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Abstract:

• In this paper we present a class of semi-parametric high quantile estimators which
enjoy a desirable property in the presence of linear transformations of the data. Such
a feature is in accordance with the empirical counterpart of the theoretical linearity
of a quantile χp: χp(δX + λ) = δχp(X) + λ, for any real λ and positive δ. This class
of estimators is based on the sample of excesses over a random threshold, originating
what we denominate PORT (Peaks Over Random Threshold) methodology. We prove
consistency and asymptotic normality of two high quantile estimators in this class,
associated with the PORT -estimators for the tail index. The exact performance of
the new tail index and quantile PORT -estimators is compared with the original semi-
parametric estimators, through a simulation study.
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1. INTRODUCTION

In this paper we deal with semi-parametric estimators of the tail index γ

and high quantiles χp, which enjoy desirable properties in the presence of linear

transformations of the available data. We recall that a high quantile is a value

exceeded with a small probability. Formally, we denote by F the heavy-tailed

distribution function (d.f.) of a random variable (r.v.) X, the common d.f. of the

i.i.d. sample X := {Xi}n
i=1, for which the high quantile

(1.1) χp(X) := F←(1 − p) , p = pn→ 0, as n→∞ , n pn → c ≥ 0 ,

has to be estimated. Here F←(t) := inf{x : F (x) ≥ t} denotes the generalized

inverse function of F .

We consider estimators based on the k + 1 top order statistics (o.s.),

Xn:n ≥ ··· ≥ Xn−k:n, where Xn−k:n is an intermediate o.s., i.e., k is an inter-

mediate sequence of integers such that

(1.2) k = kn → ∞ , kn/n → 0, as n → ∞ .

We assume that we are working in a context of heavy tails, i.e., γ > 0 in the

extreme value distribution

(1.3) Gγ(x) =

{
exp
{
−(1 + γ x)−1/γ

}
, 1 + γ x > 0, γ 6= 0

exp
(
−e−x

)
, x ∈ R, γ = 0 ,

the non-degenerate d.f. to which the maximum Xn:n is attracted, after a suitable

linear normalization. When this happens we say that the d.f. F is in the Fréchet

domain of attraction and we write F ∈ D(Gγ)γ>0.

The paper is developed under the first order regular variation condition,

which allows the extension of the empirical d.f. beyond the range of the available

data, assuming a polynomial decay of the tail. This condition can be expressed

by

(1.4) F ∈ D(Gγ)γ>0 iff F := 1−F ∈ RV
−1/γ iff U ∈ RVγ ,

where U is the quantile function defined as U(t) := F←(1−1/t), t≥1; the nota-

tion RVα stands for the class of regularly functions at infinity with index of regular

variation α, i.e., positive measurable functions h such that lim
t→∞

h(tx)/h(t) = xα,

for all x > 0.

It is interesting to note that the p-quantile can be expressed as χpn =

U(1/pn).
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To get asymptotic normality of estimators of parameters of extreme events,

it is usual to assume the following extra second regular variation condition, that

involves a non-positive parameter ρ:

(1.5) lim
t→∞

U(tx)/U(t) − xγ

A(t)
= xγ xρ − 1

ρ
,

for all x > 0, where A is a suitably chosen function of constant sign near infinity.

Then, |A| ∈ RVρ and ρ is called the second order parameter (Geluk and de Haan,

1987). For the strict Pareto model, with tail function F (x) = (x/C)−1/γ and

quantile function U(t)=Ctγ , U(tx)/U(t) − xγ ≡ 0. We then consider that (1.5)

holds with A(t) ≡ 0.

More restrictively, we might consider that F belonged to the wide class of

Hall [11], that is, the associated quantile function U satisfies

(1.6) U(t) = Ctγ
(
1+Dtρ +o(tρ)

)
, ρ<0, C >0, D∈R, as t→∞ ,

or equivalently, (1.5) holds, with A(t)=Dρtρ. The strict Pareto model appears

when both D and the remainder term o(tρ) are null.

Returning to the problem of high quantile estimation, we recall the classical

semi-parametric Weissman-type estimator of χpn (Weissman, 1978),

(1.7) χ̂pn = χ̂pn(X) = Xn−kn:n

(
kn

npn

)̂γn

,

with γ̂n = γ̂n(X) some consistent estimator of the tail parameter γ.

In the classical approach one considers for γ̂n the well known Hill estimator

(Hill, 1975),

(1.8) γ̂H
n = γ̂H

n (X) =
1

kn

kn∑

j=1

log
Xn−j+1:n

Xn−kn:n
,

or the Moment estimator (Dekkers et al., 1989),

(1.9) γ̂M
n = γ̂M

n (X) = M (1)
n + 1 − 1

2

{
1 −

(
M

(1)
n

)2

M
(2)
n

}
−1

,

with M
(r)
n , the r-Moment of the log-excesses, defined by

(1.10) M (r)
n = M (r)

n (X) =
1

kn

kn∑

j=1

(
log

Xn−j+1:n

Xn−kn:n

)r

, r = 1, 2 .

We use the following notation:

(1.11) χ̂H
pn

= Xn−kn:n

(
kn

npn

)̂γH
n

, χ̂M
pn

= Xn−kn:n

(
kn

npn

)̂γM
n

.



PORT Methodology in Heavy Tails 231

Finally, we explain the question that motivated this paper. It is well known

that scale transformations to the data do not interfere with the stochastic be-

haviour of the tail index estimators (1.8) and (1.9), i.e., we can say that they

enjoy scale invariance. The incorporation of (1.8) or (1.9) in the Weissman-type

estimator in (1.7), allows us to obtain the following desirable exact property for

quantile estimators: for any real positive δ,

(1.12) χ̂pn(δX) = δXn−kn:n

(
kn

npn

)̂γn

= δ χ̂pn(X) .

But we want a similar linear property in the case of location transformations to

the data, Zj :=Xj +λ, j =1, ..., n, for any real λ. That is, our main goal is that,

for the transformed data Z := {Zj}n
j=1, the quantile estimator satisfies

(1.13) χ̂pn(Z) = χ̂pn(X) + λ .

Altogether, this represents the empirical counterpart of the following theoretical

linear property for quantiles,

(1.14) χp(δX +λ) = δχp(X) + λ , for any real λ and real positive δ .

Here we present a class of high quantile-estimators for which (1.12) and (1.13)

hold exactly, pursuing the empirical counterpart of the theoretical linear property

(1.14). For a simple modification of (1.7) that enjoys (1.13) approximately, see

Fraga Alves and Araújo Santos (2004). For the use of reduced bias tail index

estimation in high quantile estimation for heavy tails, see Gomes and Figueiredo

(2003), Matthys and Beirlant (2003) and Gomes and Pestana (2005), where the

second order reduced bias tail index estimator in Caeiro et al. (2005) is used for

the estimation of the Value at Risk.

1.1. The class of high quantile estimators under study

The class of estimators suggested here is function of a sample of excesses

over a random threshold Xnq :n,

(1.15) X(q) :=
(
Xn:n−Xnq :n, Xn−1:n−Xnq :n, ..., Xnq+1:n−Xnq :n

)
,

where nq := [nq]+1, with:

• 0<q<1, for d.f.’s with finite or infinite left endpoint xF := inf{x : F (x)>0}
(the random threshold is an empirical quantile);

• q = 0, for d.f.’s with finite left endpoint xF (the random threshold is the

minimum).
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A statistical inference method based on the sample of excesses X(q) defined in

(1.15) will be called a PORT -methodology, with PORT standing forPeaks Over

Random Threshold. We propose the following PORT-Weissman estimators:

(1.16) χ̂(q)
pn

= (Xn−kn:n−Xnq :n)

(
kn

npn

)̂γ(q)
n

+ Xnq :n ,

where γ̂
(q)
n is any consistent estimator of the tail parameter γ, made location/scale

invariant by using the transformed sample X(q). Indeed, the incorporation in the

Adapted-Weissman estimator in (1.16), of tail index estimators, as function of

the sample of excesses, allows us to obtain exactly the linear property (1.13).

1.2. Shifts in a Pareto model

To illustrate the behaviour of the new quantile estimators in (1.16), we

shall first consider a parent X from a Pareto(γ, λ, δ),

(1.17) Fγ,λ,δ(z) = 1 −
(

z − λ

δ

)
−1/γ

, z > λ+δ, δ > 0 ,

with λ = 0 and γ = δ = 1. Let us assume that we want to estimate an upper

p = pn = 1
n -quantile in a sample of size n = 500. Then, we want to estimate

the parameter χp(X) = 500. If we induce a shift λ = 100 to our data, we would

obviously like our estimates to approach χp(X+100) = 600.

In Figure 1 we plot, for the Pareto(λ, 1, 1) parents, with λ = 0 and λ = 100

and for q = 0 in (1.15), the simulated mean values of the Weissman and PORT-

Weissman quantile estimators based on the Hill, denoted χ̂H
p and χ̂

H(q)
p , respec-

tively. These mean values are based on N = 500 replications, for each value k,

5≤ k ≤ 500, from the above mentioned models.

Similarly to the Hill horror plots (Resnick, 1997), associated to slowly vary-

ing functions L
U
(t) = t−γ U(t), we also obtain here Weissman–Hill horror plots

whenever we induce a shift in the simple standard Pareto model. Indeed, for

a standard Pareto model (λ = 0 in (1.17)), Weissman type estimators in (1.7)

perform reasonably well, with γ̂n = γ̂H
n . However, a small shift in the data may

lead to disastrous results, even in this simple and specific case. For the PORT-

Weissman estimates, the shift in the quantile estimates is equal to the shift

induced in the data, a sensible property of quantile estimates. Figure 1 also illus-

trates how serious can be the consequences to the sample paths of the classical

high quantile estimators, when we induce a shift in the data, as suggested in

Drees (2003). We may indeed be led to dangerous misleading conclusions, like

a systematic underestimation, for instance, mainly due to “stable zones” far away

of the target quantile to be estimated.
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Figure 1: Mean values of χ̂H
pn

and χ̂
H(0)
pn

, pn = 0.002 for samples of size n=500
from a Pareto(1, 0, 1) parent (target quantile χpn

= 500) and from the
Pareto(1, 100, 1) (target quantile χpn

= 600).

1.3. Scope of the paper

As far as we know, no systematic study has been done concerning asymp-

totic and exact properties of semi-parametric methodologies for tail index and

high quantile estimation, using the transformed sample in (1.15). Somehow re-

lated with this subject, Gomes and Oliveira (2003), in a context of regularly

varying tails, suggested a simple generalization of the classical Hill estimator

associated to artificially shifted data. The shift imposed to the data is determin-

istic, with the aim of reducing the main component of the bias of Hill’s estimator,

getting thus estimates with stable sample paths around the target value. A pre-

liminary study has also been carried out, by the same authors, replacing the

artificial deterministic shift by a random shift, which in practice represents a

transformation of the original data through the subtraction of the smallest ob-

servation, added by one, whenever we are aware that the underlying heavy-tailed

model has a finite left endpoint.

With the purpose of tail index and high quantile estimation there is, in our

opinion, a gap in the literature regarding classical semi-parametric estimation

methodologies adapted for shifted data, the main topic of this paper.

In Section 2, we derive asymptotic properties for the adapted Hill and

Moment estimators, as functions of the sample of excesses (1.15). In Section

3, we propose two estimators for χp that belong to the class (1.16) and prove

their asymptotic normality. In Section 4, and through simulation experiments,

we compare the performance of the new estimators with the classical ones.

Finally, in Section 5, we draw some concluding remarks.
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2. TAIL INDEX PORT-ESTIMATORS

For the classical Hill and Moment estimators, we know that for any interme-

diate sequence k as in (1.2) and under the validity of the second order condition

in (1.5),

γ̂H
n

d
= γ +

γ√
k

PH
k +

A(n/k)

1−ρ

(
1 + op(1)

)
(2.1)

and

γ̂M
n

d
= γ +

√
γ2 +1√

k
PM

k +

(
γ(1−ρ) + ρ

)
A(n/k)

γ(1−ρ)2
(
1 + op(1)

)
,(2.2)

where PH
k and PM

k are asymptotically standard normal r.v.’s.

In this section we present asymptotic results for the classical Hill estimator

in (1.8) and the Moment estimator in (1.9), both based on the sample of excesses

X(q) in (1.15), which will be denoted respectively, by

(2.3) γ̂H(q)
n := γ̂H

n

(
X(q)

)
and γ̂M(q)

n := γ̂M
n

(
X(q)

)
, 0≤ q < 1 .

In the following, χ∗q denotes the q-quantile of F : F (χ∗q) = q (by convention

χ∗0 := xF ), so that

Xnq :n
p−→ χ∗q , as n→∞ , for 0≤ q < 1 .

For the estimators in (2.3) we have the asymptotic distributional representations

expressed in Theorem 2.1.

Theorem 2.1 (PORT-Hill and PORT-Moment). For any intermediate

sequence k as in (1.2), under the validity of the second order condition in (1.5),

for any real q, 0 ≤ q < 1, and with T generally denoting either H or M , the

asymptotic distributional representation

(2.4) γ̂T (q)
n

d
= γ +

σ
T√
k

P T
k +

(
c

T
A(n/k) + d

T

χ∗q
U(n/k)

)(
1 + op(1)

)

holds, where P T
k is an asymptotically standard normal r.v.,

σ2
H

:= γ2 , c
H

:=
1

1−ρ
, d

H
:=

γ

γ +1
,(2.5)

σ2

M
:= γ2 +1 , c

M
:=

γ(1−ρ) + ρ

γ(1−ρ)2
and d

M
:=

(
γ

γ +1

)2

.(2.6)
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Remark 2.1. Notice that σ2
M

= σ2
H

+1, c
M

= c
H

+ ρ
γ(1−ρ)2

and d
M

= (d
H
)2.

Consequently, σ
M

> σ
H

, c
M
≤ c

H
and d

M
< d

H
.

The proof of Theorem 2.1 relies on the the following Lemmas 2.1 and 2.2.

Lemma 2.1. Let F be the d.f. of X, and assume that the associated

U -quantile function satisfies the second order condition (1.5). Consider a deter-

ministic shift transformation to X, defining the r.v. Xq := X − χ∗q with d.f.

Fq(x)=F (x)+χ∗q and associated Uq-quantile function given by Uq(t) :=F←q (1−1/t)

= U(t)−χ∗q .

Then Uq satisfies a second order condition similar to (1.5), that is

(2.7) lim
t→∞

Uq(tx)/Uq(t) − xγ

Aq(t)
= xγ

(
xρq − 1

ρq

)
, for x > 0, ρq ≤ 0 ,

with

(2.8)
(
Aq(t), ρq

)
:=






(
A(t) , ρ

)
if ρ >−γ ;

(
A(t)+

γχ∗q
U(t)

, −γ

)
if ρ =−γ ;

(
γχ∗q
U(t)

, −γ

)
if ρ <−γ .

Proof: Under (1.5), for x > 0,

Uq(tx)

Uq(t)
=

U(tx) − χ∗q
U(t) − χ∗q

=
U(tx)

U(t)

{
1 − χ∗q /U(tx)

1 − χ∗q /U(t)

}

=
U(tx)

U(t)

{
1 + χ∗q

1/U(t) − 1/U(tx)

1 − χ∗q /U(t)

}

=
U(tx)

U(t)

{
1 +

χ∗q
U(t)

[
1− U(t)

U(tx)

] (
1+ o(1)

)
}

= xγ

{
1 +

xρ−1

ρ
A(t)

(
1+ o(1)

)
}{

1 +
γχ∗q
U(t)

x−γ −1

−γ

(
1+ o(1)

)
}

= xγ

{
1 +

xρ−1

ρ
A(t) +

γχ∗q
U(t)

x−γ −1

−γ
+ o
(
A(t)

)
+ o
(
1/U(t)

)
}

.

Then Uq satisfies (2.7), for Aq and ρq defined in (2.8) and the result follows.
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Lemma 2.2. Denote by M
(r,q)
n the M

(r)
n statistics in (1.10), as functions

of the transformed sample X(q), 0≤ q < 1 in (1.15); that is,

M (r,q)
n := M (r)

n

(
X(q)

)
=

1

k

k∑

j=1

(
log

Xn−j+1:n− Xnq :n

Xn−k:n− Xnq :n

)r

, r = 1, 2 .

Then, for any intermediate sequence k as in (1.2), under the validity of the second

order condition in (1.5) and for any real q, 0≤ q < 1,

M (r,q)
n − 1

k

k∑

j=1

(
log

Xn−j+1:n− χ∗q
Xn−k:n− χ∗q

)r

= op

(
1

U(n/k)

)
, r = 1, 2 .

Proof: We will consider r = 1. Using the first order approximation

ln(1+ x) ∼ x, as x → 0, together with the fact that Xnq :n = χ∗q
(
1+ op(1)

)
,

we will have successively

M (1,q)
n − 1

k

k∑

j=1

log
Xn−j+1:n− χ∗q
Xn−k:n− χ∗q

=

=
1

k

k∑

j=1

log
Xn−j+1:n− Xnq :n

Xn−k:n− Xnq :n
− log

Xn−j+1:n− χ∗q
Xn−k:n− χ∗q

=
1

k

k∑

j=1

log
1 − Xnq :n/Xn−j+1:n

1 − Xnq :n/Xn−k:n
− log

1 − χ∗q /Xn−j+1:n

1 − χ∗q /Xn−k:n

=
1

k

k∑

j=1

(
Xnq :n

Xn−k:n
− Xnq :n

Xn−j+1:n
+

χ∗q
Xn−j+1:n

−
χ∗q

Xn−k:n

)(
1+ op(1)

)

=
Xnq :n− χ∗q

Xn−k:n

1

k

k∑

j=1

(
1− Xn−k:n

Xn−j+1:n

)(
1+ op(1)

)

=
op(1)

Xn−k:n

1

k

k∑

j=1

(
1− Xn−k:n

Xn−j+1:n

)(
1+ op(1)

)
.

Denote by {Yj}k
j=1 i.i.d. Y standard Pareto r.v.’s, with d.f. FY (y) = 1−y−1,

for y > 1 and {Yj:k}k
j=1 the associated o.s.’s.

Since Xn−k:n
d
= U(Yn−k:n), with Yn−k:n the (n−k)-th o.s. associated to an

i.i.d. standard Pareto sample of size n and
(

k
n

)
Yn−k:n

p−→ 1, for any intermediate

sequence k, then
Xn−k:n

U(n/k)

p−→ 1; this together with the fact that

{
Yn−j+1:n

Yn−k:n

}k

j=1

d
=
{

Yk−j+1:k

}k

j=1
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allow us to write

M (1,q)
n − 1

k

k∑

j=1

log
Xn−j+1:n− χ∗q
Xn−k:n− χ∗q

=

=
op(1)

U(Yn−k:n)

1

k

k∑

j=1



1 − U(Yn−k:n)

U
(

Yn−j+1:n

Yn−k:n
Yn−k:n

)



(1+ op(1)
)

=
1

k

k∑

j=1

(
1− Y −γ

k−j+1:k

)
op

(
1

U(n/k)

)(
1+ op(1)

)

=
1

k

k∑

j=1

(
1− Y −γ

j

)
op

(
1

U(n/k)

)(
1+ op(1)

)
.

Now E
[
Y −γ

]
= 1

γ+1 and by the weak law of large numbers we obtain

M (1,q)
n − 1

k

k∑

j=1

log
Xn−j+1:n− χ∗q
Xn−k:n− χ∗q

=

=
γ

γ +1

(
1+ op

(
1/
√

k
))

op

(
1

U(n/k)

)

= op

(
1

U(n/k)

)
.

For r = 2 steps similar to the previous ones lead us to the result.

Remark 2.2. Note that if q ∈ (0, 1), Xnq :n− χ∗q = Op(1/
√

n) and for

r = 1, 2,
√

k
[
M

(r,q)
n − 1

k

∑k
j=1

{
log

Xn−j+1:n−χ∗

q

Xn−k:n−χ∗

q

}r ]
= Op

(√
k/n 1

U(n/k)

)
= op(1)

holds.

Proof of Theorem 2.1: Taking into account Lemma 2.2

γ̂H(q)
n =

1

k

k∑

j=1

log
Xn−j+1:n− χ∗q
Xn−k:n− χ∗q

+ op

(
1

U(n/k)

)
.

Now, considering the result in Lemma 2.1 and representation (2.1) adapted for

the deterministic shift data from Xq := X − χ∗q model, we obtain the following

representation for PORT -Hill estimator

γ̂H(q)
n

d
= γ +

γ√
k

PH
k +

Aq(n/k)

1−ρq

(
1+ op(1)

)
+ op

(
1

U(n/k)

)
,

with Aq(t) provided in (2.8), and the result (2.4) follows with T = H.
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Similarly, considering Lemmas 2.1 and 2.2 and the representation (2.2)

adapted for the deterministic shift data from Xq := X− χ∗q model, we obtain for

the PORT -Moment estimator the representation

γ̂M(q)
n

d
= γ +

√
γ2+1√

k
PM

k +

(
γ(1−ρq)+ρq

)
Aq(n/k)

γ(1−ρq)
2

(
1+op(1)

)
+op

(
1

U(n/k)

)
,

and result (2.4) follows with T = M .

Remark 2.3. Note that if we induce a deterministic shift λ to data X

from a model F =: F0, i.e., if we work with the new model Fλ(x) := F0(x−λ), the

associated U -quantile function changes to Uλ(t) = λ + δU0(t). Then, as expected,

(2.4) holds whenever we replace γ̂
H(q)
n by γ̂H

n |λ (the Hill estimator associated

with the shifted population with shift λ) provided that we replace χ∗q by −λ.

This topic has been handled in Gomes and Oliveira (2003), where the shift λ is

regarded as a tuning parameter of the statistical procedure that leads to the tail

index estimates. The same comments apply to the classical Moment estimator.

Corollary 2.1. For the strict Pareto model, i.e., the model in (1.17) with

λ = 0 and γ = δ = 1, the distributional representations (2.4) holds with A(t)

replaced by 0.

Under the conditions of Theorems 2.1 and with the notations defined in

(2.5) and (2.6), the following results hold:

Corollary 2.2. Let µ1 and µ2 be finite constants and let T generically

denote either H or M .

i) For γ > −ρ,

γ̂T (q)
n

d
= γ +

σ
T√
k

P T
k + c

T
A(n/k)

(
1 + op(1)

)
.

If
√

k A(n/k) → µ1, then

√
k
(
γ̂T (q)

n − γ
)

d−→
n→∞

Normal
(
µ1 c

T
, σ2

T

)
.

ii) For γ < −ρ,

γ̂T (q)
n

d
= γ +

σ
T√
k

P T
k + d

T

χ∗q
U(n/k)

(
1+ op(1)

)
.

If
√

k/U(n/k) → µ2, then

√
k
(
γ̂T (q)

n − γ
)

d−→
n→∞

Normal
(
µ2 d

T
χ∗q , σ2

T

)
.
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iii) For γ = −ρ,

γ̂T (q)
n

d
= γ +

σ
T√
k

P T
k +

[
c

T
A(n/k) + d

T

χ∗q
U(n/k)

] (
1+ op(1)

)
.

If
√

k A(n/k) → µ1 and
√

k/U(n/k) → µ2, then

√
k
(
γ̂T (q)

n − γ
)

d−→
n→∞

Normal
(
µ1 c

T
+ µ2 d

T
χ∗q , σ2

T

)
.

3. HIGH QUANTILE PORT-ESTIMATORS

On the basis of (1.16), we shall now consider the following estimators of χpn ,

functions of the sample of excesses over Xnq :n, i.e., of the sample X(q) in (1.15):

χ̂H(q)
pn

:=
(
Xn−kn:n− Xnq :n

)( kn

npn

)̂γH(q)
n

+ Xnq :n , 0≤ q < 1 ,(3.1)

χ̂M(q)
pn

:=
(
Xn−kn:n− Xnq :n

)( kn

npn

)̂γM(q)
n

+ Xnq :n , 0≤ q < 1 .(3.2)

For these estimators we have the asymptotic distributional representations pre-

sented in Theorem 3.1.

Theorem 3.1. In Hall’s class (1.6), for intermediate sequences kn that

satisfy

(3.3) log (npn)/
√

kn → 0 , as n→∞ ,

with pn such that (1.1) holds, then, with T denoting either H or M , (c
H

, d
H

, σ
H

)

and (c
M

, d
M

, σ
M

) defined in (2.5) and (2.6), respectively, and for any real q,

0 ≤ q < 1,

√
kn

σT log
(
kn/(npn)

)
(

χ̂
T (q)
pn

χpn

−1

)
= P T

k +
√

kn

(
c

T
A(n/k)+d

T

χ∗q
U(n/k)

)
(
1+op(1)

)
,

where P T
k is an asymptotically standard normal r.v.

Proof: From now on, we denote an := kn

npn
. With the underlying condi-

tions in (1.1), an tends to infinity, as n→∞, and the quantile to be estimated

can be expressed as

χpn = U

(
1

pn

)
= U

(
nan

kn

)
.

We will present the proof for T = H, since for T = M the proof follows

the same steps.
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First notice that

χ̂H(q)
pn

=
(
Xn−kn:n− Xnq :n

)
aγ̂

H(q)
n

n + Xnq :n

= Xn−kn:n

[(
1 − Xnq :n

Xn−kn:n

)
aγ̂

H(q)
n

n +
Xnq :n

Xn−kn:n

]
.

Now, since Xnq :n
p−→χ∗q , we have

Xnq :n

Xn−kn:n
= op(1). Then

χ̂H(q)
pn

= Xn−kn:n

[
aγ̂

H(q)
n

n

(
1+ op(1)

)]
,

which means that the proposed estimator χ̂
H(q)
pn is asymptotically equivalent to

the Weissman type estimator (1.7), whenever we use the consistent estimator

γ̂n ≡ γ̂
H(q)
n .

Consider now a convenient representation for the difference,

χ̂H(q)
pn

− χpn = Xn−kn:n

{
aγ̂

H(q)
n

n − aγ̂
H(q)
n

n

(
Xnq :n

Xn−kn:n

)
+

Xnq :n

Xn−kn:n
− χpn

Xn−kn:n

}
,

and recall that we may write

χpn

Xn−kn:n
=

U
(

n
kn

an

)

U
(

n
kn

)
U
(

n
kn

)

U(Yn−kn:n)
.

According to (1.5), for ρ < 0, U
(

n
kn

an

)
/U
(

n
kn

)
= aγ

n

(
1−A(n/kn)/ρ

) (
1+op(1)

)
.

Considering that for the estimator γ̂
H(q)
n , the representation (2.4) holds,

we get successively, for sequences kn that verify (3.3),

aγ̂
H(q)
n

n = aγ
n

(
1+ log an

(
γ̂H(q)

n − γ
)) (

1+ op(1)
)

and

χ̂H(q)
pn

− χpn =

= aγ
n Xn−kn:n

{
1+ log an

(
γ̂H(q)

n −γ
)(

1+op(1)
)
−
(
1−A(n/kn)/ρ

)(
1+op(1)

)}

= aγ
n Xn−kn:n

{
log an

(
γ̂H(q)

n −γ
)

+ A(n/kn)/ρ

}(
1+op(1)

)
.

Now, we consider the following representation for intermediate statistics, proved

in Ferreira et al. (2003),

(3.4) Xn−kn:n
d
= U

(
n

kn

)(
1 +

γBk√
kn

+ op

(
1√
kn

)
+ op

(
A(n/kn)

))
,

with Bk an asymptotically standard normal r.v.
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Using (2.4) and (3.4), we may write

χ̂H(q)
pn

− χpn = U

(
n

kn

)
aγ

n

(
1+ Op

(
1/
√

kn

)){
Wn + A

( n

kn

)
/ρ

}(
1+ op(1)

)
,

where

Wn = log an

(
γ̂H(q)

n − γ
)

= log an

(
σH√
kn

PH
k +

(
c

H
A(n/k) + d

H

χ∗q
U(n/k)

)(
1+ op(1)

)
)

,

with PH
k independent of the random sequence Bk in (3.4).

Consequently,

χ̂
H(q)
pn − χpn

aγ
n U
(

n
kn

) =
{
Wn + A(n/k)/ρ

} (
1+ op(1)

)

and

√
kn

σH log an

(
χ̂

H(q)
pn

χpn

− 1

)
= PH

k +
√

kn

(
c

H
A(n/k) + d

H

χ∗q
U(n/k)

)(
1+ op(1)

)
.

The following result is a direct consequence of Corollary 2.2 and Theorem 3.1.

Corollary 3.1. Under the same conditions of Theorem 3.1, then, with

T replaced by H or M , and (c
H

, d
H

, σ
H
) and (c

M
, d

M
, σ

M
) defined in (2.5) and (2.6),

respectively, the following results hold.

i) For γ > −ρ,

√
kn

σ
T

log
(
kn/(npn)

)
(

χ̂
T (q)
pn

χpn

−1

)
= P T

k +
√

kn

(
c

T
A(n/k)

) (
1+ op(1)

)
,

If
√

kn A(n/kn) → µ1, finite, as n→∞, then the mean value is µ1 c
T

.

ii) For γ < −ρ,

√
kn

σ
T

log
(
kn/(npn)

)
(

χ̂
T (q)
pn

χpn

−1

)
= P T

k +
√

kn

(
d

T

χ∗q
U(n/kn)

)(
1+ op(1)

)
,

If
√

kn/U(n/kn)→µ2, finite, as n→∞, then the mean values is µ2d
T
χ∗q .
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iii) For ρ = −γ,

√
kn

σ
T

log
(
kn/(npn)

)
(

χ̂
T (q)
pn

χpn

−1

)
=

= P T
k +

√
kn

(
c

T
A(n/k) + d

T

χ∗q
U(n/kn)

)(
1+ op(1)

)
,

If
√

kn A(n/kn) → µ1, finite, and
√

kn/U(n/kn) → µ2, finite, as n→∞,

then the mean value is µ1 c
T

+ µ2 d
T
χ∗q .

4. SIMULATIONS

Here, we compare the finite sample behavior of the proposed high quantile

estimators χ̂
H(q)
pn in (3.1) and χ̂

M(q)
pn in (3.2) with the classical semi-parametric

estimators χ̂H
pn

and χ̂M
pn

in (1.11). We have generated N = 200 independent repli-

cates of sample size n = 1000 from the following models:

• Burr Model: X ⌢ Burr(γ, ρ), γ = 1, ρ =−2,−0.5, with d.f.

F (x) = 1 −
(
1+ x−ρ/γ

)1/ρ
, x ≥ 0 .

• Cauchy Model: X ⌢ Cauchy , γ = 1, ρ =−2, with d.f.

F (x) =
1

2
+

1

π
arctang x , x ∈ R .

At a first stage, we generate samples from the standard models F0 := F . At a

second stage, we introduce a positive shift λ = χ0.01, i.e., a new location chosen

in a comparable basis as the percentile 99% of the starting point distribution F0.

This defines a new model Fλ(x) := F0(x−λ) from the same family.

We estimate the high quantile χ0.001, for each model F0 or Fλ from the

referred Burr and Cauchy families, and we present patterns of Mean Values and

Root of Mean Squared Errors, plotted against k = 6, ..., 800.

The simulations illustrate the dramatic disturbance on the behavior of the

classical quantile estimators in (1.11), when a shift is introduced. We, again,

enhance that the flat stable zones achieved with these estimators, in the presence

of shifts, could lead us to dangerous misleading conclusions, unless we are aware

of the suitable threshold k or of specific properties of the underlying model.
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Figure 2: Mean values (left) and root mean squared errors (right), of χ̂
H(0)
pn

,

χ̂
M(0)
pn

, χ̂H
pn

and χ̂M
pn

, for a sample size n = 1000, from a Burr model
with γ = 1, ρ =−2 and λ = 0 (target quantile χ0.001 = 1000).
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Figure 3: Mean values (left) and root mean squared errors (right), of χ̂
H(0)
pn

,

χ̂
M(0)
pn

, χ̂H
pn

and χ̂M
pn

, for a sample size n = 1000, from a Burr model
with γ = 1, ρ =−2 and λ = 99.99 (target quantile χ0.001 = 1099.99).
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Figure 4: Mean values (left) and root mean squared errors (right), of χ̂
H(0)
pn

,

χ̂
M(0)
pn

, χ̂H
pn

and χ̂M
pn

, for a sample size n = 1000, from a Burr model
with γ = 1, ρ =−0.5 and λ = 0 (target quantile χ0.001 = 937.731).
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Figure 5: Mean values (left) and root mean squared errors (right), of χ̂
H(0)
pn

,

χ̂
M(0)
pn

, χ̂H
pn

and χ̂M
pn

, for a sample size n = 1000, from a Burr model
with γ = 1, ρ =−0.5 and λ = 81.023 (target quantile χ0.001 = 1018.754).
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Figure 6: Mean values (left) and root mean squared errors (right), of χ̂
H(0.5)
pn

,

χ̂
M(0.5)
pn

, χ̂H
pn

and χ̂M
pn

, for a sample size n = 1000, from a Cauchy model
with γ = 1, ρ =−2 and λ = 0 (target quantile χ0.001 = 319.309).
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Figure 7: Mean values (left) and root mean squared errors (right), of χ̂
H(0.5)
pn

,

χ̂
M(0.5)
pn

, χ̂H
pn

and χ̂M
pn

, for a sample size n = 1000, from a Cauchy model
with γ = 1, ρ =−2 and λ = 31.821 (target quantile χ0.001 = 351.13).

From the figures, in this section, we observe that the classical quantile

estimators diverge a lot from the important linear property (1.13). On the other

hand, the estimators we propose, (3.1) and (3.2), enjoy exactly this property.
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5. CONCLUDING REMARKS

• The PORT tail index and quantile estimators, based on the sample of

excesses, X(q), in (1.15), provide us with interesting classes of estimators,

invariant for changes in location, as well as scale, a property also common

to the classical estimators.

• In practice, whenever we use a tuning parameter q in (0, 1), we are always

safe. Indeed, in such a case, the new estimators may or may not behave

better than the classical ones, but they are consistent and asymptotically

normal for the same type of k-values.

• A tuning parameter q = 0 is appealing but should be used carefully.

Indeed, if the underlying parent has not a finite left endpoint, we are led

to non-consistent estimators, with sample paths that may be erroneously

flat around a value quite far away from the real target.
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