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1. INTRODUCTION

Many macroeconomic and financial time series vary over wide range around mean,
and very large or small prediction errors may occur in practice. Since financial markets are
sensitive to political events, speculations, changes in monetary policy etc., this variability
in the error terms may occur. This implies that the variance of the errors may not be
constant and it changes over time so the errors can be serially correlated in financial data.
Additionally, one of the uncertain and decisive factors in financial time series analysis is the
volatility as a measure of dispersion and an indicator of magnitude of fluctuations of the
asset price series. Hence, measuring volatility as well as construction of valid predictions for
future returns and volatilities have an important role in assessing risk and uncertainty in
the financial market. Since volatility is the unobservable component of financial time series,
it should be modeled correctly to obtain efficient parameter estimation and improve the
accuracy of prediction intervals for assessing uncertainty in risk management. In this context,
the generalized autoregressive conditionally heteroscedastic (GARCH) model proposed by [7]
is one of the most commonly used technique for modeling volatility and obtaining dynamic
prediction intervals for returns as well as volatilities. See [4], [22], [13] and [28] for recent
studies on GARCH model in modelling volatility. Also see [1], [2], [3], and [15] for detailed
information about construction of prediction intervals for future returns in financial time
series analysis. However, those works only consider point forecast of volatility even though
prediction intervals provide better inference taking into account uncertainty of unobservable
sequence of volatilities. On the other hand, construction of prediction intervals requires some
distributional assumptions which are generally unknown in practice. Moreover, they can be
affected due to any departure from the assumptions and may lead us to unreliable results.
One remedy to construct prediction intervals without considering distributional assumptions
is to apply the well known resampling methods, such as the bootstrap.

For the serially correlated data, the method of block bootstrap is one of the most
general tool to approximate the properties of estimators. In this technique the underlying
idea is to construct a resample of the data of size n by dividing the data into several blocks
with a sufficiently large block length ` and choosing among them till the bootstrap sample is
obtained. Then, the dependence structure of the original data is attempted to be captured
by these ` consecutive observations in each block drawn independently. The commonly used
block bootstrap procedures called “non-overlapping” and “overlapping” are first proposed
by [16] in the context of spatial data. Then [10] and [20], respectively, adapted the non-
overlapping block bootstrap (NBB) and moving block bootstrap (MBB) approaches to the
univariate time series context. In addition to these methods, [26] introduced the circular block
bootstrap (CBB) method by wrapping the data around a circle before blocking them. Also,
the stationary bootstrap (SB) method which deals with random block lengths is proposed
by [25]. Moreover, Ordered non-overlapping block bootstrap (ONBB), which orders the
bootstrapped blocks according to given labels to each original block, was suggested by [6]
to improve the performance of the block bootstrap technique by taking into account the
correlations between the blocks.

Bootstrap-based prediction intervals of autoregressive conditionally heteroscedastic
(ARCH) model for future returns and volatilities are proposed by [23] and [27]. [24] further
extends the previous works to GARCH(1, 1) model. Later, [11] suggests computationally
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efficient bootstrap prediction intervals for ARCH and GARCH processes in the context for
financial time series. All of these methods are based on resampling the residuals. The block
bootstrap methods are not suitable for construction of prediction intervals in conditionally
heteroskedastic time series models because of their poor finite sample performances. On
the other hand, it is possible to construct valid block bootstrap based prediction intervals for
GARCH processes by using the autoregressive-moving average (ARMA) representation of the
GARCH models. For instance, [5] proposed to use the ONBB method to obtain prediction
intervals for GARCH process and they obtained better prediction intervals for returns and
volatilities compared to the existing residual based bootstrap method(s). Also, [19] intro-
duced a stationary bootstrap prediction interval for GARCH models. In this paper, following
the idea of [19], we propose a new bootstrap algorithm to obtain prediction intervals for
future returns and volatilities under GARCH processes. In summary, our extension works
as follows: First, we use the squares of the GARCH process, which have the ARMA rep-
resentation, to make the parameter estimation process linear. The ordinary least squares
estimators of the ARMA model are calculated by a high order autoregressive model of order
m, and the residuals are computed. Then the block bootstrap methods are applied to the
data to obtain the bootstrap sample of the returns which are used to calculate the bootstrap
estimators of the ARMA coefficients and the bootstrap sample of the volatilities. Finally, the
future values of the returns and volatilities of the GARCH process are obtained by means of
bootstrap replicates and quantiles of the Monte Carlo estimates of the generated bootstrap
distribution.

The rest of the paper is organized as follows. We describe our proposed methods in
Section 2. An extensive Monte Carlo simulation is conducted to examine the finite sample
performance of the proposed methods and the results are presented in Section 3. In Section 4,
the JPY/USD daily exchange rate data is analyzed using the new methods and the results
are presented. Section 5 concludes the paper.

2. METHODOLOGY

We use ARMA parameterization of a GARCH model and its least squares (LS) esti-
mators in order to employ block bootstrap methods for constructing prediction intervals.

The GARCH(p, q) process considered in this study has the following representation:

yt = σtεt,

σ2
t = ω +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjσ
2
t−j , t = 1, ..., T,(2.1)

where {εt} is a sequence of white noise random variables and E(ε4) < ∞, ω, αi and βj are
unknown parameters satisfying ω > 0, αi ≥ 0 and βj ≥ 0 for i = 1, ..., p and j = 1, ..., q. The
stochastic process σt is assumed to be independent of εt. Throughout this paper, we assume
that the process {yt} is strictly stationary, i.e.,

∑r
i=1(αi +βi) < 1, where r = max(p, q), αi = 0

for i > p and βi = 0 for i > q; see [8] and [9]. A GARCH(p, q) process {yt} is represented in
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the form of ARMA as follows:

(2.2) y2
t = ω +

r∑
i=1

(αi + βi)y2
t−i + νt −

q∑
j=1

βjνt−j ,

where the innovation νt = y2
t − σ2

t is a white noise (not i.i.d. in general) and identically
distributed under the strict stationary assumption of yt. Using the unconditional mean of
the ARMA model given in (2.2), we have

(2.3) E(y2
t ) =

ω

1−
∑r

i=1(αi + βi)
.

According to [18], the LS estimators of an ARMA model are obtained as follows:

(a) First, a high order autoregressive model of order m, AR(m), with m > max(p, q),
is fitted to the data by Yule-Walker method to obtain ν̂t, where m is determined
from the data by using Akaike information criteria or Bayesian information crite-
ria.

(b) Then a linear regression of y2
t onto y2

t−1, ..., y
2
t−r, ν̂t−1, ..., ν̂t−q is fitted to estimate

the parameter vector φ = ((α1 + β1), ..., (αr + βr),−β1, ...,−βq)′.

In matrix notations, let ZT and X be as follows:

ZT =

y2
m+1
...

y2
T


and

X =

 y2
m y2

m−1 ... y2
m−p+1 ν̂m ν̂m−1 ... ν̂m−q+1

...
...

. . .
...

...
...

. . .
...

y2
T−1 y2

T−2 ... y2
T−p ν̂T−1 ν̂T−2 ... ν̂T−q

 .

Then, the LS estimator φ̂ = ( ̂(α1 + β1), ..., ̂(αr + βr),−β̂1, ...,−β̂q)′ is obtained as

(2.4) φ̂ = (X
′
X)−1X

′
ZT ,

given X
′
X is non-singular. The corresponding α̂i’s are calculated as α̂i = (α̂i + βi)− β̂i, for

i = 1, ..., p.

For clarity, we next describe the complete algorithm of the proposed block bootstrap
prediction intervals for future returns and volatilities.

Step 1. For a realization of GARCH(p, q) process, {y1−r, ..., y0, y1, ..., yT }, calculate
the LS estimates of ARMA coefficients as in (2.4), and the corresponding ω̂

is calculated by using (2.3) such that ω̂ = E(ŷ2
t )

[
1−

∑r
i=1

̂(αi + βi)
]
, where

E(ŷ2
t ) = T−1

∑T
t=1 y2

t .

Step 2. For t = r, ..., T , calculate the residuals ε̂t = yt/σ̂t where σ̂2
t = ω̂+

∑p
i=1 α̂iy

2
t−i+∑q

j=1 β̂j σ̂
2
t−j and σ̂2

0 = ω̂/(1−
∑r

i=1(α̂i + β̂i)). Let F̂ε be the empirical dis-
tribution function of the centered and rescaled residuals.
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Step 3. Compute the error term as ξ̂ = ZT −Xφ̂ and construct the design matrix
Y = (X, ξ).

Y =

y2
t−1 y2

t−2 ... y2
t−r ν̂t−1 ν̂t−2 ... ν̂t−q ξ̂t

...
...

. . .
...

...
...

. . .
...

...
y2

T−1 y2
T−2 ... y2

T−r ν̂T−1 ν̂T−2 ... ν̂T−q ξ̂T

 .

Let Yt = (y2
t−1, y

2
t−2, ..., y

2
t−r, ν̂t−1, ν̂t−2, ..., ν̂t−q, ξ̂t), t = 1, ..., T , denotes the

tth row of the design matrix Y. Let also B(k), for k = 1, 2, 3, respectively, rep-
resents the block vectors of NBB, MBB and CBB methods obtained from Y
such that B(1)

j = {Y(j−1)`+1, ..., Yj`} where b = bT/`c and j = 1, ..., b, B(2)
j =

{Yj , ..., Yj+l−1} where 1≤ j≤N and N = T− `+1 and B(3)
j = {Yj , ..., Yj+l−1}

where 1 ≤ j ≤ T . Then obtain the block bootstrap observations {Y ∗
1 , ..., Y ∗

T },
where Y∗

t = (y2∗
t−1, y

2∗
t−2, ..., y

2∗
t−r, ν̂

∗
t−1, ν̂

∗
t−2, ..., ν̂

∗
t−q, ξ̂

∗
t ), by sampling with

replacement from B(k). The ONBB and SB observations are obtained as
follows:

– ONBB observations are obtained as ordering the bootstrapped non-over-
lapping blocks according to given labels to each original block. Suppose
the data is divided into the four independent non-overlapping blocks.
Then, the labels are determined as B1 = 1, B2 = 2, B3 = 3 and B4 = 4,
and let the bootstrapped blocks are B∗

1 = B4, B
∗
2 = B2, B

∗
3 = B3 and B∗

4 =
B3. As a consequence, the ONBB data is obtained as {B2

...B3
...B3

...B4}.

– Let B(i`) = (Yi, ..., Yi+`−1), for i ≥ 1, be the blocks of ` consecutive ob-
servations starting from Yi. The observed time series data is wrapped
around a circle in order to ensure that all starting points have equal
probability of selection. Let I1, I2, ... be the independently and identi-
cally distributed discrete uniform random variables on {1, ..., T} so that
P (I1 = i) = 1/T , for i = 1, ..., T . Let also L1, L2, ... be the i.i.d. geometric
random variables with parameter ρ such that 0 < ρ < 1 and the proba-
bility mass function P (L1 = `) = ρ(1− ρ)`−1, for ` = 1, 2, .... We assume
that two sets {I1, I2, ...} and {L1, L2, ...} are independent and ρ → 0 as
Tρ →∞. Then, the SB data {Y ∗

1 , ..., Y ∗
T } are generated by sampling from

{BI1L1 , BI2L2 , ...} where BIrLr = {YIr , ..., YIr+Lr−1} for r ≥ 1.

Step 4. Let X∗ be the bootstrap analogue of X such that

X∗ =

 y∗2m y∗2m−1 ... y∗2m−p+1 ν̂∗m ν̂∗m−1 ... ν̂∗m−q+1
...

...
. . .

...
...

...
. . .

...
y∗2T−1 y∗2T−2 ... y∗2T−p ν̂∗T−1 ν̂∗T−2 ... ν̂∗T−q

 .

Then calculate the block bootstrap estimators of ARMA coefficients as

φ̂∗ = (X∗′X∗)−1X∗′Z∗
T = ( ̂(α1 + β1)

∗
, ..., ̂(αr + βr)

∗
,−β̂∗

1 , ...,−β̂∗
q )′,

where Z∗
T =X∗φ̂+ ξ̂. Also, calculate the corresponding α̂∗

i ’s as α̂∗
i = (α̂i +βi)∗

− β̂∗
i , for i = 1, ..., p, and ω̂∗’s as in Step 1 but using bootstrap observations.

Step 5. Obtain block bootstrap volatilities as σ̂2∗
t = ω̂∗ +

∑p
i=1 α̂∗

i y
2∗
t−i +

∑q
j=1 β̂∗

j σ̂2∗
t−j

with σ̂2∗
0 = ω̂/(1−

∑r
i=1(α̂i + β̂i)).
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Step 6. Calculate h = 1, 2, ... steps ahead block bootstrap future returns and volatil-
ities with the following recursions:

σ̂2∗
T+h = ω̂∗ +

p∑
i=1

α̂∗
i y

2∗
T+h−i +

q∑
j=1

β̂∗
j σ̂2∗

T+h−j ,

y∗T+h = σ̂2∗
T+hε̂∗T+h,

where y∗T+h = yT+h for h ≤ 0 and ε̂∗T+h is randomly drawn from F̂ε.

Step 7. Repeat Steps 3-6 B times to obtain bootstrap replicates of returns and volatil-
ities {y∗,1T+h, ..., y∗,BT+h} and {σ̂2∗,1

T+h, ..., σ̂2∗,B
T+h} for each h. Note that B denotes

the number of bootstrap replications.

As noted in [24], the one-step conditional variance is perfectly predictable if the model
parameters are known, and the only uncertainty which is caused by the parameter estimation,
is associated with the prediction of σ2

T+1. On the other hand, there are further uncertainties
about future errors when predicting two or more step ahead variances. Thus, it is more inter-
esting issue to have prediction intervals for future volatilities. Now, let G∗

y(k) = P (y∗T+h ≤ k)
and G∗

σ2(k) = P (σ̂∗2
T+h ≤ k) be the block bootstrap distribution functions of unknown dis-

tribution functions of yT+h and σ2
T+h, respectively. Also let G∗

y,B(k) = #(y∗,bT+h ≤ k)/B and
G∗

σ2,B(k) = #(σ̂2∗,b
T+h ≤ k)/B, for b = 1, ..., B, be the corresponding Monte Carlo (MC) esti-

mates. Then, the 100(1− γ)% bootstrap prediction intervals for yT+h and σ2
T+h, respectively,

are given by

[
LB∗

y,B, UB∗
y,B

]
=

[
Q∗

y,B(γ/2), Q∗
y,B(1− γ/2)

]
,[

LB∗
σ2,B, UB∗

σ2,B

]
=

[
Q∗

σ2,B(γ/2), Q∗
σ2,B(1− γ/2)

]
,

where Q∗
y,B = G∗−1

y and Q∗
σ2,B = G∗−1

σ2 .

3. NUMERICAL RESULTS

We performed a simulation study to investigate the performances of the block boot-
strap prediction intervals constructed through the GARCH(1, 1) model given in (3.1) below,
and we compared our results with the method proposed by [24] (abbreviated as “PRR”).
In brief, the PRR method uses quasi-maximum likelihood method to estimate the param-
eters and then, uses residual-based resampling to construct prediction intervals for future
returns and volatilities. The comparison was made through the coverage probabilities and
length of prediction intervals. It is worth the mention that we also checked the performances
of the conventional block bootstrap methods. Roughly, we observed the coverage probabil-
ities of other block bootstrap methods range in between 90%-94% for future returns while
those range only in between 25%-60% for future volatilities. These results are not shown to
save space, but are available from the authors upon request.



Block Bootstrap Prediction Intervals for GARCH Processes 403

To discuss the numerical study we present here, let us start with the following
GARCH(1, 1) model:

yt = σtεt

σ2
t = 0.05 + 0.1y2

t−1 + 0.85σ2
t−1,(3.1)

where εt follows a N(0, 1) distribution. The significance level γ is set to 0.05 to obtain 95%
prediction intervals for future returns and volatilities. Since the block bootstrap methods are
sensitive to the choice of the block length `, we choose three different block lengths in our
simulation study: T 1/3, T 1/4, T 1/5 as proposed by [17]. Let h = 1, 2, ..., s, s ≥ 1, be defined
as the lead time. We obtain the prediction intervals for next s = 20 observations. The
experimental design is similar to those of [24] which is as follows:

Step 1. Simulate a GARCH(1, 1) series with the parameters given in equation (3.1),
for h = 1, ..., s, generate R = 1000 future values yT+h and σ2

T+h to calcu-
late the average coverage probabilities and interval lengths (as well as their
standard errors) for the prediction intervals.

Step 2. Calculate bootstrap future values y∗,bT+h and σ2∗,b
T+h for h = 1, ..., s and b =

1, ..., B. Then estimate the coverage probabilities (C∗) of bootstrap predic-
tion intervals for y∗T+h and σ2∗

T+h as

C∗
yT+h

=
1
R

R∑
r=1

1{Q∗
yT+h

(γ/2) ≤ y∗,rT+h ≤ Q∗
yT+h

(1− γ/2)},

C∗
σ2

T+h
=

1
R

R∑
r=1

1{Q∗
σ2

T+h
(γ/2) ≤ σ2∗,r

T+h ≤ Q∗
σ2

T+h
(1− γ/2)},

where 1 represents the indicator function. The corresponding interval lengths
(L∗) are calculated by

L∗
yT+h

= Q∗
yT+h

(1− γ/2)−Q∗
yT+h

(γ/2),

L∗
σ2

T+h
= Q∗

σ2
T+h

(1− γ/2)−Q∗
σ2

T+h
(γ/2).

Step 3. Repeat Steps 1-2, MC = 1000 times to calculate the average values of C∗
yT+h

,
C∗

σ2
T+h

, L∗
yT+h

and L∗
σ2

T+h
.

Our results showed that the accuracy of the prediction intervals for volatilities are
sensitive to the choice of block length parameter `. The higher coverage probabilities are
obtained for all the methods when ` = T 1/5 is used, therefore to save space we present only
the results obtained for the choices of block length parameter ` = T 1/5. Table 1 summarizes
the simulation results. More detailed results are presented in Figures 1–4. Our findings show
that ONBB outperforms PRR and other block bootstrap methods in general. For coverage
probabilities of future returns (see Figure 1), the performances of all the methods are almost
the same. Also, all the proposed methods provide competitive interval lengths for returns (see
Figure 3). For the prediction intervals of volatilities (please see Figure 4), the performance of
ONBB is always better than PRR and other block bootstrap methods in small sample sizes
especially for short-term forecasts, and it outperforms other methods also in large samples.
PRR has better performances compared to non-ordered block bootstrap methods for short
term forecasts, and all the methods have similar performances for long term forecasts. We
note that the results obtained by MBB and CBB methods are quite similar, therefore to make
the results more readable we present the results only for the CBB method.
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Table 1: Prediction intervals for returns and volatilities of GARCH(1, 1) model.

Lead
time

Sample
size

Method

Average coverage
for return

(SE)

Average length
for return

(SE)

Average coverage
for volatility

(SE)

Average length
for volatility

(SE)

T Empirical 0.95 3.814 0.95 —

PRR 0.945 (0.021) 3.748 (0.874) 0.904 (0.295) 0.649 (0.520)
ONBB 0.943 (0.022) 3.690 (0.704) 0.949 (0.220) 0.720 (0.592)

300 NBB 0.941 (0.041) 3.739 (0.562) 0.847 (0.360) 0.986 (0.528)
CBB 0.941 (0.042) 3.737 (0.558) 0.850 (0.357) 0.991 (0.536)

1 SB 0.941 (0.042) 3.731 (0.564) 0.846 (0.361) 1.001 (0.544)

PRR 0.946 (0.011) 3.800 (0.863) 0.952 (0.214) 0.181 (0.194)
ONBB 0.948 (0.015) 3.815 (0.793) 0.995 (0.070) 0.803 (0.740)

3000 NBB 0.948 (0.045) 3.889 (0.343) 0.892 (0.310) 1.224 (0.297)
CBB 0.948 (0.046) 3.886 (0.340) 0.897 (0.304) 1.230 (0.297)
SB 0.948 (0.045) 3.888 (0.347) 0.885 (0.319) 1.232 (0.300)

T Empirical 0.95 3.946 0.95 1.389

PRR 0.943 (0.026) 3.846 (0.712) 0.902 (0.117) 1.564 (1.387)
ONBB 0.938 (0.025) 3.723 (0.530) 0.921 (0.113) 1.541 (1.181)

300 NBB 0.937 (0.032) 3.738 (0.497) 0.898 (0.141) 1.547 (0.943)
CBB 0.937 (0.032) 3.736 (0.503) 0.902 (0.136) 1.549 (0.944)

10 SB 0.936 (0.032) 3.721 (0.499) 0.896 (0.141) 1.516 (0.923)

PRR 0.946 (0.012) 3.875 (0.604) 0.941 (0.036) 1.354 (0.653)
ONBB 0.947 (0.014) 3.867 (0.584) 0.955 (0.059) 1.582 (0.967)

3000 NBB 0.947 (0.029) 3.901 (0.270) 0.939 (0.097) 1.670 (0.531)
CBB 0.947 (0.029) 3.907 (0.275) 0.939 (0.098) 1.669 (0.533)
SB 0.947 (0.029) 3.897 (0.278) 0.932 (0.103) 1.647 (0.541)

T Empirical 0.95 3.948 0.95 1.661

PRR 0.940 (0.026) 3.876 (0.647) 0.881 (0.122) 1.771 (1.515)
ONBB 0.935 (0.026) 3.741 (0.507) 0.903 (0.119) 1.646 (0.990)

300 NBB 0.934 (0.029) 3.746 (0.502) 0.895 (0.128) 1.635 (0.911)
CBB 0.934 (0.029) 3.740 (0.498) 0.898 (0.125) 1.640 (0.900)

20 SB 0.933 (0.029) 3.727 (0.499) 0.895 (0.126) 1.623 (0.919)

PRR 0.946 (0.012) 3.907 (0.444) 0.940 (0.033) 1.634 (0.627)
ONBB 0.946 (0.014) 3.895 (0.460) 0.949 (0.063) 1.861 (0.972)

3000 NBB 0.946 (0.020) 3.910 (0.255) 0.948 (0.073) 1.876 (0.595)
CBB 0.946 (0.020) 3.913 (0.255) 0.948 (0.071) 1.872 (0.583)
SB 0.946 (0.020) 3.900 (0.259) 0.946 (0.073) 1.859 (0.598)
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Figure 1: Estimated coverage probabilities of returns. First line: ONBB vs PRR,
second line: NBB vs PRR, third line: CBB vs PRR, fourth line: SB
vs PRR. Solid line represents the empirical coverage. Dashed line and
dotted line represent the coverage probabilities obtained using PRR and
proposed methods, respectively.
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Figure 2: Estimated coverage probabilities of volatilities. First line: ONBB vs PRR,
second line: NBB vs PRR, third line: CBB vs PRR, fourth line: SB vs PRR.
Solid line represents the empirical coverage. Dashed line and dotted line rep-
resent the coverage probabilities obtained using PRR and proposed methods,
respectively.
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Figure 3: Estimated lengths of prediction intervals of returns. First line: ONBB vs PRR,
second line: NBB vs PRR, third line: CBB vs PRR, fourth line: SB vs PRR.
Solid line represents the empirical interval lengths. Dashed line and dotted
line represent the interval lengths obtained using PRR and proposed methods,
respectively.
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Figure 4: Estimated lengths of prediction intervals of volatilities. First line: ONBB vs PRR,
second line: NBB vs PRR, third line: CBB vs PRR, fourth line: SB vs PRR.
Solid line represents the empirical interval lengths. Dashed line and dotted line
represent the interval lengths obtained using PRR and proposed methods, respec-
tively.
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We also compared our proposed algorithm with the PRR in terms of their computing
times. Let c1 and c2 be the obtained computing times for PRR and proposed algorithm,
respectively. Figure 5 represents the ratio of computing times, c1/c2, for various sample sizes
based on B = 1000 bootstrap replications and only one Monte Carlo simulation. As presented
in Figure 5, the proposed algorithm has considerably less computational time such that PRR
requires about 36–12 times more computing time (in small and large samples, respectively)
than the proposed algorithm.
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Figure 5: Ratio of the estimated computing times for PRR and proposed algorithm.

4. CASE STUDY

The JPY/USD daily exchange rate data were obtained starting from 3rd January,
2011 and ending on 30th April, 2015 (available at https://www.stlouisfed.org/). After
excluding observations on weekends and inactive days, our final data consisted a total of
1071 observations. The daily logarithmic returns were obtained as yt = 100 ∗ log(Pt/Pt−1),
where Pt was the closing price on t-th day. The time series plots of the exchange rates and
returns are presented in Figure 6. We checked the stationary status of the return series
by applying the Ljung-Box and Augmented Dickey-Fuller t-statistic tests and small p-values
reject the null hypothesis against stationary alternative and suggest that the return series
is a mean-zero stationary process. Table 2 reports the sample statistics of yt series, and it
shows that the estimated kurtosis is higher than 3 which indicates that the distribution of
the returns was leptokurtic. Next, we checked for the Gaussianity of the return series and the
p-value = 0.000 of Jarque-Bera test indicated that yt was not Gaussian. Further, we performed
the Box-Pierce test to test for auto-correlations in the absolute and squared returns and
smaller p-values indicated that the absolute and squared returns are highly auto-correlated.

https://www.stlouisfed.org/
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Figure 6: Time series plots of JPY/USD daily exchange rates and returns
from 3rd January, 2011 to 30th April, 2015.

Table 2: Sample statistics for yt.

T Mean Median SD Skewness Kurtosis Min. Max.

1070 0.04 0.01 0.58 0.64 7.21 −2.13 3.34

The auto-correlations of returns, absolute and squared returns are presented in Table 3. All of
our preliminary exploratory analyses suggested the presence of conditional heteroscedasticity
in the series. To find the optimal lag for the GARCH model to model the return series
we defined many possible subsets of the GARCH(p, q) models with different p and q values.
To choose the best model we used Akaike information (AIC) criterion (since it is proposed
to determine the best model for forecasting) and the results show that GARCH(1, 1) model
is optimal according to AIC.

Table 3: Autocorrelations of yt at lag k, k = 1, 2, 5, 10, 16, ..., 20.

Autocorrelations r(1) r(2) r(5) r(10) r(16) r(17) r(18) r(19) r(20)

yt 0.008 −0.006 −0.009 −0.027 −0.085 0.015 −0.016 0.011 0.097
|yt| 0.117 0.107 0.111 0.125 0.119 0.070 0.084 0.132 0.096
y2

t 0.094 0.091 0.066 0.085 0.070 0.027 0.021 0.097 0.083



Block Bootstrap Prediction Intervals for GARCH Processes 411

To obtain out-of sample prediction intervals for the real data, we divide the full data
into the following two parts: The model is constructed based on the observations from 3rd
January, 2011 to 19th March, 2015 (1041 observations in total) to calculate 30 steps ahead
predictions from 20th March to 30th April, 2015 and compare with the actual values. The
fitted models for the PRR and proposed block bootstrap methods are obtained as in equations
(4.1) and (4.2), respectively:

y2
t = 0.0054 + 0.0569y2

t−1 + 0.9283σ̂2
t−1,(4.1)

y2
t = 0.0150 + 0.9556y2

t−1 + νt − 0.8805νt−1,(4.2)

where ω̂ = 0.0150, α̂1 = 0.0750 and β̂1 = 0.8805 for the model estimated by (4.2). The 30
steps ahead prediction intervals for returns yT+h based on the models given in equations (4.1)
and (4.2), together with the true returns are presented in Figure 7. The intervals obtained
using all the methods are similar and they include all of the true values of returns (only PRR
fails to cover the 13th point).
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Figure 7: 95% prediction intervals of returns from 20th March, 2015
to 30th April, 2015.
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Figure 8 shows the predicted intervals for 30 steps ahead volatilities σ2
T+h. The true

values of the volatilities can not be observed directly. We calculate the realized volatility by
summing squared returns at day t, σ2

t = y2
t,1 + ...+ y2

t,n, where n is the number of observations
recorded during day t as proposed by [1]. Since our data is from 24 hour open trading
market, the realized volatilities are computed by using one-minute returns based on tick-by-
tick prices such that n = 1440 approximately. Figure 8 indicates that the PRR and ONBB
methods produce narrower prediction intervals than the one obtained by other block bootstrap
methods.
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Figure 8: 95% prediction intervals of volatilities from 20th March, 2015
to 30th April, 2015.

5. CONCLUSION

In this paper, we propose a novel resampling algorithm to obtain prediction intervals for
returns and volatilities under GARCH models, and we compare the performances of the meth-
ods by both simulations and a case study. Our idea is based on using the ARMA representation
of the GARCH models. Under ARMA representation, estimation of parameters becomes lin-
ear, which allows us to have a valid prediction intervals for the block bootstrapping procedure.
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Our findings show that our proposed ONBB method:

(i) is a good competitor or even better,
(ii) is computationally more efficient than traditional method(s).

Also, the proposed algorithm improves the performances of the non-ordered block bootstrap
methods significantly compared to their conventional counterparts.

As a future research, the performances of the proposed methods can also be studied for
forecasting time series with BOOT.EXPOS procedure as studied by [12] or they can also be
used in other statistical inference problems for dependent data.
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1. INTRODUCTION

The development of new parametric probability distributions attracts a great deal of
attention with the aim of providing useful models in many different areas. Some recent con-
tributions can be found in Bakoban and Abu-Zinadah [7], Gómez-Déniz et al. [18] and Jodrá
et al. [24], among others. With respect to models with bounded support, considerable effort
has been focussed on providing alternatives to the beta distribution. A prominent alterna-
tive is the two-parameter Kumaraswamy distribution introduced by Kumaraswamy [28] and
thoroughly studied by Jones [25]. Other less known two-parameter models are the trans-
formed Leipnik distribution (see Jorgensen [26, pp. 196–197]) and the recently introduced
Log–Lindley law (see Gómez-Déniz et al. [17] and Jodrá and Jiménez-Gamero [23]). There
are more proposals such as the four-parameter Kumaraswamy Weibull distribution (Cordeiro
et al. [10]) and the five-parameter Kumaraswamy generalized gamma distribution (Pascoa
et al. [35]), that present the drawback of having a high number of parameters and in these
cases the parameter estimation often presents some difficulties.

This paper introduces a new two-parameter probability distribution with bounded sup-
port derived from the extended exponential-geometric (EEG) distribution. The EEG law is
a continuous probability distribution studied by Adamidis et al. [2] to model lifetime data.
More precisely, a random variable Y is said to have an EEG distribution if the probability
density function (pdf) is given by

fY (y;α, β) =
α(1 + β)e−α y

(1 + β e−α y)2
, y > 0, α > 0, β > −1,

where α and β are the model parameters. In particular, the case α > 0 and β ∈ (−1, 0)
corresponds to the exponential-geometric distribution proposed by Adamidis and Loukas
[3]. A generalization of the EEG law is the three-parameter Weibull-geometric distribution
introduced by Barreto-Souza et al. [8].

From the EEG distribution, we define a new random variable X with support in the
standard unit interval (0, 1) by means of the transformation X = exp (−Y ). It is easy to
check that X has the following pdf and cumulative distribution function (cdf),

(1.1) f(x;α, β) =
α(1 + β)xα−1

(1 + β xα)2
, 0 < x < 1, α > 0, β > −1,

and

F (x;α, β) =
(1 + β)xα

1 + β xα
, 0 < x < 1, α > 0, β > −1,

respectively. In the sequel, the random variable defined by (1.1) will be referred to as the
Log-extended exponential-geometric (LEEG) distribution. The LEEG distribution presents
an advantage with respect to the beta distribution since it does not include special functions
in its formulation. Figure 1 represents the pdf of X for several values of the parameters. It is
interesting to note that the special case β = 0 corresponds to the power function distribution,
which includes the uniform distribution for α = 1.
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Figure 1: f(x;α, β) for different values of α and β.

Clearly, the LEEG distribution can be used to model real data taking values in the
unit interval. Furthermore, as a linear transformation (b− a)X + a moves a random variable
X defined on (0, 1) to any other bounded support (a, b), with a < b, the LEEG law can be
extended to any bounded domain in a straightforward manner, so there is no need to explain
such an extension.

On the basis of the proposed distribution, we introduce a new regression model which
assumes that the response variable takes values in the standard unit interval, as an alternative
to the well-known beta regression model (see Ferrari and Cribari-Neto [15]). Other regression
models for bounded responses can be found in [33, 34, 36]. Regression models usually express
a location measure of a distribution as a function of covariates. The location measure is
commonly taken the mean (which is the case of classical regression models) or some quantile
(which is the case of quantile regression, see, for example, the book by Koenker [27]). With
this aim, it is noted that the LEEG distribution can be easily reparametrized in terms of
any of its quantiles. As the median is a robust central tendency measure, we choose to
reparametrize the LEEG law with its median and construct the associated regression model,
which relates the median response to a linear predictor through a link function. Nevertheless,
it will become evident that any other quantile could be used.

The literature on parametric quantile regression is rather scarce. An example is the
parametric regression quantile in Noufaily and Jones [32], designed for a positive response,
while our proposal is for a bounded response. In addition to this evident distinctive feature,
the main difference between our approach and that in [32] lies in the following: Noufaily
and Jones [32] assume a distribution for the response (specifically, the generalized gamma
with three parameters) and consider parametric forms for the dependence of the parameters
(or some subset of them) on the covariate (they only assume a unique covariate, although
their proposal can be extended to more covariates); then they replace the parameters in the
expression of the quantile function of the assumed model by the fitted regression equations
for the parameters. By contrast, we reparametrize the distribution in terms of the median
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(although we could consider any other quantile) and assume a parametric form for the de-
pendence of the median on the covariates (we do not limit the number of covariates). In our
proposal, only one of the parameters is allowed to depend on the covariates, but it would be
an obvious extension to express both of them as functions of the covariates. Note that our
strategy is closer, in spirit, to Koenker [27], which assumes a regression model for a quantile;
if the quantile is changed then the regression model also changes. In our scheme, if the dis-
tribution is parametrized in terms of another quantile (different from the median), the model
parameters will change. On the contrary, in Noufaily and Jones [32] the model parameters
are the same for each quantile since they do not fit a genuine quantile regression model, they
just allow the distribution parameters to vary with the covariates and then replace them in
the expression of the quantile function.

The remainder of this paper is organized as follows. In Section 2, some statistical pro-
perties of the LEEG distribution are studied. Precisely, it is shown that the LEEG law can
be derived as the distribution of the minimum or maximum of a geometric random number
of independent random variables with power function distribution, the moments, as well as
the moments of the order statistics, can be expressed analytically in terms of the Lerch tran-
scendent function, the quantile function can be given in closed form and the members of the
new family of distributions can be ordered in terms of the likelihood ratio order. For the
sake of clarity, the proofs of this section are deferred to Appendix B. Section 3 deals with the
parameter estimation problem. Specifically, the method of maximum likelihood is theoreti-
cally and numerically studied. In addition, an explicit expression for the Fisher information
matrix is obtained, which is useful for asymptotic inferences on the parameters. The proof
of these results is deferred to Appendix C. Some numerical results studying the finite sample
performance of the maximum likelihood estimators as well a real data set application are also
displayed in this section. Section 4 shows how to construct a regression model for bounded
responses on the basis of the LEEG distribution. A real data application demonstrates that
such model may be more appropriate than others previously proposed. For the sake of com-
pleteness, Appendix A presents a known result concerning a logarithmic integral, which is
used to provide unified proofs in Appendices B and C.

2. STATISTICAL PROPERTIES

This section studies some statistical properties of the LEEG distribution. Specifically,
an stochastic representation is provided together with the shape of the pdf, the computation of
moments, the computer-generation of pseudo-random data and the computation of moments
of the order statistics. In all cases, closed-form expressions are given. Additionally, it is
shown that the new family of distributions can be ordered in terms of the likelihood ratio
order.

2.1. Stochastic representation

The LEEG distribution has been defined in (1.1) via an exponential transformation of
the EEG distribution. It should be noted that the LEEG law can also be derived as follows.
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Let N be a random variable having a geometric distribution with probability mass function
(pmf) given by

P (N = n) =
(

1− 1
1 + β

)n−1 1
1 + β

, n = 1, 2, ...,

with β > 0. Let M be a random variable having a geometric distribution with pmf given by

P (M = m) = (−β)m−1(1 + β), m = 1, 2, ...,

with β ∈ (−1, 0). Let T1, T2, ... be independent identically distributed random variables
having Ti a power function distribution with parameter α > 0, that is, its cdf is given by
FTi(t;α) = tα, 0 < t < 1. Assume that N and M are independent of Ti, i = 1, 2, ....

Proposition 2.1.

(i) The random variable V = min{T1, T2, ..., TN} has a LEEG distribution with pa-

rameters α > 0 and β > 0.

(ii) The random variable W = max{T1, T2, ..., TM} has a LEEG distribution with pa-

rameters α > 0 and β ∈ (−1, 0).

2.2. Shape and mode

As it can be seen from Figure 1, the pdf of the LEEG distribution has a wide variety of
shapes. The next result characterizes the shape of the pdf in terms of the parameter values.

Proposition 2.2. Let X be a LEEG distribution with parameters α > 0 and β > −1.

(i) For any α > 1, if β > (α− 1)/(1 + α) then X has a mode at x =
(

α− 1
(1 + α)β

)1/α

and if β ∈ (−1, (α− 1)/(1 + α)] then (1.1) is an increasing function.

(ii) For any 0 < α < 1, if β ∈ (−1, (α− 1)/(1 + α)) then (1.1) has a minimum at

x =
(

α− 1
(1 + α)β

)1/α
and if β ≥ (α− 1)/(1+α) then (1.1) is a decreasing function.

(iii) If α = 1 and β = 0, then (1.1) is the pdf of the uniform distribution on (0, 1).

2.3. Moments

The moments of X can be expressed in closed form in terms of the Lerch transcendent
function, Φ. Remind that Φ is defined as the analytic continuation of the series

Φ(z, λ, v) =
∞∑
i=0

zi

(i + v)λ
,

which converges for any real number v > 0 if z and λ are any complex numbers with either
|z| < 1 or |z| = 1 and Re(λ) > 1 (see Apostol [5] for further details).
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Proposition 2.3. Let X be a LEEG distribution with parameters α > 0 and β > −1.

The moments of X are given by

(2.1) E[Xk] = 1− (1 + β)k
α

Φ
(
−β, 1, 1 +

k

α

)
, k = 1, 2, ....

It is interesting to note that the Lerch transcendent function is available in computer
algebra systems such as Maple (function LerchPhi(z,λ,v)) and Mathematica (function
LerchPhi[z,λ,v]). Accordingly, usual statistical measures involving E[Xk] can be efficiently
computed from equation (2.1).

2.4. Quantile function

An interesting advantage of the LEEG distribution with respect to the beta distribution
is that the cdf of X is readily invertible.

Proposition 2.4. The quantile function of the LEEG distribution with parameters

α > 0 and β > −1 is given by

F−1(u;α, β) =
(

u

1 + β − β u

)1/α

, 0 < u < 1.

From Proposition 2.4, the quartiles of the LEEG law are given by

Q1 =
(

1
4 + 3β

)1/α

, Q2 =
(

1
2 + β

)1/α

, Q3 =
(

3
4 + β

)1/α

.

The explicit expression in Proposition 2.4 is helpful in simulation studies because
pseudo-random data from the LEEG distribution can be generated by computer using the
inverse transform method.

2.5. Order statistics

Next, analytical expressions to compute the moments of the order statistics are pro-
vided. To this end, it is shown that the moments of the largest order statistic of the LEEG
law can be given in terms of a finite sum involving the Lerch transcendent function Φ and
the generalized Stirling numbers of the first kind Rj

n (see Appendix A for the definition and
calculation of these numbers).

Let X1, ..., Xn be a random sample of size n from the LEEG distribution with param-
eters α > 0 and β > −1. Let X1:n ≤ X2:n ≤ ... ≤ Xn:n be the order statistics obtained by
arranging Xi, i = 1, ..., n, in non-decreasing order of magnitude. For any n = 1, 2, ... and
k = 1, 2, ..., denote by E[Xk

r:n] the kth moment of Xr:n, r = 1, ..., n.
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Proposition 2.5. Let X1, ..., Xn be a random sample of size n from a LEEG distri-

bution with parameters α > 0 and β > −1. Let Xn:n be the largest order statistic. Then

E[Xk
n:n] =

(1 + β)n

Γ(n)

n∑
j=0

Rj
n(k/α, 1)Φ

(
−β, 1− j, n +

k

α

)
, k = 1, 2, ....

The result in Proposition 2.5 is useful to evaluate the moments of Xr:n, for r=1, ..., n−1,
thanks to the following well-known formula (see, for example, David and Nagaraja [13, p. 45])

E[Xk
r:n] =

n∑
j=r

(−1)(j−r)

(
j − 1
r − 1

)(
n

j

)
E[Xk

j:j ], r = 1, ..., n− 1.

2.6. Stochastic orderings

To conclude Section 2, it is shown that the members of the new distribution can be
ordered in terms of the likelihood ratio order, which is defined as follows (see, for example,
Shaked and Shanthikumar [40, Chapter 1]).

Definition 2.1. Let X1 and X2 be two continuous random variables with pdfs f1 and
f2, respectively, such that f2(x)/f1(x) is non-decreasing over the union of the supports of
X1 and X2. Then X1 is said to be smaller than X2 in the likelihood ratio order, denoted by
X1 ≤LR X2.

The likelihood ratio order is stronger than the hazard rate order and the usual stochastic
order, which are defined as follows.

Definition 2.2. Let X1 and X2 be two random variables with cdfs F1 and F2 and
hazard rates h1 and h2, respectively. Then

(i) X1 is said to be stochastically smaller than X2, denoted by X1 ≤ST X2, if F1(x) ≥
F2(x) for all x.

(ii) X1 is said to be smaller than X2 in the hazard rate, denoted by X1 ≤HR X2, if
h1(x) ≤ h2(x) for all x.

The LEEG family can be ordered in the following way.

Proposition 2.6. Let X1 and X2 be two random variables having a LEEG distribu-

tion with parameters (α, β1) and (α, β2), respectively, for some α > 0, β1, β2 > −1. If β1 ≥ β2

then X1 ≤LR X2.

As an immediate consequence of Proposition 2.6 and the well-known fact that

X1 ≤LR X2 ⇒ X1 ≤HR X2 ⇒ X1 ≤ST X2,

the following corollary is stated.
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Corollary 2.1. Let X1 and X2 be two random variables having a LEEG distribution

with parameters (α, β1) and (α, β2), respectively, for some α > 0, β1, β2 > −1. If β1 ≥ β2

then

(i) E(Xk
1 ) ≤ E(Xk

2 ), ∀k > 0.

(ii) h1(x) ≤ h2(x), ∀x ∈ (0, 1).

As a special case of Corollary 2.1 (i) it follows that, for fixed α > 0, the mean of the
LEEG distribution decreases as β increases.

3. PARAMETER ESTIMATION

This section considers the estimation of the parameters of the LEEG distribution.
Specifically, Subsection 3.1 describes the maximum likelihood (ML) method. A closed-form
expression for the Fisher information matrix is provided in Subsection 3.2. The performance
of the ML method is evaluated via a Monte Carlo simulation study in Subsection 3.3. Finally,
a real data application is presented in Subsection 3.4.

3.1. Maximum likelihood method

Let X1, ..., Xn be a random sample of size n from a LEEG distribution with unknown
parameters α > 0 and β > −1 and denote by x1, ..., xn the observed values. From the likeli-
hood function, L(α, β) =

∏n
i=1 f(xi;α, β), the log-likelihood function is given by

(3.1) log L(α, β) = n log α + n log (1 + β) + (α− 1)
n∑

i=1

log xi − 2
n∑

i=1

log (1 + β xα
i ).

The ML estimates of α and β are the values α̂ and β̂ that maximize log L(α, β). The partial
derivatives of log L(α, β) with respect to each parameter are the following:

∂

∂α
log L(α, β) =

n

α
+

n∑
i=1

log xi − 2β

n∑
i=1

xα
i log xi

1 + β xα
i

,(3.2)

∂

∂β
log L(α, β) =

n

1 + β
− 2

n∑
i=1

xα
i

1 + β xα
i

.(3.3)

The ML estimates of the parameters satisfy the system that results from equating to 0 the
equations (3.2) and (3.3). Nevertheless, since such system does not have an explicit solution,
in order to obtain the ML estimates it is preferable to maximize the function (3.1). Subsection
3.3 will deal with this practical issue.

Another practical point is the possible presence of extreme values in the data. Although
we are assuming that the data are continuous, which implies that the probability of observing
the values zero and one is null, in applications, due to rounding errors, these extreme cases
may appear in the observations. By looking at the expression of the log-likelihood (3.1), the
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presence of ones involves no problem; on the other hand, the presence of zeroes implies that
the log-likelihood cannot be calculated. In such a case, we recommend replacing all zeroes
by a positive small quantity.

3.2. Fisher information matrix

Below, an analytical expression for the Fisher information matrix is given, which let
us explicitly calculate the asymptotic covariance matrix of the ML estimators. To this end,
the polylogarithm function, which is a particular case of the Lerch transcendent function (see
Appendix A), plays an important role.

Proposition 3.1. Let X1, ..., Xn be a random sample of size n from a LEEG distri-

bution with parameters α > 0 and β > −1. For α > 0 and β ∈ (−1, 0) ∪ (0,∞) the Fisher

information matrix is given by

I(α, β) =


n

α2
− 2n

3α2β
{(1 + β)Li2(−β) + β} n(1 + β)

3αβ

(
1

(1 + β)2
− log (1 + β)

β

)
n(1 + β)

3αβ

(
1

(1 + β)2
− log (1 + β)

β

)
n

3(1 + β)2

,

where Li2 denotes the polylogarithm function of order two. For α > 0 and β = 0,

I(α, 0) =


n

α2
− n

2α

− n

2α

n

3

.

As it is well-known, it is useful to have an explicit expression for I(α, β) since by inver-
ting this matrix we get the asymptotic covariance matrix of the ML estimators and it can
be used to approximate their standard errors. Denote by N2 a bivariate normal distribution
and by d−→ the convergence in distribution.

Proposition 3.2. Let X1, ..., Xn be a random sample of size n from a LEEG distri-

bution with parameters α > 0 and β > −1. Let θ̂ denote the ML estimator of θ = (α, β).
Then,

√
n(θ̂ − θ) d−→ N2(0,Σ),

where Σ = Σ(α, β) is such that for β 6= 0

Σ(α, β) =

 − 3α2β4

(1 + β)c(β)
−3αβ2[(1 + β)2 log(1 + β)− β]

c(β)

−3αβ2[(1 + β)2 log(1 + β)− β]
c(β)

3β3(1 + β)[2(1 + β)Li2(−β)− β]
c(β)

,

with

c(β) = (1 + β)3 log2(1 + β)− 2β(1 + β) log(1 + β) + β3[2Li2(−β)− 1] + β2

and Li2 stands for the polylogarithm function of order two, and for β = 0

Σ(α, 0) =
[

4α2 6α

6α 12

]
.
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3.3. Simulation study

As discussed in Subsection 3.1, in order to obtain the ML estimates of the parameters
the following optimization problem is solved

(3.4)

max log L(α, β)

s.t. α > 0

β > −1,

where log L(α, β) is given in equation (3.1). In our simulations, problem (3.4) was solved
by using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, available in the function
constrOptim of the R programming language [37]. We chose the BFGS algorithm because
(3.4) is an optimization problem with linear inequality constraints. The BFGS algorithm
requires a starting point, which must be in the interior of the feasible region, together with
the gradient function of log L(α, β). As starting point we tried several options with little or
no effect on the final solution. All numerical results in this paper were obtained by using as
starting point the pair (1, 1).

The performance of the ML estimators was assessed via a Monte Carlo simulation study.
The following notation was used. The number of random samples generated is denoted by N

and the size of each random sample is denoted by n. The following quantities were computed
for the simulated estimates α̂j , j = 1, ..., N :

(i) The mean: ᾱ = (1/N)
∑N

j=1 α̂j .

(ii) The bias: Bias(α̂) = ᾱ− α.

(iii) The mean-square error: MSE(α̂) = (1/N)
∑N

j=1(α̂j − α)2.

The quantities β̄, Bias(β̂) and MSE(β̂) are analogously defined and were also computed.
In particular, we generated N = 10, 000 random samples of different sizes n for several values
of α and β. Some simulation results are shown in Table 1, where it is included the mean, bias
and MSE of the simulated estimates together with the asymptotic variance of the estimators
calculated directly from the diagonal elements of (1/n)Σ(α, β), with Σ(α, β) given by Propo-
sition 3.2, and denoted by Var[α̂] and Var[β̂]. From the obtained results, it can be concluded
that the ML method provides acceptable estimates of the parameters, although it should be
noted that the ML method tended to slightly overestimate the value of both parameters in
the cases considered in the present study.
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3.4. A real data application

In this subsection, a real data set illustrates the practical usefulness of the LEEG
distribution by showing that it may be a more appropriate model than other distributions
with support in the standard unit interval.

The data set is available from the personal website of Professor E.W. Frees1 and consists
of 73 observations on 7 variables. The data were collected from a questionnaire carried out
with the purpose of relating cost effectiveness to management philosophy of controlling the
company’s exposure to various property and casualty losses, after adjusting for company
effects such as size and industry type. These data have been previously analyzed by Schmit
and Roth [38], Frees [16, Chapter 6], Gómez-Déniz et al. [17] and Jodrá and Jiménez-Gamero
[23].

In this section, interest is centered on the variable FIRMCOST (divided by 100), which
is a measure of the cost effectiveness of the risk management practices of the firm. Based
on Subsection 3.1, the LEEG law was fitted to the variable FIRMCOST/100. The ML esti-
mates obtained were α̂ = 1.4322 and β̂ = 52.1069. It can also be checked that the correlation
coefficient between the theoretical and the empirical cumulative probabilities is 0.9956.

Additionally, we applied the following goodness-of-fit tests based on the empirical cdf:
the Cramér von Mises statistic W 2, the Watson statistic U2, the Anderson–Darling statistic
A2 and the Kolmogorov–Smirnov statistic D. A detailed definition together with simple
formulae for computing these statistics can be found in D’Agostino and Stephens[12, Chapter
4]. To get the p-values we applied a parametric bootstrap generating 10,000 bootstrap samples
(see Stute et al. [41] and Babu and Rao [6] for full details). We also applied two test based on
the empirical characteristic function [19, 20] by using the integral transformation, as proposed
in Meintanis et al. [30], taking as weight functions: the standard normal law, FC1, and the
pdf w(t) = {1− cos(t)}/πt2, which is the choice recommended in Epps and Pulley [14] (see
also Section 4 in [20]), FC2. The results are shown in Table 2 and suggest that the LEEG
law provides a satisfactory fit.

Table 2: Goodness-of-fit tests.

W 2 U2 A2 D FC1 FC2

Statistic value: 0.0571 0.0571 0.5133 0.0626 0.0011 0.1142
p-value: 0.2610 0.2610 0.1363 0.5320 0.1164 0.2663

The LEEG fitting was compared to the ones provided by other two-parameter dis-
tributions used to model data in the unit interval. Specifically, we considered the beta,
Kumaraswamy, Log–Lindley and transformed Leipnik distributions. In order to compare
these models, we calculated the Akaike information criterion AIC (see Akaike [4]), the con-
sistent Akaike information criterion CAIC (see Bozdogan [9]) and the Bayesian informa-

1
http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/data.html,

filename: RiskSurvey.

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/data.html
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tion criterion BIC (see Schwarz [39]), which are defined as follows, AIC = 2m− 2 log L,
CAIC = m(1 + log n)− 2 log L and BIC = m[log n− log(2π)]− 2 log L, respectively, where
m is the number of parameters, n is the sample size and L denotes the maximized value of
the likelihood function. As it is well-known, the model with lowest values of AIC, CAIC and
BIC is preferred. For each fitted distribution, Table 3 shows the ML estimated parameters
together with the log-likelihood, AIC, CAIC and BIC values. Looking at Table 3, the LEEG
distribution provides the best fit. Moreover, the Vuong test [42] was applied to compare the
LEEG model to the beta, Kumaraswamy, Log–Lindley and transformed Leipnik distribu-
tions. In the four cases the Vuong statistic was very close to 0, so suggesting that all these
distributions can be considered equally close to the data. In this regard, we consider the
LEEG distribution an attractive alternative to the aforesaid models.

Table 3: Fitted distribution, ML estimates, log-likelihood, AIC, CAIC and BIC.

Distribution ML estimates log L AIC CAIC BIC

LEEG(α, β) α̂ = 1.4322

f(x; α, β) =
α(1 + β)xα−1

(1 + β xα)2
β̂ = 52.1069

93.63 −183.26 −176.68 −182.35

Beta(a, b) â = 0.6125
f(x; a, b) =

1

B (a, b)
xa−1(1− x)b−1

b̂ = 3.7978
76.11 −148.23 −141.65 −147.32

Kumaraswamy(a, b) â = 0.6648

f(x; a, b) = abxa−1(1− xa)b−1 b̂ = 3.4407
78.65 −153.30 −146.72 −152.40

Log–Lindley(a, b) â = 0.6906

f(x; a, b) = a[b + a(b− 1) log x]xa−1 b̂ = 0.0231
76.60 −149.20 −142.62 −148.30

Transformed Leipnik(µ, λ)
µ̂ = 0.0261

f(x; µ, λ) =
[x(1− x)]−

1
2

B
�

λ+1
2

, 1
2

�
�
1 +

(x− µ)2

x(1− x)

�−λ
2

λ̂ = 6.4061
80.51 −157.02 −150.43 −156.11

4. A REGRESSION MODEL FOR BOUNDED RESPONSES

Regression models are commonly used to model the mean of a response variable as a
function of a set of covariates (also called independent variables or regressors). As shown in
Proposition 2.3, the moments of the LEEG distribution can be expressed in terms of the Lerch
transcendent function, which implies that the mean does not possess a simple expression.
This fact makes difficult to build a regression model which relates the mean response with
covariates. By contrast, the expression of the quantiles of the LEEG distribution is quite
tractable, so our proposal is to use them to construct a regression model. In principle, we
could choose any quantile, but since the median is a robust measure of location and, in this
regard, it is considered as a competitor of the mean, we will choose the median.

As a first step towards the construction of the regression model, the LEEG distribution
is reparametrized in terms of the median Q2 by equating Q2 to a new parameter θ and solving
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the resultant equation for β. The resulting pdf is

(4.1) f(x;α, θ) =
αθα(1− θα)xα−1

[θα + (1− 2θα)xα]2
, 0 < x < 1, α > 0, 0 < θ < 1.

It should be noted that all properties studied for the parametrization (1.1) carry over for the
above one with β = (1− 2θα)/θα.

Let X1, ..., Xn be n independent random variables and denote by x1, ..., xn the observed
values. Assume that each Xi has pdf f(x;α, θi) given by (4.1). Suppose that the median
of Xi satisfies θi = g(zt

iγ), i = 1, ..., n, where zi = (zi1, ..., zik)t is the vector of covariates
associated to the response xi, γ = (γ1, ..., γk) is an unknown vector of regression coefficients
and g is the link function. It is assumed that the link function g is a strictly monotonic and
twice differentiable function. There are several possible choices for g satisfying the required
conditions, such as the logit, probit, log-log, Cauchy, etc.

From equation (4.1), the log-likelihood function of the model with covariates is given
by

`(α, γ) = n log α + (α− 1)
n∑

i=1

log xi + α
n∑

i=1

log θi +
n∑

i=1

log(1− θα
i )

−2
n∑

i=1

log(θα
i + xα

i − 2θα
i xα

i ).

The derivatives of `(α, γ) with respect to each parameter, which are required to compute the
ML estimates of the parameters, are given by

∂

∂α
`(α, γ) =

n

α
+

n∑
i=1

log xi +
n∑

i=1

log θi −
n∑

i=1

θα
i log θi

1− θα
i

−2
n∑

i=1

θα
i log θi + xα

i log xi − 2xα
i θα

i (log θi + log xi)
θα
i + (1− 2θα

i )xα
i

,

∂

∂γr
`(α, γ) = α

n∑
i=1

1
θi

∂

∂γr
θi − α

n∑
i=1

θα−1
i

1− θα
i

∂

∂γr
θi − 2α

n∑
i=1

(1− 2xα
i )θα−1

i

θα
i + (1− 2θα

i )xα
i

∂

∂γr
θi,

for r = 1, ..., k. The derivative ∂
∂γr

θi will depend on the chosen link function. For example,
if it is considered the logit link, which is given by

θi =
exp(zt

iγ)
1 + exp(zt

iγ)
,

then
∂

∂γr
θi = θi(1− θi)zir, i = 1, ..., n, r = 1, ..., k.

As in most regression models, for the proposed model it is possible to evaluate the
marginal effects that each covariate has on the conditional median, given the covariates, by
calculating (see, for example, [36, § 2.2.3])

(4.2) δij =
∂θi

∂zij
= θi(1− θi)γj , i = 1, ..., n, j = 1, ..., k.
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This marginal effect indicates that a small change in the jth covariate, say ν, increases or
decreases the conditional median θi by a quantity δijν + o(ν). As a summary measure of all
these k × n effects, one can calculate the average marginal effects that each covariate has on
the conditional median by evaluating the above derivative at θ̄ = θ(z̄), obtaining

δ̄j =
∂θ̄

∂zij
= θ̄(1− θ̄)γj , j = 1, ..., k.

For the practical use of these quantities, all parameters must be replaced by estimators.

As an application, we analyze the data set considered in Subsection 3.4. The full data
set consists of 73 observations on 7 variables: FIRMCOST, previously studied; ASSUME,
the per occurrence retention amount as a percentage of total assets; CAP, which indicates
that the firm owns a captive insurance company; SIZELOG, the logarithm of total assets;
INDCOST, a measure of the firm industry risk; CENTRAL, a measure of the importance of
the local managers in choosing the amount of risk to be retained; and SOPH, a measure of
the degree of importance in using analytical tools.

As response variable we took x =FIRMCOST/100 and the other variables were con-
sidered as covariates. An intercept was also included in the regression model. The data
were analyzed using the beta regression model and the LEEG regression model presented in
this paper. Following [17], the logit link was considered in all cases. This data set was also
analyzed in [17] by using the Log–Lindley regression model. Nevertheless, due to the problems
observed in [23], we will not consider such model in our study. The response variables x and
1− x were both studied. For the analysis of the beta regression model we used the package
betareg (see [11]) of the R programming language [37]; to obtain the ML estimates of the
parameters in the LEEG regression model we used the function optim of the R language.
Table 4 reports the value of the log-likelihood function for the models under consideration.

Table 4: Values the of the log-likelihood with covariates
for the responses x and 1− x.

x 1− x

Beta 87.72 87.72
LEEG 122.48 103.33

As expected, the values of the log-likelihood function for x and 1−x for the beta fitting
are identical, since if a random variable X has a beta law with parameters a and b, then 1−X

has a beta law with parameters b and a. On the other hand, the values of the log-likelihood
for x and 1−x for the LEEG fittings differ, since these laws do not possess the aforementioned
property of the beta distribution. Hence, if the value of the log-likelihood function is used
as a criterion for comparison, we see that the best fit is obtained for the LEEG regression
model for the response variable x.

In addition, we applied the Vuong test [42] for testing the null hypothesis that both
models are equally close to the actual model, against the alternative that one model is closer
than the other. The test rejected the null hypothesis in favor of the hypothesis that the
LEEG regression model is closer than the beta regression model (the p-value is 0.0012).
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We also compared the Pearson residuals of both models. Figure 2 displays them.
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Figure 2: Pearson residuals for the beta regression model (black)
and the LEEG regression model (white).

Table 5 displays the estimation results for the LEEG regression model with response
variable x. The standard errors of the parameter estimates were approximated by means
of the square root of the diagonal elements of the negative of the observed information
matrix, that is, the matrix whose entries are the second order derivatives of the log-likeli-
hood (its expression is omitted for the sake of brevity). The p-values of the Wald test for
testing the nullity of each parameter were calculated by using the normal approximation.

Table 5: Parameter estimates for the LEEG regression model
with response x and average marginal effects (a.m.e.).

Parameter Estimate S.E. t-Wald p-value a.m.e.

α 2.20257 0.22661 9.71975 0.0000
Intercept 3.98741 1.21128 3.29191 0.0010
ASSUME −0.01234 0.01216 −1.01482 0.3102 −0.00080
CAP −0.05257 0.22327 −0.23545 0.8139 −0.00340
SIZELOG −0.90907 0.12466 −7.29242 0.0000 −0.05884
INDCOST 2.34318 0.62296 3.76138 0.0002 0.15166
CENTRAL −0.13648 0.08385 −1.62766 0.1036 −0.00883
SOPH 0.00932 0.01965 0.47398 0.6355 0.00060

From these results, it can be inferred that the covariates SIZELOG and INDCOST have a
significant non-null effect on the response variable. These two covariates have the largest
average marginal effects, negative for SIZELOG, indicating that an increase in SIZELOG



A Quantile Regression Model for Bounded Responses 431

diminishes the median of the response variable, and positive for INDCOST, indicating that
an increase in INDCOST increases the median of the response variable.

Before ending this section we would like to remark that the lack of a simple expres-
sion for the quantiles of the classic beta distribution hampers the development of a quantile
regression based on it.

A. APPENDIX

This appendix is devoted to present a known result concerning a logarithmic integral.
Such result will be used to solve in a unified manner the integrals arising in Appendices B
and C.

For any real numbers a ≥ 0, s ≥ 1 and z > −1, denote by

(A.1) Γn(z, s, a) =
∫ 1

0

ua logs−1(1/u)
(1 + zu)n+1

du, n = 1, 2, ....

Jodrá and Jiménez-Gamero [22] showed that Γn(z, s, a) can be expressed as a finite sum
involving the Lerch transcendent function together with the generalized Stirling numbers of
the first kind. To be more precise, Mitrinović [31] defined the generalized Stirling numbers
of the first kind, Rj

n(ρ, τ), by means of the following generating function
n−1∏
j=0

(w − ρ− τj) =
n∑

j=0

Rj
n(ρ, τ)wj ,

where n is a non-negative integer and ρ, τ are complex numbers with τ 6= 0. Mitrinović [31]
expressed these numbers in terms of the best-known signed Stirling numbers of the first kind
Rj

n(0, 1) (see Abramowitz and Stegun [1, p. 824])

(A.2) Rj
n(ρ, τ) =

n−j∑
k=0

(
j + k

k

)
(−1)kρkτn−j−kRj+k

n (0, 1), ρ 6= 0,

which is important from a computational point of view since the numbers Rj
n(0, 1) are avail-

able in most computer algebra systems. Jodrá and Jiménez-Gamero [22, Theorem 2.1] estab-
lished that for any a ≥ 0, s ≥ 1 and z > −1,

(A.3) Γn(z, s, a) =
Γ(s)

Γ(n + 1)

n∑
j=0

Rj
n(a− n + 1, 1)Φ(−z, s− j, a + 1), n = 1, 2, ...,

which in the special case z = 0 becomes Γn(0, s, a) = Γ(s)/(a + 1)s. Additionally, (A.3) can
be expressed in terms of the polylogarithm function if a = 0, 1, ..., n− 1 (see [22, Corollary
2.6] and also [21]), specifically,

(A.4) Γn(z, s, a) =
Γ(s)

(−z)a+1Γ(n + 1)

n∑
j=1

Rj
n(a− n + 1, 1)Lis−j(−z).

It is interesting to note that the Lerch transcendent function includes as a particular case the
polylogarithm function, more precisely, Liλ(z) = zΦ(z, λ, 1) (see Apostol [5]). In particular,
the case λ = 1 corresponds to the natural logarithm, Li1(z) = − log (1− z), and the case
λ = 2 is known as dilogarithm or polylogarithm function of order two.
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B. APPENDIX

Here, we give the proofs of the results stated in Section 2.

Proof of Proposition 2.1: The conditional cdf of the random variable V |N = n is
FV |N=n(v;α) = 1− (1− vα)n, with 0 < v < 1, α > 0 and n = 1, 2, .... Then, it is clear the
following

P (V ≤ v,N = n) = [1− (1− vα)n]
(

1− 1
1 + β

)n−1 1
1 + β

,

where β > 0. Hence, part (i) follows from the fact that the marginal cdf of V is

FV (v;α, β) =
∞∑

n=1

P (V ≤ v,N = n) =
(1 + β)vα

1 + β vα
, 0 < v < 1, α > 0, β > 0.

The proof of part (ii) follows a similar pattern. The conditional cdf of W |M = m is
FW |M=m(w;α) = wα m, with 0 < w < 1, α > 0 and m = 1, 2, .... Therefore, P (W ≤w,M = m)
= wα m(−β)m−1(1 + β), where β ∈ (−1, 0). Finally, considering that FW (w;α, β) =∑∞

m=1 P (W ≤ w,M = m) the result is obtained.

Proof of Proposition 2.2: The first derivative of (1.1) is given by

(B.1)
∂

∂x
f(x;α, β) = − α(1 + β)

(1 + βxα)3
[β(1 + α)xα − (α− 1)].

The solution of the equation (∂/∂x)f(x;α, β) = 0 is x0 =
(

α− 1
(1 + α)β

)1/α

. Moreover, after

some calculations, it can be checked that

∂2

∂x2
f(x;α, β)

∣∣∣∣
x=x0

= −(1 + β)(1 + α)2(α− 1)2

8αβ
.

On the one hand, if α > 1 and β > (α− 1)/(1 + α) then x0 ∈ (0, 1) and ∂2

∂x2 f(x;α, β)
∣∣
x=x0

< 0
which implies that x0 is the mode of X. In addition, from (B.1), it can be seen that (1.1)
is an increasing function if α > 1 and β ∈ (−1, (α− 1)/(1 + α)] since (∂/∂x)f(x;α, β) > 0.
This proves part (i). On the other hand, if 0 < α < 1 and β < (α− 1)/(1+α) then x0 ∈ (0, 1)
and ∂2

∂x2 f(x;α, β)
∣∣
x=x0

> 0 which implies that (1.1) achieves a minimum at x0. It can also be
checked that (1.1) is a decreasing function if 0 < α < 1 and β ≥ (α− 1)/(1 + α). This proves
part (ii). Part (iii) is directly obtained from (1.1).

Proof of Proposition 2.3: For any k = 1, 2, ..., the k-th moment of X can be com-
puted as follows

E[Xk] =
∫ 1

0
xkf(x;α, β)dx =

∫ 1

0
xk α(1 + β)xα−1

(1 + β xα)2
dx = (1 + β)

∫ 1

0

uk/α

(1 + β u)2
du,

where in the last equality we have made the change of variable xα = u. Hence, the k-th
moment of X can be rewritten as below

E[Xk] = (1 + β)
∫ 1

0

uk/α

(1 + β u)2
du = (1 + β)Γ1(β, 1, k/α),
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where Γ1 is given by equation (A.1). Using equation (A.3), we have

Γ1(β, 1, k/α) = R1
1(k/α, 1)Φ

(
−β, 0, 1 +

k

α

)
+ R0

1(k/α, 1)Φ
(
−β, 1, 1 +

k

α

)
.

By virtue of (A.2), R1
1(k/α, 1) = 1 and R0

1(k/α, 1) =−k/α since R0
1(0, 1) = 0 and R1

1(0, 1) = 1.
Moreover, Φ(−β, 0, 1 + k/α) = 1/(1 + β). Hence, the result is obtained.

Proof of Proposition 2.4: The result is obtained directly by solving the equation
F (x;α, β) = u, 0 < u < 1, with respect to the variable x.

Proof of Proposition 2.5: For any n = 1, 2, ..., the k-th moment of the largest order
statistic Xn:n is given by

E[Xk
n:n] = n

∫ 1

0
xk [F (x;α, β)]n−1 f(x;α, β)dx = n(1 + β)n

∫ 1

0

uk/α+n−1

(1 + βu)n+1
du,

where in the second equality we have made the change of variable u = xα. Now, taking into
account equation (A.1), E[Xk

n:n] can be written as follows

E[Xk
n:n] = n(1 + β)nΓn

(
β, 1,

k

α
+ n− 1

)
.

Finally, the claimed result follows by applying equation (A.3) in the above equation.

Proof of Proposition 2.6: Let us denote v(x) = ∂
∂x log

(
f(x;α,β2)
f(x;α,β1)

)
= num

den , where
den = x(1 + β1x

α)(1 + β2x
α) and num = 2αxα(β1 − β2). It can be checked that den > 0

for any x ∈ (0, 1), α > 0 and β1, β2 > −1 and also that num ≥ 0 for any x ∈ (0, 1) and α > 0
if and only if β1 ≥ β2. Since v(x) ≥ 0 implies that f(x;α,β2)

f(x;α,β1) is non-decreasing in x, the result
follows.

C. APPENDIX

Here, we give the proofs of the results presented in Subsection 3.2.

Proof of Proposition 3.1: The Hessian matrix of log L(α, β) is defined by

H(α, β) =


∂2 log L(α, β)

∂α2

∂2 log L(α, β)
∂α∂β

∂2 log L(α, β)
∂β∂α

∂2 log L(α, β)
∂β2

,

with

∂2

∂α2
log L(α, β) = − n

α2
− 2β

n∑
i=1

xα
i (log xi)2

(1 + β xα
i )2

,(C.1)

∂2

∂α∂β
log L(α, β) = −2

n∑
i=1

xα
i log xi

(1 + β xα
i )2

,(C.2)

∂2

∂β2
log L(α, β) = − n

(1 + β)2
+ 2

n∑
i=1

x2α
i

(1 + β xα
i )2

.(C.3)
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From (C.1)–(C.3), the Fisher information matrix, I(α, β) = −E[H(α, β)], is given by

I(α, β) =


n

α2
+ 2βn

∫ 1

0

xα(log x)2

(1 + β xα)2
f(x)dx 2n

∫ 1

0

xα log x

(1 + β xα)2
f(x)dx

2n

∫ 1

0

xα log x

(1 + β xα)2
f(x)dx

n

(1 + β)2
− 2n

∫ 1

0

x2α

(1 + β xα)2
f(x)dx

,

where we have used the notation f(x) instead of f(x;α, β) for brevity. Below, we consider
each integral expression in the elements of I(α, β). Let us first assume that β 6= 0. Making
the change of variable u = xα and taking into account (A.1), those integrals can be expressed
as follows ∫ 1

0

xα(log x)2

(1 + β xα)2
f(x)dx =

1 + β

α2

∫ 1

0

u(log(1/u))2

(1 + β u)4
du =

1 + β

α2
Γ3(β, 3, 1),∫ 1

0

xα log x

(1 + β xα)2
f(x)dx = −1 + β

α

∫ 1

0

u log(1/u)
(1 + β u)4

du = −1 + β

α
Γ3(β, 2, 1),∫ 1

0

x2α

(1 + β xα)2
f(x)dx = (1 + β)

∫ 1

0

u2

(1 + β u)4
du = (1 + β)Γ3(β, 1, 2).

Now, by virtue of (A.4) and after some calculations we get

Γ3(β, 3, 1) = − 1
3β

(
Li2(−β)

β
+

1
1 + β

)
,

Γ3(β, 2, 1) =
1
6β

(
log (1 + β)

β
− 1

(1 + β)2

)
,

Γ3(β, 1, 2) =
1

3(1 + β)3
,

where Li2 denotes the polylogarithm function of order two. Now, the stated result is obtained
by substituting in the elements of I(α, β) the value of the corresponding integrals.

The result for β = 0 is derived by means of routine calculations, so we omit the details.

Proof of Proposition 3.2: The result follows by using standard large sample theory
results for ML estimators (for example, by applying Lehmann and Casella [29, Theorem 5.1,
p. 463]). In particular, the asymptotic covariance matrix of the ML estimators, Σ, is obtained
by inverting the expected Fisher information matrix (1/n)I(α, β), with I(α, β) provided in
Proposition 3.1.
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1. INTRODUCTION

According to [22, 18, 3, 4], there are different methods of accelerated life testing (ALT):
the constant-stress ALT, in which the stress on the life test product remains at a constant
level, the progressive-stress ALT, in which the stress applied to the product units in the
test increases with time [7], and the step-stress ALT, in which the test condition changes
for a given time or a specified number of failures [21, 7]. For more recent research on the
constant-stress partially ALT, see [2, 1].

In product-life test experiments, censoring has played an important role. Different
types of censoring are available. Type-I and Type-II censoring schemes (CSs) are commonly
applied, both of which do not allow the removal of any units other than at the terminal point
of the test. General CSs that allow units to be removed at any point during the test are called
progressive Type-II right censoring. For important reviews of the literature on progressive
censoring, see [9].

Let n be the number of units tested in a product-life testing experiment and T1, T2, ...,
Tn, be the corresponding lifetimes. Assume that the Ti, i = 1, 2, ..., n are independent and
identically distributed (i.i.d.) with probability density function (PDF) f(.) and cumulative
distribution function (CDF) F (.). In the progressive Type-II CS prior to the experiment,
the effective sample size m and the corresponding CS R = {R1, R2, ..., Rm} are determined;
then TR

i;m,n, i = 1, 2, ..., m is the corresponding random variable of the progressive Type-II
censored sample.

The joint likelihood function of the observed progressive Type-II censored sample t =
(tR1;m,n, tR2;m,n, ..., tRm;m,n ) is given by

(1.1) f(t, θ) = Q

m∏
i=1

f(tRi;m,n)[1− F (tRi;m,n)]Ri,

where the observed progressive Type-II censored sample t satisfies 0 < t1;m,n < t2;m,n < ... <

tm;m,n < ∞ ,and

(1.2) Q =
m−1∏
i=0

n−
i∑

j=0

Rj − i

 , R0 = 0.

Balakrishnan [8] has considered the half-logistic distribution as the distribution of the abso-
lute standard logistic variate. Important properties of a generalized version of the logistic
distribution are discussed by Balakrishnan and Hossain [10]. The point estimation of the
stress–strength reliability of generalized half-logistic distribution (GHLD) is presented by
Ramakrishnan [23]. The shape parameter of the GHLD was estimated under Type-I progres-
sive censoring in Arora et al. [5]. The Bayesian approach with a GHLD was discussed in
Kim et al. [20]. Recently, testing procedures for the reliability functions of the GHLD were
considered in Chaturvedi et al. [14] and in a Type-I generalized half-logistic survival model
in Awodutire et al. [6].
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Let T be a random variable of a GHLD with shape parameter β; the PDF and CDF
are given respectively by

(1.3) f(t) =
β

1 + exp(−t)

(
2 exp(−t)

1 + exp(−t)

)β

, t > 0, β > 0,

and

(1.4) F (x)=1−
(

2 exp(−t)
1 + exp(−t)

)β

,

The reliability function S(t) and the hazard rate function H(t) are expressed as

(1.5) S(t) =
(

2 exp(−t)
1 + exp(−t)

)β

, t > 0, β > 0,

and

(1.6) H(t) =
β

1 + exp(−t)
.

This GHLD is considered as a special probability distribution with a location param-

eter and a scale parameter, defined by F (x)=1−
(

2 exp(−t
σ

)

1+exp(−t
σ

)

)β

with σ = 1. The best linear

unbiased estimator of the location and scale parameters as well as the values of the variance
and covariance of these estimators is presented in [11]. Ref. [13] discusses the estimator as
an approximation of the likelihood functions based on a Type-II censoring sample. The esti-
mation of the parameter of the half-logistic distribution under progressive Type-II censored
sample is presented in [19].

The aim of this paper is to estimate the GHLD under constant-stress partially ALT
with progressive Type-II CS. The maximum likelihood estimator (MLE) and the bootstrap
estimator of each unknown GHLD parameter and the acceleration factor are presented. The
point estimates of the MLE and bootstrap estimator mainly assess and compare their biases
and mean-squared errors (MSE’s), as well as the approximate interval estimation and boot-
strap confidence intervals (CIs), with respect to coverage percentage and the mean of interval
lengths using extensive simulation studies.

In this article, the assumptions and model are described in Section 2. The MLEs
and the corresponding approximate confidence intervals (ACIs) are given in Section 3. Two
bootstrap CIs are discussed in Section 4. We assess and compare the results of Monte Carlo
studies in Section 5. A numerical example of a simulated data set is presented in Section 6.
Finally, some comments about the results of the simulation studies are presented in Section 7.



440 Abdullah M. Almarashi

2. ASSUMPTIONS AND MODEL

In the experiment design for the constant-stress partially ALTs, n1 units from n testing
units are randomly chosen to be tested under normal conditions; the remaining units n2= n−n1

are tested under accelerated conditions. The model for the progressive Type-II censoring with
constant-stress partially ALTs is described as follows. The subscript label j = 1, 2 signify
the two conditions, normal and accelerated; when the first failure TRj

j1;mj ,nj
is recorded, Rj1

units are randomly removed from the remaining nj − 1 surviving units. Also at the second
failure, TRj

j2;mj ,nj
is recorded and Rj2 units from the remaining nj − 2-Rj1 units are randomly

removed. The test continues until the mj -th TRj
jmj ;mj ,nj

failure and the remaining Rjmj = nj-

mj −
mj−1∑
k=1

Rjk units are removed, for j = 1, 2. In this model, each of the Rji and mj < nj are

fixed prior to beginning the test. If the times of failure of the nj units originally in the test
are from a continuous population with a distribution function Fj(t) and probability density
function fj(t), the joint probability density function for TRj

j1;mj ,nj
< TRj

j2;mj ,nj
< ... < TRj

jmj ;mj ,nj

and j = 1, 2 is given as follows.

The joint likelihood function for t = (TRj
j1;mj ,nj

, TRj
j2;mj ,nj

, ..., TRj
jmj ;mj ,nj

) for j = 1, 2, is
given by

(2.1) L(β, λ|t) =
2∏

j=1

Qj

{mj∏
i=1

fj(t
Rj
ji;mj ,nj

)
(
Sj(t

Rj
ji;mj ,nj

)
)Rji

}
,

where Qj =
mj−1∏
i=0

(
nj −

∑i
l=0 Rlj − i

)
, R0j = 0. In the accelerated lifetime model, assuming

that S2(t)= S1(λt). Let T be a random variable under normal conditions, then the lifetime
of the unit under accelerated conditions can be defined by Y = T

λ , where λ is the acceleration
factor. Hence, the probability density and cumulative distribution functions of the GHLD
with observed lifetime under the accelerated condition are given by

(2.2) f2(y) =
λβ

1 + exp(−λy)

(
2 exp(−λy)

1 + exp(−λy)

)β

, y > 0, β, λ > 0.

and

(2.3) F2(y) = 1−
(

2 exp(−λy)
1 + exp(−λy)

)β

.

Also, the reliability function S(y) and hazard rate function H(y) are given, respectively, by

(2.4) S2(y) =
(

2 exp(−λy)
1 + exp(−λy)

)β

,

and

(2.5) H2(y)=
λβ

1 + exp(−λy)
.
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3. MAXIMUM LIKELIHOOD ESTIMATION

3.1. Point estimation

Let T =
(
TRj

j1;mj ,nj
< TRj

j2;mj ,nj
< ... < TRj

jmj ;mj ,nj

)
, j = 1, 2 denote two progressively

Type-II censored samples from two populations for which the PDFs and CDFs are as given
in (1.3), (1.4), (2.2), and (2.3), with Rj = (Rj1, Rj2, ..., Rj1). The log-likelihood function
`(β, λ|t) = log L(β, λ|t) without normalized constant is then given by

(3.1)

`(β, λ|t) = (m1 + m2) log β + m2 log λ + nβ log 2−
m1∑
i=1

log [1 + exp(−t1i))]

−
m2∑
i=1

log [1 + exp(−λt2i))]− β
m1∑
i=1

(R1i + 1) log (1 + exp(t1i))

−β
m2∑
i=1

(R2i + 1) log (1 + exp(λt2i)) .

The likelihood equation is obtained by calculating the first partial derivatives of (3.1)
with respect to β and λ, and then equating each to zero:

(3.2)

∂`(β,λ|t)
∂β = m1+m2

β + n log 2−
m1∑
i=1

(R1i + 1) log (1 + exp(t1i))

−
m2∑
i=1

(R2i + 1) log (1 + exp(λt2i)) = 0,

giving

(3.3)
β(λ) = −(m1 + m2)

[
m1∑
i=1

(R1i + 1) log (1 + exp(t1i))

+
m2∑
i=1

(R2i + 1) log (1 + exp(λt2i))− n log 2
]−1

,

and

(3.4)
∂`(β,λ|t)

∂λ = m2
λ +

m2∑
i=1

t2i (1 + exp(λt2i))
−1 + β

m2∑
i=1

(R2i + 1)

×t2i (1 + exp(−λt2i))
−1 = 0,

giving

(3.5)
m2

λ
+

m2∑
i=1

t2i (1 + exp(−λt2i))
−1 + β

m2∑
i=1

(R2i + 1)t2i (1 + exp(−λt2i))
−1 = 0 .

The likelihood equation reduce to the single nonlinear equation (3.5), which can be solved
numerically using the fixed point method or the quasi-Newton Raphson to obtain the MLE
of λ say λ̂, and hence β̂ using (3.3).



442 Abdullah M. Almarashi

3.2. Approximate interval estimation

The asymptotic normality theory is applied to construct asymptotic CIs of the MLEs.
The Fisher information matrix requires the second partial derivatives of (3.1) with respect
to β and λ:

(3.6)
∂2`(α, β, λ|t)

∂β2
=
−(m1 + m2)

β
,

(3.7)
∂2`(β, λ|t)

∂β∂λ
=

∂2`(β, λ|t)
∂λ∂β

= −β

m2∑
i=1

(R2i + 1)t2i (1 + exp(−λt2i))
−1 ,

and

(3.8)
∂2`(β,λ|t)

∂λ2 = −m2
λ2 −

m2∑
i=1

t22i (1 + exp(−λt2i))
−2 + β

m2∑
i=1

(R2i + 1)t22i exp(λt2i)

× (1 + exp(λt2i))
−2 .

Then, the expectation of the difference of equations (3.6) and (3.8) is defined as the Fisher
information matrix I (β, λ). The MLEs (β̂, λ̂ ) with some mild regularity conditions fol-
lows the approximately bivariate normal distribution with mean (β, λ) and covariance ma-

trix [I (β, λ)]−1. Usually, in practice, the estimate of [I (β, λ)]−1 is used by
[
I0

(
β̂, λ̂

)]−1
.

A simpler and equally valid procedure is to use the approximation

(3.9) (β̂, λ̂) ∼ N

(
(β, λ) ,

[
I0(β̂, λ̂)

]−1
)

,

where I0 (β, λ) is the observed information matrix

(3.10)

[
−∂2`(β,λ|x)

∂β2 − ∂2`(β,λ|x)
∂β∂λ

−∂2`(β,λ|x)
∂λ∂β − ∂2`(β,λ|x)

∂λ2

]−1

(β̂,λ̂)

.

The approximate CIs for the parameters β and λ are obtained from the bivariate normal

distribution with mean (β, λ) and covariance matrix
[
I0(β̂, λ̂)

]−1
. Thus, the 100(1− 2α)%

ACIs for β and λ are

(3.11) β̂ ∓ zα
√

v11 and λ̂∓ zα
√

v22,

respectively, where v11 and v22 are the elements on the diagonal of the covariance matrix
I−1
0 (β̂, λ̂) and zα is the percentile of the standard normal distribution with the right-tail

probability α.
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4. BOOTSTRAP CONFIDENCE INTERVALS

In some cases, if the objective of the study is to determine the estimators, CIs, bias, and
variance of an estimator or to calibrate hypothesis tests, then the bootstrap technique plays
an important role. Different types of bootstrap techniques are available, such as those called
parametric [15] and nonparametric [17]. In this section the parametric bootstrap technique
is adopted to construct the percentile bootstrap CI (PBCI) (see [16] for more details) and
the bootstrap-t CI (BTCI) (see [15]). The following algorithm is used to differentiate the two
types of bootstrap techniques:

1. Based on the observed original progressively Type-II sample, (tj1;mj ,nj < tj2;mj ,nj <

... < tjmj ;mj ,nj ), obtain β̂, and λ̂, j = 1, 2.

2. Based on the values of nj and mj (1 < mj < nj) with the same values of Rji, (i = 1,

2, ..., mj), j = 1, 2, generate two independent random samples of sizes m1 and m2

from the GHLD, t∗ = (t∗j1;mj ,nj
< t∗j2;mj ,nj

< ... < t∗jmj ;mj ,nj
) using the algorithm

described in [12].

3. As in step 1 based on t∗ compute the bootstrap sample estimates of β̂, and λ̂

denoted here as β̂∗ and λ̂∗.

4. Steps 2 and 3 are repeated N times, thereby N different bootstrap samples are
represented. The value of N may be taken as 1000.

5. The values of β̂∗ and λ̂∗ are arranged all in ascending order to obtain the bootstrap
sample (θ̂∗[1]

l , θ̂
∗[2]
l , ..., θ̂

∗[N ]
l ), l = 1, 2 where (θ∗1 = β∗, θ∗2 = λ∗).

Percentile bootstrap CIs

For given H(y) = P (θ̂∗k 6 y) the cumulative distribution function of θ̂∗k. Define θ̂∗kboot =
H−1(y) for given y. The approximate bootstrap 100(1− 2α)% CI of θ̂∗l is given by

(4.1)
[
θ̂∗lboot(α), θ̂∗lboot(1− α)

]
.

Bootstrap-t CIs

First, we present the order statistics ω
∗[1]
k < ω

∗[2]
k < ... < ω

∗[N ]
k ,

(4.2) ω
∗[j]
k =

θ̂
∗[j]
l − θ̂l√

var
(
θ̂
∗[j]
l

) , j = 1, 2, ..., N, l = 1, 2,

where θ̂1 = β̂, θ̂2 = λ̂.

For given H(y) = P (ω∗
l < y) the cumulative distribution function of ω∗

l , and given y,
is defined as

(4.3) θ̂lboot−t = θ̂l +
√

Var(θ̂l)H−1(y).

The approximate 100(1− 2α)% CIs of θ̂k is given by

(4.4)
(
θ̂lboot−t(α), θ̂lboot−t(1− α)

)
.
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5. SIMULATION STUDIES

We now adopted undertake simulation studies with the help of the Mathematica pro-
gram Ver. 8.0 to illustrate the theoretical results of the estimation problem. The performance
of the different point estimators of the shape parameter of the GHLD and the acceleration
factor are measured and compared with the average of the estimates (AVG), absolute relative
bias (RAB), and mean square error (MSE); specifically,

(5.1) AVG(θ̂l) =
1
M

M∑
i=1

θ̂
(i)
l , (θ1 = β, θ2 = λ),

(5.2) RAB(θ̂l)=
|θ̂l − θl|

θl
,

and

(5.3) MSE(θ̂l) =
1
M

M∑
i=1

(
θ̂
(i)
l − θl

)2
.

For each of the CIs, the ACIs and the different bootstrap CIs can be measured and compared
using the average confidence lengths (AC) as well as the coverage percentages (CP). For the
generated sample, we computed the 90% CIs, recorded AC, and checked whether the true
value lay within the interval (CP). In simulation studies, this step is repeated 1000 times.
The estimated CP was computed as the number of CIs that covered the true values divided
by 1000 whereas the estimated expected width of the CI was computed as the sum of the
lengths for all intervals divided by 1000. Now, we present the definitions of the different CSs
that are used in our simulation studies:

CS I : Rji = 0 for i < m and Rjm = n−m,

CS II : Rji = 0 for i > 1 and Rj1 = n−m,

CS III : for odd m, Rji = 0 for i > m+1
2 or i < m+1

2 and Rj m+1
2

= n−m.

Also, for even m, Rji = 0 for i > m
2 or i < m

2 and Rj m
2

= n−m:

CS IV: Rj 2m−n
2

+1 = ... = Rj n
2

= 1, other Rji = 0.

In our simulation studies, we consider two separate cases:

(1) The model parameter values (β = 0.5, λ = 2.0), the sample sizes (n1 = n2 = n)
and observed failure times (m1 = m2 = m); results are listed in Tables 1 and 2.

(2) The model parameter values (β = 2.5, λ = 1.5), the sample sizes (n2 = 2n1 = 2n)
and observed failure times (m2 = 2m1 = 2m); results are listed in Tables 3 and 4.
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Table 1: AVG and RABs (MSEs) of ML and Bootstrap estimates
for the parameters (β = 0.5 and λ = 2.0).

(n,m) CS
MLE Bootstrap

β λ β λ

(30,15)

I
0.5370 1.8242 0.5410 1.8109

0.0507 (0.147) 0.098 (0.471) 0.055 (0.248) 0.145 (0.645)

II
0.5300 1.8950 0.5312 1.8229

0.0481 (0.126) 0.079 (0.410) 0.049 (0.210) 0.140 (0.584)

III
0.5361 1.8720 0.5347 1.8198

0.0497 (0.133) 0.090 (0.425) 0.053 (0.229) 0.142 (0.609)

IV
0.5457 1.8889 0.5317 1.8301

0.0487 (0.123) 0.087 (0.419) 0.049 (0.219) 0.142 (0.601)

(30,25)

I
0.5204 1.889 0.5229 1.8740

0.0413 (0.101) 0.052 (0.394) 0.043 (0.131) 0.085 (0.451)

II
0.5154 1.9241 0.5201 1.8654

0.039 (0.099) 0.048 (0.289) 0.040 (0.120) 0.074 (0.325)

III
0.5224 1.9094 0.5244 1.8741

0.042 (0.102) 0.049 (0.317) 0.041 (0.135) 0.081 (0.377)

IV
0.5208 1.9107 0.5232 1.8841

0.041 (0.100) 0.050 (0.314) 0.040 (0.124) 0.080 (0.364)

(50,25)

I
0.5215 1.920 0.5240 1.9014

0.041 (0.098) 0.050 (0.378) 0.045 (0.128) 0.083 (0.440)

II
0.5109 1.951 0.5217 1.9241

0.031 (0.081) 0.045 (0.326) 0.041 (0.119) 0.079 (0.420)

III
0.5122 1.936 0.5217 1.9288

0.035 (0.093) 0.044 (0.331) 0.040 (0.131) 0.074 (0.426)

IV
0.5220 1.944 0.5200 1.9233

0.034 (0.090) 0.043 (0.338) 0.039 (0.130) 0.071 (0.415)

(50,40)

I
0.5100 1.9821 0.5107 1.9621

0.022 (0.052) 0.033 (0.208) 0.031 (0.101) 0.036 (0.401)

II
0.5102 1.9800 0.5099 1.9751

0.020 (0.040) 0.022 (0.109) 0.022 (0.081) 0.027 (0.265)

III
0.5133 1.9741 0.5118 1.9751

0.022 (0.042) 0.025 (0.119) 0.024 (0.094) 0.029 (0.377)

IV
0.5201 1.9788 0.5122 1.9788

0.023 (0.041) 0.024 (0.112) 0.021 (0.090) 0.030 (0.372)
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Table 2: The (AC) and (CP) of 90% CIs (β, λ) at (0.5, 2.0).

(n,m) CS
MLE Boot-P Boot-t

β λ β λ β λ

(30,15)

I
2.1214 3.2145 3.1354 5.2336 2.1019 3.2100
(0.88) (0.87) (0.87) (0.86) (0.89) (0.88)

II
2.1110 3.1177 3.1123 5.2210 2.1007 3.2006
(0.88) (0.89) (0.93) (0.88) (0.89) (0.91)

III
2.1133 3.1224 3.1209 5.2319 2.1016 3.2055
(0.87) (0.88) (0.92) (0.88) (0.89) (0.90)

IV
2.1125 3.1233 3.1212 5.2400 2.1109 3.2107
(0.88) (0.88) (0.88) (0.87) (0.89) (0.91)

(30,25)

I
2.1009 3.2010 3.1210 5.2221 2.1000 3.2009
(0.89) (0.88) (0.87) (0.88) (0.89) (0.90)

II
2.0789 3.0166 3.1000 4.6215 1.9524 3.1612
(0.92) (0.91) (0.92) (0.93) (0.91) (0.89)

III
2.1087 3.0198 3.1017 5.1017 2.0041 3.2008
(0.89) (0.89) (0.89) (0.92) (0.90) (0.89)

IV
2.1108 3.1010 3.1205 5.1003 2.0000 3.2107
(0.91) (0.90) (0.92) (0.89) (0.90) (0.919)

(50,25)

I
2.1023 3.1077 3.1187 5.2119 2.0139 3.1748
(0.89) (0.88) (0.89) (0.88) (0.88) (0.90)

II
2.0742 3.0142 2.9811 4.7217 1.9541 3.1752
(0.93) (0.89) (0.92) (0.88) (0.90) (0.92)

III
2.1102 3.1100 3.1107 5.1009 2.0051 3.2012
(0.88) (0.89) (0.91) (0.89) (0.91) (0.89)

IV
2.1111 3.1009 3.1217 5.1014 2.0021 3.2112
(0.88) (0.91) (0.91) (0.89) (0.90) (0.89)

(50,40)

I
1.9821 3.0087 3.0584 5.0472 1.7742 3.1010
(0.89) (0.89) (0.92) (0.88) (0.89) (0.910)

II
1.7490 2.9874 2.6511 4.1145 1.7120 3.0770
(0.88) (0.89) (0.89) (0.93) (0.89) (0.91)

III
1.8890 3.1120 2.6742 4.1246 1.7331 3.1070
(0.89) (0.89) (0.89) (0.92) (0.90) (0.90)

IV
1.8741 3.10820 2.6662 4.1195 1.7320 3.1040
(0.91) (0.92) (0.89) (0.92) (0.91) (0.89)
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Table 3: AVG and RABs (MSEs) of ML and Bootstrap estimates
for the parameters (β = 2.5 and λ = 1.5).

(n,m) CS
MLE Bootstrap

β λ β λ

(20,10)

I
2.5390 1.4522 2.5561 1.4522

0.120 (0.521) 0.109 (0.471) 0.1324 (0.641) 0.111 (0.499)

II
2.5211 1.4745 2.5423 1.4642

0.115 (0.446) 0.087 (0.406) 0.125 (0.549) 0.099 (0.408)

III
2.5341 1.4624 2.5450 1.4602

0.120 (0.498) 0.109 (0.450) 0.129 (0.587) 0.101 (0.470)

IV
2.5327 1.4631 2.5462 1.4611

0.118 (0.487) 0.105 (0.450) 0.131 (0.591) 0.105 (0.465)

(20,15)

I
2.5220 1.4842 2.5325 1.4740

0.101 (0.521) 0.087 (0.328) 0.101 (0.554) 0.084 (0.332)

II
2.5201 1.4892 2.5288 1.4884

0.087 (0.421) 0.060 (0.301) 0.099 (0.511) 0.050 (0.311)

III
2.5213 1.4811 2.5485 1.4811

0.099 (0.460) 0.080 (0.317) 0.110 (0.522) 0.070 (0.328)

IV
2.5217 1.4804 2.5477 1.4814

0.097 (0.455) 0.082 (0.322) 0.108 (0.518) 0.069 (0.331)

(30,20)

I
2.5198 1.4811 2.5311 1.4720

0.100 (0.515) 0.086 (0.312) 0.099 (0.44) 0.081 (0.311)

II
2.5190 1.4893 2.5288 1.4870

0.060 (0.400) 0.055 (0.280) 0.070 (0.500) 0.046 (0.287)

III
2.5196 1.4814 2.5462 1.4900

0.090 (0.454) 0.076 (0.312) 0.101 (0.511) 0.065 (0.314)

IV
2.5211 1.4774 2.5477 1.4855

0.097 (0.455) 0.079 (0.318) 0.106 (0.519) 0.062 (0.325)

(30,25)

I
2.5101 1.4954 2.5210 1.4894

0.089 (0.256) 0.050 (0.214) 0.060 (0.265) 0.042 (0.266)

II
2.5121 1.4998 2.5109 1.4899

0.051 (0.202) 0.020 (0.148) 0.052 (0.215) 0.040 (0.200)

III
2.5111 1.4974 2.5109 1.4864

0.060 (0.215) 0.023 (0.201) 0.069 (0.261) 0.045 (0.212)

IV
2.5113 1.4982 2.5110 1.4870

0.059 (0.212) 0.021 (0.212) 0.067 (0.242) 0.046 (0.209)
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Table 4: The (AC) and (CP) of 90% CIs (β, λ) at (2.5, 1.5).

(n,m) CS
MLE Boot-t Boot-P

β λ β λ β λ

(20,10)

I
4.1147 3.1231 5.2414 3.5421 4.1009 3.1037
(0.87) (0.88) (0.85) (0.86) (0.89) (0.89)

II
3.9544 3.0032 3.9881 3.2131 3.7542 3.0011
(0.88) (0.88) (0.87) (0.88) (0.89) (0.91)

III
3.9654 3.0172 3.9991 3.2321 3.8045 3.0712
(0.88) (0.89) (0.92) (0.88) (0.90) (0.92)

IV
3.9622 3.0161 3.9970 3.2300 3.8039 3.0702
(0.88) (0.89) (0.93) (0.92) (0.91) (0.91)

(20,15)

I
3.7541 3.1001 3.7865 3.1124 3.7111 3.0099
(0.91) (0.89) (0.88) (0.89) (0.89) (0.91)

II
3.1542 2.8570 3.7742 2.899 3.1421 2.8110
(0.89) (0.88) (0.89) (0.89) (0.90) (0.91)

III
3.1588 2.8598 3.7760 2.9200 3.1441 2.8132
(0.88) (0.89) (0.91) (0.88) (0.91) (0.91)

IV
3.1570 2.8592 3.7755 2.9136 3.1432 2.8127
(0.89) (0.90) (0.92) (0.91) (0.92) (0.90)

(30,20)

I
3.7531 3.0991 3.7854 3.1118 3.7101 3.0088
(0.92) (0.89) (0.89) (0.89) (0.90) (0.92)

II
3.1522 2.8550 3.7720 2.8965 3.1400 2.8094
(0.90) (0.88) (0.91) (0.89) (0.91) (0.91)

III
3.1573 2.8585 3.7750 2.9199 3.1432 2.8124
(0.89) (0.89) (0.88) (0.88) (0.92) (0.91)

IV
3.1555 2.8580 3.7742 2.9127 3.1421 2.8118
(0.89) (0.88) (0.92) (0.93) (0.91) (0.91)

(30,25)

I
3.7014 3.0665 3.7116 3.0772 3.6542 3.0545
(0.91) (0.89) (0.89) (0.92) (0.91) (0.92)

II
3.5124 3.0256 3.5198 3.0281 3.5111 3.0231
(0.901) (0.89) (0.91) (0.89) (0.90) (0.91)

III
3.5321 3.0290 3.5221 3.0321 3.5185 3.0287
(0.88) (0.89) (0.89) (0.88) (0.91) (0.91)

IV
3.5314 3.0282 3.5214 3.0307 3.5172 3.0281
(0.89) (0.898) (0.90) (0.92) (0.901) (0.92)
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6. NUMERICAL EXAMPLE

For demonstration purposes, the estimation procedure described in the previous section
is applied to the set of simulated progressive Type-II censoring data under the constant-stress
partially ALT. The MLEs and the two bootstrap CIs are computed for model parameters β

and λ with the real parameters are equal to 1.5 and 2.0, respectively. In this example, we
simulate samples of size (m1 = m2 = 15 of n1 = n2 = 30 ) from the GHLD under the two
progressive CSs R1 = R2 = {1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0} using the algorithm
described in Balakrishnan and Sandhu [12]. The simulated data are presented in Table 5.

Table 5: Simulated progressively censored samples with constant PALTs.

Normal
conditions

0.13901 0.22961 0.26912 0.47032 0.51005 0.52645 0.53583
0.56987 0.65999 0.79289 0.80636 0.89349 1.56115 1.63822
1.66079

Accelerated
conditions

0.00274 0.02767 0.06181 0.06717 0.12004 0.14341 0.25042
0.27614 0.31457 0.42484 0.54109 0.54112 0.75652 1.13610
1.41038

In Figure 1, the two probability density functions show the effect of an acceleration factor.

Figure 1: Probability density under normal and accelerated condition.

The iteration procedure of the MLE needs the initial value of parameter obtained from the
profile log-likelihood function (Figure 2) as 1.8. The point estimates and related RABs and
MSEs of the parameters as well as the 90% and 95% ACIs are listed in Table 6. Also, the point
estimates and the relate RABs and MSEs of the parameters as well as the 90% and 95% PBCIs
and BTCIs are presented in Table 7. We observed that the BTCIs and approximate MLE
intervals are narrower than the PBCIs and always include the population parameter values.
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Figure 2: Profile log likelihood function of λ.

Table 6: MLEs, MSEs, RABs and (90%-95%) approximate confidence intervals.

(.)ML RAB MSE 90% 95%

1.5495 0.0330 0.0495 (0.7769, 2.3221) (0.9011, 2.1979)
1.8034 0.0983 0.1966 (0.7231, 2.8837) (0.8968, 2.7100)

Table 7: Percentile bootstrap CIs and Bootstrap-t CIs based on 500 replications.

(.)Boot RAB MSE
90% 95%

BPCI BTCI BPCI BTCI

1.7421 0.1614 0.2421 (0.3241, 3.1205) (0.7981, 2.2954) (0.6581, 2.6325) (0.8881, 2.1472)
2.3415 0.1707 0.3415 (0.5213, 3.2140) (0.7751, 2.7098) (0.4578, 2.6590) (0.7922, 2.5213)

7. CONCLUDING REMARKS

In product-life testing experiments, reducing the time and cost, especially for units with
high reliability, illustrates the importance of ALTs. Different types of ALTs are available,
one of the types most suitable for different situations is the constant-stress partially ALTs.
Also, the experimenter in some situations is unable to obtain complete information of fail-
ure times for all experimental units or is in need to remove some units other than the final
point of the experiment. The conventional Type-I and Type-II CSs do not have the flexibil-
ity of allowing to remove any units at points other than the final point of the experiment.
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Hence, in this paper, we adopted a more general CS with the constant-stress partially ALT,
known as progressive Type-II censoring. Simulation studies were presented to assess and
compare the performance of the proposed methods. From the results, we observed the fol-
lowing:

1. For fixed values of sample size n and with increasing effected sample size m, the
MSEs and RABs of the considered parameters decrease.

2. For fixed values of the sample and failure time sizes, CS II, in which the censoring
occurs after the first observed failure, gives more accurate results through the MSEs
and RABs than the other schemes..

3. Results for the CS III and CS IV are more similar.

4. The bootstrap-t credible intervals give more accurate results than the ACIs than
the bootstrap CIs because the lengths of the former are less than the lengths of the
latter, for different sample sizes, observed failures, and schemes.

5. For fixed sample sizes and observed failures, CS II moreover gives lower lengths for
the three methods to obtain the CIs compared with the other three schemes.
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1. INTRODUCTION

An average UX1+(1−U)X2 of two independent continuous random variables X1 and X2,
U∼ uniform(0, 1), is the subject of Johnson and Kotz [5] expository article on the work of Van
Assche [14]. Indeed, Johnson and Kotz noticed that the random variable uniformly distributed

between two random variables, named by Van Assche, is a random weightes average, RWA in
short. Soltani and Roozegar [13] consider RWA of a finite number of independent continuous
random variables, where the weights are cuts of (0, 1) by an increasing selection of the order
statistics of a uniform (0, 1) random sample. In his work, Van Assche [14] noticed that
the Stieltjes transform is an appropriate tool for the distributional identification of random
weightes averages, as the Fourier transform is for averages with non-random weights.

In this paper, we consider RWA of a number of independent continuous random vectors
with values in Rd, the d dimensional Euclidian space. The random weights are as in Soltani
and Roozegar [13]: the cuts of (0, 1) by an increasing sequence U(k1), U(k2), ..., U(km−1) of the
order statistics U(1), ..., U(n−1) from a uniform (0, 1) sample U1, ..., Un−1; 1 ≤ k1 < k2 < ... <

km−1 < km = n, U(n) = 1. We employ the multivariate Stieltjes, also called Cauchy-Stieltjes,
transform (MCST in short) for the distributional identification of multivariate randomly
weighted averages, MRWA. In this article, we prove that the MCST of order n, S[F;n](z), of
the distribution F, the distribution of random weights averages of independent d-dimensional
continuous random vectors X1 ∼ F1, ...,Xm ∼ Fm, is equal to the product of the correspond-
ing MCST of F1, ...,Fm, namely,

(1.1) S[F;n](z) = S[F1; k1](z)S[F2; k2 − k1](z)...S[Fm;n− km−1](z), z ∈ Cd.

Our approach is somewhat new and different from those applied in the references cited above.
Van Assche [14] applies certain techniques from the differentiation of Schwartz distribu-
tions. Soltani and Roozegar [13] apply the divided differences and the theory of knots.
In this article, we apply the pioneering formula of Watson [15] involving B-splines, discussed
in Karlin, Micchelli and Rinott [6]. This approach is more direct and easily applied. It can
be applied to the univariate RWA as well.

The notion of random weights averages in the literature may be attributed to the
interesting observation of Galton, the founder of regression. He observed that, on average,
a child’s height is more mediocre (average) than his or her parent’s height. Plausibly, the
child’s height is a RWA of his or her parents’ heights. In contrast to the univariate RWA,
multivariate RWA can be used for modeling when a finite number of characteristics are
considered simultaneously.

Univariate and multivariate RWA have appeared in certain areas, such as sampling,
density estimation, Bayesian and distributional characterizations, among others. In theory,
general regression and neural networks, multivariate kernel density estimations and multivari-
ate kernel regressions are all randomly weighted averages, see Nadaraya [8] and Watson [16].
An interesting example of averages of multivariate quantities with random weights is the ran-
dom vector of the serial correlation coefficients, introduced by Watson [15], r = (r1, r2, ..., rk),
where

(1.2) rj =
λ

(j)
0 W0 + λ

(j)
1 W1 + ···+ λ

(j)
m Wm

W0 + ···+ Wm
, j = 1, 2, ..., k,



Averages for Multivariate Random Vectors with Random Weights 455

and W0,W1, ...,Wm are independent gamma variables of integer order α0, α1, ..., αm, and
λ` = (λ(1)

` , ..., λ
(k)
` ), ` = 0, ...,m are k-dimensional knots. In addition, Zeng [17] characterizes

the multivariate stable distributions through the independence of the linear statistic U =∑n
i=1 YiXi and the vector of random coefficients Y = (Y1, ..., Yn)T ∈ Rn, where X1, ...,Xn

are independent and identically distributed random vectors in Rk, and are independent of Y.
A special form of U is a RWA of random vectors.

This article is organized as follows. We give preliminaries and the proof of (1.1) in
Section 2. We proceed on to introduce and study interesting classes of distributions that are
RWA of continuous random vectors. In particular, we prove that the RWA of independent
Dirichlet random vectors is Dirichlet, and that the RWA of independent and identically
symmetric stable random vectors is randomly scaled stable. We devote Section 3 to this
issue.

2. PRELIMINARIES AND MAIN RESULT

Let us denote the RWA of m independent and continuous random vectors X1, ...,Xm

in Rd by

(2.1) Sm:n = R1:nX1 + R2:nX2 + ···+ Rm:nXm, m ≥ 2,

where the random weights Rj:n are assumed to be the m cuts of [0, 1] by an increasing
ordered array U(k1), ...U(km−1) of U(1), ..., U(n−1), the ordered statistics of n− 1 independent
and identically uniformly distributed random variables U1, ..., Un−1 on [0, 1];

Rj:n = U(kj) − U(kj−1), j = 1, 2, ···,m, m ≤ n,

where k0 = 0 < k1 < ... < km−1 < km = n are in {1, ..., n} and U(n) = 1.

The conditional density of Sm:n given X1 = x1, ..., Xm = xm is denoted by
M(t|x1, ...,xm), t ∈ Rd. In the numerical analysis context, this density function is called
“the Multivariate B-spline with knots {x1, ...,xm}”, Karlin, Micchelli and Rinott [6]. The
random vectors X1, ...,Xm ∈ Rd have a convex hull with positive volume in Rd. Our deriva-
tions very much rely on the fundamental result by Watson [15]:

(2.2)
∫

Rd

M(t|x1, ...,xm)
dt

(1− < t,x >)
Pm

i=1 ri
=

m∏
i=1

(1− < x,xi > )−ri ,

for maxi | < x,xi > | < 1, Karlin, Micchelli and Rinott [6].

The multivariate Cauchy-Stieltjes (or Stieltjes) transform (MCST) of a distribution H
is defined by

(2.3) S[H](z) =
∫

Rd

1
1− < z,x >

H(dx), z ∈ Cd ∩ (suppH)c,

for | < z,x > | < 1, < a,b >=
∑k

i=1 aibi, C is the set of complex numbers and suppH stands
for the support of H, Kerov and Tsilevich [7] and Cuyt, Golub, Milanfar and Verdonk [1].
Similarly the MCST of order n of a distribution H is defined by

(2.4) S[H;n](z) =
∫

Rd

1
[1− < z, t >]n

H(dt), z ∈ Cd ∩ (suppH)c,

for | < z, t > | < 1.
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For d = 1, the MST is also called Markov transform, denoted by M1[H](z). There is a
relation between Markov transform and Stieltjes transform of a distribution H:

M1[H](z) =
1
z
S[H](

1
z
),

where
S[H](z) =

∫
R

1
z − x

H(dx),

for z in the set of complex numbers C which does not belong to the support of H, z ∈
C ∩ (suppH )c. For more on the Stieltjes transform see Debnath and Bhatta [2].

The following theorem is our main result in this section.

Theorem 2.1. Let X1, ...,Xm be m > 1 independent and continuous random vectors

in Rd. Let Sm:n be the corresponding MRWA given by (2.1). Then

(2.5) S[FSm:n ;n](z) =
m∏

i=1

S[Fi; ri](z), z ∈ Cd
m⋂

i=1

(supp Fi)c,

where ri = ki − ki−1;
∑m

i=1 ri = n.

Proof: We note that

FSm:n(t) = E (I[Sm:n ≤ t])

= E (E (I[Sm:n ≤ t]|X1, ...,Xm))

=
∫

Rmd

E (I[Sm:n ≤ t]|x1, ...,xm)
m∏

i=1

Fi(dxi)

=
∫

Rmd

∫
[s<t]

M(s|x1, ···,xm)ds
m∏

i=1

Fi(dxi)

=
∫

[s<t]

{∫
Rmd

M(s|x1, ···,xm)
m∏

i=1

Fi(dxi)

}
ds,

giving that

dFSm:n(t) =
∫

Rmd

M(t|x1, ···,xm)
m∏

i=1

Fi(dxi).

Therefore,

S[FSm:n ;n](z) =
∫

Rd

1
[1− < z, t >]n

dFSm:n(t)

=
∫

Rmd

{∫
Rd

1
[1− < z, t >]n

M(t|x1, ···,xm)dt
} m∏

i=1

Fi(dxi)

=
∫

Rmd

m∏
i=1

[1− < z,xi >]−ri

m∏
i=1

Fi(dxi)(2.6)

=
m∏

i=1

∫
Rd

1
[1− < z,xi >]ri

Fi(dxi)

=
m∏

i=1

S[Fi; ri](z),

the third equality in (2.6) follows from (2.2).



Averages for Multivariate Random Vectors with Random Weights 457

3. SOME CLASSES OF RWA OF RANDOM VECTORS

In this section we introduce two important classes of RWA of random vectors, Theorems
3.1 and 3.2.

In Theorem 3.1 below we assume m = n, rj = 1 for j = 1, 2, ...,m.

Theorem 3.1. Let X1,X2, ...,Xn be independent random vectors such that Xi has

a Dirichlet distribution with parameters αi = (α1i, α2i, ..., αdi)′,
∑d

j=1 αji = 1, i = 1, 2, ..., n.

Then the MRWA Sn:n given by (2.1) has a Dirichlet distribution with parameters

n∑
i=1

αi = (
n∑

i=1

α1i,
n∑

i=1

α2i, ...,
n∑

i=1

αdi).

Proof: The density and the Stieltjes transform of a Dirichlet distribution with param-
eters α = (α1, α2, ..., αd)′ are given by

(3.1) dF (x) = f(x1, x2, ..., xd) =
Γ(α1 + α2 + ···+ αd)
Γ(α1)Γ(α2)···Γ(αd)

xα1
1 xα2

2 ···xαd
d , x ∈∆d,

and

S[F ](z) =
∫

∆d

F (dx)

[1− < z,x >]
Pd

i=1 αi

=
d∏

j=1

1
(1− zj)αj

, z = (z1, ..., zd)

respectively, ∆d = {(x1, ..., xd) ∈ Rd, xi > 0,∀i,
∑d

i=1 xi = 1}, Kerov and Tsilevich [7]. Let
Xi ∼ Fi, i = 1, 2, ..., n. Then it follows from Theorem 2.1 that

S[FSn:n ;n](z) =
n∏

i=1

d∏
j=1

1
(1− zj)αji

=
d∏

j=1

1
(1− zj)

Pn
i=1 αji

.

It is plain to show this function is the MCST, of order n, of a Dirichlet distribution with pa-
rameters

∑n
i=1 αi = (

∑n
i=1 α1i,

∑n
i=1 α2i, ...,

∑n
i=1 αdi). Indeed for F ′, a Dirichlet distribution

with parameters (b1, b2, ..., bd), with
∑d

j=1 bj = n, we have

S[F ′;n](z) = C(n; b1, ..., bd)
∫

∆d

xb1−1
1 xb2−1

2 ...x
bd−1−1
d−1 (1− x1 − ...− xd−1)bd−1

[1− < z,x >]n
dx1...dxd−1,

where C(n; b1, ..., bd) = Γ(n)
Γ(b1)Γ(b2)...Γ(bd) . Let bj =

∑n
i=1 αji, j = 1, 2, ..., d. Then the Euler type

integral representation for the Lauricella function gives that

(3.2)
Γ(b1)Γ(b2)···Γ(bk)

Γ(b1 + b2 + ···+ bk)
F

(k)
D (a, b1, ..., bk; b1 + ···+ bk; z1, ..., zk) =

=
∫

...

∫
∆k

xb1−1
1 xb2−1

2 ···xbk−1−1
k−1 (1− x1 − ··· − xk−1)bk−1

[1− < z,x >]a
dx1···dxk−1,

where

(3.3) F
(k)
D (a, b1, ..., bk; c; z1, ..., zk) =

∑
m1,...,mk≥0

(a)m1+···+mk
(b1)m1 ···(bk)mk

(c)m1+···+mk

zm1
1

m1!
···

zmk
k

mk!
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is the Lauricella function, (a)m = a(a + 1)...(a + m− 1) the Pochhammer symbol and c =∑k
j=1 bj ; Exton [3, 2.1.4, 2.3.5]. Therefore,

S[F ′;n](z) = F
(d)
D (n, b1, ..., bk;n; z1, ..., zd),

and

S[F ′;n](z) =
∑

m1,...,md≥0

(b1)m1 ···(bd)md

zm1
1

m1!
···

zmd
d

md!

=
d∏

j=1

1
(1− zj)bj

=
d∏

j=1

1
(1− zj)

Pn
i=1 αji

=
n∏

i=1

d∏
j=1

1
(1− zj)αji

.

The proof of the theorem is complete.

Theorem 3.2. Let X1, ...,Xm be independent and identically distributed random

vectors in Rd having a symmetric multivariate stable distribution of exponent 0 < α ≤ 2.

Let Sm:n be the corresponding MRWA given in (2.1). Then Sm:n
d= VαX1, where Vα =

(
∑m

j=1 Rα
j:n)1/α.

Proof: It is well known that if X1, ...,Xm are independent, identical and symmetrically
distributed stable random vectors of exponent α, then

∑m
j=1 ajXj

d= (
∑m

j=1 aα
j )1/αX1 , for

any set of univariate positive constants a1, ..., am, see Samorodnitsky and Taqqu [12]. Let
Sm:n(z) stand for the Stieltjes transform of Sm:n, then

Sm:n(z) = E

(
1

1− < Sm:n, z >

)
= E

(
E

(
1

1− <
∑m

j=1 Rj:nXj , z >
|Rm:1, ..., Rm:n)

)

= E

(
E

(
1

1− < (
∑m

j=1 Rα
j:n)1/αX1, z >

|Rm:1, ..., Rm:n)

)

= E

(
1

1− < (
∑m

j=1 Rα
j:n)1/αX1, z >

)
= S{VαX1}(z),

giving the result, where S{VαX1}(z) stands for the Stieltjes transform of VαX1.

Remark 3.1. Interestingly, it follows from Theorem 3.2 that the RWA of indepen-
dently and identically distributed stable random vectors is not stable (unless α = 1), but it
is a certain randomly scaled stable random vector. Moreover it follows from the inequal-
ity (a + b)p < ap + bp, 0 < p < 1, that for 1 < α ≤ 2, Vα < 1. Consequently, the RWA Sn:n

exhibits smaller variation than Xs.
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Remark 3.2. We note that for α = 1, V1 = 1, and consequently Sn:n
d= X1. If h(x)

is the density function of a multivariate stable distribution of exponent 1, call it multivariate

Cauchy distribution, then it follows from Theorems 2.1, and 3.2 that∫
Rd

1
[1− < z,x >]n

h(x)dx =
[∫

Rd

1
1− < z,x >

h(x)dx
]n

, for every n ≥ 1.

The density function h(x), in the context of stable random vectors with exponent α = 1,
in general does not assume a close formulation. The density function of a special class of
multivariate Cauchy random vectors, called “multivariate Cauchy of order one” assumes the
following formulation, given in Press [9], namely,

h(x) = K|Σ|−
1
2 [1 + (x− a)T Σ−1(x− a)]−

1+d
2 ,

where K = Γ(1+d
2 )π−

1+d
2 , a ∈ Rd and the d× d matrix Σ is positive definite.

Let us also record the following interesting symmetrical property of MRWA.

Theorem 3.3. Let every Xi be symmetric about ai, for i = 1, ...,m. Then the MR-

WAs Dm:n − Sm:n and Sm:n −Dm:n have the same distribution, where Dm:n =
∑m

j=1 Rj:naj .

In particular, if every Xi is symmetric about a, then Sm:n will be symmetric about a.

The proof is straightforward, so it is omitted.

Let us call Dm:n =
∑m

j=1 Rj:naj the centroid for MRWA Sm. This is interesting; indeed
it follows from this theorem that the centroid is random regresses of a1, ...,am. According to
Galton, see Hansen [4, page 40], the projected height of child on parent is a weighted average
of the population mean height and the parents height with weights (1/3, 2/3). Indeed if we
let ER1 = 1/3, then E[S2|X2] = ER1EX1 +ER2X2 = (1/3)µ+(2/3)X2; the right side is the
equation reported in Hansen [4].

Conclusion. Averages for multivariate random vectors with random weights where
the weights are spacings corresponding to a uniform (0, 1) sample are introduced and studied
in this article. Certain techniques for the their distributional studies are introduced. This
study gives rise to new families of multivariate distributions. The statistics literature is
quite rich about the sample mean and its applications. The topics that are studied for the
sample mean, such as strong law of large numbers, asymptotic theory and its applications
in inference, would be interesting subjects for further research work on randomly weighted
average of random vectors. For further references, see also Roozegar and Soltani [10, 11].
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1. INTRODUCTION

Sequential CUSUM methods for detecting parameter changes in distributions on the
real line is a well developed field with an extensive literature. The same cannot be said
about CUSUM methods to detect changes of location in non-Euclidean spaces such as the
circle. Distributions on the circle generate data which cannot generally be treated in the
same manner as linear data - see Fisher [3, Chapter 1 and Section 3.1], Mardia and Jupp
[15, Chapter 1] and Jammalamadaka and SenGupta [9, Section 1.2.2]. One impediment to
the application of linear CUSUM methods is the fact that a circle has no well separated
beginning and end. Whichever point is selected as the beginning point, the distance between
it and the endpoint is zero. A family of distributions with a fixed arc on the circle as support
could in principle be treated as if the sample space were a finite fixed interval on the real line.
However, the options involved in formulating a changepoint model would then be severely
curtailed: a model involving shifts of arbitrary size in the location of the distribution would
be out of the question. The distributions from which the data in our applications in Section
5 arise encompass the full circle and are therefore not amenable to analysis by linear CUSUM
methods.

Lombard, Hawkins and Potgieter [13] reviewed the current state of change detection
procedures for circular data. They also constructed distribution free CUSUMs for circular
data in which the numerical value of an in-control mean direction is specified, the objective
being to detect a change in mean direction away from this value. The situation is analogous
to that in which the well known Page [18] CUSUM is applied, namely detection of a change
away from a specified numerical value of the mean of a distribution on the real line. However,
in the examples treated in Section 5 of the present paper, no in-control circular mean value
is specified and the objective is to detect a change away from the unknown current circular
mean value, whatever it may be. Such a CUSUM, unlike that proposed by Lombard, Hawkins
and Potgieter [13], must be rotation invariant because the outcome of the analysis should not
depend upon which point on the circle is chosen as the origin of angular measurement.

The main contribution of the present paper is the construction of such invariant
CUSUMs for circular data. The CUSUMs we construct are non-parametric in the sense
that their form is not dependent upon an underlying parametrically specified distribution.
The in-control properties of the CUSUMs are shown in a Monte Carlo study to be quite
robust over a wide class of circular distributions, which makes them near distribution free
over this class. As far as we are aware, no CUSUMs of this nature for circular data have to
date been treated in the statistical literature.

Section 2 of the paper focuses on mean direction. We provide justifications for the
form of our CUSUM and discuss some computational details. In Section 3 we elaborate on
its in-control and out-of-control properties. The results of an extensive Monte Carlo study
are also reported. In Section 4 we briefly consider a CUSUM for detecting concentration
changes. Section 5 demonstrates the application of the CUSUMs to two sets of data and
Section 6 summarizes our results.
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2. DETECTING DIRECTION CHANGE

2.1. Derivation of the CUSUM statistic

Initially the data X1, X2, ... come from a non-uniform and unimodal continuous dis-
tribution F with unknown mean direction ν = ν0 on the circle [−π, π). This defines the
in-control state. (Since mean direction is a vacuous concept in a uniform distribution, the
latter is excluded from consideration. The CUSUM of Lombard and Maxwell [14], which is
rotation invariant, can be used to detect a change from a uniform to a non-uniform distribu-
tion.) We estimate ν by

(2.1) ν̂n = atan2(Sn, Cn)

where for n = 2, 3, ...,

(2.2) Cn =
n∑

j=1

cos Xj , Sn =
n∑

j=1

sinXj ,

and atan2 denotes the four-quadrant inverse tangent function

atan2(x, y) =


tan−1(x/y) if y > 0
tan−1(x/y) + πsign(x) if y < 0
(π/2)sign(x) if y = 0, x 6= 0
0 if y = x = 0,

the symbol tan−1 denoting the usual inverse tangent function with range restricted to
(−π/2, π/2). This non-parametric estimator is, in fact, also the maximum likelihood estima-
tor of mean direction in a von Mises distribution, which is arguably the best known among
circular distributions. The von Mises distribution with mean direction ν and concentration
κ, has density function

f(x) =
1

2πI0(κ)
exp[κ cos(x− ν)], −π ≤ x < π,

where I0 denotes the modified Bessel function of the first kind of order zero. The log-likelihood
ratio based on observations X1 + δ, ...,Xn + δ is, apart from a factor not depending upon δ,
given by

l(δ) = cos(Xn − δ − ν)

and a locally most powerful test of the hypothesis H0 : δ = 0 is therefore based on the deriva-
tive

dl(δ)
dδ

∣∣∣∣
δ=0

= sin(Xn − ν).

Replacing ν by ν̂n−1 leads to consideration of a CUSUM based on the statistic

(2.3) Vn = sin(Xn − ν̂n−1).

Despite the fact that Vn originates from the von Mises distribution, it has at least two purely
non-parametric origins that do not depend upon any assumption involving the type of the
underlying distribution.
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The first of these follows upon expanding the sine function and using the trigonometric
relations

sin(ν̂n−1) = Sn−1/Rn−1, cos(ν̂n−1) = Cn−1/Rn−1,

wherein

(2.4) R2
n = C2

n + S2
n.

This gives

(2.5) Vn = (Cn−1/Rn−1) sinXn − (Sn−1/Rn−1) cos Xn,

which is the (signed) area of the parallelogram spanned by the unit length vectors
(Cn−1, Sn−1)/Rn and (sinXn, cos Xn). The former of these vectors points in the mean di-
rection of the data X1, ..., Xn−1 while the latter vector points in the direction of the new
observation Xn.and the greater the angular distance between the two directions is, the larger
will be the area of the parallelogram. Thus, if a change in mean direction ν occurs at index
n, we can expect a succession of positive or negative values Vn, n > τ .

A second non-parametric argument leading to consideration of Vn comes from consid-
ering the change ν̂n − ν̂n−1 in the estimate of ν effected by a change in mean direction from
ν to ν + δ occurring at index n. We have

ν̂n = atan2 [Sn−1 + sin(Xn + δ), Cn−1 + cos(Xn + δ)]

= atan2(Sn−1/n + δ1,n, Cn−1/n + δ2,n)

where

nδ1,n = sin(Xn + δ) = sin Xn + O(δ),

nδ2,n = cos(Xn + δ) = cos Xn + O(δ).

Since both Sn−1/n and Cn−1/n converge as n →∞, and both δ1,n and δ2,n tend to zero, we
can make a Taylor expansion around (Sn−1/n, Cn−1/n). This gives

Rn−1(ν̂n − ν̂n−1) = nδ1,n
Cn−1

Rn−1
− nδ2,n

Sn−1

Rn−1
+ O(n−1)

=
Cn−1

Rn−1
sinXn −

Sn−1

Rn−1
cos Xn + O(δ) + O(n−1)

= Vn + O(δ) + O(n−1),

which shows again the relevance of Vn for detecting changes in mean direction.

The most important property of Vn as far as motivation for the present paper is con-
cerned is its rotation invariance: its numerical values are unaffected if all the data are rotated
through the same fixed, but unknown, angle. Thus, a CUSUM based on Vn will be applicable
in situations where no in-control direction is specified and the objective is merely to detect
deviations from this arbitrary in-control direction. Both examples treated in Section 5 of
the paper are of this nature. This contrasts with the distribution free CUSUMs in Lombard,
Hawkins and Potgieter [13], which require a specified numerical value of the in-control mean
direction.



Nonparametric CUSUMs for Circular Data 465

2.2. Construction of the CUSUM

When the process is in control, that is, when X1, X2, ... are independently and identi-
cally distributed (but with unknown mean direction), then

(2.6) ξn := (Vn − En−1 [Vn])/
√

Varn−1 [Vn], n ≥ 2,

is a martingale difference sequence with conditional variance 1. Here and elsewhere, En−1[·]
and Varn−1[·] denote expected value and variance computed conditionally upon X1, ..., Xn−1.
Using standard martingale central limit theory, we can show that cumulative sums of the ξn

will be asymptotically normally distributed regardless of the type of underlying distribution
- see, e.g. Helland [8, Theorem 3.2]. Furthermore, if ν = ν0 changes by an amount δ to
ν = ν0 + δ at observation Xτ+1 (τ being the last in-control observation) then by either of the
two arguments following (2.3), we can expect Eτ [ξτ+1] to be non-zero. Thus, a standard two-
sided normal CUSUM for data on the real line, applied to the ξn sequence, could be expected
to be effective in detecting a change away from the initial direction. Furthermore, the in-
control behaviour should be quantitatively similar to that of a standard normal CUSUM.

The conditional mean and variance in (2.6) depend on the first two moments of sinX

and cos X, which are unknown parameters. Accordingly, given observations X1, ..., Xn, we
estimate the conditional mean and variance non-parametrically by

Ên−1 [Vn] =
1

n− 1

∑n−1

i=1
sin(Xi − ν̂n−1) = 0

and

(2.7) V̂arn−1 [Vn] =
1

n− 1

∑n−1

i=1
sin2(Xi − ν̂n−1) := B2

n−1.

Then a computable CUSUM is obtained upon replacing ξn in (2.6) by

(2.8) ξ̂n = Vn/Bn−1.

The CUSUM is started at observation m + 1 by setting D±
i = 0 for i = 1, ...,m and

D+
m+n = max{0, Dm+n−1 + ξ̂m+n − ζ}

(2.9)

D−
m+n = min{0, Dm+n−1 + ξ̂m+n + ζ}

for n ≥ 1, where ζ is the reference value. The run length, N , is the first index n at which either
D+

m+n ≥ h or D−
m+n ≤ −h, where h is a control limit. The control limit is chosen to produce

a specified in-control average run length (ARL), which we denote throughout by ARL0. The
first m observations serve to make an initial estimate of the population moments after which
the estimates are updated with the arrival of each new observation. Since the the random
variables sin X and cos X are bounded, convergence of sample moments to population
moments would be quite rapid so that a relatively small number m of observations should
suffice to initialize the CUSUM.
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2.3. Implementation

Implementation of the CUSUM scheme requires an efficient method of updating the
summand ξ̂n−1 upon arrival of a new observation Xn. For this, set

sn = sinXn, cn = cos Xn

and

C(2)
n =

n∑
j=1

c2
j , S(2)

n =
n∑

j=1

s2
j , A(2)

n =
n∑

j=1

sjcj

and observe that

(2.10) (n− 1)B2
n−1 =

C2
n−1

R2
n−1

S
(2)
n−1 +

S2
n−1

R2
n−1

C
(2)
n−1 − 2

Cn−1Sn−1

R2
n−1

A
(2)
n−1.

In particular, we see that the Rn−1 factors in Vn and Bn−1 cancel, whence

(2.11) ξ̂n =
V ∗

n

B∗
n−1

:=
Cn−1 sinXn − Sn−1 cos Xn√(

C2
n−1S

(2)
n−1 + S2

n−1C
(2)
n−1 − 2Cn−1Sn−1A

(2)
n−1

)
/(n− 1)

.

Next, note the simple recursions

Sn−1 = Sn−2 + sn−1, Cn−1 = Cn−2 + cn−1,

S
(2)
n−1 = S

(2)
n−2 + s2

n−1, C
(2)
n−1 = C

(2)
n−2 + c2

n−1

and
A

(2)
n−1 = A

(2)
n−2 + sn−1cn−1.

To compute V ∗
n in (2.11) given Sn−2, Cn−2, cn−1, cn, sn−1 and sn, use the first of these recur-

sions. To compute Bn−1, given Sn−1, Cn−1, S
(2)
n−1, C

(2)
n−1, A

(2)
n−1, cn−1, and sn−1, use (2.10).

A rational basis for specifying a reference value ζ is also required. This aspect of the
CUSUM design is considered in Section 3.3 of the paper.

3. In-control properties

While the proposed CUSUM is not distribution free, the asymptotic in-control nor-
mality of CUSUMs of ξ̂n suggests that it may be nearly so. Then, use of standard normal
distribution CUSUM control limits should lead to an in-control ARL sufficiently close to the
nominal value to make the CUSUMs of practical use. The requisite control limit h can be ob-
tained from the widely available software packages of Hawkins, Olwell and Wang, [7] or Knoth
[12]. To check this expectation we estimated by Monte Carlo simulation the in-control ARL
over a range of unimodal symmetric and asymmetric distributions on the circle. Among the
multitude of possible distributions, the class of wrapped stable and Student t distributions,
together with their skew versions, represent a wide range of unimodal distribution shapes on
the circle. Simulated data from these distributions are easily obtained by generating random
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numbers Y from the distribution on the real line and then wrapping these around the circle by
the simple transformation Y (mod 2π). Algorithms for generating the random numbers Y are
given in Nolan [17] and in Azzalini and Capitanio [2]. The algorithms were implemented in
Matlab and the relevant programs are included in the supplementary material to this paper.

Some simulations were also run on data from other types of distribution which are
defined directly on the circle and not obtained by wrapping. Specifically, we used the sine-
skewed distributions developed Umbach and Jammalamadaka [22] and by Abe and Pewsey
[1]. In contrast to the wrapped stable and Student t distributions, the densities of these
distributions have closed form expressions, which facilitates model fitting and parameter es-
timation. The various unimodal distribution shapes available in these classes of distributions
are quite similar to those in the class of wrapped distributions. Since the behaviour of a
non-parametric CUSUM depends more on the general shape of the underlying distribution
than on the specific parameter values producing that shape, it comes as no surprise that
the in-control behaviour of the CUSUMs proposed here is quite similar in the two classes
(wrapped and directly constructed) of distributions. Since wrapped distributions are widely
known and understood, we frame our discussion in the context of these distributions. Some
simulation results for data from the sine-skewed distributions are included in the supplemen-
tary material to this paper. In the discussion that follows, Sα, 0 < α ≤ 2, denotes a stable
distribution with index α and tn, n ≥ 1 denotes a Student t-distribution with n degrees of
freedom.

In assessing the performance of the direction CUSUM under various symmetric in-
control and out-of-control distributions, we standardize the observations to a common mea-
sure of concentration. The concentration parameter κ of the von Mises(ν, κ) distribution
satisfies the relation

(3.1) κ = A−1(E[cos(X − ν)])

where A(κ) = I1(κ)/I0(κ) and I1 denotes the modified Bessel function of the first kind of order
1. In view of the status of the von Mises distribution among circular distributions, which
is much like that of the normal distribution among distributions on the real line, we use in
this paper κ in (3.1) as a measure of the concentration of a unimodal circular distribution
with mean direction ν. Thus, given κ and the density function of Y , the scale parameter σ

is chosen to make the distribution of the wrapped random variable

X = (σY )w := σY (mod 2π)

satisfy (3.1).

For instance, suppose Y has an Sα distribution with characteristic function

φ(t;α) = E[cos tY ] = exp(−|t|α).

Then (Jammallamadaka and SenGupta, [9, Proposition 2.1]),

E[cos(σY )w] = φ(σ;α) = exp(−σα)

so that

(3.2) σ = (− log( A(κ)))1/α.
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As another example, a Student t-distribution with α degrees of freedom has characteristic
function

φ(t;α) =
Kα/2(

√
αt)(

√
αt)α/2

2α/2−1Γ(α
2 )

where Kα/2 denotes the modified Bessel function of the second kind order α/2 and Γ denotes
the gamma function. Thus, in this case,

E[cos(σY )w] = φ(σ;α) =
Kα/2(

√
ασ)(

√
ασ)α/2

2α/2−1Γ(α
2 )

,

and σ is the solution to the equation

(3.3) Kα/2(
√

ασ)(
√

ασ)α/2 = 2α/2−1Γ(
α

2
)A(κ).

Some numerical values that were used in the simulation study which is reported next, are
shown in Table 1.

Table 1: Scale parameter σ solving (3.2) and (3.3).

Distribution κ = 1 κ = 2 κ = 3

S2 0.90 0.60 0.46

S1 0.81 0.36 0.21

S1/2 0.65 0.13 0.04

t3 1.07 0.64 0.46

t2 1.00 0.55 0.38

3.1. Symmetric distributions

We used standard normal control limits in 50, 000 Monte Carlo realizations of the two-
sided CUSUM in each of five underlying symmetric unimodal distributions: wrapped Student
t-distributions with 2 and 3 degrees of freedom and three wrapped stable distributions with
indexes α = 2 (the wrapped normal distribution), α = 1 (the wrapped Cauchy distribution,
which is also the wrapped Student t-distribution with 1 degree of freedom) and α = 1/2 (the
wrapped symmetrized Lévy distribution). Except for the wrapped normal, these are wrapped
versions of heavy-tailed symmetric distributions on the real line. Each of the distributions
was standardized to concentrations of κ = 1, 2 and 3 by specifying the scale parameter σ (see
Table 1) in accordance with (3.2) and (3.3). Two sets of simulations were run. In the first
set, the CUSUMs were initiated at n = 11, the first m = 10 observations serving to establish
initial estimates of the unknown parameters. In the second set we took m = 25, initiating
the CUSUM at n = 26.

We present in Tables 2.1 and 2.2 aggregated sets of results representing the general
picture. (Detailed tables are given in the supplementary material to this paper.) Each entry
is the average of five estimated in-control ARLs, one from each of the five distributions.
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The number in brackets shows the range of the five estimates. The tables show the results
for reference values ζ = 0 and ζ = 0.25.

Table 2.1: Average in-control ARL of the non-parametric CUSUM in
five symmetric distributions (m = 10). The number in brackets
is the range of the five estimates.

ARL0

ζ = 0 ζ = 0.25

κ = 1 κ = 2 κ = 3 κ = 1 κ = 2 κ = 3

250 242 (2) 243 (5) 242 (4) 236∗(4) 233∗ (2) 225∗ (20)

500 490 (3) 491 (6) 491 (10) 493 (9) 483 (8) 464∗ (52)

1000 1037 (9) 1039 (14) 1042 (20) 1018 (7) 997 (30) 958∗† (117)

Table 2.2: Average in-control ARL of the non-parametric CUSUM in
five symmetric distributions (m = 25). The number in brackets
is the range of the five estimates.

ARL0

ζ = 0 ζ = 0.25

κ = 1 κ = 2 κ = 3 κ = 1 κ = 2 κ = 3

250 244 (2) 244 (6) 245 (7) 242 (4) 239 (3) 234∗ (8)

500 492 (4) 493 (7) 493 (10) 498 (9) 491 (7) 478 (28)

1000 1039 (11) 1041 (10) 1045 (17) 1024 (13) 1005 (26) 971 (82)

All but the four starred estimates shown in the tables lie within 5% of the nominal
value. The exceptions, which all lie within 10%, occur at ζ = 0.25 and predominantly at the
smaller warmup m = 10. In the cell marked ∗† the five estimates were 874, 959, 976, 988
and 991, the outlier 874 coming from the very heavy tailed Lévy distribution. In fact, all
three discrepancies in this column are attributable to a substantial underestimate from the
Lévy distribution Clearly, the CUSUM is very near distribution free overall when a reference
constant close to zero is used. With a larger reference constant, as the concentration increases
so does the variation in true ARL between distributions. This behaviour can be explained to a
large extent by reference to the martingale central limit theorem upon which the construction
of the CUSUM rests. If the summand ξn is replaced by ξn ∓ ζ, the cumulative sums take the
form Sk ∓ kζ where

(3.4) Sk =
m+k∑

n=m+1

ξ̂n, k ≥ 1

and ζ is positive. The rationale behind the construction of the CUSUM consists essentially in
replacing the discrete time process Sk/h =

∑m+k
n=m+1ξ̂n/h, k ≥ 1, where h is the control limit,

by a continuous time Brownian motion process, W (t), t > 0. This is effected by changing
the time scale. We identify k with th2 where h is the control limit, and then replace Sk/h by
W (th2)/h, which has the same distribution as W (t). Similarly, kζ is replaced by th2ζ/h = thζ.
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Thus, (Sk ∓ kζ)/h, k ≥ 1, is replaced by W (t)− thζ. The validity of this procedure requires
that h tends to ∞. Now, if ζ is positive and h →∞ then the drift term thζ →∞, which
makes the resulting CUSUM useless. To avoid this effect, ζ must be chosen to be O(1/h),
which in practical terms means that ζ should be a small positive number or zero.

Next, the effect of any Phase I estimation on the in-control Phase II performance of the
CUSUM needs to be considered. Given ζ̂, let ĥ be the control limit which gives a standard
normal CUSUM an in-control ARL value ARL0. The simulation results in Tables 2.1, 2.2
and 3 together with the ensuing discussion indicate that the resulting Phase II CUSUM is
near distribution free provided that the reference constant is suitably close to zero. Thus,
regardless of the form of the underlying distribution, in such cases the true Phase II in-control
ARL will be nearly constant and acceptably close to the nominal value ARL0. This behaviour
is in stark contrast to that of parametric CUSUMs where estimating unknown parameters
from Phase I data and then pretending that the Phase I estimate is the true value, affects
irrevocably the in-control ARL of the Phase II CUSUM. Then there is no guarantee that
the in-control ARL will be equal to, or even near, the nominal value. This point has been
made repeatedly in the published literature, most recently by Keefe, et al. [11, Introduction
section] and Saleh et al. [20]. Hawkins and Olwell [6, pages 159–160] give a realistic example
in which the true in-control ARL of a normal distribution CUSUM, with variance estimated
from Phase I data, differs by two orders of magnitude from the nominal value.

In this connection, and to illustrate further the in-control behaviour of the nonpara-
metric CUSUM, we present next a result that is representative of a general pattern. Consider
a situation in which data arise from a wrapped t3 distribution with concentration parameter
κ - see (3.3). CUSUMs with reference constants ζ = 0 and ζ = 0.25 and nominal in-control
ARL 500 are run at κ = 1 and κ = 3. A Phase I sample of size m = 30 is used in each case
to obtain an initial value B∗

m of the sequence of denominators in the summands ξ̂n see (2.11).
The ”true” in-control ARLs, estimated from 50, 000 Monte Carlo trials in each instance, are
shown in Table 3.

Table 3: Estimated in-control ARL of direction CUSUM for data from
a wrapped t3 distribution with concentration parameter κ.
Warmup m = 30 and based on 50, 000 Monte Carlo trials.

κ ζ = 0 ζ = 0.25

κ = 1 492 499

κ = 3 492 482

In each of the six instances the 50, 000 values of B∗
m were grouped into bins of unit

length and the average of the corresponding run lengths in each bin calculated. Figure 1
shows plots of these average run lengths against the midpoints of the bins together with con-
fidence intervals of width equal to three estimated standard errors (Bins containing fewer than
100 observations, which contain the less commonly occurring values of B∗

m, are not shown.)
The figure thus provides a representation of the Phase II in-control ARL, conditional upon
the Phase I estimate B∗

m. It is only at the combination κ = 3, ζ = 0.25. that the Phase II
in-control ARL exhibits substantial systematic variation away from the corresponding uncon-
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ditional value in Table 3.
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Figure 1: In-control ARL (on the vertical axis), conditional upon the value of B∗
30

(on the horizontal axis), for two concentrations κ and two reference values ζ
in wrapped t3 distributions. The stars denote the ARL values and the dotted
lines are 95% confidence intervals.

3.2. Asymmetric distributions

To assess the effect of skewness in the underlying distribution on the in-control ARL, we
generated data from wrapped skew-normal distributions (Pewsey, [19]) with mean direction
zero and skewness parameters λ = 2 (lightly skewed), λ = 7 (moderately skewed) and λ =
∞ (heavily skewed), wrapped skew-stable Cauchy- and Lévy distributions with skewness
parameters β = 0.75 and 1.0 (Jammallamadaka and SenGupta, [9, Section 2.2.8]) and from
wrapping skew-t distributions (Jones and Faddy, [10]) with 2 and 3 degrees of freedom and
skewness parameters λ = 2, 7 and ∞ . The aggregated results are in Tables 4.1 and 4.2.
Comparing the results with those in Tables 2.1 and 2.2, we see that the general pattern is
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the same. The main contributors to the apparent degradation seen at ζ = 0.25, κ = 3 are the
excessively skewed distributions, namely the wrapped skew-normal and t-distributions with
skewness parameter λ =∞ and the wrapped Lévy distribution with skewness parameter β =1.
These distributions produce estimates that are consistently substantially lower than the rest.
This is perhaps not too surprising if one takes account of their shape. The supplementary
material to this paper has a Figure showing a plot of a wrapped skew-t density with 2 degrees
of freedom and skewness parameters λ = 0, 2 and 7 at κ = 3. The extreme skewness and high
concentration at λ = 7 magnifies the deleterious effect that a large reference value has on the
approximation to the nominal in-control ARL (Section 3.1, first paragraph after Table 2.2).
The degradation noted above largely disappears when such highly skewed distributions are
eliminated from consideration.

Table 4.1: Average in-control ARL of the non-parametric CUSUM in
thirteen asymmetric distributions (m = 10). The number in
brackets is the range of the thirteen estimates.

ARL0

ζ = 0 ζ = 0.25

κ = 1 κ = 2 κ = 3 κ = 1 κ = 2 κ = 3

250 241 (2) 240 (4) 238 (7) 235 (5) 228 (11) 217 (25)

500 489 (4) 487 (6) 484 (9) 490 (8) 474 (29) 448 (71)

1000 1039 (11) 1036 (9) 1031 (13) 1013 (13) 979 (61) 915 (178)

Table 4.2: Average in-control ARL of the non-parametric CUSUM in
thirteen asymmetric distributions (m = 25). The number in
brackets is the range of the thirteen estimates.

ARL0

ζ = 0 ζ = 0.25

κ = 1 κ = 2 κ = 3 κ = 1 κ = 2 κ = 3

250 243 (2) 242 (3) 242 (4) 240 (3) 235 (7) 229 (22)

500 491 (5) 490 (6) 489 (7) 494 (7) 484 (25) 463 (59)

1000 1039 (13) 1038 (10) 1038 (11) 1019 (17) 988 (65) 935 (161)

3.3. Choice of reference constant

We saw in Sections 3.1 and 3.2 that the CUSUM exhibits good in- and out-of-control
behaviour throughout when a small positive reference constant ζ is used. In analogy with
a normal distribution CUSUM, one would expect the CUSUM to then be quite adept at
detecting small changes but less effective if the change is of substantial magnitude. In the
latter case, efficient detection of a change requires use of a larger reference constant. Again
in analogy with a normal distribution CUSUM, an appropriate choice of reference constant
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for efficient detection of a rotation of size ≥ δ0 could be

ζ =
E[sin(X + δ0 − ν)− sin(X − ν)]√

Var[sin(X − ν)]
,

which can be estimated from some in-control Phase I data X1, ..., Xm by

(3.5) ζ̂ =
δ0

2
×

m−1
∑m

j=1 sin(Xj + δ0 − ν̂m)√
m−1

∑m
j=1 sin2(Xj − ν̂m)

.

Clearly, the variability of the estimator ζ̂ will depend on both the size m of the in-control
Phase I sample and on the type of the unknown underlying distribution. If ζ̂ turns out to be
too large given the known limitations of the CUSUM, one could use a reference value ζ̂ ≤ 0.25,
say, and solve for δ0 from (3.5). This δ0 would serve as an indication of the magnitude of
change that the CUSUM could be expected to detect efficiently.

3.4. Out-of-control properties

While the in-control behaviour of the CUSUM is similar to that of a CUSUM for normal
data on the real line, the same is not true in respect of its out-of-control behaviour. In fact,
we show next that a consequence of the continual updating of the mean direction estimator
ν̂n from (2.1) is that after a change of mean direction the CUSUM will return eventually
to what appears to be an in-control state. This behaviour is similar to that of self-starting
CUSUMs for linear data, and is a warning to users of the need for corrective action as soon
as a change is diagnosed- see Hawkins and Olwell [6, Section 7.1].

Suppose there is a rotation of size δ from n = τ +1 onwards and set Yi = Xi+τ +δ, i ≥ 1.
Then, using the approximations

1
τ + k

≈ 0 and
k

τ + k
≈ 1

for large k and fixed τ ≥ m, the mean direction estimated from the data X1, ..., Xτ , Y1, ..., Yk

is

ν̂τ+k = atan2

(
Sτ +

∑k
i=1 sinYi

τ + k
,
Cτ +

∑k
i=1 cos Yi

τ + k

)

≈ atan2

(∑k
i=1 sinYi

k
,

∑k
i=1 cos Yi

k

)
:= ν̂k(Y ),

which is the estimated mean direction of Yi, 1 ≤ i ≤ k. Thus, for sufficiently large k, ν̂τ+k is in
effect estimating the mean direction of the post-change observations Y1, ..., Yk. Consequently,

ξ̂τ+k+1 ≈
sin(Yk+1 − ν̂k(Y ))√

k−1
∑k

i=1 sin2(Yi − ν̂k(Y ))

which, because of its rotation invariance, has the same distribution as the in-control variable
ξ̂k.
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A further consequence of this behaviour is that, in the absence of a substantial amount
of in-control Phase I data there is no simple manner in which to assess, a priori, the out-of-
control ARL

E[N − τ |N > τ ]

of the CUSUM. Here N − τ is the time taken for an alarm to be raised after a change has
occurred, the expected value being calculated upon an assumption of no false alarms prior
to the change. Nevertheless, simulation results indicate that the out-of-control ARL of the
two-sided CUSUM behaves in an appropriate manner, namely that the out-of-control ARL
is less than the in-control ARL0 and that it decreases as the size of the shift increases from
0 to π/2. For shifts of size in excess of π/2,the ARL starts increasing again. This behaviour
is a result of the periodic nature of the CUSUM summand. Furthermore, that choosing
ζ = 0 leads to substantially larger out-of-control ARLs compared to those produced by small
positive reference constants.

To illustrate that the general pattern of out-of-control ARL behaviour mimics that
of a normal distribution CUSUM, Table 5 gives out-of-control ARL estimates from 10, 000
simulations involving in each case shifts δ of sizes ranging from π/8, to 7π/8 in a wrapped
Cauchy distribution with κ = 2, a warmup sample size m = 25 and reference constants ζ = 0,
ζ = 0.125 and ζ = 0.25. The in-control ARL was 1, 000 throughout. The results are for shifts
induced respectively at observation τ = 100 and at observation τ = 200.

If a sufficiently large amount of in-control Phase I data are available to allow a non-
trivial nonparametric estimate of the underlying density to be made (Taylor, [21]), the in-
control and out-of-control properties of the CUSUM can be fathomed by sampling from the
estimated density.

Table 5: Estimated out-of-control ARL of direction CUSUM for data from
a wrapped Cauchy distribution with concentration parameter κ = 2.
Warmup m = 25. Changepoints τ = 100 and τ = 200.

δ
τ = 100 τ = 200

ζ = 0 ζ = 0.125 ζ = 0.25 ζ = 0 ζ = 0.125 ζ = 0.25

δ = π/8 123 49 82 82 37 39

δ = π/4 50 17 14 40 17 13

δ = π/2 31 11 8 28 11 8

δ = 3π/4 38 16 12 37 15 12

δ = 7π/8 58 29 26 61 31 28

3.5. Bimodal distributions

Thus far attention has focussed on unimodal distributions. However, many of the prop-
erties of the proposed CUSUM remain intact when the underlying distribution is multimodal.
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Here, we restrict attention to bimodal densities of the form

(3.6) f(θ) = pg(θ) + (1− p)g(θ − µ0)

with 1/2 ≤ p < 1 and a unimodal density g on the circle. Since the concentration of f will
be less than that of g, one finds that the approximation to the nominal in-control ARL often
improves markedly, even at a reference constant 0.25. For instance, let g in (3.6) be a von
Mises density with high concentration κ = 3.42 and mean 0. Then, if p = 1 (which is the
unimodal case), and with ζ = 0.25 and a nominal in-control ARL of 500, the estimated true
in-control ARL is 461. On the other hand if p = 1/3 and µ0 = −3π/4, in which case f is
bimodal with concentration equal to 1, the estimated true in-control ARL of 492 is much
closer to the nominal value.

On the other hand, the ability of the CUSUM to detect a change of size δ 6= 0 decreases
as µ0 in (3.6) nears ±π and vanishes when f in (3.6) is antipodal, that is, when p = 1/2
and |µ0| = π. Put another way, the CUSUM is then unable to distinguish between f(θ) and
f(θ − δ). The ostensible reason for this behaviour is that an antipodal distribution does
not possess a well defined mean or median Nevertheless, a non-trivial CUSUM will result
upon replacing the data Xi by 2Xi. This replacement transforms f(θ) to g(θ/2)/2, which is
unimodal - see, for instance, Jammalamadaka and SenGupta [9, page 48].

4. CONCENTRATION CHANGE

For data X1, ..., Xn from a von Mises(ν, κ) distribution, locally most powerful tests of
the hypothesis κ = κ0 (6= 0) are based on the statistic

∑n
i=1 cos(Xi − ν). However, the fact

that κ is not a scale parameter of the distribution of X complicates matters. Hawkins and
Lombard [5] showed that even if the mean direction ν is known, control limits for a specified
in-control ARL in a von Mises CUSUM for detecting change away from κ0 depend upon κ0.
Nonetheless, the locally most powerful test statistic suggests application of a CUSUM based
on

V ′
n = cos(Xn − ν̂n−1), n ≥ 1.

Again, there are purely non-parametric interpretations of V ′
n, devoid of any reference to a

von Mises distribution. For instance, since

V ′
n = (Cn−1/Rn−1) cos Xn + (Sn−1/Rn−1) sinXn,

we see that V ′
n is the (signed) length of the projection of the vector yn = (sinXn, cos Xn) in the

direction ν̂n−1 ≈ ν of the unit vector (Sn−1/Rn−1, Cn−1/Rn−1). If the concentration increases
(decreases) after n = τ , the average of V ′

τ+1, ..., V
′
τ+k will tend to be greater (smaller) than

the average of V ′
1 , ..., V

′
τ . Another non-parametric interpretation rests on the fact that R2

n in
(2.4) is a frequently used non-parametric measure of concentration in a sample X1, ..., Xn.
Simple algebra shows that the relative change in R2

n−1 brought about by the next observation
Xn is

R2
n

R2
n−1

− 1 =
2V ′

n

Rn−1
+

1
R2

n−1 ,

again justifying consideration of V ′
n.
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Proceeding in much the same manner as in Section 2.2, a CUSUM of

(4.1) ξ̂′n =
cos(Xn − ν̂n−1)−Rn−1/(n− 1)

B′
n−1

where

B′
n =

√
n−1

∑n

i=1
cos2(Xi − ν̂n)−R2

n/n2,

is suggested to detect a change in concentration.

A change in the numerical value of κ has a much greater effect on the denominator B′
n−1

in (4.1) than a change of direction has on the denominator Bn−1 in (2.8). Furthermore, the
distribution of V ′

n is heavily skewed. Consequently, a CUSUM based on ξ̂′n cannot be expected
to have a near distribution free in-control ARL over a wide range of reference values. Indeed,
simulation results indicate that one is essentially restricted to ζ = 0 and a large (≥ 500)
nominal in-control ARL if a satisfactory degree of in-control distribution freeness is to be had
over the families of distributions considered in Section 3.

5. APPLICATIONS

In the two applications treated here we define the sample mean direction of data
X1, ..., Xn by

ν̂n = atan2
(∑n

i=1
sinXi,

∑n

i=1
cos Xi

)
and the sample concentration, by

κ̂n = A−1
(
n−1

∑n

i=1
cos(Xi − ν̂n)

)
= A−1

(
Rn

n

)
,

in analogy with (3.1). After a CUSUM signals, we estimate the changepoint τ in the con-
ventional manner. That is, if the CUSUM signals with D+ (D−) at n = N , the changepoint
estimate is the last index n < N at which D+

n = 0 (D−
n = 0). Both data sets are included in

the supplementary material to the paper.

5.1. Acrophase data

The data, kindly provided by Dr. Germaine Cornelissen of the University of Minnesota
Chronobiology Laboratory, come from ambulatory monitoring equipment worn by a patient
suffering from episodes of clinical depression. The time at which systolic blood pressure
reaches its maximum value on a given day is called the acrophase. Monitoring the acrophase
can provide an automated early warning of a possible medical condition before it becomes
clinically obvious. We show the results of a two-sided CUSUM analysis with reference con-
stant ζ = 0.25 (recommended reference value from (3.5) to enable detection of a 30 degree,
i.e. π/6 = 0.52 radian, rotation) and control limits h = ± 8.59, which leads to an in-control
ARL of approximately 500. The first m = 30 observations are used to find initial estimates
of the required parameters.
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The left-hand panel in Figure 2 shows the CUSUM. The upper CUSUM D+ signals
at n = 66 and the changepoint estimate is τ̂ = 57, that is, 27 observations after the warmup
period. The right-hand panel in Figure 2 shows the CUSUM after restarting at n = 88,
observations 58 through 87 serving as a warmup to estimate the new direction. A sustained
decrease in the lower CUSUM D− is evident. The CUSUM signals at n = 120, a changepoint
being indicated at n = 110. Continuing in this manner produces the results in Table 6, which
shows the progress of the CUSUMs as the data accrue. The estimate of the mean direction
and concentration in each segment is shown in the third and fourth columns of the table.
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Figure 2: Direction CUSUMs of acrophase data. Left-hand panel: CUSUM after start at n = 31.
Right-hand panel: CUSUM after restart at n = 88. The vertical dotted lines indicate the
location of the estimated changepoints. The dashed horizontal lines indicate the control
limits.

Table 6: Acrophase data: Progression of CUSUMs.

segment signal at ν̂ κ̂

1−57 66 −1.70 (263◦) 1.86

58−110 120 −0.76 (317◦) 0.78

111−140 178 −1.90 (251◦) 2.60

141−241 255 −1.19 (292◦) 2.51

242−282 299 −0.90 (308◦) 0.31

283−306 none −.007 (360◦) 1.68

Figure 3 shows dot plots, constructed after the fact, of the data in the six identified
segments together with an indication of the mean in each segment. A noticeable feature
in this plot is the first two increases followed by a sudden large decrease to more or less
the original mean value. This is indicative of an external intervention in the treatment of
the patient to reset the acrophase. After that, there follows a sustained increase, this time
without any apparent external intervention. The figure also reveals some variation between
the concentrations within the six segments — see the fourth column in Table 6. This does
not affect the validity of the CUSUM since there is no assumption that the concentrations
in the various segments must all be the same. In retrospect, it seems that the CUSUM has
done a good job of identifying location changes.
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Figure 3: Rose plots of the data in each of the six identified segments of the acrophase data.
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5.2. Pulsar data

Lombard and Maxwell [14] developed a rotation invariant cusum to detect deviation
from a uniform distribution on the circle and applied it to some data consisting of arrival times
of cosmic rays from the vicinity of a pulsar. The objective is to detect periods of sustained high
energy radiation. Following a standard procedure in Astrophysics, the data were wrapped
around a circle of circumference equal to the period of the pulsar. If no high energy radiation
is present the wrapped data should be more or less uniformly distributed on the circumference
of the circle, while a non-uniform distribution should manifest itself during periods of high
energy radiation. They found that the first 190 observations could reasonably be assumed
to have arisen from a uniform distribution. We now apply to observations 191 through 1250
the concentration CUSUMs from Section 4 of the present paper to detect further changes in
concentration. The in-control ARL of the chart is set at 500 observations with reference value
ζ = 0 (again, the recommended reference value from (3.5) to enable detection of a 30 degree,
i.e. π/6 = 0.52 radian, rotation) and control limits ±30.46. The first m = 50 observations
are used to obtain initial estimates of the required means, variances and covariance of sin X

and cos X.
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a uniform distribution in this segment. Hawkins and Lombard (2015) applied a

retrospective segmentation method to these data. Except for a short segment

[191− 207], which falls within the warmup set used to initiate the CUSUM, the

results of the CUSUM analysis agree quite well with their results. The numerical
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Figure 4: Concentration CUSUM of the pulsar data.

Retrospective

segment ν̂ κ̂

191-207 -0.41 1.89

208-573 -1.58 0.35

574-1250 - 0.0

CUSUM

segment ν̂ κ̂

191-522 -1.44 0.35

523-1250 - 0.06

Table 7: Pulsar data. Segments delineated by sequential
CUSUM and retrospective segmentation

6. Summary

We develop non-parametric rotation invariant CUSUMs for detecting changes

in the mean direction and concentration of a circular distribution. The CUSUMs

are designed for situations in which the initial mean direction and concentration

Figure 4: Concentration CUSUM of the pulsar data.

The full extent of the concentration CUSUM, without restarts, is shown in Figure 4.
The first signal is at n = 191+495 = 686 and the changepoint is estimated at n = 191+331 =
522. The estimated concentration in the segment [192, 522] is 0.35. Thereafter, the lower
CUSUM D− shows a sustained decrease to the end of the data series. In fact, if the CUSUM
is restarted at n = 523, a changepoint is indicated at n = 523. Such a pattern is indicative of
a more or less continuous decrease in concentration as the series progresses. The estimated
concentration of the observations in the segment [523, 1250] is 0.06, suggesting a uniform
distribution in this segment. Hawkins and Lombard [4] applied a retrospective segmentation
method to these data. Except for a short segment [191− 207], which falls within the warmup
set used to initiate the CUSUM, the results of the CUSUM analysis agree quite well with
their results. The numerical details are shown in Table 7.
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Table 7: Pulsar data. Segments delineated by sequential CUSUM
and retrospective segmentation.

Retrospective

segment ν̂ κ̂

191−207 −0.41 1.89

208−573 −1.58 0.35

574−1250 — 0.0

CUSUM

segment ν̂ κ̂

191−522 −1.44 0.35

523−1250 — 0.06

6. SUMMARY

We develop non-parametric rotation invariant CUSUMs for detecting changes in the
mean direction and concentration of a circular distribution. The CUSUMs are designed for
situations in which the initial mean direction and concentration are unspecified, the objective
being to detect a change from the initial values, whatever the latter may be. Monte Carlo
simulation results indicate that the CUSUMs have in-control average run lengths that are
acceptably close to the nominal values over a wide class of symmetric and asymmetric cir-
cular distributions. Two applications of the methodology to data from Health Science and
Astrophysics are discussed.

SUPPLEMENTARY MATERIAL

Supplementary material for this publication is available on GitHub at:
https://github.com/cpotgieter/nonparametric-cusums

The supplementary files consist of a pdf document with detailed simulation results,
an Excel file with the datasets used in this paper, and the Matlab code for implementing
the CUSUM procedures proposed here.
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1. INTRODUCTION

As widely known, Big Data is an area of great development in statistics. We can define
Big Data as“a phenomenon defined by the rapid acceleration in the expanding volume of high
velocity, complex, and diverse types of data. Big Data is often defined along three dimensions
— volume, velocity, and variety” (TechAmerica Foundation’s Federal Big Data Commission
[44], 2012).

According to Han et al. [23] (2012) data mining is the process of mining through large
amount of data to extract meaningful information, knowledge. It is also treated by many
people as a synonym for knowledge discovery from data, simply KDD.

Text mining in an analogous manner as data mining, aims to extract information from
data, but in this case the data comprehend to texts and do it through identification and
exploration of interesting patterns (Feldman and Sanger [16], 2006). Accordingly to Aggarwal
and Zhai [2] (2012), the primary goal of text mining is analyzing information to discover
patterns, going beyond information access to further help users analyze and digest information
and facilitate decision making.

Text mining has been used as a form to extract knowledge from text, it has been
applied to social media (see Corley et al. [14] (2010), Zeng et al. [45] (2010), Maynard et al.

[33] (2012), He et al. [24] (2013), Mostafa [34] (2013)), health science (see Chen et al. [7]
(2005), Cohen and Hersh [8] (2005), Collier et al. [9] (2008), Zweigenbaum et al. [46] (2007),
Hirschman et al. [25] (2012)), in social sciences (see Peng et al. [37] (2012)) and other fields.

Francis and Flynn [17] (2010) show that text mining can be used to generate new infor-
mation from the unstructured text data. Text mining can also be used to extract quantitative
information, as Kim and Jun [28] (2015) did to obtain a Gaussian copula regression model.

This paper was motivated to organize and structure our research in Risk Theory, the
goal is to study this thematic in the most embracing, as well as profoundly, way. First, we
need to know what has been studied in this topic so we selected the papers in the area and
we aimed to extract knowledge from this database. We uploaded it in the software so it can
be read for us.

The software can recognize patterns and present pertinent connections that otherwise
we would miss and also spot the most pertinent papers in the area. The NVivo is usually
used to qualitative analysis, but as Kim and Jun [28] (2015) did in their paper, we also did
a quali-quant analysis that evidence the ability to use this software for quantitative analysis
and we expect that other researchers will do the same.

This paper is organized as follows: In Section 2 we speak about the collected data
under analysis. Section 3 is about the coding of the data, the coding matrix, the relationship
between the nodes, that is, we plotted the nodes hierarchically. Then, we present the cluster
analysis for the nodes and the sources (papers), the comparison diagrams and, to finalize,
a structural matrix. To conclude, in Section 4 we write some final remarks.
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2. THE DATA

Our data is composed by published scientific papers. For this particular study we chose
a limited set, enough for our immediate purpose. Working with reference material in many
aspects is no different from working with any other form of text. As it is in the form of
research literature, it will contain author defined sections that can be compared across the
references. Also, keywords are available. Therefore we can consider that this type of data is
also likely to be more structured than information from an interview [see for example Bazeley
and Jackson [5] (2013)].

We chose a set of 27 scientific papers to be analyzed. We uploaded these 27 papers in
the platform, coded and then analyzed all data. These papers are references for a particular
research project in development in risk theory. These papers are: Afonso et al. [1] (2017),
Ammeter [3] (1948); Asmussen and Albrecher [4] (2010); Bergel and Eǵıdio dos Reis [6]
(2016); Constantinescu et al. [11] (2011); Constantinescu et al. [12] (2012); Constantinescu
et al. [10] (2016); Czado et al. [15] (2011); Frees and Wang [20] (2006); Frees et al. [18]
(2011); Frees et al. [19] (2016); Garrido et al. [21] (2016); Gschlößl and Czado [22] (2017);
Jasiulewicz [26] (2001); Jørgensen and Paes De Souza [27] (1994); Krämer et al. [29] (2013);
Kreer et al. [30] (2015); Li et al. [31] (2015); Maume-Deschamps et al. [32] (2017); Ni et al.

[35] (2014a); Ni et al. [36] (2014b); Quijano Xacur and Garrido [38] (2015); Renshaw [39]
(1994); Rolski et al. [40] (1999); Schulz [41] (2013); Shi et al. [42] (2015) and Song et al. [43]
(2009).

Using the software, the first task we took was to build a word cloud composed by the
the most pertinents words in our entire data base to use in our study. After removing all the
verbs, articles and non-meaningful wording, the words are then gathered according to their
stem, then search the frequency of words, making possible to obtain the cloud as shown in
Figure 1. It is important to point out that the word cloud shows the essence of the data base,
where the size matters.

In the coding we will present the figures in the order in which we elaborated them.
First, as prior mentioned is the word cloud in Figure 1, which will contribute on the creation
of the categories. Then, in Figure 2 is presented the Word Tree for the node “Aggregate
claims model”, that we obtain when coding the database.

In Figure 3 is a chart node coding for “Claim Severity”, that derives from this specific
category after coding the database. In sequence, we desire to see how each one of the cate-
gories fit hierarchically in the entire group of categories and also how they connect with one
another, therefore we present them in Figure 4 and in Figure 5, respectively.

Then, we analyze first the categories and then the sources using cluster analysis, for the
Cluster analysis of the categories we exhibit two figures, in Figure 6 is the circle graph and
in Figure 7 is the dendrogram. As a result of the cluster analysis for the sources we display
one dendrogram in Figure 8.

Posteriorly, we conclude from the cluster analysis and from the coding matrix the
categories that are interesting to compare, hence we present in Figure 9 two comparison
diagrams. Finally, we present a summarized framework matrix.



486 Renata G. Alcoforado and Alfredo D. Eǵıdio dos Reis

Figure 1: Word Cloud.

3. THE CODING AND ANALYSIS

A code is an abstract representation of a case. Corbin and Strauss [13] (2008) say
that we can think of coding as “mining” the data, digging beneath the surface to discover
the hidden treasures contained within data. Accordingly to Bazeley and Jackson [5] (2013),
coding is one of several methods of working with and building knowledge about data.

Data mining assumes that the data is already stored in an structured way, whereas text
mining assumes that the data is unstructured and still needs coding, accordingly to Feldman
and Sanger [16] (2006).

In sequence, all the unstructured data was coded, building categories, that is, we put
in each one of the categories the respective parts from text to be able to analyze it in a
mathematical way. In other words, after coding we get a structure to be able to analyze with
clusters and matrices. With that, we can plot the data now, this was not possible before.
The categories were selected after extensive reading and observing the word cloud.

In our particular analysis the codes are: Actuarial; Aggregate Claims Model; Claim
Frequency; Claim Severity; Compound Poisson; Conditional; Copulas; Covariates; Depen-
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dence; Exponential; Formula; Function; Gamma; Independence; Insurance; Joint Distribu-
tion; Loss; Markov; Martingale; Mixed-Poisson; Parameters; Prediction; Premium; Random-
ness; Regression; Renewal; Risk Theory; Ruin Probability; Simulation; Spatial; Stationary
and Stochastic Process.

After the code and data organization, for each category is plotted a word tree to see
the connection from that word (or expression) in the sentence where it belongs. An example
is given in Figure 2, we can observe how the “aggregate claims model” fits in the sentence. In
this case, authors are talking mostly about the “dependent” and the “independent” aggregate
claims model. They also talk about the “issue of dependence”, “assumption of independence”,
“the marginal distributions”, “the structure”and“the effect of extending”the aggregate claims
model.

Figure 2: Word Tree – Aggregate Claims Model.

For every category is plotted a chart node coding that presents the sources from our
database that address the most and the importance that each paper from the database gives
to that code. In Figure 3 we can observe which authors and in which papers the category
“Claim Severity” is included. So, we can distinguish the author Constantinescu from our
database since four of the papers that address the most to “Claim Severity” are written by
her, including the first one.
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Figure 3: Chart Node Coding – Claim Severity.

We plotted the nodes, or categories, hierarchically presented in Figure 4 to observe
which categories are most frequent, the most important among the data available.

In Figure 4 we can observe how the category that have the most importance is “Func-
tion”, then followed by “Exponential” and then “Insurance”. Another fact to point out is how
“Claim frequency” is more important hierarchically than “Claim Severity”, which is in line
with the fact the most motor insurance models don’t consider the Claim severity.

The authors when trying to capture the dependence between claim frequency and sever-
ity can use a “Regression” approach in which use one variable as a “Covariate” in the other
regression or they can use a “Copula” approach. In the Figure 4 we can see how although
they are almost the same size, “Regression” is still a bigger category.

Also, they can use a distribution to model when trying to capture the dependence, that
distribution can be in hierarchically order: “Exponential”, “Compound Poisson”, “Gamma”
and “Mixed Poisson”. We can observe that stochastic processes are also very used. So, we
can point out the following categories that fits into that description: “Markov”, “Martingale”,
“Stationary” and “Stochastic Process” itself. As our database consists in authors that are
trying to capture dependence between the two variables in some way, it is also important to
mention how the code “Dependence” is more relevant then “Independence”.
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Our target as a research topic is to be able to calculate “Premium” and “Ruin Prob-
ability”, although both categories have almost the same size it is important to mention
that in one hand 22 out of the 27 papers address “Premium”, while 10 papers address to
“Ruin Probability”. On the other hand, from those 10, there are 614 coded references for
“Ruin Probability” and in those 22 papers there are 464 coded references for “Premium”.
To conclude the analysis of Figure 4, the method used to calculate these two quantities “Ruin
Probability” and “Premium” as mentioned above can also be theoretical through “Formulas”
or numerical through “Simulation”. The former is the one that is the most sought in this
database.

After, we constructed the coding matrix presented on the Figure 5, which shows both in
numbers and in graph what is the relationship between the coded categories. In this matrix
the colors are meaningful, the darker the color, the more codes are represented in the other
coded references. In percentage, until 1% is white, from 1% to 10% is light blue, from 10% to
20% is a shade darker as we can observe between “Claim Frequency” and “Spatial”, from 20%
to 30% is another shade darker as we can observe between the node “Premium” in the row
and column. The darkest blue means that it is between 30% and 40% as in “Exponential” in
the row and column.

Although we may think to be symmetric, this matrix coding is not symmetric. It would
be if we used the numbers, but the numbers are not as important as the percentage of the
total for that category. Each cell content is the column percentage of coded references, and
it is not symmetric because of the way the data was collected. That is, the papers are about
dependence between the claim frequency and severity random variables, as a consequence the
codes are going to reference more dependence than the other way around.

So, for instance when we consider“Copulas”and“Dependence”, dependence is in 10.88%
of the coded references from Copulas, and Copulas are in only 4.68% coded references of the
Dependence category. Another case is “Premium” and “Insurance”, “Insurance” are repre-
sented in 10.41% of the “Premium” coded references while “Premium” are represented in
6.93% of the “Insurance” category.

The cluster analysis was afterwards performed in cluster by word similarity using Pear-
son’s correlation coefficient as the similarity measure. We made it for both the categories
and sources to see how they relate. The cluster analysis for the nodes is presented in Figures
6 and 7, a circle graph in Figure 6 and a dendrogram in Figure 7.

In the circle graph in Figure 6 the colors represent the clusters and the lines represent
the connection between the nodes, the more and the thicker are the lines, the higher is
Pearson’s correlation coefficient. We can observe an asymmetry to the right that means that
the nodes on the right have a higher correlation.

Referring now to Figure 7, in this dendrogram we can observe 10 clusters for the 32
nodes represented by the colors and the branches. The following categories before mentioned
for stochastic processes are in one cluster together with “Claim Frequency”, since the claim
frequency is usually considered as an stochastic process. The coefficient between “Stochastic
Process” and “Martingale” is 0.815.
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Figure 6: Cluster Analysis of the Nodes – Circle Graph.

The cluster with the highest similarity is the one that comprehends “Function”, “Con-
ditional”, “Exponential”, “Formula”, “Randomness” and “Renewal”, the coefficient between
“Function” and “Conditional” is 0.848, between “Formula” and “Conditional” is 0.820, be-
tween “Exponential” and “Conditional” is 0.817.

Figure 7: Cluster Analysis of the Nodes – Dendrogram.
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The categories “Independence” and “Dependence” present a 0.806 coefficient and are
clustered together. “Ruin Probability” and “Premium” present a 0.645, both are clustered
with “Simulation”. “Claim Severity” and “Claim Frequency” a 0.521, “Claim Severity” is
in a cluster with “Covariates” and “Spatial” while “Claim Frequency” is in the first cluster
mentioned. “Simulation” and “Formula” a 0.616 and are in different clusters. And finally,
“Copulas” and “Regression” a 0.793 and both are in the same cluster (the yellow).

Cluster analysis for the sources from out database was also plotted and is presented
in Figure 8. From Figure 8 we can observe the clusters accordingly to colors and branches.
There are three big clusters that comprehend 18 papers. The clusters are build using the
complete linkage hierarchical clustering algorithm, also known as farthest neighbor clustering.

Figure 8: Cluster Analysis of the Sources – Dendrogram.

The higher correlation coefficients are in the middle cluster, the green one, between
Frees et al. [19] (2016) and Shi et al. [42] (2015) is 0.91, between Shi et al. [42] (2015)
and Czado et al. [15] (2011) is 0.88 and if we consider Frees et al. [18] (2011), Frees et al.

[19] (2016), Shi et al. [42] (2015), Afonso et al. [1] (2017) and Czado et al. [15] (2011) the
correlation coefficient between two of them at a time goes from 0.83 to 0.91.

The blue cluster groups the papers Maume-Deschamps et al. [32] (2017), Asmussen and
Albrecher [4] (2010), Rolski et al. [40] (1999), Constantinescu et al. [11] (2011), Bergel and
Eǵıdio dos Reis [6] (2016) and Li et al. [31] (2015), the coefficients between those vary from
0.65 (the farthest sources, Maume-Deschamps et al. [32] (2017) and Li et al. [31] (2015)) to
0.86, coefficient between Rolski et al. [40] (1999) and Asmussen and Albrecher [4] (2010).
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F
ig

u
re

9:
C

om
pa

ri
so

n
D

ia
gr

am
s.



Text Mining and Ruin Theory: A Case Study of Research on Risk Models with Dependence 495

We also plotted comparison diagrams. We present in Figure 9 the diagram comparing
“Copulas and Covariates” on the left and the diagram comparing “Formula and Simulation”
on the right.

From the comparison diagram between “Copulas” and “Covariates” presented on the
left of Figure 9, we can observe that from the 16 references coded for this two categories,
Constantinescu et al. [10] (2016), Asmussen and Albrecher [4] (2010) and Maume-Deschamps
et al. [32] (2017) work only with copulas. Frees et al. [18] (2011), Gschlößl and Czado [22]
(2017), Jørgensen and Paes De Souza [27] (1994), Renshaw [39] (1994) and Schulz [41] (2013)
use covariates on their papers. The other eight papers use them both. Both copulas and
covariates are methods to try to capture the dependence between the claim frequency and
severity variables.

A second comparison diagram is presented on the right of Figure 9, comparing “For-
mula” and “Simulation”. We can point out that there are 26 papers, since those are the
approach that the authors can follow to calculate the ruin probability or/and premium.
So some authors used Formula, Ammeter [3] (1948), Bergel and Eǵıdio dos Reis [6] (2016),
Li et al. [31] (2015), Maume-Deschamps et al. [32] (2017), Ni et al. [36] (2014b), Renshaw
[39] (1994) and Schulz [41] (2013).

On the other hand the following authors from our database used “Simulation”: Czado
et al. [15] (2011), Frees et al. [18] (2011), Song et al. [43] (2009), Ni et al. [35] (2014a)
and Quijano Xacur and Garrido [38] (2015). The remaining authors used both. It is worth
to comment that Ni, Constantinescu and Pantelous published two papers in 2014, one using
“Formula” and the other “Simulation”.

To finalize, we built the framework matrix where each row shows each paper and each
columns the category mentioned above, in order to identify subtle connections which can
allow a thorough and rigorous study. In Table 1 is presented a summarized version of this
framework matrix, in which the first column presents the name of the cases in study, the
following columns are 12 different categories and we mark the cells with an “×” to represent
the coded categories to each source.

The categories presented in the Table 1 can be shortly defined as:

A – Actuarial/Actuaries: Study of risk/ Scientist of risk;
B – Aggregate Claims Model: Model of claims that considers both and all together

frequency and severity of claims;
C – Claim Frequency: Frequency or count of claims in the insurance company;
D – Claim Severity: Severity or amount of claims in the insurance company;
E – Compound Poisson: Distribution for the aggregate claim amounts used to model

the frequency and severity of claims on aggregate;
F – Copulas: Is a multivariate probability tool used to capture dependence;
G – Joint Distribution: Is the distribution of the two or more variables calculated

together, jointly;
H – Premium: Amount paid by the insured for the insurance policy;
I – Regression: Multiple Regression models, can also be GLM’s;
J – Ruin Probability: Probability of ruin of an insurance portfolio or company;
K – Simulation: When simulating different scenarios on a software;
L – Stochastic Process: Random Processes used for the claim frequency, in this case

it is divided into Markov and Martingale processes.
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Table 1: Summarized Framework Matrix.

Source A B C D E F G H I J K L

Afonso et al. [1] (2017) × × × × × × ×
Ammeter [3] (1948) × ×
Asmussen and Albrecher [4] (2010) × × × × × × × × × ×
Bergel and Eǵıdio dos Reis [6] (2016) × × ×
Constantinescu et al. [11] (2011) × × ×
Constantinescu et al. [12] (2012) × × × × × ×
Constantinescu et al. [10] (2016) × × × × × ×
Czado et al. [15] (2011) × × × × × × × ×
Frees and Wang [20] (2006) × × × × × × × ×
Frees et al. [18] (2011) × × × ×
Frees et al. [19] (2016) × × × × × × × × ×
Garrido et al. [21] (2016) × × × × × × × ×
Gschlößl and Czado [22] (2017) × × × × × × ×
Jasiulewicz [26] (2001) × × ×
Jørgensen and Paes De Souza [27] (1994) × × × × × × ×
Krämer et al. [29] (2013) × × × × × × ×
Kreer et al. [30] (2015) × × ×
Li et al. [31] (2015) × × × ×
Maume-Deschamps et al. [32] (2017) × × × ×
Ni et al. [35] (2014a) × × ×
Ni et al. [36] (2014b) × × ×
Quijano Xacur and Garrido [38] (2015) × × × × × ×
Renshaw [39] (1994) × × × ×
Rolski et al. [40] (1999) × × × × × × × × ×
Schulz [41] (2013) × × × × × × ×
Shi et al. [42] (2015) × × × × × × × × × ×
Song et al. [43] (2009) × × × ×

A: Actuarial; B: Aggregate Claims Model; C: Claim Frequency; D: Claim Severity; E: Compound Poisson;

F: Copulas; G: Joint Distribution; H: Premium; I: Regression; J: Ruin Probability; K: Simulation;

L: Stochastic Process

4. FINAL REMARKS

Our source intended to talk about the calculation of premiums and ruin probabilities for
insurance application, also to associate the claim frequency with their severity. Some authors
use copulas, other use covariates in a regression model, and other try to find a distribution
that can capture that dependence.

We were motivated to organize and structure our research in Risk Theory and as pre-
sented in the paper, we were able to achieve this goal. And beyond that, after a deeper study
we extracted quantitative knowledge from the database.
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We obtained results that made possible to know which authors were the most important
for each category as we saw in Figure 3. It was shown in Figure 4 which categories matters the
most for this data base and in which ways, hierarchically, the authors approach the subject.

Additionally, in Figure 5 we presented in percentage the relationship between the nodes.
At last, from the cluster analysis shown in Figures 6, 7 and 8, we captured relevant patterns
among the nodes and the authors.

The result showed to be interesting to compare respective categories and plot com-
parison diagrams, for instance, comparing Dependence with Independence; Simulation with
Formula; Copulas with Covariates; Regression with Copulas; Claim Severity with Claim
Frequency among others.

To finalize, this text mining analysis presents a current overview of the knowledge in
the field of Ruin Theory research. In addition, a conceptual framework was presented and
the key categories for the dependency model were identified. It is presumed that this study
will motivate future research on the impact of dependence between these two variables on
risk models, bringing to light the categories and links that need further investigation.
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[22] Gschlößl, S. and Czado, C. (2007). Spatial modelling of claim frequency and claim size in
non-life insurance, Scandinavian Actuarial Journal, 2007(3), 202–225.

[23] Han, J.; Kamber, M. and Pei, J. (2012). Data Mining. Concepts and Techniques, Elsevier,
Waltham, USA, third edition.

[24] He, W.; Zha, S. and Li, L. (2013). Social media competitive analysis and text mining:
A case study in the pizza industry, International Journal of Information Management, 33,
464–472.

[25] Hirschman, L.; Burns, G.A.P.C.; Krallinger, M.; Arighi, C.; Cohen, K.B.; Valen-
cia, A.; Wu, C.H.; Chatr-Aryamontri, A.; Dowell, K.G.; Huala, E.; Lourenço, A.;
Nash, R.; Veuthey, A.L.; Wiegers, T. and Winter, A.G. (2012). Text mining for the
biocuration workflow, Database, 2012(November), 1–10.



Text Mining and Ruin Theory: A Case Study of Research on Risk Models with Dependence 499

[26] Jasiulewicz, H. (2001). Probability of ruin with variable premium rate in a Markovian
environment, Insurance: Mathematics and Economics, 29(2), 291–296.

[27] Jørgensen, B. and Paes De Souza, M.C. (1994). Fitting Tweedie’s compound poisson
model to insurance claims data, Scandinavian Actuarial Journal, 1994(1), 69–93.

[28] Kim, J.M. and Jun, S. (2015). Graphical causal inference and copula regression model for
apple keywords by text mining, Advanced Engineering Informatics, 29(4), 918–929.
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1. INTRODUCTION

Let F be a multivariate distribution function (df), with continuous marginal dfs, in the
max-domain of attraction of a multivariate extreme values (MEV) df Ĥ having unit Fréchet
marginals, Ĥj(xj) ≡ Φj(xj) = exp(−x−1

j ), xj > 0, j = 1, ..., d. Therefore, we have

Fn(un1(x1), ..., und(xd)) → Ĥ(x1, ..., xd),(1.1)

where unj(xj) = anjxj for some sequence {anj > 0}, j = 1, ..., d.

Consider {Xn = (Xn1, ..., Xnd)} a stationary sequence such that FXn = F and let
{Mn = (Mn1, ...,Mnd)} be the componentwise maxima sequence generated from X1, ...,Xn

and therefore Mnj =
∨n

i=1 Xij , j = 1, ..., d. If

lim
n→∞

P (Mn1 ≤ un1(x1), ...,Mnd ≤ und(xd)) = H(x1, ..., xd),(1.2)

for some MEV df H, we can relate H(x1, ..., xd) and Ĥ(x1, ..., xd) through the so called
multivariate extremal index of {Xn}. This is possible, even if the marginals Ĥj are not unit
Fréchet distributed, as considered for simplicity and without loss of generality. Indeed, to have
(1.1) or mutatis mutandis (1.2), it is sufficient that, as n →∞, the sequence of copulas Cn

F ,
with CF (u1, ..., ud) = F (F−1

1 (u1), ..., F−1
1 (ud)), converges to C bH , as well as, Fn

j (unj(xj)) →
Ĥj(xj), j = 1, ..., d, which can be reduced to the case of convergence to the Fréchet without
affecting the convergence of Cn

F .

We recall the definition of multivariate extremal index of {Xn} and its role in the
relation between H and Ĥ (Nandagopalan [18], 1994). The sequence {Xn} has multivariate
extremal index θ(τττ) ∈ (0, 1], τττ = (τ1, ..., τd) ∈ Rd

+, when for each τττ there is a sequence of real
levels {u(τττ)

n = (u(τ1)
n1 , ..., u

(τd)
nd )} satisfying

nP (X1j > u
(τj)
nj ) → τj , j ∈ D = {1, ..., d},(1.3)

P (M̂n ≤ u(τττ)
n ) → γ̂(τττ) and(1.4)

P (Mn ≤ u(τττ)
n ) → γ(τττ) = (γ̂(τττ))θ(τττ),

where M̂n = (M̂n1, ..., M̂nd), M̂nj =
∨n

i=1 X̂ij , j = 1, ..., d, and {X̂n} is a sequence of inde-
pendent vectors such that FbXn

= FXn .

Observe that

γ̂(τττ) = exp
(
− lim

n→∞
nP (X1 6≤ un)

)
= exp (−Γ(τττ)) ,
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with

Γ(τττ) = lim
n→∞

nP

(
d⋃

j=1

{Xij > u
(τj)
nj }

)

=
∑

∅6=J⊂D

(−1)|J |+1 lim
n→∞

nP

( ⋂
j∈J

{Xij > u
(τj)
nj }

)

=
∑

∅6=J⊂D

(−1)|J |+1Γ∗J(τττJ),

where

Γ∗J(τττJ) ≡ Γ∗(τj , j ∈ J) = lim
n→∞

nP

( ⋂
j∈J

{Xij > u
(τj)
nj }

)

and, in particular, Γ∗{j}(τj) = τj , j ∈ D. So, to say that Γ(τττ) exists is equivalent to say that
γ̂(τττ) exists and we have

γ(τττ) = exp

(
−θ(τττ)Γ(τττ)

)
= exp

−θ(τττ)
∑

∅6=J⊂D

(−1)|J |+1Γ∗J(τττJ)

 .

In a one-dimensional setting, (1.3) and (1.4) are equivalent and {Xnj} has extremal in-
dex θj ∈ [0, 1] if, for all τj >, there exists u

(τj)
nj , such that nP (X1j > u

(τj)
nj ) → τj and P (Mnj ≤

u
(τj)
nj ) → exp(−θjτj).

For the sake of simplicity, we will take unj(xj) = nxj , j = 1, ..., d. This assumption
leads to levels u

(τj)
nj with τj = x−1

j and γ̂(τττ) = Ĥ(τ−1
1 , ..., τ−1

d ).

If {Xn} has multivariate extremal index θ(τττ) then any sequence of subvectors {(Xn)A}
with indexes in A ⊂ {1, ..., d} has multivariate extremal index θA(τττA), with

θA(τττA) = lim
τi→0+

i6∈A

θ(τ1, ..., τd), τττA ∈ R|A|
+ .

In particular, for each j = 1, ..., d, {Xnj}n≥1 has extremal index θj .

If θ(τττ), τττ ∈ Rd
+, exists for {Xn} we have

H(x1, ..., xd) = Ĥ(x1, ..., xd)θ(− log bH1(x1),...,− log bHd(xd))(1.5)

and Hj(xj) = Ĥj(xj)θj , j ∈ D.

From inequalities (Galambos [7], 1987; Marshall and Olkin[15], 1983)

d∏
j=1

Ĥj(xj)θj ≤ Ĥ(x1, ..., xd)θ(τ1(x1),...,τd(xd)) ≤ min
j=1,...,d

Ĥj(xj)θj ,

we obtain ∨d
j=1 θjτj

Γ(τττ)
≤ θ(τττ) ≤

∑d
j=1 θjτj

Γ(τττ)
.(1.6)
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Besides the relation between H and Ĥ, θ(τττ) also informs about the existence of clus-
tering of events “at least some exceedance of u

(τj)
nj by Xnj , for some j”, since (Nandagopalan

[17], 1990)

1
θ(τττ)

= lim
n→∞

E

(
rn∑
i=1

1{Xi 6≤u
(τττ)
n }|

rn∑
i=1

1{Xi 6≤u
(τττ)
n } > 0

)
,(1.7)

for sequences rn = [n/kn] and kn = o(n) provided that {Xn} satisfies condition strong-mixing.

The multivariate extremal index thus preserves, with the natural adaptations, the char-
acteristics that made famous the univariate extremal index. Additionally to these similar
characteristics to the univariate extremal index, it plays an unavoidable role in the tail de-
pendence characterization of H. If the tail dependence coefficients applied to F remain
unchanged when applied to Ĥ (Li [14], 2009), we can not guarantee the same for H, as will
be seen in Section 3. The presence of serial dependence within each marginal sequence and
between marginal sequences, makes it impossible to approximate the dependence coefficients
in the tail of Mn to those of F .

The dependence modeling between the marginals of F has received considerably more
attention in literature than the dependence between the marginals of FMn , which differs from
FcMn

= Fn for being affected by θ(τττ). The need to characterize this dependence appears,
for instance, when we have a random field {Xi,n, i ∈ Z2, n ≥ 1} and we consider random
vectors (Xi1,n, ..., Xis,n) corresponding to locations (i1, ..., is) at time instant n. Sequence
{(Xi1,n, ..., Xis,n)}n≥1 presents in general a multivariate extremal index θi1,...,is(τττ) encom-
passing information about dependence in the space of locations i1, ..., is and when the time
n varies (Pereira et al. [21], 2017). Relation (1.5) applied to MEV distributions Ĥ and func-
tions θ(x1, ..., xd) compatible with the properties of a multivariate extremal index, provide a
means of constructing MEV distributions (Martins and Ferreira [16], 2005).

Notwithstanding all these challenges posed by and for the multivariate extremal index,
the literature proves that it remained on the theoretical shelves of the study of extreme values.

The main difficulty of applying the multivariate extremal index lies in the fact that it
is a function, unlike what happens with the marginal univariate extremal indexes, for which
we have several estimation methods in the literature (see, e.g.: Hsing [9], 1993; Gomes et al.

[8], 2008; Northrop [20], 2015; Ferreira and Ferreira [6], 2018; and references therein).

Since it remains present the need to estimate the tendency to form clusters in a context
of multivariate sequences, we propose in this work:

(a) decompose it, highlighting different types of information contained in it;

(b) bound it in order to obtain a better upper limit than those available in the liter-
ature;

(c) enhance its role in the dependence of the tail of H;

(d) apply it to models of recognized interest in applications.
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2. CO-MOVEMENTS POINT PROCESSES

Based on (1.7), the multivariate extremal index can be seen as the number of the
limiting mean dimension of clustering of events counted by the point process

Nn =
n∑

i=1

1{Xi 6≤u
(τττ)
n }.

We are going to consider two point processes of more restricted events, corresponding
to joint exceedances for various marginals of Xi and enhance the contribution of the extremal
indexes of these events in the value of θ(τττ).

Let, for each ∅ 6= J ⊂ D = {1, ..., d},

N∗
n,J =

n∑
i=1

1{
T

j∈J{Xij>unj}}, n ≥ 1,

and

N∗∗
n,J =

n∑
i=1

1{
V

j∈J Xij>
W

j∈J unj}, n ≥ 1,

where notations ∧ and ∨ stand for minimum and maximum, respectively.

We denote the respective limiting mean number of occurrences by

Γ∗J(τττJ) = lim
n→∞

nP

⋂
j∈J

{Xij > unj}


and

Γ∗∗J (τττJ) = lim
n→∞

nP

⋂
j∈J

{Xij >
∨
j∈J

unj}

 .

Observe that

Γ∗∗J (τττJ) = lim
n→∞

nP

⋂
j∈J

{
Xij >

n∧
j∈J τj

} .

Thus

Γ∗∗J (τττJ) = τ∗∗J

∧
j∈J

τj

 ,

with τ∗∗J an increasing function in
∧

j∈J τj and homogeneous of order 1. Therefore, we have

τ∗∗J

(∧
j∈J τj

s

)
=

τ∗∗J

(∧
j∈J τj

)
s

,(2.1)

for all s 6= 0, a relation that will be fundamental for the independence of θ∗∗ from τ .
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In case J = D, we will omit the index J in notation.

For each of these processes, we can define an index of clustering of occurrences, which we
will also call extremal indexes, θ∗J (τττJ) and θ∗∗J (τττJ), being the latter a constant independent
of τττJ , as we will see.

Let us assume that sequence {Xn}n≥1 satisfies the strong-mixing condition (Leadbetter
et al. [11], 1983) and, as consequence, we have, as n →∞,

P
(
Nn,J = 0

)
− P kn

(
N[n/kn],J = 0

)
→ 0,

P
(
N∗

n,J = 0
)
− P kn

(
N∗

[n/kn],J = 0
)
→ 0

and

P
(
N∗∗

n,J = 0
)
− P kn

(
N∗∗

[n/kn],J = 0
)
→ 0,

for any integers sequence {kn}, such that, kn →∞, knαn(ln) → 0 and knln/n → 0, as n →∞,
where αn(·) and ln are the sequences of the strong-mixing condition. Thus

P
(
Nn,J = 0

)
→ exp (−θJ(τττJ)ΓJ(τττJ)) ,

P
(
N∗

n,J = 0
)
→ exp (−θ∗J(τττJ)Γ∗J(τττJ))

and

P
(
N∗∗

n,J = 0
)
→ exp

−θ∗∗J (τττJ)τ∗∗J

∧
j∈J

τj

 ,(2.2)

with

θJ(τττJ) = lim
n→∞

knP
(
N[n/kn],J > 0

)
/ΓJ(τττJ),

θ∗J(τττJ) = lim
n→∞

knP
(
N∗

[n/kn],J > 0
)

/Γ∗J(τττJ),

θ∗∗J (τττJ) = lim
n→∞

knP
(
N∗∗

[n/kn],J > 0
)

/τ∗∗J

∧
j∈J

τj


and

θ∗∗J (τττJ)τ∗∗J

∧
j∈J

τj

 ≤ θ∗J(τττJ)Γ∗J(τττJ) ≤
∨
j∈J

θjτj ≤ θJ(τττJ)ΓJ(τττJ).

In the following we present relations between θ∗∗J (τττJ), θ∗J(τττJ) and θJ(τττJ), which will allow
us a detailed interpretation of the information contained in θ(τττ) and an upper bound better
than the one in (1.6). But first, we start by proving that θ∗∗J (τττJ) = θ∗∗J , i.e., these extremal
indexes are independent of τττ , which is already known for J = {j} (Leadbetter et al. [11],
1983), j = 1, ..., d, since θ∗∗{j} = θj . Indeed the proof runs along the same lines.
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Proposition 2.1. For stationary sequences {Xn} satisfying the strong-mixing con-

dition, if there exists the limit (2.2) for some τττ , then it exists for any τττ > 0 and there exists

a constant θ∗∗A ∈ [0, 1] such that

P
(
N∗∗

n,A = 0
)
→ exp

−θ∗∗A τ∗∗A

∧
j∈A

τj

 .

Proof: From the strong-mixing condition, we have

lim inf
n→∞

P
(
N∗∗

n,A = 0
)

= lim inf
n→∞

P kn

(
N∗∗

[n/kn],A = 0
)

= lim inf
n→∞

1−
knP

(
N∗∗

[n/kn],A > 0
)

kn

kn

≥ lim inf
n→∞

1−
nP
(∧

j∈A X1j >
∨

j∈A unj

)
kn

kn

=

1−
τ∗∗A

(∧
j∈A

)
kn

kn

.

Thus, if there exists Ψ(τ∗∗A ) = lim supn→∞ P
(
N∗∗

n,A = 0
)
, we have Ψ

(
τ∗∗A

(∧
j∈A

))
≥

exp
(
−τ∗∗A

(∧
j∈A

))
, and so Ψ(τ∗∗A ) is a strictly positive function.

We also have that function Ψ(τ∗∗A ) would have to satisfy Ψ(τ∗∗A /k) = Ψ1/k(τ∗∗A ), for all

τ∗∗A > 0 and k =1,2, ..., since, representing
∑n

i=11
{V

j∈A Xij>m
/V

j∈A τj

} by N∗∗
n

(
u
(τ∗∗A (

V
j∈Aτj))

m

)
and applying (2.2), it holds∣∣∣∣∣P

(
N∗∗

[n/kn],A

(
u
(τ∗∗A (

V
j∈A τj))

n

)
= 0
)
− P

(
N∗∗

[n/kn],A

(
u
(τ∗∗A (

V
j∈A τj)/kn)

[n/kn]

)
= 0
)∣∣∣∣∣ =

≤
[

n

kn

] ∣∣∣∣∣∣P
∧

j∈A

X1j >
n∧

j∈A τj

− P

∧
j∈A

X1j >
[n/kn]∧

j∈A τj/kn

∣∣∣∣∣∣
=
[

n

kn

] ∣∣∣∣
∧

j∈A τj

n
(1 + o(1))−

∧
j∈A τj/kn

[n/kn]
(1 + o(1))

∣∣∣∣ = o(1)

and thus we would have

Ψ
(

τ∗∗A

kn

)
= lim sup

n→∞
P
(
N∗∗

[n/kn],A

(
u(τ∗∗A /kn)

[n/kn],A

)
= 0
)

= lim sup
n→∞

P
(
N∗∗

n,A

(
u(τ∗∗A )

n,A

)
= 0
)

= Ψ (τ∗∗A )1/kn .

On the other hand, Ψ (τ∗∗A ) would have to be a non increasing function because if, for some
τττ0 = (τ0,1, ..., τ0,d), we have

τ∗∗0,A

∧
j∈A

τ0,j

 = limn→∞ nP
(∧

j∈A X1j > nV
j∈A τ0,j

)
> τ∗∗A

(∧
j∈A τj

)
= limn→∞ nP

(∧
j∈A X1j > nV

j∈A τj

)
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and τ∗∗A

(∧
j∈A τj

)
is increasing in

∧
j∈A τj , then for all n large,∧

j∈A

X1j >
n∧

j∈A τj

 ⊂

∧
j∈A

X1j >
n∧

j∈A τ0,j


and thus {

N∗∗
n,A

(
u
(τ∗∗0,A)
n

)
= 0
}
⊂
{

N∗∗
n,A

(
u(τ∗∗A )

n

)
= 0
}

and Ψ
(
τ∗∗0,A

)
≤ Ψ(τ∗∗A ). If Ψ (τ∗∗A ) is a strictly positive function, non increasing and such

that Ψ (τ∗∗A /k) = Ψ (τ∗∗A )1/k, then Ψ (τ∗∗A ) = exp (−θ∗∗A τ∗∗A ), with θ∗∗A a non negative constant.
Since Ψ (τ∗∗A ) > exp (−τ∗∗A ), it also comes θ∗∗A ≤ 1. For the lower limit, we can make the same
reasoning to obtain the result.

Let us start by emphasizing that, to θ(τττ)Γ(τττ), we have the contribution of the clustering
of the joint exceedances of all levels by the respective marginals, including the particular case
of the clustering of exceedances of the largest level by the lower marginal, as well as, the
clustering of exceedances of one or more levels by the respective marginals without joint
exceedances of all levels.

Proposition 2.2. Let {Xn} be a stationary sequence satisfying the strong-mixing

condition and {u(τττ)
n = (u(τ1)

n , ..., u
(τd)
n )} a sequence of normalized real levels for which there

exists Γ(τττ). Then

(a) θ(τττ)Γ(τττ) = θ∗∗τ∗∗

 d∧
j=1

τj

+ θ∗(τττ)Γ∗(τττ)β(1)(τττ) +
∑

∅6=J⊂D

(−1)|J |+1ΘJ(τττJ),

where

β(1)(τττ) = lim
n→∞

P
(
N∗∗

rn
= 0|N∗

rn
> 0
)

and

ΘJ(τττJ) = lim
n→∞

knP

⋂
j∈J

{Nrn,{j} > 0}|N∗
rn

= 0

 ;

(b)
∑

∅6=J⊂D

(−1)|J |+1ΘJ(τττJ) ≤
d∑

j=1

θjτj .

Proof: We have

knP (Nrn > 0) = knP
(
N∗∗

rn
> 0
)

+ knP
(
N∗

rn
> 0, N∗∗

rn
= 0
)

+ knP
(
Nrn

> 0, N∗
rn

= 0
)

= knP
(
N∗∗

rn
> 0
)

+ knP
(
N∗

rn
> 0
)
P
(
N∗∗

rn
= 0|N∗

rn
> 0
)

+ knP

 d⋃
j=1

{Nrn,{j} > 0}, N∗
rn

= 0


= knP

(
N∗∗

rn
> 0
)

+ knP
(
N∗

rn
> 0
)
P
(
N∗∗

rn
= 0|N∗

rn
> 0
)

+
∑

∅6=J⊂D

(−1)|J |+1knP

⋂
j∈J

{Nrn,{j} > 0}, N∗
rn

= 0

 .
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In what concerns the last term, observe that

d∑
j=1

knP
(
Nrn,{j} > 0, N∗

rn
= 0
)

=
d∑

j=1

knP
(
Nrn,{j} > 0

)
−

d∑
j=1

knP
(
Nrn,{j} > 0, N∗

rn
> 0
)

and since limn→∞ P
(
N∗

rn
= 0
)

= 1, we have the result in (a).

Observe that β(1)(τττ) reduces θ∗(τττ) from the joint exceedances of
∨d

j=1 n/τj accounted
for θ∗∗. We can say that in the last term of representation of θ(τττ)Γ(τττ) we are accounting
the tendency of one or more marginals to form clusters, without joint exceedances of all the
marginals.

We illustrate the previous result with a bivariate sequence with unit Fréchet marginals
and such that the joint tail is regularly varying at ∞ with index η ∈ (0, 1] measuring a
penultimate tail dependence, as the (sub)model presented in Ledford and Tawn ([12], 1996).

Example 2.1. Suppose that d = 2 and {(Xn1, Xn2)}n≥1 is a strong-mixing station-
ary sequence, with unit Fréchet marginals and such that Xn1 and Xn2 are asymptotically
independent, i.e.,

nP (Xn1 > nx, Xn2 > ny) → 0,(2.3)

as n →∞, for x, y positive. Then

θ∗∗ = knP
(
N∗∗

rn
> 0
)
≤ nP

(
Xn1 >

n

τ1 ∧ τ2
, Xn2 >

n

τ1 ∧ τ2

)
∼ n

(
n

τ1 ∧ τ2

)−1/η

L

(
n

τ1 ∧ τ2

)
→ 0,

θ∗(τ1, τ2) ≤ nP

(
Xn1 >

n

τ1
, Xn2 >

n

τ2

)
≤ nP

(
Xn1 >

n

τ1 ∧ τ2
, Xn2 >

n

τ1 ∧ τ2

)
→ 0.

Therefore, regardless of additional conditions on the serial dependence, the validity of (2.3)
implies

θ(τττ)Γ(τττ) =
∑

∅6=J⊂{1,2}

(−1)|J |+1 lim
n→∞

knP

⋂
j∈J

{Nrn,{j} > 0}, N∗
rn

= 0


and Γ(τττ) = τ1 + τ2. Since knP

(
N∗

rn
> 0
)
→ 0 we can thus write in this model

θ(τττ) =
1

τ1+τ2
lim

n→∞
kn

(
P
(
Nrn,{1}>0

)
+ P

(
Nrn,{2}>0

)
− P

(
Nrn,{1}>0, Nrn,{2}>0

))
.(2.4)
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We now consider several particular situations.

(a) In the case of independent vectors (Xn1, Xn2), n ≥ 1, we have

θ(τττ) =
1

τ1 + τ2

θ1τ1 + θ2τ2

− lim
n→∞

knP

 ⋃
1≤i<i′≤rn

{{
Xi1 >

n

τ1
, Xi2 ≤

n

τ2
, Xi′1 ≤

n

τ1
, Xi′2 >

n

τ2
,

}

∪
{

Xi1 ≤
n

τ1
, Xi2 >

n

τ2
, Xi′1 >

n

τ1
, Xi′2 ≤

n

τ2

}}


=
τ1 + τ2

τ1 + τ2
= 1.

It will then come P (Mn1 ≤ n/τ1,Mn2 ≤ n/τ2) → exp(−Γ(τττ)) = exp(−τ1) exp(−τ2), that is,
Mn1 and Mn2 are also asymptotically independent.

(b) Suppose that {(Xn1, Xn2)}n≥1, satisfies condition D
(m)
{1,2} defined by

lim
n→∞

n

[n/kn]∑
j=m+1

P (X11 > n/τ1, Xj2 > n/τ2) = 0,

which extends D
′

{1,2} of Davis ([2], 1982), satisfied by i.i.d. sequences. Then

θ(τττ) =
1

τ1 + τ2

(
θ1τ1 + θ2τ2 − lim

n→∞
n

m∑
i=2

P (X11 > n/τ1, Xi2 > n/τ2)

)
,

where the last part reflects the cross dependence.

(c) If we assume an analogous hypothesis of (2.3) for (X11, Xi2) with different ηi, we
will also obtain asymptotic independence between Mn1 and Mn2, since the last term has null
limit. We have P (Mn1 ≤ n/τ1,Mn2 ≤ n/τ2) → exp(−Γ(τττ)θ(τττ)) = exp(−θ1τ1) exp(−θ2τ2).

(d) If θ(τττ) = θ, ∀τττ ∈ R2
+, then θ1 = θ2 = θ and, from (2.4),

θ = θ − lim
n→∞

knP
(
Nrn,{1} > 0, Nrn,{2} > 0

)
,

which implies that this limit is null and thus P (Mn1≤n/τ1,Mn2≤n/τ2) → exp(−θ(τ1+τ2))
= exp(−θτ1) exp(−θτ2).
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We present below a relation between θ(τττ) and the extremal indexes θ∗∗{j,...,d} and
θ∗{j,...,d}

(
τττ{j,...,d}

)
, j = 1, ..., d, which discriminates different informations contained in func-

tion θ(τττ) and provides an upper bound for θ(τττ) better than the one in (1.6). In Example 2.2
we show that the proposed upper bound for the M4 processes, can be better than the one
presented in Ehlert and Schlather ([3], 2008). The new upper bound has also the advantage
of depending only on constant extremal indexes which can be estimated by known methods
of literature.

Proposition 2.3. Let {Xn} be a stationary sequence satisfying the strong-mixing

condition and {u(τττ)
n = (u(τ1)

n , ..., u
(τd)
n )} a sequence of normalized real levels for which there

exists Γ(τττ). Then

(a) θ(τττ)Γ(τττ) = lim
n→∞

knP
(
Nrn

> 0
)

=
d∑

j=1

θjτj −
d−1∑
j=1

θ∗∗{j,...,d}τ
∗∗
{j,...,d}

 d∧
i=j

τi


−

d−1∑
j=1

θ∗{j,...,d}

(
τττ{j,...,d}

)
Γ∗{j,...,d}

(
τττ{j,...,d}

)
β

(1)
j

(
τττ{j,...,d}

)

−
d−1∑
j=1

∑
J⊂{j+1....,d}

(−1)|J |+1β
(2)
{j}∪J

(
τττ{j}∪J

)
,

where we have β
(1)
j

(
τττ{j,...,d}

)
= limn→∞ P

(
N∗∗

rn,{j,...,d} = 0|N∗
rn,{j,...,d} > 0

)
and

β
(2)
{j}∪J

(
τττ{j}∪J

)
= limn→∞ knP

(⋂
i∈{j}∪J{Nrn,{i} > 0}|N∗

rn,{j,...,d} = 0
)
, provided

that the limiting constants exist.

(b) θ(τττ) ≤ 1
Γ(τττ)

 d∑
j=1

θjτj −
d−1∑
j=1

θ∗∗{j,...,d}τ
∗∗
{j,...,d}

 d∧
i=j

τi

 .

Proof: We have

knP (Nrn > 0) = knP

 d⋃
j=1

{Nrn,{j} > 0}


=

d−1∑
j=1

knP

Nrn,{j} > 0,
d⋂

i=j+1

{Nrn,{i} = 0}

+ knP
(
Nrn,{d} > 0

)

=
d∑

j=1

knP
(
Nrn,{j} > 0

)
−

d−1∑
j=1

knP

Nrn,{j} > 0,

d⋃
i=j+1

{Nrn,{i} > 0}

 .

Regarding the second term, we can also say that

d−1∑
j=1

knP

Nrn,{j} > 0,
d⋃

i=j+1

{Nrn,{i} > 0}

 =
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=
d−1∑
j=1

knP

Nrn,{j} > 0,
d⋃

i=j+1

{Nrn,{i} > 0}, N∗
rn,{j,...,d} > 0


+

d−1∑
j=1

knP

Nrn,{j} > 0,
d⋃

i=j+1

{Nrn,{i} > 0}, N∗
rn,{j,...,d} = 0


=

d−1∑
j=1

knP
(
N∗

rn,{j,...,d} > 0, N∗∗
rn,{j,...,d} > 0

)

+
d−1∑
j=1

knP
(
N∗

rn,{j,...,d} > 0, N∗∗
rn,{j,...,d} = 0

)

+
d−1∑
j=1

knP

Nrn,{j} > 0,

d⋃
i=j+1

{Nrn,{i} > 0}, N∗
rn,{j,...,d} = 0


=

d−1∑
j=1

knP
(
N∗∗

rn,{j,...,d} > 0
)

+
d−1∑
j=1

knP
(
N∗

rn,{j,...,d} > 0, N∗∗
rn,{j,...,d} = 0

)

+
d−1∑
j=1

knP

Nrn,{j} > 0,
d⋃

i=j+1

{Nrn,{i} > 0}, N∗
rn,{j,...,d} = 0

 .

Therefore,

θ(τττ) Γ(τττ) = lim
n→∞

knP
(
Nrn

> 0
)

=
d∑

j=1

θjτj −
d−1∑
j=1

θ∗∗{j,...,d}τ
∗∗
{j,...,d}

 d∧
i=j

τi


−

d−1∑
j=1

θ∗{j,...,d}
(
τττ{j,...,d}

)
Γ∗{j,...,d}

(
τττ{j,...,d}

)
lim

n→∞
P
(
N∗∗

rn,{j,...,d}=0
∣∣N∗

rn,{j,...,d}>0
)

−
d−1∑
j=1

lim
n→∞

knP

 d⋃
i=j+1

{Nrn,{j} > 0, Nrn,{i} > 0}|N∗
rn,{j,...,d} = 0

 ,

since P
(
N∗

rn,{j,...,d} = 0
)
→ 1, as n →∞.

The above result means that the values θ∗{j,...,d}
(
τττ{j,...,d}

)
, for each j ∈ {1, ..., d}, only

contribute to θ(τττ) if it is not asymptotically almost surely the local occurrence of some joint
exceedances of the largest level u

(τj)
ni , i ∈ {1, ..., d}, among the joint exceedances of these

levels. Otherwise, the joint exceedances clustering is considered only through the cluster-
ing of the joint exceedances of the largest level uni, i ∈ {j, ..., d}, and measured by θ∗∗{j,...,d},
disappearing the third term. Therefore, the second and third terms together account for
the clustering of two situations of joint exceedances. The fourth term measures the cluster-
ing of exceedances of unj and of one or more uni, i ∈ {j + 1, ..., d}, in the absence of joint
exceedances of levels uni, i ∈ {j, ..., d}, not accounted within the second and third terms.
All these clustering situations were accounted by excess in the first term.
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The function θ(τττ) is homogeneous of order zero and thus θ(τ, ..., τ) = θ(1, ..., 1), ∀τ ∈ R.
The constant θ(1, ..., 1) has been used as a dependence coefficient of the marginals of H (see,
e.g.: Martins and Ferreira [16], 2005; Ehlert and Schlather [3], 2008; Ferreira and Ferreira
[5], 2015; and references therein).

We are going to analyze the consequences of the decompositions presented for θ(τττ) in
the calculation of θ(1).

If τ1 = ··· = τd = τ , then N∗∗
n = N∗

n, β
(1)
J (τττ) = 0, Γ∗(τττ) = τ∗∗(τττ) and Γ(τττ) =∑

∅6=J⊂D(−1)|J |+1τ∗∗J (τττJ).

The first decomposition

θ(1)Γ(1) = θ∗∗τ∗∗(1) + lim
n→∞

knP

 d⋃
j=1

{Nrn,{j} > 0}, N∗
rn

= 0

 ,

separates once again the contribution of the clustering of exceedances across all marginals
from the contribution of the clustering of exceedances of one or more marginals without
exceedances of all marginals.

In the next section, we will give an important utility to the boundary of θ(τττ)Γ∗(τττ).
It will serve to delimitate the difference between the tail dependence coefficients of H and Ĥ.

The second decomposition allow us to obtain an upper bound for θ(1), which can be
better than the one presented in (1.6). From the previous result, we have

θ(1)Γ(1) ≤
d∑

j=1

θj −
d−1∑
j=1

θ∗∗{j,...,d}τ
∗∗
{j,...,d}(1).(2.5)

From the proof of Proposition 2.3 we found that, instead of following the order 1, ..., d to
decompose initially the event {

⋃d
j=1 Nrn,{j} > 0} in a reunion of disjoint events {Nrn,{j} > 0,⋂d

i=j+1{Nrn,{i} > 0}}, j = 1, ..., d− 1 and {Nrn,{d} > 0}, we can consider any other permuta-
tion (i1, ..., id) from (1, ..., d) and repeat the process. Therefore the previous upper limit can
be improved in the following sense:

θ(1)Γ(1) ≤
d∑

j=1

θj −
∨

(i1,...,id)∈Pd

id−1∑
j=i1

θ∗∗{j,...,id}τ
∗∗
{j,...,id}(1),

where Pd denotes the set of all permutations of (1, ..., d).

Example 2.2. Consider the M4 process,{
Xn1 = 0.7Zn ∨ 0.3Zn−2

Xn2 = 0.7Zn−1 ∨ 0.1Zn−2 ∨ 0.5Zn−3,

with {Zn ≡ Z1,n}, where {Zl,n}, l ≥ 1, n ≥ 1, is an array of independent unit Fréchet random
variables. We have θ1 = 0.7, θ2 = 0.5 and θ(1)Γ(1) = 0.7. Since {Xn}n≥1 is 4-dependent,
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representing {Xi1 > n/τ,Xi2 > n/τ} by Ai,n and τ1 ∧ τ2 = τ , we have that

θ∗∗{1,2}τ
∗∗
{1,2}(τ) = lim

n→∞
nP
(
A3,n ∩A4,n ∩A5,n ∩A6,n

)
= lim

n→∞
nP
(
{0.1Z1 > n/τ} ∩A4,n ∩A5,n ∩A6,n

)
= lim

n→∞
nP
(
{0.1Z1 > n/τ} ∩A4,n

)
= lim

n→∞
nP ({0.1Z1 > n/τ, 0.5Z1 ≤ n/τ} ∪ {0.1Z1 > n/τ, 0.5Z1 > n/τ})

= 0.1τ = 0.1(τ1 ∧ τ2).

Therefore, Proposition 2.3 indicates that θ(1) Γ(1) ≤ 0.7 + 0.5− 0.1 = 1.1. The upper limit
in this type of processes has no great interest since we have the theoretical expression for
θ(τττ). However, this example serves to show that our upper bound can be better than the
one presented in Ehlert and Schlather ([3], 2008) for M4 processes. Indeed, by applying their
Corollary 3, we obtain

θ(1)Γ(1) ≤

Γ(1)−
2∨

j=1

(1− θj)

 ∧
d∑

j=1

θj

= ((0.7 + 0.4 + 0.3 + 0.5)− (0.3 ∨ 0.5)) ∧ 1.2

= 1.4 ∧ 1.2 = 1.2.

In the cases where the number of non null signatures αlkj , l ≥ 1, −∞ < k < ∞, j =
1, ..., d, of an M4 process (Smith and Weissman [23], 1996; Zhang [24], 2002) exceeds the
number d of marginals, examples are easily constructed in which the Ehlert and Schlather
([3], 2008) upper limit is reduced to

∑d
j=1 θj , being in these cases the lower limit of (2.5)

below this. Our upper bound still has the advantage of being applied to processes outside
the max-stable class.

3. EFFECT OF THE EXTREMAL INDEX IN THE TAIL OF A BIVARIATE
EXTREME VALUES DISTRIBUTION

For each pair (j, j′), j < j′ belonging to D, consider the bivariate (upper) tail depen-
dence coefficient χF

jj′ ∈ [0, 1] for random pair (Xnj , Xnj′) with df Fjj′ , discussed in Sibuya
([22], 1960) and Joe ([10], 1997), defined by

χF
jj′ = lim

u↑1+
P
(
Fj(Xij) > u|Fj′(Xij′) > u

)
and coefficient χF

jj′ ∈ [−1, 1] of Coles et al. ([1], 1999), defined by

χF
jj′ = lim

u↑1+

2 log P
(
Fj′(Xij′) > u

)
log P

(
Fj(Xij) > u,Fj′(Xij′) > u

) − 1.

We can say that χF
jj′ corresponds to the probability of one variable being high given

that the other is high too. The case χF
jj′ > 0 means asymptotic dependence between Xnj

and Xnj′ and whenever χF
jj′ = 0 the variables are said to be asymptotically independent.
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Assuming χF
jj′ > 0 within asymptotically independent data may carry to an over-estimation

of probabilities of extreme joint events (see, e.g., Ledford and Tawn [12, 13], 1996, 1997).
Asymptotically independent models, i.e., having χF

jj′ = 0, may exhibit a residual tail depen-
dence rendering different degrees of dependence at finite levels. Coefficient χF

jj′ is a suitable
tail measure within this class. Thus the pair (χF

jj′ , χ
F
jj′) is a useful tool in characterizing

the extremal dependence: under asymptotic dependence we have χF
jj′ = 1 and 0 < χF

jj′ ≤ 1
quantifies the strength of dependence between the variables (Xnj , Xnj′) and, within the class
of asymptotic independence, we have χF

jj′ = 0 and −1 ≤ χF
jj′ < 1 measures the strength of

dependence of the random pair.

Observe that, both measures can be calculated from the copula CFjj′
(u, u) =

Fjj′(F−1
j (u), F−1

j′ (u)), with

χF
jj′ = 2− lim

u↑1+

log CFjj′
(u, u)

log u

and

χF
jj′ = lim

u↑1+

2 log(1− u)

log
(
1− 2u + CFjj′

(u, u)
) − 1.

If F belongs to the max-domain of attraction of Ĥ, then χF
jj′ = χ

bH
jj′ and χF

jj′ = χ
bH
jj′ .

This results from the uniform convergence of Cn
F to C bH and from C

Fn
jj′

(u, u) =(
CFjj′

(u1/n, u1/n)
)n

. We will then have

lim
u↑1+

lim
n→∞

(
CFjj′

(u1/n, u1/n)
)n

CFjj′
(u, u)

= lim
n→∞

lim
u↑1+

(
CFjj′

(u1/n, u1/n)
)n

CFjj′
(u, u)

= 1,

which guarantees the constancy of χF n

jj′ and χF n

jj′ , as n →∞.

The presence of dependence among the variables of {Xn} expressed by a function θ(τττ)
with values less than one, may affect the limiting behavior of χFn

jj′ but not the limiting behavior
of χFn

jj′ , where Fn denotes the df of Mn.

Proposition 3.1. For stationary sequences {Xn}, with multivariate extremal index

θ(τττ), τττ ∈ Rd
+, for any choice j < j′ in D, we have, χH

jj′ = χ
bH
jj′ .

Proof: Based on the spectral representation of MEV copulas (see, e.g., Falk et al. [4],
2010) and relation

CHjj′
(uj , uj′) =

(
C

bHjj′

(
u

1/θj

j , u
1/θj′

j′

))θ

�
−

log uj
θj

,−
log uj′

θj′

�
,(3.1)

we have

χ
bH
jj′ = lim

u↑1+

2 log(1− u)

log
(

1− 2u− C
bHjj′

(u, u)
) − 1 =
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= lim
u↑1+

2 log(1− u)

log
(
1− 2u− exp

(
−
∫ 1
0 (w(− log u) ∨ (1− w)(− log u)) dŴ (w)

)) − 1

= lim
u↑1+

2 log(1− u)

log
(

1− 2u− u
− log C

bHjj′
(e−1,e−1)

) − 1

where Ŵ is the spectral measure of Ĥ. On the other hand

χH
jj′ = lim

u↑1+

2 log(1− u)

log

1− 2u− u
θjj′

�
1
θj

, 1
θj′

� 
− log C

bHjj′

�
exp(−θ−1

j ),exp
�
−θ−1

j′

��!
− 1.

Therefore,

(1− χH
jj′) = (1− χ

bH
jj′)A

with

A = lim
u↑1+

log
(
1− 2u− uΓ(1,1)

)
log

(
1− 2u− u

θjj′

�
1
θj

, 1
θj′

�
Γ

�
1
θj

, 1
θj′

�)

= lim
u↑1+

log (1− 2u− ua)
log (1− 2u− ub)

= lim
u↑1+

−2 + aua−1

−2 + bub−1
lim
u↑1+

1− 2u + ub

1− 2u + ua
= 1,

with a = Γ(1, 1) and b = θjj′

(
1
θj

, 1
θj′

)
Γ
(

1
θj

, 1
θj′

)
.

Proposition 3.2. For stationary sequences {Xn}, with multivariate extremal index

θ(τττ), τττ ∈ Rd
+, we have, for any choice j < j′ in D,

(a) χH
jj′ = 2− θjj′

(
1
θj

,
1
θj′

)
Γjj′

(
1
θj

,
1
θj′

)
;

(b) χH
jj′ − χ

bH
jj′ = Γjj′ (1, 1)− θjj′

(
1
θj

,
1
θj′

)
Γjj′

(
1
θj

,
1
θj′

)
.

Proof: Using the spectral representation of MEV copulas and relation (3.1), we have

χH
jj′ = 2− θjj′

(
1
θj

,
1
θj′

)
lim
u↑1+

∫ 1
0

(
− log uw

θj
∨ − log u(1−w)

θj′

)
dŴ (w)

− log u

= 2− θjj′

(
1
θj

,
1
θj′

)∫ 1

0

(
w

θj
∨ 1− w

θj′

)
dŴ (w)

= 2−
(
−θjj′

(
1
θj

,
1
θj′

)
log C

bHjj′

(
exp(−1/θj), exp(−1/θj′)

))
= 2− θjj′

(
1
θj

,
1
θj′

)
Γjj′

(
1
θj

,
1
θj′

)
,

where Ŵ is the spectral measure of Ĥ.
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The previous proposition can be rewritten in terms of the extremal coefficients εH
jj′ and

ε
bH
jj′ , such that, C

bHjj′
(u, u) = u

ε
bH
jj′ and CHjj′

(u, u) = u
εH
jj′ , since these satisfy the relations

χH
jj′ = 2−εH

jj′ and χ
bH
jj′ = 2−ε

bH
jj′ . From (a) we conclude that εH

jj′ = θjj′

(
1
θj

, 1
θj′

)
Γjj′

(
1
θj

, 1
θj′

)
.

Consequently, for the measure of asymptotic independence called madogram (Naveau et al.

[19], 2009), defined by

νF
jj′ =

1
2
E
∣∣Fj(Xnj)− Fj′(Xnj′)

∣∣
and satisfying

νF
jj′ =

1
2

εF
jj′ − 1

εF
jj′ + 1

,

we have

(a) νF
jj′ = ν

bH
jj′ =

1
2

Γjj′(1, 1)− 1
Γjj′(1, 1) + 1

;

(b) νH
jj′ =

1
2

θjj′

(
1
θj

, 1
θj′

)
Γjj′

(
1
θj

, 1
θj′

)
− 1

θjj′

(
1
θj

, 1
θj′

)
Γjj′

(
1
θj

, 1
θj′

)
+ 1

.

Therefore, for large n, the madogram of (Mnj ,Mnj′) can not be taken by the madogram
of (M̂nj , M̂nj′).

From relation (b) in Proposition 2.3, we conclude that

χH
jj′ ≥ θ∗∗jj′τ

∗∗
jj′

(
1

θj ∨ θj′

)
(3.2)

and we can establish the following consequence about the value of the difference between χH
jj′

and χ
bH
jj′ .

Corollary 3.1. For stationary sequences {Xn} satisfying the strong-mixing condition,

with multivariate extremal index θ(τττ), τττ ∈ Rd
+, we have, for any choice j < j′ in D,

(a) θ(τττ) = θ, ∀τττ ∈ Rd
+ implies χH

jj′ = χ
bH
jj′ ;

(b)
∣∣∣χH

jj′ − χ
bH
jj′

∣∣∣ ≥ max
{

θ∗∗jj′τ
∗∗
jj′

(
1

θj ∨ θj′

)
− 2 + Γjj′ (1, 1) , 1− Γjj′ (1, 1)

}
.

Proof: (a) If θ(τττ) is constant equal to θ, then θj = θj′ = θ and, since Γ is homogeneous
of order 1, from (b) of Proposition 3.2, we have χH

jj′ − χ
bH
jj′ = Γjj′ (1, 1)− Γjj′

(
θ
θ , θ

θ

)
= 0;

(b) The inequality follows from (b) of Proposition 3.2 and from (3.2).

We emphasize that the quantity θ∗∗jj′τ
∗∗
jj′

(
1

θj∨θj′

)
that we find in (3.2) and in (b) of

the previous proposition reflects a tendency to the appearance of clusters within Xnj ∧Xnj′

through the extremal index θ∗∗jj′ and

τ∗∗jj′

(
1

θj ∨ θj′

)
= lim

n→∞
nP
(
Xnj > n(θj ∨ θj′), Xnj′ > n(θj ∨ θj′)

)
.
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From this discussion we conclude that:

(i) The tail dependencies of
(
M̂n1, M̂n2

)
and of (Mn1,Mn2), for large n, evaluated

through coefficient χ, can be considered equal when the multivariate extremal
index is constant, otherwise they differ in at least

max
{

θ∗∗jj′τ
∗∗
jj′

(
1

θj ∨ θj′

)
− 2 + Γjj′ (1, 1) , 1− Γjj′ (1, 1)

}
,

where the previous quantities can be estimated from the existing methods in
literature.

(ii) If we estimate the dependence χF
jj′ on the tail of

(
Xnj , Xnj′

)
, we do not obtain

the dependence on the tail of (Mn1,Mn2), unless we correct the result with an
estimate of Γjj′ (1, 1)− θjj′

(
1
θj

, 1
θj′

)
Γjj′

(
1
θj

, 1
θj′

)
.

In cases where Ĥ has totally dependent marginals (χ bHjj′ = 1) or has independent marginals

(χ bHjj′ = 0), the previous lower limit loses interest by triviality. We underline the expression
of χH

jj′ in these two cases in the next result, which is derived from (a) of Proposition 3.2.

Corollary 3.2. For stationary sequences {Xn}, with multivariate extremal index θ(τττ),
τττ ∈ Rd

+, we have, for any choice j < j′ in D,

(a) If H has independent marginals, then χH
jj′ = 2−

(
1
θj

+
1
θj′

)
θjj′

(
1
θj

,
1
θj′

)
;

(b) If H has totally dependent marginals, then χH
jj′ = 2−

(
1
θj
∨ 1

θj′

)
θjj′

(
1
θj

,
1
θj′

)
.

Now we construct some examples that illustrate the cases χH
jj′ > χ

bH
jj′ and χH

jj′ < χ
bH
jj′ .

Example 3.1. We first consider the following bivariate M4 process with one moving
pattern, {

Xn1 = 1
8Zn−1 ∨ 1

8Zn ∨ 6
8Zn+1

Xn2 = 2
8Zn−1 ∨ 1

8Zn ∨ 5
8Zn+1,

where Zn ≡ Z1,n, ∀n ≥ 1. We have in this case

CF (u1, u2) =
(
u

1/8
1 ∧ u

2/8
2

)(
u

1/8
1 ∧ u

1/8
2

)(
u

6/8
1 ∧ u

5/8
2

)
and

χF = χ
bH = 2−

(
2
8

+
1
8

+
6
8

)
=

7
8
.

Otherwise

H(x1, x2) = exp
(
−
(

6x−1
1

8
∨ 5x−1

2

8

))
.

Therefore, CH(u1, u2) = u1 ∧ u2 and χH = 1 > χ
bH .
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Example 3.2. Now consider a modification in the above example through the intro-
duction of one more pattern,{

Xn1 = 1
8Z1,n ∨ 6

8Z1,n+1 ∨ 1
8Z2,n

Xn2 = 1
8Z1,n ∨ 5

8Z1,n+1 ∨ 2
8Z2,n .

We have the same CF and χF = 7
8 as in the previous example, but here

H(x1, x2) = exp
(
−
(

6x−1
1

8
∨ 5x−1

2

8

))
exp

(
−
(

x−1
1

8
∨ 2x−1

2

8

))
and therefore,

CH(u1, u2) =
(
u

6/7
1 ∧ u

5/7
2

)(
u

1/7
1 ∧ u

2/7
2

)
.

Then χH = 2−
(

6
7 + 2

7

)
= 6

7 < χ
bH .
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versidade de Lisboa) through the Project UID/Multi/04621/2013.

REFERENCES

[1] Coles, S.; Heffernan, J. and Tawn, J. (1999). Dependence measures for extreme value
analyses, Extremes 2(4), 339–365.

[2] Davis, R.A. (1982). Limit laws for the maximum and minimum of stationary sequences,
Z. Wahrsch. verw. Gebiete, 61, 31–42.

[3] Ehlert, A. and Schlather, M. (2008). Capturing the multivariate extremal index: Bounds
and interconnections, Extremes, 11(4), 353–377.
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1. INTRODUCTION

Let ξ1 and ξ2 be two independent r.v.’s distributed as Bin(n1, θ1) and Bin(n2, θ2), re-
spectively. We estimate the difference between the probabilities of success, i.e. ϑ = θ1 − θ2.
Construction of confidence intervals for the difference of proportions has a very long history
and has been widely studied, due to its numerous applications in biostatistics and elsewhere;
see e.g. Anbar [1], Newcomb [7], Zhou et al. [12]. In all those constructions, normal approx-
imation to the binomial distribution is applied. As a consequence it may be observed that
the coverage probabilities of the asymptotic confidence intervals are less than the nominal
confidence level (for a single binomial proportion see for example Brown et al. [3]). This is
in contradiction to Neyman’s [8] definition of a confidence interval. In what follows, a new
confidence interval is proposed. That confidence interval is based on the exact distribution
of the difference of the observed numbers of successes. A similar method was applied in
constructing a confidence interval for a linear combination of proportions (W. Zieliński [16]).

The paper is organized as follows. In the second section a new confidence interval is
constructed. In the third section a medical example is discussed. Some remarks and conclu-
sions are collected in the last section. In the first appendix there is given a short R-project
program for calculating proposed confidence intervals. In the second appendix some known
confidence intervals for the difference of probabilities are cited.

2. A NEW CONFIDENCE INTERVAL

Let ξ1 ∼ Bin(n1, θ1) and ξ2 ∼ Bin(n2, θ2) be independent binomially distributed random
variables. The random variable ϑ̂ = ξ1

n1
− ξ2

n2
is the minimum variance unbiased estimator of

ϑ = θ1 − θ2.

The confidence intervals widely used in applications are constructed in the following
statistical model:(

{0, 1, ..., n1} × {0, 1, ..., n2} ,
{

Bin(n1, θ1) · Bin(n2, θ2), 0 ≤ θ1, θ2 ≤ 1
})

.

Since we are interested in estimating ϑ = θ1 − θ2 on the basis of ϑ̂, we consider the new
statistical model (

X ,
{
P(n1, n2, ϑ), −1 ≤ ϑ ≤ 1

})
,

where

X =
{
k1

n1
− k2

n2
: k1 ∈ {0, 1, ..., n1}, k2 ∈ {0, 1, ..., n2}

}
.

The family {P(n1, n2, ϑ),−1 ≤ ϑ ≤ 1} of distributions is as follows. Since for a given ϑ ∈
(−1, 1) the probability θ1 is a number from the interval (a(ϑ), b(ϑ)), where

a(ϑ) = max{0, ϑ} and b(ϑ) = min{1, 1 + ϑ},
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the probability of the event {ϑ̂ = u} (for u ∈ X ) equals (simply apply the law of total prob-
ability and averaging with respect to θ1)

Pϑ{ϑ̂ = u} = Pϑ

{
ξ1
n1

− ξ2
n2

= u

}
=

1
L(ϑ)

∫ b(ϑ)

a(ϑ)

n2∑
i2=0

Q(θ1,n1)

{
ξ1 = n1

(
u+

i2
n2

)}
Q(θ1−ϑ,n2) {ξ2 = i2} dθ1.

Here L(ϑ) = b(ϑ)− a(ϑ) and Q(µ,m) {ζ = k} =
(
m
k

)
µk(1− µ)m−k for k = 0, 1, ...,m.

Note that the family {P(n1, n2, ϑ),−1 ≤ ϑ ≤ 1} of distributions is decreasing in ϑ, i.e.
for a given u ∈ X ,

Pϑ1{ϑ̂ ≤ u} ≥ Pϑ2{ϑ̂ ≤ u} for ϑ1 < ϑ2.

It follows from that fact that the family of binomial distributions is decreasing in probability
of a success and Pϑ{ϑ̂ = u} is a convex combination of binomial distributions.

Let ϑ̂ = u be observed. The (symmetric) confidence interval for ϑ at confidence level γ
based on the exact distribution of ϑ̂ is (ϑL(u), ϑU (u)), where

ϑL(u) =

−1 for u = −1,

max
{
ϑ : Pϑ{ϑ̂ < u} = 1+γ

2

}
for u > −1,

ϑU (u) =

1 for u = 1,

min
{
ϑ : Pϑ{ϑ̂ ≤ u} = 1−γ

2

}
for u < 1.

(M)

Unfortunately, closed formulae for such confidence intervals are not available. Nevertheless,
for given n1, n2 and observed u the confidence interval may be easily obtained with the stan-
dard mathematical software (for example R-project, Mathematica, MathLab etc.). Table 1
presents some 95% confidence intervals for n1 = n2 = 10 and Table 2 for n1 = 50, n2 = 10.

Table 1: Confidence intervals (γ = 0.95, n1 = n2 = 10).

ϑ̂ interval

−1.0 (−1.0000,−0.6733)
−0.9 (−0.9975,−0.5214)
−0.8 (−0.9751,−0.3940)
−0.7 (−0.9350,−0.2798)
−0.6 (−0.8832,−0.1745)
−0.5 (−0.8227,−0.0760)
−0.4 (−0.7551, 0.0212)
−0.3 (−0.6813, 0.1291)
−0.2 (−0.6019, 0.2326)
−0.1 (−0.5171, 0.3319)

0.0 (−0.4270, 0.4270)

ϑ̂ interval

0.1 (−0.3319, 0.5171)
0.2 (−0.2326, 0.6019)
0.3 (−0.1291, 0.6813)
0.4 (−0.0212, 0.7551)
0.5 ( 0.0760, 0.8227)
0.6 ( 0.1745, 0.8832)
0.7 ( 0.2798, 0.9350)
0.8 ( 0.3940, 0.9751)
0.9 ( 0.5214, 0.9975)
1.0 ( 0.6733, 1.0000)
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Table 2: Confidence intervals (γ = 0.95, n1 = 50, n2 = 10).

ϑ̂ interval

−1.0 (−1.0000,−0.8346)
−0.9 (−0.9949,−0.6642)
−0.8 (−0.9563,−0.5302)
−0.7 (−0.8986,−0.4105)
−0.6 (−0.8322,−0.2998)
−0.5 (−0.7590,−0.1957)
−0.4 (−0.6801,−0.0971)
−0.3 (−0.5962,−0.0023)
−0.2 (−0.5073, 0.1046)
−0.1 (−0.4135, 0.2103)

0.0 (−0.3145, 0.3145)

ϑ̂ interval

0.1 (−0.2103, 0.4135)
0.2 (−0.1046, 0.5073)
0.3 ( 0.0023, 0.5962)
0.4 ( 0.0971, 0.6801)
0.5 ( 0.1957, 0.7590)
0.6 ( 0.2998, 0.8322)
0.7 ( 0.4105, 0.8986)
0.8 ( 0.5302, 0.9563)
0.9 ( 0.6642, 0.9949)
1.0 ( 0.8346, 1.0000)

For a given ϑ ∈ (−1, 1) the coverage probability, by construction, equals

F−1
ϑ ((1+γ)/2)∑

u=F−1
ϑ ((1−γ)/2)

Pϑ{ϑ̂ = u},

where F−1
ϑ (·) is the quantile function of the distribution of ϑ̂. Since the distribution of ϑ̂ is

discrete, the coverage probability is at least γ. Figure 1 shows the coverage probability of the
confidence interval (M) for γ = 0.95 (the coverage probability is calculated not simulated).

Figure 1: The probability of coverage, γ = 0.95.

The length of the confidence interval depends on the sample sizes n1 and n2. Suppose
we may conduct n trials including n1 trials with success probability θ1 and n2 = n− n1 trials
with probability θ2. To find the optimal n1, i.e. one minimizing the length, it is enough
to minimize the distance between quantiles of orders 1+γ

2 and 1−γ
2 of the distribution of ϑ̂.

It is easy to note that the distribution of ϑ̂ is unimodal, so it is enough to minimize the
variance of ϑ̂. This variance equals

D2
ϑ(ϑ̂) =

1
L(ϑ)

∫ b(ϑ)

a(ϑ)

(
D2

(θ1,n1)

(
ξ1
n1

)
+D2

(θ1−ϑ,n2)

(
ξ2
n2

))
dθ1 =

1− 3ϑ2 + 2|ϑ|3

6nf(1− f)
,

where f = n1/n. The variance D2
ϑ(ϑ̂) is (uniformly in ϑ) minimal for f = 1/2, i.e. half of

the trials should be done with probability θ1. Hence, to obtain the maximal precision of
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estimation, i.e. the shortest (symmetric) confidence interval, the number of trials should be
equally divided between the two groups. Of course this is possible in the case of a planned
experiment. Unfortunately, in many real experiments (especially medical ones) it is not
possible to have planned experiments.

3. A MEDICAL EXAMPLE

The aim of the investigation was to compare the frequencies of occurrence of the specific
immunoglobulin E G6 (Phleum pratense L.) in two sites: urban (represented by the Polish
town Lublin) and rural (represented by the Polish district Zamość). The investigation is
part of the ECAP project (ecap.pl/eng_www/index_-home.html) conducted by Prof. Boles law
Samoliński (Warsaw Medical University). The data are presented by his courtesy.

Let θt and θc denote the percentages of people with high concentration of sIgE G6 (at
least 0.35 IU/ml) in the town and in the country, respectively. We are interested in estimating
the difference θt − θc at confidence level 0.95. A sample of size nt = 743 was drawn from the
town, and a sample of size nc = 329 from the country. The difference between the sample
proportions equals 0.0603. The confidence interval for the difference of proportions θt − θc

at confidence level 0.95 is (0.0052, 0.1154) (calculated from formula (M) with u = 0.0603).
Since the lower end of the confidence interval is positive, we may conclude that the fraction
of people with allergy to Phleum pratense L. is higher in the town than in the country.

In the above samples the level of the specific immunoglobulin E D1 (Dermatophagoides
pteronyssinus) was also marked. The question is the same as in the previous investiga-
tion: what is the difference between percentages of people with allergy to Dermatophagoides
pteronyssinus in urban and in rural areas. The difference between the observed proportions
is 0.0292 and confidence interval, at confidence level 0.95, is (−0.0276, 0.0853). Since the
confidence interval covers 0, it may be supposed that the percentages of people with allergy
to that allergen are the same.

4. DISCUSSION AND CONCLUSIONS

Estimating the difference of two binomial proportions is one of the crucial problems
in medicine, biometrics etc. In this paper a new confidence interval for that difference is
proposed. The confidence interval is based on the exact distribution of the sample difference,
hence it works for large as well as for small samples. The coverage probability of that confi-
dence interval is at least the nominal confidence level, in contrast to asymptotic confidence
intervals known in the literature. It must be noted that the only information needed to con-
struct the new confidence interval is sample sizes and sample difference between proportions,
while for the confidence intervals appearing in the literature the knowledge of sample sizes
as well as sample proportions in each sample is needed. Unfortunately it may lead to misun-
derstandings. Namely, suppose that seven experiments were conducted. In each experiment
two samples of sizes fifty and ten respectively, were drawn (n1 = 50, n2 = 10). The resulting
numbers of successes are shown in Table 3 (the first two columns).

ecap.pl/eng_www/index_-home.html
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Table 3: Confidence intervals in seven experiments.

ξ1 ξ2 ϑ̂ Wang c.i. K1 c.i. K2 c.i.

16 0 0.32 ( 0.04738; 0.47101) ( 0.01975; 0.62025) ( 0.19070; 0.44930)
21 1 0.32 (−0.00273; 0.50696) (−0.00719; 0.64719) ( 0.08915; 0.55085)
26 2 0.32 (−0.03047; 0.55617) (−0.01873; 0.65873) ( 0.03602; 0.60398)
31 3 0.32 (−0.02693; 0.58380) (−0.01645; 0.65645) ( 0.00571; 0.63429)
36 4 0.32 (−0.02108; 0.61329) (−0.00007; 0.64007) (−0.00816; 0.64816)
41 5 0.32 ( 0.00656; 0.62735) ( 0.03283; 0.60717) (−0.00769; 0.64769)
46 6 0.32 ( 0.03955; 0.63766) ( 0.08920; 0.55080) ( 0.00718; 0.63282)

It is seen that the sample difference between proportions (the third column) is the same
in all experiments, but the confidence intervals are quite different (Table 3 gives results for
three confidence intervals, but for other confidence intervals the results are similar). Moreover,
for example application of (K1) or Wang confidence intervals in the sixth experiment suggests
that ϑ̂ = 0.32 is a statistically significant difference while in the fourth one it is not. The
confidence interval (M) we propose does not have this drawback: for observed ϑ̂ we obtain
one confidence interval whatever ξ1 and ξ2 are (here it is (0.02110; 0.61120)).

Closed formulae for the new confidence interval are not available. But it is easy to
calculate the confidence interval for given n1, n2 and an observed sample difference ϑ̂ (see
Appendix 1 for an exemplary R code). Because the proposed confidence interval may be
applied for small as well as for large sample sizes, it may be recommended for practical use.

The coverage probability of the proposed confidence interval is at least the nominal
confidence level. The equality of the coverage probability and the confidence level may be
obtained by an appropriate randomization. The idea of randomized confidence intervals is
presented for example in R. Zieliński and W. Zieliński [13], W. Zieliński [15], [16]. The same
idea may be applied to the proposed confidence interval; work on this is in progress.



A New Exact Confidence Interval for the Difference of Two Binomial Proportions 527

APPENDIX 1

An exemplary R code for calculating the confidence interval is enclosed. I am grateful
to Prof. Stanis law Jaworski for his help.

CI=function(uemp,n,gamma){

u=abs(uemp)

g=function(u,vartheta,lq=0){

f=function(theta,k){pbinom(n[1]*(u+k/n[2])-lq,n[1],theta)*dbinom(k,n[2],theta-vartheta)}

a=max(0,vartheta)

b=min(1,1+vartheta)

wynik=c()

for (k in 0:n[1]){wynik[k+1]=integrate(f,a,b,k=k)$value }

t=sum(wynik)/(b-a)

(t-(1+gamma*(-1+2*lq))/2)Θ2}

P=ifelse(u==1,1,optimize(g,c(u,1),u=u)$minimum) # upper

L=optimize(g,c(-1,u),u=u,lq=1)$minimum # lower

info=paste("at 1-alpha=",gamma,", where u=",uemp, ", n1=",n[1],", n2=",n[2],sep="")

if (uemp>0)

{paste("Confidence interval (",round(L,4),",",round(P,4),") ",info,sep="")}

else

{paste("Confidence interval (",round(-P,4),",",round(-L,4),") ",info,sep="")}

}

#Example of usage

n=c(10,10) # input n1 and n2

CI(-0.3,n,gamma=0.99) # input the observed difference and the confidence level
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APPENDIX 2

Confidence intervals for ϑ = θ1 − θ2 appearing in the literature are constructed for
“large” sample sizes n1 and n2. It is assumed that ξ1 and ξ2 (and so ξ1 − ξ2) are normally
distributed. In what follows, γ denotes the assumed confidence level and z = z(1+γ)/2 denotes
the quantile of order (1 + γ)/2 of the standard normal distribution.

1. The approximate confidence interval based on the test statistic of the hypothesis
H : θ1 = θ2 has the form

(K1) ϑ̂± z

√
ξ1 + ξ2
n1 + n2

(
1− ξ1 + ξ2

n1 + n2

)(
1
n1

+
1
n2

)
.

This is one of the most common confidence intervals. It may be found in various statistical
textbooks (https://onlinecourses.science.psu.edu/stat414/node/268 for example).

2. By the de Moivre-Laplace theorem, ϑ̂ ∼ N
(
θ, θ1(1−θ1)

n1
+ θ2(1−θ2)

n2

)
asymptotically.

A simple application of the asymptotic distribution gives

(K2) ϑ̂± z

√
θ̂1(1− θ̂1)

n1
+
θ̂2(1− θ̂2)

n2

(for example stattrek.com/estimation/difference-in-proportions.aspx?Tutorial=AP). Mee and
Anbar [5] expressed the above interval in terms of ϑ̂:

ϑ̂± z

√
(ψ̃ + ϑ̂/2)(1− ψ̃ − ϑ̂/2)

n1
+

(ψ̃ − ϑ̂/2)(1− ψ̃ + ϑ̂/2)
n2

,

where ψ̃ = (θ̂1 + θ̂2)/2.

Miettinen and Nurminen [6] slightly modified the above confidence interval:

(K ′
2) ϑ̂± z

√√√√ n1 + n2

n1 + n2 − 1

{
(ψ̃ + ϑ̂/2)(1− ψ̃ − ϑ̂/2)

n1
+

(ψ̃ − ϑ̂/2)(1− ψ̃ + ϑ̂/2)
n2

}
.

3. The binomial distribution is a discrete one and is approximated by a continuous
distribution. Hence the so called continuity correction is introduced (Fleiss [4], p. 29):

(K3) ϑ̂± z

√
ξ1(n1 − ξ1)

n3
1

+
ξ2(n2 − ξ2)

n3
2

+
1
2

(
1
n1

+
1
n2

)
.

This confidence interval is very conservative: its coverage probability is significantly higher
than the assumed confidence level.

https://onlinecourses.science.psu.edu/stat414/node/268
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4. Using the Haldane method, Beal [2] obtained the confidence interval

ϑ∗ ± w,(K4)

where

ϑ∗ =
ϑ̂+ z2ν(1− 2ψ̃)

1 + z2u
,

w =
z

1 + z2u

√
u{4ψ̃(1− ψ̃)− ϑ̂2}+ 2ν(1− 2ψ̃)ϑ̂+ 4z2u2(1− ψ̃)ψ̃ + z2ν2(1− 2ψ̃)2,

ψ̃ =
1
2

(
θ̂1 + θ̂2

)
u =

1
4

(
1
n1

+
1
n2

)
ν =

1
4

(
1
n1

− 1
n2

)
.

Using the Jeffreys-Perks method he obtained a similar confidence interval with

(K ′
4) ψ̃ =

1
2

(
ξ1 + 0.5
n1 + 1

+
ξ2 + 0.5
n2 + 1

)
.

5. The method based on the Wilson [11] score method for the single proportion gives
the confidence interval

L = ϑ̂− δ12, U = ϑ̂+ δ21,(K5)

where
δij =

√
(θ̂i − li)2 + (uj − θ̂j)2 = z

√
li(1− li)/ni + uj(1− uj)/nj

and li and ui are the roots of |θ̂i − θi| = z
√
θi(1− θi)/ni. Note that li = 0 for ξi = 0 and

ui = 1 for ξi = ni.

Using the continuity-correction score intervals, Fleiss [4] (pp. 13–14) obtained li and ui

as the solutions of

(K ′
5)

∣∣∣θ̂i − θi

∣∣∣− 1
2ni

= z

√
θi(1− θi)

ni
.

6. Zhou et al. [12] proposed two new confidence intervals based on the asymptotic
Edgworth expansion of θ̂1 − θ̂2. The first one is

(K6)

(
ϑ̂− σ̂√

n

(
z − Q̂(z)√

n

)
, ϑ̂+

σ̂√
n

(
z +

Q̂(z)√
n

))
,

where (n = n1 + n2)

Q̂(t) =
â+ b̂t2

σ̂
, σ̂ =

√
n

√
ξ1(n1 − ξ1)

n3
1

+
ξ2(n2 − ξ2)

n3
2

, â =
δ̂

6σ̂2
, b̂ =

n(n1 − 2ξ1)
2n2

1

− â,

δ̂ =
(
n

n1

)2 ξ1(n1 − ξ1)(n1 − 2ξ1)
n3

1

−
(
n

n2

)2 ξ2(n2 − ξ2)(n2 − 2ξ2)
n3

2

.

The second confidence interval has the form

(K7)
(
ϑ̂− σ̂√

n
g−1(z), ϑ̂− σ̂√

n
g−1(−z)

)
,

where

g−1(u) =
√
n

b̂σ̂

((
1 + 3(b̂σ̂)

(
u√
n
− â

σ̂
n

))1/3

− 1

)
.
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The upper ends of the above mentioned confidence intervals may be greater than one
(or their lower ends may be smaller than −1). It is customary to truncate such an interval
at 1 (or −1 respectively), but such an operation results in a very low coverage probability for
values of ϑ near 1 (or −1 respectively).

Wang [10] (see also Shan and Wang [9]) proposed a confidence interval which does not
have the above disadvantage.
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1. INTRODUCTION

There are many examples in which a single equation can represent a causal relationship
among variables. However, there is a case in which individual expression may not cover the
desired effect or produce estimates with weak statistical properties. There are examples from
many scientific fields such as econometrics where single equations are not enough. In such
cases, Simultaneous Equations Models (SEMs) can appropriately represent a joint relationship
among variables. The interested readers can, for example, consult [19] for more details on
this topic.

Regarding the assumptions of the general structure of any linear model, the predictors
are not only fixed but also independent of the error term in the model. However, there are
numerous real-life examples in which some of the covariates in a model are correlated with
the error term. According to [30] and [11], such variables are called endogenous.

One of the particular cases of SEMs is SUR models, first proposed by [31]. He also
explained the procedures to estimate the parameters of these models using the generalized
least square method. Amazingly, the literature on treating such models from the frequentist
point of view is scarce. For instance, the well known maximum likelihood method of esti-
mation for the parameters of the SUR was only tackled by [13]. However, the popularity of
Bayesian approach was more than expected. To name some, we can refer to [28], [21], [29]
and [12]. Historically, Bayesian statistical inference on the SUR model was first proposed by
[32]. Also, Bayesian moment and direct Monte Carlo method were followed by [33]. Most
literature shows that popular MCMC sampling technique was the central theme of study to
treat the SUR model . The references include [24], [10], and [27]. Also, [35] proposed the
implementation of hierarchical Bayes approach in this model using direct Monte Carlo and
importance sampling techniques. Recently, [26] studied the topic of variable selection in the
SUR models.

Another important aspect of the SUR models refers to a way one considers a distribution
for the error term. It is quite common to choose it as normal. But, there are numerous
examples in which the empirical density of response is often asymmetric in practice. One
of the procedures to overcome this problem is to utilize some transformations. It might
induce relatively normal distribution for the transformed response. However, this strategy
has some drawbacks. First, the estimators are usually bias. Secondly, there is lack of proper
interpretation for the estimators of the parameters based on the transformed response. Using
some asymmetric distributions, which not only possess the same properties as the normal
distribution but also can overcome the deficiencies mentioned above, has recently received
considerable attention in the literature. The skew-normal density, initially proposed by [3],
is one of the well-known distributions to tackle the asymmetric feature of the data. [5] have
also discovered the properties of the multivariate skew normal distribution. Later on, [4]
studied further features of this density. [7], [17], [18] and [2], among others, provided several
generalizations of this distribution. Recently, [6] investigated some other properties of the
skew-symmetric distribution.

Most of the research conducted to estimate parameters of a SUR is focused on the case
in which the distribution of the variable under investigation is normal. Instead, in this paper
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we consider the skew-normal distribution for the errors in the SUR and propose procedures
to estimate the parameters using the Bayesian methodology. We also conduct some intensive
simulation studies to evaluate the methods suggested in this article. Moreover, we show an
application of the model in this paper on real-life data.

To present our results, we organized the paper as follows. First, a brief review of the
Seemingly Unrelated Regression (SUR) and a Bayesian approach to treating the SUR model
with normal distribution for the errors are presented in Section 2. Then, a Bayesian approach
to treating the SUR model with skew-normal distribution for the errors is given in Section 3.
The simulation study for evaluating the proposed models and the analyses of real-life data,
related to the gross and income in the year 2009 in Iran, for illustration purpose, are presented
in Sections 4 and 5. General conclusions are provided at the end. The proofs for some
theoretical results are sketched in Appendix.

2. BAYESIAN INFERENCE ON PARAMETERS OF A SUR MODEL WITH
ERROR DISTRIBUTED AS NORMAL

Econometric analysis of the linear models are usually classified into two scenarios which
identify based on the numbers of the equations used to express the relationship among the
variables. In the single equation methodology, a dependent variable is typically modeled as a
function of one or more covariates. In many situations, such single equation may not cover the
desired effect or may even produce estimates with poor statistical properties. The methods
of SUR model have been proposed to eliminate the shortcomings obstacles involved in the
former methodology. Statistical inference based on the normal response in this model is the
object of the current section.

Let assume we aim to estimate the parameters of a SUR model. This objective can
commonly be achieved via many parametric and nonparametric estimating procedures based
on the frequentist inference including OLS1, IOLS2, FGLS3, IGLS4 and ML5. See, for ex-
ample, [28] for more details on this topic. However, there are some problems to implement
the ML method of estimation in a SUR model. First, there are not usually some explicit
expressions for the estimators of the parameters. This fact leads, in turn, to a high cost of
analytical computations to solve corresponding normal equations. Secondly, if there is any
initial subjective information about the parameters it cannot be directly utilized in the fre-
quentist inference methodology. To overcome these two problems, one can follow a Bayesian
approach instead. This section describes the procedure to perform such inference along with
general notations used throughout the current paper.

Suppose there are g equations with g endogenous variables associating with y1, y2, ..., yg.
Specifically, for i = 1, 2, ..., g, suppose X(i) is an n× ki matrix of explanatory variables and
β(i) is a ki-vector of parameters. Then, the i-th equation of a linear simultaneous system can

1Ordinary Least Square
2Iterative Ordinary Least Square
3Feasible Generalized Least Squares
4Iterative Generalized Least Squares
5Maximum Likelihood



534 Omid Akhgari and Mousa Golalizadeh

be written as

yti =
ki∑

l=1

x
(i)
tl β

(i)
l + uti = X

(i)
t• β

(i)
t• + uti, t = 1, 2, ..., n,(2.1)

where

X
(i)
t• = (xt1, xt2, ..., xtki

),

β
(i)
t• = (β(i)

1 , β
(i)
2 , ..., β

(i)
ki

)T,

and

E(uti) = 0, Var(uti) = σii,

Cov(uti, utj) = σij , i, j = 1, 2, ..., g, t = 1, 2, ..., n.(2.2)

Let us define, for fixed t, the g-vectors yt• and ut• consist of the yti’s and the uti’s, respectively,
for i = 1, ..., g. Accordingly, the k-vector β• is formed by stacking the β

(i)
t• vertically. The

matrix of Xt• is of dimension g× k and is defined to be a block-diagonal matrix with diagonal
blocks X

(i)
t• also for fixed t, k =

∑g
i=1 ki. Precisely, our new notations can be summarized as

follows:

yt• =


yt1

yt2
...

ytg


g×1

, ut• =


ut1

ut2
...

utg


g×1

, β• =


β

(1)
t•

β
(2)
t•
...

β
(g)
t•


k×1

,

Xt• =


X

(1)
t• 0 ... 0
0 X

(2)
t• ... 0

...
...

. . .
...

0 0 ... X
(g)
t•


g×k

.(2.3)

Hence, the linear simultaneous system (2.1) is rewritten as follows

yt• = Xt•β• + ut•, t = 1, 2, ..., n.(2.4)

Based on the assumption for the first two moments of u’s, let us consider the normal distri-
bution for them. Then, following the new notations, ut• ∼ N(0g,Σ) where

Σ =


σ11 σ12 ... σ1g

σ21 σ22 ... σ2g
...

...
. . .

...
σg1 σg2 ... σgg

 .(2.5)

Now, recalling the expression (2.4) and distribution ut•, the likelihood function for the pa-
rameters (β•,Σ), provide the data including those available in y• and X•, represented by D,

leads to

L
(
(β•,Σ)|D

)
=

1
(2π)ng/2|Σ|n/2

exp
{
− 1

2
tr

(
V Σ−1

)}
,(2.6)

where ‘tr’ denotes the trace of matrix and V is a g × g matrix given by

V =
n∑

t=1

(yt• −Xt•β•)(yt• −Xt•β•)T.
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Now, suppose one prefers to follow a Bayesian methodology to estimate the parameters of
the SUR model (2.4). As is common, one first should determine priors for the parameters.
Both the noninformative and informative priors can be used here. Let us assume a uniform
prior for β• and Jeffreys prior for Σ, independent of each other [20]. Then, we have our joint
prior, say π1 ( . ), as

π1(β•,Σ) = π(β•)π(Σ) ∝ |Σ|−
g+1
2 .(2.7)

The joint posterior density function is then given by Bayes’ theorem, i.e.

π(β•,Σ|D) ∝ |Σ|−(n+g+1)/2 exp
[
− 1

2
tr{V Σ−1}

]
.(2.8)

Now, it is straightforward to compute the full conditional posterior distribution π(β•|Σ, D)
and π(Σ|β•, D). They are given by

β•|(Σ, D) ∼ N(β̂•, Σ̂β•)

Σ|(β•, D) ∼ IW (V, n),(2.9)

where

β̂• = Σ̂β•

( n∑
t=1

XT
t•Σ

−1yt•
)
,

Σ̂β• =
[ n∑

t=1

XT
t•Σ

−1Xt•
]−1

,(2.10)

and IW (·, ·) denotes the inverse Wishart distribution. As seen, both full conditional posterior
distributions have closed forms. Hence, the standard SUR model is also amenable to a 2-block
Gibbs sampling formulation. See, for example, [34], for more details.

In some circumstances, one might prefer an informative prior for the parameters β•. In
such case, it is common to consider the normal density. Precisely, let assume β• ∼ N(β◦, A−1

β•
).

Further, suppose the same prior as before has been considered for Σ, i.e. π
(
Σ

)
∝

∣∣Σ∣∣− g+1
2 ,

independently from β•. Then, the joint posterior distribution has a closed form in this case
as well. However, the conditional posterior distributions have relatively different structures.
In particular, it can be shown that

β•|(Σ, D) ∼ N(β•,Σβ•),

Σ|(β•, D) ∼ IW (V, n),(2.11)

where

β• = Σβ•

[( n∑
t=1

XT
t•Σ

−1yt•
)

+ Aβ•β◦
]
,

Σβ• =
[( n∑

t=1

XT
t•Σ

−1yt•
)

+ Aβ•

]−1
.(2.12)

So far, the full conditional posterior distributions were derived using the assumption of the
normal distribution of the errors. In the next section, we assume that the error term fol-
lows the skew-normal distribution and compute the posterior density and full conditional
distributions.
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It worths to mention here that one of the possible procedure to draw samples from
the posterior density of the parameters is to follow an MCMC algorithm. Particularly, if
the full conditional distributions of relevant parameters are available in closed forms a Gibbs
sampling algorithm could be employed to draw samples from corresponding densities. The
literature shows that such view to the SUR models [32], [25], [8], [29] and [24] has already
investigated this topic.

3. BAYESIAN INFERENCE ON SUR MODELS USING THE SKEW-
NORMAL DENSITY FOR ERROR

To consider a normal density for the distribution of the error while utilizing a SUR
model is a standard procedure to make statistical inference. However, this assumption might
not hold in some real-life example and so corresponding statistical inferences might not lead
to feasible results. Instead, to use skew-normal distribution for the density of error is an
alternative option. Having said that, to recall ML method of estimation is then one of the
conventional parametric statistical inference methods to consider. However, similar to the
situation mentioned in the case of considering the normal distribution for error (see initial
discussions in Section 2), there are some problems to implement this method as well. Hence,
we outline the Bayesian statistical inference on the parameters of a SUR model with the error
comes from skew-normal in this section. Moreover, some important statistical features of this
strategy are also highlighted.

To start, let us first briefly review the properties of a SUR model under assumption of
an skew-normal density for the error in the model (2.4). Specifically, let write

ut• =
(
ut1, ..., utg

)T ∼ SN
(
0g, Σ, λ

)
, t = 1, ..., n.(3.1)

Following [3], the distribution of ut•, for t = 1, ..., n, is given by

fUt•

(
ut•

)
= 2φg

(
ut•; 0g, Σ

)
Φg

(
λTω−1ut•

)
,(3.2)

where φg(ut•; 0,Σ) is the g-dimensional normal density with zero mean vector and covariance
matrix Σ, Φg(·) is the cumulative distribution function of the standard normal density, and λ

is a g-dimensional vector with constant values. Here, ω is a diagonal matrix whose components
are the square root of the corresponding covariance matrix Σ. Now, we can write down either
the likelihood function of the parameters or its logarithm. We prefer the later one, denoted
here by l(λ, β•,Σ), which is given by

l(λ, β•,Σ) = n log 2− ng

2
log(2π)− n

2
log |Σ|

− 1
2

n∑
t=1

[
(yt• −Xt•β•)TΣ−1(yt• −Xt•β•)

]
+

n∑
t=1

log Φ1

(
λTω−1ut•

)
.(3.3)

If one is going to estimate the parameters directly using (3.3), there exist some problems.
The main drawbacks are lack of convergence in employing any likelihood-based numerical
algorithm such pseudo-Newton and the high cost of computations. To circumvent these issues,
we propose to follow the Bayesian methodology instead.
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Here, an integral part of specifying a Bayesian paradigm is the selection of some prior
distributions for all unknown parameters, i.e., θ = (β•,Σ, λ). In the absence of prior infor-
mation and to guarantee to have feasible properties for the posterior, we adopt proper but
diffuse priors. Suppose elements of θ are independent a priori, and the following priors have
been considered

β• ∼ N
(
β◦,Σβ◦

)
, π(Σ) ∝ |Σ|−

g+1
2 ,

λ ∼ N
(
λ0,Λ0

)
, z0 ∼ N

(
0g, Ig

)
.(3.4)

Then, the join posterior of all parameters is given by

π(β•,Σ, λ|y) ∝ φk

(
β•;β◦,Σβ◦

)
× φg

(
λ;λ0,Λ0

)
× |Σ|−

g+1
2

× 2n
n∏

t=1

φg

(
yt•;Xt•β•,Σ

)
Φ1(λTω−1(yt• −Xt•β•)).(3.5)

As seen, this expression doesn’t have a closed form, so we can not compute the join posterior
analytically. To turn around this problem, we use the stochastic representation of the skew-
normal distribution (see [1]), i.e. yt• = λ� |z0|+ z1 where � denotes Hadamard product,
z0 ∼ N

(
0g, Ig

)
, z1 ∼ N

(
X•tβ•,Σ

)
. Moreover, it is assumed that z0 and z1 are independent.

Then, it is expected that we could drive the full conditional distributions for each parameters.
Below, we provide them in turn. More details on computing those expressions are given in
Appendix. Note that we write the full conditional distribution in an deliberator order. The
reason to do so is when one is going to update samples from corresponding densities for each
parameter in an MCMC sampling algorithm the same order should be followed.

First, we have
β•|

(
Σ, λ, |z0|, D

)
∼ N

(
β̃•, Σ̃β•

)
,

where β̃• = Σ̃β•

(∑n
t=1 XT

t•Σ
−1yt• +Σ−1

β◦
β◦−

∑n
t=1 XT

t•Σ
−1Λ|z0|

)
and Σ̃β• =

(∑n
t=1 XT

t•Σ
−1Xt•

+ Σ−1
β◦

)−1
.

Secondly, we have

Σ|
(
β•, λ, |z0|, D

)
∼ IW (R,n),(3.6)

where R =
∑n

t=1

(
yt• − [λ� |z0|+ Xt•β•]

)(
yt• − [λ� |z0|+ Xt•β•]

)T.

Next, the full conditional distributions of λ is given by

λ|
(
β•,Σ, |z0|, D

)
∼ N

(
λ̃, Λ̃

)
,(3.7)

where Λ̃ =
(
nZ∗

0Σ−1Z∗
0 +Λ−1

0

)−1, λ̃ = Λ̃(
∑n

t=1 Z∗
0Σ−1yt•−

∑n
t=1 Z∗

0Σ−1Xt•β• +Λ−1
0 λ0), and

Z∗
0 is an g × g diagonal matrix whose components are filled with elements of vector |z0|.

Finally, at the last step, the density of |z0| should be derived. It is straightforward to
show that

|z0|
∣∣∣(β•,Σ, λ,D

)
∼ TN

(
z̃0,Ψz0 , (0,+∞)

)
,(3.8)
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where TN
(
µ,Σ, (a, b)

)
stands for the multivariate truncated normal distribution N(µ,Σ)

lying within the interval (a, b),−∞ ≤ a < b ≤ +∞. Also Ψz0 =
(
Ig + n∆Σ−1∆

)−1 and z̃0 =
Ψz0

( ∑n
t=1 ∆Σ−1[yt• −XT

t•β•]
)

where ∆ = diag(λ1, ..., λg).

Now, we are at a position to conduct some simulation studies to evaluate the proposed
models.

4. SIMULATION STUDIES

Here, we outline our simulation studies to evaluate the procedure in estimating the
parameters of the SUR models given in Sections 2 and 3. Suppose the following simultaneous
model is given: {

y1 = β0 + β1z1 + β2x1 + u1,

y2 = γ0 + γ1z1 + γ2x2 + u2.
(4.1)

The assumptions imposed for this model are the same as those proposed in Sections 2 and 3.
Moreover, u = (u1, u2)T ∼ N(0,Σ) where y1 and y2 are endogenous variables. In addition,
we assume variables z1, x1 and x2 are exogenous. When we switch to the scenario in which
the error terms follow the asymmetric distribution, we assume u = (u1, u2)T ∼ SN(02,Σ, λ)
where λ is shape parameter vector.

To generate data from the model with equations in (4.1), we do need to fix the param-
eters. We are writing them all together either in regression equations or explicit expressions.
They are given as follows:

y1 = 4− 3z1 − 4x1 + u1,

y2 = 7 + 3z1 − 2x2 + u2,(4.2)

u =
(

u1

u2

)
∼ SN(02,Σ, λ),

Σ =
(

3 −1
−1 4

)
, λ =

(
4
7

)
.

The sample size for each equation is fixed at 1000 cases. Consequently, due to having two
equations in (4.1), the total number of available data is 2000. The Bayesian inference is
conducted using the proper priors given in (3.4) with the hyperparameters fixed on some
specific values. Particularly, we consider

β• ∼ N(02, 100I2), λ ∼ N(02, 100I2),

Σ ∝
∣∣∣ 0.01 0

0 0.01

∣∣∣− 1
2
.

As mentioned earlier, one can follow the Gibbs sampling algorithm to draw samples and
then estimate the parameters of the models while employing an MCMC algorithm. To do this,
we fixed the simulated sample size at 100,000 iterations for each chain. Convergence of the
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MCMC algorithm was confirmed by the Gelman and Rubin convergence measure [16], but not
reported here. To get independent samples, the burn-in was set on 25,000 iterations for each
chain and the last 75,000 iterations were used to make statistical inference on parameters.
Then, with taking each 50-th observation, we were ultimately left with 1,500 samples. The
summarized results are presented in Table 1.

As can be seen, the Table 1 includes two parts. The results using the normal and
skew-normal distributions assumption for the errors are shown in the left and right panels,
respectively. The regression coefficients and covariance elements are also estimated. As the
values in the left panel of the table show, both intercepts for each equation of the model
(4.1) are overestimated. This phenomenon is also the case for the elements of the covariance
matrix. The other coefficients are estimated relatively as good as expected.

Table 1: The estimate of parameters and other measures after fitting
the SUR model (4.1) under the assumptions of the skew-normal
(right panel) and normal (left panel) distributions for the errors.

Parameter
N-MCMC SN-MCMC

Mean Sd 2.5% 97.5% ES Mean Sd 2.5% 97.5% ES

β0 9.38 0.334 8.722 10.01 5.38 3.875 0.326 3.284 4.521 0.125
β1 −3.009 0.017 −3.043 −2.973 0.009 −2.986 0.015 −3.027 −2.97 0.014
β2 −3.981 0.024 −4.026 −3.936 0.009 −3.983 0.021 −4.029 −3.948 0.017
γ0 16.79 0.562 15.7 17.86 9.79 7.510 0.391 5.619 7.139 0.510
γ1 3.05 0.033 2.981 3.111 0.05 3.006 0.020 2.987 3.065 0.006
γ2 −1.934 0.039 −2.009 −1.856 0.066 −2.000 0.025 −2.027 −1.927 0.000
σ11 20.25 0.883 18.52 22.01 17.25 3.504 0.572 2.522 4.798 0.504
σ12 1.123 1.215 −1.307 3.549 2.123 −1.298 0.643 −2.436 0.056 0.298
σ22 74.53 3.334 68.23 81.09 70.53 3.211 0.769 1.839 4.887 0.789
λ1 — — — — — 6.498 0.250 6.303 7.451 2.498
λ2 — — — — — 12.136 0.371 12.01 12.43 5.136

The results using the skew-normal Bayesian approach is given on the right panel of
Table 1. As seen, relatively small values of effect size (ES), defined as absolute bias, indicate
that all parameters are well estimated. To consider all measures, a general result is that
taking into account the skew-normal distribution instead of normal for the errors does better
a job of fitting the model (4.1) while employing a Bayesian approach to making statistical
inference.

To evaluate performance of the method in more details, we iterated the procedure of
generating the data from model (4.1) with the sample size of n = 1000 for the numbers of
50 times and then computed the Mean Squared Error (MSE) criterion, i.e.

MSE
(
α̂
)

=
1
50

50∑
i=1

(α̂i − αTrue)2.(4.3)

The results (not shown here) have confirmed that the MSE criterion in estimating the pa-
rameters using the skew-normal Bayesian approach is very close to zero, but this was not the
case for the normal distribution assumption for the error in the model (4.1). It means that
the estimators derived from the skew-normal case are relatively more accurate and precise
than the normal assumption.
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5. REAL APPLICATION

We are interested in applying the proposed models in this paper on real-life data.
To do this, we used the cost and income data collected on year 2009 in Iran. There are about
13,345 families from 32 provinces. Here, the main goal is on survey effects of some variables
on gross cost (GH) and income (D). In this study, both of these quantities are considered as
endogenous variables and other covariates are set as exogenous. A general description of the
considered variables are reported in Table 2. Also, Figures 1, 2 and 3 (upper panel) provide
some geometric displays of some exogenous and two endogenous variables, i.e. GH, D.

Table 2: A general description of variables utilized in real application.

Variable names Abbreviation signs Variable Type Codes

Gross cost GH Quantitative —

Income D Quantitative —

Family size C1 Quantitative —

Number of literate C2 Quantitative —

Number of employees C3 Quantitative —

Number of people with income C4 Quantitative —

Age A Quantitative —

Location Area B1 Quantitative —

Private car B2 Qualitative 1: Use, 0: Nonuse

Internet B3 Qualitative 1: Use, 0: Nonuse

Gas B4 Qualitative 1: Use, 0: Nonuse

Mobile B5 Qualitative 1: Use, 0: Nonuse

Incomes of agricultural free businesses D1 Quantitative —

Incomes of nonfarm free businesses D2 Quantitative —

Other Incomes D3 Quantitative —

Other Non-monetary Incomes D4 Quantitative —

To initiate a statistical analysis based upon a common linear regression model, we are
concerned about the accuracy of considering the normality assumption for the response vari-
ables, i.e. GH, and D, here. We used the Kolmogorov- Smirnov (KS) test for this purpose.
Based on this test, normality assumption has not been confirmed for both endogenous vari-
ables with the p-value < 0.05. Further, to have visual tools, the quantile-quantile plots for
each of the income and gross cost were also drawn. They appeared on the lower panel of
Figure 3. As seen, both plots are confirming a lack of the normal distributions fitting for each
variable. Moreover, the contour plot based on these endogenous variables, which is appeared
on the upper panel Figure 3, also shows a departure from the bivariate normal distribution
assumption. It might be argued here that a logarithm transformation of the endogenous vari-
ables might solely lead to a better fit of normality assumption for these variables. However,
based on our investigation (not reported here), we did not reach to such conclusion. Hence,
we preferred to invoke some asymmetric densities, particularly skew-normal distribution, to
proceed our analysis. However, we also utilized the normal distribution for the endogenous
variables to make a comparison, similar to our simulation studies.
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Figure 1: The pairs plot of quantitative variables described in Table 2.

Figure 2: The pairs plot for several types of incomes described in Table 2.
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Figure 3: The contour plot of gross cost (GH) against income (D) (upper panel)
along with the quantile-quantile plot (lower panel) for each of them.
Lack of normal distribution fitting, either jointly or marginally, using
endogenous variables are apparent from both plots.

Based upon a general view of the data and also after consulting the subjects with some
econometrics experts in Statistical Center of Iran, the following SUR model was utilized to
express the inter-relationship between endogenous and exogenous variables:

GH = β0 +
4∑

i=1

βCiCi +
5∑

i=1

βBiBi + βAA + ε1,

D = γ0 +
4∑

i=1

γDiDi + ε2.(5.1)
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This model has been fitted through both frequentist and Bayesian approaches as well as
under the assumption of the normal (N) and skew-normal (SN) distributions for the errors.
Table 3 shows the estimates along with standard errors of the estimates. As seen, the table is
divided in three parts. The first row panel represents the quantities mentioned above for the
parameters of the first equation in (5.1). Similarly, those for the second equation appear in
the second row panel. Finally, the last row panel constitutes the estimates and their standard
errors for the components of the covariance matrix of the errors in (5.1) as well as those values
for the skewness parameters, if they are required. The important point to emphasize is that
we have only reported those estimates which were significant at %5 level. Hence, one does
not see some of the coefficients from the SUR model (5.1) in Table 3.

Table 3: The estimates along with standard errors of the estimates for the parameters of
the SUR model fitted through both frequentist and Bayesian approaches as well
as under assumption of the normal (N) and skew-normal (SN) distributions for
the errors in (5.1) for the Iranian cost and income data collected in year 2009.

Bayesian Frequentist

Parameter Estimation Standard error Estimation Standard error

N SN N SN N SN N SN

β0 −1.338 −1.581 0.030 0.017 −1.50 −1.34 0.047 0.006
βC1 0.048 0.026 0.006 0.003 0.036 0.040 0.009 0.001
βC2 0.056 0.045 0.006 0.004 0.082 0.046 0.010 0.002
βC3 0.070 0.047 0.007 0.004 0.106 0.059 0.011 0.004
βC4 −0.015 0.014 0.009 0.005 0.061 −0.024 0.014 0.004
βB1 0.006 0.001 0.001 0.001 0.003 0.003 0.0006 0.0001
βB2 0.004 0.002 0.001 0.001 0.004 0.002 0.0002 0.0005
βB3 0.531 0.304 0.016 0.009 0.649 0.531 0.024 0.013
βB4 0.509 0.281 0.032 0.018 0.689 0.490 0.051 0.032
βB5 0.011 0.049 0.012 0.007 0.064 0.031 0.018 0.0085
βA 0.236 0.180 0.016 0.009 0.276 0.137 0.025 0.0064

γ0 0 −0.514 0.004 0.0001 0 −0.103 0.025 0.0038
γD1 0.500 0.562 0.004 0.001 0.544 0.499 0.013 0.0039
γD2 0.467 0.498 0.004 0.002 0.503 0.487 0.013 0.0039
γD3 0.352 0.375 0.004 0.001 0.412 0.352 0.013 0.0039
γD4 0.030 0.030 0.004 0.002 0.033 0.030 0.013 0.0038

σ11 0.671 0.018 0.007 0.009 0.656 0.051 - -
σ21 0.129 0.001 0.004 0.002 0.084 0.009 - -
σ22 0.317 0.003 0.003 0.001 0.315 0.018 - -
λ1 - 1.194 - 0.007 - 1.181 - -
λ2 - 0.764 - 0.003 - 0.869 - -

Based upon results given at first row panel in Table 3, the number of literate, employees
and family size have a direct effect on total family gross cost. The usage of facilities, including
Private car, internet, gas and mobile, also has the positive impact on family gross cost. In other
words, the utilization of these services leads to an increase in family gross cost. However, if the
families are not using these items still there is an increment on cost too. The rationale behind
this surprising result comes from the SUR model in which those families would then pay for
other luxuries items. Finally, the age of the people who are in charge of the family cost and
also the area where the families live both leada to the positive effect on the gross cost.
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Now, let us analyze the result at the second row panel in Table 3. As seen, the incomes
from the agricultural and non-farm free businesses, other incomes and non-monetary gains
have direct effect on the family incomes. Furthermore, other non-monetary earning incomes
have less effect on the family incomes subject to other variables. Also, the effect of the
incomes from agricultural free businesses on the family incomes are high.

Some interesting results appear in the second row panel of Table 3. First, it is related
to the estimate of the intercept (γ0). Unlike the case for the skew-normal distribution, its
estimation is zero when assuming a normal density for the errors in the SUR model (5.1).
Second, as seen, the estimates for the components of the covariance matrix based on normality
assumption are somewhat bigger than those in the skew-normal case. Albeit, this needs more
considerations.

So far, the reader probably discovered a proper strategy to fit the SUR model (5.1) based
on the presented results. However, we are interested in selecting one of two methodologies and
distributional assumption for the errors through utilizing a sensible statistical measure. There
are several methods to choose the appropriate model among two possible candidates while
employing either Bayesian or frequentist statistical inferences methodologies. It is usually
accepted among statisticians that the Bayes factor criterion is a proper measure to compare
the performance of different candidate models while implementing a Bayesian methodology.
However, in utilizing the frequentist methodology, the researchers consider the log likelihood
and AIC criteria. To compare two candidate models L1 and L2 the Bayes factor is represented
by a quantity which is simply a ratio (see [22]). Precisely, suppose π(L1) and π(L2) are priors
for two models. Then, given the data D, the Bayes factor of model L1 w.r.t L2 is written as

B12 =
Pr(D|L1)
Pr(D|L2)

=
π(L1|D)
π(L2|D)

π(L1)
π(L2)

,(5.2)

where Pr(D|L) =
∫

f(D|L, θ)π(θ|D)dθ and θ = (β, γ, Σ, λ). However, because we are not
able to compute the joint posterior analytically this criteria cannot be employed here. [23]
proposed a method when there is no closed form for the posterior density. Following them,
if {θ}m

i=1 are samples from the posterior distribution of π(θ|D,L), we can write:

f (j+1)(D|L) =
km
1−k +

∑m
j=1

f(D|θ(j),L)

kf (j)(D|L)+(1−k)f(D|θ(j),L)

km
(1−k)f (j)(D|L)

+
∑m

j=1
1

kf (j)(D|L)+(1−k)f(D|θ(j),L)

,(5.3)

where k is a small value being in the interval (0, 1). To derive this quantity, we repeated our
analysis till achieving a reasonable convergence. In some small-scale numerical experiments,
we have discovered that the quantity (5.3) performed well for k as small as 0.01.

The logarithm of pseudo-marginal likelihood (LPML) is another criterion to select be-
tween two candidate models (see [14]). It is derived from predictive considerations, particu-
larly Conditional Predictive Ordinate (CPO), and leads to pseudo-Bayes factors for choosing
an optimal model. It is popular mainly due in part to its relative ease of computation making
the LPML a stable estimate base on the samples derived from any MCMC algorithm. Follow-
ing the [15] and assuming availability of the samples θ(1), ..., θ(s), obtained from corresponding
posterior, the i-th CPOi and LPML are, respectively, estimated as

1
CPOi

=
1
s

s∑
k=1

1
fi(yi|θ(k),M)

,(5.4)
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and

LPML =
n∑

i=1

log(CPOi).(5.5)

The LPML and BF quantities for both cases (N and SN) are reported in Table 4. As seen,
the value of LPML for SN is greater than that for N . Moreover, the ratio of BF for SN in
compare with the N model is relatively bigger and so indicating the superiority of SN again.
Although there are some debates on using these criteria under the frequentist view, we also
reported the estimates of the parameters for both N and SN cases just to have a basis for
seeing difference on utilizing two methodologies.

Following the results gained in analyzing this example, our recommendation is to con-
sider a skew-normal rather than the normal density for the error while using a SUR model
to analyze the Iran gross and income data collected in year 2009.

Table 4: The performance criteria of the SUR model (5.1) fitted using the
skew-normal distribution on the Iranian cost and income data
collected in year 2009.

Model
Bayesian Frequentist

BF LPML AIC Log likelihood

N 0.917 −59274.01 80925.15 −40443.57
SN 1.091 −34585.61 −124982.3 62512.15

6. CONCLUSION

When dealing with simultaneous relationship among variables, the SUR model is a
particular case of SEM. The frequentist inference utilized for the SUR model under the
skew-normal assumption or the error is very time consuming and also challenging to tackle.
Hence, a Bayesian inference implemented in the SUR model under skew-normal distribution
assumption for errors is developed in this paper. Regarding the model selection, the BF and
LPML criteria had some superiorities in choosing better model using our real data set as well
as in our simulation studies. Based on the results in this paper we can stat when data are
not symmetric, the SUR model accompanied with considering a skew-normal distribution for
the error performs well on fitting the data at least in comparison with invoking the normal
density.

In future study, we aim to investigate how the endogenous variables can improve the
estimation of the parameters in the SEMs while the errors follow the skew-normal distribu-
tions. Moreover, to plug in these structures into multilevel models is the way we are going to
extend our current research.
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A. APPENDIX

According to formula (2.8), full conditional posterior is given by

g(β•|Σ, D) ∝ L(D|β•,Σ)π1(β•) ∝ exp
{
− 1/2 tr(V Σ−1)

}
∝ exp

{
− 1/2

n∑
t=1

(yt• −Xt•β•)TΣ−1(yt• −Xt•β•)
}

∝ exp
{
− 1/2

n∑
t=1

[
− βT

•XT
t•Σ

−1 + βT
•XT

t•Σ
−1Xt•β• − yT

t•Σ
−1Xt•β•

]}
∝ exp

{
− 1/2

[
β• −

( n∑
t=1

XT
t•Σ

−1Xt•
)−1(

n∑
t=1

XT
t•Σ

−1yt•)
]T[ n∑

t=1

XT
t•Σ

−1Xt•
]

[
β• −

( n∑
t=1

XT
t•Σ

−1Xt•
)−1(

n∑
t=1

XT
t•Σ

−1yt•)
]}

.

(A.1)

So β• is multivariate normal with mean
( ∑n

t=1 XT
t•Σ

−1Xt•
)−1(

∑n
t=1 XT

t•Σ
−1yt•) and

covariance matrix
( ∑n

t=1 XT
t•Σ

−1Xt•
)−1. The full conditional posterior is derived as follows:

g(Σ|β•, D) ∝ L(D|β•,Σ)π1(Σ) ∝ |Σ|−(n+g+1)/2 exp
[
− 1/2 tr{V Σ−1}

]
.(A.2)

It is straightforward to check that this expression is proportional to an inverse Wishart
distribution with degrees of freedom n and scale covariance V .

Based on the prior density β• ∼ N(β◦, A−1
β◦

) and π(Σ) ∝ |Σ|−
g+1
2 , the posterior distri-

bution can easily be computed. However, it doesn’t have a closed form. Instead, the full
conditional posterior can be obtained using the expressions

g(β•|Σ, D) ∝ L(D|β•,Σ)π2(β•)

∝ |Σ|−
n
2 exp

{
− 1/2

[ n∑
t=1

(yt• −Xt•β•)TΣ−1(yt• −Xt•β•)

+ (β• − β◦)TAβ•(β• − β◦)
]}

∝ exp
{
− 1/2

[
βT
•
{( n∑

t=1

XT
t•Σ

−1Xt•
)

+ Aβ•

}
β•

− 2βT
•
{( n∑

t=1

XT
t•Σ

−1yt•
)

+ Aβ•β◦
}]}

∝ exp
{
− 1/2 (β• − β•)

TΣ−1
β• (β• − β•)

}
.(A.3)

Consequently β• given (Σ, D) is multivariate normal with mean

β• = Σβ•

[( n∑
t=1

XT
t•Σ

−1yt•
)

+ Aβ•β◦
]
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and covariance matrix

Σβ• =
[( n∑

t=1

XT
t•Σ

−1Xt•
)

+ Aβ•

]−1
.

Similarity, the full conditional posterior Σ|(β•, D) is given by

π(Σ|β•, D) ∝ L(D|β•,Σ)π2(Σ) ∝ |Σ|−(n+g+1)/2 exp
[
− 1/2 tr{V Σ−1}

]
.(A.4)

Seeing similarity of this expression to (A.2), the full conditional distribution Σ|(β•, D)
is inverse Wishart with degrees of freedom n and scale covariance V .

Recall: The probability density function for the random matrix X (n× p) that follows
the matrix normal distribution MNn×p

(
M,U, V

)
has the form

p
(
X|M,U, V

)
=

exp
(
− 1

2 tr
[
V −1(X −MT)U−1(X −M)

])
(2π)np/2|V |n/2|U |p/2

,(A.5)

where M is n× p, U is n× n and V is p× p matrices. Note that the matrix normal is linked
to the multivariate normal distribution in the following way:

X ∼ MNn×p

(
M,U, V

)
(A.6)

if and only if

Vec(X) ∼ N
(
Vec(M)np, V ⊗ U

)
,(A.7)

where Vec(M) denotes the vectorization of M .

Suppose that yt• ∼ SN
(
Xt•β•

)
. According to stochastic representations of multivariate

skew-normal distribution (see [1]), we have

yt• = λ� |z0|+ z1,(A.8)

where � denotes Hadamard product, z0 ∼ N
(
0g, Ig

)
, z1 ∼ N

(
X•tβ•,Σ

)
and also z0 and z1

are independent. Thus, (
z0

z1

)
∼ N

( (
0

Xt•β•

)
,

(
Ig 0
0 Σ

) )
.(A.9)

Thus, the conditional distribution yt• given z0 leads to

yt•|z0 ∼ N
(
λ� |z0|+ Xt•β•,Σ

)
.(A.10)

The full conditional posterior distribution of all parameters are determined based on
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(A.10). So, for β•|
(
Σ, λ, z0, D

)
, we have

π
(
β•|Σ, λ, z0, D

)
∝ L(yt•|z0,Σ, λ, β•)π(β•)

∝ |Σ|−
n
2 exp

{
− 1

2

n∑
t=1

(
yt• − [λ� |z0|+ Xt•β•]

)TΣ−1

(
yt• − [λ� |z0|+ Xt•β•]

)}
× |Σβ◦ |−

1
2 exp

{
(β• − β◦)TΣ−1

β◦
(β• − β◦)

}
∝ exp

{
− 1

2
[
βT
• (

n∑
t=1

XT
•Σ−1XT

• + Σ−1
β◦

)β•

− 2βT
• (

n∑
t=1

XT
•Σ−1y• −

n∑
t=1

XT
•Σ−1λ� |z0|+ Σ−1

β◦
β◦)

]}
∝ exp

{
− 1

2
(β• − β̃•)TΣ̃−1

β•
(β• − β̃•)

}
.(A.11)

Consequently, β•|
(
Σ, λ, z0, D

)
is multivariate normal with mean

β̃• = Σ̃β•(
n∑

t=1

XT
•Σ−1y• −

n∑
t=1

XT
•Σ−1λ� |z0|+ Σ−1

β◦
β◦)

and covariance

Σ̃β• = (
n∑

t=1

XT
•Σ−1XT

• + Σ−1
β◦

)−1.

Similarly, the full conditional posterior distribution Σ|
(
β•, λ, z0, D

)
is computed: i.e.

π
(
Σ|β•, λ, z0, D

)
∝ L(yt•|z0,Σ, λ, β•)π(Σ)

∝ |Σ|−
n
2 exp

{
− 1

2

n∑
t=1

(
yt• − [λ� |z0|+ Xt•β•]

)TΣ−1

(
yt• − [λ� |z0|+ Xt•β•]

)}
× |Σ|−

g+1
2

∝ |Σ|−
n+g+1

2 exp
{
− 1

2
tr(RΣ−1)

}
,(A.12)

where R =
∑n

t=1

(
yt• − [λ� |z0|+ Xt•β•]

)(
yt• − [λ� |z0|+ Xt•β•]

)T. So

Σ|
(
β•, λ, z0, D

)
∼ IW (R,n),

where IW (·, ·) denotes the inverse Wishart distribution.

Suppose

Z∗
0 =


|Z01 | 0 ... 0

0 |Z02 | ... 0
...

...
. . .

...
0 0 ... |Z0g |


g×g

.
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Now, we can write λT � |z0|T = λTZ∗
0 . Then, the full conditional λ|

(
β•,Σ, z0, D

)
is given by

π
(
λ|Σ, β•, z0, D

)
∝ L(yt•|z0,Σ, λ, β•)π(λ)

∝ |Σ|−
n
2 exp

{
− 1

2

n∑
t=1

(
yt• − [λ� |z0|+ Xt•β•]

)TΣ−1

(
yt• − [λ� |z0|+ Xt•β•]

)}
× |Λ0|−

1
2 exp

{
(λ− λ0)TΛ−1

0 (λ− λ0)
}

∝ exp
{
− 1

2
[
λT(nZ∗

0Σ−1Z∗
0 + Λ−1

0 )λ

− 2λT(
n∑

t=1

Z∗
0Σ−1yt• −

n∑
t=1

Z∗
0Σ−1Xt•β• + Λ−1

0 λ0)
]}

∝ exp
{
− 1

2
(λ− λ̃)TΛ̃−1(λ− λ̃)

}
.(A.13)

As a result, the full conditional distribution λ|
(
β•,Σ, z0, D

)
is multivariate normal with

mean

λ̃ = Λ̃(
n∑

t=1

Z∗
0Σ−1yt• −

n∑
t=1

Z∗
0Σ−1Xt•β• + Λ−1

0 λ0)

and covariance

Λ̃ = (nZ∗
0Σ−1Z∗

0 + Λ−1
0 )−1.

Suppose ∆ = diag(λ1, ..., λg), such that λ� |z0| = ∆|z0|. Then, the full conditional
distribution |z0| given

(
β•,Σ, λ,D

)
is determined as

π
(
|z0|

∣∣∣Σ, β•, λ,D
)
∝ L(yt•|z0,Σ, λ, β•)π(|z0|)

∝ |Σ|−
n
2 exp

{
− 1

2

n∑
t=1

(
yt• − [∆|z0|+ Xt•β•]

)TΣ−1

(
yt• − [∆|z0|+ Xt•β•]

)}
× exp

{
− n

2
|z0|TIg|z0|

}
∝ exp

{
− 1

2
[
|z0|T(n∆Σ−1∆ + Ig)|z0|

− 2|z0|T(
n∑

t=1

∆Σ−1yt• −
n∑

t=1

∆Σ−1Xt•β•)
]}

∝ exp
{
− 1

2
(|z0| − z̃0)TΨ−1

z (|z0| − z̃0)
}
.(A.14)

Consequently the full conditional posterior distribution is TN(z̃0,Ψz, (0,+∞)) where

z̃0 = Ψz(
n∑

t=1

∆Σ−1yt• −
n∑

t=1

∆Σ−1Xt•β•)

and

Ψz = (n∆Σ−1∆ + Ig).
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Here, TN
(
µ,Σ; (a, b)

)
stands for the multivariate truncated normal distribution N(µ,Σ) lying

within the interval (a, b),−∞ ≤ a < b ≤ +∞.

Hadmard Product:

For two matrices, A, B, of the same dimension, m× n the Hadamard product, A�B,
is a matrix, of the same dimension as the operands, with elements given by (A�B)i,j =
(A)i,j · (B)i,j , writing as [9](

a11 a12

a21 a22

)
�

(
b11 b12

b21 b22

)
=

(
a11b11 a12b12

a21b21 a22b22

)
.(A.15)
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