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Foreword

This issue of REVSTAT is dedicated to Professors Bimal K. Sinha and
Bikas K. Sinha on the occasion of their 70th birthday.

Professors Bimal K. Sinha and Bikas K. Sinha [Statistical Twins – as men-
tioned in the IMS Bulletin, 1990] were born on the 16th of March, 1946 in undi-
vided India in the village of Atgharia, District Pabna, now in Bangladesh. The
Sinha family migrated to India in the 1950’s. Along the years Sinha Brothers
emerged as two very distinct Statisticians, taking distinct paths in their profes-
sional lives.

Bimal K. Sinha got his Ph.D. in 1973 from the University of Calcutta,
India. A former faculty of the Indian Statistical Institute and the University
of Pittsburgh, Bimal Sinha joined UMBC (University of Maryland Baltimore
County) in 1985 as a Professor of Statistics and Founder of Statistics Graduate
Program. Professor Sinha received the prestigious recognition of UMBC’s Presi-
dental Research Professorship and also the University System of Maryland Board
of Regents Research Professorship. A Fellow of both the Institute of Mathemat-
ical Statistics (IMS) and the American Statistical Association (ASA), Professor
Sinha is the author of four books, more than 150 research articles, and super-
vised about 30 PhD students. For over twenty years, Professor Sinha worked
on many aspects of environmental statistics, and his recent research focuses on
‘Data analysis under confidentiality protection’ at the US Census Bureau.

Bikas K. Sinha got his Ph.D. in 1972 also from the University of Cal-
cutta, India. A former faculty of the Calcutta University Department of Statis-
tics (1972–1975) and a Visiting Faculty at the Institute of Mathematics, Federal
University of Bahia, Brazil (1975–1979), Bikas Sinha joined the world famous
Indian Statistical Institute at its Calcutta Centre as an Associate Professor of
Statistics (1979–1984) and was promoted to Professor of Statistics (1985–2011).
Bikas Sinha served extensively several universities in the USA as Visiting Scien-
tist/Visiting Professor with teaching and research assignments. He has collab-
orated with statisticians within India and abroad as also spanning over several
continents with an impressive record of more than 90 research collaborators. An
Expert on Missions of the United Nations, Professor Bikas Sinha is the author/co-
author of Springer-Verlag Monographs and Graduate-Level Text Books (Wiley &
Sage) and has over 140 published research articles. His expertise centers around
Optimal Experimental Designs and Finite Population Inference. He had one
doctoral student each at Calcutta University and ISI, Calcutta. Besides, numer-
ous students within India and abroad sought his academic mentorship for their
research studies.

Professor Bimal K. Sinha served on Editorial Boards in a number of sta-
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tistical Journals. He was co-editor of Sankhya, Series A (1981–1997) and Series
B (1998–1999), Editorial Board Member of the Journal of Multivariate Analysis
(1981–1982) and of the Handbook of Statistics, Vol. 2, Editor of the Calcutta
Statistical Association Bulletin (2003–2007), Associate Editor of the Journal of
Applied Statistical Science (1992 on), of the Journal of Environmental Statistics
(1992 on), of the Journal of Environmental Modeling and Assessment (1994 on),
of Statistics and Decisions (1993–2001) and of the Journal of Statistical Planning
and Inference (1994–2002).

In addition to the awards and distinctions already mentioned above, Pro-
fessor Bimal Sinha is also an Elected Member of the International Statistical
Institute, and received in 2002 the American Statistical Association, Section on
Statistics and the Environment, Distinguished Achievement Medal Award and in
2012 the University System of Maryland Board of Regents Award for Excellence
in Research.

Professor Bikas K. Sinha was also a member of the Editorial Board of a
large number of statistical Journals. He served as Editorial Board Member of
Sankhya (1985–1995), as Associate Editor of the Journal of Statistical Planning
and Inference (1992–1997) and of the Calcutta Statistical Association Bulletin
(1988–1992) where he also served as Editor, from 1993 to 2000. He also had
editorship duties in the Pakistan Journal of Statistics, International Journal of
Statistical Science, Statistical Methodology, Statistics, Statistics & Decisions and
the Journal of Combinatorics & Information System Sciences.

Professor Bikas Sinha also received a number of awards, among which are
the P. C. Mahalanobis Gold Medal in 1980. He is an Elected Member of the
International Statistical Institute since 1985, and was President of the Indian
Science Congress, Statistics Section (2000–2001) and Member of the National
Statistical Commission of the Government of India (2006–2009). In the recent
past, Professor Bikas Sinha has been a regular visitor at the US Bureau of Census
under the ‘Summer at Census’ visitor plan.

Carlos A. Coelho
Filipe J. Marques
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Abstract:

• The authors derive likelihood-based exact inference methods for the multivariate re-
gression model, for singly imputed synthetic data generated via Posterior Predictive
Sampling (PPS) and for multiply imputed synthetic data generated via a newly pro-
posed sampling method, which the authors call Fixed-Posterior Predictive Sampling
(FPPS). In the single imputation case, our proposed FPPS method concurs with the
usual Posterior Predictive Sampling (PPS) method, thus filling the gap in the existing
literature where inferential methods are only available for multiple imputation. Sim-
ulation studies compare the results obtained with those for the exact test procedures
under the Plug-in Sampling method, obtained by the same authors. Measures of pri-
vacy are discussed and compared with the measures derived for the Plug-in Sampling
method. An application using U.S. 2000 Current Population Survey data is discussed.

Key-Words:

• finite sample inference; maximum likelihood estimation; pivotal quantity; plug-in sam-
pling; statistical disclosure control; unbiased estimators.
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1. INTRODUCTION

When releasing microdata to the public, methods of statistical disclosure
control (SDC) are used to protect confidential data, that is “data which allow
statistical units to be identified, either directly or indirectly, thereby disclosing
individual information” (Regulation No. 223/2009 of the European Parliament
[7]), while enabling valid statistical inference to be drawn on the relevant popula-
tion. SDC methods include data swapping, additive and multiplicative noise, top
and bottom coding, and also the creation of synthetic data. In this paper, the
authors provide inferential tools for the statistical analysis of a singly imputed
synthetic dataset when the real dataset cannot be released. The multiple impu-
tation case is also addressed, using a new adapted method of generating synthetic
data, which the authors call Fixed-Posterior Predictive Sampling (FPPS).

The use of synthetic data for SDC started with Little [4] and Rubin [10]
using multiple imputation (Rubin [9]). Reiter [8] was the first to present methods
for drawing inference based on partially synthetic data. Moura et al. [5] com-
plemented this work with the development of likelihood-based exact inference
methods for both single and multiple imputation, that is, inferential procedures
developed based on exact distributions, and not on asymptotic results, in the case
where synthetic datasets were generated via Plug-in Sampling. The procedures
of Reiter [8] are general in that they can be applied to a variety of estimators
and statistical models, but these procedures are only applicable in the multiple
imputation case, and are based on large sample approximations.

There are two major objectives in the present research. First, to make
available likelihood-based exact inference for singly imputed synthetic data via
Posterior Predictive Sampling (PPS) where the usual available procedures are
not applicable, therefore extending the work of Klein and Sinha [2], under the
multivariate linear regression (MLR) model. Second, to propose a different ap-
proach for release of multiple synthetic datasets, FPPS, which can use a similar
way of gathering information from the synthetic datasets to that used in [5], when
these synthetic datasets are generated via the Plug-in Sampling method. This
second objective arises from the fact that when using the classical PPS it is too
hard to construct an exact joint probability density function (pdf) for the esti-
mators, under the MLR model, since one would face the problem of deriving the
distribution of a sum of variables that follow Wishart distributions with different
parameter matrices. It is with this problem in mind, that we propose an adapted
method that we will call the FPPS method. We show that this method offers
a higher level of confidentiality than the Plug-in Sampling method, and it still
allows one to draw inference for the unknown parameters using a joint pdf of the
proposed estimators.

A brief description of the PPS and FPPS methods follows. Suppose that
Y = (y1, ...,yn) are the original data which are jointly distributed according to
the pdf fθ(Y), where θ is the unknown (scalar, vector or matrix) parameter. A
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prior π(θ) for θ is assumed and then the posterior distribution of θ is obtained as
π(θ|Y ) ∝ π(θ)fθ(x), and used to draw a replication θ

•
f of θ, when applying the

FPPS, or draw M ≥ 1 independent replications θ
•
1, ...,θ

•
M of θ, when applying

the PPS. In the case of FPPS, we generate M replicates of Y, namely, Wj =
(wj1, ...,wjn), j = 1, ...,M drawn all independently from the same fθ•

f
, where fθ•

f

is the joint pdf of the original Y with θ
•
f replacing the unknown θ. In the case

of the usual PPS method for each j-th generated synthetic dataset we would use
the corresponding j-th posterior draw θ

•
j and corresponding j-th joint pdf’s fθ•

j
,

for j = 1, ...,M . In either case, these synthetic datasets W1, . . . ,WM will be the
datasets available to the general public. One may observe that, for M = 1, the
Posterior Predictive Sampling and Fixed-Posterior Predictive Sampling methods
concur.

Regarding the MLR model, in our context, we consider the sensitive re-
sponse variables yj (j = 1, ...,m) forming the vector of response variables y =
(y1, ..., ym)′, and a set of p non-sensitive explanatory variables x = (x1, ..., xp)

′.
It is assumed that y|x ∼ Nm(B′x,Σ), with B and Σ unknown, and the orig-
inal data consist of Y = {(y1i, ..., ymi, x1i, ..., xpi), i = 1, ..., n}, where n will be
the sample size. Let us consider Y = (y1, ...,yn) with yi = (y1i, ..., ymi)

′ and
X = (x1, ...,xn) with xi = (x1i, ..., xpi)

′. We assume rank(X : p × n) = p < n

and n ≥ m+ p. Therefore the following regression model is considered

(1.1) Ym×n = B′
m×pXp×n + Em×n,

where Em×n is distributed as Nmn(0, In ⊗Σ). Based on the original data,

(1.2) B̂ = (XX′)−1XY′

is the Maximum Likelihood Estimator (MLE) and the Uniformly Minimum-
Variance Unbiased Estimator (UMVUE) ofB, distributed asNpm(B,Σ⊗(XX′)−1),
independent of Σ̂ = 1

n(Y − B̂′X)(Y − B̂′X)′ which is the MLE of Σ, with

nΣ̂ ∼ Wm(Σ, n− p). Therefore

(1.3) S =
nΣ̂

n− p

will be the UMVUE of Σ.

The organization of the paper is as follows. In Section 2, based on singly
and multiply imputed synthetic datasets generated via Fixed-Posterior Predic-
tive Sampling, two procedures are proposed to draw inference for the matrix
of regression coefficients. Under the single imputation case, we recall that the
FPPS and the PPS methods coincide. The test statistics proposed will be pivot
statistics, different from the classical test statistics for B under the MLR model
(see [1, Secs 8.3 and 8.6]) since it is shown that these classical test statistics are
not pivotal in the present context. Section 3 presents some simulations in order
to check the accuracy of theoretically derived results. Also in this section, the
authors use a measure for the radius (distance between the center and the edge)
of the confidence sets for the regression coefficients adapted from [5], computed
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for the original data and also for the synthetic data generated via FPPS. These
radius measures are compared with the ones obtained when synthetic datasets
are generated via Plug-in Sampling. Section 4 presents data analyses under the
proposed methods in the context of public use data from the U.S. Current Pop-
ulation Survey comparing with the same data analysis given by [5] under the
Plug-in Sampling method. In Section 5, we compare the level of privacy protec-
tion obtained via our FPPS method and via Plug-in Sampling method. Some
concluding remarks are added in Section 6. Proofs of the theorems, and other
technical derivations are presented in Appendices A and B.

2. ANALYSIS FOR SINGLE AND MULTIPLE IMPUTATION

In this section, we present two new exact likelihood-based procedures for the
analysis of synthetic data generated using Fixed-Posterior Predictive Sampling
method, under the MLR model in (1.1). For the single imputation case, the
two new procedures developed also offer the possibility of drawing inference for
a single synthetic dataset generated via Posterior Predictive Sampling.

2.1. A First New Procedure

In this subsection, the synthetic data will consist of M synthetic versions
of Y generated based on the FPPS method.

Consider the joint prior distribution π(B,Σ) ∝ |Σ|−α/2, leading to the
posterior distributions for Σ and B

(2.1) Σ|Y,S ∼ W−1
m ((n− p)S, n+ α− p)

and

(2.2) B|Y,Σ ∼ Npm(B̂,Σ⊗ (XX′)−1),

where we assume that n + α > p + m + 1 (see proof in Appendix B.1). Con-
sequently, we draw Σ̃ from (2.1) and B̃ from (2.2), upon replacing Σ by Σ̃ in
this latter expression. We then generate the M synthetic datasets, denoted as
Wj = (wj1, ...,wjn), for j = 1, ...,M , where wji = (w1ji, ..., wmji)

′, are indepen-
dently distributed as

(2.3) wji|B̃,Σ̃ ∼ Nm(B̃′xi, Σ̃), i = 1, ..., n, j = 1, ...,M.

For i = 1, ..., n and j = 1, ...,M , let B•
j = (XX′)−1XW′

j and S•
j = 1

n−p(Wj −

B•′
j X)(Wj − B•′

j X)′ be the estimators of B and Σ, based on the synthetic
data (w1ji, ..., wmji, x1i, ..., xpi), which by Lemma 1.1 in [5] are jointly sufficient.
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Conditional on (B̃, Σ̃), for every j = 1, ...,M , B•
j is independent of S•

j and
{(B•

1,S
•
1), ..., (B

•
M ,S•

M )} are jointly sufficient estimators for B and Σ. Define
then

(2.4) B
•
M =

1

M

M∑

j=1

B•
j and S

•
M =

1

M

M∑

j=1

S•
j ,

which are also mutually independent, given B̃ and Σ̃. For p ≥ m and n + α >

p+ 2m+ 2, we derive the following main results.

1. The MLE of B is B
•
M , which is unbiased for B, with V ar(B

•
M )

= NM,n,m,p,αΣ⊗ (XX′)−1, where NM,n,m,p,α =
2M(n+α

2
−p−m−1)+n−p

M(n+α−p−2m−2) (see

Theorem 2.1 and Appendix B.3).

2. An unbiased estimator (UE) of Σ will be ŜM = n+α−p−2m−2
n−p S

•
M (see The-

orem 2.1 and Appendix B.3); for α = 2m + 2, S
•
M will also be an UE for

Σ,

3. In Theorem 2.2 (see below), we prove that

(2.5) T •
M =

|(B
•
M −B)′(XX′)(B

•
M −B)|

|M(n− p)S
•
M |

,

a statistic somewhat related with the Hotelling T 2, this one built to make
inference on a matrix parameter, is a pivotal quantity, and that for A1 ∼
Wm(Im, n+α−p−m−1), A2 ∼ Wm(Im, n−p) and Fi ∼ Fp−i+1,M(n−p)−i+1

(i = 1, ...,m), all independent random variables,

T •
M |Ω

st
∼

{
m∏

i=1

p− i+ 1

M(n− p)− i+ 1
Fi

}∣∣∣∣
M + 1

M
Im +Ω

∣∣∣∣ ,

where Ω has the same distribution as A
1
2
1A

−1
2 A

1
2
1 and where

st
∼ means

‘stochastic equivalent to’.

4. If one wants to test a linear combination of the parameters in B, namely,
C = AB where A is a k× p matrix with rank(A) = k ≤ p and k ≥ m, one
defines

T •
M,C =

|(AB
•
M −C)′(A(XX′)−1A′)−1(AB

•
M −C)|

|M(n− p)S
•
M |

and proceeds by noting that

(2.6) T •
M,C|W

st
∼

{
m∏

i=1

k − i+ 1

M(n− p)− i+ 1
Fk,i

}∣∣∣∣
M + 1

M
Im +Ω

∣∣∣∣ ,

with Fk,i ∼ Fk−i+1,M(n−p)−i+1 being independent random variables and Ω

defined as in the previous item.
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(i)Test for the significance of C: in order to test H0 : C = C0 versus
H1 : C 6= C0, we reject H0 whenever T •

M,C0
exceeds δM,k,m,p,n;γ where

δM,k,m,p,n;γ satisfies (1 − γ) = Pr(T •
M,C0

≤ δM,k,m,p,n;γ) when H0 is true.
To perform a test for B = B0 one has to take A = Ip.

(ii)Confidence set for C: a (1− γ) level confidence set for C is given by

(2.7) ∆M (C) = {C : T •
M,C ≤ δM,k,m,n,p;γ},

where the value of δM,k,m,n,p;γ can be obtained by simulating the distribu-
tion in (2.6).

Results in 1-4 are derived based on Theorems 2.1 and 2.2 below.

Theorem 2.1. The joint pdf of B
•
M ,S

•
M and Σ̃−1, for B

•
M and S

•
M

defined in (2.4), is proportional to

e−
1
2
tr{(M+1

M
Σ̃+Σ)

−1
(B

•

M−B)′XX′(B
•

M−B)+M(n−p)Σ̃−1S
•

M}

× |S
•

M |
M(n−p)−m−1

2

|Σ̃|
M(n−p)+n+α

2 −m−1
|Σ|−

n
2 | M

M+1Σ̃
−1 +Σ−1|−p/2|Σ̃−1 +Σ−1|−

2n+α−2p−m−1
2 ,

so that B
•
M and S

•
M , given Σ̃, are independent, with

B
•
M |

Σ̃
∼ Npm

(
B,

(
M + 1

M
Σ̃+Σ

)
⊗ (XX′)−1

)

and

S
•
M |

Σ̃
∼ Wm

(
1

M(n− p)
Σ̃,M(n− p)

)
.

Proof: See Appendix A.

Theorem 2.2. The distribution of the statistic T •
M defined in (2.5) can

be obtained from the decomposition

T •
M |Ω

st
∼

{
m∏

i=1

p− i+ 1

M(n− p)− i+ 1
Fi

}∣∣∣∣
M + 1

M
Im +Ω

∣∣∣∣

where Fi ∼ Fp−i+1,M(n−p)−i+1 are independent random variables, themselves

independent of Ω, which has the same distribution as A
1
2
1A

−1
2 A

1
2
1 with A1 ∼

Wm(Im, n+ α − p−m− 1) and A2 ∼ Wm(Im, n− p), two independent random
variables.

Proof: See Appendix A.
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Remark 2.1. When m = 1 and M = 1, the statistic in (2.5) reduces to
the statistic T 2 used in [2] whose pdf is obtained by noting that

T 2|Ω=ω ∼
p

n− p
(2 + ω)Fp,n−p where fΩ(ω) ∝

ω
n+α−p−4

2

(1 + ω)
2n+α−2p−2

2

.

Remark 2.2. We remark that the statistic T •
M in (2.5) degenerates to-

wards zero when n → ∞ or M → ∞, but

(M(n− p))m T •
M |Ω

d
−−−→
n→∞

{
m∏

i=1

χ2
p−i+1

}∣∣∣∣
M + 1

M
Im +Ω

∣∣∣∣

and

(M(n− p))m T •
M |Ω

d
−−−−→
M→∞

{
m∏

i=1

χ2
p−i+1

}
|Im +Ω| ,

where
d

−−−→ represents convergence in distribution. Consequently, if instead of

using T •
M one uses T •

M2 = (M(n − p))m T •
M = |(B

•

M−B)′(XX′)(B
•

M−B)|

|S
•

M |
one would

have

T •
M2|Ω

d
−−−→
n→∞

{
m∏

i=1

χ2
p−i+1

}∣∣∣∣
M + 1

M
Im +Ω

∣∣∣∣

and

T •
M2|Ω

d
−−−−→
M→∞

{
m∏

i=1

χ2
p−i+1

}
|Im +Ω| ,

which corresponds to the use of a simple scale change.

In Table 1, we list the simulated 0.05 cut-off points for T •
M , for M = 1 for

some values of p, m and n.

Table 1: Cut-off points of the 95% confidence set for the regression coefficient B

n

p = 3
m = 1 m = 3

α = 2 α = 4 α = 4 α = 6
10 6.568 7.433 20.11 29.08
50 5.502E-01 5.581E-01 9.277E-03 9.691E-03

100 2.518E-01 2.542E-01 9.212E-04 9.443E-04
200 1.207E-01 1.208E-01 1.049E-04 1.064E-04

n

p = 4
m = 1 m = 3

α = 2 α = 4 α = 4 α = 6
10 11.08 12.69 239.2 372.7
50 6.884E-01 6.984E-01 3.550E-02 3.697E-02

100 3.108E-01 3.128E-01 3.487E-03 3.564E-03
200 1.487E-01 1.490E-01 3.674E-04 3.723E-04

Similar to what was done in [5], one could suggest the following adaptations
of the classical test criterion for the multivariate regression model (see [1, Secs
8.3 and 8.6] for the classical criteria):
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(a) T •
1,M = |S

•
M ||S

•
M + (B

•
M − B)′(XX ′)(B

•
M − B)|−1 (Wilks’ Lambda Crite-

rion),

(b) T •
2,M = tr

[
(B

•
M −B)′(XX′)(B

•
−B)(S

•
M )−1

]
(Pillai’s Trace Criterion),

(c) T •
3,M = tr

[
(B

•
M−B)′(XX′)(B

•
M−B)[(B

•
M−B)′(XX′)(B

•
M−B) + S

•
M ]−1

]

(Hotelling-Lawley Trace Criterion),

(d) T •
4,M = λ1 where λ1 denotes the largest eigenvalue of (B

•
M−B)′(XX′)(B

•
M−

B)(S
•
M )−1 (Roy’s Largest Root Criterion).

However, these statistics are non-pivotal, since their distributions are func-
tion of Σ (see Appendix B.3).

2.2. A Second New Procedure

We propose yet another likelihood-based approach for exact inference about
B where one may gather more information from the released synthetic data,
following a somewhat similar procedure to the one used in [5]. Let us start
by recalling that Wj (j = 1, ...,M) are m × n matrices formed by the vectors
(wj1, ...,wjn) as columns, generated from wji|B̃,Σ̃ ∼ Nm(B̃′xi, Σ̃) (i = 1, ..., n).

Note that, conditionally on B̃ and Σ̃, (w1i, ...,wMi) is a random sample from
Nm(B̃′xi, Σ̃), for i = 1, ..., n. Consider wi =

1
M

∑M
j=1wji and Swi =

∑M
j=1(wji−

wi)(wji − wi)
′ which are sufficient statistics for Σ, based on the i-th covariate

vector. Defining Sw =
∑n

i=1 Swi, we have (w1, ...,wn,Sw) as the joint sufficient
statistics for (B,Σ). Conditionally on B̃ and Σ̃, we have wi ∼ Nm(B̃′xi,

1
M Σ̃)

and Swi ∼ Wm(Σ̃,M − 1).

From the M released synthetic data matrices Wj (j = 1, ...,M), we may

define WM = 1
M

∑M
j=1Wj and define for B its estimator

(2.8) B
•
M = (XX′)−1XW

′
M ,

and for Σ its estimator

(2.9) S•
comb =

Sw +M × S•
mean

Mn− p
,

where we define S•
mean = (WM −B

•′

MX)(WM −B
•′

MX)′.

In fact, if the M synthetic datasets are treated as a single synthetic dataset
of size nM , the estimators obtained for B and Σ will be exactly the same as
the ones obtained in (2.8) and (2.9). The proof of this fact may be analyzed in
Appendix C.

Analogous to what was done in the previous subsection, one can derive the
following inferential results, for p ≥ m and n+ α > p+ 2m+ 2.
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1. An UE of Σ will be ŜM = n+α−p−2m−2
n−p S•

comb (see Corollary 2.3 Appendix
B.4), and for α = 2m+ 2, S•

comb will also be an UE for Σ.

2. In Corollary 2.3 (see below), we prove that

(2.10) T •
comb =

|(B
•
M −B)′(XX ′)(B

•
M −B)|

|(Mn− p)S•
comb|

is a pivotal quantity, and that for A1 ∼ Wm(Im, n+ α− p−m− 1), A2 ∼
Wm(Im, n − p) and Fi ∼ Fp−i+1,Mn−p−i+1 (i = 1, ...,m), all independent
random variables,

T •
comb|Ω

st
∼

{
m∏

i=1

p− i+ 1

Mn− p− i+ 1
Fi

}∣∣∣∣
M + 1

M
Im +Ω

∣∣∣∣ ,

where Ω has the same distribution as A
1
2
1A

−1
2 A

1
2
1 .

3. If one wants to test a linear combination of the parameters in B, namely,
C = AB where A is a k× p matrix with rank(A) = k ≤ p and k ≥ m, one
may define

T •
comb,C =

|(AB
•
M −C)′(A(XX′)−1A′)−1(AB

•
M −C)|

|(Mn− p)S
•
comb|

,

and proceed by noting that

(2.11) T •
comb,C|W

st
∼

{
m∏

i=1

k − i+ 1

Mn− p− i+ 1
Fk,i

}∣∣∣
M + 1

M
Im +Ω

∣∣∣,

with Fk,i ∼ Fk−i+1,Mn−p−i+1 being independent random variables and Ω

defined as in the previous item.

(i)Test for the significance of C: in order to test H0 : C = C0 versus
H1 : C 6= C0, we reject H0 whenever T •

comb,C0
exceeds δcomb,k,m,p,n;γ where

δcomb,k,m,p,n;γ satisfies (1 − γ) = Pr(T •
comb,C0

≤ δcomb,k,m,p,n;γ) when H0 is
true. To perform a test for B = B0 one has to take A = Ip.

(ii)Confidence set for C: a (1− γ) level confidence set for C is given by

(2.12) ∆comb(C) = {C : T •
comb,C ≤ δcomb,k,m,n,p;γ},

where the value of δcomb,k,m,n,p;γ can be obtained by simulating the distri-
bution in (2.11).

Results in 1-3 are derived based on the following Corollaries 2.3 and 2.4, of
Theorems 2.1 and 2.2, respectively.
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Corollary 2.3. The joint pdf of B
•
M ,S•

comb and Σ̃−1, for B
•
M and S•

comb

defined in (2.8) and (2.9), is proportional to

e−
1
2
tr{(M+1

M
Σ̃+Σ)

−1
(B

•

M−B)′XX′(B
•

M−B)+(Mn−p)Σ̃−1S•

comb
}

×
|S•

comb
|
Mn−p−m−1

2

|Σ̃|
Mn−p+n+α

2 −m−1
|Σ|−

n
2 | M

M+1Σ̃
−1 +Σ−1|−p/2|Σ̃−1 +Σ−1|−

2n+α−2p−m−1
2 ,

so that B
•
M and S•

comb, given Σ̃, are independent, with

B
•
M |

Σ̃
∼ Npm

(
B,

(
M + 1

M
Σ̃+Σ

)
⊗ (XX′)−1

)

and

S•
comb|Σ̃ ∼ Wm

(
1

Mn− p
Σ̃,M(n− p)

)
.

Proof: See Appendix A.

Corollary 2.4. The distribution of the statistic T •
comb defined in (2.10)

can be obtained from the decomposition

T •
comb|Ω

st
∼

{
m∏

i=1

p− i+ 1

Mn− p− i+ 1
Fi

}∣∣∣∣
M + 1

M
Im +Ω

∣∣∣∣

where Fi ∼ Fp−i+1,Mn−p−i+1 are independent random variables, themselves in-

dependent of Ω, which has the same distribution as A
1
2
1A

−1
2 A

1
2
1 with A1 ∼

Wm(Im, n + α − p − m − 1) and A2 ∼ Wm(Im, n − p), two independent ran-
dom variables.

Proof: See Appendix A.

Remark 2.3. Similar to what happens with the statistic T •
M in (2.5),

the statistic T •
comb in (2.10) also degenerates towards zero when n → ∞ or M →

∞, and similarly to what happens with T •
M ,

(Mn− p)m T •
comb|Ω

d
−−−→
n→∞

{
m∏

i=1

χ2
p−i+1

}∣∣∣∣
M + 1

M
Im +Ω

∣∣∣∣

and

(Mn− p)m T •
comb|Ω

d
−−−−→
M→∞

{
m∏

i=1

χ2
p−i+1

}
|Im +Ω| .
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Using the simple scale change T •
comb2 = (Mn−p)m T •

comb =
|(B

•

M−B)′(XX′)(B
•

M−B)|

|S
•

comb|

one would have

T •
comb2|Ω

d
−−−→
n→∞

{
m∏

i=1

χ2
p−i+1

}∣∣∣∣
M + 1

M
Im +Ω

∣∣∣∣

and

T •
comb2|Ω

d
−−−−→
M→∞

{
m∏

i=1

χ2
p−i+1

}
|Im +Ω| ,

similar to what happens with T •
M .

3. SIMULATION STUDIES

In order to compare the PPS and the FPPS methods with the Plug-in Sam-
pling method we present the results of some simulations analogous to the ones
presented in [5]. The objectives of these simulations are: (i) to show that the in-
ference methods developed in Section 2 perform as predicted, and (ii) to compare
the measures (radius) obtained from our methods with the ones from the Plug-in
method. All simulations were carried out using the software Mathematicar. To
conduct the simulation, we take the population distribution as a multivariate
normal distribution with expected value given by the right hand side of (1.1), for
m = 2 and p = 3, with matrix of regressor coefficients

B =



1 2
3 2
1 1




and covariance matrix

Σ =

(
1 0.5
0.5 1

)
.

We set α = 6 in order to have both S̄•
M and S•

comb as the unbiased estimators ofΣ.
The regressor variables x1i, x2i, x3i, i = 1, ..., n are generated as i.i.d. N(1, 1) and
held fixed for the entire simulation. Based on Monte Carlo simulation with 105

iterations, we compute an estimate of the coverage probability of the confidence
regions for B and C = AB given by (2.7) and (2.12), defined as percentage of
observed values of the statistics smaller than the respective theoretical cut-off
points, with A = ( 0 1 0

0 0 1 ), using the methodologies described in Section 2. For
M = 1, M = 2 and M = 5, the estimated coverage probabilities of the confidence
sets are shown in Table 2 under the columns B(1) and AB(1) for the first new
procedure in Subsection 2.1, and under the columns B(2) and AB(2) for the
second new procedure in Subsection 2.2. For M = 1, a single column is shown
for each confidence region since the two new procedures are the same.

The results reported in Table 2 for samples of size n = 10, 50, 100, 200, show
that, based on singly and multiply imputed synthetic data, the 0.95 confidence
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Table 2: Average coverage for B and AB

n

M = 1 M = 2 M = 5

B AB
1st Approach 2nd Approach 1st Approach 2nd Approach
B(1) AB(1) B(2) AB(2) B(1) AB(1) B(2) AB(2)

10 0.949 0.951 0.949 0.949 0.951 0.949 0.951 0.950 0.949 0.951
50 0.949 0.950 0.951 0.951 0.950 0.951 0.951 0.950 0.949 0.948

100 0.949 0.949 0.951 0.950 0.949 0.951 0.949 0.951 0.951 0.950
200 0.951 0.951 0.949 0.951 0.951 0.949 0.950 0.951 0.950 0.951

sets for B and AB have an estimated coverage probability approximately equal
to 0.95, confirming that the confidence sets perform as predicted.

In order to measure the radius (distance between the center and the edge)
of the confidence sets, we use the same measure proposed in [5], which is

ΥM = d∗M,m,n,p,γ × |S̃•
M |,

where d∗M,m,n,p,γ is the cut-off point in (2.7) or (2.12). Here we take M = 0 for the

original data, with S̃•
0 = (n − p)S, M = 1 for the singly imputed synthetic data

andM = 2, 5 for the multiply imputed synthetic data, with S̃•
M = M(n−p)S

•
M for

the first new procedure, and S̃•
M = (Mn−p)S•

comb for the second new procedure.
The expected value of this measure will be

E(ΥM ) = d∗M,m,n,p,γ ×
(n− p)!

(n− p−m)!
×KM,n,p,m|Σ|

where K0,n,p,m = 1 for the original data,

KM,n,p,m =
(−2 + κn,p,α,m −m)!

(−2 + κn,p,α,m)!

(Mn−Mp)!

(Mn−Mp−m)!

for the procedure in Subsection 2.1 and

KM,n,p,m =
(−2 + κn,p,α,m −m)!

(−2 + κn,p,α,m)!

(Mn− p)!

(Mn− p−m)!

for the procedure in Subsection 2.2, where κn,α,p,m = n+α−p−m−1, assuming
n + α > p + 2m + 2. For more details about these expected values we refer to
Appendix B.5.

We present in Table 3 the average of the simulated values of the radius
ΥM and its expected value E(ΥM ) for the confidence sets ∆M (B) (first proce-
dure) and ∆comb(B) (second procedure), and in Table 4 the same values for the
confidence sets ∆M (C) (first procedure) and ∆comb(C) (second procedure), for
M = 0, 1, 2, 5 and n = 10, 50, 200. These values may be compared with the values
obtained in [5] for the Plug-in Sampling.

Observing Tables 3 and 4 and comparing the entries in these tables with
the results in [5] for Plug-in Sampling, we may see that when synthetic data are
generated under FPPS, larger radius are obtained. In the singly imputed case,
one can observe that the PPS synthetic datasets will lead to a radius that is
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Table 3: Average values of ΥM and the values of E(ΥM ) for the confidence set for B.

n Orig
M = 1 M = 2

avg exp
1st Procedure 2nd Procedure
avg exp avg exp

10 36.97 507.25 512.19 251.55 252.55 237.64 238.68
50 19.11 176.36 176.53 121.23 121.52 121.23 121.48

200 17.52 154.93 156.06 105.81 106.61 105.90 106.72

n

M = 5
1st Procedure 2nd Procedure
avg exp avg exp

10 175.34 176.18 163.82 168.92
50 92.25 92.80 92.28 92.84

200 81.89 82.39 81.91 82.40

Table 4: Average values of ΥM and the values of E(ΥM ) for the confidence set for C = AB.

n Orig
M = 1 M = 2

avg exp
1st Procedure 2nd Procedure
avg exp avg exp

10 13.43 172.64 172.32 92.23 92.44 86.24 86.61
50 7.33 68.93 68.99 47.75 47.86 47.45 47.55

200 7.10 60.65 61.09 41.74 42.05 41.74 42.05

n

M = 5
1st Procedure 2nd Procedure
avg exp avg exp

10 63.07 63.38 61.34 61.74
50 35.32 35.52 35.08 35.27

200 32.47 32.51 32.54 32.53

approximately two and half times that of the radius under Plug-in Sampling.
As the number M of released synthetic datasets increases, ΥM slowly decreases,
increasing however the difference of the radius between the FPPS and the Plug-
in methods. Eventually, one may need very large values of M , in order to have
values of ΥM close to the value of Υ0. As in [5] we also observe that the values of
ΥM (M > 1), for both new FPPS procedures become identical for larger sample
sizes.

4. AN APPLICATION USING CURRENT POPULATION

SURVEY DATA

In this section, we provide an application based on the same real data used
in [5] to compare the original data inference with the one obtained via PPS, for
the single imputation case, and via FPPS, for the multiple imputation case. The
data are from the U.S. 2000 Current Population Survey (CPS) March supplement,
available online at http://www.census.gov.cps/. Further details on the data may
be found in [5].



Inference for MLR model under FPPS: Comparison with Plug-in Sampling 169

In this application, x, the vector of regressor variables, is defined as

x =
(
1, N, L,A, I(E = 34), ..., I(E = 37), I(E = 39), ..., I(E = 46),

I(M = 3), ..., I(M = 7), I(R = 2), I(R = 4), I(S = 2)
)′
,

where N, L, A, are respectively, the number of people in household, the number
of people in the household who are less than 18 years old and the age for the head
of household, E, M, R and S, are respectively, the education level for the head of
the household (coded to take values 31, 34-37, 39-46), the marital status for the
head of the household (coded to take values 1,3-7), the race of the head of the
household (coded to take values 1,2,4) and the sex of the head of the household
(coded to take values 1,2). I(E = 34) is the indicator variable for E = 34,
I(E = 35) is the indicator variable for E = 35, and so on, and where the indicator
variable for the first code present in the sample for each variable is taken out in
order to make the model matrix full rank. The vector y of response variables
will be formed by the same three numerical variables used in [5], namely, total
household income, household alimony payment and household property tax. After
deleting all entries where at least one of these variables are reported as 0, we
were left with a sample size of 141, and as such the model matrix X = [x1 · · ·xn]
has thus p = 24 rows, n = 141 columns, with rank equal to 24. Throughout
this section we will assume α = 8 in order to have S•

M and S•
comb as unbiased

estimators of Σ. Via PPS method we generate a single synthetic dataset and
show in expression (4.1) the realizations of the unbiased estimator S• for Σ and
of the estimator S for the original data, respectively denoted by S̃•

1 and S̃

(4.1)

S̃•
1 =




1.58572 −0.20443 0.27981
−0.20443 1.61395 0.16089
0.27981 0.16089 0.34648


 , S̃ =




1.1980 −0.0375 0.2970
−0.0375 1.0699 0.1175
0.2970 0.1175 0.4045


 .

In Table 5 we show the realizations of the unbiased estimator B•
1 of B and of the

estimator B̂ of the original data, respectively denoted by B̃•
1 and

˜̂
B.

At a first glance the estimates originated via Plug-in Sampling (see [5]) seem
to be more in agreement with the original data estimates than the ones drawn
from PPS. Nevertheless, this is only one draw and it could be a question of chance
to originate ‘better’ or ‘worse’ data. Therefore, one must conduct inferences on
the regression coefficients based on multiple draws.

Inferences on regression coefficients are obtained by applying the method-
ologies in Subsections 2.1 and 2.2, to analyze the singly imputed synthetic dataset
and multiply imputed synthetic datasets, considering M = 1, M = 2 and M = 5,
using the statistics T •

M and T •
comb and their empirical distributions based on sim-

ulations with 104 iterations, to test the fit of the model and the significance of
some regressors for γ = 0.05. Regarding the test of fit of the model one will find,
for all values of M , results equivalent to the ones obtained for the case when
synthetic data are generated via Plug-in Sampling, i.e., concluding that the ex-
planatory variables in x have a significant role in determining the values of the
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Table 5: Estimates of the regressor coefficients from the FPPS synthetic data (B̃•), Plug-in

synthetic data (B̃∗) and from the original data.

FPPS P lug − in

regressor
SyntheticData (B̃•) SyntheticData (B̃∗) OriginalData (

˜̂
B)

I AP PT I AP PT I AP PT
Intercept 11.4996 3.3381 8.1713 10.1829 3.7094 10.9787 9.8339 4.6663 10.1095

N 0.2801 −0.2562 0.6317 −0.0938 0.1435 0.6189 0.0457 0.0375 0.4585
L −0.3996 0.4960 −0.6017 0.0812 0.0163 −0.5932 0.0186 0.1310 −0.3851
A −0.0061 0.0223 0.0018 0.0075 0.0285 −0.0097 0.0118 0.0181 −0.0020

I(E=34) −4.7732 0.3476 −0.4662 −6.6680 1.2055 −2.0664 −4.4348 0.5944 −1.2291
I(E=35) −5.5990 2.8081 1.9914 −1.2231 −0.0154 −0.7091 −1.4060 0.9188 −0.1468
I(E=36) −4.2467 2.2712 0.6907 −0.4478 2.1718 −0.9172 −2.3100 1.0416 −0.5002
I(E=37) −3.5281 0.7339 1.4653 −1.1547 1.3009 −1.0659 −2.0490 0.7410 0.2335
I(E=39) −3.3369 1.5590 1.0109 −2.5737 0.7234 −1.1346 −2.2208 0.4054 −0.4136
I(E=40) −2.8766 1.7608 1.2350 −1.8032 1.0617 −0.6940 −1.8834 0.8519 0.0852
I(E=41) −2.8266 2.7954 2.3165 −1.5615 1.6881 −0.0291 −1.9468 1.4222 0.1094
I(E=42) −3.5901 2.3990 0.7908 −2.4543 2.0378 −1.1494 −2.3381 1.3840 −0.0808
I(E=43) −1.9852 2.1149 1.9765 −1.7090 1.1722 −0.4341 −1.5057 1.0766 0.5309
I(E=44) −3.2012 2.0495 1.7665 −2.2668 1.5629 −0.2140 −1.8082 1.1301 0.4936
I(E=45) 0.1813 1.1103 1.7535 −1.8984 2.1024 −0.4636 −0.9893 0.7958 0.3057
I(E=46) 0.5791 2.3091 3.5534 0.4558 1.4836 1.1497 −0.6198 1.0766 1.0624
I(M=3) −2.3691 0.8545 −0.3594 −1.9077 −0.4988 −0.4836 −2.7258 0.0964 −0.2156
I(M=4) −4.4234 2.2640 −1.2282 −0.0088 0.5609 −0.2349 −0.0134 0.5887 0.3864
I(M=5) −1.0787 1.5611 0.1170 0.3767 0.6729 0.1184 0.1455 0.4770 0.1558
I(M=6) −0.8300 −0.2358 −0.2713 0.3948 −0.3092 −0.1046 −0.7122 −0.4448 −0.4025
I(M=7) −2.8242 2.9533 0.5456 1.0576 0.5476 0.5187 −0.1990 1.1750 0.6685
I(R=2) 0.3378 3.8443 1.4196 −1.0805 3.0078 −0.1619 −0.9205 1.3432 0.4696
I(R=4) 0.0340 1.9168 −0.4519 0.6883 −0.3211 0.3639 −0.7040 0.0975 −0.1618
I(S=2) 1.3582 −0.4793 −0.1588 0.0564 −0.2309 −0.2849 0.1236 −0.1355 −0.4025

response variables in y since the obtained p-values, computed as the fraction of
values of the empirical distribution of the corresponding statistic that are larger
than the computed value of the statistic, were all approximately zero. The cut-off
points obtained from the empirical distributions of T •

M and T •
comb (respectively

associated with the first and second procedures in Subsections 2.1 and 2.2) are
approximately equal to 0.50357, for M = 1 (where first and second procedures
coincide), to 0.03460 and 0.02569, for M = 2, and to 0.00149 and 0.00094, for
M = 5.

In order to test the significance of some regressors, we propose to study two
different cases, using in each case the same sets of regressors as in [5]. Therefore,
we will test the significance of regressor variables R and S, for the first case, and
regressor variables A and E, for the second case. As such, in the first case, we
will consider a 3× 24 matrix

A =
(
03×21 I3

)

and we will be interested in testing the hypothesis H0 : AB = C0, where C0 is
a 3 × 3 matrix consisting of only zeros. We now generate 100 draws of M = 1,
M = 2 and M = 5 synthetic datasets and gather the different p-values obtained
when using the statistics in (2.5) and (2.10). In Figure 1, one may analyze
the box-plots of the p-values obtained for each procedure together with the ones
obtained in [5] for the same sets of variables, where under Single, 1st and 2nd, one
has the box-plots associated with the new procedures developed in this paper and
under SingleP, 1stP and 2ndP, the box-plots associated to the Plug-in Sampling
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method. The existing line in the box-plots marks the original data p-value 0.249,
obtained using the TO,C statistic in (3) of [5]. It is important to note that in the
case of single imputation (M = 1) the FPPS method reduces to the usual PPS
method.

0.0 0.2 0.4 0.6 0.8 1.0

2ndP

1stP

2nd

1st

(a) M = 2
0.0 0.2 0.4 0.6 0.8 1.0

2ndP

1stP

2nd

1st

(b) M = 5

0.0 0.2 0.4 0.6 0.8 1.0

SingleP

Single

(c) M = 1

Figure 1: Box-plots of p-values obtained, when testing the joint significance of I(R=2), I(R=4)
and I(S=2), from 100 draws of synthetic datasets using procedures in Section 2 and using Plug-in
Sampling method from [5], for M = 1, M = 2 and M = 5 .

In general, from Figure 1, we may note in both new procedures a larger
spread of the p-values when compared with the p-values gathered from Plug-in
Sampling, presenting a distribution of p-values with larger values than the origi-
nal, nonetheless with the majority of these p-values leading to similar conclusions
as those obtained from the original data for γ = 0.05, that is, to not reject the
null hypothesis that variables R and S do not have significant influence on the
response variables.

We may note that in general, in cases where the p-value obtained from the
original data is rather low, we expect to obtain larger p-values for the synthetic
data, given the inherent variability of these synthetic data and the “need” of the
inferential exact methods to preserve the 1− γ coverage level, and impossibility
of compressing the synthetic data p-values towards zero.

For the second case, we are interested in testing the hypothesis H0 :
AB = C0, where C0 is a 13× 13 matrix consisting of only zeros, with

A =
(
013×3 I13 013×8

)
,

corresponding to the test of joint significance of variables A and E. The p-value
obtained for the original data, based on (3) in [5], was 0.033, thus rejecting their
non-significance for γ = 0.05. In Figure 2, we can compare the box-plots obtained
for the FPPS and Plug-in Sampling methods obtained by generating 100 draws
of synthetic datasets, for M = 1, M = 2 and M = 5. The vertical line represents
again the original data’s p-value.

From Figure 2, we note that the spread of p-values is again larger for our
new procedures based on FPPS than the ones from the Plug-in method, majorly
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Figure 2: Box-plots of p-values obtained, when testing the joint significance of A and E, from 100
draws of synthetic datasets using procedures in Section 2 and using Plug-in Sampling method
from [5], for M = 1, M = 2 and M = 5 .

leading to a different conclusion from the inference obtained from the original
data.

For the single imputation case, even if the spread of the p-values gathered
from the PPS is larger than the ones from the Plug-in Sampling, the distributions
of p-values are not that different for the two methods.

For the two cases studied, the two new FPPS multiple imputation proce-
dures presented have very similar p-values. As M increases the spread of the
p-values from FPPS becomes smaller and closer to the original data’s p-value
but at a smaller rate than the p-values from the Plug-in Sampling.

Nevertheless, this larger spread of the p-values from FPPS will be compen-
sated by an increase of the level of confidentiality, as it can be seen in the next
section.

Next, we present the power for the tests

(4.2)
H0 : B = B0( 6= 0) vs H1 : B = B1 and
H0 : AB = C0( 6= 0) vs H1 : AB = C1

for B0 equal to ˜̂
B, rounded to two decimal places,

A =
(
012×4 I12 012×8

)
,

a 12× 12 matrix defined appropriately in order to isolate the indicator variables
associated with the variable E, and C1 = AB1 where B1 takes different values,
found in Table 6, with D a p×m matrix of 1’s.

The power for the synthetic data obtained via FPPS was then simulated
as well as the power for the case when these synthetic datasets are treated as if
they were the original data. We also simulated the power from the original data
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and refer to [5] for the power values for the synthetic data generated via Plug-in
Sampling.

Table 6: Power for the tests to the hypothesis (4.2), withB(1), C(1) andB(2) andC(2) denoting
the first and second procedures proposed by the authors in Subsections 2.1 and 2.2 for FPPS
and in [5] for Plug-in method.

Power for orig data
Methods

M=1 M=2 M=5 synt as orig
B1 = B B B(1) B(2) B(1) B(2) B

B0 + 0.005D 0.537
FPPS 0.215 0.252 0.253 0.275 0.279 1.000
Plug-in 0.279 0.382 0.385 0.471 0.472 1.000

B0 ∗ 0.95 0.945
FPPS 0.535 0.634 0.637 0.700 0.700 1.000
Plug-in 0.679 0.840 0.841 0.906 0.909 1.000

Power for orig data
Methods

M=1 M=2 M=5 synt as orig
C1 = C C C(1) C(2) C(1) C(2) C

A(B0 + 3D) 0.465
FPPS 0.185 0.202 0.207 0.245 0.246 0.996
Plug-in 0.284 0.334 0.343 0.416 0.418 0.975

A(B0 ∗ 0.5) 0.393
FPPS 0.136 0.160 0.161 0.179 0.181 0.996
Plug-in 0.197 0.271 0.279 0.326 0.327 0.959

From the power values in Table 6 we may see that tests based on the
synthetic data via FPPS show lower values for its power than the ones based in
Plug-in generation, as expected, since we are using a method which is supposed
to give more confidentiality by generating more perturbed datasets. We may
see that these values increase along with the value of M , but with a smaller
rate than that for Plug-in Sampling, leading to the conclusion that one will need
larger values of M to obtain a closer power value to the one registered when
testing using the original data. If synthetic data is treated as original, we obtain
a larger power than the one obtained for the original data, which is obviously
misleading, since the estimated coverage probability will be in fact much smaller
than the desired 0.95.

5. PRIVACY PROTECTION OF SINGLY VERSUS MULTIPLY

IMPUTED SYNTHETIC DATA

In order to evaluate the level of protection and at the same time compare
it with the level obtained from synthetic data generated via Plug-in Sampling,
we perform, in this section, a similar evaluation as in [5] using CPS data. Let
us consider Wl = (w1l, ...,wnl), l = 1, ...,M , M synthetic datasets generated
via FPPS, where wil = (w1il, ..., wmil)

′, i = 1, ..., n. The estimate of the original
values yi = (y1i, ..., ymi)

′ will be ŷi =
1
M

∑M
l=1wil. Let us recall the three criteria

used in [5] as measures of the level of privacy protection:

(5.1) Γ1,ǫ =
1

mn

m∑

j=1

n∑

i=1

Pr

[ ∣∣∣∣
ŷji − yji

yji

∣∣∣∣ < ǫ
∣∣∣Y
]
;
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(5.2) Γ2,ǫ =
1

n

n∑

i=1

Pr



√√√√ 1

m

m∑

j=1

(ŷji − yji)2

y2ji
< ǫ

∣∣∣Y


 ;

(5.3) Γ3,ǫ = Pr


 1

mn

m∑

j=1

n∑

i=1

∣∣∣∣
ŷji − yji

yji

∣∣∣∣ < ǫ
∣∣∣Y


 .

Let us also consider, from Γ1,ǫ, the following quantity, for i = 1, ...n and
j = 1, ..,m,

D1,ǫ,ji = Pr

[∣∣∣∣
ŷji − yji

yji

∣∣∣∣ < ǫ
∣∣∣Y
]

and, from Γ3,ǫ,

D3 =
1

mn

m∑

j=1

n∑

i=1

∣∣∣∣
ŷji − yji

yji

∣∣∣∣ .

We use a Monte Carlo simulation with 104 iterations to estimate all three mea-
sures in (5.1)–(5.3) based on the n = 141 households in the CPS data. In Table 7,
we show the values of Γ1,0.01, Γ2,0.01 and the minimum, 1st quartile (Q1), median,
3rd quartile (Q3) and maximum of D1,ǫ, displaying also the values gathered when
using Plug-in Sampling. In Table 8, we show the values of Γ3,0.1 and the mini-
mum, Q1, median, Q3 and maximum of D3 also displaying the values gathered
when using Plug-in Sampling.

Table 7: Values of Γ1,0.01, Γ2,0.01 and a summary of the distribution of D1,0.01.

M Method Γ1,0.01 Γ2,0.01 Min Q1 Median Q3 Max

M = 1
FPPS 0.0602 0.0005 0 0.0385 0.0507 0.0784 0.1455
Plug-in 0.0631 0.0006 0 0.0398 0.0552 0.0854 0.1491

M = 2
FPPS 0.0702 0.0009 0 0.0357 0.0624 0.0910 0.1945
Plug-in 0.0754 0.0010 0 0.0331 0.0697 0.0954 0.2134

M = 5
FPPS 0.0797 0.0012 0 0.0214 0.0711 0.1136 0.2785
Plug-in 0.0879 0.0018 0 0.0110 0.0792 0.1284 0.3279

Table 8: Values of Γ3,0.1 and a summary of the distribution of D3.

M Method Γ3,0.1 Min Q1 Median Q3 Max

M = 1
FPPS 0.0000 0.1091 0.1248 0.1287 0.1325 0.1544
Plug-in 0.0000 0.1050 0.1202 0.1233 0.1264 0.1379

M = 2
FPPS 0.0021 0.0960 0.1088 0.1116 0.1145 0.1324
Plug-in 0.0694 0.0948 0.1026 0.1051 0.1072 0.1159

M = 5
FPPS 0.5008 0.0896 0.0980 0.1000 0.1020 0.1131
Plug-in 1.0000 0.0846 0.0905 0.0920 0.0936 0.0992

Looking at Tables 7 and 8, we observe that the values of the privacy mea-
sures in (5.1)–(5.3) increase for increasing values of M for both procedures devel-
oped in Subsections 2.1 and 2.2, showing that the disclosure risk increases with
the increase in the number of released synthetic datasets. Compared with the
measures obtained under Plug-in Sampling, we may observe a smaller disclosure
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risk in all cases, leading to the conclusion that the proposed FPPS procedures
have an overall higher level of confidentiality. Regarding measures Γ2,ǫ and Γ3,ǫ

this increase reaches in some cases an increase of 50% or more in confidential-
ity. In the single imputation case, under the PPS we also register an increase
of confidentiality when comparing the same measure under Plug-in Sampling,
nevertheless this increase is relatively small.

6. CONCLUDING REMARKS

In this paper the authors derive likelihood-based exact inference for sin-
gle and multiple imputation cases where synthetic datasets are generated via
Fixed-Posterior Predictive Sampling (FPPS). If only one synthetic dataset is re-
leased, then FPPS is equivalent to the usual Posterior Predictive Sampling (PPS)
method. Thus the proposed methodology can be used to analyze a singly im-
puted synthetic data set generated via PPS under the multivariate linear regres-
sion (MLR) model. Therefore this work fills a gap in the literature because the
state of the art methods apply only to multiply imputed synthetic data. Under
the MLR model, the authors derived two different exact inference procedures for
the matrix of regression coefficients, when multiply imputed synthetic datasets
are released. It is shown that the methodologies proposed lead to confidence
sets matching the expected level of confidence, for all sample sizes. Further-
more, while the second proposed procedure displays a better precision for smaller
samples and/or smaller values of M by yielding smaller confidence sets, the two
procedures concur for larger sample sizes and larger values of M , as it is cor-
roborated in theory by remarks 2.2 and 2.3. When compared with inference
procedures for Plug-in Sampling, the procedures proposed based on FPPS lead
to synthetic datasets that give respondents a higher level of confidentiality, that
is, a reduced disclosure risk, nevertheless at the expense of accuracy, since the
confidence sets are larger, as illustrated in the application with the CPS data.
Once likelihood-based exact inferential methods are now made available both for
FPPS/PPS and Plug-in Sampling, it is therefore the responsibility of those in
charge of releasing the data to decide which method to use in order to better
respect the demands and objectives of their institution.
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A. Proof of Theorems 2.1 and 2.2 and Corollaries 2.3 and 2.4

Proof of Theorem 2.1: Given (B̃, Σ̃), from (2.3) we have that, for
every j = 1, ...,M ,

W′
j |B̃,Σ̃ ∼ Nnm(X′B̃, Σ̃⊗ In) =⇒ B•

j |B̃,Σ̃ ∼ Npm(B̃, Σ̃⊗ (XX′)−1)

and
(n− p)S•

j |Σ̃ ∼ Wm(Σ̃, n− p).

Therefore, we have for B
•
M and S

•
M in (2.4),

B
•
M |

B̃,Σ̃ =
1

M

M∑

j=1

B•
j |B̃,Σ̃ ∼ Npm

(
B̃,

1

M
Σ̃⊗ (XX′)−1

)

and

M(n− p)S
•
M |

Σ̃
= (n− p)

M∑

j=1

S
•
j |Σ̃ ∼ Wm(Σ̃,M(n− p)).

Since B
•
M and S

•
M are independent, the conditional joint pdf of (B

•
M ,S

•
M ), given

B̃ and Σ̃, is

(A.1)

f(B
•
M ,S

•
M |B̃, Σ̃) ∝

e−
1
2
tr{MΣ̃−1[(B

•

M−B̃)′XX′(B
•

M−B̃)+M(n−p)S
•

M ]} × |S
•

M |
M(n−p)−m−1

2

|Σ̃|
M(n−p)+p

2

,

while, due to the independence of Σ̃−1 and B̃, generated from (2.1) and (2.2),
respectively, the joint pdf of (B̃, Σ̃−1), given S, is

(A.2) f(B̃, Σ̃−1|S) ∝ |Σ̃|−p/2e−
1
2
tr{Σ̃−1[(B̃−B̂)′XX′(B̃−B̂)+(n−p)S]} |S|

n+α−p−m−1
2

|Σ̃|
n+α−p

2
−m−1

.

On the other hand, given the independence of B̂ and S, defined in (1.2) and (1.3),
the joint pdf of (B̂,S) is given by

(A.3) f(B̂,S) ∝ e−
1
2
tr{Σ−1[(B̂−B)′XX′(B̂−B)+(n−p)S]} |S|

n−p−m−1
2

|Σ|
n
2

.

Thus, by multiplying the three pdf’s in (A.1), (A.2) and (A.3), we obtain
the joint pdf of (B

•
M ,S

•
M , B̃, Σ̃−1, B̂,S).

Since

tr{M(B
•
M − B̃)′XX′(B

•
M − B̃)} = tr{M(B̃−B

•
M )′XX′(B̃−B

•
M )},
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and since from Appendix B.2 we may write

M(B̃−B
•
M )′XX′(B̃−B

•
M ) + (B̃− B̂)′XX′(B̃− B̂) =

=(M + 1)

[
B̃−

1

M + 1
(B• + B̂)

]′
XX′

[
B̃−

1

M + 1
(B• + B̂)

]

+
M

M + 1
(B•−B̂)′XX′(B•−B̂),

by integrating out B̃, we obtain the joint pdf of (B
•
M ,S

•
M , Σ̃−1, B̂,S) proportional

to

e
− 1

2
tr{Σ̃−1[ M

M+1
(B

•

M−B̂)′XX′(B
•

M−B̂)+(n−p)(MS
•

M+S)]+Σ−1[(B̂−B)′XX′(B̂−B)+(n−p)S]}

×
|S

•
M |

M(n−p)−m−1
2

|Σ̃|
M(n−p)+n−α

2
−m−1

|S|n+
α
2
−p−m−1

|Σ|
n
2

.

Since

tr

{
M

M + 1
Σ̃−1(B

•
M − B̂)′(XX′)(B

•
M − B̂) +Σ−1(B̂−B)′(XX′)(B̂−B)

}
=

tr

{
XX′

[
M

M + 1
(B

•
M − B̂)Σ̃−1(B

•
M − B̂)′ + (B̂−B)Σ−1(B̂−B)′

]}

and since from the identities in 1.-3. in Appendix B1 in [5] we may write

M

M + 1
(B

•
M − B̂)Σ̃−1(B

•
M − B̂)′ + (B̂−B)Σ−1(B̂−B)′ =

=

[
B̂−

(
M

M + 1
B

•
MΣ̃−1 +BΣ−1

)(
M

M + 1
Σ̃−1 +Σ−1

)−1
]

(
M

M + 1
Σ̃−1+Σ−1

)[
B̂−

(
M

M + 1
B

•
MΣ̃−1+BΣ−1

)(
M

M + 1
Σ̃−1+Σ−1

)−1
]′

+ (B
•
M −B)

(
M + 1

M
Σ̃+Σ

)−1

(B
•
M −B)′,

integrating out B̂ we will have the joint pdf of (B
•
M ,S

•
M , Σ̃−1,S) proportional to

e−
1
2
tr{(M+1

M
Σ̃+Σ)

−1
(B

•

M−B̂)′XX′(B
•

M−B̂)+(n−p)Σ̃−1(MS
•

M+S)+(n−p)Σ−1S}

×
|S

•
M |

M(n−p)−m−1
2

|Σ̃|
M(n−p)+n−α

2
−m−1

|S|n+
α
2
−p−m−1

|Σ|
n
2

∣∣∣∣
M

M + 1
Σ̃−1 +Σ−1

∣∣∣∣
−p/2

.

Consequently, if we integrate out S we will end up with the joint pdf of
(B

•
M ,S

•
M , Σ̃−1) proportional to

e−
1
2
tr{(M+1

M
Σ̃+Σ)

−1
(B

•

M−B)′XX′(B
•

M−B)+M(n−p)Σ̃−1S
•

M}

(A.4)

×
|B

•
M |

M(n−p)−m−1
2

|Σ̃|
M(n−p)+n−α

2
−m−1

|Σ|−
n
2

∣∣∣∣
M

M + 1
Σ̃−1 +Σ−1

∣∣∣∣
−p/2

|Σ̃−1 +Σ−1|−
2n+α−2p−m−1

2
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as we wanted to prove. It is easy to see that in (A.4), S
•
M and B

•
M , given Σ̃−1,

are separable, with the distributions in the body of the Theorem.

Proof of Theorem 2.2: From the distributions of S
•
M and B

•
M in The-

orem 2.1, and by Theorem 2.4.1 in [3] we have that, for p ≥ m,

(B
•
M −B)′(XX ′)(B

•
M −B)|

Σ̃−1 ∼ Wm

(
M + 1

M
Σ̃+Σ, p

)
.

From Theorem 2.4.2 in [3] and Subsection 7.3.3 in [1] we have
(A.5)

H =

(
M + 1

M
Σ̃+Σ

)− 1
2

(B
•
M−B)′(XX′)(B

•
M−B)

(
M + 1

M
Σ̃+Σ

)′− 1
2

∼ Wm(I, p)

and

(A.6) G = M(n− p)Σ̃− 1
2S

•
MΣ̃′− 1

2 ∼ Wm(I,M(n− p)).

We may thus write T •
M in (2.5) as

T •
M =

|(B
•
M −B)′(XX ′)(B

•
M −B)|

|M(n− p)S
•
M |

=

∣∣∣M+1
M Σ̃+Σ

∣∣∣

|Σ̃|
×

|H|

|G|
,

where, |G| ∼
∏m

i=1 χ
2
n−p−i+1 and |H| ∼

∏m
i=1 χ

2
p−i+1, with independent chi-

square random variables in each product, we end up with a product of indepen-
dent F-distributions, due to the independence of H and G, inherited from the
independence of B

•
M and S

•
M . So, conditionally on Σ̃−1, we have

T •
M |

Σ̃−1 ∼

{
m∏

i=1

p− i+ 1

M(n− p)− i+ 1
Fp−i+1,n−p−i+1

}
×

∣∣∣∣Σ̃
−1

(
M + 1

M
Σ̃+Σ

)∣∣∣∣ ,

where∣∣∣∣Σ̃
−1

(
M + 1

M
Σ̃+Σ

)∣∣∣∣ =
∣∣∣∣
M + 1

M
I+ Σ̃−1Σ

∣∣∣∣ =
∣∣∣∣
M + 1

M
Σ−1 + Σ̃−1

∣∣∣∣ |Σ|

=
∣∣∣Σ1/2

∣∣∣
∣∣∣∣
M + 1

M
Σ−1 + Σ̃−1

∣∣∣∣
∣∣∣Σ1/2

∣∣∣ =
∣∣∣∣
M + 1

M
I+Σ1/2Σ̃−1Σ1/2

∣∣∣∣ .

As such, from (A.4), integrating out B
•
M and S

•
M , we end up with the pdf

of Σ̃−1 proportional to

|Σ̃|
M(n−p)

2

∣∣∣∣
M + 1

M
Σ̃+Σ

∣∣∣∣

p

2 1

|Σ̃|
M(n−p)+n−α

2
−m−1

|Σ|−
n
2

×

∣∣∣∣
M

M + 1
Σ̃−1 +Σ−1

∣∣∣∣
−p/2

|Σ̃−1 +Σ−1|−
2n+α−2p−m−1

2

= |Σ̃−1|
n+α−2m−2

2

∣∣∣∣
M + 1

M
Σ̃+Σ

∣∣∣∣

p

2

|Σ|−
n
2

×

∣∣∣∣
M

M + 1
Σ̃−1 +Σ−1

∣∣∣∣
−p/2

|Σ̃−1 +Σ−1|−
2n+α−2p−m−1

2 .
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Making the transformation Ω=Σ
1
2 Σ̃−1Σ

1
2 , which implies Σ̃−1=Σ− 1

2ΩΣ− 1
2 ,

with the Jacobian of the transformation from Σ̃−1 to Ω being |Σ|−
m+1

2 , we have
the pdf of Ω proportional to

|Ω|
n+α−2m−2

2

∣∣∣∣
M + 1

M
Ω−1 + Im

∣∣∣∣

p

2
∣∣∣∣

M

M + 1
Ω+ Im

∣∣∣∣
−p/2

|Ω+ Im|−
2n+α−2p−m−1

2 .

Since |M+1
M Ω−1 + Im|

p

2 =
(
M+1
M

)p/2
| M
M+1Ω+ Im|

p

2 |Ω|−
p

2 we end up with

f(Ω) ∝ |Ω|
n+α−p−2m−2

2 × |Ω+ Im|−
2n+α−2p−m−1

2

independent of Σ. Therefore, we may conclude that

T •
M |Ω ∼

{
m∏

i=1

p− i+ 1

n− p− i+ 1
Fp−i+1,M(n−p)−i+1

}∣∣∣∣
M + 1

M
Im +Ω

∣∣∣∣

where from [6, Theorem 8.2.8.] Ω has the same distribution as A
1
2
1A

−1
2 A

1
2
1 with

A1 ∼ Wm(Im, n + α − p − m − 1) and A2 ∼ Wm(Im, n − p), two independent
random variables.

Proof of Corollary 2.3: The proof is identical to the proof of Theorem
2.1 replacing the joint pdf of (B

•
M ,S

•
M ) by the joint pdf of (B

•
M ,S•

comb), noting
that we have

(Mn− p)S•
comb|Σ̃ ∼ Wm(Σ̃,Mn− p).

Proof of Corollary 2.4: The proof is identical to that of Theorem 2.2
replacing S

•
M by S•

comb, noting that from Corollary 2.3, conditional on Σ̃, B
•
M is

Npm(B, (Σ+ 1
M
Σ̃)⊗ (XX′)−1) and (Mn− p)S•

comb is Wm(Σ̃,Mn− p), indepen-

dent of B
•
M .

B. Details on several results

B.1. The posterior distributions for Σ and B

Let us start by observing that Y|B,Σ ∼ Nmn(B
′X, In ⊗Σ) and that the

likelihood function for Y will be

l(B,Σ|Y) ∝ |Σ|−n/2e−
1
2
tr{Σ−1(Y−B′X)(Y−B′X)′}.

We may then get the joint posterior distribution of (B,Σ) from the product of
the prior and likelihood functions as

(B.1) π(B,Σ|Y) ∝ |Σ|−
n+α
2 e−

1
2
tr{Σ−1(Y−B′X)(Y−B′X)′}.
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The exponent in (B.1) may be written as

tr{Σ−1(Y −B′X)(Y −B′X)′} = tr
{
Σ−1(Y − B̂′X+ B̂′X−B′X)

× (Y − B̂′X+ B̂′X−B′X)′
}

= tr
{
Σ−1

[
(Y − B̂′X)(Y − B̂′X)′

]}

+ tr
{
Σ−1

[
(Y − B̂′X)(B̂′X−B′X)′ + (B̂′X−B′X)(Y − B̂′X)′

+ (B̂′X−B′X)(B̂′X−B′X)′
]}

= tr
{
Σ−1

[
(Y − B̂′X)(Y − B̂′X)′

]
+ (B− B̂)′(XX′)(B− B̂)

}

+ 2tr
{
Σ−1

[
(Y − B̂′X)(B̂′X−B′X)′

]}
,

where, using B̂′ =
[
(XX′)−1XY′

]′
= YX′(XX′)−1,

(Y − B̂′X)(B̂′X−B′X)′ = YX′B̂−YX′B+ B̂XX′B̂+ B̂XX′B

= YX′B̂−YX′B+YX′(XX′)
−1

XX′B̂

+YX′(XX′)
−1

XX′B

= YX′B̂−YX′B−YX′B̂+YX′B = 0.

Therefore, the joint posterior distribution of (B,Σ) is proportional to

|Σ|−
n+α−p

2 e−
n−p

2
tr{Σ−1S} × |Σ|−

p

2 e−
1
2
tr{Σ−1(B−B̂)′(XX′)(B−B̂)}

In conclusion, by Corollary 2.4.6.2. in [3], the posterior distribution for Σ
is

Σ|S ∼ W−1
m ((n−p)S,n+α− p) =⇒ Σ−1|S ∼ Wm

(
1

n−p
S−1, n+α−p−m−1

)

and the posterior distribution for B is

B|
B̂,Σ ∼ Npm(B̂,Σ⊗ (XX′)−1),

assuming n+ α > p+m+ 1.

B.2. Matrix calculations required in the proof of Theorem 2.1

For B̃, B and X defined as in Section 2 we have

M(B̃−B
•
M )′XX′(B̃−B

•
M ) + (B̃− B̂)′XX′(B̃− B̂) =

= (M + 1)B̃′XX′B̃−MB
•′

MXX′B̃−MB̃′XX′B
•
M +MB

•′

MXX′B
•
M

− B̂′XX′B̃− B̃′XX′B̂+ B̂′XX′B̂

= (M + 1)B̃′XX′B̃− B̃′XX′(MB
•
M + B̂)− (MB

•
M + B̂)

′
XX′B̃

+MB
•′

MXX′B
•
M + B̂′XX′B̂
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= (M + 1)

[
B̃−

1

M + 1
(MB

•
M + B̂)

]′
XX′

[
B̃−

1

M + 1
(MB

•
M + B̂)

]

+MB
•′

MXX′B
•
M + B̂′XX′B̂−

1

M + 1
(MB

•
M + B̂)′XX′(MB

•
M + B̂).

Since,

MB
•′

MXX′B
•
M + B̂′XX′B̂−

1

M + 1
(MB

•
M + B̂)′XX′(MB

•
M + B̂)

= MB
•′

MXX′B
•
M + B̂′XX′B̂

−
M2

M + 1
B

•′

MXX′B
•
M −

1

M + 1
B̂′XX′B̂

−
M

M + 1
B

•′

MXX′B̂−
M

M + 1
B̂′XX′B

•
M

=
M

M + 1
B

•′

MXX′B
•
M +

M

M + 1
B̂′XX′B̂−

M

M + 1
B

•′

MXX′B̂

−
M

M + 1
B̂′XX′B

•
M

=
M

M + 1
(B

•
M − B̂)′XX′(B

•
M − B̂)

we may write

M(B̃−B
•
M )′XX′(B̃−B

•
M ) + (B̃− B̂)′XX′(B̃− B̂) =

= (M + 1)

[
B̃−

1

M + 1
(MB

•
M + B̂)

]′
XX′

[
B̃−

1

M + 1
(MB

•
M + B̂)

]

+
M

M + 1
(B

•
M − B̂)′XX′(B

•
M − B̂) .

B.3. Details about the derivations of results 1, 2 and 5 in Section 2.1

Details on Result 1

From (A.4) we may immediately conclude that the MLE of B based on the
synthetic data will be B

•
M with

E(B
•
M ) = (XX′)−1X

1

M

M∑

j=1

E(W′
j) = (XX′)−1XX′E(B̃) = E(B̂) = B

and

(B.2) V ar(B
•
M ) = V ar[E(B

•
M |B̃, Σ̃)] + E[V ar(B

•
M |B̃, Σ̃)].
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For the first term in (B.2), we have

V ar[E(B
•
M |B̃, Σ̃)] = V ar[B̃] = V ar[E(B̃|B̂, Σ̃)] + E[V ar(B̃|B̂, Σ̃)] =

= V ar(B̂)+E[Σ̃⊗ (XX′)−1] = Σ⊗ (XX′)−1+
n− p

n+ α− p− 2m− 2
Σ⊗ (XX′)−1

and for the second term, we have

E[V ar(B
•
M |B̃, Σ̃)] = E

[
1

M
Σ̃⊗ (XX′)−1

]
=

1

M

n− p

n+ α− p− 2m− 2
Σ⊗ (XX′)−1,

so that

V ar(B
•
M ) =

2M(n− p−m− 1) + n− p+Mα

M(n+ α− p− 2m− 2)
Σ⊗ (XX′)−1

under the condition that n+ α > p+ 2m+ 2.

Details on Result 2

E(S
•
M ) = E(Σ̃) = E

(
n− p

n+ α− p− 2m− 2
S

)
=

n− p

n+ α− p− 2m− 2
Σ.

Details on Result 5

Let us consider H and G given by (A.5) and (A.6). We will begin by
rewriting all four classical statistics T •

1,M , T •
2,M , T •

3,M and T •
4,M in Subsection 2.1,

in order to make them assume the same kind of form and then we will prove why
all of them are non-pivotal, without loss of generality considering M = 1. The
first statistic, T •

1,M may be rewritten as

T •
1,1 =

|G|

|G+ (n− p)Σ̃−1/2(2Σ̃+Σ)1/2H(2Σ̃+Σ)1/2Σ̃−1/2|
.

while T •
2,M and T •

3,M may be rewritten as

T •
2,1 = (n− p)tr

[
H(2Σ̃+Σ)1/2Σ̃−1/2G−1Σ̃−1/2(2Σ̃+Σ)1/2

]
,

T •
3,1 = tr{H× [H+ (2Σ̃+Σ)−1/2Σ̃1/2 × (n− p)G× Σ̃1/2(2Σ̃+Σ)−1/2]−1}.

Concerning T •
4,1, we have T •

4,1 = λ1 where λ1 denotes the largest eigenvalue of

(n− p)H× (2Σ̃+Σ)1/2Σ̃−1/2 ×G−1 × Σ̃−1/2(2Σ̃+Σ)1/2.

We can observe that a term in the denominator of the expression T •
1,1 is

Σ̃−1/2(2Σ̃+Σ)1/2H(2Σ̃+Σ)1/2Σ̃−1/2|
Σ̃−1 ∼ Wm((2I+ Σ̃−1/2ΣΣ̃−1/2), p),

while in the expressions for the other statistics there are similar terms. These
terms involve a product similar to Σ̃−1/2(2Σ̃+Σ)1/2 that cannot be simplified
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to an expression which is not a function of Σ, therefore making these statistics
non-pivotal.

Thus, in order to illustrate how these statistics are dependent on Σ, we can
analyze in Figure 3 the empirical distributions of T •

1,1, T
•
2,1, T

•
3,1 and T •

4,1 when

we consider a simple case where m = 2, p = 3, α = 4, n = 100 and Σ =
(

1 ρ
ρ 1

)

with ρ = {0.2, 0.4, 0.6, 0.8} for a simulation size of 1000.
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Figure 3: Smoothed empirical distributions and cut-off points (γ=0.05) of T •

1,1, T
•

2,1, T
•

3,1 and
T •

4,1 for ρ = {0.2,0.4,0.6,0.8}.

B.4. Details about the derivation of result 1 in Subsection 2.2

Recalling that (Mn − p)S•
comb|Σ̃ ∼ Wm(Σ̃,Mn − p) and that Σ̃−1|S ∼

Wm( 1
n−pS

−1, n+ α− p−m− 1) we immediately obtain

E(S•
comb) = E(Σ̃) = E

(
n− p

n+ α− p− 2m− 2
S

)
=

n− p

n+ α− p− 2m− 2
Σ.

B.5. Details about the derivations of the results in Section 3

Details on the Expected Values in Section 3

Recall that (n− p)S ∼ Wm(Σ, n− p), thus implying that

E(|(n− p)S|) = |Σ|E(

m∏

i=1

χ2
n−p−i+1) =

(n− p)!

(n− p−m)!
|Σ|,
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and recall that

Σ̃|S ∼ W−1
m ((n−p)S, n+α−p) =⇒ Σ̃−1|S ∼ Wm

(
1

n− p
S−1, n+α−p−m−1

)

thus implying that, making κn,α,p,m = n+ α− p−m− 1, given S,

E(|Σ̃|) = E(|Σ̃−1|−1) = |(n− p)S|E

(
1∏m

i=1 χ
2
κn,α,p,m−i+1

)

= |(n− p)S|
(−2 + κn,α,p,m −m)!

(−2 + κn,α,p,m)!
,

since
∏m

i=1 χ
2
κn,α,p,m−i+1 is a product of independent χ2 variables. Also recalling

that, given Σ̃, we have M(n− p)S
•
M ∼ Wm(Σ̃,M(n− p)) and (Mn− p)S•

comb ∼
Wm(Σ̃,Mn− p), we may conclude that, given Σ̃,

E(|M(n− p)S•
M |) =

(Mn−Mp)!

(Mn−Mp−m)!
× |Σ̃|

and

E(|(Mn− p)S•
comb|) =

(Mn− p)!

(Mn− p−m)!
× |Σ̃|.

Combining the results for E(|(n − p)S|) and E(|Σ̃|)|S with each of the
expected values for |M(n − p)S•

M | and |(Mn − p)S•
comb|, we end up with the

expression for E(ΥM) found in Section 3.

C. Joining multiple datasets into a single dataset

Let us consider the M synthetic datasets as one only dataset of size nM
(
Wa

Xa

)
=

(
W1 W2 . . . WM

X X . . . X

)
,

where Wa = (W1|...|WM ) is the m× nM matrix of the synthesized data under
FPPS and Xa = (X|...|X) the p × nM matrix of the M repeated ‘fixed’ sets of
covariates, from the original data.

Let
Ba = (XaX

′
a)

−1XaW
′
a

be the estimator for B, based on the dataset of size nM , obtained by joining the
M synthetic datasets in one only dataset. Consequently one has that

Ba = (XaX
′
a)

−1XaW
′
a = (M(XX′))−1XaW

′
a =

1

M
(XX′)−1XaW

′
a

=
1

M
(XX′)−1

(
X| . . . |X︸ ︷︷ ︸

M times

)
W′

a =
1

M

(
(XX′)−1XW1+. . .+(XX′)−1XWM

)

=
1

M
(XX′)−1X (W1 + ...+WM ) = (XX′)−1XWM = B

•
M ,



Inference for MLR model under FPPS: Comparison with Plug-in Sampling 185

which is same estimator for B as in (2.8).

Now let

Sa =
1

nM − p
(Wa −B′

aXa)(Wa −B′
aXa)

′

be the estimator for Σ, based on the dataset of size nM , obtained by joining the
M synthetic datasets in one only dataset.

Observe that WM = 1
M

∑M
j=1Wj , defined before expression (2.8), can be

written as

WM =
1

M
WaR

with R =
(−→
1M ⊗ In

)
where

−→
1M is a vector of 1’s of size M .

Now let us consider the estimator Sw of Σ, defined in the text, before
expression (2.8). This estimator may be written as

Sw =
n∑

i=1

M∑

j=1

(wji −wi)(wji −wi)
′,

where wji is the i-th column of Wj (i = 1, . . . , n; j = 1, . . . ,M). We may thus
write

Sw =
(
Wa −

−→
1 ′

M ⊗WM

)(
Wa −

−→
1 ′

M ⊗WM

)′

=

(
Wa −

1

M

−→
1 ′

M ⊗ (WaR)

)(
Wa −

1

M

−→
1 ′

M ⊗ (WaR)

)′

=

(
Wa −

1

M
WaRR′

)(
Wa −

1

M
WaRR′

)′

and the estimator Smean of Σ, defined right after expression (2.9) as

Smean =

(
1

M
WaR−

1

M
B′

aXaR

)(
1

M
WaR−

1

M
B′

aXaR

)′

.

We may therefore write the combination estimator Scomb defined in (2.9)
as

Scomb =
1

nM − p

[(
Wa −

1

M
WaRR′

)(
Wa −

1

M
WaRR′

)′]

+
1

nM − p

[
M ×

(
1

M
WaR−

1

M
B′

aXaR

)(
1

M
WaR−

1

M
B′

aXaR

)′]

To prove that Scomb is equal to Sa it will only be necessary to focus on
(
Wa −

1

M
WaRR′

)(
Wa −

1

M
WaRR′

)′

+M ×

(
1

M
WaR−

1

M
B′

aXaR

)(
1

M
WaR−

1

M
B′

aXaR

)′
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= WaW
′
a −

1

M
WaRR′W′

a −
1

M
WaRR′W′

a +
1

M2
WaRR′RR′W′

a

+
1

M
WaRR′W′

a −
1

M
B′

aXaRR′W′
a

−
1

M
WaRR′X′

aBa +
1

M
B′

aXaRR′X′
aBa ,

which, using the fact that 1
MXaRR′ = Xa and 1

MRR′RR′ = RR′, may be
written as

WaW
′
a −

1

M
WaRR′W′

a −
1

M
WaRR′W′

a +
1

M
WaRR′W′

a

+
1

M
WaRR′W′

a −B′
aXaW

′
a −WaX

′
aBa +B′

aXaX
′
aBa

= WaW
′
a −B′

aXaW
′
a −WaX

′
aBa +B′

aXaX
′
aBa

= (Wa −B′
aXa)(Wa −B′

aXa)
′ = (nM − p)Sa .
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Abstract:

• In finance, insurance and statistical quality control, among many other areas of appli-
cation, a typical requirement is to estimate the value-at-risk (VaR) at a small level q,
i.e. a high quantile of probability 1− q, a value, high enough, so that the chance of an
exceedance of that value is equal to q, small. The semi-parametric estimation of high
quantiles depends strongly on the estimation of the extreme value index (EVI), the
primary parameter of extreme events. And most semi-parametric VaR-estimators do
not enjoy the adequate behaviour, in the sense that they do not suffer the appropriate
linear shift in the presence of linear transformations of the data. Recently, and for
heavy tails, i.e. for a positive EVI, new VaR-estimators were introduced with such a
behaviour, the so-called PORT VaR-estimators, with PORT standing for peaks over a
random threshold. Regarding EVI-estimation, new classes of PORT-EVI estimators,
based on a powerful generalization of the Hill EVI-estimator related to adequate mean-
of-order-p (MOp) EVI-estimators, were even more recently introduced. In this article,
also for heavy tails, we introduce a new class of PORT-MOp VaR-estimators with the
above mentioned behaviour, using the PORT-MOp class of EVI-estimators. Under
convenient but soft restrictions on the underlying model, these estimators are consis-
tent and asymptotically normal. The behaviour of the PORT-MOp VaR-estimators
is studied for finite samples through Monte-Carlo simulation experiments.
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1. INTRODUCTION AND SCOPE OF THE ARTICLE

In the field of extreme value theory (EVT) it is usually said that a cumulative
distribution function (CDF) F has a heavy right-tail whenever the right tail
function, given by F := 1−F , is a regularly varying function with a negative index
of regular variation α = −1/ξ, i.e. for every x > 0, limt→∞ F (tx)/F (t) = x−1/ξ,
ξ > 0. Then we are in the domain of attraction for maxima of an extreme value
(EV) CDF,

(1.1) EVξ(x) = exp(−(1 + ξx)−1/ξ), x > −1/ξ, ξ > 0,

and we write F ∈ DM(EVξ>0). More generally, we can have ξ ∈ R, i.e. the
CDF EVξ(x) = exp

(
− (1 + ξx)−1/ξ

)
, 1 + ξx > 0, if ξ 6= 0, and by continuity

the so-called Gumbel CDF, EV0(x) = exp(− exp(−x)), x ∈ R, for ξ = 0. The
parameter ξ is the extreme value index (EVI), one of the primary parameters in
probabilistic and statistical EVT.

In a context of heavy tails, and with the notation U(t) := F←(1 − 1/t),
t ≥ 1, F←(y) := inf{x : F (x) ≥ y} the generalized inverse function of the under-
lying model F , the positive EVI appears, for every x > 0, as the limiting value,
as t→∞, of the quotient (lnU(tx)− lnU(t))/ lnx (de Haan, 1970). Indeed, with
the usual notation Ra for the class of regularly varying functions with an index
of regular variation a, we can further say that

(1.2) F ∈ D+
M := DM(EVξ>0) ⇐⇒ F = 1− F ∈ R−1/ξ ⇐⇒ U ∈ Rξ,

with the first necessary and sufficient condition given in Gnedenko (1943) and
the second one in de Haan (1984). Heavy-tailed distributions have recently been
accepted as realistic models for various phenomena in the most diverse areas of
application, among which we mention bibliometrics, biometry, economics, ecol-
ogy, finance, insurance, and statistical quality control.

For small values of a level q, and as usual in the area of statistical EVT, we
want to extrapolate beyond the sample, estimating the value-at-risk (VaR) at a
level q, denoted by VaRq, or equivalently, a high quantile χ1−q, i.e. a value such
that F (χ1−q) = 1− q, i.e.

(1.3) VaRq ≡ χ1−q := U(1/q), q = qn → 0, as n→∞.

We further often assume that nqn → K as n→∞, K ∈ [0, 1], and base inference
on the k + 1 upper order statistics (OSs). As usual in semi-parametric estima-
tion of parameters of extreme events, we shall assume that k is an intermediate
sequence of integers in [1, n[, i.e.

(1.4) k = kn →∞ and k/n→ 0, as n→∞.

To derive the asymptotic non-degenerate behaviour of estimators of parameters
of extreme events under a semi-parametric framework, it is further convenient to
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assume a bit more than the first-order condition, U ∈ Rξ, provided in (1.2). A
common condition for heavy tails, also assumed now, is the second-order condition
that guarantees that

(1.5) lim
t→∞

lnU(tx)− lnU(t)− ξ lnx

A(t)
=

{ xρ−1
ρ , if ρ < 0,

lnx, if ρ = 0,

being ρ (≤ 0). Note that the limit function in (1.5) is necessarily of the given
form and |A| ∈ Rρ (Geluk and de Haan, 1987). Sometimes, for sake of simplicity
and for technical reasons, we assume to be working in a sub-class of Hall-Welsh
class of models (Hall and Welsh, 1985), where there exist ξ > 0, ρ < 0, C > 0
and β 6= 0, such that, as t→∞,

(1.6) U(t) = C tξ
(

1 +A(t)
(
1 + o(1)

)
/ρ
)
, with A(t) = ξβtρ.

The parameters β and ρ are the so-called generalized scale and shape second-
order parameters, respectively. Typical heavy-tailed models, like the EVξ>0 in
(1.1) (ρ = −ξ), the Fréchet CDF, Φα(x) = exp(−x−α), x ≥ 0, α > 0 (ξ = 1/α,
ρ = −1), the Generalized Pareto, GPξ>0(x) = 1+ln EVξ(x), x ≥ 0 (ρ = −ξ), and
the well-known Student-tν (ξ = 1/ν, ρ = −2/ν) belong to such a class. Then, the
second-order condition in equation (1.5) holds, with A(t) = ξβtρ, β 6= 0, ρ < 0,
as given in (1.6). Further details on these semi-parametric frameworks can be
seen in Beirlant et al. (2004), de Haan and Ferreira (2006) and Fraga Alves et al.
(2007), among others. Semi-parametric statistical choice tests of F ∈ D+

M can
be seen in Fraga Alves and Gomes (1996) and Dietrich et al. (2002), also among
others.

Under the validity of condition (1.6), and using the notation a(t) ∼ b(t) if
and only if limt→∞ a(t)/b(t) = 1, we can guarantee that U(t) ∼ Ctξ, as t → ∞,
and from (1.3), we have

VaRq = U(1/q) ∼ Cq−ξ, as q → 0.

An obvious estimator of VaRq is thus Ĉq−ξ̂, with Ĉ and ξ̂ any consistent estima-
tors of C and ξ, respectively. Given a sample Xn := (X1, . . . , Xn), let us denote
(X1:n ≤ · · · ≤ Xn:n) the set of associated ascending OSs. A common estimator of
C, proposed in Hall (1982), is

Ĉ ≡ Ck,n,ξ̂ := Xn−k:n(k/n)ξ̂

and

(1.7) Qk,q,ξ̂ = Ĉ q−ξ̂ = Xn−k:n
(
k/(nq)

)ξ̂
is the straightforward VaR-estimator at the level q (Weissman, 1978). In classical
approaches, we often consider for ξ̂ the Hill (H) estimator (Hill, 1975), the average
of the log-excesses, i.e.

(1.8) Hk ≡ Hk(Xn) :=
1

k

k∑
i=1

(lnXn−i+1:n − lnXn−k:n) .
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But the Hill EVI-estimator is the logarithm of the geometric mean (or mean of
order 0) of

(1.9) Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n.

It is thus sensible to consider the mean-of-order-p (MOp) of Uik, 1 ≤ i ≤ k, as
done in Brilhante et al. (2013), for p ≥ 0, and in Gomes and Caeiro (2014) for
any p ∈ R. See also, Paulauskas and Vaičiulis (2013, 2015), Beran et al. (2014),
Gomes et al. (2015a, 2016a) and Caeiro et al. (2016a). We then more generally
get the class of MOp EVI-estimators,

(1.10) Hk(p) = Hk(p; Xn) :=


1
p

(
1− k/

k∑
i=1

Upik

)
, if p < 1/ξ, p 6= 0,

Hk, if p = 0,

with Hk(0) ≡ Hk, given in (1.8), and Uik given in (1.9), 1 ≤ i ≤ k < n. Associated
PORT MOp VaR-estimators are thus a sensible generalization of the Weissman-
Hill VaR-estimators.

The MOp EVI-estimators, in (1.10), depend now on this tuning parameter
p ∈ R, are highly flexible, but, as often desirable, they are not location-invariant,
depending strongly on possible shifts in the underlying data model. Also, most
of the semi-parametric VaR-estimators in the literature, like the ones in Beirlant
et al. (2008), Caeiro and Gomes (2008), the MOp VaR-estimators in Gomes et al.
(2015b), as well as in other papers on semi-parametric quantile estimation prior
to 2008 (see also, the functional equation in (1.7), Beirlant et al., 2004, and de
Haan and Ferreira, 2006), do not enjoy the adequate behaviour in the presence
of linear transformations of the data, a behaviour related to the fact that for any
high-quantile, VaRq, we have

(1.11) VaRq(λ+ δX) = λ+ δVaRq(X)

for any model X, real λ and positive δ. Recently, and for ξ > 0, Araújo Santos et
al. (2006) provided VaR-estimators with the linear property in (1.11), based on
a sample of excesses over a random threshold Xns:n, ns := bnsc + 1, 0 ≤ s < 1,
where bxc denotes the integer part of x, being s possibly null only when the
underlying parent has a finite left endpoint (see Gomes et al., 2008b, for further
details on this subject). Those VaR-estimators are based on the sample of size
n(s) = n− ns, defined by

(1.12) X(s)
n :=

(
Xn:n −Xns:n, . . . , Xns+1:n −Xns:n

)
.

Such estimators were named PORT-VaR estimators, with PORT standing for
peaks over a random threshold, and were based on the PORT-Hill, Hk(X

(s)
n ),

k < n− ns, with Hk(Xn) provided in (1.8). Now, we further suggest for an
adequate VaR-estimation, the use of the PORT-MOp EVI-estimators,

(1.13) Hk(p, s) := Hk

(
p; X(s)

n

)
, k < n− ns,

introduced and studied both theoretically and for finite samples in Gomes et al.

(2016c), with Hk(p; Xn) and X
(s)
n respectively provided in (1.10) and (1.12). Such

PORT-MOp VaR-estimators are given by
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(1.14) V̂aRq(k; p, s) := (Xn−k:n −Xns:n)

(
k

nq

)Hk(p,s)

+Xns:n.

Under convenient restrictions on the underlying model, this class of VaR-estimators
is consistent and asymptotically normal for adequate k, with k + 1 the number
of upper OSs used in the semi-parametric estimation of VaRq.

In Section 2 of this paper, and following closely Henriques-Rodrigues and
Gomes (2009) and Gomes et al. (2016c), we present a few introductory technical
details and asymptotic results associated with the PORT methodology. A few
comments on the asymptotic behaviour of the PORT-classes of VaR-estimators
under study will be provided in Section 3. In Section 4, through the use of Monte-
Carlo simulation techniques, we shall exhibit the performance of the PORT-MOp

VaR-estimators in (1.14), comparatively to the classical Weissman-Hill, MOp and
a PORT version of the most simple reduced-bias (RB) VaR-estimators in Gomes
and Pestana (2007). In Section 5, we refer possible methods for the adaptive
choice of the tuning parameters (k, p, s), either based on the bootstrap or on
heuristic methodologies, and provide some concluding remarks.

2. A FEW TECHNICAL DETAILS ASSOCIATED WITH THE
PORT METHODOLOGY

First note that if there is a shift λ ∈ R in the model, i.e. if the CDF
F (x) = Fλ(x) = F0(x− λ), the EVI does not change with λ. Indeed, if a shift λ
is induced in data associated with a random variable (RV) X, i.e. if we consider
Y = X + λ, Uλ(t) ≡ UY (t) = UX (t) + λ. Consequently, and due to the fact that
F ∈ DM(EVξ) if and only if there exists a function a(·) such that

U(tx)− U(t)

a(t)
−→
t→∞

(xξ − 1)/ξ (de Haan, 1984),

the EVI, ξ, does not depend on any shift λ, i.e., Uλ ∈ Rξ. However, the same
does not happen to the second-order parameters. Indeed, condition (1.5) can be
rewritten as

(2.1) lim
t→∞

lnUλ(tx)− lnUλ(t)− ξ lnx

Aλ(t)
=
xρλ − 1

ρλ
,

for all x > 0, with |Aλ| ∈ Rρλ , and for λ 6= 0,

ρλ =

{
ρ0 if ρ0 > −ξ,
−ξ if ρ0 ≤ −ξ.

Furthermore, and again for λ 6= 0, the function Aλ(t) in (2.1) can be chosen as

(2.2) Aλ(t) :=


− ξ λ
U0(t)

if ρ0 < −ξ,

A0(t)− ξ λ
U0(t)

if ρ0 = −ξ,

A0(t) if ρ0 > −ξ.
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In Hall-Welsh class of models, in (1.6), we can thus consider the parameterization
Aλ(t) = ξβλt

ρλ . Further details on the influence of such a shift in
(
β0, ρ0, A0(·)

)
and on the estimation of generalized shape and scale second-order parameters
can be found in Henriques-Rodrigues et al. (2014, 2015).

2.1. Asymptotic behaviour of the PORT EVI-estimators

In this section we present, under the validity of the second-order condition
in (1.5), the asymptotic distributional representations of the PORT-MOp EVI-
estimators, Hk(p, s), in (1.13). Generalizing the results of Theorem 2.1 in Araújo
Santos et al. (2006), and on the basis of the asymptotic behaviour of the MOp

EVI-estimators derived in Brilhante et al. (2013), Gomes et al. (2016c), proved
the following theorem:

Theorem 2.1 (Gomes et al., 2016c). If the second order condition (1.5)
holds, k = kn is an intermediate sequence of positive integers, i.e. (1.4) holds, for
any real s, 0 ≤ s < 1, with χs := F←(s), finite, we have for Hk(p, s), in (1.13),
an asymptotic distributional representation of the type,

(2.3) Hk(p, s)
d
= ξ +

σ
H(p)

P
H(p)
k√
k

+

(
b
H(p)

A0(n/k) +
c
H(p)

χs

U0(n/k)

)
(1 + op(1)),

where P
H(p)
k is a sequence of asymptotically standard normal RVs,

(2.4) σ
H(p)

:=
ξ(1− pξ)√

1− 2pξ
, b

H(p)
:=

1− pξ
1− pξ − ρ

, c
H(p)

:=
ξ(1− pξ)

1− (p− 1)ξ
.

3. ASYMPTOTIC BEHAVIOUR OF PORT VAR–ESTIMATORS

Assuming that we are working with data from Fλ(x) = F0(x − λ), i.e. an
underlying model with location parameter λ ∈ R, we first present the following
result on the asymptotic behaviour of intermediate OSs, proved in Ferreira et al.
(2003).

Proposition 3.1 (Ferreira et al., 2003). Under the second-order frame-
work in (2.1) and for intermediate sequences of positive integers k, i.e. if (1.4)
holds,

Xn−k:n
d
= Uλ(n/k)

(
1 +

ξ Bk√
k

+ op

( 1√
k

)
+ op(Aλ(n/k))

)
with Uλ(t) = λ + U0(t), Aλ(t) given in (2.2), and where Bk is asymptotically
standard normal. Moreover, for i < j, Cov(Bi, Bj) =

√
i j (1− j/n)/(j − 1).
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Straightforward generalizations of Theorem 3.1 in Araújo Santos et al.
(2006) and Theorem 4.1 in Henriques-Rodrigues and Gomes (2009), enable us
to state the following theorem.

Theorem 3.1. Let us assume that the second-order condition in (2.1)
holds, with Aλ(t) = ξβλt

ρλ , that k is an intermediate sequence of integers, i.e.
(1.4) holds, and that ln(nq)/

√
k → 0, as n → ∞, with q = qn given in (1.3).

Let us further use the notation rn := k/(nq), assuming that nq = o(
√
k) so

that rn → ∞. Then, for any real s, 0 ≤ s < 1, χs = F←(s), finite, and the
PORT-quantile estimator in (1.14),

(3.1)

√
k

ln rn

(
V̂aRq(k; p, s)

VaRq
− 1

)
d
= σ

H(p)
P

H(p)
k

+
√
k
(
b
H(p)

A0(n/k) + c
H(p) χs/U0(n/k)

)
(1 + op(1)),

with
(
σ

H(p)
, b

H(p)
, c

H(p)

)
given in (2.4), and where P

H(p)
k is asymptotically standard

normal.

Proof: The PORT-quantile estimator in (1.14) can be written as

V̂aRq(k; p, s) := Xn−k:n

{(
1− Xns:n

Xn−k:n

)
rHk(p,s)n +

Xns:n

Xn−k:n

}
,

with rn = k/(nq). Therefore,

V̂aRq(k; p, s)−VaRq = Xn−k:n

{(
1− Xns:n

Xn−k:n

)
rHk(p,s)n +

Xns:n

Xn−k:n
− VaRq

Xn−k:n

}
.

The use of the delta method enables us to write

rHk(p,s)n
d
= rξn

(
1 + ln rn

(
Hk(p, s)− ξ

)(
1 + op(1)

))
.

Since VaRq = Uλ(1/q) = Uλ (nrn/k), we can write

VaRq

Xn−k:n
=
Uλ (nrn/k)

Uλ (n/k)
× Uλ (n/k)

Xn−k:n
=: A×B.

Using the results in Proposition 3.1 and the first-order Taylor series approxima-
tion for (1 + x)−1, as x→ 0, we get

B =
Uλ (n/k)

Xn−k:n

d
=

(
1 +

ξBk√
k

+ o (Aλ (n/k))

)−1
d
= 1− ξBk√

k
+ o (Aλ (n/k)) .

The second order condition in (1.5), and the first-order Taylor series approxima-
tion for exp(x), again as x→ 0, enable us to get

A =
Uλ (nrn/k)

Uλ (n/k)

d
= rξn exp

(
Aλ (n/k)

rρλn − 1

ρλ

)
d
= rξn

(
1− Aλ (n/k)

ρλ
+ op(Aλ (n/k))

)
.
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Consequently,

A×B d
= rξn

(
1− ξBk√

k
− Aλ (n/k)

ρλ
(1 + op (1))

)
.

Therefore, as Xns:n/Xn−k:n = op(1) and using again the result in Proposition 3.1,
we can write

V̂aRq(k; p, s)−VaRq = VaRq

(
V̂aRq

VaRq
− 1

)
d
= VaRq

(
ln rn

(
Hk(p, s)− ξ

)
+
ξBk√
k

+
Aλ(n/k)

ρλ

)
(1 + op(1))

d
= ln rnVaRq

(
Hk(p, s)− ξ

)
(1 + op(1)),

and from (2.3), the result in (3.1) follows.

Corollary 3.1. Under the conditions of Theorem 3.1, with N (µ, σ2)
denoting a normal RV with mean value µ and variance σ2,

(
σ

H(p)
, b

H(p)
, c

H(p)

)
given in (2.4), and P

H(p)
k an asymptotically standard normal RV, the following

results hold:

• For values of ξ + ρ0 < 0 and χs 6= 0,
√
k

ln rn

(
V̂aRq(k; p, s)−VaRq

VaRq

)
d
= σ

H(p)
P

H(p)
k +

√
k
(
c
H(p)

χs
U0(n/k)

)
(1+op(1)).

If
√
k/U0(n/k)→ λU finite, then

√
k

ln rn

(
V̂aRq(k; p, s)−VaRq

VaRq

)
d−→

n→∞
N (λU cH(p)

χs, σ
2
H(p)

).

• For values of ξ + ρ0 > 0 or ξ + ρ0 ≤ 0 and χs = 0,

√
k

ln rn

(
V̂aRq(k; p, s)−VaRq

VaRq

)
d
= σ

H(p)
P

H(p)
k +

√
k
(
b
H(p)

A0(n/k)
)

(1+op(1)).

If
√
kA0(n/k)→ λA finite, then

√
k

ln rn

(
V̂aRq(k; p, s)−VaRq

VaRq

)
d−→

n→∞
N (λAbH(p)

, σ2
H(p)

).

• For values of ξ + ρ0 = 0 and χs 6= 0,

√
k

ln rn

(
V̂aRq(k; p, s)−VaRq

VaRq

)
d
= σ

H(p)
P

H(p)
k +

√
k
(
b
H(p)

A0(n/k) + c
H(p)

χs
U0(n/k)

)
(1 + op(1)).



196 Fernanda Figueiredo, M. Ivette Gomes and Ĺıgia Henriques-Rodrigues

If
√
k/U0(n/k) → λU and

√
kA0(n/k) → λA , with λU and λA both finite,

then

√
k

ln rn

(
V̂aRq(k; p, s)−VaRq

VaRq

)
d−→

n→∞
N (λU cH(p)

χs + λAbH(p)
, σ2

H(p)
).

4. A MONTE-CARLO SIMULATION STUDY

Monte-Carlo multi-sample simulation experiments, of size 5000× 20, have
been implemented for the classes of MOp and PORT-MOp VaR-estimators asso-
ciated with p = p` = 2`/(5ξ), ` = 0, 1, 2. Apart from the MOp and PORT-MOp

VaR-estimators, we have further considered in the VaR-estimator in (1.7), the
replacement of the estimator ξ̂(k) by one of the most simple classes of corrected-
Hill (CH) EVI-estimators, the one in Caeiro et al.(2005). Such a class is defined
as

(4.1) CH(k) ≡ CH(k; β̂, ρ̂) := H(k)
(

1− β̂(n/k)ρ̂/(1− ρ̂)
)
.

The estimators in (4.1) can be second-order minimum-variance reduced-bias
(MVRB) EVI-estimators, for adequate levels k and an adequate external esti-
mation of the vector of second-order parameters, (β, ρ), introduced in (1.6), i.e.
the use of CH(k) can enable us to eliminate the dominant component of bias
of the Hill estimator, H(k), keeping its asymptotic variance. Indeed, from the
results in Caeiro et al. (2005), we know that it is possible to adequately estimate
the second-order parameters β and ρ, so that we get

√
k (CH(k)− ξ) d

= N
(
0, ξ2

)
+ op

(√
k(n/k)ρ

)
,

i.e. CH(k) overpasses H(k) for all k. Overviews on reduced-bias estimation can
be found in Chapter 6 of Reiss and Thomas, 2007, Gomes et al. (2008a), Beirlant
et al. (2012) and Gomes and Guillou (2015). For the estimation of the vector of
second-order parameters (β, ρ), and just as in the aforementioned review articles,
we propose an algorithm of the type of the ones presented in Gomes and Pestana
(2007), where the authors used the β-estimator in Gomes and Martins (2002)
and the simplest ρ-estimator in Fraga Alves et al. (2003), both computed at a
level k1 = bn0.999c. More recent estimators of β can be found in Caeiro and
Gomes (2006), Gomes et al. (2010) and Henriques-Rodrigues et al. (2015). For
alternative estimation of ρ, not later than 2014, see Gomes and Guillou (2015).
See also, Caeiro and Gomes (2014, 2015b) and Henriques-Rodrigues et al. (2014).

It is well-known that the PORT methodology works efficiently only when
the left endpoint of the underlying parent is negative, and q = 0 does not work
when the left endpoint is infinite, like happens with the Student model (see Araújo
Santos et al., 2006, Gomes et al., 2008b, 2011, 2016c, Caeiro et al., 2016b, for
further details related to the topic of PORT estimation). Consequently, only
models with this characteristic have been considered, the EVξ, in (1.1) and the
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Student-tν , with a probability density function

f(x; ν) =
Γ((ν + 1)/2)√
πνΓ(ν/2)

(
1 + x2/ν

)−(ν+1)/2
, x ∈ R.

The values s = 0 (for the EVξ parents), the value of s associated with the
best performance of the PORT methodology for these models, and s = 0.1 (for
the Student parents) were the ones used for illustration of the results. Sample
sizes from n = 100(100)500 and n = 1000(1000)5000 were simulated from the
aforementioned underlying models, for different values of ξ.

4.1. Mean values and mean square error patterns as k-functionals

For each value of n and for each of the aforementioned models, we have
first simulated, on the basis of the initial 5000 runs, the mean value (E) and the
root mean square error (RMSE) of the scale normalized VaR-estimators, i.e. the
Var-estimators over VaRq, as functions of k. For the EVI-estimation, apart from
Hp, in (1.10), p = 0

(
H0 ≡ H

)
and p = p` = 2`/(5ξ), ` = 1 (for which asymptotic

normality holds), and ` = 2 (where only consistency was proved), and the MVRB
(CH) EVI-estimators, in (4.1), we have also included their PORT versions, for
the above mentioned values of s, using the notation •|s, where • refers to the
acronymous of the EVI-estimator.

The results are illustrated in Figure 1, for samples of size n = 1000 from an
EVξ underlying parent, with ξ = 0.1 and s = 0. In this case, and for all k, there
is a clear reduction in RMSE, as well as in bias, with the obtention of estimates
closer to the target value ξ, particularly when we consider the PORT-version
associated with Hp1 . Further note that, at optimal levels, in the sense of minimal
RMSE, even the Hp2 beat the PORT-MVRB VaR-estimators.

Similar patterns were obtained for all other simulated models.

4.2. Mean values at optimal levels

Table 1 is also related to the EVξ model, with ξ = 0.1. We there present,
for different sample sizes n, the simulated mean values at optimal levels (levels
where RMSEs are minima as functions of k) of some of the normalized VaR-
estimators, under consideration in this study. Information on 95% confidence
intervals are also given. Among the estimators considered, and distinguishing 3
regions, a first one with (H, CH, Hp1), a second one with the associated PORT
versions, (H|0, CH|0, Hp1 |0), and a third one with (Hp2 , Hp2 |0), the one providing
the smallest squared bias is written in bold whenever there is an out-performance
of the behaviour achieved in the previous regions.
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Figure 1: Mean values (left) and RMSEs (right) of the normalized H, CH,
and Hp, p = p` = 2`/(5ξ), ` = 1, 2 VaR-estimators for q = 1/n,
together with their PORT versions, associated with s = 0 and
generally denoted •|0, for EV0.1 underlying parents and sample
size n = 1000

Table 1: Simulated mean values of semi-parametric normalized VaR-
estimators at their optimal levels for underlying EV0.1 parents

n = 100 n = 200 n = 500 n = 1000 n = 5000

H 1.089± 0.0048 1.073± 0.0042 1.061± 0.0031 1.058± 0.0030 1.053± 0.0018

CH 0.905± 0.0081 0.930± 0.0049 0.983± 0.0073 1.056± 0.0035 1.052± 0.0025

Hp1 0.885± 0.0014 0.901± 0.0056 0.910± 0.0029 0.915± 0.0022 0.918± 0.0006

H|0 1.078± 0.0037 1.069± 0.0033 1.063± 0.0037 1.060± 0.0032 1.057± 0.0027

CH|0 0.922± 0.0036 0.945± 0.0038 1.025± 0.0006 1.116± 0.0005 1.060± 0.0021

Hp1 |0 0.887± 0.0037 0.898± 0.0031 0.893± 0.0009 0.915± 0.0005 0.998± 0.0002

Hp2 0.865± 0.0014 0.889± 0.0012 0.912± 0.0006 0.924± 0.0008 0.926± 0.0065

Hp2 |0 0.889± 0.0014 0.909± 0.0012 0.920± 0.0070 0.926± 0.0050 0.928± 0.0006

Tables 2, 3 and 4 are similar to Table 1, but respectively associated with
EV0.25, Student-t4 and t2 underlying parents.

Table 2: Simulated mean values of semi-parametric normalized VaR-
estimators at their optimal levels for underlying EV0.25 parents

n = 100 n = 200 n = 500 n = 1000 n = 5000

H 1.143± 0.0068 1.125± 0.0070 1.108± 0.0048 1.106± 0.0052 1.094± 0.0034

CH 0.848± 0.0092 0.874± 0.0041 0.925± 0.0027 1.036± 0.0041 1.094± 0.0036

Hp1 0.862± 0.0023 0.912± 0.0014 0.993± 0.0013 1.083± 0.0038 1.049± 0.0014

H|0 1.133± 0.0059 1.109± 0.0052 1.104± 0.0047 1.101± 0.0048 1.088± 0.0012

CH|0 0.878± 0.0004 0.906± 0.0031 0.941± 0.0020 0.965± 0.0018 1.063± 0.0004

Hp1 |0 0.983± 0.0017 1.060± 0.0022 1.048± 0.0021 1.055± 0.0022 1.064± 0.0017

Hp2 0.854± 0.0046 0.848± 0.0014 0.868± 0.0043 0.869± 0.0035 0.881± 0.0024

Hp2 |0 0.848± 0.0050 0.859± 0.0034 0.867± 0.0025 0.872± 0.0023 0.851± 0.0009

Note that contrarily to what happens with the non-PORT and PORT EVI-
estimation, where the values associated with p2 are better than the ones associ-
ated with p1, things work the other way round for the VaR-estimation.
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Table 3: Simulated mean values of semi-parametric normalized VaR-
estimators at their optimal levels for underlying Student t4 par-
ents (ξ = 0.25)

n = 100 n = 200 n = 500 n = 1000 n = 5000

H 1.114± 0.0056 1.099± 0.0043 1.089± 0.0037 1.085± 0.0037 1.077± 0.0037

CH 0.903± 0.0292 0.903± 0.0053 0.922± 0.0030 0.978± 0.0028 1.056± 0.0015

Hp1 0.932± 0.0014 1.009± 0.0019 1.035± 0.0023 1.032± 0.0019 1.054± 0.0017

H |0.1 1.095± 0.0063 1.081± 0.0027 1.070± 0.0027 1.061± 0.0020 1.035± 0.0015

CH |0.1 0.890± 0.0030 0.950± 0.0031 0.980± 0.0020 0.990± 0.0012 0.998± 0.0006

Hp1 |0.1 1.056± 0.0027 1.055± 0.0023 1.057± 0.0019 1.056± 0.0023 1.041± 0.0012

Hp2 |0.1 0.876± 0.0011 0.904± 0.0008 0.953± 0.0005 0.982± 0.0005 0.998± 0.0002

Hp2 0.875± 0.0062 0.882± 0.0029 0.886± 0.0022 0.889± 0.0020 0.877± 0.0005

Table 4: Simulated mean values of semi-parametric normalized VaR-
estimators at their optimal levels for underlying Student t2 par-
ents (ξ = 0.5)

n = 100 n = 200 n = 500 n = 1000 n = 5000

H 1.236± 0.0090 1.198± 0.0107 1.168± 0.0043 1.145± 0.0038 1.106± 0.0038

CH 1.115± 0.1919 0.809± 0.0072 0.825± 0.0053 0.848± 0.0030 0.848± 0.0043

Hp1 1.094± 0.0073 1.082± 0.0048 1.084± 0.0031 1.080± 0.0040 1.062± 0.0021

H |0.1 1.163± 0.0056 1.121± 0.0048 1.077± 0.0030 1.049± 0.0027 1.007± 0.0021

CH |0.1 0.793± 0.0053 0.813± 0.0048 0.828± 0.0036 0.840± 0.0038 0.864± 0.0028

Hp1 |0.1 1.098± 0.0058 1.087± 0.0034 1.072± 0.0033 1.051± 0.0023 1.010± 0.0017

Hp2 |0.1 0.836± 0.0014 0.868± 0.0013 0.915± 0.0008 0.949± 0.0007 1.065± 0.0004

Hp2 0.803± 0.0036 0.796± 0.0026 0.795± 0.0012 0.813± 0.0008 0.873± 0.0005

4.3. RMSEs and relative efficiency indicators at optimal levels

We have further computed the Weissman-Hill VaR-estimator, i.e. the VaR-
estimator Qk,q,ξ̂, in (1.7), with ξ̂ replaced by the H EVI-estimator, in (1.8), at
the simulated optimal k in the sense of minimum RMSE. Such an estimator is
denoted by Q00. For any of the VaR-estimators under study, generally denoted
Q(k), we have also computed Q0, the estimator Q(k) computed at the simulated
value of k0|Q := arg mink RMSE

(
Q(k)

)
. The simulated indicators are

(4.2) REFFQ|0 :=
RMSE (Q00)

RMSE (Q0)
.

Remark 4.1. Note that, as usual, an indicator higher than one means
that the estimator has a better performance than the Weissman-Hill
VaR-estimator. Consequently, the higher the indicators in (4.2) are, the bet-
ter the associated VaR-estimators perform, comparatively to Q00.

Again as an illustration of the obtained results, we present Tables 5–8.
In the first row, we provide RMSE0, the RMSE of Q00, so that we can easily
recover the RMSE of all other estimators. The following rows provide the REFF-
indicators for the different VaR-estimators under study. A similar mark (bold) is
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Table 5: Simulated values of RMSE0 (first row) and of REFF•|0 indica-
tors, for underlying EV0.1 parents

n = 100 n = 200 n = 500 n = 1000 n = 5000

RMSE0 0.329± 0.1224 0.273± 0.1209 0.225± 0.1059 0.200± 0.0754 0.157± 0.0324

CH 1.287± 0.0154 1.323± 0.0147 1.252± 0.0123 1.202± 0.0083 1.073± 0.0041

Hp1 1.566± 0.0174 1.505± 0.0129 1.460± 0.0103 1.440± 0.0093 1.545± 0.0113

H|0 1.132± 0.0093 1.121± 0.0060 1.118± 0.0049 1.122± 0.0049 1.136± 0.0057

CH|0 1.659± 0.0196 1.833± 0.0179 1.548± 0.0202 1.373± 0.0110 1.202± 0.0077

Hp1 |0 1.695± 0.0190 1.626± 0.0149 1.614± 0.0128 1.874± 0.0160 4.988± 0.0340

Hp2 1.450± 0.0177 1.379± 0.0117 1.316± 0.0084 1.279± 0.0086 1.189± 0.0063

Hp2 |0 1.529± 0.0184 1.440± 0.0113 1.359± 0.0082 1.323± 0.0097 1.240± 0.0066

Table 6: Simulated values of RMSE0 (first row) and of REFF•|0 indica-
tors, for underlying EV0.25 parents

n = 100 n = 200 n = 500 n = 1000 n = 5000

RMSE0 0.469± 0.1207 0.394± 0.1350 0.329± 0.1453 0.294± 0.1498 0.231± 0.1538

CH 1.393± 0.0144 1.431± 0.0155 1.681± 0.0215 1.908± 0.0257 1.197± 0.0045

Hp1 2.132± 0.0218 2.522± 0.0233 3.802± 0.0333 3.866± 0.0248 3.108± 0.0229

H|0 1.178± 0.0081 1.174± 0.0101 1.185± 0.0053 1.206± 0.0060 1.245± 0.0043

CH|0 1.837± 0.0164 1.907± 0.0206 2.215± 0.0222 2.678± 0.0251 2.681± 0.0180

Hp1 |0 3.527± 0.0300 2.754± 0.0221 1.703± 0.0135 1.584± 0.0128 1.443± 0.0102

Hp2 1.771± 0.0148 1.658± 0.0154 1.540± 0.0118 1.464± 0.0118 1.283± 0.095

Hp2 |0 1.896± 0.0176 1.757± 0.0162 1.614± 0.0144 1.526± 0.0131 1.338± 0.0110

Table 7: Simulated values of RMSE0 (first row) and of REFF•|0 indica-
tors, for underlying Student t4 parents (ξ = 0.25)

n = 100 n = 200 n = 500 n = 1000 n = 5000

RMSE0 0.378± 0.1445 0.320± 0.1507 0.270± 0.1556 0.240± 0.1572 0.185± 0.1554

CH 1.217± 0.1176 1.310± 0.0129 1.480± 0.0134 1.881± 0.0114 1.531± 0.0095

Hp1 2.143± 0.0187 2.483± 0.0209 1.821± 0.0148 1.422± 0.0100 1.151± 0.0088

H |0.1 1.243± 0.0105 1.273± 0.0081 1.359± 0.0066 1.457± 0.0064 1.808± 0.0069

CH |0.1 1.773± 0.0160 2.038± 0.0181 2.599± 0.0252 3.082± 0.0198 4.431± 0.0269

Hp1 |0.1 1.640± 0.0119 1.516± 0.0138 1.463± 0.0161 1.477± 0.0206 1.664± 0.0240

Hp2 1.713± 0.0167 1.631± 0.0152 1.518± 0.0122 1.427± 0.0066 1.270± 0.0069

Hp2 |0.1 2.080± 0.0205 2.288± 0.0238 3.045± 0.0248 4.026± 0.0291 6.345± 0.0502

Table 8: Simulated values of RMSE0 (first row) and of REFF•|0 indica-
tors, for underlying Student t2 parents (ξ = 0.5)

n = 100 n = 200 n = 500 n = 1000 n = 5000

RMSE0 0.675± 0.1735 0.559± 0.1793 0.449± 0.1804 0.379± 0.1789 0.255± 0.1684

CH 0.684± 0.3593 1.359± 0.0145 1.388± 0.0099 1.371± 0.0080 1.449± 0.0343

Hp1 1.728± 0.0148 1.468± 0.0116 1.308± 0.0085 1.240± 0.0047 1.209± 0.0510

H |0.1 1.318± 0.0097 1.382± 0.0099 1.532± 0.0117 1.667± 0.0079 2.110± 0.0132

CH |0.1 1.969± 0.0160 1.786± 0.0150 1.573± 0.0103 1.419± 0.0091 1.123± 0.0065

Hp1 |0.1 1.609± 0.0149 1.516± 0.0116 1.560± 0.0109 1.647± 0.0072 2.037± 0.0108

Hp2 2.271± 0.0214 1.992± 0.0179 1.766± 0.0126 1.665± 0.0151 1.691± 0.0124

Hp2 |0.1 2.810± 0.0276 2.821± 0.0287 3.116± 0.0227 3.547± 0.0280 2.848± 0.0169

used for the highest REFF indicator, again considering the aforementioned three
regions and q = 1/n.
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For a better visualization of the results presented in some of the tables
above, we further present Figure 2, associated with an EV0.1 underlying parent.
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Figure 2: Mean values (left) and REFF-indicators (right) at optimal lev-
els of the different normalized VaR-estimators under study,
for q = 1/n, an underlying EV0.1 parent and sample sizes
n = 100(100)500 and 500(500)5000

5. CONCLUSIONS

The new PORT-MOp VaR-estimators, defined in (1.14), generalize the
Weissman-Hill PORT-quantile estimator studied in Araújo Santos et al. (2006).
Consequently, both asymptotically and for finite sample sizes, we were expecting
a much better behaviour of the new PORT-MOp VaR-estimator. The gain in
efficiency of the PORT-MOp VaR-estimators is, in most cases, greater than the
one obtained with the MVRB and PORT-MVRB VaR-estimators. The simulated
mean values of the normalized PORT-MOp VaR-estimators are always better, for
moderate to large values of n, in the Student-tν parents. For the EVξ-parents,
we have different behaviours accordingly to the size of the sample but there is a
general out-performance of the PORT-MOp VaR-estimators. And indeed, for an
adequate choice of k, p and s, the PORT-MOp VaR–estimators are able to out-
perform the MVRB and even the PORT-MVRB VaR-estimators, in most cases.
The choice of (k, p, s) can be done through heuristic sample-path stability algo-
rithms, like the ones in Gomes et al. (2013) or through a bootstrap algorithm of
the type of the ones presented in Caeiro and Gomes (2015a) and in Gomes et al.
(2016b), where R-scripts are provided.

ACKNOWLEDGMENTS

Research partially supported by COST Action IC1408, and National
Funds through FCT—Fundação para a Ciência e a Tecnologia, project
UID/MAT/00006/2013 (CEA/UL), and by COST Action IC1408—CroNos. We
also acknowledge the valuable suggestions from a referee.



202 Fernanda Figueiredo, M. Ivette Gomes and Ĺıgia Henriques-Rodrigues
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Birkhäuser Verlag.

[48] Weissman, I. (1978). Estimation of parameters and large quantiles based on the
k largest observations. J. American Statistical Association 73, 812–815.



REVSTAT – Statistical Journal

Volume 15, Number 2, April 2017, 205-222

WEIGHTED-TYPE WISHART DISTRIBUTIONS
WITH APPLICATION

Authors: Mohammad Arashi
– Department of Statistics, School of Mathematical Sciences, Shahrood

University of Technology, Shahrood, Iran. Department of Statistics,
Faculty of Natural and Agricultural Sciences,University of Pretoria,
Pretoria, South Africa. (m arashi stat@yahoo.com)
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regarding a random matrix variate. However, we focus specifically on the Wishart
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1. INTRODUCTION

The modeling of real world phenomena is constantly increasing in complex-
ity and standard statistical distributions cannot model these adequately. The
question arises whether we can introduce new models to compete with and en-
hance the standard approaches available in the literature. Various generalizations
and extensions have been proposed for standard statistical models, since more
complex models are needed to solve the modeling complications of real data. To
mention a few: Sutradhar et al. (1989) generalized the Wishart distribution for
the multivariate elliptical models, however Teng et al. (1989) considered ma-
trix variate elliptical models in their study. Wong and Wang (1995) defined the
Laplace-Wishart distribution, while Letac and Massam (2001) defined the nor-
mal quasi-Wishart distribution. In the context of graphical models, Roverato
(2002) defined the hyper-inverse Wishart and Wang and West (2009) extended
the inverse Wishart distribution for using hyper-Markov properties (see Dawid
and Lauritzen (1993)), while Bryc (2008) proposed the compound Wishart and
q-Wishart in graphical models. Abul-Magd et al. (2009) proposed a generaliza-
tion to Wishart-Laguerre ensembles. Adhikari (2010) generalized the Wishart
distribution for probabilistic structural dynamics, and Dı́az-Garćıa et al. (2011)
extended the Wishart distribution for real normed division algebras. Munilla
and Cantet (2012) also formulated a special structure for the Wishart distribu-
tion to apply in modeling the maternal animal. These generalizations justify the
speculative research to propose new models based on the concept of weighted dis-
tributions Rao (1965). Assuming special cases of these new models as priors for
an underlying normal model in a Bayesian analysis exhibit interesting behaviour.

In this paper we propose a weighted-type Wishart distribution, making use
of the mathematical mechanism frequently used in proposing weighted-type dis-
tributions, from length-biased viewpoint, and consider its applications in Bayesian
analysis. The building block of our contribution is an extension of the math-
ematical formulation of univariate weighted-type distributions to multivariate
weighted-type distributions. Specifically, if f(x;σ2) is the main/natural proba-
bility density function (pdf) which is imposed by a scalar weight function h(x;φ)
(not necessarily positive), then the weighted-type distribution is given by

g(x;θ) = Ch(x;φ)f(x;σ2), θ = (σ2, φ),(1.1)

where C−1 = Eσ2 [h(X;φ)] and the expectation Eσ2 [.] is taken over the same
probability measure as f(.). The parameter φ can be seen as an enriching pa-
rameter.

For the multivariate case, one can simply use the pdf of a multivariate
random variable for f(.) in (1.1). Further, the parameter space can be multi-
dimensional. However, the weight function h(.) should remain of scalar form.
Thus the question that arises is: Why not replace f(.) in (1.1) with the pdf
of a matrix variate random variable? To address this issue and using (1.1) as
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departure, we define matrix variate weighted-type distributions, from where new
matrix variate distributions originate.

Initially let Sm be the space of all positive definite matrices of dimension m.
To set the platform for what we are proposing, consider a random matrix variate
X ∈ Sm having a pdf f(.;ΨΨΨ) with parameter ΨΨΨ. We construct matrix variate
distributions, with pdf g(.; Θ), where Θ = (ΨΨΨ,Φ) and enrichment parameter
Φ ∈ Sm, by utilizing one of the following mechanisms:

1. (Loading with a weight of trace form)

g(X; Θ) = C1h1(tr[XΦ])f(X;ΨΨΨ),Θ = (ΨΨΨ,Φ).(1.2)

2. (Loading with a weight of determinant form)

g(X; Θ) = C2h2(|XΦ|)f(X;ΨΨΨ),Θ = (ΨΨΨ,Φ).(1.3)

3. (Loading with a mixture of weights of trace and determinant forms)

g(X; Θ) = C3h1(tr[XΦ1])h2(|XΦ2|)f(X;ΨΨΨ),Θ = (ΨΨΨ,Φ1,Φ2),(1.4)

where hi(.), i = 1, 2 is a Borel measurable function (weight function) which admits
Taylor’s series expansion, Cj is a normalizing constant and f(.) can be referred
to as a generator.
In this paper, we consider the f(.) in (1.2)-(1.4) to be the pdf of the Wishart
distribution with parameters n and Σ, i.e. ΨΨΨ = (n,Σ), given by

|Σ|−
n
2

2
nm
2 Γm

(
n
2

) |X|n2−m+1
2 etr

(
−1

2
Σ−1X

)
,(1.5)

with X,Σ ∈ Sm, denoted by Wm(n,Σ), and incorporate a weight function, hi(.),
as given by (1.2)-(1.4). Note that Γm(.) is the multivariate gamma function and
etr(.) = exp(tr(.)).

We organize our paper as follows: In Section 2, we discuss the weighted-type
Wishart distribution that originated from (1.2) and propose some of its impor-
tant properties. The enrichment of this approach is illustrated by the graphical
display of the joint density function of the eigenvalues of the random matrix for
certain cases. In Section 3, the weighted-type Wishart distributions emanating
from (1.3) and (1.4) are proposed. The significance of this approach of extend-
ing the well-known Wishart distribution, will be demonstrated in Section 4, by
assuming special cases as a priors for the underlying univariate and multivariate
normal model. Comparison results of these cases with well-known priors path the
way for integrating these models in Bayesian analysis. Finally, some thoughts of
other possible applications are given in Section 5.
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2. WEIGHTED-TYPE I WISHART DISTRIBUTION

In this section we consider the construction methodology of a weighted-type
I Wishart distribution according to (1.2).

Definition 2.1. The random matrix X ∈ Sm is said to have a weighted-
type I Wishart distribution (W1WD) with parameters ΨΨΨ, Φ ∈ Sm and the weight
function h1(.), if it has the following pdf

g(X; Θ) =
h1(tr[XΦ])f(X;ΨΨΨ)

E [h1(tr[XΦ])]

= cn,m(Θ)|Σ|−
n
2 |X|

n
2
−m+1

2 etr

(
−1

2
Σ−1X

)
h1(tr[XΦ]), Θ = (ΨΨΨ,Φ),(2.1)

with

{cn,m(Θ)}−1 = 2
nm
2 Γm

(n
2

) ∞∑
k=0

2kh
(k)
1 (0)

k!

∑
κ

(n
2

)
κ
Cκ (ΦΣ) ,(2.2)

written as X ∼WI
m(n,Σ,Φ). In (2.1) f(X;ΨΨΨ) is the pdf of the Wishart distri-

bution (Wm(n,Σ)) (see 1.5) i.e. ΨΨΨ = (Σ, n), n > m − 1, Σ ∈ Sm and h1(.) is a

Borel measurable function that admits Taylor’s series expansion, (a)κ = Γm(a,κ)
Γm(a)

and Γm(a, κ) is the generalized gamma function. The parameters are restricted
to take those values for which the pdf is non-negative.

Remark 2.1. Note that using Taylor’s series expansion for h1(.) in (2.1)
it follows that

h1(tr[XΦ]) =
∞∑
k=0

h
(k)
1 (0)

k!
tr(XΦ)k =

∞∑
k=0

h
(k)
1 (0)

k!
Cκ(XΦ),(2.3)

from Definition 7.21, p.228 of Muirhead (2005) where h
(k)
1 (0) is the k -th derivative

of h1(.) at the point zero. Therefore using Theorem 7.2.7, p.248 of Muirhead
(2005) follows from Definition 2.1 that

E [h1(tr[XΦ])] =

∫
Sm

h1(tr[XΦ])f(X;ΨΨΨ)dX

=
|Σ|−

n
2

2
nm
2 Γm

(
n
2

) ∞∑
k=0

h
(k)
1 (0)

k!

∑
κ

∫
Sm
|X|

n
2
−m+1

2 etr

(
−1

2
Σ−1X

)
Cκ(XΦ)dX

=
|Σ|−

n
2

2
nm
2 Γm

(
n
2

) ∞∑
k=0

2
nm
2

+kΓm
(
n
2

)
|Σ|

n
2 h

(k)
1 (0)

k!

∑
κ

(n
2

)
κ
Cκ (ΦΣ)

=
∞∑
k=0

2kh
(k)
1 (0)

k!

∑
κ

(n
2

)
κ
Cκ (ΦΣ) ,

and (2.2) follows (Cκ (aXXX) = akCκ (XXX) and Cκ(.) is the zonal polynomial corre-
sponding to κ (Muirhead (2005)).
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Remark 2.2. Here we consider some thoughts related to Definition 2.1
and (2.1).

(1) As formerly noticed, the weight function should be a scalar function. In
Definition 2.1, we used the trace operator, however any relevant operator
can be used. The determinant operator will be discussed in Section 3.
Another interesting operator can be the eigenvalue. In this respect one
may use the result of Arashi (2013) to get closed expression for the expected
value of the weight function.

(2) For h1(tr[XΦ]) = etr(XΦ) in (2.1) we obtain an enriched Wishart distri-
bution with scale matrix ΣΣΣ−1 + ΦΦΦ.

(3) For h1(xφ) = exp(xφ) and m = 1 in (2.1) the pdf simplifies to

g(x; θ) = cn(θ)(σ2)−
n
2 x

n
2
−1 exp

(
−
(

1

2σ2
− φ

)
x

)
,(2.4)

which is the pdf of a gamma random variable with parameters n
2 and 1

2σ2−φ,

with cn(θ) =

(
1

2σ2
−φ

)n
2

Γ(n2 )
, θ = (σ2, φ), written as G(α = n

2 , β = 1
2σ2 − φ).

(4) For h1(x) = x and m = 1 in (2.1) the pdf simplifies to

g(x; θ) = cn(θ)(σ2)−
n
2 x

n
2
−1 exp

(
− 1

2σ2
x

)
x=cn(θ)(σ2)−

n
2 x

n
2 exp

(
− 1

2σ2
x

)
,

with cn(θ) =

(
1

2σ2
−φ

)n+2
2

Γ(n2 +1)
, θ = (σ2, φ), hence X ∼ G(α = n

2 +1, β = 1
2σ2−φ).

This is also called the length-biased or size-biased gamma distribution (see
Patil and Ord (1976)) with parameters n

2 and 1
2σ2 − φ.

(5) For h1(tr[XΦ]) = (1 + tr[XΦ]) in (2.1) the pdf simplifies to

g(X; Θ) = cn,m(Θ)|Σ|−
n
2 |X|

n
2
−m+1

2 etr

(
−1

2
Σ−1X

)
(1 + tr(XΦ)),(2.5)

with cn,m(Θ) as in (2.2), Θ = (n,Σ,Φ), which is defined as the Kummer
Wishart distribution and denoted as KWm(n,Σ,Φ).

(6) For h1(xφ) = (1 + xφ)γ , where γ is a known fixed constant, and m = 1 in
(2.1) the pdf simplifies to

g(x; θ) = cn(θ)(σ2)−
n
2 x

n
2
−1 exp

(
− 1

2σ2
x

)
(1 + φx)γ(2.6)

with cn(θ) = 2
n
2 Γ
(
n
2

)∑∞
k=0

(2φ2σ2)kγ!
(γ−k)!k!

∑
κ

(
n
2

)
κ
, θ = (σ2, φ). If φ = 1 then

this is also known as the Kummer gamma or generalized gamma distribu-
tion, written as KG(α = n

2 , β = 1
2σ2 , γ), by expanding the term (1 + φx)γ

(see Pauw et al. (2010)).

(7) Various functional forms of h1(.) are explored and the joint density of eigen-
values of the matrix variates are graphically illustrated to show the flexi-
bility built in by this construction, see Table 1.
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2.1. Characteristics

In this section some statistical properties of the W1WD (Definition 2.1)
are derived. Most of the computations here deal with the relevant use of (2.3)
and Theorem 7.2.7, p.248 of Muirhead (2005), though we do not mention every
time.

Theorem 2.1. Let X ∼WI
m(n,Σ,Φ), then the rth moment of |X| is

given by

E (|X|r) =
cn,m(Θ)

c2(n
2

+r),m(Θ)
|Σ|r,

where cn,m(Θ) and c2(n
2

+r),m(Θ) as in (2.2).

Proof: Similarly as in Remark 2.1, by using (2.1),

E (|X|r) = cn,m(Θ)|Σ|−
n
2

∫
Sm
|X|r+

n
2
−m+1

2 etr

(
−1

2
Σ−1X

)
h1(tr[XΦ])dX

= cn,m(Θ)|Σ|−
n
2

∞∑
k=0

h
(k)
1 (0)

k!

∑
κ

∫
Sm
|X|r+

n
2
−m+1

2 etr

(
−1

2
Σ−1X

)
×Cκ(XΦ)dX,

the result follows.

In the following, we give the exact expression for the moment generating
function (MGF) of the W1WD, provided its existence.

Theorem 2.2. Let X ∼WI
m(n,Σ,Φ), then the moment generating func-

tion of X is given by

MX(T) = cn,m(Θ)dn,m|IIIm − 2ΣTΣTΣT |−
n
2 ,

with cn,m(Θ) as in (2.2) and dn,m = 2
nm
2 Γm

(
n
2

)∑∞
k=0

∑
κ

2kh
(k)
1 (0)
k!

(
n
2

)
κ

× Cκ
(
Φ(ΣΣΣ−1 − 2TTT )−1

)
.

Proof: Using equation (2.1) we have

MX(T ) = E(etr(TX))

= cn,m(Θ)|Σ|−
n
2

∫
Sm
|X|

n
2
−m+1

2 etr

(
−1

2
Σ−1X + TX

)
h1(tr[XΦ])dX

= cn,m(Θ)|Σ|−
n
2

∞∑
k=0

∑
κ

2
nm
2

+kh
(k)
1 (0)(n2 )κΓm(n2 )Γ(nm2 + k)

k!Γ(nm2 + k)

×|ΣΣΣ−1 − 2TTT |−
n
2Cκ(ΦΦΦ(ΣΣΣ−1 − 2TTT )−1)

and the proof is complete.



212 Arashi, Bekker and van Niekerk

Another important statistical characteristic is the joint pdf of the eigenval-
ues of X, which is given in the next theorem.

Theorem 2.3. Let X ∼WI
m(n,Σ,Φ), then the joint pdf of the eigen-

values λ1 > λ2 > ... > λm > 0 of X is

cn,m(Θ)|Σ|−
n
2 π

1
2
m2

Γm
(
m
2

) m∏
i<j

(λi − λj) |Λ|
n
2
−m+1

2

×
∞∑
r=0

∞∑
k=0

∑
ρ

∑
κ

∑
φ∈ρ,κ

h
(k)
1 (0)Cρ,κφ (Im, Im)Cρ,κφ

(
−1

2Σ−1,Φ
)

r!k! [Cφ (Im)]2
Cφ (Λ) .

Proof: From Theorem 3.2.17, p.104 of Muirhead (2005) the pdf of Λ =
diag(λ1, ..., λm) is

π
1
2
m2

Γm
(
m
2

) m∏
i<j

(λi − λj)
∫
O(m)

g(HΛH′; Θ)dH,

where O(m) is the space of all orthogonal matrices H of order m.

Note that

I =

∫
O(m)

g(HΛH′; Θ)dH

= cn,m(Θ)|Σ|−
n
2

∫
O(m)
|HΛH′|

n
2
−m+1

2 etr

(
−1

2
Σ−1HΛH

′
)
h1(tr[HΛH′Φ])dH

By using (2.3), we get

I = cn,m(Θ)|Σ|−
n
2 |Λ|

n
2
−m+1

2

∞∑
r=0

1

r!

∞∑
k=0

h
(k)
1 (0)

k!

×
∑
ρ

∑
κ

∫
O(m)

Cρ

(
−1

2
Σ−1HΛH

′
)
Cκ
(
ΦHΛH′

)
dH.

Note that ∫
O(m)

Cρ

(
−1

2
ΣHΛH′

)
Cκ
(
ΦHΛH′

)
dH

=
∑
φ∈ρ,κ

Cφ (Λ)Cρ,κφ (Im, Im)Cρ,κφ
(
−1

2Σ,Φ
)

[Cφ (Im)]2

from (1.2), p.468 of Davis (1979) and the result follows.
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Remark 2.3. For Σ = c1III and Φ = c2III the result can be obtained from
Theorem 3.2.17, p.104 of Muirhead (2005) as follows:

I = cn,m(Θ)c
−mn

2
1 |Λ|

n
2
−m+1

2 etr
(
−c1

2
Λ
)
h1 (c2ΛΛΛ) .(2.7)

Based on Remark 2.3, Table 1 illustrates the joint pdf of the eigenvalues of X2×2

for specific c1, c2 and n and different weight functions using (2.7). It is evident
that the functional form of the weight function provides increased flexibility for
the user. Negative and positive correlations amongst the eigenvalues can be
obtained using different weight functions, h1(.).

Table 1: Joint pdf of the eigenvalues for n = 9, c2 = 1 and c1 = 0.1
(Left), c1 = 0.5 (Middle) and c1 = 1.5 (Right)

h1(c2x) = exp(c2x)

h1(c2x) = exp( 1
c2x

)

h1(c2x) = 1 + c2x
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3. FURTHER DEVELOPMENTS

3.1. Weighted-type II Wishart distribution

In this section we focus on the construction of a weighted-type Wishart
distribution for which the weight function is of determinant form (see (1.3)).
Before exploring the form of the weighted-type Wishart distribution based on a
weight of determinant form, let X ∼Wm(n,Σ) and µk denote the k-th moment
of |X|. Then from (15), p.101 of Muirhead (2005)

µk = E
[
|X|k

]
=

2kΓm
(
n
2 + k

)
Γm
(
n
2

) |Σ|k.

Thus for any Borel measurable function h2(.), making use of Taylor’s series ex-
pansion, we have

(3.1) h2(|XΦ|) =
∞∑
k=0

h
(k)
2 (0)

k!
|XΦ|k.

Hence

E [h2(|XΦ|)] =

∞∑
k=0

h
(k)
2 (0)

k!
|Φ|kµk =
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k=0

2kΓm
(
n
2 + k

)
h

(k)
2 (0)

k!Γm
(
n
2

) |ΦΣ|k.

Accordingly, we have the following definition for a weighted-type Wishart distri-
bution with weight of determinant form (see (1.3)).

Definition 3.1. The random matrix X ∈ Sm is said to have a weighted-
type II Wishart distribution (W2WD) with parameters Ψ, Φ ∈ Sm and the weight
function h2(.), if it has the following pdf

g(X; Θ) =
h2(|XΦ|)f(X;ΨΨΨ)

E [h2(|XΦ|)]

= c∗n,m(Θ)|Σ|−
n
2 |X|

n
2
−m+1

2 etr

(
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2
Σ−1X

)
h2(|XΦ|), Θ = (ΨΨΨ,Φ)

with {
c∗n,m(Θ)

}−1
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∫
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n
2 |X|
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2 etr
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h2(|XΦ|)dX

=
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h
(k)
2 (0)2
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2 Γm
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2

)
k!

|ΦΣ|k.

and f(X;ΨΨΨ) is the pdf of the Wishart distribution (Wm(n,Σ)) i.e. ΨΨΨ = (Σ, n),
n > m−1, Σ ∈ Sm and h2(.) is a Borel measurable function that admits Taylor’s
series expansion. The parameters are restricted to take those values for which
the pdf is non-negative. We write this as X ∼WII

m (n,Σ,Φ).
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3.2. Weighted-type III Wishart distribution

As before, in this section we give the definition of the weighted-type III
Wishart distribution (W3WD). Utilizing a more extended version of (1.4) (allow-
ing more parameters) we have the following definition:

Definition 3.2. The random matrix X ∈ Sm is said to have a weighted-
type III Wishart distribution (W3WD) with parameters ΨΨΨ, Φ1 and Φ2 ∈ Sm and
the weight functions h1(.) and h2(.), if it has the following pdf

g(X; Θ) =
h1(tr[XΦ1])h2(|XΦ2|)f(X;ΨΨΨ)

E [h1(tr[XΦ1])h2(|XΦ2|)]
, Θ = (ΨΨΨ,Φ1,Φ2)

= c∗∗n,m(Θ)|Σ|−
n
2 |X|
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2 etr

(
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2
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)
h1(tr[XΦ1])h2(|XΦ2|)

with
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where f(X;ΨΨΨ) is the pdf of the Wishart distribution (Wm(n,Σ)) i.e. ΨΨΨ = (Σ, n),
n > m−1, Σ ∈ Sm and h1(.) and h2(.) are Borel measurable functions that admit
Taylor’s series expansion. We denote this as X ∼ WIII

m (n,Σ,Φ1,Φ2). The
parameters are restricted to take those values for which the pdf is non-negative.

4. APPLICATION

In this section special cases of Definition 1 are applied as priors for the
normal model under the squared error loss function. First the Kummer gamma
distribution ((2.6) with φ = 1) as a prior for the variance of the univariate
normal distribution and secondly the Kummer Wishart (2.5) as a prior for the
covariance matrix of the matrix variate normal distribution. Bekker and Roux
(1995) considered the Wishart prior as a competitor for the conjugate inverse-
Wishart prior for the covariance matrix of the matrix variate normal distribution.
Van Niekerk et al. (2016a) confirmed the value added of the latter by a numerical
study. This is the stimulus to consider other possible priors.

4.1. Univariate Bayesian illustration

In this section a special univariate case of the weighted-type I Wishart
distribution is applied as a prior for the variance of the normal model. Consider
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a random sample of size n1 from a univariate normal distribution with unknown
mean and variance, i.e. Xi ∼ N(µ, σ2),XXX = (X1, ..., Xn1). Let h(x) = (1 + x)γ ,
m = 1 and Σ1×1 = σ2 in Definition 2.1 (see (2.6)), and consider this distribution
as a prior for σ2, and an objective prior for µ. This prior model is compared
with the well-known inverse gamma and gamma priors in terms of coverage and
median credible interval width. The three priors under consideration are

• Inverse gamma prior (IG(α1, β1)) with pdf

g(x;α1, β1) =
βα1

1

Γ(α1)
x−α1−1 exp

(
−β1

x

)
, x > 0

• Gamma prior (2.4) (G(α2, β2))

• Kummer gamma prior (2.6) (KG(α3, β3, γ = 1)).

The marginal posterior pdf and Bayes estimator of σ2 under the Kummer gamma
prior are calculated using Remark 5 of Van Niekerk et al. (2016b) as
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(
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)α3−n12 −

1
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and
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α3 + 1

2

)
Eσ2

1

[
(σ2

1)−
n1
2 (1 + φσ2

1) exp
(
− 1

2σ2
1

[∑n1
i=1X

2
i −X

2
])] ,

where σ2
1 ∼ G

(
α3 + 1

2 , β3

)
and σ2

2 ∼ G
(
α3 + 3

2 , β3

)
.

A normal sample of size 18 is simulated with mean µ = 0 and variance
σ2 = 1. The hyperparameters are chosen such that E(σ2) = σ2

0 = 0.9.

Four combinations of hyperparameter values are investigated and summa-
rized in Table 2. Note that in combination 4, the prior belief for the Kummer
gamma is not 0.9 but 5.23, which is quite far from the target value of 1 and the
prior information is clearly misspecified. It is clear from Table 2 that the Kum-
mer gamma prior, with parameter combination 4, is very vague when compared
to the other two priors. To evaluate the performance of the new prior structure,
1000 independent samples are simulated and for each one the posterior densi-
ties and estimates are calculated. This enables the calculation of the coverage
probabilities and median credible interval width as given in Table 3.

The coverage probability obtained under the Kummer gamma prior is
higher than for the inverse-gamma and gamma priors, while the median width
of the credible interval (indicated in brackets) is competitive. It is interesting to
note that even under total misspecification (see combination 4 in Table 2), the
Kummer gamma prior is still performing well. The performance superiority of
the Kummer gamma prior is clear from Table 3.
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Table 2: Influence of hyperparameters on the prior pdf’s (– Kummer
gamma prior, - - Inverse gamma prior, ... Gamma prior)

Combination 1 2 3 4

Inverse
gamma
prior

α1 = 3.22,
β1 = 2

α1 = 4.33,
β1 = 3

α1 = 3.22,
β1 = 2

α1 = 3.22,
β1 = 2

Gamma
prior

α2 = 1.8,
β2 = 2

α2 = 1.8,
β2 = 2

α2 = 1.8,
β2 = 2

α2 = 1.8,
β2 = 2

Kummer
gamma
prior

α3 = 1.2,
β3 = 2.1

α3 = 0.8,
β3 = 1.8

α3 = 1.8,
β3 = 2.5

α3 = 5.0,
β3 = 2.5

Table 3: Coverage probabilities (median credible interval width) calcu-
lated from the posterior density functions

Combination Inverse gamma
prior

Gamma prior Kummer
gamma prior

1 74.5%(0.8) 77.4%(2.15) 90.8%(0.85)

2 72%(0.75) 78.1%(2.125) 89.2%(0.9)

3 76.8%(0.85) 77.7%(2.05) 92.1%(0.9)

4 73.2%(0.8) 77.6%(1.8) 87.8%(1.4)

4.2. Multivariate Bayesian illustration

In this section the Kummer Wishart (2.5) prior is considered for the co-
variance matrix of the matrix variate normal model. Consider a random sample
of size n1 from a matrix variate normal distribution with unknown mean µµµ and
covariance matrix ΣΣΣ, i.e. XXXi ∼ Nm,p(µµµ,ΣΣΣ⊗ IIIp) with likelihood function

L(µµµ,ΣΣΣ|XXX,VVV ) ∝ |ΣΣΣ|−
n1p
2 etr

[
−1

2
ΣΣΣ−1

[
VVV + n1(XXX −µµµ)(XXX −µµµ)′

]]
.

The three priors for ΣΣΣ under consideration are

• Inverse Wishart prior (IWm(p1,ΦΦΦ)) with pdf

g(XXX; p1,Φ) =

[
2
m(p1−m−1)

2 Γm

(
p1 −m− 1

2

)]−1

|XXX|−
p1
2 |ΦΦΦ|

p1−m−1
2

×etr
[
−1

2
XXX−1ΦΦΦ

]
, XXX ∈ Sm



218 Arashi, Bekker and van Niekerk

• Wishart prior (1.5) (Wm(p2,ΦΦΦ))

• Kummer Wishart prior (2.5) (KWm(p3, III,Φ)).

The conditional posterior pdf’s of µµµ and ΣΣΣ with a Kummer Wishart prior and
objective prior for µµµ, necessary for the simulation of the posterior samples, are

q
(
µµµ|ΣΣΣ,XXX,VVV

)
∝ etr

[
−1

2
ΣΣΣ−1

[
VVV + n1(XXX −µµµ)(XXX −µµµ)′

]]
,

and

q
(
ΣΣΣ|µµµ,XXX,VVV

)
∝ |ΣΣΣ|−

n1p
2

+n
2
−m+1

2 etr

[
−1

2
ΣΣΣ−1

[
VVV + n1(XXX −µµµ)(XXX −µµµ)′

]]
× etr

(
−1

2
Φ−1Σ

)
(1 + tr(ΣΘ)).

with VVV =
∑n1

i=1(XXXi −XXX)(XXXi −XXX)′. A sample of size 10 is simulated from a
multivariate normal distribution (p = 1) with µµµ = 000 and ΣΣΣ = IIIm. The hyperpa-
rameters are chosen as ΦΦΦ = IIIm,m = 3, p1 = 9.5, p2 = p3 = 3, according to the
methodology of Van Niekerk et al. (2016a). Posterior samples of size 5000, are
simulated using a Gibbs sampling scheme with an additional Metropolis-Hastings
algorithm, similarly to Van Niekerk et al. (2016a).

The estimates calculated for ΣΣΣ under the three different priors as well as
the MLE are

Σ̂ΣΣMLE =

1.8719 0.2168 0.9523
0.2168 2.9553 −0.2471
0.9523 −0.2471 1.0715

 , Σ̂ΣΣIW =

0.6600 0.0772 0.3355
0.0772 1.0256 −0.0873
0.3355 −0.0873 0.3762


Σ̂ΣΣW =

 0.5547 0.0627 −0.2247
0.0627 0.7968 0.0255
−0.2247 0.0255 1.2348

 , Σ̂ΣΣKW =

 1.1389 0.0115 −0.0098
0.0115 1.0401 −0.0132
−0.0098 −0.0132 1.0763


The above estimates are obtained for one posterior sample. The Frobenius
norm (see Golub and Van Loan (1996)) of the errors, defined as ||Σ̂ΣΣ − ΣΣΣ||F =√
tr
(
Σ̂ΣΣ−ΣΣΣ

)′ (
Σ̂ΣΣ−ΣΣΣ

)
, are calculated for each estimate and given in Table 4.

The Kummer Wishart prior results in the smallest Frobenius norm of the
error. For further investigation, this sampling scheme is repeated 100 times to
obtain 100 estimates under each prior as well as the MLE for each of the 100
simulated samples. The Frobenius norm of the error for each estimate and every
repetition is calculated and the empirical cumulative distribution function (ecdf)
of each set of Frobenius norms calculated for each estimator is obtained and
given in Figure 1. The ecdf which is most left in the figure is regarded as the
best since for a specific value of the error norm, a higher proportion of estimates
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Table 4: Frobenius norm of the error of the estimates calculated from the
simulated sample

Frobenius norm Value

||Σ̂ΣΣMLE −ΣΣΣ||F 1.2336

||Σ̂ΣΣIW −ΣΣΣ||F 0.9928

||Σ̂ΣΣW −ΣΣΣ||F 1.5766

||Σ̂ΣΣKW −ΣΣΣ||F 0.1468

Figure 1: The empirical cumulative distribution function (ecdf) of the
Frobenius norm of the estimation errors for n = 10(Left) and
n = 100(Right)

from that particular prior results in less error. It is evident from Figure 1 that
the performance of the sample estimate improves as the sample size increases,
which is to be expected, and the performance of the Kummer Wishart prior is
still competitive. From Figure 1 we conclude that the Kummer Wishart prior
results in an estimate of ΣΣΣ, for small and larger sample sizes, with less error and
preference should be given to this prior. To validate the graphical interpretation,
a two-sample Kolmogorov-Smirnov test is performed for n = 10, pairwise, on the
three different ecdf’s and the p-value for some pairs are given in Table 5.

Table 5: p-values of the Kolmogorv-Smirnov two-sample test based on
samples (n = 10) of the Frobenius norms

Pairwise comparison p-value

MLE and IW < 0.001

IW and KW < 0.001

W and KW < 0.001

MLE and KW < 0.001

From Table 5 it is clear that the ecdf of the errors under the Kummer
Wishart prior is significantly different from the other priors. Therefore, the asser-
tion can be made that the Kummer Wishart prior structure produces an estimate
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that results in statistically significant less error.

5. DISCUSSION

In this paper, we proposed a construction methodology for new matrix
variate distributions with specific focus on the Wishart distribution, followed
by weighting the Wishart distribution with different weight functions. It was
shown from Bayesian viewpoint, by simulation studies, that the Kummer gamma
and Kummer Wishart priors, as special cases of the weighted-type I Wishart
distribution, outperformed the well-known priors. The weighted-type III Wishart
distribution gives rise to a Wishart distribution with larger degrees of freedom and
scaled covariance matrix that might have application in missing value analysis.

In the following we list some thoughts that might be considered as plausible
applications of the proposed distributions.

(i) Let N1 and N2 observations be independently and identically derived from
Z1 ∼ Nm(0,Σ1) and Z2 ∼ Nm(0,Σ2), respectively. Then the statistic
T =

∑N
j=1(Z1 + Z2)(Z1 + Z2)T , has the Wishart distribution Wm(N1 +

N2,Σ1 +Σ2). Suppose the focus of the paper is on the covariance structure
Σ1 +Σ2 (similar to standby systems), then, to reduce the cost of sampling,
one may only consider N1 observations from the W1WD and take h1(.) to
be of exponential form in (2.1).

(ii) A weight of the form h2(|XΦ|) = |X|
q
2 , where q is a known fixed constant

with Φ = Im in Definition 3.1 has applications in missing value analysis.
To see this, let Y 1, . . . ,Y n+q be a random sample from Nm(0,Σ). Define
T =

∑n
i=1 Y iY

T
i . Then T ∼ Wm(n,Σ). Now, using the weight h2(X) =

|X|
q
2 one obtains the Wm(n + q,Σ) distribution and without having the

observations n+ 1, . . . , n+ q we can find the distribution of the full sample
and the relative analysis.

(iii) Finally, one may ask what is the sampling distribution regarding Defini-
tion 3.2? To answer this question, we recall that if Y ∼ N(0, In ⊗ Σ),
then X = Y TY ∼ Wm(n,Σ). Now, assume matrices A ∈ Sm and
B ∈ Sm exist such that [Σ + Φ]−1 = A−1 + B−1. Then if we sample
Y ∗ ∼ N (0, In+α ⊗ [Σ + Φ]), the quadratic form X∗ = Y TY will have the
distribution as in Definition 3.2, where A = Σ, B = Φ1 and Φ2 = I. In
other words, if we enlarge both the covariance and number of samples in a
normal population and consider the distribution of the quadratic form, we
are indeed weighting a Wishart distribution with a Wishart.
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1. INTRODUCTION

Kumaraswamy (1980) introduced a two parameter absolutely continuous
distribution which compares extremely favorably, in terms of simplicity, with the
beta distribution. The Kumaraswamy distribution (hereafter the K distribution)
on the interval (0, 1), has its probability density function (pdf) and its cdf with
two shape parameters δ > 0 and β > 0 defined by

(1.1) f(x) = δβxδ−1(1− xδ)β−1I(0 < x < 1) and F (x) = 1− (1− xδ)β .

If a random variable X has (1.1) as its density then we will write X ∼ K(δ, β).

The density function in (1.1) has similar properties to those of the beta
distribution. The Kumaraswamy pdf is unimodal, uniantimodal, increasing, de-
creasing or constant depending (similar to the beta distribution) on the values of
the parameters. The construction of bivariate Kumaraswamy distributions has
received limited attention.

Barreto-Souza and Lemonte (2013) introduced a bivariate Kumaraswamy distri-
bution related to a Marshall-Olkin survival copula. They discussed some struc-
tural properties of their bivariate Kumaraswamy distribution, including a detailed
discussion of estimation of the model parameters. Recently Arnold and Ghosh
(2016) discussed some different strategies for constructing legitimate bivariate
Kumaraswamy models via conditional specification, conditional survival function
specification and via a copula based approach. In this paper, we consider several
specialized approaches to the problem of constructing bivariate K distributions
based on sub-models of the Arnold-Ng 8-parameter bivariate beta distribution.
Included is discussion of the Jones-Olkin-Liu-Libby-Novick bivariate beta distri-
bution and two Kotz and Nadarajah (2007) bivariate beta models.

To carry out this program, we make use of the observation that a Ku-
maraswamy distribution is a special case of the generalized beta distribution
which is that of a positive power of a beta random variable.

In this paper we will make repeated use of the fact that a Kumaraswamy
variable can be viewed as a power of a beta variable. Thus,

if Y ∼ Beta(1, β), then for δ > 0, X = Y 1/δ ∼ K(δ, β).

Our proposed flexible families of bivariate Kumaraswamy distributions will be ob-
tained by applying such marginal power transformations to suitable bivariate beta
models. It will be convenient to begin with a careful discussion of the 8-parameter
bivariate beta distribution introduced by Arnold and Ng (2011), together with
its related sub-models and possible higher dimensional extensions. Note that in
Arnold and Ghosh (2016), use was made of the simpler 5- parameter Arnold-Ng
model in an analogous program for developing bivariate Kumaraswamy models.
The present paper thus represents a natural extension of some of the results in
that earlier paper.
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We will begin with a detailed discussion of the 8-parameter Arnold-Ng
model with marginals of the second kind beta type. The corresponding models
with classical (first kind) beta marginals are then obtained via simple marginal
transformations, using the observation that

if U ∼ Beta(2)(α, β) then (1 + U−1)−1 ∼ Beta(α, β).

With suitable parametric restrictions, corresponding bivariate Kumaraswamy
models are then readily derived.

The remainder of this article is organized as follows: In section 2, as men-
tioned above, we review the Arnold-Ng (2011) eight parameter bivariate second
kind beta model. We consider the many sub-models that are obtained via para-
metric restrictions, and we discuss higher dimensional versions of this model. In
section 3, we discuss the parallel models with marginals that are of the first or
classical beta kind. In Section 4, we briefly consider the construction of bivariate
generalized beta distributions. In Section 5, the useful concepts of reciproca-
tion closure and closure under reflection about the point 1/2 are reviewed. Sec-
tion 6 deals with a catalog of bivariate Kumaraswamy distributions obtained via
marginal power transformations applied to certain bivariate beta variables. In
section 7, we revisit the concept of reflection about 1/2. Section 8 includes some
discussion of possible parameter estimation strategies for the models. Section 9
includes an illustrative application in which one of the bivariate Kumaraswamy
models is compared with some competing models when fitted to a particular data
set. Some concluding remarks are contained in Section 10.

2. BIVARIATE SECOND KIND BETA DISTRIBUTIONS

A random variable X is said to have a second kind beta distribution with
positive parameters α1 and α2, if its density is of the form

fX(x) =
1

B(α1, α2)

xα1−1

(1 + x)α1+α2
I(x > 0)

and, in such a case, we write X ∼ B(2)(α1, α2).

In our subsequent discussion we make considerable use of the observation
that if V1, V2 are independent gamma distributed random variables with Vi ∼
Γ(αi, 1), i = 1, 2, then X = V1/V2 ∼ B(2)(α1, α2).

The construction of the Arnold-Ng (2011) 8-parameter bivariate second
kind beta distribution begins with 8 independent gamma distributed random
variables, U1, U2, U3, U4, U5, U6, U7, U8 with Ui ∼ Γ(αi, 1), i = 1, 2, ..., 8. The
random vector (V1, V2) is then defined by

(2.1) V1 =
U1 + U5 + U7

U3 + U6 + U8
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and

(2.2) V2 =
U2 + U5 + U8

U4 + U6 + U7
.

Utilizing the fact that sums of independent gamma variables with the same scale
parameter again are gamma distributed, we see that

V1 ∼ B(2)(α1 + α5 + α7, α3 + α6 + α8)

and
V2 ∼ B(2)(α2 + α5 + α8, α4 + α6 + α7).

This 8-parameter model is the most general bivariate second kind beta model
that can be constructed via ratios of sums of independent gamma variables. Some
indication of how it was developed will be useful for envisioning how to construct
higher dimensional versions. There are four places in which a gamma distributed
variable can appear in (2.1)-(2.2). They are: in the numerator of (2.1), in the
denominator of (2.1), in the numerator of (2.2) and in the denominator of (2.2).
A random variable U might appear only once in the two ratios. This is the case
for U1, U2, U3 and U4, each of which appears in a different one of the four available
places. A random variable U might appear in two of the available four places, but
to retain the independence of the numerator from its corresponding denominator
in a given ratio, the same U cannot appear in both. There are four different ways
in which a variable U can appear in two places as illustrated by U5, U6, U7, and U8.

Thus U5 appears in both numerators, U6 appears in both denominators, etc.. A
random variable U cannot appear in more two of the four places without violating
the required independence of numerators from their corresponding denominators.
This thus results in the appearance of the 8 Ui’s in the general model (2.1)-(2.2).
The addition of any more gamma distributed U ’s to the model in any one or two
places will not yield a more general model since they could be combined with
already present gamma variables to keep the dimension of the parameter vector
at the value 8.

The three dimensional version of this construction will involve 26 Ui’s. This
number can be verified by noting that a trivariate model (V1, V2, V3) expressed as
ratios of independent linear combinations of independent gamma variables (with
unit scale parameter), will involve 6 places where a particular U can appear,
three numerators and three denominators. But a particular U cannot appear
in both the numerator and denominator of any of the three Vi’s. There will be
6 U ’s which appear in one of the 6 possible places. These will be denoted by
U1, U2, ..., U6. There will be 12 U ’s that appear in exactly two of the 6 possible
positions, denoted by U7, U8, ..., U18. Finally there are 8 U ’s that appear in 3
places, namely U19, U20, ..., U26. No U can appear in more than 3 places without
violating the requirement that numerators must be independent of their corre-
sponding denominators.

Thus, there are a total of 26 parameters in the model where Ui, i =
1, 2, ..., 26 are independent variables with Ui ∼ Γ(αi, 1) for each i. The model
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can then be expressed in the following, somewhat daunting, form.

V1 =
U1 + U7 + U8 + U9 + U10 + U19 + U20 + U21 + U22

U4 + U11 + U12 + U13 + U14 + U23 + U24 + U25 + U26
,

V2 =
U2 + U7 + U11 + U15 + U16 + U19 + U20 + U23 + U24

U5 + U9 + U13 + U17 + U18 + U21 + U22 + U25 + U26
,

and

V3 =
U3 + U8 + U12 + U15 + U17 + U19 + U21 + U23 + U25

U6 + U10 + U14 + U16 + U18 + U20 + U22 + U24 + U26
.

The pattern for the dimensions of parameter spaces of the multivariate
models becomes clear. The univariate model involves 2 U ’s, i.e., 31 − 1. The
bivariate model involves 8 U ’s, i.e., 32 − 1. The trivariate case involves 26 U ’s,
i.e., 33 − 1., and so on. The general four dimensional model has 80 parameters!
The enormous number of parameters involved in the completely general 3 and 4
dimensional models (i.e., 26 and 80) will compel us to consider simplified sub-
models, of somewhat restricted flexibility, obtained by setting some of the α’s
equal to 0. This may well be desirable, even in the bivariate case. The full array
of sub-models of the 8 parameter model (2.1)-(2.2) can be enumerated as follows.

There is, to begin with, the full 8-parameter model in which all of the αi’s
are positive. We can label the various sub-models by listing the subscripts of
the αi’s which remain in the sub-model, i.e., which have not been set equal to 0.
Thus B(2)(1, 2, 3, 4, 5.6, 7, 8) denotes the full model, while for example B(2)(1, 5, 6)
denotes the model in which only α1, α5 and α6 have not been set equal to 0. Note
that the list of subscripts of the αi’s that are set equal to zero cannot include
any of the four triples (1, 5, 7), (3, 6, 8), (2, 5, 8) or (4, 6, 7) in order to retain the
second kind beta form for the marginal distributions. Thus, the list of permissible
sub-models includes:

•
(
8
1

)
= 8 models in which just one of the αi’s has been set equal to 0,

•
(
8
2

)
= 28 models in which exactly two of the αi’s have been set equal to 0,

•
(
8
3

)
−4 = 52 permissible models in which exactly three of the αi’s have been

set equal to 0,

•
(
8
4

)
−20 = 50 permissible models in which exactly four of the αi’s have been

set equal to 0,

•
(
8
5

)
−36 = 20 permissible models in which exactly five of the αi’s have been

set equal to 0,

•
(
8
6

)
− 26 = 2 permissible models in which exactly six of the αi’s have been

set equal to 0. Of these models, BB(2)(5, 6) has V1 = V2, while BB(2)(7, 8)
has V1 = 1/V2, so that they are of little interest.
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In all there are 161 models which might be considered, of which 159 are non
trivial. As we shall see in the next section, several of the corresponding bivariate
beta of the first kind models (but not many) have received detailed coverage in
the literature. It should be noted that very few of these models have available
analytic expressions for the corresponding joint density. Typically those models
with more than 3 parameters will not have tractable joint densities.

Returning to the general 8-parameter model (2.1)-(2.2), we may readily
write down the moments of the Vi’s since they have second kind beta distributions.
Thus, for any integer j less than α3 + α6 + α8, we have

E(V j
1 ) = E[(U1 + U5 + U7)

j ]E[(U3 + U6 + U8)
−j ]

=
Γ(α1 + α5 + α7 + j)

Γ(α1 + α5 + α7)

Γ(α3 + α6 + α8 − j)

Γ(α3 + α6 + α8)
,

and similarly, for any integer k < α4 + α6 + α7,

E(V k
2 ) =

Γ(α2 + α5 + α8 + k)

Γ(α2 + α5 + α8)

Γ(α4 + α6 + α7 − k)

Γ(α4 + α6 + α7)
.

Expressions for the variances are then readily written down. However mixed
moments are more difficult to deal with. For example, we have

E(V1V2) = E

[(
U1 + U5 + U7

U3 + U6 + U8

)(
U2 + U5 + U8

U4 + U6 + U7

)]

which appears to be difficult to evaluate analytically, unless most of the αi’s are
equal to 0. Thus, analytic expressions for the covariance between V1 and V2 will
be usually unavailable. Nevertheless, the covariance and any mixed moments of
the form E(V ℓ

1 V
m
2 ) can be readily approximated by repeated simulation of the

Ui’s, thanks to the strong law of large numbers.

3. BIVARIATE BETA DISTRIBUTIONS (OF THE FIRST, OR
CLASSICAL, KIND)

If U ∼ B(2)(α1, α2), i.e., if U =d W1/W2 where the Wi’s are independent
with Wi ∼ Γ(αi, 1), i = 1, 2, then the random variable V = (1 − U−1)−1 has a
(classical) beta distribution or beta distribution of the first kind, and we denote
this by V ∼ B(α1, α2). Here, V can be represented in the form

V =
W1

W1 +W2
.

Application of such a transformation to the marginals of the model (2.1)-
(2.2) yields a parallel 8-parameter bivariate (classical) beta distribution with the
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following structure

(3.1) W1 =
U1 + U5 + U7

(U1 + U5 + U7) + (U3 + U6 + U8)

and

(3.2) W2 =
U2 + U5 + U8

(U2 + U5 + U8) + (U4 + U6 + U7)
,

where the Ui’s are independent gamma distributed random variables with
Ui ∼ Γ(αi, 1), i = 1, 2, ..., 8. In this case we write

(W1,W2) ∼ BB(1, 2, 3, 4, 5, 6, 7, 8),

indicating that all 8 of the Ui’s are involved in the distribution. This is the 8-
parameter bivariate beta distribution introduced in Section 6.1 of Arnold and
Ng (2011). As was the case for the bivariate beta of the second kind distribu-
tion discussed in Section 2, it will often be of interest to consider sub-models
in which some of the αi’s are set equal to zero, so that the corresponding Ui’s
do not appear in the expressions (2.1) and (2.2). Thus for example the model
BB(1, 2, 6, 7, 8) may be recognized as the 5-parameter bivariate beta model dis-
cussed extensively in Arnold and Ng (2011), while the simpler 3-parameter models
BB(1, 2, 6), BB(3, 5, 6), BB(4, 5, 6) and BB(6, 7, 8) have also appeared in the
literature, as has the 4-parameter model BB(5, 6, 7, 8).

The BB(6, 7, 8) model is recognizable as a Dirichlet distribution, the
BB(1, 2, 6) model is identifiable as the Libby-Novak (1982)-Jones (2002)-Olkin-
Liu (2003) model, the BB(3, 5, 6) and BB(4, 5, 6) models are the same as the
first two models discussed in Nadarajah and Kotz (2005), and the BB(5, 6, 7, 8)
has been discussed by Olkin and Trikalinos (2015). Finally we mention that the
BB(1,2,3,4,5,6) model was introduced by Magnussen (2004). Of course, not all
bivariate beta models can be viewed as sub-models of (3.1)-(3.2). For example
the third model in Nadarajah and Kotz (2005) (which is defined in terms of three
independent beta variables) is not of this form, nor are the various copula based
models obtained by marginally transforming quite arbitrary bivariate distribu-
tions to obtain beta marginals. Moreover some bivariate beta models, such as
for example the one in Nadarajah (2007) only have beta marginals in special
sub-cases.

In this setting also, there are 161 models which might be considered, of
which 159 are non trivial. It, once more, should be noted that very few of these
models have available analytic expressions for the corresponding joint density.
Typically those models with more than 3 parameters will not have tractable joint
densities.

Returning to the general 8-parameter model (3.1)-(3.2), we may readily
write down the moments of the Wi’s since they have (classical) beta distributions.
Thus, for example, the means and variances are given by

E(W1) =
α1 + α5 + α7

α1 + α5 + α7 + α3 + α6 + α8
,
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E(W2) =
α2 + α5 + α8

α2 + α5 + α8 + α4 + α6 + α7
,

var(W1) =
(α1 + α5 + α7)(α3 + α6 + α8)

(α1 + α5 + α7 + α3 + α6 + α8)2(α1 + α5 + α7 + α3 + α6 + α8 + 1)
,

and

var(W2) =
(α2 + α5 + α8)(α4 + α6 + α7)

(α2 + α5 + α8 + α4 + α6 + α7)2(α2 + α5 + α8 + α4 + α6 + α7 + 1)
.

Although expressions for the variances are readily written down, mixed
moments are more difficult to deal with. For example, we have

E(W1W2) = E

[(
U1 + U5 + U7

U1 + U5 + U7 + U3 + U6 + U8

)(
U2 + U5 + U8

U2 + U5 + U8 + U4 + U6 + U7

)]

which will be difficult to evaluate analytically, unless most of the αi’s are equal to
0. Thus, analytic expressions for the covariance between W1 and W2 will be usu-
ally unavailable. As was the case for the second kind beta models, this covariance
and any mixed moments of the form E(W ℓ

1W
m
2 ) can be readily approximated by

repeated simulation of the Ui’s, using the strong law of large numbers.

4. RECIPROCATION AND REFLECTION ABOUT 1/2

If X ∼ B(α1, α2) then it follows readily that 1 − X ∼ B(α2, α1).
Similarly, if X ∼ B(2)(α1, α2) then 1/X ∼ B(2)(α2, α1). In words, the fam-
ily of beta distributions is closed under reflection about the point 1/2, and
the family of second kind beta distributions is closed under reciprocation. If
one of these transformations is applied to one of the coordinates of a bivariate
beta random variable, a new bivariate beta random variable will be obtained,
but with a modified dependence structure. Thus if (W1,W2) has a bivariate
beta distribution with positive correlation, then (W1, 1 − W2) will again have
a bivariate beta distribution, but now it will have negative correlation (since
cov(W1, 1 − W2) = cov(W1,−W2) = −cov(W1,W2)). Similarly, if (W1,W2) has
a bivariate second kind beta distribution, then (W1, 1/W2) will again have a bi-
variate second kind beta distribution, but typically with correlation opposite in
sign to that of (W1,W2).

The BB(2)(α1, α2, α3, α4, α5, α6, α7, α8) family of distributions is closed un-
der marginal reciprocation and, likewise, the BB(α1, α2, α3, α4, α5, α6, α7, α8)
family of distributions is closed under marginal reflection about 0. Specifically
we have:

If (W1,W2) ∼ BB(2)(α1, α2, α3, α4, α5, α6, α7, α8), then

• (W1, 1/W2) ∼ BB(2)(α1, α4, α3, α2, α7, α8, α5, α6),
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• (1/W1,W2) ∼ BB(2)(α3, α2, α1, α4, α8, α7, α6, α5),

and

• (1/W1, 1/W2) ∼ BB(2)(α3, α4, α1, α2, α6, α5, α8, α7).

In a parallel fashion, if (W1,W2) ∼ BB(α1, α2, α3, α4, α5, α6, α7, α8), then

• (W1, 1−W2) ∼ BB(α1, α4, α3, α2, α7, α8, α5, α6),

• (1−W1,W2) ∼ BB(α3, α2, α1, α4, α8, α7, α6, α5),

and

• (1−W1, 1−W2) ∼ BB(α3, α4, α1, α2, α6, α5, α8, α7).

See Singapurwalla et al. (2016) for further discussion of bivariate beta mod-
els related by marginal reflection about 1/2.

5. BIVARIATE GENERALIZED BETA MODELS

If X ∼ B(α1, α2) then for γ > 0, W = X1/γ is said to have a generalized
beta distribution, written

W ∼ GB(α1, α2, γ).

Similarly, if X ∼ B(2)(α1, α2) then for γ > 0, W = X1/γ is said to have a
generalized second kind beta distribution, written

W ∼ GB(2)(α1, α2, γ).

Analogous generalizations of our bivariate beta models are defined as follows.

If (V1, V2) ∼ BB(α1, α2, α3, α4, α5, α6, α7, α8) and if W1 = V
1/γ1
1 and W2 =

V
1/γ2
1 then (W1,W2) has a bivariate generalized beta distribution and we write

(W1,W2) ∼ GBB(α1, α2, α3, α4, α5, α6, α7, α8; γ1, γ2).

Analogously, if (V1, V2) ∼ BB(2)(α1, α2, α3, α4, α5, α6, α7, α8) and if W1 = V
1/γ1
1

and W2 = V
1/γ2
1 then (W1,W2) has a bivariate generalized second kind beta

distribution and we write

(W1,W2) ∼ GBB(2)(α1, α2, α3, α4, α5, α6, α7, α8; γ1, γ2).
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Additional flexibility for the bivariate generalized second kind beta distri-
bution can be achieved by introducing location, scale and rotation parameters.
Thus for µ ∈ (−∞,∞)2 and a 2 × 2 matrix A, we will define (using column
vectors)

Z = µ+AW

where W ∼ GBB(2)(α1, α2, α3, α4, α5, α6, α7, α8; γ1, γ2).

6. BIVARIATE KUMARASWAMY MODELS

If X ∼ B(1, β) and Y = X1/γ , then Y is said to have a Kumaraswamy
(1980) distribution, and we write Y ∼ K(γ, β). This distribution is a special
case of the generalized beta distribution, but it has one attractive feature. Unlike
other generalized beta distributions, the Kumaraswamy distribution has a simple
analytic expression available for its distribution function. Thus, if Y ∼ K(γ, β)
then

FY (y) = 1− (1− yγ)βI(0 < y < 1).

As a consequence, the Kumaraswamy distribution has emerged as a serious com-
petitor to the beta distribution for modeling data taking values in the unit inter-
val. In Arnold and Ghosh (2016), several bivariate Kumaraswamy distributions
were discussed in some detail. In this Section we will focus on bivariate Ku-
maraswamy distributions that can be constructed by marginal power transfor-
mations applied to the 8-parameter Arnold-Ng bivariate beta model (3.1)-(3.2),
incorporating the needed parametric restrictions to ensure that the marginal dis-
tributions of the bivariate beta model have their first parameters equal to 1.

Thus we begin with (V1, V2) having the distribution of the form (3.1)-(3.2),
but with the following constraints on the α parameters.

(6.1) α1 + α5 + α7 = 1

and

(6.2) α2 + α5 + α8 = 1,

to ensure that V1 ∼ B(1, α3 + α6 + α8) and V2 ∼ B(1, α4 + α6 + α7).

We then define
(W1,W2) = (V

1/δ1
1 , V

1/δ2
2 ),

for positive parameters δ1 and δ2, to obtain a bivariate Kumaraswamy model,
and we write

(W1,W2) ∼ BK(α1, α2, α3, α4, α5, α6, α7, α8; δ1, δ2).

This appears to be a 10-parameter model but, because of the two parametric
restrictions (6.1)-(6.2), the parameter space is actually of dimension 8. The pa-
rameters of the model, α3, α4, α5, α6, α7, α8; δ1 and δ2, are constrained as follows:
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• δ1, δ2 > 0,

• α3, α4, α6 ∈ [0,∞),

• α7, α8 ∈ [0, 1],

• 0 ≤ α5 ≤ min {1− α7, 1− α8},

while α1 = 1− α5 − α7 and α2 = 1− α5 − α8.

As was the case for the bivariate beta and the bivariate second kind beta
models discussed in Sections 2 and 3, simplified and more manageable sub-models
can be identified by setting some of the α parameters equal to 0. Below we
consider in some detail some of these simplified models.

6.1. The Dirichlet bivariate Kumaraswamy model

For this model, we set α1 = α2 = α3 = α4 = α5 = 0 and, in order to
satisfy (6.1)-(6.2), we set α7 = α8 = 1, while α6 ∈ (0,∞). This results in a three
parameter bivariate Kumaraswamy distribution of the form

W1 =

(
U7

U6 + U7 + U8

)1/δ1

,

W2 =

(
U8

U6 + U7 + U8

)1/δ2

,

where δ1, δ2 > 0 and U7, U8 are i.i.d. Γ(1, 1) variables, while U6 ∼ Γ(α6, 1) is
independent of U7 and U8.

Since there is only one α parameter remaining in the model, we may drop
the subscript “6” and write

W ∼ Dirichlet-BK(α, δ1, δ2).

The corresponding joint density is of the form

fW (w) = α(α+1)δ1δ2w
δ1−1
1 wδ2−1

2 (1−wδ1
1 −wδ2

2 )α−1 I(w1, w2 > 0, wδ1
1 +wδ2

2 < 1)

The marginal densities are, by construction, of the Kumaraswamy type. Thus

fW1(w1) = (α+ 1)δ1w
δ1−1
1

(
1− wδ1

1

)α
I(0 < w1 < 1).

and
fW2(w2) = (α+ 1)δ2w

δ2−1
2

(
1− wδ2

2

)α
I(0 < w2 < 1).
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The corresponding conditional densities correspond to scaled Kumaraswamy dis-
tributions. Thus, the conditional density of W2 given W1 = w1 will be

fW2|W1
(w2|w1) = αδ2

(
1− wδ1

1 − wδ2
2

)α−1

(
1− wδ1

1

)α

=
αδ2(

1− wδ1
1

)


1−

wδ2
2(

1− wδ1
1

)




α−1

I(0 < w2 < (1− wδ1
1 )1/δ2).

An analogous expression is available for the conditional density of W1 given W2 =
w2.

Using known results for the Beta and the Dirichlet distribution, we may
verify that

E(W γ1
1 ) =

Γ(1 + γ1δ
−1
1 )Γ(2 + α)

Γ(2 + α+ γ1δ
−1
1 )

,

E(W γ2
2 ) =

Γ(1 + γ2δ
−1
2 )Γ(2 + α)

Γ(2 + α+ γ2δ
−1
2 )

,

and

E(W γ1
1 W

γ2
2 ) =

Γ(2 + α)Γ(1 + γ1δ
−1
1 )Γ(1 + γ2δ

−1
2 )

Γ(α+ 2 + γ1δ
−1
1 + γ2δ

−1
2 )

,

from which one can obtain the covariance and correlation (which, for this model,
are necessarily non-positive).

By differentiating log fW (w) it is possible to locate the mode of this joint
density. It will be located at the point (w∗

1, w
∗
2) where

w∗
1 =

{
δ2(α− 1)

(αδ2 − 1)(αδ1 − 1) + (1− δ2)

}1/δ1

.

and

w∗
2 =

{
δ1(α− 1)

(αδ2 − 1)(αδ1 − 1) + (1− δ1)

}1/δ2

,

provided that this point is an interior point of the support set, i.e., provided that

w∗
1, w

∗
2 > 0, and w∗δ1

1 + w∗δ2
2 < 1.

In other cases, the mode will occur on the boundary of the support set.

It must be remarked that the restrictive nature of the support of this bi-
variate Kumaraswamy model will limit its potential for applications.
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6.2. The Libby-Novick-Jones-Olkin-Liu bivariate Kumaraswamy model

For this model, we set α3 = α4 = α5 = α7 = α8 = 0 and, in order to
satisfy (6.1)-(6.2), we set α1 = α2 = 1, while α6 ∈ (0,∞). This results in a three
parameter bivariate Kumaraswamy distribution of the form

(6.3) W1 =

(
U1

U1 + U6

)1/δ1

,

(6.4) W2 =

(
U2

U2 + U6

)1/δ2

,

where δ1, δ2 > 0 and U1, U2 are i.i.d. Γ(1, 1) variables, while U6 ∼ Γ(α6, 1) is
independent of U1 and U2.

Since there is only one α parameter remaining in the model, here too we
may drop the subscript “6” and write

W ∼ LNJOL-BK(α, δ1, δ2).

The corresponding joint density is of the form

(6.5) fW (w) = α(α+ 1)δ1δ2w
δ1−1

1
wδ2−1

2

(1− wδ1
1
)α(1− wδ2

2
)α

(1− wδ1
1
wδ2

2
)α+2

I(0 < w1, w2 < 1).

Since the Wi’s can be represented as powers of Beta random variables we can
easily get the following expressions for their moments.

E(W γi
i ) =

αΓ(γiδi + 1)

Γ(γiδi + α+ 1)
, i = 1, 2.

A simple expression for E(W1W2) is not available, although it is possible to
provide a series expansion for it, and hence for the covariance. As Olkin and Liu
(2003) noted in the bivariate beta case (with the δi’s equal to one) it is possible
to verify a strong version of positive dependence for this model. For two points
(w1, w2), (w

′
1, w

′
2) (with w1 < w′

1, w2 < w′
2) it is readily verified that

fW1,W2(w1, w2)fW1,W2(w
′
1, w

′
2)

fW1,W2(w1, w
′
2)fW1,W2(w

′
1, w2)

≥ 1,

so the joint density is positive likelihood ratio dependent. Consequently the
correlation is always positive in this model.

6.3. The Nadarajah-Kotz bivariate Kumaraswamy model of the first
kind

For this model, we set α1 = α2 = α4 = α7 = α8 = 0 and, in order to satisfy
(6.1)-(6.2), we set α5 = 1, while α3, α6 ∈ (0,∞). This results in a four parameter
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bivariate Kumaraswamy distribution of the form

W1 =

(
U5

U3 + U5 + U6

)1/δ1

,

W2 =

(
U5

U5 + U6

)1/δ2

,

where δ1, δ2 > 0 and the Ui’s are independent gamma variables with U5 ∼ Γ(1, 1),
U3 ∼ Γ(α3, 1) and U6 ∼ Γ(α6, 1). In this case we write

W ∼ NK(1)-BK(α3, α6, δ1, δ2).

The corresponding joint density is of the form

fW (w) = α6δ1δ2
(wδ2

2 − wδ1
1 )α3−1(1− wδ2

2 )α6−1

w1−δ1
1 w

δ2(α3+α6−1)+1
2 B(α6 + 1, α3)

I(0 < wδ1
1 < wδ2

2 < 1) .

Because of the structure of the NK(1) bivariate beta model, it is possible to
obtain expressions for arbitrary mixed moments as follows. For arbitrary τ1, τ2 >

0, we have

E(W τ1
1 W τ2

2 ) = E

((
U5

U3 + U5 + U6

)τ1/δ1 ( U5

U5 + U6

)τ2/δ2
)

= E

((
U5

U5 + U6

U5 + U6

U3 + U5 + U6

)τ1/δ1 ( U5

U5 + U6

)τ2/δ2
)
,

where U5/(U5+U6) and (U5+U6)/(U3+U5+U6) are independent beta distributed
random variables. Thus

E(W γ1
1 W

γ2
2 ) = E

((
U5

U5 + U6

)(γ1/δ1)+(γ2/δ2)
)
E

((
U5 + U6

U3 + U5 + U6

)γ1/δ1
)

=
B(1 + (γ1/δ1) + (γ2/δ2), α6)

B(1, α6)

B(1 + α6 + (γ1/δ1), α3)

B(1 + α6, α3)
.

From this we may obtain the following expression for the covariance in this model

Cov(W1,W2) = E(W1W2)− E(W1)E(W2)

=

(
B(1 + 1/δ1 + 1/δ2, α6)

B(1, α6)

)(
B(1 + 1/δ1 + α6, α3)

B(1 + α6, α3)

)

−

(
B(1 + 1/δ1, α3 + α6)

B(1, α3 + α6)

)(
B(1 + 1/δ2, α6)

B(1, α6)

)
.

In the special case in which δ1 = δ2 = 1, it is possible to verify that this
covariance is always non-negative. For other values of the δ’s, negative covariance
is possible. Sufficient conditions for negative covariance (and hence, correlation)
are that

1

δ2
> max(α6, δ1), α6 > α3 and α3 + α6 >

1

δ1
> (α6 − 1).
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By differentiating log fW (w) it is possible to locate the mode of this joint density.
It will be located at the point (w∗

1, w
∗
2) where

w∗δ1
1 =

w∗δ2
2 (δ1 − 1)

(α3δ1 − 1)

and

w∗
2 =




(−1− α6δ2) +

(−1+δ1)
(α3δ1−1)(1 + (−1 + α3 + α6)δ2)

(1 + δ2)−
(1+α3δ2)(−1+δ1)

(α3δ1−1)





1/δ2

,

provided that this point is an interior point of the support set, i.e., provided that

0 < w∗δ1
1 < w∗δ2

2 < 1.

In other cases, the mode will occur on the boundary of the support set.

In this case too, unless δ1 = δ2, the restrictive nature of the support of this
bivariate Kumaraswamy model will limit its potential for applications.

6.4. The Nadarajah-Kotz bivariate Kumaraswamy model of the sec-
ond kind

For this model, we set α1 = α2 = α3 = α7 = α8 = 0 and, in order to satisfy
(6.1)-(6.2), we set α5 = 1, while α3, α6 ∈ (0,∞). This results in a four parameter
bivariate Kumaraswamy distribution of the form

W1 =

(
U5

U5 + U6

)1/δ1

,

W2 =

(
U5

U4 + U5 + U6

)1/δ2

,

where δ1, δ2 > 0 and the Ui’s are independent gamma variables with U5 ∼ Γ(1, 1),
U4 ∼ Γ(α4, 1) and U6 ∼ Γ(α6, 1). However, this can be recognized as a re-
parameterized version of the NK(1)BK distribution, with the subscripts of the
Wi’s interchanged. It is thus not necessary to list expressions for the joint density,
moments, etc., since that material can easily be gleaned from Section 6.3.

6.5. The Olkin-Trikalinos bivariate Kumaraswamy model

For this model, we set α1 = α2 = α3 = α4 = 0 and, in order to satisfy
(6.1)-(6.2), we set α5 ∈ (0, 1), while α7 = α8 = 1 − α5 and α6 ∈ (0,∞). This
results in a four parameter bivariate Kumaraswamy distribution of the form

W1 =

(
U5 + U7

U5 + U6 + U7 + U8

)1/δ1

,
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W2 =

(
U5 + U8

U5 + U6 + U7 + U8

)1/δ2

,

where δ1, δ2 > 0 and the Ui’s are independent gamma variables with Ui ∼
Γ(αi, 1), i = 5, 6, 7, 8. In this case we write

W ∼ OT -BK(α5, α6, δ1, δ2).

In this case also, an analytic expression for the joint density is not available, but
we can make the following observations about this joint distribution.

Marginal moments are of course Kumaraswamy moments and thus are read-
ily written down. Mixed moments are more troublesome, except in the case when
δ1 = δ2 = 1 in which case we reduce to an Olkin-Trikalinos model and the Wi’s
can be represented as sums of coordinates of a three dimensional Dirichlet vari-
able. For example, in this case as observed by Olkin and Trikalinos, a simple
expression for the covariance can be obtained in the following form

(6.6) cov(W1,W2) =
(α5α6 − α7α8)

(α5 + α6 + α7 + α8)(α5 + α6 + α7 + α8 + 1)
,

when δ1 = δ2 = 1,

Recall that our model is:

(W1,W2) =

((
U5 + U7

U5 + U6 + U7 + U8

)1/δ1

,

(
U5 + U8

U5 + U6 + U7 + U8

)1/δ2
)

where the Uj ’s are independent with

U5 ∼ Γ(α5, 1) , α5 ∈ (0, 1), U6 ∼ Γ(α6, 1) , α6 ∈ (0,∞)

and
U7 ∼ Γ(1− α5, 1), U8 ∼ Γ(1− α5, 1).

To study moments of this distribution, consider the following three dimen-
sional Dirichlet model, which has four positive parameters:

(Y1, Y2, Y3) =

(
U5

U5 + U6 + U7 + U8
,

U7

U5 + U6 + U7 + U8
,

U8

U5 + U6 + U7 + U8

)

with a Dirichlet(α5, 1−α5, 1−α5, α6) distribution. So we have available expres-
sions for

E(Y1), E(Y2), E(Y3), E(Y 2
1 ), E(Y 2

2 ), E(Y 2
3 ), E(Y1Y2), E(Y1Y3), E(Y2Y3)

and indeed for

E(Y τ1
1 ), E(Y τ2

2 ), E(Y τ3
3 ), E(Y τ1

1 Y τ2
2 ), E(Y τ1

1 Y τ3
3 ), E(Y τ2

2 Y τ3
3 )
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and for
E(Y τ1

1 Y τ2
2 Y1Y

τ3
3 ).

But note that
(W1,W2) =

(
(Y1 + Y2)

1/δ1 , (Y1 + Y3)
1/δ2
)
.

In general only a series expansion for E(W ν1
1 W ν2

2 ) will be available. However, in
the unlikely case in which ν1/δ1 = k1, a positive integer and ν2/δ2 = k2 is also a
positive integer then we can write:

E(W ν1
1 W ν2

2 ) = E
(
(Y1 + Y2)

ν1/δ1 (Y1 + Y3)
ν2/δ2

)

= E
(
(Y1 + Y2)

k1 (Y1 + Y3)
k2
)

=

k1∑

ℓ1=0

k2∑

ℓ2=0

(
k1

ℓ1

)(
k2

ℓ2

)
E(Y ℓ1+ℓ2

1 Y k1−ℓ1
2 Y k2−ℓ2

3 ),

which is then computable. In particular, if δ1 = δ2 = 1, we get

E(W1W2) = E[(Y1 + Y2) (Y1 + Y3)] = E(Y 2
1 ) + E(Y1Y2) + E(Y1Y3) + E(Y2Y3)

which is easy to evaluate and then subtracting E(W1)E(W2) we eventually re-
confirm the result in (6.6).

cov(W1,W2) =
(α5α6 − α7α8)

(α5 + α6 + α7 + α8)(α5 + α6 + α7 + α8 + 1)

=
[α5α6 − (1− α5)

2]

(α6 − α5 + 2)(α6 − α5 + 3)

where we have imposed the constraints α7 = α8 = 1− α5.

When δ1 = δ2 = 1, the model encompasses a full range of values for its
covariance and correlation. In particular we have

• The OT-BK model with δ1 = δ2 = 1, will exhibit positive correlation if
α6 ≥ α5 + 2, and α5 > 1/4.

• The OT-BK model with δ1 = δ2 = 1, will exhibit negative correlation if
α6 ≤ α5 − 3, and α5 < 1/4.

More specifically, with δ1 = δ2 = 1,

• When α5 = 0, Cov(W1,W2) = − 1
(α6+2)(α6+3) < 0, for any choice of α6 ∈

(0,∞).

• When α5 = 1, Cov(W1,W2) = α6
(α6+1)(α6+2) > 0, for any choice of α6 ∈

(0,∞).

In cases in which the δ’s are not both equal to 1, the covariances and
correlations will have to be evaluated numerically in order to determine when
they are positive and when negative.
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6.6. The Ghosh bivariate Kumaraswamy model

For this model, suggested by I. Ghosh, we set α5 = α7 = α8 = 0 and, in
order to satisfy (6.1)-(6.2), we set α1 = α2 = 1, while α3, α4, α6 ∈ (0,∞). This
results in a five parameter bivariate Kumaraswamy distribution of the form

W1 =

(
U1

U1 + U3 + U6

)1/δ1

,

W2 =

(
U2

U2 + U4 + U6

)1/δ2

,

where δ1, δ2 > 0 and the Ui’s are independent gamma variables with U1, U2 ∼
Γ(1, 1) and Ui ∼ Γ(αi, 1), i = 3, 4, 6. In this case we write

W ∼ G-BK(α3, α4, α6, δ1, δ2).

In this case also, an analytic expression for the joint density is not available.

6.7. The Magnussen Kumaraswamy model

Magnussen (2004) described a bivariate beta distribution which can be
identified as a special case of the Arnold-Ng(8) bivariate beta model, obtained
by setting α7 = α8 = 0. It is thus of the form:

(
U1 + U5

U1 + U3 + U5 + U6
,

U2 + U5

U2 + U4 + U5 + U6

)
.

In order to satisfy (6.1)-(6.2), we must have α1 + α5 = 1 and α2 + α5 = 1,
while α3, α4, α6 ∈ (0,∞). This results in a six parameter bivariate Kumaraswamy
distribution of the form

W1 =

(
U1 + U5

U1 + U3 + U5 + U6

)1/δ1

,

W2 =

(
U2 + U5

U2 + U4 + U5 + U6

)1/δ2

,

where δ1, δ2 > 0 and the Ui’s are independent gamma variables with U5 ∼ Γ(α5, 1)
where α5 ∈ [0, 1], Ui ∼ Γ(1− α5, 1), i = 1, 2 and Ui ∼ Γ(αi, 1), αi ∈ (0,∞), i =
3, 4, 6. In this case we write

W ∼ M -BK(α3, α4, α5, α6, δ1, δ2).
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7. VARIATIONS, USING REFLECTION ABOUT 1/2

It is possible to construct other bivariate Kumaraswamy models by apply-
ing one or two marginal reflections about the point 1/2 to the bivariate beta
model, before imposing the necessary parameter constraints and the marginal
power transformations. For example the model (6.3)-(6.4), was derived by first
considering a bivariate beta model of the form

(V1, V2) =

(
U1

U1 + U6
,

U2

U2 + U6

)
.

Instead, we can consider starting with the doubly reflected model, (1−V1, 1−V2),
i.e., (

U6

U1 + U6
,

U6

U2 + U6

)
.

However, note that, according to our notation of Section 4, U1 is playing the role
of a gamma variable usually denoted by U3, U2 is playing the role of a variable
usually denoted by U4, and U6 would be better labeled U5. Thus we eventually
arrive at the following four parameter bivariate Kumaraswamy model

W1 =

(
U5

U3 + U5

)1/δ1

, W2 =

(
U5

U4 + U5

)1/δ2

,

where δ1, δ2 > 0 and the Ui’s are independent gamma variables with U5 ∼ Γ(1, 1)
and Ui ∼ Γ(αi, 1), i = 3, 4. If, instead we only reflect V2 about 1/2, we eventually
arrive at the model,

W1 =

(
U1

U1 + U8

)1/δ1

, W2 =

(
U8

U4 + U8

)1/δ2

,

where δ1, δ2 > 0 and the Ui’s are independent gamma variables with Ui ∼
Γ(1, 1) i = 1, 8 and U4 ∼ Γ(α4, 1).

Finally, if we only reflect V1 about 1/2, we eventually arrive at the model,

W1 =

(
U7

U3 + U7

)1/δ1

, W2 =

(
U2

U2 + U7

)1/δ2

,

where δ1, δ2 > 0 and the Ui’s are independent gamma variables with Ui ∼
Γ(1, 1), i = 2, 7 and U3 ∼ Γ(α3, 1).

This approach can be applied to each of the bivariate models discussed in this
section to obtain three related but distinct models in each case. Recall that such
modifications of the models may be useful since reflection of one of the coordinates
in the model about 1/2 will typically change the sign of the correlations in the
original model.
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8. PARAMETER ESTIMATION

The reader will have noticed that many of the models discussed in this paper
do not have available analytic expressions for their joint densities. In addition,
in many cases, it is difficult to identify functions of (W1,W2), say g(W1,W2) for
which E(g(W1,W2)) can be evaluated as a tractable function of the parameters
of the model. We do have well behaved marginal distributions with available
densities and moments, since the coordinate variables have Beta, second kind
Beta, generalized Beta or Kumaraswamy distributions. Exceptions to this rule
are the Libby-Novick-Jones-Olkin-Liu models for which, at least, the joint density
is available, though mixed moments are only available in series form. Having
observed this, we recognize that the old standby’s maximum likelihood and the
method of moments will require some modification if they are to be used to
provide estimates of the model parameters. The same can be said for Bayesian
estimation since it, also, typically utilizes a likelihood function. Arnold and Ng
(2011) described a hybrid estimation strategy for parameter estimation in a 5-
parameter sub-model of the BB(1,2,3,4,5,6,7,8) model, namely the BB(1,2,6,7,8)
model. Unfortunately, their approach will not work for the associated bivariate
Kumaraswamy model. In addition, an approximate Bayesian analysis of the
BB(1,2,6,7,8) model was presented in Crackel (2015).

However, all is not lost because, without exception, all of the models dis-
cussed in this paper are easy to simulate. This means that, for given values
of the parameters, highly accurate approximate values of moments, mixed mo-
ments, values of the joint distribution function and values of the joint moment
generating function can be obtained. Admittedly, this will result in computer
intensive estimation strategies, but it will allow selection among the sub-models
for the one best adapted to a given data set. More details on these approximate
estimation strategies will be the subject of a subsequent report.

9. A DATA SET

To illustrate the applicability of the bivariate beta and Kumaraswamy mod-
els developed in this paper, we consider the following data from the official web-
site of the United Nations Development Program which can be found at
(datalink: http://hdr.undp.org/en/composite/trends.) It consists of data on the
Human Development Index (HDI) and is provided by the United Nations De-
velopment Program (UNDP). Specifically, we look at the 49 countries which are
labeled as having very high HDI values for two specific years, the years 2010
and 2014. The reason of choosing these two particular time periods is that 2010
is right after the global financial turmoil (which started during the year 2008)
which affected the entire economic sphere and related development and 2014 is
the period where most of the countries in Europe were getting out of a recession.
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Thus, it is quite interesting to see the change in the HDI values among countries
over this period of 4 years.

We consider the following: Let X denote the HDI value for these 49 coun-
tries for the year 2010 and Y be the same for the year 2014. Noticeably, all the
data points are within the range (0, 1), thereby a reasonable approach will be to
fit bivariate distributions on the unit square, [0, 1]2. At this point we argue that
(X,Y ) can be modeled well by the bivariate Kumaraswamy and beta distributions
developed and discussed in this paper.

1. Model I: The Libby- Novick-Jones-Olkin-Liu bivariate Kumaraswamy dis-
tribution. This absolutely continuous distribution has the following density
(repeating (6.5)

fW (w) = α(α+ 1)δ1δ2w
δ1−1

1
wδ2−1

2

(1− wδ1
1
)α(1− wδ2

2
)α

(1− wδ1
1
wδ2

2
)α+2

I(0 < w1, w2 < 1).

2. Model II: The bivariate generalized beta distribution of the first kind [Equa-
tion (20) of Sarabia et al. (2014)], with density

f(x, y) =
a1a2

B(p1, p2, q)

xa1p1−1ya2p2−1 (1− xa1)p2+q−1 (1− ya2)p1+q−1

(1− xa1ya2)−(p1+p2+q)
,

for 0 < (x, y) < 1, where B(p1, p2, q) is the normalizing constant.

3. Model III: The Nadarajah (2007) bivariate generalized beta distribution
given by

f(x, y) =
Cxα−1yβ−1 (1− x)γ−α−1 (1− y)γ−β−1

(1− xyδ)γ
,

for 0 < x < 1, 0 < y < 1, γ > α > 0, γ > β > 0 and 0 ≤ δ < 1 where C is
the normalizing constant given by

1

C
=

Γ(α)Γ(β)Γ(γ − α)Γ(γ − β)

Γ2(γ)
2F1 (α, β; γ; δ) .

4. Model IV: Olkin & Liu (2003) bivariate beta distribution given by

f(x, y) =
1

B(α0, α1, α2)

xα1−1yα2−1 (1− x)α0+α2−1 (1− y)α0+α1−1

(1− xy)α0+α1+α2
,

for 0 < (x, y) < 1, where B(α0, α1, α2) =
Γ(α0)Γ(α1)Γ(α2)
Γ(α0+α1+α2)

.

The other bivariate beta Kumaraswamy models, are not considered in this appli-
cation because either they do not have a closed form expression for the density,
or if they have one, their support set does not match the range of points in the
data set.
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• The NK- bivariate Kumaraswamy model is not appropriate since it has
support 0 < w1 < w2 < 1 (if we were willing to accept the constraint
δ1 = δ2). If the δ′ s are unequal then the support set is unusual and it is
difficult to envision a data set for which such a model will be appropriate.

• For the Dirichlet- bivariate Kumaraswamy model, the situation is similar.

To check the goodness of fit of all four statistical models, a χ2 goodness-of-fit
statistic is used and is computed using the computational package Mathematica.
The MLEs are computed using the Nmaximize technique.

Table 1. Parameter estimates for HDI data set.

Model Model I Model II Model III Model IV
Parameter Estimates α̂ = 3.5287(0.3335) â1 = 0.692(0.0894) α̂ = 1.798(0.1142) α̂0 = 4.016(0.6436)

δ̂1 = 1.1845(0.9723) â2 = 1.362(2.246) β̂ = 1.834(0.2794) α̂1 = 3.7649(2.1873)

δ̂2 = 3.2424(0.1065) p̂1 = 3.016(0.9852) γ̂ = 4.038(0.3677) α̂2 = 6.172(0.5837)

p̂2 = 0.782(5.681) δ̂ = 0.587(1.2468)
q̂ = 1.2218(0.3678)

Log likelihood -168.45 -205.38 -217.63 -196.39

χ2 goodness p-value 0.6132 0.4821 0.4593 0.5041

For this particular data set, it appears that the best model, of the four that
were considered, is the Libby- Novick-Jones-Olkin-Liu bivariate Kumaraswamy
model.

10. AN ALTERNATIVE APPROACH USING COPULAS

The bivariate Kumaraswamy models discussed in this paper are constructed
by focusing on bivariate beta random variables with the first parameter of each
marginal beta distribution equal to one. An alternative approach, still using the
Arnold-Ng bivariate model, is available.

Many researchers make use of what are called copula based bivariate mod-
els. For such models, one begins with a copula, a bivariate distribution with
Uniform(0, 1) marginals, and makes marginal transformations to obtain a bi-
variate model with desired marginal distributions. The dependence structure of
the resulting model is thus “inherited” from that of the particular copula used in
the construction. Typically, one parameter families of copulas are used to build
models in this way. More flexible models can be expected if multiparameter
families of copulas are used.

A copula based bivariate Kumaraswamy model will be of the form

(10.1) (X1, X2) = (
[
1− (1− Y1)

1/δ1
]1/γ1

,
[
1− (1− Y2)

1/δ2
]1/γ2

),

where (Y1, Y2) has the desired copula as its distribution (with Uniform(01)
marginals).
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In (10.1) eachXi has been obtained from the corresponding Yi by transform-
ing using a Kumaraswamy quantile function, to obtain Kumaraswamy marginals.

Looking back at the Arnold-Ng bivariate beta model (3.1)-(3.2), it is ev-
ident that it contains many distributions with Uniform(0, 1) marginals since a
Uniform(0, 1) can be identified as a Beta(1, 1) distribution. In fact the Arnold-
Ng model contains a four parameter family of such distributions, i.e., of copulas.
The subfamily of of the Arnold-Ng distributions that correspond to copulas is
obtained by setting

α1 + α5 + α7 = 1,(10.2)

α2 + α5 + α8 = 1,(10.3)

α3 + α6 + α8 = 1,(10.4)

α4 + α6 + α7 = 1.(10.5)

In addition, recall that all αi’s are non-negative. The resulting four dimensional
parameter space may be described as follows:

α5 ∈ [0, 1], α6 ∈ [0, 1], 0 ≤ α7 ≤ 1−max {α5, α6}, 0 ≤ α8 ≤ 1−max {α5, α6}.

The remaining αi’s, i = 1, 2, 3, 4, are then determined by equations (10.2)-(10.5).

Such models will be referred to as Arnold-Ng (henceforth AN) copulas.

In a separate report, Arnold and Ghosh (2016) investigate the use of this
multiparameter family of copulas in the construction of eight parameter bivari-
ate Kumaraswamy models. The enhanced flexibility of a four parameter cop-
ula model, when compared with typical one parameter families, makes such an
approach an attractive alternative. See Arnold and Ghosh (2016) for detailed
discussion of all submodels (with one, two or three parameters) of the AN four
parameter copula family. These can be used to construct (using (10.1)) five, six
and seven parameter bivariate Kumaraswamy distributions.

11. CONCLUDING REMARKS

In this paper we consider several different strategies for constructing bi-
variate beta (and also bivariate generalized beta) distributions as well as several
types of bivariate Kumaraswamy distributions using the gamma based method-
ology for construction of bivariate beta models as suggested by Arnold and Ng
(2011). It has been observed that for most of the constructed bivariate beta
models, a corresponding closed form expression for the joint density is unavail-
able. Our proposed bivariate beta models are significantly different than those
discussed and studied in detail in Sarabia et al. (2014).

However, one can readily simulate data from those models using an ap-
propriate algorithm. We have also constructed various bivariate Kumaraswamy



Bivariate Beta and Kumaraswamy models with independent gamma components 247

models starting from a 8 parameter bivariate Kumaraswamy models by setting
the first parameter for the associated beta random variables to 1 and then mak-
ing a positive power transformation. During the discussion, we have considered
some structural properties of the resultant models, such as moments, dependence
structure, etc.

However, in many applications it might be desirable to first test the hy-
pothesis H : δ1 = δ2 = 1, using perhaps a generalized likelihood ratio test,
before settling on the use of a bivariate Kumaraswamy model as opposed to a
bivariate beta or generalized beta model. A preliminary visual inspection of the
sample marginals might be a useful first step. Bivariate beta and bivariate Ku-
maraswamy) distributions could play a useful role in modeling dependent risks
(in a typical financial setting) where the individual risks are transformed to be
bounded on the interval [0, 1].

Estimation of the model parameters (especially, for those models without
a closed form of the density) using an approximate Bayesian approach as well as
using an appropriate method of moments strategy (using marginal, joint and/or
conditional moments) is currently under investigation and, as noted in Section 8,
will be reported elsewhere.

Bivariate Kumaraswamy distributions might be considered as models in
certain bivariate reliability contexts. Howver, the absence of corresponding den-
sity functions will typically not allow one to identify bivariate failure rate func-
tions and other distributional features of interest in reliability. Numerical eval-
uations or simulation based approximations will be needed in almost all cases.
One case in which a density exists is the Libby- Novick-Jones-Olkin-Liu bivariate
Kumaraswamy distribution, displayed in (6.5). In this case, for example, it is
possible to obtain a rather complicated series expansion for the reliability quan-
tity P (W1 < W2). See Appendix B. Expressions for other reliability features can
be expected to be equally or more complicated and, even as in this simple case,
will be of doubtful utility.

APPENDIX A

In Figure 1 we provide contour plots for some specific choices of the parameters α
and δj for j = 1, 2 for some representative 3 parameter BK models. The following
choices are made for each of these selected representative 3 parameter BK models:

• Choice 1 (c1): α = 1.2, δ1 = 0.5, δ2 = 0.5.

• Choice 2 (c2): α = 1.8, δ1 = 1.3, δ2 = 0.9.
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Figure 1: Contour plots for representative BK models.

APPENDIX B

The joint density of the LNJOLBK distribution is of the form

fW (w) = α(α+ 1)δ1δ2w
δ1−1
1 wδ2−1

2

(1− wδ1
1 )α(1− wδ2

2 )α

(1− wδ1
1 wδ2

2 )α+2
I(0 < w1, w2 < 1).

In this case,

R = P (W1 < W2) =

∫ 1

0

∫ 1

w1

f(w1, w2)dw2dw1.
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First, let us consider the integral

I1 =

∫ 1

w1

δ2w
δ2−1
2

(1− wδ2
2 )α

(1− wδ1
1 wδ2

2 )α+2
dw2

=

∫ 1

w
δ2
1

(1− t)α
(
1− twδ1

1

)−(α+2)
dt, on substitutiont = wδ1

1

=
∞∑

k=0

wkδ1
1

(
α+ 2 + k − 1

k

)∫ 1

w
δ2
1

tk (1− t)α dt

using the expansion

(1− z)−m =
∞∑

k=0

(
m+ k − 1

k

)
zk.

Next, consider the integral on I1
∫ 1

w
δ2
1

tk (1− t)α dt = B(k + 1, α− 1)−
(
wδ1
1

)k+1
∞∑

n=0

(1− α)(n)w
nδ1
1

n!(k + n)
,

using the series expansion of the incomplete Beta function

B(z, a, b) =

∫ z

0
ua−1(1− u)b−1du = za

∞∑

n=0

(1− b)(n)z
n

n!(a+ n)
,

where T(n) is the descending factorial.

Hence, the expression I1 reduces to

I1 =
∞∑

k=0

(
α+2+k−1

k

)
B(k+1, α−1)wkδ1+δ2

1 −
∞∑

k=0

∞∑

n=0

w
(2k+n+1)δ1
1 (1−α)(n)

n!(k+n)
.

Therefore, the expression of R, the reliability parameter for this bivariate
KW model can be expressed in the form

R =

∫ 1

0
α(α+ 1)δ1w

δ1−1
1

(
1− wδ1

1

)α
I1dw1

= α(α+ 1)

[
∞∑

k=0

(
α+ 2 + k − 1

k

)
B(k + 1, α− 1)δ1

∫ 1

0
w

δ1(1+k)+δ2−1
1

×
(
1− wδ1

1

)α
dw1

−
∞∑

k=0

∞∑

n=0

(1− α)(n)

n!(k + n)
δ1

∫ 1

0
w

δ1(2+2k+n)−1
1

(
1− wδ1

1

)α
dw1

]

= α(α+ 1)

[
∞∑

k=0

(
α+ 2 + k − 1

k

)
B(k + 1, α− 1)B(kδ1 + δ2 + 1, α+ 1)

−
∞∑

k=0

∞∑

n=0

a

n!(k + n)
B(2k + n+ 2, α+ 1)

]
,

provided α > 1.
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1. INTRODUCTION

Consider a linear regression model

(1.1) yi = x>i β + εi, i = 1, 2, . . . , n,

where yi’s are random responses, xi = (xi1, xi2, . . . , xip)
> are known vectors,

β = (β1, β2, . . . , βp)
> is a vector denoting unknown coefficients, εi’s are unob-

servable random errors and the superscript
(>) denotes the transpose of a vector

or matrix. Further, ε = (ε1, ε2, . . . , εn)> has a cumulative distribution function
F (ε); E (ε) = 0 and V (ε) = σ2In, where σ2 is finite and In is an identity matrix
of dimension n× n. In this paper, we consider that the design matrix has rank p
(p ≤ n).

It is usually assumed that the explanatory variables are independent of each
other in a multiple linear regression model. However, this assumption may not
be valid in real life, that is, the independent variables in model may be correlated
which cause to multicollinearity problem. In literature, some biased estimations,
such as shrinkage estimation, principal components estimation (PCE), ridge es-
timation, partial least squares (PLS) estimation and Liu-type estimators were
proposed to combat this problem. The ridge estimation is proposed by Hoerl and
Kennard (1970), and is one of the most effective methods is the most popular
one. This estimator has less mean squared error (MSE) than the least squares
estimation (LSE) estimation.

The multiple linear regression model is used by data analysts in nearly every
field of science and technology as well as economics, econometrics, finance. This
model is also used to obtain information about unknown parameters based on
sample information and, if available, other relevant information. The other infor-
mation may be considered as non-sample information (NSI), see Ahmed (2001).
This is also known as uncertain prior information (UPI). Such information, which
is usually available from previous studies, expert knowledge or researcher’s ex-
perience, is unrelated to the sample data. The NSI may or may not positively
contribute to the estimation procedure. However, it may be advantageous to use
the NSI in the estimation process when sample information may be rather limited
and may not be completely reliable.

In this study, we consider a linear regression model (1.1) in a more realistic
situation when the model is assumed to be sparse. Under this assumption, the
vector of coefficients β can be partitioned as (β1,β2) where β1 is the coefficient
vector for main effects, and β2 is the vector for nuisance effects or insignificant
coefficients. We are essentially interested in the estimation of β1 when it is
reasonable that β2 is close to zero. The full model estimation may be subject
to high variability and may not be easily interpretable. On the other hand, a
sub-model strategy may result with an under-fitted model with large bias. For
this reason, we consider pretest and shrinkage strategy to control the magnitude
of the bias. Ahmed (2001) gave a detailed definition of shrinkage estimation,



254 Bahadır Yüzbaşı, S. Ejaz Ahmed and Mehmet Güngör

and discussed large sample estimation techniques in a regression model. For
more recent work on the subject, we refer to Ahmed et al. (2012), Ahmed and
Fallahpour (2012), Ahmed (2014a), Ahmed (2014b), Hossain et al. (2016), Gao
et al. (2016). Further, for some related work on shrinkage estimation we refer to
Prakash and Singh (2009) and Shanubhogue and Al-Mosawi (2010), and others.

In this study, we also consider L1 type estimators, and compare them with
pretest and shrinkage estimators. Yüzbaşı and Ahmed (2015) provided some
numerical comparisons of these estimators. The novel aspects of this manuscript,
we investigate the asymptotic properties of pretest and shrinkage estimators when
the number of observations is larger than the number of covariates.

The paper is organized as following. The full and sub-model estimators
based on ridge regression are given in Section 2. The pretest, shrinkage estimators
and penalized estimations are also presented in this section. The asymptotic
properties of the pretest and shrinkage estimators are given in Section 3. The
results of a Monte Carlo simulation study that include a comparison with some
penalty estimators are given in Section 4. A real data example is given in Section
5. The concluding remarks are presented in Section 6.

2. ESTIMATION STRATEGIES

The ridge estimator can be obtained from the following model

y = Xβ + ε subject to β>β ≤ φ,

where φ is inversely proportional to k, y = (y1, . . . , yn)> and X = (x1, . . . ,xn)>,
which is equal to

arg min
β

{∑n

i=1

(
yi − x>

i β
)2

+ k
∑p

j=1
β2j

}
.

It yields

(2.1) β̂RFM =
(
X>X + kIp

)−1
X>y,

where β̂RFM is called a ridge full model estimator and k ∈ [0,∞] is tuning ridge
parameter. If k = 0, then β̂RFM is the LSE estimator, and k =∞, then β̂RFM =
0. In this study, we select optimal the value of k which minimizes the mean square
error of the equation (2.1) via 10-fold cross validation.

We let X = (X1,X2), where X1 is an n × p1 sub-matrix containing the
regressors of interest and X2 is an n × p2 sub-matrix that may or may not be

relevant in the analysis of the main regressors. Similarly, β =
(
β>1 ,β

>
2

)>
be the

vector of parameters, where β1 and β2 have dimensions p1 and p2, respectively,
with p1 + p2 = p, pi ≥ 0 for i = 1, 2.
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A sub-model or restricted model is defined as:

y = Xβ + ε subject to β>β ≤ φ and β2 = 0,

then we have the following restricted linear regression model

(2.2) y = X1β1 + ε subject to β>1 β1 ≤ φ.

We denote β̂RFM
1 as the full model or unrestricted ridge estimator of β1 is given

by

β̂RFM
1 =

(
X>1M

R
2 X1 + kIp1

)−1
X>1M

R
2 y,

where MR
2 = In −X2

(
X>2 X2 + kIp2

)−1
X>2 . For model (2.2), the sub-model or

restricted estimator β̂RSM
1 of β1 has the form

β̂RSM
1 =

(
X>1 X1 + k1Ip1

)−1
X>1 y,

where k1 is ridge parameter for sub-model estimator β̂RSM
1 .

Generally speaking, β̂RSM
1 performs better than β̂RFM

1 when β2 is close to

zero. However, for β2 away from the zero, β̂RSM
1 can be inefficient. But, the

estimate β̂RFM
1 is consistent for departure of β2 from zero.

The idea of penalized estimation was introduced by Frank and Friedman
(1993). They suggested the notion of bridge regression as follows. For a given
penalty function π (·) and tuning parameter that controls the amount of shrinkage
λ, bridge estimators are estimated by minimizing the following penalized least
square criterion

n∑
i=1

(
yi − x>i β

)2
+ λπ (β) ,

where π (β) is
∑p

j=1 |βj |
γ , γ > 0. This penalty function bounds the Lγ norm of

the parameters.

2.1. Pretest and Shrinkage Ridge Estimation

The pretest is a combination of β̂RFM
1 and β̂RSM

1 through an indicator
function I (Ln ≤ cn,α) , where Ln is appropriate test statistic to test H0 : β2 =
0 versus HA : β2 6= 0. Moreover, cn,α is an α−level critical value using the
distribution of Ln. We define test statistics as follows:

Ln =
n

σ̂2

(
β̂LSE
2

)>
X>2M1X2

(
β̂LSE
2

)
,

where σ̂2 = 1
n−1(y−Xβ̂RFM)>(y−Xβ̂RFM) is consistent estimator of σ2, M1 =

In −X1

(
X>1 X1

)−1
X>1 and β̂LSE

2 =
(
X>2M1X2

)−1
X>2M1y. Under H0, the test
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statistic Ln follows chi-square distribution with p2 degrees of freedom for large
n values. The pretest test ridge regression estimator β̂RPT

1 of β1 is defined by

β̂RPT
1 = β̂RFM

1 −
(
β̂RFM
1 − β̂RSM

1

)
I (Ln ≤ cn,α) ,

where cn,α is an α− level critical value.

The shrinkage or Stein-type ridge regression estimator β̂RS
1 of β1 is defined

by

β̂RS
1 = β̂RSM

1 +
(
β̂RFM
1 − β̂RSM

1

) (
1− (p2 − 2)L −1

n

)
, p2 ≥ 3.

The estimator β̂RS
1 is general form of the Stein-rule family of estimators,

where shrinkage of the base estimator is towards the restricted estimator β̂RSM
1 .

The Shrinkage estimator is pulled towards the restricted estimator when the
variance of the unrestricted estimator is large. Also, β̂RS

1 is the smooth version

of β̂RPT
1 .

The positive part of the shrinkage ridge regression estimator β̂RPS
1 of β1

defined by

β̂RPS
1 = β̂RSM

1 +
(
β̂RFM
1 − β̂RSM

1

) (
1− (p2 − 2)L −1

n

)+
,

where z+ = max(0, z).

2.1.1. Lasso strategy

For γ = 1, we obtain the L1 penalized least squares estimator, which is
commonly known as Lasso (least absolute shrinkage and selection operator).

β̂Lasso = arg min
β

∑n

i=1

(
yi − x>

i β
)2

+ λ

p∑
j=1

|βj |

 .

The parameter λ ≥ 0 controls the amount of shrinkage.

2.1.2. Adaptive Lasso strategy

The adaptive Lasso estimator is defined as

β̂aLasso = arg min
β

∑n

i=1

(
yi − x>

i β
)2

+ λ

p∑
j=1

ξ̂j |βj |

 ,
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where the weight function is

ξ̂j =
1

|βj∗|γ
; γ > 0.

The βj
∗ a root–n consistent estimator of β. For computational details we refer

to Zou (2006).

2.1.3. SCAD strategy

The smoothly clipped absolute deviation (SCAD) is proposed by Fan and
Li (2001). Given a > 2 and λ > 0, the SCAD penalty at β is

Jλ(β; a) =


λ |β| , |β| ≤ λ

−
(
β2 − 2aλ |λ|+ λ2

)
/ [2(a− 1)] , λ < |β| ≤ aλ

(a+ 1)λ2/2 |β| > aλ.

Hence, the SCAD estimation is given by

β̂SCAD = arg min
β

∑n

i=1

(
yi − x>

i β
)2

+ λ

p∑
j=1

Jλ(βj ; a)

 .

For estimation strategies based on γ = 2, we establish some useful asymp-
totic results in the following section.

3. ASYMPTOTIC ANALYSIS

Consider a sequence of local alternatives {Kn} given by

Kn : β2 = β2(n) =
κ√
n
,

where κ = (κ1, κ2, . . . , κp2)> is a fixed vector. The asymptotic bias of an estima-
tor β∗1 is defined as B (β∗1) = E lim

n→∞
{
√
n (β∗1 − β1)}, the asymptotic covariance

of an estimator β∗1 is Γ (β∗1) = E lim
n→∞

{
n (β∗1 − β1) (β∗1 − β1)

>
}

, and by using

asymptotic covariance matrix Γ, the asymptotic risk of an estimator β∗1 is given
by R (β∗1) = tr (WΓ), where κ is a positive definite matrix of weights with di-
mensions of p× p, and β∗1 is one of the suggested estimators.

We consider two regularity conditions as the following to establish the
asymptotic properties of the estimators.

(i) 1
n max
1≤i≤n

x>i (X>X)−1xi → 0 as n→∞, where x>i is the ith row of X



258 Bahadır Yüzbaşı, S. Ejaz Ahmed and Mehmet Güngör

(ii) lim
n→∞

n−1(X>X) = C, for finite C.

Theorem 3.1. When k 6=∞, if k/
√
n→ λ0 ≥ 0 and C is non-singular,

then √
n
(
β̂RFM − β

)
d→
(
−λ0C−1β, σ2C−1

)
.

For proof, see Knight and Fu (2000).

Proposition 3.1. Assuming above regularity conditions (i) and (ii) hold,
then, together with Theorem 3.1, under {Kn} as n→∞ we have

(
ϑ1
ϑ3

)
∼ N

[(
−µ11.2

δ

)
,

(
σ2C−111.2 Φ

Φ Φ

)]
,

(
ϑ3
ϑ2

)
∼ N

[(
δ
−γ

)
,

(
Φ 0

0 σ2C−111

)]
,

where ϑ1 =
√
n
(
β̂RFM
1 − β1

)
, ϑ2 =

√
n
(
β̂RSM
1 − β1

)
, ϑ3 =

√
n
(
β̂RFM
1 − β̂RSM

1

)
,

C =

(
C11 C12

C21 C22

)
, γ = µ11.2+δ and δ = C−111 C12ω, Φ = σ2C−111 C12C

−1
22.1C21C

−1
11 ,

µ = −λ0C−1β =

(
µ1

µ2

)
and µ11.2 = µ1 −C12C

−1
22 ((β2 − κ)− µ2) .

The expressions for bias for listed estimators are:

Theorem 3.2.

B
(
β̂RFM
1

)
= −µ11.2 ,

B
(
β̂RSM
1

)
= −γ ,

B
(
β̂RPT
1

)
= −µ11.2 − δHp2+2

(
χ2
p2,α; ∆

)
,

B
(
β̂RS
1

)
= −µ11.2 − (p2 − 2)δE

(
χ−2p2+2 (∆)

)
,

B
(
β̂RPS
1

)
= −µ11.2 − δHp2+2

(
χ2
p2,α; ∆

)
,

−(p2 − 2)δE
{
χ−2p2+2 (∆) I

(
χ2
p2+2 (∆) > p2 − 2

)}
,

where ∆ =
(
κ>C−122.1κ

)
σ−2, C22.1 = C22 − C21C

−1
11 C12, and Hv (x,∆) is the

cumulative distribution function of the non-central chi-squared distribution with
non-centrality parameter ∆ and v degree of freedom, and

E
(
χ−2jv (∆)

)
=

∫ ∞
0

x−2jdHv (x,∆) .
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Proof: See Appendix.

Now, we define the following asymptotic quadratic bias (QB) of an estima-
tor β∗1 by converting them into the quadratic form since the bias expression of
all the estimators are not in the scalar form.

QB (β∗1) = (B (β∗1))>C11.2B (β∗1) ,

where C11.2 = C11 −C12C
−1
22 C21.

QB
(
β̂RFM
1

)
= µ>11.2C11.2µ11.2,

QB
(
β̂RSM
1

)
= γ>C11.2γ,

QB
(
β̂RPT
1

)
= µ>11.2C11.2µ11.2 + µ>11.2C11.2δHp2+2

(
χ2
p2,α; ∆

)
+δ>C11.2µ11.2Hp2+2

(
χ2
p2,α; ∆

)
+δ>C11.2δH

2
p2+2

(
χ2
p2,α; ∆

)
,

QB
(
β̂RS
1

)
= µ>11.2C11.2µ11.2 + (p2 − 2)µ>11.2C11.2δE

(
χ−2p2+2 (∆)

)
+(p2 − 2)δ>C11.2µ11.2E

(
χ−2p2+2 (∆)

)
+(p2 − 2)2δ>C11.2δ

(
E
(
χ−2p2+2 (∆)

))2
,

QB
(
β̂RPS
1

)
= µ>11.2C11.2µ11.2 +

(
δ>C11.2µ11.2 + µ>11.2C11.2δ

)
· [Hp2+2 (p2 − 2; ∆)

+(p2 − 2)E
{
χ−2p2+2 (∆) I

(
χ−2p2+2 (∆) > p2 − 2

)}]
+δ>C11.2δ [Hp2+2 (p2 − 2; ∆)

+(p2 − 2)E
{
χ−2p2+2 (∆) I

(
χ−2p2+2 (∆) > p2 − 2

)}]2
.

The QB of β̂RFM
1 is µ>11.2C11.2µ11.2 and the QB of β̂RSM

1 is an unbounded

function of γ>C11.2γ. The QB of β̂RPT
1 starts from µ>11.2C11.2µ11.2 at ∆ = 0,

and when ∆ increases it increases to the maximum point and then decreases to
zero. For the QBs of β̂RS

1 and β̂RPS
1 , they similarly start from µ>11.2C11.2µ11.2,

and increase to a point, and then decrease towards zero.

Theorem 3.3. Under local alternatives and assumed regularity condi-
tions the risks of the estimators are:

R
(
β̂RFM
1

)
= σ2tr

(
WC−111.2

)
+ µ>11.2Wµ11.2 ,

R
(
β̂RSM
1

)
= σ2tr

(
WC−111

)
+ γ>Wγ ,
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R
(
β̂RPT
1

)
= R

(
β̂RFM
1

)
− 2µ>11.2WδHp2+2

(
χ2
p2,α; ∆

)
−σ2tr(WC−111.2 −WC−111 )Hp2+2

(
χ2
p2,α; ∆

)
+δ>Wδ

{
2Hp2+2

(
χ2
p2,α; ∆

)
−Hp2+4

(
χ2
p2,α; ∆

)}
,

R
(
β̂RS
1

)
= R

(
β̂RFM
1

)
+ 2(p2 − 2)µ>11.2WδE

(
χ−2p2+2 (∆)

)
−(p2 − 2)σ2tr

(
C21C

−1
11 WC−111 C12C

−1
22.1

)
{2E

(
χ−2p2+2 (∆)

)
−(p2 − 2)E

(
χ−4p2+2 (∆)

)
}

+(p2 − 2)δ>Wδ{2E
(
χ−2p2+2 (∆)

)
−2E

(
χ−2p2+4 (∆)

)
− (p2 − 2)E

(
χ−4p2+4 (∆)

)
},

R
(
β̂RPS
1

)
= R

(
β̂RS
1

)
−2µ>11.2WδE

({
1− (p2 − 2)χ−2p2+2 (∆)

}
I
(
χ2
p2+2 (∆) ≤ p2 − 2

))
+(p2 − 2)σ2tr

(
C21C

−1
11 WC−111 C12C

−1
22.1

)
·
[
2E
(
χ−2p2+2 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))
−(p2 − 2)E

(
χ−4p2+2 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))]
−σ2tr

(
C21C

−1
11 WC−111 C12C

−1
22.1

)
Hp2+2 (p2 − 2; ∆)

+δ>Wδ [2Hp2+2 (p2 − 2; ∆)−Hp2+4 (p2 − 2; ∆)]

−(p2 − 2)δ>Wδ
[
2E
(
χ−2p2+2 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))
−2E

(
χ−2p2+4 (∆) I

(
χ2
p2+4 (∆) ≤ p2 − 2

))
+(p2 − 2)E

(
χ−4p2+2 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))]
.

Proof: See Appendix.

Noting that if C12 = 0, then all the risks reduce to common value
σ2tr

(
WC−111

)
+ µ>11.2Wµ11.2 for all ω. For C12 6= 0, the risk of β̂RFM

1 remains

constant while the risk of β̂RSM
1 is an unbounded function of ∆ since ∆ ∈ [0,∞) .

The risk of β̂RPT
1 increases as ∆ moves away from zero, achieves it maximum and

then decreases towards the risk of the full model estimator. Thus, it is a bounded
function of ∆. The risk of β̂RFM

1 is smaller than the risk of β̂RPT
1 for some small

values of ∆ and opposite conclusions holds for rest of the parameter space. It
can be seen that R(β̂RPS

1 ) ≤ R(β̂RS
1 ) ≤ R(β̂RFM

1 ), strictly inequality holds for
small values of ∆. Thus positive shrinkage is superior to the shrinkage estimator.
However, both shrinkage estimators outperform the full model estimator in the
entire parameter space induced by ∆. On the other hand, the pretest estimator
performs better than the shrinkage estimators when ∆ takes small values and
outside this interval the opposite conclusion holds.
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4. SIMULATION STUDIES

In this section, we conduct a Monte Carlo simulation study. The design
matrix is generated to be correlated with different magnitudes. We simulate the
response from the following model:

yi = x1iβ1 + x2iβ2 + ...+ xpiβp + εi, i = 1, 2, . . . , n,

where εi ∼ N
(
0, σ2

)
with σ2 = 1. We generate the design matrix X from

a multivariate normal distribution with mean vector µ = 0p1 and covariance
matrix Σx. Further, we consider the off-diagonal elements of the covariance
matrix Σx are equal to be ρ, which is the coefficient of correlation between any
two predictors, with ρ = 0.25, 0.5, 0.75. The ratio of the largest eigenvalue to
the smallest eigenvalue of matrix X>X is calculated as the condition number
test (CNT) which is helpful in detecting the existence of multicollinearity in the
design matrix. If the CNT is larger than 30, then the model may have significant
multicollinearity, for which we refer to Belsley (1991).

For H0 : βj = 0, j = p1 + 1, p1 + 2, . . . , p, with p = p1 + p2, the regression

coefficients are set β =
(
β>1 ,β

>
2

)>
=
(
β>1 ,0

>
p2

)>
with β1 = (1, 1, 1, 1)>. In order

to investigate the behaviour of the estimators, we define ∆∗ = ‖β− β0‖, where

β0 =
(
β>1 ,0

>
p2

)>
and ‖·‖ is the Euclidean norm. We considered ∆ values between

0 and 4. If ∆∗ = 0, then it means that we will have β = (1, 1, 1, 1, 0, 0, . . . , 0︸ ︷︷ ︸
p2

)> to

generated the response under null hypothesis. On the other hand, when ∆∗ > 0,
say ∆∗ = 2, we will have β = (1, 1, 1, 1, 2, 0, 0, . . . , 0︸ ︷︷ ︸

p2−1

)> to generated the response

under the local alternative hypotheses. When we increase the number of ∆, it
indicates the degree of violation of null hypothesis. In our simulation study, we
consider the sample size of n = 60, 100. Also, the number of predictor variables:
(p1, p2) ∈ {(4, 4), (4, 8), (4, 16), (4, 32)}. Finally, each realization was repeated
1000 times to calculate the MSE of suggested estimators and α = 0.05. All com-
putations were conducted using the statistical package R (R Development Core
Team, 2010). The performance of one of the suggested estimator was evaluated
by using MSE criterion. Also, the relative mean square efficiency (RMSE) of the
βN
1 to the β̂RFM

1 is indicated by

RMSE
(
β̂RFM
1 : βN

1

)
=

MSE
(
β̂RFM
1

)
MSE (βN

1 )
,

where βN
1 is one of the listed estimators.

For brevity, we report the results for the values of n = 60, 100, p1 = 4,
p2 = 32 and ρ = 0.75 in Table 1, and we plot the simulation results in Figures 1
and 2.
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Table 1: RMSE of estimators for p1 = 4, p2 = 32 and ρ = 0.75.

n = 60 n = 100
∆ CNT RSM RPT RS RPS CNT RSM RPT RS RPS

0.000 2.240 1.964 2.015 2.158 1.871 1.737 1.749 1.802
0.200 2.152 2.016 1.910 2.074 1.695 1.546 1.623 1.667
0.400 2.099 1.689 1.918 2.082 1.541 1.283 1.508 1.543
0.600 1.621 1.323 1.615 1.708 1.298 1.058 1.387 1.400
0.800 1.396 1.027 1.554 1.589 1.156 0.955 1.392 1.396
1.000 1798.267 1.193 0.908 1.465 1.500 599.313 0.815 0.925 1.209 1.209
1.250 1.037 0.885 1.410 1.410 0.700 0.962 1.217 1.217
1.500 0.798 0.982 1.352 1.352 0.540 0.993 1.111 1.111
1.750 0.628 0.985 1.238 1.238 0.411 1.000 1.078 1.078
2.000 0.586 0.995 1.227 1.227 0.319 1.000 1.060 1.060
4.000 0.198 1.000 1.058 1.058 0.098 1.000 1.018 1.018
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Figure 1: RMSE of the estimators as a function of the non-centrality parameter
∆∗ when n = 60 and p1 = 4.
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Figure 2: RMSE of the estimators as a function of the non-centrality parameter
∆∗ when n = 100 and p1 = 4.

The findings can be summarized as follows:

a) When ∆∗ = 0, RSM outperforms all listed estimators. In contrast to this,
after the small interval near ∆∗, the RMSE of β̂RSM

1 decreases and goes to
zero.

b) The RPT outperforms RS and RPS in case of ∆∗ = 0. However, for large p2
values while keeping p1 and n fixed, RPT is less efficient than RPS. When
∆∗ is larger than zero, the RMSE of β̂RPT

1 decreases, and it remains below

1 for intermediate values of ∆∗, after that the RMSE of β̂RPT
1 increases and

approaches one for larger values of ∆∗.
c) Clearly, RPS performs better than RS in the entire parameter space in-

duced by ∆∗. Both shrinkage estimators outshine the full model estimator
regardless the correctness of the selected sub-model at hand. This is con-
sistent with the asymptotic theory we presented earlier. Recalling that ∆∗

measures the degree of deviation from the assumption on the parameter
space, it is clear that one cannot go wrong with the use of shrinkage esti-
mators even if the selected sub-model is not correctly specified. As evident
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from the table and graphs, if the selected sub-model is correct, that is,
∆∗ = 0 then shrinkage estimators are relatively highly efficient than the
full model estimator. In other words risk reduction is substantial. On the
other hand, the gain slowly diminishes if the sub-model is grossly misspec-
ified. Nevertheless, the shrinkage estimators are at least as good as the full
model estimator in terms of risk. Hence, the use of shrinkage estimators
make sense in real-life applications when a sub-model cannot be correctly
specified, which is the case in most applications.

d) Generally speaking, ridge-type estimators perform better than classical es-
timator in the presence of multicollinearity among predictors. Our simula-
tion results strongly corroborates to this effect; the RMSE of the ridge-type
estimators are increasing function of the amount of multicollinearity.

4.1. Comparison Lasso, aLasso and SCAD

For comparison purposes, we considered n = 50, 75, p2 = 5, 9, 15, 20 and
p1 = 5 at ∆∗ = 0. Here, we used cv.glmnet function in glmnet package in R for
Lasso and aLasso, and cv.ncvreg function in ncvreg package for SCAD method.
The weights for aLasso are obtained from the 10-fold CV Lasso. Results are
presented in Table 2.

Table 2: CNT and RMSE of estimators for p1 = 5.

n ρ p2 CNT LSE RSM RPT RS RPS Lasso aLasso SCAD

50 0.25 5 10.88 0.90 2.63 2.54 1.61 1.83 1.30 1.46 1.39
9 20.36 0.85 3.84 3.50 2.34 2.78 1.54 1.92 1.89

15 46.75 0.76 5.51 4.12 2.85 4.17 1.92 2.56 2.77
20 90.66 0.65 7.32 5.36 4.24 5.44 2.25 3.18 3.14

0.5 5 29.39 0.85 2.75 2.39 1.04 1.93 1.22 1.29 1.16
9 53.39 0.77 4.10 3.32 2.22 2.94 1.46 1.67 1.38

15 126.44 0.67 5.93 4.69 3.06 4.38 1.76 2.13 1.65
20 245.60 0.54 8.07 5.77 4.13 5.70 1.99 2.38 1.94

0.75 5 79.58 0.71 3.93 2.80 1.66 2.12 1.01 0.93 0.73
9 156.47 0.64 4.75 3.14 2.07 3.01 1.18 1.03 0.73

15 385.42 0.48 6.50 4.18 2.72 4.41 1.35 1.26 0.83
20 718.83 0.39 8.94 4.64 3.40 5.91 1.50 1.25 0.83

75 0.25 5 8.90 0.94 2.20 1.97 1.53 1.64 1.25 1.53 1.48
9 15.12 0.91 3.44 2.96 2.25 2.68 1.60 2.12 2.09

15 28.11 0.85 5.54 3.26 3.63 3.88 2.05 3.13 2.99
20 43.77 0.78 7.15 4.11 4.94 5.47 2.63 4.13 3.78

0.5 5 22.77 0.88 2.59 2.11 1.45 1.79 1.25 1.45 1.19
9 38.33 0.86 4.03 2.95 2.32 2.73 1.56 1.96 1.59

15 77.16 0.78 5.79 4.34 3.42 4.35 1.97 2.71 2.45
20 122.80 0.72 7.30 5.52 4.13 5.50 2.28 3.15 2.75

0.75 5 65.35 0.80 3.21 2.63 1.33 2.02 1.13 1.11 0.89
9 113.78 0.76 5.27 3.67 2.30 3.32 1.42 1.52 1.17

15 225.06 0.66 6.81 4.24 3.80 4.68 1.61 1.71 1.20
20 359.89 0.57 7.59 5.52 4.11 5.58 1.82 1.91 1.41
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Not surprisingly, the performance of the sub-model estimator is the best.
The pretest estimator also performs better than other estimators. However, the
performance of RPS is better than RPT for larger values of p2. The performance
LSE estimator is worse than listed estimators since the designed matrix is ill-
conditioned. The performance of the Lasso, aLasso and SCAD are comparable
when ρ is small. On the other hand, pretest and shrinkage estimators remain
stable for a given value of ρ. Also, for large values of p2, the shrinkage and
pretest estimators indicate their superiority over L1 penalty estimators. Thus,
we recommend using shrinkage estimators in the presence of multicollinearity.

5. APPLICATION

We use the air pollution and mortality rate data by McDonald and Schwing
(1973). This data includes p = 15 measurements on mortality rate and explana-
tory variables, which are air-pollution, socio-economic and meteorological, for
n = 60 US cities in 1960. The data are freely available from Carnegie Mellon
University’s StatLib (http://lib.stat.cmu.edu/datasets/). In Table 3, we
listed variables. Also, the CNT value is calculated as 882.081.574 which implies
the existence of multicollinearity in the data set.

Table 3: Lists and Descriptions of Variables

Variables Descriptions

Dependent Variable
mort Total age-adjusted mortality rate per 100.000

Covariates
Air-Pollution
prec Average annual precipitation in inches
jant Average January temperature in degrees F
jult Average July temperature in degrees F
humid Annual average % relative humidity at 1pm

Socio-Economic
ovr65 % of 1960 SMSA population aged 65 or older
popn Average household size
educ Median school years completed by those over 22
hous % of housing units which are sound & with all facilities
dens Population per sq. mile in urbanized areas, 1960
nonw % non-white population in urbanized areas, 1960
wwdrk % employed in white collar occupations
poor % of families with income < 3000

Meteorological
hc Relative hydrocarbon pollution potential of hydrocarbons
nox Relative hydrocarbon pollution potential of nitric oxides
so2 Relative hydrocarbon pollution potential of sulphur dioxides
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In order to apply the proposed methods, we use two step approach since
the prior information is not available here. In the first step, one might do usual
variable selection to select the best sub-model. We use the Best Subset Selection
(BSS). It showed that prec, jant, jult, educ, dens, nonw, hc and nox are the most
important covariates for prediction of the response variable mort and the other
variables may be ignored since they are not significantly important. In the second
step, we have two model which are the full model with all the covariates and
the sub-model with covariates via the BSS. Finally, we construct the shrinkage
techniques from the full-model and the sub-model. We fit the full and sub-model
which are given in Table 4.

Table 4: Fittings of full and sub-models

Models Formulas

Full model log(mort) = β0 + β1prec +β2jant+β3jult+β4ovr65+β5popn+β6educ+β7hous
+β8dens+β9nonw+β10wwdrk+β11poor+β12hc+β13nox+β14so2+β15humid

Sub-Model log(mort) = β0 + β1prec +β2jant+β3jult+β6educ+β8dens+β9nonw+β12hc+β13nox

To evaluate the performance of the suggested estimators, we calculate the
predictive error (PE) of an estimator. Furthermore, we define the relative pre-
dictive error (RPE) of β̂∗ in terms of the full model ridge regression estimator
β̂RFM to easy comparison, is evaluated by as follows

RPE
(
β̂∗
)

=
PE(β̂RFM)

PE(β̂∗)
,

where β̂∗ can be any of the listed estimators. If the RPE is larger than one, it
indicates the superior to RFM.

Our results are based on 2500 case resampled bootstrap samples. Since
there is no noticeable variation for larger number of replications, we did not
consider further values. The average prediction errors were calculated via 10-fold
CV for each bootstrap replicate. The predictors were first standardized to have
zero mean and unit standard deviation before fitting the model. Figure 3 shows
that prediction errors of estimators. As expected, the RSM has the smallest
prediction error since the suggested sub-model is correct. Also, the Lasso, aLasso
and SCAD have higher prediction error than the suggested techniques.
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Figure 3: Prediction errors of listed estimators based on bootstrap simulation

Table 5: Estimate (first row) and standard error (second row) for significant
coefficients for the air pollution and mortality rate data. The RPE column gives
the relative efficiency based on bootstrap simulation with respect to the RFM.

(Const.) prec jant jult educ dens nonw hc nox RPE

RFM 6.846 0.013 -0.010 -0.002 -0.008 0.010 0.019 -0.007 0.009 1.000
0.005 0.005 0.006 0.005 0.006 0.004 0.007 0.015 0.017

RSM 6.845 0.016 -0.018 -0.012 -0.013 0.015 0.042 -0.080 0.081 1.336
0.005 0.007 0.007 0.006 0.006 0.004 0.007 0.026 0.022

RPT 6.845 0.016 -0.018 -0.011 -0.013 0.015 0.040 -0.072 0.073 1.288
0.005 0.007 0.007 0.006 0.007 0.004 0.009 0.029 0.026

RS 6.845 0.017 -0.017 -0.010 -0.012 0.015 0.038 -0.063 0.065 1.160
0.005 0.007 0.007 0.007 0.008 0.005 0.012 0.039 0.037

RPS 6.845 0.016 -0.016 -0.009 -0.012 0.014 0.035 -0.055 0.057 1.316
0.005 0.006 0.006 0.006 0.007 0.004 0.008 0.025 0.023

Lasso 6.845 0.019 -0.019 -0.008 -0.012 0.014 0.035 -0.029 0.032 1.060
0.005 0.009 0.009 0.007 0.011 0.006 0.011 0.046 0.049

aLasso 6.845 0.022 -0.022 -0.013 -0.012 0.015 0.039 -0.037 0.040 0.965
0.006 0.010 0.009 0.008 0.012 0.006 0.012 0.050 0.053

SCAD 6.845 0.019 -0.022 -0.010 -0.014 0.014 0.039 -0.035 0.038 0.897
0.006 0.012 0.011 0.009 0.013 0.007 0.014 0.052 0.055

Table 5 reveals that the RPE of the sub-model estimator, pretest, shrinkage
and positive part of shrinkage estimators outperform the full model estimator.
On the other hand, the sub-model estimator has the highest RPE since it is
computed based on the assumption that the selected sub-model is the true model.
As expected due to the presence of multicollinearity, the performance of both
ridge-type shrinkage and pretest estimators is good and better than estimators
based on L1 criteria. Thus, the data analysis corroborates with our simulation
and theoretical findings.
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6. CONCLUSIONS

In this study we assessed the performance of least squares, pretest ridge,
shrinkage ridge and L1 estimators when predictors are correlated. We established
the asymptotic properties of the pretest ridge and shrinkage ridge estimators. We
demonstrated that shrinkage ridge estimators outclass the full model estimator
and relatively perform better than sub-model estimator in a wide range of the
parameter space. We conducted a Monte Carlo simulation to investigate the be-
havior of proposed estimators when a selected sub-model may or may not be a
true model. Not surprisingly, the sub-model ridge regression estimator outshines
all other estimators when the selected sub-model is the true one. However, when
this assumption is violated, the performance of the sub-model estimator is pro-
foundly poor. Further, the shrinkage estimators outperform pretest ridge esti-
mators when p2 is large. Our asymptotic theory is well supported by numerical
analysis.

We also analyze the relative performance Lasso, adaptive Lasso and SCAD
with other listed estimators. We observe that the performance of pretest and
shrinkage ridge regression estimators are superior to L1 estimators when predic-
tors are highly correlated. The result of a data analysis is very consistent with
theoretical and simulated analysis. In conclusion, we suggest to use ridge-type
shrinkage estimators when the design matrix is ill-conditioned. The result of this
paper are general in nature and consistent with the available results in the re-
viewed literature. Further, the result of this paper maybe extended to host of
models and applications.

APPENDIX

By using ỹ = y −X2β̂
RFM
2

β̂RFM
1 = arg min

β1

{
‖ỹ −X1β1‖+ k ‖β1‖2

}
=
(
X>1 X1 + kIp1

)−1
X>1 ỹ

=
(
X>1 X1 + kIp1

)−1
X>1 y −

(
X>1 X1 + kIp1

)−1
X>1 X2β̂

RFM
2

= β̂RSM
1 −

(
X>1 X1 + kIp1

)−1
X>1 X2β̂

RFM
2 .(6.1)

Using the equation (6.1), under local alternative {Kn}, Φ is derived as
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follows:

Φ = Cov
(
β̂RFM
1 − β̂RSM

1

)
= E

[(
β̂RFM
1 − β̂RSM

1

)(
β̂RFM
1 − β̂RSM

1

)>]
= E

[(
C−111 C12β̂

RFM
2

)(
C−111 C12β̂

RFM
2

)>]
= C−111 C12E

[
β̂RFM
2

(
β̂RFM
2

)>]
C21C

−1
11

= σ2C−111 C12C
−1
22.1C21C

−1
11 = σ2(C−111.2 −C

−1
11 ) .

Lemma 6.1. Let X be q−dimensional normal vector distributed as
N (µx,Σq) , then, for a measurable function of ϕ, we have

E
[
Xϕ

(
X>X

)]
=µxE

[
ϕχ2

q+2 (∆)
]

E
[
XX>ϕ

(
X>X

)]
=ΣqE

[
ϕχ2

q+2 (∆)
]

+ µxµ
>
x E
[
ϕχ2

q+4 (∆)
]
,

where χ2
v (∆) is a non-central chi-square distribution with v degrees of freedom

and non-centrality parameter ∆.

Proof: It can be found in Judge and Bock (1978)

Proof of Theorem 3.2: B
(
β̂RFM
1

)
= −µ11.2 is provided by Proposi-

tion 3.1, and

B
(
β̂RSM
1

)
= E

{
lim
n→∞

√
n
(
β̂RSM
1 − β1

)}
= E

{
lim
n→∞

√
n
(
β̂RFM
1 −C−111 C12β̂

RFM
2 − β1

)}
= E

{
lim
n→∞

√
n
(
β̂RFM
1 − β1

)}
− E

{
lim
n→∞

√
n
(
C−111 C12β̂

RFM
2

)}
= −µ11.2 −C−111 C12ω = − (µ11.2 + δ) = −γ.

Hence, by using Lemma 6.1, it can be written as follows:

B
(
β̂RPT
1

)
= E

{
lim
n→∞

√
n
(
β̂RPT
1 − β1

)}
= E

{
lim
n→∞

√
n
(
β̂RFM
1 −

(
β̂RFM
1 − β̂RSM

1

)
I (Ln ≤ cn,α)− β1

)}
= E

{
lim
n→∞

√
n
(
β̂RFM
1 − β1

)}
−E
{

lim
n→∞

√
n
((
β̂RFM
1 − β̂RSM

1

)
I (Ln ≤ cn,α)

)}
= −µ11.2 − δHp2+2

(
χ2
p2,α; ∆

)
.
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B
(
β̂RS
1

)
= E

{
lim
n→∞

√
n
(
β̂RS
1 − β1

)}
= E

{
lim
n→∞

√
n
(
β̂RFM
1 −

(
β̂RFM
1 − β̂RSM

1

)
(p2 − 2) L −1

n − β1

)}
= E

{
lim
n→∞

√
n
(
β̂RFM
1 − β1

)}
−E
{

lim
n→∞

√
n
((
β̂RFM
1 − β̂RSM

1

)
(p2 − 2) L −1

n

)}
= −µ11.2 − (p2 − 2) δE

(
χ−2p2+2 (∆)

)
.

B
(
β̂RPS
1

)
= E

{
lim
n→∞

√
n
(
β̂RPS
1 − β1

)}
= E

{
lim
n→∞

√
n(β̂RSM

1 +
(
β̂RFM
1 − β̂RSM

1

) (
1− (p2 − 2) L −1

n

)
I (Ln > p2 − 2)− β1)}

= E
{

lim
n→∞

√
n
[
β̂RSM
1 +

(
β̂RFM
1 − β̂RSM

1

)
(1− I (Ln ≤ p2 − 2))

−
(
β̂RFM
1 − β̂RSM

1

)
(p2 − 2) L −1

n I (Ln > p2 − 2)− β1

]}
= E

{
lim
n→∞

√
n
(
β̂RFM
1 − β1

)}
−E
{

lim
n→∞

√
n
(
β̂RFM
1 − β̂RSM

1

)
I (Ln ≤ p2 − 2)

}
−E
{

lim
n→∞

√
n
(
β̂RFM
1 − β̂RSM

1

)
(p2 − 2) L −1

n I (Ln > p2 − 2)
}

= −µ11.2 − δHp2+2 (p2 − 2; (∆))

−δ (p2 − 2) E
{
χ−2p2+2 (∆) I

(
χ2
p2+2

(∆) > p2 − 2
)}

.

Proof of Theorem 3.3: Firstly, the asymptotic covariance of β̂RFM
1 is

given by

Γ
(
β̂RFM
1

)
= E

{
lim
n→∞

√
n
(
β̂RFM
1 − β1

)√
n
(
β̂RFM
1 − β1

)>}
= E

(
ϑ1ϑ

>
1

)
= Cov

(
ϑ1ϑ

>
1

)
+ E (ϑ1) E

(
ϑ>1

)
= σ2C−111.2 + µ11.2µ

>
11.2.

The asymptotic covariance of β̂RSM
1 is given by

Γ
(
β̂RSM
1

)
= E

{
lim
n→∞

√
n
(
β̂RSM
1 − β1

)√
n
(
β̂RSM
1 − β1

)>}
= E

(
ϑ2ϑ

>
2

)
= Cov

(
ϑ2ϑ

>
2

)
+ E (ϑ2) E

(
ϑ>2

)
= σ2C−111 + γγ>,
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The asymptotic covariance of β̂RPT
1 is given by

Γ
(
β̂RPT
1

)
= E

{
lim
n→∞

√
n
(
β̂RPT
1 − β1

)√
n
(
β̂RPT
1 − β1

)>}
= E

{
lim
n→∞

n
[(
β̂RFM
1 − β1

)
−
(
β̂RFM
1 − β̂RSM

1

)
I (Ln ≤ cn,α)

]
[(
β̂RFM
1 − β1

)
−
(
β̂RFM
1 − β̂RSM

1

)
I (Ln ≤ cn,α)

]>}
= E

{
[ϑ1 − ϑ3I (Ln ≤ cn,α)] [ϑ1 − ϑ3I (Ln ≤ cn,α)]>

}
= E

{
ϑ1ϑ

>
1 − 2ϑ3ϑ

>
1 I (Ln ≤ cn,α) + ϑ3ϑ

>
3 I (Ln ≤ cn,α)

}
.

Considering,

E
{
ϑ3ϑ

>
1 I (Ln ≤ cn,α)

}
= E

{
E
(
ϑ3ϑ

>
1 I (Ln ≤ cn,α) |ϑ3

)}
= E

{
ϑ3E

(
ϑ>1 I (Ln ≤ cn,α) |ϑ3

)}
= E

{
ϑ3 [−µ11.2 + (ϑ3 − δ)]> I (Ln ≤ cn,α)

}
= −E

{
ϑ3µ

>
11.2I (Ln ≤ cn,α)

}
+ E

{
ϑ3 (ϑ3 − δ)> I (Ln ≤ cn,α)

}
= −µ>11.2E {ϑ3I (Ln ≤ cn,α)}+ E

{
ϑ3ϑ

>
3 I (Ln ≤ cn,α)

}
−E
{
ϑ3δ

>I (Ln ≤ cn,α)
}

and based on Lemma 6.1, we have

E
{
ϑ3ϑ

>
1 I (Ln ≤ cn,α)

}
= −µ>11.2δHp2+2

(
χ2
p2,α; ∆

)
+
{
Cov(ϑ3ϑ

>
3 )Hp2+2

(
χ2
p2,α; ∆

)
+E (ϑ3) E

(
ϑ>3

)
Hp2+4

(
χ2
p2,α; ∆

)
− δδ>Hp2+2

(
χ2
p2,α; ∆

)}
= −µ>11.2δHp2+2

(
χ2
p2,α; ∆

)
+ ΦHp2+2

(
χ2
p2,α; ∆

)
+δδ>Hp2+4

(
χ2
p2,α; ∆

)
− δδ>Hp2+2

(
χ2
p2,α; ∆

)
.

Then,

Γ
(
β̂RPT
1

)
= µ11.2µ

>
11.2 + 2µ>11.2δHp2+2

(
χ2
p2,α; ∆

)
+ σ2C−111.2 −ΦHp2+2

(
χ2
p2,α; (∆)

)
−δδ>Hp2+4

(
χ2
p2,α; ∆

)
+ 2δδ>Hp2+2

(
χ2
p2,α; ∆

)
= σ2C−111.2 + µ11.2µ

>
11.2 + 2µ>11.2δHp2+2

(
χ2
p2,α; ∆

)
+σ2(C−111.2 −C

−1
11 )Hp2+2

(
χ2
p2,α; ∆

)
+δδ>

[
2Hp2+2

(
χ2
p2,α; ∆

)
−Hp2+4

(
χ2
p2,α; ∆

)]
.
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The asymptotic covariance of β̂RS
1 is given by

Γ
(
β̂RS
1

)
= E

{
lim
n→∞

√
n
(
β̂RS
1 − β1

)√
n
(
β̂RS
1 − β1

)>}
= E

{
lim
n→∞

n
[(
β̂RFM
1 − β1

)
−
(
β̂RFM
1 − β̂RSM

1

)
(p2 − 2) L −1

n

]
[(
β̂RFM
1 − β1

)
−
(
β̂RFM
1 − β̂RSM

1

)
(p2 − 2) L −1

n

]>}
= E

{
ϑ1ϑ

>
1 − 2 (p2 − 2)ϑ3ϑ

>
1 L −1

n + (p2 − 2)2 ϑ3ϑ
>
3 L −2

n

}
.

Considering,

E
{
ϑ3ϑ

>
1 L −1

n

}
= E

{
E
(
ϑ3ϑ

>
1 L −1

n |ϑ3
)}

= E
{
ϑ3E

(
ϑ>1 L −1

n |ϑ3
)}

= E
{
ϑ3 [−µ11.2 + (ϑ3 − δ)]>L −1

n

}
= −E

{
ϑ3µ

>
11.2L

−1
n

}
+ E

{
ϑ3 (ϑ3 − δ)>L −1

n

}
= −µ>11.2E

{
ϑ3L

−1
n

}
+ E

{
ϑ3ϑ

>
3 L −1

n

}
− E

{
ϑ3δ

>L −1
n

}
by using Lemma 6.1, we have

E
{
ϑ3ϑ

>
1 L −1

n

}
= −µ>11.2δE

(
χ−2p2+2 (∆)

)
+
{
Cov(ϑ3ϑ

>
3 )E

(
χ−2p2+2 (∆)

)
+E (ϑ3) E

(
ϑ>3

)
E
(
χ−2p2+4 (∆)

)
− δδ>Hp2+2

(
χ2
p2,α; ∆

)}
= −µ>11.2δE

(
χ−2p2+2 (∆)

)
+ ΦE

(
χ−2p2+2 (∆)

)
+δδ>E

(
χ−2p2+4 (∆)

)
− δδ>E

(
χ−2p2+2 (∆)

)
.

Then,

Γ
(
β̂RS
1

)
= σ2C−111.2 + µ11.2µ

>
11.2 + 2 (p2 − 2)µ>11.2δE

(
χ−2p2+2,α (∆)

)
− (p2 − 2) Φ

{
2E
(
χ−2p2+2 (∆)

)
− (p2 − 2) E

(
χ−4p2+2

(∆)
)}

+ (p2 − 2) δδ>
{
−2E

(
χ−2p2+4

(∆)
)

+ 2E
(
χ−2p2+2 (∆)

)
+ (p2 − 2) E

(
χ−4p2+4

(∆)
)}

.
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Finally,

Γ
(
β̂RPS
1

)
= E

{
lim
n→∞

n
(
β̂RPS
1 − β1

)(
β̂RPS
1 − β1

)>}
= Γ

(
β̂RS
1

)
− 2E

{
lim
n→∞

√
n

[(
β̂RFM
1 − β̂RSM

1

)(
β̂RS
1 − β1

)>
×
{

1− (p2 − 2) L −1
n

}
I (Ln ≤ p2 − 2)

]}
+E
{

lim
n→∞

√
n

[(
β̂RFM
1 − β̂RSM

1

)(
β̂RFM
1 − β̂RSM

1

)>
×
{

1− (p2 − 2) L −1
n

}2
I (Ln ≤ p2 − 2)

]}
= Γ

(
β̂RS
1

)
− 2E

{
ϑ3ϑ

>
1

{
1− (p2 − 2) L −1

n

}
I (Ln ≤ p2 − 2)

}
+2E

{
ϑ3ϑ

>
3 (p2 − 2) L −1

n I (Ln ≤ p2 − 2)
}

−2E
{
ϑ3ϑ

>
3 (p2 − 2)2 L −2

n I (Ln ≤ p2 − 2)
}

+E
{
ϑ3ϑ

>
3 I (Ln ≤ p2 − 2)

}
−2E

{
ϑ3ϑ

>
3 (p2 − 2) L −1

n I (Ln ≤ p2 − 2)
}

+E
{
ϑ3ϑ

>
3 (p2 − 2)2 L −2

n I (Ln ≤ p2 − 2)
}

= Γ
(
β̂RS
1

)
− 2E

{
ϑ3ϑ

>
1

{
1− (p2 − 2) L −1

n

}
I (Ln ≤ p2 − 2)

}
−E
{
ϑ3ϑ

>
3 (p2 − 2)2 L −2

n I (Ln ≤ p2 − 2)
}

+E
{
ϑ3ϑ

>
3 I (Ln ≤ p2 − 2)

}
.

Considering,

E
{
ϑ3ϑ

>
1

{
1− (p2 − 2) L −1

n

}
I (Ln ≤ p2 − 2)

}
= E

{
E
(
ϑ3ϑ

>
1

{
1− (p2 − 2) L −1

n

}
I (Ln ≤ p2 − 2) |ϑ3

)}
= E

{
ϑ3E

(
ϑ>1
{

1− (p2 − 2) L −1
n

}
I (Ln ≤ p2 − 2) |ϑ3

)}
= E

{
ϑ3 [−µ11.2 + (ϑ3 − δ)]>

{
1− (p2 − 2) L −1

n

}
I (Ln ≤ p2 − 2)

}
= −µ11.2E

(
ϑ3
{

1− (p2 − 2) L −1
n

}
I (Ln ≤ p2 − 2)

)
+E
(
ϑ3ϑ

>
3

{
1− (p2 − 2) L −1

n

}
I (Ln ≤ p2 − 2)

)
−E
(
ϑ3δ

> {1− (p2 − 2) L −1
n

}
I (Ln ≤ p2 − 2)

)
= −δµ>11.2E

({
1− (p2 − 2)χ−2p2+2 (∆)

}
I
(
χ2
p2+2 (∆) ≤ p2 − 2

))
ΦE

({
1− (p2 − 2)χ−2p2+2 (∆)

}
I
(
χ2
p2+2 (∆) ≤ p2 − 2

))
+δδ>E

({
1− (p2 − 2)χ−2p2+4

(∆)
}
I
(
χ2
p2+4

(∆) ≤ p2 − 2
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−δδ>E
({

1− (p2 − 2)χ−2p2+2 (∆)
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I
(
χ2
p2+2 (∆) ≤ p2 − 2
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,
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we have

Γ
(
β̂RPS
1

)
= Γ

(
β̂RS
1

)
+ 2δµ>11.2E

({
1− (p2 − 2)χ−2p2+2 (∆)

}
I
(
χ2
p2+2 (∆) ≤ p2 − 2

))
−2ΦE

({
1− (p2 − 2)χ−2p2+2 (∆)

}
I
(
χ−2p2+2 (∆) ≤ p2 − 2

))
−2δδ>E

({
1− (p2 − 2)χ−2p2+4 (∆)

}
I
(
χ2
p2+4 (∆) ≤ p2 − 2

))
+2δδ>E

({
1− (p2 − 2)χ−2p2+2 (∆)

}
I
(
χ2
p2+2 (∆) ≤ p2 − 2

))
− (p2 − 2)2 ΦE

(
χ−4p2+2,α (∆) I

(
χ2
p2+2,α (∆) ≤ p2 − 2

))
− (p2 − 2)2 δδ>E

(
χ−4p2+4 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))
+ΦHp2+2 (p2 − 2; ∆) + δδ>Hp2+4 (p2 − 2; ∆)

= Γ
(
β̂RS
1

)
+ 2δµ>11.2E

({
1− (p2 − 2)χ−2p2+2 (∆)

}
I
(
χ2
p2+2 (∆) ≤ p2 − 2

))
+ (p2 − 2)σ2C−111 C12C

−1
22.1C21C

−1
11

×
[
2E
(
χ−2p2+2 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))
− (p2 − 2) E

(
χ−4p2+2 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))]
−σ2C−111 C12C

−1
22.1C21C

−1
11 Hp2+2 (p2 − 2; ∆)

+δδ> [2Hp2+2 (p2 − 2; ∆)−Hp2+4 (p2 − 2; ∆)]

− (p2 − 2) δδ>
[
2E
(
χ−2p2+2 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))
−2E

(
χ−2p2+4 (∆) I

(
χ2
p2+4 (∆) ≤ p2 − 2

))
+ (p2 − 2) E

(
χ−4p2+2 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))]
.

Now, the proof of Theorem 3.3 can be easily obtained by following the
definition of asymptotic risk.
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[18] Yüzbaşı, B. and Ahmed, S.E. (2015). Shrinkage Ridge Regression Estimators in
High-Dimensional Linear Models, In Proceedings of the Ninth International Con-
ference on Management Science and Engineering Management, Springer Berlin
Heidelberg, 793 – 807

[19] Zou, H. (2006). The adaptive Lasso and its oracle properties, Journal of the
American Statistical Association, 101(456), 1418–1429.



REVSTAT – Statistical Journal

Volume 15, Number 2, April 2017, 277-296

OPEN MARKOV CHAIN SCHEME MODELS FED
BY SECOND ORDER STATIONARY AND NON
STATIONARY PROCESSES

Authors: Manuel L. Esqúıvel
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1. INTRODUCTION

An usual application of a Markov chain model considers a closed popula-
tion with each member being assigned a certain class at each date; the random
transition of each element among the classes is governed by the transition proba-
bilities. In the homogeneous case - the transition probabilities do not depend on
the date at which the transitions occur - and, in the case where there are both
transient and recurrent states in the Markov chain, the main emphasis is on the
asymptotic behavior. Under that perspective, the transient type events do not
matter on long run distributions. In a more realistic model, the population un-
der scrutiny may be changing by the persistent arrival of new members and the
events related to the so called “transient” states acquire new significance, as they
may persist in time, as the inflow of new elements in the population continues
indefinitely.

The consideration of Markov models with a population inflow, the so called
open Markov models, may be set to start , according to [2], with a work by Gani
(see [9]) and was much developed in subsequent years, as perfectly shown in the
references mentioned in Bartholomew’s work [2, p. 80]. Previously, [24] have
obtained a mathematical model to predict distributions of staff and analyse long
term impacts on patterns of recruitment and promotions. The case of Poisson
recruitment in discrete time open Markov chain model was first dealt in [15],
where expressions for the first and second moments of the classes probability
distributions were obtained.

There has been remarkable work on the extension of discrete to continuous
time Markov and semi-Markov models, such as the developments obtained in
[18], [11], [12] and [13]. An important set of contributions to this theme has been
detailed in [22] and, in particular, we would like to highlight the works [23], [21],
[20], [14] and [16].

The motivation for the present work lays mainly in extending the previ-
ous results in the characterization of stable populations lead by discrete time
Markov chain transitions: for instance, already in [7] the asymptotic behavior of
the classes subpopulation averages is obtained in the case of an exponential input
process and a detailed study of stability in terms of relative proportions among
classes is also presented; in [14] the asymptotic behavior is described when the
Poisson input parameter satisfies general regularity conditions. Having in mind
the study not only of the expected values but also of the laws of the subpopula-
tions in the classes, in [4] we considered a sequence of Poisson inflows and studied
the probability distributions of the subpopulation classes relying on the fact that,
by the randomized sampling principle (see [8, p. 268]), the subpopulations are
Poisson distributed and independent of each other.

In this work, we consider that the inflow of new population elements is mo-
deled by a time series - to wit, a second order stationary process or stationary with
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deterministic trend - and we study possible descriptions of the subpopulations,
in particular in the transient states, as time flows.

Section 2 introduces the model and some preliminary results and notations
that we be the basis of our developments. Section 3 contains the main results
obtained in this paper which allowed us to perform an application to credit con-
sumption in Section 4.

2. OPEN MARKOV CHAIN SCHEME MODEL

2.1. The model

Consider a population model driven by a Markov chain defined by a se-
quence of initial distributions given, for n ≥ 1, by (qn)t = (qn1 , q

n
2 , . . . , q

n
r?) and a

transition matrix P = [pij ], 1 ≤ i, j ≤ r? . After the first transition, supposing
that the initial distribution is performed according to (q1)t at date n = 1, the
new value of the proportion of the population, for instance, in state 1, is the
proportion of those which stay in state 1 plus the proportion of those who come
to state 1 from states 2 to r?. That is:

p11q
1
1 + p21q

1
2 + · · ·+ pr1q

1
r? =

r?∑
i=1

pi1q
1
i

and so, the new values of the proportions in all states, after one transition, can be
recovered from Pᵀq = (qᵀP)ᵀ and, after n transitions, by (P(n))ᵀq = (qᵀP(n))ᵀ,
with P(0) = I, P(1) = P and, by induction, P(n+1) = P ◦P(n). Let us stress, as
a notation convention, that all vectors are column vectors.

Now suppose that we want to account for the evolution of the expected
number of elements in each class supposing that, at each date k ∈ {1, . . . , n}, a
random number Xk of new elements enters the population. Just after the second
cohort enters the population, a first transition occurs in the first cohort driven by
the Markov chain law and so on and so forth. Table 1 summarizes this accounting
process. Remark that at each step k we distribute multinomially the new random
arrivals Xk according to the probability vector qk and the elements in each class
are redistributed according to the Markov chain transition matrix P.

Table 1: Accounting of n Markov cohorts each with an initial distribution

Date 1 2 . . . n− 1 n

1 E[X1](q1)ᵀ E[X1](q1)ᵀP . . . E[X1](q1)ᵀP(n−2) E[X1](q1)ᵀP(n−1)

2 – E[X2](q2)ᵀ . . . E[X2](q2)ᵀP(n−3) E[X2](q2)ᵀP(n−2)

. . . . . . . . . . . . . . . . . .
n – – – – E[Xn](qn)ᵀ
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At date n, if we suppose that each new set of customers, a cohort, evolves
independently from any one of the already existing sets of customers but, ac-
cordingly to the same Markov chain model, we may recover the total expected
number of elements in each class at date n by computing the sum:

Yn =
n∑
k=1

E[Xk](q
k)ᵀ P(n−k) .(2.1)

Each vector component corresponds precisely to the expected number of ele-
ments in each class. This formula - for a constant initial distribution, i.e., qk ≡ q
- is well known; see, for a deduction using conditional expectations, [2, p. 52:
(3.2)]. In this paper, in order to further study the properties of (Yn)n≥1, given the
properties of a stochastic process X = (Xk)k≥1, we will randomize formula (2.1)
by considering, instead, for n ≥ 1:

(2.2) Yn =

n∑
k=1

Xk(q
k)ᵀ P(n−k) .

Despite the fact that the expressions in (2.1) and (2.2) share the same expected
value, i.e, Yn = E[Yn], there is no obvious way to study the probability distribu-
tion of the number of elements in each of the population classes, except in the
case where the (Xk)k≥1 new elements are Poisson distributed or independent (see
[4]). However, this is not the case for a typical ARMA time series.

Ideally, the most fruitful approach comes from knowing the joint distri-
bution of the entrances (Xk)k≥1 and of the Markov chain. As this is not the
case here, we will call the stochastic process (Yn)n≥1 an open Markov chain
scheme model for the time evolution of the number of elements in each class.
Observe that

∑r?
j=1

∑r?
i=1 pijq

j
i =

∑r?
i=1

(∑r?
j=1 pij

)
qi = 1, if, for instance, the

initial distribution does not depend on j; the same being true for the powers of
the transition matrix.

For the case of a non-homogeneous Markov chain, the denomination non-
homogeneous Markov system was used, in the context of this work, for the first
time in [20], according to [19].

We note that some preliminary results on this problem have already been
developed in [6].

2.2. Preliminary results and notations

We will introduce now the notions and main results, allowing to give mean-
ing to the Cramer spectral representation theorem (see [3], [17] or [1]).

In the following, let (Ω,A,P) be a probability space. The torus
T = {z ∈ C : |z| = 1} is identified with [−π,+π[ by the map λ 7→ eiλ.
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Definition 2.1. A centered uncorrelated random field (CURF) Z
on T is a map from B(T), the Borel subsets of T, into L2((Ω,A,P), (C,B(C)), the
Lebesgue space of (classes) of square integrable random variables taking values
in the complex numbers C, such that:

1. Z is centered: ∀A ∈ B(T) , E [Z(A)] = 0 .

2. The images of disjoint Borel sets are uncorrelated, i.e.: ∀A,B ∈ B(T) :

A ∩B = ∅ ⇒
(
E
[
Z(A) · Z(B)

]
= 0 and Z(A ∪B) = Z(A) + Z(B)

)
3. Z is mean-square upper continuous:

∀(An)n≥1 : An ↓ ∅ ⇒ lim
n→+∞

Z(An) =L2 0 .

The following result characterizes the structure of a CURF by means of
bounded positive measure defined over the Borel sets of the torus.

Theorem 2.1. A map from B(T) into the centered random variables
of the Lebesgue space L2((Ω,A,P), (C,B(C)) is a centered uncorrelated random
field (CURF) if and only if there exists a bounded positive measure µ, named the
basis of Z such that:

∀A,B ∈ B(T) , E
[
Z(A) · Z(B)

]
= µ(A ∩B) .

The next result gives sense to the stochastic integral naturally associated
to a CURF by means of an isometry between Hilbert spaces of square integrable
functions.

Theorem 2.2 (CURF stochastic integral). Let Z be a CURF on T with
basis µ. There exists an unique isometry Z̃ from L2((T,B(T), µ)) into
L2(((Ω,A,P), (C,B(C))) such that for all A ∈ B(T), Z̃(1IA) = Z(A). We have
that:

1. Z̃ is a centered isometry

∀f ∈ L2((T,B(T), µ)) , E
[
Z̃(f)

]
= 0 .

2. The image of Z̃ is the closure of the vector space spanned by the random
variables obtained from Z, that is:

Z̃
(
L2((T,B(T), µ))

)
= V({Z(A) : A ∈ B(T)} .
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Remark 2.1. For each f ∈ L2((T,B(T), µ)) we denote the isometry Z̃
as a stochastic integral as follows:

Z̃(f) =

∫
[−π,+π[

f(λ)dZ(λ).

Remark 2.2. Moreover, we stress the important result that all the cen-
tered isometries between the L2 spaces mentioned above are generated by a
CURF.

Covariances of stochastic processes are nonnegative-definite functions and
these, in turn, are represented by positive bounded measures on the torus.

Definition 2.2. A function γ from Z into C is nonnegative-definite
if and only if γ(n) = γ(−n), for n ∈ Z and

∀r ≥ 1, ∀z1, . . . , zr ∈ C, ∀n1, . . . , nr ∈ Z,
r∑

i,j=1

zizjγ(ni − nj) ≥ 0 .

Theorem 2.3 (Bochner-Herglotz). A necessary and sufficient condition
for a function γ to be nonnegative-definite is that there exists a positive bounded
measure on T, which is unique, such that:

∀n ∈ Z, γ(n) =

∫
[−π,+π[

eiλndµ(λ) .

Definition 2.3. A stochastic process X = (Xn)n∈Z is second order
stationary if and only if:

1. All random variables are square integrable, that is:

∀n ∈ Z E
[
|Xn|2

]
< +∞ .

2. Both the mean and the covariance functions (sequences) of the process,
given, for all n,m ∈ Z, respectively, by M(n) := E [Xn] and Γ(m,n) :=

E
[
(Xm − E [Xm]) (Xn − E [Xn])

]
, are invariant by time translations, and

so:
∀m,m ∈ Z , M(n) = M ∈ R and Γ(n,m) = γ(m− n) ,

for some function γ defined on Z.

Remark 2.3. We may verify that γ is a nonnegative-definite function as
defined in Definition 2.2, thus justifying the application of the Bochner-Herglotz
theorem to obtain a representation of a second order stationary process.
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Example 2.1 (White noise). A process W = (Wn)n∈Z is a white noise
if the random variables are centered, square integrable and, moreover, uncorre-
lated, that is, if:

∀n,m ∈ Z : n 6= m⇒ Γ(n,m) = 0 .

An example of white noise is given by a sequence of independent centered random
variables with common variance.

Example 2.2 (ARMA process). A process X = (Xn)n∈Z is an ARMA(p,q)
process if there exists a white noise W = (Wn)n∈Z and two complex sequences
a1, a2, . . . ap and b1, b2, . . . bq such that

(2.3)

p∑
k=0

akXn−k =

q∑
l=0

blWn−l.

Formula (2.3) is called a canonical ARMA relation (see [1, p. 80]) if the
polynomials P (z) =

∑p
k=0 akz

k and Q(z) =
∑q

l=0 blz
l have no common factor, P

has all his roots with modulus strictly greater than 1, Q has all his roots with
modulus greater or equal than 1 and P (0) = Q(0) = 1. It is a remarkable result
(see [1, p. 81]), that will prove useful in the following, that, if a stochastic process
X satisfies a canonical ARMA relation with a white noise W then, this white noise
is unique and it is named the innovation of X.

We now obtain the representation of a second order stationary stochastic
process by the positive bounded measure associated to its covariance.

Definition 2.4 (Spectral measure). Let X = (Xn)n∈Z be a second order
stationary process. The spectral measure of X is the unique positive bounded
measure µX on T representing the covariance of the process that is, such that,

∀m,n ∈ Z, Γ(m,n) = γ(m− n) =

∫
[−π,+π[

eiλ(m−n)dµX(λ) .

In vue of future application the particular case of real valued processes
deserves special mention.

Remark 2.4. In the case that X is real valued then the spectral measure
µX on T is invariant by the symmetry φ defined on T by φ(z) = z for all z ∈ T.

Remark 2.5. If the spectral measure µX is absolutely continuous with
respect to the Lebesgue measure on the torus then, by Radon-Nikodym theorem,
µX admits a density fX with respect to the Lebesgue measure and we call this
density the spectral density of X.

Example 2.3 (White noise). A white noise W = (Wn)n∈Z with the ran-
dom variables having common variance σ2 has a spectral density given by:

fW(λ) =
σ2

2π
.
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Example 2.4 (ARMA process). The spectral density fX corresponding
to the canonical ARMA relation in Example 2.2 is given, using the same notations,
by:

fX(λ) =
σ2

2π

∣∣∣∣Q(e−iλ)

P (e−iλ)

∣∣∣∣2 .
We now state the theorem allowing to represent second order stationary

stochastic process as a CURF.

Theorem 2.4 (Cramer theorem). Let X = (Xn)n∈Z be a second order
stationary process with spectral measure µX. Then, there exists an unique CURF
ZX on T with basis µX such that:

∀n ∈ Z, Xn =

∫
[−π,+π[

eiλndZX(λ) .

We will need the following observation clarifying the structure of the Cramer
representation of a time inverted process.

Remark 2.6 (Time inversion). Let µφ be the image of µ by the sym-
metry φ. As the map f 7→ f ◦φ is an isometry from L2(µφ) onto L2(µ), then the
map

f 7→
∫
[−π,+π[

f ◦ φ(λ)dZX(λ)

is also an isometry from L2(µφ) into L2(Ω). Now, by Remark 2.2 above, there

exists an unique CURF ZφX with basis µφ, the symmetric CURF of ZX, such
that for all f ∈ L2(µφ):

(2.4)

∫
[−π,+π[

f(λ)dZφX(λ) =

∫
[−π,+π[

f ◦ φ(λ)dZX(λ) .

As a consequence, X← = (X−n)n∈Z, the time inversion of X, has a spectral
representation given by:

X−n =

∫
[−π,+π[

e−iλndZX(λ) =

∫
[−π,+π[

eiλndZφX(λ) .

We will now introduce a special class of processes that will prove useful in
the following results.

Definition 2.5 (Evanescent process). A centered stochastic X = (Xn)n∈Z
process is called an evanescent process at time +∞ iff:

lim
n→+∞

E
[
|Xn|2

]
= 0 .

Remark 2.7. Any linear combination of centered evanescent processes
at time +∞ is a centered evanescent process at time +∞.
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3. SECOND ORDER FEDS OF A MARKOV CHAIN SCHEME

In this section we considere a Markov chain scheme fed by a stochastic
process. Let P be the transition matrix of the Markov chain. We will suppose
that the transition matrix may be written in the following form:

(3.1) P =

[
T S1

0 R

]
,

where T is the t?× t? transition matrix between transient states, S1 the t?×(r?−
t?) matrix of one step transitions between the transient and the recurrent states
and R the (r?− t?)× (r?− t?) transition matrix between the recurrent states. A
straitghforward computation shows that:

P(n) =

[
T(n) Sn

0 R(n)

]
, n > 1

with Sn = Sn−1R + T(n−1)S1 =
∑n−1

i=0 T(i)S1R
(n−1−i).

We now write the successive cohorts vectors of classifications for new ar-
riving elements, at time period k, as

(3.2) (qk)ᵀ =
[
(tk)ᵀ

∣∣∣(rk)ᵀ] ,

with (tk)ᵀ the vector of the initial classification probabilities for the transient
states and (rk)ᵀ the vector of the initial classification probabilities for the recur-
rent states. Using (3.1) and (3.2), formula (2.2) may be written as
(3.3)

Yn =
[
Y1
n | Y2

n

]
=

[
n∑
k=1

Xk(t
k)ᵀT(n−k)

∣∣∣∣∣
n∑
k=1

Xk

(
(tk)ᵀSn−k + (rk)ᵀR(n−k)

)]
.

Formula (3.3) allow us to estimate the number of elements in each subpop-
ulation (transient or recurrent). However, for the reasons pointed in the intro-
duction and for technical reasons that will become apparent in the following, we
will consider only the transient states part of the transition matrix.

At first, we will suppose that the feeding process is stationary. The main
result will be the following:

Theorem 3.1. Consider an open Markov chain scheme model, with a
diagonizable matrix P, written as in (3.1), and a constant vector of initial clas-
sification probabilities (qk)ᵀ ≡ (q)ᵀ, defined as in (3.2).

If the open Markov chain scheme model is fed by a real valued ARMA
process then the population in each of the transient states may be described as
a sum of an ARMA processes with an evanescent process.
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Proof: Suppose that X = (Xk)k∈Z is a second order stationary time
series. Recall that by the Cramer representation theorem (see [1, p. 51]) also
stated above, we have that, for all k ∈ Z,

Xk =

∫
[−π,+π[

eiλkdZX(λ) ,

with ZX the spectral field of X, the unique CURF associated to X (see [1, p. 38]
for a definition). Reporting this representation in the Markov chain scheme given
by formula (2.2) we get that

(3.4) Yn =
n∑
k=1

(∫
[−π,+π[

eiλkdZX(λ)

)
(qk)ᵀ P(n−k) .

Considering that the transition matrix of the transient states T is diago-
nalizable, it may be written as:

T =

t?∑
j=1

ηjαjβ
ᵀ
j ,

with (ηj)j∈{1,...,t?} the eigenvalues, (αj)j∈{1,...,t?} the left eigenvectors and with
(βj)j∈{1,...,t?} the right eigenvectors of T (see [8] or [10]).We observe that j ∈
{1, . . . , t?} corresponds to a transient state if and only if | ηj |< 1. Considering
also that, for k ≥ 1, we have tk ≡ t, we will have, for n ≥ 1,

Y1
n =

t?∑
j=1

(∫
[−π,+π[

(
n∑
k=1

eiλk η
(n−k)
j

)
dZX(λ)

)
tᵀ αjβ

ᵀ
j =

=

t?∑
j=1

(∫
[−π,+π[

e−iλn
[

1− (eiλ ηj)
n+1

1− eiλ ηj

]
dZX(λ)

)
tᵀ αjβ

ᵀ
j .

(3.5)

We now define, for each j ∈ {1, . . . , s} and n ≥ 1, W j
n = W 1,j

n −W 2,j
n with

W 1,j
n :=

∫
[−π,+π[

e−iλn
[

1

1− eiληj

]
dZX(λ) , W 2,j

n :=

∫
[−π,+π[

[
eiλ ηn+1

j

1− eiληj

]
dZX(λ)

and we observe that h1,j(λ) := 1
1−eiληj

and h2,j(λ) :=
eiλ ηn+1

j

1−eiληj
are both

L2([−π,+π]) functions due to |ηj | < 1. We will deal separately with these two
components.

Firstly, we show that W2,j = (W 2,j
n )n≥1 is an evanescent process at +∞,

according to Definition 2.5. In fact, with µX the spectral measure of X, we have
that:

E
[∣∣W 2,j

n

∣∣2] =

∫
[−π,+π[

∣∣∣∣∣ eiλ η
n+1
j

1− eiληj

∣∣∣∣∣
2

dµX(λ) ≤ |ηj |2n+2

|1− |ηj ||2
µX ([−π,+π[) ,
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and so, as µX is bounded and |ηj | < 1, we have, with exponential rate given by
|ηj |2n+2,

lim
n→+∞

E
[∣∣W 2,j

n

∣∣2] = 0 .

In fact, due to the exponential convergence to zero of the second order moments,
the convergence of the process W2,j to zero is in the almost sure sense. Let
0 < ε < 1, then, as,

P
[∣∣W 2,j

n

∣∣ > |ηj |εn] ≤ E
[∣∣∣W 2,j

n

∣∣∣2]
|ηj |2εn

≤ |ηj |2n+2

|ηj |2εn |1− |ηj ||2
µX ([−π, π[) =

= |ηj |2n(1−ε)
|ηj |2

|1− |ηj ||2
µX ([−π, π[) ,

we have that, for some constant c,

+∞∑
n=1

P
[∣∣W 2,j

n

∣∣ > |ηj |εn] < +∞∑
n=1

|ηj |2n(1−ε) < +∞ ,

with limn→+∞ |ηj |2n(1−ε) = 0, thus showing (see [3, p. 370]) the almost sure
convergence to zero at +∞ of the process W2,j .

Secondly, we have that W1,j = (W 1,j
n )n≥1 defines a second-order stationary

stochastic process obtained from X from time inversion (see Remark 2.6 above)
and via the filter given by h1,j see [1, p. 58]). In fact, by formula (2.4) we have

W 1,j
n =

∫
[−π,+π[

e−iλnh1,j(λ)dZX(λ) =

∫
[−π,+π[

eiλnh1,j(−λ)dZφX(λ) =

=

∫
[−π,+π[

eiλnh1,j(λ)dZφX(λ)

and so, considering the filter defined by h1,j and the second order stationary
process defined by the CURF ZφX, we prove the stated result.

We will now suppose that X is a real valued ARMA process. For real
processes, as stated in Remark 2.4, the spectral measure is invariant under φ and
then, the spectral density is also invariant under φ. As the CURF ZφX has basis

µφX ≡ µX and fφX ≡ fX (If the spectral density of an ARMA process is a rational
function with real functions the the AR and MA polynomials may be chosen with
real coefficients, see [1, p. 77]). then, we see that each W1,j the filtered process, is
also an ARMA process, due to the fact that by multiplying the spectral density by∣∣h1,j∣∣2 we only introduce roots strictly larger than 1 in the denominator and so,
by resorting to the form of the spectral density in the canonical ARMA relation
as stated in Examples 2.2 and 2.4, we still have an ARMA process. In fact, let
fW1,j be the spectral density of the process W1,j , obtained from X by filtering by
the square integrable function h1,j . We have that, with the notations being used,
(3.6)

fW1,j (λ) = fφX(λ)
∣∣h1,j(λ)

∣∣2 = fX(λ)
∣∣h1,j(λ)

∣∣2 =
σ2

2π

∣∣∣∣ Q(e−iλ)

P (e−iλ)(1− e−iληj)

∣∣∣∣2 .
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The polynomial R(z) := P (z)(1− zηj) still has all its roots with modulus strictly
greater than one and still verifies R(0) = 1. If 1/ηj is not a root of Q then, the
representation of fW1,j still is a canonical ARMA relation. If Q admits (1− zηj)
as a factor then, writing Q(z) = S(z)(1− zηj) we have the representation

fW1,j (λ) =
σ2

2π

∣∣∣∣S(e−iλ)

P (e−iλ)

∣∣∣∣2 ,
with S having all its roots with modulus strictly greater than one, still verifying
S(0) = 1 and with P and S still not having any common roots. So, this rep-
resentation is still a canonical ARMA relation. We may so observe that Y is
asymptotically - due to the evanescent process - a linear combination of ARMA
processes.

We are now going to show that any linear combination of the Wi,j still is
an ARMA process. That results from the fact that the innovation noise of each
Wi,j coincides with the innovation noise of X (see [3, p. 210], for the general
idea).

Let the spectral density of the process X be written according to the canon-
ical ARMA representation as,

fX(λ) =
σ2

2π

∣∣∣∣Q(e−iλ)

P (e−iλ)

∣∣∣∣2 .
As the process W1,j = (W 1,j

n )n≥1 admits the spectral representation given by

W 1,j
n =

∫
[−π,+π[

eiλnh1,j(λ)dZφX(λ) ,

this process has a density that may be written according the canonical ARMA
representation as

fW1,j (λ) =
σ2

2π

∣∣∣∣Q1,j(e−iλ)

P 1,j(e−iλ)

∣∣∣∣2
with Q1,j and P 1,j such that, either

Q(e−iλ) = Q1,j(e−iλ)
(

1− e−iληj
)

and P 1,j(e−iλ) = P (e−iλ)

or
Q1,j(e−iλ) = Q(e−iλ) and P 1,j(e−iλ) = P (e−iλ)(1− e−iλ) .

We observe that as dµX(λ) = fX(λ)dLeb(λ), then we have that

µX

({
Q1,j(e−iλ) = 0

})
= µX

({
Q(e−iλ) = 0

})
= 0 .

Now, let εj be the innovation noise of W1,j . We then have:

dµεj (λ) =
1

fW1,j (λ)
1I{Q1,j(e−iλ)6=0}(λ)dµW1,j (λ) =

=
1

fW1,j (λ)
1I{Q1,j(e−iλ)6=0}(λ)

∣∣h1,j(λ)
∣∣2 dµX(λ) =

= 1I{Q(e−iλ) 6=0}(λ)dLeb(λ) =
1

fX(λ)
1I{Q(e−iλ)6=0}(λ)dµX(λ) .
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We are now going to show that εj is the innovation noise of X, that is, for m < n,

E
[
Xmε

j
n

]
= 0, and so the innovation noise of W1,j does not depend on j. For

that we use the spectral representation of both processes, and so, considering any
function ψ such that

|ψ(λ)|2 =
1

fX(λ)
1I{Q(e−iλ)6=0}(λ) ,

we have, using the isometry property of the stochastic integral and the Cauchy
theorem,

E

(∫
[−π,+π[

eiλmdZX(λ)

)
·

(∫
[−π,+π[

eiλndZεj (λ)

)
= E

(∫
[−π,+π[

eiλmdZX(λ)

)
·

(∫
[−π,+π[

eiλnψ(λ)dZX(λ)

)
=

∫
[−π,+π[

eiλ(m−n)ψ(λ)dµX(λ)

=

∫
[−π,+π[

eiλ(m−n)
√

2π

σ

(
P (e−iλ)

Q(e−iλ)

)
σ2

2π

Q(e−iλ)

P (e−iλ)

(
Q(e−iλ)

P (e−iλ)

)
1I{Q(e−iλ)6=0}dLeb(λ)

=
σ√
2π

∫
[−π,+π[

e−iλ(n−m)Q(e−iλ)

P (e−iλ)
dLeb(λ)

=
σi√
2π

∫
T
zn−(m+1)Q(z)

P (z)
dz = 0 .

Let ε = (εk)k∈Z be the common innovation noise of all the processes W1,j . We
then have (see [1, p. 81]) that for each j and some (square) integrable sequence
(cjk)k≥0 we may write,

W1,j
n =

∑
k≥0

cjkεn−k ,

and so for αj , αl ∈ C, as
(
αjc

j
k + αlc

l
k

)
k≥0

is a (square) integrable sequence,

αjW1,j
n + αlW1,l

n =
∑
k≥0

(
αjc

j
k + αlc

l
k

)
εn−k ,

and αjW1,j + αlW1,l is an ARMA process.

We now deal with the case of some non stationary processes which are
relevant for the applications.

Theorem 3.2. Under the same conditions of Theorem 3.1, if the open
Markov chain scheme model is fed by a real valued ARIMA or SARMA process
then the population in each of the transient states may be described as a sum
of a deterministic trend plus a linear combination of ARMA processes plus an
evanescent process.



Open Markov Chain Scheme Models 291

Proof: Let X = (Xn)n∈Z be an ARMA process. Let s, d ≥ 1 be integers
and consider the following functions defined, for i, j ∈ {0, 1, . . . , s−1} and α, β ∈
{0, 1, . . . , d− 1}, by:

Ui,α(x) = xα cos

(
2πi

s
x

)
and Vj,β(x) = xβ sin

(
2πj

s
x

)
.

Consider now the function given by linear combinations with complex coefficients
of the functions Ui,α and Vj,β as

P(s,d)(x) =
∑

0≤i≤s−1,0≤α≤d−1
ai,αUi,α(x) +

∑
0≤j≤s−1,0≤β≤d−1

bj,βVj,β(x) .

Then the process T = (Tn)n∈Z represented as

Tn = P(s,d)(n) +

n∑
j=0

γjXn−j ,

is an identifiable ARIMA or SARMA process for an appropriate choice of s, d
and the complex coefficients ai,α, bj,β and γj (see [1, p. 87, 89]). Moreover,
every identifiable ARIMA or SARMA process can be represented in that form.
Consider now an open Markov chain scheme fed by T. We have the obvious
decomposition:

Yn =
n∑
k=1

Tk(q
k)ᵀ P(n−k) =

=
n∑
k=1

P(s,d)(k)(qk)ᵀ P(n−k) +
n∑
k=1

 k∑
j=0

γjXk−j

 (qk)ᵀ P(n−k) =

=
n∑
k=1

P(s,d)(k)(qk)ᵀ P(n−k) +
n∑
j=0

γj

 n∑
k=j

Xk−j(q
k)ᵀ P(n−k)


and so, as the right-hand term of the last sum is a linear combination of ARMA
processes the result follows.

Remark 3.1. Using the results in [4], we note that, at least on average,
the asymptotic behavior of the subpopulations can be described.

4. AN APPLICATION TO COMSUMPTION CREDIT

4.1. Real data

In this section we will present fittings of a second order processes to real
data of consumption credit portfolio from a Cape Verdean bank.
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In this portfolio, we defined five risk classes, according to the number of
days in delay of the monthly reimbursements, as shown in Table 2, and an extra
class for the clients leaving the portfolio.

Table 2: Portfolio risk classes

Risk Class Number of days in delay
RC1 0 - 30
RC2 31-60
RC3 61-90
RC4 91-120
RC5 > 120
RC6 Leaving

In each month, each client is classified into the risk class that refers to his
number of days in delay of reimbursments. Only fully paid contracts are allowed
to move to risk class 6.

The transition matrix, estimated from portfolio data, is given by:

(4.1) P =


0.934735 0.026566 0 0 0 0.038698
0.518363 0.285733 0.195903 0 0 0
0.009076 0.372018 0.248963 0.369943 0 0

0 0.007835 0.335464 0.205361 0.450928 0
0 0 0 0 0 1



Naturally, each new client is initially placed in risk class 1, and so,

(qk)ᵀ ≡ (q)ᵀ = [ 1 0 0 0 0 0 ]

In previous works (see [4] and [5]), using this data and the related client in-
formation in the consumption credit database, we provided models for the spread
to be applied to each client and related this to the global spread of the portfo-
lio, estimated using an open Markov chain model with the number of entrances
modeled by a sequence of Poisson laws. We recall that one of the motivations for
the present work is to develop a model with the entrances of new clients modeled
by a time series.

The data on the number of new monthly clients arriving to the portfolio
corresponds to a monthly sequence of 106 observations. The fitting was per-
formed using Wolfram Mathematica and, for illustration purposes, we adopted
two different approaches. In the first one, we fitted a time series directly to data.
In the second, we firstly fitted a sigmoid type function to data, as in [4], and
then, a time series to the residuals of the sigmoid fitting.

The results obtained for the first approach are illustrated in Table 3.

As shown in Table 3 the best model for the entrance data, under both the
AIC and the BIC criterias, is an ARIMA[0, 1, 1] model.

For the second approach, we show, in Figure 1, on the left side graphic,
both the data and the fitted sigmoid type function and, in the right side graphic,
the correspondent residuals.
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Table 3: Fitting the entrance data directly

20 40 60 80 100

-200

-100

100

200

The residues after a fitting by a sigmoid type function

Figure 1: Fitting a sigmoid type function to data and to the residuals.

In Table 4 it is shown that the best model for the residuals of the fitting of
the entrance data by a sigmoid type function, under both the AIC and the BIC
criterias, is the SARMA[(1, 0), (1, 0)34] model.

Table 4: Fitting the residues of a fitting by a sigmoid function

In Table 5 we present the results on the parameter estimation for both the
ARIMA and the SARMA processes.

4.2. A simulation study

In this section we will compare, by means of a simulation study, two ways
of obtaining the distribution of the number of elements in each risk class. First,



294 M.L. Esqúıvel, G.R. Guerreiro and J.M. Fernandes

Table 5: The ARIMA and SARMA parameter tables

ARIMA model

SARMA model

we simulate 300 paths of the Markov chain model and compute the observed
proportions of elements in each one of the six classes. We will also simulate
the number of elements in each class according to the two models fitted in the
previous section. The results are presented in Tables 6 and 7. The results in
the first table show that the sub-population in class 5 is slightly larger in both
ARIMA and SARMA models, when compared with the direct simulation of the
Markov chain. As the class 5 population measures the most part of the risk of
the portfolio, both the ARIMA and SARMA models are conservative, but not
excessively.

Table 6: Proportions in each class by simulation of the Markov chain and
of the Markov chain scheme models ARIMA and SARMA
Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

MARKOV 0.0366667 0.00333333 0.00333333 0.00333333 0.0266667 0.926667
ARIMA 0.106427 0.00594949 0.00328688 0.00362677 0.0305018 0.850208
SARMA 0.130596 0.00705139 0.00362903 0.00378776 0.0307309 0.824204

We also computed the relative proportions of elements in the population in
each one of the five transient classes. The results show a remarkable difference
between the Markov chain simulation and the Markov chain scheme fed with the
sum of a sigmoid trend plus a SARMA process, thus showing the advantage of
an open model.

Table 7: Conditional proportions for the 5 transient classes - simulation

Class 1 Class 2 Class 3 Class 4 Class 5
MARKOV 0.5 0.0454545 0.0454545 0.0454545 0.363637
ARIMA 0.710498 0.0397184 0.021943 0.0242121 0.203628
SARMA 0.742888 0.0401113 0.0206435 0.0215464 0.17481

We simulated 300 paths for each of the two models fitted in section 4, to
wit, the ARIMA[0, 1, 1] and the SARMA[(1, 0), (1, 0)34]. We computed the mean
and the standard deviation for each classe and the correspondent one standard
deviation confidence interval. Despite the paths in the ARIMA[0, 1, 1] possibly
taking negative values we computed the corresponding number of elements in
each class. The results in Table 8 clearly show that the SARMA[(1, 0), (1, 0)34]
model, for the residuals of a sigmoid type function fitting, is much more adequate
to describe the evolution of the entrance of new clients in the credit portfolio.

In Figure 2 we observe that the results given by the SARMA[(1, 0), (1, 0)34]
model are more meaningful. In fact, in the empirical distribution of the simulated
number of elements, negative numbers occur in both classes 1 and 5.
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Table 8: Data at date 106 and confidence intervals from models

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
Data 5307 284 144 149 1203 32256
ARIMA [-1614,5904] [-81,321] [-36,168] [-33,179] [-248,1478] [-6164,40436]
SARMA [4669,5593] [255,299] [134,151] [142,156] [1158,1257] [31112,33654]

Figure 2: Simulated empirical distributions in classes 1 and 5.
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