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1. INTRODUCTION

Applications of change-point models are given in many areas of interest.

For example, medical researchers usually have interest to know if a new therapy

of leukemia produces a departure from the usual experience of a constant relapse

rate after the induction of a remission (see for example, Matthews and Farewell

[9], Matthews et al. [10] or Henderson and Matthews [6]). Bayesian analysis for

change-point models has been introduced by many authors. A Bayesian analysis

for a homogeneous Poisson process with a change-point has been introduced by

Raftery and Akman [11]. A Bayesian interval estimator has been derived for

a change-point in a Poisson process by West and Ogden [15] and a Bayesian

approach for lifetime data with a constant hazard function and censored data in

the presence of a change point by Achcar and Bolfarine [1]. Recently Loschi and

Cruz [7] presented a Bayesian approach to the multiple change point identification

problem in Poisson data.

In this paper, we consider the presence of two or more change-point for life-

time with constant hazards, generalizing previous work (see for example, Achcar

and Bolfarine [1]).

Consider a homogeneous Poisson process with one or more change-points

at unknown times. With a single change-point, the rate of occurrence at time s

is given by

(1.1) λ(s) =

{
λ1, 0≤ s≤ τ ,

λ2, s > τ .

The analysis of the Poisson process is based on the counting data in the

period [0, T ], where N(T ) = n is the number of events that occur at the ordered

times t1, t2, ..., tn.

With two change-points at unknown times τ1 and τ2 the rate of occurrences

are given by

(1.2) λ(s) =





λ1, 0 < s≤ τ1 ,

λ2, τ1 < s≤ τ2 ,

λ3, τ2 < s≤ T .

We also could have homogeneous Poisson processes with more than two

change-points.

The use of Bayesian methods has been considered by many authors for

homogeneous or nonhomogeneous Poisson processes in the presence of one change-

point (see for example, Raftery and Akman [11] or Ruggeri and Sivaganesan [13]).

Observe that times between failures for a homogeneous Poisson process

follow an exponential distribution.
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In this paper, we present a Bayesian analysis for interfailure data with

constant hazard function assuming more than one change-point and using MCMC

methods (see for example [4]).

The paper is organized as follows: in Section 2, we introduce the likelihood

function; in Section 3, we introduce a Bayesian analysis for the model, in Section 4,

we present some consideration on model selection; in Section 5, we introduce an

example with real data and finally, in Section 6, we present some conclusions.

2. THE LIKELIHOOD FUNCTION

Let xi = ti− ti−1, i = 1, 2, ..., n where t0 = 0, be the interfailure times and

assume a single-change-point model (1.1). In this way, we observe that xi has an

exponential distribution with parameter λ1 for
∑i

k=1 xk ≤ τ and an exponential

distribution with parameter λ2 for
∑i

k=1 xk > τ , i = 1, 2, ..., n. Assuming that

the change-point τ is taking the values ti, the likelihood function for λ1, λ2 and τ

is given by

(2.1) L(λ1, λ2 , τ) =

N(T )∏

i=1

(λ1e−λ1xi)ǫi (λ2 e−λ2xi)1−ǫi

where ǫi = 1 if
∑i

j=1 xj ≤ τ and ǫi = 0 if
∑i

j=1 xj ≥ τ . That is,

(2.2) L(λ1, λ2 , τ) = λ
N(τ)
1 e−λ1τ λ

N(T )−N(τ)
2 e−λ2(T−τ)

where N(τ) =
∑N(T )

i=1 ǫi, N(T ) = n, τ =
∑N(T )

i=1 xi ǫi and T −τ =
∑N(T )

i=1 xi (1−ǫi).

Let us assume a two-change-point model (1.2) with the change-points τ1

and τ2 taking discrete values τ1 = ti, τ2 = tj (ti < tj , i 6= j) with k1 = N(τ1) and

k2 = N(τ2). The likelihood function for λ1, λ2, λ3, τ1 and τ2 is given by

(2.3) L(λ1, λ2, λ3, τ1, τ2) =

n∏

i=1

(λ1e−λ1xi)ǫ1,i (λ2e−λ2xi)ǫ2,i (λ3e−λ3xi)ǫ3,i

where

ǫ1,i =

{
1 if

∑i
k=1 xk ≤ τ1 ,

0 if
∑i

k=1 xk > τ1 ,
(2.4)

ǫ2,i =

{
1 if τ1 <

∑j
k=i+1 xk ≤ τ2 ,

0 if
∑j

k=i+1 xk ≤ τ1 or
∑j

k=i+1 xk > τ2 ,
(2.5)

ǫ3,i =

{
1 if τ2 <

∑n
k=j+1 xk ,

0 if τ2 ≥
∑n

k=j+1 xk .
(2.6)
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That is,

L(λ1, λ2, λ3, τ1, τ2) =(2.7)

= λ
N(τ1)
1 e−λ1τ1 λ

N(τ2)−N(τ1)
2 e−λ2(τ2−τ1) λ

N(T )−N(τ2)
3 e−λ3(T−τ2)

where
∑N(T )

i=1 ǫ1,i = N(τ1),
∑N(T )

i=1 ǫ2,i = N(τ2)−N(τ1),
∑N(T )

i=1 ǫ3,i = N(T )−N(τ2)

and N(T ) = n. Observe that τ1 =
∑N(T )n

i=1 xi ǫ1,i, τ2 − τ1 =
∑N(T )n

i=1 xi ǫ2,i and

T − τ2 =
∑N(T )n

i=1 xi ǫ3,i.

In the same way, we could generalize for more than two change-points.

3. A BAYESIAN ANALYSIS

Assume the change-point model (1.1) with a single change-point τ .

Assume that τ is independent from λ1 and λ2, and also that λ1 is condi-

tionally independent from λ2, given τ = ti. Considering a noninformative prior

distribution for λ1 and λ2 given τ (see for example, Box and Tiao [2]), we have

(3.1) π
(
λ1, λ2, τ = ti

)
= π

(
λ1, λ2 | τ = ti

)
π
(
τ = ti

)
∝

1

λ1λ2
π
(
τ = ti

)

where λ1, λ2 > 0.

Assuming an uniform prior distribution π0(τ = ti) = 1/n, the joint poste-

rior distribution for λ1, λ2 and τ is given by

(3.2) π
(
λ1, λ2, τ | D

)
∝ λ

N(τ)−1
1 e−λ1τ λ

n−N(τ)−1
2 e−λ2(T−τ)

where D denotes the data set.

Observe that we are using a data dependent prior distribution for the dis-

crete change-point (see for example Achcar and Bolfarine [1]). Also observe that

the event {τ = ti} is equivalent to {N(ti) = i}, where the ti are the ordered oc-

currence epochs of failures. We also could consider an informative gamma prior

distribution for the parameters λ1 and λ2.

The marginal posterior distribution for τ is, from (3.2), given by

(3.3) π
(
τ | D

)
∝

Γ
[
N(τ)

]
Γ
[
n−N(τ)

]

τN(τ) (T − τ)n−N(τ)
.

Assuming τ = τ∗ known, the marginal posterior distribution for λ1 and λ2 are

given by

(3.4)
(i) λ1|τ

∗, D ∼ Gamma
[
N(τ∗), τ∗

]
,

(ii) λ2 |τ
∗, D ∼ Gamma

[
n−N(τ∗), T − τ∗

]
,

where Gamma[a,b] denotes a gamma distribution with mean a/b and variance a/b2.



214 J.A. Achcar, S. Loibel and M.G. Andrade

Assuming τ unknown, since the marginal posterior distribution for τ is

obtained analytically (see(3.3)), we use a mixed Gibbs sampling and Metropolis–

Hastings algorithm to generate the posterior distributions of λ1 and λ2. The

conditional posterior distributions for the Gibbs sampling algorithm are given by

(3.5)
(i) λ1|λ2, τ, D ∼ Gamma

[
N(τ), τ

]
,

(ii) λ2 |λ1, τ, D ∼ Gamma
[
n−N(τ), T − τ

]
.

Starting with initial values λ
(0)
1 and λ

(0)
2 , we follow the steps:

(i) Generate τ (i) from (3.3).

(ii) Generate λ
(i+1)
1 from π

(
λ1|λ

(i)
2 , τ (i),D

)
.

(iii) Generate λ
(i+1)
2 from π

(
λ2 |λ

(i+1)
1 , τ (i),D

)
.

We could monitor the convergence of the Gibbs samples using Gelman and

Rubin’s method that uses the analysis of variance technique to determine whether

further iterations are needed (see [5] for details).

A great simplification to get the posterior summaries of interest for the

constant hazard function model in the presence of a change-point is to use the

WinBugs software (see, Spiegelhalter et al. [14]) which requires only the specifi-

cation of the distribution for the data and prior distributions for the parameters.

Consider now, the change-point model (1.2) with two change-points τ1 and τ2

(with τ1 < τ2). The prior density for λ1, λ2, λ3, τ1 and τ2 is given by

π
(
λ1, λ2, λ3, τ1, τ2

)
=(3.6)

= π
(
λ1, λ2, λ3 | τ1 = ti, τ2 = tj

)
π0

(
τ1 = ti, τ2 = tj

)
I{ti<tj} ,

given τ1 = ti, τ2 = tj , (ti < tj , i 6= j).

Assuming τ1 and τ2 independent from λ1, λ2 and λ3, and also that λ1,

λ2 and λ3 are conditionally independent given τ1 and τ2, a noninformative joint

prior distribution for λ1, λ2, λ3 and τ1 and τ2 is given by

(3.7) π
(
λ1, λ2, λ3, τ1 = ti, τ2 = tj

)
∝

1

λ1λ2λ3
π0

(
τ1 = ti, τ2 = tj

)
I{ti<tj}

where λ1, λ2, λ3 > 0, I{ti<tj} = 1 if ti < tj and I{ti<tj} = 0 otherwise, for all i 6= j.

Assuming an uniform prior distribution for the discrete variables τ1 = ti
and τ2 = tj , where ti < tj , i, j = 1, ..., n, that is π0(τ1 = ti, τ2 = tj) = 2/n(n−1),

the joint posterior distribution for λ1, λ2, λ3, τ1 and τ2 is given by

π
(
λ1, λ2, λ3, τ1, τ2 |D

)
∝(3.8)

∝ λ
N(τ1)−1
1 e−λ1τ1 λ

N(τ2)−N(τ1)−1
2 e−λ2(τ2−τ1) λ

N(T )−N(τ2)−1
3 e−λ3(T−τ2)

where λ1, λ2, λ3 > 0 and τ1 < τ2.
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The joint marginal posterior distribution for τ1 and τ2 is given by

(3.9) π
(
τ1, τ2 |D

)
=

Γ
[
N(τ1)

]
Γ
[
N(τ2)−N(τ1)

]

τ
N(τ1)
1 (τ2− τ1)N(τ2)−N(τ1)

Γ
[
N(τ2)−N(τ1)

]

(T − τ2)N(T )−N(τ2)
.

We use the Metropolis–Hastings algorithm to generate τ1, τ2 from the joint

marginal posterior distribution (3.9) and the Gibbs sampling algorithm to gener-

ate λ1, λ2 and λ3. The conditional posterior distribution for the Gibbs sampling

algorithm are given by

λ1| λ2, λ3, τ1, τ2,D ∼ Gamma
[
N(τ1), τ1

]
,(3.10)

λ2 | λ1, λ3, τ1, τ2,D ∼ Gamma
[
N(τ2)−N(τ1), τ2− τ1

]
,(3.11)

λ3 | λ1, λ2, τ1, τ2,D ∼ Gamma
[
N(T )−N(τ2), T − τ2

]
.(3.12)

This marginalization process should be made with careful choice of the

lower and upper limits of summation as well as of the number of minimum

points between τ1 and τ2. We consider τ1 = ti for i = 1, ..., m1−1, τ2 = ti for

i = m2 +1, ..., n, where τ1 < τ2 and mj (j = 1, 2) is a positive integer such that

tmj
= τj . Note that once τ1, (τ2) is known, possible candidates of τ1, (τ2) are

limited within {t1, ..., tm1−1}, ({tm2+1, ..., tn}).

Starting with the initial values λ
(0)
1 , λ

(0)
2 and λ

(0)
3 , we follow the steps:

(i) Generate τ
(i)
1 and τ

(i)
2 from the marginal posterior distributions (3.9).

(ii) Generate λ
(i+1)
1 from π

(
λ1|λ

(i)
2 , λ

(i)
3 , τ

(i)
1 , τ

(i)
2 ,D

)
.

(iii) Generate λ
(i+1)
2 from π

(
λ2 |λ

(i+1)
1 , λ

(i)
3 , τ

(i)
1 , τ

(i)
2 ,D

)
.

(iv) Generate λ
(i+1)
3 from π

(
λ3 |λ

(i+1)
1 , λ

(i+1)
2 , τ

(i)
1 , τ

(i)
2 ,D

)
.

Observe that the choices for m1 and m2 could have been made empirically

based on a preliminary analysis of the data set (empirical Bayesian methods).

In this way, we could use plots of the accumulated number of failures against

time of occurrence to get some information on the change-point.

4. SOME CONSIDERATIONS ON MODEL SELECTION

For model selection, we could use the predictive density for the interfailure

time xi given x
∼(i) = (x1, ..., xi−1, xi+1, ..., xn). The predictive density for xi given

x
∼(i) is

(4.1) ci = f
(
xi |x∼(i)

)
=

∫
f
(
xi | θ∼

)
π
(
θ
∼
|x
∼(i)

)
dθ
∼

where π
(
θ
∼
|x
∼(i)

)
is the posterior density for a vector of parameters θ

∼
given the

data x
∼(i).
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Using the Gibbs samples, (4.1) can be approximated by its Monte Carlo

estimates,

(4.2) f̂
(
xi |x∼(i)

)
=

1

M

M∑

j=1

f
(
xi | θ∼

(j)
)

,

where θ
∼

(j) are the generated Gibbs samples, j = 1, 2, ..., M .

We can use ci = f̂
(
xi |x∼(i)

)
in model selection. In this way, we consider plots

of ci versus i (i = 1, 2, ..., n) for different models; large values of ci (in average)

indicates a better model. We could also have choosen the model such that Pl =∏n
i=1 ci(l) is maximum (l indexes models). We could also have considered (see

Raftery [12]) the marginal likelihood of the whole data set D for a model Ml

given by

(4.3) P (D|Ml) =

∫

θl

L(D|θl, Ml) π(θl |Ml) dθl

where D is the data, Ml is the model specification (the number of change points),

θl is the vector of the parameters in Ml, L(D|θ, Ml) is the likelihood function

and π(θl |Ml) is the prior.

The Bayes factor criterion prefers model M1 to model M2 if P (D|M2) <

P (D|M1). A Monte Carlo estimate for the marginal likelihood P (D|Ml) is given

by

(4.4) P̂ (D|Ml) =
1

M

M∑

j=1

L
(
D|θ

(j)
l , Ml

)

where θ
(j)
l , j = 1, 2, ..., M , could have been generated through the use of impor-

tance sampling. The simplest estimator of this type results from taking the prior

as the importance sampling function (see Raftery [12]).

Other ways to estimate the marginal likelihood P (D|Ml) are proposed by

Raftery [12].

Considering a sample from the posterior distribution, we have

(4.5) P̂ (D|Ml) =


 1

M

M∑

j=1

1

L
(
D|θ

(j)
l , Ml

)



−1

.

In this case, the importance-sampling function is the posterior distribution.

A modification of the harmonic mean estimator (4.5) is proposed by Gelfand

and Dey [3], given by

(4.6) P̂ (D|Ml) =


 1

M

M∑

j=1

f
(
θ
(j)
l

)

L
(
D|θ

(j)
l , Ml

)
π0

(
θ
(j)
l

)



−1

where f(θl) is any probability density and π
0
(θl) is a prior probability density.
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5. AN EXAMPLE

In this section, we analyze a data set related to the number of mine acci-

dents in England from 1875 to 1951. To analyze this data set, we have assumed

the validity of a homogeneous Poisson process in the presence of change-points.

Considering the time intervals between explosions in mines, we introduced a

Bayesian analysis to get inference for the parameter of the exponential distribu-

tions and for the finite change-points.

In Table 1, we have the time intervals (in days) between explosions in mines,

involving more than 10 men killed, from December 6, 1875 to May 29, 1951 (data

introduced by Maguire, Pearson and Wynn [8]).

Table 1: Time intervals in days between explosions in mines.

378 36 15 31 215 11 137 4 15 72 96

124 50 120 203 176 55 93 59 315 59 61

1 13 189 345 20 81 286 114 108 188 233

28 22 61 78 99 326 275 54 217 113 32

23 151 361 312 354 58 275 78 17 1205 644

467 871 48 123 457 498 49 131 182 255 195

224 566 390 72 228 271 208 517 1613 54 326

1312 348 745 217 120 275 20 66 291 4 369

338 336 19 329 330 312 171 145 75 364 37
19 156 47 129 1630 29 217 7 18 1357

From a plot of N(ti) versus ti, i = 1, 2, ..., 109 (see Figure 1), we observe the

presence of two or more change-points. We could also have assumed the presence

of a random number of change-points (see for example, Ruggeri and Sivaganesan

[13]) but this case is beyond the scope of this paper. As an illustration of the

proposed model introduced in Section 1, we assume the presence of two change-

points. Assuming the two change-points model (1.2) to analyze the data set of

Table 1 and from Figure 1, we see that these two change-points are approximately

τ̂1 = t45 = 5231 and τ̂2 = t81 = 19053. We also assume the presence of only one

change-point and use Bayesian discrimination methods to decide for the best

model.

In Figure 1, we also have empirical estimates for the rates λj , j = 1, 2, 3,

obtained from the usual definition of the homogeneous Poisson processes N(t) ∝

λt + o(n), where N(t) is the accumulated number of occurrences in the interval

(0, t).
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Figure 1: Plot of N(ti) versus ti(days).

If we assume the change-point model (1.1) with a single change-point τ

with an uniform discrete prior, the mode of the marginal posterior distribution

for τ (see (3.3)) is given by τ∗ = 5382 (see Figure 2). Assuming τ∗ known, the

mean of the marginal posterior distributions (3.4) are given by λ̃1 = 0.008361 and

λ̃2 = 0.003065.
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Figure 2: Marginal posterior distribution for τ and, λ1 and λ2 with τ = τ∗.

Assuming one or two unknown change-points, we have obtained posterior

summaries (see Tables 2, 3, 4 and 5) through the use of MCMC algorithms.
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In all cases, we have considered a “burn-in-sample” of size 5,000; after this,

we have simulated 50,000 mixed Metropolis–Hastings and Gibbs samples taking

every 10th sample, to get approximated uncorrelated samples. The convergence

of the mixed algorithms was monitored using graphical methods and standard

existing indexes (see, for example, Gelman and Rubin [5]).

Considering the change-point model (1.1) with only one change-point τ ,

we have in Table 2, the posterior summaries for the parameters τ , λ1 and λ2

assuming the noninformative prior (3.1). In Figure 3, we have the approximate

marginal posterior densities.

Table 2: Posterior summaries (change-point model 1.1).

Mean S.D. 95% Cred. Inter.

τ 5813 932 (4086 ; 7364)

λ1 0.008059 0.001285 (0.005814 ; 0.010786)
λ2 0.003047 4.011E-4 (0.002289 ; 0.003884)
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Figure 3: Marginal posterior distribution (change-point model 1.1).
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Similar results could also have been obtained from the parametrization

k = N(tk), λ1 and λ2. Assuming an uniform prior distribution for N(ti) taking

the values {1, 2, ..., n} and Gamma(0.1, 0.1) prior distributions for λ1 and λ2,

we obtain by Gibbs sampling algorithms the approximate marginal posterior

densities for τ , λ1 and λ2. In Table 3 we have the posterior summaries of interest

using the WinBugs software. The code of the WinBugs program is given in

Appendix 1, assuming k = N(tk). Observe that k ∼= 46 corresponds to τ = 5382.

That is, we have obtained results similar to the previous ones.

Table 3: Posterior summaries (gamma priors for λ1 and λ2).

Mean S.D. 95% Cred. Inter.

k 45.63 5.186 (35.0 ; 53.0)

λ1 0.008322 0.001315 (0.006085 ; 0.01120)
λ2 0.003056 3.975E-4 (0.002344 ; 0.003892)

In Figure 4, we have the approximated marginal posterior densities

considering the 5,000 generated Gibbs samples.
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Figure 4: Marginal posterior distribution (gamma prior distribution for λ1 and λ2).
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Assuming the two change-point model (1.2), we have in Table 4, the pos-

terior summaries for the parameters λ1, λ2, λ3, τ1 and τ2 obtained from the

5,000 generated Gibbs samples using the conditional posterior distributions

(3.10)–(3.12). In Figure 5 we have the approximate marginal posterior densities.

Table 4: Posterior summaries (change-point model 1.2).

Mean S.D. 95% Cred. Inter.

τ1 5990 876 (4176 ; 7354)
τ2 17459 3162 (11287 ; 22741)
λ1 0.008036 0.001262 (0.005765 ; 0.010703)
λ2 0.002713 6.080E-4 (0.001655 ; 0.004053)
λ3 0.003450 7.646E-4 (0.002103 ; 0.005082)
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Figure 5: Marginal posterior distributions (change-point model 1.2).
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Similar results have been obtained from the parametrization k1 = N(tk1
),

k2 = N(tk2
), λ1, λ2 and λ3. In Table 5, we have the posterior summaries of

interest, obtained using the WinBugs software (code in Appendix 1), infor-

mative discrete prior distributions for the two change-points and independent

Gamma(0.1, 0.1) prior distributions for λ1, λ2 and λ3. Observe that k1
∼= 46

corresponds to τ1 = 5382 and k2
∼= 78 corresponds to τ2 = 17743. In Figure 6,

we have the approximate marginal posterior distributions considering the 5,000

generated Gibbs samples.

Table 5: Posterior summaries (two change-point and gamma priors
for λ1, λ2 and λ3).

Mean S.D. 95% Cred. Inter.

k1 46.22 4.237 (37.0 ; 53.0)

k2 78.29 10.45 (58.0 ; 97.0)

λ1 0.008349 0.001298 (0.006077 ; 0.01115)

λ2 0.002780 6.378E-4 (0.001606 ; 0.004134)
λ3 0.003445 7.392E-4 (0.002195 ; 0.005079)

In Figure 7, we have plots of the predictive densities ci = f(xi |x∼(i)),

i = 1, 2, ..., n, approximated by the Monte Carlo estimates (4.2) for both models

M1 (a single change-point model) and M2 (two change-points model). For model

M1, we have P1 =
∏n

i=1 ĉ1i = 7.896×10−303 and for model M2 we have P2 =∏n
i=1 ĉ2i = 9.5536×10−302. The ratio of these values is given by P2/P1 = 12.09.

In Table 6, we have different estimates (see (4.5) and (4.6)) for the marginal

likelihood functions considering models M1 (single change-point model) and M2

(two change-point model).

Table 6: Estimate values of the marginal likelihood.

Model P (D|Ml) using (4.5) P (D|Ml) using (4.6)

M1 7.7716 × 10−305 4.6420 × 10−304

M2 3.1256 × 10−304 2.5020 × 10−302

From Table 6, we calculate the Bayes factors Bij = P (D|Mi)/P (D|Mj),

i, j = 1, 2. The Bayes factors are given by B21 = 4.02 (using (4.5)) and B21 = 53.9

(using (4.6)). If compared to one change-point model, we observe a better fit of

the two change-point model M2 for the data set of Table 1, considering the three

model selection procedures.

It is important to point out that better models also could be considered to

analyze the data set of the Table 1, considering more than two change-points.
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Figure 6: Marginal posterior distributions (gamma prior distributions for λ1,
λ2 and λ3 an informative discrete prior distribution for τ1 and τ2).
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Figure 7: Plot of ci versus i (M1: +, M2 : ◦).
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6. CONCLUDING REMARKS

In this paper, we have observed that Bayesian inference for the parameters

of change-point models is easily obtained through the use of Markov Chain Monte

Carlo methods.

The use of recent software, such as WinBugs, to simulate samples for the

joint posterior distribution of interest gives a great simplification in the com-

putational work. It is important to point out that the usual classical inference

procedures usually are not appropriate for change-point models (see for example,

Mattews et al. [10]).

The proposed Bayesian methodology could also have been considered di-

rectly using the counting data modeled by homogeneous Poisson processes in the

presence of one or more change-points in place of the inter-failure data (see for

example, Raftery and Akman [11]).

Similar results could have been obtained for interfailure data with constant

hazards and more than two change-points.

The use of Monte Carlo estimates for the predictive densities f
(
xi |x∼(i)

)
,

i = 1, 2, ..., n, or for the marginal likelihood of the whole data set D for a model Ml,

gives simple ways to discriminate the different change-point models, a problem

of great practical interest.

APPENDIX

A. WinBugs code (one change-point)

Model

{

for(i in 1 : N) {

t[i] ∽ dexp(lambda[J[i]])

J[i]< −1+step(i−k−0.5)

punif[i]<−1/N

}

for(j in 1 : 2) {

lambda[j]∽ dgamma(0.1, 0.1)

}

k ∽ dcat(punif[ ])

}
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list(t=c(378, 36, 15, 31, 215, 11, 137, 4, 15, 72, 96, 124, 50, 120, 203, 176, 55, 93,

59, 315, 59, 61, 1, 13, 189, 345, 20, 81, 286, 114, 108, 188, 233, 28, 22, 61, 78, 99,

326, 275, 54, 217, 113, 32, 23, 151, 361, 312, 354, 58, 275, 78, 17, 1205, 644, 467,

871, 48, 123, 457, 498, 49, 131, 182, 255, 195, 224, 566, 390, 72, 228, 271, 208,

517, 1613, 54, 326, 1312, 348, 745, 217, 120, 275, 20, 66, 291, 4, 369, 338, 336, 19,

329, 330, 312, 171, 145, 75, 364, 37, 19, 156, 47, 129, 1630, 29, 217, 7, 18, 1357),

N=109)

list(k=50, lambda=c(0.5, 0.5))

B. WinBugs code (two change-point)

Model

{

for(i in 1 : N) {

t[i] ∽ dexp(lambda[J[i]])

J[i]< −1+step(i−k1−0.5)+step(i−k2−0.5)

}

for(j in 1 : 3) {

lambda[j]∽ dgamma(0.1, 0.1)

}

k1∽dcat(p1[ ])

k2∽dcat(p2[ ])

}

list(t=c(378, 36, 15, 31, 215, 11, 137, 4, 15, 72, 96, 124, 50, 120, 203, 176, 55, 93,

59, 315, 59, 61, 1, 13, 189, 345, 20, 81, 286, 114, 108, 188, 233, 28, 22, 61, 78, 99,

326, 275, 54, 217, 113, 32, 23, 151, 361, 312, 354, 58, 275, 78, 17, 1205, 644, 467,

871, 48, 123, 457, 498, 49, 131, 182, 255, 195, 224, 566, 390, 72, 228, 271, 208,

517, 1613, 54, 326, 1312, 348, 745, 217, 120, 275, 20, 66, 291, 4, 369, 338, 336, 19,

329, 330, 312, 171, 145, 75, 364, 37, 19, 156, 47, 129, 1630, 29, 217, 7, 18, 1357),

p1=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0225, 0.0225,

0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225,

0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.1, 0.0225, 0.0225,

0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225,

0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0), p2=(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225,

0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.10,

0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225,

0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0), N=109)

list(k1=45,k2=78,lambda=c(0.5,0.5,0.5))
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