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Abstract:

• This review paper focuses on statistical issues arising in modeling univariate extremes
of a random sample. In the last three decades there has been a shift from the area
of parametric statistics of extremes, based on probabilistic asymptotic results in ex-
treme value theory, towards a semi-parametric approach, where the estimation of the
right and/or left tail-weight is performed under a quite general framework. But new
parametric models can still be of high interest for the analysis of extreme events, if
associated with appropriate statistical inference methodologies. After a brief reference
to Gumbel’s classical block methodology and later improvements in the parametric
framework, we present an overview of the developments on the estimation of parame-
ters of extreme events and testing of extreme value conditions under a semi-parametric
framework, and discuss a few challenging open research topics.
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1. INTRODUCTION, LIMITING RESULTS IN THE FIELD OF
EXTREMES AND PARAMETRIC APPROACHES

We shall assume that we have a sample (X1, ..., Xn) of n independent,

identically distributed (IID) or possibly stationary, weakly dependent random

variables from an underlying cumulative distribution function (CDF), F , and

shall use the notation (X1,n ≤ ··· ≤ Xn,n) for the sample of associated ascending

order statistics (OSs). Statistics of univariate extremes (SUE) helps us to learn

from disastrous or almost disastrous events, of high relevance in society and with a

high societal impact. The domains of application of SUE are thus quite diverse.

We mention the fields of hydrology, meteorology, geology, insurance, finance,

structural engineering, telecommunications and biostatistics (see, for instance,

and among others, Coles, 2001; Reiss & Thomas, 2001, 2007; Beirlant et al.,

2004, §1.3; Castillo et al., 2005; Resnick, 2007). Although it is possible to find

some historical papers with applications related to extreme events, the field dates

back to Gumbel, in papers from 1935 on, summarized in his book (Gumbel,

1958). Gumbel develops statistical procedures essentially based on Gnedenko’s

(Gnedenko, 1943) extremal types theorem (ETT), one of the main limiting results

in the field of extreme value theory (EVT), briefly summarized below.

1.1. Main limiting results in EVT

The main limiting results in EVT date back to the papers by Fréchet (1927),

Fisher & Tippett (1928), von Mises (1936) and Gnedenko (1943). Gnedenko’s

ETT provides the possible limiting behaviour of the sequence of maximum or

minimum values, linearly normalised, and an incomplete characterization, fully

achieved in de Haan (1970), of the domains of attraction of the so-called max-

stable (MS) or min-stable laws. Here, we shall always deal with the right-tail,

F (x) := 1 − F (x), for large x, i.e., we shall deal with top OSs. But all results

for maxima (top OSs) can be easily reformulated for minima (low OSs). Indeed,

X1,n =−max1≤i≤n(−Xi), and consequently, P(X1,n≤ x) = 1 − {1−F (x)}n. MS

laws are defined as laws S such that the functional equation Sn(αnx+βn) = S(x),

n ≥ 1, holds for some αn > 0, βn ∈ R. More specifically, all possible non-degener-

ate weak limit distributions of the normalized partial maxima Xn,n, of IID random

variables X1, ..., Xn, are (generalized) extreme value distributions (EVDs), i.e., if

there are normalizing constants an > 0, bn ∈ R, and some non-degenerate CDF G

such that, for all x,

(1.1) lim
n→∞

P
{

(Xn,n− bn)/an ≤ x
}

= G(x) ,



4 J. Beirlant, Frederico Caeiro and M. Ivette Gomes

we can redefine the constants in such a way that

(1.2) G(x) ≡ Gγ(x) :=

{

exp
{

−(1 + γx)−1/γ
}

, 1 + γx > 0 , if γ 6= 0 ,

exp
{

− exp(−x)
}

, x ∈ R , if γ = 0 ,

given here in the von Mises–Jenkinson form (von Mises, 1936; Jenkinson, 1955).

If (1.1) holds, we then say that the CDF F which is underlying X1, X2, ..., is in

the max-domain of attraction (MDA) of Gγ , in (1.2), and often use the notation

F ∈ DM(Gγ). The limiting CDFs G in (1.1) are then MS. They are indeed the

unique MS laws. The real parameter γ, the primary parameter of interest in

extreme value analysis (EVA), is called the extreme value index (EVI). The EVI,

γ, governs the behaviour of the right-tail of F . The EVD, in (1.2), is often

separated into the three types:

(1.3)

Type I (Gumbel) : Λ(x) = exp
{

− exp(−x)
}

, x ∈ R ,

Type II (Fréchet) : Φα(x) = exp(−x−α), x ≥ 0 ,

Type III (max-Weibull) : Ψα(x) = exp
{

−(−x)α
}

x ≤ 0 .

Indeed, with γ = 0, γ = 1/α > 0 and γ = −1/α < 0, respectively, we have Λ(x) =

G0(x), Φα(x) = G1/α{α(1− x)} and Ψα(x) = G−1/α{α(x + 1)}, with Gγ the EVD

in (1.2). The Fréchet domain of attraction (γ > 0) contains heavy-tailed CDFs

like the Pareto and the Student t-distributions, i.e., tails of a negative polynomial

type and infinite right endpoint. Short-tailed CDFs, with finite right endpoint,

like the beta CDFs, belong to the Weibull MDA (γ < 0). The Gumbel MDA

(γ = 0), is relevant for many applied sciences, and contains a great variety of

CDFs with an exponential tail, like the normal, the exponential and the gamma,

but not necessarily with an infinite right endpoint. As an example of a CDF

F ∈ DM(G0), with a finite right endpoint xF, we have the exponential-type dis-

tribution, F (x) = K exp
{

−c/(xF− x)
}

, for x < xF , c > 0 and K > 0.

Apart from the ETT and the already mentioned EVD, in (1.2), it is also

worth mentioning the generalized Pareto distribution (GPD), the limit distribu-

tion of scaled excesses over high thresholds (see the pioneering papers by Balkema

& de Haan, 1974; Pickands, 1975), which can be written as

(1.4) Pγ(x) = 1 + lnGγ(x) =

{

1− (1 + γx)−1/γ , 1+ γx > 0 , x > 0 , if γ 6= 0 ,

1− exp(−x) , x > 0 , if γ = 0 ,

with Gγ given in (1.2), as well as the multivariate EVD, related with the limiting

distribution of the k largest values Xn−i+1:n, 1 ≤ i ≤ k, also called the extremal

process (Dwass, 1964), with associated probability density function (PDF)

(1.5) hγ(x1, ..., xk) = gγ(xk)

k−1
∏

j=1

gγ(xj)

Gγ(xj)
if x1 > ··· > xk ,

where gγ(x) = dGγ(x)/dx, with Gγ(x) given in (1.2).
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1.2. Parametric approaches to SUE

Deciding upon the right tail-weight for the distribution underlying the sam-

ple data constitutes an important initial task in EVA. On the other hand, statisti-

cal inference about rare events is clearly linked to observations which are extreme

in some sense. There are different ways to define such observations, leading to

different approaches to SUE. We next briefly reference the most common para-

metric approaches to SUE. For further details on the topic, and pioneering papers

on the subject, see Gomes et al. (2008a).

Block maxima (BM) method. With (λn, δn) ∈ R×R
+, a vector of

unknown location and scale parameters, the ETT supports the approximation

(1.6) P
(

Xn,n≤ x
)

= Fn(x) ≈ Gγ

{

(x− λn)/δn

}

.

Gumbel was pioneer in the use of approximations of the type of the one provided

in (1.6), but for any of the models in (1.3), suggesting the first model in SUE,

usually called the BM model or the annual maxima model or the extreme value

(EV) univariate model or merely Gumbel’s model. The sample of size n is di-

vided into k sub-samples of size r (usually associated to k years, with n = r×k,

r reasonably large). Next, the maximum of the r observations in each of the

k sub-samples is considered, and one of the extremal models in (1.3), obviously

with extra unknown location and scale parameters, is fitted to such a sample.

Nowadays, whenever using this approach, still quite popular in environmental

sciences, it is more common to fit to the data a univariate EVD, Gγ{(x−λr)/δr},
with Gγ given in (1.2), (λr, δr, γ) ∈ (R, R+, R) unknown location, scale and ‘shape’

parameters. All statistical inference is then related to EVDs.

The method of largest observations (LO). Although the BM-method

has proved to be fruitful in the most diversified situations, several criticisms

have been made on Gumbel’s technique, and one of them is the fact that we are

wasting information when using only observed maxima and not further top OSs,

if available, because they surely contain useful information about the right-tail of

the CDF underlying the data. To make inference on the right-tail weight of the

underlying model, it seems sensible to consider a small number k of top OSs from

the original data, and when the sample size n is large and k fixed, it is sensible to

consider the multivariate EVD, with a standardized PDF given in (1.5). Again,

unknown location and scale parameters, λn and δn, respectively, are considered

and estimated on the basis of the k top OSs, out of n. This approach to SUE is

the so-called LO method or multivariate EV model. It is now easier to increase

the number k of observations, contrary to what happens in Gumbel’s approach.

Multi-dimensional EV approaches. It is obviously feasible to combine

the two aforementioned approaches to SUE. In each of the sub-samples asso-
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ciated to Gumbel’s classical approach, we can collect a few top OSs modelled

through a multivariate EV model, and then consider the so-called multidimen-

sional EVmodel. Under this approach, we have access to the multivariate sample,

(X1, ..., Xk), where Xj = (X1j , ..., Xijj), 1 ≤ j ≤ k, are multivariate EVvectors.

The multi-dimensional EV model is indeed the multivariate EV model for the

ij top observations, j = 1, ..., m, in sub-samples of size m′, with m×m′ = n.

The choices m = k (m′ = r) and ij = 1 for 1 ≤ j ≤ k give the BM model.

The choices m′ = n (m = 1) and i1 = k give the LO model.

The peaks over threshold (POT) approaches. The Paretian model

for the excesses, Xj −u > 0, 1 ≤ j ≤ k, over a high threshold u, suitably chosen,

is considered under this approach, in a certain sense parallel to the multivariate

EV model, but where we restrict our attention only to observations that exceed a

certain high threshold u, fitting the appropriate statistical model to the excesses

over u. On the basis of the approximation P
(

X−u ≤ x |X > u
)

≈ Pγ(x/σ), with

Pγ(x) given in (1.4), we come to the so-called Paretian excesses model or POT

model. Statistical inference is then related to the GPD.

Bayesian approaches. The use of Bayesian methodology, within EVA,

has recently become quite common. We mention only some recent papers, written

after the monographs by Coles (2001) and Reiss & Thomas (2001), the ones by

Bermudez & Amaral-Turkman (2003), Bottolo et al. (2003), Stephenson & Tawn

(2004), on the use of reversible jump MCMC techniques for inference for the EVD

and the GPD and Diebolt et al. (2005), on a quasi-conjugate Bayesian inference

approach for the GPD with γ > 0, through the representation of a heavy-tailed

GPD as a mixture of an exponential and a gamma distribution.

Statistical choice of EV models under parametric frameworks.

The Gumbel type CDF, Λ ≡ G0 or the exponential (E) type CDF, E ≡ P0, with

Gγ and Pγ given in (1.2) and (1.4), respectively, are favorites in SUE, essentially

because of the simplicity of associated inference. Additionally, γ = 0 can be

regarded as a change-point, and any separation between EV models, with Λ or E

in a central position, turns out to be an important statistical problem. From a

parametric point of view, empirical tests of H0 : γ = 0 versus a sensible one-sided

or two-sided alternative, either for the EVD or the GPD, date back to Jenkinson

(1955) and Gumbel (1965). Next, we can find in the literature, different heuristic

tests, among which we reference only one of the most recent (Brilhante, 2004).

We can also find locally asymptotically normal tests (see Marohn, 2000, and Falk

et al., 2008, among others). The fitting of the GPD to data has been worked

out in Castillo & Hadi (1997) and Chaouche & Bacro (2004). The problem of

goodness-of-fit tests for the GPD has been studied by Choulakian & Stephens

(2001) and Luceño (2006), again among others. Tests from large sample theory,

like the likelihood ratio test have been dealt with by Hosking (1984) and Gomes

(1989). Further details on this topic can be found in Gomes et al. (2007a), an

enlarged version of Gomes et al. (2008a).
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1.3. Scope of the paper

In the late 1970s, there was a move from a parametric approach based

on the limiting models in EVT, towards a semi-parametric approach, where tail

estimation is done under a quite general framework. In §2 of this review paper

we cover classical semi-parametric inference. Recently, essentially for heavy tails,

i.e., for γ > 0, but also for a general γ ∈ R, the accommodation of bias of the

classical estimators of parameters of extreme events has been deeply considered

in the literature. The topic of second-order reduced-bias (SORB) estimation still

seems to open interesting perspectives in the field, and will be addressed in §3.

Finally, in §4, we shall discuss some still challenging topics in SUE, providing

some overall comments on the subject.

2. CLASSICAL SEMI-PARAMETRIC INFERENCE

Under these semi-parametric approaches, we work with the k top OSs as-

sociated to the n available observations or with the excesses over a high random

threshold, assuming only that, for a certain γ, the model F underlying the data

is in DM(Gγ) or in specific sub-domains of DM(Gγ), with Gγ provided in (1.2),

γ being the key parameter of extreme events to be estimated, using a few large

observations, and with suitable methodology. There is thus no fitting of a spe-

cific parametric model, dependent upon a location λ, a scale δ and a shape γ.

We usually need to base the EVI-estimation on the k top OSs in the sample,

with k intermediate, i.e., such that k = kn →∞ and k = o(n), i.e., k/n → 0, as

n → ∞. Such estimators, together with semi-parametric estimators of location

and scale (see, for instance, de Haan & Ferreira, 2006), can next be used to esti-

mate extreme quantiles, return periods of high levels, upper tail probabilities and

other parameters of extreme events. After introducing first and second-order con-

ditions in §2.1, §2.2 describes several classical semi-parametric EVI-estimators.

In §2.3, we give results on the testing of the EV condition F ∈ D(Gγ), under

a semi-parametric framework. Finally, in §2.4, we outline the semi-parametric

estimation of other parameters of extreme events.

2.1. First, second (and higher) order conditions

As mentioned above, in §1, the full characterization of DM (Gγ) has been

given in de Haan (1970), and can be also found in Falk et al. (2004) and de Haan &

Ferreira (2006). Indeed, with U standing for a (reciprocal) quantile type function
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associated with F and defined by U(t) :=
(

1/(1 − F )
)←

(t) = F←(1 − 1/t) =

inf
{

x : F (x) ≥ 1 − 1/t
}

, the extended regular variation property,

(2.1) F ∈ DM (Gγ) ⇐⇒ lim
t→∞

U(tx) − U(t)

a(t)
=







xγ −1

γ
if γ 6= 0 ,

lnx if γ = 0 ,

for every x > 0 and some positive measurable function a, is a well-known neces-

sary and sufficient condition for F ∈ DM(Gγ) (de Haan, 1984). Heavy-tailed mod-

els, i.e., models F ∈ D+
M := DM(Gγ>0), are quite important in many areas. We

can then choose a(t) = γ U(t) in (2.1), and F ∈ D+
M if and only if, for every x > 0,

limt→∞ U(tx)/U(t) = xγ , i.e., U is of regular variation with index γ, denoted

U ∈ RVγ . More generally, F ∈ D+
M ⇐⇒ F := 1−F ∈ RV−1/γ ⇐⇒ U ∈ RVγ .

For full details on regular variation see Bingham et al. (1987).

Under a semi-parametric framework, apart from the first-order condition

in (2.1), we often need to assume a second-order condition, specifying the rate of

convergence in (2.1). It is then common to assume the existence of a function A∗,

possibly not changing in sign and tending to zero as t → ∞, such that

(2.2) lim
t→∞

U(tx)−U(t)
a(t) − xγ−1

γ

A∗(t)
=

1

ρ∗

(

xγ+ρ∗−1

γ + ρ∗
− xγ −1

γ

)

, x > 0 ,

where ρ∗≤ 0 is a second-order parameter controlling the speed of convergence

of maximum values, linearly normalized, towards the limit law in (1.2). Then

limt→∞A∗(tx)/A∗(t) = xρ∗, x > 0, i.e., |A∗| ∈RVρ∗ (de Haan & Stadtmüller, 1996).

For heavy tails, the second-order condition is usually written as

(2.3) lim
t→∞

lnU(tx) − lnU(t) − γ lnx

A(t)
=

xρ−1

ρ
,

where ρ ≤ 0 and A(t) → 0 as t → ∞. More precisely, |A| ∈ RVρ according to

Geluk & de Haan (1987). For the link between (A∗(t), ρ∗) and (A(t), ρ), see

de Haan & Ferreira (2006) and Fraga Alves et al. (2007). Similarly, third-order

conditions specify the rate of convergence either in (2.2) or in (2.3). For further

details on the third-order condition for heavy tails, see Gomes et al. (2002a)

and Fraga Alves et al. (2003a). For a general third-order framework, see Fraga

Alves et al. (2003b, Appendix; 2006). Higher-order conditions can be similarly

postulated, but restrict the chosen CDFs in DM(Gγ) more strictly.

2.2. Classical semi-parametric EVI-estimation

The most basic EVI-estimators that have motivated several other refined

estimators, i.e., the Hill (H), Pickands (P), moment (M) and peaks over random

threshold-maximum likelihood (PORT-ML) estimators, are described in §2.2.1.

Next, in §2.2.2, we briefly discuss other classical EVI-estimators.
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2.2.1. H, P, M and PORT-ML EVI-estimators

The H-estimator. For heavy tailed models, i.e., in D+
M, a simple EVI-

estimator has been proposed in Hill (1975). The H-estimator, denoted γ̂H
n,k, is

the average of the scaled log-spacings as well as of the log-excesses, given by

(2.4) Ui := i

(

ln
Xn−i+1,n

Xn−i,n

)

and Vik := ln
Xn−i+1,n

Xn−k,n
, 1 ≤ i ≤ k < n ,

respectively. Its asymptotic properties have been thoroughly studied (see de Haan

& Peng, 1998, and the review in Gomes et al., 2008a).

The P-estimator. For a general EVI, γ ∈ R, and considering as the basis

of the estimation the k top OSs, we can write the P-estimator (Pickands, 1975)

as

γ̂P
n,k := ln

{

(

Xn−[k/4]+1,n − Xn−[k/2]+1,n

)/(

Xn−[k/2]+1,n − Xn−k+1,n

)

}

/

ln 2 ,

where [x] denotes the integer part of x. Asymptotic properties of this estimator

are provided in Dekkers & de Haan (1989).

The M-estimator. Dekkers et al. (1989) proposed the M-estimator, based

on

(2.5) M
(j)
n,k :=

1

k

k
∑

i=1

(

lnXn−i+1,n − lnXn−k,n

)j
, j > 0 ,

the j-moment of the log-excesses, M
(1)
n,k≡ γ̂H

n,k being the H-estimator. The M-esti-

mator is given by γ̂M
n,k := M

(1)
n,k + 1

2

(

1 −
(

M
(2)
n,k/[M

(1)
n,k]

2 − 1
)−1
)

.

The PORT-ML-estimator. Conditionally on Xn−k,n, with k interme-

diate, Dik := Xn−i+1,n − Xn−k,n, 1 ≤ i ≤ k, are approximately the k top OSs

associated to a sample of size k from GPγ(αx/γ), γ, α ∈ R, with GPγ(x) given

in (1.4). The solution of the maximum-likelihood (ML) equations associated

to the above mentioned set-up (Davison, 1984) gives rise to an explicit EVI-

estimator, the PORT-ML EVI-estimator, named PORT after Araújo Santos et al.

(2006), and given by γ̂PORT−ML
n,k := 1

k

∑k
i=1 ln(1 + α̂ Dik), where α̂ is the implicit

ML estimator of the unknown ‘scale’ parameter α. A comprehensive study of

the asymptotic properties of this ML estimator has been undertaken in Drees

et al. (2004). As recently shown by Zhou (2009, 2010), this estimator is valid for

γ >−1.
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2.2.2. Other ‘classical’ semi-parametric EVI-estimators

Kernel (K) and QQ-estimators. A general class of estimators for a

positive EVI are the K-estimators proposed by Csörgő et al. (1985), given by

γ̂Kn,k :=
∑n

i=1 K(i/k) (lnXn−i+1,n − lnXn−k,n)/
∑n

i=1 K(i/k), where K(·) is some

non-negative, non-increasing kernel defined on (0,∞) and with unit integral. As

an example, the H-estimator is a kernel estimator associated to the kernel K(t) =

I]0,1](t), where I
A
(t) denotes the indicator function (I

A
(t) = 1 if t ∈ A, and equal

to 0 otherwise). Kernel estimators for a real EVI are considered in Groeneboom

et al. (2003). The H-estimator can also be obtained from the Pareto QQ-plot,

through the use of a näıve estimator of the slope in the ultimate right-end of the

QQ-plot. More flexible regression methods can be applied to the highest k points

of the Pareto QQ-plot; see Beirlant et al. (1996a,c), Schultze & Steinbach (1996),

Kratz & Resnick (1996), Csörgő & Viharos (1998) and Oliveira et al. (2006).

They are all K-estimators.

Generalized P-estimators. The large asymptotic variance of the

P-estimator has motivated different generalizations of the type γ̂
P(θ)
n,k :=

− ln
{(

Xn−[θ2k]+1,n − Xn−[θk]+1,n

)

/
(

Xn−[θk]+1,n − Xn−k,n

)} /

ln θ , 0 < θ < 1.

(Fraga Alves, 1992, 1995; Themido Pereira, 1993; Yun, 2002). Drees (1995)

establishes the asymptotic normality of linear combinations of P-estimators, ob-

taining optimal weights that can be adaptively estimated from the data. Related

work appears in Falk (1994). In Segers (2005), the P-estimator is generalized in

a way that includes all of its previously known variants.

The generalized Hill (GH) estimator. The slope of a generalized

quantile plot led Beirlant et al. (1996b) to the GH-estimator, valid for all γ ∈ R,

with the functional form, γ̂GH
n,k = γ̂H

n,k + 1
k

∑k
i=1

(

ln γ̂H
n,i − ln γ̂H

n,k

)

. Further study

of this estimator has been performed in Beirlant et al. (2005).

The Mixed Moment (MM) estimator. Fraga Alves et al. (2009) intro-

duced the so-called MM-estimator, involving not only the log-excesses but also

another type of moment-statistics given by ϕ̂n,k :=
(

M
(1)
n,k −L

(1)
n,k

)/(

L
(1)
n,k

)2
, with

L
(1)
n,k := 1

k

∑k
i=1

(

1−Xn−k,n/Xn−i+1,n

)

, and where M
(1)
n,k is defined in (2.5). The statis-

tic ϕ̂n,k can easily be transformed into what has been called the MM-estimator,

valid for any γ ∈ R, and given by γ̂MM
n,k :=

{

ϕ̂n(k)−1
}/[

1+ 2 min{ϕ̂n(k)−1, 0}
]

.

This seems a promising alternative to the most popular EVI-estimators for γ ∈ R.

Semi-parametric probabilityweightedmoment (PWM)estimators.

The PWM method is a generalization of the method of moments, introduced in

Greenwood et al. (1979). For γ < 1 and for CDFs like the EVD, EVγ((x−λ)/δ),

with EVγ(x) given in (1.2), the Pareto d.f., Pγ(x; δ) = 1 − (x/δ)−1/γ , x > δ,

and the GPD, GPγ(x/δ), with GPγ(x) defined in (1.4), the PWM have

simple expressions, which allow a simple parametric estimation of the EVI

(see Hosking et al., 1985; Hosking & Wallis, 1987; Diebolt et al., 2007, 2008c).
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On the basis of the GPD, de Haan and Ferreira (2006) considered, for γ < 1, the

semi-parametric GPPWM EVI-estimator, with GPPWM standing for generalized

Pareto PWM, given by γ̂GPPWM
n,k := 1 − 2 â⋆

1(k)/
(

â⋆
0(k) − 2 â⋆

1(k)
)

, 1 ≤ k < n, and

â⋆
s(k) :=

∑k
i=1

(

i
k

)s(
Xn−i+1:n − Xn−k:n

)

/k , s = 0, 1. On the basis of the Pareto

model, Caeiro & Gomes (2011) introduced the PPWM EVI-estimators, with

PPWM standing for Pareto PWM, given by γ̂PPWM
n,k := 1−â1(k)/

{

â0(k) − â1(k)
}

,

where âs(k) := 1
k+1

∑k+1
i=1

(

i
k+1

)s
Xn−i+1:n , s = 0, 1 with 1 ≤ k < n.

Other estimators. Falk (1995a) proposed the location-invariant estimator,

γ̂n,k := 1
k

∑k−1
i=1 ln

(

Xn,n − Xn−i,n

)/(

Xn,n − Xn−k,n

)

, as a complement of the

PORT-ML estimator for γ <−1/2. Such an estimator has been improved, on the

basis of an iterative procedure, in Hüsler & Müller (2005). The non-invariance for

shifts of the H-estimator led Fraga Alves (2001) to the consideration for k > k0,

with k0 appropriately chosen, of the location invariant Hill-type estimator γ̂n,k,k0
:=

1
k0

∑k
i=1 ln

((

Xn−i+1,n − Xn−k,n

)/(

Xn−k0+1,n − Xn−k,n

))

. Beirlant et al. (1996b)

consider a general class of estimators based on the mean, median and trimmed

excess functions. Drees (1998) obtains asymptotic results for a general class of

EVI-estimators, arbitrary smooth functionals of the empirical tail quantile func-

tion Qn(t) = Xn−[knt],n, t ∈ [0, 1]. Such a class includes H, P and K-estimators,

among others. For further references see, e.g., §6.4 of Embrechts et al. (1997),

Beirlant et al. (1996a;1998), Csörgő & Viharos (1998), §3 of de Haan & Ferreira

(2006), and Ling et al. (2011).

2.2.3. Consistency and asymptotic normal behaviour of the estimators

Weak consistency of any of the aforementioned EVI-estimators is achieved

in the sub-domain of DM(EVγ) where they are valid, whenever (2.1) holds and

k is intermediate. Under the validity of the second-order condition in (2.2), it is

possible to guarantee their asymptotic normality. More precisely, with T denoting

any of these EVI-estimators, and with B(t) a bias function converging to zero

as t → ∞ and closely related with the A∗(t) function in (2.3), it is possible to

guarantee the existence of C
T
⊂R and (b

T
, σ

T
) ∈ R×R

+, such that

(2.6) γ̂T
n,k

d
= γ + σ

T
P T

k /
√

k + b
T
B(n/k) + op

{

B(n/k)
}

,

with P T
k an asymptotically standard normal random variable. Consequently, for

values k such that
√

k B(n/k) → λ, finite, as n → ∞,

√
k
(

γ̂T
n,k − γ

) d−→
n→∞

Normal(λb
T
, σ2

T
) .

The values b
T

and σ2
T

are usually called the asymptotic bias and asymptotic

variance of γ̂T
n,k respectively. Details on the values of (b

T
, σ

T
) and the function B,

in (2.6) are given in the aforementioned papers associated with the T -estimators.
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2.3. Testing under a semi-parametric framework

Testing the hypothesis H0 : F ∈ DM(G0) against H1: F ∈ DM(Gγ), γ 6= 0,

or the corresponding one-sided alternatives, under a semi-parametric framework

is obviously natural and sensible. In a broad sense, tests of this nature can already

be found in papers prior to 2000 (see Gomes et al., 2007a). Non-parametric tests

appear in Jurečková & Picek (2001). But the testing of extreme value conditions

can be dated back to Dietrich et al. (2002), who propose a test statistic to test

whether the hypothesis F ∈ DM(Gγ) is supported by the data, together with a

simpler version devised to test whether F ∈ DM(Gγ≥0). Further results of this

last nature can be found in Drees et al. (2006) for testing F ∈ DM(Gγ>−1/2).

Tables of associated critical points are provided in Hüsler & Li (2006). Beirlant

et al. (2006) tackle the goodness-of-fit problem for the class of heavy-tailed or

Pareto-type distributions. For overviews of the subject see Hüsler & Peng (2008)

and Neves & Fraga Alves (2008). See also Koning & Peng (2008) and Goegebeur

& Guillou (2010).

2.4. Estimation of other parameters of extreme events

High quantiles of probability 1 − p, p small, or equivalently in financial

frameworks the Value at Risk at a level p (VaRp) are possibly the most important

parameters of extreme events, functions of the EVI, as well as of location/scale

parameters. In a semi-parametric context, the most usual estimators of a quan-

tile χ
1−p := U(1/p), with p small, can be easily derived from (2.1), through the

approximation U(tx) ≈ U(t) + a(t)(xγ−1)/γ. The fact that Xn−k+1,n
p∼ U(n/k)

enables us to estimate χ
1−p on the basis of this approximation and appropriate

estimates of γ and a(n/k). For the simpler case of heavy tails, the approxima-

tion is U(tx) ≈ U(t)xγ , and we get χ̂
1−p,k

:= Xn−k:n

{

k/(np)
}γ̂k , where γ̂k is any

consistent semi-parametric EVI-estimator. This estimator is of the type intro-

duced by Weissman (1978). Details on semi-parametric estimation of extremely

high quantiles for γ ∈ R, can be found in Dekkers & de Haan (1989), de Haan

& Rootzén (1993) and more recently in Ferreira et al. (2003). Fraga Alves et al.

(2009) also provide, jointly with the MM-estimator, accompanying shift and scale

estimators that make high quantile estimation almost straightforward. Other ap-

proaches to high quantile estimation can be found in Matthys & Beirlant (2003).

None of the above mentioned quantile estimators is equivariant. Araújo San-

tos et al. (2006) provide a class of semi-parametric VaRp estimators which enjoy

equivariance, the empirical counterpart of the theoretical linearity of a quantile

χp, χp(δX + λ) = δ χp(X) + λ, for any real λ and positive δ. This class of esti-

mators is based on the PORT methodology, providing exact properties for risk
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measures in finance: translation-equivariance and positive homogeneity. The es-

timation of the probability of exceedance of a fixed high level, has been dealt with

by Dijk & de Haan (1992) and Ferreira (2002), among others. See also Guillou et

al. (2010) and You et al. (2010). The estimation of the endpoint of an underlying

CDF has been studied by Hall (1982), Csörgő & Mason (1989), and Aarssen &

de Haan (1994), among others. Estimation of the mean of a heavy-tailed distri-

bution has been undertaken by Peng (2001) and Johansson (2003). Estimation of

the Weibull tail coefficient dates back to Girard (2004). See also Goegebeur et al.

(2010a), among others. See also de Haan & Ferreira (2006).

3. SORB ESTIMATION

Most of the classical semi-parametric estimators of any parameter of ex-

treme events have a strong bias for moderate up to large values of k, including

the optimal k, in the sense of minimal mean squared error (MSE). Accommo-

dation of bias of classical estimators of parameters of extreme events has been

deeply considered in the recent literature. We mention the pioneering papers of

Peng (1998), Beirlant et al. (1999), Feuerverger & Hall (1999) and Gomes et al.

(2000), where the classical bias-variance trade-off always appears. Such a trade-

off was removed with an appropriate estimation of the second-order parameters,

as done in Caeiro et al. (2005) and Gomes et al. (2007b; 2008c), who introduced

different types of minimum-variance reduced-bias (MVRB) EVI-estimators. Such

estimators have an asymptotic variance equal to that of the Hill EVI-estimator

but an asymptotic bias of smaller order, and thus beat the classical estimators

for all k. In §3.1 we deal with SORB semiparametric EVI-estimation and in §3.2,

we briefly describe the recent literature on SORB semi-parametric estimation of

other parameters of extreme events.

3.1. SORB semi-parametric EVI-estimation

Let us consider any ‘classical’ semi-parametric EVI-estimator, γ̂n,k. Let us

also assume that a distributional representation similar to the one in (2.6), with

(b
T
, σ

T
) replaced by (b, σ), holds for γ̂n,k. For intermediate k, γ̂n,k is consistent

for EVI-estimation, and it is asymptotically normal if we further assume that√
kB(n/k) → λ, finite. Approximations for the variance and the squared-bias of

γ̂n,k are then σ2/k and b2B2(n/k) respectively. Consequently, these estimators

exhibit the same peculiarities: a high variance for high thresholds Xn−k,n, i.e., for

small k; a high bias for low thresholds, i.e., for large k; a small region of stability

of the sample path (plot of the estimates versus k), making the adaptive choice of

the threshold problematic on the basis of any sample path stability criterion; and
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a very peaked MSE, making the choice of the value k0 := arg mink MSE (γ̂n,k)

difficult. These peculiarities have led researchers to consider the possibility of

dealing with the bias term in an appropriate manner, building new estimators

γ̂R
n,k, here called SORB EVI-estimators. In particular, for heavy tails, i.e., γ > 0,

bias reduction is very important for the estimation of γ or of the Pareto index,

α = 1/γ, when the slowly varying part of the Pareto type model disappears at a

very slow rate. We consider the following definition (Reiss & Thomas, 2007, §6).

Definition 3.1. Under the second-order condition in (2.2) and for inter-

mediate k, the statistic γ̂R
n,k, a consistent EVI-estimator, based on the k top OSs

in a sample from F ∈ DM(EVγ), is said to be a SORB semi-parametric EVI-

estimator, if there exist σ
R

> 0 and an asymptotically standard normal random

variable PR
k , such that for a large class of models in DM(EVγ), and with B(·) the

function in (2.6),

(3.1) γ̂R
n,k

d
= γ + σ

R
PR

k /
√

k + op

{

B(n/k)
}

.

Notice that for the SORB EVI-estimators, we no longer have a dominant

component of bias of the order of B(n/k), as in (2.6). Therefore,

√
k
(

γ̂R
n,k − γ

) d−→
n→∞

Normal
(

0, σ2
R

)

not only when
√

kB(n/k) → 0 (as for classical estimators), but also when√
kB(n/k) → λ, finite and non-null. Such a bias reduction provides usually a

stable sample path for a wider region of k-values, a ‘bath-shaped’ MSE and a

reduction of the MSE to the optimal level.

Such an approach has been carried out for heavy tails in different manners.

The key ideas are either to find ways of getting rid of the dominant component

bB(n/k) of bias, in (2.6), or to go further into the second-order behaviour of the

basic statistics used for the estimation of γ, like the log-excesses or the scaled log-

spacings, in (2.4). We first mention some pre-2000 results about bias-corrected es-

timators in EVT. Such estimators date back to Gomes (1994b), Drees (1996) and

Peng (1998), among others. Gomes uses the generalized jackknife (GJ) method-

ology in Gray & Schucany (1972), and Peng deals with linear combinations of ap-

propriate EVI-estimators, in a spirit close to that associated to the GJ technique.

Feuerverger & Hall (1999) discuss the question of the possible misspecification of

the second-order parameter ρ at −1, a value that corresponds to many commonly

used heavy-tailed models, like the Fréchet. Within the second-order framework,

Beirlant et al. (1999) investigate the accommodation of bias in the scaled log-

spacings and derive approximate ‘ML’ and ‘least squares’ SORB EVI-estimators.

In §3.1.1, we provide details about the GJ EVI-estimation. In §3.1.2 we briefly

review an approximate ML approach, together with the introduction of simple

SORB EVI-estimators based on the scaled log-spacings or the log-excesses, in
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(2.4). Second-order parameters are usually decisive for the bias reduction, and

we deal with their estimation in §3.1.3. Finally in §3.1.4, we conclude with some

remarks about further literature on SORB EVI-estimation, including the recent

first steps on SORB EVI-estimation for a general γ ∈ R.

3.1.1. A brief review of GJ estimators of a positive EVI

The pioneering SORB EVI-estimators are, in a certain sense, GJ estimators,

i.e., affine combinations of well-known estimators of γ. For details on the GJ

methodology, see Gray & Schucany (1972). Whenever we are dealing with semi-

parametric EVI-estimators, or even estimators of other parameters of extreme

events, we usually have information about their asymptotic bias. We can thus

choose estimators with similar asymptotic properties, and build the associated

GJ random variable or statistic. This methodology has been used in Gomes et al.

(2000, 2002b), among others, and was revisited by Gomes et al. (2011c). Indeed,

if the second-order condition in (2.3) holds, we can easily find two statistics γ̂
(j)
n,k,

such that (2.6) holds for both. The ratio between the dominant components of

bias of γ̂
(1)
n,k and γ̂

(2)
n,k is q = b1/b2 = q(ρ), and we get the GJ random variable,

(3.2) γ̂
GJ(ρ)
n,k :=

(

γ̂
(1)
n,k − q(ρ) γ̂

(2)
n,k

)/{

1 − q(ρ)
}

.

Then under the second-order condition in (2.3), a distributional representation

of the type in (3.1) holds for γ̂
GJ(ρ)
n,k , with σ2

GJ
> σ2

H
= γ2 and

(

P
R

k , B(n/k)
)

re-

placed by
(

P
GJ

k , A(n/k)
)

. The same result remains true for the GJ EVI-estimator,

γ
GJ(ρ̂)
n,k , provided that ρ̂ − ρ = op(1) for all k on which we initially base the EVI-

estimation. Then (Gomes & Martins, 2002), if
√

k A(n/k) → λ, finite,

(3.3)
√

k
(

γ̂
GJ(ρ̂)
n,k − γ

) d−→
n→∞

Normal
(

0, σ2
GJ

)

.

The result in (3.3), comes from the fact that, through the use of Taylor’s expan-

sion, we can write

(3.4) γ̂
GJ(ρ̂)
n,k

d
= γ̂

GJ(ρ)
n,k (k) +

(

ρ̂ − ρ
)

[

Op

(

1/
√

k
)

+ Op

{

A(n/k)
}

]

{

1 + op(1)
}

.

A closer look at (3.4) reveals that it does not seem convenient to compute ρ̂

at the value k considered for the EVI-estimation. Indeed, if we do that, and

since we have ρ̂ − ρ = ρ̂k − ρ = Op

[

1/
{
√

k A(n/k)
}]

(see Fraga Alves et al.,

2003a), (ρ̂ − ρ)A(n/k) is a term of the order of 1/
√

k, and the asymptotic vari-

ance of the EVI-estimator will change. Gomes et al. (2000) have suggested the

misspecification of ρ at ρ = −1, essentially due not only to the high bias and

variance of the existing estimators of ρ at that time, but also to the idea of con-

sidering ρ̂ = ρ̂k. Nowadays, the use of any of the algorithms in Gomes & Pestana

(2007a,b), among others, enables us to get the limiting result in (3.3), for k-values

such that
√

k A(n/k) → ∞, as n → ∞.
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3.1.2. Accommodation of bias in the scaled log-spacings and in the log-excesses:

alternative SORB EVI-estimators

The ML EVI-estimation based on the scaled log-spacings. The

accommodation of bias in the scaled log-spacings Ui in (2.4) has also been a source

of inspiration for the building of SORB EVI-estimators. Under the second-order

condition in (2.3), but for ρ < 0, i.e., working in Hall’s class of Pareto-type models

(Hall, 1982), with a right-tail function F (x) = Cx−1/γ
(

1 + Dxρ/γ + o
(

xρ/γ
))

, as

x → ∞, C > 0, D real, ρ < 0, we can choose in (2.3),

(3.5) A(t) = α tρ =: γ β tρ , β ∈ R , ρ < 0 ,

where β can be regarded as a slowly varying function. Beirlant et al. (1999)

provide the approximation

(3.6) Ui ∼
{

γ + A(n/k) (i/k)−ρ}Ei , 1 ≤ i ≤ k ,

where Ei, i ≥ 1, denotes a sequence of IID standard exponential random variables.

Feuerverger and Hall (1999) consider the approximation

(3.7) Ui ∼ γ exp
(

A(n/k) (i/k)−ρ/γ
)

Ei = γ exp
(

A(n/i)/γ
)

Ei , 1 ≤ i ≤ k .

The approximation (3.6), or equivalently (3.7), has been made more precise in

the asymptotic sense, in Beirlant et al. (2002). The use of the approximation in

(3.7) and the joint maximization, in γ, β and ρ, of the approximate log-likelihood

of the scaled log-spacings,

log L
(

γ, β, ρ ; Ui, 1≤ i≤ k
)

= −k log γ − β
k
∑

i=1

(i/n)−ρ − 1

γ

k
∑

i=1

e−β(i/n)−ρ

Ui ,

led Feuerverger and Hall to an explicit expression for γ̂,

(3.8) γ̂ = γ̂
FH(β̂,ρ̂)
n,k :=

1

k

k
∑

i=1

e−β̂(i/n)−ρ̂

Ui ,

as a function of β̂ and ρ̂, where β̂ = β̂
FH(ρ̂)
n,k and ρ̂ = ρ̂FH

n,k are both computed at

the same k used for the EVI-estimation, and are numerically obtained through

(3.9) (β̂, ρ̂) := arg min
(β,ρ)

{

log

(

1

k

k
∑

i=1

e−β(i/n)−ρ

Ui

)

+ β

(

1

k

k
∑

i=1

(i/n)−ρ

)}

.

If k is intermediate and the second-order condition (2.3) hold, it is possible to

state that if ρ is unknown as well as β, as usually happens, and they are both

estimated through the above mentioned ML technique,

(3.10)
√

k
(

γ̂
FH(β̂,ρ̂)
n,k − γ

)

d−→
n→∞

Normal

(

0, σ2
FH

= γ2

(

1− ρ

ρ

)4)

.
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Again, even when
√

k A(n/k) → λ, non-null, we have a null asymptotic bias

for the reduced-bias EVI-estimator, but at the expenses of a larger asymptotic

variance, ruled by σ2
FH

= γ2
{

(1 − ρ)/ρ
}4

. Note that the asymptotic variance is

smaller, and given by γ2
{

(1 − ρ)/ρ
}2

, if we assume ρ to be known.

A simplified maximum likelihood EVI-estimator based on the

external estimation of ρ. The use of the first-order approximation, ex = 1+x,

as x → 0, in the two ML equations that provided before (β̂, ρ̂), led Gomes &

Martins (2002) to an explicit estimator for β, given by

(3.11) β̂
GM(ρ̂)
n,k :=

(

k

n

)ρ̂

(

1
k

∑k
i=1

(

i
k

)−ρ̂
)

Ĉ0 − Ĉ1
(

1
k

∑k
i=1

(

i
k

)−ρ̂
)

Ĉ1 − Ĉ2

, Ĉj =
1

k

k
∑

i=1

( i

k

)−jρ̂
Ui ,

and, on the basis of an appropriate consistent estimator ρ̂ of ρ, they suggest the

following approximate ML estimator for the EVI, γ,

(3.12) γ̂
GM(ρ̂)
n,k :=

1

k

k
∑

i=1

Ui − β̂
GM(ρ̂)
n,k

(

n

k

)ρ̂

Ĉ1 .

The estimator in (3.12) is clearly a bias-corrected Hill estimator, i.e., the dom-

inant component of the bias of the H-estimator, equal to A(n/k)/(1 − ρ) =

γβ(n/k)ρ/(1 − ρ) is estimated through β̂
GM(ρ̂)
n,k (n/k)ρ̂ Ĉ1, and directly removed

from the H-estimator, which can also be written as γH
n,k =

∑k
i=1 Ui/k. Un-

der the same conditions as before, the asymptotic variance of γ̂
GM(ρ̂)
n,k is σ2

GM
=

γ2(1 − ρ)2/ρ2 < σ2
FH

, but still greater than σ2
H

= γ2.

External estimation of second-order parameters and the weighted

Hill (WH) EVI-estimator. In a trial to accommodate bias in the excesses

over a high random threshold, Gomes et al. (2004b) were led, for heavy tails, to a

weighted combination of the log-excesses Vik, 1 ≤ i ≤ k < n, also in (2.4), giving

rise to the WH EVI-estimator in Gomes et al. (2008c),

(3.13) γ̂WH
n,k,β̂,ρ̂

:=
1

k

k
∑

i=1

p
ik

(β̂, ρ̂)Vik , pik(β̂, ρ̂) := e β̂ (n/k)ρ̂((i/k)−ρ̂−1)/(ρ̂ ln(i/k)),

where (β̂, ρ̂) are suitable consistent estimators of second-order parameters (β, ρ).

The key to the success of the WH-estimator lies in the estimation of β and ρ

at a level k1, such that k = o(k1), with k the number of top OSs used for the

EVI-estimation. The level k1 needs to be such that (β̂, ρ̂) is consistent for the

estimation of (β, ρ) and ρ̂− ρ = op(1/ lnn). For more details on the choice of k1,

see Gomes et al. (2008c), and more recently Caeiro et al. (2009). Compared to

the SORB EVI-estimators available in the literature and published prior to 2005,

this EVI-estimator is a MVRB EVI-estimator, in the sense that, in comparison

with the Hill estimator, it keeps the same asymptotic variance σ2
WH

= σ2
H

= γ2
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and a smaller order asymptotic bias, outperforming the H-estimator for all k.

Related work appears in Caeiro et al. (2005) and Gomes et al. (2007b). Gomes

et al. (2007b) suggest the computation of the β-estimator β̂
GM(ρ̂)
n,k , used at (3.12),

at the level k1 used for the estimation of ρ. With the notation β̂ := β̂
GM(ρ̂)
n,k1

, they

suggest thus the replacement of the estimator in (3.12) by

(3.14) γ̂
M(β̂,ρ̂)
n,k := γH

n,k − β̂

(

n

k

)ρ̂

Ĉ1 ,

where γH
n,k denotes the H-estimator, and (β̂, ρ̂) are appropriate consistent estima-

tors of the second-order parameters (β, ρ). With the same objectives, but with a

simpler expression, we also mention the estimator (Caeiro et al., 2005).

(3.15) γ̂
H(β̂,ρ̂)
n,k := γH

n,k

(

1 − β̂(n/k)ρ̂/(1− ρ̂)
)

.

The dominant component of the bias of the H-estimator is estimated in (3.15)

through γH
n,k β̂(n/k)ρ̂/(1− ρ̂), and directly removed from Hill’s classical EVI-

estimator. The appropriate estimation of β and ρ at a level k1 of a higher order

than the level k used for the EVI-estimation, enables, for a large diversity of

heavy-tailed models, the reduction of bias without increasing the asymptotic vari-

ance, which is kept at the value γ2, the asymptotic variance of Hill’s estimator.

Reiss & Thomas (2007), §6, and Gomes et al. (2008a) review this topic.

3.1.3. Second-order parameters estimation for heavy tails

The first estimator of the parameter ρ, in (2.3), with A(·) given in (3.5),

but where β can possibly be any slowly varying function, appears in Hall &

Welsh (1985). Peng (1998) claims that no good estimator for the second-order

parameter ρ was then available in the literature, and considers a new ρ-estimator,

alternative to the ones in Hall & Welsh (1985), Beirlant et al. (1996c) and Drees

& Kaufmann (1998). Another estimator of ρ appears in Gomes et al. (2002a), and

more recently, we mention the classes of ρ-estimators in Goegebeur et al. (2008;

2010b) and Ciuperca & Mercadier (2010). Here we choose particular members of

the class of estimators of the second-order parameter ρ proposed by Fraga Alves

et al. (2003a). Under appropriate general conditions, they are asymptotically

normal estimators of ρ, if ρ < 0, which show highly stable sample paths as

functions of k, the number of top OSs used, for a wide range of large k-values.

Such a class of estimators, parameterised in a tuning real parameter τ ∈ R,

is defined as

(3.16) ρ̂
(τ)
n,k := −

∣

∣

∣
3
(

T
(τ)
n,k −1

)/(

T
(τ)
n,k −3

)

∣

∣

∣
, T

(τ)
n,k :=

(

M
(1)
n,k

)τ−
(

M
(2)
n,k/2

)τ/2

(

M
(2)
n,k/2

)τ/2 −
(

M
(3)
n,k/6

)τ/3
,

with M
(j)
n,k given in (2.5) and with the notation abτ = b ln a whenever τ = 0.
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Gomes & Martins (2002) provide an explicit estimator for β, based on

the scale log-spacings Ui, in (2.4), and already given in (3.11). An additional

estimator of β, is provided in Caeiro & Gomes (2006). See also Gomes et al.

(2010), for a β-estimator based on the log-excesses.

Algorithms for the estimation of second-order parameters can be found in

Gomes & Pestana (2007a,b). The use of such algorithms, where the ρ-estimator

is computed at k1 = [n1−ǫ], with ǫ small, say ǫ = 0.001, enables us to guarantee

that, for a large class of heavy-tailed models, as n → ∞,
(

ρ̂
(τ)
n,k1

− ρ
)

lnn = op(1),

a crucial property of the ρ-estimator, if we do not want to increase the asymptotic

variance of the random variable, function of (β, ρ), underlying the SORB EVI-

estimator. Such a crucial property can potentially be achieved if we compute ρ̂

at its optimal level (see Caeiro et al., 2009), but the adaptive choice of such a

level is still an open research topic.

3.1.4. Additional Literature on SORB EVI-estimation

Other approaches to bias reduction, in the estimation of a positive EVI can

be found in Gomes & Martins (2001, 2004), Caeiro & Gomes (2002), Gomes et

al. (2004a; 2005a; 2005b; 2007c; 2011a), Canto e Castro & de Haan (2006), and

Willems et al. (2007), among others. Recently, Cai et al. (2011) introduced the

first SORB estimators for γ ∈ R, based on the PWM methodology.

3.2. SORB semi-parametric estimation of other parameters of

extreme events

Reduced bias quantile estimators have been studied in Matthys et al. (2004)

and Gomes & Figueiredo (2006), who consider the classical SORB EVI-estimators.

Gomes & Pestana (2007b) and Beirlant et al. (2008) incorporate the MVRB EVI-

estimators in Caeiro et al. (2005) and Gomes et al. (2007b) in high quantile semi-

parametric estimation. See also Diebolt et al. (2008b), Beirlant et al. (2009),

Caeiro & Gomes (2009), Li et al. (2010). For a SORB estimation of the Weibull-

tail coefficient, we mention Diebolt et al. (2008a). Finally, for SORB endpoint

estimation, we mention Li & Peng (2009).
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4. OVERALL COMMENTS AND FURTHER RESEARCH

We shall next discuss a few areas where a lot has been already done but

further research is still welcome. In our opinion, SUE is still a lively topic of

research. Important developments have appeared recently in the area of spatial

extremes, where parametric models seem again to be quite relevant. In this case,

and now that we have access to highly sophisticated computational techniques,

a great variety of parametric models can further be considered. And in a semi-

parametric framework, topics like threshold selection, trends and change points

in the tail behaviour, and clustering, among others, are still challenging.

4.1. Rates of convergence and penultimate approximations

An important problem in EVT concerns the rate of convergence of

Fn(anx + bn) towards Gγ(x), in (1.2), or, equivalently, the search for estimates

of the difference dn(F, Gγ , x) := Fn(anx+ bn)−Gγ(x). Indeed, as detailed in §1,

parametric inference on the right-tail of F , usually unknown, is done on the basis

of the identification of Fn(anx + bn) and of Gγ(x). And the rate of convergence

may or may not support use of the commonest models in SUE. As noted by Fisher

& Tippett (1928), although the normal CDF Φ ∈ DM(G0), the convergence of

Φn(anx+bn) towards G0(x) is extremely slow. They then show, through the use of

skewness and kurtosis coefficients as indicators of closeness, that Φn(x) is ‘closer’

to a suitable penultimate G−1/γn
{(x − λn)/δn}, for γn > 0, λn ∈ R, δn > 0, than

to the ultimate G0{(x − bn)/an}. Such an approximation is the so-called penul-

timate approximation and several penultimate models have been advanced by

several authors. Dated overviews of the modern theory of rates of convergence

in EVT, introduced in Anderson (1971), can be seen in Galambos (1984) and

Gomes (1994a). More recently, Gomes & de Haan (1999) derived, for all γ ∈ R,

exact penultimate approximation rates with respect to the variational distance,

under appropriate differentiability assumptions. Kaufmann (2000) proved, under

weaker conditions, a result related to that in Gomes & de Haan (1999). This

penultimate or pre-asymptotic behaviour has further been studied by Raoult &

Worms (2003) and Diebolt & Guillou (2005), among others. Other type of penul-

timate approximations have been considered in Smith (1987b). Among them, we

mention a penultimate parametric model of the type

(4.1) PGγ(x; r) = exp
[

−(1 + γx)−1/γ
{

1 + r(1 + γx)−1/γ
}]

.

These models surely deserve deeper statistical consideration. Penultimate models

seem interesting alternatives to the classical models but have never been much

used. Concomitantly, the convergence of the estimators can be very slow when

ρ = 0 or ρ∗ = 0, as happens with normal and loggamma distributions, important

models in many areas, and alternative estimation procedures are still needed.
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4.2. Max-semistable laws

We also mention the class of max-semistable (MSS) laws, introduced by

Grienvich (1992a, 1992b), Pancheva (1992), and further studied in Canto e Castro

et al. (2000) and in Temido & Canto e Castro (2003). Such a class is more general

than the class of MS laws, given in (1.2). Indeed, the possible MSS laws are

Gγ,ν(x) =







exp
[

−ν
{

ln(1 + γx)
}

(1 + γx)−1/γ
]

, 1 + γx > 0 , if γ 6= 0 ,

exp
{

−ν(x) exp(−x)
}

, x ∈ R , if γ = 0 ,

where ν(·) is a positive, limited and periodic function. A unit ν-function enables

us to get the MS laws in (1.2). Discrete models like the geometric and negative

binomial, and some multimodal continuous models, are in DMSS but not in DM.

A recent survey of the topic can be found in Pancheva (2010). Generalized P-

statistics have been used in Canto e Castro and Dias (2011), to develop methods

of estimation in the MSS context. See also Canto e Castro et al. (2011). Such a

diversity of models, if duly exploited from a statistical point of view, can surely

provide fruitful topics of research, both in parametric and semi-parametric setups.

4.3. Invariance versus non-invariance

In statistics of extremes most of the methods of estimation are dependent

on the log-excesses, and consequently, are non-invariant with respect to shifts of

the data. But the invariance not only to changes in scale but also to changes in

location of any EVI estimator is statistically appealing. Wouldn’t be sensible to

use the PORT methodology in Araújo Santos et al. (2006), and consider PORT

EVI-estimators based on the transformed sample

(4.2) X∗i := Xi − X[np]+1,n , 0 < p < 1, 1 ≤ i ≤ n ?

A similar procedure was used by Fraga Alves et al. (2009), who also propose a

class of EVI-estimators alternative to the MM-estimator, invariant to changes

in location, and dependent on a similar tuning parameter p , 0 < p < 1. Such

estimators have the same functional expression as the original estimator, but

the original observation Xi is replaced everywhere by X∗i , in (4.2), 1 ≤ i ≤ n.

A similar procedure has been used for the H and M EVI-estimators, and for

quantile estimation in Araújo Santos et al. (2006). For PORT quantile estima-

tion, see also Henriques-Rodrigues & Gomes (2009). The shift invariant versions,

dependent on the tuning parameter p , have properties similar to those of the

original estimator T , provided we keep to appropriate k-values and choose an ap-

propriate tuning parameter p. For recent research on this topic see Gomes et al.

(2011b), but more is needed.
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4.4. Adaptive selection of sample fraction or threshold

A threshold is often set ‘almost arbitrarily’ (for instance at the 90% or the

95% sample quantile). However, the choice of the threshold, or equivalently of

the number k of top OSs to be used is crucial for a reliable estimation of any

parameter of extreme events. The topic has already been extensively studied for

classical EVI-estimators, for which (2.6) holds. In Hall & Welsh (1985), Hall

(1990), Beirlant et al. (1996c), Drees & Kaufmann (1998) and Danielsson et al.

(2001), methods for the adaptive choice of k are proposed for the H-estimator,

some of them involving the bootstrap technique. Gomes & Oliveira (2001) also

uses the bootstrap methodology to provide an adaptive choice of the threshold,

alternative to that in Danielsson et al. (2001), and easy to generalise to other semi-

parametric estimators of parameters of extreme events. For a general γ and for

the M-estimator and a generalized P-estimator, see Draisma et al. (1999). These

authors also use the bootstrap. Beirlant et al. (2002) consider the exponential

regression model (ERM) introduced in Beirlant et al. (1999), discuss applications

of the ERM to the selection of the optimal sample fraction in EV estimation,

and derive a connection between the new choice strategy in the paper and the

diagnostic of Guillou & Hall (2001). Csörgő & Viharos (1998) provide a data-

driven choice of k for kernel estimators. Apart from the papers by Drees &

Kaufmann (1998) and Guillou and Hall (2001), where choice of the optimal sample

fraction is based on bias stability, the other papers make the optimal choice

minimizing the estimated MSE. Possible heuristic choices are provided in Gomes

& Pestana (2007b), Gomes et al. (2008e) and Beirlant et al. (2011). The adaptive

SORB estimation is still giving its first steps. We can however mention the recent

papers by Gomes et al. (2011a,d). Is it sensible to use bootstrap computational

intensive procedures for threshold selection or there will be simpler techniques

possibly related with bias pattern? Is it possible to apply a similar methodology

for the estimation of other parameters of extreme events?

4.5. Other possible topics of research in SUE

Testing whether F ∈ DM(Gγ), for a certain γ, is a crucial topic, already

dealt with in several articles mentioned in §1.2 and 2.3. And what about testing

second-order and third-order conditions? Change-point detection is also a chal-

lenging topic. And SUE for weakly dependent data, with all problems related

with clustering of extreme values, merits further research. SUE for randomly

censored data is another challenging topic. See Beirlant et al. (2007; 2010),

Einmahl et al. (2008a) and Gomes & Neves (2011). Statistics of extremes in

athletics and estimation of the endpoint is another of the relevant topics in SUE.
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We mention the recent papers by Einmahl & Magnus (2008), Li & Peng (2009),

Einmahl & Smets (2011), Henriques-Rodrigues et al. (2011) and Li et al. (2011).

Recent models, like the extreme value Birnbaum–Saunders model in Ferreira et

al. (2011), can also become relevant in the area of SUE. Moreover, the estimation

of second and higher order parameters still deserves further attention, particu-

larly due to the importance of such estimation in SORB estimators of parameters

of extreme events.
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