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1. INTRODUCTION

Time series models for count data have been the object of growing interest

in the last twenty years. Numerous articles dealing with the theoretical aspects

of these models as well as their applicability have appeared in the literature.

We refer to McKenzie (2003) for an overview of the recent work in this area,

Stationary time series with a given marginal distribution have been de-

veloped by several authors. Most notably, McKenzie (1986, 1988), Al-Osh and

Alzaid (1988) and Pillai and Jayakumar (1995) constructed stationary integer-

valued autoregressive moving average (INARMA) processes with Poisson, nega-

tive binomial and discrete Mittag–Leffler marginal distributions. These mod-

els are based on the binomial thinning operator ⊙ of Steutel and van Harn

(1979) which is defined as follows: if X is a Z+-valued random variable (rv)

and α ∈ (0, 1), then

(1.1) α ⊙ X =
X
∑

i=1

Xi ,

where (Xi, i≥ 1) is a sequence of iid Bernoulli(α) rv’s independent of X.

The binomial thinning operator incorporates the discrete nature of the vari-

ates and replaces the multiplication used in the definition of standard ARMA

processes. Related models that make use of a more general operator were intro-

duced by Aly and Bouzar (1994) and Zhu and Joe (2003). Other aspects of the

analysis of INARMA processes, such as parameter estimation and the study of

extremal properties, can be found in Al-Osh and Alzaid (1987), McCormick and

Park (1997), Park and Oh (1997), Kim and Park (2006), and Hall and Scotto

(2006).

Aly and Bouzar (2005) used a convolution semigroup of probability gener-

ating functions (pgf’s) and the related operator ⊙F (see definitions below) to con-

struct a class of stationary Z+-valued INAR(p) processes. They developed a num-

ber of models with specific marginals which were shown to generalize several ex-

isting INAR(p) models. The aim of this paper is to use the semigroup approach to

construct a family of stationary F -INMA(1), F -INMA(q), and F -INARMA(1, q)

processes. These processes can be seen as extensions of the classical branching

processes of Galton–Watson–Bienaymé (Arthreya and Ney, 1972). We obtain var-

ious distributional and regression properties of F -INARMA(1, q) processes. We

establish in particular that a stationary F -INMA(1) process has the property

of linear regression if and only if its marginal distribution is (discrete) F -stable.

F -INARMA(1, q) processes with F -stable, F -Mittag–Leffler, and compound dis-

crete Linnik innovation sequences are studied. Examples are developed through-

out the paper.
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In the remainder of this section we recall some definitions and results that

will be needed throughout the paper. For proofs and further details we refer to

Athreya and Ney (1972, Chapter 3), van Harn et al. (1982) and van Harn and

Steutel (1993).

F := (Ft; t≥ 0) will denote a continuous composition semigroup of pgf’s

such that Ft 6≡ 1 and δF = − lnF ′
1(1) > 0. For any |z| ≤ 1,

(1.2) Fs ◦ Ft(z) = Fs+t(z), (s, t ≥ 0) ; lim
t↓0

Ft(z) = z ; lim
t→∞

Ft(z) = 1 .

The infinitesimal generator U of the semigroup F is defined by

(1.3) U(z) = lim
t↓0

(

Ft(z) − z
)

/t (|z| ≤ 1) ,

and satisfies U(z) > 0 for 0 ≤ z < 1. There exists a constant a > 0 and a dis-

tribution (hn, n≥ 0) on Z+ with pgf H(z) such that h1 = 0,

(1.4) H ′(1) =
∞
∑

n=1

nhn ≤ 1 ,

and

(1.5) U(z) = a
{

H(z) − z
}

, |z| ≤ 1 ,

The related A-function is defined by

(1.6) A(z) = exp

{

−

∫ z

0

(

U(x)
)−1

dx

}

, z ∈ [0, 1] .

A(z) is strictly decreasing over [0, 1], with A(0) = 1 and A(1) = 0. The functions

U(z) and A(z) satisfy

(1.7) U
(

Ft(z)
)

= U(z)F ′
t(z) and A

(

Ft(z)
)

= e−tA(z) (t≥ 0; 0≤ z ≤ 1) .

Moreover,

(1.8) δF = a
(

1−H ′(1)
)

= −U ′(1) and F ′
t(1) = e−δF t (t≥ 0) .

The function B(z) defined by

(1.9) B(z) = lim
t→∞

Ft(z) − Ft(0)

1 − Ft(0)

is a pgf such that B(0) = 0 and takes the form

(1.10) B(z) = 1 − A(z)δF .

For a Z+-valued rv X and η ∈ (0, 1), the generalized multiplication η ⊙F X

is defined by

(1.11) η ⊙F X =
X
∑

i=1

Yi ,
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where (Yi, i≥ 1) is a sequence of iid rv’s independent of X, with common pgf Ft,

t = − ln η.

A distribution on Z+ with pgf P (z) is said to be F -self-decomposable if

for any t > 0, there exists a pgf Pt(z) such that

(1.12) P (z) = P
(

Ft(z)
)

Pt(z) , |z| ≤ 1 .

F -self-decomposable distributions are infinitely divisible.

Throughout the paper, stationarity of a stochastic process is considered to

be in the strict sense. Finally, PX will denote the pgf of the distribution of the

Z+-valued rv X.

2. F -INMA(1) PROCESSES

Definition 2.1. A sequence (Xn, n∈Z) of Z+-valued rv’s is said to be

an F -INMA(1) process if for any n ∈ Z,

(2.1) Xn = η ⊙F ǫn−1 + ǫn ,

where 0 < η < 1 and (ǫn, n∈Z) is a sequence of iid, Z+-valued rv’s. (ǫn, n∈Z)

is called the innovation sequence.

The generalized multiplication η⊙F ǫn−1 in (2.1) is performed independently

for each n. More precisely, we assume the existence of an array (Yi,n, i≥ 0, n∈Z)

of iid Z+-valued rv’s, independent of (ǫn, n∈Z), such that the array’s common

pgf is Ft(z), t =− ln η, and

(2.2) η ⊙F ǫn−1 =

ǫn−1
∑

i=1

Yi,n−1 .

It is clear that model (2.1) is not a Galton–Watson process. However, one can give

a branching process-like interpretation as follows. In the time interval (n−1, n],

each element of ǫn−1 brings into the system k new elements (offspring) according

to the probability distribution with pgf Ft(z). This gives rise to a total of Un−1 =

η⊙F ǫn−1 new elements in the system by time n. The variable Xn is then obtained

by superposing Un−1 and ǫn. For any n, elements of ǫn can only be present at

time n and their offspring at time n+1. In other words, elements of ǫn and their

offspring remain in the system for at most two units of time.

The transformed version of (2.1) in terms of pgf’s is given by

(2.3) PXn(z) = Pǫ(z)Pǫ

[

Ft(z)
]

, |z| ≤ 1 ,
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where Pǫ is the common pgf of the ǫn’s and t = − ln η. Furthermore, it can be

easily shown that for an F -INMA(1) process (Xn, n ∈ Z) the joint pgf Φk of

(Xn+1, Xn+2, ..., Xn+k) for any n ∈ Z and k ≥ 2 is

(2.4) Φk(z1, z2, ..., zk) = Pǫ(zk)
k
∏

i=1

Pǫ

(

zi−1Ft(zi)
)

,

where z0 = 1, |zi| ≤ 1, i = 1, 2, ..., k, and t = − ln η. It follows from (2.4) that

any F -INMA(1) process is stationary.

Further distributional and correlation properties of F -INMA(1) processes

are gathered in the following proposition.

Proposition 2.1. Let (Xn, n∈Z) be an F -INMA(1) process with coef-

ficient η ∈ (0, 1). Assume further that the mean µǫ and the variance σ2
ǫ of ǫn are

finite and that
∑∞

n=2 n(n−1)hn < ∞. Then

(i) E(Xn) = µǫ(η
δF +1) ;

(ii) Var(Xn) = σ2
ǫ (1+ η2δF ) + µǫ

(

1−
U ′′(1)

U ′(1)

)

ηδF (1− ηδF ) ;

(iii) for any n ∈ Z, Cov(Xn−1, Xn) = ηδF σ2
ǫ ;

(iv) the autocorrelation function (ACRF ) of (Xn, n∈Z) at lag k is

(2.5) ρ(k) =











ηδF σ2
ǫ

/(

σ2
ǫ (1+η2δF )

)

+ µǫ

(

(

1− U ′′(1)
U ′(1)

)

ηδF(1−ηδF )

)

, if k = 1 ,

0 , if k > 1 .

Proof: We first note that
∑∞

n=2 n(n−1)hn < ∞ implies U ′′(1) exists

(see (1.4) and (1.5)). By (1.8) and (2.2), we have E
(

η⊙F ǫn−1 | ǫn−1

)

= ηδF ǫn−1.

Therefore, E(Xn) = E(ǫn) + E(η ⊙F ǫn−1) = E(ǫn) + ηδF E(ǫn−1) = µǫ(η
δF +1),

and thus (i) holds. By differentiating twice the expression U(Ft(z)) = F ′
t(z)U(z)

(t = − ln η) with respect to z and letting z → 1, we obtain F ′′
t (1) = ηδF (ηδF −1) ·

·U ′′(1)/U ′(1). By (1.8) and (2.2), E
(

(η ⊙F ǫn−1)
2 | ǫn−1

)

= Var(Y1,n−1) ǫn−1 +

η2δF ǫ2n−1. Noting that

Var(Y1,n−1) = F ′′
t (1) + F ′

t(1) − F ′
t(1)2 = ηδF (1− ηδF )

(

1−
U ′′(1)

U ′(1)

)

,

(ii) follows by direct calculations. By (2.1) and independence,

E(Xn−1Xn) = E(Xn−1)E(ǫn)+E
(

ǫn−1(η⊙F ǫn−1)
)

+E(η⊙F ǫn−2)E(η⊙F ǫn−1) .

Since E
(

ǫn−1(η ⊙F ǫn−1) | ǫn−1

)

= ηδF ǫ2n−1, again direct calculations (and (i))

yield (iii). (iv) results from (ii) and (iii) combined with the fact that Xn−k

and Xn are independent for k > 1.
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A stochastic process (Zn, n∈Z) is time reversible if for all n, (Z1, Z2, ..., Zn)

and (Zn, Zn−1, ..., Z1) have the same distribution. By a result of McKenzie (1988),

an F -INMA(1) process is time reversible if and only if for any n, (Xn−1, Xn)

has the same distribution as (Xn, Xn−1). The following result gives a necessary

condition for the time reversibility of an F -INMA(1) process.

Theorem 2.1. Assume that (Xn, n∈Z) is a time reversible F -INMA(1)

process with coefficient η ∈ (0, 1). Then the pgf Pǫ(z) of the marginal distribution

of the innovation sequence (ǫn, n∈Z) admits the representation

(2.6) Pǫ(z) = Czm exp

{

−λ

∫ z/Ft(0)

0

Ft(x)−Ft(0)

x
dx

}

, z ∈ [0, Ft(0)] ,

where t = − ln η, m is a nonnegative integer, λ > 0 and 0 < C < 1 are real

numbers.

Proof: Since A(z) is strictly decreasing on [0, 1] (with A(0) = 1 and

A(1) = 0), it is invertible. It follows by (1.7) that Ft(0) = A−1(e−t) > 0 for any

t > 0. Assume Pǫ(0) 6= 0. By (2.4) (applied to k = 2) and the property of time

reversibility, we have

(2.7) Pǫ(z2)Pǫ

(

Ft(z1)
)

Pǫ

(

z1Ft(z2)
)

= Pǫ(z1)Pǫ

(

Ft(z2)
)

Pǫ

(

z2Ft(z1)
)

,

where t =− ln η and |zi| ≤ 1, i = 1, 2. Setting z1 = 0 and z2 = z in (2.7) yields

(2.8) Pǫ(z) =
Pǫ

(

Ft(z)
)

Pǫ

(

zFt(0)
)

Pǫ

(

Ft(0)
) .

Moreover, differentiating with respect to z1 in (2.7), setting z1 = 0 and z2 = z

in the resulting equation, and using (2.8), we obtain

(2.9) Pǫ

(

zFt(0)
)

[

F ′
t(0)P ′

ǫ

(

Ft(0)
)

Pǫ

(

Ft(0)
) +

P ′
ǫ(0)

Pǫ(0)

(

Ft(z)−1
)

]

= F ′
t(0) zP ′

ǫ

(

zFt(0)
)

.

Setting z = 0 in (2.9) gives
F ′

t (0) P ′

ǫ(Ft(0))
Pǫ(Ft(0))

= P ′

ǫ(0)
Pǫ(0)

(1−Ft(0)). Therefore,

(2.10) Ft(0)
P ′

ǫ

(

zFt(0)
)

Pǫ

(

zFt(0)
) = λ

Ft(z)−Ft(0)

z
,

where λ = P ′

ǫ(0)
Pǫ(0)

Ft(0)
F ′

t (0)
. The solution to the differential equation (2.10) is easily

seen to be

(2.11) Pǫ

(

zFt(0)
)

= Pǫ(0) exp

{

λ

∫ z

0

Ft(x)−Ft(0)

x
dx

}

, z ∈ [0, 1] .

If Pǫ(0) = 0, then let m be the smallest positive integer such that P ∗
ǫ (0) 6= 0,

where P ∗
ǫ (z) = Pǫ(z)/zm. It is easily seen that P ∗

ǫ (z) satisfies (2.7) and thus

admits the representation (2.11). This leads to (2.6) with C = P ∗
ǫ (0) = P

(m)
ǫ (0).
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A process (Zn, n∈Z) has the property of (forward) linear regression if

for any n ∈ Z,

(2.12) E(Zn |Zn−1) = a + bZn−1 .

Aly and Bouzar (2005) showed that F -INAR(1) processes do possess this prop-

erty. This is not true in general for F -INMA(1) models. In fact the following re-

sult gives a characterization of those F -INMA(1) processes that possess the prop-

erty of linear regression. Recall that F -stable distributions (see van Harn et al.,

1982) have a pgf of the form

(2.13) P (z) = exp
{

−λ A(z)γ
}

, λ > 0, |z| ≤ 1 ,

where γ, called the exponent of the distribution, must satisfy 0 < γ ≤ δF .

F -stable distributions are F -self-decomposable (see (1.12)).

Theorem 2.2. Assume that the distribution (hn, n ≥ 0) of (1.4)–(1.5)

satisfies

(2.14)
∞
∑

n=2

hn n lnn < ∞ .

Let (Xn, n∈Z) be an F -INMA(1) process such that 0 < Pǫ(0) < 1 and µǫ =

P ′
ǫ(1) < ∞. Then (Xn, n∈Z) has the property of linear regression if and only if

ǫn has an F -stable distribution with exponent δF , and in this case

(2.15) E(Xn |Xn−1) = µǫ +
ηδF

1 + ηδF
Xn−1 .

Proof: Assume that (2.12) holds for some real numbers a and b. By (2.4)

(for k = 2), the joint pgf of (Xn−1, Xn), n ∈ Z, is

Φ2(z1, z2) = Pǫ(z2)Pǫ

(

Ft(z1)
)

Pǫ

(

z1Ft(z2)
)

, t =− ln η .

Differentiating Φ2 with respect to z2 and then setting z2 =1 and z1 = z, we obtain

(2.16) E
(

Xn zXn−1
)

= Pǫ

(

Ft(z)
)

[

P ′
ǫ(1)Pǫ(z) + F ′

t(1) zP ′
ǫ(z)

]

, n ∈ Z .

By (2.12), we have for any n ∈ Z,

(2.17)
E(Xn zXn−1) = E

(

zXn−1 E(Xn |Xn−1)
)

= b zE
(

Xn−1zXn−1−1
)

+ aE(zXn−1) .

Note that E(Xn−1zXn−1−1) = P ′(z), where P (z) is the pgf of Xn−1. It follows by

(2.17) that E(Xn zXn−1) = aP (z) + bzP ′(z) which, combined with (2.3), implies

(2.18)
E(XnzXn−1) = aPǫ

(

Ft(z)
)

Pǫ(z)

+ b z
[

F ′
t(z)P ′

ǫ

(

Ft(z)
)

Pǫ(z) + P ′
ǫ(z)Pǫ

(

Ft(z)
)

]

.
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Letting Q(z) = P ′
ǫ(z)/Pǫ(z) and noting, by (1.8), F ′

t(1) = ηδF , it follows by (2.16)

and (2.18) that

(2.19) P ′
ǫ(1) + ηδF z Q(z) = a + bz

[

F ′
t(z)Q

(

Ft(z)
)

+ Q(z)
]

.

Setting z = 0 and z = 1 in (2.19) (recall Q(1) = P ′
ǫ(1) 6= 0), we deduce that

a = P ′
ǫ(1) and b = ηδF/(ηδF +1). Therefore, (2.19) reduces to

F ′
t(z)Q

(

Ft(z)
)

= ηδF Q(z) ,

or, by (1.7),

Q(z) = η−δF
U
(

Ft(z)
)

U(z)
Q
(

Ft(z)
)

.

The additivity property Ft(Fjt(z)) = F(j+1)t(z) and an induction argument yield

for any n ≥ 1,

(2.20) Q(z) = enδF t U
(

Fnt(z)
)

U(z)
Q
(

Fnt(z)
)

.

From the semigroup properties (1.2), (1.8), and (1.9) we have

lim
n→∞

Fnt(z) = 1 , lim
n→∞

U
(

Fnt(z)
)

Fnt(z)−1
= U ′(1) = −δF , lim

n→∞

Fnt(z)−1

Fnt(0)−1
= 1−B(z) .

Moreover, (2.14) implies (see van Harn et al., 1982)

lim
n→∞

enδF t
(

Fnt(0)−1
)

= −1 .

By letting n → ∞ in (2.20), we obtain

(2.21) Q(z) =
P ′

ǫ(z)

Pǫ(z)
= δF Q(1)

1−B(z)

U(z)
.

Since (by (1.6) and (1.10)) 1/U(z) =−A′(z)/A(z) and 1−B(z) = A(z)δF , it fol-

lows from (2.21)

lnPǫ(z) = −δF Q(1)

∫ z

1
A′(x)A(z)δF−1 dx = −δF Q(1)A(z)δF .

This proves the necessary part. To prove sufficiency, assume that Pǫ(z) =

exp
{

−λ A(z)δF
}

for some λ > 0. Since by (1.9) Pǫ(z) = exp(B(z)−1), assump-

tion (2.14), which is equivalent to B′(1) <∞ (see Athreya and Ney (1972), Chap-

ter 3, or van Harn et al. (1982), Remark 7.3), implies µǫ = E(ǫn) <∞, and thus

E(Xn) < ∞. We have for any n ∈ Z

E(Xn |Xn−1) = E

(

E
(

Xn |ǫn−1, ǫn−2,
(

Yi,n−1, Yi,n−2, i≥ 1
)

)
∣

∣

∣
Xn−1

)

and, by independence and (2.2),

E
(

Xn |ǫn−1, ǫn−2,
(

Yi,n−1, Yi,n−2, i≥ 1
)

)

= µǫ + ηδF ǫn−1 .
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Therefore,

(2.22) E(Xn |Xn−1) = µǫ + ηδF E(ǫn−1 |Xn−1) .

The joint pgf g(z1, z2) = E(zǫn

1 zXn

2 ) of (ǫn, Xn) is independent of n and is given

by

(2.23) g(z1, z2) = Pǫ(z1z2)Pǫ

(

Ft(z2)
)

.

By (2.3) and (1.7), the pgf P (z) of Xn is

(2.24) P (z) = exp
{

−λ
(

A
(

Ft(z)
)δF + A(z)δF

)}

= exp
{

−λ
(

1+ηδF
)

A(z)δF

}

.

Moreover,

(2.25)
d

dz1
g(z1, z2)

∣

∣

∣

∣

z1=1, z2=z

= E(ǫnzXn) =
∞
∑

k=0

zk E
(

ǫn |Xn = k
)

pk ,

where (pk, k ≥ 0) is the distribution of Xn. By (2.23),

d

dz1
g(z1, z2) = z2 Pǫ

(

Ft(z2)
)

P ′
ǫ(z1z2) .

Direct calculations, combined with (1.7) and the equation A′(z)/A(z) = −1/U(z)

(from (1.6)), yield

d

dz1
g(z1, z2)

∣

∣

∣

∣

z1=1, z2=z

= λ δF
zA(z)δF

U(z)
exp
{

−λ
(

1+ηδF
)

A(z)δF

}

.

We deduce (in view of (2.24))

(2.26)
d

dz1
g(z1, z2)

∣

∣

∣

∣

z1=1, z2=z

=
(

1+ηδF
)−1

zP ′(z) =
(

1+ηδF
)−1

∞
∑

k=0

k pk zk .

Since P (z) is infinitely divisible and p1 = P ′(0) = λ δF e−λ > 0, it follows by

Corollary 8.3, p. 51, in Steutel and van Harn (2004) that pk > 0 for all k ≥ 0.

Uniqueness of the power series coefficients in (2.25) and (2.26) implies that for

any n ∈ Z

(2.27) E(ǫn |Xn) = (1+ ηδF )−1Xn .

Equation (2.15) follows then from (2.22) and (2.27).

van Harn et al. (1982) (see also Zhu and Joe, 2003) give some rich exam-

ples of continuous composition semigroups of pgf’s from which one can gener-

ate F -INMA(1) processes. We mention the parameterized family of semigroups
(

F (θ), θ ∈ [0, 1)
)

described by

(2.28) F
(θ)
t (z) = 1 −

θ e−θt (1− z)

θ + θ (1− e−θt)(1− z)
, t ≥ 0, |z| ≤ 1, θ = 1− θ .
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In this case we have δF (θ) = θ, U (θ)(z) = (1− z)(1− θz) and A(θ)(z) =
(

1−z
1−θz

)
1
θ .

We note that for θ = 0, F (θ) corresponds to the standard semigroup F
(0)
t (z) =

1− e−t + e−tz and ⊙F (0) is the binomial thinning operator of Steutel and van

Harn (1979) (see (1.1)).

For the family of semigroups
(

F (θ), θ ∈ [0, 1)
)

of (2.28), the pgf Pǫ(z) of

(2.6) is shown to be (via analytic continuation):

(2.29) Pǫ(z) =











zm e−λ(1−z), if θ = 0 (λ > 0) ,

zm

(

θ

1− θz

)r

, if 0 < θ < 1 (r > 0) ,

for some nonnegative integer m. Therefore, by Theorem 2.1, for time reversibility

for an F (0)-INMA(1) (resp. F (θ)-INMA(1), 0 < θ < 1) to hold it is necessary that

ǫn
d
= ǫ + m where ǫ has a Poisson distribution with some mean λ > 0 (resp.

a negative binomial distribution with probability of success θ). In this case the

converse holds as well, as shown by Al-Osh and Alzaid (1988), for θ = 0, and by

Aly and Bouzar (1994), for 0 < θ < 1.

The family of semigroups
(

F (θ), θ ∈ [0, 1)
)

of (2.28) necessarily satisfies con-

dition (2.14) (since hn = 0 for n≥ 3). By Theorem 2.2, an F (θ)-INMA(1) process

has the property of (forward) linear regression if and only if its innovation se-

quence has a Poisson geometric distribution with pgf

(2.30) Pǫ(z) = exp

{

−λ
1− z

1− θz

}

(λ > 0) .

The version of Theorem 2.2 for the semigroup F (θ) was established Al-Osh and

Alzaid (1988) (for θ = 0) and by Aly and Bouzar (1994) (for 0 < θ < 1).

3. F -INMA(1) PROCESSES WITH A DISCRETE STABLE INNO-

VATION SEQUENCE

Aly and Bouzar (2005) introduced a stationary F -INAR(1) process with

an F -stable marginal. In this section, we construct its F -INMA(1) counterpart.

Let (Xn, n∈Z) be an F -INMA(1) process such that ǫn has the F -stable

distribution with exponent γ, 0 < γ ≤ δF , and pgf (2.13). Then by (1.3), (2.3),

and (2.13), the marginal distribution of (Xn, n∈Z) is F -stable with the same

exponent and with pgf

(3.1) P (z) = exp
{

−λ(1+ ηγ)A(z)γ
}

, λ > 0, |z| ≤ 1 .
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The joint pgf of (X1, X2, ..., Xk) is (by way of (2.4) and (1.3))

(3.2) Φk(z1, z2, ..., zk) = exp

{

−λ

(

ηγA(z1)
γ +

k
∑

i=2

A
(

zi−1Ft(zi)
)γ

+A(zk)
γ

)

}

,

where t = − ln η.

By van Harn et al. (1982), an F -stable distribution with exponent γ has a

finite mean if and only if γ = δF and B′(1) < ∞ (or, equivalently, (2.14) holds).

Therefore, a finite mean F -INMA(1) process with an F -stable marginal distribu-

tion exists only if γ = δF and B′(1) <∞. In this case µǫ = λB′(1). If we further

assume that B′′(1) < ∞, the variance of ǫn is σ2
ǫ = λ(B′′(1)+B′(1)). The mean

and variance of Xn as well as the correlation coefficient of (Xn, Xn+1), follow

from Proposition 2.1, under the further assumption
∑∞

n=2 n(n −1)hn < ∞.

The branching process-like interpretation of an F -INMA(1) process (de-

scribed in Section 2) leads naturally to consider the variable Tk =
∑k

i=1 Xi.

Tk represents the total number of elements that were present in the system

during the time interval [0, k]. It can be easily seen that the pgf of Tk is

PTk
(z) = Φ(z, z, ..., z) (see (2.4)), or

(3.3) PTk
(z) = exp

{

−λ
[

(1+ηγ)
(

A(z)
)γ

+(k−1)A
(

zFt(z)
)γ
]

}

, t =− ln η .

It is easily shown from (3.3) that Tk
d
= Y1+Z1, where Y1 is F -stable with exponent γ,

Z1 is an F -stable compounding (with exponent γ) of the distribution with pgf

zFt(z), and Y1 and Z1 are independent.

Considering the family of semigroups
(

F (θ), θ ∈ [0,1)
)

of (2.28), we note that

the Poisson INMA(1) process of McKenzie (1988) is the finite mean F (0)-INMA(1)

process with an F (0)-stable marginal. The Poisson geometric INMA(1) process of

Aly and Bouzar (1994) (with pgf (2.30)) arises as the finite mean F (θ)-INMA(1)

process with an F (θ)-stable marginal.

4. F -INMA(1) PROCESSES WITH A DISCRETE

MITTAG–LEFFLER INNOVATION SEQUENCE

A distribution on Z+ is said to have an F -Mittag–Leffler (or F -ML ) dis-

tribution with exponent γ, 0 < γ ≤ δF , if its pgf is of the form

(4.1) P (z) =
(

1 + c A(z)γ
)−1

for some c > 0 .

F -ML distributions are F -self-decomposable (van Harn and Steutel, 1993). Aly

and Bouzar (2005) presented a stationary F -INAR(1) process with an F -ML

marginal.
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If (Xn, n∈Z) is an F -INMA(1) process such that ǫn has the F -ML distri-

bution of (4.1), then Xn admits the following representation:

(4.2) Xn
d
=

Y +Z
∑

i=1

Wi ,

where the Wi’s are iid Z+-valued rv’s with common pgf B(z) of (1.9)–(1.10), and

Y and Z are independent Z+-valued rv’s (also independent of the Wi’s) and with

respective pgf’s

(4.3) PY (z) =
(

1 + c(1−z)γ/δF

)−1
and PZ(z) =

(

1 + c ηγ(1−z)γ/δF

)−1
.

This is shown as follows. Let P (z) be the pgf of
∑Y +Z

i=1 Wi. By (1.10) and (4.3),

P (z) = PY +Z

(

B(z)
)

= PY

(

B(z)
)

PZ

(

B(z)
)

=
(

1+ cA(z)γ
)−1(

1+ c ηγA(z)γ
)−1

,

or, P (z) = Pǫ(z)Pǫ(Ft(z)), t =− ln η. The representation (4.2) follows then from

(2.3).

The joint pgf of (X1, X2, ..., Xk) is (by way of (2.4) and (1.3))

(4.4)

Φk(z1, ..., zk) =
(

1 + c ηγA(z1)
γ
)−1

×

[

k
∏

i=2

(

1 + c A
(

zi−1Ft(zi)
)γ
)−1

]

(

1 + c ηγA(zk)
γ
)−1

,

where t = − ln η.

Similarly to the discrete stable case of Section 3, an F -ML distribution with

exponent γ has a finite mean if and only if γ = δF and B′(1) <∞ (or, equivalently,

(2.14) holds). Therefore, a finite mean F -INMA(1) process with an F -ML inno-

vation exists only if γ = δF and B′(1) <∞. In this case µǫ = c B′(1). If we further

assume that B′′(1) <∞, the variance of ǫn is σ2
ǫ = c

(

B′′(1) + c B′(1)2 + B′(1)
)

.

The mean and variance of Xn as well as the correlation coefficient of (Xn, Xn+1)

follow from Proposition 2.1, under the further assumption
∑∞

n=2 n(n−1)hn < ∞.

We note that when γ = δF , the distributions of the rv’s Y and Z of (4.2) and

(4.3) simplify respectively to a Geometric
(

c
1+c

)

and a Geometric
( cηγ

1+cηγ

)

.

The total number of elements, Tk =
∑k

i=1 Xi, that were present in the

system during the time interval [0, k] for an F -INMA(1) process with an F -ML

marginal has pgf

(4.5) PTk
(z) =

[

(

1+cA(z)γ
)(

1+c ηγA(z)γ
)

]−1(

1+c A
(

zFt(z)
)γ
)1−k

, t=− ln η .

By (4.5), Tk admits the representation Tk
d
= Y2 + W2 + Z2, where Y2, W2 and Z2

are independent, Y2 and W2 have F -ML distributions with exponent γ, and Z2 is
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a compounding of the distribution with pgf zFt(z) by the (k−1)-th convolution

of the distribution of ǫn.

Following McKenzie (1986), an F -INMA(1) process with an F -ML marginal

distribution can be obtained by modifying (2.1) as follows:

(4.6) Xn = η ⊙ ǫn + Bn ǫn−1 ,

where 0 < η < 1, (ǫn, n∈Z) is a sequence of iid rv’s with a common F -ML distri-

bution with exponent 0 < γ ≤ δF , (Bn, n∈Z) is a sequence of iid Bernoulli(1−ηγ)

rv’s, and (ǫn, n∈Z) and (Bn, n∈Z) are independent. By (4.6), (4.1), and (1.7),

the pgf P (z) of Xn is shown to be

P (z) =
(

1 + c ηγA(z)γ
)−1
(

ηγ + (1−ηγ)
(

1+ c A(z)γ
)−1
)

=
(

1+ c A(z)γ
)−1

.

The finite mean F (0)-ML innovation sequence corresponding to the F (0)-

INMA(1) process of (2.1) (with F (0) as in (2.28)) reduces to a geometric innovation

with probability of success 1/(1+ c). Likewise, for the semigroup F (θ), 0 < θ < 1,

of (2.28), the finite mean F (θ)-ML innovation process for an F (θ)-INMA(1) process

admits the representation ǫn
d
= In ǫ′n where (In, n∈Z) and (ǫ′n, n∈Z) are indepen-

dent sequences of Z+-valued iid rv’s, In is Bernoulli(c/(1+c)), and ǫ′n has a (trun-

cated at zero) geometric distribution with probability of success θ/(1+c). Finally,

the geometric INMA(1) process of McKenzie (1986) corresponds to the modified

finite mean (γ = 1) F -INMA(1) process of (4.6) with an F (0)-ML marginal dis-

tribution.

5. F -INMA(1) PROCESSES WITH A COMPOUND DISCRETE

LINNIK INNOVATION SEQUENCE

A Z+-valued rv X is said to have an F -compound discrete Linnik distribu-

tion if its pgf has the form

(5.1) P (z) =
(

1 + λ A(z)γ
)−r

,

for some 0 < γ ≤ δF , λ > 0, and r > 0. van Harn and Steutel (1993) showed that

F -compound discrete Linnik distributions are F -self-decomposable and arise as

solutions to stability equations for Z+-valued processes with stationary indepen-

dent increments. Aly and Bouzar (2005) constructed a Z+-valued stationary

INAR(1) process with an F -compound discrete Linnik distribution. Note the

case r = 1 corresponds to the F -ML distribution of the previous section.

If (Xn, n∈Z) is an F -INMA(1) process such that ǫn has the F -compound

discrete Linnik distribution, then the distribution of Xn has the following repre-
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sentation:

(5.2) Xn
d
=

Y +Z
∑

i=1

Wi ,

where the Wi’s are iid with common pgf B(z), and Y and Z are Z+-valued

independent rv’s (also independent of the Wi’s) with respective pgf’s

(5.3) PY (z) =
(

1 + c(1−z)−γ/δF

)−r
and PZ(z) =

(

1 + c ηγ(1−z)−γ/δF

)−r
.

The proof of (5.2)–(5.3) is identical to the one given in the case of the F -INMA(1)

process with an F -ML innovation (see (4.2)–(4.3) of the previous section ). The

details are omitted.

Formulas for the joint pgf of (X1, X2, ..., Xk) as well as the pgf of Tk =
∑k

i=1Xi can be derived similarly to the F -ML case of the previous section.

Furthermore, a finite mean F -INMA(1) process with a compound dis-

crete Linnik innovation sequence exists only if γ = δF and B′(1) <∞. In this

case µǫ = rc B′(1). If we further assume then B′′(1) <∞, the variance of ǫn is

σ2
ǫ = rc

(

B′′(1) + cB′(1)2 + B′(1)
)

. The mean and variance of Xn as well as

the correlation coefficient of (Xn, Xn+1) follow from Proposition 2.1, under the

further assumption
∑∞

n=2 n(n−1)hn < ∞. We note that when γ = δF , the dis-

tributions of the rv’s Y and Z of (5.2) simplify respectively to a negative binomial
(

c
1+c , r

)

and a negative binomial
( cηγ

1+cηγ , r
)

.

6. F -INMA(q) PROCESSES

Definition 6.1. A sequence (Xn, n∈Z) of Z+-valued rv’s is said to be

an F -INMA(q) process if for any n ∈ Z,

(6.1) Xn = ǫn +

q
∑

i=1

ηi ⊙F ǫn−i ,

where (ǫn, n∈Z) is a sequence of iid, Z+-valued rv’s, and 0<ηi <1, i=1, 2, ..., q.

The generalized multiplications ηi ⊙F ǫn−i, i = 1, ..., q, in (6.1) are per-

formed independently. More precisely, we assume the existence of q indepen-

dent arrays
(

Y
(i)
j,n , j ≥ 0, n∈Z

)

, i = 1, 2, ..., q, of iid Z+-valued rv’s, independent

of (ǫn, n∈Z), such that for each i = 1, 2, ..., q, the array’s common pgf is Fti(z),

ti =− log ηi, and

(6.2) ηi ⊙F ǫn−i
d
=

ǫn−i
∑

j=1

Y
(i)
j,n−j .
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Equation (6.2) can be interpreted as follows. Subsequent to time n, each

element of ǫn has q nonoverlapping reproduction periods: (n + i, n + i +1],

i = 0, 1, 2, ..., q−1 with the distribution of offspring having pgf Fti(z) over

(n + i, n + i + 1]. Each ηi ⊙F ǫn represents then the total number of offspring

brought into the system by all ǫn elements. The offspring survive one unit of

time and are replaced at time n + 1 by the offspring from the next reproduction

period. The offspring of ǫn are phased out of the system after q units of time.

It is important to note that for all n ∈ Z and all i, j = 1..., q, i 6= j, ηi ⊙ ǫn and

ηj ⊙ ǫn are independent, given ǫn.

The process (Xn, n ∈ Z) of (6.1) is necessarily stationary and its marginal

distribution has pgf

(6.3) PX(z) = Pǫ(z)

q
∏

i=1

Pǫ

[

Fti(z)
]

,

where ti =− log ηi, i = 1, ..., q.

Distributional properties of an F -INMA(q) process are given in the follow-

ing proposition. The proof is similar to the one given in the case q = 1 in section 2

(Proposition 2.1). The details are omitted.

Proposition 6.1. Let (Xn, n∈Z) be an F-INMA(q) process. Assume fur-

ther that the mean µǫ and the variance σ2
ǫ of ǫn are finite and that

∑∞
n=2 n(n−1)hn

< ∞. Then (with η0 = 1)

(1) E(Xn) = µǫ

q
∑

i=0

ηδF

i ;

(2) Var(Xn) = σ2
ǫ

(

q
∑

i=0

ηδF

i

)

+ µǫ

(

1 − U ′′(1)/U ′(1)
)

(

q
∑

i=0

ηδF

i

(

1− ηδF

i

)

)

;

(3) the ACRF of (Xn, n∈Z) at lag k is

(6.4) ρ(k) =







































[(

q−k
∑

i=0

ηδF

i ηδF

i+k

)

σ2
ǫ

]

/

[(

q
∑

i=0

ηi δF

)

σ2
ǫ

+ µǫ

(

1−
U ′′(1)

U ′(1)

)

(

q
∑

i=0

ηδF

i

(

1− ηδF

i

)

)]

, 0 ≤ k ≤ q ,

0, k > q .

It is clear from (6.4) that an F -INMA(q) process has the same correlation

structure as the standard MA(q) processes.

An F -INMA(q) process with an F -stable innovation sequence has finite

mean only if γ = δF and B′(1) < ∞. In addition, if B′′(1) < ∞, then ǫn has
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finite mean and finite variance (recall, µǫ = λB′(1) and σ2
ǫ = λ(B′′(1) + B′(1))).

The mean and variance of Xn as well as the correlation coefficient of (Xn, Xn+1),

follow from Proposition 6.1, under the further assumption
∑∞

n=2 n(n−1)hn <∞.

If (Xn, n∈Z) is an F -INMA(q) process such that ǫn has an F -stable dis-

tribution with pgf given by (2.13), then by (6.3) and (1.7) its marginal is also

F -stable with pgf

(6.5) PX(z) = exp

{

−λ

(

q
∑

i=0

ηγ
i

)

(

A(z)
)γ

}

, η0 = 1 .

We note that the Poisson INMA(q) process of McKenzie (1988) and the

Poisson Geometric INMA(q) process of Aly and Bouzar (1994) are special cases

of F -INMA(q) processes with a stable marginal for the semigroups F (0) and F (θ)

(0 < θ < 1) of (2.28), respectively.

If (Xn, n∈Z) is an F -INMA(q) process such that ǫn has the F -ML distri-

bution of (4.1), then Xn admits the following representation:

(6.6) Xn
d
=

Y +Z1+···+Zq−1
∑

i=1

Wi ,

where the Wi’s are iid Z+-valued rv’s with common pgf B(z) of (1.9)–(1.10), and

Y and Zi, i = 1, ..., q−1, are independent Z+-valued rv’s (also independent of the

Wi’s) and with respective pgf’s

(6.7)

PY (z) =
(

1 + c(1− z)γ/δF

)−1
,

PZi
(z) =

(

1 + c ηγ
i (1− z)γ/δF

)−1
, i = 1, ..., q −1 .

F -INMA(q) processes with compound discrete Linnik innovation sequences

can be constructed in similar fashion. The details are omitted.

We note next the existence of an F -INMA process of infinite order

(F -INMA(∞)). Let Xn, n∈Z be a stationary F -INAR(1) process, i.e.,

(6.8) Xn = η ⊙F Xn−1 + ǫn , n ∈ Z ,

for some innovation sequence (ǫn, n∈Z) and some 0 < η < 1. Then (see Aly and

Bouzar, 2005) Xn, n∈Z admits the following F -INMA(∞) representation:

(6.9) Xn =
∞
∑

i=0

ηi⊙F ǫn−i , n ∈ Z .

We conclude this section by mentioning that classes of F -INMA(q) proces-

ses with an autocorrelation structure different from (6.4) may result by assuming
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some form of dependence between the generalized multiplications in equation

(6.1). Al-Osh and Alzaid (1988) and Brännäs and Hall (2001) proposed several

INMA(q) processes where dependence between the binomial thinnings in the

governing equation was allowed.

7. F -INARMA(1, q) PROCESSES

In this section the F -INAR(1) process of Aly and Bouzar (2005) is com-

bined with the F -INMA(q) process of the previous section to obtain a mixed

process. Let (ǫn, n∈Z) be a sequence of iid rv’s and define the F -INAR(1)

process (Yn, n∈Z) by

(7.1) Yn = η ⊙F Yn−1 + ǫn ,

The F -INARMA(1, q) process is defined as

(7.2) Xn = Yn−q +

q
∑

i=1

ηi⊙F ǫn+1−i .

Note that both the AR(1) and the MA(q) components in (7.1)–(7.2) share

the same innovation sequence (ǫn, n∈Z). Moreover, the generalized multiplica-

tions ηi ⊙F ǫn+1−i, i = 1, ..., q, in (7.2) are performed independently. A repre-

sentation of (Xn, n∈Z) of (7.1)–(7.2) in terms of sequences of iid rv’s can be

easily obtained from the representations of its AR(1) and MA(q) components.

The details are left out. If (Yn, n ∈ Z) is stationary (see Aly and Bouzar (2005)

for sufficient conditions), then (Xn, n∈Z) is also stationary. We will assume

throughout the section that (Yn, n∈Z) is stationary. The joint pgf of higher or-

der distributions of (Xn, n∈Z) can be expressed in terms of the pgf’s PY (z) of Yn,

Pǫ(z) of ǫn, Ft(z) (t =− ln η), and Fti(z) (ti =− ln ηi, i = 1, ..., q. For example,

the joint pgf of (Xn−1, Xn) is shown to be

(7.3) φ2(z1, z2) = PY

[

z1Ft(z)
]

Pǫ

[

Ft1(z2)
]

q
∏

i=1

Pǫ

[

Fti(z1)Fti+1(z2)
]

,

where Ftq+1(z2) = z2.

Assume that Yn and ǫn have finite means (µǫ and µ, respectively) and finite

variances (σ2
ǫ and σ2 respectively). Assume further that

∑∞
n=2 n(n −1)hn < ∞.

It can be shown that

(7.4) Cov
(

η ⊙F ǫn, η′⊙F ǫn

)

= (η η′)δF σ2
ǫ , η, η′ ∈ (0, 1) ,

(7.5) Cov(Yn−k, Yn) = ηkδF σ2 ,
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and

(7.6) Yn−q
d
= ηk ⊙F Yn−q−k +

k−1
∑

i=0

ηi⊙F ǫn−q−i .

By (7.4)–(7.6) and the independence assumptions we obtain the ACRF at lag k

of (Xn, n∈Z):

(7.7)

ρ(k) =











































ηkδF σ2
Y0

+ η(k−q)δF

(

∑q
l=1

(

ηl−1 ηl

)δF

)

σ2
ǫ

σ2
Y0

+
(

∑q
k=1 η2δF

k

)

σ2
ǫ + µǫ

(

∑q
k=1 ηδF

k

(

1− ηδF

k

)

)

(

1−U ′′(1)/U ′(1)
)

, k > q

ηkδF σ2
Y0

+
(

∑q−k
l=1

(

ηl ηl ηk

)δF + η(k−q)δF
∑q

l=q−k+1

(

ηl−1 ηl

)δF

)

σ2
ǫ

σ2
Y0

+
(

∑q
k=1 η2δF

k

)

σ2
ǫ + µǫ

(

∑q
k=1 ηδF

k

(

1− ηδF

k

)

)

(

1−U ′′(1)/U ′(1)
)

, k ≤ q

where t = ln η and ti = ln ηi, i = 1, 2, ..., q.

Let (Xn, n∈Z) be a F -INARMA(1, q) process. Assume that its F -INAR(1)

component (Yn, n ∈ Z) of (7.1) is stationary with an F -stable marginal distri-

bution with pgf (2.13). Then the innovation sequence (ǫn, n∈Z) has also an

F -stable marginal distribution with pgf (see Aly and Bouzar, 2005)

Pǫ(z) = exp
[

−λ (1− ηγ)A(z)γ
]

.

It follows that the associated F -INMA(q) component in (7.2) has also an F -stable

marginal with pgf

P1(z) = exp

{

−λ (1− ηγ)

(

q
∑

i=1

ηγ
i

)

(

A(z)
)γ

}

.

Therefore, (Xn, n∈Z) is stationary with an F -stable marginal distribution with

pgf

(7.8) PX(z) = exp

{

−λ

[

1 + (1− ηγ)

(

q
∑

i=1

ηγ
i

)]

(

A(z)
)γ

}

.

If (Xn, n∈Z) is an F -INARMA(1, q) process such that its F -INAR(1) com-

ponent (Yn, n∈Z) has an F -ML marginal (with pgf (4.1)), then the innovation

sequence (ǫn, n∈Z) admits the representation (see Aly and Bouzar, 2005)

(7.9) ǫn = In En ,

where (In, n∈Z) and (En, n∈Z) are independent sequences of iid rv’s such that

In is Bernoulli(1− ηγ) and En has the same distribution as Yn. It follows from

(4.1), (7.2) and (7.9) that (Xn, n∈Z) is stationary with marginal pgf

(7.10) PX(z) =
1

1+ dA(z)γ

q
∏

i=1

(

ηγ +
1− ηγ

1+ dηγ
i A(z)γ

)

.
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8. CONCLUSION

We have presented a class of integer-valued time series that can be used to

model count data. The models introduced in this paper may be seen as exten-

sions of the classical branching processes of Galton–Watson–Bienaymé. Various

distributional and regression properties were shown to be similar to those of the

standard real-valued ARMA processes. Models with specific marginals such as

stable distributions and Mittag–Leffler distributions were discussed in some detail

and some examples were developed.
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