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Abstract:

• We consider nested row-column designs with split units for a two-factor experiment.
The most optimal design in this case is that of using for the whole plots a Latin square
while for the subplot treatments with a completely randomized design for each whole
plot. Such a design, in fact optimal, utilizes many experimental units and quite a
large space. Hence to construct new designs of reduced size of the experiment we
use a cyclic design for the whole plot treatments and a square lattice design for the
subplot treatments. The proposed designs are generally balanced and they allow for
giving the stratum efficiency factors, especially useful to design of experiments.
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1. INTRODUCTION

In many biological and agricultural (field) experiments, a nested row-column

design with split units is often used. The design is for a two-factor experiment of

split-plot type with b blocks. The first factor A has v1 levels A1, A2, ..., Av1
and

the second factor B has v2 levels B1, B2, ..., Bv2
. Each block is divided into k1

rows and k2 columns and these k1k2 units are treated as whole plots. Moreover,

each whole plot is divided into k3 subplots. The levels of A and B are applied to

the whole plots (called whole plot treatments) and the subplots (called subplot

treatments), respectively. Such a design is called a nested row-column design

with split units.

Kachlicka and Mejza (1996) considered a mixed linear model with fixed

treatment effects and random block, row, column, whole plot and subplot effects

for the nested row-column design with split units. The hth factorial treatment

combination effect τh is defined by

τh = µ + αi + βj + (αβ)ij

for h = (i−1)v2 +j, i = 1, 2, ..., v1 and j = 1, 2, ..., v2, where µ is the general mean,

αi denotes the main effect of the ith whole plot treatment Ai, βj denotes the main

effect of the jth subplot treatment Bj and (αβ)ij denotes the interaction effect

of Ai and Bj . Here
∑v1

i=1 αi = 0,
∑v2

j=1 βj = 0,
∑v1

i=1(αβ)ij = 0 for j = 1, 2, ..., v2

and
∑v2

j=1(αβ)ij = 0 for i = 1, 2, ..., v1. The mixed linear model results from a

four-step randomization, i.e., the randomization of blocks, the randomization of

rows within each block, the randomization of columns within each block and the

randomization of subplots within each whole plot. This kind of randomization

leads us to an experiment with orthogonal block structure as defined by Nelder

(1965a, 1965b) and the multistratum analysis proposed by Nelder (1965a, 1965b)

and Houtman and Speed (1983) can be applied to the analysis of data in the

experiment. In this case, we have five strata, except zero stratum connected

with the general mean only, (I) inter-block stratum, (II) inter-row stratum, (III)

inter-column stratum, (IV) inter-whole plot stratum and (V) inter-subplot stra-

tum. The statistical properties of the nested row-column design with split units

are strictly connected with the eigenvalues and the eigenvectors of the stratum

information matrices for the treatment combinations. The stratum information

matrices A1, A2, A3, A4 and A5 are given by

(1.1) A1 =
1

k1k2k3
N0N

′
0 −

r

v
Jv, A2 =

1

k2k3
N1N

′
1 −

1

k1k2k3
N0N

′
0,

(1.2) A3 =
1

k1k3
N2N

′
2 −

1

k1k2k3
N0N

′
0,

(1.3) A4 =
1

k3
N3N

′
3 −

1

k1k3
N2N

′
2 −

1

k2k3
N1N

′
1 +

1

k1k2k3
N0N

′
0
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and

(1.4) A5 = rIv −
1

k3
N3N

′
3,

where v = v1v2, N0, N1, N2 and N3 are the incidence matrices for the treat-

ment combinations vs. blocks, rows, columns and whole plots, respectively, Iv

is the identity matrix of order v and Jv is the v × v matrix with every element

unity. Here we assume that every treatment combination AiBj (i = 1, 2, ..., v1, j =

1, 2, ..., v2) occurs in precisely r blocks and the treatment combinations are or-

dered lexicographically.

A generally balanced design was firstly introduced by Nelder (1965a, 1965b),

for which the stratum information matrices are spanned by a common set of

eigenvectors. Let s0, s1, ..., sv−1 be the mutually orthonormal common eigen-

vectors of the stratum information matrices A1, A2, A3, A4 and A5. Since

Af1v = 0 for f = 1, 2, 3, 4, 5, 1√
v
1v may be chosen as the first eigenvector s0,

where 1v is the v × 1 vector of unit elements. Let ξfh be an eigenvalue of a

matrix A∗
f = r−1Af corresponding to the eigenvector sh for f = 1, 2, 3, 4, 5 and

h = 1, 2, ..., v − 1. Then, a basic contrast of the treatment effects (see Pearce et

al. (1974)) is defined by s
′
hτ for h = 1, 2, ..., v − 1, where τ is the v × 1 vector

of the treatment effects. The eigenvalue ξfh can be identified as a stratum effi-

ciency factor of the design concerning estimation of the hth basic contrast in the

fth stratum for f = 1, 2, 3, 4, 5 and h = 1, 2, ..., v − 1 (see, Houtman and Speed

(1983)).

Many experiments require a long time or a large space (units) often mak-

ing it impossible to carry out a conventional, complete (orthogonal) design of the

considered type. For example, in agricultural field experiments, because of soil

fertility it is difficult to find units (plots) fulfilling restrictions concerning the ho-

mogeneity of blocks, rows, columns, whole plots or subplots. Then, to satisfy the

main experimental principles it is necessary to design the experiment as an in-

complete (non-orthogonal) one. Such an experiment usually utilizes smaller units,

with respect to size and also utilizes smaller number of units (the experiment is

cheaper). The problem is to find an incomplete design proper to experimental

material structure and optimal with respect to statistical properties of the design.

Kuriki et al. (2009), Mejza et al. (2009) and Mejza and Kuriki (2013)

constructed nested row-column designs with split units by the Kronecker product

of the incidence matrices of two designs. They used a Youden square for the whole

plot treatments and various proper designs for the subplot treatments. Mejza et

al. (2014) have used a balanced incomplete block design with nested rows and

columns instead of the Youden square to construct a nested row-column design

with split units. The designs obtained by this way need usually a large number of

units. In this paper, we construct a nested row-column design with split units by

a modified Kronecker product (called a semi-Kronecker product) of the incidence
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matrices of two designs. We use a cyclic design for the whole plot treatments and

a square lattice design for the subplot treatments. We give the stratum efficiency

factors for such a nested row-column design with split units, which has the general

balance property.

These designs have smaller numbers of blocks than the conventional exper-

iments. Therefore, they would be useful in practice, for example, the reduction

of the experimental expenses and effort, and the easier implementation of the

experiments by using the well-known cyclic designs and square lattice designs

in the literature (see, John (1987), John and Williams (1995) and Raghavarao

(1971), etc.).

Other variants of incomplete split plot designs are given, for example, by

Mejza and Mejza (1996), Ozawa et al. (2004), Aastveit et al. (2009), Mejza et

al. (2012) and Kuriki et al. (2012).

2. A CONSTRUCTION BY A CYCLIC DESIGN AND A SQUARE

LATTICE DESIGN

Firstly, we need the semi-Kronecker product (see, Khatri and Rao (1968)

and Mejza, Kuriki and Mejza (2001)) of two matrices that will be used to con-

struct nested row-column designs with split units. Suppose that two matrices E

and F are divided into the same number of submatrices as follows:

E = (E1 : E2 : ··· : Em) and F = (F1 : F2 : ··· : Fm).

Then, the semi-Kronecker product E ⊗̃F is defined by

E ⊗̃F = (E1 ⊗ F1 : E2 ⊗ F2 : ··· : Em ⊗ Fm),

where ⊗ denotes the usual Kronecker product.

Next, we need a cyclic design and a square lattice design. Let V be a

set of v treatments and let B be a collection of subsets (called blocks) of V .

A design (V,B) is denoted by D(v, r, k) if every treatment occurs in precisely

r blocks and each block contains k treatments. Let Zv be the additive group

of integers modulo v and let (V,B) be a D(v, r, k) with V = Zv for which if

{a1, a2, ..., ak} is a block, then {a1 + 1, a2 + 1, ..., ak + 1} is also a block. A set

of blocks {{a1 + i, a2 + i, ..., ak + i} | i ∈ Zv} is called a cyclic class and a block

taken arbitrarily from each cyclic class is called an initial block. If the collection

B of blocks is divided into some cyclic classes, then (V,B) is said to be cyclic and

it is denoted by CD(v, r, k). Here we consider only a case where the number of

blocks in each cyclic class is v.
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Let (V,B) be a D(v, r, k). If the collection B of blocks can be grouped in

such a way that every treatment occurs precisely once in every group (called a

resolution class), then (V,B) is said to be resolvable. A resolvable D(v, r, k) (V,B)

such that v = s2, r ≤ s + 1 and k = s for a positive integer s is called a square

lattice design if any two blocks from different resolution classes contain just one

common treatment, and it is denoted by SLD(s2, r, s). If r = s + 1, it is called a

balanced square lattice design and it is well known that there exists a balanced

square lattice design if s is a prime or a prime power (see, Raghavarao (1971)).

Now we construct a nested row-column design with split units. Let (VA,BA)

be a CD(vA, rA, kA) with m = rA/kA initial blocks. Each cyclic class of (VA,BA) is

treated as a block with kA rows and vA columns such that the columns are blocks

of BA and that every treatment of VA occurs precisely once in each row. Such a

design is denoted by DA. An SLD(s2, m, s) is denoted by DB. The whole plot

treatments occur in DA and the subplot treatments occur in DB. We construct

a nested row-column design, say D, with split units embedding each block of

the ith resolution class of DB in every whole plot of the ith block of DA for

i = 1, 2, ..., m. The parameters of D are v1 = vA, v2 = s2, b = ms, r = mkA = rA,

k1 = kA, k2 = vA and k3 = s.

Example 2.1. We use an A-efficient cyclic design CD(6, 6, 3) with initial

blocks {0, 1, 2} and {0, 1, 3} given by John (1987). From two cyclic classes of this

design, we have the following two blocks with 3 rows and 6 columns of DA:

0 1 2 3 4 5

1 2 3 4 5 0

2 3 4 5 0 1

and

0 1 2 3 4 5

1 2 3 4 5 0

3 4 5 0 1 2

.

We also use a square lattice design SLD(9, 2, 3) DB =(VB,BB) with VB ={1,2, ...,9}.
The following columns are 6 blocks of DB:

1
2
3

4
5
6

7
8
9

and
1
4
7

2
5
8

3
6
9

,

where the first resolution class is constituted by the first 3 blocks and the second

one is constituted by the remaining blocks. We construct a nested row-column

design D with split units embedding each block of the first (second) resolution

class of DB in every whole plot of the first (second) block of DA, replacing the

treatments 0, 1, 2, 3, 4, 5 of DA with A1, A2, A3, A4, A5, A6 and the treatments

1, 2, ..., 9 of DB with B1, B2, ..., B9. The design D has 6 blocks as follows:
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A1 A2 A3 A4 A5 A6

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3

A2 A3 A4 A5 A6 A1

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3

A3 A4 A5 A6 A1 A2

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3

A1 A2 A3 A4 A5 A6

B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6

A2 A3 A4 A5 A6 A1

B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6

A3 A4 A5 A6 A1 A2

B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6 B4 B5 B6

A1 A2 A3 A4 A5 A6

B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9

A2 A3 A4 A5 A6 A1

B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9

A3 A4 A5 A6 A1 A2

B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9 B7 B8 B9

A1 A2 A3 A4 A5 A6

B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7

A2 A3 A4 A5 A6 A1

B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7

A4 A5 A6 A1 A2 A3

B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7 B1 B4 B7

A1 A2 A3 A4 A5 A6

B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8

A2 A3 A4 A5 A6 A1

B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8

A4 A5 A6 A1 A2 A3

B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8 B2 B5 B8

A1 A2 A3 A4 A5 A6

B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9

A2 A3 A4 A5 A6 A1

B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9

A4 A5 A6 A1 A2 A3

B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9 B3 B6 B9

2

We note that if the nested row-column design with split units is constructed

by the usual Kronecker product of the incidence matrices (see, Mejza et al.

(2014)), then the number of blocks becomes m2s = 12. Generally, the number of

blocks of a nested row-column design with split units by the Kronecker product

is m times larger than those of a nested row-column design with split units by

the semi-Kronecker product.

Let

NA = (NA1 : NA2 : ··· : NAm) and NB = (NB1 : NB2 : ··· : NBm)
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be the incidence matrices of the cyclic design CD(vA, rA, kA) and the square

lattice design SLD(s2, m, s), where NAi and NBi correspond to the ith cyclic and

resolution classes, respectively. By the definition of the square lattice design,

(2.1) N′
BiNBi = sIs and N′

BiNBj = Js

hold for i, j = 1, 2, ..., m, i 6= j. Then, the incidence matrix N2 of the nested row-

column design D with split units is given by the semi-Kronecker product of NA

and NB, i.e.,

N2 = NA ⊗̃NB = (NA1 ⊗ NB1 : NA2 ⊗ NB2 : ··· : NAm ⊗ NBm)

in a suitable order of columns of D, and the concurrence matrices N0N
′
0, N1N

′
1,

N2N
′
2 and N3N

′
3 of D are given by

(2.2) N0N
′
0 =

m
∑

i=1

(

k2
AJvA

⊗ NBiN
′
Bi

)

= k2
AJvA

⊗ NBN′
B,

(2.3) N1N
′
1 =

m
∑

i=1

(

kAJvA
⊗ NBiN

′
Bi

)

= kAJvA
⊗ NBN′

B,

(2.4) N2N
′
2 =

m
∑

i=1

(

NAiN
′
Ai ⊗ NBiN

′
Bi

)

and

(2.5) N3N
′
3 =

m
∑

i=1

(

kAIvA
⊗ NBiN

′
Bi

)

= kAIvA
⊗ NBN′

B.

3. STRATUM EFFICIENCY FACTORS FOR D

In this section, we give the stratum efficiency factors for the nested row-

column design D with split units constructed in Section 2. To find the stratum

efficiency factors, it is necessary to find the eigenvalues of the stratum information

matrices A1, A2, A3, A4 and A5 of D. It is easy to find these eigenvalues if A1,

A2, A3, A4 and A5 have the common eigenvectors, i.e., if D is generally balanced.

It follows, from (2.1), that

(3.1) NBiN
′
BiNBjN

′
Bj = Js2

holds for i, j = 1, 2, ···, m, i 6= j. From (3.1), it is easily verified that the concur-

rence matrices N0N
′
0, N1N

′
1, N2N

′
2 and N3N

′
3 given in (2.2)–(2.5) are mutually

commutative. Thus, by use of (1.1)–(1.4), the stratum information matrices A1,
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A2, A3, A4 and A5 are mutually commutative, which means that A1, A2, A3,

A4 and A5 have the common eigenvectors. Therefore, D is generally balanced.

In order to find the common eigenvectors of the stratum information matri-

ces A1, A2, A3, A4 and A5, i.e., those of the concurrence matrices N0N
′
0, N1N

′
1,

N2N
′
2 and N3N

′
3, we consider the eigenvectors of NAiN

′
Ai for the ith cyclic class

of the cyclic design CD(vA, rA, kA) and those of NBiN
′
Bi for the ith resolution

class of the square lattice design SLD(s2, m, s) for i = 1, 2, ..., m. For the inci-

dence matrix NA of the CD(vA, rA, kA), since NA1N
′
A1,NA2N

′
A2, ...,NAmN′

Am

are symmetric circulant matrices, these matrices have the mutually orthonormal

common eigenvectors, which are denoted by x0, x1, ...,xvA−1 with x0 = 1√
vA

1vA
.

The corresponding eigenvalues of NAiN
′
Ai are given by

θ
(i)
j =

vA−1
∑

h=0

λ
(i)
h cos

(

2πjh

vA

)

for i = 1, 2, ..., m and j = 0, 1, ..., vA − 1, where λ
(i)
h (h 6= 0) denotes the num-

ber of blocks containing two treatments 0 and h in the ith cyclic class of the

CD(vA, rA, kA) and λ
(i)
0 = kA. In particular, θ

(i)
0 = k2

A and the corresponding

eigenvector is x0 = 1√
vA

1vA
(see, John (1987) and John and Williams (1995)).

These eigenvalues and common eigenvectors are summarized in the following ta-

ble:

Table 1: Eigenvalues and common eigenvectors of NAiN
′
Ai

in the CD(vA, rA, kA).

Eigenvalues Common eigenvectors

k2
A

1√
vA

1vA

θ
(i)
j xj (j = 1, 2, ..., vA − 1)

Similarly, for the incidence matrix NB of the SLD(s2, m, s), from (2.1),

NBiN
′
Bi has the eigenvalues s and 0 with multiplicities s and s(s− 1) for each i =

1, 2, ..., m. From (3.1), NB1N
′
B1,NB2N

′
B2, ...,NBmN′

Bm are mutually commuta-

tive, so these matrices have the common eigenvectors. Let Q = (q0, q1, ..., qs−1)

be an orthogonal matrix of order s with q0 = 1√
s
1s. For each i = 1, 2, ..., m, from

(2.1), the mutually orthonormal eigenvectors of NBiN
′
Bi corresponding to the

eigenvalue s are given by

zip =
1√
s
NBiqp

for p = 0, 1, ..., s− 1. In particular, zi0 = 1
s
1s2 . The eigenvectors zip are also the

eigenvectors of NBhN
′
Bh (h 6= i) for any other resolution class, and the eigenvalues
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of NBhN
′
Bh corresponding to zi0 and zip (p 6= 0) are s and 0, respectively. Fur-

thermore, the mutually orthonormal common eigenvectors of NB1N
′
B1,NB2N

′
B2,

...,NBmN′
Bm corresponding to the eigenvalue 0 are denoted by z

∗
q for q = 1, 2, ...,

s2 − m(s − 1) − 1. These eigenvalues and common eigenvectors are summarized

in Table 2.

Table 2: Eigenvalues and common eigenvectors of NBiN
′
Bi

in the SLD(s2,m, s).

Eigenvalues
Common eigenvectors

NB1N
′
B1 NB2N

′
B2 ··· NBmN′

Bm

s s ··· s 1
s
1s2

s 0 ··· 0 z1p (p = 1, 2, ..., s − 1)

0 s ··· 0 z2p (p = 1, 2, ..., s − 1)
...

...
...

...
...

0 0 ··· s zmp (p = 1, 2, ..., s − 1)

0 0 ··· 0 z
∗
q (q = 1, 2, ..., s2 − m(s − 1) − 1)

Combining the eigenvectors of Table 1 and Table 2, we consider the follow-

ing 6 sets of vectors:

(1)
1√
vA

1vA
⊗ 1

s
1s2 , (2) xj ⊗

1

s
1s2 , (3)

1√
vA

1vA
⊗ zip,

(4)
1√
vA

1vA
⊗ z

∗
q , (5) xj ⊗ zip, (6) xj ⊗ z

∗
q

for i = 1, 2, ..., m, j = 1, 2, ..., vA − 1, p = 1, 2, ..., s− 1 and q = 1, 2, ..., s2 −m(s−
1) − 1. The vectors of (1)–(6) are mutually orthonormal and the total number

of the vectors is vAs2. We show that the vectors of (1)–(6) are the common

eigenvectors of N0N
′
0, N1N

′
1, N2N

′
2 and N3N

′
3, and we find the corresponding

eigenvalues of N0N
′
0, N1N

′
1, N2N

′
2 and N3N

′
3.

Firstly, we take into account the matrix N0N
′
0. For (1), we have, from

(2.2), Table 1 and Table 2,

N0N
′
0

(

1√
vA

1vA
⊗ 1

s
1s2

)

=
(

k2
AJvA

⊗ NBN′
B

)

(

1√
vA

1vA
⊗ 1

s
1s2

)

=

(

k2
AJvA

1√
vA

1vA

)

⊗
(

NBN′
B

1

s
1s2

)

=

(

vAk2
A

1√
vA

1vA

)

⊗
(

ms
1

s
1s2

)

= mvAk2
As

(

1√
vA

1vA
⊗ 1

s
1s2

)

.
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The corresponding eigenvalue is mvAk2
As.

For (2), we have

N0N
′
0

(

xj ⊗
1

s
1s2

)

=
(

k2
AJvA

xj

)

⊗
(

NBN′
B

1

s
1s2

)

= 0.

The corresponding eigenvalue is zero for each i=1,2, ...,m and j =1,2, ..., vA−1.

For (3), we have

N0N
′
0

(

1√
vA

1vA
⊗ zip

)

=

(

k2
AJvA

1√
vA

1vA

)

⊗
(

NBN′
Bzip

)

=

(

vAk2
A

1√
vA

1vA

)

⊗
(

m
∑

h=1

NBhN
′
Bhzip

)

=

(

vAk2
A

1√
vA

1vA

)

⊗ (szip)

= vAk2
As

(

1√
vA

1vA
⊗ zip

)

.

The corresponding eigenvalue is vAk2
As for each i=1,2, ...,m and p =1,2, ..., s−1.

For (4), we have

N0N
′
0

(

1√
vA

1vA
⊗ z

∗
q

)

=

(

k2
AJvA

1√
vA

1vA

)

⊗
(

NBN′
Bz

∗
q

)

=

(

vAk2
A

1√
vA

1vA

)

⊗
(

m
∑

i=1

NBiN
′
Biz

∗
q

)

= 0.

The corresponding eigenvalue is zero for q = 1, 2, ..., s2 −m(s− 1)− 1. Moreover,

for (5) and (6), the eigenvalue is also zero.

Similarly, from (2.3)–(2.5), we can show that the vectors of (1)–(6) are also

the eigenvectors of N1N
′
1, N2N

′
2 and N3N

′
3. The corresponding eigenvalues of

N0N
′
0, N1N

′
1, N2N

′
2 and N3N

′
3 are summarized in the table below:

Table 3: Eigenvalues and common eigenvectors of N0N
′
0, N1N

′
1, N2N

′
2 and N3N

′
3.

Eigenvalues Common

N0N
′
0 N1N

′
1 N2N

′
2 N3N

′
3

eigenvectors

mvAk2
As mvAkAs mk2

As mkAs (1)

0 0
∑m

i=1 θ
(i)
j s mkAs (2)

vAk2
As vAkAs k2

As kAs (3)

0 0 θ
(i)
j s kAs (5)

0 0 0 0 (4), (6)

Here i = 1, 2, ..., m and j = 1, 2, ..., vA − 1.
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The vectors (1)–(6) are also the common eigenvectors of the stratum infor-

mation matrices A1, A2, A3, A4 and A5. By use of (1.1)–(1.4) and Table 3, the

stratum efficiency factors for D can be calculated as in the following table:

Table 4: Stratum efficiency factors for D.

Type of Number of Strata

contrasts contrasts I II III IV V

A vA − 1 0 0 ωj 1 − ωj 0

B
m(s − 1) 1/m 0 0 0 1 − 1/m

s2 − m(s − 1) − 1 0 0 0 0 1

A × B
m(vA − 1)(s − 1) 0 0 ξij 1/m − ξij 1 − 1/m

(vA − 1){s2 − m(s − 1) − 1} 0 0 0 0 1

for i = 1, 2, ..., m and j = 1, 2, ..., vA−1, where A and B denote the basic contrasts

among the main effects of whole plot and subplot treatments, respectively, A×B

denotes the basic contrasts among the interaction effects, ξij = θ
(i)
j /(mk2

A) and

ωj =
∑m

i=1 ξij . The eigenvectors of (2), (3)–(4) and (5)–(6) define the basic con-

trasts A, B and A × B, respectively. We use Table 4 in order to improve the

estimators for the basic contrasts of the treatment effects combining the estima-

tors obtained from the strata I, III, IV and V. This procedure was proposed by

Nelder (1965a, 1965b) and Houtman and Speed (1983). Especially, we see that

some basic contrasts of B and A × B are estimable with full efficiency.

Example 3.1. For the nested row-column design D with split units given

in Example 2.1, m = 2, vA = 6, kA = 3, s = 3, θ
(1)
1 = 4, θ

(1)
2 = 0, θ

(1)
3 = 1, θ

(1)
4 = 0,

θ
(1)
5 = 4, θ

(2)
1 = 1, θ

(2)
2 = 3, θ

(2)
3 = 1, θ

(2)
4 = 3 and θ

(2)
5 = 1. Thus, by use of Table 4,

the stratum efficiency factors can be calculated as in the following table:

Table 5: Stratum efficiency factors for D given in Example 2.1.

Type of Number of Strata

contrasts contrasts I II III IV V

1 0 0 1/9 8/9 0
A 2 0 0 1/6 5/6 0

2 0 0 5/18 13/18 0

B
4 1/2 0 0 0 1/2
4 0 0 0 0 1

4 0 0 0 1/2 1/2
4 0 0 1/6 1/3 1/2

A × B 4 0 0 2/9 5/18 1/2
8 0 0 1/18 4/9 1/2
20 0 0 0 0 1
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4. REMARKS

In the design of experiments at least a few aspects play crucial roles. The

first one concerns proper use of available structure of experimental units. The

general rule, for example, in field agricultural experiments constitutes that smaller

units better satisfy requirements concerning homogeneity of stratum units. In

addition, usually smaller errors are associated after randomizations with these

units.

The second aspect concerns statistical properties of designs. Using com-

plete, orthogonal designs leads to the best unbiased estimators of the estimable

functions of linear model parameters. In this work, we use a randomization-

derived linear model (random block effect describing structure of units) with

treatment (combination) effects being fixed. The structure of units and random-

ization performed lead to a design which possesses orthogonal block structure.

In a complete case, the estimators of all estimable treatment effect functions are

BLUEs. This means that the design is optimal from a point of view of statis-

tical properties. Such a design can be used for our experiment if it is possible.

However, many times there exist some limitations in available structure of exper-

imental units (material). Then in our experiment some incomplete design can be

applied only.

The new problem concerns how to choose an incomplete design that fits to

the structure of experimental units, is optimal for the most interesting treatment

effect functions, and is not so expensive (utilizes small as possible number of units

of proper size). In the worse case we can use any incomplete design. Then it is

difficult to describe the statistical properties of the proposed design.

The experimenter usually makes a ranking of linear functions of treatment

effects (contrasts) with respect to a scientific interest and an aim of the experi-

ment. It would be helpful to have a design with known efficiencies of all estimable

treatment effect functions. This property has a generally balanced design (see,

for example, Mejza (1992) and Bailey (1994)). General balance aids interpreta-

tion; the design which is generally balanced with respect to meaningful contrasts

may be superior to a technically optimal design. For generally balanced designs,

we can identify the meaning of the treatment effect contrasts and their efficiency

factors (cf. Table 2, Table 3 and Table 4). Hence we restrict our searching in the

class of generally balanced designs.

Those considered here (nested row-column designs with split units) can be

characterized by a few component block designs. We are looking for methods

allowing for generation of new row-column designs with split units by using some

known incomplete block designs instead of component designs. The Kronecker

product of the component incomplete block designs is often used for constructing
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new designs with split units. The final design possesses optimal properties, but

it utilizes many experimental units (high cost of the experiment). To overcome

this problem (size of the experiment) we proposed to use of the semi-Kronecker

product as defined in Section 2 instead of the ordinary Kronecker product. The

final design is much smaller and also possesses desirable statistical properties (see

Example 2.1). Moreover using the semi-Kronecker product to generate new de-

signs leads to much smaller number of units and smaller size. In the Example 2.1,

one block of the complete design will have 6 rows and 6 columns while the whole

plot consists of 9 units. For example, in agricultural field experiments (where

such designs are very often used) it would be difficult to find so many homo-

geneous plots. In these cases the use of an incomplete design is recommended.

In this paper, we construct a nested row-column design with split units by the

semi-Kronecker product of the incidence matrices of a cyclic design for the whole

plot treatments and a square lattice design for the subplot treatments. We give

the stratum efficiency factors for such a nested row-column design with split units

having the general balance property.

Although we proposed the new method for constructing the design in the

class of nested row-column designs with split units, we still need new methods for

constructing designs in the considered class which will lead to general balanced

designs with desirable statistical properties and will have reasonable size. Natu-

rally, in the future work for construction optimal row-column designs with nested

structures someone can look for new methods and for another class of incomplete

block designs as considered in the paper.
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1. INTRODUCTION

The Analysis of Variance Technique (ANOVA-F) is used in comparing the

differences between two or more group means [1, 2]. However, it does not show

how different the compared group means are from each other or how much of

the difference occurred in the dependent variable results from the groups. In

other words, while testing the statistical significance of the differences between

the levels of independent variable, ANOVA-F test does not give any information

about its practical significance [3]. On the other hand, in practice, there is a

widespread belief that the smaller the P-value, which is used as the criterion

of statistical significance, the more effective or the stronger the levels of the

factor the effect of which is researched [4]. Nevertheless, statistical significance is

affected by the size of the studied sample. Even very small differences could be

found to be statistically significant with very large size samples, large effect sizes

may not be found statistically significant with small size samples [5, 6]. Hays

[7] reported that the effect size measures are as important as hypothesis testing.

Recently, a significant portion of the scientific journals request reporting some

effect size measures along with the P-value when reporting statistical analysis

results [8] because calculating or estimating the effect size, along with helping in

understanding how big the differences between the compared means are, could

help in obtaining information about the practical significance of the observed

difference and in determining what % of the variation of the analyzed property is

described by the considered factor(s). Thus, while reporting analysis of variance

results, reporting some effect size measures along with the P-values, which show

statistical significance, provides significant benefits [9, 10]. For this purpose,

different effect size measures are proposed [7, 11, 12, 13, 14, 15, 16]. The most

popular effect size measures for analysis of variance models are found to be η̂2

(Eta-Squared), η̂2
p (Partial Eta Squared), ω̂2 (Omega Squared) and ǫ̂2 (Epsilon

Squared) [3, 8, 9, 17, 18]. However, it is remarkable that the performances of these

effect size measures are shown for only one-way analysis of variance and that this

is done under quite limited experimental conditions [8, 9, 17, 18]. Moreover, it is a

reality that a significant number of the experiments conducted in practice involve

in factorial designs. Thus, showing the performances of the aforementioned effect

size measures in terms of in factorial design models, as well as the one-way analysis

of variance model, would be beneficial. At the same time, contradicting results of

the some of the limited studies comparing effect size measures (e.g. [17, 9]) could

cause errors. Therefore, performances of the aforementioned effect size measures

should be shown in detail under many conditions confronted in practice. Through

this, it will be both possible to show the performances of the aforementioned

effect size measures under many experimental conditions and to increase the

opportunity of generalization of the obtained results. In the study conducted

with this point of view, it is aimed to compare the performances of Eta-Squared

(η̂2), Partial Eta Squared (η̂2
p), Omega Squared (ω̂2) and Epsilon Squared (ǫ̂2),
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which are found as the most popular effect size measures in practice, for one

and two-way analysis of variance models. By this means, it will be possible to

determine the most convenient effect size measure or measures according to the

considered experimental conditions.

2. MATERIAL AND METHOD

Materials for this study consists of random numbers generated by a Monte

Carlo simulation technique. In the generation of the random numbers, the RN-

NOA, RNBET and RNCHI functions of IMSL library of Microsoft Fortran Power

Station Developer Studio are used. In this study η̂2, η̂2
p, ǫ̂2 and ω̂2 are com-

pared in terms of their performances (bias) under different conditions such as

group number or sub-group number, distribution shape, sample size, variance

ratio and population effect size. Performances of these effect sizes are determined

after 1.000.000 simulation experiments for each of the considered experimental

conditions. Experimental conditions considered in the study for One-Way and

Two-Way Analysis of Variance models are given together on Table 1 and Table 2.

Table 1: Experimental Conditions for the One-Way Anova.

Statistical model Yij=µ + αi + eij

Number of Group (k) 3, 4, 5 and 10
Distribution N(0,1), β(10, 10), β(5, 10), β(10, 5) and χ2(3)
µ1:µ2:...:µk 0:0:...:0.30, 0:0:...:0.60, 0:0:...:0.90 and 0:0:...:1.20
σ2

1 :σ2
2 :...:σ2

k 1:1:...:1, 1:1:...:9, and 1:1:...:20
Number of replication (n) 5, 10, 20, 30 and 50

Number of simulation 1.000.000

Table 2: Experimental Conditions for the Two-Way Anova.

Statistical model Yijk=µ + αi + βj + αβij + eijk

Experimental design (rxc) 2×2, 2×3, 4×2, 3×3, 4×3 and 4×4
Distribution N(0,1), β(10, 10), β(5, 10), β(10, 5) and χ2(3)
µ11:µ12:...:µrc 0:0:...:0.30, 0:0:...:0.60, 0:0:...:0.90 and 0:0:...:1.20
σ2

11:σ
2
12:...:σ

2
rc 1:1:...:1, 1:1:...:9, and 1:1:...:20

Number of replication (n) 2, 3, 5, 10 and 30
Number of simulation 1.000.000

In order to compare effect size measures in terms of their performances,

firstly n numbers are generated from the distributions considered in the study.
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Then, generated numbers are subjected to a transformation as (Xij-µ)/σ. After-

wards, certain constant numbers (0.3, 0.6, 0.9 and 1.2) are added to the last group

or sub-group in order to create differences between population means. Finally,

for all considered experiment conditions and in terms of all effect sizes, popula-

tion effect size is estimated 1.000.000 times, then means and standard errors are

calculated.

2.1. Effect Size Measures

In order to estimate population effect size, many effect size measures are

developed. In this study, Eta-squared, Partial Eta-Squared, Omega-Squared, and

Epsilon-Squared, which are found as the most popular effect size measures, are

taken into consideration [3, 7, 11].

(2.1) η̂2 =
SSEffect

SSTotal

,

(2.2) η̂2
p =

SSEffect

SSTotal + SSError

.

In a One Way ANOVA-F test, η̂2 and η̂2
p are equal [19].

(2.3) ǫ̂2 =
SSEffect − dfEffectMSError

SSTotal

[11],

(2.4) ω̂2 =
SSEffect − dfEffectMSError

SSTotal + MSError

[7],

where SSTotal: Total sum of squares, SSEffect: Sum of squares of effect, SSError:

Error sum of squares, MSError: Mean square error and dfEffect: Degree of free-

dom of effect.

2.2. Determining Population Effect Size

When determining population effect sizes, Cohen’s f value is considered.

The relationship between population effect size and Cohen’s f value is as follows.

(2.5) η2 =
f2

1 + f2
,

(2.6) f =
σµ

σ
,
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(2.7) σµ =

√

∑k
i=1(µi − µ)2

k
,

(2.8) σ =

√

σ2
1 + σ3

2 + σ2
3

k
,

where σµ: Standard deviation of population means, σ: Pooled standard deviation,

µi: i. population mean, µ: Mean of population means, k: Compared population

number [20].

2.2.1. How to get population effect size in the One-Way fixed effects ANOVA model

Table 3: η2 for the One Way ANOVA-F test.

σ2
1 : σ2

2 : ... : σ2
k

k µ1 : µ2 :...: µk
1:1:...:1 1:1:...:9 1:1:...:20

3

0:0:...:0.3 0.01961 0.00543 0.00272
0:0:...:0.6 0.07407 0.02135 0.01079
0:0:...:0.9 0.15254 0.04679 0.02396
0:0:...:1.2 0.24242 0.08027 0.04181

4

0:0:...:0.3 0.01660 0.00559 0.00293
0:0:...:0.6 0.06323 0.02200 0.01160
0:0:...:0.9 0.13185 0.04819 0.02573
0:0:...:1.2 0.21260 0.08257 0.04485

5

0:0:...:0.3 0.01420 0.00551 0.00299
0:0:...:0.6 0.05446 0.02167 0.01186
0:0:...:0.9 0.11473 0.04748 0.02629
0:0:...:1.2 0.18726 0.08140 0.04580

10

0:0:...:0.3 0.00803 0.00448 0.00279
0:0:...:0.6 0.03138 0.01768 0.01105
0:0:...:0.9 0.06795 0.03892 0.02452
0:0:...:1.2 0.11473 0.06716 0.04278

If we want to compare the differences between three population means, it

is found as follows

µ1 = 0, µ2 = 0 and µ3 = 1.2,

σ2
1 = 1, σ2

2 = 1 and σ2
3 = 20,

µ =

∑k
i=1(µi)

k
=

0 + 0 + 1.2

3
= 0.4,

σµ =

√

∑k
i=1(µi − µ)2

k
=

√

(0 − 0.4)2 + (0 − 0.4)2 + (1.2 − 0.4)2

3
= 0.56568,
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σ =

√

σ2
1 + σ3

2 + σ2
3

k
=

√

1 + 1 + 20

3
= 2.70801,

f =
σµ

σ
=

0.56568

2.70801
= 0.20889,

η2 =
f2

1 + f2
=

0.208892

1 + 0.208892
= 0.04181.

Population effect sizes calculated in this way for the One Way Analysis of Variance

are given on Table 3.

2.2.2. How to get population effect sizes for the Two-Way Fixed Effects ANOVA

model

In a 22 factorial design,

c1 c2
µi

σ2
i

r1
µ11 = 0 µ12 = 0 µ1. = 0
σ2

11 = 1 σ2
12 = 1 σ2

1. = 1

r2
µ21 = 0 µ22 = 1.2 µ2. = 0.6
σ2

21 = 1 σ2
22 = 20 σ2

2. =?

If X = {x1, x2, ..., xN}, Y = {y1, y2, ..., yN} and Z = {x1, x2, ..., xN , y1, y2, ..., yN},
As is known, µZ = (µX + µY )/2. If µX = µY , σ2

Z = (σ2
X + σ2

Y )/2. However, if

µX 6= µY , then σ2
Z 6= (σ2

X + σ2
Y )/2.

If µX 6= µY then,

(2.9) σ2
Z =

µ2
X + σ2

X + µ2
Y + σ2

Y − 2µ2
Z

2
.

If k population is considered as one population, then the variance of the obtained

new population is calculated as follows.

(2.10) σ2
Z =

∑k
i=1(µ

2
i + σ2

i ) − kµ2
Z

k
.

This formula is empirically verified. In that case, since µ21 6= µ22 and σ2
2. 6=

(σ2
21 + σ2

22)/2, then

σ2
2. =

µ2
21 + σ2

21 + µ2
22 + σ2

22 − 2µ2
2.

2
=

02 + 1 + 1.202 + 20 − 2(0.62)

2
= 10.86.
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Similarly, it is found that σ2
.2 = 10.86.

In factorial experiments, following equality is valid for the population effect size.

(2.11) η2
Model = η2

r + η2
c + η2

rxc.

Thus, in order to find the effect size in terms of interaction (η2
rxc), first η2

Model,

η2
r and η2

c should be calculated.

Calculation of η2
Model

µ =

∑r
i

∑c
j µij

rc
=

0 + 0 + 0 + 1.2

4
= 0.3,

σµ =

√

∑r
i

∑c
j(µij − µ)2

rc

=

√

(0 − 0.3)2 + (0 − 0.3)2 + (0 − 0.3)2 + (1.2 − 0.3)2

(2)(2)
= 0.51961,

σ =

√

σ2
11 + σ2

12 + σ2
21 + σ2

22

rc
=

√

1 + 1 + 1 + 20

(2)(2)
= 2.39791,

f =
σµ

σ
=

0.51961

2.39791
= 0.21669,

η2
Model =

f2

1 + f2
=

0.216692

1 + 0.216692
= 0.04485.

Calculation of η2
r

µ =

∑r
i µi.

r
=

0 + 0.6

2
= 0.3,

σµ =

√

∑r
i (µi. − µ)2

r
=

√

(0 − 0.3)2 + (0.6 − 0.3)2

2
= 0.3,

σ =

√

σ2
1. + σ2

2.

r
=

√

1 + 10.86

2
= 2.43516,

f =
σµ

σ
=

0.3

2.43516
= 0.12319,

η2
r =

f2

1 + f2
=

0.123192

1 + 0.123192
= 0.01495.

Calculation of η2
c

µ =

∑c
j µ.j

c
=

0 + 0.6

2
= 0.3,

σµ =

√

∑c
i (µ.j − µ)2

c
=

√

(0 − 0.3)2 + (0.6 − 0.3)2

2
= 0.3,

σ =

√

σ2
.1 + σ2

.2

c
=

√

1 + 10.86

2
= 2.43516,
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f =
σµ

σ
=

0.3

2.43516
= 0.12319,

η2
c =

f2

1 + f2
=

0.123192

1 + 0.123192
= 0.01495.

Calculation of η2
rxc

η2
rxc = η2

Model − η2
r − η2

c = 0.04485 − 0.01495 − 0.01495 = 0.01495.

Population effect sizes calculated in this way for Interaction Effect are given on

Table 4.

Table 4: η2
rxc for the Two-Way ANOVA-F test.

σ2
1 : σ2

2 : ... : σ2
k

k µ1 : µ2 :...: µk
1:1:...:1 1:1:...:9 1:1:...:20

2×2

0:0:...:0.3 0.00553 0.00186 0.00098
0:0:...:0.6 0.02108 0.00733 0.00387
0:0:...:0.9 0.04395 0.01606 0.00858
0:0:...:1.2 0.07087 0.02752 0.01495

2×3

0:0:...:0.3 0.00494 0.00213 0.00120
0:0:...:0.6 0.01905 0.00839 0.00474
0:0:...:0.9 0.04045 0.01840 0.01052
0:0:...:1.2 0.06667 0.03158 0.01832

3×3

0:0:...:0.3 0.00441 0.00234 0.00142
0:0:...:0.6 0.01717 0.00924 0.00565
0:0:...:0.9 0.03704 0.02032 0.01253
0:0:...:1.2 0.06226 0.03501 0.02186

4×2

0:0:...:0.3 0.00418 0.00210 0.00125
0:0:...:0.6 0.01624 0.00827 0.00494
0:0:...:0.9 0.03488 0.01818 0.01096
0:0:...:1.2 0.05832 0.03129 0.01911

4×3

0:0:...:0.3 0.00372 0.00224 0.00145
0:0:...:0.6 0.01460 0.00885 0.00575
0:0:...:0.9 0.03178 0.01953 0.01276
0:0:...:1.2 0.05405 0.03377 0.02228

4×4

0:0:...:0.3 0.00315 0.00210 0.00144
0:0:...:0.6 0.01239 0.00832 0.00573
0:0:...:0.9 0.02719 0.01840 0.01274
0:0:...:1.2 0.04669 0.03195 0.02228
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3. RESULTS

In this study, five different distribution shapes, three different variance

ratios, five different sample sizes, four different effect size magnitudes, four group

combinations (k=3, 4, 5 and 10) in one-way analysis of variance analysis, six sub-

group combinations (2×2, 2×3, 3×3, 4×2, 4×3 and 4×4) in two-way analysis

of variance, totally 3000 different experimental conditions are considered. Thus,

all of the results could not be presented in the essay. Obtained results are given

on Figure 5-24 for One-way analysis of variance, on Figure 25-54 for Two-way

analysis of variance, and on Supplementary Appendix together. Furthermore,

some experiment results that reflect the results significantly are summarized on

Figure 1 and 2 for the One-way analysis of variance and on Figure 3 and 4 for

the Two-way analysis of variance.

3.1. Results of The One-Way Analysis of Variance

Comparing independent group means that are taken from normal distribu-

tion and variances of which are homogeneous, while ǫ̂2 and ω̂2 give quite unbiased

results, η̂2 gives quite biased results. Besides, as long as the variances are ho-

mogeneous, slight [β(10, 10)] or moderate [β(5, 10) and β(10, 5)] deviations from

normality does not affect the realized estimations in terms of the three effect

sizes. Under these conditions, although there is a negligible difference between

ǫ̂2 and ω̂2, ǫ̂2 gives the most unbiased estimations. When variances are homo-

geneous, excessive skewness and kurtosis [χ2(3)] affect estimations of the three

effect sizes negatively. However, both ǫ̂2 and ω̂2 give more unbiased estimations

compared to η̂2. Although ǫ̂2 and ω̂2 give results quite close to each other, ω̂2

gives more unbiased results compared to ǫ̂2 under these experimental conditions.

When variances are homogeneous, regardless of the distribution shape and sam-

ple size, as the number of groups increase, estimations of η̂2 diverge from η2,

whereas estimations of ǫ̂2 and ω̂2 approach to η2. Additionally, depending on

the increase in group number, differences between ǫ̂2 and ω̂2 decrease gradu-

ally. For example; when n=10 and k=3, 4, 5 and 10, bias of η̂2 ranges between

4.80-6.45%, 5.76-6.95%, 6.39-7.30% and 7.95-8.30%, bias of ǫ̂2 ranges between

0.40-1.3%, 0.29-0.97%, 0.24-0.72% and 0.08-0.28% and bias of ω̂2 ranges between

0.87-1.0%, 0.62-0.71%, 0.43-0.54% and 0.18-0.21% the difference between ǫ̂2 and

ω̂2 when variances are heterogeneous is smaller than when variances are homoge-

neous. In case variances get heterogeneous too, η̂2 gives quite biased and irregu-

lar results. Choosing compared groups from symmetric distributions [N(0,1) and

β(10, 10)] and heterogeneous variances do not affect estimations of ǫ̂2 and ω̂2 neg-

atively. In addition to this, the difference between ǫ̂2 and ω̂2 while variances are



Which Effect Size Measure is Appropriate for ANOVA Models? 305

heterogeneous is smaller than that while variances are homogeneous. However,

bias of the distribution from symmetry increased the bias of the estimations made

by ǫ̂2 and ω̂2 a little. This situation becomes much more significant especially

when variances are excessively heterogeneous (20 times). However again, they

give quite unbiased results compared to η̂2. When variances are heterogeneous,

while an increase in group number negatively affects η̂2, but does not affect ǫ̂2 and

ω̂2 significantly. Regardless of the compared group number, distribution shape,

variance ratios and population means, depending on the increase in sample size, it

is seen that estimations gradually approach to η2 in terms of the three effect size

(η̂2, ǫ̂2 and ω̂2). Furthermore, it is seen that the most biased results are given by

η̂2 under all considered experimental conditions. Additionally, as the difference

between means decreases, in other words as the population effect size decreases

(η2), while bias of the estimations of ǫ̂2 and ω̂2 gradually decrease, bias of the

estimations of η̂2 gradually increase. Regardless of the experimental conditions,

as the sample size decreases (especially when n=5), estimations show severe bias

in terms of η̂2 (Figure 1). ǫ̂2 and ω̂2 are affected by the sample size less than η̂2

(Figure 1 and Figure 2).

Figure 1: Bias for the One-Way ANOVA models when n=5 and
µ=0:0:...:1.20.
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Figure 2: Bias for the One-Way ANOVA models when n=10 and
µ=0:0:...:1.20.

3.2. Results of The Two-Way Analysis of Variance

With small size (n≤10) sub-groups that are taken from normal distribution

and with homogeneous variances, estimations of η̂2
p and η̂2 show excessive bias

(Figure 4). However, ǫ̂2 and ω̂2 give significantly unbiased results. When vari-

ances are homogeneous, having slight and moderate deviance from normality does

not affect the estimations of the four effect size measures. Besides, ǫ̂2 gives the

most unbiased results. If there is excessive skewness and kurtosis [χ2(3)], ω̂2 gives

the most unbiased results. However, in both cases, the difference between them

is negligible. When variances are heterogeneous, regardless of the distribution

of the populations they are taken from, η̂2
p gives the most biased results under

all of the considered experimental conditions, and η̂2 follows it. Additionally, as

the variances get heterogeneous, η̂2
p and η̂2 approach each other. When variances

are heterogeneous, in cases where the population sub-groups are taken from are

N(0,1), ǫ̂2 and ω̂2 give the most unbiased results. When variances are heteroge-

neous, slight deviance from normality [β(10, 10)] does not affect the performances

of ǫ̂2 and ω̂2. However, increase of the deviance of the distribution from normality

increased the bias of these two effect size measures as well. This situation is seen

significantly when variances are excessively heterogeneous. When variances are

generally homogeneous, regardless of the experimental conditions, in cases where
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the number of studied sub-groups increase, estimations of η̂2
p and η̂2 gradually

diverge from η2, whereas estimations of ǫ̂2 and ω̂2 gradually approach to η2. Fur-

thermore, as the number of sub-group increase, the difference between ǫ̂2 and ω̂2

gradually decreased. Considering the sub-groups with heterogeneous variances,

regardless of the distribution shape, as the number of sub-groups increase, esti-

mations of η̂2
p and η̂2 gradually diverge from the population effect size. On the

other hand, ǫ̂2 and ω̂2 are not affected significantly from the increase in the sub-

group number when variances are heterogeneous. Regardless of the experiment

design (rxc), variance ratios, distribution shapes and sample size, the most biased

estimations are made by η̂2
p, and η̂2 follows as a similar pattern (Figure 3 and 4).

Figure 3: Bias for the Two-Way ANOVA models when n=2 and
µ=0:0:...:1.20.
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Figure 4: Bias for the Two-Way ANOVA models when n=10 and
µ=0:0:...:1.20.

4. DISCUSSION

The Analysis of variance technique used most commonly in practice gives

information about statistical significance only. It does not give information about

practical significance of the factors and explained variance. Thus, when reporting

analysis of variance results, reporting only P-values showing statistical signifi-

cance will not be sufficient. Along with the P-values, some effect size measures

such as η̂2, η̂2
p, ǫ̂2 and ω̂2 that show the practical significance and the share of the

difference observed in the dependent variable explained by the considered factors

should be reported. Thereby, understanding and interpreting the reported results

in detail will be possible. There are many effect size measures developed for the

purpose. However, it is an important shortcoming that performances of these

effect size measures under many experimental conditions have not been shown in

detail. Nevertheless, having detailed information about the performances of the

effect size measures will provide insights to the researchers about which effect size

measure they should report as a result of their studies. In the study conducted

with this point of view, performances of η̂2, η̂2
p, ǫ̂2 and ω̂2, which are found as

the most popular effect size measures, are compared. Baguley [21] reported that
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simple or unstandardized effect size measures are easier to compute and more

robust than standardized effect size measures. Therefore, he has proposed to

report simple effect size measures. However, in practice, standardized effect size

measures have been commonly reported. For example, commonly used statistical

package programs such as IBM SPSS, Minitab, Statistica and SAS report stan-

dardized effect size estimates along with P-values. We think that it is very easy

to understand and interpret the effect size values for many authors and readers.

That is why, in the simulation study conducted to compare performances of η̂2,

ǫ̂2 and ω̂2 effect size measures for one-way analysis of variance. Keselman [17]

reported that η̂2 gives similar results as ǫ̂2and ω̂2 in case of small population ef-

fect size. On the other hand, considering the standard deviations of estimations,

he reported that η̂2 is a better estimator compared to ǫ̂2 and ω̂2. Nonetheless,

in all other studies, it is reported that using η̂2 in estimating population effect

size gives quite biased results [18, 8, 9]. In the results of our study too, it is

seen that η̂2 gives quite biased results in all considered experimental conditions.

In his simulation study, Keselman [17] stated that as long as the assumption of

homogeneity of variances is met, selecting samples from populations with high

skewness (γ1 = 2) and kurtosis (γ2 = 6) does not affect the performances of η̂2, ǫ̂2

and ω̂2 significantly. In their simulation study, Skidmore and Thompson [8] re-

ported that even if the variances are heterogeneous, slight (γ1 = 0.5 and γ2 = 0.5

and moderate (γ1 = 1 and γ2 = 3.75)) level deviation from normality does not

affect the performances of effect size measures (η̂2, ǫ̂2 and ω̂2) significantly. As a

result of our study too, it is seen that when variances are homogeneous as long

as there is not excessive (χ2) deviation from normality, shape of the distribution

does not affect performances of the effect size measures significantly. However, in

case variances are heterogeneous, it is seen that moderate [β(5, 10) and β(10, 5)]

and excessive (χ2) deviations from normality affect effect size measures. Kesel-

man [17] reported that while ω̂2 could decisively provide estimations quite close

to population effect size, ǫ̂2 always produces estimations a little higher than that.

However, Keselman did not report the number of replication in his study. In his

simulation study aimed to compare some effect size measures, Okada [9] repeated

Keselman’s study with larger simulation number (1 million), at normal distribu-

tion and with different observation number combinations and stated that in all

considered experimental conditions ǫ̂2 gives more unbiased results than ω̂2. In one

of their studies, Glass and Hakstian [3] theoretically discussed whether ǫ̂2 or ω̂2

is unbiased and expressed that no matter how different their formulas are, both

of them give similar results in practice. In the results of our study, in one-way

variance analysis, as long as there is not excessive deviance from normality, it is

seen that generally ǫ̂2 gives the most unbiased results, and ω̂2 follows it. However,

in case of excessive deviances (χ2) from normality, the most unbiased results are

obtained by ω̂2. On the other hand, in both situations, the difference between

ǫ̂2and ω̂2 is negligible and confirms Glass and Hakstian [3]. As a result of the

conducted simulation study, if the observation numbers in groups are equal and

distributions are not excessively skewness and kurtosis, it is seen that heteroge-
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neous variances do not affect ǫ̂2 and ω̂2 almost at all. Carrol and Nordholm [18]

reported similar results. However, both Carrol and Nordholm [18] and Skidmore

and Thompson [8] reported that heterogeneous variances are especially effective

at unequal sample sizes (direct and inverse pairing). As long as the variances are

homogeneous, regardless of the considered experimental conditions, it is seen that

as the compared group numbers increase, deviances of ǫ̂2 and ω̂2 in estimations

approach to zero. Thus, in these experimental conditions, an increase in group

numbers positively affect ǫ̂2 and ω̂2. However, in case of heterogeneous variances,

making assessments on whether the increase in group numbers have positive or

negative effects on estimations could be misleading. On the other hand, regard-

less of if the assumption of homogeneity of variances is met or not, is significantly

affected by an increase in group numbers. Results obtained under these condi-

tions overlap with the findings of Skidmore and Thompson [8]. It is reported that

as the population effect size decreases, biasness decreases too [17]. However, as

the population effect size decreases, while η̂2 gives more biased results, ǫ̂2 and ω̂2

gives more unbiased results. When estimating effect sizes related to interaction

effects in factorial experiments, performance of η̂2
p is investigated in addition to

η̂2, ǫ̂2 and ω̂2. Whatever the experimental conditions considered in the study, as

the sample size increases, estimations of the four effect sizes approach gradually

to the population effect size. However, in all of the considered experimental con-

ditions, it is seen that while η̂2
p gives the most biased results, ǫ̂2 and ω̂2 give the

most unbiased results. Furthermore, while η̂2
p and η̂2 are negatively affected by

the increase in sub-group number, ǫ̂2 and ω̂2 are not negatively affected. In the

meantime, it is remarkable that effects of both shape of distribution and variance

rates on the considered effect size measures are generally similar to the ones in

one-way variance analyses. On the other hand, our study has revealed the perfor-

mances of the considered effect size measures in factorial ANOVA models. Thus,

the study has fulfilled an important need in this field because factorial ANOVA

design is commonly used in practice.

5. CONCLUSION AND RECOMMENDATIONS

Reporting statistical analysis results in an understandable and informative

way is very important. Therefore, when reporting statistical analysis results,

along with the P-value that shows statistical significance some effect size measures

should be reported. While a statistically significant difference is not necessarily

practically significant, a statistically non-significant difference is not necessarily

practically non-significant. Notwithstanding, majority of researchers believe that

the smaller the P-value is that shows the statistical significance, the larger and the

more important the difference between the groups that are compared. However,

the P-value does not provide any information about practical significance. Thus,

in the results of the studies, along with the statistical significance (P-value), effect
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size measures that provide information about the practical significance should

necessarily be reported. However, it is remarkable that majority of the researchers

who report effect size report η̂2 (R2) and η̂2
p [22]. This is because commonly used

statistics package programs such as Minitab, IBM SPSS, NCSS, Statistica etc.

directly report η̂2 (R2) or η̂2
p while reporting analysis of variance results. However,

the most noteworthy thing is that reported effect size measures should represent

population effect size as accurately as possible (unbiased). From this point forth,

performances of the most commonly known effect size measures in practice are

compared under many experimental conditions in one-way and two-way analysis

of variance models. In the light of the acquired findings, concluding with following

results is possible:

1. In both one factor and two factor experimental conditions, η̂2 gives

quite biased results. Thus, since using η̂2 to estimate population effect

size at the end of analysis of variance is quite misleading, reporting η̂2

should not be recommended.

2. Although η̂2
p is used in experimental conditions considering more than

one factor as an alternative to η̂2, it is seen that η̂2
p gives more biased

results than η̂2 in two factor experiments after 1.000.000 simulation

experiments. Additionally, since η̂2
p takes every effect separately in

consideration (SSEffect + SSError), total variation explained by the

model could surpass 1 (100%) [23, 24]. This is a common situation in

practice [25]. Since η̂2
p estimates of effect size are biased, reporting it

should not be recommended.

3. Although Okada [9] reported that relationships among Eta, Omega

and Epsilon-squared is ω̂2 ≤ ǫ̂2 ≤ η̂2, this relation is not valid for every

experimental condition. For example, the relationship between Epsilon

and Omega squared is ǫ̂2 ≤ ω̂2 when negative estimations are obtained

regardless of experimental conditions.

4. Although it is seen that in some of the experimental conditions ǫ̂2 and

in some of the others ω̂2 gives more unbiased results, the difference

between these two measures is at a negligible level. It is seen that both

ǫ̂2 and ω̂2 estimates population effect size in a quite unbiased fashion

in all experimental conditions. Thus, it could be concluded that when

estimating effect size in analysis of variance models and accordingly

analyzing practical significance of the observed difference, using ǫ̂2 or

ω̂2 is much truer and one of these measures should be reported.

5. Obtaining negative estimates in some experimental conditions (i.e. small

effect size magnitude) may be considered a disadvantage of ǫ̂2 and ω̂2

estimates, although both measures give unbiased estimates almost all

experimental conditions.
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6. It is determined that it is a very important deficiency that ǫ̂2 and ω̂2 are

not included in almost none of the commonly used statistics package

programs although η̂2 and η̂2
p has been reported to be quite biased in

studies for 50 years. Thus, at least one of these two measures should

be included in the libraries of commonly used package programs such

as Minitab, SPSS etc.
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1. INTRODUCTION

There is a rich literature on the distribution and independence of quadratic

forms in normal random vectors (e.g, Rao, 1973; Graybill, 1976; Driscoll and

Gundberg, 1986; Mathai and Provost, 1992; Jorgensen, 1993; Driscoll, 1999;

Christensen, 2002; Ravishanker and Dey, 2002; Ogawa and Olkin, 2008), which

play an important role in linear models and multivariate statistical analysis.

Let Nk(µ,Σ) denote the k-dimensional normal distribution with mean µ

and variance-covariance matrix Σ, and let χ2
m(λ) be the noncentral chi-square

distribution with m degrees of freedom and noncentrality parameter λ. The two

well-known theorems below establish sufficient and necessary conditions for the

independence and distributions of quadratic forms in normal variates.

Theorem 1. Let x ∼ Nk(µ,Σ), Σ > 0, and A and B be k × k real sym-

metric matrices. Then x
′
Ax and x

′
Bx are independently distributed if and only

if AΣB = 0.

Theorem 2. Let x ∼ Nk(µ,Σ), Σ > 0, and A be a k × k real symmetric

matrix. Then x
′
Ax ∼ χ2

m(λ) with λ = 1
2µ

′
Aµ if and only if AΣ is idempotent

of rank m.

Unfortunately, the proofs of the two theorems in the early literature are

incorrect, incomplete or misleading, especially for Theorem 1 (Driscoll and Gund-

berg, 1986; Driscoll, 1999; Ogawa and Olkin, 2008). Thus, many improved proofs

for Theorem 1 have been obtained by Reid and Driscoll (1988), Driscoll and Kras-

nicka (1995), Letac and Massam (1995), Provost (1996), Olkin (1997), Marcus

(1998), Li (2000), Matsuura (2003), Ogawa and Olkin (2008), Carrieu and Lassère

(2009), Carrieu (2010), Bonnefond (2012), Zhang and Yi (2012), and many oth-

ers. However, there is only one improved proof of Theorem 2 given by Driscoll

(1999). In addition, Liu et al. (2009) and Duchesne and Lafaye De Micheaux

(2010) discussed the computational issues in Theorem 2.

A simple proof of Theorem 2 is presented in Section 2, using elementary cal-

culus and matrix algebra. We give a counter example of Theorem 2 in Section 3,

where Σ is singular. Then we establish and prove its extension in Theorem 3 for

the general case, where Σ can be singular or nonsingular.
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2. A SIMPLE PROOF OF THEOREM 2

The proof of sufficiency for Theorem 2 is quite easy, but showing necessity

is difficult. In fact, its proofs in the early literature were incorrect or incomplete,

according to Driscoll (1999), who provided an improved proof of Theorem 2,

based on the moment-generating function and cumulants. We now present a

simple proof of Theorem 2, using the moment-generating function of χ2
m(λ):

Mχ2
m(λ)(t) = (1 − 2t)−

m

2 e
2tλ

1−2t , t < 1/2.

Proof of Theorem 2:

Sufficiency. Suppose (AΣ)2 = AΣ and r(AΣ) = m, where Σ = BB
′

and Ã = B
′
AB. Then Ã

2 = Ã and r(Ã) = m. Thus, there exists an orthogonal

matrix P such that

Ã = P

(

Im 0

0 0

)

P
′ = P1P

′
1,

where P = (P1, P2), P
′
1P1 = Im and z = P

′
1B

−1
x ∼ Nm(P ′

1B
−1

µ, I). It follows

that

x
′
Ax = z

′
z ∼ χ2

m(λ),

where λ = 1
2(P ′

1B
−1

µ)′(P ′
1B

−1
µ) = 1

2µ
′
Aµ.

Necessity. Suppose x
′
Ax ∼ χ2

m(λ). Let P = (p1, ···, pk) be an orthogonal

matrix such that P
′
ÃP = Λ = diag(λ1, ..., λk), where λ1 ≥ ··· ≥ λk are eigenval-

ues of Ã. Then

x
′
Ax = z

′Λz =
k

∑

i=1

λiz
2
i , Mx′Ax(t) =

k
∏

i=1

Mz2

i

(tλi),

where z = P
′
B

−1
x ∼ Nk(P

′
B

−1
µ, I) and z1, ..., zk are independent. Hence,

(1 − 2t)−
m

2 e
2tλ

1−2t =
k

∏

i=1

(1 − 2tλi)
− 1

2 e
tλi

1−2tλi
(p′

i
B−1µ)2

for t < 1/2 and tλi < 1/2 (i = 1, ..., k). Comparing the discontinuous points of

the two functions on both sides results in

(1 − 2t)−
m

2 =
k

∏

i=1

(1 − 2tλi)
− 1

2 = |Ik − 2tÃ|− 1

2 ,

which implies that λ1 = ··· = λm = 1 and λm+1 = ··· = λk = 0.

Thus, Ã or AΣ is idempotent of rank m. The proof is completed.
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3. DISTRIBUTIONS OF QUADRATIC FORMS IN THE GEN-

ERAL CASE

We now discuss the distribution of quadratic form x
′
Ax in the general case,

where x ∼ Nk(µ,Σ) but Σ can be singular or not. First, it should be pointed

out that Theorem 2 is not true when Σ is singular. Below is a counter example.

Let A = I2 and x = (z, 1)′, where z ∼ N(0, 1). Then x ∼ N2(µ,Σ), where

µ =

(

0
1

)

, Σ =

(

1 0
0 0

)

.

It is clear that (AΣ)2 = AΣ and its rank r(AΣ) = 1, but

x
′
Ax = z2 + 1,

the distribution of which is not χ2
1(λ) with λ = 1

2µ
′
Aµ = 1

2 .

To generalize Theorem 2, we have the following Theorem 3, which reduces

to Theorem 2 if Σ is nonsingular. The proof for Theorem 3 is based on the

moment-generating function of quadratic function Q = z
′
Az + b

′
z + c:

MQ(t) = |I − 2tA|− 1

2 ect+ t
2

2
b′(I−2tA)−1b

for small |t| such that I − 2tA > 0, where z ∼ Nk(0, I), A is a real symmetric

matrix, b is a k-dimensional real vector, and c is a real number. In fact,

MQ(t) =

∫

(2π)−
k

2 et(z′Az+b′z+c)− 1

2
z′zdz

= ect+ t
2

2
b′Atb

∫

(2π)−
k

2 e−
1

2
(z−tAtb)′A−1

t
(z−tAtb)dz,

where At = (I − 2tA)−1.

Theorem 3. Let x ∼ Nk(µ,Σ), and A be a k × k real symmetric matrix.

Then x
′
Ax ∼ χ2

m(λ) with λ = 1
2µ

′
Aµ if and only if

ΣAΣAΣ = ΣAΣ, r(ΣAΣ) = m, µ
′
Aµ = µ

′
AΣAµ = µ

′
AΣAΣAµ.

Proof: Let x = Bz + µ, where Σ = BB
′, z ∼ Nk(0, I) and Ã = B

′
AB.

Sufficiency. Note that Ã
2 = Ã and r(Ã) = m due to B = BB

′(BB
′)−B

and

r(Ã) ≥ r(ΣAΣ) = r((ΣAB)(ΣAB)′) = r(ΣAB) ≥ r(Ã′
Ã) = r(Ã).
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Then ||(I − Ã)B′
Aµ)||2 = µ

′
A(Σ − ΣAΣ)Aµ = 0, so that µ

′
AB = µ

′
ABÃ

and

x
′
Ax = z

′
Ãz + µ

′
Aµ + 2µ

′
ABz = (z + c)′Ã(z + c) ∼ χ2

m(λ),

where c
′ = µ

′
AB and λ = 1

2c
′
Ãc = µ

′
AΣAΣAµ = 1

2µ
′
Aµ.

Necessity. Suppose x
′
Ax = z

′
Ãz + µ

′
Aµ + 2µ

′
ABz ∼ χ2

m(λ). Then

(1 − 2t)−
m

2 e
2tλ

1−2t = |Ik − 2tÃ|− 1

2 etµ′Aµ+2t2µ′AB(I−2tÃ)−1B′Aµ

for small |t|. Comparing the discontinuous points of the two functions on both

sides gives

(1 − 2t)−
m

2 = |Ik − 2tÃ|− 1

2 ,

which implies that Ã
2 = Ã and r(Ã) = m (see Section 2), or equivalently

ΣAΣAΣ = ΣAΣ and r(ΣAΣ) = m.

It follows from above two equations that 2tλ
1−2t

= tµ′
Aµ+2t2µ′

AB(I−2tÃ)−1
B

′
Aµ,

so

µ
′
Aµ = 2λ = (1 − 2t)[µ′

Aµ + 2tµ′
AB(I − 2tÃ)−1

B
′
Aµ],

which and (I − 2tÃ)−1 =
∑∞

n=0(2tÃ)n imply that for small |t|,

µ
′
Aµ = µ

′
Aµ + 2tµ′(ABB

′
A − A)µ + 4t2µ′

AB(Ã − I)B′
Aµ + ···

By the theory of power series, µ
′(ABB

′
A − A)µ = 0 = µ

′
AB(Ã − I)B′

Aµ.

That is,

µ
′
Aµ = µ

′
AΣAµ = µ

′
AΣAΣAµ.

The proof is completed.
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1. INTRODUCTION

Questions with categorical outcomes are quite common in surveys, espe-

cially in health, marketing, public opinion and official surveys. In the simplest

case, questions have only two possible responses, which are often used to repre-

sent the “success” or the “failure” of an experiment (such as the occurrence or

nonoccurrence of an event or the presence or absence of a characteristic). These

items can be modelled statistically using binary logit regression ([1]; [25]).

In more complex situations, items have three or more possible options and

respondents must select one of them. When analyzing a polytomous variable it

is necessary to determine whether its categories can be ordered according to an

intrinsic characteristic of the categories themselves. If so, the number of outcomes

attributable to each category is modelled by an ordinal distribution, which gives

rise to an ordinal logit model. Otherwise, we should use a multinomial logit

model, which is based on the multinomial probability distribution.

Most studies related to binary, multinomial or ordinal logit regression are

based on the assumption of a simple random sample drawn from a large popu-

lation. However, this scenario is not always present in practice: many surveys

assume a finite population with samples extracted from complex sampling de-

signs. For example, the Educational Longitudinal Study developed by the Na-

tional Center for Education Statistics, the Post Enumeration Survey conducted

by the Portuguese Statistical Office ([6]) and the Programme for International

Student Assessment (PISA) study conducted by the Organisation for Economic

Co-operation and Development, all applied complex sampling survey designs.

These designs have in common the use of strata, clusters and unequal proba-

bilities of selection in data collection. In this respect, it has been shown that

ignoring weights, clusters and strata can lead to biased parameter estimates and

erroneous standard errors in ordinal logistic regression analysis [24].

[23] used binary and multinomial logistic regressions in the context of sur-

vey sampling. In this context, [38] used a logistic regression model to obtain a

calibration estimator for the finite population distribution function under a gen-

eral sampling design, while [22] developed point and variance estimators for the

total of finite population characteristics from a clustered sample assisted by a

logistic regression model.

Ordinal regression models have been used extensively in sociological, med-

ical and educational research but have a very sparse presence in parameter es-

timation in finite population sampling, which motivated this work. Therefore,

the objective of this paper is to introduce new ordinal model-assisted estimators

and ordinal model-calibrated estimators for the proportions of the categories of

a response variable with ordinal outcomes.
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This article proceeds as follows: Section 2 reviews the estimation methods

that have been suggested to determine the proportion of categories of an ordinal

response variable in finite population sampling. In section 3, the use of ordinal

regression models in survey sampling is introduced. In section 4 we propose

several estimators for the proportions of categories: the first of these is based on

the procedure used by [23] for the case of a nominal variable, and the second is

defined using calibration techniques ([8]; [31]). A brief discussion is then offered

of numerical methods for parameter estimation. The main theoretical properties

of the proposed estimators are studied in section 5. Variance estimation is

addressed in section 6. Section 7 describes how the performance of the proposed

estimators is measured through simulation experiments. Section 8 presents the

results obtained from the different estimation strategies with respect to an opinion

survey dataset. Finally, section 9 summarizes the conclusions drawn.

2. ESTIMATORS FOR CLASS RELATIVE FREQUENCIES OF

A DISCRETE RESPONSE VARIABLE UNDER A GENERAL

SAMPLING DESIGN

Let U denote a finite population with N units, U = {1, ..., k, ..., N}. Assume

that data are collected from respondents who provide a single choice from a list of

alternatives coded 1, 2, ..., i, ..., m. Consider a discrete m-valued survey variable

Y and denote the value observed for the kth individual of the population as yk.

Our aim is to estimate the frequency distribution of Y in the population U . To do

so, we define a class of indicators zi (i = 1, ..., m) such that for each unit k ∈ U

zki = 1 if yk = i and zki = 0 otherwise. The problem thus, is to estimate the

proportions Pi = 1/N
∑

k∈U zki, i = 1, 2, ..., m.

Let s be a probability sample of size n drawn from population U using a

sampling design pd. The sampling design considered induces first-order inclusion

probabilities πk, second-order inclusion probabilities πkl and design weights dk =

1/πk, for k, l = 1, ..., N .

The customary design unbiased estimator of Pi is given by

(2.1) ̂PHTi =
1

N

∑

k∈s

zki

πk

=
1

N

∑

k∈s

zkidk,

where the subindex HT refers to the Horvitz–Thompson estimator [20]. The

design weights dk are commonly thought of as the number of population units

represented by unit k in the sample. [10] discussed the estimation of proportions

using Bernoulli sampling and stratified designs.

In sample surveys, the use of auxiliary variables has been widely discussed

by survey practitioners since this approach can increase the efficiency of the es-
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timates in different contexts (see e.g. [9]). Thus, it is common practice to use

auxiliary information on a character x related to the main variable y. A vari-

ety of approaches are available to construct more efficient estimators including

design-based and model-based methods (see e.g. [35]; [32]).

Let us now consider a general situation where the auxiliary variable can be

either numeric or binary. Let xk be the value of the study variable x for the kth

population element, available for all of U . For the sample s, the values of the two

variables (yk, xk), k ∈ s, are observed. Under this scenario, we can consider the

use of superpopulation models for sampling surveys. A superpopulation model is

a way of formalising the relationship between a target variable and the auxiliary

data. In previous research, superpopulation models have been used in sociological

and electoral studies. For example, [5] used the superpopulation approach to

estimate average customer satisfaction and [29] used superpopulation models to

analyze electoral polls. Traditionally, linear regression models have been used to

incorporate auxiliary information but (as is well known in sociological literature,

see e.g. [36]) for qualitative variables a linear model might be unrealistic.

A first procedure is to consider the superpopulation multinomial logistic

model given in [23]: we assume that the population under study y = (y1, ..., yN )⊤

constitutes a body of superpopulation random variables Y = (Y1, ..., YN )⊤, con-

taining a superpopulation model, ξ, such that

µi(xk) = P (Yk = i|xk) = Eξ(Zki|xk) =
exp(αi + βixk)

∑m
j=1 exp(αj + βjxk)

,

i = 1, ..., m, k = 1, ..., N (Eξ denotes the expected value with respect to the

model) and assume that Yk are conditionally independent given xk.

Usually, population parameters αi and βi involved in the model ξ are un-

known and should be estimated from the sample. Considering α̂i and β̂i as the

maximum likelihood estimations of αi and βi, we can define an estimator for

probabilities for each category as follows:

pM
ki = µ̂i(xk) =

exp(α̂i + β̂ixk)
∑m

j=1 exp(α̂j + β̂jxk)
, i = 1, ..., m, k = 1, ..., N.

[23] used the values pM
ki as auxiliary information to define an estimator of

class frequencies for nominal response variables. This estimator is in the form

(2.2) F̂LVi =
∑

k∈U

pM
ki +

∑

k∈s

dk(zki − pM
ki ), i = 1, ..., m,

where the subindex LV refers to the Lehtonen and Veijanen estimator. An

estimator of class proportions can be obtained simply by dividing in (2.2) by

population size, N , which is assumed to be known, as follows:
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(2.3) P̂LVi =
1

N
F̂LVi =

1

N

(

∑

k∈U

pM
ki +

∑

k∈s

dk(zki − pM
ki )

)

, i = 1, ..., m.

The sum
∑

k∈U pM
ki implies that auxiliary information is known for every

element in the population. However, when categorical variables (such as gender

or the professional status of the individual) or quantitative categorized variables

(such as the age of the individual, grouped in classes) are used as auxiliary infor-

mation in a survey, we may not have a complete list of individuals. Nevertheless,

the proposed estimators can still be computed since the population information

needed can be found in the databases of national statistical agencies.

3. THE USE OF ORDINAL REGRESSION MODELS IN SURVEY

SAMPLING

Let us now assume that the m possible values of Y can be sorted, such

that 1 < ··· < m. A disadvantage of using multinomial models for ordinal data is

that information about the ordering is discarded. Ordinal regression provides a

better fit and hence more accurate results. Within ordinal regression models, the

most popular is the cumulative logit model, which assumes a linear model for the

logit of cumulative probabilities for categories of Y . Given a particular point, the

cumulative probability can be defined as the probability that Y falls at or below

that point. For the ith category, its cumulative probability can be expressed as

P (Y ≤ i) = µ1 + ··· + µi, i = 1, ..., m,

with µi = P (Y = i). Logit transformations of the cumulative probabilities are,
for i = 1, ..., m − 1,

logit(P (Y ≤ i)) = log

(

P (Y ≤ i)

1 − P (Y ≤ i)

)

= log

(

P (Y ≤ i)

P (Y > i)

)

= log

(

µ1 + ··· + µi

µi+1 + ··· + µm

)

.

Note that no logit transformation can be defined for the mth category since, in
this case, P (Y ≤ m) = 1, and so 1 − P (Y ≤ m) = 1 − 1 = 0 and therefore the
denominator would be cancelled out. An important property that is usually
assumed to be satisfied is that of proportional odds, according to which the
effects of the predictors are the same across categories. This implies that β
parameters associated with the independent variables are fixed and independent
of the category in question. Let us consider

P (Y ≤ i|X = xk) =
exp(αi + βxk)

1 + exp(αi + βxk)
, i = 1, ..., m − 1, k = 1, ..., N.

The cumulative probability for the last category, P (Y ≤ m|X = xk), is al-
ways equal to 1. The probability for each category can, then, be calculated as
the difference of the cumulative probabilities.
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Thus, we propose a superpopulation model ξ with random variables Y =
(Y1, ..., YN )⊤ such that

µ1(xk) = Eξ(Zk1|xk) =
exp(α1 + βxk)

1 + exp(α1 + βxk)
,

µi(xk) = Eξ(Zki|xk) =
exp(αi + βxk)

1+exp(αi +βxk)
− exp(αi−1 + βxk)

1+exp(αi−1 +βxk)
, i = 2, ..., m−1,

µm(xk) = Eξ(Zkm|xk) = 1 − exp(αm−1 + βxk)

1 + exp(αm−1 + βxk)
.

To define a new estimator for a proportion, using this regression model, we
estimate the superpopulation parameter θ = (α1, ..., αm−1, β) from the units of
sample s. After calculating the optimal estimators of the m parameters involved
in the model, we can define estimators for individual probabilities

pk1 = µ̂1(xk) =
exp(α̂1 + β̂xk)

1 + exp(α̂1 + β̂xk)
,

pki = µ̂i(xk) =
exp(α̂i + β̂xk)

1 + exp(α̂i + β̂xk)
− exp(α̂i−1 + β̂xk)

1 + exp(α̂i−1 + β̂xk)
, i = 2, ..., m − 1,

pkm = µ̂m(xk) = 1 − exp(α̂m−1 + β̂xk)

1 + exp(α̂m−1 + β̂xk)
.

(3.1)

Now, we consider the question of estimating the model parameters. Two
general approaches can be adopted to find the optimal estimations of these param-
eters: (1) by minimizing the sum of the squared distances between the observed
and the predicted values (i.e., least squares estimation); or (2) by maximizing the
likelihood function (i.e., maximum likelihood estimation or ML estimation).

Weighted least squares method. One way to estimate the parameters of the
ordinal logistic regression model is that of least squares. However, in our case,
instead of using ordinary least squares, weighted least squares (WLS) must be
used. The main difference between the two is that in WLS each observation is
weighted using its corresponding survey weight ( see e.g. [37]). In this context,
WLS involves minimizing, with respect to the residual standard squared error, the
weighted distance between the observed outcome (or a function of the observed
outcome) and non-linear estimates. In the present case, the function to minimize
is

S =
∑

i=1,...,m

∑

k∈s

dkr
2
ki,

with rki = log (P (Y ≤ i)/(1 − P (Y ≤ i))) − αi − βxk. This typically requires a
numerical procedure, such as the Gauss-Newton method with the Levenberg-
Marquardt adjustment (see [19]), which uses derivatives or estimates of deriva-
tives to select the optimal fit. In an iterative fitting process for WLS, assuming
ordinal data, at some settings of explanatory variables, the estimated mean may
fall below the lowest score or above the highest one and then the fit fails (see [1]).
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Maximum likelihood method. Ordered regression models are usually im-
plemented using ML. For ML estimation, the ordinal likelihood function must be
numerically maximized to find the parameter values below which the observed
data were most likely produced. In theory, these estimates might have the proper-
ties of asymptotic efficiency and invariance under parameterization, which makes
ML estimation [28] an attractive option in general.

The Nelder Mead simplex [27] is a popular and powerful direct search pro-
cedure for likelihood-based optimization. The attraction of this method is that it
does not use any derivatives and does not assume that the objective function be-
ing optimized has continuous derivatives. In cases such as the present, we expect
continuity in the first derivatives and so the latter advantage is not so important.
However, this method may be much less efficient or even highly unstable, com-
pared to derivative-based ML estimation methods when sample sizes are as large
as the datasets commonly found in complex survey designs.

Let us now examine the logistic likelihood function for modelling ordinal
outcomes. As the available data are limited to the sample s, the likelihood func-
tion is defined as:

L(θ) =
∏

i=1,...,m

∏

k∈s

µi(xk)
zkidk .

The pseudolikelihood ([17]; [32]), which is more convenient for use in opti-
mization procedures is given by

log (L(θ)) =
∑

i=1,...,m

∑

k∈s

dkzki log (µi(xk)) .

ML estimates are obtained by solving a system of m nonlinear equations.
Traditionally, two alternatives can be used to address the solution of these equa-
tions numerically: Fisher scoring or Newton-Raphson algorithms. Since the re-
sults obtained by either method are nearly the same, the decision as to which one
to use is trivial (see e.g. [18]).

Various statistical packages can be used to compute the ML estimates of
an ordinal logistic model, such as SAS (PROC SURVEYLOGISTIC) or library
ordinal for R, but all of them use the Newton-Raphson algorithm to solve the
weighted ML equations. The SAS SURVEYLOGISTIC procedure also imple-
ments the Fisher scoring algorithm.
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4. PROPOSED ESTIMATORS FOR ITEMS WITH ORDINAL

OUTCOMES

The estimated individual probabilities (3.1) may be used to define new esti-
mators. We consider a model-assisted approach and a model-calibrated approach
to define the following ordinal estimators:

The model-assisted ordinal estimator. Using the idea of the generalized
difference predictor given in [5], we define an estimator for proportions of the
ordered categories of the response variable as follows

(4.1) P̂MAi =
1

N

(

∑

k∈U

pki +
∑

k∈s

dk(zki − pki)

)

, i = 1, ..., m,

where the subindex MA stands for Model-Assisted.

This estimator is similar to the P̂LVi estimator proposed by [23] but changes
the pM

ki values to pki values.

The model-calibrated ordinal estimator. A new calibration estimator, let
us say PMC (the subindex MC stands for Model-Calibrated), can be defined using
the probabilities calculated in (3.1). This estimator is in the form

(4.2) P̂MCi =
1

N

∑

k∈s

wkzki, i = 1, ..., m,

where, in this case, the weights wk minimize G(wk, dk), and where G(·, ·) is a
particular distance measure, subject to

(4.3)
∑

k∈s

wkpki =
∑

k∈U

pki.

This is an extension of the model calibration approach proposed by [39].
The distance measure that is usually considered is the chi square

(4.4) χ =
∑

k∈s

(ωk − dk)
2

dkqk

,

where the qk’s are known positive weights unrelated to dk. Following [31], section
4.2, and using pki as an auxiliary variable with a known total

∑

k∈U pki, by
minimizing (4.4) subject to (4.3) we obtain new weights wk. By substituting
these weights in (4.2) we obtain the following analytic expression for the chi-
square calibration estimator:

P̂MCi =
1

N

∑

k∈s

dkzki +
1

N

(

∑

k∈U

pki −
∑

k∈s

dkpki

)

B̂i,

where B̂i = (
∑

k∈s dkp
2
ki)

−1(
∑

k∈s dkpkizki).
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From calibration theory (see [8]), it is well known that all other calibration
estimators that use different distance functions are asymptotically equivalent to
the chi-square calibration estimator, under additional regularity conditions con-
cerning the shape of the distance function.

So far, we have considered only one auxiliary variable when defining the
estimators. These estimators can be easily extended to the general case of p
auxiliary variables x = (x1, ..., xp)

⊤ observed for each individual in the population
U .

5. PROPERTIES OF THE PROPOSED ESTIMATORS

The most significant properties of the proposed estimators P̂MAi and P̂MCi

are summarized in this section. To illustrate the asymptotic properties of the
proposed classes of estimators, we consider the asymptotic framework of [21], in
which the finite population U and the sampling design pd(·) are embedded into
a sequence of populations and designs indexed by N , {UN , pdN

}, with N → ∞.
We assume therefore, that n tends to infinity as N → ∞. We further assume
that N > 0. The subscript N may be discarded for ease of notation, although
all limiting processes are understood as N → ∞. We denote by Ep the expected
value with respect to the sampling design.

The following assumptions are imposed for the sampling design pd and for
the variables:

i) Let θU be the census level parameter estimate obtained by maximizing
the likelihood L(θ). Assume that θ = limN→∞θU exists and that the
pseudomaximum likelihood estimator is θ̂ = θU + Op(n

−1/2). 1

ii) For any study variable h the sampling designs are such that the
Horvitz–Thompson estimator for hN = N−1

∑

k∈U

hk is asymptotically
normal distributed.

iii) Let BiU =
∑

k∈U

(µi(xk)
2)−1

∑

k∈U

µi(xk)zki. Assume that Bi = lim
N→∞

BUi

exists, and the sampling design is such that Bi are consistently esti-
mated by B̂i for i = 1, ..., m.

Theorem 5.1. Under conditions i) and ii) the estimator P̂MAi is approxi-

mately design unbiased for Pi, asymptotically normal distributed and the asymp-

totic design variance is given by

AVp(P̂MAi) =
1

N2

∑

k∈U

∑

l∈U

∆kl(dkcki)(dlcli),

where ∆kl = πkl − πkπl; cki = zki − µi(xk, θU).

1This is true under certain regularity conditions given by [3].



MA and MC Estimation for Class Frequencies with Ordinal Outcomes 333

Proof: The proof for unbiasedness is very similar to the one presented in
[32], page 223, for the difference estimator.

Let us consider the parametric vector t = (t1, t2, ..., tm) and the function
µi(xk, t1, t2, ..., tm) = exp(ti + tmxk)/(1+exp(ti + tmxk))− exp(ti−1 + tmxk)/(1+
exp(ti−1+ tmxk)). This function has partial derivatives, for each xk,∂µi(xk, t)/∂tj ,
which are continuous in t and

∂µi(xk, t)

∂ti
|t=(xk,α1,...,β) ≤ 1,

∂µi(xk, t)

∂ti−1
|t=(xk,α1,...,β) ≤ 1,

∂µi(xk, t)

∂tm
|t=(xk,α1,...,β) ≤ xk, and

∂µi(xk, t)

∂tj
|t=(xk,α1,...,β) = 0 for j 6= i, i − 1, m.

Thus, by applying the Taylor series expansion at t = θU

pki = µi(xk, θ̂) = µi(xk, θU) +
∑

j=1,...,m

∂µi(xk, t)/∂tj |t=(xk,α1,...,β)(θ̂j − θUj).

Under condition i)

pki = µi(xk, θU) + Op(n
−1/2),

and then
1

N

∑

k∈U

pki −
1

N

∑

k∈U

µi(xk, θU) = Op(n
−1/2), and

1

N

∑

k∈s

dkpki −
1

N

∑

k∈s

dkµi(xk, θU) = Op(n
−1/2).

Thus

P̂MAi =
1

N

(

∑

k∈s

dkzki −
∑

k∈s

dkµi(xk, θU)

)

+
1

N

∑

k∈U

µi(xk, θU) + Op(n
−1/2),

and the asymptotic design variance of P̂MAi is the same as that the Horvitz–
Thompson estimator ĈHTi = 1/N

∑

k∈s dk(zki − µi(xk, θU)).

Condition ii) ensures that estimator ĈHTi is asymptotically normal dis-
tributed and, therefore, estimator P̂MAi is also asymptotically normal distributed.
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Theorem 5.2. Under conditions i), ii) and iii) the calibration estimator

P̂MCi is approximately design unbiased for Pi, asymptotically normal distributed

and the asymptotic design variance is given by

AVp(P̂MCi) =
1

N2

∑

k∈U

∑

l∈U

∆kl(dkeki)(dleli),

where ∆kl = πkl − πkπl and eki = zki − µi(xk, θU)BiU .

Proof:

P̂MCi =
1

N

∑

k∈s

dkzki +
1

N

(

∑

k∈U

pki −
∑

k∈s

dkpki

)

BiU

+
1

N

(

∑

k∈U

pki −
∑

k∈s

dkpki

)

(

B̂i − BiU

)

.

Under condition iii) B̂i − BiU = o(1); under conditions i) and ii)

1

N

∑

k∈U

pki −
1

N

∑

k∈s

dkpki =
1

N

∑

k∈U

µi(xk, θU) − 1

N

∑

k∈s

dkµi(xk, θU) + Op(n
−1/2).

Thus

P̂MCi =
1

N

∑

k∈s

dkzki +
1

N

(

∑

k∈U

µi(xk, θU) −
∑

k∈s

dkµi(xk, θU)

)

BiU + op(n
−1/2),

and consequently

Ep(P̂MCi) → Ep

(

1

N

∑

k∈s

dkzki

)

= Pi,

and

Vp(P̂MCi) → Vp

(

1

N

∑

k∈s

dk (zki − µi(xk, θU)) BiU

)

.

Under condition ii), estimator (1/N)
∑

k∈s dk(zki−µi(xk, θU))BiU is asymp-

totically normal distributed, and therefore we conclude that estimator P̂MCi is
also asymptotically normal distributed.
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6. ESTIMATION FOR THE VARIANCE OF ORDINAL ESTIMA-

TORS

The next theorem gives analytic expressions for the estimators of the design
variances Vp(P̂MAi) and Vp(P̂MCi), obtained using the linearization method.

Theorem 6.1. Under conditions i), ii) and iii) and assuming that all sec-

ond order probabilities are non null,

(6.1) ̂V(P̂MAi) =
1

N2

∑

k∈s

∑

l∈s

∆kl

πkl

(dk c̃ki)(dlc̃li) (Lin)

is approximately design unbiased for Vp(P̂MAi) and

(6.2) ̂V(P̂MCi) =
1

N2

∑

k∈s

∑

l∈s

∆kl

πkl

(dkẽki)(dlẽli) (Lin)

is approximately design unbiased for Vp(P̂MCi) where c̃ki = zki − pki and ẽki =

zki − pki
̂Bi.

Proof: We denote by Ik the sample membership indicator of element k.
Thus, for each i = 1, ..., m:

Ep(̂V(P̂MAi)) =
1

N2
Ep

∑

k∈U

∑

l∈U

∆kl

πkl

(dk c̃ki)(dlc̃li)Ik(s)Il(s) =

=
1

N2

∑

k∈U

∑

l∈U

∆kl

πkl

(dk c̃ki)(dlc̃li)πkl → Vp(P̂MAi),

using the theorem 5.1. From the theorem 5.2, the estimator of the design variance
Vp(P̂MCi) can be derived.

These variance estimators require knowledge of second-order inclusion prob-
abilities, which are often impossible to compute or unavailable to data analysts for
complex sampling designs. A simple alternative is to use with-replacement vari-
ance estimators (see [32], page 99). For the P̂MAi estimator, the with-replacement
variance estimator is

v̂W-R(P̂MAi) =
1

N2

1

n(n − 1)

∑

k∈s





c̃ki

prk

− 1

n

∑

j∈s

c̃ji

prj





2

(W-R),

where prk = πk/n when we have a simple random sampling without replacement
design. For other sampling designs, the relationship between prk and πk is πk =
1 − (1 − prk)

n according to expression (2.9.5), page 51 in [32].
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The with-replacement variance estimator for P̂MCi is obtained in a similar
way:

v̂W-R(P̂MCi) =
1

N2

1

n(n − 1)

∑

k∈s





ẽki

prk

− 1

n

∑

j∈s

ẽji

prj





2

(W-R).

These with-replacement variance estimators are not without bias. An ex-
pression for the bias can be obtained using the theory of sampling with probability
proportional to size (see [11] or [32]).

Alternative variance estimators can be obtained using implicit differentia-
tion [3] or replicated sampling methods (see [37] for a detailed description of these
techniques in finite population sampling). The replicated methods estimate the
variance of a parameter by generating replicated subsamples and examining the
variability of the subsample estimates. The replicated methods, also referred to as
resampling methods, include balanced repeated replication (BRR), jackknife re-
peated replication (JRR) [34] and the bootstrap method [12]. This article focuses
on jackknife techniques due to their simplicity and because they are implemented
in general purpose software packages, such as R (see for example the packages
sampling [33], samplingVarEst [14] and samplingEstimates [13]).

For a non stratified design, the jackknife estimator of the variance for any
of the model-assisted estimators, P̂MAi is given by

(6.3) v̂J(P̂MAi) =
n − 1

n

∑

j∈s

(P̂MAi(j) − PMAi)
2 (Tukey),

where P̂MAi(j) is the value of the estimator P̂MAi after dropping unit j from s
and where PMAi is the mean of values P̂MAi(j).

The jackknife estimator may present an important bias when designs with-
out replacement are used in finite populations. In such a case, an approx-
imated finite-population correction could be incorporated into the estimation
in order to achieve unbiasedness. A modified jackknife estimator of variance,
v̂∗J(P̂i), can be calculated by replacing P̂MAi(j) in (6.3) with P̂ ∗

MAi(j) = P̂MAi +√
1 − π(P̂MAi(j) − PMAi), where π =

∑

k∈s πk/n.

Using the idea of the unequal probability jackknife variance estimator given
by [4], we can obtain a new estimator v̂JC(PMAi) by replacing c̃ki in (6.1) with
˜cmki = 1 − ˜dk( ˜CHTi − ˜CHTi(k)) where ˜CHTi = 1/N

∑

k∈s dk c̃ki, ˜CHTi(k) is the

Horvitz–Thompson estimator dropping the unit k of the sample and ˜dk = dk/
∑

l∈s

dl.

The design consistency of this type of variance estimator was highlighted in [2].

More recently, [15] formulated a new design-consistent variance estimator
for the population mean. Based on this idea, we can obtain a new variance
estimator v̂JEB(PMAi) by replacing c̃ki in (6.1) with c̃eki = dαk

k ( ˜CHTi − ˜CHTi(k)).
The authors propose d the use of αk = 1 ∀k ∈ s.

Similarly, we define jackknife variance estimators for the ordinal calibration
estimator.
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7. MONTE CARLO SIMULATION EXPERIMENTS

To determine the behaviour of the estimators when they are applied to real
data obtained through complex sampling designs, we consider data from the 2012
PISA survey. This is a macro-surveying procedure that is conducted every three
years to collect information about 15-year-old students in each of the 65 countries
participating. The main aim of the survey is to determine how well students are
prepared to meet the challenges of the future. To do so, their performance and
attitudes are measured in three key areas: mathematics, reading and science.

The 2012 PISA survey was focused on mathematics in particular, and so the
students were asked to indicate their degree of agreement with various statements
related to mathematics. The population considered for our study was composed
of N = 15, 499 15-year-old Spanish students who responded to the survey, and
who attended C = 838 different schools. We chose the question “How strongly
do you agree with the statement: I enjoy reading about mathematics?” as the
main variable, where the possible options were 1 = strongly agree, 2 = agree, 3 =
disagree and 4 = strongly disagree. The population percentages obtained for these
categories were 0.03, 0.149, 0.413 and 0.408, respectively. We then considered the
degree of agreement (expressed as Strongly agree, agree, disagree and strongly
disagree) with to the following sentences: “Making an effort in mathematics is
worth it because it will help me in the work that I want to do later on”, “Learning
mathematics is worthwhile for me because it will improve my career” and “I
will learn many things in mathematics that will help me get a job” as auxiliary
variables.

With these data as population, we used a stratified design, selecting a
sample of schools with probabilities proportional to their size within each stratum.
Then, the values of all the students at the selected schools were observed. The
population was divided into five different strata depending on the type of location
of each school: villages (fewer than 3,000 people), small towns (3,000 to 15,000
people), towns (15,000 to 100,000 people), cities (100,000 to 1,000,000 people)
and large cities (over 1,000,000 people). The number of schools (Ch) and students
(Nh) by stratum is detailed in Table 1.

Table 1: Strata population data.

Villages Small towns Towns Cities Large cities Total

Ch 48 239 254 269 28 838
Nh 831 4,312 4,795 5,046 515 15,499

Two sample sizes for schools (c = 25 and c = 50) are included in the study.
A sample of schools using a Midzuno sampling scheme was drawn from each
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stratum considering probabilities proportional to the school size (taken as the
number of students enrolled in the school).

The free statistical software R ([30]) was used to perform this simulation
study. The library ordinal of R ([7]) was used, where necessary, to estimate the
parameters of the ordinal model. We have developed new R-code implementing
the proposed estimators. The R libraries samplingVarEst ([14]) and samplingEs-
timates ([13]) were used to estimate the variance of the estimators according to
the different methods discussed. For each estimator, we computed the percent rel-
ative bias RB% = EMC(P̂ − P )/P ∗ 100% and the percent relative mean squared
error RMSE% = EMC[(P̂ − P )2]/P 2 ∗ 100% for each category of the main vari-
able Y based on 1,000 simulation runs. We used RMSE% to calculate the percent
relative efficiency gain with respect to the HT estimator for the three remaining
estimators. The minimum, maximum and mean percent over the categories are
also calculated (in absolute values for the relative bias).

The results for relative bias and relative efficiency based on 1,000 simulated
samples are shown in Table 2. Additionally, the mean number of students finally
observed in each scenario, n̄, is included for informative purposes.

Table 2: Relative bias (in % and Italics) and Relative efficiency (with respect
to the HT estimator) of the estimators. Auxiliary variables: “Making
an effort in...”, “Learning mathematics is...”, “I will learn many...”.

Estimator 1 2 3 4 min max mean

c = 25 (n̄ = 482.88)

HT
0.35 −0.02 −0.34 −0.25 0.02 0.35 0.24

100.00 100.00 100.00 100.00 100.00 100.00 100.00

LV
0.74 0.30 −0.10 −0.06 0.06 0.74 0.30

111.37 141.94 329.21 318.49 111.37 329.21 225.25

MA
0.73 0.43 −0.08 −0.13 0.08 0.73 0.34

111.71 143.76 372.79 367.04 111.71 372.79 248.82

MC
0.78 0.48 −0.11 −0.12 0.11 0.78 0.37

110.65 144.05 381.46 374.35 110.65 381.46 252.62

c = 50 (n̄ = 966.43)

HT
−0.40 −0.37 −0.58 −0.45 0.37 0.58 0.45

100.00 100.00 100.00 100.00 100.00 100.00 100.00

LV
−0.02 0.09 −0.11 0.07 0.02 0.11 0.07

111.92 131.05 333.83 313.76 111.92 333.83 222.64

MA
0.03 0.17 −0.09 0.03 0.03 0.17 0.08

112.31 131.56 389.68 381.50 112.31 389.68 253.76

MC
−0.02 0.19 −0.09 0.03 0.02 0.19 0.08

112.83 132.42 397.13 389.41 112.83 397.13 257.94

1 = strongly agree, 2 = agree, 3 = disagree, 4 = strongly disagree
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Relative bias is below 1% in all cases and can be considered negligible. Both
model-assisted and model-calibrated estimators show good performance in terms
of efficiency, with the first of these showing slightly better results. Whatever the
estimator, the most accurate estimations are achieved in categories 3 and 4, those
with the largest population sizes.

The efficiency of these estimators is greater than that of the HT estimator
in all cases, and is especially high for categories 3 and 4. As the sample size
increases, so does the relative efficiency of the ordinal estimators, with values
close to 400% in categories 3 and 4 for c = 50.

An alternative model was then fitted for the same variable response, tak-
ing the student’s gender and the educational level of the father and mother as
auxiliary variables. With these covariates it was not possible to obtain a good
model fit, since they achieved a very low association with the main variable in
the population. Indeed, the Akaike Information Criterion (AIC) in this case was
noticeably higher than the value obtained for the previous model fit.

Table 3 shows the results of relative bias and relative efficiency of the esti-
mators for these variables.

Table 3: Relative bias (in % and Italics) and relative efficiency (with respect
to the HT estimator) of the estimators. Auxiliary variables: Sex of
the student, educational level of of the father and that of the mother.

Estimator 1 2 3 4 min max mean

c = 25 (n̄ = 460.03)

HT
0.56 −0.08 −0.41 −0.13 0.08 0.56 0.29

100.00 100.00 100.00 100.00 100.00 100.00 100.00

LV
1.01 0.37 −0.24 0.04 0.04 1.01 0.41

108.00 126.32 329.57 293.39 108.00 329.57 214.32

MA
0.79 0.27 −0.22 0.06 0.06 0.79 0.33

110.00 128.24 333.88 288.83 110.00 333.88 215.23

MC
0.68 0.31 −0.24 0.08 0.08 0.68 0.33

110.11 127.97 335.45 291.91 110.11 335.45 216.36

c = 50 (n̄ = 920.96)

HT
−0.36 −0.38 −0.61 −0.40 0.36 0.61 0.44

100.00 100.00 100.00 100.00 100.00 100.00 100.00

LV
0.53 0.36 −0.20 0.03 0.03 0.53 0.28

107.71 113.25 340.53 284.22 107.71 340.53 211.42

MA
0.13 0.19 −0.15 0.07 0.07 0.19 0.14

109.11 114.43 344.48 278.70 109.11 344.48 211.68

MC
0.06 0.24 −0.17 0.08 0.06 0.24 0.14

109.68 113.39 345.99 280.24 109.68 345.99 212.32

1 = strongly agree, 2 = agree, 3 = disagree, 4 = strongly disagree
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The results for this population presented a similar pattern: both model-
assisted and model-calibrated ordinal estimators achieved very good performance,
but in this case, the differences between the estimators are not significant. Effi-
ciency gains with respect to the HT estimator are smaller in this scenario than in
the previous one. However, once again, the largest efficiency gains are obtained
in categories 3 and 4.

Alternative scenarios were also considered, and these yielded similar results.
Specifically, even in the case in which tests of the proportional odds assumption
provided evidence of the non-proportional odds context, the efficiency results
were comparable.

In a similar way, we computed confidence intervals using different methods
to estimate the variance of the estimators. Tables 4 and 5 show the relative length
(length / parameter) in % and the empirical coverage of the confidence intervals,
in the first case for a good model fit and in the second for a bad one.

Table 4: Relative length in % (len) and empirical coverage (cov) of confidence
intervals for the estimators using different estimators for variance.
Auxiliary variables: ”Making an effort in...”, ”Learning mathematics
is...”, ”I will learn many...”. Nominal level 95%.

Estimator

LV MA MC LV MA MC

len cov len cov len cov len cov len cov len cov

c = 25 c = 50

Lin

1 115.00 89.8 115.83 90.3 115.75 90.7 84.69 92.0 84.97 91.8 84.95 92.0
2 49.82 92.8 49.22 93.9 49.23 93.2 35.42 92.6 35.03 92.5 35.02 92.7
3 25.45 91.4 23.96 91.5 23.94 91.8 18.09 92.2 17.13 92.5 17.12 93.1
4 26.68 91.7 24.22 93.0 24.22 93.2 18.99 93.0 17.35 91.8 17.36 92.0

mean 54.24 91.4 53.31 92.0 53.29 92.2 39.30 92.4 38.62 92.2 38.61 92.5

W-R

1 111.24 89.8 111.97 90.4 111.74 90.4 81.96 92.3 82.20 92.2 82.12 92.1
2 46.77 91.9 46.36 92.0 46.32 91.9 33.21 90.8 32.92 91.1 32.91 90.8
3 24.57 92.7 24.05 93.6 24.05 94.1 17.38 92.7 16.98 94.0 16.98 94.2
4 23.98 91.1 22.98 92.6 22.98 93.1 16.94 90.6 16.23 91.2 16.23 91.7

mean 51.64 91.4 51.34 91.2 51.27 92.4 37.37 91.6 37.08 92.1 37.06 92.2

EB

1 114.31 89.4 115.35 90.6 115.17 90.6 84.74 91.7 85.11 91.6 85.10 91.6
2 49.98 93.3 48.94 93.2 48.91 93.3 35.71 92.7 34.99 92.7 34.98 92.8
3 24.90 91.1 23.81 91.4 23.81 91.9 17.92 91.8 17.13 93.1 17.13 93.6
4 26.13 92.0 24.10 92.9 24.10 93.1 18.80 91.7 17.36 92.1 17.37 92.1

mean 53.83 91.5 53.05 92.0 53.00 92.2 39.29 92.0 38.65 92.4 38.65 92.5

CBS

1 114.30 89.4 115.34 90.6 115.16 90.6 84.73 91.7 85.11 91.6 85.10 91.6
2 49.98 93.3 48.94 93.2 48.90 93.3 35.71 92.7 34.99 92.7 34.98 92.8
3 24.90 91.1 23.81 91.4 23.81 91.9 17.92 91.8 17.13 93.1 17.13 93.6
4 26.13 92.0 24.10 92.9 24.10 93.1 18.80 91.7 17.36 92.1 17.37 92.1

mean 53.83 91.5 53.05 92.0 52.99 92.2 39.29 92.0 38.65 92.4 38.64 92.5

Tukey

1 110.94 90.0 111.68 90.3 111.44 90.3 82.08 92.3 82.32 92.4 82.25 92.2
2 46.74 92.1 46.30 92.4 46.26 92.6 33.31 91.7 32.99 91.3 32.98 90.9
3 24.47 92.8 23.97 93.6 23.98 94.4 17.40 92.5 17.01 93.9 17.01 94.4
4 23.88 90.7 22.91 92.4 22.90 92.7 16.95 90.6 16.25 91.7 16.25 92.3

mean 51.51 91.4 51.22 92.2 51.14 92.5 37.43 91.8 37.14 92.3 37.12 92.5

1 = strongly agree, 2 = agree, 3 = disagree, 4 = strongly disagree
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Table 5: Relative length in % (len) and empirical coverage (cov) of confi-
dence intervals for compared estimators using different estimators for
variance. Auxiliary variables: Sex of the student, educational level
of father and educational level of mother. Nominal level 95%.

Estimator

LV MA MC LV MA MC

len cov len cov len cov len cov len cov len cov

c = 25 c = 50

Lin

1 123.09 90.1 122.30 89.1 122.31 88.6 90.16 91.7 89.86 91.4 89.87 91.9
2 53.27 93.3 53.04 92.9 53.03 93.2 37.78 93.1 37.60 92.8 37.62 93.0
3 25.45 90.6 25.43 90.7 25.43 91.4 18.13 91.8 18.13 92.3 18.13 92.1
4 27.84 91.6 27.84 92.6 27.84 92.3 20.00 92.5 20.05 92.6 20.05 92.3

mean 57.41 91.4 57.15 91.3 57.15 91.3 41.52 92.3 41.41 92.3 41.42 92.3

W-R

1 119.22 89.2 118.28 89.6 118.36 89.9 87.81 91.6 87.14 92.1 87.18 91.9
2 49.39 91.8 48.94 92.2 48.91 91.5 34.96 91.6 34.60 91.8 34.59 91.8
3 25.18 92.9 25.26 93.0 25.26 92.5 17.80 92.6 17.83 93.2 17.83 93.1
4 25.52 91.4 25.34 91.4 25.34 91.0 18.07 90.7 17.95 90.6 17.95 90.4

mean 54.82 91.3 54.45 91.5 54.47 91.2 39.66 91.6 39.38 91.9 39.38 91.8

EB

1 122.34 89.5 121.73 89.0 121.82 88.9 90.16 91.9 89.97 91.9 90.02 92.1
2 52.43 92.9 52.81 93.7 52.78 93.2 37.40 92.6 37.64 92.9 37.62 93.1
3 25.19 90.9 25.25 91.0 25.25 91.1 18.09 91.6 18.13 92.3 18.13 92.5
4 27.62 91.6 27.70 92.2 27.69 92.6 19.95 92.4 20.06 92.4 20.06 92.8

mean 56.89 91.2 56.87 91.4 56.89 91.4 41.40 92.1 41.45 92.4 41.45 92.6

CBS

1 122.33 89.5 121.73 89.0 121.81 88.9 90.15 91.9 89.97 91.9 90.01 92.1
2 52.43 92.9 52.81 93.7 52.78 93.2 37.40 92.6 37.63 92.9 37.62 93.1
3 25.19 90.9 25.25 91.0 25.25 91.1 18.09 91.6 18.13 92.3 18.13 92.5
4 27.61 91.6 27.69 92.2 27.69 92.6 19.95 92.4 20.06 92.4 20.06 92.8

mean 56.89 91.2 56.87 91.4 56.88 91.4 41.40 92.1 41.45 92.4 41.45 92.6

Tukey

1 118.85 89.5 117.96 88.5 118.04 88.5 87.93 91.9 87.27 92.3 87.31 92.1
2 49.28 92.6 48.87 92.7 48.84 91.8 35.01 91.7 34.69 91.6 34.67 92.1
3 25.08 92.8 25.17 93.1 25.17 92.9 17.82 92.2 17.86 93.0 17.85 93.0
4 25.43 91.6 25.26 91.8 25.25 91.4 18.09 91.2 17.98 90.9 17.98 91.0

mean 54.66 91.6 54.31 91.5 54.33 91.1 39.72 91.7 39.45 91.9 39.45 92.0

1 = strongly agree, 2 = agree, 3 = disagree, 4 = strongly disagree

It is no easy matter to compare all the estimators and all the variance
estimation techniques over all the categories. However, the tables obtained show
that the lengths of the EB (Escobar-Berger, [15]) and CBS (Campbell, [4];
Berger and Skinner, [2]) intervals are practically the same, and also that the
intervals with the LV estimator have longer lengths, while those with the MC
estimators have shorter ones, for both sample sizes. Obviously, the length of the
confidence intervals decreases as the sample size increases.

The coverage is below the nominal value in every case. The MC estimator
obtains the closest coverage to the nominal level, but with small differences with
respect to the other estimators.
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8. APPLICATION TO AN OPINION SURVEY

In this section, the ordinal regression approach is illustrated using a real
survey, deriving the proposed estimates and comparing these to alternative ones.

This population-based survey was conducted by the Institute of Social Stud-
ies of Andalusia, a public scientific research institute specialising in the social sci-
ences. Its aim is to reflect the opinions of the population of Andalusia, a region
in Southern Spain, with regard to various aspects of policies. Taking into account
the time and budget available, 1,890 interviews were performed by qualified inter-
viewers, specially trained in survey techniques. The interviews were carried out
by the Statistics and Surveys sections of the institute using Computer Assisted
Telephone Interviewing data input techniques. A stratified random sampling de-
sign with eight strata, each one corresponding to a municipality in the region,
was considered. In each stratum, a simple random sampling without replacement
design was considered. The design weights were modified to adjust for coverage
and non-response bias. The two main variables included in this study, related to
“education” and “housing”, are the answers to the following questions:

• Do you think that education issues have improved, remain the same or

have worsened in recent years?

• Do you think that housing issues have improved, remain the same or

have worsened in recent years?

each one with three possible response categories. As in the simulation study,
R software and the library ordinal were used to analyze the data. Together with
the ordinal model-assisted MA (4.1) and the ordinal model-calibrated MC (4.2)
estimators, the HT estimator (2.1) and the LV estimator (2.3) were computed
for comparison purposes. As auxiliary information we took into account the sex of
the respondents, a categorical variable with two possible outcomes, and their age,
categorized into four age ranges. The population information for the auxiliary
variables needed to compute the LV estimator and the two proposed estimators
is shown in Table 6.

Table 6: Population information for the auxiliary variables (Sex and Age).

Sex
Age

18–29 30–44 45–59 ≥60

Male 411,501 699,378 636,061 578,775
Female 460,834 649,434 615,057 731,410
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Table 7 shows the point and 95% confidence interval estimation of propor-
tions of each category of the main variables.

Table 7: Point (prop) and 95% confidence level estimation (lower
bound, lb, upper bound, ub, and length, len) of percentages.
Auxiliary variables: Sex and Age.

Estimator
In recent years, education issues... In recent years, housing issues...

prop lb ub len prop lb ub len

... have improved ... have improved

HT 3.88 2.61 5.16 2.55 7.15 5.74 8.55 2.81
LV 4.49 3.11 5.87 2.76 7.65 6.10 9.20 3.10
MA 3.92 2.67 5.18 2.51 7.08 5.69 8.47 2.78
MC 3.94 2.68 5.19 2.51 7.07 5.68 8.47 2.79

... remain the same ... remain the same

HT 17.69 15.44 19.94 4.50 9.42 7.80 11.04 3.24
LV 18.12 15.87 20.37 4.50 9.87 8.12 11.63 3.51
MA 17.84 15.64 20.03 4.39 9.35 7.74 10.96 3.22
MC 17.82 15.63 20.02 4.39 9.36 7.76 10.97 3.21

... have worsened ... have worsened

HT 78.41 74.59 82.24 7.65 83.42 79.52 87.32 7.80
LV 77.38 74.76 79.99 5.23 82.47 80.00 84.93 4.93
MA 78.22 75.82 80.63 4.81 83.56 81.52 85.59 4.07
MC 78.23 75.83 80.63 4.80 83.55 81.52 85.59 4.07

Whatever the category of either of the two main variables, the lengths of
the confidence intervals of the proposed estimators are shorter than that of the
corresponding confidence interval associated with the LV estimator, which uses
the same amount of auxiliary information. In part, these differences are due to the
better fit of the ordinal logistic model than the multinomial logistic model in both
cases. Indeed, for the two response variables, the AIC is larger for the multinomial
model than for the ordinal model. To highlight these discrepancies, we computed
the relative length reduction of the confidence intervals of the proposed estimators
with respect to the corresponding confidence intervals of the LV estimator. The
results are shown in Table 8.

The length reductions are significant in all categories of the response vari-
ables (6.5% on average for the first variable and 12% for the second).

Tables 9 and 10 show the point estimation for the proposed estimators,
classified by sex and age. In the first of these respects, it is noticeable that more
men than women believe that education and housing issues have improved or
remain the same, while the women are slightly more pessimistic.
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The general perception that these issues have worsened is common to all
age groups, with the highest such proportion being found among respondents
aged 45-59 years.

Table 8: Relative length reduction in % of the 95% confidence intervals
of the proposed estimators with respect to the LV estimator.

In recent years, education issues...

Estimator
reduction

... have improved ... remain the same ... have worsened mean

MA 9.326725 2.359543 8.013819 6.566695
MC 9.349046 2.371333 8.014386 6.578255

In recent years, housing issues...

Estimator
reduction

... have improved ... remain the same ... have worsened mean

MA 10.12919 8.518985 17.41836 12.022178
MC 10.10099 8.540746 17.42298 12.021572

Table 9: Point estimation of percentages by sex.

Estimator
In recent years, education issues... In recent years, housing issues...

all men women all men women

... have improved ... have improved

HT 3.88 4.65 3.15 7.15 10.00 4.39
LV 4.49 4.96 4.05 7.65 10.33 5.11
MA 3.92 4.69 3.21 7.08 9.97 4.34
MC 3.94 4.69 3.16 7.07 9.99 4.38

... remain the same ... remain the same

HT 17.69 20.71 14.80 9.42 11.59 7.33
LV 18.12 21.27 15.15 9.87 11.97 7.89
MA 17.84 20.83 15.01 9.35 11.49 7.32
MC 17.82 20.72 14.84 9.36 11.58 7.32

... have worsened ... have worsened

HT 78.41 74.63 82.05 83.42 78.40 88.27
LV 77.38 73.76 80.80 82.47 77.69 86.99
MA 78.22 74.47 81.78 83.56 78.52 88.32
MC 78.23 74.58 81.99 83.55 78.42 88.28
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Table 10: Point estimation of percentages by age groups.

Estimator
In last years, education issues... In last years, housing issues...

all 18–29 30–44 45–59 ≥60 all 18–29 30–44 45–59 ≥60

... have improved ... have improved

HT 3.88 3.99 4.24 1.92 5.61 7.15 8.66 8.34 4.94 6.85
LV 4.49 4.20 4.15 1.87 7.54 7.65 8.90 8.24 4.86 8.87
MA 3.92 4.01 4.26 1.84 5.51 7.08 8.52 8.50 4.99 6.66
MC 3.94 4.09 4.22 1.89 5.66 7.07 8.59 8.29 4.92 6.76

... remain the same ... remain the same

HT 17.69 16.75 17.02 17.06 20.07 9.42 10.16 11.47 8.90 7.07
LV 18.12 16.87 16.97 16.99 21.23 9.87 10.44 11.33 8.74 9.07
MA 17.84 16.31 17.17 17.35 20.02 9.35 9.68 11.61 9.13 7.01
MC 17.82 16.84 17.08 17.22 20.16 9.36 10.11 11.43 8.86 7.02

... have worsened ... have worsened

HT 78.41 79.25 78.73 81.01 74.31 83.42 81.17 80.17 86.14 86.07
LV 77.38 78.92 78.87 81.13 71.21 82.47 80.65 80.42 86.38 82.04
MA 78.22 79.67 78.56 80.79 74.46 83.56 81.78 79.88 85.87 86.32
MC 79.06 78.69 80.87 80.78 74.16 83.55 81.29 80.27 86.21 86.20

9. CONCLUSIONS

Data collected from surveys are often organized into discrete categories.
Analyzing variables with ordinal outcomes, obtained from a complex survey, of-
ten requires specialised techniques. To improve the accuracy of estimation pro-
cedures, a survey statistician often makes use of the auxiliary data available from
administrative registers and other sources.

In this paper, we present estimation techniques applied to the results of
complex surveys when the variable of interest has ordinal outcomes, and describe
the joint distribution of the class indicators by an ordinal model. Ordinal model-
assisted estimators and ordinal model-calibrated estimators are introduced for
class frequencies, using two different approaches to estimation.

We show that the proposed estimators are asymptotically normal distributed
and we derive expressions for their asymptotic variances. Resampling techniques
are obtained when joint inclusion probabilities are unavailable to data analysts.

We used the weighted ML estimation procedure to obtain the estimators for
the model parameters because in the iterative fitting process for WLS, assuming
ordinal data, at some settings of explanatory variables the estimated mean may
fall below the lowest score or above the highest one and then the fit will fail [1].
When numerical maximization for the pseudolikelihood is feasible, good estimates
may be obtained in certain cases by WLS. This approach is usable when working
with discrete predictors [23].
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We also include a limited simulation study with a real population, find-
ing that the ordinal logistic formulation yields better results than the classical
estimators that implicitly assume individual linear models for the variables.

The effective use of auxiliary information from survey data depends on the
population quantities to be estimated and on the actual relation between the
response variable and the covariates. The simulation results obtained show that
these estimators are robust against misspecified models.

Ordinal model-assisted and model-calibrated estimators also have some
drawbacks: they require a sampling frame, complete with all the explanatory
variables used in the assisting model, for all units in the population. This situ-
ation frequently arises, for example, when categorical variables (such as gender
or the professional status of the individual) or quantitative categorized variables
(such as the age of the individual, grouped into classes) are used as auxiliary
information in a survey. In this context, although we do not have a complete list
of individuals, the proposed estimators can still be computed because the neces-
sary population information can be found in the databases published by national
statistical agencies and in business registers and trade association lists. This is
the case in our application of the estimators to data from the survey on opinions
and attitudes, as discussed in Section 8.
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popovicpredrag@yahoo.com

Aleksandar S. Nastić
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350 P.M. Popović, A.S. Nastić and M.M. Ristić
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1. INTRODUCTION

An integer-valued time series is a sequence of integer data points measured

at uniform time intervals. Such series are present in many fields of sciences. For

example, in medicine the number of infected persons represents such a series, in

finance the number of defaults, in criminology the number of committed crimes,

in biology the size of the population of a species, etc. Thus, modelling integer-

valued time series and better understanding their nature is a point of interest

for many researchers. Some of the first models for non-negative integer-valued

time series were introduced by [7], [1] and [2]. These models have autoregressive

structure, where the autoregression is achieved through the thinning operator.

Models with the full autoregressive-moving average structure were investigated

in [8]. Following these ideas, many models have been developed. A survey on

integer-valued autoregressive processes can be found in [15].

While these are models with constant coefficients, [17] defined an integer-

valued random coefficient model. Using the approach proposed by [3], [12] in-

troduced a bivariate integer-valued random coefficient model. The dependence

between processes that this model consists of is achieved through their autore-

gressive components, which are based on the negative binomial thinning opera-

tor. Some modifications of this model regarding the thinning operator and the

marginal distribution are discussed in [9]. In this paper we focus on analyzing

prediction errors made by these types of models. Since these models are composed

of two components, survival and innovation, there are two sources of uncertainty.

We try to estimate the portion of prediction error made by the survival and by

the innovation component separately. Since these residuals are unobservable, we

derive predictive distribution and calculate expected values of these components.

Some aspects of predictive distributions for univariate models were presented in

[13] and [14]. Residual analysis for univariate models was discussed in [5] and

[16]. We extend the research on the bivariate models with random coefficients.

In addition, to cover two types of thinning operators, we introduce a bi-

variate model whose survival components are generated by different thinning op-

erators, namely, binomial and negative binomial. This mix of thinning operators

makes it possible to model two dependent processes whose survival parts have

different properties. While the survival component generated by the negative

binomial thinning operator does produce new members of the series, the other

one generated by the binomial thinning does not and new members depends only

on the innovation component. To motivate the model we consider two data se-

ries: monthly count of motor vehicle thefts and monthly count of drug dealing

activities. The first series is characterized by the fact that offended persons are

not provoked to commit the same criminal act, but the second series is to a large

extent generated by itself since some amount of drugs has been resold many times.
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The paper is organized as follows. In Section 2 we discuss the general

form of bivariate integer-valued autoregressive models of order one with random

coefficients. Section 3 introduces a bivariate model with both, binomial and

negative binomial, thinning operators. We discuss residual analysis in Section 4.

Real data modelling is considered in Section 5.

2. BIVARIATE INAR MODELS

In this section we state a general form of the random coefficient bivari-

ate integer-valued autoregressive models of order one (BINAR(1)). In order to

define a model suitable for the time series of count, we use the thinning oper-

ators. The binomial thinning operator is defined as α1 ◦ X =
∑X

i=1 Bi, where

X is a non-negative integer-valued random variable and {Bi} is a sequence of

i.i.d. Bernoulli random variables with mean parameter α1. The negative bino-

mial thinning operator is defined as α1 ∗X =
∑X

i=1 Gi, where {Gi} is a sequence

of i.i.d. geometric random variables with mean parameter α1. For the time being

we will not specify the thinning operator in the definition of BINAR(1) model.

Let us denote a nonnegative bivariate time series of counts by Zn and introduce

a random matrix An =

[

U1n U2n

V1n V2n

]

, whose elements have the joint probability

mass function defined as P (U1n = α1, U2n = 0) = p = 1 − P (U1n = 0, U2n = α1)

and P (V1n = α2, V2n = 0) = q = 1 − P (V1n = 0, V2n = α2), where α1, α2 ∈ (0, 1)

and p, q ∈ [0, 1]. Then, the structure of BINAR(1) model is given by

(2.1) Zn = An ⋆ Zn−1 + en, n ≥ 1,

where {en} represents the innovation process, which is composed of two indepen-

dent series. The thinning operator is denoted with ⋆ and it acts as the matrix

multiplication. The two processes that figure in Zn are mutually dependent and

their dependence is achieved trough autoregressive components, which are named

survival processes. Coefficients that figure in (2.1) are random variables, which

make this model significantly different from the similar multivariate INAR models

(such as the one presented in [4] and [6]). Notice that

E(An) = A =

[

α1p α1(1 − p)
α2q α2(1 − q)

]

.

It is easy to show that E(An ⋆ Zn) = AE(Zn). Following the discus-

sion from [6], I − A is a non singular matrix if all eigenvalues of A are in-

side the unit circle, which is proved for matrix A in [12]. All this implies

that E(Zn) = (I − A)−1E(en). Since (I − A)−1 is a matrix of finite values,

E(Z0) < ∞ iff E(e1) < ∞. The conditional expectation for process (2.1) is
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E(Zn+k|Zn) = A
k
Zn +(I−A)−1(I−A

k)(I−A)µ, where µ = E(Zn). The cor-

relation structure of BINAR(1) model is given as Cov(Zn+k, Zn) = A
kV ar(Zn),

k ≥ 0. Since the eigenvalues of matrix A are inside the unit circle, covariance

tends to zero and conditional expectation tends to the unconditional one, as k

tends to infinity. More details on the correlation structure can be found in [9].

3. MODEL WITH MIXED THINNING OPERATORS

In this section we introduce a new bivariate time series model {(X1,n,X2,n)},
n ∈ N0, where the two time series are dependent but evolve under different thin-

ning operators. Let {X1,n} and {X2,n} be the two nonnegative integer-valued

time series with probability mass function P (Xi,n = k) = µk/(1 + µ)k+1, k ≥ 0,

µ > 0 and i ∈ {1, 2}. A mixed geometric bivariate autoregressive process of order

one (BVMIXGINAR(1)) is given by the following equations

X1,n =

{

α1 ◦ X1,n−1 + ε1,n, w.p. p,
α1 ◦ X2,n−1 + ε1,n, w.p. 1 − p,

(3.1)

X2,n =

{

α2 ∗ X1,n−1 + ε2,n, w.p. q,
α2 ∗ X2,n−1 + ε2,n, w.p. 1 − q,

(3.2)

where {ε1,n} and {ε2,n} are i.i.d. sequences. The random vectors (ε1,n, ε2,n)

and (X1,m, X2,m) are independent for all m < n. The thinning operators are

defined in previous section and the counting series in α1 ◦X1,n, α1 ◦X2,n, α2 ∗X1,n

and α2 ∗ X2,n are mutually independent for all n ∈ N0 and are also independent

of innovation processes {ε1,n} and {ε2,n}. The distributions of the innovation

processes are given by the following theorem.

Theorem 3.1. Let X1,0 and X2,0 have the Geom( µ
1+µ

) distribution, where

µ > 0. The stationary bivariate time series {(X1,n, X2,n)}n∈N0
given by equations

(3.1) and (3.2) has Geom( µ
1+µ

) marginal distributions if and only if the processes

{ε1,n} and {ε2,n} are distributed as

ε1,n
d
=

{

Geom( µ
1+µ

), w.p. 1 − α1,

0, w.p. α1,
(3.3)

ε2,n
d
=

{

Geom( µ
1+µ

), w.p.
µ(1−α2)−α2

µ−α2
,

Geom( α2

1+α2
), w.p. α2µ

µ−α2
,

(3.4)

where α1 ∈ (0, 1), α2 ∈ (0, µ
1+µ

] and p, q ∈ [0, 1].

Proof: Let us assume that the stationary time series {(X1,n, X2,n)} has

the geometric marginal distribution Geom( µ
1+µ

), µ > 0. Since the random vari-

ables X1,n and X2,n are equal in distribution, considering probability generating
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functions we obtain ΦX1,n
(s) = Φε1,n

(s)ΦX1,n−1
(ΦBi

(s)), which follows from (3.1).

From their geometric distribution we obtain

Φε1,n
(s) =

1 + µα1(1 − s)

1 + µ(1 − s)
= α1 + (1 − α1)

1

1 + µ − µs
,

which proves equation (3.3). In a similar manner we derive the probability gen-

erating function for ε2,n and obtain

Φε2,n
(s) =

(1 + µ)(1 + α2 − α2s) − µ

(1 + µ − µs)(1 + α2 − α2s)

=
µ(1 − α2) − α2

µ − α2

1

a + µ − µs
+

α2µ

µ − α2

1

1 + α2 − α2s
.

Now, equation (3.4) follows under the constraints given in [11] for NGINAR(1)

model.

Conversely, let us assume that the distributions of the random variables ε1,n

and ε2,n are given by equations (3.3) and (3.4), respectively. Since X1,0
d
= X2,0

d
=

Geom(µ/(1 + µ)), we obtain

ΦX1,1
(s) = ΦX1,0

(1 − α1 + α1s)Φε1,1
(s)

=
1

1 + µ − µ(1 − α1 + α1s)

1 + µα1(1 − s)

1 + µ(1 − s)
=

1

1 + µ − µs

and

ΦX2,1
(s) = ΦX2,0

(

1

1 + α2 − α2s

)

Φε2,1
(s)

=
1

1 + µ(1 − 1
1+α2−α2s

)
· (1 + µ)(1 + α2 − α2s) − µ

(1 + µ − µs)(1 + α2 − α2s)
=

1

1 + µ − µs
.

Thus, X1,1 and X2,1 have geometric distribution with parameter µ/(1+µ). Using

mathematical induction we can prove that X1,n
d
=X2,n

d
=Geom(µ/(1+µ)) for any

n ∈ N0.

Even if we assume that X1,0 and X2,0 have the same arbitrary distribution,

X1,n as well as X2,n converges to geometric distribution Geom(µ/(1 + µ)), as

n → ∞, if random variables ε1,n and ε2,n have the distribution given by Theorem

3.1. This can be proved with the following two equations. The first equation is

ΦX1,n
(s) = ΦX1,n−1

(1 − α1 + α1s)Φε1,n
(s)

= ΦX1,0
(1 − αn

1 + αn
1s)

n−1
∏

k=0

1 + µαk+1
1 (1 − s)

1 + µαk
1(1 − s)

= ΦX1,0
(1 − αn

1 + αn
1s)

1 + µαn
1 (1 − s)

1 + µ(1 − s)

n→∞−−−→ 1

1 + µ − µs
.
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Also,

ΦX2,n
(s) = ΦX2,n−1

(

1

1 + α2 − α2s

)

Φε2,n
(s)

= ΦX2,0

(

1−α2+α2(1−s)(1−αn−1
2 )

1−α2+α2(1−s)(1−αn
2 )

)n−1
∏

k=0

Φε2,k

(

1−α2+α2(1−s)(1−αk−1
2 )

1−α2+α2(1−s)(1−αk
2)

)

= ΦX2,0

(

1−α2+α2(1−s)(1−αn−1
2 )

1−α2+α2(1−s)(1−αn
2 )

)

× (1 − α2
2(1 − s) − α2s)(1 + αn

2µ(1 − s) − αn+1
2 (1 + µ)(1 − s) − α2s)

(1 − αn+1
2 (1 − s) − α2s)(1 + α2µ(1 − s) − α2

2(1 + µ)(1 − s) − α2s)

n→∞−−−→ 1

1+µ−µs
.

Random variables X1,n and X2,n are independent for known X1,n−1 and

X2,n−1. Thus, the conditional distribution of (X1,n, X2,n), given (X1,n−1, X2,n−1),

is defined as

P (X1,n = x, X2,n = y|X1,n−1 = u, X2,n−1 = v)

= P (X1,n =x|X1,n−1 =u, X2,n−1 =v)P (X2,n =y|X1,n−1 =u, X2,n−1 =v).

The conditional probability mass function of the random variable X1,n for given

X1,n−1 and X2,n−1 has the form

P (X1,n = x|X1,n−1 = u, X2,n−1 = v)

= p

min(x,u)
∑

k=0

P (ε1,n =x−k)P (α1◦X1,n−1 =k|X1,n−1 =u)

+ (1 − p)

min(x,v)
∑

k=0

P (ε1,n =x−k)P (α1◦X2,n−1 =k|X2,n−1 =v).(3.5)

Similarly, for X2,n the form is

P (X2,n = y|X1,n−1 = u, X2,n−1 = v)

= q

y
∑

k=0

P (ε2,n =y−k)P (α2∗X1,n−1 =k|X1,n−1 =u)

+ (1−q)

y
∑

k=0

P (ε2,n =y−k)P (α2∗X2,n−1 =k|X2,n−1 =v).(3.6)

The random variables α1 ◦X and α2 ∗X under the condition X = u have binomial

and negative binomial distribution with parameters (u, α1) and (u, α2

1+α2
), respec-

tively (where the probability mass function for negative binomial distribution is

taken as P (α2 ∗ X = k|X = u) =
(

u+k−1
k

) αk
2

(1+α2)k+u ). Notice that the probability

mass functions for the innovation processes are, respectively,

P (ε1,n = x − k) = 1{x=k}α1 + (1 − α1)
µx−k

(1 + µ)x−k+1
,
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P (ε2,n = y − k) =
µ(1 − α2) − α2

µ − α2

µy−k

(1 + µ)y−k+1
+

α2µ

µ − α2

αy−k
2

(1 + α2)y−k+1
,

where 1A is the indicator function of a random event A.

The estimation of unknown parameters of the bivariate INAR(1) models

with random coefficients is discussed in details in [9]. We consider the conditional

maximum likelihood method for parameters estimation of the model presented in

this paper.

For the given values {(X1,k, X2,k)}k=0,n, we set the conditional likelihood

function as

L1(θ) =
n
∑

i=1

lnP (X1,i = x1,i, X2,i = x2,i|X1,i−1 = x1,i−1, X2,i−1 = x2,i−1, θ),

where θ = (α1, α2, p, q, µ) is a vector of unknown parameters. The probability

mass function is defined as a product of functions (3.5) and (3.6). The maximiza-

tion of the log-likelihood function is obtained by numerical procedure, which, in

our case, is conducted through the programming language R and the function

nlm.

4. RESIDUALS

The standard statistic used for determining a goodness of fit is obtained by

summing squared residuals. The residuals are obtained as a difference between

a value at time n and an expected value of the process in time n for the given

value at n − 1, i.e.,

rX1,n = X1,n − α1pX1,n−1 − α1(1 − p)X2,n−1 − µε1
,

rX2,n = X2,n − α2qX1,n−1 − α2(1 − q)X2,n−1 − µε2
,

where µεi
are the expected values of the random variables εi, i ∈ {1, 2}. Since

our process is composed of two sources of uncertainty (survival process and in-

novation process) it would be useful to track residuals of each source separately.

This idea for one-dimensional INAR process is presented in [5] and [16], while

we extend it for the bivariate case where the coefficients of the model are ran-

dom variables. The residual analysis for a bivariate model is also investigated

in [10], but the model has constant coefficients, independent survival processes

and dependent innovation processes, which makes it significantly different from

BVMIXGINAR(1) model.

If we introduce the two pairs of random variables (U1n, U2n) and (V1n, V2n)
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defined in Section 2, we can present BVMIXGINAR(1) model as

X1,n = U1n ◦ X1,n−1 + U2n ◦ X2,n−1 + ε1,n,(4.1)

X2,n = V1n ∗ X1,n−1 + V2n ∗ X2,n−1 + ε2,n.(4.2)

The process in this form is more tractable in terms of survival and innovation

components. Therefore, we get two sets of residuals: rsur
X1,n = U1n ◦X1,n−1 +U2n ◦

X2,n−1 − α1pX1,n−1 − α1(1 − p)X2,n−1 and rin
X1,n = ε1,n − µε1

(analogous for the

process {X2,n}). The problem that arises here is that the binomial thinning

component and the innovation component are not observable. Thus, we have

to consider their conditional expectation with respect to the σ-algebra gener-

ated by vectors (X1,n, X2,n), (X1,n−1, X2,n−1), ..., (X1,0, X2,0). Since the process

{(X1,n, X2,n)} is lag-one dependent, we investigate conditional expectations with

respect to the σ-algebra generated only with random vectors at moments n and

n − 1, Fn(X1,n, X2,n, X1,n−1, X2,n−1).

Let us introduce the notations Pu,v(A) = P (A|X1,n−1 = u, X2,n−1 = v) and

Px1,x2,u,v(A) = P (A|X1,n = x1, X2,n = x2, X1,n−1 = u, X2,n−1 = v). The condi-

tional probability mass function of the first addend in equation (4.1) with respect

to the σ-algebra Fn, for m, x, y, u, v ∈ N0, is

Px1,x2,u,v(U1n ◦ X1,n−1 = m)

=
Pu,v(U1n ◦ X1,n−1 = m, U1n ◦ X1,n−1 + U2n ◦ X2,n−1 + ε1,n = x1)

Pu,v(X1,n = x1)

=
1

Pu,v(X1,n = x1)
[pPu,v(α1 ◦ X1,n−1 = m, 0 ◦ X2,n−1 + ε1,n = x1 − m)

+ (1 − p)Pu,v(0 ◦ X1,n−1 = m, α1 ◦ X2,n−1 + ε1,n = x1 − m)]

=
1

Pu,v(X1,n = x1)
[pP (Bin(u, α1) = m)P (ε1,n = x1 − m)

+ (1 − p)1{m=0}P (Bin(v, α1) + ε1,n = x1 − m)],

where Bin(u, α) denotes a random variable with binomial distribution and pa-

rameters u i α. In a similar manner, for r, k, s ∈ N0, we obtain the following three

equations,

Px1,x2,u,v(U2n◦X2,n−1 =r) =
1

Pu,v(X1,n =x1)
[pI{r=0}P (Bin(u, α1)+ε1,n =x1)

+ (1−p)P (Bin(v, α2) = r)P (ε1,n = x1 − r)],

Px1,x2,u,v(V1n∗X1,n−1 =k) =
1

Pu,v(X2,n =x2)
[qP (NB(u, α2)=k)P (ε2,n =x2−k)

+ (1−q)I{k=0}P (NB(v, α2)+ε2,n =x2)],

Px1,x2,u,v(V2n ∗ X2,n−1 = s) =
1

Pu,v(X2,n =x2)
[qI{s=0}P (NB(u, α2)+ε2,n =x2)

+(1−q)P (NB(v, α2)=s)P (ε2,n =y − s)].
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In the last two equations the notation NB(u, α) stands for a random variable

with negative binomial distribution with parameters u and α
1+α

.

With these results in mind and applying some algebra, we obtain the fol-

lowing equations

E(Uin ◦ Xi,n−1|Fn) =

ui
∑

j=1

jPx1,x2,u,v(Uin ◦ Xi,n−1 = j)

=
pi

Pu,v(X1,n = x1)

min(ui,x1)
∑

j=1

j

(

ui

j

)

αj
1(1 − α1)

ui−jP (ε1,n = x1 − j)

=
α1piui

Pu,v(X1,n = x1)

min(ui−1,x1−1)
∑

j=0

(

ui−1

j

)

αj
1(1−α1)

ui−1−jP (ε1,n = x1−1−j)

=
α1piui

Pu,v(X1,n = x1)
P ′

i,ui−1(α1 ◦ Xi,n−1 + ε1,n = x1 − 1)

and

E(Vin ∗ Xi,n−1|Fn) =

x2
∑

j=1

jPx1,x2,u,v(Vin ∗ Xi,n−1 = j)

=
qi

Pu,v(X2,n = x2)

x2
∑

j=1

j

(

ui + j − 1

j

)

αj
2

(1 + α2)ui+j
P (ε2,n = x2 − j)

=
α2qiui

Pu,v(X2,n = x2)

x2−1
∑

j=0

(

ui + 1 + j − 1

j

)

αj
2

(1 + α2)ui+1+j
P (ε2,n = x2 − 1 − j)

=
α2qiui

Pu,v(X2,n = x2)
P ′

i,ui+1(α2 ∗ Xi,n−1 + ε2,n = x2 − 1),

where we introduced the notations P ′
i,x(A) = P (A|Xi,n−1 = x), i = 1, 2, p1 = p,

p2 = 1 − p, q1 = q, q2 = 1 − q, u1 = u and u2 = v. Thus, we can conclude that

the conditional expectation of the survival part of the process (4.1) is calculated

as

E(U1n◦X1,n−1+U2n◦X2,n−1|Fn)=pE(α1◦X1,n−1|Fn)+(1−p)E(α1◦X2,n−1|Fn)

=
1

Pu,v(X1,n = x1)
· [α1puP1,u−1(α1 ◦ X1,n−1 + ε1,n = x1 − 1)

+α1(1 − p)vP2,v−1(α1 ◦ X2,n−1 + ε1,n = x1 − 1)]

and for the process (4.2) as

E(V1n∗X1,n−1+V2n∗X2,n−1|Fn)=qE(α2∗X1,n−1|Fn)+(1−q)E(α2∗X2,n−1|Fn)

=
1

Pu,v(X2,n = x2)
· [quα2P1,u+1(α2 ∗ X1,n−1 + ε2,n = x2 − 1)

+(1 − q)vα2P2,v+1(α2 ∗ X2,n−1 + ε2,n = x2 − 1)] .
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We have defined the innovation processes such that (ε1,n, ε2,n) is independent of

(X1,m, X2,m) for m < n. Since we observed the conditional expectation at time

n with respect to the σ-algebra Fn, we need to pay special attention here. The

conditional probability mass functions are

Px1,x2,u,v(ε1,n = x1 − k)=
P (ε1,n = x1 − k)

Pu,v(X1,n = x1)

×[pPu,v(α1 ◦ X1,n−1 =k)+(1−p)Pu,v(α1 ◦ X2,n−1 =k)]

and

Px1,x2,u,v(ε2,n = x2 − k)=
P (ε2,n = x2 − k)

Pu,v(X2,n = x2)

×[qPu,v(α2∗X1,n−1 =k)+(1−q)Pu,v(α2∗X2,n−1 =k)] .

Hance, the corresponding conditional expectations are

E(ε1,n|Fn) =
1

Pu,v(X1,n = x1)

×[p (x1P1,u(α1◦X1,n−1+ε1,n =x1)−α1uP1,u−1(α1◦X1,n−1+ε1,n =x1−1))

+ (1−p) (x1P2,v(α1◦X2,n−1+ε1,n =x1)−α1vP2,v−1(α1◦X2,n−1+ε1,n =x1−1))]

and

E(ε2,n|Fn) =
1

Pu,v(X2,n = x2)

×[q (x2P1,u(α2∗X1,n−1+ε2,n =x2)−α2uP1,u+1(α2∗X1,n−1+ε2,n =x2−1))

+ (1−q) (x2P2,v(α2∗X2,n−1+ε2,n =x2)−α2vP2,v+1(α2∗X2,n−1+ε2,n =x2−1))] .

Now we can distinguish between the error from the survival and the error

from the innovation process. If we sum these two values we obtain the following

results

rsurr
X1,n + rin

X1,n =E(pα1 ◦ X1,n−1 + (1 − p)α1 ◦ X2,n−1|X1,n, X1,n−1)

− α1pX1,n−1 − α1(1 − p)X2,n−1 + E(ε1,n|X1,n, X1,n−1) − µε

=E(pα1 ◦ X1,n−1 + (1 − p)α1 ◦ X2,n−1 + ε1,n|X1,n, X1,n−1)

− α1pX1,n−1 − α1(1 − p)X2,n−1 − µε1,n

=X1,n − α1pX1,n−1 − α1(1 − p)X2,n−1 − µε1
= rX1,n.(4.3)

We can conclude that the sum of these two error terms is equal to the error term

obtained by using conditional expectation for the process {X1,n} with respect to

σ-algebra Fn−1. The conclusion is analogous for the process {X2,n}.

5. APPLICATION

In this section, we discuss the characteristics of data for which BVMIXGI-

NAR(1) model is the most adequate. We compare results of BVMIXGINAR(1)
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model with results of some other bivariate models. At the end of the section we

analyze prediction errors of BVMIXGINAR(1) model and suggest how the model

can be improved.

We analyze data from the Pittsburgh police department number 407, which

can be found on the website www.forecastingprinciples, where we focus on the

number of stolen vehicles (MVTHEFT) and the number of reported drug activ-

ities (C DRUG) per month from January 1990 to December 2001. The average

values of these two series are 1.74 and 1.5, and the variances are 2.98 and 5.01,

respectively. The correlation between the series is 0.22. The bar plots and cor-

relograms are given in Figure 1. Both corelograms show the presence of lag 1

autocorrelation. Although there are some autocorrelations on higher lags for se-

ries C DRUG, the value on the first lag is dominant. High positive correlation

between the series, overdispersion and the first lag autocorrelation imply that

BVMIXGINAR(1) might be adequate.

Figure 1: Data series and autocorrelation function for MVTHEFT and
C DRUG series.

We compare BVMIXGINAR(1) model with models BVNGINAR(1) intro-

duced in [12], and BVPOINAR(1) introduced in [9], since both of these models

have random coefficients and a similar structure. For the three models, we com-

pare their values of the log-likelihood functions and the root mean square errors

(RMS) made by one step ahead prediction. The results are presented in Table 1.
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Table 1: Parameter estimates of INAR models, root mean square errors
and the log-likelihood function for MVTHEFT and C DRUG
data series.

Model CML estimates
log- RMS RMS

likelihood MVTHEFT C DRUG

BVMIXGINAR(1)
α̂1 = 0.148(0.1), α̂2 = 0.472(0.095), −477.51 1.695 1.990

p̂ = 0.469(0.325), q̂ = 0.02(0.08), µ̂ = 1.598(0.164)

BVNGINAR(1)
α̂1 = 0.242(0.166), α̂2 = 0.473(0.095), −478.5 1.703 1.990

p̂ = 0.39(0.244), q̂ = 0.02(0.078), µ̂ = 1.604(0.171)

BVPOINAR(1)
α̂1 = 0.217(0.066), α̂2 = 0.41(0.055), −516.62 1.701 1.998

p̂ = 0.328(0.172), q̂ = 0.068(0.066), λ̂ = 1.687(0.11)

According to the test results, BVMIXGINAR(1) is the most adequate for

these data. Notice that models with geometric distribution obtain higher values of

the likelihood function. BVMIXGINAR(1) achieves slightly higher log-likelihood

values than BVNGINAR(1) but much lower RMS for MVTHEFT series. Mod-

elling C DRUG series with geometric distribution where survival processes evolve

under negative binomial thinning provides the best results. RMS for C DRUG

are the same for BVMIXGINAR(1) and BVNGINAR(1). The improvement with

BVMIXGINAR(1) is with RMS for MVTHEFT. The assumption that one sur-

vival process evolves under binomial and the other survival process under negative

binomial thinning improves prediction performance. We need this mix of thin-

ning operators when we model two series with different behavior, as the case here.

Since once sold drugs are often resold, but once stolen vehicle cannot be stolen

again, we have here one process that is self-generated and one that is not.

The estimated parameters of BVMIXGINAR(1) indicate that drug activi-

ties influence the number of stolen vehicles in this area, while vice versa does not

hold since the value of parameter q is statistically equal to zero.

We continue with the prediction performance analysis by focusing on the

prediction errors made by the survival and innovation components separately. We

calculate these residuals and plot them to assess the adequacy of each component.

As given by equation (4.3), the sum of these two residuals is equal to the residuals

obtained by the usual definition. The residuals are presented in Figure 2. It can

be noticed that the residuals of the innovation processes are much higher than the

residuals of the survival processes, apart from the few cases of C DRUG series.

Further, the correlation between the two type of residuals is 0.425 for MVTHEFT

and 0.506 for C DRUG series. The correlation is positive but not as high as one

might expect. These results also add value to the model since an imprecise

prediction of one component can be absorbed by the prediction of the other

component. Another interesting point is a low correlation of only 0.11 between the

innovation processes of the two series, which supports the structural assumption

that innovation processes are independent. Higher residuals generated by the
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innovation processes indicate that future work should focus on improving the

innovation processes.

Figure 2: Upper figure shows the residuals for MVTHEFT and lower for
C DRUG series.
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CMA/UNL – Centro de Matemática e Aplicações,
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CMA/UNL – Centro de Matemática e Aplicações,
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• In this paper the authors introduce the hyper-block matrix sphericity test which is a
generalization of both the block-matrix and the block-scalar sphericity tests and as
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1. INTRODUCTION

Likelihood ratio tests (l.r.t.’s) have a large scope of application in different

fields of research such as for example engineering, economics, medicine and ecol-

ogy [27, 20, 5, 21]. However, in most cases, the exact distribution of the l.r.t.

statistics has a very complicated expression which makes difficult the practical

use of the testing procedure. On the other hand the commonly used asymptotic

approximations [2, 26] display lack of precision mainly in extreme situations such

as for high number of variables and/or small sample sizes [14, 9] and situations

where the parameters of interest and/or nuisance parameters are on the bound-

ary of the parameter space [11]. This is a well known and recognized problem

in standard likelihood ratio testing procedures which becomes even more serious

when one wants to perform tests for more elaborate covariance structures. These

elaborate structures have recently become very important in different statistical

techniques for the validation of assumptions required in different models such as

in hierarchical or mixed linear univariate and multivariate models.

In this paper the authors introduce the hyper-block matrix (HBM) spheric-

ity test. This test is a useful generalization of the block-matrix and of the block-

scalar sphericity tests and is of crucial importance to validate elaborate assump-

tions on covariance matrix structures, for example on meta-analysis and error

covariance structures in mixed models and models for longitudinal data.

We will say that a covariance matrix Σ has a HBM spherical structure if

we can write

(1.1) Σ =







Ik1
⊗ ∆1 · · · 0
...

. . .
...

0 · · · Ikm
⊗ ∆m






, (∆ℓ unspecified, ℓ = 1, ..., m) .

where ⊗ denotes the Kronecker product, and for ℓ = 1, . . . , m, Ikℓ
denotes the

identity matrix of order kℓ and ∆ℓ is a positive-definite matrix.

The HBM spherical structure may arise in many situations and has as par-

ticular cases many interesting and important structures which may be of interest

not only as covariance structures in multivariate analysis as well as covariance

structures for the error in linear mixed and repeated measures models.

Let us consider a situation in which the same p∗ random variables (r.v.’s),

X1, . . . , Xp∗ , are measured in m “locals”, in the ℓ-th of which (ℓ = 1, . . . , m) we

take kℓ measurements, that is, a sample of size kℓ, and let us suppose we organize

such a meta-sample in a matrix X of dimensions p∗×n, with n =
∑m

ℓ=1 kℓ, as in

Figure 1.
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k1

︷ ︸︸ ︷

kℓ

︷ ︸︸ ︷

X
(p∗×n)

=











X11 . . . X1k1
. . . X1,k1+···+kℓ−1+1 . . . X1,k1+···+kℓ

. . .
X21 . . . X2k1

. . . X2,k1+···+kℓ−1+1 . . . X2,k1+···+kℓ
. . .

...
...

...
...

Xp∗1 . . . Xp∗k1
. . . Xp∗,k1+···+kℓ−1+1 . . . Xp∗,k1+···+kℓ

. . .

km

︷ ︸︸ ︷

. . . X1,k1+···+km−1+1 . . . X1,k1+···+km

. . . X2,k1+···+km−1+1 . . . X2,k1+···+km

...
...

. . . Xp∗,k1+···+km−1+1 . . . Xp∗,k1+···+km











Figure 1: Data matrix illustrating a situation of a meta-sample from
m “locals”, with sample size kℓ for the ℓ-th local and p∗ℓ = p∗

(ℓ = 1, . . . ,m).

Here “locals” is a general designation for example for different locals, fac-

tories, companies, hospitals, etc., and if we consider the p∗ r.v.’s X1, . . . , Xp∗

organized in the random vector X∗ = [X1, . . . , Xp∗ ]
′, with Cov(X∗) = ∆, then

we have

Cov(X) = Cov(vec(X)) =







Ik1
⊗ ∆ · · · 0
...

. . .
...

0 · · · Ikm
⊗ ∆






.

But, the HBM sphericity setup allows for more general situations as for

example those in which we may want to study or model possible differences in

strength break in a set of p∗ components manufactured by m different companies,

or the measurements of p∗ variables thought to be possible important indicators

of some disorder or disease, measured across m hospitals, or measurements of

p∗ pollutants in m different locals, or measurements of p∗ atmospheric variables

and indicators in m different cities, by taking a sample of size kℓ in the ℓ-th

“local”, but that, furthermore, not in every “local”, city, hospital or company, it

was possible to obtain measurements of all p∗ variables, although we still want

to consider as many of these in each “local” as possible. Then we may want to

consider a meta-sample as the one illustrated in Figure 2, for p∗ = 5.

In this case, since in different “locals” we may have different subsets of the

p∗ variables being analyzed, we may end-up with a covariance setup for the matrix

X as the one in (1.1), with different covariance matrices for each “local”.

Once we assume the HBM spherical structure for the covariance structure

in our model, we may then be interested in testing if that is indeed a plausible
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model for our covariances. The issues are thus: (i) how can we carry out a test

for such an elaborate structure, and (ii) in case we find a way of doing so, how

will we then be able to obtain p-values and/or quantiles for our test statistic,

since this may have a quite elaborate exact distribution.

k1

︷ ︸︸ ︷

kℓ

︷ ︸︸ ︷

X
(p∗×n)

=













X11 . . . X1k1
. . . X1,k1+···+kℓ−1+1 . . . X1,k1+···+kℓ

. . .
X21 . . . X2k1

. . . . . .
X31 . . . X3k1

. . . X3,k1+···+kℓ−1+1 . . . X3,k1+···+kℓ
. . .

. . . X4,k1+···+kℓ−1+1 . . . X4,k1+···+kℓ
. . .

X51 . . . X5k1
. . . . . .

km

︷ ︸︸ ︷

. . . X1,k1+···+km−1+1 . . . X1,k1+···+km

. . . X2,k1+···+km−1+1 . . . X2,k1+···+km

. . .

. . . X4,k1+···+km−1+1 . . . X4,k1+···+km

. . . X5,k1+···+km−1+1 . . . X5,k1+···+km













Figure 2: Data matrix illustrating a situation of a meta-sample from m
“locals”, with sample size kℓ for the ℓ-th local (ℓ = 1, . . . ,m),
p∗1 = 4, p∗ℓ = 3 and p∗m = 4, with different covariance matrices
∆ℓ (ℓ = 1, . . . ,m).

These are indeed the issues we propose to address in this paper, namely

showing how one can quite easily build the l.r.t. statistic for the test of the HBM

Spherical structure and how we can then obtain the expression for the moments

of the statistic and even for the characteristic function (c.f.) of its logarithm, from

which factorization we will then be able to obtain very sharp approximations for

the exact distribution of the statistic.

The HBM sphericity test is thus a test where the null hypothesis is written

as

(1.2) H0 : Σ =







Ik1
⊗ ∆1 · · · 0
...

. . .
...

0 · · · Ikm
⊗ ∆m






, (∆ℓ unspecified, ℓ = 1, ..., m)

where Σ is the covariance matrix of the random vector X and the matrices ∆ℓ

are p∗ℓ × p∗ℓ , (ℓ = 1, ..., m), with pℓ = kℓ × p∗ℓ and p =
∑m

ℓ=1pℓ.

This test is a generalization of the standard sphericity test and it has as

particular cases a number of interesting and important tests:

(i) the block-matrix sphericity (BM-Sph) test, for m = 1 [4, 3, 15],
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(ii) the block-scalar sphericity (BS-Sph) test, for p∗ℓ = 1, (ℓ = 1, ..., m)

[19, 18, 13],

(iii) the block independence (BI) test, for kℓ = 1, (ℓ = 1, ..., m) [24, 25],

[1, Chap. 9], [17, Sec. 11.2], [6, 7],

(iv) the common independence (Ind) test, for p∗ℓ = kℓ = 1, (ℓ = 1, ..., m)

[22, Sec. 7.4.3], [9, Secs. 1,2], and

(v) the sphericity (Sph) test, for m = p∗1=1 [16], [1, Sec.10.7], [17, Sec. 8.3],

[9].

These particular cases as well as their relations may be analyzed in Figure 3.

�
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Figure 3: Particular cases of the HBM (Hyper-Block Matrix) test and
their inter-relations:

HBM-Sph: Hyper-block matrix sphericity test;
BM-Sph: Block-matrix sphericity test;
BS-Sph: Block-scalar sphericity test;

Sph: Sphericity test; Ind: Independence test; BI: Block independence test.

The exact distribution of the HBM sphericity test statistic is almost in-

tractable in practical terms, thus our propose is to develop near-exact distribu-

tions for the test statistic and its logarithm, based on an adequate factorization

of the c.f. of the logarithm of the test statistic.

In Section 2 we will show how we may decompose the overall null hypothesis

in (1.2) into a set of three conditionally independent hypotheses and then how

from this decomposition (see [8]) we may derive expressions for the l.r.t. statistic

and its h-th moment. In Section 3 we will show how we may easily obtain the

expression for the c.f. of the logarithm of the test statistic and how we may use

the decomposition of the null hypothesis in Section 2, to induce an adequate

factorization of this c.f. in two factors, one that is the c.f. a Generalized Integer

Gamma (GIG) distribution [6], and the other the c.f. of a sum of independent

r.v.’s whose exponentials have Beta distributions. Then, in Section 4 we will use

this factorization to build very sharp near-exact distributions both for the test

statistic and its logarithm.
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Near-exact distributions are asymptotic distributions built using a different

approach. Usually working from an adequate factorization of the c.f. of the loga-

rithm of the l.r.t. statistic, we leave unchanged the set of factors that correspond

to a manageable distribution and approximate asymptotically the remaining set

of factors, in such a way that the resulting c.f., which we will call a near-exact

c.f., corresponds to a known manageable distribution, from which p-values and

quantiles may be easily computed. These near-exact distributions lie much closer

to the exact distribution than any common asymptotic distribution and, when

correctly built for statistics used in Multivariate Analysis, will show a marked

asymptotic behavior not only for increasing sample sizes but also for increasing

number of variables involved.

In Section 5 we will use a measure of proximity between the exact distribu-

tion and the near-exact distributions, based on the corresponding characteristic

functions in order to assess the quality and the asymptotic properties of the

near-exact distributions developed.

Section 6 is dedicated to power studies, where the very good behavior of

the test is revealed, through studies based on 1 000 000 pseudo-random samples

and carried out on several scenarios of violation of the null hypothesis of HBM

sphericity.

2. THE TEST STATISTICS AND ITS MOMENTS

In general terms, a null hypothesis H0 may be decomposed into a sequence

of three conditionally independent null hypotheses, if H0 admits the decomposi-

tion

H0 ≡ H03|1,2 ◦ H02|1 ◦ H01

where ‘◦’ is to be read as ‘after’, as long as

ΩH0
≡ ΩH03|1,2

⊂ ΩH13|1,2
≡ ΩH02|1

⊂ ΩH12|1
≡ ΩH01

⊂ ΩH11
≡ ΩH1

where ΩH0
is the parameter space under H0 and ΩH1

the union of the parameter

spaces under H0 and H1, and where H1∗ represents the alternative hypothesis to

H0∗ (where ‘∗’ is used as a wildcard).

The null hypothesis

(2.1) H01 : Σ = bdiag (Σℓℓ; ℓ = 1, ..., m)

corresponds to the test of independence of m groups of variables, the ℓ-th group

having pℓ = p∗ℓ×kℓ variables (ℓ = 1, ..., m).
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If we consider that the random vector X has a p-variate Normal distribution

with expected value vector µ and covariance matrix Σ, that is, if we consider the

vector X ∼ Np

(

µ, Σ
)

and suppose that we have a sample of size N (> p) from

X, then the l.r.t. statistic used to test H01 and its h-th moment are respectively

given by (see secs. 9.2 and 9.3.2 in [1])

(2.2) Λ1 =
|A|

N

2

m
∏

ℓ=1

|Aℓℓ|
N

2

and

(2.3) E
[

(Λ1)
h
]

=
m−1
∏

ℓ=1

pℓ
∏

k=1

Γ
(

N−qℓ−k
2 + N

2 h
)

Γ
(

N−qℓ−k
2

)

Γ
(

N−k
2

)

Γ
(

N−k
2 + N

2 h
) ,

(

h> p−pm

N
−1
)

where the matrix A is the maximum likelihood estimator (m.l.e.) of Σ, Aℓℓ its

ℓ-th diagonal block of order pℓ (ℓ = 1, ..., m) and qℓ = pℓ+1 + ... + pm.

The null hypothesis

(2.4) H02|1 =
m
∧

ℓ=1

Hℓ
02|1

where for ℓ = 1, ..., m

(2.5)

Hℓ
02|1 : Σℓℓ = bdiag

(

Σℓ
vv, v = 1, ..., kℓ

)

assuming Σ = bdiag (Σℓℓ, ℓ = 1, ..., m)
that is, assuming H01

is the null hypothesis of a test of independence of kℓ groups of variables, with p∗ℓ
variables each. The l.r.t. statistic to test Hℓ

02|1 in (2.5) and its h-th moment are

respectively given by (see Secs. 9.2 and 9.3.2 in [1])

Λℓ
2|1 =

|Aℓℓ|
N

2

kℓ
∏

v=1

∣

∣Av
ℓℓ

∣

∣

N

2

and

E

[

(

Λℓ
2|1

)h
]

=

kℓ−1
∏

v=1

p∗
ℓ
∏

k=1

Γ
(

N−qℓ
v−k

2 + N
2 h
)

Γ
(

N−qℓ
v−k

2

)

Γ
(

N−k
2

)

Γ
(

N−k
2 + N

2 h
) ,

(

h> pℓ

N
−1
)

where the matrix Aℓℓ is the maximum likelihood estimator of Σℓℓ, Av
ℓℓ its v-th

(v = 1, ..., kℓ) diagonal block of order p∗ℓ and qℓ
v = (kℓ − v) p∗ℓ , (v = 1, ..., kℓ).

The l.r.t. statistic to test the null hypothesis in (2.4) is thus

(2.6) Λ2|1 =
m
∏

ℓ=1

Λℓ
2|1 =

m
∏

ℓ=1

|Aℓℓ|
N

2

kℓ
∏

v=1

∣

∣Av
ℓℓ

∣

∣

N

2
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and, given the fact that the statistics Λℓ
2|1, ℓ = 1, . . . , m, form a set of m inde-

pendent statistics, since under H01 in (2.1) the m matrices Aℓℓ are independent

and each statistic Λℓ
2|1 is built only from Aℓℓ, the h-th moment of Λ2|1 is

(2.7)

E
[

(

Λ2|1

)h
]

=
m
∏

ℓ=1

E

[

(

Λℓ
2|1

)h
]

=
m
∏

ℓ=1

kℓ−1
∏

v=1

p∗
ℓ
∏

k=1

Γ
(

N−qℓ
v−k

2 + N
2 h
)

Γ
(

N−qℓ
v−k

2

)

Γ
(

N−k
2

)

Γ
(

N−k
2 + N

2 h
) ,

(

h > max
{

pℓ

N
− 1, ℓ = 1, ..., m

}

)

.

Finally, the null hypothesis H03|1,2 may be written as

(2.8) H03|1,2 =
m
∧

ℓ=1

Hℓ
03|1,2

where, for ℓ = 1, ..., m,

(2.9)

Hℓ
03|1,2 : Σℓ

11 = · · · = Σℓ
kℓkℓ

= ∆ℓ (∆ℓ unspecified)

assuming Σ = bdiag
(

Σℓℓ =
(

bdiag
(

Σℓ
vv, v = 1, ..., kℓ

)))

that is, assuming H02|1 and H01

is the null hypothesis corresponding to the test of equality of kℓ covariance ma-

trices each with dimensions p∗ℓ × p∗ℓ .

Since under H02|1, for each ℓ = 1, . . . , m, the kℓ matrices Av
ℓℓ (v = 1, . . . , kℓ)

are independent, The l.r.t. statistic to test each null hypothesis Hℓ
03|1,2 in (2.9)

and its h-th moment are respectively, (see Secs. 10.2 and 10.4.2 in [1])

Λℓ
3|1,2 =

kℓ
∏

v=1
|Av

ℓℓ|
N

2

∣

∣A∗
ℓ

∣

∣

kℓ
N

2

k
Npℓ

2

ℓ

and

E

[

(

Λℓ
3|1,2

)h
]

=

p∗
ℓ
∏

k=1

kℓ
∏

v=1

Γ
(

N−1
2 − k−1

2kℓ
+ v−1

kℓ

)

Γ
(

N−1
2 − k−1

2kℓ
+ v−1

kℓ
+ N

2 h
)

Γ
(

N−k
2 + N

2 h
)

Γ
(

N−k
2

)

where the matrix Aℓℓ is the maximum likelihood estimator of Σℓℓ, Av
ℓℓ its v-th

diagonal block of order p∗ℓ (v = 1, ..., kℓ) and A∗
ℓ = A1

ℓℓ + · · · + Akℓ

ℓℓ .

The l.r.t. statistic to test (2.8) is thus

(2.10) Λ3|1,2 =
m
∏

ℓ=1

Λℓ
3|1,2 =

m
∏

ℓ=1

kℓ
∏

v=1
|Av

ℓℓ|
N

2

∣

∣A∗
ℓ

∣

∣

kℓ
N

2

k
Npℓ

2

ℓ
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and, since under H01 in (2.1), the m statistics Λℓ
3|1,2 are independent, given that

each statistic Λℓ
3|1,2 is built only from Aℓℓ and under H01 the m matrices Aℓℓ

(ℓ = 1, . . . , m) are independent, the h-th moment of Λ3|1,2 is given by

E
[

(

Λ3|1,2

)h
]

=
m
∏

ℓ=1

E

[

(

Λℓ
3|1,2

)h
]

=

m
∏

ℓ=1

p∗
ℓ
∏

k=1

kℓ
∏

v=1

Γ
(

N−1
2 − k−1

2kℓ
+ v−1

kℓ

)

Γ
(

N−k
2 + N

2 h
)

Γ
(

N−1
2 − k−1

2kℓ
+ v−1

kℓ
+ N

2 h
)

Γ
(

N−k
2

)

,

(

h > max
{

p∗
ℓ

N
− 1, ℓ = 1, ..., m

})

.

From Lemma 10.3.1 in [1], the l.r.t. statistic to test (1.2) is thus the product

of the l.r.t. statistics used to test the null hypotheses in (2.1), (2.4) and (2.8),

that is, the product of the l.r.t. statistics in (2.2), (2.6) and (2.10), thus with

(2.11)

Λ = Λ1 × Λ2|1 × Λ3|1,2

=
|A|

N

2

m
∏

ℓ=1

|Aℓℓ|
N

2

×



















m
∏

ℓ=1

|Aℓℓ|
N

2

kℓ
∏

v=1

∣

∣Av
ℓℓ

∣

∣

N

2



















×



















m
∏

ℓ=1

kℓ
∏

v=1
|Av

ℓℓ|
N

2

∣

∣A∗
ℓ

∣

∣

kℓ
N

2

k
Npℓ

2

ℓ



















=

{

m
∏

ℓ=1

k
Npℓ

2

ℓ

}

× |A|
N

2

m
∏

ℓ=1

∣

∣A∗
ℓ

∣

∣

kℓ
N

2

where the matrix A is the m.l.e. of Σ, Aℓℓ is the ℓ-th diagonal block of order

pℓ of A (ℓ = 1, ..., m), with p =
m
∑

ℓ=1

pℓ and A∗
ℓ = A1

ℓℓ + · · · + Akℓ

ℓℓ , where Av
ℓℓ is the

v-th (v = 1, ..., kℓ) diagonal block of order p∗ℓ of Aℓℓ and pℓ = kℓ × p∗ℓ . We should

note that the expression in (2.11) is identical to the one we obtain when we use

the usual method of derivation of the l.r.t. statistic, through its definition (see

Appendix A).

The hypotheses H03|1,2, H02|1 and H01 are independent in the sense that

under the overall null hypothesis H0 it is possible to prove that the l.r.t. statistics

used to test these hypotheses are independent. Indeed, by Lemma 10.4.1 in [1] or

Theorem 5 in [10], the l.r.t. statistic Λ1 in (2.2) is independent of the m matrices

Aℓℓ, (ℓ = 1, ..., m), so that since Λ2|1 and Λ3|1,2 are built only from the m matrices

Aℓℓ (ℓ = 1, ..., m), these l.r.t. statistics are independent of Λ1. But then, since we

may use the same two results to argue that each statistic Λℓ
2|1 is independent of

the kℓ matrices Av
ℓℓ (v = 1, . . . , kℓ), the statistic Λ2|1 is independent of all

∑m
ℓ=1 kℓ

matrices Av
ℓℓ (ℓ = 1, . . . , kℓ; v = 1, . . . , m) and as such independent of Λ3|1,2 which

is built only on these matrices.
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As such, we may obtain the expression of the h-th moment of Λ from the

expressions for the h-th moment of each of the statistics Λ3|1,2, Λ2|1 and Λ1 writing

it as

E
[

(Λ)h
]

=E
[

(Λ1)
h
]

× E
[

(

Λ2|1

)h
]

× E
[

(

Λ3|1,2

)h
]

=
m
∏

ℓ=1

p∗
ℓ
∏

k=1

kℓ−1
∏

v=1

Γ
(

N−1
2 − k−1

2kℓ
+ v−1

kℓ

)

Γ
(

N−1
2 − k−1

2kℓ
+ v−1

kℓ
+ N

2 h
)

Γ
(

N−qℓ
v−k

2 + N
2 h
)

Γ
(

N−qℓ
v−k

2

)

×
m
∏

ℓ=1

p∗
ℓ
∏

k=1

Γ
(

N−1
2 − k−1

2kℓ
+ kℓ−1

kℓ

)

Γ
(

N−1
2 − k−1

2kℓ
+ kℓ−1

kℓ
+ N

2 h
)

Γ
(

N−k
2 + N

2 h
)

Γ
(

N−k
2

)

×
m−1
∏

ℓ=1

pℓ
∏

k=1

Γ
(

N−qℓ−k
2 + N

2 h
)

Γ
(

N−qℓ−k
2

)

Γ
(

N−k
2

)

Γ
(

N−k
2 + N

2 h
) ,

for h>max {(p − pm)/N−1, pℓ/N−1(ℓ=1, ..., m)} and where p =
∑m

ℓ=1pℓ, qℓ =

pℓ+1 + ... + pm, pℓ = kℓ × p∗ℓ and qℓ
v = (kℓ − v) p∗ℓ (ℓ = 1, ..., m; v = 1, ..., kℓ) .

Actually we may note that the two first null hypotheses may be condensed

into a single null hypothesis to test the independence of q∗∗ =
∑m

ℓ=1 kℓ groups of

variables, the ν-th group with p∗∗ν variables for

(2.12)
p∗∗ =

[

p∗1, . . . , p
∗
1, p

∗
2, . . . , p

∗
2, . . . , p∗ℓ , . . . , p

∗
ℓ , . . . , p∗m, . . . , p∗m

]

,
︸ ︷︷ ︸

k1

︸ ︷︷ ︸

k2

︸ ︷︷ ︸

kℓ

︸ ︷︷ ︸

km

with ν = 1, . . . ,
∑m

ℓ=1 kℓ, that is, with

p∗∗ν = p∗ℓ , for 1 +
ℓ−1
∑

i=1

ki ≤ ν ≤
ℓ
∑

i=1

ki .

This null hypothesis may be written as

H0,12 : Σ = bdiag
(

∆1, . . . ,∆k1
, . . . ,∆k1+···+kℓ−1+1, . . . ,∆k1+···+kℓ

, . . .
︸ ︷︷ ︸

of order p∗
1

︸ ︷︷ ︸

of order p∗
ℓ

. . . ,∆k1+···+km−1+1, . . . ,∆k1+···+km

)

.
︸ ︷︷ ︸

of order p∗m

The l.r.t. statistic to test H0,12 is given by

(2.13) Λ1,2 =
|A|N

2

∏q∗∗

ν=1 |A∗
νν |

N

2
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where A∗
νν is the ν-th diagonal block of order p∗∗ν (ν = 1, ..., q∗∗), and the expres-

sion of its h-th moment is given by (see secs. 9.2 and 9.3.2 in [1])

E
[

(Λ1,2)
h
]

=

q∗∗−1
∏

ν=1

p∗∗ν
∏

k=1

Γ
(

N−q∗ν−k
2 + N

2 h
)

Γ
(

N−q∗ν−k
2

)

Γ
(

N−k
2

)

Γ
(

N−k
2 + N

2 h
)

for

q∗ν = p∗∗ν+1 + · · · + p∗∗q∗∗ where q∗∗ =
m
∑

ℓ=1

kℓ .

Note that the l.r.t. statistic in (2.13) may be also given by the product of the l.r.t.’s

in (2.2) and (2.6), used to test the null hypotheses in (2.1) and (2.4) respectively,

and the expression of its h-th moment may also be given by the product of the

expressions of the h-th moments in (2.3) and (2.7) of the l.r.t.’s in (2.2) and (2.6)

respectively.

Finally, the expression of the h-th moment of Λ may be re-written as

(2.14)

E
[

(Λ)h
]

= E
[

(Λ1,2)
h
]

× E
[

(

Λ3|1,2

)h
]

=

q∗∗−1
∏

ν=1

p∗∗ν
∏

k=1

Γ
(

N−q∗ν−k
2 + N

2 h
)

Γ
(

N−q∗ν−k
2

)

Γ
(

N−k
2

)

Γ
(

N−k
2 + N

2 h
)

×
m
∏

ℓ=1

p∗
ℓ
∏

k=1

kℓ
∏

v=1

Γ
(

N−1
2 − k−1

2kℓ
+ v−1

kℓ

)

Γ
(

N−1
2 − k−1

2kℓ
+ v−1

kℓ
+ N

2 h
)

Γ
(

N−k
2 + N

2 h
)

Γ
(

N−k
2

) .

The factorization of the c.f. of W = − log Λ developed in the next section

will have as a starting base this last expression.

3. THE CHARACTERISTIC FUNCTION OF W = − log(Λ)

Since in (2.14) the Gamma functions remain valid for any strictly complex

h, if we take W1,2 = − log Λ1,2 and W3 = − log Λ3|1,2, we may write the c.f. of

W = − log Λ as
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(3.1)

ΦW (t) = E
(

e−it log Λ
)

= E
[

Λ−it
]

= E
[

Λ−it
1,2

]

E
[

Λ−it
3|1,2

]

= ΦW1,2
(t) ΦW3

(t)

=

q∗∗−1
∏

ν=1

p∗∗ν
∏

k=1

Γ
(

N−q∗ν−k
2 − N

2 it
)

Γ
(

N−q∗ν−k
2

)

Γ
(

N−k
2

)

Γ
(

N−k
2 − N

2 it
)

︸ ︷︷ ︸

ΦW1,2
(t)

×
m
∏

ℓ=1

p∗
ℓ
∏

k=1

kℓ
∏

v=1

Γ
(

N−1
2 − k−1

2kℓ
+ v−1

kℓ

)

Γ
(

N−1
2 − k−1

2kℓ
+ v−1

kℓ
− N

2 it
)

Γ
(

N−k
2 − N

2 it
)

Γ
(

N−k
2

)

︸ ︷︷ ︸

ΦW3
(t)

,

where t ∈ R, i =
√
−1, q∗ν = p∗∗ν+1 + · · ·+ p∗∗q∗∗ , q∗∗ =

∑m
ℓ=1 kℓ, and p∗∗ν are defined

in (2.12). From this expression we may state that

Λ
d≡







q∗∗−1
∏

ν=1

p∗∗ν
∏

k=1

(Yνk)
N/2







×







m
∏

ℓ=1

p∗
ℓ
∏

k=1

kℓ
∏

v=1

(Yℓkv)
N/2







where

Yνk ∼ Beta

(

N−q∗ν−k

2
,
q∗ν
2

)

and Yℓkv ∼ Beta

(

N−k

2
,
v−1

kℓ

+
k−1

2

kℓ−1

kℓ

)

are independent r.v.’s.

In order to be able to build sharp near-exact distributions for W and Λ,

we need to further factorize ΦW1,2
(t) and ΦW3

(t), by writing each one of these

c.f.’s as the product of two factors, one that is the c.f. of a Generalized Integer

Gamma (GIG) distribution and the other the c.f. of a sum of independent r.v.’s

whose exponentials have Beta distributions.

3.1. The factorization of the characteristic function of W1,2 = − log Λ1,2

The results in [7, 14] may be used to show that ΦW1,2
(t) in (3.1) may be

written as

ΦW1,2
(t) = ΦW1,2,a

(t) × ΦW1,2,b
(t) ,

where

(3.2) ΦW1,2,a
(t) =

p
∏

k=3

(

N − k

N

)r1,k
(

N − k

N
− it

)−r1,k

is the c.f. of the sum of p− 2 independent integer Gamma r.v.’s, that is a Gener-

alized Integer Gamma distribution of depth p− 2, with integer shape parameters
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r1,k given by

(3.3) r1,k =

{

h1,k−2 + (−1)k k∗ k = 3, 4

r1,k−2 + h1,k−2, k = 5, ..., p

with k∗ =
⌊

m∗

2

⌋

, where m∗ is the number of sets of variables with an odd num-

ber of variables, among the q∗∗ groups of variables, the ν-th of which with p∗∗ν
variables, and

h1;k = (# of p∗∗ν (ν = 1, .., q∗∗) ≥ k) − 1, k = 1, ..., p − 2

and

(3.4) ΦW1,2,b
(t) =

(

Γ
(

N−1
2

)

Γ
(

N−2
2

)

Γ
(

N−2
2 − N

2 it
)

Γ
(

N−1
2 − N

2 it
)

)k∗

is the c.f. of the sum of k∗ independent r.v.’s with Logbeta distributions multiplied

by N
2 . We should note that when k∗ = 0, ΦW1,2,b

(t) = 1.

3.2. The factorization of the characteristic function of W3 = − log Λ3|1,2

Based on the results in [14] we may re-write the c.f. of W3, ΦW3
(t) in (3.1),

as

ΦW3
(t) = ΦW3,a

(t) × ΦW3,b
(t)

where

(3.5) ΦW3,a
(t) =

m
∏

ℓ=1

p∗
ℓ
∏

k=2

(

N − k

N

)rℓ

3,k−1

(

N − k

N
− it

)−rℓ

3,k−1

is the c.f. of the sum of
m
∑

ℓ=1

p∗ℓ −m independent Gamma r.v.’s, that is, a Generalized

Integer Gamma distribution of depth
m
∑

ℓ=1

p∗ℓ − m with integer shape parameters

rℓ
3;k given by (B.1) in Appendix B, and

(3.6)

ΦW3,2
(t) =

m
∏

ℓ=1











⌊p∗
ℓ
/2⌋
∏

k=1

kℓ
∏

v=1

Γ(aℓ

k
+bℓ

kv)
Γ(aℓ

k
+bℓ∗

kv)
Γ(aℓ

k
+bℓ∗

vk
−Nit)

Γ(aℓ

k
+bℓ

vk
−Nit)

×





kℓ
∏

v=1

Γ

�
aℓ

p∗
ℓ

+bℓ

p∗
ℓ

v

�
Γ

�
aℓ

p∗
ℓ

+bℓ∗
p∗
ℓ

v

� Γ

�
aℓ

p∗
ℓ

+bℓ∗
p∗
ℓ

v
−N

2
it

�
Γ

�
aℓ

p∗
ℓ

+bℓ

p∗
ℓ

v
−N

2
it

�(p∗
ℓ

mod 2)










with

(3.7) aℓ
k = N − 2k, bℓ

kv = 2k − 1 + v−2k
kℓ

, bℓ∗
vk =

⌊

bℓ
vk

⌋
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and

(3.8) aℓ
p∗

ℓ

=
N−p∗

ℓ

2 , bℓ
p∗

ℓ
v =

pℓ−kℓ−p∗
ℓ
+2v−1

2kℓ
, bℓ∗

p∗
ℓ
v =

⌊

bℓ
p∗

ℓ
v

⌋

,

is the c.f. of the sum of
m
∑

ℓ=1

⌊

p∗
ℓ

2

⌋

kℓ independent Logbeta r.v.’s multiplied by N

and
m
∑

ℓ=1

kℓ (p∗ℓ mod 2) independent Logbeta r.v.’s multiplied by N
2 .

As such, the c.f. of W may be written as

(3.9) ΦW (t) = Φ1 (t) × Φ2 (t)

where

(3.10) Φ1 (t) = ΦW1,2,a
(t) × ΦW3,a

(t) ,

with ΦW1,2,a
(t) and ΦW3,a

(t) given by (3.2) and (3.5), respectively, and

(3.11) Φ2 (t) = ΦW1,2,b
(t) × ΦW3,b

(t)

with ΦW1,2,b
(t) and ΦW3,b

(t) in (3.4) and (3.6), respectively.

The c.f. Φ1(t) in (3.10) can be seen as the c.f. of a GIG distribution of depth

p − 1, and it may be written as

(3.12) Φ1 (t) =

p
∏

k=2

(

N − k

N

)r+

k

(

N − k

N
− it

)−r+

k

where

(3.13) r+
k = r∗1,k +

m
∑

ℓ=1

rℓ∗
3,k ,

with

(3.14) r∗1,k =

{

0 k = 2

r1,k k = 3, . . . , p
and rℓ∗

3,k =

{

rℓ
3,k k = 2, . . . , p∗ℓ

0 k = p∗ℓ , . . . , p

with r1,k given by (3.3) and rℓ
3,k given by (B.1) in Appendix B, while Φ2(t) is the

c.f. of a sum of k∗ +
m
∑

ℓ=1

⌊

p∗
ℓ

2

⌋

kℓ independent Logbeta r.v.’s multiplied by N and

m
∑

ℓ=1

kℓ (p∗ℓ mod 2) independent Logbeta r.v.’s multiplied by N
2 .

From this alternative expression for the c.f. of W = − log Λ given by (3.9),

we may see that the exact distribution of Λ in (2.11) may be written as

Λ
d≡
{

p
∏

k=2

eZk

}{

k∗
∏

k=1

(Y1,k)
N

2

}







m
∏

ℓ=1

⌊p∗
ℓ
/2⌋
∏

k=1

kℓ
∏

v=1

(

Y ℓ
3,kv

)N







×







m
∏

ℓ=1

{

kℓ
∏

v=1

(Y ℓ
3,v)

N

2

}p∗
ℓ

mod 2





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where
d≡ means ”equivalent in distribution” and all the r.v.’s involved are inde-

pendent, with

(3.15)

Zk ∼ Γ

(

r+
k ,

N − k

N

)

, k = 2, . . . , p

Y1,k ∼ Beta

(

N − 2

2
,
1

2

)

, k = 1, . . . , k∗

Y ℓ
3,kv ∼ Beta

(

aℓ
k + bℓ∗

kv, b
ℓ
kv − bℓ∗

kv

)

, k = 1, . . . ,
⌊

p∗
ℓ

2

⌋

; v = 1, . . . , kℓ;

ℓ = 1, . . . , m

Y ℓ
3,v ∼ Beta

(

aℓ
p∗

ℓ

+ bℓ∗
p∗

ℓ
v, b

ℓ
p∗

ℓ
v − bℓ∗

p∗
ℓ
v

)

,

with r+
k given by (3.13) and (3.14), aℓ

k, bℓ
kv and bℓ∗

kv given by (3.7) and aℓ
p∗

ℓ

, bℓ
p∗

ℓ
v

and bℓ∗
p∗

ℓ
v given by (3.8).

This representation will enable us to develop well-fitting near-exact distri-

butions, which bear an extreme closeness to the exact distribution of Λ.

4. NEAR-EXACT DISTRIBUTIONS FOR W AND Λ

To build the near-exact distributions of W = − log Λ and Λ we will leave

Φ1(t) in (3.9) and (3.12) unchanged and we will replace Φ2(t) in (3.9) and (3.11)

by a sharp asymptotic approximation in such a way that the resulting c.f. corre-

sponds to a known manageable distribution.

From the results in Section 5 of [23], which show that we may asymptot-

ically replace a Logbeta(a, b) distribution by an infinite mixture of Γ(b + j, a)

distributions, with j = 0, 1, . . . , using a somewhat heuristic approach, we will

replace Φ2(t) by

(4.1) Φ∗
2(t) =

m+

∑

j=0

πjθ
r+j(θ − it)−(r+j) ,

which is the c.f. of a finite mixture of Γ(r + j, θ) distributions, where

(4.2)

r = k∗

2 +
m
∑

ℓ=1

⌊p∗
ℓ
/2⌋
∑

k=1

kℓ
∑

v=1

v−2k
kℓ

−
⌊

v−2k
kℓ

⌋

+
m
∑

ℓ=1

(

kℓ
∑

v=1

2v−p∗
ℓ
−1

2kℓ
−
⌊

2v−p∗
ℓ
−1

2kℓ

⌋

)p∗
ℓ

mod 2

= k∗

2 +
m
∑

ℓ=1

⌊

p∗
ℓ
+1
2

⌋

kℓ−1
2
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is the sum of all the second parameters of the Beta r.v.’s in (3.15) and θ is

obtained, together with s1, s2 and π∗, as the numerical solution of the system of

equations

(4.3)

dh

dth
Φ2(t)

∣

∣

∣

∣

t=0

=
dh

dth

(

π∗θs1(θ − it)−s1 + (1 − π∗)θs2(θ − it)−s2

)

∣

∣

∣

∣

t=0

,

h = 1, . . . , 4 ,

that is, as the rate parameter of a mixture of two Gamma distributions with

a common rate, which matches the first 4 derivatives of Φ2(t), at t = 0, so

that Φ1(t) ×
(

π∗θs1(θ − it)−s1 + (1 − π∗)θs2(θ − it)−s2

)

corresponds to a distri-

bution that matches the first 4 exact moments of W . Then the weights πj ,

j = 0, . . . , m+ − 1 are determined in such a way that

(4.4)
dh

dth
Φ2(t)

∣

∣

∣

∣

t=0

=
dh

dth
Φ∗

2(t)

∣

∣

∣

∣

t=0

, h = 1, . . . , m+ ,

with πm+ = 1 −∑m+−1
j=0 πj .

We will thus take as near-exact c.f. of W the c.f.

(4.5)

Φ∗
W (t) = Φ1(t) × Φ∗

2(t)

=

{

p
∏

k=2

(

N − k

N

)r+

k

(

N − k

N
− it

)−r+

k

}

×







m+

∑

j=0

πj θr+j (θ − it)−(r+j)







=

m+

∑

j=0

πj

{

θr+j (θ−it)−(r+j)
p
∏

k=2

(

N−k

N

)r+

k

(

N−k

N
−it

)−r+

k

}

with r and r+
k respectively given by (4.2) and (3.13), which is the c.f. of a mixture

of m+ +1 GNIG distributions of depth p that matches the first m+ exact moments

of W . This c.f. yields near-exact distributions for W with p.d.f.

(4.6) fW (w) =
m+
∑

j=0
πjf

GNIG

(

w
∣

∣

∣
r+
2 , r+

3 , ..., r+
p , r; N−2

N
, N−3

N
, ..., N−p

N
, θ; p

)

,

and c.d.f.

(4.7) FW (w) =
m+
∑

j=0
πjF

GNIG

(

w
∣

∣

∣
r+
2 , r+

3 , ..., r+
p , r; N−2

N
, N−3

N
, ..., N−p

N
, θ; p

)

,

for w > 0, and near-exact distributions for Λ with p.d.f.

(4.8) fΛ(z)=
m+
∑

j=0
πjf

GNIG

(

− log z
∣

∣

∣
r+
2 , r+

3 , ..., r+
p , r; N−2

N
, N−3

N
, ..., N−p

N
, θ; p

)

1
z
,
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and c.d.f.

(4.9) FΛ(z)=
m+
∑

j=0
πj

(

1−F GNIG

(

− log z
∣

∣

∣
r+
2 , r+

3 , ..., r+
p , r; N−2

N
, N−3

N
, ..., N−p

N
, θ; p

))

,

for 0 < z < 1.

The modules for the GNIG c.d.f. and p.d.f. are available in [12] and on

the web-page https://sites.google.com/site/nearexactdistributions/. Using these

modules, the computation of the p.d.f.’s and c.d.f.’s of the near-exact distribu-

tions becomes easy and very manageable, once the system of equations in (4.4)

is linear and as such very simple to solve, as it is also the case with the sys-

tem of equations in (4.3). The authors make available a set of Mathematica R©

modules to implement the computation of p.d.f, c.d.f., p-values and quantiles

for the near-exact distributions developed in the paper, as well as a module

to compute the value of the l.r.t. statistic from a sample, on the web-page

https://sites.google.com/site/nearexactdistributions/hyper-block-matrix-sphericity. In

Appendix C the authors present a short manual for the use of these modules,

along with some examples.

5. NUMERICAL STUDIES

In order to assess the performance of the near-exact distributions obtained

in the previous section we will use the measure

(5.1) ∆∗ =
1

2π

∫ +∞

−∞

∣

∣

∣

∣

ΦW (t) − Φ∗
W (t)

t

∣

∣

∣

∣

dt ,

with

max
w

|FW (w) − F ∗
W (w)| = max

z
|FΛ(z) − F ∗

Λ(z)| ≤ ∆∗ ,

where ΦW (t) and Φ∗
W (t) represent respectively the exact and near-exact c.f.’s of

W ; FW ( · ), F ∗
W ( · ), the exact and near-exact c.d.f.’s of W and FΛ( · ) and F ∗

Λ( · )
those of Λ. Values for this measure ∆∗, which is therefore an upper bound on

the difference between the exact and near-exact c.d.f.’s of both W and Λ for the

near-exact distributions developed in the previous section, for different values

of p∗ℓ and kℓ, may be analyzed in Tables 1 and 2, with smaller values of the

measure indicating even better agreements between the near-exact and the exact

distributions.

From Tables 1 and 2 we may see the clear asymptotic behavior of the near-

exact distributions not only for increasing sample sizes but also for increasing values

of p∗ℓ and kℓ, as well as the very good performance of the near-exact distributions

for very small sample sizes, which barely exceed the number of variables in use.



The Hyper-Block Matrix Sphericity Test 383

Table 1: Values of the measure ∆∗ in (5.1) for different values of m+

(the number of exact moments matched by the near-exact dis-
tributions) and for m = 4 and increasing values of kℓ, p∗ℓ and
N , for base values of kℓ = {3, 2, 3, 4}, p∗ℓ = {3, 5, 6, 4} and sam-
ple sizes N = p + 2, 200, 500, with p =

∑m
ℓ=1 kℓ×p∗ℓ .

m
+

N
0 1 2 4 6 10

kℓ + 0, p
∗
ℓ + 0, p = 53

p + 2 7.06×10−6 4.36×10−8 1.33×10−12 2.31×10−19 1.30×10−26 9.24×10−37

p + 200 7.40×10−7 1.04×10−8 3.21×10−14 4.24×10−21 9.44×10−28 8.24×10−41

p + 500 1.60×10−7 2.35×10−9 1.52×10−15 1.39×10−22 5.96×10−30 3.50×10−44

kℓ + 2, p
∗
ℓ + 0, p = 89

p + 2 2.24×10−6 7.56×10−9 1.67×10−13 1.49×10−20 1.51×10−27 2.76×10−41

p + 200 5.28×10−7 4.22×10−9 4.99×10−14 2.71×10−21 1.49×10−28 7.42×10−43

p + 500 1.35×10−7 1.15×10−9 6.45×10−15 9.96×10−23 1.50×10−30 5.65×10−46

kℓ + 5, p
∗
ℓ + 0, p = 143

p + 2 8.66×10−7 1.70×10−9 2.33×10−14 4.31×10−22 8.30×10−30 4.34×10−45

p + 200 3.75×10−7 1.77×10−9 2.13×10−14 4.19×10−22 8.01×10−30 3.79×10−45

p + 500 1.16×10−7 5.99×10−10 3.99×10−15 2.71×10−23 1.77×10−31 9.58×10−48

kℓ + 2, p
∗
ℓ + 2, p = 129

p + 2 1.14×10−6 2.50×10−9 1.58×10−14 3.24×10−22 7.86×10−30 6.94×10−45

p + 200 4.34×10−7 2.30×10−9 8.28×10−15 1.72×10−22 3.85×10−30 2.66×10−45

p + 500 1.28×10−7 7.39×10−10 1.19×10−15 8.62×10−24 6.44×10−32 4.83×10−48

kℓ + 2, p
∗
ℓ + 5, p = 189

p + 2 6.62×10−7 9.46×10−10 2.22×10−15 1.41×10−23 1.27×10−31 1.88×10−47

p + 200 3.84×10−7 1.32×10−9 2.92×10−15 1.69×10−23 2.33×10−31 7.10×10−47

p + 500 1.35×10−7 5.18×10−10 2.47×10−16 1.05×10−24 6.62×10−33 3.62×10−49

kℓ + 5, p
∗
ℓ + 2, p = 207

p + 2 3.75×10−7 4.84×10−10 1.88×10−15 9.07×10−24 4.51×10−32 1.36×10−48

p + 200 2.38×10−7 7.36×10−10 2.92×10−15 2.24×10−23 1.66×10−31 1.01×10−47

p + 500 8.99×10−8 3.03×10−10 7.05×10−16 2.33×10−24 7.17×10−33 7.46×10−50

kℓ + 5, p
∗
ℓ + 5, p = 303

p + 2 1.75×10−7 1.47×10−10 1.53×10−16 1.85×10−25 2.43×10−34 5.01×10−52

p + 200 1.52×10−7 3.02×10−10 3.43×10−16 9.02×10−25 2.43×10−33 1.90×10−50

p + 500 6.79×10−8 1.54×10−10 1.04×10−16 1.50×10−25 2.12×10−34 4.44×10−52

p + 1000 2.75×10−8 6.65×10−11 2.57×10−17 1.70×10−26 1.07×10−35 4.24×10−54

This asymptotic behavior is more marked for the near-exact distributions that

match more exact moments. This may be seen from the more accentuated de-

crease in the values of the measure ∆∗ for these near-exact distributions, that is,

e.g. increases either in sample size or in the number of variables make the values

of the measure ∆∗ to decrease more for the near-exact distributions that match

10 exact moments than for those that match 6 exact moments. It is interesting to

note that even near-exact distributions that match a very small number of exact

moments or even no exact moment, and that, as such, are much simpler in their
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structure, and faster to compute, exhibit these asymptotic behaviors, with the

behavior of the near-exact distribution that matches no exact moment being ab-

solutely remarkable. This latter one is a very simple near-exact distribution, for

the computation of which we do not even need to solve the system of equations

in (4.4). In this case we will have m+ = 0, and from (4.5)-(4.9) it is easy to see

that the near-exact distribution is just a GIG or a GNIG distribution, according

to r in (4.2) being integer or not.

Table 2: Values of the measure ∆∗ in (5.1) for different values of m+

(the number of exact moments matched by the near-exact dis-
tributions) and for m = 5 and increasing values of kℓ, p∗ℓ and
N , for base values of kℓ = {3, 2, 3, 4, 4}, p∗ℓ = {3, 5, 6, 4, 5} and
sample sizes N = p + 2, 200, 500, with p =

∑m

ℓ=1 kℓ×p∗ℓ .

m
+

N
0 1 2 4 6 10

kℓ + 0, p
∗
ℓ + 0, p = 73

p + 2 3.81×10−6 1.61×10−8 1.57×10−13 1.14×10−21 2.24×10−27 4.53×10−40

p + 200 6.64×10−7 6.61×10−9 5.43×10−15 2.03×10−21 2.09×10−28 9.91×10−43

p + 500 1.58×10−7 1.66×10−9 1.82×10−15 7.74×10−23 1.86×10−30 3.79×10−46

kℓ + 2, p
∗
ℓ + 0, p = 119

p + 2 1.39×10−6 3.35×10−9 4.07×10−14 1.39×10−21 5.16×10−29 1.00×10−43

p + 200 4.80×10−7 2.78×10−9 2.26×10−14 6.90×10−22 2.09×10−29 2.40×10−44

p + 500 1.37×10−7 8.61×10−10 3.48×10−15 3.46×10−23 3.29×10−31 3.67×10−47

kℓ + 5, p
∗
ℓ + 0, p = 188

p + 2 5.50×10−7 7.93×10−10 6.19×10−15 4.93×10−23 3.95×10−31 3.17×10−47

p + 200 3.19×10−7 1.10×10−9 8.81×10−15 9.96×10−23 1.07×10−30 1.42×10−46

p + 500 1.12×10−7 4.31×10−10 2.02×10−15 9.19×10−24 3.89×10−32 7.89×10−49

kℓ + 2, p
∗
ℓ + 2, p = 171

p + 2 6.57×10−7 1.05×10−9 3.25×10−15 2.49×10−23 2.25×10−31 2.55×10−47

p + 200 3.44×10−7 1.33×10−9 2.73×10−15 2.87×10−23 3.31×10−31 5.50×10−47

p + 500 1.16×10−7 4.92×10−10 4.57×10−16 1.95×10−24 8.74×10−33 2.10×10−49

kℓ + 2, p
∗
ℓ + 5, p = 249

p + 2 3.50×10−7 3.68×10−10 5.29×10−16 1.36×10−24 4.43×10−33 7.49×10−50

p + 200 2.61×10−7 6.53×10−10 7.82×10−16 3.81×10−24 2.29×10−32 1.18×10−48

p + 500 1.06×10−7 2.98×10−10 1.69×10−16 4.17×10−25 1.23×10−33 1.43×10−50

kℓ + 5, p
∗
ℓ + 2, p = 270

p + 2 2.38×10−7 2.28×10−10 5.34×10−16 1.13×10−24 2.43×10−33 1.28×10−50

p + 200 1.90×10−7 4.31×10−10 1.78×10−15 4.88×10−24 1.93×10−32 3.20×10−49

p + 500 8.00×10−8 2.06×10−10 3.53×10−16 7.31×10−25 1.40×10−33 5.37×10−51

kℓ + 5, p
∗
ℓ + 5, p = 393

p + 2 9.00×10−8 5.69×1011 2.98×10−17 1.40×10−26 7.15×10−36 2.13×10−54

p + 200 9.26×10−8 1.35×10−10 8.75×10−17 1.03×10−25 1.25×10−34 1.93×10−52

p + 500 4.72×10−8 7.98×10−11 3.32×10−17 2.48×10−26 1.82×10−35 1.00×10−53

p + 1000 2.09×10−8 3.81×10−11 9.49×10−18 3.62×10−27 1.31×10−36 1.68×10−55
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6. POWER STUDIES

In order to try to assess the behavior of the test under the alternative

hypothesis, some power studies, based on simulations, were carried out. These

studies focused on two forms of violation of the null hypothesis: (i) the violation

of the equality of the ∆ℓ matrices inside each block of kℓ of these matrices and (ii)

the violation of the block-independence inside each group of pℓ = p∗ℓ×kℓ variables

(see (1.2)).

First of all we should bring to the attention of the reader the fact that we

are working with a random vector

X =
[

X ′
1, . . . , X

′
m

]′
,

where in turn, for ℓ = 1, . . . , m,

Xℓ =
[

X ′
ℓ1, . . . , X

′
ℓkℓ

]′
,

with

Xℓj ∼ Np∗
ℓ

(

µ
ℓj

, ∆ℓ

)

j = 1, . . . , kℓ

for some positive-definite matrix ∆ℓ and some real p∗ℓ×1 vector µ
ℓj

, and with

Cov
(

Xℓj , Xℓ′j′

)

= 0p∗
ℓ
×p∗

ℓ′

for either ℓ = ℓ′ or ℓ 6= ℓ′, with j 6= j′ if ℓ = ℓ′.

To keep things not too much involved, mainly in terms of easiness of expo-

sition and to restrain the number of possible scenarios, while at the same time

being able to give a view of a quite wide variety of situations under the alternative

hypothesis, we considered a case with m = 2 and k1 = 2 and k2 = 3 with p∗1 = 5

and p∗2 = 2, with

∆1 =

















1 1/2 1/3 1/4 1/5

1/2 2 2/3 2/4 2/5

1/3 2/3 3 3/4 3/5

1/4 2/4 3/4 4 4/5

1/5 2/5 3/5 4/5 5

















and ∆2 =

[

1 1/2

1/2 2

]

,

where the choice of ∆1 and ∆2 did not obey to any other particular criteria than

that of being two positive-definite matrices.

In the next two subsections we will perform power studies for the cases of

violation of the hypothesis of equality of the diagonal blocks within each block

of kℓ matrices and the hypothesis of independence generating for each scenario

1 000 000 pseudo random samples of size 29.
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6.1. Violation of the equality hypothesis

In order to implement the violation of the hypothesis of equality of the

diagonal blocks inside each Ikℓ
⊗ ∆ℓ block (ℓ = 1, 2), we considered 40 different

scenarios, with Σ covariance matrices of the form





















δ11∆1 0 0 0 0

0 δ12∆1 0 0 0

0 0 δ21∆2 0 0

0 0 0 δ22∆2 0

0 0 0 0 δ23∆2





















with δ11, δ12, δ21, δ22 and δ23 assuming the values in Table 3. In this Table are

also defined the values for δ∗1 and δ∗2 . These new parameters summarize in a single

value, respectively, the variability of the combinations of the values of δ11, δ12

and δ21, δ22, δ23. The values of δ∗1 and δ∗2 in Table 3 are defined based on the

rank of the values of
∑kℓ

i=1

(

1/δℓi − 1/ δℓ

)2
, (ℓ = 1, 2; kℓ = 2, 3), since this is for

our purpose a more adequate measure of dispersion of the values of δ1j and δ2j

(j = 1, . . . , kℓ; ℓ = 1, 2) than the usual variance. We will see that with this choice

Table 3: Definition of the values for δ∗1 and δ∗2 .

δ∗1 ⇐⇒ δ11 δ12 δ∗2 ⇐⇒ δ21 δ22 δ23

1 1 1 1 1 1 1
2 1 2 2 1 1 2
3 1/2 2 3 1/2 1 2
4 1/3 2 4 1/2 1/2 2
5 1/3 3 5 1/3 1 2

6 1/3 1 3
7 1/3 1/3 2
8 1/3 1/3 3

for the definition of the values of δ∗1 and δ∗2 , the power of the test will be an

increasing function of the values of both δ∗1 and δ∗2 . The values δ11, δ12 and the

values δ21, δ22, δ23 were indeed chosen in such a way that they would generate

a wide range of values of δ∗1 and δ∗2 that could show how the power of the test

behaves for this variety of values. We should remark that for δ∗1 = 1 and δ∗2 = 1

we are under the null hypothesis in (1.2), while for any other combination of
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values of δ∗1 and δ∗2 we will be under various forms of the alternative hypothesis

due to the fact that for values of δ∗1 different from 1, the null hypothesis H1
03|1,2

in (2.5) is violated, since in these cases we have V ar(X11) 6= V ar(X12), while

for δ∗2 6= 1 it is the hypothesis H2
03|1,2 in (2.5) that is violated, since for δ∗2 6= 1

we have at least two of V ar(X21), V ar(X22) or V ar(X23) different. Increasing

values of either δ∗1 or δ∗2 indicate a larger departure from H0 in (1.2).

In Tables 4 and 5 we may analyze the power values for different values of δ∗1
and δ∗2 , respectively for α = 0.05 and α = 0.01. We may note how for δ∗1 = δ∗2 = 1,

situation in which we are under the null hypothesis H0 in (1.2), we obtain a value

for power which coincides with the α value, showing the unbiasedness charac-

teristic of the test. We may also see how power has a good rate of convergence

towards 1 for increasing values of δ∗1 and δ∗2 .

Table 4: Power values, rounded to three decimal places, for α = 0.05
and different values of δ∗1 and δ∗2 .

δ∗1
δ∗2

1 2 3 4 5 6 7 8

1 0.050 0.113 0.309 0.512 0.545 0.833 0.845 0.983
2 0.170 0.293 0.556 0.736 0.769 0.939 0.942 0.996
3 0.805 0.888 0.967 0.988 0.992 0.999 0.999 1.000
4 0.988 0.995 0.999 1.000 1.000 1.000 1.000 1.000
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5: Power values, rounded to three decimal places, for α = 0.01
and different values of δ∗1 and δ∗2 .

δ∗1
δ∗2

1 2 3 4 5 6 7 8

1 0.010 0.030 0.118 0.259 0.278 0.605 0.634 0.927
2 0.050 0.109 0.290 0.482 0.513 0.802 0.816 0.975
3 0.559 0.696 0.871 0.941 0.954 0.992 0.992 1.000
4 0.940 0.970 0.993 0.998 0.999 1.000 1.000 1.000
5 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

In Figure 4 we present smoothed surface and line plots of the power values

for the cases considered in Tables 4 and 5.
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Figure 4: a) Smoothed surface plots and b) non-smoothed profile plots
for different values of δ∗1 and running value of δ∗2 , for the val-
ues of power for the violation of the hypothesis of equality of
diagonal blocks within each Ikℓ

⊗ ∆ℓ block (ℓ = 1, 2).

6.2. Violation of the independence hypothesis

To implement the violation of the independence hypothesis, we consider 65

different scenarios with covariance matrices of the form





















∆1 γ1C1 0 0 0

γ1C1 ∆1 0 0 0

0 0 ∆2 γ21C2 γ22C2

0 0 γ21C2 ∆2 γ23C2

0 0 γ22C2 γ23C2 ∆2





















where
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C1 =
1

10











1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9











and C2 =
1

10

[

1 2
2 3

]

,

and where γ1 assumes the values 0.0, 1.0, 1.5, 1.75 and 1.95 and γ21, γ22 and γ23

assume the values in Table 6.

While for γ1 = 0 we have the hypothesis H1
02|1, of independence between

X11 and X12, confirmed, for values of γ1 different from zero we will be under

the alternative hypothesis, since then the independence between these two sets of

variables will be violated, with increasing values of γ1 indicating an “increasing

non-independence”of these two sets of variables, or equivalently, decreasing values

of the determinant of the matrix

Σ1 =

[

∆1 γ1C1

γ1C1 ∆1

]

.

In what concerns the values of γ21, γ22 and γ23, we will have the hypoth-

esis of independence among X21, X22 and X23 confirmed when all these three

parameters are equal to zero, and we will be under the alternative hypothesis if

at least one of them is different from zero, with

γ21 6= 0 =⇒ Cov(X21, X22) = γ21C2 6= 0 ,
γ22 6= 0 =⇒ Cov(X21, X23) = γ22C2 6= 0 ,
γ23 6= 0 =⇒ Cov(X22, X22) = γ23C2 6= 0 .

In order to define a hierarchy of the triplets of values of these three parameters,

we compute the determinant of the matrix

Σ2 =











∆2 γ21C2 γ22C2

γ21C2 ∆2 γ23C2

γ22C2 γ23C2 ∆2











.

Values for |Σ2|, as a function of the values of γ21, γ22 and γ23 are shown in Table 6.

These values are listed in decreasing order of |Σ2| and they are used to define

the values of the new parameter γ∗, with increasing values of γ∗ corresponding

to decreasing values of |Σ2|. The parameter γ∗ is then used ahead in Tables 7

and 8 and Figure 5.

Then, while for γ∗ = 1 we will be under the null hypothesis H2
02|1 of inde-

pendence among the sets of variables X21, X22 and X23, for increasing values of

γ∗ we will be increasingly further away from this null hypothesis.

We may see by looking at Tables 7 and 8 how the values for power give

the value of α for γ1 = 0 and γ∗ = 1, situation in which we are under the null
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hypothesis H0 in (1.2), while for all other combinations of values of these two

parameters the value of power increases as the values of γ∗ and/or γ1 increase,

easily reaching 1.

Table 6: Definition of the values of γ∗ for the different values of the
parameters γ∗

21, γ∗
22 and γ∗

23.

γ21 0.0 3.0 3.5 4.0 3.0 3.0 3.5 4.5 4.0 4.5 3.5 4.95 4.95
γ22 0.0 0.0 0.0 0.0 3.0 3.0 3.5 0.0 4.0 4.5 3.5 0.0 4.95
γ23 0.0 0.0 0.0 0.0 3.0 0.0 3.5 0.0 4.0 4.5 0.0 0.0 4.95

|Σ2| 5.359 3.405 2.706 1.904 1.843 1.479 1.121 1.001 0.534 0.142 0.105 0.105 0.001

γ
∗ 1 2 3 4 5 6 7 8 9 10 11 12 13

Table 7: Power values, rounded to three decimal places, for α = 0.05
and different values of γ1 and γ∗.

γ1

γ
∗

1 2 3 4 5 6 7 8 9 10 11 12 13

0.0 0.050 0.153 0.217 0.362 0.379 0.483 0.605 0.672 0.864 0.994 1.000 1.000 1.000
1.0 0.108 0.249 0.346 0.511 0.523 0.632 0.732 0.793 0.923 0.998 1.000 1.000 1.000
1.5 0.311 0.523 0.629 0.773 0.773 0.854 0.901 0.938 0.981 1.000 1.000 1.000 1.000
1.75 0.666 0.833 0.892 0.951 0.947 0.975 0.984 0.993 0.998 1.000 1.000 1.000 1.000
1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 8: Power values, rounded to three decimal places, for α = 0.01
and different values of γ1 and γ∗.

γ1

γ
∗

1 2 3 4 5 6 7 8 9 10 11 12 13

0.0 0.010 0.039 0.070 0.144 0.161 0.222 0.338 0.383 0.659 0.967 0.996 0.996 1.000
1.0 0.027 0.086 0.137 0.247 0.265 0.351 0.474 0.531 0.771 0.984 0.999 0.999 1.000
1.5 0.115 0.257 0.350 0.509 0.521 0.626 0.725 0.785 0.916 0.997 1.000 1.000 1.000
1.75 0.378 0.591 0.689 0.818 0.816 0.887 0.923 0.953 0.986 1.000 1.000 1.000 1.000
1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

In Figure 5 we present smoothed surface and line plots of the power values

for the cases considered in Tables 6 and 7. From the plots in this Figure and the

values in Tables 7 and 8 we may see how power attains the value 1 for the larger

values of γ1 and γ∗, as expected. We may also note that as in the case of the



The Hyper-Block Matrix Sphericity Test 391

previous subsection, for γ1 = 0 and γ∗ = 1, in which case we are under the null

hypothesis, the value of the power equals the α value considered, showing again

the unbiasedness characteristic of the test.

α = 0.05

a) b)

Γ1 = 0.0

Γ1 = 1.0

Γ1 = 1.5

Γ1 = 1.75

Γ1 = 1.95

Γ*

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

α = 0.01
a) b)

Γ1 = 0.0

Γ1 = 1.0

Γ1 = 1.5

Γ1 = 1.75

Γ1 = 1.95

Γ*
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0.2

0.4

0.6

0.8

1.0

Figure 5: a) Smoothed surface plots; and b) non-smoothed profile plots,
for the different values of γ1 and running value of γ∗, for the
values of power in Tables 7 and 8.

7. CONCLUSIONS

The procedure developed in this paper makes it possible to test elaborate

covariance structures such as the HBM spherical structure through the use of

very precise near-exact approximations. The testing procedure is based on an

adequate decomposition of the overall null hypothesis into a sequence of sub-

hypotheses, in our case the ones used to test the independence of several groups

of variables and the equality of several covariance matrices in different sequences

of covariance matrices. This decomposition of the null hypothesis allows us to
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obtain the likelihood ratio test statistic, the expression of its h-th moment and

the expression of the characteristic function of its logarithm. Furthermore, the

suitable decomposition of the null hypothesis also induces a factorization of this

characteristic function which is the basis for the development of the near-exact

approximations. These approximations can be easily implemented since there

are already computational modules available in the internet for the two main

distributions involved, which are the GNIG and GIG distributions.

The high precision of the near-exact distributions, which was assessed in

the numerical studies section, makes them an efficient tool to obtain p-values and

quantiles for the test statistic, even in cases where the sample size is very small

and/or the number of variables is large.

Power studies conducted through simulations show the unbiased nature of

the test as well as its good power properties, reaching rapidly powers close to 1

in the different scenarios considered.

The procedure developed may be very useful to address other, eventually,

more complex structures. A natural extension of this framework is to consider

the same global structure but for complex Normal random variables or even for

quaternion random variables. Other possible extension is to consider specific

structures for the block-diagonal covariance matrices such as the circular or the

compound symmetry structures.
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APPENDICES

APPENDIX A – Obtaining the expression of the l.r.t. statistic Λ, asso-

ciated with the null hypothesis H0 in (1.2), by using the definition of

likelihood ratio statistic

Let us consider the vector X ∼ Np

(

µ, Σ
)

and let us suppose that we have a

sample of size N from X. The l.r.t statistic Λ associated with the HBM sphericity

test is defined by

(A.1) Λ =
sup L0

sup L1

where L0 is the likelihood function when the parameter space is under H0 in (1.2)

and L1 is the likelihood function under the alternative hypothesis.

The likelihood function associated with the sample is

(A.2) L
(

x1, . . . , xN ; µ; Σ
)

=
1

(2π)
Np

2 |Σ|
N

2

e
− 1

2
tr
�
(X−EN1µT )Σ−1(X−EN1µT )

T
�

,

where Ers denotes a matrix of 1’s of dimension r×s.

Let then L0 = L0

(

x1, . . . , xN ; µ; Σ|Ho

)

= log
(

L0

(

x1, . . . , xN ; Σ|Ho

))

. From

(A.2) we have

L0 = −Np

2
log (2π) − N

2
log
∣

∣Σ|Ho

∣

∣− 1

2
tr
(

(

X−EN1x
T
)

Σ−1
|Ho

(

X−EN1x
T
)T
)

− 1

2
tr
(

(

EN1x
T −EN1µ

T
)

Σ−1
|Ho

(

EN1x
T −EN1µ

T
)T
)

.

As

tr
(

(

X − EN1x
T
)

Σ−1
|Ho

(

X − EN1x
T
)T
)

= tr
(

Σ−1
|Ho

A
)

where A =
(

X − EN1x
T
)T (X − EN1x

T
)

= X TX − 1
N
X T ENNX , and

tr
(

(

EN1x
T −EN1µ

T
)

Σ−1
|Ho

(

EN1x
T −EN1µ

T
)T
)

= Ntr
(

Σ−1
|Ho

(

x−µ
)(

x−µ
)T
)

= N
(

x − µ
)T

Σ−1
|Ho

(

x − µ
)

the function L0 can be written as

L0 = −Np

2
log (2π) − N

2
log
∣

∣Σ|Ho

∣

∣− 1

2
tr
[

AΣ−1
|Ho

]

− 1

2
N
(

x−µ
)T

Σ−1
|Ho

(

x−µ
)

.
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Given that

∣

∣Σ|Ho

∣

∣ =
∣

∣

∣
bdiag (Ikℓ

⊗ ∆ℓ, ℓ = 1, ..., m)
∣

∣

∣
=

m
∏

ℓ=1

|Ikℓ
⊗ ∆ℓ|

=
m
∏

ℓ=1

|Ikℓ
|p∗ℓ |∆ℓ|kℓ =

m
∏

ℓ=1

|∆ℓ|kℓ

where ∆ℓ is a matrix of order p∗ℓ , and

Σ−1
|Ho

=
(

bdiag (Ikℓ
⊗ ∆ℓ, ℓ = 1, ..., m)

)−1

= bdiag
(

(Ikℓ
⊗ ∆ℓ)

−1 , ℓ = 1, ..., m
)

= bdiag
(

Ikℓ
⊗ ∆−1

ℓ , ℓ = 1, ..., m
)

with

tr
(

AΣ−1
|Ho

)

= tr
(

A . bdiag
(

Ikℓ
⊗ ∆−1

ℓ , ℓ = 1, . . . , m
)

)

=
m
∑

ℓ=1

tr
(

Aℓℓ

(

Ikℓ
⊗ ∆−1

ℓ

))

=
m
∑

ℓ=1

kℓ
∑

v=1
tr
(

Av
ℓℓ∆

−1
ℓ

)

,

we can write L0 as

L0 = −Np

2
log (2π) − N

2
log

(

m
∏

ℓ=1

|∆ℓ|kℓ

)

− 1

2

m
∑

ℓ=1

kℓ
∑

v=1
tr
(

Av
ℓℓ∆

−1
ℓ

)

−1

2
N
(

x − µ
)T

Σ−1
|Ho

(

x − µ
)

.

By solving the system of likelihood equations



















∂L0

∂µ

∣

∣

∣

µ=bµ = 0

∂L0

∂∆ℓ ∆ℓ=b∆ℓ

µ=bµ = 0 , (ℓ = 1, ..., m)
⇔















N
(

x − µ̂
)

Σ−1
|Ho

= 0

⇔



















µ̂ = x

−N
2 kℓ

̂∆−1
ℓ + 1

2
̂∆−1

ℓ

kℓ
∑

v=1
Av

ℓℓ
̂∆−1

ℓ = 0 ,

(ℓ = 1, ..., m)

⇔















µ̂ = x

̂∆ℓ = 1
Nkℓ

kℓ
∑

v=1
Av

ℓℓ , (ℓ = 1, ..., m)
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we obtain the maximum likelihood estimators of µ and Σ under H0, which are,

µ̂ = X and

̂Σ =







Ik1
⊗ ̂∆1 0

. . .

0 Ikm
⊗ ̂∆m






=







Ik1
⊗ 1

Nk1
A∗

1 0
. . .

0 Ikm
⊗ 1

Nkm
A∗

m







where A∗
ℓ =

kℓ
∑

v=1
Av

ℓℓ (ℓ = 1, ..., m).

Then we have

(A.3)

sup L0

(

X1, . . . , XN ; µ; Σ|Ho

)

= (2π)−
Np

2

{

m
∏

ℓ=1

|̂∆ℓ|kℓ

}−N

2

e−
1

2
tr(A.bdiag(Ikℓ

⊗b∆−1

ℓ
,ℓ=1,...,m))

= (2π)−
Np

2 N
pN

2

m
∏

ℓ=1

k
pℓN

2

ℓ

m
∏

ℓ=1

|A∗
ℓ |
−

kℓN

2 e
−N

2

m
∑

ℓ=1

kℓtr
�
Aℓℓ

�
Ikℓ

⊗(A∗
ℓ)

−1
��

= (2π)−
Np

2 N
pN

2

m
∏

ℓ=1

k
pℓN

2

ℓ

m
∏

ℓ=1

|A∗
ℓ |
−

kℓN

2 e
−N

2

m
∑

ℓ=1

kℓ

kℓ
∑

v=1
tr
�
Av

ℓℓ(A∗
ℓ)

−1
�

= (2π)−
Np

2 N
pN

2

m
∏

ℓ=1

k
pℓN

2

ℓ

m
∏

ℓ=1

|A∗
ℓ |
−

kℓN

2 e
−N

2

m
∑

ℓ=1

kℓtr
�
A∗

ℓ(A∗
ℓ)

−1
�

= (2π)−
Np

2 N
pN

2

m
∏

ℓ=1

k
pℓN

2

ℓ

m
∏

ℓ=1

|A∗
ℓ |
−

kℓN

2 e
−N

2

m
∑

ℓ=1

kℓtr
�
Ip∗

ℓ

�
= (2π)−

Np

2 N
pN

2

m
∏

ℓ=1

k
pℓN

2

ℓ

m
∏

ℓ=1

|A∗
ℓ |
−

kℓN

2 e
−N

2

m
∑

ℓ=1

pℓ

= (2π)−
Np

2 N
pN

2

m
∏

ℓ=1

k
pℓN

2

ℓ

m
∏

ℓ=1

|A∗
ℓ |
−

kℓN

2 e−
Np

2 .

Under H1, the likelihood function is given by

L1

(

x1, . . . , xN ; µ; Σ
)

= (2π)−
Np

2 |Σ|−
N

2 e
− 1

2
tr
�
(X−EN1µT )

T

(X−EN1µT )Σ−1

�
= (2π)−

Np

2 |Σ|−
N

2 e−
1

2
tr(AΣ−1)

and L1 = L1

(

x1, . . . , xN ; µ; Σ
)

= log
(

L1

(

x1, . . . , xN ; µ; Σ
))

is given by

L1 = −Np

2
log (2π) +

N

2
log |Σ| − 1

2
tr
[

AΣ−1
]

− 1

2
N tr

(

(

x−µ
)T (

x−µ
)

Σ−1
)

.

By solving the system of likelihood equations


















∂L1

∂µ

∣

∣

∣

µ=bµ = 0

∂L1

∂Σ
Σ=bΣ
µ=bµ = 0

⇔











N
(

x − µ̂
)

Σ−1 = 0

−N
2
̂Σ−1 + 1

2
̂Σ−1ÂΣ−1 = 0

⇔











µ̂ = x

̂Σ = 1
N

A
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we conclude that

(A.4)

sup L1

(

X1, . . . , XN ; µ; Σ
)

= (2π)−
Np

2 |̂Σ|−N

2 e−
1

2
tr(AbΣ−1)

= (2π)−
Np

2

∣

∣

1
N

A
∣

∣

−N

2 e−
1

2
tr(NAA−1)

= (2π)−
Np

2 N
Np

2 |A|−
N

2 e−
1

2
N tr(Ip)

= (2π)−
Np

2 N
Np

2 |A|−
N

2 e−
1

2
Np

Then, from (A.1), (A.3) and (A.4) we have

(A.5)

Λ =
sup L0

(

xN ; µ; Σ|Ho

)

sup L1

(

xN ; µ; Σ
)

=

(2π)−
Np

2 N
Np

2

{

m
∏

ℓ=1

k
Npℓ

2

ℓ

}{

m
∏

ℓ=1

|A∗
ℓ |
−

kℓN

2

}

e−
Np

2

(2π)−
Np

2 N
Np

2 |A|−
N

2 e−
Np

2

=

{

m
∏

ℓ=1

k
Npℓ

2

ℓ

} |A|
N

2

m
∏

ℓ=1

∣

∣A∗
ℓ

∣

∣

kℓN

2

where the matrix A is the maximum likelihood estimator of Σ, Aℓℓ is the ℓ-th

diagonal block of order pℓ = kℓ × p∗ℓ of A (ℓ = 1, ..., m), with p =
∑m

ℓ=1pℓ and

A∗
ℓ = A1

ℓℓ + · · ·+ Akℓ

ℓℓ , where Av
ℓℓ is the v-th (v = 1, ..., kℓ) diagonal block of order

p∗ℓ of Aℓℓ. We should note how expression (A.5) is the same as expression (2.11).
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APPENDIX B – Shape parameters

The shape parameters rℓ
3;k in (3.5) are given by

(B.1) rℓ
3,k =















rℓ∗
k , k=1, ..., p∗ℓ−1,

k 6=p∗ℓ−1−2αℓ
1

rℓ∗
k +(p∗ℓ mod 2)

(

αℓ
2−αℓ

1

)

(

kℓ− p∗
ℓ
−1
2 +kℓ

⌊

p∗
ℓ

2kℓ

⌋)

, k=p∗ℓ−1−2αℓ
1

where

αℓ =
⌊

p∗
ℓ
−1

kℓ

⌋

, αℓ
1 =

⌊

kℓ−1
kℓ

p∗
ℓ
−1
2

⌋

, αℓ
2 =

⌊

kℓ−1
kℓ

p∗
ℓ
+1
2

⌋

,

and

rℓ∗
k =



























cℓ
k , k = 1, ..., αℓ + 1

kℓ

(⌊

p∗
ℓ

2

⌋

−
⌊

k
2

⌋

)

, k = αℓ + 2, ...,min
(

p∗ℓ − 2αℓ
1, p

∗
ℓ − 1

)

and k = 2 + p∗ℓ − 2αℓ
1, ..., 2

⌊

p∗
ℓ

2

⌋

− 1, step 2

kℓ

(⌊

p∗
ℓ
+1
2

⌋

−
⌊

k
2

⌋

)

, k = 1 + p∗ℓ − 2αℓ
1, ..., p

∗
ℓ − 1, step 2

with

ck =

⌊

kℓ
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⌊

k

2
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⌋
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for k = 1, ..., αℓ, and
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α+1 = −

(⌊

p∗ℓ
2

⌋

− αℓ

⌊
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2

⌋)2

+ kℓ

(⌊

p∗ℓ
2

⌋

−
⌊

αℓ + 1

2
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(
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⌊

p∗ℓ
2

⌋

+

(

αℓ mod 2
)

4
−
(

αℓ
)2

4
−
(

αℓ
)2
⌊

kℓ

2

⌋

)

.

For the derivation of the expressions for these parameters see [14] and ref-

erences therein, making the necessary adjustments.
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APPENDIX C – The Mathematica R© modules

The modules described in this Appendix are available at the web-page

https://sites.google.com/site/nearexactdistributions/hyper-block-matrix-sphericity and

may be downloaded from this web-page.

C.1 - Computation of the p.d.f. and c.d.f. of the near-exact distributions

The modules made available for the computation of the p.d.f. and c.d.f.

of the near-exact distributions for Λ are called, respectively, NEpdf and NEcdf.

These modules have 4 mandatory arguments, which are:

– the sample size,

– a list with the values of p∗ℓ (ℓ = 1, . . . , m),

– a list with the values of kℓ (ℓ = 1, . . . , m),

– the running value where the p.d.f. or c.d.f. is to be computed,

and which have to be given in this order; and 5 optional arguments, which are:

– nm: the number of exact moments to be matched by the near-exact

distribution, that is, the value of m+ in (4.1) and (4.4)–(4.9) (default

value: 4),

– prec1: the number of digits used to print the value of the p.d.f. or c.d.f.

(default value: 10),

– prec2: the number of precision digits used in the computation of the

p.d.f. or c.d.f. (default value: 200),

– prec3: the number of precision digits used to store the m+ exact mo-

ments of W = − log Λ computed (default value: 200),

– prec4: number of precision digits used in the computation of the m+ ex-

act moments of W = − log Λ by the module that does this computation

(default value: 1500).

These optional arguments may be given in any order, but they will have to be

called by their names, as it is exemplified below. If not used, they will assume

their default values.

These modules use a number of other modules available on the same web-

page which compute the weights πj and the rate parameter θ in (4.1), the shape

and rate parameters in Φ1(t) as well as other shape and rate parameters involved

in the expressions of the near-exact p.d.f. and c.d.f.. The module that computes

the weights πj uses another module which computes the exact moments of W =

− log Λ by applying a numerical method to the exact c.f. of W in (3.1).
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For example to compute the near-exact c.d.f. of Λ, on a value near the 0.05

quantile, for a case with the same parameters as those used for the examples for

which we computed power in Section 6, which was a case with m = 2, p∗1 = 5,

p∗2 = 2, k1 = 2 and k2 = 3, using the default values for all optional arguments,

we would use the first command in Figure 6. The second command in that same

figure uses the option prec1 in order to obtain an output with more digits. The

options named prec2, prec3, and prec4, will usually not be necessary, unless

one suspects from lack of precision in the result obtained, which may happen in

cases where the number of variables or the sample size are very large. This fact

is illustrated with the third command in Figure 6, where although 500 precision

digits are requested for the internal representation of the exact moments of W , the

result obtained is exactly the same as the one obtained with the second command.

The fourth command in Figure 6 illustrates, together with the third one that the

order in which the optional arguments are given is arbitrary.

'

&

$

%
Figure 6: Mathematica R© commands to be used with the module NEcdf.

We remark that, for a given level α, we should reject the null hypothesis

when the computed value of the l.r.t. statistic is lower than the α-quantile of the

l.r.t. statistic. As such, the computation of the c.d.f. for the l.r.t. statistic also

gives automatically the p-value.

We may note the extremely low values that these quantiles attain. This is

due to the fact that we chose to use the ‘complete’ l.r.t. statistic, that is, the l.r.t.

statistic with its exponent N/2. This is indeed the case why some authors chose to

use l.r.t. statistics without this exponent, to make these values not so close to zero,

what in some cases may cause some numerical problems. But indeed this poses

absolutely no problems to the computation of the near-exact p.d.f.’s or c.d.f.’s.

The computation of quantiles is done with the module Quant. Given the

sample size and the values for p∗ℓ and kℓ (ℓ = 1, . . . , m), the module generates,

by default, 10 pseudo-random samples, under the null hypothesis of hyper-block

sphericity in (1.2), using then the empirical α-quantile as a ‘starting value’ for a

Newton-type method, which will find the approximate near-exact quantile using

the values of the near-exact p.d.f. and c.d.f. computed on the successive iteration

values.
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This module has 5 mandatory arguments which first one is the α value for

the quantile and which last 4 are exactly the same as the 4 mandatory arguments

for the modules NEpdf and NEcdf, given in the exact same order. This module

also has 8 optional arguments, which are:

– nm: the number of exact moments to be matched by the near-exact

distribution, that is, as for NEpdf and NEcdf, the value of m+ in (4.1)

and (4.4)–(4.9) (default value: 4),

– prec1: the number of digits used to print the value of the quantile

(default value: 10),

– prec2: the number of precision digits used in the computation of the

p.d.f. or c.d.f. for the implementation of a Newton-type method (default

value: 400),

– prec3: the number of precision digits used to store the m+ exact mo-

ments of W = − log Λ computed (default value: 200),

– prec4: number of precision digits used in the computation of the m+ ex-

act moments of W = − log Λ by the module that does this computation

(default value: 1500),

– eps: the value of the minimum upper-bound for two consecutive quan-

tile approximations obtained from the Newton-type method; if those

two consecutive approximations differ a quantity that is less than eps,

the process stops, giving as result the last approximation found (default

value: 10−6 times the ‘starting value’),

– nsamp: the number of pseudo-random samples generated by the module

to obtain the ‘starting value’ (default value: 10).

In Figure 7 we present a few commands that may be used with the module

Quant to compute the 0.05 quantile of Λ for the same scenario considered in Figure

6. The first command uses all optional arguments with their default values, which

will be adequate for most cases. The second command uses the optional argument

prec1 to request 20 digits, instead of 10, for the approximate 0.05 quantile. We

may see that when this second command is repeated, as the third command in

Figure 7, the result obtained is different. There is indeed no problem, and for the

attentive reader there should be not much of a surprise. What happens is that

since we use for eps its default value, the precision obtained for the approximation

of the quantile should ensure at least 6 decimal digits correct. This is exactly

what happens. Indeed it seems that at least 11 digits are correct. Then the

fourth and fifth commands give the same result, which should be correct for all

digits displayed. They illustrate the fact that the order in which the optional

arguments are given is arbitrary and also that by giving the optional argument

eps a small enough value, in this case a value which would ensure that at least 21

digits of the approximate quantile are correct, we will always get the same result.
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'

&

$

%
Figure 7: Mathematica R© commands to be used with the module Quant.

There is also another module called Lambda, which may be used to compute

the value of the statistic Λ in (2.11) for a given dataset. This dataset has to be

given in a file, with observations defining the rows and variables the columns.

This module has 3 mandatory arguments, which are:

– the name of the data file (including the path),

– a list with the values of p∗ℓ (ℓ = 1, . . . , m),

– a list with the values of kℓ (ℓ = 1, . . . , m),

and which have to be given in this order.

Further details on these modules and their use are available at the web-page

https://sites.google.com/site/nearexactdistributions/hyper-block-matrix-sphericity.
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