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Fatma Zehra Doğru, Y. Murat Bulut and Olcay Arslan . . . . . . . . . . . . . 455

Abstracted/indexed in: Current Index to Statistics, DOAJ, Google Scholar, Journal Citation
Reports/Science Edition, Mathematical Reviews, Science Citation Index Expandedr, SCOPUS
and Zentralblatt für Mathematic.





REVSTAT – Statistical Journal

Volume 15, Number 3, July 2017, 299–332

A STUDY ON THE BIAS-CORRECTION EFFECT

OF THE AIC FOR SELECTING VARIABLES IN

NORMAL MULTIVARIATE LINEAR REGRESSION

MODELS UNDER MODEL MISSPECIFICATION

Authors: Hirokazu Yanagihara

– Department of Mathematics, Graduate School of Science,

Hiroshima University, Hiroshima, Japan

yanagi@math.sci.hiroshima-u.ac.jp

Ken-ichi Kamo

– Department of Liberal Arts and Sciences,

Sapporo Medical University, Hokkaido, Japan

kamo@sapmed.ac.jp

Shinpei Imori

– Division of Mathematical Science, Graduate School of Engineering Science,

Osaka University, Osaka, Japan

imori@sigmath.es.osaka-u.ac.jp

Mariko Yamamura

– Department of Mathematics Education, Graduate School of Education,

Hiroshima University, Hiroshima, Japan

yamamura@hiroshima-u.ac.jp

Received: October 2013 Revised: March 2015 Accepted: July 2015

Abstract:

• By numerically comparing a variable-selection method using the crude AIC with those

using the bias-corrected AICs, we find out knowledge about what kind of bias correc-

tion gives a positive effect to variable selection under model misspecification. Actually,

since all the variable-selection methods considered in this paper asymptotically choose

the same model as the best model, we conduct numerical examinations using small and

moderate sample sizes. Our results show that bias correction under assumption that

the mean structure is misspecified gives a better effect to a variable-selection method

than that under the assumption that the distribution of the model is misspecified.

Key-Words:

• AIC; bias-corrected AIC; KL information; loss function; nonnormality; risk func-

tion; variable selection.

AMS Subject Classification:

• 62J05, 62F07.



300 Hirokazu Yanagihara, Ken-ichi Kamo, Shinpei Imori and Mariko Yamamura



On the Bias-Correction Effect of the AIC under Model Misspecification 301

1. INTRODUCTION

In the analysis of real data, it is important to determine which statistical

model best fits the data, because there are many candidate models, and they

each estimate different results, which may lead to different conclusions. One of

the aims of model selection is to choose a statistical model having a high predic-

tive accuracy. In order to achieve the aim, it is common that the risk function

based on the Kullback–Leibler (KL) information [18] is used for assessing a good-

ness of fit of a statistical model. Then, the model making the risk function the

smallest is regarded as the “best” model. Hence, in order to seek a statistical

model having a high predictive accuracy, we have to compare with risk func-

tions of each of candidate models. In practice, an estimate of the risk function

is used, because the risk function involves unknown parameters. The most fa-

mous asymptotic unbiased estimator of the risk function is Akaike’s information

criterion (AIC; proposed by [1, 2]), which is derived under the condition that

the candidate model is correctly specified. It is defined by the simple equation

−2 × (themaximum log-likelihood) + 2 × (the number of parameters in themodel)

and is commonly used in actual data analysis.

Since the AIC is only asymptotically unbiased, the bias of the AIC to the

risk function may be considerable when the sample size is not large enough and

the number of parameters is large. Then, the AIC of a candidate model which is

overspecified and has a large number of parameters tends to underestimate the

risk function overly. This tendency causes that AICs of those candidate models

often do not have notable differences. In addition, the variance of the AIC may

increase as the number of parameters increases (see, e.g., [31]). Thus, the model

with the most parameters tends to make AIC the smallest, and so the AIC often

selects the model with the most parameters as the best model. Since this fault

of AIC is due to the bias, it is frequently avoided by correcting the bias to the

risk function. This has been studied under various different conditions and with

various different correction methods (as a general theory correcting the bias of the

AIC, see, e.g., [4, 14, 16, 20]). Sugiura [24] and Hurvich and Tsai [12] proposed

a bias-corrected AIC for linear regression models (multiple regression models)

by fully removing the bias of the AIC to the risk function under the condition

that the candidate model is correctly specified. The bias-corrected AIC then

becomes the uniformly minimum-variance unbiased estimator (UMVUE) for the

risk function of the candidate model (see, [5]), and many authors have verified by

numerical experiments that a variable-selection method using the bias-corrected

AIC performs better than that using the crude AIC.

A basic concept of bias correction is that we expect that an unbiased es-

timate of the risk function will allow us to correctly evaluate the risk function,

which will further facilitate the selection of the best model. However, there is no

theory that promises that the best model chosen by minimizing a bias-corrected
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AIC has a higher predictive accuracy than that chosen by minimizing the crude

AIC. Generally, a bias-corrected estimator has a larger variance than a crude

estimator before a bias correction. An impairment of the mean square error of

the bias-corrected AIC with respect to the risk function, which results from an

increase in the variance, may cause a drop in performances of model selection

when using a bias-corrected AIC.

In this paper, we compare the AIC and eight bias-corrected AICs to study

what kind of bias correction gives a positive effect for selecting variables for a

multivariate linear regression model (MLRM) with a normal distributed assump-

tion (called the normal MLRM), under a model misspecification. Performances

of variable-selection methods using the nine criteria are examined by numerical

experiments. We do not conduct numerical experiments under the large sample,

because it has been confirmed theoretically that the variable-selection methods

using the nine criteria select the same model as “best” when the sample size goes

to ∞. Our result is that correcting the bias gives a greater positive effect to vari-

able selection when the mean structure is misspecified than when the distribution

of the model is misspecified.

This paper is organized as follows: In Section 2, the normal MLRM and the

risk function based on the KL information are described. In Section 3, the AIC

and the bias-corrected AICs for the normal MLRM are summarized. In Section 4,

we use numerical experiments with small and moderate samples to compare per-

formances of variable-selection methods using the AIC and the bias-corrected

AICs. Our conclusions and a discussion are presented in Section 5. Technical

details are provided in the Appendix.

2. RISK FUNCTION BASED ON THE KL INFORMATION

The normal MLRM is used when we are interested in predicting not just one

response variable but several correlated response variables based on k nonstochas-

tic explanatory variables (for details, see, e.g., [6], [21, chap. 9], [26, chap. 4]). Let

y1, ...,yn be p-dimensional independent random vectors of response variables, and

let xω,1, ...,xω,n be kω-dimensional vectors of the full explanatory variables, where

n is the sample size. Furthermore, let xi be a k-dimensional vector of candidate

explanatory variables, which is a subset of the full explanatory variables xω,i

(i = 1, ..., n). Then, we consider the following normal MLRM as the candidate

model:

(2.1) M : yi ∼ Np(Ξ
′xi,Σ) , (i = 1, ..., n) ,

where Ξ is a k×p matrix of unknown regression coefficients, and Σ is a p×p
unknown covariance matrix.
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Let Y = (y1, ...,yn)
′
be an n×p matrix of response variables, and let X =

(x1, ...,xn)
′
be an n×k matrix of candidate explanatory variables. Suppose that

an n×kω matrix of the full explanatory variables, Xω = (xω,1, ...,xω,n)
′
, is a

column full-rank matrix, i.e., rank(Xω) = kω < n. Needless to say, X consists of

some columns of Xω and is also a column full-rank matrix. Moreover, we assume

that X and Xω each always have 1n as a column vector that corresponds to

an intercept, where 1n is an n-dimensional vector of ones, and limn→∞ X ′
ωXω/n

exists and is positive definite. The matrix form of the candidate model (2.1) is

given by

(2.2) M : Y ∼ Nn×p(XΞ,Σ⊗In) ,

where In is an identity matrix of size n. Here, A⊗B denotes an the Kronecker

product of an m×n matrix A and a p×q matrix B, which is an mp×nq matrix

defined by

A⊗B =



a11B ··· a1nB

.

.

.
. . .

.

.

.

am1B ··· amnB


 ,

where aij is the (i, j)-th element of A (see, e.g., [10, chap. 16.1]). Addition-

ally, Z ∼ Nn×p(A,B⊗C) denotes that an n×p random matrix Z is distributed

according to the n×p matrix normal distribution with a mean matrix E[Z] = A

and a covariance matrix Cov[(Z)] = B⊗C (see, e.g., [26, p. 91, def. 3.3.1]), i.e.,

vec(Z) ∼ Nnp(vec(A),B⊗C), where vec(Z) is an operator that transforms a

matrix to a vector by stacking the first to the last columns of Z, i.e., vec(Z) =

(z′
1, ..., z

′
p)

′
when Z = (z1, ..., zp) (see, e.g., [10, chap. 16.2]). The following normal

MLRM using the full explanatory variables is called the full model:

(2.3) Mω : Y ∼ Nn×p(XωΞω,Σω⊗In) ,

where Ξω and Σω denote a matrix of the unknown regression coefficients and a

covariance matrix of the full model, respectively. Although the normal distribu-

tion is assumed, we are not able to see whether the assumption is actually correct.

A natural assumption for the generating mechanism of Y is

M∗ : Y = Γ∗ + EΣ
1/2
∗ , E = (ε1, ..., εn)

′ , ε1, ..., εn ∼ i.i.d. ε ,

E[ε] = 0p , Cov[ε] = Ip , E[‖ε‖4
] = κ

(1)
4 + p (p+ 2) ,

(2.4)

where Γ∗ and Σ∗ are the true mean and covariance matrices, respectively,

0p is a p-dimensional vector of zeros, and ‖a‖ is the Euclidean norm of the vector

a = (a1, ..., am)
′
, i.e, ‖a‖ = (a2

1 + ···+a2
m)

1/2
. Here, κ

(1)
4 is called the multivariate

kurtosis, which was proposed by [19].

In order to clarify assumptions for deriving information criteria, we separate

the candidate models into the following two models:
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• Underspecified model: the mean structure does not include that of the

true model, i.e., PXΓ∗ 6= Γ∗;

• Overspecified model: the mean structure includes that of the true model,

i.e., PXΓ∗ = Γ∗.

Here, PX is the projection matrix to the subspace spanned by the columns

of X, i.e., PX = X(X ′X)
−1X ′

. Furthermore, the candidate model whose mean

structure dovetails perfectly with that of model M∗ is here called the true model.

Although Fujikoshi and Satoh [8] used the same terminology, they divided the can-

didate models by whether a candidate model includes the true model.

It emphasizes that we are separating the candidate models based only on the

mean structure. Hence, our separation does not depend on whether a distribu-

tion of the true model is the normal distribution. Furthermore, we assume that

the full model Mω is the overspecified model and the true model is included in

a set of the candidate models. For an additional characteristic of the candidate

model, a p×p matrix of noncentrality parameters is defined by

(2.5) Ω =
1

n
Σ

−1/2
∗ Γ′

∗(In − PX)Γ∗Σ
−1/2
∗ .

It should be noted that Ω is positive semidefinite and Ω = Op,p holds if and only

if M is an overspecified model, where Op,p is a p×p matrix of zeroes.

Let f(y |η,Σ) be the probability density function of Np(η,Σ). Then, the

log-likelihood function of the candidate model M in (2.2) is derived as

ℓ(Ξ,Σ |Y ,X) =

n∑

i=1

log f(yi |Ξ′xi,Σ)

= −1

2

[
np log 2π + n log |Σ|

+ tr
{
Σ−1

(Y −XΞ)
′
(Y −XΞ)

}]
.

(2.6)

By maximizing ℓ(Ξ,Σ |Y ,X), or equivalently solving the likelihood equations

∂ℓ(Ξ,Σ |Y ,X)/∂Ξ = Ok,p and ∂ℓ(Ξ,Σ |Y ,X)/∂Σ = Op,p, the maximum like-

lihood (ML) estimators of the unknown parameter matrices Ξ and Σ in the

candidate model M are obtained as

Ξ̂ = (X ′X)
−1X ′Y , Σ̂ =

1

n
Y ′

(In − PX)Y .

In particular, S denotes a standardized Σ̂ defined by S = Σ
−1/2
∗ Σ̂Σ

−1/2
∗ . Fur-

thermore, (Ξ̂ω, Σ̂ω,Sω) denotes (Ξ̂, Σ̂,S) in the full model Mω in (2.3). By sub-

stituting (Ξ̂, Σ̂) into (2.6), the maximum log-likelihood of the candidate model

M is derived as

ℓ(Ξ̂, Σ̂ |Y ,X) = −n
2

{
p(log 2π + 1) + log |Σ̂|

}
.
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Let L(Ξ,Σ |X) be an expected negative twofold log-likelihood function:

L(Ξ,Σ |X) = E∗

[
−2ℓ(Ξ,Σ |Y ,X)

]

= np log 2π + n log |Σ|

+ tr

[{
nΣ∗ + (Γ∗−XΞ)

′
(Γ∗−XΞ)

}
Σ−1

]
,

(2.7)

where E∗ means the expectation under the true model M∗ in (2.4). We define the

loss function of the model M measured by the KL information as L(Ξ̂, Σ̂ |X).

Then, a risk function that uses the KL information to assess the gap between

the true model and the candidate model is defined by the expectation of the loss

function, i.e.,

(2.8) RKL = E∗

[
L(Ξ̂, Σ̂ |X)

]
.

In this paper, the candidate model that makes the risk function the smallest is

called the principle best model. The following theorem is satisfied for the principle

best model (the proof is given in Appendix A.1):

Theorem 2.1. The principle best model is either the true model or an

underspecified model. When n→ ∞, the principle best model becomes the true

model under the assumption that E[tr(S−2
ω )] = O(1).

3. AIC AND BIAS-CORRECTED AICS IN NORMAL MLRMS

Although the risk function RKL in (2.8) assesses the goodness of fit of the

model, we cannot use RKL directly because RKL involves unknown parameters.

Hence, in practice, an estimate of RKL is needed to select the best model among

the candidates. Although a naive estimator of RKL is −2ℓ(Ξ̂, Σ̂ |Y ,X), it has

the following constant bias:

(3.1) B = RKL − E∗

[
−2ℓ(Ξ̂, Σ̂ |Y ,X)

]
.

Thus, an information criterion for selecting the best model is defined by adding B̂,

an estimator of B, to −2ℓ(Ξ̂, Σ̂ |Y ,X), i.e.,

(3.2) IC = −2ℓ(Ξ̂, Σ̂ |Y ,X) + B̂ .

The information criterion is specified by the individual B̂, because B̂ changes

based on assumptions of the model M and by an estimation method. As for such

assumptions, the following two assumptions are considered:

(A1) The candidate model M in (2.2) is an overspecified model;
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(A2) The distribution of the true model M∗ in (2.4), called the true dis-

tribution, is the normal distribution, i.e., ε ∼ Np(0p, Ip).

Nine information criteria used to estimate RKL are enumerated below. The

order of the bias of each information criterion for RKL is summarized in Table 1.

As for information criteria in the NMLR model other than the nine information

criteria used in this paper, see [20, chap. 4].

Table 1: The order of the bias of each criterion.

Criterion Bias-Correction
Method

Normality Nonnormality

Under-
specified

Over-
specified

Under-
specified

Over-
specified

Proposed
under

Normality

AIC∗1
O(1) O(n−1) O(1) O(1)

CAIC∗1,∗2 Exact O(1) 0 O(1) O(1)
MAIC Moment, Exact O(n−1) O(n−2) O(1) O(1)

Proposed
without

Normality

TIC∗3,∗4,∗5 Moment O(1) O(n−1) O(1) O(n−1)
EIC∗3,∗5,∗6 Bootstrap O(1) O(n−1) O(1) O(n−1)
EICA

∗3,∗6 Bootstrap O(n−1) O(n−1) O(n−1) O(n−1)
CV∗4 Cross-validation O(1) O(n−1) O(1) O(n−1)
AICJ

∗4,∗5,∗7 Jackknife, Exact O(1) 0 O(1) O(n−1)
CAICJ

∗4,∗7 Jackknife, Exact O(1) 0 O(1) O(n−2)

∗1 The number of explanatory variables in the best model selected by the CAIC is less than or equal to
that in the best model selected by the AIC.

∗2 This is the UMVUE of the risk function when assumptions A1 and A2 hold.
∗3 These are asymptotically equivalent when assumption A1 holds. The differences are Op(n−1/2).
∗4 These are asymptotically equivalent. The differences are Op(n−1).
∗5 When O(n−2) term is neglected and assumption A1 holds, the absolute value of the bias of the

AICJ is smaller than those of the TIC and EIC.
∗6 The only difference between these two criteria is the resampling method.
∗7 When the O(n−2) term is neglected and assumption A1 holds, the variance of the CAICJ is smaller

than that of the AICJ.

3.1. AIC

Under the assumption that the candidate model is completely specified,

Akaike [1, 2] proposed AIC by estimating a bias of a negative twofold maximum

log-likelihood to a risk function as twice the number of parameters. According to

the general formula of AIC, B̂ in (3.2) is B̂AIC = 2pk + p(p+ 1). Thus, the AIC

in the model M is expressed as

AIC = np(log 2π + 1) + n log |Σ̂| + 2pk + p(p+ 1) .
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From the assumption to derive an bias of AIC, the bias of the AIC in the modelM

to RKL becomes O(n−1
) when assumptions A1 and A2 are satisfied simultane-

ously. However, the order of the bias changes to O(1), i.e., AIC has constant bias,

when either of assumptions A1 or A2 are violated (for details, see, e.g., [8, 9, 27]).

3.2. Corrected AIC

When assumptions A1, A2, and an additional assumption n > p+ k + 1

are satisfied, Bedrick and Tsai [3] calculated the exact form of B as B̂CAIC =

n(n+ k)p/(n− k − p− 1) − np and proposed the corrected AIC (CAIC)
1

by

replacing B̂ in (3.2) with B̂CAIC as

CAIC = np log 2π + n log |Σ̂| + n(n+ k)p

n− p− k − 1

= AIC +
(p+ k + 1) (p+ 2k + 1)p

n− p− k − 1
.

The CAIC is an unbiased estimator of RKL under assumptions A1 and A2,

and is congruent with the bias-corrected AIC proposed by [12, 24] when p = 1.

Additionally, extending the result of [5] to the multivariate case provides that

the CAIC is a UMVUE of the risk function RKL when assumptions A1 and A2

are satisfied simultaneously (for a short proof, see [34]). From the definition of

the CAIC and its unbiasedness under assumptions A1 and A2, we can see that

the AIC in an overspecified model underestimates RKL, and the amount of the

underestimation becomes large as k increases. This will cause the undesirable

property of the AIC that the AIC has a tendency to overestimate the best model

when the sample size is not large enough and the number of candidate models

is large. The problem of the AIC can be avoided by using CAIC instead of the

AIC, because the number of explanatory variables of the best model selected by

the CAIC will be less than or equal to the number selected by the AIC (the proof

is given in Appendix A.2). Because of CAIC = AIC +O(n−1
), as in the case of

the AIC, the order of the bias of the CAIC to RKL becomes O(1), i.e., the CAIC

has a constant bias, when either of assumptions A1 or A2 are violated.

3.3. Modified AIC

When assumption A2 holds but assumption A1 does not hold, and n >

p+ k + 1, Fujikoshi and Satoh [8] estimated B by B̂MAIC = B̂CAIC + 2k tr(L) −
tr(L)

2 − tr(L2
), where L is a p×p matrix defined by L = (n − k)Σ̂ωΣ̂−1/

1Although Bedrick and Tsai [3] used AICc as the abbreviated symbol, we use CAIC following
the notation of [8].
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(n− kω) − Ip, and proposed the modified AIC (MAIC) by replacing B̂ in (3.2)

with B̂MAIC as

MAIC = CAIC + 2k tr(L) − tr(L)
2 − tr(L2

) .

The bias of the MAIC to RKL becomes O(n−2
) when assumptions A1 and A2

are satisfied simultaneously, and it becomes O(n−1
) when assumption A2 holds

but assumption A1 does not (see, [8]). However, the bias changes to O(1), i.e.,

the MAIC also has constant bias, when assumption A2 is violated, because BAIC

depends on a nonnormality of the true model when assumption A2 is violated

(see, e.g., [9, 27]).

3.4. Takeuchi’s Information Criterion

Takeuchi [25] revaluated an asymptotic bias under model misspecifica-

tion and proposed Takeuchi’s information criterion (TIC) by estimating such

an asymptotic bias with a moment-estimation method. According to the gen-

eral formula of the TIC, a bias-correction term of the TIC in the model M can

be calculated as B̂TIC = B̂AIC + κ̂
(1)
4 + 2

∑n
i=1(1 − hi) (r̂2i − p) (for details of the

derivation, see [9]), where r̂i is a squared standardized residual of the i-th indi-

vidual, κ̂
(1)
4 is an estimator of the multivariate kurtosis κ

(1)
4 in (2.4), and hi is a

constant, which are given by

r̂2i = (yi − Ξ̂′xi)
′ Σ̂−1

(yi − Ξ̂′xi) ,

κ̂
(1)
4 =

1

n

n∑

i=1

r̂4i − p(p+ 2) , hi = 1 − x′
i(X

′X)
−1xi .

(3.3)

Hence, the TIC in the model M is expressed as

TIC = AIC + κ̂
(1)
4 + 2

n∑

i=1

(1 − hi) (r̂2i − p) .

When y1, ...,yn are independently and identically distributed, the bias of the TIC

to the risk function is O(n−1
) under any model misspecification. However, in the

case of multivariate linear regression, y1, ...,yn are independent but not identically

distributed. This leads to the less well-known fact that the bias of the TIC in the

model M to RKL is O(n−1
) when assumption A1 holds but assumption A2 does

not, and becomes O(1) when assumption A1 is violated (see, [9]). By conducting

numerical experiments, many authors have verified a fact that although the TIC

theoretically reduces the bias caused by violating normality, the TIC cannot

reduce the bias successfully unless the sample size is huge (see, e.g., [9, 27]). This

occurs because the TIC consists of an estimator for the multivariate kurtosis κ̂
(1)
4 .
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Yanagihara [28] presented numerical results that showed that κ̂
(1)
4 has a huge bias

to κ
(1)
4 if n is not huge. Hence, the TIC also has a huge bias to RKL if n is not

huge.

When y1, ...,yn are independently and identically distributed, the bias of

TIC can be reduced to O(n−2
) by using a formula in [35], which is a special case

of those in [15] and [30]. However, as stated already, y1, ...,yn are independent

but not identically distributed in the case of the multivariate linear regression.

Regrettably, we cannot correct the bias of TIC by using their formula.

3.5. Extended Information Criterion

The serious problem with TIC comes from the moment estimation of a bias.

Ishiguro et al. [13] cleared this problem by using the bootstrap method for an

estimation of the bias, and proposed the extended information criterion (EIC).

Let Db be an n×n matrix to express the b-th bootstrap resample of Y as

(3.4) Db = (db,1, ...,db,n)
′ , db,1, ...,db,n ∼ i.i.d. MNn(1;n−11n) ,

where MNn(1;n−11n) denotes the n-variate one-trial multinomial distribution

with the same cell probabilities 1/n. Following [7], the b-th bootstrap resample

of Y is Ỹb = XΞ̂ + Db(In−PX)Y . Let Σ̃b be the ML estimator of Σ evaluated

from (Ỹb,X). From the general formula of EIC in [14], an estimator of the

bias obtained from the bootstrap method with m repetitions is given by B̂EIC =

m−1
∑m

b=1 tr
{
Σ̃−1

b (Y −PXỸb)
′
(Y −PXỸb)

}
− np. Then, by using (3.2), the EIC

in the model M is expressed as follows (see, [27]):

EIC = np log 2π + n log |Σ̂| + 1

m

m∑

b=1

tr

{
Σ̃−1

b (Y −PXỸb)
′
(Y −PXỸb)

}
.

When y1, ...,yn are independently and identically distributed, the bias of the EIC

to the risk function isO(n−1
) under any model misspecification like the TIC. How-

ever, in the case of multivariate linear regression, y1, ...,yn are independent but

not identically distributed. Hence, the bias of EIC is O(n−1
) under assumption

A1, but that changes to O(1), i.e., the EIC has constant bias (as does the TIC),

when assumption A1 is violated (see, [27]). In particular, EIC = TIC+Op(n
−1/2

)

holds when bothm→ ∞ and assumption A1 holds (the proof is given in Appendix

A.3). Although the theoretical bias of the EIC has the same order as that of the

TIC, the bias of the EIC tends to be smaller than that of the TIC (see, [27])

because the EIC does not directly use κ̂
(1)
4 for estimating the bias.
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3.6. Adjusted EIC

Fujikoshi et al. [9] proposed an adjusted version of the EIC in the model M

by using a full-model-based resampling instead of a candidate-model-based resam-

pling. We call this the adjusted EIC (EICA). Let Ȳb be the b-th bootstrap re-

sample of Y based on the full model Mω given by Ȳb = XωΞ̂ω + Db(In−PXω)Y ,

where Db is given by (3.4), and let Σ̄b be the ML estimator of Σ evaluated

from (Ȳb,X). Then, B̂EICA
, which is an estimator of the bias obtained from a

full-model-based bootstrap method with m repetitions, is given by replacing Ỹb

and Σ̃b in B̂EIC with Ȳb and Σ̄b. By using (3.2), the EICA in the model M is

expressed as follows (see, [9]):

EICA = np log 2π + n log |Σ̂| + 1

m

m∑

b=1

tr

{
Σ̄−1

b (Y −PXȲb)
′
(Y −PXȲb)

}
.

The bias of the EICA to the risk function is always O(n−1
) (see, [9]). In particular,

EICA = TIC+Op(n
−1/2

) holds whenm→ ∞ and assumption A1 holds (the proof

is given in Appendix A.3).

3.7. Cross-Validation Criterion

The cross-validation (CV) criterion proposed by [22] estimates a risk func-

tion directly, and it can be defined without an estimator of a bias of a negative

twofold maximum log-likelihood to a risk function. We know that n repetitions

of the calculations for the ML estimator of (Ξ,Σ) are needed for the CV criterion

in the model M . However, Yoshimoto et al. [36] gave the formula to derive the

CV criterion in the model M without the n repetitions as

(3.5) CV = np log

(
2πn

n−1

)
+ n log |Σ̂| +

n∑

i=1

{
log

(
1− r̂2i

nhi

)
+

(n−1) r̂2i
hi(nhi− r̂2i )

}
,

where r̂2i and hi are given by (3.3). From [23], CV = TIC +Op(n
−1

) always

holds if y1, ...,yn are independently and identically distributed. In the case of

multivariate linear regression, we can prove that CV = TIC +Op(n
−1

) always

holds (the proof is given in Appendix A.4). From this result, the bias of the CV

criterion is O(n−1
) under assumption A1, but like the TIC, it has a constant bias

when assumption A1 is violated.

Yanagihara and Fujisawa [30], and Yanagihara et al. [33, 35] proposed bias-

corrected CV criteria, which are criteria correcting the bias of CV to the risk func-

tion, under general statistical models. It should be noted that their results cannot

be applied to the case of multivariate linear regression because they proposed the

bias-corrected CV under the assumption that y1, ...,yn are independently and

identically distributed.
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3.8. Jackknife AIC

Yanagihara [32] proposed a bias-corrected AIC by using a jackknife method

for estimating B and by adjusting such an estimator of B to become an unbiased

estimator when assumptions A1 and A2 are satisfied simultaneously. We call this

a jackknife AIC (AICJ). Let B̂AICJ
= c

∑n
i=1Q(r̂2i /hi; 1)/hi − np, where r̂2i and

hi are given by (3.3), Q(x;λ) is a function with respect to x and c is a positive

constant, as follows:

(3.6) Q(x;λ) = x
(
1 − x

n

)−λ
, c =

(n+ k) (n− k − p− 2)

(n− k − p− 1)
∑n

i=1 h
−1
i

.

Then, by using (3.2), the AICJ for the model M is (see [27]):

AICJ = np log 2π + n log |Σ̂| + c
n∑

i=1

Q(r̂2i /hi; 1)

hi
.

From [27], AICJ = TIC +Op(n
−1

) always holds. Hence, like the TIC, the bias

of the AICJ is O(n−1
) under assumption A1, but it has a constant bias when

assumption A1 is violated (see, [27]). On the other hand, when assumptions A1

and A2 are satisfied simultaneously, the AICJ is an unbiased estimator of RKL.

Although the order of the bias of the AICJ is the same as that of the bias of

the TIC and EIC, it has been verified numerically that the bias of the AICJ

in an overspecified model becomes very small (see, [27]). Moreover, Yanagihara

[27] showed a theoretical result that the absolute value of the bias of the AICJ

is smaller than those of either the TIC or EIC under assumption A1 when the

O(n−2
) term of B is neglected.

3.9. Corrected Jackknife AIC

Since the bias of the AICJ does not disappear in theory, Yanagihara et al.

[32] proposed a corrected AICJ (CAICJ) that corrects the bias while maintain-

ing the desirable characteristic of keeping the bias very small numerically. Let

B̂CAICJ
= c+

∑n
i=1{1+a1(1−hi)}Q(r̃2i /hi; a0)−np, where r̂2i and hi are given by

(3.3) and Q(x;λ) is given by (3.6), c+ and aj (j = 0, 1) being positive constants

given by

c+ =

(n+ k) (n− k − p− 2a0) Γ

(
n−k

2 +
1
n

)
Γ

(
n−k−p

2

)

(n+ a1k) (n− k − p− 1) Γ

(
n−k

2

)
Γ

(
n−k−p

2 +
1
n

) , aj =
n+ j − 1

n+ j
.
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Here, Γ(x) is the gamma function. Then, by using (3.2), the CAICJ for the model

M is (see [32])

CAICJ = np log 2π + n log |Σ̂| + c+
n∑

i=1

{
1 + a1(1−hi)

}
Q(r̃2i /hi; a0) .

When assumptions A1 and A2 are satisfied simultaneously, like the AICJ, the

CAICJ is an unbiased estimator of RKL. Although, like the AICJ, the CAICJ has

constant bias when assumption A1 is violated, the CAICJ reduces the bias of the

AICJ to O(n−2
) when assumption A1 holds (see, [32]). Moreover, Yanagihara et

al. [32] showed a theoretical result under assumption A1 that CAICJ reduces not

only the bias of AICJ but also the variance of AICJ when we neglect the O(n−2
)

terms.

4. NUMERICAL COMPARISON

In this section, we numerically compare performances of variable-selection

methods using the nine information criteria described in the previous section.

The best models selected by the nine information criteria are asymptotically

equivalent, and in particular, an underspecified model is never selected as the

best model when n→ ∞ (the proof is given in Appendix A.5). This indicates

that numerical comparisons with variable-selection methods using the nine infor-

mation criteria are meaningless when the sample size is large. Hence, we conduct

numerical experiments using small and moderate sample sizes. We study perfor-

mances of the nine information criteria by applying variable-selection methods

to simulation data first, and by applying variable-selection methods to real data

later.

4.1. A Simulation Study

4.1.1. Target Characteristics

In the simulation study, performances as an estimator of the risk function

are studied at first, and performances as a model selector are studied later. In a

numerical experiment to check performances as an estimator of the risk function,

we compare the nine information criteria by the following three characteristics of

an estimator:

(C-1) The mean of the information criterion E[IC];

(C-2) The standard deviation of the information criterion
√
V ar[IC];



On the Bias-Correction Effect of the AIC under Model Misspecification 313

(C-3) The root-mean-square error (RMSE) of the information criterion√
V ar[IC] +

(
E[IC] −RKL

)2
.

On the other hand, in a numerical experiment to check performances as

a model selector, we compare the nine information criteria by the following two

characteristics of a model selector:

(C-4) The probability of selecting the principle best model: the frequency

with which the principle best model is selected as the best model;

(C-5) The prediction error (PE) of the best model: the expected loss func-

tion of the best model which is chosen by the information criterion;

PE is defined as follows:

PE =
1

n
E∗

[
L(Ξ̂best, Σ̂best |Xbest)

]
,

where L(Ξ,Σ |X) is the expected negative twofold log-likelihood

function given by (2.7), and (Ξ̂best, Σ̂best,Xbest) is (Ξ̂, Σ̂,X) in the

best model.

A high-performance model selector is considered to be an information cri-

terion with a high probability of selecting the principle best model and a small

prediction error. According to the basic concept of the model selection based on

the risk function minimization, a good variable-selection method is one that can

choose the best model for improving the predictive accuracy. Hence, the PE is

a more important property than the probability of selecting the principle best

model.

The expectations and probabilities in the simulation studies were evaluated

by a Monte Carlo simulation with 10, 000 repetitions. The B̂EIC and B̂EICA
were

obtained by resampling 1, 000 times, i.e., m = 1, 000.

4.1.2. Simulation Model

The model in [32] was used as the basic simulation model for generating

data. We prepared the kω − 1 candidate models Mj (j = 1, ..., kω−1) with p = 4

and n = 30 or 100. First, we generated z1, ..., zn ∼ i.i.d. U(−1, 1). Using these

z1, ..., zn, we constructed the n×kω matrix of explanatory variables Xω, whose

(i, j)-th element is given by {(zi − z̄)/sz}j−1
(i = 1, ..., n; j = 1, ..., kω), where z̄

and sz are the sample mean and standard deviation, respectively, of z1, ..., zn.

The true model was determined by Γ∗ = Xωµ∗1
′
4 and Σ∗, whose (i, j)-th ele-

ment is defined by (0.8)
|i−j|

(i = 1, ..., 4; j = 1, ..., 4). In this simulation study,
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we arranged the six µ∗ as

Case 1: µ∗ = (0, 1, 2, 4, 0, 0, 0, 0)
′ , (kω = 8) ,

Case 2: µ∗ = (0, 1, 2, 4, 0.5, 0.5, 0, 0)
′ , (kω = 8) ,

Case 3: µ∗ = (0, 1, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
′ , (kω = 16) ,

Case 4: µ∗ = (0, 1, 2, 4, 0.5, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
′ , (kω = 16) ,

Case 5: µ∗ = (0, 1, 1, 1,−1,−1, 2, 2, 4, 0, 0, 0, 0, 0, 0, 0)
′ , (kω = 16) ,

Case 6: µ∗ = (0, 1, 1, 1,−1,−1, 2, 2, 4, 0.5, 0.5, 0, 0, 0, 0, 0)
′ , (kω = 16) .

The matrix of explanatory variables in Mj (j = 1, ..., kω − 1) consists of the first

(j + 1) columns of Xω. Thus, the true models M∗ in the cases 1, 2, 3, 4, 5, and 6

are M3, M5, M3, M5, M8, and M10, respectively. In a sense, the subindex j

expresses the degree of the polynomial regression in Mj .

For generating multivariate nonnormal data, the following data model in-

troduced by [37] was used:

Data Model. Let w1, ..., wq (q ≥ p) be independent random variables with

E[wj ] = 0, E[w2
j ] = 1 and E[w4

j ] − 3 = ψ, and let w = (w1, ..., wq)
′
. Further, let

r be a random variable that is independent of w, with E[r2] = 1 and E[r4] = β.

Then, an error vector is generated by ε = rC ′w, where C = (c1, ..., cq)
′

is a

q×p matrix satisfying C ′C = Ip. Then, the multivariate kurtosis of this model

becomes κ
(1)
4 = βψ

∑q
j=1 ‖cj‖4

+ (β − 1) p(p+ 2).

Let χf be a random variable from the chi-square distribution with f degrees of

freedom, and let C0 be a (p+1)×pmatrix defined by C0 = (Ip,1p)
′
(Ip+1p1

′
p)

−1/2
.

By using the data model, we generate error vectors with the following three

distributions:

(1) Normal Distribution: wj ∼ N(0, 1), r = 1 and C = Ip (κ
(1)
4 = 0);

(2) Laplace Distribution: wj is generated from a Laplace distribution with

mean 0 and standard deviation 1, r = (6/χ2
8)

1/2
and C = C0 (κ

(1)
4 =

4.5 × p2
(p+ 1)

−1
+ p(p+ 2)/2);

(3) Skew Laplace Distribution: wj is generated from a skew Laplace

distribution with location parameter 0, dispersion parameter 1, and

skew parameter 1, standardized by mean 3/4 and standard devia-

tion (23)
1/2/4, r= (6/χ2

8)
1/2

and C = C0 (κ
(1)
4 ≈ 4.88×p2

(p+1)
−1

+

p(p+2)/2).

For details of the skew Laplace distribution, see, e.g., [17]. It is easy to see that

data models 1 and 2 are symmetric distributions, and data model 3 is a skewed

distribution. Moreover, the size of the kurtosis κ
(1)
4 in each model satisfies the

inequality: model 1 < model 2 < model 3.
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4.1.3. Results of Simulation Study

Figure 1 showsRKL and the mean of each criterion in case 1. Since the shapes

of the figures were almost the same, we omit the results for cases 2 to 6 to save

space. The horizontal axis of the figures expresses numbers of candidate models,

i.e., the subindex j of Mj . We see that the biases of the AICJ and CAICJ were

very small under any distribution. As for the size of the bias, the AIC most under-

estimated the risk function, and the CV criterion overestimated the risk function

in the most cases. The size of the bias of the TIC was almost the same as that of
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Figure 1: Risk function and the average of each criterion (Case 1).
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the AIC. This is because the estimate of the multivariate kurtosis κ̂
(1)
4 for the TIC

was close to 0 when the sample size was not large enough. Moreover, as the num-

ber of variables in the model increased, the biases of the AIC and TIC increased.

Tables 2 and 3 show, for case 1 and for each information criterion, the

standard deviation and the RMSE. Since the tendencies were almost the same,

to save space, we omit the results for M2, M4, M5, and M6, and in cases 2 to 6.

Table 2: Standard deviation of each criterion (Case 1).

n Dist. Model AIC CAIC MAIC TIC EIC EICA CV AICJ CAICJ

1 15.010 15.010 15.033 15.106 15.342 15.179 16.007 15.998 15.899
1 3 17.416 17.416 17.476 17.567 17.842 17.813 19.465 19.358 19.010

7 19.007 19.007 19.007 19.228 19.680 19.680 30.358 28.239 24.748

1 24.300 24.300 24.359 25.931 30.636 25.933 39.426 39.264 38.073
30 2 3 29.050 29.050 29.123 30.758 35.666 31.824 51.824 50.891 48.977

7 30.194 30.194 30.194 31.440 35.972 35.972 70.243 64.135 59.042

1 24.539 24.539 24.626 26.264 31.183 26.330 39.878 39.717 38.532
3 3 29.102 29.102 29.199 30.828 35.906 31.930 53.943 52.920 50.881

7 30.317 30.317 30.317 31.546 36.130 36.130 72.282 65.915 61.491

1 25.465 25.465 25.460 25.490 25.519 25.501 25.519 25.519 25.518
1 3 29.346 29.346 29.343 29.401 29.410 29.403 29.457 29.457 29.449

7 29.896 29.896 29.896 29.995 29.968 29.968 30.268 30.263 30.171

1 45.873 45.873 45.892 48.881 50.177 48.966 54.003 54.025 53.871
100 2 3 54.960 54.960 54.964 58.601 60.232 59.079 65.510 65.512 65.312

7 55.323 55.323 55.323 58.706 60.240 60.240 66.751 66.645 66.355

1 46.667 46.667 46.682 50.057 51.413 50.127 55.152 55.176 55.033
3 3 55.358 55.358 55.358 59.470 61.296 60.043 66.796 66.801 66.601

7 55.669 55.669 55.669 59.438 61.244 61.244 67.987 67.877 67.623

Table 3: RMSE of each criterion (Case 1).

n Dist. Model AIC CAIC MAIC TIC EIC EICA CV AICJ CAICJ

1 15.486 16.625 15.181 15.772 17.357 16.290 19.905 18.803 18.599
1 3 28.397 17.416 17.478 30.642 17.855 19.981 20.531 19.358 19.010

7 66.895 19.007 19.007 72.312 19.740 19.740 47.359 28.242 24.749

1 32.159 26.318 28.698 30.994 30.735 32.465 41.417 40.677 39.253
30 2 3 58.144 40.404 40.567 56.425 37.878 44.191 52.376 50.891 48.990

7 103.424 45.985 45.985 105.162 41.763 41.763 81.197 64.135 59.059

1 33.300 27.123 29.715 32.153 31.195 33.695 41.371 40.715 39.331
3 3 59.137 41.222 41.410 57.603 38.675 45.242 54.292 52.935 50.948

7 104.755 47.094 47.094 106.657 42.810 42.810 81.953 65.943 61.577

1 25.637 26.089 25.462 25.719 26.102 25.552 26.554 26.460 26.449
1 3 29.818 29.346 29.344 30.044 29.413 29.471 29.475 29.458 29.450

7 32.396 29.896 29.896 33.371 29.969 29.969 30.669 30.263 30.171

1 47.841 47.144 48.692 48.967 50.191 49.714 54.467 54.451 54.270
100 2 3 62.714 60.405 60.411 60.963 60.729 60.356 65.514 65.514 65.316

7 67.442 61.137 61.137 64.859 60.990 60.990 66.914 66.646 66.358

1 48.672 47.973 49.517 50.139 51.431 50.850 55.661 55.646 55.473
3 3 63.288 60.962 60.964 61.888 61.811 61.352 66.804 66.801 66.602

7 67.982 61.641 61.641 65.645 62.010 62.010 68.174 67.877 67.624
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We can see in the tables that the standard deviations of the AIC and CAIC were

the smallest and those of the MAIC and TIC were the second smallest. The

standard deviations of the EIC and EICA were larger than that of the AIC, but

smaller than those of the CV, AICJ, and CAICJ. The standard deviation of

the CV criterion was the largest among all the information criteria considered.

On the other hand, the RMSEs of the AIC and TIC became large when the

sample size was small because their biases became large. The RMSEs of the CV

criterion, the AICJ, and CAICJ were also large because their standard deviations

became large. In all cases, there was a tendency for the standard deviation and

RMSE to become large when κ
(1)
4 was large.

Table 4: Probabilities of selecting the principle best model.

Case n Dist. AIC CAIC MAIC TIC EIC EICA CV AICJ CAICJ

1

1 69.07 98.44 99.41 60.20 97.92 99.62 98.66 95.12 96.07
30 2 70.19 98.46 99.55 54.35 94.19 99.64 95.02 91.59 92.65

3 69.68 98.35 99.41 53.84 94.42 99.74 95.18 91.73 92.84

1 85.11 92.59 93.82 82.51 92.51 94.28 93.63 91.75 91.87
100 2 85.50 92.94 94.18 79.39 90.22 96.22 93.01 91.13 91.21

3 85.04 92.20 93.70 79.09 89.87 96.22 92.79 90.78 90.96

2

1 34.70 87.34 93.48 26.83 86.92 95.33 90.71 79.01 80.98
30 2 30.82 84.57 91.54 21.99 80.84 95.27 88.84 77.52 79.96

3 30.27 84.07 91.04 22.15 80.26 95.07 88.92 77.08 79.19

1 56.85 50.78 47.78 56.66 50.40 46.13 47.42 51.00 51.03
100 2 58.45 52.19 49.07 54.17 46.90 39.82 41.18 44.48 44.73

3 58.55 52.08 49.58 54.50 47.60 40.46 41.86 45.09 45.01

3

1 50.70 98.20 99.04 15.16 97.56 89.42 98.40 94.24 96.10
30 2 48.98 98.26 99.46 12.22 94.18 89.08 95.22 90.12 92.86

3 49.86 98.40 99.28 12.54 94.58 89.78 95.08 90.08 92.54

1 84.64 92.40 93.59 81.22 92.21 91.36 93.62 91.45 91.57
100 2 84.39 92.22 93.25 76.86 89.33 92.68 92.57 90.40 90.57

3 84.63 92.54 93.82 76.68 89.64 92.97 93.14 91.01 91.20

4

1 23.10 86.92 92.48 6.04 86.08 63.20 89.32 76.76 80.28
30 2 20.14 83.68 89.82 3.64 78.44 60.52 87.80 73.84 78.14

3 20.60 83.80 90.28 4.80 80.30 59.94 88.42 75.48 78.72

1 55.03 49.49 46.27 52.55 49.38 50.64 46.02 49.64 50.02
100 2 57.20 52.13 48.85 50.83 47.24 48.80 41.48 44.49 44.66

3 57.01 52.57 49.51 50.34 47.63 49.27 41.95 45.03 45.32

5

1 0.00 13.14 32.36 0.00 16.97 9.35 52.99 14.86 16.92
30 2 0.01 12.04 27.49 0.00 19.93 11.14 59.57 24.44 27.32

3 0.03 11.98 27.77 0.01 18.17 10.45 58.67 23.61 26.23

1 81.26 93.78 96.24 69.55 93.84 96.94 94.02 85.14 90.15
100 2 80.96 93.57 96.04 65.05 91.92 97.77 93.62 83.40 89.14

3 80.31 93.72 96.19 65.35 92.00 97.70 93.28 83.50 89.07

6

1 0.00 12.43 43.81 0.00 17.70 35.74 29.85 9.50 11.53
30 2 0.02 12.39 36.86 0.00 24.16 34.66 32.36 16.43 22.50

3 0.01 12.24 38.17 0.01 24.08 35.10 33.40 17.43 23.29

1 58.23 80.14 85.79 45.61 80.25 87.91 80.46 65.66 72.51
100 2 57.59 79.48 85.09 42.72 78.61 90.24 81.20 65.54 72.78

3 58.58 79.45 85.18 43.79 78.75 89.62 81.20 66.21 73.27

Note: Bold and italic fonts indicate the highest and second highest probabilities of selecting the
principle best model.
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Table 5: Prediction errors of the best model.

Case n Dist. AIC CAIC MAIC TIC EIC EICA CV AICJ CAICJ

1

1 10.338 9.810 9.795 10.494 9.816 9.790 9.803 9.853 9.840
30 2 11.014 10.427 10.405 11.304 10.469 10.402 10.481 10.527 10.512

3 11.044 10.452 10.432 11.338 10.492 10.424 10.503 10.551 10.534

1 8.619 8.603 8.601 8.624 8.603 8.599 8.601 8.605 8.604
100 2 8.752 8.735 8.733 8.764 8.740 8.729 8.735 8.739 8.739

3 8.756 8.740 8.737 8.768 8.745 8.732 8.739 8.743 8.742

2

1 10.661 10.020 9.971 10.793 10.017 9.952 9.986 10.075 10.059
30 2 11.400 10.626 10.558 11.619 10.642 10.516 10.580 10.686 10.666

3 11.429 10.638 10.564 11.648 10.662 10.517 10.585 10.702 10.677

1 8.730 8.725 8.725 8.734 8.726 8.724 8.726 8.727 8.726
100 2 8.871 8.865 8.864 8.880 8.871 8.867 8.870 8.871 8.871

3 8.872 8.866 8.865 8.880 8.871 8.868 8.871 8.871 8.871

3

1 14.657 9.815 9.802 19.269 9.822 9.926 9.809 10.011 9.838
30 2 16.626 10.420 10.401 21.720 10.462 10.556 10.468 10.762 10.500

3 16.633 10.441 10.426 21.811 10.480 10.571 10.489 10.792 10.533

1 8.623 8.602 8.600 8.639 8.603 8.604 8.600 8.605 8.604
100 2 8.764 8.739 8.737 8.799 8.745 8.738 8.737 8.744 8.743

3 8.769 8.742 8.739 8.809 8.749 8.741 8.740 8.748 8.747

4

1 15.614 10.020 9.977 19.816 10.017 10.175 9.990 10.343 10.058
30 2 17.434 10.629 10.569 22.081 10.665 10.832 10.592 11.015 10.691

3 17.851 10.634 10.568 22.273 10.659 10.840 10.588 10.985 10.679

1 8.747 8.728 8.727 8.772 8.728 8.725 8.728 8.733 8.730
100 2 8.886 8.863 8.863 8.933 8.870 8.861 8.868 8.876 8.872

3 8.894 8.870 8.868 8.939 8.876 8.867 8.874 8.882 8.879

5

1 17.831 11.947 11.806 20.200 11.927 11.819 11.814 13.114 12.093
30 2 19.990 12.810 12.577 22.557 12.754 12.632 12.495 14.022 12.880

3 19.960 12.763 12.541 22.541 12.708 12.596 12.468 14.011 12.858

1 8.918 8.881 8.875 8.963 8.880 8.873 8.879 8.914 8.889
100 2 9.078 9.037 9.031 9.143 9.041 9.026 9.037 9.082 9.051

3 9.080 9.036 9.030 9.142 9.041 9.026 9.039 9.082 9.052

6

1 18.115 12.146 12.156 20.263 12.172 12.151 12.219 13.432 12.303
30 2 20.530 13.073 13.048 22.878 13.148 13.083 13.099 14.572 13.289

3 20.610 13.101 13.078 22.954 13.133 13.082 13.129 14.609 13.305

1 8.970 8.922 8.914 9.015 8.922 8.910 8.921 8.967 8.934
100 2 9.124 9.070 9.062 9.183 9.072 9.054 9.068 9.123 9.086

3 9.127 9.076 9.066 9.186 9.077 9.059 9.073 9.126 9.091

Note: Bold and italic fonts indicate the smallest and second smallest prediction errors of the best
models.

Tables 4 and 5 show the selection probability and PE, respectively. When

n = 30, the principle best models were different from the true models in the cases

2, 4, 5, and 6, in which the principle best models were M3, M3, M6, and M7,

respectively. On the other hand, when n = 100, the principle best model was

different from the true model only in case 6, in which the principle best model

was M7. In the tables, bold and italic fonts indicate the highest and second

highest probabilities of selecting the principle best model and the smallest and

second smallest prediction errors of the best models. We see from the tables that,

except for the TIC, the bias-corrected AICs resulted in improved performance
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for variable selection, compared to the uncorrected AIC. This indicates that

correcting the bias of the AIC is effective for improving the performance of the

AIC as a model selector when the sample size is not large. Although, in theory,

the TIC reduces the bias of the AIC, its performance as a model selector was

inferior. This is because the TIC only minimally corrects the bias of the AIC.

As stated earlier, the AICJ and CAICJ have the smallest biases. Nevertheless,

their performance for variable selection was not the best. This leads us to the

conclusion that it is not necessary to bring the bias close to 0 as much as possible,

although bias correction is effective. The best performance in the sense of high

selection probability and small PE was by the MAIC and EICA. This is because

the candidate model that minimizes the loss function is either the true model or

an underspecified model, as described in the proof of Theorem 2.1. Hence, this

result indicates that the bias correction in an underspecified model is important

for improving the model-selecting performance of an information criterion. The

performance of the EICA was slightly better than that of the MAIC; this is

because the EICA reduces the influence of nonnormality more effectively than

does the MAIC. However, when the sample size was small and the number of

explanatory variables was large, i.e., cases 3 to 6, the performance of the EICA as a

model selector was reduced. One reason for this is that the EICA is constructed

by resampling the full model. When the sample size is small and the number

of explanatory variables is large, we anticipate that the accuracy of resampling

will be decreased due to an increase of variances of ML estimators in the full

model. The performance of the CV criterion as a model selector was not bad

even though it has a large bias. This is because the variable-selection method

using the CV criterion is conscious of improving for a prediction of a validation

sample. Although the performance was not bad, it was not as good as either the

MAIC or EICA.

In this subsection, we listed simulation results of the variable selections

using nested models. We also conducted simulations using nonnested models.

However, we omit the results because they were very similar to those for the

nested models.

4.2. An Example Study

4.2.1. Target Characteristic

In the example study, we study performances of the variable-selection meth-

ods using nine information criteria by an estimator of the PE, which is derived

as follows: We divide data to two samples, a calibration sample (Yc,Xc) with nc

and a validation sample (Yv,Xv) with nv, randomly, and repeated such division
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Nr = 10, 000 times. In each repetition, we select the best model by minimizing

each information criterion from a calibration sample (Yc,Xc), and record the

selected best model. Let Xc,best and Xv,best be matrices of the selected best ex-

planatory variables in Xc and Xv, respectively. In order to assess an accuracy of

prediction, we calculate as

∆̂ = p log 2π + log |Σ̂c,best|

+
1

nv
tr

{(
Yv − Xv,best Ξ̂c,best

)′ (
Yv − Xv,best Ξ̂c,best

)
Σ̂−1

c,best

}
.

The average of ∆̂ across the Nr replications, P̂E, is regarded as an estimate of

the prediction error of the best model.

4.2.2. Used Real Data

We used data of 37 kindergarten students (n = 37) in a low-socioeconomic-

status area, which was provided by Dr. William D. Rohwer of the University

of California at Berkeley to examine how well performance on a set of paired-

associate (PA) tasks can predict performance on some measures of aptitude and

achievement (see, [26, p. 217]). The data gives eight variables; score on the

Peabody Picture Vocabulary Test (PPVT); score on the Raven Progressive Ma-

trices Test (RPMT); score on a Student Achievement Test (SAT); performance

on a ‘named’ PA task (N); performance on a ‘still’ PA task (S); performance on

a ‘named still’ PA task (NS); performance on a ‘named action’ PA task (NA);

performance on a ‘sentence still’ PA task (SS). We used PPVT, RPMT and SAT

as the response variables (p = 3) and N, S, NS, NA and SS as explanatory vari-

ables. The number of explanatory variables in the full model is kω = 6, because

we always add a constant term to a regression. We compared with all 32 (= 2
5
)

candidate models by values of nine criteria. When all the samples were used for

variable selection, the model having NS, NA, SS was selected as the best model

by TIC, and the model having NA was selected as the best model by eight criteria

other than TIC. Since we have conducted the numerical examination in the case

of n = 30, we divided data into 30 and 7, i.e., nc = 30 and nv = 7.

4.2.3. Results of Example Study

Table 6 shows the probability of selecting the model and P̂E. In the table,

“variables” shows used explanatory variables in the candidate model. The set of

variables which is not listed in the table indicates that it was not chosen as the

best model in every criterion. Superscript symbols
∗
and

∗∗
denote the best models

selected by each of criteria when the full data was used for variable selection.
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Table 6: Results of real data.

Variables
Selection Probability (%)

AIC CAIC MAIC TIC EIC EICA CV AICJ CAICJ

N 0.21 0.50 0.51 0.11 0.42 0.39 0.46 0.43 0.48
NS 0.59 3.06 3.37 0.22 4.12 2.22 2.09 1.46 1.60
NA∗ 51.17 88.03 90.52 33.58 80.86 91.18 88.51 80.86 82.50
SS 0.75 2.44 2.65 0.15 1.70 2.94 2.03 1.43 1.51
N,NS 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
N,NA 0.77 0.04 0.01 3.04 0.08 0.05 0.04 1.03 0.20
N, SS 0.12 0.02 0.00 0.19 0.03 0.00 0.04 0.18 0.16
S,NA 4.05 0.64 0.30 2.11 1.24 0.73 0.84 1.69 1.55
NS,NA 14.04 1.36 0.57 7.36 4.94 0.66 0.57 1.32 1.60
NS, SS 13.48 3.87 2.07 12.83 6.45 1.81 5.28 10.24 9.78
NA, SS 0.16 0.01 0.00 0.06 0.02 0.01 0.02 0.02 0.02
N, S,NA 0.85 0.00 0.00 2.97 0.00 0.00 0.00 0.18 0.03
N,NS,NA 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00
N,NS, SS 0.23 0.00 0.00 0.42 0.00 0.00 0.00 0.07 0.02
N,NA, SS 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00
S,NS,NA 5.66 0.03 0.00 10.58 0.13 0.01 0.12 0.85 0.42
S,NA, SS 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NS,NA, SS∗∗ 5.68 0.00 0.00 15.72 0.01 0.00 0.00 0.22 0.12
N, S,NS,NA 0.03 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.00
N, S,NS, SS 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
N, S,NA, SS 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N,NS,NA, SS 0.04 0.00 0.00 0.52 0.00 0.00 0.00 0.00 0.00
S,NS,NA, SS 2.05 0.00 0.00 8.37 0.00 0.00 0.00 0.01 0.00
N, S,NS,NA, SS 0.05 0.00 0.00 0.87 0.00 0.00 0.00 0.00 0.00
PE 22.396 22.043 22.006 22.582 22.108 21.991 22.036 22.135 22.113

Note: The set of variables which is not listed in the table indicates that it was not chosen as the
best model in every criterion.
∗∗ denotes the best model selected by TIC, and ∗ denotes the best model selected by criteria
other than TIC, which were calculated from the full data.
Bold and italic fonts indicate the smallest and second smallest estimates of prediction errors of
the best model.

Bold and italic fonts indicate the smallest and second smallest estimates of pre-

diction errors of the best model. From the table, we can find the same tendency

as the simulation study, i.e., EICA and MAIC were high performance criteria

in the sense of improving the prediction. Moreover, we also find that results of

variable selections using AIC and TIC tended to have larger variances than those

of the other criteria.
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5. CONCLUSIONS AND DISCUSSION

In this paper, we studied a bias-correction effect in the AIC to variable-

selection methods for normal MLRMs, which are based on a minimization of an

information criterion, by numerical examinations. Since all the variable-selection

methods considered in this paper asymptotically choose the same model as the

best model, we conducted numerical examinations using small and moderate

sample sizes. Our results are summarized as follows:

• Except for the TIC, the performances of the variable-selection meth-

ods using the bias-corrected AIC were better than that using the orig-

inal AIC. This suggests that exact correction, bootstrapping, or cross-

validation work better than the moment method for correcting the bias.

It will be that correcting only the top term in an asymptotic expansion

of the bias, as do AIC and TIC, is insufficient in an overspecified models.

• Theoretically, the bias of the CAICJ becomes the smallest among all

the criteria mentioned in this paper, but by numerical examination, we

verified that the CAICJ is not the best model selector. This indicates

that the performance of a criterion is not necessarily improved even if

the biases of the risk functions for overspecified models are reduced to

as small as possible.

• The CAIC and MAIC perform well as model selectors, even though they

have constant bias when the true distribution is not normal. The reason

for this is that the correction for the bias caused by nonnormality cannot

be estimated accurately when the sample size is small. Thus, if we try

to estimate this bias when the sample size is small, it will reduce the

accuracy of the estimation.

• Variable-selection methods using the MAIC or EICA, which are obtained

by correcting the constant bias of the AIC, always perform well. This

result leads us to the conclusion that correcting the bias for an under-

specified model has a positive effect on the selection of variables. One

reason for this is that the model that minimizes the loss function is ei-

ther the true model or an underspecified model. The EICA has the best

performance as the model selector except for when the sample size is

small and there are a large number of explanatory variables in the full

model.

In conclusion, we recommend using the MAIC for a small number of samples

and the EICA for a moderate number of samples. We note that when the number

of samples is sufficiently large, it does not matter which criterion is used.
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APPENDIX

A.1. Proof of Theorem 2.1

First, we show that the candidate model minimizing the risk function is ei-

ther the true model or an underspecified model. Let X1 = (X,a) be an n×(k+1)

matrix of explanatory variables in the model M1 : Y ∼ Nn×p(X1Ξ1,Σ1⊗In),

where a is an n-dimensional vector that is linearly independent from any combi-

nation of the columns of X. Let Ξ̂1 and Σ̂1 denote the ML estimators of Ξ1 and

Σ1, respectively. From the formula for the inverse matrix (see, e.g., [10, p. 424,

cor. 18.2.10]), we have

PX1
= PX +

1

a′(In−PX)a
(In−PX)aa′

(In−PX) = PX + as a′
s ,

where as = (In−PX)a/‖(In−PX)a‖. From the formulas for the determinant

and the inverse matrix (see, e.g., [10, p. 416, cor. 18.1.3, and p. 424, thm. 18.2.8]),

|Σ̂1| and Σ̂−1
1 are rewritten as

|Σ̂1| = |Σ̂|
(
1 − a′

sPU as

)
,(A.1)

Σ̂−1
1 = Σ̂−1

+
n

1 − a′
sPU as

Σ
−1/2
∗ (U ′U)

−1U ′asa
′
sU(U ′U)

−1Σ
−1/2
∗ ,(A.2)

where U = (In−PX)Y Σ
−1/2
∗ . Since Σ̂1 is positive definite and PU is positive

semidefinite, we can see that 0 ≤ a′
sPU as < 1 with equality if and only if

(A.3) Y ′
(In−PX)a = 0p ,

because of

a′
sPU as = 0 ⇐⇒ (U ′U)

−1/2U ′as = 0p ⇐⇒ U ′as = 0p .

The condition for equality means that a partial correlation between Y and a

given X is exactly 0. Suppose that the model M is overspecified. Then, U =

(In − PX)E holds, where E is given by (2.4). It should be kept in mind that

the standardized Σ̂ is expressed as S = U ′U/n. Notice that when M is an

overspecified model,

nΣ̂1 = Σ
1/2
∗ E

′
(In − PX1

)EΣ
1/2
∗ ,

(Γ∗−X1 Ξ̂1)
′
(Γ∗−X1 Ξ̂1) = Σ

1/2
∗ E

′PX1
EΣ

1/2
∗ .

Therefore, by using the above equations and (2.7), the loss function under M1

can be simplified as

L(Ξ̂1, Σ̂1 |X1) =

= np log 2π + n log |Σ̂1| + tr

{
Σ̂−1

1 Σ
1/2
∗ (nIp + E

′PX1
E)Σ

1/2
∗

}
(A.4)

= np(log 2π−1) + n log |Σ̂1| + tr

{
Σ̂−1

1 Σ
1/2
∗ (nIp + E

′
E)Σ

1/2
∗

}
.
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Substituting (A.1) and (A.2) into (A.4) yields

L(Ξ̂1, Σ̂1 |X1) = L(Ξ̂, Σ̂ |X) + L1 + L2 + L3 ,

where

L1 = n

{
log(1 − a′

sPU as) +
a′

sPU as

1 − a′
sPU as

}
,

L2 =
n

1 − a′
sPU as

a′
sU(U ′U)

−1
E
′PXE(U ′U)

−1U ′as ,

L3 =
n2

1 − a′
sPU as

a′
sU(U ′U)

−2U ′as .

Notice that log(1 − x) + x/(1 − x) ≥ 0 when x ∈ [0, 1) with equality if and only

if x = 0. Hence, L1 ≥ 0 holds with equality if and only if (A.3) holds. Moreover,

we have L2 ≥ 0 with equality if (A.3) because PX is positive semidefinite. These

equations imply that

(A.5) L(Ξ̂1, Σ̂1 |X1) ≥ L(Ξ̂, Σ̂ |X) + L3 ,

with equality if and only if (A.3) holds. A singular value decomposition of U

(see, e.g., [10, chap. 21.12]) implies that U(U ′U)
−2U ′

= HD−1H ′
, where D is

a p×p diagonal matrix whose diagonal elements are eigenvalues of U ′U , and H

is an n×p matrix satisfying H ′H = Ip and HH ′
= PU . Moreover, λmax(A) ≤

tr(A) holds for any positive semidefinite matrix A, where λmax(A) is maximum

eigenvalue of A. Using these results and the equation (1−a′
sPU as)

−1 ≥ 1 yields

L3 ≥ n2a′
sU(U ′U)

−2U ′as = n2a′
sHD−1H ′as

≥ n2a′
sHH ′as

λmax(U ′U)
=

na′
sPU as

λmax(S)
≥ na′

sPU as

tr(S)
.

(A.6)

Let U0 = (In−Jn)E and S0 = U ′
0U0/n, where Jn = 1n1

′
n/n. Since we assume

that X always has 1n as a column vector, (In −PX) (In − Jn) = In −PX. This

implies that a′
sU = a′

sU0. Moreover, since PX − Jn is a symmetric idempotent

matrix with tr(PX − Jn) = k − 1, it is rewritten as PX − Jn = QQ′
, where Q

is an n×(k−1) matrix satisfying Q′Q = Ik−1. Hence, from the formula for the

inverse matrix (see, e.g., [10, p. 424, thm. 18.2.8]), we have

(U ′U)
−1

=
{
E
′
(In − Jn)E − E

′
(PX − Jn)E

}−1

= (U ′
0U0)

−1
{
U ′

0U0 + U ′
0Q(Ik−1−Q′PU0

Q)
−1Q′U0

}
(U ′

0U0)
−1 .

This implies that for any p-dimensional vector b

(A.7) b′(U ′U)
−1b ≥ b′(U ′

0U0)
−1b .

Moreover, tr(S) ≤ tr(S0) holds, because nS0 = nS +E
′
(PX −Jn)E . Using these

results and equation (A.6) yields

L3 ≥ na′
sPU as

tr(S)
=

na′
sU0(U

′U)
−1U ′

0as

tr(S)

≥ na′
sU0(U

′
0U0)

−1U ′
0as

tr(S0)
= na′

sW0as ,

(A.8)
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where W0 = PU0
/ tr(S0). Using (A.5), (A.6) and (A.8) yields

(A.9) E∗

[
L(Ξ̂1, Σ̂1 |X1)

]
− E∗

[
L(Ξ̂, Σ̂ |X)

]
≥ nE∗

[
a′

sW0as

]
,

Hence, in order to evaluate the right side of equation (A.9), we have to evaluate

the expectation of W0. This expectation can be calculated in the same way as

in the proof of Lemma 7 in [29]. Notice that

(A.10)
p

tr(S0)
= tr(W0) =

n∑

a=1

waa , 0 = 1′
nW01n =

n∑

a=1

waa +

n∑

a=1

n∑

b6=a

waa ,

where wab is the (a, b)-th element of W0. Since wab = (εa− ε̄)
′
(U0U0)

−1
(εb− ε̄)/

tr(S0), where ε̄ is the sample mean of ε1, ..., εn, i.e., ε̄ = n−1
∑n

i=1 εi, we can see

that the diagonal elements of W0 are identically distributed and the upper (or

lower) off-diagonal elements of W0 are also identically distributed. These results

and the equations in (A.10) imply that

nE∗[waa] = pα , nE∗[waa] + n(n−1)E∗[wab] = 0 (a 6= b) ,

where α = E∗[1/ tr(S0)]. Thus, E∗[W0] = pα(In−Jn)/(n−1) is derived. From

the Jensen’s inequality, we have α ≥ 1/E∗[tr(S0)] = n{(n−1)p}−1
. Consequently,

it follows from these results and equation (A.9) that

(A.11) E∗

[
L(Ξ̂1, Σ̂1 |X1)

]
− E∗

[
L(Ξ̂, Σ̂ |X)

]
≥

(
n

n−1

)2

> 0 .

This means that the risk function becomes large when a new explanatory variable

is added to an overspecified model. Since the overspecified model that has the

smallest number of explanatory variables is the true model, the candidate model

that minimizes the risk function is either the true model or an underspecified

model.

Next, we show that the candidate model that minimizes the risk func-

tion is the true model when n→ ∞. From (A.11), we can see that overspeci-

fied models except the true model do not minimize the risk function even when

n→ ∞, because the right side of (A.11) converges to a positive value. Hence,

we only have to show the proof when the candidate model is an underspecified

model. Suppose that the modelM is underspecified. Let Π = (X ′X)
−1X ′Γ∗ and

Ψ = Σ
1/2
∗ (Ip + Ω)Σ

1/2
∗ , where Ω is a matrix of noncentrality parameter given by

(2.5). By minimizing L(Ξ,Σ |X) in (2.7), or equivalently solving the equations

∂L(Ξ,Σ |X)/∂Ξ = Ok,p and ∂L(Ξ,Σ |X)/∂Σ = Op,p, we can see that (Π,Ψ)

makes L(Ξ,Σ |X) the smallest. This implies that

(A.12) L(Ξ̂,Σ̂|X) ≥ L(Π,Ψ|X) = np(log 2π+1) + n log |Σ∗| + n log |Ip+Ω| .

On the other hand, since the full model is overspecified and (Ξ̂ω, Σ̂ω) makes the

negative twofold log-likelihood function of the full model the smallest, it follows
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from equation (A.4) that

L(Ξ̂ω,Σ̂ω |Xω) = −2ℓ(Ξ̂ω,Σ̂ω |Y ,Xω) − np+ tr
{
(nIp + E

′PXωE)S−1
ω

}

≤ −2ℓ(Πω,Σ∗ |Y ,Xω) − np+ tr
{
(nIp + E

′PXωE)S−1
ω

}

= np(log 2π − 1) + n log |Σ∗|
+ tr(E

′
E) + tr

{
(nIp + E

′PXωE)S−1
ω

}
,

(A.13)

where Πω = (X ′
ωXω)

−1X ′
ωΓ∗. Using the equations in (A.12) and (A.13) yields

E∗

[
L(Ξ̂, Σ̂ |X)

]
− E∗

[
L(Ξ̂ω, Σ̂ω |Xω)

]
≥

≥ n log |Ip + Ω| + 2np
(A.14)

− E∗

[
tr(E

′
E)

]
− E∗

[
tr

{
(nIp + E

′PXωE)S−1
ω

}]

= n log |Ip + Ω| + np− E∗

[
tr

{
(nIp + E

′PXωE)S−1
ω

}]
.

Hence, in order to evaluate the right side of equation (A.14), we have to evaluate

nE∗[tr(S
−1
ω )] and E∗[E

′PXωES−1
ω ]. In the same way as in the proof of Lemma 1

in [11], S−1
ω can be expressed as

S−1
ω = Ip −

1√
n

S−1
ω Vω ,

where Vω = n1/2
(Sω−Ip). By using the Hölder’s inequality, we have

E∗

[
tr(S−1

ω )
]
≤ p+

1√
n
E∗

[∣∣tr(S−1
ω Vω)

∣∣]

≤ p+

√
1

n
E∗

[
tr(S−2

ω )
]
E∗

[
tr(V 2

ω )
]

,

E∗

[
tr(E

′PXωES−1
ω )

]
≤

√
E∗

[
tr(S−2

ω )
]
E∗

[
tr

{
(E

′PXωE)2
}]
.

Let hω,i be hi in the full model, where hi is given by (3.3). It follows from the

equation 0 ≤ hω,i ≤ 1 that

n∑

i=1

h2
ω,i ≤

n∑

i=1

hω,i = n− kω ,
n∑

i=1

(1−hω,i)
2 ≤

n∑

i=1

(1−hω,i) = kω .

From Lemma 5 in [29], we can see that

E∗

[
tr(V 2

ω )
]

=
1

n
E∗

[
tr

({
E
′
(In−PXω)E

}2)] − 2nE∗

[
tr(Sω)

]
+ np

=
1

n

{
κ

(1)
4

n∑

i=1

h2
ω,i + p(p+1) (n−kω) + p(n−kω)

2

}
− np+ 2kωp

≤
(

1 − kω

n

) {∣∣κ(1)
4

∣∣ + p(p+1)

}
+
k2

ωp

n
,

E∗

[
tr

{
(E

′PXωE)
2
}]

= κ
(1)
4

n∑

i=1

(1−hω,i)
2
+ p(p+1)kω + pk2

ω

≤ kω

{∣∣κ(1)
4

∣∣ + p(p+1)

}
+ pk2

ω ,
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where κ
(1)
4 is the multivariate kurtosis given in (2.4). The above expectations

indicate that E∗[tr(V
2

ω )] = O(1) and E∗[tr{(E ′PXωE)
2}] = O(1). Recall that we

assume E∗[tr(S
−2
ω )] = O(1). Hence, we derive E∗[tr(S

−1
ω )] = p+O(n−1/2

) and

E∗[tr(E
′PXωES−1

ω )] = O(1). Substituting the obtained orders of expectations

into (A.14) yields

(A.15) E∗

[
L(Ξ̂, Σ̂ |X)

]
− E∗

[
L(Ξ̂ω, Σ̂ω |Xω)

]
≥ n log |Ip+Ω| +O(n1/2

) .

When the assumptions in Theorem 2.1 hold, limn→∞ Ω exists, because Γ∗ can be

expressed X∗Ξ∗, and limn→∞ X ′
∗X∗, limn→∞ X ′

∗X and limn→∞ X ′X exist and

are positive definite, where X∗ is Let Ω0 be a limiting value of Ω. Then, from

(A.15), the following equation is derived:

lim inf
n→∞

1

n

{
E∗

[
L(Ξ̂, Σ̂ |X)

]
− E∗

[
L(Ξ̂ω, Σ̂ω |Xω)

]}
= log |Ip + Ω0| > 0 .

The above result and the fact that the risk function in the true model is smaller

than those in all overspecified models indicate that the risk function in the true

model is the smallest among all candidate models when n→ ∞. Consequently,

Theorem 2.1 is proved.

A.2. Relationship between the best models selected by the AIC and

CAIC

Let Mj (j = 1, ...,mM ) be the j-th candidate model with an n×kj matrix

of explanatory variables Xj , and let AICj and CAICj be the AIC and CAIC

of the model Mj , respectively, where mM is the number of candidate models.

Without loss of generality, we assume that M1 denotes the best model selected

by minimizing the AIC. Let J be the set of indexes, which is defined by J = {j ∈
{2, ...,mM}| kj ≥ k1}, and let q(k) be a function given by q(k) = (p+k+1){2pk+

p(p+ 1)}/(n− p− k − 1). Since q(k) is a monotonically increasing function

with respect to k, q(kj) ≥ q(k1) holds when j ∈ J . Moreover, AICj − AIC1 > 0

holds for all j ∈ {2, ...,mM}, because M1 is the best model selected by the AIC.

By using the above two results and the relation between the AIC and CAIC, the

following inequality is derived:

(A.16) CAICj − CAIC1 = AICj − AIC1 + q(kj) − q(k1) > 0 , (j ∈ J ) .

The result of (A.16) indicates that a model with more than k1 explanatory vari-

ables will never be selected as the best model by the CAIC. Therefore, the number

of explanatory variables in the best model selected by the CAIC is less than or

equal to k1.
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A.3. Asymptotic equivalence of the EIC, adjusted EIC, and TIC for

an overspecified model

From [9, 27]
2
, when m→ ∞, B̂EIC and B̂EICA

can be expanded as

B̂EIC = 2pk + p(p+1) + κ̂
(1)
4 +Op(n

−1
) ,

B̂EICA
= 2(k+p+1) tr(G) − 3 tr(G2

) − 2 tr(G)
2
+

1

n

n∑

i=1

r̂4ω,i +Op(n
−1

) ,

where κ̂
(1)
4 is given by (3.3), G= Σ̂ωΣ̂−1

and r̂2ω,i =(yi−Ξ̂′
ωxω,i)

′ Σ̂−1
(yi−Ξ̂′

ωxω,i).

When the model M is overspecified, G = Ip +Op(n
−1/2

), κ̂
(1)
4 = κ

(1)
4 +Op(n

−1/2
),

and n−1
∑n

i=1 r̂
4
ω,i = p(p+2) + κ

(1)
4 +Op(n

−1/2
) hold, where κ

(1)
4 is given in (2.4).

Hence, B̂EIC and B̂EICA
can be rewritten as follows when the model M is over-

specified:

B̂EIC = 2pk + p(p+1) + κ
(1)
4 +Op(n

−1/2
) ,

B̂EICA
= 2pk + p(p+1) + κ

(1)
4 +Op(n

−1/2
) .

(A.17)

On the other hand, when the model M is overspecified,
∑n

i=1(1 − hi)(r̂
2
i − p) =

Op(n
−1/2

) holds because r̂2i = ε′iεi +Op(n
−1/2

) and 1−hi = O(n−1
) are satisfied.

Then, B̂TIC can be expanded as

(A.18) B̂TIC = 2pk + p(p+1) + κ
(1)
4 +Op(n

−1/2
) .

Comparing (A.17) with (A.18) yields EIC = TIC+Op(n
−1/2

) and EICA = TIC+

Op(n
−1/2

), when the model M is overspecified and m→ ∞.

A.4. Asymptotic equivalence of the CV criterion and the TIC

From [27], the last term in (3.5) can be expanded as

n∑

i=1

(n− 1) r̂2i
hi(nhi − r̂2i )

= np+ 2pk + p(p+1) + κ̂
(1)
4

+ 2

n∑

i=1

(1 − hi) (r̂2i − p) +Op(n
−1

) ,

(A.19)

where r̂2i , κ̂
(1)
4 , and hi are given by (3.3). Moreover, by applying the Taylor

expansion to equation (3.5), we obtain

(A.20)

n∑

i=1

log

(
1 − r̂2i

nhi

)
= − 1

n

n∑

i=1

r̂2i
hi

+Op(n
−1

) .

2At the bottom of p. 240 of [9], − tr(Λ̂2) is missing in the equation E[B̂A |Y ].
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It follows from hi = 1 + O(n−1
) and

∑n
i=1 r̂

2
i = np that n−1

∑n
i=1 r̂

2
i /hi =

n−1
∑n

i=1 r̂
2
i +Op(n

−1
) = p+Op(n

−1
). By combining the above result with (A.20),

we obtain

(A.21)

n∑

i=1

log

(
1 − r̂2i

nhi

)
= −p+Op(n

−1
) .

On the other hand, np log{2πn/(n−1)} = np log 2π + p+O(n−1
) holds. Con-

sequently, substituting this result and equations (A.19) and (A.21) into (3.5),

and comparing the obtained equation with the definition of the TIC, yields

CV = TIC +Op(n
−1

).

A.5. Asymptotic equivalence of the best models selected by the nine

information criteria

Let IC be a general notation to indicate one of the nine information criteria

considered in this paper. Notice that the bias-correction terms in the information

criteria expect for the CV criterion are Op(1), and CV = TIC +Op(n
−1

) holds.

Since Σ̂
p→ Σ∗ + Σ

1/2
∗ Ω0Σ

1/2
∗ as n→ ∞, where Ω0 is a limiting value of Ω given

by (2.5), we have

1

n
IC

p→ p log 2π + log |Σ∗| + log |Ip+Ω0| + p

≥ p log 2π + log |Σ∗| + p , as n→ ∞ ,

(A.22)

with equality if and only if M is an overspecified model. The equation in (A.22)

indicates that underspecified models are never selected as the best model when

n→ ∞.

Let ICA denote an information criterion proposed under normality (i.e.,

the AIC, CAIC, or MAIC), and let ICT denote an information criterion proposed

without a normality assumption (i.e., the TIC, EIC, EICA, CV criterion, AICJ,

or CAICJ). Notice that when M is an overspecified model, ICA = AIC + op(1),

ICT = TIC+ op(1) and B̂TIC
p→ 2pk+ p(p+1)+κ

(1)
4 as n→ ∞, where κ

(1)
4 is the

multivariate kurtosis given in (2.4). Hence, when M is an overspecified model,

we derive

(A.23) ICT = ICA + κ
(1)
4 + op(1) .

It should be emphasized that κ
(1)
4 does not depend on the candidate model con-

sidered, i.e., κ
(1)
4 is common in all overspecified models. Let M1 and M2 be two

different overspecified models, and let ICAj and ICTj be information criteria for

Mj (j = 1, 2). From equation (A.23), we obtain

ICT1 − ICT2 = ICA1 − ICA2 + op(1) .
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This equation indicates that the differences between two information criteria

for the two different overspecified models are asymptotically equivalent. Con-

sequently, all the information criteria choose the same model as the best one

when n→ ∞.
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1. INTRODUCTION

Birnbaum and Saunders [10] proposed a fatigue life distribution represent-

ing time to failure of materials exposed to a cyclically repeated stress pattern.

They obtained a nonnegative transformation of a standard normal random vari-

able (RV) with a scale and a shape parameter known as the Birnbaum–Saunders

(BS) distribution; see also Johnson et al. [25], pp. 651–663. The BS distribution

is positively skewed allowing for different degrees of kurtosis and its hazard or

failure rate (FR) has an inverse bathtub shape (see Kundu et al. [27] and Beb-

bington et al. [9]). The BS distribution is closed under scale transformations and

under reciprocation.

Seshadri [39] and Saunders [38] considered classes of absolutely continuous

non-negative RVs closed under reciprocation and ways of generating such classes.

Common RVs satisfying the “reciprocal property”, meaning that the RV and its

own reciprocal are identically distributed, are the Fisher–Snedecor Fn,n and the

lognormal with appropriate mean, as well as the quotient of two independent

and identically distributed (IID) non-negative (and unlimited to the right) RVs,

discussed by Gumbel and Keeney [21]. Some other examples of distributions

satisfying the reciprocal property can be found in Jones [26] and Vanegas et al.

[42].

The generalized Birnbaum–Saunders distribution (GBS), introduced by

Dı́az-Garćıa and Leiva [16], is obtained replacing the normal generator in the

BS distribution by any symmetric absolutely continuous RV. It is a highly flexi-

ble class of positively skewed distributions allowing for a wide range of kurtosis.

The probability density functions include unimodal and bimodal cases and FRs

can be monotone, inverse bathtub or have more than one change-point. Heavy

tails are also allowed depending on the tails of the generating RV. The GBS

distribution is also closed under scale transformations and under reciprocation.

As a consequence, any GBS distributed RV, suitably scaled, satisfies the recip-

rocal property. See also Sanhueza et al. [36] for a discussion of its theory and

applications, Balakrishnan et al. [6] for the case generated by scale-mixtures of

normal distributions and Leiva et al. [30] for a family related to scale-mixture BS

distributions.

Among several extensions of the BS distributions that have appeared in the

literature, we point out the three-parameter model of power transformations of

BS distributed RVs introduced by Owen [34], obtained by relaxing the assumption

of independent crack extensions to a long memory process and related to sinh-

spherical distributions (see Dı́az-Garćıa et al. [17]) and the four-parameter exten-

sion based on the Johnson system (Athayde et al. [4]). The BS distribution also

belongs to the family of cumulative damage distributions (see Leiva et al. [32]).
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Truncated BS and shifted BS distributions have been considered as well; see

Ahmed et al. [2] and Leiva et al. [28]. The case generated by non-symmetric RVs

has also been addressed; see Ferreira et al. [20] and Leiva et al. [31]. However in

this case the resulting RV does not satisfy the reciprocal property for any scale

transformation.

Reparameterizations of the BS model have also appeared; see Leiva et al.

[29], Santos-Neto et al. [37] and references therein.

Considering the problem of fitting a distribution to univariate data and

assuming it comes from a nonnegative RV, we would like to assess whether a

GBS distribution is a good candidate to model the data, and then find an appro-

priate way to test for goodness-of-fit (GOF). Notice that the BS and the GBS

distributions are not in the location-scale (LS) family. For the case of para-

metric distributions with unknown parameters, GOF techniques have also been

addressed in the literature for non LS models, including graphical techniques; see

Barros et al. [8] and Castro-Kuriss et al. [12] for an overview of available tests and

graphical tools to assess GOF in non LS distributions. These techniques can be

applied to the case of a BS distribution or a GBS generated by a parameterized

distribution, such as the Student or logistic ones, provided a proper estimation

procedure and the inverse cumulative distribution function are available, but are

not designed to test for the GBS class as a whole.

As mentioned before, any GBS distributed RV, suitably scaled, has the

reciprocal property, and we prove that the converse is also true, i.e., any RV that

upon a suitable change of scale is equally distributed to its own reciprocal admits

a representation as a GBS distribution. This characterization was the starting

point that led us to tackle the proposed problem. Namely, it enabled us to find an

alternative estimator for the scale parameter, to consider an empirical graphical

technique that requires no estimation of the scale parameter and to test whether

the data come from a GBS distribution using symmetry tests about an unknown

constant. In addition, we consider a test for the null hypothesis that the data

come from a BS distribution with unknown parameters and carry out a study of

its asymptotic behavior.

The remainder of this paper is organized as follows. In Section 2 we present

some well known results about BS and GBS distributions. In Section 3 we estab-

lish a characterization of the GBS model related to the reciprocal property and

analyze some of its consequences. In Section 4 we discuss the problem of finding

out whether this model is suitable to fit a given data set and develop an asymp-

totic GOF test for the case of the BS distribution with unknown parameters.

In Section 5 we apply the results to real data sets and finally in Section 6 we

draw some conclusions.
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2. BACKGROUND

The BS distribution is a transformation T of a standard normal RV given

by

(2.1) T = β



αZ

2
+

√(
αZ

2

)2
+ 1




2

,

where Z ∼ N(0, 1), α (α > 0) is a shape parameter and β (β > 0) is a scale

parameter (and also the median), denoted here by T ∼ BS(α, β), with inverse

transformation given by

(2.2) Z =
1

α

(√
T

β
−
√

β

T

)
∼ N(0, 1) .

As mentioned in the previous section, the distribution of T given by (2.1) is

positively skewed allowing for different degrees of kurtosis (greater than 3) and

its FR has an inverse bathtub shape. Among the properties of this distribu-

tion, we highlight that if T ∼ BS(α, β) then (i) cT ∼ BS(α, cβ) with c > 0 and

(ii) T−1 ∼ BS(α, β−1
), i.e., the BS distribution is closed under scale transfor-

mations and under reciprocation. Thus, denoting Y = T/β, Y and 1/Y are

identically distributed, i.e., Y has the reciprocal property (see Saunders [38]).

Analogously we say that T ∼ BS(α, β), suitably scaled, satisfies the reciprocal

property.

The GBS distribution, introduced by Dı́az-Garćıa and Leiva [16], is ob-

tained replacing Z in (2.1) by any symmetric absolutely continuous RV X, thus

leading to

(2.3) T = β



αX

2
+

√(
αX

2

)2
+ 1




2

,

where α (α > 0) is a shape parameter and β (β > 0) is a scale parameter (and

also the median). We say that T given by (2.3) is generated by X and denote it

by T ∼ GBS(α, β, gX), where gX(·) is the probability density function (PDF)

of X.

The cumulative distribution function (CDF) of T ∼ GBS(α, β, gX) is given

by FT (t) = GX(ξ(t; α, β)), t > 0, where GX(·) is the CDF of X and ξ(t; α, β) =

1
α

(√
t
β −

√
β
t

)
, t > 0, and the PDF is given by fT (t) = gX(ξ(t; α, β)) ξ′(t; α, β),

t > 0, where ξ′(t; α, β) =
t+β

2α
√

β
t−3/2

, t > 0. The GBS distribution is implemented

in the R software package gbs (http://www.R-project.org).
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Once again letting T ∼ GBS(α, β, gX), then T , suitably scaled, satisfies

the reciprocal property considering like before Y = T/β. Notice further that

in formula (2.3) we may assume α = 1 without loss of generality since letting

Xα = αX, the distributions GBS(α, β, gX) and GBS(1, β, gXα) are clearly the

same.

The main result in Seshadri [39] states that for absolutely continuous non-

negative RVs the reciprocal property is equivalent with the logarithm of that

RV being symmetric about zero. In other words, a RV Y satisfies the reciprocal

property if and only if W = log(Y ) is symmetric (i.e., W and −W are equally

distributed).

3. MAIN RESULTS

As mentioned before, the GBS distribution given by (2.3), where X is

a symmetric absolutely continuous RV, is such that T/β and β/T are equally

distributed. We prove that the converse is also true, and consequently that this

remarkable property characterizes the class of GBS distributions.

Theorem 3.1. Let T be a non-negative absolutely continuous random

variable. Then T ∼ GBS(α, β, gX) if and only if T , suitably scaled, satisfies the

reciprocal property.

Proof: It suffices to prove that if for some β (β > 0), T/β and β/T

are equally distributed RVs then T ∼ GBS(1, β, gX), i.e., T can be written as

T = β

(
X
2 +

√(
X
2

)2
+ 1

)2
for some symmetric RV X with PDF gX(·), where

the inverse transformation is X =

√
T
β −

√
β
T . So let T be a nonnegative ab-

solutely continuous RV with CDF HT (·), such that T/β and β/T are equally

distributed for some positive constant β. Let ξ(t) = ξ(t; 1, β) =

√
t
β −

√
β
t for

t > 0 and F (·) be the CDF of X = ξ(T ), given by F (z) = HT (ξ−1
(z)), z ∈ R,

or equivalently HT (t) = F (ξ(t)), t > 0. Now, denoting by FT
β
(·) and F β

T
(·) the

CDFs of T/β and β/T respectively, we then have FT
β
(x) = F β

T
(x) = P

(
β
T ≤ x

)
=

P
(

T
β ≥ 1

x

)
= 1−FT

β
(1/x), x > 0. Consequently HT (βx) = 1−HT

(
β
x

)
and thus

F (ξ(βx)) = 1 − F (ξ(β/x)). From the fact that ξ(β/x) = −ξ(βx), it follows that

F (ξ(βx)) = 1 − F (−ξ(βx)), i.e., F (z) = 1 − F (−z), z ∈ R. This proves that

X is a symmetric RV such that T = β

(
X
2 +

√(
X
2

)2
+ 1

)2
, and therefore T ∼

GBS(1, β, gX).
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Corollary 3.1. Let T be a non-negative absolutely continuous random

variable. Then T ∼ GBS(α, β, gX) if and only if log(T ) − log(β) is a symmetric

RV.

Remark 3.1. From the characterization in Theorem 3.1, it follows that

any class of non-negative absolutely continuous RVs satisfying the reciprocal

property belongs to the GBS class. In this case, its median is necessarily 1

(β = 1). Notice that the support of a GBS distribution can be a proper subset

of [0, +∞). In fact, an example follows directly from Habibullah [23] who in-

troduced a one-parameter family of RVs with support [a, 1/a], where 0 < a < 1,

that satisfy the reciprocal property, and thus belongs to the GBS class. Its CDF

is given by Ha(x; θ) =
1
3 α1(log x)

3
+ α2 log x +

1
2 , a < x < 1

a , where α1 =
3(1−θ)

4(log a)3
,

α2 =
θ−3

4 log a and 0 ≤ θ ≤ 1. Notice further that if we extend this family by adding

a scale parameter β, we get a GBS(1, β, gX) distribution with CDF given by

Ha,β(x; θ) = Ha(x/β; θ).

Other results follow immediately from this characterization, as stated in the

next three corollaries to Theorem 3.1. Recall that for a random sample T1, ..., Tn

from a GBS distribution, the modified moment (MM) estimator of β is given by

(3.1) β̃ =

√
SR ,

where S and R are the sample arithmetic and harmonic mean, respectively, i.e.,

S = T =
1
n(T1 + ··· + Tn) and R−1

= T−1 =
1
n

(
1
T1

+ ··· + 1
Tn

)
. See Birnbaum &

Saunders [11], Ng et al. [33] and Sanhueza et al. [36] for the case of BS and GBS

distributions. Notice that β̃/β and β/β̃ are identically distributed (see Saunders

[38], Theorem 3.2).

Corollary 3.2. Let T and U be two independent GBS distributed RVs

and a 6= 0. Then T a, TU and T/U are also GBS distributed RVs.

Corollary 3.3. Any non-negative RV that is written as a quotient of two

IID RVs is GBS distributed.

Corollary 3.4. The MM estimator of β is GBS distributed.

Notice that Corollary 3.2 states that the GBS class is closed under power

transformations, as well as under products and quotients of independent RVs.

As an example, any power of T ∼ BS(α, β) belongs to the GBS class. Another

example (see also Seshadri [39]), following from Corollary 3.3, is that the half-

Cauchy distribution with PDF f(t) =
2
π

1
1+t2

, t > 0, belongs to the GBS class since

it is obtained as a quotient of two IID half-normal RVs. Clearly, its logarithm is

a symmetric RV, since its PDF is given by g(x) = exf(ex
) =

2
π

1
ex+e−x , x ∈ R.
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Remark 3.2. Another consequence of Corollary 3.2 is that any mem-

ber of the three-parameter extended BS distribution in the sense of Owen [34],

consisting of power transformations of BS RVs, given by

T = β



αZ

2
+

√(
αZ

2

)2
+ 1




σ

or Z =
1

α

((
T

β

)1/σ

−
(

β

T

)1/σ
)

,

where Z ∼ N(0, 1) and α, β and σ are non-negative parameters, also admits a

representation as a GBS(1, β, gW ) for some symmetric absolutely continuous RV

W that depends on α, σ and Z. In fact, we have explicitly

W =



αZ

2
+

√(
αZ

2

)2
+ 1




σ/2

−



αZ

2
+

√(
αZ

2

)2
+ 1




−σ/2

.

An analogous result holds for the three-parameter extension of GBS distributions

referred in Sanhueza et al. [36], related to sinh-spherical laws (see Dı́az-Garćıa et

al. [17]), obtained replacing Z by a symmetric RV X.

Theorem 3.2. For a random sample from the GBS(α, β, gX) distribu-

tion and assuming E(X4
) < +∞, the MM estimator of β is asymptotically

BS(n−1/2αθ, β) distributed, where θ2
=

u1+ 1

4
α2u2

1+ 1

2
α2u1

, and ui = E(X2i
), i = 1, 2.

Proof: The proof is analogous to the proof of Theorem 3.7 in Birnbaum &

Saunders [11], replacing Zi by Xi. In fact, notice that now 1+
α2

2n

∑
X2

i converges

in probability to 1 +
1
2 α2u1, where ui = E(X2i

), and letting again Ui = Xi(1 +

1
4 α2X2

i )
1/2

, then var(Ui) = u1 +
1
4 α2u2. This leads to the limiting distribution

BS(n−1/2αθ, β) with θ2
=

u1+ 1

4
α2u2

1+ 1

2
α2u1

.

Corollary 3.5. For a random sample of the GBS(α, β, gX) distribution,

the MM estimator of β is asymptotically N(β, n−1/2αθβ).

Remark 3.3. Theorem 3.2 states that the asymptotic GBS distribution

for β̃ mentioned in Corollary 3.4 is precisely a BS(n−1/2αθ, β). It extends the

result by Birnbaum & Saunders [11] stating that β̃, in the BS case, is asymp-

totically distributed as a BS(αθn−1/2, β), where θ2
=

4+3α2

(2+α2)2
. Moreover, it is in

agreement with the more general asymptotic bivariate normal distribution for

the MM estimators of α and β (see Ng et al. [33] and Sanhueza et al. [36]),

since a BS(α, β) distribution is asymptotically N(β, αβ), as α → 0. In fact,

this result follows immediately from the power series expansion of (2.1), namely

T = β
(
1 + αZ +

1
2α2Z2

+
1
8α3Z3 − 1

128α5Z5
+ ···

)
; see Engelhardt et al. [19].
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4. GOODNESS-OF-FIT

When dealing with a univariate lifetime random sample, t = (t1, t2, ..., tn)

from a RV T , a natural question to consider is whether a member of the GBS class

is suitable to model these data. Let Y = log(T ), and let t−1
and y denote the

transformed samples

(
1
t1

, 1
t2

, ..., 1
tn

)
and (log(t1), log(t2), ..., log(tn)), respectively.

Theorem 3.1 and Corollary 3.1 leads us to tackle this problem (i) testing for equal

distributions of T/β and β/T with unknown β, or (ii) testing Y for symmetry

about an unknown constant. Both these procedures rely on estimating β or

log(β), and the same applies from an empirical point of view using a graphical

approach such as a quantile-quantile plot (QQ-plot) for the two samples, β−1t

and βt−1
. A graphical procedure known as the total time on test (TTT) plot

can also be used and this plot requires no estimation of β.

To test for equal distributions for T/β and β/T , β may be estimated by

minimizing some “distance” between the two samples, β−1t and βt−1
. Two pos-

sible distances are:

• The square of the difference between the sample means of β−1t and

βt−1
. This leads to the usual MM estimator of β, given by (3.1) with

S = T and R−1
= T−1 as before. This is not surprising since the MM

estimator of β in the GBS(α, β, fX) model does not depend on either

fX or α.

• A Kolmogorov–Smirnov (KS) type distance between the empirical CDF

(ECDF) of the samples T1/β, ..., Tn/β and β/T1, ..., β/Tn, given by

DKS = sup
x

∣∣F1(x) − F2(x)
∣∣ ,

where F1(x) and F2(x) are the ECDFs of the two samples. Notice that

these two samples are not independent.

To test Y = log(T ) for symmetry about unknown location, we highlight two

tests with asymptotically distribution-free test statistics, namely (i) a classical

test based on the sample skewness coefficient b1 (Gupta [22]) and (ii) the triples

test (see Davis et al. [15] and Randles et al. [35]). In the first case, the test

statistic

√
n b1
τ , where b1 =

m3

m
3/2

2

, τ =
m6−6m2m4+9m3

2

m2
3

and mi is the central moment

of order i, i ∈ N, is asymptotically N(0, 1) under the null hypothesis of symmetry,

provided µ6 = E(Y 6
) exists. The second test is based on the difference D between

the number of “right triples” and the number of “left triples” in the sample, where

each triple (Yi, Yj , Yk), 1 ≤ i < j < k ≤ n, is defined as a “right triple” if the

middle ordered observation in (Yi, Yj , Yk) is closer to the smallest than to the

largest of the three observations, and as a “left triple” if the middle ordered

observation is closer to the largest than to the smallest of the three observations.
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The test statistic, V = D/σ̂, where σ̂ is given in formula (3.78) in Hollander

et al. [24], is asymptotically N(0, 1) under the null hypothesis of symmetry. Notice

further that these two tests are unsensitive to power transformations in T , as well

as to scale changes.

4.1. A graphical procedure based on the TTT plot

As mentioned in Section 2, the FR is an important indicator in lifetime

analysis. Some particular outstanding FR shapes include increasing (IFR), de-

creasing (DFR), bathtub (BT) and inverse bathtub (IBT) ones. For a RV T with

finite expectation, it is possible to identify the shape of its FR by the scaled TTT

curve (Barlow et al. [7]), given by

(4.1) WT (y) =

∫ F−1

T (y)
0

[
1 − FT (t)

]
dt

∫ F−1

T (1)
0

[
1 − FT (t)

]
dt

, 0 ≤ y ≤ 1 .

This function can be empirically approximated by

(4.2) Wn(k/n) =

∑k
i=1 Ti:n + [n−k] Tk:n∑n

i=1 Ti:n
, k = 0, ..., n ,

where T1:n, T2:n, ..., Tn:n denote the order statistics associated to a random sam-

ple T1, T2, ..., Tn (see Figure 1). Thus, the plot of
[
k/n, Wn(k/n)

]
, where the

consecutive points are connected by straight lines, gives us information about the

underlying FR (see Aarset [1]).

0

1

y

F
−1(y) t

F(t)

0

1

k n

x(k) x

F*(x)

Figure 1: Shaded areas corresponding to
∫

F
−1

T
(y)

0
[1 − FT (t)] dt (left) and

1
n

[∑
k

i=1 Ti:n + [n−k]Tk:n

]
(right) in Equations 4.1 and 4.2.

The scaled TTT plot is a straight line in the case of the exponential distribution,

a concave (convex) function in the case of an increasing (decreasing) FR, first

concave (convex) and then convex (concave) in the case of an inverse bathtub

(bathtub) FR, thus providing a useful tool in identifying the shape of the FR
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(see Figure 2). Further, the scaled TTT is invariant under change of scale, and

so in the case of a GBS distribution no estimation of β is required for the plot.

The only drawback is that it requires T to have a finite expectation.

0 1

1

IFR

DFR

IBT

BT

co
nst

ant

y

W(y)

Figure 2: Scaled TTT plot for indicated shape of FR – bathtub (BT),

decreasing (DFR), inverse bathtub (IBT), increasing (IFR).

Once again, it follows from Theorem (3.1) that the TTT curves are the same

for T/β and β/T if and only if T ∼ GBS(1, β, gX) for some symmetric X. Based

on this result, we propose to assess the fit to the GBS distribution by comparing

the empirical scaled TTTs of the samples t and t−1
. If the data do follow a GBS

distribution, these two plots should look alike, regardless of β. We denote by

DTTT the maximum vertical distance between these two scaled TTT plots.
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Figure 3: Scaled TTT plot for some GBS (top) and non-GBS (bottom)

simulated samples and reciprocals, with n = 10
3
.
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See Figure 3 for plots of the empirical scaled TTT for simulated random samples

(n = 10
3
) for some GBS distributions (namely, a BS(1, 1), a BS-t3 generated by

the Student t with 3 degrees of freedom, and the GBS distribution with CDF

Ha(.; θ) for a = θ = 0.2, mentioned in Remark 3.1) and non-GBS distributions

(half-normal, half-Student t3 and exponential). The behavior of the statistic

DTTT is under investigation.

4.2. Testing for the BS model

For the case of an absolutely continuous lifetime RV T , to test the null hy-

pothesis H0 that the CDF of T is F (·; θ), based on a random sample (t1, t2, ..., tn),

we consider the Cramér–von Mises (CM) statistic given by

(4.3) W 2
n = n

∫ +∞

0

(
F ∗

n(t) − F (t; θ)
)2

dF (t; θ) ,

where F ∗
n(·) is the ECDF associated to the sample. This reduces to

W 2
n =

1

12 n
+

n∑

j=1

(
2j − 1

2n
− F (tj:n; θ)

)2

,

where t1:n, t2:n, ..., tn:n denote the corresponding order statistics. If θ is known,

W 2
n is distribution-free, in the sense that its distribution depends only on n but

not on the true F (·; θ), since F (T ) is uniformly distributed in [0, 1] under H0.

The asymptotic distributions were derived by Anderson and Darling [3].

As is well known, the ECDF statistics, such as W 2
n , for the case of unknown

parameters usually depend on the CDF F (·; θ) in H0 as well as on n. However,

in the case of a location-scale family, these statistics depend only on the family

itself and n but not on the true values of the location and scale parameters,

as long as an appropriate estimation method is provided (David and Johnson

[14]). In some cases of a shape parameter, such as in the Gamma family, the

dependence of the asymptotic and finite sample ECDF statistics on the shape

parameter is slight, and tables of asymptotic percentage points were provided

for different values of the parameter, to be used with the estimated values; see

Stephens [41]. Another way to overcome this problem with shape parameters is

to use the half-sample method introduced by Durbin [18]. This method uses a

randomly chosen half of the original sample to compute the parameter estimates,

say θ∗, by asymptotically efficient methods, such as maximum likelihood (ML).

Then the ECDF statistics are computed with F (·; θ∗) using the whole sample.

The remarkable result is that asymptotically these ECDF statistics will behave

like the ones for the case of known parameters. However, besides the dependence
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of the test conclusion on the choice of the half-sample, a considerable loss in

power has been reported, namely in the case of testing for a normal or exponential

distribution (see Stephens, [40] and [41]).

For a random sample T1, T2, ..., Tn from T ∼ BS(α, β), let θ = (α, β) and θ̂

and θ̃ denote respectively the ML and MM estimators of θ, and θ∗ denote the ML

estimator based on a randomly chosen half-sample. We shall carry out a study

of the asymptotic distribution of W 2
n in (4.3) for the case of unknown θ, using

these three statistics. Thus let

(4.4) C2
n = n

∫ +∞

0

(
Fn(t) − F (t; θ̂)

)2
dF (t; θ̂)

instead of (4.3), as in Darling ([13]), or alternatively

(4.5) C
′2
n = n

∫ +∞

0

(
Fn(t) − F (t; θ̃)

)2
dF (t; θ̃)

or

(4.6) C∗2
n = n

∫ +∞

0

(
Fn(t) − F (t; θ∗)

)2
dF (t; θ∗) .

Remark 4.1. For the BS(α, β) distribution, using the asymptotic dis-

tributions of β̂ and β̃ (see Engelhardt [19] and Ng et al. [33], respectively), we

have var(β̃) ∼ var(β̂) as α → 0, so the relative efficiency of these two estimators

tends to 1 as α decreases. Moreover, quoting Birnbaum & Saunders [11] “under

this condition [α < 1/2], which we shall later empirically verify, β̃ is virtually the

ML estimator whose optimal properties are well known”, we then expect to have

similar asymptotic distributions (as n → ∞) in (4.4) and (4.5) when using either

β̂ or β̃, at least for small values of α.

We have computed the asymptotic percentage points for C2
n for testing

H0 : T ∼ BS(α, β) with unknown parameters, based on 10
5

simulations, by the

method described in Stephens [41], for significance levels 0.10, 0.05 and 0.01.

This was achieved, for fixed α (α = 0.05, 0.1, 0.2, ..., 1.0), by plotting the points

obtained with simulated samples of size n (n = 30, 40, ..., 120) against m = 1/n

and extrapolating to m = 0. Then, the values obtained for each fixed significance

level were plotted against α to extrapolate to α = 0 by means of a polynomial

fit (see Table 1). Notice that these values for α → 0 are almost exactly the same

as for the case of a normal distribution with unknown parameters (see Table 4.7

in Stephens [41]), as expected, due to the asymptotic normality of the BS(α, β)

distribution as α → 0 (see Remark 3.3). We also report that, for the range of α

values considered, the dependence of the percentage points on n (n ≥ 30) is slight,

being negligible as α decreases and as the significance level increases. Table 1 is

to be used with estimated α from the data, as mentioned before. In general, the
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well known data that have been fitted to a BS model have α̂ < 1, for example

the lifetime data sets psi31, psi26 and psi21 in Birnbaum & Saunders [11] or the

survival data set in Kundu et al. [27].

Table 1: Asymptotic upper-tail percentage points for C2
n

for testing H0 : T ∼ BS(α, β),

both parameters unknown, based on 10
5

simulations.

α
Significance level

0.10 0.05 0.01

1.0 0.136 0.170 0.256
0.9 0.130 0.163 0.242
0.8 0.125 0.155 0.228
0.7 0.120 0.147 0.214
0.6 0.115 0.142 0.206
0.5 0.111 0.136 0.197
0.4 0.109 0.133 0.190
0.3 0.106 0.129 0.185
0.2 0.105 0.127 0.181
0.1 0.104 0.127 0.179
0.05 0.103 0.126 0.178

α → 0 0.103 0.126 0.179

We then repeated this procedure using MM instead of ML estimates of

both parameters, and obtained the asymptotic percentage points for C
′2
n . The

results, shown in Table 2, are similar to the former ones for small α values and

the similarity is stronger as α decreases to 0, as expected (see Remark 4.1).

Table 2: Asymptotic upper-tail percentage points for C
′2
n

for testing H0 : T ∼ BS(α, β),

both parameters unknown, based on 10
5

simulations.

α
Significance level

0.10 0.05 0.01

1.0 0.126 0.156 0.230
0.9 0.123 0.151 0.222
0.8 0.120 0.148 0.215
0.7 0.117 0.144 0.208
0.6 0.113 0.139 0.200
0.5 0.111 0.136 0.194
0.4 0.109 0.133 0.190
0.3 0.106 0.130 0.186
0.2 0.105 0.127 0.181
0.1 0.103 0.126 0.179
0.05 0.103 0.126 0.179

α → 0 0.102 0.125 0.177
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In the case of the GBS family, the percentage points for C2
n strongly depend

on the true shape parameter α for a fixed generator X. However, if the parameters

α and β are estimated by ML via the split-sample method (Durbin [18]; see also

Stephens [41]), then similar results to the ones reported for testing normality and

exponentiality based on CM statistic (see Stephens [40], Tables 1 and 2) were

obtained. We illustrate this feature for the BS case with Table 3. This table shows

the percentage points for C∗2
n for α = 0.1, 0.5, 1.0, 2.0, 3.0 and n = 20, 50, 100,

each one computed from 10
5

simulated samples at significance levels 0.10, 0.05

and 0.01, for unknown parameters estimated by the split-sample method.

Table 3: Upper-tail percentage points for C∗2
n

for testing H0 : T ∼ BS(α, β),

both parameters unknown, and upper-tail asymptotic percentage

points for W 2
n

for testing H0 : T ∼BS(α, β), both parameters known.

C
∗2
n n α

Significance level

0.10 0.05 0.01

0.1 0.373 0.490 0.755
0.5 0.374 0.490 0.768

20 1.0 0.376 0.495 0.776
2.0 0.383 0.506 0.791
3.0 0.372 0.491 0.778

0.1 0.357 0.476 0.759
0.5 0.355 0.472 0.745

50 1.0 0.359 0.479 0.770
2.0 0.361 0.479 0.770
3.0 0.357 0.469 0.756

0.1 0.353 0.471 0.755
0.5 0.353 0.466 0.753

100 1.0 0.354 0.473 0.761
2.0 0.354 0.469 0.749
3.0 0.351 0.462 0.751

W
2
n ∞ 0.34730 0.46136 0.74346

The asymptotic percentage points for W 2
n (Anderson and Darling [3]) are shown

in the last row of the table. We observe that the dependence of upper-percentage

points on α values is no longer strong, that it decreases as n increases and that

the upper-percentage points are fairly close to the asymptotic ones for W 2
n .

We realize that a drawback of these methods is the dependence of the criti-

cal points on the unknown parameter and that there are other possible goodness-

of-fit tests that can be useful in such cases; see Barros et al. [8] and Castro-Kuriss

et al. [12].
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5. SOME APPLICATIONS WITH DATA

In this section we analyze three well-known data sets from different areas

and apply the procedures described in the previous sections to these data.

5.1. The data sets

The three data sets under analysis are (i) the survival times of 72 guinea

pigs infected with tubercle bacilli in regimen 6.6 (corresponding to 4.0×10
6

bacil-

lary units per 0.5ml), analyzed by Kundu et al. [27], denoted by survpig, (ii) the

data set of lifetimes in cycles of aluminum coupons (maximum stress per cycle

31,000 psi) analyzed by Birnbaum & Saunders [11] and other authors (e.g., Ng

et al. [33], Sanhueza et al. [36] and Balakrishnan et al. [6]), denoted by psi31

and (iii) the data set of daily ozone concentrations collected in New York dur-

ing May–September 1973, analyzed by Ferreira et al. [20], denoted by ozone.

The sample dimensions are respectively n = 72, n = 101 and n = 116.

5.2. An introductory example

The estimation procedure based on the KS-type distance DKS described in

Section 4 is illustrated here by means of the data set survpig. For these data,

all β values in the interval [72.35, 72.92] minimize DKS , so we took the center of

this interval as its estimate, say βKS = 72.635. This corresponds to a distance

DKS = 6/72 = 0.0833. See Figure 4.
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Figure 4: DKS (KS-type distance) as a function of β (left) for survpig

data and ECDF for the β-scaled sample and its reciprocal, with

β estimated by minimizing DKS (right).
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5.3. Analyzing the data

For each of the samples, say t = (t1, t2, ..., tn), we applied the procedures

described in the previous sections. The results are summarized in Table 4.

See also the scaled TTT plots for t and t−1
(Figure 5) and the QQ-plots for

x = t/β̂ and y = β̂/t (Figure 6). Estimates β̃ and βKS (for βKS we took the

center of the interval of β values corresponding to a minimum distance DKS , as

explained before) were computed, as well as ML estimates of α and β for the

parametric models BS(α, β) and BS-tν(α, β), with ν estimated as in Azevedo et

al. [5]. The CM-type statistics C2
n, C

′2
n and C∗2

n have also been computed and

critical values for these statistics at significance level 5% are shown in paren-

theses. These values were obtained by interpolation, using Tables 1 and 2, in

the first two cases, and from 10
5

simulated samples for each n (n = 72, 101, 116)

and α (α = 0.76, 0.17, 0.98), respectively. The classical test for symmetry about

unknown location based on b1 and the triples test were also applied to the trans-

formed sample y = log(t).

Table 4: Results for samples survpig, psi31 and ozone.

Data set

survpig psi31 ozone

n 72 101 116eβ 77.4526 131.8193 28.4213
βKS 72.635 132.995 31.530

DKS 0.083 0.059 0.051bβ 77.5348 131.8190 28.0234
BS(α, β) bα 0.7600 0.1704 0.9823eα 0.7600 0.1704 0.9822

BS-tν(α, β)

ν 5 8 7bβ 75.5880 132.4297 30.9047bα 0.6085 0.1475 0.8074eα 0.5887 0.1476 0.8301

C
2
n

0.1874 0.0857 0.2071
(0.152) (0.127) (0.169)

C
′
2

n
0.1865 0.0857 0.1695
(0.145) (0.127) (0.156)

C
∗2
n

0.241 0.138 0.327
(0.470) (0.472) (0.471)

b1 test p-value 0.5886 0.3701 0.2258
triples test p-value 0.170 0.691 0.388

DTTT 0.1068 0.0895 0.1989
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Figure 5: TTT for samples t and t−1
for survpig (left),

psi31 (center) and ozone (right).
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Figure 6: QQ-plots for x = t/β̃ and y = β̃t−1
, for survpig (left),

psi31 (center) and ozone (right).

The CM-type tests based on C2
n and C

′2
n both reject the BS model for

samples survpig and ozone, but not for psi31. The symmetry tests do not

reject a GBS model for any of these samples.

Finally, the distance DTTT has been computed for each sample. We also

simulated the upper 5% percentage points for the distance DTTT in the BS(α, β)

and BS-tν(α, β) models for each n (72, 101 and 116, respectively) with α = α̂ and

β = β̂ in each case (ν = 5, 8 and 7, respectively) with 10
4

simulations (see Table 5).

This rules out these two particular models for ozone. The graphical analysis

(Figures 5 and 6) also indicates that a GBS model seems reasonable for survpig,

excellent for psi31 and not adequate for ozone.

Table 5: Simulated upper-tail percentage points (at significance level 5%)

for DTTT assuming T ∼ BS(α̂, β̂) or T ∼ BS-tν(α̂, β̂) (α̂ and β̂
estimated from the three samples).

sample

survpig psi31 ozone

BS 0.156 0.122 0.157
BS-tν 0.218 0.197 0.184

(ν = 5) (ν = 8) (ν = 7)
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On the other side, as the classical symmetry b1 test does not reject a GBS

model for ozone, we have carried out a brief simulation study on the power of

this test against several alternatives, for n = 116, including the extreme value

Birnbaum–Saunders model generated by the Gumbel distribution for minima,

denoted by EVBS
∗
(α, β, 0). This model was proposed by Ferreira et al. [20] as

the best among several other models, including the BS one. The power of the

test, based on 10
5

simulations, was estimated as 0.762 supposing the true model

is EVBS
∗
(α̂, β̂, 0). If the true α in this model lies in the interval [0.6,1.0], the

power decreases from 0.811 to 0.659, and can be as low as 0.044 for α = exp(1).

Finally, the simulated 5% upper percentage point for DTTT with this model,

0.3142, also sustains the EVBS
∗

fit since the observed value for ozone is much

lower (see Table 4).

6. CONCLUDING REMARKS

In this paper we derived a characterization of the GBS class related to

the reciprocal property and analyzed some of its consequences. We discussed

some graphical procedures to assess the fit of the GBS model to observed data,

we tabulated the asymptotic percentage points for a test of the null hypothesis

that the data come from a BS distribution with unknown parameters, and fi-

nally we applied the results to three well-known data sets. The case of tests for

other GBS distributions, such as the ones generated by the Student tν or logistic

distributions, is under investigation.
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• We propose two-sample gradual change analysis motivated by gender differences ob-

served in a real data set containing jumping speeds of 432 girls and 364 boys aged 6

to 19 years. Looking at this data set from the point of view of change-point analysis

is more natural and it leads to more precise estimators than application of standard
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tion of the proposed two-sample change-point estimator, we also investigate its small

sample properties in a simulation study.

Key-Words:

• change point; gradual change; multiple comparison; two-sample test; wild bootstrap.

AMS Subject Classification:

• 62F10, 62F25, 62F40, 62F03.
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1. INTRODUCTION

In Table 5 and Figure 3, we present summary statistics of jumping speeds

observed in a sample of 432 girls and 364 boys between 6 and 19 years measured

by Leonardo Mechanograph Ground Reaction Force Plate (Šumńık et al., 2013).

In this data set, one is naturally interested in investigating the location of the

unknown change point: looking at the p-values of two-sample t-tests calculated

for each of the thirteen age categories, it seems that jumping speeds for boys and

girls are about the same from 6 to 10 years and boys’ jumping speeds are clearly

higher from 13 years on.

Unfortunately, applying the two-sample t-test thirteen times cannot be rec-

ommended without multiple testing corrections. Therefore, Table 5 contains also

the p-values adjusted for multiple comparisons using Bonferroni and Benjamini–

Hochberg (BH) method. The conclusions based on these two multiple comparison

methods are similar although the Bonferroni method controls the family-wise er-

ror rate while the Benjamini–Hochberg method (Benjamini and Hochberg, 1995)

controls the false discovery rate. It is interesting that also other standard multi-

ple comparisons methods (Holm, 1979; Hommel, 1988; Hochberg, 1988; Benjamini

and Yekutieli, 2001) implemented in the function p.adjust() in R (R Core Team,

2015) detect statistically significant differences at the same age category (13 years

and above) while statistically significant differences are not detected for the two

most “suspicious” un-adjusted p-values (0.061 and 0.047 for 11 and 12 years,

respectively).

In Section 2, we study this two-sample testing problem from the point of

view of change-point analysis using a simple model of gradual change (Hušková,

1999) so that instead of many independent two-sample t-tests we only estimate

a single change-point. In Sections 3 and 4, we investigate the asymptotic prop-

erties of the proposed estimators under various assumptions (motivated by the

application to the jumping speeds data set) and we show that the wild bootstrap

provides both confidence intervals and p-values controlling the overall significance

level.

Section 5 contains a small simulation study to check the behavior for finite

sample situations. The jumping speeds data set is analyzed in Section 6 and we

will see that the change-point approach detects statistically significant differences

earlier (i.e., for younger children) than the two-sample t-tests. A short summary

is given in Section 7.
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2. PROCEDURES

We assume that our observations fall into two distinct subgroups that are

further split into n distinct ordered categories and that the nji observations in the

j-th subgroup and i-th category are summarized by their sample mean Yji and

sample variance σ̂2
ji, j ∈ {1, 2}, i = 1, ..., n. Under additional assumptions one

could naturally apply n independent two-sample t-tests in order to compare the

two subgroups within each category and use some of the multiple test procedures

as discussed above.

However, we propose another approach based on ideas of the change point

analysis. Particularly, motivated by the above data set on the jumping speeds,

we introduce a simple two sample model with gradual changes:

(A1) Observations Yjik (j = 1, 2; k = 1, ..., nji) are obtained at time i

(i = 1, ..., n).

(A2) All observations are independent.

(A3) E(Y1i −Y2i) = µ + δ((i− k0)/n)+ (i = 1, ..., n), where µ, δ are un-

known parameters and k0 = nθ0 for some θ0 ∈ (0, 1).

(A4) Var(Yjik) = σ2
ji > 0 (j = 1, 2; i = 1, ..., n; k = 1, ..., nji).

We use the notation Yji =
∑nji

k=1 Yjik/nji, a+ = max(a, 0) with k0 denoting the

unknown location of the change point, µ the unknown expectation of difference

before the change, and δn the slope (speed) of the gradual change after k0. Notice

that, generally, variances of the single observations need not be the same.

Assumptions (A1)–(A4) are motivated by the application in Section 6: par-

ticularly, in this case, Assumption (A2) is satisfied since we observe only one

measurement per subject. In other applications, Assumptions (A2) and (A3)

may require some modifications to cover panel (longitudinal) data or time series.

Also the trend after the change may not necessarily be linear; more generally, it

can be some nondecreasing function strictly increasing after the change point.

We propose to estimate the unknown parameters by the least squares

method. In the following, we deal separately with the homoscedastic case (Sec-

tion 3) and the heteroscedastic case (Section 4).
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3. HOMOSCEDASTIC CASE

Here we deal with a two sample homoscedastic model with gradual changes

assuming additionally:

(A4*) Var(Y1i − Y2i) = σ2/m (i = 1, ..., n), where σ2 > 0 is an unknown

parameter and m can depend on n.

One-sample homoscedastic models with various gradual changes were stud-

ied by a number of authors, e.g., Hinkley (1971); Feder (1975); Shaban (1980);

Jarušková (1998); Hušková (1999); Hušková and Steinebach (2000, 2002). They

constructed procedures for testing the null hypothesis no change versus the al-

ternative there is a change, derived the least squares estimators, and studied its

limit behavior for n → ∞. We use the same method for our problem.

The least squares estimators µ̂, δ̂, k̂µ are defined as minimizers of the sum

of squares
∑n

i=1

{
Y1i − Y2i − a− d((i−k)/n)+

}2
with respect to a, d, k. Denoting

xik = ((i − k)/n)+ and x̄k =
∑n

i=1 xik/n, direct calculations give:

k̂µ = arg max
k∈(1,n)

[{∑n
i=1(xik − xk) (Y1i − Y2i)

}2

∑n
i=1(xik − xk)

2

]
,(3.1)

δ̂µ =

∑n
i=1(xibk − xbk) (Y1i − Y2i)∑n

i=1(xibk − xbk)2 ,

µ̂ =
1

n

n∑

i=1

(Y1i − Y2i) − δ̂µxbk .

Assuming additionally that µ = 0, the least squares estimators are:

k̂0 = arg max
k∈(1,n)

[{∑n
i=1 xik(Y1i − Y2i)

}2

∑n
i=1 x2

ik

]
,(3.2)

δ̂0 =

∑n
i=1 x

ibk(Y1i − Y2i)∑n
i=1 x2

ibk .

Unfortunately, there are no explicit expressions for k̂µ and k̂0 and these

estimators have to be found as a solution of an optimization problem. The prop-

erties of these estimators can be studied either through asymptotics (if n is large

enough) or through a simulation study. We start with asymptotics and simula-

tions are presented in Section 5.
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Following the proofs in Jarušková (1998) and Hušková (1998, 1999) we get

that in our homosecastic setup ((A1)–(A3) and (A4*)) for n → ∞

(nm)
1/2 δ

σ

{
θ0(1 − θ0)

1 + 3θ0

}1/2 k̂µ − k0

n

D−→ N(0, 1)

and

(nm)
1/2 (1 − θ0)

3/2

σ

(
1 + 3θ0

12

)1/2

(δ̂µ − δ)
D−→ N(0, 1) ,

where N(0, 1) denotes the standard normal distribution and
D−→ denotes conver-

gence in distribution. Both assertions hold true both for m fixed and m → ∞
together with n → ∞. The limit properties remain true even if δ depends on n

and tends to 0 for n → ∞ but no faster than n−1/2
log log n. The above results

also imply consistency:

(nm)
1/2 δ(k̂µ − k0)/n = OP (1) and (nm)

1/2
(δ̂µ − δ) = OP (1) .

Quite analogously when µ = 0 we get that the limit distributions of

(nm)
1/2 δ

σ

(
1 − θ0

4

)1/2 k̂0 − k0

n
and (nm)

1/2 (1 − θ0)
3/2

31/2 σ
(δ̂0 − δ)

are standard normal N(0, 1).

In Figure 1, the asymptotic distributions of k̂µ and k̂0 for nine distinct values

of k0 are compared to histograms obtained by 1000 Monte Carlo simulations. Very

good approximations via the limit distribution are evident for k0 ≤ 15 and, as

expected, they are slightly worse but still acceptable for k0 > 15. The assumption

µ = 0 visibly improves the precision of k̂0 for smaller values of k0.

In case the trend in the means is not linear after the change (as in (A3))

but nondecreasing with strict monotonicity after the change point, the proposed

change point estimators may be biased (Hušková and Steinebach, 2002).

Under the assumption of homoscedasticity, we may combine the estimators

σ̂2
ji observed in each category into the standard pooled estimator σ̂2

pooled of the

variance σ2
. The assumption that Var(Y1i − Y2i) does not depend on i is rather

restrictive and a more general case of variances will be studied in the next section.
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Figure 1: Densities of asymptotic distributions and histograms of 1000

simulated values of k̂µ (upper plot) and k̂0 (lower plot) in the

homoscedastic case for n = 20, σ2
= 1, m = 20, µ = 0, δ = 1,

and k0 ∈ {2, 4, ..., 18}.

4. HETEROSCEDASTIC CASE

4.1. Change-point estimators

Let us assume (A1)–(A4) with µ = 0. We may still use the estimators

introduced in the previous section: they still have the same limit distributions

but with different standardizations. Denoting by τ2
i = Var(Y1i − Y2i) = σ2

1i/n1i +

σ2
2i/n2i, we define the estimator k̂0(τ

2
) taking also the heteroscedasticity into

account:

k̂0(τ
2
) = arg max

k∈(1,n)

[{∑n
i=1 xik(Y1i − Y2i)/τ2

i

}2

∑n
i=1 x2

ik/τ2
i

]
.

In practice, the unknown true variances τ2
i are replaced by τ̂2

i = σ̂2
1i/m1i + σ̂2

2i/m2i

leading to the change-point estimator:

(4.1) k̂0(τ̂
2
) = arg max

k∈(1,n)

[{∑n
i=1 xik(Y1i − Y2i)/τ̂2

i

}2

∑n
i=1 x2

ik/τ̂2
i

]
= arg max

k∈(1,n)
T2,bτ2(k) .

Concerning properties of these estimators under Assumptions (A1)–(A4)

with the additional assumption

(4.2) τ2
−/n ≤ τ2

i ≤ τ2
+/n , i = 1, ..., n ,
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for some 0 < τ2
− ≤ τ2

+ < ∞, the asymptotic distribution remains normal with zero

mean but the asymptotic variance has a more complicated structure and we do

not give here explicit formulas. This can again be proved along the lines of

the proofs in Hušková (1999). To get approximation for the distribution of the

estimator k̂0(τ̂
2
), a proper version of the wild bootstrap provides a reasonable

approximation. The algorithm is described below.

4.2. Bootstrap approximation for the distribution of k̂ = k̂0(τ̂
2
)

For simplicity, we will write k̂ = k̂0(τ̂
2
). Under Assumptions (A1)–(A4)

and (4.2), the observed sample mean differences Di = Y1i − Y2i have zero mean

and standard deviation τi = (σ2
1i/n1i + σ2

2i/n2i)
1/2

. The distribution of k̂ = k̂0(τ̂
2
)

can be approximated by the wild bootstrap (Shao and Tu, 1995):

Algorithm 1. Bootstrap algorithm

Estimate parameters δ and k0.

Calculate fitted values D̂i = δ̂0((i− k̂)/n)+ (i = 1, ..., n).

For b = 1 to b = B

Generate D∗
i = D̂i + τ̂iε

∗
i (i = 1, ..., n), where ε∗i ∼ N(0, 1) are independent.

Calculate the change-point estimator k̂∗
b from the bootstrap sample D∗

1, ..., D
∗
n.

Calculate the empirical quantile q∗α from k̂∗
1 − k̂, ..., k̂∗

B − k̂ for prechosen α ∈ (0, 1).

The empirical bootstrap quantiles q∗α provide approximations for the true

quantiles qα of k̂ − k0, particularly it can be proved:

1 − α = P (k̂ − k0 > qα) = P (k0 < k̂ − qα) = P (k0 < k̂ − q∗α) + oP (1)

and, therefore, k̂ − q∗α can be used as an upper bound of an asymptotic one-sided

(1 − α) confidence interval for k0.

Remark 4.1. As a complementary problem, we can test hypotheses con-

cerning the change-point location, i.e., the null hypothesis H0 : k0 ≥ k1 against

H1 : k0 < k1 for some given k1. Denoting by K a random variable with the same

distribution as k̂ − k0 and defining the p-value as P (K < k̂ − k1) (we reject H0

for small values of k̂), we obtain that, for large B,
∑B

b=1 I(k̂∗
b − k̂ < k̂ − k1)/B is

a reasonable approximation of the p-value.

Remark 4.2. The null hypothesis of no-change can easily be tested by

bootstrapping the test statistic T2,bτ2(k) because, under the null hypothesis of

no-change, we can easily generate the bootstrap samples D∗
i = τ̂iε

∗
i .



Two-Sample Gradual Change Analysis 363

5. SIMULATIONS

5.1. Setup of the simulation study

In this section, we investigate small sample properties of the proposed

asymptotic tests and confidence intervals in various setups. We consider the

model of gradual change (A3). In each step of the simulation we proceed as

follows:

Algorithm 2. Simulation study

Set n and the change-point θ0 = k0/n.

Set variances σ2
1i and σ2

2i and numbers of observations n1i and n2i (i = 1, ..., n).

Calculate variances τ2
i = σ2

1i/n1i + σ2
2i/n2i (i = 1, ..., n).

For s = 1 to s = S
For i = 1 to i = n

Generate Di = Y1i − Y2i from N((i − k0)+, τ2
i ).

Generate τ̂2
i from σ2

1iχ
2
n1i−1/{n1i(n1i − 1)} + σ2

2iχ
2
n2i−1/{n2i(n2i − 1)}.

Calculate k̂
(s)
0 applying one of the change-point estimators k̂ defined by (3.1),

(3.2), or (4.1).

Calculate the 95% confidence interval for k0 using Algorithm 1.

Calculate the bias and the mean squared error of the simulated k̂
(s)
0 (s = 1, ..., S).

Calculate the empirical coverage probability.

Simulations for the homoscedastic case are reported in Section 5.2 while the

heteroscedastic case is investigated in Section 5.3. In Section 5.4, we comment

on some practical problems caused by rounding effects.

5.2. Homoscedastic case

Under homoscedasticity, we may utilize the asymptotic normality of k̂µ and

k̂0 with σ2
estimated by the “pooled” estimator σ̂2

pooled.

A pilot simulation study, not presented here, with n ∈ {10, 20} and m ∈
{20, 40}, comparing the empirical distributions of k̂µ and k̂0 suggests that both

estimators are generally reasonably good but exhibit large mean squared error

and negative bias for k0 close to n. The mean squared error of k̂µ is larger than

the mean squared error of k̂0 for small values of k0. This observation corresponds

to the asymptotic variances derived in Section 3, see also Figure 1. The cover-

age probabilities were close to the nominal values unless k0 was very large (for

both estimators) or very small (only for k̂µ). The coverage probabilities of the

confidence intervals based on σ2
and its estimator σ̂2

pooled were very similar.
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The worse behavior k̂µ for small k0 seems to result from the additional

uncertainty caused by estimating the parameter µ. This leads to the corrected

estimator k̂corr
µ = k̂µ − µ̂/δ̂µ that will also be considered in further simulations.

In Table 1, we investigate the empirical coverage probabilities of one-sided

95% bootstrap confidence intervals calculated with and without homoscedastic-

ity assumptions (homoscedasticity assumptions are applicable only because the

number of observations in each category is constant). Under homoscedasticity

assumptions, we estimate the common variance by σ̂2
pooled and this variance esti-

mator is also used in the bootstrap. More generally, we can also proceed without

assuming homoscedasticity and follow Algorithm 1 from Section 4.2 using all 2n

sample variances σ̂2
ji.

Results in Table 1 confirm that coverage probabilities are rather small if

the change occurs close to n. The heteroscedastic version works well even in the

homoscedastic setup.

Table 1: Coverage probabilities (in %) of one-sided 95% confidence intervals of

four change point estimators in the homoscedastic case (1000 simula-

tions, B = 1000). The confidence intervals are based on bootstrapping

utilizing either the pooled variance estimator σ̂2
pooled (homoscedastic

version) or 2n sample variances σ̂2
ji

(heteroscedastic version).

θ0

bσ2

pooled bσ2
jibkµ

bk0
bkcorr

µ
bk0(bτ2) bkµ

bk0
bkcorr

µ
bk0(bτ2)

0.1 88.8 95.2 93.3 94.0 89.5 93.9 93.7 94.5
0.2 92.4 95.9 92.8 94.9 91.7 94.8 94.3 95.6
0.4 94.1 92.3 92.9 91.9 95.5 92.4 93.3 92.0

nji = 10
0.6 92.8 93.2 92.6 92.4 93.9 89.9 92.2 90.2
0.8 90.4 90.5 90.0 90.8 89.6 87.7 89.2 89.1
0.9 78.1 78.3 79.2 78.4 80.1 74.8 76.4 76.0

n = 10
0.1 93.9 92.0 94.4 92.1 95.1 92.8 94.6 93.0
0.2 96.3 92.8 95.6 92.4 95.4 92.7 95.8 94.7
0.4 93.5 92.0 92.3 91.1 92.7 91.6 92.0 90.8

nji = 20
0.6 87.6 90.1 90.1 89.8 89.3 87.1 88.9 88.4
0.8 88.8 89.0 89.7 87.8 89.9 86.9 87.2 88.4
0.9 72.1 70.4 74.9 70.1 72.4 70.9 72.6 70.3

0.1 96.5 94.3 94.0 94.9 94.9 93.5 95.8 93.1
0.2 97.1 94.1 95.0 93.7 96.9 93.0 95.0 93.6
0.4 94.0 93.7 93.8 93.9 94.4 92.1 93.0 92.8

nji = 10
0.6 93.2 90.9 92.7 92.7 91.9 92.1 91.7 91.8
0.8 94.8 95.6 94.3 95.3 93.8 94.5 92.5 93.7
0.9 84.1 84.3 84.8 84.0 83.1 81.8 84.4 80.9

n = 20
0.1 97.3 95.0 94.4 94.9 97.0 93.5 93.4 95.3
0.2 95.1 94.3 94.1 94.3 93.5 93.9 94.1 94.0
0.4 93.0 93.1 93.1 92.9 93.6 93.6 93.1 94.7

nji = 20
0.6 91.9 90.7 92.8 92.8 91.7 93.6 92.0 91.4
0.8 93.2 91.9 91.3 90.7 91.8 92.5 91.5 89.3
0.9 79.5 81.4 83.4 79.3 82.3 80.4 82.4 82.4
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5.3. Heteroscedastic case

Real life is typically heteroscedastic and therefore we pay more attention to

such situations. In Table 2, we investigate the behaviour of the proposed method

in several artificial heteroscedastic situations caused both by different variances

and numbers of observations in the observed categories.

Table 2: Coverage percentages (in %) of 95% bootstrap confidence intervals

based on 4 change point estimators for n ∈ {10, 20}, nji ≡ 10, and

σ2
= 1 based on 1000 bootstrap replicates and 1000 simulations.

The first four columns are obtained from the homoscedastic version

of the bootstrap scheme using the pooled variance estimator σ̂2
pooled.

θ0

n = 10 n = 20bσ2

pooled bσ2
ji bσ2

jibkµ
bk0

bkcorr
µ

bk0(bτ2) bkµ
bk0

bkcorr
µ

bk0(bτ2) bkµ
bk0

bkcorr
µ

bk0(bτ2)

0.1 65.1 66.8 58.0 67.9 88.1 92.5 92.5 93.2 97.5 93.1 95.1 93.8
0.4 69.9 68.9 67.7 70.7 96.3 94.7 95.7 92.2 94.1 93.3 94.4 95.1

H01
0.8 74.7 71.2 72.2 68.5 88.5 86.5 86.7 88.4 95.9 94.9 95.2 91.4
0.9 84.1 82.8 77.9 80.5 78.6 77.4 78.8 78.1 77.5 80.4 80.8 78.9

0.1 60.5 63.2 50.6 65.6 83.7 94.2 92.5 93.9 95.3 93.0 95.0 93.1
0.4 65.9 65.4 63.9 69.6 90.6 88.4 91.0 93.0 93.6 92.5 92.8 93.2

H02
0.8 69.4 69.5 74.1 72.9 90.4 89.2 91.0 86.3 89.6 88.4 90.7 90.4
0.9 80.0 78.2 77.2 83.7 76.8 71.9 75.6 75.8 82.6 84.2 82.3 81.9

0.1 90.0 93.9 92.4 94.0 88.8 94.6 93.4 92.8 92.6 94.0 93.1 95.3
0.4 97.1 99.6 99.7 99.7 92.7 91.5 94.3 91.1 94.6 94.9 94.9 93.3

H10
0.8 89.0 93.6 93.3 92.2 91.6 92.5 90.7 89.0 95.3 91.4 94.8 90.5
0.9 94.1 87.5 87.5 68.5 92.4 88.8 86.1 73.4 87.5 86.6 89.1 82.3

0.1 65.6 65.4 55.6 69.9 89.9 93.1 91.8 93.1 90.4 95.5 91.7 94.2
0.4 71.0 67.2 67.4 70.8 92.4 94.8 93.2 91.9 93.7 92.4 93.1 93.3

H11
0.8 79.0 78.7 76.1 71.0 92.2 84.3 90.7 89.8 96.8 95.9 96.4 89.3
0.9 95.5 92.5 84.6 73.1 93.1 90.3 87.5 66.2 88.4 86.8 86.3 80.1

0.1 58.9 63.9 49.9 64.0 88.3 95.6 92.0 94.2 88.8 94.4 92.4 93.1
0.4 70.3 68.3 65.3 69.5 90.0 87.1 88.6 91.5 94.5 93.0 94.7 92.9

H12
0.8 79.6 77.5 78.8 72.2 91.1 90.1 92.7 87.9 93.9 88.5 91.3 88.8
0.9 93.2 88.3 81.7 78.0 91.3 85.2 85.7 74.3 88.6 87.3 90.9 82.2

0.1 80.9 92.4 91.0 99.4 82.1 91.5 88.0 98.5 97.0 97.2 98.9 99.3
0.4 93.8 94.6 93.2 99.8 93.0 89.6 89.9 93.7 97.4 95.4 96.6 99.2

H20
0.8 78.0 75.5 79.1 74.1 78.2 77.4 76.2 73.8 93.2 90.6 91.1 94.1
0.9 90.6 86.2 84.8 78.3 90.0 86.5 83.3 77.5 79.0 78.4 83.7 74.4

0.1 58.8 63.8 48.8 66.9 76.6 88.7 80.7 94.5 87.8 87.4 87.0 93.3
0.4 60.6 62.8 61.9 65.2 83.9 82.0 83.3 88.4 85.0 85.4 84.2 90.8

H21
0.8 73.3 70.7 68.0 69.3 79.9 79.4 76.9 79.8 84.7 84.8 84.3 88.1
0.9 93.3 88.7 81.8 82.5 87.6 85.4 81.3 78.9 81.1 81.9 79.7 77.4

0.1 49.8 58.4 39.4 69.1 61.6 84.4 73.7 94.8 79.0 83.2 80.4 93.0
0.4 57.1 61.2 56.0 72.5 74.1 68.2 75.6 90.2 78.0 81.9 81.0 93.3

H22
0.8 72.6 67.5 72.1 67.6 82.6 79.0 74.9 73.5 76.7 75.4 75.5 89.4
0.9 92.2 86.6 79.2 79.9 90.3 83.7 83.2 82.1 83.9 78.7 81.9 76.8
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Here, we consider altogether 8 heteroscedastic situations obtained by con-

sidering two simple models for nonconstant variances and two simple models for

nonconstant numbers of observations. The simulation setups (H01,...,H22) are

summarized in the following table:

Nr. of observations (nji)

nji = m m{1 + 3I(i odd)}/2 m{1 + 3I(i > n/2)}/2

σji constant (σji = σ) H01 H02
σji = σ(1 + 2I(i > k0)) H10 H11 H12
σji = σ(1 + 2I(i even)) H20 H21 H22

As expected, Table 2 shows that bootstrap using the pooled estimator of

variance does not lead to reliable results in the heteroscedastic setup. The confi-

dence intervals based on the heteroscedastic estimator k̂0(τ̂
2
) provide reasonable

coverage probabilities for all scenarios as long as k0 is not too close to n.

5.4. Rounding effects

In the jumping speeds example, children aged i to i+1 years are included in

the i-th age category. We use summary statistics observed in these age categories

and we have to keep in mind that the i-th observed sample mean and sample

standard deviation correspond to the marginal distribution of jumping speeds for

all children aged from i to i + 1 years.

Assuming that E(Y1 |Age=x) = E(Y2 |Age=x) + δ((x − k0)/n)+ for x ∈
(1, n + 1) and that the age distribution in both groups is the same, it follows

that E(Y1i −Y2i) = 0, for i ≤ ⌊k0⌋, and the true E(Y1i −Y2i) = δ(i− k0)/n for i ≥
⌈k0⌉. Hence, for sample means based on categorization of continuous explanatory

variable, the model (A3) is valid only if k0 is a natural number.

Denoting i0 = ⌊k0⌋ and d0 = k0 − i0, we may calculate the true expectation

of the mean differences E(Y1i0 − Y2i0) = E
{
δ((X − k0)/n)+

}
under the above

assumptions (with uniform distribution of the explanatory variable X in the

i0-th age category and for d0 > 0):

E(Y1i0 − Y2i0) =
δ

n

i0+1∫

i0+d0

(x − k0) dx =
δ

n

1−d0∫

0

x dx =
δ(1 − d0)

2

2n
.

In Figure 2, we plot the theoretical expectation for various values of k0.

Obviously, whenever k0 is not a natural number, the i0-th sample mean can be

“somewhat larger than it should be”.
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Figure 2: Expectations of mean differences for five categories for change

points k0 ∈ (3.2, 3.4, 3.6, 3.8). Each line connects the expecta-

tions (denoted by circles) corresponding to given changepoint

(denoted by star).

In practice, it is more natural to define the i-th category by values of the

explanatory variable x ∈ (i − 0.5, i + 0.5) and this notation is also in accordance

with the theoretical part of this paper. Therefore, we define the bias corrected es-

timator k̂bc
0 by using xbc

ik = I(i > ⌈k−0.5⌉)(i− k)/n+ I(i = ⌈k−0.5⌉) (⌈k− 0.5⌉−
k + 0.5)/(2n) instead of xik in (3.2).

Results of a small simulation study comparing the behavior of k̂0 and k̂bc
0

in a homoscedastic case are given in Table 3. As expected, the empirical bias of

the bias corrected estimator k̂bc
0 tends to be somewhat smaller. The effect of the

rounding bias on the coverage probabilities based on k̂0 is most clearly visible for

n = 20, nji ≡ 20, and k0 lying in the center of the category (i.e., for k0 = 14, 15,

and 16).

6. JUMPING SPEEDS

In order to analyze the real data set given in Table 5, it is important to

understand the meaning of the row-labels. The various labels and its meanings

are summarized in Table 4. In the theoretical part of this paper, we were using

the “Index scale” given in the first column. For practical considerations, it is im-

portant to notice that k = 1 actually corresponds to children aged approximately

6.5 years.

In order to calculate the estimators k̂0(τ̂
2
) and k̂bc

0 (τ̂2
), we maximize the

function T2+bτ2(k) and its bias corrected version, T bc
2+bτ2(k), plotted in Figure 3.
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Table 3: Empirical mean squared error (MSE), bias and coverage probabilities

of 95% confidence intervals (in %) for k̂0 and k̂bc
0 , 1000 simulations

with 1000 bootstrap replicates.

θ0

bk0
bkbc
0

MSE bias coverage MSE bias coverage

0.20 0.124 0.003 93.6% 0.112 −0.010 94.6%
0.22 0.113 −0.001 95.4% 0.113 −0.016 95.3%
0.25 0.125 −0.018 91.5% 0.123 −0.010 92.9%
0.28 0.122 0.012 91.2% 0.133 0.011 90.3%
0.30 0.116 0.008 93.9% 0.131 0.001 95.0%

nji ≡ 10
0.70 0.432 −0.109 92.7% 0.365 −0.041 93.3%
0.72 0.466 −0.099 94.0% 0.498 −0.065 91.7%
0.75 0.678 −0.151 89.6% 0.726 −0.138 88.4%
0.78 0.936 −0.226 86.5% 0.971 −0.123 91.5%
0.80 1.160 −0.263 91.3% 1.255 −0.224 91.8%

n = 10
0.20 0.053 −0.011 94.1% 0.052 0.002 93.2%
0.22 0.054 −0.013 95.4% 0.050 0.003 98.4%
0.25 0.053 −0.011 95.8% 0.060 −0.017 95.4%
0.28 0.059 0.001 92.8% 0.054 −0.009 95.2%
0.30 0.063 0.000 92.6% 0.060 0.011 92.8%

nji ≡ 20
0.70 0.177 −0.056 86.9% 0.173 0.004 96.3%
0.72 0.194 −0.073 94.1% 0.191 −0.024 95.6%
0.75 0.246 −0.072 94.6% 0.230 −0.052 91.7%
0.78 0.319 −0.116 88.1% 0.302 −0.034 93.2%
0.80 0.399 −0.097 88.0% 0.506 −0.092 96.9%

0.20 0.054 −0.005 93.6% 0.050 −0.004 95.7%
0.22 0.056 −0.005 94.5% 0.057 −0.003 95.3%
0.25 0.056 −0.016 94.6% 0.050 0.003 95.4%
0.28 0.061 0.002 94.5% 0.055 −0.009 94.6%
0.30 0.063 −0.004 93.1% 0.060 −0.012 93.9%

nji ≡ 10
0.70 0.150 −0.040 93.7% 0.158 0.001 94.7%
0.72 0.175 −0.035 93.9% 0.163 −0.033 94.5%
0.75 0.200 −0.051 93.3% 0.178 −0.023 96.7%
0.78 0.220 −0.043 94.0% 0.229 −0.026 90.8%
0.80 0.263 −0.050 94.7% 0.276 −0.022 93.8%

n = 20
0.20 0.027 −0.006 94.0% 0.026 −0.004 93.3%
0.22 0.026 −0.008 94.3% 0.024 −0.010 98.0%
0.25 0.030 −0.006 93.3% 0.029 0.005 93.6%
0.28 0.026 0.005 95.8% 0.030 0.001 95.9%
0.30 0.033 −0.015 93.9% 0.031 −0.004 94.1%

nji ≡ 20
0.70 0.078 −0.024 90.7% 0.072 −0.000 94.1%
0.72 0.089 −0.032 96.7% 0.075 −0.001 95.9%
0.75 0.093 −0.037 90.6% 0.095 −0.006 93.4%
0.78 0.112 −0.046 95.3% 0.103 −0.012 94.3%
0.80 0.114 −0.040 90.0% 0.111 −0.012 95.7%
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Table 4: Meaning of row labels in the jumping speeds example.

Index (k) Label Meaning Interpretation Y1 (bσ1) Y2 (bσ2)

1 6 6–7 years ∼ 6.5 years 1.89 (0.17) 1.87 (0.18)
2 7 7–8 years ∼ 7.5 years 2.00 (0.21) 1.98 (0.20)
...

...
...

...
...

...

13 18 18–19 years ∼ 18.5 years 2.33 (0.17) 2.87 (0.10)

In both plots, the estimator k̂ = 5 (on the “Index scale”) corresponds to the

estimated change point k̂age
= 10.5 years.
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Figure 3: Function T2+bτ2(k) and its bias corrected version T bc
2+bτ2(k) for

the jumping speed data. The vertical dashed lines denote the

estimates k̂ and k̂bc
.

Applying the bootstrap algorithm described in Section 4.2, we obtain that

the upper limit of the one-sided 95% confidence interval based on k̂0(τ̂
2
) is 5.72 +

5.5 = 11.22 years. Applying the bias correction from Section 5.4, we obtain the

one-sided 95% confidence interval (−∞, 11.26) years.

For both estimators, the test of the null hypothesis “no changepoint before

12 years” is actually carried out by testing the index k1 = 12−5.5 (see Remark 4.1

and Table 4). The p-values corresponding to the change-point tests of the null

hypothesis H0 : k0 ≥ k1 against H1 : k0 < k1 for k1 ∈ {0.5, ..., 12.5} are given in

Table 5. Since each test concerns the age k1 + 5.5 years, it seems more natural

to shift the lines with these p-values in order to point out the difference between

the two-sample t-test (comparing the marginal means in i-th age category, i.e.,

for approximately i + 0.5 years) and the change-point approach (testing whether

there is a significant difference for children aged precisely i years).
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Table 5: Observed mean jumping speeds and standard deviations for boys and girls

in 13 age categories. P-values of the two-sample t-test in each age category,

its Bonferroni and Benjamini–Hochberg (BH) adjustments and p-values

of the test for change point location based on k̂0(τ̂
2
) and k̂bc

0 (τ̂2
).

Age
cat.

girls boys p-values
Age

Y1 (bσ1) n1 Y2 (bσ2) n2 t-test Bonferroni BH bk0(bτ2) bkbc
0 (bτ2)

6–7 1.89 (0.17) 33 1.87 (0.18) 19 0.780 1.000 0.780
1.000 1.000 6

7–8 2.00 (0.21) 43 1.98 (0.20) 38 0.646 1.000 0.763
1.000 1.000 7

8–9 2.01 (0.21) 33 2.06 (0.21) 38 0.369 1.000 0.479
1.000 1.000 8

9–10 2.06 (0.18) 42 2.14 (0.18) 29 0.081. 1.000 0.117
0.999 0.997 9

10–11 2.19 (0.22) 42 2.17 (0.19) 45 0.713 1.000 0.773
0.861 0.846 10

11–12 2.23 (0.15) 30 2.31 (0.23) 37 0.062. 0.800 0.100
0.113 0.117 11

12–13 2.26 (0.13) 41 2.35 (0.23) 40 0.047* 0.615 0.088.
0.003** 0.003** 12

13–14 2.30 (0.22) 32 2.53 (0.21) 36 0.000*** 0.001*** 0.000***
0.000*** 0.000*** 13

14–15 2.28 (0.23) 31 2.66 (0.19) 20 0.000*** 0.000*** 0.000***
0.000*** 0.000*** 14

15–16 2.37 (0.17) 29 2.72 (0.22) 26 0.000*** 0.000*** 0.000***
0.000*** 0.000*** 15

16–17 2.33 (0.19) 17 2.83 (0.28) 9 0.001*** 0.006** 0.001**
0.000*** 0.000*** 16

17–18 2.35 (0.18) 25 2.76 (0.16) 13 0.000*** 0.000*** 0.000***
0.000*** 0.000*** 17

18–19 2.33 (0.17) 34 2.87 (0.10) 14 0.000*** 0.000*** 0.000***
0.000*** 0.000*** 18

We conclude that the estimated change-point is 10.5 years (with 95% confi-

dence interval (−∞, 11.26)) while the two-sample t-tests without multiple testing

correction show statistically significant difference only after 12 years (in the age

category 12 to 13 years).

In order to verify the validity of Assumption (A3), we plot the data set and

the resulting least squares fit in Figure 4.
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Figure 4: Observed sample means of jumping speed for boys (△) and

girls (©) in thirteen age categories. The right plot shows the

observed differences Di and the least squares fit.
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7. SUMMARY AND OUTLOOK

A rigorous approach to multiple hypotheses testing is needed in many real-

life situations. Typically, a Bonferroni-type adjustment increases all p-values in

order to control either the family-wise error rate or the false discovery rate. How-

ever, the structure of the observed data often calls for a more appropriate and

powerful solution. Using gender-specific growth curves as a motivation, we pro-

posed a simple two-sample gradual change model in order to develop bootstrap-

based tests and confidence intervals for the location of the unknown change-point.

In this way, many two-sample t-tests can be replaced by a single test concerning

only the change-point. Therefore, adjustments for multiple hypotheses testing

become unnecessary.

In practice, the linearity assumption may not be fulfilled. This problem

can be solved in a simple way, e.g., by using a finer grid to investigate only a

small neighborhood of the suspected change point.

Obviously, the proposed method is applicable also to different sample char-

acteristics. For example, we could investigate a two-sample gradual change in the

slope using a table of estimated slopes (and estimates of their standard devia-

tions) in each age category. Such a test would correspond to a model of quadratic

change for the original observations.

Depending on further applications, various extensions of the proposed meth-

odology to more general setups may be considered, e.g., dependent observations

and more general changes than a linear trend. Also some aspects of nonparamet-

ric regression can be utilized if one can analyze the original data set instead of only

sample means and sample standard deviations observed in n ordered categories.
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1. INTRODUCTION

Post-market drug and vaccine safety surveillance is important in order to

detect rare but serious adverse events not found during pre-licensure clinical trials.

Safety problems may go undetected either because an adverse reaction is too

rare to occur in sufficient numbers among the limited sample size of a phase

three clinical trial, or because the adverse reaction only occur in a certain sub

population that was excluded from the trial, such as frail individuals.

In order to detect a safety problem as soon as possible, the CDC Vaccine

Safety Datalink project pioneered the use of near real-time safety surveillance

using automated weekly data feeds from electronic health records [1, 2, 3]. In such

surveillance, the goal is to detect serious adverse reactions as early as possible

without too many false signals. It is then necessary to use sequential statistical

analysis, which adjusts for the multiple testing inherent in the many looks at the

data. Using the maximized sequential probability ratio test (MaxSPRT) [4], all

new childhood vaccines and some adult vaccines are now monitored in this fashion

[1, 5, 6, 7, 8, 9, 10, 11, 12, 13]. There is also interest in using sequential statistical

methods for post-market drug safety surveillance [20, 14, 15, 16, 17, 18], and the

methods presented in this paper may also be used in either settings.

In contrast to group sequential analyses, continuous sequential methods

can signal after a single adverse event, if that event occurs sufficiently early.

In some settings, such as a phase 2 clinical trial, that may be appropriate, but in

post-market safety surveillance it is not. In post-market vaccine surveillance, an

ad-hoc rule that require at least two or three events to signal has sometimes been

used, but that leads to a conservative type 1 error (alpha level). In this paper

we provide exact critical values for continues sequential analysis when a signal is

required to have a certain minimum number of adverse events. We also evaluate

power and expected time to signal for various alternative hypotheses. It is shown

that it is possible to simultaneously improve both of these by requiring at least 3

or 4 events to signal. Note that it is still necessary to start surveillance as soon as

the first few individuals are exposed, since they all could have the adverse event.

For logistical reasons, there is sometimes a delay in the start of post-

marketing safety surveillance, so that the first analysis is not conducted until

a group of people have already been exposed to the drug or vaccine. This is not

a problem when using group sequential methods, as the first group is then sim-

ply defined to correspond to the start of surveillance. For continuous sequential

surveillance, a delayed start needs to be taken into account when calculating the

critical values. In this paper, we present exact critical values when there is a

delayed start in the sequential analysis. We also calculate the power and time to

signal for different relative risks.
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In addition to ensuring that the sequential analysis maintains the correct

overall alpha level, it is important to consider the statistical power to reject the

null hypothesis; the average time until a signal occurs when the null hypothesis

is rejected; and the final sample size when the null hypothesis is not rejected. For

any fixed alpha, there is a trade-off between these three metrics, and the trade-off

depends on the true relative risks. In clinical trials, where sequential analyses are

commonly used, statistical power and the final sample size are usually the most

important design criteria. The latter is important because patient recruitment

is costly. The time to signal is usually the least important, as a slight delay

in finding an adverse event only affects the relatively small number of patients

participating in the clinical trial, but not the population-at-large. In post-market

safety surveillance, the trade-off is very different. Statistical power is still very

important, but once the surveillance system is up and running, it is easy and

cheap to prolong the length of the study by a few extra months or years to

achieve a final sample size that provides the desired power. Instead, the second

most critical metric is the time to signal when the null is rejected. Since the

product is already in use by the population-at-large, most of which are not part

of the surveillance system, a lot of people may be spared the adverse event if a

safety problem can be detected a few weeks or months earlier. This means that

for post-market vaccine and drug safety surveillance, the final sample size when

the null is not rejected is the least important of the three metrics.

All calculations in this paper are exact, and none are based on simula-

tions or asymptotic statistical theory. The numerical calculation of the ex-

act critical values is a somewhat cumbersome process. So that users do not

have to do these calculations themselves, we present tables with exact crit-

ical values for a wide range of parameters. For other parameters, we have

developed the open source R package ‘Sequential’, freely available at ‘cran.r-

project.org/web/packages/Sequential’.

2. CONTINUOUS SEQUENTIAL ANALYSIS FOR POISSON DATA

Sequential analysis was first developed by Wald [19, 21], who introduced

the sequential probability ratio test (SPRT) for continuous surveillance. The

likelihood based SPRT proposed by Wald is very general in that it can be used

for many different probability distributions. The SPRT is very sensitive to the

definition of the alternative hypothesis of a particular excess risk. For post-market

safety surveillance, a maximized sequential probability ratio test with a composite

alternative hypothesis has often been used instead. This is both a ‘generalized

sequential probability ratio test’ [22] and ‘sequential generalized likelihood ratio

test’ [23, 24]. In our setting, it is defined as follows, using the Poisson distribution

to model the number of adverse events seen [4].
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Let Ct be the random variable representing the number of adverse events in

a pre-defined risk window from 1 toW days after an incident drug dispensing that

was initiated during the time period [0, t]. Let ct be the corresponding observed

number of adverse events. Note that time is defined in terms of the time of

the drug dispensing rather than the time of the adverse event, and that hence,

we actually do not know the value of ct until time t+W .

Under the null hypothesis (H0), Ct follows a Poisson distribution with mean

µt, where µt is a known function reflecting the population at risk. In our setting,

µt reflects the number of people who initiated their drug use during the time

interval [0, t] and a baseline risk for those individuals, adjusting for age, gender

and any other covariates of interest. Under the alternative hypothesis (HA),

the mean is instead RRµt, where RR is the increased relative risk due to the

drug/vaccine. Note that C0 = c0 = µ0 = 0.

For the Poisson model, the MaxSPRT likelihood ratio based test statistic

is

LRt = max
HA

P
(
Ct = ct |HA

)

P (Ct = ct |H0)
= max

RR>1

e−RRµt(RRµt)
ct/ct!

e−µtµct
t /ct!

= max
RR>1

e(1−RR)µt(RR)
ct .

The maximum likelihood estimate of RR is ct/µt, so

LRt = eµt−ct(ct/µt)
ct .

Equivalently, when defined using the log likelihood ratio

LLRt(ct) = ln(LRt) = max
RR>1

(
(1−RR)µt + ct ln(RR)

)

= (µt − ct) + ct ln(ct/µt) .

Note that, since µt is known, the test statistic is only a function of ct. This shall be

useful when calculating exact critical values, in Section 3.1. The MaxSPRT test

statistic is sequentially monitored for all values of t > 0, until either LLRt ≥ CV ,

in which case the null hypothesis is rejected, or until µt = T , in which case the

alternative hypothesis is rejected. T is a predefined upper limit on the length

of surveillance, defined in terms of the sample size, expressed as the expected

number of adverse events under the null hypothesis. It is roughly equivalent

to a certain number of exposed individuals, but adjusted for covariates. Exact

critical values (CV) are available for the MaxSPRT [4], obtained through iterative

numerical calculations.
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3. MINIMUM NUMBER OF EVENTS REQUIRED TO SIGNAL

Continuous sequential probability ratio tests may signal at the time of the

first event, if that event appears sufficiently early. One could add a requirement

that there need to be a minimum of M events before one can reject the null

hypothesis. This still requires continuous monitoring of the data from the very

start, as M events could appear arbitrarily early. Hence, there is no logistical

advantage of imposing this minimum number. The potential advantage is instead

that it may reduce the time to signal and/or increase the statistical power of the

study. Below, in Section 3.2, it is shown that both of these can be achieved

simultaneously.

3.1. Exact Critical Values

In brief, first note that the time when the critical value is reached and the

null hypothesis is rejected can only happen at the time when an event occurs. For

any specified critical value CV and maximum sample size T , it is then possible to

calculate the probability of rejecting the null, using a bisection iterative approach.

As mentioned in the last section, the exact critical value can be obtained

analytically, and the details for doing so are described in the present section.

Firstly, it is important to note that, for each fixed CV , the signaling threshold

can be written in the time scale. This is so because the MaxSPRT statistic,

LLRt(ct), is monotone non-increasing with µt for each fixed ct > 0, which means

that the null hypothesis is rejected when an event arrives too fast in compari-

son to its expected time of arrival when the null is true. Thus, let τn denote

the arrival time of the n-th event. Once CV > 0 is fixed, there are constants

0 < µ(1) ≤ µ(2) ≤ ··· ≤ µ(N) such that the probability of rejecting the null hy-

pothesis can be expressed as:

Pr
[
rejecting H0 |RR

]
= Pr

[
LLRt ≥ CV for some t ∈ (0, T ) |RR

]

= Pr

[
N⋃

n=1

{
τn ≤µ(n)

}
|RR

]
,(3.1)

where, for a minimum number M of events required to reject the null, N is the

maximum length of surveillance given in the scale of the number of events such

that N := max{c ∈ N : LLRT (c) ≤ CV }, µ(1) = ··· = µ(M), µ(n) = sup{µ∗ > 0 :

LLRµ∗(n) ≥ CV } for n = M, ..., (N−1), and µ(N) = T . Because Ct is a Poisson-

based process, we can write µt = λ t, where λ is a known constant. Then, the

joint probability density function of the random vector (τ1, ..., τN ), denoted here
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with fτ̃ (y1, ..., yN ), can be expressed as following:

(3.2) fτ̃

(
y1, ..., yN |RR

)
= (RRλ)

Ne−yNRRλ I(yN > 0) .

Now, consider the new random vector T̃ = λτ̃ = (T1, ..., TN ), which, by its turn,

has density:

(3.3) fT̃

(
t1, ..., tN |RR

)
= RRNe−tNRR I(tN > 0) .

With the last expression, the probability of rejecting the null hypothesis, say

π(RR,CV ), is simply:

π(RR,CV ) = Pr
[
rejecting H0 |RR

]
= Pr

(
N⋃

n=1

{
Tn ≤µ(n)

}
|RR

)

=

N∑

n=1

Pr
(
N=n |RR

)
,(3.4)

where N is the total number of events observed until the signaling moment.

In order to understand the behaviour of π(RR,CV ) as a function of N, let us

evaluate it for N = 1, 2, 3, 4. For N = 1:

Pr
(
N= 1 |RR

)
= Pr

(
T1 ≤µ(1)

)
= 1 − e−µ(1)RR .(3.5)

For N = 2:

Pr
(
N= 2 |RR

)
= Pr

(
T1>µ(1) ∩ T2 ≤µ(2)

)

=

∫ µ(2)

µ(1)

∫ t2

µ(1)

RR2e−RRt2 dt1 dt2(3.6)

= Pr
(
µ(1) ≤T2 ≤µ(2) |RR

)

− RR−1µ(1)

[
Pr
(
µ(1) ≤T1 ≤µ(2) |RR

)]
.

For N = 3:

Pr
(
N= 3 |RR

)
= RR−1

Pr
(
T1>µ(1) ∩ T2>µ(2) ∩ T3 ≤µ(3)

)

=

∫ µ(3)

µ(2)

∫ t3

µ(2)

∫ t2

µ(1)

RR3e−RRt3 dt1 dt2 dt3

= Pr
(
µ(2) ≤T3 ≤µ(3) |RR

)
(3.7)

− RR−1µ(1) Pr
(
µ(2) ≤T2 ≤µ(3) |RR

)

+ RR−2
(
µ(1)µ(2) − µ2

(2)/2
)

Pr
(
µ(2) ≤T1 ≤µ(3) |RR

)
.
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Finally, for N = 4:

Pr
(
N= 4 |RR

)
= RR−1

Pr
(
T1>µ(1) ∩ T2>µ(2) ∩ T3>µ(3) ∩ T4 ≤µ(4)

)

=

∫ µ(4)

µ(3)

∫ t4

µ(3)

∫ t3

µ(2)

∫ t2

µ(1)

RR4e−RRt4 dt1 dt2 dt3 dt4

= Pr
(
µ(3) ≤T4 ≤µ(4) |RR

)
(3.8)

− RR−1µ(1) Pr
(
µ(3) ≤T3 ≤µ(4) |RR

)

+ RR−2
(
µ(1)µ(2) − µ2

(2)/2
)

Pr
(
µ(3) ≤T2 ≤µ(4) |RR

)

− RR−3

[
µ3

(3)

3!
−
µ(1)µ

2
(3)

2
+ µ(3)

(
µ(1)µ(2) −

µ2
(2)

2

)]

× Pr
(
µ(3) ≤T1 ≤µ(4) |RR

)
.

Thus, a recursive expression, with respect to N, can be written to express

π(RR,N):

(3.9) π(RR,CV ) =

N∑

N=1

N∑

i=1

(−1)
i+1 ψi Pr

(
µ(N−1) ≤TN+1−i ≤µ(N) |RR

)
,

where µ0 = 0, ψ1 = 1, and, for i = 2, ..., N ,

ψi =

i−1∑

j=1

(−1)
j+1

(
rµ(i−1)

)j

j!
ψi−j .

Because (3.9) is monotone decreasing with respect to CV , we can obtain the

critical value, under a fixed precision ǫ, for any α ∈ (0, 1) through numerical

calculation. For an alpha level of 0.05, the magnitude of CV is about 3 or 4

depending on the value of T , and it will usually not take values larger than 20

even for very small alpha level and very large T like α = 0.00001 and T = 1000.

The following steps can be used for finding the exact critical value for fixed T > 0,

α ∈ (0, 1), M ∈ N, and ǫ > 0:

• Step (i) — set CV1 := 0 and CV2 := 50.

• Step (ii) — set CVm := (CV1 + CV2)/2. Set c = (M−1) and µ(c) = 0.

• Step (iii) — while µ(c) ≤ T , update c := c+ 1 and find µ(c) such that

µ(c) = sup
{
µ∗> 0: LLRµ∗(c) ≥ CVm

}
. Then, set µ(1) = ··· = µ(M).

• Step (iv) — set µ(c) := T . Using expression (3.9), calculate π(RR= 1,

CV =CVm). If |π(1, CVm) − α| ≤ ǫ, stop and take CVm as the critical

value solution. Otherwise, proceed to Step (v).

• Step (v) — if π(RR= 1, CV =CVm) > α, then update CV1 := CVm,

otherwise, update CV2 := CVm. Go to Step (ii).

Table 1 presents the exact critical values for the maximized SPRT when

requiring a minimum number of events M to signal, for M = 1, 2, 3, 4, 6, 8, 10.
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Table 1: Exact critical values for the Poisson based maximized SPRT, when a mini-

mum of M events is required before the null hypothesis can be rejected.

T is the upper limit on the sample size (length of surveillance), expressed

in terms of the expected number of events under the null. The type 1 error

is α = 0.05. When T is small and M is large, no critical value will result in

α ≤ 0.05, which is denoted by ‘..’ .

T
Minimum Number of Events Required to Reject the Null

M = 1 2 3 4 6 8 10

1 2.853937 2.366638 1.774218 .. .. .. ..
1.5 2.964971 2.576390 2.150707 1.683209 .. .. ..
2 3.046977 2.689354 2.349679 2.000158 .. .. ..
2.5 3.110419 2.777483 2.474873 2.187328 .. .. ..
3 3.162106 2.849327 2.565320 2.317139 1.766485 .. ..
4 3.245004 2.937410 2.699182 2.498892 2.089473 1.564636 ..
5 3.297183 3.012909 2.803955 2.623668 2.267595 1.936447 ..
6 3.342729 3.082099 2.873904 2.699350 2.406810 2.093835 1.740551
8 3.413782 3.170062 2.985560 2.829259 2.572627 2.337771 2.086032

10 3.467952 3.238009 3.064248 2.921561 2.690586 2.484834 2.281441
12 3.511749 3.290551 3.125253 2.993106 2.781435 2.589388 2.415402
15 3.562591 3.353265 3.199953 3.075613 2.877939 2.711996 2.556634
20 3.628123 3.430141 3.288216 3.176370 2.997792 2.846858 2.717137
25 3.676320 3.487961 3.356677 3.249634 3.081051 2.947270 2.827711
30 3.715764 3.534150 3.406715 3.307135 3.147801 3.019639 2.911222
40 3.774663 3.605056 3.485960 3.391974 3.246619 3.130495 3.030735
50 3.819903 3.657142 3.544826 3.455521 3.317955 3.210428 3.117553
60 3.855755 3.698885 3.590567 3.505220 3.374194 3.271486 3.184196
80 3.910853 3.762474 3.659939 3.580900 3.458087 3.362888 3.284030

100 3.952321 3.810141 3.711993 3.636508 3.520081 3.430065 3.355794
120 3.985577 3.847748 3.753329 3.680584 3.568679 3.482966 3.411235
150 4.025338 3.892715 3.802412 3.732386 3.626150 3.544308 3.476655
200 4.074828 3.948930 3.862762 3.796835 3.696511 3.619825 3.556799
250 4.112234 3.990901 3.908065 3.844847 3.748757 3.675703 3.615513
300 4.142134 4.024153 3.944135 3.882710 3.790143 3.719452 3.661830
400 4.188031 4.075297 3.998950 3.940563 3.852658 3.785930 3.731524
500 4.222632 4.113692 4.040021 3.983778 3.899239 3.835265 3.783126
600 4.250310 4.144317 4.072638 4.018090 3.936175 3.874183 3.823908
800 4.292829 4.191167 4.122559 4.070466 3.992272 3.933364 3.885600

1000 4.324917 4.226412 4.160022 4.109665 4.034210 3.977453 3.931529

Using the approach described above, these were calculated using the ‘R Sequen-

tial’ package, which can also be used for other values of ‘M ’. When M = 1, we

get the standard maximized SPRT, whose previously calculated critical values [4]

are included for comparison purposes. The expression for the maximum num-

ber of iterations until finding the CV solution is ln(1/ǫ)/ ln(2). For a precision

of ǫ = 0.00000001, which is the precision adopted in this paper, the number of

iterations is of at most ⌈ln(1/0.00000001)/ ln(2)⌉ = 27. Note that these numer-

ical calculations only have to be done once for each T and M . Hence, users do

not need to do their own numerical calculations, as long as they use one of the

parameter combinations presented in Table 1.
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The critical values are lower for higher values of M . This is natural. Since

we do not allow the null hypothesis to be rejected based on only a small number

of adverse events, it allows us to be more inclined to reject the null later on when

there are a larger number of events, while still maintaining the correct overall

alpha level. In essence, we are trading the ability to reject the null with a very

small number of events for the ability to more easily reject the null when there

are a medium or large number of events. Note also that the critical values are

higher for larger values of the maximum sample size T . This is also natural, as

there is more multiple testing that needs to be adjusted for when T is large.

3.2. Statistical Power and Expected Time to Signal

For fixed CV , T , M , and RR, one can also calculate the statistical power

using expression (3.9). The same reasoning that was applied to calculate the

probability of rejecting H0 can be used to obtain an expression for the average

time to signal. Let L denote the time when the sequential analysis is interrupted

to reject the null. Then the average time to signal is given by:

E(L) =

RR−1
∑N

N=1

∫ µ(N)

µ(N−1)

∫ tN
µ(N−1)

∫ tN−1

µ(N−2)

···
∫ t2
µ(1)

RRN+1 tN e
−RRtN dt1 dt2 ··· dtN

π(RR,CV )

=
RR−1

∑N
N=1

∑N
i=1 −1

i+1 ψi Pr
(
µ(N−1) ≤WN+1−i ≤µ(N) |RR

)

π(RR,CV )
,

where WN ∼ Gamma(N+1, RR), i.e., fW (w) = RRe−RR
(RRw)

N/N! .

Table 2 presents statistical power and average time to signal for different

values of M , the minimum number of events needed to signal. These are exact

calculations, done for different relative risks and for different upper limits T on

the length of surveillance. When T increases, power increases, since the maximum

sample size increases. For fixed T , the power always increases with increasing M .

This is natural, since power increases by default when there are fewer looks at

the data, as there is less multiple testing to adjust for. The average time to signal

may either increase or decrease with increasing values of M . For example, with

T = 20 and a true RR = 2, the average time of signal is 6.96, 6.62, 6.57 and

6.96 for M = 1, 3, 6 and 10, respectively. For the same parameters, the statistical

power is 0.921, 0.936, 0.948 and 0.957 respectively. Hence, when the true RR = 2

and when T = 20, both power and the average time to signal is better if we use

M = 3 rather than M = 1. The same is true for M = 6 versus M = 3, but not

for M = 10 versus M = 6.

The trade-off between statistical power and average time to signal is not

easily deciphered from Table 2, and it is hence hard to judge which value of M is

best. Since T , the upper limit on the length of surveillance, is the least important
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metric, let’s ignore that for the moment, and see what happens to the average

time to signal if we keep both the alpha level and the power fixed. That will make

it easier to find a good choice for M , which will depend on the true relative risk.

Table 2: Statistical power and average time to signal, when the null hypothesis

is rejected, for the Poisson based maximized SPRT when a minimum of

M events is required before the null hypothesis can be rejected. T is the

upper limit on the sample size (length of surveillance), expressed in terms

of the expected number of events under the null. The type 1 error is α=0.05.

T M
Statistical Power Average Time to Signal

RR = 1.5 2 3 4 RR = 1.5 2 3 4

1 1 0.107 0.185 0.379 0.573 0.30 0.35 0.39 0.39
1 3 0.129 0.234 0.466 0.665 0.59 0.58 0.55 0.51
2 1 0.130 0.255 0.561 0.799 0.63 0.75 0.79 0.73
2 3 0.157 0.315 0.645 0.857 0.92 0.94 0.89 0.78
5 1 0.190 0.447 0.876 0.987 1.82 2.09 1.78 1.22
5 3 0.224 0.507 0.905 0.991 2.10 2.17 1.73 1.17
5 6 0.255 0.559 0.928 0.994 2.71 2.58 2.05 1.54

10 1 0.280 0.685 0.989 1.000 4.02 4.13 2.45 1.35
10 3 0.321 0.733 0.993 1.000 4.25 4.07 2.31 1.30
10 6 0.358 0.770 0.995 1.000 4.71 4.25 2.50 1.61
10 10 0.391 0.803 0.996 1.000 5.67 5.03 3.40 2.50
20 1 0.450 0.921 1.000 1.000 8.68 6.96 2.67 1.41
20 3 0.492 0.936 1.000 1.000 8.65 6.62 2.53 1.37
20 6 0.531 0.948 1.000 1.000 8.92 6.57 2.69 1.65
20 10 0.562 0.957 1.000 1.000 9.47 6.96 3.50 2.51
50 1 0.803 1.000 1.000 1.000 20.45 8.94 2.82 1.48
50 3 0.829 1.000 1.000 1.000 19.82 8.45 2.71 1.45
50 6 0.847 1.000 1.000 1.000 19.41 8.24 2.86 1.71
50 10 0.863 1.000 1.000 1.000 19.35 8.46 3.59 2.52

100 1 0.978 1.000 1.000 1.000 29.93 9.30 2.92 1.53
100 3 0.982 1.000 1.000 1.000 28.52 8.87 2.82 1.51
100 6 0.985 1.000 1.000 1.000 27.58 8.71 2.97 1.75
100 10 0.987 1.000 1.000 1.000 27.04 8.93 3.65 2.53
200 1 1.000 1.000 1.000 1.000 33.00 9.62 3.01 1.58
200 3 1.000 1.000 1.000 1.000 31.47 9.25 2.93 1.56
200 6 1.000 1.000 1.000 1.000 30.47 9.11 3.07 1.78
200 10 1.000 1.000 1.000 1.000 29.88 9.33 3.71 2.54

Figure 1 shows the average time to signal as a function of statistical power, for

different values of M . The lower curves are better, since the expected time to

signal is shorter. Suppose we design the sequential analysis to have 95 percent

power to detect a relative risk of 1.5. We can then look at the left side of Figure 1

to see the average time to signal for different true relative risks. We see that for a

true relative risk of 1.5, time to signal is shortest for M = 10. On the other hand,

for a true relative risk of 2, it is shortest for M = 6, for a true relative risk of 3,

it is shortest for M = 3 and for a true relative risk of 4, it is shortest for M = 2.
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On the right side of Figure 1, we show the expected time to signal when the

surveillance has been designed to attain a certain power for a relative risk of 2.

The results are similar.
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Figure 1: The average time to signal, as a function of statistical power,

for the Poisson based MaxSPRT when a minimum ofM events is

required before the null hypothesis can be rejected. The type 1

error is α = 0.05.

When the true relative risk is higher, it is a more serious safety problem,

and hence, it is more important to detect it earlier. So, while there is no single

value of M that is best overall, anywhere in the 3 to 6 range may be a reasonable

choice for M . The cost of this reduced time to signal when the null is rejected is

a slight delay until the surveillance ends when the null is not rejected.



Sequential Surveillance with Minimum Events to Signal 385

4. DELAYED START OF SURVEILLANCE

For logistical or other reasons, it is not always possible to start post-

marketing safety surveillance at the time that the first vaccine or drug is given.

If the delay is short, one could ignore this and pretend that the sequential anal-

yses started with the first exposed person. One could do this either by starting

to calculate the test statistic at time D or by calculating it retroactively for all

times before D. The former will be conservative, not maintaining the correct

alpha level. The latter will maintain the correct alpha level, but, some signals

will be unnecessarily delayed without a compensatory improvement in any of the

other metrics. A better solution is to use critical values that take the delayed

start of surveillance into account.

4.1. Exact Critical Values

In order to calculate the critical values, statistical power and average time

to signal in this case, it is sufficient to replace M by M∗
in the expressions of

Sections 3.1 and 3.2, where M∗
:= min{c ∈ N : LLRD(c) ≥ CV }.

Table 3 presents exact critical values for the maximized SPRT when surveil-

lance does not start until the expected number of events under the null hypothesis

is D, without any requirement on having a minimum umber of events to signal.

When D = 0, we get the standard maximized SPRT, whose critical values [4]

are included for comparison purposes. Note that the critical values are lower for

higher values of D. Since surveillance is not performed until the sample size have

reached D expected counts under the null, one can afford to use a lower critical

value for the remaining time while still maintaining the same overall alpha level.

As before, the critical values are higher for larger values of T . When D > T , the

surveillance would not start until after the end of surveillance, so those entries

are blank in Table 3. When D = T , there is only one non-sequential analysis

performed, so there are no critical values for a sequential test procedure. Hence,

they are also left blank in the Table.

With a delayed start, there are some values of T and D for which there is no

critical value that gives an alpha level of exactly 0.05. For those combinations,

denoted with italics, Table 3 presents the critical value that gives the largest

possible alpha less than 0.05. In Table 4, we present the exact alpha levels

obtained for those scenarios, as well as the α > 0.05 obtained for a slightly smaller

liberal critical value.
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Table 3: Exact critical values for the Poisson based maximized SPRT,

when surveillance does not start until the sample size is

large enough to generate D expected events under the null

hypothesis. T > D is the upper limit on the sample size.

The minimum number of events needed to reject is set to

M = 1. The type 1 error is α = 0.05. For some values of T
and D, the critical values are conservative with α < 0.05.

These are denoted in italics.

T
D

0 1 2 3 4 6 10

1.5 2.964971 1.683208 .. .. .. .. ..
2 3.046977 2.000158 .. .. .. .. ..
2.5 3.110419 2.187328 1.600544 .. .. .. ..
3 3.162106 2.317139 1.766484 .. .. .. ..
4 3.245004 2.498892 2.089473 1.842319 .. .. ..
5 3.297183 2.545178 2.267595 1.936447 1.611553 .. ..
6 3.342729 2.546307 2.406809 2.093835 1.921859 .. ..
8 3.413782 2.694074 2.572627 2.337771 2.211199 1.829011 ..

10 3.467952 2.799333 2.591675 2.484834 2.298373 2.087405 ..
12 3.511749 2.880721 2.683713 2.589388 2.415402 2.254018 1.755455
15 3.562591 2.970411 2.794546 2.711996 2.556634 2.347591 2.020681
20 3.628123 3.082511 2.918988 2.846635 2.717137 2.542045 2.260811
25 3.676320 3.159490 3.011001 2.886783 2.827711 2.668487 2.432668
30 3.715764 3.223171 3.080629 2.963485 2.911222 2.765594 2.553373
40 3.774663 3.313966 3.186878 3.078748 3.030735 2.903286 2.684730
50 3.819903 3.381606 3.261665 3.162197 3.117553 2.999580 2.802863
60 3.855755 3.434748 3.320749 3.226113 3.162908 3.051470 2.890933
80 3.910853 3.515052 3.407923 3.321868 3.247872 3.151820 3.019184

100 3.952321 3.574091 3.472610 3.391377 3.321971 3.232345 3.109251
120 3.985577 3.620223 3.523446 3.445695 3.379278 3.294843 3.177847
150 4.025338 3.675035 3.583195 3.509028 3.446674 3.367227 3.238461
200 4.074828 3.742843 3.655984 3.587079 3.528662 3.454679 3.336012
250 4.112234 3.792978 3.710128 3.644349 3.588871 3.518954 3.406929
300 4.142134 3.832686 3.752749 3.689355 3.636272 3.568952 3.462111
400 4.188031 3.893093 3.785930 3.757574 3.707431 3.644405 3.544518
500 4.222632 3.938105 3.835264 3.808087 3.760123 3.700032 3.605012
600 4.250310 3.973710 3.874183 3.847892 3.801678 3.743656 3.652326
800 4.292829 4.028089 3.933363 3.887512 3.864597 3.809685 3.723608

1000 4.324917 4.047191 3.977453 3.931529 3.911308 3.858669 3.776275

The exact critical values are based on numerical calculations done in the

same iterative way as for the original MaxSPRT and the version described in the

previous section. The only difference is that there is an added initial step where

the probabilities are calculated for different number of events at the defined start

time D. Open source R functions [25] have been published as part of the R pack-

age ‘Sequential’ (cran.r-project.org/web/packages/Sequential/).
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Table 4: Critical values and exact alpha levels for those combinations of T ,

D and M for which there does not exist a critical value for α = 0.05.

T is the upper limit on the sample size (length of surveillance),

expressed in terms of the expected number of events under the null.

D is the sample size at which the sequential analyses start, also

expressed in terms of the expected number of events under the null.

M is the minimum number of events required to signal. CVcons and

CVlib are the conservative and liberal critical values, respectively,

while αcons and αlib are their corresponding alpha levels.

T D M CVcons αcons CVlib αlib

5 1 1,4 2.545178 0.04587 2.545177 0.05323
10 2 1,4 2.591675 0.04998 2.591674 0.05478
10 4 1,4 2.298373 0.04924 2.298372 0.05379
15 10 1,4 2.020681 0.04755 2.020680 0.05124
20 3 1,4 2.846635 0.04712 2.846634 0.05001
60 4 1,4 3.162908 0.04922 3.162907 0.05094
60 6 1,4 3.051470 0.04953 3.051469 0.05101

800 3 1,4 3.887512 0.04992 3.887511 0.05091
1000 1 1,4 4.047191 0.04944 4.047190 0.05094

4.2. Statistical Power and Timeliness

For a fixed value on the upper limit on the sample size T , the statistical

power of sequential analyses always increases if there are fewer looks at the data,

with the maximum attained when there is only one non-sequential analysis after

all the data has been collected. Hence, for fixed T , a delay in the start of surveil-

lance always increases power, as can be seen in Table 5. For fixed T , the average

time to signal almost always increases with a delayed start. The rare exception

is when T is very large and the true RR is very small. For example, for T = 100

and RR = 1.5, the average time to signal is 29.9 without a delayed start, 27.2

with a delayed start of D = 3 and 27.0 with a delayed start of D = 6. With a

longer delay of D = 10, the average time to signal increases to 27.4.

For fixed T , we saw that there is a trade-off between power and the time to

signal, but in post-market safety surveillance it is usually easy and inexpensive

to increase power by increasing T . Hence, the critical evaluation is to compare

the average time to signal when holding both power and the alpha level fixed.

This is done in Figure 2. When the study is powered for a relative risk of 2, then

the average time to signal is lower when there is less of a delay in the start of the

surveillance, whether the true relative risk is small or large. When the study is

powered for a relative risk of 1.5, we see the same thing, except when the true

relative risk is small. Hence, in terms of performance, smaller D is always better.
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Table 5: Statistical power and average time to signal for the Poisson

based maximized SPRT, when the analysis does not start until

the sample size is large enough to correspond to D expected

events under the null hypothesis. T is the upper limit on the

sample size (length of surveillance), expressed in terms of the ex-

pected number of events under the null. The minimum number

of events required to signal is set to M = 1. The type 1 error

is α = 0.05.

T D
Power Average Time to Signal

RR = 1.5 2 3 4 RR = 1.5 2 3 4

5 0 0.190 0.447 0.876 0.987 1.82 2.09 1.78 1.22
5 3 0.275 0.595 0.943 0.996 3.81 3.65 3.30 3.08

10 0 0.280 0.685 0.989 1.000 4.02 4.13 2.45 1.35
10 3 0.377 0.789 0.996 1.000 5.33 4.84 3.53 3.10
10 6 0.408 0.819 0.997 1.000 6.94 6.59 6.07 6.00
20 0 0.450 0.921 1.000 1.000 8.68 6.96 2.67 1.41
20 3 0.543 0.952 1.000 1.000 9.44 7.06 3.78 3.17
20 6 0.583 0.963 1.000 1.000 10.42 8.20 6.15 6.01
20 10 0.609 0.969 1.000 1.000 12.33 10.83 10.01 10.00
50 0 0.803 1.000 1.000 1.000 20.45 8.94 2.82 1.48
50 3 0.860 1.000 1.000 1.000 19.39 8.50 3.85 3.18
50 6 0.871 1.000 1.000 1.000 19.65 9.43 6.16 6.01
50 10 0.885 1.000 1.000 1.000 20.64 11.82 10.02 10.00

100 0 0.978 1.000 1.000 1.000 29.93 9.30 2.92 1.53
100 3 0.987 1.000 1.000 1.000 27.16 8.95 3.90 3.18
100 6 0.988 1.000 1.000 1.000 26.98 9.97 6.24 6.01
100 10 0.990 1.000 1.000 1.000 27.40 12.09 10.02 10.00
200 0 1.000 1.000 1.000 1.000 33.00 9.62 3.01 1.58
200 3 1.000 1.000 1.000 1.000 30.01 9.35 3.94 3.18
200 6 1.000 1.000 1.000 1.000 29.78 10.31 6.26 6.01
200 10 1.000 1.000 1.000 1.000 30.16 12.48 10.04 10.00
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Figure 2: The average time to signal, as a function of statistical power,

for the Poisson based maximized SPRT, when the analysis does

not start until the sample size is large enough to correspond

to D expected events under the null hypothesis. The type 1

error is α = 0.05.
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5. DISCUSSION

With the establishment of new near real-time post-market drug and safety

surveillance systems [15, 26, 27, 28, 29], sequential statistical methods will become

a standard feature of the pharmacovigilance landscape. In this paper we have

shown that it is possible to reduce the expected time to signal when the null

is rejected, without loss of statistical power, by requiring a minimum number

of adverse events before generating a statistical signal. This will allow users to

optimize their post-market sequential analyses.

In this paper we calculated the critical values, power and timeliness for

Poisson based continuous sequential analysis with either a minimum events to

signal requirement or when there is delayed start for logistical reasons. The

reported numbers are based on exact numerical calculations rather than approx-

imate asymptotic calculations or computer simulations. From a mathematical

and statistical perspective, these are straight forward extensions of prior work

on exact continuous sequential analysis. The importance of the results are hence

from practical public health perspective rather than for any theoretical statistical

advancements.

A key question is which sequential study design to use. There is not always

a simple answer to that question, as the performance of the various versions

depends on the true relative risk, which is unknown. One important consideration

is that the early detection of an adverse event problem is more important when

the relative risk is high, since more patients are affected. As a rule of thumb, it

is reasonable to require a minimum of about M = 3 to 6 adverse events before

rejecting the null hypothesis, irrespectively of whether it is a rare or common

adverse event. For those who want a specific recommendation, we suggest M = 4.

Critical values, statistical power and average time to signal has been pre-

sented for a wide variety of parameter values. This is done so that most users

will not have to perform their own calculations. For those who want to use

other parameter values, critical values, power and expected time to signal can be

calculated using the ‘Sequential’ R package that we have developed.

It is possible to combine a delayed start with D > 0 together with a require-

ment that there are at least M > 1 events to signal. It does not always make

a difference though. For M = 4, the critical values are the same as for M = 1,

for all values of D ≥ 1. That is because with D = 1 or higher, one would never

signal with less than three events anyhow. Since the critical values are the same,

the statistical power and average time to signal are also the same. This means

that when there is a non-trivial delayed start, there is not much benefit from also

requiring a minimum number events to signal, but the ‘Sequential’ R package has

a function for this dual scenario as well.
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There is no reason to purposely delay the start of the surveillance until

there is some minimum sample size D. In the few scenarios for which such a

delay improve the performance, the improvement is not measurably better than

the improvements obtained by using a minimum number of observed events. Only

when it is logistically impossible to start the surveillance at the very beginning

should such sequential analyses be conducted, and then it is important to do so

in order to maximize power, to minimize the time to signal and to maintain the

correct alpha level.

For self-controlled analyses, a binomial version of the MaxSPRT [4] is used

rather than the Poisson version discussed in this paper. For concurrent matched

controls, a flexible exact sequential method is used that allows for a different

number of controls per exposed individuals [30]. By default, these types of con-

tinuous sequential methods will not reject the null hypothesis until there is a

minimum number of events observed. To see this, consider the case with a 1:1

ratio of exposed to unexposed and and assume that the first four adverse events

all are in the exposed category. Under the null hypothesis, the probability of this

is (1/2)
4

= 0.0625, which does not give a low enough p-value to reject the null

hypothesis even in a non-sequential setting. Hence, the null will never be rejected

after only four adverse events, even when there is no minimum requirement. One

could set the minimum number of exposed events to something higher, and that

may be advantageous. If there is a delayed start for logistical reasons, then it

makes sense to take that into account when calculating the critical value, for

these two types of models as well.

Since the Vaccine Safety Datalink [31] launched the first near real-time post-

marketing vaccine safety surveillance system in 2004 [2], continuous sequential

analysis has been used for a number of vaccines and potential adverse events

[1, 5, 6, 7, 8, 9, 10, 12]. The critical value tables presented in this paper has

already been used by the Vaccine Safety Datalink project. As new near real-

time post-market safety surveillance systems are being developed, it is important

to fine-tune and optimize the performance of near-real time safety surveillance

systems [15, 16, 27, 32, 33, 34]. While the improved time to signal is modest

compared to the original version of the Poisson based MaxSPRT, there is no

reason not to use these better designs.
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• Suppose independent random samples are taken from k (≥ 2) exponential populations

with a common and unknown location parameter “µ” and possibly different unknown

scale parameters σ1, σ2, ..., σk respectively. The estimation of θ = (θ1, θ2, ..., θk); where

θi is the quantile of the ith population, has been considered with respect to either a

sum of squared error loss functions or sum of quadratic losses. Estimators based on

maximum likelihood estimators (MLEs) and uniformly minimum variance unbiased

estimators (UMVUEs) for each component θi have been obtained. An admissible class

of estimators has been obtained. Improvement over an estimator based on UMVUEs

is obtained by an application of the Brewster–Zidek technique. Further, classes of

equivariant estimators are derived under affine and location groups of transformations

and some inadmissibility results are proved. Finally, a numerical comparison of risk

performance of all proposed estimators has been done and the recommendations are

made for the use of these estimators.
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1. INTRODUCTION

Let (Xi1, Xi2, ..., Xini); i= 1, 2 be independent random samples taken from

two exponential populations with a common unknown location parameter µ and

possibly different scale parameters σ1, σ2 respectively. The probability density

function of the random variable Xij is given by

f(xij |µ, σi) =
1

σi
exp

{
−

(xij − µ

σi

)}
, xij > µ, −∞ < µ <∞ , σi > 0 ;

j = 1, 2, ..., ni ; i = 1, 2 .

The pth
quantile of the ith population is denoted by θi = µ+ ησi, where η =

− log(1 − p) > 0; 0 < p < 1. We are interested in estimating the quantile vector

θ = (θ1, θ2). The loss function is taken to be either the sum of the squared errors

L1(α, d) =

2∑

i=1

(di − θi)
2

(1.1)

or, the sum of the quadratic losses

L2(α, d) =

2∑

i=1

(
di − θi
σi

)2

,(1.2)

where α = (µ, σ1, σ2) and d = (d1, d2) be an estimate of θ.

When parameters of same nature are thought to be equal, it is then cus-

tomary to pool samples for inference purposes on that common parameter. This

is also known as meta-analysis, and has received considerable attention from the

researchers lately. For example, the problem of estimation of a common mean of

two or more normal populations has been extensively studied by several authors

in the recent past. The problem is popularly known as common mean problem

and arises in the study of recovery of inter-block information in balanced incom-

plete block designs (BIBDs). For a complete bibliography and some recent results

on estimation of a common mean of several normal populations one may refer to

Pal and Sinha [15], Kumar [10], Mitra and Sinha [12], Pal et al. [13] and Tripathy

and Kumar [20] and the references cited therein.

The problem of estimating a common location parameter µ of several ex-

ponential populations when the scale parameters are unknown has been studied

by several authors in the recent past. The parameter µ is also referred to as the

“minimum guarantee time” in the study of reliability. This problem was probably

first considered by Ghosh and Razmpour [5]. They have obtained the maximum

likelihood estimator (MLE), a modified maximum likelihood estimator (MMLE)

and the uniformly minimum variance unbiased estimator (UMVUE). They have

also compared numerically the risk values of all these estimators with respect
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to the squared error loss function whereas the MLE and the MMLE have been

compared asymptotically in terms of their bias and mean squared errors (MSEs).

Pal and Sinha [14] considered this problem from a decision theoretic point of

view. They proposed a class of improved estimators which are better than the

MLE in terms of MSE as well as Pitman measure of closeness (PMC). However,

these improved estimators are different from the MMLE and the UMVUE. Jin

and Pal [9] obtained a wide class of estimators which dominate the MLE under

a class of convex loss functions. Jin and Crouse [7] proposed a larger class of

estimators for µ which includes the MMLE and the UMVUE for special choices

of their constants (see Equation (3.1) in [7]). They obtained estimators which

dominate the MLE using a class of convex loss functions.

For this particular model, the problem of estimation of quantiles is impor-

tant and also interesting for its practical applications. Quantiles of exponential

populations are very much useful in the study of reliability, life testing, and sur-

vival analysis. For some applications of quantiles of exponential populations we

refer to Epstein and Sobel [3] and Saleh [18]. Estimation of quantiles θ1=µ+ησ1,

of an exponential population was probably first considered by Rukhin and Straw-

derman [17] using a decision theoretic approach. They proved that the best affine

equivariant estimator (BAEE) for the quantile θ1 is inadmissible when either

0 ≤ η < 1
n or η > 1 +

1
n where n ≥ 2 is the sample size. Rukhin [16] proved its

admissibility when
1
n ≤ η ≤ 1 +

1
n . He also obtained a class of minimax estima-

tors for η > 1 +
1
n . This class contains some generalized Bayes estimators. One

of these generalized Bayes estimators is shown to be admissible within a class of

scale equivariant estimators.

For the model studied in this paper, Sharma and Kumar [19] and Kumar

and Sharma [11] considered estimation of the quantiles θ1 = µ+ ησ1 of the first

population when the other k − 1 (k ≥ 2) populations are available. They show

that the MLE, the UMVUE and the BAEE based on the first sample alone can

be improved by using other k − 1 samples. They have also obtained a general

inadmissibility result for the class of affine equivariant estimators for 0 ≤ η < 1
n .

Jin and Crouse [8] considered the problem of estimating the quantile θi = µ+ ησi
of the ith population. They established an identity for the exponential dis-

tributions, and using it, compared the risk functions of the UMVUE and the

MLE. They also proposed a class of estimators which dominate the MLE and the

UMVUE.

It is interesting to note that all the above work relates to estimating ei-

ther the common location parameter µ or a component θi of the vector θ of

quantiles. From a theoretical as well as a practical viewpoint, it is important to

consider the problem of simultaneous estimation of θ. For example, suppose an

electronic item is produced by several manufacturers and lifetimes of these follow

exponential distributions. It is very likely that the average lives of items from dif-

ferent manufacturers will be different due to quality specifications used by them.
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However, due to competition in the market, they will maintain a common min-

imum guarantee time. Then the problem of simultaneous estimation of average

lives is a special case of the problem of simultaneous estimation of the vector of

quantiles. One may refer to Ghosh and Auer [4], Berger [1] and Gupta [6] for

some results on the simultaneous estimation of parameters.

In this paper, we consider the general problem of estimating the vector of

quantiles of several exponential populations with a common location but different

scale parameters. In Section 2, some basic estimators of the quantile vector are

proposed based on the MLE, the MMLE and the UMVUE of each component.

In Section 3, we consider classes of affine and location equivariant estimators and

prove some inadmissibility results. In Section 4, we extend some of these results to

k (≥ 2) exponential populations. A detailed numerical comparison of risk values

for several proposed estimators has been done by using Monte-Carlo simulations

in Section 5. Also recommendations are made for using these estimators. Certain

proofs have been given in the Appendix.

2. SOME BASIC RESULTS & IMPROVEMENT OVER UMVUE

In this section we derive some baseline estimators for the quantile vector θ

and obtain an estimator which dominates the UMVUE using a result of Brewster

and Zidek (Brewster and Zidek [2]).

2.1. Some Basic Estimators

Suppose (Xi1, Xi2, ..., Xini); i= 1, 2 are independent random samples taken

from two exponential populations Ex(µ, σ1) and Ex(µ, σ2) having the probability

density functions,

f(xij) =
1

σi
exp

{
−

(xij − µ

σi

)}
, xij > µ, −∞ < µ <∞ , σi > 0 ,

j = 1, 2, ..., ni ; i = 1, 2 ,

respectively. We are interested in estimating the quantile vector θ = (θ1, θ2),

where θi = µ+ ησi denotes the quantile of the ith population, i = 1, 2. The loss

function is taken to be either the sum of the squared errors (1.1) or the sum of

the quadratic losses (1.2).

Let us denote Xi = min(Xi1, Xi2, ..., Xini) and Yi =
1
ni

∑ni
j=1Xij ; i = 1, 2.

Further define Z = min(X1, X2), T1 = Y1 − Z, and T2 = Y2 − Z. Here Y1 and Y2

are the means of the first and the second samples respectively. Then (Z, T1, T2)
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is a complete sufficient statistic. The random variables Z and T = (T1, T2) are

independently distributed. The probability density function of Z is given by

fZ(z) = a exp
(
−a(z − µ)

)
, z > µ , −∞ < µ <∞ ,

where a =
n1

σ1
+

n2

σ2
. The joint probability density function of T1 and T2 can be

obtained from Ghosh and Razmpour [5] by using a simple transformation, and is

given by

fT (t) =
nn1

1 nn2

2

σn1

1 σn2

2 a

[
tn1−1
1 tn2−2

2

Γn1 Γ(n2−1)
+

tn1−2
1 tn2−1

2

Γn2 Γ(n1−1)

]
exp(−n1t1/σ1 − n2 t2/σ2) ,

t1, t2 > 0 .

The MLE of µ and σi are µ̂ = Z, and σ̂i = Ti, i = 1, 2 respectively. Thus

collecting the MLEs for each component we obtain the estimator for quantile

vector θ as

δML =
(
Z + ηT1, Z + ηT2

)
,

and we call it the MLE of θ. Further noticing E(Z) = µ+ a−1
, the MLE δML of

θ can be modified and we call this a modified MLE for the vector θ and is given

by

δMM =
(
Z − â−1

+ ηT1, Z − â−1
+ ηT2

)
,

where â =
n1

T1
+

n2

T2
.

Next we collect the UMVUEs of θi for each component and form an esti-

mator for the quantile vector θ. It is easy to see that E(Tj) = σj − a−1
; j = 1, 2

and E
[(∑2

i=1(ni−1)T−1
i

)−1]
= a−1

. Using these results and the fact that (Z, T )

is a complete sufficient statistic, we get the uniformly minimum variance unbi-

ased estimator for each component θi as Z + (η − 1)T ∗
+ ηTi, where we denote

T ∗
=

( ∑2
i=1(ni − 1)T−1

i

)−1
. Now collecting the UMVUEs for each component

θi, we form an estimator for the quantile vector θ, denoted as δMV and is given

by

δMV =

(
Z + ηT1 + (η−1)T ∗, Z + ηT2 + (η−1)T ∗

)
.

The expressions for the risk functions of δML, δMM and δMV with respect to the

loss (1.2) are obtained as follows:

R(δML, θ) = η2

(
1

n1
+

1

n2

)
+

2 (1 − η) (1 + τ2
)

(n1 + n2 τ)2
,

R(δMM , θ) = η2

(
1

n1
+

1

n2

)
+

2 (1 − η) (1 + τ2
)

(n1 + n2 τ)2

+

(
1

σ2
1

+
1

σ2
2

)(
2 (η − 1)

a
ES + ES2

)
,

R(δMV , θ) = η2

(
1

n1
+

1

n2

)
+

4 (1 − η) (1 + τ2
)

(n1 + n2 τ)2
+ 2(η − 1)

2ET ∗2
,
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where S = 1/â and τ = σ1/σ2 > 0.

In the rest of the paper, when we say UMVUE for the quantile vector θ, we

mean “the collection of the UMVUEs for each component θi and form a vector”

to get the estimator for the quantile vector θ.

2.2. An Estimator Dominating the UMVUE

In this section, we propose an estimator for the quantile vector θ, which

improves upon the UMVUE for the quantile vector θ, with respect to the loss

function (1.1). Let us consider a class of estimators for the quantile vector θ as

D =

{
δ
c
: δ

c
= (δc1 , δc2); c1, c2 ∈ R

}
,

where we denote δcj = Z + ηcj Tj + (η − 1)T ∗
; j = 1, 2.

Now for the class of estimators D =
{
δ
c
: δ

c
= (δc1 , δc2); c1, c2 ∈ R

}
, let us

define

c∗ =

(
min

{
max(c1, a1), b1

}
, min

{
max(c2, a2), b2

})
(2.1)

and

c∗ =

(
min

{
max(c1, c

+
1 ), d1

}
, min

{
max(c2, c

+
2 ), d2

})
(2.2)

where aj =
ηnj(nj−2)+1
ηnj(nj−1) , bj =

nj

nj+1 , dj = max{aj , bj}, c+j = ĉj(λ
+
j ), and λ+

j =
{
(nj + 1)−

√
(nj + 1)2 − 4ηnj

}
/2nj ; j = 1, 2. Next we have the following inad-

missibility result for estimators in the class D.

Theorem 2.1. Let D be the class of estimators for the quantile vector θ,

and define the functions c
∗ and c∗ as in (2.1) and (2.2) respectively. Let the loss

function be (1.1).

(i) The estimator δ
c

is inadmissible and is improved by δ
c
∗ if c 6= c

∗,

when η ≥ 1.

(ii) The estimator δ
c

is inadmissible and is improved by δ
c∗

if c 6= c∗ when

0 < η < 1.

Proof: See Appendix.

Corollary 2.1.

(i) Let η ≥ 1. The class of estimators
{
δ
c
= (δc1 , δc2): aj ≤ cj ≤ bj ; j=1, 2

}

is essentially complete in D.

(ii) Let 0 < η < 1. The class of estimators
{
δ
c

= (δc1 , δc2) : c+j ≤ cj ≤ dj ;

j = 1, 2
}

is essentially complete in D.
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The class of estimators D also contains the UMVUE for the quantile vec-

tor θ when c1 = c2 = 1. Consequently, the UMVUE δMV is inadmissible. The

result we write as a theorem which is immediate. Let p1 = min{ 1
n1
, 1
n2
}, p2 =

max{ 1
n1
, 1
n2
}, q1 = min{n1+1

2n1
, n2+1

2n2
} and q2 = max{n1+1

2n1
, n2+1

2n2
}.

Theorem 2.2. Let the loss function be (1.1).

(i) If η ≥ 1, then the uniformly minimum variance unbiased estimator

δMV for the quantile vector θ is inadmissible and is improved by the

estimator δIMV = (δb1 , δb2). Further the class {δ
c

= (δc1 , δc2) : aj ≤
cj ≤ bj ; j = 1, 2} is essentially complete in D.

(ii) If q2 ≤ η < 1, then the estimator δMV is inadmissible and is improved

by δIMV = (δb1 , δb2). The class of estimators {δ
c

= (δc1 , δc2) : c+j ≤
cj ≤ bj ; j = 1, 2} is essentially complete in D.

(iii) If p2 ≤ η ≤ q1, then the estimator δMV is inadmissible and is im-

proved by δIMV = (δa1
, δa2

). The class of estimators {δ
c

= (δc1 , δc2) :

c+j ≤ cj ≤ aj ; j = 1, 2} is essentially complete in D.

(iv) If 0 ≤ η < p1, then the estimator δMV is admissible in the class D.

The class of estimators {δ
c

= (δc1 , δc2) : c+j ≤ cj ≤ aj ; j = 1, 2} is es-

sentially complete in D.

(v) Let p1 < η < p2. If 1
n1
< η < 1

n2
, then the estimator δMV is inadmis-

sible and is improved by either (δa1
, δc2) (when η < n1+1

2n1
) or (δb1 , δc2)

(when η ≥ n1+1
2n1

) where c2 = 1. If 1
n2
< η < 1

n1
, then the estima-

tor δMV is inadmissible and is improved by either (δc1 , δa2
) (when

η < n2+1
2n2

) or (δc1 , δb2) (when η ≥ n2+1
2n2

) where c1 = 1.

(vi) Let q1 < η < q2. If n1+1
2n1

< η < n2+1
2n2

, then the estimator δMV is inad-

missible and is improved by either (δb1 , δa2
) (when η > 1

n2
) or (δb1 , δc2)

(when η < 1
n2

) where c2 = 1. If n2+1
2n2

< η < n1+1
2n1

, then the estima-

tor δMV is inadmissible and is improved by either (δa1
, δb2) (when

η > 1
n1

) or (δc1 , δb2) (when η < 1
n1

) where c1 = 1.

Proof: The proof is immediate as an application of Theorem 2.1.

Applying the above Theorem 2.2 it is easy to write the estimator which

improves upon δMV . However, we give the expression only for the case η ≥ q2
and p2 < η ≤ q1 below. The expressions for other cases can be written easily:

δIMV =






(
Z + ηb1T1 + (η−1)T ∗, Z + ηb2T2 + (η−1)T ∗

)
, if η ≥ q2 ,

(
Z + ηa1T1 + (η−1)T ∗, Z + ηa2T2 + (η−1)T ∗

)
, if p2 < η ≤ q1 .
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3. INADMISSIBILITY OF EQUIVARIANT ESTIMATORS FOR

QUANTILES

In this section, we consider affine and location class of equivariant esti-

mators for the quantile vector θ. We derive sufficient conditions for improving

estimators in these classes and as a consequence we prove some complete class

results.

3.1. Affine Equivariant Estimators

Let us consider the affine group of transformations, GA =
{
ga,b : ga,b(x) =

ax+ b, a > 0, b ∈ R
}
. Under the transformation ga,b, we have Xij → aXij + b,

Z → aZ+ b, Ti → aTi, σi → aσi, µ→ aµ+ b, and θi = µ+ησi → aθi+ b; i = 1, 2.

So θ = (θ1, θ2) → aθ + be, where e = (1, 1). The estimation problem is invariant

if we take the loss function as the sum of the affine invariant loss functions (1.2).

The invariance loss condition is

L
(
ḡa,b(α), d̃

)
=

2∑

i=1

(
aθi + b− d̃i

aσi

)2

= L(α, d) ,

which is satisfied if d̃i = adi + b = g̃a,b(di), i = 1, 2. Here α = (µ, σ1, σ2). There-

fore an affine equivariant estimator satisfies

δ(aZ + b, aT1, aT2) = aδ(Z, T1, T2) + be .

Substituting b = −aZ where a = 1/T1, we get

δ

(
0, 1,

T2

T1

)
=

1

T1

[
δ(Z, T1, T2) − Ze

]
.

From the above relation, we get the form of an affine equivariant estimator as

δ(Z, T1, T2) = Ze+ T1Ψ(W )

= δΨ , say ,(3.1)

where W=
T2

T1
. To proceed further we denote η1=

ηn1−1
n1+n2

, and η2 =
n2w
n1+n2

(
η− 1

n2

)
.

Let us define the following functions:

(3.2) Ψ
∗
1 =

{
η1 , if 0 ≤ w ≤ 1

1−ηn1
,

Ψ̂1(τ
+, w) , if w > 1

1−ηn1
,
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where τ+
= −n1

n2
+

1
n2

√
n1(w−1)

ηw , and

(3.3) Ψ
∗
2 =

{
η2 , if w ≥ 1 − ηn2 ,

Ψ̂2(α
+, w) , if w < 1 − ηn2 ,

where α+
=

ηn1

1−ηn2−w
+

n1

√
ηn2(1−w)

n2(1−ηn2−w) .

Next, for the affine equivariant estimator δΨ define functions Ψ0, Ψ
0
, Ψ11

and Ψ22 as follows:

Ψ0 =
(
max(Ψ1,Ψ

∗
1), max(Ψ2,Ψ

∗
2)

)
,(3.4)

Ψ
0

=
(
max(Ψ1, η1), max(Ψ2, η2)

)
,(3.5)

Ψ11 =
(
max(Ψ1, η1), max(Ψ2,Ψ

∗
2)

)
,(3.6)

Ψ22 =
(
max(Ψ1,Ψ

∗
1), max(Ψ2, η2)

)
.(3.7)

Let p1 and p2 be defined as in Section 2. Next we prove an inadmissibility

result for estimators which are equivariant under the affine group of transforma-

tions.

Theorem 3.1. Let the loss function be (1.2) and the functions Ψ0, Ψ
0,

Ψ11 and Ψ11 be defined as in (3.4), (3.5), (3.6) and (3.7) respectively.

(i) The estimator δΨ is inadmissible and is improved by δΨ
0

if there

exist some values of parameters α such that P (δΨ 6= δΨ
0
) > 0 when

0 < η < p1.

(ii) The estimator δΨ is inadmissible and is improved by δΨ0 if there exist

some values of parameters α such that P (δΨ 6= δΨ0) > 0 when η ≥ p2.

(iii) Let p1 ≤ η < p2. If 1
n1

≤ 1
n2

, then the estimator δΨ is inadmissible

and is improved by δΨ
11

if there exist some values of parameters α

such that, P (δΨ 6= δΨ
11

) > 0. If 1
n2

≤ 1
n1

, then the estimator δΨ is

inadmissible and is improved by δΨ
22

if there exist some values of

parameters α such that, P (δΨ 6= δΨ
22

) > 0.

Proof: For proof see Appendix.

Remark 3.1. The Theorem 3.1 is basically a complete class theorem for

affine equivariant estimators. It says that any affine equivariant estimator of the

form (3.1) will be inadmissible if P{(Ψ1 < Ψ
∗
1)∪ (Ψ2 < Ψ

∗
2)} > 0 when η < p1 and

P{(Ψ1 < η1) ∪ (Ψ2 < η2))} > 0 for η ≥ p2. A similar type of statement holds for
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the case p1 ≤ η ≤ p2. However, for small values of η and for small sample sizes

the improvements over the MLE and the MMLE are very marginal and we omit

the risk values in the tables. For η > p2, improvement over these is not possible

by using the result of Theorem 3.1. Improvement over δMV has been shown in

the Tables 1–3 for 0 < η < p1.

Remark 3.2. The results of the Theorem 3.1 will remain valid, if instead

of the loss function (1.2), we use any sum of the weighted squared error loss

functions.

3.2. Location Equivariant Estimator

Let us introduce the location group of transformations, GL = {ga : ga(x) =

x+ a, a ∈ R} to our model. Under the transformation ga, Xij →Xij + a, Xi →
Xi+a, Z → Z+a, Ti → Ti, σi → σi, µ→ µ+a, and θ = (θ1, θ2) → (θ1+a, θ2+a) =

θ + ae, where θi = µ+ ησi; i = 1, 2.

The estimation problem will be invariant if we choose the loss function

as the sum of the squared error loss functions (1.1). The location equivariant

estimator δ must satisfy the relation

δ(Z + a, T1, T2) = ae+ δ(Z, T1, T2) .

Substituting a = −Z, we get

δ(0, T1, T2) = δ(Z, T1, T2) − Ze .

From this relation we get the form of a location equivariant estimator as

δ(Z, T1, T2) = Ze+ ψ(T1, T2)

= δψ , say ,(3.8)

where ψ(T1, T2) = (ψ1(T1, T2), ψ2(T1, T2)).

For the location equivariant estimator δψ = (δψ1
, δψ2

) let us define func-

tions, ψ0
, ψ

11
and ψ

22
as

ψ0
=

(
max(0, ψ1), max(0, ψ2)

)
,(3.9)

ψ
11

=
(
max(0, ψ1), ψ2

)
,(3.10)

and

ψ
22

=
(
ψ1, max(0, ψ2)

)
.(3.11)
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Next we prove an inadmissibility result for estimators which are invariant

under the location group of transformations.

Theorem 3.2. Let the loss function be (1.1) and the functions ψ0, ψ
11

and ψ
22

be defined as in (3.9), (3.10) and (3.11) respectively.

(i) When η ≥ p2 the estimator δψ is inadmissible and is improved

by δψ0 if there exist some values of the parameters α such that

Pα(δψ 6= δψ0) > 0.

(ii) Let p1 ≤ η < p2. If 1
n1

≤ η < 1
n2

, then the estimator δψ is inadmissible

and is improved by δψ
11

if there exist some values of parameters

α such that Pα(δψ 6= δψ
11

) > 0. If 1
n2

≤ η < 1
n1

the estimator δψ is

inadmissible and is improved by δψ
22

if there exist some values of

parameters α such that Pα(δψ 6= δψ
22

) > 0.

(iii) For η < p1 the class of estimators (3.8) is an essentially complete

class. The estimator δψ can not be improved by using Theorem 3.2.

Proof: The proof is similar to the arguments used in proving the Theorem

3.1.

Remark 3.3. The above Theorem 3.2 is also a complete class result.

Basically it says that any location equivariant estimator for the quantile vec-

tor θ = (θ1, θ2) of the form (3.8) is inadmissible if Pα{(ψ1 < 0) ∪ (ψ2 < 0)} > 0

for η ≥ max(
1
n1
, 1
n2

). A similar type of statement holds for the case p1 ≤ η ≤ p2.

Remark 3.4. It can be further noticed that all the estimators considered

such as δML, δMM and δMV belong to the class of estimators obtained in (3.6),

with choices of ψ = (ψ1, ψ2) as (ηT1, ηT2),
(
ηT1 − T1T2

n2T1+n1T2
, ηT2 − T1T2

n2T1+n1T2

)

and
(
ηT1 +

(η−1)T1T2

(n1−1)T2 +(n2−1)T1
, ηT2 +

(η−1)T1T2

(n1−1)T2 +(n2−1)T1

)
respectively. But none

of these can be improved by using the result of Theorem 3.2 as the values of ψ1

and ψ2 fall within the interval [0,+∞) when η ≥ max
(

1
n1
, 1
n2

)
with probability 1.

However, an example where our result will be useful is as follows: suppose we

consider an estimator for θ as δ = (Z − ηT1, Z − ηT2) or any estimator of the

form (Z − g1(T1, T2), Z − g2(T1, T2)), with g1(t1, t2) > 0, or g2(t1, t2) > 0 and η ≥
max

(
1
n1
, 1
n2

)
. Certainly, these estimators fall in the class (3.8) with ψ1 < 0 or

ψ2 < 0. The improved estimator for these are obtained as δ∗ = (Z,Z).

Example 3.1. An example of a practical situation where the model of

this paper is applicable is presented here. Suppose µ is the common minimum

guaranteed time in years of two brands of electronics products say brand A and
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brand B. It is most likely that the mean residual life times (σ1 and σ2) will

be different. On the basis of random samples of sizes 10 from brand A and B,

the following summary data has been recorded. Here Z = 7.82, T1 = 12.49 and

T2 = 15.44. Suppose η = 3.0, then the estimators for the quantile vector are ob-

tained as δML = (45.31, 54.14), δMM = (44.62, 53.45), δMV = (46.85, 55.68), and

δIMV = (43.44, 51.47). In this situation, the estimator δIMV = (43.44, 51.47) is

recommended for use.

Example 3.2 (Simulated Data). The following two data sets A and B of

sizes each 10 and 12 has been generated from two exponential populations for

illustration purpose. We have taken µ = 5.0, σ1 = 5 and σ2 = 10. The sample

values have been written up to 3 decimal places only:

A : 16.555, 9.685, 11.863, 11.248, 6.894, 20.933, 6.435, 8.573, 18.745, 9.036,

B : 5.455, 6.806, 10.667, 13.687, 11.739, 9.006, 7.612, 18.846, 23.978,

21.418, 10.639, 13.061.

Here Z = 5.455, T1 = 6.541 and T2 = 7.287. Suppose, η = 0.001, then the

estimators for the quantile vector θ are obtained as, δML = (5.462, 5.462), δMM =

(5.147, 5.147), δMV = (5.115, 5.116), and δaMV = (5.145, 5.128), where δaMV de-

notes the improved version of δMV obtained by using Theorem 3.1. In this situ-

ation we recommend to use the estimator δaMV .

4. A GENERALIZATION

In this section we extend some of the results obtained in Sections 2 and 3

to the k (≥ 2) exponential populations and obtain the improved estimators for

the UMVUE δMV .

Specifically, let Xi1, Xi2, ..., Xini be a random sample of size ni taken from

the ith exponential population Ex(µ, σi). The random variable Xij has probabil-

ity density function,

f(xij) =
1

σi
exp

{
−

(xij − µ

σi

)}
, xij > µ, −∞ < µ <∞ , σi > 0 ,

j = 1, 2, ..., ni ; i = 1, 2, ..., k .

We estimate the quantile vector θ = (θ1, θ2, ..., θk); where θi = µ+ ησi be the

quantile of the ith population, with respect to the loss function either

L1(α, d) =

k∑

i=1

(di − θi)
2 ,(4.1)
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or

L2(α, d) =

k∑

i=1

(
di − θi
σi

)2

.(4.2)

Let us denote Xi = min(Xi1, Xi2, ..., Xini) and Yi =
1
ni

∑ni
j=1Xij . Further

define Z = min(X1, X2, ..., Xk), and Ti = Yi−Z; i=1, 2, ..., k. Here Yi is the sam-

ple mean from the ith population. Then (Z, T1, T2, ..., Tk) is a complete sufficient

statistic. Now the random variables Z and T = (T1, T2, ..., Tk) are independently

distributed. The probability density function of Z is given by

fZ(z) = a exp
(
−a(z − µ)

)
, z > µ, −∞ < µ <∞ ,

where a =
∑k

i=1
ni
σi

. The joint probability density function of T = (T1, T2, ..., Tk)

is given by

fT (t) =
1

a

k∏

i=1

(
nni
i

σni
i

) k∏

i=1

(
tni−1
i

Γni

)[
k∑

i=1

ni−1

ti

]
exp

{
−

k∑

i=1

ni ti/σi

}
, ti > 0 .

It should be noted that the MLE δML, modification to the MLE δMM and the

UMVUE δMV can easily be obtained as

δML = Ze+ ηT ,

δMM = (Z − â−1
)e+ ηT

and

δMV =
(
Z + (η−1)T ∗

)
e+ ηT ,

where e = (1, 1, ..., 1)1×k and T ∗
=

( ∑k
i=1(ni − 1)T−1

i

)−1
.

Consider the class of estimators for the quantile vector θ as

Dc =

{
δ
c
: δ

c
= (δc1 , δc2 , ..., δck); ci ∈ R

}
,

where we denote c = (c1, c2, ..., ck), and

δcj = Z + η cj Tj + (η−1)T ∗
; j = 1, 2, ..., k .

It should be noted that, this class contains the estimator δMV for c1 = c2 = ··· =

ck = 1.

Now for the class of estimators Dc define

c∗ =

(
min

{
max(c1, a1), b1

}
, ..., min

{
max(ck, ak), bk

})
(4.3)
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and

c∗ =

(
min

{
max(c1, c

+
1 ), d1

}
, ..., min

{
max(ck, c

+
k ), dk

})
,(4.4)

where aj =
ηnj(nj−2)+1
ηnj(nj−1) , bj =

nj

nj+1 , dj = max{aj , bj}, c+j = ĉj(λ
+
j ), and λ+

j =
{
(nj + 1) −

√
(nj + 1)2 − 4η nj

}
/2nj ; j = 1, 2, ..., k. Next we have the follow-

ing inadmissibility result for estimators in the class Dc.

Theorem 4.1. Let Dc be the class of estimators for the quantile vector θ,

and define the functions c
∗ and c∗ as in (4.3) and (4.4) respectively. Let the loss

function be (4.1).

(i) The estimator δ
c

is inadmissible and is improved by δ
c
∗ if c 6= c

∗,

when η ≥ 1.

(ii) The estimator δ
c

is inadmissible and is improved by δ
c∗

if c 6= c∗

when 0 < η < 1.

Proof: The proof is similar to the proof of the Theorem 2.1.

The class of estimators Dc contains the UMVUE of the quantile vector θ

when ci = 1; i = 1, 2, ..., k. Consequently, the UMVUE δMV is inadmissible. Let

p1 = min
{

1
n1
, ..., 1

nk

}
, p2 = max

{
1
n1
, ..., 1

nk

}
, q1 = min

{
n1+1
2n1

, ..., nk+1
2nk

}
and q2 =

max
{
n1+1
2n1

, ..., nk+1
2nk

}
.

Theorem 4.2. Let the loss function be (4.1).

(i) If η ≥ 1, then the uniformly minimum variance unbiased estimator

δMV for the quantile vector θ is inadmissible and is improved by the

estimator δIMV = (δb1 , ..., δbk). Further the class {δ
c

= (δc1 , ..., δck) :

aj ≤ cj ≤ bj ; j = 1, 2, ..., k} is essentially complete in Dc.

(ii) If q2 ≤ η < 1, then the estimator δMV is inadmissible and is

improved by δIMV = (δb1 , ..., δbk). The class of estimators {δ
c

=

(δc1 , ..., δck) : c+j ≤ cj ≤ bj ; j = 1, 2, ..., k} is essentially complete in

Dc.

(iii) If p2 ≤ η ≤ q1, then the estimator δMV is inadmissible and is

improved by δIMV = (δa1
, ..., δak

). The class of estimators {δ
c

=

(δc1 , ..., δck) : c+j ≤ cj ≤ aj ; j = 1, 2, ..., k} is essentially complete in

Dc.

(iv) If 0 ≤ η < p1, then the estimator δMV is admissible in the class D.

The class of estimators {δ
c

= (δc1 , ..., δck) : c+j ≤ cj ≤ aj ; j =

1, 2, ..., k} is essentially complete in Dc.

(v) Let p1 < η < p2 and (l1, l2, ..., lk) be a permutation of (1, 2, ..., k)

such that 1/nl1< η, ..., 1/nlp< η, and 1/nlp+1
≥ η, ..., 1/nlk ≥ η.



410 Manas Ranjan Tripathy and Somesh Kumar

Then the estimator δMV is inadmissible and is improved by δIMV =

(δal1
, ..., δalp

, δclp+1
, ..., δclk ), when η <

nl1
+1

2nl1
, ..., η <

nlp+1

2nlp
, and im-

proved by δIMV = (δbl1 , ..., δblp , δclp+1
, ..., δclk ), when η ≥ nl1

+1

2nl1
, ...,

η ≥ nlp+1

2np+1
where clp+1

= clp+2
= ··· = clk = 1.

(vi) Let p1 < η < p2 and (l1, l2, ..., lk) be a permutation of (1, 2, ..., k)

such that 1/nl1 ≥ η, ..., 1/nlp ≥ η, and 1/nlp+1
< η, ..., 1/nlk < η.

Then the estimator δMV is inadmissible and is improved by δIMV =

(δcl1 , ..., δclp , δalp+1
, ..., δalk

), when η <
nlp+1

+1

2nlp+1

, ..., η <
nlk

+1

2nlk
, and

improved by δIMV = (δcl1, ..., δclp , δblp+1
, ..., δblk ), when η ≥ nlp+1

+1

2nlp+1

,

..., η ≥ nlk
+1

2nk
, where cl1 = cl2 = ··· = clp = 1.

(vii) Let q1 < η < q2 and (l1, l2, ..., lk) be a permutation of (1, 2, ..., k)

such that
nl1

+1

2nl1
< η,

nl2
+1

2nl2
< η, ...,

nlp+1

2nlp
< η and

nlp+1
+1

2nlp+1

≥ η,

nlp+2
+1

2nlp+2

≥ η, ...,
nlk

+1

2nlk
≥ η. The estimator δMV is inadmissible and is

improved by δIMV = (δbl1, ..., δblp , δalp+1
, ..., δalk

), when η > 1/nlp+1
,

η > 1/nlp+2
, ..., η > 1/nlk and by δIMV = (δbl1 , ..., δblp , δclp+1

, ..., δclk ),

when η ≤ 1/nlp+1
, η ≤ 1/nlp+2

, ..., η ≤ 1/nlk , where clp+1
= clp+2

=

··· = clk = 1.

(viii) Let q1 < η < q2 and (l1, l2, ..., lk) be a permutation of (1, 2, ..., k)

such that
nl1

+1

2nl1
≥ η,

nl2
+1

2nl2
≥ η, ...,

nlp+1

2nlp
≥ η and

nlp+1
+1

2nlp+1

< η,

nlp+2
+1

2nlp+2

< η, ...,
nlk

+1

2nlk
< η. The estimator δMV is inadmissible and

is improved by δIMV = (δal1
, ..., δalp

, δblp+1
, ..., δblk), when η > 1/nl1 ,

η > 1/nl2 , ..., η > 1/nlp and by δIMV = (δcl1, ..., δclp , δblp+1
, ..., δblk),

when η ≤ 1/nl1 , η ≤ 1/nl2 , ..., η ≤ 1/nlp , where cl1 = cl2 = ··· =

clp = 1.

Applying the above Theorem 4.2 we can obtain the estimator which im-

proves upon δMV . However, we have obtained the expressions for some specific

values of η. One can easily write the estimator for other choices of η:

δIMV =

{ (
Z + (η−1)T ∗

)
e+ ηB , if η ≥ q2 ,

(
Z + (η−1)T ∗

)
e+ ηA , if p2 < η ≤ q1 ,

where A = (A1, A2, ..., Ak); Ai = aiTi and B = (B1, B2, ..., Bk); Bi = biTi; i =

1, 2, ..., k.

Next we generalize the results obtained in Theorem 3.1 and Theorem 3.2.

Let us consider the affine group of transformations, GA = {ga,b : ga,b(x) = ax+ b,

a > 0, b ∈ R. Under the transformation ga,b, we have Z → aZ+ b, Ti → aTi, σi →
aσi, µ→ aµ+ b, and θi = µ+ ησi → aθi+ b; i=1, 2, ..., k. So θ → aθ+ be, where

e = (1, 1, ..., 1)1×k. Under this transformation the problem remains invariant if
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we choose the loss function (4.2), and the form of an affine equivariant estimator

is obtained as

δ(Z, T1, T2, ..., Tk) = Ze+ T1Ψ(W )

= δΨ , say ,(4.5)

where W = (W2,W3, ...,Wk) and Wi =
Ti
T1

; i = 2, 3, ..., k.

Consider the conditional risk function:

R(δΨ, α |W ) =

k∑

i=1

E

{(
Z + T1Ψi(W ) − θi

σi

)2 ∣∣∣ W
}
.(4.6)

It is easy to observe that the above conditional risk is a convex function in each

Ψi and hence the sum. The minimizing choices for each Ψi is obtained as

Ψ̂i = −E(Z−θi) E(T1 |W )

E(T 2
1 |W )

; i = 1, 2, ..., k .(4.7)

After evaluating the conditional expectations and simplifying we have the mini-

mizing choice of Ψi as

Ψ̂i =
1

∑k
j=1 nj

[
ησi − a−1

] [
n1

σ1
+

k∑

j=2

njwj
σj

]
; i = 1, 2, ..., k .(4.8)

To apply the Brewster and Zidek technique we need to find the supremum

and infimum of each Ψ̂i with respect to σ = (σ1, ..., σk) for fixed values of η,

ni and W . We are not able to obtain the supremum and infimum for each Ψ̂i

for the case k (≥ 3). However, for the first component Ψ̂1, Sharma and Kumar

[19] obtained the bounds for equal sample sizes. We feel that the lower bounds

for other components will be finite. Since we are not able to derive the bounds

for the case k (≥ 3), it could not be possible to provide the inadmissibility result

for k (≥ 3) populations. It will be interesting to obtain the bounds for the case

k (≥ 3) and obtain improved estimators better than δMV .

5. NUMERICAL COMPARISONS

In this section, we carry out a detailed simulation study to numerically

compare the risk functions of various estimators proposed in previous sections

for the quantile vector θ for the case k = 2. Specifically, we have proposed some

baseline estimators such as δML, δMM and δMV for θ. An improved estimator

δIMV which dominates δMV has been obtained in Section 2 for the case η ≥ p1.

From the Remark 3.1, it is quite evident that, we only consider the estimator δMV

and obtain its improved version by using the Theorem 3.1, which we denote as
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δaMV for the case 0 < η < p2. For numerically comparing the risk functions of all

these estimators for θ, we use Monte-Carlo simulation procedure. We have gen-

erated 10,000 random samples each from two exponential populations Exp(µ, σ1)

and E(µ, σ2) respectively. Here µ is the common location parameter and σ1, σ2

are different scale parameters. The loss function is taken as the sum of the

quadratic losses (1.2). It should be noted that, with respect to the loss (1.2),

the risk functions of each estimator is a function of only τ = σ1/σ2 > 0 for fixed

values of η and sample sizes. A massive simulation study has been carried out

to see the behavior of the risk functions and the performance of each estimator

for the quantile vector θ. The error of the simulation has been checked and it

is quite satisfactory (up to order of 10
−3

). We have also calculated the percent-

age of relative risk performances for each estimator with respect to the baseline

estimator δML. For this purpose we define the equation,

RMM =

(
δML − δMM

δML

)
× 100 , RMV =

(
δML − δMV

δML

)
× 100 ,

RMVA =

(
δML − δaMV

δML

)
× 100 , RIMV =

(
δML − δIMV

δML

)
× 100 .

For illustration purpose, we choose some specific values of η and n1, n2.

Though the values of τ can be from 0 to ∞, we choose the values up to 5 to

avoid simulation error. The percentage of relative risk improvements of all the

estimators over the MLE has been tabulated in Tables 1 to 3. In Table 1, we

have tabulated the percentage of relative risk values for equal sample sizes whereas

Tables 2, 3 gives for unequal sample sizes. In each table, the first row gives the

various choices of η. We have taken conveniently the values of η as 0.05 and 2.50.

The first column represents the values of τ which ranges from 0 to 5. Further, for

each value of η, there corresponds three columns (columns 1, 2, 3 correspond to

η = 0.05 and columns 4, 5, 6 correspond to η = 2.50). For each value of τ , there

corresponds three values of percentage of relative risk values. These three values

corresponds to three different pairs of sample sizes, for example in Table 1, the

percentage of relative risk values have been tabulated for the sample sizes (5, 5),

(10, 10) and (15, 15). Similarly in Tables 2 and 3, the percentage of relative risk

performances have been tabulated for the sample sizes (3, 7), (5, 10), (10, 15) and

(7, 3), (10, 5), (15, 10) respectively.

The following conclusions can be drawn from our simulation study as well

as from the Tables 1, 2 and 3.

(i) It is observed that as the sample sizes (n1 and n2) increase the risk

values decrease for fixed value of η.

(ii) For 0 < η ≤ p1, the estimator δaMV has the least risk for almost

all values of the parameters except few values where the estimator

δMM performs marginally better. The percentage of relative risk

improvement has been noticed and is near 50%.
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(iii) For η > p2, the estimator δIMV performs the best and the per-

centage of relative risk improvement is near 21%. However, the

performance decreases as the sample sizes increase.

(iv) When η lies in the interval [p1, p2], the estimators δIMV and δaMV

compete well with each other. In fact for small values of τ , the es-

timator δIMV performs better compared to δaMV whereas for larger

values of τ , the estimator δaMV performs better. However, the es-

timator δMM has the best percentage of relative risk improvement

for this choice of η.

(v) For η = 1, (the problem reduces to simultaneous estimation of means

of two exponential populations) the estimators δML and δMV are

equal and it is also noticed that the performance of δIMV is the

best.

(vi) The numerical study also shows that the estimator δaMV improves

upon δMV , which agrees with the Theorem 3.1. Further the estima-

tor δMV is improved by δIMV which also agrees with the Theorem

2.1.

(vii) Similar type of observations were made for other combinations of η

and sample sizes during our simulation study.

(viii) On the basis of our simulation study and theoretical findings, we

recommend using the estimator δaMV when η < p1 and δIMV when

η ≥ p2, whereas we recommend to use δMM for η lying in the interval

[p1, p2].

6. CONCLUDING REMARKS

In this paper we have considered the estimation of the quantile vector

θ = (θ1, θ2, ..., θk) of k (≥ 2) exponential populations with respect to the sum of

the quadratic loss functions or the sum of the squared error losses. We first pro-

posed estimators for θ which are based on some baseline estimators for each com-

ponent θi, such as MLE and UMVUE. We have constructed a class containing the

estimator based on UMVUE of θi. Some techniques for improving estimators have

been used to obtain estimators which dominate the UMVUE of θ. Further an

admissible class has been obtained within the class. Next we have introduced the

concept of invariance to our model and derive sufficient conditions for improving

estimators which are equivariant under the location and affine group of transfor-

mations for the case k = 2. The inadmissibility result for the case k (≥ 3) popu-

lations is not available. Finally, we have conducted a simulation study to numeri-

cally compare the risk functions of all the proposed estimators and recommended

their use in practice. It may be noted that the simultaneous estimation of quantiles

of k (≥ 2) exponential populations has not been studied in the literature before.
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Table 1: Relative risk performances of various estimators of exponential

quantiles for (n1, n2) = (5, 5), (10, 10), (15, 15).

η → 0.05 2.5

τ ↓ RMM RMV RMV A RMM RMV RIMV

43.037 42.598 43.374 0.956 − 6.395 12.066
0.25 46.808 46.703 46.834 0.733 − 3.383 07.430

48.318 48.335 48.337 0.558 − 2.280 04.900

45.155 45.148 45.766 0.904 − 5.236 14.091
0.50 46.311 46.313 46.385 0.422 − 2.411 07.394

46.890 46.924 46.924 0.284 − 1.579 05.167

45.279 45.535 46.122 0.723 − 4.625 14.678
0.75 47.002 47.151 47.170 0.427 − 2.288 07.784

46.913 46.967 46.967 0.349 − 1.602 05.419

45.610 45.619 46.350 0.888 − 4.906 15.309
1.00 46.767 46.899 46.914 0.283 − 1.975 07.316

46.952 46.988 46.988 0.196 − 1.335 04.996

45.067 44.954 45.740 0.887 − 4.856 14.926
1.25 46.928 47.097 47.114 0.388 − 2.220 07.611

46.842 46.877 46.877 0.357 − 1.583 05.452

44.834 45.058 45.588 0.751 − 4.758 14.388
1.50 46.555 46.651 46.695 0.411 − 2.283 07.798

47.772 47.818 47.818 0.231 − 1.442 05.076

44.454 44.741 45.233 0.771 − 4.958 14.146
1.75 46.699 46.759 46.802 0.398 − 2.331 07.490

46.982 47.000 47.000 0.197 − 1.428 04.570

44.042 44.125 44.621 0.484 − 4.520 13.347
2.00 47.795 47.894 47.959 0.446 − 2.465 07.531

46.428 46.478 46.478 0.388 − 1.764 05.469

43.780 43.699 44.397 0.604 − 4.902 13.734
2.25 47.813 47.923 47.982 0.424 − 2.473 07.530

46.457 46.483 46.483 0.384 − 1.785 05.191

45.520 45.264 45.949 0.884 − 5.517 14.398
2.50 46.369 46.472 46.514 0.509 − 2.688 06.946

48.159 48.209 48.210 0.323 − 1.729 05.094

44.021 43.564 44.495 0.677 − 5.304 13.024
2.75 45.821 45.882 45.934 0.623 − 2.921 07.492

46.457 46.476 46.477 0.349 − 1.812 04.967

44.332 44.338 44.891 1.007 − 5.999 13.630
3.00 47.501 47.549 47.618 0.562 − 2.880 07.435

47.773 47.815 47.818 0.363 − 1.879 05.051

44.406 43.960 44.874 0.882 − 5.972 12.737
3.25 46.898 46.943 47.001 0.361 − 2.632 06.610

47.658 47.686 47.689 0.249 − 1.684 04.841

43.503 43.082 43.878 1.084 − 6.421 13.541
3.50 47.113 47.175 47.218 0.356 − 2.651 06.900

47.248 47.282 47.284 0.295 − 1.828 04.781

43.657 43.236 43.999 0.856 − 6.091 12.500
3.75 46.720 46.767 46.771 0.382 − 2.740 07.112

47.962 47.972 47.975 0.363 − 1.968 04.365

43.683 43.505 44.188 1.107 − 6.681 12.581
4.00 47.308 47.372 47.399 0.412 − 2.830 06.585

47.804 47.831 47.836 0.229 − 1.748 04.923

43.373 43.061 43.748 1.053 − 6.755 12.813
4.50 47.327 47.423 47.448 0.451 − 2.971 06.532

47.789 47.838 47.843 0.520 − 2.294 04.967

44.398 43.750 44.536 1.066 − 6.961 11.409
5.00 45.883 45.957 45.990 0.459 − 3.029 06.346

47.180 47.197 47.212 0.519 − 2.339 04.823
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Table 2: Relative risk performances of various estimators of exponential

quantiles for (n1, n2) = (3, 7), (5, 10), (10, 15).

η → 0.05 2.5

τ ↓ RMM RMV RMV A RMM RMV RIMV

41.906 41.323 43.081 1.669 − 9.291 16.740
0.25 45.474 45.569 45.924 1.036 − 5.772 10.976

47.309 47.391 47.405 0.272 − 2.487 05.275

42.950 43.248 44.022 1.333 − 6.102 19.997
0.50 46.733 46.888 47.201 0.709 − 3.726 12.461

47.516 47.558 47.599 0.524 − 2.323 06.857

44.397 44.332 45.282 0.821 − 4.296 20.276
0.75 46.547 46.741 46.994 0.511 − 2.926 12.607

47.023 47.052 47.062 0.308 − 1.779 06.602

45.131 45.321 46.071 0.644 − 3.677 20.487
1.00 46.561 46.768 46.934 0.571 − 2.775 13.186

47.745 47.789 47.790 0.180 − 1.442 06.457

45.226 45.386 46.131 0.721 − 3.704 20.581
1.25 46.731 46.724 46.896 0.500 − 2.604 12.887

47.602 47.710 47.710 0.357 − 1.713 07.150

44.199 44.099 44.772 0.544 − 3.329 20.346
1.50 45.620 45.780 45.906 0.459 − 2.490 12.689

47.137 47.204 47.204 0.189 − 1.450 06.663

44.278 44.194 44.857 0.453 − 3.072 20.837
1.75 44.896 44.962 45.059 0.437 − 2.428 12.735

47.072 47.097 47.097 0.192 − 1.462 06.699

43.354 43.583 44.053 0.572 − 3.335 20.450
2.00 46.011 45.911 46.086 0.374 − 2.328 12.562

47.194 47.230 47.232 0.261 − 1.589 06.637

44.806 44.845 45.397 0.522 − 3.291 19.334
2.25 46.415 46.399 46.520 0.438 − 2.407 13.214

46.523 46.534 46.535 0.248 − 1.596 06.240

44.570 44.353 44.797 0.440 − 3.195 19.147
2.50 45.588 45.585 45.687 0.433 − 2.389 13.896

46.890 46.951 46.953 0.278 − 1.630 06.169

45.507 45.258 45.759 0.529 − 3.319 20.592
2.75 45.795 45.688 45.817 0.459 − 2.505 12.584

46.556 46.616 46.618 0.293 − 1.688 06.672

43.824 43.592 44.095 0.466 − 3.226 19.385
3.00 45.929 45.869 45.975 0.367 − 2.334 12.770

46.921 46.927 46.936 0.293 − 1.705 06.848

44.325 44.097 44.547 0.399 − 3.162 19.697
3.25 46.165 46.129 46.258 0.318 − 2.313 11.657

47.061 47.054 47.064 0.289 − 1.752 06.671

44.469 44.156 44.536 0.503 − 3.380 19.444
3.50 47.253 47.241 47.366 0.242 − 2.167 12.236

46.078 46.081 46.095 0.236 − 1.670 06.318

45.216 44.809 45.341 0.401 − 3.146 19.755
3.75 45.286 45.188 45.343 0.340 − 2.374 11.737

46.998 47.056 47.069 0.358 − 1.832 06.970

44.480 43.966 44.530 0.443 − 3.305 19.008
4.00 46.173 46.131 46.227 0.401 − 2.472 12.908

46.851 46.880 46.895 0.344 − 1.844 07.032

45.394 44.937 45.334 0.217 − 2.858 18.840
4.50 45.033 44.991 45.061 0.352 − 2.414 12.076

46.975 46.970 46.978 0.284 − 1.774 06.626

43.720 43.404 43.822 0.507 − 3.385 19.881
5.00 45.965 45.931 46.002 0.404 − 2.543 12.480

46.456 46.492 46.496 0.314 − 1.870 06.477
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Table 3: Relative risk performances of various estimators of exponential

quantiles for (n1, n2) = (7, 3), (10, 5), (15, 10).

η → 0.05 2.5

τ ↓ RMM RMV RMV A RMM RMV RIMV

45.446 44.948 45.439 0.435 − 3.278 19.087
0.25 45.940 45.996 46.036 0.494 − 2.602 13.201

47.235 47.222 47.237 0.266 − 1.737 06.439

43.214 43.298 43.805 0.455 − 3.153 19.717
0.50 46.619 46.648 46.770 0.378 − 2.303 12.980

47.152 47.149 47.151 0.469 − 1.929 07.236

44.330 44.142 44.969 0.594 − 3.472 19.887
0.75 45.780 45.801 45.959 0.427 − 2.390 13.113

47.580 47.639 47.639 0.319 − 1.657 06.724

44.521 44.644 45.443 0.629 − 3.662 20.348
1.00 46.106 46.110 46.330 0.347 − 2.378 12.591

46.928 46.982 46.984 0.265 − 1.605 06.852

45.323 45.618 46.424 0.850 − 4.282 20.591
1.25 46.781 47.000 47.221 0.578 − 2.945 12.776

47.166 47.143 47.149 0.292 − 1.690 06.746

43.385 43.322 44.350 1.014 − 4.806 21.011
1.50 46.763 46.766 47.085 0.772 − 3.466 13.435

47.490 47.5304 47.538 0.456 − 2.055 07.111

44.075 44.128 45.052 1.306 − 5.750 20.317
1.75 47.294 47.384 47.732 0.515 − 3.208 12.078

47.159 47.170 47.196 0.443 − 2.137 06.862

42.991 43.446 44.243 0.968 − 5.305 19.192
2.00 46.865 47.210 47.448 0.730 − 3.761 12.445

47.128 47.208 47.224 0.409 − 2.164 06.537

43.771 44.121 44.938 1.630 − 7.037 20.335
2.25 46.120 46.198 46.525 0.912 − 4.282 12.849

46.895 46.937 46.979 0.417 − 2.228 06.382

43.007 42.970 44.183 1.373 − 6.872 19.011
2.50 46.586 46.613 47.026 0.698 − 4.150 11.695

47.448 47.503 47.556 0.358 − 2.244 06.047

43.741 43.624 44.675 1.554 − 7.584 18.337
2.75 46.123 46.068 46.504 0.913 − 4.627 12.069

48.110 48.221 48.257 0.480 − 2.523 06.138

43.166 42.889 44.267 1.744 − 8.175 18.991
3.00 45.193 45.383 45.637 0.918 − 4.830 11.355

47.727 47.848 47.875 0.511 − 2.656 06.237

42.960 43.097 44.335 1.845 − 8.768 18.520
3.25 45.672 45.976 46.113 0.888 − 5.019 11.025

47.430 47.459 47.546 0.527 − 2.755 06.115

41.211 40.899 42.355 1.603 − 8.551 17.837
3.50 45.775 45.681 46.111 1.078 − 5.463 11.228

46.820 46.848 46.931 0.591 − 2.955 05.738

42.765 42.426 44.002 1.943 − 9.507 18.044
3.75 45.668 45.778 46.103 1.048 − 5.678 10.862

48.711 48.813 48.853 0.475 − 2.794 05.613

41.437 40.853 42.613 2.086 − 10.158 17.591
4.00 45.805 45.877 46.266 1.226 − 6.067 10.923

47.696 47.710 47.768 0.578 − 3.029 05.695

42.217 41.511 43.183 2.007 − 10.418 17.181
4.50 45.568 45.667 46.074 1.177 − 6.297 10.417

48.148 48.199 48.243 0.640 − 3.251 05.778

40.642 39.702 41.661 2.120 − 11.496 16.171
5.00 45.277 45.013 45.486 1.145 − 6.369 10.399

47.350 47.432 47.445 0.665 − 3.375 05.678
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APPENDIX

Proof of Theorem 2.1: In order to prove the theorem we use the orbit-

by-orbit improvement technique of Brewster and Zidek [2].

Consider the risk function of δ
c

with respect to the loss function (1.1),

R(α, δ
c
) = E

[
Z + ηc1T1 + (η−1)T ∗ − µ− ησ1

]2

+ E
[
Z + ηc2T2 + (η−1)T ∗ − µ− ησ2

]2
.(A.1)

It can be easily seen that the above risk (A.1) is a convex function in both

c1 and c2. After some calculations, the minimizing choices for c1 and c2 are

obtained as

ĉj(α) =
(µ+ ησj)ETj − E(ZTj) − (η−1)E(Tj T

∗
)

ηET 2
j

; j = 1, 2 .(A.2)

Let λj = (σj a)
−1

, and using this we obtain the minimizing choice of each cj as

ĉj(λj) =
nj

(
η − 2ηλj + λ2

j

)

η
(
1 + nj − 2nj λj

) ; j = 1, 2 .(A.3)

To apply the orbit-by-orbit improvement technique of Brewster and Zidek

[2], we need to get the supremum and infimum values of ĉ1 and ĉ2 with respect to

λj and for fixed η. It is easy to see that 0 < λj <
1
nj

. We consider the following

three separate cases.

Case-(I): Let η ≥ max
(
(n1+1)

2/4n1, (n2+1)
2/4n2

)
. Differentiating ĉj(λj)

with respect to λj we have
dĉj
dλj

=
−2nj(njλ

2
j−λj(nj+1)+η)

η(nj+1−2njλj)2
; j = 1, 2. It is easy to

observe that the derivative is g(λj) = −njλ2
j + λj(nj + 1) − η multiplied by a

positive factor. Now g(λj) is a concave function of λj ; j = 1, 2. The maxi-

mum value is attained at λj = (nj + 1)/2nj < 1/nj . The maximum value is

(nj + 1)
2/4nj − η < 0. This implies g(λj) < 0 for 0 < λj <

1
nj

; j = 1, 2. Hence

the function ĉj(λj) is decreasing with respect to λj . Hence we have

inf
0<λj≤

1

nj

ĉj(λj) = ĉj(1/nj) =
nj η (nj − 2) + 1

nj η (nj − 1)
= aj (say)

and

sup

0<λj≤
1

nj

ĉj(λj) = ĉj(0) =
nj

nj + 1
= bj ; j = 1, 2 , (say) .
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Case-(II): Let 1 ≤ η < min
{
(n1+1)

2/4n1, (n2+1)
2/4n2

}
. It is easy to see

that the maximum value of g(λj) is positive. The equation g(λj) = 0, has two real

roots say λ−j =
(nj+1)+

√
(nj+1)2−4ηnj

2nj
and λ+

j =
(nj+1)−

√
(nj+1)2−4ηnj

2nj
; j=1, 2.

It is also noticed that, these two roots are outside the interval
(
0, 1

nj

]
. Hence

for 0 < λj ≤ 1
nj

the function g(λj) < 0. This implies that the function ĉj(λj) is

decreasing in the concerned interval. Hence we have

inf
0<λj≤

1

nj

ĉj(λj) = ĉj(1/nj) =
nj η (nj − 2) + 1

nj η (nj − 1)
= aj

and

sup

0<λj≤
1

nj

ĉj(λj) = ĉj(0) =
nj

nj + 1
= bj ; j = 1, 2 ,

Case-(III): Let 0 ≤ η < 1. For this case it can be observed that the root

λ−j is outside the concerned interval, but λ+
j is inside the interval

(
0, 1

nj

]
. Also

ĉj
′′
(λ+
j ) > 0 and ĉj

′′
(λ−j ) < 0, hence λ−j is a point of local maxima and λ+

j is a

point of local minima. Hence the function g(λj) < 0 in the interval (0, λ+
j ] and

g(λj) ≥ 0 in the interval (λ+
j , 1/nj ]. Thus the function ĉj(λj) is decreasing in the

interval (0, λ+
j ] and increasing in the interval (λ+

j , 1/nj ]. We have

inf
0<λj<

1

nj

ĉj(λj) = ĉj(λ
+
j ) = cj

+ ,

and

sup

0<λj<
1

nj

ĉj(λj) = max

{
ĉj(0), ĉj(1/nj)

}
= max

{
nj

nj+1
,
1 + ηnj (nj −2)

ηnj (nj −1)

}
= dj ,

where

λ+
j =

{
(nj + 1) −

√
(nj + 1)2 − 4ηnj

}/
2nj ; j = 1, 2 .

Now combining Cases I–III, it is easy to define the functions c∗ and c∗ as

in (2.1) and (2.2) respectively. The loss function is (1.1), which is the sum of

the squared errors, and it is convex with respect to both c1 and c1. Then by

applying the orbit-by-orbit improvement technique of Brewster and Zidek [2] we

get the improved estimators for δ
c

in the class D, if either c1 lies outside the

interval [a1, b1] (when η ≥ 1) and [c1
+, d1] (when 0 ≤ η < 1) or c2 lies outside the

interval [a2, b2] (when η ≥ 1) and [c2
+, d2] (when 0 ≤ η < 1) with probability 1.

Applying the Brewster and Zidek [2] technique we have R(δ
c
∗ , α) ≤ R(δ

c
, α) when

η ≥ 1, and R(δ
c∗
, α) ≤ R(δ

c
, α) when 0 ≤ η < 1. This completes the proof of the

theorem.
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Proof of Theorem 3.1: The proof of the theorem can be done by using

the orbit-by-orbit improvement technique for improving equivariant estimators

proposed by Brewster and Zidek [2]. Consider the conditional risk function of δΨ
given W = T2/T1 :

R
(
δΨ |W=w

)
=

2∑

i=1

1

σ2
i

E
(
Z + T1Ψi(W ) − θi

)2
.(A.4)

It is easy to observe that the above risk (A.4) is a convex function of both Ψ1

and Ψ2. Hence, the minimizing choice of Ψi(w) is obtained as

Ψ̂i(w) = −E(Z − θi) E(T1 |W=w)

E(T 2
1 |W=w)

, i = 1, 2 .

Using the joint probability density function of (T1, T2), we can easily derive the

joint probability density function of (T1,W ). The conditional probability density

function of T1 given W is a gamma distribution with shape parameter n1 +

n2 − 1 and scale parameter 1/M where M =
n1

σ1
+

n2

σ2
w. Hence the conditional

expectations are calculated as

E(T1 |W ) =
n1 + n2 − 1

M
, E(T 2

1 |W ) =
(n1 + n2 − 1) (n1 + n2)

M2
.

Substituting all these values and simplifying we obtain the minimizing choice of

Ψ̂1 and Ψ̂2 as

Ψ̂1(w, τ) =

[
η − (n2 τ + n1)

−1
] [
n1 + wn2 τ

]

(n1 + n2)

and

Ψ̂2(w, τ) =

[η
τ − (n2 τ + n1)

−1
] [
n1 + wn2 τ

]

(n1 + n2)

respectively, where we denote τ = σ1/σ2 > 0.

In order to apply the orbit-by-orbit improvement technique of Brewster

and Zidek [2] for improving equivariant estimator, we need the supremum and

infimum of both Ψ̂1 and Ψ̂2 with respect to τ > 0 for fixed values of n1, n2, η

and for given w. We consider the following three separate cases for calculating

the supremum and infimum.

Case I: Let 0 < η < min
{

1
n1
, 1
n2

}
. Consider the first component Ψ̂1(w, τ).

Differentiating with respect to τ we have
dΨ̂1

dτ =
ηn3

2
wτ2+2ηn1n2

2
wτ+n1n2(ηn1w−w+1)

(n1+n2)(n1+n2τ)2
.

Let h(τ) = ηn3
2wτ

2
+ 2 ηn1n

2
2wτ + n1n2(ηn1w − w + 1). Now h(τ) is a convex

function of τ ∈ (0,∞). Its minimum is attained at τ = −n1

n2
< 0. Hence in the

region (0,∞) the minimum will be attained at τ = 0 and the minimum value of

h(τ) is n1n2(1 − w + ηn1w). Assume that the minimum value is positive that
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is 0 < w ≤ 1
1−ηn1

. For this case h(τ) ≥ 0 for τ ∈ (0,∞). Hence the function

Ψ̂1(w, τ) is an increasing function of τ > o. Hence we have

inf
τ>0

Ψ̂1(w, τ) =
ηn1−1

n1+n2
and sup

τ>0
Ψ̂1(w, τ) = ∞ , when 0 < w ≤ 1

(1− ηn1)
.

If w > 1
1−ηn1

, then the minimum value of h(τ) is negative and it will cross the

τ axis. The function h(τ) has two real roots say τ− = −n1

n2
− 1

n2

√
n1(w−1)
ηw and

τ+
= −n1

n2
+

1
n2

√
n1(w−1)
ηw . It is easy to observe that τ− < 0 and τ+ > 0. Hence

h(τ) < 0 in the region 0 < τ < τ+
and h(τ) ≥ 0 in the region τ+ < τ <∞. Hence

the function Ψ̂1(w, τ) is decreasing in the region 0 < τ < τ+
and increasing in the

region τ+ < τ <∞. Hence we have

inf
τ>0

Ψ̂1(w, τ) = Ψ̂1(w, τ
+
) and sup

τ>0
Ψ̂1(w, τ) = ∞ , when w >

1

(1− ηn1)
,

where

Ψ̂1(w, τ
+
) =

[
η − (n2 τ

+
+ n1)

−1
] [
n1 + wn2 τ

+
]

(n1 + n2)
.

Next consider the second component Ψ̂2. The derivative of Ψ̂2 with re-

spect to τ is g(τ) = τ2
(n1n2 − ηn1n

2
2 − n1n2w) − 2 ηn2

1n2 τ − ηn3
1 multiplied by

a positive factor. For this case g(τ) is a convex function of τ > 0. The mini-

mum attained at τ =
ηn1

1−ηn2−w
> 0. Its minimum value is

ηn3
1
(w−1)

1−ηn2−w
< 0 as w < 1.

Since the minimum value of g(τ) is negative, it will cross the τ axis. The equa-

tion g(τ) = 0 has two real roots say α−
=

ηn1

1−ηn2−w
− n1

n2

√
ηn2(1−w)

1−ηn2−w
and α+

=

ηn1

1−ηn2−w
+

n1

n2

√
ηn2(1−w)

1−ηn2−w
. It is noticed that α− < 0 and 0 < ηn1

1−ηn2−w
< α+

.

Hence the function g(τ) < 0 in the region (0, α+
) and g(τ) ≥ 0 in the region

[α+,∞). This implies that Ψ̂2(w, τ) is decreasing in the region (0, α+
) and in-

creasing in the region [α+,∞). Hence we have

inf
τ>0

Ψ̂2(w,τ) = Ψ̂2(w,α
+
) and sup

τ>0
Ψ̂2(w,τ) = max

{
Ψ̂2(w,0), Ψ̂2(w,∞)

}
= ∞ ,

where

Ψ̂2(w,α
+
) =

1

n1 + n2

[
η

α+
− 1

n1 + n2α+

][
n1 + n2wα

+
]
,

when 1 − ηn2 ≥ w.

Now assume that 1 − ηn2 < w. Then the function g(τ) is a concave func-

tion of τ . Its maximum value is attained at τ =
ηn1

1−ηn2−w
< 0. Hence within

the concerned region the maximum is attained at τ = 0. Its maximum value is

−ηn3
1 < 0. This implies that the function g(τ) < 0 in the region (0,∞). Thus

the function Ψ̂2(w, τ) is decreasing in τ ∈ (0,∞). Hence we have

inf
τ>0

Ψ̂2(w, τ) =
n2w

n1 + n2

(
η − 1

n2

)
and sup

τ>0
Ψ̂2(w, τ) = ∞ ,

when 1 − ηn2 < w.
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Case II: Let η ≥ max
{

1
n1
, 1
n2

}
. Consider the first component Ψ1(w, τ).

Now the derivative of Ψ̂1(w, τ) with respect to τ is h(τ) multiplied by a pos-

itive factor. As in Case I, the function h(τ) is a convex function of τ . The

minimum is attained at τ = −n1

n2
< 0. Hence within the interval (0,∞) the min-

imum is attained at τ = 0. Its minimum value is n1n2(1 − w + ηn1w) ≥ 0 as

η ≥ max
{

1
n1
, 1
n2

}
. Hence h(τ) ≥ 0, ∀ τ > 0. Thus the function Ψ̂1(w, τ) is in-

creasing in the region (0,∞). Thus we have

inf
τ>0

Ψ̂1(w, τ) = Ψ̂1(w, 0) =
ηn1 − 1

n1 + n2
and sup

τ>0
Ψ̂1(w, τ) = Ψ̂1(w,∞) = ∞ .

Consider the second component Ψ̂2(w, τ). As in Case I, the derivative of

Ψ̂2(w, τ) is simply g(τ) multiplied by a positive factor. Also under the condition

η ≥ max
{

1
n1
, 1
n2

}
, the only possibility is 1 − ηn2 < w. The function g(τ) is a

concave function and the maximum is attained at τ =
ηn1

1−ηn2−w
< 0. Hence the

maximum will be attained at τ = 0 in the concerned region (0,∞). The maxi-

mum value is −ηn3
1 < 0. Hence g(τ) < 0, ∀ τ > 0. Thus the function Ψ̂2(w, τ) is

decreasing in the region (0,∞). Thus we have

inf
τ>0

Ψ̂2(w, τ) =
n2w

n1 + n2

(
η − 1

n2

)
and sup

τ>0
Ψ̂2(w, τ) = ∞ .

Case III: Let min
{

1
n1
, 1
n2

}
≤ η < max

{
1
n1
, 1
n2

}
. For this case we have two

possibilities either
1
n1

≤ η < 1
n2

or
1
n2

≤ η < 1
n1

. Analyzing as in the above cases

we have for
1
n1

≤ η < 1
n2

,

inf
τ>0

Ψ̂1(w, τ) = Ψ̂1(w, 0) =
ηn1 − 1

n1 + n2
and sup

τ>0
Ψ̂1(w, τ) = Ψ̂1(w,∞) = ∞ ,

and

inf
τ>0

Ψ̂2(w, τ) =

{
Ψ̂2(w,α

+
) , if w≤ 1− ηn2 ,

n2w
n1+n2

(
η − 1

n2

)
, if w> 1− ηn2 ,

and sup
τ>0

Ψ̂2(w, τ) = +∞ .

Likewise when
1
n2

≤ η < 1
n1

, we have

inf
τ>0

Ψ̂1(w, τ) =

{ ηn1−1
n1+n2

, if w≤ 1
1−ηn1

,

Ψ̂1(w, τ
+
) , if w> 1

1−ηn1
,

and sup
τ>0

Ψ̂1(w, τ) = +∞ ,

and

inf
τ>0

Ψ̂2(w, τ) =
n2w

n1 + n2

(
η− 1

n2

)
and sup

τ>0
Ψ̂2(w, τ) = ∞ .
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Now it is easy to define the functions Ψ0

(
when 0 < η ≤ min

{
1
n1
, 1
n2

})
, Ψ

0
(
when η ≥ max

{
1
n1
, 1
n2

})
, Ψ11

(
when

1
n1

≤ η < 1
n2

)
and Ψ22

(
when

1
n2

≤ η < 1
n1

)

as defined in (3.4), (3.5), (3.6) and (3.7) respectively. Since the loss function

(1.2) is a sum of the convex loss functions with respect to both Ψ̂1 and Ψ̂2, an

application of the Theorem 3.3.1 of Brewster and Zidek [2], gives R(δΨ
0
, α) ≤

R(δΨ, α) if there exist some values of parameters α such that Pα(Ψ0 6= Ψ) > 0 for

the case 0 < η ≤ min
{

1
n1
, 1
n2

}
. Similarly by applying the Brewster and Zidek [2]

technique for the case η ≥ max
{

1
n1
, 1
n2

}
, we have R(δΨ0 , α) ≤ R(δΨ, α) if there

exist some values of parameters α such that Pα(Ψ
0 6= Ψ) > 0. When

1
n1

≤ η < 1
n2

the estimator δΨ
11

improves upon δΨ if Pα(Ψ11 6= Ψ) > 0 for some choices of α.

When
1
n2

≤ η < 1
n1

the estimator δΨ
22

improves upon δΨ if Pα(Ψ22 6= Ψ) > 0 for

some choices of α. This completes the proof of the theorem.
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426 E. Gómez-Déniz, F.J. Vázquez-Polo and V. Garćıa
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1. INTRODUCTION

The Borel–Tanner distribution is a discrete distribution proposed more than

fifty years ago in queueing theory to model the probability distribution of the

number of customers served in a queuing line with Poisson input and a constant

service time, given that the length of the queue at the initial time is r. As far

as we know, this distribution has not received much attention for the statistical

community. The probability function of the Borel–Tanner distribution ([11]) is

given by

(1.1) Pr(Y = y) = A(y, r)e−αy αy−r , y = r, r +1, ... ,

where α > 0 and r is a positive integer and where

A(y, r) =
r

(y− r)!
yy−r−1 .

Equivalently, [10] rewritten expression (1.1) as

(1.2) Pr(Y = y) = B(y, r)
αy−r

(1+α)2y−r
, y = r, r +1, ... ,

where

B(y, r) =
r

y

(
2y − r − 1

y − 1

)
.

In this paper we focus on the distribution with probability distribution given

in (1.2) using a modified version of this probability distribution with support in

0, 1, ..., suitable for modelling data with a high frequencies of zero and showing

over-dispersion phenomena: the variance is larger than the mean.

The distribution proposed here has some advantages against some other

well-known distributions as a suitable model for modelling data with a high fre-

quencies of zeros and showing over-dispersion phenomena. We also propose a

generalized regression model which can be used for a count dependent variable,

when the above features are observed. Maximum likelihood estimation is in-

vestigated and illustrated with an example involving emergency room visits to

hospital.

The applicability of the model is shown by fitting the number of deaths in

truck accidents (fatalities) on American roads, with different explanatory covari-

ates from real data used by [17]. The provided real data examples show that the

model works reasonably well, and this assessment is confirmed by the comparison

to the Poisson and negative binomial distributions.

The contents of the paper are as follows. In section 2 we present the mod-

ified version of the Borel–Tanner distribution proposed here. Some properties of
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the distribution are also shown, including the mean, variance and the cumulative

distribution function. Some methods of estimation are developed in section 3.

The regression model is developed in section 4. An application with real data is

shown in section 4 and conclusions in the last section.

2. THE MODIFIED BOREL–TANNER DISTRIBUTION (MBT)

In this section we propose a modified version of the Borel–Tanner distribu-

tion given in (1.2) which has support in the positive integer numbers including

the zero value. Firstly, consider r =1 and X =Y −1, then it is a simple exercise

to see that the resulting shifted distribution has its probability function given by

(2.1) Pr(X= x) =
Γ(2x + 1)

Γ(x + 2) Γ(x + 1)

αx

(1 + α)2x+1
, x = 0, 1, ... ,

being 0 < α < 1. It has to be pointed out that in the original paper of [10]

any parameter value α > 0 is allowed. Nevertheless, a simple algebra shows

that it is not true and the feasible set of this parameter is actually 0 < α < 1.

This distribution can be easily written as

Pr(X= x) = Cx
αx

(1 + α)2x+1
, x = 0, 1, ... ,

where

Cx =
1

x + 1

(
2x

x

)

are the Catalan numbers (see [13], p. 13 and [18]. In the sequel, when a

random variable X follows the probability mass function (2.1) we will denote

X ∼ MBT(α).

Since probability function (2.1) can be written as

Pr(X= x) = Cx exp
[
λ · x − A(λ)

]
,

where

λ = log
α

(1 + α)
2 ,

and

A(λ) = log

(
1 −

√
1 − 4eλ

2eλ

)
= log(1 + α) ,

the modified Borel–Tanner distribution proposed here is a member of the natural

exponential family of distributions. Furthermore, probability function (2.1) can

also be rewritten as

Pr(X= x) =
Cx

1 + α

[
α

(1 + α)2

]x

.
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Therefore, the modified Borel–Tanner distribution belongs to the class of power

series distribution (see [13], p. 75) which contains for instance Bernoulli, binomial,

geometric, negative binomial, Poisson and logarithmic series distributions.

On the other hand, [3] discussed discrete probability density functions

Pr(X= x; α) which obey the following relation for some functions B and D:

if there exist B and D such that

(2.2)
d Pr(X= x; α)

dα
= B(α)

[
x − D(α)

]
Pr(X= x; α) ,

then the mean µ coincides with D(α) and µ2 = (dµ/dα)(1/B(α)) is the variance.

Also, in that case

µi = µ2

[
dµi−1

dα

1

dµ/dα
+ (i−1)µi−2

]
, i = 2, 3, ... ,

where µi is the i-th moment about the mean, which depends on α. Note that

µ0 = µ.

Now, observe that the MBT(α) distribution verifies (2.2) considering

B(α) =
1 − α

α(1 + α)
, D(α) =

α

1 − α
.

Then, the mean and the variance of the random variable following the

probability function (2.1) are given by

(2.3) E(X) =
α

1 − α

and

(2.4) var(X) =
α(1 + α)

(1 − α)3
,

respectively. The previous expression for the mean of a MBT(α) distributed

variable allows to write its probability mass function (pmf) as

Pr(X= x) = Cx · θx
(1 + θ)1+x

(1 + 2θ)1+2x ,

where θ = E(X) =
α

1 − α
.

Since
var(X)

E(X)
= 1 +

α(3 − α)

(1 − α)2
> 1

we conclude that the distribution is overdispersed. Note that the proposed distri-

bution is zero-inflated; that is, its proportion of 0’s is greater than the proportion

of 0’s of a Poisson variate with the same mean. To see this we observe that the
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zero-inflated index (see [19]) is zi = 1− 1−α
α log(1+α), which results greater than

zero.

Additionally, the probability generating function is given by

GX(z) =
1 + α

2 αz

[
1 −

√
1 + α(α − 4z + 2)

1 + α

]
, |z| < 1 .

The cumulative distribution function of a random variable following the

probability function given in (2.1) is given by

(2.5) Pr(X≤x) = 1− Γ
(
x +

3
2

)
(4α)

x+1

Γ(x+3)
√

π (1+α)2x+3 2F1

(
1, x+

3

2
; x+3;

4α

(1+α)2

)
,

where 2F1 is the hypergeometric function given by

2F1(a, b; c; z) =

∞∑

k=0

Γ(a + k) Γ(b + k) Γ(c)

Γ(a) Γ(b) Γ(c + k)

zk

k!
.

See the Appendix Section for details about this assert.

Some additional details about the hypergeometric function can be found in

[18]. From (2.5) we get the survival function, Pr(X≥x), and the failure or hazard

rate can be easily obtained using (2.5) and (2.1).

Finally, observe that the probabilities can be computed from the recursion

Pr(X= x) =
2α

(1 + α)2

2x − 1

x + 1
Pr(X= x−1) , x = 1, 2, ... ,

being Pr(X= 0) =
1

1 + α
.

Since

Pr(X= x)

Pr(X= x−1)
− Pr(X= x+1)

Pr(X= x)
=

−6α

(1 + α)2

1

(x + 1) (x + 2)
< 0 ,

we have that the distribution is log-convex (infinitely divisible) and has decreasing

failure rate (DFR). See [9] and [22] for details. The fact that Pr(X=x)/Pr(X=x−1),

x = 1, 2, ..., forms a monotone increasing sequence requires that Pr(X= x) be a

decreasing sequence (see [12], p. 75). Therefore, the distribution is unimodal with

modal value on zero. An overview of Figure 1 confirms this feature and that the

shown plotting lines in the graph are similar to the ones corresponding to distri-

butions of Poisson with expected value lower than 1.

Moreover, as any infinitely divisible distribution defined on non-negative

integers is a compound Poisson distribution (see Proposition 9 in [15], we conclude

that the probability function given in (2.1) is a compound Poisson distribution.
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Figure 1: Some appearances (polygons) of the probability mass function

for different values of the parameter α.

Furthermore, the infinitely divisible distribution plays an important role

in many areas of statistics, for example, in stochastic processes and in actuarial

statistics. When a distribution G is infinitely divisible then, for any integer x ≥ 2,

there exists a distribution Gx such that G is the x-fold convolution of Gx, namely,

G = G∗x
x .

Since the new distribution is infinitely divisible, a lower bound for the

variance can be obtained (see [12], p. 75), which is given by

var(X) ≥ Pr(X=1)

Pr(X= 0)
=

α

(1 + α)2
.

3. INFERENCE FOR MBT DISTRIBUTION

In this section, different methods of estimation of the parameter of the

distribution are studied.

Using (2.3) it is also simple to see that the estimator of α is given by

(3.1) α̂1 =
X̄

1 + X̄
,

where X̄ is the sample mean.

An alternative to the method of moments is the method based on the zeros

frequency. This method tends to work well only when the mode of the distribution

is at zero and its proportion of zeros is relatively high ([2]). In this case we need

only one equation in order to estimate the parameter of the distribution. It is

straightforward obtaining an estimate for α based on the observed proportion of
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zeros, denoted by p̃0, as

α̂2 =
1 − p̃0

p̃0
.

For each of sample sizes n = 100 and n = 1000, and for α = 0.1[0.1]0.9,

4000 samples have been simulated, obtaining the estimates mean and squared

error from both methods (Table 1). In both of them, the experimental bias is

higher when α takes its lower values.

Table 1: MME (equivalently, MLE) and zero proportion estimate

based on n simulations from a MBT (α).

α
n = 100 n = 1000bα1 bα2 bα1 bα2

.1
mean .250 .385 .2514 .379
S.D .034 .087 .011 .027

.2
mean .308 .435 .310 .429
S.D .041 .096 .013 .030

.3
mean .372 .489 .376 .4826
S.D .048 .106 .015 .032

.4
mean .444 .545 .449 .539
S.D .053 .114 .017 .036

.5
mean .521 .607 .529 .602
S.D .056 .126 .018 .039

.6
mean .606 .676 .614 .668
S.D .059 .139 .018 .043

.7
mean .696 .755 .706 .741
S.D .059 .157 .018 .047

.8
mean .789 .838 .801 .821
S.D .055 .174 .016 .052

.9
mean .883 .924 .899 .907
S.D .047 .186 .013 .057

Finally, the MLE are easy to derive since the MBT model belongs to the

exponential family. Let now x = (x1, x2, ..., xn) be a random sample obtained

from model (2.1), then the log-likelihood function is proportional to

ℓ(α) ∝ n
[
x̄ log α − (2 x̄ + 1) log(1 + α)

]
.

The likelihood equation obtained from (3) is given by

∂ℓ(α)

∂α
=

x̄

α
− 2 x̄ + 1

1 + α
= 0 ,

from which we obtain the maximum likelihood estimator of α given again by

(3.1). Therefore, as in the Poisson distribution the moment estimator coincides
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with the maximum likelihood estimator. Additionally, the maximum likelihood

estimator α̂ of α is unique for all n.

Proposition 3.1. The unique maximum likelihood estimator α̂ of α is

consistent and asymptotically normal and therefore

√
n(α̂ − α)

d−→ N
(
0, I−1

(α)
)
,

where I(α) is the Fisher’s information about α.

Proof: See Appendix.

By using Corollary 3.11 in [16], p. 450, we conclude that the maximum

likelihood estimator of α is asymptotically efficient.

4. THE MBT REGRESSION MODEL

The Poisson regression model has been extensively used as a benchmark for

the analysis of discrete count models, together with some other models such as the

negative binomial regression, Poisson-inverse Gaussian regression, and some other

including special functions as hypergeometric, Kummer confluent, etc. when the

endogenous variable take only nonnegative integer values. In practice, count data

often display over-dispersion and therefore the Poisson regression model faults to

provide an appropriate fit to the data. In this section we provide a regression

model based on the use of the modified Borel–Tanner distribution presented in

the previous sections of this work. We shall see that the new model is simple

and competitive with the traditional Poisson regression model and also with the

Negative Binomial model.

For that, let Y be now a response variable and z be an associated q×1 vec-

tor of covariates. The modified Borel–Tanner regression model for Y established

that given z, Y follows a modified Borel–Tanner distribution with mean η(z),

a positive-valued function. We assume that η(z) depends on a vector β of un-

known regression coefficients. This parameterization has the appealing property

that when η(z) takes the common log-linear form η(z) = exp(z′β).

Writing the likelihood in terms of θ we have

(4.1) Pr(Y = y) = Cy

(
p(θ)y

(
1 − p(θ)

)y+1
)

,

for y = 0, 1, ..., being p(θ) = θ/(1 + 2θ) and θ > 0.
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Therefore, we assumed that θ = η(z) = exp(z′β). Let now (yi, zi) be a

random sample of size n with counts yi and a vector zi of covariates for i =

1, 2..., n. Then, the log-likelihood function, assuming model (4.1) results

ℓ(β) =

n∑

i=1

log Pr(Yi= yi | zi; β)

∝
n∑

i=1

(1 + yi) log
(
1 − p(θi)

)
+

n∑

i=1

yi log p(θi) ,

where

p(θi) =
exp
(∑q

s=1 zisβs

)

1 + 2 exp
(∑q

s=1 zisβs

) , 1 = 1, 2, ..., n .

Some computations provide that

∂p(θi)

∂βj
= zij p(θi)

(
1 − 2p(θi)

)
, i = 1, 2, ..., n ; j = 1, 2, ..., q ,

from which the normal equations can be written as

∂ℓ

∂βj
=

n∑

i=1

zij

(
1 − 2p(θi)

) (
yi − (1 + 2yi) p(θi)

)

1 − p(θi)
= 0 , j = 1, 2, ..., q .

The elements of the expected Fisher information matrix I = (Ijl), j, l =

1, ..., q, about βj , j = 1, ..., q, are given by

Ijj =

n∑

i=1

z2
ij

(1 + 2θi) (1 + θi)

2θ2
i + 4θi + 3

, j = 1, ...q ,

Ijl =

n∑

i=1

zij zil
(1 + 2θi) (1 + θi)

2θ2
i + 4θi + 3

, j, l = 1, ..., q , j 6= l .

The residuals can now be used to identify discrepancies between models

and data, so the computation of the individual residuals from each observation

can be useful to evaluate the model-fitting.

The common Pearson residuals are obtained by dividing the raw residuals

by their scaled standard deviation, according to the model

ǫP
i =

yi − θ̂i√
var
(
Yi, θ̂i

) , i = 1, 2, ..., n .

Here, var(Yi; θ̂i) is the variance of Yi as a function of θ and θ̂i is the max-

imum likelihood estimate of the i-th mean as fitted to the regression model.
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With the aim of comparison between models, we consider as alternative options

that the conditional distribution of the response variable can be described by

Poisson, negative binomial or MBT distributions. This way, we obtain the cor-

responding Pearson residuals for each model:

a) Poisson: ǫP
i =

yi − θ̂i√
θ̂i

, i = 1, 2, ..., n .

b) MBT: ǫP
i =

yi − θ̂i√
θ̂i

(
1 + θ̂i

)(
1 + 2 θ̂i

) , i = 1, 2, ..., n .

c) Negative binomial: ǫP
i =

√
r

yi − θ̂i√
θ̂i

(
r + θ̂i

) , i = 1, 2, ..., n .

Another common choice of residuals is the signed square root of the con-

tribution to the deviance goodness-of-fit statistic. This is given by D =
∑n

i=1 di,

where

di = sgn(θ̂i − yi)

√
2
(
ℓ(yi) − ℓ(θ̂i)

)
, i = 1, 2, ..., n ,

where sgn is the function that returns the sign (plus or minus) of the argument.

The ℓ(yi) term is the value of the log likelihood when the mean of the conditional

distribution for the i-th individual is the individual’s actual score of the dependent

variable. The ℓ(θ̂i) is the log likelihood when the conditional mean is substituted

in the log likelihood. Usually the deviance divided by its degree of freedom is

examined taking into account that a value much greater than one indicates a

poorly fitting model. See for example [14].

It is well-known that for the Poisson distribution with parameter θi the

deviance residuals are given by (see [8])

di = sgn
(
yi − θ̂i

)[
2

(
yi log

(
yi

θ̂i

)
−
(
yi − θ̂i

))]1/2

, i = 1, 2, ..., n .

For the MBT distribution proposed here the deviance residual are obtained

as follows for each i = 1, ..., n:

di = sgn
(
yi − θ̂i

)
[

2

(
(
1 + yi

)
log

(
1 − p(yi)

1 − p(θ̂i)

)
+ yi log

(
p(yi)

p(θ̂i)

))]1/2

.

For the negative binomial distribution, an expression for the deviance resid-

uals can be found in [14]:

di = sgn
(
yi − θ̂i

)
[

2

(
yi log

(
yi

θ̂i

)
−
(
yi + r

)
log

(
yi + r

θ̂i + r

))]1/2

.

In the three above considered cases we assume yi 6= 0 for all i.
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5. NUMERICAL ILLUSTRATION

In this section, we examine an application of the MBT regression model

proposed here in order to analyse the number of deaths in truck’s accidents ([17]).

In the present study, we model the number of deaths in the accident as the

dependent variable. The explanatory variables are as follows: (1) the number of

occupants; (2) a dummy variable for seat belt usage; (3) a set of dummy variables

for rain, snow and fog, respectively; (4) a dummy variable for dark; (5) a dummy

variable for weekdays; (6) a dummy variable for the first driver being drunk;

(7) Dummy for the second driver being drunk and (8) a dummy variable for the

first driver to be under 21 and finally, (9) a dummy variable for the first driver

to be over 60. Due to the fact that the dependent variable is a count variable,

data analysis including covariates would be a more appropriate method (see e.g.

[7]; [6]; [5]; among others). Table 2 presents the estimates of the MBT, Poisson

and Negative Binomial regression models, respectively.

Only for comparative purposes, we fit the MBT, Poisson and Negative

Binomial distributions to this data set (see Table 3). We used the value of the log-

likelihood function, the Akaike Information Criterion (AIC) (see [1]), the Bayesian

Information Criterion (BIC) (see [20] and the Consistent Akaike Information

Criterion (CAIC) (see [4]) to compare the estimated models.

Table 3 shows that the MBT model performs very well in fitting the dis-

tribution, compared to other uniparametric models Poisson, and provides a fit as

good as that of the biparametric Negative Binomial model. Based on the BIC

and CAIC, the MBT distribution fits the data better than NB, and NB distribu-

tion is better than Poisson. Furthermore, the MBT model presented is somewhat

simpler than the NB and therefore it might appear to be preferable as a less

complex model, taking into account the Ockham’s razor principle (Jaynes, 1994).

The comparative study of Pearson residuals, deviance, log-likelihood and

information criteria are also collected in Table 3. Note that the MBT model

obtains a better result than the Negative Binomial when the Pearson statistic

is the comparison criterion. Furthermore, graphical models diagnostics is now

developed using the above residual expressions (see Figure 2).

In addition, one can be interested in testing the null that models are equally

close to the actual model, against the alternative that one model is closer ([21]).

The z-statistic is

Z =
1

ω
√

n

(
ℓf (θ̂1) − ℓg(θ̂2)

)
,
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Table 2: Parameter estimates for data in Li (23012) under the models considered.

The response variable is Number of deaths in the accident.

Variables statistically significant (at level < 0.05) in boldface.

Variable
MBT model

Estimate S.D. |t|-value Pr(> |t|)

Intercept − 6.50341 0.23392 27.8019 < 0.001
Number of occupants 0.47966 0.04522 10.6070 < 0.001
Seat belt usage − 1.16920 0.16188 7.2224 < 0.001
Rain − 0.78854 0.34854 2.2623 0.0236
Snow − 0.25206 0.59300 0.4250 0.6707
Fog − 7.02683 37.2207 0.1887 0.8502
Dark 0.71680 0.16366 4.3798 < 0.001
Weekday − 0.11630 0.16636 0.6991 0.4844
First driver drunk 1.37529 0.23324 5.8962 < 0.001
Second driver drunk 1.06292 0.22884 4.6446 < 0.001
First driver drug 0.70307 0.20635 3.4071 < 0.001
Second driver drug 0.65230 0.20220 3.2258 0.0012
Age driver < 21 0.09295 0.24036 0.3867 0.6989
Age driver > 60 1.03063 0.21773 4.7334 < 0.001

Poisson model

Intercept − 6.41786 0.21997 29.1749 < 0.001
Number of occupants 0.44529 0.03434 12.9656 < 0.001
Seat belt usage − 1.15769 0.15749 7.3507 < 0.001
Rain − 0.80440 0.34272 2.3470 0.0189
Snow − 0.28794 0.58335 0.4936 0.6215
Fog − 5.02453 13.6193 0.3689 0.7121
Dark 0.73782 0.15848 4.6556 < 0.001
Weekday − 0.14283 0.15969 0.8944 0.3710
First driver drunk 1.33410 0.21764 6.1297 < 0.001
Second driver drunk 1.03833 0.21365 4.8599 < 0.001
First driver drug 0.66979 0.19880 3.3691 < 0.001
Second driver drug 0.64306 0.19391 3.3162 < 0.001
Age driver < 21 0.11134 0.22843 0.4874 0.6259
Age driver > 60 1.02884 0.21108 4.8740 < 0.001

Negative Binomial model

r 0.12527 0.04463 2.8067 0.0050
Intercept − 6.54213 0.24326 26.8932 < 0.001
Number of occupants 0.49415 0.05028 9.8269 < 0.001
Seat belt usage − 1.19020 0.16753 7.1042 < 0.001
Rain − 0.74537 0.35349 2.1085 0.0349
Snow − 0.19223 0.60245 0.3190 0.7496
Fog − 2.24947 3.45645 0.6508 0.5151
Dark 0.70502 0.16911 4.1689 < 0.001
Weekday − 0.09364 0.17342 0.5399 0.5892
First driver drunk 1.39773 0.24756 5.6458 < 0.001
Second driver drunk 1.09946 0.24494 4.4885 < 0.001
First driver drug 0.72924 0.21385 3.4099 < 0.001
Second driver drug 0.63340 0.21050 3.0090 0.0026
Age driver < 21 0.08526 0.24970 0.3414 0.7327
Age driver > 60 1.03876 0.22568 4.6026 < 0.001
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Table 3: Summaries of fitting measures results for the models considered.

Criterion
Model

Poisson Neg. Bin. MBT�
ǫ
P
i

�2
55196.5 54638.5 55225.8

Deviance 492.792 387.865 421.177
Deviance/df 0.00825 0.00649 0.00705

ℓmax −1090.49 −1074.91 −1077.42
AIC 2208.97 2179.81 2182.85
BIC 2334.94 2314.77 2308.81

CAIC 2348.94 2329.77 2322.81

Figure 2: LogPlot and LoglogPlot of standardized residuals

for the models considered.

where

ω2
=

1

n

n∑

i=1

[
log

(
f(xi | θ̂1)

g(xi | θ̂2)

)]2

−
[

1

n

n∑

i=1

log

(
f(xi | θ̂1)

g(xi | θ̂2)

)]2

and f and g represent here the MBT and the alternative distributions, respec-

tively.

Due to the asymptotic normal behavior of the Z statistic under the null,

rejection of the test in favor of f happens, with significance level α, when Z > z1−α

being z1−α the (1 − α) quantile of the standard normal distribution.
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Table 4 shows the results obtained for each comparison by means of the

Voung test. The MBT model is preferred to the Poisson model and we cannot

reject the null that the models, Negative binomial and MBT, are statistically the

same.

Table 4: Voung test results.

Z-score p-value

MBT vs Poisson 2.29834 0.01
MBT vs Neg.bin. −0.87924 0.81

6. CONCLUSIONS

This paper has introduced a modified version of the Borel–Tanner distri-

bution which takes its values from the non-negative integers, in contrast with the

original Borel–Tanner distribution which is restricted to the positive integers.

We obtain an over-dispersed distribution (its variance is larger than its

mean) depending on just one parameter, which is also unimodal with mode at

zero. Furthermore the distribution is infinitely divisible (log-convex) and there-

fore it may be considered as a compound Poisson distribution. Some other prop-

erties based on results in [3] are also verified.

In addition, a simple reparameterization of the MBT distribution allows to

incorporate in an easy way covariates into the model.

In this paper, a numerical application is provided, where both the Poisson

and the negative binomial model-fitting are compared to the MBT. The practi-

cal use of the modified Borel–Tanner distribution here proposed does not only

bring a significant improvement relative to the Poisson distribution but also a

wider flexibility due to its main properties, as for instance its over-dispersion.

The MBT distribution is found to be a better model to describe the data used

in this paper than the Poisson and the negative binomial, according to their BIC

and CAIC values.
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APPENDIX

In this Appendix we provide a proof for the cumulative distribution function

of the distribution and Proposition 3.1.

Proof of the cdf of the distribution: We have that

F (x) = 1 −
∞∑

j=x+1

Γ(2j + 1)

Γ(j + 2) Γ(j + 1)

αj

(1 + α)2j+1
.

Now by putting k = j − x − 1 and using the identity

Γ(2m) =
1√
2π

2
2m−1

Γ(m) Γ(m + 1/2) ,

which appears in [13], p. 7, we obtain the result after some computations.

Proof of Proposition 3.1: The discrete distribution with probability

function given in (2.1) satisfies the regularity conditions (see [16], p. 449)) un-

der which the unique maximum likelihood estimator α̂ of α is consistent and

asymptotically normal. They are simply verified in the following way. Firstly,

the parameter space (0, 1) is a subset of the real line and the range of x is indepen-

dent of α. By using expression (3) it is easy to show that E
(∂ log Pr(X=x;α)

∂α

)
= 0.

Now, since
∂2ℓ(α)
∂α2

∣∣
α=bα < 0, the Fisher’s information is positive. Finally, by taking

M(x) = 2x/α3
we have that

∣∣∣∣
∂3

log Pr(X= x; α)

∂α3

∣∣∣∣ =

∣∣∣∣
2x

α3
− 2(2x + 1)

(1 + α)3

∣∣∣∣ ≤ M(x) ,

with E(M(X)) = 2/(α(1−α)) < ∞. Hence the proposition.
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1. INTRODUCTION

Let us introduce a model of the chemical balance weighing design. Assume

that Mn×p({−1, 1}) denotes the set of n×p matrices whose entries are all equal

to 1 or −1. A linear model of the chemical balance weighing design is as fol-

lows: y = Xb + e, where y = (y1, ..., yn)
′
is a vector of observations, X = (xij) ∈

Mn×p({−1, 1}) is a design matrix of full column rank (n > p), b = (b1, ..., bp)
′

is a vector of unknown parameters, and e = (e1, ..., en)
′

is a vector of errors.

In a chemical balance, if the j-th object is placed on the left (resp. right) pan

during the i-th weighing operation, then xij = −1 (resp. xij = 1). Moreover, sup-

pose that E(ei) = 0, i=1, ..., n and Cov(e) = σ2G, where σ > 0 is an unknown

parameter and G is a known positive definite matrix of size n.

Among all designs in Mn×p({−1, 1}), we would like to find the optimal

design with respect to certain criterion. Optimal weighing designs depend signif-

icantly on the form of G. In the literature, optimal weighing designs are mostly

considered under the following forms of G: the identity matrix (the errors are

uncorrelated and have equal variances; see Banerjee, 1975; Cheng, 2014; Ehlich,

1964; Galil and Kiefer, 1980; Neubauer and Pace, 2010), the diagonal matrix (the

errors are uncorrelated and may have different variances; see Ceranka et al., 2006;

Graczyk, 2011, 2012), the completely symmetric matrix (the errors are equally

correlated and have equal variances; see Ceranka and Graczyk, 2011, 2015; Katul-

ska and Smaga, under review; Masaro and Wong, 2008a, 2008b, 2008c; Smaga,

2015), and the covariance matrix of an AR(1) process (see Angelis et al., 2001;

Katulska and Smaga, 2012, 2013; Li and Yang, 2005; Smaga, 2014; Yeh and

Lo Huang, 2005). Some applications of optimal weighing designs and real data

examples of their use can be found in Banerjee (1975), Cheng (2014), Graczyk

(2013) and Jenkins and Chanmugam (1962).

In this paper we consider D-efficiency of chemical balance weighing designs,

when the errors are equally correlated and have equal variances. Under this

assumption, the matrix G is of the form:

(1.1) G = (1− ρ) In + ρ1n1
′
n ,

where ρ ∈ [0, 1) is a known parameter, In is the n-dimensional unit matrix, and

1n is the n-dimensional column vector of ones. For given ρ, the matrix G is

positive definite and G−1
= c(In − r 1n1′

n), where c = 1/(1 − ρ) and

(1.2) r =
ρ

1 + (n−1)ρ
.

Following the definition of Bulutoglu and Ryan (2009), the D-efficiency of a design

X ∈ Mn×p({−1, 1}) is given by the formula

D-eff(X) =

[
det(X′G−1X)

max
Y∈Mn×p({−1,1}) det(Y′G−1Y)

]1/p

.
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If D-eff(X) = 1, then X is D-optimal. Unfortunately, the denominator of D-eff(X)

is usually not known, and hence we can not calculate D-efficiency of designs.

However, Katulska and Smaga (under review) established the lower bound for

D-efficiency of a design X given by

D
∗
-eff(X) =

[
det

(
X′

(In − r 1n1′
n)X

)]1/p

n
,

where r is as in (1.2), and they used it to show that designs constructed by

Masaro and Wong (2008a) and certain other designs are highly D-efficient for

many values of design parameters namely n, p and ρ. Nevertheless, they did not

consider the most difficult case n ≡ 3 (mod 4), which is different of the others.

In the present paper, this case is of interest to us.

The remainder of this paper is organized as follows. In Section 2, we show

that certain design constructed by Masaro and Wong (2008a) is highly D-efficient,

when the number of observations n ≡ 3 (mod 4) and it is appropriately large

or appropriately larger than the number of objects. Section 3 contains simu-

lation study, which suggests that design is D-optimal in many cases, but also

indicates situations where are D-better designs than it. A special case, where

different designs are D-optimal for different values of ρ, is presented in Section 4.

The paper is concluded in Section 5.

2. D-EFFICIENT DESIGNS WHEN n ≡ 3 (mod 4)

Assume that n ≡ 3 (mod 4), ρ ∈ [0, 1) and Hn+1 is a normalized Hadamard

matrix of order n + 1, i.e. all entries of its first row and first column are all equal

to one. Let W be a matrix received by deleting the first row and column of Hn+1.

We form a design L from p columns of W. From the results of Ehlich (1964)

and Galil and Kiefer (1980), the design L is D-optimal in Mn×p({−1, 1}), when

ρ = 0 and n > 2p − 5. Masaro and Wong (2008a) proved that the design L is

D-optimal for all ρ > 0 in

D3 =

{
X ∈ Mn×p({−1, 1}) : X′X = (n +1) Ip − 1p1

′
p

}
.

But, if n < 2p − 5, then L may not be D-optimal when ρ = 0, and hence we

can conclude that the similar situation may have place when ρ > 0. As we

shall see in the next sections, that conjecture seems to be true and the result

of Masaro and Wong (2008a) can not be extended from the subclass D3 to the

class Mn×p({−1, 1}). However, we show that the design L is highly D-efficient

in many cases.
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The design L has the following properties L′L = (n +1)Ip−1p1
′
p and L′1n =

−1p. The matrix L′
(In − r1n1

′
n)L has eigenvalues n + 1 and n + 1 − (1 + r)p

with multiplicities p − 1 and 1 respectively. Hence

(2.1) D
∗
-eff(L) =

n + 1

n

[
n − p + 1 − pr

n + 1

]1/p

,

where r is given in (1.2). The lower bounds for D
∗
-eff(L) are given in the following

theorem.

Theorem 2.1. Let n ≡ 3 (mod 4), n > 7, p = 2, ..., n−1, ρ ∈ (0, 1) and

Cov(e) = σ2G, where G is given by (1.1). Then, D
∗-eff(L) decreases, when ρ

increases, and D
∗-eff(L) > 0.82. Moreover, if p 6 (n−1)/2; n− 3; n− 2, then

D
∗-eff(L) > 0.93; 0.92; 0.88, respectively.

Proof: Observe that r is an increasing function of ρ. Hence, D
∗
-eff(L)

decreases, when ρ increases, which implies

D
∗
-eff(L) >

n + 1

n

[
n − p

n

]1/p

(the right hand side of (2.1) as ρ → 1). The derivative of the function f ,

f : (1, n) → R defined by f(x) =
[
(n−x)/n

]1/x
is

f ′
(x) = −

[
(n−x)/n

]1/x
x
(
(n/x − 1) log(1 − x/n) + 1

)/(
x2

(n−x)
)
.

Consider the function g, g : (1,∞) → R given by g(x) = (x−1) log(1 − 1/x) + 1.

It is easy to calculate that g′(x) = 1/x + log(1 − 1/x), limx→∞ g′(x) = 0 and

g′′(x) = 1
/(

(x−1)x2
)
. Thus, g is decreasing. So g(x) > 0, because limx→∞ g(x) = 0.

Since n/x > 1 for all x ∈ (1, n), it follows that f ′
(x) < 0. So,

D
∗
-eff(L) >

n + 1

n
f(n − 1) = (n + 1)

[
1

n

]n/(n−1)

.

The function h, h : (6,∞) → R is defined by h(x) = (x+1)[1/x]
x/(x−1)

. Its deriva-

tive is equal to

h′
(x) = − [1/x]

x/(x−1)
(
2(x−1) + (x +1) log(1/x)

)

(x − 1)2
.

If h1(x) = 2(x−1)+(x +1) log(1/x), then h′
1(x) = 1−1/x+log(1/x) and h′′

1(x) =

(1 − x)/x2 < 0. Hence, since h′
1(6) is negative, h′

1(x) < 0 for all x > 6. So, h1

is decreasing, and h1(6) < 0, which imply h1(x) < 0. Thus, h′
(x) > 0 and h is

increasing. Hence, we conclude that D
∗
-eff(L) is greater than h(7) = 0.8263.

In a similar way, we can prove the rest of the claim.
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Theorem 2.1 and the examples (see Table 1) imply L is a design with high

D-efficiency, when n is appropriately large or appropriately larger than p. From

the examples, we conclude that, when ρ increases, the decrease of D
∗
-eff(L) can

be at most a few percent (see Table 1). As p increases, the decrease of D
∗
-eff(L)

can be quite large, but when n increases, it decreases. Moreover, the lower

bound for D-efficiency of L increases, when n increases. From the examples, we

also observe that D
∗
-eff(L) is often much greater than the lower bounds for it

obtained in Theorem 2.1.

Table 1: The lower bound for D-efficiency of design L.

ρ
n, p

11, 2 11, 10 15, 2 15, 14 19, 2 19, 18 103, 2 103, 102

0 0.9958 0.9119 0.9977 0.9194 0.9986 0.9262 0.9999 0.9713
0.01 0.9949 0.9077 0.9971 0.9152 0.9981 0.9221 0.9999 0.9685
0.1 0.9908 0.8860 0.9948 0.8970 0.9966 0.9064 0.9998 0.9655
0.2 0.9891 0.8757 0.9940 0.8897 0.9961 0.9010 0.9998 0.9651
0.3 0.9883 0.8700 0.9936 0.8860 0.9960 0.8984 0.9998 0.9650
0.4 0.9878 0.8665 0.9934 0.8838 0.9959 0.8969 0.9998 0.9649
0.5 0.9875 0.8641 0.9933 0.8824 0.9958 0.8959 0.9998 0.9649
0.6 0.9872 0.8623 0.9932 0.8813 0.9957 0.8952 0.9998 0.9649
0.7 0.9871 0.8609 0.9931 0.8805 0.9957 0.8947 0.9998 0.9648
0.8 0.9869 0.8598 0.9930 0.8799 0.9957 0.8943 0.9998 0.9648
0.9 0.9868 0.8590 0.9930 0.8794 0.9957 0.8940 0.9998 0.9648
0.99 0.9867 0.8583 0.9930 0.8791 0.9956 0.8938 0.9998 0.9648

3. SIMULATIONS

In this section we compare the design L with the best designs found by

simulated annealing algorithm (SA algorithm) proposed by Angelis et al. (2001).

It is an algorithm for searching optimal designs with very good performance.

The SA algorithm was executed at least 1000 times for many values of n, p

and ρ. The initial parameters of this algorithm were chosen according to the

recommendations of Angelis et al. (2001).

Simulations and Theorem 2.1 indicate that the design L is D-optimal when

n > 2p − 5 and ρ ∈ [0, 1), and sometimes when n = 2p − 5 and ρ < α < 0.06 for

some α (in these situations the SA algorithm did not find D-better design than the

design L). In the other cases, using the SA algorithm, we found D-better designs

than the design L. We can observe that the inner product of any two columns

of those designs is equal to ±1 (for the vast majority of columns) or ±3, and the

same observation holds for the sum of elements in any column. Some examples of
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the best designs found by SA algorithm are given in the Supplementary materials

(AppendixA). As an example, Figure 1 depicts the results of our simulations when

n = 15, ρ = 0.99 and p = 2, ..., 14. For the other values of parameter ρ, the situa-

tion is similar as for ρ = 0.99. However, when there are D-better designs than the

design L, SA algorithm finds sometimes different designs for different values of ρ.
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Figure 1: The lower bound for D-efficiency of design L (L) and the best

designs found by SA algorithm (A) for n = 15 and ρ = 0.99.

For example, when n = 15 and p = 10, SA algorithm found, as the best design

under D-optimality criterion, the design T for small values of ρ > 0, and the

design S for the other values of this parameter (see Figure 2). The designs T and S

are given in Appendix B.
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Figure 2: The lower bound for D-efficiency of the best designs T (T) and S (S)

found by SA algorithm for n = 15 and p = 10.
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These designs are D-better than the design L for “almost all” ρ > 0. It is im-

portant that the design T, which seems to be D-optimal for certain small ρ > 0,

is D-optimal, when ρ = 0 (it follows from Theorem in Galil and Kiefer, 1980),

and the design S, which seems to be D-optimal for the other values of ρ, is not

D-optimal design for ρ = 0. This indicates that the D-optimal design for greater

values of ρ does not have to be D-optimal when ρ = 0, and conversely, in some

cases. The veracity of that conjecture is confirmed in the following section.

4. CASE STUDY

In this section we consider a special case where different designs are

D-optimal for different values of parameter ρ. This (theoretically) confirms the

conjecture from Section 3.

When n = 7 and p = 6, the simulations suggest that the design L is

D-optimal for ρ ∈ [0, 1/18], and the design (− denotes −1 and + represents 1)

(4.1) A =




− + + + + +

− − + − − +

− − − + + −
− + − + − +

+ + − − + −
+ − − + + +

+ + + + − −




is D-optimal for ρ ∈ [1/18, 1). This information helped to prove the following

theorem.

Theorem 4.1. If Cov(e) = σ2G, where G is given by (1.1), then any

D-optimal design in M7×6({−1, 1}) for ρ = 0 is not D-optimal design for

ρ > 1/18, and conversely.

Proof: Let X be an arbitrary D-optimal design for ρ = 0 in M7×6({−1, 1}).
The normalization (see Galil and Kiefer, 1980) refers to the following operations

on X: multiplying on the right by a diagonal matrix of ±1’s and/or a permutation

matrix, which permutes rows and corresponding columns of X′X and multiplies

some entries of X′X by −1. The results of Ehlich (1964) and Theorem in Galil

and Kiefer (1980) imply the matrix X′X is equal to 8I6 − 161
′
6 or to




8I4 − 141

′
4 −14 −14

−1′
4 7 3

−1′
4 3 7




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after normalization. We see that the normalization leaves det(X′G−1X) un-

changed, so we can assume that X′X has one of the above forms. By Masaro and

Wong (2008a), denote by D4(7, 6) the subclass of such designs. Proposition 5 (a)

of Masaro and Wong (2008a) implies the design in that subclass, for which the

sum of elements in each column is equal to −1, is D-optimal in D4(7, 6) for all

ρ > 0. In the paragraph before Theorem 2.1, we noticed L′L = 8I6 − 161
′
6 and

L′17 = −16. So, L is D-optimal in D4(7, 6) for all ρ > 0. Consider the design A

given by (4.1). It can be calculated that A does not belong to D4(7, 6),

det(A′G−1A) = c6
(61440 − 98304 r)

and

det(L′G−1L) = c6
(65536 − 196608 r) ,

where c = 1/(1 − ρ) and r = ρ/(1 + 6ρ). Comparing these two determinants, we

obtain A is D-better than L for all ρ > 1/18. Therefore, for all ρ > 1/18, the

design A is D-better than any D-optimal design for ρ = 0 in M7×6({−1, 1}).
So, the first part of the claim is proved. Let now Y ∈ M7×6({−1, 1}) be an

arbitrary D-optimal design for ρ > 1/18. From the above considerations, we

conclude that for all ρ > 1/18,

det(Y′G−1Y) > det(A′G−1A) > det(X′G−1X)

for any D-optimal design X for ρ = 0. Thus, Y is not D-optimal, when ρ = 0.

The proof is complete.

Theorem 4.1 shows that we can not assume a priori that there is a design

which is optimal for all ρ ∈ [0, 1). This indicates the reasonableness of searching

optimal designs for different values of parameter ρ.

5. CONCLUSION

In this paper we showed that the design L constructed by Masaro and Wong

(2008a) is highly D-efficient in many cases when the number of observations n ≡ 3

(mod 4). Simulations conducted by SA algorithm (Angelis et al., 2001) suggest

that the design L is D-optimal when the number of observations is appropriately

large or appropriately larger than the number of objects. In the other cases,

however, we found D-better designs than L. Nevertheless, the “D-efficiency”

advantage of those designs over L is negligible for appropriately large n. For

smaller number of n (e.g., n = 7, 11, 15), this advantage is evident, and hence the

best designs found by SA algorithm are listed in the Supplementary materials.

Even though those designs or the design L are not D-optimal, they may be safety

used in practice through their high D-efficiency.
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APPENDIX A. SUPPLEMENTARY MATERIAL

Supplementary material lists the examples of the best chemical balance

weighing designs under D-optimality criterion found by simulated annealing algo-

rithm. It is available at the webpage http://www.staff.amu.edu.pl/∼ls/str_en.html.

APPENDIX B. DESIGNS T AND S

Let − denote −1 and + represent 1.

T =




− + + + + + + + + +

− − + − + − − + − +

+ − − + − − + + − −
− − + − + − + − + −
− − − − − + − + + −
− − − + − − + − + +

− + − + + − − − + −
+ − + + + + + − − −
+ − + − − + − − + +

+ + − − + − − − − +

− + − − − + + − − +

− + + − − − + + − −
+ + − − + + + + + −
+ + + + − − − + + +

− + + + − + − − − −




, S =




− − − − + + − + − −
− + − + + + − + + +

+ + − + − + − − − −
+ + − − − − + + − −
+ − − + + + + + − +

− − − − − + + − + −
+ + + − + + + − − +

− + + − − + + + + +

− + − + + − + − + −
− + − − − − − − − +

+ − − − + − − − + +

− − + + + − + − − −
− − + + − − − + − +

+ + + − + − − + + −
+ − + + − + − − + −




.
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3 mod 4, Mathematische Zeitschrift, 84, 438–447.

[9] Galil, Z. and Kiefer, J. (1980). D-optimum weighing designs, Annals of Statis-

tics, 8, 1293–1306.

[10] Graczyk, M. (2011). A-optimal biased spring balance weighing design, Kyber-

netika, 47, 893–901.

[11] Graczyk, M. (2012). Regular A-optimal spring balance weighing designs,

REVSTAT Statistical Journal, 10, 323–333.

[12] Graczyk, M. (2013). Some applications of weighing designs, Biometrical Let-

ters, 50, 15–26.

[13] Jenkins, G.M. and Chanmugam, J. (1962). The estimation of slope when

the errors are autocorrelated, Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 24, 199–214.

[14] Katulska, K. and Smaga,  L. (2012). D-optimal chemical balance weighing

designs with n ≡ 0 (mod 4) and 3 objects, Communications in Statistics – Theory

and Methods, 41, 2445–2455.

[15] Katulska, K. and Smaga,  L. (2013). D-optimal chemical balance weighing

designs with autoregressive errors, Metrika, 76, 393–407.

[16] Katulska, K. and Smaga,  L. D-optimal and highly D-efficient designs with

non-negatively correlated observations. (Under review).

[17] Li, C.H. and Yang, S.Y. (2005). On a conjecture in D-optimal designs with

n ≡ 0 (mod 4), Linear Algebra and its Applications, 400, 279–290.

[18] Masaro, J. and Wong, C.S. (2008a). D-optimal designs for correlated random

vectors, Journal of Statistical Planning and Inference, 138, 4093–4106.

[19] Masaro, J. and Wong, C.S. (2008b). Robustness of A-optimal designs, Linear

Algebra and its Applications, 429, 1392–1408.

[20] Masaro, J. and Wong, C.S. (2008c). Robustness of optimal designs for corre-

lated random variables, Linear Algebra and its Applications, 429, 1639–1646.

[21] Neubauer, M.G. and Pace, R.G. (2010). D-optimal (0, 1)-weighing designs

for eight objects, Linear Algebra and its Applications, 432, 2634–2657.

[22] Smaga,  L. (2014). Necessary and sufficient conditions in the problem of

D-optimal weighing designs with autocorrelated errors, Statistics & Probability

Letters, 92, 12–16.

[23] Smaga,  L. (2015). Uniquely E-optimal designs with n ≡ 2 (mod 4) correlated

observations, Linear Algebra and its Applications, 473, 297–315.

[24] Yeh, H.G. and Lo Huang, M.N. (2005). On exact D-optimal designs with 2

two-level factors and n autocorrelated observations, Metrika, 61, 261–275.





REVSTAT – Statistical Journal

Volume 15, Number 3, July 2017, 455–471

OPTIMAL B-ROBUST ESTIMATORS FOR

THE PARAMETERS OF THE GENERALIZED

HALF-NORMAL DISTRIBUTION

Authors: Fatma Zehra Doğru
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26480 Eskişehir, Turkey

ymbulut@ogu.edu.tr

Olcay Arslan

– Department of Statistics, Ankara University,

06100 Ankara, Turkey

oarslan@ankara.edu.tr

Received: December 2014 Revised: November 2015 Accepted: November 2015

Abstract:

• The purpose of this study is to propose robust estimators by using optimal B-robust

(OBR) estimation method (Hampel et al. [5]) for the parameters of the generalized

half-normal (GHN) distribution. After given the robust estimators, we provide a

small simulation study to compare its performance with the estimators obtained from

maximum likelihood (ML) estimation method. We also give a real data example to

illustrate the performance of the proposed estimators.

Key-Words:

• generalized half-normal; optimal B-robust; maximum likelihood.

AMS Subject Classification:

• 62F35, 65C60.



456 F.Z. Doğru, Y.M. Bulut and O. Arslan



OBR Estimators for the Parameters of GHN Distribution 457

1. INTRODUCTION

The GHN distribution was introduced by Cooray and Ananda [3] as an

alternative lifetime distribution. It is observed by Cooray and Ananda [3] that

the cumulative distribution function (cdf) of the new family is very similar to

the cdf of the half-normal distribution. Thus, they called the new family as the

“generalized half-normal (GHN) distribution”. It can be seen that the GHN dis-

tribution is a special case of the three-parameter generalized gamma distribution

given by Stacy [7] (Cooray and Ananda [3]).

Some distributional properties of the GHN distribution are given by Cooray

and Ananda [3]. In their study, the parameters of the GHN distribution are esti-

mated using the ML estimation method, and using real data sets the performance

of the ML estimator is compared with the other commonly used failure time dis-

tributions such as Weibull, gamma, lognormal and Birnbaum–Saunders.

One way of estimating the parameters of a given distribution is to use the

ML estimation method. However, this estimator can be very sensitive to the

outliers. Thus, the robust estimators may be needed as an alternative to the

ML estimators in the presence of outliers. In this paper, we will use the OBR

estimation method to obtain robust estimators for the parameters of the GHN

distribution. The OBR estimation method was introduced by Hampel et al. [5]

and used by Victoria-Feser [8] and Victoria-Feser and Ronchetti [9] to estimate the

shape parameters of the Pareto and the gamma distributions. Also, Doğru and

Arslan [4] used the OBR estimation method to estimate the shape parameters of

the Burr XII distribution. Our goal is to show that the OBR estimation method

can be used as an alternative to the ML estimation method to obtain robust

estimators for the parameters of the GHN distribution when the data includes

outliers.

The paper is organized as follows. In Section 2, we briefly summarize the

properties of the GHN distribution. In Section 3, we explore the estimation of

the GHN distribution. We first give the ML estimation method and then we

give the OBR estimation method. We also give the algorithm to obtain the

OBR estimates. In Sections 4 and 5, we give a simulation study and a real data

example to demonstrate the performance of the proposed estimators over the ML

estimators. Some conclusions are given in Section 6.
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2. GENERALIZED HALF-NORMAL DISTRIBUTION (GHN)

The probability density function (pdf) and the cdf of the GHN distribution

are given by

(2.1) f(x;α, θ) =






√
2
π

(
α
x

) (
x
θ

)α
e−

1

2
(

x
θ )

2α

, x > 0, α > 0, θ > 0

0 , x ≤ 0

and

(2.2) F (x;α, θ) = 2Φ

((
x

θ

)α)
− 1 , x ≥ 0, α > 0, θ > 0

respectively, where Φ (·) is the cdf of the standard normal distribution and α and

θ are the shape and scale parameters of the GHN distribution.
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Figure 1: Examples of the GHN pdf for different values of α and θ.

The k -th moment, expected value and the variance are given by Cooray

and Ananda [3] as follows:

E
(
Xk
)

=

√
2

k
α

π
Γ

(
k + α

2α

)
θk

,

E
(
X
)

=

√
2

1

α

π
Γ

(
1 + α

2α

)
θ
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and

V ar(X) =
2

1

α

π

(√
π Γ

(
2 + α

2α

)
− Γ

2

(
1 + α

2α

))
θ2

,

where Γ (·) is the gamma function. Figure 1 shows the plots of the pdf of the

GHN distribution for some values of α and θ.

3. PARAMETER ESTIMATION

In this section, the parameters of the GHN distribution will be estimated

using the ML and the OBR estimation methods.

3.1. ML estimation method

Let X = (x1, x2, ..., xn) be a random sample from GHN distribution. The

log-likelihood function is

logL(α, θ) =
n

2
log

(
2

π

)
+ n logα− nα log θ(3.1)

+ (α− 1)

n∑

i=1

log(xi) − 1

2

n∑

i=1

(
xi

θ

)2α

.

Taking the derivatives of the log-likelihood function with respect to α and θ and

setting to zero give the following equations

(3.2)
n

α̂
+

n∑

i=1

log xi − n

(
n∑

i=1

x2bα
i log xi

)(
n∑

i=1

x2bα
i

)−1

= 0

and

(3.3) θ̂ =

(
1

n

n∑

i=1

x2bα
i

)1

2bα
.

Note that the same equations are also given by Cooray and Ananda [3].

There is not an analytical solution to the system formed by equations (3.2) and

(3.3). This system can be only solved using numerical methods.

3.2. OBR estimation method

The OBR estimator introduced by Hampel et al. [5] belongs to the class

of M-estimators (Huber [6]). Let η = (α, θ). The class of M-estimator for the
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parameter η is defined as the minimum of the following objective function

n∑

i=1

ρ(xi,η) .

If the ρ function is differentiable the M-estimator will be the solution of the

following equation
n∑

i=1

ψ(xi,η) = 0 ,

where ψ = ρ′ with ψ : X×R
p → R

p
. There are many ρ functions in literature.

In this paper, we will use the Huber’s ρ function defined as

ρb(x) =

{
x2

2 , |x| ≤ b

b |x| − 1
2 b

2 , |x| > b .

Here, b is the robustness tuning constant and the derivative of ρ is ψb(x) with

ψb(x) =

{
x , |x| ≤ b

sgn(x) b , |x| > b .

In general, the influence function (IF) for an M-estimator is defined as

(3.4) IF =
ψ(x,η)

−
∫

∂
∂η
ψ(x,η) dFη(x)

and it is used to measure the local robustness of an estimator. It is desired that

IF is bounded. The estimators with bounded IF are called the OBR estimators.

The IF of an ML estimator is

IF = J(η)
−1 s(x,η) ,

where J(η) is the Fisher information matrix and s(x,η) =
(

∂
∂η

)
log fη(x) is the

score function. It can be seen that the IF of an ML estimator is proportional to

the score functions, so the score function should be bounded for a bounded IF

for the ML estimator.

Concerning the GHN distribution, we take logarithm of f(x;α, θ) given in

(2.1) to obtain the score functions

log
(
f(x;α, θ)

)
= log

(√
2

π

)
+ log(α) − log(x) − 1

2

(
x

θ

)2α

+ α log

(
x

θ

)
.

Then, taking the derivatives of the log
(
f(x;α, θ)

)
with respect to α and θ we

obtain the following equations

(3.5)

∂
(
log
(
f(x;α, θ)

))

∂α
=

1

α
+ log

(
x

θ

)
−
(
x

θ

)2α

log

(
x

θ

)
,
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(3.6)

∂
(
log
(
f(x;α, θ)

))

∂θ
= −α

θ
+

α

θ2α+1
x2α .

After some straightforward simplifications, the score functions for the parameters

α and θ are given

s(x;α, θ) =

[
1
α + log

(
x
θ

) (
1 −

(
x
θ

)2α
)

−α
θ +

α
θ2α+1 x

2α

]
.

It is clear that the score functions are not bounded functions of x (see

Figures (2) and (3)). Thus, the IF of the ML estimator for the GHN distribution

will be unbounded. This implies that the ML estimators will be very sensitive

to the outliers. Therefore, robust estimation methods will be needed to estimate

the parameters of the GHN distribution.
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Figure 2: Score function for α parameter with α = 1 and θ = 2.
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Figure 3: Score function for θ parameter with α = 1 and θ = 2.
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There are several versions of the OBR estimators defined in Hampel et al.

[5, p. 243], depending on the method of choosing to bound IF. In this study,

we used the standardized OBR estimator which is defined as follows

(3.7)

n∑

i=1

ψ
(
A(η)

(
s(xi,η) − a(η)

))
=

n∑

i=1

Wb(xi,η)
{
s(xi,η) − a(η)

}
= 0 ,

where

(3.8) Wb(x,η) = min

{
1;

b∥∥A(η)
{
s(xi,η) − a(η)

}∥∥

}
,

is the weight function and ‖ · ‖ shows the Euclidian norm. Also the nonsingular

p×p matrix A(η) and the p×1 vector a(η) are defined implicitly by

(3.9) E
{
ψ(x,η)ψ(x,η)

T
}

=

{
A(η)

TA(η)

}−1
,

(3.10) E
{
ψ(x,η)

}
= 0 .

The weight will be 1, if ‖A(η){s(xi,η) − a(η)}‖ ≤ b, otherwise it will be

b
‖A(η){s(xi,η)−a(η)}‖ , which bounds the score function for the outlying observa-

tions. Thus, the corresponding OBR estimator will be less sensitive to the outliers

in the data.

To obtain the OBR estimates the following algorithm can be applied. Note

that this algorithm was proposed by Victoria-Feser and Ronchetti [9].

Algorithm:

Step 1 . Let ǫ be a stopping rule. Take initial values for the parameter η.

Set a = 0 and A = J
1

2 (η)
−T

, where

J(η) =

∫
s(x,η) s(x,η)

T dFη(x) .

Step 2 . Solve the following equations for a and A

AAT
= M−1

2

and

a =

∫
Wb(x,η) s(x,η) dFη(x)∫

Wb(x,η) dFη(x)
,

where

Mk =

∫
Wb(x,η)

k
{
s(x,η)− a

}{
s(x,η)− a

}T
dFη(x) , k= 1, 2 .

The current values of η, a and A are used as starting values to

solve the given equations.
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Step 3 . Compute M1 and ∆η = M1

−1

(
1
n

n∑
i=1
Wb(x,η)

{
s(x,η) − a

})
.

Step 4 . If |∆η| > ǫ then η → η + ∆η and return to step 2, else stop.

Note that for the finite sample case the integrals in the equations will be replaced

by the summations.

The ML estimator can be taken as initial value for the parameter η. In our

simulation study, we have used several different initial points including the ML

and true parameter values. We have also used robust starting values suggested by

Victoria-Feser and Ronchetti [9]. As pointed out by Victoria-Feser and Ronchetti

[9] the algorithm is convergent depending on the initial values. Other estimators

such as moment estimators can also be used as starting values. However, for this

distribution it is not possible to obtain explicit form of the moment estimators.

Therefore, it is not tractable to use them as initial values for the algorithm.

4. SIMULATION STUDY

In this section, we will give a simulation study to compare the perfor-

mance of the OBR estimators with the ML estimators with and without out-

liers in the data. The data are randomly generated from GHN distribution

for different values of α and θ parameters. The data generation is conducted

as follows. Let U ∼ Uniform(0, 1). Then, X ∼ θ
(
Φ
−1
(

U+1
2

))1

α will have GHN

distribution with the parameters α and θ. To evaluate the performance of

the estimators bias and root mean square error (RMSE) are computed over

1000 replications for the sample sizes n = 25, 50, 100 and the parameter values

(α, θ) = (0.75, 1) , (1, 1) , (2, 1) , (0.75, 2) , (1, 2) , (2, 2). Here, the bias and RMSE

are defined as

bias(α̂) = α− α , bias(θ̂) = θ − θ ,

RMSE (α̂) =

√√√√ 1

N

N∑

i=1

(α̂i − α)2 , RMSE (θ̂) =

√√√√ 1

N

N∑

i=1

(θ̂i − θ)2 ,

where α =
1
N

N∑
i=1
α̂i, θ =

1
N

N∑
i=1
θ̂i and N = 1000. For all simulation cases, the stop-

ping rule ǫ is taken as 10
−6

. The simulation study and real data example are

conducted using MATLAB R2013a.

In the OBR estimation method, the robustness tuning constant should be

chosen in order to gain the desire efficiency. The most robust estimator can be

obtained by choosing b as the squared of the number of parameters. In our case,

we can take b =
√

2. For this value of b one can approximately gain 60% efficiency
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for the resulting estimators. When we increase the value of b, the efficiency will

also increase. Therefore, we have taken b = 2 to have efficiency more than 60%.

For more details about the selection of the robustness tuning constant, see Hampel

et al. [5, p.247] and Victoria-Feser and Ronchetti [9].

Concerning the starting value for the algorithm given in Section 3.2 we use

the robust starting values suggested by Victoria-Feser and Ronchetti [9] which is

described as follows.

i) Find the ML estimates.

ii) Take b = 3.5 to get OBR estimates.

iii) Use the OBR estimates obtained at step ii) as new initial values and

set b = 2 to obtain OBR estimates again.

In this simulation study, we consider two types of outlier model to the right

and the left in the X direction. These models are

Case I . (n− r)GHN (x;α, θ) + rUniform
(
max(x) + 5σ, max(x) + 10σ

)
,

Case II . (n− r)GHN (x;α, θ) + rUniform(0, 0.0001) ,

where max (x) is the largest observations in the sample, σ is standard deviation of

a randomly generated sample from GHN distribution and r is chosen by multiply-

ing the sample sizes by 0.1. That is, we add two outliers for n = 25, five outliers

for n = 50 and ten outliers for n = 100. Further, in Case I, we add outliers in

the upper tail of the distribution. In the second case, the outliers are added in

the lower tail of the distribution to see the performance of the estimators for this

type of outliers. As suggested by a referee, this type of outliers may represent

severely shorted life-lengths.

Simulation results are given in Tables 1–3. In the tables, the estimates of

the parameters, bias and RMSE are presented. Table 1 shows the results for

the case without outliers in the data. From this table, we can observe that the

performance of the ML seems slightly better than the performance of the OBR

estimators. In Table 2, we give the simulation results for the outlier Case I. The

results of this table show that the OBR estimators have smaller bias and RMSE

values than the corresponding values for ML estimators in all the simulation

configurations. Finally, in Table 3 the simulation results for the outlier Case

II are displayed. Similar to the outlier Case I the OBR estimators outperform

the ML estimators in terms of bias and RMSE in all the simulation scenarios.

Overall when the data has outliers the OBR estimators should be used instead

of ML estimators to obtain robust estimators for the parameters of interest.



OBR Estimators for the Parameters of GHN Distribution 465

Table 1: Estimates of parameters, bias and RMSE

for different sample sizes without outlier.

n θ α
Parameter(α) Parameter(θ)

ML OBR ML OBR

α 0.7995 0.8808 θ 0.9915 0.9109
0.75 Bias(bα) 0.0495 0.1308 Bias(bθ) −0.0085 −0.0891

RMSE(bα) 0.1503 0.2061 RMSE(bθ) 0.1978 0.2129

α 1.0589 1.1677 θ 0.9931 0.9310
1 1 Bias(bα) 0.0589 0.1677 Bias(bθ) −0.0069 −0.0690

RMSE(bα) 0.2000 0.2741 RMSE(bθ) 0.1548 0.1688

α 2.1412 2.3654 θ 1.0005 0.9668
2 Bias(bα) 0.1412 0.3654 Bias(bθ) 0.0005 −0.0332

RMSE(bα) 0.4112 0.5660 RMSE(bθ) 0.0767 0.0854
25

α 0.7942 0.8752 θ 2.0106 1.8402
0.75 Bias(bα) 0.0442 0.1252 Bias(bθ) 0.0106 −0.1598

RMSE(bα) 0.1503 0.2031 RMSE(bθ) 0.4057 0.4254

α 1.0671 1.1782 θ 2.0029 1.8738
2 1 Bias(bα) 0.0671 0.1782 Bias(bθ) 0.0029 −0.1262

RMSE(bα) 0.2035 0.2792 RMSE(bθ) 0.3198 0.3416

α 2.1282 2.3447 θ 1.9869 1.9207
2 Bias(bα) 0.1282 0.3447 Bias(bθ) −0.0131 −0.0793

RMSE(bα) 0.4032 0.5486 RMSE(bθ) 0.1509 0.1738

α 0.7753 0.8578 θ 1.0051 0.9142
0.75 Bias(bα) 0.0253 0.1078 Bias(bθ) 0.0051 −0.0858

RMSE(bα) 0.0990 0.1523 RMSE(bθ) 0.1471 0.1653

α 1.0245 1.1348 θ 0.9952 0.9265
1 1 Bias(bα) 0.0245 0.1348 Bias(bθ) −0.0048 −0.0735

RMSE(bα) 0.1267 0.1959 RMSE(bθ) 0.1100 0.1316

α 2.0495 2.2682 θ 0.9952 0.9598
2 Bias(bα) 0.0495 0.2682 Bias(bθ) −0.0048 −0.0402

RMSE(bα) 0.2551 0.3908 RMSE(bθ) 0.0553 0.0696
50

α 0.7722 0.8540 θ 2.0199 1.8468
0.75 Bias(bα) 0.0222 0.1040 Bias(bθ) 0.0199 −0.1532

RMSE(bα) 0.0912 0.1442 RMSE(bθ) 0.2936 0.3245

α 1.0281 1.1389 θ 1.9890 1.8519
2 1 Bias(bα) 0.0281 0.1389 Bias(bθ) −0.0110 −0.1481

RMSE(bα) 0.1250 0.1966 RMSE(bθ) 0.2157 0.2613

α 2.0556 2.2803 θ 1.9988 1.9276
2 Bias(bα) 0.0556 0.2803 Bias(bθ) −0.0012 −0.0724

RMSE(bα) 0.2587 0.4011 RMSE(bθ) 0.1100 0.1350

α 0.7631 0.8464 θ 1.0023 0.9102
0.75 Bias(bα) 0.0131 0.0964 Bias(bθ) 0.0023 −0.0898

RMSE(bα) 0.0647 0.1209 RMSE(bθ) 0.0993 0.1328

α 1.0147 1.1271 θ 1.0004 0.9284
1 1 Bias(bα) 0.0147 0.1271 Bias(bθ) 0.0004 −0.0716

RMSE(bα) 0.0859 0.1593 RMSE(bθ) 0.0755 0.1038

α 2.0420 2.2686 θ 0.9998 0.9627
2 Bias(bα) 0.0420 0.2686 Bias(bθ) −0.0002 −0.0373

RMSE(bα) 0.1827 0.3371 RMSE(bθ) 0.0379 0.0545
100

α 0.7617 0.8459 θ 1.9975 1.8107
0.75 Bias(bα) 0.0117 0.0959 Bias(bθ) −0.0025 −0.1893

RMSE(bα) 0.0658 0.1212 RMSE(bθ) 0.2069 0.2772

α 1.0179 1.1312 θ 1.9992 1.8563
2 1 Bias(bα) 0.0179 0.1312 Bias(bθ) −0.0008 −0.1437

RMSE(bα) 0.0837 0.1614 RMSE(bθ) 0.1591 0.2141

α 2.0287 2.2560 θ 1.9944 1.9192
2 Bias(bα) 0.0287 0.2560 Bias(bθ) −0.0056 −0.0808

RMSE(bα) 0.1720 0.3221 RMSE(bθ) 0.0730 0.1107
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Table 2: Estimates of parameters, bias and RMSE

for different sample sizes for Case I.

n θ α
Parameter(α) Parameter(θ)

ML OBR ML OBR

α 0.5243 0.6119 θ 1.3713 1.0104
0.75 Bias(bα) −0.2257 −0.1381 Bias(bθ) 0.3713 0.0104

RMSE(bα) 0.2342 0.1588 RMSE(bθ) 0.4695 0.2186

α 0.6296 0.7430 θ 1.3592 1.0278
1 1 Bias(bα) −0.3704 −0.2570 Bias(bθ) 0.3592 0.0278

RMSE(bα) 0.3771 0.2723 RMSE(bθ) 0.4174 0.1751

α 0.9279 1.1280 θ 1.3321 1.0777
2 Bias(bα) −1.0721 −0.8720 Bias(bθ) 0.3321 0.0777

RMSE(bα) 1.0766 0.8813 RMSE(bθ) 0.3486 0.1264
25

α 0.5273 0.6148 θ 2.7406 2.0185
0.75 Bias(bα) −0.2227 −0.1352 Bias(bθ) 0.7406 0.0185

RMSE(bα) 0.2307 0.1550 RMSE(bθ) 0.9204 0.4217

α 0.6331 0.7475 θ 2.7256 2.0636
2 1 Bias(bα) −0.3669 −0.2525 Bias(bθ) 0.7256 0.0636

RMSE(bα) 0.3736 0.2676 RMSE(bθ) 0.8336 0.3359

α 0.9323 1.1327 θ 2.6779 2.1652
2 Bias(bα) −1.0677 −0.8673 Bias(bθ) 0.6779 0.1652

RMSE(bα) 1.0726 0.8773 RMSE(bθ) 0.7115 0.2578

α 0.4948 0.5619 θ 1.4738 1.0876
0.75 Bias(bα) −0.2552 −0.1881 Bias(bθ) 0.4738 0.0876

RMSE(bα) 0.2584 0.1947 RMSE(bθ) 0.5188 0.1880

α 0.5922 0.6792 θ 1.4617 1.1146
1 1 Bias(bα) −0.4078 −0.3208 Bias(bθ) 0.4617 0.1146

RMSE(bα) 0.4103 0.3258 RMSE(bθ) 0.4886 0.1719

α 0.8816 1.0447 θ 1.4194 1.1690
2 Bias(bα) −1.1184 −0.9553 Bias(bθ) 0.4194 0.1690

RMSE(bα) 1.1201 0.9590 RMSE(bθ) 0.4269 0.1844
50

α 0.4952 0.5628 θ 2.9648 2.1899
0.75 Bias(bα) −0.2548 −0.1872 Bias(bθ) 0.9648 0.1899

RMSE(bα) 0.2582 0.1941 RMSE(bθ) 1.0550 0.3858

α 0.5941 0.6820 θ 2.9364 2.2459
2 1 Bias(bα) −0.4059 −0.3180 Bias(bθ) 0.9364 0.2459

RMSE(bα) 0.4086 0.3231 RMSE(bθ) 0.9911 0.3639

α 0.8813 1.0444 θ 2.8429 2.3387
2 Bias(bα) −1.1187 −0.9556 Bias(bθ) 0.8429 0.3387

RMSE(bα) 1.1206 0.9596 RMSE(bθ) 0.8586 0.3711

α 0.4859 0.5522 θ 1.4969 1.0990
0.75 Bias(bα) −0.2641 −0.1978 Bias(bθ) 0.4969 0.0990

RMSE(bα) 0.2656 0.2009 RMSE(bθ) 0.5205 0.1547

α 0.5842 0.6704 θ 1.4783 1.1255
1 1 Bias(bα) −0.4158 −0.3296 Bias(bθ) 0.4783 0.1255

RMSE(bα) 0.4170 0.3321 RMSE(bθ) 0.4925 0.1573

α 0.8676 1.0268 θ 1.4262 1.1696
2 Bias(bα) −1.1324 −0.9732 Bias(bθ) 0.4262 0.1696

RMSE(bα) 1.1333 0.9752 RMSE(bθ) 0.4301 0.1783
100

α 0.4863 0.5525 θ 3.0158 2.2161
0.75 Bias(bα) −0.2637 −0.1975 Bias(bθ) 1.0158 0.2161

RMSE(bα) 0.2653 0.2006 RMSE(bθ) 1.0648 0.3280

α 0.5816 0.6675 θ 2.9503 2.2433
2 1 Bias(bα) −0.4184 −0.3325 Bias(bθ) 0.9503 0.2433

RMSE(bα) 0.4196 0.3349 RMSE(bθ) 0.9773 0.3060

α 0.8687 1.0303 θ 2.8523 2.3440
2 Bias(bα) −1.1313 −0.9697 Bias(bθ) 0.8523 0.3440

RMSE(bα) 1.1321 0.9715 RMSE(bθ) 0.8595 0.3591
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Table 3: Estimates of parameters, bias and RMSE

for different sample sizes for Case II.

n θ α
Parameter(α) Parameter(θ)

ML OBR ML OBR

α 0.5872 0.6849 θ 0.6495 0.6564
0.75 Bias(bα) −0.1628 −0.0651 Bias(bθ) −0.3505 −0.3436

RMSE(bα) 0.1780 0.1194 RMSE(bθ) 0.3800 0.3772

α 0.6906 0.8318 θ 0.7023 0.7167
1 1 Bias(bα) −0.3094 −0.1682 Bias(bθ) −0.2977 −0.2833

RMSE(bα) 0.3191 0.2047 RMSE(bθ) 0.3205 0.3104

α 0.9338 1.2509 θ 0.7824 0.8082
2 Bias(bα) −1.0662 −0.7491 Bias(bθ) −0.2176 −0.1918

RMSE(bα) 1.0690 0.7619 RMSE(bθ) 0.2279 0.2050
25

α 0.5722 0.6708 θ 1.3063 1.3240
0.75 Bias(bα) −0.1778 −0.0792 Bias(bθ) −0.6937 −0.6760

RMSE(bα) 0.1890 0.1196 RMSE(bθ) 0.7534 0.7460

α 0.6686 0.8115 θ 1.3783 1.4127
2 1 Bias(bα) −0.3314 −0.1885 Bias(bθ) −0.6217 −0.5873

RMSE(bα) 0.3390 0.2182 RMSE(bθ) 0.6625 0.6358

α 0.8923 1.2055 θ 1.5442 1.5966
2 Bias(bα) −1.1077 −0.7945 Bias(bθ) −0.4558 −0.4034

RMSE(bα) 1.1098 0.8049 RMSE(bθ) 0.4779 0.4320

α 0.5378 0.6285 θ 0.5867 0.6050
0.75 Bias(bα) −0.2122 −0.1215 Bias(bθ) −0.4133 −0.3950

RMSE(bα) 0.2165 0.1364 RMSE(bθ) 0.4245 0.4088

α 0.6226 0.7527 θ 0.6420 0.6695
1 1 Bias(bα) −0.3774 −0.2473 Bias(bθ) −0.3580 −0.3305

RMSE(bα) 0.3800 0.2562 RMSE(bθ) 0.3669 0.3419

α 0.8051 1.0570 θ 0.7423 0.7843
2 Bias(bα) −1.1949 −0.9430 Bias(bθ) −0.2577 −0.2157

RMSE(bα) 1.1956 0.9453 RMSE(bθ) 0.2621 0.2221
50

α 0.5235 0.6171 θ 1.1691 1.2111
0.75 Bias(bα) −0.2265 −0.1329 Bias(bθ) −0.8309 −0.7889

RMSE(bα) 0.2301 0.1457 RMSE(bθ) 0.8524 0.8152

α 0.6013 0.7334 θ 1.2692 1.3312
2 1 Bias(bα) −0.3987 −0.2666 Bias(bθ) −0.7308 −0.6688

RMSE(bα) 0.4008 0.2741 RMSE(bθ) 0.7462 0.6889

α 0.7680 1.0162 θ 1.4733 1.5639
2 Bias(bα) −1.2320 −0.9838 Bias(bθ) −0.5267 −0.4361

RMSE(bα) 1.2326 0.9856 RMSE(bθ) 0.5351 0.4489

α 0.5347 0.6231 θ 0.5881 0.6071
0.75 Bias(bα) −0.2153 −0.1269 Bias(bθ) −0.4119 −0.3929

RMSE(bα) 0.2176 0.1346 RMSE(bθ) 0.4173 0.3995

α 0.6210 0.7494 θ 0.6386 0.6686
1 1 Bias(bα) −0.3790 −0.2506 Bias(bθ) −0.3614 −0.3314

RMSE(bα) 0.3802 0.2547 RMSE(bθ) 0.3659 0.3371

α 0.8044 1.0536 θ 0.7414 0.7869
2 Bias(bα) −1.1956 −0.9464 Bias(bθ) −0.2586 −0.2131

RMSE(bα) 1.1959 0.9475 RMSE(bθ) 0.2608 0.2164
100

α 0.5217 0.6134 θ 1.1642 1.2106
0.75 Bias(bα) −0.2283 −0.1366 Bias(bθ) −0.8358 −0.7894

RMSE(bα) 0.2301 0.1428 RMSE(bθ) 0.8465 0.8029

α 0.5996 0.7300 θ 1.2627 1.3292
2 1 Bias(bα) −0.4004 −0.2700 Bias(bθ) −0.7373 −0.6708

RMSE(bα) 0.4014 0.2736 RMSE(bθ) 0.7451 0.6810

α 0.7640 1.0079 θ 1.4676 1.5634
2 Bias(bα) −1.2360 −0.9921 Bias(bθ) −0.5324 −0.4366

RMSE(bα) 1.2363 0.9931 RMSE(bθ) 0.5365 0.4426
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5. REAL DATA EXAMPLE

In this section, we will analyze the data set used by Cooray and Ananda [3].

This data set contains the stress-rupture life of kevlar 49/ epoxy strands failure

at 90% stress levels. The data set is given below (Andrews and Herzberg [1],

Barlow et al. [2]).

Table 4: The failure times in hours.

0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.07 0.08
0.09 0.09 0.10 0.10 0.11 0.11 0.12 0.13 0.18 0.19 0.20 0.23 0.24
0.24 0.29 0.34 0.35 0.36 0.38 0.40 0.42 0.43 0.52 0.54 0.56 0.60
0.60 0.63 0.65 0.67 0.68 0.72 0.72 0.72 0.73 0.79 0.79 0.80 0.80
0.83 0.85 0.90 0.92 0.95 0.99 1.00 1.01 1.02 1.03 1.05 1.10 1.10
1.11 1.15 1.18 1.20 1.29 1.31 1.33 1.34 1.40 1.43 1.45 1.50 1.51
1.52 1.53 1.54 1.54 1.55 1.58 1.60 1.63 1.64 1.80 1.80 1.81 2.02
2.05 2.14 2.17 2.33 3.03 3.03 3.34 4.20 4.69 7.89

Assume that this data set has a GHN distribution with the unknown pa-

rameters α and θ. We use the OBR estimation method to obtain the estimates

for α and θ for the failure time data set. We also find the ML estimates for these

parameters. Table 5 gives the summary of the estimates, standard error (SE)

and the 95% confidence interval for the parameters of GHN distribution. The

confidence intervals of the estimates are computed using the intervals given in

Cooray and Ananda [3]. In their paper, they use the expected Fisher information

matrix. For the ML estimators, we also use the expected Fisher information ma-

trix to compute the standard errors and the confidence intervals. For the OBR

estimators, we use the asymptotic covariance matrix given in Victoria-Feser and

Ronchetti [9] to compute the standard errors and the confidence intervals.

Table 5: ML and OBR (b = 2) parameter estimates

for the failure time data set.

Method bα SE
95% confidence
interval of α

bθ SE
95% confidence

interval of θ

ML 0.7108 0.0584 (0.5964, 0.8252) 1.2238 0.1317 (0.9657, 1.4819)
OBR 0.7811 0.0574 (0.6685, 0.8937) 1.0540 0.0794 (0.8983, 1.2097)

Figure 4 (a) shows the boxplot of the failure time data set. After some

preliminary examination of the data set, we can see from the boxplot that there
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may be four potential outliers in the data set. We give the histogram of the data

set with the fitted densities obtained from ML and OBR estimates in Figure 4 (b).
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Figure 4: (a) Boxplot of the failure time data set; (b) Histogram with the

fitted densities obtained from ML and OBR estimation methods.

We also give the Q-Q plots of the fitted distribution obtained from ML and

OBR estimation methods in Figure 5. From this figure, we can see that the OBR

estimates are not badly affected by the outliers. But we can clearly see that the

ML estimators are influenced by the outliers. Furthermore, the Q-Q plot of the

fitted distribution obtained from OBR estimators is well fitted contrary to the

ML estimators.

0 1 2 3 4 5

0
2

4
6

8

Theoretical Quantile for ML

O
ri

g
in

a
l 
D

a
ta

0 1 2 3 4

0
2

4
6

8

Theoretical Quantile for OBR

O
ri

g
in

a
l 
D

a
ta

Figure 5: Q-Q plots for the failure time data set estimated by

the ML and OBR estimation methods.
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6. CONCLUSIONS

In this paper, we have proposed robust estimators for the parameters of

the GHN distribution, which is proposed by Cooray and Ananda [3] as a flexible

alternative lifetime distribution, using the OBR estimation method. Our limited

simulation study has shown that the ML estimators are influenced by the out-

liers, but on the other hand, the OBR estimators are resistant to the outliers.

The same results have been recorded from the real data example. Therefore,

we can conclude that for this distribution the OBR estimators can be used as

alternative estimators to the ML estimators.
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