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1. INTRODUCTION

Modeling count data is an important issue in different disciplines and applied sciences
such as medicine (see, for example, Joe and Zhu [25]), actuarial sciences (see, for example,
Gossiaux and Lemaire [17], Lord et al. [32]), biology (see, for instance, Esnaola et al. [14]),
health economics (see, for example, Zafakali and Ahmad [50]), among many others. With this
aim, the one-parameter Poisson distribution and the two-parameter Negative Binomial dis-
tribution are commonly used. Nevertheless, observed count data often exhibit overdispersion
(i.e., variance greater than the mean) and, therefore, the Poisson distribution is not adequate
for fitting such data, since its variance is restricted to be equal to the mean. Additionally, a
second usual feature of the observed count data is the presence of a high percentage of zero
values (zero inflation or zero vertex). The zero-inflation index zi = 1 + log(p0)/µ, where p0

is the probability of zero, can be used to measure zero-inflation. Then zi = 0 for Poisson
distribution, and zi = 1 + log(d)/(1− d) > 0 for the Negative Binomial, where d denotes the
Fisher dispersion index given by d = σ2/µ, where σ2 and µ are the variance and mean, re-
spectively [see 42]. Therefore, the Negative Binomial distribution is an improvement over the
Poisson distribution, since it can model overdispersed and zero-inflated data.

Several other distributions have been presented in the statistical literature to handle
both overdispersion and zero-inflation. In this frame, Neyman [39] developed the now well-
known Neyman type A (NTA) distribution, which is overdispersed, because d ≥ 1, and its
zero-inflation index zi is always larger than the respective for the Negative Binomial for any
fixed value of the dispersion index d (see Figure 1 in Puig and Valero [42]). For these reasons,
the NTA distribution has been used in various disciplines such as bacteriology, ecology and
entomology. The reader is referred to Johnson et al. [26, Chapter 9] and to Tripathi [49] for
a list of applications of NTA distribution. Let pN (k; τ, δ) and gN (t; τ, δ) be the probability
mass function (pmf) and probability generating function (pgf) of the NTA distribution, with
parameters δ > 0 and τ > 0. We have that

(1.1) Pr(X = k) := pN (k; τ, δ) =
τkeδ(e−τ−1)

k!
mk(δe−τ ), k ∈ N0,

where N0 = N ∪ {0} = {0, 1, 2, ...}, mk(r) =
∑k

j=0 S(j, k)rk is the k-th moment about zero
for the Poisson distribution with parameter r > 0, and S(k, j) are the Stirling numbers
of second kind (see, for instance, Massé and Theodorescu [33] for further details). Also,
gN (t; τ, δ) = exp[δ(eτ(t−1) − 1)], |t| ≤ 1. We shall use the notation X ∼ NTA(τ, δ) to refer
to this distribution.

Recently, Castellares et al. [8] on the basis of a series expansion presented in Touchard
[48] and Bell [4, 5], obtained a two-parameter family of distributions (named as Bell–Touchard
distribution) with pmf of the form

(1.2) Pr(X = k) := p(k; θ) =
eb(1−ea) ak Tk(b)

k!
, k ∈ N0,

where a > 0 and b > 0, θ = (a, b) ∈ Θ = (0,∞)× (0,∞), and Tk(·) are the Touchard polyno-
mials [48] defined by Tk(b) = e−b

∑∞
j=0 j

k bj/j!. We shall use the notation X ∼ BT(a, b),
or X ∼ BT(θ), to refer to the NTA distribution with this specific parameterization. If
X ∼ BT(a, b), then its pgf is given by

(1.3) g(t; θ) = exp{[b(eta − ea)]}, |t| ≤ 1.



On goodness-of-fit tests for the Neyman type A distribution 145

The Touchard polynomials Tk(b) corresponds to the k-th moment of the Poisson distribution
with parameter equal to b and can be obtained for different values of k. For example, T0(b) =
1, T1(b) = b, T2(b) = b2 + b, T3(b) = b3 +3b2 + b, T4(b) = b4 +6b3 +7b2 + b, T5(b) = b5 +10b4 +
25b3 + 15b2 + b, T6(b) = b6 + 15b5 + 65b4 + 90b3 + 31b2 + b, and so on.

Remark 1.1. Note that when b = 1 in (1.2), the pmf of the Bell distribution intro-
duced by Castellares et al. [7] is obtained as a special case, while the BT(a, b) distribution
corresponds to the NTA(δ = bea, τ = a) distribution. So, the Bell–Touchard (BT) distribu-
tion is a reparameterization of the NTA distribution and, hence, in the whole paper the BT
distribution stands for this reparameterization of the NTA distribution.

It is worth emphasizing that the two-parameter BT discrete distribution, or equiva-
lently the NTA distribution, is very simple to deal with, since its pmf does not contain any
complicated function. Tractability of the pmf may be a great advantage in computing the
probabilities, as well as structural properties from that equation. The BT distribution has,
among many other interesting properties the following properties:

(i) it includes the one-parameter Bell distribution introduced by Castellares et al.

[7] as a special case, which is also a reparameterization of the well-known NTA
distribution;

(ii) the Poisson distribution is not nested in the BT family, but it can be approxi-
mated for small values of a specific parameter of the BT distribution;

(iii) it is a special case of a multiple Poisson process and can have a zero vertex;

(iv) it is infinitely divisible;

(v) it has variance larger than the mean;

(vi) it is strongly unimodal for b ≥ 1;

(vii) it has an arbitrary number of modes when b < 1.

For a detailed description of the NTA distribution, the reader could consult Castellares
et al. [8] and Johnson et al. [26, Chapter 9].

Based on the key features of the NTA distribution (or equivalently BT distribution),
it can be easily justified why this distribution is a natural candidate and plays an important
role in modeling count data with evidence of overdispersion and with high percentage of
zero values. This implies that it is crucial to test the goodness-of-fit (gof) of this discrete
distribution fitted to a given set of observations. A number of gof tests for count data are
based on the pgf and the empirical pgf (epgf). To mention a few, but not limited to, we
have the gof tests in Kocherlakota and Kocherlakota [29], Rueda et al. [46], Baringhaus and
Henze [2], Epps [13], Rueda and O’Reilly [45], Meintanis and Bassiakos [36], Meintanis [35],
Jiménez-Gamero and Alba-Fernandez [21], Batsidis et al. [3] and Milocevic et al. [37]. The
motivation of using methods based on the pgf instead of the corresponding pmf when dealing
with count data is, as argued by Nakamura and Perez-Abreu [38], that the pgf is usually
simpler than the corresponding pmf. This is the case of the pgf of the BT distribution;
compare expressions (1.2) and (1.3).
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In this paper, we propose and study a consistent gof test for the two-parameter BT
family of distributions; that is, based on Remark 1.1, it is equivalently to study a consistent
gof test for the NTA distribution. Initially, it is shown that the pgf of the BT distribution
is the only pgf satisfying a certain differential equation. Then, reasoning as Nakamura and
Perez-Abreu [38] for testing Poisson distribution, Novoa-Muñoz and Jiménez-Gamero [41] for
testing bivariate Poisson distribution, Jiménez-Gamero and Alba-Fernandez [21] for testing
Poisson–Tweedie distribution, and Batsidis et al. [3] for testing Bell distribution, the proposed
statistic is a function of the polynomial of an empirical version of the differential equation.
In particular, the gof test proposed here can be considered as a generalization of the one
in Batsidis et al. [3], since Bell distribution is a special case of the BT distribution. In
addition, it can also be thought as a complement to the gof test for the Poisson–Tweedie
distribution presented by Jiménez-Gamero and Alba-Fernandez [21], since NTA is a subset
of the Poisson–Tweedie family of distributions. Additionally, for the first time, we apply
some existing gof tests to the BT distribution and study their finite-sample properties from
Monte Carlo simulation experiments. In particular, the numerical results reveal that two of
the existing gof tests considered to the BT distribution present interesting results regarding
size and power properties.

The paper is organized as follows. Section 2 contains some preliminaries related to
existing gof tests. Section 3 introduces the test statistic and derives the asymptotic null
distribution of the test statistic (i.e., the test statistic distribution under the null hypothesis),
which depends on unknown quantities. To overcome this problem, it is shown that the
parametric bootstrap consistently estimates the null distribution of the test statistic. Section
4 is devoted to study, with Monte Carlo simulation experiments, the finite sample performance
of the proposed test and simultaneously to compare numerically the power of the new test
with other two pgf-based tests introduced by Rueda and O’Reilly [45] and Meintanis [35]; that
is, we also consider the pgf-based tests introduced by these authors to the BT distribution and
study their finite sample properties in such a case. Apart from the previous gof tests, which
are based on the pgf, the tests in Henze [19] and Klar [27], which are similar to that in Rueda
and O’Reilly [45] but based on the distribution function and on the integrated distribution
function, will also be considered in the comparison of the existing gof tests. Section 5 provides
the application of the gof tests to real data sets. Section 6 closes up the paper with some
concluding remarks. All technical proofs are deferred to Appendix.

Before ending this section we introduce some notation: all limits in this paper are
taken when n→∞, where n denotes the sample size; L−→ denotes convergence in distribu-
tion; P−→ denotes convergence in probability; a.s.−→ denotes the almost sure convergence; I(A)
denotes the indicator function of the set A; l2 denotes the separable Hilbert space l2 = {z =
(z0, z1, z2, ...), zk ∈ R,

∑
k≥0 z

2
k <∞} with the usual inner product 〈z, w〉2 =

∑
k≥0 zkwk, and

‖ · ‖2 stands for the associated norm; Eθ and Covθ denote expectation and covariance by as-
suming that the data come from a BT distribution with parameter vector θ = (a, b); P∗,
E∗ and Cov∗ denote the conditional probability law, the conditional expectation and the
conditional covariance, respectively, given the data X1, ..., Xn.



On goodness-of-fit tests for the Neyman type A distribution 147

2. PRELIMINARIES AND EXISTING GOODNESS-OF-FIT TESTS

Let X1, ..., Xn be n independent and identically distributed random observations from
a population X taking values in N0, with pgf g(t) = E(tX), |t| ≤ 1. Based on the sam-
ple X1, ..., Xn, the objective is to test the composite, in the sense that the parameter vec-
tor θ = (a, b) is unknown, null hypothesis H0 : X ∼ BT(θ), for some θ = (a, b) ∈ Θ against
the alternative hypothesis H1 : X � BT(θ), ∀ θ = (a, b) ∈ Θ. Obviously, based on Remark
1.1, the previous hypothesis is equivalent in testing the null hypothesis H0 : X ∼ NTA(δ, τ),
for some (δ, τ) ∈ (0,∞)× (0,∞), against the alternative hypothesis H1 : X � NTA(δ, τ),
∀ (δ, τ) ∈ (0,∞)× (0,∞).

It is well-known that the distribution of a random variable X taking values in N0 is
fully and uniquely determined by its pgf. Also, the pgf can be consistently estimated by the
epgf given by gn(t) = 1

n

∑n
i=1 t

Xi . It is worth stressing that Kocherlakota and Kocherlakota
[29] were the first authors who proposed to base a gof test on the so-called epgf process with
estimated parameter given by Kn(θ̂, t) =

√
n[gn(t)− g(t; θ̂)], for 0 ≤ t ≤ 1, where g(t; θ) is

the pgf under the law in the null hypothesis; that is, in our special case, g(t; θ) is given in
relation (1.3), and θ̂ = (â, b̂) is a consistent estimator of θ = (a, b).

Kocherlakota and Kocherlakota [29] exemplified their method with the Poisson-type
distributions and NTA distribution. However, their method has the disadvantage that it
depends on the choice of the value of t at which the pgf is evaluated. To overcome this
problem, Rueda et al. [46] suggested the use of the following Cramér-von Mises type test
statistic Rn,0(θ̂) =

∫ 1
0 Kn(θ̂, t)2dt = n

∫ 1
0 [gn(t)− g(t; θ̂)]2dt. In addition, Rueda and O’Reilly

[45] proposed a natural generalization of the Cramér-von Mises type test statistic by in-
troducing a suitable weight function in order to make the test more sensitive to selected
alternatives; see also Baringhaus et al. [1]. In this frame, they suggested the following
test statistic Rn,w(θ̂) = n

∫ 1
0 [gn(t)− g(t; θ̂)]2w(t)dt, where w(t) is a non-negative function

on (0, 1) such that
∫ 1
0 w(t)dt <∞. By straightforward algebra, we have that Rn,w(θ̂) =

1
n

∑n
j,k=1{ω(1, Xjk)− ω(g(t; θ̂), Xj)− ω(g(t; θ̂), Xk) + ω(g2(t; θ̂), 0)}, where Xjk = Xj +Xk,

and ω(f, d) =
∫ 1
0 t

df(t)w(t)dt. Note that Rn,w(θ̂) can be equivalently expressed in the form
Rn,w(θ̂) = n

∑∞
r,k=0{p(r; θ)− p̂(r)}{p(k; θ)− p̂(k)}

∫ 1
0 t

r+kw(t)dt, where p(k; θ) is given by
(1.2), and

(2.1) p̂(k) =
1
n

n∑
j=1

I(Xj = k), k = 0, 1, ....

Note that p̂(k) corresponds to the empirical pmf for a given dataset. Hence, one rejects the
null hypothesis H0 for large values of the test statistic Rn,w(θ̂).

After the pioneer work by Kocherlakota and Kocherlakota [29], a large number of gof
tests for specific discrete distributions have been developed based on test statistics that utilize
properties of the pgf of the law under the null hypothesis. In this context, Meintanis [35]
presented a unified approach in testing the fit to any distribution belonging to the compound
Poisson family of distributions. The compound Poisson family of distributions is defined
as the distribution of X =

∑N
j=1 Yj , where Yj (j = 1, ..., N) are independent and identically

distributed with a common pgf ψ(t; ξ), ξ ∈ Rp is a parameter vector, N ∼ Poisson(λ) is
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independent of Yj (j = 1, ..., N), and λ > 0. Meintanis [35] has noted that the pgf of any
member of the compound Poisson family, say ζ(t), satisfies the following differential equation

(2.2) ζ ′(t)− λψ′(t; ξ)ζ(t) = 0,

where ζ ′(t) = (d/dt)ζ(t) and ψ′(t; ξ) = (d/dt)ψ(t; ξ). Then, since the pgf and its derivatives
can be consistently estimated by the epgf and the derivatives of the epgf (see, for example,
Proposition 2 of Novoa-Muñoz and Jiménez-Gamero [40] for the uniform consistency of gn

and its derivatives), Meintanis [35] proposed the following test statistic

(2.3) Tn,w(λ̂, ξ̂) = n

∫ 1

0
[ζ ′n(t)− λ̂ψ′(t; ξ̂)ζn(t)]2w(t)dt,

where ζ ′n(t) = (d/dt)ζn(t), and ζn(t) denotes the epgf. Note that the test statistic defined in
(2.3) is an integral of the squared of an empirical counterpart of equation (2.2).

The general test statistic given in (2.3) can be exemplified in the special case of the
BT distribution with parameter vector θ = (a, b), once the proposition below justifies that
the BT distribution belongs to the compound Poisson family of distributions. This result can
be found in Feller [15] and in Castellares et al. [8].

Proposition 2.1. Let X ∼ BT(a, b), where a > 0 and b > 0. Then, we have that

X =
∑N

j=1 Yj , where Yj (j = 1, ..., N) are independent and identically zero-truncated Poisson

distributed random variables with parameter a > 0 and a common pgf ψ(t; a) = exp(at)−1
exp(a)−1 ,

and N ∼ Poisson(b(ea − 1)) independent of Yj (j = 1, ..., N).

In terms of the notation used by Meintanis [35], it is evident that the BT distribution
belongs to the compound Poisson family with λ = b(ea − 1), ψ(t; ξ) = exp(ξt)−1

exp(ξ)−1 , ψ′(t; ξ) =
ξ exp(ξt)
exp(ξ)−1 , and ξ = a. Therefore, based on the work of Meintanis [35], the pgf g(t; θ) of the BT
distribution defined in (1.3) satisfies the following differential equation

(2.4) g′(t)− baeatg(t) = 0, ∀ t ∈ [0, 1],

and so the null hypothesis H0 is rejected for large values of the following test statistic
Mn,w(θ̂) = n

∫ 1
0 Gn(t, θ̂)2w(t)dt, where Gn(t; θ) is the empirical version of (2.4) given by

(2.5) Gn(t; θ̂) = g′n(t)− b̂âebatgn(t),

with g′n(t) = (d/dt)gn(t). By straightforward algebra (see also Meintanis [35, p. 753]), we have
that Mn,w(θ̂) = 1

n

∑n
j,k=1{XjXkω(1, Xjk − 2) + (̂bâ)2ω(e2bat, Xjk) − b̂âXjkω(ebat, Xjk − 1)}.

Note thatMn,w(θ̂) can be equivalently expressed in the formMn,w(θ̂) =n
∑∞

r,k=0 d̂(r; θ̂)d̂(k; θ̂) ·∫ 1
0 t

r+kw(t)dt, where

d̂(k; θ) = (k + 1)p̂(k + 1)−
k∑

u=0

coef (u; θ)p̂(k − u), k = 0, 1, ...,(2.6)

and coef (u; θ) := coef (u; a, b) = bau+1

u! can be recursively calculated as follows: coef (0; a, b) =
ba, and coef (u; a, b) = coef (u− 1; a, b)a/u for u ≥ 1.
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Remark 2.1. The asymptotic null distributions of the test statistics Rn,w(θ̂) and
Mn,w(θ̂) are intractable (Rueda and O’Reilly [45] and Meintanis [35]) and, hence, the crit-
ical points required for the implementation of these test procedures can be determined via
parametric bootstrap. It should be mentioned that the application of both tests requires
the choice of a weight function. Specific choices of it, which are rather arbitrary, can lead to
considerable computational simplification. In this frame, the choice of w(t) = tγ , where γ ≥ 0
denotes a constant, corresponds to an interesting choice. This weight function, apart from
computational convenience, has the following interpretation: for large values of γ more weight
is assigned to the values of Kn(θ̂, t) and Gn(t; θ̂) near t = 1; hence, large values of γ should
render the test sensitive to deviations from the moments of the hypothesized distribution;
see, for instance, Gürtler and Henze [18].

Apart from the previous tests, which are based on the pgf, the tests in Henze [19]
and Klar [27] denoted as Hn and Wn, which are similar to that in Rueda and O’Reilly [45]
but they are based on the distribution function and on the integrated distribution function,
respectively, will be also particularized for the BT distribution and will be also considered in
the simulation studies of Section 4. Specifically, we consider the modified Cramér–von Mises
statistic in expression (3.6) of Henze [19] given by

(2.7) Hn =
X(n)∑
k=0

[Fn(k)− F (k; θ̂)]2[Fn(k)− Fn(k − 1)],

where X(n) = max1≤j≤nXj , Fn(x) stands for the empirical distribution function defined by
Fn(x) = n−1

∑n
j=1 I(Xj ≤ x), and F (x; θ) denotes the cumulative distribution function of the

BT distribution with parameter θ. In contrast to the Cramér–von Mises statistic in expression
(2.2) of Henze [19], whose practical calculation involves truncation, the calculation of Hn

involves a finite sum and hence was preferred (see also Jiménez-Gamero and Alba-Fernandez
[22]). Finally, following Henze [19], to perform the test based on Hn a parametric bootstrap is
used and the null hypothesis is rejected for a large observed value of the test statistic Hn. We
also consider the test statistic (see relation (1) in Klar [27]) Wn =

√
n supt≥0 |Yn(t)− Ŷ (t)|,

where Y (t) =
∫ +∞
t [1−F (x)]dx, Yn(t) denotes its empirical counterpart and Ŷ (t) equals Y (t)

with F (x) replaced by F (x; θ̂). In practice (see also Jiménez-Gamero and Alba-Fernandez
[22]), we consider the expression (8) in Klar [27] given by

Wn =
√
n sup

1≤k≤X(n)

∣∣∣∣∣∣X̄ − E
bθ
(X) +

k−1∑
j=0

[Fn(j)− F (j; θ̂)]

∣∣∣∣∣∣,
where X̄ denotes the sample mean. For instance, if the moment estimator is used then the
previous relation is simplified taking into account that E

bθ
(X) = X̄. On the other hand, if

the maximum likelihood (ML) estimator is used, then the relation is simplified taking into
account that E

bθ
(X) = b̂âeba, where â and b̂ are the ML estimates of a and b, respectively,

since E(X) = baea, when X ∼ BT(a, b). Following Klar [27], to perform the test based on
Wn a parametric bootstrap is used and hence the null hypothesis is rejected for a large value
of the associated test statistic.
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3. A NEW TEST STATISTIC

In this section, a new gof test statistic will be constructed based on the characterization
of the BT distribution provided below and parallel with the tests discussed by Nakamura and
Perez-Abreu [38] for testing Poisson distribution, Novoa-Muñoz and Jiménez-Gamero [41]
for testing bivariate Poisson, Jiménez-Gamero and Alba-Fernandez [21] for testing Poisson–
Tweedie, and Batsidis et al. [3] for testing Bell distribution. To be specific, the next proposi-
tion shows that the BT pgf is the unique solution of the differential equation given in (2.4).

Proposition 3.1. Let G = {g : [0, 1] → R, such that g is a pgf and g′(t) = (∂/∂t)g(t)
exists ∀ t ∈ [0, 1]}, which is equivalent to say that G is the set of probability generating

functions associated with random variables taking values in N0 with finite mean. Let g(t; θ)
be defined as in (1.3). Then, g(t; θ) is the only pgf in G satisfying the differential equation

given in (2.4).

Therefore, the BT pgf is the only pgf satisfying the differential equation (2.4). Also,
the pgf g(t) and its derivatives can be consistently estimated by the epgf and the derivatives
of the epgf. Under the null hypothesis H0, it then follows that the empirical version of (2.4)
denoted by Gn(t; θ̂) and given in (2.5) should be close to zero, ∀ t ∈ [0, 1], where θ̂ = (â, b̂)
is a consistent estimator of θ = (a, b). Additionally, Gn(t; θ̂) can be expressed in the form
Gn(t; θ̂) =

∑
k≥0 d̂(k; θ̂)t

k, where p̂(k) and d̂(k; θ̂) are defined in (2.1) and (2.6), respectively.
It implies that (under the null hypothesis) Sn(θ̂) =

∑
k≥0 d̂(k; θ̂)

2 ≈ 0. Note that Sn(θ̂) =
‖d̂(·; θ̂)‖2

2, where d̂(·; θ̂) = (d̂(0; θ̂), d̂(1; θ̂), ...), and d̂(k; θ̂) is given in (2.6). Also, d̂(k; θ) =
1
n

∑n
i=1 φ(Xi; k, θ), where

(3.1) φ(X; k, θ) = (k + 1)I(X = k + 1)− b
k∑

u=0

au+1

u!
I(X = k − u).

In this paper, we propose and study a new gof test for the BT family of distributions based
on the statistic Sn(θ̂). In order to give a solid justification of Sn(θ̂) as a test statistic for
testing H0, we derive its limit distribution in the next theorem.

Theorem 3.1. Let X1, ..., Xn be independent and identically distributed from X,

a random variable taking values in N0 with probability mass function p(k) = Pr(X = k),

k ∈ N0, so that E(X2) <∞. Assume that θ̂
a.s.(P )−→ θ, then Sn(θ̂)

a.s.(P )−→ η = ‖d(·; θ)‖2
2, where

d(·; θ) = (d(0; θ), d(1; θ), ...), and d(k; θ) = (k + 1)p(k + 1)− b
∑k

u=0
au+1

u! p(k − u), k ∈ N0.

It should be noted that η ≥ 0 and, from Proposition 3.1, η = 0 if and only if H0 is
true. Hence, the null hypothesis H0 should be rejected for large values of the test statistic
Sn(θ̂). Now, to determine what is a large value we have to obtain the distribution of the
test statistic Sn(θ̂) under the null hypothesis H0, or at least an approximation to it. With
this aim, we next derive its asymptotic null distribution. We will assume that the estimator
θ̂ = (â, b̂) satisfies the following regularity condition.

Assumption 1. Under H0, if θ = (a, b) ∈ Θ denotes the true parameter value, then√
n(θ̂−θ) = 1√

n

∑n
i=1 `(Xi; θ)+oP (1), with Eθ{`(Xi; θ)}= 0 and J(θ) = Eθ{`(Xi; θ)T `(Xi; θ)}

<∞.
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Assumption 1 implies that when the null hypothesis is true and θ denotes the true
parameter value, then

√
n(θ̂ − θ) is asymptotically normally distributed. This assumption is

not restrictive at all since it is fulfilled by commonly used estimators such as the the ML esti-
mator and the moment estimator (see White [51] and Jiménez-Gamero and Kim [24], among
others). In Appendix B, the form of the function ` is provided for the aforementioned estima-
tors under the BT family of distributions, and we show that the conditions of Assumption 1
really holds for them.

The next theorem gives the asymptotic null distribution of Sn(θ̂).

Theorem 3.2. Let X1, ..., Xn be independent and identically distributed from X ∼
BT(θ), where θ = (a, b) ∈ Θ. Suppose that θ̂ satisfies Assumption 1. Then, nSn(θ̂) L−→
‖S(θ)‖2

2, where {S(θ) = (S(0; θ), S(1; θ), ...)} is a centered Gaussian process in l2 with co-

variance kernel %(k, r) = Covθ{Y (X; k, θ), Y (X; r, θ)} for k ∈ N0 and r ∈ N0, Y (X; k, θ) =
φ(X; k, θ)+(µ1(k; θ), µ2(k; θ))`(X; θ)T , φ is defined in (3.1), µ1(k; θ) = Eθ{(∂/∂a)φ(X; k, θ)},
and µ2(k; θ) = Eθ{(∂/∂b)φ(X; k, θ)}.

Remark 3.1. If someone specifies the function ` for a specific estimator, then the
covariance kernel appeared in the statement of the previous theorem can be given explic-
itly since one has just to calculate an expectation. For the BT family of distributions,
when the moment estimators are used, we have proved in Appendix B that the function `

can be obtained in a closed, but rather complicated, form. On the other hand, when the
ML estimators are used, the function ` cannot be obtained in a closed form. For the previous
reasons, we did not provide the form of the covariance kernel %(k, r) for the aforementioned
estimators.

Note that the null distribution of ‖S(θ)‖2
2 is that of

∑
j≥1 λj χ

2
1j , where χ2

11, χ
2
12, ... are

independent χ2 variates with one degree of freedom, and the set {λj} are the positive eigen-
values of the linear operator f 7→ Cf on l2 associated with the kernel % given in Theorem 3.2;
that is, (Cf)(k) =

∑
r≥0 %(r, k)f(r). Since these eigenvalues depend on the unknown θ, it

is evident that the asymptotic null distribution of the test statistic nSn(θ̂) depends on the
unknown true value of the parameter vector θ = (a, b). However, even if θ was known or
replaced by an appropriate estimator θ̂, to determine the eigenvalues of an operator is a quite
hard problem and unfortunately we did not succeed in finding explicit expressions for such
eigenvalues. For similar problems and arguments see Novoa-Muñoz and Jiménez-Gamero
[41] and Jiménez-Gamero and Alba-Fernandez [22], among others. Based on the previous
remarks, it is concluded that the asymptotic null distribution of nSn(θ̂) given in Theorem 3.2
does not provide a useful approximation to its null distribution. Therefore, one should find
another way of approximating the null distribution of the test statistic nSn(θ̂).

A common approach is to consider a parametric bootstrap approach to estimate the null
distribution of ‖S(θ)‖2

2. In the sequel, the parametric bootstrap approach is defined. Given
the data X1, ..., Xn, let X∗

1 , ..., X∗
n be independent and identically distributed from X∗ ∼

BT(θ̂). Let S∗n(θ̂∗) be the bootstrap version of Sn(θ̂) obtained by replacing X1, ..., Xn and θ̂ =
θ̂(X1, ..., Xn) with X∗

1 , ..., X
∗
n and θ̂∗ = θ̂(X∗

1 , ..., X
∗
n), respectively, in the expression of Sn(θ̂).

Then, we approximate Pθ{Sn(θ̂) ≤ x} by means of its bootstrap version, i.e. P∗{S∗n(θ̂∗) ≤ x}.
In order to show that the parametric bootstrap consistently approximates the null distribution
of Sn(θ̂), we need the following assumption, which is a bit stronger than Assumption 1.
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Assumption 2. Assumption 1 holds, and the functions `(X; θ) and J(θ) satisfy:

(1) supϑ∈∆ Eϑ

{
‖`(X;ϑ)‖2I(‖`(X;ϑ)‖ > ε

√
n)

}
−→ 0, ∀ ε > 0, where ∆ ⊆ Θ is an open

neighborhood of θ;

(2) `(X;ϑ) and J(ϑ) are continuous as functions of ϑ at ϑ = θ.

Theorem 3.3. Let X1, ..., Xn be independent and identically distributed from X,

a random variable taking values in N0. Assume that θ̂
a.s.(P )−→ θ, for some θ ∈ Θ, and that

Assumption 2 holds. Then, supx∈R

∣∣∣P∗{S∗n(θ̂∗) ≤ x} − Pθ{Sn(θ̂) ≤ x}
∣∣∣ a.s.(P )−→ 0.

Theorem 3.3 holds whether H0 is true or not. It states that the conditional distribution
of S∗n(θ̂∗) and the distribution of Sn(θ̂) are close when the sample is drawn from a population
with BT(θ) distribution, θ = (a, b) being the limit of θ̂ = (â, b̂). In particular, if the null
hypothesis H0 is true, then Theorem 3.3 states that the conditional distribution of S∗n(θ̂∗) is
close to the null distribution of Sn(θ̂). Let α ∈ (0, 1). Hence, the test function

Ψ∗ =

{
1, if Sn(θ̂) ≥ s∗n,α,

0, otherwise,

or, equivalently, the test that rejects H0 when p∗ = P∗{S∗n(θ̂∗) ≥ Sobs} ≤ α, is asymptotically
correct in the sense that when H0 is true, limn→∞ Pθ(Ψ∗ = 1) = α, where s∗n,α = inf{x :
P∗(S∗n(θ̂∗) ≥ x) ≤ α} is the α upper percentile of the bootstrap distribution of Sn(θ̂), and
Sobs is the observed value of the test statistic obtained from a given dataset. An immediate
consequence of Theorem 3.1 and Theorem 3.3 is that the test Ψ∗ is consistent; that is, it is
able to detect any fixed alternative, in the sense that Pr(Ψ∗ = 1) → 1 whenever X � BT(θ),
for any θ ∈ Θ.

Remark 3.2. A parametric bootstrap estimator of the null distribution of nSn(θ̂) was
previously discussed. As observed before, the most important difficulty with the distribution
of ‖S(θ)‖2

2 is the determination of the positive eigenvalues λj which, however, can be con-
sistently (a.s.) approximated following Dehling and Mikosch [11]. In this context, another
solution is to approximate the null distribution of nSn(θ̂) through the conditional distribu-
tion, given X1, ..., Xn, of

∑
j≥1 λ̂j χ

2
1j , where χ2

11, χ
2
12, ... are independent χ2 variates with one

degree of freedom and λ̂j is a consistent estimator of the eigenvalue λj , by means of weighted
bootstrap in the sense of Burke [6] (see also, for instance, Kojadinovic and Yan [30] and
references therein). From a computational point of view, the weighted bootstrap is more
efficient than the parametric bootstrap. On the other hand, it has the disadvantage that one
needs to estimate the function ` (see, for instance, Jiménez-Gamero and Kim [24]). In this
paper, we rely on parametric bootstrap similar to the existing gof tests described in Section 2.

Before closing this section, we have to note that the bootstrap p-value of any of the
five tests, namely Sn(θ̂), Rn,w(θ̂), Mn,w(θ̂), Hn and Wn cannot be exactly computed. In the
sequel, let T denote any of the five test statistics and let Tobs stand for the observed value of
such statistic. Then, the bootstrap p-value can be approximated as follows:

1. Calculate the observed values of the gof test statistics for the available dataset
X1, ..., Xn, say Sobs(θ̂), Mobs(θ̂), Robs(θ̂), Hobs and Wobs;
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2. Generate B bootstrap samples X∗v
1 , ..., X∗v

n from X∗ ∼ BT(θ̂), for v = 1, ..., B;

3. Calculate the test statistics Sn(θ̂), Mn,w(θ̂), Rn,w(θ̂), Hn and Wn for each bootstrap
sample and denote them, respectively, by S∗v , M∗

v , R∗v, H
∗
v and W ∗

v for v = 1, ..., B;

4. Compute the p-values of the tests based on the statistics Sn(θ̂), Mn,w(θ̂), Rn,w(θ̂),
Hn and Wn by means, respectively, of the expressions

p̂S =
#{S∗v ≥ Sobs(θ̂)}

B
, p̂M =

#{M∗
v ≥Mobs(θ̂)}

B
, p̂R =

#{R∗v ≥ Robs(θ̂)}
B

,

p̂H =
#{H∗

v ≥ Hobs}
B

, p̂W =
#{W ∗

v ≥Wobs}
B

.

For a good discussion of bootstrap p-values, see Efron and Tibshirani [12, Chapter 16].

4. FINITE-SAMPLE SIZE AND POWER PROPERTIES

The properties studied in the previous section related to the test statistic Sn(θ̂) are
asymptotic, which means that they describe the behavior of the proposed test when the
sample size is large. In this section, we empirically investigate its performance in small and
moderate sample sizes through Monte Carlo simulation experiments. We also include in the
Monte Carlo studies the test statistics Rn,w(θ̂), Mn,w(θ̂), Hn andWn for comparison. We have
not considered the test statistic Kn(t; θ̂) in the Monte Carlo experiments since the question
on how to select t remains unsolved and its performance depends on different values of t.
It is worth stressing that the numerical results regarding the existing gof tests applied in the
BT distribution are new, and so it also represents an additional contribution of the current
paper in studying the performance of these specific existing gof tests for this two-parameter
discrete distribution. All computations were performed by using the R language [43]. In
all cases, 10,000 Monte Carlo replications were considered. Without loss of generality, we
consider a = 0.8 and 1.4, and b = 0.6, 1.2 and 1.8.

The computation of the test statistics Rn,w(θ̂) and Mn,w(θ̂) depend on the weight
function w(t). Here, we consider the weight function in the form w(t) = tγ , where t ∈ (0, 1)
and γ = 0, 1, 2, 5 and 10. It is interesting to note that γ = 0 corresponds to the probability
density function of the uniform distribution on (0, 1) as a weight function. The resulting
tests when w(t) = tγ is used as a weight function will be denoted by Rn,γ(θ̂) and Mn,γ(θ̂).
In particular, we have that

Rn,γ(θ̂) =
∞∑

r,k=0

{p(r; θ)− p̂(r)}{p(k; θ)− p̂(k)}
r + k + γ + 1

and

Mn,γ(θ̂) =
∞∑

r,k=0

d̂(r; θ̂)d̂(k; θ̂)
r + k + γ + 1

.

It should be emphasized that the test statistics Sn(θ̂), Rn,γ(θ̂) and Mn,γ(θ̂) are defined by
means of infinite sums and, hence, these sums have to be truncated at some finite value, sayM .
We have noted that M = 20 yields sufficiently precise values of these test statistics.
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Random variates from BT(θ) distribution were generated by following Proposition 9
and Remark 13 in Castellares et al. [8]. To estimate θ = (a, b), we considered the ML method.
Finally, we adopted the warp-speed method [16] for evaluating the proposed resampling
scheme to reduce the computational burden. On the basis of the warp-speed method, in-
stead of computing critical points for each Monte Carlo sample, one resample is generated
for each Monte Carlo sample and each test statistic, say T , is computed for that sample,
obtaining say T ∗. Then, the resampling critical values for T are computed from the empirical
distribution determined by the resampling repetitions of T ∗. It is worth mentioning that the
idea behind the warp-speed bootstrap method is that taking just one bootstrap draw for each
simulated sample is sufficient to provide a useful approximation to the statistic of interest.
Applying this insight to Monte Carlo evaluation of bootstrap-based tests yields evaluation
methods that work with B = 1 [16]. Because of the resulting dramatic computational savings,
Giacomini et al. [16] called their method as “Warp-Speed” Monte Carlo method.

4.1. Size properties

First, the type I error of the gof tests based on the statistics Rn,γ(θ̂), Mn,γ(θ̂), Hn, Wn

and Sn(θ̂) are investigated. We consider the sample sizes n = 50, 70, 90 and 150. The nominal
levels of the tests are α = 0.10 and 0.05. We report the null rejection rates of H0 : X ∼ BT(θ)
for all the tests at the 10% and 5% nominal significance levels; i.e. the percentage of times
that the corresponding statistics exceed the 10% and 5% upper points obtained from the
reference distribution generated by parametric bootstrap. These rates estimate the type I
error probability of the tests. The null rejection rates of the gof tests Rn,γ(θ̂) and Mn,γ(θ̂) are
listed in Table 1, while Table 2 lists the null rejection rates of the gof tests Sn(θ̂), Hn and Wn.

For γ = 0 (i.e., the weight function w(t) corresponds to the probability density function
of the uniform distribution on the unit interval), note that the gof tests based on the statistics
Rn,0(θ̂) and Mn,0(θ̂) have not a good performance, mainly for small sample sizes and when
the parameter a is less than 1 (a < 1). On the other hand, the performance of these gof tests
improves considerably as γ increases for a < 1. It is also evident that values of γ greater
than 5 have no effect on improving the performance of the gof tests based on the statistics
Rn,γ(θ̂) and Mn,γ(θ̂) in such a case; compare the null rejection rates of the tests for γ = 5 and
γ = 10 when a < 1. Hence, for a < 1, the weight function w(t) = tγ with γ = 5 seems to be
a good choice for the test statistics Rn,γ(θ̂) and Mn,γ(θ̂) in the BT discrete distribution. It is
interesting to note that the gof tests that use Rn,0(θ̂) and Mn,0(θ̂) as test statistics present
better results when a > 1. However, the performance of these gof tests deteriorates as γ
increases and when a > 1, and so the probability density function of the uniform distribution
on the unit interval as weight function in such a case seems to be a good choice for these test
statistics. In short, the numerical results in Table 1 reveals the difficulty of selecting the best
value of γ for the gof tests based on the test statistics Rn,γ(θ̂) and Mn,γ(θ̂).

From Table 2, note that the null rejection rates of the gof tests that use Hn and Wn

as test statistics are close to the significance levels considered. It is worth stressing that the
proposed gof test that uses Sn(θ̂) as test statistic also presents a good performance, mainly
for small sample sizes, when compared with the existing gof tests and, hence, can be an
interesting alternative to these gof tests.
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Table 1: Null rejection rates of the gof tests Rn,γ := Rn,γ(θ̂) and Mn,γ := Mn,γ(θ̂)
for some weight functions w(t).

a = 0.8 and b = 0.6
α n

Rn,0 Rn,1 Rn,2 Rn,5 Rn,10 Mn,0 Mn,1 Mn,2 Mn,5 Mn,10

0.10

50 .066 .077 .080 .082 .083 .066 .072 .078 .080 .082
70 .077 .087 .090 .092 .092 .081 .085 .088 .091 .092
90 .085 .092 .095 .094 .093 .078 .089 .093 .093 .093

150 .091 .097 .098 .098 .098 .090 .098 .098 .098 .097

0.05

50 .025 .031 .034 .038 .038 .025 .031 .034 .036 .037
70 .035 .040 .042 .045 .045 .035 .038 .042 .044 .044
90 .036 .039 .041 .042 .042 .035 .037 .040 .041 .041

150 .037 .040 .042 .042 .043 .041 .041 .043 .043 .043

a = 0.8 and b = 1.2
α n

Rn,0 Rn,1 Rn,2 Rn,5 Rn,10 Mn,0 Mn,1 Mn,2 Mn,5 Mn,10

0.10

50 .060 .063 .069 .078 .086 .078 .073 .074 .080 .087
70 .066 .075 .086 .089 .092 .083 .078 .084 .089 .093
90 .066 .075 .086 .095 .099 .085 .083 .088 .097 .101

150 .073 .078 .085 .090 .096 .086 .084 .086 .094 .096

0.05

50 .025 .027 .030 .036 .039 .033 .030 .033 .036 .038
70 .028 .034 .036 .042 .043 .038 .039 .040 .042 .043
90 .025 .031 .036 .041 .044 .038 .035 .039 .042 .045

150 .028 .035 .038 .040 .041 .040 .040 .042 .042 .041

a = 1.4 and b = 1.8
α n

Rn,0 Rn,1 Rn,2 Rn,5 Rn,10 Mn,0 Mn,1 Mn,2 Mn,5 Mn,10

0.10

50 .098 .086 .085 .071 .074 .088 .082 .080 .082 .085
70 .094 .091 .084 .073 .078 .089 .082 .078 .078 .081
90 .096 .093 .087 .078 .081 .091 .084 .079 .078 .079

150 .106 .100 .091 .080 .080 .098 .092 .088 .086 .090

0.05

50 .046 .041 .038 .035 .036 .042 .039 .036 .035 .035
70 .047 .046 .041 .040 .041 .043 .039 .038 .034 .035
90 .047 .045 .039 .035 .039 .041 .038 .037 .036 .037

150 .050 .049 .044 .036 .038 .049 .042 .041 .041 .043

Table 2: Null rejection rates of the gof tests Hn, Wn and Sn := Sn(θ̂).

a = 0.8 and b = 1.2 a = 0.8 and b = 1.2 a = 0.8 and b = 1.2
α n

Hn Wn Sn Hn Wn Sn Hn Wn Sn

0.10

50 .103 .098 .079 .101 .107 .083 .095 .099 .091
70 .095 .099 .084 .097 .099 .090 .101 .103 .086
90 .095 .099 .082 .110 .110 .087 .105 .111 .085

150 .101 .099 .089 .100 .098 .094 .098 .105 .090

0.05

50 .049 .045 .036 .051 .052 .040 .050 .050 .041
70 .047 .049 .037 .050 .050 .042 .050 .052 .041
90 .048 .045 .037 .054 .054 .040 .054 .057 .039

150 .047 .045 .043 .049 .048 .042 .048 .052 .045
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4.2. Power properties

Next, the power of the tests based on the statisticsRn,γ(θ̂),Mn,γ(θ̂),Sn(θ̂),Hn andWn are
investigated. To compute the powers of the tests, we carried out Monte Carlo simulation experi-
ments similar to that described above, however, the data were generated from perturbed BT
distributions, and from the geometric (Geo), binomial (Bin), discrete Weibull (dWei) and nega-
tivebinomial (NB)distributions.Weconsider twokinds of perturbations for theBTdistribution.

Table 3: Nonnull rejection rates of Rn,w(θ̂) andMn,w(θ̂) for some weight functions w(t): power.

n = 60 n = 80

Rn,0(bθ) Mn,0(bθ) Rn,0(bθ) Mn,0(bθ)Alternative

0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

Alt1 0.248 0.189 0.310 0.220 0.252 0.180 0.302 0.227
Alt2 0.842 0.787 0.861 0.812 0.885 0.847 0.900 0.867
Alt3 0.276 0.162 0.446 0.303 0.321 0.199 0.506 0.390
Alt4 0.947 0.931 0.970 0.952 0.971 0.959 0.988 0.976
Alt5 0.287 0.125 0.496 0.325 0.384 0.225 0.597 0.469
Alt6 0.870 0.798 0.936 0.880 0.924 0.867 0.972 0.943
Geo 0.680 0.551 0.658 0.521 0.779 0.713 0.764 0.689
Bin 0.785 0.780 0.800 0.784 0.802 0.789 0.825 0.806
dWei 0.952 0.922 0.961 0.935 0.969 0.955 0.974 0.962
NB 0.395 0.257 0.398 0.257 0.484 0.379 0.480 0.377

Rn,2(bθ) Mn,2(bθ) Rn,2(bθ) Mn,2(bθ)
Alternative

0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

Alt1 0.291 0.218 0.340 0.240 0.294 0.218 0.339 0.257
Alt2 0.878 0.810 0.900 0.835 0.927 0.879 0.945 0.903
Alt3 0.344 0.178 0.493 0.308 0.406 0.254 0.567 0.428
Alt4 0.945 0.926 0.964 0.939 0.969 0.955 0.982 0.969
Alt5 0.424 0.181 0.611 0.395 0.551 0.357 0.712 0.590
Alt6 0.863 0.770 0.915 0.842 0.918 0.859 0.950 0.921
Geo 0.719 0.581 0.727 0.590 0.811 0.741 0.818 0.750
Bin 0.788 0.784 0.794 0.785 0.802 0.793 0.814 0.798
dWei 0.998 0.998 0.065 0.955 0.974 0.966 0.988 0.988
NB 0.375 0.217 0.418 0.217 0.464 0.359 0.500 0.387

Rn,5(bθ) Mn,5(bθ) Rn,5(bθ) Mn,5(bθ)
Alternative

0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

Alt1 0.297 0.209 0.332 0.226 0.300 0.214 0.337 0.243
Alt2 0.881 0.803 0.897 0.821 0.933 0.876 0.946 0.894
Alt3 0.394 0.195 0.517 0.293 0.478 0.290 0.592 0.427
Alt4 0.929 0.907 0.943 0.914 0.954 0.937 0.963 0.947
Alt5 0.541 0.252 0.678 0.436 0.674 0.477 0.779 0.647
Alt6 0.892 0.783 0.932 0.839 0.944 0.883 0.966 0.931
Geo 0.725 0.585 0.739 0.600 0.816 0.741 0.822 0.752
Bin 0.779 0.775 0.781 0.775 0.792 0.782 0.797 0.784
dWei 0.999 0.998 0.998 0.998 0.999 0.981 0.999 0.994
NB 0.386 0.228 0.429 0.238 0.475 0.350 0.491 0.338

Let X1 ∼ BT(θ) and X2 be another random variable taking values on N0, not having a BT
distribution and independent of X1. Then, the random variables X1 +X2 and max{X1, X2}
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also take values on N0, but the corresponding distributions of these perturbed random vari-
ables do not belong to the BT family of distributions and, hence, they can be used as al-
ternatives. In the Monte Carlo simulations, we consider X2 as a discrete uniform random
variable taking values on {0, 1, ..., k}, for k = 2, 4 and 5, being denoted as dU2, dU4 and
dU5, respectively. Thus, we have the following alternative distributions: Alt1 = X1 + dU2,
Alt2 = max{X1, dU2}, Alt3 = X1 + dU4, Alt4 = max{X1, dU4}, Alt5 = X1 + dU5 and Alt6
= max{X1, dU5}.

Here, we consider w(t) = tγ with γ = 0, 2, 5, n = 60, 80, and a = 0.8 and b = 0.6. The
Monte Carlo simulation results regarding the power of the gof tests Rn,w(θ̂) and Mn,w(θ̂) are
listed in Table 3, and Table 4 lists the power results of the gof tests Sn(θ̂), Hn and Wn. From
Table 3, note that there is no great difference in powers when different weight functions are
considered. It is interesting to note that the test based on the proposed statistic Sn(θ̂) is the
most powerful among the gof tests in the great majority of the cases; compare Tables 3 and 4.
However, it is evident that no gof test provides the highest power against all alternatives;
that is, for some alternative distributions, the new gof test exhibits the highest power, but
for other ones, the existing gof tests yield greater power. In summary, there is no uniform
superiority of one gof test with respect to the others, as expected from the theoretical results
in [20]. As expected, as the sample size increases, the power of the tests increases. In short,
the numerical results of this section reveal that the proposed gof test on the basis of the new
statistic Sn(θ̂) can be an interesting alternative to the existing gof tests based on the test
statistics Rn,w(θ̂), Mn,w(θ̂), Hn and Wn. The main advantage of the test statistic Sn(θ̂) in
relation to the test statistics Rn,w(θ̂), Mn,w(θ̂) is that it is not necessary to consider a weight
function for its computation. On the other hand, we have to truncate an infinite sum in a
finite value to calculate the new test statistic.

Table 4: Nonnull rejection rates of Sn(θ̂), Hn and Wn: power.

Sn(bθ) Hn Wn
n Alternative

α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05

60

Alt1 0.720 0.654 0.540 0.406 0.380 0.267
Alt2 0.982 0.973 0.985 0.967 0.948 0.871
Alt3 0.944 0.929 0.564 0.408 0.422 0.238
Alt4 0.999 0.999 0.992 0.998 0.981 0.932
Alt5 0.999 0.998 0.678 0.494 0.515 0.286
Alt6 0.999 0.999 0.999 0.983 0.939 0.880
Geo 0.919 0.826 0.557 0.426 0.648 0.512
Bin 0.830 0.736 0.794 0.735 0.790 0.767
dWei 0.928 0.907 0.997 0.952 0.999 0.999
NB 0.682 0.546 0.378 0.252 0.375 0.233

80

Alt1 0.783 0.648 0.571 0.462 0.372 0.306
Alt2 0.999 0.992 0.999 0.994 0.981 0.962
Alt3 0.969 0.919 0.648 0.475 0.478 0.352
Alt4 0.999 0.999 0.999 0.995 0.999 0.986
Alt5 0.999 0.992 0.758 0.610 0.606 0.445
Alt6 0.999 0.999 0.999 0.999 0.996 0.941
Geo 0.939 0.890 0.646 0.497 0.774 0.674
Bin 0.875 0.856 0.867 0.802 0.822 0.799
dWei 0.983 0.909 0.999 0.996 0.999 0.999
NB 0.734 0.596 0.440 0.303 0.458 0.345
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Finally, we compute the powers of the gof tests by considering moment estimators.
Castellares et al. [8] have provided the following moment estimators for a and b: ã = s2

X̄
− 1,

b̃ = X̄ exp(1−s2/X̄)
s2/X̄−1

, where X̄ and s2 are the sample mean and standard deviation. Castellares

et al. [8] proved that ã and b̃ are consistent estimators for a and b, respectively. The power
results when using these estimators are presented in Tables 5 and 6. Note that the powers
of the gof tests under the moment estimates are near the powers under the ML estimates.
However, the powers under the ML estimates are in general greater than the ones under the
moment estimates.

Table 5: Nonnull rejection rates of Rn,w(θ̃) and Mn,w(θ̃) for some weight functions w(t):
power under moment estimators.

n = 60 n = 80

Rn,0(eθ) Mn,0(eθ) Rn,0(eθ) Mn,0(eθ)Alternative

0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

Alt1 0.242 0.183 0.304 0.214 0.246 0.174 0.296 0.221
Alt2 0.811 0.756 0.830 0.781 0.854 0.816 0.869 0.836
Alt3 0.257 0.143 0.427 0.284 0.302 0.180 0.487 0.371
Alt4 0.909 0.893 0.932 0.914 0.933 0.921 0.950 0.938
Alt5 0.266 0.104 0.475 0.304 0.363 0.204 0.576 0.448
Alt6 0.822 0.750 0.888 0.832 0.876 0.819 0.924 0.895
Geo 0.672 0.543 0.650 0.513 0.771 0.705 0.756 0.681
Bin 0.745 0.740 0.760 0.744 0.762 0.749 0.785 0.766
dWei 0.948 0.918 0.957 0.931 0.965 0.951 0.970 0.958
NB 0.392 0.254 0.395 0.254 0.481 0.376 0.477 0.374

Rn,2(eθ) Mn,2(eθ) Rn,2(eθ) Mn,2(eθ)
Alternative

0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

Alt1 0.265 0.192 0.314 0.214 0.268 0.192 0.313 0.231
Alt2 0.831 0.763 0.853 0.788 0.880 0.832 0.898 0.856
Alt3 0.322 0.156 0.471 0.286 0.384 0.232 0.545 0.406
Alt4 0.912 0.893 0.931 0.906 0.936 0.922 0.949 0.936
Alt5 0.408 0.165 0.595 0.379 0.535 0.341 0.696 0.574
Alt6 0.859 0.766 0.911 0.838 0.914 0.855 0.946 0.917
Geo 0.693 0.555 0.701 0.564 0.785 0.715 0.792 0.724
Bin 0.743 0.739 0.749 0.740 0.757 0.748 0.769 0.753
dWei 0.978 0.961 0.983 0.970 0.984 0.975 0.988 0.982
NB 0.372 0.214 0.415 0.214 0.461 0.356 0.497 0.384

Rn,5(eθ) Mn,5(eθ) Rn,5(eθ) Mn,5(eθ)
Alternative

0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

Alt1 0.287 0.199 0.322 0.216 0.290 0.204 0.327 0.233
Alt2 0.843 0.765 0.859 0.783 0.895 0.838 0.908 0.856
Alt3 0.366 0.167 0.489 0.265 0.450 0.262 0.564 0.399
Alt4 0.914 0.892 0.928 0.899 0.939 0.922 0.948 0.932
Alt5 0.505 0.216 0.642 0.400 0.638 0.441 0.743 0.611
Alt6 0.879 0.770 0.919 0.826 0.931 0.870 0.953 0.918
Geo 0.708 0.568 0.722 0.583 0.799 0.724 0.805 0.735
Bin 0.743 0.739 0.745 0.739 0.756 0.746 0.761 0.748
dWei 0.989 0.979 0.992 0.984 0.991 0.986 0.994 0.990
NB 0.382 0.224 0.425 0.234 0.471 0.346 0.487 0.334
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Table 6: Nonnull rejection rates of Sn(θ̃), Hn and Wn: power under moment estimators.

Sn(eθ) Hn Wn
n Alternative

α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05

60

Alt1 0.706 0.605 0.490 0.392 0.331 0.217
Alt2 0.961 0.941 0.967 0.946 0.916 0.853
Alt3 0.942 0.901 0.552 0.406 0.394 0.226
Alt4 0.997 0.994 0.981 0.969 0.954 0.921
Alt5 0.980 0.960 0.634 0.475 0.477 0.242
Alt6 0.998 0.996 0.977 0.953 0.922 0.836
Geo 0.898 0.822 0.551 0.405 0.644 0.506
Bin 0.794 0.700 0.769 0.699 0.754 0.742
dWei 0.917 0.862 0.956 0.941 0.990 0.982
NB 0.676 0.540 0.372 0.246 0.369 0.227

80

Alt1 0.733 0.634 0.522 0.412 0.358 0.257
Alt2 0.982 0.971 0.986 0.976 0.960 0.930
Alt3 0.957 0.917 0.620 0.463 0.476 0.324
Alt4 0.999 0.998 0.991 0.984 0.975 0.959
Alt5 0.987 0.973 0.720 0.566 0.587 0.407
Alt6 0.999 0.999 0.991 0.978 0.966 0.924
Geo 0.933 0.869 0.642 0.491 0.753 0.670
Bin 0.850 0.820 0.831 0.777 0.786 0.763
dWei 0.942 0.898 0.967 0.955 0.992 0.988
NB 0.730 0.592 0.436 0.299 0.454 0.341

5. REAL DATA ILLUSTRATIONS

In this section, we apply the gof tests based on the test statistics Rn,w(θ̂), Mn,w(θ̂),
Sn(θ̂), Hn and Wn in some real datasets for the sake of illustration. We consider the weight
function w(t) = tγ with γ = 5 to compute the test statistics Rn,w(θ̂) and Mn,w(θ̂). All com-
putations were done using the R language [43]. The code used in the real data applications
can be obtained from the authors upon request. The datasets we consider correspond to the
number of chromatid aberrations in 24 hours [9, 10], the number of absences of workers in
a particular division of a large steel corporation in an observational period of six months
[47], the number of claims of automobile liability policies [28, pp. 244], and the number of
hemocytometer yeast cell on European red mites on apple leaves [44]. Descriptive measures
for these datasets are listed in Table 7.

Table 7: Descriptive measures.

Chromatid Absence Claims Cell

n 400 318 298 80
Mean (x̄) 0.55 0.67 1.71 1.15
Variance (s2) 1.13 1.53 3.67 2.10
Skewness 3.12 2.19 1.72 1.27
Kurtosis 15.68 7.72 6.90 3.96
CV 1.94 1.85 1.12 1.26
ID 2.05 2.29 2.15 1.83

CV: Coefficient of variation (= s/x̄);

ID: Index of dispersion (= s2/x̄).
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The ML estimates of the BT distribution parameters, asymptotic standard errors (SE),
and the 90% confidence intervals (CI) for the model parameters for each dataset are presented
in Table 8. Table 9 lists the bootstrap p-values (with B = 5000) of the gof tests on the basis of
the test statistics Rn,w(θ̂), Mn,w(θ̂), Sn(θ̂), Hn and Wn for testing gof to the BT distribution.
It can be noted that the five gof tests agree that the two-parameter BT discrete distribution
is not adequate for fitting the chromatid dataset, once the bootstrap p-value for all tests are
< 0.01. In addition, the five gof tests agree that the BT distribution is adequate for fitting the
absence data, claims data, and cell data; that is, the five tests agree that the null hypothesis
cannot be rejected at any usual significance levels.

Table 8: ML estimates.

Chromatid aberrations
Parameter

ML estimate SE 90% CI

a 0.6453 0.1112 (0.4630; 0.8277)
b 0.4450 0.1201 (0.2480; 0.6420)

Absence proneness
Parameter

ML estimate SE 90% CI

a 1.2320 0.1589 (0.9714; 1.4926)
b 0.1586 0.0427 (0.0886; 0.2286)

Claims of automobile
Parameter

ML estimate SE 90% CI

a 0.9795 0.1342 (0.7594; 1.1995)
b 0.6548 0.1728 (0.3714; 0.9382)

Yeast cell
Parameter

ML estimate SE 90% CI

a 0.9340 0.2684 (0.4938; 1.3741)
b 0.4839 0.2596 (0.0582; 0.9096)

Table 9: Bootstrap p-values; B = 5000.

Dataset Rn,w(bθ) Mn,w(bθ) Sn(bθ) Hn Wn

Chromatid aberrations < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Absence proneness 0.5220 0.5290 0.1632 0.5540 0.3915
Claims of automobile 0.4614 0.3822 0.3050 0.5935 0.6100
Yeast cell 0.6804 0.6716 0.8694 0.7825 0.6355

A referee reminds us that the dataset regarding the absences of workers [47] was orig-
inally fitted with the Negative Binomial (NB) distribution. From Table 9, it is evident that
the BT distribution (i.e., the NTA distribution) is not rejected by any of the gof tests, and
so an interesting question is: which distribution fits better this dataset, BT or NB? The pmf
of the two-parameter NB distribution, specified in terms of its mean, µ say, is given by

Pr(Y = y) =
(

ϕ

ϕ+ µ

)ϕ(
µ

ϕ+ µ

)y Γ(y + ϕ)
Γ(ϕ)Γ(y + 1)

, y = 0, 1, 2, ...,
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where Γ(·) is the gamma function, and µ > 0 and ϕ > 0. It can be shown that the variance can
be written as µ+µ2/ϕ and hence the parameter ϕ is referred to as the“dispersion parameter”.
The ML estimates of µ and ϕ are (asymptotic SE between parentheses): µ̂ = 0.6698(0.0754)
and ϕ̂ = 0.3951(0.0752). The maximized log-likelihood function for the NB distribution is
−347.95, and so the AIC is given by 699.89. The maximized log-likelihood function for the
BT distribution is given by −345.60, which results in an AIC value of 695.20. On the basis
of the AIC values, it seems that the two-parameter BT distribution fits better the absences
of workers’ data than the two-parameter NB distribution and, hence, should be preferred.

Finally, it is well-known that the NTA distribution is traditionally fitted to datasets
from ecology, entomology, etc. For example, McGuire et al. [34] studied the distribution of
larval populations of the European corn borer, Pyrausta nubilalis (Hbni.). A total of n = 3205
corn plants growing in an area located in Northwest Iowa were dissected and, hence, the data
correspond to the number of borers per plant dissected; see Table 1 in McGuire et al. [34,
p. 74]. The ML estimates of the BT distribution parameters are (asymptotic SE between
parentheses): â = 0.2756(0.0325) and b̂ = 7.1346(1.0695). The bootstrap p-values (with B =
5000) of the gof tests on the basis of the test statistics Rn,w(θ̂), Mn,w(θ̂), Sn(θ̂), Hn and Wn

for testing gof to the BT distribution are given, respectively, by 0.082, 0.098, 0.005, 0.034 and
0.056. Note that the gof tests deliver small p-values, which indicates that the two-parameter
BT discrete distribution (i.e., the NTA distribution) seems not adequate for fitting these
data. In short, this empirical application illustrates that the NTA distribution, which is quite
common in ecology and entomology, should be used with some caution in these areas, since
for some cases, as evidenced by the gof tests, it cannot be adequate to fit such datasets. This
indeed reveals the importance of gof tests to the BT distribution (i.e., the NTA distribution).

6. CONCLUSIONS

In this paper, a new gof test for the Neyman type A distribution was introduced, which
is based on the interesting property that its pgf is the unique pgf satisfying a certain differ-
ential equation. The new gof test statistic is a function of the coefficients of the polynomial
of the resulting equation when one replaces the pgf with the empirical pgf in the aforemen-
tioned differential equation. Also, other four related gof test statistics already introduced in
the statistical literature were particularized for the two-parameter Bell–Touchard distribu-
tion for the first time, and studied by means of Monte Carlo simulations. We have that these
five tests (the four already proposed and the new one) are consistent against fixed alterna-
tive hypotheses. Also, the practical computation of p-values of these tests requires a para-
metric bootstrap approximation to the null distribution of the corresponding test statistics.
We consider Monte Carlo simulation experiments to verify the performance of the gof tests
in finite samples. The Monte Carlo simulation results indicate that the null rejection rates
of the five tests are, in general, close to the nominal levels. In addition, the numerical results
regarding the power of the tests reveals that no test provides the highest power against all
alternatives considered: for some alternatives the new test exhibits the highest power, but for
other ones the competing tests yield greater power. In short, there is no uniform superiority of
one test with respect to the others. Finally, it is worth emphasizing that the new test statistic
Sn(θ̂) has no need of choosing a weight function for its computation, unlike the test statis-
tics Rn,w(θ̂) and Mn,w(θ̂), which can be a great advantage in practice. On the other hand,
we have to truncate an infinite sum in a finite value to calculate the new test statistic.
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A. APPENDIX: Proofs

Here we prove the results provided in the previous sections.

Proof of Proposition 3.1: It can be checked that the pgf ofX ∼ BT(θ) given in (1.3)
satisfies the differential equation given in (2.4). Obviously, this part of the proof can also be
obtained by the result given by Meintanis [35] since the BT(θ) distribution belongs to the
compound Poisson family of distributions. Next, we proof that it is the only pgf inG satisfying
such differential equation. It is well-known that the solution of the linear differential equation
of order one of the form y′+p(t)y = 0, where y = y(t), y′ = (∂/∂t)y(t) and p(t) is a continuous
function in t, is given by y = C exp(−

∫
p(t)dt), where C is an arbitrary constant. Since the

differential equation (2.4) is of this form, we have that g(t) = C exp(
∫
abea tdt) = C exp(bea t).

Taking into account that g is a pgf, it must satisfy g(1) = 1, implying that C = exp(−bea)
and, hence, the desired result is obtained.

Let φ(x; θ) = (φ(x; 0, θ), φ(x; 1, θ), ...), and fr(a, b) = br
∑

u≥0(u+ r)au

u! = br(a+ r)ea.
We have the following lemmas.

Lemma A.1. Let X1, ..., Xn be independent and identically distributed from X, a

random variable taking values in N0 with probability mass function p(k) = Pr(X = k), k ∈ N0,

so that E(X2) <∞. Then, E(‖φ(X; θ)‖2
2) ≤ E(X2) + b2f2

0 (a, b) <∞, ∀ θ = (a, b) ∈ Θ.

Proof: By definition,

‖φ(X; θ)‖2
2 =

∑
k≥0

(k + 1)2I(X = k + 1) +
∑
k≥0

k∑
u=0

b2a2u+2

(u!)2
I(X = k − u),

and, thus, E(‖φ(X; θ)‖2
2) = E(X2) +

∑
k≥0

∑k
u=0

b2a2u+2

(u!)2
p(k − u). To show the finiteness of

E(‖φ(X; θ)‖2
2), we must prove that

∑
k≥0

∑k
u=0

b2a2u+2

(u!)2
p(k − u) <∞. The rest of the proof

is parallel with the one in Lemma 1 of Batsidis et al. [3] and for this reason is omitted.

Let ∂
∂θi
d̂(·; θ) =

(
∂

∂θi
d̂(0; θ), ∂

∂θi
d̂(1; θ), ...

)
, where i = 1, 2, and so θ1 := a and θ2 := b.

Lemma A.2. Let X1, ..., Xn be independent and identically distributed from X,

a random variable taking values in N0. Then, ∀ θ = (a, b) ∈ Θ, we have that:

(I)

∥∥∥∥ ∂

∂θ1
d̂(·; θ)

∥∥∥∥2

2

6 b2(a+ 1)2e2a = f2
1 (a, b) <∞,∥∥∥∥ ∂

∂θ2
d̂(·; θ)

∥∥∥∥2

2

6 a2e2a = f2
0 (a, b) <∞;

(II)

∥∥∥∥E{
∂

∂θi
d̂(·; θ)

}∥∥∥∥2

2

<∞, i = 1, 2.
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Proof: (I) We have that

(A.1)
∂

∂a
d̂(k; θ) = −b

k∑
u=0

(u+ 1)au

u!
p̂(k − u).

Therefore, ∥∥∥∥ ∂

∂a
d̂(·; θ)

∥∥∥∥2

2

= b2
∑

u,v>0

(u+ 1)au

u!
(v + 1)av

v!

∑
k>max{u,v}

p̂(k − u)p̂(k − v)

6 (b(a+ 1)ea)2 = f2
1 (a, b) <∞,

once
∑

k>max{u,v} p̂(k − u)p̂(k − v) 6
∑

k>0 p̂(k) = 1 and
∑

l>0(l + 1)al

l! = (a + 1)ea.
Furthermore, we have that

(A.2)
∂

∂b
d̂(k; θ) = −

k∑
u=0

au+1

u!
p̂(k − u).

Therefore, ∥∥∥∥ ∂∂bd̂(·; θ)
∥∥∥∥2

2

=
∑

u,v>0

au+1

u!
av+1

v!

∑
k>max{u,v}

p̂(k − u)p̂(k − v)

6 (aea)2 = f2
0 (a, b) <∞.

(II) The result follows from part (I) by replacing p̂(k − u) and p̂(k − v) with p(k − u)
and p(k − v), respectively.

Lemma A.3. Let X1, ..., Xn be independent and identically distributed from X,

a random variable taking values in N0. For each k ∈ N0, let θl = (al, bl) so that θl = γlθ +
(1− γl)θ̂, for some γl ∈ [0, 1]. Then,

∑
k≥0

{
∂

∂θi
d̂(k; θ)− ∂

∂θi
d̂(k; θl)

}2
a.s.(P )−→ 0, i = 1, 2.

Proof: From relation (A.1), and after some algebra, we have that

∆1 =
∑
k≥0

{
∂

∂a
d̂(k; θ)− ∂

∂a
d̂(k; θl)

}2

=
∑

u,v>0

u+ 1
u!

(blau
l − bau)

v + 1
v!

(blav
l − bav)M1(u, v),

with 0 ≤M1(u, v) =
∑

k≥max{u,v} p̂(k− u)p̂(k− v) ≤ 1. By applying the mean value theorem,

we have that blau
l = bau +ub̃uã

u−1
u (ãu−a)+ ãu

u(̃bu− b), ∀u ≥ 1, where θ̃u = (ãu, b̃u) with θ̃u =
γuθl + (1− γu)θ, for some γu ∈ (0, 1). Therefore, ãu − a = γu(al − a) and b̃u − b = γu(bl − a).
Taking into further consideration that au ≤ max{al, a} ≤ max{â, a} := ã, bu ≤ max{bl, b} ≤
max{b̂, b} := b̃, we have that | blau

l − bau | ≤ ub̃ãu−1 | al− a | + ãu | bl− b | ≤ ub̃ãu−1 | â− a | +
ãu | b̂− b | , ∀u ≥ 1. Similarly, we have that | blav

l − bav | ≤ vb̃ãv−1 | â−a | + ãv | b̂− b | , ∀v ≥ 1.
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From the above considerations we have that |∆1 | ≤ (â−a)2(̃b(ã+2)eea)2 +2 | â−a | | b̂− b | ·
b̃(ã+ 1)eea(ã+ 2)eea + (̂b− b)2((ã+ 1)eea)2. Taking into account that in the right-hand side
of the above expression all the functions are continuous functions of θ, it follows that

(â−a)2(̃b(ã+2)eea)2
a.s.(P )−→ (a−a)2(b(a+ 2)ea)2 = 0, | â−a | | b̂− b | b̃(ã+1)eea(ã+2)eea

a.s.(P )−→
| a−a | | b−b | b(a+1)ea(a+2)ea = 0, (̂b−b)2((ã+1)eea)2

a.s.(P )−→ (b−b)2((a+ 1)ea)2 = 0. Thus,

∆1
a.s.(P )−→ 0.

From relation (A.2), and after some algebra, we have that

∆2 =
∑
k≥0

{
∂

∂b
d̂(k; θ)− ∂

∂b
d̂(k; θl)

}2

=
∑

u,v>0

1
u!

(au+1
l − au+1)

1
v!

(av+1
l − av+1)M1(u, v).

By applying the mean value theorem as done when studying ∆1 and following similar steps,

we get |∆2| ≤ (â− a)2((ã+ 1)eea)2. Then, it follows that (â− a)2((ã+ 1)eea)2
a.s.(P )−→ (a− a)2 ·

((a+ 1)ea)2 = 0, and, hence, ∆2
a.s.(P )−→ 0.

Lemma A.4. Let X1, ..., Xn be independent and identically distributed from X, a

random variable taking values in N0. Assume that θ̂
a.s.(P )−→ θ, for some θ ∈ Θ. Given the data,

let X∗
1 , ..., X

∗
n be independent and identically distributed from X∗ ∼ BT (θ̂). Let d̂∗(k; θ)

be defined as d̂(k; θ) with p̂(k) replaced with p̂∗(k) = 1
n

∑n
j=1 I(X

∗
j = k), k ≥ 0. Then, for

i = 1, 2,

(I)
∑
k≥0

[
∂

∂θi
d̂∗(k; θ̂)− µi(k; θ̂)

]2
P∗−→ 0, a.s.(P),

(II)
∑
k≥0

[
µi(k; θ)− µi(k; θ̂)

]2
→ 0, a.s.(P).

Proof: (I) We have that

∑
k≥0

[
∂

∂a
d̂∗(k; θ̂)− µ1(k; θ̂)

]2

=
∑
k≥0

{
−b̂

k∑
v=0

(v + 1)
av

v!

[
p̂∗(k − v)− p(k − v; θ̂)

]}2

= b̂2
∑

u,v≥0

(u+ 1)
âu

u!
(v + 1)

âv

v!

∑
k≥max{u,v}

{
p̂∗(k − v)− p(k − v; θ̂)

}{
p̂∗(k − u)− p(k − u; θ̂)

}
≤

[
b̂(â+ 1)eba

]2 ∑
k≥0

{
p̂∗(k)− p(k; θ̂)

}2
.

Since [̂b(â+ 1)eba]2 is a continuous function of θ̂ = (â, b̂), we have that b̂(â+ 1)eba]2
a.s.(P )−→

[b(a+ 1)ea]2 <∞, ∀ θ ∈ Θ. We also have that (see proof of Lemma 4 in Batsidis et al. [3])∑
k≥0{p̂∗(k)− p(k; θ̂)}2 P∗−→ 0, and it follows that

∑
k≥0

[
∂

∂θ1
d̂∗(k; θ̂)− µ1(k; θ̂)

]2
P∗−→ 0, a.s.(P ).
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Also, we have that

∑
k≥0

[
∂

∂b
d̂∗(k; θ̂)− µ2(k; θ̂)

]2

=
∑
k≥0

{
k∑

v=0

av+1

v!
[p̂∗(k − v)− p(k − v; θ̂)]

}2

=
∑

u,v≥0

âu+1

u!
âv+1

v!

∑
k≥max{u,v}

{p̂∗(k − v)− p(k − v; θ̂)}{p̂∗(k − u)− p(k − u; θ̂)}

≤
(
âeba

)2 ∑
k≥0

{p̂∗(k)− p(k; θ̂)}2.

Using similar arguments as above, we have (âeba)2
a.s.(P )−→ (aea)2 <∞, ∀ θ ∈ Θ. Then, taking

into account that
∑

k≥0{p̂∗(k)− p(k; θ̂)}2 P∗−→ 0, we obtain

∑
k≥0

[
∂

∂θ2
d̂∗(k; θ̂)− µ2(k; θ̂)

]2
P∗−→ 0, a.s.(P ).

(II) We have that
∑

k≥0[µ1(k; θ)− µ1(k; θ̂)]2 = ∆11 + 2∆12 + ∆13, where

∆11 =
∑
k≥0

k∑
u,v=0

(u+ 1)
b̂âu

u!
(v + 1)

b̂âv

v!
{p(k − u; θ̂)− p(k − u; θ)}{p(k − v; θ̂)− p(k − v; θ)},

∆12 =
∑
k≥0

k∑
u,v=0

(u+ 1)
b̂âu

u!
v + 1
v!

{p(k − u; θ̂)− p(k − u; θ)}p(k − v; θ){b̂âv − bav},

∆13 =
∑
k≥0

k∑
u,v=0

u+ 1
u!

v + 1
v!

p(k − u; θ)p(k − v; θ){b̂âu − bau}{b̂âv − bav}.

It follows that
∆11 ≤ (̂b(â+ 1)eba)2

∑
k≥0

{p(k; θ̂)− p(k; θ)}2.

Since (̂b(â+ 1)eba)2
a.s.(P )−→ (b(a+ 1)ea)2, it suffices to show that∑

k≥0

{p(k; θ̂)− p(k; θ)}2 a.s.(P )−→ 0,

then, ∆11
a.s.(P )−→ 0. Taking into account that∑

k≥0

{p(k; θ̂)− p(k; θ)}2 ≤
∑
k≥0

k2{p(k; θ̂)− p(k; θ)}2,

and that Eθ(X2) = (baea)2 + baea(1 + a), ∀θ ∈ Θ, the rest of the proof is parallel with the
proof of Lemma 4 II given in Jiménez-Gamero and Alba-Fernandez [21] and, hence, it is
omitted.

We now deal with ∆12. After some algebra and by applying the mean value theorem
as in the proof of Lemma A.2, we have that |∆12| ≤ b̂(â+ 1)ebab̃(â− a)(ã+ 2)eea + b̂(â+ 1)eba ·
(̂b− b)(ã+ 1)eea. Thus, ∆12

a.s.(P )−→ 0.
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Related to |∆13|, note that after some algebra and following similar arguments as above,
we have that

|∆13| ≤
∑
u≥1

u+ 1
u!

{ub̃ãu−1|â− a|+ ãu |̂b− b|}

×
∑
v≥1

v + 1
v!

{vb̃ãv−1|â− a|+ ãv |̂b− b|},

or

|∆13| ≤ (â− a)2b̃
∑

u,v≥1

u+ 1
u!

uvãu−1ãv−1

+ (̂b− b)2
∑

u,v≥1

u+ 1
u!

ãuãv

+ 2|â− a||̂b− b|̃b
∑

u,v≥1

u+ 1
u!

uãu−1ãv.

Also, we have that
∑

k≥0[µ2(k; θ)− µ2(k; θ̂)]2 = ∆21 + 2∆22 + ∆23, where

∆21 =
∑
k≥0

k∑
u,v=0

âu+1

u!
âv+1

v!
{p(k − u; θ̂)− p(k − u; θ)}{p(k − v; θ̂)− p(k − v; θ)},

∆22 =
∑
k≥0

k∑
u,v=0

âu+1

u!
1
v!
{p(k − u; θ̂)− p(k − u; θ)}p(k − v; θ){âv+1 − av+1},

∆23 =
∑
k≥0

k∑
u,v=0

1
u!

1
v!
p(k − u; θ)p(k − v; θ){âu+1 − au+1}{âv+1 − av+1}.

Similarly, ∆21≤ (âeba)2
∑

k≥0{p(k; θ̂)−p(k; θ)}2. Since (âeba)2
a.s.(P )−→ (aea)2 and

∑
k≥0{p(k; θ̂)−

p(k; θ)}2 a.s.(P )−→ 0, we have that ∆21
a.s.(P )−→ 0. Also,

|∆22 | ≤ | â− a |
∑
u≥0

âu+1

u!

∑
v≥0

v + 1
v!

ãv

= | â− a | âeba(ã+ 1)eea.

Since | â− a | âeba(ã+ 1)eea
a.s.(P )−→ 0, it follows that ∆22

a.s.(P )−→ 0.

Finally, it holds that

|∆23 | ≤
∑

u,v≥0

âu+1 − au+1

u!
âv+1 − av+1

u!

≤ (â− a)2
(
ã+ 1)eea

)2
,

and since (â− a)2
(
ã+ 1)eea

)2 a.s.(P )−→ 0, it follows that ∆23
a.s.(P )−→ 0.
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Proof of Theorem 3.1: By applying the mean value theorem, we get, for each k ∈N0,
that

(A.3) d̂(k; θ̂) = d̂(k; θ) +
{
∂

∂θ
d̂(k; θ)

}
(θ̂ − θ)T +

{
∂

∂θ
d̂(k; θl)−

∂

∂θ
d̂(k; θ)

}
(θ̂ − θ)T ,

with θl = γlθ+(1−γl)θ̂, for some γl ∈ (0, 1). From Lemma A.1, E(‖φ(X; θ)‖2
2) <∞ and thus

by the strong law of large number (SLLN) in Hilbert spaces and the continuous mapping
theorem, it follows that

(A.4) ‖d̂(k; θ)‖2
2

a.s.−→ ‖E{φ(X; θ)}‖2
2 = η <∞.

Finally, the result follows from (A.3), (A.4) and Lemmas A.2 and A.3.

Proof of Theorem 3.2: From expansion (A.3), Assumption 1 and Lemmas A.2 and
A.3, it follows that

(A.5)
√
nd̂(·; θ̂) =

√
nd̂(·; θ) +

{
∂

∂θ
d̂(·; θ)

}√
n(θ̂ − θ)T + r1,

with ‖r1‖2 = oP (1). Now, by applying the SLLN in Hilbert spaces and Assumption 1, we get

(A.6)
√
nd̂(·; θ) +

{
∂

∂θ
d̂(·; θ)

}√
n(θ̂ − θ)T =

1√
n

n∑
i=1

Y (Xi; ·, θ) + r2,

with ‖r2‖2 = oP (1). By the central limit theorem in Hilbert spaces,

(A.7)
1√
n

n∑
i=1

Y (Xi; ·, θ)
L−→ S(θ),

where Y (X; ·, θ) = (Y (X; 0, θ), Y (X; 1, θ), ...). The result follows from (A.5)–(A.7) and the
continuous mapping theorem.

Proof of Theorem 3.3: Proceeding as in the proof of Theorem 3.2, we have that

√
nd̂∗(·; θ̂∗) =

√
nd̂∗(·; θ) +

{
∂

∂θ
d̂∗(·; θ̂)

}√
n(θ̂∗ − θ̂)T + r∗1,

with ‖r∗1‖2 = oP∗(1) a.s.(P ). Let Y ∗n = 1√
n

∑n
i=1 Y (X∗

i ; ·, θ̂). By applying Lemma A.4 and
Assumption 2, we get

√
nd̂∗(·; θ) +

{
∂

∂θ
d̂∗(·; θ̂)

}√
n(θ̂∗ − θ̂)T = Y ∗n + r∗2,

with ‖r∗2‖2 = oP∗(1) a.s.(P ). To prove the result we derive the asymptotic distribution of Y ∗n ,
showing that it coincides with the asymptotic distribution of Sn(θ̂) when the data come from
X ∼ BT(θ). With this aim, we apply Theorem 1.1 in Kundu et al. [31]. So, we will show
that conditions (i)–(iii) in that theorem hold. This can be done in a similar way with the
proof of Theorem 3 in Jiménez-Gamero and Alba-Fernandez [21].
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B. APPENDIX: Function `

Here, the form of the function `, appeared in Assumption 1, associated with the
ML estimators, and the moment estimators are provided. Moreover, it is proved that the
conditions given in Assumption 1 really hold for the aforementioned estimators. For details
about the existence of the ML estimators, and ways of computing them in practice, we refer
to Section 4.2 in Castellares et al. [8].

In this context, when the ML estimators of the BT distribution are used, particularized
for this special distribution the general relation given in the the proof of Theorem 3.2 in
White [51] (see also Jiménez-Gamero and Kim [24]), the ` function is given by `(x; θ) =
−A(θ)−1∇ log f(x; θ), with

A(θ) = −
(
ba−1(1 + a)ea ea

ea Kbb

)
,

where Kbb cannot be obtained in closed-form and is provided in Castellares et al. [8, p. 4846],
and ∇ log f(x; θ) =

(
−be−a + x

a , (1− ea) + ∂
∂b log Tx(b)

)T
. Note that −A(θ) = K(θ) is the

unit (per observation) expected Fisher information matrix. Despite the fact that K(θ) cannot
be obtained in closed-form, we have from Castellares et al. [8, p. 4846] that Kbb ≤ eab−1 and
det(K(θ)) <∞. This implies that the inverse of this matrix exists. Furthermore, we have
from Castellares et al. [8] that Eθ( ∂

∂θ1
log f(x; θ)) = 0 and Eθ( ∂

∂θ2
log f(x; θ)) = 0. Therefore,

the relation Eθ{`(Xi; θ)} = 0 is fulfilled when the ML estimator is used. Finally, we have
that J(θ) = Eθ{`(Xi; θ)T `(Xi; θ)} = tr((K(θ))−1K(θ)−1Σ1) = tr(K(θ)−1) <∞, where tr(A)
denotes the trace of the matrix A, and Σ1 = Covθ(∇ log f(X; θ)) = K(θ).

Now, we consider the moment estimators of the BT distribution parameters to find
the expression ` and to confirm that the conditions given in Assumption 1 are satisfied.
Initially, note that from Remark 12 in Castellares et al. [8], we have after some algebra that
(a, b)T = (g1(µ1, µ2), g2(µ1, µ2))T , where

g1(µ1, µ2) =
µ2 − (µ1)2

µ1
− 1, g2(µ1, µ2) =

µ1 exp(1− µ2−µ2
1

µ1
)

µ2−(µ1)2

µ1
− 1

,

with µk = E(Xk), given in Remark 12 by Castellares et al. [8]. Therefore, since g = (g1, g2)T

is continuously differential at (µ1, µ2)T and E(||X||4) <∞, we have that (see for instance
Jiménez-Gamero and Kim [24]) `(x; θ) = (`1(x; θ), `2(x; θ))T , and

`1(x; θ) =
(

∂

∂µ1
g1(µ1, µ2),

∂

∂µ2
g1(µ1, µ2)

)
(x− µ1, x

2 − µ2)T ,

`2(x; θ) =
(

∂

∂µ1
g2(µ1, µ2),

∂

∂µ2
g2(µ1, µ2)

)
(x− µ1, x

2 − µ2)T .

Obviously, Eθ{`(Xi; θ)} = 0 since Eθ(X − µ1) = Eθ(X2 − µ2) = 0. Therefore, the condition
Eθ{`(Xi; θ)} = 0 is fulfilled when the moment estimator is used. In the sequel, let us denote by
K1(θ) the 2× 2 matrix with (i, j) element (i, j = 1, 2) equal to ∂

∂µj
gi(µ1, µ2). The elements

of the matrix K1(θ), which depend only on µ1 and µ2, are omitted here, however, they
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are available upon request and can be given in closed-form. Finally, we have that J(θ) =
Eθ{`(Xi; θ)T `(Xi; θ)} = tr(K1(θ)TK1(θ)Σ2), where

Σ2 = Covθ

(
X − µ1, X

2 − µ2

)T =
(

µ2 − µ2
1 µ3 − µ1µ2

µ3 − µ1µ2 µ4 − µ2
2

)
.

Therefore, J(θ) <∞ since tr((K1(θ))
TK1(θ)Σ2) <∞.

ACKNOWLEDGMENTS

Artur Lemonte acknowledges the financial support of the Brazilian agency Conselho
Nacional de Desenvolvimento Cient́ıfico e Tecnológico (grant 304776/2019–0). Apostolos
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[22] Jiménez-Gamero, M.D. and Alba-Fernández, M.V. (2021). A test for the geometric
distribution based on linear regression of order statistics, Mathematics and Computers in
Simulation, 186, 103–123.
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1. INTRODUCTION

In recent years, several researchers have proposed many generalizations of classical
distributions by adding further parameters. Generally, the aim behind such generalized dis-
tributions is to improve goodness-of-fit. For instance, the choice for modelling a monotonic
hazard function (hf) usually falls on the exponential, Weibull, gamma or others generalized
exponential distributions. However, for complex phenomena in survival and reliability stud-
ies, the hazard behaviour is almost certainly not monotonic. Therefore, in a situation of
non-monotonic hf, such as bathtub-shaped or unimodal, the aforementioned distributions are
unreasonable or even unrealistic. These limitations have naturally increased the interest in
developing new extensions or generalizations of the more traditional distributions.

In the current literature, the methods for generating new distributions can be divided
into two main approaches. The first one consists in the introduction of shape parameter(s) in
the baseline distribution to explore tail properties. Some well-known techniques are: Lehman
alternatives (also known as exponentiated), Marshall–Olkin, Kumaraswamy, transmuted,
among others. The second approach concerns compounding a baseline continuous lifetime
distribution with a discrete distribution, namely Poisson, geometric, negative-binomial or
logarithmic. One of the reasons for developing compounding distributions is that the lifetime
of a system constituted by Z (discrete random variable) components can be characterized by
the distribution of the minimum or maximum of the lifetimes of its components (non-negative
continuous random variables), depending on whether they form a series or a parallel system,
respectively. A detailed and comprehensive survey of the existing methods are presented in
Tahir and Cordeiro [30], which also proposed some new distributions.

An interesting two-parameter lifetime distribution that exhibits an increasing or a
bathtub-shaped hf was proposed by Chen [11]. Some merits of this distribution are related
with the exact confidence intervals and exact joint confidence region for the parameters. Over
the years, several generalizations of this distribution have been developed. One of the first
extensions, named XTG distribution, was introduced by Xie et al. [34] by adding the lacking
scale parameter. Although the resulting model provided a better fit to the analysed data,
the variety of shapes of the hf was not enriched. Other researchers have proposed models
with an increased number of alternative hazard shapes. The family of distributions given by
Lehman alternatives was considered by Chaubey and Zang [10] and Sarhan and Apaloo [28],
who obtained the exponentiated Chen and exponentiated XTG distributions, respectively.
Nadarajah et al. [23] derived general properties of the Kumaraswamy family of distributions
and illustrated the new results obtaining the Kumaraswamy versions of the Chen and XTG
distributions. The Marshall–Olkin technique was applied by Alawadhi et al. [2] in order
to develop the Marshall–Olkin Chen distribution. The Chen-geometric and Marshall–Olkin
Chen distributions can be seen as similar models with the same number of parameters, but
the parameter space of the former model takes a more limited range of values. Cordeiro et
al. [13] proposed a new family of lifetime distributions compounding a given class of gen-
eralized Weibull distributions with the geometric distribution. Since the Chen and XTG
distributions were shown to be members of such class of models, these authors described the
Chen-geometric and XTG-geometric distributions as particular cases. Another compounding
distribution was proposed by Pappas et al. [24], who studied the Chen-logarithmic distri-
bution and also extended the parameter space of the logarithmic distribution to R+\{0}.
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The transmuted Chen distribution has already been developed and was reported in Tahir
and Cordeiro [30]. For other recent generalized versions of the Chen distribution, the reader
is referred to [3, 7, 31].

In the light of the above context, the aim of this paper is to propose a new flexible
generalization of the Chen distribution [11] by compounding it with the zero-truncated Pois-
son (ZTP) distribution. The remainder of the paper is organized as follows. In Section 2,
a brief review on the unified Poisson family of distributions discussed by Ramos et al. [26]
is presented. Section 3 begins with the definition of the new lifetime distribution, followed by
the study of its properties, including the shapes of the probability density function (pdf) and
hf in Subsection 3.1, as well as the quantiles, moment generating function and mean residual
life function in Subsection 3.2. In Subsection 3.3, the maximum likelihood (ML) method is
applied in the presence of a right-censoring mechanism and the estimators performance is
evaluated by a simulation study in Subsection 3.4. In Subsections 3.5 and 3.6, the useful-
ness of the new distribution is illustrated in two real data applications with uncensored and
censored observations. Some final remarks are presented in Section 4.

2. THE UNIFIED POISSON FAMILY OF DISTRIBUTIONS:
A BRIEF REVIEW

The new distribution arises on competitive and complementary risks (CCR) scenarios,
wherein it is only possible to observe the minimum/maximum lifetime among all causes
instead of observing the lifetime associated with a particular cause [5]. In these settings, a
difficulty emerges if the causes are latent in the sense that there is no information about which
cause was responsible for the occurrence of the event. On many situations, it is impossible to
specify the true cause, even by an expert, because it is somehow masked. For instance, in the
biomedical sciences the interest is often to study the time until death, which can occur due to
several competing causes such as respiratory infection, cardiac arrest, stroke, cancer, diabetes,
among others. This triggers a competitive risks problem (time-to-event of a series system)
due to the fact that it is only possible to observe the minimum lifetime among all causes.
In an opposite example, suppose that the death of a patient with a given infection is due
to multiple organ failures such as in lungs, kidneys and liver. This is now a complementary
risks problem (time-to-event of a parallel system) since only the maximum lifetime among
all causes is observed. As mentioned by Basu and Klein [6], since a complementary risks
problem is the dual of a competitive risks problem, in general it is sufficient to establish the
results in terms of the distribution of the minimum or the maximum, although there are some
situations where the distribution of the maximum is simpler to handle analytically.

Recently, Ramos et al. [26] showed that both distributions of the minimum and the
maximum can be unified in a simple form using a latent variable with ZTP distribution. Let
X1, ..., XZ be the times to event associated with each cause and Z a random variable with ZTP
distribution, with probability mass function P (Z = z;φ) = φz

(
z!(eφ − 1)

)−1, z ∈ N, φ ∈ R+.
Assume that the random variables X’s and Z are independent and that X1, ..., XZ are in-
dependent and identically distributed according to a continuous lifetime distribution with a
generic baseline cumulative distribution function (cdf) F0(x;θ), indexed by the parameters
vector θ.



176 I. Sousa-Ferreira, A.M. Abreu and C. Rocha

Defining Y = min{X1, ..., XZ} in a competitive risks problem, the conditional cdf of Y
given that Z = z is

F (y|z;θ) = 1− P (Y > y|Z = z;θ) = 1−
[
1− F0(y;θ)

]z
, y > 0.

Then, the marginal cdf of Y is

(2.1) F (y;θ, φ) =
∞∑

z=1

φz

z!(eφ − 1)

(
1−

[
1− F0(y;θ)

]z) =
1− e−φF0(y;θ)

1− e−φ
, φ > 0.

On the other hand, defining T = max{X1, ..., XZ} in a complementary risks problem, the
conditional cdf of T given that Z = z is

F (t|z;θ) = P (T ≤ t|Z = z;θ) =
[
F0(t;θ)

]z
, t > 0.

Consequently, the marginal cdf of T is

(2.2) F (t; θ, φ) =
∞∑

z=1

φz

z!(eφ − 1)
[
F0(t; θ)

]z =
1− eφF0(t;θ)

1− eφ
, φ > 0.

Thus, the distribution obtained from (2.2) belongs to the same family of distributions pre-
sented in (2.1) if it is assumed that φ takes negative values. So, when the latent variable has
a ZTP distribution, the distributions of the minimum and the maximum can be merged into
one, giving rise to the unified Poisson family of distributions.

Thereafter, assume that T has a distribution from the unified Poisson family, wherein
the parameter space is extended to R\{0}. Since the cdf of T is still defined by (2.2), the
parameter φ of this family of models has a particular interpretation in CCR problems. When
φ < 0 (φ > 0), T represents the minimum (maximum) lifetime among all causes.

A large number of compounded ZTP distributions has already been proposed consid-
ering separately the minimum or maximum, as reviewed by Tahir and Cordeiro [30]. Fol-
lowing the unified approach, some of these distributions can be merged or even extended.
For instance, Ramos et al. [26] considered the extended Weibull–Poisson (EWP) distribu-
tion [16, 19] (that was initially derived only by taking the minimum) and showed that the
exponential-Poisson [18] and Poisson-exponential [9] distributions (that were derived by tak-
ing the minimum and maximum, respectively) can be unified into a single distribution, named
extended exponential-Poisson (EEP) distribution.

3. A NEW LIFETIME DISTRIBUTION

Let X be a random variable following a Chen distribution [11] with cdf and hf given
by

(3.1) F0(x;λ, γ) = 1− eλ
(
1−ex

γ
)
, x > 0,

and

(3.2) h0(x;λ, γ) = λγxγ−1exγ , x > 0,
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respectively, where λ, γ > 0. Since h′0(x;λ, γ) = [γ(xγ + 1)− 1]h0(x;λ, γ)x−1, only the pa-
rameter γ affects the shape of the hf, which is: i) bathtub-shaped for γ < 1 (decreasing for
0 < x ≤ (1/γ − 1)1/γ and increasing for x > (1/γ − 1)1/γ); and ii) monotonically increasing
for γ ≥ 1.

By substituting (3.1) in the unified Poisson family of distributions (2.2), a new gener-
alization of the Chen distribution arises with cdf given by

(3.3) F (t;λ, γ, φ) =
1− eφ

[
1−e

λ

(
1−et

γ
)]

1− eφ
, t > 0,

where λ, γ > 0 and φ ∈ R\{0} are the parameters of the distribution. The corresponding pdf
is

(3.4) f(t;λ, γ, φ) =
λγφtγ−1

1− e−φ
etγ+λ

(
1−et

γ
)
−φe

λ

(
1−et

γ
)
, t > 0.

Hereafter, the distribution of T will be referred to as extended Chen–Poisson (ECP) distri-
bution, which is a customary name for distributions belonging to the unified Poisson family.
In fact, this distribution unifies both the minimum (φ < 0) and the maximum (φ > 0) distri-
butions, which correspond to the Chen–Poisson and Poisson-Chen distributions, respectively.

The survival function (sf) and hf of the ECP distribution are defined, respectively, as
follows

S(t;λ, γ, φ) =
1− e−φe

λ

(
1−et

γ
)

1− e−φ
, t > 0,

and

(3.5) h(t;λ, γ, φ) =
λγφtγ−1etγ+λ

(
1−et

γ
)

eφe
λ

(
1−et

γ
)
− 1

, t > 0.

3.1. Shapes of the probability density function and hazard function

The pdf (3.4) and hf (3.5) for some combinations of parameters values are depicted in
Figures 1 and 2, respectively. It is challenging to study analytically the theoretical behaviour
of these functions due to their complex expressions. In addition, the monotonicity study
is hampered by the fact that all three parameters, λ, γ and φ, affect both the density and
hazard shapes.

Based on the analytical analysis of the pdf, and as illustrated on the graphical repre-
sentation in Figure 1, the density shape can be: (a) monotonic decreasing; (b)–(c) unimodal;
or (d) decreasing-increasing-decreasing (DID). In what concerns the hazard shape, Figure 2
suggests that it can be: (a) monotonic increasing; (b) monotonic decreasing; (c) unimodal;
(d) bathtub; (e) increasing-decreasing-increasing (IDI); or (f) decreasing-increasing-decreasing-
increasing (DIDI). Accordingly, the ECP distribution is shown to be quite flexible. Nonethe-
less, some care is needed as the monotonicity study of the hf should not be solely based
on graphical analysis. Since limt→∞ h(t;λ, γ, φ) = ∞, for all λ, γ > 0 and φ ∈ R\{0}, the hf
is ultimately increasing, so a pure monotonic decreasing or unimodal shape is impossible.
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However, it was verified that when γ takes values close to zero the hf takes a long time to
increase. In such cases it is usual to admit that, from the practical point of view, the hf has
a generally decreasing right tail.
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Figure 1: Probability density functions of the ECP distribution for different combinations
of parameters values.

Proposition 3.1. The Chen distribution is a limiting case of the ECP distribution,

since when φ approaches 0 it follows that

lim
φ→0

h(t;λ, γ, φ) = λγtγ−1etγ ,

which is the hf (3.2) of the Chen distribution.

Proposition 3.2. The limiting behaviour of the pdf (3.4) and hf (3.5) of the ECP

distribution is

(i) lim
t→0+

f(t;λ, γ, φ) = lim
t→0+

h(t;λ, γ, φ) =


∞, 0 < γ < 1,
λφ

eφ − 1
, γ = 1,

0, γ > 1,∀λ > 0 and φ ∈ R\{0};

(ii) lim
t→∞

f(t;λ, γ, φ) = 0 and lim
t→∞

h(t;λ, γ, φ) = ∞, ∀λ, γ > 0 and φ ∈ R\{0}.
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Figure 2: Hazard functions of the ECP distribution for different combinations
of parameters values.
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Proposition 3.3. The theoretical behaviour of the pdf (3.4) of the ECP distribution

may be characterized separately for the minimum (φ < 0) and maximum (φ > 0) distributions,

as summarized in the following statements.

(i) Distribution of the minimum:

• For φ < 0, 0 < γ ≤ 1 and λ ≥ (1−φ)−1, the pdf is monotonically decreasing;

• For φ < 0, γ = 1 and 0 < λ < (1− φ)−1, the pdf is unimodal;

• For φ < 0, 0 < γ < 1 and 0 < λ < (1− φ)−1, the pdf is monotonically de-

creasing or DID;

• For φ < 0, γ > 1 and λ > 0, the pdf is unimodal;

(ii) Distribution of the maximum:

• For 0 < φ ≤ 1− λ−1, 0 < γ ≤ 1 and λ > 1, the pdf is monotonically decreas-

ing;

• For φ > 1− λ−1, γ = 1 and λ > 1, the pdf is unimodal;

• For φ > 1− λ−1, 0 < γ < 1 and λ > 1, the pdf is monotonically decreasing

or DID;

• For φ > 0, γ > 1 and λ > 1, the pdf is unimodal;

• For φ > 0, γ ≥ 1 and 0 < λ ≤ 1, the pdf is unimodal;

• For φ > 0, 0 < γ < 1 and 0 < λ ≤ 1, the pdf is monotonically decreasing or

DID.

The proofs of Propositions 3.1 and 3.2 are straightforward and, therefore, are omitted.
The proof of Proposition 3.3 is given in supplementary material file.

3.2. Quantiles, moments and mean residual life function

Some of the most important characteristics of a distribution, such as dispersion, skew-
ness and kurtosis, can be studied through its quantiles and moments. By inverting the cdf
(3.3), the quantile function of the ECP distribution is given by

(3.6) Q(u;λ, γ, φ) =
{

log
[
1− λ−1 log

(
1− φ−1 log

(
(eφ − 1)u+ 1

))]}1/γ

,

for 0 < u < 1. This expression can be used for simulating pseudo-random values of T ∼
ECP(λ, γ, φ), considering that

(3.7) T =
{

log
[
1− λ−1 log

(
1− φ−1 log

(
(eφ − 1)U + 1

))]}1/γ

,

where U is a uniformly distributed random variable on (0, 1) interval.

The moment generating function of T can be defined as

MT (w) = E(ewT ) = φ(1− e−φ)−1

∫ 1

0
exp

{
w

[
log
(

1− λ−1 log(v)
)]1/γ

− φv

}
dv,
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by making the change of variable v = eλ
(
1−et

γ
)
. Then, the r-th raw moment of T is given by

E(T r) = φ(1− e−φ)−1

∫ 1

0
e−φv

[
log
(

1− λ−1 log(v)
)]r/γ

dv, r = 1, 2, ... .

In particular, the mean and variance of ECP distribution are, respectively, given by

E(T ) = φ(1− e−φ)−1

∫ 1

0
e−φv

[
log
(

1− λ−1 log(v)
)]1/γ

dv,

and

Var(T ) = φ(1− e−φ)−1

∫ 1

0
e−φv

[
log
(

1− λ−1 log(v)
)]2/γ

dv − [E(T )]2.

The mean residual life function, as well as the hf, plays an important role in sur-
vival analysis for characterizing lifetime. While the latter represents the instantaneous event
rate, the former summarizes the entire residual lifetime. The mean residual life function,
mrl(t;λ, γ, φ) = E(T − t|T ≥ t), of the ECP distribution is given by

mrl(t;λ, γ, φ) = φ(1− e−φA)−1

∫ A

0
e−φv

[
log
(

1− λ−1 log(v)
)]1/γ

dv − t,

with A = eλ
(
1−et

γ
)
.

The moments have no closed-form expressions and so they can only be obtained using
numerical integration. Therefore, the classical measures of skewness and kurtosis based on
moments are intractable. In this case, quantile-based measures are often considered, namely
the Bowley skewness and Moors kurtosis that are given, respectively, by B = [Q(3/4)−
2Q(1/2)+Q(1/4)]/[Q(3/4)−Q(1/4)] andM = [Q(7/8)−Q(5/8)−Q(3/8)+Q(1/8)]/[Q(3/4)
−Q(1/4)], where Q(·) comes from (3.6). These measures exist even for distributions without
finite moments and are less sensitive to outliers.

3.3. Statistical inference

For statistical inference, the ML method is usually preferred due to the attractive
properties of the resulting estimators, such as consistency, asymptotic efficiency, invariance
property and asymptotic normality. Therefore, the ML method to estimate the three unknown
parameters of the ECP distribution for the general case of right-censored time-to-event data
is presented.

Let T̃i = min{Ti, Ci}, i = 1, ..., n, where Ti is the lifetime of i-th subject, following a
ECP distribution, and Ci is the censoring time, assumed to have a distribution that does not
depend on the parameters of Ti. Moreover, it is assumed that Ti and Ci are independent.
So, the censoring mechanism is non-informative. The censoring indicator is defined as δi =
I(Ti ≤ Ci), taking the value 1 if Ti is a time-to-event and 0 if it is right-censored. Considering
a random sample of n pairs, (t1, δ1), ..., (tn, δn), the log-likelihood function ` = logL(λ, γ, φ)
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is given by

` =
n∑

i=1

{
δi log f(ti;λ, γ, φ) + (1− δi) logS(ti;λ, γ, φ)

}
= n log

(
φ

1− e−φ

)
+m

(
λ+ log(λγ)

)
+ (γ − 1)

n∑
i=1

δi log(ti) +
n∑

i=1

δit
γ
i(3.8)

− λ
n∑

i=1

δietγi +
n∑

i=1

(1− δi) log

(
1− e−φe

λ

(
1−e

t
γ
i

)
φ

)
− φ

n∑
i=1

δieλ
(
1−et

γ
i

)
,

where m =
∑n

i=1 δi is the observed number of events. Some care must be taken when φ < 0,
since the values of log(φ) cannot be computed. This problem is easily overcome by considering

the fact that log
(
φ/(1− e−φ)

)
∈ R, ∀φ ∈ R\{0}, and log

(
(1− exp{−φeλ

(
1−et

γ
i

)
})/φ

)
∈ R,

∀λ, γ > 0 and φ ∈ R\{0}.

The first-order partial derivatives of the log-likelihood function with respect to each of
the three parameters are

∂`

∂λ
= m

(
1 +

1
λ

)
−

n∑
i=1

δietγi −
n∑

i=1

(1− δi)
φ
(
1− etγi

)
eλ
(
1−et

γ
i

)
1− eφe

λ

(
1−e

t
γ
i

) − φ

n∑
i=1

δi
(
1− etγi

)
eλ
(
1−et

γ
i

)
,

∂`

∂γ
=

m

γ
+

n∑
i=1

δi log
(
ti
)

+
n∑

i=1

δit
γ
i log

(
ti
)
− λ

n∑
i=1

δit
γ
i log

(
ti
)
etγi

+ λφ

n∑
i=1

(1− δi)
tγi log

(
ti
)
etγi +λ

(
1−et

γ
i

)
1− eφe

λ

(
1−e

t
γ
i

) + λφ

n∑
i=1

δit
γ
i log

(
ti
)
etγi +λ

(
1−et

γ
i

)
,

∂`

∂φ
= n

(
1
φ

+
1

1− eφ

)
− 1
φ

n∑
i=1

(1− δi)
1 + φeλ

(
1−et

γ
i

)
− eφe

λ

(
1−e

t
γ
i

)
1− ee

λ

(
1−e

t
γ
i

) −
n∑

i=1

δieλ
(
1−et

γ
i

)
.

The ML estimates are determined by setting these partial derivatives equal to zero, obtaining
a nonlinear system of equations that can only be solved using a numerical optimization
method such as Newton–Raphson or Broyden–Fletcher–Goldfarb–Shanno (BFGS).

Under mild regularity conditions, the ML estimators of λ, γ and φ have an asymptotic
multivariate normal distribution given by

(λ̂, γ̂, φ̂) a∼ N
[
(λ, γ, φ), I−1(λ, γ, φ)

]
, as n −→∞,

where the observed information matrix, I(λ, γ, φ), is defined as

I(λ, γ, φ) = −



∂2`

∂λ2
,

∂2`

∂λ∂γ
,

∂2`

∂λ∂φ

∂2`

∂γ∂λ
,

∂2`

∂γ2
,

∂2`

∂γ∂φ

∂2`

∂φ∂λ
,

∂2`

∂φ∂γ
,

∂2`

∂φ2


.

The mathematical expressions of the elements of I(λ, γ, φ) are given in supplementary ma-
terial file.
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For interval estimation and hypothesis testing, let V̂ar(λ̂), V̂ar(γ̂) and V̂ar(φ̂) denote
the estimates of the main diagonal elements of the inverse of the observed information matrix,
evaluated at the ML estimates of the parameters. The large-sample (1− α)100% confidence
intervals (CI) for λ, γ and φ are

λ̂± zα/2

√
V̂ar(λ̂), γ̂ ± zα/2

√
V̂ar(γ̂) and φ̂± zα/2

√
V̂ar(φ̂),

respectively, where zα/2 is the upper α/2 quantile of the standard normal distribution.

For computational implementation, the optim function available in R [25] statistical
software (version 4.1.0) was used for direct maximization of the log-likelihood function (3.8).

3.4. Simulation study

In order to investigate the performance of ML estimators of the three parameters of
the ECP distribution and to evaluate the accuracy of the resulting estimates, a simulation
study was conducted through R [25] statistical software. In such simulation, the following
steps were followed:

1. Specification of the parameters values (λ, γ, φ) = (0.2, 1.5, 3.0), (1.3, 0.2, -2.0),
(3.0, 0.3, 20.0) and (0.6, 0.6, -3.5). These sets of parameters values were selected in
order to yield increasing, decreasing, unimodal and bathtub shapes of the hazard
function, respectively, as shown in Figure 2.

2. Specification of the sample size n = 20, 50, 100, 500 and 1000.

3. Generation of a pseudo-random sample from (3.7), in the presence of random cen-
soring (that has the types I and II of censoring mechanisms as special cases). Here,
it is assumed that the event times follow an ECP distribution and the censoring
times are uniformly distributed. The percentage of pseudo-random censoring is
specified as 0%, 10% and 30%, following the procedures discussed in [27].

4. Computation of the ML estimates of the three parameters using the BFGS method
and evaluation of the elements of the inverse of the observed information matrix at
the ML estimates.

5. Repetition of the steps 1 to 4, N = 1000 times.

6. Calculation of the average of the N ML estimates and their standard errors.

7. Calculation of the bias, mean squared error (MSE) and coverage probability (CP)
of the 95% CI for each parameter. The bias and MSE associated with the ML
estimates of the parameter ϑ are, respectively, given by

Biasϑ =
1
N

N∑
l=1

(
ϑ̂l − ϑ

)
and MSEϑ =

1
N

N∑
l=1

(
ϑ̂l − ϑ

)2
,

where ϑ̂l is the ML estimate obtained from the l-th sample, l = 1, ..., N , and
ϑ = (λ, γ, φ)′. The CP is the proportion of the N generated 95% CIs that include
the real value of the parameter.
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The results obtained from the simulation study are presented in Table 1. For samples
generated with 0% of censoring, it is observed that the averages of the ML estimates of λ, γ
and φ tend to the true value of the parameter as the sample size increases, as well as their
standard errors tend to zero. Both the bias and MSE are smaller for larger sample sizes,
reflecting that the ML estimators are asymptotically unbiased. Besides, the CP tends to be
closer to the nominal level of 95%. However, it appears that φ has higher values for bias and
MSE in comparison to the remaining parameters. This aspect is more visible for the set of
parameters values corresponding to a unimodal hazard shape, but then it vanishes for large
sample sizes and does not compromise the estimation of λ and γ.

In general, these results suggest that the estimation of parameters was performed con-
sistently. Similar results were obtained for samples generated with 10% and 30%, despite the
bias and MSE of all three parameters having slightly higher values. Although it is not shown
here, the results were similar to the ones obtained for other choices of parameter values.

The programming codes of the simulation study, developed in R, are available in sup-
plementary material file. Further research may be carried out to assess and explore other
potential estimation procedures for the parameters of the ECP distribution, such as least-
square estimators, minimum distance estimators, percentile based estimators, among others
(see, for example, Dey et al. [14]).

3.5. Application to uncensored data: guinea pigs

In this section, the ECP distribution is applied to the (uncensored) guinea pigs data
set reported by Bjerkedal [8]. The data represent the survival times, in days, of 72 guinea
pigs infected with virulent tubercle bacilli. Dey et al. [15] analysed a transformed version
of the original data (divided by 100), which is also considered in this work. Moreover, the
adequacy of the ECP distribution is assessed in comparison with some other generalizations
of the Chen distribution. Those models are listed in Table 2.

Table 2: List of distributions fitted to the guinea pigs data.

j-th Model, [ref.] Probability density function, f(t), t > 0

1 Chen, [11] λ1γ1t
γ1−1et

γ1+λ1(1−et
γ1

), λ1, γ1 > 0

2 XTG, [34] λ2γ2(t/φ2)
γ2−1e(t/φ2)γ2+λ2φ2(1−e(t/φ2)γ2 ), λ2, γ2, φ2 > 0

3 ECP
λ3γ3φ3t

γ3−1

1− e−φ3
et
γ3+λ3(1−et

γ3
)−φ3eλ3(1−et

γ3 )
, λ3, γ3 > 0, φ3 ∈ R\{0}

4 Chen-logarithmic, [24]
λ4γ4(φ4 − 1)tγ4−1�

1− (1− φ4)eλ4(1−et
γ4 )

�
log φ4

et
γ4+λ4(1−et

γ4
), λ4, γ4, φ4 > 0

5 Exponentiated Chen, [10] λ5γ5φ5t
γ5−1�1− eλ5(1−et

γ5
)�φ5−1

et
γ5+λ5(1−et

γ5
), λ5, γ5, φ5 > 0

6 Marshall–Olkin Chen, [2]
λ6γ6φ6t

γ6−1�
1− (1− φ6)eλ6(1−et

γ6 )
�2 et

γ6+λ6(1−et
γ6

), λ6, γ6, φ6 > 0

7 Transmuted Chen, [30]
λ7γ7t

γ7−1�
1− φ7 + 2φ7eλ7(1−et

γ7 )
�−1 et

γ7+λ7(1−et
γ7

), λ7, γ7 > 0, φ7 ∈ (−1, 1)

8 Kumaraswamy Chen, [23]
λ8γ8φ8ψ8t

γ8−1(1− eλ8(1−et
γ8

))φ8−1

h
1−

�
1− eλ8(1−et

γ8 )
�φ8

i1−ψ8
et
γ8+λ8(1−et

γ8
), λ8, γ8, φ8, ψ8 > 0
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The AdequacyModel [21] package was used for fitting models to the guinea pigs data.
The ML estimates, their corresponding standard errors and −log-likelihood values of the
fitted models are shown in Table 3. The AdequacyModel package also provides some useful
statistics to assess the adequacy of the fitted models [22], such as the Cramér–von Mises (CM),
Anderson–Darling (AD), Akaike information criterion (AIC), consistent Akaike information
criterion (CAIC), Bayesian information criterion (BIC), Hannan–Quinn information criterion
(HQIC) and in addition performs the Kolmogorov–Smirnov (KS) test. The obtained values
are compiled in Table 4.

Table 3: ML estimates, standard errors and −log-likelihood values
for the guinea pigs data.

ML estimates Standard error
Model

λ̂j γ̂j φ̂j ψ̂j λ̂j γ̂j φ̂j ψ̂j
−ˆ̀

Chen 0.208 0.759 — — 0.034 0.043 — — 104.241

XTG 0.391 0.322 0.010 — 0.165 0.023 0.005 — 100.839

ECP 1.225 0.407 12.094 — 0.256 0.061 5.158 — 93.537

Chen-logarithmic 0.208 0.758 1.008 — 0.131 0.094 1.395 — 104.241

Exponentiated Chen 0.995 0.444 7.209 — 0.306 0.080 4.095 — 94.186

Marshall–Olkin Chen 0.003 1.131 0.016 — 0.001 0.043 0.006 — 97.975

Transmuted Chen 0.117 0.809 0.753 — 0.025 0.045 0.203 — 102.617

Kumaraswamy Chen 0.896 0.339 9.229 2.364 0.391 0.324 11.159 6.413 94.108

Table 4: Goodness-of-fit statistics for the guinea pigs data.

Model CM AD KS (p-value) AIC CAIC BIC HQIC

Chen 0.367 2.130 0.165 (0.040) 212.482 212.656 217.036 214.295

XTG 0.304 1.775 0.131 (0.172) 207.678 208.031 214.508 210.397

ECP 0.085 0.514 0.082 (0.719) 193.075 193.428 199.905 195.794

Chen-logarithmic 0.367 2.130 0.165 (0.040) 214.482 214.835 221.312 217.201

Exponentiated Chen 0.094 0.585 0.090 (0.601) 194.372 194.725 201.202 197.091

Marshall–Olkin Chen 0.199 1.153 0.137 (0.134) 201.652 202.005 208.482 204.371

Transmuted Chen 0.336 1.950 0.158 (0.055) 211.235 211.588 218.065 213.954

Kumaraswamy Chen 0.092 0.570 0.090 (0.610) 196.217 196.814 205.323 199.842

Bold values correspond to the best model.

The ECP distribution stands out as the best model among the fitted models, since its
values of goodness-of-fit measures are the smaller ones and it has the highest p-value from the
KS test. Interestingly, Dey et al. [15] showed that the alpha power transformed inverse Lindley
(APTIL) distribution provides a better fit to the guinea pigs data, when compared to the fits
of the inverse Lindley, generalized inverse Lindley, exponentiated generalized inverse Lindley,
exponentiated inverse Lindley and inverse Weibull distributions. Nevertheless, the reported
values of the AIC, BIC and KS statistic associated to the fit of the APTIL distribution are
234.817, 239.370 and 0.146, respectively, which are much higher than those obtained for the
ECP distribution.
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Additionally, the adequacy of the ECP distribution to model the guinea pigs data was
informally evaluated through the two plots positioned on the upper panel of Figure 3, where
plot (a) displays the empirical and model-based estimates of the sf; and plot (b) exhibits
the histogram and model-based estimates of the pdf. In order to avoid a graphical overload,
only the estimates of the Chen and ECP distributions are depicted. In both plots, the curves
corresponding to the ECP distribution show close agreement, corroborating the fact that this
distribution provides an adequate superior fitting to the survival times of guinea pigs with
tuberculous infection.
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Figure 3: (a) Empirical and estimated survival functions of the Chen and ECP distributions;
(b) Histogram and estimated probability density functions; (c) Estimated hazard
functions; (d) Empirical scaled TTT-transform for the guinea pigs data.

The hf estimates of the referred distributions are shown in Figure 3 (c). With the purpose
of identifying the hazard shape, a graphical method based on the total time on test (TTT)
transform suggested by Aarset [1] was considered. The TTT plot is obtained by plotting the
empirical scaled TTT-transform given by G(r/n) =

[∑r
i=1 Ti:n + (n− r)Tr:n

]
/
[∑n

i=1 Ti:n

]
versus r/n, where r = 1, ..., n and Ti:n are the order statistics of the sample. It has been
shown that the hf is increasing or decreasing if the TTT plot is concave or convex, respectively.



190 I. Sousa-Ferreira, A.M. Abreu and C. Rocha

Although this is a sufficient but not a necessary condition, this graphical method is commonly
used as a rough indicative of the hazard shape. Figure 3 (d) shows that the TTT plot
is concave for the considered data, suggesting an increasing hf, which in theory would be
properly accommodated by both distributions. However, the ML estimate of γ1 of the Chen
distribution is less than 1 (see Table 3), indicating that its hf is bathtub-shaped, as confirmed
by Figure 3 (c). Hence, this distribution provides a poor fit. In fact, based on the p-value
of the KS test (see Table 4), at significance level of 5%, there is evidence that the Chen
distribution is not adequate for modelling this data. In contrast, the ECP distribution was
able to capture an increasing hazard shape, reinforcing that it provides a good fit to the
guinea pigs data.

Under the unified approach of Ramos et al. [26], it is possible to find whether the
ECP distribution comes from the distribution of the minimum or maximum. Since the ML
estimate of φ3 is a positive value (see Table 3), the resulting distribution comes from the
maximum of Chen distributions, that is, if Ti, i = 1, ..., 72, are the guinea pigs lifetimes,
then Ti = max{Xi,1, ..., Xi,Z}, where Xi,z, z = 1, ..., Z, follows a Chen distribution and Z is
a non-observable random variable following a ZTP distribution.

3.6. Application to censored data: Rotterdam breast cancer

In this section, the ECP distribution is applied to the Rotterdam breast cancer data
set reported by Sauerbrei et al. [29]. The data represent the relapse-free survival from 2982
patients with primary breast cancer whose records were included in the Rotterdam tumour
bank. Here, the survival times (in years) since tumour removal until death from the dis-
ease is analysed. The maximum follow-up time is 19.283 years, the median (estimated by
the reverse Kaplan–Meier method) is 9.273 years and the percentage of censoring is 57.3%.
The Rotterdam data is also available in the survival [32] package.

The adequacy of the ECP distribution is assessed in comparison with some other mem-
bers of the unified Poisson family [26], in particular with the EEP, EWP, generalized extended
exponential-Poisson (GE2P) and extended exponenciated Weibull–Poisson (E2WP) distribu-
tions. Those models are listed in Table 5. Note that the E2WP distribution was proposed
only by taking the maximum (φ7 > 0) [20], but we consider φ7 ∈ R\{0} because it belongs
to the unified Poisson family. Besides the Chen distribution being a limiting case of the ECP
distribution (when φ4 → 0), the Weibull distribution is a limiting case of the EWP (when
φ5 → 0) and E2WP (when ψ7 = 1 and φ7 → 0) distributions. For this reason, the Weibull
distribution was also fitted to the Rotterdam data.

Given that in this application there are censored observations, the maxLik [33] package
was conveniently used to maximize the log-likelihood function for censored data associated to
each model, using the BFGS method. Table 6 compiles the ML estimates, their corresponding
standard errors and −log-likelihood values. Here, it is verified that almost all fitted models
come from the distribution of the maximum, except the GE2P distribution that comes from
the distribution of the minimum (φ̂6 < 0). Since the current application is not a CCR problem,
the sign of φ̂j is not relevant. The observed values of the AIC, CAIC, BIC and HQIC
statistics were also calculated in order to informally assess the adequacy of the fitted models,



The extended Chen–Poisson lifetime distribution 191

as presented in Table 7. From these results it is seen that, although the ECP distribution
has the smaller values of those criteria, the EWP distribution provides a similar fit. Thus,
both ECP and EWP distributions are the best models among the fitted models to analyse
the Rotterdam data.

Table 5: List of distributions fitted to the Rotterdam breast cancer data.

j-th Model, [ref.] Probability density function, f(t), t > 0

1 Chen, [11] λ1γ1t
γ1−1et

γ1+λ1(1−et
γ1

), λ1, γ1 > 0

2 Weibull λ2γ2t
γ2−1e−λ2t

γ2
, λ2, γ2 > 0

3 EEP, [18, 9]
λ3φ3

1− e−φ3
e−λ3t−φ3e−λ3t

, λ3 > 0, φ3 ∈ R\{0}

4 ECP
λ4γ4φ4t

γ4−1

1− e−φ4
et
γ4+λ4(1−et

γ4
)−φ4eλ4(1−et

γ4 )
, λ4, γ4 > 0, φ4 ∈ R\{0}

5 EWP, [16, 19, 26]
λ5γ5φ5t

γ5−1

1− e−φ5
e−λ5t

γ5−φ5e−λ5t
γ5
, λ5, γ5 > 0, φ5 ∈ R\{0}

6 GE2P, [4, 26]
λ6γ6φ6

1− e−φ6

�
e−φ6e−λ6t − e−φ6

1− e−φ6

�γ6−1

e−λ6t−φ6e−λ6t
, λ6, γ6 > 0, φ6 ∈ R\{0}

7 E2WP, [20]
λγ77 γ7φ7ψ7t

γ7−1
�
1− e−(λ7t)

γ7 �ψ7−1

�
eφ7 − 1

�
e(λ7t)

γ7−φ7

�
1−e−(λ7t)

γ7
�ψ7

, λ7, γ7, ψ7 > 0, φ7 ∈ R\{0}

Table 6: ML estimates, standard errors and −log-likelihood values
for the Rotterdam breast cancer data.

ML estimates Standard error
Model

λ̂j γ̂j φ̂j ψ̂j λ̂j γ̂j φ̂j ψ̂j
−ˆ̀

Chen 0.034 0.469 — — 0.002 0.007 — — 4913.724

Weibull 0.035 1.254 — — 0.003 0.031 — — 4817.114

EEP 0.101 — 1.479 — 0.006 — 0.194 — 4839.735

ECP 1.792 0.108 83.000 — 0.017 0.002 1.407 — 4780.796

EWP 0.227 2.330 39.353 — 0.005 0.035 1.047 — 4780.882

GE2P 1.609 0.046 −2.233 — 0.065 0.015 0.993 — 4797.261

E2WP 14.908 0.257 0.378 25.107 0.903 0.013 0.840 1.332 4780.297

Table 7: Goodness-of-fit statistics for the Rotterdam breast cancer data.

Model AIC CAIC BIC HQIC

Chen 9831.448 9831.452 9843.449 9835.766

Weibull 9638.228 9638.232 9650.229 9642.546

EEP 9683.471 9683.475 9695.472 9687.789

ECP 9567.591 9567.599 9585.592 9574.068

EWP 9567.765 9567.773 9585.766 9574.242

GE2P 9600.522 9600.530 9618.523 9606.999

E2WP 9569.527 9569.540 9593.528 9578.163

Bold values correspond to the best models.
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In addition, the overall goodness-of-fit of the ECP distribution was informally evaluated
through the two plots positioned on the upper panel of Figure 4, where plot (a) displays the
estimates of the sf based on the Kaplan–Meier estimator and on the Chen and ECP distri-
butions; and plot (b) exhibits the Cox–Snell residuals of the ECP distribution. The residuals
are defined as r̂i = Ĥ(ti; λ̂, γ̂, φ̂), i = 1, ..., n, where Ĥ(ti; λ̂, γ̂, φ̂) is the estimated cumulative
hazard function (chf) of the fitted model. When the model is adequate, the residuals behave
approximately as a sample from a population with unit exponential distribution [12]. This as-
sumption is informally checked through the graphical representation of

(
r̂i, ĤNA(r̂i)

)
, where

ĤNA(r̂i) is the Nelson-Aalen estimate of the chf of the residuals. There is a good fit when
this representation yields a straight line through the origin with slope 1. In both (a) and
(b) plots, the curves corresponding to the ECP distribution show general agreement, even
though there are a few poorly fitted observations on the upper tail. This is acceptable since
the 90-th quantile of the follow-up time (estimated by the reverse Kaplan–Meier method) is
equal to 13.227 years, from which the model begins to provide a poor fit to the data.
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Figure 4: (a) Estimated survival functions based on the Kaplan–Meier estimator
and on the Chen and ECP distributions; (b) Cox–Snell residuals of the
ECP distribution; (c) Estimated hazard functions of the Chen, Weibull,
ECP and EWP distributions; (d) Empirical scaled TTT-transform based
on the Kaplan–Meier estimator for the Rotterdam breast cancer data.
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The hf estimates of the Chen, Weibull, ECP and EWP distributions are depicted in
Figure 4 (c). With the purpose of identifying the hazard shape, the TTT plot is once again
considered. However, the existence of censored observations must be taken into account. As
mentioned by Klefsjö [17], a natural generalization of the empirical scaled TTT-transform,
G(r/n), to accommodate right censored data consists in replacing the empirical cdf, r/n, by
the estimator of the cdf based on the Kaplan–Meier estimator, 1− ŜKM(t). Figure 4 (d) shows
that, in this case, the TTT plot is initially concave and then becomes convex, suggesting an
unimodal hf. Both ECP and EWP distributions were able to capture an unimodal hazard
shape, providing quite similar estimates. Therefore, in addition to both models being suit-
able for modelling the Rotterdam data, the proposed distribution is an adequate parametric
alternative to the EWP distribution.

4. CONCLUDING REMARKS

In this paper, we introduce a new three-parameter lifetime distribution, named ECP
distribution. The proposed distribution is a generalization of the Chen distribution [11] and
arises from the unified Poisson compounding approach of Ramos et al. [26], where both
distributions of the minimum and maximum are merged into one when it is assumed that the
latent variable follows a ZTP distribution. Under this approach, the obtained distribution
allows a practical interpretation in CCR settings. It was verified that if the parameter from
the ZTP distribution takes a negative (or positive) value, then the random variable with ECP
distribution represents the minimum (or maximum) lifetime among all unobservable causes.
Several features of the new distribution are deduced, including the explicit expressions for
the sf, pdf, hf, quantile function, moment generating function (particularly, for the mean and
variance) and mean residual life function. The ECP distribution can take a richer variety
of flexible hazard shapes regarding to the baseline distribution. In fact, the main advantage
of the ECP distribution is that its hf can be monotonic increasing, monotonic decreasing,
unimodal, bathtub, IDI or DIDI.

The estimation of the parameters is done by the ML method, considering a right-
censoring mechanism. The results of the simulation study showed the effectiveness of the
ML method, in which the bias and MSE of the parameters estimates are close to zero as
the sample size increases. Additionally, two real data applications were presented with the
following purposes:

i) to assess the adequacy of the ECP distribution for modelling uncensored (guinea
pigs) and censored (Rotterdam breast cancer) data;

ii) to compare the proposed distribution with other generalizations of the Chen dis-
tribution, as well as with other members of the unified Poisson family.

In both applications, the ECP distribution clearly revealed to be a suitable parametric alter-
native for modelling the data, when compared with the competing models. It is noteworthy
that some of the considered models have quite flexible hfs (such as the Marshal-Olkin Chen
and E2WP distributions) but, for the analysed data sets, none was better than the ECP
distribution. This fact emphasizes the potential and flexibility of the proposed model.
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1. INTRODUCTION

Many coherent reliability systems, such as series, parallel, fail-safe and r-out-of-n sys-
tems, have all become useful and essential reliability structures in practice. For example, in
the architecture of network circuits, series circuit configurations are often used to manage
voltage drops to add to equal voltage, and for all the components in the circuit to share the
same equal current and the resistance to sum to equal total resistance. Similarly, parallel
circuit configurations are made use of so that all the components in the circuit can share the
same equal voltage, and with branch current adding to equal total current and resistance
diminishing to equal total resistance.

A fail-safe system is one that is designed so as to remain safe in the event of a failure;
it is not designed to prevent failure, but it is intended to mitigate failure when it does occur.
An elevator is a good example of a fail-safe system as it is designed with special brakes that
are held back by the tension of the cable, so that if the cable does snap, the loss of tension
would force the special brakes to be applied, thus averting an accident. Another recent
practical application of fail-safe system (2-out-of-3 system, to be specific) is in the autonomous
parking system in a car which consists of three computers and a sensor to determine an
appropriate parking manoeuvre in a given situation. While the three computers take the
specific information from the sensor into account and plan the steering and acceleration to
successfully park, they would compare their results and only if at least two of them are in
agreement, the car would park with that manoeuvre agreed by the majority of computers.

It is, therefore, quite important to understand the reliability and ageing characteristics
of such coherent reliability systems commonly used in practice. Stochastic orders are useful
tools for the purpose of comparative reliability evaluation and relative ageing of systems; one
may refer to the book length accounts by Müller and Stoyan [26] and Shaked and Shanthiku-
mar [33] for various stochastic orders, ageing notions and their applications to a wide range
of problems arising from different fields. The earliest and pioneering work in this regard was
carried out nearly five decades ago by Pledger and Proschan [28] and Proschan and Sethu-
raman [29]. There have been numerous subsequent developments in this direction, too many
to list here, as a matter of fact. But, interested readers may refer to the following articles
for some key results: Deshpande and Kochar [9], Saunders [32], Boland et al. [7], Kochar and
Korwar [17], Dykestra et al. [11], Khaledi and Kochar [15], Kochar and Xu [18], Zhao and
Balakrishnan [34], Zhao et al. [29], Balakrishnan et al. [2], and Barmalzan et al. [5]. Detailed
reviews of all the developments in this regard have also been presented by Kochar [16] and
Balakrishnan and Zhao [3].

Even though there is a huge body of literature on various types of comparisons of
different reliability systems, as witnessed in the reviews of Kochar [16] and Balakrishnan and
Zhao [4], most of the references cited therein and also all the papers mentioned above only
deal with the case of independent and non-identical components. Very few papers have dealt
with the case when the components in a system are dependent; see, for example, Rezapour
and Alamatsaz [31], Li and Fang [21], Ding and Zhang [10], Cai et al. [8], Fang et al. [12],
and Barmalzan et al. [6].
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Many systems in practice will include a number of components that are homogeneous,
like battery packs, circuits, airbags, etc.; but, the assumption that their lifetimes are in-
dependent may not be realistic and yet is one that is usually made in order to make the
corresponding models and subsequent derivations simpler. As the components in a system
will be functioning simultaneously, the functioning of one is likely to impact the functioning of
others. Moreover, these components may all be manufactured by the same producer, and so
may share the same manufacturing environment. It is, therefore, quite reasonable to expect
some dependence between them!

In this work, we consider reliability systems with dependent components, with the joint
distribution being modeled by a general Archimedean copula, and the lifetime of components
following accelerated failure time and modified proportional hazards distributions. We then
establish several characterization results for series, fail-safe, 2-out-of-n and parallel systems
through comparisons with average systems in terms of hazard rate, reversed hazard rate and
mean residual life orders.

There are several different ways to model dependence [see Kotz et al. [19]], and one
convenient way is through the use of copulas [Nelsen [27]]. Here, in this work, we use an
Archimedean copula to represent the joint distribution of the lifetimes of n components
in the system, as it is a well-known family of copulas with many prominent copulas, such
as independence, Ali-Mikhail-Haq, Gumbel-Hougaard, Clayton, and Frank copulas, all as
special cases. It is for this reason that we assume the Archimedean copula to model the joint
distribution of lifetimes of components.

The rest of this paper proceeds as follows. In Section 2, we briefly introduce some basic
stochastic orders, ageing notions and copulas that are most pertinent for the discussions
to follow in the subsequent sections; in addition, we provide a description of the accelerated
failure time and modified proportional hazards families of distributions that are used to model
the marginal distributions of lifetimes of components. In Section 3, we establish various
stochastic orderings and ageing results for the residual lives of parallel systems. In Section 4,
we similarly establish stochastic orderings and ageing results for the residual lives of series
systems. In Section 5, we develop some characterization results for some coherent systems
when the components follow an accelerated failure time model based on a comparison with
an average system. Similarly, in Section 6, we present some characterization results for some
coherent systems when the components follow a modified proportional hazards distribution
based on a comparison with an average system. Finally, in Section 7, we present some
concluding remarks and also some problems that will be of interest for further research.

2. DEFINITIONS AND KEY NOTIONS

We describe in this section some basic concepts about stochastic orders, copulas and
two general families of lifetime distributions that are essential for subsequent developments.
We assume through out that all random variables under consideration are lifetime variables
and so are nonnegative, and we use “increasing” to mean “nondecreasing” and “decreasing”
to mean “nonincreasing”. We assume all the expectations involved to exist, and for ease of
notation, we use a

sgn
= b to denote that both sides of an equality have the same sign.
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2.1. Stochastic orders

Let X and Y be random variables with density functions fX and fY , distribution
functions FX and FY , survival functions F̄X = 1−FX and F̄Y = 1−FY , hazard rate functions
hX = fX/F̄X and hY = fY /F̄Y , and reversed hazard rate functions h̃X = fX/FX and h̃Y =
fY /FY , respectively.

Definition 2.1. Then, X is said to be larger than Y in:

(i) usual stochastic order (denoted by X ≥st Y ) if F̄X(t) ≥ F̄Y (t), for all t ∈ R, or
equivalently, E[φ(X)] ≥ E[φ(Y )] for all increasing functions φ : R → R;

(ii) hazard rate order (denoted by X ≥hr Y ) if and only if hY (t) ≥ hX(t), for all
t ∈ R, or equivalently, F̄X(t)/F̄Y (t) is increasing in t ∈ R;

(iii) reversed hazard rate order (denoted by X ≥rh Y ) if and only if h̃X(t) ≥ h̃Y (t),
for all t ∈ R, or equivalently, FX(t)/FY (t) is increasing in t ∈ R;

(iv) mean residual life order (denoted by X ≥mrl Y ) if E(Xt) ≥ E(Yt), for all t ∈ R,
where E(Xt) = E(X − t|X > t) and E(Yt) = E(Y − t|Y > t) are the mean resid-
ual lives of X and Y , respectively.

Then, the following implications are well-known between these orders:

X ≥hr[rh] Y =⇒ X ≥st Y ;

see, for example, Müller and Stoyan [26] and Shaked and Shanthikumar [33] for extensive
discussions on various stochastic orderings, their inter-relationships, and their properties and
applications.

2.2. Ageing notions

Ageing, in reliability analysis, describes the variation in the performance of a unit over
time. Several different measures and measure-based stochastic orders have been discussed in
the literature pertaining to ageing characteristics of life distributions. Two most commonly
used notions are through hazard and reversed hazard rates.

Definition 2.2. A random variable X is said to be ageing faster than Y in:

(i) hazard rate (denoted by X ≥c Y ) if hY (t)/hX(t) is increasing in t ∈ R (Kalash-
nikov and Rachev, [14]);

(ii) reversed hazard rate (denoted by X ≥b Y ) if h̃X(t)/h̃Y (t) is increasing in t ∈ R
(Rezaei et al., [30]).

For more details on the relative ageing by increasing hazard ratio and reversed hazard
ratio functions, one may refer to Lai and Xie [20], Misra and Francis [25] and Hazra and
Misra [14].
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2.3. Archimedean copulas

As mentioned earlier in Section 1, a plethora of stochastic orders and stochastic com-
parisons of random variables have been discussed in the literature; but, most of them involve
only comparisons of marginal distributions of the underlying variables, without taking into
account possible dependence between variables, with some exceptions, of course! Here, we
consider characterizations of some reliability systems assuming the components to be depen-
dent under an Archimedean copula.

Archimedean copulas are widely used for modeling dependence between variables due
to their mathematical tractability as well as their ability to model a wide range of dependence
structures. For a decreasing continuous function φ : [0,∞) −→ [0, 1] with φ(0) = 1, φ(+∞) =
0 and ψ = φ−1 being the pseudo-inverse,

Cφ(u1, ..., un) = φ(ψ(u1) + ···+ ψ(un)), ui ∈ [0, 1],(2.1)

is said to be an Archimedean copula with generator φ if (−1)kφ[k](x) ≥ 0 for k = 0, ..., n− 2
and (−1)n−2φ[n−2](x) is decreasing and convex, with φ[k](x) denoting the k-the derivative of
the generator φ(x) with respect to x.

2.4. Accelerated failure time and modified proportional hazards distributions

Let X1, ..., Xn be random variables with Xi having hi(t), for i = 1, ..., n, as marginal
hazard functions. Then, they are said to have an accelerated failure time family of distri-
butions if, for all t ≥ 0, hi(t) = h(λit), for i = 1, ..., n, where h(·) is some baseline hazard
function and λi > 0 are scale parameters (also called acceleration constants). Upon noting
now that the cumulative hazard rate functions of Xi are given by Hi(t) = 1

λi
H(λit), and

then using the relationship between cumulative hazard function and survival function of a
distribution, we arrive at the form of cumulative distribution function for this family as

Si(t) = e−Hi(t) = e
− 1

λi
H(λit) = {e−H(λit)}1/λi = {S(λit)}1/λi ,(2.2)

for t ≥ 0, and i = 1, ..., n; see, for example, Marshall and Olkin (2007) for details.

In the context of nonparametric rank tests, two families of distributions with

G1(x) = (F (x))α, α > 0, Ḡ2(x) = (S(x))β , β > 0,(2.3)

known as “Lehmann families”, have been used extensively as nonparametric alternatives for
tests for stochastic orderings. Upon combining the two families in (2.3), we can obtain an
unified family of distributions with cumulative distribution function of the form

G(x) = 1− {1− (F (x))α}β, α, β > 0,(2.4)

where F (·) is some baseline distribution function. Now, we may introduce acceleration con-
stants λi (i = 1, ..., n), as in (2.2), to arrive at a general form of accelerated failure time
distribution with its cumulative distribution function as

Fi(t) = 1− {1− (F (λit))α}β , t > 0, α, β > 0,(2.5)
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for i = 1, ..., n. It is evident that the accelerated failure time model in (2.2) is a special case
of (2.5) when α = 1 and β = 1/λi.

Yet another flexible family of useful lifetime distributions, offered by Marshll and Olkin
[23], has a survival function of the form

S∗(t) =
αS(t)

1− ᾱS(t)
, t > 0, 0 < α < 1, ᾱ = 1− α,(2.6)

where S is some baseline survival function and α is referred to as a tilt parameter. Here
again, by introducing acceleration constants λi (i = 1, ..., n), as in (2.2), we arrive at a family
of modified proportional hazards family of distributions with its survival function as

Si(t) =
αS(λit)

1− ᾱS(λit)
, t > 0, λi > 0, 0 < α < 1, ᾱ = 1− α,(2.7)

for i = 1, ..., n. The name “modified proportional hazards model” stems from the fact that
the hazard functions of S and S∗ in (2.6) satisfy the relationship

hS∗(t) = hS(t)
1

1− ᾱS(t)
,(2.8)

which is indeed a modification of the proportional hazards assumption, with the multiplicative
term varying over t, rather than being a constant.

3. RESULTS FOR RESIDUAL LIVES OF PARALLEL SYSTEMS

Let Xn:n denote the lifetime of a parallel system consisting of n dependent components
whose joint distribution is given by an Archimedean copula. Then, the survival function,
density function, hazard rate function and reversed hazard rate function of the residual life
variable Xn:n(t) at x, given that the parallel system has survived till time t, are given by

FXn:n(t)(x) =
φ(nψ[F (x+ t)])− φ(nψ[F (t)])

1− φ(nψ[F (t)])
, x, t ≥ 0,(3.1)

fXn:n(t)(x) =
nf(x+ t)ψ′[F (x+ t)]φ′(nψ[F (x+ t)])

1− φ(nψ[F (t)])
, x, t ≥ 0,(3.2)

hXn:n(t)(x) =
nf(x+ t)ψ′[F (x+ t)]φ′(nψ[F (x+ t)])

1− φ(nψ[F (x+ t)])
, x, t ≥ 0,(3.3)

h̃Xn:n(t)(x) =
nf(x+ t)ψ′[F (x+ t)]φ′(nψ[F (x+ t)])

φ(nψ[F (x+ t)])− φ(nψ[F (t)])
x, t ≥ 0,(3.4)

where φ is the generator and ψ = φ−1. One question that we may ask here is, between two
parallel systems with n and m components, which one is more reliable. Of course, this can
be formulated using any particular stochastic order, as seen in the following theorems.

Theorem 3.1. If u ln′[1− φ(u)] is decreasing in u ∈ R+, then for m ≥ n, we have

Xm:m(t) ≥hr Xn:n(t).
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Proof: With the hazard rate function of Xn:n(t) as given in (3.3), for obtaining the
desired result, it is sufficient to show that hXn:n(t)(x)− hXm:m(t)(x) ≤ 0, for any x ∈ R+. We
have

I(x) = hXn:n(t)(x)− hXm:m(t)(x)

=
f(x+ t)ψ′(F (x+ t))

ψ(F (x+ t))

{
nψ(F (x+ t))φ′(nψ(F (x+ t)))

1− φ(nψ(F (x+ t)))

− mψ(F (x+ t))φ′(mψ(F (x+ t)))
1− φ(mψ(F (x+ t)))

}
sgn
= u ln′[1− φ(u)]

∣∣
u=nψ(F (x+t))

− u ln′[1− φ(u)]
∣∣
u=mψ(F (x+t))

.(3.5)

Now, by using the decreasing property of u ln′[1− φ(u)] with respect to u ∈ R+, for m ≥ n,
we readily observe from (3.5) that hXn:n(t)(x) ≥ hXm:m(t)(x), for x ∈ R+. Thus, the theorem
gets established.

Remark 3.1. Theorem 3.1 shows that, for some Archimedean copulas, parallel sys-
tems with more redundancy is more reliable in the sense of hazard rate order; that is, a
parallel system with less (dependent) components will possess a higher hazard rate than a
parallel system with less components.

Example 3.1. It should be mentioned that the condition “u ln′[1− φ(u)] is decreas-
ing” in Theorem 3.1 is quite general and holds for many Archimedean copulas. We now
demonstrate this with the following examples:

1. If φ1(u) = e−u
θ
, for θ ∈ R+ (Gumbel copula, Nelsen [27]), we have

u ln′[1− φ1(u)] = − tφ′1(u)
1− φ1(u)

=
θuθe−u

θ

1− e−uθ ,

which is decreasing in u ∈ R+;

2. If φ2(u) = 1− (1− e−u)θ, for θ ∈ [0, 1) (Li and Li [22]), we have

u ln′[1− φ2(u)] = − uφ′2(u)
1− φ2(u)

=
θue−u

1− e−u
,

which is decreasing in u ∈ R+;

3. If φ3(u) = 1√
u+1

(Li and Li [22]), we have

u ln′[1− φ3(u)] = − uφ′3(u)
1− φ3(u)

=
1

4(
√
u+ 1)

,

which is decreasing in u ∈ R+;

4. If φ4(u) = 1
2e
u
(
eu − 1

2

)−1 (Ali-Mikhail-Haq copula, Nelsen [27]), we have

u ln′[1− φ4(u)] = − uφ′4(u)
1− φ4(u)

=
ueu

2(eu − 1
2)(eu − 1)

,

which is decreasing in u ∈ R+.
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Example 3.2. Consider the standard exponential distribution as baseline distribution
function. Assume that φ(u) = 1√

u+1
, t = 5, n = 5 and m = 10.

Figure 1 presents plots of the hazard rate functions of hX5:5(1/x− 1) and hX10:10(1/x−
1), from which it can be observed that the value of hX10:10(5)(1/x− 1) is always smaller than
that of hX5:5(5)(1/x− 1) on the interval (0, 1). Thus, the results of Theorem 3.1 is validated
in this case.
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1.000

hazard rate function of X10:10

hazard rate function of X5:5

Figure 1: Plots of hazard rate functions of hX5:5(1/x− 1) and hX10:10(1/x− 1).

Theorem 3.2. If u ln′[φ(mψ(F (t)))− φ(u)] is increasing with respect to u ∈ R+, then

for m ≥ n, we have Xn:n(t) ≥rh Xm:m(t).

Proof: With reversed hazard rate function of Xn:n(t) as given in (3.4), for establishing
the desired result, we need to show that h̃Xn:n(t)(x) ≤ h̃Xm:m(t)(x), for any x ∈ R+. Because
φ′(x) ≤ 0, we have

I(x) = h̃Xn:n(t)(x)− h̃Xm:m(t)(x)

=
f(x+ t)ψ′(F (x+ t))

ψ(F (x+ t))

{
nψ(F (x+ t))φ′(nψ(F (x+ t)))
φ(nψ[F (x+ t)])− φ(nψ[F (t)])

− mψ(F (x+ t))φ′(mψ(F (x+ t)))
φ(mψ[F (x+ t)])− φ(mψ[F (t)])

}
≥ f(x+ t)ψ′(F (x+ t))

ψ(F (x+ t))

{
nψ(F (x+ t))φ′(nψ(F (x+ t)))
φ(nψ[F (x+ t)])− φ(mψ[F (t)])

− mψ(F (x+ t))φ′(mψ(F (x+ t)))
φ(mψ[F (x+ t)])− φ(mψ[F (t)])

}
sgn
= u ln′[φ(u)− φ(mψ(F (t)))] | u=mψ(F (x+t))

− u ln′[φ(u)− φ(mψ(F (t)))] | u=nψ(F (x+t)).(3.6)

Using the increasing property of u ln′[φ(mψ(F (t)))− φ(u)] with respect to u ∈ R+, form ≥ n,
we readily observe from (3.6) that I(x) ≥ 0, for x ∈ R+. Thus, the theorem gets established.
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Remark 3.2. Theorem 3.2 shows that, for some Archimedean copulas, a parallel sys-
tem with more (dependent) components will possess a higher reversed hazard rate than a
parallel system with less components.

Theorem 3.3. If u ln′
[
− φ′(u)

1−φ(u)

]
is decreasing in u ∈ R+, then for m ≥ n, we have

Xn:n(t) ≥c Xm:m(t).

Proof: With the hazard rate functions of Xn:n(t) and Xm:m(t) as given in (3.3), we
have

I(x) =
hXn:n(t)(x)
hXm:m(t)(x)

=
n

m
× φ′(nψ{F (x+ t)])

1− φ(nψ[F (x+ t)])
×
{

φ′(mψ[F (x+ t)])
1− φ(mψ[F (x+ t)])

}−1

.

Because φ(x) is decreasing, we obtain, for m ≥ n,

I ′(x)
sgn
=
{

φ′(nψ(F (x+ t)))
1− φ(nψ(F (x+ t)))

}′
× φ′(mψ(F (x+ t)))

1− φ(mψ(F (x+ t)))

− φ′(nψ(F (x+ t)))
1− φ(nψ(F (x+ t)))

×
{

φ′(mψ(F (x+ t)))
1− φ(mψ(F (x+ t)))

}′
sgn
= −nψ(F (x+ t))

{
φ′′(nψ(F (x+ t)))
φ′(nψ(F (x+ t)))

+
φ′(nψ(F (x+ t)))

1− φ(nψ(F (x+ t)))

}
+ mψ(F (x+ t))

{
φ′′(mψ(F (x+ t)))
φ′(mψ(F (x+ t)))

+
φ′(mψ(F (x+ t)))

1− φ(mψ(F (x+ t)))

}
= u ln′

[
− φ′(u)

(1− φ(u))

]∣∣∣∣∣
u=mψ(F (x+t))

− u ln′
[
− φ′(u)

(1− φ(u))

]∣∣∣∣∣
u=nψ(F (x+t))

.

Due to the assumption that u ln′
[
− φ′(u)

1−φ(u)

]
is decreasing in u ∈ R+, we get the required result

from the above equation.

Remark 3.3. Theorem 3.3 shows that, for some Archimedean copulas, a parallel sys-
tem with less redundancy (with dependence between components) ages faster in hazard rate
than a parallel system with more redundancy. Some illustrations of the result in Theorem
3.3 can be seen in Part (i) of Example 3.4 of Ding and Zhang [10].

Theorem 3.4. If u ln′
[
− φ′(u)
φ(u)−φ(mψ[F (t)])

]
is decreasing in u ∈ R+, then for m ≥ n, we

have Xm:m(t) ≥b Xn:n(t).

Proof: With the reversed hazard rate functions of Xm:m(t) and Xn:n(t) as given in
(3.4), we have

I(x) =
h̃Xn:n(t)(x)

h̃Xm:m(t)(x)

=
n

m
× φ′(nψ[F (x+ t)])
φ(nψ[F (x+ t)])− φ(nψ[F (t)])

×
{

φ′(mψ{F (x+ t)])
φ(mψ[F (x+ t)])− φ(mψ[F (t)])

}−1

.
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Because φ(x) is decreasing, we obtain, for m ≥ n,

I ′(x)
sgn
=
{

φ′(nψ(F (x+ t)))
φ(nψ[F (x+ t)])− φ(nψ[F (t)])

}′
× φ′(mψ(F (x+ t)))
φ(mψ[F (x+ t)])− φ(mψ[F (t)])

− φ′(nψ(F (x+ t)))
φ(nψ[F (x+ t)])− φ(nψ[F (t)])

×
{

φ′(mψ(F (x+ t)))
φ(mψ[F (x+ t)])− φ(mψ[F (t)])

}′
sgn
= −nψ(F (x+ t))

{
φ′′(nψ(F (x+ t)))
φ′(nψ(F (x+ t)))

− φ′(nψ(F (x+ t)))
φ(nψ[F (x+ t)])− φ(nψ[F (t)])

}
+ mψ(F (x+ t))

{
φ′′(mψ(F (x+ t)))
φ′(mψ(F (x+ t)))

− φ′(mψ(F (x+ t)))
φ(mψ[F (x+ t)])− φ(mψ[F (t)])

}
≤ −nψ(F (x+ t))

{
φ′′(nψ(F (x+ t)))
φ′(nψ(F (x+ t)))

− φ′(nψ(F (x+ t)))
φ(nψ[F (x+ t)])− φ(mψ[F (t)])

}
+ mψ(F (x+ t))

{
φ′′(mψ(F (x+ t)))
φ′(mψ(F (x+ t)))

− φ′(mψ(F (x+ t)))
φ(mψ[F (x+ t)])− φ(mψ[F (t)])

}
= u ln′

[
− φ′(u)
φ(u)− φ(mψ[F (t)])

]∣∣∣∣∣
u=mψ(F (x+t))

− u ln′
[
− φ′(u)
φ(u)− φ(mψ[F (t)])

]∣∣∣∣∣
u=nψ(F (x+t))

.

Due to assumption that u ln′
[
− φ′(u)
φ(u)−φ(mψ[F (t)])

]
is decreasing in u ∈ R+, from the above

equation, we find I(x) to be decreasing, as required.

Remark 3.4. Theorem 3.4 shows that, for some Archimedean copulas, under the
decreasing property of the function u ln′

[
− φ′(u)
φ(u)−φ(mψ[F (t)])

]
with respect to u ∈ R+, a parallel

system with more redundancy ages faster in terms of the reversed hazard rate than a parallel
system with less redundancy.

4. RESULTS FOR RESIDUAL LIVES OF SERIES SYSTEMS

Let X1:n denote the lifetime of a series system consisting of n dependent components
whose joint distribution is given by an Archimedean copula. Then, the distribution func-
tion, density function, hazard rate function and reversed hazard rate function of residual life
variable X1:n(t) at x, given that the series system has survived till time t, are given by

F̄X1:n(t)(x) =
φ
(
nψ
(
F̄ (x+ t)

))
φ
(
nψ
(
F̄ (t)

)) , x, t > 0,(4.1)

fX1:n(t)(x) =
nf(x+ t)ψ′

(
F̄ (x+ t)

)
φ′
(
nψ
(
F̄ (x+ t)

))
φ
(
nψ
(
F̄ (t)

)) , x, t > 0,(4.2)

hX1:n(t)(x) =
nf(x+ t)ψ′

(
F̄ (x+ t)

)
φ′
(
nψ
(
F̄ (x+ t)

))
φ
(
nψ
(
F̄ (x+ t)

)) , x, t > 0,(4.3)

h̃X1:n(t)(x) =
nf(x+ t)ψ′

(
F̄ (x+ t)

)
φ′
(
nψ
(
F̄ (x+ t)

))
φ
(
nψ
(
F̄ (t)

))
− φ

(
nψ
(
F̄ (x+ t)

)) , x, t > 0,(4.4)

respectively, where φ is the generator and ψ = φ−1. Now, we examine between two series
systems with n and m components, which one is more reliable.
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Theorem 4.1. If u ln′ φ(u) is decreasing in u ∈ R+, then form ≥ n, we haveX1:n(t) ≥hr
X1:m(t).

Proof: With the hazard rate functions of X1:n(t) and X1:m(t) as given in (4.3), we
have

I(x) = hX1:n(t)(x)− hX1:m(t)(x)

=
f(x+ t)ψ′

(
F̄ (x+ t)

)
ψ
(
F̄ (x+ t)

)
×

{
nψ
(
F̄ (x+ t)

)
φ′
(
nψ
(
F̄ (x+ t)

))
φ
(
nψ
(
F̄ (x+ t)

)) −
mψ
(
F̄ (x+ t)

)
φ′
(
mψ
(
F̄ (x+ t)

))
φ
(
mψ
(
F̄ (x+ t)

)) }
sgn
= u ln′ φ(u) | u=mψ(F̄ (x+t)) − u ln′ φ(u) | u=nψ(F̄ (x+t)).

By using the decreasing property of u ln′ φ(u), for m ≥ n, we readily observe that I(x) ≤ 0.
Thus, the theorem gets established.

Remark 4.1. Theorem 4.1 shows that, for some Archimedean copulas, a series system
with less (dependent) components is more reliable in the sense of hazard rate order; that is,
a series system with less (dependent) components will possess a lower hazard function than
a series system with more components.

Example 4.1. The condition “u ln′ φ(u) is decreasing” in Theorem 4.1 is quite general
and can be verified for many well-known Archimedean copulas. For example, we consider the
following:

1. If φ1(u) = e−u
θ
, for θ ∈ R+ (Gumbel copula, Nelsen [27]), we have

u ln′[φ1(u)] = −θuθ,

which is decreasing in u ∈ R+;

2. If φ2(u) = (θu+ 1)−
1
θ (Clayton copula, Nelsen [27]), we have

u ln′[φ2(u)] = − u

θu+ 1
,

which is decreasing in u ∈ R+.

Example 4.2. Consider the standard exponential distribution as baseline distribution
function. Assume that φ(u) = (θu+ 1)−

1
θ , θ = 2, t = 2, n = 4 and m = 10.

Figure 2 presents plots of the hazard rate functions of hX1:4(1/x−1) and hX1:10(1/x−1),
from which it can be observed that the value of hX1:14(1/x− 1) is always smaller than that
of hX1:10(1/x− 1) on the interval (0, 1). Thus, the result of Theorem 4.1 is validated in this
case.
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Figure 2: Plots of hazard rate functions of hX1:4(1/x− 1) and hX1:10(1/x− 1).

Theorem 4.2. If u ln′
[
φ
(
nψ
(
F̄ (t)

))
− φ(u)

]
is decreasing in u ∈ R+, then for m ≥ n,

we have X1:n(t) ≥rh X1:m(t).

Proof: With the reversed hazard rate functions of X1:n(t) and X1:m(t) as given in
(4.4), for m ≥ n, we have

I(x) = h̃X1:n(t)(x)− h̃X1:m(t)(x)

=
f(x+ t)ψ′

(
F̄ (x+ t)

)
ψ
(
F̄ (x+ t)

) {
nψ
(
F̄ (x+ t)

)
φ′
(
nψ
(
F̄ (x+ t)

))
φ
(
nψ
(
F̄ (t)

))
− φ

(
nψ
(
F̄ (x+ t)

))
−

nψ
(
F̄ (x+ t)

)
φ′
(
mψ
(
F̄ (x+ t)

))
φ
(
mψ
(
F̄ (t)

))
− φ

(
mψ
(
F̄ (x+ t)

))}
≥

f(x+ t)ψ′
(
F̄ (x+ t)

)
ψ
(
F̄ (x+ t)

) {
nψ
(
F̄ (x+ t)

)
φ′
(
nψ
(
F̄ (x+ t)

))
φ
(
nψ
(
F̄ (t)

))
− φ

(
nψ
(
F̄ (x+ t)

))
−

nψ
(
F̄ (x+ t)

)
φ′
(
mψ
(
F̄ (x+ t)

))
φ
(
nψ
(
F̄ (t)

))
− φ

(
mψ
(
F̄ (x+ t)

))}
sgn
= u ln′

[
φ
(
nψ
(
F̄ (t)

))
− φ(u)

]
| u=nψ(F̄ (x+t))

− u ln′
[
φ
(
nψ
(
F̄ (t)

))
− φ(u)

]
| u=mψ(F̄ (x+t)).(4.5)

Using the decreasing property of u ln′
[
φ
(
nψ
(
F̄ (t)

))
− φ(u)

]
in u ∈ R+, for m ≥ n, we readily

observe from (4.5) that I(x) ≥ 0. Thus, the theorem gets established.

Remark 4.2. Theorem 4.2 shows that, for some Archimedean copulas, a series system
with less (dependent) components will possess lower reversed hazard rate than a series system
with more components.

Theorem 4.3. If u ln′
[
−φ′(u)
φ(u)

]
is decreasing (increasing) in u ∈ R+, then for m ≥ n,

we have X1:m(t) ≥c (≤c)X1:n(t).
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Proof: With the hazard rate functions of X1:m(t) and X1:n(t) as given in (4.3), we
have

I(x) =
hX1:n(t)(x)
hX1:m(t)(x)

=
n

m
×
φ′
(
nψ
[
F̄ (x+ t)

])
φ
(
nψ
[
F̄ (x+ t)

]) ×{φ′(mψ[F̄ (x+ t)
])

φ
(
mψ
[
F̄ (x+ t)

]) }−1

.

By differentiating this function, we find

I ′(x)
sgn
=

{
φ′
(
nψ(F̄ (x+ t))

)
φ
(
nψ(F̄ (x+ t))

) }′ × φ′
(
mψ(F̄ (x+ t))

)
φ
(
mψ(F̄ (x+ t))

)
−
φ′
(
nψ(F̄ (x+ t))

)
φ
(
nψ(F̄ (x+ t))

) ×{φ′(mψ(F̄ (x+ t))
)

φ
(
mψ(F̄ (x+ t))

) }′
sgn
= nψ(F̄ (x+ t))

{
φ′′(nψ(F̄ (x+ t)))
φ′(nψ(F̄ (x+ t)))

− φ′(nψ(F̄ (x+ t)))
φ(nψ(F̄ (x+ t)))

}
− mψ(F̄ (x+ t))

{
φ′′(mψ(F̄ (x+ t)))
φ′(mψ(F̄ (x+ t)))

− φ′(mψ(F̄ (x+ t)))
φ(mψ(F̄ (x+ t)))

}
= u ln′

[
−φ

′(u)
φ(u)

]∣∣∣∣∣
u=nψ(F̄ (x+t))

− u ln′
[
−φ

′(u)
φ(u)

]∣∣∣∣∣
u=mψ(F̄ (x+t))

≥ (≤) 0,

according to whether u ln′
[
−φ′(u)
φ(u)

]
is decreasing (or increasing) in u ∈ R+, for m ≥ n. Thus,

the theorem gets established.

Remark 4.3. Theorem 4.3 shows that, for some Archimedean copulas, under the
decreasing (increasing) property of the function u ln′

[
−φ′(u)
φ(u)

]
, a series system with less (de-

pendent) components ages faster (ages slower) in terms of hazard rate than a series system
with more components. Some illustrations of the result in Theorem 4.3 can be seen in Part
(ii) of Example 3.4 of Ding and Zhang [10].

Theorem 4.4. If u ln′
[
− φ′(u)

φ(nψ[F̄ (t)])−φ(u)

]
is decreasing in u ∈ R+, then for m ≥ n,

we have X1:n(t) ≥b X1:m(t).

Proof: With the reversed hazard rate functions of X1:m(t) and X1:n(t) as given in
(4.4), we have

I(x) =
h̃X1:n(t)(x)

h̃X1:m(t)(x)

=
n

m
×

φ′
(
nψ
[
F̄ (x+ t)

])
φ
(
nψ
[
F̄ (t)

])
− φ

(
nψ
[
F̄ (x+ t)

]) ×{ φ′
(
mψ
[
F̄ (x+ t)

])
φ
(
mψ
[
F̄ (t)

])
− φ

(
mψ
[
F̄ (x+ t)

])}−1

.



210 G. Barmalzan, A.A. Hosseinzadeh and N. Balakrishnan

As φ(x) is decreasing, for m ≥ n, we obtain

I ′(x)
sgn
=

{
φ′
(
nψ(F̄ (x+ t))

)
φ
(
nψ
[
F̄ (t)

])
− φ

(
nψ(F̄ (x+ t))

)}′ × φ′
(
mψ(F̄ (x+ t))

)
φ
(
mψ
[
F̄ (t)

])
− φ

(
mψ(F̄ (x+ t))

)
−

φ′
(
nψ(F̄ (x+ t))

)
φ
(
nψ
[
F̄ (t)

])
− φ

(
nψ(F̄ (x+ t))

) ×{ φ′
(
mψ(F̄ (x+ t))

)
φ
(
mψ
[
F̄ (t)

])
− φ

(
mψ(F̄ (x+ t))

)}′
sgn
= nψ(F̄ (x+ t))

{
φ′′(nψ(F̄ (x+ t)))
φ′(nψ(F̄ (x+ t)))

+
φ′(nψ(F̄ (x+ t)))

φ
(
nψ
[
F̄ (t)

])
− φ(nψ(F̄ (x+ t)))

}

− mψ(F̄ (x+ t))

{
φ′′(mψ(F̄ (x+ t)))
φ′(mψ(F̄ (x+ t)))

+
φ′(mψ(F̄ (x+ t)))

φ
(
mψ
[
F̄ (t)

])
− φ(mψ(F̄ (x+ t)))

}

≥ nψ(F̄ (x+ t))

{
φ′′(nψ(F̄ (x+ t)))
φ′(nψ(F̄ (x+ t)))

+
φ′(nψ(F̄ (x+ t)))

φ
(
nψ
[
F̄ (t)

])
− φ(nψ(F̄ (x+ t)))

}

− mψ(F̄ (x+ t))

{
φ′′(mψ(F̄ (x+ t)))
φ′(mψ(F̄ (x+ t)))

+
φ′(mψ(F̄ (x+ t)))

φ
(
nψ
[
F̄ (t)

])
− φ(mψ(F̄ (x+ t)))

}

= u ln′
[
− φ′(u)
φ
(
nψ
[
F̄ (t)

])
− φ(u)

]∣∣∣∣∣
u=nψ(F̄ (x+t))

− u ln′
[
− φ′(u)
φ
(
nψ
[
F̄ (t)

])
− φ(u)

]∣∣∣∣∣
u=mψ(F̄ (x+t))

.

Due to the assumption that u ln′
[
− φ′(u)

φ(nψ[F̄ (t)])−φ(u)

]
is decreasing in u∈R+, we have I ′(x)> 0.

Thus, the theorem gets established.

Remark 4.4. Theorem 4.4 shows that, for some Archimedean copulas, a series system
with less (dependent) components ages faster in terms of reversed hazard rate than a series
system with more components.

Example 4.3. We note that the condition “u ln′
[
− φ′(u)

φ(mψ[F̄ (t)])−φ(u)

]
is decreasing” in

Theorem 4.4 holds in many cases. For example, consider φ(u(x, t)) = e−u and 0 < a(t) ≤ 1
and also φ(u(x, t)) < a(t) for all t ∈ [0,∞). We then have

u ln′
[
− φ′(u)
a− φ(u)

]
= u

{
φ′′(u)
φ′(u)

− φ′(u)
a− φ(u)

}
=

−au
a− e−u

to be decreasing in u ∈ R+.

5. SYSTEMS WITH DEPENDENT ACCELERATION FAILURE TIME
COMPONENTS

One of the common reliability structures in practice is a r-out-of-n system. This system,
consisting of n components, works iff at least r components work. It includes parallel, fail-safe
and series systems all as special cases when r = 1, r = n− 1 and r = n, respectively. In this
section, we develop some characterization results for these systems when the components are
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dependent with an Archimedean copula and the component lifetimes follow an accelerated
failure time distribution in (2.5) based on a comparison with the “average system”. The
results established here complete and extend some results of Cai et al. [8].

Using the copula representation for the joint distribution of X1, ..., Xn in (2.1), we have
in this case

F̄1:n(x) = φ

(
n∑
k=1

ψ((1− Fα(λkx))β)

)
, x > 0,(5.1)

F̄2:n(x) =
n∑
l=1

φ

 n∑
k=1,k 6=l

ψ((1− Fα(λkx))β)


− (n− 1)φ

(
n∑
k=1

ψ((1− Fα(λkx))β)

)
, x > 0,(5.2)

Ḡ(x) =
1
n

n∑
l=1

φ

 n∑
k=1,k 6=l

ψ((1− Fα(λkx))β)

, x > 0.(5.3)

The expressions in (5.1) and (5.2) correspond to the survival functions of the series
system (i.e., r = n) and of the fail-safe system (r = n− 1), respectively. The expression in
(5.3) corresponds to the survival function of an “average series system”, whose lifetime is
denoted by Y . This average series system can be explained by a randomization process as
follows: From a series system comprising n components, one randomly selected component
may be removed to obtain a series system with (n− 1) remaining components; out of the
n such (n− 1)-component series systems, we then randomly select one of them, and that is
what the average series system is here. The expression of the survival function given in (5.3)
then becomes clear.

Theorem 5.1. We have:

(i) X1:n ≤mrl X2:n iff X1:n ≤mrl Y ;

(ii) X1:n ≤hr X2:n iff X1:n ≤hr Y ;

(iii) X1:n ≤rh X2:n iff X1:n ≤rh Y .

Proof: (i) By definition, X1:n ≤mrl X2:n iff ∀t > 0, we have∫∞
0 F̄2:n(x+ t) dx

F̄2:n(t)
≥
∫∞
0 F̄1:n(x+ t) dx

F̄1:n(t)
.(5.4)

Upon using (5.1) and (5.2) in (5.4) and Theorem 2.A.6 of Shaked and Shanthikumar [33] and
some simplifications, ∀t > 0,

φ

(
n∑
i=1

ψ((1− Fα(λkt))β)

)
×
∫ ∞

0

 n∑
l=1

φ

 n∑
k=1,k 6=l

ψ((1− Fα(λkx+ λkt))β)

dx
≥

n∑
l=1

φ

 n∑
k=1,k 6=l

ψ((1− Fα(λkx+ λkt))β)


×
∫ ∞

0

[
φ

(
n∑
k=1

ψ((1− Fα(λkx+ λkt))β)

)]
dx.(5.5)
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Similarly, from (5.1) and (5.3), we see that Y ≥mrl X1:n iff ∀t > 0,∫∞
0

1
n

∑n
l=1 φ

(∑n
k=1,k 6=l ψ((1− Fα(λkx+ λkt))β)

)
dx

1
n

∑n
l=1 φ

(∑n
k=1,k 6=l ψ((1− Fα(λkt))β)

)
≥
∫∞
0 φ

(∑n
i=1 ψ((1− Fα(λkx+ λkt))β)

)
dx

φ(
∑n

k=1 ψ((1− Fα(λkt))β))
.(5.6)

The equivalence of the inequalities in (5.5) and (5.6) yields Part (i) immediately.

(ii) By definition, X1:n ≤hr X2:n iff ∀x, t > 0, we have

F̄2:n(x+ t)
F̄2:n(t)

≥ F̄1:n(x+ t)
F̄1:n(t)

.(5.7)

Upon using (5.1) and (5.2) in (5.7) and simplification, ∀x, t > 0,

n∑
l=1

φ

 n∑
k=1,k 6=l

ψ((1− Fα(λkx+ λkt))β)

×

[
φ

(
n∑
k=1

ψ((1− Fα(λkt))β)

)]

≥
n∑
l=1

φ

 n∑
k=1,k 6=l

ψ((1− Fα(λkt))β)

×

[
φ

(
n∑
k=1

ψ((1− Fα(λkx+ λkt))β)

)]
.(5.8)

Similarly, from (5.1) and (5.3), we see that Y ≥hr X1:n iff ∀x, t > 0,

1
n

∑n
l=1 φ

(∑n
k=1,k 6=l ψ((1− Fα(λkx+ λkt))β)

)
1
n

∑n
l=1 φ

(∑n
k=1,k 6=l ψ((1− Fα(λkt))β)

)
≥

φ
(∑n

k=1 ψ((1− Fα(λkx+ λkt))β)
)

φ(
∑n

k=1 ψ((1− Fα(λkt))β))
.(5.9)

The equivalence of the inequalities in (5.8) and (5.9) yields Part (ii) immediately.

(iii) This can be proved in a manner similar to Part (ii).

Next, from the copula representation for the joint distribution of X1, ..., Xn in (2.1),
we have, in this case, for x > 0,

Fn:n(x) = φ

(
n∑
k=1

ψ(1− (1− Fα(λkx))β)

)
,(5.10)

Fn−1:n(x) =
n∑
l=1

φ

 n∑
k=1,k 6=l

ψ(1− (1− Fα(λkx))β)


− (n− 1)φ

(
n∑
k=1

ψ(1− (1− Fα(λkx))β)

)
,(5.11)

and let Z have its distribution function as

H(x) =
1
n

n∑
l=1

φ

 n∑
k=1,k 6=l

ψ(1− (1− Fα(λkx))β)

, x > 0.(5.12)
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The expression in (5.10) corresponds to the survival function of a parallel system (i.e.,
r = 1), while the expression in (5.11) corresponds to the survival function of a 2-out-of-n
system. The expression in (5.12) corresponds to the survival function of an “average parallel
system”, whose lifetime is denoted here by Z. This average parallel system can once again
be explained by a randomization process as follows: From a parallel system consisting of
n components, one randomly selected component may be removed to obtain a parallel sys-
tem with (n− 1) remaining components; out of the n such (n− 1)-component parallel sys-
tems, we randomly select one of them, and that is what the average parallel system is here.
The expression of the survival function given in (5.12) then becomes clear.

Theorem 5.2. In the special case when n = 2, we have:

(i) Xn−1:n ≤mrl Xn:n iff Z ≤mrl Xn:n;

(ii) Xn−1:n ≤hr Xn:n iff Z ≤hr Xn:n;

(iii) Xn−1:n ≤rh Xn:n iff Z ≤rh Xn:n.

Proof: This can be established in a manner analogous to Theorem 5.1, and we there-
fore do not present it here for the sake of brevity.

We now present a complete characterization result for the special case when n = 2.

Theorem 5.3. We have:

(i) X1:2 ≤mrl Y ⇐⇒ X1:2 ≤mrl X2:2 ⇐⇒ Z ≤mrl X2:2;

(ii) X1:2 ≤hr Y ⇐⇒ X1:2 ≤hr X2:2 ⇐⇒ Z ≤hr X2:2;

(iii) X1:2 ≤rh Y ⇐⇒ X1:2 ≤rh X2:2 ⇐⇒ Z ≤rh X2:2.

Proof: In Theorem 3.1, we have characterization between X1:n and X2:n based on
characterization between X1:n and Y . For the case when n = 2, it is simply a characterization
betweenX1:2 andX2:2 based on characterization betweenX1:2 andY . Similarly, inTheorem3.2,
we have characterization between Xn−1:n and Xn:n based on characterization between Z and
Xn:n, which in the case when n = 2, is simply a characterization between X1:2 and X2:2 based
on characterization between Z and X2:2. As the left hand sides of both results are the same
variables, the characterization results on the right hand sides must be equivalent. Thus, the
characterization of X1:2 and Y must be equivalent to the characterization of Z and X2:2.

6. SYSTEMS WITH DEPENDENT MODIFIED PROPORTIONAL
HAZARDS COMPONENTS

In this section, we assume that the n components in a reliability system are dependent
with their component lifetimes following a modified proportional hazards model in (2.7)
and their joint distribution being represented by an Archimedean copula in (2.1). We then
establish some characterization results for series, fail-safe, 2-out-of-n and parallel systems in
this general setup using mean residual life, hazard rate and reversed hazard orders based on
a comparison with the “average system”. The results established here complete and extend
some results of Cai et al. [8].
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In this case, from (2.1), we have

F̄1:n(x) = φ

(
n∑
k=1

ψ

(
αF̄ (λkx)

1− ᾱF̄ (λkx)

))
, x > 0,(6.1)

F̄2:n(x) =
n∑
l=1

φ

 n∑
l=1,k 6=l

ψ

(
αF̄ (λkx)

1− ᾱF̄ (λkx)

)
− (n− 1)φ

(
n∑
k=1

ψ

(
αF̄ (λkx)

1− ᾱF̄ (λkx)

))
, x > 0,(6.2)

Ḡ(x) =
1
n

n∑
l=1

φ

 n∑
k=1,k 6=l

ψ

(
αF̄ (λkx)

1− ᾱF̄ (λkx)

), x > 0,(6.3)

where φ is the generator and ψ = φ−1. The expressions in (6.1)–(6.3) correspond to the
survival functions of series, fail-safe and average series systems in this case, respectively. We
use Y to denote the lifetime of the average series system whose survival function is given in
(6.3)

Theorem 6.1. We have:

(i) X1:n ≤mrl X2:n iff X1:n ≤mrl Y ;

(ii) X1:n ≤hr X2:n iff X1:n ≤hr Y ;

(iii) X1:n ≤rh X2:n iff X1:n ≤rh Y .

Proof: This can be established in a manner analogous to Theorem 5.1, and we there-
fore do not present it here for the sake of brevity.

Next, from the copula representation for the joint distribution of X1, ..., Xn in (2.1),
we find in this case

Fn:n(x) = φ

(
n∑
k=1

ψ

(
1− F̄ (λkx)
1− ᾱF̄ (λkx)

))
, x > 0,(6.4)

Fn−1:n(x) =
n∑
l=1

φ

 n∑
k=1,k 6=l

ψ

(
1− F̄ (λkx)
1− ᾱF̄ (λkx)

)
− (n− 1)φ

(
n∑
k=1

ψ

(
1− F̄ (λkx)
1− ᾱF̄ (λkx)

))
, x > 0,(6.5)

and let Z be a random variable with its distribution function as

H(x) =
1
n

n∑
l=1

φ

 n∑
k=1,k 6=l

ψ

(
1− F̄ (λkx)
1− ᾱF̄ (λkx)

), x > 0.(6.6)

The expressions in (6.4)–(6.6) correspond to the distribution functions of parallel,
2-out-of-n and average parallel systems in this case.
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Theorem 6.2. We have:

(i) Xn−1:n ≤mrl Xn:n iff Z ≤mrl Xn:n;

(ii) Xn−1:n ≤hr Xn:n iff Z ≤hr Xn:n;

(iii) Xn−1:n ≤rh Xn:n iff Z ≤rh Xn:n.

Proof: This can be proved in a manner analogous to Theorem 6.1, and we therefore
do not present the proof here for the sake of brevity.

Theorem 6.3. In the special case when n = 2, we have:

(i) X1:2 ≤mrl Y ⇐⇒ X1:2 ≤mrl X2:2 ⇐⇒ Z ≤mrl X2:2;

(ii) X1:2 ≤hr Y ⇐⇒ X1:2 ≤hr X2:2 ⇐⇒ Z ≤hr X2:2;

(iii) X1:2 ≤rh Y ⇐⇒ X1:2 ≤rh X2:2 ⇐⇒ Z ≤rh X2:2.

Proof: This can be proved in a way similar to Theorem 5.3, and we therefore do not
describe it here.

7. CONCLUDING REMARKS

In this work, we have considered reliability systems with dependent components having
accelerated failure time and modified proportional hazards distributions and having a joint
distribution represented by a general Archimedean copula. We have focused especially on
series, fail-safe, 2-out-of-n and parallel systems, and have then established some characteri-
zation results for these systems through comparisons with average systems in terms of mean
residual life, hazard rate and reversed hazard rate orders. It will naturally be of interest
to extend these results to the case of general (n− r + 1)-out-of-n systems and sequential
(n− r + 1)-out-of-n systems as discussed by Barmalzan et al. [6] under the general setting
considered here; one may see Misra and Francis [25] for some results in this regard under
a restricted setting. We are currently working on these problems and hope to report the
findings in a future paper.
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1. INTRODUCTION

The data type of measured variables is important to determine the statistical methods
for summarizing and testing the relationship or independence between variables [9]. Ana-
lyzing categorical data is generally less tractable and may require much effort for selecting
appropriate statistical methods, such as log-linear models, logistic regression, and chi-square
tests. The contingency table approach is one of the frequently used methods to summa-
rize the joint distribution of two categorical variables. An example of r-by-c contingency
table showing the joint distribution of categorical variables X and Y is given in Table 1.
Here, nij (i = 1, 2, ..., r and j = 1, 2, ..., c) represents the frequencies of joint occurrences,
ni+ =

∑c
j=1 nij and n+j =

∑r
i=1 nij are row and column totals (i.e., row/column marginals),

and n =
∑r

i=1 ni+ =
∑c

j=1 n+j =
∑c

j=1

∑r
i=1 nij is the grand total of contingency table that

also refers to sample size.

Table 1: An example of r-by-c contingency table.

Y1 Y2 · · · Yc Total

X1 n11 n12 · · · n1c n1+

X2 n21 n21 · · · n2c n2+

· · · ...
... · · · ...

...
Xr nr1 nr2 · · · nrc nr+

Total n+1 n+2 · · · n+c n

Specification of the joint probability distribution of Table 1 is crucial since it plays
a key role in the type of statistical analysis used. The distribution of a contingency table
may be one of multinomial, product multinomial, hypergeometric, and Poisson based on the
cell counts that are fixed such that row/column marginals or totals. The inference about
the independence between categorical variables can be evaluated using the appropriate sam-
pling distribution and statistical hypotheses. The hypotheses for testing the independence of
categorical variables in Table 1 is defined as

(1.1)
H0 : π1j = π2j = ... = πrj ,

H1 : πij 6= πkj at least one i, j, k, i 6= k,

where πij is the hypothesized cell probability of the i-th row and the j-th column, and π̂ij

is the estimated cell probability from sampling distribution. There are several methods for
estimating cell probabilities, i.e., πij , and testing a hypothesis (1.1) depending on the joint
distributions [13, 8].

Pearson’s chi-square test statistic is widely used for testing the hypothesis (1.1). How-
ever, it is not a gold standard and may not be appropriate for small samples [1]. There exist
various test statistics proposed to test the independence, where each performs better under
certain conditions, such as sample size, number of rows and columns, sampling methods, etc.
In this study, we used the most common of these methods, which are:
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(i) Pearson’s chi-square test;

(ii) likelihood ratio test;

(iii) Freeman–Tukey test;

(iv) Cressie–Read test;

(v) Fisher–Freeman–Halton’s exact test.

A hypothesis established from a contingency table, considering the purpose of the study,
could be tested using different statistical test procedures. The results of the hypothesis tests
might be in the opposite direction for the variety of hypothesis tests. It is a crucial issue since
it may mislead the researcher in their studies. Therefore, it is essential to choose appropriate
statistical tests or methods to achieve correct and unbiased conclusions. In this study, we
aimed to compare different test procedures and related test statistics under various scenarios
for the power (1− β) and the type-I error rate (α) of the test statistic. We conducted
a comprehensive simulation study using the combinations of sample size, effect size, and
sampling design. Furthermore, we applied each method to a real-life dataset for making
a fair comparison between simulation and real-life data results. This study contributed to
the literature by considering each test procedure under several conditions and comparing
the performances of each test statistic via a comprehensive simulation study. Furthermore,
the current study compared the simulation results with a real-life dataset and showed the
concordance (or discordance) between the simulation study and the real-life example. All the
analyses were performed on the R programming language (https://cran.r-project.org/)
through self-written codes available upon request to the correspondent author.

The plan of this study is as follows. The methods, statistical background, simulation
scenarios, and real datasets are explained in detail in the Material and Methods section.
The results of simulated and real datasets are presented in the Results section, and finally,
we discussed the results in the Discussion section with conclusions and future work.

2. MATERIAL AND METHODS

The statistical methods proposed to test the hypothesis (1.1) are detailed in subsection
2.1. These methods use the observed (nij) and expected (Eij) frequencies to compute test
statistics. All test statistics are asymptotically chi-square distributed with degrees of freedom
(r − 1)(c− 1).

2.1. Test Statistics

The most common test statistic proposed to test independence between categorical
variables is the Pearson’s chi-square statistic [1],which takes the difference between observed
and expected frequencies into account. The test statistic (χ2) is

(2.1) χ2 =
r∑

i=1

c∑
j=1

(nij − Eij)
2

Eij
.

https://cran.r-project.org/
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The likelihood ratio test statistic is another approach to test independence [1]. Unlike
Pearson’s chi-square statistic, it is based on the ratio of the observed and expected frequencies.
The test statistic is

(2.2) G2 = 2×
r∑

i=1

c∑
j=1

nij × log
(

nij

Eij

)
.

The Freeman and Tukey test statistic aims to approximate Binomial or Poisson distri-
bution to normal distribution by stabilizing the variance [7, 2]. It is based on the differences
between the square root of observed and expected frequencies. The test statistic is

(2.3) FT2 =
r∑

i=1

c∑
j=1

(√
nij +

√
nij + 1−

√
4× Eij + 1

)2
.

Cressie and Read [4] proposed the power divergence family as a generalization of
goodness-of-fit test. It is flexible and converges to other well-known test statistics based
on the choice of tuning parameter λ. The family of power divergence test statistic is

(2.4) PD =
2

λ× (λ + 1)
×

r∑
i=1

c∑
j=1

πij ×

[(
nij

Eij

)λ

− 1

]
.

The power divergence test statistic converges to Pearson’s chi-square, likelihood ratio,
and Freeman–Tukey statistics when λ equals 1, 0 and 0.5, respectively. They [4] suggested
taking λ as 2/3, called the Cressie–Read test statistic, as being an excellent compromise
between Pearson’s chi-square and likelihood ratio test statistics [4]. The test statistic is

(2.5) CR =
9
5
×

r∑
i=1

c∑
j=1

nij ×

[(
nij

Eij

)2/3

− 1

]
.

In addition to the above-mentioned test statistics, we evaluated the Fisher–Freeman
Halton (FFH) exact test statistic [6], which is the extension of Fisher’s exact test to r-by-c
tables. The Fisher–Freeman–Halton test statistic gives the exact p-value, which is calculated
from sequentially generated contingency tables until one of the cells in the given margin
is equal 0. This method becomes computationally intensive as the sample size increases.
To overcome this problem, the Monte Carlo approach that selects samples randomly from
the contingency tables is recommended [1]. In this study, we used large sample sizes. How-
ever, we benefited from the Monte-Carlo approach to decrease the computation time of the
FFH test statistic.

2.2. Simulation Scenarios

We conducted a comprehensive simulation study using the R language environment [12].
We considered several factors such as sample size (n), effect size (w), and sampling design
in the simulation. We used two different contingency tables, with dimensions of 5-by-5 and
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5-by-2, in all simulation scenarios. Simulation scenarios consist of all possible combinations
of:

• Sample size (n): {100, 200, 500} for the 5-by-5 table and {40, 80, 200} for the 5-by-2
table as small, medium and large, respectively,

• Effect size: (w): {0.10, 0.30, 0.50} as small, medium, and large [3],

• Sampling design: balanced (0.20, 0.20, 0.20, 0.20, 0.20),
almost balanced (0.15, 0.15, 0.20, 0.25, 0.25) and
imbalanced row margins (0.05, 0.05, 0.30, 0.30, 0.30),

where different sample sizes were used for 5-by-5 and 5-by-2 contingency tables while effect
sizes and sampling designs were similar. The sample sizes were chosen so that the contingency
tables were not sparse. Furthermore, the effect sizes were specified as in the literature [3].
Data were generated under product multinomial distribution via an R package rTableICC [5]
by setting row marginal and total sample size fixed. Cell probabilities were specified according
to changing effect size and sampling design. We compared each method using type I error rate
and power. Each simulation scenario was repeated 10, 000 times. Each generated contingency
table was tested with the Pearson’s chi-square test, likelihood ratio test, Freeman–Tukey test,
Cressie–Read test, and Fisher–Freeman–Halton’s exact test. The type-I error rate of each test
statistic was calculated as the proportion of false rejection obtained from 10, 000 replications
when the null hypothesis was true, i.e., the effect size is w = 0. The power of each test, on the
other hand, was calculated as the proportion of rejection obtained from 10, 000 replications
assuming that the null hypothesis was false, i.e., the effect size is w 6= 0. The power and
type-I error rate of the Pearson’s chi-square test, likelihood ratio test, Freeman–Tukey test,
and Cressie–Read tests statistics were obtained using the underlying Chi-square distribution.
The comparison for the result of the Fisher–Freeman–Halton’s exact test was evaluated using
a p-value against the level of statistical significance. The statistical significance was taken as
p < 0.05 in all simulation scenarios.

2.3. Real-life datasets

In addition to the simulation study, we evaluated the selected methods on real datasets.
The first of the datasets is related to suicides. Suicides adversely affect not only the person
who committed suicide, but also the people around the person, communities, and countries.
According to the World Health Organization [17], suicide leads to a serious public health
issue. Therefore, we decided to examine the specific causes of suicide within education level
in Turkey in the year 2018. The datasets were provided by the Turkish Statistical Institute
[15] and are represented in Table 2.

Nowadays, one of the major issues in the world, which is the infection of Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV2), also known as COVID-19, has led to the
global pandemic. Therefore, another dataset, which is taken from Ozsurekci et al. [10], was
chosen to be used in this study. The children who were infected with or exposed to COVID-19
might have developed multisystem inflammatory syndrome (MIS-C) due to the triggering of the
immune system. They compared children with MIS-C (n = 30) and severe/critical cases with
COVID-19 (n=22) in terms of respiratory support systems. This information is given in Table 3.
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Table 2: Contingency table between causes of suicide and education level.

Causes

Marital FinancialEducation Level

Conflict Difficulty
Disease Emotional Other

Never received formal education 9 (7.14%) 4 (1.63%) 53 (7.91%) 4 (4.71%) 53 (6.31%)
Primary School 27 (21.43%) 53 (21.54%) 155 (23.13%) 10 (11.76%) 174 (20.71%)
Secondary School 60 (47.62%) 74 (30.08%) 197 (29.40%) 37 (43.57%) 269 (32.02%)
High School 22 (17.93%) 81 (32.93%) 170 (25.37%) 23 (27.06%) 205 (24.40%)
Graduate 8 (6.35%) 34 (13.82%) 95(14.18%) 11 (12.92%) 139 (16.55%)

Table 3: Contingency table between disease group and respiratory support system.

Group

Cases Severe/Critical casesRespiratory Support

with MIS-C with COVID-19

None 14 (46.67%) 6 (27.27%)
Oxygen Only 7 (23.33%) 8 (36.36%)
High Flow Support 0 (0.00%) 2 (9.09%)
Non-invasive ventilation 6 (20.00%) 0 (0.00%)
Invasive mechanical ventilation 3 (10.00%) 6 (27.27%)

3. RESULTS

The performance of the test statistics was compared according to type-I error rate and
power. The power of test statistics were presented in Figures 1 and 2 while the type-I error
rates were presented in Figures 3 and 41. In each figure, effect sizes and sampling designs
were given in the rows and columns, respectively. The test statistics were given on the x-axis
and the sample size was indicated using different line type within each figure. Although we
graphically presented the power and type-I error rate results in Figures 1–4, it was not easy
to read exact values from corresponding figures when the points and lines were overlapped
or test statistics slightly differed. Therefore, we provided the findings of Figures 1–4 with
supplementary tables in the Appendix section.

When the power results are examined in Figures 1 and 2 (Tables 5 and 6 in the Ap-
pendix) for 5-by-5 and 5-by-2 contingency tables, we observe that both the effect size and the
sample size have a positive effect on power of test statistics. The statistical power of methods
increases with the increasing sample size and effect size. However, the sampling design has no
or a considerably small effect on power for each method. Among the methods considered, the
likelihood ratio test has the highest power in almost all scenarios. The Pearson’s chi-square
and the Cressie–Read test statistics had less power in almost all designs when the sample
size was small. The power of Freeman–Tukey test decreased as the sampling design became
imbalanced. We also observed that the power of the Fisher–Freeman–Halton test was higher
in the imbalanced design, except for the likelihood ratio test.

1 Figures were generated using the ggplot2 [16] package in the R programming language.
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Figure 1: Simulation results – Power of tests in 5-by-5 contingency table.

Figure 2: Simulation results – Power of tests in 5-by-2 contingency table.
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The type-I error rate results of the 5-by-5 and 5-by-2 tables are given in Figures 3
and 4 (Tables 7 and 8 in the Appendix). According to the results, the likelihood ratio test
was generally liberal generating type I error rates above the nominal level. Nevertheless, we
observed that the type-I error rate of the likelihood ratio test was close to the nominal level as
the sample size increased. In the balanced sampling design with the larger sample sizes, the
type-I error rate of all test statistics, except for the likelihood ratio test statistic, was close to
the nominal level. The Freeman–Tukey test statistic had a remarkably higher type-I error rate
than the nominal level in small samples for balanced and almost balanced designs. However,
it had the lowest type-I error rate below the nominal level in the imbalanced sampling design
with a small sample size. In balanced and almost balanced designs, the Pearson’s chi-square
test, Cressie–Read test, and Fisher–Freeman–Halton test were better at controlling the type-I
error rate at the nominal level in almost all sample sizes. However, in the imbalanced sampling
design, Cressie–Reed and Pearson’s chi-square test statistics were generally conservative for
the small sample size and had type-I error rates closer to the nominal level as the sample size
increased. Finally, the Fisher–Freeman–Halton test statistic had type-I error rates very close
to the nominal level for the imbalanced sampling design.

Figure 3: Simulation results – Type I error rates in 5-by-5 contingency table.

The results of real datasets are represented in Table 4. The suicide dataset (Table 2) had
small effect size (i.e., w = 0.16), large sample size (i.e., n = 1967), and imbalanced design accord-
ing to the row probabilities (i.e., 0.063, 40.2131, 0.324, 0.255, and 0.146). Therefore, the sui-
cide dataset corresponds to the simulation combination that was small effect size, large sample
size, and imbalanced sampling design with the 5-by-5 table (bottom-right panel of Figure 1).
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Figure 4: Simulation results – Type I error rates in 5-by-2 contingency table.

Although we found a statistically significant association between education level and suicide
(p < 0.001 for all test statistics), the degree of association was not high (w = 0.16). Under this
simulation scenario, the power of the Pearson and Cressie–Read test statistics was lower than
the likelihood ratio test, which was similar to the real dataset results. On the other hand, the
COVID-19 dataset had a large effect size (i.e., w = 0.46), small sample size (i.e., n = 52), and
imbalanced sampling design according to the row probabilities (i.e., 0.385, 0.289, 0.039, 0.115,
and 0.173). This dataset corresponds to the simulation combination of large effect size, small
sample size, and imbalanced sampling design with the 5-by-2 table (upper-right panel of
Figure 2). In the COVID-19 dataset, all test statistics found a significant association between
disease group and respiratory support system. According to the simulation results, there
were slight differences between methods under a similar scenario in the COVID-19 dataset.
Nonetheless, the power of likelihood ratio and Fisher–Freeman–Halton test statistics were
higher than other methods. We observed results similar to simulation results in the COVID-
19 dataset. The power of the likelihood ratio test statistic was the highest as compared to
other methods. In addition, we saw that the Freeman–Tukey and Fisher–Freeman–Halton
tests were almost similar to the likelihood ratio test.

Table 4: Results of real datasets.

Methods
Datasets

χ2 p-value G2 p-value FT2 p-value CR p-value FFH

Causes /Education level 48.66 <0.001 52.75 <0.001 54.01 <0.001 49.67 <0.001 0.001

Res. Support /Group 11.30 0.023 14.23 0.007 13.94 0.007 11.74 0.019 0.016
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4. DISCUSSION

Previous studies in the literature evaluated the performance of various test statistics
for r -by-c contingency tables. Rudas [14] compared the Pearson’s chi-square, Cressie–Read,
and likelihood ratio statistics for 2-by-2 and 3-by-3 tables. They reported that the Pearson’s
chi-square test statistic outperformed the likelihood ratio test when the sample size was small.
Furthermore, they showed that the Cressie–Read and Pearson’s chi-square test statistics had
similar results. Parshall et al. [11] conducted a Monte Carlo simulation study to compare the
type-I error rate and power of Pearson’s chi-square, likelihood ratio, and Cressie–Read test
statistics. They generated datasets from uniform distribution and found that the likelihood
ratio test statistic failed to control the type I error rate at the nominal level. In addition
to the previously published studies, this study considered the effects of sample size, effect
size, and sampling design on the performance of various test statistics of contingency tables.
A comprehensive simulation study were conducted and the findings showed that (Figures 1–4):

• The effect size and sample size were positively associated with the power of tests.
The statistical power of each method increased as the number of samples or effect
size increased.

• Sampling design did not affect the power of tests or slightly changed it.

• The likelihood ratio test had higher type-I error rates than the nominal level in
almost all simulation scenarios. However, its statistical power was higher than other
methods. We concluded that the likelihood ratio test was generally liberal, and the
rejected null hypothesis should be validated using alternative methods.

• The Pearson’s chi-square and Cressie–Read statistics had similar results in almost
all scenarios. We mainly suggest these methods for balanced or almost balanced
sampling designs when the sample size is large.

• The Fisher–Freeman–Halton (FFH) test had similar results with Pearson’s chi-
square and Cressie–Read tests in balanced sampling designs. However, results
were promising and better than other methods in the imbalanced sampling designs.
Hence, we suggest using the FFH test when the sampling design is imbalanced.

• The Freeman–Tukey (FT) test had decreased power as the sampling design became
imbalanced. Even the type-I error rate was higher than the nominal level, except
for the imbalanced sampling design with a small sample size, the FT test was better
at controlling the type-I error rate than the likelihood ratio test.

To test the independence between variables in two-way contingency tables, one should
be aware of the sampling design, the sample size, and the effect size. The power and type-I
error rate are affected by those factors. The Pearson’s chi-square test is a frequently used
method for testing the independence in two-way contingency tables. However, we showed in
our study that the Cressie–Read and Fisher–Freeman–Halton tests are efficient alternatives
to the Pearson’s chi-square test since they are good at controlling type-I error rates at the
nominal level under certain conditions. Moreover, the power of these test statistics is as good
as or better than the Pearson’s chi-square test statistic. Therefore, researchers should consider
the effect of the above-mentioned factors before selecting the appropriate test statistic for
testing the independence in a contingency table.
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Another significant issue in the analysis of the contingency tables is whether there are
cells with zero observed frequencies and expected frequencies below 5. These cell frequencies
affect the choice of the appropriate test statistic. In this study, we counted both the number
of cells with zeros and the cells with an expected value of less than 5 for 10, 000 replication
data in each simulation scenario. The average number of cells with zeros and the average
number of cells with expected counts below 5 were calculated specifically in the small sample
size and imbalanced design for both 5-by-5 and 5-by-2 tables. The average number of cells
with zeros was 4 (16%) and the average number of cells with the expected value less than 5
was 14 (56%) in the 5-by-5 tables. For the 5-by-2 tables, these values were 1 (10%) and 5
(50%), respectively. The amount of cells with lower expected counts were in the majority as
expected. However, the amount of zero inflation were slight to moderate in some of simulation
scenarios. This study did not account for the effect of zero inflation since it was not severe in
the generated datasets. However, the effect of zero inflation should carefully considered before
selecting an appropriate test statistic in contingency tables. Lydersen [8] indicated that when
no more than 20 percent of the cells have an expected value below 5, the Fisher’s exact test
was recommended. In this study, for the small sample size and imbalanced design, we also
observed that the performance of the Fisher–Freeman–Halton test statistic was better than
other test statistics according to the both type-I error level and power. Therefore, we observed
that simulation results are concordant with the literature [8]. As a result, for a small sample
size with an imbalanced sampling design, we could say that the Fisher–Freeman–Halton test
statistic is more convenient for these conditions when considering the results.

This study considered two-way contingency tables with dimensions 5-by-5 and 5-by-2.
In practice, researchers wish to work with contingency tables with lower dimensions due to
simplicity and less sample size. However, one may be required to work with a contingency table
having rows or columns above three. For example, in medical sciences, a binary response vari-
able such as death versus alive or healthy versus diseased might be compared between five
groups which can be summarized in a contingency table with dimensions 5-by-2. Furthermore,
a response variable with five categories like a 5-point Likert scale or reasons of suicides as in
Table 2mightbeassociatedwithanother categorical variablewithfive categories suchas the edu-
cation level. Although high-dimensional contingency tables are not frequently used or preferred
in researches, they may have to be used in some studies. Therefore, the performance of test
statistics in high-dimensional contingency tables should be carefully considered for selecting
an appropriate test statistic. Our study provided detailed results of test statistics in high-dimen-
sional contingency tables. Furthermore, this study can be extended to a more general case by
considering the dimension of contingency tables as a new factor in the simulation scenarios.

The problem of selecting the appropriate method for testing the independence in a contin-
gency table is not a recent topic; however, it is an ongoing issue since the performance of each
method is unclear for most of the scenarios. In this study, we conducted a comprehensive sim-
ulation study considering several factors, and compared the simulation results with real data
examples. Weaimedtoprovide comparative results andbringattention toother statisticalmeth-
ods than Pearson’s chi-square test, which is the most common in practice. We highlighted
that researchers should consider various factors such as sampling design, sample size, and effect
size before selecting the statistical procedures to test the independence in contingency tables.
Although we covered many scenarios in the simulation study, there still exist scenarios that are
not covered and the performances are unclear. Our study was not able to reflect the performance
of selected methods in sparse contingency tables. We leave this topic for further research.
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APPENDIX

Table 5: Simulation results – Power of tests in 5-by-5 contingency table.

Effect Size
Sampling
Design

Sample
Size

Pearson’s
Chi-Square

Likelihood
Freeman
–Tukey

Cressie
–Read

Fisher–Freeman
–Halton

Low (w = 0.1)

Balanced
100 0.0658 0.1165 0.1018 0.0677 0.0667
200 0.0968 0.1214 0.1024 0.1011 0.1002
500 0.2161 0.2315 0.2193 0.2179 0.2200

Almost
Balanced

100 0.0757 0.1346 0.1151 0.0791 0.0801
200 0.1172 0.1416 0.1189 0.1187 0.1169
500 0.2550 0.2688 0.2531 0.2557 0.2561

Imbalanced
100 0.0723 0.1289 0.0709 0.0703 0.0868
200 0.1069 0.1638 0.1332 0.1084 0.1245
500 0.2531 0.2820 0.2616 0.2559 0.2658

Medium (w = 0.3)

Balanced
100 0.4006 0.5628 0.5205 0.4221 0.4244
200 0.8280 0.8898 0.8742 0.8449 0.8556
500 1.0000 1.0000 1.0000 1.0000 1.0000

Almost
Balanced

100 0.3793 0.5174 0.4635 0.3958 0.4053
200 0.7792 0.8260 0.7988 0.7874 0.7940
500 0.9990 0.9991 0.9992 0.9990 0.9990

Imbalanced
100 0.4104 0.5494 0.4300 0.4096 0.5020
200 0.7810 0.8312 0.7939 0.7839 0.8366
500 0.9985 0.9986 0.9985 0.9986 0.9988

Large (w = 0.5)

Balanced
100 0.9448 0.9910 0.9867 0.9566 0.9586
200 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000

Almost
Balanced

100 0.9412 0.9713 0.9565 0.9487 0.9547
200 0.9999 0.9999 0.9999 0.9999 0.9999
500 1.0000 1.0000 1.000 1.0000 1.0000

Imbalanced
100 0.9423 0.9745 0.9560 0.9482 0.9745
200 0.9421 0.9734 0.9522 0.9477 0.9738
500 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 6: Simulation results – Power of tests in 5-by-2 contingency table.

Effect Size
Sampling
Design

Sample
Size

Pearson’s
Chi-Square

Likelihood
Freeman
–Tukey

Cressie
–Read

Fisher–Freeman
–Halton

Low (w = 0.1)

Balanced
40 0.0656 0.0950 0.0819 0.0769 0.0619
80 0.0964 0.1103 0.1002 0.0971 0.0946

200 0.1661 0.1743 0.1683 0.1681 0.1680

Almost
Balanced

40 0.0673 0.1089 0.0948 0.0735 0.0713
80 0.0899 0.1055 0.0936 0.0921 0.0906

200 0.1653 0.1735 0.1684 0.1679 0.1656

Imbalanced
40 0.0514 0.0949 0.0634 0.0531 0.0703
80 0.0912 0.1333 0.1211 0.0966 0.1027

200 0.1709 0.1826 0.1720 0.1737 0.1729

Medium (w = 0.3)

Balanced
40 0.2837 0.3494 0.3071 0.3074 0.2674
80 0.5500 0.5809 0.5527 0.5521 0.5403

200 0.9513 0.9534 0.9504 0.9515 0.9502

Almost
Balanced

40 0.2663 0.3442 0.3044 0.2768 0.2672
80 0.5260 0.5529 0.5231 0.5306 0.5216

200 0.9449 0.9462 0.9430 0.9452 0.9429

Imbalanced
40 0.2932 0.3855 0.3250 0.2962 0.3539
80 0.5625 0.6094 0.5853 0.5755 0.609

200 0.9567 0.9595 0.9571 0.9571 0.9575

Large (w = 0.5)

Balanced
40 0.7870 0.8343 0.8088 0.8124 0.7790
80 0.9890 0.9907 0.9894 0.9891 0.9888

200 1.0000 1.0000 1.0000 1.0000 1.0000

Almost
Balanced

40 0.7558 0.8012 0.7636 0.7630 0.7579
80 0.9852 0.9868 0.9849 0.9856 0.9848

200 1.0000 1.0000 1.0000 1.0000 1.0000

Imbalanced
40 0.7710 0.8137 0.7815 0.7723 0.8123
80 0.7758 0.8171 0.7850 0.7766 0.8169

200 1.0000 1.0000 1.0000 1.0000 1.0000

Table 7: Simulation results – Type I error rates in 5-by-5 contingency table.

Sampling
Design

Sample
Size

Pearson’s
Chi-Square

Likelihood
Freeman
–Tukey

Cressie
–Read

Fisher–Freeman
–Halton

Balanced
100 0.0463 0.0901 0.0761 0.0492 0.0483
200 0.0471 0.0629 0.0532 0.0493 0.0488
500 0.0478 0.0524 0.0479 0.0476 0.0479

Almost
Balanced

100 0.0503 0.0938 0.0798 0.0524 0.0507
200 0.0503 0.0660 0.0568 0.0510 0.0527
500 0.0496 0.0550 0.0503 0.0490 0.0502

Imbalanced
100 0.0454 0.0815 0.0359 0.0402 0.0476
200 0.0446 0.0800 0.0615 0.0460 0.0493
500 0.0494 0.0629 0.0619 0.0498 0.0507
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Table 8: Simulation results – Type I error rates in 5-by-2 contingency table.

Sampling
Design

Sample
Size

Pearson’s
Chi-Square

Likelihood
Freeman
–Tukey

Cressie
–Read

Fisher–Freeman
–Halton

Balanced
40 0.0472 0.0724 0.0607 0.0564 0.0452
80 0.0502 0.0597 0.0528 0.0505 0.0473

200 0.0511 0.0539 0.0512 0.0515 0.0499

Almost
Balanced

40 0.0464 0.0851 0.0729 0.0513 0.0489
80 0.0483 0.0578 0.0509 0.0500 0.0490

200 0.0498 0.0538 0.0491 0.0504 0.0508

Imbalanced
40 0.0345 0.0678 0.0418 0.0354 0.0451
80 0.0392 0.0717 0.0643 0.0428 0.0447

200 0.0462 0.0550 0.0500 0.0480 0.0498
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1. INTRODUCTION

Let X1, ..., Xn, ... denote i.i.d. random variables with a common absolutely continuous
distribution function F and density function f , say. We assume that they have a finite
second moment. Let Mn = max{X1, ..., Xn}, n = 1, 2, ..., stand for the maximum of the first
n observations. For fixed 1 ≤ j ≤ n and 0 < q < 1, we determine tight lower and upper
bounds for the standardized versions of the conditional expectations

(1.1)
1
σ

E

(
n∑

k=1

Mk − nµ

∣∣∣∣∣Mj = F−1(q)

)

over all parent distribution functions F where µ and σ denote the respective mean and stan-
dard deviation. It is clear that manipulating with location and scale of the parent distribution
function F , we may obtain arbitrarily large and small values of the conditional expectation
in (1.1), and a proper standardization allows to get rid of the trivial extremes. We chose the
mean and standard deviation of the parent distribution as the most classic location and scale
parameters, respectively. Normalization (1.1) allows us to get rid of dependence on location and
scale, and its variability depends only on the shape of the parent distribution. It is also intuitively
clear that the conditional expectation depends on the location of Mj in the support of X1, and
its distribution over the support. This is well expressed by the order of respective quantile.

A similar problem is solved for the upper records. We define the first record time and
value as T1 = 1 and R1 = X1, respectively. The further record times and values are deter-
mined recursively Tn = min{k > Tn−1 : Xk > Mk−1}, and Rn = XTn = MTn . By definition,
the sequence of upper records is the maximal increasing subsequence of the non-decreasing
sequence of sample maxima, arisen by crossing out all the repetitions. The second problem
we cope with here is evaluating

(1.2)
1
σ

E

(
n∑

k=1

Rk − nµ

∣∣∣∣∣Rj = F−1(q)

)
, 1 ≤ j ≤ n, 0 < q < 1.

For describing our last problem, we introduce the record indicators ηk = 1 if Xk > Mk−1 and
ηk = 0 otherwise. Our purpose is to evaluate

(1.3)
1
σ

E

(
n∑

k=1

Xkηk − nµ

∣∣∣∣∣Mj = F−1(q)

)
, 1 ≤ j ≤ n, 0 < q < 1.

Expression
∑n

k=1 Xkηk represents the sum of all the record values observed among the first n

observations. Condition Mj = F−1(q) means that the actual record value after j observations
amounts to F−1(q).

Exemplary applications of our problems are connected with sponsoring and rewarding
sportsmen.

Example. Some sports disciplines consists in gaining the greatest possible results. The
examples are here the track and field competitions in jumping and throwing. The sportsmen
receive scholarships and rewards proportional to (or linearly dependent on) their achieve-
ments. Suppose that due to an agreement with a sponsor a person receives a scholarship in
the period of n months based on sports level which is measured by his/her personal best result.
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(In the meantime he/she can achieve worse results, but it is known that he/she is able to
attain the results on the level of his/her personal best.) Therefore his/her joint earnings in
n months are proportional to

∑n
i=1 Mi.

In the second case, the sponsoring company signs the agreement with the organizer of
a competition series that it pays honoraria for n consecutive records during the competitions
of the amounts linearly dependent on the values of records. The sum of payoffs is a linear
function of

∑n
i=1 Ri then.

Another variant of the agreement is that the company sponsors n track and field meet-
ings so that it pays a random number of honoraria to the people who gain new records during
these events. The total amount of the rewards is proportional to

∑n
i=1 Xiηi, where Xi is the

result of the winner in the i-th competition, and ηi is the respective record indicator.

We try to evaluate the total sums of payments in these three models on the basis
of knowledge of j-th value of the payment, 1 ≤ j ≤ n, which are Mj , Rj and Mj again,
respectively, but we do not know a substantially random mechanism generating the results.
However, such generally stated problems do not have nontrivial solutions. We should know
at least approximate values of the location and scale parameters. Therefore we included
the mean and standard deviation in the models, which are the most popular parameters of
location and scale. Also, one other factor specific to a given sport discipline should be taken
into account. For instance, it is obvious that one can expect more progress in the triple
jump or hammer throw in the ladies competitions rather than among the men, because the
women version of these sport competitions were introduced quite recently. Mathematically,
the tendency of the given discipline for gaining new records is expressed the small value of
the quantile order q of the parent distribution.

We solve our three problems using a similar approach. We represent expressions
(1.1)–(1.3) in integral forms, depending on indices j and n, quantile order q, and parent
distribution function F . Then for fixed j, n, and q, we determine the lower and upper
bounds on the integrals representing (1.1)–(1.3), and distribution functions F which attain
the bounds. These distributions have atoms, and formally do not satisfy the continuity as-
sumptions. However, if we skilfully spread out (uniformly, for simplicity) the atom masses
over their small neighborhoods preserving the parent mean and variance, we may attain val-
ues of conditional expectations arbitrarily close to the respective bounds by an absolutely
continuous distributions. This means that our bounds are optimal: there are sequences of
continuous distributions tending weakly to a discontinuous ones which approach respective
bounds arbitrarily close. For brevity of presentation, we merely present these limiting dis-
continuous distributions, and imprecisely write that the bounds are attained by them.

The integral bounds are calculated with use of the method proposed in Moriguti [21]
who used it for evaluating the expectations of order statistics from i.i.d. samples and their
differences.

Lemma 1.1. Let H be a non-decreasing right-continuous function on an interval [a, b],
and continuous at a and b. Let H and H be the smallest concave majorant, and the greatest

convex minorant of H, respectively. Let h and h denote the the right-hand side deriva-

tives of H and H, respectively. Then for every non-decreasing function f on [a, b] we have

(1.4)
∫ b

a
f(x)h(x)dx ≤

∫ b

a
f(x)H(dx) ≤

∫ b

a
f(x)h(x)dx
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under the assumption that the integrals exist and are finite. The lower (upper) bound is at-

tained iff f is constant in every interval of the open set {x ∈ [a, b] : H(x) > H(x)} ({x ∈ [a, b] :
H(x) < H(x)}, respectively), and f(x) is left-continuous (right-continuous, resp.) at every

discontinuity point (if any) of H.

Moriguti ([21], Theorem 1) determined the upper bound in (1.4) under a more general
assumption that H has a bounded variation on [a, b], and is continuous at the interval ends.
The lower one is easily concluded from Theorem 1 of Moriguti [21]:

−
∫ b

a
f(x)H(dx) =

∫ b

a
f(x)(−H)(dx) ≤ −

∫ b

a
f(x)h(x)dx,

because −h is the derivative of the greatest convex minorant of −H.

Order statistics, especially sample extremes, and records were the objects of extensive
studies. Arnold et al. [2], and David and Nagaraja [9] are the most popular textbooks devoted
to order statistics. Comprehensive studies of records were presented in Arnold et al. [3] and
Nevzorov [23]. Gumbel [13] and Hartley and David [14] independently derived sharp upper
mean-variance bounds on the maxima of i.i.d. random variables. Analogous estimates for the
record values were presented in Nagaraja [22]. These bounds were determined with use of
the Schwarz inequality. Applying the same tool one can establish analogous bounds on sums
of maxima and records, but the respective analytic formulae are complicated.

Predictions of order statistics and record values were analyzed by Raqab and Balakr-
ishnan [28], Ahmadi and Balakrishnan [1], MirMostafaee and Ahmadi [20], and Volterman
et al. [31], among others. In particular, Rychlik [29] and Klimczak [17] determined bounds
on conditional expectations of future order statistics and records. Balakrishnan et al. [5],
Asgharzadeh et al. [4], Khatib and Ahmadi [15], and Khatib et al. [16] studied reconstruc-
tions of previous failure times and records in various models. Klimczak and Rychlik [18]
presented evaluations of conditional expectations of previous order statistics and records.

Conditional expectations of (1.1), (1.2), and (1.3) are studied in survival analysis, the
gambling, finance, and reliability theories. A problem of prediction of the sum of minima
(dual to (1.1)) was treated by Nevzorov et al. [24]. Problem (1.3) is a modification of a
classical secretary choice problem which consist in maximizing the probability of finding the
maximal record value in a finite sequence of i.i.d. observation in an on-line decision procedure
(see, e.g., Gilbert and Mosteller [11] or Chow et al. [8]). Various generalizations of the
secretary problem can be found in Freeman [10] and Samuels [30]. Recent developments in
the subject are presented in Ramsey [27], Kuchta [19], Woryna [32], and Grau Ribas [12].
Sums of records in fixed numbers of trials were treated in Bel’kov and Nevzorov [6]. For a fixed
parent distribution, they maximized E

(∑n
k=j Xkηk|X1, ...Xj

)
with respect to j = 1, ..., n− 1.

Nevzorov and Tovmasyan [26] analyzed a similar problem if the number of upper records
was maximized instead of the sum of their values. Bel’kov and Nevzorov [7] maximized the
joint sum of upper and lower records in the analogous model. Nevzorov and Stepanov [25]
maximized the expected sum of maxima by choosing an optimal starting time.

Evaluations of (1.1), (1.2) and (1.3) are presented in Sections 2, 3, and 4, respectively.
Section 5 is devoted to numerical comparisons.
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2. SUMS OF SAMPLE MAXIMA

Lemma 2.1. Let X1, ..., Xn be i.i.d. with an absolutely continuous distribution func-

tion F and density f . Then E
(

1
n

∑n
k=1 Mk

∣∣Mj = x
)

is identical with the expectation of the

distribution function

Fj,n,F (y|x) =


1
jn

j−1∑
k=1

(j − k)
F k(y)
F k(x)

, y < x,

j

n
+

1
n

n−j∑
k=1

F k(y), y ≥ x.

=


1
jn

F (x)F (y)
[F (y)− F (x)]2

[
j − 1− j

F (y)
F (x)

+
F j(y)
F j(x)

]
, y < x,

j

n
+

1
n

F (y)
1− F (y)

[1− Fn−j(y)], y ≥ x.

(2.1)

We adhere to the convention that
∑j

k=i ai = 0 for j < i.

Proof: For j < k we have

P(Mk = x|Mj = x) = P(Xi ≤ x, i = j + 1, ..., k) = F k−j(x),

and for x < y yields

P(Mj ≤ x,Mk ≤ y) = P(Xi ≤ x, i = 1, ..., j, Xi ≤ y, i = j + 1, ..., k) = F j(x)F k−j(y).

Therefore the joint density function of Mj and Mk is

(2.2) fMj ,Mk
(x, y) = j(k − j)F j−1(x)F k−j−1(y)f(x)f(y), x < y.

Since

(2.3) fMj (x) = jF j−1(x)f(x),

the conditional density of Mk under condition Mj = x has the form

fMk|Mj
(y|x) = (k − j)F k−j−1(y)f(y), y > x,

and the respective conditional distribution function is

(2.4) FMk|Mj
(y|x) =

{
0, y < x,

F k−j(y), y ≥ x.

Take now k < j. Using the exchangeability argument we conclude that P(Mk = x |Mj = x) = k
j

for any x. Applying (2.2) and (2.3) we also obtain

fMk|Mj
(y|x) =

k(j − k)
j

F k−1(y)
F k(x)

, y < x.



240 T. Rychlik and M. Szymkowiak

It follows that the conditional distribution function of Mk with respect to Mj = x is

(2.5) FMk|Mj
(y|x) =


j − k

j

F k(y)
F k(x)

, y < x,

1, y ≥ x.

Obviously, the distribution of Mj given Mj = x is the degenerate measure concentrated at x.
Combing this fact with (2.4) and (2.5), we get

n∑
k=1

FMk|Mj
(y|x) =


1
j

j−1∑
k=1

(j − k)
F k(y)
F k(x)

, y < x,

j +
n−j∑
k=1

F k(y), y ≥ x.

Finally,

E

(
1
n

n∑
k=1

Mk

∣∣∣∣∣Mj = x

)
=
∫

R
y

n∑
k=1

FMk|Mj
(dy|x) =

∫
R

y Fj,n,F (dy|x).

Distribution function (2.1) in the standard uniform case has the form

Fj,n(u|q) =


1
jn

j−1∑
k=1

(j − k)
uk

qk
, 0 < u < q,

j

n
+

1
n

n−j∑
k=1

uk, q ≤ u < 1,

=


1
jn

uq

(u− q)2

[
j − 1− j

u

q
+

uj

qj

]
, u < q,

j

n
+

1
n

u

1− u
[1− un−j ], u ≥ q,

0 < q < 1.(2.6)

It has the density function

fj,n(u|q) =


1

jnq

j−2∑
k=0

(j − k − 1)(k + 1)
uk

qk
, 0 < u < q,

1
n

n−j−1∑
k=0

(k + 1)uk, q ≤ u < 1,

=



(j + 1)q
jn(q − u)2

[
1− j

uj−1

qj−1
+ (j − 1)

uj

qj

]
− q2

jn(q − u)3

×
[
2− j(j + 1)

uj−1

qj−1
+ 2(j − 1)(j + 1)

uj

qj
− j(j − 1)

uj+1

qj+1

]
, 0 < u < q,

1
(1− u)2

[1− (n + 1− j)un−j + (n− j)un+1−j ], q ≤ u < 1,

(2.7)

when 0 < q < 1, and the jump of height j+1
2n + 1

n

∑n−j
k=1 qk = j+1

2n + 1
n

q
1−q (1− qn−j) at q.
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We also note that

Fj,n(q − |q) =
j − 1
2n

, Fj,n(q|q) =
j

n
+

1
n

n−j∑
k=1

qk =
j

n
+

1
n

q

1− q
(1− qn−j),(2.8)

fj,n(0|q) =
j − 1
jnq

, fj,n(1|q) =
(n− j)(n− j + 1)

2n
,(2.9)

fj,n(q − |q) =
(j − 1)(j + 1)

6nq
, fj,n(q + |q) =

1
n

n−j−1∑
k=0

(k + 1)qk

=
1− (n + 1− j)qn−j + (n− j)qn+1−j

n(1− q)2
.

Before we formulate the main results of this section, we define some auxiliary notions. Put

j∗ = j∗(n) =
2n + 1−

√
8n + 1

2
,(2.10)

Ifj,n(u|q) =
∫ u

0
f2

j,n(v|q)dv

=
1

(jnq)2

∫ u

0

[
j−2∑
k=0

(j − k − 1)(k + 1)
vk

qk

]2

dv

=
1

(jnq)2

2j−4∑
r=0

1
(r + 1)qr

 min{r+1,j−1}∑
k=max{1,r−j+3}

k(j − k)(r − k + 2)(j − r + k − 2)

ur+1(2.11)

for 0 < u ≤ q, and

Jfj,n(u|q) =
∫ 1

u
f2

j,n(v|q)dv

=
1
n2

∫ 1

u

[
n−j−1∑

k=0

(k + 1)uk

]2

dv

=
1
n2

2(n−j−1)∑
r=0

1
(r + 1)

 min{r+1,n−j}∑
k=max{1,r−n+j+2}

k(r − k + 2)

(1− ur+1)(2.12)

for q ≤ u < 1. We first describe the upper bounds for 2 ≤ j ≤ n− 1. The extreme cases j = 1
and j = n are treated separately.

Theorem 2.1. Let X1, ..., Xn be i.i.d. with some distribution and density functions

F and f , mean µ and variance σ2. Fix 2 ≤ j ≤ n− 1, and 0 < q < 1.

(i) If j∗ ≤ j ≤ n− 1 (see (2.10)), and q ≤ j−1
jn , then

(2.13)
1
σ

E

(
n∑

k=1

Mk − nµ

∣∣∣∣∣Mj = F−1(q)

)
≤ 0.

The bound is attained in limit by sequences of continuous distributions tending

to degenerate ones.

(ii) Assume that q > j−1
jn and either of two conditions holds. One is j∗ ≤ j ≤ n− 1,

and the other is 2 ≤ j < j∗ with the assumption that the equation

(2.14) fj,n(1|q)(u− 1) + 1 = Fj,n(u|q)

has a solution in (0, q).
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(a) If moreover j−1
jn < q < (j−1)(j+1)

6n+(j−1)(j−2) then the equation

(2.15) 1− Fj,n(u|q) = (1− u)fj,n(u|q)

has a unique solution 0 < u∗ < q, and then

(2.16)
1
σ

E

(
n∑

k=1

Mk − nµ

∣∣∣∣∣Mj = F−1(q)

)
≤ nAj,n(q),

where

(2.17) A2
j,n(q) = Ifj,n(u∗|q) + f2

j,n(u∗|q)(1− u∗)− 1.

The equality in (2.16) is attained by the parent distribution with the quantile

function

(2.18) F−1(u) = µ +
σ

Aj,n(q)
[fj,n(min{u, u∗}|q)− 1].

(b) However, if q ≥ (j−1)(j+1)
6n+(j−1)(j−2) , then (2.16) holds with

(2.19) A2
j,n(q) = Ifj,n(q|q) +

[1− Fj,n(q − |q)]2

1− q
− 1,

and attainability condition

(2.20) F−1(u) = µ +
σ

Aj,n(q)
×


fj,n(u|q)− 1, u < q,

1− Fj,n(q − |q)
1− q

, u ≥ q.

(iii) Suppose that 2≤ j < j∗, and either of two assumptions holds. The first is q≤ j−1
jn .

The other admits q > j−1
jn , but demands that the equation

(2.21) fj,n(0|q)u = Fj,n(u|q)

has a solution in (q, 1) then. In consequence, the equation

(2.22) Fj,n(u|q) = ufj,n(u|q)

has a unique solution q < u∗∗ < 1, and (2.16) holds with

(2.23) A2
j,n(q) = f2

j,n(u∗∗|q)u∗∗ + Jfj,n(u∗∗|q)− 1.

In this case the bound in (2.16) is attained by the distribution with the quantile

function

(2.24) F−1(u) = µ +
σ

Aj,n(q)
[fj,n(max{u, u∗∗}|q)− 1].
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(iv) Finally, let 2 ≤ j < j∗, and q > j−1
jn , and equations (2.15) and (2.22) do not have

solutions in (0, q) and (q, 1), respectively.

(a) If moreover the equation

(2.25) fj,n(q − |q)(u− q) + Fj,n(q − |q) = Fj,n(u|q)

has a solution in (q, 1), though, then there exist unique 0 < u∗ < q < u∗∗ < 1
satisfying the equations

(2.26) fj,n(u∗|q) = fj,n(u∗∗|q) =
Fj,n(u∗∗|q)− Fj,n(u∗|q)

u∗∗ − u∗
,

and (2.16) holds with

(2.27) A2
j,n(q) = Ifj,n(u∗|q) + f2

j,n(u∗|q)(u∗∗ − u∗) + Jfj,n(u∗∗|q)− 1.

The equality in (2.16) is attained then if

(2.28) F−1(u) = µ +
σ

Aj,n(q)
×

{
fj,n(u∗|q)− 1, u∗ ≤ u ≤ u∗∗,

fj,n(u|q)− 1, otherwise.

(b) If (2.25) does not have a solution in (q, 1), then there exists a unique

q < u∗∗ < 1 such that

(2.29) fj,n(q − |q) <
Fj,n(u∗∗|q)− Fj,n(q − |q)

u∗∗ − q
= fj,n(u∗∗|q),

and (2.16) holds with

(2.30) A2
j,n(q) = Ifj,n(q|q) +

[Fj,n(u∗∗|q)−Fj,n(q−|q)]2

u∗∗ − q
+ Jfj,n(u∗∗|q)−1,

and the equality in (2.10) holds for

(2.31)

F−1(u) = µ +
σ

Aj,n(q)
×


Fj,n(u∗∗|q)− Fj,n(q − |q)

u∗∗ − q
− 1, q ≤ u < u∗∗,

fj,n(u|q)− 1, otherwise.

Proof: By Lemma 2.1,

nE

(
1
n

n∑
k=1

Mk − µ

∣∣∣∣∣Mj = F−1(q)

)
= n

∫
R

(y − µ)Fj,n,F (dy|F−1(q))

= n

∫ 1

0
[F−1(u)− µ]Fj,n(du|q).(2.32)

For using Lemma 1.1, we need to determine the greatest convex minorant of (2.6). This
distribution function is convex on the intervals [0, q) and [q, 1], and has a jump up at q.
We easily notice that the greatest convex minorant may have four possible shapes. It is
certainly linear near q and possibly identical with Fj,n(u|q) at the ends of [0, 1]. However, it
may happen that the linear part reaches either of the end-points of the interval, or even the
line may cover the whole interval.
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(i) Then problem is most simple when fj,n(1|q) ≤ 1 ≤ fj,n(0|q) , i.e. when j ≥ j∗
and q ≤ j−1

jn (cf. (2.9)). Then the straight line `(u) = u, 0 ≤ u ≤ 1, connects the
points (0, Fj,n(0|q)) = (0, 0) and (1, Fj,n(1|q)) = (1, 1), and runs beneath Fj,n(u|q)
in between. It follows that the line is the greatest convex minorant of (2.6), and
its derivative amounts to constant 1. Therefore

E

(
n∑

k=1

Mk − nµ

∣∣∣∣∣Mj = F−1(q)

)
≤ n

∫ 1

0
[F−1(u)− µ]du = 0.

This proves inequality (2.13). In order to prove its optimality, for simplicity we
consider the family of two-point distributions with the quantile functions

(2.33) F−1
ε (u) = µ + σ ×


−
√

1− ε

ε
, u < ε,√

ε

1− ε
, u ≥ ε,

0 < ε < 1.

Applying the de l’Hospital rule and boundedness of fj,n(u|q) near 0, we obtain

lim
ε→0

∫ 1

0
[F−1

ε (u)− µ]Fj,n(du|q)

= σ lim
ε→0

[
−
√

ε(1− ε)
Fj,n(ε|q)

ε
+
√

ε

1− ε
[1− Fj,n(ε|q)]

]
= 0.

This argument shows that the zero bound is optimal if the greatest convex mi-
norant is linear. We shall not repeat it in the future proofs. Note that here the
same conclusion could be derived if we locate the vanishing atom on the right.

Now we observe that each of equations (2.14) and (2.21) has at most two solutions in
(0, q) and (q, 1), respectively, because their left-hand sides are linear, and the right-hand sides
are strictly convex. We also note that existence of solutions to (2.14) excludes that for (2.21)
and vice-versa. Assume for instance that u0 is the solution (the single one or the smaller of
two) to (2.14). It follows that

(2.34) Fj,n(u|q) > fj,n(1|q)(u− 1) + 1, q < u < 1.

The straight line fj,n(0|q)u runs below the point (u0, Fj,n(u0|q)), and line fj,n(1|q)(u− 1) + 1
right to u0. By (2.34), it cannot meet Fj,n(u|q) in (q, 1). When (2.21) has a solution, we
argue in a similar way to exclude that of (2.14).

(ii) Let fj,n(0|q) < 1, i.e., q > j−1
jn . Assume moreover that either fj,n(1|q) ≤ 1 (j ≥ j∗)

or fj,n(1|q) > 1 (j < j∗) holds together with existence of solution to (2.14). It
follows that then the greatest convex minorant of Fj,n(u|q) coincides first with
the function itself, and then with the straight line fj,n(1|q)(u− 1) + 1 (at least on
[q, 1)). The change point u∗ amounts to q if

(2.35) fj,n(q − |q) ≤ 1− Fj,n(q − |q)
1− q

.

(a) If j−1
2n < q < (j−1)(j+1)

6n+(j−1)(j−2) , we have the reversed inequality in (2.35).
Function

(2.36) F j,n(u|q) =


Fj,n(u|q), u ≤ q,

1− Fj,n(q − |q)
1− q

(u− 1) + 1, u ≥ q,
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is not convex then. However, there exist u∗ < q such that the line 1−Fj,n(u∗|q)
1−u∗

× (u− 1) + 1 connecting the points of the graph of Fj,n(u|q) at u∗ and 1 runs
below the graph, and is tangent to it at u∗. This provides the change point of
the minorant, and is certainly determined by (2.15). When j−1

jn < q ≤ j−1
2n ,

we have Fj,n(q − |q) ≥ q which again implies that the change point is u∗ de-
fined in (2.15). It follows that for j−1

jn < q < (j−1)(j+1)
6n+(j−1)(j−2) the derivative of the

greatest convex minorant of (2.6) has the form f
j,n

(u|q) = fj,n(min{u, u∗}|q).
Coming back to (2.32) we obtain

E

(
n∑

k=1

Mk − nµ

∣∣∣∣∣Mj = F−1(q)

)
≤ n

∫ 1

0
[F−1(u)− µ][f

j,n
(u|q)− 1]du

≤ n

(∫ 1

0
[F−1(u)−µ]2du

∫ 1

0
[f

j,n
(u|q)−1]2du

) 1
2

= nσ

(∫ 1

0
f2

j,n
(u|q)du−1

) 1
2

.(2.37)

The last equality follows from the fact that f
j,n

(u|q) integrates to F j,n(1|q) =

1 on the interval [0, 1]. Using (2.11) we easily check that
∫ 1
0 f2

j,n
(u|q)du−1 =

A2
j,n(q) defined in (2.17). The equality in the latter inequality of (2.37) holds

when

(2.38) F−1(u)− µ = α[f2
j,n

(u|q)− 1], 0 < u < 1,

for some α > 0. Note that the right-hand side is right-continuous and in-
tegrates to 0, which allows to preserve the expectation condition for the
left-hand side. The variance assumption implies α = σ

Aj,n(q) . Observe that
condition (2.38) for the equality in the latter Schwarz inequality of (2.37)
preserves constancy intervals of the derivative of the greatest convex mino-
rant which is necessary for satisfying the first equality condition of Lemma
1.1 in the first upper Moriguti inequality of (2.37). The other is satisfied as
well since we defined the right continuous version of the quantile function
in (2.38). It follows that (2.18) actually defines the parent distribution for
which the bound (2.16) with the right-hand side defined in (2.17) is attained.

This approach is used in our further investigations. Determination of the greatest
convex minorant is the crucial step in the evaluation method. The upper bound coincides
with the Hilbert norm of its derivative decreased by one, and a proper linear modification
of this function defines the quantile function of the distribution which satisfies the moment
conditions and attains the bound. For brevity, in our further studies we stop calculations
once we define the greatest convex minorant of a suitable integrand, and tacitly refer to the
procedure described in the previous paragraph.

(b) Using (2.8) and (2.9) we check that (2.35) is satisfied when q ≥ (j−1)(j+1)
6n+(j−1)(j−2) .

Note that (2.35) implies Fj,n(q − |q) < q. Indeed, relation Fj,n(q − |q) ≥ q

forces 1−Fj,n(q−|q)
1−q ≤ 1, and fj,n(q − |q) > 1. The latter is a consequence of

the fact that Fj,n(u|q) crosses then the line `(u) = u from bottom to top
in (0, q). Its derivative is necessarily greater than 1 at the crossing point,
and increases later on. Also, relation q ≥ (j−1)(j+1)

6n+(j−1)(j−2) implies that (2.36)
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is actually a convex function, and it forms the greatest convex minorant of
Fj,n(u|q). Its right-hand side derivative is

f
j,n

(u|q) =


fj,n(u|q), u < q,

1− Fj,n(q − |q)
1− q

=
2n + 1− j

2n(1− q)
, u ≥ q.

Following the arguments presented above we conclude that in this case we
obtain the bound in (2.16) defined by (2.19) and its attainability condition
are described in (2.20).

(iii) Under the assumptions of this point, Fj,n(u|q) runs below the line `(u) = u in
some left neighborhood of 1. If q ≤ j−1

jn , the function is located above the line for
all 0 < u < q. Therefore the greatest convex minorant has to be first linear, and
then identical with Fj,n(u|q). When q > j−1

jn and fj,n(0|q) < 1 in consequence,
but (2.21) holds for some q < u < 1, then Fj,n(u|q), 0 < u < q, lies above the line
fj,n(0|q)u, but this is not true for some u ∈ (q, 1). Again we deduce that the
minorant is first linear and eventually strictly convex. The change point belongs
to (q, 1), and q is impossible. This point is determined by (2.22) which means
that the linear part of the greatest convex minorant is tangent to Fj,n(u|q) at
the change point u∗∗. The derivative of the convex minorant is then f

j,n
(u|q) =

fj,n(max{u, u∗∗}|q). Proceeding as in the previous part on the proof we determine
the mean-variance bound for the conditional expectation and the condition of its
attainability.

(iv) The assumptions mean that Fj,n(u|q) goes below `(u) = u in some neighborhoods
of 0 and 1. Moreover, the lines tangent to Fj,n(u|q) at 0 and 1 run below the
graph of the function. This implies that the greatest convex minorant of Fj,n(u|q)
cannot be linear at vicinities of the end-points. So the linear part may appear
only in the central part, and it contains q.

(a) If (2.25) has a solution then the derivative of the greatest convex minorant
of Fj,n(u|q) can be written as

f
j,n

(u|q) =

{
fj,n(u∗|q), u∗ ≤ u ≤ u∗∗,

fj,n(u|q), elsewhere,

where 0 < u∗ < q < u∗∗ < 1 are determined from the tangency conditions
(2.26). In the standard way we establish the bound in (2.16) with the right-
hand side described in (2.27), and the attainability condition (2.28).

(b) The lack of solution to (2.25) implies that all the lines u 7→ fj,n(v|q)(u− v) +
Fj,n(v|q), tangent to Fj,n(u|q) at v < q run below Fj,n(u|q) for u < v. The
only candidate for the change point of the minorant from Fj,n(u|q) into a line
is q. Consider the functions `α(u) = α(u− q) + Fj,n(q− |q), and increase the
slopes α starting from fj,n(q−|q) until we touch any point of Fj,n(u|q) for u≥q.
Obviously q cannot be the first meeting point, because the line connecting
Fj,n(q−|q) and Fj,n(q|q) is vertical. It cannot be 1, either, because then α =
1−Fj,n(q−|q)

1−q ≥ fj,n(1|q) which contradicts the assumption that (2.14) does not
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have a solution in (0, q). Consequently, our assumptions imply

f
j,n

(u|q) =


Fj,n(u∗∗|q)− Fj,n(q − |q)

u∗∗ − q
, q ≤ u ≤ u∗∗,

fj,n(u|q), elsewhere,

where u∗∗ is determined by solving (2.29). This allows us to conclude (2.16)
with (2.30) and (2.31) assuring the equality in (2.16).

We separately consider the extreme cases j = 1 and j = n, for which the distribution
function (2.6) does not have any mass on the left and right, respectively, of q. This allows us
to simplify the arguments of the above proof in order to get desired conclusions. The details
of the reasoning are left to the reader.

Theorem 2.2. Let the assumptions of Theorem 2.1 hold.

(i) Let M1 = F−1(q) for some 0 < q < 1.

(a) If q < n−3
n−1 , then there exists q < u∗∗ < 1 solving the equation

u

1− u
(1− un−1) = nF1,n(u|q) = n(u− q)f1,n(u|q)

=
u− q

(1− u)2
[1− nun−1 + (n− 1)un],

and then we have (2.16) with j = 1 and

A2
1,n(q) = f2

1,n(u∗∗|q)(u∗∗ − q) + Jf1,n(u∗∗|q)− 1

(see (2.12)). The equality is attained if

F−1(u) = µ +
σ

A1,n(q)
×


−1, u < q,

f1,n(u∗∗|q)− 1, q ≤ u ≤ u∗∗,

f1,n(u|q)− 1, u ≥ u∗∗.

(b) If q ≥ n−3
n−1 , then A1,n(q) =

√
q

1−q , and the bound is attained by the two-

point parent distribution on µ− σ
√

1−q
q and µ + σ

√
q

1−q with respective

probabilities q and 1− q.

(ii) Under the condition Mn = F−1(q), there are three possible cases.

(a) When q ≤ n−1
n2 (cf. Theorem 2.1(i)), the optimal upper bound on the stan-

dardized expectation of the first n maxima is equal to 0.

(b) If n−1
n2 < q < n−1

n+2 then the statements of Theorem 2.1(iia) hold with j

replaced by n.

(c) If q ≥ n−1
n+2 then the statements of Theorem 2.1(iib) hold with j replaced

by n.

In the following theorem we describe the lower bounds on the conditional expectations
of sample maxima for all 1 ≤ j ≤ n.
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Theorem 2.3. Assume the conditions of Theorem 2.1.

(i) Let 0 < q∗ ≤ 1 be the unique solution to

(2.39) j +
q

1− q
(1− qn−j) = nq.

If either j∗ ≤ j ≤ n (comp. (2.10)) or 1 ≤ j < j∗ and q < q∗ defined above, then

(2.40)
1
σ

E

(
n∑

k=1

Mk − nµ

∣∣∣∣∣Mj = F−1(q)

)
≥ −

j + q
1−q (1− qn−j)− nq√

q(1− q)
.

The lower bound in (2.40) is attained by the two-point distribution supported on

µ− σ
√

1−q
q and µ + σ

√
q

1−q with respective probabilities q and 1− q.

(ii) If 1 ≤ j < j∗ and q ≥ q∗ then the optimal bound is

1
σ

E

(
n∑

k=1

Mk − nµ

∣∣∣∣∣Mj = F−1(q)

)
≥ 0.

Note that q∗ = 1 for j = n, and so (2.40) holds for all 0 < q < 1 with the right hand-side

simplified to −n
√

1−q
q .

Proof: We rewrite representation (2.32), and apply the lower estimate of Lemma 1.1.
In consequence of the shape of the distribution function (2.6), the only possible shapes of its
smallest concave majorant is the linear function `(u) = u when Fj,n(q|q) ≤ q or a broken line
with the break point q otherwise. Inequality Fj,n(q|q) ≤ q is equivalent to

(2.41) j +
n−j∑
k=1

qk − nq ≤ 0.

The left-hand side function is strictly convex, positive at 0, and vanishing at 1. Its derivative
at 1 amounts to (n−j)(n−j+1)

2 −n = 1
2 [j2− (2n+1)j +n(n−1)] which is non-positive for j ≥ j∗

(see (2.10)), and positive otherwise. Accordingly, inequality (2.41) is false for all 0 < q < 1
when j ≥ j∗. If j < j∗, (2.41) holds only for sufficiently large q. Precisely, this is true for
q ≥ q∗ defined in (2.39).

(i) Assume so that either j∗ ≤ j ≤ n or 1 ≤ j < j∗ and q < q∗. Then the smallest
concave majorant has the form

F j,n(u|q) =


Fj,n(q|q)

q
u =

j +
∑n−j

k=1 qk

nq
u, u ≤ q,

1− Fj,n(q|q)
1− q

(u− 1) + 1 =
n− j −

∑n−j
k=1 qk

n(1− q)
(u− 1) + 1, u ≥ q.

We use

(2.42) f j,n(u|q)− 1 =


j +

∑n−j
k=2 qk − (n− 1)q

nq
, u ≤ q,

(n− 1)q − j −
∑n−j

k=2 qk

n(1− q)
u > q,
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for establishing the following lower mean-variance bound

nE

(
1
n

n∑
k=1

Mk

∣∣∣∣∣Mj = F−1(q)

)
≥ n

∫ 1

0
[F−1(u)− µ][f j,n(u|q)− 1]du

≥ −n

[∫ 1

0
[F−1(u)− µ]2du

]1/2[∫ 1

0
[f j,n(u|q)− 1]2du

]1/2

= −nσaj,n(q),(2.43)

where

a2
j,n(q) =

∫ 1

0
[f j,n(u|q)− 1]2du =

1
n2q(1− q)

(
j +

n−j∑
k=1

qk − nq

)2

.

Note that under the assumption the expression in the parentheses is positive.
Now set

(2.44) F−1(u−)− µ = − σ

aj,n(q)
[f j,n(u|q)− 1]

which asserts the equalities in both the inequalities of (2.43). Note that the right-
hand side of (2.44) is non-decreasing and left-continuous. Moreover, its integral
over [0, 1] is equal to 0, and the integral of its square amounts to 1. This implies
that the left-hand side determines the standardized lower quantile function of a
distribution with mean µ and variance σ2. Plugging (2.42) into (2.44) we obtain

F−1(u−) = µ + σ ×


−
√

1− q

q
, u ≤ q,√

q

1− q
, u > q,

which describes the two-point distribution defined in the first part of Theorem
2.3.

(ii) Otherwise, if 1 ≤ j < j∗ and q ≥ q∗, the derivative of the smallest concave majorant
F j,n(u|q) = u, 0 ≤ u ≤ 1, of Fj,n(u|q) is equal to 1. Consequently,

nE

(
1
n

n∑
k=1

Mk

∣∣∣∣∣Mj = F−1(q)

)
≥ n

∫ 1

0
[F−1(u)− µ]du = 0.

Seemingly, the conditions for attaining the upper bounds in Theorem 2.2(ib) and Theo-
rem 2.3(i) pretend to be identical. There are subtle differences between them, though. In the
first case, the strictly increasing quantile functions F−1

n (u) should tend to the right-continuous
version of the two-valued extreme quantile function. In the other one, they should tend to
the left-continuous lower quantile function. We omit presenting elementary constructions of
such sequences.
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3. SUMS OF UPPER RECORDS

Lemma 3.1. Let X1, ..., Xn, ... be i.i.d. with an absolutely continuous distribution

function F and density f , and let R1, ..., Rn denote the values of the first upper records in the

sequence. Then E
(

1
n

∑n
k=1 Rk

∣∣Rj = x
)

for some 1 ≤ j ≤ n is identical with the expectation

of the distribution function

(3.1) Gj,n,F (y|x) =


j − 1

n

− ln[1− F (y)]
− ln[1− F (x)]

, y < x,

1− 1
n

1− F (y)
1− F (x)

n−j−1∑
k=0

n− j − k

k!

[
− ln

1− F (y)
1− F (x)

]k

, y ≥ x.

Proof: The density function of the single record value Rj , and the joint density of a
pair (Rj , Rk), j < k, have the forms

fRj (x) =
{− ln[1− F (x)]}j−1

(j − 1)!
f(x),(3.2)

fRj ,Rk
(x, y) =

{− ln[1− F (x)]}j−1

(j − 1)!

[
− ln 1−F (y)

1−F (x)

]k−j−1

(k − j − 1)!
f(x)f(y)
1− F (x)

, x < y,(3.3)

respectively (see, e.g., Arnold et al. [3], p. 11). It follows that for j < k

fRk|Rj
(y|x) =

[
− ln 1−F (y)

1−F (x)

]k−j−1

(k − j − 1)!
f(y)

1− F (x)
, y > x,

is the conditional density function of Rk under the condition that Rj = x. We see that the
conditional distribution is identical with the unconditional distribution of the (k−j)-th record
value from a sequence with the left-truncated parent distribution function 1−F (y)

1−F (x) , y > x. The
respective distribution function is

FRk|Rj
(y|x) = 1− 1− F (y)

1− F (x)

k−j−1∑
i=0

[− ln[ 1−F (y)
1−F (x) ]

i

i!
, x < y.

We also note that

(3.4)
n∑

k=j+1

FRk|Rj
(y|x) = n− j − 1− F (y)

1− F (x)

n−j−1∑
k=0

n− j − k

k!

[
− ln

1− F (y)
1− F (x)

]k

, x < y.

Referring again to (3.2) and (3.3), we obtain

fRk|Rj
(y|x) =

(j−1)!
(k−1)!(j−k−1)

[
− ln[1− F (y)]
− ln[1− F (x)]

]k−1

×
[
1−− ln[1− F (y)]

− ln[1− F (x)]

]j−k−1 −f(y)
[1−F (y)] ln[1−F (x)]

for y < x and k < j. This coincides with the density function of the k-th order statistic from
an i.i.d. sample of size j− 1 from the right-truncated distribution function − ln[1−F (y)]

− ln[1−F (x)] , y < x.
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Obviously, the sum of ordered variables is identical with that of the original unordered ones.
Therefore

(3.5) E

(
j−1∑
k=1

Rk

∣∣∣∣∣Rj = x

)
= (j − 1)

∫ x

−∞
y
− ln[1− F (dy)]
− ln[1− F (x)]

Combining (3.4), (3.5) with the trivial fact E(Rj |Rj = x) = x =
∫

R y1[x,+∞)(dy), we conclude

E

(
1
n

n∑
k=1

Rk

∣∣∣∣∣Rj = x

)

=
j − 1

n

∫ x

−∞
y
− ln[1− F (dy)]
− ln[1− F (x)]

+
1
n

∫
R

y1[x,+∞)(dy) +
1
n

∫ +∞

x
y

n∑
k=j+1

FRk|Rj
(dy|x)

=
∫

R
yFj,n,F (dy|x),

which proves our statement.

In the standard uniform case (3.1) takes on the form

(3.6) Gj,n(u|q) =


j − 1

n

− ln(1− u)
− ln(1− q)

, 0 < u < q < 1,

1− 1
n

1− u

1− q

n−j−1∑
k=0

n− j − k

k!

(
− ln

1− u

1− q

)k

, 0 < q ≤ u < 1.

It has the density function

gj,n(u|q) =


j − 1

n

1
− ln(1− q)

1
1− u

, 0 < u < q < 1,

1
n(1− q)

n−j−1∑
k=0

1
k!

(
− ln

1− u

1− q

)k

, 0 < q ≤ u < 1,

and an atom with the weight 1
n at q. In particular we have

Gj,n(q − |q) =
j − 1

n
, Gj,n(q|q) =

j

n
,

gj,n(0|q) =
j − 1

−n ln(1− q)
, gj,n(1− |q) =


+∞, j < n− 1,

1
n(1− q)

, j = n− 1,

0, j = n,

(3.7)

gj,n(q − |q) =
j − 1

−n(1− q) ln(1− q)
, gj,n(q + |q) =

1
n(1− q)

.

We also define

(3.8) Igj,n(u|q) =
∫ u

0
g2
j,n(v|q)dv =

[
j − 1

−n ln(1− q)

]2 ∫ u

0

1
(1− v)2

dv =
[

j − 1
−n ln(1− q)

]2 u

1− u
,
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for 0 < u ≤ q, and

Jgj,n(u|q) =
∫ 1

u
g2
j,n(v|q)dv =

1
n2(1− q)2

∫ 1

u

[
n−j−1∑

k=0

1
k!

(
− ln

1− v

1− q

)k
]2

dv

=
1

n2(1− q)2

2(n−j−1)∑
r=0

 min{r,n−j−1}∑
k=max{0,r−n+j+1}

(
r

k

) 1
r!

∫ 1

u

(
− ln

1− u

1− q

)r

dv

=
1− u

n2(1− q)3

2(n−j−1)∑
r=0

 min{r,n−j−1}∑
k=max{0,r−n+j+1}

(
r

k

)[ r∑
k=0

1
k!

(
− ln

1− u

1− q

)k
]

(3.9)

for q ≤ u < 1. Note that for r = 0, ..., n− j − 1, the sum of binomial coefficients in the first
square brackets of (3.9) amounts to 2r.

Theorem 3.1. Let X1, ..., Xn, ... be i.i.d. with some distribution and density functions

F and f , mean µ and variance σ2. Fix 2 ≤ j ≤ n− 2, and 0 < q < 1.

(i) Suppose that either of two assumptions holds. One is q ≤ 1− exp(− j−1
n ). The

other is q > 1− exp(− j−1
n ) and the equation

(3.10) gj,n(0|q)u = Gj,n(u|q)

has a solution in (q, 1). Then the equation

Gj,n(u|q) = ugj,n(u|q)

has a unique solution q < u∗∗ < 1, and we have

(3.11)
1
σ

E

(
n∑

k=1

Rk − nµ

∣∣∣∣∣Rj = F−1(q)

)
≤ nBj,n(q)

with

(3.12) B2
j,n(q) = g2

j,n(u∗∗|q)u∗∗ + Jgj,n(u∗∗|q)− 1.

In this case the bound in (3.11) is attained by the distribution with the quantile

function

(3.13) F−1(u) = µ +
σ

Bj,n(q)
[gj,n(max{u, u∗∗}|q)− 1].

(ii) Assume that q > 1− exp(− j−1
n ) and the equation (3.10) does not have a solution

in (q, 1).

(a) If moreover there exists in (q, 1) a solution to the equation

(3.14) gj,n(q − |q)(u− q) + Gj,n(q − |q) = Gj,n(u|q)

then there is a unique pair 0 < u∗ < q < u∗∗ < 1 satisfying the equations

(3.15) gj,n(u∗|q) = gj,n(u∗∗|q) =
Gj,n(u∗∗|q)−Gj,n(u∗|q)

u∗∗ − u∗
,
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and (3.11) holds with

B2
j,n(q) = Igj,n(u∗|q) + g2

j,n(u∗|q)(u∗∗ − u∗) + Jgj,n(u∗∗|q)− 1.

The equality in (3.11) is attained then if

F−1(u) = µ +
σ

Bj,n(q)
×

{
gj,n(u∗|q)− 1, u∗ ≤ u ≤ u∗∗,

gj,n(u|q)− 1, otherwise.

(b) If (3.14) does not have a solution in (q, 1), then there is a unique q < u∗∗ < 1
such that

(3.16) gj,n(q − |q) <
Gj,n(u∗∗|q)−Gj,n(q − |q)

u∗∗ − q
= gj,n(u∗∗|q),

and (3.11) holds with

(3.17)

B2
j,n(q) = Igj,n(q|q) +

[Gj,n(u∗∗|q)−Gj,n(q − |q)]2

u∗∗ − q
+ Jgj,n(u∗∗|q)− 1,

whereas the equality in (3.11) is attained for

(3.18)

F−1(u) = µ +
σ

Bj,n(q)
×


Gj,n(u∗∗|q)−Gj,n(q − |q)

u∗∗ − q
− 1, q ≤ u < u∗∗,

gj,n(u|q)− 1, otherwise.

The idea of proof of Theorem 3.1 as well as the following results is similar to that of
Theorem 2.1. Therefore we sketch only the main points focusing merely on the differences.

Proof: Since gj,n(1− |q) = +∞ for j ≤ n− 2, we can exclude the possibilities that the
greatest convex minorant of (3.6) is linear at the neighborhood of 1.

(i) Suppose that either gj,n(0|q) ≥ 1 (i.e., q ≤ 1 − exp
(
− j−1

n

)
, comp. (3.7)) or

gj,n(0|q) < 1 but the line tangent to Gj,n(u|q) at 0 meets Gj,n(u|q) somewhere
in (q, 1). This implies that there is a line located below it in the positive half-axis
which runs through (0, 0) and is tangent to Gj,n(u|q) at some u∗∗ in (q, 1). Its
segment joining (0, 0) with (u∗∗, Gj,n(u∗∗|q)) extended by Gj,n(u|q) itself on the
right composes the greatest convex minorant of Gj,n(u|q). This observation allows
us to determine the bound (3.12) in (3.11), and the condition of its attainability
(3.13) (comp. (2.16), (2.23) and (2.24)).

(ii) If q > 1−exp
(
− j−1

n

)
and gj,n(0|q)u runs below Gj,n(u|q) on (q, 1), then the convex

minorant should coincide with the original function on a right neighborhood of 0
as well as that of 1, and be linear in between. There are two possible subcases.

(a) If the line tangent to Gj,n(u|q) at q− runs above Gj,n(u|q) on the whole (q, 1)
(i.e., (3.14) does hold), the point where the minorant transforms into a line
has to be less than q. The linear part should be tangent to the graph of
Gj,n(u|q) at the both its ends. Therefore the end points u∗ < q < u∗∗ are
determined by equations (3.15). Once we fix the convex minorant we are in
a position to calculate the sharp upper bound on the conditional expectation,
and the parent distribution which attains it.
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(b) In the opposite case, the linear part starts at q, and its right end u∗∗ is de-
termined by the tangency condition (3.16). This provides the bound defined
in (3.17) and its attainability condition described in (3.18).

Below we present without a proof the upper bounds for conditional expectations of the
sum of first upper records under condition Rj = F−1(q) for remaining j = 1, n− 1, and n.

Theorem 3.2. Suppose that X1, ..., Xn, ... satisfy the assumptions of Theorem 3.1.

(i) There exists q < u∗∗ < 1 solving the equation

g1,n(u|q)(u− q) = G1,n(u|q)

such that

(3.19)
1
σ

E

(
n∑

k=1

Rk − nµ

∣∣∣∣∣R1 = F−1(q)

)
≤ nB1,n(q)

where

B2
1,n(q) = g2

1,n(u∗∗|q)(u∗∗ − q) + Jg1,n(u∗∗|q)− 1.

The equality in (3.19) holds for the distribution function F satisfying

F−1(u) = µ +
σ

B1,n(q)
×


−1, u < q,

g1,n(u∗∗|q)− 1, q ≤ u < u∗∗,

gj,n(u|q)− 1, u ≥ u∗∗.

(ii) For j = n− 1 and j = n we have the following.

(a) If q ≤ 1− exp
(
− j−1

n

)
, then the optimal bound is

1
σ

E

(
n∑

k=1

Rk − nµ

∣∣∣∣∣Rj = F−1(q)

)
≤ 0.

(b) If 1− exp
(
− j−1

n

)
< q < 1− exp

(
− j−1

n+1−j

)
, then (3.11) holds with

B2
j,n(q) = Igj,n(u∗|q) + g2

j,n(u∗|q)(1− u∗)− 1

for 0 < u∗ < q satisfying the equation

gj,n(u|q)(1− u) = 1−Gj,n(u|q).

The condition for getting the equality in (3.11) is

F−1(u)− µ +
σ

Bj,n(q)
[gj,n(min{u, u∗}|q)].

(c) Finally, if q ≥ 1− exp
(
− j−1

n+1−j

)
, then (3.11) holds with

B2
j,n(q) = Igj,n(q|q) +

[1−Gj,n(q − |q)]2

1− q
− 1.

The equality in (3.11) holds then if

F−1(u) = µ +
σ

Bj,n(q)
×


gj,n(u|q)− 1, u < q,

1−Gj,n(q − |q)
1− q

− 1, u ≥ q.
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The lower bounds on the conditional expectations of the sums of consecutive record
values are presented below. The proof mimics the proof of Theorem 2.3, and it is omitted.

Theorem 3.3. Assume the conditions of Theorem 3.1. For any 1 ≤ j ≤ n, we have

two cases.

(i) If q < j
n , then

(3.20)
1
σ

E

(
n∑

k=1

Rk − nµ

∣∣∣∣∣Rj = F−1(q)

)
≥ − j − nq√

q(1− q)
.

The equality in (3.20) is attained by the two-point distribution supported on the

points µ− σ
√

1−q
q and µ + σ

√
q

1−q with probabilities q and 1− q, respectively.

(ii) If q ≥ j
n then

1
σ

E

(
n∑

k=1

Rk − nµ

∣∣∣∣∣Rj = F−1(q)

)
≥ 0.

is optimal.

A more precise description of the attainability conditions in case (i) is presented in the
comment below Theorem 2.3. Note that for j = n only this case occurs.

4. SUMS OF RECORDS IN FINITE SEQUENCES

The problem of maximizing the conditional expectation of
∑n

k=1 Xkηk makes sense if
Xk are positive.

Lemma 4.1. Let X1, ..., Xn be positive i.i.d. with an absolutely continuous distribu-

tion function F , and finite expectation. Then E
(

1
n

∑n
k=1 Xkηk

∣∣Mj = x
)

for some 1 ≤ j ≤ n

is identical with the expectation of the distribution function

(4.1) Hj,n,F (y|x)=



0, y < 0,

n−1
n

−
n−j∑
k=1

1−F k(x)
nk

−

(
j∑

k=2

1
nk

)[
1− − ln[1−F (y)]

− ln[1−F (x)]

]
, 0 ≤ y < x,

1−
n−j∑
k=1

1− F k(y)
nk

, y ≥ x.

Proof: Since we may observe at most j records among X1, ..., Xj , we have

E

(
j∑

k=1

Xkηk

∣∣∣∣∣Mj = x

)
=

j∑
k=1

E

(
k∑

i=1

Ri

∣∣∣∣∣Mj =Rk =x,

j∑
i=1

ηi = k

)
P

(
j∑

i=1

ηi = k

)

=
j∑

k=1

E

(
k−1∑
i=1

Ri + x

∣∣∣∣∣Rk = x,

j∑
i=1

ηi = k

)
P

(
j∑

i=1

ηi = k

)

= x +
j∑

k=2

E

(
k−1∑
i=1

Ri

∣∣∣∣∣Rk = x,

j∑
i=1

ηi = k

)
P

(
j∑

i=1

ηi = k

)
.
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Let Y1(x), ..., Yj−1(x) denote i.i.d. random variables with a common distribution function
Fx(y) = − ln[1−F (y)]

− ln[1−F (x)] , y < x. By arguments of the proof of Lemma 3.1 we notice that

E

(
j∑

k=1

Xkηk

∣∣∣∣∣Mj = x

)
= x +

j∑
k=2

E

(
k−1∑
i=1

Yi(x)

)
P

(
j∑

i=1

ηi = k

)

= x + EY1(x)
j∑

k=2

(k − 1) P

(
j∑

i=2

ηi = k − 1

)

= x + EY1(x) E

(
j∑

i=2

ηi

)

= x + EY1(x)
j∑

k=2

1
k
,

because P(ηk = 1) = 1
k = 1− P (ηk = 0). Note that under the condition Mj = x, just one

among Xkηk, k = 1, ..., j, has value x for sure. The other ones take on either some values
in (0, x) as the order statistics from the sample with the distribution function Fx, or they
amount to 0. The first ones appear with probabilities 1

k , and the others with probabilities
1− 1

k , k = 2, ..., j. Therefore we can write

E

(
j∑

k=1

Xkηk

∣∣∣∣∣Mj =x

)
=
∫

R
y 1[x,∞)(dy) +

j∑
k=2

1
k

∫ x

0
y
− ln[1− F (dy)]
− ln[1− F (x)]

+

(
j−

j∑
k=1

1
k

)∫
R

y 1[0,∞)(dy).(4.2)

For k > j, the conditional distribution of Xkηk has an atom at 0 with probability

P(Xkηk = 0|Mj = x) = P(Xk ≤ x) + P(x < Xk ≤ max{Xj+1, ..., Xk−1})

= F (x) +
∫ ∞

x
P(max{Xj+1, ..., Xk−1} ≥ y)f(y)dy

= F (x) +
∫ ∞

x
[1− F k−j−1(y)]f(y)dy = 1− 1− F k−j(x)

k − j
.

Moreover, for y > x we have

P(Xkηk > y|Mj = x) = P(Xk > max{y, Xj+1, ..., Xk−1})

=
∫ ∞

y
P(max{Xj+1, ..., Xk−1} < t)f(t)dt

=
∫ ∞

y
F k−j−1(t)f(t)dt =

1− F k−j(y)
k − j

.

Summing up, we obtain

(4.3) P(Xkηk ≤ y|Mj = x) =



0, y < 0,

1− 1− F k−j(x)
k − j

, 0 ≤ y ≤ x,

1− 1− F k−j(y)
k − j

, y ≥ x.
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Combining (4.2) and (4.3) yields

E

(
1
n

n∑
k=1

Xkηk

∣∣∣∣∣Mj = x

)
=

1
n

j −
j∑

k=1

1
k

+ n− j −
n∑

k=j+1

1− F k−j(x)
k − j

∫
R

y 1[0,∞)(dy)

+
j∑

k=2

1
nk

∫ x

0
y
− ln[1− F (dy)]
− ln[1− F (x)]

+
1
n

∫
R

y 1[x,∞)(dy)

+
1
n

∫ ∞

x
y

n−j+
n∑

k=j+1

1−F k−j(dy)
k − j

 =
∫

R
yHj,n,F (dy|x).(4.4)

This completes the proof.

If X1, ..., Xn are standard uniform, (4.1) simplifies to

(4.5) Hj,n(u|q) =


n− 1

n
−

n−j∑
k=1

1− qk

nk
−

(
j∑

k=2

1
nk

)[
1− − ln(1− u)

− ln(1− q)

]
, 0 ≤ u < q,

1−
n−j∑
k=1

1− uk

nk
, q ≤ u ≤ 1.

It has two atoms at 0 and q with respective probabilities 1−
∑j

k=1
1

nk −
∑n−j

k=1
1−qk

nk and 1
n ,

and the density function

(4.6) hj,n(u|q) =



(
j∑

k=2

1
nk

)
1

−(1− u) ln(1− q)
, 0 < u < q,

1
n

n−j−1∑
k=0

uk =
1− un−j

n(1− u)
, q < u < 1.

Below we use the following values

(4.7) Hj,n(q − |q) =
n− 1

n
−

n−j∑
k=1

1− qk

nk
, hj,n(q − |q) =

∑j
k=2

1
k

−n ln(1− q)(1− q)
,

and the the following function (comp. (3.8))

(4.8) Ihj,n(u|q) =
∫ u

0
h2

j,n(v|q)dv =

[ ∑j
k=2

1
k

−n ln(1−q)

]2∫ u

0

1
(1−v)2

dv =

[ ∑j
k=2

1
k

−n ln(1−q)

]2
u

1−u
.

Theorem 4.1. Let X1, ..., Xn be positive i.i.d. with an absolutely continuous distri-

bution function F , and finite variance σ2. Let µ stand for the respective expectation.

(i) Let 0 < q∗ < 1 be the unique solution to the equation

(4.9) 1 +
n−1∑
k=1

1− qk

k
− n(1− q) = 0.
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(a) If q ≤ q∗, then the bound

(4.10)
1
σ

E

(
n∑

k=1

Xkηk − nµ

∣∣∣∣∣M1 = F−1(q)

)
≤ 0

is sharp and attained in limit by the degenerate distribution.

(b) If q > q∗, then

(4.11)
1
σ

E

(
n∑

k=1

Xkηk−nµ

∣∣∣∣∣M1 = F−1(q)

)
≤ nCj,n(q) =

1+
∑n−1

k=1
1−qk

k − n(1−q)√
q(1− q)

,

and the equality is attained by the parent distribution assigning the masses

q and 1− q to the points 0 and σ√
q(1−q)

, respectively.

(ii) Assume 2 ≤ j ≤ n.

(a) If

(4.12) Hj,n(u|q) ≥ u,

(comp. (4.5)) for all 0 < u < q, then the optimal inequality is

1
σ

E

(
n∑

k=1

Xkηk − nµ

∣∣∣∣∣Mj = F−1(q)

)
≤ 0.

Otherwise we have three possibilities.

(b) If

(4.13) hj,n(q − |q) ≤ Hj,n(q − |q)
q

< 1,

then (4.11) holds with M1 and
∑n−1

k=1
1−qk

k replaced by Mj and
∑n−j

k=1
1−qk

k ,

respectively, and identical conditions of attainability.

(c) If

(4.14) 1 >
Hj,n(q − |q)

q
< hj,n(q − |q) ≤ 1−Hj,n(q − |q)

1− q
,

then there exists a unique 0 < u∗ < q solving the equation

Hj,n(u|q) = uhj,n(u|q)

(see (4.5) and (4.6)), and then

(4.15)
1
σ

E

(
n∑

k=1

Xkηk − nµ

∣∣∣∣∣Mj = F−1(q)

)
≤ nCj,n(q),

where

C2
j,n(q) = h2

j,n(u∗)u∗ + Ihj,n(q|q)− Ihj,n(u∗|q) +
[1−Hj,n(q − |q)]2

1− q
− 1.

(see also (4.8)). The equality in (4.15) holds for F with the quantile function

F−1(u) =
σ

Cj,n(q)
×


0, 0 < u < u∗,

hj,n(u|q)− hj,n(u∗|q), u∗ ≤ u < q,

1−Hj,n(q − |q)
1− q

− hj,n(u∗|q), q ≤ u < 1.
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(d) Finally, if

hj,n(q − |q) > min
{

Hj,n(q − |q)
q

,
1−Hj,n(q − |q)

1− q

}
then there also exists u∗ < u∗∗ < q satisfying the equation

(1− q)hj,n(u|q) = 1−Hj,n(u|q),

and then (4.15) holds with

C2
j,n(q) = h2

j,n(u∗)u∗ + Ihj,n(u∗∗|q)− Ihj,n(u∗|q) + h2
j,n(u∗∗)(1− u∗∗)− 1,

and the equality condition

F−1(u) =
σ

Cj,n(q)
×


0, 0 < u < u∗,

hj,n(u|q)− hj,n(u∗|q), u∗ ≤ u < u∗∗,

hj,n(u∗∗|q)− hj,n(u∗|q), u∗∗ ≤ u < 1.

Proof: We first notice that in contrast to the maximization problems studied in
Sections 2 and 3, one treated here is not location-scale invariant. Indeed, if we translate
the parent distribution by c > 0 to the right, we obtain

1
σ

E

(
n∑

k=1

(Xk + c)ηk − n(µ + c)

∣∣∣∣∣Mj = x + c

)

=
1
σ

E

(
n∑

k=1

Xkηk − nµ

∣∣∣∣∣Mj = x

)
− c

(
n−

j∑
k=1

1
k
−

n−j∑
k=1

1− F k(x)
k

)

<
1
σ

E

(
n∑

k=1

Xkηk − nµ

∣∣∣∣∣Mj = x

)

(see (4.1)). Accordingly, it suffices to restrict our investigations to the distributions whose
supports start from 0. Alternatively, we can consider the problem modification where the
lack of record gives the gain equal to the minimal value of the distribution support, and then
remove the solutions for which F−1(0) 6= 0.

Distribution functions (4.5) contain atoms at their left-end points of the supports, and
hence they do not satisfy the assumptions of Lemma 1.1. We show that we get the sharp right-
hand inequality in (1.4) if we replace the greatest convex minorant of Hj,n(u|q) by the greatest
convex minorant Hj,n,0(u|q) of Hj,n(u|q) and the point (0, 0). Take ε > 0 sufficiently small
so that Hj,n,0(u|q) is also the greatest convex minorant of Hj,n,ε(u|q) = min{Hj,n(u|q), u

ε } ≤
Hj,n(u|q). For every non-deceasing function f yields∫ 1

0
f(u)Hj,n(du|q) ≤

∫ 1

0
f(u)Hj,n,ε(du|q) ≤

∫ 1

0
f(u)hj,n,0(u|q) du,

where hj,n,0(u|q) denotes the right derivative of Hj,n,0(u|q). Let f0 satisfy the equality con-
ditions in the latter inequality: f0 is constant on each interval of {Hj,n,ε(u|q) < Hj,n,0(u|q)}
and right-continuous. In particular, it is constant on {Hj,n,ε(u|q) < Hj,n(u|q)}, and 0 can be
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attached to this interval by right-continuity of f0. For brevity, denote the extended interval
by [0, δ). Therefore∫ δ

0
f0(u)Hj,n(du|q) =

∫ δ

0
f0(u)Hj,n,ε(du|q) = f0(0)Hj,n,ε(δ−) = f0(0)Hj,n(δ−).

The respective integrals over [δ, 1) are identical, because Hj,n(u|q) and Hj,n,ε(u|q) are identical
there. Consequently,∫ 1

0
f0(u)Hj,n(du|q) =

∫ 1

0
f0(u)Hj,n,ε(du|q) =

∫ 1

0
f0(u)hj,n,0(u|q) du,

which proves sharpness of the upper bound.

It follows that for proving our bounds, we need to determine the greatest convex mino-
rants of the functions Hj,n,0(u|q), which amount to 0 at u = 0, and coincide with Hj,n(u|q)
otherwise. Note that each Hj,n(u|q) is convex non-decreasing in (q, 1), and its derivative
satisfies hj,n(1− |q) = 1− j

n < 1. So this part of the function runs above the line `(u) = u,
and does not affects the convex minorant.

(i) Function H1,n(u|q) is constant on the interval (0, q). Therefore the greatest convex
minorant of H1,n,0(u|q) is either the straight line H1,n,0(u|q) = u, 0 < u < 1, when
H1,n(q − |q) ≥ q, or the broken line

(4.16) H1,n,0(u|q) =


H1,n(q − |q)

q
u, u < q,

1−H1,n(q − |q)
1− q

(u− 1) + 1, u ≥ q,

otherwise. Function

H1,n(q − |q)− q =
n− 1

n
−

n−1∑
k=1

1− qk

nk
− q, 0 < q < 1,

amounts to n−1
n −

∑n−1
k=1

1
nk > 0 at 0, and to − 1

n < 0 at 1. Moreover, its derivative
1
n

∑n−2
k=0 qk − 1 is negative for all 0 < q < 1. Therefore H1,n.0(u|q) = u for q ≤ q∗

defined in (4.9), and has the form (4.16) for q > q∗.
Repeating the reasoning of the previous proofs we determine the sharp bounds
(4.10) and (4.11). In the modified location-scale invariant problem, the former
is attained by (2.33) with ε → 0. In order to obey the restriction F−1

ε (0) = 0 we

put µ = σ
√

1−ε
ε . In the latter, the modified problem has solution (2.33) with ε

replaced by q. Again, the support requirement narrows the attainability condition
to the last statement of Theorem 4.1(i).

(ii) Relation (4.12) implies that Hj,n,0(u|q) ≥ u = Hj,n,0(u|q), 0 < u < 1. It follows
that zero provides the optimal bound for (1.3). Otherwise we obtain non-trivial
evaluations. Under condition (4.13) the line Hj,n(q−|q)

q u runs beneath function
Hj,n,0(u|q) on (0, q), and connects its end-points. Another linear function
1−Hj,n(q−|q)

1−q (u− 1) + 1 minorizes Hj,n,0(u|q) in [q, 1]. Gluing together the lines
we obtain the greatest convex minorant of Hj,n,0(u|q) (note that the inequali-
ties Hj,n(q−|q)

q < 1 <
1−Hj,n(q−|q)

1−q guarantee convexity and compare with (4.16)).
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Mimicking the arguments of the previous proofs we calculate the upper bounds and
determine the location-scale family of two-point distributions attaining the bounds
in the location-scale invariant problem. Under the support restriction, we distin-
guish the scale family of distributions with the left support end-point equal to 0.
If Hj,n(q−|q)

q < hj,n(q − |q) (see (4.7) and (4.14)), then the right part of the line
Hj,n(q−|q)

q u, 0 < u < q, lies above Hj,n(u|q), and cannot constitute a part of the
minorant. It should be replaced by a line with a smaller slope hj,n(u∗|q) =
Hj,n(u∗|q)

u∗
, tangent to Hj,n(u|q) at some 0 < u∗ < q, and Hj,n(u|q) on the right

which ultimately transforms into a line. If moreover hj,n(q − |q) ≤ 1−Hj,n(q−|q)
1−q ,

then Hj,n,0(u|q) = Hj,n(u|q) for all u∗ ≤ u < q. The last part of the minorant
is the line connecting (q, Hj,n(q − |q)) with (1, 1). Otherwise Hj,n,0(u|q) should
transform into a line at some u∗ < u∗∗ < q determined by the tangency condition
hj,n(u∗∗|q)(1− uu∗∗) = 1−Hj,n(u∗∗|q). Note that in the last case it is admitted
that Hj,n(q − |q) ≥ q but necessarily Hj,n(u∗∗|q) < u∗∗.

Once we determine the greatest convex minorants, we further proceed in a standard
way. The bound amounts to n multiplied by the square root of the integral of the squared
derivative of the minorant decreased by 1. The standardized quantile function of the distribu-
tion attaining the bound is proportional to the greatest convex minorant derivative decreased
by 1. The last step of the proof consists in removing the distributions whose left-end support
points differ from 0. Detailed calculations are left to the reader.

Establishing lower bounds for (1.3) does not make sense, because when we consider
random variables X1, ..., Xn taking on very large values, and we may get Xkηk = 0 as the
results of not reaching records in some trials, would make (1.3) negative and arbitrarily small.
We illustrate the phenomenon in the following example.

Example. Suppose that Xk, k = 1, ..., n, are uniformly distributed on the interval
[m,m + 1]. They have the distribution function F (x) = x−m, m < x < m + 1, and quantile
function F−1(q) = m + q, 0 < q < 1. Applying (4.4) we calculate

E

(
n∑

k=1

Xkηk

∣∣∣∣∣Mj = m+q

)
=

∑j
k=2

1
k

− ln(1−q)

∫ m+q

m

y dy

1−y+m
+q+m+

∫ m+1

m+q
y

n−j−1∑
k=0

(y−m)k dy

=
∑j

k=2
1
k

− ln(1− q)
[−(m + 1) ln(1− q)− q] + q + m +

n−j+1∑
k=2

1− qk

k
+ m

n−j∑
k=1

1− qk

k

= m

[
1 +

j∑
k=2

1
k

+
n−j∑
k=1

1− qk

k

]
+ q +

j∑
k=2

[
1− q

− ln(1− q)

]
+

n−j+1∑
k=2

1− qk

k
.

Since EX1 = m + 1
2 and Var X1 = 1

12 , we have

1
σ

E

(
n∑

k=1

Xkηk − nµ

∣∣∣∣∣Mj = m + q

)
= 12m

[
1 +

j∑
k=2

1
k

+
n−j∑
k=1

1− qk

k
− n

]

+ 12

[
q +

j∑
k=2

[
1− q

− ln(1− q)

]
+

n−j+1∑
k=2

1− qk

k
− n

2

]
.(4.17)
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Putting m = 0, we obtain the standardized conditional expectation for the standard uniform
variables. However, when m increases to +∞, then (4.17) tends to −∞, because the factor
at m is strictly negative.

We would avoid obtaining trivial lower bounds in (1.3) if we replaced Xkηk = 0 by a
quantity connected with the distribution of random variables, e.g. by the mean or a quantile
of F of a positive order.

5. NUMERICAL EVALUATIONS

Here we present numerical upper bounds on the conditional expectations of sums of
sample maxima and records described analytically in Sections 2–4 for n = 10, j = 1, 5, 8 and
10, and quantile orders q = 0.1..., (0.1), ..., 0.9. We also include two extreme cases q = 0.05
and 0.99. For comparison, we present numerical results for n = 20 and j = 10 as well. We do
not evaluate numerically respective lower bounds because they have simple analytic forms.

The bounds strongly depend on the number n of summands. Therefore instead of
bounds nAj,n(q), nBj,n(q), and nCj,n(q) on the expectations of the total sums, we present in
Tables 1–5 the average bounds Aj,n(q), Bj,n(q), and Cj,n(q) determined per each particular
summand. Each numerical bound is accompanied by the reference to a particular part of
the theorem which provides the tools for calculating it. This allows the reader to realize the
shape of the parent distribution which attains the corresponding bound. For instance, the
average upper bounds A5,10(q) are determined with use of Theorem 2.1. For q = 0.05 the
quantile function is first a constant (which generates a jump of height u∗∗ > q), and than is a
curve linearly transforming f5,10(u|0.05) (see (2.7)). For q = 0.1, ..., 0.4 the extreme quantile
function is first increasing, then constant, and again increasing. When q = 0.1, 0.2, 0.3 the
transition from the curve to the horizontal line occurs at q (see Theorem 2.1(iva)), but for
q = 0.4 it happens at some u∗ < q (see Theorem 2.1(ivb)). For q ≥ 0.5 the conditions of
Theorem 2.1(iib) hold which implies that the distribution functions attaining the respective
bounds are continuous on some intervals, and have jumps of size 1− q at their right-end
points.

All the average bounds presented in Tables 1–5 are increasing with respect to q. This is
easily justifiable: the greater is the extreme j-th variable, the greater is the expectation of the
sum of n analogous observations. When we fix n and q, we observe that the bounds decrease
when j increases. It has a clear explanation as well. E.g., when we assume that Mj1 = x we
may suspect that

∑n
k=1 Mk is greater than in the case Mj2 = x for some j2 > j1, because in

the latter case the maximum equal to x appears later than in the former one. We note that
Cj,n(q) = 0 except for about 10% upper quantile orders q. Trivial zero bounds Aj,n(q) and
Bj,n(q) for the sums of maxima and records, respectively, appear only for relatively small q

and large j.

By definition
∑n

k=1 Xkηk ≤
∑n

k=1 Mk ≤
∑n

k=1 Rk for any random sequence X1, ..., Xn, ... .
The corresponding relations for the bounds Cj,n(q) < Aj,n(q) < Bj,n(q) are preserved and their
values are significantly different when j is small with respect to n. When j is equal or close to n,
the latter inequality is reversed, though. For j = n it is justified by the following arguments.
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Table 1: Average upper bounds for n = 10, and j = 1.

q T2 Aj,n(q) T5 Bj,n(q) T7 Cj,n(q)

0.05 (ia) 0.99901 (i) 23.19053 (ia) 0
0.1 (ia) 1.00446 (i) 24.48122 (ia) 0
0.2 (ia) 1.01964 (i) 27.54620 (ia) 0
0.3 (ia) 1.04398 (i) 31.48623 (ia) 0
0.4 (ia) 1.08488 (i) 36.73885 (ia) 0
0.5 (ia) 1.15691 (i) 44.09161 (ia) 0
0.6 (ia) 1.28895 (i) 55.11962 (ia) 0
0.7 (ia) 1.53655 (i) 73.49811 (ia) 0
0.8 (ib) 2.00000 (i) 110.25284 (ia) 0
0.9 (ib) 3.00000 (i) 220.51248 (ib) 0.24836
0.99 (ib) 9.94987 (i) 2205.14721 (ib) 0.99321

Table 2: Average upper bounds for n = 10, and j = 5.

q T1 Aj,n(q) T4 Bj,n(q) T7 Cj,n(q)

0.05 (iii) 0.11265 (i) 1.53182 (iia) 0
0.1 (iva) 0.11312 (i) 1.62854 (iia) 0
0.2 (iva) 0.16859 (i) 1.85718 (iia) 0
0.3 (iva) 0.28233 (i) 2.14943 (iia) 0
0.4 (ivb) 0.43379 (i) 2.53691 (iia) 0
0.5 (iib) 0.61390 (iia) 3.09867 (iia) 0
0.6 (iib) 0.82506 (iia) 3.92617 (iia) 0
0.7 (iib) 1.09660 (iia) 5.29056 (iia) 0
0.8 (iib) 1.50351 (iib) 7.86104 (iia) 0
0.9 (iib) 2.33534 (iib) 15.77310 (iib) 0.15107
0.99 (iib) 7.94034 (iib) 157.76816 (iic) 0.94803

Table 3: Average upper bounds for n = 20, and j = 10.

q T1 Aj,n(q) T4 Bj,n(q) T7 Cj,n(q)

0.05 (iii) 0.38885 (i) 22.61002 (iia) 0
0.1 (iva) 0.39153 (i) 23.86739 (iia) 0
0.2 (iva) 0.41974 (i) 26.85346 (iia) 0
0.3 (iva) 0.47203 (i) 30.69239 (iia) 0
0.4 (iva) 0.54734 (i) 35.81061 (iia) 0
0.5 (iva) 0.65396 (i) 42.97568 (iia) 0
0.6 (ivb) 0.81552 (iia) 53.72374 (iia) 0
0.7 (ivb) 1.06348 (iia) 71.63557 (iia) 0
0.8 (iib) 1.45459 (iia) 107.45727 (iia) 0
0.9 (iib) 2.25974 (iia) 214.91881 (iia) 0
0.99 (iib) 7.69114 (iib) 2149.144709 (iic) 0.43245

There are no future maxima and records after the j-th one. Conditionally on Rn = x, the
previous record values R1, ..., Rn−1 are distributed as ordered i.i.d. random variables from
the right-truncated at x parent distribution (cf. Lemma 3.1). The distributions of Mk, k =
1, ..., n− 1, under the condition Mn = x are the mixtures of maxima from k independent
observations from the right-truncated baseline distribution and an atom at x (see Lemma 2.1).
This implies E

(∑n
k=1 Rk

∣∣Rn = x
)

< E
(∑n

k=1 Mk

∣∣Mn = x
)

for any parent distribution.
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Numerical calculations show that the reversed inequality Bj,n(q) < Aj,n(q) holds for j = n−1
and all q as well. Then the distribution L(Rn|Rn−1 = x) is just the left-truncated parent
distribution at x, and this does not affect much the whole sum. Table 4 shows that for
n = 10, j = n− 2 = 8 the reversed inequalities B8,10(q) < A8,10(q) are satisfied merely for
some central q.

Table 4: Average upper bounds for n = 10, and j = 8.

q T1 Aj,n(q) T4 Bj,n(q) T7 Cj,n(q)

0.05 (i) 0 (i) 0.01450 (iia) 0
0.1 (iia) 0.00644 (i) 0.01874 (iia) 0
0.2 (iia) 0.10956 (i) 0.03141 (iia) 0
0.3 (iia) 0.21969 (i) 0.05288 (iia) 0
0.4 (iia) 0.33303 (i) 0.08963 (iia) 0
0.5 (iia) 0.45780 (i) 0.15357 (iia) 0
0.6 (iia) 0.60936 (iia) 0.59290 (iia) 0
0.7 (iib) 0.82368 (iia) 0.96188 (iia) 0
0.8 (iib) 1.16140 (iia) 1.56008 (iia) 0
0.9 (iib) 1.85340 (iia) 3.22165 (iib) 0.06500
0.99 (iib) 6.43747 (iib) 16.06139 (iic) 0.92619

Table 5: Average upper bounds for n = 10, and j = 10.

q T2 Aj,n(q) T5 Bj,n(q) T7 Cj,n(q)

0.05 (iia) 0 (iia) 0 (iia) 0
0.1 (iib) 0.00448 (iia) 0 (iia) 0
0.2 (iib) 0.10267 (iia) 0 (iia) 0
0.3 (iib) 0.20796 (iia) 0 (iia) 0
0.4 (iib) 0.31432 (iia) 0 (iia) 0
0.5 (iib) 0.42761 (iia) 0 (iia) 0
0.6 (iib) 0.55702 (iib) 0.00138 (iia) 0
0.7 (iib) 0.72122 (iib) 0.08846 (iia) 0
0.8 (iic) 0.98150 (iib) 0.25087 (iia) 0
0.9 (iic) 1.55748 (iib) 0.54681 (iia) 0
0.99 (iic) 5.44190 (iib) 1.91034 (iic) 0.91287

We finally focus on Tables 2 and 3 which contain results for (j, n) = (5, 10) and (10, 20).
One could expect that the average bounds are similar if the proportion j/n is preserved. This
actually happens in the case of sums of maxima. We see that A5,10(q) < A10,20(q) for small q,
and the opposite holds for large q. In the former case, when Mj = F−1(q) is relatively small,
it is a great chance that the total sum of maxima shall increase more when we observe 10
future i.i.d. observations rather than 5. This chance decreases when Mj is close to the right
end-point of the support. Much the same observation concerns Cj,n(q), but the difference is
not visible for small q, for which C5,10(q) = C10,20(q) = 0. The average bounds Bj,n(q) for the
sums of record values behave quite differently: B5,10(q) are much less than B10,20(q), and the
latter are rather close to B1,10(q) (see Table 1). This shows that the average bounds Bj,n(q)
depend rather on the differences n− j, i.e., on the number of future records.
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1. INTRODUCTION

Likert-type scales or formally ordinal scales are psychometric scales used when there is
an order in responses and distances between categories are not quantitative [4, 14]. Likert
scale is widely used in medical, education, and many disciplines in social sciences.

There is a difference between the terms of Likert-type items and Likert scales [20].
Likert items are the single questions that use some aspect of the original Likert response
alternatives and several of them built a Likert scale [10]. In this study, Likert-type items are
considered as a part of a scale or not.

Likert-type items are usually formed in five responses: “1: strongly disagree”, “2: dis-
agree”, “3: neutral”, “4: agree”, “5: strongly agree”. Similarly, a 7-point Likert scale in-
cludes seven responses such as; “1: strongly disagree”, “2: disagree”, “3: somewhat disagree”,
“4: neither agree nor disagree”, “5: somewhat agree”, “6: Agree”, “7: strongly agree”.

The attitudes change from mildly positive to mildly negative. The neutral option that
is sometimes referred to as“neither agree nor disagree”or“undecided”on a Likert scale means
that respondents are not willing to answer a particular question or have no idea.

With regard to the neutral point on the scale, we should be aware that neutral does
not imply the midpoint between the two extreme-scale scores.

Those respondents who check the neutral option might mislead the results and the main
point might not be achieved. Hence, the question “neutral responses will be omitted or how
to handle with neutral questions?” matter. In some surveys that there is often no neutral
category included in the middle of the scale [7]. Sometimes it is placed at the end of the scale,
and sometimes it is eliminated directly. The neutral means is the median or mid-point and the
median is the 50% sample distribution and it means 50% of the participants have neutral to
agree with opinions in a 5-point Likert scale. If the median is 4, it means 50% of participants
have a positive opinion. The ordinal structure and the existence of a neutral category should
be considered to model the Likert items. Despite the independence of the two Likert-type
items is analyzed with the chi-square test, it does not accept the ordinal structure of the items.
Linear-by-linear association model and its special form uniform association model are used to
analyze the association between the variables of a contingency table with ordered categories
[1, 8]. There are many extensions of association models (e.g. [5, 6, 18, 21, 22]). Even though
all these models consider the ordinal structure of the variables, they ignore the ambiguous
nature of the neutral category and treat it as if the neutral category has the same structure
as other categories. Truebner [19] showed that changes in respondents’ characteristics do not
affect median response with the exception of age. Even though the intervals between the
categories should be regarded as subjectively equal, Oppenheim [15] states that “attitudes
may be shaped more like concentric circles or overlapping ellipses or three-dimensional cloud
formations, therefore, the model of the linear continuum or dimension is not always easy or
appropriate”.
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2. MATERIAL AND METHOD

A contingency table summarizes information of two or higher dimensions random vari-
ables. An example of the contingency table is given in Table 1 for the first question (Q1) and
second question (Q2) in a questionnaire.

Table 1: Two-way classification table for a 5-point Likert scale questions.

Q2
Q1

1 2 3 4 5
Total

1 n11 n12 n13 n14 n15 n1+

2 n21 n22 n23 n24 n25 n2+

3 n31 n32 n33 n34 n35 n3+

4 n41 n42 n43 n44 n45 n4+

5 n51 n52 n53 n54 n55 n5+

Total n+1 n+2 n+3 n+4 n+5 n

Consider a two-way table in which both the row and column variables have R categories
(levels). R denotes the R-point Likert scale. In an R×R table, nij ’s denote the cell frequencies
for the ith row and j th column where i = 1, ..., R. ni+ and n+j are the row and column totals,
respectively, satisfying

R∑
i=1

ni+ =
R∑

j=1

n+j = n.

The goal of the log-linear analysis is to determine which categorical variables represent
the data. Log-linear models do not distinguish between response and explanatory variables.
All variables in a log-linear model are treated as responses.

The relationship between two or more variables is examined in analyzing contingency
tables. We will refer to the variables in two-way contingency tables as “question”. In a two-
way R×R contingency table, let {µij} be the expected values corresponding to the observed
values. The independence model for any pair of items is commonly defined for the two
questions in Equation (2.1).

(2.1) Log(µij) = λ + λQ1
i + λQ2

j + λQ1Q2
ij , i, j = 1, ..., R,

where λ is the intercept term (overall mean of the natural log of the expected values), λQ1
i

is the main effect for question Q1, λQ2
j is the main effect for question Q2, and λQ1Q2

ij is the
interaction term. The parameters are set to satisfy the following restrictions:

R∑
i=1

λQ1
i =

R∑
j=1

λQ2
j =

R∑
i=1

R∑
j=1

λQ1Q2
ij = 0.

Because concluding that respondents are neutral might be inaccurate, we suggest two
models that measure the variability around the neutral option, namely in the third group for the
5-point Likert-type and the fourth group for the 7-point Likert-type as shown in Figures 1–3.
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Figure 1: The position of the median in 5- and 7- point Likert scales.

Figure 2: Variability around the median in a 5×5 table.

Figure 3: Variability around the median in a 7×7 table.

The median of an R categories is calculated as

m =
R + 1

2
,

and median cell implies that the cell falls into the (m,m). The median cell falls into the (3,3)
cell for a 5×5 table, fall into the (4,4) cell for a 7×7 table.

We built two novel log-linear models taking the main effects (Q1, Q2), association param-
eter, and distance parameter. The simple model is the Median Distance (MD) model as

(2.2) Log(µij) = λ + λQ1
i + λQ2

j + δij , i, j = 1, ..., R.
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The parameter δ is the median distance parameter which is defined in Equation (2.3)
and the method to identify the log-linear parameters involves fixing the parameters to zero
for one category of Q1 and Q2, respectively. For an R×R table, the MD model has m median
distance parameters:

(2.3) δij =



δ1, i = j = m (median cell),
δ2, one-step distance from the median cell,
δ3, two-step distance from the median cell,
...

...
δm−1, (m− 2)-step distance from the median cell,
δm, (m− 1)-step distance from the median cell.

For example, the light gray shaded area in Figure 2 represents one step from the mid-
point, and the dark gray shaded area shows the two-step distance from the midpoint. The
median distance parameters are set to satisfy the following restriction:

m∑
i=1

δi = 0.

This model has more (m− 1 = (R− 1)/2) parameters than the independence model,
the residual degrees of freedom under the MD model is

df = R×R−
[
1− (R− 1) + (R− 1) +

(
R + 1

2
− 1

)]
=

2R2 − 5R + 3
2

.

The odds ratios matrix under the MD model for a 5×5 table is shown below
θ11 θ12 θ13 θ14

θ21 θ22 θ23 θ24

θ31 θ32 θ33 θ34

θ41 θ42 θ43 θ44

 = exp


δ2 − δ3 1 1 δ3 − δ2

1 δ1 − δ2 δ2 − δ1 1
1 δ2 − δ1 δ1 − δ2 1

δ3 − δ2 1 1 δ2 − δ3


and for a 7×7 table is given as

θ11 θ12 θ13 θ14 θ15 θ16

θ21 θ22 θ23 θ24 θ25 θ26

θ31 θ32 θ33 θ34 θ35 θ36

θ41 θ42 θ43 θ44 θ45 θ46

θ51 θ52 θ53 θ54 θ55 θ56

θ61 θ62 θ63 θ64 θ65 θ66

 = exp



δ3 − δ4 1 1 1 1 δ4 − δ3

1 δ1 − δ3 1 1 δ3 − δ2 1
1 1 δ1 − δ2 δ2 − δ1 1 1
1 1 δ2 − δ1 δ1 − δ2 1 1
1 δ3 − δ2 1 1 δ1 − δ3 1

δ4 − δ3 1 1 1 1 δ3 − δ4



When both the column and row variables of a two-dimensional table are ordinal,
a simple log-linear model that utilizes the orderings of the rows and the columns is the
linear-by-linear association model [1]. This ordinarily of the data needs an extra parameter
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that gives the association of two ordinal variables. Hence, adding an association model to the
MD model, the median distance + association (MDA) model is defined in a log-linear form
as in Equation (2.4):

(2.4) Log(µij) = λ + λQ1
i + λQ2

j + βu1iu2j + δij , i, j = 1, ..., R,

where β is the linear-by-linear association parameter and δ is the median distance parameter
which is defined in Equation (2.3). The necessity of reflecting the ordinarily of the variables,
assigning scores to the ordinal categories are fulfilled by the row and column scores, by u1i

and u2j scores. The integer scores, meanly u1i, u2j = 1, ..., R are the frequently used scores.
This model has more one more parameter than the MA model, the residual degrees of freedom
under the MDA model is

df = R×R−
[
1− (R− 1) + (R− 1) +

(
R + 1

2
− 1

)
+ 1

]
=

2R2 − 5R + 1
2

.

The matrix of odds ratios under the MDA model for a 5×5 table is


θ11 θ12 θ13 θ14

θ21 θ22 θ23 θ24

θ31 θ32 θ33 θ34

θ41 θ42 θ43 θ44

 = exp


β + δ2 − δ3 β β β + δ3 − δ2

β β + δ1 − δ2 β + δ2 − δ1 β
β β + δ2 − δ1 β + δ1 − δ2 β

β + δ3 − δ2 β β β + δ2 − δ3

.

The matrix of odds ratios under the MDA model for a 7×7 table is

2
6666664

θ11 θ12 θ13 θ14 θ15 θ16

θ21 θ22 θ23 θ24 θ25 θ26

θ31 θ32 θ33 θ34 θ35 θ36

θ41 θ42 θ43 θ44 θ45 θ46

θ51 θ52 θ53 θ54 θ55 θ56

θ61 θ62 θ63 θ64 θ65 θ66

3
7777775

= exp

2
6666664

β + δ3 − δ4 β β β β β + δ4 − δ3

β β + δ1 − δ3 β β β + δ3 − δ2 β
β β β + δ1− δ2 β + δ2− δ1 β + β β
β β β + δ2− δ1 β + δ1− δ2 β β
β β + δ3 − δ2 β β β + δ1 − δ3 β

β + δ4 − δ3 β β β β β + δ3 − δ4

3
7777775

.

The goodness of fit hypothesis is tested by the likelihood ratio test statistic as

G2 = 2
R∑

i=1

R∑
j=1

nij log
(

nij

µ̂ij

)
.

Under the null hypothesis is true, likelihood ratio statistic has an asymptotic chi-square
distribution with associated degrees of freedom.

The design matrix of the MDA model for a 5×5 table is constructed as below. If we
subtracted the last column from the design matrix the MDA model would turn into the
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MA model. This implies that the MD model has one less parameter than the MDA model:

log



µ11

µ12

µ13

µ14

µ15

µ21

µ22

µ23

µ24

µ25

µ31

µ32

µ33

µ34

µ35

µ41

µ42

µ43

µ44

µ45

µ51

µ52

µ53

µ54

µ55



=



1 1 0 0 0 1 0 0 0 −1 −1 1
1 1 0 0 0 0 1 0 0 −1 −1 2
1 1 0 0 0 0 0 1 0 −1 −1 3
1 1 0 0 0 0 0 0 1 −1 −1 4
1 1 0 0 0 −1 −1 −1 −1 −1 −1 5
1 0 1 0 0 1 0 0 0 −1 −1 2
1 0 1 0 0 0 1 0 0 0 1 4
1 0 1 0 0 0 0 1 0 0 1 6
1 0 1 0 0 0 0 0 1 0 1 8
1 0 1 0 0 −1 −1 −1 −1 −1 −1 10
1 0 0 1 0 1 0 0 0 −1 −1 3
1 0 0 1 0 0 1 0 0 0 1 6
1 0 0 1 0 0 0 1 0 1 0 9
1 0 0 1 0 0 0 0 1 0 1 12
1 0 0 1 0 −1 −1 −1 −1 −1 −1 15
1 0 0 0 1 1 0 0 0 −1 −1 4
1 0 0 0 1 0 1 0 0 0 1 8
1 0 0 0 1 0 0 1 0 0 1 12
1 0 0 0 1 0 0 0 1 0 1 16
1 0 0 0 1 −1 −1 −1 −1 −1 −1 20
1 −1 −1 −1 −1 −1 0 0 0 −1 −1 5
1 −1 −1 −1 −1 0 −1 0 0 −1 −1 10
1 −1 −1 −1 −1 0 0 −1 0 −1 −1 15
1 −1 −1 −1 −1 0 0 0 −1 −1 −1 20
1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 25





λ

λQ1
1

λQ1
2

λQ1
3

λQ1
4

λQ2
1

λQ2
2

λQ2
3

λQ2
4

δ1

δ2

β



.

3. NUMERICAL EXAMPLES

In this section, we provide three data sets to illustrate the methods presented in this
paper. Two of these data sets are artificial and one is real-life data. The observed frequencies
in the artificial tables were generated so that the data set fits the model adequately, by
adjusted according to the expected frequencies calculated under the models hold true. Models
are applied to these numerical examples and the results are highlighted for the researchers
to be able to understand and interpret the information more strategically and usefully. The
models were analyzed using “General Log-linear models” in IBM SPSS 23 by entering the
design matrix properly. In the design matrix, the δ and β parameters are defined as the
covariates [12].

Example 1

An artificial 5×5 contingency table is given in Table 2 which displays for any two
questions from a questionnaire, say Q1 and Q2.

The Independence, symmetry, quasi-symmetry, MD, and MDA models are applied to
the data in Table 2 and the log-linear model results are summarized in Table 3 (see [1] and
[3] for the details of symmetry and quasi-symmetry models). The quasi-symmetry, MD, and
MDA models fit data (Table 3, p>0.05). The quasi-symmetry model implies that there is an
agreement between Q1 and Q2.
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Table 2: The frequencies (expected values) of a 5×5 table.

Q2
Q1

1 2 3 4 5
Total

1
8 6 9 11 13

47
(5.89) (8.82) (11.49) (11.32) (9.48)

2
15 51 65 67 25

223
(15.56) (50.84) (66.25) (65.28) (25.06)

3
18 51 150 67 23

309
(15.79) (51.57) (150.00) (66.22) (25.06)

4
13 46 59 61 25

204
(14.24) (46.51) (60.60) (59.72) (22.93)

5
5 15 20 11 9

60
(7.52) (11.26) (14.67) (14.45) (12.11)

Total 59 169 303 217 95 843

Table 3: Model results for the 5×5 table.

Model G2 df p-value AIC BIC

Independence 54.065 16 <0.001 — —
Symmetry 25.347 10 0.005 — —
Quasi-symmetry 7.118 6 0.310 −4.882 −33.304
MD 10.062 14 0.758 −17.938 −84.256
MDA 9.691 13 0.719 −16.309 −77.890

Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) [2, 17] are
calculated for quasi-symmetry, MD, and MDA models to find the best fitting model to data.
The MD model has the lowest AIC and BIC, it is considered as the best-fitted model. The
parameter estimates under the MD model are summarized in Table 4.

Table 4: The parameter estimates under the MD model for the 5×5 table.

Parameter Estimate Std. Error Z p-value 95% CI

Constant 3.282 0.320 10.253 <0.001 [2.654; 3.909]
[Q1 = 1] −0.244 0.195 −1.254 0.210 [−0.626; 0.138]
[Q1 = 2] 0.728 0.218 3.336 0.001 [0.300; 1.155]
[Q1 = 3] 0.742 0.220 3.374 0.001 [0.311; 1.173]
[Q1 = 4] 0.639 0.219 2.915 0.004 [0.209; 1.068]

[Q1 = 5] 0(a)

[Q2 = 1] −0.476 0.166 −2.874 0.004 [−0.801; −0.151]
[Q2 = 2] −0.073 0.226 −0.322 0.747 [−0.516; 0.370]
[Q2 = 3] 0.192 0.225 0.853 0.394 [−0.249; 0.632]
[Q2 = 4] 0.177 0.223 0.793 0.428 [−0.260; 0.615]

[Q2 = 5] 0(a)

δ1 0.795 0.119 6.683 <0.001 [0.562; 1.029]
δ2 −0.008 0.096 −0.079 0.937 [−0.196; 0.181]

(a): This parameter is set to zero because it is redundant.
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The δk parameters in Equation (2.2) have straightforward interpretations in terms of
departures from the median category. The distance parameter estimates are δ̂1 = 0.795,
δ̂2 = −0.008, and δ̂3 = 0− [δ̂1 + δ̂2] = −0.787. Odds ratios are calculated either taking the
expected values in Table 2 or from the parameter estimates under the underlying model given
in Table 4. For example for θ̂11 is obtained as:

θ̂11 =
5.89× 50.84
8.82× 15.56

= exp(δ̂2 − δ̂3) = 2.18.

This can be interpreted as: the respondent’s response is 2.18 times more likely to fall into
the neutral category than a category two-step away from the median category. The matrix
of odds ratios:

θ̂ =


2.18 1 1 0.46
1 2.23 0.45 1
1 0.45 2.23 1

0.46 1 1 2.18


exp(δ̂1 − δ̂2) = 2.23 can be interpreted as: a respondent’s response is 2.23 times more likely
to fall into the neutral category than a category one-step away from the median category.

Example 2

Table 5 displays an artificial 7×7 contingency tables for any two questions from a
questionnaire, say Q1 and Q2.

Table 5: The frequencies (expected values) of an hypothetical 7×7 table.

Q2
Q1

1 2 3 4 5 6 7
Total

1
5 15 18 24 22 13 9

106
(9.79) (14.76) (17.78) (19.18) (20.42) (15.18) (8.88)

2
16 27 32 29 45 28 8

125
(14.41) (28.58) (33.46) (35.07) (36.28) (26.21) (11.00)

3
17 21 75 80 82 21 9

305
(15.83) (30.50) (73.49) (74.84) (75.24) (24.94) (10.17)

4
20 45 87 95 70 27 10

354
(19.33) (36.19) (84.73) (95.00) (81.91) (26.38) (10.46)

5
21 40 82 80 75 25 8

331
(20.24) (36.82) (83.77) (80.56) (76.47) (23.93) (9.22)

6
19 32 35 31 25 21 8

171
(18.32) (32.38) (33.80) (31.58) (29.13) (18.76) (7.02)

7
10 12 11 9 11 7 8

68
(10.07) (12.78) (12.97) (11.77) (10.55) (6.60) (3.25)

Total 108 192 340 348 330 142 60 1520

The Independence, symmetry, quasi-symmetry, MD, and MDA models are applied to
the data in Table 5 and the log-linear model results are summarized in Table 6. The symmetry,
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quasi-symmetry, MD, and MDA models fit data (Table 6, p>0.05). The symmetry and
quasi-symmetry model implies that there is an agreement between Q1 and Q2.

Table 6: Model results for the 7×7 table.

Model G2 df p-value AIC BIC

Independence 87.455 36 <0.001 — —
Symmetry 14.355 21 0.854 −27.645 −139.501
Quasi-symmetry 8.840 15 0.886 −21.160 −101.057
MD 33.818 33 0.428 −32.182 −207.955
MDA 25.648 32 0.779 −38.352 −208.799

AIC and BIC are calculated for symmetry, quasi-symmetry, MD, and MDA models.
The MDA model has the lowest AIC and BIC, thus it is considered as the best-fitted model.
The parameter estimates under the MDA model are summarized in Table 7.

Table 7: The parameter estimates under the MDA model for the 7×7 table.

Parameter Estimate Std. Error Z p-value 95% CI

Constant 3.219 0.505 6.369 <0.001 [2.228; 4.209]
[Q1 = 1] −0.200 0.275 −0.730 0.466 [−0.739; 0.338]
[Q1 = 2] 0.215 0.292 0.734 0.463 [−0.358; 0.787]
[Q1 = 3] 0.337 0.263 1.280 0.201 [−0.179; 0.853]
[Q1 = 4] 0.566 0.245 2.308 0.021 [0.085; 1.046]
[Q1 = 5] 0.640 0.232 2.761 0.006 [0.186; 1.095]
[Q1 = 6] 0.569 0.233 2.446 0.014 [0.113; 1.025]

[Q1 = 7] 0(a)

[Q2 = 1] −0.074 0.282 −0.263 0.793 [−0.628; 0.479]
[Q2 = 2] 0.365 0.297 1.228 0.220 [−0.217; 0.947]
[Q2 = 3] 0.580 0.267 2.172 0.030 [0.057; 1.103]
[Q2 = 4] 0.684 0.249 2.749 0.006 [0.196; 1.172]
[Q2 = 5] 0.775 0.235 3.298 0.001 [0.315; 1.236]
[Q2 = 6] 0.508 0.238 2.129 0.033 [0.040; 0.975]

[Q2 = 7] 0(a)

δ1 0.545 0.120 4.541 <0.001 [0.310; 0.780]
δ2 0.420 0.083 5.054 <0.001 [0.257; 0.583]
δ3 −0.331 0.093 −3.537 <0.001 [−0.514; −0.147]
β −0.029 0.010 −2.842 0.004 [−0.048; −0.009]

(a): This parameter is set to zero because it is redundant.

The negative value of β indicates that there is a negative relationship between Q1 and
Q2 (β̂ = −0.029). The distance parameter estimates are δ̂1 = 0.545, δ̂2 = 0.420, δ̂3 = −0.331,
and δ̂4 = 0− [δ̂1 + δ̂2 + δ̂3] = −0.634.

Odds ratios can be calculated over either the expected values in Table 5 or the parameter
estimates in Table 7. For instance, θ̂11 is calculated as

θ̂11 =
9.79× 28.58
14.76× 14.41

= exp(β̂ + δ̂3 − δ̂4) = 1.32.
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This can be interpreted as: the respondent’s response is 1.32 times more likely to fall into
the neutral category than a category three-step away from the median category, respectively.
The matrix of odds ratios:

θ̂ =



1.32 0.97 0.97 0.97 0.97 0.72
0.97 2.06 0.97 0.97 0.46 0.97
0.97 0.97 1.10 0.86 0.97 0.97
0.97 0.97 0.86 1.10 0.97 0.97
0.97 0.46 0.97 0.97 2.06 0.97
0.72 0.97 0.97 0.97 0.97 1.32


exp(β̂ + δ̂1− δ̂2) = 1.10 can be interpreted as: a respondent’s response is 1.10 times more likely
to fall into the neutral category than a category one-step away from the median category.
The respondent’s response is exp(β̂ + δ̂1 − δ̂3) = 2.06 times more likely to fall into the neutral
category than a category two-step away from the median category.

Real-Life Data

The study of hostel life data [16] is used to illustrate the proposed models. The project
aims to measure the satisfaction level of the students towards facilities given in hostels. 5-point
Likert items are used as: “1: very dissatisfied”, “2: dissatisfied”, “3: neutral”, “4: satisfied”,
“5: very satisfied”. Three items, “Overall Satisfaction about Hostel”, “Management System
of Mess”, and “24 Hours Electricity” are selected. The answers of 184 students are given in
Table 8.

Table 8: The study of hostel life data.

Management System
Overall

(24 Hours Electricity)
Satisfaction

1 2 3 4 5

Total

1 2 (0) 3 (2) 0 (5) 6 (5) 1 (0) 12
2 2 (3) 5 (3) 6 (8) 14 (14) 3 (2) 30
3 2 (1) 11 (13) 24 (10) 36 (35) 6 (20) 79
4 3 (2) 10 (3) 13 (12) 19 (20) 7 (15) 52
5 1 (0) 0 (0) 0 (2) 4 (3) 6 (6) 11

Total 10 (6) 29 (21) 43 (37) 79 (77) 23 (43) 184

The Independence, MD, and MDA models are applied to the overall satisfaction x
management system of mess and overall satisfaction x 24 hour electricity tables. The log-
linear model results are summarized in Table 9. For overall satisfaction x management system
of mess table, both MD and MDA models fit the data well (p>0.05). For overall satisfaction
x 24 hour electricity, only the MDA model fit the data well (p>0.05).

For overall satisfaction x management system of mess table, MD model has the lowest
BIC and MDA model has the lowest AIC. We considered BIC. We follow the BIC results and
decide that the MD model is the best-fitted model. The expected values under the best-fitted
models are summarized in Table 10.
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Table 9: Log-linear model results for hostel life data.

Table Model G2 df p-value AIC BIC

Overall satisfaction- Independence 32.268 16 0.009 — —
Management system MD 19.942 14 0.132 −8.058 −53.067
of mess MDA 17.750 13 0.167 −8.250 −50.044

Overall satisfaction- Independence 32.807 16 0.008 — —
24 hours MD 27.805 14 0.015 — —
electricity MDA 16.426 13 0.227 −9.574 −51.368

Table 10: The expected values of hostel life data.

Management System
Overall

(24 Hours Electricity)
Satisfaction

1 2 3 4 5

Total

1 1.58 (1.07) 1.40 (2.58) 1.56 (4.00) 3.82 (3.37) 3.64 (0.98) 12
2 1.39 (1.58) 5.25 (4.65) 5.86 (9.39) 14.30 (10.27) 3.20 (4.12) 30
3 3.17 (2.60) 11.96 (9.93) 24.00 (10.00) 32.58 (37.11) 7.29 (19.37) 79
4 2.41 (0.69) 9.10 (3.41) 10.15 (11.66) 24.79 (21.58) 5.54 (14.65) 52
5 1.45 (0.06) 1.28 (0.44) 1.43 (1.94) 3.50 (4.67) 3.33 (3.89) 11

Total 10 (6) 29 (21) 43 (37) 79 (77) 23 (43) 184

The parameter estimates for overall satisfaction x management system of mess table
under the MD model and overall satisfaction x 24 hours electricity table under the MDA
model are summarized in Table 11 and Table 12, respectively.

Table 11: The parameter estimates under the MD model for overall satisfaction
x management system of mess table.

Parameter Estimate Std. Error Z p-value 95% CI

Constant 2.366 0.635 3.728 <0.001 [1.122; 3.610]
[Q1 = 1] 0.087 0.417 0.208 0.835 [−0.731; 0.905]
[Q1 = 2] −0.041 0.468 −0.088 0.930 [−0.958; 0.876]
[Q1 = 3] 0.782 0.448 1.746 0.081 [−0.096; 1.660]
[Q1 = 4] 0.509 0.452 1.125 0.261 [−0.378; 1.396]

[Q1 = 5] 0(a)

[Q2 = 1] −0.833 0.379 −2.199 0.028 [−1.575; −0.091]
[Q2 = 2] −0.953 0.468 −2.038 0.042 [−1.870; −0.036]
[Q2 = 3] −0.844 0.480 −1.761 0.078 [−1.784; 0.095]
[Q2 = 4] 0.049 0.444 0.110 0.913 [−0.821; 0.919]

[Q2 = 5] 0(a)

δ1 0.875 0.272 3.214 0.001 [0.341; 1.408]
δ2 0.287 0.208 1.381 0.167 [−0.120; 0.695]

(a): This parameter is set to zero because it is redundant.

The distance parameter estimates in Table 11 are δ̂1 = 0.875, δ̂2 = 0.287, and δ̂3 =
0− [δ̂1 + δ̂2 + δ̂3] = −1.162. The odds ratios of overall satisfaction x management system of
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mess table can be calculated by the expected values in Table 10 or by the parameter estimates
in Table 11. For example, θ̂11 is calculated as:

θ̂11 =
1.58× 5.25
1.40× 1.39

= exp(δ̂2 − δ̂3) = 4.26.

This can be interpreted as: the student’s response is 4.26 times more likely to fall into the
neutral category than a category two-step away from the median category. The matrix of
odds ratios for overall satisfaction x management system of mess table:

θ̂ =


4.26 1 1 0.23
1 1.80 0.56 1
1 0.56 1.80 1

0.23 1 1 4.26


exp(δ̂1 − δ̂2) = 1.80 can be interpreted as: a student’s response is 1.80 times more likely to
fall into the neutral category than a category one-step away from the median category.

Table 12: The parameter estimates under the MDA model for overall satisfaction
x 24 hours electricity.

Parameter Estimate Std. Error Z p-value 95% CI

Constant −5.581 2.209 −2.527 0.012 [−9.910; −1.252]
[Q1 = 1] 3.882 1.239 3.132 0.002 [1.452; 6.311]
[Q1 = 2] 4.005 1.133 3.536 <0.001 [1.785; 6.225]
[Q1 = 3] 4.238 0.883 4.797 <0.001 [2.506; 5.969]
[Q1 = 4] 2.643 0.633 4.176 <0.001 [1.403; 3.884]

[Q1 = 5] 0(a)

[Q2 = 1] 1.148 1.046 1.098 0.272 [−0.902; 3.198]
[Q2 = 2] 1.760 1.006 1.750 0.080 [−0.211; 3.732]
[Q2 = 3] 1.937 0.832 2.328 0.020 [0.306; 3.569]
[Q2 = 4] 1.500 0.630 2.381 0.017 [0.265; 2.735]

[Q2 = 5] 0(a)

δ1 −0.660 0.316 −2.090 0.037 [−1.278; −0.041]
δ2 0.300 0.231 1.297 0.195 [−0.153; 0.752]
β 0.263 0.083 3.177 0.001 [0.101; 0.425]

(a): This parameter is set to zero because it is redundant.

The distance parameter estimates in Table 12 are δ̂1 = −0.660, δ̂2 = 0.300, and δ̂3 = 0−
[δ̂1 + δ̂2 + δ̂3] = −0.634. Similarly, the odds ratios of overall satisfaction x 24 hour electricity
table can be calculated either from the expected values in Table 10 or from the parameter
estimates in Table 12. For the odds ratio θ̂11, is obtained as:

θ̂11 =
1.07× 4.65
2.58× 1.58

= exp(β̂ + δ̂2 − δ̂3) = 1.22.

The odds ratio can be interpreted as: the students’ response is 1.22 times more likely to
fall into the neutral category than a category two-step away from the median category. The
matrix of odds ratios for overall satisfaction x 24 hours electricity table:

θ̂ =


1.22 1.30 1.30 1.38
1.30 0.50 3.39 1.30
1.30 3.39 0.50 1.30
1.38 1.30 1.30 1.22
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1/ exp(β̂ + δ̂1 − δ̂2) = 2 can be interpreted as: a respondent’s response is 2 times more likely
to fall into a category one-step away from the median category than the neutral category.
The positive value of β means that there is a positive effect of 24 hour electricity on overall
satisfaction about Hostel (β̂ = 0.263).

4. CONCLUDING REMARKS

Attitudinal questions are a fundamental part of surveys in the social sciences. The
items in a Likert scale are designed to measure respondent’s attitudes to a particular question.
Likert-type data is ordinal data, and a score is higher or lower than another. In any survey, if
people feel that they really have no idea upon a question or feel that they are urged to make a
choice, they choose the random or intentionally choose the neutral option. Neutral states that
the respondent has neither a positive response nor a negative response. The researchers prefer
to use a neutral category or midpoint so as to one side of which lay the favorable categories
and to the other side the unfavorable categories. If the researcher does not set to a midpoint
and respondents actually have a neutral opinion, they either tend to give a response that does
not represent their actual attitude or avoid answering the question because the respondents
sometimes tend to avoid using extreme categories. Essentially age and education are believed
the two most relevant demographic factors which have been associated with a neutral option
[13]. For instance, unlike the results that Harzing [11] showed that a higher neutral response
for women than men, Grimm and Church [9] had found no gender effect.

The neutral point is the most difficult to locate and even more difficult to interpret.
Moreover, the Likert scales tend to perform well with regard to a particular attitude of
respondents that is in rough order. Assuming that we employ a 5-point or 7-point Likert
scale and our questionnaire comprises a neutral option, with this regard we would mainly
wish to know if there is any agglomeration in the neutral option. In fact, being in the neutral
option would also imply that those users might be moved towards the satisfied group in some
senses. This would cause a misinterpretation and deviates from the real context. Statistical
modeling is a very essential part of data analysis. With this point of view, this paper proposes
two log-linear models that take the ordinal information into account, besides the distance
from the median category in Likert scale data. These models test whether the frequencies
accumulate over the median group by subtracting the association. The distance parameters
indicate that whether a subject is in favor to decide neutral, or measures how far a subject
from the median. If the models hold true, the researcher will be able to draw conclusions
from the evidence presented in the findings which are the results of the parameter estimates.
It is noteworthy that the δ parameters and their associated odds ratios in the MDA model
give evidence that how the frequencies in a two-way contingency table are distributed around
the median category, moreover, how far the frequencies are from the median or midpoint.
Interpretation of the log-odds coefficient gives the odds that a respondents’ response falls in
the median group than being an m-step distant from the midpoint category.

The models have a limitation that addresses the cognitive bias. As a consequence of
cognitive bias, individuals make decisions according to their own perspectives, and therefore,
cognitive biases may sometimes lead to inaccurate inferences or illogical interpretations. The
impact of cognitive bias might be reduced by helping the participants to understand the
consequences of the inference at the beginning.
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1. INTRODUCTION

Random forests were introduced in 2001 by Breiman in [1] and are since then one of the
most popular algorithms in machine learning [2]. The popularity comes from the wide range
of applications in which they are known to perform well on even high dimensional, are fast
to compute and easy to tune. Successful applications can be cited: chemo-informatics [3],
ecology [4, 5], 3D object recognition [6] and time series prediction [7, 8, 9, 10, 11].

Suppose that we have a random sequence (Xt, Yt)t∈Z ∈ X ×Y such that

(1.1) Yt = f(Xt) + εt

and the error εt is such that E[εt|Xt] = 0. The purpose of random forests is to estimate, by
only observing a training sample Dn = ((X1, Y1), ..., (Xn, Yn)), the regression function

∀x∈X , f(x) = E[Yt|Xt = x].

Random forests can be related to two main sources, regression trees [12] and bagging
[13]. Regression trees are constructed by a recursive partitioning of the input space based on
some criterion to estimate the regression function f. At each step of the tree construction,
a split is selected (a variable and a location on the variable) based on the evaluation of the
criterion among all the admissible splits based on all the variables. The cell is cut in two
on the selected split and the previous step is reiterated on the new cells. A tree is then a
piecewise constant decomposition of the input space. A binary tree can be associated to the
input space partitioning. Each node corresponds to a test matching how the input space was
cut. An illustration is given in Figure 1 of a partitioning in the two-dimensional space and
its associated binary tree. The principle of bagging (short form of bootstrap aggregating) is
to create M randomly generated training sets by randomly sampling αn observations with
or without replacement from the set Dn and to construct on each set a predictor. Once the
predictors are constructed, the bagging prediction for a new observation x is an aggregation,
generally the empirical mean, of the predictions given by the M predictors for the point x.

This procedure aims to improve stability and accuracy of the base predictor. In the context
of random forests the predictors are regression trees. In order to explain the random forest
procedure we then have to explicit the construction of one tree.Random Forests for Time Series 3
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Figure 1: A partitioning of [0, 1]2 and the associated binary tree.

the variance in a node is equal to zero. Since this is rarely the case a second condition is
that the number of observations in a node must be greater than a given threshold.

Even if the theoretical settings of random forests was until recently restricted to
the i.i.d case, a theoretical study extending it to the time-dependent case is proposed
in [14]. In addition, applications on time series could be found, as previously cited, in
[7, 10], in electricity load forecasting [8], [9], [11].

The bootstrap step determines which observations are chosen to construct a tree.
The original bootstrap which we call standard (or i.i.d) bootstrap from [15] consists
of randomly drawing αn observations among the n with or without replacement. Note
that we use here an abuse of language, the bootstrap is standardly defined as drawing n
observations among the n observations with replacement. The goal of this bootstrap is
to replicate the distribution of Dn. However, this is adapted to the case of independent
and identically distributed observations. When the data has an underlying dependence
structure as for time series the i.i.d hypothesis is not verified anymore and using the
standard bootstrap destroys the dependence structure. We illustrate this phenomenon for
a dataset from [16] which is described in Section 3.1. We observe in fig. 2 the original
load over the month of January. Using the standard bootstrap we obtain the series in
fig. 3 and immediately note that the structure we had in the original series is all gone. By
contrast, using a moving block bootstrap, described in Section 2, using a block length of
24 hours we recover similar patterns as in the original series of fig. 4.

We list here a few papers using blocks bootstrap in the forecasting literature. The
first one is [17] in which they use a sieve bootstrap to perform bagging with exponential
smoothing models. They use exponential smoothing to decompose the data, then fit an
autoregressive model to the residuals, and generate new residuals from this AR process.
Finally, they fit the exponential smoothing model that was used for decomposition to all
bootstrapped series. Another work is from [18] who propose a method of bagging which
is as follows. After applying a Box-Cox transformation to the data, the series is de-
composed into trend, seasonal and remainder components. The remainder component is
then bootstrapped using the moving block bootstrap, defined in Section 2, the trend and
seasonal components are added back, and the Box-Cox transformation is inverted. For
each one of these bootstrapped time series, a model among several exponential smooth-

Figure 1: A partitioning of [0, 1]2 and the associated binary tree.
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The first step is the bootstrap/subsampling: αn points are selected with or without
replacement among the n realisations. Then a tree is constructed based on these αn selected
points. At each node of the tree the best split (the variable and the location on this variable)
is determined by minimising the intra-node variance. This is commonly called the CART
criterion introduced in [12]. Instead of minimising this criterion among all the admissible
splits based on all the variables the choice of inputs is restricted to a random subset of fixed
size mtry . This procedure is then iterated on each node produced after binary splitting until
stopping conditions are met. The first stopping rule is when the variance in a node is equal
to zero. Since this is rarely the case a second condition is that the number of observations in
a node must be greater than a given threshold.

Even if the theoretical settings of random forests was until recently restricted to the
i.i.d. case, a theoretical study extending it to the time-dependent case is proposed in [14].
In addition, applications on time series could be found, as previously cited, in [7, 10], in
electricity load forecasting [8], [9], [11].

The bootstrap step determines which observations are chosen to construct a tree. The
original bootstrap which we call standard (or i.i.d.) bootstrap from [15] consists of randomly
drawing αn observations among the n with or without replacement. Note that we use here an
abuse of language, the bootstrap is standardly defined as drawing n observations among the
n observations with replacement. The goal of this bootstrap is to replicate the distribution
of Dn. However, this is adapted to the case of independent and identically distributed obser-
vations. When the data has an underlying dependence structure as for time series the i.i.d.
hypothesis is not verified anymore and using the standard bootstrap destroys the dependence
structure. We illustrate this phenomenon for a dataset from [16] which is described in Section
3.1. We observe in Figure 2 the original load over the month of January. Using the standard
bootstrap we obtain the series in Figure 3 and immediately note that the structure we had
in the original series is all gone. By contrast, using a moving block bootstrap, described in
Section 2, using a block length of 24 hours we recover similar patterns as in the original series
of Figure 4.
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Figure 2: Original load hourly sampled.
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Figure 3: Bootstrapped load.
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Figure 4: Block bootstrapped load
with block size of 24h.

We list here a few papers using blocks bootstrap in the forecasting literature. The first
one is [17] in which they use a sieve bootstrap to perform bagging with exponential smoothing
models. They use exponential smoothing to decompose the data, then fit an autoregressive
model to the residuals, and generate new residuals from this AR process. Finally, they fit
the exponential smoothing model that was used for decomposition to all bootstrapped series.
Another work is from [18] who propose a method of bagging which is as follows. After
applying a Box-Cox transformation to the data, the series is decomposed into trend, seasonal
and remainder components. The remainder component is then bootstrapped using the moving
block bootstrap, defined in Section 2, the trend and seasonal components are added back, and
the Box-Cox transformation is inverted. For each one of these bootstrapped time series, a
model among several exponential smoothing models is chosen, using the bias-corrected AIC.
Then, point forecasts are calculated using all the different models and the resulting forecasts
are combined using the median. A companion paper [19] explores experimentally the value
of bagging for time series forecasting. More generally, we refer to the special issue presented
in [20] for more details about the recent developments in bootstraps methods for dependent
data.

Our strategy is mainly motivated by the results on random forests in the time-dependent
case in [14], proven using a block decomposition on the entries (Xi, Yi)1≤i≤n. The proofs rely
on a lemma from [21] that shows that the blocks are close to being independent, under the
condition that the block length is well-chosen. But it should be noted that after obtaining
the bootstrap sample, the procedure to build a tree is unchanged and flipping the data after
bootstrap will not change the resulting tree. The data are, in that sense and at this stage,
considered to be exchangeable since the splitting criterion is unchanged and since it does not
take into account the time dependence between the observations. We then try to make the
data, before this stage, as much compatible with the underlying independence hypothesis.
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A typical example of weak dependence is the m-dependent case, for which considering block
bootstrap of length at least m allows to recover exchangeability. In the general weak de-
pendence case, it is reasonable to consider that performing block bootstrap with a suitably
chosen block-length could make the data more compatible with the exchangeable hypothesis.
The aim of this work is to show that, based on the theoretical work in [14], the forecast-
ing performance could be improved by replacing the bootstrap step by what we call block
bootstrap variants, to subsample time series during the tree construction phase and thereby
keep the dependence structure. This intuition is supported by the experiment reported in
Appendix 2 (with time shuffling) illustrating that preserving the temporal structure is, at
least empirically, beneficial.

Since random forests were already introduced in this introduction. The next section
presents the different block bootstrap variants, the new algorithm and a new way to compute
the variable importance. We then present two numerical experiments. The first one is based
on an application to load forecasting of a building from the dataset described in [16] and see
how the variants may perform. The second one on the French national forecasting problem
and explore a heuristic on the choice of the new parameter.

2. RANDOM FORESTS FOR TIME SERIES

2.1. Block bootstrap variants

Non-overlapping block bootstrap. Afirstvariant is found in [22]: thenon-overlapping
block bootstrap. The idea is to construct a number of non-overlapping blocks and then to draw
uniformly, with replacement, among the constructed blocks. More precisely, let ln be the size
of a block and B ≥ 1 the greatest integer such that lnB ≤ n. The blocks are then constructed
in the following way

Bb =
((

X(b−1)ln+1, Y(b−1)ln+1

)
, ..., (Xbln , Ybln)

)
, b = 1, ..., B.

The bootstrap set D?
n is then obtained by drawing K blocks, (B?

1 , ..., B?
K), uniformly with

replacement in the collection of non-overlapping blocks(Bb)1≤b≤B for a suitably chosen K.

Moving block bootstrap. [23] and [24] introduced the so-called moving block boot-
strap. The idea is, instead of picking randomly one observation among the n observations
as for the standard bootstrap, the moving block bootstrap pick randomly a block of ln con-
secutive observations. Repeating this step and concatenating all the selected blocks, we get
a new time series with a preserved structure at least in each block. More precisely, let us
denote by Bi,ln = ((Xi, Yi), ..., (Xi+ln−1, Yi+ln−1)) the block of size ln beginning with the ob-
servation (Xi, Yi) for i ∈ {1, ..., n− l + 1}. The procedure then consists to draw randomly
K indices (Ij)1≤k≤K uniformly on the set {1, ..., n− ln + 1} and associate one block to each
index, (BIk

)1≤k≤K . The bootstrap set is then defined as D?
n = (BI1 , ..., BIK

).

Circular block bootstrap. When studying the moving block bootstrap we can note
that less weight is given to the endpoints of the time series which also leads in theory to
non negligible bias when computing the mean. A way to correct this issue is given in [25]
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introducing the so-called circular block bootstrap. The idea is to wrap the time series writing
Xi := Xin where in = i mod n, X0 := Xn and then use the same procedure as in the moving
block bootstrap where the index I is drawn uniformly on the set {1, ..., n} instead.

Note that in each above variant, taking ln = 1 we recover the standard bootstrap of [15].
For a given number of selected observations in each tree αn the number of blocks K is such
that K = αn

ln
.

2.2. Proposed random forest for time series

Our proposition in order to incorporate the dependence structure is by replacing the first
step for the construction of a random tree in the random forest building procedure, namely
replacing the standard bootstrap step with one of the block bootstrap variants recalled in
Section 2.1.

Note that the proposed algorithm only considers the dependence during the bootstrap-
ping phase, directly on the entries (Xi, Yi)1≤i≤n. Once the bootstrap sample is drawn the
splitting is done as in the independent case. The adapted algorithm is found in Algorithm 1
underlining the modification with respect to the original random forest procedure.

Random Forests for Time Series 7

input: ((X1, Y1), . . . , (Xn, Yn))
parameters: M,αn, mtry, τn, ln
stopping criteria: the variance in the node is zero or the number of
observations in a node is below the threshold τn

for j← 1 to M do
Construct the jth tree:

• Draw αn ≤ n observations using a block bootstrap variant with parameter ln.

• Repeat recursively on each resulting node the following steps until a stopping
criterion is met:

– At each node, select randomly mtry variables

– Select the best split using the variance criterion among the previously
chosen variables.

– Cut according to the chosen split.

end
output for a new observation x : mean of the M predictions given by the
trees for x.

Algorithm 1: Random forest for time series

further explain our approach.

2.3. Block permutation importance

Random forests can be used to rank with respect to a decreasing order of im-
portance the variables. One way to measure the significance of a variable is the Mean
Decrease Accuracy introduced in [1] which stems from the idea that if a variable is not
important, then permuting its value should not change the prediction accuracy.

For each tree, we have access to the so-called out-of-bag observations denoted
by OOBm, composed of the observations not included in the bootstrap sample Dm

n used
to construct the mth tree. The OOBm sample can then be used to estimate the out-
of-bag error denoted by errOOBm. In order to compute the importance of the variable
X( j), the values of the jth variable are randomly permuted in the OOB sample and we
compute for each tree an out-of-bag error estimation for the permuted observations. The
importance of the variable X( j) is then obtained by averaging the difference between the
out-of-bag error before and after permutation. More formally, if, for the mth tree, we

denote by ˜errOOB j
m the OOBm sample’s error when the jth variable is permuted, then

the importance of the variable X( j) is defined by

VI
(
X( j)
)
=

1
M

M∑
m=1

(
˜errOOB j

m − errOOBm

)
.

Algorithm 1: Random forest for time series.

Note that here, we consider the bootstrap directly on the entries (Xi, Yi)1≤i≤n, and
thus keeping the black box design of the random forests. Even if the time series nature of the
data is forgotten after the bootstrap step, it should be noted that to include the time as a
dependent variable could provide an indirect way to weakly take into account, at some extent,
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the temporal nature of the data. Works on blocks bootstraps in the forecasting literature
presented in Section 1 use generally the block bootstrap on the residuals after removing trends
and seasonality. However, using such a procedure in our experiments (by bootstrapping the
residuals of a pilot random forest) led to worse performance and further explain our approach.

2.3. Block permutation importance

Random forests can be used to rank with respect to a decreasing order of importance the
variables. One way to measure the significance of a variable is the Mean Decrease Accuracy
introduced in [1] which stems from the idea that if a variable is not important, then permuting
its value should not change the prediction accuracy.

For each tree, we have access to the so-called out-of-bag observations denoted by OOBm,

composed of the observations not included in the bootstrap sample Dm
n used to construct the

m-th tree. The OOBm sample can then be used to estimate the out-of-bag error denoted
by errOOBm. In order to compute the importance of the variable X(j), the values of the
j-th variable are randomly permuted in the OOB sample and we compute for each tree an
out-of-bag error estimation for the permuted observations. The importance of the variable
X(j) is then obtained by averaging the difference between the out-of-bag error before and

after permutation. More formally, if, for the m-th tree, we denote by ˜
errOOBj

m the OOBm

sample’s error when the j-th variable is permuted, then the importance of the variable X(j)

is defined by

V I
(
X(j)

)
=

1
M

M∑
m=1

(
˜

errOOBj
m − errOOBm

)
.

The higher the increase in the prediction error after the permutation of the j-th variable in
the out-of-bag observations, the more important the variable is. However, if the permutation
of X(j) does not change much the error prediction then the importance of the considered
variable is small.

In the case of dependent observations we are faced with the same issue as in the con-
struction of the random forests, namely the permutation of variable in the out-of-bag ob-
servations does not preserve the dependence structure. In the case where block instead of
standard bootstrap is used in the random forest we introduce a new variable importance
computation: the block (permutation) variable importance. However, using a block bootstrap
variant does not necessarily lead to a out-of-bag observations with constant number of con-
secutive observations but we solve this issue in the following. Let us first suppose that the
out-of-bag observations can be separated in blocks of size ln and denote by B∗

m the blocks
in the out-of-observations for the m-th tree. In order to compute the importance of the j-th
variable, the permutation of the considered variable is done by only permuting the blocks
in B∗

m and preserving the structure in each block. We can then compute a block permuted
out-of-bag error estimation for the j-th variable denoted by errOOBj

m. The block variable
importance for the j-th variable is then defined by

V I
(
X(j)

)
=

1
M

M∑
m=1

(
errOOBj

m − errOOBm

)
.
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The out-of-bag observations stemming from the block bootstrap with parameter ln
are not necessarily composed of blocks of the size ln. In order to obtain an OOB sample
which has the same block size as in the construction of the random forest we adapt the
obtained out-of-bag observations to get a new set of blocks of out-of-bag observations as
follows. The three following cases are exclusive. First, if a block of consecutive observations
in the out-of-bag observations is of the right length ln we add it to the block out-of-bag
observations. Second, if the length is larger than ln and less than 2ln we draw a random
subset of consecutive observations of length ln. Finally, if a block of consecutive observations
in the out-of-observations has a length less than ln then the block is not kept. Then the block
out-of-bag observations is composed of the kept block observations of length ln and satisfies
the conditions to compute the block permutation variable importance as previously defined.

3. NUMERICAL EXPERIMENTS

We consider two experiments in this work. One regarding the performance the variants
may attain on a real world application of load forecasting, at a disaggregated level, on one
of the building dataset from [16], which is composed of different building loads with hourly
observations. The other regarding the choice of the block length parameter, this time on the
French national load forecasting problem, at a more aggregated level but focusing on atypical
periods.

In the following experiments, the results are obtained over 50 runs. The parameters of
the random forest are set to default except for the mtry parameter which is optimised on a
validation set and the block size parameter for which we carry out an in-depth analysis in
Section 3.2.

We run the experiments by implementing the extra features we propose in this paper as
an extension of the R package ranger [26], and thus inherit the availability in both C++ and
R. Our R package rangerts is freely available from the github repository https://github.com/

hyanworkspace/rangerts. Additional experiments with time series data are performed and the
results can be found in the same github repository as our modified R package, omitted here
for brevity reasons.

3.1. First load forecasting application: On the performance and variable impor-
tance

This experiment is based on the so-called building loads, a collection of 507 whole
buildings electrical meters made publicly available. We refer to the paper [16] for a complete
description of the collection. We consider one specific building in the building data genome
project called UnivLab Patrick. This building belongs to the college laboratory category
located in the New York time zone and has an area of around 7054 square meters. We have
access to its electricity load from the 1st January 2015 to the 31th December 2015 with a
sampling rate of one observation per hour. The weekly profile is found in Figure 5. We see a
clear daily trend as well as a clear distinction between the week and the end of the week due

https://github.com/hyanworkspace/rangerts
https://github.com/hyanworkspace/rangerts
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to less activity. We also have access to exogenous variables: the temperature as well as to the
schedule of the building, indicating if a day is ordinary, a break or a holiday. We decompose
the year in three parts: the training set is composed of the observations from the 1st January
to the 31st October, the validation set corresponds to the month of November and the test
set corresponds to the month of December.
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Figure 5: Weekly profile hourly sampled of the UnivLab Patrick dataset.

Let us denote by Yt the system load of the building at hour t. In this experiment, we
aim to forecast at a horizon of 24 hours. Based on the weekly profile, having hourly sampled
observations, the chosen model is inspired by [27] in which they also considered random forests
with a similar model for the same kind of problem. This results in the model described in
(1.1) with Xt of the form

(3.1) Xt = (Yt−24, Yt−168,Tempt,Schedulet,Hourt, InstantWeekt,DayTypet,Timet)

where:

• Tempt corresponds to the temperature at instant t;

• Schedulet take three values: Regular, Break, Holiday;

• Hourt corresponds to the hour of the day at instant t;

• InstantWeekt corresponds to the hour in the month;

• DayTypet corresponds to the day of the week;

• Timet corresponds to the day of the year divided by 366.

The selected value for mtry according to the best performance on the validation set for
the standard random forest is mtry = 2. For this parameter we computed the different variants
varying the block size parameters multiple of 6 hours up to 90 hours. We first optimise the
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performances on the validation set, looking for the best block size value minimising the RMSE
and then plug it in for the test set. The performance are resumed in Figure 6. For the sake
of comparison, the baseline Yt = Yt−24 has a RMSE of 19.43 on the test set. We observe
an improvement for the three variants with an improvement up to 11% for the mean RMSE
compared to the standard random forest. We also show the evolution of the performance
according to the block size parameter in Figure 7. We can find the same kind of figures for
each mtry from 1 to 8 in Appendix 1 from Figures 15 to 22. We observe for the three variants
a similar pattern in the evolution of the performance, namely a decrease for which the three
variants performs better than the standard random forest and then an increase. We note
that, even if the performance get worse when the block size is large, we also have a large
window for which the performance is far better for these three variants with an optimal block
size parameter of around 24 hours also corresponding to the forecasting horizon and the main
seasonality of the data.
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Figure 6: Performance of the different variants
for mtry = 2, evaluated on the month
of December of the UnivLab Patrick
dataset.
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Figure 7: Performance of the variants for
mtry = 2 when the block size
changes, evaluated on the month
of December of the UnivLab
Patrick dataset.

One may wonder if the block bootstrap mechanism really helps to take into account
time dependence or if it is another underlying mechanism. In order to illustrate this point,
we shuffled the instances in the training set. If it was another mechanism at play, we would
have the same results as before. The results after shuffling the training set can be found
in Appendix 2. We can clearly see that once the training set does not have the dependence
structure, using the block bootstrap variants has basically the same behaviour as the standard
random forests, regardless of the block length, and thus further confirms that the block
bootstrap random forests take into account the dependence structure.
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Figure 8: Variable importance moving bootstrap
variant under the standard permuta-
tion on the UnivLab Patrick dataset.
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Figure 9: Block moving bootstrap variant
importance with block size of 24h
on the UnivLab Patrick dataset.
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Figure 10: Variable importance non-overlapping
variant under the standard permuta-
tion on the UnivLab Patrick dataset.
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Figure 11: Block non-overlapping variant
importance with block size of 24h
on the UnivLab Patrick dataset.

Computing the variable importance for blocks of size 24 hours we obtain Figures 8 to 11.
We observe that the difference between the standard variable importance and the block
variable importance is essentially noticeable for the non-overlapping block bootstrap variant.
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The most evident difference is for the variable Hour for which the importance is set to zero
using the block variable importance. Since the blocks are of length 24 hours and always
beginning at the same time, permuting the blocks will not change the out-of-bag error since
each permutation is replaced by an identical copy and thus the output from this procedure
for the variable Hour.

3.2. Second load forecasting application: On the block length choice

We discuss here the choice of the block length parameter, found in every block bootstrap
variant. In the previous experiment, we notice that the optimal choice for the block length
was 24 hours, corresponding to the daily step and seasonality in the dataset. However, the
last experiment is done by optimising the block length on the validation set error. It would be
interesting to choose this parameter more wisely in order to avoid unnecessary computations
and we think that it should be proportional to the (minimal) seasonality in the dataset. The
block bootstrap aims to build blocks that preserve the dependency in them but that the
blocks are independent to a certain extent. In the case of seasonal trends, the intuition would
consequently be to choose blocks correlated to basic seasonal components. We illustrate this
with another dataset, on the French national load with goal to forecast at a 24 hours horizon
as well, having a longer span of time and thus having more stable results.
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Figure 12: Performances evaluated on April
2016 on the French load forecast-
ing problem of the different vari-
ants for three block length values.
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Figure 13: Performances evaluated on October
2016 on the French load forecasting
problem of the different variants for
three block length values.

We consider the French electricity load of the year 2015 as the training set with a sam-
pling rate of one observation per day at noon. The test set for this experiment are the months
April and October of the year 2016, corresponding to the transition between summer and
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winter season, a particularly difficult period to forecast. We observed in various experiments
that the random forests for time series variants work the best when it is “difficult” to forecast.
This typically corresponds to the shoulder seasons in the load forecasting field. We use here
the model described in (3.1) as well without the variables Hour and InstantWeek. Since the
observations are daily occurrences, the minimal seasonality would be the week. Hence, we
consider three values for the block length parameter: 7, 14 and 21 days. The selected value
for mtry is 3 corresponding to the worst case scenario, in the sense that for another value of
mtry the block bootstrap variants are doing better than shown in this example. Note that for
this example we removed the non-overlapping block bootstrap variant. We have found that
this variant needs more observations to get consistent results, providing less diversity in the
trees due to its construction.

The results are found, respectively for April and October 2016, in Figures 12 and 13.
We observe that, for both months, we have a consistent improvement of the performance
in comparison to the standard random forest for each choice of block length. We even note
significant improvement in the performance when taking twice or thrice the seasonality for
April. However, taking larger values than these would lead to a diversity problem in the
trees as mentioned before and thus have less consistent performance. This concludes that the
heuristic for the block length parameter choice would be to take the smallest seasonality up
to a multiplying factor of two or three.

3.3. Supplementary experiments

Further experiments are carried out with two forecasting competition data sets: quar-
terly and monthly series from M3 [28] (2184 series, 756 quarterly data and 1428 monthly
data) and M4 [29] (4151 series, 402 quarterly data and 3749 monthly data) competitions
to assess the performance of the proposed variants. Our main objective here is to com-
pare the performance of the standard random forest and the block-bootstrap variants exten-
sively on general time series data, instead of accessing how competitive the random forest
algorithm itself is for these two data sets. Note that both stationary and non-stationary
data are included in the data set whereas random forest cannot extrapolate and thus per-
forms poorly on non-stationary data comparing to other baseline time series methods in
the literature such as ARIMA models. The metrics we use for evaluation here are the nor-
malized RMSE (NRMSE = RMSE

σ(serietrain ) , where σ is the standard deviation of the training

part of the series), and the normalized difference in MAPE (NdMAPE = ∆(MAPE)
MAPE i.i.d.

) where
∆(MAPE ) = MAPE i .i .d .−MAPE variant . Higher values indicate better results with variants.

As described in (1.1), let us denote by Yt the series to be predicted at step t. Unlike the
load forecasting application, only the frequency and time features are used. For monthly data,
the frequency feature ranges from 1 to 12, which corresponds to the month. For quarterly,
this feature is thus 1 to 4, and 1 stands for the first quarter. By regressing on time, we
aim at estimating the trend and the seasonality components of each series. Including lags
as explanatory variable would be a natural choice in time series forecasting tasks, here we
choose not to do that to stay as far as possible from the exchangeability of the data.

We keep all other hyper parameters of the random forest identical to the standard
i.i.d. version to compare the obtained results with those from the block bootstrap variants.
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The only hyper parameter remains to be tuned is thus the block size. To be able to choose
the block size automatically, we propose to set a general auto-correlation threshold for all
series, to determine for each of them, the largest lag as the block length.

Better performance is achieved as shown in Figure 14 with the moving block variant
on the monthly series (the same for the M4 data set). A Wilcoxon signed rank test confirms
the gain with respect to the standard i.i.d. forest. We also observe in Table 1 that in general,
higher auto-correlation thresholds lead to better results.

Figure 14: Difference in NRMSE of the standard random forest (i.i.d.)
and the moving block variant (moving), for monthly and quar-
terly data, with different auto-correlation threshold values
from 0.5 to 0.9, from the M3 data set.

Table 1: The percentage of cases where the block bootstrap variant
outperforms the i.i.d. in terms of NdMAPE.

acf coef M3 M4

0.5 0.581 0.488
0.6 0.567 0.496
0.7 0.589 0.505
0.8 0.586 0.515
0.9 0.572 0.515

We choose to present our major results with a restricted number of graphs and statistics
to conserve space. All the codes and other supporting materials can be found in the same
GitHub repository as our implemented variants under the sub-directory benchmark Mcomp.
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4. CONCLUSION AND PERSPECTIVES

We introduced a new variant of random forests taking into account the temporal depen-
dency of the observations and showed that we can improve significantly the performance on
forecasting tasks when choosing the right block length. A variant of the variable importance
based on the block bootstrap mechanism is also introduced. The non-overlapping variant
seems to be mistaken regarding the importance of the variables, forgetting some variables
fundamental to the forecasting problem as the hour variable in our first application, and thus
we do not advise to use this variant for this purpose. However, both moving and circular vari-
ants seem to perform much better than the standard random forests when the block length
is well-chosen, and we showed that a good heuristic for the block length choice is correlated
to a multiple of the smallest seasonality.

This work is mainly methodological, a first perspective would be to prove theoretical
results on the random forests variants under time-dependent observations hypotheses. Con-
sistency of random forests is proven under stationary and β−mixing hypotheses in [14] when
trees are not fully grown and the observations are subsampled. The previously cited works
regarding the block bootstrap as [22, 23, 24, 25] also show consistency of some estimators,
generally under less restrictive hypotheses. It would be interesting to prove similar results on
the variants by adapting and combining the previous proof techniques.

We have performed a detailed study on one specific field of application and an automatic
extensive study was conducted on the time series of the M3 and M4 competitions. We
illustrated the potential value of the random forests variants. We also showed that it could
be useful to develop an adaptive and automatic way to choose the block length parameter.
Finally, it could be interesting to explore more deeply under which conditions (input variables,
etc.) the variants work, going well beyond the scope of this paper.
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APPENDIX 1

Performance of the variants for each given mtry from 1 to 8, when the block size changes,
evaluated on the month of December of the UnivLab Patrick dataset can be found from
Figures 15 to 22.
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Figure 15: Performance of the variants
for mtry= 1 when the block
size changes, evaluated on
the month of December of
the UnivLab Patrick dataset.
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Figure 16: Performance of the variants
for mtry= 2 when the block
size changes, evaluated on
the month of December of
the UnivLab Patrick dataset.
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Figure 17: Performance of the variants
for mtry= 3 when the block
size changes, evaluated on
the month of December of
the UnivLab Patrick dataset.
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Figure 18: Performance of the variants
for mtry= 4 when the block
size changes, evaluated on
the month of December of
the UnivLab Patrick dataset.
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Figure 19: Performance of the variants
for mtry= 5 when the block
size changes, evaluated on
the month of December of
the UnivLab Patrick dataset.
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Figure 20: Performance of the variants
for mtry= 6 when the block
size changes, evaluated on
the month of December of
the UnivLab Patrick dataset.
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Figure 21: Performance of the variants
for mtry= 7 when the block
size changes, evaluated on
the month of December of
the UnivLab Patrick dataset.
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Figure 22: Performance of the variants
for mtry= 8 when the block
size changes, evaluated on
the month of December of
the UnivLab Patrick dataset.
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APPENDIX 2

Performance of the variants, when the observations in the training set are shuffled
beforehand, for mtry equal to 1 and 2, when the block size changes, evaluated on the month
of December of the UnivLab Patrick dataset can be found from Figures 23 to 24. We have
similar results for mtry from 3 to 8.
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Figure 23: Performance of the variants
when training set is shuffled
for mtry= 1 when the block
size changes, evaluated on
the month of December of
the UnivLab Patrick dataset.
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Figure 24: Performance of the variants
when training set is shuffled
for mtry= 2 when the block
size changes, evaluated on
the month of December of
the UnivLab Patrick dataset.
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