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Abstract:

• The Shewhart control charts, used for monitoring industrial processes, are the most
popular tools in Statistical Process Control (SPC). They are usually developed under
the assumption of independent and normally distributed data, an assumption rarely
true in practice, and implemented with estimated control limits. But in general, we
essentially want to control the process mean value and the process standard deviation,
independently of the data distribution. In order to monitor these parameters, it thus
seems sensible to advance with control charts based on robust statistics, because these
statistics are expected to be more resistant to moderate changes in the underlying
process distribution. In this paper, we investigate the advantage of using control
charts based on robust statistics. Apart from the traditional control charts, the sample
mean and the sample range charts, we consider robust control charts based on the
total median and on the total range statistics, for monitoring the process mean value
and the process standard deviation, respectively. Through the use of Monte Carlo
simulations, we compare these charts in terms of robustness and performance.
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1. INTRODUCTION

The most commonly used charts for monitoring industrial processes, or

more precisely, a quality characteristic X at the targets µ0 and σ0, the desired

mean value and standard deviation of X, respectively, are the Shewhart control

charts with 3-sigma control limits. These charts are usually developed under

the assumptions of independent and normally distributed data, and have control

limits (CL’s) of the form

LCLW = E(W ) − 3
√

V(W ) , UCLW = E(W ) + 3
√

V(W )

where W , LCL, UCL, E and V denote the control statistic, the lower control limit,

the upper control limit, the expected value operator and the variance operator,

respectively. More precisely, to monitor the process mean value µ at µ = µ0, it is

common to implement a two-sided sample mean chart, X, also denoted M -chart,

with lower and upper control limits given by

(1.1) LCLM = µ0 − 3 σ0/
√

n , UCLM = µ0 + 3σ0/
√

n .

To monitor the process standard deviation σ at σ = σ0, it is common to implement

a sample range chart, R, with lower and upper control limits given by

(1.2) LCLR = d2σ0 − 3 d3σ0 , UCLR = d2σ0 + 3 d3σ0 ,

where d2 and d3 are constants tabulated for standard normal data, and presented

in Table 2 (Section 2.1) for the most common rational subgroups size, n. General

details about control charts can be found in Ryan (2000) and Montgomery (2005),

among others.

For normal data and when it is not necessary to estimate the control lim-

its, the Shewhart control charts exhibit a reasonable high performance to detect

moderate to large changes in the process parameters. However, despite of the

importance of the normal distribution in Statistical Process Control (SPC), the

experience tells us that even in potential normal situations there is some possi-

bility of having an underlying non-normal distribution, with moderate to strong

asymmetry and with tails heavier than the normal tail, as well as a significant

correlation between the observations.

Additionally, the target values µ0 and σ0 are not usually fixed given values,

and we have to estimate them, in order to determine the control limits of the chart.

Several studies refer that, even for normal data, we are able to obtain control

charts with estimated control limits with the same properties as the corresponding

charts with true limits, only if we use a large number of initial rational subgroups

in the estimation. Moreover, we should determine the control limits in a robust

way, in order to minimize the effect of possible outliers in the initial subgroups.
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The effect of the estimation of the control limits and of the non-normality in

the performance of the usual control charts can be found in Rocke (1989, 1992),

Quesenberry (1993), Amin and Lee (1999), Chakraborti (2000, 2006), Nedumaran

and Pignatiello (2001), Champ and Jones (2004), Figueiredo and Gomes (2004,

2006) and Jensen et al. (2006), among others. Schilling and Nelson (1976), Bai

and Choi (1995) and Castagliola (2000), also among others, provide different

corrections to the control limits of the usual control charts in order to maintain

the expected false alarm rate, whenever monitoring non-normal data.

To sum up, the traditional control charts must be used carefully. If the

model underlying the process is far from the normal, we can decide for the imple-

mentation of a control chart associated with the specific distribution underlying

the process, whenever this seems necessary and feasible. Alternatively, we can

decide for the implementation of a robust control chart, less sensitive to the nor-

mality assumption. In this paper, we shall investigate the benefits of using control

charts based on robust control statistics, so that we do not have either a very

high or a very low false alarm rate whenever the parameters to be controlled are

close to the targets, although the data is no longer normal, together with the use

of robust estimates of the upper and lower control limits. Some considerations

about “robust” estimation can be found in Hampel (1971), Hoaglin et al. (1983),

Lax (1985), Hampel et al. (1986), Figueiredo (2003a, 2003b) and Figueiredo and

Gomes (2004), among others.

In Section 2, we provide some information about the total median and the

total range statistics, analyzing the robustness and efficiency of these location

and scale estimators, as well as their sampling distribution. These are the robust

statistics considered in this study, used in the estimation and monitoring of the

process mean value and the process standard deviation, respectively, alternatively

to the usual sample mean and sample range statistics. In Section 3, we present

some simulation results about the robustness and the comparative performance

of control charts based on classical and robust estimation of mean values and

standard deviations.

2. THE TOTAL MEDIAN AND THE TOTAL RANGE STATISTICS

Let us denote (X1, X2, ..., Xn) a random sample of size n taken from a

process X with distribution function (d.f.) F , and (X1:n, X2:n, ..., Xn:n) the ran-

dom sample of the associated ascending order statistics (o.s.). Given an observed

sample (x1, x2, ..., xn), the associated bootstrap random sample, (X∗
1 , X∗

2 , ..., X∗
n),

is a random sample of independent, identically distributed replicates from a ran-

dom variable X∗, with d.f. equal to the empirical d.f. of our observed sample, i.e.,
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given by

F ∗
n(x) =

1

n

n
∑

i=1

I{xi≤x} , with IA =

{

1 if A occurs

0 otherwise

the indicator function of the set A. We next define the bootstrap median and

the bootstrap range as the median and the range, respectively, of the bootstrap

random sample. The bootstrap median is thus given by

BMd =

{

X∗
m:n if n = 2m −1 ,

(

X∗
m:n + X∗

m+1:n

)

/2 if n = 2m, m = 1, 2, ...

and the bootstrap range is given by BR = X∗
n:n−X∗

1:n.

Remark 2.1. Note that given an observed sample (x1, x2, ..., xn), the sup-

port of the bootstrap median is the set
{

(xi:n + xj:n)/2, 1 ≤ i ≤ j ≤ n
}

, and the

support of the bootstrap range is the set
{

xj:n− xi:n, 1 ≤ i ≤ j ≤ n
}

.

Let us denote αij and βij the following probabilities:

αij := P

(

BMd =
xi:n + xj:n

2

)

, 1 ≤ i ≤ j ≤ n ,(2.1)

βij := P

(

BR = xj:n− xi:n

)

, 1 ≤ i < j ≤ n ,(2.2)

with P(A) denoting the probability of the event A.

Definition 2.1. The total median statistic, denoted TMd , is given by

(2.3) TMd :=

n
∑

i=1

n
∑

j=i

αij

(

Xi:n +Xj:n

2

)

=:

n
∑

i=1

aiXi:n ,

and the total range statistic, denoted TR, is given by

(2.4) TR :=

n−1
∑

i=1

n
∑

j=i+1

βij

(

Xj:n−Xi:n

)

=:

n
∑

i=1

biXi:n ,

where the coefficients ai and bi are thus given by

(2.5) ai =
1

2

(

n
∑

j=i

αij +
i
∑

j=1

αji

)

and bi =
i−1
∑

j=1

βji −
n
∑

j=i+1

βij , 1 ≤ i ≤ n .

Cox and Iguzquiza (2001) and Figueiredo and Gomes (2004, 2006) present

explicit expressions for αij and βij in (2.1) and (2.2), respectively, which enable

the computation of the weights ai and bi, 1 ≤ i ≤ n, in (2.3) and (2.4), respec-

tively, through the use of (2.5).
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Remark 2.2. Note that the coefficients ai and bi are independent of the

underlying model F , and only depend on the sample size n. A linear combination

of the sample o.s., with weights given by these coefficients, such as the TMd

and the TR statistics, in (2.3) and (2.4), respectively, define a kind of “robust”

trimmed-mean, where the percentage of trimming is determined independently

of the underlying distribution of the data, and a “robust” range. The extreme

observations have a smaller influence in these statistics than in the sample mean

and in the sample range. They can thus be used to estimate the location and the

scale parameters whenever there is a possibility of disturbances in the data, such

as outliers or contaminated data. In Table 1 we present, for each entry i, the

values of the coefficients ai and bi with three decimal figures, for the most usual

rational subgroups size, n, in SPC.

Table 1: Coefficients ai and bi, ai = an−i+1 and bi =−bn−i+1, 1≤ i ≤n.

i
.

n 3 4 5 6 7 8 9 10

1
ai 0.259 0.156 0.058 0.035 0.010 0.007 0.001 0.001
bi −0.750 −0.690 −0.672 −0.666 −0.661 −0.657 −0.653 −0.652

2
ai 0.482 0.344 0.259 0.174 0.098 0.064 0.029 0.019
bi 0.000 −0.198 −0.240 −0.246 −0.245 −0.244 −0.242 −0.241

3
ai 0.366 0.291 0.239 0.172 0.115 0.078
bi 0.000 −0.058 −0.073 −0.077 −0.078 −0.079

4
ai 0.306 0.257 0.221 0.168
bi 0.000 −0.016 −0.020 −0.022

5
ai 0.268 0.234
bi 0.000 −0.004

2.1. Location and scale estimators: robustness and efficiency

The skewness of a model is often measured through two different coeffi-

cients, the Fisher and the Bowley skewness coefficients. The Fisher skewness

coefficient of a d.f. F , denoted γ, is given by

(2.6) γ := µ3/µ
3/2
2 ,

where µr denotes the r-th central moment of F . The Bowley skewness coefficient

(also called quartile skewness coefficient), denoted γ
B
, is given by

(2.7) γ
B

:=

(

F−1(0.75) − F−1(0.5)
)

−
(

F−1(0.5) − F−1(0.25)
)

F−1(0.75) − F−1(0.25)
,

where F−1 denotes the inverse functions of F .
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The tail-weight coefficient of a distribution F here considered, and denoted τ,

is given by

(2.8) τ :=
1

2

F−1(0.99)−F−1(0.5)

F−1(0.75)−F−1(0.5)
+ F−1(0.5)−F−1(0.01)

F−1(0.5)−F−1(0.25)

Φ−1(0.99)−Φ−1(0.5)

Φ−1(0.75)−Φ−1(0.5)

,

where F−1 and Φ−1 denote the inverse functions of F and of the stan-

dard normal d.f. Φ, respectively. For symmetric distributions we have τ =
(

F−1(0.99)/F−1(0.75)
)/(

Φ−1(0.99)/Φ−1(0.75)
)

, the tail-weight coefficient de-

fined in Hoaglin et al. (1983).

Several Monte Carlo simulation studies have been carried out to evaluate

the efficiency and the robustness of different location and scale estimators, in-

cluding the total median and the total range statistics. Some of these studies

have been presented in Figueiredo (2003a, 2003b) and in Figueiredo and Gomes

(2004, 2006), for a reasonably large set of symmetric and asymmetric distribu-

tions, with different skewness and tail-weight. It was then possible to conclude

that the TMd statistic can be used to estimate the median value of a distribu-

tion F , as well as the mean value of a symmetric or approximately symmetric

distribution. The TR statistic can be used to estimate the process standard de-

viation, in the case of rational subgroups of small to moderate size. However,

both R and TR are biased estimators of the standard deviation. In order to get

unbiased estimates, whenever the underlying model F is normal, it is necessary

to consider, as usual, standardized versions of these statistics, obtained by the

division of R = Xn:n−X1:n and TR = X∗
n:n−X∗

1:n by appropriate scale constants.

These constants are equal to the expected values of the statistics for the standard

normal distribution (here denoted by d2 ≡ d2,R and d2,TR, respectively). For the

most common values of n, they are given in Table 2, together with the statistics

standard deviations (here denoted by d3 ≡ d3,R, d3,TR and d3,TMd ).

Table 2: Expected value, d2,•, and standard deviation, d3,•, of R, TR and TMd
for a standard normal distribution (d2,TMd = 0).

Constants 3 4 5 6 7 8 9 10

d2 1.693 2.059 2.326 2.534 2.704 2.847 2.970 3.078
d2,TR 1.269 1.538 1.801 2.027 2.210 2.364 2.491 2.610
d3 0.888 0.880 0.864 0.848 0.833 0.820 0.808 0.797
d3,TR 0.666 0.653 0.657 0.659 0.656 0.650 0.641 0.636
d3,TMd 0.583 0.507 0.464 0.425 0.401 0.375 0.359 0.340
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2.1.1. The class of models under consideration

To analyze the robustness of the above mentioned statistics to slight devia-

tions of the normal model, and following the methodology presented in Figueiredo

(2003b) and Figueiredo and Gomes (2004), we have considered several symmetric

distributions, related with the standard normal distribution, and with different

tail-weights τ , the indicator defined in (2.8). More precisely, we have considered

standardized data from the following set D of symmetric distributions:

1. the standard normal, N(0, 1);

2. the standard Laplace, Laplace(0, 1);

3. the contaminated normal distributions, CN(α × 100%), in which each

observation has a (1− α)×100% probability of being drawn from the

N(0, 1) and α×100% probability of being drawn from the N(0, k), with

a standard deviation k = 3 and percentages of contamination α = 0.01,

0.025, 0.05, 0.075, 0.10, 0.125 and 0.15.

The d.f. of the standard Laplace model is given by

F (x) =

{

ex/2 , x ≤ 0

1 − e−x/2 , x > 0

and the d.f. of the contaminated normal model CN(α ×100%), is given by

F (x) = α Φ(x/k) + (1−α)Φ(x) ,

where Φ denotes the d.f. of the standard normal distribution, given by Φ(x) =
∫ x
−∞ exp(−t2/2) dt/

√
2π, x ∈ R.

Remark 2.3. Note that even in potential normal situations there is some

possibility of having disturbances in the data, and one of the previous distribu-

tions in D, for instance, can describe the process data in a more reliable way.

2.1.2. The methodology

• To compare the efficiency of the different location estimators, we have

used their mean square error. Since this measure is affected by the

scaling of the estimator, we have used the variance of the logarithm of

the estimator in the comparison of the scale estimators. Details about

performance measures of scale estimators can be found in Lax (1985).

• To select the most robust estimator among the estimators under study,

in the set D of models under consideration, we have applied a Max/Min

criterion, following the steps below:
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S1 – for every distribution in D, obtain the most efficient estimator,

among the ones considered;

S2 – then, compute the efficiency of the other estimators relatively to

the best one, previously selected in step S1;

S3 – next, for each estimator, save the obtained minimum relative ef-

ficiency along all the considered distributions in D, the so-called

“degree of robustness” of the estimator;

S4 – finally, the most robust estimator is the one with the highest

“degree of robustness”.

2.1.3. Results

Apart from the sample mean M ≡ X and the total median TMd , both

location estimators, we have considered another location estimator, the sample

median Md . Apart from the range R and the total range TR, both scale es-

timators, we have also considered the sample standard deviation estimator, S.

In Figure 1 we present the most efficient estimator for the mean value (at the

left) and for the standard deviation (at the right) of a distribution F in D, for

rational subgroups of size n = 3 up to 10.

sample size sample size

!F F 3 4 5 6 7 8 9 10 !F F 3 4 5 6 7 8 9 10

1,717 CN(15%) Md Md TMd TMd TMd TMd TMd M 1,717 CN(15%) TR TR TR TR TR TR S S

1,642 CN(12,5%) TMd Md TMd TMd TMd TMd TMd M 1,642 CN(12,5%) TR TR TR TR TR TR S S

1,636 Laplace TMd Md TMd TMd TMd TMd TMd TMd 1,636 Laplace TR TR TR TR TR S S S

1,532 CN(10%) TMd Md TMd TMd TMd TMd TMd M 1,532 CN(10%) TR TR TR TR TR TR S S

1,376 CN(7,5%) TMd Md TMd TMd TMd TMd TMd M 1,376 CN(7,5%) TR TR TR TR TR TR S S

1,205 CN(5%) TMd TMd TMd TMd TMd TMd TMd M 1,205 CN(5%) TR TR TR TR TR TR S S

1,08 CN(2,5%) TMd TMd TMd TMd TMd TMd M M 1,08 CN(2,5%) S TR TR TR TR TR S S

1,028 CN(1%) M TMd M M M M M M 1,028 CN(1%) S S S S S S S S

1 N(0,1) M M M M M M M M 1 N(0,1) S S S S S S S S

Figure 1: Most efficient estimator for the mean value (left)
and for the standard deviation (right).

The TMd and the TR estimators are the most efficient to estimate the

mean value and the standard deviation, respectively, of a moderate-to-heavy-

tailed distribution, whenever we consider rational subgroups of moderate size.

We advise the use of the M and the S estimators only for distributions with

small tail-weight and moderate-to-large sample sizes. In the extreme case of

small samples and too heavy-tailed distributions, the sample median Md and the

total range TR turn out to be the most efficient location and scale estimators,

respectively. For n = 3, the Md estimator is worse than the TMd -estimator for

high degrees of contamination of a normal model, due to the fact that there is

only one central observation, instead of the two central observations when n = 4.
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This is the reason for the discontinuity point in the graph of Figure 1 (left).

The R-estimator is not at all competitive, despite of the fact that, in SPC, the

range control chart based on the R-statistic is much more popular to monitor

the standard deviation than the standard deviation control chart, based on the

S-statistic.

In Figure 2 we picture the degree of robustness of the above-mentioned

estimators.

   Degree of robustness

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

sample size

M

TMd

Md

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10

sample size

R

TR

S

Figure 2: Degree of robustness of the location (left) and scale (right)
estimators under study.

From Figure 2 (left), we can observe that the TMd -estimator is much more

robust to changes in the underlying distribution F than the sample mean and

the sample median estimators, M and Md , respectively. Indeed, the degree of

robustness of TMd is always higher than the ones of either M or Md . The TR-

estimator and the S-estimator present a similar degree of robustness, whenever

we consider any d.f. F in D, and are more robust than the R-estimator.

2.2. The sampling distribution

In order to get information about the sampling distribution of the previous

location and scale statistics M ≡ X, TMd , R and TR, here generically denoted

by W, we have generated 50,000 values of each of the statistics W, for rational

subgroups of size n = 5 and n =10 from d.f.’s in D. We have simulated their sam-

pling distribution, and we have estimated the tail-weight, τ , defined in (2.8), as

well as the asymmetry, through the use of the Fisher and of the Bowley skewness

coefficients, γ and γ
B
, defined in (2.6) and (2.7), respectively.

The obtained estimates of τ , γ and γ
B
, and of the quantiles χp ≡ F−1(p),

p = 0.1%, 1%, 25%, 50%, 75%, 99% and 99.9%, of the sampling distribution of the

different statistics under study, are presented in Tables 3–6.
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Table 3: Estimates of the mean values of τ , γ, γ
B
, χ0.1%, χ1%, χ25%, χ50%, χ75%,

χ99%, χ99.9%, for the statistic M and subgroups of size n = 5, 10.

F n τ γ γ
B

χ0.1% χ1% χ25% χ50% χ75% χ99% χ99.9%

N(0,1)
5 1.00 0.01 0.00 −1.398 −1.039 −0.302 −0.001 0.297 1.046 1.410

10 0.99 −0.01 0.00 −0.977 −0.733 −0.217 −0.001 0.212 0.734 0.962

CN(1%)
5 1.03 0.02 −0.01 −1.582 −1.090 −0.312 0.000 0.305 1.099 1.576

10 1.00 −0.02 0.00 −0.968 −0.746 −0.212 0.002 0.216 0.731 0.975

CN(2.5%)
5 1.08 0.02 −0.00 −1.772 −1.175 −0.322 −0.003 0.312 1.192 1.801

10 0.99 −0.01 0.01 −0.995 −0.736 −0.213 −0.001 0.214 0.730 0.956

CN(5%)
5 1.14 −0.02 0.01 −2.025 −1.316 −0.331 0.001 0.336 1.309 1.942

10 0.99 −0.01 0.01 −0.999 −0.737 −0.213 0.000 0.215 0.731 0.975

CN(7.5%)
5 1.19 −0.00 −0.01 −2.114 −1.447 −0.352 0.000 0.347 1.427 2.169

10 0.99 −0.01 0.00 −0.982 −0.739 −0.216 −0.002 0.214 0.737 0.964

CN(10%)
5 1.21 0.00 −0.01 −2.370 −1.523 −0.373 −0.007 0.355 1.526 2.235

10 0.99 0.00 0.00 −0.957 −0.736 −0.214 0.000 0.214 0.733 0.964

Laplace(0,1)
5 1.13 −0.01 0.01 −2.241 −1.547 −0.391 0.001 0.403 1.538 2.205

10 1.06 0.01 0.00 −1.455 −1.062 −0.293 0.001 0.293 1.074 1.448

CN(12.5%)
5 1.21 0.03 0.01 −2.280 −1.598 −0.377 0.002 0.392 1.617 2.449

10 1.00 0.01 0.00 −0.969 −0.741 −0.216 −0.003 0.211 0.734 0.992

CN(15%)
5 1.21 −0.00 0.01 −2.426 −1.703 −0.407 −0.004 0.403 1.688 2.484

10 1.00 0.00 0.00 −0.971 −0.739 −0.215 −0.002 0.213 0.729 0.977

From the values in Table 3 we observe that the sampling distribution of the

M -statistic is approximately symmetric for the models under study. When we

consider underlying models F with small tail-weight, such as the normal and the

CN(1%) models, the sampling distribution of M presents the same tail-weight as

the normal distribution; for distributions F with moderate-to-heavy tails, such as

the CN(10%), the CN(12.5%), the CN(15%) and the Laplace(0,1), the sampling

distribution of M has tails heavier than the normal tail, but not so heavy as

the tails of the underlying distribution. Moreover, this tail-weight decreases as

the sample size n increases. Note that although the Laplace and the CN(10%)

distributions have similar tail-weight, the tail-weight of the sampling distribu-

tion of M is similar when we consider the Laplace and the CN(5%) distribution

instead of the CN(10%). For non-normal models, the obtained lower quantiles

of the sampling distribution of M , χ0.1% and χ1%, are smaller than the corre-

sponding quantiles obtained in the normal case, and the upper quantiles, χ99%

and χ99.9%, are larger than the corresponding normal quantiles. This reveals the

weak robustness of the M statistic to changes in the underlying model, mainly for

small values of n. Finally, the interval of variation of the sampling distribution

of the M statistic for non-normal data is larger than in the normal case, but the

inter-quartile range is almost the same for all the distributions, except in the case
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of distributions with very heavy tails. The main differences between the several

sampling distributions are in the tails, and this is a very important feature when

we are interested in the estimation of high quantiles, as usually happens in SPC.

From Table 4, we notice that the sampling distribution of the TMd -statistic

is approximately symmetric for all the models under study, even when we con-

sider heavy-tailed underlying models F , such as the CN(15%), for instance. The

chance of having an extreme value from the TMd sampling distribution is smaller

than the chance of obtaining it from the M sampling distribution. For large ra-

tional subgroups size of contaminated normal data, say n = 10, the lower and the

upper quantiles of the TMd distribution are similar to the corresponding normal

quantiles, but for n = 5 there are significant differences. Consequently, we do

not advise the use of the TMd statistic in SPC for very small values of n, when

there is some possibility of having contaminated normal data. For the contam-

inated normal models the interval of variation of the sampling distribution of

the TMd statistic is larger than in the normal case, as well as the interquartile

range for small values of n, but even so, the differences to the normal case are

smaller when we consider the TMd instead of the M statistic. Note also that

the sampling distribution of TMd presents the highest tail-weight for the Laplace

distribution.

Table 4: Estimates of the mean values of τ , γ, γ
B
, χ0.1%, χ1%, χ25%, χ50%, χ75%,

χ99%, χ99.9%, for the statistic TMd and subgroups of size n = 5, 10.

F n τ γ γ
B

χ0.1% χ1% χ25% χ50% χ75% χ99% χ99.9%

N(0,1)
5 1.01 0.01 0.00 −1.445 −1.080 −0.312 0.000 0.310 1.088 1.457

10 1.00 0.00 0.00 −1.044 −0.797 −0.231 0.000 0.229 0.791 1.055

CN(1%)
5 1.01 0.01 −0.01 −1.489 −1.100 −0.321 0.000 0.313 1.105 1.498

10 1.01 −0.02 −0.01 −1.052 −0.805 −0.228 0.004 0.232 0.792 1.052

CN(2.5%)
5 1.02 0.02 0.00 −1.545 −1.126 −0.328 −0.005 0.316 1.140 1.538

10 1.00 −0.01 −0.01 −1.043 −0.791 −0.230 0.001 0.230 0.790 1.055

CN(5%)
5 1.03 −0.01 0.01 −1.686 −1.183 −0.328 0.000 0.335 1.179 1.633

10 0.99 0.00 0.01 −1.050 −0.790 −0.229 0.000 0.231 0.784 1.052

CN(7.5%)
5 1.06 −0.01 0.00 −1.765 −1.246 −0.344 −0.003 0.339 1.246 1.723

10 0.99 −0.01 0.00 −1.052 −0.791 −0.232 −0.002 0.229 0.787 1.034

CN(10%)
5 1.07 −0.02 0.00 −1.879 −1.297 −0.357 −0.001 0.341 1.276 1.887

10 1.00 −0.01 0.01 −1.052 −0.793 −0.229 0.000 0.232 0.795 1.030

Laplace(0,1)
5 1.19 −0.02 0.00 −2.080 −1.429 −0.342 0.004 0.352 1.418 2.054

10 1.14 0.02 0.00 −1.275 −0.923 −0.236 0.001 0.236 0.932 1.344

CN(12.5%)
5 1.08 0.03 0.01 −1.966 −1.330 −0.354 0.004 0.368 1.363 2.041

10 1.00 0.01 0.00 −1.066 −0.802 −0.232 −0.004 0.227 0.787 1.079

CN(15%)
5 1.09 0.00 0.00 −2.132 −1.413 −0.378 −0.003 0.373 1.421 2.138

10 0.99 0.00 0.01 −1.039 −0.786 −0.230 −0.003 0.229 0.776 1.078
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From Tables 5–6, we notice that the sampling distributions of the R and of

the TR statistics are highly positively skewed, even in the normal case. For con-

taminated normal models, even with a moderate percentage of contamination, the

sampling distributions of R and TR are heavy-tailed, with high positive skew-

ness, and present some asymmetry even in the central part of the distribution,

as it is indicated by the obtained value of the quartile skewness coefficient, γB.

However, the distribution of the TR statistic is less asymmetric than the distribu-

tion of the R statistic, with a not so long right tail. In all the cases the skewness

as well as the tail-weight decrease with the increase of the sample size n, and we

thus advise the use of the TR statistic for large rational subgroups size. The tail-

weight of the sampling distribution of the statistics R and TR is approximately

equal to the tail-weight of the normal distribution when we consider the Laplace

model, and its asymmetry is much smaller than the asymmetry of the sampling

distribution of R and TR for the contaminated normal models here considered.

The histograms obtained, not pictured, confirm the symmetry of the sam-

pling distributions of M and TMd , and the visible asymmetry of the distributions

of R and TR, mainly for small samples. The increase of n leads us, in some cases,

to a quasi-symmetric distribution.

Table 5: Estimates of the mean values of τ , γ, γ
B
, χ0.1%, χ1%, χ25%, χ50%, χ75%,

χ99%, χ99.9%, for the statistic R and subgroups of size n = 5, 10.

F n τ γ γ
B

χ0.1% χ1% χ25% χ50% χ75% χ99% χ99.9%

N(0,1)
5 0.97 0.48 0.06 0.351 0.663 1.699 2.252 2.875 4.628 5.542

10 1.00 0.39 0.04 1.057 1.459 2.513 3.028 3.582 5.151 5.985

CN(1%)
5 1.08 1.19 0.06 0.351 0.664 1.719 2.289 2.927 5.204 8.039

10 0.98 0.38 0.04 1.080 1.473 2.514 3.028 3.591 5.133 5.922

CN(2.5%)
5 1.25 1.59 0.08 0.355 0.670 1.749 2.332 3.015 6.287 9.222

10 0.99 0.40 0.05 1.076 1.479 2.516 3.026 3.584 5.160 5.930

CN(5%)
5 1.38 1.82 0.10 0.387 0.707 1.793 2.413 3.164 7.477 10.383

10 0.99 0.39 0.05 1.059 1.470 2.515 3.026 3.589 5.156 5.974

CN(7.5%)
5 1.35 1.78 0.13 0.399 0.708 1.840 2.499 3.352 8.115 11.121

10 0.99 0.39 0.04 1.072 1.464 2.514 3.026 3.585 5.139 6.020

CN(10%)
5 1.30 1.68 0.16 0.400 0.723 1.901 2.585 3.536 8.516 11.470

10 0.99 0.38 0.05 1.075 1.464 2.515 3.027 3.589 5.144 5.973

Laplace(0,1)
5 1.03 1.11 0.12 0.379 0.677 2.011 2.902 4.034 8.151 10.823

10 1.06 0.95 0.10 1.068 1.602 3.253 4.227 5.409 9.692 12.152

CN(12.5%)
5 1.23 1.61 0.18 0.419 0.744 1.953 2.697 3.770 9.013 11.929

10 0.99 0.39 0.04 1.082 1.466 2.518 3.033 3.589 5.156 5.957

CN(15%)
5 1.17 1.50 0.20 0.423 0.755 2.016 2.809 4.007 9.385 12.268

10 1.00 0.39 0.04 1.106 1.456 2.514 3.030 3.586 5.159 5.917
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Table 6: Estimates of the mean values of τ , γ, γ
B
, χ0.1%, χ1%, χ25%, χ50%, χ75%,

χ99%, χ99.9%, for the statistic TR and subgroups of size n = 5, 10.

F n τ γ γ
B

χ0.1% χ1% χ25% χ50% χ75% χ99% χ99.9%

N(0,1)
5 0.95 0.43 0.05 0.273 0.519 1.321 1.749 2.223 3.507 4.143

10 0.99 0.28 0.02 0.924 1.277 2.164 2.583 3.023 4.219 4.830

CN(1%)
5 1.05 1.00 0.06 0.282 0.524 1.339 1.775 2.264 3.910 5.808

10 0.98 0.27 0.02 0.946 1.283 1.163 2.585 3.025 4.199 4.753

CN(2.5%)
5 1.20 1.35 0.07 0.280 0.526 1.361 1.810 2.329 4.616 6.615

10 0.99 0.29 0.03 0.943 1.286 2.165 2.581 3.024 4.221 4.767

CN(5%)
5 1.31 1.59 0.10 0.307 0.551 1.401 1.871 2.440 5.420 7.326

10 0.98 0.27 0.03 0.939 1.276 2.167 2.584 3.029 4.209 4.801

CN(7.5%)
5 1.28 1.61 0.12 0.299 0.555 1.433 1.937 2.577 5.834 8.040

10 0.98 0.28 0.04 0.944 1.280 2.166 2.580 3.026 4.203 4.830

CN(10%)
5 1.25 1.52 0.15 0.318 0.562 1.477 2.000 2.711 6.157 8.100

10 0.98 0.27 0.03 0.937 1.280 2.163 2.583 3.029 4.198 4.859

Laplace(0,1)
5 1.01 1.01 0.11 0.290 0.528 1.555 2.221 3.060 5.949 7.812

10 1.06 0.95 0.10 0.929 1.386 2.723 3.493 4.383 7.394 8.995

CN(12.5%)
5 1.20 1.48 0.16 0.333 0.582 1.517 2.086 2.875 6.554 8.518

10 0.98 0.28 0.03 0.941 1.282 2.164 2.585 3.030 4.215 4.819

CN(15%)
5 1.14 1.39 0.19 0.330 0.592 1.569 2.165 3.046 6.786 8.821

10 0.98 0.28 0.03 0.965 1.280 2.162 2.581 3.028 4.218 4.796

3. CONTROL CHARTS SIMULATED BEHAVIOUR

Whenever implementing a control chart, a practical advice is that 3-sigma

control limits should be avoided whenever the distribution of the control statistic

is very asymmetric. In such a case, it is preferable to fix the control limits of

the chart at adequate probability quantiles of the control statistic distribution.

However, the analytical determination of these quantiles is in general impossible

to obtain, as well as its estimation, because we do not have sufficient observations

for doing it accurately.

The results presented in Subsection 2.2 justify the use, in this study, of

two-sided control charts with 3-sigma control limits to monitor the process mean

value at a target µ0. Thus, to detect increases or decreases in the process mean

value µ, we have implemented the classical M -chart with control limits given in

(1.1), and the TMd chart with lower and upper control limits given by

LCLTMd = E(TMd) − 3
√

V(TMd) , UCLTMd = E(TMd) + 3
√

V(TMd) .
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For standard normal data the limits of the TMd -chart are given by

(3.1) LCLTMd = −3 d3,TMd , UCLTMd = 3 d3,TMd ,

where d3,TMd has been tabulated in Table 2. Here in order to obtain the same

false alarm rate for the M and the TMd charts, whenever the underlying model

F is normal, we have replaced in (3.1), d3,TMd by d∗3,TMd
= 0.4643 for n = 5 and

d∗3,TMd
= 0.3407 for n = 10.

To monitor the process standard deviation at a target σ0, and noting that

the main interest is to detect increases in σ and not decreases in σ, we have

implemented one-sided control charts, with lower control limits placed at 0. The

R-chart has an upper control limit given in (1.2), and the TR chart has the upper

control limit given by

UCLTR = E(TR) + 3
√

V(TR) .

For standard normal data the upper control limits of the TR-chart is thus given

by

(3.2) UCLTR = d2,TR + 3 d3,TR ,

where d2,TR and d3,TR have also been tabulated in Table 2. To obtain the same

false alarm rate for the R and the TR charts, whenever the underlying model F

is normal, we have considered a slightly different value for d3,TR. More precisely,

we have replaced in (3.2), d3,TR by d∗3,TR
= 0.6465 for n = 5 and d∗3,TR

= 0.611

for n = 10.

3.1. Robustness versus performance

The ability of a generic W control chart to detect process changes is usually

measured by the expected number of samples taken before the chart signals, i.e.,

by its ARL (Average Run Length), or alternatively, in some cases, by its power

function, together with the standard deviation of the Run Length distribution,

SDRL.

When the successive values of the control statistic W are independent, and

when we do not have to estimate the control limits of the chart, the RL vari-

able (i.e., the number of samples taken before the chart signals) has a geometric

distribution, and the ARL is given by

(3.3) ARL
W

(θ) =
1

1 − P
(

W ∈ C | θ
) =:

1

π
W

(θ)
,

where θ denotes the parameter to be controlled at θ = θ0, with π
W

(θ) the power

function of the W-chart. The SDRL is given by

(3.4) SDRL
W

(θ) =

√

1 − π
W

(θ)

π
W

(θ)
.



166 Fernanda Figueiredo and M. Ivette Gomes

Remark 3.1. Assuming that the process changes from the in-control state,

θ = θ0, to an out-of-control state, θ, a value in the space parameter, the power

function of the chart is thus the probability of detection of that change in any

arbitrary sample.

When the process is in-control, the power function gives us the false alarm

rate of the chart, also called the α-risk, given by

(3.5) α = P
(

W /∈ C | IN
)

= P
(

W /∈ C | θ = θ0

)

= π
W

(θ0) = 1/ARL(θ0) .

Remark 3.2. The control limits of a W-chart are usually determined in

order to have a chart with a small fixed false alarm rate (a large in-control ARL)

and we hope to obtain high power function values (small out-of-control ARL) for

the shifts the chart must detect.

Remark 3.3. When we have to estimate process parameters in order to

obtain the control limits of the chart or when the successive values of the control

statistic W are not independent, the distribution of the random variable RL is

not geometric, but a more right-skewed distribution. Some authors, see for in-

stance Chakraborti (2006, 2007), refer that in this case the ARL and the SDRL

parameters in (3.3) and (3.4), respectively, are not the best measures of perfor-

mance of a control chart. They also suggest the use of the Median Run Length,

MRL, as a measure of performance, and the 5-th and the 95-th percentiles of the

RL distribution to represent the spread of the RL. Additionally, for a more com-

plete understanding of the chart performance, Chakraborti (2000, 2006, 2007) and

Jensen et al. (2006) suggest the analysis of the RL distribution conditional on the

observed estimates (i.e., the conditional RL distribution), together with the anal-

ysis of the marginal RL distribution. Such a marginal distribution is computed

by integrating the conditional RL distribution over the range of the parameter

estimators, and thus, it takes into account the random variability introduced

into the charting procedure through parameter estimation, without requiring the

knowledge of the observed estimates.

In the following study, to analyze the robustness to the normality assump-

tion of any of the previous control charts, implemented with exact control limits,

we have implemented the following algorithm:

S∗
1 – consider standardized data of the symmetric distributions in set D

(see Subsection 2.2), as adequate to describe the data process;

S∗
2 – next, implement the charts with the control limits given in (1.1), (1.2),

and the mentioned modifications of (3.1) and (3.2), for rational sub-

groups of sizes n = 5 and n = 10;

S∗
3 – compute the false alarm rates, α, defined in (3.5), through the use of

Monte Carlo simulation techniques, using a sample of 500,000 values



Monitoring Industrial Processes with Robust Control Charts 167

of the control statistic for each of the 30 replicates of the simulation

experiment (such a procedure allows us to present the α values with

a precision of 4 decimal figures);

S∗
4 – finally, compare them with the expected value α, obtained for normal

data, and register the smallest α-risk.

The obtained simulated false alarm rates are presented in Tables 7–8 for

rational subgroups of sizes n = 5 and 10. In each line we underline the α-value

associated with the most robust chart, i.e., the one with smallest α-risk. From the

obtained values we conclude that neither the TMd -chart nor the TR-chart can

be considered robust to the normality assumption, but even so, they are more ro-

bust than the X and the R charts, respectively. We also conclude that we should

preferably consider rational subgroups of size n = 10, instead of n = 5. Conse-

quently, when there is a chance of having contaminated normal data, it is better

to implement the TMd and the TR charts for rational subgroups of size n = 10.

The α-values of the charts X and TMd (R and TR) for the Laplace distribution

are similar to the α-values of these charts for the CN(1%) (CN(2.5%)) distribu-

tion, although the Laplace model has much heavier tails than these contaminated

normal models.

Table 7: False Alarm rates of the X and TMd charts.

Model F τ Xn=5 TMdn=5 Xn=10 TMdn=10

N(0,1) 1.000 .00270 .00270 .00270 .00270

CN(1%) 1.028 .00540 .00334 .00478 .00300
Laplace(0,1) 1.636 .00618 .00283 .00474 .00088
CN(2.5%) 1.080 .00849 .00443 .00725 .00346
CN(5%) 1.205 .01198 .00588 .01018 .00426
CN(7.5%) 1.376 .01409 .00723 .01213 .00506
CN(10%) 1.532 .01543 .00841 .01347 .00586
CN(12.5%) 1.642 .01621 .00938 .01442 .00662
CN(15%) 1.717 .01668 .01019 .01505 .00731

Table 8: False Alarm rates of the R and TR charts.

Model F τ Rn=5 TRn=5 Rn=10 TRn=10

N(0,1) 1.000 .00453 .00453 .00423 .00423

CN(1%) 1.028 .01397 .01323 .02175 .01994
Laplace(0,1) 1.636 .02679 .02236 .04608 .03589
CN(2.5%) 1.080 .02538 .02377 .04268 .03890
CN(5%) 1.205 .03905 .03646 .06734 .06185
CN(7.5%) 1.376 .04788 .04477 .08294 .07699
CN(10%) 1.532 .05354 .05022 .09269 .08702
CN(12.5%) 1.642 .05684 .05356 .09820 .09334
CN(15%) 1.717 .05848 .05536 .10057 .09690
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The analysis of the performance of the previous charts to detect changes

in the process parameters is evaluated in terms of the simulated power function

πW (θ) = 1/ARLW (θ) for a few different magnitude changes θ, with ARLW (θ)

defined in (3.3).

The obtained simulated power function values are presented in Tables 9–10

for rational subgroups of size n = 10. For every magnitude of change and each

model, we underline the highest obtained value, which corresponds to the most

powerful chart. These results lead us to the following conclusions: the TMd (the

TR) chart is more robust than the X (the R) chart, with smaller false alarm rates.

Consequently, we were not at all expecting higher values for the power. However,

the TR-chart overpass the R-chart in terms of performance to detect small to

large changes for all the contaminated normal models, and even for normal data.

Only for the Laplace distribution the R-chart overpass the TR-chart to detect

very small changes. In this case the TMd -chart is able to overpass the X-chart to

detect large changes. Despite of the fact that the X-chart presents higher power

function values than the TMd -chart, we cannot conclude that the X-chart is the

most powerful chart, because the α-values of the TMd -chart are smaller than

the α-values of the X-chart. The conclusions are similar for n = 5, although we

obtain larger power function values when the charts are implemented for rational

subgroups of size n = 10. However the differences between the power function

values of the X and of the TMd charts are smaller when we consider n = 5

instead of n = 10.

Table 9: Power function values of the charts (n = 10, µ → µ1, σ = 1).

µ1

X TMd X TMd X TMd X TMd

N(µ1,1) Laplace(0,1) CN(1%) CN(2.5%)

0.5 .0780 .0626 .0758 .0273 .0841 .0640 .0917 .0662
1 .5646 .4741 .5670 .4641 .5630 .4745 .5612 .4745
2 .9996 .9980 .9990 .9994 .9990 .9977 .9983 .9974
2.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CN(5%) CN(7.5%) CN(10%) CN(15%)

0.5 .1010 .0699 .1076 .0735 .1122 .0764 .1180 .0816
1 .5591 .4747 .5573 .4753 .5561 .4759 .5547 .4761
2 .9975 .9969 .9970 .9964 .9966 .9959 .9962 .9950
2.5 .9999 1.000 .9999 1.000 .9999 1.000 .9999 .9999
3.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 10: Power function values of the charts (n = 10, µ = 0, σ → σ1).

σ1

R TR R TR R TR R TR

N(0,σ1) Laplace(0,1) CN(1%) CN(2.5%)

1.25 .0616 .0758 .1481 .1379 .0904 .1044 .1269 .1409
1.5 .2277 .2800 .2949 .2962 .2589 .3100 .2990 .3489
2 .6458 .7178 .5899 .6126 .6636 .7323 .6871 .7516
2.5 .8730 .9114 .7864 .8117 .8799 .9162 .8891 .9227
3 .9564 .9721 .8928 .9116 .9588 .9738 .9621 .9759

CN(5%) CN(7.5%) CN(10%) CN(15%)

1.25 .1734 .1882 .2074 .2235 .2320 .2500 .2626 .2847
1.5 .3519 .4007 .3924 .4409 .4235 .4721 .4659 .5159
2 .7185 .7776 .7433 .7983 .7629 .8147 .7912 .8385
2.5 .9016 .9317 .9114 .9388 .9194 .9445 .9309 .9529
3 .9666 .9788 .9702 .9812 .9731 .9830 .9773 .9858

ACKNOWLEDGMENTS

Research partially supported by FCT/POCTI and POCI/FEDER.

REFERENCES

[1] Amin, R.W. and Lee, S.J. (1999). The effects of autocorrelation and outliers
on two-sided tolerance limits, J. Quality Technology, 31(3), 286–300.

[2] Bai, D.S. and Choi, I.S. (1995). X and R control charts for skewed populations,
J. of Quality Technology, 27(2), 120–131.

[3] Castagliola, P. (2000). X control chart for skewed populations using a scaled
weighted variance method, International J. of Reliability, Quality and Safety En-
gineering, 7(3), 237–252.

[4] Chakraborti, S. (2000). Run length, average run length and false alarm rate of
Shewhart X chart: exact derivations by conditioning, Communications in Statis-
tics – Simulation and Computation, 291, 61–81.

[5] Chakraborti, S. (2006). Parameter estimation and design considerations in
prospective applications of the X Chart., Journal of Applied Statistics, 334, 439–
459.



170 Fernanda Figueiredo and M. Ivette Gomes

[6] Chakraborti, S. (2007). Run length distribution and percentiles: the Shewhart
chart with unknown parameters, Quality Engineering, 19, 119–127.

[7] Champ, W.C. and Jones, A.L. (2004). Design phase I X charts with small
sample sizes, Quality and Reliability Engineering International, 20, 497–510.

[8] Cox, M.G. and Iguzquiza, E.P. (2001). The total median and its uncertainity.
In Advanced Mathematical and Computational Tools in Metrology, V, (Ciarlini et
al., Eds.), 106–117.

[9] Figueiredo, F. (2003a). Controlo Estat́ıstico da Qualidade e Métodos Robustos,
Ph.D. Thesis, Faculty of Science, Lisbon University.

[10] Figueiredo, F. (2003b). Robust estimators for the standard deviation based on
a bootstrap sample, Proc. 13th European Young Statisticians Meeting, 53–62.

[11] Figueiredo, F. and Gomes, M.I. (2004). The total median is Statistical Qual-
ity Control, Applied Stochastic Models in Business and Industry, 20, 339–353.

[12] Figueiredo, F. and Gomes, M.I. (2006). Box-Cox Transformations and Robust
Control Charts in SPC, In Advanced Mathematical and Computational Tools in
Metrology, VII (Pavese et al., Eds.), 35–46.

[13] Hampel, F.R. (1971). A general qualitative definition of robustness, Annals of
Mathematical Statistics, 42, 1887–1896.

[14] Hampel, F.R.; Ronchetti, E.M.; Rousseew, P.J. and Stahel, W. (1986).
Robust Statistics: The Approach Based on Influence Functions, Wiley, New York.

[15] Hoaglin, D.M.; Mosteller, F. and Tukey, J.W. (1983). Understanding
Robust and Exploratory Data Analysis, Wiley, New York.

[16] Jensen, W.A.; Jones-Farmer, L.A.; Champ, C.H. and Woodall, W.H.

(2006). Effects of parameter estimation on control chart properties: a literature
review, J. Quality Technology, 38, 349–364.

[17] Lax, D.A. (1985). Robust estimators of scale: finite sample performance in
long-tailed symmetric distributions, J. Amer. Statist. Assoc., 80, 736–741.

[18] Montgomery, D.C. (2005). Introduction to Statistical Quality Control, Wiley,
New York.

[19] Nedumaran, G. and Pignatiello, J.J. (2001). On estimating X control limits,
J. Quality Technology, 33(2), 206–212.

[20] Quesenberry, D.C. (1993). The effect of sample size on estimated limits for X
and X control charts, J. Quality Technology, 25(4), 237–247.

[21] Rocke, D.M. (1989). Robust control charts, Technometrics, 31(2), 173–184.

[22] Rocke, D.M. (1992). XQ and RQ charts: robust control charts, The Statistician,
41, 97–104.

[23] Ryan, T.P. (2000). Statistical Methods for Quality Improvement, Wiley, New
York.

[24] Schilling, E.G. and Nelson, P.R. (1976). The effect of non-normality on the
control limits of the X charts, J. Quality Technology, 8(4), 183–188.


