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Håvard Rue
– CEMSE Division, King Abdullah University of Science and Technology,

Kingdom of Saudi Arabia
Haavard.Rue@kaust.edu.sa

Received: September 2020 Revised: October 2020 Accepted: November 2020

Abstract:

• Skewed probit regression is but one example of a statistical model that generalizes a simpler model,
like probit regression. All skew-symmetric distributions and link functions arise from symmetric
distributions by incorporating a skewness parameter through some skewing mechanism. In this
work we address some fundamental issues in skewed probit regression, and more genreally skew-
symmetric distributions or skew-symmetric link functions.
We address the issue of identifiability of the skewed probit model parameters by reformulating the
intercept from first principles. A new standardization of the skew link function is given to provide
and anchored interpretation of the inference. Possible skewness parameters are investigated and the
penalizing complexity priors of these are derived. This prior is invariant under reparameterization
of the skewness parameter and quantifies the contraction of the skewed probit model to the probit
model.
The proposed results are available in the R-INLA package and we illustrate the use and effects of
this work using simulated data, and well-known datasets using the link as well as the likelihood.
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1. INTRODUCTION

Skew-symmetric distributions have acclaimed fame due to their ability to model skewed
data, by introducing a skewness parameter to a symmetric distribution, through some skew-
ing mechanism. In the preceding decades, an abundance of skewed distributions has been
proposed from the basis of symmetric distributions, like the skew-normal [30, 3], skew-t [6]
and more generally skew-elliptical distributions [21]. In each of these skew distributions, an
additional parameter is introduced that indicates the direction of skewness or alternatively,
symmetry.

With the introduction of the additional parameter, the inferential problem can become
more challenging. The identifiability of the parameters and the existence of the maximum
likelihood estimators (MLEs) are issues to keep in mind. In the Bayesian paradigm, the choice
of a prior for the skewness parameter emerges. Either way, the inference of the skewness
parameter is crucial in evaluating the appropriateness of the underlying (skewed) model.

A continuous random variable X, follows a skew-normal (SN) distribution with location,
scale and skewness(shape) parameters ξ, ω and α, respectively, if the probability density
function (pdf) is as follows:

(1.1) g(x) =
2
ω

φ

(
x− ξ

ω

)
Φ

[
α

(
x− ξ

ω

)]
,

where α ∈ R, ω > 0, ξ ∈ R, and φ(·) and Φ(·) are the density and cumulative distribution
function (CDF) of the standard Gaussian distribution, respectively. Denote by G(x) the CDF
of the skew-normal density.

The parameterisation in (1.1) poses difficulties since the mean and variance depends on
α, as E[X] = ξ + ωδ

√
2/π and V [X] = ω2

(
1− 2δ2/π

)
, where δ = α/

√
1 + α2. This implies

that inference for α will also influence the inference for the mean and variance, since both
are functions of α.

A similar challenge arises in the binary regression framework where the skew-normal link
function is used as a generalization of probit regression, namely skewed probit regression. The
need for asymmetric link functions have been noted by [14]. In binary regression, asymmetric
link functions are essential in cases where the probability of a particular binary response
approaches zero and one at different rates. In this case, a symmetric link function will result
in substantially biased estimators with over(under)estimation of the mean probability of the
binary response, due to the different rates of approaching zero and one (see [16] for more
details on this issue). Skewed probit regression is an extension of probit regression, where
covariates are transformed through the skew-normal CDF instead of the standard normal
CDF.

Here, it might not be intuitive when the skewed link function is more appropriate than
the symmetric link function. The estimate of the skewness parameter could provide some
insights into this, only if the inference of the skewness parameter is reliable and interpretable.

Regarding the inference of the skewness parameter, α in (1.1), being it in the skewed
probit regression or the skew-normal distribution as the underlying response model (which
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are conceptually the same estimation setup), various works have been contributed, most
of them dedicated to the skew-normal response model framework. The identifiability of the
parameters in the skew-normal response model was investigated by [22] (and skew-elliptical in
general), [31] (for finite mixtures) and [13] (for extensions of the skew-normal distributions).
For binary regression, identifiability of the parameters was considered by [25] where some
issues concerning identifiability were raised. We address the identifiability problem from a
first principles viewpoint, so that the parameters are identifiable, even with weak covariates,
hence adding to [25].

In the skew-normal response model, the bias of the MLEs is a well-known fact (see [34]
for more details). For small and moderate sample sizes, the MLE of the skewness parameter
could be infinite with positive probability and the profile likelihood function has a singularity
as the skewness parameter approaches zero, as noted early on by [3] (see also [26]). Some
approaches to alleviate this feature of the skew-normal likelihood function have been proposed,
including reparameterization of the model by [3] using the mean and variance (instead of
location and scale parameters), or using a Bayesian framework by [27] (default priors) and
[7] (proper priors). Also, [34] used the work of [19] to propose an adjusted (penalized) score
function for frequentist estimation of the skewness parameter. A penalized MLE approach
for all the parameters, including the skewness parameter, is presented by [5]. Bias-reduction
regimes were proposed by [28].

From a Bayesian viewpoint, various priors for the skewness parameter have been pro-
posed such as the Jeffrey’s prior [27], truncated Gaussian prior [1], Student t prior and
approximate Jeffery’s prior [7], uniform prior [2], probability matching prior [11], informative
Gaussian and unified skew-normal priors [12] and the beta-total variation prior [17]. All of
these Bayesian approaches, with the exception of the latter, are based on somewhat arbitrary
prior choices for mainly mathematical or computational convenience. These priors (as many
others) are not invariant under reparameterization of the skewness parameter. The beta-
total variation prior presented by [17] is based on the total variation from the symmetric
Gaussian model to the skew-normal model, viewing the skewness parameter as a measure of
perturbation. This prior is indeed invariant under one-to-one transformation of the skewness
parameter.

Amongst the many works on the skew-normal response model, it seems that the genesis
of the skew-normal model has been neglected. The skew-normal model was introduced by [3]
as an (asymmetric) extension of the Gaussian model. The motivation for this extension is
found in data. When data behaves like the Gaussian model, but the profile of the density is
asymmetric, the skew-normal model might be appropriate. Conversely, we need an inferential
framework wherein the skew-normal model would contract (or reduce) to the Gaussian model,
in the absence of sufficient evidence of non-trivial skewness. The priors mentioned before
do not provide a quantification framework with which the modeler can understand, and
subsequently control this contraction. To achieve this, we need to consider the model (either
skewed probit regression or the skew-normal response model) from an information theoretic
perspective. Then we can construct a prior with which the quantification of contraction (or
not) can be done, and used as a translation of prior information from the modeler to the
model.

In this paper we address some issues (identifiability, standardizing, skewness parame-
ters) prevalent in skewed-probit regression in Section 2 and construct the penalized complexity
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(PC) prior for the skewness parameter of the link function (which is translatable to the skew-
normal response model) in Section 4. This PC prior is implemented in the R-INLA [32] (see
also [33], [29]) package for general use by others. We use a numerical study to illustrate the
solutions proposed in Section 2 and apply the PC prior to simulated and real data in Sections
5 and Section 6. The paper is concluded by a discussion in Section 7 in which we sketch the
wider applicability of this work and contributions to the wider skew-symmetric family.

2. SKEWED PROBIT REGRESSION AND ISSUES

We consider skewed probit regression as an extension of probit regression, where the
link function is the skew-normal CDF instead of the standard normal CDF. We formulate
skewed probit regression that can include random effects like spline functions of the covariates,
spatial and/or temporal effects. For this paper, we assume the following structure. From a
sample of size n, the responses yyyn×1 are counts of successful trials out of Nn×1 trials and hence
we assume a Binomial distribution with success probability p. We gather all m covariates in
XXXn×m and use these to build an additive linear predictor, defined as ηηηn×1. So then,

yi ∼ Binomial(Ni, pi),

pi = G(ηi), i = 1, ..., n,(2.1)

where G(·) is the CDF of the Skew-Normal that depends on (ξ, ω, α). The linear predictor
ηi is an additive linear predictor defined as follows,

(2.2) ηi = β0 + βββ′XXXi +
K∑

k=1

fk(ZZZi),

where XXX and ZZZ are the covariates for the fixed and random effects, respectively, the functions
{fk(.)} are random effects like spatial, spline, temporal effects with hyperparameters θθθ.

2.1. Issue 1 – Standardizing the link function

With the aim of standardizing the link function, [25] assumed ξ = 0, ω = 1, similar to
[9] and many others. Initially, the idea behind this choice feels intuitive since the skew probit
link is an extension of the probit link through the skewness parameter. However, the (0, 1)
parameter values of the probit link should not be naively copied to the skewed probit link.
The choice, ξ = 0, ω = 1 implicitly concedes that a skew-normal density (1.1) with mean

E[X] = α

√
2

π(1 + α2)
,

and variance

V [X] = 1− 2α2

π(1 + α2)
,

is used to calculate the probability of success, for all α. This essentially implies that for
different skewness parameter values, different means and variances are used. This way of
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standardizing is a parameter-based method, instead of the intended property-based method
like in the probit link. We do not expect the assumption ξ = 0, ω = 1 to work well since the
mean and variance are not anchored and can attain many values based on different values of
α.

We posit that the mean and the variance (properties of the link) should be fixed, like in
the probit case, instead of the skew-normal location and scale parameters. This is analogous
to the idea of the centered parametrization of the skew-normal density and mentioned by [8].

We propose the link function F (y|α) that is the CDF of the Skew-Normal density (1.1)
scaled to have zero mean and unit variance for all values of α. That is,

F (y|α) =
∫ y

−∞
f(x|α) dx

where

(2.3) f(x|α) =
2

ω(α)
φ

(
x− ξ(α)

ω(α)

)
Φ

[
α

(
x− ξ(α)

ω(α)

)]
,

ξ(α) = −ω(α)

√
2

π(1 + α2)
,

and

ω(α) =

√(
1− 2α2

π(1 + α2)

)−1

.

This provides an anchored link function with zero mean and unit variance, for all α. If this
standardization is not used then an arbitrary unknown scale is introduced to the model, with
no means of recovering it. By fixing the mean and variance, we have a better understanding
of the properties of the link and we do approach the probit case in the neighborhood of α = 0.

2.2. Issue 2 – The quantile intercept and identifiability of parameters

The identifiability of the parameters in skewed probit regression were first investigated
by [25]. They showed that without the presence of a continuous covariate, the intercept
β0, and skewness parameters are not identifiable. This is expected due to the traditional
definition of the skewed probit model (2.1) and (2.2). We rectify the formulation of the
skewed probit regression intercept, by introducing the quantile intercept, and subsequently
solve this issue of non-identifiability by returning to first principles.

In simple linear regression, the intercept is used to calculate the expected value of
the linear predictor without any effect from covariates. In probit regression, the intercept
contains information about the probability of the event, without the effects from covariates.
The value of the intercept should not provide any information about the other parameters in
the model.

However, when we introduce a skewness parameter to a symmetric family to formulate a
skew-symmetric link then we are fundamentally changing the meaning of what is traditionally
called the intercept of the linear predictor, i.e. β0 in (2.2).
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Consider probit regression with one centered covariate X,

p = Prob[Y = 1] = Φ(β0 + β1X).

Now if β1X = 0, then
q = Prob[Y = 1] = Φ(β0),

which implies that β0 is the qth quantile of the standard Gaussian distribution. There is
thus a one-to-one relationship between q and β0. When β1 6= 0, then Prob[Y = 1] changes
because of β1X, without affecting β0, because Φ remains the same function. In this sense, β0

is uninformative for β1.

Conversely, consider skewed-probit regression from (2.1) and (2.3),

p = Prob[Y = 1] = F (β0 + β1X|α).

Here, β0 should, in the same way, be uninformative for β1. This does not hold because the
dependence of α. We can ensure this, if

q = Prob[Y = 1] = F (β0|α)

is constant for varying α, which is the case if β0 is defined as the qth quantile of the distribution
with CDF F . Therefore, we reformulate β0 as

(2.4) β0(q, α) = F−1(q|α),

so β0 is the qth quantile of F (.|α). The quantile level q is now the unknown intercept-
parameter instead of β0.

Note that there is (generally) not a one-to-one relationship between β0 and q since the
qth quantile depends on α. In this new formulation, the intercept as defined implicitly by q,
provides no information about β1 and parameters of F (ηi|α) are identifiable. We return in
5.3 to a numerical study of this issue.

This formulation might seem surprising at first sight, but in the case of a symmetric
link, the intercept is the quantile of a distribution with fixed (no) skewness. In the case of
the probit or identity links for example, this formulation will reduce to the usual intercept
parameter since in these cases there is a one-to-one relationship between β0 and q.

In terms of implementation in R-INLA, the new formulation of the skew normal model
in terms of q is available and subsequently, the prior distribution for q can be derived from
a corresponding informative N(µ0, τ0) prior for β0 in the case where α = 0. This will ensure
that the probit and the skewed-probit models have comparable priors for their respective
“intercept” parameters.

2.3. Issue 3 – Skewness-related parameters

It is well-known that the skew-normal likelihood has a (double) singularity in the neigh-
bourhood α ' 0 [3]. Various adaptations of maximum likelihood estimation and some Bayes
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estimators have been proposed as solutions to this singularity. [23] used the Fisher informa-
tion to propose a reparameterization that uses α3 as the skewness parameter since this solves
the double singularity problem in the likelihood. In our venture to derive the PC prior for
the skewness, we derived the Kullback-Leibler divergence (KLD) from the skew-normal link
to the probit link and noticed the same feature as mentioned in [23]. This resemblance is
expected since the Fisher information metric is the Hessian of the KLD.

From (2.3), the KLD for small |α| can be found to be

KLD(α) =
∫

f(x|α) log
f(x|α)

f(x|α = 0)
dx

=
π2 + 16− 8π

6π3
α6 − 144π + 3π3 − 38π2 − 168

6π4
α8

+
−42240π − 2560π3 + 16176π2 + 129π4 + 39936

120π5
α10 +O(α12)

≈ c1α
6 + c2α

8 + c3α
10.(2.5)

Interestingly, the behavior of α around α = 0 does not have the usual asymptotics (consis-
tency rate of

√
n) since the leading term is α6. This implies that the estimator of α in the

neighbourhood α ' 0, has a consistency rate n
1
6 but a skewness parameter γ = α3, such that

α = sign(γ) 3
√
|γ|, will have the normal asymptotics in the sense that the estimator of γ will

be
√

n consistent.

Even though γ has the usual asymptotic behaviour, the estimate of it is hard to inter-
perate since it does not relate easily to an interpretable property. We can instead focus on
the more intepretable (standarised) skewness of the skew-normal distribution, γ1, which is a
monotone function of γ

(2.6) γ1 =
(4− π)

(√
2δ2

π

)3

2(1− 2δ2

π )
3
2

,

where δ = α√
1+α2

(and γ = α3). The skewness takes values in the interval −0.99527 < γ1 <

0.99527, which is correct up to five digits.

The question arises if we should formulate a prior for α, γ or the skewness γ1. If priors
are assigned more ad-hoc parameters, this question poses a challenge. The PC prior is in-
variant under reparameterizations [35], implying that this framework will produce equivalent
priors for α, γ and γ1. They are equivalent in the inferential sense, and will produce the same
posterior inference.

3. SKEW-NORMAL MEAN REGRESSION

In this section we focus on skew-normal regression, although these issues also exist in
more general skew-symmetric regression models.

In the preceeding section we mentioned the different parameters that can be used to
capture the skewness in the skewed probit model, and the proposals pertain to the skew-
normal regression model as well.



8 Janet van Niekerk and H̊avard Rue

Most works on skew-normal regression propose a regression model for the location
parameter, ξ, from (1.1). This generalization of Gaussian regression seems straightforward
but when we keep in mind that the location parameter of the Gaussian is equal to the mean,
then we can see that regressing through the location parameter of the skew-normal is not
practical. In the spirit of generalizing Gaussian regression to skew-normal regression, we
should formulate the regression model based on the mean. Hence for yi ∼ SN(ξ, ω, α) from
(1.1),

E[Yi] = ηi,(3.1)

with ηi from (2.2), instead of ξi = ηi. Note that here we do not reformulate the intercept
as in Section 2.2 for skewed probit regression, since the identity link function is used. We
illustrate the proposed skew-normal regression model in Section 6.

4. PENALIZING COMPLEXITY PRIOR FOR THE SKEWNESS PARAM-
ETER

The work of [35] introduced the notion of penalizing complexity priors for parameters
and provided the framework for deriving priors that quantify the contraction from a complex
model to a simpler model. These PC priors are especially helpful and very needed in cases
where priors have traditionally been chosen due to mathematical convenience, or convention
(see [24] for more details on the performance of PC priors). PC priors have been used in
various fields of research, for example [36] derived the PC priors for autoregressive models
while [20] derived PC priors for Gaussian random fields.

In this section we derive the PC prior for α due to the invariance of the PC prior under
reparameterization of the skewness parameter. The derivations of the PC prior for γ and γ1

follows then directly from a change-of-variable exercise.

Using [35] and (2.5), define the uni-directional distance from the skew-normal to the
Gaussian density as,

d(α) =
√

2KLD(α)

≈
√

2(c1α6 + c2α8 + c3α10) .(4.1)

The penalizing complexity prior for the skewness parameter α is then formed by assigning an
exponential prior with parameter θ to the distance. The parameter θ incorporates information
from the user to control the tail behavior and thus the rate of contraction towards the probit
link function. The penalizing complexity prior follows then directly, as

π(α) =
1
2
θ exp [−θd(α)]

∣∣∣∣∂d(α)
∂α

∣∣∣∣
≈ θ

2
√

2(c1α6 + c2α8 + c3α10)

∣∣2(6c1α
5 + 8c2α

7 + 10c3α
9)

∣∣
× exp

[
−θ|α3|

√
2(c1 + c2α2 + c3α4)

]
(4.2)

for small values of |α|. The user-defined parameter θ is used to govern the contraction towards
probit regression, e.g., for small pU > 0,

Prob(d(α) > U) = pU = exp(−θU)
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which gives θ = −log pU/U . There is no explicit expression for the penalizing complexity
prior of α in general, but the prior can be computed numerically. The prior for γ1 is available
in the R-INLA package [32] with prior = "pc.sn" and parameter param = θ. We use the γ1

reparameterization, since γ1 quantifies the skewness as a property with good interpretation.

The PC priors of α and γ1 are illustrated in Figure 1 for θ = 5, on the α and γ1 scales.
In Figure 2 various values for θ are considered to provide an intuition about the effect of θ.
From this Figure it is clear that larger values of θ results in higher contraction rates with
little mass away from 0. The posterior inference of the skewness is not sensitive to the value
of θ for moderate and large samples. In the case of small samples, a very large value of θ will
contract the Bayes estimator towards 0 at a fast rate.

Figure 1: PC prior (4.2) for θ = 5 on the α scale (left) and the γ1 scale (right).

Figure 2: PC prior (4.2) for various θ’s on the α scale (left) and the γ1 scale (right).
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From Figure 1 we can see the shape of the PC prior for α is quite peculiar, but has a
clear interpretation in terms of a prior on the distance. It just shows that if we assign priors
to parameters, like α, instead of to a property, like γ1, it is highly improbable that we could
think of a density function for the parameter that has good translatable properties. Another
interesting note is that from the prior density of α around α = 0, we can see that most priors
of α proposed in literature actually results in underfitting, instead of the usual overfitting,
since they assign too much density to the neighborhood around α = 0. Conversely, the PC
prior of γ1 is as expected with a mode at the value for the probit link.

5. SIMULATION STUDY

In this section we present condensed results from a simulation study with the aim to
show the results proposed in this work for experiments with a large and small number of
trials. The setup is to simulate linear predictors ηi = β0(α, q) + β1xi, where xi ∼ N(0, 0.5) for
i = 1, ..., n. The success probabilities are then pi = F (ηi|α) from (2.1) and subsequently the
response variable yi, wherere yi ∼ Bin(Ni, pi). To investigate the performance of the PC prior
for the skewness, we consider the PC prior as well as a weak Gaussian prior. Throughout
this simulation study, we assume θ = 5 for the PC prior and a weak Gaussian prior with
parameters (0, 102) for the skewness.

5.1. Large number of trials

For an experiment that consists of a large number of trials, we consider four simulation
scenario’s which can be summarized as:

1. q = 1
3 , β1 = 1, γ1 = 0(α = 0), Ni = 200;

2. q = 0.25, β1 = −1, γ1 = 2
3(α = 10), Ni = 200;

3. q = 0.30, β1 = 1, γ1 = 1
3(α = 2), Ni = 200;

4. q = 0.10, β1 = −1, γ1 = −1
3(α = −2), Ni = 200.

In each case we consider the PC prior as well as the Gaussian prior for the skewness γ1, and
weakly informative Gaussian priors for the fixed effects.

5.1.1. Results

The fixed effects were recovered well and here we focus on the skewness γ1. From Table 1
it is clear that the PC prior (and the Gaussian prior) performs as expected since the sample
size and number of trials are large. In Figure 3 the posterior results for the skewness are
summarised with coverage probability and median length of the credible interval. The results
for other scenarios are similar and omitted here. From this (and many other) simulation
studies, we conclude that for a large number of trials the skewed-probit link works well and the
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inference is accurate. It is clear that the PC prior does not contract towards the probit model
when the data presents strong support for the skewed probit model (scenarios 2, 3 and 4).

Table 1: Coverage probability (CP) and median length of the credible interval (MLCI)
for the skewness γ1 under the PC and Gaussian (G) priors, for large Ni.

Scenario
PC prior Gaussian prior

CP MLCI CP MLCI

111 95 0.28 94 0.35

222 96 0.28 97 0.34

333 95 0.31 95 0.34

444 95 0.32 95 0.35

Figure 3: Median of 95% credible intervals for the different scenario’s with the
true skewness (dashed line): Scenario 1, 2 (top left to tight), 3 and 4
(bottom left to right).
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5.2. Small number of trials

Here we focus our attention on samples of size 200 of binary trials, and the scenario’s
we consider are:

1. q = 1
2 , β1 = 1, γ1 = −2

3(α = −10), Ni = 1;

2. q = 1
2 , β1 = 1, γ1 = 0(α = 0), Ni = 1.

We consider the PC prior as well as the Gaussian prior for the skewness parameter, and
weakly informative Gaussian priors for the fixed effects.

5.2.1. Results

From Table 2 it is clear that the skewness is not recovered well for a small number of
trials. In the case of the PC prior, the coverage is poor but the credible intervals are still
relatively narrow. For the Gaussian prior, the coverage is high mainly due to the very wide
credible intervals. For a small number of trials or binary trials, the skewness is hard to capture.

Table 2: Coverage probability (CP) and median length of the credible interval (MLCI)
for the skewness γ1 under the PC and Gaussian (G) priors, for small Ni.

Scenario
PC prior Gaussian prior

CP MLCI CP MLCI

111 65 0.41 90 1.24

222 95 0.33 90 1.45

Figure 4: 95% credible intervals for γ1 with ni = 1 and γ1 = − 2
3 (left) or γ1 = 0 (middle).

Coverage probabilities for γ1 under scenario 1 as Ni increases (right).
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Even though the nominal coverage for the Gaussian prior is still high from Table 2, the median
length of the credible interval implies that the credible intervals span most of the support
of γ1. However, the PC prior contracts to zero with relatively narrow credible intervals and
exhibits poor coverage for γ1 6= 0. It is evident that the skewness is hard to estimate with a
small number of trials. This is not unexpected since in binary data, we only observe a success
or failure for each subject and subsequently the data does not provide sufficient information
about the skewness. We need repetitions in the data to learn more about the skewness.
We can see in Figure 4 that the PC prior contracts to zero if there is not enough evidence for
the skewed link, but the Gaussian prior proposes an arbitrary value for the skewness from
most of the range of γ1 (possibly with the wrong sign as in Figure 4). In this case, using the
skewed-probit link for binary data might not be useful.

5.3. Confounding and the effect of the quantile intercept

In this section we look at the effect of not using the new quantile intercept. We used a
simulated dataset, similar to the preceeding section, with q = 0.4, β1 = 0.1, γ1 = −2

3 . In this
setup the linear predictor is close to zero, for a centered covariate, the confounding between
the classical intercept and the skewness parameter is clear. In Figure 5 the median of the 95%
credible intervals of the skewness (for 500 repetitions) as well as the true value of the skewness
are presented. On the left we have the case of the quantile intercept and on the right, the
classical intercept. By using the classical intercept, as in the case of GLM, the skewness is
not estimated correctly in the sense that the direction is not even recovered. It is clear that
the quantile intercept solves the confounding of the intercept of the linear predictor, with the
skewness of the link.

Figure 5: Median credible intervals for the skewness γ1 using the quantile intercept
vs the classical intercept.
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6. APPLICATIONS

In this section we illustrate the use of skewed probit regression with the PC prior using
two well-known datasets, the beetle mortality data [10] (binomial response with multiple
trails) and the UCI Cleveland heart disease data [18] (Bernoulli response). We also present
the analysis of the Wines data to illustrate the use of this work in the skew-normal likelihood.

6.1. Beetle mortality data

In this well-known dataset from [15] the number of adult flour beetles killed by differing
dosages of poison is modelled based on the centered dosage value. We use the proposed skewed
probit model with the PC prior and the quantile intercept. We also fit a probit model and
compare the fitted values of both with the observed data. These, together with the 95%
credible intervals are presented in Figure 6. We note that the skewed probit model seem
to fit the observed data better than the probit model, and the 95% credible interval for
the skewness of the skewed probit model from Table 3 does not include 0. The marginal
log-likelihood for the skewed probit model is −21.75 versus −23.93 from the probit model.
The difference between the marginal log-likelihoods does not provide a convincing argument
in favor of the skewed probit model, as opposed to the probit model.

Table 3: Posterior estimates for the beetle mortality data.

Effect Estimate 95% credible interval

Quantile of the intercept (q) 0.643 (0.572; 0.703)

Dosage 19.132 (16.074; 22.316)

Skewness (γ1) −0.456 (−0.848;−0.053)

Figure 6: Fitted and observed proportions (– Skewed Probit, - - Probit) with 95% credible intervals.
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6.2. Heart disease data

We will use the Cleveland data obtained by Robert Detrano from the V.A. Medical
Center, Long Beach and Cleveland Clinic Foundation.

The response is a binary observation indicating the occurrence of a > 50% diame-
ter narrowing in an angiography. Various covariates are available in this data and we will
use a subset of these namely, gender (male/female), type of chest pain (1 – typical angina,
2 – atypical angina, 3 – non-anginal pain, 4 – asymptomatic), resting blood pressure, the
slope of the peak exercise ST segment (1 – upsloping, 2 – flat, 3 – down sloping), the number
of colored vessels by fluoroscopy and the results from the thallium heart scan (3 – normal,
6 – fixed defect, 7 – reversable defect). We centered the two continuous covariates, resting heart
rate and the number of colored vessels by fluoroscopy. Further details can be found in [18].

There are 297 subjects with complete information in the dataset of which 137 expe-
rienced the event of > 50% diameter narrowing in an angiography. We fit a skewed-probit
regression model to explain the probability of the event based on the values of the covariates
similar to [25]. In [25] divergent results were obtained based on different estimation frame-
works, namely maximum likelihood estimation, bootstrap bias correction, Jeffrey’s prior,
generalized information matrix prior and Cauchy prior penalized frameworks. The incon-
sistent results could be attributed to the issues we mentioned in this paper, since all these
estimation methods were developed for the skewed-probit regression model without the good
standardization, based on the skewness parameter α and defined using the classical intercept.

Also, there is a lack of information on the skewness in binary data. The consequence
is thus that various values of the skewness could be supported. This case is a prime example
that illustrates the need for the PC prior of the skewness, so that we prefer zero skewness
a priori (probit regression) and use the data to advocate for non-trivial skewness (skewed
probit regression).

Here, we can use the PC prior (4.2) for the skewness and the quantile intercept from
Section 2.2. All quantitative covariates are centered. The results are given in Table 4.

Table 4: Results for the Cleveland heart disease data.

Posterior mean 95% credible interval

Quantile Intercept (q) 0.045 (0.006; 0.184)

Gender (male) 1.025 (0.605; 1.461)

Type of chest pain (2) 0.198 (−0.538; 0.942)

Type of chest pain (3) −0.074 (−0.732; 0.590)

Type of chest pain (4) 1.288 (0.673; 1.920)

Resting heart rate 0.016 (0.005; 0.027)

Slope of the peak exercise (2) 1.027 (0.637; 1.452)

Slope of the peak exercise (3) 0.791 (0.059; 1.540)

Number of colored vessels 0.704 (0.477; 0.945)

Skewness (γ1) 0.02 (−0.214; 0.235)
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From the estimate of γ1 in Table 4 we deduce that the skewness is not supported
by the data and a probit regression model could be sufficient. We did the analysis using
probit regression and the inference is very similar. This result of zero skewness coincides with
the skewness estimates in [25] using the MLE, bootstrap correction, generalized information
matrix and cauchy prior penalization approaches. The posterior densities (and prior densities
in dashed) of the skewness, γ1, and quantile intercept, q, are presented in Figure 7.

Figure 7: Posterior (prior – dashed) density of the skewness γ1 (left) and quantile
intercept q (right) with the corresponding point estimates (vertical line).

We also see that being a male, having asymptomatic chest pain, higher resting heart
rate, a flat or downwards slope of the peak exercise ST segment and more colored vessels by
fluoroscopy, all contribute to a higher probability of the event under investigation, i.e. > 50%
diameter narrowing in an angiography.

The posterior densities (and prior densities in dashed) of the fixed effects are presented
in Figure 8.

We calculated the marginal log-likelihoods for the probit and skewed-probit models to
be−150.62 and−158.41, respectively, indicating that the probit model is preferred by the data.
Both models achieved a correct classification percentage of 84.55%, on a 50% holdout sample.

6.3. Wines data

This section illustrates the new results when the response variable is continuous and
assumed to follow a skew-normal distribution. As mentioned in Section 3, the results derived
in this paper hold for skewed-probit models, as well as skew-normal regression models. We use
the wines dataset from [4], where the acidity of the wine is assumed to follow a skew-normal
distribution as illustrated in Figure 9, where we see the tail behaviour is correctly captured
by the fitted Gaussian density, but not the skewness. The mean acidity (not the location
parameter) is modelled using the type of wine, sugar content and pH level as covariates (after
backwards elimination). We assign PC priors for the precision [35] as well as skewness (4.2).
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Figure 8: Posterior (prior – dashed) densities of the fixed effects with
the corresponding point estimate (vertical line).
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The results are given in Table 5. The marginal log-likelihood for the skew-normal model is
−722.21 and for the Gaussian model it is −724.59.

Table 5: Results for the wines data.

Posterior mean 95% credible interval

Intercept 77.053 (73.824; 80.252)

Wine (Grignolino) 5.088 (0.478; 9.693)

Wine (Barbera) 23.613 (19.003; 28.280)

Sugar 3.118 (1.150; 5.080)

pH −8.350 (−10.122;−6.574)

Skewness (γ1) 0.439 (0.128; 0.702)

Precision for the data 0.008 (0.006; 0.009)

Figure 9: Histogram with model-based Gaussian curve and skew-normal curve.
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7. DISCUSSION

The use of skew-symmetric distributions or links is popular due to the perceived flex-
ibility inherited through the extra parameter that controls the skewness. The skew normal
skewness parameter in particular, poses various challenges in the inference thereof. As we set
out with the initial aim to derive the penalizing complexity prior for the skewness, we real-
ized that there are various other issues that we could not found addressed in the literature.
It is apparent that with the generalizing to skew-symmetric distributions and links from the
symmetric counterparts, various fundamental concepts have gone amiss.

Here we rectify the formulation of the intercept in the linear predictor of all skew-
symmetric links, firstly to ensure that it behaves as an intercept and secondly due to the
confounding with the skewness parameter and fixed effects. We also show that the popular
method of standardizing the skewed link function by inheriting the parameter values of the
symmetric link, fundamentally changes the way the link function maps the data to the linear
predictor, and we provide an anchored standardization approach. We believe that many of the
contradicting works in this area can be attributed to the inappropriate use of the classical
intercept and parameter-based standardization, instead of property-based standardization.
In skew-symmetric regression models, we formulate the regression model based on the mean,
instead of the location parameter.

After the fundamental corrections to the formulation of the skewed-probit link, the
penalizing complexity prior for the skewness was derived. One particular advantage of this
prior is that it is invariant to reparameterizations of the skewness parameter. In light of
this, we implemented the PC prior for the skewness in R-INLA [32] for use by others. We
noted, expectedly, that binary data (or with few trials) does not provide information about
the skewness, and we thus advise against the use of the skewed-probit link for data with a
small number of trials. We advocate the use of the PC prior even more feverently because of
this feature, since the PC prior will contract to the simpler probit link instead of providing
an incorrect unreliable estimate of the skewness. Other inferential frameworks might not be
able to ensure this contraction in the absence of convincing evidence from the data about the
necessary skewness, and could lead to unfounded complicated models.

We hope that the issues raised and addressed here will improve the inference of the
skewed probit model (and more broadly the skew-symmetric links and likelihoods) and pro-
vide insights into the fundamental considerations necessary when distributions or links are
generalized.
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A. APPENDIX

We give here a small example for how to do skew probit regression in R-INLA.
In the code below, the unusual statement is remove.names="(Intercept)" which remove
the intercept in the formula after doing the expansion of factors in the model. We need
this as we replace the traditional intercept with the quantile intercept in the link, and the
expansion of factors depends on the presence or not, of an intercept in the model.

library(INLA)

n = 200

Ntrials = 200

x = rnorm(n, sd = 0.5)

eta = x

skew <- 0.5

prob = inla.link.invsn(eta, skew = skew, intercept = 0.75)

y = rbinom(n, size = Ntrials, prob = prob)

r = inla(y ~ 1 + x,

family = "binomial",

data = data.frame(y, x),

Ntrials = Ntrials,

control.fixed = list(remove.names = "(Intercept)",

prec = 1),

control.family = list(

control.link = list(model = "sn",

hyper = list(

skew = list(param = 10)))))

summary(r)
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1. INTRODUCTION

Let X be a lifetime random variable with distribution function F and survival function
F̄ = 1−F such that E(X) < ∞. The residual life random variable at age t, denoted by Xt =
X − t|X > t, is simply the remaining lifetime beyond that age. The mean residual life (MRL,
also known as the mean remaining life) function is defined formally as µ(t) = E(X− t|X > t).
In industrial reliability studies of repair and replacement strategies, the MRL function may
prove to be more relevant than the failure (hazard) rate function. The former summarizes the
entire residual life distribution, whereas the latter relates only to the risk of immediate failure.
In studies of human populations, demographers often refer the MRL under the names of life
expectancy or expectation of life. Obviously, the MRL is of vital importance to actuarial work
relating to life insurance policies. For a comprehensive literature review about the MRL see
Lai and Xie [21].

Another function which has also generated some interest in the recent years is the
variance residual life function defined as σ2(t) = Var(X − t|X > t), see for example, Launer
[22] and Gupta et al. [14]. An alternative expression for the residual variance in above is
given by

σ2(t) = E[(Xt − µ(t))2] =
1

F̄ (t)

∫ ∞

t
(x− t− µ(t))2dF (x) =

2
F̄ (t)

∫ ∞

t
F̄ (x)µ(x)dx− µ2(t),

where µ(t) is the mean residual life function.

Numerous research works reveal the importance of the VRL function as a reliability
function useful in inference procedures and characterizations, and as a means to classify
lifetime distribution using its mathematical behaviour. σ2(t) appears in the formula for
Var(µ̂n(t)), where µ̂n(t) is an estimator of the MRL function, see Hall and Wellner [15].
It also appears in the expression of weights assigned for censored observations, see Schmee
and Hahn [29]. Launer [22] used σ2(t) to define certain new classes of life distributions and to
provide bounds for the reliability function for certain specified class of distributions. Gupta et

al. [14] shew that the bihaviour of the VRL function is intimately connected to the behaviour
of the mean residual life function of the equilibrium distribution. Lynn and Singpurwalla
[25] viewed the burn-in concept as a process of reduction of uncertainty of the lifetime of a
component. One approach to this is to minimize the VRL. Combining this with maximizing
the MRL leads Block et al. [5] to consider balancing mean and variance residual life through
minimizing the residual coefficient of variation (CV). Characterizations of distributions using
the VRL function can be found in Huang and Su [16] and references therein.

The role and properties of the variance residual life and the residual coefficient of vari-
ation in reliability have been discussed considerably for continuous lifetime random variables
by various authors such as Gupta and Kirmani [11], [12], [13], El-Arishi [8], Al-Zahrani and
Stoyanov [4] and Abu-Youssef [1], [2], [3]. Gupta [9], [10] studied the VRL, its monotonicity
and the associated aging classes of lifetime distributions. Karlin [19] has studied the mono-
tonic behaviour of σ2(t) when the density is log-convex(log-concave). Kanwar and Madhu
[18] gave a test for the VRL. Khorashadizadeh, et al. [20] studied properties of the VRL in
discrete case. Some stochastic orders have also been defined based on the VRL function (cf.
Lai and Xie, [21], p. 61).
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Empirical Likelihood (EL) method was originally introduced by Thomas and Grunk-
kemeier [31] and Owen [26] as a method for constructing nonparametric confidence intervals.
During the past decades, the EL method has developed as a very competitive nonparamet-
ric test procedure for quite general settings, including the test of a parameter defined by∫

g(t)dF (t) with censored survival data (see, e.g., Owen, [27]; Zhao and Qin, [33]; Zhou and
Jeong, [34] and the references therein). Inference based on EL has many attractive prop-
erties: typically, it does not require estimation of any variance, the range of the parameter
space is automatically respected, confidence regions have greater accuracy than those based
on the normal approximation approach, furthermore, it inherits all the good properties of the
likelihood ratio test and can handle more general types of censored data.

Empirical likelihood has been widely utilized in many settings. However, there exist a
lot of computational difficulties when applied to complicated nonlinear functional. To over-
come the computational difficulties, a modified EL method was proposed by Jing et al. [17],
which was called jackknife empirical likelihood (JEL). The main idea of the JEL is to “turn
the statistic of interest into a sample mean based on jackknife pseudo-values” (see Quenouille,
[28]). The goal of this paper is to develop the jackknife empirical likelihood (JEL) method
for interval estimation of the VRL function.

The rest of the paper is organized as follows. A U-statistic based estimator of the VRL,
the asymptotic normality of the estimator and the corresponding confidence interval/band
are given in Section 2. In this Section, we also propose a jackknife empirical likelihood, an
adjusted jackknife empirical likelihood for the VRL function, finding better interval estima-
tors of the VRL function. In Section 3, performance of the jackknife empirical likelihood
ratio confidence intervals is compared with the normal approximation based ones in terms
of coverage probability and average length through a simulation study. Section 4 looks at a
real data example illustrating the methods and finally, some concluding remarks are given in
Section 5.

2. INFERENCE METHODS

In this section we give the normal approximation based interval for the VRL function.
We also develop new interval estimator using jackknife EL methods. In order to overcome
the potential undercoverage problem that the JEL methods may encounter as observed in
Jing et al. [17], we further propose the adjusted jackknife empirical likelihood by adding one
more pseudo-value.

2.1. Normal approximation method

First, note that σ2(t) can be rewritten as

σ2(t) =
1

F̄ 2(t)

[
F̄ (t)

∫ ∞

t
x2dF (x)−

(∫ ∞

t
xdF (x)

)2
]
.
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Then, given a random sample X1, ..., Xn from the population of X with distribution function
F , the VRL function can be estimated as a ratio of two U-statistics

U (1)
n =

1(
n
2

) ∑
1≤i<j≤n

φ
(1)
t (Xi, Xj)

and
U (2)

n =
1(
n
2

) ∑
1≤i<j≤n

φ
(2)
t (Xi, Xj)

with the symmetric kernels φ
(1)
t (X1, X2) = [0.5(X2

1 + X2
2 )−X1X2]I(X1 > t)I(X2 > t) and

φ
(2)
t (X1, X2) = I(X1 > t)I(X2 > t), that is

σ̂2
n(t) =

U
(1)
n

U
(2)
n

,

where I(·) is the indicator function. The following theorem gives the asymptotic distribution
of σ̂2

n(t).

Theorem 2.1. Assume that E(X4) < ∞. Then

√
n(σ̂2

n(t)− σ2(t)) d→ N(0, υ2(t)),

(
d→ represents convergence in distribution). N(0, υ2(t)) represents the normal random vari-

able with mean 0 and variance

υ2(t) = 4
[

µ4(t)
4F̄ 2(t)

+
2µ2

1(t)µ2(t)
F̄ 4(t)

− µ4
1(t)

F̄ 5(t)
− µ1(t)µ3(t)

F̄ 3(t)
− µ2

2(t)
4F̄ 3(t)

]
,

where µi(t) =
∫∞
t xidF (x), i = 1, 2, 3, 4.

Proof: The result immediately follows from Theorem 6.1.6 in Lehmann ([24], p. 376)
and the standard delta method.

It is obvious that υ2(t) can be consistently estimated by its empirical counterpart,

υ̂2
n(t) = 4

[
µ̂4(t)

4F̄ 2
n(t)

+
2µ̂2

1(t)µ̂2(t)
F̄ 4

n(t)
− µ̂4

1(t)
F̄ 5

n(t)
− µ̂1(t)µ̂3(t)

F̄ 3
n(t)

− µ̂2
2(t)

4F̄ 3
n(t)

]
I(X(n) > t),

where Fn(t) = 1
n

∑n
i=1 I(Xi ≤ t) is the empirical distribution function, F̄n = 1− Fn,

µ̂i(t) =
∫ ∞

t
xidFn(x) =

1
n

n∑
j=1

Xi
jI(Xj > t), i = 1, 2, 3, 4,

and X(n) = max{X1, ..., Xn}. Thus, an asymptotic 100(1− α)% confidence interval for σ2(t)
at fixed time t based on the above normal approximation can be given by{

σ2(t) : n(σ̂2
n(t)− σ2(t))2 ≤ υ̂2(t)χ2

1−α(1)
}

,

where χ2
1−α(1) is the 100(1− α)-percentile of the chi-square distribution with one degree of

freedom.
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The following theorem gives the weak convergence of the stochastic process based on
σ̂2

n(t) which can be used to construct a simultaneous confidence band for σ2(t). Let b < ∞
and b ∈ [0, τ ], where τ = inf{t : F (t) = 1} and denote

ρ(s, t) = E
[
(X − s− µ(s))2(X − t− µ(t))2I(X > t)

]
,

ν(s, t) =
∫ ∞

t
(x− s− µ(s))2dF (x).

Theorem 2.2. Suppose that E(X4) < ∞. Then the process
√

n(σ̂2
n(t)− σ2(t)) for

t ∈ [0, b] converges in distribution to a Gaussian process U(t) with mean zero and covariance

function

Γ(s, t) =
1

F̄ (s)F̄ (t)

[
ρ(b, b)− ρ(t, b)− ρ(s, b) + ρ(s, t)− F̄ 4(b)σ4(b)

+ F̄ (s)F̄ (b)σ2(s)σ2(b) + F̄ (t)F̄ (b)σ2(t)σ2(b)− σ2(t)ν(s, t)
]
,

where 0 ≤ s ≤ t ≤ b.

Proof: First note that the estimator σ̂2
n(t) can also be given by

σ̂2
n(t) =

1
nF̄n(t)

n∑
i=1

(Xi − t− µn(t))2I(Xi > t)

=
1

nF̄n(t)

n∑
i=1

(Xi − t− µ(t))2I(Xi > t)− [µn(t)− µ(t)]2,

where µn(t) = 1
F̄n(t)

∫∞
t F̄n(x)dx is the empirical estimator of the mean residual life function.

Then
√

n(σ̂2
n(t)− σ2(t)) =

1
F̄n(t)

{
Vn(t)− σ2(t)

√
n[F̄n(t)− F̄ (t)]

}
−
√

n[µn(t)− µ(t)]2,

where

Vn(t) = n−
1
2

n∑
i=1

[
(Xi − t− µn(t))2I(Xi > t)− σ2(t)F̄ (t)

]
.

Applying the same procedure of proof of Lemma 3 in Yang [32] follows that Vn(t) weakly
converges to a Gaussian process V (t) with E[V (t)] = 0 and

E[V (s)V (t)] = ρ(b, b)− ρ(t, b)− ρ(s, b) + ρ(s, t)− F̄ 4(b)σ4(b)

+ F̄ (s)F̄ (b)σ2(s)σ2(b) + F̄ (t)F̄ (b)σ2(t)σ2(b)− σ2(s)σ2(t)F̄ (s)F̄ (t),

where 0≤ s≤ t≤ b. On the other hand, Theorem 1 in Yang [32] implies that
√

n[µn(t)−µ(t)]2

= op(1), uniformly in t ∈ [0, b]. The result now follows from the fact that
√

n[F̄n(t)− F̄ (t)]
converges to a Brownian bridge and F̄−1

n (t) → F̄−1(t) uniformly in t ∈ [0, b] with probability
one.

Theorem 2.2 can be used to obtain the following confidence band for σ2(t). By the
continuous mapping theorem we have

sup
0≤t≤b

{√
n(σ̂2

n(t)− σ2(t))
}

d→ sup
0≤t≤b

U(t).
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Now, we can define the asymptotic 100(1− α)% simultaneous confidence band for σ2(t) in
t ∈ [0, b] as follows: {

σ2(t) :
√

n(σ̂2
n(t)− σ2(t)) ≤ cα

}
,

where cα is the upper α-percentile of the distribution of sup0≤t≤b U(t).

2.2. Jackknife empirical likelihood method

In this subsection, we construct a confidence interval for the true σ2(t) via jackknife
empirical likelihood (JEL). Let X1, ..., Xn(n ≥ 2) be a random sample from a distribution
function F . We define a one-sample U-statistic of degree 2

Un(σ2(t)) =
1(
n
2

) ∑
1≤i<j≤n

φt(Xi, Xj ;σ2(t)),

with symmetric kernel

φt(X1, X2;σ2(t)) =
[
σ2(t) + X1X2 − 0.5(X2

1 + X2
2 )

]
I(X1 > t)I(X2 > t).

It is easy to check that E[Un(σ2(t))] = 0, for the true σ2(t). To apply the JEL, we define our
jackknife pseudo-values by

V̂i(σ2(t)) = nUn(σ2(t))− (n− 1)U (−i)
n−1 (σ2(t)),

where U
(−i)
n−1 is the U-statistic after deleting the ith observation Xi. It can be easily shown

that E[V̂i] = 0 and

Un(σ2(t)) =
1
n

n∑
i=1

V̂i(σ2(t)).

Then, one can apply the standard EL method to V̂i. Let p = (p1, ..., pn) be the probability
vector over V̂i. The jackknife empirical likelihood ratio at true value σ2(t) is defined by

R(σ2(t)) = max

{
n∏

i=1

npi : pi ≥ 0, i = 1, ..., n,

n∑
i=1

pi = 1,

n∑
i=1

piV̂i(σ2(t)) = 0

}
.

By using the standard Lagrange multiplier method, we know that R(σ2(t)) is maximized
when

pi =
1
n

{
1 + λV̂i(σ2(t))

}−1
, i = 1, ..., n,

where λ = λ(σ2(t)) satisfies
1
n

n∑
i=1

V̂i(σ2(t))
1 + λV̂i(σ2(t))

= 0.

Let g(x) = E[φt(x,X2;σ2(t))] and σ2
g = Var(g(X1)). Now we have Wilks’ theorem for the

JEL as follows.

Theorem 2.3. Assume that E(X4) < ∞ and σ2
g > 0. Then, as n →∞

−2 log R(σ2(t)) d→ χ2
1,

where χ2
1 is a chi-distribution with one degree of freedom.
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Theorem 2.3 is a special case of Theorem 1 in Jing et al. [17] with m = 2. Instead
of the regularity condition E[φ2

t (X1, X2;σ2(t))] required by Theorem 1 in Jing et al. [17],
Theorem 2.3 requires existence of the forth moment because of the specific form of the VRL
function.

Following this, an asymptotic 100(1− α)% confidence interval for σ2(t) at time t can
be given by {

σ̃2(t) : −2 log R(σ̃2(t)) ≤ χ2
1−α(1)

}
,

where χ2
1−α(1) is the is 100(1− α)-percentile of the chi-square distribution with one degree

of freedom.

From practical point of view, the function el.cen.EM2 inside the package emplik,
which is an extension package to be used with the R software, carries out calculating the
above confidence interval.

Remark 2.1. Using the same procedure as the proof of Theorem 2.2 of Zhao and Qin
[33] and following Theorem 2.1 of Jing et al. [17], the above Theorem 2.2 implies that

−2 log R(σ2(t)) d→ W (t)
4σ2

g

,

where W (t) is a Gaussian process with mean zero and covariance function

Cov(W (s),W (t)) = F̄ (s)F̄ (t)Γ(s, t).

Thus, an JEL-based asymptotic 100(1− α)% simultaneous confidence band for σ2(t) in t ∈
[0, b] can be given by {

σ̃2(t) : −2 log R(σ̃2(t)) ≤ kα

}
,

where kα is the upper α-percentile of the distribution of sup0≤t≤b
W (t)
4σ2

g
.

2.3. Adjusted jackknife empirical likelihood method

Chen et al. [7] developed an adjusted empirical likelihood method, which significantly
improves the performance of the empirical likelihood method in terms of coverage probability
when the sample size is not large. We adapt their approach to the JEL for σ2(t) by adding
one more jackknife pseudo-value

V̂n+1(σ2(t)) = −an

n

n∑
i=1

V̂i(σ2(t)),

for constant an = max{1, 1
2 log(n)}. The adjusted jackknife empirical likelihood (AJEL) ratio

of σ2(t) is given by

Rad(σ2(t)) = max

{
n+1∏
i=1

(n + 1)pi : pi ≥ 0, i = 1, ..., n + 1,
n+1∑
i=1

pi = 1,
n+1∑
i=1

piV̂i(σ2(t)) = 0

}
.
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With the same conditions given by Jing et al. [17], Wilk’s theorem of the AJEL has been
established by Chen and Ning [6]. Thus, as a special case, the following theorem holds for
the above AJEL ratio. For the proof, we refer the reader to Chen and Ning [6].

Theorem 2.4. Assume that E(X4) < ∞ and σ2
g > 0. Then, as n →∞

−2 log Rad(σ2(t)) d→ χ2
1.

A 100(1− α)% confidence interval for σ2(t) by the adjusted JEL method can be devel-
oped similarly.

3. SIMULATION STUDY

Simulation exercises were undertaken to assess the performance of the normal approx-
imation (NA) based confidence interval, comparing with the jackknife empirical likelihood
(JEL) and adjusted jackknife empirical likelihood (AJEL) confidence intervals in terms of
the average length and coverage probability. In the simulation, we considered the following
two models for the underling lifetime distribution of X:

(i) X is uniformly distributed on (0, 1),

(ii) X has a Weibull distribution with survival function F̄ (x) = e−
1
2
x2

.

One can readily show that in case (i)

σ2(t) =
1

3(1− t)
(1− 3t + 3t2 − t3)− 1

4
(1− t)2,

and in case (ii)

σ2(t) = 2
[
1− tΦ̄(t)

φ(t)

]
− 2πet2Φ̄2(t),

where φ(t) and Φ̄(t) refer to the standard normal density and survival function, respectively.
In each case, we ran 2000 simulation trials of different sample sizes n = 50, 100 and 150 to
obtain confidence intervals with nominal confidence level of 0.95. We compute the average
length of intervals and coverage probabilities, i.e. the proportion of intervals which cover the
true value σ2(t) for different values of t.

Table 1 – Table 2 summarize the results of the 2000 simulation trials for both models.
From the tables, as the sample size n increases, all methods improve in terms of coverage
probabilities. It is also evident from the tables that, specially in Weibull model, the coverage
probability of the NA confidence interval is not satisfied when the sample size is small and
moderate. However, JEL and AJEL produce slightly better coverage probabilities for the
same sample size. When the sample size is large, NA, JEL and AJEL methods have similar
performance in terms of coverage probability. We can see coverage probability for AJEL is
very close to nominal level 0.95, and AJEL has better performance than JEL for the small
sample size. Though, for large values of t, the coverage probability of all the methods is
slightly far from the nominal level.
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For all the methods, the length of confidence interval becomes shorter when the sample
size becomes larger. When the sample size increases from moderate to large, the length of
confidence interval for all the methods are very close. It seems that, for large values of t,
the length of the NA confidence intervals is slightly shorter than JEL and AJEL confidence
intervals.

Table 1: Empirical coverage probabilities (average length) for σ2(t), uniform model.

n Method t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8

NA
0.930 0.935 0.923 0.906 0.822

(0.041) (0.029) (0.019) (0.010) (0.003)

50 JEL
0.929 0.935 0.924 0.888 0.908

(0.040) (0.029) (0.018) (0.010) (0.068)

AJEL
0.940 0.946 0.937 0.908 0.946

(0.042) (0.030) (0.019) (0.011) (0.089)

NA
0.939 0.936 0.930 0.928 0.900

(0.029) (0.021) (0.013) (0.007) (0.002)

100 JEL
0.935 0.930 0.930 0.922 0.919

(0.028) (0.020) (0.013) (0.007) (0.003)

AJEL
0.941 0.938 0.935 0.931 0.932

(0.029) (0.021) (0.013) (0.007) (0.003)

NA
0.941 0.936 0.944 0.938 0.920

(0.024) (0.017) (0.011) (0.006) (0.002)

150 JEL
0.937 0.932 0.943 0.940 0.947

(0.022) (0.016) (0.011) (0.006) (0.002)

AJEL
0.941 0.937 0.947 0.942 0.950

(0.022) (0.017) (0.011) (0.006) (0.002)

Table 2: Empirical coverage probabilities (average length) for σ2(t), Weibull model.

n Method t = 0 t = 0.25 t = 0.5 t = 1 t = 1.7

NA
0.887 0.878 0.864 0.834 0.679

(0.328) (0.316) (0.300) (0.277) (0.250)

50 JEL
0.909 0.903 0.894 0.862 0.870

(0.304) (0.306) (0.302) (0.296) (0.426)

AJEL
0.924 0.910 0.908 0.873 0.896

(0.315) (0.318) (0.314) (0.310) (0.480)

NA
0.913 0.924 0.908 0.886 0.778

(0.239) (0.236) (0.223) (0.214) (0.207)

100 JEL
0.925 0.929 0.919 0.917 0.834

(0.240) (0.240) (0.167) (0.154) (0.241)

AJEL
0.935 0.935 0.928 0.923 0.845

(0.245) (0.246) (0.170) (0.157) (0.251)

NA
0.927 0.926 0.923 0.909 0.811

(0.200) (0.193) (0.185) (0.179) (0.187)

150 JEL
0.929 0.938 0.929 0.926 0.859

(0.200) (0.144) (0.132) (0.184) (0.201)

AJEL
0.934 0.940 0.934 0.930 0.865

(0.203) (0.146) (0.134) (0.187) (0.205)
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4. REAL DATA ANALYSIS

In this section, we use a real data coming from reliability engineering to illustrate ap-
plications of the NA-based and JEL-based confidence intervals for the VRL function. Since
the variance estimator υ̂2(t) is unstable, the NA-based confidence interval for the VRL con-
tains negative values. In the following computation results, the values outside of the positive
range of the VRL are removed and the negative lower bounds of the confidence intervals are
replaced with zero.

Lawless [23] used the breaking strengths of single carbon fibers of different to fit a
parametric regression model. We use the data set consisting of breaking strengths of 57
single carbon fibers with unit length taken from Lawless [23] to estimate σ2(t). Table 3 gives
the estimated VRL function and corresponding 95% lower bound (LB), upper bound (UB)
and length based on the NA, JEL and AJEL methods at different time points t. We can see
from the table that the lengths of confidence intervals for the NA is longer than one for the
JEL and AJEL methods. Also, there is no big difference among the lengths of the JEL and
AJEL confidence intervals.

Table 3: Estimated variance residual lifetimes, 95% confidence intervals and lengths,
carbon fiber data.

NA JEL AJEL
t VRL

LB UB Length LB UB Length LB UB Length

0.5 0.697 0 2.503 3.612 0.477 0.998 0.521 0.472 1.015 0.543
2.5 0.637 0 2.232 3.189 0.443 0.901 0.458 0.433 0.911 0.477
3.5 0.432 0 1.627 2.389 0.291 0.643 0.352 0.284 0.654 0.370
4.5 0.250 0 1.057 1.615 0.145 0.413 0.268 0.138 0.423 0.285
5.0 0.130 0 0.620 0.979 0.001 1.129 1.128 0.328 1.129 0.801

5. CONCLUSION

In this paper, we have considered an estimator of the VRL function. The estima-
tor was shown to converge in distribution to a normal random variable. Furthermore, a
confidence interval for the VRL function at time t was constructed by using the normal ap-
proximation (NA) method. As alternative methods, we have also considered constructing
confidence interval/band for the VRL function using the jackknife empirical likelihood (JEL)
and adjusted jackknife empirical likelihood (AJEL) approaches. A major advantage of the
EL-based method is no need for nonparametric estimation of any kind of variance for statis-
tical inference. A simulation exercise was undertaken to compare between the performance
of the NA-based and El-based confidence intervals in terms of coverage probabilities and the
average lengths. As shown from the simulation study, the coverage probability for the NA
method is far away from our expectation when the sample size is small. However, the coverage
probability of confidence intervals for JEL and AJEL methods is very close to nominal level.
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The length of confidence interval for all the methods is very close when the sample size in-
creases from moderate to large. Finally, using a numerical example, the application of the
methods for constructing confidence intervals was illustrated.
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36 Fatma Zehra Doğru, Y. Murat Bulut and Olcay Arslan

1. INTRODUCTION

Finite mixture models are used to model heterogeneous data sets thanks to their flexi-
bility. These models are commonly applied in fields such as classification, cluster and latent
class analysis, density estimation, data mining, image analysis, genetics, medicine, pattern
recognition and suchlike; for more detail see [7, 12, 20, 21, 27].

In general, the distribution of mixture model components is assumed to be normal be-
cause of its tractability and wide applicability. In practice, however, the data sets may be
asymmetric and/or heavy-tailed. For instance, there have been a number of studies focus-
ing on multivariate mixture modeling using asymmetric and/or heavy-tailed distributions:
[21] propose finite mixtures of multivariate t distributions as a robust extension of the mul-
tivariate normal mixture model ([20]); [16] introduces multivariate skew normal mixture
models; [24] and [17] examine finite mixtures of restricted and unrestricted variants of the
multivariate skew t distributions of [25]; [8] explore multivariate mixture modeling based on
skew-normal independent distributions; and [18] introduce flexible mixture modeling based
on skew-t-normal distribution.

In multivariate analysis, the multivariate skew normal (MSN) distribution, [5], [14] and
[2], is proposed as an alternative to the multivariate normal (MN) distribution in order to
deal with skewness in the data. However, certain alternative heavy-tailed skew distributions
are required to model skewness and heavy-tailedness because MSN distribution is not heavy-
tailed. One such example of heavy-tailed skew distribution is the multivariate skew t (MST)
distribution, which is defined by [4] and [13]. [3] also proposes another heavy-tailed skew
distribution called the multivariate skew Laplace (MSL) distribution, using a variance-mean
mixture of the normal distribution. One advantage of the MSL distribution is that it has
a smaller number of parameters than the MST distribution and has the same number of
parameters as the MSN distribution. Regarding finite mixtures of the multivariate skew dis-
tributions, finite mixtures of MSN distributions were proposed by [16] to model heterogeneous
data sets as they may not be able to modeled by mixtures of MN distributions due to the
skew feature of data. On the other hand, data sets may not only have a skewness problem,
but may also have a heavy-tailedness problem to be dealt with. For this reason, in this study,
finite mixtures of MSL distributions as an alternative to finite mixtures of MSN distribu-
tions are explored in order to deal with both skewness and heavy-tailedness in heterogeneous
data sets.

The rest of the paper is organized as follows: Section 2 summarizes certain properties
of the MSL distribution; see [3] for further details of the MSL distribution. Section 3 presents
mixtures of MSL distributions and gives the Expectation-Maximization (EM) algorithm to
obtain maximum likelihood (ML) estimators for the parameters of the proposed mixture
model. Section 4 offers the empirical information matrix of MSL distribution to compute
standard errors of proposed estimators. Section 5 provides a small simulation study and
a real data example to illustrate the performance of the proposed mixture model. Finally,
Section 6 is devoted to conclusions.
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2. MULTIVARIATE SKEW LAPLACE DISTRIBUTION

Let Y ∈ Rp be a p-dimensional random vector which has the MSL distribution (Y ∼
MSLp (µ,Σ, γ)) proposed by [3]. The probability density function (pdf) of this distribution
is given below:

fMSL (y;µ,Σ, γ) =
| Σ |−

1
2

2pπ
p−1
2 αΓ

(
p+1
2

)
× exp

{
−α

√
(y − µ)T Σ−1 (y − µ) + (y − µ)T Σ−1γ

}
,(2.1)

where α =
√

1 + γTΣ−1γ, µ ∈ Rp is the location parameter, γ ∈ Rp is the skewness pa-
rameter, Σ is the positive definite scatter matrix and Γ (·) represents the complete gamma
function.

Proposition 2.1. The characteristic function of MSLp (µ,Σ, γ) is

ΦY (t) = eitTµ
[
1 + tTΣt− 2itTγ

]− p+1
2

, t ∈ Rp.

See [3] for proof of this proposition.
If Y ∼ MSLp (µ,Σ, γ) then the expectation and variance of Y are:

E (Y ) = µ + (p + 1) γ,

Var (Y ) = (p + 1)
(
Σ + 2γγT

)
.

The MSL distribution can be obtained as a variance-mean mixture of MN distribution and
inverse gamma (IG) distribution. The variance-mean mixture representation is given as
follows:

(2.2) Y = µ + V −1γ +
√

V −1Σ
1
2 X,

where X ∼ Np (0, Ip) and V ∼ IG
(

p+1
2 , 1

2

)
. Note that if γ = 0, the density function of Y

reduces to the density function of symmetric multivariate Laplace distribution given by [22].
In addition, the conditional distribution of Y given V = v will be:

Y |v ∼ Np

(
µ + v−1γ, v−1Σ

)
.

The joint density function of Y and V is:

f (y, v) =
| Σ |−

1
2 e(y−µ)TΣ−1γ

2pπ
p−1
2 αΓ

(
p+1
2

)
×
{

v−
3
2 e−

1
2{(y−µ)TΣ−1(y−µ)v+(1+γTΣ−1γ)v−1}

}
.

Then, we have the following conditional density function of V given Y :

f (v|y) =
α√
2π

eα
√

(y−µ)TΣ−1(y−µ)

× v−
3
2 e−

1
2{(y−µ)TΣ−1(y−µ)v+α2v−1}, v > 0.(2.3)
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Using the conditional density function given in (2.3), the conditional expectations can be
obtained as follows:

E (V |y) =

√
1 + γTΣ−1γ√

(y − µ)T Σ−1 (y − µ)
,(2.4)

E
(
V −1|y

)
=

1 +
√

(1 + γTΣ−1γ) (y − µ)T Σ−1 (y − µ)

1 + γTΣ−1γ
.(2.5)

Note that these conditional expectations will be used in the EM algorithm given in subsection
3.1; see [3] for further details of the MSL distribution.

3. FINITE MIXTURES OF MSL DISTRIBUTIONS

Let y1,y2, ...,yn be p-dimensional random sample which comes from a g-component
mixtures of MSL distributions. The pdf of a g-component finite mixtures of MSL distributions
is given by:

(3.1) f (y|Θ) =
g∑

i=1

πif (y;µi,Σi,γi) ,

where πi denotes the mixing probability with
∑g

i=1 πi = 1, 0 ≤ πi ≤ 1, f (y;µi,Σi,γi) rep-
resents the pdf of the i-th component (pdf of the MSL distribution) given in (2.1) and
Θ = (π1, ..., πg,µ1, ...,µg,Σ1, ...,Σg,γ1, ...,γg)

T is the unknown parameter vector.

3.1. ML estimation

The ML estimator of Θ can be found by maximizing the following log-likelihood func-
tion:

(3.2) ` (Θ) =
n∑

j=1

log

(
g∑

i=1

πif (yj ;µi,Σi,γi)

)
.

However, there is not an explicit maximizer of (3.2). Therefore, in general, the EM algorithm
([9]) is used to obtain the ML estimator of Θ. Here, we will use the following EM algorithm:

Let Zj = (Z1j , ..., Zgj)
T be the latent variables with

(3.3) Zij =

{
1, if jth observation belongs to ith component,
0, otherwise,

where j = 1, ..., n and i = 1, ..., g. To implement the steps of the EM algorithm, we will use the
stochastic representation of the MSL distribution given in (2.2). If we do so, the hierarchical
representation for the mixtures of MSL distributions will be:

Yj |vj , zij = 1 ∼ N
(
µ + v−1

j γ, v−1
j Σ

)
,

Vj |zij = 1 ∼ IG

(
p + 1

2
,
1
2

)
.(3.4)
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Let (y,v,z) be the complete data, where y =
(
yT

1 , ...,yT
n

)T, v = (v1, ..., vn) and z = (z1, ..., zn)T.
Using the hierarchical representation given above and ignoring the constants, the complete
data log-likelihood function can be written as:

`c (Θ; y,v,z) =
n∑

j=1

g∑
i=1

zij

{
log πi −

1
2

log | Σi | +(yj − µi)
T Σ−1

i γi

− 1
2
vj (yj − µi)

T Σ−1
i (yj − µi)−

1
2
γT

i Σ−1
i γiv

−1
j − 1

2

(
3 log vj + v−1

j

)}
.(3.5)

To overcome the latency of the latent variables given in (3.5), we have to take the conditional
expectation of the complete data log-likelihood function given the observed data yj

E (`c (Θ; y,v,z|yj)) =
n∑

j=1

g∑
i=1

E (Zij |yj)
{

log πi −
1
2

log | Σi | − (yj − µi)
T Σ−1

i γi

− 1
2
E (Vj |yj) (yj − µi)

T Σ−1
i (yj − µi)−

1
2
γT

i Σ−1
i γiE

(
V −1

j |yj

)}
.(3.6)

Since the last part of the complete data log-likelihood function does not include the parame-
ters of interest it is omitted and the conditional expectation of the other terms are taken. The
conditional expectations E (Vj |yj) and E

(
V −1

j |yj

)
can be calculated using the conditional

expectations given in (2.4) and (2.5), and the conditional expectation E (Zij |yj) can be com-
puted using the classical theory of mixture modeling. Next, the steps of the EM algorithm
can be formed as follows:

EM algorithm:

1. Set initial parameter estimate Θ(0) and a stopping rule ∆.

2. E-Step: Compute the following conditional expectations for k = 0, 1, 2, ... iteration

ẑ
(k)
ij = E

(
Zij |yj , Θ̂(k)

)
=

π̂
(k)
i f

(
yj ; µ̂

(k)
i , Σ̂(k)

i , γ̂
(k)
i

)
f
(
yj ; Θ̂(k)

) ,(3.7)

v̂
(k)
1ij = E

(
Vj |yj , Θ̂(k)

)
=

√
1 + γ̂

(k)T

i Σ̂(k)−1

i γ̂
(k)
i√(

yj − µ̂
(k)
i

)T
Σ̂(k)−1

i

(
yj − µ̂

(k)
i

) ,(3.8)

v̂
(k)
2ij = E

(
V −1

j |yj , Θ̂(k)
)

=
1 +

√(
1 + γ̂

(k)T

i Σ̂(k)−1

i γ̂
(k)
i

)(
yj − µ̂

(k)
i

)T
Σ̂(k)−1

i

(
yj − µ̂

(k)
i

)
1 + γ̂

(k)T

i Σ̂(k)−1

i γ̂
(k)
i

.(3.9)

Using these conditional expectations, we form the following objective function:

Q
(
Θ; Θ̂(k)

)
=

n∑
j=1

g∑
i=1

ẑ
(k)
ij

{
log πi −

1
2

log | Σi | − (yj − µi)
T Σ−1

i γi

− 1
2
v̂

(k)
1ij (yj − µi)

T Σ−1
i (yj − µi)−

1
2
v̂

(k)
2ijγ

T
i Σ−1

i γi

}
.(3.10)
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3. M-Step: Maximize the Q
(
Θ; Θ̂(k)

)
with respect to Θ to get the (k+1)-th parame-

ter estimates for the parameters. This maximization yields the following updating equations:

π̂
(k+1)
i =

∑n
j=1 ẑ

(k)
ij

n
,(3.11)

µ̂
(k+1)
i =

∑n
j=1 ẑ

(k)
ij v̂

(k)
1ijyj −

∑n
j=1 ẑ

(k)
ij γ̂

(k)
i∑n

j=1 ẑ
(k)
ij v̂

(k)
1ij

,(3.12)

γ̂
(k+1)
i =

(∑n
j=1 ẑ

(k)
ij v̂

(k)
1ij

)(∑n
j=1 ẑ

(k)
ij yj

)
−
(∑n

j=1 ẑ
(k)
ij

)(∑n
j=1 ẑ

(k)
ij v̂

(k)
1ijyj

)
(∑n

j=1 ẑ
(k)
ij v̂

(k)
1ij

)(∑n
j=1 ẑ

(k)
ij v̂

(k)
2ij

)
−
(∑n

j=1 ẑ
(k)
ij

)2 ,(3.13)

Σ̂(k+1)
i =

∑n
j=1 ẑ

(k)
ij v̂

(k)
1ij

(
yj − µ̂

(k)
i

)(
yj − µ̂

(k)
i

)T
− γ̂

(k)
i γ̂

(k)T

i

∑n
j=1 ẑ

(k)
ij v̂

(k)
2ij∑n

j=1 ẑ
(k)
ij

.(3.14)

4. Repeat E and M steps until the convergence rule || Θ̂(k+1) − Θ̂(k) ||< ∆ is obtained.
Alternatively, the absolute difference of the actual log-likelihood

∥∥`(Θ̂(k+1)
)
− `
(
Θ̂(k)

)∥∥ < ∆
or
∥∥`(Θ̂(k+1)

)/
`
(
Θ̂(k)

)
− 1
∥∥ < ∆ can be used as a stopping rule ([10]).

3.2. Initial values

In order to determine the initial values for the EM algorithm, the following procedure
given by [16] will be used:

i) Perform the K-means clustering algorithm ([15]).

ii) Initialize the component labels ẑ
(0)
j = {zij}g

i=1 according to the K-means clustering
results.

iii) The initial values of mixing probabilities, component locations and component
scale variances can be set as:

π̂
(0)
i =

∑n
j=1 ẑ

(0)
ij

n
,

µ̂
(0)
i =

∑n
j=1 ẑ

(0)
ij yj∑n

j=1 ẑ
(0)
ij

,

Σ̂(0)
i =

∑n
j=1 ẑ

(0)
ij

(
yj − µ̂

(0)
i

)(
yj − µ̂

(0)
i

)T
∑n

j=1 ẑ
(0)
ij

.

iv) For the skewness parameters, use the skewness coefficient vector of each cluster.

4. THE EMPIRICAL INFORMATION MATRIX

We will compute the standard errors of ML estimators using the information based
method given by [6]. At this point, we will use the inverse of the empirical information matrix
in order to have an approximation to the asymptotic covariance matrix of the estimators.



Finite Mixtures of Multivariate Skew Laplace Distributions 41

This information matrix can be obtained as:

(4.1) Îe =
n∑

j=1

ŝj ŝ
T
j ,

where ŝj = E
bΘ

(
∂`cj(Θ;yj ,vj ,zj)

∂Θ |yj

)
, j =1,2, ...,n are the individual scores and `cj (Θ; yj ,vj ,zj)

is the complete data log-likelihood function for the j-th observation. The components of
the score vector ŝj are

(
ŝj,π1 , ..., ŝj,πg−1 , ŝj,µ1 , ..., ŝj,µg , ŝj,σ1 , ..., ŝj,σg , ŝj,γ1 , ..., ŝj,γg

)
. After

straightforward algebra, we obtain these components as follows:

ŝj,πr =
ẑrj

π̂r
− ẑgj

π̂g
, r = 1, ..., g − 1,(4.2)

ŝj,µi = ẑijΣ̂−1
i (v̂1ij (yj − µ̂i)− γ̂i) ,(4.3)

ŝj,σi = vech
(
ẑij

{
−
(
Σ̂−1

i − v̂1ijΣ̂−1
i (yj − µ̂i) (yj − µ̂i)

T Σ̂−1
i − v̂2ijΣ̂−1

i γ̂iγ̂
T
i Σ̂−1

i

)
+

1
2

diag
(
Σ̂−1

i − v̂1ijΣ̂−1
i (yj − µi) (yj − µi)

T Σ̂−1
i − v̂2ijΣ̂−1

i γ̂iγ̂
T
i

)})
,(4.4)

sj,γi = ẑijΣ̂−1
i ((yj − µi)− v̂2ijγi) .(4.5)

Therefore, using these equations we can form the information matrix Ie given in (4.1). After
this, the standard errors of the ML estimators Θ̂ will be found using the square root of the
matrix Î−1

e .

5. APPLICATIONS

This section will illustrate the performance of the proposed mixture model based on a
small simulation study and a real data example. All computations for the simulation study
and real data example are conducted using an MATLAB R2013a. For all computations, the
stopping rule ∆ is taken as 10−6. The codes are available upon request.

5.1. Simulation study

In the simulation study, the data set is generated from the following two-component
mixtures of MSL distributions:

f (yi|Θ) = π1fp (yj ;µ1,Σ1,γ1) + (1− π1) fp (yj ;µ2,Σ2,γ2) ,

where

µi = (µi1, µi2)
T , Σi =

[
σi,11 σi,12

σi,21 σi,22

]
, γi = (γi1, γi2)

T , i = 1, 2,

with the parameter values

µ1 = (2, 2)T , µ2 = (−2,−2)T , Σ1 = Σ2 =
[
1.5 0
0 1.5

]
,

γ1 = (1, 1)T , γ2 = (−1,−1)T , π1 = 0.6.
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The sample sizes are set as 500, 1000 and 2000 and the number of replicates (N) is
taken as 500. The table contains the bias, standard errors (SEs) and the mean Euclidean
distance values of the estimates. The formula of bias is given below:

b̂ias
(
θ̂
)

= θ̄ − θ,

where θ is the true parameter value, θ̄ = 1
N

∑N
j=1 θ̂j and θ̂j is the estimate of θ for the j-th

simulated data. The mean Euclidean distances of the estimators are computed using the
average of the Euclidian norm between the estimates and the true parameter values. For
instance, for the mean Euclidean distance of µ̂i will be as follows:

|| µ̂i − µi ||=
1
N

 N∑
j=1

(µ̂ij − µij)
2

 1
2

.

The other mean Euclidean distances of other estimates are also obtained in a similar way.
The distance for π̂i, on the other hand, will be the mean squared error (MSE). The formula
of MSE is given as:

M̂SE (π̂) =
1
N

N∑
j=1

(π̂j − π)2 ,

where π is the true parameter value, π̂j is the estimate of π for the j-th simulated data and
π̄ = 1

N

∑N
j=1 π̂j . We calculate the SEs of estimates using the empirical information matrix of

the finite mixture model based on the MSL distribution given in Section 4.

Table 1: Bias, SEs and mean Euclidean distance values of the estimates for n = 500, 1000 and 2000.

Component1 Component2
n Parameter

True Bias SE Distance True Bias SE Distance

500

π1 0.6 0.001489 0.122734 0.000533

µi1 2 −0.001200 0.174686
0.201026

−2 −0.014079 0.210878
0.273981

µi2 2 0.010775 0.176092 −2 0.031688 0.208902

σi,11 1.5 −0.018232 0.182958 1.5 −0.005309 0.232425
σi,12 0 0.002903 0.156863 0.198493 0 −0.006157 0.170339 0.254685
σi,22 1.5 −0.004315 0.188067 1.5 −0.033095 0.224071

γi1 1 −0.001810 0.256792
0.106922

−1 −0.000255 0.291138
0.139768

γi2 1 −0.005965 0.255197 −1 −0.016220 0.290819

1000

π1 0.6 0.001075 0.082913 0.000236

µi1 2 −0.007428 0.122541
0.147008

−2 −0.001296 0.146090
0.180637

µi2 2 −0.006677 0.122956 −2 −0.003134 0.146122

σi,11 1.5 −0.011271 0.127618 1.5 −0.002545 0.155037
σi,12 0 −0.008758 0.106796 0.136552 0 −0.000529 0.116473 0.169090
σi,22 1.5 −0.000720 0.128693 1.5 −0.009886 0.155416

γi1 1 0.005704 0.174375
0.078061

−1 −0.001849 0.194632
0.093384

γi2 1 0.006670 0.174589 −1 −0.002547 0.192690

2000

π1 0.6 0.000593 0.057421 0.000119

µi1 2 −0.002704 0.086564
0.103007

−2 0.004608 0.102633
0.126149

µi2 2 0.000165 0.086560 −2 −0.003348 0.103218

σi,11 1.5 −0.006294 0.088880 1.5 −0.008891 0.106630
σi,12 0 −0.003700 0.074673 0.098289 0 −0.000537 0.080978 0.116648
σi,22 1.5 0.001142 0.089714 1.5 0.000997 0.108406

γi1 1 0.002448 0.121117
0.056854

−1 −0.003021 0.133069
0.067364

γi2 1 0.001445 0.120912 −1 0.000548 0.133948
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Table 1 shows the simulation results for the sample sizes 500, 1000 and 2000. We give
the bias, SEs and mean Euclidean distance values of estimates and true parameter values.
It can be seen from the table that the proposed model works accurately to obtain the estimates
for all the parameters. Furthermore, the mean Euclidian distances get smaller when the
sample sizes increase. We observe similar results for the SEs of the estimates. These values
decrease as the sample sizes increase. All these findings confirm that the proposed finite
mixture model will be an alternative finite mixture model for modelling heterogeneous data
with skew and heavy-tail components.

5.2. Real data example

This real data example will investigate the bank data set, which was given in Tables
1.1 and 1.2 by [11] and examined by [19], to model through a skew-symmetric distribution.
Concerning this data set, there are six measurements made on 100 genuine and 100 counterfeit
old Swiss 1000 franc bills. This data set was also analyzed by [16] to model mixtures of MSN
distributions. He used the variables X1, the width of the right edge, and X2, the length of the
image diagonal, that reveal a bimodal distribution with asymmetric components. Following
this, the current study uses Swiss bank data to illustrate the applicability of the finite mixtures
of multivariate skew Laplace distributions (FM-MSL) and compares the results with the
finite mixtures of multivariate skew normal distributions (FM-MSN). The estimation results
are displayed in Table 2 for FM-MSN and FM-MSL. The table contains the ML estimates,
standard errors of the estimates for all components, the log-likelihood, the values of the
Akaike information criterion (AIC) ([1]) and the Bayesian information criterion (BIC) ([26]).

Table 2: ML estimation results of the Swiss bank data set for FM-MSN and FM-MSL.

FM-MSN FM-MSL

1 2 1 2

Estimate SE Estimate SE Estimate SE Estimate SE

π1 0.504 0.036 — — 0.521 0.163 — —

µi1 130.38 0.122 129.32 0.062 130.20 0.118 129.65 0.076
µi2 140.06 0.064 141.39 1.125 139.50 0.152 141.76 0.201

σi,11 0.068 0.023 0.037 0.016 0.067 0.054 0.104 0.030
σi,12 0.051 0.015 −0.012 0.015 0.001 0.037 −0.023 0.043
σi,22 0.056 0.027 0.154 0.032 0.371 0.100 0.194 0.218

γi1 −0.230 0.043 0.494 0.077 −0.017 0.108 0.034 0.060
γi2 −0.800 0.067 0.177 1.433 0.054 0.154 −0.148 0.198

`
� bΘ�

−310.07 −152.30
AIC 650.14 334.60
BIC 699.61 384.08

Additionally, we give results and criterion values for FM-MSN which was computed by [16].
According to information criterion values, the FM-MSL has better fit than the FM-MSN.
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Figure 1 displays a scatter plot of the data together with contour plots of the fitted two-
component FM-MSL model. From this plot, it can be seen that the proposed mixture model
of MSL distributions captures bimodality and asymmetry and provides a satisfactory fit to
the data.

128.5 129 129.5 130 130.5 131 131.5
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1

137

138

139

140
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143
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Figure 1: Scatter plot of the Swiss bank data set along with the contour plots
of the fitted two-component FM-MSL model.

6. CONCLUSION

In this paper, we have proposed mixtures of MSL distributions and given the EM
algorithm to obtain the estimates. A small simulation study has been provided to demonstrate
the performance of the proposed mixture model. This shows that the proposed mixture
model has accurately estimated the parameters. A real data example has also been offered
to compare the mixtures of the MSL distributions with the mixtures of MSN distributions.
This comparison proves that the proposed model has the best fit according to the information
criterion values. This means that the proposed model can be used as an alternative mixture
model to the mixtures of MSN distributions.
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1. INTRODUCTION

Let us consider the following semiparametric regression model:

(1.1) yi = xiβ + f(ti) + εi, 1 ≤ i ≤ n,

where the yi’s are observations, the xi = (xi1, ..., xip) are known p-vectors with p < n and ti’s
have bounded support, say the unit interval and have been reordered so that ti ≤ t2 ≤ ··· ≤ tn.
β = (β1, β2, ..., βp)T is an unknown p-dimensional vector of parameters, f(·) is unknown func-
tion and εi’s are the random error terms assumed to be uncorrelated with mean zero and
variance σ2. Note that f symbolizes the smooth part of the model and assume that it shows
the unparameterized functional relationship.

The model (1.1) is also called as a partially linear model, due to the connection with
the classical linear model (see [8]). In matrix-vector form, the model (1.1) can be written as

(1.2) y = Xβ + f + ε,

where y = (y1, ..., yn)T, X = (x1, ..., xn)T, f = (f(t1), f(t2), ..., f(tn))T and ε = (ε1, ..., εn)T.
The key idea is to estimate the unknown parameter vector β, the nonparametric function f(t)
and the mean vector µ = Xβ+ f based on the data yi,xi, ti. Note that semiparametric models
have received a considerable attention in the past two decades. One of the most important
reasons for this is that these models are more flexible than the standard linear model because
they combine both parametric and nonparametric components. In this context, a number of
authors have studied the model (1.1), including Green and Silverman [12], Speckman [30],
Eubank et al. [9], Schimek [28], Liang [21], Aydin et al. [3], Ahmed [1] and among others.

In many regression problems, there is a perfect or exact relationship between the
columns of X. In this case, multicollinearity is a serious problem which can dramatically in-
fluence the effectiveness of a regression model. The multicollinearity results in large variances
and covariances of the parameter estimates and may lead to lack of statistical significance of
individual parameters even though the overall model may be significant. For the purposes of
the paper, we will employ the kernel type ridge regression procedure that is designed to deal
with multicollinearity in semiparametric regression.

Concerning the collinear data, Gibbons [11] introduced a simulation study of ridge
estimators for parametric linear models. Kibria [18] proposed some new estimators based
on generalized ridge regression approach and considered some methods to estimate ridge
parameter. For the linear regression models Muniz and Kibria [23] reviewed and proposed
some estimators based on Kibria [18]. Key references for semiparametric regression based on
kernel smoothing are Robinson [26] and Speckman [30]. It should be noted that Robinson
[26] introduced an estimator for parametric part of a semiparametric model when nonpara-
metric component is stochastic and of arbitrary dimension. Speckman [30] discussed two
estimation method, one related to partial smoothing spline and the other modified by par-
tial residual, in estimating the components of a semiparametric model and examined the
asymptotic behaviours for both methods. Chen [6] studied the parametric component of
the partial linear model. Foucart [10] used the ridge estimators on partial linear models
for combat multicollinearity. Ridge estimation of a semiparametric regression model and a
comparison of this ridge estimation with two steps estimation are introduced by Hu [15].
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Roozbeh et al. [27], Yuzbasi and Ahmed [36] and Yuzbasi et al. [37] proposed a semipara-
metric ridge regression estimator for partially linear models. More recently, semiparametric
regression models based on different selection methods were studied and compared by Aydin
[2]. Lastly, the pretest and shrinkage ridge regression estimators based on smoothing spline
approach for partially linear models was studied by Yuzbasi [35] and modified estimators
in semiparametric regression models based on right censored data is studied by Aydin and
Yilmaz [4].

The main difference of our study is that we consider various kernel type ridge estimators
to estimate the components of a semiparametric regression model with collinear data. The
most important issue in this problem is to determine an amount of smoothing. In order
to specify an optimum smoothing parameter we use six different selection criteria under
simulated and real data settings. The basic idea is to find a useful selection criteria that
provides a good estimation of the model (1.1) based on multicollinear data. Due to smoothing
parameter selection criteria, we provide a comparison of the different ridge type estimators.
To the best of our knowledge, the studies in the literature often address the problem of
comparing different ridge type estimators and the selection of ridge parameter, but such a
study that includes kernel type ridge estimators based on different selection criteria has not
yet been conducted. This paper is organized as follows. Estimation based on kernel smoothing
is examined in Section 2. In Section 3, the kernel type ridge estimators in semiparametric
models are discussed. Statistical properties of the ridge type estimators are examined in
Section 4. Section 5 reviews six different smoothing parameter selection methods. Section 6
compares these methods via a real example. In Section 7, a simulation study is given. Finally,
concluding remarks are presented in Section 8. Supplemental technical materials are relegated
to the Appendix.

2. ESTIMATION BASED ON KERNEL SMOOTHING

First we consider the nonparametric estimation of the unknown regression function f(t)
in (1.1). For convenience, we assume that β in equation (1.1) is known. In this case, the
relationship between yi −Xiβ and ti can be denoted by

(2.1) (yi −Xiβ) = f(ti) + εi, i = 1, ..., n.

Equation (2.1) can be considered as equivalent to the nonparametric part of a semiparametric
model. As expressed in the study of Speckman [30], this leads to the Nadaraya-Watson
estimator proposed by Nadaraya [24] and Watson [34], and this is also referred to as the
kernel estimator:

(2.2) f̂λ(t) =
n∑

i=1

wiλ(ti)(yi −Xiβ) = Wλ(y −Xβ),

where λ is a smoothing parameter (or bandwidth) and Wλ is a kernel smoother matrix with
j-th entries wiλ, given by

(2.3) wiλ(ti) = K

(
t− ti

λ

)/ n∑
i=1

K

(
t− ti

λ

)
= K(ui)/

∑
i

K(ui).
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As shown in (2.1), kernel smoothing (or regression) uses the appropriate weights wiλ(t)
to estimate f(t). The weights given to the observations ti are directed by the kernel function
K(u) with a smoothing parameter λ, which controls the size of the neighborhood around t

[31]. Note that K(u) in (2.3) is a kernel or weight function such that
∫

K(u)du = 1, and
K(u) = K(−u). The kernel function is selected to give most weight to observations close to
and least weight to observations far from t.

Using the matrix and vector form of the model (1.2), we can obtain the following partial
residuals in matrix form:

(2.4) ε = y−Xβ − f̂ = (I−Wλ)(y−Xβ) = ỹ− X̃β,

where X̃ = (I−Wλ)X and ỹ = (I−Wλ)y. Thus, we obtain a transformed set of data based
on kernel residuals. Considering these partial residuals for the vector β yields the following
weighted least squares (WLS) criterion:

(2.5) WLS(β;λ) = ((I−Wλ)(y−Xβ))T ((I−Wλ)(y−Xβ)) =
(
ỹ− X̃β

)′ (
ỹ− X̃β

)
.

In analogy with ordinary least squares, the solution to the criterion WLS(β;λ) given in
equation (2.5) is easily seen to be

(2.6) β̂p =
(
X̃
′
X̃
)−1

X̃
′
ỹ.

Moreover, according to the equation (2.3) updating the steps for f(t) simplifies to

(2.7) f̂λ(t) =
n∑

i=1

K

(
t− ti

λ

) / n∑
i=1

K

(
t− ti

λ

)(
yi −Xiβ̂p

)
.

Equation (2.7) can also be written in a matrix form as

(2.8) f̂p = Wλ

(
y−Xβ̂p

)
.

Our estimate of µp is then

µp = Xβ̂p + f̂p = X
(
X̃
′
X̃
−1

X̃
′
ỹ + Wλ(y−Xβ̂p)

)
for

(2.9) Hp = Wλ + X̃
(
X̃
′
X̃
)−1

X̃
′
(I−Wλ) .

Equations (2.6) and (2.8) are hierarchical in the sense that the adjustment is made for t.
Adjusting for X first would produce a different estimator. One advantage of β̂p is that, there
is no iteration in calculation of β̂p even if a non-linear smoother is used. As a result the
approach requires only a standard regression routine if a computation of the X̃ and ỹ has
been done with smoother matrix Wλ.

3. KERNEL TYPE RIDGE ESTIMATORS IN SEMIPARAMETRIC
MODELS

Ridge regression has been proposed by Hoerl and Kennard [13], [14] as a solution
to the multicollinearity problem. It is well known that a ridge estimator provides a slight
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improvement on the estimations of partial regression coefficients when the column vectors of
the matrix X in a linear model y = Xβ + ε are highly correlated. Generally, the linear model
can be written in centered and scaled form. For notational convenience, we do not consider
an explicitly centered and scaled model here.Then, the ridge estimate of β for some k > 0
can be written as

(3.1) β̂r(k) =
(
X′X + kI

)−1 X′y,

where I is p× p identity matrix and k is the shrinkage parameter, whose value is specified by
the researcher. When k = 0 the ridge estimate corresponds to the least squares estimate. To
fit the model (1.1) to data, we can use ridge regression that shrinks the regression coefficients
by imposing a penalty on their size. This procedure can be related to the idea of hints due
to Speckman [30], where the parameter vector β is obtained by minimizing the penalized
residual sum of squares criterion

(3.2) PRSS(β;λ) =
n∑

i=1

(
ỹi − X̃iβ

)2
+ k

n∑
j=1

β2
j =

n∑
i=1

(
ỹi − X̃iβ

)2
+

n∑
j=1

(0− kβj)
2 ,

where k ≥ 0 is the shrinkage parameter that controls the magnitude of the penalty term. The
basic idea is to recast the linear regression problem as a linear smoother problem for another
data set. This means that if artificial data having response value zero are introduced, then a
fitting procedure can be forced to shrink the coefficients toward zero.

In matrix and vector form, equation (3.2) can be rewritten as

(3.3) PRSS (β;λ) =
(
ỹ− X̃β

)′ (
ỹ− X̃β

)
+ k‖0− β‖2.

The main objective is to find parameter vector β such that equation (3.3) is as small
as possible. The following theorem gives the estimates.

Theorem 3.1. Let ỹ = X̃β+ ε̃ where ε̃ = f̃+ε∗, f̃ = (I−Wλ) f and ε∗ = (I−Wλ) ε.

Also, X̃ is a n× p matrix and ỹ is a n× 1 vector, as defined in (2.8), respectively. If Wλ

is an arbitrary smoother matrix then the ridge regression estimates may be computed by

augmenting data

XA =
[

X̃√
kIp

]
and ỹA =

[
ỹ
0

]
.

The kernel type ridge estimator for β is indicated by β̂R(k) and given by

(3.4) β̂(k) =
(
X̃

′
X̃ + kIp

)−1
X̃

′
ỹ.

Proof of the Theorem 3.1 is given in Appendix A.1.

As in discussion Theorem 3.1, β̂R(k) is the ridge type estimator of the vector β in the
model (1.2). When k = 0, the ridge estimate reduces to a Speckman estimate problem in the
equation (2.8). Also, it is seen that there is a formal similarity between the equation (3.3)
and ridge estimator of the linear regression model. Combining equations (3.3) and (3.4) we
obtain the estimator of f as

(3.5) f̂R(k) = Wλ

(
y−Xβ̂R(k)

)
.

Thus the estimator (3.5) is defined as the kernel type ridge estimator for the unknown function
f in the model (1.2).
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4. FURTHER PROPERTIES OF THE ESTIMATORS

It is easily seen that equation (3.4) is identical to

(4.1) β̂R(k) =
(
X̃
′
X̃ + kIp

)−1
X̃
′
X̃βp =

[
Ip + k

(
X̃
′
X̃
)−1

]−1

β̂p,

where β̂p is the Speckman estimate, as defined in (2.8). Using the fact (AB)−1 = B−1A−1,
the equation (3.4) also becomes

(4.2) β̂R(k) =
[
Ip + k

(
X̃
′
X̃
)−1

]−1

β̂p =
(
X̃
′
X̃
′
+ kIp

)−1
X̃
′
ỹ.

It appears from (4.2) that the ridge type estimator is clearly biased, since[
Ip + k

(
X̃
′
X̃
)−1

]−1

6= Ip.

Hoerl and Kennard [13], [14] used this interpretation as a basis for the definition of
the β̂R(k) with k ≥ 0, the shrinkage parameter that controls the size of coefficients. Also,
equation (4.2) can be viewed as the Speckman estimator for k = 0.

Using the abbreviation

(4.3) Gk =
(
X̃
′
X̃ + kIp

)−1
.

Moments of the kernel type ridge estimator can be obtained as follows:

(4.4) E
(
β̂R(k)

)
= Gk

(
X̃
′
X̃β + X̃

′
f̃
)

= β − kGkβ + GkX̃f,

(4.5) Bias
(
β̂R(k)

)
= GkX̃

′
f̃− kGkβ,

(4.6) Var
(
β̂R(k)

)
= σ2GkX̃

′
(I−Wλ) .

The implementation details of Equations (4.4)–(4.6) are given in Appendix A.2.
It should be noted that in practice β and σ2 stated in equations above are replaced by
their estimated values.

4.1. Estimating the error variance

The error variance σ2 is usually unknown. In practice, σ2 needs to be estimated. In
a general semiparametric regression model, the estimate of variance σ2 can be found by the
residual sum of squares

RSS =
(
y− ŷ′

)′ (y− ŷ′
)

where {ŷ = Xβ̂R(k) + f̂R(k)}

=
(
y−

(
Xβ̂R(k) + f̂R(k)

))′ (
y−

(
Xβ̂R(k) + f̂R(k)

))
.
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Substituting ŷ =
(
Xβ̂R(k) + f̂R(k)

)
= Hλy, we obtain

(4.7) RSS = (y−Hλy)′ (y−Hλy) =‖ (I−Hλ)y ‖2
2,

where Hλ is called the smoother matrix which depends on λ > 0. Note that the matrix Hλ

is used to estimate the fitted values of the model in (1.2) and is expressed as

(4.8) Hλ = Wλ + (Ip −Wλ) X̃GkX̃
′
.

Furthermore, the expected value of RSS is

E(RSS) = σ2
[
n− tr(2Hλ −H2

λ)
]
+ E(y′)(I−Hλ)′(I−Hλ)E(y),

where the first term measures the variance, while the second term measures bias, respectively.
Detailed implementations of the equation (4.7) and E(RSS) are given in Appendix A.3.

Hence, similar to ordinary least squares regression,estimation of the error variance can
be defined by

(4.9) σ̂2 =
RSS

tr (I−Hλ)2
=
‖ (I−Hλ)y ‖2

2

n− p
,

where tr (I−Hλ)2 = n− tr
(
2Hλ −H′

λHλ

)
= n− p is the residual degrees of freedom. From

equation (4.9) see that the degrees of freedom for RSS is also known as the number of total
observations minus total number of the parameters in the model.

To show that σ̂2 is biased or unbiased for σ2, E(σ̂2) is found as

E(σ̂2) =
1

n− p
E
(
‖ (I−Hλ)y ‖2

2

)
=

1
n− p

E(RSS).

The expected value of E(RSS) implies that the estimator of σ2 in equation (4.9) has
a positive bias. However, it should be noted that the (4.9) yields asymptotically negligible
bias. Considering this point of view, it is noteworthy that σ̂2 is equivalent to mean square
error (MSE) which is a widely used criterion for measuring the quality of estimation (see
Speckman [30]).

4.2. Measuring the risk and performance efficiency

This section investigates the superiority of a biased estimator β̂R1(k) with respect to any
other biased estimator β̂R2(k). It is well known that ridge type estimators are biased and need
to measure the loss of information. Generally, the expected loss of a vector β̂R(k) estimator
is measured by risk (i.e., the bias-variance decomposition). Our task is now to approximate
the risk in the models in (1.1) or (1.2). Such approximations have the advantage of being
simpler to optimize the practical selection of smoothing parameters. For convenience, we will
work with the scalar valued mean dispersion error.
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Definition 4.1. The risk is closely related to the matrix valued mean dispersion error
(MDE) of an estimator β̂R(k) of β. The scalar valued version of the MDE matrix is specified
as

SMDE
(
β̂R(k),β

)
= E

(
β̂R(k)− β

)′ (
β̂R(k)− β

)
= tr

(
MDE

(
β̂R(k)− β

))
.

Lemma 4.1. Consider different estimators β̂jR(k) of βj .The mean dispersion error

(MDE) of these estimators is the sum of the covariance matrix and the squared bias:

E
(
‖ β̂R(k)− β ‖2

)
=

k∑
j=1

E
(
β̂jR(k)− βj

)2
= tr

[
Var

(
β̂R(k)

)]
+
[
Bias

(
β̂R(k)

)]2
.

Note that Var
(
β̂R(k)

)
is the covariance matrix of β̂R(k) and its trace can be illustrated as

tr
(∑p

j=1 Var
(
β̂jR(k)

))
.

For the proof, see Appendix A.4.

Applying the equations (4.4), (4.5) and (4.6), we obtain

(4.10) E

[(
β̂R(k)− β

)2
]

= σ2GkX̃
′
(I−Wλ)2 X̃Gk + Gk

(
X̃
′
f̃− kβ

)(
X̃
′
f̃− kβ

)′
Gk.

As stated in Definition 4.1, the MDE matrix decomposes into a sum of the squared bias
and covariance of the estimator. Also, it can be interpreted as the mean Euclidean distance
between the vectors β̂R(k) and β. Thus, from Definition 4.1, the MDE matrix is written as

(4.11) MDE
(
β̂R(k),β

)
= Gk

(
σ2X̃

′
(I−Wλ)2 X̃ +

(
X̃
′
f̃− kβ

)(
X̃
′
f̃− kβ

)′)
Gk.

As in Definition 4.1, the scalar valued version of the MDE matrix in (4.11) is given by

SMDE
(
β̂R(k),β

)
= tr{MDE

(
β̂R(k),β

)
}

= tr{Gk

(
σ2X̃

′
(I−Wλ)2X̃ + (X̃

′
f̃− kβ)(X̃

′
f̃− kβ)′

)
Gk}.

(4.12)

Hence, we can compare the quality of two estimators by looking at the ratio of their
SMDE in (4.12). This ratio gives the following definition concerning the superiority of any
two estimators.

Definition 4.2. The relative efficiency of an estimator β̂R1(k) compared to another
estimator β̂R2(k) is obtained by the ratio,

(4.13) RE
(
β̂R1(k), β̂R2(k)

)
=

R
(
β̂R2(k),β

)
R
(
β̂R1(k),β

) =
SMDE

(
β̂R2(k)

)
SMDE

(
β̂R1(k)

) ,

where R(·) denotes the scalar risk that is equivalent to the equation (4.12). β̂R2(k) is said to
be more efficient than β̂R1(k) if RE

(
β̂R1(k), β̂R2(k)

)
< 1.



Smoothing Parameter Selection for Kernel Type Ridge Estimator 55

5. CHOOSING THE SMOOTHING PARAMETER

The main idea of this paper is how to select the smoothing parameter expressed in a
penalized residual sum of squares criterion (3.3). Our task is to select an optimum value
of the λ. In practice, this can be achieved by using smoothing parameter selection criteria.
A reasonable value of λ can be chosen to minimize the mentioned criteria. Examples of the
most widely used selection methods are summarized as follows:

GCV Criterion: The generalized cross validation (GCV) score is specified by (see
Craven and Wahba, [7])

GCV(λ) = n−1 ‖ (I−Hλ)y ‖2

/ [
n−1 tr(I−Hλ)

]2
,

where Hλ, as is defined in (4.8), is the smoother matrix based on λ.

Cp Criterion: This criterion proposed by Mallows [22] is aimed to provide an estimate
of the MSE in (4.9) scaled by σ2, and given as

Cp(λ) =
1
n
{‖ (Hλ − I)y ‖2 +2σ2 tr(Hλ)− σ2} =

1
n
{‖ y− f̂λ ‖2 +2σ2 tr(Hλ)− σ2)}.

If σ2 is unknown, in practice an estimation for σ2 can be provided by

σ̂2 = σ̂2
λ̂p

=‖ (Hλ̂p
− I)y ‖2

/
tr
(
I−Hλp

)
,

where λ̂ is an estimate of λ pre-chosen with any of the selection criterion (for example GCV).
For details, see Liang [21], Mallows [22] and Wahba [33].

AICc Criterion: Notice that the classical Akaike information criterion tends to overfit
when the sample size is relatively small. Hurvich et al. [16] suggested an improved version,
called AICc, which is defined by

AICc(λ) = 1 + log
[
‖ (Hλ − I)y ‖2

/
n

]
+
[
2{tr(Hλ) + 1}

/
n− tr(Hλ)− 2

]
.

BIC Criterion: Schwarz [29] improved the Bayesian information criterion (BIC) by
using Bayes estimators. Thus, the BIC is also called Schwarz Information Criterion (SIC).
The criterion is expressed as

BIC(λ) = 1/n ‖ (I−Hλ)y ‖2 +(log(n)/n) tr(Hλ).

RECP Criterion: Risk estimation criteria (RECP) measures the distance between f
and f̂λ. By direct calculation, the RECP(λ̂p) score is defined as

RECP(λp) = 1/n{‖ (Hλ − I)̂fλp ‖2 +σ̂2
λp

tr(HλHT
λ)} = 1/nE ‖ f− f̂λp ‖2,

where σ̂2
λp

and f̂λp are the appropriate pilot estimates for σ2 and f, respectively. The pilot
λp selected by classical methods is used for computation of the pilot estimates (see Lee [19],
[20]).
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REML Criterion: The restricted maximum likelihood (REML) criterion motivates
treating λ as a variance parameter. The REML and GCV have a similar form and provide
identical values. Moreover, the derivatives of both the REML and the GCV with respect to λ

can be determined quite naturally in a common form (see Reiss and Ogden [25]). The REML
score can be specified as

REML(λ) =‖ (I−Hλ)y ‖2

/
n− tr(Hλ).

5.1. Comparisons of computational times

In this paper, we discuss different parameter selection techniques proposed in the litera-
ture. Generally, they differ in the amount of computational time as well as a priori information
required. The four selection methods GCV, AICc, BIC, and REML need approximately the
same computational time for finding their corresponding smoothing parameter λ, as their
computations only require one numerical minimization problem. From computational per-
spective, a causing difficulty term is tr(Hλ), which takes O(n2) operations to assess directly,
for each set of smoothing parameters. Compared to these four methods, both Cp and RECP
require a longer computation time, as they need an estimate of parameter λ pre-chosen with
a selection criterion, such as GCV. So, there are two numerical minimization in computations
of Cp and RECP. However, it should be noted that some calculations are unnecessary for
these two numerical minimizations. For this reason, when careful programming is made, the
overall calculation time will not be doubled.

6. REAL DATA EXAMPLE

In this study, to illustrate how ridge type kernel method works on real data, power
plant data has been used. The power plant dataset includes 500 data points collected from a
Combined Cycle Power Plant. The goal is to predict the net hourly electrical energy output
(EP) of the plant from the features consisting of hourly average ambient variables such as
temperature (T ), ambient pressure (AP), relative humidity (RH ) and exhaust vacuum (V ).

Tufekci [32] has used the dataset for prediction of electrical power output of a base load
operated combined cycle power plant using machine learning methods. Also, Kaya et al. [17]
have used this data in their study called “Local and Global Learning Methods for Predicting
Power of a Combined Gas and Steam Turbine”.

In order to explain the variables clearly, their intervals and units are defined as follows:
T , AP , RH , V and EP lie in the range 1.81–37.11 Celsius, 992.89–1033.30 milibar, 25.56%–
100.16%, 25.36–81.56 cm-Hg, and 420.26–495.76 MW, respectively. The averages are taken
from various locations around the plant. Also, ambient variables are recorded every second.

Scatterplot matrix and Correlogram of these variables are shown in Figures 1–2, respec-
tively. According to Figure 1, V seems to have a curvilinear structure according to response
variable EP . In this context, this variable breaches the linearity assumption of the classical
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regression model. Therefore, V will compose a nonparametric part of the semiparametric
regression model. Other variables have considerable linear structure; consequently, T , AP ,
RH variables will be the parametric component of the semiparametric model.

Figure 1: Scatterplot matrix of power plant data.

Thus, the semiparametric regression model in equation (1.1) can be defined the follow-
ing way:

(6.1) EP i = β1(Ti1) + β2(AP i2) + β3(RH i3) + f(Vi4) + εi, i = 1, ..., 500.

Collinearity can be checked by simply calculating the correlations of the predictors in
the model (6.1). Let X be a 500× 4 matrix of the levels of the predictors in our real data
example. A very simple measure of multicollinearity is inspection of the Correlogram given
in Figure 2. It can be seen that several predictors have strong relationships with each other.

The eigenvalues of the X′X for power plant data are λ1 = 0.01, λ2 = 1613, λ3 =
3481, λ4 = 138950, respectively. As is known, small eigenvalues indicate a bad condition
in the data and maybe a collinearity problem. In order to determine the existence of mul-
ticollinearity, a condition index might be used. Condition Index (CI ) is commonly used as
an overall collinearity measure (Belsley et al., [5]). If the value of CI exceeds 30, then we
conclude that there is a strong multicollinearity in the data. This index is calculated as
follows:

CI =
[
λmax(X′X)/λmin(X′X)

]1/2 = 3723.10.

The value of CI = 3723.10 is an indication of potential multicollinearity problems. To combat
with the collinearity, researchers use the ridge regression estimators given in (3.1). The
illustration here will be based on kernel type ridge estimators given in (3.4) and (3.5). The
parameter are chosen by minimizing the AICc,GCV,BIC,REML, Cp and RECP criteria,
respectively. Also, the tuning parameter k is chosen with the generalized ridge regression
estimator suggested by Hoerl and Kennard [13], [14]. The outcomes are given in Table 1.
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Figure 2: Correlogram for power plant data: Red colour indicates a negative correlation between
the variables, while blue colour denotes a positive correlation. Size of the circle and
intensity of the colour shows the strength of the relationships between variables.

As denoted in Table 1, slope parameters estimated with AICc and RECP are very
similar and likewise BIC and GCV. The SMDE values, variances and bias values of the
semiparametric model have been obtained from six different selection methods. The SMDE,
bias and variance values calculated by RECP criterion smaller than other methods. This
is indicated in bold. In this situation, it is obvious that the RECP criterion has a more
convincing performance for the selection of the parameter λ and that Cp method does not
perform well under study.

Table 1: Estimated coefficients of parametric component of the model.

β̂AICc β̂BIC β̂GCV β̂REML β̂RECP β̂Cp

T −2.21931 −2.1932 −2.1924 −2.1928 −2.20437 −2.20721
AP 0.5024 0.4925 0.5003 0.5023 0.48276 0.47746
RH −0.1660 −0.1678 −0.1657 −0.1659 −0.16813 −0.16862
SMDE 425.2455 571.9484 565.9700 672.4861 408.2248 696.5099
Bias 19.8500 23.2257 23.1069 25.1973 19.69050 25.67990
Variance 31.2230 32.7831 32.3670 37.9560 20.50790 37.0527

The smooth curves in Figure 3 are the graph of ŷ = f̂(V ), different nonparametric
estimates of the effect of V variable on EP . For smoothed curves the MISE values given
in (7.2) are 24.8788, 26.0882, 26.0683, 26.3782, 24.1794 and 26.7481, respectively. Here, all
of the selection methods have shown almost the same performance except the Cp criterion.
Thus, we can say that the Cp does not provide a good empirical approximation.
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Figure 3: The smoothed curves for different kernel type ridge estimators based on
AICc,BIC,GCV,REML, RECP and Cp methods, respectively.

7. MONTE CARLO SIMULATION STUDY

In this section, a Monte Carlo simulation study are carried out to compare the per-
formance of the six selection methods expressed in Section 5. In the study, we simulate the
response variable for samples of size n = 50, 100 and 200 with 103 iteration from the following
model:

(7.1) yi = β1xi1 + β2xi2 + β3xi3 + βxi4 + f(ti) + εi, i = 1, ..., n,

where ε ∼ N(0, σ2In) which the values of σ = 0.5 and 1, β = (β1, β2, β3, β4)′ = (5, 4, 3, 2)′,
x1, x2, x3 and x4 are the correlated random variables, from the normal distribution. In here,
three correlation (ρ) levels are considered as: 0.85, 0.95 and 0.99. Finally, the function f is
represented by

f(ti) =
√

ti(1− ti) sin(2π/ti) with ti = (1− 0.5)/n.

It should be emphasized that we investigate three correlation levels, as stated above.
If ρ = 0.85, for instance, this allows us to obtain about the same correlation levels between
all pairs of variables. They are displayed in Table 2 for detecting correlations between the
explanatory variables. Note that the outcomes from correlated data based on ρ = 0.95, and
0.99 are not reported here, because of space limitations.

Table 2: Correlation matrix for ρ = 0.85 level.

X x1 x2 x3 x4

x1 1.00 0.83 0.83 0.82
x2 0.83 1.00 0.83 0.86
x3 0.83 0.83 1.00 0.84
x4 0.82 0.86 0.84 1.00
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7.1. Evaluating the parametric part

The focus of the study is to estimate the parametric and nonparametric components of
the semiparametric model. Additionally, the study is illustrating behaviors and performances
of the selection methods with small, medium and large samples under multicollinear data sets.
For each of the data sets, 1000 estimates of β = (β1, β2, β3, β4) are obtained. These estimates
are formed through a parametric component of the semiparametric regression model. The
following tables and figures summarize the results of the simulation study.

There are four panels in Figure 4. In each panel,“AIC1, AIC2 and AIC3”denote the para-
metric biases of β̂ from semiparametric regression using ridge type kernel smoothing based on
a smoothing parameter selected by improved AICc method for n = 50, 100 and 200, respec-
tively; similarly, “BIC1, BIC2 and BIC3” denote the case using BIC method for the sample
sizes; “GCV1, GCV2 and GCV3” denote the case for GCV method; “R1, R2 and R3” denote
REML method; “P1, P2 and P3” denote the RECP method; “Cp1, Cp2 and Cp3” illustrate
Mallows’ Cp method . The ordinate indicates the scale of the biases of regression coefficients.

Figure 4: Boxplots of the estimates (n = 50, 100 and 200) obtained from semiparametric model
for ρ = 0.95 and σ = 1. Panels indicate the boxplots of β̂1, β̂2, β̂3 and β̂4.

In this study, there are 18 different configurations. Since it is hard to illustrate here
all of these configurations, some of them are given in Figure 4 for correlation level ρ = 0.95
and σ = 1. As the sample size n gets larger, the range of estimates are getting narrower.
That means that estimates from medium and large sized samples are more stable than those
from small sized samples. If there is a correlation between the predictors, then the sample
size has an effect on the quality of parametric estimates. We can say that kernel type ridge
estimators work well for all samples. The key idea of the study is to compare the SMDEs for
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the estimators computed with each one of the criteria. The values of SMDE are illustrated
in Table 3. The criterion that has the smallest SMDE is the best one.

Table 3: Average SMDEs of the parameters based on 1000 Monte Carlo runs.

n ρ CI σ AICc BIC GCV REML RECP Cp

50

0.85
21.62 0.5 0.0043 0.0040 0.0040 0.0040 0.0040 0.0045
34.03 1.0 0.0050 0.0048 0.0047 0.0047 0.0045 0.0055

0.95
47.70 0.5 0.0157 0.0155 0.0159 0.0155 0.0132 0.0168
53.21 1.0 0.0211 0.0209 0.0201 0.0193 0.0199 0.0246

0.99
98.15 0.5 0.1348 0.1444 0.1267 0.1047 0.1366 0.1195

100.56 1.0 0.2356 0.2244 0.2457 0.2032 0.1995 0.2010

100

0.85
14.78 0.5 0.0007 0.0007 0.0007 0.0007 0.0007 0.0008
30.16 1.0 0.0010 0.0009 0.0009 0.0009 0.0009 0.0018

0.95
45.84 0.5 0.0043 0.0043 0.0043 0.0042 0.0038 0.0044
68.12 1.0 0.0052 0.0051 0.0052 0.0051 0.0050 0.0064

0.99
75.24 0.5 0.0272 0.0275 0.0278 0.0268 0.0258 0.0278
91.01 1.0 0.0385 0.0384 0.0398 0.0381 0.0383 0.0399

200

0.85
24.42 0.5 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002
22.31 1.0 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

0.95
57.71 0.5 0.0012 0.0012 0.0011 0.0011 0.0011 0.0011
63.94 1.0 0.0014 0.0014 0.0015 0.0014 0.0014 0.0018

0.99
99.41 0.5 0.0102 0.0110 0.0111 0.0113 0.0088 0.0136

110.48 1.0 0.0152 0.0154 0.0156 0.0151 0.0148 0.0177

As discussed in real data, the values of CI presented in Table 3 are given to measure
the extent of multicollinearity in the simulated data sets. It is readily seen that we have
mostly multicollinear data sets. According to the same table, it is possible to see that the
BIC, GCV, REML and RECP outperform AICc and Cp criteria for samples of size n = 50
and ρ = 0.85. Also, we see that the performances of five criteria, except Cp, behaviour
quite similar in the medium and large sized samples generated by various scenarios. Notice,
however, that RECP has a better performance under multi-collinear data sets especially for
highly correlation levels. They are indicated in bold in Table 3. A very attractive component
here is that as the sample size increase, the SMDE values decrease for all criteria based on
correlation level of ρ = 0.99.

Table 4: Simulated bias of the slope parameters for ρ = 0.99 and σ = 0.5.

n β AICc BIC GCV REML RECP Cp

50

β̂1 0.0827 0.0811 0.0866 0.0852 0.0841 0.0933

β̂2 0.0462 0.0458 0.0472 0.0492 0.0428 0.0444

β̂3 0.0240 0.0234 0.0248 0.0242 0.0237 0.0320

β̂4 0.0842 0.0980 0.0951 0.0985 0.0846 0.0874

100

β̂1 0.0547 0.0559 0.0558 0.0589 0.0563 0.0393

β̂2 0.0186 0.0177 0.0176 0.0181 0.0127 0.0175

β̂3 0,0138 0.0151 0.0151 0.0146 0.0107 0.0153

β̂4 0.0311 0.0391 0.0390 0.0382 0.0283 0.0321

200

β̂1 0.0219 0.0226 0.0219 0.0222 0.0150 0.0164

β̂2 0.0031 0.0037 0.0035 0.0033 0.0019 0.0036

β̂3 0.0032 0.0032 0.0033 0.0032 0.0028 0.0034

β̂4 0.0152 0.0169 0.0173 0.0168 0.0126 0.0177
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Table 4 presents a checking of the bias of the slope parameters of the model (7.1).
The number of parameters p = 4 and the parametric component of the model consists of real
parameter vector β = (5, 4, 3, 2)T. In general, sample sizes get larger, estimates obtained by
six different kernel type estimators give small bias values, as expected. Among six kernel
type ridge estimators, the one obtained by using RECP criterion provide the smallest bias of
the estimation of real coefficients, especially for samples of size n = 200. Results that related
to other correlation and sigma levels are similar. So, they are not reported here.

7.2. Measuring and comparing the efficiencies

In order to illustrate and compare the efficiency of the selection methods based on
highly correlated data, a relative efficiency values are constructed from the SMDE ratios in
(4.13). For each sample size the mentioned values are displayed in Figure 5. As can be
seen from Figure 5, relative efficiency values of the RECP are better than others except for
samples of size n = 50 and ρ = 0.85. This case shows that RECP is more efficient than the
other selection methods, especially for all samples based on highly correlated data. Note also
that outcomes from correlated data based on ρ = 0.90 are similar to the results displayed in
Figure 5 under ρ = 0.99 and are not reported here.

Figure 5: The column chart provides the averaged-relative efficiencies
computed by the selection criteria.

Inspection of the relative efficiency values in Figure 5 also reveal that for ρ = 0.85,
RECP criterion converges at 0.82, the highest rate when sample size is large. This indicates
that under multicollinear data and noisy data, RECP criterion has the best performance
among all other criteria, making it an ideal selection method for semiparametric regression
based on ridge type kernel smoothing method. It can also be observed from Figure 5 in
which four criteria, AICc, BIC, GCV and REML, perform similarly, and better than the Cp

criterion.
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7.3. Evaluating the nonparametric part

In order to measure the nonparametric component of the semiparametric model, 1000
estimates of function f are obtained for each selection criterion. Smoothness and appropri-
ateness of curve estimates have been measured by using the mean of the integrated squared
error (MISE) value:

(7.2) MISE =
1

1000

1000∑
j=1

ISEj ,

where ISEj denotes the integrated square error for the sample j, given by

ISEj =
∫ (

f(t)− f̂j(t)
)2

dt ≈ 1
n

n∑
i=1

(
f(ti)− f̂j(ti)

)2
where ti =

i− 0.5
n

,

where f(ti) value at ti points to the appropriate function f . In our simulation study, because
18 different configurations are carried out, it is very hard to illustrate all of them. Therefore,
only four different configurations will be presented in Figure 6. The left panels in the figure
represent the smoothed curves together with a real function f(t). In each graph, the smoothed
curves, f(AICc), f(BIC), f(GCV), f(REML), f(Cp), respectively, are estimates of function
f(t) using ridge type kernel smoothing based on AICc, BIC, GCV, REML, RECP and Cp

criteria. Also, the right panels of the Figure 6 denote the boxplots of the MISE values in
(7.2) for each criterion.

Figure 6: (a) n = 50, ρ = 0.85, σ = 1; (b) n = 50, ρ = 0.99, σ = 0.5;
(c) n = 100, ρ = 0.85, σ = 1; (d) n = 200, ρ = 0.99, σ = 1.

In Figure 6 we see that the improvements in the MISE values mostly depend on the
size of samples used in study. We also see that increasing the levels of correlation leads
to poor performance in terms of MISE values, even if the sample sizes are the same. On
the other hand, a visual inspection of the boxplots in all panels ((a) to (d)) denoted that
RECP criteria maintain their dominance over the remaining selection methods, especially
for large sized samples (say n = 200) based on data sets with ρ = 0.99 and σ = 1. On the
contrary, the Cp criterion similar behaviors to others in terms of performance (see panels (a)
and (c) of Figure 6). Notice, however, that the Cp yields poor estimates of the nonparametric
component, compared to the estimates obtained by other methods, as in parametric cases.
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8. CONCLUDING REMARKS

In this paper, for the parameters of the semiparametric model we proposed, kernel type
ridge estimators minimize the penalized residual sum of squares method. Efficient computa-
tion of this method requires an optimum smoothing parameter λ. This optimum parameter
is provided by means of AICc, BIC, GCV, REML, RECP and Cp criteria. Accordingly, we
obtained six different estimators for the parametric and nonparametric components of the
semiparametric model. We considered a real data example and simulated 1000 test observa-
tions to compare six different kernel type ridge estimators.

The empirical results confirmed that in the case of multicollinearity the kernel type ridge
estimators based on AICc, BIC, GCV, REML and RECP, criteria have similar values of the
SMDEs. The RECP, however, are superior to others in terms of SMDEs, especially when
higher correlation levels are used. Throughout this discussion, the estimators based on Cp

do not yield better performance in prediction of parametric and nonparametric components.
On the other hand, although the REML criterion is more stable than AICc, GCV and RECP
criteria, its performance is not good for all sample sizes and correlation levels. For the
simulation studies, the findings of the numerical experiments are summarized in Tables 3–4
and Figures 4–6. We conclude the following statements from these tables and figures:

• For all the selection criteria, the SMDE, variance, and bias values of the slope
parameters (or regression coefficients) start to decrease as the sample size n gets
larger.

• For small sample sizes, as expected the bias values of slope parameter increase as
the correlation and sigma levels increase.

• Also expected, when the lower correlation levels (i.e., ρ = 0.85) are used, the MISE
values decreases for all selection criteria.

• Finally, when comparing the six selection methods, we see that the kernel type ridge
estimators based on RECP method perform better than the others in terms of the
SMDE, variance and bias values of the estimates for all sample sizes under collinear
data.
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A. APPENDIX: SUPPLEMENTAL TECHNICAL MATERIALS

A.1. Proof of Theorem 3.1

Consider data augmentation methods of penalized residual sum of squares fitting.
Suppose that Wλ is symmetric smoother matrix. We wish to obtain the vector β̂R(k) that
minimizes the penalized residual sum of squares criterion (3.3) by using augmented data sets
of the form

XA =

[
X̃n×p(√

kI
)

p

]
=



x̃11 x̃12 ... x̃1p

x̃21 x̃22 ... x̃2p
...

...
...

...
x̃n1 x̃n2 ... x̃np√

k 0 ... 0

0
√

k ...
...

... ...
. . . 0

0 ... 0
√

k


((n+p)×p)

and yA =
[
ỹn×1

0p

]
=



ỹ11

ỹ21
...

ỹn1

0
0
...
0


((n+p)×1)

,

where
√

kIp is a p× p new diagonal matrix with diagonal elements equal to the square root
of the shrinkage parameter and 0p is p× 1 new vector of zeros. Also, X̃ = (I−Wλ)X and
ỹ = (I−Wλ)y as defined in equation (2.8), are partial residuals.

Similar to the ordinary least squares, the kernel ridge type estimators can be conve-
niently obtained using an augmented data set. A researcher could use this information to
construct a penalized least-squares estimator β̂R(k) of β. The estimator can be derived by

β̂ =
(
X′

AXA

)−1 X′
AyA

=

([
X̃
′

(
√

kIp)′
] [ X̃

′

(
√

kIp)′

])−1 [
X̃
′

(
√

kIp)′
] [ ỹ

0p

]
=
(
X̃
′
X̃ +

(√
kIp

)2
)−1 (

X̃
′
ỹ +

(√
kIp

)
0p

)
=
(
X̃
′
X̃ + kIp

)−1
X̃ỹ.

Hence, as claimed, this confirms that the kernel type ridge type estimator of the unknown
parameters in the models (1.1) or (1.2) is

(A.1) β̂(k) =
(
X′

AXA

)−1 X′
AyA =

(
X̃
′
X̃ + kIp

)−1
X̃
′
ỹ.
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A.2. Derivation of the equations (4.4)–(4.6)

Using the definition of β̂R(k) ridge and our modeling assumption on the mean function
E(ỹ|X̃) = X̃β, we obtain:(
β̂R(k)

)
= E

[(
X̃
′
X̃ + kIp

)−1
X̃
′
ỹ
]

= E

[(
X̃
′
X̃ + kIp

)−1
X̃
′
(I−Wλ)y

]
= E

[(
X̃
′
X̃ + kIp

)−1
X̃
′
(I−Wλ) (Xβ + f + ε)

]
= E

[(
X̃
′
X̃ + kIp

)−1
X̃
′
X̃β +

(
X̃
′
X̃ + kIp

)−1
X̃
′
f̃ +
(
X̃
′
X̃ + kIp

)−1
X̃
′
(I−Wλ) ε

]
=
(
X̃
′
X̃ + kIp

)−1
X̃
′
X̃β +

(
X̃
′
X̃ + kIp

)−1
X̃
′
f̃

=
(
X̃
′
X̃ + kIp

)−1 (
X̃
′
X̃ + kIp − kIp

)
β +

(
X̃
′
X̃ + kIp

)−1
X̃
′
f̃

=
(
X̃
′
X̃ + kIp

)−1 [(
X̃
′
X̃ + kIp

)
β − kIpβ

]
+
(
X̃
′
X̃ + kIp

)−1
X̃
′
f̃

=
[
Ip − k

(
X̃
′
X̃ + kIp

)−1
]

β +
(
X̃
′
X̃ + kIp

)−1
X̃
′
f̃

= β − k
(
X̃
′
X̃ + kIp

)−1
β +

(
X̃
′
X̃ + kIp

)−1
X̃
′
f̃.

Equivalently, from (4.1), we obtain

E
(
β̂R(k)

)
= E

((
Ip + k(X̃

′
X̃)−1

)−1
β̂p

)
= E

[(
Ip + k(X̃

′
X̃)−1

)−1
(X̃

′
X̃)−1X̃

′
(I−Wλ)y

]
=
(
X̃
′
X̃ + kIp

)−1 (
X̃
′
X̃β + X̃

′
f̃
)

.

Hence, using the abbreviation in equation (4.3), as claimed before, it is obtained E
(
β̂R(k)

)
,

and Bias
(
β̂R(k)

)
in equations (4.4), (4.5), and (4.6), respectively. Also, we denote the

variance property of an estimator β̂R(k) by covariance matrix:

Var
(
β̂R(k)

)
= E

[(
β̂R(k)− E

(
β̂R(k)

))(
β̂R(k)− E

(
β̂R(k)

))′]
= E

(
X̃
′
X̃+ kIp

)−1
X̃
′
X̃β +

(
X̃
′
X̃+ kIp

)−1
X̃
′
f̃ +
(
X̃
′
X̃+ kIp

)−1
X̃
′
(I−Wλ) ε

−
[(

X̃
′
X̃ + kIp

)−1
X̃
′
X̃β +

(
X̃
′
X̃ + kIp

)−1
X̃
′
f̃
]

= E

(((
X̃
′
X̃ + kIp

)−1
X̃
′
(I−Wλ)ε

)((
X̃
′
X̃ + kIp

)−1
X̃
′
(I−Wλ)ε

)′)
= E

((
X̃
′
X̃ + kIp

)−1
X̃
′
(I−Wλ)2

)((
X̃
′
X̃ + kIp

)−1
X̃
′
)

E(ε2)

= σ2
(
X̃
′
X̃ + kIp

)−1
X̃
′
(I−Wλ)2

(
X̃
′
X̃ + kIp

)−1
X̃.

As a result, it can be expressed as the following result with abbreviation

Var
(
β̂R(k)

)
= σ2GkX̃

′
(I−Wλ)2X̃Gk,

as claimed.
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A.3. The derivation of the smoother matrix and E(RSS)

ŷ = X̃β̂R(k) + f̂R(k) = X̃
(
X̃
′
X̃ + kIp

)−1
X̃
′
ỹ + Wλ

(
y−Xβ̂R(k)

)
= X̃

(
X̃
′
X̃ + kIp

)−1
X̃
′
ỹ + Wλ

[
y−X

(
X̃
′
X̃ + kIp

)−1
X̃
′
ỹ
]

= X̃GkX̃
′
ỹ + Wλ

[
y−XGkX̃

′
ỹ
]

= X(Ip −Wλ)GkX̃
′
y + Wλ

(
y−X(Ip −Wλ)GkX̃

′
y
)

= X̃GkX̃
′
y + Wλy−WλHy = Wλy + (Ip −Wλ)Hy

= [Wλ + (Ip −Wλ)H]y = Hλy,

where H = X̃GkX̃
′
. Accordingly, the smoother matrix based on smoothing parameter λ is

Hλ = Wλ + (Ip −Wλ)X̃GkX̃
′
,

as defined in the equation (4.8).

The expected value of the RSS in equation (4.9) can be given by

E(RSS) = E
(
(y−Hλ)′(y−Hλ)

)
= E

(
y′(I−Hλ)′(I−Hλ)y

)
= E

(
y′(I−Hλ)2y

)
= tr

(
(I−Hλ)2σ2I

)
+ E(y′)(I−Hλ)2E(y)

= nσ2 tr(H2
λ)− 2σ2 tr(Hλ) + E(y′)(I−Hλ)2E(y)

= σ2
[
n− tr(2Hλ −H2

λ)
]
+ E(y′)(I−Hλ)′(I−Hλ)E(y).

A.4. Proof of Lemma 4.1

Since the MDE equals
∑k

j=1 E
(
β̂jR(k)− βj

)2
it is sufficient to prove for a scalar β̂R(k)

E

[(
β̂R(k)− β

)2
]

= Var
(
β̂R(k)

)
+ Bias2

(
β̂R(k)

)
= E

[(
β̂R(k)− E

(
β̂R(k)

))
+
(
E
(
β̂R(k)

)
− β

)]2
= E

(
β̂R(k)− E

(
β̂R(k)

))2
+
(
E
(
β̂R(k)

)
− β

)2

+ 2
(
β̂R(k)− E

(
β̂R(k)

))′ (
β̂R(k)− E

(
β̂R(k)

))
= E

(
β̂R(k)− E

(
β̂R(k)

))2
+ E

(
E
(
β̂R(k)

)
− β

)2

= Var
(
β̂R(k)

)
+ Bias2

(
β̂R(k)

)
.

This completes the proof of the Lemma 4.1.
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1. INTRODUCTION

Dynamical systems occur in all branches of science. According to Martin Rasmussen
[29], “the main goal of the study of a dynamical system is to understand the long behaviour
of states in a system for which there is a deterministic rule for how a state evolves”. On
the other hand, Christian Pötzsche [28] claims that “an understanding of the asymptotic
behaviour of a dynamical system is probably one of the most relevant problems in sciences
based on mathematical modeling”.

There are two approaches in the study of such mathematical models. The autonomous
model where the system is governed by a single mapping and the non-autonomous model
where the evolution in time is, in general, governed by a family of different mappings.

The non-autonomous systems arise naturally in the study of phenomena that evolve in
time and cannot be ruled by the a single mapping by the simple fact that such phenomena do
not repeat. For a general theory of non-autonomous (periodic) difference equations we refer a
recent book by Lúıs [22] where the author presents the main concepts and results concerning
periodic difference equations.

A generalization of discrete non-autonomous systems can be given by stochastic differ-
ence equations or random dynamical systems. The study of these systems are appropriate in
the situation where the rules that govern the evolution of the system have a random nature.

Some works and authors in the field of random dynamical systems are worth-mention.
The book of Arnold [5], where the author explores, separately, both random differential equa-
tions and random difference equations. The work of Kifer, [17] where the author studies basic
connections between compositions of independent random transformations and corresponding
Markov chains together with some applications. Liu in [21] reviews a selection of basic results
in smooth ergodic theory and in the thermodynamic formalism of dynamical systems gener-
ated by compositions of random maps. An excellent tutorial on the asymptotic behaviours
of random orbits of dynamical systems with random parameters may be found in the work of
Ohno [27]. In 2009, Marie and Rousseau [25] presented a study of the recurrence behaviour
in certain random dynamical systems and randomly perturbed dynamical systems. Baladi [6]
uses transfer operators to construct invariant measures of chaotic dynamical systems. And to
end this short list of references on random dynamical systems, we refer the excellent survey of
Diaconis and Freedman [10] on iterated random functions, where the authors provide several
examples under the unifying idea that the iterates of random Lipschitz functions converge if
the functions are contracting on the average.

One of the well known models that have a discrete evolution is the quadratic model
given by
(1.1) xn+1 = µnxn(1− xn), x ∈ [0, 1], µn ∈ (0, 4), n = 0, 1, 2, ....

When the sequence of parameters µn is constant, the model given by (1.1) is the well known
logistic equation. The modern theory of discrete dynamical systems owns a great part of
its development to the understanding of the dynamics of this equation, and may be found
in many books on discrete dynamical systems, as the ones by Alligood, Sauer and Yorke [1,
Chapter 1], by Devaney [9, Chapter 1], by Elaydi [11, Chapter 1] and by Zhang [30, Chapter 2],
among others.
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When the sequence of parameters is not constant, the dynamics of equation (1.1) is
naturally more complex. Both, non-stochastic model, where the elements of the sequence of
parameters are taken with a deterministic rule from the interval (0, 4), and stochastic model,
where the referred elements are taken randomly from the same interval, are far from being
exhaustively studied. Some partial studies may be found in the literature. Grinfeld et al. [13]
studied the bifurcation in 2-periodic logistic equations. AlSharawi and Angelos [2] showed
that when µn+p = µn, for all n, the p-periodic logistic equation (1.1) has cycles (periodic
solutions) of minimal periods 1, p, 2p, 3p, .... The same authors have also extended Singer’s
theorem to periodic difference equations, and used it to show that the p-periodic logistic
equation has at most p stable cycles. Particular attention was given to the cases p = 2
and p = 3. AlSharawi et al. [3] and Alves [4] have, independently, presented an extension
of Sharkovsky’s theorem to periodic difference equations, where the main example is the
periodic logistic equation.

In this paper some properties of a generalized logistic model given by

(1.2) xn+1 = µnxk
n(1− xn),

where xn ∈ [0, 1], k > 1 and µn > 0 for all n = 0, 1, 2..., are studied. Some particular studies
on the stability in both, non-autonomous (periodic) model (Section 2) and stochastic model
(Section 3) are presented. In particular, the dynamical system defined by equation (1.2) when
k = 2 and µn ∈ (0, 27/4] is deeply studied. The main focus of this study is the comprehension
of the model’s dynamics in the parameter space.

Finally, it should be mentioned that Marotto [26] studied the autonomous equation (1.2)
when k = 2 and µn = µ, for all natural n. When µn = µ, for all n, the dynamical properties
of the autonomous equation (1.2) have been addressed by several authors, like Levin and May
[20], Hernández-Bermejo and Brenig [14], Briden and Zhang [7], among others.

2. NON-STOCHASTIC MODEL

Let us consider the difference equation given by

(2.1) xn+1 = µnxkn
n (1− xn) ,

where xn ∈ [0, 1], µn > 0 and kn = 2, 3, 4, ... for all non negative integer n.

Equation (2.1) may be represented by the map

fn(x) = µnxkn (1− x) .

In order to insure that xn ∈ I = [0, 1] for all n, we make the following assumption
concerning the parameters

H: µn ≤
(

kn + 1
kn

)kn

(kn + 1), n = 0, 1, 2....

Assumption H guarantees that all the orbits in (2.1) are bounded. Furthermore, it
guarantees that fn maps the interval I into the interval I for all n = 0, 1, 2....
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2.1. Autonomous equation

Let us first study the dynamics of the particular map f (x) = µxk (1− x), with x ∈ I,

µ > 0 and k = 2, 3, .... To find the fixed points of f we determine the solutions of the equation
µxk(1− x) = x. After eliminating the trivial solution, x = 0, the positive fixed points are the
solutions of

(2.2) µxk−1 (1− x) = 1,

or equivalently

(2.3) ln(µ) = − (k − 1) ln x− ln (1− x) .

Letting g(x) = − (k − 1) ln x− ln (1− x), we see that g(x) > 0 for all x ∈ (0, 1). Moreover, g

is convex in the unit interval since g′(x) > 0, for all x ∈ I, and attains its minimum at g(cg)
where cg = k−1

k is the unique critical point of g in the unit interval. Let Oµ be the immediate
basin of attraction of the origin.

1. If g (cg) > ln(µ), then Eq. (2.3) has no solution. Hence, x∗ = 0 is the unique fixed

point of the map f whenever µ < k
(

k
k−1

)k−1
. Under this scenario x∗ = 0 is globally

asymptotically stable, given that it is the unique fixed point in I. Notice that at
the origin we have f ′(0) = 0 and that Oµ = [0, 1].

2. If g (cg) = ln(µ), then Eq. (2.3) has a unique solution, x∗ = k−1
k = cg. Hence,

the map f has a unique positive fixed point when µ = k
(

k
k−1

)k−1
. In this case

and using (2.2), we obtain |f ′ (x∗)| = 1 and |f ′′ (x∗)| = −k2 < 0, that allows us
to conclude that x∗ is an unstable fixed point, but semi-stable from the right.
Moreover, its immediate basin of attraction is the set

[
x∗,max f−1({x∗})

]
where

f−1({x∗}) is the pre-image of {x∗}. Notice that Oµ = I \
[
x∗,max f−1({x∗})

]
.

3. If g (cg) < ln(µ), then Eq. (2.3) has two positive solutions. Hence, the map f

possesses two positive fixed points whenever µ > k
(

k
k−1

)k−1
. The smaller, denoted

as Aµ, is known as a threshold point and the greater, denoted by Kµ, is known as a
carrying capacity. Under this scenario, the fixed point Aµ is always unstable and the
fixed point Kµ is locally asymptotically stable in the interval

(
Aµ,max f−1({Aµ}

)
if
∣∣k − µKk

µ

∣∣ < 1. Moreover, Oµ = [0,Aµ) ∪
(
max f−1({Aµ}), 1

]
.

Notice that the sequence ak =
(

k+1
k

)k
(k + 1) that is used to define Assumption H is

increasing for k = 2, 3, .... We now resume the precedent ideas in the following result, for a
general integer k = 2, 3, ...:

Theorem 2.1. Let f(x) = µxk(1− x), k = 2, 3, .... Then the following yields:

1. If µ < k
(

k
k−1

)k−1
, then x∗ = 0 is a globally asymptotically stable fixed point of f

and its basin of attraction is the unit interval.

2. If µ = k
(

k
k−1

)k−1
, then the map has two fixed points, the origin and a positive

fixed point x∗ = k−1
k . This last one is locally asymptotically stable from the right

and its immediate basin of attraction is the set
[
x∗,max f−1({x∗})

]
. Moreover,

Oµ = I \
[
x∗,max f−1({x∗})

]
.
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3. If µ > k
(

k
k−1

)k−1
, then the map has three fixed points, the origin, a threshold

fixed point Aµ and a carrying capacity Kµ such that Aµ < Kµ. The threshold fixed

point is always unstable and if |k−µKk
µ| < 1 the carrying capacity is locally asymp-

totically stable with a basin of attraction given by the set
(
Aµ,max f−1({Aµ})

)
.

Moreover, Oµ = I \
[
Aµ,max f−1({Aµ})

]
.

Remark 2.1. Before ending this subsection and having in mind the next section, let
us have a particular look in the dynamics of the autonomous equation when k = 2, i.e., the
dynamics of the equation when the map is given by f(x) = µx2(1− x). We will be needing
these results when studying the corresponding stochastic equation.

1. If µ < 4, then the origin is a globally asymptotically stable fixed point provided
that it is the unique fixed point in the unit interval.

2. If µ = 4, then the map possesses two fixed points, the origin and x∗ = 1
2 . The basin

of attraction of the origin is

(2.4) O4 =
[
0,

1
2

)
∪

(
1 +

√
5

4
, 1

]
,

while the basin of attraction of the positive fixed point is
[

1
2 , 1+

√
5

4

]
. Notice that

x∗ = 1
2 is a fixed point semi-stable from the right.

3. If 4 < µ, then the map has three fixed points, the origin, the threshold point Aµ =
1
2

(
1−

√
µ−4

µ

)
and the carrying capacity Kµ = 1

2

(
1 +

√
µ−4

µ

)
.

It is a straightforward computation to see that, when µ > 4,

|f ′(Aµ)| = 3 +
µ

2

(
−1 +

√
µ− 4

µ

)
> 1.

Hence, the fixed point Aµ is unstable.
Similarly, we see that

|f ′(Kµ)| =
∣∣∣∣3− µ

2

(
1 +

√
µ− 4

µ

)∣∣∣∣ < 1 iff 4 < µ <
16
3

.

When µ = 16
3 we have f ′(Kµ) = −1. Forward computations show that the

Schwarzian derivative evaluated at the fixed point is negative, i.e., Sf(Kµ) < 0.
Consequently, from Theorem 2 in [24] it follows that the fixed point Kµ is asymp-
totically stable. Thus, the fixed point x∗ = Kµ is locally asymptotically stable
whenever 4 < µ ≤ 16

3 and its basin of attraction is the set
(
Aµ, max f−1({Aµ})

)
.

Moreover,

(2.5) Oµ = [0,Aµ) ∪
(
max f−1({Aµ}), 1

]
.

2.2. Non-autonomous equation

We start this subsection presenting a result related to the non-autonomous equation
(2.1) when k = 2 (although it may be extended for other values of the parameter k as well).
It is not hard to prove the following:
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Lemma 2.1. Consider the non-autonomous difference equation given by

(2.6) xn+1 = µnx2
n (1− xn) ,

where xn ∈ [0, 1], µn ∈
(
0, 27

4

]
, for n = 0, 1, 2..., and Oµ the immediate basin of attraction of

the origin. Then

(2.7) 4 ≤ µ1 ≤ µ2 ≤
27
4
⇒ O4 ⊇ Oµ1 ⊇ Oµ2 ⊇ O 27

4
,

where O4 is given by (2.4) and

(2.8) O 27
4

=

[
0,

9−
√

33
18

)
∪
(
max f−1

({
A 27

4

})
, 1
]
,

where max f−1
({

A 27
4

})
≈ 0.971 62.

Let us now turn our attention to the non-autonomous periodic equation (2.1).
We will study the case where the sequence of maps is p-periodic, i.e., when fn+p = fn, for all
n = 0, 1, 2, .... Under this scenario, equation (2.1) is p-periodic.

The dynamics of the non-autonomous p-periodic equation (2.1) is completely deter-
mined by the following composition operator

Φp = fp−1 ◦ ... ◦ f1 ◦ f0.

From assumption H it follows that Φp(I) ⊆ I with Φp(0) = 0 and Φp(1) = 0. Hence, by the
Brouwer’s fixed point theorem [16], the composition operator Φp has a fixed point in the unit
interval.

It is clear that x∗ = 0 is a locally asymptotically stable fixed point of Φp provided that
|Φ′

p(0)| = 0. Now, if Φp(x) < x, for all x ∈ (0, 1), then x∗ = 0 is the unique fixed point of the
composition operator Φp in the unit interval. In this case, x∗ = 0 is a globally asymptotically
stable fixed point and its basin of attraction is the entire unit interval. This is the case where
local stability implies global stability in the sense that every orbit of x0 ∈ I converge to the
origin.

Notice that, if CΦp is the set of critical points of Φp, i.e., if CΦp contains all the solutions
in the unit interval of the p equations Φi(x) = ci, i = 0, 1, ..., p− 1, where ci is the critical
point of the map fi, then Φp(x) < x, for all x ∈ (0, 1) if Φp(cΦp) < cΦp , where cΦp ∈ CΦp .

Now, if |Φp(x)| > x for some x ∈ (0, 1),the composition operator Φp has more than one
fixed point. We know from Coppel’s Theorem [8] that every orbit converges to a fixed point
if and only if the equation Φp ◦ Φp(x) = x has no solutions with the exception of the fixed
points of Φp. It is not possible, in general, to say much concerning the number of fixed points
of Φp since we have many scenarios. However, if all maps fi have a threshold fixed point
Ai and we let Am = min{A0,A1, ...,Ap−1} and AM = max{A0,A1, ...,Ap−1}, then one can
show that the minimal positive fixed point of Φp, AΦp , lies between Am and AM and is, in
fact, an unstable fixed point. Under this scenario, the immediate basin of attraction of the
origin is ∪i≥1Ji where Ji ⊂ I and

Φp(Ji) ⊂ [0,AΦp).
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See Figure 1 for an example of this scenario.

Figure 1: Composition of three generalized logistic maps. The composition map Φ3

is represented by the solid curve and the individual maps are represented
by the dashed curves. The values of parameters are k = 2, µ0 = 6.5 (f0),
µ1 = 5.5 (f1) and µ2 = 6 (f2).

We remark that each fixed point of the composition map Φp, with the exception of
x∗ = 0, generates a periodic orbit in equation (2.1). More precisely, if x∗ is a non-trivial fixed
point of Φp, then

C = {x0 = x∗, x1 = f0(x0), x2 = f1(x1), ..., xp−1 = fp−2(xp−2)}

is a periodic cycle of equation (2.1), which is locally asymptotically stable if

|Φ′
p(x

∗)| =

∣∣∣∣∣
p−1∏
i=0

f ′i(xi)

∣∣∣∣∣ < 1.

Notice that, due the periodicity of the maps fi, we have xp = fp−1(xp−1) = x0, xp+1 = x1,
and so on.

From the dynamical point of view, it is interesting to know the region where the stability
of the fixed points occurs. Since we are not able to find explicitly the fixed points of the
composition map Φp for general values of the parameters ki and µi, i = 0, 1, ..., p− 1, we will
particularize and study the cases where this is possible as are the cases when p = 2, 3, 4 and
k = 2, i.e., we will study the dynamics of the system when the sequence of maps is 2-periodic
and given by

fn mod(2)(x) = µn mod(2) xk(1− x), k = 2, 3, 4.

Let us start with the case k = 2. Following the techniques employed in [23], one can
find the region of local stability of the fixed points of the composition map Φ2 = f1 ◦ f0

by calculating the boundary where the absolute value of Φ′
2(x

∗) is equal to one. Since the
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computations are long we will omit them here. The stability regions are depicted in Figure 2,
in the parameter space µ0Oµ1.

O

S

A1
A2

A3

R

0 2 4 6 8 10

0

2

4

6

8

10

Μ0

Μ
1

Figure 2: Region of local stability, in the parameter space µ0Oµ1 where
the fixed points of f1 ◦ f0 are locally asymptotically stable and
the maps are given by fi(x) = µix

2(1− x), i = 0, 2.

If the parameters µ0 and µ1 belong to the region O, then the origin is a fixed point
globally asymptotically stable. Once the parameters cross the dashed curve, from Region O
to Region S, a bifurcation occurs, known as saddle-node bifurcation. The fixed point x∗ = 0
becomes unstable and a new locally stable fixed point of Φ2 is born. This fixed point is, in
fact, a 2-periodic cycle of the 2-periodic equation (2.1). Now if the parameters µ0 and µ1

cross the dashed curve from Region S to Region R, a saddle-node bifurcation occurs. The
2-periodic cycle becomes unstable and a new locally asymptotically stable 2-periodic cycle is
born.

At the solid curve a new type of bifurcation occurs known as a period-doubling bi-
furcation. Hence, when the parameters cross the solid curve from Region S to Region Ai,
i = 1, 2, 3, the 2-periodic cycle of equation (2.1) becomes unstable and a new locally asymp-
totically stable 4-periodic cycle is born.

Following a similar idea as before, we are able to find (numerically) the regions of local
stability of the 4-periodic cycle identified before. We notice that this scenario of period-
doubling bifurcation continues route to chaos.

For a general framework of bifurcation in one-dimensional periodic difference equations,
we refer the work of Elaydi, Lúıs, and Oliveira in [12].

Now, following the same techniques as before, we are able to find the regions of local
stability of fixed points when k = 3 and k = 4. These regions are represented in Figure 3.
As we can observe, they are similar to the case k = 2 and the conclusions follow in the same
fashion.
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Figure 3: Regions of local stability, in the parameter space, of the 2-periodic equation
when k = 3 (left) and k = 4 (right).

3. STOCHASTIC MODEL

In this section, we will consider the stochastic version of the difference equation (2.1)
when kn = 2, for all n, defined by the equation

(3.1) xn+1 = fn (xn) = b (µn, xn) = µnx2
n (1− xn) ,

with x0 ∈ I = [0, 1], {µn, n∈N0} a sequence of independent and identically distributed random
variables with support contained in S =

(
0, 27

4

]
and common probability density function φ.

3.1. Stochastic kernel and asymptotic behaviour

Notice that xn, for n ∈ N, defined by (3.1) is an absolutely continuous random variable
(with respect to Lebesgue measure). Let fn be the probability density function of xn. For
each n ∈ N, the random variables µn and xn are independent and hence their joint probability
density function is the product of the individual probability density functions φfn. Let h be
an arbitrary bounded function defined in I (h ∈ L∞ (I)). We have

(3.2) E [h (xn+1)] =
∫

I
h (x) fn+1 (x) dx,

and, on the other hand,

E [h (xn+1)] = E [h (b (µn, xn))] =
∫

I

∫
S

h (b (u, x))φ (u) fn (x) dudx.

Letting y = b (u, x) = ux2 (1− x) in the inner integral, we obtain

(3.3) E [h (xn+1)] =
∫

I

[∫ 27
4

x2(1−x)

0
h (y) φ

(
y

x2 (1− x)

)
fn (x)

1
x2 (1− x)

dy

]
dx.
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Let γ1 : [0, 1] →
[
0, 2

3

]
be the inverse function of γ :

[
0, 2

3

]
→ [0, 1] and γ2 : [0, 1] →

[
2
3 , 1
]

the inverse function of γ :
[

2
3 , 1
]
→ [0, 1], i.e.,

γ1 (y) =
1
3

 3

√
2
√

y2 − y − 2y + 1 +
1

3

√
2
√

y2 − y − 2y + 1
+ 1


and

γ2 (y) = −1
6

(
1 + i

√
3
)

3

√
2
√

y2 − y − 2y + 1− 1− i
√

3

6 3

√
2
√

y2 − y − 2y + 1
+

1
3
.

The functions γ, γ1 and γ2 are represented in Figure 4.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Graphs of γ (grey solid line), γ1 (black solid line) and γ2 (dashed line)
in the unit interval.

Inverting the integration order in (3.3) we obtain

E [h (xn+1)] =
∫

I
h (y)

[∫ γ2(y)

γ1(y)
φ

(
y

x2 (1− x)

)
fn (x)

1
x2 (1− x)

dx

]
dy.(3.4)

Comparing (3.2) and (3.4), since h is arbitrary, it follows that

fn+1 (y) =
∫

I
φ

(
27
4

y

γ (x)

)
fn (x)

27
4

1
γ (x)

I[γ1(y),γ2(y)] (x) dx

(where IA (v) = 1 if v ∈ A, IA (v) = 0, otherwise).

It is not difficult to prove that if fn is supported on Sn ⊆ I, then fn+1 is supported on
Sn+1 ⊆ I.

Let f ∈ L1 (I) , i.e., such that
∫
I |f (x)| dx < +∞ and P : L1 (I) → L1 (I) the operator

defined by

(3.5) Pf (u) =
∫

I
L (u, v) f (v) dv,
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were L is defined for (u, v) ∈ on I × I by

(3.6) L (u, v) = φ

(
u

v2 (1− v)

)
1

v2 (1− v)
I[γ1(u),γ2(u)] (v) .

Notice that ∫
I
L (u, v) du =

∫ 27
4

0
φ (y) dy = 1,

i.e., L is a stochastic kernel on I × I, since, in addition, L ≥ 0, and also that

Pn+1f (u) =
∫

I
f (v) Ln+1 (u, v) dv

with

Ln+1 (v0, vn+1) =
∫

In

n+1∏
i=1

L (vi−1, vi) dvn...dv2dv1.

In the sequel will study the asymptotically behaviour of the sequence {Pn, n ∈ N} .

Suppose φ is a bounded probability density function with support [a, b] ⊂
(
0, 27

4

]
and consider

the function
hu (v) =

u

v2 (1− v)
,

defined for v ∈ (0, 1) and u ∈ I (cf. Figure 5 for some graphical examples). The minimum of
hu (v) is obtained when v = 2

3 and is given by hu

(
2
3

)
= u27

4 .

v

h
u
(v

)

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

2
0

u = 1.0

u = 0.6

u = 0.2

Figure 5: Graphs of hu when u = 1 (solid line), u = 0.6 (dotted line)
and u = 0.2 (dashed line).

Notice that (cf. (3.6))

L (u, v) = φ (hu(v))
1

v2 (1− v)
I[γ1(u),γ2(u)] (v) .
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There are three possibilities, for a given u:

1. If u is such that hu

(
2
3

)
> b, i.e., if u > 4

27b, then L (u, v) = 0, for all v ∈ I.

2. If u is such that a ≤ hu

(
2
3

)
≤ b, i.e., if 4

27a ≤ u ≤ 4
27b, then

(3.7) L (u, v) = φ (hu(v))
1

v2 (1− v)
I[γ1(u),γ2(u)]∩V (u) (v) ≤ 27

4
b

a
M,

where V (u) =
[
minh−1

u ({b}) ,max h−1
u ({b})

]
and M = sup

u,v∈[0,1]
φ (hu(v)).

3. Finally, for u such that hu

(
2
3

)
< a, L is null if v /∈ {v : a ≤ hu (v) ≤ b} , and the

same condition (3.7) is obtained.

We can then conclude that ∀u, v ∈ I we have

L (u, v) ≤ 27
4

b

a
M.

Since
∫
I

b
a

27
4 Mdx < +∞, we have proven the following result (cf. [18], p. 99 and Theorem

5.7.3 in p. 118):

Theorem 3.1. The sequence {Pn, n ∈ N}, where P is defined by (3.5), is asymptoti-

cally periodic.

This means that there exists a finite sequence of densities g1, ...gr, a sequence of linear
functionals λ1, ..., λr, and a permutation ω of the integers 1, ..., r such that

Pgi = gω(i), gigj = 0 for i 6= j

and

lim
n→∞

∥∥∥∥∥Pnf −
r∑

i=1

λi(f)gωn(i)

∥∥∥∥∥ = 0 forf ∈ L1.

For better understanding the behaviour of the sequence {Pn, n ∈ N}, where P is defined
by (3.5), let the parameters µn, for n ∈ N from the stochastic difference equation (3.1) be
uniform in an interval C ⊆ S = (0, 27/4], i.e., let φ(x) = 1

|C|IC(x). The asymptotic behaviour
of the process depends on the set C. For example, if C = S, i.e., if φ(x) = 4

27IS(x), then at
the instant n the system can be in one of the following intervals:

E1 =
[
0,A 27

4

)
, E2 =

(
A 27

4
,
1
2

)
, E3 =

[
1
2
,
1 +

√
5

4

]
,

E4 =

(
1 +

√
5

4
,max f−1

({
A 27

4

}))
, E5 =

(
max f−1

({
A 27

4

})
, 1
]
,

where, recall, A 27
4

= 9−
√

33
18 . Consider Pn = [pi,j,n]i,j∈{1,...,5} where pi,j,n =P (xn+1∈Ej |xn∈Ei).
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We have

Pn =


1 0 0 0 0

p2,1,n p2,2,n p2,3,n p2,4,n p2,5,n

p3,1,n p3,2,n p3,3,n p3,4,n p3,5,n

p4,1,n p4,2,n p4,3,n p4,4,n p4,5,n

1 0 0 0 0

 .

Since pi,j,n 6= 0 for i ∈ {2, 3, 4} and j ∈ {1, .., 5} , the fixed point zero will attract all
points with probability one. Also, if there exists a natural number n0 such that pi,j,n0 = 0,
then pi,j,n = 0, for all n ≥ n0.

On the other hand, if, e.g., C = (4, 16/3) and x0 ∈ E3, the system will remain in E3

(Figure 6 represents two samples of the position of the system after 20000 steps). Hence, in
this case, there exists a set of positive Lebesgue measure where the inequality Pnf > 0 holds
for n ≥ n0(f), for every probability density function, f , with support on the positive real
numbers set. Using, e.g., Lemma 1 from [19], we can then conclude the following result:

Corollary 3.1. If φ is the uniform distribution based on a non null subset of (4, 16
3 ),

the sequence {Pn, n ∈ N}, where P is defined by (3.5) and (3.6), is asymptotically stable, i.e.,

there exists a probability density function f∗ on R+ such that Pf∗ = f∗ and

lim
x→∞

‖Pnf − f∗‖ = 0,

for any probability density function f on R+, where ‖.‖ denotes the norm in L1.
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Figure 6: Two samples of size 10000 of the random variable x20000 when
the sequence µn is uniformly distributed in (4, 10/3) and x0 = 0.6.
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Abstract:

• Inequality measures based on ratios of quantiles are frequently applied in economic research, espe-
cially to the analysis of income distributions. In the paper, we construct a confidence interval for
such measures under the Dagum distribution which has widely been assumed as a model for in-
come and wage distributions in empirical analysis and theoretical considerations. Its properties are
investigated on the basis of computer simulations. The constructed confidence interval is further
applied to the analysis of income inequality in Poland in 2015.
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1. INTRODUCTION

In the Eurostat regional yearbook (2016), one of the basic measures of income distri-
bution inequality is defined as the income quintile share ratio or the S80/S20 ratio. It is
calculated as the ratio of total income received by the 20% of the population with the high-
est income (the top quintile) to that received by the 20% of the population with the lowest
income (the bottom quintile), i.e. income quintile share ratio is defined as

r0.2,0.8 =
F−1(0.8)
F−1(0.2)

,

where F denotes the distribution of the population income. The natural estimator of r0.2,0.8

is the ratio of appropriate sample quintiles. However, the problem is in interval estimation.
According to the best knowledge of the Authors such a problem has never been considered
in the literature. In the paper a confidence interval for the population ratio of quintiles is
constructed. The proposed confidence interval is based on the asymptotic distribution of the
ratio of sample quintiles.

We confine ourselves to the Dagum ([1]) distribution as a probabilistic model of income.
The Dagum distribution is widely used for income modeling in many countries all over the
world (see for example Domański and J ↪edrzejczak [5], J ↪edrzejczak [10]). The Dagum distri-
bution has many good mathematical as well as statistical properties. Basic properties of this
distribution are presented in Appendix A; for more see Kleiber ([11]), Dey et al. ([4]). See
also Encyclopedia ([6]) (pp. 3363–3378, also 3236–3248) and the references therein.

The paper is organized as follows. In the second section confidence interval for a
ratio of quantiles is constructed. It is based on the ratio of sample quantiles of the Dagum
distribution. It appears that the ends of the proposed confidence interval depend on a shape
parameter which should be estimated from a sample. In the third section a short simulation
study is provided. In this study two estimators of the shape parameter were applied. Namely,
the estimator obtained by the method of moments and the one obtained by the method of
probability-weighted moments. Results of the simulations are very similar for these two
estimators. In the fourth section an application to income inequality analysis based on the
data coming from the Polish Household Budget Survey is presented. In the last section some
conclusions are presented as well as some remarks on further research on the subject.

We consider a more general set-up, namely a confidence interval for a ratio of α and
β quantiles is constructed. To obtain a confidence interval for the quintile ratio it is enough
to put α = 0.2 and β = 0.8. The results of the paper may easily be generalized to other
distributions applied in personal income modeling, such as Pareto, Burr Type XII, Beta, etc.

2. CONFIDENCE INTERVAL

Let 0 < α < β < 1 be given numbers and let

rα,β =
F−1(β)
F−1(α)
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be the quantile ratio of interest, where F (·) is the cumulative distribution function (CDF) of
income distribution. Let X1, ..., Xn be a sample of incomes of randomly drawn n individuals.
Let X1:n ≤ ··· ≤ Xn:n denote the ordered sample. As an estimator of rα,β it is taken

r∗α,β =
Xbnβc+1:n

Xbnαc+1:n
,

where bxc denotes the greatest integer not greater than x.

In our considerations we confine ourselves to the Dagum distribution, i.e. throughout
the paper it will be assumed that the distribution of the population income is the Dagum
one. As it was mentioned above, the Dagum distribution fits population income quite well
for many countries around the world.

Consider the Dagum distribution with parameters a, v > 0 and λ > 0. Its cumulative
distribution function (CDF) and probability density function (PDF) are as follows

Fa,v,λ(x) =
(

1 +
(x

λ

)−v
)−a

for x > 0

and
fa,v,λ(x) =

av

λ

(x

λ

)av−1 (
1 +

(x

λ

)v)−a−1
for x > 0.

Its quantile function equals

Qa,v,λ(q) = λ
(
q−1/a − 1

)−1/v
for 0 < q < 1.

For other interesting properties of the Dagum distribution see Appendix A.

The problem is in constructing a confidence interval at the confidence level δ for a ratio
of quantiles of the Dagum distribution

rα,β =
Qa,v,λ(β)
Qa,v,λ(α)

=

(
β−1/a − 1
α−1/a − 1

)−1/v

on the basis of a random sample X1, ..., Xn.

In what follows “large” sample sizes are considered, i.e. it is assumed that n →∞.
There are two reasons for such an approach. The first one is that real sample sizes usually
comprise many thousands of observations. The second one is rather technical — the finite
sample size distribution of the ratio of sample quantiles of the Dagum distribution is analyt-
ically untractable (for exact distribution see Maswadah 2013).

Theorem 2.1. For 0 < α < β < 1 the random variable r∗α,β is strongly consistent

estimator of rα,β, for all a, v, λ.

Proof: The proof follows form the fact (David and Nagaraja [2]; Serfling [15]) that
Xbnαc+1:n is strongly consistent estimator of the α’s quantile of the underlying distribution.
Application of Slutsky theorem gives the thesis.
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Theorem 2.2. For 0 < α < β < 1 the estimator r∗α,β is asymptotically normally dis-

tributed random variable.

Proof: Let Yi = ln Xi. Of course Yi:n = ln Xi:n. Let γY
α and γY

β denote the quantiles
of Y . For α < β we have (Serfling [15], th. 2.3.3; David and Nagaraja [2], th. 10.3):

√
n

[
Ybnαc+1:n − γY

α

Ybnβc+1:n − γY
β

]
→ N2

[0
0

]
,

 α(1−α)

(fY (γY
α ))2

α(1−β)

(fY (γY
α )fY (γY

β ))
α(1−β)

(fY (γY
α )fY (γY

β ))
β(1−β)

(fY (γY
β ))2

 ,

where fY (·) is the PDF of Y .

Hence √
n
[(

Ybnβc+1:n − Ybnαc+1:n

)
−
(
γY

β − γY
α

)]
→ N

(
0, σ2

)
,

where
σ2 =

β(1− β)(
fY (γY

β )
)2 +

α(1− α)(
fY (γY

α )
)2 − 2

α(1− β)(
fY (γY

β )fY (γY
α )
) .

So we have
√

n

(
ln

Xbnβc+1:n

Xbnαc+1:n
−
(
γY

β − γY
α

))
→ N

(
0, σ2

)
.

Applying Delta method (Greene [8], p. 913) with g(t) = et:

√
n

(
Xbnβc+1:n

Xbnαc+1:n
− eγY

β −γY
α

)
→ e(γY

β −γY
α )N

(
0, σ2

)
.

Since in the Dagum distribution γY
α = ln γα we have

√
n

(
Xbnβc+1:n

Xbnαc+1:n
−

γβ

γα

)
→
(

γβ

γα

)
N
(
0, σ2

)
,

i.e.

(∗)
√

n
(
r∗α,β − rα,β

)
→ rα,βN

(
0, σ2

)
.

Simple calculations show that

σ2 =
1

(av)2

(
1− β

β

1

(1− β
1
a )2

+
1− α

α

1

(1− α
1
a )2

− 2
1− β

β

1

(1− α
1
a )(1− β

1
a )

)
.

Since we are interested in the estimation of the ratio rα,β of quantiles, we reparametrize the
considered model. It can be seen that

v =
log
(

α−1/a−1
β−1/a−1

)
log rα,β

.

The CDF of the Dagum distribution may be written in the following form

Fa,rα,β ,λ(x) =

1 +
(x

λ

)− log

 
α−1/a−1

β−1/a−1

!

log rα,β


−a

for x > 0 and a > 0, rα,β > 0 and λ > 0.
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We have σ2 = (log rα,β)2w2(a), where

w2(a) =

 1

a log
(

α−1/a−1
β−1/a−1

)
2(1−β

β

1(
1−β

1
a

)2 +
1−α

α

1(
1−α

1
a

)2 − 2
1−β

β

1(
1−α

1
a

)(
1−β

1
a

)).

Let δ be a given confidence level. From (∗) we have (the scale parameter λ is omitted)

Pa,rα,β

{√
n

∣∣∣∣ r∗α,β − rα,β

w(a)rα,β log rα,β

∣∣∣∣ ≤ u(1+δ)/2

}
= δ,

where u(1+δ)/2 is the quantile of N(0, 1) distribution.

Solving the above inequality with respect to rα,β we obtain confidence interval with the
ends

r∗α,βz±(a)

W
(
r∗α,βz±(a) exp (z±(a))

) ,

where z±(a) =
√

n
u(1±δ)/2w(a) and W (·) is the Lambert W function (see Appendix B).

Note that the ends of the confidence interval depend on an unknown shape parameter a.
This parameter is a nuisance parameter and must be eliminated. There are at least two
methods of eliminating such nuisance parameters: estimating or appropriate averaging.
In our considerations the shape parameter a is to be estimated. Therefore, a problem arises
what estimation method should be chosen. Because theoretical considerations seem to be
impossible, a simulation study was carried out.

3. SIMULATION STUDY

The simulation study was performed for different values of quantile ratios rα,β and shape
parameter a (since scale parameter λ is not important in the problem of ratio of quantiles
estimation, it has been set to 1). We take α = 0.2, β = 0.8 and the nominal confidence level
equal to 0.95.

From among various methods of parameter estimation for the Dagum distribution (Dey
et al. [4]) two methods were chosen. The first one is the classical method of moments (MM).
In this method theoretical moments of the distribution are compared with the empirical ones.
Estimators obtained by this method are solutions of the following system of equations

λm Γ
(
a + m

v

)
Γ
(
1− m

v

)
Γ (a)

=
1
n

n∑
i=1

xm
i , for m = 1, 2, 3.

The left-hand side is the mth moment of the Dagum distribution (see Appendix A).

The second method applied in the study was the probability-weighted moments (PWM)
(see eg. Hosking et al. [9]; Ma lecka and Pekasiewicz [12]; Pekasiewicz [14]). Probability-wei-
ghted moments of the Dagum distribution are equal to (see Appendix A)

Ea,v,λ

[
XFm

a,v,λ(X)
]

= λ
Γ
(
(m + 1)a + 1

v

)
Γ
(
1− 1

v

)
(m + 1)Γ ((m + 1)a)

, for m ≥ 0.
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Estimators obtained by this method are the solutions of the following system of equations
(for m = 0, 1, 2) 

λΓ
(
a + 1

v

)
Γ
(
1− 1

v

)
Γ (a)

=
1
n

n∑
i=1

xi:n,

λΓ
(
2a + 1

v

)
Γ
(
1− 1

v

)
2Γ (2a)

=
1
n

n∑
i=1

(i− 1)
(n− 1)

xi:n,

λΓ
(
3a + 1

v

)
Γ
(
1− 1

v

)
3Γ (3a)

=
1
n

n∑
i=1

(i− 1)(i− 2)
(n− 1)(n− 2)

xi:n.

Estimated coverage probabilities based on 10000 repetitions of samples of size n = 1000
are given in Table 1 (MM) and Table 3 (PWM). In Table 2 (MM) and in Table 4 (PWM)
average lengths of confidence intervals are presented.

Table 1: Coverage probability. Table 2 : Average length.

rα,β rα,β
a

1.2 1.6 2
a

1.2 1.6 2

0.1 0.9493 0.9492 0.9494 0.1 0.03793 0.13175 0.24484
0.5 0.9497 0.9500 0.9530 0.5 0.03205 0.11137 0.20909
1.0 0.9501 0.9518 0.9558 1.0 0.03025 0.10541 0.20010
1.5 0.9491 0.9496 0.9549 1.5 0.03014 0.10457 0.19901
2.0 0.9475 0.9477 0.9492 2.0 0.03023 0.10442 0.19688

Table 3: Coverage probability. Table 4 : Average length.

rα,β rα,β
a

1.2 1.6 2
a

1.2 1.6 2

0.1 0.9496 0.9494 0.9494 0.1 0.03803 0.13182 0.24483
0.5 0.9496 0.9491 0.9490 0.5 0.03204 0.11077 0.20529
1.0 0.9495 0.9497 0.9492 1.0 0.03020 0.10433 0.19326
1.5 0.9484 0.9481 0.9486 1.5 0.03009 0.10393 0.19249
2.0 0.9479 0.9477 0.9483 2.0 0.03021 0.10435 0.19325

Since in practical applications the samples usually comprise many thousands of obser-
vations (cf. Section 4), in our simulations samples of size 1000 have been used. It appears
that such a size may be treated as large enough to do asymptotics: the simulated coverage
probability is very close to the nominal confidence level. Of course, for larger sample sizes
the coverage probability should be almost equal to the assumed confidence level.

It can also be noticed that whatever method of estimation (the method of moments
or of probability-weighted moments) is applied, probability of covering the true value of the
quintile share ratio is near the nominal confidence level. It is also seen that the lengths
of obtained confidence intervals are similar; it may be concluded that the length does not
depend on the applied method of estimation.
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It is worth noting that the method of probability-weighted moments has an advantage
over the classical method of moments. Namely, the method of moments is applicable for the
distributions which have at least three moments, while the method of probability-weighted
moments can be applied for the distributions which have at least the expected value (and thus
present heavier tails). In the light of the presented results of the simulations, the method of
probability-weighted moments may be recommended to the estimation of the shape parameter a

of the Dagum distribution in the construction of the confidence interval for quintile share ratio.

4. EXAMPLE OF APPLICATION

In this section we present the application of the inequality measures based on the first
and the fourth quintile, i.e. r0.2,0.8, to income inequality analysis in Poland. Calculations are
based on the sample coming form the Household Budget Survey (HBS) 2015 provided by the
Statistics Poland and being the main source of information on income and expenditure of the
population of households.

5000 10 000 15 000

0.00005

0.00010

0.00015

0.00020

Figure 1: Income distribution in Poland and fitted Dagum distribution
(a = 0.6396, v = 3.2403, λ = 4961.36).

Within the survey, the sample of size n = 13420 was drawn. Firstly, it was checked
whether the Dagum distribution fits the data. In Figure 1 the histogram of collected data is
shown along with the fitted Dagum distribution (the probability-weighted moments method
was applied). The p-value of the standard Kolmogorov-Smirnov test equals 0.8983. Hence it
may be concluded that the income distribution in Poland follows the Dagum model.

The sample quintile share ratio r∗0.2,0.8 is 2.7600. Application of the formula (∗) gives the
confidence interval (2.7081, 2.8160) for the population quintile share ratio r0.2,0.8 (confidence
level equals 0.95). It may be concluded that the income distribution in Poland is quite
homogeneous, i.e. the poorest among the richest is about 2.76 times (at least 2.71 but at
most 2.82) reacher then the richest among the poorest.
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5. CONCLUSIONS

The main goal of the paper was to construct a confidence interval for the ratio of quan-
tiles of the Dagum distribution. According to the best knowledge of the Authors, such a confi-
dence interval has never been constructed. The confidence interval we propose is asymptotic.
The first reason for such an approach is lack of finite sample results on the distribution of the
ratio of sample quantiles for the Dagum model. Unfortunately, the distribution of the ratio
of sample quantiles derived by Maswadah ([13]) was found to be analytically untractable.
The second reason for considering asymptotics was that in practise the samples of income are
really of large sizes. In a short simulation study it has been shown that sample size of 1000
may be treated as large enough to do asymptotics.

The ends of the obtained asymptotic confidence interval depend on shape parameter a of
the Dagum distribution. This parameter should be estimated from a sample. In a simulation
study two estimators of this parameter were applied. Both estimators gave similar results.

It will be interesting to check whether the length of the confidence interval depends on
the choice of the estimation method (Maximum Likelihood, Method of L-Moments, Method
of Maximum Product of Spacings and others) of the shape parameter a. Theoretical solutions
seem unavailable, so relevant simulation studies are needed. Such studies are in preparation
and will be published separately.

The confidence interval constructed above is symmetrical in the following sense: the
risks of underestimation and overestimation are the same. It may also be interesting to
consider the problem of constructing the shortest confidence interval. The idea of building
such intervals is explained in detail in Zieliński ([16], [17]).
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A. APPENDIX

Random variable X follows the Dagum distribution with parameters a, v, λ if its prob-
ability density function is given by the formula:

fa,v,λ(x) =
av

λ

(x

λ

)av−1 (
1 +

(x

λ

)v)−a−1
for x > 0.

Parameters a, v, λ are positive reals. Parameters a and v are shape parameters and λ is
a scale parameter.

The distribution is unimodal if av > 1. Otherwise it is non-modal. If av > 1 the mode
value is equal to

λ

(
av − 1
v + 1

) 1
v

.

Moments of the random variable X equal

Ea,v,λXm = λm Γ
(
1− m

v

)
Γ
(
a + m

v

)
Γ (a)

, for m < v.

Empirical moment from a sample X1, ..., Xn, i.e.

1
n

n∑
i=1

Xm
i

is the unbiased estimator of mth moment of the random variable X.

Coefficient of skewness is equal to (for v > 3)

Γ2(a) Γ
(
a+ 3

v

)
Γ
(
1− 3

v

)
− 3 Γ(a) Γ

(
a+ 1

v

)
Γ
(
a+ 2

v

)
Γ
(
1− 2

v

)
Γ
(
1− 1

v

)
+ 2 Γ3

(
a+ 1

v

)
Γ3
(
1− 1

v

)(
Γ(a) Γ

(
a+ 2

v

)
Γ
(
1− 2

v

)
− Γ2

(
a+ 1

v

)
Γ2
(
1− 1

v

))3/2

and its kurtosis (for v > 4) is

Γ2(a)
(

Γ(a) Γ
(
a+ 4

v

)
Γ
(
1− 4

v

)
+ 3 Γ2

(
a+ 2

v

)
Γ2
(
1− 2

v

)
− 4 Γ

(
a+ 1

v

)
Γ
(
a+ 3

v

)
Γ
(
1− 3

v

)
Γ
(
1− 1

v

))
(

Γ(a) Γ
(
a+ 2

v

)
Γ
(
1− 2

v

)
− Γ2

(
a+ 1

v

)
Γ2
(
1− 1

v

))2 .

The probability-weighted moments are equal to (for m ≥ 0 and v > 1)

Ea,v,λ

[
XFm

a,v,λ(X)
]

= λ
Γ
(
(m + 1)a + 1

v

)
Γ
(
1− 1

v

)
(m + 1)Γ ((m + 1)a)

.

Unbiased estimators (from a sample X1, ..., Xn) of probability-weighted moments are

1
n

n∑
i=1

Xi:n (for m = 0) and
1
n

n∑
i=1

(i− 1)···(i−m)
(n− 1)···(n−m)

Xi:n (for m ≥ 1),

where X1:n ≤ ··· ≤ Xn:n are ordered statistics (Hosking et al. [9]).
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B. APPENDIX

Lambert function W (·) is defined as a solution with the respect to t of the equation

tet = z ⇒ t = W (z).

It is seen that

W (z)eW (z) = z ⇒ W (z) = ln
(

z

W (z)

)
⇒ z =

z

W (z)
ln
(

z

W (z)

)
.

Since the solution with respect to r of the equation r ln r = z is r = z
W (z) , hence

A
x− r

r ln r
= 1 ⇒ Ax = r(ln r + A) ⇒ eAAx =

(
reA
)

ln
(
reA
)

⇒ r =
Ax

W (AxeA)
.

Application of the above to the equation

√
n

r∗α,β − rα,β

w(a)rα,β log rα,β
= u(1+δ)/2

gives the confidence interval for the ratio rα,β.
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1. INTRODUCTION

Weibull distribution has wide applications in survival analysis, reliability engineering,
weather forecasting, hydrology, meteorology and insurance (e.g, Murthy et al. [16], Ye et al.

[26]). The cumulative distribution function (cdf) of the two-parameter Weibull distribution,
denoted by Weibull(β, η), is

F (x;β, η) = 1− e−(x/η)β
, x > 0,

where β > 0 is the shape parameter and η > 0 is the scale parameter. In particular, if β = 1,
then the Weibull distribution simplifies as the exponential distribution Exp(η) with mean η,
and it becomes the Rayleigh distribution when β = 2. In the case of β ≥ 10, the shape of
Weibull distribution is close to that of the smallest extreme value distribution (e.g, Nelson
[17]).

Record values were first introduced by Chandler [11] as special order statistics from
random samples, which can be simply described as follows. (For more description, refer to
Ahsanullah [1] and Arnold et al. [2].) Let {Xn, n = 1, 2, ...} be an iid (independent and
identically distributed) sequence of continuous random samples. Observation Xj is called an
upper record if Xj > Xi for each i < j. In addition, the record times sequence {Un, n ≥ 1}
is defined by U1 = 1 with probability 1 and Un = min{j : j > Un−1, Xj > XUn−1} for n ≥ 2.
Thus, the sequence {XUn , n ≥ 1} is called a sequence of upper record statistics. Lower record
statistics can be defined analogously.

Record values are commonly seen in real life applications, such as those in meteorol-
ogy, sports, economics and life tests (e.g., Ahsanullah [1] and Arnold et al. [2]), where joint
confidence region for unknown parameters is of great practical significance. In the recent
years, joint confidence regions based on records were investigated by many authors, and most
of their studies on record values are related to Weibull distributions. For references, see,
for example, Chan [10], Chen [12], Murthy et al. [16], Soliman et al. [21], Wu and Tseng
[25], Soliman and Al-Aboud [20], Asgharzadeh et al. [7], Asgharzadeh and Abdi [3, 4, 5],
Teimouri and Nadarajah [22], Wang and Shi [23], Jafari and Zakerzadeh [13], Wang and Ye
[24], Zakerzadeh and Jafari [27], and Zhao et al. [30].

In the next section, we discuss the classical methods to build joint confidence regions for
parameters of Weibull(β, η) distribution, based on (upper) record values. Then the minimum
area confidence region (MACR) for (β, η) based on records is established in Section 3 and
Section 4. Comparison of these confidence regions is given in Section 5, showing that the
proposed MACR is superior to the classical confidence regions for having smaller expected
area.

2. CLASSICAL CONFIDENCE REGIONS BASED ON RECORDS

Let XU1 < XU2 < ··· < XUn be the upper record values coming from Weibull(β, η). For
simplicity, we write XUi as Ri and let Yi = (Ri/η)β (i = 1, 2, ..., n). Then Y1 < Y2 < ··· < Yn

are the first n upper record values from the standard exponential distribution. Arnold et al. [2]
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showed that Z1, ...,Zn are iid from Exp(1), that is, Z1, ...,Zn
iid∼ Exp(1), where Zi = Yi−Yi−1

(i = 1, 2, ..., n; Y0 ≡ 0). It follows that for j = 1, 2, ..., n− 1,

(i) Uj = 2
∑j

i=1 Zi = 2(Rj

η )β ∼ χ2
2j , Vj = 2

∑n
i=j+1 Zi = 2[(Rn

η )β − (Rj

η )β] ∼ χ2
2(n−j)

and the two pivotal quantities are independent, where χ2
m denotes the chi-square

distribution with m degrees of freedom;

(ii) Uj + Vj = 2(Rn
η )β ∼ χ2

2n , Vj/2(n−j)
Uj/2j = j

n−j [(
Rn
Rj

)β − 1] ∼ F2(n−j),2j , and the two
pivotal quantities are independent (see Asgharzadeh and Abdi [4], Johnson et al.

[15], p. 350) where Fn1,n2 stands for the F -distribution with n1 and n2 degrees of
freedom.

To build a joint confidence region for β and η, we have from (ii) that

P

[
F2(n−j),2j(α1) ≤

j

n− j
[(

Rn

Rj
)β − 1] ≤ F2(n−j),2j(α2)

]
=
√

1− α

for j = 1, 2, ..., n− 1, and

P

[
χ2

2n(α1) ≤ 2(
Rn

η
)β ≤ χ2

2n(α2)
]

=
√

1− α,

where α1 = 1−
√

1−α
2 , α2 = 1+

√
1−α

2 , Fn1,n2(p) is the p quantile of Fn1,n2 and χ2
m(p) is the

p quantile of χ2
m. Then one type of the classical level 1− α confidence region for (β, η) is

given by (Asgharzadeh and Abdi [4])

(2.1) Aj :


log[1 + n−j

j F2(n−j),2j(α1)]

log(Rn/Rj)
≤ β ≤

log[1 + n−j
j F2(n−j),2j(α2)]

log(Rn/Rj)
,

Rn[
2

χ2
2n(α2)

]
1
β ≤ η ≤ Rn[

2
χ2

2n(α1)
]
1
β ,

where j = 1, 2, ..., n− 1, and each Aj produces a level 1− α confidence region for (β, η).
Based on Monte Carlo simulation, Asgharzadeh and Abdi [4] observed that Abn

5
c and Abn

5
c+1

provide the smallest confidence areas in most cases, where bxc denotes the largest integer
value smaller than x.

Noticing that U = 2β
∑n

i=1 log(Rn/Ri) ∼ χ2
2n−2 and V = 2(Rn/η)β ∼ χ2

2n, which are
independent, Jafari and Zakerzadeh [13] derived another type of the classical level 1− α

confidence region for (β, η):

(2.2) B :


χ2

2n−2(α1)
2

∑n
i=1 log(Rn/Ri)

≤ β ≤
χ2

2n−2(α2)
2

∑n
i=1 log(Rn/Ri)

,

Rn[
2

χ2
2n(α2)

]
1
β ≤ η ≤ Rn[

2
χ2

2n(α1)
]
1
β ,

where α1 = 1−
√

1−α
2 and α2 = 1+

√
1−α

2 . By simulation study, Jafari and Zakerzadeh [13]
concluded that the expected area of the confidence region in (2.2) is smaller than that in
(2.1) proposed by Asgharzadeh and Abdi [4].
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3. A BASIC THEOREM ON THE MACR

Let T = T (X) be a sufficient statistic of parameter θ = (β, η) with pdf (probability
density function) f(t; θ), where t ∈ T (X ) , θ ∈ Θ. Here, X denotes the random sample with
sample space X , and Θ is the parameter space.

According to the Sufficiency Principle in mathematical statistics (e.g., Bickel and Dok-
sum [8], Casella and Berger [9]), we only need to consider the confidence region C(T ) based
on sufficient statistic T = T (X), without loss of information from the sample X. The purpose
of using the sufficient statistic to simplify or reduce the sample X to T = T (X), so that we
have T (X ) = Θ to be used in the following theorem. This theorem creates the MACR for θ

under some restriction, where |C| denotes the area of any confidence region C.

Theorem 3.1. Suppose that for any θ ∈ Θ,

1. T = T (X) is a sufficient statistic of θ with pdf f(t; θ), such that T (X ) = Θ;

2. There exists some p(θ) > 0, such that f̃(T ; θ) = f(T ; θ)/p(θ) is a pivotal quantity;

3. The confidence region Ck(T ) is defined by

Ck(T ) = {θ : f̃(T ; θ) ≥ k, θ ∈ Θ},

where k > 0 is the critical value determined by P [θ ∈ Ck(T )] = 1− α for any α ∈
(0, 1).

Then Ck(T ) is the level 1− α MACR of θ, under restriction

(3.1)
∫

θ∈C(t)

dt ≤ rk(θ)|C(θ)|

for any C(T ) and θ ∈ Θ, where rk(θ)=
∫

θ∈Ck(t)

dt/|Ck(θ)|.

Proof: Let C(T ) be any level 1−α confidence region of θ, satisfying
∫

θ∈C(t)

dt ≤ rk(θ)|C(θ)|.

Then for any θ ∈ Θ,

1− α ≤ P [θ ∈ C(T )] =
∫

θ∈C(t)

[f(t; θ)− kp(θ)]dt + kp(θ)
∫

θ∈C(t)

dt.

It follows from P [θ ∈ Ck(T )] = 1− α that

0 ≤ P [θ ∈ C(T )]− P [θ ∈ Ck(T )]

= dk(θ) + kp(θ)
[ ∫
θ∈C(t)

dt−
∫

θ∈Ck(t)

dt
]

≤ kp(θ)rk(θ)
[
|C(θ)| − |Ck(θ)|

]
,
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where

dk(θ) =
( ∫

θ∈C(t)

dt−
∫

θ∈Ck(t)

dt
)
[f(t; θ)− kp(θ)]dt

=
( ∫

θ∈C(t)∩Ck(t)

−
∫

θ∈Ck(t)∩C(t)

)
[f(t; θ)− kp(θ)]dt ≤ 0

where C denotes the complementary set of C, and f(t; θ)− kp(θ) ≥ or ≤ 0 if θ ∈ Ck(t)
or θ ∈ Ck(t). It follows that |C(θ)| − |Ck(θ)| ≥ 0 or |Ck(θ)| ≤ |C(θ)| for any θ ∈ Θ, which,
together with T (X ) = Θ, implies that |Ck(T )| ≤ |C(T )| for any T . The proof is complete.

This theorem extends the basic theorems in Zhang [28, 29], which are valid for building
the MACRs of parameters for normal and exponential distributions, but are not for the
Weibull(β, η) distribution. By Theorem 3.1, Ck(T ) is the level 1−α optimal confidence region
of θ, minimizing the area of any level 1− α confidence region C(T ) under the restriction in
(3.1). This restricted condition may look complicated, but the MACR Ck(T ) does satisfy
this condition, due to ∫

θ∈Ck(t)

dt = rk(θ)|Ck(θ)|.

Moreover, there is no need to check which C(T ) is under the restriction. The situation is like
that of using Lehmann-Scheffé theorem to build the UMVUE (uniformly minimum variance
unbiased estimator), without need to check which estimator is unbiased (e.g., Bickel and
Doksum [8], Casella and Berger [9]).

A similar theorem was established in Jeyaratnam [14]. The minimum volume confidence
region built by Jeyaratnam is based on a pivotal quantity T (X, θ) such that for each x, T (x, θ)
is a one-to-one map on Θ whose Jacobian J does not depend on θ, and it is optimal for any
level 1− α confidence region based on the special pivotal quantity.

4. FORMULATION OF THE MACR BASED ON RECORDS

Based on n record values R1 < R2 < ··· < Rn from Weibull(β, η), we now apply Theo-
rem 3.1 to derive the MACR for parameter θ = (β, η). Let

Z =
n−1∑
i=1

log(Rn/Ri).

Then (Z,Rn) is a sufficient statistic for (β, η), according to Wang and Ye [24]. Being its equiv-
alent statistic, T = (Z, log Rn/Z) is also sufficient for (β, η). By Section 2, U = 2βZ ∼ χ2

2n−2

and V = 2(Rn
η )β ∼χ2

2n, which are independent. Thus, (U, V ) has pdf fχ2
2n−2

(u)fχ2
2n
(v), u,v > 0,

and the pdf of T = (T1, T2) is

f(t1, t2;β, η) = fχ2
2n−2

(2βt1)fχ2
2n

[2(
et1t2

η
)β]

∣∣∣ ∂(u, v)
∂(t1, t2)

∣∣∣, t1 > 0,
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where fχ2
m

(x) (Fχ2
m

(x)) denotes the pdf (cdf) of χ2
m, U = 2βT1, V = 2( eT1T2

η )β and Jacobian

| ∂(u,v)
∂(t1,t2) | = 4β2t1( et1t2

η )β .

Treating R = (R1, R2, ..., Rn) as the random sample X in Section 3, we can see that
T = (Z, log Rn/Z) is a sufficient statistic for θ = (β, η), satisfying the conditions 1 and 2 in
Theorem 3.1, where the pivotal quantity is

f̃(t1, t2;β, η) = fχ2
2n−2

(2βt1)fχ2
2n

[2(
et1t2

η
)β] · (2βt1) · 2(

et1t2

η
)β, t1 > 0.

Hence, the level 1− α MACR for (β, η) is Ck(T ) = {(β, η) : f̃(T1, T2;β, η) ≥ k} or

(4.1) Ck(T ) = {(β, η) : g(βZ) + h((Rn/η)β) ≤ kα},

where g(x) = x− (n− 1) log x and h(y) = y − n log y are both convex functions, and kα is a
critical value to be determined.

Let k(x) ≡ kα − g(x), k̃ ≡ kα − hmin and hmin = h(n). Then the confidence region in
(4.1) can be equivalently expressed as

Ck(T ) =

{
g(βZ) ≤ k̃,

h((Rn/η)β) ≤ k(βZ),

for computational purpose. From the property of convex function, g(βZ) ≤ k̃ is equivalent to
k1 ≤ βZ ≤ k2 with g(k1) = g(k2) = k̃, and h((Rn/η)β) ≤ k(βZ) means k11(βZ) ≤ (Rn/η)β ≤
k12(βZ) with h(k11(βZ)) = h(k12(βZ)) = k(βZ). Finally, the level 1− α MACR for (β, η) in
(4.1) can be written as

(4.2) Ck(T ) =

 k1/Z ≤ β ≤ k2/Z,

Rn/[k12(βZ)]
1
β ≤ η ≤ Rn/[k11(βZ)]

1
β ,

where g(x) = x− (n− 1) log x with g(k1) = g(k2) = k̃, h(y) = y − n log y with h(k11(βZ)) =
h(k12(βZ)) = k(βZ), and the critical value kα is determined by

1− α = P [(β, η) ∈ Ck(T )]

= P [g(βZ) + h((Rn/η)β) ≤ kα]

=
∫ ∞

0

∫ ∞

0
g(x)+h(y)≤kα

4fχ2
2n−2

(2x)fχ2
2n

(2y)dxdy

=
∫ k2

k1

∫ k12(x)

k11(x)
4fχ2

2n−2
(2x)fχ2

2n
(2y)dxdy

=
∫ k2

k1

2fχ2
2n−2

(2x)[Fχ2
2n

(2k12(x))− Fχ2
2n

(2k11(x))]dx,

where kα > gmin +hmin and h(k11(x)) = h(k12(x)) = kα−g(x). A short R code (R Core Team
[18]) for computing kα, k1, k2, k11(x), k12(x) in (4.2) is given in Appendix A, where the last
integral in the above equation is computed by using Simpson’s rule for numerical integration
(the interval [k1, k2] is split up into 1000 subintervals).
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5. COMPARISON OF CONFIDENCE REGIONS

In the statistical literature, the commonly used measure of accuracy for a confidence
region is its volume (area). Clearly, the smaller the volume (area), the more accurate the
confidence region. To compare the MACR in (4.1) or (4.2) with the classical confidence
regions in (2.1) and (2.2), we now discuss their areas as follows.

Given the sample data of upper record values: R = (R1, R2, ..., Rn), the area of the
classical confidence region in (2.1) is

|Aj | =
∫ log[1+

n−j
j F2(n−j),2j(α2)]

log(Rn/Rj)

log[1+
n−j

j F2(n−j),2j(α1)]

log(Rn/Rj)

Rn[(
2

χ2
2n(α1)

)
1
β − (

2
χ2

2n(α2)
)

1
β ]dβ,

where the integral can be computed by using Simpson’s rule for numerical integration.

Similarly, the area of the classical confidence region in (2.2) is

|B| =
∫ χ2

2n−2(α2)

2
Pn

i=1
log(Rn/Ri)

χ2
2n−2(α1)

2
Pn

i=1
log(Rn/Ri)

Rn[(
2

χ2
2n(α1)

)
1
β − (

2
χ2

2n(α2)
)

1
β ]dβ,

and the area of the MACR in (4.1) or (4.2) is

|Ck(T )| =
∫ k2/Z

k1/Z
Rn[(

1
k11(βZ)

)
1
β − (

1
k12(βZ)

)
1
β ]dβ

=
Rn

Z

∫ k2

k1

[(
1

k11(x)
)

Z
x − (

1
k12(x)

)
Z
x ]dx.

Monte Carlo simulation is conducted to compute the expected areas of confidence re-
gions in (2.1), (2.2) and (4.1). Since η is the scale parameter of Weibull(β, η), we can set
η = 1 without loss of generality. We generate N = 1000 independent upper record values
R(i) = (R(i)

1 , R
(i)
2 , ..., R

(i)
n ) from Weibull(β, 1), where i = 1, 2, ..., N . Then

∑N
i=1 |C(R(i))|/N

is used to simulate E|C(R)|, the expected area of C(R).

Table 1 lists the expected areas of confidence regions in (2.1), (2.2) and (4.1), where
A∗ stands for the smallest-area confidence region in (2.1), B represents the confidence region
in (2.2), and Ck(T ) is the MACR in (4.1). We see from Table 1 that the MACR is always
the best for having the smallest expected area.

Example 5.1. Roberts [19] gave the monthly maximal of one-hour average concen-
tration of sulfur dioxide in pphm (parts per hundred million) from Long Beach, California,
for the years 1956 to 1974. The related upper record values for the month of October is 26,
27, 40 and 41, where n = 4 and R4 = 41.
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Table 1: Expected areas of confidence regions for (β, η) with η = 1.

β
1− α n Region

0.25 0.5 1.0 1.2 1.5 2.0 3.0 5.0

A∗ 403.8 17.92 6.110 5.250 4.788 4.275 4.054 3.911
5 B 336.7 14.93 5.347 4.660 4.127 3.876 3.620 3.565

Ck(T ) 315.1 14.01 5.113 4.403 3.890 3.569 3.415 3.364

A∗ 214.6 10.17 2.982 2.525 2.253 2.064 1.926 1.893
10 B 140.0 6.644 2.384 2.123 1.881 1.756 1.648 1.618

Ck(T ) 108.7 6.392 2.232 1.889 1.793 1.651 1.549 1.546

A∗ 152.4 6.399 1.970 1.717 1.503 1.364 1.283 1.264
0.90 15 B 73.04 4.232 1.491 1.291 1.174 1.122 1.068 1.069

Ck(T ) 67.13 4.129 1.464 1.267 1.128 1.075 1.031 1.003

A∗ 108.1 4.788 1.434 1.233 1.110 1.028 0.973 0.952
20 B 55.59 2.741 1.067 0.962 0.900 0.854 0.788 0.780

Ck(T ) 45.46 2.605 1.035 0.908 0.876 0.789 0.767 0.744

A∗ 76.49 2.806 0.906 0.812 0.741 0.666 0.635 0.629
30 B 37.69 1.712 0.684 0.617 0.571 0.539 0.521 0.518

Ck(T ) 21.18 1.505 0.659 0.601 0.550 0.517 0.491 0.494

A∗ 697.9 27.58 8.752 7.528 6.373 5.800 5.417 5.228
5 B 578.3 22.50 7.254 6.413 5.559 5.167 4.787 4.743

Ck(T ) 509.4 21.82 6.919 6.050 5.258 4.756 4.471 4.408

A∗ 420.0 13.81 4.003 3.490 3.108 2.673 2.538 2.520
10 B 228.6 8.852 3.135 2.772 2.490 2.289 2.184 2.142

Ck(T ) 198.0 8.648 2.931 2.668 2.342 2.129 2.048 2.004

A∗ 336.2 9.370 2.714 2.326 2.006 1.817 1.682 1.670
0.95 15 B 138.0 6.083 2.057 1.756 1.615 1.494 1.412 1.393

Ck(T ) 111.1 5.490 1.911 1.685 1.530 1.420 1.311 1.299

A∗ 179.8 7.024 1.998 1.694 1.457 1.356 1.271 1.251
20 B 78.08 4.305 1.429 1.275 1.195 1.097 1.038 1.022

Ck(T ) 70.62 3.659 1.328 1.218 1.112 1.034 0.988 0.965

A∗ 112.8 3.929 1.278 1.093 0.987 0.890 0.845 0.830
30 B 50.17 2.508 0.925 0.825 0.766 0.714 0.693 0.675

Ck(T ) 39.10 2.265 0.911 0.780 0.722 0.676 0.646 0.643

A∗ 3731 71.42 16.96 13.87 11.68 9.785 8.808 8.413
5 B 2566 56.98 14.70 12.25 10.13 8.881 8.004 7.626

Ck(T ) 1541 45.17 11.68 10.10 8.757 7.533 6.943 6.690

A∗ 1022 29.63 7.443 5.990 5.039 4.394 4.002 3.943
10 B 568.6 19.05 5.510 4.588 4.046 3.675 3.424 3.349

Ck(T ) 434.5 16.75 5.099 4.293 3.778 3.368 3.147 3.054

A∗ 750.5 19.30 4.685 3.835 3.263 2.866 2.687 2.600
0.99 15 B 367.2 11.27 3.356 2.927 2.561 2.321 2.225 2.178

Ck(T ) 309.7 10.25 3.104 2.684 2.396 2.160 2.013 2.002

A∗ 477.4 13.45 3.479 2.863 2.507 2.159 1.993 1.946
20 B 212.1 7.883 2.496 2.174 1.889 1.741 1.634 1.600

Ck(T ) 179.1 7.291 2.292 1.968 1.772 1.624 1.533 1.482

A∗ 306.3 8.630 2.204 1.892 1.597 1.460 1.330 1.300
30 B 115.9 4.887 1.497 1.370 1.239 1.141 1.070 1.068

Ck(T ) 79.47 4.170 1.471 1.290 1.125 1.044 1.002 0.981

Chan [10] showed that Weibull(β, η) is a reasonable model for the data set. Then the
level 95% MACR for (β, η) in (4) is given by

Ck(T ) = {(β, η) : 0.8979β − 3 log(0.8979β) + (41/η)β − 4β log(41/η) ≤ kα}

with area 154.908, where kα = 1.297, k1 = 0.451 and k2 = 9.640 are obtained by using the
R code in Appendix A.
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The level 95% confidence regions for (β, η) in (2.1) are

A1 = {(β, η) : 0.5826 ≤ β ≤ 11.9955, 41(0.1029)
1
β ≤ η ≤ 41(1.1318)

1
β },

A2 = {(β, η) : 0.1646 ≤ β ≤ 6.4905, 41(0.1029)
1
β ≤ η ≤ 41(1.1318)

1
β },

A3 = {(β, η) : 0.1720 ≤ β ≤ 58.9824, 41(0.1029)
1
β ≤ η ≤ 41(1.1318)

1
β },

with areas 195.118, 166.671 and 369.396 respectively.

The level 95% confidence region for (β, η) in (2.2) is

B = {(β, η) : 0.5305 ≤ β ≤ 9.0277, 41(0.1029)
1
β ≤ η ≤ 41(1.1318)

1
β }

with area 172.502. The plots of the confidence regions for MACR, A2 and B are displayed in
Figure 1, where the MACR has the smallest area and better shape.

0 5 10 15
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40
60

80
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et
a
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Figure 1: 95% confidence regions MACR, A2, B and YSCR for (β, η).

For comparison, consider the confidence region (YSCR) of (β, η) in Chen [12] for a
complete sample X = (X1, X2, ..., Xn). Here the original data set of X is (n = 19)

26, 14, 27, 15, 16, 16, 11, 10, 14, 12, 15, 40, 29, 13, 20, 41, 31, 28, 11.

Then Chen’s level 95% confidence region (YSCR) for (β, η) is
1.9056 ≤ β ≤ 6.6327,

(
2

∑n
i=1 Xβ

(i)

60.0972
)

1
β ≤ η ≤ (

2
∑n

i=1 Xβ
(i)

21.2138
)

1
β ,

which has area 34.2436 and is also plotted in Figure 1. Clearly, the YSCR is much more
accurate, but it is based on a complete sample with n = 19.
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A. APPENDIX: R code for computing kα, k1, k2, k11(x), k12(x) in (4.2)

# Compute the critical value k, k1, k2, k11(x), k12(x) at level Pk=1-c.
# n= sample size
f <- function(n,c) {a <- (n-1)*(1-log(n-1))+n*(1-log(n)); b <- 50
g <- function(x) x-(n-1)*log(x)
h <- function(y) y-n*log(y)
# Step 1: find k1 < k2 so that g(k1)=g(k2)=k-h(n).
k1k2 <- function(n,k) {a <- 0; b <- n-1
kk<- k-(n-n*log(n))
for (i in 1:50) if (g((a+b)/2)<kk) b <- (a+b)/2 else a <- (a+b)/2
k1 <- (a+b)/2; a <- n-1; b <- n+100
for (i in 1:50) if (g((a+b)/2)<kk) a <- (a+b)/2 else b <- (a+b)/2
k2 <- (a+b)/2; c(k1,k2)}
# Step 2: find k11(x) < k12(x) so that h(k11(x))=h(k12(x))=k-g(x).
k11k12 <- function(n,k,x) {a <- 0; b <- n
kk<- k-g(x)
for (i in 1:50) if (h((a+b)/2)<kk) b <- (a+b)/2 else a <- (a+b)/2
k11x <- (a+b)/2; a <- n; b <- n+100
for (i in 1:50) if (h((a+b)/2)<kk) a <- (a+b)/2 else b <- (a+b)/2
k12x <- (a+b)/2; c(k11x,k12x)}
# Step 3: find k so that Pk=1-c.
Int<- function(n,k) {N <- 1000
K <- k1k2(n,k)
H <- (K[2]-K[1])/N; df <- 2*(n-1)
P <- function(x) {
KK <-k11k12(n,k,x)
2*dchisq(2*x,df)*(pchisq(2*KK[2],2*n)-pchisq(2*KK[1],2*n))}
x1 <- K[1]+((1:N)-0.5)*H ; x2 <- K[1]+(1:(N-1))*H
s1<-0; s2<-0
for (j in 1:N) s1<- s1+P(x1[j])
for (j in 1:(N-1)) s2<- s2+P(x2[j])
Pk <- H/6*(P(K[1])+P(K[2])+4*s1+2*s2); c(Pk,K) }
for (i in 1:100) {
R <- Int(n,(a+b)/2)
if (R[1]<1-c) a <-(a+b)/2 else b<-(a+b)/2}
k <- (a+b)/2; list(k=k,k1=R[2],k2=R[3])}
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1. INTRODUCTION

The Kullback–Leibler (KL) divergence (also known as relative entropy) is a measure of
discrimination between two probability distributions. If the random variables X and Y have
probability density functions f and g, respectively, the KL divergence of f relative to g is
defined as

D (f ||g) =
∫
R

f (x) log
f (x)
g (x)

dx,

for x such that g(x) 6= 0. The function D (f ||g) is always nonnegative and it is zero if and
only if f = g a.s.

Let fθ belong to a parametric family with p-dimensional parameter vector θ ∈ Θ ⊂ Rp

and fn be a kernel density estimator of fθ based on n random variables {X1, ..., Xn} of
distribution of X. Basu and Lindsay [3] used KL divergence of fn relative to fθ as

(1.1) D
(
fn||fθ

)
=
∫
R

fn (x) log
fn (x)
f (x;θ)

dx,

and defined the minimum KL divergence estimator of θ as

θ̂ = arg inf
θ∈Θ

D
(
fn||fθ

)
.

Lindsay [19] proposed a version of (1.1) in discrete setting. In recent years, many
authors such as Morales et al. [21], Jiménez and Shao [17], Broniatowski and Keziou [6],
Broniatowski [5], Cherfi [7, 8, 9] studied the properties of minimum divergence estimators
under different conditions. Basu et al. [4] discussed in their book about the statistical inference
with the minimum distance approach.

Although the method of estimation based on D
(
fn||fθ

)
has very interesting properties,

the definition is based on f which, in general, may not exist.

Let X be a random variable with cumulative distribution function (c.d.f.) F (x) =
P (X ≤ x) and survival function (s.f.) F̄ (x) = 1− F (x). Based on n observations {x1, ..., xn}
of distribution F , define the empirical cumulative distribution and survival functions, respec-
tively, by

(1.2) Fn (x) =
n∑

i=1

i

n
I[x(i),x(i+1)) (x) ,

and

(1.3) F̄n (x) =
n−1∑
i=0

(
1− i

n

)
I[x(i),x(i+1)) (x) ,

where I is the indicator function and (−∞ = x(0) ≤) x(1) ≤ x(2) ≤ ··· ≤ x(n) (≤ x(n+1) = ∞)
are the order observations corresponding to the sample. The function Fn (F̄n) is known in
the literature as “empirical estimator” of F (F̄ ).
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In the case when X and Y are continuous nonnegative random variables with s.f.’s F̄
and Ḡ, respectively, a version of KL divergence in terms of s.f.’s F̄ and Ḡ can be given as
follows:

KLS
(
F̄ ||Ḡ

)
=
∫ ∞

0
F̄ (x) log

F̄ (x)
Ḡ(x)

dx− [E (X)− E (Y )] .

The properties of this divergence measure are studied by some authors such as Liu [20]
and Baratpour and Habibi Rad [1].

In order to estimate the parameters of a statistical model Fθ, Liu [20] proposed cu-
mulative KL divergence between the empirical survival function F̄n and survival function F̄θ
(we call it CKL

(
F̄n||F̄θ

)
) as

CKL
(
F̄n||F̄θ

)
=
∫ ∞

0

(
F̄n (x) log

F̄n (x)
F̄ (x;θ)

−
[
F̄n (x)− F̄ (x;θ)

])
dx

=
∫ ∞

0
F̄n (x) log F̄n (x) dx−

∫ ∞

0
F̄n (x) log F̄ (x;θ) dx−

[
x̄− Eθ (X)

]
,

where x is the observed sample mean. The cited author defined minimum CKL divergence
estimator (MCKLE) of θ as

θ̂ = arg inf
θ∈Θ

CKL
(
F̄n (x) ||F̄θ

)
.

If we consider the parts of CKL
(
F̄n||F̄

)
that depends on θ and define

(1.4) g (θ) = Eθ (X)−
∫ ∞

0
F̄n (x) log F̄ (x;θ) dx,

then the MCKLE of θ can equivalently be defined by

θ̂ = arg inf
θ∈Θ

g (θ) .

Two important advantages of this estimator are that one does not need to have the
density function and that for large values of n the empirical estimator Fn tends to the dis-
tribution function F . Liu [20] applied this estimator in uniform and exponential models and
Yari and Saghafi [35] and Yari et al. [34] used it for estimating parameters of Weibull dis-
tribution; see also Park et al. [26] and Hwang and Park [16]. Yari et al. [34] found a simple
form of (1.4) as

(1.5) g (θ) = Eθ (X)− 1
n

n∑
i=1

h (xi) = Eθ (X)− h (x),

where h (x) = 1
n

∑n
i=1 h (xi), and

(1.6) h (x) =
∫ x

0
log F̄ (y;θ) dy.
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They also proved that

E (h (X)) =
∫ ∞

0
F̄ (x;θ) log F̄ (x;θ) dx,

which shows that if n tends to infinity, then CKL
(
F̄n||F̄θ

)
converges to zero.

The aim of the present paper is to extend the definition of MCKLE to the case that
the random variable of interest has support in whole real line. In the process of doing so we
also investigate asymptotic properties of MCKLE and provide some examples.

Recently Park et al. [24] extended the cumulative Kullback–Leibler information to the
whole real line as

CRKL (F : G) =
∫ ∞

−∞
F̄ (x) log

F̄ (x)
Ḡ(x)

dx− [E (X)− E (Y )] ,

and

CKL (F : G) =
∫ ∞

−∞
F (x) log

F (x)
G(x)

dx− [E (Y )− E (X)] .

They proposed a general cumulative Kullback–Leibler information as

GCKLα (F : G) = αCKL (F : G) + (1− α) CRKL (F : G) , 0 ≤ α ≤ 1,

and studied its application to a test for normality in comparison with some competing test
statistics based on the empirical distribution function.

The rest of the paper is organized as follows: In Section 2, we propose an extension
of the MCKLE in the case when the support of the distribution is real line and present
some illustrative examples. In Section 3, we show that the proposed estimator belongs to
the class of generalized estimating equations (GEE). Asymptotic properties of MCKLE such
as consistency, normality are investigated in this section. Several examples are given in this
section. We have shown, among other examples, that when the underlying distribution is
generalized Pareto one can employ MCKLE to estimate the shape parameter of the model,
for a subset of parameter space, while the MLE does not exist in that subset. In Section 4,
we extend the results to the type I censored data.

2. AN EXTENSION OF MCKLE

In this section, we propose an extension of the MCKLE for the case when X is assumed
to be a continuous random variable with support R. It is known that [30]

Eθ |X| =
∫ 0

−∞
F (x) dx+

∫ ∞

0
F̄ (x) dx.

We first give an extension of CKL divergence for the case that the random variables
are distributed over real line R.
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Definition 2.1. Let X and Y be random variables on R with c.d.f.’s F and G, s.f.’s
F̄ and Ḡ and finite means E (X) and E (Y ), respectively. The CKL divergence of F̄ relative
to Ḡ is defined as

CKL
(
F̄ ||Ḡ

)
=
∫ 0

−∞

{
F (x) log

F (x)
G (x)

− [F (x)−G (x)]
}
dx

+
∫ ∞

0

{
F̄ (x) log

F̄ (x)
Ḡ (x)

−
[
F̄ (x)− Ḡ (x)

]}
dx

=
∫ 0

−∞
F (x) log

F (x)
G (x)

dx+
∫ ∞

0
F̄ (x) log

F̄ (x)
Ḡ (x)

dx− [E |X| − E |Y |] .

An application of the log-sum inequality and the fact that, for all x, y > 0 x log x
y ≥ x−

y, (equality holds if and only if x = y) show that the CKL is non-negative. Using the fact that
in log-sum inequality, equality holds if and only if F = G, a.s., one gets that CKL

(
F̄ ||Ḡ

)
= 0

if and only if F = G, a.s.

Let Fθ be the population c.d.f. with unknown parameter θ ∈ Θ ⊆ Rp and Fn be the
empirical c.d.f. based on a random sample X1, X2, ..., Xn from Fθ. Based on the above
definition, the CKL divergence of F̄n relative to F̄θ is defined as

CKL
(
F̄n||F̄θ

)
=
∫ 0

−∞
Fn (x) log

Fn (x)
F (x;θ)

dx+
∫ ∞

0
F̄n (x) log

F̄n (x)
F̄ (x;θ)

dx−
[
|x| − Eθ |X|

]
,

where |x| is the mean of absolute values of the observations. Let us also define

(2.1) g (θ) = Eθ |X| −
∫ 0

−∞
Fn (x) logF (x;θ) dx−

∫ ∞

0
F̄n (x) log F̄ (x;θ) dx.

Now, we have the following definition which is an extension of CKL estimator in Liu approach:

Definition 2.2. Assume that Eθ |X| <∞ and g′′(θ) is positive definite. Then, under
the existence, we define MCKLE of θ to be a value in the parameter space Θ which minimizes
g(θ).

If X is nonnegative, then g (θ) in (2.1) reduces to (1.4). So the results of Liu [20],
Yari and Saghafi [35], Yari et al. [34], Park et al. [26] and Hwang and Park [16] yield as
special cases. It should be noted that by the law of large numbers Fn converges to Fθ and
F̄n converges to F̄θ as n tends to infinity. Consequently CKL

(
F̄n||F̄θ

)
converges to zero as

n tends to infinity.

In order to study the properties of the estimator, we first find a simple form of (2.1).
Let us introduce the following notations:

u (x) =
∫ 0

x
logF (y;θ) dy,

for x < 0, and

(2.2) s (x) = I(−∞,0) (x)u (x) + I[0,∞) (x)h (x) ,
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for x ∈ R, where h is defined in (1.6). Assuming that x(1), x(2), ..., x(n) denote the ordered
observed values of the sample and that x(k) < 0 ≤ x(k+1), for some value of k, k = 0, ..., n
(x(0) = −∞), then by (1.2) and (1.3), we have

∫ 0

−∞
Fn (x) logF (x;θ) dx =

k−1∑
i=1

i

n

x(i+1)∫
x(i)

logF (x;θ) dx+
k

n

0∫
x(k)

logF (x;θ) dx

=
1
n

k−1∑
i=1

i
[
u
(
x(i)

)
− u

(
x(i+1)

)]
+
k

n
u
(
x(k)

)
=

1
n

k∑
i=1

u
(
x(i)

)
.

Using the same steps, we have∫ ∞

0
F̄n (x) log F̄ (x;θ) dx =

1
n

n∑
i=k+1

h
(
x(i)

)
.

So, g (θ) in (2.1) gets the simple form

g (θ) = Eθ |X| −
1
n

k∑
i=1

u
(
x(i)

)
− 1
n

n∑
i=k+1

h
(
x(i)

)
= Eθ |X| −

1
n

n∑
i=1

s (xi) = Eθ |X| − s (x).(2.3)

If k = 0 (i.e., X is nonnegative), then g (θ) in (2.3) reduces to (1.5). It can be easily
seen that

E (s (X)) =
∫ 0

−∞
F (x;θ) logF (x;θ) dx+

∫ ∞

0
F̄ (x;θ) log F̄ (x;θ) dx,

In the following, we give some examples.

Example 2.1. Let {X1, ..., Xn} be i.i.d. Normal random variables with probability
density function

φ (x;µ, σ) =
1√

2πσ2
exp

(
−1

2

(
x− µ

σ

)2
)
, x ∈ R, µ ∈ R, σ > 0.

In this case E (|X|) = µ
[
2Φ
(µ

σ

)
− 1
]
+ 2σφ

(µ
σ

)
, where Φ denotes the distribution function

of standard normal. For this distribution, h (x), u (x) and g (µ, σ) do not have closed forms.
The zeros of the gradient of g (µ, σ) with respect to µ and σ give respectively

2nΦ
(µ
σ

)
− n −

k∑
i=1
xi<0

log Φ
(
xi − µ

σ

)
+ k log Φ

(
−µ
σ

)

+
n∑

i=k+1
xi≥0

log Φ
(
µ− xi

σ

)
− (n− k) log Φ

(µ
σ

)
= 0,
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and

(2.4) 2nφ
(µ
σ

)
+

k∑
i=1
xi<0

∫ −µ
σ

xi−µ

σ

zφ (z)
Φ (z)

dz −
n∑

i=k+1
xi≥0

∫ xi−µ

σ

−µ
σ

zφ (z)
1− Φ (z)

dz = 0.

To obtain our estimators, we need to solve these equations numerically. For computa-
tional purposes, the following equivalent equation can be solved instead of (2.4).

2φ
(µ
σ

)
+
∫ −µ

σ

x(1)−µ

σ

Fn (µ+ σz)
zφ (z)
Φ (z)

dz −
∫ x(n)−µ

σ

−µ
σ

F̄n (µ+ σz)
zφ (z)

1− Φ (z)
dz = 0.

Figure 1 compares these estimators with the corresponding MLE’s. In order to compare
our estimators and the MLE’s we made a simulation study in which we used samples of sizes 10
to 55 by 5 with 10000 repeats, where we assume that the true values of the model parameters
are µtrue = 2 and σtrue = 3. It is evident from the plots that the MCKLE approximately
coincides with the MLE in both cases.
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Figure 1: µ̄/µtrue, S2 (µ̄), σ̄/σtrue and S2 (σ̄) as functions of sample size.

Example 2.2. Let {X1, ..., Xn} be i.i.d. Laplace random variables with probability
density function

f (x; θ) =
1
2θ

exp
(
−
∣∣∣x
θ

∣∣∣) , x ∈ R, θ > 0.
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We simply have MCKLE of θ as

θ̂ =

√
X2

2
.

This is exactly the moment estimator of θ.

3. ASYMPTOTIC PROPERTIES OF ESTIMATORS

In this section we study asymptotic properties of MCKLE’s. For this purpose, first we
give a brief review on GEE. Some related references on GEE are Huber [13], Serfling [31],
Qin and Lawless [29], van der Vaart [33], Pawitan [28], Shao [32], Huber and Ronchetti [15]
and Hampel et al. [12].

Throughout this section, we use the terminology from Shao [32]. We assume that
X1, ..., Xn represents independent random vectors, in which the dimension of Xi is di, i =
1, ..., n (supi di <∞). We also assume that in the population model the vector θ is a p-vector
of unknown parameters. The GEE method is a general method in statistical inference for
deriving point estimators. Let Θ ⊂ Rp be the range of θ, ψi be a Borel function from Rdi ×Θ
to Rp, i = 1, ..., n, and

sn(γ) =
n∑

i=1

ψi (Xi,γ) , γ ∈ Θ.

If θ̂ ∈ Θ is an estimator of θ which satisfies sn(θ̂) = 0, then θ̂ is called a GEE estimator.
The equation sn (γ) = 0 is called a GEE. Most of the estimation methods such as likelihood
estimators, moment estimators and M-estimators are special cases of GEE estimators. Usu-
ally GEE’s are chosen such that

(3.1) E [sn (θ)] =
n∑

i=1

E [ψi (Xi,θ)] = 0.

If the exact expectation does not exist, then the expectation E may be replaced by an
asymptotic expectation. The consistency and asymptotic normality of the GEE are studied
under different conditions (see, for example Shao [32]).

3.1. Consistency and asymptotic normality of the MCKLE

Let θ̂n be MCKLE which minimizes g in (2.3) with s as defined in (2.2). Here, we
show that the MCKLE’s are special cases of GEE. Using this, we show the consistency and
asymptotic normality of MCKLE’s.

Theorem 3.1. MCKLE’s, by minimizing g in (2.3), are special cases of GEE estima-

tors.
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Proof: In order to minimize g in (2.3), we get the derivative of g, under the assumption
that it exists,

∂

∂θ
g (θ) =

∂

∂θ
Eθ |X| −

1
n

n∑
i=1

∂

∂θ
s (xi) = 0,

which is equivalent to GEE sn (θ) = 0 where

(3.2) sn (θ) =
n∑

i=1

[
∂

∂θ
Eθ |X| −

∂

∂θ
s (xi)

]
=

n∑
i=1

ψ (xi,θ) ,

with

(3.3) ψ (x,θ) =
∂

∂θ
Eθ |X| −

∂

∂θ
s (x) .

Now E [sn (θ)] = 0, since

(3.4) E

[
∂

∂θ
s (X)

]
=

∂

∂θ
Eθ |X| ,

that can be proven by some simple algebra. This proves the result.

Corollary 3.1. In the special case when the support of X is R+, MCKLE is an special

case of GEE estimators, where

(3.5) sn (θ) =
n∑

i=1

[
∂

∂θ
Eθ (X)− ∂

∂θ
h (xi)

]
=

n∑
i=1

ψ (xi,θ) ,

with

(3.6) ψ (x,θ) =
∂

∂θ
Eθ (X)− ∂

∂θ
h (x) .

The MCKLE’s are consistent estimators under mild conditions. To see this, let for each
n θ̂n be an MCKLE or equivalently a GEE estimator, i.e., sn

(
θ̂n

)
= 0, where sn is defined as

(3.2) or (3.5). Suppose that ψ defined in (3.3) or (3.6) is a bounded and continuous function
of θ. Let also

Ψ (θ) = E [ψ (X,θ)] ,

where we assume that Ψ′ (θ) exists and is full rank. Then, from Proposition 5.2 of Shao [32]
and using the fact that (3.1) holds, θ̂n

p→ θ.

Asymptotic normality of a consistent sequence of MCKLE’s can be established under
some conditions. We first consider the special case where θ is scalar and X1, ..., Xn are i.i.d.

Theorem 3.2. Let θ̂n be a consistent MCKLE of θ. Then

√
n
(
θ̂n − θ

)
d→ N

(
0, σ2

F

)
,

where σ2
F = A/B2, with

A = E

[
∂

∂θ
s (X)

]2

−
[
∂

∂θ
Eθ |X|

]2

,

and

B =
∫ 0

−∞

[
∂

∂θ
F (x;θ)

]2
F (x;θ)

dx+
∫ ∞

0

[
∂

∂θ
F̄ (x;θ)

]2
F̄ (x;θ)

dx.
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Proof: Using Theorem 3.1 we have E [ψ (X,θ)] = 0. So if we consider ψ defined in
(3.3), we have

E [ψ (X,θ)]2 = Var [ψ (X,θ)]

= Var
[
∂

∂θ
Eθ |X| −

∂

∂θ
s (X)

]
= Var

[
∂

∂θ
s (X)

]
= E

[
∂

∂θ
s (X)

]2

−
[
∂

∂θ
Eθ |X|

]2

,

where the last equality follows from (3.4). On the other hand

Ψ′ (θ) =
∂2

∂θ2Eθ |X| − E

[
∂2

∂θ2 s (X)
]
,

and

E

[
∂2

∂θ2 s (X)
]

=
∫ 0

−∞

∫ 0

x

∂2

∂θ2 logF (y;θ) dyf (x;θ) dx

+
∫ ∞

0

∫ x

0

∂2

∂θ2 log F̄ (y;θ) dyf (x;θ) dx

=
∫ 0

−∞


∂2

∂θ2F (y;θ)

F (y;θ)
−

[
∂

∂θ
F (y;θ)

F (y;θ)

]2
F (y;θ) dy

+
∫ ∞

0


∂2

∂θ2 F̄ (y;θ)

F̄ (y;θ)
−

[
∂

∂θ
F̄ (y;θ)

F̄ (y;θ)

]2
 F̄ (y;θ) dy

=
∂2

∂θ2Eθ |X| −
∫ 0

−∞

[
∂

∂θ
F (x;θ)

]2
F (x;θ)

dx−
∫ ∞

0

[
∂

∂θ
F̄ (x;θ)

]2
F̄ (x;θ)

dx.

So

Ψ′ (θ) =
∫ 0

−∞

[
∂

∂θ
F (x;θ)

]2
F (x;θ)

dx+
∫ ∞

0

[
∂

∂θ
F̄ (x;θ)

]2
F̄ (x;θ)

dx.

Now, using Theorem 5.13 of Shao [32], σ2
F is given as

σ2
F =

E(ψ2(X,θ))
[Ψ′(θ)]2

.

Similar to Theorem 3.2 it can be shown in the case that θ ∈ Θ ⊆ Rp is vector and
X1, ..., Xn are i.i.d., under the conditions of Theorem 5.14 of Shao [32],

V −1/2
n

(
θ̂n − θ

)
d→ Np (0, Ip) ,

where Vn = 1
nB

−1AB−1 with

A =
[
∂

∂θ
s (X)

] [
∂

∂θ
s (X)

]T
−
[
∂

∂θ
Eθ |X|

] [
∂

∂θ
Eθ |X|

]T
,
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and

B =
∫ 0

−∞

[
∂

∂θ
F (x;θ)

] [
∂

∂θ
F (x;θ)

]T
F (x;θ)

dx+
∫ ∞

0

[
∂

∂θ
F̄ (x;θ)

] [
∂

∂θ
F̄ (x;θ)

]T
F̄ (x;θ)

dx,

provided that B is invertible matrix.

Remark 3.1. In Theorem 3.2 (and the result stated just after that for p dimensional
parameter) if we assume that the support of X is nonnegative A and B are given, respectively,
by

(3.7) A = E

[
∂

∂θ
h (X)

]2

−
[
∂

∂θ
Eθ (X)

]2

,

B =
∫ ∞

0

[
∂

∂θ
F̄ (x;θ)

]2
F̄ (x;θ)

dx,

and

(3.8) A = E

[
∂

∂θ
h (X)

] [
∂

∂θ
h (X)

]T
−
[
∂

∂θ
Eθ (X)

] [
∂

∂θ
Eθ (X)

]T
,

B =
∫ ∞

0

[
∂

∂θ
F̄ (x;θ)

] [
∂

∂θ
F̄ (x;θ)

]T
F̄ (x;θ)

dx.

Now, following Pawitan [28], we can find sample version of the variance formula for the
MCKLE as follows. Given x1, ..., xn let

J = Ê [ψ (X,θ)]2

=
1
n

n∑
i=1

ψ
(
xi, θ̂

)
ψT
(
xi, θ̂

)
=
{
∂

∂θ
s (x)

}{
∂

∂θ
s (x)

}T
∣∣∣∣∣
θ=

bθ

−
{
∂

∂θ
s (x)

}{
∂

∂θ
s (x)

}T
∣∣∣∣∣
θ=

bθ

,(3.9)

and

I = −Ê ∂

∂θ
ψ (X,θ)

= − 1
n

n∑
i=1

∂

∂θ
ψ
(
xi, θ̂

)
= − ∂2

∂θ2Eθ |X|
∣∣∣∣
θ=

bθ
+

∂2

∂θ2 s (x)

∣∣∣∣∣
θ=

bθ

.(3.10)

Using notations defined in (3.9) and (3.10) we have

V̂ −1/2
n

(
θ̂n − θ

)
d→ Np (0, Ip) ,

where

(3.11) V̂n =
1
n
I−1JI−1,



122 Yaser Mehrali and Majid Asadi

provided that I is invertible matrix, or equivalently g (θ) has infimum value on parameter
space Θ. In particular when the support of X is R+, J and I are given, respectively, by

(3.12) J =
{
∂

∂θ
h (x)

}{
∂

∂θ
h (x)

}T
∣∣∣∣∣
θ=

bθ

−
{
∂

∂θ
h (x)

}{
∂

∂θ
h (x)

}T
∣∣∣∣∣
θ=

bθ

,

and

(3.13) I = − ∂2

∂θ2Eθ (X)
∣∣∣∣
θ=

bθ
+

∂2

∂θ2h (x)

∣∣∣∣∣
θ=

bθ

.

In Theorem 3.2, the estimator V̂n is a sample version of Vn, see also Basu and Lindsay
[3]. It is also known that the sample variance (3.11) is a robust estimator which is known
as the ‘sandwich’ estimator, with I−1 as the bread and J as the filling [14]. In likelihood
approach, the quantity I is the usual observed Fisher information.

Example 3.1. Let {X1, ..., Xn} be i.i.d. exponential random variables with probabil-
ity density function

f (x;λ) = λe−λx, x > 0, λ > 0.

We simply have MCKLE of λ as

λ̂ =
√

2

X2
.

This estimator is a function of linear combinations of X2
i ’s, and so by strong law of large

numbers (SLLN), λ̂ is strongly consistent for λ.

Now, using the central limit theorem (CLT) and delta method or using Theorem 3.2,
one can show that

√
n
(
λ̂− λ

)
d→ N

(
0,

5λ2

4

)
,

and the asymptotic bias of λ̂ is of order 1
n : E

(
λ̂− λ

)
= 15λ

8n . It is well known that the MLE

of λ is λ̂m = 1/X̄ with asymptotic distribution

√
n
(
λ̂m − λ

)
d→ N

(
0, λ2

)
,

and the asymptotic bias of λ̂m is of order 1
n : E

(
λ̂m − λ

)
= λ

n .

Notice that using asymptotic bias of λ̂, we can find some unbiasing factors to improve
our estimator. Since the MLE has inverse Gamma distribution, the unbiased estimator of λ
is λ̂um = (n− 1) /nX̄ [10]. In Liu approach an approximately unbiased estimator of λ is

(3.14) λ̂u =
8n

8n+ 15

√
2

X2
.

Figure 2 compares these estimators. In order to compare our estimator and the MLE,
we made a simulation study in which we used samples of sizes 10 to 55 by 5 with 10000
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repeats, where we assumed that the true value of the model parameter is λtrue = 5. The plots
in Figure 2 show that the MCKLE has more bias than the MLE. It is evident from the plots
that the MCKLE in (3.14) which is approximately unbiased is very close to the unbiased
MLE in the sense of biased and variance.

λ λtrue

n

10 15 20 25 30 35 40 45 50 55

1.
00

1.
05
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15

MLE

MCKLE

UMLE

UMCKLE

S2(λ)

n
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1
2

3
4

MLE

MCKLE

UMLE

UMCKLE

Figure 2: λ̄/λtrue and S2
(
λ̄
)

as functions of sample size.

Remark 3.2. In Example 2.2, note that |X| has exponential distribution. So, using
Example 3.1, one can easily find asymptotic properties of θ̂ in Laplace distribution.

Example 3.2. Let {X1, ..., Xn} be i.i.d. two parameter exponential random variables
with probability density function

f (x;µ, σ) =
1
σ
e−(x−µ)/σ, x ≥ µ, µ ∈ R, σ > 0.

If µ ≥ 0, then we have

g (µ, σ) = µ+ σ +
1

2nσ

n∑
i=1

(xi − µ)2

and MCKLE of µ and σ are, respectively,

µ̂ = X −
√
X2 −X

2
, σ̂ =

√
X2 −X

2
,

which are also ME’s of (µ, σ). These estimators are functions of linear combinations of Xi’s
and X2

i ’s, and hence by SLLN, (µ̂, σ̂) are strongly consistent for (µ, σ).
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Now, by CLT and delta method or using Theorem 3.2, one can show that

V −1/2
n

(
µ̂− µ
σ̂ − σ

)
d→ N2 (0, I2) ,

where

Vn =
σ2

n

[
1 −1
−1 2

]
.

On the other hand if µ < 0, then we get

g (µ, σ) = 2σ exp
(µ
σ

)
− µ− σ +

1
nσ

 n∑
i=k+1
xi≥0

x2
i

2
− µ

n∑
i=k+1
xi≥0

xi


+
σ

n

 k∑
i=1
xi>0

Li2

(
exp

(
−xi − µ

σ

))
− k · Li2

(
exp

(µ
σ

)) ,
where Li2 (·) is the dilogarithm function. In this case, the MCKLE of µ and σ can be found
numerically.

In the following example, we show that in generalized Pareto distribution while the
MLE of the shape parameter of the model does not exist one can use MCKLE to estimate
the shape parameter.

Example 3.3. Suppose that {X1, ..., Xn} are i.i.d. from generalized Pareto distribu-
tion (GPD) with c.d.f.

F (x;σ, k) =

{
1− (1− kx/σ)1/k , if k 6= 0,

1− e−x/σ, if k = 0,

where σ > 0, k ∈ R, 0 ≤ x <∞ for k ≤ 0 and 0 ≤ x ≤ σ/k for k > 0. For this distribution
the MLE of the shape parameter k does not exist for k ∈ (1,∞) [11]. Let σ be fixed. After
some algebra we get

gn (k) =
σ

k + 1
− 1
n

n∑
i=1

h (xi) , − 1 < k ≤ σ/x(n),

where

h (x) =



− σ

k2

[
kx

σ
+
(

1− kx

σ

)
log
(

1− kx

σ

)]
, k 6= 0,

σ

x
,

−x
2

2σ
, k = 0,

−x
2

σ
, k =

σ

x
,

and MCKLE estimator k̂ can be found numerically. It should be noted that in this case, for
k ≤ −1, k̂ does not exist. Recently Zhang [37] considered the estimation of for k based on
the likelihood method and empirical Bayesian [36], [38]. Denoting the Zhang’s estimator by
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k̂Zhang, the cited author shows that the performance of k̂Zhang is better than other existing
methods for −6 ≤ k ≤ 1/2. In order to compare our estimator (k̂MCKLE) and Zhang’s esti-
mator k̂Zhang, we evaluated them using simulated samples of sizes 15, 20, 50, 100, 200, 500 and
1000 with 10000 replicates, considering different true values of the population parameter as
k = −0.75,−0.5,−0.25, 0, 0.25, 0.5, 1, 3, 5 and 7. Tables 1 and 2 compare bias and root mean
squared error (RMSE) of estimators, respectively. It is evident from Table 1 that for all values
k > 0.25, k̂MCKLE has less bias than k̂Zhang. Also for k = 0.25, n = 15, 20, 500, 1000, the per-
formance of our estimator is better than the Zhang’s estimator. On the other hand, it is seen
from Table 2 that except for k = −0.75, n = 100, 200, 500, 1000, and k = −0.5, n = 500, 1000,
for all values of k, k̂MCKLE has less RMSE than k̂Zhang.

Table 1: Biases of k̂MCKLE and k̂Zhang for the GPD.

k −0.75 −0.5 −0.25 0 0.25

n Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE

15 0.0478 0.3084 0.0271 0.2136 −0.0002 0.1472 −0.0401 0.1041 −0.1005 0.0761
20 0.0185 0.2714 0.0055 0.1801 −0.0113 0.1189 −0.0366 0.0810 −0.0789 0.0573
50 0.0126 0.1840 0.0066 0.1039 −0.0003 0.0581 −0.0086 0.0346 −0.0217 0.0219

100 0.0051 0.1420 0.0023 0.0698 −0.0012 0.0337 −0.0054 0.0180 −0.0097 0.0103
200 0.0044 0.1135 0.0025 0.0490 0.0002 0.0209 −0.0028 0.0103 −0.0052 0.0056
500 0.0014 0.0845 0.0008 0.0293 −0.0001 0.0100 −0.0013 0.0043 −0.0024 0.0021

1000 0.0010 0.0687 0.0007 0.0200 0.0002 0.0057 −0.0006 0.0023 −0.0012 0.0010

k 0.5 1 3 5 7

n Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE

15 −0.1852 0.0566 −0.4162 0.0306 −1.8133 0.0014 −3.5561 0.0001 −5.4191 2×10−5

20 −0.1452 0.0412 −0.3430 0.0201 −1.6568 0.0002 −3.3632 −6×10−6 −5.2066 6×10−6

50 −0.0499 0.0136 −0.1687 0.0033 −1.2339 −0.0004 −2.8083 −1×10−5 −4.5742 3×10−8

100 −0.0208 0.0055 −0.0979 −0.0004 −0.9988 −0.0002 −2.4627 −6×10−7 −4.1576 2×10−10

200 −0.0089 0.0025 −0.0620 −0.0012 −0.8251 −0.0001 −2.1764 2×10−9 −3.7953 3×10−12

500 −0.0025 0.0005 −0.0396 −0.0012 −0.6514 −8×10−6 −1.8621 2×10−11 −3.3789 4×10−15

1000 −0.0008 0.0001 −0.0303 −0.0010 −0.5518 −2×10−7 −1.6659 5×10−13 −3.1068 < 10−16

Table 2: RMSE’s of k̂MCKLE and k̂Zhang for the GPD.

k −0.75 −0.5 −0.25 0 0.25

n Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE

15 0.4672 0.3968 0.4040 0.3267 0.3425 0.2730 0.2893 0.2264 0.2618 0.1852
20 0.4071 0.3496 0.3543 0.2826 0.3030 0.2324 0.2565 0.1893 0.2272 0.1516
50 0.2504 0.2382 0.2167 0.1808 0.1851 0.1409 0.1573 0.1074 0.1352 0.0803

100 0.1753 0.1863 0.1510 0.1354 0.1278 0.1014 0.1073 0.0736 0.0919 0.0527
200 0.1235 0.1501 0.1060 0.1043 0.0889 0.0743 0.0732 0.0514 0.0616 0.0356
500 0.0785 0.1154 0.0674 0.0758 0.0565 0.0498 0.0460 0.0322 0.0374 0.0216

1000 0.0550 0.0957 0.0472 0.0597 0.0395 0.0364 0.0319 0.0227 0.0255 0.0149

k 0.5 1 3 5 7

n Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE

15 0.2824 0.1498 0.4592 0.0948 1.8238 0.0131 3.5606 0.0021 5.4216 0.0004
20 0.2363 0.1198 0.3837 0.0715 1.6671 0.0077 3.3676 0.0010 5.2091 0.0001
50 0.1277 0.0587 0.2060 0.0287 1.2436 0.0016 2.8124 0.0001 4.5764 9×10−7

100 0.0842 0.0367 0.1313 0.0158 1.0073 0.0008 2.4662 2×10−5 4.1595 3×10−9

200 0.0564 0.0239 0.0889 0.0093 0.8321 0.0003 2.1794 3×10−8 3.7969 1×10−10

500 0.0336 0.0139 0.0568 0.0049 0.6561 0.0001 1.8641 2×10−10 3.3800 1×10−13

1000 0.0228 0.0093 0.0422 0.0031 0.5550 8×10−6 1.6673 2×10−10 3.1075 6×10−16
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4. AN EXTENSION OF MCKLE TO THE TYPE I CENSORED DATA

In this section, we extend MCKLE for the case when the data are collected in censored
type I scheme, in continuous case. Some authors such as Lim and Park [18], Cherfi [8],
Baratpour and Habibi Rad [2], Park and Shin [27], Park et al. [22] Park and Lim [23] and
Park and Pakyari [25] studied some forms of KL divergences in different censored data cases.
Let T1, ..., Tn be i.i.d. nonnegative continuous random variables from a c.d.f. F , p.d.f. f and
survival function F̄ . In a variety of applications in biostatistics and life testing, we are only
able to observe X = min (T ,C) where C is the constant censoring point. The density function
of X can be written as

fC (x) =


f (x) , 0 < x < C,

F̄ (C) , x = C,

0, o.w.

It is known that

(4.1) Eθ (X) =
∫ C

0
F̄ (x) dx.

The authors in Lim and Park [18] and Park and Shin [27] presented two censored
versions of KL divergence of density gC relative to fC , respectively, by

I∗ (g, f : C) =
∫ C

−∞
g (x) log

g (x)
f (x)

dx+ F (C)−G (C) ,

and

K(−∞,C) (g : f) =
∫ C

−∞
g (x) log

g (x)
f (x)

dx+ (1−G (C)) log
1−G (C)
1− F (C)

,

which is nonnegative and is monotone in C. Park and Lim [23] defined CKL for censored
data as

CKLC

(
Ḡ||F̄

)
=
∫ C

0
Ḡ (x) log

Ḡ (x)
F̄ (x)

−
[
Ḡ (x)− F̄ (x)

]
dx.

They also defined the CKLC of Fn relative to F as

CKLC

(
F̄n||F̄θ

)
=
∫ C

0
F̄n (x) log

F̄n (x)
F̄ (x;θ)

−
[
F̄n (x)− F̄ (x;θ)

]
dx

=
∫ C

0
F̄n (x) log F̄n (x) dx−

∫ C

0
F̄n (x) log F̄ (x;θ) dx

+
∫ C

0
F̄ (x;θ) dx−

∫ C

0
F̄n (x) dx,

and considered it in type II censorship. Here we apply CKLC for type I censored data.
Using (4.1) we get

CKLC

(
F̄n||F̄θ

)
=
∫ C

0
F̄n (x) log F̄n (x) dx−

∫ C

0
F̄n (x) log F̄ (x;θ) dx+ Eθ (X)− x̄.
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Consider the parts of CKLC

(
F̄n||F̄θ

)
that depends on θ and define

(4.2) g (θ) = Eθ (X)−
∫ C

0
F̄n (x) log F̄ (x;θ) dx.

Then the MCKLE of θ is defined as

θ̂ = arg inf
θ∈Θ

CKLC

(
F̄n||F̄θ

)
= arg inf

θ∈Θ
g (θ) ,

provided that Eθ (X) <∞ and g′′(θ) is positive definite; see also Park and Lim [23].

If C →∞, then g (θ) in (4.2) reduces to (1.4) and results in non-censored case yield as
special case.

In order to study the properties of the estimator, following non-censored case, we have
simple form of g (θ) as (1.5), with h as (1.6).

Let θ̂n be MCKLE in censored case by minimizing g in (4.2). Here, MCKLE is also an
special case of GEE with ψ (x,θ) as (3.6), and under the conditions given in non-censored
case the MCKLE in censored case is also consistent. Asymptotic normality of a consistent
sequence of MCKLE can be established under the conditions imposed in non-censored case.
We first consider the special case where θ is scalar and X1, ..., Xn are i.i.d. continuous random
variables.

Theorem 4.1. For each n, let θ̂n be an MCKLE or equivalently a GEE estimator.

Then (
θ̂n − θ

)
d→ N

(
0, σ2

F

)
,

where σ2
F = A/B2, with A as (3.7) and

B =
∫ C

0

[
∂

∂θ
F̄ (x;θ)

]2
F̄ (x;θ)

dx.

Proof: The proof is similar to non-censored case.

The next theorem shows asymptotic normality of MCKLE, when θ ∈ Θ ⊆ Rp is vector
and X1, ..., Xn are i.i.d. and continuous.

Theorem 4.2. Under conditions of Theorem 5.14 of Shao [32],

V −1/2
n

(
θ̂n − θ

)
d→ Np (0, Ip) ,

where Vn = B−1AB−1, with A as (3.8) and

B =
∫ C

0

[
∂

∂θ
F̄ (x;θ)

] [
∂

∂θ
F̄ (x;θ)

]T
F̄ (x;θ)

dx,

provided that B is invertible matrix.

Proof: The proof is similar to non-censored case and hence it is omitted.
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Remark 4.1. In Theorems 4.1 and 4.2, if C →∞ (no censoring), then results in non-
censored case yield as special cases.

Now, following Pawitan [28], similar to non-censored case the sample version of the
variance formula for the MCKLE in censored case is as (3.11), with I and J as (3.12) and
(3.13).

Example 4.1. Let {X1, ..., Xn} be i.i.d. type I censored Exponential random vari-
ables with probability density function

fC (x) =


λe−λx, 0 < x < C,

e−λC , x = C,

0, o.w.

where λ > 0. After some algebra, we have

g (λ) =
1
λ

(
1− e−λC

)
+
λ (n− r)

2n
C2 +

λ

2n

r∑
i=1

x2
(i) =

1
λ

(
1− e−λC

)
+
λ

2
x2,

and λ̂ can be found numerically as a decreasing function of x2, and hence, by using strong law
of large numbers (SLLN), it is strongly consistent. Figure 3 shows λ̂ as a decreasing function
of x2.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

2
4

6
8

10
12

14

x2

λ̂

C=0.2

C=0.4

C=0.6

C=0.8

C=1

Figure 3: λ̂ as a decreasing function of x2.

Now, using Theorem 4.1, one can show that
√
n
(
λ̂− λ

)
d→ N

(
0, σ2

F

)
,

where

σ2
F =

λ2
(
5− e−2λC (λC + 1)2 − e−λC

(
λ3C3 + 3λ2C2 + 4λC + 4

))
(2− e−λC (λ2C2 + 2λC + 2))2

.

If C →∞ (no censoring), then we obtain the results in non-censored case.
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1. INTRODUCTION

One of the most important references in models of adopting timing of innovations is
the model of Bass [1]. From this model, Bemmaor [3] formulated that the individual-level
model of adopting timing of a new product in a market is randomly distributed according to
the shifted Gompertz distribution. More recently, Lover et al. [8] show that modeling studies
of period of time to first relapse in human infections with malaria in the New World tropical
region, can support the shifted Gompertz distribution.

Some statistical properties of the shifted Gompertz distribution were obtained in Be-
mmaor [3]. Jiménez Torres and Jodrá [7] gave explicit expressions for the first and second
moment, a closed form expression for the quantile function was derived, and the limit distri-
butions of extreme order statistics were considered.

In Jiménez Torres [6] the method of least squares, method of maximum likelihood and
method of moments to estimate the parameters of the shifted Gompertz distribution were
used. In this paper we want to expand and complete the knowledge and statistical properties
of the shifted Gompertz distribution, solving the three conjectures presented in Jiménez
Torres and Jodrá [7] and obtaining a general expression for the moments.

Although the Gompertz distribution Z has been given in different forms in the lit-
erature, the cumulative distribution function (cdf) FZ(z) = P (Z ≤ z) = e−αe−βz

, −∞ < z <

+∞, found in Bemmaor [3], satisfies that its standard deviation, skewness and excess kurtosis
are equals to π/(

√
6β), 12

√
6ζ(3)/π3 and 2.4, respectively, where ζ(·) denotes the Riemann

zeta function. The skewness of a random variable X is defined by γ1 = E[(X − µ)3]/σ3 and
is a measure of the asymmetry of the probability distribution. The excess kurtosis of X is
given by γ2 = E[(X − µ)4]/σ4 − 3 and it describes the shape of the tails of the probability
distribution.

Let X be a random variable having the shifted Gompertz distribution with parameters
α and β, where α > 0 is a shape parameter and β > 0 is a scale parameter. The probability
density function of X is

(1.1) fX(x) = βe−(βx+αe−βx)(1 + α
(
1− e−βx)

)
, x > 0.

This model can be characterized as the maximum of two independent random varia-
bles with Gompertz distribution (parameters α > 0 and β > 0) and exponential distribution
(parameter β > 0). From (1.1), given that limα→0 fX(x) = βe−βx, it may be noted that
the shifted Gompertz distribution gets close to an exponential distribution with mean 1/β,
as the parameter α decreases to 0. So, for a fixed value of β, limα→0 σ = 1/β, where σ is
the standard deviation of X. For the shifted Gompertz distribution we have limα→0 γ1 = 2
and limα→0 γ2 = 6, which are the skewness and kurtosis of the exponential distribution.
If the shape parameter α increases to infinity, the asymptotic behavior of the shifted Gom-
pertz distribution is nontrivial and these limits require analytic tools for their calculation.
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Based on numerical evidence showed in Jiménez Torres and Jodrá [7] the next three
conjectures were presented:

Conjecture 1: lim
α→+∞

σ =
π√
6β

;

Conjecture 2: lim
α→+∞

γ1 =
12
√

6ζ(3)
π3

;

Conjecture 3: lim
α→+∞

γ2 = 2.4.

The remainder of this note is organized as follows. In Section 2, we prove Conjecture 1.
In Section 3, we provide an explicit expression for the i-th moment of the shifted Gompertz
distribution. In Section 4 and Section 5, we prove Conjecture 2 and Conjecture 3, respectively.
In Section 6 we show the importance of these results in the choice of the shifted Gompertz
distribution among the models to fit a real data set and finally, the main conclusions are
presented in Section 7.

2. PROOF OF CONJECTURE 1

In Jiménez Torres and Jodrá [7] explicit expressions for the moments of orders 1 and 2
of X were obtained. The first moment of X, or mean µ of X, is

(2.1) E[X] =
1
β

(
γ + log(α) + E1(α) +

1− e−α

α

)
,

where γ ≈ 0.57721 is the Euler–Mascheroni constant and E1(x) is the exponential integral
function, defined by E1(x) =

∫ +∞
x

e−t

t dt, x > 0. The second moment of X is

(2.2) E[X2] =
2
αβ2

(
γ + log(α) + E1(α) + 3F3[1, 1, 1; 2, 2, 2;−α]α2

)
,

where 3F3[1, 1, 1; 2, 2, 2;−α] =
∑+∞

k=1
(−α)k−1

k!k2 is a generalized hypergeometric function. More-
over, we need the next expression (see Geller and Ng [5]) for a > 0 and b > 0

(2.3)
∫ +∞

b

E1(ax)
x

dx =
1
2
(
(γ + log(ab))2 + ζ(2)

)
+

+∞∑
k=1

(−ab)k

k!k2
,

where ζ(2) =
π2

6
. In particular, using (2.3) with a = 1 and b = α, we obtain

(2.4)
∫ +∞

α

E1(x)
x

dx =
1
2
(
(γ + log(α))2 + ζ(2)

)
+

+∞∑
k=1

(−α)k

k!k2
,

and in the next theorem, we prove Conjecture 1.
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Theorem 2.1. The limit of the standard deviation, σ, of the shifted Gompertz dis-

tribution X as the shape parameter α increases to +∞ is finite and its value is

(2.5) lim
α→+∞

σ =
π√
6β
.

Proof: The variance of a random variable X is σ2 = E[X2]− (E[X])2. From (2.1),
(2.2) and (2.4) we have

σ2 =
2
αβ2

[
γ + log(α) + E1(α)− α

∫ +∞

α

E1(x)
x

dx+
α

2
(
(γ + log(α))2 + ζ(2)

)]
− 1
β2

(
γ + log(α) + E1(α) +

1− e−α

α

)2

(2.6)

=
ζ(2)
β2

+R(α),

where

R(α) =
2
αβ2

(
γ + log(α) + E1(α)

)
− 2
β2

∫ +∞

α

E1(x)
x

dx(2.7)

+
1
β2

(
(γ + log(α)

)2 − 1
β2

(
γ + log(α) + E1(α) +

1− e−α

α

)2

.

So, lim
α→+∞

σ2 = ζ(2)/β2 + lim
α→+∞

R(α). Now, in (2.7) we take limit as α increases to +∞,

taking into account the next limits related to the exponential integral function (see Geller
and Ng [5]):

(2.8) lim
x→+∞

(
log(x)E1(x)

)
= lim

x→+∞

(
e−xE1(x)

)
= lim

x→+∞

(
xpE1(x)

)
= 0.

So, lim
α→+∞

R(α) = 0, and Conjecture 1 is proved.

To prove Conjecture 2 and Conjecture 3 we need expressions of the moments of orders
3 and 4, respectively. In Section 3 we are more ambitious and obtain a general expression for
the moment of order i of the shifted Gompertz distribution.

3. MOMENT OF ORDER i OF X

The i-th moment of X, denoted and defined by E[Xi] =
∫ +∞
0 xifX(x)dx, i = 1, 2, ...,

where fX(x) is given in (1.1), does not seem to have a closed-form expression in terms of
elementary functions, but we can find a series expansion. Let γ(a, b) be the lower incomplete
gamma function defined for any a > 0 and b > 0 by

(3.1) γ(a, b) =
∫ b

0
va−1e−vdv,

and let MX(t) be the moment generating function of X, i.e., MX(t) = E
[
etX
]
. In the next

theorem we obtain an expression of this function.
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Theorem 3.1. The moment generating function of the shifted Gompertz distribution

X for |t| < β is

(3.2) MX(t) = αt/β−1(α+ t/β)γ(1− t/β, α) + e−α.

Proof: By definition, we have

E
[
etX
]

=
∫ +∞

0
etxfX(x)dx = β

∫ +∞

0
etx−βx−αe−βx

(1 + α(1− e−βx))dx

= (1 + α)β
∫ +∞

0
etx−βx−αe−βx

dx− αβ

∫ +∞

0
etx−2βx−αe−βx

dx.(3.3)

The change of variable v = αe−βx in (3.3) provides

E
[
etX
]

= αt/β−1(1 + α)
∫ α

0
e−vv−t/βdv − αt/β−1

∫ α

0
e−vv1−t/βdv

= αt/β−1
(
(1 + α)γ(1− t/β, α)− γ(2− t/β, α)

)
.(3.4)

Integrating by parts in (3.1) yields the recurrence relation γ(a+ 1, b) = aγ(a, b)− bae−b. So,
we have

(3.5) E
[
etX
]

= αt/β−1
(
(α+ t/β)γ(1− t/β, α) + α1−t/βe−α

)
,

thereby completing the proof.

According to Theorem 3.1, the moment generating function of the shifted Gompertz
distribution, MX(t), is finite in the open neighborhood (−β, β) of 0. In particular, it implies
that moments of all orders exist. In the next result, we provide an explicit expression of the
moment of order i.

Theorem 3.2. The moment of order i, i = 1, 2, ..., of the shifted Gompertz distribu-

tion X is

(3.6) E[Xi] =
i!
βi

(
1 +

+∞∑
k=1

(
1

(k + 1)i
− 1
ki

)
(−α)k

k!

)
.

Proof: Since MX(t) is finite for t in (−β, β), it can be expanded in a Taylor series
about 0 and the moments of X can be computed by differentiation of MX(t) at t = 0, i.e.,
M

(i)
X (t)|t=0 = M

(i)
X (0) = E[Xi], i = 1, 2, ..., where M (i)

X (t) denotes the i-th derivative of the
moment generating function of X. That is,

(3.7) MX(t) = 1 +
+∞∑
i=1

E[Xi]
i!

ti |t| < β.

Given the Taylor series of the exponential function e−v in (3.1), we have the following series
expansion of the lower incomplete gamma function

(3.8) γ(a, b) =
∫ b

0

+∞∑
k=0

(−1)k v
a+k−1

k!
dv =

+∞∑
k=0

(−1)kba+k

(a+ k)k!
.



136 F. Jiménez Torres

From (3.8), we have

(3.9) γ(1− t/β, α) =
+∞∑
k=0

(−1)kα1−t/β+k

(1− t/β + k)k!
|t| < β,

and substituting (3.9) in (3.2), we obtain

(3.10) MX(t) = (α+ t/β)
+∞∑
k=0

(−1)kαk

(1− t/β + k)k!
+ e−α |t| < β.

But the real number (1− t/β + k)−1 can be expressed as the sum of the terms of a geometric
series, i.e.,

(3.11)
1

1− t/β + k
=

1
k + 1

+∞∑
i=0

ti

(k + 1)iβi
|t| < β.

Finally, substituting (3.11) in (3.10),

(3.12) MX(t) = (α+ t/β)
+∞∑
k=0

(−α)k

(k + 1)!

+∞∑
i=0

ti

(k + 1)iβi
+ e−α |t| < β.

Identifying term to term of (3.7) and (3.12), we have

(3.13) E[Xi] =
i!
βi

(
1−

+∞∑
k=1

(
1
k!ki

− 1
(k + 1)!(k + 1)i−1

)
(−α)k

)
,

thereby completing the proof of Theorem 3.2.

4. PROOF OF CONJECTURE 2

To prove Conjecture 2 we need the next expression (see Geller [4]) for a > 0 and ρ > 0∫ ρ

0
e−axlog3(x)dx = −6ρ

(
+∞∑
k=0

(−aρ)k

k!(k + 1)4
− log(ρ)

+∞∑
k=0

(−aρ)k

k!(k + 1)3

)

−3
a
log2(ρ)

(
γ + log(aρ) +E1(aρ)−

1
3
log(ρ)(1− e−aρ)

)
.(4.1)

It may be noted that (4.1) corrects one misprint in Geller [4] (the sign of 1
3 log(ρ)(1− e−aρ)).

In particular, using (4.1) with a = 1 and ρ = α, we have∫ α

0
e−xlog3(x)dx = −6α

(
+∞∑
k=0

(−α)k

k!(k + 1)4
− log(α)

+∞∑
k=0

(−α)k

k!(k + 1)3

)

−3log2(α)
(
γ + log(α) + E1(α)− 1

3
log(α)(1− e−α)

)
.(4.2)

Moreover, we need the value of (4.2) as α increases to +∞, i.e.,
∫ +∞
0 e−xlog3(x)dx. This

integral is Γ(3)(1), the third derivative of gamma function evaluated at 1, where the gamma
function is defined by Γ(p) =

∫ +∞
0 tp−1e−tdt, for a real number p > 0. To know the value
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of Γ(3)(1) we can use the digamma function, define by ψ(p) = Γ′(p)/Γ(p) and polygamma
functions, ψ′(p), ψ(2)(p), ψ(3)(p) .... These functions are derivatives of the logarithm of the
gamma function. In particular, we have ψ(1) = −γ and ψ(n)(1) = (−1)n+1n!ζ(n+ 1), for n =
1, 2, 3... (see, e.g. [9, 5.15.2]). Using this relation we have ψ′(1) = ζ(2) and ψ(2)(1) = −2ζ(3).
So, the value of Γ(3)(1) is

(4.3) Γ(3)(1) = (ψ(1))3 + 3ψ(1)ψ′(1) + ψ(2)(1) = −γ3 − 3γζ(2)− 2ζ(3),

where ζ(3) ≈ 1.20205 is a real number known as Apéry’s constant. In the next theorem, we
prove Conjecture 2.

Theorem 4.1. The limit of the coefficient of skewness, γ1, of the shifted Gompertz

distribution X as the shape parameter α increases to +∞ is finite and its value is

(4.4) lim
α→+∞

γ1 =
12
√

6ζ(3)
π3

.

Proof: The coefficient of skewness of X is

(4.5) γ1 = E[(X − µ)3]/σ3 =
(
E[X3]− 3µE[X2] + 2µ3

)
/σ3.

We can study every term of this equation. The first term of (4.5) is E[X3]. According to
(3.6), the moment of order 3 of X is

(4.6) E[X3] =
3!
β3

(
1 +

+∞∑
k=1

(
1

(k + 1)3
− 1
k3

)
(−α)k

k!

)
.

From (4.2), we have

+∞∑
k=0

(−α)k

k!(k + 1)4
= − 1

6α

(∫ α

0
e−xlog3(x)dx− 6αlog(α)

+∞∑
k=0

(−α)k

k!(k + 1)3

+3log2(α)
(
γ + log(α) + E1(α)− 1

3
log(α)(1− e−α)

))
.(4.7)

Given that
∑+∞

k=1
(−α)k

k!ki = −α
∑+∞

k=0
(−α)k

k!(k+1)i+1 , i = 0, 1, 2, ..., from (2.4), (4.6) and (4.7)

E[X3] = − 1
β3

[
6
(
α−1 + log(α))

(∫ +∞

α

E1(x)
x

dx− 1
2
(
(γ + log(α))2 + ζ(2)

))
+
∫ α

0
e−xlog3(x)dx+ 3log2(α)

(
γ + log(α) + E1(α)

)
− log3(α)(1− e−α)

]
.(4.8)

Now, we study −3µE[X2], the second term of (4.5). From (2.1) and (2.2), it is

− 3µE[X2] = − 6
αβ3

(
γ + log(α) + E1(α) +

1− e−α

α

)
×
(
γ + log(α) + E1(α)− α

+∞∑
k=1

(−α)k

k!k2

)
,(4.9)
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and from (2.4), we have

− 3µE[X2] = − 6
αβ3

(
γ + log(α) + E1(α) +

1− e−α

α

)
×
(
γ + log(α) + E1(α)− α

∫ +∞

α

E1(x)
x

dx+
α

2
(
(γ + log(α))2 + ζ(2)

))
.(4.10)

The third term of (4.5) is 2µ3. From (2.1), it is

(4.11) 2µ3 =
2
β3

(
γ + log(α) + E1(α) +

1− e−α

α

)3

.

Finally, taking into account the three terms of (4.5), i.e., (4.8), (4.10) and (4.11), that
limα→+∞

∫ α
0 e−xlog3(x)dx = Γ(3)(1) given in (4.3) and the limits (2.8), we have

(4.12) lim
α→+∞

E[(X − µ)3] =
2ζ(3)
β3

.

According to Theorem 2.1, lim
α→+∞

σ3 =
π3

6
√

6β3
, and Conjecture 2 is proved.

5. PROOF OF CONJECTURE 3

To prove Conjecture 3 we need the next expression (see Geller [4]), valid for a > 0,
ρ > 0, p > −1 and n = 0, 1, 2, 3, ...

(5.1)
∫ ρ

0
xpe−axlogn(x)dx = (−1)nn!ρp+1

n∑
k=0

(−1)klogk(ρ)
k!

+∞∑
l=0

(−aρ)l

l!(p+ l + 1)n−k+1
.

In particular, we need (5.1) for a = 1, ρ = α, p = 0 and n = 4, i.e.,∫ α

0
e−xlog4(x)dx = 4!α

4∑
k=0

(−1)klogk(α)
k!

+∞∑
l=0

(−α)l

l!(l + 1)5−k

= 4!α

[
+∞∑
k=0

(−α)k

k!(k + 1)5
− log(α)

+∞∑
k=0

(−α)k

k!(k + 1)4

+
log2(α)

2

+∞∑
k=0

(−α)k

k!(k + 1)3
− log3(α)

3!

+∞∑
k=0

(−α)k

k!(k + 1)2

+
log4(α)

4!

+∞∑
k=0

(−α)k

k!(k + 1)

]
.(5.2)

Moreover, we need the value of (5.2) as α increases to +∞, i.e.,
∫ +∞
0 e−xlog4(x)dx, the 4-th

Euler–Mascheroni integral. This integral is Γ(4)(1), the fourth derivative of Γ(p), evaluated at
p = 1. Given that ψ(3)(1) = 6ζ(4),

(
ζ(2)

)2 = 5ζ(4)/2 and ζ(4) = π4/90, the value of Γ(4)(1)
is

Γ(4)(1) =
(
ψ(1)

)4 + 6ψ′(1)
(
ψ(1)

)2 + 4ψ(2)(1)ψ(1) + ψ(3)(1) + 3
(
ψ′(1)

)2
= γ4 + 6γ2ζ(2) + 8γζ(3) +

27
2
ζ(4).(5.3)
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In the next theorem, we prove Conjecture 3.

Theorem 5.1. The limit of the excess kurtosis, γ2, of the shifted Gompertz distribu-

tion X as the shape parameter α increases to +∞ is finite and its value is

(5.4) lim
α→+∞

γ2 = 2.4.

Proof: The excess kurtosis of X is

(5.5) γ2 = E[(X − µ)4]/σ4 − 3 = (E[X4]− 4µE[X3] + 6µ2E[X2]− 3µ4)/σ4 − 3.

We can study every term of this equation. The first term of (5.5) is E[X4]. According to
(3.6), the fourth moment of X is

E[X4] =
4!
β4

(
1 +

+∞∑
k=1

( 1
(k + 1)4

− 1
k4

)(−α)k

k!

)

=
4!
αβ4

(
α

+∞∑
k=1

(−α)k

k!(k + 1)4
+ α2

+∞∑
k=0

(−α)k

k!(k + 1)5

)
.(5.6)

From (5.2), we have

+∞∑
k=0

(−α)k

k!(k + 1)5
=

1
24α

[∫ α

0
e−xlog4(x)dx+ 24αlog(α)

+∞∑
k=0

(−α)k

k!(k + 1)4

−12αlog2(α)
+∞∑
k=0

(−α)k

k!(k + 1)3
+ 4αlog3(α)

+∞∑
k=0

(−α)k

k!(k + 1)2

−αlog4(α)
+∞∑
k=0

(−α)k

k!(k + 1)

]
.(5.7)

From (4.7) and (5.7),

E[X4] =
24
αβ4

[
− 1

6

∫ α

0
e−xlog3(x)dx− 1

2
log2(α)

(
γ + log(α) + E1(α)

)
−1

6
log3(α)(1− e−α)− log(α)

(∫ +∞

α

E1(x)
x

dx− 1
2
(
(γ + log(α)

)2
+ζ(2)

))
+
α

24

(∫ α

0
e−xlog4(x)dx− 4log(α)

∫ α

0
e−xlog3(x)dx

−12log2(α)
∫ +∞

α

E1(x)
x

dx+ 6log2(α)
(
(γ + log(α))2 + ζ(2)

)
−8log3(α)

(
γ + log(α) + E1(α)

)
+ 3log4(α)(1− e−α)

]
.(5.8)

Now, we study −4µE[X3], the second term of (5.5). From (2.1) and (4.8), it is

− 4µE[X3] = − 4
β4

(
γ + log(α) + E1(α) +

1− e−α

α

)
×
[
− 6
(
α−1 + log(α))

(∫ +∞

α

E1(x)
x

dx− 1
2
(
(γ + log(α))2 + ζ(2)

))
(5.9)

−
∫ α

0
e−xlog3(x)dx− 3log2(α)

(
γ + log(α) + E1(α)

)
+ log3(α)(1− e−α)

)]
.
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The third term of (5.5) is 6µ2E[X2]. From (2.1), (2.2) and (2.4), it is

6µ2E[X2] =
12
β4

(
γ + log(α) + E1(α) +

1− e−α

α

)2

×
[
γ + log(α) + E1(α)

α
−
∫ +∞

α

E1(x)
x

dx+
1
2
(
(γ + log(α))2 + ζ(2)

)]
.(5.10)

The fourth and last term of (5.5) is −3µ4. From (2.1), it is

(5.11) −3µ4 = − 3
β4

(
γ + log(α) + E1(α) +

1− e−α

α

)4

.

Finally, taking into account that limα→+∞
∫ α
0 e−xlog4(x)dx = Γ(4)(1) given in (5.3), the four

terms of (5.5), i.e., (5.8), (5.9), (5.10) and (5.11), and the limits (2.8), we have

(5.12) lim
α→+∞

E[(X − µ)4] =
27ζ(4)
2β4

.

According to Theorem 2.1, lim
α→+∞

σ4 =
π4

36β4
. Given the value of ζ(4) =

π4

90
, Conjecture 3 is

proved.

6. REAL DATA APPLICATION

One of the human malaria parasites with the widest geographic distribution in the
world is plasmodium vivax. If a patient was not fully cured or insufficiently treated, he can
relapse in a few weeks after the initial infection, i.e., new clinical symptoms begin after the
disease disappeared from the blood following the primary infection. In this section, we have
considered an application with periods of time to first relapse or recurrence in 38 patients
located at Brazil. We have chosen Brazil since it is located geographically in the New World
tropical region, where following Lover et al. [8], the shifted Gompertz distribution is suitable
for modeling times to first relapse. Tropical region is delimited by the ±23.5◦ latitude lines.
Table 1 shows times (days) to first relapse observed, reported in Battle et al. [2].

Table 1: Real data set: Times (days) to first relapse observed (malaria
parasite plasmodium vivax ) in 38 patients located at Brazil.

31 32 32 33 34 35 37 37 44 45 48 53 57 57 58 62 63 64 68

69 70 70 70 71 75 78 80 82 83 86 91 97 97 112 124 132 158 185

According to Theorem 4.1, the values of γ1 of the shifted Gompertz distribution are
greater than 12

√
6ζ(3)/π3 ≈ 1.1395, i.e., are always positive and possibly this can be a good

model to fit a data set with positive asymmetry. Similarly, according to Theorem 5.1, the
values of γ2 of the shifted Gompertz distribution are greater than 2.4, i.e., are always positive.
This means that the shifted Gompertz distribution is a fat-tailed probability distribution, and
possibly it can be a good model to fit a data set with positive excess kurtosis.
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The results proved in this paper allow to place the shifted Gompertz distribution in the
Skewness–Kurtosis diagram (see Vargo et al. [11]). This moment-ratio diagram (see Figure 1)
is a plot containing the (γ1, γ2) values for probability distributions. When a probabilistic
model has no shape parameter (for example, normal, logistic, Gompertz, exponential or Gum-
bell distribution, among other), its locus in this diagram corresponds to a point. When a pro-
babilistic model has one shape parameter (for example, log-logistic, gamma, Weibull, Lindley,
Lomax or shifted Gompertz distribution, among other), its locus in this diagram corresponds
to a curve. In this diagram, the shifted Gompertz distribution starts at the locus of the expo-
nential distribution and ends at the locus of Gompertz distribution. Also, in Figure 1 there
is a curve representing the frontier γ2 ≥ γ2

1 − 2 for all distributions (see Stuart and Ord [10]).
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Figure 1: Skewness (γ1) versus excess kurtosis (γ2) for some probabilistic
models and the locus of the malaria data set.

Given the observed values of skewness and excess kurtosis for malaria data set (γ1 =
1.3317, γ2 = 1.9009), we can place it in this diagram (see Figure 1) and use it as valuable
help in model selection (see chosen models in Table 2).

Table 2: Models and their cumulative distribution functions F (x).

Shape
Model

parameter
F (x)

Exponential: E(λ) — 1− e−λx

Gamma: G(α, β) α γ(α, x/β)/Γ(α)

Gompertz: GO(α, β) — e−αe−βx

Gumbell: GU(α, β) — 1− e−αeβx

Lindley: LD(θ) θ 1− (1 + θ + θx)e−θx/(1 + θ)

Logistic: LG(µ, s) — (1 + e−(x−µ)/s)−1

Log-logistic: LL(λ, p) p 1− (1 + (λx)p)−1

Lomax: LO(α, β) α 1− (1 + βx)−α

Normal: N(µ, σ) — Φ((x− µ)/σ)

Weibull: W(α, β) α 1− e−(x/β)α

Shifted Gompertz: SG(α, β) α e−αe−βx

(1− e−βx)
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It is reasonable to think that models located relatively near the locus of malaria data
set (for example, Weibull, gamma, Gompertz or shifted Gompertz distribution) can provide a
better fit than models located farther away (for example, Gumbell, logistic, normal or Lomax,
among other). To accept or rejected this surmise, we estimate the parameters of the shifted
Gompertz distribution and of all models represented in Figure 1 by the maximum likelihood
method. We obtain the performance of each model based on the following goodness-of-
fit measures: log-likelihood function (LogL), Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), Kolmogorov–Smirnov (K-S) statistic with the corresponding
p-value, Cramer von Mises (W*) and Anderson–Darling (A*).

The results obtained (see Table 3) show that the shifted Gompertz distribution presents
the best fit in almost all goodness-of-fit measures. The smallest values of −LogL, AIC, BIC,
W* and A* correspond to the shifted Gompertz distributions. The best values of K-S and
its p-value are obtained by gamma and shifted Gompertz distribution. In addition, Weibull,
gamma or Gompertz distribution present, in general, better fit than Gumbell, logistic, normal,
Lindley, exponential, log-logistic or Lomax distribution.

Table 3: The MLEs of the parameters and goodness-of-fit tests.

Malaria data set

Model MLE parameter −LogL AIC BIC K-S p-val(K-S) W* A*

E 0.0139 — 200.290 402.580 404.218 0.351 10−4 1.113 5.749
G 4.965 14.414 183.079 370.158 373.434 0.089 0.923 0.054 0.448
GO 10.024 0.040 182.983 369.967 373.242 0.102 0.823 0.047 0.425
GU 0.126 0.022 198.302 400.605 403.880 0.226 0.041 0.492 2.899
LD 0.0275 — 189.961 381.923 383.561 0.220 0.049 0.386 2.359
LG 67.520 18.091 186.779 377.558 380.834 0.117 0.673 0.056 0.667
LL 0.015 3.821 221.181 446.363 449.638 0.103 0.811 1.606 8.397
LO 0.114 99.634 278.846 561.693 564.968 0.600 10−12 3.477 16.062
N 71.578 34.505 188.481 380.963 384.238 0.138 0.461 0.169 1.156
W 2.202 81.129 185.522 375.045 378.320 0.113 0.714 0.107 0.779
SG 8.709 0.040 182.759 369.518 372.793 0.101 0.831 0.046 0.419

Best fitting model is shown in bold.

7. CONCLUSIONS

Three conjectures on the standard deviation, skewness and kurtosis of the shifted Gom-
pertz distribution, as the shape parameter α increases to +∞, have been proved, solving the
asymptotic problems found in Jiménez Torres and Jodrá [7]. In addition, an explicit expre-
ssion for the i-th moment of the shifted Gompertz distribution has been obtained. These
results allow to place the shifted Gompertz distribution in the Skewness–Kurtosis diagram,
starting at the locus of the exponential distribution and ending at the locus of Gompertz
distribution. To check their usefulness, a real malaria data set has been fitted, estimating the
parameters by maximum likelihood. The results obtained show that the shifted Gompertz
distribution presents a very good fit among the analyzed models, suggesting that the results
proved in this paper can play an important rule in the decision to choose this model to fit data.
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1. INTRODUCTION

Ranked set sampling (RSS), a data collection scheme, was first implemented by [9] as a
good competitor to simple random sampling (SRS) scheme to estimate the mean of Australian
pasture yields in agricultural experimentation. Due to its importance to other situations and
for a variety of applications in statistics [9] is reprinted in [10]. RSS scheme has recently been
getting some attention from researchers working in statistical process control. [11] and [12]
for example, proposed different run rules for control charts under different RSS schemes. [19]
studied the EWMA control chart for monitoring linear profiles under various RSS schemes.
For discussions of some other situations where RSS found applications, see [17], [4], [18], [14],
[5], and [13].

[9, 10] claimed that the RSS mean is an unbiased estimator of the population mean
and the variance of the RSS mean is smaller than in simple random sampling (SRS) with
equal measurement elements. This sampling scheme is useful when it is difficult to measure
large number of elements but visually (without inspection) ranking some of them is easier.
It involves randomly selecting m sets (each of size m elements) from the study population.
The elements of each set are ordered with regards to the study variable, say X, by any
negligible cost method or visually without measurements. Finally, the ith minimum from the
ith set, i = 1, 2, ...,m, are identified for measurement. The obtained sample is called a ranked
set sample of set size m. It is worth to observe that visual ranking with large set size is prone
to ranking errors. In practice, the set size should be small (m = 2, 3, or 4). For more details
see [1], [8], and [21].

[25] provided the mathematical theory behind the claims of [9, 10]. They proved the
following identities:

1. f(x) =
1
m

m∑
i=1

fX(i)
(x),

2. µ =
1
m

m∑
i=1

µi ,

3. σ2 =
1
m

m∑
i=1

σ2
i +

1
m

m∑
i=1

(µi − µ)2 ,

where µ is the mean and σ2 is the variance of the study population f(x) and µi and σ2
i are

the mean and the variance of the ith ordered statistic. They also showed that the efficiency
of the RSS mean with respect to (w.r.t.) SRS, defined by the ratio of the variances of the two
sample means, is bounded by 1 and m+1

2 . In particular, when the study population is degen-
erate then the efficiency is 1, and when the study population is uniform then the efficiency
is m+1

2 .

As claimed by [9, 10] it is later shown in the literature that estimators calculated based
on RSS are more efficient than their counterpart in SRS. For example, [24] showed that the
empirical distribution function based on RSS is more efficient than its counterpart in SRS.
Some authors estimate the parameters of a specific distribution using RSS, see for example
[2] and [22].
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For improving the efficiency of estimators, some variations of RSS were proposed.
[1] suggested double RSS (DRSS), as a method that improves efficiency of the RSS esti-
mators while keeping m fixed. They reported that the RSS mean estimator is less efficient
than that based on DRSS. Median RSS (MRSS) is a modification of RSS proposed by [15]
to decrease ranking error and to improve the efficiency of the estimators being estimated.
The procedure of MRSS is similar to RSS but in lieu of identifying the ith minimum from
the ith set only the median of each set is identified. Given odd set size m, the

(
m+1

2

)th
smallest element is identified from each set for measurement. When m is even, from the first
m
2 sets the

(
m
2

)th smallest element is identified for measurement and from the second m
2 sets

the
(

m
2 + 1

)th smallest element is identified for measurement. [20] suggested a double MRSS
(DMRSS) as an alternative procedure to improve the efficiency of the sample mean. They
compared the DMRSS with SRS, RSS, DRSS, and some other sampling schemes and found
that DMRSS is the most efficient scheme.

In the process of DMRSS, the data points are identified based on the data points of
MRSS. For example, if m is odd, the data points of the DMRSS are just the medians of the
data points of MRSS; that is, the data points of DMRSS are the medians of the medians
of the SRS. It is clear that identifying median of the medians is a hard process, and this
contradict the nature of RSS schemes which require visual comparison without inspection
(a rationale originally mentioned by [9]). On the other hand, in the process of DRSS, the
data points are identified based on the data points of the RSS. For example, the first data
point of DRSS is the minimum of the RSS data points, which is easy to be identified visually
without inspection. [1] have shown by the degree of distinguishability and the probability of
perfect ranking that ranking an independent and identically (iid) data points is harder than
ranking ordered (but independent) data points. Thus, getting a DMRSS is harder than a
DRSS. In other words, DRSS is more practical than DMRSS.

To improve the efficiency of RSS estimators, we suggest to combine MRSS scheme
with RSS scheme; that is, to apply the method of MRSS on the obtained RSS data points.
We shall call this method by mixed double-ranked set sampling (MxDRSS).

Section 2 introduces notations and some basic results. MxDRSS is clarified in Section 3.
The practicality of this method is discussed and compared with other methods in Section 4.
Estimation of the population mean based on MxDRSS is investigated in Section 5. Numerical
results for specific distributions are presented in Section 6. Finally, Section 8 concludes the
paper.

2. NOTATION AND SOME BASIC RESULTS

Let X be a continuous random variable with cumulative distribution function (cdf)
F (x), probability density function (pdf) f(x), mean µ, and variance σ2. Let X1, X2, ..., Xm

be a SRS from f(x), then Xi are iid as f(x). Note that when f(x) is infinite, SRS and random
sample are used synonymly.

Suppose Y
(1)
1 , Y

(1)
2 , ..., Y

(1)
m be a RSS; that is Y

(1)
i is the ith order statistic of the random

sample X1, X2, ..., Xm, where the superscript (1) represents stage 1. The cdf of Yi (see for
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example [3]) is given by

(2.1) FYi(y) = FX(i)
(y) =

m∑
k=i

(
m

k

)
F k(y) (1− F (y))m−k , i = 1, 2, ...,m,

and the pdf of Yi is

(2.2) fYi(y) = m

(
m− 1
i− 1

)
F i−1(y) (1− F (y))m−i f(y), i = 1, 2, ...,m.

Let Y
(2)
1 , Y

(2)
2 , ..., Y

(2)
m be a DRSS; that is Y

(2)
i is the ith order statistic of the RSS

Y
(1)
1 , Y

(1)
2 , ..., Y

(1)
m and each of Y

(2)
i are obtained from independent ranked set samples of size

m. Apparently, Y
(2)
1 , Y

(2)
2 , ..., Y

(2)
m are the order statistics of the independent (not identical)

random variables Y
(1)
1 , Y

(1)
2 , ..., Y

(1)
m . Hence, the cdf of Y

(2)
i (see for example [6]) is given by

(2.3) F
Y

(2)
i

(y) =
m∑
l=i

∑
Sl

(
l∏

k=1

F
Y

(1)
jk

(y)
m∏

k=l+1

(
1− F

Y
(1)
jk

(y)
))

,

where Sl is the set of the entire permutations (j1, j2, ..., jm), of the integers (1, 2, ...,m) for
which j1 < j2 < ··· < jl, and jl+1 < jl+2 < ··· < jm ([6]). The pdf of Y

(2)
i is the derivative of

F
Y

(2)
i

(y).

Let W
(1)
1 ,W

(1)
2 , ...,W

(1)
m be a MRSS; that is

(2.4) W
(1)
i =


X(m+1

2
) if m is odd & i = 1, ...,m,

X(m
2

) if m is even & i = 1, ..., m
2 ,

X(m+2
2

) if m is even & i = m+2
2 , ...,m.

The pdf of W
(1)
i is

(2.5) f
W

(1)
i

(x) =


fX

( m+1
2 )

(x) if m is odd & i = 1, ...,m,

fX( m
2 )

(x) if m is even & i = 1, ..., m
2 ,

fX
( m+2

2 )
(x) if m is even & i = m+2

2 , ...,m.

Let W
(2)
1 ,W

(2)
2 , ...,W

(2)
m be a DMRSS; that is

W
(2)
i =


W

(1)

(m+1
2

)
if m is odd & i = 1, ...,m,

W
(1)
(m

2
) if m is even & i = 1, ..., m

2 ,

W
(1)

(m+2
2

)
if m is even & i = m+2

2 , ...,m.

The pdf of W
(2)
i is

f
W

(2)
i

(x) =



f
W

(1)

( m+1
2 )

(x) if m is odd & i = 1, ...,m,

f
W

(1)

( m
2 )

(x) if m is even & i = 1, ..., m
2 ,

f
W

(1)

( m+2
2 )

(x) if m is even & i = m+2
2 , ...,m.

Referring to the procedures of MRSS and DMRSS, it is worth observing that both W
(1)
i

and W
(2)
i are independent over i.
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3. MIXED DOUBLE-RANKED SET SAMPLNG

MxDRSS scheme is similar to DRSS but in stage 2 MRSS is applied in lieu of RSS.
The following steps describe the procedure of MxDRSS:

1. Choose m sets randomly of size m2 elements each from the study population.
2. Apply the procedure of RSS on each set of Step 1 to acquire a RSS of size m.

This produces m ranked sets (each of size m).
3. Apply the procedure of MRSS on each ranked set in Step 2 to acquire a second

stage sample, which we call it a MxDRSS of size m.
4. Repeat Steps 1–3 independently h cycles, if needed, to acquire an MxDRSS of size

n = mh.

In order to clarify this procedure, it is helpful to refer to some illustrations. First let us
denote Xijk, i, j,k =1,2, ...,m for the units obtained by Step 1, where i is for the number of sets
and j × k is the size of the ith set. Xijk are iid with common distribution function F (x) and
density f(x). Second, let Yij = X(ijj), i, j = 1, 2, ...,m be the units obtained by Step 2 (Yij de-
note the j th order statistic from the ith set). Finally, the units obtained in Step 3 are denoted
by Zi, i = 1, 2, ...,m. Tables 1 and 2 explain the procedure when m = 3 and 4, respectively.

Table 1: Mixed double-ranked set sampling: m = 3.

Step 1 Step 2 Step 3

X111, X112, X113 Y11 = X(111)

X121, X122, X123 Y12 = X(122) Z1 = Y(12)

X131, X132, X133 Y13 = X(133)

X211, X212, X213 Y21 = X(211)

X221, X222, X223 Y22 = X(222) Z2 = Y(22)

X231, X232, X233 Y23 = X(233)

X311, X312, X313 Y31 = X(311)

X321, X322, X323 Y32 = X(322) Z3 = Y(32)

X331, X332, X333 Y33 = X(333)

Table 2: Mixed double-ranked set sampling: m = 4.

Step 1 Step 2 Step 3

X111, X112, X113, X114 Y11 = X(111)

X121, X122, X123, X124 Y12 = X(122) Z1 = Y(12)

X131, X132, X133, X134 Y13 = X(133)

X141, X142, X143, X144 Y14 = X(144)

X211, X212, X213, X214 Y21 = X(211)

X221, X222, X223, X224 Y22 = X(222) Z2 = Y(22)

X231, X232, X233, X234 Y23 = X(233)

X241, X242, X243, X244 Y24 = X(244)

X311, X312, X313, X314 Y31 = X(311)

X321, X322, X323, X324 Y32 = X(322)

X331, X332, X333, X334 Y33 = X(333) Z3 = Y(33)

X341, X342, X343, X344 Y34 = X(344)

X411, X412, X413, X414 Y41 = X(411)

X421, X422, X423, X424 Y42 = X(422)

X431, X432, X433, X434 Y43 = X(433) Z4 = Y(43)

X441, X442, X443, X444 Y44 = X(444)
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4. PRACTICALITY OF MxDRSS

In this section, Hellinger distance is defined and used as a measure of added practicality

and applied to some variations of RSS.

Suppose Y and X are two random variables with density functions fY (x) and fX(x),
respectively. The Hellinger distance (see for example [16]) between Y and X is defined by

H(X, Y ) =
(

1−
∫ ∞
−∞

√
fY (x)fX(x)dx

) 1
2

.

Obviously, for iid random variables, H(X, Y ) = 0. So the Hellinger distance between any two
data points of the SRS X1, X2, ..., Xm is zero. Therefore, identifying the ordered data points
(for getting either RSS or MRSS) based on the SRS is difficult. That is, obtaining MRSS
and RSS are equivalent in terms of practicality.

Now, given the data points of the RSS (Y (1)
1 , Y

(1)
2 , ..., Y

(1)
m ), and using the pdf’s of the

order statistics, it can be shown after simple calculation that the Hellinger distances between
any pair of RSS data points are given in the third column of Table 3. Note that the Hellinger
distances in this case are not zeros; that is, the additional work of identifying the ordered
data points of DRSS (i.e., for stage 2) based on the RSS data points (stage 1) is simpler now
than using SRS data points.

Table 3: Hellinger distances, m = 2, 3, 4; 1st and 2nd stage.

m (k, l) stage 1 stage 2

2 (1, 2) 0.4633 0.5920

(1, 2) 0.4086 0.5473
3 (1, 3) 0.7071 0.8625

(2, 3) 0.4086 0.5473

(1, 2) 0.3870 0.5306
(1, 3) 0.6501 0.8304

4
(1, 4) 0.8399 0.9628
(2, 3) 0.3412 0.4889
(2, 4) 0.6501 0.8304
(3, 4) 0.3870 0.5306

Now, given the data points of the MRSS (W (1)
1 ,W

(1)
2 , ...,W

(1)
m ), and suppose m is

odd. Due to the iid case, H
(
W

(1)
k ,W

(1)
l

)
= 0 for each k, l = 1, 2, ...,m. Therefore, getting a

DMRSS based on the MRSS practically is the same as obtaining a MRSS based on the SRS.
When m is even, the Hellinger distance is given by

H
(
W

(1)
k ,W

(1)
l

)
=

H(W (1)
m
2

,W
(1)
m+2

2

) > 0 if k ≤ m
2 & l > m

2 ,

0 otherwise.

Now suppose Y
(2)
1 , Y

(2)
2 , ..., Y

(2)
m be a DRSS, then the Hellinger distance between any

pairs of DRSS data points are shown in the last column of Table 3. It is clear that Hellinger
distances are higher in stage 2 than in stage 1.
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Similarly, for the DMRSS W
(2)
1 ,W

(2)
2 , ...,W

(2)
m , the Hellinger distance is zero when m

is odd. When m is even, the Hellinger distance is given by

H
(
W

(2)
k ,W

(2)
l

)
=

H(W (2)
m
2

,W
(2)
m+2

2

) > H(W (1)
m
2

,W
(1)
m+2

2

) > 0 if k ≤ m
2 & l > m

2 ,

0 otherwise.

To sum up, for a single stage sampling scheme, MRSS and RSS have same practicality,
and since it is shown in the literature that MRSS is more efficient than RSS, we recommend
to use MRSS. For a double stage sampling scheme, DRSS is more practical than DMRSS.
But, it is shown in the literature DMRSS is more efficient. So, to gain the efficiency provided
by applying MRSS, we suggest to mix MRSS with RSS by applying the procedure of MRSS
on the data points of RSS. That is, in the first stage we apply RSS and in the second stage
we apply MRSS. So, the obtained sample is just a combination between RSS and MRSS and
it is a double stage approach, and we call it MxDRSS. The practicality of this new MxDRSS
scheme is same as DRSS but in Section 6 we show it is more efficient.

Due to the properties of order statistics V1, ..., Vm, it can be seen that H(V1, Vm) is the
largest distance and H(Vm

2
, Vm+2

2
) is the minimum distance. Also note that H(V1, V1+r) =

H(Vm−r, Vm), r = 2, ...,m− 1. Apparently increasing m decreases the Hellinger distances for
the same pair of order statistics; which is reasonable in the sense that identifying the ordered
data points from a small m is easier than in a large m. It can also be concluded from Table 3
that identifying the ordered data points for stage 2 (DRSS) based on the ordered data points of
stage 1 (RSS) is consistently easier than identifying the ordered data points for stage 1 (RSS)
based on the identical data points of SRS. This result is consistent with the findings of [1].

5. ESTIMATION OF THE POPULATION MEAN

In this section estimation of the population mean is studied. Particularly, in Section 5.1
the population mean estimation is reviewed under the SRS, RSS, and DRSS schemes.
In Sections 5.2 and 5.3 the population mean estimation is reviewed respectively under the
MRSS and DMRSS schemes and also the results given in the literature about these schemes
are enhanced and some new closed form expressions for the variances of the sample means
and efficiencies are provided. Finally, in Section 5.4 the population mean estimation is inves-
tigated under the proposed MxDRSS scheme.

5.1. Population mean estimation based on SRS, RSS, and DRSS

Let X1, X2, ..., Xm be a SRS from f(x). The mean of the sample X̄ =
∑m

i=1 Xi/m is
an unbiased estimator of µ with variance σ2/m.

Let Y
(1)
1 , Y

(1)
2 , ..., Y

(1)
m be a RSS. It is shown by [25] (see also [26]) that Ȳ (1)=

∑m
i=1Y

(1)
i /m

is an unbiased estimator of µ and Var(Ȳ (1)) ≤ Var(X̄). [7] reported that Var(Ȳ (1)) = σ2/m−∑m
i=1

(
µ

(1)
i − µ

)2
/m2, where µ

(1)
i is the ith order statistic’s mean.
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Let Y
(2)
1 , Y

(2)
2 , ..., Y

(2)
m be a DRSS. [1] reported that the mean Ȳ (2) =

∑m
i=1 Y

(2)
i /m is

an unbiased estimator of µ with Var(Ȳ (2)) = σ2/m−
∑m

i=1

(
µ

(2)
i − µ

)2
/m2, where µ

(2)
i is the

ith order statistic’s mean of the RSS Y
(1)
1 , Y

(1)
2 , ..., Y

(1)
m . They also showed that Var(Ȳ (2)) ≤

Var(Ȳ (1)).

5.2. Population mean estimation based on MRSS

Let W
(1)
1 ,W

(1)
2 , ...,W

(1)
m be a MRSS. Let W̄ (1) = 1

m

∑m
i=1 W

(1)
i be the sample mean of

MRSS. Then

E
(
W̄ (1)

)
=


µ

(1)
m+1

2

if m is odd,

1
2

(
µ

(1)
m
2

+ µ
(1)
m+2

2

)
if m is even,

where µ
(1)
k = E

(
X(k)

)
. [15] reported that, for symmetric distribution, W̄ (1) is an unbiased

estimator of µ.

The variance of W̄ (1) can be derived as follows:

Var
(
W̄ (1)

)
= Var

(
1
m

m∑
i=1

W
(1)
i

)
.

Since the data points of MRSS are independent, then

Var
(
W̄ (1)

)
=

1
m2

m∑
i=1

Var
(
W

(1)
i

)
.

Now, from Eq (2.4) and Eq (2.5), we have

Var
(
W̄ (1)

)
=


1
m

σ
2(1)
m+1

2

if m is odd,

1
2m

(
σ

2(1)
m
2

+ σ
2(1)
m+2

2

)
if m is even,

where σ
2(1)
k = Var

(
X(k)

)
. Using the result of [7],

Var
(
W̄ (1)

)
=



σ2 − 1
m

m∑
i=1

(
µ

(1)
i − µ

)2
− 1

m

m∑
i:i6=m+1

2

σ
2(1)
i if m is odd,

1
2
σ2 − 1

2m

m∑
i=1

(
µ

(1)
i − µ

)2
− 1

2m

m∑
i:i6=m

2
, m+2

2

σ
2(1)
i if m is even.



MxDRSS 153

5.3. Population mean estimation based on DMRSS

Let W
(2)
1 ,W

(2)
2 , ...,W

(2)
m be a DMRSS. Let W̄ (2) = 1

m

∑m
i=1 W

(2)
i be the sample mean of

DMRSS. Then

E
(
W̄ (2)

)
=


µ

(2)
m+1

2

if m is odd,

1
2

(
µ

(2)
m
2

+ µ
(2)
m+2

2

)
if m is even,

where µ
(2)
k = E

(
W

(1)
(k)

)
. Using the properties of order statistics and for symmetric distribu-

tion it can be shown that E
(
W̄ (2)

)
= µ and the variance of W̄ (2) is

Var
(
W̄ (2)

)
=


1
m

σ
2(2)
m+1

2

if m is odd,

1
2m

(
σ

2(2)
m
2

+ σ
2(2)
m+2

2

)
if m is even,

where σ
2(2)
k = Var

(
W

(1)
(k)

)
. Using the result of [1],

Var
(
W̄ (2)

)
=



σ2 − 1
m

m∑
i=1

(
µ

(2)
i − µ

)2
− 1

m

m∑
i:i6=m+1

2

σ
2(2)
i if m is odd,

1
2
σ2 − 1

2m

m∑
i=1

(
µ

(2)
i − µ

)2
− 1

2m

m∑
i:i6=m

2
, m+2

2

σ
2(2)
i if m is even.

5.4. Population mean estimation based on MxDRSS

Let Z1, Z2, ..., Zm be a MxDRSS; that is

Zi =


Y

(1)

(m+1
2

)
if m is odd & i = 1, ...,m,

Y
(1)
(m

2
) if m is even & i = 1, ..., m

2 ,

Y
(1)

(m+2
2

)
if m is even & i = m+2

2 , ...,m.

Referring to the procedure of MxDRSS, one may conclude that Zi are independent over i,
and it is worth observing that they are not identical. The pdf of Zi is

fZi(x) =



f
Y

(1)

( m+1
2 )

(x) if m is odd & i = 1, ...,m,

f
Y

(1)

( m
2 )

(x) if m is even & i = 1, ..., m
2 ,

f
Y

(1)

( m+2
2 )

(x) if m is even & i = m+2
2 , ...,m.
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Let Z̄ = 1
m

∑m
i=1 Zi be the sample mean of MxDRSS. Then

E
(
Z̄
)

=


µ

Y
(1)

( m+1
2 )

if m is odd,

1
2

(
µ

Y
(1)

( m
2 )

+ µ
Y

(1)

( m+2
2 )

)
if m is even,

where µ
Y

(1)
(k)

= E
(
Y

(1)
(k)

)
. Using the properties of order statistics and for symmetric distribu-

tion it can be shown that E
(
Z̄
)

= µ and the variance of Z̄ is

Var
(
Z̄
)

=


1
m

σ2

Y
(1)

( m+1
2 )

if m is odd,

1
2m

(
σ2

Y
(1)

( m
2 )

+ σ2

Y
(1)

( m+2
2 )

)
if m is even,

where σ2

Y
(1)
(k)

= Var
(
Y

(1)
(k)

)
.

6. NUMERICAL RESULTS FOR SPECIFIC DISTRIBUTIONS

6.1. Results from a uniform distribution

Suppose that the underlying population is uniform U(0, 1), then the sample means
using SRS, RSS, MRSS, DRSS, DMRSS and MxDRSS of size m are unbiased estimators of
µ, while the variances depend on the sampling scheme.

1. For a SRS, Var(X̄) = 1/12m.

2. For a RSS, Var(Ȳ (1)) = 1/6m(m + 1), and the relative efficiency (see [25]) w.r.t.
SRS is Eff(Ȳ (1); X̄) = Var(X̄)/ Var(Ȳ (1)) = (m + 1)/2 .

3. For a MRSS, the variance of the sample mean and the relative efficiency have not
been provided in the literature in closed form. However, we find that the following
expressions can be obtained for this situation:

Var
(
W̄ (1)

)
=


1

4m(m + 2)
if m is odd,

1
4(m + 1)2

if m is even.

Thus, the relative efficiency w.r.t. SRS is given by

Eff(W̄ (1); X̄) =
Var(X̄)

Var(W̄ (1))
=


m + 2

3
if m is odd,

(m + 1)2

3m
if m is even.
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4. For a DRSS, when m = 3, Var(Ȳ (2)) ≈ 0.0092, and the relative efficiency is
Eff(Ȳ (2); X̄) = 3.026. When m = 4, Var(Ȳ (2)) ≈ 0.0049, and the relative efficiency
is Eff(Ȳ (2); X̄) = 4.281.

5. For a DMRSS, when m = 3, Var(W̄ (2)) = σ
2(2)
2 /3 ≈ 0.0089, and the relative effi-

ciency is Eff(W̄ (2); X̄) = 3.130. For m = 4, Var(W̄ (2)) = (σ2(2)
2 + σ

2(2)
3 )/8 ≈ 0.0047,

and the relative efficiency is Eff(W̄ (2); X̄) = 4.422.

6. For a MxDRSS, when m = 3, Var(Z̄) = σ2

Y
(1)
(2)

≈ 0.0115, and the relative efficiency

is Eff(Z̄; X̄) = 2.406. When m = 4, Var(Z̄) = (σ2

Y
(1)
(2)

+ σ2

Y
(1)
(3)

)/2 ≈ 0.0060, and the

relative efficiency is Eff(Z̄; X̄) = 3.470.

So far, we have discussed results for symmetric but rectangular distribution. In the
next subsection, we will discuss results for other types of well known distributions.

6.2. Results for the normal, exponential, and skew normal distributions

The relative efficiencies of the sample means obtained by RSS, MRSS, DRSS, DMRSS,
and MxDRSS w.r.t. SRS for the normal distribution N(0, 1), skew normal distribution
SN(0, 1, 1), and exponential distribution Exp(1) are summarized in Table 4. Also the re-
sults of the uniform distribution U(0, 1) are provided. Table 5 shows the bias and variance
of the obtained estimators from the skewed distributions. Moreover, to examine the effect
of the kurtosis and skewness on the biasedness and relative efficiency of the considered sam-
pling schemes the gamma distribution Gamma(α, 1) is used, where α is changed from 1 to 6
(note that increasing α decreases the kurtosis and the skewness) and the results are shown in
Figures 1 and 2 for m = 3 and m = 4, respectively. So, from Figures 1 and 2 one may conclude
that:

(a) bias is a bit higher for skewed distributions than non-skewed distributions;

(b) the efficiency is low for highly skewed distributions.

From the results of Tables 4, 5, and Figures 1 and 2 the remarks below can be observed:

1. In terms of efficiency, the best sampling scheme among those studied in this paper is
the DMRSS except for highly skewed distribution like the exponential distribution.

2. As m increases, the efficiency also increases except for the Exp(1) under DMRSS
(it decreases when m > 2 as shown by [20]) and MxDRSS (it decreases when m > 3).
Our MxDRSS scheme shows better performance than DMRSS when m > 3.

3. The efficiency is lower for those distributions with large skewness and large kurtosis.

4. In terms of biasedness, the MRSS has the smallest bias.

5. The bias is small when the skewness is small.



156 Monjed H. Samuh, M. Hafidz Omar and M. Pear Hossain

Table 4: The efficiency in the population mean estimation
under the considered sampling schemes w.r.t. SRS.

m
Distribution (Skewness, kurtosis) Method

2 3 4 5

RSS 1.500 2.000 2.500 3.000
MRSS 1.500 1.667 2.083 2.333

U(0, 1) (0, −1.2) DRSS 1.923 3.026 4.281 5.670
DMRSS 1.923 3.130 4.422 6.925
MxDRSS 1.923 2.406 3.470 4.350

RSS 1.467 1.914 2.347 2.770
MRSS 1.467 2.229 2.774 3.486

N(0, 1) (0, 0) DRSS 1.785 2.633 3.526 4.456
DMRSS 1.785 4.992 7.091 12.226
MxDRSS 1.785 3.615 5.046 7.318

RSS 1.465 1.909 2.339 2.759
MRSS 1.465 2.241 2.786 3.500

SN(0, 1, 1) (0.137, 0.062) DRSS 1.780 2.620 3.503 4.419
DMRSS 1.780 5.016 7.089 12.030
MxDRSS 1.780 3.635 5.059 7.290

RSS 1.333 1.636 1.920 2.190
MRSS 1.333 2.250 2.441 2.230

Exp(1) (2, 6) DRSS 1.516 2.024 2.523 3.016
DMRSS 1.516 3.116 2.867 2.226
MxDRSS 1.516 2.854 2.988 2.265

Table 5: The (bias, variance) of the sample mean obtained by MRSS,
DMRSS, and MxDRSS for skewed distributions.

Distribution m

(Skewness, kurtosis)
Method

3 4 5

SN(0, 1, 1)
MRSS (−0.010, 0.101) (−0.010, 0.061) (−0.014, 0.039)

(0.137, 0.062)
DMRSS (−0.015, 0.045) (−0.016, 0.024) (−0.018, 0.011)
MxDRSS (−0.014, 0.062) (−0.013, 0.034) (−0.017, 0.018)

Exp(1)
MRSS (−0.167, 0.120) (−0.167, 0.075) (−0.217, 0.043)

(2, 6)
DMRSS (−0.244, 0.048) (−0.249, 0.025) (−0.281, 0.011)
MxDRSS (−0.220, 0.068) (−0.212, 0.039) (−0.264, 0.019)
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(a) Biasedness.

(b) Efficiency.

Figure 1: The effectiveness of the skewness parameter of the Gamma(α, 1)
on the biasedness and efficiency of the estimates when m = 3
under the considered sampling schemes.

(a) Biasedness.

(b) Efficiency.

Figure 2: The effectiveness of the skewness parameter of the Gamma(α, 1)
on the biasedness and efficiency of the estimates when m = 4
under the considered sampling schemes.
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7. A REAL DATA EXAMPLE

In this section, a real data set is analyzed to illustrate the usefulness of our proposed
methodology.

The body mass index (BMI) is a measure of relative size based on the mass and height
of an individual. It is commonly employed among children and adults to predict health
outcomes. Commonly accepted BMI ranges are underweight: under 18.5, normal weight:
18.5 to 25, overweight: 25 to 30, obese: over 30. A data set that has a BMI for 2107 people
is contained in R-package mixsmsn. Six types of samples (obtained by using SRS, RSS, MRSS,
DRSS, DMRSS, and MxRSS) of size 5 each are presented in Table 6 and the question of
interest is to estimate the mean of the BMI. The estimated BMI mean and the standard
error of the mean under SRS, RSS, MRSS, DRSS, DMRSS, and MxDRSS are obtained and
reported in Table 6.

Table 6: Body mass index example.

SRS RSS MRSS DRSS DMRSS MxDRSS

20.00 22.00 25.91 22.00 26.36 26.36
22.62 20.25 21.97 26.89 23.08 28.30
23.70 26.36 31.63 22.09 28.68 22.09
32.79 31.96 26.51 30.78 24.86 26.30
35.18 33.46 34.63 32.64 26.51 23.32

estimated mean 26.858 26.806 28.130 26.880 25.898 25.274
estimated standard error 2.9951 2.6184 2.2361 2.1811 0.9313 1.1257

As suggested by [23] the estimated variance of the sample mean obtained by RSS is
given by

S2
RSS =

∑m
i=1(Y

(1)
i − Ȳ (1))2

m− 1
.

Accordingly, one may define the estimated variances of the sample means obtained by MRSS,
DRSS, DMRSS, and MxDRSS in the same way. For example, in case of MxDRSS,

S2
MxDRSS =

∑m
i=1(Zi − Z̄)2

m− 1
,

and hence the estimated standard error is given by

SE(Z̄) =

√
S2

MxDRSS

m
.
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8. CONCLUSION

Practically, given an RSS in stage 1, applying RSS or MRSS in stage 2 is the same
because identifying the sample observations is done after the ranking process. But as discussed
in Section 6 it is shown that efficiency is higher if we apply MRSS in stage 2. It is also found
that efficiency decreases by increases in the kurtosis and skewness. To sum up, DRSS and
MxDRSS will behave the same in practicality, but in terms of efficiency MxDRSS is better
than DRSS (except for the uniform distribution, which is fatter tailed).
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