track race records. Kotz and

Nadarajah [8] give some applications in their book.
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To develop appropriate probabilistic models and assess the risks caused

by these events, business analysts and engineers frequently use extreme value

distributions.

The Fréchet distribution was named after the French mathematician Mau-

rice Fréchet (1878–1973). It is also known as the Extreme Value Type II distri-

bution. It has the cumulative distribution function (CDF) specified by

F (t) = exp

{
−
(

t

θ

)
−α
}

(2.1)

for t > 0, α > 0 and θ > 0. The corresponding probability density function (PDF)

is

f(t) =
α

θ

(
t

θ

)
−α−1

exp

{
−
(

t

θ

)
−α
}

,

where α is a shape parameter and θ is a scale parameter. In engineering applica-

tions shape parameter is usually greater than 2.

In a simple SSALT, all n products are initially placed on the test at a lower

stress level S1, and run until time τ when the stress is changed to S2. The test is

continued until all the products run to failure or until a predetermined censoring

time T , whichever occurs first. S0 is stress level at a typical operating condition.

Such a test is called a simple step-stress test because it uses only two stress levels.

Total ni failures are observed at time tij , j = 1, 2, ..., ni, while testing at stress

level Si, i = 1, 2, and nc = n− n1 − n2 products remain unfailed and censored at

time T .

2.1. Basic assumptions

The basic assumptions are:

1. Two stress levels S1 and S2 (S1 < S2) are used in the test.

2. For any level of stress, the life distribution of the test product follows

a Fréchet distribution with the CDF (2.1).

3. The scale parameter θi at stress level i, i = 0, 1, 2 is a log-linear function

of stress, i.e.,
log (θi) = β0 + β1Si

for i = 0, 1, 2, where β0 and β1 are unknown parameters depending on

the nature of the product, and the method of test.

4. A cumulative exposure model holds, i.e., the remaining life of a test

product depends only on the cumulative exposure it has seen [10].

5. The lifetimes of the test products are identically distributed random

variables.
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From these assumptions, the CDF of a test product under simple step-stress

test is

G(t) =






exp

{
−
(

t

θ1

)
−α
}

, 0 ≤ t < τ ,

exp

{
−
(

τ

θ1

+
t − τ

θ2

)
−α
}

, τ ≤ t < ∞ .

(2.2)

The corresponding PDF is

g(t) =






α

θ1

(
t

θ1

)
−α−1

exp

{
−
(

t

θ1

)
−α
}

, 0 ≤ t < τ ,

α

θ2

(
τ

θ1

+
t − τ

θ2

)
−α−1

exp

{
−
(

τ

θ1

+
t − τ

θ2

)
−α
}

, τ ≤ t < ∞ .

3. MAXIMUM LIKELIHOOD ESTIMATORS

The likelihood function under type I censoring can be written as

L (θ1, θ2, α; t) =

n1∏

j=1

g(t1j)

n2∏

j=1

g(t2j)
[
1 − G(T )

]nc
.

Therefore,

L (θ1, θ2, α; t) = αn1+n2

(
1

θ1

)n1
(

1

θ2

)n2 n1∏

j=1

(
t1j

θ1

)
−α−1

exp

{
−

n1∑

j=1

(
t1j

θ1

)
−α
}

·
n2∏

j=1

(
τ

θ1

+
t2j − τ

θ2

)
−α−1

exp

{
−

n2∑

j=1

(
τ

θ1

+
t2j − τ

θ2

)
−α
}

·
(

1 − exp

{
−
(

τ

θ1

+
T − τ

θ2

)
−α
})nc

.

It is usually easier to maximize the logarithm of the likelihood function rather

than the likelihood function itself. The logarithm of the likelihood function is

ℓ = log L(θ1, θ2, α; t)

= (n1 + n2) log α − n1 log θ1 − n2 log θ2

− (α + 1)

n1∑

j=1

log

(
t1j

θ1

)
−

n1∑

j=1

(
t1j

θ1

)
−α

(3.1)

− (α + 1)

n2∑

j=1

log

(
τ

θ1

+
t2j − τ

θ2

)
−

n2∑

j=1

(
τ

θ1

+
t2j − τ

θ2

)
−α

+ nc log

(
1 − exp

{
−
(

τ

θ1

+
T − τ

θ2

)
−α
})

.
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If at least one failure occurred before τ and T , MLEs of θ1 and θ2 do exist.

In this case, MLEs of θ1, θ2 and α and hence the MLEs of β0 and β1 by the

invariance property, they can be obtained through setting to zero the first partial

derivatives of the log likelihood function with respect to θ1, θ2 and α. The system

of equations is:

∂ℓ

∂θ1

= α
n1

θ1

−
n1∑

j=1

α

θ1

A−α
j + (α + 1)

n2∑

j=1

τ

θ2
1

B−1

j(3.2)

−ατ

θ2
1

n2∑

j=1

B−α−1

j − α nc τ θ2

θ1E
C−αD−1 = 0 ,

∂ℓ

∂θ2

= −n2

θ2

+ (α + 1)

n2∑

j=1

t2j − τ

θ2
2

B−1

j − α

n2∑

j=1

t2j − τ

θ2
2

B−α−1

j(3.3)

−α nc (T − τ) θ1

θ2DE
C−α = 0 ,

∂ℓ

∂α
=

n1 + n2

α
−

n1∑

j=1

log Aj +

n1∑

j=1

A−α
j log Aj −

n2∑

j=1

log Bj(3.4)

+

n2∑

j=1

B−α
j log Bj + ncC

−αD−1 log C = 0 ,

where Aj =
t1j

θ1
, j = 1, 2, ..., n1, Bj = τ

θ1
+

t2j−τ
θ2

, j = 1, 2, ..., n2, C = τ
θ1

+ T−τ
θ2

,

D = 1 − exp{C−α} and E = θ1(T − τ) + θ2 τ .

Given that, it is difficult to obtain a closed form solution to the nonlinear

equations (3.2), (3.3) and (3.4), a numerical method is used to solve these equa-

tions. By solving these equations, the MLEs (θ1, θ2, α) and hence MLEs (β0, β1)

can be obtained.

We have used from optimization tool in Matlab software for finding a max-

imum of a function of several variables.

The Fisher information essentially describes the amount of information data

provide about an unknown parameter. It has applications in finding the variance

of an estimator, as well as in the asymptotic behavior of maximum likelihood

estimates. The inverse of the Fisher information matrix is an estimator of the

asymptotic covariance matrix.

The Fisher information matrix F (θ1, θ2, α) is obtained through taking ex-

pectation on the negative of the second partial derivatives of ℓ(θ1, θ2, α) with

respect to θ1, θ2 and α.

F = n




A11 A12 A13

A12 A22 A23

A13 A23 A33



 .
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The calculation detail is presented in Appendix I and II. Therefore, the

elements of F are given as

A11 = E

[
− 1

n
· ∂

2ℓ

∂θ2
1

]
=

α

θ2
1

e1 +
α(α − 1)

θ2
1

I1 + (α + 1)I2 + I3

− ατ (T − τ)
θ2C−α

θ1DE2
ec + α2τ2 θ2C−1−2α(1 − D)

θ3
1
ED2

ec

+ α2τ2 θ2C−1−α

θ3
1
ED

ec − ατ
θ2C−α

θ2
1
ED

ec ,

A22 = E

[
− 1

n
· ∂

2ℓ

∂θ2
2

]
= −e2

θ2
2

+ (α + 1)I4 + I5 +
α2(T − τ)2 θ1C

1−2α(1 − D)

θ3
2
ED2

ec

− ατ (T − τ) θ1C
−α

θ2E2D
ec +

α2(T − τ)2 θ1C
−1−α

θ3
2
ED

ec

− αθ1(T − τ)C−α

θ2
2
ED

ec ,

A33 = E

[
− 1

n
· ∂2ℓ

∂α2

]
=

1

α2
e1 + e2 + I6 +

C−2α (log C)2 (1 − D)

D2
ec

+
C−α (log C)2

D2
ec ,

A12 = E

[
− 1

n
· ∂2ℓ

∂θ1∂θ2

]
= −τ(α + 1)

θ2
1

I7 +
α(α + 1)τ

θ2
1

I8

+ α2τ (T − τ)
C−1−2α(1 − D)

θ1θ2ED2
ec − ατ2 θ2C−α

θ1E2D
ec

+ α2τ (T − τ)
C−α−1

θ1θ2ED
ec + ατ

C−α

θ1ED
ec ,

A13 = E

[
− 1

n
· ∂2ℓ

∂θ1∂α

]
= −e1

θ1

+
1

θ1

I9 +
τ

θ2
1

I10 +
τ

θ2
1

I11 + τ θ2

C−α

θ1ED
ec

− ατ θ2

C−α log C

θ1ED
ec − ατ θ2

C−2α(1 − D) log C

θ1ED2
ec ,

A23 = E

[
− 1

n
· ∂2ℓ

∂θ2∂α

]
= I12 + I13 − α(T − τ) θ1

C−2α(1 − D) log C

θ2ED2
ec

+ θ1(T − τ)
C−α

θ2ED
ec − α(T − τ) θ1

Cα log C

θ2ED
ec .

where the detailed calculation for I1 to I13, and e1, e2 and ec in the formulas

above are in Appendix I and Appendix II, respectively.

The asymptotic variance of the desired estimates is then obtained using the

above Fisher information matrix, which leads to the optimization criteria.
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4. OPTIMUM TEST DESIGN

As mentioned earlier, for the purpose of optimization, two criteria are con-

sidered. The first criterion (Criterion I) is minimizing the asymptotic variance

(AV) of the MLE of the logarithm of the percentile life under usual operating

conditions, which is used when the percentile life is the desired estimate. Fur-

thermore, we can minimize the AV of reliability estimate at time ξ under usual

operating conditions. We call this criterion as the second criterion (Criterion II)

and is used when we want to predict reliability.

We will show the optimal hold times achieved by criterion I and II, with

the symbols of τ∗ and τ+, respectively.

4.1. Criterion I

As mentioned above, in this criterion, we try to minimize the AV of the

MLE of the logarithm of percentile life under the usual operating conditions. This

is the most commonly used criterion.

The reliability function at time t under the usual operating condition, S0,

is:

R0(t) = 1 − G0(t) = 1 − exp

{
−
(

t

θ0

)
−α
}

.

For a specified reliability R, the 100(1−R)-th percentile life under the usual

operating condition, S0, is:

tR = θ0

(
− log (1 − R)

)
−1/α

.

From assumption 3 and the definition, x = S1−S0

S2−S0
, we obtain S0 = S1−xS2

1−x , thus,

log θ0 =
log θ1 − x log θ2

1 − x
.(4.1)

Therefore, the MLE of the log of the 100(1−R)-th percentile life of the Fréchet

distribution with a specified reliability R under the usual operating condition,

S0, is:

log
(
t̂R
)

= log θ̂0 −
1

α̂
log
(
− log (1 − R)

)

=
log θ̂1 − x log θ̂2

1 − x
−

log
(
− log (1 − R)

)

α̂
.
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The optimality criterion used for the SSALT design is to minimize the AV of

the MLE of the log of the 100(1−R)-th percentile life of the Fréchet distribution

at S0 with a specified reliability R. When R = 0.5, log(t̂R) is the logarithm of

the median life at usual operating conditions with stress level S0. To obtain the

AV [log(t̂R)], we use the delta method which described in Appendix III.

The optimal hold time τ∗

0 at which AV [log(t̂R)] reaches its minimum value

leads to the optimal plan:

AV
[
log
(
t̂R
)]

= AV



 log θ̂1 − x log θ̂2

1 − x
−

log
(
− log (1 − R)

)

α̂



 = H1 F̂−1H ′

1 ,

where F̂ is estimated the Fisher information matrix and H1 is the row vector of

the first derivative of log(t̂R) with respect to θ̂1, θ̂2 and α̂; and in practice, the

values of (θ̂1, θ̂2, α̂) are obtained from a previous experience based on a similar

data, or based on a preliminary test result.

H1 =



 1

θ̂1(1 − x)
,

x

θ̂2 (x − 1)
,

log
(
− log (1 − R)

)

α̂2



 .

4.2. Criterion II

Reliability prediction is an important factor in a product design and during

the developmental testing process. In order to accurately estimate the product

reliability, the test design criterion is defined to minimize the AV of the reliability

estimate at a time ξ under the normal operating conditions.

The MLE of reliability at ξ from the Fréchet distribution at the usual

operating stress level, S0, is:

R̂S0
(ξ) = 1 − exp

{
−
(

ξ

θ̂0

)
−bα}

= 1 − exp

{
− exp

{
− α̂ log ξ + α̂ log θ̂0

}}
,

where, by using (4.1), we have

R̂S0
(ξ) = 1 − exp

{
− exp

{
− α̂ log ξ + α̂

log θ̂1 − x log θ̂2

1 − x

}}
.

The AV of the reliability estimate at time ξ under normal operating conditions,

by using the delta method, can be obtained as:

AV
[
R̂S0

(ξ)
]

= AV

[
1 − exp

{
− exp

{
− α̂ log ξ + α̂ log θ̂0

}}]
(4.2)

= H2 F̂−1H ′

2 ,
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where H2 is the row vector of the first derivative of R̂S0
(ξ) with respect to

θ̂1, θ̂2 and α̂, i.e., H2 =
[
H11, H12, H13

]
, where its components are given below.

In practice, Based on experience, some historical data or a preliminary test can

be used to get the values of (θ̂1, θ̂2, α̂).

H11 =
α̂ ξ−bα

θ̂1(1 − x)
exp

{
− ξ−bαe

bα log bθ1−x log bθ2
1−x + α̂

log θ̂1 − x log θ̂2

1 − x

}
,

H12 =
xα̂ ξ−bα

θ̂2 (x − 1)
exp

{
− ξ−bαe

bα log bθ1−x log bθ2
1−x + α̂

log θ̂1 − x log θ̂2

1 − x

}
,

H13 =
1

x − 1

(
exp

{
− ξ−bαe

bα log bθ1−x log bθ2
1−x + α̂

log θ̂1 − x log θ̂2

1 − x

}

· ξ−bα(log ξ − x log ξ − log θ̂1 + x log θ̂2

))
.

The value τ+
0

that minimizes AV
[
R̂S0

(ξ)
]
, given by equation (4.2), leads

to the optimal SSALT plan.

4.3. Simulation study

The main objective of this simulation study is numerical investigation for

illustrating the theoretical results of both estimation and optimal design prob-

lems given in this paper. Considering type I censoring, data were generated from

Fréchet distribution under SSALT for different combinations of the true parame-

ter values of θ1, θ2 and α. The true parameters values used here are (1.5, 1, 1) and

(2.5, 2, 1.5). In addition, τ = 2.5 and T = 5 have been considered. The samples

sizes considered are n = 100, 200, 300, 400, 500, 1000 each with ten thousand repli-

cations. A numerical method is used for the MLEs of θ1, θ2 and α. The nonlinear

likelihood equations, (3.2), (3.3) and (3.4), were solved iteratively. The MLEs,

their mean square errors (MSEs) and their relative errors (REs) are reported in

Table 1 for different sample sizes and different true values of the parameters.

The results provide insight into the sampling behavior of the estimators. They

indicate that the MLEs approximate the true values of the parameters as the

sample size n increases. Similarly, the MSEs and REs decrease with increasing

the sample size.

To illustrate the procedure of the optimum test design, we proposed a

standardized model. A standardized censoring time T0 = 1 is assumed, and the

standardized scale parameter ηi = θi

T is defined. The standardized hold time τ0

is also defined as the ratio of the hold time to the censoring time τ0 = τ
T . Thus

the value of τ0 that minimizes AV is the optimal standardized hold time, and the

optimal hold time is derived from τ∗ = τ∗

0 · T and τ+ = τ+
0
· T , with respect to

criterion I and II. Using the standardized model, we eliminate the input value of

censoring time and embed it in the standardized scale parameters.
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Table 1: The MLEs of the parameters, and the associated MSE and RE
for different sample sizes.

n Parameter
(θ1 = 1.5, θ2 = 1, α =1) (θ1 =2.5, θ2 =2, α = 1.5)

Estimate MSE RE Estimate MSE RE

θ1 1.4404 0.0108 0.0397 2.5228 0.0500 0.0091
n =100 θ2 1.0381 0.0771 0.0381 2.1101 0.2825 0.0091

α 1.0307 0.0103 0.0307 1.5362 0.0367 0.0241

θ1 1.4563 0.0058 0.0291 2.5086 0.0238 0.0034
n =200 θ2 1.0273 0.0461 0.0273 2.0541 0.1372 0.0271

α 1.0205 0.0050 0.0205 1.5180 0.0186 0.0120

θ1 1.4640 0.0040 0.0240 2.5061 0.0156 0.0024
n =300 θ2 1.0196 0.0317 0.0196 2.0374 0.0877 0.0187

α 1.0160 0.0033 0.0160 1.5128 0.0121 0.0085

θ1 1.4682 0.0031 0.0212 2.5044 0.0118 0.0018
n =400 θ2 1.0142 0.0237 0.0142 2.0279 0.0650 0.0140

α 1.0133 0.0025 0.0133 1.5094 0.0090 0.0063

θ1 1.4703 0.0026 0.0198 2.5036 0.0095 0.0014
n =500 θ2 1.0132 0.0194 0.0132 2.0200 0.0501 0.0100

α 1.0177 0.0020 0.0117 1.5073 0.0071 0.0049

θ1 1.4801 0.0012 0.0132 2.5021 0.0046 8.4513×10−4

n = 1000 θ2 1.0055 0.0094 0.0055 2.0106 0.0249 0.0053
α 1.0073 9.5334×10−4 0.0073 1.5034 0.0036 0.0023

Now, the numerical examples are given for calculating the optimal stan-

dardized hold times of the simple SSALT under both criteria.

In the first example, we suppose that a simple SSALT to estimate the

percentile life of the Fréchet distribution under the usual operating condition

with a specified reliability R. For the given values of θ1 = 900, θ2 = 400, α = 2,

T = 1000, x = 0.5 and assuming R = 0.5, we determine the optimal hold time τ∗.

Based on the above transformation, the standardized parameters are obtained as

η1 = 0.9 and η2 = 0.4. Using the criterion I, the optimal standardized hold time is

obtained τ∗

0 = 0.8165. So, the optimum stress change time is obtained τ∗ = 816.5.

Sensitivity analysis is performed to examine the effect of the changes in the

pre-estimated parameters (θ1, θ2, α) on the optimal hold time τ . Its objective is

to identify the sensitive parameters, which need to be estimated with special care

to minimize the risk of obtaining an erroneous optimal solution. According to

the definition of x and R; and since they take different values, we also examine

the impact of changes in their values.

Table 2 presents the standardized optimal hold time for the specified values

of n = 30, R = 0.5, x = 0.5, α = 2, η1 = 0.3, 0.5, ..., 1.7 and η2 = 0.1, 0.3, ..., 1.5.

From this table, we can see that as η1 increases, the optimal standardized stress

change time slightly increases. And also, as η2 increases, then slightly decreases.
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Figure 1 shows the sensitivity of the initially estimated parameters with

respect to the criterion I. We can see:

1. The optimal value of τ∗, slightly increases as η1 and α increase for

smaller values of η1 and α, and converges for larger values of η1 and α;

2. The optimal value of τ∗, slightly decreases as η2, R and x increase, and

it is not too sensitive to parameters η2 and x.
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Figure 1: Optimal standardized hold time versus changes in initial parameters
under criterion I.
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Figure 2: Optimal standardized hold time versus changes in initial parameters
under criterion II.
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In the second example, we suppose a simple SSALT is run to estimate the

reliability at a specified time ξ = 10000. The objective is to design a test that

achieves the best reliability estimates. To obtain the optimal hold time τ+, the

AV of the reliability estimate at time ξ is minimized. The initial parameters

given θ1 = 900, θ2 = 400, α = 2, x = 0.5, T = 1000 and ξ = 10000. Then the

standardized parameters are obtained as η1 = 0.9, η2 = 0.4 and ξ0 = 10. By

criterion II, the optimum standardized hold time is obtained as τ+
0

= 0.8925 and

the optimum stress change time is obtained as τ+ = 8.925.

Table 3 presents the standardized optimal hold time for the specified values

of n = 30, x = 0.5, α = 2, ξ = 10, η1 = 0.3, 0.5, ..., 1.7 and η2 = 0.1, 0.3, ..., 1.5.

This table shows that, as η1 increases, the optimal standardized stress change

time slightly increases. And also, as η2 increases, then slightly decreases.

Figure 2 shows the sensitivity of the initially estimated parameters with

respect to criterion II. We can see:

1. The optimal value of τ+, slightly increases as η1, α and ξ increase for

smaller values of them, and converges for larger values of them;

2. The optimal value of τ+, slightly decreases as η2 and x increase, and is

not too sensitive to parameters η2 and x.

5. CONCLUSION

In this paper, we proposed an optimal design of simple step stress acceler-

ated life test with type I censored Fréchet data. Optimizing test plan will lead to

an improved parameter estimation which would further lead to a higher quality

of inference. The estimation was based on the maximum likelihood.

For the purpose of optimizing, two criteria were considered. These criteria

were based on minimizing the AV of the life estimate and the reliability estimate.

Furthermore, according to the simulation study, we have found that since the op-

timal hold times are not too sensitive to the model parameters, thus the proposed

design is robust. The results show that the simple SSALT model can be reliably

used which would remove the need for examining all the test products and would

have economic benefits concerning time and money.
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APPENDIX I

The Fisher information matrix, can be obtained by taking the expected

values of the negative second derivatives with respect to θ1, θ2 and α of the

function (3.1). The results of these derivatives are given the following:

I11 = −∂2ℓ

∂θ2
1

=
αn1

θ2
1

+

n1∑

j=1

(
α(α + 1)A−α

j

θ2
1

−
2αA−α

j

θ2
1

)

+ (α + 1)

n2∑

j=1

(
− τ2

θ4
1
B2

j

− 2τ

θ3
1
Bj

)

+

n2∑

j=1

(
α(α + 1) τ2B−2−α

j

θ4
1

−
2ατ B−1−α

j

θ3
1

)

− ατ (T − τ)
θ2C−α

θ1DE2
nc + α2τ2 θ2C−1−2α(1 − D)

θ3
1
ED2

nc

+ α2τ2 θ2C−1−α

θ3
1
ED

nc − ατ nc
θ2C−α

θ2
1
ED

,

I22 = −∂2ℓ

∂θ2
2

= −n2

θ2
2

+ α

n2∑

j=1

(
(α + 1)F 2

j B−2−α
j − 2

θ2

B−α−1

j Fj

)

+ (α + 1)

n2∑

j=1

(
−

F 2
j

θ2
2
B2

j

+
2Fj

θ2Bj

)

+
α2(T − τ)2 θ1C

1−2α(1 − D)

θ3
2
ED2

nc −
ατ (T − τ) θ1C

−α

θ2E2D
nc

+
α2(T − τ)2 θ1C

−1−α

θ3
2
ED

nc −
α θ1(T − τ)C−α

θ2
2
ED

nc ,

I33 = − ∂2ℓ

∂α2
=

n1 + n2

α2
+

n2∑

j=1

B−α
j

(
log Bj

)2

+
C−2α(log C)2 (1 − D)

D2
nc +

C−α(log C)2

D2
nc ,

I12 = − ∂2ℓ

∂θ1∂θ2

= −(α + 1)τ

θ2
1

n2∑

j=1

Fj

θ2
1
B2

j

+
α(α + 1)τ

θ2
1

n2∑

j=1

Fj B−2−α
j

+ ατ
C−α

θ1ED
nc + α2τ (T − τ)

C−1−2α(1 − D)

θ1θ2ED2
nc

− ατ2 θ2C−α

θ1E2D
nc + α2τ (T − τ)

C−α−1

θ1θ2ED
nc ,



Optimizing the Simple Step Stress Accelerated Life Test with Fréchet Data 19
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, j = 1, 2, ..., n2.

The results of the above equations are then used to develop the Fisher

information matrix. And also, to simplify the second partial and mixed partial

derivatives, the following definitions are made:
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g(t) d(t) ,

I11 = E

[
1

n

n2∑

j=1

1

Bj

]
=

∫ T

τ

1

Bj
g(t) d(t) ,

I12 = E

[
1

n

n2∑

j=1

Fj

Bj

]
=

∫ T

τ

Fj

Bj
g(t) d(t) ,

I13 = E

[
1

n

n2∑

j=1

Fj B−1−α
j

(
1 − α log Bj

)]

=

∫ T

τ

n2∑

j=1

Fj B−1−α
j

(
1 − α log Bj

)
g(t) d(t) .
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APPENDIX II

Detailed calculations of ei = E
[

ni

n

]
, i = 1, 2 is demonstrated through the

following three steps:

At the first step, n new products are tested at stress levels S1 until time τ ,

where the test units are assumed independent and identically distributed. The

life of items follows the CDF of t in equation (2.2). The number of failures n1

in time τ is a binomial random variable with parameters n and p1. From the

equation (2.3), we have:

p1 = G(τ) = exp

{
−
(

τ

θ1

)
−α}

,

e1 = E

[
n1

n

]
= p1 = exp

{
−
(

τ

θ1

)
−α}

.

The second step starts with n− n1 unfailed items, tested at stress levels S2

until time T . The life of items follows the CDF of t given by the equation (2.2),

where the number of failures n2 follows a binomial distribution with parameters

n − n1 and p2. Then, from the equation (2.2), we have:

p2 = Pr

(
item fails in time T

∣∣∣ it not fails in time τ in first step
)

= 1 − Pr

(
item not fails in item T

∣∣∣ item not fails in time τ
)

=
exp
{
−
(

τ
θ1

+ T−τ
θ2

)
−α
}
− exp

{
−
(

τ
θ1

)
−α
}

1 − exp
{
−
(

τ
θ1

)
−α
} ,

e2 = E

[
n2

n

]
= E

[
n2

n − n1

·n − n1

n

]
= p2 ·(1 − p1) .
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APPENDIX III

In statistics, the delta method is a result concerning the approximate proba-

bility distribution for a function of an asymptotically normal statistical estimator

from knowledge of the limiting variance of that estimator.

A consistent estimator B converges in probability to its true value β, and

often a central limit theorem can be applied to obtain asymptotic normality:

√
n(B − β)

D−→ N(0, Σ) ,

where n is the number of observations and
∑

is a (symmetric positive semi-

definite) covariance matrix. Suppose we want to estimate the variance of a func-

tion h of the estimator B. Keeping only the first two terms of the Taylor series,

and using vector notation for the gradient, we can estimate h(B) as

h(B) ≈ h(β) + ∇h(β)T (B − β) ,

which implies the variance of h(B) is approximately

Var
(
h(B)

)
≈ Var

(
h(β) + ∇h(β)T (B − β)

)

= Var
(
h(β) + ∇h(β)T B −∇h(β)T β

)

= Var
(
∇h(β)T B

)

= ∇h(β)T cov(β) ∇h(β) .

One can use the mean value theorem (for real-valued functions of many

variables) to see that this does not rely on taking first order approximation.

The delta method therefore implies that

√
n
(
h(B) − h(β)

)
D−→ N

(
0,∇h(β)T Σ ∇h(β)

)
.
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sults for beta Fréchet distribution, Communications in Statistics—Theory and

Methods, 40, 798–811.

[6] Khamis, I. H. (1997). Optimum M-step design with K stress variables, Commu-

nications in Statistics: Simulation & Computation, 26(4), 1301–1313.

[7] Khamis, I. H. and Higgins, J. J. (1996). An alternative to the Weibull cumu-
lative exposure model, 1996 Proc. Section on Quality & Productivity, American

Statistical Association, Chicago, Aug., 23(4), 230–350.

[8] Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions: Theory and

Applications, London: Imperial college press.

[9] Fard, N. and Li, C. (2009). Optimal simple step stress accelerated life test
design for reliability prediction, Journal of Statistical Planning and Inference,
139, 1799–1808.

[10] Miller, R. and Nelson, W. (1983). Optimum simple step-stress plans for
accelerated life testing, IEEE Transactions on Reliability, 32(1), 59–65.

[11] Krishna, E.; Jose, K.K. and Ristic, M.M. (2013). Applications of Marshall-
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