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Abstract:

• We perform a comparative study among nineteen methods of interval estimation of
the Poisson mean, in the intervals (0,2), [2,4] and (4,50], using as criteria coverage, ex-
pected length of confidence intervals, balance of noncoverage probabilities, E(P-bias)
and E(P-confidence). The study leads to recommendations regarding the use of par-
ticular methods depending on the demands of a particular statistical investigation and
prior judgment regarding the parameter value if any.
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1. INTRODUCTION

Construction of CIs in discrete distributions is a widely addressed problem.

The standard method of obtaining a 100× (1−α)% CI for the Poisson mean µ is

based on inverting an equal tailed test for the null hypothesis H0 : µ = µ0. This

is an “exact” CI, in the sense that it is constructed using the exact distribution.

Exact CIs are very conservative and too wide. A large number of alternate

methods for obtaining CIs for µ based on approximations for the Poisson distri-

bution are suggested in the literature to overcome these drawbacks. Desirable

properties of those approximate CIs are:

• for (1−α) confidence interval the infimum over µ of the coverage prob-

ability should be equal to (1 − α);

• confidence interval can not be shortened without the infimum of the

coverage falling below (1 − α).

We attempt to perform an exhaustive review of the existing methods for

obtaining confidence intervals for the Poisson parameter and present an extensive

comparison among these methods based on the following criterion:

1) Expected length of confidence intervals (E(LOC)),

2) Percent coverages (Coverage),

3) E(P-bias) and E(P-confidence),

4) Balance of right and left noncoverage probabilities.

Section 2 enumerates several methods for interval estimation of µ, giving

appropriate references. Section 3 describes criteria used for comparison, Section 4

reports details of the comparative study and Section 5 presents concluding re-

marks.

2. A REVIEW OF THE EXISTING METHODS

Table 1 presented next reports 19 CIs for the Poisson mean. In the table,

“Schwertman and Martinez” is abbreviated as SM, “Freeman and Tukey” by FT,

“Wilson and Hilferty” by WH, “continuity correction” by CC, “Second Normal”

by SN and “Likelihood Ratio” by LR. Furthermore, α1 = α/2, α2 = 1 − α/2, and

xc = x + c for any number c.
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Table 1: Confidence limits for the nineteen methods.

Name and reference Lower Limit Upper Limit

1: Garwood (GW) �
χ2

(2x,α1)

�Æ
2

�
χ2

(2x1,α2)

�Æ
2

(1936)

2: WH (WH) x
�
1 − 1/9x + Zα1

/3
√

x
�3

x1

�
1 − 1/9x1 + Zα2

/3
√

x1

�3
(1931)

3: Wald (W) x + Zα1

√
x x + Zα2

√
x

SM (1994)

4: SN (SN) x + Z2
α1

/2 + Zα1

q
x + Z2

α1
/4 x + Z2

α1
/2 + Zα2

q
x + Z2

α2
/4

SM (1994)

5: Wald CC (FNCC) x
−0.5 + Zα1

√
x
−0.5 x0.5 + Zα2

√
x0.5

SM (1994)

6: SN CC (SNCC) x
−0.5 + Z2

α1
/2 + Zα1

x0.5 + Z2
α2

/2 + Zα2

SM (1994)
�
x
−0.5 + Z2

α2
/4
�
.5 �

x0.5 + Z2
α1

/4
�
.5

7: Molenaar (MOL) x
−0.5 +

�
2Z2

α1
+1

�
/6 + Zα1

x0.5 +
�
2Z2

α2
+1

�
/6 + Zα2

(1970)
�
x
−0.5 +

�
Z2

α1
+2

�
/18

�
.5 �

x0.5 +
�
Z2

α2
+2

�
/18

�
.5

8: Bartlett (BART) �√
x + Zα1

/2
�2 �√

x + Zα2
/2
�2

(1936)

9: Vandenbroucke (SR) �√
xc + Zα1

/2
�2 �√

xc + Zα2
/2
�2

(1982)

10: Anscombe (ANS) �p
x + 3/8 + Zα1

/2
�2− 3/8

�p
x + 3/8 + Zα2

/2
�2− 3/8

(1948)

11: FT (FT) 0.25
��√

x +
√

x1 + Zα1

�2−1
�

0.25
��√

x +
√

x1 + Zα2

�2−1
�

(1950)

12: Hald (H) �√
x
−.5 + Zα1

/2
�2

+ .5
�√

x
−.5 + Zα2

/2
�2

+ .5
(1952)

13: Begaud (BB) �√
x.02 + Zα1

/2
�2 �√

x.96 + Zα2
/2
�2

(2005)

14: Modified Wald (MW) For x=0; 0 For x=0; − log(α1)

Barker (2002) For x > 0; Wald limit For x > 0; Wald limit

15: Modified Bartlett (MB) For x=0; 0 For x=0; − log(α1)

Barker (2002) For x > 0; Bartlett limit For x > 0; Bartlett limit

16: LR (LR) No closed form No closed form
Brown et al. (2003)

17: Jeffreys (JFR) G
�
α1, x0.5, 1/r

�
G
�
α2, x0.5, 1/r

�
Brown et al. (2003)

18: Mid-P No closed form No closed form
Lancaster (1961)

19: Approximate Bootstrap x +
Z0 + Zα1�

1 − a(Z0 + Zα1
)
�2 √

x x +
Z0 + Zα2�

1 − a(Z0 + Zα2
)
�2 √

x
Confidence (ABC)

Swift (2009) where a = Z0 =1/(6
√

x )
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3. CRITERIA FOR COMPARISON

The criteria considered for the comparison among the above mentioned CIs

are E(LOC) of CIs, coverage probability, ratio of the left to right noncoverage

probabilities, E(P-confidence) and E(P-bias).

Here we explain the details of the three criterion for comparison mentioned

in Section 1. Without loss of generality a sample of size n = 1 is considered. The

comparisons are carried out over µ ∈ (0, 50].

The expected value of a function g(x) is computed as
∑∞

x=0 g(x) pµ(x) where

pµ(x) = e−µµx/x!. The infinite sums in the computation of these quantities were

approximated by appropriate finite ones up to 0.001 margin of error.

The coverage probability C(µ), noncoverage probability on the left L(µ),

noncoverage probability on the right R(µ), and corresponding expected length

E(LOC) of a CI
(

l(x), u(x)
)

are respectively computed by taking g(x) = I
(

l(x)≤

µ≤ u(x)
)

, I
(

µ > u(x)
)

, I
(

µ < l(x)
)

and
(

u(x)− l(x)
)

, where I(·) is the indicator

function of the bracketed event.

3.1. Computation of E(P-confidence) and E(P-bias)

Let CI(x) be the CI obtained for the observation x having nominal level (1−

α)100%. The P-bias and P-confidence are defined in terms of the standard equal

tailed P-value function P (µ, x) = min
(

2 Pµ(X≤ x), 2 Pµ(X≥ x), 1
)

. The P-con-

fidence of the CI that measures how strongly the observation x rejects parameter

values outside CI is defined as Cp

(

CI(x), x
)

=
(

1 − supµ/∈CI(x)P (µ, x)
)

× 100%.

The P-bias of a CI which quantifies the largeness of P-values for val-

ues of µ outside the CI in comparison with those inside the CI is given by

b
(

CI(x), x
)

= max
(

0, supµ/∈CI(x)P (µ, x) − infµ∈CI(x)P (µ, x)
)

× 100%. For the

Poisson distribution P (µ, x) is continuous and a monotone function in µ in op-

posite directions to the left and right of the interval for each value of x. Hence

the supremums and infimums occur at the upper or lower end points of the CIs.

Consequently the formulae of P-bias and P-confidence are reduced to

Cp

(

CI(x), x
)

=
(

1−max
{

2P
(

X≥ x; µ = l(x)
)

, 2P
(

X≤ x; µ = u(x)
)

})

×100% ,

b
(

CI(x), x
)

= max

{

0,
{

2P
(

X≥ x; µ = l(x)
)

−2P
(

X≤ x; µ = u(x)
)

}

}

×100% .

Their expected values are computed as described above.
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It was observed that when the actual value of µ is a fraction, the CI with

their endpoints rounded to the nearest integer (for lower limit, rounding to an

integer less than the limit and reverse for the upper limit) improved coverage

probabilities to a very large extent at the cost of increasing E(LOC) at most

by one unit. This is clearly visible from Figure 1 which displays the Box plot

of coverages for the rounded and unrounded CIs obtained using Wald method.

Similar pattern was observed for other methods.

roundedunrounded

95

90

85

C
o
ve
ra
g
e

Figure 1: Impact of rounding on coverage of Wald CI.

Consequently the E(LOC) and percent coverages reported here correspond

to these rounded intervals and the comparison carried out among the methods in

the sequel is based on rounded intervals.

4. COMPARISON AMONG THE METHODS

4.1. Comparison based on coverages and E(LOC)

On careful examination revealed that different methods perform differently

in certain subsets of the parameter space.

Consequently the performance of each method was studied separately on

the three regions, namely (0,2), [2,4] and (4,50] in the parameter space. Panels

(a) and (b) of Figures 2A to 4A display respectively the boxplots of coverages and

graphs of relative E(LOC) of conservative methods (i.e. ratio of E(LOC) for the

concerned method to the same for Garwood exact CI) for different regions defined

above. Figures 2B to 4B display similar plots for nonconservative methods.

The observations from these graphs are tabulated in Table 2. The methods

displayed in bold face have shortest length among the concerned group. Here

G1 = {GW,MOL,WH,BB} and G2 = {BART,W,H}.
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Table 2: Coverage performance of the nineteen methods.

Type µ ∈ (0,2) µ ∈ [2,4] µ ∈ (4,50]

Conservative

FNCC,LR, ANS,G1, MB,ANS, SN, G1 G1, SNCC,ABC,LR
FT, JFR,MB,MW,SN ABC, SR, JFR H,BART,MW,ANS
SNCC,ABC, SR,Mid-P SNCC,Mid-P FT,MB, SN,Mid-P

JFR,FNCC,W, SR

Non-
G2

G2, FNCC,FT, LR
—
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(a) Boxplot of coverages for conservative methods. (b) Relative lengths of conservative methods.

Figure 2A: Coverages and relative E(LOC) for conservative methods for
parametric space (0,2), where G1 = {GW,MOL,WH,BB}.
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(a) Boxplot of coverages for nonconservative methods. (b) Relative lengths of nonconservative
methods.

Figure 2B: Coverages and relative E(LOC) for nonconservative methods
for parametric space (0,2).
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Figure 3A: Coverages and relative E(LOC) for conservative methods for
parametric space [2,4], where G1 = {GW,MOL,WH,BB}.
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Figure 3B: Coverages and relative E(LOC) for nonconservative methods
for parametric space [2,4].
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Figure 4A: Coverages and relative E(LOC) for conservative methods for
parametric space (4,50], where G1 = {GW,MOL,WH,BB}.
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Figure 4B: Coverages and relative E(LOC) for nonconservative methods
for parametric space (4,50].
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4.2. Comparison with respect to balance of noncoverage probabilities

For a two sided CI procedure it is desirable to have the right and left non-

coverage probabilities to be fairly balanced. We plot the ratio of the left to right

noncoverage probabilities as a function of Poisson mean for the nineteen methods

in Figure 5A and 5B for regions (2,4) and (4,50). For balanced noncoverage, ratio

should oscillate in the close neighborhood of 1. For region (0,2) all methods are

well below 1, with the exception of Wald method.

A careful observation of figures leads to the following region wise perfor-

mance of methods with respect to right-to-left noncoverage balance reported in

Table 3.

Table 3: Performance based on right-to-left noncoverage balance.

Performance µ ∈ (2,4) µ ∈ (4,50)

Fairly balanced around 1 — G1,ABC,LR, JFR, SR

Uniformly below 1 SNCC, SN, G1,ABC,MB SN, SNCC,Mid-P

Uniformly above 1
LR, JFR, SR,Mid-P

FT,MB,ANS,FNCC,MW, G2
FT,ANS,FNCC,MW, G2

4.3. Comparison based on E(P-bias) and E(P-confidence)

For comparison of methods on the basis of E(P-bias) and E(P-confidence),

we consider three regions of sample space (0,2), (2,4) and (4,50). Three panels

(a) to (c) of Figures 6 and 7 represent boxplots of E(P-confidence) and E(P-bias)

for these three regions. Recommendations on the basis of E(P-bias) and E(P-con-

fidence) for two regions tabulated in Table 4.

Table 4: Recommendations on the basis of E(P-bias) and E(P-confidence).

Performance µ ∈ (0,2) µ ∈ (2,4) µ ∈ (4,50)

Smallest E(P-bias) FNCC,MW,W FNCC, SNCC SNCC,Mid-P, SN
Largest E(P-confidence) SNCC, SN,ABC, G1 SNCC, SN, G1 SNCC,G1, SN
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Figure 5A: Graph of ratio of noncoverage probabilities for parametric space (2,4].
The ratio of noncoverage probabilities for methods SNCC, SN, G1,
ABC and MB are zero for parametric space (2,4].
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(continued)
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Figure 5B: Graph of ratio of non coverage probabilities for parametric space (4,50].
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Figure 6(a): Boxplot of E(P-confidence) for parametric space (0,2].
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Figure 6(b): Boxplot of E(P-confidence) for parametric space (2,4].
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Figure 6(c): Boxplot of E(P-confidence) for parametric space (4,50).
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Figure 7(a): Boxplot of E(P-bias) for parametric space (0,2].
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Figure 7(b): Boxplot of E(P-bias) for parametric space (2,4].

SNCCMid-PSN G1 ABC JFR SR ANS FT LR H MBBARTFNCCMW W

0

5

10

Methods

E
(P
-b
ia
s
)

Figure 7(c): Boxplot of E(P-bias) for parametric space (4,50).
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5. CONCLUDING REMARKS

Rounding of end points of CI considerably improves the coverages of CI.

Our remarks are based on rounded intervals. A best choice for CI depends on the

objectives of the underlying investigations and a broad prior knowledge about

the underlying parameter if any.

Finally, our investigation suggests the following recommendations:

1) In the analysis of rare events where µ is expected to be very small

in between 0 to 2, we recommend MW and FNCC method on the

basis of highest coverage probabilities with shortest expected length

and smallest expected P-bias and reasonable expected P-confidence.

In this region LR is also recommendable on the basis of all the criteria

except E(P-bias).

2) For the situations where the parameter is expected to be large more

than 4, methods involved in G1 are the best choice. In fact the perfor-

mance of methods in G1 is uniformly satisfactory (if not best) on the

entire parameter space with respect to all the criteria, so in the absence

of any knowledge regarding the underlying parameter, we recommend

these methods for use.

3) We strongly recommend to avoid using W, BART, and H methods in all

kinds of applications, since these are uniformly nonconservative for all

parameter values, have large E(P-bias) and smallest E(P-confidence)

and highly imbalanced noncoverage on the right and left side.

These recommendations are useful guidelines for consulting professionals,

in data analysis, software development, and can be an interesting addition to the

discussion of case studies in Applied Statistic courses.
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