


           Catalogação Recomendada 
 

REVSTAT. Lisboa, 2003-     
Revstat : statistical journal  / ed. Instituto Nacional 
de Estatística. - Vol. 1, 2003-         . - Lisboa I.N.E.,  
2003-        . - 30 cm 
Trimestral. - Continuação de : Revista de Estatística = 
ISSN 0873-4275. - edição exclusivamente em inglês 

           ISSN 1645-6726 ; e-ISSN 2183-0371 

 

CREDITS 
- EDITOR-IN-CHIEF 

- Isabel Fraga Alves 

- CO-EDITOR 
- Giovani L. Silva  

- ASSOCIATE EDITORS 
- Marília Antunes 

- Barry Arnold   

- Narayanaswamy Balakrishnan 

- Jan Beirlant  

- Graciela Boente 

- Paula Brito 

- Vanda Inácio de Carvalho 

- Valérie Chavez-Demoulin 

- David Conesa 

- Charmaine Dean 

- Fernanda Figueiredo 

- Jorge Milhazes Freitas 

- Alan Gelfand 

- Stéphane Girard  

- Marie Kratz 

- Victor Leiva 

- Artur Lemonte 

- Shuangzhe Liu 

- Maria Nazaré Mendes-Lopes  

- Fernando Moura 

- John Nolan 

- Paulo Eduardo Oliveira 

- Pedro Oliveira 

- Carlos Daniel Paulino (2019-2021) 

- Arthur Pewsey 

- Gilbert Saporta 

- Alexandra M. Schmidt  

- Julio Singer 

- Manuel Scotto 

- Lisete Sousa 

- Milan Stehlík  

- María Dolores Ugarte 

- FORMER EDITOR-IN-CHIEF 
-  M. Ivette Gomes 

- FORMER CO-EDITOR 
-  M. Antónia Amaral Turkman 

- EXECUTIVE EDITOR 
- José A. Pinto Martins 

- FORMER EXECUTIVE EDITOR 
- Maria José Carrilho 
- Ferreira da Cunha 

- SECRETARIAT 
- José Cordeiro 
- Olga Bessa Mendes 

- PUBLISHER 
- Instituto Nacional de Estatística, I.P. (INE, I.P.) 

Web site: http://www.ine.pt 

- COVER DESIGN 
- Mário Bouçadas, designed on the stain glass 

window at INE by the painter Abel Manta 

- LAYOUT AND GRAPHIC DESIGN 
- Carlos Perpétuo 

- PRINTING 
- Instituto Nacional de Estatística, I.P. 

- EDITION 
- 140 copies 

- LEGAL DEPOSIT REGISTRATION 
- N.º 191915/03 

- PRICE  [VAT  included] 
- € 9,00 

 
© INE, Lisbon. Portugal, 2021 
Statistical data made available by Statistics Portugal might be used according to Creative Commons Attribution 4.0 
International (CC BY 4.0), however the source of the information must be clearly identified 

mailto:revstat@ine.pt
mailto:revstat@ine.pt
http://www.ine.pt/


INDEX

Statistical Inference for a General Class of Noncentral Elliptical Distributions

Jimmy Reyes, Diego I. Gallardo, Filidor Vilca and Héctor W. Gómez . . . . . . . . . . 161
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Universidad de Atacama, Copiapó, Chile
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– Departamento de Matemáticas, Facultad de Ciencias Básicas,

Universidad de Antofagasta, Antofagasta, Chile
hector.gomez@uantof.cl

Received: December 2017 Revised: August 2018 Accepted: December 2018

Abstract:

• In this paper we introduce a new family of noncentral elliptical distributions. This family is
generated as the quotient of two independent random variables, one with noncentral standard
elliptical distribution and the other the power of a U(0, 1) random variable. For this family of
distributions, we derive general properties, including the moments and discuss some special cases
based on the family of scale mixtures of normal distributions, where the main advantage is easy
simulation and nice hierarchical representation facilitating the implementation of an EM algorithm
for maximum likelihood estimation. This new family of distributions provides a robust alternative
for parameter estimation in asymmetric distributions. The results and methods are applied to
three real datasets, showing that this new distribution fits better than other models reported in
the recent statistical literature.
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1. INTRODUCTION

Many univariate or multivariate distributions have been generalized to noncentral ver-
sions. These include numerous continuous univariate (Student-t, chi-squared, gamma, beta)
distributions. The noncentral Student-t (NCt) distribution is a skewed distribution that has
received attention in the statistical inference context. When the mean of a normal distribu-
tion is tested, the noncentral distribution describes how a test statistic t is distributed when
the null hypothesis is false. That is

tν(λ) =
Z + λ√

U/ν
,

where Z ∼ N(0, 1) and U∼ χ2
ν are independent random variables. Lahiri and Teigland ([18]),

and Dasgupta and Lahiri ([7]) found the NCt distribution is useful in analyzing survey data
and forecasting record data. Tsionas ([29]) used the NCt distribution in linear regression
models and applied it to stock market data. Applications of the NCt distribution have been
limited by the fact that the probability density function is not expressible in closed form,
making the maximum likelihood (ML) estimation difficult. On the other hand, the symmetric
Student-t (t) distribution has a long history in statistics to model data with outliers as does
as the elliptical (EL) distribution; see for example, Lange et al. ([19]), Fang et al. ([10]), and
Cambanis et al. ([6]). A random variable X is said to have an EL distribution with location µ

and scale parameter σ, denoted as X∼ EL(µ, σ2; g) if its probability density function (pdf)
is given by

fX(x) =
1
σ

g

((
x− µ

σ

)2)
,(1.1)

for some nonnegative function g(u), u ≥ 0, referred to as the density generator which satisfies∫∞
0 u−

1
2 g(u) du = 1. Based on this family of EL distributions, Gómez et al. ([13]) and Gómez

and Venegas ([15]) introduced the slash-elliptical (SEL) family of distributions. These distri-
butions originate from the ratio between two independent random variables, one the standard
EL distribution and the other a uniform (0, 1) distribution,

Y =
Z

U
1
q

,(1.2)

where Z ∼ EL(0, 1; g) and U ∼ U(0, 1) are independent random variables with q > 0.
The resulting distribution is denoted by Y ∼ SEL(0, 1, q), and has heavier tails than the
standard normal distribution. On the other hand,when q tends to ∞, the resulting distribu-
tion is the standard EL distribution. For example, if Z ∼ N(0, 1) and q = 1, one obtains the
canonic slash distribution,

f(y) =


φ(0)− φ(y)

y
, if y 6= 0,

φ(0)
2

, if y = 0,

(1.3)

where φ(·) is the pdf of the standard normal distribution. This distribution has heavier tails
than the normal distribution, that is, it has higher kurtosis. Properties of this family are
discussed in Rogers and Tukey ([28]), Mosteller and Tukey ([24]) and Johnson et al. ([16]).
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ML estimators for location and scale parameters are discussed in Kafadar ([17]). Wang
and Genton ([31]) described multivariate symmetrical and skew-multivariate extensions of
the slash (S) distribution. Arslan and Genc ([3]) discussed a symmetric extension of the
multivariate slash distribution and Genc ([12]) discussed a symmetric generalization of the
slash distribution.

The aim of this paper is to provide an extension of the family of SEL distributions to a
family of noncentral (NC) distributions. We derive its properties and method of estimating
the model parameters. Also, we present a multivariate extension.

The paper is organized as follows: In Section 2, we present the pdf of the noncentral
slash-elliptical (NCSEL) distribution, and some of its properties. Also, moments of order
r are obtained, including the asymmetry and kurtosis coefficients. In Section 3, we discuss
derivation of moment method and maximum likelihood estimation and report results of using
the proposed model in three real applications. Section 4 reports examples using both simu-
lated and real data to illustrate the performance of the proposed method. Section 5 presents
a discussion of the multivariate case. Finally, some concluding remarks are given in Section 6.

2. NONCENTRAL SLASH-ELLIPTICAL DISTRIBUTIONS

In this section, we introduce a family of NCSEL distributions, which is defined through
the following stochastic representation. A random variable Y represented as

Y =
W + λ

U
1
q

, λ ∈ R, q > 0,(2.1)

where W ∼ EL(0, 1; g) and U∼ U(0, 1) are independent random variables, is said to have a
NCSEL distribution, with λ being the non-centrality parameter and q the kurtosis param-
eter. This distribution will be denoted by Y ∼ NCSEL(1, q, λ; g). Before presenting some
of its important properties, we present two special cases. If W ∼ N(0, 1), then Y follows
a noncentral slash (NCS) distribution, denoted by Y ∼ NCS(1, q, λ), while if W follows a
t distribution, t(0, 1; ν), then the resulting distribution is a noncentral slash-Student-t (NCSt)
distribution, denoted by Y ∼ NCSt(1, q, λ; ν). For the special case of q = 1, this distribution
is called the canonical NCSEL distribution.

2.1. Density function

The stochastic representation in (2.1) is useful to obtain the pdf of Y , as shown in the
following result.

Proposition 2.1. Let Y ∼ NCSEL(1, q, λ; g). Then, the pdf of Y is given by

fY (y; 1, q, λ) =


q

yq+1

∫ y−λ

−λ
(u + λ)q g(u2) du, if y 6= 0,

q

q + 1
g(λ2), if y = 0.
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Proof: From (2.1), using the fact that U and W are independent and standard calcu-
lations (based on the Jacobian of the appropriate transformation), we obtain

fY,U (y, u) = u
1
q g
((

yu
1
q − λ

)2)
, y ∈ R, 0 < u < 1.

Hence, the marginal pdf of Y is given by

fY (y; 1, q, λ) =
∫ 1

0
u

1
q g
((

yu
1
q − λ

)2)
du.

Now, by substituting u for u = yt
1
q − λ, we have the required results for y 6= 0. For y = 0,

the result is immediate.

Corollary 2.1. For the special case q = 1, the pdf reduces to the form

fY (y; 1, 1, λ) =


1
y2

∫ y−λ

−λ
(u + λ) g(u2) du, if y 6= 0,

1
2

g(λ2), if y = 0.

Corollary 2.2. If W ∼ N(0, 1), then

i) The pdf of Y is

fY (y; 1, q, λ) =
1√
2π

∫ 1

0
u

1
q e−

1
2

(
y u

1
q −λ
)2

du;

ii) For q = 1, the pdf of Y can be expressed as

f(y; 1, 1, λ) =


1
2

{
φ(λ)− φ(y − λ) + λ

(
Φ(y − λ) + Φ(λ)− 1

)}
, if y 6= 0,

φ(λ)
2

, if y = 0,

where φ(·) and Φ(·) are the pdf and the cumulative distribution function (cdf) of

the standard normal distribution, respectively.

Proof: Both parts are direct consequences of Proposition 2.1. In Part i) consider
g(u) = (1/

√
2π) exp(−u/2), and in Part ii), for y 6= 0, we have

fY (y;λ) =
∫ 1

0

u√
2π

e−
1
2
(y u−λ)2du.

Letting w = yu− λ, fY (y;λ) can be expressed as

fY (y;λ) =
1√

2πy2

∫ 1

0
(w + λ) e−

w2

2 dw

=
1
y2

[
1√
2π

(
e−

λ2

2 + e−
(y−λ)2

2

)
+
∫ y−λ

−λ
φ(w) dw

]
=

1
y2

{
φ(λ)− φ(y − λ) + λ

(
Φ(y − λ) + Φ(λ)− 1

)}
.

Finally, for y = 0, the result is direct.
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Figure 1 illustrates some possible shapes of the pdf of Y for some parameter values of λ.
It can be seen that the parameter λ controls the skewness of the distribution. It is also possible
to observe that, as |λ| increases, the density becomes more skewed. Figure 2 displays some
possible shapes of the pdf of Y for some parameter values of q and σ = 1. From this figure,
we note that the parameter q controls the kurtosis of the distribution. Moreover, for smaller
values of q we have a heavy-tailed distribution.
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Figure 1: NCS pdf plots for q = 1 and different values of λ.
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Figure 2: NCS pdf plots for λ = 2 (left panel) and λ = −2 (right panel)
and different values of q.

A slight extension of the NCSEL distribution is obtained by introducing a scale param-
eter through the representation

Y =
σW + λ

U
1
q

= σ
W + δ

U
1
q

,(2.2)

where δ = λ/σ, W ∼ EL(0, 1; g) and U∼ U(0, 1) are independent, and σ is a scale parameter.
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This distribution is denoted by NCSEL(σ, q, λ; g), and its pdf is given by

fY (y;σ, q, λ) =
1
σ

∫ 1

0
u

1
q g

((
y u

1
q − λ

σ

)2)
du.

An important class of symmetric distributions is the family of normal/independent (NI)
(or scale mixture of normal) distributions, which contains many important unimodal distri-
butions such as the contaminated normal (CN), S, t and Laplace (L) distributions, among
others, all possessing heavier tails than the normal. For more information on this family of
distributions, see for example, Andrews and Mallows ([2]) and Lange and Sinsheimer ([20]).
A random variable W is said to have a standard NI distribution, if it can be related to the
normal distribution through the stochastic representation W = V −1/2Z0, where Z0 ∼ N(0, 1)
is independent of the positive random variable V . The pdf of W can be expressed as

(2.3) φNI(w) =
∫ ∞

0

v1/2

√
2π

exp
{
−v

2
w2

}
dHV (v;ν),

where HV ( · ;ν) is the cdf of V , indexed by a scalar or vector of parameters ν. The distribution
of W is denoted by W ∼ NI(0, 1;HV ). In the EL distribution context, the generator function
g( ·) for an NI distribution is

(2.4) g(u) =
∫ ∞

0

v1/2

√
2π

exp
{
−v

2
u

}
dHV (v), v > 0.

Some special cases of the family of NI distributions are for example:

1) The CN distribution: Here V has pdf given by hV (v) = ν I{γ}(v) + (1− ν) I{1}(v),
0 < ν < 1, 0 < γ < 1, where IA(·) denotes the indicator function of the set A and
ν = (ν, γ)>. Then, the pdf of W is

φNI(w) =
[
ν
√

γ φ
(√

γ w
)

+ (1− ν) φ
(
w
)]

, y ∈ R.

2) The S distribution: Here V ∼ Beta(ν, 1) and the pdf of W is

φNI(w) = ν

∫ 1

0
vν−1φ(w; 0, v−1) dv, w ∈ R.

3) The t distribution: Here V ∼ Gamma(ν/2, ν/2), so the t distribution has as special
cases the Cauchy model for ν = 1 and the normal model as ν →∞, and the pdf
of W is

φNI(w) = k(ν) νν/2
(
ν + w2

)−( ν+1
2 ), w ∈ R,

where k(ν) = Γ
(

ν+1
2

)/[√
π Γ
(

ν
2

)]
.

Remark 2.1. The special case Y ∼ NCS(σ, 1, λ), i.e. q = 1, will be called as the canon-
ical NCS and its pdf is

f(y, σ, λ) =


σ2

y2

[
φ

(
λ

σ

)
− φ

(
y − λ

σ

)
+

λ

σ

(
Φ
(

y − λ

σ

)
+ Φ

(
λ

σ

)
− 1

)]
, if y 6= 0,

φ(λ
σ )
2

, if y = 0,

where φ(·) and Φ(·) are the pdf and cdf of the standard normal distribution, respectively.
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2.2. Properties

In this section, we present some properties of the NCSEL distribution.

Proposition 2.2. Let Y ∼ NCSEL(σ, q, λ; g). Then,

i) If λ = 0 and q →∞, then Y ∼ EL(0, σ2; g);

ii) If λ = 0, then Y ∼ SEL(0, σ2, q; g);

iii) If U1 = U1/q in (2.2), then the conditional pdf of U1 = u, given Y = y, is

fU1|Y (u|y) =
quq−1

fY (y)
fY |U1

(y|u) I(0,1)(u),

where fY |U1
( · |u) is the pdf of EL

(
λ
u , σ2

u2 ; g
)

distribution;

iv) If W = V −1/2Z0 ∼ NI(0, 1;HV ) in (2.2), then the conditional mean of U rV s for

r ≥ 0, s ≥ 0, given Y = y, is

E
[
U rV s |y

]
=

q

σ fY (y)

∫ 1

0
ur+q

[∫ ∞

0

vs+1/2

√
2πσ2

exp
{
− v

2σ2
(uy − λ)2

}
fV (v) dv

]
du.

For the special case V ∼ Gamma(ν/2, ν/2),

E
[
U rV s |y

]
=

qd(ν, s)
σ fY (y)

∫ 1

0
ur+q

[
ν +

(
uy − λ

σ

)2]− 2s+ν+1
2

du,

where

d(ν, s) = 2sνν/2 Γ
(

2s + ν + 1
2

)/(√
π Γ
(

ν

2

))
.

Remark 2.2. We now present some comments on the usefulness of the results pro-
posed in Proposition 2.2:

1) Parts i) and ii) state that the NCSEL distribution contains the elliptical distribution
as a special case as q →∞ and the noncentral parameter is zero (λ = 0). Moreover,
the NCSEL distribution contains as special case the SEL distribution when λ = 0.

2) Letting U2 = U−1/q in the representation in (2.2), we can get the following model

Y = µ + λU2 + U2W,(2.5)

where W ∼ EL(0, σ2; g) and U2 are independent and µ ∈ R. We note that the con-
ditional distribution of Y , given U2 = u follows a Y | (U2 = u) ∼ EL(µ + λu, uσ2; g)
for some density generator g( ·).

3) The distribution in (2.5) is like a variance-mean mixture of the EL distribution
proposed by Barndorff-Nielsen ([5]), in which W follows a normal distribution,
which has been used in financial empirical studies.

4) Finally, Part iv) is useful to implement the EM-algorithm in ML estimation.
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2.3. Moments

In this section, we discuss distributional moments of the NCSEL distribution, an impor-
tant need in any statistical analysis. Some of the important characteristics of a distribution
can be studied through moments, which are used to derive moment estimators, and skewness
and kurtosis coefficients.

Proposition 2.3. Let Y ∼ NCSEL(σ, q, λ; g) such that

Y =
σW + λ

U
1
q

= σ
W + δ

U
1
q

,

where δ = λ
σ . Then, for r = 1, 2, 3, ... and q > r, E[Y r] = σrµr, where

µr = E[Xr] =
q

q − r

r∑
k=0

(
r

k

)
δr−k ak/2,

with X∼ NCSEL(1, q, δ; g) and ak/2 =
∫∞
−∞ xkg(x2) dx.

Proof: Using the stochastic representation of X and Y , and the independence of W

and U , we have

µr = E[Xr] = E

[(
W + δ

U
1
q

)r]
= E

[
(W + δ)r

]
E
[
U
− r

q
]
.

Using the binomial theorem for (W + δ)r and applying expectation, we have

E
[
(W + δ)r

]
=

r∑
k=0

(
r

k

)
δr−k E

[
W k
]
,

where E[W k] = ak/2 =
∫∞
−∞ xkg(x2) dx. Since E[U− r

q ] = q
q−r , q > r, we obtain the required

result.

Corollary 2.3. Let Y ∼ NCSEL(σ, q, λ; g). Then, the mean and variance of Y are

given by

E[Y ] =
λ q

q − 1
, q > 1, and Var(Y ) =

σ2q

q − 2

((
λ

σ(q − 1)

)2
+ a1

)
, q > 2.

Proposition 2.4. Let Y ∼ NCSEL(σ, q, λ; g). Then, the asymmetry and kurtosis

coefficients of Y are respectively

γ1 =
q

q−3 (δ3 + 3a1)− 3δ q
(q−1)(q−2) (δ2 + a1) + 2δ3q3

(q−1)3[
q

q−2

(
δ2

(q−1)2
+ a1

)]3
2

, q > 3,

β2 =
q

q−4 (δ4 + 6δa1 + a2)− 4δ q2

(q−1)(q−3) (δ3 + 3a1) + 6δ2q3

(q−1)2 (q−2)
(δ2 + a1)− 3δ4q4

(q−1)4[
q

q−2

(
δ2

(q−1)2
+ a1

)]2 , q > 4.
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Proof: The proof follows by using the formulas of asymmetry and kurtosis coefficients
given respectively by

γ1 =
µ3 − 3µ1µ2 + 2 µ3

1

(µ2 − µ2
1)

3
2

and β2 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)2

,

where µk, k = 1, ..., 4, as given in Proposition 2.3.

Figure 3 displays graphs for the asymmetry coefficient and kurtosis coefficient of the
NCS distribution.
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Figure 3: Graphs for the asymmetry coefficient (left) and the kurtosis coefficient (right)
of the NCS distribution.

3. INFERENCE

Here, we discuss the moment method (MM) and ML estimation for parameters λ, σ and q

of the NCSEL distribution based on a random sample Y1, ..., Yn of Y ∼ NCSEL(σ, q, λ; g).
We present the MM estimation and then the ML estimation.

3.1. Method of moment estimation

We discuss an MM estimation based on the distributional moments which are presented
in the following result.
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Proposition 3.1. The moment estimators of λ and σ are

λ̂M (q̂M ) =
Y (q̂M − 1)

q̂M
and σ̂M (q̂M ) =

√√√√ 1
a1

(
S2(q̂M − 2)

q̂M
−

λ̂2
M

(q̂M − 1)2

)
,

where a1 = E[W 2], whereas the moment estimator of q is the solution in the interval (3,∞)
for the nonlinear equation

(q − 3) Y 3 − q
(
σM (q)

)3((λM (q)
σM (q)

)3
+ 3a1

)
= 0.

Proof: These equations follow from Proposition 2.3 and Corollary 2.3.

3.2. Maximum likelihood estimation

We now discuss the ML estimation for a sample of size n. The log-likelihood function
for the parameters σ, q and λ can be written as

(3.1) `(σ, q, λ) = −n log(σ) +
n∑

i=1

log G(yi),

where G(yi) = G(yi;σ, q, λ) =
∫ 1
0 v

1
q g

((
yi v

1
q −λ
σ

)2)
dv and hence the likelihood equations are

given by

(3.2)
n∑

i=1

Gσ(yi)
G(yi)

=
n

σ
,

n∑
i=1

Gq(yi)
G(yi)

= 0,

n∑
i=1

Gλ(yi)
G(yi)

= 0,

where Gσ(yi) = ∂
∂σG(yi), Gq(yi) = ∂

∂qG(yi), Gλ(yi) = ∂
∂λG(yi), which can be expressed as

Gσ(yi) = − 2
σ

∫ 1

0
u

1
q g′(t2i ) t2i du,

Gq(yi) = − 1
σq2

∫ 1

0
u

1
q log(u)

(
σg(t2i ) + 2 ti yi g

′(t2i )
)

du,

Gλ(yi) = − 2
σ

∫ 1

0
u

1
q g′(t2i ) ti du,

where ti = (yi u
1
q − λ)/σ. Solutions for equations in (3.2) can be obtained using numeri-

cal procedures such as the Newton–Raphson procedure. This procedure requires the maxi-
mization of the log-likelihood function which involves integrals that make the maximization
difficult, especially when the NCSEL model is based on a bimodal elliptical distribution.
But when the NCSEL model is based on the family of the NI distributions, an EM algorithm
can be implemented to obtain the ML estimates of the model parameters, as we show next.
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3.3. EM algorithm

The EM-algorithm is a well known technique for the ML estimation when unobserved
(or missing) data or latent variables are present while modeling. This estimation algo-
rithm enables computationally efficient determination of the ML estimates when iterative
methods are required. For a random sample of size n of the NCSEL(σ, q, λ;ν) model, let
y = (y1, ..., yn)> be observed data, and let u = (u1, ..., un)> and v = (v1, ..., vn) be unobserved
data, so the complete dataset is yc = (y>,v>,u>)>. In what follows, we describe the imple-
mentation of the EM-algorithm for the ML estimation of the parameters of the NCSEL model.
For this purpose, we first present the NCSEL model in an incomplete-data framework, where
the model can be written hierarchically as

Y | Ui = ui, Vi = vi ∼ N
(
u−1

i λ, σ2u−2
i v−1

i

)
,

Ui | Vi = vi ∼ Beta(q, 1),(3.3)

Vi ∼ h(·).

The complete-data log-likelihood function for θ = (σ, q, λ)> given yc (without the additive
constant) is given by

`c(θ|yc) = −n

2
log σ2 +

1
2

n∑
i=1

log(u2
i vi)−

1
2 σ2

n∑
i=1

(
u2

i vi y
2
i − 2 uiviλ yi + λ2vi

)
+ `c(q|yc),

where `c(q|yc) =
∑n

i=1 `ci(q|yc), with `ci(q|yc) = log q + (q − 1) log ui. Letting ûivi =
E(UiVi |yi,θ = θ̂), û2

i vi = E(U2
i Vi |yi,θ = θ̂) and v̂i = E(Vi |yi,θ = θ̂). The conditional expec-

tation of the complete-data log-likelihood function (without the additive constant) is given
by Q(θ|θ̂) = E

[
`c(θ|yc) |y, θ̂

]
=
∑n

i=1 Qi(θ|θ̂), where Qi(θ|θ̂) has the form

Qi(θ|θ̂) = −1
2

log σ2 − 1
2 σ2

(
û2

i vi y
2
i − 2 λ ûivi yi + λ2 v̂i

)
+ Qci(q|θ̂),

where Qci(q|θ̂) = log q + (q − 1)Si, with Si = E
[
log Ui |yi

]
, i = 1, ..., n. Since the quantity Si

does not have closed form, it must be computed numerically. We follow the idea from Lee
and Xu ([21]) and Reyes et al. ([27]) to compute Qci(q|θ̂). Specifically, let {ur; r = 1, ..., R}
be a sample randomly drawn from the conditional distribution Ui | (Yi = yi,θ = θ̂), so the
quantity Qci(q|θ̂) can be approximated as follows:

Qci(q|θ̂) ≈ 1
R

R∑
r=1

`ci(q|ur).

We then have the EM-algorithm for the ML estimation of the parameters of the NCSEL
model as follows:

E-Step: Given θ = θ̂
(k)

=
(
σ̂(k), q̂(k), λ̂(k)

)>, compute ûivi
(k), û2

i vi

(k)
and v̂i

(k), for
i = 1, ..., n;
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CM-step I: Update λ̂(k) and σ̂(k) and maximize Q
(
θ|θ̂

(k))
over λ and σ, which leads

to the expressions:

λ̂(k+1) =
∑n

i=1 ûivi
(k)yi∑n

i=1 v̂i
(k)

,

σ̂2(k+1) =
1
n

n∑
i=1

(
û2

i vi

(k)
y2

i − 2 λ̂(k+1) ûivi
(k)yi + λ̂2(k+1) v̂i

(k)
)
;

CM-step II: Fix λ = λ̂(k) and σ2 = σ̂2
(k)

, update q(k) by

q̂(k+1) = arg max
q

Q
(
λ̂(k), σ̂2

(k)
, q|θ̂

(k)
)
.

The iterations are repeated until a suitable convergence rule is satisfied, say
∥∥θ(l+1) − θ(l)

∥∥
sufficiently small. Useful starting values are required to implement this algorithm, and the
moment estimates can be used effectively as initial values in the iterative procedure for
computing the ML estimates.

3.4. Estimation of standard errors

To compute the standard errors of the ML estimates, we follow the information-based
method exploited by Louis ([22]) and Meilijson ([23]), who proposed using of empirical infor-
mation matrix, which is computed as

Ic(θ|y) =
n∑

i=1

s(yi |θ) s(yi |θ)> − 1
n

S(y|θ) S(y|θ)>,

where S(y|θ) =
∑n

i=1 s(yi |θ), with s(yi |θ) = E
[(

∂`(θ|yci)/∂θ
) ∣∣ yi, θ

]
being the empirical

score function for the i-th individual, which can be written as

s(yi |θ) =
(
∂Qi(θ|θ̂)/∂σ, ∂Qi(θ|θ̂)/∂q, ∂Qi(θ|θ̂)/∂λ

)>
,

whose elements are given by

∂Qi(θ|θ̂)/∂σ = − 1
σ

+
1
σ3

(
û2

i vi y
2
i − 2 λ ûivi yi + λ2 v̂i

)
,

∂Qi(θ|θ̂)/∂q =
1
q

+ E
[
log Ui |yi

]
,

∂Qi(θ|θ̂)/∂λ =
1
σ2

(
ûivi yi − λv̂i

)
.

Now, replacing θ by its ML estimates θ̂ in Ic(θ|y), we obtain

Ic(θ̂|y) =
n∑

i=1

s(yi |θ̂) s(yi |θ̂)> − 1
n

S(y|θ̂) S(y|θ̂)>,

which is used to compute the standard errors of the ML estimates.
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4. ILLUSTRATIVE EXAMPLES

4.1. Simulation study

For each scenario, we simulate data based on the stochastic representation of the model
presented in (2.1). The objective of this simulation study is to evaluate if the estimation al-
gorithm developed in Section 3.3 can recover the parameters with which the simulation is
performed. We consider two special cases of NCSEL models based on the NCS distribution
(Table 1) and the NCSt distribution with ν = 5 (Table 2), while for ν = 10 the result is
reported in the Appendix (see Table 9). We consider three cases for λ: −0.5, 0.5 and 1.0;

Table 1: Simulation for the NCS distribution.

true values n = 50 n = 100 n = 200

λ σ q
bθ

mean s.e.
√

MSE mean s.e.
√

MSE mean s.e.
√

MSE

bλ −0.5223 0.1201 0.1238 −0.5137 0.0837 0.0899 −0.5128 0.0584 0.0678
1 bσ 0.5250 0.1203 0.1333 0.5127 0.0826 0.1046 0.5129 0.0579 0.0730

0.5
bq 1.1230 0.2760 0.4144 1.0610 0.1693 0.1810 1.0391 0.1143 0.1229

bλ −0.5237 0.1067 0.1125 −0.5160 0.0739 0.0762 −0.5054 0.0502 0.0518
3 bσ 0.5150 0.1054 0.1062 0.5118 0.0733 0.0794 0.5032 0.0494 0.0494

−0.5
bq 4.4343 3.7121 3.1171 3.7622 1.7486 2.0391 3.2533 0.7639 0.9762

bλ −0.5244 0.1922 0.1874 −0.5143 0.1328 0.1406 −0.5105 0.0926 0.0965
1 bσ 1.0459 0.2533 0.2627 1.0377 0.1737 0.2160 1.0269 0.1207 0.1564

1.0
bq 1.1265 0.3081 0.4225 1.0654 0.1807 0.1958 1.0447 0.1222 0.1346

bλ −0.5162 0.1782 0.1732 −0.5184 0.1230 0.1256 −0.5065 0.0843 0.0843
3 bσ 1.0549 0.2290 0.2290 1.0349 0.1585 0.1624 1.0150 0.1068 0.1120

bq 4.9179 5.0027 3.6413 3.9935 2.3857 2.4501 3.3853 1.0160 1.3326

bλ 0.5257 0.1206 0.1239 0.5151 0.0838 0.0896 0.5104 0.0588 0.0669
1 bσ 0.5261 0.1207 0.1270 0.5149 0.0831 0.0982 0.5139 0.0583 0.0812

0.5
bq 1.1091 0.2599 0.2906 1.0582 0.1691 0.1826 1.0365 0.1147 0.1271

bλ 0.5201 0.1061 0.1006 0.5133 0.0741 0.0755 0.5085 0.0504 0.0504
3 bσ 0.5185 0.1053 0.1077 0.5140 0.0741 0.0804 0.5071 0.0497 0.0508

0.5
bq 4.4930 3.6785 3.1798 3.8143 1.8557 2.1013 3.2819 0.7595 0.8955

bλ 0.5206 0.1930 0.2006 0.5186 0.1325 0.1336 0.5085 0.0924 0.0941
1 bσ 1.0612 0.2536 0.2761 1.0364 0.1736 0.1792 1.0254 0.1204 0.1304

1.0
bq 1.1279 0.3017 0.3844 1.0627 0.1793 0.1973 1.0433 0.1217 0.1272

bλ 0.5269 0.1779 0.1758 0.5128 0.1230 0.1304 0.5086 0.0848 0.0842
3 bσ 1.0445 0.2312 0.2270 1.0398 0.1593 0.1701 1.0184 0.1082 0.1115

bq 4.8398 5.0577 3.5896 4.0944 2.5002 2.5839 3.3558 0.9935 1.2306

bλ 1.0273 0.1600 0.1719 1.0230 0.1120 0.1271 1.0211 0.0785 0.1279
1 bσ 0.5068 0.1157 0.1313 0.5051 0.0797 0.1007 0.5123 0.0554 0.1152

0.5
bq 1.0760 0.2167 0.2387 1.0495 0.1457 0.1567 1.0396 0.1010 0.1253

bλ 1.0303 0.1318 0.1380 1.0150 0.0899 0.0939 1.0087 0.0620 0.0610
3 bσ 0.5076 0.0980 0.1059 0.5045 0.0670 0.0690 0.5015 0.0460 0.0435

1.0
bq 3.8927 2.1092 2.2969 3.3113 0.8944 1.1456 3.1370 0.5151 0.5628

bλ 1.0566 0.2452 0.2488 1.0311 0.1686 0.1752 1.0307 0.1186 0.1524
1 bσ 1.0597 0.2465 0.2595 1.0353 0.1674 0.1953 1.0326 0.1172 0.1834

1.0
bq 1.1176 0.2673 0.3278 1.0721 0.1720 0.1955 1.0404 0.1156 0.1274

bλ 1.0501 0.2142 0.2096 1.0324 0.1478 0.1531 1.0138 0.1011 0.1031
3 bσ 1.0414 0.2118 0.2181 1.0255 0.1468 0.1573 1.0130 0.0999 0.1032

bq 4.5624 3.8165 3.2397 3.7511 1.7692 2.0399 3.2569 0.7691 0.9233
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two for σ: 0.5 and 1.0; two for q: 1 and 3; and three for the sample size: n = 50, n = 100
and n = 200. Each combination of parameters and sample size was replicated 1000 times.
We present the mean of the obtained estimators, the mean of the standard deviations calcu-
lated based on the observed information matrix and the root mean square error. Note that
the bias of the estimators is acceptable and decreases as the sample size increases. Addition-
ally, when the sample size increases, the mean of the estimated deviations approximates the
term

√
MSE, suggesting consistent estimators.

Table 2: Simulation for the NCSt distribution with ν = 5 degrees of freedom.

true values n = 50 n = 100 n = 200

λ σ q
bθ

mean s.e.
√

MSE mean s.e.
√

MSE mean s.e.
√

MSE

bλ −0.5299 0.1315 0.1346 −0.5174 0.0906 0.0894 −0.5121 0.0632 0.0601
1 bσ 0.5361 0.1395 0.1441 0.5207 0.0953 0.0946 0.5191 0.0665 0.0620

0.5
bq 1.1435 0.2982 0.3739 1.0772 0.1830 0.2004 1.0560 0.1239 0.1254

bλ −0.5174 0.1245 0.1151 −0.5128 0.0872 0.0849 −0.5091 0.0599 0.0603
3 bσ 0.5196 0.1336 0.1200 0.5149 0.0946 0.0902 0.5086 0.0651 0.0656

−0.5
bq 4.7202 5.7034 3.4817 4.1062 3.3006 2.6697 3.4869 1.4701 1.5523

bλ −0.5331 0.2151 0.2202 −0.5146 0.1443 0.1431 −0.5173 0.1017 0.1055
1 bσ 1.0902 0.2921 0.3318 1.0422 0.1947 0.1942 1.0312 0.1363 0.1294

1.0
bq 1.1882 0.4338 0.6419 1.0734 0.1946 0.2034 1.0517 0.1320 0.1383

bλ −0.5181 0.2047 0.1882 −0.5214 0.1453 0.1395 −0.5163 0.1008 0.1009
3 bσ 1.0402 0.2914 0.2394 1.0381 0.2103 0.1863 1.0252 0.1457 0.1435

bq 5.0573 8.1198 3.8670 4.2968 4.4232 2.9118 3.7668 2.3982 2.1330

bλ 0.5302 0.1315 0.1326 0.5180 0.0898 0.0904 0.5146 0.0632 0.0608
1 bσ 0.5426 0.1403 0.1523 0.5208 0.0945 0.0893 0.5174 0.0660 0.0619

0.5
bq 1.1508 0.3073 0.3942 1.0856 0.1845 0.2021 1.0604 0.1246 0.1299

bλ 0.5195 0.1260 0.1164 0.5142 0.0882 0.0832 0.5108 0.0608 0.0609
3 bσ 0.5219 0.1358 0.1246 0.5165 0.0962 0.0910 0.5113 0.0661 0.0672

0.5
bq 4.8069 6.2872 3.5639 4.0846 3.3858 2.5787 3.5687 1.7137 1.7158

bλ 0.5380 0.2131 0.2281 0.5261 0.1464 0.1445 0.5123 0.1011 0.0956
1 bσ 1.0749 0.2865 0.3011 1.0518 0.1959 0.2048 1.0345 0.1359 0.1298

1.0
bq 1.1655 0.3513 0.4978 1.0810 0.1974 0.2185 1.0543 0.1324 0.1372

bλ 0.5269 0.2062 0.1976 0.5206 0.1462 0.1400 0.5160 0.1004 0.0992
3 bσ 1.0444 0.2898 0.2434 1.0442 0.2135 0.1956 1.0208 0.1455 0.1376

bq 4.9896 7.5749 3.8015 4.3185 4.5664 2.9438 3.7512 2.3581 2.0826

bλ 1.0530 0.1734 0.1826 1.0363 0.1197 0.1211 1.0298 0.0855 0.0804
1 bσ 0.5341 0.1403 0.1475 0.5235 0.0952 0.0956 0.5187 0.0676 0.0653

0.5
bq 1.1284 0.2458 0.3075 1.0859 0.1590 0.1768 1.0677 0.1109 0.1215

bλ 1.0383 0.1514 0.1523 1.0149 0.1026 0.1044 1.0084 0.0698 0.0718
3 bσ 0.5177 0.1227 0.1225 0.5076 0.0838 0.0851 0.5061 0.0574 0.0583

1.0
bq 4.1493 3.1966 2.6803 3.4830 1.4792 1.5935 3.2059 0.6775 0.7802

bλ 1.0635 0.2631 0.2795 1.0414 0.1807 0.1830 1.0265 0.1257 0.1239
1 bσ 1.0739 0.2784 0.3209 1.0503 0.1903 0.1866 1.0335 0.1317 0.1249

1.0
bq 1.1522 0.3307 0.5153 1.0766 0.1817 0.1832 1.0615 0.1248 0.1327

bλ 1.0436 0.2494 0.2362 1.0352 0.1751 0.1659 1.0115 0.1193 0.1195
3 bσ 1.0400 0.2683 0.2404 1.0316 0.1897 0.1813 1.0202 0.1299 0.1308

bq 4.7107 5.8531 3.4608 4.0555 3.2062 2.5689 3.5171 1.5251 1.6419
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4.2. Applications to real data

In this section, we use two real datasets to show the flexibility and applicability of the
proposed NCSEL model. In these applications, we present analyses of the two real datasets
to show the flexibility and applicability of the proposed NCSEL model by illustrating the fit
of the proposed model and the use of the proposed EM-algorithm. We compare the results
of these fits with other models that have been used. All the computations were done using
the R package.

4.2.1. Nickel dataset

In this application, we consider a dataset consisting details regarding of Nickel (Ni)
concentrations in 86 soil samples analyzed at the Mining Department of the University of
Atacama, Chile. We report the ML estimates obtained under other models such as the
Epsilon Skew-Normal (ESN) distribution (Mudholkar and Hutson ([25])) and Skew-Normal
(SN) distribution (Azzalini ([4])), and compare them with our NCS model. A descriptive
summary of this dataset is displayed in Table 3 where b1 and b2 are sample asymmetry and
kurtosis coefficients, respectively.

Table 3: Nickel data: Descriptive summary of the mineral data.

n X S b1 b2

86 21.3372 16.6392 2.4483 12.0429

We observe that the data have positive asymmetry and high kurtosis. For this dataset,
the NCS model moment estimators are given by λ̂M = 15.340, σ̂M = 9.234 and q̂M = 3.558,
which were used as initial values to start the EM algorithm. The ML estimates of the
parameters of the ESN, SN and NCS models are found in Table 4. The AIC values Akaike ([1])
are given in Table 4. The model that provides the best fit for these data is the NCS model,
which is supported by results in Figure 4 and the Q-Q plot in Figure 5.

Table 4: Nickel data: ML estimates and corresponding standard error (SE)
for ESN, SN and NCS models.

Parameter ESN SN NCS

µ 4.006 (1.249) 2.626 (2.066)
σ 13.398 (1.022) 24.975 (2.454) 5.329 (0.735)
q 2.190 (0.398)
λ 10.259 (9.603) 12.030 (1.044)
ε −0.856 (0.057)

AIC 696.419 695.523 680.363
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Figure 4: Nickel data: Fitted models, ESN (dotted line), estimated SN (dashed line)
and estimated NCS (solid line) (Left panel). Upper tail of histogram with
estimated ESN (dotted line), estimated SN (dashed line) and estimated NCS
(solid line) (Right panel).
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Figure 5: Nickel data: Q-Q plots; ESN model (a), SN model (b) and NCS model (c).
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4.2.2. Copper data

This dataset refers to the soluble copper concentration of 1933 samples (Fuentes ([11])),
for which the ML estimates are obtained for the Epsilon Skew-t (ESt) model (Gómez et al.

([14])), the Skew-t (St) model and for our NCSt model. A descriptive summary of this
dataset is reported in Table 5. For this dataset, we observe positive asymmetry and kurtosis
coefficients.

Table 5: Copper data: Descriptive statistics of the dataset.

n y S b1 b2

1933 0.591 0.302 1.196 4.633

Moreover, the moment estimates under the NCS model are given by λ̂M = 0.441, σ̂M =
0.150 and q̂M = 3.950, which were used as initial values to start the EM algorithm. Table 6
reports the estimates of the degrees of freedom, ν, for each model based on the Student-t distri-
bution, which are obtained by maximizing the profile log-likelihood function, as in Vilca et al.

([30]). The estimates of ν is obtained for the ESt, St and NCSt models, as reported in Table 7.
This table also includes the AIC values, revealing that the NCSt model fits the data well.

Table 6: Copper data: Estimation of ν for the St, ESt and NCSt models
by maximizing the log-likelihood function.

Log-likelihood Log-likelihood Log-likelihood
ν

St ESt NCSt

1 −359.599 −416.062 −709.297
2 −327.326 −266.335 −328.671
3 −209.663 −227.596 −223.877
4 −197.641 −213.163 −192.580
5 −191.688 −206.886 −188.485
6 −188.635 −203.988 −185.151
7 −187.067 −202.669 −189.139
8 −186.303 −202.151 −189.365
9 −185.992 −202.068 −190.621
10 −185.941 −202.195 −192.370
11 −186.042 −202.455 −193.973

Table 7: Copper data: ML estimates and the corresponding SE (in parentheses)
for the St (ν = 10), ESt (ν = 9) and NCSt (ν = 6) models.

Parameter St ESt NCSt

µ 0.253 (0.008) 0.351 (0.013) —
σ 0.404 (0.010) 0.2396 (0.004) 0.1355 (0.022)
q 5.991 (0.168)
λ 4.262 (0.360) 3.162 (0.475)
ε −0.563 (0.029)

AIC 377.881 410.115 376.301
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Moreover, we present other results to show the performance of our approach. Figure 6 depicts
plots of the fitted St, ESt and NCSt models using the ML estimates. We note that the fitted
NCSt model presents heavier tails than the other models. Figure 7 shows the Q-Q plots for
these fitted models. From all these summaries and plots, we can conclude that the NCSt
model provides the best fit to the data.
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Figure 6: Copper data: Fitted models, NCSt (solid line), St (dashed line)
and ESt (dotted line) (Left panel). Plots of the tails for the models
(Right panel).
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Figure 7: Copper data: Q-Q plots; St model (a), ESt model (b) and NCSt model (c).
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4.2.3. Snack data

We consider in this application part of the data of an experiment performed in the
Department of Nutrition of the Faculty of Public Health of the University of São Paulo, in
which 5 different forms of a new type of snack, with low content of saturated fat and fatty
acids, were compared over the course of 20 weeks. In this new product the hydrogenated
vegetable fat has been replaced, in whole or in part, by canola oil. The forms are as follow:
A (22% of fat 0% of canola oil), B (0% fat, 22% canola oil), C (17% fat, 5% canola oil),
D (11% fat, 11% canola oil) and E (5% fat, 17% canola oil). The experiment was conducted
so that in the even weeks 15 packs of each of the products A, B, C, D and E were analyzed
in the laboratory and several variables were observed. In particular, we study the texture
behavior of the products through the force necessary for shear (y). For more details on the
study, see Paula ([26]), Section 2.8.1. The equation is

yi = β0 + β1xiB + β2xiC + β3xiD + β4xiD + β5xiE + β6weeks i + εi, i = 1, ..., n,

where xiT = 1 if measurement i corresponds to a snack of type T , for T = B,D,C,E, and
weeksi is the number of weeks that passed until measurement i was made.

We assume that εi ∼ NCS(σ, q, λ), where λ = −β0(q− 1)/q, with q > 1. This condition
is to obtain that E(εi) = 0, i = 1, ..., n, with the purpose of comparing the fit under εi ∼
ESN(σ, ε, µ1) and SN(σ, λ, µ2) distributions. We also consider appropriate restrictions such
as µ1 = g(σ, ε, β0) and µ2 = g(σ, λ, β0), in order to obtain that E(εi) = 0, i = 1, ..., n.

Results of the fit of the models are reported in Table 8. Note that, according to the
AIC criterion, the best fit is provided by the NCS regression model. This is confirmed by the
randomized quantile residuals, see Dunn and Smyth ([8]). If the model is correctly specified
for the data, such residuals should be a random sample from the standard normal distribution.
Figure 8 confirms that the NCS regression model provides a better fit than the ESN and SN
regression models.

Table 8: Snack data: ML estimates and corresponding standard errors (SE)
for ESN, SN and NCS regression models.

Parameter
ESN SN NCS

Estimate SE Estimate SE Estimate SE

β0 58.044 2.095 57.958 46.910 56.483 1.512
β1 −10.907 1.755 −10.907 1.680 −8.167 1.626
β2 −4.569 1.68 −4.569 1.680 −4.762 1.634
β3 −15.174 1.84 −15.174 1.680 −11.708 1.632
β4 −15.945 1.858 −15.944 1.680 −12.624 1.627
β5 0.742 0.094 0.742 0.092 0.713 0.082
σ 14.550 0.399 14.551 0.379 9.233 0.527
ε 0.000 0.054 — —
λ — 0.007 4.038 —
q — — 6.444 0.614

AIC 6160.839 6160.839 6083.816
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Figure 8: Snack data: Empirical cdf for randomized quantile residual versus
cdf of standard normal distribution for ESN, SN and NCS regres-
sion models. Also provided are the statistics and p-values for the
Kolmogorov–Smirnov (KS) test to compare both curves.

5. MULTIVARIATE NCSEL DISTRIBUTIONS

In this section the multivariate NCSEL distribution is introduced, its pdf is derived
and some additional properties are studied.

In the multivariate setup, a k-dimensional random vector Y = (Y1, ..., Yk)> follows an
EL distribution with location parameter vector µ and scale parameter matrix Σ, which is
positive definite, if its pdf is given by

fY(y) = |Σ|−1/2g
(
(y − µ)> Σ−1(y − µ)

)
, y ∈ Rk,

where g is the density generator function satisfying∫ ∞

0
uk−1g(u2) du < ∞.

We use the notation Y∼ ELk(µ,Σ; g). If the moments of each element of the random vec-
tor Y are finite, then it follows that E(Y) = µ and Var(Y) = αgΣ, where αg is a positive
constant, as seen for example, in Fang et al. ([10]). Now a multivariate NCSEL distri-
bution is proposed, where a k-variate vector Y is said to have a multivariate noncentral
slash-elliptical(MNCSEL) distribution with scale matrix Σ positive definite, λ being the
non-centrality parameter and q the kurtosis parameter

Y =
Σ

1
2 X + λ

U
1
q

,(5.1)

where X∼ ELk(0, Ik; g) is independent of U∼ U(0, 1). The resulting distribution is denoted
by Y∼ MNCSELk(Σ, q,λ; g). The pdf of Y is presented in the following result.

Proposition 5.1. Let Y∼ MNCSELk(Σ, q,λ; g). Then, the pdf of Y is given by

f(y) = |Σ|−
1
2

∫ 1

0
z

k
q g
[(

yz
1
q − λ

)>Σ−1
(
yz

1
q − λ

)]
dz.(5.2)
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Proof: Using the fact that X and U are independent and standard calculations of the
Jacobian transformation of

Y =
Σ

1
2 X + λ

U
1
q

and Z = U,

we obtain the join pdf of Y and Z given by

fY,Z(y, z) = |Σ|−
1
2 z

k
q g
[(

yz
1
q − λ)>Σ−1(yz

1
q − λ

)]
.

The required result is obtained by integrating the above joint pdf with respect to z.

Remark 5.1. If λ = 0, we obtain the family of distributions discussed by Gómez et

al. ([13]) and Gómez and Venegas ([15]). On the other hand for λ = 0 and under normality
of X, we obtain the slash multivariate introduced by Wang and Genton ([31]).

Another important property is that the MNCSEL distribution can be written as a scale
mixture of an elliptical distribution and a uniform distribution in the unit interval.

Proposition 5.2. Let Y | (Z = z) ∼ ELk

(
z
− 1

q λ, z
− 2

q Σ; g
)

and Z ∼ U(0, 1). Then

Y∼ MNCSELk(Σ, q,λ; g).

Proof: We can write

fY(y) =
∫ 1

0
fY|Z(y)fZ(z) dz

=
∫ 1

0

∣∣z− 2
q Σ
∣∣−1/2

g
[(

y − z
− 1

q λ
)>(

z
− 2

q Σ
)−1(y − z

− 1
q λ
)]

dz.

The result follows using properties of determinants.

Proposition 5.3. Let Y∼ MNCSELk(Σ, q,λ; g). Then,

E[Y] =
qλ

q − 1
, q > 1, and Var(Y) =

q

q − 2

(
λλ>

(q − 1)2
+ αg Σ

)
, q > 2.

Proof: Following the procedure in Proposition 5.2, we have Y | (Z = z) ∼
ELk

(
z
− 1

q λ, z
− 2

q Σ
)
. So, using the fact that E

[
Z
− r

q
]

= q
q−r , q > r and the conditional ex-

pectation properties:

E[Y] = E
[
E(Y|Z)

]
= E

[
Z
− 1

q λ
]

=
qλ

q − 1
, q > 1.

Moreover, following the same idea we obtain the variance of Y as follows:

Var(Y) = Var
[
E(Y|Z)

]
+ E

[
Var(Y|Z)

]
= Var

[
Z
− 1

q λ
]
+ E

[
Z
− 2

q αgΣ
]

= λVar
[
Z
− 1

q
]
λ> + αg E

[
Z
− 2

q
]
Σ

= λλ>
q

(q − 2)(q − 1)2
+ αg Σ

q

q − 2
, q > 2

=
q

q − 2

(
λλ>

(q − 1)2
+ αg Σ

)
, q > 2.
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6. CONCLUSION

Here we have introduced a new distribution called the NCSEL distribution. The main
idea is to incorporate a non-centrality parameter in the usual SEL distribution. The resulting
distribution is an asymmetric distribution that contains as special cases the EL and SEL
distributions. For this family of distributions we point out some important characteristics and
properties that allow us to obtain qualitatively robust ML estimates and efficiently compute
them by using the EM-algorithm for a special class based on the family of NI distributions.
We illustrate our results by using three numerical examples. They show the flexibility and
inherent robustness of the estimation procedure in the NCSEL model.

Finally, the NCSEL can be used along the same lines as the skew distributions in the
context of regression. This issue is currently under investigation, and we hope to report these
findings in a future paper.
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A. APPENDIX — Simulation study with ν = 10 degrees of freedom

Table 9: Simulation for the NCSt distribution with ν = 10 degrees of freedom.

true values n = 50 n = 100 n = 200

λ σ q
bθ

mean s.e.
√

MSE mean s.e.
√

MSE mean s.e.
√

MSE

bλ −0.5237 0.1261 0.1303 −0.5150 0.0874 0.0862 −0.5085 0.0606 0.0594
1 bσ 0.5286 0.1306 0.1324 0.5209 0.0901 0.0889 0.5125 0.0631 0.0603

0.5
bq 1.0905 0.2628 0.2901 1.0666 0.1759 0.1848 1.0399 0.1178 0.1219

bλ −0.5195 0.1147 0.1113 −0.5132 0.0796 0.0803 −0.5078 0.0549 0.0556
3 bσ 0.5171 0.1188 0.1110 0.5122 0.0825 0.0826 0.5100 0.0568 0.0611

−0.5
bq 4.4553 4.3511 3.1883 3.8335 2.2236 2.2079 3.4520 1.1176 1.3898

bλ −0.5300 0.2026 0.2120 −0.5131 0.1377 0.1423 −0.5142 0.0974 0.0966
1 bσ 1.0666 0.2710 0.2854 1.0309 0.1827 0.1846 1.0346 0.129 0.1309

1.0
bq 1.1467 0.3292 0.4879 1.0635 0.1852 0.1984 1.0458 0.126 0.1296

bλ −0.5410 0.1955 0.1905 −0.5144 0.1340 0.1342 −0.5102 0.0924 0.0944
3 bσ 1.0590 0.2610 0.2388 1.0393 0.1832 0.1805 1.0285 0.1242 0.1291

bq 5.1102 6.5417 3.8243 4.2180 3.4874 2.8081 3.6203 1.5291 1.7002

bλ 0.5294 0.1266 0.1269 0.5181 0.0871 0.0873 0.5099 0.0612 0.0581
1 bσ 0.5319 0.1303 0.1420 0.5224 0.0895 0.0897 0.5146 0.0628 0.0603

0.5
bq 1.1341 0.3178 0.4400 1.0661 0.1738 0.1850 1.0458 0.1194 0.1248

bλ 0.5292 0.1171 0.1142 0.5147 0.0800 0.0802 0.5058 0.0543 0.053
3 bσ 0.5273 0.1206 0.1170 0.5170 0.0828 0.0811 0.5061 0.056 0.0577

0.5
bq 4.8062 4.9793 3.4829 3.8846 2.3178 2.2996 3.3449 0.9999 1.213

bλ 0.5249 0.2025 0.2049 0.5109 0.1383 0.1383 0.5146 0.0978 0.0995
1 bσ 1.0680 0.2701 0.2850 1.0363 0.1849 0.1837 1.0337 0.1295 0.1285

1.0
bq 1.1345 0.3277 0.4665 1.0620 0.1851 0.1953 1.0371 0.1244 0.1284

bλ 0.5214 0.1928 0.1852 0.5266 0.1347 0.1325 0.5096 0.0917 0.094
3 bσ 1.0617 0.2578 0.2414 1.0418 0.1835 0.1784 1.0192 0.1231 0.1261

bq 5.1212 6.3880 3.8663 4.2130 3.3634 2.7218 3.5264 1.4173 1.5681

bλ 1.0358 0.1656 0.1707 1.0212 0.1147 0.1091 1.0168 0.0801 0.0757
1 bσ 0.5075 0.1261 0.1363 0.5079 0.0870 0.0862 0.5106 0.0607 0.0601

0.5
bq 1.0947 0.2264 0.2533 1.0569 0.1496 0.1536 1.0458 0.1031 0.1122

bλ 1.0376 0.1399 0.1438 1.0137 0.0952 0.0996 1.0064 0.0653 0.0656
3 bσ 0.5153 0.1090 0.1133 0.5087 0.0747 0.0791 0.5028 0.051 0.0507

1.0
bq 4.0107 2.4780 2.4694 3.4097 1.0933 1.3396 3.1600 0.5736 0.6723

bλ 1.0500 0.2525 0.2634 1.0242 0.1724 0.1668 1.0138 0.1207 0.1197
1 bσ 1.0579 0.2605 0.2797 1.0320 0.1775 0.1751 1.0235 0.1243 0.118

1.0
bq 1.1121 0.2715 0.3156 1.0594 0.1729 0.1839 1.0375 0.1172 0.1208

bλ 1.0392 0.2312 0.2183 1.0212 0.1581 0.1585 1.0148 0.1085 0.1091
3 bσ 1.0405 0.2388 0.2193 1.0229 0.1638 0.1628 1.0136 0.1116 0.1131

bq 4.5632 4.5408 3.2450 3.8152 2.1794 2.1591 3.3253 0.9405 1.0617
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REFERENCES

[1] Akaike, H. (1974). A new look at statistical model identification, IEEE Transaction on
Automatic Control, 19, 716–723.

[2] Andrews, D.F. and Mallows, C.L. (1974). Scale mixtures of normal distributions, Journal
of the Royal Statistical Society B, 36, 99–102.

[3] Arslan, O. and Genc, A.I. (2009). A generalization of the multivariate slash distribution,
Journal of Statistical Planning and Inference, 139(3), 1164–1170.

[4] Azzalini, A. (1985). A class of distributions which includes the normal ones, Scandinavian
Journal of Statistics, 12, 171–178.

[5] Barndorff-Nielsen, O.E. (1997). Normal inverse Gaussian distributions and stochastic
volatility modeling, Scandinavian Journal of Statistics, 24, 1–13.

[6] Cambanis, S.; Huang, S. and Simons, G. (1981). On the theory of elliptically contoured
distributions, J. Multivar. Anal., 11, 365–385.

[7] Dasgupta, S. and Lahiri, K. (1992). A comparative study of alternative methods of quan-
tifying qualitative survey responses using NAPM data, Journal of Business and Economic
Statistics, 10, 391–400.

[8] Dunn, P.K. and Smyth, G.K. (1996). Randomized quantile residuals, Journal of Computa-
tional and Graphic Statistics, 5, 236–244.

[9] Fama, E.F. and French, K.R. (1993). Common risk factors in the returns on stocks and
bonds, Journal of Financial Economics, 33, 3–56.

[10] Fang, K.T.; Kotz, S. and Ng, K.W. (1990). Symmetric Multivariate and Related Distri-
bution, Chapman and Hall, London.

[11] Fuentes, E. (2017). Recognition and Estimation of Resources for the Geological Unit Veti-
form By Probing (RC) in the Tunnel of Exploration Underground, in the Minera la Verdosa,
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1. INTRODUCTION

Air plane accidents are of major importance since they involve most of the times both
human and economic losses. The last decades great effort has been imposed in the safety
regulations in all the different aspects of commercial aviation. For example in a series of seven
years (2010–2016) there was not any human loss in a crash on a United States-certificated
scheduled airline operating anywhere according to official data.

In the case of military air forces things are a bit different. The continuous competitive-
ness of the air forces leads to the occurrence of air accidents. The accidents of air forces are not
in the numbers of the previous decades but still they are a fact. However, in both commercial
and military aviation few efforts have been made to monitor the air plane accidents.

Statistical Quality Control (SQC) is a well known collection of methods aiming to
continuously improve the quality of a product or a process. Rockwell ([7]) initiated the use of
statistical quality control techniques in the field of safety management. Specifically, Rockwell
([7]) dealt with the problem of safety performance measurement. The main tools of SQC
methods that are used to monitor critical parameters of a process are the control charts.

The main objective of this paper is to demonstrate how we can use control charts to
monitor the air plane accidents. To be more specific, in Section 2 we present the main points
of the theory of control charts. We outline the Shewhart and Exponentially Weighted Moving
Average (EWMA) Control Charts and the way they are used to monitor a process. In Section 3,
we apply the techniques presented in Section 2 in real accident data from the Hellenic Air
Force (HAF). Finally, in Section 4 we give some conclusions and guidelines for future research.

2. CONTROL CHARTS

One of the main objectives of a product or a process is to continuously improve its
quality. This goal, in statistical terms, may be expressed as variability reduction. SQC is
a popular collection of methods targeting at this purpose and control charts are known to
be the main tools to detect shifts in a process. The most popular control charts are the
Shewhart charts, the Cumulative Sum (CUSUM) charts and the Exponentially Weighted
Moving Average charts (EWMA). Shewhart charts are used to detect large shifts in a process
whereas CUSUM and EWMA charts have very good results for small to moderate shifts.
Since the CUSUM and EWMA control charts have similar performance, in this paper we
confine ourselves to the EWMA chart.

A control chart is a graphical representation of one or more characteristics of the process
under investigation. It is the main tool to identify special causes of variability in a process.
On the horizontal axis we plot the number of the sample drawn from the process or the time
that the sample was inspected. On the vertical axis we plot the value of the characteris-
tic or the characteristics measured for each sample or for the time of the horizontal axis.
A straight line connects the successive points indicating the level of the characteristic in time
or in successive samples. There are also three usually straight lines that stand for the upper
control limit (UCL), the center line (CL) and the lower control limit (LCL).
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We deduce that a process operates under control when the line connecting the sequence
of points does not cross UCL or LCL. When a point plots outside these limits we conclude
that the process is in an out-of-control state and corrective actions must be taken in order to
remove the assignable cause that led to this problem.

In the literature, two distinct phases of control charting practice have been discussed
(see, e.g. Woodall [12]). In Phase I, charts are used for retrospectively testing whether the
process was in-control when the first subgroups were being drawn. In this phase, the charts
are used as aids to the practitioner, in bringing a process into a state of statistical control.
Once this is accomplished, the control chart is used to define what is meant by statistical
control.

In Phase II, control charts are used to test if the process remains in-control when real
time subgroups are drawn. In this phase, the control charts are used to monitor the process
for a possible shift from the in-control state. The in-control characterization in this phase,
is most of the times determined from the values of the process parameters. These values are
usually estimated from historical data known to be under control. Usually these data are the
ones from Phase I.

The design of a control chart must take into account two contradicting aims. The
first one of them refers to the in-control state. In such a case, the control chart should
signal (false alarm) as slow as possible. On the other hand, when a process is out-of-control
the control chart must signal as soon as possible. The most popular measure to evaluate
the performance of a chart concerning the previous two objectives is the average run length
(ARL), which is based on the run length (RL) distribution. The number of observations
when we plot individual data, or the number of samples when we plot data in subgroups,
required for a control chart to signal is a run length (an observation of the RL distribution).
The mean of the RL distribution is the ARL, and it can be defined as the average number of
observations for a control chart to signal.

Since we deal with a parametric case of control charts we need to assume a distribution
for the studied phenomenon. A detailed investigation is given in the following subsection.

2.1. Distribution of air plane accidents

A well known distribution used to model the occurrence of events in time is the Poisson
distribution (Kjelln and Albrechtsen [2]). Assume that accidents occur at random points in
time, let c be the average number of accidents per unit of time for example one year. Let
x be the number of accidents occurring during t time periods. Then, the probability that
x accidents will occur during t time periods is equal to

P
(
X= x

)
=

(ct)x

x!
e−ct, x = 0, 1, 2, ...

The control charts that will be presented in the following subsections assume that the
air plane accidents are well modelled using the Poisson distribution.
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2.2. The c chart

Assume that we want to monitor the number of accidents in a fixed time period and
let c > 0 denote the parameter of the Poisson distribution for simplicity. If the true value of
the parameter c is known, the Phase II three sigma control limits will be defined as:

UCL = c + 3
√

c,

CL = c,

LCL = c− 3
√

c.

If the computed value of LCL is less than zero, then we set LCL = 0.

When the true value of the parameter c is not known, then the average number of
accidents in a preliminary sample (c̄), is applied as an estimate of c. In this case, the Phase I
control limits are defined as follows:

UCL = c̄ + 3
√

c̄,

CL = c̄,

LCL = c̄− 3
√

c̄.

The Phase I control limits are considered as trial control limits and the preliminary
samples should be examined for lack of control. If there are observations that cross the
estimated control limits due to common causes, usually these observations are excluded from
the sample and the control limits are recalculated in the usual Phase I analysis (Montgomery
[4]).

For the c chart, the probability of type I error (α) is calculated as

α = P
(
X /∈ [LCL,UCL]

∣∣ X ∼ P (c)
)

= 1−
[
Fx(UCL)− Fx(LCL)

]
= 1 −

bUCLc∑
x=dLCLe

e−ccx

x!

and the in-control ARL (ARL0) is given by the formula

ARL0 =
1
α

.

The probability of type II error (β) is

β = P
(
LCL≤X ≤ UCL

∣∣ X ∼ P (c∗)
)

= Fx(UCL)− Fx(LCL)

=
bUCLc∑

x=dLCLe

e−c∗c∗
x

x!
,
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where c∗ is the average number of defects displayed in an inspection unit in an out of control
process, dLCLe denotes the smaller integer greater than or equal to LCL and bUCLc denotes
the largest integer less than or equal to UCL. The out-of-control ARL (ARL1) is given by
the formula

ARL1 =
1

1− β
.

We must note here that the same chart presented here can be used to monitor the number
of nonconformities or defects in an inspection unit from a repetitive production process.

2.3. The ARL-unbiased c chart

The c chart with 3−σ control limits has LCL > 0 if c > 9. In case c ≤ 9, then LCL < 0
and as we mentioned before, we set it equal to zero and a downward shift of the process mean
cannot be detected. Denoting as c0 the in-control mean of the process, Paulino et al. [5]
proved that for c0 > 9, the ARL of a c chart with 3− σ control limits takes its maximum
value at the point

δ∗(c0) =
[

UCL!
(LCL− 1)!

] 1
UCL−LCL+1

− c0.

This means that the maximum of the ARL appears at a point δ∗(c0) below the zero, i.e. some
ARL1 values that correspond to downward shifts are larger than the ARL0. In this case, we
say that the chart is ARL-biased.

Many authors, such as Wetherill and Brown [11] and Ryan [8] used quantile-based
control limits. In this case LCL and UCL are the largest and smallest non-negative integers,
that satisfy

P
(
X < LCL

∣∣ c = c0

)
≤ αLCL,

P
(
X > UCL

∣∣ c = c0

)
≤ αUCL,

where αLCL + αUCL = α. Using the quantile-based control limits, we have ARL0 = 1/α.

Paulino et al. [5] proposed a c chart, named as ARL-unbiased c chart, with quantile-
based control limits, that triggers a signal with probability one if the sample number of defects
is below LCL or above UCL and probabilities γLCL and γUCL if the sample number of defects
is equal to LCL and UCL, respectively. The values of probabilities γLCL and γUCL can be
obtained by solving a system of linear equations. The solution of this system gives

γLCL =
de− bf

ad− bc
,(2.1)

γUCL =
af − ce

ad− bc
,(2.2)

where a = P
(
X= LCL | c = c0

)
, b = P

(
X= UCL | c = c0

)
, c = LCL · P

(
X= LCL | c = c0

)
,

d = UCL · P
(
X= UCL | c = c0

)
, e = α − 1 +

∑UCL
x=LCL P

(
X= x | c = c0

)
and f = α · c0 − c0

+
∑UCL

x=LCL x · P
(
X= x | c = c0

)
. A signal is triggered by the ARL-unbiased c chart with
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probability

ξ(c∗) =

[
1 −

UCL∑
x=LCL

P
(
X= x

∣∣ c = c∗
)]

+ γLCL · P
(
X= LCL

∣∣ c = c∗
)

+ γUCL · P
(
X= UCL

∣∣ c = c∗
)

and ARL1 = 1/ξ(c∗).

Note that for the c chart, the probability of triggering a signal is equal to ξ(c∗) =
1−

∑UCL
x=LCL P

(
X= x | c = c∗

)
.

2.4. The classical Poisson EWMA control chart (PEWMA)

The EWMA control chart was introduced by Roberts [6]. Borror et al. [1] modified this
chart to monitor Poisson data. Let X1, X2, ... be i.i.d. Poisson random variables with mean c.
When the process is in control, c = c0. The EWMA statistics can be written as follows:

(2.3) Zt = λXt + (1− λ)Zt−1, t = 1, 2, 3...

where λ is the smoothing factor, 0 < λ ≤ 1 and the starting value is the process target, that
is Z0 = c0. Values of λ in the interval 0.05 ≤ λ ≤ 0.25 work well in practice, with λ = 0.05,
λ = 0.10 and λ = 0.20 being popular choices (Montgomery [4]).

Using the abovementioned definition the mean value of Zt is

E(Zt) = c0

and the variance of Zt is

Var(Zt) =
λ

2− λ

[
1− (1− λ)2t

]
c0.

Therefore, the PEWMA control chart is constructed by plotting Zt versus the sample
number i or time t. The center line and control limits for the PEWMA control chart are as
follows:

UCL = c0 + L

√
λ

2− λ

[
1− (1− λ)2t

]
c0,(2.4)

CL = c0,

LCL = c0 − L

√
λ

2− λ

[
1− (1− λ)2t

]
c0,(2.5)

where L > 0 can be chosen to provide a specified ARL0. If the computed value of LCL is
less than zero, then we set LCL = 0. For large values of t, the control limits converge to the
following values:

UCL = c0 + L

√
λ

2− λ
c0,

CL = c0,

LCL = c0 − L

√
λ

2− λ
c0.
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It is recommended to use the exact control limits of Equations (2.4) and (2.5) for small
values of λ (Montgomery [4]).

The PEWMA control chart raises an out-of-control signal when Zt < LCL or Zt > UCL.
The ARL values of the PEWMA chart are usually smaller than the ARLs for the c chart and
the lower limit for the PEWMA is usually positive so that downward shifts in the process
mean can be detected (Borror et al. [1]).

2.5. The Poisson Double EWMA (PDEWMA) control chart

Shamma and Shamma [9] developed a double EWMA control chart in an effort to
increase the sensitivity of the EWMA control chart to detect small shifts and drifts in a
process. Zhang et al. [13] extended the idea of the PEWMA chart to create the PDEWMA.

Let X1, X2, ... be i.i.d. Poisson random variables with mean c. When the process is in
control, c = c0. The PDEWMA statistic can be written as follows:

Yt = λXt + (1− λ)Yt−1,

Zt = λYt + (1− λ)Zt−1,(2.6)

where λ is the smoothing factor, 0 < λ ≤ 1 and Y0 = Z0 = c0. It can be proved that the mean
value of Zt is

E(Zt) = c0

and the variance of Zt is

Var(Zt) = λ4 1 + (1− λ)2 − (t + 1)2(1− λ)2t + (2t2 + 2t− 1)(1− λ)2t+2 − t2(1− λ)2t+4[
1− (1− λ)2

]3 c0.

The PDEWMA control chart is constructed by plotting Zt against t. The center line
and control limits for the PDEWMA control chart are as follows:

UCL = c0 + L
√

Var(Zt),(2.7)

CL = c0,

LCL = c0 − L
√

Var(Zt),(2.8)

where L > 0 can be chosen to provide a specified ARL0 and when the computed value of LCL
is less than zero, then we set LCL = 0. For large values of t, the control limits become (see
the Appendix A for more details)

UCL = c0 + L

√
λ(2− 2λ + λ2)

(2− λ)3
c0,

CL = c0,

LCL = c0 − L

√
λ(2− 2λ + λ2)

(2− λ)3
c0.
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A process is considered to be out of control if a plotted point lies above the UCL or
below the LCL.

Zhang et al. [13] concluded that for a PDEWMA chart a smaller value of λ makes
the chart more sensitive (with smaller out-of-control ARLs). Furthermore, the PDEWMA
chart gives out-of-control signals earlier than the classical PEWMA chart and in particular,
the PDEWMA chart is more sensitive to small downward process mean changes than the
PEWMA chart, a fact that compensates the complexity of PDEWMA in relation to PEWMA.

2.6. The Poisson EWMA control chart with Head-Start (HS PEWMA)

Lucas and Saccucci [3] introduced the Fast Initial Response (FIR) feature to the EWMA
control charts. In this control chart an EWMA control scheme like the one presented in
Subsection 2.4 is obtained by simultaneously implementing two one-sided EWMAs, each with
a head start (HS). The upper-sided HS PEWMA chart aims at detecting faster increases at the
process mean whereas the lower-sided HS PEWMA chart aims at detecting faster decreases
at the process mean.

Both the upper and the lower-sided HS PEWMA charts use Equation (2.3) to compute
the HS PEWMA statistic. The difference with the PEWMA is the starting value. Specifi-
cally, the upper-sided HS PEWMA has a starting value larger than c0 and lower than UCL
(Equation (2.4)) whereas the lower-sided HS PEWMA has a starting value lower than c0 and
larger than LCL (Equation (2.5)).

The rationale of the HS PEWMA control chart is that if the process is initially
out-of-control, then the HS PEWMA will give an out of control signal faster than the
PEWMA chart. However, if the process is initially in control, HS PEWMA and PEWMA
will tend to converge. In this paper, the starting value used in the HS PEWMA chart is
the halfway between the mean of the process c0 and the control limit (UCL and LCL for the
upper and lower HS PEWMA control charts, respectively).

2.7. Fast Initial Response Poisson EWMA control chart (FIR PEWMA)

The FIR PEWMA control chart uses an exponentially decreasing adjustment method
introduced by Steiner [10] to narrow the distance between the control limits. The control
statistic of this chart is the same as in the classical PEWMA (Equation (2.3)) but its time-
varying control limits are adjusted as follows:

UCL = c0 + LFadj

√
λ

2− λ

[
1− (1− λ)2t

]
c0,(2.9)

CL = c0,

LCL = c0 − LFadj

√
λ

2− λ

[
1− (1− λ)2t

]
c0,(2.10)
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where Fadj denotes the FIR adjustment factor and is expressed as

Fadj = 1− (1− f)1+a(t−1),

a > 0 is the adjustment parameter and f is the distance from the starting value with 0 < f ≤ 1.
The value of a is chosen, so that the FIR adjustment has a small effect when t gets a suitable
(usually not large) value. Steiner [10] suggests to choose a so that the FIR has little effect after
about 20 observations. This fact after some calculations leads to a =

(
−2/ log(1−f)− 1

)
/19.

In this paper, we use f = 0.5 and a = 0.3.

3. APPLICATION OF CONTROL CHARTS AT THE HELLENIC
AIR FORCE (HAF) DATA

HAF is tasked with missions that, depending on the situation, conditions and envi-
ronment, may involve acceptance of a significant and sometimes high risk. Daily challenges
in the Aegean sea and many flight hours require continues alertness for these missions to
be performed safely. The cost of the accidents, both in the air and on the ground, and the
high cost of acquiring new aircraft requires that every effort be made to minimize loss or
damage in order to maintain the integrity of the aircraft and the flight ability of HAF. The
implementation of this effort is achieved through the detection of risks and the monitoring of
accidents.

The main aircraft included in the fleet of HAF is F-16. The annual F-16 accidents for
HAF are presented in Table 1.

Table 1: Number of F-16 accidents (1988–2017).

Year Accidents Year Accidents Year Accidents

1988 0 1998 0 2008 0
1989 0 1999 0 2009 1
1990 0 2000 1 2010 2
1991 0 2001 1 2011 0
1992 1 2002 0 2012 0
1993 1 2003 1 2013 0
1994 0 2004 2 2014 1
1995 3 2005 0 2015 2
1996 0 2006 1 2016 0
1997 1 2007 1 2017 0

The main objective of this application is to see if there is a shift in the F-16 accidents
the last twenty years. For this reason, we use the first ten years to estimate the in-control
mean of accidents. Since we have six total accidents the first ten years, we estimate c by

c̄ =
6
10

= 0.6.



196 V. Alevizakos, C. Koukouvinos and P.E. Maravelakis

Therefore, the Phase I (trial) control limits are given by

UCL = c̄ + 3
√

c̄ = 0.6 + 3
√

0.6 = 2.92,

CL = c̄ = 0.6,

LCL = c̄− 3
√

c̄ = 0.6− 3
√

0.6 = −1.72 ⇒ LCL = 0.

The control chart for the number of accidents of the first ten years is given in Figure 1.

Figure 1: c chart for F-16 accidents (Phase I).

We may see in Figure 1 that there is one point that plots above the UCL (year 1995).
We exclude this point and revise the trial control limits. The estimate of c is now computed
as

c̄ =
3
9

= 0.3333.

Using the goodness of fit test (χ2 = 0.7693 with p value 0.6807), we conclude that
the number of accidents from 1988 to 1997 (except of course year 1995) fits the Poisson
distribution with parameter c = 0.3333. The revised control limits are

UCL = c̄ + 3
√

c̄ = 0.3333 + 3
√

0.3333 = 2.0653,

CL = c̄ = 0.3333,

LCL = c̄− 3
√

c̄ = 0.3333− 3
√

0.3333 = −1.73987 ⇒ LCL = 0.

Since all the points are between the control limits we assume that these are the final
Phase I control limits that are to be used for the monitoring of the following time periods
(years).
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For the Phase II charts that follow, we assume that the parameter c̄ = 0.3333 is the
true value of c. However, it is important to note that estimation error often exists in practice,
which would result in negative effects on control charts performance.

Let Xt, t = 1, 2, ..., 20, be the number of accidents from 1998 to 2017. Using the good-
ness of fit test (χ2 = 0.8783 with p value 0.8307), we observe that Xt fits the Poisson distri-
bution with parameter c∗ = 0.65. These points are plotted on the control chart (Phase II) in
Figure 2. The c chart will never be able to detect a downward shift in the mean number of
accidents since LCL = 0.

Figure 2: c chart for F-16 accidents (Phase II).

The in-control ARL for this c chart is

ARL0 =
1

P
(
Xt > 2

∣∣ c = 0.3333
) =

1
0.0048163

∼= 207.63.

Therefore, if the process is really in-control, we will experience a false out-of-control
signal about every 207–208 years. As the process shifts out of control to c∗ = 0.65, the value
of ARL1 is

ARL1 =
1

1− P
(
0≤Xt ≤ 2

∣∣ c∗ = 0.65
) =

1
1− 0.9716577

∼= 35.28

and it will take about 35 years to detect this shift with a point crossing the control limits.
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In order to calculate the ARL for the PEWMA, PDEWMA, HS PEWMA and
FIR PEWMA control charts, we perform Monte Carlo simulations using R. The simulation
algorithm is explained as follows:

1. A combination of design parameters (λ, L) is selected and we also set c0 = 0.3333.
Then, the control limits of each control chart are calculated using Equations (2.4)
and (2.5) for the PEWMA, (2.7) and (2.8) for the PDEWMA and (2.9) and (2.10)
for the FIR PEWMA. The control limits for the HS PEWMA are calculated using
the methodology described in Subsection 2.6.

2. 25,000 Poisson random numbers are generated with parameters from the previous
step.

3. The statistics Zt, t = 1, ..., 25,000 are calculated for each control chart.

4. If Zt > LCLt or Zt < UCLt, the process is considered to be in-control, but if Zt ≤
LCLt or Zt ≥ UCLt, a signal is given and the process is considered to be out-of-
control. When this event occurs, the simulations stop and the run-length (RL) is
recorded.

5. Steps (2)–(4) are repeated 10,000 times. An approximation of the ARL is given by

ARL =
∑N

t=1 RLt

N

where N is the number of simulations runs, i.e. in this article N = 10, 000.

Table 2 shows the performance of various control charts for some combinations of (λ, L).
These combinations have been selected so that the ARL0 of the control charts be close to
207.63. Moreover, the asymptotic control limits are presented in this table. The probabilities
γLCL and γUCL of the ARL-unbiased c chart are calculated using Equations (2.1) and (2.2),
respectively, and they are equal to 0.006171 and 6.523 · 10−8. “—” is used to indicate that a
downward shift cannot be detected, as in some control charts the asymptotic lower control
limit is equal to zero. The same results are presented in Appendix B for the case that ARL0

is close to 370.37. From Table 2, we conclude to the following:

1. PDEWMA control charts, as well as PEWMA, HS PEWMA and FIR PEWMA
control charts with λ = 0.05 can detect a downward shift as they have LCL > 0.
Moreover, the ARL-unbiased c chart can detect downward shifts although its LCL
is equal to zero. However, these control charts, except from the ARL-unbiased c

chart and PDEWMA chart with λ = 0.05, are ARL-biased, as some ARL1 values are
larger than the ARL0 values. PDEWMA control chart with λ = 0.05 is suggested
to be used in order to detect a downward shift as its ARL1 values are smaller than
the corresponding values of ARL-unbiased c chart.

2. For λ = 0.05, 0.10 and 0.15, the PEWMA chart is more efficient than the PDEWMA
chart in detecting upward shifts and vice versa for λ = 0.20. However, Zhang et al.

[13] showed that PDEWMA chart performs similarly or slightly better than the
PEWMA chart in detecting upward shifts considering the in-control mean equal
to 4, 8, 12 or 20. We observe different performance of PEWMA and PDEWMA
charts for processes where the in-control mean is small.



The Use of Control Charts to Monitor Air Plane Accidents 199

3. For a specified value of λ, HS PEWMA and FIR PEWMA control charts are more
efficient than c chart, ARL-unbiased c chart, PEWMA and PDEWMA control
charts in detecting upward shifts. Furthermore, when λ = 0.05, the HS PEWMA
performs similarly with the FIR PEWMA control chart, but when λ = 0.10, 0.15
or 0.20, the FIR PEWMA is more efficient than the HS PEWMA. For example,
when c∗ = 0.65, the ARL1 for a HS PEWMA chart with λ = 0.05 and L = 2.331
is 10.83, while the ARL1 for a FIR PEWMA chart with λ = 0.05 and L = 2.315
is 10.89, the ARL1 for a PEWMA chart with λ = 0.05 and L = 2.261 is 13.39 and
the ARL1 for a PDEWMA chart with λ = 0.05 and L = 1.680 is 14.95.

Table 2: ARL1 values for various control charts with ARL0
∼= 207.63.

c chart PEWMA PDEWMA

λ = 1 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
shift L = 3 2.261 2.527 2.780 2.940 1.680 1.967 2.140 2.233

UCL = 2.065 0.542 0.668 0.790 0.899 0.443 0.518 0.583 0.639
LCL = 0 0.124 0 0 0 0.223 0.149 0.084 0.028

0.15 — 50.64 — — — 30.10 39.24 53.83 92.34
0.20 — 90.33 — — — 49.85 68.51 99.05 190.76
0.25 — 179.92 — — — 94.36 129.61 184.10 336.27
0.30 — 263.86 — — — 183.58 211.59 246.79 302.22

0.3333 207.63 207.49 207.56 207.70 207.69 207.44 207.38 207.67 207.48
0.40 126.16 86.94 83.64 89.31 96.31 99.88 102.20 99.29 91.70
0.45 91.92 49.43 49.78 54.28 60.95 55.49 58.30 58.05 54.63
0.50 69.50 31.72 32.96 36.52 41.38 35.69 37.57 37.62 36.20
0.55 54.16 22.23 23.35 26.05 30.02 24.97 26.28 26.36 25.62
0.60 43.26 16.79 17.69 19.65 22.97 18.78 19.60 19.65 19.14
0.65 35.28 13.39 14.14 15.44 17.98 14.95 15.60 15.66 15.26

ARL-unbiased HS PEWMA FIR PEWMA

λ = 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
shift L = 2.331 2.549 2.784 2.955 2.315 2.607 2.844 3.013

UCL = 3 0.549 0.671 0.791 0.902 0.547 0.679 0.801 0.913
LCL = 0 0.118 0 0 0 0.119 0 0 0

0.15 187.61 49.11 — — — 52.35 — — —
0.20 195.73 91.92 — — — 94.68 — — —
0.25 202.46 190.56 — — — 188.82 — — —
0.30 206.73 280.12 — — — 272.15 — — —

0.3333 207.63 207.40 207.42 207.52 207.45 207.74 207.45 207.63 207.58
0.40 203.55 77.28 80.78 88.65 94.30 78.58 77.05 85.40 89.28
0.45 194.93 42.60 46.97 53.26 58.94 43.42 44.04 49.95 54.30
0.50 182.00 26.54 30.66 35.26 39.50 27.13 28.09 32.27 35.25
0.55 165.94 18.35 21.73 24.94 28.26 18.70 19.45 22.40 24.53
0.60 148.26 13.66 16.37 18.92 21.43 13.88 14.39 16.67 18.21
0.65 130.39 10.83 13.03 14.91 16.68 10.89 11.31 12.88 14.03
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The PEWMA control charts for λ = 0.05 and λ = 0.10 are shown in Figures 3 and 4,
respectively. These two control charts have the same performance since thirteen observations
are needed to issue an out of control signal. Theoretically, the average number of observations
needed to detect the shift is thirteen and fourteen, respectively (see Table 2).

Figure 3: PEWMA (λ = 0.05).

Figure 4: PEWMA (λ = 0.10).
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The PDEWMA control charts for λ = 0.05 and λ = 0.10 are shown in Figures 5 and 6,
respectively. These control charts have the same performance with the corresponding
PEWMA charts as they also need thirteen observations to detect the shift. This value is
close to the theoretically ARL1 given in Table 2.

Figure 5: PDEWMA (λ = 0.05).

Figure 6: PDEWMA (λ = 0.10).
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In Figure 7, we present the HS PEWMA control chart for λ = 0.05 when the starting
value is halfway between the mean of the process c0 and the control limit. We notice that
the HS PEWMA control chart with λ = 0.05 detects the shift after ten observations and
apparently its performance is much better than all the control charts already presented.
Moreover, the theoretical ARL1 value for this chart is 10.83 which is smaller than all the
other competing charts. The HS PEWMA control chart with λ = 0.10 (Figure 8) detects the
shift after thirteen observations, having similar performance to the corresponding PEWMA
charts. Note also that as the value of λ increases, the two plotted statistics converge faster.

Figure 7: HS PEWMA (λ = 0.05).

Figure 8: HS PEWMA (λ = 0.10).
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In Figures 9 and 10 we present the FIR PEWMA for λ = 0.05 and λ = 0.10, respectively.
We deduce that the FIR PEWMA chart with λ = 0.05 detects the shift after ten observations
and therefore its performance is the same as HS PEWMA chart. On the other hand, FIR
PEWMA control chart with λ = 0.10 detects the shift after thirteen observations and its
performance is the same as the other three corresponding charts. In both Figures 9 and 10,
the ARL1 value is close to theoretical values given in Table 2.

Figure 9: FIR PEWMA (λ = 0.05).

Figure 10: FIR PEWMA (λ = 0.10).
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To sum up, the results show that PEWMA charts with HS or FIR feature and λ = 0.05
detect the shift more quickly than the other charts. Since, according to the HS PEWMA and
FIR PEWMA with λ = 0.05 control charts, there is a shift in observation ten, management
should search for an assignable cause at year 2007.

4. CONCLUSIONS

In this paper we model air plane accidents using the Poisson distribution and we monitor
these accidents using Shewhart and EWMA control charts. We present several different
control charts and we discuss their implementation both theoretically and practically.
We apply these charts to the HAF Data and we draw useful conclusions.

Process monitoring with control charts is an important component within an overall
process evaluation and improvement in air force industry. Future research will focus on more
sophisticated control charts that can be applied in similar data taking into account the fact
that less accidents occur as the air force industry incorporates new technologies.

A. APPENDIX

We have

Var(Zt) = λ4 1 + (1− λ)2 − (t + 1)2(1− λ)2t + (2t2 + 2t− 1)(1− λ)2t+2 − t2(1− λ)2t+4[
1− (1− λ)2

]3 c0

and we will prove that lim
t→∞

Var(Zt) =
λ(2− 2λ + λ2)

(2− λ)3
c0.

First of all, for λ = 1, the PDEWMA, as well as the PEWMA, reduces to a c chart and
Var(Zt) = c0.

For λ < 1 and applying L’Hospital’s rule, we have

lim
t→∞

(t + 1)2(1− λ)2t = lim
t→∞

(t + 1)2(
1

1−λ

)2t = lim
t→∞

2t + 2

2
(

1
1−λ

)2t ln
(

1
1−λ

)
= lim

t→∞

1

2
(

1
1−λ

)2t
(
ln

(
1

1−λ

))2 = 0.

In the same way, we have lim
t→∞

(2t2 + 2t− 1)(1− λ)2t = lim
t→∞

t2(1− λ)2t+4 = 0.

So, lim
t→∞

Var(Zt) = λ4 1 + (1− λ)2[
1− (1− λ)2

]3 c0 = λ4 2− 2λ + λ2[
λ(2− λ)

]3 c0 = λ
2− 2λ + λ2

(2− λ)3
c0.
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B. APPENDIX

Table 3: ARL1 values for various control charts with ARL0
∼= 370.37.

c chart PEWMA PDEWMA

λ = 1 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
shift L = 3 2.520 2.886 3.112 3.288 1.931 2.224 2.397 2.530

UCL = 2.065 0.566 0.716 0.845 0.966 0.460 0.542 0.613 0.680
LCL = 0 0.100 0 0 0 0.207 0.125 0.054 0

0.15 — 75.31 — — — 39.57 55.48 93.30 —
0.20 — 158.08 — — — 68.18 105.69 207.60 —
0.25 — 392.14 — — — 141.56 233.07 457.80 —
0.30 — 585.13 — — — 322.63 423.92 552.79 —

0.3333 207.63 370.19 368.34 370.13 370.51 370.63 370.29 370.81 370.30
0.40 126.16 118.72 127.89 143.78 155.09 141.42 143.20 137.25 135.75
0.45 91.92 63.54 72.45 84.66 94.21 72.47 75.79 76.56 76.38
0.50 69.50 39.62 45.90 55.06 62.10 44.59 46.96 47.70 48.98
0.55 54.16 27.21 31.42 38.29 43.41 30.49 31.81 32.38 33.54
0.60 43.26 19.99 22.87 28.16 31.87 22.31 23.13 23.49 24.21
0.65 35.28 15.72 17.61 21.58 24.48 17.52 18.07 18.19 18.71

ARL-unbiased HS PEWMA FIR PEWMA

λ = 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
shift L = 2.551 2.895 3.131 3.303 2.582 2.935 3.170 3.336

UCL = 4 0.569 0.717 0.848 0.969 0.572 0.722 0.854 0.975
LCL = 0 0.097 0 0 0 0.095 0 0 0

0.15 334.31 74.50 — — — 80.75 — — —
0.20 348.86 163.55 — — — 175.61 — — —
0.25 360.99 421.06 — — — 452.65 — — —
0.30 368.72 614.36 — — — 639.74 — — —

0.3333 370.37 370.87 370.71 370.65 370.80 370.43 370.60 370.37 370.12
0.40 362.87 113.36 127.20 139.00 151.09 109.94 121.22 135.30 145.38
0.45 346.93 58.86 70.27 80.53 90.26 56.24 65.95 76.19 84.75
0.50 322.95 35.78 43.58 50.99 58.22 33.96 40.61 47.42 53.40
0.55 293.14 24.27 29.73 34.93 39.97 22.72 27.12 31.68 35.96
0.60 260.38 17.80 21.65 25.23 28.91 16.37 19.43 22.68 25.53
0.65 227.39 13.86 16.69 19.18 21.91 12.70 14.75 17.05 19.11

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers and the Associate Editor for
the useful suggestions and comments made, which helped us to improve the content of the
paper.



206 V. Alevizakos, C. Koukouvinos and P.E. Maravelakis

REFERENCES

[1] Borror, C.M.; Champ, C.W. and Rigdon, S.E. (1998). Poisson EWMA control charts,
Journal of Quality Technology, 30, 352–361.

[2] Kjelln, U. and Albrechtsen, E. (2017). Prevention of Accidents and Unwanted Occur-
rences, Theory, Methods, and Tools in Safety Management, CRC Press.

[3] Lucas, J.M. and Saccucci, M.S. (1990). Exponentially weighted moving average control
schemes: properties and enhancements, Technometrics, 32, 1–12.

[4] Montgomery, D.C. (2013). Introduction to Statistical Quality Control, Wiley.

[5] Paulino, S.; Morais, M.C. and Knoth, S. (2016). An ARL-unbiased c-chart, Quality and
Reliability Engineering International, 32, 2847–2858.

[6] Roberts, S.W. (1959). Control chart tests based on geometric moving averages, Technomet-
rics, 1, 239–250.

[7] Rockwell, T.H. (1959). Safety performance measurement, Journal of Industrial Engineer-
ing, 10, 12–16.

[8] Ryan, T.P. (2011). Statistical Methods for Quality Improvement, 3rd Edn., Wiley.

[9] Shamma, S.E. and Shamma, A.K. (1992). Development and evaluation of control charts
using double exponentially weighted moving averages, International Journal of Quality & Re-
liability, 9, 18–25.

[10] Steiner, S.H. (1999). EWMA control charts with time-varying control limits and fast initial
response, Journal of Quality Technology, 31, 75–86.

[11] Wetherill, G.B. and Brown, D.W. (1991). Statistical Process Control: Theory and Prac-
tice, Chapman and Hall.

[12] Woodall, W.H. (2000). Controversies and contradictions in statistical process control, Jour-
nal of Quality Technology, 32, 341–350.

[13] Zhang, L.; Govindaraju, K.; Lai, C.D. and Bebbington, M.S. (2003). Poisson DEWMA
control chart, Communication in Statistics – Simulation and Computation, 32, 1265–1283.



REVSTAT – Statistical Journal
Volume 19, Number 2, April 2021, 207–236

ON THE ESTIMATION FOR COMPOUND POISSON
INARCH PROCESSES

Authors: E. Gonçalves
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1. INTRODUCTION

The family of discrete compound Poisson distributions, which includes as particular
cases the Poisson, the Neyman type-A or the geometric Poisson laws, was recently used to
define a new class of integer-valued GARCH models, the compound Poisson INGARCH ones
[6], specified through the characteristic function of the conditional law of the process given its
past. Namely, X = (Xt, t ∈ Z) follows a CP-INGARCH process if the characteristic function
of Xt conditioned on Xt−1 is such that

ΦXt|Xt−1
(u) = exp

{
i

λt

ϕ ′
t(0)

[
ϕt(u)− 1

]}
, u ∈ R,

E(Xt |Xt−1) = λt = α0 +
p∑

j=1

αjXt−j +
q∑

k=1

βk λt−k,

where α0 > 0, α1, ..., αp, β1, ..., βq ≥ 0, Xt−1 represents the σ-field generated by {Xt−s, s≥ 1}
and (ϕt, t ∈ Z) is a family of characteristic functions on R, Xt−1-measurables, associated to
a family of discrete laws with support in N0 and finite mean. If βk = 0, k = 1, ..., q, the
CP-INGARCH(p, q) model is simply denoted CP-INARCH(p). The functional form of
the conditional characteristic function ΦXt|Xt−1

allows a wide flexibility of the class of
CP-INGARCH models. In fact, as it is assumed that the family of discrete characteristic
functions (ϕt, t ∈ Z) is Xt−1-measurable it means that its elements may be random functions
or deterministic ones. Thus, this general model unifies and enlarges substantially the family
of conditionally heteroscedastic integer-valued processes. In fact, it is possible to present
new specific models with conditional distributions with interest in practical applications as,
for instance, the geometric Poisson INGARCH ([6]) or the Neyman type-A INGARCH ([5])
ones, and also recover recent contributions such as the Poisson INGARCH ([4]), the gener-
alized Poisson INGARCH ([15]), the negative binomial INGARCH ([14]) and the negative
binomial DINARCH ([13]) processes (corresponding to random or deterministic functions ϕt,
respectively). In addition to having the ability to describe different distributional behaviors
and consequently different kinds of conditional heteroscedasticity, the CP-INGARCH model
is able to incorporate simultaneously the overdispersion characteristic that has been recorded
in real count data.

In this paper, we focus on the case where ϕt is deterministic and constant in time which
still includes many of the particular cases referred above. For that reason, from now on we will
refer these functions simply as ϕ. In this subclass of models, there exists a strictly stationary
and ergodic solution with finite first and second order moments under

∑p
j=1 αj +

∑q
k=1 βk < 1

([6]). For p = q = 1, Gonçalves, Mendes-Lopes and Silva [7] stated that this simple coefficient
condition is also necessary and sufficient to establish the existence of all the moments of Xt.

In this class of models we have, additionally to the usual estimation of the parame-
ters of the conditional mean, the estimation of ϕ. We observe that a related problem with
the knowledge of ϕ has been discussed in [12] in which a testing methodology was pro-
posed to distinguish between a simple Poisson INARCH model (ϕ(u) = exp(iu)) and a true
CP-INARCH one (ϕ(u) 6= exp(iu)). In order to analyse ϕ, in this paper we propose a two-step
estimation procedure that lead us to its consistent estimation after estimating the conditional
mean parameters.
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The remainder of the paper proceeds as follows. In Section 2 we consider the subclass
of CP-INARCH models of order one, with ϕt = ϕ deterministic, and deduce its moments,
central moments and cumulants up to the order 4. These results are particularly important
in Section 3, devoted to estimation procedures, to deduce explicit expressions for the asymp-
totic distribution of the Conditional Least Squares (CLS) estimators of the conditional mean
parameters, α0 and α1. In a second step, the method of moments is used to estimate the
additional parameter associated to the function ϕ. Another two-step estimation procedure,
combining the Poisson Quasi Maximum Likelihood (PQML) and the moment methods, is also
proposed in this section, followed by the Conditional Maximum Likelihood (CML) estima-
tion for the NTA-INARCH(1) and GEOMP2-INARCH(1) models. Section 4 presents some
simulation studies that illustrate and compare the performance of these three methodologies
of estimation. In Section 5 an integer-valued time series related to the prices of electricity in
Portugal and Spain between July 2016 and June 2017 is considered. The data is fitted by
several CP-INARCH(1) models estimated by the three estimation approaches considered and
the quality of the fitting is discussed using for the CML method, in particular, the values of
the log likelihood function, Akaike and Bayesian information criteria. Detailed calculations
are included in the Appendices.

2. THE CP-INARCH(1) PROCESS

Let us consider now the subclass of CP-INARCH(1) models. Supposing ϕt = ϕ constant
in time and deterministic we recall that α1 < 1 is a necessary and sufficient condition to assure
the existence of a strictly stationary and ergodic solution of the model. Moreover the process
has moments of all the orders.

Setting X = (Xt, t ∈ Z) a CP-INARCH(1) process we derive in the following closed-
form expressions for the joint (central) moments and cumulants of the CP-INARCH(1) up to
order 4. In fact, setting the notations below (used, for instance, by Weiß in [10]),

fk =
α0∏k

j=1 (1− αj
1)

, k ∈ N,

µ(s1, ..., sr−1) = E
(
XtXt+s1 ···Xt+sr−1

)
,

µ̃(s1, ..., sr−1) = E
(
(Xt−µ) (Xt+s1−µ) ··· (Xt+sr−1−µ)

)
,(2.1)

κ(s1, ..., sr−1) = Cum
[
Xt, Xt+s1 , ..., Xt+sr−1

]
,

with r = 2, 3, 4 and 0 ≤ s1 ≤ ··· ≤ sr−1, and

v0 = −i
ϕ ′′(0)
ϕ ′(0)

, d0 = −ϕ ′′′(0)
ϕ ′(0)

, c0 = i
ϕ(IV)(0)
ϕ ′(0)

,

we establish the following results whose proofs may be found in Appendices A and B,
respectively.
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Theorem 2.1 (Moments of a CP-INARCH(1) process). We have:

(a) For any k ≥ 0, µ(k) = f2

(
v0αk

1 + α0(1 + α1)
)
.

(b) For any l ≥ k ≥ 0,

µ(k, l) =
[
d0(1− α2

1)− v2
0(1 + α1 − 2 α2

1)
]
f3 αl+k

1 +
v0(α0 + v0)

1− α1
f2 αl

1

+ v0f1f2 αl−k
1 + f1µ(k).

(c) For any m ≥ l ≥ k ≥ 0,

µ(k, l,m) = αm−l
1

[{
(c0 − 4v0d0 + 3v3

0) + 3v0(v2
0 − d0)α1 + (3v0d0 − c0)α2

1

+ (7v0d0 − 6v3
0 − c0)α3

1 + 3v0(d0 − 2v2
0)α

4
1 + (6v3

0 − 6v0d0 + c0)α5
1

}
f4α

2l+k
1

+
2v0 + α0

1− α1
f3

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
α2l

1

+
v0

(1− α1)(1− α2
1)

f2

[
2v0α0 + d0(1− α1) + v2

0(2α1 − 1)
]
α2l−k

1

+
α0f3

1− α1

{
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
}

α
2(l−k)
1 +

v0 + α0

1− α1
µ(k, l)

− f2µ(k)
[
α0 + (v0 + α0)α1

]]
+ f1µ(k, l).

Corollary 2.1 (Central Moments and Cumulants of a CP-INARCH(1) process).
We have:

(a) For any s ≥ 0, µ̃(s) = κ(s) = v0α
s
1f2.

(b) For any l ≥ s ≥ 0, we have

µ̃(s, l) = κ(s, l) = f3α
l
1

[
v2
0(1 + α1 + α2

1)−
{

v2
0(1 + α1 − 2α2

1)− d0(1− α2
1)
}

αs
1

]
.

(c) For any m ≥ l ≥ s ≥ 0,

κ(s, l, m) = αm
1 f4

[{
c0 + 3v3

0 − 4v0d0 + 3v0(v2
0 − d0)α1 + (3α0d0 − c0)α2

1

+ (7v0d0 − 6v3
0 − c0)α3

1 + 3v0(d0 − 2v2
0)α

4
1 + (6v3

0 − 6v0d0 + c0)α5
1

}
αl+s

1

+ v0(1 + α1 + α2
1 + α3

1)
[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
(2αl

1 + αs
1)

+ v0(1 + α1 + α2
1)(1 + α2

1)
[
(1 + α1)v2

0 +
(
d0(1− α1) + v2

0(2α1 − 1)
)
αl−s

1

]]
,

µ̃(s, l, m) = κ(s, l, m) + v2
0f

2
2 (αm−l+s

1 + 2αm+l−s
1 ).

From Theorem 2.1 we deduce, for instance,

E(X2
t ) = µ(0) =

α0

(
v0 + α0(1 + α1)

)
(1− α1)(1− α2

1)
,(2.2)

E(X3
t ) = µ(0, 0) =

α0

(1− α1)3

[
d0 + (3v2

0 − d0)α2
1

(1 + α1)(1 + α1 + α2
1)

+
3v0α0

1 + α1
+ α2

0

]
.
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These results generalize those of Weiß [10] for the INARCH(1) model and the two last
equalities are important to deduce explicit expressions for the asymptotic distribution of the
CLS estimators of the parameters α0 and α1 provided in the next section. As we will take in
our study some important particular cases concerning the process conditional law, we conclude
this section recalling such cases and deducing the corresponding values of v0, d0 and c0,
previously introduced.

a) The INARCH(1) model ([4]) corresponds to a CP-INARCH model considering
ϕ the characteristic function of the Dirac’s law concentrated in {1}, that is, with
a Poisson conditional distribution; we denote it by Poisson-INARCH(1) model.
So, we deduce that v0 = d0 = c0 = 1.

b) When ϕ is the characteristic function of the Poisson distribution with mean φ > 0,
Xt |Xt−1 follows a Neyman type-A law with parameter (λt/φ, φ), and we have
the NTA-INARCH(1) model introduced in [5]. For this case, v0 = 1 + φ, d0 =
1 + 3φ + φ2 and c0 = 1 + 7φ + 6φ2 + φ3.

c) Considering in the above expressions v0 = (2− p∗)/p∗, d0 =
(
6− 6p∗+(p∗)2

)
/(p∗)2

and c0 =
(
(2− p∗)

(
12− 12p∗ + (p∗)2

))
/(p∗)3, we obtain the expressions for the

GEOMP2-INARCH(1) model ([6]). In fact, this process is defined considering ϕ

the characteristic function of the geometric distribution with parameter p∗∈ ]0, 1[
and Xt |Xt−1 following a geometric Poisson (p∗λt, p

∗) law.

d) Another particular case of the CP-INARCH model is the NB2-INARCH (that is
identical to the NB-DINARCH model proposed by Xu et al., [13]), where Xt |Xt−1

follows a negative binomial distribution with parameter
(
λt/(β−1), 1/β

)
and β > 0.

This process is stated when ϕ is the characteristic function of the logarithmic
distribution with parameter (β − 1)/β and then we deduce v0 = β, d0 = 2β2 − β

and c0 = 6β2(β − 1) + β.

e) When ϕ is the characteristic function of the Borel law with parameter κ ∈ ]0, 1[,
Xt |Xt−1 follows a generalized Poisson distribution with parameter

(
(1−κ)λt, κ

)
and we recover the GP-INARCH model ([15]). So, v0 = (1−κ)−2, d0 = (2κ+1)(1−κ)−4

and c0 = (6κ2 + 8κ + 1) (1− κ)−6.

3. ESTIMATION PROCEDURES

In this section, we focus on the estimation of the vector θ = (α0, α1, v0)>, where
v0 includes the additional parameter associated to the conditional distribution of the
CP-INARCH(1) model (for example, v0 = 1 + φ in the NTA-INARCH(1) model and
v0 = (2− p∗)/p∗ in the GEOMP2-INARCH(1)). To estimate the true value of θ, we start
by discussing a two-step approach using the conditional least squares and moment estima-
tion methods; after we consider the combination of the Poisson Quasi-Maximum Likelihood
and moments estimation methods and finally develop the conditional maximum likelihood
estimation. For this purpose, let (x1, ..., xn) be n particular values, arbitrarily fixed, of the
process X.
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3.1. Two-step estimation procedures

3.1.1. Conditional Least Squares and Moments estimation methods

In the first step, we discuss the conditional least squares (CLS) approach for the esti-
mation of the conditional mean parameters α0 and α1 and, for parameter v0 associated to
the CP-INARCH(1) conditional distribution, an approach based on the moment estimation
method is developed.

The CLS estimator of α = (α0, α1) is obtained by minimizing the sum of squares

Qn(α) =
n∑

t=2

[
xt − E

(
Xt |Xt−1 = xt−1

)]2
=

n∑
t=2

[
xt − α0 − α1xt−1

]2
,

with respect to α. Solving the least squares equations
∂Qn(α)

∂α0
= −2

n∑
t=2

(xt − α0 − α1xt−1) = 0,

∂Qn(α)
∂α1

= −2
n∑

t=2

xt−1 (xt − α0 − α1xt−1) = 0,

we obtain the following explicit expressions for the CLS estimator α̂n = (α̂0,n, α̂1,n):

α̂1,n =

∑n
t=2 XtXt−1 − 1

n−1 ·
∑n

t=2 Xt ·
∑n

s=2 Xs−1∑n
t=2 X2

t−1 − 1
n−1

(∑n
t=2 Xt−1

)2 ,

(3.1) α̂0,n =
∑n

t=2 Xt − α̂1,n
∑n

t=2 Xt−1

n− 1
.

The consistency and the asymptotic distribution of these estimators are stated in
the next theorem. This theorem generalizes the results obtained in [11], Section 4.2, where
the CLS estimators of α0 and α1 are obtained and studied in the particular case of
a Poisson-INARCH model.

Theorem 3.1. Let α̂n =(α̂0,n, α̂1,n) be the CLS estimator of α =(α0, α1) given in (3.1).
Then α̂n converges almost surely to α and

√
n (α̂n − α) d−→ N

(
02×1,V−1WV−1

)
,

as n →∞, where the entries of the matrix V−1WV−1 = (bij), i, j = 1, 2, are given by

b11 =
α0

1− α1

(
α0(1 + α1) +

v2
0 + (d0 − v2

0) α1(1 + α1 − α2
1) + (3v2

0 − d0) α4
1

v0(1 + α1 + α2
1)

)
,

b12 = b21 = v0α1 − α0(1 + α1)−
α1(1 + α1)

(
d0 + (3v2

0 − d0) α2
1

)
v0(1 + α1 + α2

1)
,

b22 = (1− α2
1)

(
1 +

α1

(
d0 + (3v2

0 − d0) α2
1

)
v0α0(1 + α1 + α2

1)

)
,

and
d−→ means convergence in distribution.
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Proof: The results announced are proved using those of KlimkoandNelson [9, Section 3].
In fact, it is easily checked that the regularity conditions (i) to (iii) defined on [9, p. 634] are
satisfied taking into account that g(α;Xt−1) = E

(
Xt |Xt−1

)
= α0 + α1Xt−1, and thus, by

their Theorem 3.1, it follows that the CLS estimators are strongly consistent. Furthermore,
the matrix V is invertible as it is given by

V =

 E

(
∂g

∂α0

∂g

∂α0

)
E

(
∂g

∂α0

∂g

∂α1

)
E

(
∂g

∂α1

∂g

∂α0

)
E

(
∂g

∂α1

∂g

∂α1

)
=

 E(1) E(Xt−1)

E(Xt−1) E(X2
t−1)

=

 1
α0

1−α1

α0

1−α1

α0

(
v0 + α0(1+ α1)

)
(1−α1) (1−α2

1)

,

considering the expressions stated in Theorem 2.1. Thus, Theorem 3.2 of [9] is satisfied
implying the asymptotic normality of the CLS estimators. The entries of the covariance
matrix of the asymptotic distribution V−1WV−1 are derived in Appendix C.

To estimate the parameter v0 we propose to use the moments estimation method. Tak-
ing into consideration the expression (2.2) of the second order moment of the CP-INARCH(1)
model, an estimator for v0, whose strong consistence is a consequence from the strict station-
arity and ergodicity of the process X, is given by solving the equation

α̂0,n

(
v0 + α̂0,n(1 + α̂1,n)

)
(1− α̂1,n) (1− α̂2

1,n)
=

1
n

n∑
t=1

X2
t

in order to v0. In this way we get the two-step CLS+M estimator for (α0, α1, v0).

We note that the estimation of v0 doesn’t involve the knowledge of the conditional law, as
it is totally determined by the estimators of α0 and α1 and the empirical second order moment.

3.1.2. Poisson Quasi-Maximum Likelihood and Moments estimation methods

One of the advantages of using the above CLS+M approach is the fact that we do
not need to specify entirely the conditional distribution of the CP-INARCH(1) model to
estimate its parameters. We refer now another two-step approach where it is used the Poisson
quasi-conditional maximum likelihood estimator (PQMLE) to estimate the conditional mean
parameters α0 and α1 and, as previously, the moment estimation method for parameter v0.
The resulting estimator is denoted PQML+M.

The PQMLE provides a general approach for estimating the conditional mean param-
eters of the CP-INARCH(1) models by maximizing a pseudo-likelihood function considering
the conditional distribution the Poisson one, that is, the function

L̃n(θ|x) =
n∑

t=2

(
xt log(λt)− λt − log(xt!)

)
.

Ahmad and Francq [1] found some regularity conditions to establish the consistency and
asymptotic normality of the Poisson quasi-maximum likelihood estimator of the conditional
mean parameters of a count time series. These regularity conditions are easily satisfied by a
CP-INARCH(1) process with α1 <1, and so the PQML estimator of (α0, α1) is consistent and
asymptotically Gaussian. The almost sure convergence of the v0 estimator follows as previously.
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3.2. Conditional Maximum Likelihood Estimation

When the distribution of Xt |Xt−1 is known, we can estimate its parameters using the
conditional maximum likelihood estimation (CMLE) method. In this section, we discuss this
procedure by considering NTA-INARCH(1) and GEOMP2-INARCH(1) models, as developed
in [11], Section 4.1, for a Poisson-INARCH(1) model .

Starting by a NTA-INARCH(1) process, we have the conditional probability mass func-
tion of Xt ([8]) given by

P
[
Xt = xt |Xt−1

]
=

e
−λt

φ φxt

xt!
Z(λt, xt, φ), Z(λt, Xt, φ) =

∞∑
j=0

(
λte

−φ
)j

jXt

φj j!
,

for xt = 0, 1, ... . The conditional likelihood function is then

Ln(θ|x) =
n∏

t=2

e
−λt

φ φxt

xt!
Z(λt, xt, φ),

where for convenience θ = (α0, α1, φ) as v0 = 1 + φ. So the log-likelihood function has the
form

log Ln(θ|x) =
n∑

t=2

lt(θ) =
n∑

t=2

{
−λt

φ
+ xt log(φ)− log(xt!) + log

(
Z(λt, xt, φ)

)}
.

The first derivatives of lt are given as

∂ lt(θ)
∂φ

=
λt

φ2
+

xt

φ
−
(

φ + 1
φ

)
Z(λt, xt + 1, φ)

Z(λt, xt, φ)
,

∂ lt(θ)
∂αj

=
[
− 1

φ
+

1
λt

Z(λt, xt + 1, φ)
Z(λt, xt, φ)

]
∂λt

∂αj
, j = 0, 1,

and the second derivatives of lt are

∂2lt(θ)
∂φ2

= −2λt

φ3
− xt

φ2
+

Z(λt, xt +1, φ)
φ2Z(λt, xt, φ)

+
(

φ +1
φ

)2 [Z(λt, xt +2, φ)
Z(λt, xt, φ)

− Z2(λt, xt +1, φ)
Z2(λt, xt, φ)

]
,

∂2lt(θ)
∂φ∂αj

=

[
1
φ2

− φ + 1
φλt

{
Z(λt, xt + 2, φ)

Z(λt, xt, φ)
− Z2(λt, xt + 1, φ)

Z2(λt, xt, φ)

}]
∂λt

∂αj
,

∂2lt(θ)
∂αj∂αk

=
1
λ2

t

[
−Z(λt, xt + 1, φ)

Z(λt, xt, φ)
+

Z(λt, xt + 2, φ)
Z(λt, xt, φ)

− Z2(λt, xt + 1, φ)
Z2(λt, xt, φ)

]
∂λt

∂αj

∂λt

∂αk
,

for 0 ≤ j, k ≤ 1, where the expressions for ∂λt/∂αj and ∂2λt/∂αj∂αk are easily deduced.
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Analogously, for the GEOMP2-INARCH(1) process we obtain the following expression:

log Ln(θ|x) =
n∑

t=2

lt(θ)

=
n∑

t=2

− λt + log

1xt=0 +

[
xt∑

n=1

λn
t

n!

(
xt − 1
n− 1

)
(p∗)n (1− p∗)xt−n

]
1xt 6=0


 ,

where θ = (α0, α1, p
∗), as v0 = (2− p∗)/p∗ and taking into consideration that the conditional

probability mass function of Xt is given by

P
[
Xt = 0 |Xt−1

]
= e−λt ,

P
[
Xt = xt |Xt−1

]
=

xt∑
n=1

e−λt
λn

t

n!

(
xt − 1
n− 1

)
(p∗)n (1− p∗)xt−n, xt = 1, 2, ...

Similarly to the previous case, the first and second derivatives of lt in order to α0, α1 and p∗

are deduced.

4. A SIMULATION STUDY

Some simulation studies are now developed to examine and compare the performance of
the different estimators considered in Section 3 for the model parameters. We begin by illus-
trating the two-step approach based on CLS and moments estimation methods by computing
the estimates and analyzing its performance. In the sequel, the several estimation proce-
dures are discussed and compared. The study is developed considering the NTA-INARCH(1)
and the GEOMP2-INARCH(1) models. So, after estimating α0, α1 and v0, we deduce the
estimator of φ, in the first case, given by

φ̂n = −1− α̂0,n(1 + α̂1,n) +
(1− α̂1,n) (1− α̂2

1,n)
n α̂0,n

n∑
t=1

X2
t ,

and, in the second one, that of p∗ namely

p̂∗n = 2

[
1− α̂0,n(1 + α̂1,n) +

(1− α̂1,n) (1− α̂2
1,n)

n α̂0,n

n∑
t=1

X2
t

]−1

.

4.1. CLS estimators performance

4.1.1. NTA-INARCH(1) model

To illustrate the CLS method, we focus on the NTA-INARCH(1) model with true
parameters α0 = 2, α1 = 0.2 and φ = 2 and, for different sample sizes n = 100, 250, 500, 750,
1 000, we present in Table 1 the expected values, variances and covariance of α̂0,n, α̂1,n and φ̂n,
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considering 10 000 replications. In the last column of this table we present the true values of
α0, α1 and φ, as well as the entries of the asymptotic matrix V−1WV−1, respectively b11,
b22 and b12, given in Theorem 3.1. We verify that the asymptotic and the sample values are
quite similar for large values of n.

Table 1: Means, variances and covariances for the CLS+M estimates of the NTA-INARCH(1) model
with coefficients α0 = 2, α1 = 0.2, φ = 2 and for different sample sizes n.

n 100 250 500 750 1 000

Eest(bα0) 2.0444 2.0161 2.0090 2.0090 2.0041 2
Eest(bα1) 0.1797 0.1918 0.1956 0.1973 0.1981 0.2

Eest(bφ) 1.9238 1.9670 1.9842 1.9899 1.9929 2
n ·Vest(bα0) 12.2393 12.3125 12.3782 12.3133 12.3133 12.3774
n ·Vest(bα1) 1.1793 1.1957 1.2227 1.2594 1.2776 1.2604

n ·Vest(bφ) 21.9663 21.7000 21.3637 22.2183 22.1552
n ·Covest(bα0, bα1) −2.3311 −2.4081 −2.4814 −2.5270 −2.5911 −2.5510

Figure 1 displays a multiple boxplot for samples of length n = 250, 750 and 2 000 of
the CLS estimator of α0 and α1 based on 10 000 model replications as well as the histogram
of the corresponding standardized values, for n = 2000, of a NTA-INARCH(1) model with
α0 = 2, α1 = 0.2 and φ = 2. These multiple boxplots show a significant stability and allow
to infer a high rate of convergence to the limit distribution. In agreement with Theorem 3.1,
the plots indicate the adequacy of the normal for the empirical marginal distributions of
the estimators α̂0, α̂1. Let us observe that the Kolmogorov–Smirnov test for the sampling
laws of the standardized CLS estimation gives large p-values for testing the standard normal
distribution as, for instance, when we consider n = 2000 and 1 000 replications we obtain
0.9454 and 0.4051.

1 2 3
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Figure 1: Boxplots for n = 250, 750, 2 000 (from left to right) and histogram for n = 2 000
of the empirical law of α̂0 (on top) and α̂1 (below) for a NTA-INARCH(1) process
with α0 = 2, α1 = 0.2 and φ = 2. Superimposed is the standard normal density
function. The results are based on 10 000 replications.
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In Figure 2 we present now a multiple boxplot and the histogram of the distribution
of
√

n (φ̂n − φ). Figure 3 shows the similarity between the empirical cumulative distribution
function of

√
n (φ̂n−φ) (represented in solid line) and the cumulative distribution function of

the normal(0, 4.7) law (in dashed line), whose parameters are the sample mean and variance of√
n (φ̂n−φ). The stability previously observed appears also here and, once again, the p-value

of the Kolmogorov–Smirnov test, namely 0.8231 when n = 2000 and for 1 000 replications,
indicates the adequacy of the normal for the empirical distribution of

√
n (φ̂n − φ).

Figure 2: Boxplots for n = 250, 750, 2 000 (from left to right) and histogram for n = 2 000
of the empirical law of

√
n
(
φ̂n− φ

)
when α0 = 2, α1 = 0.2 and φ = 2 for

a NTA-INARCH(1).

Figure 3: Empirical CDF of the law of
√

n
(
φ̂n−φ

)
when α0 = 2, α1 = 0.2 and φ = 2

for a NTA-INARCH(1) (in solid line) and the CDF of the normal(0, 4.7) law
(in dashed line), for n = 2 000.

From the empirical results presented in the two last lines of Table 2, we can pre-
sume that the estimators of α0 (resp., α1) and φ are asymptotically uncorrelated. In fact,
for the NTA-INARCH(1) model in study, the empirical correlations ρest(α̂0,n, φ̂n) and
ρest(α̂1,n, φ̂n) are significantly low. To support this statement we use the Monte Carlo
method to determine confidence intervals for the mean of ρest(α̂0,n, φ̂n) and for the mean
of ρest(α̂1,n, φ̂n) which we denote by m0,n,en and m1,n,en, respectively. The confidence in-
tervals are obtained considering ñ = 35 and ñ = 50 replications of n-dimensional samples
(n = 500 and n = 1 000) of a NTA-INARCH(1) model with α0 = 2, α1 = 0.2 and φ = 2.
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Table 2: Empirical correlations for the CLS+M estimates of the NTA-INARCH(1) model
with coefficients α0 = 2, α1 = 0.2, φ = 2 and for different sample sizes n.

n 250 750 1 000 5 000 10 000

ρest(bα0,n, bα1,n) −0.6276 −0.6417 −0.6385 −0.6482 −0.6402

ρest(bα0,n, bφn) 0.0883 0.0962 0.1139 0.1059 0.0911

ρest(bα1,n, bφn) 0.0272 0.0192 0.0078 0.0246 0.0438

Such intervals with confidence level 0.99 are presented in Table 3, where we stress the lower
values when n or ñ increase. So we have estimated (α0, α1) and φ separately likely without
loss of efficiency.

Table 3: Confidence intervals for the mean of ρest(α̂0,n, φ̂n) and for the mean of ρest(α̂1,n, φ̂n),
with confidence level γ = 0.99 and for different sample sizes n and ñ.

en = 35 en = 50

n = 500 n = 1000 n = 500 n = 1000

m0,n,en [0.0917, 0.1180] [0.0883, 0.1162] [0.0940, 0.1160] [0.0814, 0.1064]

m1,n,en [0.0113, 0.0412] [0.0165, 0.0412] [0.0137, 0.0354] [0.0132, 0.0397]

4.1.2. GEOMP2-INARCH(1) model

Let us consider now the GEOMP2-INARCH(1) model with true parameters α0 = 2,
α1 = 0.4 and p∗ = 0.1. As in the previous section, for different sample sizes n, we compute
the expected values, variances and covariances of α̂0,n, α̂1,n and p̂∗n (see Table 4, where in
the last column we present the true values of α0, α1 and p∗ as well as the entries b11, b22

and b12 of the asymptotic matrix V−1WV−1) and for samples of length n = 250, 750 and
2 000 we plot a multiple boxplot and for n = 2000 the histograms for 10 000 values of the
CLS+M estimators (in Figure 4) and similar conclusions to the previous case may be deduced.

Table 4: Expected values, variances and covariances for the CLS+M estimates
of the GEOMP2-INARCH(1) model with α0 = 2, α1 = 0.4, p∗ = 0.1
and different sample sizes n.

n 100 250 500 750 1 000

Eest(bα0) 2.1401 2.0705 2.0381 2.0265 2.0241 2
Eest(bα1) 0.3267 0.3655 0.3803 0.3875 0.3900 0.4

Eest( bp∗) 0.1171 0.1068 0.1038 0.1025 0.1019 0.1
n ·Vest(bα0) 54.8720 54.9255 57.1036 57.6511 58.7167 61.5325
n ·Vest(bα1) 2.7975 3.2809 3.6923 3.8768 3.9021 4.3979

n ·Vest( bp∗) 0.2011 0.0879 0.0867 0.0884 0.0886
n ·Covest(bα0, bα1) −1.4509 −3.4576 −4.8393 −5.3491 −5.5056 −7.0598
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Figure 4: Boxplots for n = 250, 750, 2 000 (from left to right) and histogram for n = 2 000
of the empirical law of α̂0 (on top), α̂1 (in the middle) and p̂∗ (below) when α0 = 2,
α1 = 0.4 and p∗ = 0.1 for a GEOMP2-INARCH(1) process. Superimposed is the
standard normal density function. The results are based on 10 000 replications.

Figure 5: Empirical CDF of the law of
√

n
(
p̂∗n−p∗

)
when α0 = 2, α1 = 0.4 and

p∗ = 0.1 for a GEOMP2-INARCH(1) model (in solid line) and the CDF
of the normal(0, 0.3) law (in dashed line).
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To show the adequacy of the normal for the empirical distribution of
√

n (p̂∗n−p∗), in Figure 5
we present the empirical cumulative distribution function of

√
n (p̂∗n−p∗) (represented in

solid line) and the cumulative distribution function of the normal(0, 0.3) law (in dashed line).
Analogously to the previous study, we can also presume that the estimators of α0, (resp., α1)
and p∗ are asymptotically uncorrelated.

4.2. Comparative analysis of the estimation procedures

To examine and compare the finite sample performances of the CLS+M, PQML+M
and CML methods, we consider two different NTA-INARCH(1) models with parameter values
α0 = 2, α1 = 0.2, φ = 2 and α0 = 5, α1 = 0.3, φ = 1, and two different GEOMP2-INARCH(1)
models with parameter values α0 = 2, α1 = 0.2, p∗ = 0.1 and α0 = 5, α1 = 0.3, p∗ = 0.6.
The sample sizes considered are n = 500 and 1 000 and the number of replications m =10 000.

For the maximization of the log-likelihood functions, we use the MATLAB function
fmincon where the estimates obtained using the CLS+M method were used as the initial
values and the constrained conditions are α0 > 0, 0 < α1 < 1, φ > 0 (for the NTA) and
0 < p∗ < 1 (for the GEOMP2). The performance of the estimators is evaluated by the mean
square error, i.e.,

1
m

m∑
k=1

(
θ̂j,k − θj

)2
, j = 1, 2, 3.

The results of the simulation experiments are presented in Tables 5 and 6 where the smallest
values of the mean square errors are highlighted in italics.

Table 5: Mean estimates (in bold) and mean square errors (within parentheses)
for the NTA-INARCH(1) model with different sample sizes n.

n Method α0 = 2 α1 = 0.2 φ = 2 α0 = 5 α1 = 0.3 φ = 1

CLS+M
2.0071 0.1967 1.9832 5.0288 0.2956 0.9915
(0.0248) (0.0025) (0.0458) (0.1169) (0.0021) (0.0180)

500 PQML+M
2.0061 0.1971 1.9831 5.0259 0.2960 0.9912
(0.0239) (0.0023) (0.0459) (0.1123) (0.0020) (0.0181)

CML
2.0047 0.1977 1.9937 5.0249 0.2961 0.9928
(0.0233) (0.0022) (0.0174) (0.1115) (0.0020) (0.0141)

CLS+M
2.0023 0.1982 1.9906 5.0117 0.2979 0.9946
(0.0124) (0.0013) (0.0219) (0.0582) (0.0010) (0.0089)

1 000 PQML+M
2.0020 0.1983 1.9907 5.0103 0.2981 0.9945
(0.0120) (0.0012) (0.0221) (0.0558) (0.0010) (0.0090)

CML
2.0017 0.1985 1.9960 5.0105 0.2981 0.9948
(0.0116) (0.0011) (0.0085) (0.0552) (0.0010) (0.0072)

From this study we may conclude that the three methods seem to perform quite well,
although the CML gives slightly smaller mean square errors in most cases.
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Table 6: Mean estimates (in bold) and mean square errors (within parentheses)
for the GEOMP2-INARCH(1) model with different sample sizes n.

n Method α0 = 2 α1 = 0.2 p∗ = 0.1 α0 = 5 α1 = 0.3 p∗ = 0.6

CLS+M
2.0142 0.1898 0.1035 5.0269 0.2963 0.6033
(0.0964) (0.0058) (0.0002) (0.1219) (0.0021) (0.0009)

500 PQML+M
2.0070 0.1926 0.1036 5.0250 0.2966 0.6033
(0.0913) (0.0052) (0.0002) (0.1173) (0.0020) (0.0009)

CML
1.9967 0.1968 0.1013 5.0240 0.2967 0.6027
(0.0807) (0.0036) (0.0001) (0.1141) (0.0020) (0.0007)

CLS+M
2.0072 0.1959 0.1017 5.0100 0.2985 0.6020
(0.0481) (0.0030) (0.0001) (0.0600) (0.0011) (0.0004)

1 000 PQML+M
2.0032 0.1975 0.1018 5.0084 0.2988 0.6020
(0.0450) (0.0026) (0.0001) (0.0578) (0.0010) (0.0004)

CML
1.9995 0.1989 0.1006 5.0080 0.2988 0.6016
(0.0397) (0.0018) (0.0000) (0.0566) (0.0010) (0.0003)

5. REAL DATA EXAMPLE — COUNTS OF DIFFERENCES IN THE PRICES
OF ELECTRICITY IN PORTUGAL AND SPAIN

OMIE (http://www.omie.es) is the company that manages the wholesale electricity
market on the Iberian Peninsula. Electricity prices in Europe are set on a daily basis (every
day of the year) at 12 noon, for the twenty-four hours of the following day, known as daily
market. The market splitting is the mechanism used for setting the price of electricity on
the daily market. When the price of electricity is the same in Portugal and Spain, which
corresponds to the desired situation, it means that the integration of the Iberian market is
working properly.

In the following, we consider the time series that represents the number of hours in a
day in which the prices of electricity for Portugal and Spain are different. The data presented
in Figure 6 consists of 365 observations, starting from July 2016 and ending in June 2017.

Figure 6: Daily number of hours in which the price of electricity of Portugal and Spain are different,
starting from July 2016 and ending in June 2017.

Empirical mean and variance of the data are 1.4082 and 7.3027, respectively, indicating
that the true marginal distribution is overdispersed. Let us observe that this time series
exhibits also volatility clusters suggesting characteristics of conditional heteroscedasticity.

http://www.omie.es
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The partial autocorrelation function presented in Figure 7, suggests an order 1 dependence
and so a CP-INARCH(1) model may be a reasonable choice to fit the data within the
CP-INGARCH class. Despite the support bounding of this variable, the empirical analysis of
the data set observed allows us to infer that its distributional characteristics (see histogram
in Figure 7) are compatible with some compound Poisson laws.

Figure 7: Sample histogram, autocorrelations and partial autocorrelations.

Trying to obtain a suitable model for this count time series, we present a comparative
study between five CP-INARCH(1) processes, namely those associated to the Poisson ([4]),
the generalized Poisson ([15]), the Neyman type-A, the geometric Poisson and the negative
binomial ([13]) laws. Considering the slightly better performance observed in Section 3 for
the CML estimator, we begin by using this methodology to estimate the models parameters
and take a decision on the model fitting. The results, obtained with the help of MATLAB
software, are displayed in Table 7. So, based on the values of the log likelihood function, the
Akaike information criterion (AIC) and the Bayesian information criterion (BIC), we conclude
that the GEOMP2-INARCH(1) model gives better fit than the other CP-INARCH(1) models
considered. The NB2 model follows closely and the Poisson model shows the worst adequacy.

Table 7: CML parameters estimates for several CP-INARCH(1) models. Standard errors
are shown in parentheses. The best values of the criteria −Log L, AIC and BIC
are emphasised in italics.

Model bα0,365 bα1,365
Additional −Log L AIC BICparameter

Poisson
0.9751 0.3055

786.3 1576.5 1584.3
(0.0008) (0.0018)

GP
0.8971 0.3608 bκ365 = 0.3736

524.6 1055.2 1066.9
(0.0012) (0.0018) (0.0073)

INARCH(1) NTA
0.9558 0.3192 bφ365 = 2.4368

524.7 1055.4 1067.1
(0.0051) (0.0125) (0.0502)

GEOMP2
0.9338 0.3349 bp∗365 = 0.3599

516.2 1038.4 1050.1
(0.0060) (0.0022) (0.0024)

NB2
0.9129 0.3496 bβ365 = 5.5659

519.8 1045.6 1057.3
(0.0078) (0.0031) (0.0968)
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The mean, variance and the first-order autocorrelation coefficient (FOAC) for the fitted
CP-INARCH(1) models are summarized in Table 8. The results are in accordance with the
previous conclusion as, although the similarity of the mean values, the variance and FOAC
values point to a GEOMP2 or NB2-INARCH(1) choice. The two other methodologies are
also considered to estimate the previous models and it should be noted in Table 9 the close
proximity between each of the three parameters and those obtained by the CML method in
the case of the GEOMP2 and also NB2 models. This conclusion is validated by the values
referred in Table 10 for the sample and estimated means, variances and FOAC values under
the two methods, particularly for the CLS+M one. Thus these methodologies seem to cap-
ture the same models as the powerful but distribution-demanding CML approach, which is
in line with the previous conclusions of the simulation study.

Table 8: Sample and estimated means, variances and FOACs under CP-INARCH(1) models.

Method Model Sample Poisson GP NTA GEOMP2 NB2

Mean 1.4082 1.4040 1.4034 1.4039 1.4040 1.4036
CML Variance 7.3027 1.5485 4.1125 5.3723 7.2064 8.9001

FOAC 0.349 0.3055 0.3608 0.3192 0.3349 0.3496

Table 9: Estimated parameters of several CP-INARCH(1) models based on CLS+M and
PQML+M approaches. Standard errors are shown in parentheses. (a) means all models.

Method Model
Additional
parameter

(a) bα0,365 = 0.9138 bα1,365 = 0.3490
Poisson (0.0862) (0.0564) —

CLS+M
GP (0.1493) (0.0928) 0.5319
NTA (0.1337) (0.0799) 3.5645
GEOMP2 (0.1392) (0.0845) 0.3594
NB2 (0.1445) (0.0889) 4.5645

(a) bα0,365 = 0.9751 bα1,365 = 0.3055
GP (0.0008) (0.0018) 0.5392

PQML+M NTA (0.0008) (0.0018) 3.7096
GEOMP2 (0.0008) (0.0018) 0.3503
NB2 (0.0008) (0.0018) 4.7096

Table 10: Sample and estimated means, variances and FOACs under CP-INARCH(1) models.

Method Model Sample GEOMP2 NB2

Mean 1.4082 1.4037 1.4037
CLS+M Variance 7.3027 7.2964 7.2958

FOAC 0.349 0.3490 0.3490

Mean 1.4082 1.4040 1.4040
PQML+M Variance 7.3027 7.2926 7.2929

FOAC 0.349 0.3055 0.3055
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The statistical study that was developed in this Section was naturally circumscribed to
the class of CP-INARCH(1) models considered here. However, this observed time series has
characteristics that can also be taken into account if the adjustment is done in other classes
of models, namely, in view of its histogram, the zero-inflated CP-INGARCH models ([7]).

6. CONCLUSION

The class of integer-valued GARCH models, specified through the characteristic func-
tion of the compound Poisson law and denoted CP-INGARCH ([6]) unifies and enlarges
substantially the family of conditionally heteroscedastic integer-valued processes. With this
new class, we may capture simultaneously different kinds of conditional volatility and the
overdispersion characteristic often recorded in real count data. The probabilistic analysis of
these models, concerning stationarity and ergodicity properties as well as moments studies,
was the goal of previous works among which we may refer those established in [5] and [6].
The aim of this paper is to develop some statistical studies, regarding the parametric estima-
tion of the CP-INARCH models, that allow the use of this general class with real data and
show its true practical usefulness. We concentrate our study on the CP-INARCH models of
order one, and a two-step estimation methodology, involving the conditional least squares or
the Poisson quasi-maximum likelihood methods in a first step, and the moment’s estimation
method in the second one, has been introduced and developed. We point out the great ad-
vantage of this procedure regarding the more classical conditional maximum likelihood one,
as its application is independent from the specific conditional distribution of the process.
In fact, the simulation study presented allows concluding that the two-step methodology per-
formance is strongly competitive with that of the conditional maximum likelihood estimation.
We should also stress that the practical relevance of this wide class is clearly shown with the
real-data example presented which illustrates the better quality of the fitting performed by
new models emerged from that class.

Future developments of the present study should concern, particularly, the establish-
ment of the conjectured Gaussian asymptotic distribution of the additional parameter
estimator. The development of the parametric estimation of a more general CP-INGARCH
model should also be considered.
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A. APPENDIX — Proof of Theorem 2.1

To establish the results present in Theorem 2.1 let us begin by recalling the expression
of the following conditional moments:

E(Xt |Xt−1) = λt = α0 + α1Xt−1,

E(X2
t |Xt−1) = v0λt + λ2

t = α2
1X

2
t−1 + α1(2α0 + v0)Xt−1 + α0(α0 + v0),(A.1)

E(X3
t |Xt−1) = i Φ′′′

Xt|Xt−1
(0)

= d0λt + 3v0λ
2
t + λ3

t

= α3
1X

3
t−1 + 3α2

1(v0 + α0)X2
t−1 + α1(3α2

0 + 6v0α0 + d0)Xt−1

+ α0(d0 + 3v0α0 + α2
0).(A.2)

(a) Using the fact that for k ≥ 0, Γ(k) = αk
1f2, we get

µ(k) = E(XtXt+k) = Cov(Xt, Xt+k) + E(Xt)2 = f2

(
v0α

k
1 + α0(1 + α1)

)
.(A.3)

(b) To derive µ(k, l), 0 ≤ k ≤ l, we distinguish the following three cases:

Case 1: l > k. We have

µ(k, l) = E(XtXt+kXt+l)

= E
[
XtXt+kE(Xt+l |Xt+l−1)

]
= α0E(XtXt+k) + α1E(XtXt+kXt+l−1)

= α0µ(k) + α1µ(k, l − 1)

= α0µ(k) + α1

[
α0µ(k) + α1µ(k, l − 2)

]
= ···
= αl−k

1

[
µ(k, k)− f1µ(k)

]
+ f1µ(k).

Case 2: l = k > 0. We have

µ(k, k) = E
[
XtE(X2

t+k |Xt+k−1)
]

= α2
1E(XtX

2
t+k−1) + α1(2α0 + v0) E(XtXt+k−1) + α0(α0 + v0) E(Xt)

= α2
1µ(k − 1, k − 1) + α1(2α0 + v0) µ(k − 1) + α0(α0 + v0)f1

= ···
= α2k

1

[
µ(0, 0)− v0(2α0 + v0)f2

1− α1
− f1µ(0)

]
+

v0(2α0 + v0)f2α
k
1

1− α1
+ f1µ(0).

Case 3: l = k = 0. According to the relations between the moments and the
cumulants (e.g., formula (15.10.4) in [3, p. 186]) and Theorem 4.2 of [7], we have

µ(0, 0) = E(X3
t )

= κ3 + 3κ2µ + µ3

= f3

[
d0(1− α2

1) + 3v2
0α

2
1

]
+ 3v0f2f1 + f3

1

=
[
d0(1− α2

1) + 3v2
0α

2
1

]
f3 +

2α0v0

1− α1
f2 + f1µ(0),
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since f1 = (1− α2
1)f2. So the above formula for µ(k, k) simplifies to

µ(k, k) = α2k
1

[[
d0(1− α2

1) + 3v2
0α

2
1

]
f3 −

v2
0

1− α1
f2

]
+

v0(2α0 + v0)
1− α1

f2α
k
1 + f1µ(0)

= α2k
1 f3

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]

+
v0(2α0 + v0)

1− α1
f2α

k
1 + f1µ(0),

which also holds for k = 0. Replacing this expression in µ(k, l) above, it follows
that

µ(k, l) = αl−k
1

[[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
f3α

2k
1 +

v0(2α0 + v0)
1− α1

f2α
k
1

+ f1µ(0)− f1µ(k)
]

+ f1µ(k).

As

f1µ(0)− f1µ(k) = v0f1f2 −
v0α0

1− α1
f2α

k
1 ,

we finally obtain, for any 0 ≤ k ≤ l,

µ(k, l) =
[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
f3α

l+k
1 +

v0(α0 + v0)
1− α1

f2α
l
1

+ v0f1f2α
l−k
1 + f1µ(k).

(c) In what concerns the fourth-order moments µ(k, l,m) with 0 ≤ k ≤ l ≤ m, we
proceed in a similar way as above and distinguish the following four cases:

Case 1: m > l. As above we have

µ(k, l,m) = E(XtXt+kXt+lXt+m)

= αm−l
1

[
µ(k, l, l)− f1µ(k, l)

]
+ f1µ(k, l).

Case 2: m = l > k. For this case, using formula (A.1), we obtain

µ(k, l, l) = E
[
XtXt+kE(X2

t+l |Xt+l−1)
]

= α2
1µ(k, l − 1, l − 1) + α1(v0 + 2α0) µ(k, l − 1) + α0(v0 + α0) µ(k).

Replacing µ(k, l − 1), using µ(0) =
(
v0 + α0(1 + α1)

)
f2 and replacing µ(k), we

obtain

µ(k, l, l) = α
2(l−k)
1 µ(k, k, k) + µ(k) µ(0)

− f2v0

[
f2

(
v0 + α0(1 + α1)

)
+

(v0 + 2α0) (v0 + α0)
(1− α1)2

]
α2l−k

1

− f1

[
f1µ(0) +

v0(v0 + 2α0)
1− α1

f2

]
α

2(l−k)
1 +

v0 + 2α0

1− α1

[
µ(k, l)− f1µ(k)

]
− v0 + 2α0

1− α1

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
f3α

2l
1 .
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So, replacing µ(0), recalling µ(0, 0) and taking into account that f1

1−α1
= (1+α1)f2,

we get

µ(k, l, l) = α
2(l−k)
1 µ(k, k, k)− µ(k) f2

[
α0 + (v0 + α0)α1

]
− f2v0

(1− α1)(1− α2
1)

[
v2
0(1 + α1) + v0α0(4 + 3α1) + 3α2

0(1 + α1)
]
α2l−k

1

− f1

{
µ(0, 0)−

[
d0(1− α2

1) + 3v2
0α

2
1

]
f3 +

v2
0f2

1− α1

}
α

2(l−k)
1

+
v0 + 2α0

1− α1
µ(k, l)− v0 + 2α0

1− α1

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
f3α

2l
1 .(A.4)

Case 3: m = l = k > 0. From formula (A.2) we have

µ(k, k, k) = E
[
XtE(X3

t+k |Xt+k−1)
]

= α3
1µ(k − 1, k − 1, k − 1) + 3α2

1(v0 + α0) µ(k − 1, k − 1)

+ α1(d0 + 6v0α0 + 3α2
0) µ(k − 1) + α0(d0 + 3v0α0 + α2

0) µ.

Replacing µ(k − 1, k − 1) and thereafter µ(k − 1), we deduce

µ(k,k,k) = α3
1µ(k − 1, k − 1, k − 1)

+ 3(v0 + α0)
[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
f3α

2k
1

+
v0f2

1− α1

[
3α1(v0 + α0)2 + 3α1(v0 + α0)α0 + (d0 + 6v0α0 + 3α2

0)(1− α1)
]
αk

1

+ f1f2

{
3α2

1(v0 + α0)
(
v0 + α0(1+ α1)

)
+ (d0 + 6v0α0 + 3α2

0) α1(1−α1) (1+α1)

+ (d0 + 3v0α0 + α2
0) (1− α1) (1− α2

1)
}

.

Making some calculations and then recalling the expression of µ(0, 0), we obtain

µ(k, k, k) = α3
1µ(k − 1, k − 1, k − 1)

+ 3(v0 + α0)
[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
f3α

2k
1

+
v0f2

1− α1

[
3α2

0(1 + α1) + 3v0α0(2 + α1) + d0(1− α1) + 3v2
0α1

]
αk

1

+ f1(1− α3
1) µ(0, 0).

Replacing successively the expression of µ(k − j, k − j, k − j), j = 1, ..., k − 1,
it remains

µ(k,k,k) = α3k
1

{
µ(0, 0, 0)− 3(v0 + α0)

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
] f3

1− α1

− v0f2

(1−α1)(1−α2
1)

[
3α2

0(1+α1)+3v0α0(2+α1)+d0(1−α1)+3v2
0α1

]
−f1µ(0,0)

}
+

3(v0 + α0)f3α
2k
1

1− α1

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]

+
v0f2α

k
1

(1−α1)(1−α2
1)

[
3α2

0(1+α1)+3v0α0(2+α1)+d0(1−α1)+3v2
0α1

]
+ f1µ(0,0).(A.5)
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Replacing µ(0, 0), highlighting f3

1−α2
1
, noting that f2 = (1− α3

1)f3 and f3

1−α2
1

=

f4(1 + α2
1) and developing the calculations, we finally get

µ(k,k,k) =

{
µ(0, 0, 0)− f4

[
4v0d0 − 3v3

0 + 3v0(d0 − v2
0)α1 + v0(3v2

0 + d0)α2
1

+ v0(6v2
0 − d0)α3

1 + 3v0(2v2
0 − d0)α4

1 + v0(9v2
0 − 4d0)α5

1

+ α0(1 + α2
1)
[
3v2

0 + 4d0 + (3v2
0 + 4d0)α1 + (15v2

0 − 4d0)α2
1 + (12v2

0 − 4d0)α3
1

]
+ 6v0α

2
0(1+α2

1)(1+α1)(1+α1+α2
1) + α3

0(1+α2
1)(1+α1)2 (1+α1+α2

1)
]}

α3k
1

+ 3
v0 + α0

1− α1
f3

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
α2k

1 + f1µ(0, 0)

+
v0

(1− α1)(1− α2
1)

f2

[
3α2

0(1 + α1) + 3v0α0(2 + α1) + d0(1− α1) + 3v2
0α1

]
αk

1 .(A.6)

Case 4: m = l = k = 0. Once again, according to the relations between the
moments and the cumulants, we obtain

µ(0, 0, 0) = E(X4
t )

= κ4 + 3κ2
2 + 6κ2µ

2 + 4κ3µ + µ4

= f4

{
c0 + (3v3

0 + 4v0d0 − c0)α2
1 + (6v0d0 − c0)α3

1 + (15v3
0 − 10v0d0 + c0)α5

1

+ α0(1 + α2
1)
[
3v2

0 + 4d0 + (3v2
0 + 4d0)α1 + (15v2

0 − 4d0)α2
1 + (12v2

0 − 4d0)α3
1

]
+ + 6v0α

2
0(1 + α1)(1 + α2

1)(1 + α1 + α2
1) + α3

0(1 + α1)2(1 + α2
1)(1 + α1 + α2

1)
}

.

So the formula (A.6) for µ(k, k, k) studied in case 3 simplifies to

µ(k, k, k) = f4

{
c0 − 4v0d0 + 3v3

0 + 3v0(v2
0 − d0)α1 + (3v0d0 − c0)α2

1

+ (7v0d0 − 6v3
0 − c0)α3

1 + 3v0(d0 − 2v2
0)α

4
1 + (6v3

0 − 6v0d0 + c0)α5
1

}
α3k

1

+ 3
v0 + α0

1− α1
f3

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
α2k

1 + f1µ(0, 0)

+
v0

(1−α1)(1−α2
1)

f2

[
3α2

0(1+α1) + 3v0α0(2 +α1) + d0(1−α1) + 3v2
0α1

]
αk

1 .

Inserting into the formula (A.4) for µ(k, l, l) stated in case 2, we obtain

µ(k, l, l) = f4

{
c0 − 4v0d0 + 3v3

0 + 3v0(v2
0 − d0)α1 + (3v0d0 − c0)α2

1

+ (7v0d0 − 6v3
0 − c0)α3

1 + 3v0(d0 − 2v2
0)α

4
1 + (6v3

0 − 6v0d0 + c0)α5
1

}
α2l+k

1

+
2v0 + α0

1− α1
f3

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
α2l

1

+
{

α0f3

1− α1

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]}

α
2(l−k)
1

+
v0

(1− α1) (1− α2
1)

f2

[
2v0α0 + d0(1− α1) + v2

0(2α1 − 1)
]
α2l−k

1

+
v0 + 2α0

1− α1
µ(k, l)− f2 µ(k)

[
α0 + (v0 + α0)α1

]
.
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So it follows that we have

µ(k, l,m) = αm−l
1

[
µ(k, l, l)− f1µ(k, l)

]
+ f1µ(k, l)

= αm−l
1

[
f4

{
c0 − 4v0d0 + 3v3

0 + 3v0(v2
0 − d0)α1 + (3v0d0 − c0)α2

1

+ (7v0d0 − 6v3
0 − c0)α3

1 + 3v0(d0 − 2v2
0)α

4
1 + (6v3

0 − 6v0d0 + c0)α5
1

}
α2l+k

1

+
2v0 + α0

1− α1
f3

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
α2l

1

+
{

α0f3

1− α1

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]}

α
2(l−k)
1

+
v0

(1− α1) (1− α2
1)

f2

[
2v0α0 + d0(1− α1) + v2

0(2α1 − 1)
]
α2l−k

1

+
v0 + α0

1− α1
µ(k, l)− f2 µ(k)

[
α0 + (v0 + α0)α1

]]
+ f1µ(k, l),

which holds for all 0 ≤ k ≤ l ≤ m.
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B. APPENDIX — Proof of Corollary 2.1

To establish the results present in Corollary 2.1 we use the general relations between
joint moments and joint cumulants (see [2], p. 5):

(a) The second-order central moments and cumulants of X, for any s ≥ 0, are given
by

µ̃(s) = κ(s) = Cov(Xt, Xt+s) = v0α
s
1f2.

(b) The third-order central moments and cumulants, for any l ≥ s ≥ 0, are given by

µ̃(s, l) = κ(s, l)

= f3α
l
1

[
v2
0(1 + α1 + α2

1)−
{

v2
0(1 + α1 − 2α2

1)− d0(1− α2
1)
}

αs
1

]
.

(c) In what concerns the fourth-order cumulants we have, for m ≥ l ≥ s ≥ 0,

κ(s, l, m) = αm−l
1

[
α2l+s

1 f4

{
c0 − 4v0d0 + 3v3

0 + 3v0(v2
0 − d0)α1 + (3v0d0 − c0)α2

1

+ (7v0d0 − 6v3
0 − c0)α3

1 + 3v0(d0 − 2v2
0)α

4
1 + (6v3

0 − 6v0d0 + c0)α5
1

}
+

2v0 + α0

1− α1
f3

[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
α2l

1

+
{

α0f3

1 − α1

[
d0(1 − α2

1) − v2
0(1 + α1 − 2α2

1)
]}

α
2(l−s)
1

+
v0

(1− α1) (1− α2
1)

f2

[
2v0α0 + d0(1− α1) + v2

0(2α1 − 1)
]
α2l−s

1

+
v0 + α0

1− α1
µ(s, l)− f2 µ(s)

[
α0 + (v0 + α0)α1

]]
+ f1µ(s, l) − f1µ(s, l)

− f1

([
d0(1−α2

1) − v2
0(1+α1−2α2

1)
]
f3αm+l−2s

1 +
v0(v0 +α0)

1−α1
f2 αm−s

1

+ v0f1f2 αm−l
1 + f1µ(l − s) − f1f2

(
v0αl−s

1 + α0(1 + α1)
)

+
[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
f3α

m+l
1

+
v0(v0 + α0)

1− α1
f2α

m
1 + f1f2v0α

m−l
1 + f1µ(l) − f1µ(l) +

v0(v0 + α0)
1− α1

f2α
m
1

+
[
d0(1−α2

1)− v2
0(1+α1−2α2

1)
]
f3α

m+s
1 + v0f1f2α

m−s
1 +f1µ(s)−f1µ(s)

)
−
(

f2

[
v0α

s
1 + α0(1 + α1)

]
− f2

1

)(
f2

[
v0α

m−l
1 + α0(1 + α1)

]
− f2

1

)
−
(

f2

[
v0α

l
1 + α0(1 + α1)

]
− f2

1

)(
f2

[
v0α

m−s
1 + α0(1 + α1)

]
− f2

1

)
−
(

f2

[
v0α

m
1 + α0(1 + α1)

]
− f2

1

)(
f2

[
v0α

l−s
1 + α0(1 + α1)

]
− f2

1

)
+ f2

1

(
f2

[
v0α

m
1 + α0(1 + α1)

]
+ f2

[
v0α

m−s
1 + α0(1 + α1)

]
+ f2

[
v0α

m−l
1 + α0(1 + α1)

]
− 3f2

1

)
,

where we highlight, using bold, expressions whose sum equals zero.
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So, taking into account that

−f2 µ(s)
[
α0 + (v0 + α0)α1

]
αm−l

1 =
[
−f1

α0 + v0

1− α1
µ(s) + v0f2 µ(s)

]
αm−l

1

and

−
(

f2

[
v0α

s
1 + α0(1 + α1)

]
− f2

1

)(
f2

[
v0α

m−l
1 + α0(1 + α1)

]
− f2

1

)
−
(

f2

[
v0α

l
1 + α0(1 + α1)

]
− f2

1

)(
f2

[
v0α

m−s
1 + α0(1 + α1)

]
− f2

1

)
−
(

f2

[
v0α

m
1 + α0(1 + α1)

]
− f2

1

)(
f2

[
v0α

l−s
1 + α0(1 + α1)

]
− f2

1

)
+ f2

1

(
f2

[
v0α

m
1 + α0(1 + α1)

]
+ f2

[
v0α

m−s
1 + α0(1 + α1)

]
+ f2

[
v0α

m−l
1 + α0(1 + α1)

]
− 3f2

1

)
=

= −v2
0f

2
2

[
αm−l+s

1 + 2αm+l−s
1

]
+ v0f

2
1 f2

[
αm−l

1 + αm−s
1 + αm

1

]
we obtain, by replacing µ(s, l),

κ(s,l,m) = αm
1 f4

[{
c0 − 4v0d0 + 3v3

0 + 3v0(v2
0 − d0)α1 + (3α0d0 − c0)α2

1

+ (7v0d0−6v3
0− c0)α3

1 +3v0(d0−2v2
0)α

4
1 +(6v3

0−6v0d0 + c0)α5
1

}
αl+s

1

+ v0(1 + α1 + α2
1 + α3

1)
[
d0(1− α2

1)− v2
0(1 + α1 − 2α2

1)
]
(2αl

1 + αs
1)

+ v0(1+α1+α2
1)(1+α2

1)
[
(1+α1)v2

0 +
(
d0(1−α1)+v2

0(2α1−1)
)
αl−s

1

]]
,

for any m ≥ l ≥ s ≥ 0.
Finally, the fourth-order central moments of X are given by

µ̃(s, l, m) = κ(s, l, m) + v0α
s
1f2v0α

m−l
1 f2 + v0α

l
1f2v0α

m−s
1 f2 + v0α

l−s
1 f2v0α

m
1 f2

= κ(s, l, m) + v2
0f

2
2 αm−l+s

1 + 2v2
0f

2
2 αm+l−s

1 .
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C. APPENDIX — Covariance matrix of the asymptotic distribution of
CLS estimators in CP-INARCH model

To obtain the entries of the covariance matrix V−1WV−1, let us begin by deducing
the inverse of V:

V−1 =
(1−α1)(1−α2

1)
v0α0


α0

(
v0 + α0(1 + α1)

)
(1− α1)(1− α2

1)
− α0

1−α1

− α0

1− α1
1

=


1+

α0

v0
(1+α1) − 1

v0
(1−α2

1)

− 1
v0

(1−α2
1)

(1−α1)(1−α2
1)

v0α0

.

Furthermore, considering ut(α) = Xt − g(α, Xt−1),

E
[
f(Xt−1) · u2

t (α)
]

= E

[
f(Xt−1) · E

[
(Xt − α0 − α1Xt−1)2 |Xt−1

]]
= E

[
f(Xt−1) · V

[
Xt − α0 − α1Xt−1 |Xt−1

]
+ 0
]

= E

[
f(Xt−1) · V

[
Xt |Xt−1

]]
= E

[
f(Xt−1) · v0(α0 + α1Xt−1)

]
,

because of the conditional compound Poisson distribution, and then

W =


E

(
u2

t

∂g

∂α0

∂g

∂α0

)
E

(
u2

t

∂g

∂α0

∂g

∂α1

)
E

(
u2

t

∂g

∂α1

∂g

∂α0

)
E

(
u2

t

∂g

∂α1

∂g

∂α1

)


=

 E
[
1 · v0(α0 + α1Xt−1)

]
E
[
Xt−1 · v0(α0 + α1Xt−1)

]
E
[
Xt−1 · v0(α0 + α1Xt−1)

]
E
[
X2

t−1 · v0(α0 + α1Xt−1)
]


=
v0α0

1−α1


1

v0α1 + α0(1+α1)
1−α2

1

v0α1 + α0(1+α1)
1−α2

1

v0α0(1+2α1)
(1−α1)(1−α2

1)
+

α2
0

(1−α1)2
+

α1

(
d0 + (3v2

0−d0) α2
1

)
(1−α2

1)(1−α3
1)

 ,

since

E
[
v0(α0 + α1Xt−1)

]
= v0

[
α0 + α1

α0

1− α1

]
=

v0α0

1− α1
,

E
[
Xt−1v0(α0 + α1Xt−1)

]
= v0

[
α2

0

1− α1
+

α1α0

(
v0 + α0(1 + α1)

)
(1− α1)(1− α2

1)

]

=
v0α0

1− α1
· v0α1 + α0(1 + α1)

1− α2
1

,
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E
[
X2

t−1 · v0(α0 + α1Xt−1)
]

=

= v0

[
α2

0

(
v0 + α0(1 + α1)

)
(1− α1)(1− α2

1)
+

α1α0

(1− α1)3

(
d0 + (3v2

0 − d0)α2
1

(1 + α1)(1 + α1 + α2
1)

+
3v0α0

1 + α1
+ α2

0

)]

=
v0α0

1− α1

[
v0α0(1− α1) + 3v0α0α1

(1− α1)2 (1 + α1)
+

α2
0(1− α1) + α2

0α1

(1− α1)2
+

α1

(
d0 + (3v2

0 − d0)α2
1

)
(1− α2

1)(1− α3
1)

]

=
v0α0

1− α1

[
v0α0(1 + 2α1)

(1− α1)(1− α2
1)

+
α2

0

(1− α1)2
+

α1

(
d0 + (3v2

0 − d0)α2
1

)
(1− α2

1)(1− α3
1)

]
,

using again the expressions stated in Theorem 2.1.

Now, the product of V−1W is given by
1 +

α0

v0
(1 + α1) − 1

v0
(1− α2

1)

− 1
v0

(1− α2
1)

(1− α1)(1− α2
1)

v0α0

 ·

·


1

v0α1 + α0(1 + α1)
1− α2

1

v0α1 + α0(1 + α1)
1− α2

1

v0α0(1 + 2α1)
(1− α1)(1− α2

1)
+

α2
0

(1− α1)2
+

α1

(
d0 + (3v2

0 − d0)α2
1

)
(1− α2

1)(1− α3
1)

 =

=


a11 a12

a21 a22

 =


1− α1

v0α1

1− α2
1

− α0α1

1− α1
−

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0(1− α3

1)

α1(1− α1)
α0

1 + α1 +
α1

(
d0 + (3v2

0 − d0)α2
1

)
v0α0(1 + α1 + α2

1)

 ,

since

a11 = 1 +
α0(1 + α1)

v0
− 1− α2

1

v0

v0α1 + α0(1 + α1)
1− α2

1

= 1− α1,

a12 =
(

1 +
α0

v0
(1 + α1)

)
v0α1 + α0(1 + α1)

1− α2
1

− 1− α2
1

v0

[
v0α0(1 + 2α1)

(1− α1)(1− α2
1)

+
α2

0

(1− α1)2
+

α1

(
d0 + (3v2

0 − d0)α2
1

)
(1− α2

1)(1− α3
1)

]

=
v0α1

1− α2
1

+
α0

1− α1
+

α0α1

1− α1
+

α2
0(1 + α1)

v0(1− α1)
− α0(1 + 2α1)

1− α1
− α2

0(1 + α1)
v0(1− α1)

−
α1

(
d0 + (3v2

0 − d0)α2
1

)
v0(1− α3

1)

=
v0α1

1− α2
1

− α0α1

1− α1
−

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0(1− α3

1)
,

a21 = −(1− α2
1)

v0
+

(1− α1) (1− α2
1)
(
v0α1 + α0(1 + α1)

)
v0α0(1− α2

1)

= −(1− α2
1)

v0
+

α1(1− α1)
α0

+
(1− α2

1)
v0

=
α1(1− α1)

α0
,
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a22 = −
(1− α2

1)
(
v0α1 + α0(1 + α1)

)
v0(1− α2

1)

+
(1− α1) (1− α2

1)
v0α0

[
v0α0(1 + 2α1)

(1− α1) (1− α2
1)

+
α2

0

(1− α1)2
+

α1

(
d0 + (3v2

0 − d0)α2
1

)
(1− α2

1) (1− α3
1)

]

= −α1 −
α0(1 + α1)

v0
+ 1 + 2α1 +

α0(1 + α1)
v0

+
α1

(
d0 + (3v2

0 − d0)α2
1

)
v0α0(1 + α1 + α2

1)

= 1 + α1 +
α1

(
d0 + (3v2

0 − d0)α2
1

)
v0α0(1 + α1 + α2

1)
.

So, the asymptotic covariance matrix is such that

V−1WV−1 =


b11 b12

b21 b22



=
v0α0

1− α1


1− α1

v0α1

1− α2
1

− α0α1

1− α1
−

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0(1− α3

1)

α1(1− α1)
α0

1 + α1 +
α1

(
d0 + (3v2

0 − d0)α2
1

)
v0α0(1 + α1 + α2

1)

 ·

·


1 +

α0

v0
(1 + α1) − 1

v0
(1− α2

1)

− 1
v0

(1− α2
1)

(1− α1) (1− α2
1)

v0α0

 ,

where

b11 =
α0

1− α1

(
α0(1 + α1) +

v2
0 + (d0 − v2

0) α1(1 + α1 − α2
1) + (3v2

0 − d0) α4
1

v0(1 + α1 + α2
1)

)
,

b12 = b21 = v0α1 − α0(1 + α1)−
α1(1 + α1)

(
d0 + (3v2

0 − d0)α2
1

)
v0(1 + α1 + α2

1)
,

b22 = (1− α2
1)

(
1 +

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0α0(1 + α1 + α2

1)

)
.

In fact, we have

b11 =
v0α0

1− α1

[
(1− α1)

(
1 +

α0

v0
(1 + α1)

)
− 1

v0
(1− α2

1)

(
v0α1

1− α2
1

− α0α1

1− α1
−

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0(1− α3

1)

)]

=
α0

1− α1

[
v0(1− α1) + α0(1− α2

1)− v0α1 + α0α1(1 + α1)

+
α1

(
d0 + (3v2

0 − d0)α2
1

)
(1 + α1)

v0(1 + α1 + α2
1)

]
=
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=
α0

1− α1

[
α0(1 + α1) +

v2
0(1− 2α1)(1 + α1 + α2

1) + α1

(
d0 + (3v2

0 − d0)α2
1

)
(1 + α1)

v0(1 + α1 + α2
1)

]

=
α0

1− α1

(
α0(1 + α1) +

v2
0 + (d0 − v2

0) α1(1 + α1 − α2
1) + (3v2

0 − d0) α4
1

v0(1 + α1 + α2
1)

)
,

b12 =
v0α0

1− α1

[
−(1− α1) (1− α2

1)
v0

+
(1− α1) (1− α2

1)
v0α0

(
v0α1

1− α2
1

− α0α1

1− α1
−

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0(1− α3

1)

)]

= −α0(1− α2
1) + v0α1 − α0α1(1 + α1)−

α1(1 + α1)
(
d0 + (3v2

0 − d0)α2
1

)
v0(1 + α1 + α2

1)

= v0α1 − α0(1 + α1)−
α1(1 + α1)

(
d0 + (3v2

0 − d0)α2
1

)
v0(1 + α1 + α2

1)
,

b21 =
v0α0

1− α1

[
α1(1− α1)

α0

(
1 +

α0(1 + α1)
v0

)
− 1− α2

1

v0

(
1 + α1 +

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0α0(1 + α1 + α2

1)

)]

= v0α1 + α0α1(1 + α1)− α0(1 + α1)− α0α1(1 + α1)−
α1(1 + α1)

(
d0 + (3v2

0 − d0)α2
1

)
v0(1 + α1 + α2

1)

= v0α1 − α0(1 + α1)−
α1(1 + α1)

(
d0 + (3v2

0 − d0)α2
1

)
v0(1 + α1 + α2

1)
,

b22 =
v0α0

1−α1

[
−α1(1−α1)(1−α2

1)
v0α0

+
(1−α1)(1−α2

1)
v0α0

(
1 + α1 +

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0α0(1 + α1 + α2

1)

)]

= −α1(1− α2
1) + α1(1− α2

1) + (1− α2
1)

(
1 +

α1

(
d0 + (3v2

0 − d0)α2
1

)
v0α0(1 + α1 + α2

1)

)

= (1− α2
1)

(
1 +

α1

(
d0 + (3v2

0 − d0) α2
1

)
v0α0(1 + α1 + α2

1)

)
.
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1. INTRODUCTION

The Maxwell distribution is widely used in many problems especially in Physics.
For example, the speed of molecules in thermal equilibrium is modelled by using the Maxwell
distribution (Maxwell [21]; Mathai and Princy [20]). Also note that there is a lot of literature
about the Maxwell distribution in Statistics. It was firstly used by Tyagi and Battacharya
[31, 32] for modeling the lifetime data. They used Bayes method to estimate the scale pa-
rameter of the distribution and obtain the minimum variance unbiased estimator for the
reliability function. Dey and Maiti [10] obtained the Bayes estimators of the scale param-
eter of the Maxwell distribution under various different loss functions. Kazmi et al. [16]
obtained the maximum likelihood (ML) estimators of the location and scale parameters of
the mixture of the Maxwell distribution under Type-I censoring. Al-Baldawi [3] compared
the efficiency of the ML estimator of the scale parameter of the Maxwell distribution with
the corresponding Bayes estimator. Hossain and Huerta [13] used the Maxwell distribution
in analysing the different data sets taken from the literature. Li [19] obtained the estimators
of the scale parameter of the Maxwell distribution using the Minimax, Bayesian and ML
methods. Fan [12] considered the Bayesian method to estimate the loss and risk function for
the scale parameter of the Maxwell distribution. Dey et al. [9] obtained estimators of the
location and scale parameters of the Maxwell distribution via different estimation methods.
See also Arslan et al. [5], where the modified maximum likelihood (MML) estimators for the
location and scale parameters of the Maxwell distribution are obtained.

The ML methodology is used to obtain the estimators of the parameters of the Maxwell
distribution in most of the studies. However, the ML estimators of the location and scale
parameters of the Maxwell distribution cannot be obtained explicitly. Therefore, iterative
methods should be used. It is known that using iterative methods causes various problems
such as (i) non-convergence of iterations, (ii) convergence to multiple roots, and (iii) con-
vergence to the wrong root; see e.g. Barnett [7], Puthenpura and Sinha [23], and Vaughan
[33].

The motivation of this study is to obtain the explicit estimators for the location and
scale parameters of the Maxwell distribution. For this purpose, Tiku’s [28, 29] MML method-
ology is used. The MML estimators are formulated for both complete and censored samples.
An extensive Monte-Carlo (MC) simulation study is carried out to compare performances
of the MML estimators with the well-known and widely-used ML, least squares (LS) and
method of moments (MoM) estimators.

The rest of the paper is organized as follows. Maxwell distribution is reviewed in Section 2.
Section 3 is reserved to the parameter estimation methodologies. The results of the MC
simulation study are presented in Section 4. The ML and MML estimators are given under
Type-II censoring scheme in Section 5. In Section 6, two real data sets are analyzed to show
the implementation of the proposed methodology. The paper ends with some concluding
remarks.
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2. MAXWELL DISTRIBUTION

Traditionally, the probability density function (pdf) of the Maxwell distribution is given
by

(2.1) f(v) = 4π

(
m

π2kT

)3/2

v2 exp

{
−

(
m

2kT
v2

)}
, v > 0,

where m is the molecular weight in kg/mol, T is the temperature in Kelvin, k is the constant
J/K and v denotes the speed of the molecule. If the reparametrization σ =

√
2kT/m is used

and a location parameter µ is added into the Equation (2.1), then the resulting distribution
is called as two-parameter Maxwell distribution.

The pdf and the corresponding cumulative distribution function (cdf) of the two-
parameter Maxwell distribution are given by

f(x;µ, σ) =
4

σΓ(1/2)

(
x− µ

σ

)2

exp

{
−

(
x− µ

σ

)2
}

, µ ≤ x ≤ ∞, σ ≥ 0,(2.2)

and

F (x;µ, σ) =
1

Γ(3/2)
Γ

[(
x− µ

σ

)2

, 3/2

]
,(2.3)

respectively. Here, µ is the location parameter and σ is the scale parameter. Also, Γ(·)
and Γ(·, ·) stand for the gamma and incomplete gamma functions, respectively. See Figure 1
where the plots of the Maxwell distribution are illustrated for certain values of σ.
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Figure 1: Plots of the Maxwell distribution for certain values of σ.

In the rest of the paper, we use the term Maxwell distribution instead of two-parameter
Maxwell distribution for the sake of simplicity.
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3. PARAMETER ESTIMATION UNDER COMPLETE SAMPLES

In this section, brief descriptions of the ML, MML, MoM and LS methodologies are
provided.

3.1. The ML method

Let X1, X2, ..., Xn be a random sample from the Maxwell distribution. Then, the log-
likelihood (lnL) function can be written as follows:

(3.1) lnL = n lnC − n lnσ + 2
n∑

i=1

ln zi −
n∑

i=1

z2
i ,

where C = 4
/
Γ(1/2) and zi = (xi−µ)

/
σ (i = 1, 2, ..., n). The ML estimates of the parameters

µ and σ are obtained as solutions of the following likelihood equations:

∂ lnL

∂µ
= − 2

σ

n∑
i=1

g(zi) +
2
σ

n∑
i=1

zi = 0(3.2)

and

∂ lnL

∂σ
= −n

σ
− 2

σ

n∑
i=1

zi g(zi) +
2
σ

n∑
i=1

z2
i = 0,(3.3)

where g(z) = z−1. Equations (3.2) and (3.3) cannot be solved explicitly since they contain
the nonlinear g(z) = z−1 function. In this study a Newton–Raphson (NR) method is utilized
to obtain the solutions of Equations (3.2) and (3.3) simultaneously. The Hessian matrix,

H =


∂2 lnL

∂µ2

∂2 lnL

∂µ∂σ

∂2 lnL

∂σ∂µ

∂2 lnL

∂σ2

 ,(3.4)

is used in the NR method. The elements of the Hessian matrix and Fisher Information matrix
(I) are provided in the Appendix for the Maxwell distribution.

The following equations are used in the NR method to solve the likelihood equations
in (3.2) and (3.3):

∂2 lnL

∂µ2
(µk, σk)

∂2 lnL

∂µ∂σ
(µk, σk)

∂2 lnL

∂σ∂µ
(µk, σk)

∂2 lnL

∂σ2
(µk, σk)


[
Ξµk

Ξσk

]
=


∂ lnL

∂µ
(µk, σk)

∂ lnL

∂σ
(µk, σk)

 ,(3.5)

where k denotes the iteration number and Ξ stands for the incremental values. See also
Arslan and Senoglu [6], where a similar algorithm scheme has already been used for the
one-way ANOVA model under Jones and Faddy’s skew t distribution.
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3.2. The MML method

As mentioned in the Subsection 3.1, the ML estimators of the location and scale param-
eters cannot be obtained in closed forms because of the nonlinear function g(·) in Equations
(3.2) and (3.3). We here propose to use non-iterative MML methodology developed by Tiku
[28, 29] to avoid the computational difficulties and/or problems mentioned in Section 1.
The MML methodology also allows us to obtain closed forms of the estimators. There are
three steps to obtain the MML estimators of the location parameter µ and scale parameter σ.
They are given step by step as follows:

Step 1. Standardized observations zi = (xi − µ)/σ (i = 1, 2, ..., n) are ordered in as-
cending way, i.e. z(1) ≤ z(2) ≤ ··· ≤ z(n).

Step 2. The ordered observations are incorporated into likelihood equations, since

complete sums are invariant to ordering, i.e.
n∑

i=1

h(zi) =
n∑

i=1

h(z(i)), where

h(·) is any function.

Step 3. g(z(i)) is linearized around the expected values of the standardized ordered
observations, i.e. t(i) = E(z(i)), by using the first two terms of Taylor series
expansion:

(3.6) g
(
z(i)

) ∼= αi − βiz(i), i = 1, ..., n.

After incorporating Equation (3.6) into the likelihood equations, we obtain the following
modified likelihood equations:

∂ lnL∗

∂µ
= − 2

σ

n∑
i=1

(
αi − βiz(i)

)
+

2
σ

n∑
i=1

z(i) = 0(3.7)

and

∂ lnL∗

∂σ
= −n

σ
− 2

σ

n∑
i=1

z(i)

(
αi − βiz(i)

)
+

2
σ

n∑
i=1

z2
(i) = 0.(3.8)

The solutions of these equations are the following MML estimators:

(3.9) µ̂MML = x̄w −
∆
m

σ̂MML and σ̂MML =
−B +

√
B2 + 4nC

2
√

n(n− 1)
,

where

x̄w =
n∑

i=1

δix(i)

/
m, m =

n∑
i=1

δi, δi = βi + 1, βi = t−2
(i) , ∆ =

n∑
i=1

αi,

αi = 2t−1
(i) , B = 2

n∑
i=1

αi

(
x(i) − x̄w

)
and C = 2

n∑
i=1

δi

(
x(i) − x̄w

)2
.

Here, x(i) represents the i-th ordered observation. It should be noted that t(i) = E(z(i)) can
be obtained approximately using the following equality:

t(i) = F−1

(
i

n + 1

)
, i = 1, 2, ..., n,
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where F−1(·) is the quantile function of the standard Maxwell distribution. The use of these
approximate values does not affect the efficiency of the MML estimators adversely. It should
also be noticed that the denominator of σ̂MML is 2n, however it is replaced by 2

√
n (n− 1)

for bias correction.

The MML estimators are derived in closed form since they are expressed as functions
of the sample observations. Furthermore, they are asymptotically equivalent to the ML
estimators. The MML estimators are also almost fully efficient, i.e. they have minimum
variance bounds (MVBs). They also have very small bias or no bias even for small sample
sizes. It should also be mentioned that the MML methodology gives small weight(s) to the
outlying observation(s) in the direction of the longer tail(s). Therefore, the MML estimators
are robust to the outlier(s), see e.g. Acitas et al. [1] and references given therein for further
information. See also Figure 2 where plots of the weights for the Maxwell distribution, i.e.
δi = t−2

(i) + 1, are illustrated.
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Figure 2: Plot of the weights for the Maxwell distribution, n = 100.

The asymptotic distributions of the µ̂MML and σ̂MML are provided in Lemma 3.1 and
Lemma 3.2.

Lemma 3.1. µ̂MML is normally distributed with mean µ and variance σ2/m for n→∞.

Proof: The proof is done based on the following fact: The likelihood equation given
in (3.2) and modified likelihood equation given in (3.7) are asymptotically equivalent.
Furthermore, ∂ lnL∗/∂µ can be written as

(3.10)
∂ lnL∗

∂µ
=

m

σ2

[(
x̄w −

∆
m

σ̂MML

)
− µ

]
=

m

σ2

(
µ̂MML − µ

)
;

see Kendall and Stuart [17]. µ̂MML is normally distributed since E(∂r lnL∗/∂µr) = 0 for all
r ≥ 3; see Bartlett [8].
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Lemma 3.2. Conditional on µ known, nσ̂2
MML/σ2 is asymptotically chi-square dis-

tributed with n degrees of freedom.

Proof: This follows from the fact that B0/
√

nC0
∼= 0 and thus,

(3.11)
∂ lnL∗

∂σ
=

n

σ3

(
C0

n
− σ2

)
,

where B0 and C0 are the same as B and C, respectively. See for example Tiku [30] and
Senoglu [25] for further information.

3.3. The MoM method

MoM estimators of the location and scale parameters of the Maxwell distribution are
obtained by equating the first two theoretical moments to the first two sample moments.
Therefore, MoM estimators of µ and σ are given by

(3.12) µ̂MoM = x̄− 2√
π

σ̂MoM and σ̂MoM = s

√
2π

3π − 8
,

respectively. Here,

x̄ =
1
n

n∑
i=1

xi and s =

√√√√ 1
n

n∑
i=1

(xi − x̄)2.

It is clear that MoM estimators are functions of the sample observations as in MML estima-
tors.

3.4. The LS method

LS estimators of µ and σ are obtained by minimizing the following function

(3.13)
n∑

i=1

(
F

(
x(i)

)
− i

n + 1

)2

, i = 1, 2, ..., n,

with respect to the parameters of interest (Swain et al. [27]). Here, F (·) is the cdf of the
Maxwell distribution. It is clear that explicit forms of the LS estimators are not available.
Therefore, we use the “fminunc” function which exists in the optimization toolbox of MAT-
LAB2017a to obtain the LS estimates of µ and σ.

4. SIMULATION STUDY

In this section, the results of the simulation study in which the performances of the
MML estimators are compared with the ML, MoM and LS estimators are presented.
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In the simulation setup, we use the sample sizes n = 10 (small), n = 20, n = 50 (mod-
erate) and n = 120 (large). Without loss of generality, the location parameter µ and scale
parameter σ are taken to be 0 and 1, respectively. All the simulations are carried out for
b100,000/nc MC runs where b·c denotes the floor function (also known as the greatest integer
function) that takes integer part of the number. We use the MATLAB2017a software for all
computations. In the ML estimation procedure, the initial values for µ̂ and σ̂ are taken as
µ0 = µ̂MML and σ0 = σ̂MML, respectively.

It should be noted that estimates of µ may sometimes be greater than the smallest order
statistics x(1) due to the computational problems. These estimators are referred as imper-
missible estimators (Dubey [11]). The problem is extinguished by reducing the impermissible
estimators as x(1) − 10−4, see for example Kantar and Senoglu [15].

The performances of the ML, MML, MoM and LS estimators are compared by using
bias, variance, mean square error (MSE) and deficiency (Def) criteria. Def is a natural
measure of the joint efficiency of the estimators µ̂ and σ̂ and is defined by

(4.1) Def(µ̂, σ̂) = MSE(µ̂) + MSE(σ̂);

see for example Akgul et al. [2]. The results of the simulation study are tabulated in Table 1.
Following conclusions are drawn from Table 1.

Table 1: Simulated bias, variance, MSE and Def values of the ML,
MML, MoM and LS estimators (µ = 0 and σ = 1).

Sample µ̂ σ̂

size
Estimators

Bias Variance MSE Bias Variance MSE
Def

n = 10

ML −0.108 0.050 0.062 0.094 0.042 0.051 0.113
MML −0.095 0.052 0.061 0.060 0.046 0.050 0.111
MoM −0.030 0.066 0.067 0.028 0.054 0.055 0.122
LS 0.254 0.127 0.191 −0.338 0.131 0.245 0.436

n = 20

ML −0.061 0.025 0.028 0.051 0.022 0.025 0.053
MML −0.061 0.026 0.029 0.038 0.023 0.025 0.054
MoM −0.018 0.033 0.034 0.016 0.028 0.028 0.061
LS 0.193 0.058 0.096 −0.278 0.059 0.137 0.232

n = 50

ML −0.030 0.009 0.010 0.022 0.009 0.009 0.019
MML −0.035 0.009 0.011 0.019 0.009 0.009 0.020
MoM −0.010 0.013 0.013 0.005 0.011 0.011 0.023
LS 0.153 0.021 0.044 −0.241 0.020 0.078 0.122

n = 120

ML −0.011 0.003 0.004 0.009 0.003 0.003 0.007
MML −0.015 0.004 0.004 0.009 0.003 0.003 0.007
MoM 0.000 0.005 0.005 0.000 0.004 0.004 0.009
LS 0.148 0.008 0.030 −0.232 0.008 0.062 0.092

Concerning the bias values, and for all sample sizes, the MoM estimator and LS esti-
mator of µ have the smallest and the largest bias value, respectively. It can also be deduced
from Table 1 that the bias values of the ML and MML estimators are very similar to each
other as expected. The ML, MML and MoM estimators overestimate the location parameter
µ while the LS estimator underestimates.
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It is clear from Table 1 that the MoM estimator of σ has superiority over the ML,
MML and LS estimators in terms of the bias criterion. For the small sample size, it is seen
the MML estimator performs better than the ML estimator. However, the ML and MML
estimators have more or less the same bias values for moderate and large sample sizes.
The LS estimator of the σ has the biggest bias value among the all estimators.

Overall, all the estimators have negligible bias values except the LS estimators in what
concerns the bias values of µ̂ and σ̂.

Concerning the MSE values, the ML and MML estimator of µ have almost same the
MSE values for all sample sizes. The LS estimator of the location parameter µ has the worst
performance in terms of MSE among all other estimators.

Similar results are also obtained for the scale parameter σ. For example, the LS esti-
mator does not perform well. The ML and MML estimators outperform the MoM estimator
in most of the cases, however the MoM estimator has a considerably good performance.
Table 1 also reveals that the ML and MML estimators are the most efficient.

To sum up, the ML and MML estimators are preferable among the other estimators
according to the MSE criterion. The MSE values for µ̂ and σ̂ decrease when the sample size n

increases, as the theory says.

Concerning the Def values, the ML estimator has the smallest Def values among the
other estimators for all cases. The Def values of the MML estimator are very close to those
of the ML estimator except n = 10. The LS estimator shows the worst performance since it
has the biggest Def values.

Finally, the ML and MML estimators are seen to be more efficient than the MoM and
LS estimators. It is also clear that the performance of the ML and MML estimators are more
or less the same as expected. As it is indicated previously, obtaining the ML estimates of
the parameters requires iterative methods and this may cause some problems. On the other
hand, the MML estimators are easily obtained from the sample observations without any
iterative computations. As a result, the MML estimators may be preferable if our focus is to
avoid the computational complexities besides having efficient estimators.

Robustness of the estimators

In this part of the simulation study, robustness properties of the ML, MML, MoM and
LS estimators are investigated when there are plausible deviations from an assumed model.
For this purpose, we assume that the underlying true model is Maxwell(µ=0, σ=1) and
consider the following alternative models:

Outlier Model: (n− r) Maxwell(0, 1) + r Maxwell(0, 2); r = b0.5 + 0.1nc.

Mixture Model: 0.80 Maxwell(0, 1) + 0.20 Maxwell(0, 2).

Contamination Model: 0.90 Maxwell(0, 1) + 0.10 Weibull(1, 0.8046).
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Here, Weibull(1, 0.8046) denotes the Weibull distribution with scale parameter σ = 1 and
shape parameter p = 0.8046. Simulated mean, variance, MSE and Def values for the ML,
MML, MoM and LS estimators of µ and σ under the alternative models are given in Table 2.

Table 2: Simulated mean, variance, MSE and Def values of the ML,
MML, MoM and LS estimators under the alternative models.

Sample µ̂ σ̂

size
Estimators

Mean Variance MSE Mean Variance MSE
Def

Model I: Outlier Model

n = 10

ML −0.032 0.090 0.091 1.142 0.108 0.128 0.220
MML −0.065 0.102 0.107 1.197 0.126 0.165 0.271
MoM −0.215 0.185 0.231 1.289 0.188 0.271 0.502
LS −0.215 0.178 0.326 1.535 0.198 0.484 0.810

n = 20

ML −0.083 0.045 0.052 1.191 0.055 0.092 0.144
MML −0.097 0.049 0.059 1.219 0.061 0.109 0.168
MoM −0.242 0.099 0.158 1.315 0.099 0.198 0.356
LS −0.242 0.077 0.173 1.459 0.084 0.295 0.468

n = 50

ML −0.113 0.019 0.032 1.219 0.023 0.071 0.103
MML −0.116 0.019 0.033 1.231 0.025 0.078 0.111
MoM −0.264 0.045 0.115 1.334 0.044 0.156 0.271
LS −0.264 0.029 0.094 1.402 0.030 0.191 0.285

Model II: Mixture Model

n = 10

ML −0.101 0.114 0.124 1.307 0.179 0.274 0.398
MML −0.142 0.129 0.150 1.372 0.206 0.344 0.494
MoM −0.321 0.231 0.334 1.483 0.288 0.521 0.856
LS −0.321 0.354 0.705 1.841 0.483 1.191 1.896

n = 20

ML −0.175 0.058 0.089 1.380 0.094 0.239 0.328
MML −0.194 0.062 0.100 1.415 0.102 0.274 0.374
MoM −0.383 0.126 0.272 1.541 0.154 0.446 0.719
LS −0.383 0.143 0.370 1.715 0.198 0.710 1.081

n = 50

ML −0.208 0.023 0.066 1.408 0.037 0.204 0.270
MML −0.211 0.023 0.068 1.422 0.038 0.216 0.284
MoM −0.410 0.050 0.218 1.561 0.060 0.375 0.593
LS −0.410 0.048 0.212 1.632 0.066 0.465 0.677

Model III: Contamination Model

n = 10

ML −0.096 0.167 0.177 1.095 0.217 0.226 0.402
MML −0.114 0.184 0.197 1.138 0.250 0.269 0.466
MoM −0.221 0.351 0.400 1.197 0.377 0.416 0.816
LS −0.221 0.194 0.363 1.478 0.199 0.428 0.791

n = 20

ML −0.167 0.103 0.131 1.157 0.135 0.160 0.291
MML −0.167 0.109 0.137 1.177 0.151 0.182 0.319
MoM −0.266 0.255 0.326 1.236 0.261 0.317 0.643
LS −0.266 0.078 0.193 1.400 0.076 0.236 0.429

n = 50

ML −0.215 0.049 0.096 1.207 0.069 0.111 0.207
MML −0.209 0.051 0.094 1.214 0.075 0.121 0.215
MoM −0.313 0.162 0.259 1.282 0.158 0.237 0.496
LS −0.313 0.029 0.113 1.354 0.028 0.154 0.266

It can be seen from the Table 2 that the ML and MML estimators outperform the MoM
and LS estimators according to the MSE and Def criteria. This result implies that the ML and
MML estimators of parameters µ and σ are more robust to the data anomalies given above.
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5. PARAMETER ESTIMATION UNDER THE TYPE-II CENSORING

Analysis of censored samples are usually encountered in different fields of science such
as agriculture, social sciences, medicine, and so on (Senoglu and Tiku [26]). Therefore, we
consider a Type-II censoring scheme. Type-II censoring arises if a predetermined number of
lower and upper observations are censored (Senoglu and Tiku [26]; Arslan and Senoglu [6]).

According to the simulation results related with the robustness issue in Section 4,
we concentrated on the ML and MML estimators of µ and σ under censoring. Let

z(r1) ≤ z(r1+1) ≤ ··· ≤ z(n−r2−1) ≤ z(n−r2)

be a Type-II censored samples where r1 and r2, with r1, r2 ≥ 0 and 0 < r1 + r2 < n, stand
for the number of censored observations from the below and above, respectively. Then, the
likelihood (L) function of the Maxwell distribution under the Type-II censored sample can
be written as

(5.1) L =
[
1− F

(
z(r1+1)

)]r1
n−r2∏

i=r1+1

f
(
z(i)

)[
F

(
z(n−r2)

)]r2

,

where f(·) and F (·) are the pdf and cdf of the Maxwell distribution given in Equations (2.2)
and (2.3), respectively.

5.1. The ML method

The ML estimates of the parameters µ and σ under the Type-II censored samples are
obtained by solving the following likelihood equations:

∂ lnL

∂µ
= − r1

σ
g1(zr1+1) −

2
σ

n−r2∑
i=r1+1

g2(zi) +
2
σ

n−r2∑
i=r1+1

zi +
r2

σ
g3(zn−r2) = 0(5.2)

and
∂ lnL

∂σ
= − n− r1 − r2

σ
− r1

σ
zr1+1 g1(zr1+1) −

2
σ

n−r2∑
i=r1+1

zig2(zi) +
2
σ

n−r2∑
i=r1+1

z2
i

+
r2

σ
zn−r2 g3(zn−r2) = 0,

(5.3)

where g1(zr1+1) =
f(zr1+1)
F (zr1+1)

, g2(zi) = z−1
i and g3(zn−r2) =

f(zn−r2)
1− F (zn−r2)

.

Similar to the complete sample case, the likelihood equations in (5.2) and (5.3) are
nonlinear functions of the unknown parameters. Therefore, they cannot be obtained explicitly.
The NR algorithm is also used here to solve the likelihood equations simultaneously.
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5.2. The MML method

The MML estimators for the location µ and scale σ parameters of the Maxwell distri-
bution are obtained under the Type-II censored samples by using an algorithm similar to the
one given in Subsection 3.2.

Nonlinear functions are linearized around the expected values of the standardized or-
dered observations , i.e. t(i) = E(z(i)), by using the first two terms of a Taylor series expansion:

g1

(
z(r1+1)

) ∼= α1r1+1 − β1r1+1z(r1+1), g2

(
z(i)

) ∼= α2i − β2iz(i),

g3

(
z(n−r2)

) ∼= α3n−r2 − β3n−r2 z(n−r2), i = r1 + 1, ..., n− r2.
(5.4)

After replacing nonlinear functions with their linearized versions in the likelihood equa-
tions, the following MML estimators are obtained:

(5.5) µ̂MML = x̄w −
∆
m

σ̂MML and σ̂MML =
−B +

√
B2 + 4AC

2
√

A(A− 1)
,

where

m = r1β1r1+1 + 2
n−r2∑

i=r1+1

(β2i + 1) − r2β3n−r2 , A = n− r1 − r2,

x̄w =

r1β1r1+1x(r1+1) + 2
n−r2∑

i=r1+1

(β2i + 1) x(i) − r2β3n−r2 xn−r2

m
,

∆ = r1α1r1+1 + 2
n−r2∑

i=r1+1

(α2i) − r2α3n−r2 ,

B = r1β1r1+1

(
x(r1+1) − x̄w

)2 + 2
n−r2∑

i=r1+1

(β2i + 1)
(
x(i) − x̄w

)2 − r2β3n−r2(xn−r2 − x̄w)2,

C = r1α1r1+1

(
x(r1+1) − x̄w

)2 + 2
n−r2∑

i=r1+1

(α2i + 1)
(
x(i) − x̄w

)2 − r2α3n−r2(xn−r2 − x̄w)2,

α1r1+1 = g1

(
t(r1+1)

)
+ β1r1+1 t(r1+1), β1r1+1 =

f ′(t(r1+1)

)
F

(
t(r1+1)

) − [
f
(
t(r1+1)

)
F

(
t(r1+1)

)]2

,

α2i = 2t−1
(i) , β2i = t−2

(i) ,

α3n−r2 = g3

(
t(n−r2)

)
+ β3n−r2 t(n−r2), β3n−r2 =

f ′(t(n−r2)

)
1− F

(
t(n−r2)

) − [
f
(
t(n−r2)

)
1− F

(
t(n−r2)

)]2

.

It should be noticed that the denominator 2A is replaced by 2
√

A (A− 1) in σ̂MML as
a bias correction.

We conducted a MC simulation study for this case and obtained similar results with
those obtained in the complete sample case. Therefore, we would not give the results here
for the sake of brevity. However, they can be provided upon request from the authors.
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6. APPLICATIONS

In this section, two real data sets are modelled by using the Maxwell distribution.
The unknown parameters are estimated via the ML and MML methods since the MoM and
LS methods fail to exhibit a good performance (see Section 4).

6.1. Example 1: Breaking stress of carbon fibres data

In this subsection, observations on the breaking stress of carbon fibres (in Gba) are used
to show the implementation of the proposed methodology. The data set is given in Table 3.
Further information about the data set can be found in Nicolas and Padgett [22]. See also
Qian [24] and Al-Sobhi and Soliman [4], where the breaking stress of carbon fibres data
are modelled using the exponentiated exponential (EE) and exponentiated Weibull (EW)
distributions.

Table 3: Observations on breaking stress of carbon fibres, n = 100.

0.39 0.81 0.85 0.98 1.08 1.12 1.17 1.18 1.22 1.25 1.36 1.41 1.47 1.57
1.57 1.59 1.59 1.61 1.61 1.69 1.69 1.71 1.73 1.8 1.84 1.84 1.87 1.89
1.92 2.00 2.03 2.03 2.05 2.12 2.17 2.17 2.17 2.35 2.38 2.41 2.43 2.48
2.48 2.5 2.53 2.55 2.55 2.56 2.59 2.67 2.73 2.74 2.76 2.77 2.79 2.81
2.81 2.82 2.83 2.85 2.87 2.88 2.93 2.95 2.96 2.97 2.97 3.09 3.11 3.11
3.15 3.15 3.19 3.19 3.22 3.22 3.27 3.28 3.31 3.31 3.33 3.39 3.39 3.51
3.56 3.6 3.65 3.68 3.68 3.68 3.70 3.75 4.2 4.38 4.42 4.7 4.9 4.91
5.08 5.56

In this study, Maxwell distribution is considered for modelling purposes. The mod-
elling performance of the Maxwell distribution is compared with the performances of EE and
EW distributions using well-known criteria such as Akaike Information Criterion (AIC) and
corrected AIC (AICc). The smaller value of the AIC and AICc imply better fitting.

The parameter estimates along with lnL, AIC and AICc values are given in Table 4.
The results show that the Maxwell distribution performs a better modeling performance than
its rivals in terms of considered criteria.

Table 4: Parameter estimates for breaking stress of carbon fibres data.

µ̂ σ̂ ln L AIC AICc

Maxwell Distribution
ML 0.1402 2.1869 −141.6621 287.3242 287.4479
MML 0.1816 2.1636 −141.7226 287.4452 287.5689

α̂ML β̂ML σ̂ML ln L AIC AICc

Exponentiated Weibull 1.3169 2.4091 2.6824 −141.3320 288.6640 288.9140
Exponentiated Exponential 7.7883 — 0.9870 −146.1823 296.3646 296.4883
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It is also clear from the lnL values given in Table 4 that the ML estimates are prefer-
able over the MML estimates. However, the ML estimates are obtained via the iterative
method. On the other hand, the MML estimates are obtained easily since they are formu-
lated explicitly. Furthermore, ln L values based on the ML and MML estimates do not differ
so much. Therefore, the MML estimates can also be preferable for this data. It should be
also noted that the Maxwell distribution provides better modelling performance than the
EW distribution in spite of the fact that it has a lower number of parameters.

6.2. Example 2: Windmill data

The windmill data, in Table 5, was first considered by Joglekar et al. [14]. See also
Kotb and Raqab [18], where the modified Weibull distribution is used for modelling this data
set.

Table 5: Observations on windmill data, n = 25.

0.123 0.5 0.558 0.653 1.057 1.137 1.144 1.194 1.501 1.562
1.582 1.737 1.800 1.822 1.866 1.930 2.088 2.112 2.166 2.179
2.236 2.294 2.303 2.310 2.386

In this study, the Maxwell distribution is used to model the windmill data. Its mod-
elling performance is also compared with the modelling performance of the modified Weibull
distribution. The results are given in Table 6.

Table 6: Parameter estimates for windmill data.

µ̂ σ̂ ln L AIC AICc

Maxwell Distribution
ML −0.1640 1.5393 −25.9676 55.9351 56.4806
MML −0.0905 1.5103 −26.0949 56.1898 56.7353

α̂ML β̂ML θ̂ML ln L AIC AICc

Modified Weibull 0.2249 6.4644 0.0080 −25.7511 57.5022 58.6451

It can be concluded from Table 6 that the Maxwell distribution is preferable over the
modified Weibull distribution according to the AIC and AICc criteria. The MML estimates
can also be used as an alternative to the ML estimates here since the results are similar.
Furthermore, the MML estimators have closed forms unlike the ML estimators.
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7. CONCLUSION

In this study, estimation of the location and scale parameters of the Maxwell dis-
tribution is considered. Since the ML estimators cannot be obtained explicitly, the MML
estimators having closed forms are derived. The MML estimators are asymptotically equiv-
alent to the ML estimators. They are also fully efficient. We conducted a MC simulation
study to compare the performance of the MML estimators with the ML, MoM and LS esti-
mators. Simulation results show that the performance of the ML estimators is better than
the other estimators. Furthermore, the MML and ML estimators have more or less the same
performance. However, the ML estimators are obtained based on iterative methods. It is well
known that using iterative methods causes some problems as mentioned in the text. On the
other hand, the MML estimators are easily obtained from the sample observations without
any iterative computations. It is concluded that the MML estimators may be preferable as
an alternative to the ML estimators, if our focus is to avoid the computational complexities
whilst high efficiency.

A. APPENDIX

Elements of the Hessian matrix

∂2 lnL

∂µ2
= −2n

σ2
− 2

σ2

n∑
i=1

(
xi − µ

σ

)−2

,

∂2 lnL

∂µ∂σ
= − 4

σ2

n∑
i=1

(
xi − µ

σ

)
,

∂2 lnL

∂σ2
=

3n

σ2
− 6

σ2

n∑
i=1

(
xi − µ

σ

)2

.

Fisher Information (I) matrix of the Maxwell distribution

I =


−E

(
∂2 lnL

∂µ2

)
−E

(
∂2 lnL

∂µ∂σ

)
−E

(
∂2 lnL

∂σ∂µ

)
−E

(
∂2 lnL

∂σ2

)
 =

n

σ2


6

8√
π

8√
π

6

 .
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1. INTRODUCTION

Since the beta regression (BR) model was introduced by Ferrari and Cribari-Neto [13]
(2004), it has become an excellent tool for modeling continuous data in the unit interval.
This is mainly because of the flexibility of its probability density function (PDF), which can
cover a wide range of shapes (symmetric, asymmetric, unimodal and bimodal) depending on
different values of its parameters. In addition, the beta distribution can be parameterized in
terms of its mean; see more details in Cribari-Neto and Zeileis [5] (2010), Figueroa-Zuñiga
et al. [16] (2013), Zhao et al. [39] (2014), Queiroz da-Silva and Migon [30] (2016) and Huerta
et al. [21] (2018).

Inclusion of nonparametric functions enhances the modeling flexibility for accommo-
dating nonlinear effects of covariates. Semiparametric models have been successfully used
to describe nonlinear components. Semiparametric additive beta regression (SABR) models
emerge as a useful tool to describe situations where the response variable is continuous,
restricted to the unit interval and related to covariates through a semiparametric regression
structure (Zhu and Lee [11], 2003).

Note that parameter estimation in BR models, and consequently in SABR models,
can be influenced by outlying observations. For this reason, diagnostic is a fundamental
stage in the modeling of data. Diagnostic techniques used in a regression model can be
divided into global influence (elimination of cases) and local influence. The main idea of
the local influence technique, proposed by Cook [4] (1986), is to evaluate the sensitivity of
the parameter estimators when small perturbations are introduced in the assumptions of
the model or in the data (for example, in the response and covariates). This technique has
the advantage, with respect to elimination of cases, that does not needs to calculate the
parameters estimates for each case eliminated. The following works are related to the local
influence technique: Zhu and Lee [40] (2003) considered it in generalized linear mixed models;
Zhu et al. [41] (2003) and Ibacache-Pulgar and Paula [22] (2011) provided local influence
measures to evaluate the sensitivity of the maximum penalized likelihood (MPL) estimates in
normal and Student-t partially linear models, respectively; Osorio et al. [28] (2007) derived it
in elliptical linear models for longitudinal data; Cao and Lin [3] (2011) applied it to elliptical
linear mixed models with first-order autoregressive errors; Ibacache-Pulgar et al. [24, 23]
(2012, 2013) analyzed it in elliptical semiparametric mixed and symmetric semiparametric
additive models, respectively; Uribe-Opazo et al. [36] (2012) and Garcia-Papani et al. [17]
(2018) used it to evaluate sensitivity in spatial models; Zhang et al. [38] (2015) and Ibacache-
Pulgar and Reyes [25] (2018) developed it for normal and elliptical partially varying-coefficient
models, respectively; Emami [8] (2017) utilized it in Liu penalized least squares estimators;
Marchant et al. [27] (2016) considered it in multivariate regression models; Ferreira and Paula
[15] (2017) extended it for different perturbation schemes considering a skew-normal partially
linear model; Leao et al. [26] (2018) derived it in cure rate models with frailties; Cysneiros
et al. [6] (2019) implemented it in Cobb–Douglas type models; and Tapia et al. [33, 34]
(2019a, b) applied it to mixed effects logistic and longitudinal count regression models. In the
case of BR models, Espinheria et al. [9, 10] (2008a, b) derived the local influence technique
under different perturbation schemes; Ferrari [12] (2011) derived it in BR models with varying
dispersion; and Rocha and Simas [31] (2011) applied it to a general class of the BR models.
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Note that the SABR model is a particular case of the GAMLSSS models (Stasinopoulos and
Rigby [32], 2007). To the best of our knowledge, local influence diagnostics in SABR models
have been no analyzed to the date. Therefore, the aim of this paper is to study the parameters
estimation and to apply the approach of local influence in the SABR model.

This paper is organized as follows. In Section 2, the SABR model is presented and
a penalized log-likelihood function is considered for the parameters estimation. In this sec-
tion, we present a weighted back-fitting algorithm to obtain MPL estimates and parame-
ters smoothing selection. Section 3 discusses and derives the local influence curvatures and
Section 4 illustrates the proposed methodology with a real data set. Finally, in Section 5
some concluding remarks are mentioned.

2. THE SEMIPARAMETRIC ADDITIVE BETA REGRESSION MODEL

2.1. Formulation

Let Y1, ..., Yn be independent random variables following a beta distribution, where
each Yi has a PDF given by

fY (yi;µ, φ) =
Γ(φ)

Γ(µiφ) Γ
(
[1− µi]φ

) yµiφ−1
i [1− yi][1−µi]φ−1, i = 1, ..., n,(2.1)

with 0 < yi < 1, 0 < µi < 1 and φ > 0. Then, the mean of Yi can be written as

g(µi) = x>i β,(2.2)

where g(·) is a strictly monotonic and twice differentiable link function that maps (0, 1)
into real numbers set; β = (β1, ..., βp)> is a vector of unknown regression parameters; and
xi = (xi1, ..., xip)> is a vector of observed covariates (p < n).

The SABR models are often used in research related to longitudinal, clustered and
spatial sampling schemes. The mean of this model can be obtained from (2.2) as

g(µi) = x>i β + f1(t1i) + ···+ fs(tsi),(2.3)

or alternatively as g(µi) = x>i β + n>
1i

f1 + ··· + n>
si

fs, g(·), β = (β1, ..., βp)>, and xi =
(xi1, ..., xip)> are such as in (2.2), but now we add the nonparametric structure by fk’s,
which are unknown smooth arbitrary functions on covariates tk’s, for k = 1, ..., s; where n>

ki

denotes the i-th row of the incidence matrix Nk whose (i, l)-th element corresponds to the
indicator function I(tki

= t0kl
), with t0kl

, for l = 1, ..., rk, denoting the distinct and ordered val-
ues of the covariate tk and fk = (fk(tk1), ..., fk(tkrk

))>. There are several possible choices for
the link function g(·). For instance, one can use the logit specification g(µ) = log{µ/(1−µ)},
the probit function g(µ) = Φ−1(µ), where Φ(·) is the standard normal cumulative distribu-
tion function, the complementary log-log link g(µ) = log{− log(1− µ)}, and the log-log link
g(µ) = − log{− log(µ)}, among others. A particularly useful link function is the logit link, in
which case we write

µi =
exp
[
x>i β +

∑s
k=1 n>

ki
fk
]

1 + exp
[
x>i β +

∑s
k=1 n>

ki
fk
] .
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Since the functions fk’s belong to the infinite dimensional space and are considered parameters
with respect to the expected value of Yi, some restricted subspace should be defined for
the nonparametric functions to ensure identifiability of the parameters associated with the
model. Therefore, we assume that the function fk belongs to the Sobolev function space
(Adams and Fournier [1], 2003) defined as W(2)

2 = {fk : fk, f
(1)
k abs. cont., f (2)

k ∈L2[ak, bk]},
where f

(2)
k (tk) = ∂2/∂t2kfk(tk), with t0k ∈ [ak, bk]. Then, the log-likelihood function of the

model defined in (2.1) and (2.3) is given by

`(θ) =
n∑
i=1

`i(θ),(2.4)

where

`i(θ) = log
(
Γ(φ)

)
− log

(
Γ(µiφ)

)
− log

(
Γ([1−µi]φ)

)
+[µiφ−1] log(yi)+

{
[1−µi]φ−1

}
log[1−yi],

with µi defined in (2.2) and θ = (β>, f>1 , ..., f
>
s , φ)> ∈ Θ ⊆ Rp∗ , with p∗ = p+ r + 1 and r =∑s

k=1 rk. Incorporating a penalty function over each function fk, we have that the penalized
log-likelihood function can be expressed as

(2.5) `p(θ,α) = `(θ)−
s∑

k=1

αk
2

f>k Kk fk,

where α = (α1, ..., αs)> denotes an (s×1) vector of smoothing parameters and Kk is a (rk×rk)
nonnegative definite matrix that depends only on the knots t0kl

, for l = 1, ..., rk. Details
about the construction of this matrix can be found in Green and Silverman [18] (1994).
Note that direct maximization of the log-likelihood function, without imposing restrictions
on smooth functions, can generate problems of identifiability or over-fitting. To correct these
problems, it is suggested to incorporate a penalty term for each smooth function in the log-
likelihood function. Then, the MPL estimates are obtained by maximizing this function. As
the resulting estimation equations are non-linear, an iterative process is required to obtain
the parameter estimates. Therefore, in the analysis of local influence presented in Section 3,
the MPL estimate is replaced by an estimate obtained in the last iteration of the process,
after reaching convergence.

2.2. Estimation

In order to define the penalized score function, consider X being an (n×p) matrix whose
i-th row is x>i,Nk being an (n×rk) matrix which i-th row is n>

ki
, T = diag(1/g′(µ1), ...,1/g′(µn)),

y∗ = (y∗1, ..., y
∗
n)
>, µ∗ = (µ∗1, ..., µ

∗
n)
>, y∗i = log(yi/[1− yi]) and µ∗i = ψ(µiφ)− ψ[(1− µi)φ],

for i = 1, ..., n, with ψ(·) denoting the digamma function, this is, ψ(z) = d log Γ(z)/dz, for
z > 0. Then, assuming that (2.5) is regular with respect to β, f1, ..., fs and φ, the penalized
score function of θ is defined as

Up(θ) =
n∑
i=1

∂`pi
(θ,α)
∂θ

.
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After some algebraic manipulations we have in matrix form that

∂`p(θ,α)
∂β

= φX>T [y∗ − µ∗],

∂`p(θ,α)
∂ fk

= φN>
k T [y∗ − µ∗]− αkKk fk, k = 1, ..., s,

∂`p(θ,α)
∂φ

=
n∑
i=1

{
µi[y∗i − µ∗i ] + log(1− yi)− ψ

[
(1− µi)φ

]
+ ψ(φ)

}
.

2.3. Weighted back-fitting algorithm

To estimate θ by the MPL method, we have to solve the Up(θ) = 0. However, the
estimating equations are nonlinear and require an iterative method. For example, the deter-
mination of the MPL estimates θ̂ can be performed by using the Fisher scoring algorithm.
Let f0 = β and N0 = X, and consider for simplicity α and W fixed, with W defined in the
Appendix. Then, the Fisher scoring algorithm is given by (see Ibacache-Pulgar et al. [23],
2013) 

I S
(u)
0 N1 · · · S

(u)
0 Ns

S
(u)
1 N0 I · · · S

(u)
1 Ns

...
...

. . .
...

S
(u)
s N0 S

(u)
s N1 · · · I




f(u+1)
0

f(u+1)
1

...

f(u+1)
s

 =


S

(u)
0 z(u)

S
(u)
1 z(u)

...

S
(u)
s z(u)

 ,(2.6)

where z(u) = η + W−1T [y∗−µ∗]
∣∣
θ(u) with η = (g(µ1), ..., g(µn))> and g(·) as given in (2.3),

and S
(u)
k = Sk

∣∣
θ(u) , with

Sk =

 (N>
0 WN0)−1N>

0 W , k = 0,(
N>
k WNk + αkKk

)−1
N>
k W , k = 1, ..., s.

As it is known, the back-fitting algorithm is a simple iterative procedure used to fit a gen-
eralized additive model; see Hastie et al. [20] (2001). Then, in our case, the back-fitting
(Gauss–Seidel) iterations (Hastie and Tibshirani [19], 1990) that are used to solve the equa-
tions system (2.6) take the form

f(u+1)
k = S

(u)
k

[
z(u) −

s∑
l=0, l 6=k

Nl f
(u)
l

]
.(2.7)

Note that the system of equations given in (2.6) is consistent and the back-fitting algorithm
given in (2.7) converges to a solution for any starting values if the weight matrix involved
is symmetric and defined positive; see Berhane and Tibshirani [2] (1998). In addition, we
have that this solution is unique under no concurvity in the data. In particular, for a model
with smooth terms f1 and f2 but without the constant terms, β, we have the following
considerations:

(i) If ‖S1S2‖ < 1, the estimating equations are consistent and have a unique solution,
and the final iterations from the back-fitting algorithm are independent of the
starting values and starting order.
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(ii) If ‖S1S2‖ = 1, this gives an indication of concurvity in the data (strict collinear-
ity), and therefore the back-fitting algorithm converges to one of the solutions
of estimating equations system, and the starting functions determine the final
solutions.

(iii) If the Sk smoothers are not centered (S>
k 1 = 1), typically ‖S1S2‖ = 1, we can

consider a centered smoother such that S>
k 1 = 0, with 1 denoting a (rk×1) vector

of ones, which is defined as

Sk =
(

I(rk,rk) −
11>

rk

)(
N>
k WNk + αkKk

)−1
N>
k W .

The MPL estimate of the scale parameter, φ̂, can be obtained by solving the following iterative
process (see Ibacache-Pulgar and Reyes [25], 2018):

φ(u+1) = φ(u) −E

{
∂2`p(θ,α)
∂φ∂φ

}−1
∂`p(θ,α)

∂φ

∣∣∣∣
θ(u)

.

Note that Equation (2.7), which involves a diagonal matrix denoted by W , leads to an
iterative weighted back-fitting solution. The convergence of the iterative process is guaranteed
by the diagonal structure of W . Note also that this matrix must be updated in each iteration
of the back-fitting iterative process and in each stage of the Fisher scoring algorithm.

Observe that the joint iterative procedure proposed to estimate the parameters of the
model is based on the Fisher scoring and back-fitting algorithms. First, note that Equation
(2.6) corresponds to the matrix equation of the Fisher scoring algorithm. Then, after algebraic
manipulations, the solutions to this system correspond precisely to the back-fitting iterations.
In addition, note also that the scale parameter is estimated by a Fisher scoring algorithm.
In summary, the Fisher scoring algorithm allows us to estimate the parameter vector associ-
ated with our model and the back-fitting algorithm to update the estimates of the parameters
associated with the parametric and nonparametric components of the model for each stage
of the Fisher score algorithm.

2.4. Approximate covariance matrix

The covariance matrix of θ̂ is obtained from the inverse of the expected information
matrix Ip defined in the Appendix. Therefore, the approximate covariance matrix of θ̂ is
given as Ĉov(θ̂) ≈ I−1

p

∣∣
θ̂
, where

I−1
p =

(
J −1

1 −I−1
11 I12J −1

2

−I22I21J −1
1 J −1

2

)
,

with J 1 = I11 − I12I−1
22 I21 and J 2 = I22 − I21I−1

11 I12. An approximate pointwise stan-
dard error band (SEBapprox) for fk(·), that allows us to assess how accurate the estimator
f̂k(·), can be defined as

SEBapprox

(
fk(t0l )

)
= f̂k(t0l )± 2

√
V̂ar
(
f̂k(t0l )

)
, l = 1, ..., r,

where Var(f̂k(tl)) is the l-th principal diagonal element of the corresponding block-diagonal
matrix from I−1

p .
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2.5. Smoothing parameters and degrees of freedom

The determination of the parameter vector α is a crucial aspect in the estimation
process. Different choice methods are available in the literature for this purpose. For example,
an alternative to select smoothing parameters under the SABR model is to consider the Akaike
information criterion — AIC — (see details in Ferreira et al. [14], 2012; Ventura et al. [37],
2019) defined by

AIC(α) = −2`p(θ̂,α) + 2
[
p+ 1 + df(α)

]
,

where `p(θ̂,α) denotes the penalized log-likelihood function available at θ̂ for a fixed α and
df(α) =

∑s
k=1 df(αk) denotes approximately the number of effective parameters involved in

modeling of the nonparametric effects. The idea is to minimize the function AIC(α) with
respect to α. Following Hastie and Tibshirani [19] (1990) and Eilers and Marx [7] (1996),
the degrees of freedom (DF) associated with the k-th smooth function are given by

df(αk) = tr
{
S̃k
}

=
rk∑
j=1

1
1 + αkφLj

, j = 1, ..., rk,

which measures the individual effect contribution of the k-th component, with S̃k = NkSk
and Sk defined previously, and Lj are the eigenvalues of the matrix Q

−1/2
Nk

Qαk
Q
−1/2
Nk

, with
QNk

= N>
k WNk and Qαk

= αkKk. Note that the AIC is based on information theory and is
useful for selecting an appropriate model and smoothing parameters given data with adequate
sample size; see Ferreira et al. [14] (2012) and Ventura et al. [37] (2019).

3. LOCAL INFLUENCE DERIVATION

3.1. General context

In general, local influence analysis can be developed jointly for the entire parameter
vector. However, it is important to know the influence that the observations exert separately
on the estimates of the parametric components, nonparametric components and the disper-
sion parameter. Some works related to the application of the method of local influence in
semiparametric models have revealed empirical evidence that the observations that exert an
influence on the estimates of the parametric component are not necessarily influential on the
estimates of the non parametric component and viceversa.

To assess the influence of perturbations on the MPL estimates θ̂, we can consider the
likelihood displacement defined by LD(ω) = 2[`p(θ̂,α)− `p(θ̂ω,α)] ≥ 0, where θ̂ω is the MPL
estimates of θ for a perturbed model, whose perturbed penalized log-likelihood function is
denoted by `p(θ,α|ω), and ω = (ω1, ..., ωn)> is an n-dimensional vector of perturbations
restricted to some open subset Ω ∈ Rn. It is assumed that exists ω0 ∈ Ω, a vector of no
perturbation, such that `p(θ,α|ω0) = `p(θ,α). Cook [4] (1986) suggested to study the local
behavior of LD(ω) around ω0. The normal curvature at the arbitrary direction l, with
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‖l‖ = 1 is given by Cl(θ̂) = −2{l>∆>
p
῭−1
p ∆pl}, which is the objective function of the normal

curvature, where ῭
p is the penalized Hessian matrix of `p(θ,α) evaluated at θ̂, and ∆p is a

penalized perturbation matrix, with elements

∆p =
∂2`p(θ,αω)
∂θl∂ωj

∣∣∣∣
θ=bθ,ω=ω0

, l = 1, ..., p∗, j = 1, ..., n,

and `p(θ,α) being the penalized log-likelihood function corresponding to the model per-
turbed by ω. For the SABR model, the elements of ῭

p are given in the Appendix. We
consider the direction l = ei, called total local influence of the i-th individual, where ei is
an n-dimensional vector with a one at the i-th position and zeros at the remaining posi-
tions. In this case, the normal curvature takes the form Cei(θ) = 2| cii |, where cii is the i-th
principal diagonal element of the matrix C = ∆>

p
῭−1
p ∆p. The index plot of l may reveal

those observations that under small perturbations exert a notable influence on θ̂. In order
to have a curvature invariant under uniform change of scale, we consider the conformal nor-
mal curvature proposed by Poon and Poon [29] (1999). This normal curvature is defined as
B`(θ) = −[l>∆>

p
῭−1
p ∆pl]/[(tr(∆>

p
῭−1
p ∆p)2)1/2], and is characterized to allow for any unitary

direction l, with 0 ≤ B`(θ) ≤ 1. A suggestion is to consider, for example, the direction l = ei
and observing the index plot of Bei(θ). If our interest lies in studying the local influence on a
subvector of θ, denoted by θ1, the normal curvature for θ1 at the unitary direction l is given
by C`(θ̂1) = −2[l>∆>

p (῭−1
p −G22)∆pl], where

G22 =
(

0 0
0 ῭−1

p22

)
,

with ῭
p22

obtained from the partition of ῭
p according to the partition of θ. In this case, the

index plot of the eigenvector l = lmax, which corresponds to the largest absolute eigenvalue
of the matrix G = ∆>

p (L̈−1
p −G22)∆p, may indicate the points with large influence on θ̂1.

3.2. Cases-weight perturbation

Let ω = (ω1, ..., ωn)> be a weight vector. In this case, perturbed penalized log-likelihood
function is given by

`p(θ,α|ω) = `(θ|ω)−
s∑

k=1

αk
2

f>k Kk fk,

where `(θ|ω) =
∑n

i=1 ωi`i(θ), with 0 ≤ ωi ≤ 1 and ω0 = (1, ..., 1)>. Hence, the elements of
the penalized perturbation matrix are expressed as

∂2`p(θ,α|ω)
∂β∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= φ̂X>T̂ Ê,

∂2`p(θ,α|ω)
∂ fk ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= φ̂N>
k T̂ Ê, k = 1, ..., s,

∂2`p(θ,α|ω)
∂φ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= û>,

where Ê = diag(y∗i − µ̂∗i ), for i = 1, ..., n, and û = (û1, ..., ûn)>, with ui = µi[y∗i − µ∗i ] +
ln(1− yi)− ψ[(1− µi)φ] + ψ(φ).
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3.3. Response perturbation

Consider now an additive perturbation on the i-th response by making yiω = yi + ωi,
where ω = (ω1, ..., ωn)> is the vector of perturbations. Then, under the scheme of response
perturbation, the perturbed penalized log-likelihood function is constructed from (2.5) with
yi replaced by yiω and ω0 = (0, ..., 0)>. Hence, the elements of the penalized perturbation
matrix take the form

∂2`p(θ,α|ω)
∂β∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= φ̂X>T̂M ,

∂2`p(θ,α|ω)
∂ fk ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= φ̂N>
k T̂M , k = 1, ..., s,

∂2`p(θ,α|ω)
∂φ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= â>,

where M = diag1≤i≤n
(
mi

)
and a = (a1, ..., an)>, withmi = 1/[yi(1−yi)] and ai = −[yi−µi]/

[yi(1− yi)].

Note that the perturbation ω must be generated in the support [−y, 1− y] in order
to guarantee that the perturbed response variable retains the original distribution support.
It is important to mention that the space of ω depends on the type of perturbation that is
introduced in the response variable. In our case, we consider a perturbation of additive type,
but eventually we could consider a perturbation of the multiplicative type.

3.4. Continuous covariate perturbation

Consider now an additive perturbation on a continuous covariate, namely xidω, by
making xidω = xid + ωi, with ωi ∈ R. Then, under the scheme of covariate perturbation, the
perturbed penalized log-likelihood function is constructed from (2.5) with xid replaced by xidω,
µiω = g−1(ηiω) in the place of µi, for ηiω = x>iωβ + n>

1i
f1 + ···+ n>

si
fs, and ω0 = (0, ..., 0)>.

Hence, the elements of the penalized perturbation matrix assumes the form

∂2`p(θ,α|ω)
∂β∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= −φ̂β̂dX>Q̂ + φ̂P T̂ Ê,

∂2`p(θ,α|ω)
∂ fk ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= −φ̂β̂dN>Q̂ + φ̂P T̂ Ê, k = 1, ..., s,

∂2`p(θ,α|ω)
∂φ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= −β̂dĥ>T̂ ,

where P is a (p×n) matrix of zeros except for the p-th line, which contains ones, and
h = (h1, ..., hn)>, with hi = ci − (y∗i − µ∗i ) and ci as defined in the Appendix.
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3.5. Scale perturbation

Under scale parameter perturbation scheme, it is assumed that φiω= ω−1
i φ, with ωi > 0.

Then, the perturbed penalized log-likelihood function is constructed from (2.5) with φ re-
placed by φiω and ω0 = (1, ..., 1)>. Hence, the elements of the penalized perturbation matrix
take the form

∂2`pi
(θ,α|ω)

∂β∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= φ̂X>T̂ F̂ ,

∂2`pi
(θ,α|ω)

∂ fk ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= φ̂N>
k T̂ F̂ , k = 1, ..., s,

∂2`pi
(θ,α|ω)

∂φ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

= φ̂d̂> − û>,

where F = diag1≤i≤n(Fi), d = (d1, ..., dn)>, u = (u1, ..., un)>, with ui = µi[y∗i −µ∗i ]+log(1−yi)
− ψ[(1− µi)φ] + ψ(φ), Fi = [ci − (y∗i − µ∗i )] and ci as defined in the Appendix.

4. EMPIRICAL ILLUSTRATION

4.1. Data and exploratory analysis

To illustrate our methodology, we consider the Australian athletes data set that has
been reported by Telford and Cunningham [35] (1991). The purpose of this study is to
investigate the relationships of hematological measures with various covariates, such as height
and mass, among others, for a sample of 202 elite Australian athletes who trained at the
Australian Institute of Sport. The objective of the present data analysis is to model the
percent body fat through the SABR model. We consider as covariates: (i) sum of skin folds
(SSF), (ii) hemaglobin concentration (HG), and (iii) lean body mass (LBM), whereas the
percent body fat (BFAT) is the response variable. Figure 1 contains the scatter plots between
the response and each covariate. From Figure 1 (a), we observe that a linear relationship
between BFAT and SSF, while that Figures 1 (b)–(c) show no evidence of linear relationships
between BFAT and the covariates HG and LBM.
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Figure 1: Scatter plots of BFAT versus SSF (a), HG (b) and LBM (c) with Australian athletes data.
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4.2. Model fitting

First, we consider a BR model given by

g(µi) = β0 + β1SSFi + β2HGi + β3LBMi, i = 1, ..., 202,

with logit link function. The maximum likelihood estimates and the corresponding ap-
proximate estimated standard error (in parenthesis) are reported in Table 1, with AIC =
−1031.317. Note that under this model, we are assuming that the relationship of each co-
variate with the response is linear. However, as previously commented, we observe in Figures
1(b) and 1(c) that the relationships between BFAT and the covariates HG and LBM seem to
be nonlinear, which suggests a SABR model with link function

g(µi) = β0 + β1SSFi + f1(HGi) + f2(LBMi).

The MPL estimates and the corresponding approximate estimated standard error associated
with the parametric component and scale parameter are also reported in Table 1.

Table 1: Maximum likelihood and MPL estimates and the standard error (in parenthesis)
for indicated model with Australian athletes data.

Parameters
Model

β0 β1 β2 β3 φ

BR −2.020 (0.1591) 0.012 (0.0003) −0.027 (0.0122) −0.005 (0.0012) 307.180 (30.5601)
SABR −2.788 (0.0420) 0.012 (0.0004) — — 361.768 (35.9955)

Comparing the results reported in Table 1, we note a similarity between the estimates
for β̂0 and β̂1 under both models, but the estimated standard error of β̂0 is smaller under
the SABR model. However, the estimate φ̂ under the SABR model is larger (including
its estimated standard error) than that obtained for the BR model. The estimates of the
smoothing parameters α1 and α2, as well as the corresponding DFs, are reported in Table 2.

Table 2: Smoothing components fitted under the SABR model
to Australian athletes data.

Smoothing function

f1(HG) f2(LBM)

DF(αk) 4.662 4.988
αk 0.0014 0.9012

Figures 2 (a)–(b) show the estimated smooth functions under the SABR model and the
corresponding approximate SEB (dashed curves). The estimated smooth functions are com-
puted using the smoothing parameters obtained by the AIC as described in Subsection 2.5.
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The graphical plots suggest nonlinear tendencies for HG and LBM. Then, we find a value of
AIC(α1, α2) = −1055.466, which is less than that obtained under the BR model, indicating
a superiority of the model that includes a nonparametric additive component.
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Figure 2: Plots estimated smooth functions f1 (a) and f2 (b) for the Australian athletes data
and their approximate pointwise SEB denoted by the dashed lines.

4.3. Diagnostics

In this illustration, we consider residual proposed by Ferrari and Cribari-Neto [13]
(2004) given by

ri =
yi − µ̂i√
V̂ar(yi)

, i = 1, ..., 202,

where V̂ar(yi) = µ̂i[1− µ̂i]/[1+ φ̂] and µ̂i = g−1(x>i β̂ +n>
1i

f̂1 +n>
2i

f̂2), with β̂, f̂k, for k = 1, 2,
and φ̂ denoting the MPL estimates.

Figure 3 displays the graphical plot of the standardized ordinary residuals against the
indices of the observations. We note that the residual are randomly scattered around zero
and that observations #51, #53 and #56 are indicated as atypical cases. Note that a residual
analysis permits us to detect deviations from the model assumptions, but also atypical cases.
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Figure 3: Plot standardized ordinary residuals versus the index of the observation.
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An atypical case can be potentially influential or not, but from a scope of global influence.
However, potentially influential cases detected by the displacement of likelihood functions
are evaluated from a scope of local influence. In any case, this potential influence (global
or local) must be studied by means of relative changes (RC) when the potentially influential
case is removed from the full data set. This allows us to know whether inferential changes
are generated or not.

Now, in order to identify potentially influential observations under the fitted model
to Australian athletes data, we present index plots of Bi = Bei(λ), for λ = β, fk, φ, with
k = 1, 2. Figure 4 shows the index plot of Bi for the case-weight perturbation scheme under
the fitted model. Looking at Figure 4, note that observations #51, #53 and #56 are more
influential on the MPL estimate λ̂.
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Figure 4: Index plots of Bi for assessing local influence on β̂ (a), f̂1 (b), f̂2 (c) and φ̂ (d)
considering case-weight perturbation under model fitted to Australian athletes data.

Figure 5 presents the index plots of Bi, considering the response perturbation scheme
under the fitted model. In Figure 5, observe that observations #160, #166, and #181 are
more influential on MPL estimate λ̂ = f̂1, whereas none observation is pointed out on the
estimates remaining. The index plots of Bi for the scale parameter and covariate perturbation
are omitted because the results are similar to those obtained under case-weight perturbation
scheme. Note that observations #51, #53 and #56 are also detected as atypical according
to the residual analysis.
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Figure 5: Index plots of Bi for assessing local influence on β̂ (a), f̂1 (b), f̂2 (c) and φ̂ (d)
considering response perturbation under the fitted model to Australian athletes data.

We now investigate the impact on the model inference when the observations detected
as potentially influential in the diagnostic analysis are removed. Table 3 presents the RCs
in % of the MPL estimates of βj , for j = 1, 2, and φ after removing from the data set
the pointed out observations in the local influence graphical plots under the SABR model.

Table 3: RC (in %) on the MPL estimate of βj and φ under the SABR model
fitted to Australian athletes data after removing the indicated cases.

Parameters Relative changes
Removed case

β0 β1 φ RCβ0 RCβ1 RCφ

51 −2.8004 0.0126 374.3139 0.45 5.00 3.46
53 −2.8216 0.0129 393.3938 1.21 7.50 8.74
56 −2.8230 0.0130 395.2551 1.25 8.31 9.29

51–53 −2.8007 0.0126 372.6768 0.45 5.01 3.02
51–56 −2.8031 0.0127 374.6170 0.54 5.83 3.55
53–56 −2.8245 0.0130 394.0092 1.31 8.32 8.91

51–53–56 −2.8013 0.0126 371.6199 0.47 5.02 2.72
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The RCs of each estimated parameter are defined as RCψ = |(ψ̂− ψ̂(I))/ψ̂|× 100%, where ψ̂(I)

denotes the MPL estimate of ψ, with ψ = βj , φ, after the corresponding observation(s) are
removed according to the set I. Note that, although some RC are large, inferential changes
are not detected. It is interesting to notice from Table 3 the coherence with the diagnostic
graphical plots shown previously. For instance, elimination of the observations #51, #53
and #56, detected as potentially influential observations by local influence technique, leads
to significant changes in the MPL estimate, mainly in β̂1 and φ̂. This indicates the need of a
diagnostic examination.

5. CONCLUDING REMARKS

In this paper, we have proposed a methodology of inference and diagnostics for the
semiparametric additive beta regression model. Specifically, we have derived a weighted back-
fitting iterative process to estimate the parameters of the additive component of the model,
that is, of regression coefficients and smooth functions. We have estimated the approximate
variance-covariance matrix of maximum penalized likelihood estimates based on the Fisher
information matrix obtained from the penalized log-likelihood function. Moreover, we have
derived diagnostics for this model using the local influence technique to evaluate the sensitivity
of the maximum penalized likelihood estimates by using several perturbation schemes in the
model and data. Finally, we have performed a statistical modeling with real data set. The
study has provided evidences on the advantage of incorporating a semiparametric additive
term in those situations where there are covariates that contribute nonlinearly to the model.
Thus, we recommend semiparametric additive beta regression models as an option to fit
continuous data sets in the unit interval when covariates are present and that contribute
nonlinearly to the model. The computational codes used in the illustration are available
under request from the authors.
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A. APPENDIX

Hessian matrix

Let ῭
p (p∗×p∗) be the Hessian matrix with the (j∗, `∗)-element given by ∂2`p(θ,α)/∂θj∗ θ̀ ∗ ,

for j∗, `∗ = 1, ..., p∗. After some algebraic manipulations, we find

∂2`p(θ,α)
∂β∂β> = −φX>QX,

∂2`p(θ,α)
∂ fk ∂ f>k′

=

−φN>
k QNk − αkKk, k = k′,

−φN>
k QNk′ , k 6= k′,

∂2`p(θ,α)
∂β∂ f>k

= −φX>QNk, k = 1, ..., s,

where Q = diag1≤i≤n
(
qi
)
, with

qi =

[
φ
{
ψ′(µiφ) + ψ′

[
(1− µi)φ

]}
+ [y∗i − µ∗i ]

g′′(µi)
g′(µi)

]
1

[g′(µi)]2
.

In addition, we have that the second derivative de `p(θ,α) with respect to φ, and β and fk,
respectively, can be written by

∂2`p(θ,α)
∂β∂φ

=
2
φ2

X>b,

∂2`p(θ,α)
∂ fk ∂φ

=
2
φ2

N>
k b, k = 1, ..., s,

where b = (b1, ..., bn)>, with

bi =
{

[y∗i − µ∗i ]− φ
∂µ∗i
∂φ

}
1

[g′(µi)]
.

Furthermore, the second derivative de `p(θ,α) with respect to φ is given by

∂2`p(θ,α)
∂φ2

= trace(D),

where D = diag1≤i≤n
(
di
)
, with

di = −
[
ψ′[µiφ]µ2

i + ψ′
[
(1− µi)φ

]
[1− µi]2 − ψ′(φ)

]
.

Expected information matrix

In general, by calculating the expectation of the matrix −῭
p, we obtain the (p∗×p∗)

penalized expected information matrix denoted by

Ip = −E

(
∂2`p(θ,α)
∂θ∂θ>

)
.
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Let W = blockdiag1≤i≤n
(
wi
)

and c = (c1, ..., cn)>, with

wi = φ
[
ψ′[µiφ] + ψ′[1− µi]φ

] 1
[g′(µi)]2

, ci = φ
[
ψ′[µiφ]µi − ψ′

[
(1− µi)φ

]
[1− µi]

]
.

After some algebraic manipulations, we find

Ip =
(

I11 I12

I21 I22

)
,

where

I11 =


φX>WX φX>WN1 · · · φX>WNs

φN>
1 WX φN>

1 WN1 + λ1K1 · · · φN>
1 WNs

...
...

. . .
...

φN>
s WX φN>

s WN1 · · · φN>
s WNs + λsKs

 ,

I12 =


X>Tc
N>

1 Tc
...

N>
1 Tc

 = I>
21,

and I22 = trace(D). Note that the parameters β, fk, with k = 1, ..., n, and φ are not orthog-
onal, in contrast to what is verified in the class of generalized linear regression models.

Iterative process

The solution of the estimating equation system given in (2.6) to obtain the MPL es-
timate of θ may be attained by iterating between a weighted back-fitting algorithm with
weight matrix W and a Fisher score algorithm to obtain maximum likelihood estimation of
the parameter φ, which is equivalent to the following iterative process:

(i) Initialize:

(a) By fitting a beta regression model considering f(0)
0 = β(0) and N0 = X.

(b) By getting a starting value for φ by using the fitted values from (a).

(c) From the current value θ(0) =
(
f>0 , f

(0)>

1 , ..., f(0)
>

s , φ(0)
)> by obtaining the

weight matrix W (0) and T (0), with w(0)
i = wi

∣∣
θ(0) , and then by getting

z(0) = η(0) + W (0)−1
T (0)

(
y∗ − µ∗(0)),

S
(0)
0 =

(
N>

0 W (0)N0

)−1
N>

0 W (0),

S
(0)
k =

(
N>
k W (0)Nk + αkKk

)−1
N>
k W (0), k = 1, ..., s.
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(ii) Iterate repeatedly by cycling between the equations

f(u+1)
0 = S

(u)
0

(
z(u) −

s∑
l=1

Nl f
(u)
l

)
,

f(u+1)
1 = S

(u)
1

(
z(u) −N0 f(u+1)

0 −
s∑
l=2

Nl f
(u)
l

)
,

...

f(u+1)
s = S(u)

s

(
z(u) −

s−1∑
l=0

Nl f
(u+1)
l

)
,

for u = 0, 1, ... . Repeat step (ii) replacing f(u)j by f(u+1)
j until convergence crite-

rion ∆u

(
f(u+1)
j , f(u)j

)
=
∑s

j=0

∥∥f(u+1)
j − f(u)j

∥∥/∑s
j=0

∥∥f(u)j

∥∥ is reached for a thresh-
old value; see Hastie and Tibshirani [19] (1990).

(iii) For current values f(u+1)
j , with j = 0, 1, ..., s, obtain φ(u+1) by using

φ(u+1) = φ(u) −E

{
∂2`p(θ,α)
∂φ∂φ

}−1
∂`p(θ,α)

∂φ

∣∣∣∣
θ(u)

.

(iv) Iterate between steps (ii) and (iii) by replacing f(0)
j , with j = 0, 1, ..., s, and φ(0)

by f(u+1)
j and φ(u+1), respectively, until reaching convergence.
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1. INTRODUCTION

In survey sampling, the auxiliary information is mainly used in order to gain efficiency
for the estimation. The literature on estimating the population variance by using auxiliary
variable is substantial and widely discussed. Some authors including, Das and Tripathi [4],
Srivastava and Jhajj [18], Isaki [5], Upadhyay and Singh [19, 20], Singh et al. [13], Prasad and
Singh [8], Biradar and Singh [2], Singh and Biradar [11] have paid their attention towards
the estimation of population variance of study variable using auxiliary information in simple
random sampling. While dealing with planning surveys, in case of heterogeneous population,
stratified random sampling has more importance in precise estimates over the simple random
sampling. Singh and Vishwakarma [14] discussed a general method for the estimation of the
variance of the stratified random sample mean by using auxiliary information.

The theories of survey sampling assume that the observations recorded during data
collection are always free from measurement error. However, this assumption does not meet
in many real-life situations and the data is contaminated with errors. The mean square error
and other properties of the estimator obtained with significant measurement error may lead
to serious fallacious results. Cochran [3], has discussed the source of measurement errors in
survey data. Many authors such as Shalabh [9], Srivastava and Shalabh [16], Maneesha and
Singh [7], Allen et al. [1], Shalabh and Tsai [10], Singh and Vishwakarma [15] have studied
the impacts of measurement errors in the ratio, product and regression methods of estimation
under simple random sampling.

Let us consider a finite heterogeneous population of size N , partitioned into L non-
overlapping strata of sizes Nh, h = 1, 2, ..., L, where

∑L
h=1 Nh = N . Let (yhj , xhj) be the pair

of observed values instead of true pair values (Yhj , Xhj) of the study character y and the
auxiliary character x respectively of the j-th unit (j = 1, 2, ..., Nh) in the h-th stratum. Also,
let (yhj , xhj) be the pair of values on (y, x) drawn from the h-th stratum (j = 1, 2, ..., nh;
h = 1, 2, ..., L). It is familiar that in stratified random sampling an unbiased estimator of the
population mean (µY =

∑L
h=1 WhµY h; Wh = Nh

N ) of the variable y is given by

(1.1) ȳst =
L∑

h=1

Whȳh,

where ȳh = 1
nh

∑nh
j=1 yhj is the sample mean of h-th stratum and µY h = 1

Nh

∑Nh
j=1 yhj is the

population mean of h-th stratum. Let the observational errors be

(1.2) uhj = yhj − Yhj , vhj = xhj −Xhj ,

which are normally distributed with mean zero and variances σ2
uh and σ2

vh respectively. Also
let ρh be the population correlation coefficient between Y and X in h-th stratum. For
simplicity in exposition, it is assumed that the variables uhj and vhj are uncorrelated although
(Yhj , Xhj) are correlated.

To obtain the bias and mean square error we define

σ̂2
Y h = σ2

Y h(1 + ε0h), σ̂2
Xh = σ2

Xh(1 + ε1h), x̄h = µXh(1 + ε2h),

such that E(εih) = 0, ∀i = 0, 1, 2;
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E(ε2
0h) =

AY h

nh
, E(ε2

1h) =
AXh

nh
, E(ε2

2h) =
C2

Xh

nhθXh
, E(ε0hε1h) =

1
nh

(δ22h − 1),

E(ε1hε2h) =
1
nh

(δ03hCXh), E(ε0hε2h) =
1
nh

(δ21hCXh),

where

AY h = γ2Y h + γ2Uh
σ4

Uh

σ4
Y h

+
2

θ2
Y h

, β2h(Y ) = δ40h =
µ40h

µ2
20h

, CXh =
σXh

µXh
,

AXh = γ2Xh + γ2V h
σ4

V h

σ4
Xh

+
2

θ2
Xh

, β2h(X) = δ04h =
µ04h

µ2
02h

,

γ2Y h = β2h(Y )− 3, γ2Xh = β2h(X)− 3, γ2Uh = β2h(U)− 3,

γ2V h = β2h(V )− 3, θY h =
σ2

Y h

σ2
Y h + σ2

Uh

, θXh =
σ2

Xh

σ2
Xh + σ2

V h

,

δrsh =
µrsh(

µr
20hµs

02h

) 1
2

, µrsh =
1

Nh

Nh∑
j=1

(yhj − µY h)r(xhj − µXh)s.

(r, s) are positive integers, µY h and µXh are the h-th stratum population mean of study and
auxiliary variable respectively. CXh is the coefficient of variation of h-th stratum, θY h and
θXh are the reliability ratio of h-th stratum of study and auxiliary variable respectively and
lying between zero and one.

The variance of the stratified random sample mean is given by

(1.3) V(ȳst) =
L∑

h=1

W 2
h

σ2
Y h

nh
= σ2

st,

where σ2
Y h = 1

Nh

∑Nh
j=1(yij − µ̄Y h)2 is the population variance of h-th stratum.

The unbiased estimator of σ2
st, i.e. V(ȳst), is given by

(1.4) σ̂2
st =

L∑
h=1

W 2
h

s2
yh

nh
,

where s2
yh = 1

(nh−1)

∑nh
j=1(yhj − ȳh)2 is an unbiased estimator of σ2

st. But in the presence of
measurement error s2

yh is not an unbiased estimator for σ2
st. In the measurement error case

the unbiased estimator of σ2
st is given by σ̂2

st =
∑L

h=1 W 2
h

σ̂2
Y h
nh

, where σ̂2
Y h = (s2

yh − σ2
uh).

The variance of σ̂2
st in the presence of measurement error is given by

(1.5) V(σ̂2
st) =

L∑
h=1

(WhσY h)4

n3
h

[AY h] = MSE(σ̂2
st).

Singh and Karpe [12] have studied the impact of measurement error on separate ratio
and product also combined ratio as well as product estimators for the population mean
under stratified random sampling. We have considered the problem of estimating population
variance using information on the auxiliary variable by adopting Srivastava and Jhajj [18]
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method in stratified random sampling in the presence of measurement error. Three classes
of estimators for the estimation of population variance are proposed under stratified random
sampling when both the study and auxiliary variables are commingled with measurement
errors as:

i) Estimator of variance σ2
st when the mean µXh of the auxiliary variable x in the

h-th stratum of the population is known.

ii) Estimation of variance σ2
st when the variance σ2

Xh of the auxiliary variable x in
the h-th stratum of the population is known.

iii) Estimation of variance σ2
st when the mean µXh and the variance σ2

Xh of the aux-
iliary variable x in the h-th stratum of the population are known.

The crux of this study is to exhibit the effect of measurement errors on the estimates of the
variance of the stratified random sample mean while using auxiliary information.

2. THE PROPOSED CLASSES OF ESTIMATORS

2.1. Estimation of population variance σ2
st of the stratified simple random sample

mean when mean µXh of h-th stratum of the auxiliary variable x in the
population is known

By using information on population mean µXh of the h-th stratum of auxiliary variable,
a class of estimators of population variance σ2

st for the study variable is proposed as

(2.1) σ̂2
a =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y hah(lh),

where lh = x̄h/µXh and ah(·) is a function of lh such that ah = 1. It satisfies conditions given
by Srivastava [17] viz. function are continuous and bounded also the first as well as second
order partial derivatives of the function exist. Expanding the function about the point ‘unity’
in a second order Taylor’s series, we have

(2.2) ah(lh) = ah(1) + (lh − 1)a1h(1) +
1
2
(lh − 1)2a2h(1),

where a1h, a2h are first order and second order derivative with respect to lh about point unity.

σ̂2
a =

L∑
h=1

(
W 2

h

nh

)
σ2

Y h(1 + ε0h)
[
1 + (lh − 1)a1h(1) +

1
2
(lh − 1)2a2h(1)

]
,

σ̂2
a =

L∑
h=1

(
W 2

h

nh

)
σ2

Y h(1 + ε0h)
[
1 + ε2ha1h(1) +

1
2
ε2
2ha2h(1)

]
,

(2.3)
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(σ̂2
a − σ2

st) =
L∑

h=1

(
W 2

h

nh

)
(σ2

Y h)
[
ε0h + ε2ha1h(1) + ε0hε2ha1h(1)

+
1
2
ε2
2ha2h(1) +

1
2
ε0hε2

2ha2h(1)
]
.

(2.4)

Taking expectation on both sides of (2.4) we get

(2.5) Bias(σ̂2
a) =

L∑
h=1

(
W 2

h

n2
h

)
σ2

Y h

[
δ21hCXha1h(1) +

1
2

C2
Xh

θXh
a2h(1)

]
.

For the mean square error we have

(2.6) (σ̂2
a − σ2

st)
2 =

L∑
h=1

(
W 2

h

nh

)
σ4

Y h

{
ε0h + ε2ha1h(1)

}2
,

(2.7) (σ̂2
a − σ2

st)
2 =

L∑
h=1

(
W 2

h

nh

)2

σ4
Y h

{
ε2
0h + ε2

2ha2
1h(1) + 2ε0hε2ha1h(1)

}
.

Taking expectation up to terms of order n−3
h , we get the mean square error of σ̂2

a as

(2.8) MSE(σ̂2
a) =

L∑
h=1

(WhσY h)4

n3
h

[
AY h +

C2
Xh

θXh
a2

1h(1) + 2δ21hCXha1h(1)
]
.

The MSE in (2.8) is minimized for

(2.9) a1h(1) = −
(

δ21hθXh

CXh

)
.

Thus, the resultant minimum MSE of σ̂2
a is given by

(2.10) min.MSE(σ̂2
a) =

L∑
h=1

(WhσY h)4

n3
h

[
AY h − δ2

21hθXh

]
.

Hence, a theorem can be established as follows.

Theorem 2.1. Up to terms of the order n−3
h ,

min.MSE(σ̂2
a) ≥

L∑
h=1

(WhσY h)4

n3
h

[
AY h − δ2

21hθXh

]
,

with equality holding if a1h(1) = −
(

δ21hθXh
CXh

)
.
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The following estimators

σ̂2
a1 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y hlα1h
h , σ̂2

a2 =
L∑

h=1

(
W 2

h

nh

)
σ̂2

Y h

[
2− lα1h

h

]
,

σ̂2
a3 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y h

[
α1h + lh
1 + α1hlh

]
, σ̂2

a4 =
L∑

h=1

(
W 2

h

nh

)
σ̂2

Y h

[
α1h + (1− α1h)lh

]
,

σ̂2
a5 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y h

[
α1h + (1− α1h)l−1

h

]
,

σ̂2
a6 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y h

[
α1h + (1− α1h)l−α2h

h

]
,

σ̂2
a7 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y h

[
α1h + (1− α1h)lh

]−1
,

are some of the members of the proposed class of estimators σ̂2
a. The optimum values of the

scalars α1h and α2h can be derived from the right-hand side (2.9) of and the minimum mean
square error of the listed estimators can be derived from (2.8). The lower bound of the MSE
of estimators σ̂2

ai, (i = 1 to 7) is the same as given by (2.10).

Following by [17] and Srivastava and Jhajj [18] we have proposed a wider class of
estimators of σ2

st as

(2.11) σ̂2
D =

L∑
h=1

(
W 2

h

nh

)
Dh(σ̂2

Y h, lh),

where function Dh( · , ·) satisfies

Dh(σ2
Y h, 1) = σ2

Y h ⇒ D1h(σ2
Y h, 1) =

∂Dh( ·)
∂σ̂2

Y h

|(σ2
Y h,1) = 1.

It can be shown that the minimum MSE of σ̂2
D and the minimum MSE of σ̂2

a are equal.
We can state that the difference type estimator

(2.12) σ̂2
std1

=
L∑

h=1

(
W 2

h

nh

){
σ̂2

Y h + d1h(lh − 1)
}

,

is a member of class σ̂2
D where d1h is a suitably chosen constant.

2.2. Estimation of population variance σ2
st of the stratified simple random sample

mean when variance σ2
Xh of h-th stratum of the auxiliary variable x in the

population is known

A class of estimators of the variance σ2
st of the stratified simple random sample mean

when the variance σ2
Xh of the auxiliary variable x of the h-th stratum in the population is

known, is defined as

(2.13) σ̂2
b =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y hbh(mh),
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where mh = σ̂2
Xh

σ2
Xh

, and bh(mh) is a function of mh such that bh(1) = 1. The function is
continuous and bounded in R and its first as well as the second order partial derivatives
exist. Now expanding the function at point ‘unity’ in a second order Taylor’s series, we can
write

(2.14) bh(mh) = bh(1) + (mh − 1)b1h(1) +
1
2
(mh − 1)2b2h(1),

where b1h(1) and b2h(1) are the first order and second order derivative with respect to mh of
the function bh(mh) about the point ‘unity’.

(2.15) σ̂2
b =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y h

[
bh(1) + (mh − 1)b1h(1) +

1
2
(mh − 1)2b2h(1)

]
,

(2.16) σ̂2
b =

L∑
h=1

(
W 2

h

nh

)
σ2

Y h(1 + ε0h)
[
1 + ε1hb1h(1) +

1
2
ε2
1hb2h(1)

]
.

To calculate the bias and the MSE of the estimator we can write

(σ̂2
b − σ2

st) =
L∑

h=1

(
W 2

h

nh

)
σ2

Y h

[
ε0h + ε1hb1h(1) + ε0hε1hb1h(1)

+
1
2
ε2
1hb2h(1) +

1
2
ε0hε2

1hb2h(1)
]
.

(2.17)

Taking expectation on both sides of (2.17) we get the bias of σ̂2
b as

(2.18) Bias(σ̂2
b ) =

L∑
h=1

(
W 2

h

n2
h

)
σ2

Y h

[
(δ22h − 1)b1h(1) +

1
2
AXhb2h(1)

]
.

For the mean square error we have

(2.19) (σ̂2
b − σ2

st)
2 =

L∑
h=1

(
W 2

h

nh

)2

σ4
Y h

[
ε0h + ε1hb1h(1)

]2
,

(2.20) (σ̂2
b − σ2

st)
2 =

L∑
h=1

(
W 2

h

nh

)2

σ4
Y h

[
ε2
0h + ε2

1hb2
1h(1) + 2ε0hε1hb1h(1)

]
.

Taking expectation up to terms of order n−3
h , we get the mean square error of σ̂2

b as

(2.21) MSE(σ̂2
b ) =

L∑
h=1

(WhσY h)4

n3
h

[
AY h + AXhb2

1h(1) + 2(δ22h − 1)b1h(1)
]
,

which is minimized for

(2.22) b1h(1) = −
(

δ22h − 1
AXh

)
.

Thus, the resultant minimum MSE of σ̂2
b can be written as:

(2.23) min.MSE(σ̂2
b ) =

L∑
h=1

(WhσY h)4

n3
h

[
AY h −

(δ22h − 1)2

AXh

]
.

Hence, a theorem can be established as follows.
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Theorem 2.2. Up to terms of order n−3
h ,

min.MSE(σ̂2
b ) ≥

L∑
h=1

(WhσY h)4

n3
h

[
AY h −

(δ22h − 1)2

AXh

]
,

with equality holding if b1h(1) = −
(

δ22h−1
AXh

)
.

The listed estimators

σ̂2
b1 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y hmη1h
h , σ̂2

b2 =
L∑

h=1

(
W 2

h

nh

)
σ̂2

Y h

[
2−mη1h

h

]
,

σ̂2
b3 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y h

[
η1h + mh

1 + η1hmh

]
, σ̂2

b4 =
L∑

h=1

(
W 2

h

nh

)
σ̂2

Y h

[
η1h + (1− η1h)mh

]
,

σ̂2
b5 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y h

[
η1h + (1− η1h) m−1

h

]
,

σ̂2
b6 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y h

[
η1h + (1− η1h)mη2h

h

]
,

σ̂2
b7 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y h

[
η1h + (1− η1h)mh

]−1
,

are some of the members of the proposed class of estimators σ̂2
b . The optimum values of the

scalars η1h and η2h from σ̂2
b1 to σ̂2

b7 can be derived from (2.22) and the minimum mean square
errors of each of the listed estimators can be derived from (2.21). The lower bound of the
MSE of the estimators σ̂2

bi (i = 1 to 7) is given by (2.23).

A wider class of estimators of σ2
st than σ̂2

b is

(2.24) σ̂2
e =

L∑
h=1

(
W 2

h

nh

)
eh(σ̂2

Y h,mh),

where eh(σ̂2
Y h,mh) is a function of (σ̂2

Y h,mh) and

eh(σ2
Y h, 1) = σ2

Y h ⇒ e1h(σ2
Y h) = 1 with e1h(σ2

Y h, 1) =
∂eh( ·)
∂σ̂2

Y h

|(σ2
Y h,1).

It can be exhibited that up-to third order, the optimum mean square error of σ̂2
e and

σ̂2
b is the same as given by (2.23). It can also be shown that the difference-type estimator

(2.25) σ̂2
std2

=
L∑

h=1

(
W 2

h

nh

){
σ̂2

Y h + d2h(mh − 1)
}

is a specific member of the class of estimator σ̂2
e but not of the σ̂2

b class, where d2h is an
appropriately chosen constant.
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2.3. Estimation of population variance σ2
st of the stratified simple random sample

mean when the population mean µXh and the variance σ2
Xh of h-th stratum

of the auxiliary variable x in the population are known

We define a class of estimators σ̂2
c , for the estimation of variance of the stratified simple

random sample mean when the mean µXh and the variance σ2
Xh of the auxiliary variable x

of the h-th stratum in the population are known, as

(2.26) σ̂2
c =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y hch(lh,mh),

where ch(lh,mh) is a function of lh = x̄h/µXh and mh = σ̂2
Xh/σ2

Xh, such that ch(1, 1) = 1 and
it also satisfies similar conditions as mentioned in [18]:

ch(lh,mh) =
[
ch(1, 1) + (lh − 1)c1h(1, 1) + (mh − 1)c2h(1, 1)

+
1
2

{
(lh − 1)2c11h(1, 1) + 2(lh − 1)(mh − 1)c12h(1, 1) + (mh − 1)2c22h(1, 1)

}
+

1
6

{
(lh − 1)3c111h(l∗h,m∗

h) + 3(lh − 1)2)(mh − 1)c112h(l∗h,m∗
h)

+ 3(lh − 1)(mh − 1)2c122h(l∗h,m∗
h) + (mh − 1)3c222h(l∗h,m∗

h)
}]

,

(2.27)

where

l∗h = 1 + φ(lh − 1), m∗
h = 1 + φ(mh − 1), 0 < φ < 1;{

c1h(1, 1), c2h(1, 1)}, {c11h(1, 1), c12h(1, 1), c22h(1, 1)
}

,{
c111h(l∗h,m∗

h), c112h(l∗h,m∗
h), c122h(l∗h,m∗

h), c222h(l∗h,m∗
h)

}
,

respectively denote the first, second and third order partial derivatives of the function ch(lh,mh).
Expressing (2.27) in terms of ε0h, ε1h and ε2h using ch(1, 1) = 1 we have

σ̂2
c =

L∑
h=1

(
W 2

h

nh

)
σ2

Y h(1 + ε0h)
[{

1 + ε2hc1h(1, 1) + ε1hc2h(1, 1)
}

+
1
2

{
ε2
2hc11h(1, 1) + 2ε1hε2hc12h(1, 1) + ε2

1hc22h(1, 1)
}

+
1
6

{
ε3
2hc111h(l∗hm∗

h) + 3ε1hε2
2hc112hl∗hm∗

h

+ 3ε2
1hε2hc122hl∗hm∗

h + ε3
1hc222h(l∗hm∗

h)
}]

.

(2.28)

To calculate the bias and the MSE of the estimator we can write (2.28) as

σ̂2
c − σ2

st =
L∑

h=1

(
W 2

h

nh

)
σ2

Y h

[{
ε0h + ε2hc1h(1, 1) + ε1hc2h(1, 1)

+ ε0hε2hc1h(1, 1) + ε0hε1hc2h(1, 1)
}

+
1
2

{
ε2
2hc11h(1, 1) + 2ε1hε2hc12h(1, 1) + ε2

1hc22h(1, 1)
}]

.

(2.29)



284 N. Singh, G.K. Vishwakarma and R.K. Gangele

Taking expectation of both sides of (2.29) we get the bias of the estimator σ̂2
c :

Bias(σ̂2
c ) =

L∑
h=1

(
W 2

h

n2
h

)
σ2

Y h

[
δ21hCXhc1h(1, 1) + (δ22h − 1)c2h(1, 1)

+
1
2

(
C2

Xh

θXh
c11h(1, 1) + 2δ03hCXhc12h(1, 1) + AXhc22h(1,1)

)]
.

(2.30)

For the mean square error we have

(2.31) (σ̂2
c − σ2

st)
2 =

L∑
h=1

(
W 2

h

nh

)2

σ4
Y h

[
ε0h + ε2hc1h(1, 1) + ε1hc2h(1, 1)

]2
,

(σ̂2
c − σ2

st)
2 =

L∑
h=1

(
W 2

h

nh

)2

σ4
Y h

[
ε2
0h + ε2

2hc2
1h(1, 1) + ε2

1hc2
2h(1, 1)

+ 2ε0hε2hc1h(1, 1) + 2ε1hε2hc1h(1, 1)c2h(1, 1) + 2ε0hε1hc2h(1, 1)
]
.

(2.32)

Taking expectation up-to order n−3
h , we get the mean square error of σ̂2

c as

MSE(σ̂2
c ) =

L∑
h=1

(WhσY h)4

n3
h

[
AY h +

C2
Xh

θXh
c2
1h(1, 1) + AXhc2

2h(1, 1)

+ 2δ21hCXhc1h(1, 1) + 2δ03hCXhc1h(1, 1)c2h(1, 1) + 2(δ22h − 1)c2h(1, 1)
]
,

(2.33)

where c1h(1, 1) and c2h(1, 1) denote the first order partial derivatives of ch(lh,mh) with respect
to lh and mh respectively about the point (1, 1):

(2.34)
[

C2
XhθXh δ03hCXh

δ021hCXh AXh

] [
c1h(1, 1)
c2h(1, 1)

]
= −

[
δ21hCXh

δ22h − 1

]
.

By solving (2.34) we can determine the minimum values of c1h(1, 1) and c2h(1, 1) respectively
as

c1h(1, 1) =

[
δ03h(δ22h − 1)− δ21hAXh

]
[
CXh(AXh/θXh)− δ2

03h

] ,

c2h(1, 1) =

[
δ03hδ21h − (δ22h − 1)/θXh

]
[
(AXh/θXh)− δ2

03h

] .

(2.35)

Putting (2.35) in (2.33) we obtain minimum MSE of σ̂2
c as

(2.36)

min.MSE(σ̂2
c ) =

L∑
h=1

(WhσY h)4

n3
h

[
AY h −

(δ22h − 1)2 + δ2
21hθXhAXh − 2θXhδ21hδ03h(δ22h − 1)

(AXh − δ2
03hθXh)

]
,

(2.37) min.MSE(σ̂2
c ) =

L∑
h=1

(WhσY h)4

n3
h

[
AY h − δ2

21hθXh −
{δ21hθXhδ03h − (δ22h − 1)}2

(AXh − δ2
03hθXh)

]
.

Hence, a theorem can be established as follows.
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Theorem 2.3. Up to terms of order n−3
h ,

min.MSE(σ̂2
c ) ≥

L∑
h=1

(
(WhσY h)4

n3
h

)[
AY h − δ2

21hθXh −
{
δ21hθXhδ03h − (δ22h − 1)

}2

(AXh − δ2
03hθXh)

]
,

with equality holding if

c1h(1, 1) =

[
δ03h(δ22h − 1)− δ21hAXh

]
[
CXh(AXh/θXh)− δ2

03h

] ,

c2h(1, 1) =

[
δ03hδ21h − (δ22h − 1)/θXh

]
[
(AXh/θXh)− δ2

03h

] .

(2.38)

The present estimators

σ̂2
c1 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y hlh
α1hmα2h

h ,

σ̂2
c2 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y h

[
α1hl1h + (1− α1h )mα2h

1h

]
,

σ̂2
c3 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y h

[
α3hlα1h

1h + (1− α3h)mα2h
2h

]
,

σ̂2
c4 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y h

[
exp

{
α1h(lh − 1) + α2h(mh − 1)

}]
,

σ̂2
c5 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y h[
1 + α1h

{
l1h

α2hmα3h
2h − 1

}] ,

σ̂2
c6 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y h

[
1− a1h(lh − 1) + α2h(mh − 1)

]
,

σ̂2
c7 =

L∑
h=1

(
W 2

h

nh

)
σ̂2

Y h

[
1− α1h(lh − 1) + α2h(mh − 1)

]−1
,

are some particular members of the suggested class of estimator σ̂2
c . The mean square error of

these estimators can be obtained from (2.33) by choosing the suitable value for the constants.
The lower bound of the MSE of the estimators σ̂2

ci (i = 1 to 7) is the same as given by (2.37).

A class of estimators for σ2
st wider than σ̂2

c is proposed as

(2.39) σ̂2
f =

L∑
h=1

(
W 2

h

nh

)
fh(σ̂2

Y h, lh,mh),

where fh(σ̂2
Y h, lh,mh) is a function of (σ̂2

Y h, lh,mh) such that

fh(σ2
Y h, 1, 1) = σ2

Y h ⇒ f1h(σ2
Y h, 1, 1) =

∂fh(σ2
Y h, lh,mh)
∂σ̂2

Y h

|(σ2
Y h,1,1) = 1.
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It can unveil that up-to order n− 3
h the optimum MSE of σ̂2

f is same as the optimum MSE of
σ̂2

c at (2.36) or (2.37) and is not reduced. The difference-type estimator

(2.40) σ̂2
std3

=
L∑

h=1

(
W 2

h

nh

){
σ̂2

Y h + d3h(lh − 1) + d4h(mh − 1)
}

is a specific member of the class (2.39) but not (2.26), where d3h and d4h are acceptable
constants.

3. EFFICIENCY COMPARISONS

To obtain the conditions for which the proposed classes of estimators σ̂2
a, σ̂2

b and σ̂2
c

perform better than usual unbiased estimator σ̂2
st, from (1.5), (2.10), (2.23) and (2.37) we can

write

(3.1) MSE(σ̂2
st)−min.MSE(σ̂2

a) =
L∑

h=1

(WhσY h)4

n3
h

δ2
21hθXh ≥ 0,

(3.2) MSE(σ̂2
st)−min.MSE(σ̂2

b ) =
L∑

h=1

(WhσY h)4

n3
h

(δ22h − 1)2

AXh
≥ 0,

(3.3)

MSE(σ̂2
st)−min.MSE(σ̂2

c ) =
L∑

h=1

(WhσY h)4

n3
h

[
δ2
21hθXh +

{
θXhδ03hδ21h − (δ22h − 1)

}2

(AXh − δ2
h03θXh)

]
≥ 0.

Remarks: To exhibit the impact of measurement error on MSE of the estimators, let
the observation for both the study variable and auxiliary variable be recorded without error.
Now the MSE of the proposed class of estimators σ̂2

a, to the third degree of approximation is
given as

(3.4) MSE∗(σ̂2
a) =

L∑
h=1

(WhσY h)4

n3
h

[
(δ40h − 1) + C2

Xha2
1h(1) + 2δ21hCXha1h(1)

]
,

which is the same as the obtained by Singh and Vishwakarma [14].

From (2.8) and (3.4) we have

MSE(σ̂2
a)−MSE∗(σ̂2

a) =
L∑

h=1

(Whσ4
Y h

n3
h

[
(γ2Uh + 2)

(
1− θY h

θY h

)2

+ 4
(

1− θY h

θY h

)
+ C2

Xh(1− θXh)a2
1h(1)

]
.

The difference is always positive in nature, thus we can infer that the presence of measurement
error incorporates larger mean square error than the absence of measurement error.

To obtain the optimum value of the constant differentiating partially (3.4) with respect
to a1h and equate to zero we get

a1h(1) = −
(

δ21h

CXh

)
.
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Thus, the resultant minimum mean square error is

(3.5) min.MSE∗(σ̂2
a) =

L∑
h=1

(WhσY h)4

n3
h

[
(δ40h − 1)− δ2

21h

]
.

Now the impact of measurement error can be obtained (2.10) and (3.5) from and as

min.MSE(σ̂2
a)−min.MSE∗(σ̂2

a) =
L∑

h=1

(WhσY h)4

n3
h

[
(γ2Uh + 2)

(
1− θY h

θY h

)2

+ 4
(

1− θY h

θY h

)
+ δ2

21h(1− θXh)

]
.

(3.6)

The MSE of another proposed class of estimators σ̂2
b for the estimation of σ2

st in the absence
of measurement error is given in (3.7) and is similar to Singh and Vishwakarma [14]:

(3.7) MSE∗(σ̂2
b ) =

L∑
h=1

(WhσY h)4

n3
h

[
δ40h − 1) + (δ04h − 1)b2

1h(1) + 2(δ22h − 1)b1h(1)
]
.

From equation (2.21) and (3.7) we can write

MSE(σ̂2
b )−MSE∗(σ̂2

b ) =
L∑

h=1

(WhσY h)4

n3
h

[
(γ2Uh + 2)

(
1− θY h

θY h

)2

+ 4
(

1− θY h

θY h

)

+ (γ2V h + 2)
(

1− θXh

θXh

)2

+ 4
(

1− θXh

θXh

)
b2
1h(1)

]
.

(3.8)

The right-hand side of (3.8) is always positive in nature, thus we can infer that mean square
error of the proposed estimator is always larger when observation is recorded with error.
MSE∗(σ̂2

b ) is minimized for

(3.9) b1h(1) = −
(

δ22h − 1
δ04 − 1

)
.

Thus, the resultant minimum mean square error is

(3.10) min.MSE∗(σ̂2
b ) =

L∑
h=1

(WhσY h)4

n3
h

[
(δ40h − 1)− (δ22h − 1)2

(δ04h − 1)

]
.

From (2.23) and (3.10) we can derive the impact of measurement error as

min.MSE(σ̂2
b )−min.MSE∗(σ̂2

b ) =
L∑

h=1

(WhσY h)4

n3
h

[
(γ2Uh + 2)

(
1− θY h

θY h

)2

+ 4
(

1− θY h

θY h

)

+
(δ22h − 1)2

AXh(δ40h − 1)
(γ2V h + 2)

(
1− θXh

θXh

)2

+ 4
(

1− θXh

θXh

)]
.

(3.11)

The mean square error of the third proposed class of estimators σ̂2
c for the estimation of σ̂2

st

in the absence of measurement error is given by Singh and Vishwakarma [14] as

MSE∗(σ̂2
c ) =

L∑
h=1

(WhσY h)4

n3
h

[
(δ40h − 1) + C2

Xhc2
1h(1, 1) + (δ04h − 1)c2

2h(1, 1)

+ 2δ21hCXhc1h(1, 1) + 2δ03hCXhc1h(1, 1)c2h(1, 1)

+ 2(δ22h − 1)c2h(1, 1)
]
.

(3.12)



288 N. Singh, G.K. Vishwakarma and R.K. Gangele

From we can write as

MSE(σ̂2
c )−MSE∗(σ̂2

c ) =
L∑

h=1

(WhσY h)4

n3
h

[
(γ2Uh + 2)

(
1− θY h

θY h

)2

+ 4
(

1− θY h

θY h

)

+ C2
Xh

(
1− θXh

θXh

)
c2
1h(1) + (γ2V h + 2)

(
1− θXh

θXh

)2

+ 4
(

1− θXh

θXh

)
c2
2h

](3.13)

and MSE∗(σ̂2
c ) is minimum for

c1h(1, 1) =

[
δ03h(δ22h − 1)− δ21h(δ04h − 1)

]
CXh

[
δ04h − δ2

03h − 1
] ,

c2h(1, 1) =

[
δ03hδ21h − (δ22h − 1)

]
[
δ04h − δ2

03h − 1
] .

(3.14)

Thus we can write the resultant minimum MSE as

min.MSE∗(σ̂2
c ) =

L∑
h=1

(WhσY h)4

n3
h

[
(δ40h − 1)− δ2

21h −
{
δ03hδ21h − (δ22h − 1)

}2

(δ04h − δ2
03h − 1)

]
,(3.15)

which can be easily obtained from (2.37) by putting σ2
Uh = σ2

V h = 0.
Hence, we can derive the impact of measurement error on the mean square error of the
estimator (σ̂2

c ) as

min.MSE(σ̂2
c )−min.MSE∗(σ̂2

c ) =

=
L∑

h=1

(WhσY h)4

n3
h

[
(γ2Uh + 2)

(
1− θY h

θY h

)2

+ 4
(

1− θY h

θY h

)
+ (1− θXh)δ2

21h

−
{

A1(δ04h − δ2
03h − 1)−B1(AXh − δ2

h03θXh)
(δ04h − δ2

03h − 1)(AXh − δ2
h03θXh)

}]
,

(3.16)

where

A1 =
{

δ03hδ21hθXh − (δ22h − 1)
}2

,

B1 =
{

δ03hδ21h − (δ22h − 1)
}2

.

The right-hand side of (3.16) is the effect of measurement error in the mean square error of
the estimator which is always positive in nature. Thus, the proposed classes of estimators
have larger MSE in the presence of measurement errors in both study and auxiliary variables
than in the absence of measurement errors. When the measurement error is insignificant, the
inference based on these data may remain valid. Nevertheless, when the amount of error is
more significant in observed data, the inference may be invalid and inaccurate and often may
lead to unexpected and undesirable consequences.
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4. DISCUSSION AND CONCLUSION

The data available for statistical analysis are always contaminated with measurement
error and may lead to fallacious inference results. When data contains heterogeneity among
units in terms of value, survey users are advised to form several homogeneous groups, and
the sampling design is well known as stratified sampling. To the best of our knowledge, the
study of measurement error for the estimation of variance in stratified random sampling has
not been addressed yet. Singh and Karpe [12] have studied the effect of measurement error
on estimation of population mean in stratified random sampling. Estimation of variance has
vital importance as it has practical uses in real-life. It is discussed by Lee [6], Srivastava
and Jhajj [18], Wu [21] and Singh and Vishwakarma [14] without the measurement error
framework.

The present study deals with the problem of estimation of variance by using auxiliary
information under the stratified sampling framework when observations are contaminated by
measurement errors. Three wider classes of estimators have been proposed. The theoretical
comparisons show that the proposed classes of estimators (σ̂2

a , σ̂2
b and σ̂2

c ) in the presence
of measurement error are more efficient than usual unbiased estimators. Since the proposed
estimators are defined as a class, a large number of estimators become the members of this
class. So the impact of measurement error on the bias and the mean square error of these
estimators can be obtained easily. We can also conclude that the MSE in the presence
of measurement error is larger than in the absence of it. Thus, the present study for the
estimation of variance under measurement error for the stratified random sampling is useful
and may attract others to carry out some work of practical use in this direction.
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1. INTRODUCTION

Ordered random variables (rv’s) have attracted many researchers due to their applica-
bility in many practical areas, like order statistics (os’s) and record values. Both of os’s and
record values are used extensively in statistical models and inference, where they describe rv’s
arranged in order magnitude. The os’s occur as a natural choice when dealing with floods,
drought, earthquakes, etc. Also, record values arise naturally in many real life applications
involving data related to sport, weather, and life testing studies. Actually, there is strong
relation between the os and the record value models. For example, the record values provide
the information about the maximum (minimum) value among all previously recorded obser-
vations, for more detail, see Arnold et al. [5] (1998). The concept of concomitant os’s, also
called induced os’s, is related to the ordering bivariate rv’s. The concomitant os’s arise when
one sorts the members of a random sample according to corresponding values of an other
random sample. The term concomitant of os’s was first induced and applied extensively by
David [13] (1973). According to Hanif [22] (2007) in collecting any data for an observation,
several characteristics are often recorded, some of them are considered as primary and others
can be observed from the primary data automatically. The latter one is called concomitant,
for more detail see David and Nagaraja [14, 15] (1998, 2003). The most important use of
concomitants of record values arises in experiments, in which specified characteristic’s mea-
surements of an individual are made sequentially. Moreover, only values that exceed or fall
below the current extreme value are recorded, so that only observations are bivariate record
values, i.e., records and their concomitants. Some properties of concomitants of record val-
ues are discussed by Ahsanullah [1] (2009) and Ahsanullah and Shakil [2] (2013). Clearly,
both concomitants of os’s and record values are strongly relevant with a bivariate data that
has a common bivariate distribution function (df). One of the most useful and popular bi-
variate df is the so-called Farlie–Gumbel–Morgenstern (FGM). The FGM df is defined by
H(x, y) = FX(x)FY (y)[1 + αFX(x)FY (y)], where FX and FY are the marginals df’s, while
FX and FY are the survival function of FX and FY , respectively, and −1 ≤ α ≤ 1. The FGM
distribution is a flexible family useful in applications provided that the correlation between the
variables is not too large. It can be utilized for arbitrary continuous marginals. The FGM df
was originally introduced by Morgenstern [29] (1956) for Cauchy marginals. In 1960 Gumbel
[20] investigated the same structure for exponential marginals. Also, in 1960, Farlie [18],
in connection with his investigations of the correlation coefficient, suggested a generaliza-
tion of the bivariate form studied by Morgenstern and Gumbel. Huang and Kotz [25] (1984)
used successive iterations in the original FGM distribution to increase the correlation between
components. As a particular case, the bivariate FGM with a single iteration is defined by

(1.1) FX,Y (x, y) = FX(x)FY (y)
[
1 + λF̄X(x)F̄Y (y) + γFX(x)FY (y)F̄X(x)F̄Y (y)

]
,

denoted by FGM(λ, γ). The corresponding probability density functions (pdf) is given by:

fX,Y (x, y) =(1.2)

= fX(x)fY (y)
[
1 + λ

(
1− 2FX(x)

)(
1− 2FY (y)

)
+ γFX(x)FY (y)

(
2− 3FX(x)

)(
2− 3FY (y)

)]
,

where FX(x) and FY (y) are df’s, while fX(x) and fY (y) are the pdf’s of the rv’s X and Y ,
respectively. When the two marginals FX(x) and FY (y) are continuous, Huang and Kotz [25]
(1984) showed that the natural parameter space Ω (the admissible set of the parameters λ
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and γ that makes FX,Y (x, y) is a df) is convex, where Ω =
{
(λ, γ) : −1 ≤ λ ≤ 1; λ+ γ ≥ −1;

γ ≤ 3−λ+
√

9−6λ−3λ2

2

}
. Moreover, when the marginals are uniform then, the correlation co-

efficient is ρ = λ
3 + γ

12 (cf. Huang and Kotz [26], 1999). Finally, the maximal correlation
coefficient attained for this family is max ρ = 0.434 versus max ρ = 1

3 = 0.333 achieved for
λ = 1 in the original FGM version. This fact gives a satisfactory motivation to deal with
the model FGM(λ, γ) rather than the classical model FGM. The model FGM(λ, γ) provides
a very general expression of a bivariate distribution from which members can be derived by
substituting expressions of any desired set of marginal distributions. On the other hand, since
both the bivariate df’s and density are given in terms of marginals, it is easy to generate a
random sample from the model FGM(λ, γ). Thus members of this family can be used in
simulation studies. Moreover, a number of properties results from the simple analytic form
of the model FGM(λ, γ), for example, rv’s having a FGM(λ, γ) are exchangeable whenever
the marginal distributions are identical. Also, the model FGM(λ, γ) is closed with respect
to monotonic increasing functions of rv’s. Moreover, the system is closed with respect to
mixtures of bivariate FGM(λ, γ) df’s having the same marginal distributions. the bivariate
FGM(λ, γ) df’s are specially suited to data situations describing weak dependence between
the rv’s X and Y . Measures of dependence vary over a larger range than for the classical
FGM df’s.

In this paper, we study the family FGM(λ, γ), with generalized exponential (GE)
marginals. The generalized exponential distribution (GE), a most attractive generalization
of the exponential distribution, introduced by Gupta and Kundu [21] (1999), has widespread
interest and applications, e.g., it can be used quite effectively in analyzing many lifetime
data, particularly in place of two-parameter gamma and two-parameter Weibull distribu-
tions. Many authors studied various properties of the GE, see for example, Ahsanullah et al.

[3] (2013) and AL-Hussaini and Ahsanullah [4] (2015).

A continuous rv is said to be has the GE with scale parameter θ > 0 and shape param-
eter α > 0 (denoted by GE(θ;α)), if the df and the corresponding pdf are given, for x > 0,
respectively, by

FX(x) =
(
1− exp(−θx)

)α

and

(1.3) fX(x) = αθ
(
1− exp(−θx)

)α−1 exp(−θx).

Gupta and Kundu [21] (1999) showed that the k-th moment of GE(θ;α) is

µk =
αk!
θk

ℵ(α−1)∑
i=0

(−1)i

(i+ 1)k+1

(
α− 1
i

)
,

where ℵ(x) = ∞, if x is non-integer and ℵ(x) = x, if x is integer. Furthermore, the mean, vari-
ance and moment generating function of GE(θ;α) are given by µ1 = E(X) = B(α)

θ , Var(X) =
C(α)
θ2 and MX(t) = αβ(α, 1− t

θ ), respectively, where B(α) = Ψ(α+1)−Ψ(1), C(α) = Ψ′(1)−
Ψ′(α+ 1), β(a, b) = Γ(a)Γ(b)

Γ(a+b) and Ψ(·) is the digamma function, while Ψ′(·) is its derivation
(Ψ′(·) is known as the trigamma function). Tahmasebi and Jafari [38] (2015) studied some
properties of the classical FGM type bivariate GE df. Moreover, Tahmasebi and Jafari [38]
(2015) studied some distributional properties of concomitants of os’s as well as record values
of this df.
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In this paper, the result of Tahmasebi and Jafari [38] (2015) is extended to FGM(λ, γ)
family with two marginals FX and FY , where X ∼ GE(θ1;α1) and Y ∼ GE(θ2;α2) (denoted
by FGM(λ, γ : θ1, α1; θ2, α2)). Moreover, some new results, which were not obtained by Tah-
masebi and Jafari [38] (2015) for FGM family, are given such as recurrence relations for the
single, as well as the product, moments of bivariate concomitants of os’s, the concomitant
rank-os’s, and the asymptotic behavior of the concomitants of os’s. It is worth mention-
ing that, the same problem tackled by Barakat et al. [7, 6] (2019, 2018) for the Huang–
Kotz FGM and Bairamov–Kotz–Becki FGM with GE marginals, respectively. Moreover, the
FGM(λ, γ : θ1, α1; θ2, α2) is not a special case of any of the latter models. Nowadays, we can
find several recent relevant works on this subject. Among these works are Tahmasebi and
Behboodian [36] (2012), Tahmasebi and Jafari [37] (2014) and Tahmasebi et al. [39, 40] (2015,
2016).

2. THE FGM(λ, γ : θ1, α1; θ2, α2) FAMILY AND SOME OF ITS PROPERTIES

The joint df and pdf of (X,Y ) are defined by (1.1) and (1.2), respectively, where X ∼
GE(θ1;α1) and Y ∼ GE(θ2;α2). Thus, it is easy to show that the (n,m)-th joint moments
the of FGM(λ, γ : θ1, α1; θ2, α2) family is given by

E(XnY m) = E(Xn)E(Y m) + λ
(
E(Xn)− E(Un

1 )
)(

E(Y m)− E(V m
1 )

)
+ γ

(
E(Un

1 )− E(Un
2 )

)(
E(V m

1 )− E(V m
2 )

)
, n,m = 1, 2, ...,

(2.1)

where U1 ∼ GE(θ1; 2α1), U2 ∼ GE(θ1; 3α1), V1 ∼ GE(θ2; 2α2) and V2 ∼ GE(θ2; 3α2). Thus,
by combining (2.1) and (1.3), we get

E(XY ) =
B(α1)B(α2) + λD(2α1)D(2α2) + γD(3α1)D(3α2)

θ1θ2
,

where D((k + 1)α) = B((k + 1)α)−B(kα), k = 1, 2. Therefore, the coefficient of correlation
between X and Y is

ρX,Y =
λD(2α1)D(2α2) + γD(3α1)D(3α2)√

C(α1)C(α2)
= λg1(α1, α2) + γg2(α1, α2).

Clearly, the function g1(α1, α2) and g2(α1, α2, ) is increasing and positive function with respect
to each of αi, i = 1, 2. Therefore, if λ, γ > 0, then ρX,Y is increasing and positive function and
if λ, γ < 0, then ρX,Y is decreasing and negative function with respect to each of α1 and α2.

Moreover, we can show that limα1→∞
α2→∞

g1(α1, α2) = 6(log(2))2

π2 , limα1→∞
α2→∞

g2(α1, α2, ) = 6(log( 3
2
))2

π2 ,
limα1→0+

α2→0+

g1(α1, α2) = 0 and limα1→0+

α2→0+

g2(α1, α2) = 0. Therefore, max ρX,Y = 0.392 at corner

point (λ, γ) = (1, 1) and min ρX,Y = −0.292 at corner point (λ, γ) = (−1, 0).

The conditional df of Y given X = x is given by

FY |X(y|x) = FY (y)
[
1 + λ

(
1− FY (y)

)(
1− 2FX(x)

)
− γFX(x)FY (y)

(
1− FY (y)

)(
2− 3FX(x)

)]
.

(2.2)
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Therefore, the regression curve of Y given X = x for FGM(λ, γ : θ1, α1; θ2, α2) is

E(Y |X = x) = E(Y ) + λ
(
1− 2FX(x)

)(
E(Y )− E(V1)

)
+ γFX(x)

(
2− 3FX(x)

)(
E(V1)− E(V2)

)
=

1
θ2

[
B(α2) + λD(2α2)

(
2FX(x)− 1

)
+ γFX(x)D(3α2)

(
3FX(x)− 2

)]
,

(2.3)

where V1 ∼ GE(θ2; 2α2) and V2 ∼ GE(θ2; 3α2) and the conditional expectation is non-linear
with respect to x.

3. CONCOMITANTS OF OS’S BASED ON FGM(λ, γ : θ1, α1; θ2, α2)

Suppose (Xi, Yi), i = 1, 2, ..., n, is a random sample from a bivariate df FX,Y (x, y).
If we order the sample by the X-variate, and obtain the os’s, X1:n ≤ X1:n ≤ ··· ≤ Xn:n, for
the X sample, then the Y -variate associated with the r-th order statistic Xr:n is called the
concomitant of the r-th order statistic, and is denoted by Y[r:n].

Let X ∼ GE(θ1;α1) and Y ∼ GE(θ2;α2). Since the conditional pdf of Y[r:n] given
X[r:n] = x is fY[r:n]|Xr:n

(y|x) = fY |X(y|x) (cf. Galambos [19], 1987, see also Tahmasebi and
Jafari [38], 2015), then the pdf of Y[r:n] is given by

f[r:n](y) = fY (y) +
[
λ
(
fY (y)− fV1(y)

)
+ γ

(
fV2(y)− fV1(y)

)]
∆(1)

r,n

+
[
γ
(
fV1(y)− fV2(y)

)]
∆(2)

r,n,
(3.1)

where

∆(i)
r,n =

β(r, n− r + 1)− (i+ 1)β(r + i, n− r + 1)
β(r, n− r + 1)

, i = 1, 2.

Therefore, the moment generating function of Y[r:n] is given by

M[r:n](t) = α2

[
β

(
α2, 1−

t

θ2

)
+ λ∆(1)

r,n

(
β

(
α2, 1−

t

θ2

)
− β

(
2α2, 1−

t

θ2

))

+ γ∆(2)
r,n

(
β

(
2α2, 1−

t

θ2

)
− β

(
3α2, 1−

t

θ2

))]
.

Consequently, the k-th moment of Y[r:n] is given by

µ
(k)
[r:n] = E[Y k

[r:n]] = E[Y k] + ∆(1)
r,n

(
γ
(
E[V k

2 ]− E[V k
1 ]

)
− λ

(
E[V k

1 ]− E[Y k]
))

− γ∆(2)
r,n

(
E[V k

2 ]− E[V k
1 ]

)
.

Moreover, the mean of Y[r:n]:

(3.2) µ[r:n] = µ
(1)
[r:n] =

1
θ2

[
B(α2) + ∆(1)

r,n

(
γD(3α2)− λD(2α2)

)
− γ∆(2)

r,nD(3α2)
]
.
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Theorem 3.1. For any 1 ≤ r ≤ n− 3, we get[
(n+ 2)A(λ,γ)− 3(r + 1)γD(3α2)

]
µ[r+2:n] =

=
[
2(n+ 2)A(λ,γ)− 3(2r + 3)γD(3α2)

]
µ[r+1:n] −

[
(n+ 2)A(λ,γ)− 3(r − 2)γD(3α2)

]
µ[r:n].

Moreover, for all n > 2, we get[
A(λ, γ)

(
2− n(n+ 1)

)
− 3(r + 1)(n− 1)γD(3α2)

]
µ[r:n] =

= (n+ 2)
[
A(λ, γ)(n+ 1) + 3(r + 1) + 3(r + 1)γD(3α2)

]
µ[r:n−2]

−
[
2A(λ, γ)(n+ 2) + 3(r + 1)(2n+ 1)γD(3α2)

]
µ[r:n−1],

where A(λ, γ) = γD(3α2)− λD(2α2).

Proof: It is easy, after some algebra, to show that the mean µ[r:n], defined by (3.2),
satisfies the following relation:

(3.3)
µ[r+2:n] − µ[r:n]

µ[r+1:n] − µ[r:n]
=
A(λ, γ)

(
∆(1)

r+2,n −∆(1)
r,n

)
+ γD(3α2)

(
∆(2)

r+2,n −∆(2)
r,n

)
A(λ, γ)

(
∆(1)

r+1,n −∆(1)
r,n

)
+ γD(3α2)

(
∆(2)

r+1,n −∆(2)
r,n

) .
On the other hand, we can check that ∆(1)

r+2,n −∆(1)
r,n = −4

n+1 , ∆(1)
r+1,n −∆(1)

r,n = −2
n+1 , ∆(2)

r+2,n −
∆(2)

r,n = −12r−18
(n+1)(n+2) and ∆(2)

r+1,n −∆(2)
r,n = −6r−6

(n+1)(n+2) . Thus, by combining the last four relations
with (3.3), we get first recurrence relation in Theorem 3.1. Also, we can easily check that
∆(1)

r,n −∆(1)
r,n−2 = 4r

(n−1)(n+1) , ∆(1)
r,n−1 −∆(1)

r,n−2 = 2r
n(n−1) , ∆(2)

r,n −∆(2)
r,n−2 = 6r(r+1)(2n+1)

n(n−1)(n+1)(n+2) and

∆(2)
r,n−1 −∆(1)

r,n−2 = 6r(r+1)
n(n−1)(n+1) . The last four relation and the relation (3.2) imply the second

recurrence relation of the theorem. This completes the proof.

Remark 3.1. By putting γ = 0 in the two recurrence relations defined in Theorem 3.1
(note that A(λ, 0) = 0), we get the two corresponding recurrence relations defined in Theorem
3.1 of Barakat et al. [7] (2019), at p = 1.

By multiplying the both sides of (3.1) by (y − µ[r:n])2 and integrating, we obtain the
variance of Y[r:n] as

σ2
[r:n] =

1
θ2
2

[
(1 + π1)

(
C(α2)− π1B

2(2α2)
)

+ (π2 − π1)
(
C(2α2) +B2(2α2)

)
−B2(2α2)(π1 + π2)2 + π2

(
C(3α2)−B2(3α2)(1 + π2)

)
− 2B(α2)B(2α2)π3

− 2B(α2)B(3α2)π2(1 + π1)− 2B(2α2)B(3α2)π2(π1 + π2)
]
,

(3.4)

where π1 = λ∆(1)
r,n, π2 = γ∆(2)

r,n and π3 = π1(1 + π1) + π2(1 + π1).
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3.1. Joint df of concomitants of os’s based on FGM(λ, γ : θ1, α1; θ2, α2)

The joint pdf of concomitants Y[r:n] and Y[s:n], r < s, is (cf. Tahmasebi and Jafari [38],
2015)

f[r,s:n](y1, y2) =
∫ ∞

0

∫ x2

0
fY |X(y1|x1)fY |X(y2|x2)fr,s:n(x1, x2) dx1dx2,

where β(a, b, c) = Γ(a)Γ(b)Γ(c)
Γ(a+b+c) and

fr,s:n(x1, x2) =
1

β(r, s− r, n− s+ 1)
F r−1

X (x1)

×
(
FX(x2)− FX(x1)

)s−r−1(1− FX(x2)
)n−s

fX(x1)fX(x2), x1 < x2.

Therefore,

f[r,s:n](y1, y2) =
∫ ∞

0

∫ x2

0
fY (y1)

[
1 + λ

(
1− 2FX(x1)

)(
1− 2FY (y1)

)
+ γFX(x1)FY (y1)

(
2− 3FX(x1)

)(
2− 3FY (y1)

)][
fY (y2)

[
1 + λ

(
1− 2FX(x2)

)
×

(
1− 2FY (y2)

)
+ γFX(x2)FY (y2)

(
2− 3FX(x2)

)(
2− 3FY (y2)

)]]
×

[
F r−1

X (x1)
(
FX(x2)−FX(x1)

)s−r−1(1−FX(x2)
)n−s

β(r, s− r, n− s+ 1)
fX(x1)fX(x2)

]
dx1dx2.

(3.5)

On the other hand, after some algebra we can write the joint pdf f[r,s:n](y1, y2), defined by
(3.5), in the following compact form:

f[r,s:n](y1, y2) = fY (y1)fY (y2)
[
1 + λ

(
1− 2FY (y1)

)
I1 + λ

(
1− 2FY (y2)

)
I2

+ λ2
(
1− 2FY (y1)

)(
1− 2FY (y2)

)
I3 + γFY (y1)

(
2− 3FY (y1)

)
I4

+ γFY (y2)
(
2− 3FY (y2)

)
I5 + γ2FY (y1)FY (y2)

(
2− 3FY (y1)

)(
2− 3FY (y2)

)
I6

+ λγFY (y2)
(
1− 2FY (y1)

)(
2− 3FY (y2)

)
I7

+ λγFY (y1)
(
1− 2FY (y2)

)(
2− 3FY (y1)

)
I8

]
,

where I1= ∆(1)
r,s,n, I2= ∆(2)

r,s,n, I3= ∆(1)
r,s,n+∆(2)

r,s,n−∆(3)
r,s,n, I4= ∆(4)

r,s,n−∆(1)
r,s,n, I5= ∆(5)

r,s,n−∆(2)
r,s,n,

I6 =
(
∆(6)

r,s,n +∆(7)
r,s,n

)
−

(
∆(3)

r,s,n−∆(8)
r,s,n

)
, I7 = ∆(5)

r,s,n−∆(2)
r,s,n +∆(3)

r,s,n−∆(7)
r,s,n and I8 = ∆(4)

r,s,n−
∆(1)

r,s,n + ∆(3)
r,s,n −∆(6)

r,s,n. Moreover,

∆(i)
r,s,n =

β(r, s− r, n− s+ 1)− (pi + 1)β(r + pi, s− r, n− s+ 1)
β(r, s− r, n− s+ 1)

, i = 1, 4,

∆(i)
r,s,n =

β(r, s− r, n− s+ 1)− (pi + 1)β(s+ pi, n− s+ 1)β(r, s− r)
β(r, s− r, n− s+ 1)

, i = 2, 5,

∆(i)
r,s,n =

β(r, s−r, n−s+ 1)−(pi + 1)2β(s+ 2pi, n− s+ 1)β(r + pi, s−r)
β(r, s−r, n−s+ 1)

, i = 3, 8,

∆(i)
r,s,n =

β(r, s− r, n− s+ 1)− 6β(s+ 3, n− s+ 1)β(r + pi, s− r)
β(r, s− r, n− s+ 1)

, i = 6, 7,
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where p1 = p2 = p3 = p7 = 1 and p4 = p5 = p6 = p8 = 2. Therefore, the product moment
E

[
Y[r:n]Y[s:n]

]
is obtained directly as

µ[r,s:n] =
1
θ2
2

[
B2(α2)ξ1(λ, r, s, n)−B(α2)B(2α2)ξ2(γ, λ, r, s, n)

+B2(2α2)ξ3(γ, λ, r, s, n)−B(α2)B(2α2)ξ4(γ, λ, r, s, n) + γ2B2(3α2)I6
]
,

(3.6)

where

ξ1(λ, r, s, n) = 1 + λ(I1 + I2 + I3),

ξ2(γ, λ, r, s, n) = λ(I1 + I2 + 2λI3)− γ(I4 + I5)− λγ(I7 + I8),

ξ3(γ, λ, r, s, n) = λ2I3 + γ2I6 − λγ(I7 + I8)
and

ξ4(γ, λ, r, s, n) = γ(I4 + I5) + λγ(I7 + I8).

Therefore, by using (3.2) and (3.6) we can after some algebra calculate the covariance between
Y[r:n] and Y[s:n] as

σ[r,s:n] =
1
θ2
2

[
B2(α2)δ(1)r,s,n −B(α2)B(2α2)δ(2)r,s,n

+B2(2α2)δ(3)r,s,n −B(α2)B(3α2)δ(4)
r,s,n +B2(3α2)δ(5)r,s,n

]
.

(3.7)

where

δ(1)
r,s,n = 1 + λ

(
I1 + I2 + λI3 −∆(1)

r,n −∆(1)
s,n

)
,

δ(2)
r,s,n = λ

(
I1 + I2 + 2λI3 −∆(1)

r,n −∆(1)
s,n

)
− γ

(
I4 + I5 −∆(2)

r,n −∆(2)
s,n

)
− λγ(I7 + I8),

δ(3)
r,s,n = λ2

(
I3 + ∆(1)

r,n∆(1)
s,n

)
+ γ2

(
I6 + ∆(2)

r,n∆(2)
s,n

)
− λγ(I7 + I8),

δ(4)
r,s,n = γ

(
I4 + I5 −∆(2)

r,n∆(2)
s,n

)
+ λγ(I7 + I8)

and
δ(5)
r,s,n = γ2

(
I6 + ∆(2)

r,n∆(2)
s,n

)
.

We can now use (3.7) and (3.4) to obtain the coefficient of correlation between Y[r:n] and
Y[s:n] as ρ[r,s:n] = σ[r,s:n]

σ[r:n]σ[s:n]
. By putting γ = 0 in (3.4) and (3.7), we can easily check that the

ρ[r,s:n] is exactly the coefficient of correlation between Y[r:n] and Y[s:n] calculated by Barakat
et al. [7] (2019), at p = 1.

Theorem 3.2. For any 1 ≤ r ≤ n− 3, we get

(3.8) µ[r+2,s:n] = 2µ[r+1,s:n] − µ[r,s:n] − τn(s;λ, γ;α2),

where

τn(s;λ, γ;α2) =
6A1(n+ 3)(n+ 4) + 12A2(s+ 2)(n+ 4) + 18A3(s+ 2)(s+ 3)

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
.

Moreover, for any 1 ≤ s ≤ n− 3, we get

(3.9) µ[r,s+2:n] = 2µ[r,s+1:n] − µ[r,s:n] − ωn(r;λ, γ;α2),

where

ωn(r;λ, γ;α2) =
6A4(n+ 3)(n+ 4) + 12rA5(n+ 4) + 18A3r(r + 1)

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
.
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Finally, for all n > 2, we get

(3.10) (n+ 1)µ[r,s:n] = 2nµ[r,s:n−1] − (n− 1)µ[r,s:n−2] + ζn(r, s;λ, γ;α2),

where

ζn(r, s;λ, γ;α2) =
3A4s(s+ 1)(n+ 3)(n+ 4) + 36rA2r(r + 1)(s+ 2)(n+ 4)

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

+
36A5(s+ 1)(s+ 2)(n+ 4) + 108A3(s+ 2)(s+ 3)r(r + 1)

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

+
8A6r(s+ 1)(n+ 3)(n+ 4) + 6A1r(r + 1)(n+ 3)(n+ 4)

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)
,

A1 =
1
θ2
2

[
λγ

(
B2(2α2) +B(α2)B(2α2)−B(α2)B(3α2)

)
− γB(α2)B(2α2)

]
,

A2 =
1
θ2
2

[
γ2

(
B2(2α2) +B2(3α2)

)
+ λγ

(
B(α2)B(3α2)−B(α2)B(2α2)

)]
,

A3 =
−γ2

θ2
2

(
B2(2α2) +B2(3α2)

)
,

A4 =
1
θ2
2

[
γ
(
B(α2)B(2α2)−B(α2)B(3α2)

)
+ λγ

(
B(α2)B(2α2) +B(α2)B(3α2)−B2(α2)

)]
,

A5 =
1
θ2
2

[
γ2

(
B2(2α2) +B2(3α2)

)
+ λγ

(
B(α2)B(3α2)−B(α2)B(2α2) +B2(α2)

)]
and

A6 =
1
θ2
2

[
λ2

(
B(2α2)−B(α2)

)2 + 2λγB(α2)
(
B(2α2)−B(3α2)

)
− γ2B2(3α2)

]
.

Proof: It is easy to check that

∆(i)
r+2,s,n −∆(i)

r,s,n = 2
(
∆(i)

r+1,s,n −∆(i)
r,s,n

)
, i = 1, 3, 6,(3.11)

∆(i)
r+2,s,n −∆(i)

r,s,n =
(
∆(i)

r+1,s,n −∆(i)
r,s,n

) 2r + 3
r + 1

, i = 4, 7, 8,(3.12)

and

(3.13) ∆(2)
r,s,n = ∆(2)

r+1,s,n = ∆(2)
r+2,s,n, ∆(5)

r,s,n = ∆(5)
r+1,s,n = ∆(5)

r+2,s,n.

The recurrence relation (3.8) is now followed by combining (3.11) and (3.12) with (3.13).
Now, we turn to prove (3.9). First, we notice that

(3.14) ∆(1)
r,s,n = ∆(1)

r,s+1,n = ∆(1)
r,s+2,n

and

(3.15) ∆(4)
r,s,n = ∆(4)

r,s+1,n = ∆(4)
r,s+2,n.

Moreover, it is easy to check that

(3.16) ∆(i)
r,s+2,n −∆(i)

r,s,n = 2
(
∆(i)

r,s+1,n −∆(i)
r,s,n

)
, i = 2, 3, 6,

and

(3.17) ∆(i)
r,s+2,n −∆(i)

r,s,n =
(
∆(i)

r,s+1,n −∆(i)
r,s,n

) 2s+ 2pi + 1
s+ pi

,
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where i = 5, 7, 8 and p5 = 1, p7 = 2, p8 = 3. Therefore, the recurrence relation (3.9) is followed
by combining (3.14), (3.15), (3.16) and (3.17). In order to prove the recurrence relation (3.10),
we first notice that

(3.18) ∆(i)
r,s,n−2:p −∆(i)

r,s,n:pi
=

(
∆(i)

r,s,n−1:pi
−∆(i)

r,s,n:pi

) 2n+ pi − 1
n− 1

,

where i = 1, 2, ..., 8 and p1 = p2 = 1, p3 = p4 = p5 = 2, p6 = p7 = 3, p8 = 4. The recurrence
relation (3.10) is now followed by using (3.18). The proof is completed.

Remark 3.2. By putting γ = 0 in (3.8), (3.9) and (3.10), we get (3.24), (3.25) and
(3.26) in Theorem 3.3 of Barakat et al. [7] (2019), at p = 1.

4. CONCOMITANTS OF RECORD VALUES BASED ON FGM(λ,γ : θ1,α1; θ2,α2)

Let (Xi, Yi), i = 1, 2, ..., be a random sample from FGM(λ, γ; θ1, α1; θ2, α2). When the
experimenter interests in studying just the sequence of records of the first component Xi’s,
the second component associated with the record value of the first one is termed as the
concomitant of that record value. The concomitants of record values arise in a wide variety
of practical experiments, e.g., see Bdair and Raqab [8] (2014) and Arnold et al. [5] (1998).
Let {Rn, n ≥ 1} be the sequence of record values in the sequence of X’s, while R[n] be the
corresponding concomitant. Houchens [24] (1984) has obtained the pdf of concomitant of
n-th record value for n ≥ 1, as h[n](y) =

∫∞
0 fY (y|x)gn(x)dx, where gn(x) = 1

Γ(n)

(
− log(1−

FX(x))
)n−1

fX(x) is the pdf of Rn. Therefore, after some algebra, we get

(4.1) h[n](y) = (1 + λΥn:1)fY (y) + (γΥn:2 − λΥn:1)fV1(y)− γΥn:2fV2(y),

where V1 ∼ GE(θ2; 2α2), V2 ∼ GE(θ2; 3α2) and

Υn:p =

1− (1 + p)
ℵ(p)∑
i=0

(−1)i
(

p

i

)
(i+ 1)n


(clearly, Υn:1 = (2−(n−1) − 1)). The representation (4.1) enables us to derive the mean and
the variance of R[n] as

µ[Rn] =
1
θ2

[
B(α2)− λΥn:1D(2α2)− γΥn:2D(3α2)

]
and

σ2
[Rn] =

1
θ2
2

[
C(α2) + λΥn:1

(
C(α2)− C(2α2)

)
+ γΥn:2

(
C(2α2)− C(3α2)

)
− (1 + λΥn:1)λΥn:1D

2(2α2)− (1 + γΥn:2)γΥn:2D
2(3α2)

− λγΥn:1Υn:2D(2α2)D(3α2)
]
.

(4.2)

Again, by putting γ = 0, we get the mean and the variance of R[n] for the Huang–Kotz FGM
family based on the GE marginals at p = 1 (cf. Barakat et al. [7], 2019).
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The joint pdf of the concomitants R[n] and R[m], n < m, is given by

h[n,m](y1, y2) =
∫ ∞

0

∫ ∞

x1

fY |X(y1|x1)fY |X(y2|x2)gm,n(x1, x2) dx2dx1,

where

gm,n(x) =
1

Γ(n)Γ(m− n)

(
− log

(
1− FX(x1)

))n−1
(
− log

1− FX(x2)
1− FX(x1)

)m−n−1 fX(x1)fX(x1)
1− FX(x1)

is the joint pdf of Rn and Rm. Therefore, after some algebra, we get

h[n,m](y1, y2) = fY (y1)fY (y2)
[
1 + λ

(
1− 2FY (y1)

)
J1 + λ

(
1− 2FY (y2)

)
J2

+ λ2
(
1− 2FY (y1)

)(
1− 2FY (y2)

)
J3 + γFY (y1)

(
2− 3FY (y1)

)
J4

+ γFY (y2)
(
2− 3FY (y2)

)
J5 + γ2FY (y1)FY (y2)

(
2− 3FY (y1)

)(
2− 3FY (y2)

)
J6

+ λγFY (y2)
(
1− 2FY (y1)

)(
2− 3FY (y2)

)
J7

+ λγFY (y1)
(
1− 2FY (y2)

)(
2− 3FY (y1)

)
J8

]
,

(4.3)

where J1 = Υn:1, J2 = Υm:1, J3 = 4Υn:1+Υm:1−Υn,m:1,1, J4 = Υn:2−Υn:1, J5 = Υm:2−Υm:1,
J6 = Υn,m:2,1+Υn,m:1,2−Υn,m:1,1−Υn,m:2,2, J7 = Υm:2+Υn,m:1,1−Υm:1−Υn,m:1,2, J8 = Υn:2+
Υn,m:1,1−Υn:1−Υn,m:2,1 and

Υn,m:p,q =

1− (1 + p)(1 + q)
ℵ(p)∑
i=0

ℵ(q)∑
j=0

(−1)i+j
(

p

i

) (
q

j

)
(i+ j + 1)n(j + 1)m−n

 .
The representation (4.3) enables us to derive the product moment and the covariance of R[n]

and R[m], respectively, as

µ[Rn,Rm]:p =
1
θ2
2

[
B2(α2)ξ1(λ, n,m)−B(α2)B(2α2)ξ2(γ, λ, n,m)

+ B2(2α2)ξ3(γ, λ, n,m)−B(α2)B(2α2)ξ4(γ, λ, n,m) +B2(3α2)γ2J6

]
,

where ξ1(λ,n,m) = 1+λ(J1+J2+J3), ξ2(γ,λ,n,m) = λ(J1+J2+2λJ3)−γ(J4+J5)−λγ(J7+J8),
ξ3(γ,λ,n,m) = λ2J3 + γ2J6 − λγ(J7 + J8) and ξ4(γ,λ,n,m) = γ(J4 + J5) + λγ(J7 + J8) and

σ[Rn,Rm] =
1
θ2
2

[
B2(α2)η(1)

n,m −B(α2)B(2α2)η(2)
n,m

+B2(2α2)η(3)
n,m −B(α2)B(3α2)η(4)

n,m +B2(3α2)η(5)
n,m

]
,

(4.4)

where

η(1)
n,m = 1 + λ(J1 + J2 + λJ3 −Υn:1 −Υm:1),

η(2)
n,m = λ(J1+J2+2λJ3−Υn:1−Υm:1)−γ(J4 + J5 −Υn:2−Υm:2)−λγ(J7 + J8),

η(3)
n,m = λ2(J3 + Υn:1Υm:1) + γ2(J6 + Υn:2Υm:2)− λγ(J7 + J8),

η(4)
n,m = γ(J4 + J5 −Υn:2Υm:2) + λγ(J7 + J8)

and
η(5)

n,m = γ2(J6 + Υn:2Υm:2).
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Finally, by combining (4.2) and (4.4), we get the correlation coefficient of the concomitants
R[n] and R[m] as

ρ[Rn,Rm] =
σ[Rn,Rm]√
σ2

[Rn]σ
2
[Rm]

.

Clearly, by putting γ = 0 in (4.2) and (4.4), we can easily check that the ρ[Rn,Rm] is exactly
the coefficient of correlation between Rn and Rm calculated by Barakat et al. [7] (2019), at
p = 1.

5. APPLICATIONS

Concomitants of os’s and record values have received a continued remarkable attention
in recent years due to their applicability in many problems. The most striking application
of concomitants of os’s arises in biological selection problems. For example, in choosing
the top k out of n rams as judged by their genetic make up is selected for breeding, then
Y[n−k+1:n], ..., Y[n:n], might represent the quality of the wool of one of their female offspring.
In such type of experiments a geneticist is more likely to choose the best set of offsprings
with less number of trials than one in which all trials are undertaken which is much expensive
and time consuming. Examples of such application can be found in Scaria and Thomas [34]
(2014).

Estimation of the parameters associated with the df of the rv Y of primary interest
using concomitants of os’s or record values on the auxiliary rv X is an another important
application, where extensive works are seen carried out. For example see, Begum and Khan
[9] (2000), Scaria [33] (2003), Philip and Thomas [31] (2015), Veena and Thomas [42] (2015)
and Domma and Giordano [16] (2016).

Another important application of concomitants of os’s and record values is a method
of sampling known as ranked set sampling. Namely, when we have an auxiliary rv X, which
is easily measurable while the measurement of the rv Y of primary interest is hard and
expensive. In order to achieve observational economy, we choose n2 units randomly from the
population and arrange them in n groups of n units each for measurement of the observed
rv X. Therefore, based on the observations on X, units in each group are ranked among
themselves and from the j-th group the unit ranked j is chosen for measurement of the
variable Y of primary interest for j = 1, 2, ..., n. Clearly the observations finally measured on
Y are concomitants of os’s. For some references in this area one may refer, Chen et al. [12]
(2004), Chacko and Thomas [10, 11] (2008, 2009), Lesitha and Thomas [28] (2013), Paul and
Thomas [30] (2017) and Philip and Thomas [32] (2017).

Moreover, some results on characterization of bivariate distributions by properties of
concomitants of os’s are available in Thomas and Veena [41] (2011). Besides the preceding
applications, there are important other recent applications, For example, Jung et al. [27]
(2008) presented an application of generalized FGM copula function in exchange markets
using directional dependence concept. Hlubinka and Kotz [23] (2010) used the generalized
FGM distribution and related copulas as bivariate models for the distribution of spheroidal
characteristics. Sheikhi and Tata [35] (2013) modeled the joint distribution of a linear combi-
nation of concomitants of os’s and linear combinations of their os’s as a unified skew-normal
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family assuming a multivariate normal distribution. Eryilmaz [17] (2016) has shown that the
concomitants are potentially useful in reliability modeling.

Eryilmaz [17] (2016) has analysed the FGM with exponential marginals from a relia-
bility point of view. We extend some of these results to the FGM(λ, γ : θ1, α1; θ2, α2).

Let Xi ∼ GE(θ1;α1) and Yi ∼ GE(θ2;α2) denote respectively the lifetime of the i-th
component, and the utility of the i-th component during its lifetime, i = 1, ..., n. Total utility
of n components is defined by the rv

∑n
i=1 Yi. Moreover, the residual performance after the

first failure in the system is given by
∑n

i=1 Yi−Y[1:n]. Although the components are identical,
they may have different contribution/utility to the performance of the whole system since the
components may be located in different positions or they may be used by different operators.
The utility of the component is positively correlated with its lifetime. Such a dependence can
be modeled by FGM(λ, γ : θ1, α1; θ2, α2).

The residual performance after time t is defined by the process (cf. Eryilmaz [17], 2016)

S(t) =
n∑

i=N(t)+1

Y[i:n], t > 0,

where the process N(t) denotes the number of failures up to time t, i.e., P (N(t) = r) =(
n

r

)
F r

X(t) (1−FX(t))n−r, r = 0, 1, ..., n, with P (N(t) = 0) = 1. Clearly, knowing the mean
value of S(t) may help to an engineer at various stages such as design, and preventive main-
tenance. By using Proposition 1 of Eryilmaz [17] (2016) and after some algebra, we can show
that

E
(
S(t)

)
=

n

θ2

[
B(α2)

(
1−FX(t)

)
+ λD(2α2)

(
FX(t)−FU1(t)

)
+ γD(3α2)

(
FU1(t)−FU2(t)

)]
,

where U1 ∼ GE(θ1; 2α1) and U2 ∼ GE(θ1; 3α1).

On the other hand, it is useful to know about the mean residual performance of the
system when at a specific time there are exactly m working components. For this purpose, we
consider the conditional mean residual performance defined by ψm(t) = E(S(t) = j|M(t) =
n−N(t) = m), where M(t) is the number of working components at time t. Now, using
Theorem 1 of Eryilmaz [17] (2016), we get after some algebra

ψm(t) =
m

n

E
(
S(t)

)
1− FX(t)

=
m

θ2

[
B(α2) + λD(2α2)

FX(t)− FU1(t)
1− FX(t)

+ γD(3α2)
FU1(t)− FU2(t)

1− FX(t)

]
.

By using applying L’Hospital’s rule, we get

lim
t→∞

ψm(t) =
m

θ2

[
B(α2) + λD(2α2) + γD(3α2)

]
= lim

t→∞
E(Y |X = t)

(E(Y |X = t) is given by (2.3)).

Furthermore, we can consider the random time until the total output of the system
first falls below the critical level k. Clearly, the waiting time until the total output first
falls below k is of special importance in the analysis. The corresponding time is defined
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by the rv T (k) = inf{t : S(t) < k}. Since this waiting time corresponds to one of the failure
time of the components, the two events {T (k) = Xr:n} and {S(Xr−1:n) ≥ k and S(Xr:n) < k}
are equivalent, where the rv S(Xr:n) =

∑n
i=r+1 Y[i:n] defines the residual performance after

the r-th failure in the system (cf. Eryilmaz [17], 2016). For a system consisting of n = 3
components, using Proposition 3 of Eryilmaz [17], 2016), we get

P
(
T (k) =X2:3

)
=

∫ ∞

0
P

(
Y ?

1 +Y ?
2 ≥ k

)
dFX1:3(x) −

∫ ∞

0
P

(
Y ?

1 ≥ k
)
dFX2:3(x),

P
(
T (k) =X3:3

)
=

∫ ∞

0
P

(
Y ?

1 ≥ k
)
dFX2:3(x),

and P (T (k) =X1:3) = 1− P (T (k) =X2:3)− P (T (k) =X3:3), where P (Y ? < y) = FY |X(y|x)
is defined by (2.2). Thus,

P
(
Y ?

1 +Y ?
2 > k

)
=

∫ ∞

0
P

(
Y ?

1 +Y ?
2 > k |Y ?

1 = y
)
dy

=
∫ k

0
P

(
Y ?

1 +Y ?
2 > k |Y ?

1 = y
)
dy +

∫ ∞

k
P

(
Y ?

1 +Y ?
2 > k |Y ?

1 = y
)
dy

=
∫ k

0

(
1− P

(
Y ?

2 ≤ k−y
))
fY ?

1
(y) dy + 1

− FY (k)
[
1− λFX(x)F̄Y (k)− γF 2

X(x)FY (k)F̄Y (k)
]
.

By using the binomial theorem, the above integration can be easily explicitly evaluated.
However, Eryilmaz [17] (2016) presented a simple Monte-Carlo simulation algorithm to com-
pute the probability P (T (k) =Xr:n) for general bivariate df FX,Y .

6. CONCLUDING REMARKS

While introducing the iterated FGM distribution by Huang and Kotz [25] (1984), and
thereby showed that the maximum correlation is higher than was previously known. More-
over, Huang and Kotz [25] (1984) showed that just one single iteration can result in tripling
the covariance for certain marginals. Other than this a systematic study (by Huang and Kotz
[25], 1984) of the properties of this promising distribution and its application does not appear
to have been discussed in literature. The present paper is an attempt in this direction. Some
new distributional properties of concomitants of os’s of the iterated FGM based on the GE df
were presented in Section 2. Moreover, several new useful recurrence relations between single
and product moments of concomitants were established. Finally, by relying of the results
of Section 2, we gave an application of this model in reliability theory. Besides this appli-
cation we reviewed some various applications for concomitants and the FGM distribution.
Most probably, the utilization of the iterated FGM distribution instead FGM distribution for
studying these applications will give more accurate results.
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