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Abstract:

• The distribution of the variables that originates from monitoring the variance when
the mean encountered a sustained shift is considered — specifically for the case when
measurements from each sample are independent and identically distributed normal
random variables. It is shown that the solution to this problem involves a sequence
of dependent random variables that are constructed from independent noncentral chi-
squared random variables. This sequence of dependent random variables are the key
to understanding the performance of the process used to monitor the variance and
are the focus of this article. For simplicity, the marginal (i.e. the univariate and
bivariate) distributions and the joint (i.e. the trivariate) distribution of only the first
three random variables following a change in the variance is considered. A multivariate
generalization is proposed which can be used to calculate the entire run-length (i.e.
the waiting time until the first signal) distribution.
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1. INTRODUCTION

We propose a noncentral generalized multivariate beta type II distribution

constructed from independent noncentral chi-squared random variables using the

variables in common technique. This is a new contribution to the existing beta

type II distributions considered in the literature. Tang (1938) studied the dis-

tribution of the ratios of noncentral chi-squared random variables defined on the

positive domain. He considered the ratio, consisting of independent variates,

where the numerator was a noncentral chi-squared random variable while the de-

nominator was a central chi-squared random variable, as well as the ratio where

both the numerator and denominator were noncentral chi-squared random vari-

ables — this was applied to study the properties of analysis of variance tests

under nonstandard conditions. Patnaik (1949) coined the phrase noncentral F

for the first ratio mentioned above. The second ratio is referred to as the doubly

noncentral F distribution. An overview of these distributions is given by John-

son, Kotz & Balakrishnan (1995). More recently Pe and Drygas (2006) proposed

an alternative presentation for the doubly noncentral F by using the results on

the product of two hypergeometric functions. In a bivariate context Gupta et al.

(2009) derived a noncentral bivariate beta type I distribution, using a ratio of

noncentral gamma random variables, that is defined on the unit square; applying

the appropriate transformation will yield a noncentral beta type II distribution

defined on the positive domain. The noncentral Dirichlet type II distribution

was derived by Troskie (1967) as the joint distribution of Vi = Yi

Yr+1
, i = 1, 2, ..., r

where Yi is chi-squared distributed and Yr+1 has a noncentral chi-squared distri-

bution. Sánchez and Nagar (2003) derived the version where both Yi and Yr+1

are noncentral gamma random variables.

Section 2 provides an overview of the practical problem which is the gene-

sis of the random variables U0 = λW0

X
and Uj =

λWj

X +λ
∑j−1

k=0Wk

, j = 1, 2, ..., p with

λ > 0 where X and Wi, i = 0, 1, ..., p are noncentral chi-squared distributed.

In Section 3 the distribution of the first three random variables, i.e. U0, U1, U2 is

derived. Bivariate densities and univariate densities of (U0, U1, U2) also receive at-

tention. Section 4 proposes a multivariate extension, followed by shape analysis,

an example and probability calculations in Sections 5 and 6, respectively.

2. PROBLEM STATEMENT

Adamski et al. (2012) proposed a generalized multivariate beta distribution;

the dependence structure and construction of the random variables originate in

a practical setting where the process mean is monitored, using a control chart
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(see e.g. Montgomery, 2009), when the measurements are independent and iden-

tically distributed having been collected from an Exp(θ) distribution, where θ

was assumed to be unknown.

Monitoring the unknown process variance assuming that the observations

from each independent sample are independent identically distributed (i.i.d.) nor-

mal random variables with the mean known was introduced by Quesenberry

(1991). To gain insight into the performance of such a control chart, in other

words, to determine the probability of detecting a shift immediately or after a

number of samples, the joint distribution of the plotting statistics is needed.

Exact expressions for the joint distribution of the plotting statistics for the chart

proposed by Quesenberry (1991) can be obtained from the distribution derived

by Adamski et al. (2012), the key difference is the fact that it is only the degrees

of freedom of the chi-squared random variables that changes.

Monitoring of the unknown process variance when the known location pa-

rameter sustained a permanent shift leads to a noncentral version of the gen-

eralized multivariate beta distribution proposed by Adamski et al. (2012). To

derive this new noncentral generalized multivariate beta type II distribution we

proceed in two steps. First we describe the practical setting which motivates

the derivation of the distribution, and secondly we derive the distributions in

sections 3 and 4. To this end, let (Xi1, Xi2, ..., Xini
), i = 1, 2, ... represent suc-

cessive, independent samples of size ni ≥ 1 measurements made on a sequence of

items produced in time. Assume that these values are independent and identi-

cally distributed having been collected from a N(µ0, σ
2) distribution where the

parameters µ0 and σ2 denotes the known process mean and unknown process

variance, respectively. Take note that a sample can even consist of an individual

observation because the process mean is assumed to be known and the variance of

the sample can still be calculated as S2
i = (Xi1 −µ0)

2. Suppose that from sample

(time period) κ > 1 the unknown process variance parameter has changed from

σ2 to σ2
1 = λσ2 (also unknown) where λ 6= 1 and λ > 0, but the known process

mean also encountered an unknown sustained shift from sample (time period)

h > 1 onwards, i.e. it changed from µ0 to µ1 where µ1 is also known. To clarify,

the mean of the process at start-up is assumed to be known and denoted µ0 but

the time and the size of the shift in the mean will be unknown in a practical

situation. In order to incorporate and/or evaluate the influence of these changes

in the parameters on the performance of the control chart for the variance, we

assume fixed/deterministic values for these parameters — essentially this implies

then that the mean is known following the shift, i.e. denoted by µ1. Therefore,

the main interest is monitoring the process variance when the process mean is

known, although this mean can suffer at some time an unknown shift. In prac-

tice it is important to note that even though the mean and the variance of the

normal distribution can change independently, the performance of a Shewhart

type control chart for the mean depends on the process variance and vice versa.
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This dependency is due to the plotting statistics and the control limits used. The

proposed control chart could thus be useful in practice when the control chart

for monitoring the mean fails to detect the shift in the mean. For example, in

case a small shift in the mean occurs and a Shewhart-type chart for the mean is

used (which is known for the inefficiency in detecting small shifts compared to

the EWMA (exponentially weighted moving average) and CUSUM (cumulative

sum) charts for the mean which are better in detecting small shifts (Montgomery,

2009)) the shift might go undetected.

Based on the time of the shift in the process mean, this problem can be

viewed in three ways, as illustrated in Figure 1.

Figure 1: The different scenarios.

From Figure 1 we see the following:

Scenario 1: The mean and the variance change simultaneously from µ0 to

µ1 and from σ2 to σ2
1, respectively. Note that, it is assumed

that the shift in the process parameters occurs somewhere

between samples κ − 1 and κ.

Scenario 2: The change in the mean from µ0 to µ1 occurs before the

change in the variance from σ2 to σ2
1.
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Scenario 3: The change in the variance from σ2 to σ2
1 occurs before the

change in the mean from µ0 to µ1.

Because it is assumed that the process variance σ2 is unknown, the first

sample is used to obtain an initial estimate of σ2. Thus, in the remainder of

this article σ2 is assumed to denote a point estimate of the unknown variance.

This initial estimate is continuously updated using the new incoming samples as

they are collected as long as the estimated value of σ2 does not change, i.e. is

not detected using the control chart. The control chart and the plotting statis-

tic is based on the in-control distribution of the process. The two sample test

statistic for testing the hypothesis at time r that the two independent samples

(the measurements of the rth sample alone and the measurements of the first

r − 1 samples combined) are from normal distributions with the same unknown

variance, is based on the statistic

U∗

r =
S2

r

S
2pooled

r−1

for r = 2, 3, ... ,

(2.1)

where S
2pooled

r−1 =

r−1
∑

i=1
niS

2
i

r−1
∑

i=1
ni

and S2
i =

1

ni

ni
∑

k=1

(Xik−µi)
2 for i=1, 2, ..., r .

[Take note: µi denotes the known population mean of sample i.]

The focus will be on the part where the process is out-of-control, i.e. encountered

a shift, since the exact distribution of the plotting statistic is then unknown.

To simplify the notation used in expression (2.1), following a change in the process

variance between samples κ − 1 and κ, define the random variable

(2.2) U∗

0 = U∗

κ =
S2

κ

S
2pooled

κ−1

.

The subscript of the random variable U∗

0 indicates the number of samples after the

parameter has changed, with zero indicating that it is the first sample after the

process encountered a permanent upward or downward step shift in the variance.

Note that, the three scenarios can theoretically occur with equal probabil-

ity as there would be no reason to expect (without additional information such

as expert knowledge about the process being monitored) that the mean would

sustain a change prior to the variance (and vice versa). In fact, it might be more

realistic to argue that in practice the mean and variance would change simulta-

neously in the event of a “special cause” as such an event might change the entire

underlying process generating distribution and hence both the location and vari-

ability might be affected. Having said the aforementioned, the likelihood of the

three scenarios will most likely depend on the interaction between the underlying

process distribution and the special causes that may occur. The focus of this
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article is on scenario 2 since the results for the other scenarios follow by means

of simplifications (by setting the noncentrality parameter equal to zero) and will

be shown as remarks.

Suppose that the process variance has changed between samples (time peri-

ods) κ− 1 and κ > 1 from σ2 to σ2
1 = λσ2 where λ is unknown, λ 6= 1 and λ > 0,

but the process mean also encountered an unknown sustained shift between sam-

ples (time periods) h−1 and h where 1 < h < κ. Note that, in practice h, κ and λ

would be unknown (but deterministic) values. Consider the sample variance, i.e.

S2
i , before and after the shifts in the process mean and variance took place:

Before the shift in the mean:

Samples: i = 1, 2, ..., h − 1 .

Distribution: Xik ∼ N
(

µ0, σ
2
)

.

S2
i =

1

ni

ni
∑

k=1

(Xik − µ0)
2 ,

niS
2
i

σ2
∼ χ2

ni
.

After the shift in the mean:

Samples: i = h, ..., κ − 1 .

Distribution: Xik ∼ N
(

µ1 = µ0 + ξ0σ, σ2
)

.

[Take note: The observer is unaware of the shift in the process mean and
therefore still wrongly assumes Xik ∼ N(µ0, σ

2).
This is the key to the noncentral case because the plotting statistic and
transformations (see Section 6) depends on the in-control distribution.]

S2
i =

1

ni

ni
∑

k=1

(Xik − µ0)
2 ,

niS
2
i =

ni
∑

k=1

(Xik − µ1 + µ1 − µ0)
2 ,

niS
2
i

σ2
=

ni
∑

k=1

(

Xik − µ1

σ
+

µ1 − µ0

σ

)2

=

ni
∑

k=1

(Zik + ξ0)
2 where Zik ∼ N(0, 1)

∼ χ′2
ni

(

ni
∑

k=1

ξ2
0

)

= χ′2
ni

(δi) where δi =

ni
∑

k=1

ξ2
0 = ni ξ

2
0 > 0

with ξ0 =
µ1 − µ0

σ
.
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After the shift in the mean and variance:

Samples: i = κ, κ + 1, ... .

Distribution: Xik ∼ N
(

µ1 = µ0 + ξ1σ1, σ2
1 = λσ2

)

.

[Take note: The observer is unaware of the shifts in the process parameters
and therefore still wrongly assumes Xik ∼ N(µ0, σ

2).]

S2
i =

1

ni

ni
∑

k=1

(Xik − µ0)
2 ,

niS
2
i =

ni
∑

k=1

(Xik − µ1 + µ1 − µ0)
2 ,

niS
2
i

σ2
1

=

ni
∑

k=1

(

Xik − µ1

σ1
+

µ1 − µ0

σ1

)2

=

ni
∑

k=1

(Zik + ξ1)
2 where Zik ∼ N(0, 1)

∼ χ′2
ni

(

ni
∑

k=1

ξ2
1

)

= χ′2
ni

(δi) where δi =

ni
∑

k=1

ξ2
1 = ni ξ

2
1 > 0

with ξ1 =
µ1 − µ0

σ1
.

Remark 2.1.

(i) χ2
ni

denotes a central χ2 random variable with degrees of freedom ni

(see Johnson et al. (1995), Chapter 18).

(ii) χ′2
ni

(δi) denotes a noncentral χ2 random variable with degrees of free-

dom ni and noncentrality parameter δi (see Johnson et al. (1995),

Chapter 29).

(iii) The degrees of freedom is assumed to be ni, since the mean is not es-

timated because it is assumed that the mean is a fixed / deterministic

value before and after the shift. In case the mean is unknown and

has to be estimated too, the degrees of freedom changes from ni to

ni − 1 and the µ0 would be replaced by µ̂0, i.e. an estimate of µ0.

(iv) The shift in the mean, before the variance changed, is modelled as

follows: ξ0 = µ1−µ0

σ
, i.e. µ1 = µ0 + ξ0σ.

(v) The shift in the mean, after the variance changed, is modelled as

follows: ξ1 = µ1−µ0

σ1
, i.e. µ1 = µ0 + ξ1σ1.

(vi) The pivotal quantity
niS

2
i

σ2
1

∼ χ′2
ni

(δi) after the shift in the variance

reduces to a central chi-squared random variable if the process mean

did not change, i.e. when µ1 = µ0 (see Adamski et al. (2012)).
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Following a change in the variance between samples κ− 1 and κ, define the

following random variable:

U∗

0 =
S2

κ

S
2pooled

κ−1

=
κ−1
∑

i=1

ni ×
S2

κ
∑h−1

i=1 niS2
i +

∑κ−1
i=h niS2

i

=

∑κ−1
i=1 ni

nκ
×

nκS2
κ

σ2
1

×
σ2
1

σ2

∑h−1
i=1

niS
2
i

σ2 +
∑κ−1

i=h
niS

2
i

σ2

=

∑κ−1
i=1 ni

nκ
×

λ χ′2
nκ

(δκ)
∑κ−1

i=1 χ′2
ni

(δi)
,

where λ =
σ2
1

σ2 indicates the unknown size of the shift in the variance

and δi =















0 for i = 1, ..., h − 1 ,

ni ξ
2
0 > 0 with ξ0 = µ1−µ0

σ
for i = h, ..., κ − 1 ,

nκ ξ2
1 > 0 with ξ1 = µ1−µ0

σ1
for i = κ .

[

Take note:
∑h−1

i=1 χ2
ni

d
=
∑h−1

i=1 χ′2
ni

(0).
]

In general, at sample κ+ j, where κ > 1 and j = 1, 2, ..., p, we define the following

sequence of random variables (all based on the two sample test statistic for testing

the equality of variances):

U∗

j =
S2

κ+j

S
2pooled

κ+j−1

=

κ+j−1
∑

i=1

ni ×
S2

κ+j
∑h−1

i=1 niS2
i +

∑κ−1
i=h niS2

i +
∑κ+j−1

i=κ niS2
i

=

∑κ+j−1
i=1 ni

nκ+j
×

nκ+j S2
κ+j

σ2
1

×
σ2
1

σ2

∑h−1
i=1

niS
2
i

σ2 +
∑κ−1

i=h

niS
2
i

σ2 +
∑κ+j−1

i=κ

niS
2
i

σ2
1

×
σ2
1

σ2

=

∑κ+j−1
i=1 ni

nκ+j
×

λ χ′2
nκ+j

(δκ+j)
∑κ−1

i=1 χ′2
ni

(δi) + λ
∑κ+j−1

i=κ χ′2
ni

(δi)
with λ =

σ2
1

σ2
,

where δi =















0 for i = 1, ..., h − 1 ,

ni ξ
2
0 > 0 with ξ0 = µ1−µ0

σ
for i = h, ..., κ − 1 ,

ni ξ
2
1 > 0 with ξ1 = µ1−µ0

σ1
for i = κ, ..., κ + j .

To simplify matters going forward and for notational purposes we omit the factors
∑κ−1

i=1 ni/nκ and
∑κ+j−1

i=1 ni/nκ+j , respectively, in U∗

0 and U∗

j , since they do not

contain any random variables, and also drop the * superscript, and therefore the

random variables of interest are:

(2.3)

U0 =
λW0

X
,

Uj =
λWj

X + λ
∑j−1

k=0Wk

, j = 1, 2, ..., p and λ > 0 ,
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where

λ =
σ2
1

σ2 indicates the unknown size of the shift in the variance ,

X =
∑κ−1

i=1 χ′2
ni

(δi) ∼ χ′2
a (δa), i.e. X is a noncentral chi-squared random var-

iable with degrees of freedom, a=
∑κ−1

i=1 ni and noncentrality parameter

δa =
∑κ−1

i=h δi, h < κ where δi = ni ξ
2
0 with ξ0 = µ1−µ0

σ
,

Wi ∼ χ′2
vi

(δi), i.e. Wi is a noncentral chi-squared random variable with deg-
rees of freedom vi = nκ+i and noncentrality parameter δi = nκ+i ξ

2
1 with

ξ1 = µ1−µ0

σ1
, i = 0, 1, ..., p .

Take note that X represents the sum of κ− 1 independent noncentral χ2 random

variables, i.e. χ′2
n1

, ..., χ′2
nκ−1

since we assume the samples are independent.

Remark 2.2. Scenarios 1 and 3 can be obtained as follows:

(i) When theprocess mean and variance change simultaneously (scenario 1),

i.e. h = κ, then δa = 0. The superscript (S1) in the expressions that

follow indicate scenario 1 as discussed and shown in Figure 1. From

(2.3) it then follows that

U
(S1)
0 =

λW0

X
,

U
(S1)
j =

λWj

X + λ
∑j−1

k=0Wk

, j = 1, 2, ..., p and λ > 0 ,

where

X =
∑κ−1

i=1 χ2
ni

∼ χ2
a with a =

∑κ−1
i=1 ni ,

Wi∼χ′2
vi
(δi) with vi = nκ+i, δi = nκ+i ξ

2
1 and ξ1=

µ1−µ0

σ1
, i=0,1, ..., p .

(ii) For scenario 3, the process variance has changed between samples

(time periods) κ − 1 and κ > 1, but the process mean encountered

a sustained shift between samples (time periods) h − 1 and h where

h > κ, i.e. the mean changed after the variance. The random variables

in (2.3) will change as follows:

U
(S3)
0 =

λW0

X
,

U
(S3)
j =

λWj

X + λ
∑j−1

k=0Wk

, j = 1, 2, ..., p and λ > 0 ,

where

X =
∑κ−1

i=1 χ2
ni

∼ χ2
a with a =

∑κ−1
i=1 ni ,

Wi∼χ′2
vi
(δi) with vi = nκ+i, δi =











0 for i = 0, 1, ..., h−1 ,

nκ+i ξ
2
1 and ξ1 = µ1−µ0

σ1

for i = h, h+1, ..., p .
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(iii) If the process mean remains unchanged and only the process variance

encountered a sustained shift, the components X and Wi in (2.3) will

reduce to central chi-squared random variables. The joint distribution

of the random variables (2.3) will then be the generalized multivari-

ate beta distribution derived by Adamski et al. (2012), with the only

difference being the degrees of freedom of the chi-squared random

variables. This shows that the solution to the run-length distribution

of a Q-chart used to monitor the parameter θ in the Exp(θ) distribu-

tion (when θ is unknown) is similar to the solution to the run-length

distribution when monitoring the variance with a Q-chart in case of

a N(µ0, σ
2) distribution where µ0 is known and σ2 is unknown.

3. THE EXACT DENSITY FUNCTION

In this section the joint distribution of the random variables U0, U1, U2

(see (2.3)) is derived, i.e. the first three random variables following a change

in the variance. In section 4 the multivariate extension is considered with a

detailed proof. The reason for this unorthodox presentation of results is to first

demonstrate the different marginals for the trivariate case.

Theorem 3.1. Let X,Wi with i = 0, 1, 2 be independent noncentral chi-

squared random variables with degrees of freedom a and vi and noncentrality

parameters δa and δi with i = 0, 1, 2, respectively. Let U0 = λW0

X
, U1 = λW1

X+λW0

and U2 = λW2

X+λW0+λW1
(see (2.3)) and λ > 0. The joint density of (U0, U1, U2) is

given by

f(u0, u1, u2)

=
e−
(

δa+δ0+δ1+δ2
2

)

λ
a
2 Γ
(

a+v0+v1+v2

2

)

Γ
(

a
2

)

Γ
(

v0

2

)

Γ
(

v1

2

)

Γ
(

v2

2

) u
v0
2

−1

0 u
v1
2

−1

1 u
v2
2

−1

2 (1 + u0)
v1
2

+
v2
2

(3.1)
× (1 + u1)

v2
2

[

λ + u0 + u1(1 + u0) + u2 (1 + u0) (1 + u1)
]

−

(

a+v0+v1+v2
2

)

× Ψ
(4)
2

[

a+v0+v1+v2

2 ; a
2 , v0

2 , v1

2 , v2

2 ; λδa

2z
, δ0u0

2z
, δ1u1 (1+u0)

2z
, δ2u2 (1+u0) (1+u1)

2z

]

,

uj > 0 , j = 0, 1, 2 ,

where z = λ + u0 + u1(1 + u0) + u2 (1 + u0) (1 + u1) and Ψ
(4)
2 the confluent hy-

pergeometric function in four variables (see Sánchez et al. (2006) or Srivastava &

Kashyap (1982)).

Proof: The expression for the joint density of (U0, U1, U2) is obtained by

setting p = 2 in (4.1) and applying result A.2 of Sanchez et al. (2006).
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Remark 3.1.

(i) For the special case when λ = 1 (i.e. the process variance did not

encounter a shift although the mean did), this trivariate density (3.1)

simplifies to

f(u0, u1, u2)

=
e−
(

δa+δ0+δ1+δ2
2

)

Γ
(

a+v0+v1+v2

2

)

Γ
(

a
2

)

Γ
(

v0

2

)

Γ
(

v1

2

)

Γ
(

v2

2

) u
v0
2

−1

0 u
v1
2

−1

1 u
v2
2

−1

2 (1+u0)
v1
2

+
v2
2 (1+u1)

v2
2

×
[

(1 + u0) (1 + u1) (1 + u2)
]

−

(

a+v0+v1+v2
2

)

× Ψ
(4)
2

[

a+v0+v1+v2

2 ; a
2 , v0

2 , v1

2 , v2

2 ; δa

2y
, δ0u0

2y
, δ1u1(1+u0)

2y
, δ2u2 (1+u0) (1+u1)

2y

]

,

where y = (1 + u0) (1 + u1) (1 + u2).

(ii) When the shift in the mean and the variance occurs simultaneously

(scenario 1), we have that δa = 0, and it follows that the trivariate

density (3.1) is given by

f(u0, u1, u2)

=
e−
(

δ0+δ1+δ2
2

)

λ
a
2 Γ
(

a+v0+v1+v2

2

)

Γ
(

a
2

)

Γ
(

v0

2

)

Γ
(

v1

2

)

Γ
(

v2

2

) u
v0
2

−1

0 u
v1
2

−1

1 u
v2
2

−1

2 (1+u0)
v1
2

+
v2
2 (1+u1)

v2
2

×
[

λ + u0 + u1(1 + u0) + u2 (1 + u0)(1 + u1)
]

−

(

a+v0+v1+v2
2

)

× Ψ
(3)
2

[

a+v0+v1+v2

2 ; v0

2 , v1

2 , v2

2 ; δ0u0

2z
, δ1u1 (1+u0)

2z
, δ2u2 (1+u0) (1+u1)

2z

]

,

where z = λ+u0 +u1(1+u0)+u2 (1+u0)(1+u1) with Ψ
(3)
2 the con-

fluent hypergeometric function in three variables.

(iii) When monitoring the variance and the mean did not change, i.e.

δa = δ0 = δ1 = δ2 = 0, the trivariate density (3.1) simplifies to the

generalized multivariate beta distribution, derived by Adamski et al.

(2012):

f(u0, u1, u2)

=
λ

a
2 Γ
(

a+v0+v1+v2

2

)

Γ
(

a
2

)

Γ
(

v0

2

)

Γ
(

v1

2

)

Γ
(

v2

2

) u
v0
2

−1

0 u
v1
2

−1

1 u
v2
2

−1

2 (1 + u0)
v1
2

+
v2
2 (1 + u1)

v2
2

×
[

λ + u0 + u1(1 + u0) + u2 (1 + u0) (1 + u1)
]

−

(

a+v0+v1+v2
2

)

.
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3.1. Bivariate cases

Theorem 3.2. Let X, Wi with i = 0, 1, 2 be independent noncentral chi-

squared random variables with degrees of freedom a and vi and noncentrality

parameters δa and δi with i = 0, 1, 2, respectively. Let U0 = λW0

X
, U1 = λW1

X+λW0

and U2 = λW2

X+λW0+λW1
and λ > 0.

(a) The joint density of (U0, U1) is given by

f(u0, u1)(3.2)

=
e−
(

δa+δ0+δ1
2

)

λ
a
2 Γ
(

a+v0+v1

2

)

Γ
(

a
2

)

Γ
(

v0

2

)

Γ
(

v1

2

) u
v0
2

−1

0 u
v1
2

−1

1 (1+u0)
v1
2

[

λ+u0 +u1(1+u0)
]

−

(

a+v0+v1
2

)

×Ψ
(3)
2

[

a+v0+v1

2 ; a
2 , v0

2 , v1

2 ; λδa

2
[

λ+u0+u1(1+u0)
] , δ0 u0

2
[

λ+u0+u1(1+u0)
] , δ1u1 (1+u0)

2
[

λ+u0+u1(1+u0)
]

]

,

uj > 0 , j = 0, 1 .

(b) The joint density of (U0, U2) is given by

f(u0, u2)(3.3)

=
e−
(

δa+δ0+δ1+δ2
2

)

λ
a
2 Γ
(

a+v0+v1+v2

2

)

Γ
(
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)

Γ
(
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2

)

Γ
(
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2

)

Γ
(
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2

)

Γ
(
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2

) u
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2

−1

0 (1 + u0)
−

(
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2

)

u
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2
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2

× (1 + u2)
−

(
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2

)
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∞
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∞
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∞
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∞
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k5=0

(

a+v0+v1+v2

2

)

k1+k2+k3+k4+k5
(

a
2

)

k1

(
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(
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(
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(
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(

λδa
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)k1

×

(

δ0u0

2 (1+ u0) (1+ u2)

)k2
(

δ1

2 (1+ u2)

)k3
(

δ2u2

2 (1+ u2)

)k4
(

1 − λ

(1+ u0)(1+ u2)

)k5

,

uj > 0 , j = 0, 2 .

(c) The joint density of (U1, U2) is given by

f(u1, u2)(3.4)

=
e−
(

δa+δ0+δ1+δ2
2

)

λ
a
2 Γ
(

a+v0+v1+v2

2

)

Γ
(

v1

2

)

Γ
(
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2

)

Γ
(
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) u
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−
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(
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)
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∞
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∞
∑
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∞
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∞
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(
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×
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×

(

a
2

)

k1+k5
(

a+v0

2

)

k1+k2+k5
k1! k2! k3! k4! k5!

(
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)k1

×

(
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(
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)k4
(

1 − λ

(1+u1)(1+u2)

)k5

,

uj > 0 , j = 1, 2 .

Proof: (a) Expanding Ψ
(4)
2 (·) in equation (3.1) in series form and inte-

grating this trivariate density with respect to u2, yields

f(u0, u1)

=
e
−

�
δa+δ0+δ1+δ2

2

�
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�
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2
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∞
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∞
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∞
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2 )k1
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2 )
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(
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(
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δ1u1(1+u0)
2

)k3
(

δ2(1+u0)(1+u1)
2

)k4

×

∞
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]
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2
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�
du2 .

Take note:

∞
∫

0

u
v2
2

+k4−1

2

[

λ+u0+u1(1+u0)+u2(1 + u0)(1 + u1)
]

−

�
a+v0+v1+v2

2
+k1+k2+k3+k4

�
du2

=
[

λ + u0 + u1(1 + u0)
]

−

�
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2
+k1+k2+k3+k4

�
×

∞
∫
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u
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+k4−1

2

[

1+
u2(1 + u0)(1 + u1)

λ + u0 + u1 (1 + u0)

]

−

�
a+v0+v1+v2

2
+k1+k2+k3+k4

�
du2 .

Using Gradshteyn and Ryzhik (2007) Eq. 3.194.3 p. 315, the joint density of

U0 and U1 in expression (3.2) follows after simplification.

Remark 3.2.

(i) Alternatively, the proof of this theorem can be derived by substituting

p = 1 in (4.1).

(ii) If δa = δ0 = δ1 = 0, the density simplifies to the bivariate distribution

derived by Adamski et al. (2012):
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f(u0, u1)

=
λ

a
2 Γ
�

a+v0+v1
2

�
Γ(a

2
)Γ(

v0
2

)Γ(
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(1+u0)(1+u1)

]

−

�
a+v0+v1

2

�
.

This can be rewritten using the binomial series 1F0(α; z) = (1 − z)−α,

for |z| < 1 (Mathai (1993) p. 25) with 1−z = λ+u0+u1(1+u0)
(1+u0)(1+u1) . Therefore

f(u0, u1)

=
Γ(

a+v0+v1
2

)λ
a
2

Γ(a
2
)Γ(
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2

)Γ(
v1
2

)
u
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2
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0 (1 + u0)
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2 )
u
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2
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× 1F0

(
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2 ; 1−λ
(1+u0)(1+u1)

)

.

(b) Expanding Ψ
(4)
2 (·) in equation (3.1) in series form and integrating the

trivariate density (3.1) with respect to u1, it follows that

f(u0, u2)

=
e
−

�
δa+δ0+δ1+δ2
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(
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�
du1 .

Using Gradshteyn and Ryzhik (2007) Eq. 3.197.5 p. 317 and Eq. 9.131.1 p. 998,

it follows that

f(u0, u2) =
e
−
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×
(

δ2u2(1+u0)
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2
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)

.

Expanding the Gauss hypergeometric function, 2F1(·) (see Gradshteyn and Ryzhik

(2007)), in series form, the desired result (3.3) follows after simplification.

(c) Proof follows similarly as in (b).

3.2. Univariate cases

Theorem 3.3. Let X, Wi with i = 0, 1, 2 be independent noncentral chi-

squared random variables with degrees of freedom a and vi and noncentrality

parameters δa and δi with i = 0, 1, 2, respectively. Let U0 = λW0

X
, U1 = λW1

X+λW0

and U2 = λW2

X+λW0+λW1
and λ > 0. The marginal density of

(a) U0 is given by

f(u0) =
e
−

�
δa+δ0

2
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a
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2 )Γ(v0
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(3.5)
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2
;
a

2
,
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2
;

λδa

2 (u0 + λ)
,

δ0u0

2 (u0 + λ)

)

, u0 > 0 ,

with Ψ2 the Humbert confluent hypergeometric function of two vari-

ables (see Sanchez et al. (2006)),

(b) U1 is given by

f(u1) =
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a
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a
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,

u1 > 0 ,
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(c) U2 is given by

f(u2) =
e
−

�
δa+δ0+δ1+δ2
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a
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Proof: (a) Using Gradshteyn and Ryzhik (2007) Eq. 3.194.3 p. 315, the

result (3.5) follows after simplification.

Remark 3.3. If δa = δ0 = 0, the density simplifies to the univariate dis-

tribution derived by Adamski et al. (2012), namely

f(u0) =
λ

a
2 Γ
(

a+v0

2

)

Γ
(

a
2

)

Γ
(

v0

2

) u
v0
2

−1

0 (u0 + λ)
−(a+v0

2 )
.

(b) Using the definition of the beta type II integral function (see Prudnikov

et al. (1986) Eq. 2.2.4(24) p. 298) yields the desired result.

(c) Proof follows similarly as in (b).

4. MULTIVARIATE EXTENSION

In this section the noncentral generalized multivariate beta type II distri-

bution is proposed.

Theorem 4.1. Let X, Wi with i = 0, 1, 2, ..., p be independent noncentral

chi-squared random variables with degrees of freedom a and vi and noncentrality

parameters δa and δi with i = 0, 1, 2, ..., p, respectively. Let U0 = λW0

X
, and Uj =

λWj

X+λ
∑j−1

k=0Wk

where j = 1, 2, ..., p, and λ > 0. The joint density of (U0, U1, ..., Up)
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is given by

(4.1)

f (u0, u1, ..., up)

=
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∑
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2 the confluent hypergeometric

function in p + 2 variables.

Proof: The joint density of X, W0, W1, ..., Wp is

f (x, w0, w1, ..., wp)

= e
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(a)jj! where (α)j is the Pochhammer co-

efficient defined as (α)j = α (α + 1) ··· (α + j − 1) = Γ(α+j)
Γ(α) (see Johnson et al.

(1995), Chapter 1).

Let U = X, U0 = λW0

X
and Uj =
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where j = 1, 2, ..., p.

This gives the inverse transformation: X = U , W0 = 1
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Thus, the joint density of U, U0, U1, ..., Up is
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2
−(p−k). Expand-

ing the 0F1 (·) expressions in series form, integrating with respect to u and us-

ing the definition of the gamma integral function (see Prudnikov et al. (1986)

Eq. 2.3.3(1), p. 322) yields the result (4.1).

Remark 4.1. If δa = δ0 = δ1 = ... = δp = 0, the distribution with density

given in (4.1) simplifies to the multivariate distribution derived by Adamski et al.

(2012)

f (u0, u1, ..., up) =
Γ

 
a
2
+

pP
j=0

vj
2

!
λ

a
2

Γ(a
2 )Γ( v0

2 )...Γ( vp
2 )

(

p
∏

j=0
u

vj
2
−1

j

)





p−1
∏

k=0

(1 + uk)

pP
j=k+1

vj
2





×

(

λ + u0 +
p
∑

j=1
uj

j−1
∏

k=0

(1 + uk)

)

−

 
a
2
+

pP
j=0

vj
2

!
.

5. SHAPE ANALYSIS

In this section the shape of the univariate and bivariate marginal densi-

ties will be illustrated and the influence of the noncentrality parameters will be

investigated.

Panels (i) and (ii) of Figure 2 illustrate the effect of the noncentrality pa-

rameters δa and δ0 on the univariate marginal density of U0 (see equation (3.5)).
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(i) Role of δa for δ0 = 2. (ii) Role of δ0 for δa = 0.

Figure 2: The marginal density function for different values of the parameters
δa and δ0 for λ = 1.5, κ = 3, a = 20 and ν0 = 10.

In terms of the process control application the parameters can be inter-

preted as follows:

a: pooled number of observations before the shift in the unknown variance

took place,

v0: sample size at time period κ, the first sample following the shift in the

variance; the shift in the variance took place between samples κ − 1

and κ,

δa: noncentrality parameter that quantifies the change in the mean before

the change in the variance took place,

[Take note: if the mean and variance changes simultaneously, then δa = 0.]

δ0: noncentrality parameter that quantifies the change in the mean after

the change in the variance took place,

λ: size of the unknown shift in the variance.

Panel (i) shows the effect of δa; we observe that as δa increases the density

initially moves towards the vertical axis and then towards the horizontal axis. In

panel (ii) the density moves towards the horizontal axis for bigger values of δ0.

The influence of the parameters a, v0 and λ on the marginal density is discussed

in detail in Adamski et al. (2012).

Panels (i) to (iv) of Figure 3 illustrate the effect of the noncentrality pa-

rameters δa, δ0 and δ1 on the bivariate density of U0, U1 (see equation (3.2)) for

λ = 1.5, κ = 3, a = 20, v0 = v1 = 10. For λ < 1 the pattern is similar. The effect

of λ is addressed in Adamski et al. (2012).
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(i) δa = δ0 = δ1 = 2. (ii) δa = 4, δ0 = δ1 = 2.

(iii) δa = 2, δ0 = 4, δ1 = 2. (iv) δa = δ0 = 2, δ1 = 4.

Figure 3: The bivariate density of U0, U1.

6. PROBABILITY CALCULATIONS

A practical example (based on simulated data) of calculating the probability

that a control chart will signal after the process variance and mean encountered

a sustained shift, is considered.

At time period κ the plotting statistic for the Q-chart is constructed by

calculating the statistic U∗

0 = S2
κ

S
2pooled
κ−1

, transforming this statistic to obtain a stan-

dard normal random variable, denoted Q (U∗

0 ) and plotting Q (U∗

0 ) on a Shewhart-

type chart where the control limits are UCL/LCL = ±3 and the centerline is

CL = 0 (see Human and Chakraborti (2010)). When transforming the statis-
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tic to a normal random variable, Q-charts make use of the classical probability

integral transformation theorem (see Quesenberry (1991)).

The marginal density of U0 can be used to determine the probability of

detecting the shift in the process variance immediately, i.e. when collecting the

first sample after the shift took place. Once a shift in the process parameter

occurred, the run-length is the number of samples collected from time κ (i.e. first

sample after the change) until an out-of-control signal is observed (i.e. a plotting

statistic plots on or outside the control limits). The discrete random variable

defining the run-length is called the run-length random variable and typically

denoted by N . The distribution of N is called the run-length distribution. The

probability of detecting a shift immediately, in other words, the probability of

a run-length of one, is the likelihood that a signal is obtained at time κ. The

probability that the run-length is one, is one minus the probability that the

random variable, U∗

0 , plots between the control limits,

(6.1) Pr(N = 1) = 1 −

∫ UCL

LCL

f(u∗

0) du∗

0 = 1 −

∫ UCLκ

LCLκ

f(u0) du0 .

Take note that the difference between the random variables U∗

0 and U0 (refer to

the definitions on page 7 and 8 of the introduction) will be incorporated in the

control limits of the control chart.

When the process is in-control, i.e. λ = 1 and the process mean did not en-

counter a shift, U∗

0 =
W0/nκ

X/
∑κ−1

i=1 ni

∼ F
(

nκ,
∑κ−1

i=1 ni

)

, then the Q plotting statistic

is given by Q (U∗

0 ) = Φ−1 [F (U∗

0 )] and the control limits UCLκ and LCLκ are

determined as follows:

−3 < Φ−1 [F (U∗

0 )] < 3

⇐⇒ Φ(−3) < F (U∗

0 ) < Φ(3)

⇐⇒ F−1 [Φ (−3)] < U∗

0 < F−1 [Φ (3)]

⇐⇒
F−1 [Φ (−3)]
∑κ−1

i=1 ni

nκ

< U0 <
F−1 [Φ (3)]
∑κ−1

i=1 ni

nκ

where

F (·) denotes the cumulative distribution function of the F distribution,

F−1 (·) denotes the inverse of the cumulative distribution function of the

F distribution,

Φ (·) denotes the standard normal cumulative distribution function,

Φ−1 (·) denotes the inverse of the standard normal cumulative distribution

function.
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Therefore UCLκ = F−1[Φ(3)]
∑κ−1

i=1 ni

nκ

and LCLκ = F−1[Φ(−3)]
∑κ−1

i=1 ni

nκ

. Note that LCLκ and UCLκ

depend on κ whereas LCL and UCL equals −3 and 3, respectively (regardless

the value of κ).

The probability that the run-length is two can be calculated by defining

the following two events:

Let A = {LCLκ < U0 < UCLκ} and B = {LCLκ+1 < U1 < UCLκ+1}. Then,

Pr(N = 2) = Pr(A ∩ BC) = Pr(A) − Pr(A ∩ B)(6.2)

=

∫ UCLκ

LCLκ

f(u0) du0 −

∫ UCLκ+1

LCLκ+1

∫ UCLκ

LCLκ

f(u0, u1) du0 du1 .

The run-length probabilities for higher values of N can be calculated in a similar

fashion.

Consider the following data set to illustrate the control chart and the use of

the proposed density functions to determine the run-length probabilities. Twenty

samples of size 5 were generated. The first 10 samples were generated from a

N (10, 1) distribution. Between samples 10 and 11 the process mean and variance

encountered a sustained shift, therefore the last 10 samples were generated from

a N (11.5, 1.5) distribution. Take note that when calculating the sample variance,

the practitioner is unaware of the change in the mean. The simulated data set is

given in Table 1 and the control chart in Figure 4. Note that there is no plotting

Table 1: Simulated data set.

Sample Sample Plotting
(i)

Xi1 Xi2 Xi3 Xi4 Xi5 variance
U

∗

i statistic

1 9.672 10.328 9.061 9.606 10.471 0.295 NA NA
2 12.064 10.689 10.332 8.618 9.949 1.352 4.581 −1.553
3 10.085 10.603 9.986 9.634 10.866 0.251 0.305 1.276
4 8.653 9.371 8.830 10.893 11.324 1.226 1.940 −1.049
5 10.187 9.001 9.234 10.266 8.701 0.676 0.865 0.054
6 9.560 10.738 10.617 8.831 12.225 1.487 1.957 −1.173
7 8.387 11.668 9.590 10.064 9.204 1.238 1.405 −0.672
8 11.194 9.137 7.822 10.723 11.034 1.701 1.825 −1.110
9 10.181 10.413 11.128 10.890 8.524 0.889 0.865 0.033

10 10.761 9.953 11.530 9.330 10.034 0.674 0.666 0.388
11 11.175 11.963 13.257 12.327 13.857 7.227 7.382 −4.012
12 12.850 12.132 11.727 10.362 11.309 3.499 2.262 −1.548
13 9.964 12.275 10.585 11.670 11.529 2.129 1.245 −0.525
14 11.955 11.450 12.625 11.627 11.306 3.434 1.971 −1.312
15 11.981 12.890 11.306 11.725 9.372 3.470 1.863 −1.216
16 10.184 8.689 11.045 11.428 11.687 1.546 0.785 0.160
17 10.651 10.974 10.282 11.372 9.324 0.758 0.390 1.055
18 10.375 12.098 10.711 11.556 9.884 1.496 0.799 0.134
19 10.480 11.489 12.726 12.910 10.191 3.677 1.984 −1.350
20 12.701 11.517 10.126 11.659 11.727 3.069 1.575 −0.936
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statistic that corresponds to sample number / time 1 as this sample is used to

obtain an initial estimate of the process variance. The process is effectively mon-

itored from sample 2 onwards. This process is declared out-of-control at sample

number 11 since this is the first sample where a plotting statistic plots on or

outside the control limits.

Figure 4: Control chart.

The software package Mathematica was used to calculate the probabilities

by using the summation form of the Humbert function in equation (3.5). Based

on the information of the simulated data set, we have (i) vi = ni = n = 5 (equal

sample sizes at each point in time), (ii) κ = 11, (iii) δa = 0 (i.e. the mean and

variance changed simultaneously between sample number 10 and 11), (iv) δ0 = 5

and (v) λ = 1.5. The probability of detecting the shift in the process variance

immediately at time period 11 is calculated using (6.1):

Pr(N = 1) = 1 −

∫ UCLκ=11

LCLκ=11

f(u0) du0 = 1 −

∫ 0.470157314

0.004632685
f(u0) du0

= 0.177224

where

UCLκ=11 =
F−1

5,50 [Φ (3)]

10
=

F−1
5,50 [0.998650102]

10
=

4.701573136

10

= 0.470157314 ,

LCLκ=11 =
F−1

5,50 [Φ (−3)]

10
=

F−1
5,50 [0.001349898]

10
=

0.04632684922

10

= 0.004632685 .



Noncentral Generalized Multivariate Beta 41

The probability of detecting the shift in the process variance at time period

12 is calculated using (6.2):

Pr(N = 2) =

∫ 0.470157314

0.004632685
f(u0) du0 −

∫ 0.420758373

0.004221604

∫ 0.470157314

0.004632685
f(u0, u1) du0 du1

= 0.090598 .

These run-length probabilities can then be used to estimate the average run-

length (ARL) using the formula E(N) = ARL =
∞
∑

k=1

k Pr(N=k)≈
M
∑

k=1

k Pr(N=k).

The accuracy of the ARL estimate will depend on the cut-off M . The probabilities

can be evaluated using the multivariate density function in (4.1) or using Monte

Carlo simulation. The evaluation of high dimensional multiple integrals become

increasingly more complex (i.e. time consuming and resource intensive) as the

dimension increases and is beyond the scope of this article.

Table 2 summarises the effect of the different parameters on the probability

to detect the shift in the variance immediately.

Table 2: Probabilities for different parameter values.

Role of δa δ0 ni κ λ Pr(N= 1) Comment

0.5 0.015147
The larger the step shift,

λ =
σ

2
1

σ2
0 5 5 11 1 0.048686

the higher the probability.
1.5 0.177224

3 0.057861 The more historical samples
κ 0 5 5 5 1.5 0.110475 available before the shift took

11 0.177224 place, the higher the probability.

1 0.166158 The larger the sample size,
n 0 5 5 11 1.5 0.177224 the probability initially increases

10 0.171251 and then decreases.

0 0.015941 The larger δ0 (i.e. the relative
δ0 0 2 5 11 1.5 0.060114 change in the mean), the higher

5 0.177224 the probability.
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7. CONCLUDING REMARKS

Adamski et al. (2012) recently introduced a new generalized multivariate

beta distribution with density in closed form, where a distribution is needed for

the run-length of a Q-chart that monitors the process mean when measurements

are from an exponential distribution with unknown parameter. In this paper the

distributions are proposed for the case when measurements from each sample

are independent and identically distributed normal random variables and we are

monitoring the unknown spread when the known mean encountered a sustained

shift. We have generalized the proposed model to the multivariate case and we

hope that the results presented in this paper will be useful in the Statistical

Process Control field.
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