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Abstract:

• Let (U, V ) be a random vector following a bivariate extreme value distribution (EVD)
with reverse exponential margins. It is known that the excess distribution Fc(t) =
P
(
U+V > c t | U+V > c

)
of U+V converges to F (t)= t2 as the threshold c increases

if U, V are independent, and to F (t) = t, t∈ [0, 1], elsewhere. We investigate the limit
of the excess distribution of aU+ bV in case of an EVD with arbitrary margins and
with arbitrary scale parameters a, b > 0. It turns out that the limiting excess df may
have a different behavior. For Fréchet margins, independence of U, V does not affect
the limit excess distribution, whereas for Gumbel and reverse Weibull margins it does.
Unless for Gumbel margins, the limit excess distribution is independent of a, b.
Interpreting a, b as weights and U, V as risks, aU+ bV can be viewed as a (short) linear
portfolio. The fact that the limiting excess distribution of aU+ bV does not depend
on a, b, unless for Gumbel margins, implies that risk measures such as the expected
shortfall E

(
aU+ bV | aU+ bV < c

)
might fail for multivariate extreme value models.
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1. INTRODUCTION

Let (X,Y ) be a random vector (rv), whose distribution function (df) is a

bivariate extreme value df (EVD) G with reverse exponential margins, i.e., G is

max-stable

Gn
(x
n
,
y

n

)
= G(x, y) , x, y ≤ 0, n ∈ N ,

and satisfies

G(x, 0) = G(0, x) = P (X≤ x) = P (Y ≤ x) = exp(x) , x ≤ 0 .

It is well-known that G can be represented as

(1.1) G(x, y) = exp

(
(x+ y)D

( x

x+ y

))
, x, y ≤ 0 ,

where D : [0, 1] → [1/2, 1] is a Pickands dependence function; see, for example,

Sections 4.3, 6.1, 6.2 in Falk et al. (2004). A Pickands dependence function is

characterized by the two properties

D is convex ,(1.2)

max(z, 1− z) ≤ D(z) ≤ 1 , z ∈ [0, 1] ,(1.3)

i.e., G(x, y) = exp
(
(x+ y)D(x/(x+ y)

)
, x, y ≤ 0, defines an EVD G with reverse

exponential margins if, and only if the function D : [0, 1]→ [1/2, 1] satisfies con-

dition (1.2) and (1.3) (see Falk (2006)).

A popular example is, with λ ∈ [1,∞],

D(z) =
(
zλ + (1− z)λ

)1/λ
, z ∈ [0, 1] ,

which yields the Gumbel type B df G(x, y) = exp
(
−
(
|x|λ + |y|λ

)1/λ)
, x, y ≤ 0,

with the convention D(z) = max(z, 1− z) if λ = ∞.

Note that the case of independence of X,Y is in general characterized

by the constant dependence function D= 1, in which case G(x, y) = exp(x+ y),

x, y ≤ 0. A major problem in the statistical analysis of given data (x1, y1), ...,

(xn, yn), is the decision whether the data were generated by rvs (Xi, Yi) with

independent margins Xi,Yi, see, for example, Dupuis and Tawn (2001).

It was observed in Falk and Michel (2006) that the sum X+ Y over a

high threshold has excellent ability to discriminate between independence and

dependence, i.e., between the case of the constant dependence function D = 1
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and a nonconstant D. Precisely, it was observed in Falk and Michel (2006) that

for t ∈ [0, 1]

(1.4) P
(
X+Y > ct | X+Y > c

)
−→
c↑0

{
t2 if D= 1 ,

t elsewhere .

The excess distribution of the sum X+Y over a high threshold approaches,

consequently, either the df F (t) = t2, t ∈ [0, 1], in case of independence of X,Y ,

or, elsewhere, the uniform distribution on [0, 1].

This observation was used in Falk and Michel (2006) to define a test for

independence of X,Y , which is derived from the Neyman–Pearson test for the

binary testing problem F (t) = t2 against F (t) = t, t ∈ [0, 1], based on n indepen-

dent copies of (X,Y ). It was shown that this test has excellent performance and

is able to detect deviations from the constant dependence function D = 1 which

are of order O(n−1/2).

The problem suggests itself, whether the characterization of independence

and dependence of X,Y via the limiting excess distribution in (1.4) remains valid,

if the rv (X,Y ) with EVD G with reverse exponential margins is replaced by a rv

(U, V ), which follows an arbitrary EVD. This will be investigated in the present

paper, where our investigations include arbitrary scale parameters a, b > 0 as well,

i.e., we consider the excess distribution of aU + bV over a high threshold with

underlying arbitrary EVD. It turns out that the limit df of the excess distribution

of the sum depends heavily on the marginal dfs: In some cases independence of

U and V affects the limit, in other cases it does not. The main results can be

summarized as follows, where it is generally assumed that the joint df of (U, V )

is a bivariate EVD.

Reverse Weibull Margins: Suppose that U, V both follow a reverse Wei-

bull df: P (U≤ x) = exp
(
−(−x)α1

)
, P (V ≤ x) = exp

(
−(−x)α2

)
, x≤ 0, α1, α2 > 0.

Then we obtain for a, b > 0 and t ∈ [0, 1] (see Theorem 3.1)

P
(
aU + bV > tc | aU + bV > c

)
−→
c↑0

(1.5)

−→
c↑0

{
tα1+α2 if U, V are independent ,

tmax(α1,α2) elsewhere .

The special case α1 = α2 = a = b = 1 was established in Falk and Michel (2006).

The limit excess df of aU + bV is, therefore, determined by independence or

dependence of U, V , but it is not affected by the scale parameters a, b > 0.

FréchetMargins: Suppose that U, V both follow a Fréchet df: P (U≤ x)=

exp(−x−α1), P (V ≤ x) = exp(−x−α2), x> 0, α1, α2 > 0. Then we have for a, b > 0

and t ≥ 1

(1.6) P
(
aU + bV > tc | aU + bV > c

)
−→
c→∞

t−min(α1,α2) .
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In the case α1 = α2 and dependence of U, V , the preceding result requires

an additional weak condition on the underlying Pickands dependence function,

see Theorem 3.3 and 3.2 for details.

In case of Fréchet margins, the limiting excess df of aU + bV is, conse-

quently, invariant under dependence and independence of U, V and it is not

affected by the choice of the scale parameters a, b > 0.

Gumbel Margins: If U, V both follow the Gumbel df F (x) = exp(−e−x),

x ∈ R, then we obtain for a, b > 0 and t > 0

P
(
aU + bV > c+ t | aU + bV > c

)
−→
c→∞

(1.7)

−→
c→∞





exp

(
−

t

max(a, b)

)
if U, V are independent ,

exp

(
−

t

a+ b

)
elsewhere ,

see Theorem 3.4. In case of Gumbel margins, dependence and independence of

U, V determine, consequently, the limiting excess df of aU + bV . But different

to the other two cases above, it depends on the scale factors a, b > 0 as well.

The cases of mixed margins is determined by that df among the two dfs

involved, which has a heavier tail, see Theorem 3.5, 3.6 and 3.7. Note that

additional location parameters of U and V can simply be incorporated in the

preceding results by shifting them to the threshold.

The transformation of the univariate margins of a multivariate EVD to ar-

bitrary univariate extreme value distributions yields again a multivariate EVD.

A common approach in multivariate extreme value theory is, therefore, the trans-

formation of a given EVD to an EVD with one’s favorite univariate margins. This

approach might, however, be misleading as the preceding results reveal that the

marginal distributions of a multivariate EVD, actually, can matter.

Extreme value theory has become a standard toolkit within quantitative

finance useful for describing non normal phenomena, see, e.g., Embrechts (2000,

2004), Klüppelberg (2004), Section 13 in Reiss and Thomas (2001). The above

results now reveal surprising facts in particular about the expected shortfall,

which is a popular risk measure of a linear portfolio. Interpreting a, b as weights

and U, V as risks, the sum aU + bV can be viewed as a (short) linear portfolio.

Note that the limit excess df of aU + bV above a high threshold can in case

of reverse Weibull margins readily be turned into the limiting excess df of a

linear portfolio below a small threshold approaching zero: A rv (U, V ) follows a

bivariate max-stable df with reverse (standard) Weibull margins if, and only if,

the rv (Ũ , Ṽ ) := (−U,−V ) follows a bivariate min-stable df with Weibull margins.
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The standard exponential df on (0,∞) is a particular example. The limit result

(1.5) now becomes with arbitrary a, b > 0 and t ∈ [0, 1]

P
(
aŨ + bṼ < tc | aŨ + bṼ < c

)
−→
c↓0

−→
c↓0

{
tα1+α2 if U, V are independent ,

tmax(α1,α2) elsewhere .

We see that in various cases, as the threshold increases or decreases, the

limit excess distribution of aU + bV does not depend on the parameters a, b > 0.

A risk measure of a portfolio such as the expected shortfall (Acerbi and Sirtori

(2001), Acerbi and Tasche (2001), Acerbi and Tasche (2002)), i.e., the expectation

of aU + bV given that the sum exceeds a high or a low threshold, is in this case

asymptotically independent of the weights a, b. Such a risk measure of a linear

portfolio has, consequently, to be taken with care, if the underlying joint df of

the risks is assumed to be a max-stable or a min-stable df. For a linear portfolio∑
i≤d aiUi of arbitrary length d this was already observed in Macke (2005) in the

case where (U1, ..., Ud) follows a d-dimensional EVD G with reverse exponential

margins.

We remark that corresponding results might be established in higher dimen-

sions as well, see, for a special case, Macke (2005). But the case of a dimension

higher than two requires additional conditions such as very smooth dependence

functions; it does not, however, provide essential new insight into the limit be-

havior of the corresponding excess distributions. In the two-dimensional case our

mathematical tools are, on the other hand, so refined that we can establish our

results under most general conditions. That is why we restrict ourselves in this

paper to sums aU + bV of length two.

It would, of course, be desirable to extend the preceding results (1.5)–(1.7)

to rvs (U, V ), whose distribution lies in the domain of attraction of a multivariate

EVD. But this is not possible without further assumption. Take, for example,

a rv (U, V ), which follows a bivariate normal distribution N(0,Σ) with mean vec-

tor 0, variances 1 and and covariance ρ ∈ (−1, 1). Then N(0,Σ) is in the domain

of attraction of the EVD G(x, y) = exp(−e−x − e−y), x, y ∈ R, with independent

Gumbel margins, i.e., there exist constants an, cn > 0, bn, dn ∈ R such that

P
(

max
1≤i≤n

Ui ≤ bn + anx, max
1≤i≤n

Vi ≤ dn + cny
)

−→
n→∞

G(x, y) , x, y ∈ R ,

where (U1, V1), (U2, V2), ... are independent copies of (U, V ), see, e.g., equation

(9.7) in Reiss and Thomas (2001). According to equation (1.7) one, therefore,

should expect in this case that the limit of P
(
aU + bV > c + t | aU + bV > c

)

is exp(−t/max(a, b)) as c converges to infinity. Standard arguments, however,

yield that
P
(
aU + bV > c+ t | aU + bV > c

)
−→
c→∞

0

for arbitrary a, b, t > 0.
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The results in this paper are related to results by Wüthrich (2003), Alink

et al. (2004, 2005a, 2005b) and Barbe et al. (2006), who establish P
(∑

i≤dXi > t
)

∼ ∆P (X1> t) as t→ ∞ with some diversification constant ∆ > 0. This is

achieved under various conditions on the joint distribution of (X1, ..., Xd), thus

extending the well known result with ∆ = d in case of iid regularly varying Xi

(Feller (1971, p. 279)) to dependent rvs. The above authors work, however, with

identically distributed Xi so that the results stated here are not included in these

papers.

This paper is organized as follows. As the derivation of our results is highly

technical, we compile in Section 2 in a preparatory step various auxiliary results

and tools. The main results are established in Section 3.

2. AUXILIARY RESULTS AND TOOLS

In a preparatory step we provide in this section several auxiliary results

and mathematical tools, which might be of interest of their own.

A bivariate and nondegenerate EVD H has the characteristic property of

max-stability, i.e., for each n ∈ N there are constants ain > 0, bi,n ∈ R, i= 1, 2,

such that

Hn
(
a1nx+ b1n, a2ny + b2n

)
= H(x, y) , x, y ∈ R .

The margins of H are, consequently, univariate EVDs. The family of nondegen-

erate univariate EVDs is, with α> 0, up to a scale and location shift given by

Fα(x) :=

{
exp
(
−(−x)α

)
, x ≤ 0 ,

1, x > 0 ,

F−α(x) :=

{
0, x ≤ 0 ,

exp(−x−α), x > 0 ,
(2.1)

F0(x) := exp(−e−x) , x ∈ R ,

being the family of (reverse) Weibull, Fréchet dfs and the Gumbel df; see, e.g.,

Section 2.2 in Falk et al. (2004). Note that F1 is the standard reverse exponential

df.

Let now (U, V ) be a rv, which follows a bivariate EVDH with standard uni-

variate extreme value margins as in (2.1). It is well-known that the df H of (U, V )

equals that of
(
H−1

1 (exp(X)), H−1
2 (exp(Y ))

)
, where (X,Y ) follows an EVD G

with reverse exponential margins F1. By F−1(q) := inf{t∈R : F (t)≥ q}, q ∈ (0, 1),
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we denote the generalized inverse of a univariate df F ; see, for example, Lemma

5.4.7 in Falk et al. (2004). In different notation we have, thus,

H(x, y) = G
(
log
(
H1(x)

)
, log

(
H2(y)

))
= G

(
ψ1(x), ψ2(y)

)
,

where ψi(x) = log(Hi(x)), i= 1, 2, is each one of the three functions defined

as follows:

ψ(x) :=





−(−x)α, x ≤ 0 ,

−x−α, x > 0 ,

−e−x, x ∈ R .

We have, consequently,

(2.2) (U, V ) =D

(
ψ−1

1 (X), ψ−1
2 (Y )

)
,

where =D denotes equality in distribution, and, we have by equation (1.1) for x, y

with 0 < H1(x), H2(x) < 1

(2.3) H(x, y) = exp

((
ψ1(x) + ψ2(y)

)
D

(
ψ1(x)

ψ1(x) + ψ2(y)

))
,

where D is a Pickands dependence function as defined by (1.2) and (1.3).

Note that
(
ψ−1

1 (X), ψ−1
2 (Y )

)
follows for an arbitrary choice of an EVD G

with reverse exponential margins an EVD H with margins H1, H2 and, thus, rep-

resentation (2.3) characterizes up to a scale and location parameter the complete

class of bivariate EVDs with arbitrary margins.

The following auxiliary result provides a representation of an arbitrary

Pickands dependence function D, which will be crucial for the derivation of our

subsequent results. It implies in particular that any D is absolutely continuous

and provides its derivative D′. For a proof of this result we refer to Lemma 6.2.1

in Falk et al. (2004).

Lemma 2.1. An arbitrary Pickands dependence function D can be repre-

sented as

D(z) = 1 +

∫ z

0
M(x) − 1 dx = 1 −

∫ 1

z
M(x) − 1 dx ,

where M : [0, 1] → [0, 2] is a measure generating function with M(1) = 2,∫ 1
0 M(x) dx = 1. The dependence function D is, consequently, absolutely con-

tinuous with derivative

D′(z) := M(z) − 1 ∈ [−1, 1] .

It is easy to see that the converse of the preceding result is also true: any

function D : [0, 1]→ [0,∞) that can be represented as D(z) = 1 +
∫ z
0 M(x) −1 dx,

with M : [0, 1]→ [0, 2] as in Lemma 2.1, satisfies condition (1.2) and (1.3) and is,

consequently, a Pickands dependence function.
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We will make extensive use of the conditional df P (Y ≤ v | X= u), where

(X,Y ) follows a bivariate EVD with reverse exponential margins. This condi-

tional df is provided in the next lemma. For a proof we refer to Lemma 2.1 in

Falk and Michel (2006); the arguments are taken from Ghoudi et al. (1998).

Lemma 2.2. Suppose that the rv (X,Y ) follows an EVD G with reverse

exponential margins and Pickands dependence function D. Then we have for

u < 0

P
(
Y ≤ v |X= u

)
=

=





exp
{
u
(
D
(

u
u+v

)
−1
)

+ vD
(

u
u+v

)}(
D
(

u
u+v

)
+D′

(
u

u+v

)(
1− u

u+v

))
if v<0 ,

1 if v≥0 .

3. MAIN RESULTS

In this section we compute the limiting excess df of the sum aU + bV ,

where (U, V ) follows an arbitrary bivariate EVD. Without loss of generality (wlog)

we suppose that the marginal univariate dfs have scale parameter 1. We begin

with the case of reverse Weibull margins.

Theorem 3.1 (Reverse Weibull Margins). Suppose that (U,V ) follows

a bivariate EVD with reverse Weibull margins: P (U ≤ x) = exp
(
−(−x)α1

)
,

P (V ≤ x)= exp
(
−(−x)α2

)
, x ≤ 0, α1, α2 > 0. If U, V are not independent, then

we have for a, b > 0 and 0 ≤ t ≤ 1

P
(
aU + bV > tc | aU + bV > c

)
−→
c↑0

tmax(α1,α2) .

If U, V are independent, then we have

P
(
aU + bV > tc | aU + bV > c

)
−→
c↑0

tα1+α2 .

Proof: Wlog we assume α1 ≥ α2. The assertion is an immediate conse-

quence of

(3.1) (−c)−α1P
(
aU + bV > c

)
−→
c↑0

K(a, b) > 0

if U, V are not independent, and of

(3.2) (−c)−(α1+α2) P
(
aU + bV > c

)
−→
c↑0

a−α1 b−α2 α1

∫ 1

0
(1− u)α2 uα1−1 du

if U, V are independent. This will be established in the following.
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Wlog we can by (2.2) assume that (U, V ) =
(
−(−X)1/α1 ,−(−Y )1/α2

)
,

where (X,Y ) follows a bivariate EVD G(x, y) = exp
(
(x+ y)D(x/(x+ y))

)
,

x, y≤ 0, with reverse exponential margins and Pickands dependence function D.

By conditioning on X = u, we obtain from Lemma 2.2 the representation

P
(
aU + bV > c

)
=

=

∫ 0

−∞

P

(
−(−Y )1/α2 >

c+ a(−u)1/α1

b
| X = u

)
exp(u) du

=

∫ 0

−(−c
a )

α1

(
1 − P

(
Y ≤ −

(
−
c+ a(−u)1/α1

b

)α2

| X = u

))
exp(u) du(3.3)

= 1 − exp

(
−
(−c
a

)α1

)
(3.4)

−

∫ 0

−(−c
a )

α1

exp

(
u
(
D(ũ) − 1

)
−

(
−
c+ a(−u)1/α1

b

)α2

D(ũ)

)

×
(
D(ũ) +D′(ũ) (1 − ũ)

)
exp(u) du ,

where for u ∈
(
−(−c/a)α1 , 0

]

ũ :=
u

u−
(
− c+a(−u)1/α1

b

)α2
∈ [0, 1] .

In case of independence, i.e., D = 1, we obtain from equation (3.3) by using

Taylor expansion of exp at 0 and substituting u 7→ −(−cu/a)α1

P
(
aU + bV > c

)
=

=

∫ 0

−(−c
a )

α1

(
1 − exp

(
−

(
−
c+ a(−u)1/α1

b

)α2
))

exp(u) du

= −
(−c
a

)α1

∫ 1

0

(
1 − exp

(
−
(−c
b

)α2

(1 − u)α2

))

× exp

(
−
(−c
a

)α1

uα1

)
α1 u

α1−1 du

=
(−c)α1+α2

aα1 bα2
α1

∫ 1

0
(1− u)α2 uα1−1

(
1 + o(1)

)
du ,

which implies equation (3.2).

It remains to establish equation (3.1). From equation (3.4) we obtain with
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the substitution u 7→ −(−cu/a)α1

P
(
aU + bV > c

)
=

= 1 − exp

(
−
(−c
a

)α1

)

(3.5)

−
(−c
a

)α1

∫ 1

0
exp

(
−
(−c
a

)α1

uα
1

(
D(uc)−1

)
−
(−c
b

)α2

(1−u)α2 D(uc)

)

×
(
D(uc) +D′(uc) (1−uc)

)
exp

(
−
(−c
a

)α1

uα1

)
α1 u

α1−1 du ,

where for u ∈ (0, 1)

uc :=
uα1

uα1 + (−c)α2−α1 aα1

bα2
(1−u)α2

↓
c↑0

0 if α1 > α2 .

Hence we obtain in the case α1 > α2

(−c
a

)−α1

P
(
aU + bV > c

)
−→
c↑0

−D′(0) = 1−M(0) > 0 .

The fact that M(0)< 1 can be seen as follows: Suppose that M(0) ≥ 1. Then

we obtain from Lemma 2.1 that D(z) = 1 +
∫ z
0 M(x)−1 dx ≥ 1, 0≤ z≤ 1, and,

thus, D is the constant function 1. But this case was excluded. Thus we have

established equation (3.1) in the case α1 > α2. It remains to prove (3.1) also in

the case α1 = α2.

Suppose that α1 = α2. Equation (3.5) implies
(−c
a

)−α1

P
(
aU + bV > c

)
−→
c↑0

(3.6)

−→
c↑0

∫ 1

0

(
1 −D(u∗) −D′(u∗) (1−u∗)

)
α1 u

α1−1 du > 0

where for u ∈ [0, 1]

u∗ :=
uα1

uα1 + (1−u)α1 (a
b )α1

∈ [0, 1] .

We show in the following that the limit integral in (3.6) is strictly positive.

Note that we have by Lemma 2.1 for u ∈ [0, 1]

1 −D(u) −D′(u) (1− u) =

∫ 1

u
M(x)−M(u) dx ≥ 0 ,

where the integral on the right hand side above is a function in u, which is

continuous from the right. Suppose that the integral in equation (3.6) is zero.

This implies
∫ 1
u M(x)−M(u) dx = 0 for u ∈ [0, 1). Then we have in particular∫ 1

0 M(x)−M(0) dx = 0, which impliesM(x) =M(0), x ∈ [0,1), and, thus, D(z)=

1 +
∫ z
0 M(0)−1 dx = 1 + z

(
M(0)−1

)
, z ∈ [0, 1]. From the fact that D(1) = 1

we obtain M(0) = 1 and, hence, that D(z) = 1, z ∈ [0, 1]. But this case was

excluded. The limit integral in (3.6) is, therefore, strictly positive. This completes

the proof of equation (3.1) and, thus, the proof of Theorem 3.1.
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The case of Fréchet margins requires completely different proofs for identi-

cal and nonidentical margins. The two cases are, therefore, stated separately in

Theorem 3.3 and in Theorem 3.2. We begin with the case of different margins,

since this case is an immediate consequence of the following result for regularly

varying rvs. For a proof of this result we refer to Lemma 2 in Klüppelberg et al.

(2006) [17].

Lemma 3.1. Let Y and Z be rvs on a common probability space such

that Y has regularly varying right tail with index −κ< 0. Let d> κ and suppose

that E(|Z|d)<∞. Then

lim
x→∞

P
(
Y + Z > x

)

P
(
Y > x

) = 1 .

Theorem 3.2 (Different Fréchet Margins). Suppose that (U, V ) follows a

bivariate EVD with different standard Fréchet margins: P (U≤ x) = exp(−x−α1),

P (V ≤ x) = exp(−x−α2), x> 0, α1 6= α2. Then we have for a, b > 0 and t ≥ 1

P
(
aU + bV > ct | aU + bV > c

)
−→
c→∞

t−min(α1,α2) .

Note that the case of identical Fréchet margins α1 = α2 =: α is not covered

by Lemma 3.1, as in this case E(|U |d) = E(|V |d) = ∞ for any d > α.

Theorem 3.3 (Identical Fréchet Margins). Suppose that (U, V ) follows a

bivariate EVD with identical Fréchet margins: P (U≤ x) =P (V ≤ x) = exp(−x−α),

x > 0, for some α > 0. Then we obtain for a, b > 0 and t ≥ 1

(3.7) P
(
aU + bV > ct | aU + bV > c

)
−→
c→∞

t−α

if U, V are independent. If U, V are not independent, this result remains true

if we require in addition that the underlying dependence function D satisfies

for some δ > 1 the expansion

(3.8) 1 −D(z) −D′(z) (1− z) = O
(
(1 − z)δ

)
.

Condition (3.8) is, for example, satisfied by the dependence functionD(z) =(
zλ + (1− z)λ

)1/λ
, 1 ≤ λ ≤ ∞, which corresponds to the Gumbel type B EVD.

It is also obviously satisfied by the dependence functionD(z) = 1−λmin(z, 1−z),

λ∈ [0, 1], which corresponds to the Marshall–Olkin EVD. We conjecture that

it is satisfied by an arbitrary dependence function, but this is an open question.

Proof: Wlog we can assume (U,V ) =
(
(−X)−1/α, (−Y )−1/α

)
, where (X,Y )

follows a bivariate EVD G with reverse exponential margins and dependence

function D.
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First we consider the case D(z) = 1, z ∈ [0, 1], i.e., the case of independence

of X,Y or, equivalently, of U, V . We claim that in this case

(3.9) cαP
(
aU + bV > c

)
−→
c→∞

aα + bα ,

from which equation (3.7) follows immediately. Equation (3.9) can be seen as

follows. Note that P
(
aU + bV > c | X= u

)
= 1 if u>−(a/c)α and, thus,

P
(
aU + bV > c

)
=

=

∫ 0

−∞

P
(
aU + bV > c |X= u

)
exp(u) du

=

∫ 0

−(a
c )

α
exp(u) du +

∫ −(a
c )

α

−∞

P

(
Y >−

(
b

c− a(−u)−1/α

)α

| X= u

)
exp(u) du

= 1 − exp

(
−
(a
c

)α)
+

∫ −(a
c )

α

−∞

(
1 − exp

(
−

(
b

c− a(−u)−1/α

)α))
exp(u) du .

Since 1− exp
(
−(a/c)α

)
= (a/c)α

(
1 + o(1)

)
, it suffices to show that the integral

on the right hand side above equals (b/c)α
(
1+o(1)

)
. Split the integral into the

sum of the subintegrals
∫ −2(a/c)α

−∞
· · · du +

∫ −(a/c)α

−2(a/c)α · · · du. By the substitution

u 7→ −(a/c)αu the second subintegral equals

(a
c

)α ∫ 2

1

(
1 − exp

(
−
(b
c

)α(
1− u−1/α

)−α
))

exp

(
−
(a
c

)α
u

)
du = o(c−α)

by the dominated convergence theorem. From the Taylor expansion exp(−x) =

1− x + exp(−ϑx x)x
2/2 with 0 < ϑx < 1 and the fact that 0 < exp(−ϑx x) < 1

for x > 0 we obtain that the first subintegral equals

∫ −2(a
c )

α

−∞

(b
c

)α(
1 −

a

c
(−u)−1/α

)−α

exp(u) du + O(c−2α) =
(b
c

)α(
1+o(1)

)
.

Thus we have shown (3.9).

If D is not the constant function 1, we have

cαP
(
aU + bV > c

)
−→
c→∞

(3.10)

−→
c→∞

b

∫ 1

0

(
1 −D(z) −D′(z)(1− z)

)
z1/α−1

(
b z1/α + a(1− z)1/α

)α−1

(1− z)2
dz

+ bα
(
2 −M(1− 0)

)
> 0 ,

where M is the measure generating function in the representation D(z) = 1+∫ z
0 M(x)−1 dx and M(1−0) := limε↓0M(1−ε) is the limit from the left of M at 1.
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This is established in the following. Repeating previous arguments we obtain

P
(
aU + bV > c

)
=

= 1 − exp

(
−
(a
c

)α)

+

∫ −(a
c )

α

−∞

(
1 − P

(
Y ≤−

(
b

c− a(−u)−1/α

)α

| X= u

))
exp(u) du .

The integral equals, by Lemma 2.2,

∫ −(a
c )

α

−∞



1 − exp

((
u−

(
b

c− a(−u)−1/α

)α)
D(ũ)

)
exp(−u)

×
(
D(ũ) +D′(ũ) (1− ũ)

)


 exp(u) du =

(3.11)

=

∫ −(a
c )

α

−∞

(
1 −D(ũ) −D′(ũ) (1− ũ)

)
exp(u) du

+

∫ −(a
c )

α

−∞



1 − exp

(
u
(
D(ũ) − 1

)
−

(
b

c− a(−u)−1/α

)α

D(ũ)

)


×
(
D(ũ) +D′(ũ)(1− ũ)

)
exp(u) du ,

where for u < −(a/c)α

ũ :=
1

1 + bα

(c(−u)1/α− a)
α

∈ (0, 1)

converges to 1 as c→ ∞. Putting for z ∈ (0, 1)

g(z) := −
1

cα

(
b
( z

1− z

)1/α
+ a

)α

.

and substituting u 7→ g(z), we obtain that the first integral in equation (3.11)

equals

−

∫ 1

0

(
1 −D(z) −D′(z) (1− z)

)
exp
(
g(z)

)
g′(z) dz =

=
b

cα

∫ 1

0

(
1 −D(z) −D′(z) (1− z)

)
exp
(
g(z)

)

×
(
b z1/α + a(1− z)1/α

)α−1
(1− z)−2 z1/α−1 dz .

From condition (3.8) and the dominated convergence theorem we, therefore,

obtain

cα
∫ −(a

c )
α

−∞

(
1 −D(ũ) −D′(ũ) (1− ũ)

)
exp(u) du −→

c→∞

−→
c→∞

b

∫ 1

0

(
1 −D(z) −D′(z) (1− z)

)
z1/α−1(3.12)

×
(
b z1/α + a(1− z)1/α

)α−1
(1− z)−2 dz ∈ (0,∞) .
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The second integral in equation (3.11) is split into the sum of the sub-

intervals
∫ −2(a

c )
α

−∞

· · · du +

∫ −(a
c )

α

−2(a
c )

α
· · · du =: I(c) + II(c) .

Substituting u 7→ −(a/c)α u and putting for u ∈ (1, 2)

ū :=
1

1 + ( b
a)α (u1/α − 1)−α

∈ (0, 1) ,

the second subintegral above equals

II(c) =
(a
c

)α ∫ 2

1

{
1− exp

(
−
(a
c

)α
u
(
D(ū)−1

)
−
(b
c

)α(
1− u−1/α

)−α
D(ū)

)}

×
(
D(ū) +D′(ū) (1− ū)

)
exp

(
−
(a
c

)α
u

)
du

= o
(
c−α
)

by the dominated convergence theorem.

Taylor expansion of exp at zero yields that the first subintegral equals

I(c) =

∫ −2(a
c )

α

−∞

(
(
1 −D(ũ)

)
u +

(
b

c− a(−u)−1/α

)α

D(ũ)

)

× exp

{
ϑu u

(
D(ũ) −1

)
− ϑu

(
b

c− a(−u)−1/α

)α

D(ũ)

}

×
(
D(ũ) +D′(ũ) (1− ũ)

)
exp(u) du ,

where 0 < ϑu < 1. Recall that 1−D(ũ) ∈ [0, 1/2], D′(ũ)(1− ũ) ∈ [−1, 1] and

note that for u ≤ −2(a/c)α

(
b

c− a(−u)−1/α

)α

=

(
b

c

)α




1

1 − 1

(−( c
a)

α
u)

1/α




α

≤
1

(1 − 2−1/α)α

(
b

c

)α

.

We have, further, by Lemma 2.1

1 −D(ũ) =

∫ 1

ũ
M(x)−1 dx =

(
M(1−0) − 1

)
(1− ũ)

(
1+ r(ũ)

)
,
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where

0 ≥ r(ũ) :=

∫ 1

ũ
M(x)−1 dx

(
M(1−0) − 1

)
(1− ũ)

− 1

=

∫ 1

ũ
M(x) −M(1−0) dx

(
M(1−0) − 1

)
(1− ũ)

≥
M(ũ) −M(1−0)

M(1−0) − 1

≥ −
M(1−0) −M(0)

M(1−0) − 1

is bounded and converges to 0 as c→ ∞. We have, further, for u ≤ −2(a/c)α

(1− ũ)u =

bα

(c(−u)1/α− a)
α

1 + bα

(c(−u)1/α− a)
α

u

=
bα

cα
u(

(−u)1/α − a
c

)α
1

1 + bα

(c(−u)1/α− a)
α

= −
bα

cα
(
1 + sc(u)

)
,

where sc is bounded and sc(u) −→
c→∞

0.

We obtain, consequently, from the dominated convergence theorem

(3.13) cα I(c) −→
c→∞

∫ 0

−∞

bα
(
2−M(1−0)

)
exp(u) du =

(
2−M(1−0)

)
bα ≥ 0 .

Equation (3.10) now follows from (3.11), (3.12) and (3.13).

Theorem 3.4 (Gumbel Margins). Suppose that the rv (U,V ) follows a bi-

variate EVD with identical Gumbel margins: P (U≤ x) = P (V ≤ x) = exp(−e−x),

x ∈ R. Then we obtain for a, b > 0 and t ≥ 0

P
(
aU + bV > c+ t | aU + bV > c

)
−→
c→∞

−→
c→∞





exp

(
−

t

max(a, b)

)
if U, V are independent ,

exp

(
−

t

a+ b

)
elsewhere .
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Proof: We consider first the case, where U, V are independent. Wlog

we assume a > b. The case a = b requires a different approach, see below.

The assertion is immediate from

(3.14) e
c
a P
(
aU+ bV > c

)
−→
c→∞

b

a

∫ ∞

−∞

(
1− exp(−e−u)

)
e

b
a
u du ∈ (0,∞) ,

which we establish in the sequel.

Put F (u) := exp(−e−u), u ∈ R. We have

P
(
aU + bV > c

)
=

∫ ∞

−∞

P
(
aU + bV > c | U= u

)
F ′(u) du

=

∫ ∞

−∞

(
1 − F

(c− au

b

))
F ′(u) du .

With the substitution u 7→ (c− bu)/a, the preceding integral equals

b

a

∫ ∞

−∞

(
1−F (u)

)
F ′
(c− bu

a

)
du =

=
b

a

∫ ∞

−∞

(
1− exp(−e−u)

)
e

bu−c
a exp

(
−e

bu−c
a
)
du

= e−
c
a
b

a

∫ ∞

−∞

(
1 − exp(−e−u)

)
e

b
a
u exp

(
−e

bu−c
a
)
du

and, thus, equation (3.14) follows from the dominated convergence theorem;

recall that a > b.

Next we consider the case, where U, V are independent and a = b. The

assertion is a consequence of

(3.15)
ec/a

c/a
P
(
aU + aV > c

)
−→
c→∞

1 ,

which we establish in the following. Wlog we assume a = 1. Repeating the

arguments in the derivation of (3.14) we obtain

P
(
aU + bV > c

)
= e−c

{∫ 0

−∞

(
1− exp(−e−u)

)
eu exp(−eu−c) du

+

∫ ∞

0

(
1− exp(−e−u)

)
eu exp(−eu−c) du

}

=: e−c
{
I(c) + II(c)

}
.

The dominated convergence theorem implies that

I(c) −→
c→∞

∫ 0

−∞

(
1− exp(−e−u)

)
eu du ∈ (0, 1) .
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Taylor expansion of exp at 0 and the substitution u 7→ u+ c yields

II(c) =

∫ ∞

0

(
e−u +O(e−2u)

)
eu exp(−eu−c) du

=

∫ ∞

0
exp(−eu−c) du + O(1)

=

∫ 0

−c
exp(−eu) du +

∫ ∞

0
exp(−eu) du + O(1)

=

∫ 0

−c
exp(−eu) du + O(1) .

In order to establish equation (3.15) it suffices, therefore, to show that

c−1

∫ 0

−c
exp(−eu) du −→

c→∞
1 .

But this follows from straightforward computations.

Finally we consider the case, where U, V are not independent. Wlog we as-

sume that a ≥ b and that (U, V ) =
(
− log(−X),− log(−Y )

)
, where (X,Y ) follows

a bivariate EVD with reverse exponential margins and dependence function D,

which is not the constant function 1. The assertion is a consequence of the fact

exp
( c

a+ b

)
P
(
aU + bV > c

)
−→
c→∞

(3.16)

−→
c→∞

b

a+ b

∫ 1

0

(
1 −D(z) −D′(z) (1− z)

)
z−

a
a+b (1− z)

a
a+b

−2 dz ∈ (0,∞) ,

which we establish in the following.

Put for u < 0

ũ :=
1

1 + exp(− c
b) (−u)−(a+b)/b

∈ (0, 1) .

Then we have by Lemma 2.2

P
(
aU + bV > c

)
=

∫ 0

−∞

(
1−P

(
Y ≤− exp

(
−
c

b

)
(−u)−a/b | X= u

))
exp(u) du

=

∫ 0

−∞

(
1 − exp

{
u
(
D(ũ)−1

)
− exp

(
−
c

b

)
(−u)−a/bD(ũ)

}

×
(
D(ũ) +D′(ũ)(1− ũ)

))
exp(u) du

=

∫ 0

−∞

(
1 −D(ũ) −D′(ũ)(1− ũ)

)
exp(u) du

+

∫ 0

−∞

(
1 − exp

{
u
(
D(ũ)−1

)
− exp

(
−
c

b

)
(−u)−a/bD(ũ)

})

×
(
D(ũ) +D′(ũ)(1− ũ)

)
exp(u) du

=: Ĩ(c) + ĨI(c) .
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Put for z ∈ (0, 1)

g(z) := − exp
(
−

c

a+ b

)( z

1− z

) b
a+b

.

Then we have g̃(z) = z and, thus, with

g′(z) = − exp
(
−

c

a+ b

) b

a+ b
z−

a
a+b (1− z)

a
a+b

−2 ,

the substitution u 7→ g(z) yields

Ĩ(c) = −

∫ 1

0

(
1 −D(z) −D′(z)(1− z)

)
exp
(
g(z)

)
g′(z) dz

= exp
(
−

c

a+ b

) b

a+ b

×

∫ 1

0

(
1 −D(z) −D′(z)(1− z)

)
exp
(
g(z)

)
z−

a
a+b (1− z)

a
a+b

−2 dz .

Note that the function g depends on the threshold c with g(z) −→
c→∞

0 and that

g(z)< 0, z ∈ (0, 1). The dominated convergence theorem implies, therefore, that

exp
( c

a+ b

)
Ĩ(c) −→

c→∞

−→
c→∞

b

a+ b

∫ 1

0

(
1 −D(z) −D′(z)(1− z)

)
z−

a
a+b (1− z)

a
a+b

−2 dz ∈ (0,∞) .

The integral on the right hand side is finite since 1−D(z) ≤ 1− z and D′(z)∈

[−1, 1]. It is positive by the arguments at the end of the proof of Theorem 3.1.

In order to establish (3.16) it suffices, therefore, to show that

(3.17) exp
( c

a+ b

)
ĨI(c) −→

c→∞
0 .

This can be seen as follows. Choose zc ∈ (0, 1) with g(zc) = −c/b, i.e.,

zc =
1

1 +
(

b
c

)(a+b)/b
exp

(
− c

b

) .

Split the integral ĨI(c) into the sum of the subintervals

ĨI(c) =

∫ g(zc)

−∞

· · · du +

∫ 0

g(zc)
· · · du .

The first integral is of order O
(
exp(−2c/(3b))

)
= o
(
exp(−c/(a+b))

)
; recall that

we assume a ≥ b and that 1−D(ũ) < 1/3 for u ≤ −c/b if c is large. By using

again the substitution u 7→ g(z) and Taylor expansion of exp at 0, the second
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integral on the right hand side above equals

exp
(
−

c

a+ b

) b

a+ b

×

∫ zc

0

(
1− exp

{
g(z)

(
D(z) −1

)
− exp

(
−

c

a+ b

)(1−z

z

) a
a+b

D(z)

})

×
(
D(z) +D′(z)(1− z)

)
exp
(
g(z)

)
z−

a
a+b (1− z)

a
a+b

−2 dz =

= exp
(
−

c

a+ b

) b

a+ b

×

∫ zc

1/2

(
1− exp

{
g(z)

(
D(z) −1

)
− exp

(
−

c

a+ b

)(1−z

z

) a
a+b

D(z)

})

×
(
D(z) +D′(z)(1− z)

)
exp
(
g(z)

)
z−

a
a+b (1− z)

a
a+b

−2 dz

+ o

(
exp
(
−

c

a+ b

))

= exp
(
−

c

a+ b

) b

a+ b

×

∫ zc

1/2

(
−g(z)

(
D(z)−1

)
+ exp

(
−

c

a+ b

)(1−z

z

) a
a+b

D(z)

)
(1− z)

a
a+b

−2O(1) dz

+ o

(
exp
(
−

c

a+ b

))

= o

(
exp
(
−

c

a+ b

))
,

which follows from elementary computations; recall that g(z) −→
c→∞

0 and that

1−D(z) ≤ 1− z. We have, thus, established (3.17), which completes the proof

of Theorem 3.4.

In the subsequent theorems we compile the limit excess distributions of

aU + bV for all combinations of different marginal univariate EVDs. Note that

the df of (U, V ) is a bivariate EVD if, and only if the df of (V,U) is a bivariate

EVD. This implies that the order of the prescribed marginal dfs of (U, V ) in the

subsequent results does not matter.

Theorem 3.5 (ReverseWeibull and Gumbel Margins). Suppose that (U,V )

follows a bivariate EVD and that P (U≤ x) = exp(−e−x), x ∈ R, P (V ≤ y) =

exp
(
−(−y)α

)
, y ≤ 0, α > 0. Then we have for a, b > 0 and t ≥ 0

P
(
aU + bV > c+ t | aU + bV > c

)
−→
c→∞

exp(−t/a) .

The combination of a reverse Weibull and a Gumbel margin is, conse-

quently, dominated by the Gumbel part. The corresponding scale parameter is

preserved in the limit.
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Proof: Wlog we can assume the representation U=− log(−X), V =−(−Y )1/α,

where (X,Y ) follows a bivariate EVD with reverse exponential margins and

dependence function D(z) = 1+
∫ z
0 M(x)−1 dx, see Lemma 2.1. We will establish

in the following

(3.18) ec/aP
(
aU + bV > c

)
−→
c→∞

∫ 0

−∞

exp
(
−
b

a
(−u)1/α

)
exp(u) du ∈ (0, 1)

if U and V are independent and

ec/aP
(
aU+ bV > c

)
−→
c→∞

1−M(0)

∫ 1

0
exp
(
−
(
−log(ua/b)

)α)
du ∈ (0, 1)(3.19)

elsewhere. This implies the assertion.

First we establish (3.18). Conditioning on Y = u we obtain

P
(
aU+ bV > c

)
=

∫ 0

−∞

P
(
−a log(−X) − b(−Y )1/α > c | Y = u

)
exp(u) du

=

∫ 0

−∞

(
1−P

(
X≤− exp

(
−
c+ b(−u)1/α

a

)
| Y = u

))
exp(u) du

=

∫ 0

−∞

(
1 − exp

(
−e−c/a−b(−u)1/α/a

))
exp(u) du

=

∫ 0

−∞

(
e−c/a−b(−u)1/α/a +O

(
e−2c/a−2b(−u)1/α/a

))
exp(u) du

and, thus,

ec/aP
(
aU + bV > c

)
−→
c→∞

∫ 0

−∞

exp
(
−
b

a
(−u)1/α

)
exp(u) du ,

which is (3.18).

Next we establish (3.19). Conditioning on X= u we obtain from Lemma 2.2

P
(
aU+ bV > c

)
=

∫ 0

−∞

P
(
−a log(−u) − b(−Y )1/α > c | X= u

)
exp(u) du

=

∫ 0

−exp(−c/a)

(
1−P

(
Y ≤−

(
−c−a log(−u)

b

)α

| X= u

))
exp(u) du

=

∫ 0

−exp(−c/a)

(
1− exp

{
u
(
D(ũ)−1

)
−

(
−c− a log(−u)

b

)α

D(ũ)

}

×
(
D(ũ) +D′(ũ)(1− ũ)

)
)

exp(u) du ,

where

ũ :=
u

u−
(
−c− a log(−u)

b

)α ∈ [0, 1] .



158 Michael Falk

With the substitution u 7→ − exp(−c/a)u, the above integral equals

exp
(
−
c

a

) ∫ 1

0

(
1 − exp

{
− exp

(
−
c

a

)
u
(
D(ū)−1

)
−
(
− log(ua/b)

)α
D(ū)

}

×
(
D(ū) +D′(ū)(1− ū)

))
exp

(
− exp

(
−
c

a

)
u

)
du ,

where for u ∈ (0, 1)

ū := ˜(
− exp(−c/a)u

)
=

u

u+ exp(c/a)
(
− log(ua/b)

)α ↓
c→∞

0 .

We obtain, consequently,

exp
( c
a

)
P
(
aU + bV > c

)
=

=

∫ 1

0

(
1 −D(ū) −D′(ū)(1− ū)

)
exp

(
− exp

(
−
c

a

)
u

)
du

+

∫ 1

0

{
1 − exp

(
− exp

(
−
c

a

)
u
(
1−D(ū)

)
−
(
− log(ua/b)

)α
D(ū)

)}

×
(
D(ū) +D′(ū)(1− ū)

)
exp

(
− exp

(
−
c

a

)
u

)
du

−→
c→∞

−D′(0) +

∫ 1

0

{
1 − exp

(
−
(
− log(ua/b)

)α)
}(

1+D′(0)
)
du

= 1−M(0)

∫ 1

0
exp
(
−
(
− log(ua/b)

)α)
du ∈ (0, 1) .

Note that necessarily M(0)< 1. Otherwise we had D(z) = 1+
∫ z
0 M(x)−1 dx ≥ 1

and, thus, D would be the constant function 1. But this case was excluded. Thus

we have established (3.19), which completes the proof of Theorem 3.5.

Theorem 3.6 (ReverseWeibull and FréchetMargins). Suppose that (U,V )

follows a bivariate EVD with P (U≤ x) = exp
(
−(−x)α1

)
, x ≤ 0, and P (V ≤ y) =

exp(−y−α2), y > 0, α1, α2 > 0. Then we have for a, b > 0 and t ≥ 1

P
(
aU + bV > tc | aU + bV > c

)
−→
c→∞

t−α2 .

The combination of a reverse Weibull and a Fréchet margin is, therefore,

determined by the Fréchet part. The limit excess df is independent of the scale

parameters.

Proof: It is sufficient to show that for n ∈ N

(3.20) n−1/α2 max
1≤i≤n

(
aUi + bVi

)
−→
D

exp
(
−(y/b)−α2

)
, y > 0 ,
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where (U1, V1), (U2, V2), ... are independent copies of (U, V ). But (3.20) is imme-

diate from the inequalities

a min
1≤i≤n

Ui + b max
1≤i≤n

Vi ≤ max
1≤i≤n

(
aUi + bVi

)
≤ b max

1≤i≤n
Vi

and the facts that

n−1/α2 max
1≤i≤n

Vi =
D

exp(−y−α2) , y > 0 ,

n−1/α2 min
1≤i≤n

Ui −→
n→∞

0 in probability .

Theorem 3.7 (Fréchet and Gumbel Margins). Suppose that the rv (U,V )

follows a bivariate EVD with P (U≤ x) = exp(−x−α), x > 0, where α > 0, and

P (V ≤ y) = exp(−e−y), y ∈ R. Then we have for a, b > 0 and t ≥ 1

P
(
aU + bV > tc | aU + bV > c

)
−→
c→∞

t−α .

The combination of a Fréchet and a Gumbel margin is, consequently, de-

termined by the Fréchet part. The limit excess df is independent of the scale

parameters.

Proof: It is sufficient to show that for n ∈ N

(3.21) n−1/α max
1≤i≤n

(
aUi + bVi

)
−→
D

exp
(
−(x/b)−α

)
, x > 0 ,

where (U1, V1), (U2, V2), ... are independent copies of (U, V ). But (3.21) is imme-

diate from the inequalities

a max
1≤i≤n

Ui + b min
1≤i≤n

Vi ≤ max
1≤i≤n

(
aUi + bVi

)
≤ a max

1≤i≤n
Ui + b max

1≤i≤n
Vi

and the facts that

n−1/α max
1≤i≤n

Ui =
D

exp(−x−α) , x > 0 ,

n−1/α min
1≤i≤n

Vi −→
n→∞

0 , n−1/α max
1≤i≤n

Vi −→
n→∞

0 in probability .
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(B. Finkenstädt and H. Rootzén, Eds.), Chapman & Hall/CRC, Boca Raton,
169–183.

[11] Falk, M. (2006). A representation of bivariate extreme value distributions via
norms on R2, Extremes, 9, 63–68.

[12] Falk, M. and Michel, R. (2006). Testing for tail independence in extreme
value models, Ann. Inst. Statist. Math., 58, 261–290.
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