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1. INTRODUCTION

In wireless communications, systems with multiple-input-multiple-output (MIMO) de-
sign have become very popular since they allow higher bit rate and because of their appli-
cations in the analysis of signal-to-noise ratio (SNR). In the analysis of channel capacity,
the formation of complex channel coefficients play a deterministic role and been taken to be
complex matrix variate normal distributed so far, to the best of our knowledge. However, this
normality assumption has not been challenged. [17] mentioned that the Rayleigh density func-
tion is usually derived based on the assumption that from the central limit theorem for large
number of partial waves, the resultant process can be decomposed into two orthogonal zero-
mean and equal-standard deviation normal random processes. This is an approximation and
the restriction of complex normal is unnecessary — it is not always a large number of interfer-
ing signals. Thus a more general assumption than complex matrix variate normal may not be
that far from reality (see also [12]). This speculative research challenges this assumption of a
channel being fed by normal inputs, and sets the platform for introducing our newly proposed
models to the MIMO wireless systems arena, and to provide deeper insight into these systems.

The performance of these MIMO systems relies on the quadratic form of the complex
normal channel matrix, with n “inputs” and p “outputs”, colloquially referred to as “receivers”
and “transmitters” respectively. Thus, the distribution of quadratic forms of the underlying
complex normal channel matrix is of particular interest. Distributions of quadratic forms
of complex normal matrix variates is a topic that has been studied to a wide extent in
literature ([7], [6], [15]). In this paper the distribution of S = XHAX is of interest1, where
X ∈ Cn×p

1 is taken to be the complex matrix variate elliptical distribution to address the
criticism against the questionable use of the normal model (A ∈ Cn×n

2 , where Cn×p
1 denotes

the space of n×p complex matrices, and Cp×p
2 denotes the space of Hermitian positive definite

matrices of dimension p). This complex matrix variate elliptical distribution, which contains
the well-studied complex matrix variate normal distribution as a special case, is defined next.

The complex matrix variate X ∈ Cn×p
1 , whose distribution is absolutely continuous,

has the complex matrix variate elliptical distribution with parameters M ∈ Cn×p
1 , Φ ∈ Cn×n

2 ,
Σ ∈ Cp×p

2 , denoted by X ∼ CEn×p(M ,Φ⊗Σ, g), if it has the following density function2 (see
also [10]):

(1.1) hX(X) =
1

|Σ|n |Φ|p
g
[
− tr

(
Σ−1(X−M)H Φ−1(X−M)

)]
.

In (1.1), g(·) denotes the density generator3 g : R+→R+, which should be a function of a
quadratic form (see also [6]).

[2] and [6] demonstrates that real elliptical distributions can always be expanded as an
integral of a set of normal densities. Similar to [13], we present the following lemma to define
the complex matrix variate elliptical distribution as a weighted representation of complex
matrix variate normal density functions. This representation can be used to explore the
distribution of S when the distribution of X can be that of any member of the complex
matrix variate elliptical class.

1 XH denotes the conjugate transpose of X.
2 |X| denotes the determinant of matrix X.
3 R+ denotes the positive real line.
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Lemma 1.1. If X ∼ CEn×p(M ,Φ⊗Σ, g) with density function hX(X), then there

exists a scalar weight function W(·) on R+ such that

hX(X) =
∫

R+

W(t)fCNn×p(M ,Φ⊗t−1Σ)

(
X |t

)
dt ,

where4 fCNn×p(M ,Φ⊗t−1Σ)(X|t) = 1
πpn|Φ|p |t−1Σ|n etr

[
−
(
tΣ−1(X−M)H Φ−1(X−M)

)]
is the

density function of X|t ∼ CNn×p(M ,Φ⊗ t−1Σ), with

W(t) = πnp t−npL−1
{

g
[
− tr

(
Σ−1(X−M)H Φ−1(X−M)

)]}
,

where L is the Laplace transform operator.

Proof: Let s = tr
(
Σ−1(X−M)H Φ−1(X−M)

)
. Using (1.1) we have

hX(X) = |Σ|−n |Φ|−p g [−s]

= |Σ|−n |Φ|−p L
[
W(t) π−np tnp

]
= |Σ|−n |Φ|−p

∫
R+

W(t) π−np tnp e−ts dt

=
∫

R+

W(t) π−np
∣∣t−1Σ

∣∣−n |Φ|−p e−ts dt ,

from where the result follows.

Remark 1.1. Under the assumptions of Lemma 1.1, using Fubbini’s Theorem, we
have

1 =
∫

Cn×p
1

hX(X) dX =
∫

R+

W(t)

 ∫
Cn×p

1

fX(X) dX

dt =
∫

R+

W(t) dt .

Thus for a non-negative weight function W(·), the function W(·) is a density function of t.
Therefore Lemma 1.1 can only be interpreted as a representation of a scale mixture of complex
matrix variate normal distributions. However, W(·) is not always positive and can be negative
on some domains (see [13] for some examples). The only limitation of Lemma 1.1 is that it
defines those complex matrix variate elliptical distributions whose inverse Laplace transform
exist. There are some mild sufficient conditions that ensure the inverse Laplace transform
exists for most of the well-known complex matrix variate elliptical distributions.

In this paper two special cases of the complex matrix variate elliptical model is of
interest. Firstly, the complex random matrix X ∈ Cn×p

1 has the complex matrix variate
normal distribution with weight function W(·) in Lemma 1.1 given by

(1.2) W(t) = δ (t− 1) ,

where δ(·) is the Dirac delta function (see [2] and [13]).

4 etr(·) = etr(·) where tr(X) denotes the trace of matrix X, and X−1 denotes the inverse of matrix X.
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Secondly, X ∈ Cn×p
1 has the complex matrix variate t distribution with the param-

eters M ∈ Cn×p
1 , Φ ∈ Cn×n

2 , Σ ∈ Cp×p
2 and degrees of freedom υ > 0, denoted by X∼

Ctn×p(M ,Φ⊗Σ, υ), with the following density function:

(1.3) fX(X) =
υnp CΓ(np + υ)

πnp CΓp(υ)

{
1 +

1
υ

tr
(
Σ−1(X−M)H Φ−1(X−M)

)}−(np+υ)

,

where the complex multivariate gamma function is given by (see [7])

(1.4) CΓp(a) = π
1
2
p(p−1)

p∏
i=1

Γ
(
a− (i− 1)

)
.

In this case the weight function W(·) in Lemma 1.1 is given by

(1.5) W(t) =
(tυ)υ e−tυ

t Γ(υ)
,

where Γ(·) denotes the well-known gamma function.

This paper is organized as follows: in Section 2 the distribution of the quadratic form
within the complex elliptical class for the nonsingular- and singular case is derived, along
with the density functions of the eigenvalues of these quadratic forms. The distribution of
the eigenvalues of the quadratic forms are of particular interest in the MIMO environment
as it describes the underlying distribution for many of the performance measures for these
MIMO systems. In Section 3 this newly developed theory in the complex elliptical class
is used to evaluate the capacity of MIMO wireless systems for a specific channel environ-
ment; by particularly assuming the complex matrix variate t distribution. Furthermore, a
Rayleigh-type distribution stemming from the underlying elliptical assumption, is also de-
fined. Section 4 highlights the advantages of the complex matrix variate t distribution in the
MIMO environment and includes some conclusions.

2. DISTRIBUTIONS OF QUADRATIC FORMS FROM THE COMPLEX
ELLIPTICAL CLASS

In this section the necessary theoretical development is presented to set the platform for
Section 3. The density functions of the nonsingular and singular quadratic forms of complex
elliptical random matrices are derived and particular cases of them are of special focus. In
addition, the density functions for the joint eigenvalues are also derived; these densities are
of particular importance when calculating performance measures of MIMO systems. For the
reader’s convenience, Remark 2.1 provides background regarding matrix spaces.

Remark 2.1. Matrix spaces: The set of all n×p (n≥p) matrices, E, with ortho-
normal columns is called the Stiefel manifold, denoted by CVp,n. Thus CVp,n =

{
E (n×p) ;

EHE = Ip

}
. The volume of this manifold is given by Vol (CVp,n) =

∫
CVp,n

(
EHdE

)
= 2p πnp

CΓp(n) .

If n = p then a special case of the Stiefel manifold is obtained, the so-called unitary manifold,
defined as CVn,n =

{
E (n×n) ;EHE = In

}
≡ U(n) where U(n) denotes the group of unitary

n×n matrices. The volume of U(n) is given by Vol
(
U(n)

)
=
∫

U(n)

(
EHdE

)
= 2n πn2

CΓn(n) .
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2.1. Nonsingular case

Theorem 2.1. Suppose that n≥ p and X ∼ CEn×p(0,Φ⊗Σ, g), and let Φ,A ∈ Cn×n
2

and Σ ∈ Cp×p
2 . Then the quadratic form S = XHAX ∈ Cp×p

2 has the integral series complex

Wishart-type (ISCW) distribution with density function

(2.1) fS(S) =
|S|n−p G(S)

CΓp(n) |ΦA|p |Σ|n
,

where

G(S) =
∫

R+

tnp
0CF (p)

0 (B,−tΣ−1S)W(t) dt

and B = A− 1
2 Φ−1A− 1

2 . This distribution is denoted as S ∼ ISCWp(n,Φ⊗Σ,G(·)), where

0CF (p)
0 (·, ·) denotes the complex hypergeometric function with two Hermitian matrix argu-

ments (see [7], [9]).

Proof: From Lemma 1.1, X|t ∼ CN(0,Φ⊗ t−1Σ). The result follows from Theorem 1
of [15] and integrating with respect to the weight function W(t).

Remark 2.2. We know that if X ∼ CNn×p (0,Φ⊗Σ) then XHAX has the complex
matrix variate quadratic distribution, denoted by CQn×p (A,Φ⊗Σ). Assuming that X ∼
CEn×p (0,Φ⊗Σ, g), it then follows from Lemma 1.1 that

S = XHAX
d= ZHAZ , where Z|t ∼ CNn×p

(
0,Φ⊗ t−1Σ

)
,

with
ZHAZ |t ∼ CQn×p

(
A,Φ⊗ t−1Σ

)
.

Therefore
fS (S) =

∫
R+

W(t) fCQn×p(A,Φ⊗t−1Σ)

(
ZHAZ |t

)
dt .

Particular cases of the density function (2.1) will be focussed on, since they form part
of the investigation in Section 3.

Remark 2.3. If A = In and Φ = In then S ∈ Cp×p
2 has the complex Wishart-type

distribution with the following density function

(2.2) fS(S) =
|S|n−p G(S)
CΓp(n) |Σ|n

,

where
G(S) =

∫
R+

tnp etr
(
−tΣ−1S

)
W(t) dt .

If Σ = σ2Ip (thus, uncorrelated with variance σ2), (2.2) simplifies to

fS(S) =
|S|n−p G(S)
CΓp(n) σ2np

,

where
G(S) =

∫
R+

tnp etr
(
−t σ−2S

)
W(t) dt .
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Next, an expression for the density function of the joint eigenvalues of S = XHAX is
given, when S ∼ ISCWp (n,Φ⊗Σ,G(·)) (see (2.1)).

Theorem 2.2. Suppose that S∼ ISCWp (n,Φ⊗Σ,G(·)), and let λ1 > λ2 > ···> λp > 0
represent the ordered eigenvalues of S∈Cp×p

2 . Then the eigenvalues of S, Λ= diag(λ1,λ2,...,λp),
has density function5

f(Λ) = K

∫
R+

tnp

∫
E∈U(p)

0CF (p)
0

(
B,−tΣ−1EΛEH

)
dEW(t) dt(2.3)

= K

∫
R+

tnp
∞∑

k=0

∑
κ

CCκ(B)
k!Cκ(In)

CCκ

(
−tΣ−1

)
CCκ(Λ)

Cκ(Ip)
W(t) dt ,(2.4)

where B = A− 1
2 Φ−1A− 1

2 and K =
πp(p−1)

�
pQ

i=1
λn−p

i

� 
pQ

k<l
(λk−λl)

2

!

CΓp(n) CΓp(p) |ΦA|p |Σ|n .

Proof: Using Eq. 93 of [7] and (2.1), the joint density function of the eigenvalues
λ1 > λ2 > ... > λp > 0 of S is given by

f(Λ) =
πp(p−1)

(
p∏

k<l

(λk − λl)
2

)
|Λ|n−p

CΓp(n) CΓp(p) |ΦA|p |Σ|n

∫
E∈U(p)

G(EΛEH) dE .

By using Definition 2.6 from [3], (2.4) follows directly.

Particular cases of the density function in (2.3) are focussed on next, since they form
part of the investigation in Section 3.

Remark 2.4. If A = In and Φ = In then the joint density function of the eigenvalues
of the complex Wishart-type distribution, f(Λ), simplifies to

(2.5) f(Λ) =
πp(p−1)

(
p∏

i=1
λn−p

i

)(
p∏

k<l

(λk − λl)
2

)
CΓp(n) CΓp(p) |Σ|n

∫
R+

tnp
0CF (p)

0

(
Λ,−tΣ−1

)
W(t) dt .

If Σ = σ2Ip (thus, uncorrelated with variance σ2), (2.5) simplifies to

f(Λ) =
πp(p−1)

(
p∏

i=1
λn−p

i

)(
p∏

k<l

(λk − λl)
2

)
CΓp(n) CΓp(p) σ2np

∫
R+

tnp exp

(
−t σ−2

p∑
i=1

λi

)
W(t) dt .

Remark 2.5. It is known that expressions containing hypergeometric functions of
matrix argument and zonal polynomials may be cumbersome to compute, and that software
packages have limitations to handle such computations. In this paper only cases with specific
interest in MIMO systems will be focussed on. The reader is referred to [1], [5], and [9] for
some analytical expressions to compute such hypergeometric functions of matrix arguments.

5 CCκ(Z) denotes the complex zonal polynomial of Z corresponding to the partition κ = (k1, ..., kp), k1 ≥
··· ≥ kp ≥ 0, k1 + ···+ kp = k and

P
κ denotes summation over all partitions κ.
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The following table gives the density function for the special cases (see (2.2) and (2.5))
for the complex matrix variate normal and complex matrix variate t distribution (see (1.5))
case respectively. The expressions for the complex matrix variate normal case reflects the
results of [7].

Table 1: Density functions of certain cases of complex matrix variate
elliptical quadratic form.

Distribution of X Density function

fS(S) (see (2.2))

Normal
�
CΓp(n) |Σ|n

�−1 |S|n−p etr(−Σ−1S)

t
�
Γ(υ) CΓp(n) |Σ|n

�−1
υυ |S|n−p Γ(np + υ) (trΣ−1S + υ)(np+υ)

f(Λ) (see (2.5))

Normal

�
CΓp(n) CΓp(p) |Σ|n

�−1
πp(p−1)

�
pQ

i=1

λn−p
i

�

×
�

pQ
k<l

(λk−λl)
2

�
0CF (p)

0 (Λ,−Σ−1)

t

�
CΓp(n) CΓp(p) |Σ|n Γ(υ) υnp

�−1

πp(p−1)

�
pQ

i=1

λn−p
i

�

×
�

pQ
k<l

(λk−λl)
2

�P∞
k=0

P
κ

CCκ(−Σ−1) CCκ(Λ)

υk k! Cκ(Ip)
Γ(np + υ + k)

2.2. Singular case

In this section the singular case of the quadratic form of the complex matrix variate
elliptical distribution is also considered, where 0 < n < p.

Theorem 2.3. Suppose that 0 < n < p and X ∼ CEn×p(0,Φ⊗Σ, g), and let Φ,A ∈
Cn×n

2 and Σ ∈ Cp×p
2 . Let Λ = diag(λ1, λ2, ..., λp). Then the quadratic form S = XHAX ∈

Cp×p
2 has the integral series complex singular Wishart-type (ISCSW) distribution with density

function

(2.6) fS(S) =
πn(n−p) |Λ|n−p G(S)
CΓn(n) |ΦA|p |Σ|n

,

where

G(S) =
∫

R+

tnp
0CF (n)

0

(
B,−tΣ−1S

)
W(t) dt

and B = A− 1
2 Φ−1A− 1

2 . This distribution is denoted as S ∼ ISCSWn(p,Φ⊗Σ,G(·)).

Proof: See that

f(X) =
∫

R+

tnp |ΦA|−p |Σ|−n π−np etr
(
−tBXΣ−1XH

)
W(t) dt ,
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where X|t ∼ CN
(
0,Φ⊗ t−1Σ

)
. Let XHA

1
2 = E1ΥH (where A

1
2 A

1
2 = A), and note S =

XHA
1
2 A

1
2 X = E1ΥHHHΥEH

1 = E1Υ2EH
1 = E1ΛEH

1 (where Υ2 = Λ). From Remark 2.1
follows:

f(S) =
π−np |Λ|n−p

CΓn(n) |ΦA|p |Σ|n

∫
CVn,n

∫
R+

tnp
0CF (n)

0

(
B,−tΣ−1S

)
W(t) dt dH ,

from where the result follows after some simplification.

Particular cases of the density function (2.6) will be focussed on, since they form part
of the investigation in Section 3.

Remark 2.6. If A = In and Φ = In, then S has the complex singular Wishart-type
distribution with the following density function

(2.7) fS(S) =
πn(n−p) |Λ|n−p G(S)

CΓn(n) |Σ|n
,

where
G(S) =

∫
R+

tnp etr
(
−tΣ−1S

)
W(t) dt .

If Σ = σ2Ip (thus, uncorrelated with variance σ2), (2.7) simplifies to

fS(S) =
πn(n−p) |Λ|n−p G(S)

CΓn(n) σ2np
,

where
G(S) =

∫
R+

tnp etr
(
−tσ−2S

)
W(t) dt .

Next, expressions for the density function of the joint eigenvalues for the singular case
are derived.

Theorem 2.4. Suppose that 0 < n < p and S ∼ ISCSWn(p,Φ⊗Σ,G(·)) (see (2.6)),

and let λ1 > λ2 > ... > λn > 0 represent the ordered eigenvalues of S. Then the joint distri-

bution of the eigenvalues of S, Λ = diag(λ1, λ2, ..., λp), has density function

f(Λ) =
πn(n−1)

(
n∏

i=1
λp−n

i

)(
n∏

k<l

(λk − λl)
2

)
CΓn(n) CΓn(p) |ΦA|p |Σ|n

×
∫

R+

tnp

∫
CVp,n

0CF (n)
0

(
B,−tΣ−1EΛEH

)
(dE)W(t) dt ,

(2.8)

where B = A− 1
2 Φ−1A− 1

2 .

Proof: Consider a partial spectral decomposition where S = EΛEH , where E ∈ CVp,n.
The transformation from S to E,Λ has volume element

(dS) = (2π)−n
∣∣Λn−p

∣∣−2
n∏

k<l

(λk − λl)
2 (dΛ)

(
EHdE

)
.
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Therefore, from (2.6) and Remark 2.1:

f(Λ) =
πn(n−p)

CΓn(n) |ΦA|p |Σ|n
(2π)−n

∣∣Λn−p
∣∣−2 |Λ|n−p

(
n∏

k<l

(λk − λl)

)2

×
∫

R+

tnp

∫
CVp,n

0CF (n)
0

(
B,−tΣ−1

2 EΛEH
) (

EHdE
)
W(t) dt

and the result follows.

Some special cases of the density function in (2.8) are reported next.

Remark 2.7. If A = In and Φ = In, then the joint density function of the eigenvalues
of the complex singular Wishart type distribution, f(Λ), simplifies to the following density
function:

(2.9) f(Λ) =
πn(n−1)

(
n∏

i=1
λp−n

i

)(
n∏

k<l

(λk − λl)
2

)
CΓn(n) CΓn(p) |Σ|n

∫
R+

tnp
0CF (n)

0

(
Λ,−tΣ−1

)
W(t) dt.

If Σ = σ2Ip (thus, uncorrelated with variance σ2), (2.7) simplifies to

f(Λ) =
πn(n−1)

(
n∏

i=1
λp−n

i

)(
n∏

k<l

(λk − λl)
2

)
CΓn(n) CΓn(p) σ2np

∫
R+

tnp exp

(
−t σ−2

n∑
i=1

λi

)
W(t) dt .

The following table gives the density function for the special cases (see (2.7) and (2.9))
for weight functions (1.2) and (1.5) respectively.

Table 2: Density functions of certain cases of complex singular matrix
variate elliptical quadratic form.

Distribution of X Density function

fS(S) (see (2.7))

Normal
�
CΓn(n) |Σ|n

�−1
πn(n−p) |Λ|n−p etr(−Σ−1S)

t
�
Γ(υ) CΓn(n) |Σ|n

�−1
υυ πn(n−p) |Λ|n−p Γ(np + υ) (trΣ−1S + υ)−(np+υ)

f(Λ) (see (2.9))

Normal

�
CΓn(n) CΓn(p) |Σ|n

�−1
πn(n−1)

�
nQ

i=1

λp−n
i

�

×
�

nQ
k<l

(λk−λl)
2

�
0CF (n)

0 (Λ,−Σ−1) (see Eq. 25 in [14])

t

�
CΓn(n) CΓn(p) |Σ|n Γ(υ) υnp

�−1

πn(n−1)

�
nQ

i=1

λp−n
i

�

×
�

nQ
k<l

(λk−λl)
2

�P∞
k=0

P
κ

CCκ(−Σ−1) CCκ(Λ)

υk k! Cκ(Ip)
Γ(np + υ + k)
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3. CHANNEL CAPACITY

Suppose that a communication system is being characterized by the following output
relation, as depicted in Figure 1:

y = Hx + v ,

where y,v ∈ Cnr×1
1 , x ∈ Cnt×1

1 and H ∈ Cnr×nt
1 . In a correlated Rayleigh channel, the dis-

tribution of an nr×nt channel matrix H is usually given by H ∼ CNnr×nt(0, Inr⊗Σ) with
nr ≥ nt (in other words, the channel coefficient from different transmitter antennas to a sin-
gle receiver antenna is correlated), and note that the off-diagonal elements of Σ ∈ Cnt×nt

2 are
nonzero for correlated channels. Suppose that the channel matrix H and noise vector v are
independently distributed according the complex matrix variate elliptical and complex mul-
tivariate normal distributions, respectively, in other words, H ∼ CEnr×nt(0, Inr⊗Σ, g), and
v ∼ CNnr×1(0, σ2Inr). In this section, the focus is to derive the channel capacity capacity if
H ∼ Ctnr×nt(0, Inr⊗Σ, υ), with the weight function (1.5).

Figure 1: MIMO System.

The input power is distributed equally over all transmitting antennas and is constrained
to ρ (the signal to noise ratio) such that (see [15])

E(xHx) ≤ ρ .

For the purpose of this paper we are particularly interested in Rayleigh distributed channels.
However, having an underlying complex matrix variate elliptical distribution for H results
in having to consider a Rayleigh-type channel which is defined next.

Proposition 3.1. Consider a complex elliptical process, Z = X + iY , where X, Y are

independent and identically zero-mean elliptical random variates. Let R =
√

X2 + Y 2 denote

an element hij of H. The density function of R emanating from the complex elliptical class

is given by

h(r) =
r

σ2

∫
R+

t exp
(
− r2

2 σ2 t−1

)
W(t) dt ,

where r > 0, which is described as a Rayleigh-type density function (see also [11]).
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Moreover, if a block-fading model is assumed together with coding over many indepen-
dent fading intervals, then the ergodic capacity of the random MIMO channel is given by
(see [18])

C = EH

(
log
∣∣∣∣(Int +

ρ

nt
HHH

)∣∣∣∣
)

= EΛ

(
log

nt∏
k=1

(
1 +

ρ

nt
λk

))
,

(3.1)

where λ1 > ... > λnt are the eigenvalues of S. Hence (3.1) can be evaluated using the joint den-
sity functions of the eigenvalues ((2.3) and (2.8) respectively). In the following two sections,
the channel capacity is derived for the nonsingular- and singular case, for both correlated-
and uncorrelated cases.

3.1. Nonsingular case

In this section the assumption is that the complex channel coefficients are distributed
according to the complex matrix variate t distribution. To this end, we first consider the more
general complex matrix variate elliptical distribution and subsequently derive the results for
the complex matrix variate t distribution. We firstly derive the expressions for the channel
capacity of a correlated- and uncorrelated Rayleigh-type nr×2 channel environment when the
underlying distribution is complex matrix variate elliptical. In particular, a two-input (nt=2),
nr output communication system is considered and the capacity graphically illustrated.

Theorem 3.1.

1. For a two-input correlated Rayleigh-type channel H ∼ CEnr×2(0, Inr⊗Σ, g), with

nr ≥ 2, the capacity C is given by

C =
(a1a2)

nr

Γ(nr) Γ(nr − 1) (a1 − a2)

∞∫
0

log
(
1 +

ρ

2
λ1

)

×

λnr−1
1 Γ(nr − 1) a

−(nr−1)
2

∫
R+

tnr exp(−ta1λ1)W(t) dt

− λnr−1
1 Γ(nr − 1) a

−(nr−1)
1

∫
R+

tnr exp(−ta2λ1)W(t) dt

− λnr−2
1 Γ(nr) a−nr

2

∫
R+

tnr−1 exp(−ta1λ1)W(t) dt

+ λnr−2
1 Γ(nr) a−nr

1

∫
R+

tnr−1 exp(−ta2λ1)W(t) dt

 dλ1 ,

(3.2)

where a1 > a2 are the ordered eigenvalues of the diagonalized covariance matrix Σ.
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2. For a two-input uncorrelated Rayleigh-type channel H ∼ CEnr×2(0, Inr⊗ σ2I2, g),
with nr ≥ 2, the capacity C is given by

C =

∞∫
0

log
(
1 +

ρ

2
λ1

)
∫

R+

λnr
1 tnr+1 exp

(
−t σ−2λ1

)
W(t)

2 Γ(nr) σ2
dt

−
∫

R+

λnr−1
1 tnr exp

(
−t σ−2λ1

)
W(t)

Γ(nr − 1)
dt

+
∫

R+

λnr−2
1 tnr−1 Γ(nr + 1) exp

(
−t σ−2λ1

)
W(t)

2 Γ(nr − 1) σ−2
dt

 dλ1 .

(3.3)

Proof: 1. The unordered density function of (2.5) is obtained by dividing by p! =
nt! = 2!:

f(λ1, λ2) =
(λ1λ2)

nr−2 (λ1 − λ2) (a1a2)
nr

2! Γ(nr) Γ(nr − 1) (a2 − a1)

∫
R+

t2nr−1
∣∣exp(−t aiλj)

∣∣W(t) dt ,

since from (1.4) we have CΓ2(2) = π Γ(2) Γ(1), CΓ2(nr) = π Γ(nr) Γ(nr − 1), and using an
expression for the complex hypergeometric function by [8]. Then∣∣exp(−t aiλj)

∣∣ =

∣∣∣∣∣ exp(−t a1λ1) exp(−t a1λ2)
exp(−t a2λ1) exp(−t a2 λ2)

∣∣∣∣∣
= exp

(
−t(a1λ1 + a2λ2)

)
− exp

(
−t(a1λ2 + a2λ1)

)
.

From (3.1) the capacity for a correlated Rayleigh-type fading model of dimension nr×2 under
the complex matrix variate elliptical distribution is given by

C = 2
∫ ∞

0
log
(
1 +

ρ

2
λ1

)∫ ∞

0
f(λ1, λ2) dλ2 dλ1

= K

∫ ∞

0
log
(
1 +

ρ

2
λ1

)∫ ∞

0

(
λnr−1

1 λnr−2
2 − λnr−2

1 λnr−1
2

)
×
∫

R+

t2nr−1
(
exp
(
−t (a1λ1 + a2λ2)

)
− exp

(
−t (a1λ2 + a2λ1)

))
W(t) dt dλ2 dλ1

= K

∫ ∞

0
log
(
1 +

ρ

2
λ1

) ∫
R+

t2nr−1

∫ ∞

0

(
λnr−1

1 λnr−2
2 − λnr−2

1 λnr−1
2

)
×
(
exp
(
−t (a1λ1 + a2λ2)

)
− exp

(
−t (a1λ2 + a2λ1)

))
dλ2W(t) dt dλ1 ,

where K = (a1a2)nr

Γ(nr) Γ(nr−1) (a2−a1) . The latter integral equals

λnr−1
1 exp(−ta1λ1) Γ(nr−1) (ta2)

−(nr−1) − λnr−1
1 exp(−ta2λ1) Γ(nr−1) (ta1)

−(nr−1) −
− λnr−2

1 exp(−ta1λ1) Γ(nr) (ta2)
−nr + λnr−2

1 exp(−ta2λ1) Γ(nr) (ta1)
−nr

by using Eq. 3.381.4 from [4]. Result (3.2) follows.

2. The proof follows similarly where Σ = σ2I2.

A particular focus is that of an underlying complex matrix variate t distribution, there-
fore the weight function (1.5) is substituted into (3.2) and (3.3) to obtain the corresponding
capacity.
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Corollary 3.1.

1. For a two-input correlated Rayleigh-type channel, H ∼ Ctnr×2(0, Inr⊗Σ, υ), with

nr ≥ 2, the capacity is given by

C =
anr

1 a2 υυ Γ(nr + υ)
(a1 − a2) Γ(υ) Γ(nr)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−1

1 (a1λ1 + υ)−(nr+υ) dλ1

− a1anr
2 υυ Γ(nr + v)

(a1 − a2) Γ(υ) Γ(nr)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−1

1 (a2λ1 + υ)−(nr+υ) dλ1

− anr
1 υυ Γ(nr + υ − 1)

(a1 − a2) Γ(υ) Γ(nr − 1)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−2

1 (a1λ1 + υ)−(nr+υ−1) dλ1

+
anr

2 υυ Γ(nr + υ − 1)
(a1 − a2) Γ(υ) Γ(nr − 1)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−2

1 (a2λ1 + υ)−(nr+υ−1) dλ1 .

(3.4)

2. For a two-input uncorrelated Rayleigh-type channel, H ∼ Ctnr×2(0, Inr ⊗σ2I2, υ),
with nr ≥ 2, the capacity C is given by

C =
υυ Γ(nr + υ + 1)

σ2 Γ(υ) Γ(nr)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr

1

(
λ1

σ2
+ υ

)−(nr+υ+1)

dλ1

− 2 υυ Γ(nr + υ)
Γ(υ) Γ(nr − 1)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−1

1

(
λ1

σ2
+ υ

)−(nr+υ)

dλ1

+
υυ Γ(nr +υ−1) Γ(nr +1)

σ−2 Γ(υ) Γ(nr − 1)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−2

1

(
λ1

σ2
+ υ

)−(nr+υ−1)

dλ1 .

Figure 2: (3.4) against nr for different values of ρ.
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Figure 2 shows the calculated channel capacity (3.4) versus nr for different values of ρ,
assuming a correlation of 0.9, σ2 = 1, and υ = 10.

Figure 3 shows the calculated channel capacity (3.5) versus nr for different values of ρ,
assuming a correlation of 0, σ2 = 1, and υ = 10.

Figure 3: (3.5) against nr for different values of ρ.

Table 3 shows the capacity in nats6 for this nr×2 correlated Rayleigh-type fading chan-
nel matrix (as illustrated in Figure 2). Table 4 shows the capacity in nats for this nr×2 uncor-
related Rayleigh-type fading channel matrix (as illustrated in Figure 3). Each column repre-
sents different levels of SNR, in decibels (dB). Observe how the capacity is increasing in both
Tables 3 and 4 with regards to increasing SNR, as well as increasing number of receivers nr.

Table 3: Capacity (3.4) in nats for a nr×2 system for different values of ρ and υ = 10.

nr 0 dB 5dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB

2 1.2916 2.0609 3.3057 4.8558 6.6852 8.7821 10.9059 13.1656

4 1.9816 2.9984 4.5956 6.5129 8.6450 10.8836 13.1643 15.4598

6 2.4582 3.6126 5.3811 7.4294 9.6327 11.9010 14.1924 16.4914

8 2.8266 4.0737 5.9455 8.0592 10.2922 12.5715 14.8665 17.1666

10 3.1289 4.4445 6.3856 8.5381 10.7872 13.0721 15.368 17.6696

12 3.3862 4.7550 6.7460 8.9240 11.1831 13.4713 15.7691 18.0700

14 3.6105 5.0222 7.0506 9.2467 11.5125 13.8028 16.1012 18.4021

16 3.8095 5.2564 7.3141 9.5234 11.7939 14.0856 16.3842 18.6850

18 3.9882 5.4646 7.5456 9.7650 12.0988 14.3313 16.6298 18.9303

20 4.1502 5.6515 7.7414 9.9786 12.2547 14.5476 16.8458 19.1458

6 In (3.4) if loge is used then the measurement unit for capacity is termed “nats”.
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Furthermore, note how the capacity for the uncorrelated case (Table 4) is higher for all
corresponding entries than that of the correlated case (Table 3). The same is observed for
other arbitrarily chosen υ.

Table 4: Capacity (3.5) in nats for a nr×2 system for different values of ρ and υ = 10.

nr 0 dB 5dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB

2 1.4843 2.4498 4.0298 5.9281 8.0291 10.2403 12.5045 14.7941

4 2.4402 3.7860 5.7830 7.9676 10.2292 12.5184 14.8167 17.1179

6 3.1083 4.6148 6.7334 8.9714 11.2528 13.5486 15.8490 18.1509

8 3.6156 5.2064 7.3788 9.6373 11.9256 14.2237 16.5284 18.8269

10 4.0228 5.6647 7.8668 10.1360 12.4279 14.7270 17.0285 19.3307

12 4.3622 6.0382 8.2591 10.5948 12.8287 15.1285 17.4302 19.7325

14 4.6583 6.3532 8.5869 10.8670 13.1623 15.4625 17.7643 20.0668

16 4.9069 6.6253 8.8684 11.1516 13.4479 14.7484 18.0503 20.3525

18 5.1324 6.8648 9.1149 11.4004 13.6974 15.9981 18.3000 20.6022

20 5.3350 7.0785 9.3342 11.6214 13.9189 16.2197 18.5215 20.8237

3.2. Singular case

For the singular case, the correlated- and uncorrelated Rayleigh-type 2×nt channel
matrix is considered, and its corresponding capacity derived.

Theorem 3.2.

1. For a two-input correlated Rayleigh-type channel, H ∼ CE2×nt(0, I2⊗Σ, g), with

nt ≥ 2, the capacity C is given by

C = K

∞∫
0

λ1∫
0

{
log
(
1 +

ρ

nt
λ1

)
+ log

(
1 +

ρ

nt
λ2

)}
(λ1λ2)

nt−2 (λ1 − λ2)

×
∫

R+

tnt+1 det
(
exp(−taiλj)

)
W(t) dt dλ2 dλ1 ,

(3.5)

where K =

ntQ
i=1

a2
i

2 Γ(nt) Γ(nt−1)
ntQ

k<l
(al−ak)

, and a1 > a2 > ... > ant > 0 are the eigenvalues

of Σ−1.

2. For a two-input uncorrelated Rayleigh-type channel, H ∼ CE2×nt(0, I2⊗σ2Int , g),
with nt ≥ 2, the capacity C is given by

C =
1

σ2nt+2 Γ(nt)

∞∫
0

log
[
1 +

ρ

nt
λ1

]
λnt

1

∫
R+

tnt+1 exp
(
−t σ−2λ1

)
W(t) dt dλ1

− 2
σ2nt Γ(nt − 1)

∞∫
0

log
[
1 +

ρ

nt
λ1

]
λnt−1

1

∫
R+

tnt exp
(
−t σ−2λ1

)
W(t) dt dλ1

+
Γ(nt + 1)

σ2nt−2 Γ(nt) Γ(nt−1)

∞∫
0

log
[
1+

ρ

nt
λ1

]
λnt−2

1

∫
R+

tnt−1 exp
(
−t σ−2λ1

)
W(t) dt dλ1 .

(3.6)
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Proof: 1. The unordered density function of (2.9) is obtained by dividing by n! =
nr! = 2!:

f(λ1, λ2) =
π2(2−1)

(
2∏

i=1
λnt−2

i

)(
2∏

k<l

(λk − λl)
2

)
2 CΓ2(2) CΓ2(nt) |Σ|2

∫
R+

t2nt
0CF (2)

0

(
Λ,−tΣ−1

)
W(t) dt .

In the same way as Theorem 3.1, integrating with respect to λ2 and calculating the expecta-
tion of (3.1) leads to the final result.

2. The proof follows similarly where Σ = σ2I2.

Corollary 3.2.

1. For a two-input correlated Rayleigh-type channel, H ∼ Ct2×nt(0, I2⊗Σ, ν), with

nt ≥ 2, the capacity C is given by

C = K
υυ

Γ(υ)

∞∫
0

λ1∫
0

{
log
(

1 +
ρ

nt
λ1

)
+ log

(
1 +

ρ

nt
λ1

)}
(λ1λ2)

nt−2 (λ1 − λ2)

×
∫

R+

tnt+υ e−tυ det
(
exp(−t aiλj)

)
dt dλ2 dλ1 ,

(3.7)

where K =

ntQ
i=1

a2
i

2 Γ(nt) Γ(nt−1)
ntQ

k<l
(al−ak)

, and a1 > a2 > ... > ant > 0 are the eigenvalues

of Σ−1.

2. For a two-input uncorrelated Rayleigh-type channel, H ∼ Ct2×nt(0, I2 ⊗ σ2Int , υ),
with nt ≥ 2, the capacity C is given by

C =
υυ Γ(nt + υ + 1)
σ2nt+2 Γ(υ) Γ(nt)

∞∫
0

log
[
1 +

ρ

nt
λ1

]
λnt

1

(
λ1

σ2
+ υ

)−(nt+υ+1)

dλ1

− 2 υυ Γ(nt + υ)
σ2nt Γ(υ) Γ(nt − 1)

∞∫
0

log
[
1 +

ρ

nt
λ1

]
λnt−1

1

(
λ1

σ2
+ υ

)−(nt+υ)

dλ1

+
υυ Γ(nt +υ−1) Γ(nt +1)

σ2nt−2 Γ(υ) Γ(nt) Γ(nt−1)

∞∫
0

log
[
1+

ρ

nt
λ1

]
λnt−2

1

(
λ1

σ2
+ υ

)−(nt+υ−1)

dλ1 .

(3.8)

Figure 4 shows the calculated channel capacity (3.7) (correlation 0.9) and (3.8) (no
correlation) versus SNR (ρ) for nt = 4 and υ = 10. Figure 5 illustrates the higher capacity
for the underlying complex matrix variate t distribution versus the complex matrix variate
normal distribution for the correlated nonsingular case.
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Figure 4: (3.7) and (3.8) against ρ, for nt = 4.

Figure 5: (3.4) and Eq. (29) from [16] against nr, for ρ, υ = 10.
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4. CONCLUDING REMARKS

In this paper the distribution of the quadratic form and its associated joint eigenval-
ues with an underlying complex matrix variate elliptical model was derived. The proposed
methodology is based on an integral representation that provides the researcher with expres-
sions for allowing other underlying models than that of the normal, providing new insightful
research possibilities. Some special cases were highlighted with the well-known Wishart dis-
tribution as a special case when the complex matrix variate normal distribution is under
consideration. Another special case is that of no correlation; this case is of specific interest
in the performance measure of channel capacity in the MIMO environment.

In particular the complex matrix variate t distribution was applied and the literature
is enriched with its representation. The channel capacity within the MIMO environment is
investigated for correlated and uncorrelated scenarios in the nonsingular and singular cases.
It is observed that

(1) Correlation between transmitters/receivers degrade system capacity; and

(2) The capacity of the system is higher in the case of underlying complex matrix vari-
ate complex t distribution than that compared to an underlying complex matrix
variate normal distribution.

When no correlation exists between receivers, the well-known central limit theorem can
be assumed which results in H ∼ CNnr×nt(0, Inr⊗Σ). However, this paper provides new
possibilities in the wireless communications systems environment with the elliptical platform.
In particular, the complex matrix variate t distribution is considered (as the t is a familiar
candidate when placed alongside the normal). These numerical examples (see Figure 5) of
the channel capacity show that the derived expressions under the complex matrix variate t

distribution provide significant insights on the behaviour of performance measures when the
assumption of the complex matrix variate normal distribution is challenged.

If the receivers and transmitters are correlated simultaneously, i.e. H∼CNnr×nt(0,Φnr⊗
Σnt), then the well-known central limit theorem does not apply. In that case the complex ma-
trix variate elliptical distribution may provide greater flexibility in this regard. Although the
results in this paper are presented for the Inr⊗Σ and related cases, in the case of Φnr⊗Σnt

the covariance structure can be adapted to Inr⊗Σ via a transformation.
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1. INTRODUCTION

Quantiles fully describe univariate probability distributions and may be very useful
for statistical inference. Scalar random variables and their quantiles can often be expected
to depend on some influential factors whose precise impact can be analyzed in the quantile
regression framework, introduced in [23] and surveyed in [22]. Under weak moment assump-
tions, it models the entire conditional distribution of interest and not only its mean as the
least squares approach. Therefore, it can reliably reveal even subtle changes in the condi-
tional distribution that usually remain hidden in a conventional statistical analysis despite
their possibly very important consequences. In fact, it is the tails of such conditional distribu-
tions that often contain much useful information and are thus very interesting for researchers
in various fields such as finance and insurance, meteorology and climatology, labor and public
economics, reliability and quality management, developmental studies, and medicine.

The everyday reality is usually intrinsically multivariate, and its successful analysis
thus asks for multivariate quantiles. Unfortunately, they cannot be defined in a universally
acceptable way because there exists no canonical way of ordering multivariate points and
because all the attractive properties of univariate quantiles cannot be met simultaneously
in a single multivariate quantile concept. Consequently, there already exist dozens of dif-
ferent multivariate quantile proposals that are usually based on data depth or spatial ranks,
norm minimization or M-estimation, inversion of mappings, gradients, or generalized quantile
processes; see, e.g., [33] for an overview.

Despite the abundance of the literature on multivariate quantiles (also called location
quantiles), their regression generalizations are still scarce; see [18]. They may be either para-
metric (when the overall regression dependence is supposed to have a particular functional
form), or nonparametric (when the overall dependence pattern is unknown). In the latter
case, it is often possible to assume that the regression dependence is locally polynomial, which
opens the door to the spline or locally polynomial (or, kernel) approach. Therefore, it makes
perfect sense to call multivariate regression quantiles after the way they were obtained as
parametric, nonparametric, or locally polynomial, for example. On the one hand, the para-
metric regression approach requires relatively strong assumptions regarding the particular
form of regression dependence, on the other hand, it allows for general designs and implies
standard consistency rates of related estimators (unlike its nonparametric competitors).

Most of the existing definitions of multivariate regression quantiles follow a directional
strategy. They first define directional regression quantiles as simple objects (typically points
or hyperplanes) and then use the directional objects for all directions to construct the result-
ing multivariate regression quantile (contour or region). The promising parametric proposals
presented in [15, 16] and [29] are quite representative of this category and lead to the same
multivariate regression quantile regions. Therefore, they will be considered as an established
parametric golden standard and used as a benchmark hereinafter. They define a polyhedral
multivariate regression quantile as the intersection of all directional regression quantile halfs-
paces of the same quantile level. They are implementable by means of [30, 31] and [2, 3], and
applied, e.g., in [34] and [35]. The other proposals with directional flavor include [8], [25], [6],
[9], [37], [26], [14], [7] and [4].

The alternative approach is not directional but direct (or, global) because it defines
multivariate regression quantiles and related contours and regions directly, i.e., without any
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auxiliary directional construction. Apart from the very recent (but not affine equivariant)
proposal of [5] inspired by [10], this category mainly includes various regression extensions
of the two proposals of multivariate quantiles with elliptical shapes (or, elliptical quantiles)
that were presented in [20] and [21]. The former proposal was motivated by linear quantile
regression, included even a heuristic definition of locally constant elliptical quantiles, and
employed only convex optimization that turned out very useful for its analysis. Unfortunately,
it could not be extended within its convex optimization setting to include robust or flexible
parametric regression quantiles, which is why the latter generalized multivariate elliptical
quantile concept was proposed as a remedy in [21]. It could not rely on convex optimization
any more, but, on the other hand, it was very general and even covered the former approach
as a special case, after a suitable reparametrization.

Now the parametric regression extension of the generalized multivariate elliptical quan-
tiles of [21] is discussed, investigated, and illustrated here in a very general nonlinear het-
eroscedastic framework. An important particular case with unique features has been briefly
introduced in [17] together with its examination by means of convex analysis. It is nicely
complemented with the general theory derived in this article.

It should also be mentioned for the sake of completeness, that the generalized parametric
elliptical regression quantiles considered here bear some similarity to multivariate regression
S-estimators and their modifications (see, e.g., [1], [36], and [32]) that are not used for defining
multivariate regression quantiles but also result from some location-scale or regression-scale
models where the determinant of the shape-defining matrix plays a crucial role.

As the parametric elliptical regression quantiles also roughly order the regression space,
they remotely resemble the depth-like notions for regression observations (see, e.g., [15], [29],
[34], and [14]).

In [21], the generalized multivariate elliptical quantiles have been shown useful for
symmetric distributions and highly competitive with the benchmark introduced above for
elliptical distributions. Their parametric regression extensions appear to preserve most of
their properties, but they should also be used only if their conditionally elliptical shape is
acceptable and, ideally, if the conditional distribution is at least centrally symmetric, which
is fortunately the case of all widely used error distributions. Then they are roughly on par
with the benchmark in terms of natural nestedness, equivariance properties, and the ability
to change with the quantile level and to capture the symmetry or ellipticity of the underlying
conditional distribution.

However, the generalized parametric elliptical regression quantiles then also excel in
other important aspects. Indeed, unlike the benchmark,

(1) they can easily incorporate homoscedasticity and many other types of a priori
information regarding their conditional scales, shapes, and centers,

(2) their quantile levels can correspond directly to their probability content,

(3) they can be parametrized flexibly and very naturally by means of their conditional
centers, shape matrices, and inflation (scaling) factors (whose estimates seem very
useful for goodness-of-fit tests or for statistical inference regarding conditional
location, dispersion, symmetry, or ellipticity),

(4) they can be quite robust to outliers,
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(5) they can work well even in complicated cases involving nonlinear trend or het-
eroscedasticity, and

(6) their computation can be feasible even in the sample cases involving moderate
dimensions and large data sets.

In fact, their development seems motivated by the lack of a multivariate regression quantile
concept with such a combination of favorable properties. Of course, some of them hold only
under certain assumptions on the joint distribution of responses and regressors and on the
parametrization of the model. Nevertheless, (1), (3), and (6) are totally out of reach of any
directional multivariate quantile regression method.

Most of the following text only clarifies and demonstrates the vaguely stated properties
of the generalized elliptical regression quantiles (and the conditions of their validity). As
they generally do not result from convex optimization, their computation in the sample case
may be quite complicated and their uniqueness may not be guaranteed. Nevertheless, they
must be unique in certain special cases including those of [17], and such a possible ambiguity
is common to many popular robust or nonlinear estimators. It might even be viewed as a
positive feature in some cases involving multimodal conditional distributions that may arise
easily in the context of mixtures; see, e.g., [12]. Until the uniqueness issues are satisfactorily
resolved, it is nevertheless recommended to use the generalized parametric elliptical regression
quantiles cautiously, to experiment with various initial values for their computation in the
sample case, and to prefer linearity in their parametrization whenever possible.

Although the generalized parametric elliptical regression quantiles presented here are
still somewhat rigid due to the ellipticity woven into their definition, they are definitely worthy
of wide attention and careful investigation because there is apparently no other multivariate
quantile regression methodology enabling joint parametric nonlinear modeling of both trend
and heteroscedasticity without any specific distributional assumptions. It seems that the
parametric elliptical quantile regression presented here has great potential and that it could be
used with benefits for vector responses in the same fields as the univariate quantile regression
or wherever else the whole conditional response distributions or their tails or covariance
structures are of interest. That is to say that (various) multivariate regression quantiles have
already proved very useful in several instances, e.g., in investigating the dependence

(1) of a few kinds of expenditures on the total income [5],

(2) of both systolic and diastolic blood pressures on age [6] or on age and BMI [9],

(3) of sales growth and sales profitability on the creativity test score in evaluating the
performance of salespersons [6],

(4) of weight and height on age [37, 26],

(5) of a few product characteristics on the time of production to take the tool wear
into consideration in the definition of a precision index [35],

(6) of length/height or weight and head circumference on age [27],

(7) of female thigh and calf maximum girths on age, height, weight or BMI [15, 14],

(8) of male life expectancy and death rate on the GNP per capita [29], or

(9) of a few financial time series [11, 4].

Some of the cited articles describe the application and its benefits in detail and should be
consulted in case of any remaining doubts.
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This article further proceeds as follows. Section 2 presents necessary notation and
introduces the definition of generalized elliptical regression quantiles, Section 3 studies their
basic properties in the population case, Section 4 discusses their parametrization, Section 5
uses them to classify multivariate heteroscedasticity, Section 6 deals with their computation in
the sample case, Section 7 proposes some tools for their validation, Section 8 illustrates them
with a few carefully designed demo examples, Section 9 applies them to a referential biometric
dataset, and concluding Section 10 comments on the previous results and achievements.
Applied statisticians reading the article for the first time may skip the text after Definition 2.1
and go directly to Section 4 or 8.

2. DEFINITIONS AND NOTATION

Consider a general regression setup where an m-variate stochastic vector of responses
Y =

(
Y (1), ..., Y (m)

)′ ∈ Rm is to be explained with the aid of the corresponding p-variate
regressor Z ∈ Rp, and (Y ′,Z ′)′ has an absolutely continuous distribution with a density
differentiable almost everywhere.

Recall that the standard location and regression quantiles of [23] can be defined for any
τ ∈ (0,1) by means of the non-negative convex real-valued check function ρτ (t) = t

(
τ− I(t<0)

)
= max

{
(τ −1)t, τ t

}
with a unique minimum. This function was also used in [20, 21] for

defining two types of location elliptical quantiles. Here the second proposal is extended to a
general parametric regression setup.

The next definition is rather complicated because it deals with the whole class of para-
metric elliptical regression quantiles indexed by quantile levels (τ) and certain monotone
functions (g), and because the natural parameters characterizing the shape of possible ellipti-
cal regression quantile contours (εg,τ ) themselves depend on a common parameter vector (θ).
Only its optimal value (θτ ) resulting from a minimization problem is used in the definition.

Definition 2.1. For any τ ∈ (0, 1) and any function g specified below, the para-
metric elliptical regression τ -g-quantile (contour) εg,τ (Y ,Z) and the corresponding lower
and upper parametric τ -g-quantile regression regions E−g,τ (Y ,Z) and E+

g,τ (Y ,Z) can be de-
fined by means of the shape (matrix), trend (vector), and scale (scalar) quantile parameters
Aτ (θ,z) ∈ Rm×m, sτ (θ,z) ∈ Rm, and cτ (θ,z) ∈ R depending on z ∈ Rp as well as on a com-
mon parameter vector θ = (θ1, ..., θq)′ ∈ Rq:

εg,τ (Y ,Z) =
{

(y,z) ∈ Rm+p : hτ (θτ ,y,z) = 0
}

,

E−g,τ (Y ,Z) =
{

(y,z) ∈ Rm+p : hτ (θτ ,y,z) < 0
}

,

E+
g,τ (Y ,Z) =

{
(y,z) ∈ Rm+p : hτ (θτ ,y,z) ≥ 0

}
,

where
hτ (θ,y,z) = g

((
y − sτ (θ,z)

)′ Aτ (θ,z)
(
y − sτ (θ,z)

))
− cτ (θ,z) ,

g(t) : [0,∞) 7→ [0,∞) is a suitable strictly increasing smooth function such that g(0) = 0, and
θτ minimizes the objective function

(OF) Ψτ (θ) = E ρτ

(
hτ (θ,Y ,Z)

)
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over the whole parametric space Θτ ⊂ Rq, Θτ = Θ◦
τ , subject to a regularity constraint on Aτ

ensuring that Aτ (θ,z) ∈ Rm×m is always symmetric positive definite (its choice is discussed
below). The definition also tacitly assumes that the expectation in (OF) is finite and that its
partial derivatives with respect to θ are exchangeable with the expectation sign.

The sets εg,τ (Y ,Z) ∩
{
(y,z) ∈ Rm+p : z = z0

}
, defined for any fixed z0 ∈ Rp, will be

conveniently called elliptical τ -g-quantile z0-cuts.

As far as the terminology is concerned, all the quantile-related adjectives, prefixes,
indices, and arguments may be omitted on condition that they are either clear from the
context or irrelevant to the statement being made.

Note that all the regression τ -g-quantile z0-cuts are ellipsoids and that their definition
resembles that of multivariate elliptical quantiles of [21] if Aτ , sτ , and cτ are independent of
z and the regularity constraint is of the form det Aτ (θ,z) = 1. This constraint seems optimal
for achieving the best possible equivariance properties of the resulting elliptical regression
τ -quantile entities and also from the statistical point of view, see [28], which is why it is
exclusively considered here. This does not necessarily imply complete uselessness of all the
other possible regularizations based on the eigenvalues of either Aτ itself or of its product
with a positive regressor-dependent scale factor; see [20] for some alternatives.

The definition of multivariate elliptical regression τ -g-quantiles is obviously very gen-
eral. First of all, it allows for very general trend and heteroscedastic patterns with possible
nonlinearity in unknown parameters and with arbitrary τ -dependence of g, q, Θτ , and the
specifications for Aτ , sτ , and cτ . It also permits quite general interdependencies between Aτ ,
sτ , and cτ thanks to their common dependence on the same parametric vector. Nevertheless,
it is recommended that practitioners invoke simplicity and linearity whenever possible and
reduce the use of interdependencies to the absolute minimum.

Of course, if there is any information regarding θτ available in advance, then it can be
used advantageously in the optimization of (OF). This might also give rise to some multipliers
that could be useful for statistical inference like θτ , Ψτ (θτ ), Aτ (θτ ,z), sτ (θτ ,z), and cτ (θτ ,z),
possibly considered as functions of τ and g. That is to say that the choice of g matters in
general and may have a huge impact on required moment assumptions as well as on the
robustness and rigidity of the resulting elliptical regression quantile contours. In fact, the
parametrization of quantile characteristics Aτ , sτ , and cτ is so important that it is repeatedly
discussed throughout the next sections.

Unfortunately, the parametric elliptical regression τ -quantiles are not uniquely defined
in the instances when Ψτ (θ) attains multiple global minima, which is typical of all nonlinear
regression estimators; see [21] for a slightly more detailed discussion of that in the generic
multivariate case.

If the lack of robustness is not an issue, then gI(t) = t seems the best choice because it
can often be reasonably expected to minimize the number of local minima of (OF) as well as
the overall computational burden. This choice also produces the very special uniquely defined
elliptical regression quantiles described and illustrated in [17]. If robustness is of high priority,
then one should choose either g(t) = tα for α < 1 to preserve affine equivariance or perhaps g

equal to a simple, bounded, and easy to compute function behaving like the identity function
close to zero. However, if α < 0.5 or g is bounded, then the objective function (OF) may
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easily become misbehaving. This is why such choices cannot be recommended before such
behavior and its consequences are fully clarified.

Obviously, the elliptical regression quantiles handle response outliers better than the de-
sign ones, because their robustness to design outliers may remain in question even for a bounded
g due to the possible negative impact of cτ (θ,z). This defect is unpleasant although cτ (θ,z)
unbounded in z need not always spoil the robustness too much and although it can be bounded
easily by means of a suitable parametrization; see Figure 3 for a result of such an attempt.

The definition of the parametric elliptical regression quantiles is so general that one can
hardly say anything special about them without further assumptions. The next section at-
tempts to point out some of their favorable properties without sacrificing too much generality.
The following terminology then comes in handy.

Definition 2.2. The parametrization of the elliptical regression τ -g-quantiles is called:

• separable if θ = (θ′s,θ
′
A,θ′c)

′ and sτ (θ), Aτ (θ), and cτ (θ) really depend solely on
θs, θA, and θc, respectively;

• reducible in sτ if sτ (θ,z) = s0
τ + s1

τ (θ,z) where s1
τ is some function, and s0

τ is an
m-dimensional subvector of θ in which Aτ (θ), cτ (θ), and s1

τ (θ) are constant;

• reducible in cτ if cτ (θ,z) = c0
τ + c1

τ (θ,z) where c1
τ is some function, and c0

τ is a
scalar subvector of θ in which sτ (θ), Aτ (θ), and c1

τ (θ) are constant;

• admissible if there exists θ0
τ ∈ Θτ such that

sτ (θ0
τ ,z) = s0

τ (z), Aτ (θ0
τ ,z) = A0

τ (z), and cτ (θ0
τ ,z) = c0

τ (z)

for almost all z where s0
τ (z), A0

τ (z), and c0
τ (z) describe a multivariate elliptical

τ -g-quantile of the conditional distribution of Y given Z = z, as defined in [21].
It means that s0

τ (z), A0
τ (z), and c0

τ (z) jointly minimize the expectation (with respect
to the conditional distribution)

EY |Z=z ρτ

(
g
(
(Y −s)′A(Y −s)

)
− c
)

subject to the constraints that A is positive semidefinite and det(A) = 1.

The parametrization is therefore admissible if there exists θ0
τ ∈ Θτ such that the z-cuts

of the corresponding elliptical regression τ -g-quantile are equal to multivariate τ -g-quantiles
of the conditional distributions of Y given Z = z for almost all z.

Example 2.1. Consider τ ∈ (0, 1) and (Y ′,Z ′)′ with a multivariate normal distribu-
tion or with a multivariate elliptical distribution having all required moments finite. Then
any separable parametrization of elliptical regression τ -g-quantiles such that

1. Aτ (θ,z), θ ∈ Θτ , does not depend on z and may become any positive definite
matrix with unit determinant,

2. sτ (θ,z), θ ∈ Θτ , includes any affine function of z, and

3. cτ (θ), θ ∈ Θτ , does not depend on z and may attain any positive value,

is admissible for any permitted g if it leads to the uniquely defined elliptical regression
τ -g-quantile; see [13] and Theorem 3.5 below.
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3. BASIC PROPERTIES

The justification for elliptical regression quantiles is based on their good properties
in the special location case, resulting from the necessary gradient conditions of [21]. The
conditions play such a prominent role that they deserve to be paraphrased below using current
terminology:

Theorem 3.1. Consider the special location case (without regressors) when (Y ′,Z ′) =
Y ′ and the parameters sτ , Aτ , and cτ are constant. Then the elliptical τ -g-quantiles must

satisfy the necessary conditions (1) to (4) of [21] that translate to

1 = det(Aτ ) ,(3.1)

0 = P
(
(Y ′,Z ′)′ ∈ E−g,τ

)
− τ ,(3.2)

0 =
1

1− τ
E
[
γRτ I[(Y ′,Z′)′∈E+

g,τ ]

]
− 1

τ
E
[
γRτ I[(Y ′,Z′)′∈E−g,τ ]

]
,(3.3)

and

Lτ
det(Aτ )
τ(1− τ)

A−1
τ =

1
1− τ

E
[
γRτR

′
τ I[(Y ′,Z′)′∈E+

g,τ ]

]
− 1

τ
E
[
γRτR

′
τ I[(Y ′,Z′)′∈E−g,τ ]

]
,(3.4)

where Aτ is assumed symmetric positive semidefinite, Lτ is the Lagrange multiplier cor-

responding to the constraint −det(Aτ ) + 1 = 0, Rτ = Y − sτ , ġ(t) := ∂g(t)/∂t, and γ =
ġ(R′

τAτRτ ).

The probability interpretation of the location elliptical quantiles then results from (3.2).
If g = gI , then γ = 1 and the conditions simplify considerably and become easy to interpret;
see [21] for further details.

In the general regression context considered here, sτ , Aτ , and cτ may depend on z

and on the common underlying parameter θ. Consequently, one should derive (OF) as a
compound function and the derivatives of sτ , Aτ , and cτ with respect to θ should also enter
the scene.

If the properties of elliptical regression quantiles should naturally generalize those of
the location ones, then only separable parametrizations reducible both in cτ and sτ should
be considered.

The next theorem summarizes some obvious special cases.

Theorem 3.2. If the parametrization of the elliptical regression τ -quantiles

• is reducible in cτ , then (3.2) holds;

• is reducible in sτ with z-independent Aτ , then (3.3) holds;

• is separable and cτ = θ′Lz + cI
τ (θc,z) where θL is a subvector of θc in which cI

τ is

constant, then

0 =
1

1− τ
E
[
Z I[(Y ′,Z′)′∈E+

g,τ ]

]
− 1

τ
E
[
Z I[(Y ′,Z′)′∈E−g,τ ]

]
.
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Assume that all the three conditions are satisfied. Then the population parametric
elliptical regression quantiles have a clear probability interpretation, E−g,τ is nonempty for
τ > 0, and the centers of probability mass of E−g,τ (Y ,Z) and E+

g,τ (Y ,Z) have the same
z-coordinates. The second claim then meaningfully links the probability mass centers of
scaled residuals γ(Y − sτ (θτ ,Z)) corresponding to the regression observations in E−g,τ (Y ,Z)
and E+

g,τ (Y ,Z).

Every reasonable multivariate quantile regression concept should also exhibit good
equivariance properties. The parametric elliptical quantile regression need not be an ex-
ception in this regard. What really matters is how sτ (θτ ), Aτ (θτ ), and cτ (θτ ) change with
the transformations of Y , and this follows directly from the location case of [21].

Definition 3.1. The parametrization of elliptical regression τ -g-quantiles is called
affine equivariant if g(t) = tr for some r > 0 and if, for any a ∈ Rm, any regular m×m

matrix B (with determinant d), and any θ ∈ Θτ , there exists θB,a,d ∈ Θτ such that

Aτ (θB,a,d,z) = d2
(
B−1

)′Aτ (θ,z) B−1 ,(3.5)

sτ (θB,a,d,z) = a + Bsτ (θ,z) ,(3.6)
and

cτ (θB,a,d,z) = g
(
d2g−1

(
cτ (θ,z)

))
(3.7)

for all z. If (3.5), (3.6) and (3.7) hold for d = 1, then the parametrization is called shift and
rotation equivariant, even if g is not a polynomial.

Theorem 3.3. If the parametrization of elliptical regression τ -quantiles is affine equiv-

ariant, then the resulting elliptical regression τ -quantiles are affine equivariant. If it is shift

and rotation equivariant, then the resulting elliptical regression τ -quantiles are shift and

rotation equivariant.

Proof: If θ ∈ Θτ minimizes (OF) for random vector (Y ′,Z ′)′ ∈ Rm+p, then corre-
sponding θB,a,d ∈ Θτ from the above definition of the equivariant parametrization obviously
minimizes (OF) for random vector

(
(a + BY )′,Z ′)′ ∈ Rm+p for any a ∈ Rm and any regular

m×m matrix B with determinant d.

In other words, if the elliptical regression τ -quantile of (Y ′,Z ′)′ is parametrized with
Aτ , sτ , and cτ by means of an affine equivariant parametrization, then the elliptical regres-
sion τ -quantile of

(
(a + BY )′,Z ′)′ can be parametrized with d2

(
B−1

)′AτB−1, a + Bsτ , and
g
(
d2g−1

(
cτ (θ,z)

))
.

The graph of Ψτ (θ) crucially influences the process of optimization. The following
consequences of convex calculus might serve as a guidance for choosing g and minimizing the
troubles with the optimization of Ψτ (θ).

Theorem 3.4. Assume a separable parametrization of the elliptical regression

τ -g-quantiles with θ = (θ′s,θ
′
A,θ′c)

′.

• If g = gI , then Ψτ is convex in Aτ .

• If cτ is linear in θc, then Ψτ (θ) is convex in θc.
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In fact, g = gI may easily lead to uniquely defined parametric elliptical regression quan-
tiles; see [17].

Generally speaking, the good properties of multivariate elliptical quantiles extend to
the elliptical regression quantiles with admissible and affine equivariant parametrizations.

Theorem 3.5. Let τ ∈ (0, 1) and f(y,z) = f1(y|z) f2(z) be the density of (Y ′,Z ′)′ ∈
Rm+p where f2(z) is the marginal density of Z and f1(y|z) is the regularized version of the

density of the conditional distribution of Y given Z = z that is assumed to exist.

If the parametrization Aτ (θ,z), sτ (θ,z), and cτ (θ,z) of the elliptical regression

τ -quantile is admissible, then there exists θτ ∈ Θτ minimizing (OF). If for any orthonormal

matrix O there exists θ̃τ (O) ∈ Θτ such that Aτ (θ̃τ (O),z) = O′Aτ (θτ ,z) O, cτ (θ̃τ (O),z) =
cτ (θτ ,z), and sτ (θ̃τ (O),z) = µ(z) + O′(sτ (θτ ,z)−µ(z)

)
for the particular µ appearing be-

low, and

[1] if f1(y|z) = f1

(
µ(z) + O(y−µ(z)) |z

)
for some function µ = (µ1, ..., µm)′ and

for an orthonormal matrix O = O−1′ , then there exists an elliptical regression

τ -quantile parametrized with Aτ (θ̃τ (O),z), sτ (θ̃τ (O),z), and cτ (θ̃τ (O),z).

If the elliptical regression τ -quantile is moreover uniquely defined, then

[2] if sτ (θτ ,z) = (s1, ..., sm)(z)′, Aτ (θτ ,z) = (aij(z))m
i,j=1, and f1(y|z) = f1

(
µ(z) +

J(y − µ(z)) |z
)

for all z and a sign-change matrix J = J′ = J−1 = diag(j1, ..., jm)
with diagonal elements ±1, then si(z) = µi(z) whenever ji = −1, i ∈ {1, ...,m},
and aij(z) = 0 whenever ji jj =−1, i, j ∈ {1, ...,m};

[3] if all the conditional distributions of Y given Z = z are centrally symmetric around

their center of symmetry µ(z), then sτ (θτ ,z) = µ(z);

[4] if all the conditional distributions of Y given Z = z centered with µ(z) are sym-

metric around a common hyperplane H, then sτ (θτ ,z)− µ(z) lies on H;

[5] if all the conditional distributions of Y given Z = z centered with µ(z) are sym-

metric along a common axis o, then sτ (θτ ,z)− µ(z) lies on that axis.

Proof: As for [1], the assumed admissible parametrization guarantees that there exists
θτ ∈Θτ such that Aτ (θτ ,z), sτ (θτ ,z), and cτ (θτ ,z) minimize Φz

τ (A,s,c) := EY |Z=z ρτ

(
g
(
(Y−s)′

A(Y −s)
)
− c
)

for almost all z. Therefore, they minimize (OF) as well. The assumption on
the conditional density further implies Φz

τ (Aτ , sτ , cτ ) = Φz
τ

(
O′AτO,µ(z)+O′(sτ−µ(z)), cτ

)
,

and thus O′Aτ (θτ ,z) O, µ(z)+O′(sτ (θτ ,z)−µ(z)
)

and cτ (θτ ,z) also minimize not only the
same conditional expectation for almost all z, but also (OF) as well, and, therefore, they also
describe an elliptical regression τ -quantile thanks to the assumed existence of θ̃τ (O).

As for [2], it follows directly from [1] because matrix J is orthonormal. Only the two
elliptical regression τ -quantiles from [1] must now coincide due to the uniqueness assumption.
This fact implies si(z) = µi(z) whenever ji = −1, and aij(z) = 0 whenever ji jj = −1, i, j ∈
{1, ...,m}. Furthermore, [2] implies [3] for J = −I. The rest ([4] and [5]) analogously results
from [1] and [2] for certain orthonormal matrices.
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Note 3.1. In [1], [2], and [3], it would be enough to assume the existence of θ̃τ (O) ∈ Θτ

only for the particular orthonormal matrices O considered there. In fact, the statements [2] to
[5] could be proved directly by generalizing the location case with similar behavior regarding
symmetry, only with the requirement of an admissible parametrization and without any need
of θ̃τ (O) for some orthonormal matrices O.

Note 3.2. The somewhat analogous Theorem 1 of [21] and its proof unfortunately
contain a couple of misprints and one error. First, any occurrence of Osτ should be replaced
with O′sτ there. Second, the proof should apply (2) to (6), not (2)–(6). And most impor-
tantly, the natural behavior of generalized elliptical quantiles under affine transformations of
the response vector, postulated by Theorem 1 (1), is there falsely interpreted as full affine
equivariance for any function g, which invalidates the proofs of further statements (3), (4),
(5), and (10). While the generalized elliptical quantiles are always shift and rotation equiv-
ariant, they are certain to be fully affine equivariant only for g(t) = tα, α > 0. Consequently,
the statements (3), (4), (5), and (10) there hold only for such functions g or for spherical
distributions. The claims (6)–(9) there really require only rotation and shift equivariance
and, therefore, remain valid for any function g as they stand.

The uniqueness assumption used in Theorem 3.5 is not as severe as it might seem at first
sight. That is to say that what really matters is only the uniqueness of Aτ (θτ ,z), sτ (θτ ,z)
and cτ (θτ ,z) in the population case.

Any admissible parametrization by definition guarantees the existence of such θ0 ∈
Θτ that (for almost all z) minimizes the (non-negative finite) conditional expectation of
ρτ (hτ (θ,Y ,Z)) (with respect to the conditional distribution of Y given Z = z). This im-
plies that the same θ0 also minimizes its unconditional (finite) expectation (OF). Therefore,
the parameter vector θ0 ∈ Θτ also defines an elliptical regression τ -quantile that is uniquely
defined if all the purely multivariate elliptical τ -quantiles of L(Y |Z = z) are uniquely de-
fined. The uniqueness of multivariate elliptical τ -quantiles has been studied in [20, 21] and
established for g(t) = t under very mild conditions. Consequently, the aforementioned consid-
erations extend the uniqueness result even to elliptical regression quantiles with g(t) = t and
admissible parametrizations. This is why g(t) = t is generally preferred to other possibilities
for the time being.

Unfortunately, ill-specified models for elliptical regression quantiles generally need not
lead to a unique solution even for g(t) = t. This is typical of all nonlinear regression methods.
Nevertheless, there exist certain natural parametrizations with g(t) = t that lead to unique
elliptical regression quantiles even if the model is misspecified; see [17].

4. THE ART OF PARAMETRIZATION

The parametrization of sτ follows directly from available preconceptions regarding the
multivariate trend, and that of cτ also often results from the context quite easily. One choice
can be nevertheless much better than its formal equivalents from the computational point of
view; see Section 6.
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On the contrary, it need not be that clear how to parametrize Aτ to keep it positive
definite with unit determinant so that one could avoid all the restrictions and constrained
optimization. In the case of bivariate responses with m = 2, there are several possibilities at
hand, e.g.

Aτ (θ,z) =
(

a2
11 a12

a12 (1 + a2
12)/a2

11

)
,(4.1)

Aτ (θ,z) =
(

c1 c2

0 1
c1

)′(
c1 c2

0 1
c1

)
=

(
c2
1 c1c2

c1c2 c2
2 + 1

c21

)
,(4.2)

or

Aτ (θ,z) =
(

cos(α) − sin(α)
sin(α) cos(α)

)′(
d2 0
0 1

d2

)(
cos(α) − sin(α)
sin(α) cos(α)

)
,(4.3)

where the obvious dependence of a11, a12, c1, c2, α, and d2 on τ , θ, and z is not emphasized
for the sake of brevity. Of course, one could also consider exp(a11) and exp(d) instead of a2

11

and d2, not to mention other alternatives in the same spirit.

Clearly, (4.1) is the most straightforward possibility but it can hardly be generalized
beyond dimension m = 2 or m = 3. On the other hand, (4.2) follows from the Choleski de-
composition advocated in [21] and it can be easily adjusted to any dimension of the responses.
The third example (4.3) results from the spectral decomposition and it also can be extended
to general multivariate response settings, though in a rather complicated way.

The optimal choice of parametrization for Aτ crucially depends on the type of expected
heteroscedasticity. The spectral decomposition in (4.3) appears very appealing due to its
easy and natural interpretation. Unfortunately, such a parametrization of a positive definite
matrix is not unique without further assumptions regarding the angles and/or the diagonal
elements of the sandwiched matrix. Sometimes one can give up the uniqueness, find a solution,
and then transform it to a canonical form without any harm. One could also use the well-
worn tricks how to enforce one parameter higher than the other or in a certain range. The
choices may depend on the expected model, which shifts the modeling from a boring routine
to sophisticated art.

In the cases of homoscedasticity and multiplicative heteroscedasticity described below
and corresponding to constant Aτ , one can simply avoid all such problems by using the
parametrization based on the Choleski decomposition, which is generally recommended in
such situations.

5. CLASSIFICATION OF HETEROSCEDASTICITY

Assume that a correctly specified elliptical quantile regression model for bivariate re-
sponses leads to a unique solution Aτ (θτ ,z), sτ (θτ ,z), and cτ (θτ ,z), with Aτ (θτ ,z) parame-
trized by means of ατ (θτ ,z) and dτ (θτ ,z) as in (4.3). Then it makes sense to speak of
τ -level homoscedasticity when ατ (θτ ,z), cτ (θτ ,z), and dτ (θτ ,z) are all independent of z.
Furthermore, it is possible to distinguish three canonical τ -level heteroscedastic patterns cor-
responding to the cases when only one of the characteristics ατ (θτ ,z), cτ (θτ ,z), and dτ (θτ ,z)
depends on z:
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(1) rotational heteroscedasticity (if only ατ (θτ ,z) is z-dependent),

(2) multiplicative (or scale) heteroscedasticity (if only cτ (θτ ,z) is z-dependent), and

(3) proportional heteroscedasticity (if only dτ (θτ ,z) is z-dependent).

Any type of bivariate heteroscedasticity can then be decomposed into the three canonical
forms. See Figure 1 for an illustration of this classification.

If these heteroscedastic patterns are observed for all τ ∈ (0, 1), then one can speak of
τ -independent heteroscedastic patterns. If they are observed only locally in τ or z, then one
can speak of local heteroscedastic patterns. This terminology can be adopted even informally
when the true underlying model is unknown but its heteroscedastic profile slightly resembles
that of elliptical quantile regression.

The situation becomes more complicated in case of multivariate responses, but even
then the classification can still be used for any couple of their coordinates and the terms like
overall rotational/proportional/multiplicative heteroscedasticity still make perfect sense.

Although the multiplicative heteroscedasticity seems by far the most common, the
others are not necessarily extinct but maybe only hidden because the ways available for
their detection and modeling are rather limited and unpopular, at least for the time being.
For example, the rotational heteroscedasticity may be dormant in the data observed by the
satellites orbiting the Earth. And it is demonstrated below in Section 9 that it might be
present even in biometric data.

6. COMPUTATION

The sample elliptical regression τ -g-quantiles can be obtained directly from the defi-
nition if the expectation in (OF) is taken with respect to the discrete empirical probability
distribution. Consider n responses Yi’s accompanied with corresponding regressor vectors
Zi’s, i = 1, ..., n, from the population distribution assumed above. Even if all the constraints
on Aτ are removed in the way described in Section 4, then it still remains to solve the
unconstrained optimization problem

min
θ

n∑
i=1

ρτ

(
hτ (θ,Yi,Zi)

)
for appropriate hτ where the objective function is generally neither smooth nor convex.
Of course, it could be done with a suitable general solver for non-convex optimization.
Fortunately, this problem can also be viewed as a nonlinear quantile regression task with
zero responses and regressors (Y ′

i ,Z ′
i)
′, i = 1, ..., n, that has already been studied successfully,

see [22], and can be solved for differentiable hτ with the special algorithm developed in [24]
whose Matlab implementation in ipqr.m, available at http://sites.stat.psu.edu/∼dhunter/
code/qrmatlab, had been tuned up and used for the computation of all the sample parametric
elliptical regression g-quantiles presented in the next sections. In other words, the parametric
elliptical regression quantiles can be computed like their location predecessors of [21].

Unfortunately, the algorithm of [24] must be initialized with a preliminary estimate of θτ .

http://sites.stat.psu.edu/~dhunter/code/qrmatlab
http://sites.stat.psu.edu/~dhunter/code/qrmatlab
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This is a stage when any available information about the estimated vector parameter can be
employed advantageously. Of course, one should experiment with several wise choices of initial
parameters and then choose the solution according to the final parameter estimators and cor-
responding values of the minimized objective function. If some not-so-complicated regression
models were considered, then one might also fit each response component by means of single-
response quantile regression and use the resulting parameter estimates to initialize the algo-
rithm. A few multivariate quantile cuts obtained from other multi-response quantile regression
method(s) could also be mined for some information leading to the initial parameter estimates.

The parametrization of the problem also matters as one can lead to the successful end
much more quickly and easily than another. From this point of view, it is strongly recom-
mended to avoid nonlinearities whenever possible. If the Jacobian derived from hτ is singular
from the very beginning or becomes singular or close to singular during the computation, then
insuperable numerical problems can be expected, which also speaks for using well-thought-out
parametrizations and parameter initializations. For example, such a situation may happen
for d2 = 1 if the parametrization (4.3) is used for Aτ .

The computational side of many nonlinear regression methods is not ideal and the
parametric elliptical quantile regression is no exception in this regard. But one can hardly
hope for anything else if the model is genuinely nonlinear and non-convex in its parameters.

7. MODEL VALIDATION

This section suggests a few heuristic ways how to validate the resulting elliptical quantile
regression models before the topic is treated elsewhere in full detail and exactness. The first
two are commonly used in the ordinary least squares regression.

Suppose that n regression observations (Y ′
i ,Z ′

i)
′, i = 1, ..., n, were fitted with a general-

ized parametric elliptical (τ -g-)quantile regression model leading to unique quantile parameter
estimates A(θ̂,z), s(θ̂,z), c(θ̂,z), and to homogenized (pseudo)residuals ri(θ̂) := h(θ̂,Yi,Zi),
i = 1, ..., n; see Definition 2.1 for the origin of h.

One can then use the cross-validation approach to look for outliers or influential obser-
vations. In other words, the impact of some observation(s) can be evaluated by means of the
differences θ̂ − θ̂−, Ψ(θ̂)−Ψ(θ̂−), c(θ̂,z)− c(θ̂−,z), g−1(c(θ̂,z))− g−1(c(θ̂−,z)), s(θ̂,z)−
s(θ̂−,z), A(θ̂,z)−A(θ̂−,z), A−1(θ̂,z)−A−1(θ̂−,z), ri(θ̂)− ri(θ̂−), and their parts or norms
where θ̂− is the quantile coefficient estimate obtained by excluding the suspected observa-
tion(s) from the sample. Of course, the differences of the whole quantile cuts corresponding
to θ̂ and θ̂− could also be investigated. And it would be wise to consult such differences even
in testing various submodels where the role of θ̂− would be played by the optimal estimate
of θ in the restricted model.

One could also inspect various charts to check the behavior of the homogenized (pseudo)
residuals. In a well-specified model, they should be (roughly) mutually independent, iden-
tically distributed, and independent of the covariates (and also of the responses if all the
conditional distributions were elliptical). For example, one may plot ri or r2

i on their lagged
values and (the norms or components of) Yi and Zi, i = 1, ..., n.
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One could verify as well whether the estimated quantile cuts share their centers, axes,
and hyperplanes of symmetry with the expected conditional distributions. The opposite
might imply that the model assumptions were wrong, owing to Theorem 3.5.

If c(θ̂,z) is unexpectedly negative for common regressor values, then there must be
something wrong with the model specification too.

Finally, one might also validate the model by comparing the resulting quantile cuts with
those obtained with another multivariate quantile regression method that requires even weaker
assumptions and is still applicable to the data. Depending on the context, the benchmark
or the nonparametric proposals of [26], [20], [14] or [4] could often serve the purpose quite well.

8. ILLUSTRATIONS

This section presents some pictures to support the claim that the parametric elliptical
regression g-quantiles are indeed promising candidates for wide dissemination thanks to their
many good properties. For the sake of simplicity, only the most often recommended natural
choice gI(t) = t is considered hereinafter.

Unfortunately, the precise rules for choosing g in different situations are still to be
developed. For the time being, it only seems wise to scale the data properly before their
analysis and then to use gI in the absence of outliers. The choice is also preferable from the
computational point of view.

The examples below testify that the elliptical quantile regression can work well both
for elliptical and non-elliptical underlying error distributions, and also for the number of
observations n as low as 99 and as high as 99 999. For the sake of simplicity and ease of
presentation, the colors of both data points and quantile cuts are changing in dependence
of the corresponding regressor values, and only bivariate responses with scalar regressors are
considered. Nevertheless, there is no intrinsic restriction on the dimension of responses or
regressors involved in the empirical model provided that the number of free model parameters
is low relative to the total number of observations and not too large for the computation to
terminate successfully.

The elliptical regression τ -g-quantiles are parametrized by means of sτ , Aτ , and cτ .
In the examples, Aτ is always considered in its spectral decomposition (4.3) described by d2

τ

and ατ , although less complicated parametrizations of Aτ should be generally preferred for
models with constant Aτ ; see Section 4 for the discussion of some possibilities.

Figure 1 is included to demonstrate that parametric elliptical g-quantile regression is suit-
able for both small and large data sets and for capturing various kinds of heteroscedasticity.

Figure 2 illustrates another key advantage of elliptical regression g-quantiles, namely
their ability to easily incorporate many types of a priori information regarding the model
parameters. Last but not least, Figure 3 indicates that the concept of parametric elliptical
regression quantiles is not bound to linear regression settings and can be used even for fitting
highly complicated nonlinear models.
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Figure 1: Classification of heteroscedasticity in R2. The plots illustrate four basic patterns
of heteroscedasticity in R2 with elliptical regression 0.3-gI -quantile cuts computed
for six equidistant reference points z0 = −0.75,−0.45, ..., 0.75 from n regression ob-
servations (Y1, Y2, Z) generated by the regression model (Y1, Y2)′ = (Z, 0)′ + q(ε),
Z ∼ U([−1, 1]) is independent of ε ∼ U([−1, 1])× U([−2, 2]):
(a) no heteroscedasticity

[
n = 99, q(ε) = ε

]
,

(b) rotational heteroscedasticity
[
n = 999, q(ε) = ε′P where vec(P)′ =

(
cos(πZ/2),

sin(πZ/2),− sin(πZ/2), cos(πZ/2)
)]

,
(c) multiplicative heteroscedasticity

[
n = 9 999, q(ε) = (0.1 + 0.9|Z|) ε

]
, and

(d) proportional heteroscedasticity
[
n = 99 999, q(ε) = ε′P where vec(P)′ =

(
exp(|Z|),

0, 0, exp(−|Z|)
)]

.

The four plots in Figure 1 illustrate all the core types of heteroscedastic behavior
described in Section 5 with different numbers of observations. The elliptical regression
τ -gI -quantiles, τ = 0.3, were always computed from n regression observations (Y1, Y2, Z) gen-
erated by the regression model (Y1, Y2)′ = (Z, 0)′+q(ε) where Z ∼ U([−1, 1]), ε ∼ U([−1, 1])×
U([−2, 2]) is independent of Z (as everywhere below), and q(ε) denotes a transformation of
ε specific to each case. As for their parametrization by means of sτ , dτ , ατ , and cτ , always
sτ = (β1Z, β2)′ and also d2

τ = δ2
1 , ατ = α1, and cτ = γ1 up to the exceptions listed below

together with other specific features unique to individual pictures (a) to (d):
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(a) no heteroscedasticity: n = 99, q(ε) = ε,

(b) rotational heteroscedasticity: n = 999, ατ = πα1Z, q(ε) = ε′P where vec(P)′ =(
cos(πZ/2), sin(πZ/2),− sin(πZ/2), cos(πZ/2)

)
,

(c) multiplicative heteroscedasticity: n = 9999, cτ = γ1 + γ2|Z| + γ3Z
2, q(ε) =

(0.1 + 0.9|Z|) ε, and

(d) proportional heteroscedasticity: n = 99 999, d2
τ = exp(δ1Z), q(ε) = ε′P where

vec(P)′ =
(
exp(|Z|), 0, 0, exp(−|Z|)

)
.

The objective function defining elliptical regression τ -g-quantiles was optimized over
all the scalar parameters occurring in the parametrization, as in all the following exam-
ples. In this case, it was over all θ = (β1, β2, δ1, α1, γ1, γ2, γ3)′ ∈ R7 in case (c) and over
θ = (β1, β2, δ1, α1, γ1)′ ∈ R5 otherwise.

Figure 2 depicts elliptical regression τ -gI -quantiles with the trend, obtained for
τ = 0.5 from n = 9 999 observations following the regression model (Y1, Y2) = (Z,Z2) +
(1 + 3 | sin(πZ/2)|) ε where Z ∼ U(−2, 2) and ε ∼ N(0, 1/4)×N(0, 1/4). They were parame-
trized with sτ = (β1 + β2Z + β3Z

2, β4 + β5Z + β6Z
2)′, d2

τ = δ2
1 , ατ = α1 and

(a) cτ = γ1 or
(b) cτ = γ1 + γ2 | sin(πZ/2)|+ γ3 sin2(πZ/2);

compare it to Figure 5 of [20] that is based on the same data generating model. This figure
reminds you that one can easily enforce homoscedasticity or numerous equality constraints on
model parameters when examining various submodels. In this particular case, the knowledge
of the scale period is used in advance.
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Figure 2: Elliptical regression quantiles and a priori information. The plots show elliptical
regression τ -gI -quantile cuts and their centers, τ = 0.5, obtained for reference points z0 =
−1.9,−1.8, ..., 1.9 from n = 9 999 observations following the regression model (Y1, Y2) =
(Z,Z2) + (1 + 3 | sin(πZ/2)|) ε where Z ∼ U(−2, 2) is independent of ε ∼ N(0, 1/4)×
N(0, 1/4). They assume a general quadratic trend in each component and
(a) homoscedasticity or
(b) the right form of heteroscedasticity.
Both the quantile curves and data points lighten with increasing values of the corre-
sponding regressor.
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Figure 3 is inspired by the well known Lissajous curves and highlights the fact that
the parametric elliptical regression τ -g-quantiles are especially convenient for fitting highly
nonlinear models if one has an idea how to correctly describe the nonlinearity. They are com-
puted for τ ∈ {0.1, 0.3, 0.5, 0.7} and gI from n = 9999 observations coming from a complicated
nonlinear regression model (Y1, Y2)′ =

(
1.5 + sin(Z), 1.5 + sin(2Z)

)′ + q(ε), Z ∼ U([−π, π]),
ε ∼ U([−0.25, 0.25])× U([−0.25, 0.25]), where

(a) q(ε) = ε or

(b) q(ε) = cos(Z) ε.

The quantile parameters were always looked for in the same form with generally τ -dependent
coefficients: sτ =

(
β1 + β2 sin(β3Z), β4 + β5 sin(β6Z)

)′, d2
τ = δ2

1 , ατ = α1, and cτ = γ1 +
γ2

2 cos2(γ3Z).
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Figure 3: Elliptical regression quantiles and nonlinearity. The plots display elliptical
regression τ -gI -quantiles, τ ∈ {0.1, 0.3, 0.5, 0.7}, for 19 equidistant reference points
z0 = −9π/10,−8π/10, ..., 9π/10, computed from n = 9999 observations coming from
a complicated nonlinear regression model (Y1, Y2)′ =

(
1.5 + sin(Z), 1.5 + sin(2Z)

)′ +
q(ε
)
, Z ∼ U([−π, π]) is independent of ε ∼ U([−0.25, 0.25])×U([−0.25, 0.25]), where

(a) q(ε) = ε or
(b) q(ε) = cos(Z)ε.
The quantile curves lighten with increasing z0 and the data points get darker while
the regressor values are decreasing.

The elliptical regression quantile methodology remains under investigation also in the
next section where it is applied to real biometric data.
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9. APPLICATION

For the sake of comparison, the parametric elliptical regression quantile methodology
is tested on the same body girth measurements data of [19] as in [15], namely on n = 260
observations of calf maximum girth Y1 (cm) and thigh (maximum) girth Y2 (cm) of the
physically active women whose age (years), weight (kg), height (cm) and body mass index
(BMI = 10 000 weight/height2) are separately tried as the only regressor Z in the attempts
to explain Y1 and Y2. Although the observations do not constitute a random sample from
any well-defined population, they are considered suitable for illustrating various statistical
concepts.

In this particular case study, the parametric elliptical regression τ -g-quantiles are com-
puted for g = gI . They are plotted only for τ ∈ {0.1, 0.9} and for Z = z0 where z0 is equal
to the empirical p-th quantile of the regressor, p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The results are
displayed in the same way as in Figure 7 of [15] to make the comparison as easy as possible.
The only notable difference lies in the colors and quantile levels. That is to say that the
pictures here are only black-and-white and, consequently, they illustrate the elliptical regres-
sion τ -gI -quantiles only for two representative values of τ to stay legible. Note also that the
quantile levels used for indexing the elliptical regression quantiles by their overall probability
coverage are not related to those used by the multiple-output directional quantile regression
of [15] or [29] in any predictable way.

Figure 4 adopts the parametrization sτ = (β1 + β2Z, β3 + β4Z)′, d2
τ = δ2

1 , ατ = α1, and
cτ = γ1 + γ2Z (with possibly different coefficients for each τ) that allows for changes in lo-
cation and scale and thus mimics the model used in [15] quite closely. Not surprisingly,
it also produces similar output. Figures 4(a) and 4(c) clearly reveal certain location shift and
scale increase of plotted τ -quantile cuts caused by increasing weight and BMI, respectively.
Figure 4(b) indicates that age influences only the location and volume of the outer quantile
cuts but not of the inner ones. Figure 4(d) suggests that increasing height shifts both the
inner and outer quantile cuts in mutually orthogonal directions but only affects the volume
of the outer ones. Although all of these patterns can be more or less observed in Figure 7
of [15] as well, they are more clearly articulated through the simple elliptical shapes here.
See also [14] and [17] for other quantile regression fits of the same data and their explanations.

Figure 5 plots the results regarding BMI for the generalized parametrization with
d2

τ = (δ1 + δ2Z)2, ατ = α1 + α2Z, and the other settings left unchanged, as in Figure 4(c).
The modification permits more flexible changes of the regression quantile shape and is able
to detect even the slight rotation of the outer quantile cuts with increasing BMI, observed in
[15].

Although the analysis above is too simplistic to establish anything certain about female
legs, it clearly demonstrates that the generalized parametric elliptical quantile regression is a
powerful and flexible analytical method capable of pointing out even the smallest subtleties
in the data behavior.
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Figure 4: Application to real data I. The plots illustrate the dependence of
female calf maximum girth (Y1) and thigh (maximum) girth (Y2) on
(a) weight,
(b) age,
(c) BMI, or
(d) height
by means of parametric elliptical gI -quantile regression with a single
regressor (Z), constant matrix parameter A, linear inflation factor c,
and linear trend s. The elliptical regression gI -quantiles are dis-
played for both τ = 0.1 (solid line) and τ = 0.9 (dashed line) and
for regressor values z0 equal to the empirical p-th quantile of Z,
p = 0.1, 0.3, 0.5, 0.7, and 0.9. The quantile curves lighten with in-
creasing p and the data points get darker while the regressor values
are decreasing.
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Figure 5: Application to real data II. The plot shows the dependence of female calf
maximum girth (Y1) and thigh (maximum) girth (Y2) on BMI by means of
parametric elliptical quantile regression assuming linear trend and a general
form of heteroscedasticity. The elliptical regression gI -quantiles are displayed
for both τ = 0.1 (solid line) and τ = 0.9 (dashed line) and for regressor values
z0 equal to the empirical p-th quantile of the regressor, p = 0.1, 0.3, 0.5, 0.7,
and 0.9. The quantile curves lighten with increasing p and the data points get
darker while the regressor value is decreasing.

10. CONCLUDING REMARKS

All the presented theory and pictures demonstrate that the generalized parametric
elliptical quantile regression may lead to natural and reasonable fits, even when the assump-
tion of conditional symmetry cannot be relied on, as in Section 9. That is to say that the
conditional central symmetry may simplify model validation and make the results from a
well parametrized model particularly easy to interpret, but it is not strictly required for the
method to work.

Sections 7, 8, and 9 also tacitly assume that the sample estimators of the quantile
coefficients and cuts are consistent. It still has to be proved in full generality although it is
already known in some special cases; see [17].

There is always a risk that the complicated non-convex optimization behind the gener-
alized parametric elliptical quantile regression will terminate without finding the real global
minimum. Nevertheless, this threat can be fought back by using global optimization strate-
gies and model validation tools. And this problem should not theoretically appear at all for
g(t) = t and well-specified or specific models [17], and it is thus not likely to be severe in very
similar situations.

The dependence of generalized parametric elliptical regression quantiles on function g

may rise another concern as it may seem to introduce too much arbitrariness into the model
selection. However, simple fully affine equivariant parametrizations strongly ask for a power
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function g, and then its selection becomes as arbitrary as the choice of p > 0 in the standard
Lp regression. Only L2 and L1 regression methods are usually used because of their simplicity
and easily interpretable results. And the same reasons lead to the choices g(t) = t or g(t) =

√
t

in the generalized parametric elliptical quantile regression, though the latter seems reasonable
only in certain special cases.

This article should be interpreted only as a single step on the long way to the suc-
cessful elliptical quantile regression methodology. The next steps will include nonparametric
generalizations, statistical inference, and a powerful and reliable software support.

It is difficult to predict if the proposed generalized parametric elliptical quantile regres-
sion withstands the test of time but, for the time being, it appears quite promising.
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[18] Hallin, M. and Šiman, M. (2017). Multiple-output quantile regression. In “Handbook of
Quantile Regression” (R. Koenker, V. Chernozhukov, X. He and L. Peng, Eds.), Chapman and
Hall/CRC.

[19] Heinz, G.; Peterson, L.J.; Johnson, R.W. and Kerjk, C.J. (2003). Exploring relation-
ships in body dimensions, Journal of Statistics Education, 11.

[20] Hlubinka, D. and Šiman, M. (2013). On elliptical quantiles in the quantile regression setup,
Journal of Multivariate Analysis, 116, 163–171.
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1. GENERALIZEDMEANS’ESTIMATORSANDSCOPEOFTHEARTICLE

Let us consider the notation (X1:n, ..., Xn:n) for the ascending order statistics associated
with a random sample of size n, (X1, ..., Xn), from a cumulative distribution function (CDF) F .
Let us further assume that there exist sequences of real constants {an > 0} and {bn ∈ R}
such that the maximum, linearly normalized, i.e. (Xn:n − bn) /an, converges in distribution
to a non-degenerate random variable (RV). Then (Gnedenko, [24]), the limit distribution is
necessarily of the type of the general extreme value (EV) CDF, given by

(1.1) EVξ(x) :=

 exp
(
−(1 + ξx)−1/ξ

)
, 1 + ξx > 0 , if ξ 6= 0 ,

exp
(
− exp(−x)

)
, x ∈ R , if ξ = 0 .

The CDF F is then said to belong to the max-domain of attraction of EVξ, defined in (1.1),
we use the notation F ∈ DM (EVξ), and the parameter ξ is the extreme value index (EVI), the
primary parameter of extreme events. It is well-known that the EVI measures the heaviness
of the right-tail function F (x) := 1− F (x), and the heavier the right-tail function, the larger
ξ is. From a quantile point of view, with F←(x) := inf{y : F (y) ≥ x} denoting the generalized
inverse function of F , further consider U(t) := F←(1− 1/t), t ≥ 1, the reciprocal tail quantile
function (RTQF). Then, with Ra denoting the class of regularly varying functions at infinity,
with an index of regular variation equal to a ∈ R, i.e. positive measurable functions g(·) such
that for all x > 0, g(tx)/g(t) → xa, as t →∞, (see Bingham et al., [7], among others),

F ∈ D+
M := DM (EVξ)ξ>0 ⇐⇒ F ∈ R−1/ξ (Gnedenko, [24])

⇐⇒ U ∈ Rξ (de Haan, [39]) .
(1.2)

In this article we work with a Pareto-type underlying CDF, satisfying (1.2), i.e. with an
associated positive EVI for maxima. These heavy-tailed models are quite common in a large
variety of fields of application, like bibliometrics, biostatistics, computer science, insurance,
finance, social sciences, statistical quality control and telecommunications, among others.
For Pareto-type models, the classical EVI-estimators are the Hill (H) estimators (Hill, [44]),
which are the averages of the log-excesses, i.e.

(1.3) ξ̂H(k) ≡ H(k) :=
1
k

k∑
i=1

Vik , Vik := lnXn−i+1:n− lnXn−k:n , 1≤ i≤ k < n .

One of the interesting facts concerning the H EVI-estimators is that various asymptotically
equivalent versions of H(k) can be derived through essentially different methods, such as
the maximum likelihood method or the mean excess function approach, showing that the
Hill estimator is quite natural. Details can be found in Beirlant et al. ([4]), among others.
We merely note that from a quantile point of view, and with U(·) the RTQF, we can write
the distributional identity X

d= U(Y ), with Y a unit Pareto RV, i.e. an RV with a CDF
FY (y) = 1− 1/y, y ≥ 1. For the order statistics associated with a random unit Pareto sam-

ple (Y1, ..., Yn), we have the distributional identity Yn−i+1:n/Yn−k:n
d= Yk−i+1:k, 1≤ i≤ k.

Moreover, kYn−k:n/n
P−→

n→∞
1, i.e. Yn−k:n

P∼ n/k. Consequently, and provided that k = kn,
1≤ k < n, is an intermediate sequence of integers, i.e. if

(1.4) k = kn →∞ and kn = o(n) , as n→∞ ,
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we get

(1.5) Vik
d= ξ lnYk−i+1:k + oP(1) d= ξ Ek−i+1:k + oP(1) ,

with E denoting a standard exponential RV and the oP(1)-term uniform in i, 1≤ i≤ k

(see Caeiro et al., [14], among others, for further details on this uniform behaviour).
The log-excesses, Vik, 1≤ i≤ k, in (1.3), are thus approximately the k order statistics of a sam-
ple of size k from an exponential parent with mean value ξ, motivating the H EVI-estimators
in (1.3).

Beyond the average, the p-moments of log-excesses, i.e.

(1.6) M
(p)
k,n :=

1
k

k∑
i=1

{
lnXn−i+1:n − lnXn−k:n

}p , p ≥ 1 ,

introduced in Dekkers et al. ([19])
[
M

(1)
k,n ≡ H(k)

]
have also played a relevant role in the

EVI-estimation, and can more generally be parameterized in p ∈ R\{0}. Note next that a
simple generalization of the mean is Lehmer’s mean-of-order-p (see Havil, [43], p. 121). Given
a set of positive numbers a = (a1, ..., ak), such a mean generalizes both the arithmetic mean
(p = 1) and the harmonic mean (p = 0), being defined as

Lp(a) :=
k∑

i=1

ap
i

/ k∑
i=1

ap−1
i , p ∈ R .

Further note that lim
p→−∞

Lp(a) = min
1≤i≤k

ai and lim
p→+∞

Lp(a) = max
1≤i≤k

ai .

The H EVI-estimators can thus be considered as the Lehmer mean-of-order-1 of the k

log-excesses V := (Vik, 1≤ i≤ k), in (1.3), k < n. We now more generally consider the Lehmer
mean-of-order-p of those statistics. From (1.5), since E(Ep) = Γ(p + 1) for any real p > −1,
with Γ(·) denoting the complete Gamma function, the law of large numbers enables us to say
that

1
k

k∑
i=1

V p
ik

P−→
n→∞

Γ(p + 1) ξp .

Hence the reason for the class of Lehmer mean-of-order-p (Lp) EVI-estimators,

(1.7) ξ̂Lp(k) ≡ Lp(k) :=
Lp(V)

p
=

1
p

k∑
i=1

V p
ik

k∑
i=1

V p−1
ik

=
M

(p)
k,n

p M
(p−1)
k,n

[
L1(k) ≡ H(k)

]
,

consistent for all ξ > 0 and real p > 0, and where M
(p)
k,n is given in (1.6).

As a possible competitive class of EVI-estimators, we further refer the one recently
studied in Brilhante et al. ([8]), Gomes and Caeiro ([25]) and Caeiro et al. ([14]), among
others, based on the power mean. Given a set of non-negative numbers a = (a1, ..., ak), such
a mean generalizes the arithmetic mean (p = 1), the geometric mean (p = 0) and the harmonic
mean (p =−1), being defined as

Mp(a) :=

(
1
k

k∑
i=1

ap
i

)1/p

, p ∈ R .
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Further note that lim
p→0

Mp(a) ≡ M0(a) =
(∏k

i=1 ai

)1/k, lim
p→−∞

Mp(a) = min
1≤i≤k

ai and lim
p→+∞

Mp(a) =

max
1≤i≤k

ai. On the basis of the fact that the Hill EVI-estimator in (1.3) is the logarithm of the

geometric mean of

(1.8) Uik := Xn−i+1:n/Xn−k:n , 1≤ i≤ k < n ,

the consideration of the power mean, also known as Hölder’s mean-of-order-p (MOp), of those
same statistics leads to

(1.9) ξ̂Hp(k) ≡ Hp(k) :=


(

1−
(

1
k

k∑
i=1

Up
ik

)−1
)/

p , if p < 1/ξ, p 6= 0 ,

H(k) , if p = 0 ,

the so-called MOp EVI-estimators, almost simultaneously considered, for p ≥ 0, in Brilhante
et al. ([8]), Paulauskas and Vaičiulis ([45]) and Beran et al. ([6]). As a measure of compar-
ison, and just as in Gomes and Henriques-Rodrigues ([30]) (see also Gomes and Henriques-
Rodrigues, [31]), the Pareto probability weighted moments (PPWM) EVI-estimators, intro-
duced in Caeiro and Gomes ([11]), and further studied in Caeiro et al. ([17], [15]) will also
be considered. The PPWM EVI-estimators, quite common in the areas of climatology and
hydrology, are consistent only for ξ < 1, depend on the statistics âj(k) := 1

k

∑k
i=1

(
(i− 1)/

(k − 1)
)j

Xn−i+1:n, j = 0, 1, and are defined by

(1.10) ξ̂PPWM(k) ≡ PPWM(k) := 1− â1(k)
â0(k)− â1(k)

, 1≤ k < n .

We also mention the possibly reduced-bias (RB) class of EVI-estimators in Caeiro and
Gomes ([10]) (see also, Caeiro and Gomes, [9], [12]),

(1.11) ξ̂CGp,δ(k) ≡ CGp,δ(k) :=
Γ(p)

M
(p−1)
k,n

(
M

(δp)
k,n

Γ(δp+1)

)1/δ
, δ > 0, p > 0

[
CG1,1(k)≡H(k)

]
.

For δ = 2 in (1.11), we obtain a class studied in Caeiro and Gomes ([9]), which general-

izes the estimator CG1,2(k) =
√

M
(2)
k,n/2, studied in Gomes et al. ([34]), where also L2(k) =

M2
k,n/

(
2M

(1)
k,n

)
was introduced and studied both asymptotically and for finite samples. And

we can also consider the class of Lp EVI-estimators in (1.7), as a non-RB particular case of
(1.11). Indeed, Lp(k) ≡ CGp,1(k).

Remark 1.1. Note that all the aforementioned EVI-estimators are scale invariant, but
not location-invariant. They can however become location-invariant if we apply the peaks over
random threshold (PORT) methodology, basing them not on the original sample, but on the
excesses over a central empirical quantile and even over the minimum of the available sample
whenever possible, i.e. when the underlying parent F has a finite left endpoint. For details
on the topic, see, among others, Araújo Santos et al. ([1]), where the acronym PORT was
introduced, Gomes et al. ([27]), and more recently, Gomes and Henriques-Rodrigues ([30])
and Gomes et al. ([32]).

In Section 2, after the introduction of a few technical details in the field of extreme value
theory (EVT), we deal with the asymptotic behaviour of the Lp EVI-estimators, in (1.7).
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In Section 3, it is shown that at optimal k-levels and for the optimal p, the members of
such a class are able to overall outperform the optimal EVI-estimators in (1.9), which on
its turn had been shown in Brilhante et al. ([8]) to have a similar behaviour comparatively
with the optimal Hill EVI-estimators, for an adequate optimal p (6= 0). We next compare
them, asymptotically and at optimal levels, with the optimal PPWM EVI-estimators, in
(1.10). Finally, in Section 4, we advance with an overall comparison of a wide number of
EVI-estimators, drawing some concluding remarks.

2. ASYMPTOTIC BEHAVIOUR OF THE EVI-ESTIMATORS

After a reference, in Section 2.1, to the most common second-order framework for
heavy-tailed models, we briefly refer, in Section 2.2, the asymptotic behaviour of the EVI-
estimators defined in Section 1. A recent review on the topic of statistical univariate EVT
can be found in Gomes and Guillou ([28]). See also Beirlant et al. ([2]) and Scarrot and
MacDonald ([48]).

2.1. A few technical details in the field of EVT

In the area of statistical EVT and whenever working with large values, a model F is
commonly said to be heavy-tailed whenever (1.2) holds. The second-order parameter ρ (≤ 0)
rules the rate of convergence in any of the first-order conditions, in (1.2), and can be defined
as the non-positive parameter appearing in the limiting relation

(2.1) lim
t→∞

lnU(tx)− lnU(t)− ξ lnx

A(t)
=


(
xρ−1

)/
ρ , if ρ < 0 ,

lnx, if ρ = 0 ,

which is assumed to hold for every x > 0, and where |A| must then be of regular variation
with index ρ. This condition has been widely accepted as an appropriate condition to specify
the right-tail of a Pareto-type distribution in a semi-parametric way. For technical simplicity,
we often assume that we are working in Hall–Welsh class of models (Hall and Welsh, [42]),
with an RTQF,

(2.2) U(t) = C tξ
(
1 + ξ β tρ/ρ + o(tρ)

)
, as t→∞ ,

C > 0, β 6= 0 and ρ < 0. Equivalently, we can say that, with (β, ρ) the vector of second-
order parameters, the general second-order condition in (2.1) holds with A(t) = ξ β tρ, ρ < 0.
Further details on second-order conditions can be found in Beirlant et al. ([4]), de Haan and
Ferreira ([40]) and Fraga Alves et al. ([22]), among others.

2.2. Asymptotic behaviour of the EVI-estimators under consideration

Trivial adaptations of the results in de Haan and Peng ([41]), Caeiro and Gomes ([10]),
Caeiro and Gomes ([11]) and Brilhante et al. ([8]), respectively for the H, CGp,δ, PPWM and
Hp classes of EVI-estimators, enable us to state:
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Theorem 2.1. Under the validity of the first-order condition, in (1.2), and for in-

termediate sequences k = kn, i.e. if (1.4) holds, the classes of Hp, PPWM and CGp,δ EVI-
estimators, respectively defined in (1.9), (1.10), and (1.11), generally denoted by ξ̂•(k), are

consistent for the estimation of ξ > 0, provided that we work in S•, where SHp
=
{
(ξ, p) : ξ > 0,

p < 1/ξ
}
, SPPWM=

{
ξ : 0 < ξ < 1

}
and SCGp,δ

=
{
(ξ, p, δ) : ξ > 0, p > 0, δ >−1/p

}
.

Assume further that (2.1) holds. Then, for ξ > 0, adequate regions of the spaces of pa-

rameters and with N
(
µ, σ2

)
standing for a normal RV with mean value µ and variance σ2,

(2.3)
√

k
(
ξ̂•(k)− ξ

) d−→
n→∞

N
(
λAb•, σ

2
•
)

if
√

k A(n/k) −→
n→∞

λA , finite .

Moreover

(2.4) bHp =
1− pξ

1− pξ − ρ
, σ2

Hp
=

ξ2 (1− pξ)2

1− 2pξ
, if p < 1/(2ξ) ,

bPPWM =
(1− ξ) (2− ξ)

(1− ξ − ρ) (2− ξ − ρ)
, σ2

PPWM
=

ξ2(1− ξ) (2− ξ)2

(1− 2ξ) (3− 2ξ)
, if ξ < 1/2 ,

and

(2.5)

bCGp,δ
=

(1− ρ)−δp − δ(1− ρ)−p+1 + δ−1
δρ

,

σ2
CGp,δ

=
ξ2

δ2

{
2Γ(2δp)
δpΓ2(δp)

+
δ2Γ(2p−1)

Γ2(p)
−

2Γ
(
(δ +1)p

)
pΓ(p) Γ(δp)

− (δ −1)2
}

,

if p >1/2 , δ > 0 .

For the particular case δ =1, in (1.11), i.e. for the Lp EVI-estimators in (1.7), we can
state:

Corollary 2.1. Under the validity of the initial first-order conditions in Theorem 2.1,

the class of Lp EVI-estimators, in (1.7), is consistent for the estimation of ξ, provided that

we work in SLp =
{
(ξ, p) : ξ > 0, p > 0

}
. Under the second-order conditions of Theorem 2.1,

(2.3) holds, with

(2.6) bLp =
1

(1− ρ)p
and σ2

Lp
=

ξ2 Γ(2p−1)
Γ2(p)

if p > 1/2 .

More specifically, and for all ρ ≤ 0, one can write the asymptotic distributional representation

(2.7) Lp(k) d= ξ +
σLp Z

(p)
k√

k
+ bLp A(n/k) + oP

(
A(n/k)

)
,

with
(
bLp , σ

2
Lp

)
given in (2.6), and where Z

(p)
k is an asymptotically standard normal RV.

Remark 2.1. Note that regarding the Lp EVI-estimators, in (1.7), Corollary 2.1 is a
particular case of Theorem 1 in Caeiro and Gomes ([10]), but generalizing now consistency
for p > 0 and asymptotic normality for p > 1/2 rather than p ≥ 1. Further note that for δ = 1
there is a full agreement between (2.6) and (2.5), the result provided in Theorem 1 of Caeiro
and Gomes ([10]). A detailed proof of Corollary 2.1 can be found in Penalva et al. ([47]).
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Remark 2.2. Further note that for the MOp EVI-estimators, denoted by Hp and
defined in (1.9), a distributional representation of the type of the one in (2.7) holds for
p < 1/(2ξ), with

(
bLp , σ

2
Lp

)
replaced by

(
bHp , σ

2
Hp

)
, given in (2.4).

For any ξ > 0, the asymptotic variance σ2
Lp

(ξ), in (2.6), has a minimum at p = 1.
In Figure 1 (left), we present the normalized standard deviation, σLp(ξ)/ξ, independent of ξ,
as a function of p. On another side, the asymptotic bias ruler, bLp(ρ), also in (2.6), is indepen-
dent of ξ and always decreasing in p. Such a performance is shown in Figure 1 (right).
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Figure 1: Graph of σLp
(ξ)/ξ, as a function of p > 1/2 (left) and of the asymptotic

bias ruler bLp
(ρ), for ρ = −0.1,−0.25,−0.5 and −1, as a function of p ≥ 0.

The aforementioned results claim for an asymptotic study, at optimal (k, p), of the class
of EVI-estimators in (1.7), a topic to be dealt with in Section 3.

3. ASYMPTOTIC COMPARISON AT OPTIMAL LEVELS

We next proceed to the comparison of the aforementioned non-RB EVI-estimators,
generally denoted by ξ̂•(k), at their optimal levels. This is again done in a way similar to the
one used in several articles, among which we refer Dekkers and de Haan ([20]), de Haan and
Peng ([41]), Gomes and Martins ([33]), Gomes et al. ([36], [37], [35], [26]), Gomes and Neves
([38]), Gomes and Henriques-Rodrigues ([29], [30]), and Brilhante et al. ([8]), among others.
Let us assume that for any intermediate sequence of integers k = kn, (2.3) holds. We write
Bias∞

(
ξ̂•(k)

)
:= b•A(n/k) and Var∞

(
ξ̂•(k)

)
:= σ2

•/k. The so-called asymptotic mean square
error (AMSE) is then given by AMSE

(
ξ̂•(k)

)
:= σ2

•/k + b2
•A

2(n/k). Regular variation theory
enabled Dekkers and de Haan ([20]) to show that, whenever b• 6= 0, there exists a function
ϕ(n) = ϕ(n, ξ, ρ), such that

(3.1) lim
n→∞

ϕ(n) AMSE
(
ξ̂•0
)

=
(
σ2
•
)− 2ρ

1−2ρ
(
b2
•
) 1

1−2ρ =: LMSE
(
ξ̂•0
)
,
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where ξ̂•0 := ξ̂•
(
k0|•(n)

)
and k0|•(n) := arg min

k
MSE

(
ξ̂•(k)

)
. Moreover, if we slightly restrict

the second-order condition in (2.1), assuming (2.2), we can write

k0|•(n) = arg min
k

MSE
(
ξ̂•(k)

)
=
(

σ2
• n−2ρ

b2
• ξ2 β2(−2ρ)

)1/(1−2ρ)(
1 + o(1)

)
.

We consider the following:

Definition 3.1. Given two biased estimators ξ̂(1)(k) and ξ̂(2)(k), for which (2.3) holds,
with constants (σ1, b1) and (σ2, b2), b1, b2 6= 0, respectively, both computed at their optimal
levels, the asymptotic root efficiency (AREFF) of ξ̂

(1)
0 relatively to ξ̂

(2)
0 is

(3.2) AREFF1|2 ≡ AREFF
ξ̂
(1)
0 |ξ̂

(2)
0

:=
√

LMSE
(
ξ̂
(2)
0

)
/LMSE

(
ξ̂
(1)
0

)
=

((
σ2

σ1

)−2ρ ∣∣∣∣b2

b1

∣∣∣∣
) 1

1−2ρ

,

with LMSE defined in (3.1).

Remark 3.1. Note that the AREFF-indicator, in (3.2), has been conceived so that the
highest the AREFF indicator is, the better is the estimator identified with the superscript (1).

The non-RB Lp, Hp, and PPWM EVI-estimators, respectively given in (1.7), (1.9) and
(1.10), will be crucially included in the asymptotic comparison in Section 3.1.

3.1. Asymptotic comparison of EVI-estimators at optimal levels

Let us now turn back to the Lp EVI-estimators in (1.7), at optimal k-levels in the sense
of minimum RMSE. We have

LMSE(L0|p) =
(
ξ2 Γ(2p−1)

/
Γ2(p)

)− 2ρ
1−2ρ

(
(1− ρ)−2p

) 1
1−2ρ

and

(3.3) AREFFL(p) ≡ AREFFL0|p|L0|1 =
((

Γ(p)
/√

Γ(2p−1)
)−2ρ

(1− ρ)p−1

) 1
1−2ρ

.

Remark 3.2. In Gomes et al. ([34]) was shown that the AREFF of the optimal L2(k)
comparatively to the optimal L1(k) is given by [2ρ(1− ρ)]1/(1−2ρ), in agreement with (3.3).
As noticed in the aforementioned article, AREFFL(2) > 1 ⇐⇒ −1 < ρ < 0.

To measure the performance of H0|p, with Hp the MOp EVI-estimator in (1.9), Brilhante
et al. ([8]) computed a similar AREFF-indicator, given by

(3.4) AREFFH(p) ≡ AREFFH0|p|H0|0 =

((√
1− 2pξ

1− pξ

)−2ρ ∣∣∣∣ 1− pξ − ρ

(1− ρ) (1− pξ)

∣∣∣∣
) 1

1−2ρ

,

reparameterized in (ρ, a = pξ < 1/2), and denoted by AREFF∗a|0. In Figure 2, we picture
AREFFL(p) in (3.3) (top) and AREFF∗a|0 (bottom).
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Figure 2: AREFFL(p), in (3.3) (top) and AREFF∗
a|0 (bottom).
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The gain in efficiency is not terribly high, but, at optimal levels, there is a wide region of
the (p, ρ)-plane where the new class of Lp EVI-estimators performs better than the Hill EVI-
estimators, with efficiencies slightly higher than the ones associated with the comparison of Hp

and the Hill, in the (a, ρ)-plane. This result together with the fact that as far as we know, the
EVI-estimators in (1.9) computed at the optimal (k, p) in the sense of maximal AREFFH(p),
with AREFFH(p) given in (3.4), i.e. computed at p

M|H ≡ p
M|H(ρ) := arg maxp AREFFH(p),

explicitly given by

(3.5) p
M|H = ϕρ/ξ , with ϕρ := 1 − ρ/2 −

√
ρ2−4ρ + 2

/
2 ,

bpM|H
6= 0, is, as expected, a non-RB EVI-estimator which is able to beat the Hill EVI-estimator

in the whole (ξ, ρ)-plane, immediately leads us to think on what happens for the optimal value
of p associated with the Lp EVI-estimation. Contrarily to the explicit expression for p

M|H , in
(3.5), the value of p

M|L = p
M|L(ρ) := arg maxp AREFFL(p), with AREFFL(p) given in (3.3),

is an implicit function of ρ, easy to evaluate numerically. Some of those values are presented
in Table 1.

Table 1: Values of pM|L = pM|L(ρ) := arg maxp AREFFL(p) for a few values of |ρ|.

|ρ| 0+ 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.5 2 +∞

pM|L 1 1.98 1.86 1.75 1.67 1.61 1.56 1.52 1.45 1.40 1.32 1.27 1

In Figure 3, we picture the indicator AREFFL(p), as a function of p for a few values of ρ.
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Figure 3: AREFFL(p), as a function of p, for |ρ|= 0, 0.1, 0.2, 0.5(0.5)2.

Indeed, just as AREFFH(p
M|H) > 1, for any ρ < 0 and ξ > 0, also AREFFL(p

M|L) > 1,
for any ρ < 0 and ξ > 0. Moreover,

AREFFL(p
M|L) > AREFFH(p

M|H) ,

as illustrated in Figure 4.
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Figure 4: AREFFL(pM|L) and AREFFH(pM|H) as a function of |ρ| = 0(0.1)2.

Just as done in Gomes and Henriques-Rodrigues ([30]), and due to the competitive
behaviour of the PPWM EVI-estimators, we still compare the Lp with the PPWM EVI-esti-
mators, in (1.10), again at optimal levels. Whereas the gain in efficiency of the PPWM
comparatively to the optimal Hp EVI-estimator happens in a wide region of the (ξ, ρ)-plane,
L∗ := Lp

M|L
beats the optimal PPWM EVI-estimator (now denoted P, for sake of simplicity)

in a wider region of the (ξ, ρ)-plane, as can be seen in Figure 5 (bottom). Indeed, in Figure 5
(top), we reproduce the Figure in Gomes and Henriques-Rodrigues ([31]), related to the
comparative behaviour between H∗ := Hp

M|H
and the optimal PPWM EVI-estimator.

So far, asymptotically and for a heavy right-tail, the class of Lehmer’s EVI-estimators,
in (1.7), seems indeed to be the most competitive class of non-RB EVI-estimators in the liter-
ature. Note however that further classes of generalized means, among which we mention the
ones studied in Paulauskas and Vaičiulis ([46]), may possibly provide even more astonishing
results.

4. AN ASYMPTOTIC COMPARISON WITH OTHER EVI-ESTIMATORS
AT OPTIMAL LEVELS

As mentioned above, the optimal MOp EVI-estimator (H∗), associated with a value
p

M|H 6= 0, can beat the optimal Hill EVI-estimator in the whole (ξ, ρ)-plane. But it is now
beaten by the optimal Lehmer EVI-estimator (L∗), also in the whole (ξ, ρ), an atypical
behaviour among other classical EVI-estimators. We thus consider now sensible to compare
H∗ and L∗ with the most common EVI-estimators in the literature, non generally RB, but
possibly RB in some regions of the (ξ, ρ)-plane.

We shall take into account the moment (M) EVI-estimators, studied in Dekkers et al.

([19]), based on
(
M

(1)
k,n,M

(2)
k,n

)
, with M

(p)
k,n defined in (1.6). They are consistent for all ξ ∈ R,

being given by

(4.1) ξ̂M(k) ≡ M(k) := M
(1)
k,n +

1
2

{
1−

(
M

(2)
k,n

/(
M

(1)
k,n

)2−1
)−1
}

.
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Figure 5: Best EVI-estimator asymptotically and at optimal levels for a choice
between H∗ and PPWM (top) and between L∗ and PPWM (bottom).
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We additionally consider the generalized Hill (GH) EVI-estimators (Beirlant et al., [5]), based
on the Hill estimators in (1.3) and with the functional form

(4.2) ξ̂GH(k) ≡ GH(k) := ξ̂H(k) +
1
k

k∑
i=1

{
ln ξ̂H(i)− ln ξ̂H(k)

}
,

further studied in Beirlant et al. ([3]). Just as in de Haan and Ferreira ([40]), we also consider,
for ξ < 1, the generalized Pareto (GP) PWM (GPPWM) EVI-estimators, based on the sample
of exceedances over the high random level Xn−k:n and defined by

(4.3) ξ̂GPPWM(k) ≡ GPPWM(k) := 1− 2 â?
1(k)

â?
0(k)− 2 â?

1(k)
,

with k = 1, ..., n−1, and

â?
s(k) :=

1
k

k∑
i=1

(
i−1
k−1

)s (
Xn−i+1:n −Xn−k:n

)
, s = 0, 1 .

Finally, with Uik, 1≤ i≤ k, given in (1.8), and the notation

L
(j)
k,n :=

1
k

k∑
i=1

(
1− U−1

ik

)j
, j ≥ 1 ,

we further consider the mixed moment (MM) EVI-estimators (Fraga Alves et al., [23]), defined
by

(4.4) ξ̂MM(k) ≡ MM(k) :=
ϕ̂k,n − 1

1 + 2 min(ϕ̂k,n−1, 0)
, with ϕ̂k,n :=

M
(1)
k,n − L

(1)
k,n(

L
(1)
k,n

)2 .

The estimators in (4.3) are consistent only for 0 < ξ < 1. The estimators in (4.1), (4.2) and
(4.4) are consistent for any ξ ∈ R, but will be here considered only for ξ > 0.

Remark 4.1. Note that the MM EVI-estimators, in (4.4), are, for a wide class of
models with ξ > 0, very close to the implicit ML EVI-estimators, based on the excesses
Wik := Xn−i+1:n−Xn−k:n, 1≤ i≤ k < n (see Fraga Alves et al., [23], for details on the topic).
A comprehensive study of the asymptotic properties of the aforementioned ML EVI-estimators
has been undertaken in Drees et al. ([21]).

Remark 4.2. Further note that all the aforementioned EVI-estimators in this section
are scale invariant. The GPPWM and the ML EVI-estimators are also location invariant,
and can be regarded as classes of PORT EVI-estimators. We can further consider PORT-M,
GH and MM EVI-estimators.

Under the validity of the second-order condition in (2.1), and for intermediate k = kn,
(2.3) holds, with

bM = bGH =
ξ − ξρ + ρ

ξ(1− ρ)2
, σ2

M
= σ2

GH
= 1 + ξ2 ,

bMM = bML =
(1 + ξ) (ξ + ρ)

ξ(1− ρ) (1 + ξ− ρ)
, σ2

MM
= σ2

ML
= (1 + ξ)2 ,
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and for ξ < 1/2,

bGPPWM =
(ξ + ρ) bPPWM

ξ
and σ2

GPPWM
=

(1− ξ + 2 ξ2) (1− ξ) (2− ξ)2

(1− 2 ξ) (3− 2 ξ)
.

As happened before with the optimal MOp EVI-estimator, the optimal Lehmer EVI-
estimator can be beaten by the optimal M (and GH) EVI-estimator in a region close to
ξ = −ρ/(1−ρ), where bM = bGH = 0. The optimal MM EVI-estimator in (4.4), asymptotically
equivalent to the optimal ML-estimator, unless ξ + ρ = 0 and (ξ, ρ) 6= (0, 0), outperforms the
M EVI-estimator at optimal levels, in a region around ξ+ρ = 0, and can even outperform the
optimal Lehmer EVI-estimator. The GPPWM EVI-estimator, in (4.3), is RB for ξ + ρ = 0,
and can beat the MM EVI-estimator in a short region of the (ξ, ρ)-plane, as can be seen in
Figure 6, where we exhibit the comparative behaviour of all ‘classical’ EVI-estimators under
consideration, including both the L∗ and the H∗ classes (Figure 6, bottom), after including
only the H∗ class (Figure 6, top), as done in Brilhante et al. ([8]). The GPPWM and PPWM
EVI-estimators are respectively denoted by GP and P. The PPWM, despite of non-RB, can
beat even the optimal Lehmer for a few values of ξ around 0.1, as detected before (see also
Figure 5, bottom).

Remark 4.3. As already mentioned in Brilhante et al. ([8]), note that in the region
ξ + ρ 6= 0 and ξ 6= −ρ/(1− ρ), where a further study under the third-order framework is
needed, all RB EVI-estimators, like the corrected-Hill EVI-estimators in Caeiro et al. ([16]),
overpass at optimal levels all classical and non-RB EVI-estimators available in the literature.
They were thus not included in Figure 6, so that we can see the comparative behaviour of the
non-RB EVI-estimators. A similar comment applies to the optimal CGp,δ EVI-estimators,
in (1.11).

Remark 4.4. As expected, none of the estimators can always dominate the alterna-
tives, but the Lp EVI-estimators have a quite interesting performance, being unexpectedly
able to beat the MOp ≡ Hp EVI-estimators at optimal levels in the whole (ξ, ρ)-plane.

Remark 4.5. For a final adaptive EVI-estimation, i.e. for the choice of (k, p) in (1.7), a
double-bootstrap algorithm, of the type of Algorithm 4.1 in Brilhante et al. ([8]), now based on
the asymptotic behaviour in (2.7), can be used. Such an algorithm relies on the minimization
of a bootstrap estimate of the AMSE. Also, the slight modification of the semi-parametric
bootstrap method in Caers et al. ([18]), provided in the Algorithm 4.3 of Caeiro and Gomes
([13]) is expected to provide an adequate estimation of the bootstrap MSE. Alternatively,
one can use any of the available methods based on sample-path stability (see also Caeiro and
Gomes, [13], among others).
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Figure 6: Comparative overall behaviour of the EVI-estimators under
study, considering only the optimal Hp, denoted H∗ (top) and
including both H∗ and the optimal Lp, denoted L∗ (bottom).
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[45] Paulauskas, V. and Vaičiulis, M. (2013). On the improvement of Hill and some others
estimators, Lith. Math. J., 53, 336–355.
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1. INTRODUCTION

Consider the model of regression line

(1.1) Yi = β0 + xiβ + ei , i = 1, ..., n ,

where β0 and β are unknown parameters, x1, ..., xn are regressors, model errors e1, ..., en

are assumed to be i.i.d. with an unknown distribution function F and uniformly continuous
density f . Our aim is to estimate the slope parameter β and test the hypothesis

H0 : β = 0 against K0 : β 6= 0 .

There is a lot of methods described in the literature. Ordinary least squares estimate
and the corresponding t-test which are optimal for normal model errors. Unfortunately,
normality assumption is often in practice not satisfied. Its violation may cause that the
estimate or test fails.

We do not put any assumptions on the shape of the distribution function F . Generally,
F is unknown; therefore we should use a nonparametric approach. We will focus on rank
tests and estimates that instead of original response variables Yi’s use their ranks.

Rank tests form a class of statistical procedures which have the advantage of simplicity
combined with surprising power. Modern development of rank tests began in the 1930’s, see
e.g. [2] and [4]. Well known is also Wilcoxon [11] who introduced popular Wilcoxon test for
comparing two treatments. At first, it was believed that a high price in loss of efficiency when
using rank tests has to be paid. However, it turned out that efficiency of rank tests behaves
quite well under the classical assumption of normality. In addition these tests remain valid
and have high efficiency when the assumption of normality is not satisfied. These facts were
first brought out by Pitman [8]. Recently rank tests have been still very popular and widely
used, see [1] and [5].

Let us briefly show the classical approach based on linear rank statistic (see e.g. [3]).
It was developed more than fifty years ago and it is still being used thanks to its simplicity
and robustness. Denote

Qn =
1
n

n∑
i=1

(xi − x)2 , with x =
1
n

n∑
i=1

xi .

Let Ri be the rank of Yi among Y1, ..., Yn and define linear rank statistic

Sn =
1√
n

n∑
i=1

(xi − x) ϕ

(
Ri

n + 1

)
for some nondecreasing, nonconstant, square integrable score function ϕ : (0, 1) 7→ R.
Test criterion for H0 is then

(1.2) T 2
n =

S2
n

A2(ϕ) Qn
,

where

A2(ϕ) =
∫ 1

0

(
ϕ(t)− ϕ

)2
dt , ϕ =

∫ 1

0
ϕ(t) dt .
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T 2
n has under H0 asymptotically (under very mild conditions) χ2 distribution with 1 degree

of freedom.

Remark 1.1. The choice ϕ(u) = u, for 0 < u < 1, leads to Wilcoxon rank test in
regression. Hájek in [3] proved that such test in locally most powerful linear rank test for
logistic model errors. In this case it has even greater power than t-test.

2. EMPIRICAL PROCESSES IN SIMPLE LINEAR REGRESSION

Koul [6] considered a class of estimates in linear regression model based on minimization
of certain type of distances. Let us remind his approach. Define

Tg,n(s, t) =
1√
n

n∑
i=1

g(xi) I
{
Ri,t ≤ ns

}
, 0 ≤ s ≤ 1 , t ∈ R ,(2.1)

Kg,n(t) =
∫ 1

0
T 2

g,n(s, t) dL(s) , t ∈ R ,(2.2)

where Ri,t is the rank of the residual Yi− xi t among Y1− x1t, ..., Yn− xn t. L is a distribution
function on [0, 1] and g a real (weight) function such that

∑n
i=1 g(xi) = 0.

The minimum distance estimator β̂g,n is then defined as

β̂g,n = argmin
{

Kg,n(t) : t ∈ R
}

.

Koul [6] showed that such estimates might have in some situations greater efficiency
then corresponding R-estimates and LSE respectively. He also proved their asymptotic unbi-
asedness and normality. We will develop his idea and introduce a class of test statistics based
on these estimates. We will investigate their finite sample as well as asymptotic behavior.
Finally, we will return back to the estimates, generalize them and show that some have greater
efficiency then original Koul’s estimates.

3. TEST IN SIMPLE LINEAR REGRESSION

Recall that we want to test whether regression is present, i.e. we test the null hypothesis

H0 : β = 0 against K0 : β 6= 0 .

We put the hypothetical value β = 0 into (2.1) and (2.2) and get the test statistic

(3.1) Kg,n(0) = K∗
g,n =

∫ 1

0
T 2

g,n(s, 0) dL(s) .
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Discuss some computation aspects of (3.1). First, have a look at the formula (3.1) for
K∗

g,n. Inserting (2.1) into (2.2) for t = 0 we have

K∗
g,n =

1
n

n∑
i=1

n∑
j=1

g(xi) g(xj)
∫ 1

0
I
{
Ri ≤ ns

}
I
{
Rj ≤ ns

}
dL(s)

=
1
n

n∑
i=1

n∑
j=1

g(xi) g(xj)
∫ 1

max
n

Ri
n

,
Rj
n

o1 dL(s) .

L is a distribution function, hence L(max{a, b}) = max{L(a), L(b)}, it also remains true for
limits from the left

K∗
g,n =

1
n

n∑
i=1

n∑
j=1

g(xi) g(xj)

(
1−max

{
L

(
Ri

n
−
)

, L

(
Rj

n
−
)})

.

Since
∑n

i=1 g(xi) = 0 we get

K∗
g,n = − 1

n

n∑
i=1

n∑
j=1

g(xi) g(xj) max
{

L

(
Ri

n
−
)

, L

(
Rj

n
−
)}

.

Using the fact
2 max{a, b} = a + b + |a− b| , ∀ a, b ∈ R ,

and
∑n

i=1 g(xi) = 0 we have

K∗
g,n = − 1

2n

n∑
i=1

n∑
j=1

g(xi) g(xj)
∣∣∣∣L(Ri

n
−
)
− L

(
Rj

n
−
)∣∣∣∣ ,

which is much more convenient for practical computations.

Since K∗
g,n depends on Yi’s only through their ranks Ri’s, it is a rank statistic. However,

unlike the classical rank test statistic T 2
n defined in (1.2), K∗

g,n is not a linear function of the
ranks. That may cause some computation issues, but we can profit from its greater power in
some situations.

Under H0 (β = 0) model (1.1) reduces to

(3.2) Yi = β0 + ei , i = 1, ..., n .

Since distribution of model errors ei is absolutely continuous, there can be any ties in ranks
with probability 0. Thanks to invariance of ranks with respect to the location, distribution
of R1, ..., Rn under null hypothesis is uniform over all n! permutations of numbers {1, ..., n}.
Therefore distribution of K∗

g,n given x1, ..., xn under H0 is distribution-free and may be even
computed directly. To do it, we have to compute all values of the test statistic K∗

g,n for
each of n! permutations of numbers {1, ..., n}. From there we can get (1− α)-quantile or the
corresponding p-value.

However, for large sample size n computation of exact (conditional) distribution may
be time consuming, that is why we will investigate asymptotic distribution of K∗

g,n.

For s ∈ [0, 1] define empirical processes

V̂g,n(s) =
1√
n

n∑
i=1

g(xi) I
{
ei ≤F−1

n (s)
}

,
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Vg,n(s) =
1√
n

n∑
i=1

g(xi) I
{
ei ≤F−1(s)

}
,

where Fn(s) = 1
n

∑n
i=1 I{ei ≤ s)} is empirical distribution function.

Now, state assumptions needed for proofs of asymptotic properties of K∗
g,n. Note that

all limits are considered as n →∞:

x1, ..., xn are not all equal ,(3.3)

max
i=1,...,n

(xi − x̄)2∑n
j=1(xj − x̄)2

→ 0 ,(3.4)

g(xi) 6= 0 for some i = 1, ..., n ,(3.5)

there exists α1 > 0 , such that
1
n

n∑
i=1

g(xi) (xi − x) → α1 ,(3.6)

max
i=1,...,n

g2(xi) → 0 ,(3.7)

sup
n∈N

max
i=1,...,n

|g(xi)| ≤ c for some 0 < c < ∞ ,(3.8)

there exists γ2 > 0 , such that
1
n

n∑
i=1

g2(xi) → γ2 .(3.9)

Remark 3.1. Assumptions (3.3) and (3.4) state that the design points x1, ..., xn are
well-defined. Remaining assumptions put conditions on the g function. If there exists a limit
lim

n→∞
1
n

∑n
i=1(xi − x)2, then the natural choice g(xi) = xi − x meets the above assumptions.

Lemma 3.1. Under (3.3)–(3.6) it holds∣∣∣∣K∗
g,n −

∫
V̂ 2

g,n(s) dL(s)
∣∣∣∣ = op(1) , as n →∞ .

Proof: For convenience we will drop off an index g in K∗
g,n and V̂g,n. Adding and

subtracting V̂n(s) in the first integral, squaring and using Cauchy–Schwarz inequality we get∣∣∣∣∫ T 2
n(s) dL(s)−

∫
V̂ 2

n (s) dL(s)
∣∣∣∣ =

=
∣∣∣∣∫ [Tn(s)− V̂n(s)

]2
dL(s) + 2

∫
V̂n(s)

(
Tn(s)− V̂n(s)

)
dL(s)

∣∣∣∣
≤ sup

0≤s≤1

∣∣Tn(s)− V̂n(s)
∣∣2 + 2

√∫
V̂ 2

n (s) dL(s)
∫ (

Tn(s)− V̂n(s)
)2

dL(s) .

The fact
sup

0≤s≤1

∣∣∣Tn(s)− V̂n(s)
∣∣∣ ≤ 2 max

i=1,...,n

∣∣g(xi)
∣∣ = op(1)

together with
∫

V̂ 2
n (s) dL(s) = Op(1) proves the Lemma.



304 Radim Navrátil

Lemma 3.2. Under (3.3)–(3.6) it holds∣∣∣K∗
g,n−

∫
V 2

g,n(s) dL(s)
∣∣∣ = op(1) , as n →∞ .

Proof:∣∣∣∣∫ T 2
n(s) dL(s)−

∫
V 2

n (s) dL(s)
∣∣∣∣ =

=
∣∣∣∣∫ [Tn(s)−Vn(s)

]2
dL(s) + 2

∫
Vn(s)

(
Tn(s)−Vn(s)

)
dL(s)

∣∣∣∣ .(3.10)

Using Minkowski inequality∫ [
Tn(s)−Vn(s)

]2
dL(s) =

∫ [
Tn(s)− V̂n(s)+ V̂n(s)−Vn(s)

]2
dL(s)

≤ 2
∫ [

Tn(s)− V̂n(s)
]2

dL(s) + 2
∫ [

V̂n(s)−Vn(s)
]2

dL(s) .
(3.11)

By Cauchy–Schwarz inequality∣∣∣∣∫ Vn(s)
(
Tn(s)−Vn(s)

)
dL(s)

∣∣∣∣ ≤
√∫

V 2
n (s) dL(s)

∫ [
Tn(s)−Vn(s)

]2
dL(s)

= op(1) ,

(3.12)

because
∫

V 2
n (s) dL(s) = Op(1) and

∫ [
Tn(s)−Vn(s)

]2
dL(s) = op(1).

Observe that

Vn

(
FF−1

n (s)
)

=
n∑

i=1

g(xi) I
{
ei ≤F−1FF−1

n (s)
}

=
n∑

i=1

g(xi) I
{
ei ≤F−1

n (s)
}

= V̂n(s) .

Therefore
sup

0≤s≤1

∣∣V̂n(s)−Vn(s)
∣∣ = sup

0≤s≤1

∣∣Vn

(
FF−1

n (s)
)
− Vn(s)

∣∣ = op(1) ,

because

sup
0≤s≤1

∣∣FF−1
n (s)− s

∣∣ = sup
0≤s≤1

∣∣∣FF−1(s)− FnF−1
n (s) + FnF−1

n (s)− s
∣∣∣

≤ sup
x∈R

∣∣F (x)− Fn(x)
∣∣+ sup

0≤s≤1

∣∣FnF−1
n (s)− s

∣∣ = op(1) .

Now, combining previous result, Lemma 3.1 and (3.10), (3.11) and (3.12) we have proven the
Lemma.

Remark 3.2. The previous lemma states that the asymptotic distribution of K∗
g,n is

the same as
∫

V 2
g,n(s) dL(s) that is easier to investigate. Now, we are able to state the theorem

about asymptotic null distribution of K∗
g,n.
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Theorem 3.1. Under (3.3)–(3.9) in model (1.1) under H0

K∗
g,n

d−→ γ2 ·YL , with YL =
∫ 1

0
B2(s) dL(s) ,

where B(s) is a Brownian bridge in C[0, 1].

Proof: Recall that

Vg,n(s) =
1√
n

n∑
i=1

g(xi) I
{
ei ≤F−1(s)

}
=

1√
n

n∑
i=1

g(xi) I
{
F (ei)≤ s

}
=

1√
n

n∑
i=1

g(xi) I
{
Ui ≤ (s)

}
,

where U1, ..., Un are i.i.d. random variables with uniform U(0, 1) distribution.

By [6] we have
Vg,n(s) =⇒ γ ·B(s) in D[0, 1]

and therefore
∫

V 2
g,n(s) dL(s) d−→ γ2

∫
B2(s) dL(s). That together with Lemma 3.2 proves

Theorem 3.1.

Distribution of random variable YL for L(s) = s was first investigated by Smirnov [9].
Values of its distribution function may be found for example in [10], some quantiles are listed
in Table 1. For other choices of function L one has to use simulated values.

Table 1: Quantiles of distribution YL for L(s) = s.

α 0.90 0.95 0.99 0.999

α-quantile 0.34730 0.46136 0.74346 1.16786

In [7] we also investigated the behavior of K∗
g,n under the local alternative

K0,n : β = n−1/2β∗ , 0 6= β∗ ∈ R fixed .

The resulting distribution cannot be expressed in a closed formula, that is why we omit it
here. Power of the test will be illustrated later in the simulation study.

4. GENERALIZATION OF THE TEST

In the definition of the test statistic K∗
g,n (3.1) we used second power of the L2-norm

of the empirical process Tg,n(s, 0). Instead, we may use any norm on D[0, 1]. For simplicity,
we will consider only the class of Lp-norms for p ∈ [1,∞].
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For p ∈ [1,∞) define

(4.1) K(p)
g,n =

(∫ 1

0

∣∣Tg,n(s, 0)
∣∣p dL(s)

)1
p

,

for p = ∞ define

(4.2) K(∞)
g,n = max

{∣∣Tg,n(s, 0)
∣∣ : s ∈ [0, 1]

}
.

Remark 4.1. Obviously, for p = 2 we have
(
K

(2)
g,n

)2= K∗
g,n.

From computation point of view, formulas (4.1) and (4.2) might be simplified. Obviously,
Tg,n(0, 0) = 0 and Tg,n(s, 0) is piecewise constant:

Tg,n(s, 0) =
1√
n

∑
i:Ri≤j

g(xi) ,
j−1

n
< s≤ j

n
, j = 1, ..., n .

Therefore,

K(∞)
g,n =

1√
n

max
i=1,...,n

∣∣∣∣∣∣
∑

i:Ri≤j

g(xi)

∣∣∣∣∣∣ ,
K(1)

g,n =
1

n3/2

n∑
i=1

∣∣∣∣∣∣
∑

i:Ri≤j

g(xi)

∣∣∣∣∣∣ ,
for L(s) = s.

Again, since K
(p)
g,n depends on Yi’s only through their ranks Ri’s, it is a rank statistic,

but not linear like (1.2). That may cause some computation issues, but we can profit from
its greater power in some situations.

Now, focus on the distribution under the null hypothesis. Under H0 (β = 0) model
(1.1) reduces to (3.2)

Yi = β0 + ei , i = 1, ..., n .

Thanks to the same arguments as in the previous section, the distribution of K
(p)
g,n given

x1, ..., xn under the null hypothesis is distribution-free and can be easily computed directly
the same way. For large sample sizes n the following asymptotic approximation might be
used.

Theorem 4.1. Under (3.3)–(3.9) in model (1.1) under H0

K(p)
g,n

d−→ γ · Y (p)
L , with Y

(p)
L =

(∫ 1

0

∣∣B(s)
∣∣p dL(s)

)1
p

,

where B(s) is a Brownian bridge in C[0, 1].

Proof: The proof is analogous to the proof of Theorem 3.1.
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5. CHOICE OF THE PARAMETERS IN PRACTISE

In the previous section, we derived a class of minimum distance tests. In practise there
arises a question how to choose optional parameters of the test.

Function g is in fact a weight function for regressors, so it can downweight outlying
observations to robustify these tests against extreme values of xi (if g is bounded for example).
Anyway, if we are not afraid of leverage observations xi, then the optimal choice of the
g function is g(xi) = xi − x. This choice leads to the test with the greatest power among all
test with different g functions.

Function L has similar interpretation as score-function ϕ in standard rank tests theory,
optimal L could be chosen based on the estimate of unknown model errors. Anyway, the
simplest choice L(s) = s gives very reasonable results (see the simulations).

And finally, the choice of Lp-norm depends on the model errors ei. From computational
point of view, one should consider p = 1, 2,∞ for that we have a simple formula. Power
comparisons are made in the simulation study.

6. GENERALIZATIONS

In [7] we investigated behavior the test in measurement error model:

Yi = β0 + βxi + ei ,

wi = xi + vi , i = 1, ..., n ,

where instead of actual regressors xi we observed wi affected by measurement errors vi.

We showed that the test is still valid in this model, the presence of measurement errors
decreases power of the test, because we do not use values of function g in optimal points
x1, ..., xn but in wi’s.

In Section 4 we showed extension of the test using various norms for the empirical
process. Analogously, we may define generalization of Koul’s estimate defined in Section 2.

Consider empirical process Tg,n(s, t) defined in (2.1) and for p ∈ [1,∞) define

K(p)
g,n(t) =

(∫ 1

0

∣∣Tg,n(s, t)
∣∣p dL(s)

)1
p

, t ∈ R ,

and for p = ∞
K(∞)

g,n (t) = max
{∣∣Tg,n(s, t)

∣∣ : s ∈ [0, 1]
}

, t ∈ R .

Minimum distance estimator β̂
(p)
g,n is then defined as

β̂(p)
g,n = argmin

{
K(p)

g,n(t) : t ∈ R
}

.
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In the similar way, thanks to duality of rank tests and estimates, we may show favorable
properties and good performance of the estimates. Detailed analysis will be part of our future
study.

7. SIMULATIONS

To support previous theoretical results we conducted a large simulation study, let us
present a few interesting results. Let us start with model (1.1) for moderate sample size
n = 30. We have compared empirical power of our test based on the test statistic K∗

g,n with
g(xi) = xi− x̄ and L(s) = s (call it minimum distance test) with Wilcoxon test for regression
(based on (1.2) with ϕ(u) = u) and standard t-test for regression.

Regressors x1, ..., x30 were once generated from uniform U(−2, 10) distribution and
then considered fixed, model errors ei were generated from normal, logistic, Laplace and
t-distribution with 6 degrees of freedom, respectively, always with 0 mean a variance 3/2.
The empirical powers of the tests were computed as a percentage of rejections of H0 among
10 000 replications, at significance level α = 0.05. The results are summarized in Table 2.

Table 2: Percentage of rejections of hypothesis H0 : β = 0 of minimum distance test (MD),
Wilcoxon test for regression (W) and t-test for regression (t); n = 30, α = 0.05.

β \ ei N
�
0, 3

2

�
Log

�
0,
√

2π
3

�
Lap

�
0,
√

3
2

�
t(6)

MD W t MD W t MD W t MD W t

0 4.98 4.42 5.00 5.06 4.55 5.00 5.00 4.55 5.04 5.00 4.32 4.93
0.1 28.7 28.3 31.5 32.7 31.4 32.0 42.4 39.0 33.5 34.6 33.1 32.9

−0.1 28.3 28.2 30.9 32.7 31.2 32.2 42.5 39.0 33.7 33.3 32.1 31.9
0.2 78.2 78.8 82.3 82.5 81.8 81.9 88.3 86.6 82.0 84.5 83.9 82.6

−0.2 78.3 78.7 82.9 83.3 82.7 82.9 89.2 87.5 83.1 84.0 83.4 82.5

For normal model errors t-test achieves (not surprisingly) the largest power, but the
differences among the three tests are not much distinct. For distributions with heavier tails
than normal our test has the largest power, even for logistic distribution (for which Wilcoxon
test is locally most powerful rank test). It is caused by the slow convergence of Wilcoxon test
statistic to its asymptotic distribution.

In Table 3 comparison of tests based on various norms (L2, L1, L∞) is made.

Bad performance of the test based on L∞-norm is caused by slow convergence of cor-
responding test statistic to its limit distribution. For large sample size n test preserves
prescribed significance level α under null hypothesis and under the alternative its power is
quite similar to other tests. Tests based on L2 and L1-norm perform very similar. Test based
on L1-norm might have slightly greater power which is caused by faster convergence of the
test statistic. On the other hand, computation of the test statistic based on L2-norm is easier
than those with L1-norm.
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Table 3: Percentage of rejections of hypothesis H0 : β = 0 of minimum distance test
based on L2, L1 and L∞-norm; n = 30, α = 0.05.

ei N
�
0, 3

2

�
Log

�
0, 3√

2π

�
Lap

�
0,
√

3
2

�
t(6)

β L2 L1 L∞ L2 L1 L∞ L2 L1 L∞ L2 L1 L∞

0 5.15 5.03 2.73 5.34 5.31 2.61 5.03 5.18 2.71 4.90 4.97 2.64
0.1 30.0 31.0 17.8 33.4 34.1 20.6 43.6 43.0 30.6 35.8 36.6 22.4

−0.1 29.2 30.2 17.2 34.0 34.7 21.4 44.2 43.4 30.4 35.0 35.8 21.6
0.2 81.2 82.6 62.4 84.9 85.7 68.1 90.5 90.3 78.9 87.8 88.5 72.2

−0.2 80.6 82.6 62.2 84.9 86.0 68.8 90.5 90.4 78.9 86.8 87.4 71.2

We performed more simulations for various design points xi, sample sizes n and model
errors ei. We also compared the tests according to the choice of functions L and g. However,
the corresponding results are very similar to those presented in Tables 2 and 3.

Finally, we studied the finite sample behavior of generalized estimates from Section 6.
Because of the duality of rank tests and estimates corresponding results and conclusions were
the same as for the tests. That is why we omit it here.

8. CONCLUSIONS

We introduced a class of new rank tests in linear regression model. Unlike the classical
ones introduced by Hájek and Šidák, our tests are not linear functions of the ranks. Thanks
to that they can achieve greater power. Our tests are robust, we do not need to assume
normality of model errors. Anyway, under normality our tests has similar power as classical
t-test; for model errors with heavy tails our test has significantly greater power.

Our test may be also robust with respect to leverage observations. The right choice
of the weight function leads to the test that is not sensitive to outlying regressors. We also
generalized Koul’s minimum distance estimates when considering various Lp-norms instead
of L2. Corresponding estimates have the same favorable properties as the tests.
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[7] Navrátil, R. (2015). Rank tests in regression model based on minimum distance esti-
mates, Kybernetika: The Journal of the Czech Society for Cybernetics and Informatics, 51(6),
909–922.

[8] Pitman, E.J.G. (1948). Lecture notes on nonparametric statistics, Columbia University,
New York.

[9] Smirnov, N.V. (1936). Sur la distribution de ω2 (criterium de m. r. v. mises), C. R. Akad.
Sci. Paris, 202, 449–452.

[10] Tolmatz, L. (2002). On the distribution of the square integral of the brownian bridge,
The Annals of Probability, 30, 253–269.

[11] Wilcoxon, F. (1945). Individual comparisons by ranking methods, Biometrics, 1, 80–83.



REVSTAT – Statistical Journal
Volume 18, Number 3, July 2020, 311–323

BAYESIAN CRITERIA FOR NON-ZERO EFFECTS
DETECTION UNDER SKEW-NORMAL SEARCH MODEL

Authors: Sara Sadeghi
– Department of Statistics, University of Isfahan,

Isfahan, Iran

Hooshang Talebi
– Department of Statistics, University of Isfahan,

Isfahan, Iran
h-talebi@sci.ui.ac.ir

Received: June 2017 Revised: January 2018 Accepted: January 2018

Abstract:

• Shirakura et al. [12] introduced search probability (SP) in order to compare search designs (SD).
Afterwards, the SP-based and other related criteria were developed, all for the normal model.
In the present study, we considered a general underlying skew-normal (SN) model and obtained
new criteria in a simple explicit form using the Bayesian approach. These criteria are design-
dependent and hence are able to rank SDs with respect to their search performance.

Key-Words:

• Bayesian approach; Kullback–Leibler distance; search design; search linear model; skew-normal
distribution.

AMS Subject Classification:

• 62K15.

file:h-talebi@sci.ui.ac.ir


312 Sara Sadeghi and Hooshang Talebi

1. INTRODUCTION

At the screening stage of an experiment, a main effect plan (MEP) is employed to
estimate the main effects, assuming that all interactions are negligible. MEPs were introduced
and implemented after World War II, for more details refer to the pioneering paper of Box
and Wilson [6]. MEPs, including saturated resolution III regular and irregular designs, have
been widely used in practical industrial experiments. For example, Plackett and Burman [11]
introduced an irregular saturated MEP for 2m factorial experiments, where m = 4t− 1, for
t ≥ 3. Nevertheless, there might exist a small number of non-zero lower order interactions,
which cause bias in estimating main effects. Enhancing the resolution, i.e., upgrading to
resolution IV or V, for instance through fold-over approach to overcome the problem, increases
the number of runs and, in turn, the cost of the experiment.

To save the number of runs, Srivastava [14] introduced and suggested using SDs to
search for and estimate k unknown non-zero interactions in addition to estimating the main
effects. Such a design is known as main effect plus k plan (MEP.k). Several researchers have
developed the MEP.k (see Ghosh et al. [8], for a thorough review). For example, Esmailzadeh
et al. [7] and Talebi and Jalali [18] constructed MEP.1 for 2m factorial designs respectively,
for odd and even m. Consider search linear model for providing a key condition in planning a
general SD and in particular MEP.k. For a vector of observations y(N×1), the search linear
model is

y = A1ξ1 + A2ξ2 + e , Cov(e) = σ2IN ,(1.1)

where Ai(N×νi) are known design matrices; and ξi(νi×1) are vectors of effects for i = 1, 2;
e(N×1) is an error vector; σ2 is the error variance; and IN is the identity matrix of order N .
It is known for a fact that k effects in ξ2 are non-zero, but we don’t know which ones.
Therefore, the plan sets out to search for and identify the non-negligible effects in ξ2 and
estimate them in addition to estimating the effects in ξ1. Alternatively, let S be the set of all(
ν2

k

)
models with only one correct model, each including a set of k possible non-zero effects

from ξ2 and ξ1. The j-th model, j = 1, 2, ...,
(
ν2

k

)
, in S is expressed as follows:

y = A1ξ1 + A21(ζj)ζj + e ,(1.2)

where ζj(k×1) is a vector of k effects from ξ2 and A21(ζj) is the N×k submatrix of A2

whose columns are corresponding to ζj .

To identify the non-zero set of effects in ξ2 for noisy case (σ2 > 0), Srivastava [14]
suggested choosing the model in (1.2) with the lowest sum of square error (SSE). Moreover,
Shirakura et al. [12] studied the stochastic properties of SSE and derived the SP in an explicit
form for k= 1 under the normal error. SP is design-dependent and hence Shirakura et al. [12]
suggested using it for comparing SDs with respect to their search performance. Subsequently,
Ghosh and Teschmacher [9] and Talebi and Esmailzadeh [16] derived the SP-based criteria.
Furthermore, Talebi and Esmailzadeh [15] conducted another design-comparison study and
derived the KL (Kullback–Leibler) criterion based on Kullback–Leibler distance, which can
be used for k ≥ 1.

All of the above proposed criteria were obtained for models with normal error. However,
such models may not adequately fit the data in many practical situations. For example,



Bayesian Criteria for Non-zero Effects Detection under Skew-Normal Search Model 313

Arnold and Beaver [2] described a real situation in which the observations followed a non-
normal distribution. They termed this situation ‘hidden truncation’, for which the model
is SN. Afterwards, Arnold et al. [3] reported observations related to the hidden truncation.
Moreover, Arellano-Valle et al. [1] assumed the SN error to fit a mixed model to a real
set of longitudinal data on cholesterol levels collected as a part of the famed Framingham
heart study. The above examples revealed the abundance of phenomena with SN models in
real situations. The present study was also motivated by a hidden truncation problem, i.e.
candidates who want to partake in the PhD Admission Examination of Iranian Universities
must have an overall above-average Master’s GPA. To deal with this, distributions such
as skew-t distribution or mixture of two normal distributions may be proposed. However,
based on our findings, such proposed distributions may not lead to an explicit solution.
We considered the rival models in (1.2) with the multivariate SN distribution for error and
used a Bayesian method to propose a new approach for finding the true model. This led to
criteria which will be presented in an explicit form. The Bayesian approach in developing
new explicit criteria allowed us to take into account the hierarchical principle in factorial
experiments, by which the lower order interactions are more important than the higher orders.
It was, therefore, rational to choose an appropriate prior distributional model for the factorial
effects in order to deal with this issue. Through this prior distribution, we allocated non-zero
probability to the main effects and k possible low order non-zero interactions, while all other
interactions came down to zero probability. In this study, which is the first Bayesian research
in the context of search design, it was shown that the Bayesian approach could simplify the
complexity in deriving the appropriate criteria.

In the next section some useful preliminaries are presented. The new Bayesian search
criteria will be proposed in Section 3. These criteria are

1 – expected Shannon information (ESI), and

2 – Bayesian expected Kullback–Leibler (BEKL),

which enable us to compare the search performance of any given SD. The calculations are
moved to the Appendix in order to enhance the readability of the article.

2. PRELIMINARIES

The primary aim of this study was to acquire criteria for model identification in the
context of search linear model. This problem has long been investigated by several researchers
for models with normal error. In this study, we considered models with SN error. Thus,
a better understanding of the SN distribution can be helpful.

Following Azzalini [4], who introduced SN distribution, a random variable Y has an
SN distribution, denoted by Y ∼ SN(µ, σ, λ), with location parameter µ; scale parameter σ;
and shape parameter λ, if its probability density function (pdf) is

f(y) =
2
σ
φ

(
y−µ
σ

)
Φ
(
λ
y−µ
σ

)
, y ∈ R ,(2.1)

where φ(·) and Φ(·) are the pdf and cumulative distribution function (cdf) of the standard
normal distribution, respectively. The multivariate SN distribution has also been proposed
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by some researchers. That is, an N -dimensional random vector, Y , follows a multivariate
SN distribution SNN (µ,Σ,λ) with location vector µ ∈ RN ; positive definite dispersion matrix
ΣN×N ; and skewness vector λ ∈ RN , if its pdf is

f(y) = 2φN

(
y |µ,Σ

)
Φ1

(
λ′Σ− 1

2 (y−µ)
)
, y ∈ RN ,(2.2)

where φN (·) is the pdf of the N(µ,Σ), (Arellano-Valle et al. [1]). Evidently, the random
vector Y follows N(µ,Σ) for λ = 0. Following Arellano-Valle et al. [1], the random vector
Y ∼ SNN (µ,Σ,λ) can be expressed as

Y
d= µ + Σ

1
2

(
δ |T0|+

(
IN − δδ′

)1
2 T1

)
,(2.3)

where δ = λ√
1+λ′λ

; T0 ∼ N(0, 1); T1 ∼ N(0, IN ) is independent of T0, and d= stands for equal-
ity in distribution. In Z = |T0|, Z has a half-normal distribution. It is worth noting that
model (2.3) covers bias and correlation among errors in addition to skewness. Now, for hid-
den truncation problem, the SN distribution is written as follows. Suppose random vector

(X,W1,W2, ...,WN )′ distributed as NN+1(θ,Ω), where θ = (µx,µ
′)′ and Ω =

(
1 δ′

δ IN

)
. Let

W = (W1,W2, ...,WN )′, then following Azzalini [5]

Y = W |X > µx ∼ SNN (µ, IN ,λ) ,(2.4)

where λ = (1− δ′δ)−
1
2 δ. We calculated some of the existing criteria for detecting non-zero

effects under the SN search model. Based on the findings, the calculation of SP for SN model
has proven to be very intricate. Furthermore, the expected KL (EKL) criterion, proposed by
Talebi and Esmailzadeh [15], for Y ∼ SNN (µ,Σ,λ) led to the integral below:∫

2φN

(
y |µ0,Σ

)
Φ1

(
λ′Σ− 1

2 (y−µ0)
)

log

{
φN

(
y |µ0,Σ

)
Φ1

(
λ′Σ− 1

2 (y−µ0)
)

φN

(
y |µj ,Σ) Φ1

(
λ′Σ− 1

2 (y−µi)
) } dy ,(2.5)

where for non-zero ζ0, µ0 = A1ξ1 + A21(ζ0)ζ0 and µj = A1ξ1 + A21(ζj)ζj . This can not be
made any simpler, and thus it is hard to be satisfied with (2.5) as a criterion. The desire
of finding a very simple and conceivable criterion, consequently, motivated us to look for a
different approach.

Lindley [10] defined the expected information about θ for observation vector y in an
experiment E, prior function π(θ), and posterior pdf π(θ|y) as below:

Iθ
{
E, π(θ)

}
=
∫
f(y)

∫
π(θ|y) log

π(θ|y)
π(θ)

dθ dy ,(2.6)

provided that the integral exists. This is the expected KL distance between prior and posterior
distributions, which measures the average overall observations information. Using Bayes’
theorem, Iθ{E, π(θ)} in (2.6) can be written as follows:

Iθ
{
E, π(θ)

}
= Eθ

{
EY |θ

(
log f(y|θ)

)}
− EY

{
log fy

}
.(2.7)

The distance in (2.7) will be used for proposing the new criteria in Section 3.

For the normal distribution N(0, σ2Σ) and SN distribution SNN (0, σ2Σ,λ) with un-
known σ2, let’s take y∗= y/σ and rewrite model (1.2) as below, which will be used throughout
this article,

y∗ = A(ξj) ξ∗j + e∗ , j = 1, 2, ...,
(
ν2

k

)
,(2.8)
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where ξ∗j = 1
σ (ξ′1, ζ

′
j)
′; A(ξj) = [A1 :A21(ζj)]; and e∗= e/σ. In the Bayesian framework,

ξ∗j is assumed to have the prior distribution N(0,Σ0), where Σ0 is a known (ν1+k)× (ν1+k)
diagonal matrix. Following Wu and Hamada [19, p. 434], by assuming large diagonal elements
in Σ0, we are assured of the possibility of the presence of non-zero effects in ξ∗j . For a given
prior, π(ξ∗j ), the event of observing a small interior integral in (2.6) indicates that the data
support the existence of the non-negligible effects. Therefore, a small interior integral value
in Iθ{E, π(θ)}, presumably confirms the possibility of the presence of non-zero effects in ξ∗j .
By this scenario, we suggested calculating the interior integral in (2.6) for all

(
ν2

k

)
models in

(2.8) and selecting the model with the lowest value as the true model. The following simula-
tion study was performed as the verity performance assessment of the proposed criterion.

The search design D1 given in the Appendix was used to generate data. Let ξ1 be
the vector of the general mean and main effects and let ζ0 be the two-factor interaction AB.
Furthermore, in a hidden truncation model, assume that δ = 0.2 112, where 112 is a 12×1
vector of 1s, and Σ0 = 100I6. Based on these parameter values, 1 000 data set were simulated
from a 12 dimensional SN distribution using “sn” package in R software. The interior integral
in (2.6) was calculated for all 6 possible models with any one of the two-factor interactions.
The simulation results showed that the interior integral had the lowest value for the true model
with AB interaction. We also calculated SSE for all models and found that the same model
had the minimum SSE. Moreover, we ran this simulation for the case k = 2, by assuming ζ0

to be (AB AC) and found that the interior integral and SSE were minimal for the chosen
model.

Meanwhile, for a given model, Zhang [20] used Iθ{E, π(θ)} to select the optimum de-
sign, i.e. the design which maximizes the expression in (2.6). Due to the design-independence
of the prior in denominator, she concluded that maximizing Iθ{E, π(θ)} comes down to
maximizing the following quantity

U =
∫
fy

{∫
π(θ|y) log π(θ|y) dθ

}
dy .(2.9)

It is worth noting that for any given design, say D, U(D) is the expected Shannon information
of the posterior distribution denoted by ESID. Zhang [20] achieved an expression for (2.9)
in the normal regression model and showed that maximization of U(D) is equivalent to
maximizing the determinant of inverted posterior variance of unknown parameter.

Under model uncertainty, when one is faced with a multi-model case, it is logical to
calculate (2.9) for all models, opt for the model with the lowest value and then, select a design
that has the maximum of such the value. In other words, let Ui(D) be ESID in (2.9) for the i-
th model,

(
i=1,2,...,ν2

k

)
, then MESID = minS Ui(D). Evidently, in the context of search design

for any given design D, the larger the value of MESID, the higher the performance of D in
searching for non-zero effects. So, for comparing and ranking the SDs with respect to their
search performance, MESID can be used as a criterion for design comparison. Hence, we
present the following definition.

Definition 2.1. Suppose D1 and D2 are two SDs with N treatments, D1 is said to
be better than D2 for identifying the set of non-zero effects if MESID1>MESID2 .
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3. MAIN RESULTS

3.1. ESI search criterion

In this section, we first introduce ESID as a criterion under normality assumption and
then give a generalized form of the criterion using the SN model.

Consider the model in (2.8) and assume that Y ∗ ∼ N(µ,Σ), where µ = A(ξj)ξ∗j .
Then for foregoing π(ξ∗j ), j = 1, 2, ...,

(
ν2

k

)
, the posterior distribution of ξ∗j is proportional

to f(ξ∗j ,y
∗) given in (A.1) below. After some calculations, as given in the Appendix, the

interior integral in U becomes

Eξ∗
j |y∗
{
log π(ξ∗j |y∗)

}
= −1

2
log |Σξ| −

ν1 + k

2
,(3.1)

where Σξ is a conditional posterior variance of ξ∗j given y∗. U is obtained from (3.1) by
integration with respect to the marginal distribution of Y ∗. After removing the redundant
terms, U is reduced to a simple form ψ(D) for design D,

ψ(D) = log |Σξ|−1 .(3.2)

Note that |Σy∗ | = |Σξ|−1 |Σ0|, hence ψ(D) is proportional to log |Σy∗ |. It should also be
noted that ψ(D) is design-dependent and written in terms of the hyper parameter Σ0. There-
fore, for any given design D, ψ(D) is calculable.

Remark 3.1. In Σξ, the expression A′(ζj)Σ−1A(ζj) is the inverted variance of(
A′(ζj)Σ−1A(ζj)

)−1
A(ζj)′ Σ−1y∗, and Σ−1

0 is the inverted prior variance of ξ∗j which, in
fact, combines prior information with extracted information from the data.

Now, it is assumed that vector Y ∗ in the model (2.8) is distributed as a multivariate
SN, SNN (µ,Σ,λ). Calculation of Eξ∗

j |y∗
{
log π(ξ∗j |y∗)

}
for SN distribution is not simple due

to complexity of such distribution. To simplify the problem, we used expression (2.3) for Y ∗

and apply the conditional distribution below:

(3.3) Y ∗ |Z = z ∼ N
(
µ + zΣ

1
2 δ, G

)
,

where G = Σ
1
2 (IN − δδ′)Σ

1
2 . Following Sorensen and Gianola [13], we use the distribution of

Y ∗ condition on the latent variable Z, in writing the posterior distribution as given in (A.2).
Insert the unobserved random variable Z in the parameters vector, i.e. θ′j = (ξ∗j

′, Z), j =
1, 2, ...,

(
ν2

k

)
, and take the prior distributions N(0,Σ0) for ξ∗j . The joint posterior distribution

of θj is proportional to f(θj ,y
∗) in (A.2).

The Shannon information criterion is

Eθj|y∗
{
log π(θj |y∗)

}
= EZ|y∗

{
Eξ∗

j |z,y∗
(
log π(θj |y∗)

)}
.(3.4)

More calculations and details are given in the Appendix, based on which, the conditional
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expectation in (3.4) is simplified to the reduced form below:

Eθj|y∗
{
log π(θj |y∗)

}
= − 1

2
log |2πΣξ| −

ν1+k

2

− 1
2

log(2πσ2
z )− 1

2
+

z∗φ
(

z∗

σz

)
2σz Φ

(
z∗

σz

) − log

(
Φ
(
z∗

σz

))
,

where Σξ and σ2
z are conditional posterior variance of ξ∗j given (z,y∗) and conditional pos-

terior variance of Z given y∗, respectively. z∗ is conditional posterior mean of Z given y∗.
More details on these can be found in the Appendix.

Meanwhile, the expected value of (2.9) is computed with respect to the marginal dis-
tribution of Y ∗ given in the Appendix, i.e. SNN (0,Σy∗ ,γy∗). It gives

U = − ν1+k+1
2

log(2π)− ν1+k+1
2

− 1
2

log
{
|Σξ|(σ2

z )
}

+
1
2
ET

{
T
φ(T )
Φ(T )

− 2 log
[
Φ(T )

]}
,

(3.5)

where T = z∗

σz
with T ∼SN(0, σ2

t , σt); σ2
t = δ′Σ

1
2 M ′Σy∗MΣ

1
2 δ

1+δ′Σ
1
2 MΣ

1
2 δ

; and M is given in the Appendix.

ESID in (3.5) can be written as the following design-dependent criterion and then the mini-
mum of such the criterion over all models in S be maximized over SDs to come up with the
superior design

ψ(D,λ) = log
{
|Σξ|−1(σ2

z )−1
}

+ ET

{
T
φ(T )
Φ(T )

− 2 log
[
Φ(T )

]}
.(3.6)

It should also be noted that |Σy∗ | = |G| |Σξ|−1 |Σ0|(σ2
z )−1, therefore

ψ(D,λ) ∝ log |Σy∗ |+ ET

{
T
φ(T )
Φ(T )

− 2 log
[
Φ(T )

]}
.(3.7)

The subsequent remarks present more details on ψ(D,λ).

Remark 3.2. Generally, λ is an N×1 unknown vector. Lacking a specific knowledge
on λ may lead one to follow the Bayesian approach for choosing a prior distribution such as
uniform on a sphere.

Remark 3.3. Similar to Remark 3.1, the term A′(ξj)G−1A(ξj) in |Σξ|−1 is the
inverted variance of

(
A′(ξj)G−1A(ξj)

)−1
A(ξj)′ (V G)−

1
2 y∗ where V = Σ

1
2

(
IN − 2

π δδ′
)
Σ

1
2 .

Remark 3.4. For λ → 0 (Normality error case) random variable T is degenerated at
zero. Therefore, the second term in (3.7) disappears and ψ(D,λ) remains with its first term.
It is similar to what is given in (3.2) for normal case. In the hidden truncation model, if for
every i= 1,2, ...,N, δi → 0, then Y ∗∼ N(µ, IN ) and ψ(D) is simplified to (3.2) with Σ = I.

Remark 3.5. For the special case of identical skewness, i.e. λ = λ1N , λ ∈ R, σt and
G−1 = Σ− 1

2 (IN + λ21N 1′N )Σ− 1
2 are symmetric in λ. Therefore, ψ(D,λ) is symmetric in λ.

It should also be noted that for a hidden truncation problem with δ = δ1N, ψ(D,δ) is sym-
metric in δ.
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3.2. BEKL search criterion

In what follows, we obtain the expected KL distance, Iθ{E, π(θ)}, under normal and
SN distributions for error. It should be noted that by keeping the prior distribution in
expected information (2.6) the results in this section will be different from the findings in
Section 3.1, which were obtained from U in (2.9).

Consider model (2.8), and for more understanding, first assume that Y ∗∼ N(µ,Σ).
Now, for ξ∗j ∼ N(0,Σ0), j = 1, 2, ...,

(
ν2

k

)
, compute EY ∗|ξ∗

j

(
log f(y∗|ξ∗j )

)
and EY ∗

{
log f(y∗)

}
to reach Iθj

{
E, π(θj)

}
given in (2.7). From marginal distribution of Y ∗, which is given in

the Appendix, we have

EY ∗
{
log f(y∗)

}
= −N

2
(
log(2π) + 1

)
− 1

2
log |Σy∗| .

Clearly, EY ∗|ξ∗
j

(
log f(y∗|ξ∗j )

)
= −N

2

(
log(2π) + 1

)
, hence Iθj

{
E, π(θj)

}
is

Iθj
{
E, π(θj)

}
=

1
2

log |Σy∗| .(3.8)

As can be seen in (3.8), in order to minimize Iθj
{
E, π(θj)

}
, it is enough to minimize the

simple form |Σy∗ | over all possible
(
ν2

k

)
models.

Now, suppose Y ∗∼ SNN (µ,Σ,λ). Let’s add the unobserved random variable Z to the
parameters vector to get θ′j = (ξ∗j

′,Z), j = 1, 2, ...,
(
ν2

k

)
. By assuming the prior distribution

for the vector ξ∗j , as given herein, and noting that Y ∗ can be written as (2.3), we have

EY ∗|θj

(
log f(y∗|θj)

)
= −N

2
(
log(2π) + 1

)
− 1

2
log |G| ,

and

EY ∗
(
log f(y∗)

)
= log 2− N

2
(
log(2π) + 1

)
− 1

2
log |Σy∗ |+ ET

{
log[Φ(T )]

}
.

Therefore, Iθj
{
E, π(θj)

}
provides the following:

Iθj
{
E, π(θj)

}
= − log 2− 1

2
log |G|+ 1

2
log |Σy∗ | − ET

{
log[Φ(T )]

}
.(3.9)

Evidently, minimizing Iθj
{
E, π(θj)

}
in (3.9) is equivalent to minimizing Φ(D,λ) =

log |Σy∗ | − 2ET

{
log
(
Φ(T )

)}
over the set of all possible models in S, known as the BEKL

criterion. Note that the ESI in (3.7) has an extra term ET

(
T φ(T )

Φ(T )

)
in comparing to the

BEKL. That is, although the prior distribution is design-independent, keeping such the prior
in (2.6) leads to a simple and more flexible criterion.

The proposed BEKL measure, which is primarily proposed for model discrimination,
can also be used to compare search performance of SDs. In doing so, first for each of the
SDs the minimum of the BEKL (MBEKLD) is obtained over the set of all models. Then, the
design with a larger MBEKLD is considered to be the desired one. Therefore, Definition 2.1
is valid for designs D1 and D2 with respect to MBEKLD-criterion if MBEKLD1>MBEKLD2 .
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4. IMPLEMENTATION

In this section, we assess the performance of the two proposed Bayesian criteria through
comparing and ranking rival SDs. To do so, we use MBEKLD and MESID under SN distri-
bution for error. We compare search performance of three 12-run search designs D1, D2 and
D3, as given in the Appendix, for a 24 factorial experiment. Design D1 is a balanced array
of full strength, Design D2 is the projection of a 12-run Plackett–Burman design onto its
4 columns, and Design D3 is a non-repeated run orthogonal main effect plan. These designs
have already been compared by Ghosh and Teschmacher [9] and Talebi and Esmailzadeh [17],
under normality.

Example 4.1. Let in model (1.1), ξ1 be the vector of the general mean and main ef-
fects, and ξ2 be two- and three-factor interactions, while assuming that four-factor interaction
is negligible. Furthermore, it is assumed that ξ2 includes two non-zero effects at the most.
D1, D2, and D3 are MEP.1. They are also MEP.2 plans, when ξ2 includes only two-factor
interactions, assuming higher-order interactions are all zero. We were interested in study-
ing scores of 12 EEIU volunteers with a GPA over than mean, i.e. Y = W |X > µx, where
Wi’s, i= 1, 2, ..., 12, are the scores and X is the GPA. Consider model (2.8) for the vector
of observations Y and assume (X,W ′)′ ∼ N13(θ,Ω), where θ = (µx,µ

′)′, µ = A(ξj)ξ∗j , and

Ω =
(

1 δ′

δ I12

)
. In this case, Y satisfies the conditional distribution of (2.4). Data were col-

lected through 3 possible designsD1, D2, andD3. For δ = δ 112, let σD,δ =
[
σtζ1

, σtζ2
, ..., σtζl

]′,
where l =

(
ν2

k

)
, and σtζj

denotes σt for the j-th model. MATLAB software was used to cal-
culate amount of the criterion. It was learned that σD,δ = cδ1l, for D1, D2 and D3, where
cδ is scalar and depends on δ for all models. It is also true that σD1,δ = σD2,δ = σD3,δ, which
means that the value of σt depends neither on the model nor on the design. Consequently,
in order to compare designs D1, D2, and D3, for a fixed value of δ, the second expression for
both criteria is canceled out and, therefore, both ESID and BEKLD become the same. This is
true for the following design comparison and hence there is no difference in computing either
of the criteria. For k = 1, once again we considered the prior distribution N(0,Σ0) for ξ∗j in
which Σ0 is a 6×6 diagonal matrix, with large diagonal elements of 100. The comparisons
showed that D2 is better than both D1 and D3, and D1 is better than D3. This result is the
same as what was obtained using the compound criteria proposed by Talebi and Esmailzadeh
[17]. For instance, when δ = 0.2, values of criterion are 42.6251, 42.6738, and 42.4026 for D1,
D2, and D3, respectively, while the EKL values for these Designs are the same and equal to
10.667. This shows that the EKL is unable to discriminate search abilities of D1, D2, and
D3.

Example 4.2. In continuation of Example 4.1, let ξ2 be the vector of two-factor in-
teractions only, and assume that three- and four-factor interactions are all zero. For k = 1,
results showed that D3 has the same search ability as D1, and they are better than D2, based
on the present criteria. For example, when δ = 0.2, criterion value for D1 and D3, is 42.6895
and for D2 is 42.6738. For k = 2, assume that ξ∗j is distributed as N(0,Σ0) in which Σ0 is
a 7×7 diagonal matrix, with diagonal elements of 100. When δ = 0.2, criterion value for D1

and D3 is 49.376, and for D2 is 49.3115.
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5. DISCUSSION

Findings in Section 4 reveal that both criteria, MESID and MBEKLD increase as
δ increases; this means as δ (≥ 0) gets larger, the capability of SD enhances in identifying
the non-zero effects, which has been ignored by the former criteria. The proposed criteria
are also applicable for k > 1. So, an important advantage of the present criteria is their
flexibility with respect to distributional model and the number of non-zero effects in ξ2.
This study generalizes the previously-obtained results for the normal model by utilizing the
SN distribution, where normal distribution is its special case. It is notable that unlike SP,
MESID and MBEKLD do not depend on an unknown parameter. This allows us to come
up with numerical values for the criteria. Furthermore, the results presented in Section 4
showed that MESID and MBEKLD criteria have a higher discriminating power than the EKL,
obtained by Talebi and Esmailzadeh [15].
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A. APPENDIX

A.1. Conditional posterior distributions for normal distribution error

For e∗ ∼ N(0,Σ), f(ξ∗j ,y
∗) can be written as

f(ξ∗j ,y
∗) = f(y∗|ξ∗j ) π(ξ∗j )

= (2π)−
N+ν1+k

2 |Σ|−
1
2 exp

{
−1

2
(
y∗−A(ξj)ξ∗j

)′ Σ−1
(
y∗−A(ξj) ξ∗j

)}
× |Σ0|−

1
2 exp

{
−1

2
ξ∗j

′ Σ−1
0 ξ∗j

}
,

(A.1)

where | · | stands for determinant. Using the joint distribution in (A.1) together with some
other calculations, it can be shown that the conditional posterior distributions of parameters
are as follows:

ξ∗j |y∗ ∼ N
(
µξ∗

j
,
(
A′(ξj)Σ−1A(ξj) + Σ−1

0

)−1
)

,

where µξ∗
j

=
(
A′(ξj)Σ−1A(ξj) + Σ−1

0

)−1
A′(ξj)Σ−1y∗. The logarithm of the joint posterior

distribution is

log
{
π(ξ∗j |y∗)

}
= − 1

2
log
∣∣∣2π(A′(ξj)Σ−1A(ξj) + Σ−1

0

)−1
∣∣∣

− 1
2

(ξ∗j −µξ∗
j
)′
(
A′(ξj)Σ−1A(ξj) + Σ−1

0

)
(ξ∗j −µξ∗

j
) .

Note that

(ξ∗j −µξ∗
j
)′
(
A′(ξj)Σ−1A(ξj) + Σ−1

0

)
(ξ∗j −µξ∗

j
)
∣∣∣y∗ ∼ χ2

ν1+k ,

where χ2
ν1+k is chi-squared distribution with ν1 + k degrees of freedom. Marginal distribution

of Y ∗ is obtained from the joint distribution in (A.1). It can be easily shown that Y ∗ is
distributed as N(0,Σy∗), where

Σy∗ =
{
Σ−1 −Σ−1A(ξj)

(
A′(ξj)Σ−1A(ξj) + Σ−1

0

)−1
A′(ξj)Σ−1

}−1
.

A.2. Conditional posterior distributions for SN distribution error

For Y ∗∼ SNN (µ,Σ,λ), the joint density of vector (θj ,y
∗) is

f(θj ,y
∗) = f(y∗|θj) f(z|ξ∗j ) π(ξ∗j )

= |G|−
1
2 exp

{
−1

2
(
y∗−A(ξj)ξ∗j − zΣ

1
2 δ
)′

G−1
(
y∗−A(ξj)ξ∗j − zΣ

1
2 δ
)}

× 2 (2π)−
N+ν1+k+1

2 |Σ0|−
1
2 exp

{
−1

2
[
z2 + ξ∗j

′ Σ−1
0 ξ∗j

]}
.

(A.2)

From (A.2), the conditional posterior distributions of unknown parameters are obtained as:

ξ∗j |z,y∗ ∼ N(µξ∗
j
,Σξ) and Z|y∗ ∼ N(z∗, σ2

z ) I(Z>0) ,
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in which the conditional posterior distribution of Z|y∗ is truncated normal at zero with the
following pdf:

π(Z|y∗) = φ

(
z−z∗

σz

)/(
σz Φ

(
z∗

σz

))
and

µξ∗
j

= Σξ A′(ξj) G−1
(
y∗− zΣ

1
2 δ
)
, Σξ =

(
A′(ξj) G−1A(ξj) + Σ−1

0

)−1 ,

z∗ = σ2
z y∗′M Σ

1
2 δ , σ2

z =
(
1 + δ′ Σ

1
2 M Σ

1
2 δ
)−1 ,

M = G−1+ G−1A(ξj)
[(

ΣξA′(ξj)G−1A(ξj) + Iν1+k)−1−Iν1+k

](
A′(ξj)G−1A(ξj)

)−1
A′(ξj)G−1.

The logarithm of π(θj |y∗) (the joint posterior distribution of θj) can be written as

log π(θj |y∗) = log
{
π(ξj |z,y∗)

}
+ log

{
π(Z|y∗)

}
= − 1

2
log |2πΣξ| −

1
2

(ξ∗j −µξ∗
j
)′ Σ−1

ξ (ξ∗j −µξ∗
j
)

− 1
2

log(2πσ2
z )− 1

2

(
Z−z∗

σz

)2
− log

(
Φ
(
z∗

σz

))
,

It should be noted that

(ξ∗j − µξ∗
j
)′ Σ−1

ξ (ξ∗j − µξ∗
j
) ∼ χ2

ν1+k ,

and

EZ|y∗(Z−z∗)2 = σ2
z − σz z

∗ φ( z∗

σz
)

Φ( z∗

σz
)
.

From (A.2) the marginal distribution of Y ∗ is distributed as SNN (0,Σy∗ ,γy∗), in which

Σy∗ =
{
M − σ2

z M Σ
1
2 δδ′Σ

1
2 M ′}−1 and γy∗ = Σ

1
2
y∗

M Σ
1
2 δq

1+δ′Σ
1
2 M Σ

1
2 δ

.

A.3. Search designs D1, D2 and D3 with 12 runs and 4 factors

D1 D2 D3

A B C D A B C D A B C D

+ + + + + − + − + + + +
- − − − + + − + + − + +
− − − + − + + − − − + +
− − + − + − + + − + − +
− + − − + + − + + − − +
+ − − − + + + − − − − −
− − + + − + + + − + + −
− + − + − − + + + − + −
+ − − + − − − + − − + −
− + + − + − − − + + − −
+ − + − − + − − + − − −
+ + − − − − − − − − − −
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1. INTRODUCTION

Consider the following binary logistic regression model

(1.1) πi =
exp(x′iβ)

1 + exp(x′iβ)
, i = 1, ..., n ,

where x′i = (1 xi1 ··· xiq) denotes the i-th row of X which is an n×p (p = q +1) data matrix
with q known covariate vectors, yi shows the response variable which takes on the value
either 0 or 1 with yi ∼ Bernoulli(πi), yi’s are supposed to be independent of one another and
β′ = (β0 β1 ··· βq) stands for a p×1 vector of parameters.

Usually the maximum likelihood (ML) method is used to estimate β. The corresponding
log-likelihood equation of model (1.1) is given by

(1.2) L =
n∑

i=1

yi log(πi) + (1− yi) log(1− πi) ,

where πi is the i-th element of the vector π, i =1, 2, ..., n.

ML estimator can be obtained by maximizing the log-likelihood equation given in (1.2).
Since Equation (1.2) is non-linear in β, one should use an iterative algorithm called iteratively
re-weighted least squares algorithm (IRLS) as follows (Saleh and Kibria, [18]):

(1.3) β̂t+1 = β̂t +
(
X ′V tX

)−1
X ′V t

(
y− π̂t

)
,

where πt is the estimated values of π using β̂t and V t = diag
(
π̂t

i(1− π̂t
i)
)

such that π̂t
i is the

i-th element of π̂t. After some algebra, Equation (1.3) can be written as follows:

(1.4) β̂ML =
(
X ′V X

)−1
X ′V z ,

where z′ = (z1 ··· zn) with ηi = x′iβ and zi = ηi + (yi− πi) (∂ηi/∂πi).

In linear regression analysis, multicollinearity has been regarded as a problem in the
estimation. In dealing with this problem, many ways have been introduced to deal with this
problem. One approach is to study the biased estimators such as ridge estimator (Hoerl
and Kennard, [7]), Liu estimator (Liu, [14]), Liu-type estimator (Huang et al., [8]), modified
Liu-type estimator (Alheety and Kibria, [2]) and improved ridge estimators (Yüzbaşı et al.,
[21]). Alternatively, many authors such as Xu and Yang ([20]) and Li and Yang ([13]), have
studied the estimation of linear models with additional restrictions.

As in linear regression, estimation in logistic regression is also sensitive to multicol-
linearity. When there is multicollinearity, columns of the matrix X ′V X become close to be
dependent. It implies that some of the eigenvalues of X ′V X become close to zero. Thus,
mean squared error value of MLE is inflated so that one cannot obtain stable estimations.
Thus many authors have studied how to reduce the multicollinearity, such as Lesaffre and
Max ([12]) discussed the multicollinearity in logistic regression, Schaefer et al. ([19]) proposed
the ridge logistic (RL) estimator, Aguilera et al. ([1]) proposed the principal component lo-
gistic regression (PCLR) estimator, Månsson et al. ([15]) introduced the Liu logistic (LL)
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estimator, by combining the principal component logistic regression estimator and ridge lo-
gistic estimator to deal with multicollinearity. Moreover, Inan and Erdoğan ([9]) proposed
Liu-type logistic estimator (LTL) and Asar ([3]) studied some properties of LTL.

In this study, by combining the principal component logistic regression estimator and
the Liu-type logistic estimator, the principal component Liu-type logistic estimator is intro-
duced as an alternative to the PCLR, ML and LTL to deal with the multicollinearity.

The rest of the paper is organized as follows. In Section 2, the new estimator is proposed.
Some properties of the new estimator are presented in Section 3. A Monte Carlo simulation
is given in Section 4 and some concluding remarks are given in Section 5.

2. THE NEW ESTIMATOR

The logistic regression model is expressed by Aguilera et al. ([1]) in matrix form in
terms of the logit transformation as L = Xβ = XT T ′β = Zα where T = [t1, ..., tp] shows an
orthogonal matrix with Z ′V Z = T ′X ′V XT = Λ and Λ = diag(λ1, ..., λp), λ1≥ ··· ≥ λp, is the

ordered eigenvalues of X ′V X. Then T and Λ may be written as T = (Tr Tp−r) and
[
Λr O
O Λp−r

]
where Z ′

rV Zr = T ′
rX ′V XTr = Λr and Z ′

p−rV Zp−r = T ′
p−rX

′V XTp−r = Λp−r. The Z matrix
and the α vector can be partitioned as Z = (Zr Zp−r) and α = (α′r α′p−r)

′. The handling
of multicollinearity by means of PCLR corresponds to the transition from the model L =
Xβ = X TrT

′
rβ + X Tp−rT

′
p−rβ = Zr αr + Zp−r αp−r to the reduced model L = Zr αr. Then

by Equation (1.1) and PCLR method we get the PCLR estimator.

Inan and Erdoğan ([9]) proposed Liu-type logistic estimator (LTL) as

(2.1) β̂(k, d) =
(
X ′V X + kI

)−1 (
X ′V z − dβ̂ML

)
,

where −∞< d <∞ and k > 0 are biasing parameters.

The principal component logistic regression estimator (Aguilera et al., [1]) is defined as

(2.2) β̂r = Tr

(
T ′

rX ′V X Tr

)−1
T ′

rX ′V z .

We can write (2.2) as follows:

(2.3) β̂r = Tr

(
T ′

rX ′V X Tr

)−1
T ′

rX ′V z = TrT
′
r β̂ML .

Then we can introduce a new estimator by replacing β̂∗(k, d) with β̂ML in (2.3), and we get

β̂r(k, d) = TrT
′
r β̂(k, d)

= Tr

(
T ′

rX ′V X Tr + kIr

)−1(
T ′

rX ′V X Tr − dIr

) (
T ′

rX ′V X Tr

)−1
T ′

rX ′V z ,
(2.4)

where −∞< d <∞ and k > 0 are biasing parameters. We call this estimator as the principal
component Liu-type logistic regression (PCLTL) estimator.
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Remark 2.1. It is obvious that

β̂r(k, d) = Tr

(
T ′

rX ′V X Tr + kIr

)−1(
T ′

rX ′V X Tr − dIr

)
T ′

r β̂r .

Thus we can see the PCLTL estimator as a linear combination of the PCLR estimator.

Remark 2.2. It is easy to obtain the followings:

(a) β̂r(0, 0) = β̂r = Tr

(
T ′

rX ′V X Tr

)−1
T ′

rX ′V z, PCLR estimator;

(b) β̂p(0, 0) = β̂ML =
(
X ′V X

)−1
X ′V z, ML estimator;

(c) β̂p(k, d) = β̂(k, d) =
(
X ′V X + kI

)−1(
X ′V z − dβ̂ML

)
, LTL estimator.

Thus, the new estimator in (2.4) includes the PCLR, ML and LTL estimators as its
special cases.

In the next section, we will study the properties of the new estimator.

3. THE PROPERTIES OF NEW ESTIMATOR

For the sake of convenience, we present some lemmas which are needed in the following
discussions.

Lemma 3.1 (Farebrother, [6]; Rao and Tountenburg, [17]). Suppose that M is a pos-

itive definite matrix, namely M > 0, α is some vector, then M − αα′ ≥ 0 if and only if

α′M−1α ≤ 1.

Lemma 3.2 (Baksalary and Trenkler, [5]). Let Cn×p be the set of complex matrices

and Hn×n be the Hermitian matrices. Further, given L ∈ Cn×p, L∗, R(L) and κ(L) denote

the conjugate transpose, the range and the set of all generalized inverses, respectively of L.

Let A ∈ Hn×n, a1 ∈ Cn×1 and a2 ∈ Cn×1 be linearly independent, fij = a′iA
−aj , i, j = 1,2

and A ∈ κ(L), a1 /∈ R(A). Let

s =
[
a′1
(
I −AA−)′(I −AA−) a2

]/[
a′1
(
I −AA−)′(I −AA−) a1

]
.

Then A + a1a
′
1− a2a

′
2 ≥ 0 if and only if one of the following sets of conditions holds:

(a) A ≥ 0, ai ∈ R(A), i =1,2, (f11 + 1)(f22− 1) ≤ |f12|2 ,

(b) A ≥ 0, a1 /∈ R(A), a2 ∈ R(A : a1), (a2− sa1)′A−(a2− sa1) ≤ 1− |s|2 ,

(c) A = U∆U ′ − λvv′, ai ∈ R(A), i =1,2, v′a1 6= 0, f11 + 1 ≤ 0, f22 − 1 ≤ 0,

(f11 + 1)(f22− 1) ≥ |f12|2 ,

where (U : v) shows a sub-unitary matrix, λ is a positive scalar and ∆ is a positive definite

diagonal matrix. Further, the conditions (a), (b) and (c) denote all independent of the choice

of A−, A− stands for the generalized inverse of A.



Efficiency of the Principal Component Liu-type Estimator in Logistic Regression 329

To compare the estimators, we use the mean squared error matrix (MSEM) criterion
which is defined for an estimator β̌ as follows:

MSEM
(
β̌
)

= Cov
(
β̌
)

+ Bias
(
β̌
)

Bias
(
β̌
)′ ,

where Cov
(
β̌
)

is the covariance matrix of β̌, and Bias
(
β̌
)

is the bias vector of β̌. Moreover,
scalar mean squared error (SMSE) of an estimator β̌ is also given as

SMSE
(
β̌
)

= tr
{
MSEM

(
β̌
)}

.

3.1. Comparison of the new estimator (PCLTL) to the ML estimator

From (2.4), we can compute the asymptotic variance of the new estimator as follows:

(3.1) Cov
(
β̂r(k, d)

)
= Tr Sr(k)−1Λ−1

r Sr(d) Λr Sr(d) Λ−1
r Sr(k)−1 T ′

r ,

where Sr(k) = Λr + kIr, Sr(d) = Λr − dIr.

Using (2.4), we get:

(3.2) E
(
β̂r(k, d)

)
= Tr Sr(k)−1Λ−1

r Sr(d) ΛrT
′
rβ .

By

(3.3) Tr Sr(k)−1ΛrT
′
r − Ip = −

(
Tp−r T ′

p−r + k Tr Sr(k)−1 T ′
r

)
,

then we get the asymptotic bias of the new estimator as follows:

Bias
(
β̂r(k, d)

)
=
(
−Tp−r T ′

p−r − (d + k) Tr Sr(k)−1 T ′
r

)
β .

Now, we can get the asymptotic mean squared error matrix of the new estimator as
follows:

MSEM
(
β̂r(k, d)

)
= Tr Sr(k)−1Λ−1

r Sr(d) Λr Sr(d) Λ−1
r Sr(k)−1 T ′

r

+
(
−Tp−r T ′

p−r − (d + k) Tr Sr(k)−1 T ′
r

)
β

× β′
(
−Tp−r T ′

p−r − (d + k) Tr Sr(k)−1 T ′
r

)
.

(3.4)

Theorem 3.1. Assume that d < k and d + k > 0 then the new estimator is superior

to the ML estimator under the asymptotic mean squared error matrix criterion if and only if

β′Tr(k + d)2
[
2(k + d)Ir + (k2− d2) Λ−1

r

]−1
T ′

rβ + β′Tp−r Λp−r T ′
p−r β ≤ 1 .

Proof: The asymptotic mean squared error matrix of MLE is given by

(3.5) MSEM
(
β̂
)

=
(
X ′V X

)−1
.
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By Λ =
(

Λr O
O Λp−r

)
and T = (Tr, Tp−r), we may obtain

(
X ′V X

)−1 = TΛ−1T ′ = Tr Λ−1
r T ′

r + Tp−r Λ−1
p−r T ′

p−r .

Let us consider the difference ∆1 = MSEM
(
β̂
)
−MSEM

(
β̂r(k, d)

)
such that

∆1 = Tr Sr(k)−1
[
2(k + d)Ir + (k2− d2)Λ−1

r

]
Sr(k)−1 T ′

r

+ Tp−r

[
Λp−r − T ′

p−r ββ′Tp−r

]
T ′

p−r − (k + d)2 Tr Sr(k)−1

× T ′
r ββ′Sr(k)−1 T ′

r + (k + d) Tr Sr(k)−1 T ′
r ββ′Tp−r T ′

p−r

+ (k + d) Tp−r T ′
p−r ββ′Tr Sr(k)−1 T ′

r .

(3.6)

Let

S∗ =

(
Sr(k)
k+d 0
0 Λp−r

)
and

(3.7) (Λ∗)−1 =

(
2(k+d)Ir+(k2−d2)Λ−1

r

(k+d)2
0

0 Λp−r

)
.

Now we can write (3.6) as

(3.8) ∆1 = T (S∗)−1
[
(Λ∗)−1 − T ′ββ′T

]
(S∗)−1 T ′ .

Thus ∆1 is a nonnegative definite matrix if and only if (Λ∗)−1 − T ′ββ′T is a nonnegative
definite matrix. Using Lemma 3.1, (Λ∗)−1 − T ′ββ′T is a nonnegative definite matrix if and
only if β′T Λ∗T ′β ≤ 1. Invoking the notation of Λ∗ in (3.7), we can prove Theorem 3.1.

3.2. Comparison of the new estimator (PCLTL) to the PCLR estimator

Theorem 3.2. Suppose that d < k and d + k > 0 then the new estimator is better

than the PCLR estimator under the asymptotic mean squared error matrix criterion if and

only if T ′
rβ = 0.

Proof: Suppose that k = d in Equation (3.4), then we get

(3.9) MSEM
(
β̂r

)
= Tr Λ−1

r T ′
r +

(
Tr T ′

r − Ip

)
ββ′
(
Tr T ′

r − Ip

)
.

Now let us consider the difference ∆2 = MSEM
(
β̂r

)
−MSEM

(
β̂r(k, d)

)
such that

∆2 = Tr Sr(k)−1
[
2(k + d)Ir + (k2− d2)Λ−1

r

]
Sr(k)−1 T ′

r

+
(
Tr T ′

r − Ip

)
ββ′

(
Tr T ′

r − Ip

)
+
(
−Tp−r T ′

p−r − (d + k) Tr Sr(k)−1 T ′
r

)
β

× β′
(
−Tp−r T ′

p−r − (d + k) Tr Sr(k)−1 T ′
r

)
.

(3.10)
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To apply Lemma 3.2, let A = TrB T ′
r , where

B = Sr(k)−1
[
2(k + d)Ir + (k2− d2) Λ−1

r

]
Sr(k)−1

and a1 =
(
Tr T ′

r − Ip

)
β, a2 =

(
−Tp−r T ′

p−r − (d + k) Tr Sr(k)−1 T ′
r

)
β.

When d < k and d + k > 0, B is a positive definite matrix. Then we get the Moore–
Penrose inverses of A which is A+ = TrB

−1T ′
r , and AA+ = Tr T ′

r . Thus a1 ∈ R (A) if and
only if a1 = 0. Since a1 6= 0, we cannot use part (a) and (c) of Lemma 3.2, we can only apply
part (b) of Lemma 3.2. Using the definition of s, we may obtain that s = 1. On the other
hand, a2 − a1 = Aη, where

η = (d + k) Tr Sr(k)
[
2(k + d)Ir + (k2− d2)Λ−1

r

]−1
T ′

r β .

Thus, we can easily obtain a2 ∈ R(A : a1). Then Using Lemma 3.2, we can get that the new
estimator is superior to the PCLR estimator under the asymptotic mean squared error matrix
criterion if and only if (a2−a1)A−(a2−a1) ≤ 0 or η′Aη ≤ 0. In fact, (a2−a1)A−(a2−a1) ≥ 0,
so the new estimator is better than the PCLR estimator under the asymptotic mean squared
error matrix criterion if and only if η′Aη = 0, that is

β′Tr

[
2(k + d)Ir + (k2− d2)Λ−1

r

]−1
T ′

r β = 0

and β′Tr

[
2(k + d)Ir + (k2− d2)Λ−1

r

]−1
T ′

r β = 0 if and only if T ′
r β = 0. Thus, the proof is

finished.

3.3. Comparison of the new estimator (PCLTL) to the Liu-type logistic estimator

Theorem 3.3. The new estimator is superior to the Liu-type logistic estimator under

the asymptotic mean squared error matrix criterion if and only if T ′
p−r β = 0.

Proof: Putting r = p into (3.4), we get

MSEM
(
β̂(k, d)

)
= TS(k)−1S(d) Λ−1S(d) S(k)−1 T ′

+ (k + d)2 TS(k)−1 T ′ββ′TS(k)−1 T ′ ,
(3.11)

where S(k) = Λ + kIp and S(d) = Λ− dIp. Now we study the following difference ∆3 =
MSEM

(
β̂(k, d)

)
−MSEM

(
β̂r(k, d)

)
where

∆3 = TS(k)−1S(d) Λ−1S(d) S(k)−1 T ′

− Tr Sr(k)−1Λ−1
r Sr(d) Λr Sr(d) Λ−1

r Sr(k)−1 T ′
r

+ (k + d)2 TS(k)−1 T ′ββ′ TS(k)

−
(
−Tp−r T ′

p−r − (d + k) Tr Sr(k)−1 T ′
r

)
β

× β′
(
−Tp−r T ′

p−r − (d + k) Tr Sr(k)−1 T ′
r

)
.
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Suppose that C = Tp−r DT ′
p−r, where

D = Sp−r(k)−1Sp−r(d) Λ−1
p−r Sp−r(d) Sp−r(k)−1

and a3 = (d + k) TS(k)−1T ′β, a2 =
(
−Tp−r T ′

p−r − (d + k) Tr Sr(k)−1T ′
r

)
β. We can apply

part (b) of Lemma 3.2. The Moore–Penrose inverse of C is C+ = Tp−r D−1T ′
p−r, and CC+ =

Tp−r T ′
p−r. So a3 /∈ R(C), a2 ∈ R(C : a3), s = 1 and a2− a3 = Cη1, where

η1 = −Tp−r Sp−r(k)−1Sp−r(d) Λ−1
p−r T ′

p−r β .

Then by Lemma 3.2, we obtain that the new estimator is superior to the Liu-type lo-
gistic estimator under the asymptotic mean squared error matrix criterion if and only if
(a2− a3) C−(a2− a3) ≤ 0 or η′1Cη1 ≤ 0. In fact, (a2− a3) C−(a2− a3) ≥ 0, so the new esti-
mator is better than the Liu-type logistic estimator under the asymptotic mean squared error
matrix criterion if and only if η′1Cη1 = 0, that is β′Tp−r Λp−r T ′

p−r β = 0.

4. A MONTE CARLO SIMULATION STUDY

In this simulation study, we study the logistic regression model. In this section, we
present the details and the results of the Monte Carlo simulation which is conducted to
evaluate the performances of the MLE, PCLR, LTL and PCLTL estimators. There are several
papers studying the performance of different estimators in the binary logistic regression.
Therefore, we follow the idea of Lee and Silvapulle ([11]), Månsson et al. ([15]), Asar ([3])
and Asar and Genç ([4]) generating explanatory variables as follows:

(4.1) xij =
(
1− ρ2

)1/2
zij + ρ ziq ,

where i = 1, 2, ..., n, j = 1, 2, ..., q and zij ’s are random numbers generated from standard nor-
mal distribution. Effective factors in designing the experiment are the number of explanatory
variables q, the degree of the correlation among the independent variables ρ2 and the sample
size n.

Four different values of the correlation ρ corresponding to 0.8, 0.9, 0.99 and 0.999 are
considered. Moreover, four different values of the number of explanatory variables consisting
of q = 6, 8 and 12 are considered in the design of the experiment. The sample size varies as
50, 100, 200, 500 and 1000. Moreover, we choose the number of principal components using
the method of percentage of the total variability which is defined as

PTV =

∑r
j=1 λj∑p
j=1 λj

×100 .

In the simulation, PTV is chosen as 0.75 for q = 8 and 12 and 0.83 for q = 6 (see Aguilera et

al. ([1])).

The coefficient vector is chosen due to Newhouse and Oman ([16]) such that β′β = 1
which is a commonly used restriction, for example see Kibria ([10]). We generate the
n observations of the dependent variable using the Bernoulli distribution Be(πi) where πi =

exiβ

1+exiβ such that xi is the i-th row of the data matrix X.
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The simulation is repeated for 10 000 times. To compute the simulated MSEs of the
estimators, the following equation is used respectively:

(4.2) MSE
(
β̃
)

=
∑10000

c=1

(
β̃c− β

)′(
β̃c− β

)
10000

,

where β̃c is MLE, PCLR, LTL, and PCLTL in the c-th replication. The convergence tolerance
is taken to be 10−6 in the IRLS algorithm.

We choose the biasing parameter as follows:

1. LTL: We refer to Asar ([3]) and choose dLTL = 1
2 min

{
λj

λj+1

}p

j=1
where min is the

minimum function and kAM = 1
p

∑p
j=1

λj−d(1+λj α̂2
j)

λj α̂2
j

.

2. PCLTL: We propose to use the modifications of the methods given above as follows:

dPCLTL =
1
2

min
{

λj

λj + 1

}r

j=1

and

kPCLTL =
1
r

r∑
j=1

λj − dPCLTL

(
1 + λj α̂2

j

)
λj α̂2

j

.

Table 1: Simulated MSE values of the estimators when q = 6.

ρ
n Estimator

0.8 0.9 0.99 0.999

50

MLE 0.9942 0.8060 4.8571 41.7598
LTL 0.8645 0.7561 2.2694 14.5135
PCLR 0.9441 0.7780 1.9253 10.1568
PCLTL 0.8619 0.7480 0.9481 2.2783

100

MLE 0.7050 0.7478 4.1961 38.1615
LTL 0.7328 0.7613 2.6520 15.3411
PCLR 0.6913 0.7342 1.6385 14.3406
PCLTL 0.7169 0.7460 1.0849 2.5414

200

MLE 0.7286 0.8308 1.2978 5.8428
LTL 0.7784 0.7862 0.8506 1.6886
PCLR 0.7221 0.8223 1.1428 4.2635
PCLTL 0.7668 0.7879 0.8571 1.7816

500

MLE 0.7428 0.7620 1.3640 4.0893
LTL 0.8043 0.7665 1.0366 1.7055
PCLR 0.7417 0.7551 0.9309 2.3118
PCLTL 0.7895 0.7595 0.8193 1.2168

1000

MLE 0.7325 0.7512 0.9295 1.3950
LTL 0.7550 0.7930 0.8030 0.8265
PCLR 0.7317 0.7463 0.8421 1.1389
PCLTL 0.7449 0.7878 0.7766 0.8130
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Table 2: Simulated MSE values of the estimators when q = 8.

ρ
n Estimator

0.8 0.9 0.99 0.999

50

MLE 0.9148 1.2089 3.8258 54.7686
LTL 0.8065 0.9414 1.2265 16.7926
PCLR 0.7669 0.8948 2.3655 12.4373
PCLTL 0.7237 0.8477 1.1400 3.2686

100

MLE 0.7917 0.8182 2.2287 35.6674
LTL 0.8264 0.7728 1.0472 14.5687
PCLR 0.7512 0.7857 1.5575 17.9893
PCLTL 0.8204 0.7573 1.0189 9.3816

200

MLE 0.7891 0.8598 1.7860 17.1105
LTL 0.8293 0.8094 1.0451 6.3030
PCLR 0.7710 0.7962 1.3309 7.4095
PCLTL 0.8150 0.7893 0.9678 3.2204

500

MLE 0.7359 0.8031 1.2199 3.9098
LTL 0.7612 0.8043 0.9003 1.4233
PCLR 0.7244 0.7608 1.0378 2.4107
PCLTL 0.7511 0.7959 0.8712 1.2120

1000

MLE 0.7502 0.7889 0.8576 5.0227
LTL 0.7873 0.7933 0.7935 2.6289
PCLR 0.7462 0.7516 0.8086 1.8239
PCLTL 0.7781 0.7800 0.7861 1.1132

Table 3: Simulated MSE values of the estimators when q = 12.

ρ
n Estimator

0.8 0.9 0.99 0.999

50

MLE 1.1407 1.2743 11.0452 81.6076
LTL 0.8948 0.9622 3.4314 15.0524
PCLR 0.8437 0.9409 3.7290 12.2146
PCLTL 0.8157 0.8961 1.8368 2.0556

100

MLE 0.9247 1.4041 4.8286 22.7269
LTL 0.8618 1.0687 2.0033 3.4810
PCLR 0.7999 0.8438 1.3798 10.3112
PCLTL 0.8152 0.8585 0.8643 2.7653

200

MLE 0.8238 1.0956 1.9228 15.8403
LTL 0.8111 0.9612 0.9866 4.2617
PCLR 0.7959 0.8369 1.4330 5.6484
PCLTL 0.7940 0.8518 0.9760 1.9115

500

MLE 0.8009 0.8173 3.3133 11.2533
LTL 0.8387 0.8357 2.3419 4.4671
PCLR 0.7809 0.8042 1.0087 6.5955
PCLTL 0.8331 0.8150 0.8581 3.7834

1000

MLE 0.7798 0.8081 1.0899 4.4119
LTL 0.8205 0.8286 0.8784 1.7929
PCLR 0.7733 0.7965 1.0258 1.7815
PCLTL 0.8089 0.8212 0.9056 1.0085
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According to Tables 1–3, the following results are obtained:

1. MSE of the MLE is inflated when the degree of correlation is increased and the
sample size is low. On the other hand, the performance of MLE becomes quite well
when the sample size is high enough.

2. Similarly, if we consider PCLR and LTL, the MSE values are also inflated for
increasing values of the degree of correlation especially when n = 50.

3. MLE, PCLR and LTL produce high MSE values when the sample size is low and
the degree of correlation is high. However, PCLTL seems to be robust to this
situation in most of the cases.

4. Increasing the sample size makes a positive effect on the estimators in most of the
situations. However, there is a degeneracy in this property.

5. When the degree of correlation is low, there is no estimator beating all others.

6. Overall, the new estimator PCLTL has the lowest MSE value in most of the situa-
tions considered in the simulation.

5. CONCLUSION

In this paper, we develop a new principal component Liu-type logistic estimator as
a combination of the principal component logistic regression estimator and Liu-type logistic
estimator to overcome the multicollinearity problem. We have proved some theorems showing
the superiority of the new estimator over the other estimators by studying their asymptotic
mean squared error matrix criterion. Finally, a Monte Carlo simulation study is presented in
order to show the performance of the new estimator. According to the results, it seems that
PCLTL is a better alternative in multicollinear situations in the binary logistic regression
model.
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1. INTRODUCTION AND MOTIVATION

First of all, let us recall that a set of random variables (rv’s) (X1, X2, ..., XN ) is said
to be associated if for every pair of functions g1(·) and g2(·) from RN to R, which are non
decreasing component-wise, cov(g1(X), g2(X)) ≥ 0, whenever the covariance is defined, where
X = (X1, X2, ..., XN ). An infinite sequence {XN , N ≥ 1} of rv’s is said to be associated if
every finite subset is associated. This definition was introduced by Esary et al. ([9]), mainly
for the sake of applications. For instance, association occurs often in certain reliability theory
problems, as well as in some important models employed in statistical mechanics. It is of
interest to note that association and mixing define two distinct but not disjoint classes of
processes (see, e.g. Doukhan and Louhichi ([7]), for examples of sequences that are associated
but not mixing, associated and mixing, and mixing but not associated ones).

Let us now recall that a strong mixing condition refers more to σ-algebra than to rv’s.
On the one hand, a main inconvenience of mixing conditions is the difficulty of checking
them. On the other hand, an important property of associated random rv’s is that zero
correlation implies independence. Also, large classes of examples of associated processes
are deduced from the fact that any independent sequence is associated and that monotonic
functions of independent sequences remain associated. So, the main advantage of the concept
of association compared to mixing is that the conditions of limit theorems are easier to verify
since, a covariance is much easier to compute than a mixing coefficient.

As examples of associated rv’s, we recall that most often in reliability studies, the rv’s
which are generally lifetimes of components, are not independent but are associated. In fact,
as an example, there are structures in which the components share the load so that failure of
one component results in increased load on each of the remaining components. Thus, failure
of one component will adversely effect the performance of all the minimal path structures
containing it. In such a model, the random variables of interest are not independent but are
associated. In addition, let {Xi, i≥1} be independent and identically distributed (iid) rv’s and
Y be independent of {Xi, i≥1}. Then {Zi = Xi +Y, i≥1} are associated. Thus, if independ-
ent components of a system are subject to the same stress, then their lifetimes are associated.
Avarietyof relevant examples andamplebibliographical references canbe found in (Bulinski and
Shashkin ([3])). In that book, the reader can find a number of new results and examples related
to associated random sequences and random fields. For completeness on the subject in the com-
plete data case we refer the reader to the monographs by Oliveira ([17]) and Prakasa Rao ([20]).

Survival analysis is the part of statistics, in which the variable of interest (lifetime) may
often be interpreted as the time elapsed between two events and then, one may not be able to
observe completely the variable under study. Such variables typically appear in a medical or
an engineering life test studies. Among the different forms in which incomplete data appear,
censoring and truncation are two common ones.

Left truncation in studies of developmental processes is not just of theoretical interest:
It can cause substantial bias if ignored. An important example of such a model arises in
the analysis of survival data of patients infected by the AIDS virus from contaminated blood
transfusions (Chen et al. ([6])). Other examples in which a large fraction of potential obser-
vations are left truncated are rate of spontaneous abortion (Meister and Schaefer ([16])) and
age at menopause transition stages (Harlow et al. ([12])).
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Let {XN , N ≥ 1} be a sequence of strictly stationary associated rv’s of interest defined
on a probability space (Ω,F , P) with an unknown probability density function (pdf) f = dF .
Let {TN , N ≥ 1} be a sequence of stationary associated rv’s of truncation with an unknown
Lipschitz distribution function (df) G. In this paper we follow the same sampling scheme
as that of (Woodroofe ([25])) whose observable sample of size n is a subset of N pairs
{(X1, T1), ..., (XN , YN )}, where N is deterministic but unknown while n is random. As it
was pointed out by the reviewer, one may consider another approach in which the sample
size n is a non-random known value, and the observations are drawn from an infinite sequence
of random vectors. In fact, such an approach was used by (He and Yang ([14])). However,
our main motivation in following the first approach is computational since, in our simulation
studies we use the ratio n

N to estimate different values of the parameter α.

Under random left truncation scheme, only those pairs (Xi, Ti) satisfying Xi ≥ Ti are
observed. In the sequel we assume that {XN , N ≥ 1} is independent from {TN , N ≥ 1} and
(X1, T1), ...,(Xn,Tn) denotes the sequence which one actually observes within a sample (Xi,Ti);
1≤ i≤N . Obviously the observed sequence remains associated since any subset of associated
rv’s are associated (see Esary et al. ([9]), Property P1)). As a consequence of truncation,
the sample size n =

∑N
i=1 1{Xi≥Ti} is random, and from the strong law of large numbers,

n/N → α := P(Xi ≥ Ti), almost surely (a.s.), as N →∞. Without further mention, we shall
assume that α > 0 because, otherwise, no data will be available.

Throughout this study, all probability statements are to be interpreted as conditional
probability statements, that is P(·) = P( · |X ≥ T ). Likewise E and E will denote the expec-
tation operators related to P and P, respectively. Then conditionally on n, estimation results
are stated considering n→∞ which hold true with respect to the probability P since n≤N .

In what follows, the star notation (?) relates to any characteristic of the actually ob-
served data (conditionally on n). So, following Stute ([21]), the df’s of X and T become

F ?(x) := α−1

∫ x

−∞
G(z) dF (z) and G?(x) := α−1

∫ ∞

−∞
G(x∧z) dF (z) ,

where t∧ z := min(x, z). Then, for any df W , let us define aW = inf{u : W (u) > 0} and bW =
sup{u : W (u) < 1}, as the endpoints of the W support. As pointed out in Woodroofe ([25]),
the df’s F and G can be completely estimated only if aG≤ aF , bG ≤ bF and

∫∞
aF

(G)−1dF <∞.

Let C(·) be a function defined by

C(x) := P
(
T ≤ x≤X

)
= G?(x)− F ?(x)

= α−1G(x)
[
1− F (x)

]
, aG < x < bF .

(1.1)

It is easily seen that F ?, G? and C are readily estimable through

F ?
n(x) = n−1

n∑
i=1

1{Xi≤x} , G?
n(t) = n−1

n∑
i=1

1{Ti≤t} and Cn(x) = G?
n(x)−F ?

n(x) .

The well-known estimates of F and G proposed by Lynden-Bell ([15]) are

Fn(x) = 1 −
∏

Xi≤x

[
n Cn(Xi)− 1

n Cn(Xi)

]
and Gn(t) =

∏
Ti>t

[
n Cn(Ti)− 1

n Cn(Ti)

]
,(1.2)
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respectively, assuming no ties among the rv’s. Note that Stute and Wang ([22]) showed how
to break ties without destroying the product limit structure. Therefore, throughout we shall
assume without loss of generality that there are no ties.

For technical reasons, we need to introduce a pseudo-kernel estimate of f , which will
be of a great importance later, defined by

(1.3) f̃n(x) :=
α

nhn

n∑
i=1

1
G(Xi)

K

(
x−Xi

hn

)
,

where K is a smooth probability kernel and hn =:h is a sequence of bandwidths tending to 0
at appropriate rates. For an interesting overview of nonparametric curve estimation, we refer
the reader to Cao et al. ([5]) and the references therein.

Note that in a real data situation or in simulation studies we shall, however, not dwell
on (1.3) since G is unknown. And, as the original sample size N is unknown (although
deterministic), the classical estimator α̂n = n/N for the rate of no truncation α cannot be
used, and then, another estimator derived from (1.1) is required, namely

αn :=
Gn(x)

[
1− Fn(x)

]
Cn(x)

,

for any x such that Cn(x) > 0. This estimator was proposed and studied in the iid case in
(He and Yang ([13]) Theorem 2.2, p. 1014). These authors proved that αn does not depend
upon the argument x and its value can then be obtained for any x such that Cn(x) 6= 0.
Furthermore, they showed (Corollary 2.5) that αn→ α, a.s., as n→∞. Then, by plug-in
method we can construct a feasible kernel estimate of f . Thus

(1.4) f̂n(x) :=
αn

nh

n∑
i=1

1
Gn(Xi)

K

(
x−Xi

h

)
.

From now on, the sum in the latter formula is taken over the i’s such that Gn(Xi) 6= 0. Recall
that asymptotic results for (1.4), in both iid and strong mixing condition cases have been
stated in (Ould Säıd and Tatachak ([18], [19]), Benrabah et al. ([2])).

It is well known that the cumulative hazard function Λ(y) =− log(1−F (x)), for any x

such that F (x) <1, and its corresponding hazard rate function λ(x) := Λ′(x) =f(x)/(1−F (x)),
are important in several fields of applied statistics (medicine, reliability, ...) for the assessment of
risks in survival studies. Recall that the nonparametric hazard rate estimation was introduced
in statistical literature by Watson and Leadbetter ([24]). Now, using (1.2) and (1.4), an
estimate for λ(x) for an n-sample, at risk of being truncated from the left, is defined by

(1.5) λ̂n(x) =
f̂n(x)

1− Fn(x)
.

As far as we know, in truncation and dependence setting, the only existing result dealing
with hazard rate estimation is that of Sun and Zhou ([23]) stated under strong mixing condi-
tion, while in the complete associated data case (no truncation), Bagai and Prakasa Rao ([1])
stated strong uniform consistencies (with no rates) for kernel-type density and failure rate
estimates. Hence, in this paper, we intend to extend the existing results to truncated and
associated data.
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The paper is organized as follows: In Section 2, an asymptotic analysis is presented
together with the list of the assumptions under which the main results are stated. To support
the main results, a simulation study illustrates the behaviour of the estimators as shown in
Section 3. Proofs and some auxiliary results with their proofs are relegated to Section 4.

2. ASYMPTOTIC ANALYSIS

In the sequel, D := [a,b] such that aG ≤ aF < a < b < bF will denote a compact set and
the letter c is used indiscriminately as a generic positive constant. To state our asymptotic
analysis, the following conditions are assumed:

A1.
∫

dF (z)
G2(z)

< +∞ ;

A2. The covariance term satisfies: ρ(s) := supj:|`−j|≥s cov(Xj , X`) for all ` ≥ 1 and
s > 0, where ρ(s) ≤ γ0 e−γs for some positive constants γ0 and γ ;

A3. K is a Lipschitz continuous pdf, compactly supported and
∫

u K(u) du = 0 ;

A4. f is twice continuously differentiable on D such that sup
x∈D

∣∣f (2)(x)
∣∣< +∞ ;

A5. The joint pdf f?
1,j( · , ·) of (X1, X1+j) satisfies: sup

j>1
sup

u,v∈D

∣∣f?
1,j(u, v)

∣∣≤ c ;

A6. h satisfies: h→ 0 and nh1+δ→+∞ along with n, for any 0 < δ < 1.

Remark 2.1. AssumptionsA1–A2 satisfy conditionsH1–H3 in (Guessoum et al. ([11])).
Furthermore, Assumption A1 was used in (Stute ([21])) and Assumption A2 quantifies a pro-
gressive tendency to asymptotic independence of “past” and “future”. This latter condition
was used in (Doukhan and Neumann ([8])) in order to state an exponential inequality which
is needed to prove Proposition 2.1 hereinafter. Assumptions A3–A4 are frequently used
in studying uniform consistency of estimates. Assumption A5 is often assumed in kernel
estimation studies under dependence structure and allows to bound the covariance term.
Finally, Assumption A6 is standard in nonparametric density estimation.

Proposition 2.1. Under assumptions A1–A6, for large enough n we have

sup
x∈D

∣∣∣f̃n(x)−E
(
f̃n(x)

)∣∣∣ = O

(√
log n

nh

)
a.s.

Theorem 2.1. If assumptions A1–A6 hold true, then for large enough n we have

sup
x∈D

∣∣∣f̂n(x)− f(x)
∣∣∣ = O

{√
log n

nh
+
(

log log n

n

)θ
+ h2

}
a.s. ,

where 0 < θ < γ/(2γ +β +9) for any real β > 0 and γ is that in A2.

Theorem 2.2. Under assumptions A1–A6, for large enough n we have

sup
x∈D

∣∣∣λ̂n(x)− λ(x)
∣∣∣ = O

{√
log n

nh
+
(

log log n

n

)θ
+ h2

}
a.s.
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Remark 2.2. The rates in Theorem 2.1 and Theorem 2.2 are still slower than those
stated for complete data in the iid and mixing cases (see Estévez and Quintela ([10])), or under
left truncation model (see Ould Säıd and Tatachak ([18], [19]), Sun and Zhou ([23])). Our
rates depend upon the parameter θ which controls the covariance’s decaying under association
dependence as stated in (Cai and Roussas ([4])), whereas the iterated logarithm form is
related to the truncation effect. Note that by setting γ = 3(r−2)/2, r > 2, we recognize the
θ appearing in (Guessoum et al. ([11]), Theorem 3.1). Finally, we point out that for γ large
enough, our rates approach the classical optimal ones as θ grows to its upper bound (θ = 1/2).

3. SOME SIMULATION RESULTS

To examine the behaviour over finite samples of the estimators given in statements
(1.4) and (1.5), respectively, we have conducted a numerical study via simulation. The log-
normal distribution has been selected because of the shape of its hazard function which is
flatter around of its maximum. In the computation of the estimators, we used the bi-weight
kernel

(
K(x) =

(
1− |x|2

)21|x|≤1

)
which verifies our conditions in stating our main results.

We also used optimal global and local bandwidths, that minimized the global mean square
error (GMSE) and the simple mean square error (MSE) criteria, respectively. These band-
widths were selected in the grid of values H =

{
hk = 10−1 +5(k−1)10−2, k = 1,2, ...,19

}
.

3.1. Models and procedure

• Step 1. The sequence
{
(Xk, Tk), k = 1, ..., n

}
is generated as follows:

For i=1,2, ...,N, we first generate Zi=(Wi−1+Wi−2/2), where {Wr, r=−1,0, ...,N−1}
are iid rv’s drawn from N (0,1) and put Xi = exp(Zi), i=1, ...,N. Hence, the sequence
{Xk, k = 1, 2, ..., N} is associated and follows a log

(
N
(
0,
√

1/2
))

distribution.
At each iteration the Xi’s are compared to the Ti’s generated from exp(µ) in order
to keep only the pairs (Xi, Ti) satisfying Xi ≥ Ti. The parameter µ is adjusted to get
P(X ≥ T ) ≈ α. Hence, a truncation sequence

{
(Xi, Ti), i =1, ..., n

}
is generated and

the estimator λn(·) is computed using the bi-weight kernel and bandwidths h ∈ H .

• Step 2. We repeat B simulation runs as described in Step 1 for every fixed combi-
nation of size n and truncating rate (TR) 1−α.
For a given functional g and its estimate ĝn,h, the GMSE computed along B = 200
Monte Carlo trials and a grid of bandwidths h ∈ H is defined as

GMSE(h) =
1

Bm

B∑
k=1

m∑
`=1

(
ĝn,h,k(x`)− g(x`)

)2 ,

where m is a number of equidistant points x` belonging to the range ]0, 4] and
ĝn,h,k(x`) is the value of ĝn,h(x`) computed at iteration k. In computing the GMSE’s,
optimal global bandwidths (ogb) were used for both density and hazard rate function
estimation. The values GMSE := minh∈H GMSE(h) and the corresponding global
bandwidths hopt := arg minh∈H GMSE(h) are reported in Table 1 and Table 2.
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The MSE’s reported in Table 3 were evaluated by using optimal local bandwidths
(olb) for hazard rate estimation. Furthermore, to display the quality of fit of the es-
timators, we first plotted the target density f together with its average and median
estimates as illustrated in Figure 1 and Figure 2. Then, we plotted the target hazard
rate λ with its average and median estimates for both global optimal bandwidths
and local optimal ones as shown in Figure 3, Figure 4 and Figure 5.

Table 1: Density function with optimal global bandwidths.

1−α (TR)

n

50 100 200

hopt GMSE hopt GMSE hopt GMSE

0.05 0.575 0.0073 0.475 0.0048 0.375 0.0029
0.15 0.600 0.0090 0.475 0.0079 0.400 0.0073
0.25 0.575 0.0155 0.475 0.0122 0.400 0.0096

Table 2: Hazard rate function with optimal global bandwidths.

TR

n

50 100 200

hopt GMSE hopt GMSE hopt GMSE

0.05 0.825 0.2052 0.675 0.1404 0.600 0.0743
0.15 0.800 0.2574 0.725 0.1732 0.640 0.0908
0.25 0.750 0.2676 0.750 0.1800 0.650 0.1145

Table 3: Hazard rate function with optimal local bandwidths.

TR

n

30 50 100

MSE MSE MSE

0.05 0.2247 0.1949 0.1286
0.15 0.2632 0.2104 0.1500
0.25 0.3384 0.2848 0.1848

3.2. Comments on the simulation results

As it can be seen from the tables and figures, the higher the sample size and smaller the
TR, the better the quality of fit. This means that the errors tend to be negligible in each case
when n increases. Likewise, the quality of fit deteriorates slightly for sufficiently high TR value
but, it increases along with n and becomes better in any cases. Note also that, in particular,
the estimation of the hazard rate function suffers from the well-known boundary effects that
occur in nonparametric functional estimation. If the target functional has a support on [0,∞),
the use of classical estimation methods with symmetric kernels yield a large bias on the zero
boundary and leads to a bad quality of the estimates. This is the case here and is due to
the fact that symmetric kernel estimators assign non-zero weight at the interval (−∞, 0].



344 Zohra Guessoum and Abdelkader Tatachak

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

true curve

estimated curve (med.)

estimated curve (mean)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

true curve

estimated curve (med.)

estimated curve (mean)

Figure 1: Density estimation (ogb): n = 100 and TR ≈ 0.05, 0.25.
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Figure 2: Density estimation (ogb): n = 100, 500 and TR ≈ 0.15.
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Figure 3: Hazard rate (ogb): n = 100 and TR ≈ 0.05, 0.15, 0.25.
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Figure 4: Hazard rate (ogb): TR ≈ 0.15 and n = 50, 200.

The graphs reveal this phenomenon when using optimal global bandwidths but, the bias effect
is subsequently reduced and tends to disappear when optimal local bandwidths are used as
shown in Figure 5. We point out that one may also select another approach to deal with
the boundary bias effect which consists in using an asymmetric kernel as the Gamma kernel
since it is non-negative and changes its shape depending on the position on the semi-axis.
The inverse Gaussian kernel is also an interesting alternative.
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Figure 5: Hazard rate (olb): TR ≈ 0.15 and n = 30, 50, 100.
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4. AUXILIARY RESULTS AND PROOFS

Before proving the main results, we briefly discuss the tools used here.

Remark 4.1. As it was mentioned above, there are processes which are associated
but not mixing. In such cases, it would be interesting to have at disposal similar results as
stated here.

It is noteworthy that for the proof of our results we use similar tools used in the
α-mixing frameworks. The main difference here is that functional of associated rv’s are not
associated in general, which is the case when dealing with nonparametric kernel estimation.
This is due to the fact that the random functions K

(
x−Xi

h

)
are, in general not associated

but remain α-mixing if the Xi’s are, since K is a measurable function in general. To keep
the association, we should apply only monotone transformations to the original variables,
which is not the case with a general kernel. To overcome this problem, one may assume that
the kernel K is of bounded variation. This condition permits to write K = K1−K2, with
K1 and K2 monotone functions. In this paper, we do not follow this procedure but we use
results stated for weakly dependent models in the sense of Doukhan and Louhichi ([7]), since
associated models are κ-weakly dependent. Note also that to treat the fluctuation part in
Proposition 2.1, we use bounds for covariances in applying an exponential inequality stated
by Doukhan and Neumann ([8]) for weakly dependent rv’s. To this end, we use Theorem 5.3
in (Bulinski and Shashkin ([3])), and Proposition 8 in (Doukhan and Neumann ([8])).

Indeed, for any x ∈ D , set Ui(x, h) := α
G(Xi)

K
(

x−Xi
h

)
−E

(
α

G(Xi)
K
(

x−Xi
h

))
. So, it fol-

lows that

(4.1) f̃n(x)−E
(
f̃n(x)

)
=

1
nh

n∑
i=1

Ui(x, h) .

The proof of Proposition 2.1 is based on Lemma 4.1 and Lemma 4.2 hereafter.

Lemma 4.1. Under the assumptions of Proposition 2.1, for all u-tuples (s1, ..., su)
and all v-tuples (w1, ..., wv) with 1≤ s1 ≤ ··· ≤ su ≤w1 ≤ ··· ≤wv ≤ n, we have

(i) cov

(
su∏

i=s1

Ui(x, h) ,

wv∏
j=w1

Uj(x, h)

)
=: cov1 ≤ cu+vh−2 u vρ(w1− su) ,

(ii) cov

(
su∏

i=s1

Ui(x, h) ,

wv∏
j=w1

Uj(x, h)

)
=: cov2 ≤ cu+vh2 .

Proof of Lemma 4.1: Let Lip(Φ) denote the Lipschitz modulus of continuity of Φ,
that is

Lip(Φ) = sup
x6=y

∣∣Φ(x)− Φ(y)
∣∣

|x− y|1
, where

∣∣(z1, ..., zd)
∣∣
1
= |z1|+ ···+ |zd| .
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To prove item (i), we use a result in (Bulinski and Shashkin ([3]), Theorem 5.3, p. 89) and
then we have

cov1 ≤ Lip

(
su∏

i=s1

Ui(x, h)

)
Lip

 wv∏
j=w1

Uj(x, h)

 su∑
i=s1

wv∑
j=w1

cov(Xi, Xj) .

Now since

Lip

(
k∏

i=1

Ui(x, h)

)
≤ c

h

(
2

G(a)

)k

‖K‖k−1
∞ ,

where ‖K‖∞ := supu K(u). Then by stationarity and Assumption A2, we get

cov1 ≤
c2 2u+v

h2Gu+v(a)
‖K‖u+v−2

∞ u vρ(w1− su) .

Thus result (i) holds. The result (ii) follows by simple algebra using assumptions A3–A5.
The proof is finished.

Lemma 4.2. There exist constants M,L1, L2 < +∞, µ, λ ≥ 0 and a non-increasing

sequence of real numbers
(
φ(n)

)
n≥1

such that

(a) cov

(
su∏

i=s1

Ui(x, h) ,

wv∏
j=w1

Uj(x, h)

)
=: cov ≤ cu+vh u vφ(w1− su) ,

(b)
∑
t≥0

(t + 1)k0φ(t) ≤ L1L
k0
2

(
k0!
)µ

, ∀ k0 ≥ 0 ,

(c) E
(∣∣Ui(x, h)

∣∣k0
)
≤
(
k0!
)λ

Mk0 .

The items in Lemma 4.2 are nearly the conditions of Theorem 1 in (Doukhan and
Neumann ([8])). This latter will allow us to use their exponential inequality in proving
Proposition 2.1.

Proof of Lemma 4.2: To prove item (a) we apply Lemma 4.1 by taking φ(·) = ρ1/4(·)
and writing cov = cov1/4

1 cov3/4
2 . The proofs for (b) and (c) are similar to those in (Doukhan

and Neumann ([8]), Proposition 8) by choosing λ = 0, µ = 1 and L1 = L2 = 1
1−e−γ/4 , and then

we omit them.

Proof of Proposition 2.1: The main tool used here to bound the fluctuation term
in (4.1), is an exponential inequality due to Doukhan and Neumann ([8]), that is

(4.2) P

(
n∑

i=1

Ui(x, h) ≥ ε

)
≤ exp

(
− ε2/2

An + B
1/(µ+λ+2)
n ε(2µ+2λ+3)/(µ+λ+2)

)
,

where An can be chosen such that An ≤ σ2
n with

σ2
n := Var

(
n∑

i=1

Ui(x, h)

)
,
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and

Bn = 2 cL2

(
24+µ+λ c nh L1

An
∨ 1
)

.

For this purpose, let us calculate σ2
n = (nh)2 Var

(
f̃n(x)

)
. We have

(nh)2 Var
(
f̃n(x)

)
= n

E

[
α2

G2(X1)
K2

(
x−X1

h

)]
− E2

[
α

G(X1)
K

(
x−X1

h

)]
+

n∑
i=1

n∑
j 6=i,j=1

cov

(
α

G(Xi)
K

(
x−Xi

h

)
,

α

G(Xj)
K

(
x−Xj

h

))

=: V1 + V2 .

On the one hand, by assumptions A3–A4, a change of variable and the Dominated Conver-
gence Theorem, we obtain V1 = O(nh).
On the other hand, from Lemma 4.1, we can write

(4.3) cov

(
α

G(Xi)
K

(
x−Xi

h

)
,

α

G(Xj)
K

(
x−Xj

h

))
= O

(
h2
)
.

And, let

B1 =
{

(i, j)/ 1 ≤ |i− j| ≤ ηn

}
and B2 =

{
(i, j)/ ηn +1 ≤ |i− j| ≤ n−1

}
,

where ηn = o(n). Then

V2 =
n∑

i=1

∑
j∈B1

cov

(
α

G(Xi)
K

(
x−Xi

h

)
,

α

G(Xj)
K

(
x−Xj

h

))

+
n∑

i=1

∑
j∈B2

cov

(
α

G(Xi)
K

(
x−Xi

h

)
,

α

G(Xj)
K

(
x−Xj

h

))

=: V21 + V22 .

From (4.3) we have

(4.4) V21 = O
(
ηn nh2

)
,

then by Assumption A2 and Lemma 4.2 (a) we obtain

(4.5)
V22

nh
≤ c

nh

n∑
i=1

∑
j∈B2

h e−
γ|i−j|

4 ≤ c

∫
n

ηn

e−
γu
4 du = O

(
e−

γηn
4

)
.

Choosing ηn = O
(
hδ−1

)
with 0 < δ < 1 (δ may be the same as that in A6), the statements

(4.4) and (4.5) give V21 = o(nh) and V22
nh = o(1). Consequently

σ2
n = O

(
nh
)
.

Thus we choose An = O(nh) and Bn = O(1).
At this step we are able to apply (4.2). To end the proof of Proposition 2.1, we use a
covering of the compact D by a finite number `n of intervals D1, ...,D`n of equal length



352 Zohra Guessoum and Abdelkader Tatachak

an = O
(
n−1/2h3/2

)
and centered at points x1, ..., x`n , respectively. Note that as D is bounded,

there exists a constant M0 > 0 such that `n ≤ M0 a−1
n . Then observe that

sup
x∈D

∣∣∣f̃n(x)−E
(
f̃n(x)

)∣∣∣ = sup
x∈D

1
nh

∣∣∣∣∣
n∑

i=1

Ui(x, h)

∣∣∣∣∣
≤ max

k=1,...,`n

sup
x∈Dk

1
nh

n∑
i=1

∣∣Ui(x, h)− Ui(xk, h)
∣∣

+ max
k=1,...,`n

1
nh

∣∣∣∣∣
n∑

i=1

Ui(xk, h)

∣∣∣∣∣ .
First, since K is Lipschitz we have

1
nh

n∑
i=1

∣∣Ui(x, h)− Ui(xk, h)
∣∣ ≤ 1

nh

n∑
i=1

α

G(Xi)

∣∣∣∣∣K
(

x−Xi

h

)
−K

(
xk −Xi

h

)∣∣∣∣∣
+

1
h

E

 α

G(Xi)

∣∣∣∣∣K
(

x−Xi

h

)
−K

(
xk −Xi

h

)∣∣∣∣∣


≤ 1
h

2
G(a)

∣∣∣∣x− xk

h

∣∣∣∣
≤ c

G(a)
√

nh
= O

(
1√
nh

)
.(4.6)

Next, by Assumption A6, if we replace ε by ε0
√

nh log n =: εn in (4.2), we then get

P

 max
k=1,...,`n

1
nh

∣∣∣∣∣
n∑

i=1

Ui(xk, h)

∣∣∣∣∣ > ε0

√
log n

nh

 ≤
`n∑

k=1

P

∣∣∣∣∣
n∑

i=1

Ui(xk, h)

∣∣∣∣∣ > εn


≤ c a−1

n exp

 −
(
ε2
0 log n

)/
2

c + ε
5/3
0

(
log5n
nh

)1/6


≤ c(
nh1+δ

) 3
2(1+δ)

n
−cε2

0+ 4+δ
2(1+δ) .(4.7)

For a suitable choice of ε0, the right hand side term in (4.7) becomes the general term of
a convergent series. Then Borel–Cantelli’s lemma gives

max
k=1,...,`n

1
nh

∣∣∣∣∣
n∑

i=1

Ui(xk, h)

∣∣∣∣∣ = O

(√
log n

nh

)
.

This latter jointly with (4.6) allow us to conclude the desired result, that is

sup
x∈D

1
nh

∣∣∣∣∣
n∑

i=1

Ui(x, h)

∣∣∣∣∣ = O

(√
log n

nh

)
= sup

x∈D

∣∣∣f̃n(x)−E
(
f̃n(x)

)∣∣∣ ,
which ends the proof of Proposition 2.1.

Now the proof of Theorem 2.1 is immediately established once the following lemmas
(Lemma 4.3 and Lemma 4.4) are stated.
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Lemma 4.3. Under assumptions A1–A2, for n sufficiently large we have

sup
x∈D

∣∣Gn(x)−G(x)
∣∣ = O

[(
log log n

n

)θ]
a.s. ,(4.8)

∣∣αn− α
∣∣ = O

[(
log log n

n

)θ]
a.s.(4.9)

Proof of Lemma 4.3: To prove (4.8), it suffices to follow step by step the proof in
(Guessoum et al. ([11]), Theorem 3.2). The result (4.9) ensues using the following decompo-
sition ∣∣αn− α

∣∣ =
1

Cn(x) C(x)

∣∣∣∣C(x)
(
Gn(x)−G(x)

) (
1−Fn(x)

)
+ C(x) G(x)

(
F (x)−Fn(x)

)
+ G(x)

(
Cn(x)−C(x)

)(
F (x)−1

)∣∣∣∣ .
Thus the result holds using (4.8) jointly with Theorem 3.2 and Lemma 4.2 in (Guessoum
et al. ([11])).

Lemma 4.4. Under the hypotheses of Theorem 2.1, for large n enough we have

sup
x∈D

∣∣∣∣(f̂n(x)− f̃n(x)
)∣∣∣∣ = O

[(
log log n

n

)θ]
a.s. ,(4.10)

sup
x∈D

∣∣∣∣(E(f̃n(x)
)
− f(x)

)∣∣∣∣ = O
(
h2
)

a.s.(4.11)

Proof of Lemma 4.4: To get (4.10), remark that

∣∣∣f̂n(x)− f̃n(x)
∣∣∣ =

1
nh

n∑
i=1

∣∣∣∣∣∣∣
αn

(
G(Xi)−Gn(Xi)

)
+ (αn−α) Gn(Xi)

Gn(Xi) G(Xi)

∣∣∣∣∣∣∣K
(

x−Xi

h

)
.

Then, Lemma 4.3 gives the result. For the bias term in statement (4.11), the result is obtained
by using classical tools under assumptions A3 and A4.

Proof of Theorem 2.1: The result holds by writing

f̂n(x)− f(x) =
(
f̂n(x)− f̃n(x)

)
+
(
f̃n(x)−E

(
f̃n(x)

))
+
(
E
(
f̃n(x)

)
− f(x)

)
and using Proposition 2.1 together with Lemma 4.4.

Proof of Theorem 2.2: Let us consider the following decomposition

λ̂n(x)− λ(x) =

(
1−F (x)

)−1(
1−Fn(x)

) ((1−F (x)
) (

f̂n(x)− f(x)
)
− f(x)

(
F (x)− Fn(x)

))
.

Then the proof follows from Theorem 3.2 in (Guessoum et al. ([11])) and Theorem 2.1.
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1. INTRODUCTION

In 1940s Bernstein noticed that if X and Y are independent, then X− Y and X + Y

are independent if and only if X and Y are Gaussian, [3]. This observation suggested that
independence can mean more than one could think. Many other examples of so-called inde-
pendence characterizations have been identified through the years. One of the highlights in
this area is Lukacs’ (1955) characterization of the Gamma distribution by the independence of
X+Y and X/(X+Y ), [21]. In 1996 Casalis and Letac wrote, that independence characteriza-
tions of distributions give insight into the laws of nature and may reveal quite beautiful math-
ematics, [6]. In the cited paper they showed a new way, compared to Olkin and Rubin, [28],
to generalize the Lukacs’ theorem to symmetric positive definite matrices.

Another celebrated characterization origins from the Matsumoto–Yor (MY) property,
see [24], [25], which says that for independent X and Y having GIG and Gamma distri-
butions, random variables 1/(X + Y ) and 1/X − 1/(X + Y ) are also independent. First
characterization of GIG and Gamma distributions through this property was given in [20].
It has been widely generalized and modified: symmetric cones [14], free probability [31] and
others [5], [22], [23]. In 2012 a whole family of independence properties of a MY type was
given by Koudou and Vallois [18]. The latter paper presents all possible distributions of
independent X and Y for which there exists a (very regular, see [18]) function f such that
f(X + Y ) and f(X)− f(X + Y ) are also independent. The Lukacs property corresponds to
f(x) = log x and the MY property to f(x) = 1/x. Another important case identified in [18]
was f(x) = ln(1 + 1/x). That one concerns Kummer and Gamma distributions and can be
formulated as follows: Let X has the Kummer distribution K(a, b, c) with density

(1.1) fX(x) ∝ xa−1(1 + x)−(a+b)e−cx I(0,∞)(x)

and Y has the Gamma distribution G(b, c) with density

fY (y) ∝ yb−1e−cy I(0,∞)(y) ,

where a, b, c > 0. Suppose that X and Y are independent and let

(1.2) U = X + Y and V =
1 + 1/(X + Y )

1 + 1/X
.

Then U and V are also independent.

To derive related characterization, however, the authors needed to impose technical
conditions of differentiability ([18]) or local integrability ([17]) of logarithms of strictly positive
densities. Recently a regression version of this characterization under natural integrability
assumption (and with no assumptions concerning densities) was given in [33]. In [30] even
the integrability assumption was cleared out through the change of measure technique. In
the last-mentioned paper also another independence property and a related characterization
concerning Kummer and Gamma distributions were considered. The property was formulated
by Hamza and Vallois in [8] and we will call it HV property in the sequel. It says that if
X ∼ K(a, b− a, c) (which means that X has Kummer distribution with parameters a, b− a
and c) and Y ∼ G(b, c), a,b, c > 0 are independent random variables and if

(1.3) T0(x, y) =
(
y/(1 + x), x

(
1 + y/(1+ x)

))
,
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then the random vector (U, V ) = T0(X,Y ) has independent components, U ∼ K(b, a− b, c)
and V ∼ G(a, c). Note that this is not a MY type property: there is no function f such that
U = f(X + Y ) and V = f(X)− f(X + Y ). Further, in [29] the converse was proved:

Theorem 1.1. Let X and Y be two independent positive random variables with

positive densities on (0,∞) such that its logarithms are locally integrable. Let (U, V ) =
T0(X,Y ). Suppose that U and V are independent. Then there exist constants a,b, c > 0,

such that X ∼ K(a, b− a, c), Y ∼ G(b, c) or, equivalently, U ∼ K(b, a− b, c) and V ∼ G(a, c).

The proof was based on solving an associated functional equation. Completely different
methods were used in [30], where a regression version of this characterization was proven.
First, under integrability assumptions the recurrences for moments of X and Y were derived
and solved. Then the integrability assumptions were eliminated through the change of mea-
sure technique and so Theorem 1.1 holds without any assumptions on densities, even their
existence. Note also that [30] contains many references on Kummer distribution including its
origins, motivations and various applications.

In this paper we consider the HV property and the related characterization of Kummer
and Gamma distributions in the cone of positive definite, symmetric matrices. An analogue of
Theorem 1.1 is proven in Section 5. Before that, in Section 2, we introduce matrix-Kummer
and Wishart distributions. Then, in Section 3, HV property is adapted to the matrix setting.
Section 4 is devoted to analysis of related functional equations and some technicalities.
We also prove the first main result there, i.e. we solve functional equation (4.10). These
results are applied in Section 5 to prove the main probabilistic result, i.e. the character-
ization of matrix-Kummer and Wishart distributions. Possible areas of impact and open
questions are presented in Section 6.

2. THE MATRIX KUMMER DISTRIBUTION

Let r ≥ 1 be an integer. Denote by Ω the linear space of real r×r symmetric matrices
endowed with the inner product 〈x, y〉 = tr(xy) for any x, y ∈ Ω. Let Ω+⊂ Ω be the cone of
positive-definite symmetric real r×r matrices. We denote by e the identity matrix.

For Σ ∈ Ω+ the Wishart distribution W(b,Σ) can be defined for b ∈
{

0, 1/2, 1, 3/2, ...,
(r−1)/2

}
∪
(
(r−1)/2,∞

)
as the law of a random variable Y valued in the closure of Ω+

with Laplace transform

E
(
e〈σ,Y 〉

)
=
(

det Σ
det(Σ− σ)

)b
, for σ such that Σ− σ ∈ Ω+ .

If b > r−1
2 , then Y has density of the form:

W(b,Σ)(dy) =
(det Σ)b

Γr(b)
(det y)b−(r+1)/2 exp

(
−〈Σ, y〉

)
IΩ+(y) dy ,

where Γr is the multivariate Gamma function (see [26]) defined for any complex number z
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with <(z) > (r−1)/2 by

Γr(z) = πr(r−1)/4
r∏

j=1

Γ
(
z − j −1

2

)
.

We will define matrix version of Kummer distribution following [16]. We say that random
variable X valued in Ω+ has matrix-Kummer distribution with parameters a > r−1

2 , b ∈ R,
Σ ∈ Ω+, denote X ∼MK(a, b,Σ), if it has the following density

MK(a, b,Σ)(dx) = C (detx)a− r+1
2
(
det(e + x)

)−(a+b) exp
(
−〈Σ, x〉

)
IΩ+(x) dx ,

where the normalizing constant C equals to
(
Γr(a) Ψ(a, r+1

2 − b; Σ)
)−1 and Ψ is a confluent

hypergeometric function of the second kind with matrix argument (see [9], formula (2)).
In the literature this distribution is sometimes called the Kummer-gamma distribution or the
Kummer distribution of type II (see e.g. [7], [27]). It also appeared recently as a member of
the family named weighted-type II Wishart distribution, [2].

3. HV PROPERTY FOR POSITIVE DEFINITE MATRICES

In [16] Koudou showed that matrix-Kummer and Wishart distributions have the fol-
lowing property: if X ∼MK(a, b,Σ) and Y ∼ W(b− a,Σ) are independent, then

U = P
(
e + (X + Y )−1

)1/2 (
e +X−1

)−1 and V = X + Y

are independent, where P(y) is endomorphism defined on Ω and for any y ∈ Ω+:

P(y)(x) = yxy , x ∈ Ω .

This is a generalization of the independence property of real-valued random variables related
to transformation (1.2). This property is in the family of Matsumoto–Yor type independence
properties defined in [17, 18]. Recently, Ko lodziejek showed that this property character-
izes matrix-Kummer and Wishart distributions, [15]. In this section we establish a new
independence property of Wishart and matrix-Kummer random matrices, which is not of
Matsumoto–Yor type. A related characterization is given in Section 5.

We want to find transformation that generalizes T0 defined in (1.3) onto Ω+ and that
preserves the independence property for matrix-Kummer and Wishart distributions.

Let T : Ω2
+ → Ω2

+ be defined as:

(3.1) T (x, y) =

(
P
[
(e + x)−

1
2

]
y, P

[(
e + P

[
(e + x)−

1
2

]
y
)1

2

]
x

)
.

Note that T is involutive (as in one-dimensional case).

To derive the Jacobian of transformation T , which is done in Proposition 3.1, we need
the fact that

(3.2) Det
(
P(x)

)
= (detx)r+1 ,
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where Det is the determinant in the space of endomorphisms on Ω (see e.g. [20] or [26],
Theorem 2.1.7).

Proposition 3.1. Let u and v be in the cone of symmetric positive definite matrices.

Denote by T−1 the inverse of T defined in (3.1). Then the Jacobian of T−1 is equal to

(3.3) JT−1(u, v) =
(
det[e + u]

)−(r+1)(det[e + v + u]
)r−1

2 .

Moreover, since T is an involution, the Jacobian of T is equal to JT−1 .

The proof of Proposition 3.1 is standard. The same technique was, for instance, used
in [23] for the MY property and in [16] for the other independence property of Wishart and
Kummer matrices.

Proof: Let x and y be in Ω+. Then

(3.4) u := P
(

[e + x]−
1
2

)
y ∈ Ω+ , v := P

(
[e + u]

1
2

)
x ∈ Ω+ .

Let T1, T2 : Ω2
+→ Ω2

+ be defined by

T1(x, y) = (w, z) :=
(
x, P

(
[e + x]−

1
2

)
y

)
and

T2(w, z) = (u, v) :=
(
z, P

(
[e + z]

1
2

)
w

)
.

Then T = T2 ◦ T1 and we have

(x, y) = T−1
1 (w, z) =

(
w, P

(
[e + w]

1
2

)
z

)
,(3.5)

(w, z) = T−1
2 (u, v) =

(
P
(

[e + u]−
1
2

)
v, u

)
.(3.6)

Let us note that the Jacobian J2 of T−1
2 equals

Det
(
∗ E
e 0

)
,

where ∗ does not need to be computed and E is the differential of the function v 7→
[e+ u]−

1
2 v[e+ u]−

1
2 (u is fixed) and equals P

(
[e + u]−

1
2

)
. Hence, by (3.2) we get

J2(u, v) = DetE =
(
det[e + u]−

1
2
)r+1 =

(
det[e + u]

)− r+1
2 .

The Jacobian J1 of T−1
1 can be computed in the same way:

J1(w, z) = Det
(

e 0
∗ F

)
,

where F is the differential of the mapping z 7→ P
(
[e + w]

1
2

)
z. Then

J1(w, z) = DetF =
(
det[e + w]

)r+1
2 = det(e + u)−1 det(e + u+ v) ,

where the last equality follows from definition of w given in (3.6) and elementary properties
of determinant.

Finally, we obtain

J(u, v) = J1(w, z) J2(u, v) =
(
det(e + u+ v)

)r+1
2
(
det[e + u]

)−(r+1) .
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Theorem 3.1. Let X and Y be two independent random matrices valued in Ω+.

Assume that X has matrix-Kummer distributionMK(a, b, ce) and Y the Wishart distribution

W(a+ b, ce), where a > r−1
2 , b > r−1

2 − a, c > 0.

Then the random matrices

U := P
(

[e +X]−
1
2

)
Y , V := P

(
[e + U ]

1
2

)
X

are independent. Furthermore, U ∼MK(a+ b,−b, ce) and V ∼ W(a, ce).

Proof: Denote densities of X, Y and (U, V ) by fX , fY and f(U,V ), respectively. Since
X and Y are independent, we have

f(U,V )(u, v) = |J(u, v)| fX(x) fY (y) IΩ+(u) IΩ+(v) ,

where (x, y) = T−1(u, v) =
(
P
(
[e + u]−

1
2

)
v, P

(
[e + x]

1
2

)
u
)

and J is the Jacobian of T−1 from
Proposition 3.1. Elementary properties of trace and determinant give

det(e + x) = det
[
P
(
[e + u]−

1
2
)(

(e+ u) + v
)]

= det(e + u)−1 det(e + u+ v) ,

det(y) = det
[
P
(
[e + x]

1
2
)
u
]

= det(e + x) detu ,

detx = det v det(e + u)−1 ,

〈ce, y〉 = c
〈
e, P(e + x)1/2u

〉
= c

〈
e, (e + x)u

〉
,

〈ce, x+ y) = c
〈
e, (e + u)x+ u

〉
= c〈e, u〉 + c

〈
e, P(e + u)1/2x

〉
= 〈ce, u〉+ 〈ce, v〉 .

Hence we have

f(U,V )(u, v) = C det(e + u)−(r+1) det(e + u+ v)
r+1
2 (detx)a− r+1

2 det(e + x)−b−a

· (det y)a+b− r+1
2 exp

(
−c 〈e, x+ y〉

)
IΩ+(u) IΩ+(v)

= C det(e + u)−a detua+b− r+1
2 e−〈c,u〉 det va− r+1

2 e−〈c,v〉 IΩ+(u) IΩ+(v) .

(3.7)

Remark 3.1. Constant C in (3.7) equals

C =
cr(b+a)

Γr(a+ b)
1

Γr(a) ψ
(
a, r+1

2 − b, ce
) .

On the other hand, since f(U,V ) is the density of MK(a+ b,−b, ce)⊗W(a, ce), then

C =
cra

Γr(a)
1

Γr(a+ b) ψ
(
a+ b, r+1

2 + b, ce
) .

So we obtain
ψ
(
a+ b, r+1

2 + b, ce
)
crb = ψ

(
a, r+1

2 − b, ce
)

.

For r = 1 it is a well known identity, see formula 13.1.29 in [1].

Notice that X and Y in Theorem 3.1 have very special scale parameter: the identity
matrix multiplied by a positive constant c. We will show, in Section 5, that no other parameter
is possible there.
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4. FUNCTIONAL EQUATIONS

The main result of this section is the general solution of the functional equation

(4.1) A(x) +B(y) = C
(
P(e + x)−1/2 y

)
+ D

(
P
[
e + P(e + x)−1/2 y

]1/2
x
)
,

where A,B,C,D : Ω+→R are continuous functions. We use techniques first developed in [4]
to solve equation of the form

a(x) + b(y) = c
(
P(y)x

)
+ d
(
P(y) (e− x)

)
, y ∈ Ω+ , x ∈ D ,

where D =
{
z ∈ Ω+ : e− z ∈ Ω+

}
. This equation was concerned to prove characterization

of Wishart distribution (valued in Ω+). In [4] authors assumed that densities of considered
random variables are strictly positive and twice differentiable. Earlier similar results, but
under different assumptions, were obtained by Olkin and Rubin, [28], Casalis and Letac, [6],
Letac and Massam, [19]. Starting from 2013 methods from [4] were improved by Ko lodziejek,
who:

• Generalized Lukacs’ theorem to all non-octonion symmetric cones of rank greater
than 2 and the Lorentz cone assuming only strict positivity and continuity of den-
sities, [10], [12].

• Generalized independence characterization of Beta distribution to the symmetric
cone setting, [13]. Functional equation, which played a crucial role there, was as
follows:

a(x) + b
(
g(e− x) y

)
= c(y) + d

(
g(e− y)x

)
,

where x, y ∈ D, a, b, c, d are continuous functions and g is a division algorithm.

• Solved the following equation

a(x) + b(y) = c(x+ y) + d
(
x−1− (x+ y)−1

)
for continuous a, b, c, d defined on the symmetric cone, [14]. As a consequence he
got a converse of Matsumoto–Yor theorem for random variables valued in symmetric
cone, i.e. for Wishart and GIG distributions. Earlier results were obtained only for
the cone Ω+ and under stronger assumptions, [20, 32].

• Proved a new characterization of Wishart and matrix-Kummer, [15].

In the proofs in this section we try to adapt the methods developed in papers cited
above in order to solve (4.1). First, we recall Lemma 3.2 from [10]. It is formulated for any
symmetric cone, but we will restrict it to our setting, i.e. the cone Ω+.

Lemma 4.1 (Additive Cauchy equation). Let f : Ω+ 7→ R be a measurable function

such that f(x) + f(y) = f(x+ y) for all (x, y) ∈ Ω2
+. Then there exists c ∈ Ω such that

f(x) = 〈c, x〉 for any x ∈ Ω+.

Next, we give solution of slightly modified logarithmic Pexider equation for functions
defined on Ω+ + e :=

{
x ∈ Ω+ : x− e ∈ Ω+

}
.
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Proposition 4.1. Let f1, f2, f3 : Ω+ + e → R be continuous functions such that

(4.2) f1(x) + f2(y) = f3

(
P
(
x1/2

)
y
)

for all x, y ∈ Ω+ + e .

Then there exist constants q, γ1, γ2 ∈ R such that for x ∈ Ω+ + e

f1(x) = f0(x) + γ1 ,

f2(x) = f0(x) + γ2 ,

f3(x) = f0(x) + γ1 + γ2 ,

(4.3)

where f0(x) = q log detx.

Proof: Let x = αe, α > 1 and α→ 1+. Given Eq. (4.2), we have

f2(y) = f3(y)− lim
α→1+

f1(αe) = f3(y)− γ1 .

Similarly we obtain
f1(x) = f3(x)− lim

α→1+
f1(αe) = f3(x)− γ2 .

So Eq. (4.2) is equivalent to

(4.4) f(x) + f(y) = f
(
P
(
x1/2

)
y
)

for all x, y ∈ Ω+ + e ,

where f(x) = f3(x)− γ1 − γ2.

Following the proof of Lemma 3.2 in [10], we define an extension f̄ of f for all x ∈ Ω+:

(4.5) f̄(x) =

{
f(x) , x ∈ Ω+ + e ,

f(tx x)− f(tx e) , x /∈ Ω+ + e ,

where tx = 2
mini λi

, λi being the i-th eigenvalue of x. Also tP(x1/2) y will be denoted by txy.
Note that all eigenvalues of matrix txx are greater than 1 for any x ∈ Ω+, so txx ∈ Ω+ + e.
Now, we will show that

(4.6) f̄(x) + f̄(y) = f̄
(
P
(
x1/2

)
y
)

for all x, y ∈ Ω+ .

Case 1: x ∈ Ω+ +e, y /∈ Ω+ +e and P
(
x1/2

)
y ∈ Ω+ +e. Then, by definition (4.5) and

Eq. (4.4)

f̄(x) + f̄(y) = f(x) + f(ty y)− f(ty e) = f
(
ty P

(
x1/2

)
y
)
− f(ty e) = f̄

(
P
(
x1/2

)
y
)

.

Case 2: x ∈ Ω+ + e, y /∈ Ω+ + e and P
(
x1/2

)
y /∈ Ω+ + e. These imply that minimal

eigenvalue of P
(
x1/2

)
y is not greater than 1. Then

f̄(x) + f̄(y) = f(x) + f(ty y)− f(ty e) = f

(
ty
txy

P
(
x1/2

)
y txy

)
− f(ty e)

= f
(
P
(
x1/2

)
y txy

)
−

[
f(ty e)− f

(
ty
txy

e
)]

= f
(
P
(
x1/2

)
y txy

)
− f(txy e) = f̄

(
P
(
x1/2

)
y
)

.
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Here, besides (4.5) and (4.4), we have used the fact that every eigenvalue of P
(
x1/2

)
y is not

less than the product of the smallest eigenvalues of x and y. Indeed, when λ1 is the smallest
eigenvalue of P

(
x1/2

)
y, then from the min–max theorem we have

λ1 = min
z∈Rn\{0}

(
x1/2 y x1/2 z, z

)
(z, z)

= min
z∈Rn\{0}

(
y x1/2 z, x1/2 z

)(
x1/2 z, x1/2 z

) (
x1/2 z, x1/2 z

)
(z, z)

≥ λx λy > λy ,

where λx and λy are the smallest eigenvalues of x and y, respectively. The last inequality
follows from the fact that x ∈ Ω+ + e.

Other cases can be easily verified in a similar way.

Since Eq. (4.6) holds for every x, y ∈ Ω+ then by Lemma 4.2 (Logarithmic Pexider
Equation) from [11]

f̄(x) = q log detx on Ω+ .

From definition f(x) = f̄(x) = f0(x) for x ∈ Ω+ + e and the proof is complete.

We will also need two new lemmas.

Lemma 4.2. Let c ∈ Ω+. Assume that
〈
c, P(u)v2

〉
=
〈
c, P(v)u2

〉
for all u, v ∈ Ω+.

Then c = λe for some λ > 0.

Proof: For v = c1/2 the equality
〈
c, P(u)v2

〉
=
〈
c, P(v)u2

〉
results in〈

c, P(u)c
〉

=
〈
c, P(c1/2)u2

〉
,〈

c, P(u)c
〉

=
〈
c2, u2

〉〈
e, c · P(u)c

〉
=
〈
e, c2u2

〉
0 =

〈
e, c · P(u)c− c2u2

〉
.

On the other hand the last equality can be written as

0 =
〈
e, ucuc− u2c2

〉
.

Adding last two equalities we arrive at

0 =
〈
e, ucuc+ cucu− c2u2 − u2c2

〉
= −

〈
e, (uc− cu)(uc− cu)

〉
= −

〈
(uc− cu)T, (uc− cu)

〉
.

Thus ‖uc− cu‖ = 0 and so cu = uc for all u ∈ Ω+. We conclude (see, e.g., proof of Propo-
sition 5.2 in [20]), that c = λe for some λ > 0.

Lemma 4.3. Let u, z ∈ Ω+, α > 0 and

(4.7) xα =

[
P
(
u+

1
α

e
)−1/2

x̃

]2

− e ,

where x̃ =
(
P(u+ e/α)1/2 (z + u+ e/α)

)1/2
. Then lim

α→0

1
α
xα = z.
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Proof: We have

xα

α
=

1
α


[

P
(
u+

e
α

)−1/2

x̃

]2

− e


=

1
α

[
P
(
u+

e
α

)−1/2

P
(
x̃
)(
u+

e
α

)−1

− e

]

= P
(
αu+ e

)−1/2
[

1
α

P
(
α x̃
)(
αu+ e

)−1− u− e
α

]
.

(4.8)

Note that (
αu+ e

)−1 = e −
(
e +

u−1

α

)−1

= e− α
(
αe + u−1

)−1
.

Indeed,(
αu+ e

) (
e−

(
e + (αu)−1

)−1
)

= αu+ e− αu
(
e + (αu)−1

) (
e + (αu)−1

)−1 = e

and (
e−

(
e + (αu)−1

)−1
) (
αu+ e

)
= e .

We continue Eq. (4.8):

xα

α
= P

(
αu+ e

)−1/2
[

1
α

P
(
α x̃
)(

e− α
(
αe + u−1

)−1
)
− u− e

α

]
= P

(
αu+ e

)−1/2
[

1
α

(
α2 x̃2 − e

)
− u− P

(
α x̃
) (
u−1 + αe

)−1
]
.

Recall that x̃ = 1
α

(
P
(
αu+ e

)(
α(z+ u) + e

))1/2
. Thus

1
α

(
(α x̃)2 − e

)
=

1
α

(
P
(
αu+ e

)1/2 (
α(z+ u)

)
+ αu+ e− e

)
= u+ P

(
αu+ e

)1/2 (z+ u) −→ 2u+ z , when α→ 0 .

Note that the latter calculation also implies that αx̃→ e when α→ 0. With these observa-
tions we may eventually write that

1
α
xα −→ 2u+ z − u− u = z ∈ Ω+ .

The following Lemma is a simple corollary of Theorem 1 from [29].

Lemma 4.4. Let a, b, c and d be continuous functions on (0,∞). Suppose that

(4.9) a(x) + b(y) = c
(
y/(1+ x)

)
+ d
(
x
(
1 + y/(1+ x)

))
then there exist constants a, b, c ∈ R and c1 + c2 = c3 + c4 such that

a(x) = b log x− cx− a log(1+ x) + c1 ,

b(x) = a log x− dx+ c2 ,

c(x) = a log x− dx− b log(1+ x) + c3 ,

d(x) = b log x− cx+ c4 .
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In next proposition we solve matrix-variate version of Eq. (4.9), which is our first main
result. The solution will be used in the proof of the probabilistic main result of this paper —
Theorem 5.1, Section 5.

Proposition 4.2. Let A,B,C,D : Ω+→ R be continuous functions, such that

(4.10) A(u) +B(v) = C
(

P
(
e + u

)−1/2
v
)

+D
(

P
[
e + P

(
e + u

)−1/2
v
]1/2

u
)

for any u, v ∈ Ω+. Then there exist constants a, b, c1, c2, d ∈ R and λ > 0 such that

A(x) = a log detx− b log det(e + x) + c1 + λ trx ,

B(x) = b log detx+ c2 + d+ λ trx ,

C(x) = b log detx− a log det(e + x) + c2 + λ trx ,

D(x) = a log detx+ c1 + d+ λ trx .

(4.11)

Proof: The proof is divided into three steps.

Step 1. Plugging u = αe, v = β e, α, β > 0, into Eq. (4.10), we have

(4.12) Ã(α) + B̃(β) = C̃

(
β

1+α

)
+ D̃

(
α

(
1 +

β

1+α

))
,

where

Ã(α) := A(αe), B̃(α) := B(αe), C̃(α) := C(αe), D̃(α) := D(αe) .

Since we assume that functions A, B, C, D are continuous, then we can use Lemma 4.4 and
obtain, inter alia, that

(4.13) Ã(x) = a log x− b log(1 + x)− cx+ c1 ,

where constants a, b, c, c1 are positive. This observation will be used in Step 3.

Step 2. Set v = P
(
e + α ũ

)1/2
x and u = α ũ, x, ũ ∈ Ω+, α > 0, in (4.10) to get:

(4.14) A(α ũ) +B
(
P
(
e + α ũ)1/2x

)
= C(x) +D

(
αP
(
e + x

)1/2
ũ
)
.

When α→ 0 we have

H(e + x) := B(x)− C(x) = lim
α→0

{
D
(
αP(e + x)1/2 ũ

)
−A(α ũ)

}
.

Note that the limit on the right-hand side does not depend on ũ ∈ Ω+. Therefore, for ũ =
P(e + x)−1/2 (e + y), y ∈ Ω+, we get:

H(e + x) = lim
α→0

{
D
(
α(e + y)

)
−A

(
αP
(
e + x

)−1/2 (e + y)
)}

= lim
α→0

{
D
(
α(e + y)

)
−A(αe) +A(αe)−A

(
αP
(
e + x

)−1/2 (e + y)
)}

= H(e + y) + lim
α→0

{
A(αe)−A

(
αP
(
e + x

)−1/2 (e + y)
)}

.
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Denoting

G
(
P
(
e + x

)−1/2 (e + y)
)

= − lim
α→0

{
A(αe)−A

(
αP
(
e + x

)−1/2 (e + y)
)}

,

we have:

H(e + y) = H(e + x) +G
(
P
(
e + x

)−1/2 (e + y)
)

for any x, y ∈ Ω+ ,

which by Proposition 4.1 gives

B(y)− C(y) = H(e + y) = a log det(e + y) + d1

for any y ∈ Ω+, where a, d1 ∈ R.

Notice that Eq. (4.10) can be equivalently written as

A
(
P
(
e + u

)−1/2
v
)

+B
(
P
[
e + P

(
e + u

)−1/2
v
]1/2

u
)

= C(u) +D(v) .

Thus, if we repeat the procedure from Step 2 starting with this equation instead of (4.10),
then we get

D(y)−A(y) = b log det(e + y) + d2 , b, d2 ∈ R .

From the solution of one-dimensional Eq. (4.12) it follows that d1 = d2 = d ∈ R.

Step 3. The results of Step 2 allow us to define functions f, g : Ω+ 7→ R such that for
x ∈ Ω+

A(x) = a log detx− b log det(e + x) + c1 + f(x) ,

B(x) = b log detx+ c2 + d+ g(x) ,

C(x) = b log detx− a log det(e + x) + c2 + g(x) ,

D(x) = a log detx+ c1 + d+ f(x) ,

(4.15)

and due to (4.14), f and g satisfy

(4.16) f(x) + g
(
P
(
e + x

)1/2
y
)

= g(y) + f
(
P
(
e + y

)1/2
x
)
.

Let x = αzα, where α > 0, zα ∈ Ω+ and zα converges to z ∈ Ω+ when α tends to 0. Also set
y = yα = βz−1

α −e where β > 0 is large enough for yα to be in Ω+ for any α > 0 and also for the
limit lim

α→0
yα ∈ Ω+ (which is possible since zα→ z ∈ Ω+). Notice that P

(
e + yα

)1/2
zα = β e.

These observations and Eq. (4.16) allow us to write

0 = lim
α→0

{
f(αzα)− f(αβ e)

}
.

From Step 1, Eq. (4.13), we know that lim
α→0

f(αβ e) = 0. Then

(4.17) lim
α→0

f(αzα) = 0

for any zα ∈ Ω+ such that zα→ z ∈ Ω+.
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We will show that f is additive. Firstly, we set y = u+ e/α, u ∈ Ω+, and x = xα

defined in (4.7). Note that z used in definition (4.7) is an arbitrary element from Ω+. From
Lemma 4.3 we know that xα/α converges to z ∈ Ω+, when α→ 0. Thus, for α small enough
xα is inside the cone Ω+. Given (4.17), we also have f(xα) = f(αxα/α) α→0−→ 0. Note that

P
(
e + xα

)1
2 (u+ e/α) = z + u+ e/α. We rewrite Eq. (4.16) with those special x and y. After

taking the limit as α→ 0 we obtain

(4.18) f(z) = lim
α→0

{
g

(
z + u+

1
α

e
)
− g

(
u+

1
α

e
)}

.

On the other hand, if we plug x = αu and y = e/α in Eq. (4.16) and take the limit as
α→ 0, we obtain lim

α→0

{
g(u+ e/α)− g(e/α)

}
= f(u). Combining this result with Eq. (4.18)

we have

f(u) + f(z) = lim
α→0

{
g

(
u+

1
α

e
)
− g

(
1
α

e
)

+ g

(
z + u+

1
α

e
)
− g

(
u+

1
α

e
)}

= lim
α→0

{
g

(
z + u+

1
α

e
)
− g

(
1
α

e
)}

= f(z + u) .

Note that this equation, f(u) + f(z) = f(u+ z), holds for all u, z ∈ Ω+. By Lemma 4.1 we
conclude that f(x) = 〈c, x〉 where c ∈ Ω+. Similarly, due to symmetry in (4.16), we show
that g(x) = 〈c̃, x〉. Eq. (4.16) with x = αu, y = e/α implies c̃ = c.

The last step of the proof is to show that c = λe for real and positive λ. We will use
Lemma 4.2 to do that. For f and g identified above, Eq. (4.16) assumes the form〈

c, α2 P
(
e + x

)1/2 (e + y)
〉

=
〈
c, α2 P

(
e + y

)1/2 (e + x)
〉

for any α > 0. Note that for any u,v ∈ Ω+ there exist α > 0, x,y ∈ Ω+ such that α(e+x) = u2

and α(e + y) = v2. Thus, we can use Lemma 4.2 to conclude that c = λe, where λ > 0.
Consequently, we have

A(x) = a log detx− b log det(e + x) + c1 + λ trx ,

B(x) = b log detx+ c2 + d+ λ trx ,

C(x) = b log detx− a log det(e + x) + c2 + λ trx ,

D(x) = a log detx+ c1 + d+ λ trx .

(4.19)

5. CHARACTERIZATION OF MATRIX-KUMMER AND WISHART DIS-
TRIBUTIONS

In this section we prove the converse to the independence property from Theorem 3.1,
that is a new characterization of the matrix-Kummer and the Wishart distributions. Similarly
to the one-dimensional case considered in [29], we need to impose some regularity conditions
on densities.
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Theorem 5.1. Let X and Y be independent random variables valued in Ω+ with

positive and continuous densities. Assume that random matrices

U = P
[
(e +X)−1/2

]
Y and V = P

[
(e + U)1/2

]
X

are also independent.

Then there exist a > (r−1)/2, b > (r−1)/2− a and λ > 0 such that X ∼MK(a, b, λe)
and Y ∼ W(a+ b, λe).

Proof: Recall that

T (x, y) =

(
P
[
(e + x)−

1
2

]
y , P

[(
e + P

[
(e + x)−

1
2

]
y
)1

2

]
x

)
.

Then (U, V ) = T (X,Y ) and (X,Y ) = T (U, V ).

Independence of random variables together with continuity of their densities imply

(5.1) fU (u) fV (v) = |J(u, v)| fX(x) fY (y) for all u, v ∈ Ω+ ,

where (x, y) = T (u, v) and the Jacobian J of T−1 is given in Proposition 3.1. Taking loga-
rithms of both sides in (5.1) and defining functions A,B,C,D : Ω+→ R as

A(u) = log fU (u) +
r+1

2
log detu ,

B(u) = log fV (u) +
r+1

2
log detu ,

C(u) = log fX(u) +
r+1

2
log detu ,

D(u) = log fY (u) +
r+1

2
log detu ,

we can rewrite Eq. (5.1) in the following way:

(5.2) A(u) +B(v) = C
(
P
(
e + u

)−1/2
v
)

+D

(
P
(
e + P

(
e + u

)−1/2
v
)1/2

u

)
, u,v ∈ Ω+ .

From Proposition 4.2 it follows:

A(x) = a log detx− b log det(e + x) + c1 + λ trx ,

B(x) = b log detx+ c2 + d+ λ trx ,

C(x) = b log detx− a log det(e + x) + c2 + λ trx ,

D(x) = a log detx+ c1 + d+ λ trx .

(5.3)

The latter and the fact, that functions A, B, C and D represent logarithms of densities of
random variables, imply X ∼MK(a, b, λe) and Y ∼W(a+ b, λe).
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6. CONCLUDING REMARKS

Recently P. Vallois indicated1 that one can define a transformation which generalizes
T0 for random matrices, is different from (3.1) and also preserves independence of Wishart
and matrix-Kummer random matrices. Namely, let

T (x, y) =
(

P
(
e + x+ y

)
(e + x)−1− e , x+ y −

[
P
(
e + x+ y

)
(e + x)−1− e

])
.

Vallois says, and this can be checked in standard way, that if X ∼MK(a, b,Σ) and Y ∼
W(a+ b,Σ) are independent, then (U, V ) = T (X,Y ) are also independent. Note that since
U + V = X + Y here, then Σ can be any positive definite matrix, which was not true in our
case. If the converse theorem holds, remains an open question.

We hope that the probabilistic results of this paper can help to state and prove an
analogous property in free (non-commutative) probability. Let us recall that in the case of
the Matsumoto–Yor property, its analogue in free probability was accomplished through an
appropriate matrix independence property, [31]. This problem is currently being under study.

In [29] authors formulated multivariate characterization of a product of p−1 Kummer
random variables and one Gamma random variable, p ≥ 2. There, Kummer is a marginal
distribution of a certain p-dimensional distribution, called tree-Kummer distribution in the
paper, see Section 3 in [29]. For instance, when p = 2, then this density is of the form

f(x1, x2) ∝ xa1−1
1 xa2−1

2 exp
{
−c
(
x1 + x2 + x1x2

)
I(0,∞)2(x1, x2)

}
.

Similarly, matrix-Kummer distribution appears naturally as a marginal distribution of the
following generalization of bi-Wishart distribution

f(X,Y )(x, y) ∝ (detx)p− r+1
2 (det y)q− r+1

2 exp
(
−
〈
c, x+ y+ xy

〉)
IΩ+×Ω+(x, y), c > 0 .

Then the conditional distribution of X given Y is Wishart W
(
p, c(e + y)

)
, while its marginal

distribution is matrix-KummerMK(p, q−p, c). Also a question arises if a multivariate version
of our independence characterization holds in a matrix setting?
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1. INTRODUCTION

As indicated in [13], the construction of prediction intervals for time series models
is both important and intriguing, see also, e.g., [1, 2, 4, 6, 7], [10], [12] and [15, 17, 18].
The prediction intervals can show explicitly the uncertainty underlying the estimation pro-
cedure and measure the accuracy with the point predictors.

An early review article by [12] covered several methods of construction of prediction
intervals for linear regression models under normal assumption. [15] proposed an asymp-
totically valid prediction interval for linear models based on normal approximations. It is
known that Gaussian-based prediction intervals produce poor coverages when the distribu-
tional assumptions are violated. As a remedy, some form of resampling, for example the
residual-based bootstrap, is necessary.

The literature on predictive intervals for time series is not large. In order to construct
prediction intervals without the assumption of Gaussianity, [11] developed a coherent boot-
strap algorithm of constructing prediction intervals for time series that can be modeled as
linear, nonlinear or nonparametric autoregression AR(p) with known order p. Their boot-
strap intervals are able to capture the predictor variability due to the innovation errors as
well as the estimation errors.

For other time series models, [3] presented a bootstrap approach called The Boot.EXPOS
to forecast time series through combining the use of exponential smoothing methods with
the bootstrap methodology. [14] developed a bootstrap prediction interval procedure by
using a pre-estimated order of the AR approximation for FARIMA processes. [9] provided a
bootstrap method for estimating the parameters of ARMA (p, q) models. [13] derived model-
free prediction intervals based on a new model-free prediction principle and bootstrapping,
which can be applied to nonparametric time series models with known orders.

To the best of our knowledge, the construction of bootstrap prediction intervals based
on the bootstrap distribution of the orders for ARMA (p, q) models with unknown orders
remain essentially unexplored. This is the issue we intend to address in the current paper.

Section 2 presents the algorithms for the construction of bootstrap prediction intervals
for ARMA (p, q) models with known orders and unknown orders, respectively. The asymptotic
validity and asymptotic pertinence of the intervals are addressed in Section 3. The paper is
concluded with simulation studies comparing the finite sample performance of the proposed
method with other methods in terms of coverage level and length of interval in Section 4.
The proofs of the theorems are given in the Appendix.

2. BOOTSTRAP PREDICTION INTERVALS FOR ARMA MODELS

Consider the strictly stationary, causal ARMA (p, q) model defined by the recursion

(2.1) Xt =
p∑

j=1

aj Xt−j +
q∑

j=0

bj εt−j , t ∈ Z , b0 = 1 ,
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with {εt} being i.i.d. with mean zero, variance σ2, where 1−
∑p

j=1 aj z
j 6= 0 and

∑q
j=0 bj z

j 6= 0
for |z| ≤ 1, and 1−

∑p
j=1 aj z

j and
∑q

j=0 bj z
j have no zeros in common.

Suppose that we have the observations
{
Xt, t=1,2, ...,n

}
and denote by X̂n+1 the point

predictor of Xn+1 based on the data X1, ..., Xn. Let θ =
(
a1, ..., ap, b1, ..., bq

)T. [8] defined an
M -estimator θ̂M of θ for model (2.1), where θ̂M =

(
âM

1,n, ..., â
M
p,n, b̂

M
1,n, ..., b̂

M
q,n

)T is the solution
of the equation

Ψn(θ) =
1√
n

n∑
j=1

ψ
(
εj(θ)

)
Z(j −1; θ) = 0

for some suitably chosen score function ψ, where

εj(θ) =
j−1∑
k=0

βk(θ)

(
Xj−k −

p∑
i=1

aiXj−k−i

)
, j = 1, ..., n ,

and

Z(j −1; θ) =
j−1∑
k=0

βk(θ)
(
X
(
j −1− k

)T
, E
(
j −1− k; θ

)T )T, j = 1, ..., n ,

where βk(θ) satisfies

∞∑
k=0

βk(θ)zk =

(
1 +

q∑
j=1

bj z
j

)−1

, |z| ≤ 1 ,

and X(j −1) =
(
Xj−1, ..., Xj−p

)T, E(j −1; θ) =
(
εj−1(θ), ..., εj−q(θ)

)T, Xj = 0 and εj(θ) = 0
for j ≤ 0.

Theorem 3.1 of [8] showed that, under some mild conditions,
√
n
(
θ̂M− θ

)
is asymptot-

ically normally distributed. Therefore, we define X̂n+1 as

(2.2) X̂n+1 =
p∑

k=1

âM
k,nXn+1−k +

q∑
k=1

b̂Mk,n ε̂n+1−k,n

(
θ̂M
)
,

where

(2.3) ε̂j,n
(
θ̂M
)

=
j−1∑
k=0

βk

(
θ̂M
)(
Xj−k −

p∑
i=1

âM
i,nXj−k−i

)
, j = 1, ..., n .

2.1. Bootstrap prediction intervals for ARMA models with known orders

In this subsection we assume that the orders p and q of the ARMA (p, q) model are
known. Inspired by the algorithms discussed in [11], we provide the following bootstrap
algorithm of the prediction interval forXn+1 based on (2.2). Let the one-step ahead predictive
root be defined asXn+1− X̂n+1. The algorithm actually uses the distribution of the bootstrap
predictive root to estimate the distribution of the true predictive root.
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B-ARMARoots Algorithm:

1. Use observations X1, ..., Xn to obtain M -estimator θ̂M for model (2.1).

2. Compute the fitted residuals ε̂j,n
(
θ̂M
)

from (2.3), denote by ε̂·,n the mean of the
fitted residuals, center the fitted residuals, and compute the empirical distribution
F̂n of ε̂j,n− ε̂·,n

F̂n(x) =
1
n

n∑
j=1

1[ε̂j,n−ε̂·,n,∞)(x) , x ∈ R ,

where 1A is the indicator function of set A.

3. Compute the predicted future value X̂n+1 using (2.2).

4. Draw bootstrap pseudo residuals
{
ε∗j
}

from F̂n, calculate the pseudo-data
{
X∗

j

}
by

X∗
j =

p∑
k=1

âM
k,nX

∗
j−k +

q∑
k=1

b̂Mk,n ε
∗
j−k + ε∗j .

5. Use the pseudo-data X∗
1 , ..., X

∗
n to obtain M -estimator θ̂M,∗. Then compute the

residuals

ε̂∗j,n
(
θ̂M,∗) =

j−1∑
k=0

βk

(
θ̂M,∗)(Xj−k −

p∑
i=1

âM,∗
i,n Xj−k−i

)
, j = 1, ..., n .

6. Compute the bootstrap predicted future value

X̂∗
n+1 =

p∑
k=1

âM,∗
k,n Xn+1−k +

q∑
k=1

b̂M,∗
k,n ε̂∗n+1−k,n

(
θ̂M,∗) .

7. Compute the future bootstrap observation X∗
n+1

X∗
n+1 =

p∑
k=1

âM
k,nXn+1−k +

q∑
k=1

b̂Mk,n ε̂n+1−k,n

(
θ̂M
)

+ ε∗n+1 .

Then compute the one-step ahead predictive root X∗
n+1− X̂∗

n+1.

8. Repeat Steps 4–7 above B times, compute the empirical distribution of X∗
n+1 −

X̂∗
n+1 whose α/2-quantile is denoted by q(α/2). Construct the (1−α)100% equal-

tailed prediction interval for Xn+1 as

(2.4)
[
X̂n+1 + q(α/2) , X̂n+1 + q(1−α/2)

]
.

In Step 4, to ensure the stationarity of the bootstrap series, one usually generates n+m

pseudo residuals from F̂n for some large positive m to compute the pseudo-data
{
X∗

j

}
, and

then discard the first m data.

2.2. Bootstrap prediction intervals for ARMA models with unknown orders

In practice, the orders of ARMA models are usually unknown. In this subsection we
introduce the bootstrap prediction interval under this case.
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Given observations X1, ..., Xn from ARMA (p, q) model (2.1), to construct the predic-
tion interval for Xn+1, an intuitive method one may consider is the following

OB-ARMARoots Algorithm:

1. Determine the orders p0, q0 using, e.g., AIC criteria.

2. Apply B-ARMARoots Algorithm to construct the prediction interval for ARMA
(p0, q0) model.

Since AIC is biased when the sample size is small, [5] presented a bootstrap version
of AIC, denoted AIC*, which generally outperforms the original AIC. AIC* is obtained by
bootstrapping both the likelihood and the bias term of AIC. That is,

AIC∗ = −2 log
(
L(θ̂∗ |x∗)

)
+ (2K)∗ , K = p+ q ,

with K the number of parameters and L(·) the log likelihood function. In the case of ARMA
models, L(·) can be computed by using the estimated variance of the residuals.

Applying the procedure in [5], we can obtain the bootstrap distribution of the orders (p,q).
Next we propose the bootstrap algorithm of the prediction interval based on the bootstrap
distribution of the orders.

CB-ARMARoots Algorithm:

1. Determine a pair of maximum orders for ARMA model, say (P,Q).

2. Approximate an AR
(
p(n)

)
model to X1, ..., Xn. The order p(n) can be selected

by using the AIC criteria. Then construct the estimators of the autoregressive
coefficients ϕ̂1,n, ..., ϕ̂p(n),n using Yule–Walker method, compute the residuals

ε̂t,n = Xt −
p(n)∑
j=1

ϕ̂j,nXt−j .

3. Center the residuals, ε̃t,n = ε̂t,n−
(
n−p(n)

)−1∑n
j=p(n)+1 ε̂j,n, and compute the em-

pirical distribution of {ε̃t,n}

F̂ε,n(x) =
(
n− p(n)

)−1
n∑

t=p(n)+1

1[ε̃t,n≤x] .

4. Draw bootstrap pseudo residuals {ε∗t } from F̂ε,n, generate bootstrap sample {X∗
t }

by the recursion

X∗
t =

p(n)∑
j=1

ϕ̂j,nX
∗
t−j + ε∗t .

5. For bootstrap sample {X∗
t }, fit an exhaustive set of size (P+1)∗ (Q+1) of tentative

ARMA (p, q), compute AIC* for all the candidate pairs (p, q). Then (p̂∗, q̂∗) is
identified according to

(p̂∗, q̂∗) = arg min
p≤P, q≤Q

AIC∗(p, q) .
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6. Repeat Steps 4–5 B1 times, denote the number of the pairs (p, q) out of the group
of the B1 pairs as bp,q.

7. For any pair (p, q) in Step 6, Steps 1–7 in B-ARMARoots Algorithm are repeated
B2×bp,q times to obtain B2×bp,q values of X∗

n+1− X̂∗
n+1.

8. Repeat Step 7 to obtain B1×B2 values of X∗
n+1−X̂∗

n+1. Then compute the empiri-
cal distribution ofX∗

n+1−X̂∗
n+1 whose α/2-quantile is denoted by q(α/2). Construct

the (1−α)100% equal-tailed prediction interval for Xn+1 as

(2.5)
[
X̂n+1 + q(α/2) , X̂n+1 + q(1−α/2)

]
.

In Step 1, the choice of the maximum order (P,Q) is a priori and arbitrary. For
computational reasons and from a practical point of view, (P,Q) should not be too large.
For example, economic time series can usually be modeled as ARMA processes with orders
not greater than 3. Therefore, in the simulation studies in Section 4, we set P = Q = 5.

In Step 2, we use the AIC criteria to determine the order p(n), because, as discussed
in [16], the order selected from the AIC criteria is asymptotically efficient for the infinite
order autoregressive models. In the simulation studies we select p(n) that minimizes the AIC
evaluated over a range of [1, 10 log10(n)]. Moreover, we can also select the order p(n) by
iterative estimate of the spectral density on the residuals coming from the fitting procedure
of tentative autoregressive models until closeness to a constant is reached. That is, starting
from p̃ = 1, we fit an AR(p̃) model to X1, ..., Xn using e.g. Yule–Walker method and then
estimate the spectral density of the residuals. If the estimated spectral density is close to a
constant, stop and set p(n) = p̃. Otherwise, let p̃ = p̃+1, repeat the previous procedure until
the estimator of the spectral density is almost a constant.

In Step 6, bp,q stands for the number of (p, q) appeared among all the B1 pairs obtained
by Step 5. For example, let B1 = 1000, after Steps 4–5 are repeated 1000 times, we obtain
1000 pairs of orders (p̂∗, q̂∗) from Step 5. If, among all these pairs, (1, 1) appears 10 times,
then b1,1 = 10.

Again in Step 4, to ensure the stationarity of the bootstrap series, we use the techniques
mentioned at the end of Section 2.1.

3. ASYMPTOTIC PROPERTIES OF BOOTSTRAP PREDICTION INTER-
VALS

In this section we investigate the asymptotic properties of bootstrap prediction intervals
proposed in the previous section. Using the notations in [11], we define the asymptotic validity
and the asymptotic pertinence of bootstrap prediction intervals for ARMA (p, q) models.

Definition 3.1 (Asymptotic validity of bootstrap prediction interval). Let Ln, Un be
the functions of X1, ..., Xn. The interval [Ln, Un] is called a (1−α)100% asymptotically valid
prediction interval for Xn+1 if

P
(
Ln ≤Xn+1 ≤ Un

)
→ 1−α as n→∞ .
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Let

An =
p∑

j=1

aj Xn+1−j −
p∑

j=1

âM
j,nXn+1−j ,

Bn =
q∑

j=1

bj εn+1−j −
q∑

j=1

b̂Mj,n ε̂n+1−j,n

(
θ̂M
)
,

A∗
n =

p∑
j=1

âM
j,nXn+1−j −

p∑
j=1

âM,∗
j,n Xn+1−j

and

B∗
n =

q∑
j=1

b̂Mj,n ε̂n+1−j,n

(
θ̂M
)
−

q∑
j=1

b̂M,∗
j,n ε̂∗n+1−j,n

(
θ̂M,∗) .

Then, the predictive root and the bootstrap predictive root can be written as

Xn+1 − X̂n+1 = εn+1 +An +Bn

and
X∗

n+1 − X̂∗
n+1 = ε∗n+1 +A∗

n +B∗
n .

Definition 3.2 (Asymptotic pertinence of bootstrap prediction interval). A bootstrap
prediction interval is called asymptotically pertinent provided the bootstrap satisfies the fol-
lowing four conditions

(i) supx

∣∣P (εn+1 ≤ x
)
− P

(
ε∗n+1 ≤ x

)∣∣→p 0 as n→∞, where →p stands for con-
vergence in probability.

(ii) An +Bn →p 0 and A∗
n +B∗

n →p 0 as n→∞.

(iii)
∣∣P (anAn ≤ x

)
− P

(
anA

∗
n ≤ x

)∣∣→p 0 for some sequence an→∞, for all points x
where P

(
anAn ≤ x

)
is continuous.

(iv) ε∗n+1 and A∗
n are independent.

The following two theorems address the asymptotic validity and the stronger property
of asymptotic pertinence of the prediction interval (2.4) using B-ARMA Roots Algorithm.

Theorem 3.1. For ARMA model (2.1) with known orders p and q, the prediction

interval (2.4) is asymptotically valid.

Theorem 3.2. For ARMA model (2.1) with known orders p and q, the prediction

interval (2.4) is asymptotically pertinent.

The next theorem gives the asymptotic validity and the asymptotic pertinence of the
prediction interval (2.5) using CB-ARMARoots Algorithm.

Theorem 3.3. For ARMA model (2.1) with unknown orders p an q, the prediction

interval (2.5) is asymptotically valid and asymptotically pertinent.
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4. MONTE CARLO SIMULATIONS

In this section, we evaluate and compare the performance of the proposed CB-ARMA
algorithm based on the bootstrap distribution of the orders and the OB-ARMA algorithm
with pre-estimated fixed orders, as well as two types of bootstrap prediction intervals via
predictive roots and percentile methods, respectively.

In contrast to the predictive root methods adopted in this paper, the percentile method
uses the bootstrap distribution of X∗

n+1 to estimate the distribution of the future value Xn+1

instead of using the distribution of the bootstrap predictive root to estimate the distribution
of the true predictive root, where

X∗
n+1 =

p∑
k=1

âM,∗
k,n Xn+1−k +

q∑
k=1

b̂M,∗
k,n ε̂∗n+1−k,n

(
θ̂M,∗)+ ε∗n+1 .

Data are generated from the following eight models with sample sizes n = 25, 50, 75,
100, 200 and 400 for each model.

(1) ARMA(1,1) model:
Xt+1 = 0.5Xt + 0.5 εt + εt+1 ,

where errors {εt} are from N(0,1);

(2) ARMA(1,1) model:
Xt+1 = 0.5Xt + 0.5 εt + εt+1 ,

where errors {εt} are from Laplace distribution with mean 0 and variance 1;

(3) ARMA(1,2) model:

Xt+1 = 0.5Xt + 0.4 εt + 0.2 εt−1 + εt+1 ,

where errors {εt} are from N(0,1);

(4) ARMA(1,2) model:

Xt+1 = 0.5Xt + 0.4 εt + 0.2 εt−1 + εt+1 ,

where errors {εt} are from Laplace distribution with mean 0 and variance 1;

(5) ARMA(2,2) model:

Xt+1 = −0.5Xt + 0.4Xt−1 + 0.4 εt + 0.2 εt−1 + εt+1 ,

where errors {εt} are from N(0,1);

(6) ARMA(2,2) model:

Xt+1 = −0.5Xt + 0.4Xt−1 + 0.4 εt + 0.2 εt−1 + εt+1 ,

where errors {εt} are from Laplace distribution with mean 0 and variance 1.
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(7) ARMA(3,1) model:

Xt+1 = −0.5Xt + 0.2Xt−1 + 0.2Xt−2 + 0.4 εt + εt+1 ,

where errors {εt} are from N(0,1);

(8) ARMA(3,1) model:

Xt+1 = −0.5Xt + 0.2Xt−1 + 0.2Xt−2 + 0.4 εt + εt+1 ,

where errors {εt} are from Laplace distribution with mean 0 and variance 1.

We use four bootstrap methods to create B = 1000 bootstrap pseudo-series, respec-
tively, and construct the prediction intervals [L,U ] with nominal coverage levels of 95%
and 90%. For CB-ARMA algorithm, we choose B1 = B2 = 1000. To assess the corre-
sponding empirical coverage level (CVR) and average length (LEN) of the constructed in-
terval, we also generate 1000 one-step ahead future values Xn+1,j =

∑p
k=1 â

M
k,nXn+1−k +∑q

k=1 b̂
M
k,n ε̂n+1−k,n

(
θ̂M
)

+ ε∗j . Then, CVR and LEN are given by

CVR =
1

1000

1000∑
j=1

1[L,U ]

(
Xn+1,j

)
, LEN = U −L .

Tables 1–8 report the simulation results for eight models using four bootstrap methods.
Generally speaking, the CB-ARMA algorithm based on the bootstrap distribution of the
orders is generally superior to OB-ARMA algorithm. The bootstrap prediction intervals using
CB-ARMARoots method proposed in this paper uniformly improve CVRs as compared to
the other three methods, while in most cases the interval length is increased as a price to pay
for using CB-ARMA algorithm. But there are some exceptions that the LEN of CB-ARMA
intervals is smaller than the LEN of OB-ARMA intervals when n = 200 or n = 400 in Tables
2, 3, 5 and 8.

Comparing Tables 1–4 with Tables 5–8, we see that, when the true order of the ARMA
model is lower, the OB-ARMA algorithm performs worse with respect to the coverage level.
Because the AIC criterion tends to select higher order which results in overfitting.

From Tables 1–2 it is clear that, when the sample size is small (n ≤ 200) and the
order selected from AIC criterion is larger than the true model order, CB-ARMA algorithm
compares favorably with OB-ARMA algorithm. When the sample size is large (n = 400),
CB-ARMA algorithm still outperforms OB-ARMA algorithm in terms of coverage in most
cases, but the improvement is not as big as that for the case of small sample sizes. Table 8
implies that, for large sample size and high model order, CB-ARMA and OB-ARMA have
similar coverage level but OB-ARMA is slightly superior to CB-ARMA in some cases.

Moreover, ARMARoots algorithm generally offers improvements in the coverage accu-
racy comparing to ARMAPercentile algorithm, but using CB-ARMARoots method generally
increases the length of the intervals. However, when the errors have Laplace distribution,
there are several cases where CB-ARMARoots intervals have smaller length compared to
CB-ARMAPercentile method.
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Table 1: CVR and LEN for ARMA(1,1) with Normal innovations.

Normal
Nominal coverage 95% Nominal coverage 90%

CVR LEN CVR LEN

n=25

CB-ARMARoots 98.7% 6.51 95.9% 4.99
CB-ARMAPercentile 97.4% 5.65 94.2% 4.77
OB-ARMARoots 91.9% 4.55 84.7% 3.91
OB-ARMAPercentile 92.7% 4.59 88.8% 3.97

n=50

CB-ARMARoots 96.6% 4.47 91.4% 3.62
CB-ARMAPercentile 95.0% 4.37 89.8% 3.54
OB-ARMARoots 90.4% 3.96 88.6% 3.21
OB-ARMAPercentile 90.5% 3.84 88.2% 3.15

n=75

CB-ARMARoots 97.3% 5.61 95.0% 4.75
CB-ARMAPercentile 95.8% 5.23 92.5% 4.27
OB-ARMARoots 92.1% 4.23 90.3% 3.93
OB-ARMAPercentile 92.1% 4.22 90.5% 3.95

n=100

CB-ARMARoots 97.4% 4.45 92.9% 3.62
CB-ARMAPercentile 96.2% 4.31 92.0% 3.61
OB-ARMARoots 93.0% 3.65 90.6% 3.38
OB-ARMAPercentile 93.5% 3.68 90.6% 3.38

n=200

CB-ARMARoots 97.2% 5.59 93.2% 4.55
CB-ARMAPercentile 92.7% 5.39 85.8% 4.42
OB-ARMARoots 93.0% 4.99 85.9% 4.15
OB-ARMAPercentile 86.4% 5.01 76.6% 4.18

n=400

CB-ARMARoots 97.8% 4.62 94.6% 3.86
CB-ARMAPercentile 97.7% 4.60 94.5% 3.86
OB-ARMARoots 97.0% 4.36 93.5% 3.71
OB-ARMAPercentile 96.7% 4.20 93.3% 3.67
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Table 2: CVR and LEN for ARMA(1,1) with Laplace innovations.

Laplace
Nominal coverage 95% Nominal coverage 90%

CVR LEN CVR LEN

n=25

CB-ARMARoots 93.4% 3.26 80.8% 2.27
CB-ARMAPercentile 89.0% 3.04 79.0% 2.26
OB-ARMARoots 87.0% 2.89 68.3% 1.73
OB-ARMAPercentile 86.9% 2.89 68.7% 1.72

n=50

CB-ARMARoots 97.5% 5.20 94.7% 4.14
CB-ARMAPercentile 97.1% 5.23 92.0% 3.89
OB-ARMARoots 93.7% 5.14 91.8% 4.12
OB-ARMAPercentile 93.8% 5.13 91.4% 4.09

n=75

CB-ARMARoots 97.9% 5.55 94.9% 4.32
CB-ARMAPercentile 96.3% 5.25 91.6% 4.17
OB-ARMARoots 93.8% 4.51 87.9% 3.01
OB-ARMAPercentile 94.2% 4.84 87.2% 2.96

n=100

CB-ARMARoots 96.6% 4.70 93.8% 3.90
CB-ARMAPercentile 96.3% 4.67 93.7% 3.93
OB-ARMARoots 93.3% 4.21 89.0% 3.05
OB-ARMAPercentile 93.4% 4.24 89.7% 3.09

n=200

CB-ARMARoots 95.6% 4.66 91.3% 3.67
CB-ARMAPercentile 96.8% 4.88 92.0% 3.68
OB-ARMARoots 95.5% 4.83 90.8% 3.80
OB-ARMAPercentile 96.1% 4.80 91.8% 3.72

n=400

CB-ARMARoots 95.1% 4.71 90.5% 3.69
CB-ARMAPercentile 93.7% 4.69 88.5% 3.72
OB-ARMARoots 94.5% 4.67 89.3% 3.66
OB-ARMAPercentile 93.6% 4.65 88.3% 3.69
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Table 3: CVR and LEN for ARMA(1,2) with Normal innovations.

Normal
Nominal coverage 95% Nominal coverage 90%

CVR LEN CVR LEN

n=25

CB-ARMARoots 97.2% 5.59 93.2% 4.55
CB-ARMAPercentile 92.7% 5.39 85.8% 4.42
OB-ARMARoots 93.0% 4.99 85.9% 4.15
OB-ARMAPercentile 86.4% 5.01 76.6% 4.18

n=50

CB-ARMARoots 97.1% 5.31 95.1% 4.48
CB-ARMAPercentile 93.0% 5.51 88.4% 4.62
OB-ARMARoots 96.0% 4.94 93.5% 4.20
OB-ARMAPercentile 92.5% 4.95 87.5% 4.24

n=75

CB-ARMARoots 97.6% 4.89 94.8% 4.04
CB-ARMAPercentile 93.8% 4.87 90.0% 4.12
OB-ARMARoots 94.4% 4.65 90.8% 3.91
OB-ARMAPercentile 92.0% 4.65 89.1% 3.91

n=100

CB-ARMARoots 96.6% 4.51 92.1% 3.67
CB-ARMAPercentile 95.0% 4.42 90.1% 3.67
OB-ARMARoots 95.2% 4.00 90.0% 3.33
OB-ARMAPercentile 93.6% 4.00 88.2% 3.37

n=200

CB-ARMARoots 94.7% 3.82 91.3% 3.41
CB-ARMAPercentile 94.5% 3.79 90.6% 3.31
OB-ARMARoots 92.0% 3.54 88.7% 3.20
OB-ARMAPercentile 92.2% 3.57 88.5% 3.19

n=400

CB-ARMARoots 97.5% 4.46 93.8% 3.70
CB-ARMAPercentile 97.4% 4.46 93.7% 3.69
OB-ARMARoots 96.1% 4.51 94.1% 3.76
OB-ARMAPercentile 96.8% 4.49 93.8% 3.73
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Table 4: CVR and LEN for ARMA(1,2) with Laplace innovations.

Laplace
Nominal coverage 95% Nominal coverage 90%

CVR LEN CVR LEN

n=25

CB-ARMARoots 97.1% 5.17 93.0% 3.97
CB-ARMAPercentile 94.6% 5.97 89.9% 4.27
OB-ARMARoots 93.0% 4.06 88.2% 3.39
OB-ARMAPercentile 91.7% 4.06 84.5% 3.36

n=50

CB-ARMARoots 96.1% 4.68 93.6% 4.01
CB-ARMAPercentile 96.0% 4.66 93.9% 4.03
OB-ARMARoots 94.9% 4.16 92.4% 3.58
OB-ARMAPercentile 94.6% 4.08 91.6% 3.47

n=75

CB-ARMARoots 96.3% 4.90 92.6% 3.96
CB-ARMAPercentile 96.8% 4.84 93.5% 3.89
OB-ARMARoots 94.2% 4.80 90.2% 3.85
OB-ARMAPercentile 95.5% 4.77 92.3% 3.85

n=100

CB-ARMARoots 97.8% 5.46 92.9% 3.87
CB-ARMAPercentile 96.6% 5.19 92.2% 3.87
OB-ARMARoots 96.6% 4.87 87.7% 3.28
OB-ARMAPercentile 93.7% 4.72 88.4% 3.32

n=200

CB-ARMARoots 98.0% 5.62 94.4% 4.29
CB-ARMAPercentile 94.7% 5.80 89.5% 4.49
OB-ARMARoots 96.5% 4.67 91.5% 3.48
OB-ARMAPercentile 92.2% 4.62 84.6% 3.47

n=400

CB-ARMARoots 97.6% 5.88 94.8% 4.67
CB-ARMAPercentile 98.0% 6.06 95.6% 4.85
OB-ARMARoots 96.6% 5.44 93.4% 4.34
OB-ARMAPercentile 96.1% 5.32 91.6% 4.26
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Table 5: CVR and LEN for ARMA(2,2) with Normal innovations.

Normal
Nominal coverage 95% Nominal coverage 90%

CVR LEN CVR LEN

n=25

CB-ARMARoots 96.0% 4.51 93.0% 3.76
CB-ARMAPercentile 94.9% 4.46 90.8% 3.65
OB-ARMARoots 93.8% 4.49 91.0% 3.70
OB-ARMAPercentile 93.3% 4.49 90.3% 3.73

n=50

CB-ARMARoots 97.0% 4.34 90.5% 3.51
CB-ARMAPercentile 92.7% 3.94 88.4% 3.49
OB-ARMARoots 92.8% 3.77 89.2% 3.43
OB-ARMAPercentile 91.4% 3.76 87.1% 3.38

n=75

CB-ARMARoots 98.0% 5.26 94.6% 4.29
CB-ARMAPercentile 95.9% 5.29 91.9% 4.39
OB-ARMARoots 96.5% 4.27 92.4% 3.58
OB-ARMAPercentile 95.5% 4.29 91.5% 3.60

n=100

CB-ARMARoots 96.5% 5.51 93.5% 4.44
CB-ARMAPercentile 96.0% 5.96 92.4% 4.64
OB-ARMARoots 93.8% 4.31 89.5% 3.73
OB-ARMAPercentile 93.7% 4.25 89.1% 3.69

n=200

CB-ARMARoots 96.5% 4.36 92.6% 3.67
CB-ARMAPercentile 97.1% 4.37 93.2% 3.66
OB-ARMARoots 96.7% 4.31 92.9% 3.63
OB-ARMAPercentile 96.5% 4.19 92.6% 3.55

n=400

CB-ARMARoots 96.0% 4.07 91.3% 3.38
CB-ARMAPercentile 96.0% 4.08 91.2% 3.39
OB-ARMARoots 95.4% 4.05 91.0% 3.44
OB-ARMAPercentile 95.2% 4.03 89.9% 3.35
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Table 6: CVR and LEN for ARMA(2,2) with Laplace innovations.

Laplace
Nominal coverage 95% Nominal coverage 90%

CVR LEN CVR LEN

n=25

CB-ARMARoots 94.5% 4.05 87.6% 3.00
CB-ARMAPercentile 94.0% 3.99 86.6% 2.88
OB-ARMARoots 93.7% 3.96 80.0% 2.27
OB-ARMAPercentile 93.8% 3.98 78.5% 2.28

n=50

CB-ARMARoots 98.8% 6.56 96.9% 4.97
CB-ARMAPercentile 98.9% 6.59 97.5% 5.33
OB-ARMARoots 98.0% 5.79 96.4% 4.68
OB-ARMAPercentile 98.0% 5.79 96.5% 4.69

n=75

CB-ARMARoots 91.9% 3.73 88.7% 3.15
CB-ARMAPercentile 92.3% 3.75 89.2% 3.18
OB-ARMARoots 91.6% 3.69 88.4% 3.13
OB-ARMAPercentile 91.8% 3.69 88.8% 3.14

n=100

CB-ARMARoots 95.6% 4.43 90.8% 3.42
CB-ARMAPercentile 95.5% 4.43 90.7% 3.39
OB-ARMARoots 94.9% 4.36 90.1% 3.35
OB-ARMAPercentile 94.7% 4.32 90.1% 3.36

n=200

CB-ARMARoots 95.5% 4.44 91.2% 3.44
CB-ARMAPercentile 95.3% 4.38 91.2% 3.45
OB-ARMARoots 94.9% 4.44 90.0% 3.31
OB-ARMAPercentile 95.3% 4.43 90.5% 3.32

n=400

CB-ARMARoots 94.8% 4.32 90.1% 3.42
CB-ARMAPercentile 94.1% 4.25 88.6% 3.31
OB-ARMARoots 91.6% 4.12 84.8% 3.25
OB-ARMAPercentile 93.6% 4.10 88.6% 3.24
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Table 7: CVR and LEN for ARMA(3,1) with Normal innovations.

Normal
Nominal coverage 95% Nominal coverage 90%

CVR LEN CVR LEN

n=25

CB-ARMARoots 97.2% 4.44 93.6% 3.76
CB-ARMAPercentile 95.4% 5.44 88.5% 4.19
OB-ARMARoots 96.2% 4.12 92.1% 3.54
OB-ARMAPercentile 94.7% 4.35 87.3% 3.56

n=50

CB-ARMARoots 97.5% 4.38 92.7% 3.54
CB-ARMAPercentile 97.0% 4.29 91.2% 3.40
OB-ARMARoots 96.6% 4.23 89.6% 3.30
OB-ARMAPercentile 96.0% 4.16 89.6% 3.29

n=75

CB-ARMARoots 95% 4.01 90.8% 3.39
CB-ARMAPercentile 96.2% 4.16 89.2% 3.27
OB-ARMARoots 94.2% 3.79 89.3% 3.22
OB-ARMAPercentile 94.0% 3.76 88.2% 3.15

n=100

CB-ARMARoots 92.4% 3.57 86.0% 2.98
CB-ARMAPercentile 92.3% 3.56 86.2% 3.00
OB-ARMARoots 92.0% 3.45 86.0% 2.92
OB-ARMAPercentile 91.0% 3.38 86.4% 2.93

n=200

CB-ARMARoots 90.9% 3.77 84.4% 3.07
CB-ARMAPercentile 90.8% 3.76 84.2% 3.06
OB-ARMARoots 89.8% 3.69 83.4% 3.00
OB-ARMAPercentile 89.8% 3.68 83.3% 2.99

n=400

CB-ARMARoots 97.2% 4.39 90.1% 3.43
CB-ARMAPercentile 96.6% 4.37 88.0% 3.42
OB-ARMARoots 95.9% 4.11 88.4% 3.19
OB-ARMAPercentile 95.9% 4.15 87.2% 3.16
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Table 8: CVR and LEN for ARMA(3,1) with Laplace innovations.

Laplace
Nominal coverage 95% Nominal coverage 90%

CVR LEN CVR LEN

n=25

CB-ARMARoots 90.9% 3.30 84.2% 2.76
CB-ARMAPercentile 84.7% 2.94 83.3% 2.72
OB-ARMARoots 84.2% 2.94 82.8% 2.72
OB-ARMAPercentile 84.2% 2.94 82.6% 2.72

n=50

CB-ARMARoots 94.0% 4.55 88.2% 3.65
CB-ARMAPercentile 92.4% 4.43 86.2% 3.61
OB-ARMARoots 92.7% 4.36 86.6% 3.48
OB-ARMAPercentile 91.7% 4.31 84.0% 3.40

n=75

CB-ARMARoots 97.0% 5.14 91.6% 3.44
CB-ARMAPercentile 96.9% 5.04 91.5% 3.43
OB-ARMARoots 96.9% 5.13 91.2% 3.41
OB-ARMAPercentile 97.0% 5.18 91.5% 3.44

n=100

CB-ARMARoots 97.7% 5.40 94.2% 4.11
CB-ARMAPercentile 97.7% 5.38 93.8% 3.99
OB-ARMARoots 97.5% 5.44 91.8% 3.95
OB-ARMAPercentile 97.1% 5.28 93.4% 3.93

n=200

CB-ARMARoots 95.0% 4.40 90.3% 3.36
CB-ARMAPercentile 93.8% 4.27 89.5% 3.38
OB-ARMARoots 94.5% 4.09 90.6% 3.43
OB-ARMAPercentile 94.2% 4.11 89.9% 3.36

n=400

CB-ARMARoots 96.2% 4.59 91.9% 3.47
CB-ARMAPercentile 96.1% 4.56 92.0% 3.49
OB-ARMARoots 96.4% 4.65 92.4% 3.50
OB-ARMAPercentile 96.4% 4.61 92.5% 3.48
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5. CONCLUSIONS

In this paper we introduce the bootstrap algorithms for constructing the prediction
intervals of ARMA (p, q) models with unknown orders based on the bootstrap distribution
of orders. The asymptotic validity and asymptotic pertinence of the bootstrap prediction
intervals are shown to hold true. We conduct simulations for several ARMA models using
four bootstrap methods, i.e., CB-ARMARoots, CB-ARMAPercentile, OB-ARMARoots and
OB-ARMAPercentile. From the simulation results we see that the proposed CB-ARMARoots
algorithm outperforms the OB-ARMA methods using pre-estimated orders in terms of the
coverage accuracy of the prediction intervals, especially when the true order of the ARMA
model is low or when the sample size is small.

A. APPENDIX

Proof of Theorem 3.1: Note that if one can show that, as n→∞,

sup
x

∣∣∣P (Xn+1− X̂n+1 ≤ x
)
− P

(
X∗

n+1− X̂∗
n+1 ≤ x

)∣∣∣ →p 0 ,

then standard results imply that the quantiles of the distribution of X∗
n+1−X̂∗

n+1 can be used
to consistently estimate the quantiles of the distribution of Xn+1− X̂n+1. This leads to the
asymptotic validity of the prediction interval (2.4).

Let Yn = (Xn, ..., Xn−p+1), En =
(
εn, ..., εn−q+1

)
. From Steps 6 and 7 of B-ARMARoots

Algorithm, we obtain
Xn+1 =

(
Yn, En

)
θ + εn+1 ,

X̂n+1 =
(
Yn, Ên

(
θ̂M
))
θ̂M ,

X∗
n+1 =

(
Yn, Ên

(
θ̂M
))
θ̂M + ε∗n+1 ,

X̂∗
n+1 =

(
Yn, Ê

∗
n

(
θ̂M,∗)) θ̂M,∗ .

Thus

Xn+1 − X̂n+1 =
(
Yn, En

)
θ −

(
Yn, Ên

(
θ̂M
))
θ̂M + εn+1

=
(
Yn, En

)
θ −

(
Yn, En

)
θ̂M +

(
Yn, En

)
θ̂M −

(
Yn, Ên

(
θ̂M
))
θ̂M + εn+1

:= I1 + I2 + εn+1 .

Since θ − θ̂M = Op

(
1/
√
n
)
, I1 →p 0 as n→∞.

By Lemma 2.1 of [9],

εj(θ)− ε̂j,n
(
θ̂M
)

= −Z ′(j−1; θ, θ̂M
)T(

θ − θ̂M
)

for any 1 ≤ j ≤ n, where Z ′(j−1; θ, θ̂M
)

is uniformly bounded. Thus the
√
n-consistency of

the M -estimator implies that

(A.1) εj(θ)− ε̂j,n
(
θ̂M
)

= Op

(
1/
√
n
)
.
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From (2.9) of [9],
εj(θ) = εj + (1 + C)−j Op(1) ,

where C is a positive constant. For n− q+ 1 ≤ j ≤ n, (1 +C)−j Op(1) = Op

(
(1 +C)−n

)
=

op

(
1/
√
n
)
. Then

(A.2) εj(θ) = εj + op

(
1/
√
n
)
.

(A.1) and (A.2) yield
εj − ε̂j,n

(
θ̂M
)

= Op

(
1/
√
n
)

for n− q+ 1 ≤ j ≤ n. This implies that En− Ên

(
θ̂M
)

= Op

(
1/
√
n
)

and hence I2 →p 0 as
n→∞. That is

Xn+1 − X̂n+1 = εn+1 + op(1) .

Moreover, it follows from Theorems 3.1 and 4.1 of [9] that, as n→∞,

(A.3) sup
x

∣∣P (εn+1 ≤ x
)
− P

(
ε∗n+1 ≤ x

)∣∣ →p 0 ,

and
θ̂M,∗− θ̂M →p 0 .

Thus we obtain
X∗

n+1− X̂∗
n+1 = ε∗n+1 + op(1) .

Now Slutsky’s Lemma together with (A.3) concludes the proof Theorem 3.1.

Proof of Theorem 3.2: By (A.3), Condition (i) in Definition 3.2 holds true. In view
of the proof of Theorem 3.1, Condition (ii) also holds true. Moreover, Theorem 4.1 of [9] shows
that

√
nAn and

√
nA∗

n have the same asymptotic distribution. This implies Condition (iii).
Finally, Condition (iv) follows from the causality of Model (2.1). This completes the proof of
Theorem 3.2.

Proof of Theorem 3.3: Let Fn+1 be the distribution of Xn+1 given X1, ..., Xn, and
F ∗

n+1 be the bootstrap distribution derived from CB-ARMARoots Algorithm. To prove the
asymptotic validity, it suffices to show that

sup
x

∣∣F ∗
n+1(x)− Fn+1(x)

∣∣ →p 0 .

Note that
Fn+1(x) =

∑
p0,q0

Fn+1

(
x | p0, q0

)
P
(
p= p0, q = q0

)
,

F ∗
n+1(x) =

∑
p0,q0

F ∗
n+1

(
x | p0, q0

)
P ∗(p= p0, q = q0

)
.

For any ε > 0, there exists (P,Q) such that∑
p0>P

∑
q0

P
(
p= p0, q = q0

)
< ε ,

∑
p0

∑
q0>Q

P
(
p= p0, q = q0

)
< ε .
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Obviously,

∑
p0>P, q0≤Q

P
(
p= p0, q = q0

)
< ε ,

∑
p0≤P, q0>Q

P
(
p= p0, q = q0

)
< ε

and ∑
p0>P, q0>Q

P
(
p= p0, q = q0

)
< ε .

Similarly, there exists such (P ∗, Q∗) for P ∗(p = p0, q = q0
)
. Let (P0, Q0) =

(
max(P, P ∗),

max(Q,Q∗)
)
. Thus

sup
x

∣∣Fn+1(x)− F ∗
n+1(x)

∣∣ =

= sup
x

∣∣∣∣∣∑
p0,q0

{
Fn+1

(
x |p0, q0

)
P
(
p= p0, q = q0

)
− F ∗

n+1

(
x |p0, q0

)
P ∗(p= p0, q = q0

)}∣∣∣∣∣ ≤
≤ sup

x

∣∣∣∣∣∣
∑

p0≤P0, q0≤Q0

{
Fn+1

(
x |p0, q0

)
P
(
p= p0, q = q0

)
− F ∗

n+1

(
x |p0, q0

)
P ∗(p= p0, q = q0

)}∣∣∣∣∣∣
+ sup

x

∣∣∣∣∣∣
∑

p0≤P0, q0>Q0

{
Fn+1

(
x |p0, q0

)
P
(
p= p0, q= q0

)
− F ∗

n+1

(
x |p0, q0

)
P ∗(p= p0, q= q0

)}∣∣∣∣∣∣
+ sup

x

∣∣∣∣∣∣
∑

p0>P0, q0≤Q0

{
Fn+1

(
x |p0, q0

)
P
(
p= p0, q= q0

)
− F ∗

n+1

(
x |p0, q0

)
P ∗(p= p0, q= q0

)}∣∣∣∣∣∣
+ sup

x

∣∣∣∣∣∣
∑

p0>P0, q0>Q0

{
Fn+1

(
x |p0, q0

)
P
(
p= p0, q= q0

)
− F ∗

n+1

(
x |p0, q0

)
P ∗(p= p0, q= q0

)}∣∣∣∣∣∣ .

Observe that

sup
x

∣∣∣∣∣∣
∑

p0≤P0, q0≤Q0

{
Fn+1

(
x |p0, q0

)
P
(
p= p0, q = q0

)
− F ∗

n+1

(
x |p0, q0

)
P ∗(p= p0, q = q0

)}∣∣∣∣∣∣ ≤
≤ sup

x

∣∣∣∣∣∣
∑

p0≤P0, q0≤Q0

Fn+1

(
x |p0, q0

) (
P
(
p= p0, q= q0

)
− P ∗(p= p0, q= q0

))∣∣∣∣∣∣
+ sup

x

∣∣∣∣∣∣
∑

p0≤P0, q0≤Q0

(
Fn+1

(
x |p0, q0

)
− F ∗

n+1

(
x |p0, q0

))
P ∗(p= p0, q= q0

)∣∣∣∣∣∣
≤

∑
p0≤P0, q0≤Q0

∣∣∣P (p= p0, q= q0
)
− P ∗(p= p0, q= q0

)∣∣∣
+

∑
p0≤P0, q0≤Q0

sup
x

∣∣∣Fn+1

(
x |p0, q0

)
− F ∗

n+1

(
x |p0, q0

)∣∣∣ .
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Hence we obtain

(A.4)

sup
x

∣∣Fn+1(x)− F ∗
n+1(x)

∣∣ ≤ ∑
p0≤P0, q0≤Q0

∣∣∣P (p= p0, q= q0
)
− P ∗(p= p0, q= q0

)∣∣∣
+

∑
p0≤P0, q0≤Q0

sup
x

∣∣∣Fn+1

(
x |p0, q0

)
− F ∗

n+1

(
x |p0, q0

)∣∣∣
+

∑
p0≤P0, q0>Q0

P
(
p= p0, q= q0

)
+

∑
p0>P0, q0≤Q0

P
(
p= p0, q= q0

)
+

∑
p0≤P0, q0>Q0

P ∗(p= p0, q= q0
)

+
∑

p0>P0, q0≤Q0

P ∗(p= p0, q= q0
)

+
∑

p0>P0, q0>Q0

P
(
p= p0, q= q0

)
+

∑
p0>P0, q0>Q0

P ∗(p= p0, q= q0
)

≤
∑

p0≤P0, q0≤Q0

∣∣∣P (p= p0, q= q0
)
− P ∗(p= p0, q= q0

)∣∣∣
+

∑
p0≤P0, q0≤Q0

sup
x

∣∣∣Fn+1

(
x |p0, q0

)
− F ∗

n+1

(
x |p0, q0

)∣∣∣ + 6 ε .

[5] showed that ∣∣∣P (p= p0, q= q0
)
− P ∗(p= p0, q= q0

)∣∣∣ →p 0 ,

and Theorem 3.1 implies that

sup
x

∣∣∣Fn+1

(
x |p0, q0

)
− F ∗

n+1

(
x |p0, q0

)∣∣∣ →p 0 .

These, together with (A.4) and the arbitrariness of ε, yield that

sup
x

∣∣Fn+1(x)− F ∗
n+1(x)

∣∣ →p 0 .

Along similar lines of the proof of Theorem 3.2, the asymptotic pertinence of the prediction
interval (2.5) also holds true.
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