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Abstract:

• This work overviews some developments on the estimation of the Receiver Operating
Characteristic (ROC) curve. Estimation methods in this area are constantly being
developed, adjusted and extended, and it is thus impossible to cover all topics and
areas of application in a single paper. Here, we focus on some frequentist and Bayesian
methods which have been mostly employed in the medical setting. Although we
emphasize the medical domain, we also describe links with other fields where related
developments have been made, and where some modeling concepts are often known
under other designations.

Key-Words:

• Bayesian analysis; bi-normal; kernel; receiver operating characteristic curve;
robustness.

AMS Subject Classification:

• 49A05, 78B26.
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1. INTRODUCTION

The Receiver Operating Characteristic (ROC) curve was developed by en-

gineers during World War II for detecting enemy objects in battlefields (Collison,

1998). Its expansion to other fields was prompt and, for instance, in psychology

it was used to study the perceptual detection of stimuli (Swets, 1996). Over

the years, it has been widely applied in many fields including atmospheric sci-

ences, biosciences, experimental psychology, finance, geosciences, and sociology

(Marzaban, 2004; Krzanowski and Hand, 2009, and the references therein). ROC

analysis has also been increasingly used in machine learning and data mining, and

other relevant applications have also emerged in economics (Lasko et al., 2005).

Yet in another setting, Morrison et al. (2003) described the ROC curve as a simple

and effective method to compare the accuracies of reference variables of bacterial

beach water quality. Since several fields have contributed independently to the

development of ROC analysis, many concepts and techniques are often known

under different names in different communities.

This paper provides an overview on some inference methods used in ROC

analysis—which have been mostly employed in the medical setting—, and points

out the usefulness of transferring knowledge from one field to another. The esti-

mation target of interest is the so-called ROC curve which is a graphical represen-

tation of the relationship between false positive and true positive rates or, using

an epidemiological language, it is a graphical representation of Se as a function

of 1− Sp, where Se is the sensitivity and Sp is the specificity of a diagnostic test.

Se is the probability that a truly diseased individual has a positive test result,

and Sp is the probability that a truly non-diseased individual has a negative test

result. Using the true/false positive/negative rates or the specificity and sensitiv-

ity, we deal with conditional probabilities of belonging to a particular predicted

class given the true classification (Krzanowski and Hand, 2009), in a two-class

classification (e.g., diseased and nondiseased subjects, email messages are spam

or not, credit card transactions are fraudulent or not).

In medicine, one of the earliest applications of ROC analysis was published

in the 1960s (Lusted, 1960), although the ROC curve only gained its popular-

ity in the 1970s (Martinez et al., 2003; Zhou et al., 2011). Nowadays, medical

technologies offer a vast array of ways to diagnose a disease, or to predict the

disease progression, and new diagnostic tests and biomarkers are continuously

being studied. ROC analysis is widely used for evaluating the discriminatory

performance of a continuous variable representing a diagnostic test, a marker, or

a classifier.

According to different aims, the ROC analysis is useful to: (i) evaluate the

discriminatory ability of a continuous marker to correctly assign into a two-group
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classification; (ii) find an optimal cut-off point to least misclassify the two-group

subjects; (iii) compare the efficacy of two (or more) diagnostic tests or markers;

and (iv) study the inter-observer variability when two or more observers measure

the same continuous variable.

Many parametric, semiparametric, and nonparametric estimation methods

have been proposed for estimating the ROC curve and its associated summary

measures. Here, we focus on some frequentist and Bayesian methods which have

been mostly employed in the medical setting. In Section 2 we introduce nota-

tion and the basic modeling concepts. Frequentist and Bayesian approaches are

reviewed in Section 3 and Section 4, respectively. The paper ends with a short

discussion in Section 5.

2. DEFINITIONS AND MODELING FRAMEWORK

Let X and Y be two independent random variables, respectively denoting

the diagnostic test measure for a healthy population (D = 0) and for a diseased

population (D = 1), defined using a gold standard. Without loss of generality,

and for an appropriate cut-off point c, the test result is positive if it is greater

than c and negative otherwise.

Let F and G be the distribution functions of the random variables X and

Y , respectively. The sensitivity of the test is given by Se(c) = 1 − G(c), and the

specificity is defined as Sp(c) = F (c). An example is presented in Figure 1.
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Figure 1: Distribution of the diagnostic test measures
for the healthy and the diseased populations.
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The ROC curve is defined as a plot of Se(c) versus 1−Sp(c) for −∞≤c≤∞,

or equivalently as a plot of

(2.1) ROC(t) = 1 − G
(
F−1(1 − t)

)
,

over t ∈ [0, 1], where F−1(1 − t) = inf
{
x ∈ R : F (x) ≥ 1 − t

}
.

The ROC curve is increasing and invariant under any monotone increasing

transformation of the variables X and Y . Several ROC curve summary measures

have been proposed in the literature, such as the area under the curve (AUC) or

the Youden index (maxc{Se(c) + Sp(c) − 1}). They are considered as summaries

of the discriminatory accuracy of a test. The AUC is given by

(2.2) AUC =

∫
1

0

ROC(u) du .

Different approaches to estimate the ROC curve lead to different estimates of

the AUC. The AUC can be interpreted as the probability that, in a randomly

selected pair of nondiseased and diseased individuals, the diagnostic test value

is higher for the diseased subject, i.e., AUC = P (Y > X). Values of AUC close

to 1 suggest a high diagnostic accuracy of the test or marker. Bamber (1975)

established an important link with the popular nonparametric test of Mann–

Whitney. The area of the empirical ROC curve is equal to the Mann–Whitney U

statistic that provides an unbiased nonparametric estimator for the AUC (Faraggi

and Reiser, 2002). Since the seminal work of Bamber (1975), several authors have

proposed refining the nonparametric approach to obtain smoothed ROC curves,

for example, by using the kernel method to be described below. Parametric esti-

mation of the ROC curve is also an active area of research and several proposals

for F and G are considered. The most widely used parametric ROC model is the

bi-normal, which is described in the next section.

3. FREQUENTIST METHODS

3.1. Parametric approaches

3.1.1. The bi-normal estimator

Parametric methods are used when F and G in nondiseased and diseased

populations are known. The bi-normal model is commonly considered, and it

is applicable when both diseased and nondiseased test outcomes follow normal

distributions (Faraggi and Reiser, 2002). If data are actually bi-normal, or a Box–

Cox transformation, such as the logarithm or the square root, makes the data
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bi-normal, then the relevant parameters can be easily estimated by the means

and variances of test values in diseased and nondiseased populations.

Let X and Y be independent normal variables with mean values µ0, µ1 and

variances σ2

0
, σ2

1
. Then, the ROC curve can be summarized in the following way:

(3.1) ROC(t) = Φ
{
a + b Φ−1(t)

}
, 0 ≤ t ≤ 1 ,

where, Φ is the standard normal distribution function and a and b are the sepa-

ration and the symmetry coefficients, respectively, given by a = (µ1 −µ0)/σ1 and

b = σ0/σ1. In this case, the AUC has a closed form given by

(3.2) AUC = Φ

(
a√

1 + b2

)
.

Returning to the example presented in Figure 1, the graphical representa-

tion of the ROC curve is illustrated in Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

t

R
O

C
(t

)

Figure 2: Example of an ROC curve for a bi-normal
model, constructed using Equation (3.1).

The bi-normal model leads to convenient maximum likelihood estimates

(and corresponding asymptotic variances) of the ROC curve parameters.

In this example, the normal distributions for healthy and diseased popu-

lations have the same variance and, hence, the curve is concave. Concavity is a

characteristic of proper ROC curves (Dorfman et al., 1996). This is a desirable

property because it guarantees that the ROC curve will never cross the main
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diagonal. Moreover, it is a property of the optimal ROC curve to establish deci-

sion rules (Huang and Pepe, 2009). However, a problem with using the bi-normal

ROC model is that it is not concave in (0, 1) unless b = 1, as noted by Huang and

Pepe (2009). Hughes and Bhattacharya (2013) characterize the symmetry prop-

erties of bi-normal and bi-gamma ROC curves in terms of the Kullback–Leibler

divergences. Considering the negative diagonal of the plot, a ROC curve may

be symmetric or skewed towards the left-hand axis or the upper axis of the plot.

ROC curves with different symmetry properties may have the same AUC value.

Not all continuous parametric ROC curves are proper. It is well known that the

bi-normal ROC curve is not proper in general, while the bi-gamma ROC curve is

proper (Dorfman et al., 1996; Hughes and Bhattacharya, 2013). Several alterna-

tive models have been explored and compared in simulation studies, considering

bi-gamma, bi-beta, bi-logistic, bi-exponential (a particular case of bi-gamma),

bi-lognormal, bi-Rayleigh and even other proposals, such as the triangular distri-

bution with constrained or unconstrained support (Dorfman et al., 1996; Zou et

al., 1997; Marzaban, 2004; Tang et al., 2010; Pundir and Amala, 2012; Tang and

Balakrishnan, 2011; Hussain, 2012; Hughes and Bhattacharya, 2013).

3.1.2. Robustness of the bi-normal estimator

The choice of the bi-normal estimator to fit a ROC curve is usually justi-

fied by theoretical considerations, mathematical tractability, familiarity with the

normal model or just by convenience. Hanley (1988) presents a table summariz-

ing the most common arguments in favor of the use of this estimator. But some

authors also argue that the bi-normal estimator is robust. The word robust can

have many different meanings. Here it is used in the sense of robust statistics, i.e.

meaning that in the presence of a certain amount of observations coming from a

non-normal distribution the bi-normal estimator will yield reliable results. Lately,

the impact of model misspecification in the parametric or semiparametric models

used in health sciences is gaining importance, since practitioners are aware that

theoretical models are only approximations of reality, and statistical procedures

that give reliable results under model departures are essential for solving real

problems. This concern is addressed by Heritier et al. (2009) and Farcomeni and

Ventura (2010).

In the case of the bi-normal estimator of the ROC curve, authors like Swets

(1986) argue that“Empirical ROC’s drawn from experimental psychology and sev-

eral practical fields, (...) are fitted well on a binormal graph...”. This statement is

reinforced by Hanley (1988), who claims that “...the binormal-based fits are cer-

tainly good enough for all practical purposes.”. Hajian-Tilaki et al. (1997) state

that, “The results suggested that the AUC is robust to departures from binomality

if one uses the binormal model as implemented in LARROC program.”. Neverthe-
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less, these authors were more cautious adding that a possible explanation relies

in the use of ranks instead of the original data, in both estimation procedures.

Walsh (1997) clarifies these arguments. Robustness, in Swets (1986) and

Hanley (1988), is understood as the ability of the bi-normal estimator to fit a ROC

curve that ‘looks right’ in comparison either with the theoretical ROC curve or

with the observed rating method. But this author goes further, discussing the

ability of the bi-normal estimator to produce valid inferences in circumstances in

which the data does not satisfy the normality assumption. A simulation study

to analyze the impact of data coming from a bi-logistic model combined with

bi-normal estimator was developed to study: (i) the AUC estimator, (ii) the

performance of the statistical test to compare AUC from two ROC curves, and

(iii) the impact on size and power of this statistical test. The choice of the bi-

logistic distributions to model departures from bi-normal assumption relies on

the difficulty to distinguish these models, since the logistic model was considered

one of the possible hardest scenarios to detect departures from the normality

assumption. In his simulation study, Walsh also considers the effect of different

sets of decision thresholds, and concludes that the bi-normal estimator is sensitive

to model misspecification and to the location of the decision thresholds.

The problem of robustness has deserved the attention of other authors.

Greco and Ventura (2011) develop an M -estimator for the P (Y > X) in the

context of a stress-strength model, that has direct application in AUC estimation.

Recently, Devlin et al. (2013) discuss the impact of model misspecification in

three estimators resulting from modeling the parametric form of the ROC curve

directly.

3.2. Nonparametric estimation of the ROC curve

3.2.1. Empirical estimator and variants

The simplest nonparametric method is the empirical estimator, which is

based plugging in empirical estimates into (2.1). Specifically, the empirical esti-

mate of the ROC curve is given by

(3.3) R̃OC(t) = 1 − G̃
(
F̃−1(1 − t)

)
,

where F̃−1 and G̃ respectively denote the empirical quantile function and the

empirical distribution function associated to healthy and diseased populations;

roughly speaking, the empirical distribution function is defined, for any given

value t, as the percentage of sample points smaller or equal to t.
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The empirical ROC curve preserves many properties of the empirical dis-

tribution function and it is uniformly convergent to the theoretical curve (Hsieh

and Turnbull, 1996). Nevertheless, the estimator has some drawbacks, and it

may suffer from large variability, particularly for small sample sizes (Lloyd, 1998;

Lloyd and Yong, 1999; Jokiel-Rokita and Pulit, 2013). While this is not a major

problem in machine learning, data mining, and finance—where large samples are

common—in medicine this may be inadequate, as small samples are common-

place in clinical practice. In addition to all this, the estimated ROC curve is not

continuous, and thus its interpretation becomes more complex (Jokiel-Rokita and

Pulit, 2013).

Other methods have been explored to obtain smooth ROC curve estimates,

either through kernel smoothing (Lloyd, 1998; Lloyd and Yong, 1999) or through

smooth versions of the empirical distribution function (Jokiel-Rokita and Pulit,

2013).

3.2.2. Kernel estimator

To overcome the lack of smoothness of the empirical estimator, Zou et al.

(1997) used kernel methods to estimate the ROC curve, which were later improved

by Lloyd (1998). Kernel density estimators are known to be simple, versatile,

with good theoretical and practical properties (Silverman, 1986; Tenreiro, 2010),

merits that the corresponding ROC curve estimator inherit.

Let (x1, ..., xn) and (y1, ..., ym) be two independent samples from X and Y ,

respectively. The kernel density estimators of f and g, the probability density

functions associated with F and G, are:

f̂(x) =
1

nh0

n∑

i=1

K0

(
x − xi

h0

)
, ĝ(y) =

1

mh1

m∑

i=1

K1

(
y − yi

h1

)
.

Here the hi > 0 are bandwidths, which are used to control the amount of

smoothness, and the Ki are kernel functions, that obey (i)
∫

R
Ki(x) dx = 1,

(ii)
∫

R
xKi(x) dx = 0, and (iii)

∫
R

x2Ki(x) dx > 0, for i = 0, 1. Using these esti-

mators, the cumulative distribution functions can be estimated as

(3.4)

F̂ (x) =
1

n

n∑

i=1

∫ x

−∞

1

h0

K0

(
u − xi

h0

)
du , Ĝ(y) =

1

m

m∑

i=1

∫ y

−∞

1

h1

K1

(
v − yi

h1

)
dv .

These integrals can be evaluated numerically. The choice of the kernels K0 and K1

among the available proposals is not problematic, since they all give comparable

results, as was pointed out by Krzanowski and Hand (2009) and Jokiel-Rokita

and Pulit (2013). This justifies the pragmatic option of using equal kernels, and
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a popular option is the Gaussian kernel (Sheather, 2004; Hong et al., 2007; Zhou

et al., 2011; Fabsic, 2012), and in this case Equation (3.4) can be written as

(3.5) F̂ (x) =
1

n

n∑

i=1

Φ

(
x − xi

h0

)
, Ĝ(x) =

1

m

m∑

i=1

Φ

(
y − yi

h1

)
.

Plugging-in (3.4) into (2.1) leads to the kernel-based ROC curve estimator:

(3.6) R̂OC(t) = 1 − Ĝ
(
F̂−1(1 − t)

)
.

The most sensitive aspect of the kernel-based ROC curve estimator in (3.6)

is the choice of the ‘optimal’ bandwidth (Zhou and Harezlak, 2002; Hall and Hyn-

dmann, 2003; Zhou et al., 2011; Jokiel-Rokita and Pulit, 2013). This, combined

with the selection of K determines the properties of the estimator. Zou et al.

(1997) used bandwidths that are asymptotically optimal for estimating f and g.

Lloyd (1998) improved the previous proposal by choosing bandwidths that are

asymptotically optimal for estimating F and G, since the ROC curve depends di-

rectly on these cumulative distribution functions. Lloyd and Yong (1999) showed

how kernel density estimators overcome the empirical ones. Qiu and Le (2001)

proposed a ROC curve estimator based on a kernel distribution function esti-

mator to G and a local smoothing quantile function estimator to F−1. Peng

and Zhou (2004) introduced another kernel estimator involving only one band-

width, estimated in an optimal asymptotical way, that has better performance

near the boundary of the support of X and Y . Koláček and Karunamuni (2009)

proposed a related kernel-based estimator for the ROC curve that removes the

boundary effects. Contrasting with these approaches, Jokiel-Rokita and Pulit

(2013) proposed a strongly consistent estimator based on a smoothed version of

the empirical ROC curve that, according to a simulation study, outperformed the

empirical and a kernel estimator for small sample sizes.

Kernel-based estimators can also be used for estimating the AUC. For ex-

ample, using the estimators proposed by Lloyd (1998) and a Gaussian kernel,

yields the following estimator

(3.7) ÂUC =
1

nm

n∑

i=1

m∑

j=1

Φ

(
yj − xi√
h2

0
+ h2

1

)
.

See Fabsic (2012), for a simulation study comparing several parametric and non-

parametric methods.
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4. BAYESIAN METHODS

4.1. Introduction

Bayesian methods are introduced in ROC curve estimation as an alternative

to maximum likelihood methods. Bayesian approaches enable the introduction

of prior information into the estimation process, which reduces the uncertainty

of the inferences. This point is specially important when a gold standard test,

which correctly classifies all subjects as healthy or diseased, is unavailable, either

because there is no gold standard for the disease or because the procedure is costly,

technically demanding, harmful or even life-threatening. In this framework, the

true state of the individuals is unknown and the modeling process may benefit

from including existing information about the problem under study through the

use of prior distributions.

The Bayesian framework enables obtaining credibility intervals for the ROC

curve and for other summary measures, such as the AUC. As it is known, one of

the benefits of the Bayesian methodology is the capability of producing regions in

terms of the posterior distributions of the parameters. These regions, contrarily

to confidence intervals resulting from frequentist analysis, allow for probabilis-

tic interpretations of the inferences. Additionally, predictive probabilities of the

health status of future individuals can be obtained through the predictive dis-

tribution. Furthermore, the Bayesian perspective is specially suited to model

complex designs, namely through the use of hierarchical structures (Ishwaran

and Gatsonis, 2000; O’Malley and Zou, 2006; Johnson and Johnson, 2006).

It is well known that the ability of a diagnostic test to discriminate between

diseased and healthy populations, may be influenced by various factors (Pepe,

2003). Moreover, assessing the covariate impact may provide useful information

regarding the test adequacy towards different populations and conditions (de

Carvalho et al., 2013). On the contrary, neglecting covariate effects may lead

to biased inferences about the test performance. Covariate effects on the ROC

curves are addressed in several works (e.g. Peng and Hall, 1996; Branscum et al.,

2008; de Carvalho et al., 2013).

Traditionally, in a Bayesian framework, ROC curve estimation has been

explored in a parametric manner. More recently, semiparametric and nonpara-

metric methodologies have also been developed. In the next subsections some of

these approaches will be described.
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4.2. Parametric approaches

Some of the first accounts of using a Bayesian methodology in ROC curve

estimation are based on regression models (Peng and Hall, 1996; Hellmich et al.,

1998). Probit-linked generalized linear regression models are applied to ordinal

test results, leading to Bayesian inferences for ROC curves and functionals such

as the AUC. In particular, the approach adopted by Peng and Hall (1996) admits

latent bi-normal distributions for diseased and nondiseased populations, even

though other parametric distributions could be considered. The authors use data

augmentation techniques to impute unobserved continuous data from the latent

distribution, thus allowing to overcome the difficulties due to the ordinal nature

of the observations. Noninformative priors are applied. This ordinal regression

model can explain modifications observed in the ROC curves caused by changing

the value of a single covariate.

As mentioned earlier, some regression approaches to ROC curve analysis

consider hierarchical structures (O’Malley and Zou, 2006; Johnson and Johnson,

2006). A Bayesian multivariate hierarchical transformation model is developed

by O’Malley and Zou (2006) based on clustered continuous diagnostic test data

with covariates. This approach is useful in the context of multilevel data with

clustered responses, like, for example, radiologic data collected from patients

(individual level) nested in different hospitals (clusters). The authors aim to

model the diagnostic test accuracy and define a composite diagnostic test. The

authors remark that a cluster-specific transformation of the outcomes is applied

to handle the heterogeneity between the clusters and that multiple correlated

outcomes may be used. The methodology is applied to prostate cancer biopsy

data gathered from a multi-center clinical trial.

Johnson and Johnson (2006) address a situation frequently observed in

radiology, in which several radiologists rate, in an ordinal scale, multiple exams

collected from the same individual. A Bayesian hierarchical latent variable model

for analyzing multirater correlated ordinal data is proposed. The three sources

of variation (differences in patients characteristics, in diagnostic exams and in

raters) are explicitly modeled, each one corresponding to a different level of the

model hierarchy. Simulation studies show that this model is more efficient than

the most widely used model for multirater correlated data analysis (Dorfman et

al., 1992).
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4.3. Semiparametric and nonparametric approaches

Bayesian semiparametric and nonparametric approaches have been used

for ROC curve estimation in the last few years (Erkanli et al., 2006; Wang et al.,

2007; Gu et al., 2008; Branscum et al., 2013). These methodologies are still being

developed and constitute a very active line of research.

Nonparametric Bayesian methods are meant to overcome the restrictions

imposed by considering a fixed parametric model and the consequent difficulties

in capturing nonstandard data features, such as multimodality and skewness.

Contrarily to the traditional parametric framework, the nonparametric frame-

work enables a more flexible modeling of the data, in the sense that no specific

parametric family of distributions is considered.

The nonparametric approach entails a modeling framework that requires

specifying a prior distribution over the space of all probability measures. As

pointed out by Inácio (2012), this does not mean an absence of parameters in the

model, on the contrary it involves an (possibly) infinite number of parameters. In

this framework, Dirichlet processes, mixtures of Dirichlet processes, Polya trees,

and mixtures of Polya trees are frequently used priors; for further details on this

see Inácio (2012), and references therein.

A Bayesian semiparametric approach for ROC curve estimation method,

based on mixtures of Dirichlet processes, was developed by Erkanli et al. (2006).

A Gibbs sampling framework is used to obtain posterior distributions of the mix-

tures of Dirichlet processes model, thus providing posterior predictive estimates of

sensitivity, specificity, ROC curves and AUC. The authors show that, even when

a gold standard diagnostic test is not available, the results still stand. Moreover,

it closely parallels the kernel density estimation approach, previously referred to

in this paper.

A nonparametric Bayesian method reported by Hanson et al. (2008) uses

Dirichlet process mixtures and mixtures of Polya trees for analyzing continuous

serologic data. A novelty of this approach is the inclusion of a stochastic ordering

constraint for the serologic values distributions of the infected and noninfected

populations. This is a biologically reasonable assumption, since the serologic

scores tend to be higher for the infected individuals than for the noninfected

ones. According to the authors, the approach has the benefit of guaranteeing

that the AUC is always larger than 0.5, meaning that the ROC curve never goes

below the main diagonal. The two models are applied to Johne’s disease data

observed in dairy cattle. Qualitatively similar inferences are obtained and the

same conclusions, regarding the accuracy of the serologic tests, can be drawn

from both applications.
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In the Bayesian nonparametric context, few works study the effect of co-

variates in ROC curve estimation. This issue is explored by de Carvalho et al.

(2013). The model is based on dependent Dirichlet processes and allows the en-

tire distribution in each group to smoothly change as a function of the covariates.

This approach can accommodate multiple continuous and categorical predictors.

An approximated version of the general model, based on B-splines, was compared

with the semiparametric approach of Pepe (1998), with an extension of the pre-

vious approach that uses a B-splines trend and with the nonparametric kernel

estimator of Rodŕıguez-Álvarez et al. (2011). The proposed model outperforms

its competitors for nonlinear scenarios and small sample sizes. An application of

the model to diabetes diagnosis is presented.

As explained by Inácio (2012), ROC surfaces have been proposed for the

evaluation of the diagnostic accuracy in ordered three-class problems as a direct

generalization of the ROC curve. A flexible Bayesian nonparametric approach

based on mixtures of finite Polya trees priors is described by Inácio (2012).

The bootstrap has been used to ROC curve estimation by Gu et al. (2008).

The authors also present estimation credible intervals of the ROC curve and apply

the approach for testing the validity of the bi-normal assumption.

4.4. Absence of a gold standard

Imperfect diagnostic tests are widely used in medicine and, as we pointed

out earlier, the Bayesian methodology is particularly suited for problems of this

nature (Krzanowski and Hand, 2009).

Returning to the previously mentioned work of Erkanli et al. (2006), an

extension of the nonparametric model to the case of imperfect reference test is

given, in which a binary latent variable is introduced to express the true but

unknown disease status. Extensive literature exists on the use of latent class

models to evaluate the performance of binary diagnostic tests in the absence of a

gold standard, either using maximum likelihood or Bayesian estimation methods

(see Gonçalves et al., 2012, and references therein).

Again, in the context of no gold standard data analysis, Choi et al. (2006)

develop a parametric Bayesian methodology that admits two diagnostic tests

applied to the same individuals. The data are modeled under the bi-normal

assumption; this assumption may require a suitable transformation, which can be

difficult to find in the absence of a gold standard test. Training data or previous

studies with a gold standard could suggest an adequate transformation. The

method is initially formulated for the gold standard case and slightly modified to

address the gold standard absence. A latent variable indicating the true disease
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state is introduced, resembling Erkanli et al. (2006). The method has difficulty in

assigning the correct disease status when the overlap of diseased and nondiseased

groups is too large.

Wang et al. (2007) explore the problem of estimating the ROC curve of a

new ordinal or continuous scale diagnostic test by comparison with an imperfect

binary reference test, assuming conditional independence between the two tests.

Identifiability problems require data from at least two populations with different

prevalences. The method is based on a multinomial model and no assumptions

are needed concerning the shape of the distributions corresponding to the test

values. Care is taken in guaranteeing the monotonicity of the ROC curve.

Both Choi et al. (2006) and Wang et al. (2007) illustrate their methods

using different datasets from Johne’s disease in cattle.

A group of Bayesian latent class models for mixed continuous and discrete

diagnostic test data is explored by Weichenthal et al. (2010). These models are

used to determine the probability of asbestos exposure from lung fiber count data.

The model admits correlations between repeated measurements of the same test

within individuals.

Branscum et al. (2008) propose Bayesian nonparametric and semiparamet-

ric approaches to ROC analysis and disease diagnosis in the absence of a gold

standard. A nonparametric model using mixtures of Polya trees is proposed to

estimate probabilities of disease risk and the ROC curve. Semiparametric exten-

sions of this model are also proposed. These semiparametric models incorporate

additional information regarding the disease status. Two types of information

are used: standard covariate information and information from additional binary

diagnostic tests. Such additional information improves the discriminatory ability

to correctly classify subjects as healthy or diseased, leading to a modeling process

in between the gold standard case and the nonparametric modeling in the absence

of a gold standard. This is a very flexible approach that allows combining in a

single framework available information on risk factors and additional diagnostic

tests outcomes to enhance diagnostic predictive accuracy.

Nonparametric Bayesian analysis involving Polya tree priors is also dealt

with in Branscum et al. (2013). The usefulness of the discussed flexible models

over a standard parametric method is shown in an application to a lung cancer

biomarker.
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5. FINAL REMARKS

Statistical modeling of ROC curves is a vast topic and offers several fu-

ture research lines. The use of flexible models that accommodate covariates and

prior information is an active field of research. If proper ROC curves are de-

sired in many applications, in Bioinformatics not proper ROC curves have been

increasingly used as new tools for the analysis of differentially expressed genes

in microarray experiments (e.g. Parodi et al., 2008; Silva-Fortes et al., 2012).

A particularly relevant issue in this setting is robustness, but further research is

definitely required on this.
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