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Editorial Note: Letter from the Editor-in-Chief 

 

It is my pleasure to welcome you to the first issue of REVSTAT for which I act 
as Editor. 

First of all, a special thanks to my predecessor, Ivette Gomes. It is an honour to 
succeed her as editor and to help the journal evolve to continue to meet the needs of 
the applied and theoretical statisticians. Over the past 18 years, she improved the 
visibility and impact of REVSTAT, serving the science community with dedication 
and commitment, setting up and shaping the journal to ensure it has maintained its 
place among the international benchmark journals in the field of Statistics.  With 
the regular publication of REVSTAT since 2003, she has acted with the utmost 
scientific integrity, which combined with her broad and deep understanding of 
statistical methodologies and applications, and a hard work capacity that makes 
her an example to be followed, but hard to match.  Throughout this period Ivette 
has also promoted some special issues, spreading the scientific communications of 
thematic workshops or conferences.   The importance of obtaining high quality 
reviews and timeliness in publish-decisions, have also been a major concern under 
Ivette’s Editorship, assisted by the co-editor Antónia Amaral Turkman. 

I also would like to thank those who served on the journal editorial board, some 
of the Associated Editors cooperating with REVSTAT since the first issue.  Thanks 
are also due to reviewers, which constitute integrant part of this publishing 
process, providing the support and feedback necessary to find, develop and publish 
high-quality material. REVSTAT receives since 2010 the Journal Citation Reports 
impact factor, which to some extent reflects the dedication and expertise of our 
editors and reviewers. In 2017 the journal was given a 5-Year JCR Impact Factor 
of 1.238. Close to this, I also present my thanks to both readers and authors, who 
helped us by citing papers from our journal. To improve this result, we hope to 
receive high quality manuscripts from authors all over the world. 

The new AE team will greatly contribute to the high standards of the Journal, 
and we are thankful for their committed participation in the respective field of 



expertness, enabling the journal will continue to publish original high quality 
standards research in Statistics. We will encourage all authors to work to these 
standards. Peer review remains a prominent component of our assessment of 
submitted manuscripts. It is important we have a good balance of different article 
type within the journal, encompassing theoretical, methodological, real case studies 
applications, and promoting overviews or reviews of emerging subjects. Special 
Issues will continue to be published, not necessarily associated to scientific 
meetings.  

Lastly, I must thank all our submitting authors, both current and future, who 
worked on the production of their research, and have chosen REVSTAT as the 
journal they would like to publish in. Unfortunately, due to the great volume of 
submissions, less than 20% of submissions are eventually accepted for publication, 
and inevitably many of those submitting authors will be disappointed by a negative 
decision of rejection. 

I am very aware of the responsibilities that the editor's role entails, and I face 
my new role and challenge with both enthusiasm and some anxiety! At last, but not 
least, I am fortunate to be supported by a highly effective team from editorial office 
of Statistics Portugal, in particular by the executive editor Pinto Martins and 
Secretary Liliana Martins. It is their goal to adopt a refreshed look for the journal’s 
website and in a near future an effective automatic submission editorial platform.  

I look forward to working with all of you, aiming to make REVSTAT a success 
and we welcome your submissions, sincerely hoping you find the future issues of 
interest by benefiting from the articles appearing in this publication. 

Sincerely, 

Isabel Fraga Alves 
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An Integrated Functional Weissman Estimator for Conditional

Extreme Quantiles

Laurent Gardes and Gilles Stupfler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Abstracted/indexed in: Current Index to Statistics, DOAJ, Google Scholar, Journal Citation
Reports/Science Edition, Mathematical Reviews, Science Citation Index Expandedr, SCOPUS
and Zentralblatt für Mathematic.





REVSTAT – Statistical Journal

Volume 17, Number 1, January 2019, 1–24

SOME MONITORING PROCEDURES

RELATED TO ASYMMETRY PARAMETER

OF AZZALINI’S SKEW-NORMAL MODEL

Authors: Chenglong Li

– School of Management, Xi’an Jiaotong University, Xi’an, China

Department of Systems Engineering and Engineering Management,

City University of Hong Kong, Hong Kong, China

lchenglon2-c@my.cityu.edu.hk

Amitava Mukherjee

– Production, Operations and Decision Sciences Area,

XLRI-Xavier School of Management, Jamshedpur, India

amitmukh2@yahoo.co.in

Qin Su

– School of Management, Xi’an Jiaotong University, Xi’an, China

qinsu@mail.xjtu.edu.cn

Min Xie

– Department of Systems Engineering and Engineering Management,

City University of Hong Kong, Hong Kong, China

minxie@cityu.edu.hk

Received: April 2016 Revised: December 2016 Accepted: December 2016

Abstract:

• In the real world, we often observe that the underlying distribution of some Gaussian

processes tends to become skewed, when some undesirable assignable cause takes

place in the process. Such phenomena are common in the field of manufacturing

and in chemical industries, among others, where a process deviates from a normal

model and becomes a skew-normal. The Azzalini’s skew-normal (hereafter ASN)

distribution is a well-known model for such processes. In other words, we assume

that the in-control (hereafter IC) distribution of the process under consideration is

normal, that is a special case of the ASN model with asymmetry parameter zero,

whereas the out-of-control (hereafter OOC) process distribution is ASN with any non-

zero asymmetry parameter. In the ASN model, a change in asymmetry parameter

also induces shifts in both the mean and variance, even if, both the location and

scale parameters remain invariant. Traditionally, researchers consider a shift either

in the mean or in variance or in both the parameters of the normal distribution.

Some inference and monitoring issues related to deviation from symmetry are essential

problems that are largely overlooked in literature. To this end, we propose various test

statistics and design for sequential monitoring schemes for the asymmetry parameter

of the ASN model. We examine and compare the performance of various procedures

based on an extensive Monte-Carlo experiment. We provide an illustration based on

an interesting manufacturing case study. We also offer some concluding remarks and

future research problems.
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1. INTRODUCTION

In many of the practical applications, a univariate process characteristic,

such as the warp length of semiconductor wafers, or the diameter of piston rings

among others, is assumed to follow a normal distribution. A normal distribution

can be completely specified by its mean (µ) and variance (σ2
), the two parameters

of the distribution. In standard quality control literature, a number of control

charts are developed and studied for detecting a shift in mean (also called location

parameter), among them by Tsiamyrtzis and Hawkins [37], Ryu et al. [31], Khoo

et al. [18], Peng et al. [26], and many others. Similarly, there are host of research

articles for detection of a shift in variance or the scale parameter (σ), such as,

Castagliola [6], Shu et al. [33], Zhang [40], Guo and Wang [14], among others. In

the recent years, several researchers have also addressed the problem of jointly

monitoring both the location and scale parameters of a normally distributed

process. We recommend reading Hawkins and Deng [15], Wu et al. [39], Sheu et

al. [32], McCracken et al. [24], Reynolds et al. [29], Knoth [19] and Li et al. [20],

among others, for more details.

Despite a great progress of parametric testing of hypothesis and process

monitoring, we, traditionally, assume that the parent population distribution of

the process characteristic remains normal and only change takes place in the

parameters of the distribution. Generally, we assume that the shift may occur

either in its mean or variance or in both. Nevertheless, this assumption is more

often very stringent. There are other ways in which a normally distributed process

may change. Ross and Adams [30] stated that, in many real-life applications, it

could be desirable to monitor for a change in the shape of the process distribution.

Similar arguments can also be found in Zou and Tsung [41] and Li et al. [22].

Normal distribution is well known as a symmetric bell-shaped distribution and in

consequence when a shift occurs in normal distribution, it may tend to become

skewed or asymmetric.

This phenomenon, in fact, is quite common in practice, especially in phys-

ical, chemical or geological research field. Vincent and Walsh [38] indicated

that the experimental intensity distributions in convergent beam electron diffrac-

tion patterns always exhibit deviations from ideal symmetry, attributable to the

causes, such as, strain, inclined surfaces, incomplete unit cells and imperfections

in the electron optics. Rahman and Hossain [27] showed another very relevant ex-

ample, about the groundwater arsenic contamination in Bangladesh. They noted

that the transmission of contaminants can affect the symmetric nature of the

distribution of arsenic concentration, being positively skewed. Interested readers

may also see Mukherjee et al. [25] for more details. In the context of statistical

process monitoring, Figueiredo and Gomes [9] studied a real industrial example

related to the diameters of cork stoppers produced by a manufacturing unit and
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noted that the data nicely follows an ASN distribution. After a close exami-

nation, we find that the distribution of the diameters of the cork was actually

normal in the initial phase and slowly it tends to become skew-normal. Figure 1

shows the histogram and density estimate of the first 200 diameter observations

from the production data set of Figueiredo and Gomes [9], which has altogether

1000 observations. The p-value of the Shapiro-Wilk normality test for the first

200 observations is 0.9296 which strongly supports the normality assumption in

the initial stage of production. Naturally, we can imagine that the process is

shifted from a normal distribution to an ASN distribution in the later stage of

production. We provide a detailed illustration with the cork stoppers’ data later

in Section 5.
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Figure 1: Histogram and density estimate of

the first 200 diameter observations.

In the nice work, Ferreira and Steel [8] proposed a constructive representa-

tion of skewed distributions and provided three common methods of generating

univariate skewed distributions, namely, hidden truncation, inverse scale factors,

and order statistics. Among them, the skew-normal distribution of Azzalini [2] is

probably the most common and most intensively studied one from diverse areas

of application and is developed with the idea—hidden truncation. The statistical

properties of ASN distribution and its variations have been discussed by several

authors and many similarities with the ordinary normal distribution are observed,

see for example, Azzalini [2, 3], Henze [16], Genton et al. [12], Arellano-Valle et al.

[1], Chen et al. [7], Azzalini [4], Gómez et al. [13], Mameli and Musio [23], Su and

Gupta [35]. Various researches established that the ASN family of distributions

have rather important roles to play in the production practice, such as, modeling

real datasets or simulating skewed data with different degrees of asymmetry and

tail-weight. Interested readers may see, among others, Chen et al. [7], Bartoletti
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and Loperfido [5], Fruhwirth-Schnatter and Pyne [11], Razzaghi [28], Figueiredo

and Gomes [10]. Nevertheless, there are merely few research articles that have

addressed the process monitoring issues with ASN distributions. The problems

related to process monitoring are considered in Tsai [36], Figueiredo and Gomes

[9], Su et al. [34], Li et al. [21]. The major theme of these researches is, how-

ever, the construction of control charts for skewed data, that includes detection

of shifts in location and/or scale. Needless to say that the problem of monitoring

and detecting departures from normality, i.e., from the normal to skew-normal,

has not been considered yet. Such a distributional change might not be readily

spotted by some traditional control charting schemes, such as the X chart and S

chart, because they are not designed for that purpose. Our current work aims at

addressing this long-standing problem in the context of process monitoring and

attempts to bridge the existing research gap.

The rest of this paper is organized as follows: Section 2 provides some in-

formation about ASN distribution and also introduces several competitive test

statistics for the purpose of detecting the disruption of symmetry of a normally

distributed process characteristic. The respective sequential monitoring proce-

dures, as well as the determination of their design parameters are presented in

Section 3. An extensive performance comparison and analysis is included in Sec-

tion 4. Section 5 illustrates the real example based on the corks’ diameter data

from Figueiredo and Gomes [9]. Finally, we offer some concluding remarks and

problems for future research in Section 6.

2. SOME STATISTICAL TESTS FOR ASYMMETRY

PARAMETER

Let X be the continuous random variable (r.v.) denoting the process char-

acteristic subject to testing or monitoring. The r.v. X is said to follow ASN

distribution if its probability density function (pdf) is of the form:

f (x; ξ, ω, λ) =
2

ω
φ

(

x − ξ

ω

)

Φ

(

λ
x − ξ

ω

)

, −∞ < x < ∞ ,

−∞ < ξ < ∞ , −∞ < λ < ∞ , ω > 0 ,

where ξ is the location parameter, ω is the scale parameter, and λ is the asym-

metry parameter, also called shape parameter; φ (·) and Φ (·) are the pdf and

cumulative distribution function (cdf) of the standard normal distribution, re-

spectively. In a standard notation, we express it as X∼ASN (ξ, ω, λ).

The ASN distribution is positively skewed if λ > 0, and is negatively skewed

if λ < 0. The critical parameter λ controls the skewness of the distribution (see

Figure 2). Note that, when λ = 0, the ASN distribution boils down to a normal
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distribution with mean µ = ξ and variance σ2
= ω2

, which implies that normal

distribution is a special case of the ASN family of distributions. Accordingly, the

ordinary normal distribution can also be denoted as X∼ASN (ξ, ω, 0), instead of

X∼N
(

µ, σ2
)

.
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Figure 2: The pdf of Azzalini’s SN distribution.

The variation of asymmetry parameter λ in ASN distribution automatically

changes its mean and variance. If the distribution shifts from ASN (ξ0, ω0, 0) to

ASN (ξ0, ω0, λ), it is easy to see that the changed mean µ1 = µ0 + λσ0

√

2
π(1+λ2)

and variance σ2
1 =

(

1 − 2λ2

π(1+λ2)

)

σ2
0 where we have µ0 = ξ0 and σ0 = ω0. In this

context, if we apply a simultaneous testing or monitoring scheme, designed for

the mean and variance of a normal model, we often get illusive results as the

shifted model no longer follows normal distribution. A more practical problem

is to test or monitor the asymmetry parameter of ASN distribution or all the

parameters of the ASN distribution. In this paper, we only consider the inference

and monitoring problems related to the asymmetry parameter λ of the ASN

distribution and assume both the location and scale parameters remain invariant

and known. In other words, we consider the problem of sequential monitoring of

the ideal condition of λ = 0. Further research on simultaneous monitoring of all

the parameters may be taken separately as a highly warranted research problem.

In the present context, we assume that ξ0 and ω0, the process location and scale

or the mean and variance of the normally distributed IC process are known.

This assumption is realistic as practitioners commonly have a fair idea about

the process parameters either based on certain target set-up of the companies or

based on the prior knowledge about the distribution of process characteristics.

We first consider the tests based on the likelihood ratio criterion, and the

moment estimator for the asymmetry parameter λ. Noting that ad-hoc inference
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is gaining more and more popularity, we also introduce several ad-hoc statis-

tics for tracking skewness which is related to the value of λ. In the subsequent

subsections, we introduce these statistics and the tests based on them.

2.1. Likelihood ratio test

Let xn = (x1, x2, ..., xn) be the sample of size n drawn from the r.v. X with

X∼ASN (ξ, ω, λ). Given xn, the log-likelihood function for λ is given by

l (λ|xn, µ0, σ0) = n ln2 − n lnσ0 +

n
∑

i=1

lnφ

(

xi − µ0

σ0

)

+

n
∑

i=1

lnΦ

(

λ
xi − µ0

σ0

)

.

Writing zi =
xi−µ0

σ0
, we can obtain the maximum likelihood (ML) estimator

of λ, say λ̂MLE , as the solution of

dl

dλ
=

n
∑

i=1

ziφ (λzi)

Φ (λzi)
= 0 .

In the language of theory of testing of statistical hypothesis, if we con-

sider the problem of testing H0: X∼ASN (ξ0, ω0, λ0 = 0), that is, X∼N
(

µ0, σ
2
0

)

against H1: X∼ASN (ξ0, ω0, λ1), a likelihood ratio criterion can be given by:

Λ (xn|µ0, σ0) =
1

2n
∏n

i=1 Φ

(

λ̂MLEzi

) .

We reject H0 at a given level of significance if Λ (xn|µ0, σ0) < cLR, where

cLR is a pre-determined constant that satisfies the level criterion. Note that,

Λ (xn|µ0, σ0) < cLR, indeed, is equivalent to T = −2lnΛ (xn|µ0, σ0) = 2nln2+

2
∑n

i=1 lnΦ

(

λ̂MLEzi

)

> −2lncLR. Thus, writing c∗LR = −2lncLR, the critical re-

gion of the test may be given by T > c∗LR.

Using the nice analogy between theory of testing of hypothesis and sta-

tistical process control, we can easily develop a sequential monitoring procedure

based on T . It is known that, under the null hypothesis, T follows a chi-squared

distribution with 1 degree of freedom if n is large. However, we found that this

approximation is useful if the test sample size n is at least 100. For small n,

the approximation is not at all satisfactory. In the context of statistical process

monitoring, test sample sizes are usually very small, say n = 5 or 10 or 25. A

sample size of n > 100 is very rare in practice and in quality control literature.

Therefore, we omit the asymptotic theory related to T in subsequent analysis

and discussion. Instead, we choose to work with the simulated distribution of T

traced via Monte-Carlo.
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2.2. Test based on the moment estimators

2.2.1. Inadmissibility of test based on method of moments estimator

Unlike the ML estimation, the method of moments (MM) to estimate λ

may be obtained more explicitly using the sample skewness, say γ̂, by inverting

the skewness equation given as:

|δ| =

√

√

√

√

π

2

|γ̂|
2
3

|γ̂|
2
3 +

(

4−π
2

)
2
3

, δ =
λ√

1 + λ2
,

where the sign of δ is the same as the sign of γ̂ and thus, we can derive the

MM estimator of λ, say λ̂MME =
δ√

1−δ2
. Note that here theoretically the max-

imum skewness is obtained by setting δ = 1, which gives γ̂ approximately equal

to 0.99527. Nevertheless, in practice, it may happen that the observed sample

skewness is larger. In such situations, λ̂MME cannot be obtained from the above

equation. Admittedly, we may consider a trade-off by letting |γ̂| = 0.99527 when

the obtained |γ̂| is coincidentally greater than 0.99527.

Interestingly, we have found that the MM estimation, in the present context,

is rather inefficient especially for small-to-moderate sample size. We observe with

n = 5, when the process is IC, the probability that the sample skewness exceeds

0.99527 is about 12.2%. That is, we cannot construct a nontrivial exact test at

5% level in this context. If n = 15, 25 and 50 the probability of the same event

becomes 5.9%, 2.7%, and 0.5% respectively. In the process monitoring context,

with n = 50, we may construct a sequential inspection scheme that will allow us

to achieve a maximum IC average run length: IC-ARL =
1

0.005 = 200. This is

certainly undesirable and thus, we drop this statistic from further discussion.

2.2.2. Estimator based on L-moments

L-moments are a sequence of statistics used to summarize the shape of

a probability distribution. They are linear combinations of the order statistics

analogous to conventional moments. Let x1, x2, ..., xn be the sample and x(1) ≤
x(2) ≤ ··· ≤ x(n) be the ordered sample, and direct estimators for the first three

L-moments in a finite sample of n observations are defined to be (see Hosking

[17])

l1 = n−1
∑

i

xi ,
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l2 =
1

2

(

n

2

)−1
∑

i

∑

j

(

x(i) − x(j)

)

, for i > j ,

l3 =
1

3

(

n

3

)−1
∑

i

∑

j

∑

k

(

x(i) − 2x(j) + x(k)

)

, for i > j > k .

The L-skewness is estimated by L = l3/l2. The L-skewness is a coefficient

that measures the degree of asymmetry and may take on positive or negative

values. It is known that 0 ≤ |L| < 1, where L = 0 indicates a possible symmetry.

Therefore, we can consider a test based on |L| and reject H0 at a given level of

significance if |L| > cLS , where cLS is a pre-determined constant satisfies the level

criterion.

2.3. Ad-hoc approaches

2.3.1. Test based on the sample skewness statistic

Instead of the MM estimation, the sample skewness, γ̂, may be directly

adopted to track the skewness of the process distribution and judge whether

there is a shift from λ = 0. The form of sample skewness is given by

γ̂ =

1
n

∑n
i=1 (xi − x)

3

[

1
n

∑n
i=1 (xi − x)

2
]3/2

,

where x denotes the mean of the sample of size n. In general, we expect that

under symmetry, γ̂ should be closer to 0. Under positive or negative skewness,

we generally expect that γ̂ is greater than or less than 0 respectively. If we

are interested in detecting a general two-sided shift (both left or right skewness)

from symmetry, we prefer a test based on |γ̂| and reject H0 at a given level of

significance if |γ̂| > cSS , where cSS is a pre-determined constant satisfies the level

criterion.

2.3.2. Test based on the distance skewness statistic

There is a simple consistent statistical test of diagonal symmetry based on

the sample distance skewness:

D = 1 −
∑

i,j |zi − zj |
∑

i,j |zi + zj |
,
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where the z’s are the standardized observations in a sample. The sample distance

skewness can be used as a way to decide whether there is a shift from λ = 0.

Its value is always between 0 and 1, and in general, it is expected that under

symmetry, D = 0 and under positive or negative skewness, D is expected to be

greater than 0. Thus, the statistic D can be considered for two-sided test of

H0: λ = 0 versus H1: λ 6= 0. We reject H0 at a given level of significance if

D > cDS , where cDS is a pre-determined constant satisfies the level criterion.

2.3.3. Test based on the median skewness statistic

The Pearson’s median skewness, or second skewness coefficient, is defined

by

M = 3
(x − x̃)

s
,

where x̃ is the sample median and s is the sample standard deviation of size n. It is

a simple multiple of the nonparametric skew. In general, it is expected that under

symmetry, x = x̃ and consequently M = 0. Under positive or negative skewness,

in general, we expect M greater than or less than 0 respectively. Therefore,

we may reject H0 at a given level of significance if |M | > cMS , where cMS is a

pre-determined constant satisfies the level criterion.

2.3.4. Quantile-based approach

Writing Qi, i = 1, 2, 3 as the ith quartile of the distribution, the Bowley’s

measure of skewness is given by

B =
Q3 − 2Q2 + Q1

Q3 − Q1
.

It is expected that for a normal distribution B = 0 and for an ASN distri-

bution B > 0 or B < 0 according as λ > 0 or λ < 0. Therefore, for simplicity one

can use B to verify whether the symmetry condition of the normal distribution

remains valid or an asymmetric pattern creeps in. For two-sided monitoring, we

may use |B| as the monitoring statistic. We reject H0 at a given level of sig-

nificance if |B| > cBS , where cBS is a pre-determined constant satisfies the level

criterion.
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3. DESIGN AND IMPLEMENTATION OF SEQUENTIAL MON-

ITORING OF ASYMMETRY PARAMETER

From production and manufacturing to various other sectors, often sequen-

tial monitoring and control of process parameter is of primary interest. In this

section, we present six monitoring procedures based on the test statistics, respec-

tively, introduced in Section 2. These statistics are

(a) the likelihood ratio statistic T ,

(b) the L-skewness statistic |L|,
(c) the sample skewness statistic |γ̂|,
(d) the sample distance skewness statistic D,

(e) the median skewness statistic |M |, and

(f) the Bowley’s statistic |B|.

Thus, we consider the following six schemes (A-F) for sequential monitoring

of asymmetry parameter.

A: The NSN-LR chart based on likelihood ratio statistic as in Section 2.1;

B: The NSN-LS chart based on L-skewness as in Section 2.2.2;

C: The NSN-SS chart based on sample skewness as in Section 2.3.1;

D: The NSN-DS chart based on sample distance skewness as in Section 2.3.2;

E: The NSN-MS chart based on median skewness as in Section 2.3.3;

F: The NSN-BS chart based on Bowley’s measure of skewness as in Section

2.3.4.

The abbreviation NSN is used to highlight the purpose of detecting a shift

from Normal(N) to Skew-Normal (SN). We first consider the sequential moni-

toring procedure based on the NSN-LR chart. The method of constructing a

NSN-LR chart involves the following steps:

Step-1: Collect xjn = (xj1, xj2, ..., xjn), the jth
test sample from the pro-

cess for j = 1, 2, .... Clearly, n is the fixed sample size for the jth

test sample or the so called rational subgroup.

Step-2: Compute the plotting statistic: Tj = 2nln2+2
∑n

i=1 lnΦ
(

λ̂MLEzji

)

.

Step-3: Plot Tj against an upper control limit (UCL) HLR. The lower

control limit (LCL) is by default 0, noting that Tj ≥ 0 by definition

as Λ (xjn|µ0, σ0) takes a value between 0 and 1.

Step-4: If Tj exceeds HLR, the process is declared OOC at the jth
test

sample. If not, the process is considered to be IC, and testing

continues to the next sample.
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The sequential monitoring procedures based on other statistics are very

similar except for the steps related to computing the plotting statistics and using

corresponding control limits. Therefore, we omit the details for brevity.

It is easy to note that we are basically considering standard Phase-II

Shewhart-type charts with standards known (Case-K). Consequently, the run-

length distribution will be exactly geometric. Consider any statistic U and cor-

responding UCL as HU . The expected IC run length can be expressed in terms

of probabilities: pU (HU ) = P [Uj > HU |IC]. Let FU (·) be the cdf of the plotting

statistic under IC set-up. Then, we can also write pU (HU ) = 1 − FU (HU ). In

the present context, we identify U with T, |L|, |γ̂|, D, |M | and |B|, respec-

tively, for the schemes A to F discussed above. Further, we identify HU with

HLR, HLS , HSS , HDS , HMS and HBS , respectively, for these six schemes.

Table 1: The UCL values for the NSN charts.

The NSN-LR chart: HLR The NSN-LS chart: HLS

n IC-ARL IC-ARL IC-ARL IC-ARL IC-ARL IC-ARL
=250 =370 = 500 = 250 = 370 = 500

5 6.9315* 6.9315* 6.9315* 0.7980 0.8208 0.8383
10 10.1944 11.2063 12.2779 0.4754 0.4942 0.5086
15 9.0789 9.9548 10.6227 0.3615 0.3754 0.3854
20 8.8727 9.6034 10.2425 0.3090 0.3215 0.3292
25 8.6560 9.4490 9.9779 0.2689 0.2795 0.2896
30 8.5876 9.3119 9.8591 0.2442 0.2534 0.2610
50 8.4382 9.2416 9.7183 0.1831 0.1906 0.1957

The NSN-SS chart: HSS The NSN-DS chart: HDS

n IC-ARL IC-ARL IC-ARL IC-ARL IC-ARL IC-ARL
=250 =370 = 500 = 250 = 370 = 500

5 1.4429 1.4557 1.4631 0.8185 0.8364 0.8496
10 1.7707 1.8493 1.9050 0.5760 0.6018 0.6197
15 1.6327 1.7181 1.7797 0.4355 0.4609 0.4793
20 1.5028 1.5848 1.6484 0.3501 0.3707 0.3854
25 1.3948 1.4670 1.5286 0.2925 0.3122 0.3259
30 1.2815 1.3587 1.4126 0.2530 0.2691 0.2815
50 1.0233 1.0797 1.1331 0.1638 0.1762 0.1857

The NSN-MS chart: HMS The NSN-BS chart: HBS

n IC-ARL IC-ARL IC-ARL IC-ARL IC-ARL IC-ARL
=250 =370 = 500 = 250 = 370 = 500

5 1.9909 2.0165 2.0360 0.9459 0.9555 0.9623
10 1.5366 1.5842 1.6173 0.8638 0.8797 0.8929
15 1.5111 1.5614 1.6003 0.7998 0.8221 0.8350
20 1.2690 1.3147 1.3444 0.7011 0.7206 0.7367
25 1.2227 1.2652 1.3003 0.6722 0.6916 0.7061
30 1.0807 1.1178 1.1545 0.6242 0.6452 0.6607
50 0.8815 0.9154 0.9506 0.5149 0.5339 0.5464

Note: * indicates invalid UCL values.
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In general, the charts are designed such that the appropriate UCL is found

for a desired nominal IC-ARL or called ARL0. Now equating expected run

length with the target IC-ARL, we have IC-ARL =
1

pU (HU ) from which we can

find expression for HU in terms of the target IC-ARL. To this end, we use a

Monte-Carlo simulation with adequate replicates (100,000 times) and acquire the

appropriate quantile based on the empirical distribution function for realizing the

target IC-ARL. Throughout the paper, we adopt this simulation technique, and

in Table 1, we offer some UCL values for these aforementioned NSN charts for

various test sample size n and for various nominal IC-ARL values.

From the UCL values of Table 1, we observe that HLR and HSS increase

initially when n is small and then decrease gradually when n is relatively larger,

while for the other charts UCL values decrease monotonically within the purview

of range of n considered here, that is, n ≤ 50. It is worth mentioning that it is

difficult to obtain UCL values for the NSN-LR chart for some common IC-ARL

context, when test sample size is small, say, n < 10. This is not surprising as

Figueiredo and Gomes [9] noted that small n may often produces boundary esti-

mates. The log-likelihood function will be an increasing (decreasing) function of

λ if all observations are positive (negative). Nevertheless, overall performance of

the NSN-LR chart is very encouraging in most cases, as long as the test sample

size is not too small.

4. PERFORMANCE ANALYSIS FOR QUICKEST DETECTION

4.1. The performance comparisons between NSN charts

In the present paper, clearly the IC value of λ is λ0 = 0. To compare

these NSN charts thoroughly and for performance analysis, we choose the shifted

(OOC) value of λ as λ1 = 0.3, 0.5, 1, 2, 3, 5, 10, for drawing Phase-II samples.

Without loss of generality, for both the IC or OOC situations, we consider µ1 =

µ0 = 0 and σ1 = σ0 = 1. For specified n and IC-ARL (= 370), we compute the

ARL and the standard deviation of the run length (SDRL). Our findings for

n = 5, 10, 15, 25 are summarized in Table 2. For some other values of IC-ARL

(say, 250 and 500), the results are comparable and consistent, and therefore, we

omit the details for brevity.

First we notice that, for specified test sample size n, the ARL and the SDRL

of all the NSN charts decrease steeply with the increasing shift in λ. Further,

when n increases, in general, we see that for any NSN scheme, baring some sam-

pling fluctuations, both the ARL and SDRL tend to decrease. Precisely, the larger

the value of n is, the quicker the detection of a specified magnitude of shift will be.
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For theNSN-BS chart, however, the rate of change ofOOC-ARLwithn is very slow.

Table 2: The OOC performance comparisons between NSN charts

for various λ1 and n when IC-ARL = 370.

n = 5
λ1

NSN-LR chart NSN-LS chart NSN-SS chart NSN-DS chart NSN-MS chart NSN-BS chart

0.3 365.94 (367.66) 361.33 (362.72) 230.85 (229.96) 360.92 (359.35) 354.16 (354.21)
0.5 365.94 (363.62) 360.13 (361.32) 145.69 (145.00) 360.37 (359.34) 352.48 (351.78)
1 358.65 (357.29) 353.72 (353.22) 60.77 (60.21) 361.97 (362.68) 351.79 (352.46)
2 Not Useful 314.71 (314.08) 310.02 (310.61) 30.19 (29.60) 352.62 (352.00) 337.77 (338.82)
3 268.01 (267.64) 263.68 (263.41) 24.70 (24.12) 329.34 (328.60) 311.48 (310.98)
5 214.00 (213.31) 210.57 (209.94) 22.45 (21.87) 288.18 (287.75) 271.05 (270.74)
10 171.76 (170.93) 170.43 (169.73) 21.97 (21.41) 244.67 (243.94) 228.48 (227.81)

n = 10
λ1

NSN-LR chart NSN-LS chart NSN-SS chart NSN-DS chart NSN-MS chart NSN-BS chart

0.3 129.81 (128.97) 360.69 (360.97) 362.55 (362.36) 123.92 (122.95) 350.36 (351.69) 375.60 (375.65)
0.5 55.69 (54.73) 357.54 (357.25) 360.44 (359.63) 51.78 (51.16) 350.22 (349.81) 374.47 (371.86)
1 13.06 (12.53) 325.34 (325.80) 322.95 (320.52) 12.04 (11.53) 350.59 (350.57) 373.06 (372.07)
2 3.78 (3.23) 187.36 (186.80) 178.54 (177.59) 3.84 (3.31) 302.18 (302.43) 353.01 (354.16)
3 2.31 (1.74) 111.74 (111.11) 111.15 (109.89) 2.61 (2.05) 229.49 (228.47) 319.94 (320.17)
5 1.55 (0.93) 64.90 (64.73) 73.35 (72.47) 2.01 (1.43) 149.87 (149.05) 279.57 (280.26)
10 1.18 (0.46) 44.29 (43.99) 57.45 (56.79) 1.75 (1.15) 103.43 (103.09) 253.59 (254.70)

n = 15
λ1

NSN-LR chart NSN-LS chart NSN-SS chart NSN-DS chart NSN-MS chart NSN-BS chart

0.3 73.57 (73.20) 329.54 (328.94) 338.05 (336.81) 74.68 (74.47) 354.19 (353.90) 380.89 (379.71)
0.5 24.61 (24.10) 326.13 (326.26) 334.20 (335.13) 24.98 (24.46) 353.86 (353.78) 378.44 (376.32)
1 4.56 (4.02) 279.58 (279.16) 269.27 (267.96) 4.80 (4.25) 353.81 (352.84) 375.84 (377.41)
2 1.46 (0.82) 115.69 (115.01) 112.15 (112.21) 1.62 (1.00) 282.86 (282.64) 345.41 (343.83)
3 1.11 (0.35) 56.16 (55.43) 62.81 (62.63) 1.23 (0.53) 190.95 (190.35) 294.50 (293.73)
5 1.01 (0.11) 28.17 (27.46) 39.39 (39.11) 1.07 (0.28) 108.10 (107.82) 235.77 (236.28)
10 1.00 (0.01) 17.96 (17.40) 30.27 (29.69) 1.02 (0.16) 69.06 (68.37) 204.56 (203.73)

n = 25
λ1

NSN-LR chart NSN-LS chart NSN-SS chart NSN-DS chart NSN-MS chart NSN-BS chart

0.3 35.52 (34.95) 367.13 (366.06) 370.12 (371.24) 36.60 (36.09) 345.62 (346.94) 357.06 (358.49)
0.5 9.49 (9.00) 361.87 (361.88) 361.69 (362.16) 9.99 (9.50) 346.00 (346.17) 355.45 (355.78)
1 1.80 (1.21) 276.97 (276.77) 250.80 (250.88) 1.93 (1.34) 333.34 (332.28) 350.34 (351.09)
2 1.02 (0.16) 70.21 (69.51) 69.69 (69.30) 1.05 (0.22) 198.51 (197.95) 294.49 (293.77)
3 1.00 (0.03) 26.42 (25.85) 33.83 (33.27) 1.00 (0.06) 99.94 (99.03) 218.99 (217.80)
5 1.00 (0.00) 11.43 (10.87) 19.29 (18.75) 1.00 (0.01) 45.51 (45.03) 153.77 (153.12)
10 1.00 (0.00) 6.90 (6.40) 14.31 (13.86) 1.00 (0.00) 28.00 (27.58) 130.94 (130.07)

For a given n and λ1, we compare the schemes in terms of OOC-ARL, and

consider a scheme the best, if it offers the lowest OOC-ARL. The cells correspond

to the best performing chart are shown in bold typeface in the tables. We further

see from Table 2 that the NSN-LR chart and the NSN-DS chart are uniformly

superior to the other four NSN charts. The NSN-DS chart is particularly well

suited for the cases where n is small (e.g., n = 5), where the NSN-LR chart is

inadmissible, as mentioned earlier. The two charts, namely, NSN-LR chart and
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NSN-DS chart, perform rather similarly with a moderate-to-large test sample

size (say n ≥ 10), though the NSN-LR chart displays a slight advantage over the

NSN-DS chart. Besides, both these charts have a rather low OOC-ARL value

when n is large, even if, the shift in λ is relatively small. The rest four NSN

charts perform poorly in almost all cases. The NSN-SS chart, the NSN-MS chart

and the NSN-LS chart are very inefficient when n is small and shift size is also

small, however, under large n, and for large shift size, the performance of these

charts improves significantly. Nevertheless, even with n = 50 and λ1 = 10, these

schemes are inferior compared with the NSN-LR chart or the NSN-DS chart.

Unfortunately, the NSN-BS chart is the worst and is practically useless.

Based on the results displayed in Table 2, we highly recommend the NSN-

LR chart and the NSN-DS chart for detecting the shift from normal to skew-

normal, especially the latter. The NSN-DS chart has a broader scope of applica-

tion in practice than the NSN-LR chart as it is effective even if the test sample

size is small where the NSN-LR chart is inadmissible. Further, we almost always

see that the NSN-DS chart performs very close to the NSN-LR chart when the

NSN-LR chart is the best in terms of OOC-ARL values. Therefore, the NSN-DS

chart is very competitive, and moreover, it may be more preferable to the users

taking into account the simplicity of implementation and its inherent ability to

detect a deviation from symmetry. Nevertheless, from the performance perspec-

tive, we recommend both charts and the users can have a choice to adopt the

NSN-LR chart or the NSN-DS chart according to their practical requirement.

The rest four NSN charts based on common measures of skewness are much more

inefficient and we suggest not to use them.

4.2. The comparisons to traditional charts for mean and/or variance

We have noted earlier that when the underlying process distribution de-

viates from normality and becomes skew-normal, as a result of a shift in the

asymmetry parameter λ from 0, the process mean and variance also change.

The mean and variance of the shifted process are given respectively by µ1 =

µ0 + λ1σ0

√

2
π(1+λ2

1)
and σ2

1 =

(

1 − 2λ2
1

π(1+λ2
1)

)

σ2
0. Therefore, one may argue that

it might be still meaningful to employ traditional process control schemes to mon-

itor process mean, or process variance or both at the same time, without giving

much importance to shift in the shape. To this end, it is worthy to compare some

traditional monitoring procedures, such as, the X chart for solely monitoring

the process mean, the S chart for monitoring the process variance, as well as the

charts based on ordinary max or distance statistic for jointly monitoring both the

mean and variance, with the NSN-LR and NSN-DS charts. Such a comparative

performance study will reflect whether the proposed schemes are really suitable

in detecting an overall process shift quickly compared to traditional schemes.
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Following are the plotting statistics of the existing schemes for monitoring

the process mean, process variance or both, used for the comparative study:

X chart:

QX (Xj) =

∣

∣

∣

∣

Xj − µ

σ/
√

n

∣

∣

∣

∣

;

S chart:

QS (Xj) =

∣

∣

∣

∣

∣

Φ
−1

{

Fχ2
(n−1)

(

(n − 1)S2
j

σ2

)}
∣
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;

max chart:

QM (Xj) = max

{

∣

∣

∣

∣
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;

distance chart:

QD (Xj) =

√

√

√

√

(

Xj − µ

σ/
√

n

)2

+

(

Φ−1

{

Fχ2
(n−1)

(

(n − 1) S2
j

σ2

)})2

.

We compare the above four schemes with the proposed NSN-LR chart and

NSN-DS chart under the similar OOC set-up used in Section 4.1. For a fair com-

parison, we only consider the standard Shewhart-type version of all the charts

involved. In Table 3, we present the mean, the standard deviation and the skew-

ness coefficient of the ASN (λ) distribution for various values of λ1, considered

in Section 4.1.

Table 3: Means, standard deviations and skewness coefficients of the

ASN distribution under IC value and various OOC values of λ.

IC Situation

λ0 µ0 σ0 γ0

0 0 1 0

OOC Situation

λ1 µ1 σ1 γ1

0.3 0.2293 0.9734 0.0056
0.5 0.3568 0.9342 0.0239
1 0.5642 0.8256 0.1369
2 0.7136 0.7005 0.4538
3 0.7569 0.6535 0.6670
5 0.7824 0.6228 0.8510
10 0.7939 0.6080 0.9556

+∞ 0.7979 0.6028 0.9953
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From Table 3, it is easy to see that when λ increases from 0 to +∞,

µ and γ increase, but σ decreases. One may check that when λ1 decreases from

0 to −∞, all three measures, the mean, the variance and the skewness coefficient

decrease. To be precise, in our simulation set-up, if there is a shift from λ = 0 to

λ1(−λ1), the mean µ = 0 will change to µ1(−µ1), the standard deviation σ = 0

will change to σ1(σ1), and γ = 0 will change to γ1(−γ1). For brevity, we omit the

case of decreasing shift in λ.

In Table 4, we summarize the result of performance comparisons among

the NSN-LR chart, the NSN-DS chart and the four traditional alternatives (i.e.,

Table 4: The OOC performance comparisons among the NSN-LR chart, the NSN-DS

chart and other alternatives for various λ1 and n when IC-ARL = 370.

n = 5
λ1

NSN-LR chart NSN-DS chart X chart S chart max chart distance chart

0.3 230.85 (229.96) 181.20 (180.84) 421.72 (422.96) 244.14 (243.51) 240.61 (239.75)
0.5 145.69 (145.00) 106.09 (105.12) 454.31 (453.81) 160.33 (158.94) 159.68 (159.26)
1 60.77 (60.21) 52.23 (51.62) 337.54 (337.87) 83.64 (82.75) 81.57 (80.57)
2 Not Useful 30.19 (29.60) 36.06 (35.38) 164.33 (163.60) 55.55 (54.98) 52.02 (51.27)
3 24.70 (24.12) 33.17 (32.55) 113.58 (113.55) 48.38 (47.73) 46.10 (45.50)
5 22.45 (21.87) 31.74 (31.18) 83.34 (83.27) 43.36 (42.79) 42.89 (42.42)
10 21.97 (21.41) 31.12 (30.60) 69.16 (69.13) 40.41 (39.78) 41.24 (40.82)

n = 10
λ1

NSN-LR chart NSN-DS chart X chart S chart max chart distance chart

0.3 129.81 (128.97) 123.92 (122.95) 102.21 (101.85) 410.33 (409.76) 150.01 (150.07) 149.23 (147.96)
0.5 55.69 (54.73) 51.78 (51.16) 43.94 (43.37) 380.25 (378.66) 68.56 (68.16) 68.96 (67.96)
1 13.06 (12.53) 12.04 (11.53) 13.99 (13.45) 159.10 (159.37) 21.24 (20.76) 19.31 (18.78)
2 3.78 (3.23) 3.84 (3.31) 6.91 (6.38) 41.70 (41.34) 9.63 (9.10) 6.82 (6.28)
3 2.31 (1.74) 2.61 (2.05) 5.71 (5.18) 23.12 (22.59) 7.42 (6.91) 4.69 (4.15)
5 1.55 (0.93) 2.01 (1.43) 5.11 (4.58) 15.43 (14.98) 6.18 (5.64) 3.63 (3.09)
10 1.18 (0.46) 1.75 (1.15) 4.86 (4.33) 12.65 (12.18) 5.62 (5.08) 3.18 (2.62)

n = 15
λ1

NSN-LR chart NSN-DS chart X chart S chart max chart distance chart

0.3 73.57 (73.20) 74.68 (74.47) 66.56 (66.18) 397.62 (396.70) 101.11 (100.47) 101.42 (100.85)
0.5 24.61 (24.10) 24.98 (24.46) 23.82 (23.17) 320.89 (321.72) 36.77 (36.22) 37.22 (36.61)
1 4.56 (4.02) 4.80 (4.25) 6.19 (5.67) 90.72 (89.86) 8.74 (8.27) 7.58 (7.06)
2 1.46 (0.82) 1.62 (1.00) 2.77 (2.21) 17.09 (16.60) 3.43 (2.88) 2.28 (1.69)
3 1.11 (0.35) 1.23 (0.53) 2.24 (1.66) 9.09 (8.55) 2.55 (1.98) 1.57 (0.95)
5 1.01 (0.11) 1.07 (0.28) 1.99 (1.40) 6.12 (5.58) 2.11 (1.52) 1.28 (0.59)
10 1.00 (0.01) 1.02 (0.16) 1.88 (1.29) 5.10 (4.56) 1.92 (1.32) 1.17 (0.45)

n = 25
λ1

NSN-LR chart NSN-DS chart X chart S chart max chart distance chart

0.3 35.52 (34.95) 36.60 (36.09) 34.95 (34.50) 373.78 (375.17) 53.70 (53.19) 54.59 (53.98)
0.5 9.49 (9.00) 9.99 (9.50) 10.34 (9.88) 237.89 (238.12) 15.01 (14.54) 15.22 (14.70)
1 1.80 (1.21) 1.93 (1.34) 2.41 (1.85) 40.32 (39.85) 3.01 (2.47) 2.58 (2.02)
2 1.02 (0.16) 1.05 (0.22) 1.26 (0.58) 5.76 (5.20) 1.33 (0.66) 1.10 (0.33)
3 1.00 (0.03) 1.00 (0.06) 1.13 (0.38) 3.21 (2.64) 1.12 (0.36) 1.01 (0.11)
5 1.00 (0.00) 1.00 (0.01) 1.07 (0.28) 2.35 (1.77) 1.04 (0.20) 1.00 (0.03)
10 1.00 (0.00) 1.00 (0.00) 1.05 (0.23) 2.06 (1.46) 1.02 (0.13) 1.00 (0.01)
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the X chart, the S chart, the max chart, and the distance chart) in the cases of

λ1 = 0.3, 0.5, 1, 2, 3, 5, 10, and n = 5, 10, 15, 25. From Table 4, we see that our

proposed NSN-LR chart and NSN-DS chart outperform the four traditional charts

in most of the cases, except for very small shift in asymmetry parameter. To be

precise, when λ1 is very small, the X chart is slightly more effective when sample

size n is also small. Further, we observe that, as the test sample size n increases,

our proposed NSN-LR and NSN-DS schemes become very competitive to the

traditional X chart even for small shift in asymmetry parameter. In general,

among these traditional alternatives, the X chart performs the best when λ1 is

small and then the distance chart supersedes the X chart when λ1 gets larger.

The max chart performs similarly as the distance chart. The S chart performs the

worst compared to the other schemes, probably due to the decreasing variance.

The performance of these traditional charts are, however, better than the other

four charts introduced in this paper based on various measures of skewness. We

further notice that, when the test sample size is large enough and the shift in the

asymmetry parameter is also very large, that is, both the values of n and λ1 are

relatively large, all four traditional schemes considered here display commanding

performance similar to the NSN-LR chart or the NSN-DS chart.

In summary, we can conclude that our proposed NSN-LR chart and NSN-

DS chart have some distinct advantages in detecting a shift when the process

distribution deviates from normal to skew-normal, specially when λ1 is moderate-

to-large. Otherwise, one may simply apply the traditional alternative, like X

chart for detecting shifts in the process mean. Nevertheless, using X chart may

be misleading in practice as it is designed for capturing a shift in the mean of a

normally distributed process. It may not reflect the actual phenomenon, that is,

the shift has taken place in the distribution itself. It may not be realized that

the assignable cause has actually led to a disruption of symmetry of the process

distribution. The effect of shift in asymmetry parameter would be confounded

if we use any of the traditional charts. This clarifies the motivation behind

developing the NSN-type control charts.

5. APPLICATION TO A MANUFACTURING PROCESS

In this section, we revisit the real example of a cork stopper’s process

production presented by Figueiredo and Gomes [9]. Figueiredo and Gomes [9]

considered a consecutive sample of size n = 1000, related to corks’ diameters as

well as some other measurements from the production process. They applied the

Shapiro test for normality and the Kolmogorov-Smirnov (K-S) test for goodness of

fit of the ASN distribution on the 1000 data points. They noted that the Shapiro

test rejects the normality of the diameter data at 5% level of significance, but the

K-S test accepts the ASN distribution as a decent model for the diameter data.
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They concluded accordingly that the ASN distribution may be considered to

model the diameter data instead of the normal distribution.

Nevertheless, we revisit the diameter data set, and observe that during the

initial stage of production, the underlying data distribution appears to be normal.

We note that for the first 200 observations on corks’ diameter, the p-value of

the Shapiro test is very high and is 0.9296. This finding strongly supports the

normality assumption (also see Figure 1) for the initial stage of production. We

also notice that the process distribution deviates from normality and gradually

becomes skew-normal (the p-value of the Shapiro test for normality gradually

becomes lower and soon becomes less than 1%) as the production continues,

probably due to unobservable occurrence of one or more assignable cause(s) at

some point of time. Hence, we may argue that the process distribution has

deviated from the normality and tends to follow an ASN distribution with some

non-zero asymmetry parameter.

In this context, we illustrate the implementation of the proposed Shewhart-

type NSN-LR and NSN-DS charts for monitoring the diameter data observed from

the cork stopper’s process production. We take the first 200 observations related

to corks’ diameter as the IC sample which is also referred to as the Phase I

observations in literature. We obtain the estimates for the mean value and the

standard deviation as 24.0695 and 0.1459 respectively. We use these estimates

to approximate the true process parameters. The following 800 observations

may be regarded as the Phase II data that consists of m = 40 subgroups each

of size n = 20. For n = 20 and a target IC-ARL of 370, we see from Table 1,

the control limits for the two charts are, respectively, HLR = 9.6034 and HDS =

0.3707. Hereafter, we compute the LR and DS statistics for these 40 subgroups

and plot them in Figure 3 and 4, along with the respective UCL.

We see that the movement of the plotting statistics in these two charts are

very similar in nature. We receive the first signal at the 17
th

test sample for

both charts. Moreover, several points fall above the UCL in both these charts.

We may consider this as a strong evidence of deviation of process distribution

and therefore, may conclude that the initial assumption of normally distributed

process is no longer valid and the process distribution becomes asymmetric. To

be precise, the ASN distribution (with some non-zero asymmetry parameter)

emerges as the new process distribution. Since in the whole data set, normally

distributed IC data have been contaminated (mixed) with the shifted data which

are generated from the OOC process, this easily leads to an illusion that the data

inherently follows an ASN distribution.
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Figure 3: The NSN-LR chart for the corks’ diameter data.
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Figure 4: The NSN-DS chart for the corks’ diameter data.
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6. CONCLUDING REMARKS

In this paper, we study on the statistical process monitoring problem in

regard to detecting a shift from normal to skew-normal. A class of possible test

statistics are thoroughly examined and we find that the proposed monitoring pro-

cedures based on the likelihood ratio statistic and the sample distance skewness

statistic operate most competitively, especially the latter. Therefore, these two

approaches are expected to be very useful in practice to monitor the asymmetry

parameter of an ASN distribution and to detect a process shift from normality

to skew-normal with λ 6= 0.

In the present context, we study the performance of the standard Shewhart-

type version for all charts. It is well-known that the Shewhart-type charts are

usually good for detecting large and abrupt shifts in a process, however, the

change in skewness actually is relatively small even if λ1 gets very large for the

ASN distribution. Thus, a straightforward extension of the proposed monitoring

schemes under the EWMA or CUSUM set-up may be considered as a future

research problem. Further, more researches on the economic and the economic-

statistical design of the NSN-LR and NSN-DS charts are highly warranted in

future.

In addition, as stated before, further research on simultaneous monitoring

of all the parameters (location, scale and shape) of the ASN distribution needs

to be studied in detail. It will also be an interesting future research problem

to develop process monitoring schemes when the parameters are unknown and

estimated from the reference sample. Clearly, the present work may lead to some

interesting future research problems.

ACKNOWLEDGMENTS

The authors would like to thank Professors Fernanda Figueiredo of Univer-

sidade do Porto and M. Ivette Gomes of Universidade de Lisboa for their kind

help on supporting the industrial process data. The authors are also grateful to

the anonymous reviewer for providing helpful suggestions and comments for re-

vising this paper. The collaborative work described in this paper was supported

by Research Grant Council (G-CityU108/14) and University Grants Council of

Hong Kong (GRF 11213116) and National Natural Science Foundation of China

(No. 71371163, 71371151).



22 Chenglong Li, Amitava Mukherjee, Qin Su and Min Xie

REFERENCES
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1. INTRODUCTION

When we are constructing designs to explore the overall response surface,

rather than the response to individual factors, the main request is for optimum

position, i.e. the combination of factor levels for which the expected response

is maximized. In principle, the design of an experiment to explore the response

surface will cover — eventually — only a region of the unknown surface, for which

a rather known center exists. Therefore observations at the center are important.

Moreover, blocking and replication are always important, as for any experiment.

Therefore, the Response Surface Method (RSM) is based on this framework. As

an example, there is a nice experiment to investigate the effect of the levels of

two additives on the quality of a cake production process in [7]. In addition to

the factorial experiment portion as well as to the number of observations at the

center, additional points are added to the design of each factor or, equivalently,

to each axis, known as axial (or star).

Therefore, a Central Composite Design (CCD) is: an experimental frac-

tional design which is supplemented by additional experimental points such as

center points and star points. In principle, we need the main effects to be sepa-

rately estimated. That is why the sense of Orthogonal design is essential: a design

in which the given variables (or a linear combination of them) are regarded as

statistical independent. In RSM it is important to choose the “path” towards the

optimum. Thus, the steepest accent method is applied from the Numerical Anal-

ysis (see [5] among others), while the sequential principle of design is adopted.

Therefore, the Rotatable design is a real need to be defined, as the one which

has equal predictive power (predictiveness) in all directions from the center point

and from the points that are at equidistant from the center.

The aim of this paper is to discuss, and eventually adjust, the necessary and

sufficient conditions, for the number of design points, to be satisfied so that to

estimate the design points for an Orthogonal Central Composite Design (OCCD)

to be rotatable (ROCCD). The problem has been discussed extensively by [3], [7],

[6], [8], where the conditions for a Central Composite Design (CCD) to be OCCD

and ROCCD are reviewed and examined. We shall refer and extend/adjust the

condition for a ROCCD, as appeared in [6, p. 304] and [7, p. 550]. The im-

provement is that the imposed already condition is now used for obtaining real

solutions, when positive integer solution is actually needed. To to the best of our

knowledge, we have not see any attempts trying to adjust this conclusion. This

adjustment is our contribution, so that the experimenter can work to Response

Surface Methods, with a number of up to 14 input variables, as we are providing

the appropriate calculations, based on the developed theory. For a compact form

of the obtained calculations see Table 1. Through out this paper the standard

notation for the Response Surface Methods is adopted; see [6] and [8].
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2. CONDITIONS FOR A ROCCD

The Central Composite Design (CCD) appears an aesthetic appeal within

the class of the second order response surface design. It was introduced in the

pioneering paper of [4]. In principle the Central Composite Design (CCD) can

always be constructed as a two block Orthogonal (OCCD). This is based in two

blocks: the factorial portion and the star portion. The first block is based on

NF factorial points and NCF center points. The second block is based on NA

axial points and NCA center points for the star portion. It has been traditionally

denoted by (a) the distance of the star points from the center of the design. For

a factorial or fractional factorial experiment NF = 2
q

or 2
k−q

observations are

needed. Consider NA = 2k points with k being the number of input variables

and q such that 0 < k < q.

For Orthogonal blocking, in two blocks in a CCD, the fractional of the total

sum of squares, of each input variable contributed by every block, has to be equal

to the fraction of the total observations allotted to the block. It is, for each block,

NF

NF + 2a2
=

NF + NCF

N
and(2.1a)

2a2

NF + 2a2
=

NA + NCA

N
,(2.1b)

respectively. The total number of observation is then N = NF + NA + NC, with

NC the number of central points i.e. NC = NCF + NCA. Then from (2.1a) and

(2.1b) it is

(2.2) a2
=

NF

(

2k + NCA

)

2
(

NF + NCF

) .

When the design is required to be also a rotatable one, then [6, p. 304],

(2.3) a2
= N

1/2
F .

From (2.2) and (2.3) the second degree equation

(2.4) 2NF − N
1/2
F

(

2k + NCA

)

+ 2NCF = 0 ,

has to be satisfied, see also [7, p. 550]. Both [7] and [6] note that is not always

possible to find a design that satisfies (2.4). Moreover, in [6] is provided as a

necessary condition for the satisfaction of equation (2.4) the relation

(2.5) D =
(

2k + NCA

)2 − 16NCF ≥ 0 ,

But the discriminant D positive means that (2.4) has real roots. And we are

looking for positive integers as solution of (2.4). This is the crucial point. The

necessary and sufficient conditions, so that the number of the design points NF

for a ROCCD needs more investigation and we are providing this investigation

in section 3.
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3. INTEGER SOLUTION FOR A ROCCD

Trivially the coefficient of the second order equation (2.4) are asked to be

positive integers and not just real numbers. We state and prove in Appendix A

the following Theorem which shall help us to develop the line of though tackling

the problem, see Theorem 3.1 and Proposition 3.1.

Theorem 3.1. Consider the second order equation

(3.1) Ax2
+ Bx + C = 0 ,

with A, B and C integers. Then the roots of (3.1) are integers if and only if

1. A divides B, i.e. A
∣

∣B,

2. A divides C, i.e. A
∣

∣C, and

3. The discriminant D of (3.1) is a square, i.e. D = µ2 ∈ Z.

Now, consider (2.4). The following theorem holds.

Theorem 3.2. The necessary and sufficient conditions in order the equa-

tion

(3.2) 2NF − N
1/2
F

(

2k + NCA

)

+ 2NCF = 0 ,

to have positive integer solutions are:

(3.3a) 2
∣

∣NCA, i.e. 2 divides NCA, i.e. is even,

(3.3b) D =
(

2k + NCA

)2 − 16NCF = µ2 , µ ∈ Z .

Proof: Trivially, if we let x = N
1/2
F , (3.2) is then reduced to (3.1) with

A = 2, B = −
(

2k + NCA

)

, C = 2NCF. Therefore condition (1) of Theorem 3.1

is reduced to (3.3a), (2) holds, and (3) is reduced to (3.3b). Thus, the roots

are integer numbers. Moreover the sum of roots of (3.2) is (2k + NCA) > 0 and

the product of roots is 2NCF > 0. Therefore, the integer roots are positive.

Eventually the conditions (3.3a) and (3.3b) are necessarily and sufficient to have

positive integer roots.

Practically the factorial portion consists from a 2
k

design. Usually k is not

greater than 6, otherwise a portion 2
k−p

is used. We investigate next the cases

of k up to 14 in the following Proposition.
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Proposition 3.1. Consider (3.2) and the case that NF = 2
k. Then, an

integer solution exists for k even. Moreover, for

(3.4) k = 2, 4, 6, 8, 10, 12, 14 ,

the relation between NCF and NCA should be of the form

(3.5) NCF = 2
v
(

NCA − K
)

, v =
1
2k − 1 ,

and K = K(k)

(3.6) K = 0, 0, 4, 16, 44, 104, 228 ,

respectively.

Proof: Trivially k has to be an even integer otherwise there is no integer

solution. Thus, 2
k/2

has to be integer. Now, from (3.2), we obtain:

For k = 2: 2
3 − 2

(

4 + NCA

)

+ 2NCF = 0, i.e. NCF = NCA = 2
0
(NCA − 0).

For k = 4: NCF = 2NCA = 2
1
(

NCA − 0
)

.

For k = 6: NCF = 4NCA − 16 = 2
2
(

NCA − 4
)

.

In order that both NCF and NCA be positive integers, it is required to be

NCF = 4p, p ∈ Z
+

as

1
4NCF + 4 = NCA.

Therefore for k = 6,

NCF = 4p , NCA = p + 4 .

For k = 8 it is from (3.2)

2
8 − 2

3
(

16 + NCA

)

+ NCF = 0, i.e.

NCF = 8NCA − 128 = 2
3
(

NCA − 16
)

.

Now, in order that both NCA and NCF are positive integers, NCA should be an

integer greater than 16, so
1
8NCF + 16 = NCA and therefore, NCF = 8p, NCA =

8(p + 2). Thus the case k = 8 can rarely be of practical use.

For k = 10 it is from (3.2)

1024 − 320 − 16NCA + NCF = 0, i.e.

NCF = 2
4NCA − 2

4
44 = 2

4
(

NCA − 44
)

.

There is no practical use for the case k = 10 as well as in order NCF to be positive

NCA has to be greater than 44 i.e.

NCF = 2
4p , NCA = p + 44 .
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Similar, for k = 12, it is

NCF = 32NCA − 3328 = 2
5
(

NCA − 104
)

,

NCF = 2
5p , NCA = p + 104 .

For k = 14 it is then

NCF = 64NCS − 14592 = 2
6
(

NCA − 228
)

, i.e.

NCF = 2
6p , NCA = p + 228 .

There is no practical use to investigate grater values, as the number of

observations turns to be very large in such a case. From the above discussion it

is easy to see that the following holds.

Corollary 3.1. In principle,

(3.7) NCF = 2
k/2−1

[

NCA −
(

2
k/2−1 − 2k

)

]

, k = 2, 4, 6, ...

Corollary 3.2. The general form of required samples are:

(3.8) NCF = 2
k/2−1p , NCA = p + 2

k/2+1 − 2k , p ∈ Z
+ .

Proposition 3.2. For the equation (3.2) as in Theorem 3.2, considering

k = 2(2)14 the corresponding pair of values (NCA, NCF) for a double root x =

N
1/2
F = 2

k/2, are

(4, 4), (8, 16), (20, 64), (48, 256), (108, 1024), (232, 4096), (484, 16384) .

Proof: The proof is based on (3.3b) with ν = 0 and on the results obtained

in Proposition 3.1. Namely for:

• k = 2, D = (4 − NCA)
2
, hence NCA = 4 = NCF;

• k = 4, D = (8+NCA)
2−32NCA = (8−NCA)

2
, hence NCA= 8, NCF=16;

• k = 6, D = (12 + NCA)
2 − 16(4NCA − 16) = (20 − NCA)

2
,

so NCA = 20, NCF = 64;

• k = 8, D = (16 + NCA)
2 − 16(8NCA − 128) = (48 − NCA)

2
,

so NCA = 48, NCF = 256;

• k = 10, D = (20 + NCA)
2 − 16(16NCA − 704) = (108 − NCA)

2
,

so NCA = 108, NCF = 1024;

• k = 12, D = (24 + NCA)
2 − 16(32NCA − 3328) = (232 − NCA)

2
,

so NCA = 232, NCF = 4096;

• k = 14, D = (28 + NCA)
2 − 16(64NCA − 14592) = (484 − NCA)

2
,

so NCA = 484, NCF = 16384.
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It is clear that for k greater than 8 there is no practical use, as we have

already comment, as the required observations are too many and it is not practical

use of an experiment 2
8
.

4. DISCUSSION

The above provided analysis proves that the restriction D ≥ 0 is not the

appropriate one for an OCCD to be ROCCD. In Table 1 we summarize, for

practical use values of k and the appropriate values of design points, according

to the above-mentioned calculations. The appropriate necessary and sufficient

condition was stated and proved, adjusting an old wrong result, with a rather

“simple”approach. Some experimenters decide in advance, rather from experience

or depending on how easy is to perform the experiment, the needed size of the

experiment. But the investigation needs a deeper approach, we believe, with not

such a difficult mathematical approach for the experimenter. We worked towards

this direction: to keep it simple. Table 1 summarizes the results from the above

discussion. In a future attempt, it would be interesting to construct, mainly from

a theoretical point of view, the appropriate calculations with k larger than 14, in

order to see the behavior of the discussed “system” for “large” values. It is also

clear that the researcher working at EVOP designs (see the pioneering paper in

[2]) can adopt the calculations performed here, for the initial design, as EVOP

is based, briefly speaking, on a “factorial + centre” design. Therefore, despite its

theoretical framework and background, the above proposed integer solution can

be very helpful in practice as well.

Table 1: Design points needed for a ROCCD with k = 2(2)8,

for a double root x = N
1/2

F
.

k NF NA NCF NCA NC N

4 4 4 2 2 4 12
3 3 6 14
4 4 8 16

4 16 8 4 2 6 30
6 3 9 33
8 4 12 36

16 8 24 48

6 64 12 4 5 9 85
8 6 14 90

12 7 19 95
64 20 84 160

6 256 16 8 17 25 297
16 18 34 306
24 19 34 306

256 48 304 576
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APPENDIX A

Proposition A.1. Let x2
+ px + q, p, q ∈ Z. Then its roots x1, x2 ∈ Z if

and only if the discriminant D = µ2, µ ∈ Z, or µ = 0.

Proof: If x1, x2 ∈ Z: x2
+ px + q ⇔ x2 − (x1 + x2)x + x1x2 = 0.

Let D = (x1 + x2)
2 − 4x1x2 = (x1 − x2)

2
= µ2

, with µ = x1 − x2 ∈ Z as

x1, x2 ∈ Z. Now, let D = p2 − 4q = µ2
, µ ∈ Z. Then

x1, x2 =
−p ± µ

2
= −p ∓ µ

2
.

But: p2 − 4q = µ2 ⇒ p2 − µ2
= 4q ⇔ (p− µ)(p + µ) = 4q ⇒ p + µ = 2n1, n1 ∈ Z

and p − µ = 2n2, n2 ∈ Z. Therefore x1 = n1 and x2 = −n2, i.e. x1 and x2 are

integers.

Proof of Theorem 3.1: If A
∣

∣B and A
∣

∣C then:

Ax2
+ Bx + C = 0 ⇔ x2

+
B
Ax +

C
A = 0 ⇔ x2

+ px + q = 0 , p, q ∈ Z .

It is also: D1 = p2 − 4q = µ2
1, µ2

1 ∈ Z ⇔

B2

A2
− 4

C

A
= µ2

1 ⇔ B2 − 4AC

A2
= µ2

1 ⇒ D = B2 − 4Ac = (µ1A)
2

= µ2
1, µ ∈ Z .

So x2
+ px + q = 0 has integer roots and so does Ax2

+ Bx + C = 0.

The inverse: Let x1, x2 ∈ Z be the roots of Ax2
+ Bx + C = 0. Then:

x1 + x2 = −B
A and x1x2 =

C
A . Thus x1 + x2 ∈ Z ⇒ A

∣

∣B and x1x2 ∈ Z ⇒ A
∣

∣C.

Moreover:

Ax2
+ Bx + C = 0 ⇒ x2

+
B
Ax +

C
A = 0 ⇒ x2

+ px + q = 0 ,

has integer roots (Proposition A.1).

Let D1 = p2 − 4q = µ2
1, µ1 ∈ Z, i.e.

B2

A2
− 4

C

A
= µ2

1 ⇒ B2 − 4AC

A2
= µ2

1 ⇒ D = B2 − 4AC = (Aµ1)
2

= µ2, µ ∈ Z.
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1. INTRODUCTION

The integer-valued autoregressive (INAR) processes are introduced by

McKenzie ([9]) and Al-Osh and Alzaid ([2]). They were the subject of research of

many scientists, so there are a lot of different models which all intend to better

describe the data obtained from some natural processes. The most of them are

stationary, since this property gives some simplifications. Some of the models

which investigate different thinning operators are given in [3], [8], [17, 18] and

[14]. Models with various marginal distributions can be found in [10], [1], [5] and

[6]. Weiß ([16]) and Nastić and Ristić ([11]) considered mixed processes. The

first combined INAR(p) process is introduced in [16] and the combined process

which is important for this paper is CGINAR(p) from [12]. It is combined in the

sense that in every step recursive formula for an element of the process has one

of the p possible forms (which match with formulas for INAR process) with some

given probabilities.

We can say that stationary processes are rigid, because some of their pro-

perties are conserved in time. However, the real data are not often like that. One

of the models which improves this weakness is RrNGINAR(1), defined in [13].

This is achieved by letting elements of the process to have varying distribution.

Namely, quantitative properties observed from the nature depend on the envi-

ronment. Since these values are represented by the elements of the process, it

is natural to expect mentioned distribution to depend on the environment, too.

It is supposed that environment conditions can be divided into r different types,

which are called states, and each state is associated with a fixed distribution, so

element of the process has the distribution of its state.

The main idea of this article is to make CGINAR(p) process more flexible,

using the idea from RrNGINAR(1) process. Therefore, the aim is to construct a

CGINAR(p) process with random states. So, in the second section of this article

two different ways of constructing such a process which overcome problems that

occur in classical (the most intuitive) way of defining this kind of model are

discussed. Its correlation structure is analyzed in the third section. The fourth

section is about Yule-Walker (YW) estimators of the parameters of the defined

models. The quality of YW estimators is examined on the simulated data in

Section 5. In the final section the introduced processes are applied to the real

data and the results are compared for different models.
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2. MODELS DEFINITIONS AND PROPERTIES

As mentioned earlier, our aim in this paper is to introduce the combined

RrNGINAR process, where RrNGINAR process of order one is introduced in [13].

An attempt to construct this kind of combined process in the classical way, as

it was done in [16], [12] and [15] will bring some difficulties, so new approaches

will be used. In this section we will define two processes, which overcome this

problem. Discussion about some of their properties will be given.

Let Er = {1, 2, ..., r} be the set of all possible states, where r ∈ N and let

{zn}, n ∈ N0, be a realization of an r states random environment process {Zn} (we

use Definition of the r random environment process given in [13]). For i, j ∈ Er,

let {εn(i, j)}, n ∈ N, be sequences of independent identically distributed (i.i.d.)

random variables. We will use notation Xn(zn) for an element of the new process,

where zn (which represents realized value of the random environment process in

the moment n ≥ 0) determines the distribution of that element. Let α∗ be the

negative binomial thinning operator, for α ∈ (0, 1), with a counting sequence

{Ui, i ≥ 1} of i.i.d. random variables with probability mass function (pmf) given

by

P (Ui = u) =
αu

(1 + α)u+1
, u = 0, 1, 2, ...

As it was noted, it would be natural to introduce the combined random environ-

ment NGINAR process of order p in the following (classical) way

(2.1) Xn(zn) =



















α ∗ Xn−1(zn−1) + εn(zn−1, zn), w.p. φ1 ,

α ∗ Xn−2(zn−2) + εn(zn−2, zn), w.p. φ2 ,

.

.

.
.
.
.

α ∗ Xn−p(zn−p) + εn(zn−p, zn), w.p. φp ,

for arbitrary n ≥ p and fixed p ∈ N, where φi ≥ 0, i ∈ {1, 2, ..., p}, ∑p
i=1 φi = 1,

where distribution of Xn(zn) is given by

P (Xn(zn) = x) =
µx

zn

(1 + µzn
)x+1

, x = 0, 1, 2, ..., n = 0, 1, 2, ... ,

µzn
∈ {µ1, µ2, ..., µr} is the parameter determined by the value zn, µi > 0, i ∈

{1, 2, ..., r} and where the next conditions are satisfied

(A1) {Zn}, {εn(1, 1)}, {εn(1, 2)}, ..., {εn(r, r)}, are mutually independent

for all n ≥ 1,

(A2) Xn(l) is independent of Zm and εm(i, j), for 0 ≤ n < m and any

i, j, l ∈ Er.

If we try to derive the distribution of εn(i, j), i, j ∈ Er, using procedure

similar to the one of CGINAR(p) process, it wouldn’t be so easy. Actually, it
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is not necessary that zn−j for all j = 1, 2, ..., p are the same, so, consequently,

εn(zn−j , zn) do not have to be identically distributed for all j = 1, 2, ..., p. This

leads to a complex expression for the distribution of εn(i, j), where i and j are

arbitrary values from Er.

The first method for avoiding this problem is to define Xn(zn) using (2.1),

but substituting p with pn, where pn is the maximal number less or equal to the

given value p (p ∈ N is a fixed number, not depending on n), which satisfies zn−1 =

··· = zn−pn
. Then εn(zn−j , zn) for j = 1, 2, ..., pn are the same, and obviously all

have the same distribution. Let’s define this more precisely.

Definition 2.1. Let zn be the realization of the random environment

process {Zn} in the moment n ≥ 0. We say that {Xn(zn)}n∈N0 is an INAR

process with r-states random environment guided geometric marginals based on

the negative binomial thinning operator of maximal order p (RrNGINARmax(p)),

p ∈ N, if the random variable Xn(zn) is defined as

(2.2) Xn(zn) =























α ∗ Xn−1(zn−1) + εn(zn−1, zn), w.p. φ
(pn)
1 ,

α ∗ Xn−2(zn−2) + εn(zn−2, zn), w.p. φ
(pn)
2 ,

.

.

.
.
.
.

α ∗ Xn−pn
(zn−pn

) + εn(zn−pn
, zn), w.p. φ

(pn)
pn

,

for n ≥ 1, where

pn =

{

p, p∗n ≥ p ,

p∗n, p∗n < p ,

p∗n = max {i ∈ {1, 2, ..., n} : zn−1 = zn−2 = ··· = zn−i} and the following conditions

are satisfied:

1. φ
(pn)
i ≥ 0, i ∈ {1, 2, ..., pn},

∑pn

i=1 φ
(pn)
i = 1;

2. α ∈ (0, 1) and the counting sequence {Ui}i∈N of the negative binomial

thinning operator α∗ has pmf P (Ui = u) =
αu

(1+α)u+1 , u ∈ {0, 1, 2, ...};

3. P (Xn(zn) = x) =
µx

zn

(1+µzn )x+1 , x ∈ {0, 1, 2, ...}, where µzn
∈ {µ1, µ2, ...,

µr}, µi > 0, i ∈ {1, 2, ..., r} and r ∈ N is the number of states of the

random environment process {Zn};
4. For fixed i, j ∈ Er = {1, 2, .., r}, {εn(i, j)}n∈N is a sequence of i.i.d. ran-

dom variables;

5. {Zn}, {εn(1, 1)}, {εn(1, 2)}, ..., {εn(r, r)} are mutually independent se-

quences of random variables;

6. Xn(l) is independent of Zm and εm(i, j), for 0 ≤ n < m and any i, j, l ∈
Er.

We want to emphasize that this model contains p different sets of the pro-

bability parameters Ψi = {φ(i)
1 , φ

(i)
2 , ..., φ

(i)
i }, for i ∈ {1, 2, ..., p}. Set Ψi has i ele-

ments, so the total number of the probability parameters is 1+2+ ···+p =
p(p+1)

2 .
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For each i there is a condition
∑i

j=1 φ
(i)
j = 1, so there are

p(p+1)
2 − p =

p(p−1)
2 un-

known probability parameters. Specially, for i = 1, we have φ
(1)
1 = 1.

Remark 2.1. Important feature of the introduced process is a variable

order. Actually, {Xn(zn)} is defined like a process of order pn, where pn is

not fixed and depends on n. But, pn is not a random variable due to the fact

that it could be calculated for given {zn}, using its building mechanism given in

Definition 2.1 and the fact that our process is defined for the realized random

environment process {zn}. Once pn reaches p, process takes shape of the model

of fixed order, p, and this lasts as long as the state does not change. When

it changes (zn 6= zn−1), then order (pn+1) becomes equal 1. The order further

continues to grow until the state changes again or until it reaches p. Therefore,

we consider process which is mostly of order p, but it has some transitional

periods of variable and ascending order, which begin when the state changes and

end when the process reaches order p, or when state changes again.

This is similar to the idea of the Variable-Order Markov (VOM) model,

which was investigated in [7]. As it is known a random variable in the Markov

chain model depends on a fixed number of previous conditioning elements. Ho-

wever, in VOM models the number of conditioning random variables (which is

called the context) depends on the specific observed realization and may vary

over time.

Now, we will describe one more combined random environment NGINAR

process. It is similar to the previous one, but differs during the transitional period

(for p∗n < p), where the process of variable order is replaced with the process of

order one.

Definition 2.2. Let zn be the realization of the random environment

process {Zn} in the moment n ≥ 0. We say that {Xn(zn)}n∈N0 is an INAR

process with r-states random environment guided geometric marginals based on

the negative binomial thinning operator of order p (RrNGINAR1(p)) if random

variable Xn(zn) is defined as

Xn(zn) =























α ∗ Xn−1(zn−1) + εn(zn−1, zn) w.p. φ
(pn)
1 ,

α ∗ Xn−2(zn−2) + εn(zn−2, zn), w.p. φ
(pn)
2 ,

.

.

.
.
.
.

α ∗ Xn−pn
(zn−pn

) + εn(zn−pn
, zn), w.p. φ

(pn)
pn

,

(2.3)

for n ≥ 1, where

pn =

{

p, p∗n ≥ p ,

1, p∗n < p ,

p∗n = max {i ∈ {1, 2, ..., n} : zn−1 = zn−2 = ··· = zn−i} and conditions 1–6 from

Definition 2.1 are satisfied.
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For pn = 1 we have only one probability parameter φ
(1)
1 and from the con-

dition
∑pn

i=1 φ
(pn)
i = 1 it follows φ

(1)
1 = 1, so only φ

(p)
1 , ..., φ

(p)
p are unknown, but

related via one equation. Therefore, it is sufficient to determine p− 1 probability

parameters.

Remark 2.2. For the process given by Definition 2.2, pn is not a random

variable as well. Now, pn takes one of the two possible values. Every time when

state changes (zn 6= zn−1), order (pn+1) becomes 1 and it remains the same until

there is a series of enough (p) previous elements corresponding to the same state.

So, we can divide this process into the series which can be represented as parts of

the processes of order 1 and order p. In the series of order 1 state can be changed,

so this series has the same form as RrNGINAR(1) process. For the series of order

p it is necessary to stay in the same state, so they are whole in the one state

and have the same form as CGINAR(p) process. There are as much different (by

their marginals) CGINAR(p) processes as much different states we have.

Our next step is derivation of the distribution of the random variable

εn(i, j).

Theorem 2.1. Let {Xn(zn)} be the RrNGINARmax(p) time series pro-

cess or the RrNGINAR1(p) process, and let µ1 > 0, µ2 > 0, ..., µr > 0. If 0 ≤
α ≤ min

{

µl

1+µk
, k, l ∈ Er

}

, then if zn = j and zn−1 = i, for i, j ∈ Er, the distribu-

tion of the random variable εn(i, j) can be written as a mixture of two geometric

distributions

(2.4) εn(i, j)
d
=







Geom
(

µj

1+µj

)

, w.p. 1 − αµi

µj−α ,

Geom
(

α
1+α

)

, w.p. αµi

µj−α ,

for n ≥ 1.

Proof: Consider the probability generating function (pgf) of a random

variable Xn(zn) in the case when {Xn(zn)} is the RrNGINARmax(p) process.

Due to the properties of the pgf and the definition of the negative binomial

thinning operator, it holds

ΦXn(zn)(s) =

pn
∑

l=1

φ
(pn)
l E(sα∗Xn−l(zn−l))E(sεn(zn−l,zn)

)

=

pn
∑

l=1

φ
(pn)
l ΦXn−l(zn−l)(ΦU (s))Φεn(zn−l,zn)(s) .

We used notation ΦU for ΦUm
, m ≥ 1, since Um have all the same distribution. Be-

cause zn−1 = zn−2 = ··· = zn−pn
= i, it holds Φεn(zn−1,zn)(s) = Φεn(zn−2,zn)(s) =
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··· = Φεn(zn−pn ,zn)(s) = Φεn(i,j)(s) and ΦXn−1(zn−1)(s) = ΦXn−2(zn−2)(s) = ··· =

ΦXn−pn (zn−pn)(s) = ΦXn−1(i)(s), so

ΦXn(j)(s) =

pn
∑

l=1

φ
(pn)
l ΦXn−1(i)(ΦU (s))Φεn(i,j)(s) = ΦXn−1(i)(ΦU (s))Φεn(i,j)(s) .

The last equation is equivalent to

1

1 + µj − µjs
= Φεn(i,j)(s)

1

1 + µi − µi

1+α−αs

,

because Xn(j) has Geom
(

µj

1+µj

)

distribution, Xn−1(i) has Geom
(

µi

1+µi

)

distri-

bution and Um has Geom
(

α
1+α

)

distribution. Calculation of Φεn(i,j)(s) gives

Φεn(i,j)(s) =
αµi

µj − α
· 1

1 + α − αs
+

(

1 − αµi

µj − α

)

· 1

1 + µj − µjs
,

which implies (2.4).

Suppose now that {Xn(zn)} is the RrNGINAR1(p) process. Let fix n ∈ N.

If p∗n ≥ p, then Xn(zn) is generated in the same way as RrNGINARmax(p) process

and it holds pn = p. So, applying the same procedure as before, substituting pn

with p we get (2.4). If the previous condition doesn’t hold, Xn(zn) has the form

like in the RrNGINAR(1) process, for which we know that εn(i, j) has the required

distribution.

Now, we derive conditional expectation and variance of the introduced pro-

cesses.

Theorem 2.2. Let {Xn(zn)} be RrNGINARmax(p) or RrNGINAR1(p)

time series process, and let µ1 > 0, µ2 > 0, ..., µr > 0. If 0 ≤ α ≤ min

{

µl

1+µk
,

k, l ∈ Er}, zn+1 = j and zn = i, for i, j ∈ Er, then the conditional expectation

and the conditional variance of this process are given by

E(Xn+1|Hn) = µj − αµi + α

pn+1
∑

l=1

φ
(pn+1)
l Xn+1−l ,

V ar(Xn+1|Hn) = µj(µj + 1) − αµi(1 + 2α + αµi) + α(1 + α)

pn+k
∑

l=1

φ
(pn+1)
l Xn+1−l

+ α2

pn+1
∑

l=1

φ
(pn+1)
l X2

n+1−l − α2

(pn+k
∑

l=1

φ
(pn+1)
l Xn+1−l

)2

,

where Hn = σ(Xn, Xn−1, ..., Xn−pn+1) represents the σ-field generated by {Xn,

Xn−1, ..., Xn−pn+1}.
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Proof: For the simplicity of notation, we will use Xn instead of Xn(zn),

for n ≥ 0 and εn instead of εn(zn−1, zn), for n ≥ 1. From the definition of the

negative binomial thinning and the properties of the conditional expectation, the

conditional probability generating function is

ΦXn+1|Hn
(s) ≡ E

(

sXn+1 |Hn

)

= Φεn+1(s)

pn+1
∑

l=1

φ
(pn+1)
l E

(

sα∗Xn+1−l |Hn

)

= Φεn+1(s)

pn+1
∑

l=1

φ
(pn+1)
l Φ

Xn+1−l

U (s),

where ΦU (s) =
1

1+α−αs . It holds

E(Xn+1|Hn) = Φ
′
Xn+1|Hn

(1)

and

V ar(Xn+1|Hn) = Φ
′′
Xn+1|Hn

(1) + Φ
′
Xn+1|Hn

(1) − (Φ
′
Xn+1|Hn

(1))
2 .

Derivating function ΦXn+1|Hn
(s) with respect to s and using results

ΦU (1) = 1, Φ
′
U (1) = α, Φ

′′
U (1) = 2α2

and

Φεn+1(1) = 1, Φ
′
εn+1

(1) = µj − αµi, Φ
′′
εn+1

(1) = 2µ2
j − 2αµi(µj + α)

gives

Φ
′
Xn+1|Hn

(1) = µj − αµi + α

pn+k
∑

l=1

φ
(pn+1)
l Xn+1−l

and

Φ
′′
Xn+1|Hn

(1) = 2µ2
j − 2αµi(µj + α) + α2

pn+1
∑

l=1

φ
(pn+1)
l X2

n+1−l

+ α(2µj − 2αµi + α)

pn+1
∑

l=1

φ
(pn+1)
l Xn+1−l .

The requested formulas directly follow from here.

The conditional expectation and the conditional variance of higher order

can be calculated using following recurrent relations:

E(Xn+k|Hn) = µj − αµi + α

[

k−1
∑

l=1

φ
(pn+1)
l E(Xn+k−l|Hn) +

pn+k
∑

l=k

φ
(pn+1)
l Xn+k−l

]

for 2 ≤ k ≤ pn+k,

E(Xn+k|Hn) = µj − αµi + α

pn+k
∑

l=1

φ
(pn+1)
l E(Xn+k−l|Hn) , k > pn+k ,
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V ar(Xn+k|Hn) = µj(µj + 1) − αµi(1 + 2α + αµi)

+ α2
k−1
∑

l=1

φ
(pn+1)
l V ar(Xn+k−l|Hn)

+ α(1 + α)

(

k−1
∑

l=1

φ
(pn+1)
l E(Xn+k−l|Hn) +

pn+k
∑

l=k

φ
(pn+1)
l Xn+k−l

)

+ α2

(

k−1
∑

l=1

φ
(pn+1)
l [E(Xn+k−l|Hn)]

2
+

pn+k
∑

l=1

φ
(pn+1)
l X2

n+k−l

)

− α2

(

k−1
∑

l=1

φ
(pn+1)
l E(Xn+k−l|Hn) +

pn+k
∑

l=k

φ
(pn+1)
l Xn+k−l

)2

for 2 ≤ k ≤ pn+k,

V ar(Xn+k|Hn) = µj(µj + 1) − αµi(1 + 2α + αµi)

+ α2

pn+k
∑

l=1

φ
(pn+1)
l V ar(Xn+k−l|Hn)

+ α(1 + α)

(pn+k
∑

l=1

φ
(pn+1)
l E(Xn+k−l|Hn)

)

+ α2

pn+k
∑

l=1

φ
(pn+1)
l [E(Xn+k−l|Hn)]

2

− α2

(pn+k
∑

l=1

φ
(pn+1)
l E(Xn+k−l|Hn)

)2

for k > pn+k.

3. CORRELATION STRUCTURE

Let’s now investigate the correlation structure of the defined processes.

First, we will examine the RrNGINARmax(p) process. From (2.2), it follows

Cov(Xn, Xn−1) = α

pn
∑

i=1

φ
(pn)
i Cov(Xn−i, Xn−1),

Cov(Xn, Xn−2) = α

pn
∑

i=1

φ
(pn)
i Cov(Xn−i, Xn−2),

.

.

.

Cov(Xn, Xn−pn
) = α

pn
∑

i=1

φ
(pn)
i Cov(Xn−i, Xn−pn

),
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where we have used Xn instead of Xn(zn) for the simplicity of notation. Denote

Cov(Xn, Xn−h) as γ
(h)
n , for h ≥ 0. This system can be represented in the matrix

form

(3.1)













γ
(1)
n

γ
(2)
n
.
.
.

γ
(pn)
n













=













γ
(0)
n−1 γ

(1)
n−1 ··· γ

(pn−1)
n−1

γ
(1)
n−1 γ

(0)
n−2 ··· γ

(pn−2)
n−2

.

.

.
.
.
.

. . .
.
.
.

γ
(pn−1)
n−1 γ

(pn−2)
n−2 ··· γ

(0)
n−pn













·













θ
(pn)
1

θ
(pn)
2
.
.
.

θ
(pn)
pn













,

where θ
(pn)
i = αφ

(pn)
i , for i ∈ {1, 2, ..., pn}. More simple form is of course obtained

by matrix notation, i.e.

γn = Γn · θn ,

where we denoted the corresponding vectors with γn and θn, and Γn is the

covariance matrix of the vector (Xn−pn
, Xn−pn−1, ..., Xn−1)

′
.

In accordance with the definition of pn random variables Xn−1, Xn−2, ...,

Xn−pn
have the same distribution, so it holds

Cov(Xn−1, Xn−1) = Cov(Xn−2, Xn−2) = ··· = Cov(Xn−pn
, Xn−pn

) = σ2
Xn−1

.

Now, it is possible to divide covariance matrix Γn with σ2
Xn−1

and the result is

the correlation matrix

(3.2) R
(n−1)
pn×pn

=













1 ρ
(1)
n−1 ··· ρ

(pn−1)
n−1

ρ
(1)
n−1 1 ··· ρ

(pn−2)
n−2

.

.

.
.
.
.

. . .
.
.
.

ρ
(pn−1)
n−1 ρ

(pn−2)
n−2 ··· 1













.

However, dividing the left side of the equation (3.1) with σ2
Xn−1

will not give the

vector of the correlations, because zn 6= zn−1 in general. Actually, the equation

which is satisfied by the correlation matrix is

(3.3)













1 ρ
(1)
n−1 ··· ρ

(pn−1)
n−1

ρ
(1)
n−1 1 ··· ρ

(pn−2)
n−2

.

.

.
.
.
.

. . .
.
.
.

ρ
(pn−1)
n−1 ρ

(pn−2)
n−2 ··· 1













·













θ
(pn)
1

θ
(pn)
2
.
.
.

θ
(pn)
pn













=
σXn

σXn−1













ρ
(1)
n

ρ
(2)
n
.
.
.

ρ
(pn)
n













.

Remark 3.1. In the special case when zn = zn−1, we have that σXn
=

σXn−1 , so the equation for the correlation matrix takes the same form as the

equation for the covariance matrix. It is important to notice that the sub-

sample Xn−1, Xn−2, ..., Xn−pn
of the RrNGINARmax(p) process cannot be seen

as a subsample of a stationary process in general. Really, it is possible to be

pi 6= pj , for i, j ∈ {n− 1, n− 2, ..., n− pn} (for example, if zn−pn−1 6= zn−pn
, then
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pn−pn+1 = 1, pn−pn+2 = 2, ..., pn−1 = pn − 1), so we deal with a process of vari-

able order, which does not have to be stationary. However, if pn−pn
= p and

zn−pn
= zn−pn−1 then elements of the subsample Xn−1, Xn−2, ..., Xn−pn

all have

the same distribution and are defined based on the p previous elements, so it

is possible to consider this subsample as a subsample of CGINAR(p) process,

which is stationary. Really, from the definition of pm it holds zm−1 = zm−2 =

··· = zm−pm
for arbitrary m. For m = n we have zn−1 = zn−2 = ··· = zn−pn

and

for m = n − pn it holds zn−pn−1 = zn−pn−2 = ··· = zn−pn−p, where we used rela-

tion pn−pn
= p. Combining these results with equation zn−pn

= zn−pn−1 gives

zn−pn−max p = ··· = zn−pn−1 = zn−pn
= ··· = zn−1 and consequently, pn−pn+1 =

pn−pn+2 = ··· = pn = p. If zn = zn−1, additionally, then the same conclusion holds

for the subsample Xn, Xn−1, ..., Xn−pn
.

Now, let’s consider the RrNGINAR1(p) process. It can be partitioned into

samples of CGINAR(p) or RrNGINAR(1) processes. So, correlation structure is

determined by the correlation structure of the mentioned processes. For pn = 1

we have

γ(1)
n = α γ

(0)
n−1 ,

and for pn = p it holds













γ
(1)
n

γ
(2)
n
.
.
.

γ
(p)
n













=













γ
(0)
n−1 γ

(1)
n−1 ··· γ

(p−1)
n−1

γ
(1)
n−1 γ

(0)
n−2 ··· γ

(p−2)
n−2

.

.

.
.
.
.

. . .
.
.
.

γ
(p−1)
n−1 γ

(p−2)
n−2 ··· γ

(0)
n−p













·











θ1

θ2
.
.
.

θp











,

where θi = αφi, for i ∈ {1, 2, ..., p}. These equations can be represented by (3.1),

substituting pn with 1 and p. It also holds (3.2) and (3.3). RrNGINARmax(p)

cannot have series parts with two or more successive elements of order one in

the same state. However, for RrNGINAR1(p) process the maximal length of

such a series is p. The Theorem 3, from [13], holds for n and k which satisfy

zn = ··· = zn−k and pn = 1. Therefore, based on this theorem, the maximal value

that k can take is p.

Remark 3.2. For RrNGINAR1(p) process, subsample Xn−1, Xn−2, ...,

Xn−pn
can always be viewed as a sample of a stationary process. The case pn =1 is

trivial since it gives subsample of only one element. If pn = p and pn−pn
= p, then

directly from the definition of this process it follows that Xn−1, Xn−2, ..., Xn−pn

are all in the same state and of the same order. If zn = zn−1 then the same holds

for Xn, Xn−1, ..., Xn−pn
.
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4. YULE-WALKER ESTIMATION OF THE PARAMETERS

In the proof of Theorem 5 from [13] stationarity of the processes attached

to the maximal subsamples provided the strong consistency of the estimators. If

we want here to prove the same, it would be useful to define estimators only on

the part of the process to which we can attach a stationary process.

In accordance with Remark 3.1 let pn = pn−pn
= p, zn−pn

= zn−pn−1 and

zn = zn−1 = k ∈ Er for RrNGINARmax(p) process. Then pi = p and zi = k, for

all i ∈ {n − pn, n − pn + 1, ..., n}. Because of stationarity it is possible to write

γ|i−j| instead of γ
(i)
j , for i ∈ {0, 1, ..., pn}, j ∈ {n − pn, n − pn + 1, ..., n} without

loss of generality. Then, we introduce γ
(k)
|i−j| as a more informative and adequate

notation, where index k indicates the random state. Applying this to the system

(3.1), using analogously θp,i instead of θ
(pn)
i we obtain

(4.1)













γ
(k)
1

γ
(k)
2
.
.
.

γ
(k)
p













=













γ
(k)
0 γ

(k)
1 ··· γ

(k)
p−1

γ
(k)
1 γ

(k)
0 ··· γ

(k)
p−2

.

.

.
.
.
.

. . .
.
.
.

γ
(k)
p−1 γ

(k)
p−2 ··· γ

(k)
0













·











θp,1

θp,2
.
.
.

θp,p











.

Notice that pn equals p, as it is assumed above. We estimate µk and

γ
(k)
h , h ∈ {0, 1, 2, ..., p − 1} as in [13], but only based on the part of a sam-

ple. Precisely, estimators for state k ∈ {1, 2, ..., r} are based on the sets V
(k)
0,p =

{i ∈ {1, 2, ..., N}|zi = k, pi = p} and V
(k)
h,p =

{

i ∈ V
(k)
0,p |i + h ∈ V

(k)
0,p

}

, for h ≥ 1,

where N is the size of the sample, and are given by

(4.2) µ̂k =
1

n
(k)
0,p

∑

i∈V
(k)
0,p

Xi(k), γ̂
(k)
h,p =

1

n
(k)
h,p

∑

i∈V
(k)
h,p

(Xi+h(k) − µ̂k)(Xi(k) − µ̂k),

for h ≥ 0, k ∈ {1, 2, ..., r} and where n
(k)
h,p =

∣

∣

∣
V

(k)
h,p

∣

∣

∣
, for h ≥ 0.

Substituting the theoretical moments in (4.1) with the empirical ones and

then expressing the vector of the unknown parameters, we get













̂θ
(k)
p,1

̂θ
(k)
p,2
.
.
.

̂θ
(k)
p,p













=













γ̂
(k)
0,p γ̂

(k)
1,p ··· γ̂

(k)
p−1,p

γ̂
(k)
1,p γ̂

(k)
0,p ··· γ̂

(k)
p−2,p

.

.

.
.
.
.

. . .
.
.
.

γ̂
(k)
p−1,p γ̂

(k)
p−2,p ··· γ̂

(k)
0,p













−1

·













γ̂
k)
1,p

γ̂
(k)
2,p
.
.
.

γ̂
(k)
p,p













.

Now, it is possible to estimate α and φ
(p)
i . First we obtain, respectively

α̂(k)
=

p
∑

i=1

̂θ
(k)
p,i , ̂φ

(k)
p,i =

̂θ
(k)
p,i

α̂(k)
, i ∈ {1, 2, ..., p}, k ∈ {1, 2, ..., r} ,
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where (k), as above, indicates that the estimators are based on the subsample

with state equal k. At last, taking into account all states and their frequencies

of occurrence, the final Yule-Walker estimators are

(4.3) α̂Y W
=

r
∑

k=1

n(k)

N
α̂(k) , ̂φY W

p,i =

r
∑

k=1

n(k)

N
̂φ
(k)
p,i , µ̂Y W

k = µ̂k .

Now, we move our attention to RrNGINAR1(p) process. Let zn = zn−1.

Estimators of the process covariances are based on the maximal union (in the

sense of number of elements) of the samples which can be treated as the samples

of stationary processes. Estimators are given by

(4.4) µ̂k,j =
1

n
(k)
0,j

∑

i∈V
(k)
0,j

Xi(k), γ̂
(k)
h,j =

1

n
(k)
h,j

∑

i∈V
(k)
h,j

(Xi+h(k) − µ̂k,j)(Xi(k) − µ̂k,j),

where h ≥ 0, k ∈ {1, 2, ..., r}, j ∈ {1, p}, and they are based on the sets V
(k)
0,1 =

{i ∈ {1, 2, ..., N}| zi = k, pi = 1}, V
(k)
h,1 =

{

i ∈ V
(k)
0,1 |i + h ∈ V

(k)
0,1

}

, n
(k)
h,1 =

∣

∣

∣
V

(k)
h,1

∣

∣

∣
,

for h ≥ 1 and V
(k)
h,p and n

(k)
h,p, for h ≥ 0 are defined as before. Let α

(k)
j represents

the autocorrelation parameter corresponding to the process subsamples of state

k and order j, where j ∈ {1, p}.

Similarly as for RrNGINARmax(p) process we get

α̂
(k)
1 =

γ̂
(k)
1,1

γ̂
(k)
0,1

and

(4.5)













̂θ
(k)
1
̂θ
(k)
2
.
.
.

̂θ
(k)
p













=













γ̂
(k)
0,p γ̂

(k)
1,p ··· γ̂

(k)
p−1,p

γ̂
(k)
1,p γ̂

(k)
0,p ··· γ̂

(k)
p−2,p

.

.

.
.
.
.

. . .
.
.
.

γ̂
(k)
p−1,p γ̂

(k)
p−2,p ··· γ̂

(k)
0,p













−1

·













γ̂
k)
1,p

γ̂
(k)
2,p
.
.
.

γ̂
(k)
p,p













.

From (4.5) we obtain the estimators as

α̂(k)
p =

p
∑

i=1

̂θ
(k)
i , ̂φ

(k)
i =

̂θ
(k)
i

α̂
(k)
p

, i ∈ {1, 2, ..., p}, k ∈ {1, 2, ..., r} .

Now, we get

α̂(k)
=

n
(k)
1 α̂

(k)
1 + n

(k)
p α̂

(k)
p

n
(k)
1 + n

(k)
p

, µ̂k =
n

(k)
1 µ̂k,1 + n

(k)
p µ̂k,p

n
(k)
1 + n

(k)
p

,
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and finally, using preceding results for all states, we obtain YW estimators as

(4.6) α̂Y W
=

r
∑

k=1

n
(k)
1 + n

(k)
p

N
α̂(k) , ̂φY W

i =

r
∑

k=1

n
(k)
p

N
̂φ
(k)
i , µ̂Y W

k = µ̂k .

Theorem 4.1. Estimators given by (4.2) and (4.4) are strongly consistent.

Proof: The general idea is to divide the process subsample, indexed, i.e.

determined by V
(k)
0,p , into maximal subsamples and then use the proof of Theorem

5 from [13]. It is easy to notice that this theorem can be expanded so that

applies for h > 1. Really, if in the expression for γ1 we replace i + 1 by i + h, it

becomes γh. Further procedure is the same. If Xi, Xi+1, ..., Xj is a subsample such

that {i, i + 1, ..., j} ⊆ V
(k)
0,p , we say that it is maximal if zi = zi+1 = ··· = zj = k,

zj+1 6= k, pi = p and pi−1 6= p. Based on Remark 3.1, Xi, Xi+1, ..., Xj represents

a sample of CGINAR(p) process, so it is stationary. The rest of the proof is

the same as the proof of Theorem 5. The same procedure is applied to the

RrNGINAR1(p) process.

Since the quotient of linear combinations of the strongly consistent statistics

is also strongly consistent, we have the following corollary.

Corollary 4.1. Estimators given in (4.3) and (4.6) are strongly consistent.

If we want to estimate the probabilities φ
(pn)
i , where 1 < pn < p and 1 ≤

i ≤ pn, given in (2.2) for the definition of RrNGINARmax(p) process, preceding

approach cannot be used. The problem is that elements Xn, for 1 < pn < p are

isolated in the sense that the both of their neighbors have different order, so it is

impossible to form the subsample containing Xn (to define the estimators) with

two or more successive elements of the same order.

This problem is worked out by defining new modified YW estimators which

have less restrictive conditions in using the corresponding subsamples of the pro-

cess. These modified estimators are obtained from the strongly consistent YW

estimators, discussed above, by substituting their corresponding sets V
(k)
h,p , for

h ≥ 1, with V
(k)
0,p . In other words, if the corresponding sets of the modified YW es-

timators are denoted by Ṽ
(k)
h,p , then Ṽ

(k)
h,p = V

(k)
0,p , for h ≥ 1. Note that Ṽ

(k)
h,p ⊇ V

(k)
h,p .

However, because of these modifications, we cannot claim the modified YW strong

consistence, but their goodness may be verified in the application on the simu-

lated process values. In this regard, the results obtained in the next section show

that the corresponding estimates gradually converge towards parameter values

when the size of the sample increases.
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5. SIMULATIONS

In this section we investigate the correctness of the modified Yule-Walker

estimators. For this purpose we have simulated realizations of the processes

RrNGINARmax(p) and RrNGINAR1(p), and estimated unknown parameters in

both cases. There are 100 replicates, each of size 10000. Both of the processes

are considered in parallel. We choose the parameters α, p, r,µ,pmat and φ. The

random environment process transition probability matrix is noted by pmat, and

µ is a vector of means. In the case of RrNGINARmax(p) process, the pnth row,

pn ∈ {2, ..., p}, of the matrix φ contains (up to the pnth column) probabilities

φ
(pn)
i , i ∈ {1, 2, ..., pn}, from (2.2). In the case of RrNGINAR1(p) process, the last

row represents probabilities in (2.3). Matrix pmat controls changing of the states,

where diagonal elements represents the probabilities of staying in the same state.

When its diagonal values are high, it is expected for the random environment pro-

cess to stay in the same state more often than to change the state. This is a prefer-

able situation since it makes the sets V
(k)
h,p , for h ≥ 1, to be bigger and in this way

relatively less different from Ṽ
(k)
h,p . Consequently, modified estimators became ap-

proximately equal (at least being close) to the strongly consistent YW estimators.

The simulation of the random environment process {Zn} represents the

first step in the simulation of the defined processes. After the generation of the

observed values {zn}, we can easily evaluate the process of orders {pn} for both

processes by using their definitions. Finally, we can simulate the values of both

defined processes by using the observed values {zn} and {pn}, and definitions of

the defined processes.

We considered six different cases. In each case we obtained the modified

YW estimators of the unknown parameters for both of the processes. All the

results are given in the appropriate tables. Comparison of the results is based on

the relative errors, since values of the parameters are different.

1) In the first case vector of means is µ = (1, 2). For these values maxi-

mal value for α is 1/3 and we chose α = 0.3. The random state process

transition probability matrix we used is pmat =

[

0.8 0.2
0.2 0.8

]

. Diagonal el-

ements are equal 0.8, so, based on the discussion above, good estimates

are expected. Matrix of probabilities is φ =

[

1 0

0.6 0.4

]

.

2) Here we investigate what happens when α, from case 1), reduces to

α = 0.15, where φ =

[

1 0

0.5 0.5

]

. Since lower value of α contributes to

less correlation, it is natural to expect that estimates for φ are worse

than in the case 1 and this is confirmed by the results. Estimates for

α and µ are almost the same, but slightly better.
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3) This case differs from the first by the probabilities of changing state.

We used pmat =

[

0.5 0.5
0.5 0.5

]

. Now, there is equal probability to stay in

the same state as it is to change it. As we discussed earlier, this is not

favorably, so worse estimates for φ are expected and this conclusion

is confirmed by the results. However, our sample is big enough, so

difference is very small. Estimates for α and µ are again slightly better

then the estimates of case 1).

4) Vector of means is now µ = (4, 5) and probabilities on the diagonal of

the transition matrix of random states are 0.7, i.e. pmat =

[

0.7 0.3
0.3 0.7

]

.

Estimates are almost the same as in the first case. Thereby,

RrNGINARmax(p) process provides better results, while the

RrNGINAR1(p) process gives worse results than in the first case.

These preceding four cases refer to the processes based on the environment process

with two random states. The corresponding results are presented in Table 1.

5) Here we consider what happens when, in case 1), maximal order p

increases to 3. The estimates of α are slightly better, but the estimates

of φ are worse, because the probabilities for the order 2 (in case of

RrNGINARmax(p) process) are estimated using very small sample.

However, they are significantly improved when sample size increases to

10000. These results are presented in Table 2.

6) In the last case we have simulated process with three possible states

(r = 3). Parameters, as well as the results, are given in Table 3. The

greater number of states contributes to the smaller probability of stay-

ing in the same state, so for the small sample sizes, estimates are not so

good, but increasing the size of the simulated sample gives much better

results. Estimates for φ
(2)
1 and φ

(2)
2 are not so good, which is reasonable

because elements xn of the simulated sample, such that pn = 2, have

neighbors with order different from 2.

In the cases 1), 5) and 6) the RrNGINAR1(p) process provides better estimates,

while in cases 2) and 4) the RrNGINARmax(p) process is better choice. In the

third case they are almost equally good. It is important to notice that in each

case results are better when the size of the sample increases.
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Table 1: Estimates for p = 2, r = 2.

n1 bµY W
1 bµY W

2 bαY W bφY W
2,1

bφY W
2,2 bαY W bφY W

2,1
bφY W
2,2

1) True values µ = (1, 2), α = 0.3, φ =

�
1 0

0.6 0.4

�
, pmat =

�
0.8 0.2
0.2 0.8

�
500 0.9924 1.9782 0.3226 0.6389 0.3611 0.318 0.624 0.376
SE 0.1200 0.2097 0.1474 0.2009 0.2009 0.1477 0.2338 0.2338

1000 0.9912 2.0064 0.3185 0.6198 0.3802 0.3188 0.6084 0.3916
SE 0.0872 0.1487 0.1071 0.1371 0.1371 0.1066 0.1282 0.1282

5000 0.9953 1.9952 0.3048 0.6074 0.3926 0.2984 0.6089 0.3911
SE 0.0375 0.0539 0.0525 0.0578 0.0578 0.0466 0.057 0.057

10000 0.9978 1.9999 0.3049 0.6038 0.3962 0.2993 0.5971 0.4029
SE 0.0288 0.0407 0.0388 0.0381 0.0381 0.0318 0.0409 0.0409

2) True values µ = (1, 2), α = 0.15, φ =

�
1 0

0.5 0.5

�
, pmat =

�
0.8 0.2
0.2 0.8

�
500 0.9988 2.0047 0.1568 0.688 0.312 0.1781 2.2577 −1.2577
SE 0.0939 0.1965 0.13 0.8714 0.8714 0.1438 15.5205 15.5205

1000 0.9933 2.0136 0.1532 0.4913 0.5087 0.1636 0.4655 0.5345
SE 0.0745 0.1312 0.0983 1.2527 1.2527 0.1038 0.7767 0.7767

5000 1.0011 1.9999 0.1526 0.5068 0.4932 0.1547 0.4921 0.5079
SE 0.0349 0.0562 0.0442 0.0984 0.0984 0.0459 0.0992 0.0992

10000 1.0031 1.9995 0.1543 0.5008 0.4992 0.1523 0.4951 0.5049
SE 0.0252 0.0368 0.0284 0.0649 0.0649 0.0309 0.0647 0.0647

3) True values µ = (1, 2), α = 0.3, φ =

�
1 0

0.6 0.4

�
, pmat =

�
0.5 0.5
0.5 0.5

�
500 1.0044 1.9879 0.3201 0.5478 0.4522 0.3279 0.5864 0.4136
SE 0.1082 0.2065 0.1306 0.9084 0.9084 0.1501 1.2909 1.2909

1000 1.0069 1.9916 0.3132 0.7188 0.2812 0.3095 0.6959 0.3041
SE 0.0783 0.1413 0.0888 0.7523 0.7523 0.0955 0.6136 0.6136

5000 0.9995 1.9948 0.3047 0.5965 0.4035 0.3024 0.5946 0.4054
SE 0.0293 0.0618 0.043 0.0892 0.0892 0.0415 0.0926 0.0926

10000 0.9997 1.9922 0.3032 0.5847 0.4153 0.3018 0.5991 0.4009
SE 0.0197 0.0430 0.0283 0.0624 0.0624 0.0274 0.0657 0.0657

4) True values µ = (4, 5), α = 0.5, φ =

�
1 0

0.6 0.4

�
, pmat =

�
0.7 0.3
0.3 0.7

�
500 4.0397 4.9501 0.5506 0.3952 0.6048 0.5466 0.4286 0.5714
SE 0.4132 0.4852 0.1469 0.1352 0.1352 0.1489 0.2029 0.2029

1000 4.0295 4.9785 0.5259 0.4237 0.5763 0.526 0.4309 0.5691
SE 0.3016 0.3590 0.105 0.0819 0.7523 0.1162 0.0945 0.0945

5000 4.0046 5.0008 0.5037 0.4163 0.5837 0.514 0.411 0.589
SE 0.1286 0.1601 0.0522 0.0408 0.0408 0.0492 0.0396 0.0396

10000 3.9947 4.9978 0.4982 0.4132 0.5868 0.5054 0.4135 0.5865
SE 0.0900 0.1173 0.0366 0.0278 0.0278 0.0354 0.0279 0.0279
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6. APPLICATION

Quality of the processes introduced in this paper will be investigated by

comparing the results obtained in the application of the various models to the

same data. For this purpose, here we use two data sets of counts. Since the

processes introduced in this article are not stationary, we expect them to per-

form well on the data chosen in [13]. So, in the first case, we choose this time

series, which was created by counting drug offenses per month registered in the

27th police car beat in Pittsburg from January 1990 to December 2001. It has a

length of 144 realizations and is downloaded from a website Forecasting Princi-

ples (http://www.forecastingprinciples.com). The plots of the given series and

its autocorrelation and partial autocorrelation function are given in Figures 1, 3

and 5. Here, we might have used two different approaches for choosing the model

order p. The first one, which is more intuitive, is based on choosing p as the num-

ber of first p significant values of the partial autocorrelation functions observed

from the diagram (in this case Figure 5). The other approach is defining p as the

value from {1, 2, ..., q} for which the smallest RMS value is obtained (RMS is the

quality criterion explained later in this paragraph), where q is some reasonably

large integer value. However, to make things easier to follow, we have decided

to use the compromise of these two approaches. Namely, we choose the maximal

considered model order p as the larger of the two numbers obtained by the first

(intuitive) approach used for both data sets, increased by one. Since, these values

for both data sets are 2 (for the 27th police car station) and 3 (for the second

data set considered later in this section), we choose 4 as a maximal order of the

INAR models considered for both of the observed counting time series. Therefore,

INAR(p) models, for p ∈ {1, 2, 3, 4}, might be the reasonable choice. Considering

the referent models of order 1, we chose INAR(1) model with Poisson marginals

(PoINAR(1)) given in [2], quasi-binomial INAR(1) model with generalized Pois-

son marginals (GPQINAR(1)) from [5], geometric INAR(1) model (GINAR(1))

introduced in [4], new geometric INAR(1) (NGINAR(1)) defined in [14], nega-

tive binomial INAR(1) (NBINAR(1)) introduced in [19, 20], iterated INAR(1)

model (NBIINAR(1)) with negative binomial marginals given in [1] and random

coefficient INAR(1) model with negative binomial marginals (NBRCINAR(1))

constructed in [18]. Since our models, which quality we want to verify, are com-

binations of the RrNGINAR(1) process from [13] and CGINAR(p) process from

[12] in some way, it is natural to include them in consideration, too. For this

purpose we used R2NGINAR(1), R3NGINAR(1), CGINAR(2), CGINAR(3) and

CGINAR(4) models. Another process of higher order which is included in this

section, because of the completeness of the comparison, is PoINAR(p) ([16]), pre-

cisely, PoINAR(2), PoINAR(3) and PoINAR(4). The root mean squares (RMS)

of differences between the observations and predicted values (using maximum

likelihood estimation) are calculated and all the results are given in Table 4.
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Figure 1: Drugs data from the 27th police station.
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Figure 2: Drugs data from the 58th police station.
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Figure 3: ACF for the data from the 27th police station.
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Figure 4: ACF for the data from the 58th police station.
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Figure 5: PACF for the data from the 27th police station.
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Figure 6: PACF for the data from the 58th police station.
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Table 4: ML parameter estimates and RMS for different models

for the data from the 27th police station.

Model MLE RMS

PoINAR(1)
bλ = 1.237bα = 0.5948

3.6613

GPQINAR(1)

bλ = 0.5505bθ = 0.6108bρ = 0.392
4.3398

GINAR(1)
bq = 0.7596bα = 0.4809

3.9456

NGINAR(1)
bµ = 3.3014bα = 0.7308

3.4595

NBINAR(1)

bq = 0.2173bθ = 0.834bα = 0.4563
4.0185

NBIINAR(1)

bn = 0.323bp = 0.5335bρ = 0.8107
3.4211

NBRCINAR(1)

bn = 0.5435bp = 0.1854bρ = 0.46
4.0232

R2NGINAR(1)

bµ1 = 1.1085bµ2 = 12.9138bα = 0.052
3.1090

R3NGINAR(1)

bµ1 = 9.5906bµ2 = 0.821bµ3 = 23.249bα = 0.028

1.6628

CGINAR(2)
bµ = 3.2042bα = 0.7473

3.3801

CGINAR(3)
bµ = 3.1122bα = 0.745

3.3749

CGINAR(4)
bµ = 3.124bα = 0.7464

3.398

PoINAR(2)
bλ = 0.9903bα = 0.687

3.4822

PoINAR(3)
bλ = 0.8616bα = 0.7449

3.4253

PoINAR(4)
bλ = 0.84bα = 0.7682

3.4803

The lower values of RMS indicate the better and more appropriate models. The

values of the maximum likelihood parameter estimates and RMS statistics are

also calculated in case of application of our processes RrNGINARmax(p) and

RrNGINAR1(p) of appropriate orders 2, 3 and 4, taking into account the cases

with two or three possible random states. (see Tables 5 and 6).
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Table 5: ML parameter estimates and RMS for R2NGINARmax(p) and

R3NGINARmax(p) process for the data from the 27th police station.

r 2 2 2

p 2 3 4bα 0.0368 0.0141 0.0556bµ (12.2357, 0.6728) (15.8556, 0.6226) (19.8312, 1.3864)bφ �
1.0000 0.0000
0.4601 0.5310

� 24 1.0000 0.0000 0.0000
1.0000 0.0000 0.0000
0.3395 0.3670 0.2935

35 2664 1.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000
0.3310 0.3315 0.3375 0.0000
0.2384 0.2157 0.2493 0.2966

3775
RMS 3.2154 2.9089 2.8400

r 3 3 3

p 2 3 4bα 0.0296 0.0124 0.0241bµ (23.2410, 9.0586, 0.7170) (23.2500, 9.0570, 0.4382) (23.2500, 9.0585, 0.7009)bφ �
1.0000 0.0000
0.0432 0.9568

� 24 1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.3391 0.3226 0.3382

35 2664 1.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000
0.3300 0.3300 0.3401 0.0000
0.2477 0.1993 0.2383 0.3146

3775
RMS 1.6528 1.6532 1.6175

Table 6: ML parameter estimates and RMS for R2NGINAR1(p) and

R3NGINAR1(p) process for the data from the 27th police station.

r 2 2 2

p 2 3 4bα 0.0368 0.0276 0.0226bµ (12.2357, 0.6728) (13.1349, 0.6075) (13.6046, 0.5570)bφ (0.4601, 0.5400) (0.3958, 0.4267, 0.1775) (0.3399, 0.3956, 0.1292, 0.1353)

RMS 3.2154 3.1079 3.0595

r 3 3 3

p 2 3 4bα 0.0296 0.0090 0.0093bµ (23.2450, 9.0586, 0.7170) (22.8019, 8.0055, 0.2286) (22.7873, 7.9381, 0.2277)bφ (0.0432, 0.9568) (0.3828, 0.4293, 0.1878) (0.3617, 0.4204, 0.1618, 0.0560)

RMS 1.6498 1.7446 1.7271

The same procedure of comparison of our processes to all the INAR models

used above is also conducted in the second case of counting time series, i.e. on the

drugs offenses counting data which were registered in the 58th police car beat in

Pittsburg. The corresponding results are given by Figures 2, 4 and 6 and Tables

7, 8 and 9.
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Table 7: ML parameter estimates and RMS for different models

for the data from the 58th police station.

Model MLE RMS

PoINAR(1)
bλ = 2.2349bα = 0.2189

3.4011

GPQINAR(1)

bλ = 1.0578bθ = 0.541bρ = 0.17
3.4624

GINAR(1)
bq = 0.7449bα = 0.1342

3.4629

NGINAR(1)
bµ = 2.9157bα = 0.1734

3.4315

NBINAR(1)

bq = 0.2188bθ = 0.8033bα = 0.1155
3.4789

NBIINAR(1)

bn = 1bp = 0.5bρ = 0.5
3.4184

NBRCINAR(1)

bn = 0.8442bp = 0.2327bρ = 0.1827
3.4247

R2NGINAR(1)

bµ1 = 1.5485bµ2 = 9.1053bα = 0.0521
2.0096

R3NGINAR(1)

bµ1 = 0.8719bµ2 = 6.0089bµ3 = 14.3936bα = 0.3012

1.3361

CGINAR(2)
bµ = 2.9524bα = 0.3232

3.3403

CGINAR(3)
bµ = 2.9326bα = 0.395

3.2912

CGINAR(4)
bµ = 2.9517bα = 0.4241

3.2769

PoINAR(2)
bλ = 1.8966bα = 0.3534

3.3152

PoINAR(3)
bλ = 1.5812bα = 0.4779

3.2438

PoINAR(4)
bλ = 1.4452bα = 0.5521

3.2236

In both cases of the observed offenses data the realization of the random

environment process {zn} is determined in the same way as in [13], by clustering

the data. Each cluster is assigned to a state. Then the corresponding sequence

{pn} is calculated using the definitions of the models. The plots of the clusterings

(Figures 7, 8, 9 and 10) show big difference between the data recorded by the

police stations in the way of the environment state changing. For the data from
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Table 8: ML parameter estimates and RMS for R2NGINARmax(p) and

R3NGINARmax(p) process for the data from the 58th police station.

r 2 2 2

p 2 3 4bα 0.1328 0.1322 0.1317bµ (8.3430, 1.2408) (8.3422, 1.2347) (8.3420, 1.2307)bφ �
1.0000 0.0000
0.0967 0.9033

� 24 1.0000 0.0000 0.0000
0.0511 0.9489 0.0000
0.3366 0.3414 0.3220

35 2664 1.0000 0.0000 0.0000 0.0000
0.0574 0.9426 0.0000 0.0000
0.3290 0.3340 0.3371 0.0000
0.2690 0.2194 0.2450 0.2667

3775
RMS 2.0759 2.0785 2.0821

r 3 3 3

p 2 3 4bα 0.0488 0.0488 0.0488bµ (4.6800, 12.8180, 0.6746) (4.6798, 12.8181, 0.6747) (4.6798, 12.8181, 0.6748)bφ �
1.0000 0.0000
0.0483 0.9517

� 24 1.0000 0.0000 0.0000
0.0154 0.9846 0.0000
0.3388 0.3363 0.3250

35 2664 1.0000 0.0000 0.0000 0.0000
0.0070 0.9930 0.0000 0.0000
0.3341 0.3295 0.3364 0.0000
0.2557 0.2094 0.2404 0.2945

3775
RMS 1.1813 1.1764 1.1795

Table 9: ML parameter estimates and RMS for R2NGINAR1(p) and

R3NGINAR1(p) process for the data from the 58th police station.

r 2 2 2

p 2 3 4bα 0.1328 0.1321 0.1321bµ (8.3430, 1.2408) (8.3425, 1.2345) (8.3421, 1.2340)bφ (0.0967, 0.9033) (0.3363, 0.4347, 0.2290) (0.3283, 0.3309, 0.2725, 0.0683)

RMS 2.0536 2.0732 2.0784

r 3 3 3

p 2 3 4bα 0.0488 0.0491 0.0491bµ (4.6800, 12.8180, 0.6746) (4.6801, 12.8181, 0.6782) (4.6804, 12.8181, 0.6789)bφ (0.0483, 0.9517) (0.3193, 0.4168, 0.2640) (0.2732, 0.2719, 0.25489, 0.2001)

RMS 1.1889 1.1760 1.1793

the 27th police station probability of staying in the same state is much higher

than for the observations from the 58th station. Analysis of the results lead us

to a conclusion that in both cases of the selected data, the models introduced in

this paper are better then the others which we applied. Namely, in the case of the

27th car beat drug offenses, R3NGINARmax(4) is the most appropriate model,

while in the case of the data recorded by the 58th police station, R3NGINAR1(3)

process shows the best performance. It is interesting to note that the optimal

order 3 obtained for the 58th police station data is in accordance with the value

obtained by the graphical intuitive (the first one) approach for choosing order p.
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However, in the case of the 27th police station this is not the case (where graphical

approach gives p = 2), which justify the usage of our compromise approach for

choosing order of the model.
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Figure 7: Clusters for two states for the 27th police station.
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Figure 8: Clusters for three states for the 27th police station.

Successful performance of our Random Environment INAR models in both

of the cases show that they might be very appropriate for the processes which

quite often change their marginal distribution (58th car beat data counting),
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as well as for the processes which are, on the other hand, much more passive

(27th police car beat data), i.e. which only rarely shift from one set of environment

circumstances to another. Increase of the number of random states contributes

to the improving of the results for both models in each case of the observed data.

However, optimal order depends on the data. Thus, for the 27th station the

more appropriate Random Environment INAR models are mostly the ones with

the higher order, while for the 58th police station we have the opposite situation.
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Figure 9: Clusters for two states for the 58th police station.
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Figure 10: Clusters for three states for the 58th police station.
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1. INTRODUCTION

Detection of structural changes in a time series is an important issue and is

actively tackled in the current literature. The objective is to detect the change as

soon as possible after it has occurred. The change is an indication that something

important has happened and the characteristics of the process have drifted from

the original values. This type of questions is of particular relevance in engineer-

ing, public health, finance, environmental sciences (see, e.g., Montgomery ([18]),

Lawson and Kleinman ([15]), Frisén ([7])).

The most frequently applied surveillance technique is a control chart (e.g.,

Montgomery ([18])), with Shewhart, EWMA and CUSUM charts being the most

popular ones. Initially they were developed for monitoring independent processes.

Since in many applications the process of interest appears to be time dependent,

several approaches evolved to extend the above schemes to time series. One ap-

proach relies on monitoring the residuals of the fitted time series process (e.g.,

Alwan and Roberts ([1]), Montgomery and Mastrangelo ([19]), Wardell et al.

([32]) and ([33]) , Lu and Reynolds ([16])). This makes, however, the inter-

pretation of the signal given by the control scheme difficult. Furthermore, the

estimated residuals are not independent after a change, implying that the use of

the classical charts is still erroneous (cf. Knoth and Schmid ([14])). Alternatively,

we can adjust the monitoring schemes to reflect the dependence structure of the

analyzed processes. This type of charts are called modified charts. The modified

CUSUM charts and the related generalized likelihood ratio tests were discussed,

for example, in Nikiforov ([21]), Yashchin ([34]), Schmid ([28]), Knoth and Schmid

([14]), Capizzi and Masarotto ([5]), Knoth and Frisén ([13]). The extension of the

EWMA chart to time series data was suggested by Schmid ([27]). Note that the

derivation of modified schemes is technically tedious, since the autocorrelation

structure of the process should by explicitly taken into account while determin-

ing the design parameters of the monitoring procedure. Furthermore, most of the

literature with just a few exception considers the ARMA processes. These pro-

cesses are of great importance in practice, but assume inherently a short memory

in the underlying data. Recently, Rabyk and Schmid ([25]) considered several

control charts for long memory processes and compared these schemes within an

extensive Monte Carlo study.

It is desirable for any control scheme to give a signal as soon as possible

after the change has occurred, i.e. the process is out-of-control, and to give a sig-

nal as rarely as possible if no change occurred, i.e. the process is in-control. False

alarms deteriorate the surveillance procedures and lead to potentially mislead-

ing inferences by practitioners. The performance of the chart in the in-control

state can be quantified by the false alarm probability up to a given time point

or, equivalently, the probability that the run length of the chart is longer than a
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given time span. Of particular importance is the impact of the process parame-

ters on this probability. For a general family of linear processes and particularly

for ARMA processes several results on stochastic ordering of the run length can

be found in Schmid and Okhrin ([29]) and Morais et al. ([20]). In these papers

the authors derive constraints on the autocorrelations of the observed in-control

process to guarantee stochastic monotonicity of the EWMA or more general mon-

itoring schemes. The case of nonlinear time series was treated by Pawlak and

Schmid ([24]) and Gonçalves et al. ([9]).

The subject of the analysis in this paper is the one-sided EWMA chart

aimed to detect an increase of the mean. The one-sided problem is of key impor-

tance in many fields, such as engineering (loading capacity, tear strength, etc.),

environmental sciences (high tide, concentration of particulate matter, ozone

level, etc), economics and finance (riskiness of financial assets, interest and un-

employment rates). In all these examples we are interested only in increases (or

only in decreases) of the quantity of interest. Its dynamics can be assessed with

the tools considered here.

In this paper we discuss the stochastic ordering for the false alarm proba-

bility of modified one-sided EWMA control charts aimed to detect a shift in the

mean of an ARFIMA process. First, we show that for an arbitrary ARFIMA(p,d,

q) process the probability of a false signal is always larger than this probability for

an i.i.d. or an ARFIMA(0,d,0) processes. To guarantee this it suffices to assume

that the autocorrelation of the underlying ARMA process is always non-negative.

Second, we extend the above results by showing that the false alarm probabil-

ities are non-decreasing functions in d for ARFIMA(0,d,0) and ARFIMA(1,d,1)

under specific assumptions on the process parameters. These results are of great

importance, since it is well known that the parameter of fractional differencing is

difficult to estimate. Thus we indicate the consequences of under- or overestima-

tion of d for monitoring procedures.

The paper is structured as follows. Section 2 summarizes relevant results

on modified EWMA control charts and on ARFIMA processes. The main results

together with numerical examples and counterexamples are given in Section 3.

The proofs of some results are given in the appendix.

2. THE MODIFIED EWMA CHART FOR ARFIMA PROCESSES

The aim of statistical process control is to detect structural deviations in

a process over time. We assume that at each time point one observation is

available. The given observations x1, x2, ... are considered to be a realization of

the actual (observed) process. The underlying target process is denoted by {Yt}.
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The objective of a monitoring procedure is to give a signal if the target and the

observed processes differ in their characteristics. A good procedure should give

a signal as soon as possible if the processes differ and give a signal as rarely as

possible if the processes coincide. In the following we analyze the behavior of

the modified EWMA control chart for the mean in the in-control case, i.e. if no

change is present. The underlying target process is assumed to be a long-memory

process, which frequently encounters in applications, for example stock marker

risk in finance or environmental data (see Andersen et al. ([2]), Pan and Chen

([23])). The objective of the paper is to analyze the performance of in-control

EWMA charts for different memory patterns of the long memory processes. First

we introduce the control scheme and subsequently discuss the process and its

features in detail.

2.1. The modified EWMA chart

The exponentially weighted moving average (EWMA) chart was introduced

by Roberts ([26]). Contrary to the Shewhart chart all previous observations are

taken into account for the decision rule. It turns out to perform better than the

Shewhart control chart for detecting small and moderate shifts, namely, in the

process mean (Lucas and Saccucci ([17])) or in the process variance (Crowder and

Hamilton ([6])) of an independent output. An extension of the EWMA control

chart to time series was given by Schmid ([27]).

The EWMA chart for monitoring the process mean is based on the statistic

(2.1) Zt = (1 − λ)Zt−1 + λXt, t ≥ 1.

Z0 is the starting value. Here we choose it equal to the mean of the target

process, i.e. Z0 = E(Yt) = µ0. The process starts in zero state, a head-start is

not considered. The parameter λ ∈ (0, 1] is a smoothing constant determining

the influence of past observations.

The quantity Zt can be written as weighted average

(2.2) Zt = λ

t−1
∑

i=0

(1 − λ)
iXt−i + (1 − λ)

tZ0, t = 1, 2, ...,

whose weights decrease geometrically. This shows that if λ is close to one then

we have a short memory EWMA chart while for λ close to zero the preceding

values get a larger weight. For λ = 1 the EWMA chart reduces to the Shewhart

control chart.

Further {Yt} is assumed to be a stationary process with mean µ0 and au-
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tocovariance function γ(k). Then (see Schmid ([27])) E(Zt) = µ0 and

V ar(Zt) = λ2
∑

|i|≤t−1

γ(i)

min{t−1,t−1−i}
∑

j=max{0,−i}

(1 − λ)
2j+i

= σ2
e,t.

In this paper we consider a one-sided EWMA chart. Our aim is to detect

an increase of the mean. The process is concluded to be out of control at time

point t if

Zt > µ0 + c
√

V ar(Zt)

with c > 0. The run length of the EWMA control chart is given by

Ne = inf

{

t ∈ N : Zt > µ0 + c
√

V ar(Zt)

}

.

Stochastic inequalities for the modified EWMA chart have been given in

Schmid and Schöne ([30]) and Schöne et al. ([31]). Assuming that {Yt} is a sta-

tionary Gaussian process with non-negative autocovariances Schmid and Schöne

([30]) showed that the probability of a false signal up to a certain time point k,

i.e. P (Ne > k) is greater or equal to that in the i.i.d. case. Thus the dependence

structure leads to an increase of the false alarm probability. Demanding further

assumptions on the autocovariances Schöne et al. ([31]) proved that the false

alarm probability is an increasing function in the autocorrelations provided that

they satisfy a certain monotonicity condition.

2.2. The target process

Throughout this paper the target process is assumed to be a stationary au-

toregressive fractionally integrated moving average (ARFIMA) process. In many

applications we are faced with processes having a long memory. The frequently

applied autoregressive moving average (ARMA) modeling is not suitable in such

a situation as its autocorrelation structure is geometrically decreasing.

Let L denote the lag operator, i.e. LYt = Yt−1 and let ∆ = 1 − L be the

difference operator, i.e. ∆Yt = Yt − Yt−1. In the study of non-stationary time

series more generalized ARIMA(p,d,q) models are often used (cf. Box et al. ([3])).

They make use of a d-multiple difference operator ∆ to the original time series Yt

where d is a non-negative integer. In the approach of Granger and Joyeux ([10])

and Granger ([11]), however, d is a real number.

Let d > −1 then Granger and Joyeux ([10]) and Granger ([11]) define ∆
d

using the binomial expansion as

∆
d

= (1 − L)
d

=

∞
∑

k=0

(

d
k

)

(−1)
kLk

=

∞
∑

k=0

Γ(k − d)

Γ(−d)Γ(k + 1)
Lk,
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where Γ(·) is the gamma function. Let

A(L) = 1 − α1L− ··· − αpL
p, B(L) = 1 + β1L+ ··· + βqL

q

and {εt} be a white noise process, i.e.

E(εt) = 0, V ar(εt) = σ2, Cov(εt, εs) = 0 ∀ t 6= s.

Now {Yt} is said to be an autoregressive fractionally integrated moving average

process of order (p, d, q) (ARFIMA(p,d,q)) if {Yt} is stationary and satisfies the

equation

(2.3) A(L)∆
d
(Yt − µ0) = B(L)εt

for d ∈ (−0.5, 0.5).

The condition on the existence and uniqueness of a stationary solution of

an ARFIMA process is given in the following theorem.

Theorem 2.1. Suppose that {Yt} is an ARFIMA(p,d,q) process as defined

in (3). Let d ∈ (−0.5, 0.5) and A(·) and B(·) have no common zeroes.

a) If A(z) 6= 0 for |z| = 1 then there is a unique purely nondeterministic

stationary solution of (3) given by

(2.4) Yt = µ0 +

∞
∑

j=−∞

ψj∆
−dεt−j ,

where ψ(z) =

∞
∑

j=−∞

ψjz
j

= B(z)/A(z).

b) The solution {Yt} is causal if and only if A(z) 6= 0 for |z| ≤ 1.

Proof: Brockwell and Davis ([4]).

The parameter of fractional differencing d determines the strength of the

process memory. Since ρ(k) ∼ ck2d−1
as k → ∞ with c 6= 0 ARFIMA processes

have a long memory for d ∈ (0, 0.5). For d ∈ (−0.5, 0) the process is called to

have an intermediate memory. ARMA processes are referred to as short memory

processes since |ρ(k)| ≤ Cr−k
for k = 0, 1, ... with C > 0 and 0 < r < 1.

The knowledge of the autocovariance function of an ARFIMA(p,d,q) pro-

cess is crucial for the application of the monitoring techniques discussed in this

paper and their theoretical properties. Nevertheless, it is difficult to obtain ex-

plicit formulas for the autocovariance and the autocorrelation functions. The
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autocovariance function of an ARFIMA(0,d,0) process was derived by Hosking

([12]). It holds that (see, e.g., Brockwell and Davis ([4], Theorem 13.2.1))

γd(0) = σ2 Γ(1 − 2d)

(Γ(1 − d))2
, γd(k) = γd(0) ρd(k) k ∈ Z(2.5)

where

ρd(k) =
Γ(k + d)Γ(1 − d)

Γ(k − d+ 1)Γ(d)

=

k
∏

i=1

i− 1 + d

i− d
=

k
∏

i=1

(1 − 1 − 2d

i− d
), k = 1, 2, ....(2.6)

and ρd(−k) = ρd(k).

To determine the autocovariance function of a general ARFIMA process

it is convenient to deploy the splitting method. This method is based on the

decomposition of the ARFIMA model into its ARMA and its fractionally in-

tegrated parts. Let γARMA(·) be the autocovariance of the ARMA component

which has a unit variance white noise and let γd(·) denote the autocovariance of

the ARFIMA(0,d,0) process given by (2.5) and (2.6). If the conditions of The-

orem 2.1a) are satisfied then the autocovariance of the corresponding ARFIMA

process is given by the convolution of these two functions (see, e.g., Palma ([22]),

Brockwell and Davis ([4], p.525, (13.2.19))

γ(k) =

∞
∑

i=−∞

γd(i)γARMA(k − i).(2.7)

This result is obvious since {Yt} is an ARFIMA(p,d,q) process if and only if

∆
d
(Yt − µ0) is an ARMA(p,q) process.

In the following we shall frequently consider processes with γARMA(i) ≥ 0

for all i ≥ 1, d ∈ (0, 0.5) and σ > 0. Then it holds that

(2.8) γ(k) ≥ γd(k)γARMA(0) > 0

since γd(k) > 0 and γARMA(0) > 0. Thus the autocovariance function of a gen-

eral ARFIMA process is strictly positive for all k, if the autocovariances of the

underlying ARMA process are non-negative.

Next we consider the special case of an ARFIMA(1,d,1) process and use the

simplified notation α = α1 and β = β1. It holds that its autocovariance function

is

(2.9) γ(k) = σ2
∞

∑

i=−∞

Γ(1 − 2d)

Γ(d)Γ(1 − d)

Γ(i+ d)

Γ(1 + i− d)
γARMA(k − i),

where γARMA(k) is the autocovariance of the ARMA(1,1) process, i.e.

γARMA(k) =

{

1+2αβ+β2

1−α2 for k = 0

(1+αβ)(α+β)
1−α2 α|k|−1

for k 6= 0
.
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3. MONOTONICITY RESULTS FOR THE MODIFIED EWMA

MEAN CHART

In the following we consider the probability of a false signal assuming that

the underlying process is an ARFIMA process. It is always assumed that the

process is in control. We use the notation P(p,d,q) to denote that the probability

is calculated assuming that the underlying process is an ARFIMA(p,d,q) process.

Note that for P(0,0,0) the in-control process is assumed to be independent and iden-

tically distributed random sequence and for P(0,d,0) it is a pure ARFIMA(0,d,0)

process.

In this section it is always demanded that the variance of the white noise

σ2
is positive. In the case σ = 0 the process {Yt} is deterministic, Ne = ∞ and

Theorem 3.1, Lemma 3.1, Theorem 3.2 and Theorem 3.3 hold without any further

assumption.

3.1. Influence of the ARMA structure on the false alarm probability

First, it is proved that for an ARFIMA(p,d,q) process the probability of a

false signal up to a fixed time point k is always greater equal to the corresponding

probability for an independent random process. This result is an immediate

consequence of Schmid and Schöne ([30]).

Theorem 3.1. Let {Yt} be an ARFIMA(p,d,q) process as defined in (3)

with d ∈ [0, 0.5) and let {εt} be a Gaussian white noise with σ > 0. Let A(z) 6= 0

for |z| = 1 and let γARMA(v) ≥ 0 for all v ∈ Z. Then

P(p,d,q)(Ne(c) > k) ≥ P(0,0,0)(Ne(c) > k), k = 0, 1, 2, ...

Proof: Because of (2.7) we get that γ(v) ≥ 0 for all v. Since {Yt} is a

Gaussian process the result is an immediate consequence of Theorem 1 of Schmid

and Schöne ([30]).

This result gives a lower bound for the probability of a false signal. The

bound itself is the probability of a false signal for an i.i.d. random sequence.

One of the crucial assumptions of Theorem 1 of Schmid and Schöne ([30]) is

that all autocovariances are non-negative. Here we illustrate that the inequality

may not hold for negative autocovariances. The left picture in Figure 1 shows

the autocorrelations up to lag 5 of an ARFIMA(0,d,0) process. We see that for

positive d’s the autocorrelations are large and positive, but they become negative
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and small for negative d’s. The right-hand side picture shows the probability of

no signal up to the time point k. The probabilities are computed by numerical

integration of the k + 1-dimensional normal density with the covariance matrix

determined using Lemma 1 of Schmid and Schöne ([30]). The integration utilizes

the Genz-Bretz algorithm (see Genz ([8])). The solid black line stands for the

case d = 0 and thus for the i.i.d. process. Positive d’s (grey lines) induce positive

autocovariances, fulfill the assumptions of Theorem 3.1 and lead to probabili-

ties larger than for the i.i.d. case. However, the negative autocorrelations for

d < 0 (black lines) lead to smaller probabilities of no signal. Thus we have a

counterexample for the case if the assumptions of Theorem 3.1 are not satisfied.
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Figure 1: The first five autocorrelations ρd(h) (left side) and the probability of no

signal up to the time point k (right side) for the modified EWMA chart

with λ = 0.1 and c = 2.04 applied to an ARFIMA(0,d,0) process.

It is important to note that in the case γARMA(v) ≤ 0 for all v ∈ Z the

inequality in Theorem 3.1 does not with the reversed inequality. This is illustrated

in Figure 2. It is shown that for an ARFIMA(1,d,0) process with d = 0.2 and

α = −0.5 the probability of no signal up to time point k is sometimes larger and

sometimes smaller than that of the i.i.d. case depending on the choice of k.
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Figure 2: The probability of no signal up to the time point k for the modified EWMA

chart with λ = 0.1 and c = 2.04 applied to an ARFIMA(1,d,0) process.
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Next, we try to improve the lower bound. It is analyzed for which

ARFIMA(p,d,q) processes it can be replaced by the probability of a false sig-

nal of an ARFIMA(0,d,0) process.

Let {ρARMA(h)} denote the autocorrelation function of an ARMA(p,q)

process and let {ρd(h)} denote the autocorrelation function of an ARFIMA(0,d,0)

process.

Let k ∈ N, 1 ≤ v ≤ k − 1 and

Iv =

v−1
∑

i=1

i ρARMA(i) (
ρd(v − 1 + i)

v + i− d
− ρd(v − 1 − i)

v − i− d
),

IIv = v ρARMA(v)

(

ρd(2v − 1)

2v − d
+

1

1 − d

)

,

IIIv =

∞
∑

i=v+1

i ρARMA(i)

(

ρd(i− v)

i− v + 1 − d
+
ρd(i+ v − 1)

v + i− d

)

.

Lemma 3.1. Let k ∈ N and let {Yt} be an ARFIMA(p,d,q) process as

defined in (3) with d ∈ [0, 0.5) and let {εt} be a Gaussian white noise with σ > 0.

Let A(z) 6= 0 for |z| = 1 and γARMA(v) ≥ 0 for all v. If additionally

(3.1) Iv + IIv + IIIv ≥ 0 , v = 1, .., k − 1

then P(p,d,q)(Ne(c) > k) ≥ P(0,d,0)(Ne(c) > k).

Proof: See Appendix.

Keeping in mind the conditions of Lemma 3.1, it can be seen that IIv and

IIIv are non-negative while Iv is non-positive because

ρd(v − 1 + i)

v + i− d
≤ ρd(v − 1 + i)

v − i− d
≤ ρd(v − 1 − i)

v − i− d

using Lemma A.1c of the Appendix. Thus it is not clear for which processes

this condition is fulfilled at all. Next the condition (3.1) is analyzed for various

processes.

Lemma 3.2. Suppose that the conditions of Lemma 3.1 are fulfilled. Then

it holds that:

a) For k = 2 condition (3.1) is always fulfilled.

b) For k = 3 condition (3.1) is satisfied if 2ρARMA(2) ≥ ρARMA(1).

c) Let k ≥ 2. If {Yt} is an ARFIMA(1,d,0) process with autoregressive

coefficient α ∈ [0, 1) and α ≥ (k − 2)/(k − 1) then condition (3.1) is

satisfied.

Proof: See Appendix.
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Note that Lemma 3.1 is an extension of Theorem 3.1. It shows that the

presence of the ARMA part with specific parameters (see Lemma 3.2) leads to

an increase of the probability of no signal. The condition in b) does not hold

for an ARFIMA(0,d,1) process with positive coefficient. As it is shown in the

left picture in Figure 3 for k = 3 the probabilities of no signal are larger for the

ARFIMA(0,d,1) process than for ARFIMA(0,d,0) for negative β’s and smaller

for positive β’s. The same holds, however, also for higher values of k too, i.e. no

signals for longer time intervals.
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Figure 3: The probability of no signal up to the time point k for the EWMA control

chart with λ = 0.1 and c = 2.04. The target process is an ARFIMA(0,d,1)

process with d = 0.2 (left side) and an ARFIMA(1,d,0) process with d = 0.2
(right side), respectively.

The case of ARFIMA(1,d,0) is particularly important from practical per-

spective. The right picture of Figure 3 reveals a similar pattern as we observed for

ARFIMA(0,d,1). The probabilities of no signal are larger for the ARFIMA(1,d,0)

process than for ARFIMA(0,d,0) for positive α’s and smaller for negative α’s.
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Figure 4: The probability of no signal up to the time point k for the EWMA control

chart with λ = 0.1 and c = 2.04. The target process is an ARFIMA(1,d,0)

process with d = 0.2 (left side) and an ARFIMA(1,d,1) process with d = 0.2
and β = −0.8 (right side), respectively.
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However, part c) of Lemma 3.2 contains an additional constraint which makes

the set where (3.1) holds very small. It stems from a statement about the

magnitude of a hypergeometric function in α which is hard to obtain. Never-

theless, numerically we can argue that the monotonicity also holds for 0 ≤ α ≤
(k − 2)/(k − 1). For the left picture in Figure 4 the selected α’s are small and

satisfy α ≤ (k − 2)/(k − 1) for k ≥ 3. Despite the condition in part c) of Lemma

3.2 is not fulfilled, we observe that P(1,d,0)(Ne(c) > k) ≥ P(0,d,0)(Ne(c) > k) still

holds. As a counterexample consider an ARFIMA(1,d,1) process with d = 2 and

β = −0.8 and the right picture in Figure 4. The probability of no signal up to

time point k is sometimes larger for α = 0.6 than for α = 0.0, sometimes smaller.

This depends on the value of k. The probabilities for the discussed figures are

determined by numerical integration as above.

3.2. Behavior of the false alarm probability as a function of the frac-

tional parameter

In the previous subsection the probability of a false signal for an ARFIMA

process was compared with that of an independent random process and an

ARFIMA(0,d,0) process, respectively. In this subsection we want to analyze how

the probability of a false signal behaves as a function of the fractional parameter

d.

In a first stage we consider the simplest case, an ARFIMA(0,d,0) process.

Theorem 3.2. Let {Yt} be an ARFIMA(0,d,0) process as defined in (3)

with d ∈ [0, 0.5) and let {εt} be a Gaussian white noise with σ > 0. Then

P(0,d,0)(Ne(c) > k) is a non-decreasing function in d.

Proof: First we observe that the autocovariances of an ARFIMA(0,d,0)

process can be easily recursively calculated. It holds that γd(k) =
k+d−1

k−d γd(k− 1)

for k ≥ 1 (cf. Lemma A.1b of the appendix).

Next let 0 < d1 < d2 < 1/2. Then it holds for k ≥ 1 that

γd2(k)

γd2(k − 1)
=
k + d2 − 1

k − d2
≥ k + d1 − 1

k − d1
=

γd1(k)

γd1(k − 1)
.

The result follows with Theorem 1 of Schöne et al. ([31]).

If d1 = 0 the result is a special case of Schmid and Schöne ([30]).

Figure 5 illustrates the result of Theorem 3.2. It shows that the probabilities

of no signal up to the time point k are increasing in d.
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Figure 5: Probabilities of no signal up to the time point k as a function of d.
The target process is an ARFIMA(0,d,0) process. The EWMA

parameters are c = 2.04, λ = 0.1 (left), and c = 2.33, λ = 1.0 (right).

Next we want to study the behavior of the false alarm probability for an

ARFIMA(1,d,1) process.

Theorem 3.3. Let {Yt} be an ARFIMA(1,d,1) process as defined in (3)

with d ∈ [0, 0.5) and let {εt} be a Gaussian white noise with σ > 0. Suppose

that 0 ≤ α < 1 and β ≥ 0. Then it follows that for all k ∈ N the quantity

P(1,d,1)(Ne(c) > k) is a non-decreasing function in d.

Proof: See Appendix.

This result is quite remarkable. It says that the probability of a false signal

is increasing with the fractional parameter d for positive parameters α and β.

In the left plot of Figure 6 we visualize this effect for α = 0.4 and several values

of the MA parameter. On the right hand side figure we show a counterexample

of nonmonotonicity if the assumptions of the theorem are not fulfilled. Here α is

set equal to -0.8.
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Figure 6: Probabilities of no signal up to the time point k as a function of d
for ARFIMA(1,d,1) processes. We set α = 0.4 for the left figure,

α = −0.8 for the right one and choose c = 2.04, λ = 0.1.
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4. SUMMARY

In this paper we consider the stochastic properties of the run length of

an EWMA monitoring scheme if applied to an ARFIMA process. Particularly

we are interested in the monotonic behavior of the probability of no signal up

to an arbitrary time point as a function of the fractional differencing parameter

d. We compare the probability of no signal for an ARFIMA(p,d,q) process with

non-negative autocovariances with the probability of no signal for a sequence of

i.i.d. variables and for an ARFIMA(0,d,0) process, respectively. It is analyzed

under what conditions the probability of no signal of an ARFIMA(p,d,q) process

is greater or equal to that of an i.i.d. sequence and of an ARFIMA(0,d,0) pro-

cess. Furthermore, we prove that for ARFIMA(0,d,0) and ARFIMA(1,d,1) with

positive parameters the probability of no signal is increasing in d.
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APPENDIX

In the following lemma some useful properties on the behavior of the auto-

correlation function ρd(k) of an ARFIMA(0,d,0) process are summarized which

will be used in the proofs.

Lemma A.1. Suppose that {Yt} is an ARFIMA(0,d,0) process with d ∈
(−0.5, 0.5).

a) Let k ∈ N. Then ρd(k) > 0 for d > 0, ρd(k) = 0 for d = 0, and ρd(k) < 0

for d < 0.

b)

(A.1) ρd(k) =
k − 1 + d

k − d
ρd(k−1) = (1− 1 − 2d

k − d
)ρd(k−1), k = 1, 2, ....

c) Let 0 ≤ d < 0.5. Then it holds that ρd(k) is a non-increasing function

in k.

d) Let k ∈ N ∪ {0}. Then

ρ′d(k) = ρd(k) Ad(k)

with

Ad(k) =

k
∑

i=1

(
1

i− 1 + d
+

1

i− d
).

e) Let 0 ≤ d < 0.5. Then ρd(k) is a non-decreasing function in d.

Proof: Parts a) and b) are obvious.

c) The statement follows from the fact that
1−2d
k−d ≥ 0, since d ∈ [0, 0.5) and

k ≥ 1.

d) Since

log(ρd(k) =

k
∑

i=1

(log(i− 1 + d) − log(i− d))

the result follows by building the derivative with respect to d.

e) Follows from d).

Proof of Lemma 3.1: Note that for d= 0 Lemma 3.1 reduces to Theorem

3.1 which was already proved. Thus it can be assumed that d> 0 in the following.
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In order to prove Lemma 3.1 we apply Theorem 1 of Schöne et al. ([31]) and

the comment after the theorem. In order to do that we need that γ(v) > 0 for

v = 1, .., k − 1 but this was already proved in (2.8).

Following Theorem 1 of Schöne et al. ([31]) it holds that P(p,d,q)(Ne(c) > k)

≥ P(0,d,0)(Ne(c) > k) if all autocovariances are positive and if for all 1 ≤ v ≤ k− 1

it holds that

γd(v − 1)

∞
∑

i=−∞

γd(v − i)γARMA(i) ≥ γd(v)
∞

∑

i=−∞

γd(v − 1 − i)γARMA(i).

This condition is equivalent to

∞
∑

i=−∞

ρARMA(i)(ρd(v − i)ρd(v − 1) − ρd(v)ρd(v − 1 − i)) ≥ 0, v = 1, .., k − 1

and

∞
∑

i=1

ρARMA(i)((ρd(v−i)+ρd(v+i))ρd(v−1)−(ρd(v−1−i)+ρd(v−1+i))ρd(v)) ≥ 0,

for v = 1, .., k − 1 and

v−1
∑

i=1

ρARMA(i) [(ρd(v− i) + ρd(v+ i))ρd(v−1) − (ρd(v−1− i) + ρd(v−1+ i))ρd(v)]

+ ρARMA(v)(1 + ρd(2v))ρd(v − 1) − [ρd(1) + ρd(2v − 1)]ρd(v))

+

∞
∑

i=v+1

ρARMA(i) [(ρd(i−v) + ρd(i+v))ρd(v−1) − (ρd(i−v+1) + ρd(i+v−1))ρd(v)] ≥ 0

for v = 1, ..., k − 1 respectively. Using the recursion property of the autocorrela-

tions of an ARFIMA(0,d,0) process (cf. (Lemma A.1b of the Appendix) the last

condition can be rewritten as follows

(A.2)
ρd(v − 1)(1 − 2d)

v − d
[Iv + IIv + IIIv] ≥ 0, v = 1, .., k − 1

with

Iv =

v−1
∑

i=1

i ρARMA(i) (
ρd(v − 1 + i)

v + i− d
− ρd(v − 1 − i)

v − i− d
),

IIv = v ρARMA(v)

(

ρd(2v − 1)

2v − d
+

1

1 − d

)

,

IIIv =

∞
∑

i=v+1

i ρARMA(i)

(

ρd(i− v)

i− v + 1 − d
+
ρd(i+ v − 1)

v + i− d

)

.
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Proof of Lemma 3.2: a) The proof is obvious.

b) Since

I2 = −ρARMA(1)
6

(3−d)(2−d) , II2 = 24ρARMA(2)
d2 − 2d+ 2

(4−d)(3−d)(2−d)(1−d)

it holds that I2 + II2 ≥ 0 if ρARMA(1) ≤ 2ρARMA(2).

c) For an ARFIMA(1,d,0) process with coefficient α it holds that

Iv =

2v−2
∑

i=v

ρd(i)

i+ 1 − d
(i− v + 1)αi−v+1 −

v−2
∑

i=0

ρd(i)

i+ 1 − d
(v − 1 − i)αv−1−i,

IIIv =

v−2
∑

i=0

ρd(i)

i+ 1 − d
(i+ v)αi+v

+

∞
∑

i=v−1

ρd(i)

i+ 1 − d
(i+ v)αi+v

+

∞
∑

i=2v

ρd(i)

i+ 1 − d
(i− v + 1)αi−v+1.

Consequently

Iv + IIv + IIIv = α

[

v−2
∑

i=0

ρd(i)

i+ 1 − d

(

(i+ v)αi+v−1 − (v − 1 − i)αv−2−i
)

+

2v−1
∑

i=v

ρd(i)

i+1−d(i−v+1)αi−v
+

∞
∑

i=2v

ρd(i)

i+1−d(i−v+1)αi−v

+

∞
∑

i=v−1

ρd(i)

i+ 1 − d
(i+ v)αi+v−1

]

.

This quantity is non-negative if (i+ v)αi+v−1 − (v − 1 − i)αv−2−i ≥ 0 for i =

0, .., v − 2. This is fulfilled if α ≥
(

1 − 2i+1
i+v

)1/(2i+1)
for all i = 0, .., v − 2 since

(

1 − 2i+1
i+v

)1/(2i+1)
≤ 1 − 1

v . Using mathematical induction we shall prove that

(1 − 1
v )

2i+1 ≥ 1 − 2i+1
i+v for all i = 0, .., v − 2. For i = 0 it is obvious. Next we

consider the induction step. Note that

(1 − 1

v
)
2i+3 ≥ (1 − 2i+ 1

i+ v
)(1 − 1

v
)
2

= 1 −
(

2i+ 1

i+ v
+

2v − 1

v2
− (2v − 1)(2i+ 1)

v2(i+ v)

)

≥ 1 − 2i+ 3

i+ 1 + v

since after some calculations it can be seen that the last inequality is equivalent

to i2 + 2i+ 1 ≥ 0.

Since v ≤ k − 1 we finally get that α ≥ (k − 2)/(k − 1) for k ≥ 2.
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Proof of Theorem 3.3: Note that

ρARMA(k) = αk−1ρ1, k ≥ 1, ρ1 =
(1 + αβ)(α+ β)

1 + 2αβ + β2
.

Since 0 ≤ α < 1 and β ≥ 0 it follows that ρ1 ≥ α.

In Theorem 3.1 it was proved that for an ARFIMA process the in-control

probability of a false signal up to a given time point is greater or equal than for

an independent random sequence. Thus we may assume in the following that

d > 0. As shown in the proof of Lemma 3.1 this implies that γ(v) > 0.

a) Let {γ(h)} denote the autocovariance function of an ARFIMA(1,d,1)

process. In order to prove the result we make use of the comment after Theorem1

of Schöne et al. ([31]) which says that it is sufficient to show that γ(k)/γ(k − 1)

is a non-decreasing function in d. Suppose that α > 0. Let ρ∗ = ρ1/α. Then

γ(k)

γARMA(0)γd(0)
=

∞
∑

i=−∞

ρd(i)ρARMA(k − i) = ad(k) + bd(k)

= (1 − ρ∗)ρd(k) + α a∗d(k − 1) +
1

α
bd(k − 1).

with

ad(k) =

k
∑

i=−∞

ρd(i)ρARMA(k − i) = (1 − ρ∗)ρd(k) + a∗d(k) = ρd(k) + αa∗d(k − 1),

bd(k) =

∞
∑

i=k+1

ρd(i)ρARMA(k − i) = ρ∗
∞

∑

i=k+1

ρd(i)α
i−k

=
1

α
bd(k − 1) − ρ∗ρd(k),

a∗d(k) = ρ∗
k

∑

i=−∞

ρd(i)α
k−i.

b) The numerator of the derivative of γ(k)/γ(k − 1) with respect to d is

equal to

(
1

α
− α)

[

a∗d(k − 1)b′d(k − 1) − a∗′d (k − 1)bd(k − 1)
]

+ (1−ρ∗) a∗′d (k−1) [αρd(k−1)−ρd(k)] + (1−ρ∗) a∗d(k−1) [−αρ′d(k−1)+ρ′d(k)]

+ (1−ρ∗) b′d(k−1) [
1

α
ρd(k−1) − ρd(k)] + (1−ρ∗)bd(k−1)[− 1

α
ρ′d(k−1) + ρ′d(k)]

+ (1 − ρ∗)2[ρd(k − 1)ρ′d(k) − ρ′d(k − 1)ρd(k)].

It is sufficient to prove that this quantity is not negative.



86 Yarema Okhrin and Wolfgang Schmid

Let γ = (1− ρ∗)/(1/α−α). Note that γ ≤ 0. An equivalent representation

is

[

a∗d(k − 1)b′d(k − 1) − a∗′d (k − 1)bd(k − 1)
]

+ γ α [ρd(k − 1)a∗′d (k − 1) − ρ′d(k − 1)a∗d(k − 1)]

+ γ [ρ′d(k)a
∗
d(k−1)−ρd(k)a

∗′
d (k−1)]+

γ

α
[ρd(k−1)b′d(k−1)−ρ′d(k−1)bd(k−1)]

+ γ[ρ′d(k)bd(k−1) − ρd(k)b
′
d(k−1)] + γ(1−ρ∗)[ρd(k−1)ρ′d(k) − ρ′d(k−1)ρd(k)]

= I + II + III + IV + V + V I.

c) Next we apply Lemma A.1d. Defining Ad(−h) = Ad(h) for h ≥ 1 we get

that ρ′d(h) = ρd(h)Ad(h) for all h ∈ Z.

It holds that

I/ρ∗2 =

k−1
∑

i=−∞

∞
∑

j=k

ρd(i)ρd(j)α
j−i

(Ad(j) −Ad(i)) = I1 + I2

with

I1 =

∞
∑

j=k

−j−1
∑

i=−∞

ρd(i)ρd(j)α
j−i

(Ad(j) −Ad(−i)),

I2 =

∞
∑

j=k

k−1
∑

i=−j

ρd(i)ρd(j)α
j−i

(Ad(j) −Ad(|i|)).

Now

I1 = −
∞

∑

j=k

∞
∑

i=j+1

ρd(i)ρd(j)α
j+i

(Ad(i) −Ad(j))

= −
∞

∑

j=k+1

j−1
∑

i=k

ρd(i)ρd(j)α
j+i

(Ad(j) −Ad(i)),

I2 =

∞
∑

j=k

k−1
∑

i=−k+1

ρd(i)ρd(j)α
j−i

(Ad(j) −Ad(|i|))

+

∞
∑

j=k

−k
∑

i=−j

ρd(i)ρd(j)α
j−i

(Ad(j) −Ad(|i|))

=

∞
∑

j=k

k−1
∑

i=−k+1

ρd(i)ρd(j)α
j−i

(Ad(j) −Ad(|i|)) − I1.

Thus

(A.3) I/ρ∗2 =

∞
∑

j=k

k−1
∑

i=−k+1

ρd(i)ρd(j)α
j−i

(Ad(j) −Ad(|i|)).
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d) Since

I = ρ∗2





∞
∑

j=k

k−1
∑

i=−k+1

ρd(i)ρd(j)α
j−i

(Ad(j) −Ad(|i|))





= ρ∗2





∞
∑

j=k+1

k−2
∑

i=−k+2

ρd(i)ρd(j)α
j−i

(Ad(j) −Ad(|i|))

+ ρd(k)
k−1
∑

i=−k+1

ρd(i)α
k−i

(Ad(k) −Ad(|i|))

+ ρd(k − 1)

∞
∑

j=k+1

ρd(j)α
j−k+1

(Ad(j) −Ad(k − 1))

+ ρd(k − 1)

∞
∑

j=k+1

ρd(j)α
j+k−1

(Ad(j) −Ad(k − 1))





= I3 + I4 + I5 + I6, Ii ≥ 0, i = 3, .., 6 ,

II = −γαρ∗ρd(k − 1)

k−2
∑

i=−k+2

ρd(i)α
k−1−i

(Ad(k − 1) −Ad(|i|))

+ γαρ∗ρd(k − 1)

∞
∑

j=k

ρd(j)α
k−1+j

(Ad(j) −Ad(k − 1)) = II1 + II2,

with II1 ≥ 0, II2 ≤ 0,

III = γρ∗ρd(k)
k−1
∑

i=−k+1

ρd(i)α
k−1−i

(Ad(k) −Ad(|i|))

+ γρ∗ρd(k)
∞

∑

j=k+1

ρd(j)α
k−1+j

(Ad(k) −Ad(j))

= III1 + III2, III1 ≤ 0, III2 ≥ 0,

IV =
γρ∗

α
ρd(k − 1)

∞
∑

j=k

ρd(j)α
j−k+1

(Ad(j) −Ad(k − 1)) ≤ 0

we get that

V II = I4 + III1 = (ρ∗2 + γρ∗/α)ρd(k)
k−1
∑

i=−k+1

ρd(i)α
k−i

(Ad(k) −Ad(|i|)) ≥ 0,

I6 + II2 + V I = (ρ∗2 + γαρ∗)ρd(k − 1)

∞
∑

j=k+1

ρd(j)α
j+k−1

(Ad(j) −Ad(k − 1))

+ (γρ∗α2k
+ γ(1 − ρ∗)ρd(k − 1)ρd(k)(Ad(k) −Ad(k − 1))

= V III1 + V III2, with V III1 ≥ 0 ,
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I5 + IV = (ρ∗2 + γρ∗/α)ρd(k − 1)

∞
∑

j=k+1

ρd(j)α
j−k+1

(Ad(j) −Ad(k − 1))

+ γρ∗ρd(k − 1)ρd(k)(Ad(k) −Ad(k − 1)) = IX1 + IX2,

with IX1 ≥ 0, IX2 ≤ 0,

V III2 + IX2 = γ(1 + ρ∗α2k
)ρd(k − 1)ρd(k)(Ad(k) −Ad(k − 1)) = X.

Now

V II ≥ (ρ∗2 +
γρ∗

α
)(α+ α2k−1

)ρd(k − 1)ρd(k)(Ad(k) −Ad(k − 1)),

=
ρ2
1 + γρ1

α
(1 + α2k−2

) ρd(k − 1)ρd(k)(Ad(k) −Ad(k − 1))

and

V II +X ≥ (γ(1 + ρ∗α2k
) +

ρ2
1 + γρ1

α
(1 + α2k−2

))

· ρd(k − 1)ρd(k)(Ad(k) −Ad(k − 1)).

Since

γ(1 + ρ∗α2k
) +

ρ2
1 + γρ1

α
(1 + α2k−2

)

= γ(1 + ρ1α
2k−1

) +
ρ2

1 + γρ1

α
(1 + α2k−2

)

≥ ρ2
1 + γρ1

α
(1 + α2k−1

) + γ(1 + α2k−1
)

=
1 + α2k−1

α
(ρ2

1 + γρ1 + γα)

=
1 + α2k−1

α(1 − α2)
(ρ2

1(1 − α2
) + ρ1(α− ρ1) + α(α− ρ1))

=
α(1 − ρ2

1)(1 + α2k−1
)

1 − α2
≥ 0

it holds that V II +X ≥ 0.

Moreover, we get that

V = γρ∗
∞

∑

i=k

ρd(k)ρd(i)α
i−k+1

(Ad(k) −Ad(i)) ≥ 0,

V I = γ(1 − ρ∗)ρd(k − 1)ρd(k)(Ad(k) −Ad(k − 1)) ≥ 0.

Thus the result is proved.
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[9] Gonçalves, E.; Leite, J. and Mendes-Lopes, N. (2013). The ARL of mod-

ified Shewhart control charts for conditionally heteroskedastic models, Statistical

Papers, 54, 1–19.

[10] Granger, C. and Joyeux, R. (1980). An introduction to long-range time series

models and fractional differencing, Journal of Time Series Analysis, 1, 15–30.

[11] Granger, C. (1981). Some properties of time series data and their use in econo-

metric model specification, Journal of Econometrics, 16, 121–130.

[12] Hosking, J. (1981). Fractional differencing, Biometrika, 68, 165–176.

[13] Knoth, S. and Frisén, M. (2012). Minimax Optimality of CUSUM for an

Autoregressive Model, Statistica Neerlandica, 66, 357–379.

[14] Knoth, S. and Schmid, W. (2004). Control charts for time series: A review,

Frontiers in Statistical Quality Control (H.-J. Lenz and P.-T. Wilrich, Eds.),

Physica, Vol.7, 210–236.

[15] Lawson, A.B. and Kleinman, K. (2005). Spatial & Syndromic Surveillance,

Wiley.

[16] Lu, C.-W. and Reynolds, Jr., M. (1999). EWMA control charts for moni-

toring the mean of autocorrelated processes, Journal of Quality Technology, 31,

166–188.

[17] Lucas, J. and Saccucci, M. (1990). Exponentially weighted moving average

control schemes: properties and enhancements, Technometrics, 32, 1–12.

[18] Montgomery, D. (2009). Introduction to Statistical Quality Control (Sixth Edi-

tion), John Wiley & Sons, New York.

[19] Montgomery, D. and Mastrangelo, C. (1991). Some statistical process con-

trol methods for autocorrelated data, Journal of Quality Technology, 23, 179–204.



90 Yarema Okhrin and Wolfgang Schmid

[20] Morais, M.; Okhrin, Y.; Pacheco, A. and Schmid, W. (2006). On the

stochastic behaviour of the run length of EWMA control schemes for the mean

of correlated output in the presence of shifts in sigma, Statistics & Decisions, 24,

397–413.

[21] Nikiforov, I. (1975). Sequential analysis applied to autoregressive processes,

Automation and Remote Control, 36, 1365–1368.

[22] Palma, W. (2007). Long-Memory Time Series: Theory and Methods, John Wi-

ley & Sons, New York.

[23] Pan, J.-N. and Chen, S.-T. (2008). Monitoring long-memory air quality data

using ARFIMA model, Environmetrics, 19, 209–219.

[24] Pawlak, M. and Schmid, W. (2001). On distributional properties of GARCH

processes, Journal of Time Series Analysis, 22, 339–352.

[25] Rabyk, L. and Schmid, W. (2016). EWMA control charts for detecting changes

in the mean of a long-memory process, Metrika, 79, 267–301.

[26] Roberts, S. (1959). Control charts tests based on geometric moving averages,

Technometrics, 1, 239–250.

[27] Schmid, W. (1997a). On EWMA charts for time series, Frontiers in Statistical

Quality Control (H.-J. Lenz and P.-T. Wilrich, Eds.), Physica, Vol.5, 115–137.

[28] Schmid, W. (1997b). CUSUM control schemes for Gaussian processes, Statistical

Papers, 38, 191–217.

[29] Schmid, W. and Okhrin, Y. (2003). Tail behaviour of a general family of

control charts, Statistics & Decisions, 21, 77–90.
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Abstract:

• Bias reduction in tail estimation has received considerable interest in extreme value

analysis. Estimation methods that minimize the bias while keeping the mean squared

error (MSE) under control, are especially useful when applying classical methods such

as the Hill (1975) estimator. In the case of heavy tailed distributions, Caeiro et al.
(2005) proposed minimum variance reduced bias estimators of the extreme value in-

dex, where the bias is reduced without increasing the variance with respect to the

Hill estimator. This method is based on adequate external estimation of a pair of

parameters of second order slow variation under a third order condition. Here we

revisit this problem exploiting the mathematical fact that the bias tends to 0 with

increasing threshold. This leads to shrinkage estimation for the extreme value index,

which allows for a penalized likelihood and a Bayesian implementation. This new

approach is applied starting from the approximation to excesses over a high thresh-

old using the extended Pareto distribution, as developed in Beirlant et al. (2009).

We present asymptotic results for the resulting shrinkage penalized likelihood estima-

tor of the extreme value index. Finite sample simulation results are proposed both

for the penalized likelihood and Bayesian implementation. We then compare with the

minimum variance reduced bias estimators.
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1. INTRODUCTION

In this paper we consider the estimation of the extreme value index ξ and

tail probabilities P (X > x) for x large, on the basis of independent and identically

distributed observations X1, X2, ..., Xn which follow a Pareto-type distribution

with right tail function (RTF) given by

(1.1) F̄ (x) = 1 − F (x) = P (X > x) = x−1/ξℓ(x)

where ℓ is a slowly varying function at infinity, i.e.

ℓ(ty)

ℓ(t)
→ 1, as t → ∞, for every y > 1.

The most famous estimator of ξ was first derived by Hill (1975) as a maximum

likelihood (ML) estimator approximating the RTF of the excesses
X
t |X > t over

a large threshold t by a simple Pareto distribution with RTF y−1/ξ
:

(1.2) F̄ (ty)/F̄ (t) ≈ y−1/ξ, t large.

When setting t = Xn−k,n where X1,n ≤ X2,n ≤ ··· ≤ Xn,n the ML estimator is

given by

(1.3) Hk,n =
1

k

k
∑

j=1

log
Xn−j+1,n

Xn−k,n
.

A simple estimator of a tail probability P (X > x) with x large, introduced in

Weissman (1978), is then obtained from (1.2) setting ty = x and estimating

P (X > t) by the empirical proportion k/n:

(1.4) p̂x,k =
k

n

(

x

Xn−k,n

)−1/Hk,n

.

In practice, a way to verify the validity of model (1.1) is to check whether the Hill

estimates are stable as a function of k. However in most cases the stability is not

visible, which can be explained by slow convergence in (1.2). For this reason bias

reduced estimators have been proposed which lead to plots that are much more

horizontal in k which facilitates the analysis of a practical case to a great extent.

Here we can refer to Peng (1998), Beirlant et al. (1999, 2008), Feuerverger and

Hall (1999), Caeiro et al. (2005, 2009) and Gomes et al. (2000, 2007) for bias-

reduced estimators based on functions of the top k order statistics. Several of

these methods focus on the distribution of log-spacings of high order statistics.

Beirlant et al. (2009) proposed a more flexible model capable of capturing

the deviation between the true excess RTF F̄ (ty)/F̄ (t) and the asymptotic Pareto

model. For a heavy tailed distribution (1.1), this deviation can be parametrized
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using a power series expansion (Hall, 1982), or more generally via second-order

slow variation (Bingham et al., 1987). More specifically in Beirlant et al. (2009)

the subclass F(ξ, τ) of the Pareto-type tails (1.1) was considered satisfying

F̄ (x) = Cx−1/ξ
(

1 + ξ−1δ(x)
)

,(1.5)

with δ(x) eventually nonzero and of constant sign such that |δ(x)| = xτ ℓδ(x) with

τ < 0 and ℓδ slowly varying. It was shown that under F(ξ, τ) as t → ∞

sup
y≥1

∣

∣

∣

∣

F̄ (ty)

F̄ (t)
− Ḡξ,δ,τ (y)

∣

∣

∣

∣

= o (|δ(t)|)

with Ḡξ,δ,τ the RTF of the extended Pareto distribution (EPD)

(1.6) Ḡξ,δ,τ (y) = {y(1 + δ − δyτ
)}−1/ξ, y > 1,

with τ < 0 < ξ and δ > max(−1, 1/τ). This shows that the EPD improves the

approximation (1.2) with an order of magnitude. Then ML estimation of the pa-

rameters (ξ, δ) based on a set of excesses (Yj,k := Xn−j+1,n/Xn−k,n, j = 1, ..., k)

was used to obtain a bias reduced estimator ξ̂ML
k,n of ξ. Bias reduction of the

Weissman estimator of tail probabilities can analogously be obtained using

(1.7) p̂EP
x,k =

k

n
Ḡξ̂k,δ̂k,τ̂

(

x

Xn−k,n

)

,

where (ξ̂k, δ̂k) denote the ML estimators based on the EPD model, and where τ̂ is

a consistent estimator of τ , to be specified below, which was shown not to affect

the asymptotic distribution of (ξ, δ).

If F satisfies F(ξ, τ), it is shown in Beirlant et al. (2009) that U(x) :=

Q(1 − x−1
) (x > 1), with Q(p) = inf{x : F (x) ≥ p} (p ∈ (0, 1)), satisfies

(1.8) U(x) = Cξxξ
(1 + a(x))

with a(x) = δ(Q(1 − x−1
)){1 + o(1)} = δ(Cξxξ

){1 + o(1)} as x → ∞. In partic-

ular a is eventually nonzero and of constant sign and |a(x)| = xρℓa(x) with ℓa

slowly varying and ρ = ξτ . Here we assume |ℓa(x)| = Ca(1 + o(1)) as x → ∞ for

some constant Ca > 0.

The following asymptotic results have been derived for Hk,n and ξ̂ML
k,n as-

suming that F satisfies F(ξ, τ), and
√

ka(n/k) → λ ∈ R and ρ̂k,n = ρ + op(1) as

k, n → ∞ and k/n → 0:

√
k (Hk,n − ξ) →d N

(

λ
ρ

1 − ρ
, ξ2

)

,(1.9)

√
k
(

ξ̂ML
k,n − ξ

)

→d N
(

0, ξ2

(

1 − ρ

ρ

)2
)

.(1.10)
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An estimator ρ̂k,n of ρ can be taken from Fraga Alves et al. (2003) using k = k1 =

⌊n1−ǫ⌋ for some ǫ > 0. The required consistency for ρ̂k,n was obtained under (1.8).

Asymptotic results of the type (1.9) and (1.10) are typical for bias reduced

estimators when both ξ and a(n/k) or δ are jointly estimated at every k value: for

larger values of k corresponding to
√

ka(n/k) → λ 6= 0, bias reduced estimators

still have asymptotic bias 0 in contrast to the Hill estimator, but their variance is

increased by a factor ((1−ρ)/ρ)
2

compared to Hk,n. In a pioneering paper, Caeiro

et al. (2005) proposed to estimate (n/k)
−ρa(n/k) at a high level k = k1 = ⌊n1−ǫ⌋,

leading to a corrected Hill estimator (denoted below by CHk,n) with asymptotic

variance ξ2
and excellent bias and MSE characteristics. To obtain the normal

asymptotic behaviour of such minimum variance reduced bias estimators one

needs a third-order slow variation condition which is more restrictive than (1.8)

or condition F(ξ, τ).

Up to now, to the best of our knowledge, the fact that δ(t) → 0 as t → ∞,

or a(n/k) → 0 as n/k → ∞ has not been exploited in the literature. However,

this calls for shrinkage estimators. Such shrinkage approach can be implemented

by putting a penalty on δ in an ML procedure, leading to penalized ML. Al-

ternatively a penalty on δ can be naturally introduced in a Bayesian approach

putting an appropriate prior on this parameter. Here we investigate the use of

shrinkage estimation when modelling the distribution of the vector of excesses

Yk := (Yj,k, j = 1, ..., k) with an EPD. In section 2 we show that a quadratic

penalty, or equivalently a normal prior, on δ with zero mean and variance σ2
k,n,

depending in an appropriate way on k and n, leads to interesting asymptotic MSE

results for ξ. In section 3 we consider the finite sample behaviour of the penal-

ized likelihood and Bayes approach, and make a comparison with the minimum

variance reduced bias estimator, and consider a practical case.

2. SHRINKAGE ESTIMATORS OF THE EPD PARAMETERS

2.1. Penalized likelihood and Bayesian interpretation

ML estimation of the EPD parameters (ξ, δ), given a value of τ , follows by

maximizing the log-likelihood

1

k
lEP (ξ, δ|y) = − log ξ −

(

1

ξ
+ 1

)

1

k

k
∑

j=1

[

log yj,k + log(1 + δ{1 − yτ
j,k})

]

+
1

k

k
∑

j=1

log
(

1 + δ{1 − (1 + τ)yτ
j,k}
)

.(2.1)
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Shrinkage estimators are then obtained by putting a penalty on δ. Below it

will be shown that a quadratic penalty is appropriate in view of the asymptotic

results for the penalized maximum likelihood (PML) estimators (ξ̂P
k,n, δ̂P

k,n). These

estimators are then obtained by optimizing the log-likelihood

(2.2)
1

k
lpen(ξ, δ|y) =

1

k
lEP (ξ, δ|y) − ω

δ2

2kσ2
k,n

,

where ω > 0 serves as a tuning constant regulating the amount of penalty, and

σ2
k,n indicating the penalty rate as a function of k. From the asymptotic analysis

below, it follows that σ2
k,n = (k/n)

−2ρ
is appropriate.

Alternatively, from a Bayesian perspective, a shrinkage estimator is ob-

tained by considering the posterior mode estimators (ξ̂B
k , δ̂B

k ) of the log-posterior

(2.3)
1

k
log p(ξ, δ|y) =

1

k
lEP (ξ, δ|y) +

1

k
log π(ξ, δ),

where π(ξ, δ) denotes the prior density on (ξ, δ). Following a objective Bayesian

point of view, we assign a maximal data information (MDI) prior to ξ, which for

a general parameter θ is defined as π(θ) ∝ exp(E(log f(Y|θ))). The concept of

MDI priors was introduced in Zellner (1971) in order to maximize the information

contributed by the data density, relative to that of the prior density. Beirlant et

al. (2004) derived that the MDI for a Pareto distribution is given by

(2.4) π(ξ) ∝ e−ξ

ξ
.

Next, in correspondance with the choice for the penalized log-likelihood (2.2), we

here choose a normal prior on δ with mean 0 and variance σ2
k,n. We also truncate

it from the left in order to comply with the restriction δ > max(−1, 1/τ):

(2.5) π(δ) =
1√

2πσk,n

e
− 1

2
δ
2

σ2
k,n /

(

1 − Φ(max(−1, τ−1
)/σk,n)

)

.

2.2. Asymptotic results for the penalized ML estimator ξ̂P
k

In the Appendix we derive that the first order approximations (ξ̂P
k , δ̂P

k ) of

the penalized ML estimators are given by

ξ̂P
k = Hk,n + δ̂P

k (1 − Ek,n(τ)) ,

δ̂P
k =

1 − Hk,nτ

DP
k,n

(

Ek,n(τ) − 1

Hk,nτ

)

where

Ek,n(s) =
1

k

k
∑

j=1

Y s
j,k, s < 0



Using Shrinkage Estimators to Reduce Bias and MSE in Estimation of Heavy Tails 97

and

DP
k,n =

ωξ̂P
k

kσ2
k,n

−
(

1 − 2(1 − ξ̂P
k τ)Ek,n(τ) + (1 − 2ξ̂P

k τ − ξ̂P
k τ2

)Ek,n(2τ)

− τ(1 − Ek,n(τ))Ek,n(τ)

)

.

These expressions are identical to the asymptotic EPD-ML estimators derived in

Beirlant et al. (2009) except for the extra term
ξ̂P

k

kσ2
k,n

in the expression of DP
k,n.

As an external estimator of τ we use τ̂ = ρ̂k,n/Hk,n with ρ̂k,n taken from Fraga

Alves et al. (2003). Moreover we set ζ = ξ2
(1− 2ρ)(1− ρ)

2
. The following result

is derived in the Appendix.

Theorem. Let F ∈ F(ξ, τ) with |a(x)| = xρCa(1 + o(1)) as x → ∞. As-

sume that
√

ka(n/k) → λ as k, n → ∞, k/n → 0. Setting σ2
k,n = (k/n)

−2ρ, it fol-

lows that Ξk,n :=
√

k
(

ξ̂P
k − ξ

)

is asymptotically normal with asymptotic mean

and variance given by

E∞(Ξk,n) =
λρ

1 − ρ

ζC2
aω

ζC2
aω + ρ4λ2

,(2.6)

V ar∞(Ξk,n) =
ξ2ρ8λ4

(ρ4λ2 + ζC2
aω)2

(

(

1 − ρ

ρ

)2

+
ζ2C4

aω2

ρ8λ4
+ 2

ζC2
aω

ρ4λ2

)

.(2.7)

Minimizing MSE∞(Ξk,n) = E2
∞(Ξk,n) + V ar∞(Ξk,n) with respect to ω,

after some lengthy calculations, leads to the asymptotically optimal value

ωopt = C−2
a .

One then obtains from (2.6) and (2.7) that

Eopt
∞ (Ξk,n) =

λρ

1 − ρ

ζ

ζ + λ2ρ4
,

V aropt
∞ (Ξk,n) =

ξ2

(λ2ρ4 + ζ)2

{

(1 − ρ)
2ρ6λ4

+ ζ2
+ 2ζρ4λ2

}

,

from which

(2.8) MSEopt
∞ (Ξk,n) = ξ2

+
λ2ρ2ξ2

(1 − 2ρ)

ξ2(1 − 2ρ)(1 − ρ)2 + ρ4λ2
.

Since the right hand side of (2.8) is an increasing function in λ2
it follows that

MSEopt
∞ (Ξk,n) ≤ lim

λ→∞
MSEopt

∞ (Ξk,n) = MSE∞

(√
k(ξ̂ML

k,n − ξ)
)

= ξ2

(

1 − ρ

ρ

)2

.

Also, expanding the right hand side of (2.8) for λ2 → 0 leads to

MSEopt
∞ (Ξk,n) = ξ2

+ λ2 ρ2

(1 − ρ)2
(1 + o(1)).
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We can conclude that the asymptotic MSE of the optimal penalized estimator

is uniformly smaller than the MSE of the EPD-ML estimator as given in (1.10),

while for smaller λ this asymptotic MSE follows the asymptotic MSE of the

Hill estimator, given in (1.9), up to terms of order λ2
. Hence with the penalty

ω/σ2
k,n = C−2

a (k/n)
2ρ

= a−2
(n/k) in (2.2), the penalized ML estimator asymp-

totically follows the better of the two existing estimators as a function of λ or

k.

Replacing (ξ̂k, δ̂k) by (ξ̂P
k , δ̂P

k ) in p̂EP
x,k , it follows from the proof of Theorem5.2

in Beirlant et al. (2009) that the resulting tail probability estimator p̂P
x,k satisfies

the following asymptotic result under the conditions of the Theorem:

When pn = P (X > xn) satisfies npn/k → 0 and log(npn)/
√

k → 0, then

√
k

log(k/(npn))
ξ

(

p̂P
xn,k

pn
− 1

)

is asymptotically normal with the same limit distribution as in the Theorem.

Hence the asymptotic MSE behaviour for the tail probability estimator has the

same characteristics as the tail index estimator.

From the simulations it will follow that the choice ω = 1 and the use of

estimator of ρ taken from Fraga Alves (2003) yields good results. However, in

order to alleviate the problem of choosing the number of top order statistics k

that are used in the estimation procedure, one can choose ω adaptively with each

sample aiming for a plot of ξ̂P
k as a function of k which is as horizontal as possible.

Setting ξ̂P
k = ξ̂P

k (ω) in order to emphasize the dependence of the penalized ML

estimator on ω, a possible choice of ω is obtained by minimizing the variance of

the resulting estimators for k = 1, ..., n:

(2.9) ωmv = argminωs2
n

(

ξ̂P
(ω)

)

,

with s2
n(ξ̂P

(ω)) =
1

n−1

∑n
k=1

(

ξ̂P
k (ω) − ¯̂

ξP
)2

.

3. SIMULATIONS AND PRACTICAL CASE STUDIES

Both the Bayes maximum a posteriori probability estimator and the pe-

nalized maximum likelihood estimator are implemented in R using the general

optim function with default parameters.

We performed a simulation study, taking 1000 repetitions of samples of size

n = 200, 500, 1000 studying the finite sample behaviour of ξ̂P
k,n(ω) for different

distributions. The bias and RMSE are plotted as a function of k.
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The following distributions are used:

• The extreme value distribution (EV) with F (x) = exp(−(1 + ξx)
−1/ξ

)

(1 + ξx > 0) taking ξ = 0.25 in which case ρ = −0.25 and Ca = 1.

• The Fréchet distribution with F̄ (x) = 1− exp(−x−1/ξ
) taking ξ = 0.5 in

which case ρ = −1 and Ca = 0.25.

• The Burr distribution with F̄ (x) = (1 + x)
−4/3

so that ξ = 0.75 and

ρ = −0.75 and Ca = 1.

• The loggamma distribution with F̄ (x) ∼ constant × x−2
(log x)

3
so that

ξ = 0.5, which does not belong to the class F(ξ, τ).

First, in Figures 1-4 we plotted the bias and the RMSE of the Hill estimator

Hk, the EPD-ML estimator ξ̂ML
k , the penalized ML estimator ξ̂P

k (1) with ω = 1,

the Bayesian estimator ξ̂B
k (1) with ω = 1, and the minimum variance reduced

bias estimator CHk from Caeiro et al. (2005) given by

CHk = Hk,n

(

1 − β̂k1(ρ̂k1)

1 − ρ̂k1

(n

k

)ρ̂k1

)

,

with

β̂k(ρ) =

(

k
n

)ρ
{(

1
k

∑k
j=1(

j
k )

−ρ
)(

1
k

∑k
j=1 Zj

)

−
(

1
k

∑k
j=1(

j
k )

−ρZj

)}

(

1
k

∑k
j=1(

j
k )−ρ

)(

1
k

∑k
j=1(

j
k )−ρZj

)

−
(

1
k

∑k
j=1(

j
k )−2ρZj

) ,

where Zj := j(log Xn−j+1,n − log Xn−j,n) (j = 1, 2, ...), and k1 = ⌊n0.99⌋.

In Figure 5 we briefly report on the effect of the choice of ω using ω = 1

and ω = ωmv and compare these with the optimal asymptotic RMSE expression

from (2.8).

We conclude from the simulations that the finite sample behaviour of the

proposed estimators follows the characteristics predicted by the asymptotic anal-

ysis to a great extent: for small k the shrinkage estimators ξP
k and ξB

k show a

similar behaviour as the Hill estimator, while for larger k the proposed estima-

tors tend to follow the characteristics of the bias reduced EPD-ML estimator.

In between these two k-regions the shrinkage estimators make a transition from

the EPD-ML to the Hill RMSE curve. Only in the Fréchet case the Hill estima-

tor shows a smaller RMSE than the shrinkage estimators for small k, while the

shrinkage estimators then still show a much smaller RMSE than the EPD-ML

estimator.

The Bayesian implementation shows a smaller RMSE than the penalized

ML estimator, except for the Fréchet distribution where both RMSEs are compa-

rable. In the latter case ξ̂B
k shows a negative bias. Also note that the difference

between both the Bayesian and penalized likelihood implementation decreases as

n increases.
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Figure 1: Bias (left) and root mean squared error (right) in case of the EV distri-

bution with ξ = 0.25 for sample sizes n = 200 (top), n = 500 (middle)

and n = 1000 (bottom) for the Hill estimator (H), the EPD-ML esti-

mator ξ̂ML
k (ML), the penalized ML estimator ξ̂P

k (1) with ω = 1 (PML),

the Bayesian estimator ξ̂B
k (1) with ω = 1 (B), and the minimum variance

reduced bias estimator CHk (CH).
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Figure 2: Bias (left) and root mean squared error (right) in case of the Fréchet

distribution with ξ = 0.5 for sample sizes n = 200 (top), n = 500 (mid-

dle) and n = 1000 (bottom) for the Hill estimator (H), the EPD-ML esti-

mator ξ̂ML
k (ML), the penalized ML estimator ξ̂P

k (1) with ω = 1 (PML),

the Bayesian estimator ξ̂B
k (1) with ω = 1 (B), and the minimum variance

reduced bias estimator CHk (CH).
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Figure 3: Bias (left) and root mean squared error (right) in case of the Burr dis-

tribution with ξ = 0.75 for sample sizes n = 200 (top), n = 500 (middle)

and n = 1000 (bottom) for the Hill estimator (H), the EPD-ML estima-

tor ξ̂ML
k (ML), the penalized ML estimator ξ̂P

k (1) with ω = 1 (PML),

the Bayesian estimator ξ̂B
k (1) with ω = 1 (B), and the minimum vari-

ance reduced bias estimator CHk (CH).
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Figure 4: Bias (left) and root mean squared error (right) in case of the loggamma

distribution with ξ = 0.5 for sample sizes n = 200 (top), n = 500 (mid-

dle) and n = 1000 (bottom) for the Hill estimator (H), the EPD-ML esti-

mator ξ̂ML
k (ML), the penalized ML estimator ξ̂P

k (1) with ω = 1 (PML),

the Bayesian estimator ξ̂B
k (1) with ω = 1 (B), and the minimum variance

reduced bias estimator CHk (CH).
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Figure 5: Bias (left) and root mean squared error (right) in case of the

Fréchet distribution with ξ = 0.5 (top) and Burr distribu-

tion with ξ = 0.75 (bottom) for sample size n = 200 comparing

the penalized ML estimator ξ̂P
k (1) with ω = 1, ω = ωmv from

(2.9), and the optimal asymptotic RMSE from (2.8) replacing

λ by Ca

√
k(k/n)

−ρ
.

The results in case of the loggamma distribution are quite good. Hence it

appears that the proposed method exhibits some robustness against deviations

from the underlying model.

When the plots of the shrinkage estimators are not systematically increasing

with increasing k as in the case of the Fréchet and the Burr distribution, it is

useful to use the choice ω = ωmv when using the penalized ML estimator. In

the case of the Fréchet distribution with ωopt = 16, this adaptive choice of ω

leads to a clear RMSE improvement in the transition zone (in k) between the

Hill and EPD-ML RMSE behaviour (see Figure 5, top). In the Burr case (see

Figure 5, bottom) where Ca = 1 and hence ωopt = 1 the choice ω = 1 is best,

but the adaptive minimum variance choice ω = ωmv is almost as good in RMSE

behaviour.

Overall, the proposed shrinkage estimators are competitive with respect to

the minimum variance reduced bias estimator CHk.
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In order to illustrate the use of the proposed method we consider the Secura

Belgian Re data introduced in section 6.2 in Beirlant et al. (2004). For k ≤ 100

the penalized ML estimator ξ̂P
k (1) is quite constant and follows the Hill estimator

quite closely. This is in contrast with the EPD-ML estimates which vary a lot

in that region. The Bayesian estimates ξ̂B
k (1) and CH estimates show somewhat

lower estimates. Beirlant et al. (2004) concluded that the Hill estimate in this

k-region is an appropriate choice and the adaptive choice k̂ = 98 was proposed

as one of the largest k-values in this region. This proposal is also supported by

the present analysis, leading to an estimate ξ̂P
(1) = 0.28.

Figure 6: Estimates of ξ for Secura Belgian Re data set: results for

the Hill estimator (H), the EPD-ML estimator ξ̂ML
k (ML),

the penalized ML estimator ξ̂P
k (1) with ω = 1 (PML), the

Bayesian estimator ξ̂B
k (1) with ω = 1 (B), and the minimum

variance reduced bias estimator CHk (CH) (left), focused plot

for k = 1, ..., 100 (right).

4. CONCLUSION

We introduced the use of shrinkage estimators in tail estimation, in order

to obtain bias reduction jointly with good MSE behaviour. Shrinkage estimators

can be obtained through a penalized ML approach, or through a Bayesian imple-

mentation. For larger thresholds the proposed estimators follow the behaviour of

the classical Hill estimator with small bias and minimal variance, while the new

estimators are never worse than the corresponding bias reduced ML estimators

without penalization. The simulated MSE results are competitive with those of

other bias reduced estimators. In contrast to existing minimum variance bias

reduced estimators we only use second order slow variation conditions.
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APPENDIX

Derivation of the expressions of (ξ̂P
k , δ̂P

k ). First consider the asymptotic

approximations of the penalize ML estimator of ξ based on maximization of

(2.2). From (2.1)–(2.2) using expansions in δ → 0 we obtain

1

k
log lpen(ξ, δ|y) = −(1 +

1

k
) log ξ − 1

k
(1 + ξ) − (

1

ξ
+ 1)

1

k

k
∑

j=1

log yj,k

− δ

1 + ξ

1

k

k
∑

j=1

(1 − yτ
j,k) + δ

1

k

k
∑

j=1

(1 − (1 + τ)yτ
j,k)

− ωδ2

2kσ2
k,n

+
δ2

2(1+ξ)

1

k

k
∑

j=1

(1−yτ
j,k)

2− δ2

2

1

k

k
∑

j=1

(1− (1+τ)yτ
j,k)

2

+ O(δ3
) + c,

where c is a constant only depending on σ2
k,n and τ . Note that

1
k

∑k
j=1 log yj,k =Hk,n.

Then the score functions admit the following expansions in δ ↓ 0 for j = 1, ..., k:

∂

∂ξ
log lpen(ξ, δ|yj,k) = −1

ξ
+

1

ξ2
log yj,k +

δ

ξ2
(1 − yτ

j,k) + O(δ2
),

∂

∂δ
log lpen(ξ, δ|yj,k) = −1

ξ

(

1 − (1 − ξτ)yτ
j,k

)

− ωδ

kσ2
k,n

+
δ

ξ

(

1 − 2(1 − ξτ)yτ
j,k + (1 − 2ξτ − ξτ2

)y2τ
j,k

)

+ O(δ2
).

Derivation of Theorem. Note that as k, n→∞, k/n→ 0 and
√

ka(n/k)→ λ,

we also have kσ2
k,n → λ2C−2

a . Also as
√

ka(n/k) → λ we find using Ek,n(s) →
1/(1 − ξs) (see Theorem A.1 in Beirlant et al., 2009) that

DP
k,n = −ξC2

a

λ2
+

ρ4

ξ(1 − 2ρ)(1 − ρ)2
+ op(1).

Then, proceeding as in the proof of Theorem 3.1 in Beirlant et al. (2009), we

obtain with Γk,n =
√

k(Hk,n − ξ), Ek,n(s) =
√

k(Ek,n(s) − 1
1−ξs) (s < 0), that

√
k
(

ξ̂P
k − ξ

)

=

√
k

(

Hk,n − ξ − δ̂P
k

ρ

1 − ρ

)

= Γk,n − ρ

1 − ρ

√
kδ̂P

k

= Γk,n

(

1 +
ρ2

ξ(1 − ρ2)

1

ξC2
a/λ2 + ρ4/ξ(1 − 2ρ)(1 − ρ)2

)

− ρ

ξC2
a/λ2 + ρ4/ξ(1 − 2ρ)(1 − ρ)2

Ek,n(τ̂) + op(1)

= Γk,n

(

1+
ρ2

(1−2ρ)

ζ + ρ4

)

+ Ek,n(τ̂)

(

(−ρ)ξ(1−2ρ)(1−ρ)
2

ρ4 + ζ

)

+ op(1).

UsingTheoremA.1inBeirlantetal.(2009),(2.6)and(2.7)followunder
√

ka(n/k)→λ.
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mators of these quantities when there is a functional (i.e. possibly infinite-dimensional)

covariate. Our estimators are obtained by combining regression techniques with a gen-
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1. INTRODUCTION

Studying extreme events is relevant in numerous fields of statistical appli-

cations. In hydrology for example, it is of interest to estimate the maximum level

reached by seawater along a coast over a given period, or to study extreme rainfall

at a given location; in actuarial science, a major problem for an insurance firm is

to estimate the probability that a claim so large that it represents a threat to its

solvency is filed. When analyzing the extremes of a random variable, a central

issue is that the straightforward empirical estimator of the quantile function is

not consistent at extreme levels; in other words, direct estimation of a quantile

exceeding the range covered by the available data is impossible, and this is of

course an obstacle to meaningful estimation results in practice.

In many of the aforementioned applications, the problem can be accu-

rately modeled using univariate heavy-tailed distributions, thus providing an

extrapolation method to estimate extreme quantiles. Roughly speaking, a dis-

tribution is said to be heavy-tailed if and only if its related survival function

decays like a power function with negative exponent at infinity; its so-called

tail index γ is then the parameter which controls its rate of convergence to 0

at infinity. If Q denotes the underlying quantile function, this translates into:

Q(δ) ≈ [(1− β)/(1− δ)]γQ(β) when β and δ are close to 1. The quantile function

at an arbitrarily high extreme level can then be consistently deduced from its

value at a typically much smaller level provided γ can be consistently estimated.

This procedure, suggested by Weissman [42], is one of the simplest and most

popular devices as far as extreme quantile estimation is concerned.

The estimation of the tail index γ, an excellent overview of which is given

in the recent monographs by Beirlant et al. [2] and de Haan and Ferreira [27],

is therefore a crucial step to gain understanding of the extremes of a random

variable whose distribution is heavy-tailed. In practical applications, the variable

of interest Y can often be linked to a covariate X. For instance, the value of

rainfall at a given location depends on its geographical coordinates; in actuarial

science, the claim size depends on the sum insured by the policy. In this sit-

uation, the tail index and quantiles of the random variable Y given X = x are

functions of x to which we shall refer as the conditional tail index and condi-

tional quantile functions. Their estimation has been considered first in the “fixed

design” case, namely when the covariates are nonrandom. Smith [36] and Davi-

son and Smith [12] considered a regression model while Hall and Tajvidi [28]

used a semi-parametric approach to estimate the conditional tail index. Fully

nonparametric methods have been developed using splines (see Chavez-Demoulin

and Davison [6]), local polynomials (see Davison and Ramesh [11]), a moving

window approach (see Gardes and Girard [19]) and a nearest neighbor approach

(see Gardes and Girard [20]), among others.
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Despite the great interest in practice, the study of the random covariate case

has been initiated only recently. We refer to the works of Wang and Tsai [41],

based on a maximum likelihood approach, Daouia et al. [9] who used a fixed

number of non parametric conditional quantile estimators to estimate the con-

ditional tail index, later generalized in Daouia et al. [10] to a regression context

with conditional response distributions belonging to the general max-domain of

attraction, Gardes and Girard [21] who introduced a local generalized Pickands-

type estimator (see Pickands [33]), Goegebeur et al. [25], who studied a non-

parametric regression estimator whose strong uniform properties are examined in

Goegebeur et al. [26]. Some generalizations of the popular moment estimator of

Dekkers et al. [13] have been proposed by Gardes [18], Goegebeur et al. [23, 24]

and Stupfler [37, 38]. In an attempt to obtain an estimator behaving better in

finite-sample situations, Gardes and Stupfler [22] worked on a smoothed local

Hill estimator (see Hill [29]) related to the work of Resnick and Stărică [34]. A

different approach, that has been successful in recent years, is to combine extreme

value theory and quantile regression: the pioneering paper is Chernozhukov [7],

and we also refer to the subsequent papers by Chernozhukov and Du [8], Wang

et al. [39] and Wang and Li [40].

The goal of this paper is to introduce integrated estimators of conditional

extreme quantiles and of the conditional tail index for random, possibly infinite-

dimensional, covariates. In particular, our estimator of the conditional tail index,

based on the integration of a conditional log-quantile estimator, is somewhat

related to the one of Gardes and Girard [19]. Our aim is to examine the asymp-

totic properties of our estimators, as well as to examine the applicability of our

conditional extreme quantile estimator on numerical examples and on real data.

Our paper is organized as follows: we define our estimators in Section 2. Their

asymptotic properties are stated in Section 3. A simulation study is provided

in Section 4 and we revisit a set of real chemometric data in Section 5. All the

auxiliary results and proofs are deferred to the Appendix.

2. FUNCTIONAL EXTREME QUANTILE: DEFINITION AND

ESTIMATION

Let (X1, Y1), ..., (Xn, Yn) be n independent copies of a random pair (X, Y )

taking its values in E × R+ where (E , d) is a (not necessarily finite-dimensional)

Polish space endowed with a semi-metric d. For instance, E can be the standard

p-dimensional space R
p
, a space of continuous functions over a compact metric

space, or a Lebesgue space Lp
(R), to name a few. For y > 0, we denote by S(y|X)

a regular version of the conditional probability P(Y > y|X). Note that since E is

a Polish space, such conditional probabilities always exist, see Jǐrina [30].
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In this paper, we focus on the situation where the conditional distribution

of Y given X is heavy-tailed. More precisely, we assume that there exists a

positive function γ(·), called the conditional tail index, such that

(2.1) lim
y→∞

S(λy|x)

S(y|x)
= λ−1/γ(x),

for all x ∈ E and all λ > 0. This is the adaptation of the standard extreme-value

framework of heavy-tailed distributions to the case when there is a covariate.

The conditional quantile function of Y given X = x is then defined for x ∈ E by

Q(α|x) := inf {y > 0 |S(y|x) ≤ α}. If x ∈ E is fixed, our final aim is to estimate

the conditional extreme quantile Q(βn|x) of order βn → 0. As we will show below,

this does in fact require estimating the conditional tail index γ(x) first.

2.1. Estimation of a functional extreme quantile

Recall that we are interested in the estimation of Q(βn|x) when βn → 0

as the sample size increases. The natural empirical estimator of this quantity is

given by

(2.2) ̂Qn(βn|x) := inf

{

y > 0 | ̂Sn(y|x) ≤ βn

}

,

where

̂Sn(y|x) =

n
∑

i=1

I{Yi > y}I{d(x, Xi) ≤ h}
/

n
∑

i=1

I{d(x, Xi) ≤ h}

and where h = h(n) is a nonrandom sequence converging to 0 as n → ∞. Un-

fortunately, denoting by mx(h) := nP(d(x, X) ≤ h) the average number of obser-

vations whose covariates belong to the ball B(x, h) = {x′ ∈ E | d(x, x′
) ≤ h} with

center x and radius h, it can be shown (see Proposition 6.1) that the condition

mx(h)βn → ∞ is required to obtain the consistency of ̂Qn(βn|x). This means that

at the same time, sufficiently many observations should belong to the ball B(x, h)

and βn should be so small that the quantile Q(βn|x) is covered by the range of

this data, and therefore the order βn of the functional extreme quantile cannot

be chosen as small as we would like. We thus need to propose another estimator

adapted to this case. To this end, we start by remarking (see Bingham et al. [4,

Theorem 1.5.12]) that (2.1) is equivalent to

(2.3) lim
α→0

Q(λα|x)

Q(α|x)
= λ−γ(x),

for all λ > 0. Hence, for 0 < β < α with α small enough, we obtain the extrap-

olation formula Q(β|x) ≈ Q(α|x)(α/β)
γ(x)

which is at the heart of Weissman’s

extrapolation method [42]. In order to borrow more strength from the available
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information in the sample, we note that, if µ is a probability measure on the

interval [0, 1], another similar, heuristic approximation holds:

Q(β|x) ≈
∫

[0,1]
Q(α|x)

(

α

β

)γ(x)

µ(dα).

If we have at our disposal a consistent estimator γ̂n(x) of γ(x) (an example of

such an estimator is given in Section 2.2), an idea is to estimate Q(βn|x) by:

(2.4)

̂

Qn(βn|x) =

∫

[0,1]

̂Qn(α|x)

(

α

βn

)bγn(x)

µ(dα).

In order to obtain a consistent estimator of the extreme conditional quantile, the

support of the measure µ, denoted by supp(µ), should be located around 0. To be

more specific, we assume in what follows that supp(µ) ⊂ [τu, u] for some τ ∈ (0, 1]

and u ∈ (0, 1) small enough. For instance, taking µ to be the Dirac measure at u

leads to

̂

Qn(βn|x) = ̂Qn(u|x) (u/βn)
bγn(x)

, which is a straightforward adaptation

to our conditional setting of the classical Weissman estimator [42]. If on the

contrary µ is absolutely continuous, estimator (2.4) is a properly integrated and

weighted version of Weissman’s estimator. Due to the fact that it takes more

of the available data into account, we can expect such an estimator to perform

better than the simple adaptation of Weissman’s estimator, a claim we investigate

in our finite-sample study in Section 4.

2.2. Estimation of the functional tail index

To provide an estimator of the functional tail index γ(x), we note that equa-

tion (2.3) warrants the approximation γ(x) ≈ log[Q(α|x)/Q(u|x)]/ log(u/α) for

0 < α < u when u is small enough. Let Ψ(·, u) be a measurable function defined

on (0, u) such that 0 <
∣

∣

∫ u
0 log(u/α)Ψ(α, u)dα

∣

∣ < ∞. Multiplying the aforemen-

tioned approximation by Ψ(·, u), integrating between 0 and 1 and replacing Q(·|x)

by the classical estimator ̂Qn(·|x) defined in (2.2) leads to the estimator:

(2.5) γ̂n(x, u) :=

∫ u

0
Ψ(α, u) log

̂Qn(α|x)

̂Qn(u|x)
dα

/

∫ u

0
log(u/α)Ψ(α, u)dα.

Without loss of generality, we shall assume in what follows that

∫ u

0
log(u/α)Ψ(α, u)dα = 1.

Particular choices of the function Ψ(·, u) actually yield generalizations of some

well-known tail index estimators to the conditional framework. Let kx := uMx(h),

where Mx(h) is the total number of covariates whose distance to x is not greater

than h:

Mx(h) =

n
∑

i=1

I{d(x, Xi) ≤ h}.
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The choice Ψ(·, u) = 1/u leads to the estimator:

(2.6) γ̂H
n (x) =

1

kx

⌊kx⌋
∑

i=1

log

̂Qn((i − 1)/Mx(h)|x)

̂Qn(kx/Mx(h)|x)
,

which is the straightforward conditional adaptation of the classical Hill estimator

(see Hill [29]). Now, taking Ψ(·, u) = u−1
(log(u/·)− 1) leads, after some algebra,

to the estimator:

γ̂Z
n (x) =

1

kx

⌊kx⌋
∑

i=1

i log

(

kx

i

)

log

̂Qn((i − 1)/Mx(h)|x)

̂Qn(i/Mx(h)|x)
.

This estimator can be seen as a generalization of the Zipf estimator (see Kratz

and Resnick [31], Schultze and Steinebach [35]).

3. MAIN RESULTS

Our aim is now to establish asymptotic results for our estimators. We

assume in all what follows that Q(·|x) is continuous and decreasing. Particular

consequences of this condition include that S(Q(α|x)|x) = α for any α ∈ (0, 1) and

that given X = x, Y has an absolutely continuous distribution with probability

density function f(·|x).

Recall that under (2.1), or equivalently (2.3), the conditional quantile func-

tion may be written for all t > 1 as follows:

Q(t−1|x) = c(t|x) exp

(
∫ t

1

∆(v|x) − γ(x)

v
dv

)

,

where c(·|x) is a positive function converging to a positive constant at infinity

and ∆(·|x) is a measurable function converging to 0 at infinity, see Bingham et

al. [4, Theorem 1.3.1]. We assume in what follows that

(HSO) c(·|x) is a constant function equal to c(x) > 0, the function ∆(·|x)

has ultimately constant sign at infinity and there exists ρ(x) < 0

such that for all λ > 0,

lim
y→∞

∣

∣

∣

∣

∆(λy|x)

∆(y|x)

∣

∣

∣

∣

= λρ(x).

The constant ρ(x) is called the conditional second-order parameter of the dis-

tribution. These conditions on the function ∆(·|x) are commonly used when

studying tail index estimators and make it possible to control the error term in

convergence (2.3). In particular, it is straightforward to see that for all z > 0,

(3.1) lim
t→∞

1

∆(t|x)

(

Q((tz)
−1|x)

Q(t−1|x)
− zγ(x)

)

= zγ(x) z
ρ(x) − 1

ρ(x)
,

which is the conditional analogue of the second-order condition of de Haan and

Ferreira [27] for heavy-tailed distributions, see Theorem 2.3.9 therein.
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Finally, for 0 < α1 < α2 < 1, we introduce the quantity:

ω (α1, α2, x, h) = sup

α∈[α1,α2]
sup

x′∈B(x,h)

∣

∣

∣

∣

log
Q(α|x′

)

Q(α|x)

∣

∣

∣

∣

,

which is the uniform oscillation of the log-quantile function in its second argu-

ment. Such a quantity is also studied in Gardes and Stupfler [22], for instance. It

acts as a measure of how close conditional distributions are for two neighboring

values of the covariate.

These elements make it possible to state an asymptotic result for our con-

ditional extreme quantile estimator:

Theorem 3.1. Assume that conditions (2.3) and (HSO) are satisfied

and let un,x ∈ (0, 1) be a sequence converging to 0 and such that supp(µ) ⊂
[τun,x, un,x] with τ ∈ (0, 1]. Assume also that mx(h) → ∞ and that there exists

a(x) ∈ (0, 1) such that:

(3.2) c1 ≤ lim inf
n→∞

un,x[mx(h)]
a(x) ≤ lim sup

n→∞
un,x[mx(h)]

a(x) ≤ c2

for some constants 0 < c1 ≤ c2, z1−a(x)
∆

2
(za(x)|x) → λ(x) ∈ R as z → ∞ and

(3.3) [mx(h)]
1−a(x)ω2

(

[mx(h)]
−1−δ, 1 − [mx(h)]

−1−δ, x, h
)

→ 0

for some δ > 0. If moreover [mx(h)]
(1−a(x))/2

(γ̂n(x) − γ(x))
d−→ Γ with Γ a non-

degenerate distribution, then, provided we have that βn[mx(h)]
a(x) → 0 and

[mx(h)]
a(x)−1

log
2
([mx(h)]

−a(x)/βn) → 0, it holds that

[mx(h)]
(1−a(x))/2

log([mx(h)]−a(x)/βn)

(

̂

Qn(βn|x)

Q(βn|x)
− 1

)

d−→ Γ.

Note that [mx(h)]
1−a(x) → ∞ depends on the average number of available

data points that can be used to compute the estimator. More precisely, under

condition (3.2), this quantity is essentially proportional to un,xmx(h), which is

the average number of data points actually used in the estimation. In particular,

the conditions in Theorem 3.1 are analogues of the classical hypotheses in the

estimation of an extreme quantile. Besides, condition (3.3) ensures that the

distribution of Y given X = x′
is close enough to that of Y given X = x when

x′
is in a sufficiently small neighborhood of x. Finally, taking µ to be the Dirac

measure at un,x makes it possible to obtain the asymptotic properties of the

functional adaptation of the standard Weissman extreme quantile estimator. In

particular, as in the unconditional univariate case, the asymptotic distribution

of the conditional extrapolated estimator depends crucially on the asymptotic

properties of the conditional tail index estimator used.



Integrated Functional Weissman Estimator 117

We proceed by stating the asymptotic normality of the estimator γ̂n(x, u)

in (2.5). To this end, an additional hypothesis on the weighting function Ψ(·, u)

is required.

(HΨ) The function Ψ(·, u) satisfies for all u ∈ (0, 1] and β ∈ (0, u]:

u

β

∫ β

0
Ψ(α, u)dα = Φ(β/u) and sup

0<υ≤1/2

∫ υ

0
|Ψ(α, υ)|dα < ∞,

where Φ is a nonincreasing probability density function on (0, 1)

such that Φ
2+κ

is integrable for some κ > 0. In addition, there

exists a positive continuous function g defined on (0, 1) such that

for any k > 1 and i ∈ {1, 2, ..., k},

(3.4) |iΦ (i/k) − (i − 1)Φ ((i − 1)/k)| ≤ g (i/(k + 1)) ,

and the function g(·) max(log(1/·), 1) is integrable on (0, 1).

Note that for all t ∈ (0, 1), 0 ≤ tΦ(t) ≤
∫ t/2
0 |Ψ(α, 1/2)|dα. Since the right-

hand side converges to 0 as t↓0, we may extend the definition of the map t 7→ tΦ(t)

by saying it is 0 at t = 0. Hence, inequality (3.4) is meaningful even when i = 1.

Condition (HΨ) on the weighting function Ψ(·, u) is similar in spirit to a

condition introduced in Beirlant et al. [1]. This condition is satisfied for instance

by the functions Ψ(·, u) = u−1
and Ψ(·, u) = u−1

(log(u/·) − 1) with g(·) = 1 for

the first one and, for the second one, g(·) = 1 − log(·). In particular, our results

shall then hold for the adaptations of the Hill and Zipf estimators mentioned at

the end of Section 2.2.

The asymptotic normality of our family of estimators of γ(x) is established

in the following theorem.

Theorem 3.2. Assume that conditions (2.3), (HSO) and (HΨ) are sat-

isfied, that mx(h) → ∞ and u = un,x → 0. Assume that there exists a(x) ∈
(0, 1) such that z1−a(x)

∆
2
(za(x)|x) → λ(x) ∈ R as z → ∞, condition (3.3) holds

and that there are two ultimately decreasing functions ϕ1 ≤ ϕ2 such that

z1−a(x)ϕ2
2(z) → 0 as z → ∞ and ϕ1(mx(h)) ≤ un,x[mx(h)]

a(x) − 1 ≤ ϕ2(mx(h)).

Then, [mx(h)]
(1−a(x))/2

(γ̂n(x, un,x) − γ(x)) converges in distribution to

N
(

λ(x)

∫ 1

0
Φ(α)α−ρ(x)dα, γ2

(x)

∫ 1

0
Φ

2
(α)dα

)

.

Our asymptotic normality result thus holds under generalizations of the

common hypotheses on the standard univariate model, provided the conditional

distributions of Y at two neighboring points are sufficiently close. We close this

section by pointing out that our main results are also similar in spirit to results

obtained in the literature for other conditional tail index or conditional extreme-

value index estimators, see e.g. Gardes and Stupfler [22] and Stupfler [37, 38].
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4. SIMULATION STUDY

4.1. Hyperparameters selection

The aim of this paragraph is to propose a selection procedure of the hy-

perparameters involved in the estimator

̂

Qn(βn|x) of the extreme conditional

quantile and in the estimator γ̂n(x, u) of the functional tail index. Assuming that

the measure µ used in (2.4) is such that supp(µ) ⊂ [τu, u] for some τ ∈ (0, 1)

fixed by the user (a discussion of the performance of the estimator as a function

of τ is included in Section 4.2 below), these hyperparameters are: the bandwidth

h controlling the smoothness of the estimators and the value u ∈ (0, 1) which

selects the part of the tail distribution considered in the estimation procedure.

The criterion used in our selection procedure is based on the following remark:

for any positive and integrable weight function W : [0, 1] → [0,∞),

EW := E

[
∫ 1

0
W (α) (I{Y > Q(α|X)} − α)

2 dα

]

=

∫ 1

0
W (α)α(1 − α)dα.

The sample analogue of EW is given by

1

n

n
∑

i=1

∫ 1

0
W (α) (I{Yi > Q(α|Xi)} − α)

2 dα,

and for a good choice of h and u, this quantity should of course be close to the

known quantity EW . Let then W
(1)
n and W

(2)
n be two positive and integrable

weight functions. Replacing the unobserved variable Q(α|Xi) by the statistic

̂Qn,i(α|Xi) which is the estimator (2.2) computed without the observation (Xi, Yi)

leads to the following estimator of E
W

(1)
n

:

̂E
(1)

W
(1)
n

(h) :=
1

n

n
∑

i=1

∫ 1

0
W (1)

n (α)

(

I{Yi > ̂Qn,i(α|Xi)} − α
)2

dα.

Note that ̂E
(1)

W
(1)
n

(h) only depends on the hyperparameter h. In the same way, one

can also replace Q(α|Xi) by the statistic

̂

Qn,i(α|Xi) which is the estimator (2.4)

computed without the observation (Xi, Yi). An estimator of E
W

(2)
n

is then given

by:

̂E
(2)

W
(2)
n

(u, h) :=
1

n

n
∑

i=1

∫ 1

0
W (2)

n (α)

(

I{Yi >

̂

Qn,i(α|Xi)} − α
)2

dα.

Obviously, this last quantity depends both on u and h. We propose the following

two-stage procedure to choose the hyperparameters u and h. First, we compute



Integrated Functional Weissman Estimator 119

our selected bandwidth hopt
by minimizing with respect to h the function

CV
(1)

(h) :=

[

̂E
(1)

W
(1)
n

(h) −
∫ 1

0
W (1)

n (α)α(1 − α)dα

]2

.

Next, our selected sample fraction uopt
is obtained by minimizing with respect to

u the function CV
(2)

(u, hopt
) where

CV
(2)

(u, h) :=

[

̂E
(2)

W
(2)
n

(u, h) −
∫ 1

0
W (2)

n (α)α(1 − α)dα

]2

.

Note that the functions CV
(1)

and CV
(2)

can be seen as adaptations to the prob-

lem of conditional extreme quantile estimation of the cross-validation function

introduced in Li et al. [32].

4.2. Results

The behavior of the extreme conditional quantile estimator (2.4), when

the estimator (2.5) of the functional tail index is used together with our selec-

tion procedure of the hyperparameters, is tested on some random pairs (X, Y ) ∈
C1

[−1, 1]× (0,∞), where C1
[−1, 1] is the space of continuously differentiable func-

tions on [−1, 1]. We generate n = 1000 independent copies (X1, Y1), ..., (Xn, Yn)

of (X, Y ) where X is the random curve defined for all t ∈ [−1, 1] by X(t) :=

sin[2πtU ] + (V + 2π)t + W , where U , V and W are independent random vari-

ables drawn from a standard uniform distribution. Note that this random co-

variate was used for instance in Ferraty et al. [16]. Regarding the conditional

distribution of Y given X = x, x ∈ C1
[−1, 1], two distributions are considered.

The first one is the Fréchet distribution, for which the conditional quantile is

given for all α ∈ (0, 1) by Q(α|x) = [− log (1 − α)]
−γ(x)

. The second one is the

Burr distribution with parameter r > 0, for which Q(α|x) = (α−rγ(x) − 1)
1/r

. For

these distributions, letting x′
be the first derivative of x and

z(x) =
2

3

[
∫ 1

−1
x′

(t)[1 − cos(πt)]dt − 23

2

]

,

the functional tail index is given by

γ(x) = exp

[

− log(3)

9
z2

(x)

]

I{|z(x)| < 3} +
1

3
I{|z(x)| ≥ 3}.

In this setup, it is straightforward to show that z(x) ∈ [−3.14, 3.07] approxi-

mately, and therefore the range of values of γ(x) is the full interval [1/3, 1]. Let us

also mention that the second order parameter ρ(x) appearing in condition (HSO)

is then ρ(x) = −1 for the Fréchet distribution and ρ(x) = −rγ(x) for the Burr

distribution; in the latter case, the range of values of ρ(x) is therefore [−r,−r/3].
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The space C1
[−1, 1] is endowed with the semi-metric d given for all x1, x2

by

d(x1, x2) =

[
∫ 1

−1

(

x′
1(t) − x′

2(t)
)2

dt

]1/2

,

i.e. the L2
-distance between first derivatives. To compute γ̂n(x, u), we use the

weight function Ψ(·, u) = u−1
(log(u/·) − 1), and the measure µ used in the in-

tegrated conditional quantile estimator is assumed to be absolutely continuous

with respect to the Lebesgue measure, with density

pτ,u(α) =
1

u(1 − τ)
I{α ∈ [τu, u]}.

In what follows, this estimator is referred to as the Integrated Weissman Estima-

tor (IWE). Other absolutely continuous measures µ, with different densities with

respect to the Lebesgue measure, have been tested, with different values of τ . It

appears that the impact of the choice of the parameter τ is more important than

the one of the measure µ. We thus decided to present in this simulation study

the results for the aforementioned value of the measure µ only, but with different

tested values for τ .

The hyperparameters are selected using the procedure described in Sec-

tion 4.1. Since we are interested in the tail of the conditional distribution, the

supports of the weight functions W
(1)
n and W

(2)
n should be located around 0. More

specifically, for i ∈ {1, 2}, we take

W (i)
n (α) := log

(

α

β
(i)
n,1

)

I{α ∈ [β
(i)
n,1, β

(i)
n,2]},

where β
(1)
n,1 = ⌊2√n log n⌋/n, β

(1)
n,2 = ⌊3√n log n⌋/n, β

(2)
n,1 = ⌊5 log n⌋/n and β

(2)
n,2 =

⌊10 log n⌋/n. The cross-validation function CV
(1)

(h) is minimized over a grid H
of 20 points evenly spaced between 1/2 and 10 to obtain the optimal value hopt

,

while the value uopt
is obtained by minimizing over a grid U of 26 points evenly

spaced between 0.005 and 0.255 the function CV
(2)

(u, hopt
).

For the Fréchet distribution and two Burr distributions (one with r = 2 and

one with r = 1/20), the conditional extreme quantile estimator (2.4) is computed

with the values uopt
and hopt

obtained by our selection procedure. The quality

of the estimator is measured by the Integrated Squared Error given by:

ISE :=
1

n

n
∑

i=1

∫ β
(2)
n,2

β
(2)
n,1

log
2

̂

Qn,i(α|Xi)

Q(α|Xi)
dα.

This procedure is repeated N = 100 times. To give a graphical idea of the be-

havior of our estimator (2.4), we first depict, in Figure 1, boxplots of the N

obtained replications of this estimator, computed with τ = 9/10, for the Fréchet

distribution and for some values of the quantile order βn and of the covariate x.
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Figure 1: For the Fréchet distribution, boxplots of (the logarithm of) estimator (2.4)

for βn = β
(2)

n,1 (top), βn = (β
(2)

n,1 + β
(2)

n,2)/2 (middle) and βn = β
(2)

n,2 (bottom).

In each picture, the covariate x is respectively (from left to right) such that

z(x) = −2 (γ(x) ≈ 0.64), z(x) = 0 (γ(x) = 1) and z(x) = 2 (γ(x) ≈ 0.64).

In each case, the true value of the conditional quantile to be estimated is

represented by a cross.
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More precisely, we take here βn ∈ {β(2)
n,1, (β

(2)
n,1 + β

(2)
n,2)/2, β

(2)
n,2} and three values of

the covariate are considered: x = x1 with z(x1) = −2 (and then γ(x1) ≈ 0.64),

x = x2 with z(x2) = 0 (giving γ(x2) = 1) and x = x3 with z(x3) = 2 (which entails

γ(x3) ≈ 0.64). As expected, the quality of the estimation is strongly impacted

by the quantile order βn but also by the actual position of the covariate and, of

course, by the value of the true conditional tail index γ(x).

Next, the median and the first and third quartiles of the N values of the

Integrated Squared Error are gathered in Table 1. The proposed estimator is

compared to the adaptation of the Weissman estimator obtained by taking for

the measure µ in (2.4) the Dirac measure at u. This estimator is referred to as the

Weissman Estimator (WE) in Table 1. In the WE estimator, the functional tail

index γ(x) is estimated either by (2.6) or by the generalized Hill-type estimator

of Gardes and Girard [21]: for J ≥ 2, this estimator is given by

γ̂GG
(x, u) =

J
∑

j=1

(log ̂Qn(u/j2|x) − log ̂Qn(u|x))

/

J
∑

j=1

log(j2
) .

Following their advice, we set J = 10. Again, the median and the first and third

quartiles of the N values of the Integrated Squared Error of these two estimators

are given in Table 1. In this Table, optimal median errors among the five tested es-

timators are marked in boldface characters. It appears that the IWEs outperform

the two WEs in the case of the Fréchet and Burr (with r = 1/20) distributions.

Table 1: Comparison of the Integrated Squared Errors of the follow-

ing extreme conditional quantile estimators: IWE with τ ∈
{1/10, 1/2, 9/10} (lines 1 to 3), WE when γ(x) is estimated

by (2.6) (line 4) and WE when γ(x) is estimated by the Hill-

type estimator (line 5). Results are given in the following form:

[first quartile median third quartile].

Fréchet dist. Burr dist. (r = 2)

IWE (τ = 1/10) [0.0060 0.0077 0.0132] [0.0063 0.0099 0.0147]

IWE (τ = 1/2) [0.0060 0.0077 0.0112] [0.0058 0.0095 0.0128]

IWE (τ = 9/10) [0.0058 0.0076 0.0107] [0.0059 0.0093 0.0119]

WE (with (2.6)) [0.0054 0.0078 0.0115] [0.0054 0.0088 0.0137]

WE (Hill-type) [0.0068 0.0094 0.0120] [0.0071 0.0103 0.0137]

Burr dist. (r = 1/20)

IWE (τ = 1/10) [0.6427 0.9504 1.3982]

IWE (τ = 1/2) [0.6040 0.8343 1.2018]

IWE (τ = 9/10) [0.8010 1.0870 1.2725]

WE (with (2.6)) [0.5848 0.8909 1.3372]

WE (Hill-type) [0.7679 1.1314 1.4599]
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It also seems that the choice of τ has some influence on the quality of the estimator

but, unfortunately, an optimal choice of τ apparently depends on the unknown

underlying distribution. It is interesting though to note that the optimal IWE

estimator among the three tested here always enjoys a smaller variability than

the WE estimator: for instance, in the case of the Burr distribution with r = 2,

even though the IWE with τ = 9/10 does not outperform the WE (with γ(x)

estimated by (2.6)) in terms of median ISE, the interquartile range of the ISE is

27.7% lower for the IWE compared to what it is for the WE. Finally, as expected,

the value of ρ(x) has a strong impact on the estimation procedure: a value of

ρ(x) close to 0 leads to large values of the Integrated Squared Error.

5. REAL DATA EXAMPLE

In this section, we showcase our extreme quantile Integrated Weissman

Estimator on functional chemometric data. This data, obtained by considering

n = 215 pieces of finely chopped meat, consists of pairs of observations (xn, zn),

where xi is the absorbance curve of the ith piece of meat, obtained at 100 regularly

spaced wavelengths between 850 and 1050 nanometers (this is also called the

spectrometric curve), and zi is the percentage of fat content in this piece of meat.

The data, openly available at http://lib.stat.cmu.edu/datasets/tecator, is

for instance considered in Ferraty and Vieu [14, 15]. Figure 2 is a graph of all

215 absorbance curves.
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Figure 2: Spectrometric curves for the data.

Because the percentage of fat content zi obviously belongs to [0, 100], it

has a finite-right endpoint and therefore cannot be conditionally heavy-tailed as
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required by model (2.1). We thus consider the “inverse fat content” yi = 100/zi

in this analysis. The top panel of Figure 3 shows the Hill plot of the sample

(y1, ..., yn) without integrating covariate information. It can be seen in this figure

that the Hill plot seems to be stabilizing near the value 0.4 for a sizeable portion of

the left of the graph, thus indicating the plausible presence of a heavy right tail in

the data (y1, ..., yn), see for instance Theorem 3.2.4 in de Haan and Ferreira [27].

The other panels in Figure 3 show exponential QQ-plots for the log-data points

whose covariates lie in a fixed-size neighborhood of certain pre-specified points

in the covariate space. It is seen in these subfigures that these plots are indeed

roughly linear towards their right ends, which supports our conditional heavy

tails assumption.

On these grounds, we therefore would like to analyze the influence of the

covariate information, which is the absorbance curve, upon the inverse fat content.

While of course the absorbance curves obtained are in reality made of discrete

data because of the discretization of this curve, the precision of this discretization

arguably makes it possible to consider our data as in fact functional. This, in our

opinion, fully warrants the use of our estimator in this case.

Because the covariate space is functional, one has to wonder about how to

measure the influence of the covariate and then about how to represent the re-

sults. A nice account of the problem of how to represent results when considering

functional data is given in Ferraty and Vieu [15]. Here, we look at the variation

of extreme quantile estimates in two different directions of the covariate space.

To this end, we consider the semi-metric

d(x1, x2) =

[
∫ 1050

850

(

x′′
1(t) − x′′

2(t)
)2

dt

]1/2

,

also advised by Ferraty and Vieu [14], and we compute:

• A typical pair of covariates, i.e. a pair (xmed
1 , xmed

2 ) such that

d(xmed
1 , xmed

2 ) = median{d(xi, xj), 1 ≤ i, j ≤ n, i 6= j};

• A pair of covariates farthest from each other, i.e. a pair (xmax
1 , xmax

2 )

such that

d(xmax
1 , xmax

2 ) = max{d(xi, xj), 1 ≤ i, j ≤ n, i 6= j}.

For the purpose of comparison, we also compute the “average covariate” x =

n−1
∑n

i=1 xi. In particular, we represent on Figure 4 our two pairs of covariates

together with the average covariate, the same scale being used on the y-axis

in both figures. Recall that since the semi-metric d is the L2
-distance between

second-order derivatives, it acts as a measure of how much the shapes of two

covariate curves are different, rather than measuring how far apart they are.
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Figure 3: Top panel: Hill plot for the sample (y1, ..., yn). On the x-axis at the top of

the panel is the value of the lower threshold for the computation of the Hill

estimator, i.e. the lowest order statistic. Other panels: local exponential

QQ-plots for the log-data points whose covariates belong to a neighborhood

of certain pre-specified points in the covariate space.
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Figure 4: Top picture, solid lines: a pair of typical covariates. Bottom picture,

solid lines: the pair of covariates farthest from each other. In both

pictures the dotted line is the average covariate.

We compute our conditional extreme quantile estimator at the levels 5/n

and 1/n, using the methodology given in Section 4.2. In particular, the selection

parameters β
(1)
n,1, β

(1)
n,2, β

(2)
n,1 and β

(2)
n,2 used in the cross-validation methodology were

the exact same ones used in the simulation study, namely 0.437, 0.655, 0.035 and

0.069, respectively. The bandwidth h is selected in the interval [0.00316, 0.0116],

the lower bound in this interval corresponding to the median of all distances

d(xi, xj) (i 6= j) and the upper bound corresponding to 90% of the maximum

of all distances d(xi, xj), for a final selected value of 0.00717. The value of the

parameter u is selected exactly as in the simulation study, and the selection pro-

cedure gives the value 0.185. Finally, we set τ = 0.9 in our Integrated Weissman

Estimator.
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Results are given in Figure 5; namely, we compute the extreme quantile esti-

mates

̂

Qn(β|x), for β ∈{5/n,1/n}, and x belonging to either the line [xmed
1 , xmed

2 ] =

{txmed
1 + (1− t)xmed

2 , t ∈ [0, 1]} or to the line [xmax
1 , xmax

2 ]. It can be seen in these

figures that the estimates in the direction of a typical pair of covariates are re-

markably stable; they are actually essentially indistinguishable from the estimates

at the average covariate, which are 42.41 for β = 5/n and 93.86 for β = 1/n.
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Figure 5: Solid line: extreme quantile estimate in the direction of a typical pair of

covariates, dashed line: extreme quantile estimate in the direction of a pair

of covariates farthest from each other. Top picture: case β = 5/n, bottom

picture: β = 1/n.

By contrast, the estimates on the line [xmax
1 , xmax

2 ], while roughly stable for 60%

of the line and approximately equal to the value of the estimated quantiles at

the average covariate, very sharply drop afterwards, the reduction factor be-

ing close to 10 from the beginning of the line to its end in the case β = 5/n.
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This conclusion suggests that while in typical directions of the covariate space

the tail behavior of the fat content is very stable, there may be certain directions

in which this is not the case. In particular, there appear to be certain values of

the covariate for which thresholds for the detection of unusual levels of fat should

differ from those of more standard cases.

6. PROOFS OF THE MAIN RESULTS

Before proving the main results, we recall two useful facts. The first one is

a classical equivalent of

Mx(h) :=

n
∑

i=1

I{d(Xi, x) ≤ h}.

If mx(h) → ∞ as n → ∞ then, for any δ ∈ (0, 1):

(6.1) [mx(h)]
(1−δ)/2

∣

∣

∣

∣

Mx(h)

mx(h)
− 1

∣

∣

∣

∣

P−→ 0 as n → ∞,

see Lemma 1 in Stupfler [37]. For the second one, let {Y ∗
i , i = 1, ..., Mx(h)} be

the response variables whose associated covariates {X∗
i , i = 1, ..., Mx(h)} are such

that d(X∗
i , x) ≤ h. Lemma 4 in Gardes and Stupfler [22] shows that the random

variables Vi = 1 − F (Y ∗
i |X∗

i ) are such that, for all u1, ..., up ∈ [0, 1],

(6.2) P

(

p
⋂

i=1

{Vi ≤ ui}|Mx(h) = p

)

= u1...up,

i.e. they are independent standard uniform random variables given Mx(h).

6.1. Proof of Theorem 3.1

The following proposition is a uniform consistency result for the estimator

̂Qn(βn|x) when βn goes to 0 at a moderate rate.

Proposition 6.1. Assume that conditions (2.3), (HSO), (3.2) and (3.3)

are satisfied. If mx(h) → ∞, then

sup

α∈[τun,x,un,x]

∣

∣

∣

∣

∣

̂Qn(α|x)

Q(α|x)
− 1

∣

∣

∣

∣

∣

= OP

(

[mx(h)]
(a(x)−1)/2

)

.
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Proof: Let Mn := Mx(h), {Ui, i ≥ 1} be independent standard uniform

random variables, Vi := S(Y ∗
i |X∗

i ) and

Zn(x) := sup

α∈[τun,x,un,x]

∣

∣

∣

∣

∣

̂Qn(α|x)

Q(α|x)
− 1

∣

∣

∣

∣

∣

.

We start with the following inequality: Zn(x) ≤ Tn(x) + R
(Q)
n (x), with

Tn(x) := sup

α∈[τun,x,un,x]

∣

∣

∣

∣

Q(V⌊αMn⌋+1,Mn
|x)

Q(α|x)
− 1

∣

∣

∣

∣

(6.3)

and R(Q)
n (x) := sup

α∈[τun,x,un,x]

∣

∣

∣

∣

∣

̂Qn(α|x) − Q(V⌊αMn⌋+1,Mn
|x)

Q(α|x)

∣

∣

∣

∣

∣

.(6.4)

Let us first focus on the term Tn(x). For any t > 0,

P(vn,xTn(x) > t) =

n
∑

j=0

P(vn,xTn(x) > t|Mn = j)P(Mn = j),

where vn,x := [mx(h)]
(1−a(x))/2

. From (6.1), letting

(6.5) In := [mx(h)(1 − [mx(h)]
[a(x)/4]−1/2

), mx(h)(1 + [mx(h)]
[a(x)/4]−1/2

)],

one has P(Mn /∈ In) → 0 as n → ∞. Hence,

P(vn,xTn(x) > t) ≤ sup
p∈In

P(vn,x,Tn(x) > t|Mn = p) + o(1).

Using Lemma A.1,

sup
p∈In

P(vn,xTn(x) > t|Mn = p) = sup
p∈In

P(vn,xT p(x) > t),

where

T p(x) := sup

α∈[τun,x,un,x]

∣

∣

∣

∣

Q(U⌊pα⌋+1,p|x)

Q(α|x)
− 1

∣

∣

∣

∣

.

Using condition (3.2), it is clear that there are constants d1, d2 > 0 with d1 < d2

such that for n large enough, we have for all p ∈ In:

T p(x) ≤ sup

α∈[d1p−a(x),d2p−a(x)]

∣

∣

∣

∣

Q(U⌊pα⌋+1,p|x)

Q(α|x)
− 1

∣

∣

∣

∣

.

Thus, for all t > 0, P(vn,xTn(x) > t) is bounded above by

sup
p∈In

P

(

vn,x sup

α∈[d1p−a(x),d2p−a(x)]

∣

∣

∣

∣

Q(U⌊pα⌋+1,p|x)

Q(α|x)
− 1

∣

∣

∣

∣

> t

)

+ o(1).

Furthermore, for n large enough, there exists κ > 0 such that for all p ∈ In,

vn,x ≤ κp(1−a(x))/2
and thus, for all t > 0, P(vn,xTn(x) > t) is bounded above by

sup
p∈In

P

(

κp(1−a(x))/2
sup

α∈[d1p−a(x),d2p−a(x)]

∣

∣

∣

∣

Q(U⌊pα⌋+1,p|x)

Q(α|x)
− 1

∣

∣

∣

∣

> t

)

+ o(1).
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Since

p(1−a(x))/2
sup

α∈[d1p−a(x),d2p−a(x)]

∣

∣

∣

∣

Q(U⌊pα⌋+1,p|x)

Q(α|x)
− 1

∣

∣

∣

∣

= OP(1),

(see Lemma A.2 for a proof), it now becomes clear that Tn(x) = OP(v−1
n,x).

Let us now focus on the term R
(Q)
n (x). As before, one can show that for all

t > 0,

P(vn,xR(Q)
n (x) > t) ≤ sup

p∈In

P(vn,xR(Q)
n (x) > t|Mn = p) + o(1).

Lemma A.1 and condition (3.3) yield for any t > 0 and n large enough:

sup
p∈In

P(vn,xR(Q)
n (x) > t|Mn = p)

≤ sup
p∈In

P(vn,xω(U1,p, Up,p, x, h) exp(ω(U1,p, Up,p, x, h))(1 + T p(x)) > t)

≤ sup
p∈In

P(p(1−a(x))/2ω(U1,p, Up,p, x, h) exp(ω(U1,p, Up,p, x, h))(1 + T p(x)) > t/κ)

≤ sup
p∈In

[

P(U1,p < [mx(h)]
−1−δ

) + P(Up,p > 1 − [mx(h)]
−1−δ

)

]

.

Since for n large enough

sup
p∈In

[

P(U1,p < [mx(h)]
−1−δ

) + P(Up,p > 1 − [mx(h)]
−1−δ

)

]

(6.6)

= 2 sup
p∈In

[

1 − [1 − [mx(h)]
−1−δ

]
p
]

≤ 2

(

1 − [1 − [mx(h)]
−1−δ

]
2mx(h)

)

→ 0,

we thus have proven that R
(Q)
n (x) = oP(v−1

n,x) and the proof is complete.

Proof of Theorem 3.1: The key point is to write

̂

Qn(βn|x) =

∫ un,x

τun,x

Q(α|x)

(

α

βn

)γ(x)
{

̂Qn(α|x)

Q(α|x)

(

α

βn

)bγn(x)−γ(x)
}

µ(dα).

Now, by assumption vn,x(γ̂n(x) − γ(x))
d−→ Γ where vn,x := [mx(h)]

(1−a(x))/2
.

Since βn/un,x is asymptotically bounded from below and above by sequences

proportional to βn[mx(h)]
a(x) → 0, one has for n large enough that

sup

α∈[τun,x,un,x]

∣

∣

∣

∣

∣

log

[

(

α

βn

)bγn(x)−γ(x)
]
∣

∣

∣

∣

∣

≤ |γ̂n(x) − γ(x)| log

(

un,x

βn

)

= oP(1),

since by assumption v−1
n,x log(un,x/βn) → 0. A Taylor expansion for the exponen-

tial function thus yields

(

α

βn

)bγn(x)−γ(x)

− 1 − log(α/βn)(γ̂n(x) − γ(x)) = OP

(

v−1
n,x log

2
(un,x/βn)

)

,
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uniformly in α ∈ [τun,x, un,x]. We then obtain

̂

Qn(βn|x) =

∫ un,x

τun,x

Q(α|x)

(

α

βn

)γ(x)

Gn,x(α)µ(dα)

where

Gn,x(α) :=

̂Qn(α|x)

Q(α|x)

[

1 + log(α/βn)(γ̂n(x) − γ(x)) + OP

(

v−1
n,x log

2
(un,x/βn)

)]

.

By Proposition 6.1,

sup

α∈[τun,x,un,x]

∣

∣

∣

∣

∣

̂Qn(α|x)

Q(α|x)
− 1

∣

∣

∣

∣

∣

= OP(v−1
n,x),

and therefore:

(6.7) Gn,x(α) = 1 + log(α/βn)(γ̂n(x) − γ(x)) + OP

(

v−1
n,x log

2
(un,x/βn)

)

.

By Lemma A.3,

(6.8) sup

α∈[τun,x,un,x]

∣

∣

∣

∣

∣

Q(α|x)

Q(βn|x)

(

α

βn

)γ(x)

− 1

∣

∣

∣

∣

∣

= O
(

∆(u−1
n,x|x)

)

,

and thus, (6.7) and (6.8) lead to
̂

Q(βn|x)

Q(βn|x)
− 1 = (γ̂n(x) − γ(x))

∫ un,x

τun,x

log(α/βn)µ(dα)
[

1 + O
(

∆(u−1
n,x|x)

)]

+ O
(

∆(u−1
n,x|x)

)

+ OP

(

v−1
n,x log

2
(un,x/βn)

)

.

Since un,x/βn → 0 and µ([τun,x, un,x]) = 1, one has

∫ un,x

τun,x

log(α/βn)µ(dα) =

∫ un,x

τun,x

[log(un,x/βn) + log(α/un,x)] µ(dα)

= log(un,x/βn)(1 + o(1)),

and thus ̂

Q(βn|x)

Q(βn|x)
− 1 = (γ̂n(x) − γ(x)) log(un,x/βn) [1 + o(1)]

+ O
(

∆(u−1
n,x|x)

)

+ OP

(

v−1
n,x log

2
(un,x/βn)

)

.

Using the convergence in distribution of γ̂n(x) completes the proof.

6.2. Proof of Theorem 3.2

For the sake of brevity, let vn,x = [mx(h)]
(1−a(x))/2

, Mn = Mx(h) and Kn =

un,xMn. The cumulative distribution function of a normal distribution with mean

λ(x)
∫ 1
0 Φ(α)α−ρ(x)dα and variance γ2

(x)
∫ 1
0 Φ

2
(α)dα is denoted by Hx in what
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follows. Let t∈R and ε > 0. Denoting by En(t) the event {vn,x (γ̂n(x, un,x)− γ(x))

≤ t}, one has

|P [En(t)] − Hx(t)| ≤
n
∑

p=0

P(Mn = p) |P [En(t)|Mn = p] − Hx(t)| .

Recall that from (6.1), P(Mn /∈ In) → 0 as n → ∞ where In is defined in (6.5).

Hence, for n large enough,

(6.9) |P [En(t)] − Hx(t)| ≤ sup
p∈In

|P [En(t)|Mn = p] − Hx(t)| + ε

8
.

Now, using the notation Vi := S(Y ∗
i |X∗

i ) for i = 1, ..., Mn, let us introduce the

statistics:

γ̃n(x, un,x) :=

⌊Kn⌋
∑

i=1

Wi,n(un,x, Mn) log
Q(Vi,Mn

|x)

Q(V⌊Kn⌋+1,Mn
|x)

and R(γ)
n (x) := γ̂n(x, un,x) − γ̃n(x, un,x),(6.10)

where

(6.11) Wi,n(un,x, Mn) :=

∫ i/Mn

(i−1)/Mn

Ψ(α, un,x)dα.

It is straightforward that for all κ > 0,

(6.12) sup
p∈In

|P [En(t)|Mn = p] − Hx(t)| ≤ T (1)
n,x + T (2)

n,x,

where

T (1)
n,x := sup

p∈In

∣

∣

∣
P

[

En(t) ∩
{

vn,x|R(γ)
n (x)| ≤ κ

}

|Mn = p
]

− Hx(t)
∣

∣

∣

and T (2)
n,x := sup

p∈In

P

[

vn,x|R(γ)
n (x)| > κ|Mn = p

]

.

Let us first focus on the term T
(1)
n,x. Let ˜En(t) := {vn,x (γ̃n(x, un,x) − γ(x)) ≤ t}.

For all p ∈ In, P[En(t)∩ {vn,x|R(γ)
n (x)| ≤ κ}|Mn = p] ≤ P[ ˜En(t + κ)|Mn = p] and

P

[

En(t) ∩
{

vn,x|R(γ)
n (x)| ≤ κ

}

|Mn = p
]

≥ P

[

˜En(t − κ) ∩
{

vn,x|R(γ)
n (x)| ≤ κ

}

|Mn = p
]

≥ P

[

˜En(t − κ)|Mn = p
]

− P

[

vn,x|R(γ)
n (x)| > κ|Mn = p

]

.

Using the inequality |x| ≤ |a| + |b| which holds for all x ∈ [a, b], it is then clear

that for all κ > 0,

T (1)
n,x ≤ sup

p∈In

∣

∣

∣
P

[

˜En(t + κ)|Mn = p
]

− Hx(t + κ)

∣

∣

∣

+ sup
p∈In

∣

∣

∣
P

[

˜En(t − κ)|Mn = p
]

− Hx(t − κ)

∣

∣

∣

+ |Hx(t) − Hx(t + κ)| + |Hx(t) − Hx(t − κ)| + T (2)
n,x.
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Since Hx is continuous, we can actually choose κ > 0 so small that

|Hx(t) − Hx(t + κ)| ≤ ε

8
and |Hx(t) − Hx(t − κ)| ≤ ε

8

and therefore

T (1)
n,x ≤ sup

p∈In

∣

∣

∣
P

[

˜En(t + κ)|Mn = p
]

− Hx(t + κ)

∣

∣

∣
(6.13)

+ sup
p∈In

∣

∣

∣
P

[

˜En(t − κ)|Mn = p
]

− Hx(t − κ)

∣

∣

∣
+ T (2)

n,x +
ε

4
.

We now focus on the two first terms in the left-hand side of the previous inequality.

From Lemma A.4, the distribution of γ̃n(x, un,x) given Mn = p is that of

γp(x, un,x) :=
1

pun,x

⌊pun,x⌋
∑

i=1

Φ

(

i

pun,x

)

i log
Q(Ui,p|x)

Q(Ui+1,p|x)
.

Hence, for all s∈R and p∈ In, P[ ˜En(s)|Mn = p] = P[vn,x(γp(x, un,x)− γ(x)) ≤ s].

Furthermore, for n large enough we have

p/2 ≤ p

1 + [mx(h)][a(x)/4]−1/2
≤ mx(h) ≤ p

1 − [mx(h)][a(x)/4]−1/2
≤ 2p

for all p ∈ In, so that for n large enough:

(6.14) ξ(+)
(p) ≤ mx(h) ≤ ξ(−)

(p),

with ξ(+)
(p) := p[1 + (2p)

[a(x)/4]−1/2
]
−1

and ξ(−)
(p) := p[1 − (p/2)

[a(x)/4]−1/2
]
−1

.

Under our assumptions on the sequence un,x, the previous inequalities lead to

k1(p) ≤ pun,x ≤ k2(p) where k1(p) := p[ξ(−)
(p)]

−a(x)
[1+ϕ1(ξ

(−)
(p))] and k2(p) :=

p[ξ(+)
(p)]

−a(x)
[1 + ϕ2(ξ

(+)
(p))]. Since Φ is a nonincreasing function on (0, 1), we

then get that:

γp(x, un,x) ≤ 1

k1(p)

⌊pun,x⌋
∑

i=1

Φ

(

i

⌊k2(p)⌋ + 1

)

i log
Q(Ui,p|x)

Q(Ui+1,p|x)

≤ 1

k1(p)

⌊k2(p)⌋+1
∑

i=1

Φ

(

i

⌊k2(p)⌋ + 1

)

i log
Q(Ui,p|x)

Q(Ui+1,p|x)

=

̂

γp(x, k1(p), k2(p))

with

(6.15)

̂

γp(x, k, k′
) :=

1

k

⌊k′⌋
∑

i=1

Φ

(

i

⌊k′⌋ + 1

)

i log
Q(Ui,p|x)

Q(Ui+1,p|x)
.

A similar lower bound applies and thus

̂

γp(x, k2(p), k1(p) − 1) ≤ γp(x, un,x) ≤
̂

γp(x, k1(p), k2(p)) for all p ∈ In. As a first conclusion, using the inequality |x| ≤
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|a| + |b| which holds for all x ∈ [a, b], we have shown that for all s ∈ R,

sup
p∈In

∣

∣

∣
P

[

˜En(s)|Mn = p
]

− Hx(s)
∣

∣

∣

≤ sup
p∈In

∣

∣P
[

vn,x(

̂

γp(x, k1(p), k2(p)) − γ(x)) ≤ s
]

− Hx(s)
∣

∣

+ sup
p∈In

∣

∣P
[

vn,x(

̂

γp(x, k2(p), k1(p) − 1) − γ(x)) ≤ s
]

− Hx(s)
∣

∣ .

Since from (6.14), [ξ(+)
(p)]

(1−a(x))/2 ≤ vn,x ≤ [ξ(−)
(p)]

(1−a(x))/2
for all p ∈ In and

since by assumption on the ϕi,

k1(p)

k2(p)
= 1 + O

(

p[a(x)/4]−1/2
)

+ O
(

ϕ1(ξ
(+)

(p))

)

+ O
(

ϕ2(ξ
(+)

(p))

)

= 1 + o(p(a(x)−1)/2
),

one can apply Lemmas A.6 and A.7 to show that for n large enough

sup
p∈In

∣

∣

∣
P

[

˜En(t + κ)|Mn = p
]

− Hx(t + κ)

∣

∣

∣
(6.16)

+ sup
p∈In

∣

∣

∣
P

[

˜En(t − κ)|Mn = p
]

− Hx(t − κ)

∣

∣

∣
≤ ε

2
.

It remains to study the term T
(2)
n,x. Lemma A.4 entails that

T (2)
n,x ≤ sup

p∈In

P

[

2vn,xω(U1,p, Up,p, x, h)

∫ un,x

0
|Ψ(α, un,x)|dα > κ

]

.

From condition (HΨ),

lim sup
u↓0

∫ u

0
|Ψ(α, u)|dα = C < ∞

and thus for n large enough, using (6.6):

T (2)
n,x ≤ sup

p∈In

P

[

vn,xω(U1,p, Up,p, x, h) >
κ

4C

]

≤ 2

(

1 − [1 − [mx(h)]
−1−δ

]
2mx(h)

)

≤ ε

8
.(6.17)

Collecting (6.9), (6.12), (6.13), (6.16) and (6.17) concludes the proof.
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APPENDIX

The first lemma is dedicated to the statistics Tn(x) and R
(Q)
n (x) defined in

the proof of Proposition 6.1, equations (6.3) and (6.4).

Lemma A.1. Let {Ui, i ≥ 1} be independent standard uniform random

variables. For x ∈ E such that mx(h) > 0, the conditional distribution of Tn(x)

given Mx(h) = p is that of

T p(x) := sup

α∈[τun,x,un,x]

∣

∣

∣

∣

Q(U⌊pα⌋+1,p|x)

Q(α|x)
− 1

∣

∣

∣

∣

and, given Mx(h) = p, R
(Q)
n (x) is bounded from above by

ω(U1,p, Up,p, x, h) exp[ω(U1,p, Up,p, x, h)]
(

1 + T p(x)
)

.

Proof: Recall the notation Mn := Mx(h) and Vi := S(Y ∗
i |X∗

i ). First, given

Mn = p, equation (6.2) entails that {Vi, 1 ≤ i ≤ Mn}|{Mn = p} d
= {Ui, 1 ≤ i ≤

p} where U1, ..., Up are independent standard uniform variables. It thus holds

that

{

Q(V⌊αMn⌋+1,Mn
|x), α ∈ [0, 1)

}

|{Mn = p} d
=
{

Q(U⌊pα⌋+1,p|x), α ∈ [0, 1)
}

.

As a direct consequence

(A.1) Tn(x)|{Mn = p} d
= T p(x).

Let us now focus on the term R
(Q)
n (x). Since Q(·|x) is continuous and decreasing,

one has, for i = 1, ..., Mn,

log Q(Vi|x) − ω(V1,Mn
, VMn,Mn

, x, h) ≤ log Y ∗
i = log Q(Vi|X∗

i )

≤ log Q(Vi|x) + ω(V1,Mn
, VMn,Mn

, x, h).

It follows from Lemma 1 in Gardes and Stupfler [22] that for all i ∈ {1, ..., Mn},

(A.2)
∣

∣log Y ∗
Mn−i+1,Mn

− log Q(Vi,Mn
|x)
∣

∣ ≤ ω(V1,Mn
, VMn,Mn

, x, h).

Since ̂Qn(α|x) = Y ∗
Mn−i+1,Mn

for all α ∈ [(i − 1)/Mn, i/Mn), the mean value the-

orem leads to

sup

α∈[τun,x,un,x]

∣

∣

∣

∣

∣

̂Qn(α|x)

Q(V⌊αMn⌋+1,Mn
|x)

− 1

∣

∣

∣

∣

∣

≤ ω(V1,Mn
, VMn,Mn

, x, h) exp [ω(V1,Mn
, VMn,Mn

, x, h)] .
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Hence,

R(Q)
n (x) = sup

α∈[τun,x,un,x]

∣

∣

∣

∣

∣

̂Qn(α|x)

Q(V⌊αMn⌋+1,Mn
|x)

− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q(V⌊αMn⌋+1,Mn
|x)

Q(α|x)

∣

∣

∣

∣

≤ ω(V1,Mn
, VMn,Mn

, x, h) exp [ω(V1,Mn
, VMn,Mn

, x, h)] (1 + Tn(x)).

Use finally (6.2) and (A.1) to complete the proof.

The next lemma examines the convergence of Tn(x), defined in the above

lemma, given Mx(h).

Lemma A.2. Let U1, ..., Up be independent standard uniform variables.

Assume that (2.3) and (HSO) hold. If a(x)∈ (0,1) is such that p1−a(x)
∆

2
(pa(x)|x)

→ λ ∈ R as p → ∞ then, for all d1, d2 > 0 with d1 < d2, we have:

p(1−a(x))/2
sup

α∈[d1p−a(x),d2p−a(x)]

∣

∣

∣

∣

Q(U⌊pα⌋+1,p|x)

Q(α|x)
− 1

∣

∣

∣

∣

= OP(1).

Proof: Recall that (HSO) entails that (3.1) holds. Then, one can apply

[27, Theorem 2.4.8] to the independent random variables {Q(Ui|x), i = 1, ..., p}
distributed from the conditional survival function S(·|x): because

inf
α∈[d1p−a(x),d2p−a(x)]

α

d2p−a(x)
=

d1

d2
> 0,

it holds that

(A.3) p(1−a(x))/2
sup

α∈[d1p−a(x),d2p−a(x)]

∣

∣

∣

∣

∣

∣

Q(U⌊pα⌋+1,p|x)

Q(d2p−a(x)|x)
−
(

αpa(x)

d2

)−γ(x)
∣

∣

∣

∣

∣

∣

= OP(1).

Since (3.1) must in fact hold locally uniformly in z > 0 (see [27, Theorem B.2.9])

and [d1, d2] is a compact interval, it is clear that

(A.4) p(1−a(x))/2
sup

α∈[d1p−a(x),d2p−a(x)]

∣

∣

∣

∣

∣

∣

Q(α|x)

Q(d2p−a(x)|x)
−
(

αpa(x)

d2

)−γ(x)
∣

∣

∣

∣

∣

∣

= O(1).

Combine (A.3) and (A.4) to conclude the proof.

Lemma A.3 below controls a bias term appearing in the proof of Theo-

rem 3.1.

Lemma A.3. Assume that conditions (2.3) and (HSO) are satisfied. If

mx(h) → ∞ and βn/un,x → 0 we have that:

sup

α∈[τun,x,un,x]

∣

∣

∣

∣

∣

Q(α|x)

Q(βn|x)

(

α

βn

)γ(x)

− 1

∣

∣

∣

∣

∣

= OP

(

∆(u−1
n,x|x)

)

.
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Proof: Recall

αγ(x)Q(α|x) = c(x) exp

(

∫ α−1

1

∆(v|x)

v
dv

)

,

and therefore

Q(α|x)

Q(βn|x)

(

α

βn

)γ(x)

= exp

(

∫ α−1

β−1
n

∆(v|x)

v
dv

)

.

Furthermore, since α ≤ un,x,

∣

∣

∣

∣

∣

∫ α−1

β−1
n

∆(v|x)

v
dv

∣

∣

∣

∣

∣

≤ |∆(u−1
n,x|x)|

∫ ∞

1

∣

∣

∣

∣

∣

∆(yu−1
n,x|x)

∆(u−1
n,x|x)

∣

∣

∣

∣

∣

dy

y
.

As the function y 7→ y−1
∆(y|x) is regularly varying with index ρ(x)− 1 < −1, we

may write, according to [4, Theorem 1.5.2],

∣

∣

∣

∣

∣

∫ α−1

β−1
n

∆(v|x)

v
dv

∣

∣

∣

∣

∣

≤ 2|∆(u−1
n,x|x)|

∫ ∞

1
yρ(x)−1dy = − 2

ρ(x)
|∆(u−1

n,x|x)|.

Since the right-hand side converges to 0 and does not depend on α, it follows by

a Taylor expansion of the exponential function that

sup

α∈(τun,x,un,x]

∣

∣

∣

∣

∣

Q(α|x)

Q(βn|x)

(

α

βn

)γ(x)

− 1

∣

∣

∣

∣

∣

= OP

(

∆(u−1
n,x|x)

)

,

which is the required conclusion.

The next result is dedicated to the statistics γ̃n(x, un,x) and R
(γ)
n (x) intro-

duced in the proof of Theorem 3.2, equation (6.10).

Lemma A.4. Let Ui, i ≥ 1 be independent standard uniform random

variables. For any x ∈ E such that mx(h) > 0, the conditional distribution of

γ̃n(x, un,x) given Mx(h) = p is that of

γp(x, un,x) =
1

pun,x

⌊pun,x⌋
∑

i=1

Φ

(

i

pun,x

)

i log
Q(Ui,p|x)

Q(Ui+1,p|x)
,

and given Mx(h) = p, R
(γ)
n (x) is bounded from above by

2ω(U1,p, Up,p, x, h)

∫ un,x

0
|Ψ(α, un,x)|dα.
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Proof: Set again Mn = Mx(h). Equation (6.2) entails that the conditional

distribution of γ̂n(x, un,x) given Mn = p is that of

⌊pun,x⌋
∑

i=1

Wi,n(un,x, p) log
Q(Ui,p|x)

Q(U⌊pun,x⌋+1,p|x)

=

⌊pun,x⌋
∑

i=1

Wi,n(un,x, p)

⌊pun,x⌋
∑

j=i

log
Q(Uj,p|x)

Q(Uj+1,p|x)
,

where {Ui, i ≥ 1} are independent standard uniform random variables, and this

is equal to γp(x, un,x) by switching the summation order and using assump-

tion (HΨ). Now, since ̂Qn(α|x) = Y ∗
Mn−i+1,Mn

for all α ∈ [(i − 1)/Mn, i/Mn),

one has

γ̂n(x, un,x) =

⌊un,xMn⌋
∑

i=1

Wi,n(un,x, Mn) log
Y ∗

Mn−i+1,Mn

Y ∗
Mn−⌊un,xMn⌋,Mn

,

where Wi,n(un,x, Mn) was defined in (6.11). Hence the identity

R(γ)
n (x) =

⌊un,xMn⌋
∑

i=1

Wi,n(un,x, Mn) log

[

Q(V⌊un,xMn⌋+1,Mn
|x)

Q(Vi,Mn
|x)

Y ∗
Mn−i+1,Mn

Y ∗
Mn−⌊un,xMn⌋,Mn

]

.

Using the bound (A.2) yields to

R(γ)
n (x) ≤ 2ω(V1,Mn

, VMn,Mn
, x, h)

⌊un,xMn⌋
∑

i=1

|Wi,n(un,x, Mn)|

≤ 2ω(V1,Mn
, VMn,Mn

, x, h)

∫ un,x

0
|Ψ(α, un,x)|dα.

Using equation (6.2) completes the proof.

Our next result studies some particular Riemann sums. It shall prove useful

when examining the convergence of γ̃n(x, un,x) given Mx(h), see Lemma A.6.

Lemma A.5. Let f be an integrable function on (0, 1). Assume that f

is nonnegative and nonincreasing. For any nonnegative continuous function g on

[0, 1] we have that:

lim
m→∞

1

m − 1

m−1
∑

i=1

f

(

i

m

)

g

(

i

m

)

=

∫ 1

0
f(t)g(t)dt.

If moreover f is square-integrable then:

lim
m→∞

√
m

∣

∣

∣

∣

∣

1

m − 1

m−1
∑

i=1

f

(

i

m

)

−
∫ 1

0
f(t)dt

∣

∣

∣

∣

∣

= 0.
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Proof: To prove the first statement, it suffices to show that |Sm(f, g) −
S(f, g)| → 0 as m → ∞ where

Sm(f, g) :=
1

m

m−1
∑

i=1

f

(

i

m

)

g

(

i

m

)

and S(f, g) :=

∫ 1

0
f(t)g(t)dt.

Note first that:

|S(f, g) − Sm(f, g)| ≤
m−1
∑

i=1

∫ i/m

(i−1)/m

∣

∣

∣

∣

f(t)g(t) − f

(

i

m

)

g

(

i

m

)∣

∣

∣

∣

dt

+

∫ 1

(m−1)/m
f(t)g(t)dt.

Since g is nonnegative on [0, 1] and f is nonincreasing, it is straightforward that

for all t ∈ [(i − 1)/m, i/m)

|f(t)g(t) − f(i/m)g(i/m)| ≤ f(t) sup

|s−s′|≤1/m
|g(s) − g(s′)|

+ ‖g‖∞ (f(t) − f(i/m)) ,

where ‖g‖∞ is the finite supremum of g on [0, 1]. The fact that f is nonincreasing

yields f(t) − f(i/m) ≤ f((i − 1)/m) − f(i/m) for all i = 2, ..., m and thus the

previous inequality leads to

|S(f, g) − Sm(f, g)| ≤
∫ 1

0
f(t)dt sup

|s−s′|≤1/m
|g(s) − g(s′)|

+ ‖g‖∞
(

∫ 1/m

0
f(t)dt − f(1)

m

)

+ ‖g‖∞
∫ 1

(m−1)/m
f(t)dt → 0(A.5)

by the uniform continuity of g on [0, 1] and the fact that f is an integrable

function. This proves the first statement of the result. To prove the second one,

remark that:

√
m

∣

∣

∣

∣

∣

1

m − 1

m−1
∑

i=1

f

(

i

m

)

−
∫ 1

0
f(t)dt

∣

∣

∣

∣

∣

≤
√

m

m − 1
Sm(f, 1) +

√
m|S(f, 1) − Sm(f, 1)|.

Using the first statement with g = 1 entails that the first term of the left-hand

side converges to 0 as m → ∞. Now, taking g = 1 in (A.5) leads to

√
m|S(f, 1) − Sm(f, 1)| ≤

√
m

∫ 1/m

0
f(t)dt +

√
m

∫ 1

(m−1)/m
f(t)dt.

By the Cauchy-Schwarz inequality,

√
m

∫ 1/m

0
f(t)dt ≤

(

∫ 1/m

0
f2

(t)dt

)1/2

→ 0

and
√

m

∫ 1

(m−1)/m
f(t)dt ≤

(

∫ 1

(m−1)/m
f2

(t)dt

)1/2

→ 0

since f2
is integrable on (0, 1). The proof is complete.
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The next lemma establishes the asymptotic normality of the random vari-

able γp(x, k, k′
) introduced in the proof of Theorem 3.2, equation (6.15).

Lemma A.6. Assume that conditions (2.3), (HSO) and (HΨ) are sat-

isfied. Let k(p) and k′
(p) be two sequences satisfying, for some a(x) ∈ (0, 1),

pa(x)−1k(p) → 1 and p(1−a(x))/2
[k(p)/k′

(p) − 1] → 0 as p → ∞. Let U1, ..., Up be

independent standard uniform random variables. If p1−a(x)
∆

2
(pa(x)|x) → λ(x) ∈

R, then the random variable

̂

γp(x, k(p), k′
(p)) :=

1

k(p)

⌊k′(p)⌋
∑

i=1

Φ

(

i

⌊k′(p)⌋ + 1

)

i log
Q(Ui,p|x)

Q(Ui+1,p|x)

is such that p(1−a(x))/2
(

̂

γp(x, k(p), k′
(p))−γ(x)) converges in distribution to a nor-

mal distribution with mean λ(x)
∫ 1
0 Φ(α)α−ρ(x)dα and variance γ2

(x)
∫ 1
0 Φ

2
(α)dα.

Proof: For the sake of brevity, let

̂

γp(x) :=

̂

γp(x, k(p), k′
(p)). Let vp :=

p(1−a(x))/2
and for j ∈ {1, ..., k′

(p)}

∆̃j(p|x) := ∆

(

p + 1

⌊k′(p)⌋ + 1

∣

∣

∣

∣

x

)(

j

⌊k′(p)⌋ + 1

)−ρ(x)

Under conditions (2.3), (HSO) and (HΨ), one can apply Theorem 3.1 in Beirlant et

al. [1] to prove that

vp







k(p)

⌊k′(p)⌋

̂

γp(x) − 1

⌊k′(p)⌋

⌊k′(p)⌋
∑

j=1

Φ

(

j

⌊k′(p)⌋ + 1

)

[

γ(x) + ∆̃j(p|x)

]







converges to a centered normal distribution with variance σ2
Φ := γ2

(x)
∫ 1
0 Φ

2
(α)dα.

As a direct consequence of Lemma A.5, the previous convergence can be rewritten

(A.6) vp

[

k(p)

⌊k′(p)⌋

̂

γp(x) − γ(x)

]

d−→ N
(

λ(x)

∫ 1

0
Φ(α)α−ρ(x)dα, σ2

Φ

)

.

Finally, since

vp

[

̂

γp(x) − γ(x)
]

= vp

(⌊k′
(p)⌋

k(p)
− 1

)

k(p)

⌊k′(p)⌋

̂

γp(x)

+ vp

[

k(p)

⌊k′(p)⌋

̂

γp(x) − γ(x)

]

,

a combination of convergence (A.6) and of the fact that vp[k(p)/k′
(p) − 1] → 0

as p → ∞ concludes the proof.

The final lemma is a technical tool we shall need to bridge the gap between

the convergence of our estimators and that of their conditional versions.
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Lemma A.7. Let {Zp, p ∈ N} be a sequence of random variables such

that for all t ∈ R, P(Zp ≤ t) → H(t) where H is a continuous cumulative distri-

bution function. For n ∈ N, let In := [un, vn] where un → ∞ as n → ∞ and let

(an) be a sequence such that there exist two functions ξ1 and ξ2 converging to 1

at infinity with

sup
p∈In

ξ1(p)

an
≤ 1 ≤ inf

p∈In

ξ2(p)

an
.

Then, for all t ∈ R,

lim
n→∞

sup
p∈In

|P(anZp ≤ t) − H(t)| = 0.

Proof: We start by remarking that for all κ > 0,

sup
p∈In

|P(anZp ≤ t) − H(t)| ≤ Dn,p + sup
p∈In

P(|(an − 1)Zp| > κ),

where

Dn,p := sup
p∈In

|P({anZp ≤ t} ∩ {|(an − 1)Zp| ≤ κ}) − H(t)| .

Now, since H is continuous, there exists κ > 0 such that for n large enough,

|H(t) − H(t + κ)| ≤ ε

6
and |H(t) − H(t − κ)| ≤ ε

6
.

Furthermore, since ξ1(p) ≤ an ≤ ξ2(p) for any p ∈ In, using the inequality |x| ≤
|a|+ |b| which holds for all x ∈ [a, b], one has for all p ∈ In that |an − 1| ≤ |ξ1(p)−
1|+ |ξ2(p) − 1|; besides, since Zp = OP(1) and ξ1, ξ2 converge to 1 at infinity, we

have |ξ1(p) − 1|Zp = oP(1) and |ξ2(p) − 1|Zp = oP(1). Therefore, for all ε > 0,

sup
p∈In

P(|(an − 1)Zp| > κ) ≤ sup
p∈In

P(|ξ1(p) − 1||Zp| + |ξ2(p) − 1||Zp| > κ) ≤ ε

6

for n large enough. Now remark that for all p ∈ In, P({anZp ≤ t}∩{|(an−1)Zp| ≤
κ}) ≤ P(Zp ≤ t + κ) and that

P({anZp ≤ t} ∩ {|(an − 1)Zp| ≤ κ}) ≥ P({Zp ≤ t − κ} ∩ {|(an − 1)Zp| ≤ κ})
≥ P(Zp ≤ t − κ) − P(|(an − 1)Zp| > κ).

Hence, for all κ > 0, the inequality:

Dn,p ≤ sup
p∈In

|P(Zp ≤ t + κ) − H(t + κ)| + sup
p∈In

|P(Zp ≤ t − κ) − H(t − κ)|

+ |H(t) − H(t + κ)| + |H(t) − H(t − κ)| + ε

6

≤ sup
p∈In

|P(Zp ≤ t + κ) − H(t + κ)| + sup
p∈In

|P(Zp ≤ t − κ) − H(t − κ)| + ε

2
.

By assumption, for n large enough:

sup
p∈In

|P(Zp ≤ t + κ) − H(t + κ)| ≤ ε

6
and sup

p∈In

|P(Zp ≤ t − κ) − H(t − κ)| ≤ ε

6
.

It is now straightforward to conclude the proof.
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