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Abstract:

• TV shows on any athletic event make clear that those who want gold medals cannot
dispense statistics. And the statistics more appealing to champions and coachers are
the extreme order statistics, and in particular maximum (or minimum) values and
records. The models in statistics of extremes are usually semi-parametric or even
non-parametric in nature, with the imposition of a few regularity conditions in the
appropriate tail of the unknown model underlying the available data. The primordial
parameter is the extreme value index, the shape parameter in the (unified) extreme

value distribution. The estimation of the extreme value index is one of the basis
for the estimation of other parameters of rare events, like the right endpoint of the
model underlying the data, a high quantile, the return period and the probability of

exceedance of a high level. In this paper, we are interested in an application of statistics

of extremes to the best personal marks in a few athletic events. Due to the way data
are collected, we begin with a parametric data analysis, but we pay special attention
to the semi-parametric estimation of the extreme value index and the right endpoint
whenever finite, the possible world record, given the actual conditions. In order to
achieve a better decision we consider a few alternative semi-parametric estimators
available in the literature, and heuristic rules for the choice of thresholds.
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1. INTRODUCTION AND OUTLINE OF THE PAPER

Statistical facts are quite commonly used by sports commentators. We all

have listened to programs on different athletic events, showing that statistics is an

instrument that champions instructors need to use. It is without doubt a subject

which cannot be dispensed by those who want gold medals, and the statistics

more appealing to the champions are the extreme order statistics (o.s.’s), and in

particular maximum (or minimum) values and records.

The models in statistics of extremes are usually semi-parametric or even

non-parametric in nature, with the imposition of a few “regularity conditions” in

the right-tail
(
or left-tail

)
, F (x) := 1−F (x), as x→+∞

(
or F (x), as x→−∞

)
,

of an unknown model F underlying the available data, whenever we are inter-

ested in large (or small) values. The primordial parameter is the extreme value

index. For large values, the extreme value index is the shape parameter γ in the

distribution function (d.f.)

(1.1) Gγ(x) =

{
exp
(
−(1 + γx)−1/γ

)
, 1 + γx > 0 , if γ 6= 0 ,

exp
(
− exp(−x)

)
, x ∈ R , if γ = 0 ,

the (unified) extreme value distribution. The extreme value index needs to be

estimated in a “precise” way, because such an estimation plays a major role in

the estimation of other parameters of extreme and large events, like the right

endpoint of the model F underlying the data,

(1.2) x∗ := sup
{

x : F (x) <1
}

,

a high quantile with probability 1− p, p small, i.e., χ1−p := inf
{
x : F (x)≥ 1− p

}
,

p < 1/n, with n the available sample size, the return period and the probability

of exceedance of a high level.

In this paper, we shall be interested in an application of statistics of ex-

tremes to the best personal marks attained at a few athletic events, in a context

similar to the one used in Einmahl and Magnus (2008). We shall pay special

attention to the estimation of γ, in (1.1), as well as of the right endpoint x∗, in

(1.2), whenever finite, and of an indicator of the “excellence” of the level xn:n,

the maximum of the n available observations. The right endpoint provides an

estimate of the possible “world record” given the actual conditions, and the closer

to one the “excellence” indicator of the level xn:n is, the better is the actual world

record. In Section 2, we present some preliminary results in extreme value theory.

In Section 3, we refer a few details on the semi-parametric estimation of a few

parameters of extreme events. In Section 4, we provide heuristic choices of the

thresholds for an adaptive semi-parametric estimation of the parameters of inter-

est. Such heuristic choices take essentially into account the similarities of a few

simple and alternative estimators of those parameters. In Section 4, we analyze

data related to six athletic events and draw some final comments.
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2. PRELIMINARY RESULTS IN EXTREME VALUE THEORY

Let us think on any athletic event, like for instance the women marathon.

Let us denote the best personal marks of n different athletes by X1, X2, ..., Xn

and by

X1:n ≤ X2:n ≤ · · · ≤ Xn:n

the associated ascending o.s.’s. Under this set-up, (X1, X2, ..., Xn) can be consid-

ered as independent, identically distributed (i.i.d.) observations from an under-

lying model F , obviously unknown. Let us also assume that, if necessary, data

are transformed so that we can speak of maximum values
(
and not of minimum

values
)
. Indeed, any result for maxima can be easily reformulated for minima,

due to the fact that min(X1, X2, ..., Xn) = −max(−X1,−X2, ...,−Xn). However,

this is not the transformation used later on in this paper for the analysis of data

in athletics, where we shall convert running times in speeds, so that the higher

the speed, the better. We shall thus work with upper o.s.’s.

One of the main results in extreme value theory is related to the possible

limiting laws of the sequence Xn:n := max(X1, X2, ..., Xn), of maximum values,

as n → ∞. Since

P
(
Xn:n ≤ x

)
= P

(
n⋂

i=1

{Xi≤ x}
)

= Fn(x) −→
n→∞

{
0 if F (x) <1 ,

1 if F (x) =1 ,

we obviously have

Xn:n
p−→

n→∞
x∗ ,

with x∗ given in (1.2).

In order to obtain a possible non-degenerate behaviour for Xn:n, we thus

need to normalize it. Similarly to the central limit theorem for sums or means,

we know that if the maximum Xn:n, linearly normalized, converges to a non-

degenerate random variable (r.v.), then there exist real constants {an}n≥1 (an >0)

and {bn}n≥1, the so-called attraction coefficients of F to Gγ , in (1.1), such that

(2.1) lim
n→∞

P

(
Xn:n− bn

an
≤ x

)
= lim

n→∞
Fn(anx + bn) = Gγ(x) ,

for some γ ∈R (Gnedenko, 1943; de Haan, 1970). We then say that F is in the

domain of attraction (for maxima) of Gγ and we use the notation F ∈ DM(Gγ).

The extreme value index γ, in (1.1), measures essentially the weight of the

right-tail F = 1−F . If γ < 0, the right-tail is light, i.e., F has a finite right

endpoint (x∗< +∞). If γ > 0, the right-tail is heavy, of a negative polynomial

type, i.e., F has an infinite right endpoint. If γ = 0, the right-tail is of an expo-

nential type and the right endpoint can be either finite or infinite. In Figure 1,
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we represent graphically the probability density function (p.d.f.) associated with

the extreme value d.f., in (1.1), i.e. gγ(x) = dGγ(x)/dx, for γ =−0.5, 0 and 0.5.

We also picture the standard normal p.d.f., ϕ(x) = exp(−x2/2)/
√

2π, x∈R, as

well as a “zoom” of the right-tails of these four models. It is clear the lightness of

the right-tail of Gγ for γ < 0 (finite right endpoint), followed by the normal tail

and next the Gumbel tail (γ = 0). It is also clear the heaviness of the right-tail

of Gγ for γ > 0.
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Figure 1: Extreme value p.d.f.’s, gγ(x), with γ = −0.5, 0 and 0.5,
and normal p.d.f., ϕ(·).

Remark 2.1. Note that to say that F ∈ DM(Gγ) is equivalent to say-

ing that for all x real and such that 0 < Gγ(x) < 1, limn→∞ n lnF (anx + bn) =

lnGγ(x) = −(1 + γx)−1/γ . Consequently, F (anx + bn) → 1 for those values of x.

Since limn→∞

(
− lnF (anx + bn)

)/(
1 − F (anx + bn)

)
= 1, we equivalently have

(2.2) lim
n→∞

n
(
1 − F (anx + bn)

)
= − lnGγ(x) = (1 + γx)−1/γ .

Let us define

(2.3) U(t) := F←(1 − 1/t) (t >1) , F←(x) := inf
{
y : F (y)≥ x

}
,

with F← denoting thus the generalized inverse function of F . It is reasonably

easy to prove (de Haan, 1984) that, with G−1
γ denoting the inverse function of

the extreme value d.f. Gγ in (1.1),

lim
t→∞

U(tx) − bt

at
= G−1

γ

(
exp(−1/x)

)
=

xγ −1

γ
,

for all x > 0, with at ≡ a(t) ≡ a[t], [t] = integer part of t and an the scale at-

traction coefficient in (2.1). Also bt ≡ b(t) ≡ b[t], with bn the location attraction
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coefficient, also in (2.1). Moreover, we can choose bt = U(t), with U(·) defined in

(2.3) (see Theorem 1.1.2 of de Haan and Ferreira, 2006). More generally,

(2.4) F ∈ DM(Gγ) ⇐⇒ lim
t→∞

U(tx) − U(t)

a(t)
=

xγ −1

γ
,

for all x > 0, with U(·) defined in (2.3).

Remark 2.2. When γ = 0, and by continuity arguments, the functions

− lnGγ(x) = (1 + γx)−1/γ and G−1
γ

(
exp(−1/x)

)
= (xγ −1)/γ should be inter-

preted as exp(−x) and lnx, respectively.

3. SEMI-PARAMETRIC ESTIMATION OF A FEW RELEVANT

PARAMETERS OF EXTREME EVENTS

On the basis of the available random sample, (X1, X2, ..., Xn), let us see

how to estimate the extreme value index γ, the primordial parameter in statistics

of extremes, the scale a, the location b, the right endpoint x∗ and the return

period of a high level xH, usually defined as the expected number of exceedances

of such a level.

3.1. Estimation of the extreme value index

For any integer j ≥ 1, let us denote

L
(j)
k,n :=

1

k

k∑

i=1

{
1 − Xn−k:n

Xn−i+1:n

}j

(3.1)

and

M
(j)
k,n :=

1

k

k∑

i=1

{
lnXn−i+1:n − lnXn−k:n

}j
.(3.2)

These statistics have revealed to be fundamental in statistics of extremes. For

the estimation of γ, we shall first refer three estimators, valid, i.e. consistent,

for all γ ∈ R:

1. The moment (M) estimator (Dekkers et al., 1989), with the functional

form

(3.3) γ̂M
k,n ≡ Mk,n := M

(1)
k,n +

1

2



1 −

(
M

(2)
k,n[

M
(1)
k,n

]2 −1

)−1


 ,

M
(j)
k,n, j =1, 2, defined in (3.2).
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2. The generalized Hill (GH) estimator introduced in Beirlant et al. (1996),

further studied in Beirlant et al. (2005), and based on the Hill estimator

(Hill, 1975), the statistic M
(1)
k,n, in (3.2), also denoted

(3.4) γ̂H
k,n ≡ Hk,n :=

1

k

k∑

i=1

{
lnXn−i+1:n − lnXn−k:n

}
,

and valid only for γ ≥ 0. The GH-estimator, valid for all γ ∈ R, and

with γ̂H
k,n given in (3.4), has the functional form

(3.5) γ̂GH
k,n ≡ GHk,n := γ̂H

k,n +
1

k

k∑

i=1

{
ln γ̂H

i,n − ln γ̂H
k,n

}
.

3. The mixed moment (MM) estimator (Fraga Alves et al., 2009), with

the functional form

(3.6) γ̂MM
k,n ≡ MMk,n :=

ϕ̂k,n−1

1 + 2 min(ϕ̂k,n−1, 0)
, ϕ̂k,n :=

M
(1)
k,n − L

(1)
k,n(

L
(1)
k,n

)2 ,

L
(1)
k,n and M

(1)
k,n defined in (3.1) and (3.2), respectively.

The three estimators in (3.3), (3.5) and (3.6) are consistent in DM(Gγ), γ ∈R,

if k = kn is an intermediate sequence, i.e., a sequence of integers such that

(3.7) k = kn → ∞ and kn = o(n) , as n → ∞ .

Due to the specificity of the data, we shall also consider another simple estimator:

4. The location invariant estimator (F ) introduced in Falk (1995),

(3.8) γ̂F
k,n ≡ Fk,n :=

1

k

k−1∑

i=1

ln
Xn:n−Xn−i:n

Xn:n−Xn−k:n
,

valid only for a negative extreme value index smaller than −0.5.

We still would like to refer the so-called “maximum likelihood” (ML) es-

timator, introduced in Smith (1987) and further studied in Drees et al. (2004).

Such an estimator is valid and asymptotically normal for all γ > −1 (see Zhou,

2009, 2010, for details in the region −1 < γ ≤ −1/2). The extreme value index

ML-estimator is based on the application of the maximum likelihood methodology

to the excesses Xn−i+1:n −Xn−k:n, 1 ≤ i ≤ k. These excesses are approximately

the k top o.s.’s of a sample of size k from a generalized Pareto model, strongly

related to the extreme value d.f. Gγ in (1.1), through the relation

(3.9) GP (x; γ, α) = 1 + lnGγ(αx/γ) = 1 − (1+αx)−1/γ , 1+αx > 0, x > 0 ,

with α, γ ∈R. This is a re-parametrization due to Davison (Davison, 1984).
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Then, with such a re-parametrization, the ML-estimator of γ has an explicit

expression as a function of the ML-estimator α̂ = α̂ML of α and the sample of

the excesses. We have

(3.10) γ̂ML
k,n = γ̂ML

k,n,α̂ ≡ MLk,n :=
1

k

k∑

i=1

ln
(
1 + α̂(Xn−i+1:n−Xn−k:n)

)
.

The estimates α̂ = α̂ML are obtained through numerical iterative methods, usually

computationally time-consuming. This is the reason why we shall not consider

these estimators in the Monte Carlo simulation in Section 4, related to heuristic

choices of thresholds. We shall however consider the ML-estimators in the data

analysis provided in Section 5.3.2, due to their nice asymptotic properties for

−1/2 < γ < 0 (see, for instance, Gomes and Neves, 2008, among others).

For a large variety of models, and under mild second-order conditions, we

can guarantee the asymptotic normality of all the above mentioned estimators

and can build approximate confidence intervals (CI’s) for γ, as well as for all

other parameters of extreme events, like the ones discussed next in Section 3.2.

We merely need to assume the existence of a function A(t), converging to 0, as

t → ∞, which measures the rate of convergence of the sequence of maximum

values to a non-degenerate limit r.v. and that “measures” also the bias of the

estimators in a great variety of situations (see de Haan and Ferreira, 2006, for

details). Such a second-order condition can be written as

(3.11) lim
t→∞

U(tx)−U(t)
a(t) − xγ−1

γ

A(t)
= Hγ,ρ(x) :=

1

ρ

(
xγ+ρ −1

γ + ρ
− xγ −1

γ

)
,

for all x > 0, where ρ ≤ 0 is a second order parameter controlling the speed of con-

vergence in the first-order condition, (2.4), and |A(t)| ∈RVρ, with RVa standing

for the class of regularly varying functions at infinity with an index of regular vari-

ation a, i.e. positive measurable functions g such that limt→∞ g(tx)/g(t) = xa,

for all x > 0. Note that for the extreme value d.f., in (1.1), condition (3.11)

holds, with ρ = −1 if γ 6= 1 and ρ = −2 if γ = 1. For the Generalized Pareto

d.f., in (3.9), U(t) = (tγ − 1)/γ, and we can say that condition (3.11) holds with

A(t) ≡ 0 (ρ = −∞).

3.2. Semi-parametric estimation of other parameters of interest

3.2.1. Estimation of location and scale

As mentioned before, we have bt = U(t), with U(·) defined in (2.3). On

another side, the universal uniform transformation enables us to guarantee that

∀F , unknown and underlying the r.v. X, X
d
= U(Y ), with Y a unit Pareto r.v.,
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i.e. a r.v. with d.f. FY (y) = 1 − 1/y, y ≥ 1. Consequently,

Xn−k:n
d
= U(Yn−k:n) , and since Yn−k:n

p∼ n/k , as n →∞ ,

where Xn
p∼ Yn means that Xn/Yn converges in probability to one, as n → ∞,

it is sensible to consider

b̂ = b̂k,n = Û(n/k) = Xn−k:n .

And for any extreme value index estimator, γ̂• ≡ γ̂•

k,n, we can consider (de Haan

and Ferreira, 2006)

â• = â•

k,n = Xn−k:nM
(1)
k,n

(
1 − min(0, γ̂•)

)
,

with M
(1)
k,n given in (3.2).

3.2.2. Estimation of the right endpoint for γ < 0

For large values of t and γ 6= 0, if we take into account the validity of

condition (2.4), we can write the approximation U(tx) ≈ U(t) + a(t) (xγ −1)/γ.

But x∗= U(∞) and for all γ < 0, (xγ −1)/γ → −1/γ, as x→∞. If we consider

t = n/k, with k intermediate, we can thus guarantee that, whenever γ̂• < 0,

x∗ ≈ U(n/k) − a(n/k)/γ =⇒ x̂∗
•

:= b̂ − â•/γ̂• .

As we have the obvious restriction xn:n ≤ x∗, we shall instead consider the right

endpoint estimator

(3.12) x̂∗k,n|• = max

(
Xn:n , Xn−k:n

(
1 − M

(1)
k,n

(
1− min(0, γ̂•

k,n)
)/

γ̂•

k,n

))
.

3.2.3. Estimation of the return period of a high level xH and similar indicators

In a pure framework of i.i.d. observations, if we think on the number of

observations NH needed to reach a value higher than xH, such a r.v. has support

{1, 2, ...} and P(NH = r) = pH(1− pH)r−1, r ≥ 1, with pH = P(X > xH) = 1−F (xH),

i.e. NH is a geometric r.v.. The return period of the high level xH is usually defined

as the mean value of NH , being given by

R(xH) :=
1

pH

=
1

1−F (xH)
.

In the framework of this paper, it is perhaps sensible to think on the n athletes

under consideration, and to define an indicator associated with a high level xH
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as the mean number of athletes, among the n, who will have in the future a

personal mark larger than xH. We thus have the mean value of a Binomial
(
n, pH =

1−F (xH)
)

r.v., given by

MN(xH) := n
(
1 − F (xH)

)
,

with MN standing for mean number.

On the basis of the limiting relation in (2.2), we can then consider the

estimators

R̂
•

(xH) :=
n

k


min

(
+∞, 1 + γ̂•

(
xH − b̂

â•

))

1/γ̂•

and

M̂N
•

(xH) ≡ n p̂•

H := k


max

(
0, 1 + γ̂•

(
xH − b̂

â•

))

−1/γ̂•

of R(xH) and MN(xH), respectively.

Note that for xH = xn:n, F absolutely continuous, and denoting (U1, ..., Un)

a random sample from a uniform d.f. in (0, 1), we have

MN(Xn:n) = n
(
1 − F (Xn:n)

) d
= n U1:n ,

which converges weakly towards a unit exponential r.v., as n → ∞. Consequently,

the sequence of r.v.’s exp
(
−MN(Xn:n)

)
converges weakly towards a uniform r.v.

in (0, 1). In the data analysis provided in Section, 5.3.2 we shall thus consider

(3.13) Ê•

n ≡ Ê•

k,n := exp
(
−M̂N

•

(Xn:n)
)

as an estimator of an indicator of the “excellence” of the world record Xn:n,

given by En := exp
(
−MN(Xn:n)

)
. Note that the E-indicator was chosen merely

because it lies in the finite support [0,1]. The closer to 1 this indicator is, the

better is the actual world record. Such an indicator is strongly related to the

quality of the current world record ’s indicator Q :=− lnEn = n
(
1−F (Xn:n)

)
of

Einmahl and Magnus (2008), the expected number of exceedances of the current

world record, Xn:n, conditional on this world record.

For further details on most of the subjects of this Section, see Chapters 1 and 4

of de Haan and Ferreira (2006).
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4. HEURISTIC CHOICES OF THRESHOLDS IN THE SEMI-

PARAMETRIC EXTREME VALUE INDEX, RIGHT END-

POINT AND EXCEEDANCE PROBABILITY ESTIMATION:

A MONTE-CARLO STUDY

For any arbitrary estimator, γ̂•

k,n, of γ, like the ones in (3.3), (3.4), (3.5),

(3.6), (3.8) and (3.10), and under the validity of a second-order condition like the

one in (3.11), we get an asymptotic distributional representation of the type

(4.1) γ̂•

k,n
d
= γ +

σ• P •

k√
k

+ v• A(n/k)
(
1 + op(1)

)
,

with P •

k
a∼ Normal(0, 1). Consequently, for intermediate levels k, i.e., levels such

that (3.7) holds, and also such that
√

k A(n/k) → λ, finite, ∃ v• ∈R and σ• ∈R
+

such that

(4.2)
√

k (γ̂•

k,n− γ)
d−→

n→∞
Normal(λv•, σ2

•
) .

The “asymptotic mean squared error” (AMSE) is defined as

AMSE
(
γ̂•

k,n

)
:=

σ2
•

k
+ v2

•
A2(n/k) ,

i.e. we get asymptotic bias and variance given by BIAS∞
(
γ̂•

k,n

)
:= v• A(n/k) and

Var∞
(
γ̂•

k,n

)
:= σ2

•
/k, respectively. If λ = 0, the mean value of the limiting normal

law in (4.2) is equal to zero.

Let us define k•

0 = k•

0(n) := arg mink MSE
(
γ̂•

k,n

)
∼ arg mink AMSE

(
γ̂•

k,n

)
,

the level associated with a minimal AMSE, as the optimal level for the estimation

of γ through γ̂•

k,n, and let us denote γ̂•

n0 := γ̂•

k•
0 ,n, the estimator computed at its

optimal level. With the notation A(t) = β tρ, ρ < 0, the value σ• is a function of γ

and v• is usually a function of β and ρ (possibly also of γ). We then get

(4.3) k•

0 =
(
σ2
•
/(−2 ρ v2

•
β2)
)1/(1−2ρ)

n−2ρ/(1−2ρ) .

In order to estimate k•

0 in (4.3), in a simple and precise way, we thus need to

have “nice” estimates of the second-order parameters (β, ρ). However, whereas

such an estimation is reliable for γ > 0 (see, for instance, Caeiro et al., 2005;

Gomes and Pestana, 2007; Gomes et al., 2007, 2008, among others), this is not

the case for γ ≤ 0. Notice however that we can estimate ρ, for a general γ ∈ R,

through the estimators in Fraga Alves et al. (2003). Even so, the optimal level,

in (4.3), depends often not only on β but also on γ. The estimation of k0 can

then be made recursively, but it induces a high volatility in the estimates and a

drastic loss of efficiency. Alternatively, we could also use, for instance, bootstrap
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methods (Draisma et al., 1999; Danielson et al., 2001; Gomes and Oliveira, 2001)

for an optimal adaptive choice of k. Here, after deciding on a negative value for γ,

as will be the case in Section 5, we propose the following heuristic choice of the

threshold k. Let us denote γ̂
(i)
k,n, i ∈ K = {1, 2, 3, 4}, the set of alternative (and

computationally simple to obtain) EVI-estimators in (3.3), (3.5), (3.6) and (3.8).

Then, consider

(4.4) k∗min := arg min
k

∑

(i,j)∈K, i6=j

(
γ̂

(i)
k,n − γ̂

(j)
k,n

)2

and

(4.5) T ∗ := Tk∗
min,n , with T = M or GH or MM or F ,

Mk,n, GHk,n, MMk,n, Fk,n and k∗min given in (3.3), (3.5), (3.6), (3.8) and (4.4),

respectively. We cannot claim any kind of asymptotic optimality for the choice

k∗min, in (4.4), in the sense that we would like to have k∗min/k•

0 → 1, as n → ∞.

However, if b• 6= 0, we can guarantee that the value k∗min in (4.4) is of the order of

n−2ρ/(1−2ρ), i.e., of the same order of the optimal value k•

0 in (4.3). Consequently,

(4.2) holds whenever we there replace k by k∗min. Moreover, the value in (4.4)

seems to be heuristically appealing whenever we want to take into account a

set of alternative semi-parametric estimators of a parameter of extreme events.

It is expected that there will be a region where all estimators work, and in such a

region we surely get close values for all estimates and the smallest possible value

for the indicator in (4.4). If we enlarge the set K, in order to include the extreme

value index ML-estimator, in (3.10), as we shall do in the data analysis performed

in Section 5.3.2, we shall use the notations k∗∗min and T ∗∗ for the entities equivalent

to the ones in (4.4) and (4.5), respectively.

We shall also consider the same type of heuristic procedure for the esti-

mation of the right endpoint x∗, in (1.2), done through similar adaptive right

endpoint estimators,

(4.6) x̂∗T := x̂∗k∗x
min,n|T , again with T = M or GH or MM or F ,

x̂∗k,n|• given in (3.12), and where, for the same set K and the same notation as

before,

(4.7) k∗xmin := arg min
k

∑

(i,j)∈K, i6=j

(
x̂∗k,n|(i) − x̂∗k,n|(j)

)2
=: k∗x .

Similarly, we shall use the notations k∗∗xmin and x̂∗∗T , whenever we include in K
the ML-estimator, in (3.10), for the estimation of the right endpoint. A similar

method was also applied to the estimators of the “excellence” indicators, in (3.13)

(or equivalently to the exceedance probability of Xn:n). We shall use the obvious

similar notations Ê∗
•
, Ê∗∗

•
for those adaptive estimators and k∗Emin ≡ k∗E, k∗∗Emin ≡

k∗∗E for the adaptive choices of k.
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In order to obtain distributional properties of the adaptive estimators under

consideration, we have performed simulation studies of size 5000×10 for sample

sizes n = 100, 200, 300, 400, 500, 1000, 2000 and 5000, from a reasonably large

variety of models. Due to characteristics of the data, which are maxima of a cer-

tain number of marks, and should consequently be associated with an underlying

d.f. quite close to the extreme value (EV ) model, we shall uniquely present, as an

illustration, the results associated with an underlying model F (x) = Gγ(x), with

Gγ(x) given in (1.1), γ = −0.1 and −0.3.

For each value of n, we have simulated not only the mean values and root

mean squared errors of the four estimators in (4.5), but also of the similar adap-

tive right endpoint estimators in (4.6). A similar method was also applied to

the estimators of the “excellence” indicators, in (3.13) (or equivalently to the ex-

ceedance probability of Xn:n). As mentioned before, we shall use the obvious

notation Ê∗
•

for those adaptive estimators and k∗Emin ≡ k∗E for the adaptive choice

of k. Due to the stability of the sample paths of the estimators in (3.8), even

when we cannot guarantee their consistency, the results do not depend on either

the inclusion or the non-inclusion of such an estimator.

For underlying EV models, with γ = −0.1 and −0.3, the estimates of the

absolute bias (|BIAS|) and root mean squared error (RMSE) of the adaptive

EVI-estimators are presented in Figures 2 and 3, respectively. We also present

in these figures the corresponding values of at least one of the estimators at its

simulated optimal level, denoted T0, with T = M , GH, MM or F. For the bias

structure, we present only one T0, the one with the lowest absolute bias for large

values of n. The introduction of the ML-estimator, in (3.10), does not lead to

very different conclusions, but increases drastically the time of computation and

consequently the loss of precision associated with the REFF indicators. Similar

patterns have been obtained for underlying GP and reversed-Burr parents, and

we see no need to present those extra results.
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Figure 2: Absolute values of bias (left) and root mean squared errors (right)
of the adaptive extreme value index estimators in (4.5), for an
extreme value model with γ = −0.1.
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Figure 3: Absolute values of bias (left) and root mean squared errors (right)
of the adaptive extreme value index estimators in (4.5), for an
extreme value model with γ = −0.3.

A few remarks related with the adaptive estimators in (4.5) for underlying

EV models:

• For γ = −0.1, the absolute bias of MM∗ is the smallest one, except for

n = 100. For this sample size, and regarding absolute bias, GH∗ beats

MM∗. Regarding MSE, the best of the adaptive estimates is MM∗, for

all n. As γ decreases, and regarding bias, MM∗ is replaced by GH∗ for

moderate n and by M∗ for small n.

• For γ = −0.3, the absolute bias of MM∗ is the smallest one, only for

n ≥ 2000. For 300 ≤ n ≤ 1000, GH∗ beats the other estimators. For

n ≤ 200, the smallest absolute bias is the one of M∗. Regarding MSE,

the best of the estimates is GH∗, quite close to MM∗ for all n.

• Notice the overall worst performance of the estimator F ∗, essentially

due to the region of γ-values under consideration.

Regarding the “potential” estimators T0 at simulated optimal levels, with

T = M, GH, MM or F , we draw the following comments:

• At simulated optimal levels, GH0 achieves the minimum MSE for all n,

if γ = −0.3. For the other values of γ, GH0 is the best one for small n,

but M0 becomes the best for large n (n≥ 1000 for γ = −0.1).

• Regarding smallest absolute bias at simulated optimal levels, M0 is the

best for all n, if γ =−0.1. For the other values of γ, M0 is the best for

n≥ 200. For n = 100, GH0 overpasses all other ones.

In Table 1, for EV underlying parents, for a few values of n, and for T =

M, GH, MM and F , we present two relative efficiency indicators of T ∗, in (4.5),

relatively to T0, and to S0, the best T0-estimator, i.e. the one with smallest MSE
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at optimal level. With the notation MSEs(S0) = min
(
MSEs(M0), MSEs(GH0),

MSEs(MM0), MSEs(F0)
)
, we have simulated

REFF1 :=

√
MSEs(T0)

MSEs(T ∗)
and REFF2 :=

√
MSEs(S0)

MSEs(T ∗)
,

the values placed in the first and second line, respectively, of any entrance T ∗.

Note that the higher than one these indicators are, the better T ∗ performs.

Moreover, we obviously have REFF1 ≥ REFF2. For all n, the highest REFF1-

indicator is written in bold and the highest REFF2 indicator is written in italic.

The results obtained are consistent with the remarks made above.

Table 1: Simulated REFF ’s of the adaptive EVI-estimators under study, together
with associated 95% CI’s, for extreme value underlying parents.

EV parent, γ =−0.1

n 100 200 500 1000 2000

M∗ 1.403± 0.015 0.921± 0.011 0.508± 0.130 0.404± 0.002 0.289± 0.003
0.762± 0.008 0.632± 0.006 0.491± 0.006 0.404± 0.002 0.289± 0.003

MM∗ 1.212± 0.009 1.116± 0.016 0.973± 0.016 0.874± 0.013 0.771± 0.014
1.212 ± 0.009 1.050 ± 0.014 0.833 ± 0.014 0.677 ± 0.010 0.469 ± 0.007

GH∗ 1.021± 0.010 0.877± 0.010 0.700± 0.009 0.599± 0.009 0.506± 0.006
1.015± 0.010 0.877± 0.010 0.700± 0.009 0.579± 0.009 0.410± 0.004

F ∗ 1.023± 0.009 0.898± 0.002 0.768± 0.003 0.695± 0.004 0.628± 0.003
0.587± 0.006 0.496± 0.004 0.395± 0.002 0.332± 0.003 0.243± 0.001

EV parent, γ =−0.3

n 100 200 500 1000 2000

M∗ 1.932± 0.020 1.355± 0.020 0.896± 0.013 0.657± 0.006 0.489± 0.003
0.978± 0.011 0.807± 0.005 0.621± 0.006 0.509± 0.008 0.428± 0.003

MM∗ 1.060± 0.006 1.121± 0.009 1.214± 0.008 1.245± 0.014 1.246± 0.012
0.962± 0.008 0.871± 0.005 0.780± 0.006 0.711± 0.007 0.645± 0.006

GH∗ 1.038± 0.010 0.959± 0.006 0.847± 0.010 0.757± 0.007 0.670± 0.008
1.038 ± 0.010 0.959 ± 0.006 0.847 ± 0.010 0.757 ± 0.007 0.670 ± 0.008

F ∗ 1.097± 0.010 0.959± 0.005 0.788± 0.007 0.693± 0.145 0.597± 0.006
0.895± 0.009 0.718± 0.006 0.544± 0.005 0.452± 0.005 0.388± 0.004

The behaviour of the right endpoint semi-parametric estimators is quite

erratic, even when we consider equation (3.12), to make them coherent with the

data. Such a behaviour is even more catastrophic when we do not make them

coherent with the data, and the most usual estimators in the literature are in

fact “raw”, in the sense that they have not been modified in order to be larger

than the maximum in the sample, as needed. Indeed, alternative semi-parametric

estimators of the right endpoint are urgently needed. The bias and the RMSE

of the estimators in (4.6) almost overlap, and we see no reason to present figures

similar to the ones drawn for the adaptive EVI-estimators in (4.5). A similar

comment applies to the adaptive estimators of the “excellence indicator”.
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Table 2 is equivalent to Table 1, but for the adaptive right endpoint es-

timation. Similarly, Table 3 is equivalent to Table 1, now for the exceedance

probability estimation (or equivalently, for the “excellence” indicator).

Table 2: Simulated REFF ’s of the adaptive right endpoint estimators under study,
together with associated 95% CI’s, for extreme value underlying parents.

EV parent, γ =−0.1

n 100 200 500 1000 2000

M∗ 3.272± 0.771 2.786± 0.569 1.660± 0.293 1.001± 0.002 0.998± 0.000
0.877 ± 0.006 0.865 ± 0.005 0.866 ± 0.007 0.863 ± 0.008 0.858 ± 0.005

MM∗ 1.819± 0.483 1.000± 0.000 1.000± 0.294 1.000± 0.000 1.000± 0.000
0.877 ± 0.006 0.865 ± 0.005 0.866 ± 0.007 0.863 ± 0.008 0.858 ± 0.005

GH∗ 5.454± 1.139 2.106± 0.698 1.000± 0.000 1.000± 0.000 1.000± 0.000
0.877 ± 0.006 0.865 ± 0.005 0.866 ± 0.007 0.863 ± 0.008 0.858 ± 0.005

F ∗ 0.877± 0.006 0.865± 0.005 0.866± 0.007 0.863± 0.008 0.858± 0.005
0.877 ± 0.006 0.865 ± 0.005 0.866 ± 0.007 0.863 ± 0.008 0.858 ± 0.005

EV parent, γ =−0.3

n 100 200 500 1000 2000

M∗ 8.116± 1.817 3.586± 0.728 1.001 ± 0.001 0.988± 0.007 0.947± 0.004
0.810± 0.003 0.793± 0.005 0.779± 0.006 0.773 ± 0.005 0.765 ± 0.005

MM∗ 8.118± 1.926 1.429± 0.440 1.002± 0.003 1.000± 0.000 1.000± 0.000

0.844± 0.005 0.809± 0.006 0.779± 0.006 0.773 ± 0.005 0.765 ± 0.005

GH∗ 0.875± 0.007 0.822± 0.009 0.779± 0.006 0.773± 0.005 0.765± 0.005
0.828± 0.003 0.804± 0.006 0.779± 0.006 0.773 ± 0.005 0.765 ± 0.005

F ∗ 0.875± 0.007 0.822± 0.009 0.779± 0.006 0.773± 0.005 0.768± 0.003
0.875 ± 0.007 0.822 ± 0.009 0.779 ± 0.006 0.773 ± 0.005 0.765 ± 0.005

Table 3: Simulated REFF ’s of the adaptive estimators of exceedance probabilities
of xn:n, and associated 95% CI’s, for extreme value underlying parents.

EV parent, γ =−0.1

n 100 200 500 1000 2000

M∗ 4.149± 0.899 5.265± 0.923 2.257± 0.293 1.259± 0.021 1.048± 0.021
0.698± 0.005 0.700± 0.009 0.657± 0.015 0.590± 0.011 0.537± 0.004

MM∗ 3.343± 1.369 1.518± 0.043 1.453± 0.294 1.394± 0.016 1.371± 0.011
0.733± 0.008 0.702± 0.014 0.641± 0.015 0.579± 0.011 0.533± 0.004

GH∗ 7.690± 1.944 3.349± 1.020 1.498± 0.036 1.422± 0.017 1.387± 0.012
0.702± 0.007 0.680± 0.013 0.629± 0.015 0.570± 0.011 0.525± 0.004

F ∗ 0.858± 0.010 0.793± 0.016 0.710± 0.017 0.637± 0.013 0.580± 0.005
0.858 ± 0.010 0.793 ± 0.016 0.710 ± 0.017 0.637 ± 0.013 0.580 ± 0.005

EV parent, γ =−0.3

n 100 200 500 1000 2000

M∗ 12.177± 3.181 5.746± 1.475 1.774± 0.149 1.111± 0.040 0.920± 0.039
0.587± 0.006 0.601± 0.018 0.580± 0.022 0.545± 0.029 0.540± 0.022

MM∗ 24.493± 6.833 8.523± 3.839 6.527± 0.426 6.928± 0.343 4.865± 0.305
0.702± 0.015 0.722± 0.038 0.692± 0.039 0.633± 0.048 0.623± 0.034

GH∗ 8.535± 3.339 9.516± 5.754 1.840± 0.095 0.812± 0.047 0.601± 0.034
0.518± 0.008 0.583± 0.024 0.614± 0.033 0.586± 0.041 0.592± 0.029

F ∗ 0.865± 0.012 0.787± 0.029 0.712± 0.031 0.641± 0.040 0.618± 0.029
0.865 ± 0.012 0.787 ± 0.029 0.712 ± 0.031 0.641 ± 0.040 0.618 ± 0.029
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On the basis of the simulated results, the adaptive estimation procedure

seems to provide interesting results, in the sense that we have obtained REFF

indicators reasonably high for small n and all parameters of interest. Regarding

EVI-estimation, and despite of the fact that it is not possible to claim that MM∗

has, for all models in DM(Gγ), γ < 0, the best performance among the four

adaptive estimators in (4.5), it is clear that if we have to elect one of these four

adaptive estimators, we are inclined to the choice of MM∗. This is particularly if

the model is not a long way from an EV model, and we have a light indication for

this underlying parent, not only on the basis of the undertaken parametric data

analysis in Section 5.1, but also due to the nature of the data. This is the reason

why in Section 5.3.2, we shall compute the final estimates of γ on the basis of

MM∗. Note however that, for small n, GH∗ is also a serious alternative. For the

right endpoint estimation all adaptive estimators in (4.6) are almost equivalent,

and we thus see no reason not to use also x∗MM . A similar comment applies to

the estimators of the exceedance probability (or equivalently, of the excellence

indicator).

5. DATA ANALYSIS OF INDOOR ATHLETIC EVENTS

The data under analysis are related to three running and three jumping

events, all for men, the 60 Metres Hurdles (60MH), 400 (400M) and 1500 Me-

tres (1500M), as well as the high jump (HJ), long jump (LJ) and pole vault (PV).

The sources were http://www.iaaf.org/statistics/toplists/index.htmx and

http://hem.bredband.net/athletics/athletics_all-time_best.htm. Data was

collected until the end of 2007 and for any athlete only the best mark was taken

into account. As mentioned before, we are dealing with right-tails. Consequently,

for all running events we have converted running times into speeds, i.e., 10.00

seconds in the 60MH (equal to 0.06 kilometers) is transformed to a speed of

3600×0.06/10 = 21.6 km/h. Like this, the higher the speed, the better, just as

the higher the jump, the better. Contrarily to what has been done in Einmahl

and Smeets (2009), we have not paid attention to doping related times, and we

are conscious that slightly different estimates could then be obtained, despite of

the usual robustness of the methods to a few outliers in the data.

5.1. Parametric data analysis

Prior to a semi-parametric analysis of the data, the most common frame-

work of statistics of extremes, we shall proceed to a parametric data analysis, in

the lines of Robinson and Tawn (1995) and Barão and Tawn (1999), who consid-

ered the annual best times in the women’s 3000m event. Also Smith (1988) has
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proposed a maximum likelihood method of fitting models to a series of records,

and applied his method to athletics records for the mile and the marathon.

The attempts made in these papers to predict an ultimate world record are based

on the development of top performances over time. This is not the case in this

paper. Here, as in Einmahl and Magnus (2008), as well as in Einmahl and Smeets

(2009), we are not interested in predicting the world record in the future. We are

using only the top performances associated with a set of n athletes, and conse-

quently, our estimated ultimate record tells us what, in principle, is possible at

this moment, given today’s knowledge and material.

We first illustrate in Figures 4 and 5, the Gumbel QQ-plots associated

with all data sets under analysis. In all figures we have thus plotted the points(
xi:n, pΛ

i = − ln(− ln(i/(n +1)))
)
, 1 ≤ i ≤ n, and proceeded to the fitting of a

least-squares line.
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Figure 4: Gumbel QQ-plot related to the running events under analysis
— 60 Metres Hurdles, 400 and 1500 Metres.
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Figure 5: Gumbel QQ-plot related to the jumping events under analysis
— High Jump, Long Jump and Pole Vault.

Apart from the Long Jump event, where γ = 0 can perhaps provide a rea-

sonable fit to the right-tail, despite of a slight deviation of top o.s.’s smaller than

the third largest value, all other events exhibit a light right-tail, i.e. a negative

extreme value index, and consequently a finite right endpoint x∗.
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Due to the fact that the observed data considered are already maxima,

possibly of a small and dependent number of marks associated with any of the

n athletes, but the extreme value limiting law, in (1.1), is “robust” to changes of

the i.i.d. assumption, we have first tried the fitting, through maximum likelihood,

of an extreme value model F (x; λ,δ,γ) = Gγ

(
(x−λ)/δ

)
, with Gγ(x) given in (1.1).

We have used the EVIR package in the R-software. The estimate of the right

endpoint is then provided by x̂∗ = max(xn:n, λ̂− δ̂/γ̂), with (λ̂, δ̂, γ̂) the maximum

likelihood estimates of the unknown parameters, (λ, δ, γ). The results obtained

are presented in Table 4.

Table 4: Maximum likelihood estimates of (λ, δ, γ, x∗) for an underlying model
Gγ

(
(x−λ)/δ

)
, with Gγ(x) given in (1.1): ′ – Km/h, ′′ – metres.

Event n (x1:n, xn:n) λ̂ δ̂ γ̂ (95% CI) x̂∗

60MH 312 (27.52, 29.59)′ 27.84 0.28 −0.21 (−0.328,−0.090) 29.59

400M 380 (30.38, 32.31)′ 30.70 0.25 −0.15 (−0.277,−0.024) 32.36

1500M 296 (23.84, 25.57)′ 24.23 0.26 −0.06 (−0.166, +0.042) 28.33

HJ 235 (2.20, 2.43)′′ 2.24 0.03 −0.09 (−0.223, +0.040) 2.61

LJ 340 (7.70, 8.79)′′ 7.81 0.11 −0.26 (−0.392,−0.130) 8.79

PV 205 (5.45, 6.15)′′ 5.58 0.09 −0.15 (−0.342, +0.041) 6.21

As expected, all estimates of γ are negative. But for the 1500 Metres, High

Jump and Pole Vault, the upper limits of the associated 95% CI’s are positive,

suggesting that the value γ = 0 could possibly be adequate. The estimation of

the right endpoint, which provides estimates equal to the maximum value in the

data, the value xn:n, for two of the athletic events, 60 Metres Hurdles and Long

Jump, can be considered slightly problematic.

5.2. Fitting the extreme value model

In Figure 6, we picture in light grey the asymptotic 95% critical values

(CV), 1.36/
√

n, of the Kolmogorov–Smirnov statistic for testing a model without

unknown parameters. The observed values of the Kolmogorov–Smirnov statistic,

KSn := max1≤i≤n

(∣∣Gγ̂

(
(xi:n− λ̂)/δ̂

)
− i/n

∣∣,
∣∣Gγ̂

(
(xi:n− λ̂)/δ̂

)
− (i−1)/n

∣∣
)

are

pictured in black. The simulated 95% critical points of the Kolmogorov–Smirnov

statistic, for testing an extreme value model Gγ̂

(
(x− λ̂)/δ̂

)
, have been based on

1000 runs, and are pictured in grey, showing again the “conservative property”

of the Kolmogorov–Smirnov test — if we are led to rejection of a model without

taking into account the maximum likelihood estimation of the parameters, we

are a fortiori led to a rejection of the same model whenever we appropriately

estimate the unknown parameters through the maximum likelihood approach.
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Figure 6: Asymptotic critical values CV= 1.36/
√

n (light grey), simulated critical
values (grey) and observed values (black) of the Kolmogorov–Smirnov
statistic, for all athletic events under analysis.

At the significance level α = 0.05, the hypothesis of a (unified) extreme

value model has thus been rejected by the Kolmogorov–Smirnov test for all data

sets, as could also have been inferred graphically from Figure 7 and Figure 8,

where we picture the empirical d.f., in grey, and the fitted extreme value d.f.,

in black.
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Figure 7: Empirical d.f. (grey) and fitted extreme value d.f. (black)
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Alternative parametric models have even provided worse fitting results.

There is thus a claim for the need of a semi-parametric data analysis, to be

developed next, in Section 5.3.

5.3. A semi-parametric data analysis

5.3.1. Testing the extreme value index sign

As mentioned before, whenever we place ourselves under a semi-parametric

framework, we assume only that (2.4) holds, or equivalently, that F ∈ DM(Gγ),

for a certain γ, being γ the primordial parameter of extreme events.

In many areas where extremes are relevant, the simplest case γ = 0 is often

considered. Moreover, if we clearly think that γ < 0 or that γ > 0, we have specific

procedures for the estimation of γ, possibly more reliable than the procedures

valid for a general γ ∈ R. Prior to a deeper semi-parametric analysis of the tail

associated with this type of data, it thus seems sensible to test

H0 : F ∈ DM(Gγ)γ=0

(
or F ∈ DM(Gγ)γ≥0

)

versus

H1 : F ∈ DM(Gγ)γ<0 ,

(5.1)

through the use of any semi-parametric test statistic.

We shall consider here two test statistics of a similar type, i.e. both based

on the excesses over a high random threshold Xn−k:n, with k satisfying (3.7). The

first one was introduced by Greenwood (1946) and the second one by Hasofer and

Wang (1992). These two statistics were further studied, under a semi-parametric

framework, by Neves and Fraga Alves (2007). They are given by

Gk,n :=

1
k

k∑
i=1

(
Xn−i+1:n−Xn−k:n

)2

(
1
k

k∑
i=1

Xn−i+1:n−Xn−k:n

)2

and

Wk,n :=
1

k(Gk,n−1)
.

Under the null hypothesis H0 in (5.1) and extra mild conditions on the right-

tail of F and on the growth of k = kn, they both have an asymptotic normal

behaviour. More specifically,

G∗k,n :=
√

k/4
(
Gk,n−2

) ∣∣
F∈DM(G0)

d−→
n→∞

N(0, 1)(5.2)

and

W ∗
k,n :=

√
k/4

(
k Wk,n−1

) ∣∣
F∈DM(G0)

d−→
n→∞

N(0, 1) .(5.3)
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Motivated by the important contribution of the maximum to the sum of the

k excesses, Xn−i+1:n −Xn−k:n, 1 ≤ i ≤ k, Neves et al. (2006) introduced the

following complimentary statistic,

Rk,n :=
Xn:n−Xn−k:n

1
k

k∑
i=1

Xn−i+1:n−Xn−k:n

,

also considered in the analysis of the data under study. The asymptotic behaviour

of Rk,n is provided by the Gumbel d.f., Λ = G0, with Gγ given in (1.1). More

specifically,

(5.4) R∗k,n := Rk,n− ln k
∣∣
F∈DM(G0)

d−→
n→∞

Z ⌢ G0 .

As a function of k both G∗k,n and R∗k,n tend to have a slope with the sign of γ.

The statistic W ∗
k,n works the other way round.

As an illustration, we present, in Figure 9, the sample paths of the three

test statistics G∗k,n, W ∗
k,n and R∗k,n in (5.2), (5.3) and (5.4), respectively, associated

with the Long Jump. In this figure we also picture the quantiles
(
χ•

0.025, χ•

0.975

)

of the standard normal Φ, equal to (−1.96, +1.96), and of the standard Gumbel

Λ ≡ G0, equal to (−1.31, +3.68).
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Figure 9: Sample paths of the test statistics for the Long Jump event.

For all other data sets under analysis the graphs are quite similar, showing

clearly a decreasing trend of R∗k,n and G∗k,n (with G∗k,n below χΦ
0.025 for a large

number of k-values), as well as an increasing trend of W ∗
k,n (above χΦ

0.975 for

moderate up to large values of k). Such a trend is mainly related to bias, but

bias is strongly related to the extreme value index sign. These results provide a

strong suggestion of a negative extreme value index, as expected. Despite of that,

notice that, in Figure 9, the sample path of R∗k,n is within the 95% CI for almost

all k-values. This was also expected, because it is well known (see, for instance,

Neves and Fraga Alves, 2008) that R∗k,n tends to be a conservative test and the

true value of γ is for sure close to zero.
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5.3.2. Semi-parametric estimates of the extreme value index and the right endpoint

In Table 5 we present a summary of the performed data analysis, with

estimates and 95% CI’s for the extreme value index γ. These estimates of γ were

obtained through the mixed moment (MM) estimates, computed at the value

k∗min, in (4.4), i.e. they are the adaptive estimate MM∗ in (4.5).

Table 5: Estimates of the extreme value index,
based on M∗: ′ – Km/h, ′′ – metres.

Event n (x1:n, xn:n) MM∗ (95% CI) k∗
min

60MH 312 (27.52, 29.59)′ −0.34 (−0.469,−0.214) 305

400M 380 (30.38, 32.31)′ −0.26 (−0.445,−0.080) 128

1500M 296 (23.84, 25.57)′ −0.38 (−0.520,−0.241) 275

HJ 235 (2.20, 2.43)′′ −0.32 (−0.468,−0.173) 219

LJ 340 (7.70, 8.79)′′ −0.20 (−0.315,−0.087) 296

PV 205 (5.45, 6.15)′′ −0.31 (−0.472,−0.151) 182

In this semi-parametric data analysis, we have also considered the adap-

tive estimators MM∗∗ and ML∗∗, the estimators in (3.6) and (3.10), respec-

tively, computed at the value k∗∗min, obtained through a minimization procedure

of the type of the one in (4.4), but including also the ML-estimator. The reason

for the consideration of the ML-estimator lies on the fact that in the region

−1/2 < γ < 0, where the estimates lie, σ2
ML = (1 + γ)2 is smaller than σ2

MM =

σ2
M = (1− γ)2 (1− 2 γ) (1− γ + 6 γ2)/

(
(1− 3 γ) (1− 4 γ)

)
for all γ, with σ• the

asymptotic standard deviation in the asymptotic representation (4.1) (see Gomes

and Neves, 2008, for further details). These estimates are presented in Table 6.

For the LJ athletic event k∗min = k∗∗min. Then, the estimates MM∗= MM∗∗ and

associated CI’s are written in italic.

Table 6: Estimates of the extreme value index,
based on ML∗∗ and MM∗∗.

Event n ML∗∗ (95% CI) MM∗∗ (95% CI) k∗∗
min

60MH 312 −0.30 (−0.377,−0.216) −0.31 (−0.438,−0.186) 294

400M 380 −0.22 (−0.351,−0.085) −0.26 (−0.434,−0.077) 133

1500M 296 −0.32 (−0.400,−0.239) −0.31 (−0.440,−0.180) 273

HJ 235 −0.29 (−0.387,−0.201) −0.31 (−0.456,−0.165) 220

LJ 340 −0.17 (−0.262,−0.073) −0.20 (−0.315,−0.087) 296

PV 205 −0.29 (−0.396,−0.191) −0.30 (−0.458,−0.142) 183
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As it can be seen from Tables 5 and 6, there is only a small difference be-

tween k∗min and k∗∗min, as expected. All semi-parametric γ-estimates at k = k∗∗min

are within the CI’s provided in Table 5 and based on MM∗. Similarly, all esti-

mates in Table 5 are within the CI’s provided in Table 6. However, apart from the

parametric estimates of γ associated with the 400 Metres and Long Jump events,

the parametric estimates in Table 4 are outside the CI’s provided in Table 5,

as well as the other way round. The parametric estimates are above the semi-

parametric estimates for the six events considered. Note also that, contrarily to

what generally happens, the values k∗min and k∗∗min are quite large, comparatively

with the sample size n. This is essentially due to the fact that, for large k, the

samples paths of the different estimators are reasonably stable as functions of k

and close to each other (a small bias, contrarily to the most common situations

in practice) and volatile for small k (large variance for small k, as usual).

Also as an illustration, we present, in Figure 10, the estimates M ≡ Mk,n,

GH ≡ GHk,n, MM ≡ MMk,n, and F ≡ Fk,n of γ, defined in (3.3), (3.5), (3.6) and

(3.8), respectively, again for the Long Jump athletic event. We also picture the

sample paths of the γ-estimator ML ≡ MLk,n, in (3.10).
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Figure 10: Sample paths of the extreme value index estimates under consideration,
for the Long Jump event.

Analogously, and for the estimation of the right endpoint, apart from the

adaptive estimators x̂∗MM , the estimators x̂∗k,n|•, in (3.12), for • ≡ MM , computed

at the value k∗x, in (4.7), we have also considered the adaptive estimators x̂∗∗MM

and x̂∗∗ML, the estimators x̂∗k,n|• in (3.12) for • ≡ MM and ML, computed at the

value k∗∗xmin ≡ k∗∗x, obtained through a minimization procedure of the type of the

one used for the adaptive endpoint estimators in (4.6), but including also the
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ML-estimator. Similarly, and as mentioned before, for the estimation of the

excellence indicator, we use the notation Ê∗∗
•

for the estimator Ê•

k,n, in (3.13),

computed at the value k∗∗Emin ≡ k∗∗E . Next, in Table 7 we present the estimates of

the right endpoints of the models underlying the different data sets under study.

Table 7: Estimates of the right endpoint: ′ – km/h, • – minutes, ′′ – metres.

Event xn:n k∗x x̂∗
MM k∗∗x x̂∗∗

ML

60MH
29.59′ 53 29.81′ 53 29.71′

(00 : 07.30)• (00 : 07.25)• (00 : 07.27)•

400M
32.31′ 32 32.45′ 128 32.68′

(00 : 44.57)• (00 : 44.37)• (00 : 44.06)•

1500M
25.57′ 119 25.63′ 119 25.70′

(03 : 31.18)• (03 : 30.69)• (03 : 3012)•

HJ 2.43′′ 219 2.44′′ 219 2.46′′

LJ 8.79′′ 144 8.84′′ 281 9.12′′

PV 6.15′′ 82 6.16′′ 182 6.22′′

In Table 8 we present the estimates of the associated“excellence” indicators of the

levels xH = xn:n, provided in (3.13). Note that for all data sets we got k∗E = k∗∗E ,

smaller than expected for some of the data sets (60MH, 1500M and LJ).

Table 8: Estimates of an “excellence” indicator of the level xn:n.

Event k∗x bEMM
k∗x,n k∗∗x bEML

k∗∗x,n k∗E
min = k∗∗E

min
bE∗

MM | bE∗
ML

60MH 53 0.66 53 0.67 11 0.62 | 0.72

400M 32 0.98 128 0.88 148 0.99 | 0.90

1500M 119 0.95 119 0.82 36 0.89 | 0.81

HJ 219 0.98 219 0.90 222 0.91 | 0.89

LJ 144 0.99 281 0.92 39 0.80 | 0.78

PV 82 0.98 182 0.94 132 0.99 | 0.94

Despite of slight discrepancies of the different estimates of the relevant

parameters of extreme events, the results in Tables 5, 6, 7 and 8 mean that, under

the present conditions, there are finite upper limits for all jumping events under

analysis, as well as finite lower limits in the times associated with all running

events under analysis. From the “excellence” indicators of the world records, we

can say that the current 400 Metres, High Jump and Pole Vault world records

are very good (indicators above 89%). The lowest “excellence” indicator, around

65%, corresponds to the 60 Metres Hurdles.
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