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Abstract:

• The average kappa coefficient of a binary diagnostic test is a chance corrected index

between the binary diagnostic test and the gold standard, and it depends on the sen-

sitivity and the specificity of the diagnostic test and on the disease prevalence. In this

article, several hypothesis tests are studied to compare the average kappa coefficients

of two (o more) binary diagnostic tests done on the same subjects. Simulation exper-

iments were carried out to study the type I errors and the powers of the hypothesis

tests studied. A program in R was written to solve the problem studied and it can be

freely downloaded from the Internet. The results were applied to a real example on

the diagnosis of coronary disease.
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1. INTRODUCTION

The fundamental parameters to assess and compare the performance of bi-

nary diagnostic tests are sensitivity and specificity. Sensitivity is the probability

of the result of the binary diagnostic test (BDT) being positive when the indi-

vidual has the disease, and specificity is the probability of the result of the BDT

being negative when the individual does not have the disease. Both parameters

depend only on the specific characteristics of the BDT, i.e. the intrinsic prop-

erties (physical, biological, chemical, etc.) of the BDT. When comparing two

BDTs in paired designs, i.e. when the two BDTs and the gold standard (GS) are

applied to all of the individuals in a random sample, the comparison of the two

sensitivities (specificities) is made conditioning in the total of individuals with

the disease (without the disease) and applying the exact test to compare two

binomial proportions or its asymptotic version (McNemar’s test).

When considering the losses associated with an erroneous classification with

the BDT, the parameter that is used to assess the BDT is the weighted kappa co-

efficient [1,2,3]. The weighted kappa coefficient depends on the sensitivity and the

specificity of the BDT, on the disease prevalence in the population studied and on

the relative loss between the false positives and the false negatives (weighting in-

dex). The value of the weighting index is set by the clinical laboratory researcher

based on his or her knowledge about the problem to be solved. Bloch [4] studied

the comparison of the weighted kappa coefficients of two BDTs in relation to the

same GS subject to a paired design.

The problem posed by the weighted kappa coefficient as a measure to as-

sess and compare the performance of BDTs is the allocation of the value to the

weighting index, since the clinical laboratory researcher does not have enough

knowledge about the problem to be able to allocate that value, and two clinicians

might even allocate different values to that index in the same problem. In order

to solve this problem, Roldán-Nofuentes and Olvera-Porcel [5] defined a new pa-

rameter called the average kappa coefficient. The average kappa coefficient of the

BDT depends on the sensitivity and the specificity of the BDT and on the disease

prevalence, and does not depend on the weighting index. This new parameter

has properties that make it valid to assess and compare BDTs. In this study,

several hypothesis tests are studied to compare the average kappa coefficients

of two BDTs in a paired design. In Section 2, the weighted kappa coefficient

and the average kappa coefficient are explained. In Section 3, we present sev-

eral asymptotic hypothesis tests to compare the average kappa coefficients of two

BDTs subject to paired design. In Section 4, simulation experiments are carried

out to study the type I errors and the powers of the hypothesis tests presented

in Section 3. In Section 5, we study the situation in which more than two BDTs

are compared. In Section 6, we present a program written in R which allows us

to solve the problem posed. In Section 7, the results obtained are applied to a

real example, and in Section 8 the results obtained are discussed.
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2. WEIGHTED KAPPA COEFFICIENT AND AVERAGE KAPPA

COEFFICIENT

Let L and L′
be the losses associated with an erroneous classification with

the BDT: L is the loss that occurs when for an individual the BDT is negative

and the GS is positive, and L′
is the loss that occurs when the BDT is positive

and the GS is negative. Losses L and L′
are zero when an individual (with or

without the disease) is classified correctly with the BDT. The weighted kappa

coefficient of a BDT is [1,2,3,4,6]

κ (c) =
pq (Se + Sp − 1)

p (1 − Q) c + qQ (1 − c)
,

where Se is the sensitivity of the BDT, Sp the specificity, p the disease prevalence,

q = 1−p, Q = pSe+ q (1 − Sp) and c = L/(L + L′
) is the weighting index. When

loss L is equal to zero then c = 0, and the weighted kappa coefficient is

κ (0) =
Sp − (1 − Q)

Q
,

and when loss L′
is equal to zero then c = 1, and the weighted kappa coefficient

is

κ (1) =
Se − Q

1 − Q
.

The weighted kappa coefficient can also be written as

κ (c) =
p (1 − Q) cκ (1) + qQ (1 − c) κ (0)

p (1 − Q) c + qQ (1 − c)
,

and therefore it is a weighted mean of κ (0) and κ (1). Weighting index c varies

between 0 and 1 and represents the relative loss between the false positives and

the false negatives. In practice the weighting index c is unknown, but its values

can be assumed according to the objective for which the diagnostic test is going

to be used. If the diagnostic test is going to be used as a previous step for a risky

treatment (e.g. surgery), there is more concern about the false positives and the c

index is lower than 0.5; if the diagnostic test is going to be used as a screening test,

there is more concern about the false negatives and the c index is greater than

0.5; and the c index is 0.5 when the diagnostic test is used for a simple diagnosis.

If L = L′
, then c = 0.5 and κ (0.5) is called the Cohen kappa coefficient; if L > L′

,

then 0.5 < c < 1, and if L′ > L then 0 < c < 0.5. The properties of the weighted

kappa coefficient can be seen in the manuscript of Kraemer et al. [3] and in that of

Roldán-Nofuentes et al. [6]. The problem posed by the weighted kappa coefficient

is the allocation of a value to the weighting index. Allocating values 0 or 1 means

that one of the losses is equal to zero, which is not realistic. In practice, the

allocation is made based on the knowledge that the clinical laboratory researcher

has about the problem that is being analyzed. This procedure can lead to some

disagreement, since two different clinicians may allocate different values and their

conclusions may not be the same.
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In order to solve this problem of the allocation of values to the weighting

index, Roldán-Nofuentes and Olvera-Porcel [5] defined a new parameter: the

average kappa coefficient. The average kappa coefficient is a measure of the

weighted kappa coefficients, and only depends on the sensitivity and the specificity

of the BDT and the disease prevalence, and does not depend on the weighting

index. If the clinical laboratory researcher considers that the loss associated with

a false positive is greater than the loss associated with a false negative, L′ > L

and 0 < c < 0.5, the average kappa coefficient is

(2.1) κ1 =
1

0.5

∫ 0.5

0
κ (c) dc =

{
2κ(0)κ(1)
κ(0)−κ(1) ln

[
κ(0)+κ(1)

2κ(1)

]
, p 6= Q

Se + Sp − 1, p = Q,

i.e. the average kappa coefficient κ1 is the average value of κ (c) when 0 < c < 0.5.

If the clinical laboratory researcher considers that the loss associated with a false

negative is greater than the loss associated with a false positive, L > L′
and

0.5 < c < 1, the average kappa coefficient is

(2.2) κ2 =
1

0.5

∫ 1

0.5
κ (c) dc =

{
2κ(0)κ(1)
κ(0)−κ(1) ln

[
2κ(0)

κ(0)+κ(1)

]
, p 6= Q

Se + Sp − 1, p = Q.

As the weighted kappa coefficient is a measure of the beyond-chance agree-

ment between the BDT and the GS, then κ1 and κ2 are measures of the average

beyond-chance agreement between the BDT and the GS. The properties of κ1

and κ2 can be seen in the manuscript by Roldán-Nofuentes and Olvera-Porcel

[5], and they are parameters that allow us to assess and compare the perfor-

mance of BDTs. The comparison of the average kappa coefficients of two BDTs

subject to paired design is now studied.

3. COMPARISON OF TWO AVERAGE KAPPA COEFFICIENTS

Let us consider two BDTs that are compared in relation to the same GS.

The frequencies obtained applying the two BDTs and the GS to a sample of n

individuals and theoretical probabilities are shown in Table 1, where the variable

Ti models the result of the i -th BDT (Ti = 1 when the result is positive and Ti = 0

when it is negative) and the variable D models the result of the GS (D = 1 when

the individual has the disease and D = 0 when this is not the case). If the

clinical laboratory researcher assumes a value for the weighting index c, Bloch

[4] has studied the comparison of the weighted kappa coefficients of two BDTs

subject to a paired design. Using the notation in Table 1, the estimators of the

weighted kappa coefficients deduced by Bloch [4] are

κ̂1 (c) =
(s11 + s10) (r01 + r00) − (s01 + s00) (r10 + r11)

sc
1∑

k=0

(s0k + r0k) + r (1 − c)
1∑

k=0

(s1k + r1k)
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and

κ̂2 (c) =
(s11 + s01) (r10 + r00) − (s10 + s00) (r01 + r11)

sc
1∑

h=0

(sh0 + rh0) + r (1 − c)
1∑

h=0

(sh1 + rh1)

,

and the statistic for H0 : κ1 (c) = κ2 (c) vs H1 : κ1 (c) 6= κ2 (c) is

z =
κ̂1 (c) − κ̂2 (c)√

V̂ ar [κ̂1 (c)] + V̂ ar [κ̂2 (c)] − 2Ĉov [κ̂1 (c) , κ̂2 (c)]
−−−→
n→∞

N (0, 1) ,

where the expressions of the variances and the covariance have been obtained by

Bloch [4] applying the delta method.

Table 1: Observed frequencies and probabilities subject to paired design.

Observed frequencies

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0
Total

D = 1 s11 s10 s01 s00 s

D = 0 r11 r10 r01 r00 r

Total n11 n10 n01 n00 n

Probabilities

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0
Total

D = 1 p11 p10 p01 p00 p

D = 0 q11 q10 q01 q00 q

Total p11 + q11 p10 + q10 p01 + q01 p00 + q00 1

We then study the comparison of the average kappa coefficients of the two

BDTs. Firstly, we study the comparison of the two average kappa coefficients

when the clinical laboratory researcher considers that L′ > L (0 < c < 0.5) and

after when L > L′
(0.5 < c < 1).

When L′ > L the hypothesis test to compare the two average kappa coef-

ficients is H0 : κ11 = κ21 vs H1 : κ11 6= κ21, where κi1 is the average kappa co-

efficient of the i -th BDT when the clinical laboratory researcher considers that

L′ > L. In terms of the probabilities in Table 1, the sensitivity and the speci-

ficity of each BDT are written as Se1 = (p10 + p11)/p, Sp1 = (q00 + q01)/q, Se2 =

(p01 + p11)/p and Sp2 = (q00 + q10)/q, where p =
∑
ij

pij is the disease prevalence

and q = 1 − p =
∑
ij

qij . Replacing in equation (2.1) each parameter with its ex-
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pression, the average kappa coefficient κ11 is written as

κ11 =
2κ1 (0)κ1 (1)

κ1 (0) − κ1 (1)
ln

{
κ1 (0) + κ1 (1)

2κ1 (1)

}

= 2




1∑
j=0

(p0j + q0j)

1
p

1∑
j=0

p1j −
1∑

j=0
(p1j + q1j)

−

1∑
j=0

(p1j + q1j)

1
q

1∑
j=0

q0j −
1∑

j=0
(p0j + q0j)




−1

× ln




1

2




(
1∑

j=0
(p0j + q0j)

)(
1
q

1∑
j=0

q0j −
1∑

j=0
(p0j + q0j)

)

(
1∑

j=0
(p1j + q1j)

)(
1
p

1∑
j=0

p1j −
1∑

j=0
(p1j + q1j)

) + 1







when p 6= Q1 and κ11 =
1
p

1∑
j=0

p1j +
1
q

1∑
j=0

q0j − 1 when p = Q1. Regarding κ21, its

expression is

κ21 =
2κ2 (0) κ2 (1)

κ2 (0) − κ2 (1)
ln

{
κ2 (0) + κ2 (1)

2κ2 (1)

}

= 2




1∑
i=0

(pi0 + qi0)

1
p

1∑
i=0

pi1 −
1∑

i=0
(pi1 + qi1)

−

1∑
i=0

(pi1 + qi1)

1
q

1∑
i=0

qi0 −
1∑

i=0
(pi0 + qi0)




−1

× ln




1

2




(
1∑

i=0
(pi0 + qi0)

)(
1
q

1∑
i=0

qi0 −
1∑

i=0
(pi0 + qi0)

)

(
1∑

i=0
(pi1 + qi1)

)(
1
p

1∑
i=0

pi1 −
1∑

i=0
(pi1 + qi1)

) + 1







when p 6= Q2 and κ21 =
1
p

1∑
j=0

p1j +
1
q

1∑
j=0

q0j −1 when p = Q2. As the probabilities

pij and qij are probabilities of a multinomial distribution, their estimators are

p̂ij = sij/n and q̂ij = rij/n. Therefore, the estimator of κ11 is

κ̂11 =
2 {(s10 + s11) (r00 + r01) − (s00 + s01) (r10 + r11)}

n

(
1∑

j=0
(s0j − r1j)

)

× ln




1

2




s
1∑

j=0
(s0j + r0j)

r
1∑

j=0
(s1j + r1j)

+ 1







when p̂ 6= Q̂1, i.e. when s01 + s00 6= r10 + r11, and

κ̂11 =
(s10 + s11) (r00 + r01) − (s00 + s01) (r10 + r11)

sr
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when p̂ = Q̂1, i.e. when s01 + s00 = r10 + r11. Regarding the estimator of κ21, its

expression is

κ̂21 =
2 {(s01 + s11) (r00 + r10) − (s00 + s10) (r01 + r11)}

n

(
1∑

i=0
(si0 − ri1)

)

× ln




1

2




s
1∑

i=0
(si0 + ri0)

r
1∑

i=0
(si1 + ri1)

+ 1







when p̂ 6= Q̂2, i.e. s10 + s00 6= r01 + r11, and

κ̂21 =
(s01 + s11) (r00 + r10) − (s00 + s10) (r01 + r11)

sr

when p̂ = Q̂2, i.e. s10 + s00 = r01 + r11. Applying the delta method, the asymp-

totic variance-covariance matrix of κ̂11 and κ̂21 is

∑
κ̂κκ1

=

(
∂κκκ1

∂πππ

)∑
π̂ππ

(
∂κκκ1

∂πππ

)T

,

where κκκ1 = (κ11, κ21)
T
, πππ = (p11, p10, p01, p00, q11, q10, q01, q00)

T
and

∑
π̂ππ

=
Diag (πππ) − ππππππT

n

is the variance-covariance matrix of the probabilities in Table 1. Replacing in the

expression of
∑

κ̂̂κ̂κ1
each parameter with its estimator, we obtain the expressions of

the estimated asymptotic variances-covariances of κ̂̂κ̂κ1. These expressions are not

presented here as they are very long and complicated (they were calculated using

the R programming approach created to solve this hypothesis test). Finally, the

statistic to contrast the equality of the average kappa coefficients when L′ > L is

z =
κ̂11 − κ̂21√

V̂ ar (κ̂11) + V̂ ar (κ̂21) − 2Ĉov (κ̂11, κ̂21)

−−−→
n→∞

N (0, 1) .

Furthermore, an asymptotic confidence interval for the difference of the average

kappa coefficients is

κ11 − κ21 ∈ κ̂11 − κ̂21 ± z1−α/2

√
V̂ ar (κ̂11) + V̂ ar (κ̂21) − 2Ĉov (κ̂11, κ̂21),

where z1−α/2 is the 100(1−α/2)% percentile of the standard normal distribution.

If the clinical laboratory researcher considers that L > L′
, and therefore

that 0.5 < c < 1, the hypothesis test to compare the two average kappa coefficients

is H0 : κ12 = κ22 vs H1 : κ12 6= κ22, where κi2 is the average kappa coefficient of
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the i -th BDT when L > L′
. The process to solve this hypothesis test is similar

to the previous case, and the statistic is

z =
κ̂12 − κ̂22√

V̂ ar (κ̂12) + V̂ ar (κ̂22) − 2Ĉov (κ̂12, κ̂22)

−−−→
n→∞

N (0, 1) .

Replacing in equation (2.2) each parameter with its expression, the estimators of

κ12 is

κ̂12 =
2 {(s10 + s11) (r00 + r01) − (s00 + s01) (r10 + r11)}

n

(
1∑

j=0
(s0j − r1j)

)

× ln


2

s
1∑

j=0
(s0j + r0j)

s
1∑

j=0
(s0j + r0j) + r

1∑
j=0

(s1j + r1j)




when p̂ 6= Q̂1, i.e. s01 + s00 6= r10 + r11, and

κ̂12 =
(s10 + s11) (r00 + r01) − (s00 + s01) (r10 + r11)

sr

when p̂ = Q̂1, i.e. s01 + s00 = r10 + r11. Regarding κ22, it holds that

κ̂22 =
2 {(s01 + s11) (r00 + r10) − (s00 + s10) (r01 + r11)}

n

(
1∑

i=0
(si0 − ri1)

)

× ln


2

s
1∑

i=0
(si0 + ri0)

s
1∑

i=0
(si0 + ri0) + r

1∑
i=0

(si1 + ri1)




when p̂ 6= Q̂2, i.e. s10 + s00 6= r01 + r11, and

κ̂22 =
(s01 + s11) (r00 + r10) − (s00 + s10) (r01 + r11)

sr

when p̂ = Q̂2, i.e. s10 + s00 = r01 + r11. The asymptotic variance-covariance ma-

trix is estimated in a similar way to the previous case. Moreover, an asymptotic

confidence interval for the difference of the average kappa coefficients is

κ12 − κ22 ∈ κ̂12 − κ̂22 ± z1−α/2

√
V̂ ar (κ̂12) + V̂ ar (κ̂22) − 2Ĉov (κ̂12, κ̂22).

The comparison of the average kappa coefficients can also be made using

transformations, such as the logarithm and the logit transformations. In this case,

the hypothesis test is H0 : F (κ1k) = F (κ2k) vs H1 : F (κ1k) 6= F (κ2k), where F

is the logarithm or the logit respectively. The problem is solved in a similar way

to in the previous case. These transformations aim to improve the convergence

of the distribution of the estimators to the normal distribution.
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4. SIMULATION EXPERIMENTS

Simulation experiments were carried out to study the type I errors and

the powers of the hypothesis tests H0 : κ1k = κ2k and H0 : F (κ1k) = F (κ2k).

Therefore, 5000 random samples of multinomial distributions were generated with

sizes of 100, 200, 300, 400, 500, 1000 and 2000, which are sizes in a wide range to

show the behaviour of the hypothesis tests. The probabilities of the multinomial

distributions were calculated using the conditional dependence model proposed

by Vacek [7], i.e.

pij = P (T1 = i, T2 = j |D = 1) = P (T1 = i |D = 1) × P (T2 = j |D = 1) + δijε1

and

qij = P (T1 = i, T2 = j |D = 0) = P (T1 = i |D = 0) × P (T2 = j |D = 0) + δijε0,

where δij = 1 if i = j and δij = −1 if i 6= j, and εi is the covariance between the

two BDTs when D = i. Vacek [7] demonstrated that

0 ≤ ε1 ≤ Min {Se1 (1 − Se2) , (1 − Se1)Se2}
and that

0 ≤ ε0 ≤ Min {Sp1 (1 − Sp2) , (1 − Sp1)Sp2} .

If ε1 = ε0 = 0 then the two BDTs are conditionally independent on the disease

status. In practice, the assumption of conditional independence is not very real-

istic and therefore ε1 > 0 and/or ε0 > 0.

The simulation experiments were designed based on the equations of the

average kappa coefficients of the two BDTs, i.e.

(4.1) κi1 =
2κi (0)κi (1)

κi (0) − κi (1)
ln

[
κi (0) + κi (1)

2κi (1)

]

and

(4.2) κi2 =
2κi (0) κi (1)

κi (0) − κi (1)
ln

[
2κi (0)

κi (0) + κi (1)

]
.

As the disease prevalence, we took the values 5%, 10%, 30% and 50%. The first

two values correspond to a scenario with low prevalence and the last two with a

high disease prevalence, and they are a range of values that allow us to study the

effect of the prevalence on the behaviour of each hypothesis test. Regarding the

average kappa coefficients we took the values 0.2, 0.4, 0.6 and 0.8. Therefore, fol-

lowing the idea of Cicchetti [8] we took values of average kappa coefficients with

different levels of significance: poor (< 0.40), fair (0.40 − 0.59), good (0.60 − 0.74)

and excellent (0.75 − 1). Once the values for the prevalence and the average kappa

coefficient were set, using the Newton–Raphson method, the system made up of

equations (4.1) and (4.2) was solved to thus obtain the values of κi (0) and κi (1),
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only considering those values whose solutions are between 0 and 1. Finally, in

order to obtain the values of the sensitivity and the specificity of each BDT (Sei

and Spi) the system made up of the equations κi (0) = {Spi − (1 − Qi)}/Qi and

κi (1) = (Sei − Qi)/(1 − Qi) was solved. Once the values for Sei and Spi were

obtained, the maximum values for the covariances ε1 and ε0 were calculated.

Finally, the probabilities of the multinomial distributions were calculated based

on the model proposed by Vacek [7]. Furthermore, the samples were generated

in such a way that in all cases it was possible to estimate all of the parameters

and their variances-covariances. In all of the study, we took as the nominal error

α = 5%. In the tables with results, Test 1 refers to the hypothesis test without

logarithmic transformation and Test 2 refers to the hypothesis test with logarith-

mic transformation. The results with the logit transformation are not shown as

they are very similar to those obtained with the logarithmic transformation.

4.1. Type I errors

In Table 2, we can see some of the results obtained for the type I errors of

the hypothesis tests H0 : κ11 = κ21 (Test 1) and H0 : ln (κ11) = ln (κ21) (Test 2),

i.e. when comparing the average kappa coefficients considering that L′ > L. In

Table 3, we can see some results for the type I errors of the hypothesis test

H0 : κ12 = κ22 (Test 1) and H0 : ln (κ12) = ln (κ22) (Test 2), i.e. when comparing

the average kappa coefficients considering that L > L′
. In these tables we can see

the values of the sensitivities, specificities, prevalence and covariances with which

the multinomial samples were generated.

When L′ > L (Table 2), the disease prevalence and the covariances between

the two BDTs have an important effect upon the type I error of the test H0 :

κ11 = κ21. The increase in the prevalence implies an increase in the type I error,

especially in samples of 100 and 200, although without overwhelming the nominal

error (a situation which has been considered when the type I error is greater than

6.5%). The increase in the values of the covariances implies a decrease in the

type I error, especially for n ≤ 500. In general terms, when the values of the

covariances are high, the hypothesis test H0 : κ11 = κ21 is conservative (its type I

error is lower than the nominal error) for a sample size n ≤ 500 (depending on the

disease prevalence). The prevalence and the covariances have practically no effect

upon the type I error when the samples are very large (n ≥ 1000). Therefore,

in general terms, the type I error of the test H0 : κ11 = κ21 is lower than the

nominal error and starting from a certain sample size it fluctuates around the

nominal error without overwhelming it. Regarding the type I error of the test

H0 : ln (κ11) = ln (κ21), its behavior is, in general terms, very similar to that of

the test H0 : κ11 = κ21, although for sample sizes of 100 and 200 its type I error

is somewhat lower than that of the hypothesis test without transformation.
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Table 2: Type I errors of the hypothesis tests when L′ > L.

κ11 = κ21 = 0.2

Se1 = 0.7773, Sp1 = 0.7308, Se2 = 0.7773, Sp2 = 0.7308
p = 10%, ε1 ≤ 0.1731, ε0 ≤ 0.1967

ε1 = 0, ε0 = 0 ε1 = 0.08, ε0 = 0.09 ε1 = 0.16, ε0 = 0.18
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.022 0.009 0.012 0.008 0 0
200 0.044 0.026 0.031 0.022 0.001 0
300 0.047 0.040 0.035 0.029 0.004 0.004
400 0.045 0.040 0.050 0.042 0.004 0.004
500 0.050 0.048 0.044 0.042 0.010 0.008

1000 0.048 0.046 0.047 0.046 0.020 0.020
2000 0.055 0.056 0.056 0.055 0.044 0.043

κ11 = κ21 = 0.4

Se1 = 0.8864, Sp1 = 0.6746, Se2 = 0.8864, Sp2 = 0.6746
p = 30%, ε1 ≤ 0.1007, ε0 ≤ 0.2195

ε1 = 0, ε0 = 0 ε1 = 0.04, ε0 = 0.10 ε1 = 0.08, ε0 = 0.20
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.058 0.049 0.045 0.058 0.049 0.045
200 0.050 0.046 0.049 0.050 0.046 0.049
300 0.047 0.046 0.052 0.047 0.046 0.052
400 0.052 0.051 0.048 0.052 0.051 0.048
500 0.048 0.047 0.040 0.048 0.047 0.040

1000 0.049 0.048 0.050 0.049 0.048 0.050
2000 0.046 0.046 0.048 0.046 0.046 0.048

κ11 = κ21 = 0.6

Se1 = 0.43, Sp1 = 0.97, Se2 = 0.43, Sp2 = 0.97
p = 5%, ε1 ≤ 0.2425, ε0 ≤ 0.0291

ε1 = 0, ε0 = 0 ε1 = 0.10, ε0 = 0.01 ε1 = 0.20, ε0 = 0.02
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.011 0.002 0.003 0 0 0
200 0.035 0.017 0.019 0.008 0.001 0
300 0.049 0.026 0.024 0.015 0.001 0
400 0.054 0.033 0.040 0.027 0.007 0.006
500 0.054 0.028 0.033 0.023 0.011 0.009

1000 0.047 0.041 0.049 0.044 0.027 0.023
2000 0.055 0.050 0.049 0.046 0.042 0.040

κ11 = κ21 = 0.8

Se1 = 0.8063, Sp1 = 0.9392, Se2 = 0.8063, Sp2 = 0.9392
p = 50%, ε1 ≤ 0.1562, ε0 ≤ 0.0571

ε1 = 0, ε0 = 0 ε1 = 0.07, ε0 = 0.02 ε1 = 0.14, ε0 = 0.04
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.033 0.025 0.023 0.019 0.002 0.001
200 0.048 0.045 0.043 0.039 0.011 0.008
300 0.045 0.044 0.036 0.034 0.027 0.024
400 0.053 0.049 0.049 0.047 0.040 0.037
500 0.056 0.055 0.056 0.055 0.037 0.036

1000 0.048 0.048 0.053 0.052 0.043 0.043
2000 0.045 0.045 0.056 0.055 0.051 0.050
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Table 3: Type I errors of the hypothesis tests when L > L′
.

κ11 = κ21 = 0.2

Se1 = 0.4237, Sp1 = 0.8131, Se2 = 0.4237, Sp2 = 0.8131
p = 50%, ε1 ≤ 0.2442, ε0 ≤ 0.1520

ε1 = 0, ε0 = 0 ε1 = 0.02, ε0 = 0.10 ε1 = 0.04, ε0 = 0.20
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.047 0.006 0.045 0.013 0.003 0
200 0.048 0.021 0.049 0.027 0.020 0.006
300 0.056 0.037 0.042 0.030 0.030 0.021
400 0.055 0.044 0.052 0.043 0.045 0.034
500 0.058 0.051 0.042 0.037 0.040 0.034

1000 0.046 0.043 0.055 0.052 0.041 0.039
2000 0.046 0.044 0.048 0.048 0.058 0.057

κ11 = κ21 = 0.4

Se1 = 0.7773, Sp1 = 0.7308, Se2 = 0.7773, Sp2 = 0.7308
p = 10%, ε1 ≤ 0.1731, ε0 ≤ 0.1967

ε1 = 0, ε0 = 0 ε1 = 0.08, ε0 = 0.09 ε1 = 0.16, ε0 = 0.18
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.022 0.002 0.006 0 0 0
200 0.043 0.026 0.022 0.008 0 0
300 0.055 0.040 0.030 0.018 0.001 0
400 0.049 0.037 0.047 0.038 0.002 0.001
500 0.039 0.032 0.047 0.042 0.002 0.002

1000 0.049 0.047 0.053 0.050 0.014 0.011
2000 0.056 0.054 0.051 0.050 0.030 0.030

κ11 = κ21 = 0.6

Se1 = 0.8864, Sp1 = 0.6746, Se2 = 0.8864, Sp2 = 0.6746
p = 30%, ε1 ≤ 0.1007, ε0 ≤ 0.2195

ε1 = 0, ε0 = 0 ε1 = 0.04, ε0 = 0.10 ε1 = 0.08, ε0 = 0.20
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.050 0.034 0.024 0.014 0.001 0
200 0.053 0.048 0.044 0.036 0.009 0.006
300 0.044 0.040 0.058 0.051 0.017 0.015
400 0.053 0.050 0.052 0.048 0.030 0.028
500 0.052 0.050 0.054 0.050 0.033 0.032

1000 0.054 0.054 0.049 0.047 0.051 0.051
2000 0.055 0.054 0.063 0.062 0.056 0.055

κ11 = κ21 = 0.8

Se1 = 0.81, Sp1 = 0.99, Se2 = 0.81, Sp2 = 0.99
p = 5%, ε1 ≤ 0.1539, ε0 ≤ 0.0099

ε1 = 0, ε0 = 0 ε1 = 0.07, ε0 = 0.004 ε1 = 0.14, ε0 = 0.008
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.001 0 0 0 0 0
200 0.009 0.008 0.002 0.001 0 0
300 0.016 0.014 0.005 0.002 0 0
400 0.025 0.019 0.010 0.006 0 0
500 0.027 0.024 0.011 0.007 0 0

1000 0.044 0.040 0.037 0.033 0.006 0.003
2000 0.055 0.053 0.043 0.042 0.022 0.019
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When L > L′
(Table 3), the prevalence and the covariances also have an

important effect (and a similar one to the previous situation) upon the type I

error of the test H0 : κ12 = κ22. As in the previous situation, the increase in

the prevalence implies an increase in the type I error, especially in samples of

100 and 200, although it does not overwhelm the nominal error. The increase

in the covariances implies a decrease in the type I error, especially for n ≤ 500.

Therefore, in general terms, when the values of the covariances are high, for a

sample size n ≤ 500 (depending on the disease prevalence) the hypothesis test H0 :

κ12 = κ22 is conservative. The prevalence and the covariances have practically no

effect upon the type I error when the sample size is very large (n = 1000 − 2000).

Therefore, in general terms, the type I error of the test H0 : κ12 = κ22 shows

very similar behavior to that of the hypothesis test of the comparison of the two

average kappa coefficients when L′ > L (H0 : κ11 = κ21); i.e. it is a conservative

test and starting from a determined sample size its type I error fluctuates around

the nominal error without overwhelming it. Regarding the type I error of the

test H0 : ln (κ12) = ln (κ22), its behaviour is, in general terms, very similar to

that of the test H0 : κ12 = κ22, although for n = 100 − 200 its type I error is, as

in the case of L′ > L, somewhat lower than that of the hypothesis test without

transformation.

4.2. Powers

In Table 4, we can see some of the results for the power of the hypothesis

tests H0 : κ11 = κ21 and H0 : ln (κ11) = ln (κ21), and in Table 5, we can see some of

the results for the power of the hypothesis tests H0 : κ12 = κ22 and H0 : ln (κ12) =

ln (κ22). In these tables we also indicate the values of the sensitivities, specificities,

prevalence and covariances with which the multinomial samples were generated.

When L′ > L (Table 4), the disease prevalence has an important effect

on the powers of the tests H0 : κ11 = κ21 and H0 : ln (κ11) = ln (κ21). For the

same sample size, the power of each hypothesis test rises with an increase in the

prevalence. Regarding the covariances between the two BDTs, the power also

rises with increase in the covariances, although its effect is, in general terms, less

important than in the case of prevalence. Consequently, based on the prevalence

we can reach the following general conclusions:

1. For a prevalence equal to 5% it is necessary to have very large sample

size (n ≥ 1000) so that the power is high (above 80%). If the prevalence

is equal to 10%, with a sample size n ≥ 200 high power is obtained

(above 80%, depending on the covariances).

2. If the prevalence is high, p equal to 30% or 50%, with a sample size

n ≥ 200 the powers of both hypothesis tests are very high (higher than

80% or 90%, depending on the covariances).
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Table 4: Powers of the hypothesis tests when L′ > L.

κ11 = 0.4, κ21 = 0.2

Se1 = 0.8209, Sp1 = 0.8670, Se2 = 0.7773, Sp2 = 0.7308
p = 10%, ε1 ≤ 0.1392, ε0 ≤ 0.0972

ε1 = 0, ε0 = 0 ε1 = 0.06, ε0 = 0.04 ε1 = 0.12, ε0 = 0.08
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.498 0.452 0.613 0.593 0.767 0.755
200 0.831 0.837 0.927 0.935 0.995 0.996
300 0.937 0.941 0.987 0.988 1 1
400 0.986 0.987 1 1 1 1
500 0.990 0.991 1 1 1 1

1000 1 1 1 1 1 1
2000 1 1 1 1 1 1

κ11 = 0.6, κ21 = 0.4

Se1 = 0.8495, Sp1 = 0.8375, Se2 = 0.8864, Sp2 = 0.6746
p = 30%, ε1 ≤ 0.0965, ε0 ≤ 0.1096

ε1 = 0, ε0 = 0 ε1 = 0.04, ε0 = 0.04 ε1 = 0.08, ε0 = 0.08
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.570 0.554 0.692 0.677 0.820 0.812
200 0.845 0.844 0.917 0.916 0.985 0.986
300 0.939 0.939 0.982 0.983 0.998 0.998
400 0.984 0.984 0.997 0.997 1 1
500 0.992 0.992 0.998 0.998 1 1

1000 1 1 1 1 1 1
2000 1 1 1 1 1 1

κ11 = 0.6, κ21 = 0.2

Se1 = 0.8991, Sp1 = 0.7458, Se2 = 0.8131, Sp2 = 0.4237
p = 50%, ε1 ≤ 0.0820, ε0 ≤ 0.1076

ε1 = 0, ε0 = 0 ε1 = 0.06, ε0 = 0.01 ε1 = 0.12, ε0 = 0.02
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.954 0.907 0.973 0.949 0.982 0.961
200 0.998 0.998 0.998 0.998 0.999 0.999
300 1 1 1 1 1 1
400 1 1 1 1 1 1
500 1 1 1 1 1 1

1000 1 1 1 1 1 1
2000 1 1 1 1 1 1

κ11 = 0.8, κ21 = 0.6

Se1 = 0.81, Sp1 = 0.99, Se2 = 0.62, Sp2 = 0.98
p = 5%, ε1 ≤ 0.1178, ε0 ≤ 0.0098

ε1 = 0, ε0 = 0 ε1 = 0.05, ε0 = 0.004 ε1 = 0.10, ε0 = 0.008
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.010 0.002 0.005 0 0.001 0
200 0.097 0.062 0.100 0.055 0.085 0.049
300 0.252 0.207 0.260 0.208 0.272 0.210
400 0.365 0.323 0.396 0.364 0.466 0.404
500 0.483 0.442 0.520 0.483 0.615 0.586

1000 0.735 0.721 0.801 0.797 0.842 0.842
2000 0.890 0.890 0.890 0.888 0.895 0.895



420 J.A. Roldán-Nofuentes and C. Olvera-Porcel

Table 5: Powers of the hypothesis tests when L > L′
.

κ11 = 0.4, κ21 = 0.2

Se1 = 0.7021, Sp1 = 0.6817, Se2 = 0.3019, Sp2 = 0.9030
p = 30%, ε1 ≤ 0.0900, ε0 ≤ 0.0661

ε1 = 0, ε0 = 0 ε1 = 0.04, ε0 = 0.03 ε1 = 0.08, ε0 = 0.06
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.410 0.238 0.416 0.252 0.433 0.278
200 0.630 0.587 0.733 0.693 0.784 0.749
300 0.790 0.773 0.862 0.851 0.931 0.927
400 0.878 0.876 0.938 0.936 0.978 0.977
500 0.941 0.940 0.970 0.969 0.991 0.991

1000 0.998 0.998 1 1 1 1
2000 1 1 1 1 1 1

κ11 = 0.6, κ21 = 0.4

Se1 = 0.8624, Sp1 = 0.6816, Se2 = 0.8112, Sp2 = 0.5293
p = 50%, ε1 ≤ 0.1116, ε0 ≤ 0.1686

ε1 = 0, ε0 = 0 ε1 = 0.05, ε0 = 0.07 ε1 = 0.10, ε0 = 0.14
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.434 0.347 0.567 0.473 0.731 0.623
200 0.680 0.650 0.840 0.820 0.987 0.984
300 0.825 0.813 0.948 0.945 0.999 0.999
400 0.901 0.899 0.981 0.980 1 1
500 0.956 0.952 0.996 0.995 1 1

1000 1 0.999 1 1 1 1
2000 1 1 1 1 1 1

κ11 = 0.6, κ21 = 0.2

Se1 = 0.8209, Sp1 = 0.8670, Se2 = 0.2091, Sp2 = 0.9715
p = 10%, ε1 ≤ 0.0374, ε0 ≤ 0.0247

ε1 = 0, ε0 = 0 ε1 = 0.015, ε0 = 0.01 ε1 = 0.03, ε0 = 0.02
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.376 0.135 0.359 0.146 0.411 0.164
200 0.805 0.683 0.814 0.693 0.838 0.720
300 0.945 0.914 0.965 0.928 0.874 0.947
400 1 0.978 0.993 0.972 0.996 0.990
500 1 1 1 1 1 1

1000 1 1 1 1 1 1

2000 1 1 1 1 1 1

κ11 = 0.8, κ21 = 0.6

Se1 = 0.9528, Sp1 = 0.9598, Se2 = 0.62, Sp2 = 0.98
p = 5%, ε1 ≤ 0.0292, ε0 ≤ 0.0191

ε1 = 0, ε0 = 0 ε1 = 0.01, ε0 = 0.07 ε1 = 0.02, ε0 = 0.14
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.017 0.005 0.024 0.004 0.019 0.007
200 0.112 0.067 0.109 0.057 0.123 0.067
300 0.233 0.189 0.229 0.164 0.243 0.191
400 0.391 0.331 0.401 0.325 0.368 0.308
500 0.483 0.440 0.480 0.428 0.510 0.468

1000 0.796 0.777 0.835 0.822 0.839 0.826
2000 0.953 0.953 0.944 0.944 0.951 0.951
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Finally, in general terms, the test H0 : κ11 = κ21 is more powerful than

the test H0 : ln (κ11) = ln (κ21), especially when n ≤ 200, since its type I error is

slightly greater (without overwhelming the nominal error).

When L > L′
(Table 5), the powers of the hypothesis tests H0 : κ12 = κ22

and H0 : ln (κ12) = ln (κ22) show very similar behaviour to that of the previ-

ous case (L′ > L). The disease prevalence and the covariances have a very

similar effect, and the conclusions about the powers are also very similar, al-

though when the prevalence is 10% it is necessary to have a slightly larger sam-

ple size (n ≥ 200 − 300) so that the power is high (above 80%). Finally, and

as in the previous case, the test H0 : κ12 = κ22 is more powerful than the test

H0 : ln (κ12) = ln (κ22), especially when n ≤ 200, since its type I error is also

slightly greater (without overwhelming the nominal error).

5. EXTENSION TO MORE THAN TWO BDTS

Let us consider J BDTs (J ≥ 3) and a GS that are applied to all of the n

individuals in a random sample. When L′ > L, the expression of the weighted

kappa coefficient for the j -th BDT is

κj1 =

{
2κj(0)κj(1)
κj(0)−κj(1)

ln

[
κj(0)+κj(1)

2κj(1)

]
, p 6= Qj

Sej + Spj − 1, p = Qj

and when L > L′
its expression is

κj2 =

{
2κj(0)κj(1)
κj(0)−κj(1)

ln

[
2κj(0)

κj(0)+κj(1)

]
, p 6= Qj

Sej + Spj − 1, p = Qj ,

with κj (0) =
Spj−(1−Qj)

Qj
, κj (1) =

Sej−Qj

1−Qj
and Qj = pSej +q (1 − Spj), and where

p =

1∑
i1,...,iJ=0

pi1,...,iJ is the disease prevalence and q = 1−p =

1∑
i1,...,iJ=0

qi1,...,iJ . The

sensitivity and the specificity of the j -th BDT are written as

Sej =

1∑
i1,...,iJ=0

ij=1

pi1,...,iJ

1∑
i1,...,iJ=0

pi1,...,iJ

and

Spj =

1∑
i1,...,iJ=0

ij=0

qi1,...,iJ

1∑
i1,...,iJ=0

qi1,...,iJ

,
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respectively. Replacing these expressions with those of each average kappa coef-

ficient, then

κj1 =

{
2

a1−a2
× ln

[
b1+1

2

]
, p 6= Qj

Sej + Spj − 1, p = Qj

and

κj2 =

{
2

a1−a2
× ln

[
2

b2+1

]
, p 6= Qj

Sej + Spj − 1, p = Qj ,

where

a1 =

p −
1∑

i1,...,iJ=0
ij=1

pi1,...,iJ +

1∑
i1,...,iJ=0

ij=0

qi1,...,iJ

1P
i1,...,iJ=0

ij=1

pi1,...,iJ

1P
i1,...,iJ=0

pi1,...,iJ

− q −
1∑

i1,...,iJ=0
ij=1

pi1,...,iJ +

1∑
i1,...,iJ=0

ij=0

qi1,...,iJ

,

a2 =

q +

1∑
i1,...,iJ=0

ij=1

pi1,...,iJ −
1∑

i1,...,iJ=0
ij=0

qi1,...,iJ

1P
i1,...,iJ=0

ij=0

qi1,...,iJ

1P
i1,...,iJ=0

qi1,...,iJ

− p +

1∑
i1,...,iJ=0

ij=1

pi1,...,iJ −
1∑

i1,...,iJ=0
ij=0

qi1,...,iJ

,

b1 =
a1

a2
and b2 =

1
b1

. As the maximum likelihood estimators of the probabil-

ities pi1,...,iJ and qi1,...,iJ are p̂i1,...,iJ = si1,...,iJ /n and q̂i1,...,iJ = ri1,...,iJ /n, with

i1, ..., iJ = 0, 1, the estimator of each average kappa coefficient is obtained re-

placing in the expressions of κj1 and κj2 each parameter pi1,...,iJ and qi1,...,iJ

with its corresponding estimator. Let κκκi = (κ1i, κ2i, ..., κJi)
T

be the vector of

average kappa coefficients and κ̂̂κ̂κi = (κ̂1i, κ̂2i, ..., κ̂Ji)
T

its estimator, where i = 1

when L′ > L and i = 2 when L > L′
. Applying the delta method, the asymptotic

variances-covariances matrix of the vector κ̂̂κ̂κi is
∑

κ̂̂κ̂κi
=

(
∂κκκi

∂πππ

)∑
π̂̂π̂π

(
∂κκκi

∂πππ

)T
, where

πππ is the vector of probabilities. Performing algebraic operations and replacing

in this expression each parameter with its estimator, the estimated asymptotic

variances-covariances matrix
∑̂

κ̂̂κ̂κi
is obtained. The global hypothesis test to con-

trast the equality of the J average kappa coefficients is H0 : κ1i = κ2i = ... = κJi

vs H1 : at least one equality is not true. This hypothesis test is equivalent to

H0 : ϕϕϕκκκi = 000 vs H1 : ϕϕϕκκκi 6= 000, where ϕϕϕ is a complete range matrix whose dimen-

sion is (J − 1) × J . For example, for three BDTs the matrix ϕϕϕ is

ϕϕϕ =

(
1 −1 0

0 1 −1

)
.

Applying the multivariate central limit theorem it is verified that

√
n (κ̂̂κ̂κi − κκκi) −−−→

n→∞

NJ−1 (000,Σκκκi
) ,
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so that the statistic Q2
= κ̂̂κ̂κi

TϕϕϕT
(
ϕϕϕ
∑̂

κ̂̂κ̂κi
ϕϕϕT
)
−1

ϕϕϕκ̂̂κ̂κi is distributed according to a

distribution T 2
of Hotelling sized J − 1 and n degrees of freedom, where J − 1 is

the dimension of vector ϕϕϕκ̂̂κ̂κi. For a large n, the statistic Q2
is distributed according

to a chi-squared central distribution with J − 1 degrees of freedom when the null

hypothesis is true, i.e. Q2
= κ̂̂κ̂κi

TϕϕϕT
(
ϕϕϕ
∑̂

κ̂̂κ̂κi
ϕϕϕT
)
−1

ϕϕϕκ̂̂κ̂κi −−−→
n→∞

χ2
J−1.

The procedure to solve the hypothesis test would be very similar to that

used by Roldán-Nofuentes et al. [9] to simultaneously compare the weighted kappa

coefficients of multiple BDTs: 1) solve the global test to an error of α; 2) if the

global test is not significant at that error rate, then the homogeneity of the J

average kappa coefficients is not rejected, and if the test is significant then the

investigation into the causes of the significance is carried out comparing the pairs

of average kappa coefficients using the results in Section 3 and penalizing the

level of significance through some method of multiple comparisons, for example

Bonferroni [10], Holm [11] or Hochberg [12].

Finally, as in the case of two BDTs, the comparison of multiple average

kappa coefficients can be made using logarithmic transformation, and the proce-

dure is similar to that used in the case without transformation.

6. THE “CAKCTBT” PROGRAM

The “cakctbt” program (Comparison of Average Kappa Coefficients of Two

Binary Tests) is a program written in R that solves the hypothesis tests to contrast

the equality of the average kappa coefficients of two BDTs, i.e. H0 : κ11 = κ21 and

H0 : κ12 = κ22. This program runs with the command

cakctbt (s11, s10, s01, s00, r11, r10, r01, r00)

when α = 5%, and with the command

cakctbt (s11, s10, s01, s00, r11, r10, r01, r00, α)

when α 6= 5%. The program provides the estimation of each average kappa co-

efficient and its respective standard error, the value of the contrast statistic and

the p-value of each hypothesis test. It also provides the confidence intervals for

the difference of the average kappa coefficients in each situation (L′ > L and

L > L′
). The results obtained when running the program are kept in a file called

“Results cakctbt.txt” in the same folder from where the program is run. The

program is available for free at URL:

“ http://www.ugr.es/˜bioest/software/cmd.php?seccion=mdb”.
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7. EXAMPLE

The results in Section 3 were applied to the study of Weiner et al. [13] about

the diagnosis of coronary disease, which is a classic example when comparing

the parameters of two BDTs subject to a paired design. In Table 6 (Observed

frequencies), we can see the results when applying two BDTs, a cardiac stress test

and the individual’s clinical history in relation to coronary disease, and the GS

(coronary arteriography) to a sample of 871 individuals, and where the variable

T1 models the result of the stress test, T2 models the result of the individual’s

clinical history and the variable D models the result of the coronary angiography.

Table 6: Data of the study of Weiner et al. and results.

Observed frequencies

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0
Total

D = 1 473 29 81 25 608

D = 0 22 46 44 151 263

Total 495 75 125 176 871

Results

L′ > L

κ̂11 = 0.574, κ̂21 = 0.658

V̂ ar (κ̂11) = 0.031820, V̂ ar (κ̂21) = 0.029746

Ĉov (κ̂11, κ̂21) = 0.000112

H0 : κ11 = κ21 vs H1 : κ11 6= κ21

z = 2.06, p-value = 0.039
95% CI for κ21 − κ11 : (0.0041 ; 0.1644)

L > L′

κ̂12 = 0.519, κ̂22 = 0.680

V̂ ar (κ̂12) = 0.031303, V̂ ar (κ̂22) = 0.029260

Ĉov (κ̂11, κ̂21) = 0.000229

H0 : κ12 = κ22 vs H1 : κ12 6= κ22

z = 4.33, p-value = 1.46 × 10−5

95% CI for κ22 − κ12 : (0.0881 ; 0.2336)

In Table 6 (Results), we can see the estimations of the parameters, the results

of the hypothesis tests (α = 5%) and the confidence intervals to 95%. Based on

these results, if the clinical laboratory researcher is more concerned about the

false positives than the false negatives (L′ > L), then the equality of the average

kappa coefficients is rejected, and it holds that the average kappa coefficient of the

clinical history (which has a “good” value in terms of point estimation) is signifi-
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cantly larger than that of the stress test (which has a “moderate” value in terms

of point estimation). Therefore, the average beyond-chance agreement between

the clinical history and the angiography is, with a confidence of 95%, a value

between 0.0041 and 0.1644 greater than the average beyond-chance agreement

between the stress tests and the angiography. Similar conclusions are obtained

if the clinical laboratory researcher is more concerned about the false negatives

than the false positives (L > L′
). In this situation, the average beyond-chance

agreement between the clinical history and the angiography, with a confidence of

95%, is a value between 0.0881 and 0.2336 higher than the average beyond-chance

agreement between the stress tests and the angiography.

8. DISCUSSION

The comparison of the performance of two BDTs in relation to a GS can

be made through a paired design or an unpaired one. Paired design consists of

applying the two BDTs to all of the individuals in a simple, whereas in unpaired

design each individual is only tested with one of the two BDTs. Paired design is

used more in practice and has more advantages than unpaired design [14]. Paired

design was chosen to develop the method proposed in this article.

In clinical practice, when we consider the losses in an erroneous classifica-

tion with two BDTs, the appropriate parameters to compare the two BDTs are

weighted kappa coefficients. In this situation, it is necessary to assume a value for

the weighting index c and solve the test H0 : κ1 (c) = κ2 (c) vs H1 : κ1 (c) 6= κ2 (c)

applying the Bloch method [4]. The value of the weighting index c is set by the

clinical laboratory researcher based on his or her knowledge about the problem

in question. If the clinical laboratory researcher does not have enough knowledge

to allow them to allocate a value to the weighting index c, the comparison of the

performance of the two (or more) BDTs can be made through the average kappa

coefficients, which are measures of the beyond-chance agreement between each

BDT and the GS and do not depend on the weighting index c. Therefore, if the

clinical laboratory researcher can assume a value of the weighting index c, then

compare the weighted kappa coefficients of the two BDTs applying the Bloch

method [4]. In the opposite case, compare the weighted kappa coefficients κi1 if

there is a greater concern about the false positives than about the false negatives,

or compare the weighted kappa coefficients κi2 if there is a greater concern about

the false negatives than the false positives.

In this article, we have studied the comparison of the average kappa coeffi-

cients of two (and more) BDTs when the clinical laboratory researcher considers

that loss associated with the false positives is greater than that associated with

the false negatives (L′ > L), and when the clinical laboratory researcher consid-

ers the opposite (L > L′
). The hypothesis tests studied are asymptotic and the
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simulation experiments carried out have demonstrated that the type I errors do

not overwhelm the nominal error of 5%. Regarding the power of each hypothesis

test, this increases with the prevalence, and so when the prevalence is small (e.g.

5%) it is necessary to have a very large sample size (n ≥ 1000) so that the power

is high (above 80%); whereas with a large prevalence (e.g. 30% or 50%), with a

sample size n ≥ 200 a high power is obtained.

In the expressions of the statistics deduced to solve the hypothesis tests,

the variances-covariances have been estimated applying the delta method. An

alternative method is to estimate these variances-covariances through bootstrap.

Simulation experiments (similar to those in Section 4) have shown that there is

no important difference in terms of the type I error and the power between both

methods of estimation of the variances-covariances.

The results were extended to the case of more than two BDTs, finding

that the solution to the hypothesis test is also asymptotic and a method based

on multiple comparisons is proposed to solve the problem. This method is very

similar to that used in the analysis of the variance. Firstly, the global test is solved

to an error of α and if the test is significant then the causes of the significance

are investigated making paired comparisons and applying a multiple comparison

method. For our problem, we have chosen the Bonferroni, Holm or Hochberg

methods, which are very easy to apply and have been used in the field of BDTs

[15,16].

The method that we have proposed requires knowledge of the disease sta-

tus of all of the individuals in a sample through the application of the GS. If the

disease status of any individual is unknown, leading to the problem known as

partial disease verification, the method proposed cannot be applied. If the verifi-

cation process with the GS only depends on the results of the BDTs, a solution

to this problem could be obtained following a method similar to that used by

Roldán-Nofuentes and Luna del Castillo [17] and Roldán-Nofuentes et al. [18].

If case-control sampling is being used, the method that we have proposed

cannot be used either as it is necessary to know the disease prevalence. An

extension of the study of Roldán-Nofuentes and Amro [19] to the situation of two

BDTs may be a solution to this problem.
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1. INTRODUCTION

The probability density function (pdf) of the log-logistic distribution with

unit scale parameter is given by

(1.1) f(x) =
α xα−1

(1 + xα)2
, x ≥ 0,

where α is a positive real number. A random variable X that follows the density

function in (1.1) is denoted as X ∼ log-logistic(α). The cumulative distribution

(cdf) and quantile functions of the log-logistic distribution, respectively, are

(1.2) F (x) =
xα

1 + xα
, x ≥ 0.

and

(1.3) F−1
(x) =

(
x

1 − x

)1/α

, 0 < x < 1.

The k-th moments of the log-logistic distribution in (1.1) can be easily computed

as

(1.4) µ′

k = B

(
1 − k

α
, 1 +

k

α

)
,

where B(., .) is the beta function.

Note that the k-th moment exists iff α > k. A more compact form of (1.4) can be

derived using the fact that Γ(z) Γ(1 − z) = π csc (π z) (Abramowitz and Stegun,

1964) as follows

(1.5) µ′

k = Γ(1 − k/α) Γ(1 + k/α) =
kπ

α
csc

kπ

α
, α > k.

Therefore,

E(X) = (π/α) csc (π/α) and V ar(X) = (π/α){2 csc (2π/α)− (π/α) csc
2
(π/α)}.

The log-logistic distribution is a well-known distribution and it is used in

different fields of study such as survival analysis, hydrology and economy. For

some applications of the log-logistic distribution we refer the reader to Shoukri

et al. [23], Bennett [10], Collett [11] and Ashkar and Mahdi [7]. It is also known

that the log-logistic distribution provides good approximation to the normal and

the log-normal distributions. The log-logistic distribution has been studied by

many researchers such as Shah and Dave [22], Tadikamalla and Johnson [24],

Ragab and Green [21], Voorn [25] and Ali and Khan [4]. Ragab and Green [21]

studied some properties of the order statistics from the log-logistic distribution.

Ali and Khan [4] obtained several recurrence relations for the moments of order
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statistics. Voorn [25] characterized the log-logistic distribution based on extreme

related stability with random sample size. In this paper, we discuss the moments

of order statistics for the log-logistic distribution. We review some known results

and provide a more compact expression for calculating the covariance between

two order statistics. Also, we discuss the parameter estimation of the log-logistic

distribution based on order statistics.

2. SOME RESULTS FOR THE MOMENTS OF

ORDER STATISTICS

Let X1, X2, ..., Xn be n independent copies of a random variable X that

follows log-logistic(α). Let X1,n ≤ X2,n ≤ ... ≤ Xn,n be the corresponding order

statistics. Then from (1.1) and (1.2), the pdf of the rth
order statistics is given

by

(2.1) fr:n(x) = Cr:n
α xαr−1

(1 + xα)n+1
, x ≥ 0,

where Cr:n =
n!

(r−1)!(n−r)! .

The kth
moments of Xr:n can be easily derived from (2.1) as

(2.2) α(k)
r:n = Cr:n B

(
n − r + 1 − k

α
, r +

k

α

)
, α > k,

Similarly as in (1.5), one can show that

(2.3) α(k)
r:n =

(−1)
rπ csc

kπ
α

(r − 1)!(n − r)!

n∏

i=1

(
i − r − k

α

)
, α > k.

Note that when r = n = 1, α
(k)
1:1 = B

(
1 − k

α , 1 +
k
α

)
which agrees with (1.4). From

(2.2), the first and second moments of Xr:n are, respectively, given by

(2.4) α(1)
r:n =

(−1)
rπ csc

π
α

(r − 1)!(n − r)!

n∏

i=1

(
i − r − 1

α

)
, α > 1,

and

(2.5) α(2)
r:n =

(−1)
rπ csc

2π
α

(r − 1)!(n − r)!

n∏

i=1

(
i − r − 2

α

)
, α > 2.

It is interesting to note that (2.3) can be used easily to derive several re-

currence relations for the moments of order statistics. Some of these recurrence

relations already exist in the literature. Below, we provide some of these recur-

rence relations.
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I. From (2.3), we can write

α(k)
r:n =

−1

r − 1

(−1)
r−1π csc

kπ
α

(r − 2)!(n − r)!

n−1∏

i=0

(
i − (r − 1) − k

α

)

=
r − 1 + k/α

r − 1

(−1)
r−1π csc

kπ
α

(r − 2)!(n − r)!

n−1∏

i=1

(
i − (r − 1) − k

α

)
(2.6)

=

[
1 +

k

α(r − 1)

]
α

(k)
r−1:n−1, 2 ≤ r ≤ n.

Note that the recurrence relation in (2.6) was first appeared in Ragab

and Green (1984).

II. If r = 1 in (2.3), then

α
(k)
1:n =

−π csc
kπ
α

(n − 1)(n − 2)!

(
n − 1 − k

α

) n−1∏

i=1

(
i − 1 − k

α

)

(2.7)

=

[
1 − k

α(n − 1)

]
α

(k)
1:n−1, n ≥ 2.

The recurrence relation in (2.7) first appeared in Ali and Khan (1987).

III. For m ∈ N, (2.3) implies

α(k−mα)
r:n =

(−1)
rπ csc

(
k
α − m

)
π

(r − 1)!(n − r)!

n∏

i=1

(
i − r − k

α
+ m

)

=
(r − m − 1)!(n − r + m)!

(r − 1)!(n − r)!

(−1)
r−mπ csc

kπ
α

(r − m − 1)!(n − r + m)!
(2.8)

×
n∏

i=1

(
i − (r − m) − k

α

)

=
(r − m − 1)!(n − r + m)!

(r − 1)!(n − r)!
α

(k)
r−m:n, m + 1 ≤ r ≤ n.

When m = 1, (2.8) reduces to the recurrence relation given by Ali

and Khan (1987) as α
(k−α)
r:n =

n−r+1
r−1 α

(k)
r−1:n, 2 ≤ r ≤ n.

IV. Another form of (2.8) can be derived as follows

α(k−mα)
r:n =

(−1)
r+mπ csc

kπ
α

(r − 1)!(n − r)!

n∏

i=1

(
i + m − r − k

α

)

=
(−1)

r+mπ csc
kπ
α

(r − 1)!(n − r)!

n+m∏

i=m+1

(
i − r − k

α

)
(2.9)

=
(−1)

m
∏n+m

i=n+1

(
i − r − k

α

)
∏m

i=1

(
i − r − k

α

) α(k)
r:n, m + 1 ≤ r ≤ n.
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V. From (2.8) and (2.9), we get

α(k)
r:n =

(−1)
m

(r − m − 1)!(n − r + m)!
∏m

i=1

(
i − r − k

α

)

(r − 1)!(n − r)!
∏n+m

i=n+1

(
i − r − k

α

) α
(k)
r−m:n,(2.10)

+1 ≤ r ≤ n.

3. COVARIANCE BETWEEN ORDER STATISTICS

To calculate the covariance between Xr:n and Xs:n, consider the joint pdf

of Xr:n and Xs:n, 1 ≤ r < s ≤ n as follows

(3.1) fr,s:n(x, y) = α2 Cr,s:n
xαr−1yα−1

(yα − xα
)
s−r−1

(1 + xα)s(1 + yα)n−r+1
, 0 ≤ x ≤ y < ∞,

where Cr,s:n =
n!

(r−1)!(s−r−1)!(n−s)! .

Therefore the product moments, αr,s:n = E(Xr:nYs:n), can be written as

(3.2) αr,s:n = α2 Cr,s:n

∫
∞

0

∫ y

0

xαryα
(yα − xα

)
s−r−1

(1 + xα)s(1 + yα)n−r+1
dxdy.

On using the substitution u = xα
and v = yα

, (3.2) reduces to

(3.3) αr,s:n = Cr,s:n

∫
∞

0

v
1

α

(1 + v)n−r+1

(∫ v

0

ur+ 1

α
−1

(v − u)
s−r−1

(1 + u)s
du

)

︸ ︷︷ ︸
I

dv.

By using the substitution t =
u
v , it is not difficult to show that I can be simplified

to

(3.4) I = vs+ 1

α
−1B

(
r +

1

α
, s − r

)
2F1

(
s, r +

1

α
, s +

1

α
;−v

)
,

where pFq is the generalized hypergeometric function defined as

pFq(a1, ..., ap; b1, ..., bq; x) =

∞∑

k=0

(a1)k···(ap)k

(b1)k···(bq)k

xk

n!
.

Using the Pfaff transformation, 2F1(a, b; c; x) = (1− x)
−a

2F1(a, c− b; c; x
x−1), we

have

(3.5) 2F1

(
s, r +

1

α
, s +

1

α
;−v

)
= (1 + v)

−r− 1

α 2F1

(
1

α
, r +

1

α
, s +

1

α
;

v

1 + v

)
.

Now, using (3.4), (3.5) and the substitution w =
v

1+v , (3.3) reduces to

(3.6)

αr,s:n = Cr,s:n B

(
r+

1

α
, s−r

)∫ 1

0
ws+ 2

α
−1

(1 − w)
n−s− 1

α 2F1

(
1

α
, r+

1

α
, s+

1

α
; w

)
.
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On using the identity [Gradshteyn and Ryzhik, [14], p. 813]

∫ 1

0
xρ−1

(1 − x)
σ−1

2F1(α, β, γ; x)dx = B(ρ, σ)3F2(α, β, ρ; γ, ρ + σ; 1),

the product moments of the log-logistic distribution can be written as

αr,s:n = Cr,s:n B

(
r +

1

α
, s − r

)
B

(
s +

2

α
, n − s − 1

α
+ 1

)

(3.7)

× 3F2

(
1

α
, r +

1

α
, s +

2

α
; s +

1

α
, n +

1

α
+ 1; 1

)
.

It is clear from (3.7) that αr,s:n exists for all α > 1.

It is noteworthy to mention that one can use some existing recurrence

relations in the literature to compute αr,s:n in a more efficient way. For example,

Joshi and Balakrishnan (1982) show that for any continuous distribution, the

following recurrence relation holds

αr,n:n =

n−r∑

i=1

(−1)
n−r−i

(
n

n − i

)(
n − i − 1

r − 1

)
αn−i:n−iαi:i

(3.8)

−
r−1∑

ℓ=0

(−1)
n−ℓ

(
n

ℓ

)
α1,n−r+1:n−ℓ, 1 ≤ r ≤ n − 1.

Also, Ali and Khan (1987) show the following recurrence relation for the log-

logistic distribution,

αr,s:n = αr,s−1:n +

(
n

n − s + 1

)(
1 − 1

α(n − s)

)
αr,s:n−1

(3.9)

− n

n − s + 1
αr,s−1:n−1, 1 ≤ r < s ≤ n − 1.

The covariance βr,s:n = αr,s:n − αr:n αs:n, can be obtained from equations (2.4),

(2.5) and (3.7). Note that when r = s, the variances βr,r:n = α2
r:n − (αr:n)

2
. The

recurrence relations in (23) and (24) can be also used in these calculations.

4. PARAMETER ESTIMATION FOR THE

LOG-LOGISTIC DISTRIBUTION

In this section, we discuss the parameter estimation for the log-logistic

distribution based on order statistics.
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4.1. Estimation of location and scale parameters

Let Y1, Y2, ..., Yn be a random sample of size n from the log-logistic(α, θ1, θ2),

where θ1 is the location parameter and θ2 > 0 is the scale parameter. I.e. f(y) =

α θ−1
2

(
y−θ1

θ2

)α−1 (
1 +

(
y−θ1

θ2

)α)−2
, y ≥ θ1. In this section, we compute the best

linear unbiased estimators (BLUEs) for θ1 and θ2 when the shape parameter α

is known. Let X = (Y − θ1)/θ2. When α is known, the mean, αr:n, and the

covariance, βr,s:n, of order statistics are completely known and free of parame-

ters. The estimators for θ1 and θ2 are derived based on weighted regression on

the quantile-quantile plot of order statistics against their expected value. The

weights depend on the covariance matrix of the order statistics. The estima-

tions of location and scale parameters based on order statistics were originally

introduced by Lloyd [20]. Several authors including Arnold et al. ([6], p. 17) and

Ahsanullah et al. ([3], p. 154) used Lloyd’s method to obtain best linear unbiased

estimator (BLUE) of the location and scale parameters for probability distribu-

tions. The BLUEs of θ1 and θ2 can be computed as follows [see Arnold et al. ([6],

pp. 171–173) and Ahsanullah et al. ([3], p. 154)]

θ̂ = (A′ Σ−1 A)
−1 A′ Σ−1 Y ,

where A′
denotes to the transpose of A, A = (1, µ), 1 = (1, 1, ..., 1)

′

1×n, µ =

(α1:n, α2:n, ..., αn:n)
′
, θ̂ = (θ̂1, θ̂2)

′
, Σ = ((βr,s:n))n×n and Y = (Y1:n, Y2:n, ..., Yn:n)

′
.

Alternatively,

θ̂1 = −µ′ ΓY and θ̂2 = 1′ ΓY ,

where Γ = Σ−1(1µ′
−µ1′)Σ−1/∆ and ∆ = (1′Σ−11)(µ′Σ−1µ)−(1′Σ−1µ)2.

The coefficient matrix C = (A′ Σ−1 A)
−1 A′ Σ−1

can be obtained using αr:n,

α
(2)
r:n, αr,s:n and βr,s:n from previous section. The covariance matrix of the esti-

mators can be computed in terms of θ2 as follows

(4.1) Cov(θ̂) = (A′ Σ−1 A)
−1θ2

2.

In particular,

var(θ̂1) = θ2
2µ

′Σ−1 µ/∆,

var(θ̂2) = θ2
21

′Σ−1 1/∆,

Cov(θ̂1, θ̂2) = −θ2
2µ

′Σ−11/∆.

Equation (4.1) is used to compute the variance and covariance of θ̂1 and θ̂2 in

terms of θ2. The coefficients and covariances for computing the BLUE of θ̂ for

various values of the shape parameter α and sample sizes up to 10 are available on

https://sites.google.com/site/statisticsmanagementservices/.
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4.2. Estimation of the shape parameter

In real life situations, we encounter unknown value for the shape parameter

α. In order to use the The BLUEs for θ1 and θ2, we first estimate the shape

parameter α.

Lemma 4.1. The log-logistic distribution is a member of the Pareto-type

distributions with tail index α.

Proof: Note that 1 − F (x) =
1

1+xα = x−αℓ(x), where ℓ(x) = 1 − x−α
+

x−2α
+ ··· is slowly varying function at infinity. To see this, for any λ > 0,

ℓ(λ x)
ℓ(x) −→ 1 as x −→ ∞. Hence F (x) constitutes a Pareto-type distribution with

tail index α.

Several estimators for the heavy tail index α exist in the literature. For

example, a family of kernel estimators for α was proposed by Csorgo, Deheuvels

and Mason [12]. Bacro and Brito [8] and De Hann [13] proposed estimators for

α which are members of the family of kernel estimators. For more information,

we refer the reader to the paper by Beirlant et al. [9] and Gomes and Henriques-

Rodrigues [17]. The most popular estimator for α is the Hill estimator proposed

by Hill [18] as follows:

Let X1, X2, ..., Xn be n independent random sample from log-logistic(α, θ1, θ2).

Let X1,n ≤ X2,n ≤ ... ≤ Xn,n be the corresponding order statistics. The Hill esti-

mator for α based on upper k order statistics is given by

(4.2) α̂ =
1

Hk,n
, Hk,n =

1

k

k∑

j=1

log
Xn−j+1,n

Xn−k,n
.

Although the Hill estimator is scale invariant, it is not shift invariant. Aban and

Meerschaert [1] proposed a modification of Hill estimator in order to make it both

shift and scale invariant as follows:

α̂−1
=

1

k

k∑

j=1

log
Xn−j+1,n − ŝ

Xn−k,n − ŝ
,

where the sift ŝ satisfies the equation

α̂(Xn−k,n − ŝ)−1
=

α̂ + 1

k

k∑

j=1

(Xn−j+1,n − ŝ)−1, ŝ < Xn−k,n.

In general, the modified Hill estimator results in large variation of the

sampling distribution in compared with the Hill estimator. In our case, based
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on various simulated random samples with different sample sizes from X ∼ log-

logistic(α, θ1, θ2), the modified Hill estimator produces poor estimate for the pa-

rameter α. Therefore, we decided to shift the random sample by the sample

minimum, X1,n, and then use the Hill estimator to estimate α. This is justified

since the lower end of the distribution is finite. For an interesting discussion of

this topic see Araújo-Santos et al. [5] and Gomes et al. [15]. The results showed

good estimate to the shape parameter α (see Table 1).

4.3. Monte Carlo simulation study

In this subsection, we generate different random samples with various sizes,

n = 100, 500, 1, 000 and 10, 000. The simulation study is repeated 1,000 times

for four groups of parameters:

I : α = 0.5, θ1 = 1, θ2 = 1,

II : α = 1.5, θ1 = 0, θ2 = 1,

III : α = 2.5, θ1 = 2, θ2 = 3,

IV : α = 4, θ1 = 2, θ2 = 0.5.

For each parameter combination, we generate random samples, Yi, i = 1, ..., n

from log-logistic(α, θ1, θ2). We assume the random sample Xi = Yi − Y1,n follows

log-logistic(α, 0, θ2). Then we estimate α using the Hill estimator in equation

(4.2). Gomes and Guillou [16] have given an interesting discussion about the

choice of k. It is known that the bias of the estimator of the index parameter

increases as k increases and the variance of the index estimator increases if k

is small. The choice of k is a question between the choice of bias and variance.

Table 1: Mean, median and standard deviation for α̂ using the Hill estimate.

Group I Group II Group III Group IV
Sample Size Summary Statistics

α̂ α̂ α̂ α̂

Median 0.4881 1.4539 2.3275 3.3510
100 Mean 0.5158 1.5371 2.4615 3.5460

Standard Deviation 0.1716 0.5094 0.8067 1.1494

Median 0.4771 1.4287 2.3320 3.4810
500 Mean 0.4827 1.4450 2.3600 3.5150

Standard Deviation 0.0690 0.2063 0.3350 0.4995

Median 0.4758 1.4256 2.3390 3.5260
1000 Mean 0.4786 1.4342 2.3540 3.5460

Standard Deviation 0.0473 0.1418 0.2330 0.3584

Median 0.4750 1.4246 2.3580 3.6438
10000 Mean 0.4754 1.4258 2.3616 3.6460

Standard Deviation 0.0147 0.0441 0.0733 0.1211
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We have taken k = 10% of the sample size with n > 100. The simulation results in

Table 1 show that as the parameter α increases, the absolute bias and standard

deviation increase. Overall, the Hill estimator performs well in estimating the

shape parameter α. Figures 1–4 represent the Boxplots for the observed sampling

distributions of the Hill estimate for different sample sizes. These Figures indicate

that the observed distributions are approximately normal and centered roughly

at α−1
.
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Figure 1: Boxplots for the observed sampling distributions of α̂−1
.

Dashed line represents the true parameter α−1
.

4.4. Numerical Example

In this subsection, we illustrate the use of Hill estimator and the BLUE’s for

estimating the three-parameter log-logistic distribution. We simulate a random

sample with n = 30 observations from log-logistic distribution with parameters

α = 4, θ1 = 2 and θ2 = 3. The simulated data is given below:



440 Mohammad Ahsanullah and Ayman Alzaatreh

5.80310, 6.88820, 6.00730, 7.01140, 4.87250, 4.00560, 4.49970, 5.02880, 5.83690,

11.40110, 3.30511, 3.95312, 5.87513, 2.55114, 4.68615, 4.88916, 4.67717, 4.71818,

4.05190, 8.31920, 4.86421, 4.50422, 8.89623, 5.74124, 5.48125, 4.68226, 5.70127,

5.13528, 4.20729, 4.95430.

Using similar approach as in subsection 4.3, the estimated value of α based on

the Hill estimator is α̂ = 3.350. Based on this value and the sample size of

n = 30, the coefficient matrix, C = (A′ Σ−1 A)
−1 A′ Σ−1

, and the covariance,

Cov(θ̂) = (A′ Σ−1 A)
−1θ2

2, can be calculated using αr:n, α
(2)
r:n, αr,s:n in equations

(9), (10) and (22) respectively. These coefficients for computing the BLUE’s for

θ1 and θ2 and the covariance matrix are provided below:

Cθ1
=




0.6077

0.25102

−0.08301

0.66281

−0.17817

−0.09813

0.27104

−0.02089

0.0082

0.07347

−0.18869

0.48597

−0.09435

−0.48662

−0.0126

0.51641

−0.302

0.43571

−0.66808

0.0207

0.11805

−0.16527

0.00062

−0.01915

−0.07406

0.00442

−0.00919

−0.04542

−0.00744

−0.00303




, Cθ2
=




−0.63961

−0.23399

0.09682

−0.64294

0.15847

−0.01285

0.12400

0.00067

−0.00583

−0.01679

0.15861

−0.09637

0.00875

0.44036

0.02531

−0.46079

0.23208

−0.21193

0.70721

−0.02347

−0.04269

0.18111

−0.01123

0.07461

0.08937

−0.00810

0.05792

0.03363

0.01434

0.00333




,

Cov(θ̂) =

(
0.01636 −0.01755

−0.01755 0.02777

)
.
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Therefore, the BLUE’s for θ1 and θ2 and the estimated covariances are evaluated

to be

θ̂1 = 1.98287, θ̂2 = 3.09528,

V ar(θ̂1) = 0.15676, V ar(θ̂2) = 0.26606

and

Cov(θ̂1, θ̂2) = −0.16812.

5. CONCLUDING REMARKS

In this paper, the moments and product moments of the order statistics in

a sample of size n drawn from the log-logistic distribution are discussed. We also

provided in the same section more compact formulas for the means, variances and

covariances of order statistics. Best linear unbiased estimators (BLUEs) for the

location and scale parameters for the log-logistic distribution with known shape

parameter based on order statistics are studied. The Hill estimator is proposed

for estimating the shape parameter.
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• In Bayesian analysis, the prior distribution and the likelihood can conflict, in the

sense that they can carry diverse information about the parameter of interest. The

most common form of conflict is the presence of outliers in the data. Usually, prob-

lems of conflicts are solved by assigning heavy-tailed distributions to that source of

information which may be causing the conflict. However, the class of heavy-tailed

distributions is not well defined, therefore there are many ways to define heavy tails.

The class O-regularly varying distributions is rather unknown in Statistics, it basi-

cally embraces those distributions whose tails decay oscillating between two power

functions. In this work we study a new distribution which has this property and,

as a consequence, yields robust models for location and for scale parameter models

separately. We provide explicit expressions for some relevant quantities concerning

the distribution, such as the moments, distribution function, etc. Besides, we show

how conflicts can be resolved using this distribution.

Key-Words:

• Bayesian robustness modelling; conflicting information; O-regularly varying distribu-

tions; heavy-tailed distributions.
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• 62E15.
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1. INTRODUCTION

In Bayesian analysis, two sources of information are used to study a phe-

nomenon of interest: the prior distribution and the likelihood function. In this

way we combine, through Bayes’ theorem, the evidences from both the data and

some relevant subjective knowledge about the parameter of interest. However,

since models are only a try to describe the reality, which is much more complex,

the modelling process is inevitably subject to errors. In fact, the model misspec-

ification can lead to wrong conclusions, since it can strongly affect the posterior

distribution. The conflict of information can arise from a model not prepared to

deal with diverse information, e.g. outliers, leading to different evidences about

the parameters, one coming from the prior and the other coming from the like-

lihood. The most common form of conflict are the outliers, since they will carry

information far apart from the prior distribution and the rest of the data.

This behaviour was first identified by Lindley (1968), who suggest the use

of the Student-t distribution to resolve the conflicts. Dawid (1973) established

conditions on the data and the prior distributions which yields robust posterior

distributions for the location parameters. Several works followed this thread, ba-

sically improving Dawid’s conditions as, for instance, O’Hagan (1979, 1988 and

1990) and O’Hagan & Le (1994). All these works concerned only location pa-

rameter models. In order to solve conflict of information in scale and location

parameter structures separately, Andrade & O’Hagan (2006) study a class of

heavy-tailed distributions different from the ones considered by Dawid (1973) and

O’Hagan (1979), namely the class of regularly varying distributions. A more gen-

eral approach for location-scale structures was proposed by Andrade & O’Hagan

(2011). Andrade et al. (2013) proposed alternative conditions for the location

and the scale parameter models which are slightly easier to verify. Andrade &

Omey (2013) give several new conditions using different classes of distributions,

such as the subexponential and L classes. For a more complete literature review

on robustness modelling, see O’Hagan & Pericchi (2012). The papers of Andrade

& O’Hagan showed that, working within the regularly varying class, the outlying

information will be only partially rejected, in the sense that it exerts an initial

influence which, even though is constant, does not vanish as the outlier becomes

large. Thus, concerning this aspect Desgagné (2013, 2015) proposes a new class

of distributions which allow to resolve conflicts in scale (and location-scale) pa-

rameter(s) models by fully rejecting the conflicting information (full robustness).

However, this led to rather complex conditions and distributions, which can limit

the applications. Andrade & Omey (2016) proposes to use the class of O-regularly

varying distributions (ORV ), which are much more intuitive and also allows full

robustness in scale parameter models.

The robustness we are treating is related to the conflict of information, the

thread initiated by Dawid (1973), in which some of the sources of information
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(prior/likelihood) carries some information that is away from the rest of the

information (See Andrade & O’Hagan, 2006).

One important thing to notice is that, although there are many new distri-

butions which could be used for robustness modelling, for the best of our knowl-

edge, no other distribution has this tail behaviour, with oscillating decay between

two regularly varying distributions. This peculiar behaviour of the floor distribu-

tion, besides being heavy tail, also can motivate the creation of new distributions

involving some sort of waving functions.

In this work we study the Floor distribution, which is in the O-regularly

varying class of heavy-tailed distributions. It was firstly suggested by Andrade &

Omey (2016), however here we compute all the relevant quantities of the distri-

bution, such as moments, distribution function, random numbers generator, etc.

In Section 2 we give the definitions of regular and O-regular variation. In addi-

tion we provide a rule for creating ORV distributions and show how conflicts of

information can be resolved in Bayesian analysis context. In Section 3 we present

the Floor distribution and its quantities. A simulation study comparing the floor

distribution with the exponential one, using different proportions of outliers and

sample sizes, is provided in Section 4. Section 5 provides an example in which

outlying information is automatically rejected by the model as it becomes large.

Finally, we conclude with some general remarks in Section 6.

2. HEAVY TAILS AND REGULAR VARIATION

Roughly speaking the concept of heavy tails is associated with those distri-

butions whose tails decay at least slower than the function e−x
. However, there

is not a widely spread accepted definition of heavy tail. Most of the definitions

in the literature are contextualised in some area. In this work we define heavy

tail as regular variation.

The concept of regular variation was introduced by Karamata (1930). Feller

(1971) studied the application of such concept on probability theory and Andrade

& O’Hagan (2006 e 2011) used regularly varying distributions in robust Bayesian

modeling. Others studies include Landau (1911), Valiron (1913), Pólya (1917),

de Haan (1970) and Seneta (1976). The main reference about regular variation

used in this paper is the book written by Bingham et al. (1987).

Definition 2.1. (Regular variation) A measurable function f is said to be

regularly varying at infinity with index ρ, ρ ∈ R and λ > 0, if

(2.1) lim
x→∞

f(λx)

f(x)
= λρ.

We denote it by f ∈ Rρ.
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Particularly, if ρ = 0, then f is said to be a slowly varying function, denoted

by f ∈ R0. We write the set of all regularly varying functions as R = {Rρ : ρ ∈
(−∞,∞)}. The characterisation theorem establishes that if f(x) ∈ Rρ, then f(x)

can be written as f(x) = xρℓ(x), where ℓ(x) is a slowly varying function. For

more details about Karamata’s theory and, in particular, regular variation, see

Bingham et al. (1987). Definition 2.1 can be interpreted as the tail behavior of

a probability density function, i.e., there is a relation between regular variation

and heavy tails. For example, if f ∈ R−ρ as x → ∞, then the right tail decreases

like a power function x−ρ
.

The O-regular variation class (which we call ORV ) extends the concept of

regular variation and was introduced by Avakumović (1936). This class involves

distributions whose tails decrease at any behaviour between two regularly varying

functions. For example, the tails of an ORV distribution can decrease oscillating

between two power functions (Andrade & Omey, 2016).

Definition 2.2 (O-regular variation). A probability density f is said to

be O-regularly varying at infinity, denoted by f ∈ ORV, if f satisfies

(2.2) lim
x→∞

sup
f(xy)

f(x)
< ∞,∀y > 0.

Along with the definition of ORV, we have the upper and lower Matuszewska

indexes. If f ∈ ORV , the upper index of f is given by

(2.3) α(f) = lim
y→∞

log lim supx→∞
f(xy)/f(x)

log(y)
,

and the lower index of f is given by

(2.4) β(f) = α(1/f) = lim
y→∞

log lim infx→∞ f(xy)/f(x)

log(y)
.

Since the tails of ORV distributions decrease between two polynomials, it

is a broad class, thus there are many ways of constructing ORV distributions.

Andrade & Omey (2016) suggest a procedure to create ORV distributions. Let

f be a probability density function of the form

(2.5) f(x) = Cb(x)A(x),

where C is the normalizing constant, b is bounded away from zero to infinity

when x tends to infinity. For the class of distributions defined in (5), it follows

that:

(i) If xA′
(x)/A(x) is bounded, then f ∈ ORV;

(ii) If A(x) ∈ RV−α, then f ∈ ORV.
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Andrade & Omey (2016) showed that the floor distribution belongs to the

O-regular class. We say that the random variable X is distributed according to

a floor distribution with parameter a, denoted by X
d
∼ floor(a), if its probability

density function is given by

(2.6) f(x) = C(a)x−a e⌊log x⌋ , 1 ≤ x < ∞,

where C(a) is the normalizing constant, a > 2 and ⌊.⌋ is the floor function. In

other words,

f(x) = C(a)x−a+1e⌊log x⌋−log x,

for x ≥ 1. Such authors also prove that the floor distribution belongs to the

O-regularly varying class of distribution. Note that this satisfies (2.5), where

A(x) = xa−1
and b(x) = e⌊log x⌋−log x

. It is easy to see that A(x) is regularly

varying with index −a + 1. Since ⌊log x⌋ ≤ log x ≤ ⌊log x⌋+ 1, we also have that

−1 ≤ log x ≤ 0, which shows that e−1 ≤ b(x) ≤ 1. Thus we have that the floor

distribution is a O-regularly varying. We also have that the Matuszewska indices

for the floor distribution are given by α(f) = β(f) = −a + 1.

Consider x = (x1, ..., xn)|θ iid∼ f(x|θ) = θ−1h(x/θ), θ ∼ p(θ), and h and p

bounded continuous probability densities. Following the notation in Andrade

& Omey (2016), the data are partitioned in two sets, called xL
and xU

, defined

by L = f(xL|θ) =
∏k

i=1 h(xi|θ) and U = f(xU |θ) =
∏n

i=k+1 h(xi|θ), where xL
are

the outliers. In other words, f(x|θ) = θ−n ×L×U , and the posterior distribution

is given by

p(θ|x) =
θ−n × L × U × p(θ)∫

∞

0 θ−n × L × U × p(θ)dθ
.

Andrade & Omey (2016) showed that, if the following conditions hold,

(i) h ∈ ORV with α(h) < 0 ,

(ii)
∫ 1
0 y−kα−n × U × p(y)dy < ∞ ,

(iii)
∫
∞

1 y−n−kβ × U × p(y)dy < ∞ ,

(iv)
∫
∞

x y−np(y)dy = O(1)Π
k
i=1x

β−ǫ
i ,

then

(2.7) 0 < lim inf
x→∞

p(θ|x)

U p(θ)
≤ lim sup

x→∞

p(θ|x)

U p(θ)
< ∞

The result in (2.7) establishes that, as x tends to infinity, the posterior

distribution will be bounded by two quantities independent of x. Thus, the

posterior distribution will be based on the prior information and the observations

that are not outliers.
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3. THE FLOOR DISTRIBUTION

To define the location-scale floor family of distributions, let us consider the

linear transformation Z = σX + µ where µ ∈ R, σ > 0 and X
d
∼ floor(a).

3.1. The probability density function

Consequently, the density of Z is given by

h(z) = C(a)
1

σ

(
z − µ

σ

)
−a

e⌊log( z−µ

σ
)⌋ , µ + σ ≤ z < ∞,

where µ ∈ R and σ > 0. Figure 1 shows plots of the density for different values

of a, µ, and σ.
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Figure 1: Floor density for different values of a, µ, e σ.

3.2. The normalising constant

Note that (2.6) will be a density function if

∫
∞

1
C(a)x−a e⌊log x⌋

dx = 1.(3.1)
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Applying the transformation t = log(x),

1

C(a)
=

∫
∞

0
e−a t e⌊t⌋ et

dt

=

∫
∞

0
e−t(a−1) e⌊t⌋ dt

=

∫ 1

0
e−t(a−1) e0 dt +

∫ 2

1
e−t(a−1) e1

dt + ···(3.2)

=

∞∑

n=0

en

∫ n+1

n
e−t(a−1)

dt

=
1

a − 1

[
∞∑

n=0

e−n(a−2) −
∞∑

n=0

e−(n+1)(a−1)+n

]
.

The two sums in (3.2) are geometric series with ratio e−(a−2)
, hence

C(a) =
(a − 1)(e2 − ea

)

e − ea
, a > 2.

3.3. Cumulative distribution function

The cumulative distribution function of X ∼ Floor(a) is given by:

F (x) = C(a)

∫ x

1
t−a e⌊log t⌋

dt

Using the transformation ν = log t,

F (x) =
C(a)

a − 1



⌊log x⌋∑

n=0

e−n(a−2) − e1−a

⌊log x⌋−1∑

n=0

e−n(a−2) − e(1−a) log x+⌊log x⌋


(3.3)

The two sums in (3.3) are partial geometric series with ratios e−(a−2)
e e−a

,

respectively. It follows that

F (x) = −C(a)

a − 1

{
e− log(x)(a−1)+⌊log(x)⌋

+ (e−1 − 1)

[
1 − e−(a−2)⌊log x⌋

ea−2 − 1

]
− 1

}
,

for x > 1 and a > 2. Note that the cumulative distribution involving the location

and scale parameters can be obtained by simple variable transformation, that is

letting Z = σX + µ, we have the expression FZ(z) = P (X ≤ z−µ
σ ).
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3.4. Moment of order r

The moment of order r is calculated replacing a for (a − r) in (3.1). Thus,

(3.4) E(Xr
) = C(a)

∫
∞

1
x−(a−r) e⌊log x⌋

dx =
C(a)

C(a − r)
,

which exists only when r < a − 2.

3.5. Summaries

Proposition 3.1. If X is a random variable following the standard floor

distribution with parameter a, then

(i) The expectation of X, given straightforwardly by (3.4), is given by

E(X) = C(a)/C(a − 1), a ≥ 3.

(ii) Variance. Using (3.4), the variance is

(3.5) V ar(X) =
C(a)[C2

(a − 1) − C(a)C(a − 2)]

C(a − 2)C2(a − 1)
, a > 4.

(iii) Quantiles can be obtained by numerically inverting the cumulative

distribution function.

(iv) The coefficient of skewness is given by

γ1(X) =
C3

(a − 1)C(a − 2) − 3C(a)C2
(a − 1)C(a − 3) + 2C2

(a)C(a − 2)C(a − 3)

C1/2(a)C(a − 3)[C2(a − 1) − C(a)C(a − 2)]3/2

× C1/2
(a − 2), a > 5.

(v) It can be shown that the excess kurtosis can be written as

K(X) = C(a − 1)C(a − 2){C3
(a − 1)

3∏

i=2

C(a − i) − 4C(a − 4)

×
2∏

i=0

C(a − i) + 6C2
(a)C(a − 1)

4∏

i=3

C(a − i) − 4C(a)

×
4∏

i=0

C(a − i) + C2
(a)

4∏

i=2

C(a − i)}{C(a)C(a − 3)C(a − 4)}−1

× {C2
(a − 1) − C(a)C(a − 2)}−2 − 3, a > 6.
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Proof: To prove (iv), note that the Pearson’s moment coefficient of skew-

ness is given by

γ1(X) =
mX,3

σ3
X

,

where mX,3 = E[X − E(X)]
3
, i.e., the 3th central moment of the random vari-

able X and σX is the standard deviation of X. Thus, using the properties of

expectation and (3.4), it can be shown that

mX,3 =
C(a)[C3

(a − 1)C(a − 2) − 3C(a)C2
(a − 1)C(a − 3) + 2C2

(a)C(a − 2)C(a − 3)]

C3(a − 1)C(a − 2)C(a − 3)

Using (3.5), [V ar(X)]
3/2

= σ3
X =

C3/2(a)[C2(a−1)−C(a)C(a−2)]3/2

C3/2(a−2)C3(a−1)
, so that the

coefficient can be calculated.

To prove (v), note that the excess kurtosis is calculated by K(X)= mX,4/σ
4

X−3.

The computation of the fourth central moment is analogous to that of the coeffi-

cient of skewness, and the denominator σ4
X is simply the squared variance given

in (3.5).

Figure 2 shows how the expectation and variance behave as the parameter

a changes. Note that as the parameter a increases, both the expectation and vari-

ance of the standard floor distribution decrease, however the variance decreases

more rapidly.
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Figure 2: Expectation and variance for different values of a.

Figure 3 presents the behaviour of the skewness and kurtosis coefficients as

the value of a changes. Note that the value of γ1(X) will be always greater than

zero, which indicates that the floor distribution is right-skewed for any value of

a > 5.
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Figure 3: Skewness and kurtosis coefficients for different values of a.

3.6. Summaries for the floor distribution with location and scale

Proposition 3.2. If Z = σX + µ is a random variable following the floor

distribution with location and scale parameters given by µ and σ, respectively,

then

(i) The expectation of Z, given straightforwardly by (3.4), and using

properties of expectation is given by E(Z) = σE(X) + µ a ≥ 3, µ ∈
R, σ > 0.

(ii) Variance. Using (3.4), and properties of variance, we have

(3.6) V ar(Z) = σ2V ar(X) = σ2 C(a)[C2
(a − 1) − C(a)C(a − 2)]

C(a − 2)C2(a − 1)
, a > 4.

(iii) The moment of order r of the variable Z can be obtained using the

binomial theorem, i.e., E(Zr
) =

∑r
k=0

(
r
k

)
µr−kσk

E(Xk
).

(iv) Quantiles can be obtained by numerically inverting the cumulative

distribution function.

(v) The coefficient of skewness is the same as of the standard floor dis-

tribution, i.e., γ1(Z) = γ1(X).

(vi) The excess kurtosis coefficient is the same as of the standard floor

distribution, i.e., K(Z) = K(X).

Proof: To see that the coefficient of skewness and the excess kurtosis

are the same for the standard floor distribution and the floor distribution with

location and scale parameter, note that γ1(Z) =
mZ,3

σ3

Z

, where

mZ,3 = E{(Z − E(Z))
3} = E{(σX + µ − (σE(X) + µ))

3}
= E{σ3

(X − E(X))
3} = σ3

E{(X − E(X))
3} = σ3mX,3



456 J.A.A. Andrade, Edward Omey and C.T.M. Aquino

and σ3
Z = (σ2

Z)
3

2 = {σ2V ar(X)} 3

2 = (σσX)
3
. Thus

γ1(Z) =
mZ,3

σ3
Z

=
σ3mX,3

(σσX)3
=

mX,3

σ3
X

= γ1(X)

with similar computation, it can be shown that K(Z) = K(X).

3.7. Random values of the floor distribution

Through the acceptance-rejection method, values of the floor distribution

are generated (Kronmal & Peterson, 1981) using the R software. We considered

the exponential distribution with location parameter equal to 1 as the proposed

distribution, so that the support of both the exponential and floor distributions

are the same.

Consider the density of the floor distribution as f(x) and the density of

the exponential distribution as g(y). The acceptance-rejection algorithm used to

generate random values of a standard floor distribution with parameter a can be

explicitly written as follows:

1. Generate a random value of the exponential distribution with two pa-

rameters, choosing λ so that the floor and the exponential distribution

have the same expectation and fixing the location parameter as equal

to 1. Call this value y.

2. Generate a random value of the uniform distribution, u.

3. If u ≤ f(y)
cg(y) , set x=y (accept). Otherwise go back to step 1 to generate

a new value.

In the third step, we assume that the ratio between f(x) and g(x) is

bounded by c, a constant greater than zero.

Figure 4 shows a histogram with the distribution of 10,000 random val-

ues, generated through the acceptance-rejection method for a = 9, with the real

density over the histogram.
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Figure 4: Histograms of generated values with a = 9, µ = 0, σ = 1;

a = 9, µ = 4, σ = 2; a = 9, µ = 4, σ = 5, respectively.

4. SIMULATION STUDY

A simulation study was performed to compare the floor distribution to the

exponential distribution, under different sample sizes and proportion of outliers.

We used samples of sizes 20, 80 and 100, and for each sample size we considered

three proportions of outliers: 0.05, 0.10 and 0.15.

The Figure 5 shows how the posterior estimation for the location param-

eter behaved as the outlying observations increased. The floor distribution is

represented by the dashed line and the exponential distribution is represented by

the continuous line. As the Figure 5 shows, the estimation of the location pa-

rameter under the floor distribution was not so affected as under the exponential

distribution.
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Figure 5: Comparison of location parameter posterior estimation for the

floor and exponential distributions under different sample sizes

and proportions of outliers.

5. APPLICATIONS — BAYESIAN ROBUSTNESS

In this section, we illustrate how the floor distribution can resolve conflict

of information by rejecting the outlying information. We compare the behaviour

of the posterior estimates under a floor distribution and exponential distribution

models. The usual procedure to assess robustness in a Bayesian model is to make

one (or a few) observations in the data to tend to infinity, and check how the

posterior estimates behaves. Thus, modelling accordingly to conditions (i)–(iv)

which lead to the result (2.7), the posterior distribution will automatically reject

the conflicting observation.

We use the data from Kapur & Lamberson (1977, p. 240), which refers

to X: the number cycles to failure (in ten thousands) for 20 heater switches
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subject to an overload voltage. Following the same methodology used in Andrade

& Omey (2016), the data are modelled with two different densities with scale

parameter: exponential, with density given by f(x|θ) = θ−1e−x/θ, x > 0 and floor,

with density given by

f(x|θ) =
C(a)

θ

(x

θ

)
−a

elog⌊x/θ⌋,

for x > θ. The conditions established by Andrade & Omey (2016) consider loca-

tion and scale parameter structures separately, thus a more complex structure,

involving location and scale parameters, will change their conditions, hence more

investigation is required in order to assess the behaviour of the posterior quanti-

ties in the location-scale parameter case, likewise to Andrade & O’Hagan (2011).

Tahir & Saleem (2011) considered a elicited prior density is which is quite

informative, in the sense that the prior variance is relatively small. Thus, θ
d
∼

Gama(8.9936, 21.5698), which we will also use for both the floor and exponential

models.

We used the package OpenBugs with zeros trick, since the floor is a new

distribution. As a result, Figure 6 was created by simulating the posterior dis-

tribution for each model, as one of the observations tends to infinity. In the case

of the exponential distribution, as the outlier becomes distant from the other ob-

servations, the posterior mean is affected by the outlying information. This does

not happen with the floor distribution, and thus we can see from this example

that the floor distribution is robust to outliers.

0 100 200 300 400 500

2
4

6
8

1
0

1
2

1
4

x

P
o
s
te

ri
o
r 

e
x
p
e
c
ta

ti
o
n
 o

f 
θ

Exponential

Floor

Figure 6: Posterior estimates for θ.
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6. DISCUSSION

In Bayesian context, robustness modelling is becoming of high interest,

mainly to address problems due to misspecification of the model. In fact, in a

rigorous modelling process, a researcher may change the model after detecting

conflicting information such as outliers, untrusted prior information, etc. There-

fore, it is important to know about the properties of the heavy-tailed distributions

in order to model conveniently to resolve such conflicts. However, the large range

of heavy-tailed distributions leads to a great variety of behaviours of the poste-

rior distribution in the presence of conflict, some heavy-tailed distribution will

yield robust models only for the location parameter, whereas other classes of

such distributions will resolve conflicts in both location and scale parameters. In

addition, different classes can lead to different ways to resolve the conflict. For

instance, as pointed out by Andrade & O’Hagan (2006), in the scale parameter

case, the regularly varying distributions will allow only a partial rejection of the

conflicting information, whereas the class proposed by Desgagné (2013, 2015)

achieve full rejection. In this work, we follow the proposal of Andrade & Omey

(2016), in which uses the ORV class, which also lead to complete rejection the

outlier, however the ORV class is much more intuitive and easy to work than

that proposed by Desgagné (2013).

On the other hand, there are very few ORV distributions in the literature,

further work should propose new ORV distributions. The floor distribution is

an alternative to the exponential distribution, and is an example of how the tails

can oscillate leading to a new sort of heavy-tailed distributions, which has direct

applications in Bayesian Robustness.
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1. INTRODUCTION

When measuring variables of interest is expensive or time-consuming, but

ranking them in small groups without actual measurement is easy and convenient,

ranked set sampling (RSS) can be regarded as an efficient technique for collecting

more informative samples and therefore having more reliable inferences. This

sampling technique, which was firstly introduced by McIntyre (1952, 2005), can

be applied in both balanced and unbalanced strategies. In the balanced case, the

researcher first draws k random samples of size k and orders them based on his

personal judgment (not actual measurement). Then, for i = 1, ..., k, he actually

measures the ith judgment ordered observation from the ith sample. Finally, he

repeats this procedure n times (cycles) in order to draw a sample of size kn from

a Balanced Ranked Set Sampling (BRSS) scheme. In Unbalanced Ranked Set

Sampling (UBRSS), the numbers of ith judgment ordered observations are not

necessarily the same anymore. A comprehensive review of works on RSS including

a comprehensive list of references can be found in Wolfe (2012).

Although many researchers have shown that a ranked set sample may allow

for more reliable inferences than a simple random sample of the same size, this

reliability decreases as errors in ranking observations based on personal judgment

occur. Frey et al. (2007) have exemplified how the ranking error can invalidate the

method of inference in both parametric and nonparametric cases. Therefore, it

seems to be vital to develop tests for assessing the assumption of perfect judgment

ranking for both parametric and nonparametric cases. Surprisingly, this has not

been done up to quite recently. Frey et al. (2007) and Li and Balakrishnan (2008)

independently proposed some nonparametric tests of perfect judgment ranking,

followed by Vock and Balakrishnan (2011), Zamanzade et al. (2012), Vock and

Balakrishnan (2013), Frey and Wang (2013), and Zamanzade et al. (2014).

This paper is organized as follows: In Section 2, we propose our tests of

perfect judgment ranking for one cycle, then, in the next section, we generalize

them to the multi-cycle case. In Section 4, we compare our proposed tests with

their leading competitors in the literature. Conclusions and some final remarks

are provided in Section 5.

2. INTRODUCTION OF TESTS STATISTICS

Let X[1], ..., X[k] be a sample of size k from BRSS with one cycle, where

X[i] (i = 1, ..., k) is the ith judgment ordered observation from the ith sample,

which is actually measured. It should be noted that the X[i]’s are independent

from each other and follow the distribution of an ith order statistic if the assump-

tion of perfect judgment ranking is completely satisfied. Furthermore, due to
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the independence of the X[i]’s, P
(
X[i] < X[j]

)
< 1 for i < j and i, j ∈ {1, ..., k},

and this probability decreases as the judgment ranking becomes more and more

unreliable. So intuitively, it is expected that the two vectors
(
X[1], ..., X[k]

)
and(

Z(1), ..., Z(k)

)
are close to each other provided that the assumption of perfect

judgment ranking is completely satisfied, where
(
Z(1), ..., Z(k)

)
is the vector of

Ordered Ranked Set Samples (ORSS) which is obtained by putting the values

of
(
X[1], ..., X[k]

)
in order. Therefore if the underlying distribution of population

is completely known, then the following tests can be proposed for assessing the

assumption of perfect judgment ranking:

TA =

k∑

i=1

|di|
E|di|

;

TS =

k∑

i=1

d2
i

Ed2
i

;

where di = X[i] −Z(i), and E (.) is the expectation operator which is taken under

the assumption of perfect judgment ranking.

Intuitively, large values of TA, TS are a symptom of violation of the as-

sumption of perfect judgment ranking and therefore this assumption should be

rejected for large enough values of TA, TS.

If the underlying distribution of the population belongs to a location-scale

family, then the above test statistics can be simplified as follows:

TA =

k∑

i=1

|di|
σEµ=0,σ=1|di|

;

TS =

k∑

i=1

d2
i

σ2Eµ=0,σ=1d2
i

;

where µ, σ are location and scale parameters, respectively.

Obviously, the above test statistics are location-free, and they will be scale-

free if an equivariant estimator is used for the estimation of σ.

3. EXTENSION OF THE PROPOSED TESTS TO THE MULTI-

CYCLE CASE

Although several methods have been proposed in the literature for extend-

ing tests of perfect judgment ranking from the one-cycle to the multi-cycle case,

Zamanzade et al. (2012)’s simulation study has shown that their permutation-

based technique provides good results under many scenarios. So we use their

method to extend our tests to the multi-cycle case.
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Suppose that
(
X[i]j

)
i≤k,j≤n

is a sample of size of kn, which is drawn by

an n-cycle BRSS scheme, where X[i]j is the ith judgment ordered observation

from the jth
cycle (i = 1, ..., k; j = 1, ..., n). Since all observations are mutu-

ally independent and the observations in each column are also identically dis-

tributed, it is expected that the vector of ordered observations in each row should

be close to the unordered row vector if we permute observations in each col-

umn, provided that the assumption of perfect judgment ranking is fully satisfied.

In other words, under the assumption of perfect judgment ranking, the vector(
X[1]l1 , X[2]l2 , X[3]l3 , ..., X[k]lk

)
and the ordered vector of this vector, which is de-

noted here by
(
Z(1)l1l2...lk , Z(2)l1l2...lk , Z(3)l1l2...lk , ..., Z(k)l1l2...lk

)
, should be close to

each other for all (l1, l2, l3, ..., lk) ∈ {1, 2, 3, ..., n}k
.

Based on the above arguments, TA, TS can be extended to the multi-cycle

case as follows:

TPA =

nk∑

i=1

TAi,

TPS =

nk∑

i=1

TSi,

where TAi, TSi are the values of TA and TS, respectively, for the ith sample

out of all nk
samples of the form

(
X[1]l1 , X[2]l2 , X[3]l3 , ..., X[k]lk

)
, (l1, l2, l3, ..., lk) ∈

{1, 2, 3, ..., n}k
.

We reject the hypothesis of perfect judgment ranking for large enough values of

TPA and TPS.

The calculation of TPA or TPS based on all nk
samples of the form men-

tioned above is too time-consuming for practical application except for very small

values of k and n. We therefore propose a less intuitive, but more efficient way of

computing these statistics. R-code for the computation of TPA and TPS using

the following method is available on request from the authors.

For n cycles, with Ei = Eµ=0,σ=1|di|, TPA can be written as

TPA =

∑

(l1,...,lk)∈{1,...,n}k

k∑

i=1

∣∣X[i]li − Z(i)l1l2,...,lk

∣∣
σEi

=

k∑

i=1

1

σEi

n∑

li=1

∑

(l1,...,li−1,li+1,...,lk)∈{1,...,n}k−1

∣∣X[i]li − Z(i)l1l2...lk

∣∣

=

k∑

i=1

1

σEi

n∑

li=1

k∑

j=1

n∑

h=1

m (i, li, j, h)
∣∣X[i]li − X[j]h

∣∣

where m (i, li, j, h) is the number of vectors (l1, ..., li−1, li+1, ..., lk) ∈ {1, ..., n}k−1

such that the ith order statistic from X[1]l1 , ..., X[k]lk is the jth
judgment ordered
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observation from the hth
cycle. (A similar representation applies to TPS.) Since

for each judgment order rank, only one cycle is used, this implies that lj = h,

and m (i, li, j, h) is actually the number of vectors (lq)q∈{1,...,k}\{i,j} ∈ {1, ..., n}k−2

such that the ith order statistic from X[1]l1 , ..., X[k]lk is the jth
judgment ordered

observation from the hth
cycle.

In the following, we assume that there are no ties. Since (1) m (i, li, j, h) is

0 if i = j and li 6= h and (2) X[i]li −X[j]h = 0 if i = j and li = h, j can be assumed

to be different from i:

TPA =

k∑

i=1

1

σEi

n∑

li=1

k∑

j=1

j 6=i

n∑

h=1

m (i, li, j, h)
∣∣X[i]li − X[j]h

∣∣ .

We therefore only need the values of m (i, li, j, h) for i 6= j. For i = 1, ..., k, let

a (i, j, h) be the number of observations in the ith judgment-order stratum that

are smaller than X[j]h,

a (i, j, h) = #
{
l ∈ {1, ..., n} : X[i]l < X[j]h

}
.

Then, by using the fact that exactly i − 1 observations from X[1]l1 , ..., X[k]lk (of

which X[i]li may be one or not) have to be smaller than the ith order statistic

from X[1]l1 , ..., X[k]lk ,

m (i, li, j, h) = #

{
(lq)q∈{1,...,k}\{i,j} ∈ {1, ..., n}k−2

:

∑

q∈{1,...,k}\{i,j}

I(X[q]lq < X[j]h) = i − 1 − I(X[i]li < X[j]h)

}

=

∑

Q⊂{1,...,k}\{i,j}

#Q=i−1−I(X[i]li
<X[j]h)

∏

q∈Q

a (q, j, h)

∏

q 6∈Q

(n − a (q, j, h))

where I(.) is the indicator function.

The a (i, j, h)’s can be calculated efficiently by going through all kn observed

values X[j]h in increasing order and using the fact that a (i, j∗, h∗
) = 0 (for i =

1, ..., k) if X[j∗]h∗ is the smallest value from the sample, as well as the following

recursions, where X[j]h and X[j′]h′ are assumed to be two successive values of the

ordered sample:

a(i, j′, h′
) =

{
a(i, j, h) + 1 if i = j,

a(i, j, h) if i 6= j.

E.g., for k = n = 8, this approach for the computation of TPA and TPS re-

sulted in a reduction of the computation time by a factor of approximately 1200

compared to the original algorithm.
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4. POWER COMPARISON

In this section, we compare the power of our proposed tests with their

leading competitors in the literature under the assumption that the parent dis-

tribution is normal. The competing tests considered here are as follows:

• Nonparametric test based on W ∗
developed by Frey et al. (2007),

which rejects the hypothesis of perfect judgment ranking when W ∗
=∑k

i=1

∑n
j=1 iR[i]j is too small, where R[i]j is the rank of X[i]j among all

kn observations.

• Nonparametric test based on the null probability (NP) developed by

Frey et al. (2007), which rejects the hypothesis of perfect judgment

ranking when the null probability of observing set rank
{
R[i]j

}
is too

small.

• Nonparametric test based on J developed by Vock and Balakrishnan

(2011), which rejects the hypothesis of perfect judgment ranking when

J =
∑n

h=1

∑n
l=1

∑k−1
i=1

∑k
j=i+1 I

(
X[i]l > X[j]h

)
is too large.

• Nonparametric test based on PA developed by Zamanzade et al. (2012),

which rejects the hypothesis of perfect judgment ranking when PA =∑nk

h=1

∑k
i=1

∣∣∣R∗

[i]h − i
∣∣∣ is too large, where R∗

[i]h is the rank of the ith

judgment ordered observation in the hth
permuted sample introduced

in Section 3.

• Parametric test based on D developed by Zamanzade et al. (2014),

which rejects the hypothesis of perfect judgment ranking when D =
∑n

h=1

∑n
l=1

∑k−1
i=1

∑k
j=i+1

(X[i]l−X[j]h)I(X[i]l>X[j]h)

Eµ=0,σ=1((X[i]l−X[j]h)I(X[i]l>X[j]h))
is too large,

where µ, σ are location and scale parameters, respectively.

• Most powerful rank test (MP) developed by Frey and Wang (2013).

In this test, it is assumed that the alternative hypothesis of perfect

judgment ranking is fully specified, i.e. the underlying distribution of

the population, the scenario of imperfect ranking, and the fraction of

imperfect ranking are all completely known. Then the null hypothesis

is rejected when r =
PH1

(W1<W2<···<WN )

PH0
(W1<W2<···<WN ) is too large, where Wi has the

same distribution as the in-set rank of the observation with rank i among

all the N = kn measured values.

We assume that the parent distribution is normal with unknown mean

µ and unknown variance σ2
. We don’t need to estimate the parameter µ

because the proposed tests are location free. The parameter σ is estimated by

σ̂ =

√
1

k−1

∑k
i=1

(
X[i] − X̄

)2
for n = 1 due to Stokes (1980) and by σ̂ =
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√(
1

nk +
1

nk2(n−1)

) ∑k
i=1

∑n
j=1

(
X[i]j − X̄[i].

)2
+

1
k

∑k
i=1

(
X̄[i]. − X̄

)2
for n > 1 as

proposed by MacEachern et al. (2002) and Perron and Sinha (2004), where X̄[i]. is

the mean of the observations with judgment rank i. Obviously, these estimators

of σ are equivariant and the resulting test statistics (denoted by T̂PA, T̂PS and

D̂) are scale invariant. Therefore, the critical values and powers of tests based

on T̂PA, T̂PS and D̂ don’t depend on the unknown parameters µ and σ. The

expected values E
(
d2

i

)
and E |di| and critical values of the tests based on T̂PA

and T̂PS under the assumption of normality are available on request from the

authors.

In our simulation study, the comparisons are done at a significance level of

α = 0.05. However, due to the discreteness of the distribution of the nonpara-

metric test statistics, it is not possible to attain an exact size of α = 0.05 without

randomizing. Therefore, we have used the randomized versions of those tests to

make all comparisons at size α = 0.05. For example, for n = 1 and k = 5, un-

der the assumption of perfect ranking, J ≥ 4 with null probability 0.03345, and

J ≥ 3 with null probability 0.12687. Thus in order to attain the significance level

α = 0.05 in a randomized test based on J , H0 is rejected with probability one if

J ≥ 4 and with probability
0.05−0.03345

0.12687−0.03345 = 0.177 if J = 3.

We have used two different scenarios of imperfect ranking, which have been

used by many researchers in the literature. The first scenario is the bivariate

normal model, due to Dell and Clutter (1972), in which the variable of interest

X is ordered by using a concomitant variable Y , where (X, Y ) has a bivariate

normal distribution with correlation coefficient λ.

The second scenario is that of a fraction of neighbor rankings, developed

by Vock and Balakrishnan (2011), in which the ith judgment ordered observation

is either ranked perfectly with probability λ, or is confused with the (i + 1)
th

or

(i − 1)
th

ordered observation, both with probability
λ
2 , therefore the distribution

of the ith judgment ordered observation under this scenario is F[i] =
λ
2F(i−1) +

(1−λ) F(i)+
λ
2F(i+1), where F(0) = F(1), F(k+1) = F(k). This imperfect ranking model

could arise when the ranking process is done by using personal judgment of an

expert ranker, so he may confuse the true order statistic with an adjacent one.

For power comparisons, we have extended Tables 3 and 6 of Frey and Wang

(2013) to all tests introduced above and larger values of (n, k) by using Monte

Carlo simulation with 100,000 repetitions. The simulation results are presented

in Tables 1–2. It should be noted that in the following tables the powers of the

tests based on MP, NP, W ∗
, J for (n, k) = (8, 2), (4, 3), (2, 4), (1, 5) are directly

reported from Tables 3 and 6 of Frey and Wang (2013). Furthermore, we haven’t

estimated the power of the MP test for (n, k) = (4, 5), (5, 4), since this test is only

applicable for small sample sizes and small set sizes because of its computational

limitations.
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Table 1 gives power results for the bivariate normal model. It is apparent

from this table that although the NP test is the most powerful among the non-

parametric tests, the powers of the test based on W ∗
are quite close to it. On

the other hand, the proposed tests and the test based on D̂ have the best powers

in this scenario, and the differences between their powers are not considerable.

Table 1: Power estimates of different level 0.05 tests, under the

concomitant model with correlation coefficient λ.

k n λ

T̂PS T̂PA bD MP NP W ∗ J PA
(new) (new) (Z., (Frey (Frey (Frey (V. (Z.

et al. and et al., et al., and et al.,
2014) Wang, 2007) 2007) Balakr., 2012)

2013) 2011)

0.9 .1047 .1042 .1060 .1019 .1018 .1000 .1000 .1000
0.8 .1880 .1815 .1815 .1722 .1720 .1676 .1676 .1676

2 8 0.7 .2715 .2715 .2710 .2566 .2563 .2490 .2490 .2490
0.6 .3679 .3642 .3671 .3496 .3493 .3394 .3394 .3394
0.5 .4656 .4694 .4678 .4458 .4456 .4337 .4337 .4337

0.9 .1265 .1384 .1302 .1317 .1316 .1294 .1289 .1271
0.8 .2400 .2465 .2487 .2401 .2400 .2346 .2336 .2344

3 4 0.7 .3599 .3729 .3628 .3596 .3594 .3509 .3496 .3515
0.6 .4678 .4858 .4947 .4777 .4776 .4669 .4655 .4625
0.5 .5891 .6002 .5959 .5867 .5866 .5748 .5783 .5734

0.9 .1405 .1425 .1509 .1491 .1420 .1403 .1372 .1398
0.8 .2599 .2556 .2663 .2555 .2553 .2511 .2448 .2477

4 2 0.7 .3678 .3894 .3882 .3720 .3718 .3653 .3568 .3613
0.6 .4776 .4811 .4984 .4819 .4818 .4737 .4640 .4697
0.5 .5763 .5808 .6006 .5808 .5806 .5718 .5617 .5650

0.9 .1367 .1365 .1485 .1366 .1363 .1358 .1283 .1254
0.8 .2413 .2355 .2582 .2335 .2332 .2316 .2174 .2113

5 1 0.7 .3428 .3335 .3658 .3287 .3287 .3260 .3071 .2960
0.6 .4345 .4242 .4615 .4182 .4182 .4147 .3929 .3779
0.5 .5213 .5103 .5456 .5003 .5003 .4962 .4731 .4532

0.9 .2697 .2681 .2843 — .2969 .2866 .2845 .2846
0.8 .5471 .5437 .5538 — .5811 .5649 .5625 .5632

5 4 0.7 .7590 .7577 .7541 — .7820 .7665 .7651 .7648
0.6 .8841 .8841 .8733 — .8934 .8818 .8819 .8816
0.5 .9494 .9395 .9380 — .9506 .9436 .9434 .9436

0.9 .2247 .2286 .2181 — .2261 .2224 .2231 .2182
0.8 .4508 .4664 .4387 — .4618 .4520 .4523 .4462

4 5 0.7 .6446 .6633 .6354 — .6634 .6526 .6536 .6469
0.6 .7880 .8058 .7831 — .8022 .7910 .7927 .7884
0.5 .8943 .8945 .8785 — .8944 .8846 .8873 .8846

Partially reprinted from Computational Statistics and Data Analysis, Vol. 60, J. Frey
and L. Wang, Most powerful rank tests for perfect rankings, Table 3, p. 163, Copyright
2012, with permission from Elsevier.
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Powers of the tests for the scenario of neighbor rankings are presented in

Table 2. This table shows that the test based on PA and the NP test are the best

nonparametric tests. The test based on T̂PA is the most powerful test for this

imperfect ranking scenario, while the powers of the test based on T̂PS are quite

close. It is worth mentioning that in this scenario, the power difference among

the proposed tests and the other tests are considerable in most cases.

Table 2: Power estimates of different level 0.05 tests, under a fraction λ
of neighbor rankings under assumption of normality.

k n λ

T̂PS T̂PA bD MP NP W ∗ J PA
(new) (new) (Z., (Frey (Frey (Frey (V. (Z.

et al. and et al., et al., and et al.,
2014) Wang, 2007) 2007) Balakr., 2012)

2013) 2011)

0.2 .1943 .1868 .1862 .1775 .1706 .1590 .1590 .1590
0.4 .3791 .3796 .3731 .3499 .3444 .3243 .3243 .3243

2 8 0.6 .5689 .5694 .5666 .5369 .5345 .5134 .5134 .5134
0.8 .7328 .7358 .7350 .7066 .7062 .6897 .6897 .6897
1 .8486 .8587 .8573 .8377 .8377 .8275 .8275 .8275

0.2 .1349 .1369 .1249 .1285 .1248 .1189 .1201 .1212
0.4 .2483 .2524 .2164 .2371 .2266 .2122 .2173 .2206

3 4 0.6 .3985 .4057 .3287 .3679 .3475 .3230 .3345 .3450
0.8 .5157 .5324 .4484 .5085 .4771 .4432 .4622 .4789
1 .6481 .6684 .5571 .6453 .6048 .5640 .5899 .6092

0.2 .1064 .1065 .0965 .0976 .0956 .0932 .0928 .0975
0.4 .1755 .1774 .1508 .1581 .1514 .1447 .1456 .1516

4 2 0.6 .2532 .2593 .2112 .2307 .2159 .2034 .2070 .2223
0.8 .3416 .3514 .2774 .3136 .2875 .2678 .2757 .2987
1 .4321 .4495 .3474 .4041 .3643 .3367 .3500 .3822

0.2 .0854 .0865 .0804 .0785 .0772 .0766 .0757 .0763
0.4 .1275 .1282 .1156 .1109 .1066 .1051 .1040 .1064

5 1 0.6 .1729 .1759 .1511 .1473 .1381 .1354 .1346 .1387
0.8 .2210 .2255 .1887 .1878 .1713 .1673 .1673 .1733
1 .2736 .2818 .2311 .2218 .2061 .2007 .2016 .2119

0.2 .1454 .1468 .1155 — .1277 .1166 .1199 .1226
0.4 .2733 .2799 .1983 — .2326 .2041 .2163 .2259

5 4 0.6 .4220 .4248 .2885 — .3620 .3098 .3365 .3563
0.8 .5664 .5791 .3877 — .4959 .4266 .4668 .4954
1 .7003 .7196 .4908 — .6262 .5441 .5963 .6324

0.2 .1584 .1544 .1275 — .1408 .1309 .1347 .1334
0.4 .3072 .3051 .2260 — .2661 .2381 .2515 .2562

4 5 0.6 .4673 .4757 .3396 — .4209 .3741 .4009 .4126
0.8 .6299 .6441 .4625 — .5750 .5123 .5537 .5716
1 .7669 .7868 .5844 — .7137 .6446 .6937 .7167

Partially reprinted from Computational Statistics and Data Analysis, Vol. 60, J. Frey
and L. Wang, Most powerful rank tests for perfect rankings, Table 6, p. 165, Copyright
2012, with permission from Elsevier.
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The simulation study was also performed for two more imperfect ranking

models (fraction of inverse rankings and fraction of random rankings; see, e.g.,

Zamanzade et al., 2014) as well as under the assumption of an exponential instead

of a normal distribution. We do not report these simulation results due to space

restrictions. However, they are available on request from the authors.

Remark 4.1. It is important to notice that the proposed tests have the

advantage that randomization is not needed to obtain the tests of a specific size.

For the nonparametric tests and the MP test, randomization is used in the simula-

tions for a more meaningful power comparison, but when using a non-randomized

version of these tests in practice, the power will be lower. For example, in the bi-

variate normal model, for n = 1, k = 5, and λ = 0.5, the estimated powers (based

on 100000 repetitions) of non-randomized nonparametric tests using NP, W ∗
,

J , and PA at a nominal level of α = 0.05 are 0.460, 0.460, 0.435, and 0.316,

respectively, which are lower that their reported values in Table 1, where the

randomized tests are used.

Remark 4.2. It is worth mentioning that although the MP test has rea-

sonably good powers in most cases, the application of this test is too restricted

in practice. It should be noted that this test can only be used in practice if

the underlying distribution of the population, the scenario of imperfect ranking

and the fraction of imperfect rankings (λ) are all completely known. Since these

conditions, especially the last one, are hardly conceivable to be satisfied, this test

cannot be used in many parametrical situations in practice.

5. CONCLUSION

In this paper, we developed two parametric and location-scale free tests of

perfect judgment ranking based on ordered ranked set samples. Our tests are

based on the idea that if the assumption of perfect ranking is satisfied, then the

difference between ranked set samples and ordered ranked set samples should

be small. Then we generalized our proposed tests to the multi-cycle case of

BRSS. Finally, we compared our tests with their best known competitors in the

literature. Our power comparisons indicate that the proposed tests have good

performance in comparison with their leading competitors, especially under the

fraction of neighbor rankings model.

It is worth mentioning that although we confine ourselves to the balanced

ranked set samples, the proposed tests can straightforwardly be generalized to

the unbalanced case.
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magra@up.poznan.pl

Received: April 2016 Revised: November 2016 Accepted: November 2016

Abstract:

• In this paper we formulate how to add a = 1, 2, 3 runs to a near D-optimal weigh-

ing design to get a highly D-efficient weighing design when the number of objects p
is even.

Key-Words:

• D-optimal design; efficiency; spring balance weighing design.

AMS Subject Classification:

• 62K05, 05B20.



476 Bronis law Ceranka and Ma lgorzata Graczyk



Highly D-Efficient Designs 477

1. INTRODUCTION

We study a weighing experiment where observations follow the linear model

y = Xw + e, where y = (y1, y2, ..., yn)
′

is a n × 1 random vector of observations,

X is the model matrix identified by the weighing design X ∈ Φn×p{0, 1}, where

Φn×p{0, 1} denotes the set of all n×p matrices with elements 0 or 1, rank(X) = p,

w = (w1, w2, ..., wp)
′

is a p × 1 vector of true unknown parameters (weights) and

e = (e1, e2, ..., en)
′

is n × 1 random vector of errors. We assume, E(e) = 0n and

Var(e) = σ2In, where 0n is the n × 1 zero vector and In is the identity matrix of

order n. The least squares estimator of w is of the form ŵ = (X
′

X)
−1X

′

y and

the variance matrix of ŵ is given by the formula Var(ŵ) = σ2
(X

′

X)
−1

and X
′

X

is called the information matrix for the design.

Our goal is to determine an optimal experimental plan X that minimizes the

volume of the confidence region for w assuming that the errors are normally

distributed. This is equivalent to the determining a design X such that det(X
′

X)

is maximum. Such a design X is called D-optimal. D-optimality of weighing

designs is studied in [3], [4], [6].

2. THE MAIN RESULT

Through the paper we assume that p is even. In [5], for even p it is shown

that the maximum det(X
′

X) is attained if X
′

X = t (Ip + Jp) and each row of X

contains k or k + 1 ones, where p = 2k and J is a matrix of all 1s. For the design

X having k ones in each row and even p, an upper bound for det(X
′

X) is given

in [1]. In [1], the following theorem was also proven.

Theorem 2.1. For any X ∈ Φn×p{0, 1},

(2.1) det(X
′

X) = (p − 1)

(
np

4(p − 1)

)p

if and only if

(2.2) X
′

X =
n

4(p − 1)
(pIp + (p − 2)Jp) ,

where np
4(p−1) and

n(p−2)
4(p−1) are integers.

Here, we define Deff(X) as

(2.3) Deff(X) =

(
det(X

′

X)

det(Y
′

Y)

) 1

p

,
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where Y is a regular D-optimal spring balance weighing design having k or k + 1

ones in each row (p = 2k) and Y
′

Y =
(p+2)n
4(p+1) (Ip + Jp), see [5].

Definition 2.1. Any nonsingular spring balance weighing design X ∈
Φn×p{0, 1} for which p is even is said to be near D-optimal if det(X

′

X) =

(p − 1)

(
np

4(p−1)

)p
.

In [1], some construction methods for near D-optimal weighing designs for

certain values of n and p were provided. However, construction methods are

needed for general n and p. Given a near D-optimal design for p objects and

n − a measurements we describe how to add a measurements in such way that

the resulting design is highly D-efficient.

2.1. Adding a = 1 measurements

Let X1 be a near D-optimal design in Ψ(n−1)×p{0, 1}. In order to locate

highly D-efficient design in Φn×p{0, 1}, we add one measurement, i.e. p× 1 vector

x of 0’s or 1’s having property x
′

1p = t. So, X ∈ Φn×p{0, 1} is given in the

following form

(2.4) X =

[
X1

x
′

]
.

Thus for X ∈ Φn×p{0, 1} in (2.4), det(X
′

X) =

(
1 + x

′

(X
′

1X1)
−1x

)
· det(X

′

1X1),

by Theorem 18.1.1 in [2]. Then we have the following theorem.

Theorem 2.2. For any X ∈ Φn×p{0, 1} given by (2.4),

(2.5) det

(
X

′

X
)
≤ (p − 1)

(
(n − 1)p

4(p − 1)

)p(
1 +

p3
+ 8

(n − 1)p2

)
.

Proof: By Theorem 2.1

(2.6) det(X
′

1X1) = (p − 1)

(
(n − 1)p

4(p − 1)

)p

implies

(2.7) X
′

1X1 =
n − 1

4(p − 1)
(pIp + (p − 2)Jp) ,

where
(n−1)p
4(p−1) and

(n−1)(p−2)
4(p−1) are integers. Apply the formula given in (2.6) to

compute the determinant of the information matrix. So,

det(X
′

X) = (p − 1)

(
(n − 1)p

4(p − 1)

)p (
1 + x

′

(X
′

1X1)
−1x

)
.



Highly D-Efficient Designs 479

Since (X
′

1X1)
−1

=
4(p−1)
(n−1)p

(
Ip − p−2

p(p−1)Jp

)
, we obtain

(2.8) det

(
X

′

X
)

= (p−1)

(
(n−1)p

4(p−1)

)p(
1 +

4(p−1)

(n−1)p

(
x

′

x − p − 2

p(p − 1)
x

′

Jp x

))
.

To maximise (2.8), we determine the maximum value of the function

(2.9) η(x) = x
′

x − p − 2

p(p − 1)
x

′

Jpx.

Consequently, η(x) = t − p−2
p(p−1) t

2 ≤ p3+8
4p(p−1) and the equality holds if and only if

t = 0.5(p + 2). From the above and (2.8) we obtain (2.5).

Corollary 2.1. For a spring balance weighing design X ∈ Φn×p{0, 1} given

by (2.4), det

(
X

′

X
)

= (p − 1)

(
(n−1)p
4(p−1)

)p (
1 +

p3+8
(n−1)p2

)
provided that (2.7) holds

and x
′

1p = 0.5(p + 2).

2.2. Adding a = 2 measurements

Let X1 ∈ Φ(n−2)×p{0, 1} be near D-optimal. Let X ∈ Φn×p{0, 1} be in the

following form

(2.10) X =




X1

x
′

y
′


 ,

where x and y are vectors of 0’s and 1’s and x
′

1p = t, y
′

1p = u, x
′

y = m,

0 ≤ m ≤ min(t, u).

Theorem 2.3. For any X ∈ Φn×p{0, 1} given by (2.10)

det

(
X

′

X
)
≤
{

Q(n, p)R(n, p) if p = 0 mod 4

Q(n, p)L(n, p) if p + 2 = 0 mod 4,

where

Q(n, p) = (p − 1)

(
(n − 2)p

4(p − 1)

)p

,

R(n, p) =

(
1 +

p3
+ p2

+ 16

(n − 2)p2

)(
1 +

p − 1

n − 2

)
,(2.11)

L(n, p) =

(
1 +

(p − 1)(p + 2)

(n − 2)p

)(
1 +

(p + 2)(p2 − 3p + 8)

(n − 2)p2

)
.
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Proof: By Theorem 2.1

(2.12) det

(
X

′

1X1

)
= (p − 1)

(
(n − 2)p

4(p − 1)

)p

implies

(2.13) X
′

1X1 =
n − 2

4(p − 1)
(pIp + (p − 2)Jp) ,

where
(n−2)p
4(p−1) and

(n−2)(p−2)
4(p−1) are integers. By Theorem 18.1.1 in [2]

det(X
′

X) = det(X
′

1X1)det

(
I2 +

[
x

′

y
′

](
X

′

1X1

)
−1 [

x y
])

and (
X

′

1X1

)
−1

=
4(p − 1)

(n − 2)p

(
Ip −

p − 2

p(p − 1)
Jp

)
.

Next, by the formula given in (2.12) we have

(2.14) det(X
′

X) = (p − 1)

(
(n − 2)p

4(p − 1)

)p

· det(Ω),

where

Ω =




1 +
4(p−1)
(n−2)p

(
t − p−2

p(p−1) t
2
)

4(p−1)
(n−2)p

(
m − p−2

p(p−1) tu
)

4(p−1)
(n−2)p

(
m − p−2

p(p−1) tu
)

1 +
4(p−1)
(n−2)p

(
u − p−2

p(p−1)u
2
)


 .

As we want to maximise (2.14), we determine the maximum values of

(2.15) t − p − 2

p(p − 1)
t2 and u − p − 2

p(p − 1)
u2

and concomitantly the minimum value of

(2.16)

(
m − p − 2

p(p − 1)
tu

)2

.

The maximum values in (2.15) each as a function of p is attained if and only

if t = u = 0.5(p + 2). If p = 0 mod 4, then the minimum value of (2.16) is equal

to
(p2+8)2

16p2(p−1)2
when m = 0.25(p + 4). Hence det(Ω) ≤

(
1 +

p3+p2+16
(n−2)p2

)(
1 +

p−1
n−2

)

and

(2.17) det(X
′

X) ≤ (p − 1)

(
1 +

p3
+ p2

+ 16

(n − 2)p2

)(
1 +

p − 1

n − 2

)(
(n − 2)p

4(p − 1)

)p

.

The equality in (2.17) holds if and only if t = u = 0.5(p + 2) and m = 0.25(p + 4).
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If p+2 = 0 mod 4, then the minimum value of (2.16) is equal to
(p+2)2(p−4)2

16p2(p−1)2

when m = 0.25(p+2). Therefore, det(Ω) ≤
(
1 +

(p−1)(p+2)
(n−2)p

)(
1 +

(p+2)(p2
−3p+8)

(n−2)p2

)

and

det(X
′

X) ≤ (p − 1)

(
1 +

(p − 1)(p + 2)

(n − 2)p

)

(2.18)

×
(

1 +
(p + 2)(p2 − 3p + 8)

(n − 2)p2

)(
(n − 2)p

4(p − 1)

)p

.

The equality in (2.18) holds if and only if t = u = 0.5(p + 2) and m =

0.25(p + 2).

Corollary 2.2. Let Q(n, p), R(n, p), L(n, p) be of the form (2.11) and

p be even. Then for a spring balance weighing design X ∈ Φn×p{0, 1} given by

(2.10),

det

(
X

′

X
)

=

{
Q(n, p)R(n, p) if p = 0 mod 4

Q(n, p)L(n, p) if p + 2 = 0 mod 4,

provided (2.13) holds and





x
′

1p = y
′

1p = 0.5(p + 2)

and

x
′

y = 0.25(p + 4) if p = 0 mod 4,

x
′

y = 0.25(p + 2) if p + 2 = 0 mod 4.

2.3. Adding a = 3 measurements

Next, we assume that there exists a near D-optimal spring balance weighing

design X1 for p objects and n − 3 measurements in the class Φ(n−3)×p{0, 1}. So,

X ∈ Φn×p{0, 1} is given in the form

(2.19) X =




X1

x
′

y
′

z
′


 ,

where x, y and z are vectors of 0’s and 1’s and

(2.20)





x
′

1p = t, x
′

y = m, 0 ≤ m ≤ min(t, u)

y
′

1p = u, x
′

z = q, 0 ≤ q ≤ min(t, w)

z
′

1p = w, y
′

z = h, 0 ≤ h ≤ min(u, w).
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By Theorem 2.1

(2.21) det(X
′

1X1) = (p − 1)

(
(n − 3)p

4(p − 1)

)p

,

implies

(2.22) X
′

1X1 =
n − 3

4(p − 1)
(pIp + (p − 2)Jp) ,

where
n−3

4(p−1) and
(n−3)(p−2)

4(p−1) are integers. By using the formula given in (2.21)

and Theorem 18.1.1 in [2], we obtain

det(X
′

X) = (p − 1)

(
(n − 3)p

4(p − 1)

)p

det


I3 +




x
′

y
′

z
′



(
X

′

1X1

)
−1 [

x y z
]

 .

Because

(
X

′

1X1

)
−1

=
4(p−1)
(n−3)p

(
Ip − p−2

p(p−1)Jp

)
, we have

(2.23) det(X
′

X) = (p − 1)

(
(n − 3)p

4(p − 1)

)p

det(T),

where T = I3 +
4(p−1)
(n−3)p




x
′

y
′

z
′



(
Ip − p−2

p(p−1)Jp

) [
x y z

]
. By (2.20),

det(T) =

(
1 +

4(p−1)

(n−3)p

(
t − p−2

p(p−1)
t2
))(

1 +
4(p−1)

(n−3)p

(
u − p−2

p(p−1)
u2

))

·
(

1 +
4(p−1)

(n−3)p

(
w − p−2

p(p−1)
w2

))

+ 2

(
4(p−1)

(n−3)p

)3(
m− p−2

p(p−1)
tu

)(
q− p−2

p(p−1)
tw

)(
h− p−2

p(p−1)
uw

)

−
(

1 +
4(p−1)

(n−3)p

(
t − p−2

p(p−1)
t2
))(

4(p−1)

(n−3)p

)2(
h − p−2

p(p−1)
uw

)2

−
(

1 +
4(p−1)

(n−3)p

(
u − p−2

p(p−1)
u2

))(
4(p−1)

(n−3)p

)2(
q − p−2

p(p−1)
tw

)2

−
(

1 +
4(p−1)

(n−3)p

(
w − p−2

p(p−1)
w2

))(
4(p−1)

(n−3)p

)2(
m − p−2

p(p−1)
tu

)2
.

As we want to maximise (2.23), we simultaneously determine the maximum values

of

(2.24) t − p − 2

p(p − 1)
t2, u − p − 2

p(p − 1)
u2

and w − p − 2

p(p − 1)
w2

and the minimum values of

(2.25)

(
h − p − 2

p(p − 1)
uw

)2

,

(
q − p − 2

p(p − 1)
tw

)2

and

(
m − p − 2

p(p − 1)
tu

)2

.
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The maximum values in (2.24) are all attained if and only if t = u = w = 0.5(p+2).

If p = 0 mod 4, then the minimum values in (2.25) are equal to
(p2+8)2

16p2(p−1)2
when

m = q = h = 0.25(p + 4). Then

det(T) ≤
(

1+
p3

+8

(n−3)p2

)3
+ 2

(
p2

+8

(n−3)p2

)3
− 3

(
1+

p3
+8

(n−3)p2

)(
p2

+8

(n−3)p2

)2

=

(
1− p−1

n−3

)((
1+

p3
+8

(n−3)p2

)(
1+

p3
+ p2

+16

(n−3)p2

)
− 2

(
p2

+8

(n−3)p2

)2)

and

det(X
′

X) ≤ (p − 1)

(
(n − 3)p

4(p − 1)

)p(
1 +

p − 1

n − 3

)

(2.26)

·
((

1 +
p3

+ 8

(n − 3)p2

)(
1 +

p3
+ p2

+ 16

(n − 3)p2

)
− 2

(
p2

+ 8

(n − 3)p2

)2
)

.

The equality in (2.26) holds if and only if t = u = w = 0.5(p + 2) and m = q =

h = 0.25(p + 4).

If p+2 = 0 mod 4, then the minimum values in (2.25) are all equal to
(p+2)2(p−4)2

16p2(p−1)2

when m = q = h = 0.25(p + 2). An easy computation shows that

det(T) ≤
(
1+

p3+8
(n−3)p2

)3
− 2

(
(p+2)(p−4)

(n−3)p2

)3
− 3

(
1 +

p3+8
(n−3)p2

)(
(p+2)(p−4)

(n−3)p2

)2

=

(
1+

(p−1)(p+2)
(n−3)p

)((
1+

p3+8
(n−3)p2

)(
1+

(p+2)(p2
−3p+8)

(n−3)p2

)
− 2

(
(p+2)(p−4)

(n−3)p2

)2)

and consequently

(2.27)

det(X
′

X) ≤ (p − 1)

(
(n−3)p
4(p−1)

)p (
1 +

(p−1)(p+2)
(n−3)p

)

·
((

1 +
p3+8

(n−3)p2

)(
1 +

(p+2)(p2
−3p+8)

(n−3)p2

)
− 2

(
(p+2)(p−4)

(n−3)p2

)2
)

.

The equality in (2.27) holds if and only if t = u = w = 0.5(p + 2) and m = q =

h = 0.25(p + 2). So, the following theorem is obtained.

Theorem 2.4. For any X ∈ Φn×p{0, 1} given by (2.19)

(2.28) det

(
X

′

X
)
≤
{

W (n, p)S(n, p) if p = 0 mod 4

W (n, p)Q(n, p) if p + 2 = 0 mod 4,

where

(2.29)

W (n, p) = (p − 1)

(
(n−3)p
4(p−1)

)p
,

S(n, p) =

(
1 +

p−1
n−3

)[(
1 +

p3+8
(n−3)p2

)(
1 +

p3+p2+16
(n−3)p2

)
− 2

(
p2+8

(n−3)p2

)2]
,

Q(n, p) =

(
1+

(p−1)(p+2)
(n−3)p

)[(
1+

p3+8
(n−3)p2

)(
1+

(p+2)(p2
−3p+8)

(n−3)p2

)
− 2

(
(p+2)(p−4)

(n−3)p2

)2]
.
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Corollary 2.3. Let W (n, p), S(n, p), Q(n, p) be of the form (2.29) and

X ∈ Φn×p{0, 1} by (2.19). Then

det

(
X

′

X
)

=

{
W (n, p)S(n, p) if p = 0 mod 4

W (n, p)Q(n, p) if p + 2 = 0 mod 4

provided that (2.22) holds and




x
′

1p = y
′

1p = z
′

1p = 0.25(p + 2)

and

x
′

y = x
′

z = y
′

z = 0.25(p + 4) if p = 0 mod 4

x
′

y = x
′

z = y
′

z = 0.25(p + 2) if p + 2 = 0 mod 4.

Some construction methods of X1 satisfying 2.2 are based on the incidence

matrix of a balanced incomplete block design, see [1], Theorem 4. Such a ma-

trix X1 exists only for certain values of p and n. Hence, if X1 does not exist

in Φn×p{0, 1} but exists among Φn−1×p{0, 1}, Φn−2×p{0, 1} or Φn−3×p{0, 1},
then we can construct a highly D-efficient spring balance weighing design X ∈
Φn×p{0, 1}. This construction is based on corollaries 2.2, 2.3 and 2.4.

3. EXAMPLES

Example 3.1. Consider the problem of weighing p = 4 objects in n = 7

measurements. Since
np

4(p−1) =
7
3 and

n(p−2)
4(p−1) =

7
6 are not integers, the matrix

X ∈ Φ7×4{0, 1} for which (2.2) is satisfied does not exist. Now, let X1 be a matrix

for p = 4 objects and n − 1 = 6 measurements. Then
(n−1)p
4(p−1) = 2,

(n−1)(p−2)
4(p−1) = 1

and for

(3.1) X1 =




1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1




the condition (2.2) is fulfilled. By Corollary 2.1, the design X ∈ Φ7×4{0, 1} of

the form X =

[
X1

1 1 1 0

]
is highly D-efficient.

Example 3.2. By Corollary 2.2, X ∈ Φ8×4{0, 1} such that X =




X1

1 1 1 0

1 1 0 1


,

where X1 is given in (3.1), is highly D-efficient for weighing 4 objects in 8 mea-

surements.
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Example 3.3. In order to weigh 4 objects in n = 9 measurements, let

X ∈ Φ9×4{0, 1} be of the form X =




X1

1 1 1 0

1 1 0 1

1 0 1 1


, where X1 is of the form (3.1).

Hence X is highly D-efficient.

Example 3.4. Consider the problem of measuring 6 objects in n = 11

measurements. Since
np

4(p−1) =
33
10 is not an integer, the matrix X ∈ Φ11×6{0, 1}

for which (2.2) is satisfied does not exist. Now, let X2 be a matrix for p = 6

objects and n− 1 = 10 measurements. In this case
(n−1)p
4(p−1) = 3 and

(n−1)(p−2)
4(p−1) = 2

and for the matrix

(3.2) X2 =




1 1 0 0 1 0

1 1 0 0 0 1

1 0 1 1 0 0

1 0 1 0 0 1

1 0 0 1 1 0

0 1 1 1 0 0

0 1 1 0 1 0

0 1 0 1 0 1

0 0 1 0 1 1

0 0 0 1 1 1




the condition (2.2) is fulfilled. By Corollary 2.1, the design X ∈ Φ11×6{0, 1} of

the form X =

[
X2

1 1 1 1 0 0

]
is highly D-efficient.

Example 3.5. For weighing p = 6 objects using n = 12 measurements

the design X ∈ Φ12×6{0, 1} of the form X =




X2

1 1 1 1 0 0

1 1 0 0 1 1


 is highly D-efficient,

by Corollary 2.2.

Example 3.6. For weighing p = 6 objects in n = 13 measurements X ∈

Φ13×4{0, 1} of the form X =




X2

1 1 1 1 0 0

1 1 0 0 1 1

0 0 1 1 1 1


, where X1 is given in (3.2), is highly

D-efficient, by Corollary 2.3.
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4. DISCUSSION

For each p and n, the resulting Deff based on the provided designs in The-

orem 2.2, 2.3 and 2.4 are summarized in Table 1.

Table 1: Deff(X) of the design X for each p and n.

p = 4

n 6 7 8 9 10
Deff(X) 0.9779 0.9641 0.9652 0.9779 1

p = 6

n 10 11 12 13 14
Deff(X) 0.9927 0.9783 0.9719 0.9723 1

p = 8

n 14 15 16 17 18
Deff(X) 0.9968 0.9849 0.9776 0.9701 1
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Abstract:

• The generalized linear mixed effects model (GLMM) approach is widely used to an-

alyze longitudinal binary data when the goal of the study is a subject-specific inter-

pretation because it allows missing values on the response, provided they are missing

at random (MAR), and accounts the correlation among the repeated observations of

the same subject by the inclusion of random effects in the linear predictor. However,

in GLMM it is assumed that the observations of the same subject are independent

conditional to the random effects and covariates which may be not true. To over-

come this problem [9] extended this model using binary Markov chains as the basic

stochastic mechanism. The aim of this paper is to give a statistical assessment of

both approaches in terms of properties such as efficiency and coverage probability, as

well as, to give some guidelines for the choice of the statistical approach to an applied

researcher. Both procedures are described and a simulation study is carried out to

compare their performance. An analysis of a longitudinal binary data set illustrates

the performance of both procedures in a practical example. The R packages lme4 and

bild are used.
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1. INTRODUCTION

Longitudinal binary data studies are a powerful design and they have be-

come increasingly popular in a wide range of applications across all disciplines.

In these studies repeated observations of a response variable are taken over time

on each subject in one or more treatment groups. In such cases the repeated

measures of each vector of responses are likely to be correlated and the autocor-

relation structure for the repeated data plays a significant role in the estimation

of regression parameters. Although longitudinal studies are design to collect data

on every subject in the sample at each time of follow-up, many studies have miss-

ing data since it is difficult to have complete records of all subjects for a variety of

reasons. When longitudinal binary data are incomplete there are important im-

plications for their analysis and one of the main concerns is to distinguish different

reasons of missingness. The nature of missing data mechanism has been classified

by [16] and [13] as: missing completely at random (MCAR), missing at random

(MAR) and non missing at random (NMAR). Another important distinction is

whether missing values occur intermittently or as dropouts. When missing values

occur as dropouts, an individual is observed only at a certain time and misses

all the subsequent observations. When missing values occur as intermittently, an

individual may miss some measurement times among a common set of predefined

measurement times. To all these situations several methods have been proposed

([4], [5], [1], [6], [14]). A review of this topic is given in [12].

In [12] is argued that methods based on likelihood, such generalized lin-

ear mixed effects model [3], usually denoted by GLMM, are recommended when

the goal of the study is a subject-specific interpretation and missing values are

allowed on the response, provide they are MAR in the standard terminology of

[16]. In the GLMM the correlation among the repeated observations of the same

subject is account by the inclusion of random effects in the linear predictor and

it is assumed that observations to the same subject are independent conditional

to the random effects and covariates. Although in GLMM this independence

is assumed they may still be correlated. To overcome this problem [9] used a

binary Markov chain model to accommodate serial dependence and odds-ratio

to measure dependence between successive observations. This methodology is a

development of the alternative likelihood-based formulation for a logistic regres-

sion presented by [1] which allows: (i) a first order and a second order Markov

dependence; (ii) a random intercept term in the linear predictor; (iii) missing

values on the response, provided they are MAR. Both approaches, GLMM and

generalized linear mixed effects model with binary Markov chain (GLM3C) as

the basic stochastic mechanism, are implemented in R [18] packages. The goal of

this paper is to give information to the practitioners about which of the two pro-

cedures, GLMM or GLM3C, is more appropriate to use for their data at hand.
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To achieved that goal a simulation study was carried out to compare the two

aforementioned approaches in terms of properties such as efficiency and cover-

age probability. For GLM3C approach the estimates were obtained through the

bild function of the R package bild. When the GLMM approach was used the

estimates were achieved through the glmer function of the R package lme4 [2] as

well as the bild function of R package bild [11] with the independence structure

selected.

The paper is organized as follows: Section 2 gives a summary of the models

used. Section 3 reports a simulation study to assess the performance of the

procedures. In Section 4 a real data is used to illustrate the two procedures as

well as the key results of the simulation study. Section 5 concludes the paper.

2. MODEL FOR BINARY DATA

Suppose that n independent individuals are observed at times t = 1, ..., Ti,

which need not be the same for all n individual and, to establish notation, denote

by yit ∈ {0, 1} the binary response value at time t from individual i (i = 1, ..., n),

and by Yit its generating random variable whose mean value is Pr(Yit = 1) = θit.

The sequence (yi1, ..., yiTi
) will be collectively referred as the i-th individual profile

and associated with each observation time and each subject, a set of p covariates

is available, denoted by xit.

The logistic regression model which links the covariates and the marginal

mean of Yit assumes the form

(2.1) logit θit = x⊤it β,

where β is the p-dimensional parameter of interest and logit θ = log{θ/(1 − θ)}.

In longitudinal studies the repeated measures of each vector of responses

are likely to be correlated. To account for the within-subject association the

GLMM uses random effects, bi, in the linear predictor. The correlation among

observations from one subject can be thought of as arising from sharing a set of

underlying random effects.

In what follows only the random intercept model is considered.
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2.1. Generalized linear mixed effects model

The introduction of random effects can be formulated by adding a q × 1

vector bi of random effects in (2.1) associated to a q × 1 vector of covariates, zit,

(in general a subset of xit). In the random intercept model the vector bi is reduced

to a single (q = 1) random effect bi ∼ N(0, σ2
) and zit = 1 for all i = 1, ..., n and

t = 1, ..., Ti leading to

(2.2) logit Pr(Yit = 1|bi) = x⊤itβ + bi, (i = 1, ..., n)

where the bi’s are assumed to be sampled independently from each other and that

conditioning on xit and bi, the Yit’s are independent.

The likelihood inference is based on a sample of n individual profiles that

are assumed to be independent from each other. The contribution of the i-th

subject to the likelihood of the random intercept model is

(2.3) LR
i (β, ω) =

1√
2π σ

∫

R

LF
i (βbi |bi) exp

(
− b2i

2σ2

)
dbi

where βbi is a p-vector of parameters like β, but where the first component is now

β0 + bi, instead of β0 and ω = log σ2
. In expression (2.3) the term LF

i (βbi |bi) =

exp{ℓFi (βbi |bi)} where

ℓFi (βbi |bi) =

Ti∑

t=1

[
yit logit(θit) + log(1 − θit)

]
.

The log-likelihood for the whole sample is given by

(2.4) ℓR(β, ω) =

n∑

i=1

logLR
i (β, ω).

The integrals in (2.3) have no analytical solution and appropriate numerical

integration methods must be used.

This methodology is implemented in the R package bild [11] and the inte-

grals in (2.3) are computed using adaptive Gaussian quadrature. Other R pack-

ages have this procedure implemented and one of the most popular is the lme4

[2] package that also uses adaptive Gaussian quadrature to compute the integrals

in (2.3).
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2.2. Generalized linear mixed effects model with Markov chain corre-

lation

Although in GLMM it is assumed that conditioning on xit and bi, the

Yit’s are independent they may still be correlated. To overcome this problem [9]

proposed the use of binary by Markov chains to model the serial dependence be-

tween successive observations of the same subject. As they note Markov chains

provide the simplest stochastic mechanism to introduce serial dependence for

discrete random variables. In their approach the serial dependence between suc-

cessive observation can be regulated (i) by one dependence parameter (first order

dependence structure) or (ii) by two dependence parameters the (second order

dependence structure). In both cases the odds-ratio is the quantity used to mea-

sure dependence between variables. One advantage of odds-ratios as measures

of association is that, unlike marginal correlations, they are not constrained by

marginal probabilities ([1], [8]). Their approach can be summarized as follows.

To simplify notation the subscript i is dropped temporarily.

For the first order dependence structure (MC1), the serial dependence is

modeled using ψ1 = OR(Yt, Yt−1) where

OR(Yt, Yt−1) =
Pr (Yt−1 = Yt = 1) Pr (Yt−1 = Yt = 0)

Pr (Yt−1 = 0, Yt = 1) Pr (Yt−1 = 1, Yt = 0)
=
p1/(1 − p1)

p0/(1 − p0)

where pj are the transition probabilities given by

(2.5) pj = Pr(Yt = 1|Yt−1 = j), j = 0, 1; t = 2, ..., T.

For the second order dependence structure (MC2) is considered the joint

distribution of three components of the process at time, (Yt−2, Yt−1, Yt) and im-

pose the constraints

OR(Yt−1, Yt−2) = ψ1 = OR(Yt, Yt−1)

OR(Yt, Yt−2|Yt−1 = 0) = ψ2 = OR(Yt, Yt−2|Yt−1 = 1)

ψ1 and ψ2 denote two positive parameters. The transition probabilities are given

by

(2.6) phj = Pr(Yt = 1|Yt−2 = h, Yt−1 = j), h, j = 0, 1; t = 3, ..., T,

see [8] for a full account.

The serial dependence for MC2 models is regulated by λ = (λ1, λ2) =

(logψ1, logψ2), which are assume to be constant across time and subjects. When

λ2 = 0, the Markov chain reduces to MC1 models and the serial dependence is

regulated by λ1.
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The likelihood inference is based on a sample of n individual profiles that

are assumed to be independent from each other. The contribution of the i-th

subject to the likelihood of the random intercept model is

(2.7) LR
i (β, λ, ω) =

1√
2π σ

∫

R

LF
i (βbi , λ|bi) exp

(
− b2i

2σ2

)
dbi

where βbi and ω are defined as in Section 2.1. In expression (2.7) the term

LF
i (βbi , λ|bi) = exp{ℓFi (βbi , λ|bi)} is computed, under a serial dependence MC1,

from

(2.8) ℓFi (β, λ) = y1 logit (θ1) + log (1 − θ1) +

Ti∑

t=2

[yt logit(pj) + log(1 − pj)]

and under a serial dependence MC2 from

(2.9)

ℓFi (β, λ) =
[
y1 logit(θ1) + log(1 − θ1)

]
+

[
y2 logit(pj) + log(1 − pj)

]

+

Ti∑

t=3

[
yt logit(phj) + log(1 − phj)

]

where the three blocks on the right-hand side represent the contribution to the

log-likelihood from y1, y2, and (y3, ..., yT ), respectively, where phj is given by (2.6)

and pj by (2.5). The log-likelihood for the whole sample is given by (2.4). For a

full account see [8].

In this approach missing values are allowed on the response, provided they

are MAR. If missing data occur at the beginning or at the end of an individual

profile, this poses no problems, since this case is equivalent to a designed un-

balance in the length profile Ti for that individual. Some restrictions exist for

the presence of missing data when they occur in the middle of the profile due

to the imposed correlation structure. If MC1 model is considered and if there

is a missing value at time point t− 1, it is required that there are observations

at time points t− 2 and t. If MC2 model is considered and if there is a missing

value at time point t− 2, it is required that there are observations at time points

t− 4, t− 3, t− 1 and t, except for the two end portions of the observation period,

where no restriction is made.

This approach is implemented in the R package bild ([11]) and, as in the

previous approach, the integrals in (2.7) are computed using adaptive Gaussian

quadrature.
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3. A SIMULATION STUDY

A simulation study was carried out to compare both approaches when sim-

ulated data has a serial dependence MC1 or MC2. The model considered in

the simulation included a dichotomous treatment, a linear effect time and an

interaction between time and treatment and is given by

(3.1) Pr(Yit = 1|t) =
exp(β0 + bi + β1t+ β2xi + β3(xi × t))

1 + exp(β0 + bi + β1t+ β2xi + β3(xi × t))

where xi = 0 for half the population and 1 for the remainder. The fixed effect co-

efficients were set at β0 = −1, β1 = 0.5, β2 = 1, β3 = 1 and the random effect dis-

tribution was simulated with bi ∼ N(0, σ2
). In both serial dependence structures

several designs were considered to reflect the range of experimental data encoun-

tered in practice. The number of subjects was set to either small (n = 20) or large

(n = 50). The length of profile on each subject was short (T = 7) or long (T = 13)

and the time points were set for T = 7 at t = −1.5,−1,−0.5, 0, 0.5, 1, 1.5 and for

T = 13 at t = −1.5,−1.25,−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5.

In what concerns the variance of the random effect, σ2
, three values were

considered σ2
= 0.5, 1 and 2.

1. Under MC1 models on each run were generated T binary correlated

data under the i-th subject following a first order serial dependence

regulated by λ1. The values considered for λ1 were 0.05, 0.25, 0.5, 0.75

and 1.

2. Under MC2 models on each run were generated T binary correlated

data under the i-th subject following a second order serial depen-

dence regulated by λ = (λ1, λ2). For the pair (λ1, λ2) the combinations

(0.05, 0.05), (0.25, 0.25), (0.5, 0.5), (0.75, 0.75) and (1, 1) were consid-

ered.

In both cases the whole estimation procedure was repeated for 1000 runs

and the sample mean of estimate parameter (Mean), the sample mean of bias

(Bias) and the sample mean square error (MSE) were computed, as well as, the

coverage probabilities of nominal 95% confidence intervals (CI). For each data

set the relative efficiency (RE) of the estimators was computed, as usual, by the

ratio of the respective MSE. RE> 1 means GLM3C estimator is preferred. The

coverage probabilities of nominal 95% confidence intervals were computed as the

proportion of simulated intervals that cover the true parameter used to generate

the simulated data.

For the GLM3C approach the estimates of the parameters were obtained

through the function bild in the R package bild and the dependence structure
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was chosen trough the argument dependence in the function bild, MC1R (MC1

with random intercept) MC2R (MC2 with random intercept), for details see [10].

When GLMM approach (which ignores the conditional dependence between re-

peated measures in terms of numerical analysis) was considered the estimates were

obtained through the bild function with the dependence argument set at indR

(independence structure with random intercept) as well as through the glmer

function in the R package lme4, the results obtained were exactly the same.

The results of simulation are displayed from Figures 1–6 and Tables 1–8

for the time effect (β1) and group-time interaction effect (β3) the effects usually

of most interest in a longitudinal study. Each table lists the following: Mean,

Bias, MSE and coverage probability of nominal 95% confidence intervals for β1

and β3 over the 1000 simulations to both approaches (GLMM and GLMC3).

The GLM3C approach is denoted by GLM3C-MC1 or GLM3C-MC2 if a serial

dependence MC1 or MC2, respectively, is considered. The Figures display the

results concerned to σ2
= 0.5 and σ2

= 2, the two extreme values considered to

the variance of the random effect bi.

Taking into account that the goal of the simulation study is to give a sta-

tistical assessment of both approaches the main conclusions to serial dependence

MC1 and MC2 are given, respectively, in Sections 3.1 and 3.2.

3.1. Serial dependence MC1

Under a serial dependence MC1 and to β1 and β3 parameters the main

conclusions, based on the approaches GLM3C-MC1 and GLMM, are:

(i) The coverage probabilities of both approaches are similar when the

dependence structure established by λ1 is low (0.05-0.25). When λ1

increases the GLM3C approach gives coverage probabilities closer to

nominal than the GLMM approach (Figures 1–2 and Tables 1–4).

(ii) When λ1 is low (0.05) the efficiency of both approaches is similar

with the GLMM estimators more efficient in some configurations. As

λ1 increases the GLM3C estimators becomes more efficient than the

GLMM for all the design configurations (Figure 3 and Tables 1–4).

(iii) In terms of bias the behavior of both approaches is very similar with

a slight decrease of the estimated bias associated with the GLM3C

approach when λ1 increases. The exception is for β̂1 when T = 7,

n = 50 and for all σ2
considered (Tables 1–4).
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Table 1: Results of the simulation study under a serial dependence MC1

for n = 20, T = 7.

GLM3C-MC1 GLMM

λ1 λ1

.05 .25 .50 .75 1 .05 .25 .50 .75 1

σ2 = 0.5

Mean
β̂1 0.521 0.520 0.513 0.514 0.513 0.519 0.523 0.525 0.532 0.537

β̂3 1.110 1.108 1.111 1.109 1.082 1.111 1.120 1.137 1.152 1.132

Bias
β̂1 0.021 0.020 0.013 0.014 0.013 0.019 0.023 0.025 0.032 0.037

β̂3 0.110 0.108 0.111 0.109 0.082 0.111 0.120 0.137 0.152 0.132

MSE
β̂1 0.090 0.094 0.098 0.106 0.112 0.087 0.094 0.100 0.112 0.125

β̂3 0.279 0.289 0.311 0.322 0.325 0.279 0.297 0.330 0.356 0.361

CI
β1 0.947 0.951 0.947 0.951 0.951 0.950 0.945 0.927 0.928 0.927

β3 0.953 0.959 0.952 0.952 0.953 0.957 0.950 0.932 0.934 0.929

σ2 = 1

Mean
β̂1 0.511 0.522 0.514 0.512 0.509 0.508 0.524 0.527 0.536 0.536

β̂3 1.135 1.074 1.109 1.106 1.048 1.135 1.084 1.141 1.158 1.108

Bias
β̂1 0.011 0.022 0.014 0.012 0.009 0.008 0.024 0.027 0.036 0.036

β̂3 0.135 0.074 0.109 0.106 0.048 0.135 0.084 0.141 0.158 0.108

MSE
β̂1 0.105 0.100 0.106 0.105 0.131 0.104 0.100 0.111 0.116 0.147

β̂3 0.315 0.281 0.329 0.324 0.327 0.313 0.284 0.354 0.369 0.363

CI
β1 0.947 0.948 0.950 0.949 0.955 0.945 0.942 0.927 0.928 0.916

β3 0.947 0.951 0.951 0.957 0.950 0.941 0.940 0.930 0.938 0.922

σ2 = 2

Mean
β̂1 0.529 0.527 0.528 0.497 0.500 0.527 0.531 0.539 0.516 0.531

β̂3 1.056 1.060 1.036 1.066 1.045 1.053 1.070 1.064 1.113 1.111

Bias
β̂1 0.029 0.027 0.028 −0.003 0.000 0.027 0.031 0.039 0.016 0.031

β̂3 0.055 0.060 0.036 0.066 0.04 0.053 0.070 0.064 0.113 0.111

MSE
β̂1 0.119 0.121 0.130 0.115 0.131 0.118 0.121 0.136 0.125 0.149

β̂3 0.308 0.292 0.326 0.304 0.315 0.300 0.294 0.347 0.334 0.3623

CI
β1 0.955 0.948 0.955 0.944 0.948 0.953 0.949 0.949 0.914 0.897

β3 0.948 0.955 0.960 0.960 0.962 0.953 0.960 0.951 0.933 0.927
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Table 2: Results of the simulation study under a serial dependence MC1

for n = 20, T = 13.

GLM3C-MC1 GLMM

λ1 λ1

.05 .25 .50 .75 1 .05 .25 .50 .75 1

σ2 = 0.5

Mean
β̂1 0.500 0.502 0.497 0.495 0.496 0.501 0.505 0.505 0.508 0.516

β̂3 1.041 1.041 1.045 1.052 1.051 1.041 1.048 1.060 1.078 1.091

Bias
β̂1 0.000 0.002 −0.003 −0.005 −0.004 0.001 0.005 0.005 0.008 0.016

β̂3 0.041 0.041 0.045 0.052 0.051 0.041 0.048 0.060 0.078 0.091

MSE
β̂1 0.050 0.055 0.054 0.060 0.061 0.050 0.055 0.056 0.063 0.067

β̂3 0.134 0.142 0.147 0.160 0.178 0.133 0.143 0.152 0.173 0.200

CI
β1 0.958 0.946 0.953 0.947 0.950 0.951 0.932 0.936 0.913 0.916

β3 0.960 0.950 0.956 0.957 0.956 0.953 0.944 0.933 0.937 0.910

σ2 = 1

Mean
β̂1 0.501 0.502 0.500 0.501 0.498 0.501 0.505 0.508 0.515 0.518

β̂3 1.043 1.046 1.044 1.051 1.047 1.044 1.053 1.061 1.077 1.088

Bias
β̂1 0.001 0.002 0.000 0.001 −0.002 0.001 0.005 0.008 0.015 0.018

β̂3 0.043 0.046 0.044 0.051 0.047 0.044 0.053 0.061 0.077 0.088

MSE
β̂1 0.052 0.056 0.057 0.061 0.071 0.052 0.056 0.059 0.065 0.079

β̂3 0.142 0.150 0.158 0.166 0.184 0.142 0.153 0.166 0.181 0.207

CI
β1 0.951 0.954 0.962 0.964 0.942 0.944 0.939 0.934 0.924 0.894

β3 0.964 0.960 0.960 0.968 0.957 0.959 0.949 0.938 0.934 0.913

σ2 = 2

Mean
β̂1 0.510 0.504 0.506 0.506 0.508 0.510 0.507 0.513 0.519 0.528

β̂3 1.039 1.044 1.048 1.049 1.042 1.038 1.051 1.064 1.075 1.082

Bias
β̂1 0.010 0.004 0.006 0.006 0.008 0.010 0.007 0.013 0.019 0.028

β̂3 0.039 0.044 0.048 0.049 0.042 0.038 0.051 0.064 0.795 0.082

MSE
β̂1 0.058 0.059 0.064 0.072 0.080 0.058 0.060 0.066 0.076 0.089

β̂3 0.175 0.180 0.194 0.213 0.225 0.173 0.183 0.202 0.229 0.255

CI
β1 0.960 0.955 0.952 0.947 0.953 0.962 0.946 0.946 0.923 0.905

β3 0.954 0.957 0.946 0.946 0.945 0.960 0.956 0.939 0.921 0.907
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Table 3: Results of the simulation study under a serial dependence MC1

for n = 50, T = 7.

GLM3C-MC1 GLMM

λ1 λ1

.05 .25 .50 .75 1 .05 .25 .50 .75 1

σ2 = 0.5

Mean
β̂1 0.492 0.489 0.484 0.483 0.481 0.493 0.495 0.498 0.505 0.513

β̂3 1.068 1.062 1.056 1.048 1.040 1.070 1.074 1.084 1.092 1.102

Bias
β̂1 −0.008 −0.011 −0.016 −0.017 −0.019 −0.007 −0.005 −0.002 0.005 0.013

β̂3 0.068 0.062 0.056 0.048 0.040 0.070 0.074 0.084 0.092 0.102

MSE
β̂1 0.032 0.033 0.036 0.037 0.039 0.032 0.033 0.038 0.040 0.045

β̂3 0.100 0.102 0.107 0.116 0.115 0.099 0.105 0.115 0.130 0.139

CI
β1 0.959 0.962 0.960 0.957 0.956 0.956 0.954 0.945 0.938 0.926

β3 0.951 0.951 0.951 0.947 0.958 0.944 0.936 0.931 0.916 0.911

σ2 = 1

Mean
β̂1 0.489 0.495 0.482 0.480 0.477 0.499 0.502 0.496 0.503 0.506

β̂3 1.057 1.045 1.062 1.055 1.021 1.058 1.057 1.091 1.100 1.088

Bias
β̂1 −0.011 −0.005 −0.018 −0.020 −0.023 −0.001 0.002 −0.004 0.003 0.006

β̂3 0.057 0.045 0.062 0.055 0.021 0.058 0.057 0.091 0.100 0.088

MSE
β̂1 0.032 0.038 0.039 0.040 0.046 0.032 0.039 0.041 0.043 0.052

β̂3 0.103 0.106 0.101 0.106 0.115 0.101 0.109 0.111 0.121 0.136

CI
β1 0.953 0.948 0.947 0.957 0.955 0.949 0.938 0.938 0.937 0.916

β3 0.937 0.941 0.956 0.954 0.950 0.935 0.929 0.939 0.925 0.922

σ2 = 2

Mean
β̂1 0.496 0.490 0.488 0.486 0.469 0.499 0.497 0.503 0.506 0.499

β̂3 1.028 1.081 1.074 1.026 1.041 1.030 1.093 1.102 1.072 1.108

Bias
β̂1 −0.004 −0.010 −0.012 −0.014 −0.031 −0.001 −0.003 0.003 0.006 −0.001

β̂3 0.028 0.081 0.074 0.026 0.041 0.030 0.093 0.102 0.072 0.108

MSE
β̂1 0.038 0.040 0.044 0.044 0.051 0.037 0.042 0.046 0.047 0.057

β̂3 0.097 0.115 0.119 0.110 0.124 0.095 0.118 0.129 0.124 0.151

CI
β1 0.948 0.962 0.953 0.945 0.942 0.938 0.955 0.929 0.926 0.893

β3 0.953 0.955 0.952 0.953 0.945 0.946 0.943 0.933 0.927 0.905
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Table 4: Results of the simulation study under a serial dependence MC1

for n = 50, T = 13.

GLM3C-MC1 GLMM

λ1 λ1

.05 .25 .50 .75 1 .05 .25 .50 .75 1

σ2 = 0.5

Mean
β̂1 0.497 0.496 0.495 0.494 0.500 0.498 0.500 0.503 0.508 0.521

β̂3 1.043 1.040 1.037 1.035 1.028 1.044 1.048 1.055 1.063 1.067

Bias
β̂1 −0.003 −0.004 −0.005 −0.006 0.000 −0.002 0.000 0.003 0.008 0.021

β̂3 0.043 0.040 0.037 0.035 0.028 0.044 0.048 0.055 0.063 0.067

MSE
β̂1 0.022 0.023 0.026 0.028 0.029 0.022 0.024 0.027 0.030 0.032

β̂3 0.057 0.060 0.064 0.070 0.074 0.058 0.062 0.068 0.078 0.084

CI
β1 0.953 0.949 0.945 0.942 0.949 0.949 0.939 0.919 0.905 0.890

β3 0.942 0.943 0.943 0.944 0.951 0.937 0.932 0.926 0.910 0.900

σ2 = 1

Mean
β̂1 0.496 0.496 0.496 0.495 0.493 0.497 0.500 0.504 0.508 0.513

β̂3 1.053 1.050 1.046 1.044 1.040 1.055 1.058 1.064 1.072 1.079

Bias
β̂1 −0.004 −0.005 −0.004 −0.005 −0.007 −0.003 0.000 0.004 0.008 0.013

β̂3 0.053 0.050 0.046 0.044 0.040 0.055 0.058 0.064 0.072 0.079

MSE
β̂1 0.022 0.025 0.028 0.029 0.030 0.022 0.025 0.029 0.031 0.033

β̂3 0.060 0.064 0.069 0.073 0.078 0.060 0.066 0.074 0.081 0.090

CI
β1 0.955 0.949 0.949 0.951 0.952 0.951 0.934 0.925 0.914 0.891

β3 0.955 0.940 0.943 0.950 0.946 0.948 0.930 0.924 0.912 0.902

σ2 = 2

Mean
β̂1 0.497 0.496 0.495 0.492 0.494 0.498 0.500 0.504 0.505 0.513

β̂3 1.059 1.058 1.062 1.060 1.055 1.061 1.066 1.080 1.090 1.096

Bias
β̂1 −0.003 −0.004 −0.005 −0.008 −0.006 −0.002 0.000 0.004 0.005 0.013

β̂3 0.059 0.058 0.062 0.060 0.055 0.061 0.066 0.080 0.090 0.096

MSE
β̂1 0.025 0.027 0.029 0.032 0.035 0.025 0.027 0.030 0.035 0.039

β̂3 0.068 0.070 0.077 0.085 0.088 0.066 0.072 0.082 0.095 0.103

CI
β1 0.959 0.964 0.954 0.953 0.955 0.950 0.949 0.938 0.927 0.895

β3 0.955 0.952 0.953 0.944 0.950 0.951 0.940 0.928 0.909 0.896
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Figure 1: Coverage probabilities of nominal 95% confidence intervals (CI

coverage) for β1 (β̂1) and β3 (β̂3) based on 1000 runs using

GLM3C and GLMM estimation procedures (T = length of pro-

file on each subject, n = number of subjects, σ2
= variance of

the random effect). Data set on each run has a serial depen-

dence MC1 regulated by λ1. Coding for estimation procedures:

MC1 (GLM3C) and Ind (GLMM).
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Figure 2: Coverage probabilities of nominal 95% confidence intervals (CI

coverage) for β1 (β̂1) and β3 (β̂3) based on 1000 runs using

GLM3C and GLMM estimation procedures (T = length of pro-

file on each subject, n = number of subjects, σ2
= variance of

the random effect). Data set on each run has a serial depen-

dence MC1 regulated by λ1. Coding for estimation procedures:

MC1 (GLM3C) and Ind (GLMM).
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Figure 3: Relative efficiency (see text for definition) of β̂1 and β̂3 based

on 1000 runs using GLM3C and GLMM estimation procedures

(T = length of profile on each subject, n = number of subjects,

σ2
= variance of the random effect). Data set on each run has

a serial dependence MC1 regulated by λ1.
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3.2. Serial dependence MC2

Under a serial dependence MC2 and to β1 and β3 parameters the main

conclusions, based on the approaches GLM3C-MC2 and GLMM, are:

(i) In both approaches the coverage probabilities are similar when the

dependence structure established by (λ1, λ2) is low, (0.05,0.05) and

(0.25,0.25). The exception occurs when(λ1, λ2) = (0.05,0.05) for β̂1

and β̂3 when T = 13, n = 20 and σ2
= 2, where the coverage proba-

bilities of GLMM approach are closer to nominal. When (λ1, λ2) is

greater than (0.25,0.25) and for all the design configurations the cov-

erage probabilities are closer to nominal for the GLM3C approach

than for the GLMM approach. This is so much better applied as

the length of the profile of each subject increases as well as the de-

pendence structure established by (λ1, λ2) (Figures 4–5 and Tables

5–8).

(ii) The results of simulation show that when (λ1, λ2) is greater than

(0.25,0.25) the GLM3C estimators are more efficient than the GLMM

estimators and this is so much better applied as (λ1, λ2) increases. For

values of (λ1, λ2) equal to (0.25,0.25) the efficiency of both approaches

is similar. When (λ1, λ2) is equal to (0.05,0.05) the GLMM estimators

are more efficient than the GLM3C in some design configurations

(Figure 6 and Tables 5–8).

(iii) The estimate bias for the GLMM approach becomes greater than

the associated with the GLM3C as (λ1, λ2) increases and for all the

designs configurations except for β̂3 when T = 13, n = 20 and σ2
= 2

(Tables 5–8).
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Table 5: Results of the simulation study under a serial dependence MC2

for n = 20, T = 7.

GLM3C-MC2 GLMM

(λ1, λ2) (λ1, λ2)

(.05, .05) (.25, .25) (.5, .5) (.75, .75) (1, 1) (.05, .05) (.25, .25) (.5, .5) (.75, .75) (1, 1)

σ2 = 0.5

Mean
β̂1 0.522 0.514 0.531 0.537 0.546 0.518 0.518 0.550 0.576 0.605

β̂3 1.066 1.130 1.114 1.114 1.123 1.050 1.139 1.152 1.197 1.259

Bias
β̂1 0.021 0.014 0.031 0.037 0.046 0.018 0.018 0.050 0.076 0.105

β̂3 0.066 0.130 0.114 0.114 0.123 0.050 0.139 0.152 0.197 0.259

MSE
β̂1 0.091 0.106 0.115 0.127 0.140 0.085 0.104 0.123 0.147 0.177

β̂3 0.253 0.318 0.338 0.350 0.372 0.233 0.316 0.358 0.420 0.504

CI
β1 0.944 0.944 0.946 0.937 0.944 0.946 0.947 0.928 0.905 0.893

β3 0.963 0.941 0.946 0.954 0.961 0.974 0.928 0.925 0.914 0.913

σ2 = 1

Mean
β̂1 0.521 0.526 0.514 0.529 0.548 0.515 0.530 0.539 0.571 0.616

β̂3 1.066 1.067 1.130 1.105 1.112 1.060 1.080 1.177 1.198 1.254

Bias
β̂1 0.021 0.026 0.014 0.029 0.048 0.015 0.030 0.039 0.071 0.116

β̂3 0.066 0.067 0.130 0.105 0.112 0.060 0.080 0.177 0.198 0.254

MSE
β̂1 0.098 0.108 0.114 0.128 0.144 0.092 0.104 0.123 0.147 0.183

β̂3 0.267 0.276 0.364 0.413 0.372 0.263 0.278 0.391 0.482 0.487

CI
β1 0.944 0.943 0.936 0.938 0.939 0.942 0.944 0.919 0.910 0.892

β3 0.955 0.955 0.949 0.936 0.946 0.958 0.946 0.920 0.897 0.904

σ2 = 2

Mean
β̂1 0.507 0.525 0.524 0.496 0.522 0.505 0.536 0.558 0.550 0.601

β̂3 1.054 1.006 0.991 1.112 1.103 1.051 1.033 1.062 1.233 1.272

Bias
β̂1 0.007 0.025 0.024 −0.004 0.022 0.005 0.036 0.058 0.050 0.101

β̂3 0.054 0.006 −0.009 0.112 0.103 0.051 0.033 0.062 0.233 0.272

MSE
β̂1 0.099 0.098 0.096 0.124 0.132 0.094 0.100 0.109 0.149 0.173

β̂3 0.269 0.266 0.282 0.371 0.385 0.260 0.276 0.307 0.478 0.542

CI
β1 0.941 0.951 0.956 0.941 0.947 0.944 0.939 0.931 0.902 0.902

β3 0.954 0.956 0.952 0.945 0.963 0.957 0.945 0.924 0.904 0.906
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Table 6: Results of the simulation study under a serial dependence MC2

for n = 20, T = 13.

GLM3C-MC2 GLMM

(λ1, λ2) (λ1, λ2)

(.05, .05) (.25, .25) (.5, .5) (.75, .75) (1, 1) (.05, .05) (.25, .25) (.5, .5) (.75, .75) (1, 1)

σ2 = 0.5

Mean
β̂1 0.501 0.497 0.501 0.507 0.538 0.501 0.503 0.521 0.540 0.594

β̂3 1.042 1.051 1.064 1.070 1.041 1.044 1.068 1.103 1.141 1.141

Bias
β̂1 0.001 −0.003 0.001 0.007 0.038 0.001 0.003 0.021 0.040 0.094

β̂3 0.042 0.051 0.064 0.070 0.041 0.044 0.068 0.103 0.141 0.141

MSE
β̂1 0.051 0.057 0.064 0.073 0.081 0.051 0.058 0.071 0.086 0.112

β̂3 0.136 0.155 0.177 0.198 0.210 0.134 0.160 0.199 0.242 0.275

CI
β1 0.948 0.951 0.947 0.950 0.953 0.946 0.942 0.915 0.876 0.842

β3 0.956 0.948 0.956 0.950 0.961 0.955 0.941 0.922 0.895 0.865

σ2 = 1

Mean
β̂1 0.506 0.505 0.535 0.532 0.516 0.507 0.512 0.556 0.569 0.567

β̂3 1.025 1.044 0.944 0.996 1.087 1.030 1.060 0.991 1.07 1.199

Bias
β̂1 0.006 0.005 0.035 0.032 0.016 0.007 0.012 0.056 0.069 0.067

β̂3 0.025 0.044 −0.056 −0.004 0.087 0.030 0.060 −0.009 0.077 0.199

MSE
β̂1 0.054 0.058 0.071 0.076 0.087 0.053 0.060 0.077 0.091 0.114

β̂3 0.145 0.157 0.156 0.196 0.242 0.144 0.164 0.169 0.231 0.324

CI
β1 0.942 0.953 0.930 0.939 0.951 0.946 0.938 0.891 0.868 0.847

β3 0.936 0.959 0.950 0.948 0.948 0.937 0.948 0.919 0.891 0.854

σ2 = 2

Mean
β̂1 0.536 0.510 0.549 0.549 0.553 0.537 0.516 0.571 0.585 0.608

β̂3 0.981 1.048 0.894 0.882 0.883 0.980 1.063 0.947 0.980 1.024

Bias
β̂1 0.036 0.010 0.049 0.049 0.053 0.037 0.016 0.071 0.085 0.108

β̂3 −0.019 0.048 −0.106 −0.118 −0.117 −0.020 0.063 −0.053 −0.020 0.024

MSE
β̂1 0.068 0.066 0.072 0.078 0.089 0.067 0.068 0.080 0.094 0.119

β̂3 0.164 0.194 0.168 0.183 0.216 0.159 0.199 0.177 0.205 0.262

CI
β1 0.939 0.939 0.937 0.948 0.946 0.948 0.928 0.900 0.870 0.835

β3 0.933 0.949 0.939 0.948 0.943 0.946 0.946 0.923 0.912 0.880
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Table 7: Results of the simulation study under a serial dependence MC2

for n = 50, T = 7.

GLM3C-MC2 GLMM

(λ1, λ2) (λ1, λ2)

(.05, .05) (.25, .25) (.5, .5) (.75, .75) (1, 1) (.05, .05) (.25, .25) (.5, .5) (.75, .75) (1, 1)

σ2 = 0.5

Mean
β̂1 0.506 0.495 0.496 0.513 0.532 0.506 0.509 0.528 0.567 0.612

β̂3 1.018 1.070 1.077 1.052 1.045 1.017 1.098 1.142 1.163 1.210

Bias
β̂1 0.006 −0.005 −0.003 0.013 0.032 0.006 0.009 0.028 0.067 0.112

β̂3 0.018 0.070 0.077 0.052 0.045 0.017 0.098 0.142 0.163 0.210

MSE
β̂1 0.037 0.035 0.039 0.043 0.049 0.037 0.036 0.043 0.055 0.074

β̂3 0.101 0.111 0.123 0.115 0.124 0.099 0.117 0.146 0.157 0.196

CI
β1 0.953 0.956 0.951 0.946 0.950 0.947 0.946 0.933 0.907 0.874

β3 0.947 0.952 0.941 0.953 0.957 0.943 0.924 0.912 0.909 0.881

σ2 = 1

Mean
β̂1 0.503 0.512 0.520 0.517 0.520 0.505 0.527 0.554 0.572 0.598

β̂3 1.049 1.045 1.044 1.063 1.070 1.050 1.072 1.114 1.176 1.237

Bias
β̂1 0.003 0.012 0.020 0.017 0.020 0.005 0.027 0.054 0.072 0.098

β̂3 0.049 0.045 0.044 0.063 0.070 0.050 0.072 0.114 0.176 0.237

MSE
β̂1 0.036 0.040 0.044 0.043 0.049 0.036 0.042 0.051 0.057 0.070

β̂3 0.101 0.099 0.123 0.133 0.151 0.098 0.103 0.141 0.174 0.229

CI
β1 0.952 0.943 0.947 0.961 0.949 0.950 0.926 0.922 0.910 0.885

β3 0.955 0.948 0.938 0.944 0.937 0.945 0.932 0.914 0.897 0.866

σ2 = 2

Mean
β̂1 0.509 0.506 0.498 0.510 0.524 0.511 0.522 0.535 0.568 0.609

β̂3 1.062 1.047 1.065 1.049 1.038 1.063 1.076 1.144 1.171 1.215

Bias
β̂1 0.009 0.006 −0.002 0.010 0.024 0.011 0.022 0.035 0.068 0.109

β̂3 0.062 0.047 0.065 0.049 0.038 0.063 0.076 0.144 0.171 0.215

MSE
β̂1 0.040 0.039 0.042 0.046 0.049 0.040 0.041 0.048 0.059 0.075

β̂3 0.105 0.103 0.117 0.129 0.140 0.102 0.107 0.145 0.170 0.215

CI
β1 0.949 0.941 0.938 0.955 0.966 0.943 0.929 0.917 0.909 0.883

β3 0.951 0.953 0.951 0.953 0.951 0.947 0.939 0.909 0.902 0.873
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Table 8: Results of the simulation study under a serial dependence MC2

for n = 50, T = 13.

GLM3C-MC2 GLMM

(λ1, λ2) (λ1, λ2)

(.05, .05) (.25, .25) (.5, .5) (.75, .75) (1, 1) (.05, .05) (.25, .25) (.5, .5) (.75, .75) (1, 1)

σ2 = 0.5

Mean
β̂1 0.497 0.499 0.503 0.506 0.510 0.498 0.507 0.523 0.541 0.564

β̂3 1.042 1.044 1.041 1.038 1.044 1.045 1.062 1.083 1.113 1.160

Bias
β̂1 −0.003 −0.001 0.003 0.006 0.010 −0.001 0.007 0.023 0.041 0.064

β̂3 0.042 0.044 0.041 0.038 0.044 0.045 0.062 0.083 0.113 0.160

MSE
β̂1 0.022 0.024 0.028 0.030 0.035 0.022 0.025 0.031 0.038 0.049

β̂3 0.058 0.065 0.073 0.079 0.089 0.059 0.069 0.085 0.104 0.138

CI
β1 0.950 0.953 0.952 0.949 0.949 0.953 0.934 0.901 0.884 0.836

β3 0.944 0.945 0.943 0.938 0.948 0.941 0.919 0.900 0.867 0.818

σ2 = 1

Mean
β̂1 0.498 0.506 0.506 0.499 0.507 0.500 0.516 0.527 0.536 0.562

β̂3 1.035 1.025 1.027 1.056 1.044 1.038 1.043 1.069 1.129 1.160

Bias
β̂1 −0.002 0.006 0.006 −0.001 0.007 0.000 0.016 0.027 0.036 0.062

β̂3 0.035 0.025 0.027 0.056 0.044 0.038 0.043 0.069 0.129 0.160

MSE
β̂1 0.022 0.025 0.028 0.028 0.033 0.022 0.026 0.031 0.034 0.045

β̂3 0.051 0.060 0.068 0.071 0.083 0.052 0.063 0.078 0.094 0.128

CI
β1 0.950 0.941 0.943 0.952 0.954 0.940 0.922 0.901 0.883 0.856

β3 0.954 0.953 0.944 0.956 0.942 0.953 0.926 0.889 0.874 0.828

σ2 = 2

Mean
β̂1 0.492 0.500 0.503 0.503 0.513 0.493 0.509 0.524 0.539 0.568

β̂3 1.048 1.036 1.038 1.041 1.037 1.051 1.054 1.079 1.114 1.148

Bias
β̂1 −0.008 0.000 0.003 0.003 0.013 −0.007 0.009 0.024 0.039 0.068

β̂3 0.048 0.036 0.038 0.041 0.037 0.051 0.054 0.079 0.114 0.148

MSE
β̂1 0.024 .030 0.033 0.038 0.042 0.024 0.031 0.037 0.045 0.055

β̂3 0.060 0.071 0.079 0.088 0.097 0.061 0.076 0.091 0.114 0.143

CI
β1 0.952 0.936 0.939 0.943 0.948 0.951 0.928 0.900 0.876 0.848

β3 0.944 0.951 0.956 0.959 0.950 0.942 0.935 0.915 0.880 0.844
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Figure 4: Coverage probabilities of nominal 95% confidence intervals (CI

coverage) for β1 (β̂1) and β3 (β̂3) based on 1000 runs using

GLM3C and GLMM estimation procedures (T = length of pro-

file on each subject, n = number of subjects, σ2
= variance of

the random effect). Data set on each run has a serial depen-

dence MC2 regulated by λ = (λ1, λ2). Coding for estimation

procedures: MC2 (GLM3C) and Ind (GLMM).
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Figure 5: Coverage probabilities of nominal 95% confidence intervals (CI

coverage) for β1 (β̂1) and β3 (β̂3) based on 1000 runs using

GLM3C and GLMM estimation procedures (T = length of pro-

file on each subject, n = number of subjects, σ2
= variance of

the random effect). Data set on each run has a serial depen-

dence MC2 regulated by λ = (λ1, λ2). Coding for estimation

procedures: MC2 (GLM3C) and Ind (GLMM).
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Figure 6: Relative efficiency (see text for definition) of β̂1 and β̂3 based

on 1000 runs using GLM3C and GLMM estimation procedures

(T = length of profile on each subject, n = number of subjects,

σ2
= variance of the random effect). Data set on each run has

a serial dependence MC2 regulated by λ = (λ1, λ2).
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4. ANALYSIS OF CONTRACEPTING WOMEN DATA

The key results of the simulation study are illustrated, using data from a

longitudinal clinical trial of contracepting women given in [7]. In this trial, and

following their description, women received an injection of either 100 mg or 150

mg of depot-medroxyprogesterone acetate (DMPTA) on the day of randomization

and three additional injections at 90-day intervals. There was a final follow-up

visit 90 days after the fourth injection. The outcome of interest is a binary re-

sponse indicating whether the ith woman experienced amenorrhea (Yij = 1) in

the jth
four successive three-month intervals, or not (Yij = 0). A feature of this

clinical trial is that there was substantial dropout (17% dropped out after receiv-

ing one injection of DMPA, 13% dropped out after receiving only two injections,

and 7% dropped out after receiving three injections).

The mixed effects logistic model proposed by [7]

logit [E(Yij |bi)] = β0 + β1timeij + β2time
2
ij + β3(timeij × dosei)

+ β4(time
2
ij × dosei) + bi

with j = 1, ..., 4, time = 1, 2, 3, 4 and dose a binary variable taking the value 1 if

the i-th woman is randomized to 150mg of DMPA and 0 otherwise, was fitted to

data with different dependence structures:

(i) Independence (Model I).

(ii) Serial dependence MC1 (Model II).

(iii) Serial dependence MC2 (Model III).

Models I correspond to the GLMM approach (model fitted by [7]), Models

II and III correspond to the GLM3C approach. The analysis of all models was

performed using the bild function of the R package bild with the dependence

argument sated to indR to Model I, MC1R and MC2R, respectively to Models II and

III.

Tables 9 and 10 display the results of fitting the different models to data.

Table 9 reports the log-likelihood, the change in deviance with corresponding

p-values. The estimated values of the parameters, as well as their standard errors,

t-ratio and corresponding p-values are given in Table 10.

The first step of the analysis is to choose the appropriate serial dependence

to account correlation between successive observation of the same subject. The re-

sults of Table 10 show, among other things, that the estimates of λ1 and λ2 in MC2

model (Model III) as well as the estimate of λ1 in MC1 model (Model II) point

strongly to a first order serial dependence. The change of deviance between this

two models, compared with the χ2
1 reference distribution, produces a p-value=

0.3467 (Table 9) confirming that there is no significant difference between this
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two models at 5% level. To explore further this point Model II was compare to

Model I, which assume independence between successive observation of the same

subject. The change of deviance between this two models, compared with the

χ2
1 reference distribution, produces a p-value= 0.0001 (Table 9) and so Model II

with a serial dependence MC1 is significantly preferable to Model I.

Table 9: Log-likelihood and change in deviance between models.

Model LogL ∆ D p-value

I −1937.54
II −1930.108 14.866 0.0001

II −1930.108
III −1929.665 0.885 0.3467

The results displayed in Table 10 also show that the model with the ap-

propriate serial dependence (MC1 model–Model II) produce smaller standard

errors, as point out in the simulation study, as well as a decrease in the value of

the estimative of σ2
face a more complex serial dependence model as remarked

by Pinheiro and Bates (2000) ([17]).

Table 10: Parameters estimates, Standard errors, t-ratio and p-value

for models I, II and III.

Model Parameter Estimate SE t-ratio p-value

β0 −3.799 0.305 −12.471 0.0000
β1 1.131 0.268 4.221 0.0000

I
β2 −0.042 0.055 −0.763 0.4457
β3 0.562 0.192 2.932 0.0034
β4 −0.109 0.050 −2.206 0.0274
σ2 5.030

β0 −3.443 0.304 −11.328 0.0000
β1 1.033 0.247 4.188 0.0000
β2 −0.039 0.050 −0.781 0.4346

II
β3 0.522 0.177 2.943 0.0033
β4 0.105 0.177 2.943 0.0234
λ1 0.744 0.226 3.293 0.0009
σ2 3.598

β0 −3.384 0.397 −8.524 0.0000
β1 1.014 0.253 4.004 0.0000
β2 −0.038 0.049 −0.781 0.4349

III
β3 0.516 0.178 2.904 0.0037
β4 −0.105 0.046 −2.262 0.0237
λ1 0.820 0.397 2.068 0.0387
λ2 0.092 0.398 0.230 0.8178
σ2 3.376
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The model fitted by [7] corresponds to Model I. The estimated values of

the parameters, as well as, their standard errors reported in Table 10 are in close

agreement to those obtained by [7]. To fit Model I [7] used the PROC NLMIXED

procedure in SAS and the estimation was based on 50-point adaptive Gaussian

quadrature.

5. FINAL REMARKS

This paper is concerned with the asses of performance of the GLM3C and

GLMM approaches both implemented in R package bild for the analysis of longi-

tudinal binary data. The GLM3C approach seems to be preferable to GLMM in

the situations considered by checking that its performance is so much better the

higher the serial correlation between observations of the same subject, regard-

less of the number of subjects involved in the study, the length of their profile

or the variance of the random effect. In spite of the use of the adaptive Gaus-

sian quadrature method the users may be aware that this method needs careful

handling to ensure converge even in simple random-effects models for categorical

outcome data as referred in [15].

The results pointed out in the simulation study are illustrated in the ex-

ample analyzed where a MC1 model was need to account dependence between

successive observations of the same subject. The program codes for analysing the

data set are available under request from the authors.

Finally, the R package bild allows the practitioners to choose the serial

dependence adequate to use for their data at hand.
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Abstract:

• This study aims to analyze the methodologies that can be used to estimate the total

number of unemployed, as well as the unemployment rates for 28 regions of Portugal,

designated as NUTS III regions, using model based approaches as compared to the

direct estimation methods currently employed by INE (National Statistical Institute

of Portugal). Model based methods, often known as small area estimation methods

(Rao, 2003), “borrow strength” from neighbouring regions and in doing so, aim to

compensate for the small sample sizes often observed in these areas. Consequently, it

is generally accepted that model based methods tend to produce estimates which have

lesser variation. Other benefit in employing model based methods is the possibility of

including auxiliary information in the form of variables of interest and latent random

structures. This study focuses on the application of Bayesian hierarchical models to

the Portuguese Labor Force Survey data from the 1st quarter of 2011 to the 4th quar-

ter of 2013. Three different data modeling strategies are considered and compared:

Modeling of the total unemployed through Poisson, Binomial and Negative Binomial

models; modeling of rates using a Beta model; and modeling of the three states of

the labor market (employed, unemployed and inactive) by a Multinomial model. The

implementation of these models is based on the Integrated Nested Laplace Approxi-
mation (INLA) approach, except for the Multinomial model which is implemented

based on the method of Monte Carlo Markov Chain (MCMC). Finally, a comparison

of the performance of these models, as well as the comparison of the results with those

obtained by direct estimation methods at NUTS III level are given.

Key-Words:

• unemployment estimation; model based methods; Bayesian hierarchical models.
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1. INTRODUCTION

The calculation of official estimates of the labor market that are published

quarterly by the INE is based on a direct method from the sample of the Por-

tuguese Labor Force Survey. These estimates are available at national level and

NUTS II regions of Portugal. NUTS is the classification of territorial units for

statistics (see Appendix for a better understanding). Currently, as established by

Eurostat, knowledge of the labor market requires reliable estimates for the total

of unemployed people and the unemployment rate at more disaggregated levels,

particularly at NUTS III level. However, due to the small size of these areas,

there is insufficient information on some of the variables of interest to obtain

estimates with acceptable accuracy using the direct method.

In this sense, and because increasing the sample size imposes excessive costs,

we intend to study alternative methods with the aim of getting more accurate

estimates for these regions. In fact, the accuracy of the estimates obtained in this

context is deemed very important since it directly affects the local policy actions.

This issue is part of the small area estimation. Rao (2003) provides a good

theoretical introduction to this problem and discusses some estimation techniques

based on mixed generalized models. Pfeffermann (2002), Jiang & Lahiri (2006a,

2006b) make a good review of developments to date.

This has been an area in full development and application, especially af-

ter the incorporation of spatial and temporal random effects, which brought a

major improvement in the estimates produced. Choundry & Rao (1989), Rao

& Yu (1994), Singh et al. (2005) and Lopez-Vizcaino et al. (2015) are respon-

sible for some of these developments. Chambers et al. (2016) give alternative

semiparametric methods based on M-quantile regression.

Datta & Ghosh (1991) use a Bayesian approach for the estimation in small

areas. One advantage of using this approach is the flexibility in modeling different

types of variables of interest and different structures in the random effects using

the same computational methods.

Recently, there has been considerable developments on space-time Bayesian

hierarchical models employed in small area estimation within the context of dis-

ease (Best et al., 2005). In this paper, we explore the application of these models

and adopt them for the estimation of unemployment in the NUTS III regions,

using data from the Portuguese Labor Force Survey from the 1st quarter of 2011

to the 4th quarter of 2013.

We consider three different modeling strategies: the modeling of the total

number of unemployed people through the Poisson, Binomial, and Negative Bi-

nomial models; modeling the unemployment rate using a Beta model; and the

simultaneous modeling of the total of the three categories of the labor market

(employment, unemployment and inactivity) using a Multinomial model.
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2. DATA

The region under study (Portugal Continental) is partitioned into 28 NUTS

III regions, indexed by j = 1, ..., 28. We did not include the autonomous regions

because they coincide with the NUTS II regions for which estimates are already

available with acceptable accuracy.

We use the Portuguese Labor Force Survey data from the 1st quarter of 2011

to the 4th quarter of 2013 in order to produce accurate estimates for the labor

market indicators in the last quarter. Each quarter is denoted by t = 1, ..., 12.

We did not use more recent data because there was a change in the sampling

design during 2014 and that could affect the temporal analysis.

We are interested in the total unemployed population, and the unemploy-

ment rate of the population by NUTS III regions, which is denoted by Yjt and

Rjt. We denote the respective sample values by yjt and rjt. The unemployment

rate is given by the ratio of active people who are unemployed, as defined by the

European regulation of the Labor Force Survey.

The models developed to make estimation in small areas gain special impor-

tance with the inclusion of variables of interest, which we call covariates. In this

study, the covariates are divided into 5 groups: population structure, economy,

labor market, companies and type of economic activity. Some of these covariates

are regional and are static in time whereas others are available per quarter and

thus are also of dynamic nature. We will make the distinction and classify these

sets of covariates into regional, temporal and spatio-temporal covariates. These

selected covariates are as follows:

a) Population structure:

a.1) Proportion of individuals in the sample of the Labor Force Sur-

vey that are female and aged between 24 and 34 years (SA6,

regional and quarterly);

a.2) Proportion of individuals in the sample of the Labor Force Sur-

vey that are female and over 49 years (SA8, regional and quar-

terly);

b) Economy:

b.1) Gross domestic product per capita (GDP, quarterly);

c) Labor market:

c.1) Proportion of unemployed people registered in the employment

centers (IEFP, regional and quarterly);

d) Companies:

d.1) Number of enterprises per 100 inhabitants (regional);
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e) Type of economic activity:

e.1) Proportion of population employed in the primary sector of ac-

tivity (regional);

e.2) Proportion of population employed in the secondary sector of

activity (regional).

Figure 1 shows the evolution of the unemployment rate observed in the

sample from the Portuguese Labor Force Survey from the 1st quarter of 2011 to

the 4th quarter of 2013 in each of the 28 NUTS III . The bold represents the

average unemployment rate. We can see that for all regions there was a slight

increase in the unemployment rate during this period.

Figure 1: Unemployment rate observed in the sample from the Portuguese

Labor Force Survey from the 1st quarter of 2011 to the 4th quarter

of 2013 in each of the 28 NUTS III.

The map in Figure 2 shows the spatial and temporal distribution of the

unemployment rate observed in the sample of Portuguese Labor Force Survey

during the period under study. As we can see, this map suggests the existence of

spatial and temporal dependence structures in the observed data.
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Figure 2: Spatial and temporal distribution of the unemployment rate

observed in the sample of Portuguese Labor Force Survey.

3. BAYESIAN MODELS FOR COUNTS AND PROPORTIONS

In this problem we are interested in estimating the effect of selected vari-

ables on the number of unemployed individuals and the unemployment rate, tak-

ing into account the temporal and spatial correlations.

One of the most general and useful ways of specifying this problem is to em-

ploy hierarchical generalized linear model set up, in which the data are linked to

covariates and spatial-temporal random effects through an appropriately chosen

likelihood and a link function which is linear on the covariates and the random

effects.
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We denote the vector of designated regional covariates by xj = (x1j,x2j,x3j),

the temporal covariates by xt and the vector of spatio-temporal covariates by

xjt = (x1jt, x2jt, x3jt).

While modeling unemployment numbers, we generically assume that

yjt |µjt ∼ π(yjt |µjt) , j = 1, ..., 28 , t = 1, ..., 12 ,

where π is a generic probability mass function. We look at this model consid-

ering specific probability mass functions, such as Poisson and Binomial, among

others. The state parameters µjt depend on covariates and on structured and

unstructured random factors through appropriate link functions.

The unemployment rate is also hierarchically modeled in a similar way.

We assume that

rjt |θjt ∼ g(rjt |θjt) , j = 1, ..., 28 , t = 1, ..., 12 ,

where g is a properly chosen probability density function and θjt are the state

parameters.

In the following sections we look at different variations of these hierarchical

structures with different link functions.

Let us consider h, the chosen link function which depends on the assumed

model for the data. We assume ηjt = h(µjt) for the modeling of the total and ηjt =

h(θjt) for the modeling of the rates. For each model, we consider the following

linear predictor

(3.1)
ηjt = offset jt + α0 + x′

j
α + x′

tβ + x′

jt
γ + wjt + ǫjt ,

j = 1, ..., 28 , t = 1, ..., 12 ,

where offset jt are constants that can be included in the linear predictor during

adjustment. The vectors α = (α1, α2, α3), β and γ = (γ1, γ2, γ3) correspond re-

spectively to vectors of the covariates coefficients xj, xt and xjt. Components

ǫjt represent unstructured random effects, which assume

ǫjt ∼ N(0, σ2
ǫ ) ,

and the components wjt represent the structured random effects that can be

written as wjt = w1j + w2t where w1 is modeled as a intrinsic conditional autore-

gressive (ICAR) process proposed by Besag et al. (1991) and w2 is modeled as

a first order random walk (AR (1)). Blangiardo et al. (2013) succinctly describe

both the ICAR and AR (1) processes.

w1 |τw1
∼ ICAR(τw1

) ,

w2 |τw2
∼ AR(1) .
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We assume the following prior distributions for the regression parameters

α0 ∼ N(0, 10
6
) ,

αi ∼ N(0, 10
6
) , i = 1, 2, 3 ,

β ∼ N(0, 10
6
) ,

γi ∼ N(0, 10
6
) , i = 1, 2, 3 .

For the hyperparameters we assume

log τǫ ∼ log Gamma(1, 0.0005) ,

log τw1
∼ log Gamma(1, 0.0005),

log τw2
∼ log Gamma(1, 0.0005) .

We assume the following models for the distribution of the observed data: Pois-

son, Binomial, and Negative Binomial for the total of unemployed, Beta for the

unemployment rate and Multinomial for the total of the three states of the labor

market (employment, unemployment and inactivity).

3.1. Poisson model

This is perhaps the most frequently used model for counting data in small

areas, especially in epidemiology. If we consider that µjt is the mean of the total

number of unemployed people, we can assume that

yjt |µjt ∼ Poisson(µjt) , j = 1, ..., 28 , t = 1, ..., 12 .

Therefore

p(yjt |µjt) = µ
yjt

jt exp(−µjt)/yjt! , yjt = 0, 1, 2...

In this case, the link function is the logarithmic function (log = h). The NUTS

III regions have different sample dimensions, so the variation of the total unem-

ployment is affected. To remove this effect, we need to add an offset term, which

is given by the number of individuals in the sample in each NUTS III region.

3.2. Negative Binomial model

The Negative Binomial model may be used as an alternative to the Poisson

model, especially when the sample variance is much higher than the sample mean.

When this happens, we say that there is over-dispersion in the data. In this case,

we can assume that

yjt |µjt, φ ∼ Negative Binomial(µjt, φ) , j = 1, ..., 28 , t = 1, ..., 12 .



Spatio-Temporal Analysis of Regional Unemployment Rates 523

The probability mass function is given by

p(yjt |µjt, φ) =
Γ(yjt + φ)

Γ(φ).yjt!
·

µ
yjt

jt · φφ

(µjt + φ)yjt+φ
, yjt = 0, 1, 2...

where Γ(·) is the gamma function.

The most convenient way to connect µjt to the linear predictor is through

the log
µjt

µjt+φ . Also in this case, the term offset described in the Poisson model is

considered.

3.3. Binomial model

When measuring the total unemployed, we may also consider that there is

a finite population in the area j. In this case, we assume that this population is

the number of active individuals in the area j, which is denoted by mjt, assuming

that it is fixed and known. We can then consider a Binomial model for the

total number of unemployed given the observed active population. So, given the

population unemployment rate Rjt,

yjt |mjt, Rjt ∼ Binomial(mjt, Rjt) , j = 1, ..., 28 , t = 1, ..., 12 ,

which means that

p(yjt |mjt, Rjt) =

(
mjt

yjt

)
R

yjt

jt (1−Rjt)
mjt−yjt , yjt = 0, 1, ..., mjt , t = 1, ..., 12 .

In this case, the most usual link function is the logit function given by log(Rjt/

(1−Rjt)).

We expect that the fit of this model will be close to the fit of the Poisson

model in the regions with a big number of active people and a small unemployment

rate.

3.4. Beta model

The Beta distribution is one of the most commonly used model for rates

and proportions. We can assume that the unemployment rate rjt follows a Beta

distribution and using the parameterization proposed by Ferrari and Cribari-Neto

(2004), we denote by

rjt |µjt, φ ∼ Beta(µjt, φ) , j = 1, ..., 28 , t = 1, ..., 12 .
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The probability mass function is given by

p(rjt |µjt, φ) =
Γ(φ)

Γ(µjtφ) Γ
(
(1−µjt)φ

) r
µjt φ−1
jt (1−rjt)

(1−µjt)φ−1 , 0 < rjt < 1 ,

where 0 < µjt < 1 and φ > 0.

In this case, there are several possible choices for the link function, but the

most common is the logit function h(µjt) = log(rjt/(1−rjt)).

3.5. Multinomial model

The Multinomial logistic regression model is an extension of the Binomial

logistic regression model and is used when the variable of interest is multi-

category. In this case, it may interest us to model the three categories of the

labor market (employment, unemployment and inactivity), giving us the unem-

ployment rate which can be expressed by the ratio between the unemployed and

the active people (the sum of the unemployed and employed).

One advantage of the Multinomial model in this problem is the consistency

obtained between the three categories of the labor market. The estimated total

employment, unemployment and inactivity coincides with the total population.

In addition, the same model provides estimates for the rate of employment, un-

employment and inactivity.

Assuming that yjt = (yjt1, yjt2, yjt3) is the vector of the total in the three

categories of the labor market, the Multinomial model can be written as

yjt |njt, Pjt ∼ Multinomial(njt, Pjt) , j = 1, ..., 28 , t = 1, ..., 12 ,

where njt is the number of individuals in the area j and quarter t, and Pjt =

(Pjt1, Pjt2, Pjt3) is the vector of proportions of employed, unemployed and inac-

tive, where Pjt3 = 1 − (Pjt1 + Pjt2).

The probability mass function is given by

p
(
yjt1, yjt2, yjt3 |njt, Pjt

)
=

njt!

yjt1! yjt2! yjt3!
P

yjt1

jt1 P
yjt2

jt2 P
yjt3

jt3 ,

where

yjtq ∈ N :

3∑

q

yjtq = njt , q = 1, 2, 3 .

The most common link function is the log of Pjtq, defined as ηjtq = log(Pjtq/Pjt3),

q = 1, 2.
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4. APPLICATION TO THE PORTUGUESE LABOR FORCE

SURVEY DATA

4.1. Results

This section provides the results of applying five models for the estimation

of the total unemployed and unemployment rate to the NUTS III regions of

Portugal.

The Poisson, Binomial, Negative Binomial and Beta models were imple-

mented using the R package R-INLA, while the Multinomial model was imple-

mented based on MCMC methods using the R package R2OpenBUGS.

When the Multinomial regression model was combined with the predictor

given in (1), some convergence problems arose, due to its complexity. For this

reason, the effects wjt and ǫjt were replaced by the unstructured area and time

effects uj and vt, where it was assumed

uj ∼ N(0, σ2
u) ,

vt ∼ N(0, σ2
v) ,

with the following prior information

log τu ∼ log Gamma(1, 0.0005) ,

log τv ∼ log Gamma(1, 0.0005) .

Due to the differences in the model structure and the computational methods

used for the Multinomial model, the comparative analysis of results for this model

should be done with some extra care.

The posterior mean of the parameters and hyperparameters of each model

as well as the standard deviation and the quantile 2.5% and 97.5% are presented in

Tables 1, 2, 3, 4 and 5. We can see that the covariates GDP and secondary sector

are not significant for any of the models applied. However, the value obtained

for Deviance Information Criterion (DIC) increases considerably without the

inclusion of these variables, so we decided to include them.

We observe that the IEFP is significant in all of the models applied, as

expected. The number of enterprises per 100 000 inhabitants has a negative effect

on the increase of unemployment. The population structure has also a significant

effect. The proportion of individuals that are female and aged between 24 and 34

years has a positive effect on the increase of unemployment. On the other hand,

the proportion of individuals that are female and over 49 years has a negative
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effect. These tendencies are probably due to young unemployment in the first

case and to the fact that the age group +49 includes most of the inactive people,

in the second case.

Table 1: Posterior mean, standard deviation and 95% credibility interval

for the parameters and hyperparameters of Poisson model.

Poisson

Parameter Mean SD 2.5Q 97.5Q

(Intercept) −2.83 0.01 −2.85 −2.81
Companies −0.01 0.02 −0.05 0.02

Primary sector −0.02 0.72 −1.45 1.40
Secondary sector 0.02 0.21 −0.39 0.43

GDP 0.00 0.00 0.00 0.00
IEFP 10.05 0.96 8.17 11.93
SA6 4.30 1.34 1.65 6.93
SA8 −1.55 0.57 −2.65 −0.42

τ

τw2
25047.76 20819.39 3297.22 79744.21

τw1
25.77 9.52 11.91 48.78

τǫ 22082.79 19692.19 2213.88 73957.91

Table 2: Posterior mean, standard deviation and 95% credibility interval for

the parameters and hyperparameters of Negative Binomial model.

Negative Binomial

Parameter Mean SD 2.5Q 97.5Q

(Intercept) −2.83 0.01 −2.86 −2.81
Companies −0.01 0.02 −0.05 0.02

Primary sector 0.13 0.73 −1.33 1.57
Secondary sector −0.04 0.23 −0.48 0.41

GDP 0.00 0.00 0.00 0.00
IEFP 10.20 1.48 7.28 13.09
SA6 3.97 2.01 0.02 7.91
SA8 −2.11 0.73 −3.54 −0.67

τ 48.57 5.44 38.69 60.05
τw2

22946.14 20085.32 2453.14 75579.11
τw1

32.77 14.26 13.08 68.00
τǫ 22641.11 19924.30 2405.53 74957.89

All the considered models give very good fit to the data and their temporal

predictions are also satisfactory. Here we report on several model fitting aspects

of the Binomial model. Similar results for the other models are given in the

Supplementary Material.
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Table 3: Posterior mean, standard deviation and 95% credibility interval

for the parameters and hyperparameters of Binomial model.

Binomial

Parameter Mean SD 2.5Q 97.5Q

(Intercept) −1.97 0.01 −2.00 −1.95
Companies −0.04 0.02 −0.07 0.00

Primary sector 0.54 1.01 −1.47 2.52
Secondary sector −0.11 0.28 −0.67 0.45

GDP 0.00 0.00 0.00 0.00
IEFP 12.63 1.11 10.47 14.81
SA6 4.38 1.47 1.50 7.26
SA8 −1.11 0.64 −2.37 0.16

τ

τw2
20736.79 19243.68 2070.46 71553.26

τw1
11.77 3.90 5.70 20.85

τǫ 19143.06 18555.71 1460.60 68268.97

Table 4: Posterior mean, standard deviation and 95% credibility interval

for the parameters and hyperparameters of Beta model.

Beta

Parameter Mean SD 2.5Q 97.5Q

(Intercept) −1.98 0.01 −2.00 −1.95
Companies −0.03 0.03 −0.08 0.02

Primary sector 0.69 1.09 −1.50 2.83
Secondary sector −0.20 0.31 −0.82 0.42

GDP 0.00 0.00 0.00 0.00
IEFP 12.22 1.82 8.64 15.78
SA6 0.85 1.84 −2.77 4.47
SA8 −2.37 0.68 −3.70 −1.03

τ 206.61 16.80 174.43 240.37
τw2

20012.58 19075.29 1750.73 70491.89
τw1

11.33 4.61 5.40 23.02
τǫ 20497.48 19404.83 1715.97 71768.00

Table 5: Posterior mean, standard deviation and 95% credibility interval

for the parameters and hyperparameters of Multinomial model.

Multinomial

Parameter Mean SD 2.5Q 97.5Q

(Intercept) −1.74 0.26 −2.16 −1.20
Companies 0.01 0.02 −0.04 0.05

Primary sector 3.99 5.38 −1.04 14.94
Secondary sector −0.77 0.77 −2.27 0.19

GDP 0.00 0.00 0.00 0.00
IEFP 8.93 1.59 6.02 12.00
SA6 4.77 1.44 1.97 7.58
SA8 −2.38 0.64 −3.74 −1.22

τv 2206.25 2979.60 3.32 9519.00
τu 33.57 24.87 1.77 78.11
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Figure 3 (a) gives the observed and adjusted values from the Binomial model

together with their 95% credible intervals, whereas Figure 3 (b) gives the pre-

dictions to the 4th quarter of 2013 together with their 95% credible intervals.

We see that the adjusted values are very close to the observed ones. The domains

are sorted at first by quarter and then by region. This is the reason for the iden-

tical behavior in each 28 domains (corresponding to the NUTS III regions). The

graphs show a slight increase on the unemployment rate until the 1st quarter of

2013 and then a decrease until the 4th quarter of 2013.

(a)

(b)

Figure 3: (a) Observed and adjusted values (mean and 95% CI) of unemploy-

ment rate for the 336 domains (336 = 28 NUTS III × 12 quarters);

(b) Observed and predicted values (the posterior mean and 95% CI)

of the unemployment rate. The prediction is made for the 4th quarter

of 2013 which is highlighted red.
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The map of the Figure 4 allows for a better understanding of the regional

difference between the observed and fitted values.

Figure 4: Maps of observed and fitted values of the unemployment rate for the

1st quarter of 2011, 2nd quarter of 2012 and 3rd quarter of 2013.

4.2. Diagnosis

Some predictive measures can be used for an informal diagnostic, such

as Conditional Predictive ordinates (CPO) and Probability Integral Transforms

(PIT; Gelman et al., 2004). Measure CPOi is defined as π(yi |y−i) where y−i is

the vector y without observation yi, while the measures PITi are obtained by

Prob(ynew
i ≤ yi |y−i). Unusually large or small values of this measure indicate

possible outliers. Moreover, a histogram of the PIT value which is very different

from the uniform distribution indicates that the model is questionable.

The implementation of these measures in an MCMC approach is very heavy

and requires a high computational time. For this reason, we present only results

for the models implemented with the INLA.

Figure 5 shows the graphs of the PIT values versus domain (28× 12 = 336)

and the histogram of the PIT values for Poisson, Binomial, Negative Binomial

and Beta models. We see that the histogram for the PIT values based on the

Poisson and Binomial models presents a fairly uniform behavior, but this is not

the case with the Negative Binomial and Beta distributions. This suggests that

these last two models may not be suitable for data in analysis.
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Figure 5: Graphs of the PIT values versus domain (28 × 12 = 336)

and the histogram of the PIT values.

The predictive quality of the models can be performed using a cross-validated

logarithmic score given by the symmetric of the mean of the logarithm of CPO

values (Martino and Rue, 2010). High CPO values indicate a better quality of

prediction of the respective model. The logarithmic of the CPO values are given

in table 6. Accordingly, the Beta model has the least predictive quality.

The diagnosis of the Multinomial model was based on graphical visual-

ization and on Potential Scale Reduction Factor (Brooks and Gelman, 1997).

No convergence problems were detected.

Table 6: Logarithmic score.

Model log score

Poisson 3.33
Negative Binomial 3.51

Binomial 3.34
Beta −2.39

4.3. Comparison

In order to compare the studied models, we use the Deviance Information

Criterion (DIC) proposed by Spiegehalter et al. (2002). This is a criterion which

aims to achieve a balance between the adequacy of a model and its complexity.

It is defined by DIC = D̄ + pD where D̄ is the posterior mean deviance of the

model and pD is the effective number of parameters. The model with the smallest
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value of DIC is the one with a better balance between the model adjustment and

complexity.

The values of DIC, pD and D̄ are presented in table 7. The Multinomial

model features a higher DIC value, but it should be noted that this model requires

an adjustment of the total of employed, unemployed and inactive people, unlike

the other models.

Among the models used for modeling of total, the Poisson model is the one

with the lower value of DIC, which would suggest that it should be preferable

to the Negative Binomial model. However, Geedipally et al. (2013) explains that

the value of this measure is affected by the parameterization of the model, which

may influence the values obtained by the Negative Binomial and Beta models,

since the software used permits different parameterizations in these cases.

Table 7: DIC, effective number of parameters, and posterior mean of the deviance.

Model DIC pD D̄

Poisson 2240.4 30.4 2210.0
Negative Binomial 2374.9 25.4 2349.5

Binomial 2241.4 32.5 2208.9
Beta −1607.4 31.1 −1638.4

Multinomial 4976.0 81.5 4894.5

Figure 6 shows that the Poisson, Negative Binomial and Multinomial mod-

els produced very similar estimates for the total unemployed, while Binomial,

Beta and Multinomial models produced similar estimates for unemployment rate.

We can also note that these estimates are smoother than the estimates obtained

by the direct method. This property is prominently displayed in the estimation

of the unemployment rate, and justifies the fact that the estimates of the total

produced by the models are lower than the estimates produced by the direct

method for large values of unemployment, and higher for small values (regions

13 and 15).

Regions 4 and 20, which correspond to Grande Porto and Grande Lisboa,

are those with the highest population size. This fact explains the high values of

unemployment totals. On the other hand, regions 13 and 15, which correspond to

Pinhal Interior Sul and Serra da Estrela, are those with the lowest population size.

It is interesting to observe that the regions with the greatest difference between

the unemployment rate estimated by the direct method and the rate estimated

by the studied models are those with the lowest population sizes (Pinhal Interior

Sul, Serra da Estrela and Beira Interior Sul), which are represented in the graph

by the numbers 13, 15 and 17.
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(a) Totals (b) Rates

Figure 6: Estimates for the total unemployed (through Poisson, Negative Bino-

mial, Multinomial, and direct method) and the unemployment rate

(through Binomial, Beta, Multinomial, and direct method).

The Relative Root Mean Square Error (RRMSE) allows for a comparison

of the models studied and the direct method. A lower value of RRMSE indicates

a better balance between variability and bias. The graph of Figure 7 reveals a

wide discrepancy between the direct method and the applied models.

(a) Totals (b) Rates

Figure 7: RRMSE estimates for the total unemployed and the unemployment rate.

Note that, for most models, the NUTS III region 15, which corresponds

to Serra da Estrela (see Appendix), presents the highest value RRMSE. This

result can be explained in part by the reduced population size of the region.

The opposite is true for regions with high dimensional population such as Porto

(Region 4), Grande Lisboa (region 20) and Algarve (region 28).
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The high values of RRMSE of unemployment rate estimates by the direct

method for regions 13, 15 and 17, can explain the big differences found between

the methods in these regions (Figure 7 (b)). These results reinforce the idea that

the direct method is inadequate for the estimation in small areas. On the other

hand, the models studied show a maximum value of RRMSE of the unemployment

rate estimates that corresponds to almost half of the value obtained by the direct

method.

5. DISCUSSION

We studied the application of five spatio-temporal models within a Bayesian

approach for the estimation of both the total and the rate of unemployment of

NUTS III regions. We realized that one of the features of model based methods

is the smoothing of the variation across time and space. This feature brings these

models closer to reality.

The estimates obtained by these models were reasonable when compared

with the direct method, which presented higher values of RRMSE.

Models under study presented much lower values of RRMSE than the direct

method for regions with a small population size. This feature shows that these

models can be a good alternative to small area estimation and in particular for

the NUTS III regions of Portugal.

The Negative Binomial and Beta models presented diagnostic problems in

the analysis of empirical distribution of the PIT. A non uniform distribution of

the PIT revealed that the predictive distribution is not coherent with the data.

Among the models under study, the Multinomial model seems to be the

most suitable for this problem. The estimates obtained for the unemployment

totals are similar to those obtained by the other models, but they produce es-

timates for the total of employed as well as inactive people simultaneously, in a

way that is consistent with the population estimates. In this way, we can directly

obtain the estimates of the employment and unemployment rates.
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APPENDIX

Table 8: NUTS II and NUTS III regions of Continental Portugal.

NUTS III region NUTS II region

Index Code Designation Designation

1 111 Minho-Lima
2 112 Cávado
3 113 Ave
4 114 Grande Porto
5 115 Tâmega

Norte

6 116 Entre Douro e Vouga
7 117 Douro
8 118 Alto Trás-os-Montes

9 161 Baixo Vouga
10 162 Baixo Mondego
11 163 Pinhal Litoral
12 164 Pinhal Interior Norte
13 166 Pinhal Interior Sul
14 165 Dão-Lafões Centro
15 167 Serra da Estrela
16 168 Beira Interior Norte
17 169 Beira Interior Sul
18 16A Cova da Beira
19 16B Oeste

20 171 Grande Lisboa
21 172 Peńınsula de Setúbal

Lisboa

22 16C Médio Tejo Centro

23 185 Leźıria do Tejo
24 181 Alentejo Litoral
25 182 Alto Alentejo Alentejo
26 183 Alentejo Central
27 184 Baixo Alentejo

28 150 Algarve Algarve



Spatio-Temporal Analysis of Regional Unemployment Rates 535

ACKNOWLEDGMENTS

This work was supported by the project UID/MAT/00006/2013 and the

PhD scholarship SFRH/BD/92728/2013 from Fundação para a Ciência e Tec-

nologia. Instituto Nacional de Estat́ıstica and Centro de Estat́ıstica e Aplicações

da Universidade de Lisboa are the reception institutions. We would like to thank

professor Antónia Turkman for her help.

NOTE

This study is the responsibility of the authors and does not reflect the

official opinions of Instituto Nacional de Estat́ıstica.

REFERENCES

[1] Besag, J.; York, J. and Mollie, A. (1991). Bayesian image restoration, with

two applications in spatial statistics, Annals of the Institute of Statistical Math-

ematics, 43, 1–59.

[2] Best, N.; Richardson, S. and Thomson, A. (2005). A comparison of Bayesian

spatial models for disease mapping, Statistical Methods in Medical Research, 14,

35–59.

[3] Blangiardo, M.; Cameletti, M.; Baio, G. and Rue, H. (2013). Spatial and

spatio-temporal models with R-INLA, Spatial and Spatio-temporal Epidemiology,

7, 39–55.

[4] Brooks, S.P. and Gelman, A. (1997). General Methods for Monitoring Con-

vergence of Iterative Simulations, Journal of Computational and Graphical Statis-

tics, 7, 434–455.

[5] Chambers, R.; Salvati, N. and Tzavidis, N. (2016). Semiparametric small

area estimation for binary outcomes with application to unemployment estimation

for local authorities in the UK, Journal of the Royal Statistical Society, Series A,

179, 453–479.

[6] Choundry, G.H. and Rao, J.N.K. (1989). Small area estimation using models

that combine time series and cross sectional data, Journal of Statistics Canada

Symposium on Analysis of Data in Time, 67–74.

[7] Datta, G.S. and Ghosh, M. (1991). Bayesian prediction in linear models:

application to small area estimation, Annals of Statistics, 19, 1748–1770.

[8] Ferrari, S. and Cribari-Neto, F. (2004). Beta Regression for Modelling

Rates and Proportions, Journal of Applied Statistics, 31, 799–815.



536 Soraia Pereira, Feridun Turkman and Lúıs Correia
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