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– Laboratoire de Mathématique, Orsay, France
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Abstract:

• To account for the variation of EDF’s (the French electrical company) portfolio fol-
lowing the liberalization of the electrical market, it is essential to disaggregate the
global load curve. The idea is to disaggregate the global signal in such a way that
the sum of disaggregated forecasts significantly improves the prediction of the whole
global signal. The strategy is to optimize, a preliminary clustering of individual load
curves with respect to a predictability index. The optimized clustering procedure
is controlled by a forecasting performance via a cross-prediction dissimilarity index.
It can be assimilated to a discrete gradient type algorithm.

Key-Words:

• clustering; disaggregation; forecasting; optimization; wavelets.

AMS Subject Classification:

• 62P30, 62H30, 62-07, 62M20.



106 Michel Misiti, Yves Misiti, Georges Oppenheim and Jean-Michel Poggi



Optimized Clusters for Disaggregated Forecasting 107

1. INTRODUCTION

This paper is devoted to electricity load forecasting via the disaggrega-

tion of the global signal. This disaggregation is based on customer clustering.

To clarify, let us split the introduction in two parts. The first paragraph is dedi-

cated to the general context and the second focuses on the specific application.

1.1. General context

Regular forecasting of the electrical load demand arises from a multiplicity

of sources such as consumer behavior linked to social activities, government reg-

ulations and conventions and meteorological factors. Forecasting demand using

statistical models with different types of explanatory variables provides accurate

results. Those models include different components. There is a trend as well

as daily, weekly and annual seasonal components. Calendar affects help take

into account public holidays. An additional term may account for the effect of

meteorological variables on the electricity load.

A recent special issue of the International Journal of Forecasting, devoted

to energy forecasting, presents domain-related papers (see the editorial presenta-

tion by Taylor, Espasa [22]). Six papers in this journal provide an overview of

the recent strategies for short-term or very short-term electricity load forecasting.

The following methodologies: multi-equation model, neural networks or switching

models are applied at national level in France, Spain, Australia, Brazil and Great

Britain. This paper presents another approach to energy forecasting: a forecast-

ing method based on signal disaggregation via the clustering of individual load

curves.

Our goal is twofold. We aim to improve the accuracy of the electricity load

forecast and to account for variability in the EDF’s customer portfolio. This vari-

ability is due to the opening up of the previously nationalized electricity market.

One way to deal with this difficulty is to disaggregate the global signal to improve

the forecasting performance. Therefore, we need to create customer clusters such

that the sum of disaggregated forecasts significantly improves the forecast of the

whole global signal. In this paper we propose an optimized clustering scheme

controlled through a cross-prediction dissimilarity index and based on a discrete

gradient type algorithm.

Clustering has already been used for forecasting in similar electricity cases.

Let us briefly present three examples.

The first example uses clustering for short-term peak load forecasting, pro-

posed in Goia et al. ([10]). For a given load curve, forecasting is based on a
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two-stage strategy. A functional clustering is created to classify the daily load

curves and then a functional linear regression model is used on each cluster. Next,

a new load curve is assigned to the clusters thanks to a functional discriminant

analysis.

The second example, proposed by Piao et al. ([20]), deals with the pre-

diction of customer load pattern in long duration load profiles. It also starts

with clustering based on three daily profiles characteristics and aims at creat-

ing classes of load pattern and extracting representative load profiles for each

class. Supervised learning methods can possibly be used when a new load curve

is treated.

The third example, provided by Espinoza et al. ([9]), uses the forecasting

step before clustering. Each individual load curve is first modeled using para-

metric periodic time series. Then, a typical daily profile is extracted from this

parametric model for each individual customer. Finally, customer segmentation

is obtained from the clustering these typical daily profiles.

The originality of our approach is the inclusion of an optimization step su-

pervised by the forecasting procedure combined with a specific clustering strategy.

To complete this introduction, let us present the industrial context of our work.

1.2. Industrial context

Load forecasting is a critical task for a company like EDF since it con-

tributes to production planning. Engineers provide at noon, on a daily basis, the

next day’s consumption forecast. Forecasting is not only useful for short term

decisions but also for optimizing production in dams or plants. Models similar to

the following simplified version are built. The load Pt is decomposed into three

components:

(1.1) Pt = Pit + Pdt + εt

where Pit is a weather independent component containing trend, seasonality and

calendar effects, Pdt a weather dependent component and εt an error term.

The parameters involved in the two first terms depend on the hour h, on

the position of the day d within the year and on the day-type. The weather

independent part is a linear combination of four sine and cosine terms whose

coefficients are mainly functions of d, the type of the day (7 types), and h:

(1.2) Pit = Πh,y

4∑

m=1

ah,m cos

(
2πmd

c

)
+ bh,m sin

(
2πmd

c

)

where c = 326.25 and Πh,y is the load shape at the hour h for the year y, which
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depends on the day-type. The coefficients a and b also depend on the day-

type. The weather dependent component is composed of two parts. The first

part involves a cooling gradient and a smoothed summer temperature while the

second part involves a heating gradient and a smoothed winter temperature. This

smoothed temperature can be assimilated to the indoor temperature.

After some fine tuning of the parameters, the quality of the EDF model

measured by the Mean Absolute Percentage Error or MAPE, is considered as

good. While the quality is satisfactory, it is never good enough during holidays

such as Christmas. For instance, an estimation based on a five-year period such

as [2000–2005] gives an hour-MAPE around 1.2%. For that same period, the

one year forecast hour-MAPE is almost the same value. However, because of the

deregulation of the French electricity market the situation has changed since 2007.

EDF customers can now switch from one electricity provider to another, bringing

instability to the market. As a consequence, the data available for forecasting

is evolving. Before deregulation, a 5-year database was trademark for quality

forecasting. Because of the new legal and commercial context, only one to two

years of good enough quality data is now available to researchers.

1.3. Outline

This paper is organized as follows. After this introductory section, Section 2

is devoted to the problem and the data. Section 3 briefly recalls a wavelet based

procedure for clustering load curves. Section 4 proposes the optimized clustering

for forecasting by disaggregation. Section 5 contains experimental results on real

world data and Section 6 presents some perspectives for future work.

2. THE DATA AND THE PROBLEM

2.1. The data

The data considered in this paper is not the French half-an-hour load con-

sumption but individual commercial customer data. For obvious confidentiality

and industrial reasons the French database is partially undisclosed. Moreover,

the most recent data is not available. We worked on the [2000–2001] electric-

ity consumption period. Individual power electricity demand curves, anonymous

for confidentiality reasons are available for 2309 industrial customers during this

period. The sampling period is one hour, leading to 17520 samples.
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To highlight the differences among individual curves, let us examine four

customer load curves during [2000–2001] time period (see Figure 1).

Figure 1: Raw data: 4 customer load curves during the 2000–2001 period
(load in kW versus time in hours).

The long term shape of the curves differs a lot. It looks climate free for the

customer at the bottom right while we can see three different climatic sensitivities

on the other graphics. The same 4-customer load curves for one particular week

in 2000 are displayed in Figure 2.

Figure 2: Raw data: 4 customer load curves during one week of 2000
(load in kW versus time in hours).

The two customers on the main diagonal of the plot are different from

the others. Their graphics do not show any clear ‘social rhythm’, whereas the

global shape of the two other customers are similar and display a ‘social rhythm’.
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Weekends are easy to detect and the main differences appear in the middle of the

work days. The bottom left graphic, displays a bimodal shape instead of a single

peaked curve.

2.2. Aggregated versus disaggregated

The disaggregation based forecasting problem goes as follows. Let us denote

by Xi(t) the value of the load curve of the ith customer at time t and we consider

the aggregated electricity consumption signal:

(2.1) S(t) =
∑

Xi(t) .

The aggregated forecast is obtained by modeling and forecasting the signal:

(2.2) Ŝaggr(t) = Ŝ(t) .

Associated with any partition of clustered individuals, we can define the con-

sumption of each cluster g:

(2.3) Sg(t) =
∑

i∈g

Xi(t) .

Then, the disaggregated forecast is obtained by modeling and forecasting the

signal within each cluster Ŝg(t) and then summing over all clusters:

(2.4) Ŝdis(t) =
∑

g

Ŝg(t) .

We restrict our attention to this particular form of aggregation (2.4) which

may not be the optimal combination. It could be interesting to consider a

weighted sum and optimize the weights. However, in this study we specifically

focus on the clustering issue and preserve the percentage of the load curve asso-

ciated with each cluster.

Our challenge is to find the best partition of individuals. This partition has

to be as accurate as possible from a forecasting perspective so that the latter will

perform significantly better than the aggregated forecast.

Why can we expect such a result? Let us present two useful results already

validated in narrower context.

A first indication is provided by the simplest statistical inference problem:

the estimation of the mean µ of a variable Y on a given population using the

random sample mean Y . It is an unbiased estimator of µ of variance σ2(Y )/n

where n is the sample size. Using stratified representative sampling with respect
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to a given partition, the associated stratified estimator’s variance (which is the

disaggregated one) is reduced to the within variance over n: σ2
w(Y )/n, which is

always smaller than the variance of Y .

A second indication comes from a simple result stated for two clusters and

true for more clusters. Let us denote Xt and Yt, two sequences corresponding to

generic signal pairs Xi,t and Xj,t associated with two different clusters. Assume

that Xt and Yt are two sequences of stationary square integrable random variables

and define

(2.5) St = Xt + Yt .

Then denoting by

(2.6) Ẑt = E(Zt | Zt−1, Zt−2, ..., Z1)

the conditional mean of Zt given its own past. Let us define the two error indices

(2.7) Erraggr = E(St − Ŝt)
2

and

(2.8) Errdis = E(St − X̂t − Ŷt)
2 .

So, if Xt and Yt are independent then

(2.9) Errdis ≤ Erraggr .

If signals corresponding to two different clusters are independent and the

conditional mean (in fact actually an accurate estimation) is used to predict,

then the disaggregated forecast is of better quality than the forecast on the whole

global signal.

Let us give a proof of that result. Starting from the definition of Erraggr

and since St = Xt + Yt, we get

(2.10) Erraggr ≥ E
(
St − E(St | Xt−1, Yt−1, ..., X1, Y1)

)2
.

Independence between the X’s and Y ’s leads to

(2.11) E
(
Xt − E(Xt | Xt−1, Yt−1, ..., X1, Y1)

)
= E

(
Xt − E(Xt | Xt−1, ..., X1)

)

as well as the equation obtained by permuting X and Y in (2.11). Adding up

these two equations and taking squares of both sides, we obtain

E
(
St − E(St | Xt−1, Yt−1, ..., X1, Y1)

)2
= E

(
St − X̂t − Ŷt

)2
= Errdis .

Therefore, with (2.10) we obtain inequality (2.9).
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As a conclusion, the two previously stated results suggest that it may be

useful to disaggregate the global signal to significantly improve forecasting. Our

idea is to find a good tradeoff between homogeneity within clusters and quality of

the model’s estimation. Homogeneity increases while the quality decreases with

a higher number of clusters. Hence a three-step strategy:

1. Preprocessing individual customer data using wavelets;

2. Primary customer clustering with numerous homogeneous clusters;

3. Aggregation using stepwise optimization algorithm based on a dissim-

ilarity index linked to a cross-prediction error and a discrete gradient

type algorithm.

First, let us provide some additional information on the basic forecasting

model. Then, we will develop the three-step strategy.

2.3. Eventail-like forecasting model

The aim of this paragraph is to clarify the internal forecasting procedure to

the non-initiated reader while avoiding detailed information. Let us emphasize

the fact that the error reduction via the new scheme is solely due to clustering

optimization. Indeed, we do not perform ad-hoc adaptation of the model design

strategy to the obtained clusters.

We circumscribe this paper to a single ‘black-box’ method used to design the

forecasting model, starting from a given time series. Let us explain that we will

take full advantage of a fully automatic version of EDF operational model called

Eventail. Eventail is designed to predict the aggregated electricity consumption.

Bruhns et al. ([6]) give a detailed description of a non-linear forecasting model

of French electricity load in use at EDF. This model allows for different levels

of seasonality and weather dependence. As previously stated, daily, weekly and

annual components of the endogenous variable are considered, along with ex-

ogenous variables such as temperature, cloud cover, calendar events as well as

a long-term trend. The mid-term model is a highly parameterized climate-free

SARIMA model additively corrected with a weather dependent term. This model

delivers an accurate forecast.

Let us note some results. The forecasting performance on the sample of

2309 customers, measured by the long-term MAPE (for Mean Absolute Per-

centage Error) is about 4.06% for the global aggregated signal. Meanwhile, on

the same sample, the completely disaggregated forecasting performance reaches

2.94%.
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Remark 2.1. We will not provide comparisons of Eventail with other fore-

casting methods. This would be interesting (see for example Hippert et al. ([14])

for recent statistical time series tools for load forecasting), however since Eventail

is the current operational tool, it is regularly improved in order to take into ac-

count the new characteristics of the load curve. Let us mention that Bruhns et al.

([6]) describe the forecasting model already used at EDF for mid-term load fore-

casting and provide a comparative study of various alternatives. Also, a more

recent discussion on how to handle changes in customer behavior in a similar

context can be found in Dordonnat et al. ([8]) who describe a forecasting model

based on time-varying processes, specifically a periodic state space model.

3. CLUSTERING USING WAVELETS

The aim of the preliminary step is to build basic clusters (often called

super customers hereafter) based on our sensibly assembled customers. The key

idea is to take advantage of the hierarchical multiresolution structure of wavelet

decomposition (see Misiti et al. [18]) for clustering signals. Simply put, wavelets

allow us to write each individual signal as the sum of orthogonal signals: a coarser

approximation at large scale (low frequency) and additional details at different

resolutions, of decreasing scales. The approximation at level j roughly represents

the local mean signal on intervals of length 2j while the detail at level j contains

fluctuations around this local mean on the same corresponding intervals. Let n

be the common length of the p series individually denoted by X(i). Then, for a

given orthogonal wavelet ψ, each time series can be decomposed at level J (which

is at most the integer part of log2(n)). This leads to:

(3.1) X(i) = A
(i)
J +

J∑

j=1

D
(i)
j ,

whereA
(i)
k andD

(i)
k denote respectively the approximation and the detail, at level k,

of the signal X(i).

The procedure, described in Misiti et al. ([19]), is a hybrid scheme mixing

regularization and filtering approaches, according to James and Sugar’s ([15])

terminology. Let us describe this scheme. First, there is individual denoising

using a signal-adapted wavelet basis, then a projection on a one common wavelet

basis to get a huge dimensionality reduction effect (see Biau et al. [5]). Then each

customer is characterized by coefficients. The last step of the process is the clus-

tering of the customers using Ward’s method with squared Euclidean distances,

in order to preserve distances between signals through wavelet coefficients encod-

ing. We generate hierarchies of partitions corresponding to different numbers of

clusters and various wavelet representations, that are typically approximations of

decreasing resolution level.
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For the final step, considering any partition P obtained by clustering data Z

and for a given number of clusters, we can compute the following usual variance

ratio quality index:

(3.2) IZ(P ) =
Varb(Z,P )

Varw(Z,P )
,

where Varb(Z,P ) and Varw(Z,P ) denote respectively the variance between clus-

ters and within clusters. This quality index allows us to compare two partitions

based on two different signal representations but it depends heavily on the num-

ber of clusters. For instance, let us say P ′ is a finer partition obtained from P .

Then IZ(P ′) ≥ IZ(P ). Since we have to compare partitions with different number

of clusters, we will choose the one leading to the best normalized variance ratio

index:

(3.3) IN
Z (P ) =

Varb(Z,P )

C(P ) · Varw(Z,P )
,

where C(P ) is the number of clusters within partition P .

This index is similar to the statistic of Calinski and Harabasz ([7]), consid-

ered as a ‘good competitor’ (see for example Tibshirani et al. [23]). It allows us

to select a convenient number of clusters as well as a critical level of wavelet de-

composition (simulated examples, electricity data processing and further details

can be found in Misiti et al. [19]).

In our electrical context, in an earlier study we obtained various partitions

using this clustering scheme but without taking into account the forecasting ob-

jective. The most interesting partitions are made of 15 to 19 clusters and highlight

wavelet approximation coefficients at level 6 (around 2 coefficients a week) and de-

tail coefficients at level 2 (around 5 coefficients a day). These partitions reached a

forecasting performance of 2.75% long-term MAPE which is better than the fully

aggregated or the fully disaggregated forecasts. However, partitions describes in

this paragraph cannot be improved with the optimization process described in

the next section.

Therefore, hereafter we will work from this initial pre-processing. We will

select wavelet approximation coefficients at level 6 in order to get the load curve’s

global shape. We will relax unsupervised clusters constraints. This means that

we will start with a large number of clusters and step by step aggregate them with

an optimization criterion supervised by predictability. According to the variance

ratio, 90 clusters are sufficient to assume strong homogeneity.
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4. OPTIMIZED CLUSTERING DIRECTED BY FORECASTING

4.1. A multistage procedure

The proposed optimized clustering scheme is as follows:

1. Wavelet preprocessing.

Customer characterization through wavelet representation of each signal

after standardization using approximation coefficients at level 6.

2. First clustering around numerous centroids.

A minimum of 90 clusters regrouping homogeneous customers. Each

cluster is represented by its aggregated signal.

3. Iterative optimization.

The starting point being the described initial partition, an optimization

process supervised through cross-prediction dissimilarity index is run.

A discrete gradient type procedure based on D matrix (defined in the

next section) explores the set of partitions.

4.2. Cross-prediction dissimilarity

To qualify a specific aggregation we use cross-prediction dissimilarity be-

tween elements. Those elements can be either individual or aggregated signals.

This dissimilarity index between Xk and Xj is based on the following idea. The

model fitted on past observations of Xj(t) is used to predict the future of Xk(t)

and vice-versa. In our specific electrical context, let us denote by

(4.1) forec2001
k|j = forecast

(
X2000

j , X2001
k

)
,

the forecasts of Xk on the year 2001 (the test period) obtained from the model

fitted on Xj on the year 2000 (the learning period). The fitted model is based on

the Eventail-like design tool. Then, the associated error is defined by:

(4.2) Ek|j = error
(
X2001

k , forec2001
k|j

)
.

Then a natural symmetric measure of dissimilarity is given:

(4.3) D = (Dj,k) =
(
(Ek|j + Ej|k)/2

)
.

To fairly rescale the Xk and Xj load curves for testing and for estimating

the index D is based on errors obtained from the l1-normalized versions (i.e.

signals summing to 1) .
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4.3. Zooming in on the optimization step

The iterative optimization of the initial partition is supervised through the

cross-prediction dissimilarity. It can be adapted to the forecast horizon as well

as to the error criterion. The iterative optimization is based on discrete gradient

via a neighborhood definition through dissimilarity between an element and a

cluster induced by the matrix D. The basic step is an iterative exploration of

elements. These elements are always candidates for cluster change, using nearest

D-neighbors. It should be noted that the partition evolves and that the basic step

consists of moving an element from one cluster to another. Therefore, this pro-

cess generates a non monotonic sequence of partitions, which is not a hierarchical

approach. This sequence of partitions evolves through element assignment modi-

fications. The number of clusters decreases slowly along the iterations. A cluster

disappears only when it is empty. The optimization scheme goes as follows:

1. Compute matrix D of dissimilarities between elements;

2. Compute dissimilarities between each element and the current clusters

using D and a linkage function (the minimum for example);

3. Select a neighbor: a couple (E,C), an element E candidate to move to

a cluster C;

4. Test the new affectation gain for the disaggregated forecast associated

to the resulting partition

• if the error does not decrease then

– if there are candidates then select the next one and go to step 4

– else end (no improvement by moving an element from a cluster

to another)

• if the error decreases then modify partition and go to step 2.

This scheme can be adapted to parallel computations simply through a

better organization of the candidates’ examination in the more internal loop.

Parallel capacities could also be used to explore multistart versions of the algo-

rithm. However, these aspects are out of the scope of this paper which focuses

on the question of the possible usefulness of disaggregation.

5. EXPERIMENTAL RESULTS

5.1. Performance results

Starting from 90 clusters, the optimized partition reaches the performances

measured by long-term and short-term MAPE, given by Table 1.
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Table 1: Performances of optimized partition starting from 90 clusters.

Aggregated Disaggregated Gain

MAPE long-term (LT) 4.06% 2.39% with 19 clusters 41.13%

MAPE short-term (ST) 2.47% 1.51% with 28 clusters 38.86%

The procedure can be stopped at any step of the optimization process,

therefore, improving the previous acceptable solution. The 195 step process with

an error rate gain of 41%, is illustrated on Figure 3. This error reduction largely

and obviously improves the optimization process, which starts with 90 clusters

and ends with 19 clusters.

90 84 78 72 68 62 58 54 49 44 41 40 39 38 36 35 34 34 32 30 29 28 26 26 26 24 22 2019

2.4

2.42

2.44

2.46

2.48

2.5

2.52

2.54

2.56

2.58

2.6

Number of clusters

M
A

P
E

−
L
T

Figure 3: Optimization process: from 90 to 19 clusters
leading to a gain of 41%.

5.1.1. About wavelet preprocessing

The first step of the global procedure (wavelet preprocessing and initial

clustering using wavelets) is important. Indeed if one performs directly a hierar-

chical clustering of the original 2309 customers using the dissimilarity matrix D

and then optimizes the associated 90 clusters partition, the MAPE-LT error cri-

terion stabilizes around 2.7% instead of 2.5%.

5.1.2. About the optimization step

The optimization step is also important. Indeed, starting from the 90 cluster

partition, if one constructs the hierarchy of partitions (by hierarchical clustering

using D), it is difficult to select a critical number of clusters (see Figure 4) and

the MAPE-LT error criterion remains about 2.6% instead of 2.5%.
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Figure 4: Dendrogram: hierarchical clustering using D.

5.2. About the number of basic customers

Finally, let us mention that the number of initial clusters (taken here to be

equal to 90) is an important parameter, especially when the method is used for a

significantly large number of customers. Indeed, the actual performance is slightly

improved by increasing the number of clusters. The initial 2.39% performance

on 90 clusters reaches 2.31% with 200 clusters and even 2.26% for 500 clusters,

therefore increasing the reduction rate from 41.1 to 44.3%.

5.3. Clusters interpretation

In this paragraph, we will focus on the 19 clusters resulting from the final

optimized partition. For example, Figure 5 presents cluster 1 made up of 10

super customers. It superimposes the 10 super customers consumptions with the

average consumption of the cluster. The top graphic represents the year 2000

while the bottom graphic zooms in on the first quarter of that year (January,

February and March 2000).

Let us note that the extreme regularity and homogeneity of the final 19

average cluster curves is remarkable. This can be explained by the fact that

those curves are perfectly suited for forecast using the Eventail model. In other

words, the optimization algorithm produces curves well adapted to Eventail black

box forecast method.
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1000 2000 3000 4000 5000 6000 7000 8000
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4 Cluster 1 − 10 super customers

Time − Year 2000

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
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1
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2.5

x 10
4

Time − January, February and March 2000

Figure 5: Cluster 1: average consumption (dark curve) and individual con-
sumption of the super customers (light curves). Top: the year 2000.
Bottom: zoom in on the first three months of 2000.

To get extra information on cluster 1, let us look at Figure 6 and its 11

graphics. It displays the 198 individual customer consumptions leading to the

10 super customers of the optimized partition. Each one of the ten first plots

displays a super customer consumption together with the average consumption.

The last plot displays the aggregated signal.

Cluster 1 − 10 super customers 
Representing  [ 28   7   8  49   4  15  10  15  58   4] customers

100 200 300 400 500 600 700 800 900 1000

Figure 6: For cluster 1, ten top plots representing individual consump-
tions (light curves), leading to 10 super customers (dark curves).
Bottom plot: total cluster consumption.
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So, despite a great heterogeneity of the customers within each cluster, the

signals associated with the final clusters are very stable and easy to predict using

Eventail.

5.4. Validation results

The optimization procedure can be modeled using the three following steps:

1. Starting from theN individual customers, performing a discrete wavelet

transform DWT at a given level j of the N = 2309 signals S, normal-

izing in l1-norm and clustering the resulting signals. As a result:

(K,PK) = MSC (N, j;S) ,

which leads to K super customers associated with a partition PK .

This multiscale clustering (MSC) step involves selecting level of decom-

position j (typically j = 6 or j = 4) as well as choosing K, the number

of clusters (usually K = 60, 90, 200, 500).

2. Computation of D(e, e′) (for elements e and e′) then computation of

Dc(e, c) (for an element e and a cluster c) and the optimization leads

to:

(k, P̃k) = Opt(K,PK) .

3. Expansion of the k clusters of the K super customers over the N initial

individuals to produce:

(k, Pk) = Exp(k, P̃k, S) .

Suppose now that, three years of observations are available for a subset of

customers. Then, we can select the parameters (choice of K in particular) and

estimate the quality according to the following validation principle. The first two

years are used to design the clusters and the last year is used as the test sample.

Unfortunately, a subset of only 1482 customers is available during the three

considered years. Quality estimations are as follows. On the learning set (year

2001), quality gain is about 23% since we go from 3.14% to 2.31%. On the test

set (year 2002) there is an 8% reduction, from 6.82% to 6.32%. Nonetheless,

the disaggregation procedure still provides significant gain. Of course this must

be considered with caution since the year 2002 seems to be much more difficult

to predict using Eventail: the MAPE forecast error of the aggregated predictor

increases from 3.14% to 6.82% and is perhaps not representative.
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6. FUTURE WORK

Let us briefly present some future possible developments.

First of all, alternatives to the current algorithm could be studied, the main

difficulty being to cope with the computational burden. A scheme better suited

for parallelism could be developed. A divisive strategy instead of data aggregation

could be used to optimize the forecasting objective. It would start with the whole

population and iteratively segment the current subgroup. Segmentation could be

completed according to a 2 or 3-means clustering using approximation coefficients.

Another line of work on electrical data could be to further develop forecast-

ing with wavelet methods (see Antoniadis et al. ([2]), Amin Ghafari, Poggi ([3])).

The aim would be to adapt the models to the clusters using a similar method to

the one described in Hathaway, Bezdek ([13]) or more recently clusterwise linear

models proposed in Gruen, Leisch ([11]).

Also, we could take advantage of external meteorological and economical

information as diagnostic and performance measurement tools. Eventually, the

whole procedure should integrate parameters’ data-driven choices: the wavelet

and the representation basis, the obtained partition and the adaptation of the

model to cluster specificities.

Last but not least, theoretically we could explore how to maximize the

profits of the disaggregation method in general conditions.
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