






           Catalogação Recomendada 
 

REVSTAT. Lisboa, 2003-     
Revstat : statistical journal  / ed. Instituto Nacional 
de Estatística. - Vol. 1, 2003-         . - Lisboa I.N.E.,  
2003-        . - 30 cm 
Semestral. - Continuação de : Revista de Estatística = 
ISSN 0873-4275. - edição exclusivamente em inglês 

            ISSN 1645-6726 

 
 

CREDITS 

- EDITOR-IN-CHIEF 
- M. Ivette Gomes 

- CO-EDITOR 
- M. Antónia Amaral Turkman 

- ASSOCIATE EDITORS 
- Barry Arnold  
- Jan Beirlant  
- Graciela Boente  
- João Branco 
- Carlos Agra Coelho (2017-2018) 
- David Cox 
- Isabel Fraga Alves  
- Dani Gammerman (2014-2016) 
- Wenceslao Gonzalez-Manteiga  
- Juerg Huesler  
- Marie Husková  
- Victor Leiva  
- Isaac Meilijson  
- M. Nazaré Mendes- Lopes  
- Stephen Morghenthaler  
- António Pacheco  
- Carlos Daniel Paulino  
- Dinis Pestana 
- Arthur Pewsey  
- Vladas Pipiras  
- Gilbert Saporta  
- Julio Singer  
- Jef Teugels 
- Feridun Turkman 

- EXECUTIVE EDITOR 
- Pinto Martins 

- FORMER EXECUTIVE EDITOR 
- Maria José Carrilho 
- Ferreira da Cunha 

- SECRETARY 
- Liliana Martins 

- PUBLISHER 
- Instituto Nacional de Estatística, I.P. (INE, I.P.) 

Av. António José de Almeida, 2 
1000-043 LISBOA 
PORTUGAL 
Tel.: + 351 21 842 61 00 
Fax: + 351 21 845 40 84 
Web site: http://www.ine.pt 
Customer Support Service 
 (National network) : 808 201 808 
Other networks: + 351 218 440 695 

- COVER DESIGN 
- Mário Bouçadas, designed on the stain glass 

window at INE by the painter Abel Manta 

- LAYOUT AND GRAPHIC DESIGN 
- Carlos Perpétuo 

- PRINTING 
- Instituto Nacional de Estatística, I.P. 

- EDITION 
- 150 copies 

- LEGAL DEPOSIT REGISTRATION 
- N.º 191915/03 

- PRICE  [VAT  included] 
- € 9,00 

 

 
 
 
 

© INE,  Lisbon. Portugal, 2017* Reproduction authorised except for commercial purposes by indicating the source. 

http://www.ine.pt/


	
 

Congratulations, Sir David Cox! 

International Prize of Statistics 

Sir David Cox has been named the first recipient of the International Prize 
of Statistics created by the American Statistical Association, the Institute of 
Mathematical Statistics, the International Biometric Society, the 
International Statistical Institute and the Royal Statistical Society.  

The International Prize in Statistics Foundation announcement states that 
this award specifically recognizes Sir David Cox for his 1972 paper in which 
he developed the proportional hazards model that today bears his name.   
The announcement (http://www.statprize.org/pdfs/Press-Release-International-Prize 

Winner.pdf) recognizes as well that Sir David Cox “is a giant in the field of 
Statistics”. 

REVSTAT congratulates Sir David Cox for this well deserved attribution of 
the prize, and takes the opportunity to thank him for invaluable guidance as 
member of the editorial board since the beginning, and for his many 
contributions to REVSTAT publication standards. 
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Abstract:

• In this paper, we propose an optimization for the simple step stress accelerated life

test for the Fréchet distribution under type I censoring. The extreme value distribu-

tion has recently become increasingly important in engineering statistics as a suitable

model to represent phenomena with extreme observations. One probability distribu-

tion, that is used to model the maximum extreme events, is the Fréchet (extreme value

type II) distribution. A log-linear relationship between the Fréchet scale parameter

and the stress are assumed. Furthermore, we model the effects of changing stress as

a cumulative exposure function. The maximum likelihood estimators of the model

parameters are derived. By minimizing the asymptotic variance of the desired life

estimate and the reliability estimate, we obtain the optimal simple step stress accel-

erated life test. Finally, the simulation results are discussed to illustrate the effect of

the initial estimates on the optimal values.
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1. INTRODUCTION

Nowadays, manufacturers face strong pressure to rapidly develop new,

higher technology products, while improving the productivity. This has moti-

vated the development of methods such as concurrent engineering and encour-

aged wider use of the designed experiments for product and process improvement.

The requirements for higher reliability have increased the need for more up front

testing of the materials, components, and systems. This is in line with the mod-

ern quality philosophy for producing the high reliability products: achieve high

reliability by improving the design and manufacturing processes; move away from

reliance on inspection (or screening) to achieve high reliability [12].

Estimating the failure time distribution of components including high reli-

ability products is particularly difficult. Most modern products are designed to

operate without failure for years, decades, or longer. Thus, a few units will fail

or degrade in a test under the normal conditions. For example, the design and

construction of a communication satellite, may allow only 8 months to test the

components that are expected to be in service for 10 or 15 years. A method for

obtaining information on the life distribution of a product in a timely fashion,

is to test it on an unusually high level of stress (e.g., high levels of temperature,

voltage, pressure, vibration, cycling rate, or load) in order to provoke early fail-

ures. These methods are called the accelerated life tests. The results of this test

are then used to estimate the life distribution of the product.

Engineers in manufacturing industries have used accelerated life test (ALT)

experiments for many decades. The purpose of ALT experiments is to acquire

reliable information quickly.

According to Bai et al. [4] and Nelson [17], one way of applying stress to the

test is a step-stress scheme which allows the stress setting of a unit to be changed

at pre-specified times or upon the occurrence of a fixed number of failures. This

scheme is called step stress accelerated life test (SSALT), which is considered in

this paper.

To implement the SSALT, we first apply a low stress to all products, if a

product endures the stress (does not fail) we apply a higher stress, if only one

change of the stress level is done, it is called a simple step-stress accelerated life

test.The objective of the SSALT experiment is to estimate the percentile life or

reliability prediction by choosing the optimal time of increasing the level of stress

that leads to the most accurate estimate. Our main objective is to choose the

times to change the stress level in such a way that the variance of estimator of

above parameters is minimized under a natural stress level.

The step-stress procedure was first introduced, with the cumulative expo-

sure model, by Nelson [1]. Miller and Nelson [13] provided the optimum simple
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stress plans for the accelerated life testing, where life products are assumed to have

exponentially distributed lifetimes, Bai et al. [4] extended the results of Miller

and Nelson [13] to the case of censoring. Khamis and Higgins [6, 7] obtained the

stress change time which minimizes the asymptotic variance of maximum likeli-

hood estimate of the log mean life at the design condition. Alhadeed and Yang

[2] discussed the optimal simple step-stress plan for the Khamis–Higgins model.

Most of the available literature on step-stress accelerated life testing deals with

the exponential, and Weibull distributions.

The extreme value distribution becomes increasingly important in engineer-

ing statistics as a suitable model to represent the phenomena with large extreme

observations. In engineering, this distribution is often called the Fréchet model.

It is one of the pioneers in extreme value statistics. The Fréchet distribution is

one of the probability distributions used to model the maxima extreme events.

Thus, the Fréchet distribution is well suited to characterize the random variables

of large features and components with a high reliability products. Therefore,

it is an important distribution for modeling the statistical behavior of material

properties for a variety of engineering applications.

Fréchet distribution is a popular model for lifetimes. Some recent applica-

tions have involved the modeling of failure times of air-conditioning systems in jet

planes [11] and the modeling of the behavior of off-site AC power failure recovery

times at three nuclear plant sites [3] Some results for beta Fréchet distribution

are given by [5].

In spite of its popularity, Fréchet distribution has not been used as a lifetime

distribution in simple step stress accelerated life test analysis. This paper is the

first attempt in this regard. We implement the SSALT analysis and design, by

assuming that the failure time of test products follows the Fréchet distribution.

The contents of this paper are organized as follows. The model and basic

assumptions are presented in section 2. The maximum likelihood estimators

(MLEs) and Fisher information matrix are given in section 3. The optimal test

design is derived in section 4, which is followed by a simulation study.

2. MODEL AND TEST PROCEDURE

The Fréchet distribution is a special case of the generalized extreme value

distribution. The Fréchet distribution has applications ranging from an accel-

erated life testing through to earthquakes, floods, horse racing, rainfall, queues

in supermarkets, sea currents, wind speeds and track race records. Kotz and

Nadarajah [8] give some applications in their book.
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To develop appropriate probabilistic models and assess the risks caused

by these events, business analysts and engineers frequently use extreme value

distributions.

The Fréchet distribution was named after the French mathematician Mau-

rice Fréchet (1878–1973). It is also known as the Extreme Value Type II distri-

bution. It has the cumulative distribution function (CDF) specified by

F (t) = exp

{
−
(

t

θ

)
−α
}

(2.1)

for t > 0, α > 0 and θ > 0. The corresponding probability density function (PDF)

is

f(t) =
α

θ

(
t

θ

)
−α−1

exp

{
−
(

t

θ

)
−α
}

,

where α is a shape parameter and θ is a scale parameter. In engineering applica-

tions shape parameter is usually greater than 2.

In a simple SSALT, all n products are initially placed on the test at a lower

stress level S1, and run until time τ when the stress is changed to S2. The test is

continued until all the products run to failure or until a predetermined censoring

time T , whichever occurs first. S0 is stress level at a typical operating condition.

Such a test is called a simple step-stress test because it uses only two stress levels.

Total ni failures are observed at time tij , j = 1, 2, ..., ni, while testing at stress

level Si, i = 1, 2, and nc = n− n1 − n2 products remain unfailed and censored at

time T .

2.1. Basic assumptions

The basic assumptions are:

1. Two stress levels S1 and S2 (S1 < S2) are used in the test.

2. For any level of stress, the life distribution of the test product follows

a Fréchet distribution with the CDF (2.1).

3. The scale parameter θi at stress level i, i = 0, 1, 2 is a log-linear function

of stress, i.e.,
log (θi) = β0 + β1Si

for i = 0, 1, 2, where β0 and β1 are unknown parameters depending on

the nature of the product, and the method of test.

4. A cumulative exposure model holds, i.e., the remaining life of a test

product depends only on the cumulative exposure it has seen [10].

5. The lifetimes of the test products are identically distributed random

variables.
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From these assumptions, the CDF of a test product under simple step-stress

test is

G(t) =






exp

{
−
(

t

θ1

)
−α
}

, 0 ≤ t < τ ,

exp

{
−
(

τ

θ1

+
t − τ

θ2

)
−α
}

, τ ≤ t < ∞ .

(2.2)

The corresponding PDF is

g(t) =






α

θ1

(
t

θ1

)
−α−1

exp

{
−
(

t

θ1

)
−α
}

, 0 ≤ t < τ ,

α

θ2

(
τ

θ1

+
t − τ

θ2

)
−α−1

exp

{
−
(

τ

θ1

+
t − τ

θ2

)
−α
}

, τ ≤ t < ∞ .

3. MAXIMUM LIKELIHOOD ESTIMATORS

The likelihood function under type I censoring can be written as

L (θ1, θ2, α; t) =

n1∏

j=1

g(t1j)

n2∏

j=1

g(t2j)
[
1 − G(T )

]nc
.

Therefore,

L (θ1, θ2, α; t) = αn1+n2

(
1

θ1

)n1
(

1

θ2

)n2 n1∏

j=1

(
t1j

θ1

)
−α−1

exp

{
−

n1∑

j=1

(
t1j

θ1

)
−α
}

·
n2∏

j=1

(
τ

θ1

+
t2j − τ

θ2

)
−α−1

exp

{
−

n2∑

j=1

(
τ

θ1

+
t2j − τ

θ2

)
−α
}

·
(

1 − exp

{
−
(

τ

θ1

+
T − τ

θ2

)
−α
})nc

.

It is usually easier to maximize the logarithm of the likelihood function rather

than the likelihood function itself. The logarithm of the likelihood function is

ℓ = log L(θ1, θ2, α; t)

= (n1 + n2) log α − n1 log θ1 − n2 log θ2

− (α + 1)

n1∑

j=1

log

(
t1j

θ1

)
−

n1∑

j=1

(
t1j

θ1

)
−α

(3.1)

− (α + 1)

n2∑

j=1

log

(
τ

θ1

+
t2j − τ

θ2

)
−

n2∑

j=1

(
τ

θ1

+
t2j − τ

θ2

)
−α

+ nc log

(
1 − exp

{
−
(

τ

θ1

+
T − τ

θ2

)
−α
})

.
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If at least one failure occurred before τ and T , MLEs of θ1 and θ2 do exist.

In this case, MLEs of θ1, θ2 and α and hence the MLEs of β0 and β1 by the

invariance property, they can be obtained through setting to zero the first partial

derivatives of the log likelihood function with respect to θ1, θ2 and α. The system

of equations is:

∂ℓ

∂θ1

= α
n1

θ1

−
n1∑

j=1

α

θ1

A−α
j + (α + 1)

n2∑

j=1

τ

θ2
1

B−1

j(3.2)

−ατ

θ2
1

n2∑

j=1

B−α−1

j − α nc τ θ2

θ1E
C−αD−1

= 0 ,

∂ℓ

∂θ2

= −n2

θ2

+ (α + 1)

n2∑

j=1

t2j − τ

θ2
2

B−1

j − α

n2∑

j=1

t2j − τ

θ2
2

B−α−1

j(3.3)

−α nc (T − τ) θ1

θ2DE
C−α

= 0 ,

∂ℓ

∂α
=

n1 + n2

α
−

n1∑

j=1

log Aj +

n1∑

j=1

A−α
j log Aj −

n2∑

j=1

log Bj(3.4)

+

n2∑

j=1

B−α
j log Bj + ncC

−αD−1
log C = 0 ,

where Aj =
t1j

θ1
, j = 1, 2, ..., n1, Bj =

τ
θ1

+
t2j−τ

θ2
, j = 1, 2, ..., n2, C =

τ
θ1

+
T−τ
θ2

,

D = 1 − exp{C−α} and E = θ1(T − τ) + θ2 τ .

Given that, it is difficult to obtain a closed form solution to the nonlinear

equations (3.2), (3.3) and (3.4), a numerical method is used to solve these equa-

tions. By solving these equations, the MLEs (θ1, θ2, α) and hence MLEs (β0, β1)

can be obtained.

We have used from optimization tool in Matlab software for finding a max-

imum of a function of several variables.

The Fisher information essentially describes the amount of information data

provide about an unknown parameter. It has applications in finding the variance

of an estimator, as well as in the asymptotic behavior of maximum likelihood

estimates. The inverse of the Fisher information matrix is an estimator of the

asymptotic covariance matrix.

The Fisher information matrix F (θ1, θ2, α) is obtained through taking ex-

pectation on the negative of the second partial derivatives of ℓ(θ1, θ2, α) with

respect to θ1, θ2 and α.

F = n




A11 A12 A13

A12 A22 A23

A13 A23 A33



 .
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The calculation detail is presented in Appendix I and II. Therefore, the

elements of F are given as

A11 = E

[
− 1

n
· ∂

2ℓ

∂θ2
1

]
=

α

θ2
1

e1 +
α(α − 1)

θ2
1

I1 + (α + 1)I2 + I3

− ατ (T − τ)
θ2C−α

θ1DE2
ec + α2τ2 θ2C−1−2α

(1 − D)

θ3
1
ED2

ec

+ α2τ2 θ2C−1−α

θ3
1
ED

ec − ατ
θ2C−α

θ2
1
ED

ec ,

A22 = E

[
− 1

n
· ∂

2ℓ

∂θ2
2

]
= −e2

θ2
2

+ (α + 1)I4 + I5 +
α2

(T − τ)
2 θ1C

1−2α
(1 − D)

θ3
2
ED2

ec

− ατ (T − τ) θ1C
−α

θ2E2D
ec +

α2
(T − τ)

2 θ1C
−1−α

θ3
2
ED

ec

− αθ1(T − τ)C−α

θ2
2
ED

ec ,

A33 = E

[
− 1

n
· ∂2ℓ

∂α2

]
=

1

α2
e1 + e2 + I6 +

C−2α
(log C)

2
(1 − D)

D2
ec

+
C−α

(log C)
2

D2
ec ,

A12 = E

[
− 1

n
· ∂2ℓ

∂θ1∂θ2

]
= −τ(α + 1)

θ2
1

I7 +
α(α + 1)τ

θ2
1

I8

+ α2τ (T − τ)
C−1−2α

(1 − D)

θ1θ2ED2
ec − ατ2 θ2C−α

θ1E2D
ec

+ α2τ (T − τ)
C−α−1

θ1θ2ED
ec + ατ

C−α

θ1ED
ec ,

A13 = E

[
− 1

n
· ∂2ℓ

∂θ1∂α

]
= −e1

θ1

+
1

θ1

I9 +
τ

θ2
1

I10 +
τ

θ2
1

I11 + τ θ2

C−α

θ1ED
ec

− ατ θ2

C−α
log C

θ1ED
ec − ατ θ2

C−2α
(1 − D) log C

θ1ED2
ec ,

A23 = E

[
− 1

n
· ∂2ℓ

∂θ2∂α

]
= I12 + I13 − α(T − τ) θ1

C−2α
(1 − D) log C

θ2ED2
ec

+ θ1(T − τ)
C−α

θ2ED
ec − α(T − τ) θ1

Cα
log C

θ2ED
ec .

where the detailed calculation for I1 to I13, and e1, e2 and ec in the formulas

above are in Appendix I and Appendix II, respectively.

The asymptotic variance of the desired estimates is then obtained using the

above Fisher information matrix, which leads to the optimization criteria.
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4. OPTIMUM TEST DESIGN

As mentioned earlier, for the purpose of optimization, two criteria are con-

sidered. The first criterion (Criterion I) is minimizing the asymptotic variance

(AV) of the MLE of the logarithm of the percentile life under usual operating

conditions, which is used when the percentile life is the desired estimate. Fur-

thermore, we can minimize the AV of reliability estimate at time ξ under usual

operating conditions. We call this criterion as the second criterion (Criterion II)

and is used when we want to predict reliability.

We will show the optimal hold times achieved by criterion I and II, with

the symbols of τ∗
and τ+

, respectively.

4.1. Criterion I

As mentioned above, in this criterion, we try to minimize the AV of the

MLE of the logarithm of percentile life under the usual operating conditions. This

is the most commonly used criterion.

The reliability function at time t under the usual operating condition, S0,

is:

R0(t) = 1 − G0(t) = 1 − exp

{
−
(

t

θ0

)
−α
}

.

For a specified reliability R, the 100(1−R)-th percentile life under the usual

operating condition, S0, is:

tR = θ0

(
− log (1 − R)

)
−1/α

.

From assumption 3 and the definition, x =
S1−S0

S2−S0
, we obtain S0 =

S1−xS2

1−x , thus,

log θ0 =
log θ1 − x log θ2

1 − x
.(4.1)

Therefore, the MLE of the log of the 100(1−R)-th percentile life of the Fréchet

distribution with a specified reliability R under the usual operating condition,

S0, is:

log
(
t̂R
)

= log θ̂0 −
1

α̂
log

(
− log (1 − R)

)

=
log θ̂1 − x log θ̂2

1 − x
−

log

(
− log (1 − R)

)

α̂
.
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The optimality criterion used for the SSALT design is to minimize the AV of

the MLE of the log of the 100(1−R)-th percentile life of the Fréchet distribution

at S0 with a specified reliability R. When R = 0.5, log(t̂R) is the logarithm of

the median life at usual operating conditions with stress level S0. To obtain the

AV [log(t̂R)], we use the delta method which described in Appendix III.

The optimal hold time τ∗

0 at which AV [log(t̂R)] reaches its minimum value

leads to the optimal plan:

AV
[
log
(
t̂R
)]

= AV



 log θ̂1 − x log θ̂2

1 − x
−

log

(
− log (1 − R)

)

α̂



 = H1 F̂−1H ′

1 ,

where F̂ is estimated the Fisher information matrix and H1 is the row vector of

the first derivative of log(t̂R) with respect to θ̂1, θ̂2 and α̂; and in practice, the

values of (θ̂1, θ̂2, α̂) are obtained from a previous experience based on a similar

data, or based on a preliminary test result.

H1 =



 1

θ̂1(1 − x)
,

x

θ̂2 (x − 1)
,

log

(
− log (1 − R)

)

α̂2



 .

4.2. Criterion II

Reliability prediction is an important factor in a product design and during

the developmental testing process. In order to accurately estimate the product

reliability, the test design criterion is defined to minimize the AV of the reliability

estimate at a time ξ under the normal operating conditions.

The MLE of reliability at ξ from the Fréchet distribution at the usual

operating stress level, S0, is:

R̂S0
(ξ) = 1 − exp

{
−
(

ξ

θ̂0

)
−bα}

= 1 − exp

{
− exp

{
− α̂ log ξ + α̂ log θ̂0

}}
,

where, by using (4.1), we have

R̂S0
(ξ) = 1 − exp

{
− exp

{
− α̂ log ξ + α̂

log θ̂1 − x log θ̂2

1 − x

}}
.

The AV of the reliability estimate at time ξ under normal operating conditions,

by using the delta method, can be obtained as:

AV
[
R̂S0

(ξ)
]

= AV

[
1 − exp

{
− exp

{
− α̂ log ξ + α̂ log θ̂0

}}]
(4.2)

= H2 F̂−1H ′

2 ,
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where H2 is the row vector of the first derivative of R̂S0
(ξ) with respect to

θ̂1, θ̂2 and α̂, i.e., H2 =

[
H11, H12, H13

]
, where its components are given below.

In practice, Based on experience, some historical data or a preliminary test can

be used to get the values of (θ̂1, θ̂2, α̂).

H11 =
α̂ ξ−bα

θ̂1(1 − x)
exp

{
− ξ−bαe

bα log bθ1−x log bθ2
1−x + α̂

log θ̂1 − x log θ̂2

1 − x

}
,

H12 =
xα̂ ξ−bα

θ̂2 (x − 1)
exp

{
− ξ−bαe

bα log bθ1−x log bθ2
1−x + α̂

log θ̂1 − x log θ̂2

1 − x

}
,

H13 =
1

x − 1

(
exp

{
− ξ−bαe

bα log bθ1−x log bθ2
1−x + α̂

log θ̂1 − x log θ̂2

1 − x

}

· ξ−bα(
log ξ − x log ξ − log θ̂1 + x log θ̂2

))
.

The value τ+
0

that minimizes AV
[
R̂S0

(ξ)
]
, given by equation (4.2), leads

to the optimal SSALT plan.

4.3. Simulation study

The main objective of this simulation study is numerical investigation for

illustrating the theoretical results of both estimation and optimal design prob-

lems given in this paper. Considering type I censoring, data were generated from

Fréchet distribution under SSALT for different combinations of the true parame-

ter values of θ1, θ2 and α. The true parameters values used here are (1.5, 1, 1) and

(2.5, 2, 1.5). In addition, τ = 2.5 and T = 5 have been considered. The samples

sizes considered are n = 100, 200, 300, 400, 500, 1000 each with ten thousand repli-

cations. A numerical method is used for the MLEs of θ1, θ2 and α. The nonlinear

likelihood equations, (3.2), (3.3) and (3.4), were solved iteratively. The MLEs,

their mean square errors (MSEs) and their relative errors (REs) are reported in

Table 1 for different sample sizes and different true values of the parameters.

The results provide insight into the sampling behavior of the estimators. They

indicate that the MLEs approximate the true values of the parameters as the

sample size n increases. Similarly, the MSEs and REs decrease with increasing

the sample size.

To illustrate the procedure of the optimum test design, we proposed a

standardized model. A standardized censoring time T0 = 1 is assumed, and the

standardized scale parameter ηi =
θi

T is defined. The standardized hold time τ0

is also defined as the ratio of the hold time to the censoring time τ0 =
τ
T . Thus

the value of τ0 that minimizes AV is the optimal standardized hold time, and the

optimal hold time is derived from τ∗
= τ∗

0 · T and τ+
= τ+

0
· T , with respect to

criterion I and II. Using the standardized model, we eliminate the input value of

censoring time and embed it in the standardized scale parameters.
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Table 1: The MLEs of the parameters, and the associated MSE and RE

for different sample sizes.

n Parameter
(θ1 =1.5, θ2 =1, α =1) (θ1 =2.5, θ2 =2, α =1.5)

Estimate MSE RE Estimate MSE RE

θ1 1.4404 0.0108 0.0397 2.5228 0.0500 0.0091
n =100 θ2 1.0381 0.0771 0.0381 2.1101 0.2825 0.0091

α 1.0307 0.0103 0.0307 1.5362 0.0367 0.0241

θ1 1.4563 0.0058 0.0291 2.5086 0.0238 0.0034
n =200 θ2 1.0273 0.0461 0.0273 2.0541 0.1372 0.0271

α 1.0205 0.0050 0.0205 1.5180 0.0186 0.0120

θ1 1.4640 0.0040 0.0240 2.5061 0.0156 0.0024
n =300 θ2 1.0196 0.0317 0.0196 2.0374 0.0877 0.0187

α 1.0160 0.0033 0.0160 1.5128 0.0121 0.0085

θ1 1.4682 0.0031 0.0212 2.5044 0.0118 0.0018
n =400 θ2 1.0142 0.0237 0.0142 2.0279 0.0650 0.0140

α 1.0133 0.0025 0.0133 1.5094 0.0090 0.0063

θ1 1.4703 0.0026 0.0198 2.5036 0.0095 0.0014
n =500 θ2 1.0132 0.0194 0.0132 2.0200 0.0501 0.0100

α 1.0177 0.0020 0.0117 1.5073 0.0071 0.0049

θ1 1.4801 0.0012 0.0132 2.5021 0.0046 8.4513×10−4

n =1000 θ2 1.0055 0.0094 0.0055 2.0106 0.0249 0.0053
α 1.0073 9.5334×10−4 0.0073 1.5034 0.0036 0.0023

Now, the numerical examples are given for calculating the optimal stan-

dardized hold times of the simple SSALT under both criteria.

In the first example, we suppose that a simple SSALT to estimate the

percentile life of the Fréchet distribution under the usual operating condition

with a specified reliability R. For the given values of θ1 = 900, θ2 = 400, α = 2,

T = 1000, x = 0.5 and assuming R = 0.5, we determine the optimal hold time τ∗
.

Based on the above transformation, the standardized parameters are obtained as

η1 = 0.9 and η2 = 0.4. Using the criterion I, the optimal standardized hold time is

obtained τ∗

0 = 0.8165. So, the optimum stress change time is obtained τ∗
= 816.5.

Sensitivity analysis is performed to examine the effect of the changes in the

pre-estimated parameters (θ1, θ2, α) on the optimal hold time τ . Its objective is

to identify the sensitive parameters, which need to be estimated with special care

to minimize the risk of obtaining an erroneous optimal solution. According to

the definition of x and R; and since they take different values, we also examine

the impact of changes in their values.

Table 2 presents the standardized optimal hold time for the specified values

of n = 30, R = 0.5, x = 0.5, α = 2, η1 = 0.3, 0.5, ..., 1.7 and η2 = 0.1, 0.3, ..., 1.5.

From this table, we can see that as η1 increases, the optimal standardized stress

change time slightly increases. And also, as η2 increases, then slightly decreases.
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Figure 1 shows the sensitivity of the initially estimated parameters with

respect to the criterion I. We can see:

1. The optimal value of τ∗
, slightly increases as η1 and α increase for

smaller values of η1 and α, and converges for larger values of η1 and α;

2. The optimal value of τ∗
, slightly decreases as η2, R and x increase, and

it is not too sensitive to parameters η2 and x.
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Figure 1: Optimal standardized hold time versus changes in initial parameters

under criterion I.
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Figure 2: Optimal standardized hold time versus changes in initial parameters

under criterion II.
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In the second example, we suppose a simple SSALT is run to estimate the

reliability at a specified time ξ = 10000. The objective is to design a test that

achieves the best reliability estimates. To obtain the optimal hold time τ+
, the

AV of the reliability estimate at time ξ is minimized. The initial parameters

given θ1 = 900, θ2 = 400, α = 2, x = 0.5, T = 1000 and ξ = 10000. Then the

standardized parameters are obtained as η1 = 0.9, η2 = 0.4 and ξ0 = 10. By

criterion II, the optimum standardized hold time is obtained as τ+
0

= 0.8925 and

the optimum stress change time is obtained as τ+
= 8.925.

Table 3 presents the standardized optimal hold time for the specified values

of n = 30, x = 0.5, α = 2, ξ = 10, η1 = 0.3, 0.5, ..., 1.7 and η2 = 0.1, 0.3, ..., 1.5.

This table shows that, as η1 increases, the optimal standardized stress change

time slightly increases. And also, as η2 increases, then slightly decreases.

Figure 2 shows the sensitivity of the initially estimated parameters with

respect to criterion II. We can see:

1. The optimal value of τ+
, slightly increases as η1, α and ξ increase for

smaller values of them, and converges for larger values of them;

2. The optimal value of τ+
, slightly decreases as η2 and x increase, and is

not too sensitive to parameters η2 and x.

5. CONCLUSION

In this paper, we proposed an optimal design of simple step stress acceler-

ated life test with type I censored Fréchet data. Optimizing test plan will lead to

an improved parameter estimation which would further lead to a higher quality

of inference. The estimation was based on the maximum likelihood.

For the purpose of optimizing, two criteria were considered. These criteria

were based on minimizing the AV of the life estimate and the reliability estimate.

Furthermore, according to the simulation study, we have found that since the op-

timal hold times are not too sensitive to the model parameters, thus the proposed

design is robust. The results show that the simple SSALT model can be reliably

used which would remove the need for examining all the test products and would

have economic benefits concerning time and money.
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APPENDIX I

The Fisher information matrix, can be obtained by taking the expected

values of the negative second derivatives with respect to θ1, θ2 and α of the

function (3.1). The results of these derivatives are given the following:
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j Fj

)

+ (α + 1)

n2∑

j=1

(
−

F 2
j

θ2
2
B2

j

+
2Fj

θ2Bj

)

+
α2

(T − τ)
2 θ1C

1−2α
(1 − D)

θ3
2
ED2

nc −
ατ (T − τ) θ1C

−α

θ2E2D
nc

+
α2

(T − τ)
2 θ1C

−1−α

θ3
2
ED

nc −
α θ1(T − τ)C−α

θ2
2
ED

nc ,

I33 = − ∂2ℓ

∂α2
=

n1 + n2

α2
+

n2∑

j=1

B−α
j

(
log Bj

)2

+
C−2α

(log C)
2
(1 − D)

D2
nc +

C−α
(log C)

2

D2
nc ,

I12 = − ∂2ℓ

∂θ1∂θ2

= −(α + 1)τ

θ2
1

n2∑

j=1

Fj

θ2
1
B2

j

+
α(α + 1)τ

θ2
1

n2∑

j=1

Fj B−2−α
j

+ ατ
C−α

θ1ED
nc + α2τ (T − τ)

C−1−2α
(1 − D)

θ1θ2ED2
nc

− ατ2 θ2C−α

θ1E2D
nc + α2τ (T − τ)

C−α−1

θ1θ2ED
nc ,
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I13 = − ∂2ℓ

∂θ1∂α
= −n1

θ1

+
1

θ1

n1∑

j=1

A−α
j −

n2∑

j=1

τ

θ2
1
Bj

+
τ

θ2
1

n2∑

j=1

B−1−α
j

(
1 − α log Bj

)
+ τ θ2

C−α

θ1ED
nc

− ατ θ2

C−2α
(1 − D) log C

θ1ED2
nc − ατ θ2

C−α
log C

θ1ED
nc ,

I23 = − ∂2ℓ

∂θ2∂α
=

n2∑

j=1

Fj

Bj
+

n2∑

j=1

Fj B−1−α
j

(
1 − α log Bj

)

− α(T − τ) θ1

C−2α
(1 − D) log C

θ2ED2
nc

+ θ1(T − τ)
C−α

θ2ED
nc − α(T − τ) θ1

Cα
log C

θ2ED
nc ,

where Fj =
t2j−τ

θ2
2

, j = 1, 2, ..., n2.

The results of the above equations are then used to develop the Fisher

information matrix. And also, to simplify the second partial and mixed partial

derivatives, the following definitions are made:

I1 = E

[
1

n

n1∑

j=1

A−α
j

]
=

∫ τ

0

A−α
j g(t) d(t) ,

I2 = E

[
1

n

n2∑

j=1

(
− τ2

θ4
1
B2

j

− 2τ

θ3
1
Bj

)]
=

∫ T

τ

(
− τ2

θ4
1
B2

j

− 2τ

θ3
1
Bj

)
g(t) d(t) ,

I3 = E

[
1

n

n2∑

j=1

(
α(α + 1)τ2B−2−α

j

θ4
1

−
2ατ B−1−α

j

θ3
1

)]

=

∫ T

τ

(
α(α + 1)τ2B−2−α

j

θ4
1

−
2ατ B−1−α

j

θ3
1

)
g(t) d(t) ,

I4 = E

[
1

n

n2∑

j=1

(
−

F 2
j

θ2
2
B2

j

+
2Fj

θ2Bj

)]
=

∫ T

τ

(
−

F 2
j

θ2
2
B2

j

+
2Fj

θ2Bj

)
g(t) d(t) ,

I5 = E

[
1

n

n2∑

j=1

(
(α + 1)F 2

j B−2−α
j − 2

θ2

B−α−1

j Fj

)]

=

∫ T

τ

(
(α + 1)F 2

j B−2−α
j − 2

θ2

B−α−1

j Fj

)
g(t) d(t) ,

I6 = E

[
1

n

n2∑

j=1

B−α
j

(
log Bj

)2]
=

∫ T

τ
B−α

j

(
log Bj

)2
g(t) d(t) ,
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I7 = E

[
1

n

n2∑

j=1

Fj

θ2
1
B2

j

]
=

∫ T

τ

Fj

θ2
1
B2

j

g(t) d(t) ,

I8 = E

[
1

n

n2∑

j=1

Fj B−2−α
j

]
=

∫ T

τ
Fj B−2−α

j g(t) d(t) ,

I9 = E

[
1

n

n1∑

j=1

A−α
j

]
=

∫ τ

0

A−α
j g(t) d(t) ,

I10 = E

[
1

n

n2∑

j=1

B−1−α
j

(
1 − α log Bj

)]
=

∫ T

τ
B−1−α

j

(
1 − α log Bj

)
g(t) d(t) ,

I11 = E

[
1

n

n2∑

j=1

1

Bj

]
=

∫ T

τ

1

Bj
g(t) d(t) ,

I12 = E

[
1

n

n2∑

j=1

Fj

Bj

]
=

∫ T

τ

Fj

Bj
g(t) d(t) ,

I13 = E

[
1

n

n2∑

j=1

Fj B−1−α
j

(
1 − α log Bj

)]

=

∫ T

τ

n2∑

j=1

Fj B−1−α
j

(
1 − α log Bj

)
g(t) d(t) .
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APPENDIX II

Detailed calculations of ei = E

[
ni

n

]
, i = 1, 2 is demonstrated through the

following three steps:

At the first step, n new products are tested at stress levels S1 until time τ ,

where the test units are assumed independent and identically distributed. The

life of items follows the CDF of t in equation (2.2). The number of failures n1

in time τ is a binomial random variable with parameters n and p1. From the

equation (2.3), we have:

p1 = G(τ) = exp

{
−
(

τ

θ1

)
−α}

,

e1 = E

[
n1

n

]
= p1 = exp

{
−
(

τ

θ1

)
−α}

.

The second step starts with n− n1 unfailed items, tested at stress levels S2

until time T . The life of items follows the CDF of t given by the equation (2.2),

where the number of failures n2 follows a binomial distribution with parameters

n − n1 and p2. Then, from the equation (2.2), we have:

p2 = Pr

(
item fails in time T

∣∣∣ it not fails in time τ in first step
)

= 1 − Pr

(
item not fails in item T

∣∣∣ item not fails in time τ
)

=

exp

{
−
(

τ
θ1

+
T−τ
θ2

)
−α
}
− exp

{
−
(

τ
θ1

)
−α
}

1 − exp

{
−
(

τ
θ1

)
−α
} ,

e2 = E

[
n2

n

]
= E

[
n2

n − n1

·n − n1

n

]
= p2 ·(1 − p1) .
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APPENDIX III

In statistics, the delta method is a result concerning the approximate proba-

bility distribution for a function of an asymptotically normal statistical estimator

from knowledge of the limiting variance of that estimator.

A consistent estimator B converges in probability to its true value β, and

often a central limit theorem can be applied to obtain asymptotic normality:

√
n(B − β)

D−→ N(0, Σ) ,

where n is the number of observations and
∑

is a (symmetric positive semi-

definite) covariance matrix. Suppose we want to estimate the variance of a func-

tion h of the estimator B. Keeping only the first two terms of the Taylor series,

and using vector notation for the gradient, we can estimate h(B) as

h(B) ≈ h(β) + ∇h(β)
T
(B − β) ,

which implies the variance of h(B) is approximately

Var
(
h(B)

)
≈ Var

(
h(β) + ∇h(β)

T
(B − β)

)

= Var

(
h(β) + ∇h(β)

T B −∇h(β)
T β
)

= Var

(
∇h(β)

T B
)

= ∇h(β)
T

cov(β) ∇h(β) .

One can use the mean value theorem (for real-valued functions of many

variables) to see that this does not rely on taking first order approximation.

The delta method therefore implies that

√
n
(
h(B) − h(β)

)
D−→ N

(
0,∇h(β)

T
Σ ∇h(β)

)
.
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1. INTRODUCTION

For 1 ≤ r ≤ n, let Xn,r be the r-th largest of a random sample of size n

from a continuous distribution function F on R, the real numbers. Let f denote

the density function of F when it exists.

The study of the asymptotes of the moments of Xn,r has been of consider-

able interest. McCord [12] gave a first approximation to the moments of Xn,1 for

three classes. This showed that a moment of Xn,1 can behave like any positive

power of n or n1 = logn. (Here, log is to the base e.) Pickands [15] explored the

conditions under which various moments of (Xn,1 − bn) /an converge to the cor-

responding moments of the extreme value distribution. It was proved that this is

indeed true for all F in the domain of attraction of an extreme value distribution

provided that the moments are finite for sufficiently large n. Nair [13] investi-

gated the limiting behavior of the distribution and the moments of Xn,1 for large

n when F is the standard normal distribution function. The results provided

rates of convergence of the distribution and the moments of Xn,1. Downey [4]

derived explicit bounds for E [Xn,1] in terms of the moments associated with F .

The bounds were given up to the order o
(
n1/ρ

)
, where

∫
∞

−∞

|x|ρdF (x) is defined,

so E [Xn,1] grows slowly with the sample size. For other work, we refer the readers

to Ramachandran [16], Hill and Spruill [9] and Hüsler et al. [10].

The main aim of this paper is to study multivariate moments of {Xn,n−si
,

1 ≤ i ≤ k} for fixed s = (s1, ..., sk), where k ≥ 1. We suppose F is heavy tailed,

i.e.,

1 − F (x) ∼ Cx−α(1.1)

as x→ ∞ for some C > 0 and α > 0. For a nonparametric estimate of α, see

Novak and Utev [14].

There are many practical examples giving rise to {Xn,n−si
, 1 ≤ i ≤ k} for

heavy tailed F . Perhaps the most prominent example is the Hill’s estimator

(Hill [8]) for the extremal index given by

− logXn,n−k + k−1

k∑

i=1

logXn,n−i+1 .

Clearly, this is a function of Xn,n−si
, 1 ≤ i ≤ k. Real life applications of the Hill’s

estimator are far too many to list.

Since Hill [8], many other estimators have been proposed for the extremal

index, see Gomes and Guillou [6] for an excellent review of such estimators. Each

of these estimators is a function of Xn,n−si
, 1 ≤ i ≤ k. No doubt that many more
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estimators taking the form of a function of Xn,n−si
, 1 ≤ i ≤ k will be proposed in

the future.

A possible application of the results in this paper is to assess optimality of

these estimators. Suppose we can write the general form of the estimators as

ω = ω
(
Xn,n−s1 , Xn,n−s2 , ..., Xn,n−sk

;µ
)

,(1.2)

where µ contains some parameters, which include k itself. The optimum values

of µ can be based on criteria like bias and mean squared error. For example, µ

could be chosen as the value minimizing the bias of ω or the value minimizing

the mean squared error of ω. If (1.2) can be expanded as

ω =

∑

θ1,θ2,...,θk

a
(
θ1, θ2, ..., θk;µ

) k∏

i=1

Xθi
n,n−si

then the bias and mean squared error of ω can be expressed as

Bias(ω) =

∑

θ1,θ2,...,θk

a
(
θ1, θ2, ..., θk;µ

)
E

[
k∏

i=1

Xθi
n,n−si

]
− ω

and

MSE(ω) =

∑

θ1,θ2,...,θk

∑

ϑ1,ϑ2,...,ϑk

a
(
θ1, θ2, ..., θk;µ

)
a
(
ϑ1, ϑ2, ..., ϑk;µ

)
E

[
k∏

i=1

Xθi+ϑi
n,n−si

]

−





∑

θ1,θ2,...,θk

a
(
θ1, θ2, ..., θk;µ

)
E

[
k∏

i=1

Xθi
n,n−si

]



2

+
[
Bias(ω)

]2
,

respectively. Both involve multivariate moments of Xn,n−si
, 1 ≤ i ≤ k. Expres-

sions for the latter are given in Section 2, in particular, Theorem 2.2. Hence,

general estimators can be developed for µ which minimize bias, mean squared

error, etc. Such developments could apply to any future estimator (also to any

past estimator) of the extremal index taking the form of (1.2).

Note that Un,r = F (Xn,r) is the r-th order statistics from U(0, 1). For

1 ≤ r1 < r2 < ··· < rk ≤ n set Un,r = {Un,ri , 1 ≤ i ≤ k}. By Section 14.2 of Stuart

and Ord [17], Un,r has the multivariate beta density function

Un,r ∼ B (u : r) =

k∏

i=0

(ui+1 − ui)
ri+1−ri−1

/
Bn(r)(1.3)

on 0 < u1 < ··· < uk < 1, where u0 = 0, uk+1 = 1, r0 = 0, rk+1 = n+ 1 and

Bn(r) =

k∏

i=1

B (ri, ri+1 − ri) .(1.4)
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David and Johnson [3] expanded Xn,ri = F−1
(Un,ri) about un,i = E [Un,ri ] =

ri/(n+ 1): Xn,ri =

∞∑

j=0

G(j)
(un,i) (Un,i − un,i)

j /j!, where G(u) = F−1
(u) and

G(j)
(u) = djG(u)/duj , and using the properties of (1.3) showed that if r de-

pends on n in such a ways that r/n→ p ∈ (0,1) as n→ ∞ then the m-th order

cumulants of Xn,r = {Xn,ri , 1 ≤ i ≤ k} have magnitude O
(
n1−m

)
— at least for

n ≤ 4, so that the distribution function of Xn,r has a multivariate Edgeworth

expansion in powers of n−1/2
. (Alternatively one can use James and Mayne [11]

to derive the cumulants of Xn,r from those of Un,r.) The method requires the

derivatives of F at
{
F−1

(pi) , 1 ≤ i ≤ k
}

so breaks down if pi = 0 or pk = 1

— which is the situation we study here.

In Withers and Nadarajah [18], we showed that for fixed r when (1.1)

holds the distribution of Xn,n1−r (where 1 is the vector of ones in R
k
), suitably

normalized tends to a certain multivariate extreme value distribution as n→ ∞,

and so obtained the leading terms of the expansions of its moments in inverse

powers of n. Here, we show how to extend those expansions when

F−1
(u) =

∞∑

i=0

bi(1 − u)αi(1.5)

with α0 < α1 < ···, that is, {1 − F (x)}x−1/α0 has a power series in {x−δi : δi =

(αi − α0) /α0}. Hall [7] considered (1.5) with αi = i− 1/α, but did not give

the corresponding expansion for F (x) or expansions in inverse powers of n.

He applied it to the Cauchy. In Section 2, we demonstrate the method when

1 − F (x) = x−α
∞∑

i=0

ci x
−iβ

,(1.6)

where α> 0 and β > 0. In this case, (1.5) holds with αi = (iβ−1)/α. In Section 3,

we apply it to the Student’s t, F and second extreme value distributions and to

stable laws of exponent α < 1. The appendix gives the inverse theorem needed

to pass from (1.6) to (1.5), and expansions for powers and logs of series.

We use the following notation and terminology. Let (x)i = Γ(x+ i)/Γ(x)

and 〈x〉i = Γ(x+ 1)/Γ(x− i+ 1). An inequality in R
k

consists of k inequalities.

For example, for x in C
k
, where C is the set of complex numbers, Re(x) < 0

means that Re (xi) < 0 for 1 ≤ i ≤ k. Also let I(A) = 1 if A is true and I(A) = 0

if A is false. For θ ∈ C
k

let θ denote the vector with θi =

i∑

j=1

θj .
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2. MAIN RESULTS

For 1 ≤ r1 < ··· < rk ≤ n set si = n− ri. Here, we show how to obtain

expansions in inverse powers of n for the moments of the Xn,s for fixed r when

(1.5) holds, and in particular when the upper tail of F satisfies (1.6).

Theorem 2.1. Suppose (1.6) holds with c0, α, β > 0. Then F−1
(u) is

given by (1.5) with αi = ia− 1/α, a = β/α and bi = Ci,1/α, where Ci,ψ =

c
ψ
0
Ĉi (−ψ, c0,x∗

) of (A.3) and x∗i = x∗i (a, 1, c) of (A.4). In particular,

C0,ψ = c
ψ
0

,

C1,ψ = ψ c
ψ−a−1

0
c1 ,

C2,ψ = ψ c
ψ−2a−2

0

{
c0c2 + (ψ − 2a− 1) c21/2

}
,

C3,ψ = ψ c
ψ−3a−3

0

[
c20c2 + (ψ−3a−1) c0c1c2 + {(ψ+1)2/6(ψ + 3a/2)(a+1)} c31

]
,

and so on. Also for any θ in R,

{
F−1

(u)
}θ

=

∞∑

i=0

(1 − u)ia−ψCi,ψ(2.1)

at ψ = θ/α.

On those rate occasions, where the coefficients di = Ci,1/α in F−1
(u) =

∞∑

i=0

(1 − u)ia−1/αdi are known from some alternative formula then one can use

Ci,ψ = dθ0Ĉi (θ, 1/d0,d) of (A.3).

Proof of Theorem 2.1: By Theorem A.1 with k = 1, we have x−α =
∞∑

i=0

x∗i (1 − u)1+ia at u = F (x), where

x∗0 = c−1
0

,

x∗1 = c−a−2
0

c1 ,

x∗2 = c−2a−3
0

{
−c0c2 + (a+ 1)c21

}
,

x∗3 = c−3a−4
0

{
−c20c3 + (2 + 3a) c0c1c2 − (2 + 3a) (1 + a) c21/2

}
,

and so on. So, for S of (A.1), x−α = c−1
0
v [1 + c0S (va,x∗

)] at v = 1 − u. Now

apply (A.2).
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Lemma 2.1. For θ in C
k,

E

[
k∏

i=1

(1 − Un,ri)
θi

]
= bn

(
r : θ

)
,(2.2)

where

bn
(
r : θ

)
=

k∏

i=1

b
(
ri − ri−1, n− ri + 1 : θi

)
(2.3)

and b (α, β : θ) = B(α, β + θ)/B(α, β). Also in (1.4),

Bn (r) =

k∏

i=1

B (ri − ri−1, n− ri + 1) .(2.4)

Since B(α, β) = ∞ for Reβ ≤ 0, for (2.2) to be finite we need n− ri + 1 +

Re θi > 0 for 1 ≤ i ≤ k.

Proof of Lemma 2.1: Let Ik denote the left hand side of (2.2). Then

Ik =

∫
Bn(u : r)

k∏

i=1

(1 − ui)
θi du1···duk integrated over 0 < u1 < ··· < uk < 1 by

(1.3). So, (2.2), (2.4) hold for k = 1. Set si = (ui − ui−1) / (1 − ui−1). Then

I2 =

∫
1

0

ur1−1

1
(1 − u1)

θ1

∫
1

u1

(u2 − u1)
r2−r1−1

(1 − u2)
r3−r2−1+θ2 du2

/
Bn(r) ,

which is the the right hand side of (2.2) with denominator replaced by the right

hand side of (2.3). Putting θ = 0 gives (2.2), (2.4) for k = 2. Now use induction.

Lemma 2.2. In Lemma 2.1, the restriction

1 ≤ r1 < ··· < rk ≤ n may be relaxed to 1 ≤ r1 ≤ ··· ≤ rk ≤ n .(2.5)

Proof: For k = 2, the second factor in the right hand side of (2.3) is

b(r2 − r1, n− r2 + 1 : θ2) = f
(
θ2

)
/f(0), where f

(
θ2

)
= Γ

(
n− r2 + 1 + θ2

)
/

Γ
(
n− r1 + 1 + θ2

)
= 1 if r2 = r1 and the first factor is b

(
r1, n− r1 + 1 : θ1

)
=

E

[
(1 − Un,r1)

θ1
]
. Similarly, if ri = ri−1, the i-th factor is 1 and the product of the

others is E




k∏

j=1,j 6=i

(
1 − Un,rj

)θ∗j


, where θ∗j = θj for j 6= i− 1 and θ∗j = θi−1 + θi

for j = i− 1.

Corollary 2.1. In any formulas for E [g (Xn,r)] for some function g, (2.5)

holds. In particular it holds for the moments and cumulants of Xn,r.
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This result is very important as it means we can dispense with treating the

2
k−1

cases ri < ri+1 or ri = ri+1, 1 ≤ i ≤ k − 1 separately. For example, Hall [7]

treats the two cases for cos (Xn,r, Xn,s) separately and David and Johnson [3]

treat the 2
k−1

cases for the k-th order cumulants of Xn,r separately for k ≤ 4.

Theorem 2.2. Under the conditions of Theorem 2.1,

E

[
k∏

i=1

Xθi
n,ri

]
=

∞∑

i1,...,ik=0

Ci1,ψ1
···Cik,ψk

bn
(
r : ia− θ/α

)
(2.6)

with bn as in (2.3), where ψ = θ/α. All terms are finite if Reθ < (s + 1)α, where

si = n− ri.

Lemma 2.3. For α, β positive integers and θ in C,

b(α, β : θ) =

α+β−1∏

j=β

(1 + θ/j)−1 .(2.7)

So, for θ in C
k,

bn
(
r : θ

)
=

k∏

i=1

si−1∏

j=si+1

(
1 + θi/j

)
−1

,(2.8)

where si = n− ri and r0 = 0.

Proof: The left hand side of (2.7) is equal to Γ(β + θ)Γ(α + β) /

{Γ(β + θ + α)Γ(β)}. But Γ(α+ x)/Γ(x) = (x)α, so (2.7) holds, and hence (2.8).

From (2.3) we have, interpreting

k−1∏

i=2

bi as 1,

Lemma 2.4. For si = n− ri,

bn
(
r : θ

)
= B

(
s : θ

)
n! /Γ

(
n+ 1 + θ1

)
,(2.9)

where

B
(
s : θ

)
= Γ

(
s1 + 1 + θ1

)
(s1!)

−1

k∏

i=2

b
(
si−1 − si, si + 1 : θi

)

does not depend on n for fixed s.
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Lemma 2.5. We have

n!/Γ(n+ 1 + θ) = n−θ
∞∑

i=0

ei(θ)n
−i ,

where

e0(θ) = 1 , e1(θ) = −(θ)2/2 , e2(θ) = (θ)3 (3θ + 1)/24 ,

e3(θ) = −(θ)4 (θ)2/ (4! · 2) , e4(θ) = (θ)5
(
15θ3

+ 30θ2
+ 5θ − 2

)
/ (5! · 48) ,

e5(θ) = −(θ)6 (θ)2
(
3θ2

+ 7θ − 2
)
/ (6! · 16) ,

e6(θ) = (θ)7
(
63θ5

+ 315θ4
+ 315θ3 − 91θ2 − 42θ + 16

)
/ (7! · 576) ,

e7(θ) = −(θ)8 (θ)2
(
9θ4

+ 54θ3
+ 51θ2 − 58θ + 16

)
/ (8! · 144) .

Proof: Apply equation (6.1.47) of Abramowitz and Stegun [1].

So, (2.6), (2.9) yield the joint moments of Xn,rn
−1/α

for fixed s as a power

series in (1/n, n−α):

Corollary 2.2. Under the conditions of Theorem 2.1,

E

[
k∏

i=1

Xθi
n,n−si

]
=

∞∑

j=0

n! Γ
(
n+ 1 + ja− ψ1

)
−1
Cj (s : ψ) ,(2.10)

where ψ = θ/α and

Cj (s : ψ) =

∑{
Ci1,ψ1

···Cik,ψk
B

(
s : ia−ψ

)
: i1 + ··· + ik = j

}
.

So, if s, θ are fixed as n→ ∞ and Re
(
θ
)
< (s + 1)α, then the left hand

side of (2.10) is equal to

nψ1

∞∑

i,j=0

n−i−ja ei
(
ja− ψ1

)
Cj (s : ψ) .(2.11)

If a is rational, say a = M/N then the left hand side of (2.10) is equal to

nψ1

∞∑

m=0

n−m/Ndm (s : ψ) ,(2.12)

where

dm (s : ψ) =

∑{
ei

(
ja− ψ1

)
Cj (s : ψ) : iN + jM = m

}

=

∑{
em−ja

(
ja− ψ1

)
Cj (s : ψ) : 0 ≤ j ≤ m/a

}

if N = 1; so for dm to depend on c1 and not just c0 we need m ≤M .
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The leading term in (2.11) does not involve c1 so may be deduced from

the multivariate extreme value distribution that the law of Xn,n−si
, suitably

normalized, tends to. The same is true of the leading terms of its cumulants.

See Withers and Nadarajah [18] for details.

The leading terms in (2.11) are

nψ1

[{
1 − n−1〈ψ1〉2/2

}
C0 (s : ψ) + n−aC1 (s : ψ) +O

(
n−2a0

)]
,

where

a0 = min(a, 1) ,

C0 (s : ψ) = c0B
(
s : −ψ

)
,

C1 (s : ψ) = c
ψ1−a−2

0
c1

k∑

j=1

ψjB
(
s : aIj −ψ

)

and Ij,m = I(m ≤ j). For k = 1,

C0(s : ψ) = c
ψ
0
(s+ 1)−ψ = c

ψ
0
/〈s〉ψ ,

C1(s : ψ) = ψc
ψ−a−1

0
c1(s+ 1)a−ψ = ψc

ψ−a−1

0
c1/〈s〉ψ−a .

Set

πs(λ) = b (s1 − s2, s2 + 1 : λ) =

s1∏

j=s2+1

1/ (1 + λ/j)

for λ an integer. For example, πs(1) = (s2 + 1) / (s1 + 1) and πs(−1) = s1/s2.

Then for k = 2,

C0 (s : λ1) = c2λ0 〈s1〉−1

2λ πs(−λ)

= c20 (s1 − 1)
−1 s2 for λ = 1

= c20〈s2 − 2〉−1
2

〈s2〉−1
2

for λ = 2

and

C1 (s : λ1) = λ c2λ−a−1
0

c1〈s1〉−1

2λ−a

{
πs(−λ) + πs(a− λ)

}

= λ c1−a
0

c1〈s1〉−1
2−a

{
s1/s2 + πs(a− 1)

}
for λ = 1

= λ c3−a
0

c1〈s1〉−1
4−a

{
〈s1〉2 〈s2〉−1

2
+ πs(a− 2)

}
for λ = 2 .

Set λ = 1/α, Yn,s = Xn,n−s/ (nc0)
λ

and Ec = λ c−a−1
0

c1. Then for s > λ− 1

E [Yn,s] =
{
1 − n−1〈λ〉2/2

}
〈s〉−1

λ + n−aEc〈s〉−1

λ−a +O
(
n−2a0

)
(2.13)

and for s1 > 2λ− 1, s2 > λ− 1, s1 ≥ s2,

E [Yn,s1Yn,s2 ] =
{
1 − n−1〈2λ〉2/2

}
B2,0 + n−aEcDa +O

(
n−2a0

)
,(2.14)
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where B2,0 = 〈s1〉−1

2λ πs(−λ), Da = 〈s1〉−1

2λ−a {πs(−λ) + πs(a− λ)} and

Cov (Yn,s1 , Yn,s2) = F0 + F1/n+ EcF2/n+O
(
n−2a0

)
,(2.15)

where F0 = B2,0 − 〈s1〉−1

λ 〈s2〉−1

λ , F1 = 〈λ〉2〈s1〉−1

λ 〈s2〉−1

λ − 〈2λ〉2B2,0/2 and F2 =

Da − 〈s1〉−1

λ 〈s2〉−1

λ−a − 〈s1〉−1

λ−a〈s2〉−1

λ . Similarly, we may use (2.11) to approxi-

mate higher order cumulants. If a = 1 this gives E [Yn,s] and Cov (Yn,s1 , Yn,s2) to

O
(
n−2

)
.

Example 2.1. Suppose α = 1. Then Yn,s = Xn,n−s/ (nc0), Ec = c−a−1
0

c1,

B2,0 =−F1 = (s1−1)
−1 s−1

2
, F0 = 〈s1〉−1

2
s−1
2

, Da = 〈s1〉−1
2−aGa, whereGa = s1s

−1
2

+

πs(a− 1) for s1 ≥ s2, Ga = 2 for s1 = s2 and F2 = Da− s−1
1

〈s2〉−1
1−a− s−1

2
〈s1〉−1

1−a.

So,

E [Yn,s] = s−1
+ n−aEc〈s〉−1

1−a +O
(
n−2a0

)
(2.16)

for s > 0 and (2.14)–(2.15) hold if

s1 > 1 , s2 > 0 , s1 ≥ s2 .(2.17)

A little calculation shows that C0 (s : 1) = ck0Bk,0, C1 (s : 1) = ck−a−1
0

c1Bk,·, and

E

[
k∏

i=1

Yn,si

]
=

{
1 + n−1〈k〉2/2

}
Bk,0 + n−aEcBk,· +O

(
n−2a0

)

= m0(s) + n−1m1(s) + n−ama(s) +O
(
n−2a0

)

say for si > k − i, 1 ≤ i ≤ k and s1 ≥ ··· ≥ sk, where

Bk,· =

k∑

j=1

Bk,j ,

Bk,0 =

k∏

i=1

1/ (s1 − k + i) ,

Bk,j =

j−1∏

i=1

(si − k + a+ i)−1 〈sj − k + j + 1〉a−1

k∏

i=j+1

(si − k + i)−1 ,

Bk,k =

k−1∏

i=1

(si − k + a+ i)−1 〈sk〉−1
1−a

for si > k − i and 1 ≤ j < k. For example, B1,0 = s1, B2m,0 = (s1 − 1)
−1 s−1

2

and B3,0 = (s1 − 2)
−1

(s2 − 1)
−1 s−1

3
. So, κn(s) = κ (Yn,s1 , ..., Yn,sk

), the joint cu-

mulant of (Yn,s1 , ..., Yn,sk
), is given by κn(s) = κ0(s) + n−1κ1(s) + n−aκa(s) +
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O
(
n−2a0

)
, where, for example,

κ0 (s1, s2, s3) = m0 (s1, s2, s3) −m0 (s1)m0 (s2, s3) −m0 (s2)m0 (s1, s3)

−m0 (s3)m0 (s1, s2) + 2

3∏

i=1

m0 (si)

= 2 (s1 + s2 − 2)D (s1, s2, s3) ,

κ1 (s1, s2, s3) = m1 (s1, s2, s3) −m0 (s1)m1 (s2, s3) −m0 (s2)m1 (s1, s3)

−m0 (s3)m1 (s1, s2)

= 2
{
s2 (1 − 2s1) + s1 − s21

}
/D (s1, s2, s3) since m1 (s1) = 0 ,

κa (s1, s2, s3) = ma (s1, s2, s3) −m0 (s1)ma (s2, s3) −ma (s1)m0 (s2, s3)

−m0 (s2)ma (s1, s3) −ma (s2)m0 (s1, s3) − m0 (s3)ma (s1, s2)

−ma (s3)m0 (s1, s2) + 2m0 (s1)m0 (s2)ma (s3)

+ 2m0 (s3)m0 (s1)ma (s2) + 2m0 (s2)m0 (s3)ma (s1) ,

where D (s1, s2, s3) = 〈s1〉3 〈s2〉2s3.

Consider the case a = 1. Then κa (s1, s2, s3) = 0 so

κn (s1, s2, s3) = 2

{
s1 + s2 − 2 + n−1

(
s2 (1 − 2s1) + s1 − s21

)}/
D (s1, s2, s3)

+ O
(
n−2

)
.(2.18)

Set s· =

k∑

j=1

sj . Then

B1,· = B1,1 − 1 , B2,2 = 1/s2 , B2,2 = 1/s2 , B2,2 = s1 ,

B2,· = s−1
1

+ s−1
2

= (s1 + s2) / (s1s2) ,

B3,1 = (s2 − 1)
−1 s−1

3
, B3,2 = (s1 − 1)

−1 s−1
3

, B3,3 = (s1 − 1)
−1 s−1

2
,

B3,· =
{
s2 (s· − 2) − s3

}
(s1 − 1)

−1 〈s2〉−1
2
s−1
3

,

B4,1 = (s2 − 2)
−1

(s3 − 1)
−1 s−1

4
, B4,2 = (s1 − 2)

−1
(s3 − 1)

−1 s−1
4

,

B4,3 = (s1 − 2)
−1

(s2 − 1)
−1 s−1

4
, B4,4 = (s1 − 2)

−1
(s2 − 1)

−1 s−1
3

,

B4,· =
{
s·s3 (s2 − 2) + s3 (s2 − 4s2 + 4) − s2s4

}{
(s1 − 2) 〈s2 − 2〉2 〈s3〉2 s4

}
−1
.

Also Ec = c−2
0
c1, Da = s−1

1
+ s−1

2
, F2 = 0, and

E [Yn,s] = s−1
+ n−1Ec +O

(
n−2

)
for s > 0 ,(2.19)

E [Yn,s1Yn,s2 ] =
(
1 − n−1

)
B2,· + n−1EcDa +O

(
n−2

)
if (2.17) holds ,(2.20)

Cov (Yn,s1 , Yn,s2) = 〈s1〉−1
2
s−1
2

(
s2 − n−1s1

)
+O

(
n−2

)
if (2.17) holds .(2.21)

In the case a≥ 2, (2.19)–(2.21) hold with Ec replaced by 0. In the case a≤1,

(2.14)–(2.16) with a0 = a give terms O
(
n−2a

)
with the n−1

terms disposable if

a ≤ 1/2.



Extremes for Quantiles and Multivariate Moments 37

We now investigate what extra terms are needed to make (2.19)–(2.21)

depend on c when a = 1 or 2.

Example 2.2. α = β = 1. Here, we find the coefficients of n−2
. By (2.12),

d2 (s : ψ) =

2∑

j=0

e2−j
(
j − ψ1

)
Cj (s : ψ)

= e2
(
−ψ1

)
C0 (s : ψ) + e1

(
1 − ψ1

)
C1 (s : ψ) + C2 (s : ψ)

= C2 (s : ψ) if ψ1 = 1 or 2 .

For k = 1, C2(s : ψ) = C2,ψ(s+1)2−ψ, where C2,ψ = ψc
ψ−4

0

{
c0c2 + (ψ − 3)c21/2

}
,

so d2(s : 1) = (s+ 1)Fc, where Fc = c−3
0

(
c0c2 − c21

)
, so in (2.19) we may replace

O
(
n−2

)
by n−2

(s+ 1)Fcc
−1
0

+O
(
n−3

)
. For k = 2,

C2 (s : 1) =

∑{
Ci,1Cj,1B (s : 0, j − 1) : i+ j = 2

}

= C0,1C2,1

{
B (s : 0, 1) +B (s : 0,−1)

}
+ C2

1,1B (s : 0, 0) ,

where B (s : 0, λ) = b (s1 − s2, s2 + 1 : λ) = πs(λ), so d2 (s : 1) = C2 (s : 1) −
D2,sHc + c−2

0
c21, where D2,s = (s2 + 1) (s1 + 1)

−1
+ s1s

−1
2

, Hc = c−2
0

(
c0c2 − c21

)

and in (2.20) we may replace O
(
n−2

)
by n−2d2 (s : 1) c−2

0
+O

(
n−3

)
. Upon sim-

plifying this gives

Cov (Yn,s1 , Yn,s2) = 〈s1〉−1
2
s−1
2

(
1 − n−1s1

)
− c−2

0
HcF3,s n

−2
+O

(
n−2

)
,

where F3,s = (s2 + 1) /〈s1〉2 + s−1
2

.

Example 2.3. α = 1, β = 2. So, a = 2, λ = 1, ψ = θ. By (2.12),

d2 (s : ψ) =

1∑

j=0

e2−2j

(
2j − ψ1

)
Cj (s : ψ)

= e2
(
−ψ1

)
C0 (s : ψ) + C1 (s : ψ)

= C1 (s : ψ) if ψ1 = 0, 1 or 2 .

For k = 1,

C1(s : ψ) = ψ c
ψ−3

0
c1〈s〉−1

ψ−2
=

{
c−2
0
c1(s+ 1) , if ψ = 1 ,

2 c−1
0
c1 , if ψ = 2 ,

so E [Yn,s] = s−1
+ c−3

0
c1(s+ 1)n−2

+O
(
n−3

)
for s > 0. For k = 2, C1 (s : 1) =

c−1
0
c1D2,s for D2,s above, so

E [Yn,s1Yn,s2 ] =
(
1 − n−1

)
(s1 − 1)

−1 s−1
2

+ n−2 c−3
0
c1D2,s +O

(
n−3

)

and

Cov (Yn,s1 , Yn,s2) = 〈s1〉−1
2
s−1
2

(
1 − n−1s1

)
− n−2 c−3

0
c1F3,s +O

(
n−3

)
.
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3. EXAMPLES

Example 3.1. For Student’s t distribution, X = tN has density function

(
1 + x2/N

)
−γ
gN =

∞∑

i=0

di x
−2γ−2i

,

where γ = (N + 1)/2, gN = Γ(γ)/
{√

Nπ Γ(N/2)

}
and di =

(−γ
i

)
Nγ+igN .

So, (1.6) holds with α = N , β = 2 and ci = di/(N + 2i). In particular,

c0 = Nγ−1gN ,

c1 = −γNγ+1
(N + 2)

−1gN = −Nγ+1
(N + 1) (N + 2)

−1gN/2 ,

c2 = (γ)2N
γ+2

(N + 4)
−1gN/2 ,

c3 = −(γ)3N
γ+3gN (N + 6)

−1/6 ,

and so on. So, a = 2/N and (2.12) gives an expression in powers of n−a/2 if N is

odd or n−a if N is even. The first term in (2.12) to involve c1, not just c0, is the

coefficient of n−a.

Putting N = 1 we obtain

Example 3.2. For the Cauchy distribution, (1.6) holds with α = 1, β = 2

and ci = (−1)
i
(2i+ 1)

−1π−1
. So, a = 2, ψ = θ, C0,ψ = π−ψ, C1,ψ = −ψ π2−ψ/3,

C2,ψ = ψ π4−ψ {1/5 + (ψ − 5)/a} and C3,ψ = −ψ π6−ψ {1/105 − 2ψ/15 +

(ψ + 1)2/162}. By Example 2.3, Yn,s = (π/n)Xn,n−s satisfies

E [Yn,s] = s−1 − n−2π2
(s+ 1) +O

(
n−3

)
(3.1)

for s > 0 and when (2.17) holds

E [Yn,s1Yn,s2 ] =
(
1 − n−1

)
(s1 − 1)

−1 s−1
2

− n−2π2D2,s/3 +O
(
n−3

)
(3.2)

for D2,s = (s2 + 1) / (s1 + 1) + s1/s2 and

Cov (Yn,s1 , Yn,s2) = 〈s1〉−1
2
s−1
2

(
1 − n−1s1

)
+ n−2π2F3,s/3 +O

(
n−3

)

for F3,s = (s2 + 1) /〈s1〉2 + s−1
2

. Page 274 of Hall [7] gave the first term in (3.1)

and (3.2) when s1 = s2 but his version of (3.2) for s1 > s2 replaces (s1 − 1)
−1 s−1

2

and D2,s by complicated expressions each with s1 − s2 terms. The joint order of

order three for {Yn,si
, 1 ≤ i ≤ 3} is given by (2.18). Hall points out that F−1

(u) =

cot (π − πu), so F−1
(u) =

∞∑

i=0

(1−u)2i−1Ci,1, where Ci,1 =
(
−4π2

)i
π−1B2,i/(2i)!.
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Example 3.3. Consider the F distribution. For N,M ≥ 1, set ν = M/N ,

γ = (M +N)/2 and gM,N = νM/2/B (M/2, N/2). Then X = FM,N has density

function

xM/2
(1 + νx)−γ gM,N = ν−γ x−N/2

(
1 + ν−1x−1

)
−γ
gM,N =

∞∑

i=0

di x
−N/2−i

,

where di = hM,N

(−γ
i

)
νi and hM,N = gM,N ν

−γ
= ν−N/2

/
B(M/2, N/2). So, for

N > 2, (2.1) holds with α = N/2 − 1, β = 1 and ci = di/(N/2 + i− 1). If N = 4

then α = 1 and Examples 2.1–2.2 apply. Otherwise (2.13)–(2.15) give E [Yn,s],

E [Yn,s1Yn,s2 ] and Cov (Yn,s1 , Yn,s2) to O
(
n−2a0

)
, where Yn,s = Xn,n−s/ (nc0)λ,

λ = 1/α, a = 2/(N − 2), a0 = min(a, 1) = a if N ≥ 4 and a0 = min(a, 1) = 1 if

N < 4.

Example 3.4. Consider the stable laws. Page 549 of Feller [5] proves that

the general stable law of index α ∈ (0, 1) has density function

∞∑

k=1

|x|−1−αkak(α, γ) ,

where ak(α, γ) = (1/π) Γ(kα + 1)
{
(−1)

k/k!
}

sin{kπ(γ − α)/2} and |γ| ≤ α.

So, for x > 0 its distribution function F satisfies (2.1) with β = α and ci =

ai+1(α, γ) γ
−1

(i+1)
−1

. Since a=1 the first two moments of Yn,s =Xn,n−s/ (nc0)
λ
,

where λ = 1/α are O
(
n−2

)
by (2.13)–(2.15).

Example 3.5. Finally, consider the second extreme value distribution.

Suppose F (x) = exp (−x−α) for x > 0, where α > 0. Then (1.6) holds with β = α

and ci = (−1)
i/(i+ 1)!. Since a = 1 the first two moments of Yn,s = Xn,n−s/n

1/α

are given to O
(
n−2

)
by (2.13)–(2.15).
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APPENDIX: AN INVERSION THEOREM

Given xj = yj/j! for j ≥ 1 set

S = Ŝ(t,x) =

∞∑

j=1

xj t
j

= S(t,y) =

∞∑

j=1

yj t
j/j! .(A.1)

The partial ordinary and exponential Bell polynomials B̂r,i(x) and Br,i(y) are

defined for r = 0, 1, ... by

Si =

∞∑

r=i

trB̂r,i(x) = i!

∞∑

r=i

trBr,i(y)/r! .

So, B̂r,0(x) = Br,0(y) = I(r = 0), B̂r,i(λx) = λiB̂r,i(x) and Br,i(λy) = λiBr,i(y).

They are tabled on pages 307–309 of Comtet [2] for r ≤ 10 and 12. Note that

(1 + λS)
α

=

∞∑

r=0

trĈr =

∞∑

r=0

trCr/r! ,(A.2)

where

Ĉr = Ĉr (α, λ,x) =

r∑

i=0

B̂r,i(x)

(
α

i

)
λi(A.3)

and

Cr = Cr (α, λ,y) =

r∑

i=0

Br,i(y) 〈α〉iλi .

So, Ĉ0 = 1, Ĉ1 = αλx1, Ĉ2 = αλx2 + 〈α〉2λ2x2
1/2, Ĉ3 = αλx3 + 〈α〉2λ2x1x2 +

〈α〉3λ3x3
1/6 and C0 = 1, C1 = αλy1, C2 = αλy2 + 〈α〉2λ2y2

1. Similarly,

log(1 + λS) =

∞∑

r=1

trD̂r =

∞∑

r=1

trDr/r!

and

exp(λS) = 1 +

∞∑

r=1

trB̂r = 1 +

∞∑

r=1

trBr/r! ,

where

D̂r = D̂r(λ,x) = −
r∑

i=1

B̂r,i(x) (−λ)
i/i! ,

Dr = Dr(λ,y) = −
r∑

i=1

Br,i(y) (−λ)
i/(i− 1)! ,
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B̂r = B̂r(λ,x) =

r∑

i=1

B̂r,i(x)λi/i!

and

Br = Br(λ,y) =

r∑

i=1

Br,i(y)λi .

Here, B̂r(1,x) and Br(1,y) are known as the complete ordinary and exponential

Bell polynomials. If xj = yj = 0 for j even, then S = t−1

∞∑

j=1

Xjt
2j

, where Xj =

x2j−1, so

Si = t−i
∞∑

r=i

t2rB̂r,i(X) and exp(λS) = 1 +

∞∑

k=1

tkB̂k ,

where

B̂k =

∑ {
B̂r,i(X)λi/i! : i = 2r − k, k/2 < r ≤ k

}
.

The following derives from Lagrange’s inversion formula.

Theorem A.1. Let k be a positive integer and a any real number.

Suppose

v/u =

∞∑

i=0

xi u
ia

=

∞∑

i=0

yi v
ia/i!

with x0 6= 0. Then

(u/v)k =

∞∑

i=0

x∗i v
ia

=

∞∑

i=0

y∗i v
ia/(ia)! ,

where x∗i = x∗i (a, k,x) and y∗i = y∗i (a, k,y) are given by

x∗i = k n−1Ĉi (−n, 1/x0,x) = k x−n
0

i∑

j=0

(n+ 1)j−1 B̂i,j (x) (−x0)
−j /j!(A.4)

and

y∗i = k n−1Ci (−n, 1/y0,y) = k y−n
0

i∑

j=0

(n+ 1)j−1Bi,j(y) (−y0)
−j ,(A.5)

respectively, where n = k + ai.

Proof: u/v has a power series in va so that (u/v)k does also. A little work

shows that (A.4)–(A.5) are correct for i = 0, 1, 2, 3 and so by induction that x∗ix
ia
0

and y∗i y
ia
0 are polynomials in a of degree i− 1. Hence, (A.4)–(A.5) will hold true

for all a if they hold true for all positive integers a. Suppose then a is a positive
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integer. Since v/u = x0

(
1 + x−1

0
S

)
for S = Ŝ (ua,x) = S (ua,y), the coefficient

of uai in (v/u)−n is x−n
0
Ĉi (−n, 1/x0,x) = y−n

0
Ci (−n, 1/y0,y) /(n− k)!. Now

set n = k + ai and apply Theorem A in page 148 of Comtet [2] to v = f(u) =
∞∑

i=0

xiu
1+ai

.

Theorem F in page 15 of Comtet [2] proves (A.4) for the case k = 1 and a

a positive integer.
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1. INTRODUCTION

A diagnostic test is a medical test that is applied to an individual in order

to determine the presence or absence of a disease. When the diagnostic test

can only give two possible results (positive, indicating the provisional presence

of the disease, or negative, indicating the provisional absence of the disease)

the diagnostic test is called a binary diagnostic test (BDT ) and it is used very

frequently in clinical practice. A stress test for the diagnosis of coronary disease

or a mammogram to diagnose breast cancer are two examples of BDTs. The

most common parameters to assess the accuracy or performance of a BDT are

sensitivity (Se) and specificity (Sp). Other commonly used parameters to assess

the performance of a BDT are predictive values (PVs). The positive predictive

value (PPV ) of a BDT is the probability of an individual having the disease given

that the result of the BDT is positive and the negative predictive value (NPV )

is the probability of an individual not having the disease given that the result

of the BDT is negative. The predictive values (PVs) are a measure of clinical

accuracy of the BDT, and they depend on the sensitivity and the specificity of

the BDT and on the prevalence of the disease (p). Applying Bayes Theorem, the

PVs are calculated as

PPV =
p × Se

p × Se + (1− p) × (1−Sp)

and(1.1)

NPV =
(1− p) × Sp

p × (1−Se) + (1− p) × Sp
.

In the study of statistical methods for the diagnosis of diseases, comparison of

the accuracy or the performance of two diagnostic tests is a topic of particular

importance. In paired designs (i.e. when the two BDTs and the gold standard

are applied to all of the individuals in a random sample), comparison of the PVs

of two BDTs in relation to the same gold standard has been the subject of several

studies in the statistical literature [1, 2, 3, 4]. In all of them, the comparison of

the two PPVs and the comparison of the two NPVs is carried out independently.

Roldán-Nofuentes et al. [5] showed that the PVs of two (or more) BDTs are

correlated and they studied a global hypothesis test based on the chi-squared

distribution to simultaneously compare the PVs of two or more BDTs in relation

to the same gold standard. In all of these studies, the disease status of all of

the patients is known, as well as the results of the two diagnostic tests. This

situation is also known as ‘complete verification’ (because the gold standard is

applied to all of the individuals in the sample). Poleto et al. [6] studied the

comparison of the predictive values of two BDTs when for some individuals we

do not know the results of one of the two BDTs. Furthermore, in clinical practice

it is common for the gold standard not to be applied to all of the individuals in the

sample, thus leading to the problem known as partial disease verification [7, 8, 9].
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Therefore, the disease status (if the disease is present or absent) is unknown for

a subset of individuals in the sample. In this situation, Roldán-Nofuentes et al.

[10, 11] studied the comparison of the PPVs and of the NPVs of two BDTs.

Nevertheless, in these two studies they did not consider the dependence that

exists between the PVs of the diagnostic tests. This is the essence of our article,

to study a global hypothesis test that allows us to jointly compare the PVs of two

(or more) BDTs in the presence of ignorable missing data. In this article, we study

a global hypothesis test to simultaneously compare the predictive values of two

or more BDTs when, in the presence of partial disease verification, the missing

data mechanism is ignorable. In Section 2, we propose a global hypothesis test,

and other alternative methods, to simultaneously compare the PVs of multiple

BDTs. In Section 3, Monte Carlo simulation experiments are carried out in order

to study the type I error probability and the power of the global hypothesis test

(and of the alternative methods) when comparing the PVs of two and of three

BDTs respectively. In Section 4, the method proposed is applied to two examples,

and in Section 5 the results obtained are discussed.

2. THE MODEL

Let us consider J BDTs (J > 2) that are applied independently to the

same random sample of size n extracted from a population that has a determined

prevalence of the disease (p). Moreover, let us consider that the gold standard

has not been applied to all of the individuals in the random sample. In this sit-

uation, the J diagnostic tests are applied to all of the individuals in the sample

whilst the gold standard is only applied to a subset of them. Therefore, the re-

sults of the J diagnostic tests are known by all of the individuals in the sample,

whereas the result of the gold standard (i.e. the disease status) is only unknown

to a subset of them. Let Tj , V and D be the random binary variables defined

as: Tj which models the result of the j-th BDT (j = 1, ..., J), so that Tj = 1

when the test result is positive and Tj = 0 when the result is negative; V models

the verification process, V = 1 when the individual is verified with the gold stan-

dard and V = 0 when the individual is not verified; and D models the result of

the gold standard, D = 1 when the individual has the disease and D = 0 when

the individual does not. Let Sej = P (Tj = 1 |D = 1), Spj = P (Tj = 0 |D = 0),

PPVj = P (D = 1 |Tj = 1) and NPVj = P (D = 0 |Tj = 0) be the sensitivity, the

specificity, the positive predictive value and the negative predictive value of the

j-th BDT respectively. Let the observed frequencies be: si1,...,iJ is the number of

patients verified in which T1 = i1, T2 = i2, ..., TJ = iJ and D = 1; ri1,...,iJ is the

number of patients verified in which T1 = i1, T2 = i2, ..., TJ = iJ and D = 0; and

ui1,...,iJ is the number of patients not verified in which T1 = i1, T2 = i2, ..., TJ = iJ

with ij = 0, 1 and j = 1, ..., J . Let ni1,...,iJ = si1,...,iJ + ri1,...,iJ + ui1,...,iJ and
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n =

1∑
i1,...,iJ=0

ni1,...,iJ . As only a subset of individuals in the sample have their disease

status verified with the gold standard, the verification probabilities (λk,i1,...,iJ )

are defined as the probability of selecting an individual for whom D = k, T1 = i1,

T2 = i2, ..., TJ = iJ with k, ij = 0, 1, j = 1, ..., J , to verify his or her disease status

i.e.

λk,i1,...,iJ = P
(
V = 1

∣∣ D = k, T1 = i1, T2 = i2, ..., TJ = iJ

)
.

Assuming that the verification process with the gold standard only depends on

the results of the J BDTs and does not depend on the disease status, then

the missing data mechanism is missing at random (MAR) [12]. Assuming also

that the parameters of the data model and the parameters of the missingness

mechanism are distinct, then the missing data mechanism is ignorable [13]. Under

this model, the verification probabilities are

λk,i1,...,iJ = λi1,...,iJ = P
(
V = 1

∣∣ T1 = i1, T2 = i2, ..., TJ = iJ

)
,

and all of the parameters can be estimated applying the maximum likelihood

method.

2.1. Maximum likelihood estimators of the PVs

As the J BDTs are applied to all of the n individuals in the random sample

and the gold standard is only applied to a subset of them, the frequencies observed

ri1,...,iJ , si1,...,iJ and ui1,...,iJ with ij = 0, 1 and j = 1, ..., J , which can be written

in the form of a 3×2
J

table in which the sample of size n has been set, are the

realization of a multinomial distribution whose probabilities are

φi1,...,iJ = P
(
V = 1, D = 1, T1 = i1, T2 = i2, ..., TJ = iJ

)
,

ϕi1,...,iJ = P
(
V = 1, D = 0, T1 = i1, T2 = i2, ..., TJ = iJ

)

and

γi1,...,iJ = P
(
V = 0, T1 = i1, T2 = i2, ..., TJ = iJ

)
.

Let ω = (φ1,...,1, ..., φ0,...,0, ϕ1,...,1, ..., ϕ0,...,0, γ1,...,1, ..., γ0,...,0)
T

be a vector sized(
3 · 2J

)
whose components are the probabilities of multinomial distribution and

ηi1,...,iJ = φi1,...,iJ +ϕi1,...,iJ +γi1,...,iJ . Assuming that the missing data mechanism

is ignorable, the PVs of the j-th BDT are written in terms of the parameters of
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the vector ω and of the verification probabilities as

PPVj =

1∑
i1,...,iJ=0; ij=1

φi1,...,iJ λ−1

i1,...,iJ

1∑
i1,...,iJ=0; ij=1

ηi1,...,iJ

and(2.1)

NPVj =

1∑
i1,...,iJ=0; ij=0

ϕi1,...,iJ λ−1

i1,...,iJ

1∑
i1,...,iJ=0; ij=0

ηi1,...,iJ

,

where λi1,...,iJ = (φi1,...,iJ + ϕi1,...,iJ )/ηi1,...,iJ are the verification probabilities.

Therefore, in equations (2.1) we can observe the dependence of the PVs of the

verification process subject to the MAR assumption. In this situation the loga-

rithm of the likelihood function is

l =

1∑

i1,...,iJ=0

si1,...,iJ log (φi1,...,iJ ) +

1∑

i1,...,iJ=0

ri1,...,iJ log (ϕi1,...,iJ )

+

1∑

i1,...,iJ=0

ui1,...,iJ log (γi1,...,iJ ) ,

so that maximizing this function, the maximum likelihood estimators (MLEs) of

φi1,...,iJ , ϕi1,...,iJ and γi1,...,iJ are the estimators of multinomial proportions [14],

i.e.

(2.2) φ̂i1,...,iJ =
si1,...,iJ

n
, ϕ̂i1,...,iJ =

ri1,...,iJ

n
and γ̂i1,...,iJ =

ui1,...,iJ

n
,

and the MLE of ηi1,...,iJ is η̂i1,...,iJ = ni1,...,iJ /n. Substituting in equations (2.1)

the parameters with their respective MLEs given in equations (2.2), the MLEs

of the PVs of the j-th BDT are

P̂PVj =

1∑
i1,...iJ=0; ij=1

si1,...iJ
ni1,...iJ

si1,...iJ
+ ri1,...iJ

1∑
i1,...iJ=0; ij=1

ni1,...iJ

and

N̂PVj =

1∑
i1,...iJ=0; ij=0

ri1,...iJ
ni1,...iJ

si1,...iJ
+ ri1,...iJ

1∑
i1,...iJ=0; ij=0

ni1,...iJ

.

Once we have obtained the MLEs of the PVs of the J BDTs, we then estimate

their variances-covariances.



Comparison of the PVs of Multiple BDTs 51

2.2. Estimation of the variances-covariances of the PVs

As the vector ω is the vector of probabilities of a multinomial distribution,

the variance-covariance matrix of ω̂ is
∑

ω̂
=

{
diag (ω) − ωTω

}/
n. Let τ =

(PPV1, ..., PPVJ , NPV1, ..., NPVJ)
T

be a vector sized 2J whose components are

the PVs of the J BDTs, and let τ̂ be the MLE of τ . As τ is a function of

the components of the vector ω, applying the delta method [15] the asymptotic

variance-covariance matrix of τ̂ is

∑
τ̂

=

(
∂τ

∂ω

) ∑
ω̂

(
∂τ

∂ω

)T

.

Substituting in the previous expression each parameter with its corresponding

MLE, we obtain the estimated asymptotic variances-covariances of the estimators

of the PVs of the J BDTs.

Moreover, the asymptotic variances-covariances of τ̂ can also be estimated

through bootstrap [16], generating, from the random sample of size n, B sam-

ples with replacement and from these B samples asymptotic variance-covariance

matrix of τ̂ is estimated.

Once we have obtained the MLEs of the PVs and their estimated asymp-

totic variances-covariances, it is possible to solve the global hypothesis test to

simultaneously compare the PVs of the J BDTs.

2.3. Global hypothesis test

The global hypothesis test to simultaneously compare the PVs of J BDTs

is

H0 : PPV1 = PPV2 = ··· = PPVJ and NPV1 = NPV2 = ··· = NPVJ ,

H1 : at least one equality is not true ,

which is equivalent to the hypothesis test

(2.3) H0 : Aτ = 0 vs H1 : Aτ 6= 0 ,

where A is a full rank matrix sized 2 (J −1) × 2J whose elements are known

constants. For two BDTs (J = 2) the matrix A is

(
1 0

0 1

)
⊗

(
1 −1

)
, and for

J = 3 this matrix is

(
1 0

0 1

)
⊗

(
1 −1 0

0 1 −1

)
, where ⊗ is the Kronecker product.

As the vector τ̂ is asymptotically distributed according to a normal multivariate
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distribution, i.e. τ̂ −−−→
n→∞

N (τ ,Στ), the Wald statistic for the global hypothesis

test (2.3) is

(2.4) Q2
= τ̂TAT

(
A

∑̂
τ̂

AT

)
−1

Aτ̂ ,

which is asymptotically distributed according to a chi-squared distribution with

2 (J − 1) degrees of freedom when the null hypothesis is true.

If the global hypothesis test is solved applying bootstrap, the statistic for

the global test is similar to that given in the expression (2.4), substituting τ̂

with the bootstrap estimator of τ and
∑̂

τ̂
with the variance-covariance matrix

estimated through bootstrap.

Other alternative methods will now be proposed to solve the global hypoth-

esis test (2.3).

2.4. Alternative methods

The method proposed in the previous Section to solve the global hypoth-

esis test (2.3) is based on the chi-squared distribution. The following are some

alternative methods to solve this hypothesis test:

Method 1. Consists of solving the J (J − 1) marginal hypothesis tests given

by

H0 : PPVk = PPVl vs H1 : PPVk 6= PPVl

and

H0 : NPVk = NPVl vs H1 : NPVk 6= NPVl

with k, l = 1, ..., J and k 6= l, each one to an error rate of α/{J (J − 1)}, i.e.

applying the Bonferroni method [17], where the statistics is

(2.5) z =
P̂ Vk − P̂ Vl√

V̂ar

(
P̂ Vk

)
+ V̂ar

(
P̂ Vl

)
− 2Ĉov

(
P̂ Vk, P̂ Vl

) −→ N (0, 1) ,

and where PV is PPV or NPV respectively.

Method 2. Consists of solving the J (J − 1) marginal hypothesis tests and

applying the multiple comparison method of Holm [18] to a global error rate of

α.

Method 3. Consists of solving the J (J − 1) marginal hypothesis tests and

applying the multiple comparison method of Hochberg [19] to a global error rate

of α.
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These methods are very easy to apply from the p-values calculated in the

J (J − 1) marginal hypothesis tests. The Bonferroni method is a classic method of

post hoc comparison, and the Holm and Hochberg methods are less conservative

post hoc methods than the Bonferroni method. Furthermore all of the aforemen-

tioned methods can be applied both if the PVs and their variances-covariances

are estimated through the maximum likelihood method and the delta method

respectively, or if they are estimated through the bootstrap method.

3. SIMULATION EXPERIMENTS

Monte Carlo simulation experiments were carried out to study the type I

error probability and the power of the global hypothesis proposed in Section 2.3

and of the alternative methods proposed in Section 2.4, when comparing the

PVs of two and of three BDT s respectively, and both if the variance-covariance

matrix is estimated through the delta method and if it is estimated through

the bootstrap method. These simulation experiments were designed in a similar

way to those carried out by Roldan-Nofuentes et al. [5], and consisted of the

generation of 5000 random samples with multinomial distributions sized 50, 100,

200, 500, 1000, 2000 and 5000. For all of the study α = 5% was set. All of the

random samples were generated in such a way that in all of them it was possible

to estimate the PVs and their variances-covariances. In the case of bootstrap,

for each random sample 2000 samples with replacement were generated and from

these ˆ̄τ and
∑̂

ˆ̄τ
were calculated. All of the random samples were generated

from the PVs and the prevalence, without setting the values of sensitivity and

specificity of each BDT in the following way:

1. As PVs we took the values {0.60, 0.65, ..., 0.90, 0.95}, which are quite

common values in clinical practice, and as values of the disease preva-

lence we took the values {0.05, 0.10, ..., 0.90, 0.95}.
2. Once the PVs and the disease prevalence were set, the sensitivity and

the specificity of each diagnostic test were calculated from equations

(1.1), and then the maximum values of the dependence factors between

the two BDTs were obtained from the values of the sensitivity and

specificity of each diagnostic test applying the model of Vacek [20] for

two BDTs and applying the model of Torrance-Rynard and Walter [21]

for three BDTs. In Appendix A both models are summarized.

3. For two BDTs, as verification probabilities we took the values

(
λ11 = 0.70, λ10 = λ01 = 0.40, λ00 = 0.10

)

and (
λ11 = 0.95, λ10 = λ01 = 0.60, λ00 = 0.30

)
,

which can be considered a scenario with low verification and a scenario
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with high verification respectively. For three BDTs, we took the values

(
λ111 = 0.70, λ110 = 0.40, λ101 = 0.40, λ100 = 0.25,

λ011 = 0.40, λ010 = 0.25, λ001 = 0.25, λ000 = 0.05
)

and (
λ111 = 1, λ110 = 0.80, λ101 = 0.80, λ100 = 0.40,

λ011 = 0.80, λ010 = 0.40, λ001 = 0.40, λ000 = 0.20
)
,

which can also be considered as scenarios with low and high verification.

4. In the case of two BDTs, the probabilities of the multinomial distribu-

tions were calculated from the equations of the model of Vacek [20] (Ap-

pendix A). In the case of three BDTs, the probabilities of the multino-

mial distributions were calculated from the model of Torrance-Rynard

and Walter [21] (Appendix A).

3.1. Two BDTs

In Table 1 we show the results obtained for the type I errors probabili-

ties and the powers when comparing the PVs of two BDTs, for different values

of the PVs and for intermediate and high dependence factors, when the PVs

are estimated through maximum likelihood and the variance-covariance matrix is

estimated through the delta method (other tables with results from the simula-

tion experiments can be requested from the authors). Regarding the type I error

probability, the global hypothesis test has a type I error probability which, in gen-

eral terms, fluctuates around the nominal error of 5% especially when n > 500.

In some cases, especially when n 6 200 and the verification probabilities are low

and/or the dependence factors are high, the type I error probability may over-

whelm the nominal error. This may be due to the fact that the samples are

not large enough, and therefore some frequencies of the multinomial distribution

which are equal to zero, and the variance-covariance matrix are not well repre-

sented. Regarding Methods 1, 2 and 3 (Bonferroni, Holm and Hochberg), the

type I error probability of each one of them performs in a similar way to that

of the global test, although it is usually somewhat lower than the nominal error

(especially for n > 2000).

Regarding the power, in general it is necessary to have samples of between

500 and 1000 individuals (depending on the verification probabilities) so that

the power of the global hypothesis test is high (higher than 80% or 90%). The

power of the global hypothesis test increases when there is an increase in the

verification probabilities; whereas the increase in the dependence factors does

not have a clear effect on the power of the global hypothesis test (sometimes

it increases and sometimes it decreases). Regarding Methods 1, 2 and 3, their

respective powers perform in a similar way to that of the global test, although

the power of each one of them is slightly lower than that of the global test.
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Table 1: Type I errors probabilities and powers when comparing the PVs

of two BDTs (M1: Method 1, M2: Method 2, M3: Method 3).

TYPE I ERRORS PROBABILITIES

PPV1 = PPV2 = 0.80, NPV1 = NPV2 = 0.90
p = 20%

Se1 = Se2 = 0.5714, Sp1 = Sp2 = 0.9643

λ11 = 0.70, λ10 = 0.40, λ01 = 0.40, λ00 = 0.10

n
ε1 = 0.075, ε0 = 0.01 ε1 = 0.15, ε0 = 0.02

Global test M1 M2 M3 Global test M1 M2 M3

50 0.007 0.007 0.007 0.007 0.003 0.003 0.003 0.003
100 0.039 0.035 0.035 0.039 0.044 0.039 0.039 0.044
200 0.070 0.069 0.069 0.069 0.068 0.067 0.067 0.068
500 0.066 0.065 0.065 0.066 0.069 0.068 0.068 0.069

1000 0.059 0.058 0.058 0.059 0.054 0.050 0.050 0.051
2000 0.056 0.055 0.055 0.055 0.049 0.039 0.039 0.042
5000 0.048 0.042 0.042 0.044 0.054 0.048 0.048 0.049

λ11 = 0.95, λ10 = 0.60, λ01 = 0.60, λ00 = 0.30

n
ε1 = 0.075, ε0 = 0.01 ε1 = 0.15, ε0 = 0.02

Global test M1 M2 M3 Global test M1 M2 M3

50 0.022 0.021 0.021 0.021 0.011 0.011 0.011 0.011
100 0.062 0.058 0.058 0.062 0.067 0.066 0.066 0.067
200 0.068 0.067 0.067 0.068 0.069 0.068 0.068 0.068
500 0.055 0.056 0.056 0.057 0.058 0.057 0.057 0.057

1000 0.058 0.057 0.057 0.058 0.059 0.057 0.057 0.058
2000 0.054 0.052 0.052 0.053 0.048 0.043 0.043 0.044
5000 0.049 0.044 0.044 0.047 0.052 0.046 0.046 0.047

POWERS

PPV1 = 0.85, PPV2 = 0.90, NPV1 = 0.75, NPV2 = 0.80
p = 75%

Se1 = 0.9444, Sp1 = 0.50, Se2 = 0.9429, Sp2 = 0.6857

λ11 = 0.70, λ10 = 0.40, λ01 = 0.40, λ00 = 0.10

n
ε1 = 0.02, ε0 = 0.06 ε1 = 0.04, ε0 = 0.12

Global test M1 M2 M3 Global test M1 M2 M3

50 0.004 0.004 0.004 0.004 0.006 0.006 0.006 0.006
100 0.090 0.089 0.089 0.090 0.065 0.066 0.066 0.068
200 0.307 0.264 0.026 0.266 0.336 0.333 0.333 0.335
500 0.770 0.667 0.667 0.668 0.913 0.863 0.863 0.863

1000 0.984 0.940 0.940 0.940 0.999 0.998 0.998 0.998
2000 1 0.998 0.998 0.998 1 1 1 1
5000 1 1 1 1 1 1 1 1

λ11 = 0.95, λ10 = 0.60, λ01 = 0.60, λ00 = 0.30

n
ε1 = 0.02, ε0 = 0.06 ε1 = 0.04, ε0 = 0.12

Global test M1 M2 M3 Global test M1 M2 M3

50 0.051 0.050 0.050 0.050 0.032 0.031 0.031 0.032
100 0.198 0.195 0.195 0.201 0.175 0.185 0.185 0.192
200 0.431 0.388 0.388 0.392 0.553 0.540 0.540 0.543
500 0.833 0.780 0.780 0.782 0.965 0.949 0.949 0.949

1000 0.990 0.978 0.978 0.978 1 1 1 1
2000 1 1 1 1 1 1 1 1
5000 1 1 1 1 1 1 1 1
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Regarding the solution of the global test applying the bootstrap method,

the results obtained are almost identical to those obtained through the method of

maximum likelihood and the delta method. Therefore, in terms of the type I error

probability and the power there is practically no difference between solving the

global hypothesis test through the maximum likelihood method and the bootstrap

method, although the bootstrap requires a greater computational effort.

3.2. Three BDTs

In Table 2 we show some of the results obtained for the type I error prob-

ability and the power when comparing the PVs of three BDTs, also for different

values of the PVs and for intermediate and high dependence factors, when the

PVs are estimated through maximum likelihood and the variance-covariance ma-

trix is estimated through the delta method (other tables with results from the

simulation experiments can be requested from the authors). For three BDTs we

have not considered sample sizes smaller than 100, since with smaller samples

there are too many frequencies equal to 0 (above all when the prevalence is low

and/or the verification probabilities are low) and it is not possible to calculate

the estimators or the variances-covariances. In general terms, the conclusions

reached are similar to those obtained for two BDTs, although for the global test

and for methods 1, 2 and 3 it is necessary to have larger sample sizes so that the

type I error probability fluctuates around the nominal error.

With regard to the power of each method, this increases with an increase in

the verification probabilities, and decreases when there is an increase in the values

of the dependence factors. In very general terms, when the verification probabil-

ities are low it is necessary to have samples of between 500 and 1000 individuals

so that the power of the global test is higher than 80% or 90% (depending on

the values of the dependence factors), although in some situations (high depen-

dence factors) it is necessary to have very large samples (n > 5000) in order to

reach this power. Regarding Methods 1, 2 and 3, in general terms there is no

important difference in power in relation to the global hypothesis test, especially

when n > 500, whilst for smaller sample sizes the global test is somewhat more

powerful than for the other three methods.

3.3. Conclusions

From the analysis of the results obtained in the simulation experiments one

may conclude that the global hypothesis test based on the chi-squared distribution

displays the performance of an asymptotic hypothesis test (from a certain sample

size onwards, its type I error probability fluctuates around the nominal error).
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Table 2: Type I errors probabilities and powers when comparing the PVs

of three BDTs (M1: Method 1, M2: Method 2, M3: Method 3).

TYPE I ERRORS PROBABILITIES

PPV1 = PPV2 = PPV3 = 0.85, NPV1 = NPV2 = NPV3 = 0.80
p = 25%

e1 = Se2 = Se3 = 0.2615, Sp1 = Sp2 = Sp3 = 0.9846

λ111 = 0.70, λ110 = 0.40, λ101 = 0.40, λ100 = 0.25
λ011 = 0.40, λ010 = 0.25, λ001 = 0.25, λ000 = 0.05

n
δ = 0.0075, ε = 0.0001 δ = 0.015, ε = 0.0002

Global test M1 M2 M3 Global test M1 M2 M3

100 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
200 0.005 0.003 0.003 0.003 0.005 0.004 0.004 0.004
500 0.041 0.026 0.026 0.028 0.045 0.030 0.030 0.032

1000 0.058 0.041 0.041 0.045 0.059 0.040 0.040 0.045
2000 0.059 0.043 0.043 0.050 0.059 0.058 0.058 0.059
5000 0.053 0.044 0.044 0.048 0.054 0.037 0.037 0.042

λ111 = 1, λ110 = 0.80, λ101 = 0.80, λ100 = 0.40
λ011 = 0.80, λ010 = 0.40, λ001 = 0.40, λ000 = 0.20

n
δ = 0.0075, ε = 0.0001 δ = 0.015, ε = 0.0002

Global test M1 M2 M3 Global test M1 M2 M3

100 0.007 0.005 0.005 0.005 0.006 0.004 0.004 0.005
200 0.043 0.031 0.031 0.032 0.043 0.029 0.029 0.031
500 0.050 0.037 0.038 0.041 0.056 0.039 0.039 0.041

1000 0.057 0.045 0.045 0.047 0.057 0.042 0.042 0.047
2000 0.058 0.044 0.044 0.046 0.059 0.047 0.047 0.052
5000 0.054 0.037 0.037 0.041 0.052 0.041 0.041 0.044

POWERS

PPV1 = 0.70, PPV2 = 0.80, PPV3 = 0.90, NPV1 = 0.75, NPV2 = 0.85, NPV3 = 0.95
p = 60%

Se1 = 0.9074, Sp1 = 0.4167, Se2 = 0.9231, Sp2 = 0.6538, Se3 = 0.9706, Sp3 = 0.8382

λ111 = 0.70, λ110 = 0.40, λ101 = 0.40, λ100 = 0.25
λ011 = 0.40, λ010 = 0.25, λ001 = 0.25, λ000 = 0.05

n
δ = 0.001, ε = 0.01 δ = 0.002, ε = 0.02

Global test M1 M2 M3 Global test M1 M2 M3

100 0.042 0.041 0.041 0.041 0.034 0.033 0.033 0.034
200 0.261 0.260 0.260 0.260 0.219 0.218 0.218 0.218
500 0.823 0.823 0.823 0.823 0.741 0.740 0.740 0.740

1000 0.986 0.986 0.986 0.986 0.950 0.950 0.950 0.950
2000 1 1 1 1 1 1 1 1
5000 1 1 1 1 1 1 1 1

λ111 = 1, λ110 = 0.80, λ101 = 0.80, λ100 = 0.40
λ011 = 0.80, λ010 = 0.40, λ001 = 0.40, λ000 = 0.20

n
δ = 0.001, ε = 0.01 δ = 0.002, ε = 0.02

Global test M1 M2 M3 Global test M1 M2 M3

100 0.316 0.315 0.315 0.315 0.276 0.275 0.275 0.275
200 0.724 0.724 0.724 0.724 0.652 0.651 0.651 0.651
500 0.971 0.970 0.970 0.971 0.910 0.909 0.909 0.910

1000 1 1 1 1 0.995 0.995 0.995 0.995
2000 1 1 1 1 1 1 1 1
5000 1 1 1 1 1 1 1 1
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In general terms, its type I error probability fluctuates around the nominal

error (especially for n > 500) and it is necessary to have large samples (n > 500)

so that the power is greater than 80%. From the results obtained in the simulation

experiments carried out, the global hypothesis test

H0 : PPV1 = PPV2 = ··· = PPVJ and NPV1 = NPV2 = ··· = NPVJ ,

H1 : at least one equality is not true ,

can be solved through the following procedure:

1. Solving the global hypothesis test based on the chi-squared distribution

to a global error rate of α using the statistics given by equations (2.4)

or bootstrap method.

2. If the global hypothesis test is not significant, then one cannot reject the

homogeneity of the J PPVs and of the J NPVs. If the global hypothesis

test is significant to an error rate of α, in order to investigate the causes

of the significance the following marginal hypothesis tests are solved

H0 : PPVi = PPVj vs H1 : PPVi 6= PPVj

and

H0 : NPVi = NPVj vs H1 : NPVi 6= NPVj

using the statistics given by equation (2.5), and applying some of the

methods of multiple comparison used (Bonferroni, Holm or Hochberg)

to an error rate of α.

4. EXAMPLE

The results obtained in Section 2 and the procedure given in Section 3.3

were applied to the diagnosis of coronary stenosis. Coronary stenosis is a disease

that consists of the obstruction of the coronary artery and its diagnosis can be

made through a dobutamine echocardiogram, a stress echocardiogram or a CT

scan, and as the gold standard a coronary angiography is used. Coronary an-

giography may cause different reactions in patients (thrombosis, heart attacks,

infections, even death) and therefore not all patients are verified with the gold

standard. In Table 3 (Study of coronary stenosis), we show the results obtained

by applying the dobutamine echocardiogram (variable T1), the stress echocardio-

gram (variable T2) and the CT scan (variable T2) to a sample of 2455 males over

45 years of age and by only applying the coronary angiography (variable D) to a

subset of these individuals. This study was carried out in two phases: firstly, the

three BDTs were applied to all of the individuals in the sample, and secondly the

gold standard was applied to a subset of these individuals depending on only the

results of the three diagnostic tests. This data are part of a study carried out at

the University Hospital in Granada (Spain). In this example, one can assume that
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the missing data mechanism is ignorable, and therefore the results from Section 3

can be applied. The values of the estimators of the PVs are P̂PV1 = 0.742,

P̂PV2 = 0.622, P̂PV3 = 0.805, N̂PV1 = 0.933, N̂PV2 = 0.850, N̂PV3 = 0.952,

and applying the delta method, the estimated asymptotic variance-covariance

matrix is

∑̂
τ̂

=





0.000234 0.000108 0.000086 0 −0.000063 −0.000038

0.000108 0.000258 0.000106 −0.000035 0 −0.000025

0.000086 0.000106 0.0000239 −0.000059 −0.000069 0

0 −0.000034 −0.000059 0.000114 0.000080 0.000045

0.000063 0 0.000069 0.000080 0.000169 0.000064

0.000038 0.000025 0 0.000045 0.000064 0.000085




.

Applying equation (2.4) it holds that Q2
= 145.103 (p − value = 0), and there-

fore we reject the equality of the three PPVs and of the three NPVs.

In order to investigate the causes of the significance, the marginal hypothe-

sis tests (H0 : PPVi = PPVj and H0 : NPVi = NPVj) are solved. In Table 3

(Marginal hypothesis tests), we show the results obtained for each one of the

six hypothesis tests that compare the PVs. Applying the Bonferroni method,

the Holm method or the Hochberg method, it holds that the three PPVs are

different, and that the PPV of the CT scan is the largest, followed by that of

the dobutamine echocardiogram and, finally, that of the stress echocardiogram.

Table 3: Data from the study of coronary stenosis and marginal hypothesis tests.

Study of coronary stenosis

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0

T3 = 1 T3 = 0 T3 = 1 T3 = 0 T3 = 1 T3 = 0 T3 = 1 T3 = 0 Total

V = 1

D = 1 457 30 84 5 34 0 7 1 618
D = 0 41 23 5 61 16 86 32 95 359
V = 0 92 31 85 120 42 195 88 825 1478

Total 590 84 174 186 92 281 127 921 2455

Marginal hypothesis tests

Hypothesis test z Two sided p-value

H0 : PPV1 = PPV2 vs H1 : PPV1 6= PPV2 3.61 0.003
H0 : PPV1 = PPV3 vs H1 : PPV1 6= PPV3 7.20 6.06 × 10−13

H0 : PPV2 = PPV3 vs H1 : PPV2 6= PPV3 10.79 0
H0 : NPV1 = NPV2 vs H1 : NPV1 6= NPV2 7.46 8.37 × 10−14

H0 : NPV1 = NPV3 vs H1 : NPV1 6= NPV3 1.76 0.078
H0 : NPV2 = NPV3 vs H1 : NPV2 6= NPV3 8.99 0
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Regarding the NPVs, no significant differences were found between the NPVs

of the dobutamine echocardiogram and of the CT scan, whilst the NPV of the

dobutamine echocardiogram is significantly lower than the NPVs of the other

two BDTs.

5. DISCUSSION

Different studies have examined the problem of the comparison of the PVs

of two or more BDTs when the diagnostic tests and the gold standard are applied

to all of the individuals in a random sample. These models cannot be applied

when a subset of individuals in the random sample have not had their disease

status verified through the application of the gold standard, since the results ob-

tained may be affected by the verification bias. In this article, we have studied a

global hypothesis test to simultaneously compare the PVs of two or more BDTs

when for a subset of individuals in the sample the disease status (either present

or absent) is unknown. The global hypothesis test is based on the chi-squared

distribution, and can be solved through the method of maximum likelihood and

the delta method (equation (2.4) or through the bootstrap method, although

the latter requires a greater computational effort. In terms of the type I er-

ror probability, both methods lead to very similar results, and the type I error

probability fluctuates around the nominal error especially for n > 500. Other

alternative methods to solve the global hypothesis test have been studied. The

method based on the marginal comparisons of the PPVs (NPVs) to an error rate

of α = 5% leads to a type I error probability that clearly overwhelms the nominal

error, and therefore this method may give rise to erroneous results. The meth-

ods based on marginal comparisons applying the corrections of Bonferroni, Holm

and Hochberg respectively give rise to a type I error probability that fluctuates

around the nominal error especially for n > 500. In terms of power, the global

hypothesis test based on the chi-squared distribution (equation (2.4) or bootstrap

method) is a little more powerful than the methods based on the corrections of

Bonferroni, Holm and Hochberg respectively. Therefore, from the results of the

simulation experiments carried out, the following method is proposed to com-

pare the PVs of J BDTs in the presence of ignorable missing data: 1) Apply

the global hypothesis test based on the chi-squared distribution to an error rate

of α (equations (2.4) or bootstrap method); 2) If the global hypothesis test is

significant to an error rate of α, investigate the causes of the significance solving

the marginal hypothesis tests H0 : PPVi = PPVj and H0 : NPVi = NPVj along

with a method of multiple comparisons (Bonferroni, Holm or Hochberg). This

procedure is similar to that used in an analysis of variance. Firstly, the global

test is solved and then a method of multiple comparisons is applied.
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An alternative method to that proposed in Section 2 consists of solving the

global test applying the Wilks method. Similar simulation experiments to those

described in Section have demonstrated that the type I error probability and the

power of this method are very similar to those obtained with the Wald method

(equation (2.4)).

If all of the individuals are verified with the gold standard, and therefore

all of the frequencies ui1,...,iJ are equal to 0, the method proposed by Roldán-

Nofuentes et al. [5] is a particular case of the scenario analyzed in this study.

Therefore, the simultaneous comparison of the PVs of two (or more) BDTs in

paired designs is a particular case of the scenario analyzed in this article.
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APPENDIX A

In the case of two BDTs, the probabilities of the multinomial distribution

were calculated applying the model of conditional dependence of Vacek [20], and

their expressions are

φij = λijp
{

Sei
1(1 − Se1)

1−iSe
j
2
(1 − Se2)

1−j
+ δijε1

}
,

ϕij = λij (1 − p)

{
Sp1−i

1
(1 − Sp1)

iSp
1−j
2

(1 − Sp2)
j
+ δijε0

}
,

γij = (1 − λij) p
{

Sei
1(1 − Se1)

1−iSe
j
2
(1 − Se2)

1−j
+ δijε1

}

+ (1 − λij) (1 − p)

{
Sp1−i

1
(1 − Sp1)

iSp
1−j
2

(1 − Sp2)
j
+ δijε0

}
,

where δij = 1 when i = j and δij = −1, and εi is the dependence factor (co-

variance) between the two BDTs when D = i. In clinical practice, the two

BDTs are usually conditionally dependent on the disease, and it is verified [20]

that 0 < ε1 < Se1 (1 − Se2) when Se2 > Se1 and 0 < ε1 < Se2 (1 − Se1) when

Se1 > Se2, and in the same way, 0 < ε0 < Sp1 (1 − Sp2) when Sp2 > Sp1 and

0 < ε0 < Sp2 (1 − Sp1) when Sp1 > Sp2. If the two BDTs are conditionally in-

dependent on the disease then ε1 = ε0 = 0.

In the case of three BDTs, the probabilities of the multinomial distributions

were calculated applying the model of Torrance-Rynard and Walter [21]:

P
(
V = 1, D = 1, T1 = i1, T2 = i2, T3 = i3

)
=

= p λi1i2i3

{
3∏

j=1

Se
ij
j (1 − Sej)

1−ij +

3∑
j,k,j<k

(−1)
|ij−ik|δjk

}
,

P
(
V = 1, D = 0, T1 = i1, T2 = i2, T3 = i3

)
=

= (1 − p) λi1i2i3

{
3∏

j=1

Spj
1−ij (1 − Spj)

ij +

3∑
j,k,j<k

(−1)
|ij−ik|εjk

}

and

P
(
V = 0, T1 = i1, T2 = i2, T3 = i3

)
=

= p (1 − λi1i2i3)

{
3∏

j=1

Sej
ij (1 − Sej)

1−ij +

3∑
j,k,j<k

(−1)
|ij−ik|δjk

}

+ (1 − p) (1 − λi1i2i3)

{
3∏

j=1

Spj
1−ij (1 − Spj)

ij +

3∑
j,k,j<k

(−1)
|ij−ik|εjk

}
,

with ij = 0, 1, ik = 0, 1 and j, k = 1, 2, 3, and where δjk (εjk) is the factor of

dependence between the j-th BDT and k-th BDT when D = 1 (D = 0).
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The factors of dependence δjk and εjk verify restrictions that depend on the

values of sensitivity and specificity of the three BDTs. In order to simplify the

simulation experiments, it has been considered that δij = δ and εij = ε, so that

the factors of dependence verify the following restrictions:

δ ≤ Min

{
(1−Se1) (1−Se2) Se3, (1−Se1)Se2 (1−Se3) , Se1 (1−Se2) (1−Se3)

}

and

ε ≤ Min

{
(1−Sp1) (1−Sp2)Sp3, (1−Sp1) Sp2 (1−Sp3) , Sp1 (1−Sp2) (1−Sp3)

}
.

In clinical practice, factors δjk and/or εjk are greater than zero, so that the BDTs

are conditionally dependent on the disease status. When δjk = εjk = 0 the three

BDTs are conditionally independent on the disease status.
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1. INTRODUCTION

The generalized inverted exponential distribution (GIED) was introduced

first by Abouammoh and Alshingiti (2009). It is a generalized form of the inverted

exponential distribution (IED). IED has been studied by Keller and Kamath

(1982) and Duran and Lewis (1989). GIED has good statistical and reliability

properties. It fits various shapes of failure rates.

The probability density function (pdf) of a two-parameter GIED is given

by

(1.1) f(x) =

(
αλ

x2

)
exp

(−λ
x

)[
1 − exp

(−λ
x

)]α−1

, x > 0, α, λ > 0 ,

and the cumulative distribution function (cdf) is given by

(1.2) F (x) = 1 −
[
1 − exp

(−λ
x

)]α

, x > 0, α, λ > 0 .

In the last few years, new classes of distributions have been found by extending

certain distributions such that these new classes will have more applications in

reliability, biology and other fields.

Let G(t) be a cdf of a random variable T , such that

(1.3) F (t) =
1

B(a, b)

∫ G(t)

0

̟a−1
(1 −̟)

b−1d̟ ,

where a > 0, b > 0, and B(a, b) =
∫

1

0
̟a−1

(1−̟)
b−1d̟ is the beta function. The

skewness of the distribution is controlled by the two parameters a and b. The

cdf G(t) could be any arbitrary distribution, and, consequently, F is named the

beta G distribution. The previous formula in (1.3) was defined by Eugene et al.

(2002) as a class of generalized distributions.

The beta normal distribution (BND) was introduced by Eugene et al.

(2002). They used the cdf G(t) of the normal distribution in (1.3) and derived

some moments of the distribution. Expanding on this work, Gupta and Nadara-

jah (2004) established more general moments of BND. Based on the cdf G(t) of

the Gumbel distribution, Nadarajah and Kotz (2004) presented the beta Gum-

bel distribution and provided closed form expressions for the moments and the

asymptotic distribution of the extreme order statistics and obtained the maxi-

mum likelihood estimators (MLE) of the parameters. Further, by using the cdf

G(t) of the exponential distribution, Nadarajah and Kotz (2005) considered the

beta exponential distribution. They studied the first four cumulants, the moment

generating function, and the extreme order statistics and found the MLE. Fur-

thermore, Lee et al. (2007) considered the beta Weibull distribution and studied

applications based on censored data.
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Recently, Barreto-Souza et al. (2010) proposed the beta generalized expo-

nential distribution by taking G(t) in (1.3) to be the cdf of the exponentiated

exponential distribution and discussed the MLE of its parameters. Addition-

ally, Nassar and Nada (2011) presented several properties of the beta general-

ized Pareto distribution. They estimated the distribution’s parameters using the

MLE. An application on actual tax revenue data was investigated. Paranaiba

et al. (2011) discussed the beta Burr XII distribution. Mahmoudi (2011) pre-

sented the beta generalized Pareto distribution. Cordeiro and Lemonte (2011)

investigated the beta Laplace distribution. Zea et al. (2012) studied statistical

properties and inference of the beta exponentiated Pareto distribution (BEPD).

They provided an application of the BEPD to remission times of bladder cancer.

Leão et al. (2013) studied the beta inverse Rayleigh distribution. They provided

various properties, including the quantile function, moments, mean deviations,

Bonferroni and Lorenz curves, Rényi and Shannon entropies and order statistics,

as well as the MLE. Baharith et al. (2014) discussed properties, the MLE and the

Fisher information matrix for the beta generalized inverse Weibull distribution.

In this paper, a new beta distribution is introduced by taking G(·) to be the

GIED, and we refer to it as the beta generalized inverted exponential distribution

(BGIED). In Section 2, the BGIED is defined. Statistical properties of the model

are derived in Section 3. Maximum likelihood estimators of the parameters are

derived in Section 4. In Section 5, the asymptotic Fisher information matrix is

investigated. Additionally, interval estimates of the parameters are found using

the maximum likelihood method in Section 6. Section 7 explains the simula-

tion studies that illustrate the theoretical results. Finally, Section 8 provides

applications to real data-sets. Various conclusions are addressed in Section 9.

2. BETA GENERALIZED INVERTED EXPONENTIAL DISTRI-

BUTION

In this section, we introduce the four-parameter beta generalized inverted

exponential distribution (BGIED) by assuming G(x) to be the cdf of the gen-

eralized inverted exponential distribution (GIED). Substituting (1.2), the cdf of

GIED, into (1.3), the cdf of the BGIED is obtained in the following form

F (x) =
1

B(a, b)

∫
1−[1−exp(

−λ
x )]

α

0

̟a−1
(1 −̟)

b−1d̟ ,(2.1)

x > 0, a, b, α and λ > 0 .

The pdf of the BGIED takes the form

f(x) =
αλ exp

(
−λ
x

)

x2B(a, b)

(
1 −

[
1 − exp

(−λ
x

)]α)a−1 [
1 − exp

(−λ
x

)]αb−1

,(2.2)

x > 0, a, b, α and λ > 0 .
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For a positive real value a > 0, (2.2) can be rewritten as an infinite power

series in the form

f(x) =
αλ exp

(
−λ
x

)

x2B(a, b)

∞∑

k=0

(−1)
k
Γ(a)

k!Γ(a− k)

[
1 − exp

(−λ
x

)]α(b+k)−1

,(2.3)

x > 0, a, b, α, and λ > 0 .

From (2.3), the corresponding cdf can be written as follows

F (x) =
1

B(a, b)

∞∑

k=0

(−1)
k+1

a(b+ k)B(a− k, k + 1)

[
1 − exp

(−λ
x

)]α(b+k)

,(2.4)

x > 0, a, b, α and λ > 0 .

The GIED is a special case of (2.2) when a = b = 1. Therefore, we can assume all

of the properties of the GIED that were investigated by Abouammoh and Alshin-

giti (2009) still hold. Additionally, when α = 1 in (2.2), the BIED is obtained,

which is related to the BGIWD when the shape parameters are equal to one and

has been discussed by Baharith et al. (2014).

Figure 1: The pdf curves of the BGIED with (a, b, α, λ).

3. STATISTICAL PROPERTIES

3.1. The reliability and hazard functions

The reliability function is the probability of no failure occurring before time t.

Alternately, the hazard function is the instantaneous rate of failure at a given

time. These two functions are very important properties of a lifetime distribution.



70 R.A. Bakoban and Hanaa H. Abu-Zinadah

The reliability function of the BGIED is given by

R(x) = 1 − 1

B(a, b)

∞∑

k=0

(−1)
k+1

a(b+ k)B(a− k, k + 1)

[
1 − exp

(−λ
x

)]α(b+k)

,(3.1)

x > 0, a, b, α and λ > 0 ,

and the corresponding hazard function of the BGIED can be written as

h(x) =

αλ exp(
−λ
x )

x2B(a,b)

∞∑
k=0

(−1)kΓ(a)

k!Γ(a−k)

[
1 − exp

(
−λ
x

)]α(b+k)−1

1 − 1

B(a,b)

∞∑
k=0

(−1)k+1

a(b+k)B(a−k,k+1)

[
1 − exp

(
−λ
x

)]α(b+k)
,(3.2)

x > 0, a, b, α and λ > 0 .

Figure 2 shows different choices for the parameters of the BGIED. Additionally, it

is shown from Figure 3 that the hazard function of the BGIED has an upside down

bathtub shape. As is shown, the hazard function increases and then decreases.

Figure 2: The reliability curves of the BGIED with (a, b, α, λ).

The upside down bathtub hazard function indicates that the risk of failing de-

creases as soon as the item has passed a specific time, during which it may have

experienced some type of stress. Thus, the BGIED shows good statistical behav-

ior based on these two functions.
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Figure 3: The hazard curves of the BGIED with (a, b, α, λ).

3.2. Moments and various measures

The rth moment about the origin, µ′r = E(Xr
) of a BGIED with pdf (2.2)

in the non-closed form is

µ′r =

∫
∞

0

xrαλ exp
(
−λ
x

)

x2B(a, b)

(
1 −

[
1 − exp

(−λ
x

)]α)a−1 [
1 − exp

(−λ
x

)]αb−1

dx ,

r = 1, 2, ...

that is, for k ≥ r, µ′r takes the closed form

µ′r =
λr

B(a, b)

∞∑

k=0

∞∑

j=0

(−1)
k+j

(j + 1)
r−1

a(b+ k)B(a− k, k + 1)B(j + 1, α(b+ k) − j)
(3.3)

×
{

∞∑

i=0

(−1)
i

i!(i− r + 1)
+ Er(1)

}
,

where B(a, b) is the beta function, and En(z) is called the exponential integral

function (Abramowitz and Stegun (1972)), which is defined as

(3.4) En(z) =

∫
∞

1

exp (−zt)
tn

dt .

Substituting r = 1 in (3.3), we obtain the mean of the BGIED as follows

µ =
λ

B(a, b)

∞∑

k=1

∞∑

j=0

(−1)
k+j

a(b+ k)B(a− k, k + 1)B(j + 1, α(b+ k) − j)
(3.5)

×
{

∞∑

i=1

(−1)
i

i2(i− 1)!
+ E1(1)

}
,

where E1(1) = 0.577216 is Euler’s constant.
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Additionally, the variance of the BGIED can be found from

Var(x) =
λ2

B(a, b)

∞∑

k=2

∞∑

j=0

(−1)
(k+j)

(j + 1)

a(b+ k)B(a− k, k + 1)B(j + 1, α(b+ k) − j)
(3.6)

×
{

∞∑

i=0

(−1)
i

i!(i− 1)
+ E2(1)

}
− µ2 .

3.3. Quantile function and various related measures

The quantile function of the BGIED corresponding to (2.2) is

(3.7) q(u) = −λ
/

log

{
1 −

[
1 − I−1

u (a, b)
] 1

α

}
, 0 < u < 1 ,

where I−1
u (a, b) is the inverse of the incomplete beta function with parameters a

and b, such that

Iu(a, b) =
1

B(a, b)

∫ u

0

̟a−1
(1 −̟)

b−1d̟ ,

The above form of q(u) allows us to derive the following forms of statistical

measures for the BGIED:

1. The first quartile Q1, the second quartile Q2 (median), and the third

quartile Q3 of the BGIED correspond to the values u = 0.25, 0.50, and

0.75, respectively

2. The median (m), also, can be found using (2.4) such that
∣∣1−exp

(
−λ
m

)∣∣<1,

for a = 1, and then

(3.8) m =
−λ

log

[
1 − (−0.5)

1
αb

] .

3. The skewness and kurtosis can be calculated by using the following

relations, respectively:

Bowley’s skewness is based on quartiles; Kenney and Keeping (1962) cal-

culated it as follows

(3.9) υ3 =
Q3 − 2Q2 +Q1

Q3 −Q1
,

Moors’ kurtosis (Moors (1988)) is based on octiles via the form

(3.10) υ4 =
q(7/8) − q(5/8) − q(3/8) + q(1/8)

q(6/8) − q(2/8)
,

where q(·) represents the quantile function defined in (3.7).
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When a = b = 1 in (2.3), (3.3) and (3.7) give the moments and the quantile

of GIED, and, when a = b = α = 1 in (2.3), (3.3) and (3.7) give the moments and

the quantile of IED. Therefore, all measures above are satisfied for GIED when

a = b = 1, and for IED when a = b = α = 1.

3.4. The mean deviation

Let X be a BGIED random variable with mean µ = E(X) and median m.

In this subsection, the mean deviation from the mean and the mean deviation

from the median are derived.

3.4.1. The mean deviation from the mean can be found from the following theorem:

Theorem 1. The mean deviation from the mean of the BGIED is in the

form

E(|X − µ|) =
2

B(a, b)

∞∑

k=0

∞∑

j=0

(−1)
k+1+j

a(b+ k)B(a− k, k + 1) [α(b+ k) + 1]

× µ exp (−jλ/µ) − jλΓ (0, jλ/µ)

B [j + 1, α(b+ k) − j + 1]
,

where Γ (a, z) =
∫
∞

z ta−1
exp (−t) dt.

Proof: The mean deviation from the mean can be defined as

E(|X − µ|) =

∫
∞

0

|X − µ| f(x) dx

= 2

∫ µ

0

(X − µ) f(x) dx

= 2µF (µ) − 2I(µ) ,

where I(z) =
∫ z
0
t dG(t), and d [t.dG(t)] = G(t) dt+ t dG(t).

Therefore, E(|X − µ|) = 2
∫ µ
0
F (x) dx.

Using (2.4), and expanding the term (1 − exp (−λ/x))α(b+k)
we obtain

E(|X − µ|) =
2

B(a, b)

∞∑

k=0

∞∑

j=0

(−1)
(k+1+j)

a(b+ k)B(a− k, k + 1) [α(b+ k) + 1]

× 1

B(j + 1, α(b+ k) − j + 1)

∫ µ

0

exp (−jλ/x) dx ,
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where

(3.11)

∫ c

0

exp (−jλ/x) dx = c exp (−jλ/c) − jλΓ (0, jλ/c) .

Hence, the theorem is proved.

3.4.2. The mean deviation from the median can be found from the following theorem:

Theorem 2. The mean deviation from the median of the BGIED is in the

form

E(|X −m|) = µ+
2

B(a, b)

∞∑

k=0

∞∑

j=0

(−1)
(k+j)jλ

a(b+ k)B(a− k, k + 1) [α(b+ k) + 1]

× Γ (0, jλ/m)

B(j + 1, α(b+ k) − j + 1)
, jλ > 0, m > 0 .

Proof: The mean deviation from the median can be defined as

E(|X −m|) =

∫
∞

0

|x−m|f(x)dx

= 2

∫ m

0

(m− x) f(x)dx−
∫ m

0

(m− x) f(x)dx+

∫
∞

m
(x−m) f(x)dx

= 2

∫ m

0

(m− x) f(x)dx+

∫
∞

0

(x−m) f(x)dx(3.12)

= µ− 2

[
mF (m) −

∫ m

0

F (x)dx

]

= µ−m+ 2

∫ m

0

F (x)dx .

Substituting (2.4) into (3.12) and using (3.11), we obtain

E(|X −m|) = µ−m

+
2

B(a, b)

∞∑

k=0

∞∑

j=0

(−1)
k+j+1

[m exp (−jλ/m) − jλΓ (0, jλ/m)]

a(b+ k)B(a− k, k + 1) [α(b+ k) + 1]

× 1

B [j + 1, α(b+ k) − j + 1]

= µ−m+ 2mF (m)

+
2

B(a, b)

∞∑

k=0

∞∑

j=0

(−1)
k+jjλΓ (0, jλ/m)

a(b+ k)B(a− k, k + 1) [α(b+ k) + 1]

× 1

B [j + 1, α(b+ k) − j + 1]
.

Hence, the theorem is proved.
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3.5. The mode

The mode for the BGIED can be found by differentiating f(x) with respect

to x; thus, (2.2) gives

f ′(x) = f(x)

{−2

x
+

λ

x2
− (αb− 1) [1 − exp (−λ/x)]−1 λ

x2
exp (−λ/x)

+ (a− 1) [1 − (1 − exp (−λ/x))α
]
−1

(3.13)

× αλ

x2
exp (−λ/x) (1 − exp (−λ/x))α−1

}
.

By equating (3.13) with zero, we get

1 − 2x

λ
+ (exp (−λ/x) − 1)

−1 ×(3.14)

×
{
α (a− 1)

[
(1 − exp (−λ/x))−α − 1

]−1 − (αb− 1)

}
= 0 .

Then, the mode of the BGIED can be found numerically by solving (3.14).

In Table 1, we present the values of the mean, standard deviation (SD),

mode, median, skewness and kurtosis for different values of a, b, α and λ.

Table 1: The mean, SD, mode, median, skewness and kurtosis

for different values of the parameters.

a b α λ mean SD mode median skewness kurtosis

1 1 4 2 1.35919 1.04298 0.76393 1.08802 0.23016 0.66022
1 1 4 4 2.71838 2.08595 1.52787 2.17604 0.23016 0.66022
1 2 4 4 1.79735 0.88156 1.30871 1.60709 0.16158 0.44815
1 3 4 4 1.50143 0.61555 1.19585 1.38881 0.13109 0.35990
1 2 4 2 0.89867 0.44078 0.65435 0.80354 0.16158 0.44815
2 1 4 2 1.81971 1.24786 1.12748 1.50317 0.22047 0.63372
2 2 2 2 1.98654 1.39808 1.19879 1.62873 0.22323 0.63985
2 2 2 4 3.97308 2.79615 2.39758 3.25747 0.22323 0.63985

3.5 2 1 0.5 1.97910 302.436 0.65618 1.17708 0.32893 1.01650

The results of studying the behaviour of the BGIED are shown in Table 1

and Figure 1. We note that the distribution is unimodal and positively skewed.

For fixed values of a, b and α, the kurtosis values remain constant; therefore, the

mode, median and mean increase with the increase of λ. As we increase the value

of α ≥ 1 and fix the other parameters, the kurtosis value increases and the mean

decreases. It is noted that the distribution has a long right tail for fixed values

of b, α and λ. Moreover, for fixed values of a, α and λ the kurtosis and the mean
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values decrease as we increase the value of b. Additionally, for different values of

α and λ and fixed values of a and b, the skewness and the kurtosis values remain

stable. Alternately, for fixed values of α and λ, the skewness and the kurtosis

values decrease as we increase a and b. Furthermore, we found that our results

for a = b = 1 are exactly the same as the results in Abouammoh and Alshingiti

(2009).

4. MAXIMUM LIKELIHOOD ESTIMATORS

In this section, we examine estimation by maximum likelihood and inference

for the BGIED. Let X1, X2, ..., Xn be a random sample from the BGIED with

pdf and cdf given, respectively, by (2.2) and (2.4). The likelihood function in this

case can be written as (Lawless (2003)):

(4.1) L(θ|x) =

n∏

i=1

f(xi) ,

where f(·) is given by (2.2) and θ = (a, b, α, λ).

The natural logarithm of the likelihood function (4.1) is given by

(4.2) ℓ = logL(θ|x) =

n∑

i=1

log f(xi) .

For the BGEID, we have have

logL = n log (αλ) − n logB(a, b) + (αb− 1)

n∑

i=1

log

(
1 − exp

(−λ
xi

))

−λ
n∑

i=1

x−1

i − 2

n∑

i=1

log (xi) + (a− 1)

n∑

i=1

log

[
1 −

(
1 − exp

(−λ
xi

))α]
.(4.3)

Assuming that the parameters θ = (a, b, α, λ), are unknown, the likelihood equa-

tions are given for θ

lj =
∂ logL

∂θj
=

1

f(xi)

∂f(xi)

∂θj
= 0 , j = 1, 2, 3, 4 .

From (2.2), we have

(4.4)

∂ logL

∂α
=

n

α
+

n∑

i=1

log

(
1− exp

(−λ
xi

))


b− (a−1)

[(
1− exp

(−λ
xi

))
−α

− 1

]
−1




 ,
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∂ logL

∂λ
=

n

λ
+ (αb− 1)

n∑

i=1

x−1

i

(
exp

(
λ

xi

)
− 1

)
−1

−
n∑

i=1

x−1

i

−α(a− 1)

n∑

i=1

x−1

i

[(
1 − exp

(−λ
xi

))
−α

− 1

]
−1 (

exp

(
λ

xi

)
− 1

)
−1

,(4.5)

∂ logL

∂a
=

−n
B(a, b)

φ1 +

n∑

i=1

log

[
1 −

(
1 − exp

(−λ
xi

))α]
,

φ1 =
∂B(a, b)

∂a
=

Γ(b) [Γ(a+ b)Γ′
(a) − Γ(a)∂Γ(a+ b)/∂a]

[Γ(a+ b)]2

= B(a, b) [ψ(a) − ψ(a+ b)] ,

where ψ(z) =
1

Γ(z)

∂Γ(z)

∂z =
Γ′(z)

Γ(z)
is called the Psi function (Abramowitz and Stegun

(1972)). Then,

∂ logL

∂a
= −n [ψ(a) − ψ(a+ b)] +

n∑

i=1

log

[
1 −

(
1 − exp

(−λ
xi

))α]
,(4.6)

∂ logL

∂b
=

−n
B(a, b)

φ2 + α

n∑

i=1

log

(
1 − exp

(−λ
xi

))
,

φ2 =
∂B(a, b)

∂b
=

Γ(a) [Γ(a+ b)Γ′
(b) − Γ(b)∂Γ(a+ b)/∂b]

[Γ(a+ b)]2

= B(a, b) [ψ(b) − ψ(a+ b)] ,

(4.7)
∂ logL

∂b
= −n [ψ(b) − ψ(a+ b)] + α

n∑

i=1

log

(
1 − exp

(−λ
xi

))
.

The solution of the four nonlinear likelihood equations via (4.4), (4.5), (4.6)

and (4.7) yields the maximum likelihood estimates (MLEs) θ̂ = (â, b̂, α̂, λ̂) of θ =

(a, b, α, λ). These equations are in implicit form, so they may be solved using

numerical iteration, such as the Newton–Raphson method via Mathematica 9.0.

5. ASYMPTOTIC VARIANCES AND COVARIANCES OF ESTI-

MATES

The asymptotic variances of maximum likelihood estimates are given by the

elements of the inverse of the Fisher information matrix Iij (θ) = E
(
−∂2 ln L

∂θi∂θj

)
.

Unfortunately, the exact mathematical expressions for the above expectation are
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very difficult to obtain. Therefore, the observed Fisher information matrix is

given by Iij = −∂2 ln L
∂θi∂θj

which is obtained by dropping the expectation on operation

E (Cohen (1965)). The approximate (observed) asymptotic variance-covariance

matrix F for the maximum likelihood estimates of the BGIED can be written as

follows

F = [Iij (θ)] , i, j = 1, 2, 3, 4 and θ = (a, b, α, λ) .

The second partial derivatives of the maximum likelihood function for the BGIED

are given as the following

∂2
logL

∂λ2
=

−n
λ2

− (αb− 1)

n∑

i=1

x−2

i

(
exp

(
λ

xi

)
−1

)
−1

[
1 +

(
exp

(
λ

xi

)
−1

)
−1

]

− α(a− 1)

n∑

i=1

x−2

i

[(
1− exp

(−λ
xi

))
−α

− 1

]
−1 (

exp

(
λ

xi

)
−1

)
−1

×




−1+

(
exp

(
λ

xi

)
−1

)
−1



(α−1) + α

[(
1− exp

(
− λ

xi

))
−α

− 1

]
−1








 ,

∂2
logL

∂α2
=

−n
α2

− (a−1)

n∑

i=1

[
log

(
1− exp

(−λ
xi

))]2
[(

1− exp

(−λ
xi

))
−α

− 1

]
−1

×




1 +

[(
1 − exp

(−λ
xi

))
−α

− 1

]
−1




 ,

∂2
logL

∂a2
= −n

[
ψ′

(a) − ψ′
(a+ b)

]
,

where

ψ′
(z) =

∂ψ(z)

∂z
,

∂2
logL

∂b2
= −n

[
ψ′

(b) − ψ′
(a+ b)

]
,

∂2
logL

∂a ∂b
= nψ′

(a+ b) ,

∂2
logL

∂λ∂α
=

n∑

i=1

x−1

i

(
exp

(
λ

xi

)
−1

)
−1




b− (a−1)

[(
1− exp

(−λ
xi

))
−α

− 1

]
−1

×



1 +

α log

(
1 − exp

(
−λ
xi

))

[
1 −

(
1 − exp

(
−λ
xi

))α]








 ,

∂2
logL

∂λ∂a
= −α

n∑

i=1

x−1

i

[(
1− exp

(−λ
xi

))
−α

− 1

]
−1(

exp

(
λ

xi

)
−1

)
−1

,
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∂2
logL

∂λ∂b
= α

n∑

i=1

x−1

i

(
exp

(
λ

xi

)
− 1

)
−1

,

∂2
logL

∂α∂a
= −

n∑

i=1

log

(
1 − exp

(−λ
xi

)) [(
1 − exp

(−λ
xi

))
−α

− 1

]
−1

,

∂2
logL

∂α∂b
=

n∑

i=1

log

(
1 − exp

(−λ
xi

))
.

Consequently, the maximum likelihood estimators of a, b, α and λ and have an

asymptotic variance-covariance matrix defined by inverting the Fisher informa-

tion matrix F and by substituting â for a, b̂ for b, α̂ for α and λ̂ for λ.

6. INTERVAL ESTIMATES

If Lθ = Lθ (y1, ..., yn) and Uθ = Uθ (y1, ..., yn) are functions of the sample

data y1, ..., yn then a confidence interval for a population parameter θ is given by

P
(
Lθ ≤ θ ≤ Uθ

)
= γ ,

where Lθ and Uθ are the lower and upper confidence limits that enclose θ with

probability γ. The interval [Lθ, Uθ] is called a 100γ% confidence interval for θ.

For large sample sizes (Bain and Engelhardt (1992)), the maximum like-

lihood estimates, under appropriate regularity conditions, are consistent and

asymptotically normally distributed. Therefore, the approximate 100γ% con-

fidence limits for the maximum likelihood estimate θ̂ of a population parameter θ

can be constructed, such that

(6.1) P

(
−z ≤ θ̂ − θ

σ(θ̂)
≤ z

)
= γ ,

where z is the
100(1+γ)

2
standard normal percentile. Therefore, the approximate

100γ% confidence limits for a population parameter θ can be obtained such that

(6.2) P
(
θ̂ − zσ(θ̂) ≤ θ ≤ θ̂ + zσ(θ̂)

)
= γ .

Then, the approximate confidence limits for a, b, α and λ will be constructed

using (6.2) with a confidence level of 90%.
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7. SIMULATION STUDIES

Simulation studies have been performed using Mathematica 9.0 to illustrate

the theoretical results of the estimation problem. The performance of the result-

ing estimators of the parameters has been considered in terms of their absolute

relative bias (ARBias) and mean square error (MSE), where

ARBias

(
θ̂
)

=

∣∣∣∣∣
θ̂ − θ

θ

∣∣∣∣∣ and MSE

(
θ̂
)

= E

(
θ̂ − θ

)2

.

Furthermore, the asymptotic variance, covariance matrix and confidence intervals

of the parameters are obtained. The algorithm for the simulation procedure is

described below:

Step 1. 1000 random samples of sizes n = 10(10)50, 100, 200 and 300 were

generated from the BGIED. The true parameter values are se-

lected as (a = 1, b = 2, α = 4, λ = 2).

Step 2. For each sample, the parameters of the distribution are estimated

under the complete sample.

Step 3. The Newton–Raphson method is used for solving the four non-

linear likelihoods for α, λ, a and b given in (4.4), (4.5), (4.6) and

(4.7), respectively.

Step 4. The ARBiase and MSE of the estimators for the four parameters

for all sample sizes are tabulated.

Step 5. For large sample sizes n = 100, 200 and 300, the Fisher informa-

tion matrix of the estimators are computed using the equations

presented in Section 5.

Step 6. By inverting the Fisher information matrix that was computed in

Step 5, the asymptotic variances and covariances of the estimators

are found.

Step 7. Based on the values of the asymptotic variances and covariances

matrix that were found in Step 6 and on Eq. (6.2), the approxi-

mate confidence limits at 90% for the parameters are computed.

Simulation results are summarized in Tables 2, 3 and 4. Table 2 gives

the ARBias and MSE of the estimators. The asymptotic variances and covari-

ances matrix of the estimators for complete samples of size n = 100, 200 and 300

and true parameter values (a = 1, b = 2, α = 4, λ = 2) are displayed in Table 3.

The approximate confidence limits at 90% for the parameters are presented in

Table 4.
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Table 2: The ARBias and MSE of the parameters θ = (a, b, α, λ).

n
â b̂ α̂ λ̂

ARBias MSE ARBias MSE ARBias MSE ARBias MSE

10 2.77997 57.22180 1.23642 39.93170 0.34929 57.85210 0.04445 4.49668
20 1.57487 18.92080 0.75400 18.13730 0.01542 23.75870 0.02126 3.08791
30 1.17703 8.04064 0.59348 10.72860 0.13843 12.21520 0.03641 2.48411
40 1.01435 7.53433 0.32958 4.15377 0.25344 7.47854 0.12458 1.52254
50 0.81716 5.63524 0.35502 5.58289 0.23793 8.44674 0.08708 1.65372

100 0.34507 2.01241 0.13037 1.57136 0.37237 5.26341 0.15154 0.73170
200 0.09587 0.78450 0.04185 0.88988 0.45129 4.69708 0.18296 0.46773
300 0.05260 0.56916 0.04620 0.88359 0.46429 4.67339 0.18716 0.31603

Table 3: Asymptotic variances and covariances of estimates

for complete samples.

n Parameters â b̂ α̂ λ̂

a 0.00860 0.00389 −0.00021 −0.00359

100 b 0.00389 0.05006 −0.00513 0.00867
α −0.00021 −0.00513 0.04464 0.01414
λ −0.00359 0.00867 0.01414 0.01308

a 0.00673 0.00327 −0.00018 −0.00411

200 b 0.00327 0.03238 −0.00883 0.00346
α −0.00018 −0.00883 0.02928 0.00772
λ −0.00411 0.00346 0.00772 0.00951

a 0.00630 0.00320 −0.00075 −0.00445

300 b 0.00320 0.02563 −0.00722 0.00197
α −0.00075 −0.00722 0.02245 0.00664
λ −0.00445 0.00197 0.00664 0.00888

Table 4: Confidence bounds of the estimates at a confidence level of 0.90.

n Parameters Estimated mean Lower bound Upper bound Width

a 1.34507 1.19294 1.49719 0.30424

100 b 2.26075 1.89380 2.62770 0.73390
α 2.51052 2.16399 2.85704 0.69304
λ 1.69693 1.50931 1.88455 0.375241

a 1.09587 0.96132 1.23041 0.26909

200 b 2.08370 1.78856 2.37883 0.59027
α 2.19482 1.91416 2.47549 0.56132
λ 1.63408 1.47409 1.79408 0.31999

a 1.05260 0.92241 1.18279 0.26038

300 b 2.09239 1.82981 2.35498 0.52517
α 2.14283 1.89709 2.38857 0.49147
λ 1.62569 1.47108 1.78030 0.30922
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From these tables, the following observations can be made on the perfor-

mance of the parameter estimation of the BGIED:

1. As the sample size increases, the MSEs of the estimated parameters

decrease. This indicates that the maximum likelihood estimates provide

asymptotically normally distributed and consistent estimators for the

parameters (see Table 2).

2. Although the estimators of a and b are consistent according to the

ARBias, it is noted that the estimators of α and λ are not consistent.

Table 2 shows that, for large sample sizes (n = 100, 200 and 300), the

ARBiases are increased, which indicates that the estimates of α and λ

are not consistent.

3. The asymptotic variances of the estimators decrease when the sample

size is increasing (see Table 3).

4. The interval of the estimators decreases when the sample size is in-

creasing (see Table 4).

5. The interval estimations of all parameters were reasonable except the

interval estimate of α. The estimated intervals at a confidence level of

0.90 for n = 100, 200 and 300 did not cover the real value of α.

We conclude from the previous points that the MLE of the parameters is

a good estimator for a, b and λ.

8. APPLICATIONS

In this section, two sets of data are presented to demonstrate the utility of

using the BGIED. These two sets were investigated by Abouammoh and Alshin-

giti (2009). The GIED was fitted to both of these sets.

8.1. The first data-set

The following data-set is presented in Lawless (2003). The data resulted

from a test on the endurance of deep groove ball bearings. The data are as

follows:

17.88, 28.92, 33.0, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80,

68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.4 .
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Descriptive statistics of these data are tabulated in Table 5.

Table 5: Descriptive statistics for the ball bearing data.

Measure Value Measure Value

n 23 Minimum 17.880

Maximum 173.400 Mean 72.22

Q1 45.600 Q3 98.640

Median 67.800 Mean deviation 29.429

Variance 1405.580 SD 37.491

Skewness 0.941 Kurtosis 3.486

We apply the Kolmogorov–Smirnov (K-S) statistic to verify which distri-

bution better fits these data. The K-S test statistic is described in detail in

D’Agostino and Stephens (1986). In general, the smaller the value of K-S is, the

better the fit to the data is. All graphs and computations presented to analyse

the data were carried out by Mathematica 9.0. The model selection was carried

out using the AIC (Akaike information criterion), the BIC (Bayesian information

criterion) and the CAIC (consistent Akaike information criterion):

AIC = −2 l(θ̂) + 2p ,

BIC = −2 l(θ̂) + p log n

and

CAIC = −2 l(θ̂) +
2pn

n− p− 1
,

where l(θ̂) denotes the log likelihood function evaluated at the maximum likeli-

hood estimates, p is the number of parameters and n is the sample size. Table 6

lists the values of the K-S statistic and of −2l(θ̂). The K-S goodness-of-fit test

of the BGIED as well as the GIED are the best among all models; accordingly,

the BGIED model can be used to analyse the ball bearing data. Table 7 provides

the MLEs with corresponding standard errors (SEs) of the model parameters.

Table 6: Goodness-of-fit measures and K-S statistics

for the ball bearing data.

Model BGIED GIED IED BIED

K-S statistics 0.097 0.091 0.306 0.104

−2 l(θ̂) 227.723 227.098 243.452 228.288
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Table 7: MLEs of the model parameters, the corresponding SEs and the

statistics of the AIC, BIC and CAIC for the ball bearing data.

Model Method
Estimates Statistics

â b̂ α̂ λ̂ AIC BIC CAIC

BGIED
MLE 20.615 9.427 0.532 7.161

235.723 240.265 237.946
SE 0.125 0.279 8.052 0.262

GIED
MLE 5.307 129.996

231.098 233.369 231.698
SE 0.188 0.015

IED
MLE 55.055

245.452 246.587 245.642
SE 0.018

BIED
MLE 15.858 3.692 11.858

234.288 237.695 235.552
SE 0.112 0.508 0.161

8.2. The second data-set

The data that is studied in this section was provided by Ed Fuller of the

NICT Ceramics Division in December 1993. It contains polished window strength

data. Fuller et al. (1994) described the use of this set to predict the lifetime for

a glass airplane window. The data are as follows:

18.83, 20.8, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5, 25.52, 25.8, 26.96,

26.77, 26.78, 27.05, 27.67, 29.9, 31.11, 33.2, 33.73, 33.76, 33.89, 34.76,

35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29, 45.381 .

Descriptive statistics of the window strength data are tabulated in Table 8.

Table 8: Descriptive statistics for the window strength data.

Measure Value Measure Value

n 31 Minimum 18.830

Maximum 45.381 Mean 30.820

Q1 25.500 Q3 35.910

Median 29.900 Mean deviation 6.145

Variance 52.539 SD 7.248

Skewness 0.403 Kurtosis 2.290

The K-S goodness-of-fit test of the BGIED as well as the BIED are the best

among all models; therefore, the BGIED model can be used to study the window

strength data. Table 10 presents the MLEs with corresponding SEs of the model

parameters.
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Table 9: Goodness-of-fit measures and K-S statistics

for the window strength data.

Model BGIED GIED IED BIED

K-S statistics 0.133 0.137 0.474 0.130

−2 l(θ̂) 208.207 208.454 274.523 208.105

Table 10: MLEs of the model parameters, the corresponding SEs and the statistics

of the AIC, BIC and CAIC for the window strength data.

Model Method
Estimates Statistics

â b̂ α̂ λ̂ AIC BIC CAIC

BGIED
MLE 27.850 7.354 1.978 17.601

216.207 221.943 217.745
SE 0.088 0.341 2.401 0.247

GIED
MLE 90.855 148.412

212.454 215.322 212.883
SE 0.011 0.029

IED
MLE 29.215

276.523 277.957 276.661
SE 0.034

BIED
MLE 14.506 20.169 26.053

214.105 218.407 214.994
SE 0.205 0.146 0.166

Finally, we conclude the following from studying the AIC, BIC and CAIC

statistics of the two previous data-sets.

Figure 4: The empirical distribution and estimated cdf

of the models for the ball bearing data.
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It is noted that the GIED has a smaller value compared with the values of

other models for the two data-sets. The BIED and BGIED follow next. That

indicates that the GIED seems to be a very competitive model for these data.

Because the values of the AIC, BIC and CAIC are approximately equivalent for

the GIED, BIED and BGIED, the BGIED can thus be a good alternative model

for these data, as can the GIED. Alternately, the IED presents the worst fit for

the second dataset. Figure 4 shows the empirical distribution and estimated cdf

of the models for the ball bearing data. Figure 5 shows the empirical distribution

and estimated cdf of the models for the window strength data.

Figure 5: The empirical distribution and estimated cdf

of the models for the window strength data.

9. CONCLUDING REMARKS

In this study, the four-parameter beta generalized inverted exponential dis-

tribution (BGIED) is proposed. BGIED generalizes the generalized inverted ex-

ponential distribution discussed by Abouammoh and Alshingiti (2009). Addition-

ally, the BGIED represents a generalization of the inverted exponential distribu-

tion (IED). IED has been considered by Keller and Kamath (1982) and Duran and

Lewis (1989). Statistical properties of the BGIED are studied. Maximum likeli-

hood estimators of the BGIED parameters are obtained. The information matrix

and the asymptotic confidence bounds of the parameters are derived. Monte

Carlo simulation studies are conducted under different sample sizes to study the

theoretical performance of the MLE of the parameters. Two real data-sets are

analysed, and the BGIED has provided a good fit for the data-sets.
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1. INTRODUCTION

In the reliability literature and analyzing survival data for the components

of a system or a device, there have been defined several measures for various

conditions and situations of the system. Sometimes, we only have information

about between two lifetime points, so studying the reliability measures under the

condition of doubly truncated random variables, is necessary. If the random vari-

able X denotes the lifetime of a unit, then the random variable xXy = (y − X |
x ≤ X ≤ y) is called the doubly truncated reversed residual lifetime and it mea-

sures the time elapsed since the failure of X given that the system has been

working since time x and has failed sometime before y. Note that the well-known

random variable, Xy = (y − X |X ≤ y), which some of researchers called it, “re-

versed residual lifetime (RRL)”, “past time to failure”, “inactivity time” or “idle

time”, is the special case of xXy when x = 0.

The subject of doubly truncation of a lifetime random variable in reliability

literature has been started by Navarro and Ruiz (1996) and Ruiz and Navarro

(1995, 1996) that generalized the failure rate function for doubly truncated ran-

dom variables. Later, Sankaran and Sunoj (2004) defined and obtained some

properties of the expected value of the doubly truncated lifetime distributions.

Recently, many authors such as Su and Huang (2000), Ahmad (2001), Betensky

and Martin (2003), Navarro and Ruiz (2004), Bairamov and Gebizlioglu (2005),

Poursaeed and Nematollahi (2008) and Sunoj et al. (2009), studied the properties

of the conditional expectations of doubly truncated random variables in various

areas like order statistics and k-out-of-n systems. Also, recently Khorashadizadeh

et al. (2012) have studied the doubly truncated mean residual lifetime and the

doubly truncated mean past to failure and also obtained some characterization

results in both continuous and discrete cases.

In this paper, we study some reliability measures based on the doubly

truncated reversed lifetime random variable, xXy, in both continuous and discrete

lifetime distributions, which some of the results that achieved are not similar to

each other. The relationship among doubly truncated reversed residual expected

(mean) value (dRRM), doubly truncated reversed residual variance (dRRV ) and

doubly truncated reversed residual coefficient of variation (dRRCV ) are obtained.

Also, their monotonicity and the associated ageing classes of distributions are

discussed. Some characterization results of the class of the increasing dRRV

are presented and an upper bound for dRRV under some conditions is obtained.

Furthermore, we characterize the discrete distribution based on doubly truncated

covariance and obtained some results for binomial, Poisson and negative binomial

distributions.
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2. CONTINUOUS DOUBLY TRUNCATED REVERSED RESID-

UAL LIFETIME

Let X be a non-negative continuous random variable with cumulative distri-

bution function (cdf), F (x) and probability density function (pdf), f(x). Navarro

and Ruiz (1996) defined and studied the generalized failure rate (GFR) to the

doubly truncated continuous random variables by

h1(x, y) = lim
h→0+

[
P

(
x ≤ X ≤ x + h | x ≤ X ≤ y

)

h

]
=

f(x)

F (y) − F (x)

and

h2(x, y) = lim
h→0−

[
P

(
y + h ≤ X ≤ y | x ≤ X ≤ y

)

h

]
=

f(y)

F (y) − F (x)
,

for (x, y) ∈ D = {(x, y); F (x) < F (y)}. Note that the special cases, h1(x,∞) =
f(x)

1−F (x)
is the failure rate and h2(0, y) =

f(y)

F (y)
is the reversed failure rate. Navarro

and Ruiz (1996) have shown that GFR determines the distribution uniquely.

We denote the continuous doubly truncated reversed residual expected

value by dRRM and the continuous doubly truncated reversed residual variance

by dRRV and define them as

µ̃(x, y) = E(xXy) = E
(
y − X | x ≤ X ≤ y

)

and

σ̃2
(x, y) = Var(xXy) = Var

(
y − X | x ≤ X ≤ y

)
= Var

(
X | x ≤ X ≤ y

)
,

respectively, such that E(X2
) < ∞, (x, y) ∈ D and µ̃(x, x) = σ̃2

(x, x) = 0. Ruiz

and Navarro (1995, 1996) and Navarro et al. (1998) have shown that m(x, y) =

E(X | x ≤ X ≤ y) determines F (x) uniquely. So, this is also true for µ̃(x, y) =

y − m(x, y).

The dRRM can be rewritten as

µ̃(x, y) = E
(
y − X |x ≤ X ≤ y

)

=
(x − y)F (x) +

∫ y
x F (t) dt

F (y) − F (x)
.(2.1)

So, we have

∂

∂y
µ̃(x, y) =

[
F (y) − F (x)

]2 − f(y)
[
(x − y)F (x) +

∫ y
x F (t) dt

]
[
F (y) − F (x)

]2
.

By using the above equation, the µ̃(x, y) determine the general failure rate,

h2(x, y), via relation

h2(x, y) =
1 − ∂

∂y µ̃(x, y)

µ̃(x, y)
, (x, y) ∈ D .
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Furthermore, using part by part integration method, we can see that σ̃2
(x, y)

and µ̃(x, y) are related via the following equation:

σ̃2
(x, y) =

(y2 − x2
)F (x) − 2

∫ y
x tF (t) dt

F (y) − F (x)
+ 2y µ̃(x, y) − µ̃2

(x, y) .(2.2)

This equation will be useful in proving various other relationships. We have the

following definitions of ageing classes related to the µ̃(x, y) and σ̃2
(x, y).

Definition 2.1. A random variable X is said to be

(i) increasing in doubly truncated reversed residual expected value

(IdRRM) if for any (x, y) ∈ D, µ̃(x, y) is increasing in y,

(ii) increasing in doubly truncated reversed residual variance (IdRRV )

if for any (x, y) ∈ D, σ̃2
(x, y) is increasing in y.

The dual classes are defined similarly. For the random variable Xy, Nanda

et al. (2003) showed that the class of decreasing RRM is empty. Thus, in the next

theorem, we answer the natural question that whether the classes of decreasing

doubly truncated reversed residual expected value (DdRRM) and decreasing

doubly truncated reversed residual variance (DdRRV ) of life distributions are

null or not.

Theorem 2.1.

I. There exist no non-negative random variable that has DdRRM property.

II. There exist no non-negative random variable that has DdRRV property.

Proof: The two part can be proved by assuming the opposite. Suppose

that µ̃(x, y) is decreasing in y. From (2.1), we have

0 ≤ µ̃(x, y) ≤ y − x , ∀(x, y) ∈ D ,

and also

lim
y→x

µ̃(x, y) = 0 .

Thus, if µ̃(x, y) is decreasing in y, then µ̃(x, y) ≤ µ̃(x, x) = 0, for all (x, y) ∈ D,

which is contradict the fact that µ̃(x, y) cannot be negative or identically zero.

Similarly, for part II., on contrary, suppose that σ̃2
(x, y) is decreasing in y. For

all (x, y) ∈ D, we have

0 ≤ σ̃2
(x, y) ≤ (y2 − x2

)

and

lim
y→x

σ̃2
(x, y) = 0 .

Thus, if σ̃2
(x, y) is decreasing in y, then σ̃2

(x, y)≤ σ̃2
(x, x) = 0, for all (x, y)∈D,

which is contradict the fact that variance cannot be negative or identically zero.
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In the next theorem, we obtain an upper bound for σ̃2
(x, y), when X has

the IdRRM property.

Theorem 2.2. If the non-negative continuous random variable X, has

the IdRRM property, then,

σ̃2
(x, y) < µ̃2

(x, y) , (x, y) ∈ D .(2.3)

Proof: According to (2.1), we have

∫ y

x

[
F (t) − F (x)

]
µ̃(x, t) dt =

∫ y

x

[∫ t

x
F (z) dz + (x − t)F (x)

]
dt

= y

∫ y

x
F (z) dz −

∫ y

x
zF (z) dz +

∫ y

x
(x − t)F (x) dt ,

using (2.2), it implies that

2

F (y) − F (x)

∫ y

x

[
F (t) − F (x)

]
µ̃(x, t) dt =

=
(y2 − x2

)F (x) − 2
∫ y
x zF (z) dz

F (y) − F (x)
+ 2 y µ̃(x, y)

= µ̃2
(x, y) + σ̃2

(x, y) .

So, we have

σ̃2
(x, y) − µ̃2

(x, y) =
2

F (y) − F (x)

∫ y

x

[
F (t) − F (x)

] [
µ̃(x, t) − µ̃(x, y)

]
dt

< 0 ,

since µ̃(x, y) is increasing in y. This completes the proof.

Now, we investigate the connection between IdRRV and other classes of

life distributions.

Theorem 2.3. If µ̃(x, y) is increasing in y, then σ̃2
(x, y) is increasing in y,

i.e., the IdRRM property is stronger than the IdRRV property.

Proof: The proof is trivial by using the following relation:

∂

∂y
σ̃2

(x, y) = h2(x, y)
[
µ̃2

(x, y) − σ̃2
(x, y)

]
.(2.4)

In special case, the Example 2.1 in Nanda et al. (2003) shows that the

converse of the above theorem is not true.
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Another reliability measure that has been recently considered and is related

to the reversed residual variance and the reversed residual expected value, is the

reversed residual coefficient of variation. So, in doubly truncated random vari-

ables we consider the doubly truncated reversed residual coefficient of variation

(dRRCV ) as

γ̃(x, y) =
σ̃(x, y)

µ̃(x, y)
, (x, y) ∈ D .(2.5)

The Eq. (2.4) can be written as

∂

∂y
σ̃2

(x, y) = h2(x, y) µ̃2
(x, y)

[
1 − γ̃2

(x, y)
]

,(2.6)

so, σ̃2
(x, y) is increasing in y according as γ̃2

(x, y) ≤ 1.

The next theorem characterizes the monotonic behavior of the variance of

the random variable xXy. A similar result for the variance of xX has been given

by Nanda et al. (2003).

Theorem 2.4. The following statements are equivalent:

(i) σ̃2
(x, y) is increasing in y for any fixed x such that (x, y) ∈ D.

(ii) γ̃2
(x, y) ≤ 1 for all (x, y) ∈ D.

(iii) Φ(x, y) =
E[(y−X)2 |x≤X≤y]

E[y−X |x≤X≤y]
is increasing in y for any fixed x such that

(x, y) ∈ D.

Proof: Using (2.6) and (2.2) the results will follow.

3. DISCRETE DOUBLY TRUNCATED REVERSED RESIDUAL

LIFETIME

In reliability analysis, interests in discrete failure data came relatively late

in comparison to its continuous analogue.

Suppose T be a non-negative discrete random variable with support

{0, 1, 2, ...} and cdf, F (t) and probability mass function (pmf), p(t). Navarro and

Ruiz (1996) defined the generalized failure rate (GFR) to the doubly truncated

discrete random variables for all (t, k) ∈ D∗
= {(t, k); F (t−) < F (k)} by

h1(t, k) =
p(t)

F (k) − F (t − 1)
(3.1)

and

h2(t, k) =
p(k)

F (k) − F (t − 1)
.(3.2)
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Let tTk = (k−T | t ≤ T ≤ k) be the reversed doubly truncated random vari-

able in discrete lifetime distributions. So, the doubly truncated reversed residual

expected value and reversed residual variance based on tTk are as follow,

µ̃d(t, k) = E(tTk) = E(k − T | t ≤ T ≤ k) ,

σ̃2
d(t, k) = Var(k − T | t ≤ T ≤ k) = Var(T | t ≤ T ≤ k) ,

respectively, where (t, k) ∈ D∗
. The function µ̃d(t, k) can be rewritten as follow,

µ̃d(t, k) = E(k − T | t ≤ T ≤ k)(3.3)

=
(t − k)F (t − 1) +

∑k−1

i=t F (i)

F (k) − F (t − 1)
.

One can easily obtain that the doubly truncated reversed residual expected value

can characterize the general failure rate h2(t, k) via the relation,

h2(t, k) = 1 − µ̃d(t, k)

1 + µ̃d(t, k − 1)
, (t, k) ∈ D∗ .(3.4)

Khorashadizadeh et al. (2012) have shown that if T be discrete random vari-

able with support {0, 1, 2, ..., m} (m can be finite or infinite), then for a known t,

F (·) can be uniquely recovered by µ̃d(t, k) as follows:

F (k) = Ak + F (t − 1) [1 − Ak] ,(3.5)

where Ak =
∏m

i=k+1

µ̃d(t,i)
1+µ̃d(t,i−1)

and F (t − 1) =
A−1

A−1−1
.

The monotonic ageing classes of distributions, IdRRM and IdRRV in

discrete cases can be defined similar to Definition 2.1. Based on the discrete

random variable T ∗

k = (k − T |T < k), Goliforushani and Asadi (2008) showed

that the class of decreasing reversed residual expected value is empty.

Theorem 3.1. There is no non-degenerate discrete distribution that has

DdRRM or DdRRV property.

Proof: On contrary, suppose that µ̃d(t, k) is decreasing in k, then for any

fixed t, µ̃d(t, k + 1) ≤ µ̃d(t, k) ≤ µ̃d(t, t) = 0, which is contradict the fact that

µ̃d(t, k) ≥ 0. Similar prove can be done for DdRRV property.

One can obtain that

σ̃2
d(t, k) =

(k + t) (k − t + 1)F (t − 1) − 2
∑k

i=t iF (i − 1)

F (k) − F (t − 1)
(3.6)

+ (2k + 1) µ̃d(t, k) − µ̃2
d(t, k) .
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In the next theorem, we obtain an upper bound for σ̃2
d(t, k), when µ̃d(t, k)

is increasing in t, which is not the same as that obtained in Theorem 2.2 for

continuous case.

Theorem 3.2. If the non-negative discrete random variable T , has

IdRRM property, then,

σ̃2
d(t, k) < µ̃d(t, k) [1 + µ̃d(t, k)] , (t, k) ∈ D∗ .(3.7)

Proof: According to (3.3), we have

2

k∑

i=t

[
F (i) − F (t−1)

]
µ̃d(t, i) = (k+ t)(k− t +1)F (t−1) − 2

k∑

j=t

jF (j−1)

(3.8)

+ (2k + 2)



(t− k)F (t−1) +

k−1∑

j=t

F (j)



 .

Thus, dividing the both sides of (3.8) by F (k)−F (t− 1) and making use of (3.6),

implies

σ̃2
d(t, k) − µ̃2

d(t, k) =
2

F (k) − F (t − 1)

k−1∑

i=t

[
F (i) − F (t − 1)

][
µ̃d(i, k) − µ̃d(t, k)

]

+ µ̃d(t, k)

[
F (k) + F (t − 1)

F (k) − F (t − 1)

]

< µ̃d(t, k) ,

since µ̃d(t, k) is increasing with respect k. Hence the required result is obtained.

The connection between IdRRV and other classes of distributions are also

discussed for discrete case in the following theorem.

Theorem 3.3. In discrete lifetime distributions, the IdRRM property

implies the IdRRV property.

Proof: Using (3.6), we have

σ̃2
d(t, k) − σ̃2

d(t, k − 1) =
(k + t) (k − t + 1)F (t − 1) − 2

∑k
i=t iF (i − 1)

F (k) − F (t − 1)

+ (2k + 1) µ̃d(t, k) − µ̃2
d(t, k)

(3.9)

− (k + t − 1) (k − t)F (t − 1) − 2
∑k−1

i=t iF (i − 1)

F (k − 1) − F (t − 1)

− (2k − 1) µ̃d(t, k − 1) + µ̃2
d(t, k − 1) .
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On the other hand, one can see that

(k + t) (k − t + 1)F (t − 1) − 2
∑k

i=t iF (i − 1)

F (k) − F (t − 1)
−

− (k + t − 1) (k − t)F (t − 1) − 2
∑k−1

i=t iF (i − 1)

F (k − 1) − F (t − 1)
=

=

[
(2k − 1) µ̃d(t, k − 1) − µ̃2

d(t, k − 1) − σ̃2
d(t, k − 1) + 2k

]
h2(t, k) − 2k

and also

µ̃d(t, k) − µ̃d(t, k − 1) = 1 − h2(t, k)
[
µ̃d(t, k − 1) + 1

]
.

So, by using these two relations and summarizing the equations, we can write the

Eq. (3.9) as

σ̃2
d(t, k) − σ̃2

d(t, k − 1) =(3.10)

= h2(t, k)

[
µ̃d(t, k) µ̃d(t, k − 1) + µ̃d(t, k) − σ̃2

d(t, k − 1)

]
.

Since, µ̃d(t, k) is increasing in k,

σ̃2
d(t, k) − σ̃2

d(t, k − 1) ≥ h2(t, k)

[
µ̃2

d(t, k − 1) + µ̃d(t, k − 1) − σ̃2
d(t, k − 1)

]
,

so on using Theorem 3.2, we get the required results.

The converse of the Theorem 3.3 is not true. The following counterexample

shows that IdRRV property dose not imply the IdRRM property.

Example 3.1. Let T be a discrete random variable with cdf,

k 0 1 2 3 4 5

F (k) 0.0625 0.1046 0.1901 0.5561 0.875 1

One can see that in this distribution, σ̃2
d(0, k) is increasing in k, but µ̃d(0, k)

is not monotone.

We consider the discrete doubly truncated reversed residual coefficient of

variation as

γ̃d(t, k) =
σ̃d(t, k)

µ̃d(t, k)
.

Another characterizations for the IdRRV and IdRRM classes of distributions

based on γ̃d(t, k) are obtained in the next theorem.
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Theorem 3.4. For non-negative discrete random variable T , we have

(i) T has IdRRV property, if and only if,

γ̃2
d(t, k) ≤ µ̃d(t, k + 1)

µ̃d(t, k)

[
1 +

1

µ̃d(t, k)

]
.

(ii) T has IdRRM property, if and only if,

γ̃2
d(t, k) ≤ 1 +

1

µ̃d(t, k)
.

Proof: The statement (i) can be proved by using Eq. (3.10) and the state-

ment (ii) can be proved by using Theorem 3.2.

In the next theorem, we present a characterization via σ̃2
d(t, k) which is not

quite similar to Theorem 2.4 in continuous case.

Theorem 3.5. σ̃2
d(t, k) is increasing in k, if and only if,

σ̃2
d(t, k − 1)

µ̃d(t, k) µ̃+

d (t, k)
≤ 1 ,

where µ̃+

d (t, k) = E(k − T | t ≤ T < k).

Proof: Using (3.10) and µ̃+

d (t, k) = µ̃d(t, k − 1) + 1 the required result is

obtained.

4. CHARACTERIZATIONS OF SOME DISCRETE LIFETIME

DISTRIBUTIONS

In this section, we characterize discrete distributions based on the doubly

truncated random variables. Nair and Sudheesh (2008) and Sudheesh and Nair

(2010) have presented some characterization results with their applications for

discrete distributions based on one way truncated random variable. In the fol-

lowing theorems, we extend their results for doubly truncated random variables,

which are more general and applicable. Since sometimes, the available informa-

tion is in the specific interval period of times.

Let c(·) be any real valued function, so that for any (t1, t2) ∈ D∗
,

mc(t1, t2) = E
(
c(T ) | t1 ≤ T ≤ t2

)
=

∑t2
i=t1

c(i) p(i)

F (t2) − F (t1 − 1)
(4.1)

is the conditional expected value of doubly (interval) truncated random variable.
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Theorem 4.1. Let T be a non-negative discrete random variable with

pmf, p(t), and cdf, F (t). Also suppose that for any real valued function c(·),
µ = E(c(T )) and σ2

= Var(c(T )), then for (t1, t2) ∈ D∗, T follows the family of

distributions satisfying

p(t + 1)

p(t)
=

σg(t)

σg(t + 1) − µ + c(t + 1)
, t = 0, 1, 2, ... ,(4.2)

with σg(t) =
∑t

i=0

p(i)
p(t) [µ − c(i)], if and only if,

mc(t1, t2) = µ + σg(t1 − 1)
h1(t1 − 1, t2)

1 − h1(t1 − 1, t2)
− σg(t2)h2(t1, t2) .(4.3)

Proof: Suppose (4.2) holds, then,

c(t) p(t) = µp(t) + σp(t − 1) g(t − 1) − σp(t) g(t) .(4.4)

Summation the both side of (4.4) from t1 to t2 leads to

t2∑

i=t1

[
c(i) − µ

]
p(i) = σ

[
p(t1 − 1) g(t1 − 1) − p(t2) g(t2)

]
.(4.5)

Dividing the both sides of (4.5) by F (t2) − F (t1 − 1) and using (3.1), (3.2) and

(4.1), we get (4.3) and vise versa.

Remark 4.1. It can be seen that, in special cases, when t1 → 0 or t2 → ∞,

Theorem 4.1 is identical with that of Nair and Sudheesh (2008) and Sudheesh

and Nair (2010).

In the next theorem, we characterize the family of the form (4.2) based on

doubly truncated conditional covariance and expected value.

Theorem 4.2. The distribution function of the non-negative discrete ran-

dom variable T , belongs to the family of the form (4.2), if and only if, for all

non-negative integer values (t1, t2) ∈ D∗,

Cov
(
s(T ), c(T ) | t1 ≤ T ≤ t2

)
= σE

(
∆s(T ).g(T ) | t1 ≤ T ≤ t2

)

+
[
µ − mc(t1, t2)

][
ms(t1, t2) − s(t2 + 1)

]
(4.6)

− σg(t1−1)
h1(t1−1, t2)

1− h1(t1−1, t2)

[
s(t2 +1) − s(t1)

]
,

where c(·) and s(·) are any real valued functions such that E(s2
(T )) < ∞,

E(∆s(T ) .g(T )) < ∞, ∆s(T ) 6= 0 and ms(t1, t2) = E(s(T ) | t1 ≤ T ≤ t2).
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Proof: First, we know that

E
(
s(T )(c(T ) − µ) | t1 ≤ T ≤ t2

)
=(4.7)

=
1

F (t2) − F (t1−1)

t2∑

i=t1

s(i)
[
c(i) − µ

]
p(i)

=
1

F (t2) − F (t1−1)

t2−t1∑

j=0

s(t1 + j)




t2∑

i=t1+j

(
c(i)−µ

)
p(i) −

t2∑

i=t1+j+1

(
c(i)−µ

)
p(i)





=
1

F (t2) − F (t1−1)




t2∑

j=t1

∆s(j)

t2∑

i=j+1

(
c(i)−µ

)
p(i)



+ s(t1)
(
mc(t1, t2)−µ

)
.

Now, suppose that T has a distribution of form (4.2), hence, on using

t2∑

i=j+1

(
c(i) − µ

)
p(i) = σ

[
p(j) g(j) − p(t2) g(t2)

]
,

we have

E
(
s(T )(c(T ) − µ) | t1 ≤ T ≤ t2

)
=(4.8)

=
1

F (t2) − F (t1 − 1)



σ

t2∑

j=t1

∆s(j) g(j) p(j) − σg(t2) p(t2)

t2∑

j=t1

∆s(j)





+ s(t1)
(
mc(t1, t2) − µ

)

= σE
(
∆s(T ) .g(T ) | t1 ≤ T ≤ t2

)
+ σs(t1) g(t1 − 1)

h1(t1 − 1, t2)

1 − h1(t1 − 1, t2)

+ s(t2 + 1)

[
mc(t1, t2) − µ − σg(t1 − 1)

h1(t1 − 1, t2)

1 − h1(t1 − 1, t2)

]
,

or

E
(
s(T ) .c(T ) | t1 ≤ T ≤ t2

)
=

= σE
(
∆s(T ) .g(T ) | t1 ≤ T ≤ t2

)
+ s(t2 + 1) (mc(t1, t2) − µ)

− σg(t1 − 1)
h1(t1 − 1, t2)

1 − h1(t1 − 1, t2)

[
s(t2 + 1) − s(t1)

]
+ µ ms(t1, t2) ,

which easily leads to (4.6).

Conversely, let (4.6) is true, then, comparing (4.7) and (4.8) implies

t2∑

j=t1

∆s(j)

t2∑

i=j+1

(
c(i) − µ

)
p(i) =(4.9)

= σ

t2∑

j=t1

∆s(j) g(j) p(j) − σg(t2) p(t2)

t2∑

j=t1

∆s(j) .

Changing t1 to t1−1 and subtracting from (4.9) leads to (4.5), which is equivalent

to the distribution with the form (4.2).
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Remark 4.2. In special case of Theorem 4.2, when s(T ) = c(T ) = T , we

have

σ̃2
d(t1, t2) = Var

(
T | t1 ≤ T ≤ t2

)

= σ∗E
(
g(T ) | t1 ≤ T ≤ t2

)
+

[
µ∗ − m(t1, t2)

] [
m(t1, t2) − t2 − 1

]
(4.10)

− σ∗g(t1 − 1)
h1(t1 − 1, t2)

1 − h1(t1 − 1, t2)
[t2 − t1 + 1] ,

where m(t1, t2) = E(T | t1 ≤ T ≤ t2) is the doubly truncated expected time to

failure function and µ∗
= E(T ) and σ2∗

= Var(T ).

In the table in the following page, we illustrate the results of Remark 4.2

in some distributions.

Remark 4.3. It should be noted that similar results and definitions in

discrete case, can be verified by using the doubly truncated reversed random vari-

ables t+Tk = (k − T | t < T ≤ k), tTk− = (k − T | t ≤ T < k) or t+Tk− = (k − T |
t < T < k).

5. SUMMARY AND CONCLUSIONS

In this paper, we obtain some reliability properties of the reversed residual

lifetime via doubly truncation. Also, their similarities and differences are com-

pared in both discrete and continuous lifetime distributions and the following

partial chain is obtained.

h2(a, b) is decreasing in b =⇒ IdRRM =⇒ IdRRV .

Also, some characterization results are obtained in discrete distributions via con-

ditional covariance and variance.
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France

Stephane.Girard@inria.fr

Gilles Stupfler

– GREQAM UMR 7316, CNRS, EHESS, Centrale Marseille,

Aix Marseille Université, France
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1. INTRODUCTION

Let X be a random vector in R
d
. Up to now, several definitions of multi-

variate quantiles of X have been proposed in the statistical literature. We refer

to [25] for a review of various possibilities for this notion. Here, we focus on the

notion of “spatial” or “geometric” quantiles, introduced by [14], which generalises

the characterisation of a univariate quantile shown in [22]. For a given vector u

belonging to the unit open ball Bd
of R

d
, where d ≥ 2, a geometric quantile with

index vector u is any solution of the optimisation problem defined by

(1.1) arg min

q∈Rd

E
(
‖X − q‖ − ‖X‖

)
− 〈u, q〉 ,

where 〈·, ·〉 is the usual scalar product on R
d

and ‖ · ‖ is the associated Euclidean

norm. Note that q(u) ∈ R
d

possesses both a direction and magnitude. It can be

seen that geometric quantiles are in fact special cases of M -quantiles introduced

by [3] which were further analysed by [23]. Besides, such quantiles have various

strong properties. First, the quantile with index vector u ∈ Bd
is unique whenever

the distribution of X is not concentrated on a single straight line in R
d

(see [14]

or Theorem 2.17 in [21]). Second, although they are not fully affine equivariant,

they are equivariant under any orthogonal transformation [14]. Third, geometric

quantiles characterise the associated distribution. Namely, if two random vari-

ables X and Y yield the same quantile function q, then X and Y have the same

distribution [23]. Finally, for u = 0, the well-known L2
-geometric median is ob-

tained, which is the simplest example of a “central” quantile [28]. We point out

that one may compute an estimation of the geometric median in an efficient way,

see [8].

These properties make geometric quantiles reasonable candidates when try-

ing to define multivariate quantiles, which is why their estimation was studied in

several papers. We refer for instance to [14], who established a Bahadur expansion

for the estimator of geometric quantiles obtained by solving the sample counter-

part of problem (1.1). [10] then introduced a transformation–retransformation

procedure to obtain affine equivariant estimates of multivariate quantiles. This

notion was extended to a multiresponse linear model by [11]. Recently, [16] de-

fined a multivariate quantile–quantile plot using geometric quantiles. Conditional

geometric quantiles can also be defined by substituting a conditional expectation

to the expectation in (1.1). We refer to [6] for the estimation of the condi-

tional geometric median and to [15] for the estimation of an arbitrary conditional

geometric quantile. The estimation of a conditional median when there is an

infinite-dimensional covariate is considered in [13].

Let us note though that the previous papers focus on central properties

of geometric quantiles and of their sample versions. While some of them label
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geometric quantiles as “extreme” when ‖u‖ is close to 1 ([14, 15]) and use it in

real applications (see e.g. [12] for an application to outlier detection), the specific

properties of these extreme geometric quantiles have not been investigated yet.

In this study, we provide the asymptotics of the direction and magnitude of the

extreme geometric quantile q(u) when ‖u‖ → 1, under suitable moment condi-

tions. There are well-known analogue results for univariate extreme quantiles in

the right tail of a distribution, see e.g. [18]. A particular corollary of our results

is that the magnitude of the extreme geometric quantiles of a random vector X

having a finite covariance matrix grows at a fixed rate. Moreover, in this case, the

magnitude of the extreme geometric quantiles is asymptotically characterised by

the covariance matrix of X. This is an intriguing property, which opens the door

to a parametric estimation of extreme quantiles whose asymptotic properties are

studied in this work.

The outline of the paper is as follows. Asymptotic properties of geometric

quantiles are stated in Section 2. An illustrative application to the estimation of

extreme geometric quantiles is given in Section 3. Some examples and numerical

illustrations of our results, including a study of a real data set, are presented in

Section 4. Section 5 offers a couple of concluding remarks, in which some warnings

are given to practitioners who would like to use such geometric quantiles to detect

outliers or analyze extremes of a random vector. Proofs are deferred to Section 6.

2. ASYMPTOTIC BEHAVIOUR OF EXTREME GEOMETRIC

QUANTILES

From now on, we assume that the distribution of X is not concentrated on

a single straight line in R
d

and non-atomic. [14] proved that, in this context, the

solution q(u) of (1.1), namely the geometric quantile with index vector u, exists

and is unique for every u ∈ Bd
. Let ψ : R

d×R
d → R be defined as ψ(u, q) =

E(‖X − q‖ − ‖X‖) − 〈u, q〉 and assume further that t/‖t‖ = 0 if t = 0. If u ∈ R
d

is such that there is a solution q(u) ∈ R
d

to problem (1.1), then the gradient of

q 7→ ψ(u, q) must be zero at q(u), that is

(2.1) u+ E

(
X − q(u)

‖X − q(u)‖

)
= 0 .

This condition immediately entails that if u ∈ R
d

is such that problem (1.1) has

a solution q(u), then ‖u‖ ≤ 1. In fact, we can prove a stronger result:

Proposition 2.1. The optimisation problem (1.1) has a solution if and

only if u ∈ Bd.

Moreover, remarking that the function ψ(u, ·) is strictly convex, [14] proved

the following characterisation of a geometric quantile: for every u ∈ Bd
, q(u) is
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the solution of problem (1.1) if and only if it satisfies equation (2.1). In particular,

this entails that the function G : R
d → Bd

defined by

∀q ∈ R
d , G(q) = −E

(
X − q

‖X − q‖

)

is a continuous bijection. Proposition 2.6(iii) in [23] shows that the inverse of the

function G, i.e. the geometric quantile function u 7→ q(u), is also continuous on

Bd
.

In most cases however, computing explicitly the function G is a hopeless

task, which makes it impossible to obtain a closed-form expression for the geo-

metric quantile function. It is thus of interest to prove general results about the

geometric quantile q(u), especially regarding its direction and magnitude. Our

first main result focuses on the special case of spherically symmetric distributions.

Proposition 2.2. If X has a spherically symmetric distribution then:

(i) The map u 7→ q(u) commutes with every linear isometry of R
d.

Especially, the norm of a geometric quantile q(u) only depends on

the norm of u.

(ii) For all u ∈ Bd, the geometric quantile q(u) has direction u if u 6= 0

and q(0) = 0 otherwise.

(iii) The function ‖u‖ 7→ ‖q(u)‖ is a continuous strictly increasing func-

tion on [0, 1).

(iv) It holds that ‖q(u)‖ → ∞ as ‖u‖ → 1.

Although Proposition 2.2(i,iii) cannot be expected to hold true for a random

variable which is not spherically symmetric, one may wonder if (ii,iv), namely that

a geometric quantile shares the direction of its index vector and that the norm

of the geometric quantile function tends to infinity on the unit sphere, can be

extended to the general case. The next result, which examines the behaviour of

the geometric quantile function near the boundary of the open ball Bd
, provides

an answer to this question.

Theorem 2.1. Let Sd−1 be the unit sphere of R
d.

(i) It holds that ‖q(v)‖ → ∞ as ‖v‖ → 1.

(ii) Moreover, if v → u with u ∈ Sd−1 and v ∈ Bd then q(v)/‖q(v)‖ → u.

Theorem 2.1 shows two properties of geometric quantiles: first, the norm

of the geometric quantile q(v) with index vector v diverges to infinity as ‖v‖ ↑ 1.

In other words, Proposition 2.2(iv) still holds for any distribution. This is a rather

intriguing property of geometric quantiles, since it holds even if the distribution
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of X has a compact support (for instance, when X is uniformly distributed on

a square). A related point is the fact that sample geometric quantiles do not

necessarily lie within the convex hull of the sample, see [4] for a counter-example.

Second, if v → u ∈ Sd−1
, then the geometric quantile q(v) has asymptotic direc-

tion u. Proposition 2.2(ii) thus remains true asymptotically for any distribution.

It is possible to specify the convergences obtained in Theorem 2.1 under

moment assumptions. Theorem 2.2 provides a first-order expansion of both the

direction and the magnitude of an extreme geometric quantile q(αu) in the di-

rection u, where u is a unit vector and α tends to 1.

Theorem 2.2. Let u ∈ Sd−1.

(i) If E‖X‖<∞ then q(αu)−
{
‖q(αu)‖u+E(X−〈X,u〉u)

}
→ 0 as α ↑ 1.

(ii) If E‖X‖2 <∞ and Σ denotes the covariance matrix of X then

‖q(αu)‖2
(1 − α) → 1

2

(
tr Σ − u′Σu

)
> 0 as α ↑ 1 .

Let us note that the integrability conditions of Theorem 2.2 exclude any

random vector ‖X‖ whose distribution possesses a right tail which is too heavy.

For instance, condition E‖X‖ <∞ in (i) excludes the multivariate Student dis-

tribution with less than one degree of freedom, while condition E‖X‖2 <∞
in (ii) excludes the multivariate Student distribution with less than two degrees

of freedom.

Consequence 1. It appears that, if X has a finite covariance matrix Σ,

then the magnitude of an extreme geometric quantile is determined (in the asymp-

totic sense) by Σ. In other words, since the asymptotic direction of an extreme

geometric quantile in the direction u is exactly u by Theorem 2.1, it follows that

the extreme geometric quantiles of two probability distributions which admit the

same finite covariance matrix are asymptotically equivalent. This phenomenon

is illustrated on simulated data in Section 4 below. This is surprising from the

extreme value perspective: one could expect the behaviour of extreme geometric

quantiles not to be driven by a central parameter such as the covariance ma-

trix, as happens in the univariate context where the value of an extreme quantile

depends on the tail heaviness of the probability density function of X.

Consequence 2. The map λ 7→ ‖q((1 − λ−1
)u)‖ is a regularly varying

function with index 1/2 (see Bingham et al., 1987) and therefore:

‖q(βu)‖
‖q(αu)‖ =

(
1 − α

1 − β

)1/2(
1 + o(1)

)

when α→ 1 and β → 1. In other words, given an arbitrary extreme geomet-

ric quantile, one can deduce the asymptotic behaviour of every other extreme

geometric quantile sharing its direction, independently of the distribution.
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Again, this is fundamentally different from the univariate case when deducing

the value of an extreme quantile from another one then requires the knowledge

(or an estimate) of the extreme-value index of the distribution, see [18], Chap-

ter 4. A further, perhaps unexpected, consequence is that our results can actually

be used to define a consistent and asymptotically Gaussian estimator of extreme

geometric quantiles by using the standard empirical estimator of the covariance

matrix of X, see Section 3 below.

Consequence 3. Finally, Theorem 2.2 provides some information on the

shape of an extreme quantile contour. It is readily seen that the global maximum

of the function h1(u) := tr Σ − u′Σu on Sd−1
is reached at a unit eigenvector

umin of Σ associated with its smallest eigenvalue λmin > 0. Thus, the norm of an

extreme geometric quantile is asymptotically the largest in the direction where

the variance is the smallest. Similarly, the global minimum of h1 is reached at

a unit eigenvector umax of Σ associated with its largest eigenvalue λmax > 0. In

particular, if f is the probability density function associated with an elliptically

contoured distribution [7], the level sets of f coincide with the level sets of the

function h2(u) := u′Σu. The global maximum of h2 is reached at the eigenvec-

tor umax while the global minimum is reached at umin. The extreme geometric

quantile is therefore furthest from the origin in the direction where the density

level set is closest to the origin, see Section 4 for an illustration on real data. In

such a case, the extreme geometric quantile contour plot and the density level

plots are in some sense orthogonal (even though they agree when the distribu-

tion of X is spherically symmetric). Of course, one should not expect a direct

geometric match between quantile contours and density contours, but this phe-

nomenon should be kept in mind when designing outlier detection procedures.

In our view, this can be seen as a consequence of the lack of affine-equivariance

of geometric quantiles. To tackle this issue, one may apply a transformation–

retransformation procedure, see [27]. Such procedures admit sample analogues,

see for instance [9, 10], at the possible loss of geometric interpretation, see [26].

3. AN ESTIMATOR OF EXTREME GEOMETRIC QUANTILES

In this paragraph, our focus is to illustrate Consequence 2 of Theorem 2.2

at the sample level. Let X1, ..., Xn be independent random copies of a random

vector X having a finite covariance matrix Σ. It follows from Theorem 2.2 that

any extreme geometric quantile q(αu) of X, with α ↑ 1 and u ∈ Sd−1
can be

approximated by:

(3.1) qeq(αu) := (1 − α)
−1/2

[
1

2

(
tr Σ − u′Σu

)]1/2

u .
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This can be used to define an estimator of the extreme geometric quantiles of X:

let Xn = n−1
∑n

k=1
Xk be the sample mean and

Σ̂n =
1

n

n∑

k=1

(Xk −Xn) (Xk −Xn)
′

be the empirical estimator of the covariance matrix Σ of X. Let further (αn)

be an increasing sequence of positive real numbers tending to 1. Our estimator

q̂n(αnu) of q(αnu) is then

q̂n(αnu) = (1 − αn)
−1/2

[
1

2

(
tr Σ̂n − u′Σ̂nu

)]1/2

u .

The consistency of q̂n(αnu) is examined in the next result.

Theorem 3.1. Let u ∈ Sd−1 and assume that αn ↑ 1. If E‖X‖2 <∞
then

√
1 − αn

(
q̂n(αnu) − q(αnu)

)
→ 0 almost surely as n→ ∞ .

This result actually means that the extreme geometric quantile estimator

is relatively consistent in the sense that

q̂n(αnu) − q(αnu)

‖q(αnu)‖
→ 0 almost surely as n→ ∞ ,

since ‖q(αnu)‖−1
= O(

√
1 − αn), see Theorem 2.2(ii). This normalisation could

be expected since the quantity to be estimated diverges in magnitude. Under

the additional assumption that X has a finite fourth moment, an asymptotic

normality result can be established for this estimator:

Theorem 3.2. Let u∈Sd−1 and assume that αn ↑1 is such that n(1−αn)

→ 0. If E‖X‖4 <∞ then

√
n(1 − αn)

(
q̂n(αnu) − q(αnu)

) d−→ Z as n→ ∞

where Z is a Gaussian centred random vector.

Let us highlight that the covariance matrix of the Gaussian limit in Theo-

rem 3.2 essentially depends on the covariance matrix M of the Gaussian limit of√
n(Σ̂n − Σ), see the proof in Section 6. Although M has a complicated expres-

sion (see e.g. [24]), it can be estimated when E‖X‖4 <∞, which makes it possible

to construct asymptotic confidence regions for extreme geometric quantiles.

Extreme geometric quantiles can thus be consistently estimated by q̂n(αnu),

whatever the “order” αn, and an asymptotic normality result is obtained when
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αn ↑ 1 quickly enough. The proposed estimator is therefore able to extrapolate

arbitrarily far from the original sample. This is very different from the univari-

ate case, where the empirical quantile q̂n(αn) = inf{t ∈ R | F̂n(t) ≥ αn}, deduced

from the empirical cumulative distribution function F̂n, estimates the true quan-

tile q(αn) consistently only if αn converges to 1 slowly enough. The extrapolation

with faster rates αn is then handled assuming that the underlying distribution

function is heavy-tailed and by using adapted estimators, see e.g. [29] and the

monograph [18].

4. NUMERICAL ILLUSTRATIONS

4.1. Simulation study

In this section, our main results are illustrated, particularly Theorems 2.2,

3.1 and 3.2 in the bivariate case d = 2 to make the display easier. In this frame-

work, u ∈ S1
can be represented by an angle: u = uθ = (cos θ, sin θ), θ ∈ [0, 2π).

The iso-quantile curves Cq(α) = {q(αuθ), θ ∈ [0, 2π)} and their estimates Cq̂n(α)

= {q̂n(αuθ), θ ∈ [0, 2π)} can then be considered in order to get a grasp of the

behaviour of extreme quantiles in every direction. The following two distributions

are considered for the random vector X:

• The centred Gaussian multivariate distribution N (0, vX , vY , vXY ), with

probability density function: ∀x, y ∈ R,

f(x, y) =
1

2π
√

det Σ
exp

(
−1

2

(
x

y

)
′

Σ
−1

(
x

y

))
with Σ =

(
vX vXY

vXY vY

)
.

• A double exponential distribution E(λ−, µ−, λ+, µ+), with λ−, µ−, λ+, µ+

> 0, whose probability density function is: ∀x, y ∈ R,

f(x, y) =
1

4





λ+µ+e

−λ+|x|−µ+|y|
if xy > 0 ,

λ−µ−e
−λ−|x|−µ−|y|

if xy ≤ 0 .

In this case, X is centred and has covariance matrix

Σ =





1

λ2
−

+
1

λ2
+

1

2

[
1

λ+µ+

− 1

λ−µ−

]

1

2

[
1

λ+µ+

− 1

λ−µ−

]
1

µ2
−

+
1

µ2
+



 .
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Three different sets of parameters were used for each distribution, in order

that the related covariance matrices coincide:

• N (0, 1/2, 1/2, 0) and E(2, 2, 2, 2) with spherical covariance matrices;

• N (0, 1/8, 3/4, 0) and E(4, 2
√

2/3, 4, 2
√

2/3) with diagonal covariance

matrices;

• N (0, 1/2, 1/2, 1/6) and E(2
√

3, 2
√

3, 2
√

3/5, 2
√

3/5) with full covariance

matrices.

In each case, we carry out the following computations:

• For each α ∈ {0.99, 0.995, 0.999}, the true quantile curves Cq(α) ob-

tained by solving problem (1.1) numerically, as well as their analogues

Cqeq(α) using approximation (3.1) are computed. The normalised squared

approximation error

e(α) = (1−α)

∫
2π

0

‖qeq(αuθ) − q(αuθ)‖2 dθ

is then recorded.

• For each value of α, we draw N = 1000 replications of an n-sample

(X1, ..., Xn) of independent copies of X, with n ∈ {100, 200, 500}. The

estimated quantile curves Cq̂(j)n (α) corresponding to the j-th replication

and the associated normalised squared error

E(j)
n (α) = (1− α)

∫
2π

0

∥∥∥q̂(j)n (αuθ) − q(αuθ)

∥∥∥
2

dθ

are computed as well as the mean squared errorEn(α)=N−1
∑N

j=1
E

(j)
n (α).

The true quantile curves, as well as the approximated and the estimated

ones are displayed on Figures 1–6 in the case n = 200 and α = 0.995. The true

quantile curves look very similar in Figures 1 and 4, in Figures 2 and 5 and

Figures 3 and 6 (in which the words “best”, “median” and “worst” are to be

understood with respect to the L2
error). This is in accordance with Theorem 2.2:

eventually, extreme geometric quantiles only depend on the covariance matrix of

the underlying distribution. Moreover, the approximated quantile curves are close

to the true ones in all cases, and the estimated quantile curves are satisfying

in all situations with a moderate variability. Similar results were observed for

n = 100, 500 and α = 0.99, 0.999. We do not report the graphs here for the sake

of brevity; we do however display the approximation and estimation errors in

Table 1. Unsurprisingly, the estimation error En(α) decreases as the sample size

n increases. Both approximation and estimation errors e(α) and En(α) have a

stable behaviour with respect to α.
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Figure 1: Spherical Gaussian distribution N (0, 1/2, 1/2, 0) for α = 0.995.

Top left: comparison between a numerical method and the use of

the equivalent (3.1) for the computation of the iso-quantile curve,

full line: numerical method, dashed line: asymptotic equivalent.

Top right, bottom left and bottom right: best, median and worst

estimates of the iso-quantile curve for n = 200, full line: numerical

method, dashed-dotted line: estimator q̂n.
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Figure 2: Diagonal Gaussian distribution N (0, 1/8, 3/4, 0) for α = 0.995.

Top left: comparison between a numerical method and the use of

the equivalent (3.1) for the computation of the iso-quantile curve,

full line: numerical method, dashed line: asymptotic equivalent.

Top right, bottom left and bottom right: best, median and worst

estimates of the iso-quantile curve for n = 200, full line: numerical

method, dashed-dotted line: estimator q̂n.
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Figure 3: Full Gaussian distribution N (0, 1/2, 1/2, 1/6) for α = 0.995.

Top left: comparison between a numerical method and the use of

the equivalent (3.1) for the computation of the iso-quantile curve,

full line: numerical method, dashed line: asymptotic equivalent.

Top right, bottom left and bottom right: best, median and worst

estimates of the iso-quantile curve for n = 200, full line: numerical

method, dashed-dotted line: estimator q̂n.
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Figure 4: Spherical double exponential distribution E(2, 2, 2, 2) for α = 0.995.

Top left: comparison between a numerical method and the use of

the equivalent (3.1) for the computation of the iso-quantile curve,

full line: numerical method, dashed line: asymptotic equivalent.

Top right, bottom left and bottom right: best, median and worst

estimates of the iso-quantile curve for n = 200, full line: numerical

method, dashed-dotted line: estimator q̂n.
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Figure 5: Diagonal double exponential distribution E(4, 2
√

2/3, 4, 2
√

2/3)

for α = 0.995. Top left: comparison between a numerical method

and the use of the equivalent (3.1) for the computation of the iso-

quantile curve, full line: numerical method, dashed line: asymp-

totic equivalent. Top right, bottom left and bottom right: best,

median and worst estimates of the iso-quantile curve for n = 200,

full line: numerical method, dashed-dotted line: estimator q̂n.
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Figure 6: Full double exponential distribution E(2
√

3, 2
√

3, 2
√

3/5, 2
√

3/5)

for α = 0.995. Top left: comparison between a numerical method

and the use of the equivalent (3.1) for the computation of the iso-

quantile curve, full line: numerical method, dashed line: asymp-

totic equivalent. Top right, bottom left and bottom right: best,

median and worst estimates of the iso-quantile curve for n = 200,

full line: numerical method, dashed-dotted line: estimator q̂n.
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4.2. Real data illustration

The finite sample behaviour of extreme geometric quantiles is illustrated on

a two-dimensional dataset extracted from the Pima Indians Diabetes Database.

This data set
1

was already considered by [15] and [12], among others. In the latter

study, geometric iso-quantile curves with a high α are used to detect outliers in

the data set. Using extreme quantiles for outlier detection was advocated in e.g.

[5, 20] in the univariate case and [19] using depth-based quantile regions in the

multivariate case; see also the monograph [1].

After working on the data set so as to eliminate missing values, the data

set consists of n = 392 pairs (Xi, Yi), where Xi is the body mass index (BMI) of

the i-th individual and Yi is its diastolic blood pressure. The centered data cloud

is represented in Figure 7 with blue crosses, along with the geometric iso-quantile

curve with α = 0.95. While geometric quantiles with a moderate α tend to give

a fair idea of the shape of the data cloud (see e.g. [12]), the same cannot be said

for extreme geometric quantiles on this example. This is an illustration of the

phenomenon described in Consequence 3 in Section 2: the norm of an extreme

geometric quantile is the largest in the direction where the variance is the smallest.
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Figure 7: Pima Indians Diabetes data set. Black dashed line: estimate

of the iso-quantile curve for α = 0.95, with the estimator q̂n.

We are thus led to think that here, outlier detection would be dangerous without

a preliminary transformation–retransformation procedure [10].

1Available at ftp.ics.uci.edu/pub/machine-learning-databases/pima-indians-diabetes
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5. CONCLUDING REMARKS

In this paper, we established the asymptotics of extreme geometric quan-

tiles. A particular consequence of our results is that, if the underlying distribution

possesses a finite covariance matrix Σ, then an extreme geometric quantile may be

estimated accurately, no matter how extreme it is, with the help of the standard

empirical estimator of Σ. This result is supported by our numerical study. The

situation is very different from the univariate case, in which the asymptotic decay

of a survival function can be linked to the asymptotic behaviour of an extreme

quantile.

An additional issue, illustrated on a real data set, is that although central

geometric quantile contours may roughly match the shape of the data cloud, this

does not necessarily stay true for extreme iso-quantile curves. This is why we

would advise practitioners to be cautious when using such a notion of multivariate

quantile to detect outliers or analyze the extremes of a random vector. We believe

that one can tackle this problem by applying a transformation–retransformation

procedure, see [27] at the population level, and [9, 10] at the sample level. Future

work on extreme geometric quantiles thus includes building and studying their

analogues for transformed–retransformed data.

Finally, let us underline again that this work was carried out under moment

conditions such as the existence of finite first and second-order moments for ‖X‖.
The case when these assumptions are violated is investigated in [17].

6. PROOFS

Some preliminary results are collected in Paragraph 6.1, their proofs are

postponed to Paragraph 6.3. The proofs of the main results are provided in

Paragraph 6.2.

6.1. Preliminary results

The first lemma provides some technical tools necessary to show Theo-

rem 2.2(ii).

Lemma 6.1. Let ϕ : R
d×R+×Sd−1 → R be the function defined by

ϕ(x, r, v) = r2
[
1 +

〈x− rv, v〉
‖x− rv‖

]
.
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Then, for all v ∈ Sd−1, ϕ(·, ·, v) is nonnegative and

∀x ∈ R
d, ∀r ≤ ‖x‖, ϕ(x, r, v) ≤ 2r2 and ∀r > ‖x‖, ϕ(x, r, v) ≤ ‖x‖2 .

In particular, ϕ(x, r, v) ≤ 2‖x‖2 for every (x, r, v) ∈ R
d×R+×Sd−1.

The next lemma is the first step to prove Theorem 2.2(i).

Lemma 6.2. Let u ∈ Sd−1. If E‖X‖ <∞ then, for all v ∈ R
d,

‖q(αu)‖
〈
αu− q(αu)

‖q(αu)‖ , v
〉

→ −E
〈
X−〈X,u〉u, v

〉
as α ↑ 1 .

Lemma 6.3 below is a result which is similar to Lemma 6.2.

Lemma 6.3. Let u ∈ Sd−1. If E‖X‖2 <∞ then

‖q(αu)‖2

〈
αu− q(αu)

‖q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
→ −1

2
E
∥∥X−〈X,u〉u

∥∥2
as α ↑ 1 .

Lemma 6.4 is the first step to prove Theorem 3.2. It is essentially a refine-

ment of Lemma 6.2.

Lemma 6.4. Let u ∈ Sd−1. If E‖X‖2 <∞ then, for all v ∈ R
d,

‖q(αu)‖
[
‖q(αu)‖

〈
αu− q(αu)

‖q(αu)‖ , v
〉

+ E
〈
X−〈X,u〉u, v

〉]
→

→ 〈u, v〉 Var〈X,u〉 − 1

2
〈u, v〉 E

∥∥X−〈X,u〉u
∥∥2

+ 〈u, v〉
∥∥E
(
X−〈X,u〉u

)∥∥2

− Cov
(
〈X,u〉, 〈X, v〉

)

as α ↑ 1.

Lemma 6.5 below is a refinement of Lemma 6.3. It is the second step to

prove Theorem 3.2.

Lemma 6.5. Let u ∈ Sd−1. If E‖X‖3 <∞ then

‖q(αu)‖
(
‖q(αu)‖2

〈
αu− q(αu)

‖q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
+

1

2
E
∥∥X − 〈X,u〉u

∥∥2

)
→

→ E

(
〈X,u〉

[〈
X, E

(
X − 〈X,u〉u

)〉
−
∥∥X − 〈X,u〉u

∥∥2
])

as α ↑ 1 .
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6.2. Proofs of the main results

Proof of Proposition 2.1: From [14], it is known that if u ∈ Bd
then

problem (1.1) has a unique solution q(u) ∈ R
d
. To prove the converse part of this

result, use equation (2.1) to get

∥∥∥∥E
(

X − q(u)

‖X − q(u)‖

)∥∥∥∥ = ‖u‖ .

Let us introduce the coordinate representations X = (X1, ..., Xd) and q(u) =

(q1(u), ..., qd(u)). The Cauchy–Schwarz inequality yields

‖u‖2
=

∥∥∥∥E
(

X − q(u)

‖X − q(u)‖

)∥∥∥∥
2

=

d∑

i=1

[
E

(
Xi − qi(u)

‖X − q(u)‖

)]2

≤
d∑

i=1

E

(
(Xi − qi(u))

2

‖X − q(u)‖2

)
= 1 .

Furthermore, equality holds if and only if for all i ∈ {1, ..., d}, there exists µi ∈ R

such that
Xi − qi(u)

‖X − q(u)‖ = µi

almost surely. In particular, if w = (µ1, ..., µd), this entails X ∈ D = q(u) + Rw

almost surely, which cannot hold since the distribution of X is not concentrated

in a single straight line in R
d
. It follows that necessarily ‖u‖2 < 1, which is the

result.

Proof of Proposition 2.2:

(i) Note that (2.1) implies that, for any linear isometry h of R
d

and every

u ∈ Bd
,

h(u) + E

(
h(X) − h ◦ q(u)
‖X − q(u)‖

)
= 0 .

Since h is a linear isometry, the random vectors X and h(X) have the same

distribution and the equality ‖X− q(u)‖ = ‖h(X)−h ◦ q(u)‖ holds almost surely.

It follows that

h(u) + E

(
X − h ◦ q(u)

‖X − h ◦ q(u)‖

)
= 0 .

Since h(u) ∈ Bd
, it follows that h ◦ q(u) = q ◦ h(u), which completes the proof of

the first statement.

(ii) To prove the second part of Proposition 2.2, start by noting that since

X and −X have the same distribution, it holds that E (X/‖X‖) = 0. The case

u = 0 is then obtained via (2.1). If u 6= 0, up to using the first part of the result

with a suitable linear isometry, we shall assume without loss of generality that
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u = (u1, 0, ..., 0) for some constant u1 ∈ (0, 1). It is then enough to prove that

there exists some constant q1(u) > 0 such that q(u) = (q1(u), 0, ..., 0). To this

end, let us remark that, on the one hand, if v1 ∈ R and w = (1, 0, ..., 0) then

(6.1) ∀j ∈ {2, ..., d} , E

(
Xj

‖X − v1w‖

)
= 0 ,

since, for all j ∈ {2, ..., d}, the random vectors (X1, ..., Xj−1,−Xj , Xj+1, ..., Xd)

andX have the same distribution. On the other hand, the dominated convergence

theorem entails that the function

v1 7→ E

(
X1 − v1

‖X − v1w‖

)

is continuous, converges to 1 at −∞, is equal to 0 at 0 and converges to −1 at

+∞. Thus, the intermediate value theorem yields that there exists some constant

q1(u) > 0 such that

(6.2) u1 + E

(
X1 − q1(u)

‖X − q1(u)w‖

)
= 0 .

Consequently, collecting (6.1) and (6.2) yields

u+ E

(
X − q1(u)w

‖X − q1(u)w‖

)
= 0

and it only remains to apply (2.1) to finish the proof of the second statement.

(iii) To show the third statement, use the first result to obtain that the

function g : ‖u‖ 7→ ‖q(u)‖ is indeed well-defined; since the geometric quantile func-

tion is continuous, so is g. Assume that g is not strictly increasing: namely,

there exist u1, u2 ∈ Bd
such that ‖u1‖ < ‖u2‖ and ‖q(u1)‖ ≥ ‖q(u2)‖. Since

q(0) = 0, it is a consequence of the intermediate value theorem that one may find

u, v ∈ Bd
such that ‖u‖ < ‖v‖ and ‖q(u)‖ = ‖q(v)‖. Let h be an isometry such

that h(u/‖u‖) = h(v/‖v‖); then

‖q(h(u))‖ = ‖q(u)‖ = ‖q(v)‖ = ‖q(h(v))‖

and
q(h(u))

‖q(h(u))‖ =
h(u)

‖h(u)‖ =
h(v)

‖h(v)‖ =
q(h(v))

‖q(h(v))‖ .

In other words, q(h(u)) and q(h(v)) have the same direction and magnitude, so

that they are necessarily equal, which entails that h(u) = h(v) because the geo-

metric quantile function is one-to-one. This is a contradiction because ‖h(u)‖ =

‖u‖ < ‖v‖ = ‖h(v)‖, and the third statement is proven.

(iv) Assume that ‖q(u)‖ does not tend to infinity as ‖u‖ → 1; since g

is increasing, it tends to a finite positive limit r. In other words, ‖q(u)‖ ≤ r for

every u ∈ Bd
, which is a contradiction since the geometric quantile function maps

Bd
onto R

d
, and the proof is complete.
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Proof of Theorem 2.1:

(i) If the first statement were false, then one could find a sequence (vn)

contained in Bd
such that ‖vn‖ → 1 and such that (‖q(vn)‖) does not tend to in-

finity. Up to extracting a subsequence, one can assume that (‖q(vn)‖) is bounded.

Again, up to extraction, one can assume that (vn) converges to some v∞ ∈ Sd−1

and that (q(vn)) converges to some q∞ ∈ R
d
. Moreover, it is straightforward to

show that for every u1,u2, q1, q2 ∈ R
d

∣∣ψ(u1, q1) − ψ(u2, q2)
∣∣ ≤

{
1 + ‖u2‖

}
‖q2 − q1‖ + ‖q1‖ ‖u2 − u1‖

so that the function ψ is continuous on R
d×R

d
. Recall then that the definition

of q(vn) implies that for every q ∈ R
d
, ψ(vn, q(vn)) ≤ ψ(vn, q) and let n tend to

infinity to obtain

q∞ = arg min

q∈Rd

ψ(v∞, q) .

Because v ∈ Sd−1
, this contradicts Proposition 2.1, and the proof of the first

statement is complete: ‖q(v)‖ → ∞ as ‖v‖ → 1.

(ii) Pick a sequence (vn) of elements of Bd
converging to u and remark

that from (2.1),

vn + E

(
X − q(vn)

‖X − q(vn)‖

)
= 0

for every integer n. Hence, for n large enough, the following equality holds:

(6.3) vn + E

(∥∥∥∥
X

‖q(vn)‖ − q(vn)

‖q(vn)‖

∥∥∥∥
−1 [

X

‖q(vn)‖ − q(vn)

‖q(vn)‖

])
= 0 .

Since the sequence (q(vn)/‖q(vn)‖) is bounded it is enough to show that its only

accumulation point is u. Let then u∗ be an accumulation point of this sequence.

Since ‖q(vn)‖ → ∞, we may let n→ ∞ in (6.3) and use the dominated conver-

gence theorem to obtain u− u∗ = 0, which completes the proof.

Proof of Theorem 2.2:

(i) Let (u,w1, ..., wd−1) be an orthonormal basis of R
d

and consider the

following expansion:

(6.4)
q(αu)

‖q(αu)‖ = b(α)u+

d−1∑

k=1

βk(α)wk

where b(α), β1(α), ..., βd−1(α) are real numbers. It immediately follows that

q(αu)

‖q(αu)‖ − u− 1

‖q(αu)‖
{
E(X) − 〈E(X), u〉u

}
=(6.5)

=
(
b(α) − 1

)
u+

d−1∑

k=1

‖q(αu)‖βk(α) − E〈X,wk〉
‖q(αu)‖ wk .
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Lemma 6.2 implies that

(6.6)

‖q(αu)‖
〈
αu− q(αu)

‖q(αu)‖ , wk

〉
= −‖q(αu)‖βk(α) → −E〈X,wk〉 as α ↑ 1

for all k ∈ {1, ..., d− 1}. Besides, let us note that q(αu)/‖q(αu)‖ ∈ Sd−1
entails

(6.7) b2(α) +

d−1∑

k=1

β2
k(α) = 1 .

Theorem 2.1 shows that b(α) → 1 as α ↑ 1 and thus (6.6) yields:

‖q(αu)‖
(
1 − b(α)

)
=

1

2
‖q(αu)‖

(
1 − b2(α)

) (
1 + o(1)

)
(6.8)

=
1

2
‖q(αu)‖

d−1∑

k=1

β2
k(α)

(
1 + o(1)

)
→ 0 as α ↑ 1 .

Collecting (6.5), (6.6) and (6.8), we obtain

q(αu)

‖q(αu)‖ − u− 1

‖q(αu)‖
{
E(X) − 〈E(X), u〉u

}
= o

(
1

‖q(αu)‖

)
as α ↑ 1

which is the first result.

(ii) Recall (6.4) and use Lemma 6.2 to obtain

‖q(αu)‖
〈
αu− q(αu)

‖q(αu)‖ , wk

〉
→ −E〈X,wk〉 as α ↑ 1 ,

for all k ∈ {1, ..., d− 1}, leading to

(6.9) ‖q(αu)‖2 β2
k(α) →

[
E〈X,wk〉

]2
as α ↑ 1

for all k ∈ {1, ..., d− 1}. Recall (6.7) and use Lemma 6.3 to get

(6.10) ‖q(αu)‖2
[
αb(α) − 1

]
→ −1

2
E
∥∥X − 〈X,u〉u

∥∥2
as α ↑ 1 .

Since (u, w1, ..., wd−1) is an orthonormal basis of R
d
, one has the identity

(6.11)
∥∥X − 〈X,u〉u

∥∥2
=

d−1∑

k=1

〈X, wk〉2 .

Collecting (6.9), (6.10) and (6.11) leads to

‖q(αu)‖2

[
1 − αb(α) − 1

2

d−1∑

k=1

β2
k(α)

]
→ 1

2

d−1∑

k=1

Var〈X, wk〉 as α ↑ 1 .

Therefore,

(6.12)

‖q(αu)‖2

[
1 − αb(α) − 1

2

(
1 − b2(α)

)]
→ 1

2

d−1∑

k=1

Var〈X,wk〉 as α ↑ 1 ,
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and easy calculations show that

(6.13) 1 − αb(α) − 1

2

(
1 − b2(α)

)
=

1

2

[
(1 − α) (1 + α) +

(
α− b(α)

)2]
.

Finally, in view of Lemma 6.2,

‖q(αu)‖
〈
αu− q(αu)

‖q(αu)‖ , u
〉

→ 0 as α ↑ 1

which is equivalent to

(6.14) ‖q(αu)‖2
(
α− b(α)

)2 → 0 as α ↑ 1 .

Collecting (6.12), (6.13) and (6.14), we obtain

‖q(αu)‖2
(1 − α) → 1

2

d−1∑

k=1

Var〈X,wk〉 as α ↑ 1 .

Remarking that, for every orthonormal basis (e1, ..., ed) of R
d
,

(6.15)

d∑

k=1

Var〈X, ek〉 =

d∑

k=1

e′k Σek = tr Σ

proves that

‖q(αu)‖2
(1 − α) → 1

2

(
tr Σ − u′Σu

)
≥ 0 as α ↑ 1 .

Finally, note that if we had tr Σ − u′Σu = 0 then by (6.15) we would have that

Var〈X,wk〉 = 0 for all k ∈ {1, ..., d− 1}. Thus the projection of X onto the or-

thogonal complement of Ru would be almost surely constant and X would be

contained in a single straight line in R
d
, which is a contradiction. This completes

the proof of Theorem 2.2.

Proof of Theorem 3.1: Note that

(6.16)
√

1 − αn q̂n(αnu) →
[
1

2

(
tr Σ − u′Σu

)]1/2

u

almost surely as n→ ∞. Moreover, by Theorems 2.1 and 2.2

(6.17)

√
1 − αn q(αnu) =

√
1 − αn ‖q(αnu)‖

q(αnu)

‖q(αnu)‖
→
[
1

2

(
tr Σ − u′Σu

)]1/2

u

almost surely as n→ ∞. Combining (6.16) and (6.17) completes the proof.
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Proof of Theorem 3.2: Consider the following representation:

√
n(1 − αn)

(
q̂n(αnu) − q(αnu)

)
= T1,n + T2,n + T3,n

with T1,n =
√
n

([
1

2

{
tr Σ̂n − u′Σ̂nu

}]1/2

−
[
1

2

{
tr Σ − u′Σu

}]1/2
)

q(αnu)

‖q(αnu)‖
,

T2,n =
√
n

([
1

2

{
tr Σ − u′Σu

}]1/2

−
√

1 − αn ‖q(αnu)‖
)

q(αnu)

‖q(αnu)‖

and T3,n = −
√
n(1 − αn) ‖q̂n(αnu)‖

(
q(αnu)

‖q(αnu)‖
− u

)
.

We start by examining the convergence of T1,n. Observe first that

T1,n =
√
n

1√
2

{
tr Σ̂n − u′Σ̂nu

}
−
{
tr Σ − u′Σu

}

{
tr Σ̂n − u′Σ̂nu

}1/2
+
{
tr Σ − u′Σu

}1/2

q(αnu)

‖q(αnu)‖

=
√
n

{
tr Σ̂n − u′Σ̂nu

}
−
{
tr Σ − u′Σu

}

2
√

2
{
tr Σ − u′Σu

}1/2
u
(
1 + oP(1)

)
as n→ ∞

in view of Theorem 2.1(i) and from the consistency of Σ̂n. Denote by M the

Gaussian centred limit of
√
n(Σ̂n − Σ) (see e.g. [24]). Since the map A 7→ trA−

u′Au is linear, it follows that

√
n

{
tr Σ̂n − u′Σ̂nu

}
−
{
tr Σ − u′Σu

}

2
√

2
{
tr Σ − u′Σu

}1/2

d−→ Y as n→ ∞

where Y is a centred Gaussian random variable. Now, clearly Z := Y u is a

Gaussian centred random vector and we have

(6.18) T1,n
d−→ Z as n→ ∞ .

The sequence T2,n is controlled in the following way: using Lemmas 6.4 and 6.5

and following the steps of the proof of Theorem 2.2(ii), we obtain

‖q(αnu)‖2
(1 − αn) =

1

2

(
tr Σ − u′Σu

)
+ O

(
‖q(αnu)‖−1

)

=
1

2

(
tr Σ − u′Σu

)
+ O

(√
1 − αn

)
as n→ ∞ .

As a consequence

(6.19) ‖T2,n‖ = O

(√
n(1 − αn)

)
= o(1) as n→ ∞ .

We conclude by controlling T3,n. Theorem 2.2 entails

‖T3,n‖ = OP

(√
n(1 − αn)

‖q̂n(αnu)‖
‖q(αnu)‖

)

= OP




√
n(1 − αn)

[
tr Σ̂n − u′Σ̂nu

tr Σ − u′Σu

]1/2


(6.20)

= OP

(√
n(1 − αn)

)
= oP(1) as n→ ∞

by the consistency of Σ̂n. Combining (6.18), (6.19) and (6.20) completes the proof.
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6.3. Proofs of the preliminary results

Proof of Lemma 6.1: The fact that ϕ is nonnegative and the inequality

(6.21) ∀r ≤ ‖x‖ , ϕ(x, r, v) ≤ 2 r2

are straightforward consequences of the Cauchy–Schwarz inequality. Further-

more, ϕ can be rewritten as

ϕ(x, r, v) = r2

[ ∥∥x− 〈x, v〉v
∥∥2

‖x− rv‖
[
‖x− rv‖ − 〈x− rv, v〉

]
]
.

Let us now remark that, if ‖x‖ < r, then, by the Cauchy–Schwarz inequality,

〈x− rv, v〉 = 〈x, v〉 − r < 0 which makes it clear that

(6.22) ϕ(x, r, v) 1l{‖x‖<r} ≤ r2

∥∥x− 〈x, v〉v
∥∥2

‖x− rv‖2
1l{‖x‖<r} =: ψ(x, r, v) 1l{‖x‖<r} .

Since ‖x− rv‖2
= ‖x‖2 − 2r〈x, v〉+ r2, the function ψ(x, ·, v) is differentiable on

(‖x‖, +∞) and some easy computations yield

∂ψ

∂r
(x, r, v) = 2 r

[
‖x‖2 − r〈x, v〉

]
∥∥x− 〈x, v〉v

∥∥2

‖x− rv‖4
.

If 〈x, v〉 ≤ 0 then ψ(x, ·, v) is increasing on (‖x‖, +∞) and thus

(6.23) ∀r > ‖x‖ , ψ(x, r, v) ≤ lim
r→+∞

ψ(x, r, v) = ‖x− 〈x, v〉v‖2 ≤ ‖x‖2 .

Otherwise, if 〈x, v〉 > 0 then ψ(x, ·, v) reaches its global maximum over [‖x‖,+∞)

at ‖x‖2/〈x, v〉 and therefore,

(6.24) ∀r > ‖x‖ , ψ(x, r, v) ≤ ψ

(
x,

‖x‖2

〈x, v〉 , v
)

= ‖x‖2 .

Collecting (6.22), (6.23) and (6.24) yields

(6.25) ϕ(x, r, v) 1l{‖x‖<r} ≤ ‖x‖2
1l{‖x‖<r} .

Combining (6.21) and (6.25) shows that ϕ(x, r, v) ≤ 2‖x‖2
for every r > 0 and

every v ∈ Sd−1
and completes the proof of the result.

Proof of Lemma 6.2: Let v ∈ R
d

and Wα(·, v) : R
d → R be the function

defined by

Wα(x, v) =

[∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1

− 1

]〈
x

‖q(αu)‖ − q(αu)

‖q(αu)‖ , v
〉
.
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For α close enough to 1, (2.1) entails

(6.26)

〈
αu− q(αu)

‖q(αu)‖ , v
〉

+ E
(
Wα(X, v)

)
+

1

‖q(αu)‖ E〈X, v〉 = 0 .

It is therefore enough to show that

(6.27) ‖q(αu)‖E
(
Wα(X, v)

)
→ −〈u, v〉 E〈X,u〉 as α ↑ 1 .

Since, for every x ∈ R
d
,

(6.28)

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
2

= 1 − 2

‖q(αu)‖

〈
x,

q(αu)

‖q(αu)‖

〉
+

‖x‖2

‖q(αu)‖2
,

it follows from a Taylor expansion and Theorem 2.1 that

(6.29) ‖q(αu)‖Wα(X, v) → −〈u, v〉 〈X,u〉 almost surely as α ↑ 1 .

Besides,
∣∣∣∣∣

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1

− 1

∣∣∣∣∣ =

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1

×
[
1 +

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥

]
−1

×
∣∣∣∣

2

‖q(αu)‖

〈
x,

q(αu)

‖q(αu)‖

〉
− ‖x‖2

‖q(αu)‖2

∣∣∣∣ ,

and the Cauchy–Schwarz inequality yields

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1〈

x

‖q(αu)‖ − q(αu)

‖q(αu)‖ , v
〉

≤ ‖v‖ .

Thus, using the triangular inequality and the Cauchy–Schwarz inequality, it fol-

lows that

|Wα(x, v)| ≤ ‖v‖
[
1 +

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥

]
−1 ‖x‖
‖q(αu)‖

[
2 +

‖x‖
‖q(αu)‖

]
.

Consequently, one has

‖q(αu)‖ |Wα(x, v)| 1l{‖x‖≤‖q(αu)‖} ≤ 3 ‖v‖ ‖x‖ 1l{‖x‖≤‖q(αu)‖} .

Furthermore, the reverse triangle inequality entails, for x ∈ R
d

such that ‖x‖ >
‖q(αu)‖: [

1 +

∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥

]
−1

≤ ‖q(αu)‖
‖x‖ ,

and therefore,

‖q(αu)‖ |Wα(x, v)| 1l{‖x‖>‖q(αu)‖} ≤ 3 ‖v‖ ‖x‖ 1l{‖x‖>‖q(αu)‖} .

Finally,

‖q(αu)‖ |Wα(X, v)| ≤ 3 ‖v‖ ‖X‖
so that the integrand in (6.27) is bounded from above by an integrable random

variable. One can now recall (6.29) and apply the dominated convergence theorem

to obtain (6.27). The proof is complete.
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Proof of Lemma 6.3: Let Zα : R
d → R be the function defined by

Zα(x) = 1 +

〈
x− q(αu)

‖x− q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
.

For α close enough to 1, (2.1) yields

(6.30)

〈
αu− q(αu)

‖q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
+ E

(
Zα(X)

)
= 0

and it thus remains to prove that

‖q(αu)‖2
E
(
Zα(X)

)
→ 1

2
E
∥∥X−〈X,u〉u

∥∥2
as α ↑ 1 .

To this end, rewrite Zα as

(6.31) Zα(x) = 1 −
∥∥∥∥

x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1 [

1 − 1

‖q(αu)‖

〈
x,

q(αu)

‖q(αu)‖

〉]
.

It thus follows from equation (6.28), Theorem 2.1 and a Taylor expansion that

Zα(x) =
1

2 ‖q(αu)‖2

〈
x −

〈
x,

q(αu)

‖q(αu)‖

〉
q(αu)

‖q(αu)‖ , x
〉 (

1 + o(1)
)

for all x ∈ R
d
. Using Theorem 2.1 again, we then get

(6.32)

‖q(αu)‖2Zα(X) → ‖X‖2−〈X,u〉2 = ‖X−〈X,u〉u‖2
almost surely as α ↑ 1 .

To conclude the proof, let ϕ : R
d×R+×Sd−1 → R be the function defined by

ϕ(x, r, v) = r2
[
1 +

〈x− rv, v〉
‖x− rv‖

]
.

Note that ‖q(αu)‖2Zα(x) = ϕ
(
x, ‖q(αu)‖, q(αu)/‖q(αu)‖

)
. By Lemma 6.1:

‖q(αu)‖2Zα(X) = ϕ
(
X, ‖q(αu)‖, q(αu)/‖q(αu)‖

)
≤ 2‖X‖2

and the right-hand side is an integrable random variable. Use then (6.32) and

the dominated convergence theorem to complete the proof.

Proof of Lemma 6.4: Let v ∈ R
d

and recall the notation

Wα(x, v) =

[∥∥∥∥
x

‖q(αu)‖ − q(αu)

‖q(αu)‖

∥∥∥∥
−1

− 1

]〈
x

‖q(αu)‖ − q(αu)

‖q(αu)‖ , v
〉

from the proof of Lemma 6.2. From (6.26) there, it is enough to show that

‖q(αu)‖ E

(
‖q(αu)‖Wα(X, v) + 〈u, v〉 〈X,u〉

)
→(6.33)

→ 1

2
〈u, v〉 E

∥∥X−〈X,u〉u
∥∥2 − 〈u, v〉 Var〈X,u〉

+ Cov
(
〈X,u〉, 〈X, v〉

)
− 〈u, v〉

∥∥E(X−〈X,u〉u)
∥∥2
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as α ↑ 1. Use now (6.28) in the proof of Lemma 6.2, Theorem 2.2(i) and a Taylor

expansion to obtain after some cumbersome computations that

‖q(αu)‖
(
‖q(αu)‖Wα(X, v) + 〈u, v〉 〈X,u〉

)
=

=
1

2
〈u, v〉 ‖X−〈X,u〉u‖2 − 〈u, v〉 〈X,u〉

(
〈X,u〉 − E〈X,u〉

)

+ 〈X,u〉
(
〈X, v〉 − E〈X, v〉

)
− 〈u, v〉

〈
X, E

(
X−〈X,u〉u

)〉

+

2∑

j=0

‖X‖j εj
(
α,X, q(αu)

)

with probability 1, where for all j ∈ {0, 1, 2}, εj(α, y, z) → 0 as max(1 − α,

‖y‖/‖z‖) ↓ 0. In particular

‖q(αu)‖
(
‖q(αu)‖Wα(X, v) + 〈u, v〉 〈X,u〉

)
→

→ 1

2
〈u, v〉

∥∥X−〈X,u〉u
∥∥2 − 〈u, v〉 〈X,u〉

(
〈X,u〉 − E〈X,u〉

)
(6.34)

−〈u, v〉
〈
X, E

(
X−〈X,u〉u

)〉
+ 〈X,u〉

(
〈X, v〉 − E〈X, v〉

)
,

almost surely as α ↑ 1. The proof shall be complete provided we can apply the

dominated convergence theorem to the left-hand side of (6.34). To this end, let

δ ∈ (0, 1) be such that

α ∈ (1 − δ, 1) and
‖X‖

‖q(αu)‖ < δ =⇒ max
0≤j≤2

∣∣εj(α,X, q(αu))
∣∣ ≤ 1 .

Equality (6.34) thus entails for α close enough to 1:

‖q(αu)‖
∣∣∣‖q(αu)‖Wα(X, v) + 〈u, v〉 〈X,u〉

∣∣∣ 1l{‖X‖<δ‖q(αu)‖} ≤
≤ P1

(
‖X‖

)
1l{‖X‖<δ‖q(αu)‖}

where P1 is a real polynomial of degree 2. Besides, it is a consequence of the

definition of Wα(X, v) and the Cauchy–Schwarz inequality that

‖q(αu)‖
∣∣∣‖q(αu)‖Wα(X, v) + 〈u, v〉 〈X,u〉

∣∣∣ 1l{‖X‖≥δ‖q(αu)‖} ≤

≤ 2(1 + δ) ‖v‖
δ2

‖X‖2
1l{‖X‖≥δ‖q(αu)‖} .

One can conclude that there exists a real polynomial P2 of degree 2 such that

‖q(αu)‖
∣∣∣‖q(αu)‖Wα(X, v) + 〈u, v〉 〈X,u〉

∣∣∣ ≤ P2

(
‖X‖

)

so that the integrand in (6.33) is bounded by an integrable random variable.

Recall (6.34) and apply the dominated convergence theorem to complete the

proof.
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Proof of Lemma 6.5: The proof is similar to that of Lemma 6.4. Recall

from the proof of Lemma 6.3 the notation

Zα(x) = 1 +

〈
x− q(αu)

‖x− q(αu)‖ ,
q(αu)

‖q(αu)‖

〉
.

From (6.30) there, it is enough to show that

‖q(αu)‖ E

(
‖q(αu)‖2Zα(X) − 1

2
E
∥∥X−〈X,u〉u

∥∥2

)
→(6.35)

→ E

(
〈X,u〉

[∥∥X−〈X,u〉u
∥∥2 −

〈
X, E

(
X−〈X,u〉u)

〉])

as α ↑ 1. We first use (6.28) in the proof of Lemma 6.2, equation (6.31) in the

proof of Lemma 6.3, Theorem 2.2(i) and a Taylor expansion to obtain after some

burdensome computations that

‖q(αu)‖
(
‖q(αu)‖2Zα(X) − 1

2

∥∥X−〈X,u〉u
∥∥2

)
=(6.36)

= 〈X,u〉
(∥∥X−〈X,u〉u

∥∥2 −
〈
X, E

(
X−〈X,u〉u)

〉)
+

3∑

j=0

‖X‖j εj
(
α,X, q(αu)

)

with probability 1, where for j ∈ {0, 1, 2, 3}, εj(α, y, z) → 0 as max(1 − α,

‖y‖/‖z‖) ↓ 0. Especially

‖q(αu)‖
(
‖q(αu)‖2Zα(X) − 1

2

∥∥X−〈X,u〉u
∥∥2

)
→(6.37)

→ 〈X,u〉
(∥∥X−〈X,u〉u

∥∥2 −
〈
X, E

(
X−〈X,u〉u

)〉)

as α ↑ 1. Our aim is now to apply the dominated convergence theorem to the

left-hand side of (6.35). To this end, pick δ ∈ (0, 1) such that

α ∈ (1 − δ, 1) and
‖X‖

‖q(αu)‖ < δ =⇒ max
0≤j≤3

∣∣εj
(
α,X, q(αu)

)∣∣ ≤ 1 .

Equality (6.36) thus entails for α close enough to 1:

‖q(αu)‖
∣∣∣‖q(αu)‖2Zα(X) − 1

2

∥∥X−〈X,u〉u
∥∥2
∣∣∣ 1l{‖X‖<δ‖q(αu)‖} ≤

≤ P1

(
‖X‖

)
1l{‖X‖<δ‖q(αu)‖}

where P1 is a real polynomial of degree 3. Moreover, the Cauchy–Schwarz in-

equality yields

‖q(αu)‖
∣∣∣‖q(αu)‖2Zα(X) − 1

2

∥∥X−〈X,u〉u‖2

∣∣∣ 1l{‖X‖≥δ‖q(αu)‖} ≤

≤ 4 + δ2

2 δ3
‖X‖3

1l{‖X‖≥δ‖q(αu)‖} .
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Consequently, there exists a real polynomial P2 of degree 3 such that

‖q(αu)‖
∣∣∣‖q(αu)‖2Zα(X) − 1

2

∥∥X−〈X,u〉u
∥∥2
∣∣∣ ≤ P2

(
‖X‖

)
.

We conclude that the integrand in (6.35) is bounded by an integrable random

variable. Recall (6.37) and apply the dominated convergence theorem to complete

the proof.
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1. INTRODUCTION

The problem of estimating the probability of success in a binomial model

has a very long history as well as very wide applications. Let us recall the def-

inition of a confidence interval for probability of success θ ∈ (0, 1) (see Cramér

(1946), Lehmann (1959), Silvey (1970); for a general definition of confidence in-

terval see Neyman (1934)):

A random interval
(
θ(X), θ(X)

)
is called a confidence interval for a param-

eter θ at the confidence level γ if

Pθ

{
θ(X)≤ θ ≤ θ(X)

}
≥ γ for all θ ∈ (0, 1) .

Here X denotes the number of successes in a sample of size n.

It is easy to note that for any d(n), g(n) > 0 the interval
(
θ(X) − d(n),

θ(X) + g(n)
)

is of course also a confidence interval. So an additional criterion

is needed for choosing a confidence interval. There are a lot different criterions.

Clopper and Pearson, who proposed the first confidence interval for θ, took under

consideration the equal risk of underestimation and overestimation. The problem

of the shortest confidence intervals was seldom considered in the past (Crow 1956,

Blyth and Hutchinson 1960, Blyth and Still 1983, Casella 1986). Zieliński (2010)

proposed a simple method of obtaining the shortest confidence interval for θ.

Unfortunately, the solution has a serious disadvantage: the proposed confidence

interval does not keep the nominal confidence level. So, in what follows a slight

modification is proposed. Namely, an auxiliary random variable Y ∈ (0, 1) is

applied and the shortest confidence interval is constructed on the basis of X + Y .

It appears that such a confidence interval does not have the above mentioned

disadvantage.

2. THE CONFIDENCE INTERVAL

Consider the binomial statistical model
({

0, 1, ..., n
}
,
{
Bin(n, θ), 0 < θ < 1

})
,

where Bin(n, θ) denotes the binomial distribution with probability distribution

function (pdf) (
n

k

)
θk

(1 − θ)n−k , k = 0, 1, ..., n .

It is well known that

∑

k≤x

(
n

k

)
θk

(1−θ)n−k
= F

(
n−x, x+1; 1−θ

)
= 1 − F

(
x+1, n−x; θ

)
,
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where F (a, b; ·) is the cumulative distribution function (cdf) of the beta distribu-

tion with parameters (a, b).

Let X denote a binomial Bin(n, θ) random variable. A confidence interval

for probability θ at the confidence level γ is of the form (Clopper and Pearson,

1934) (
F−1

(
X, n−X +1; γ1

)
; F−1

(X +1, n−X; γ2

))
,

where γ1, γ2 ∈ (0, 1) are such that γ2 − γ1 = γ and F−1
(a, b; α) is the α quantile

of the beta distribution with parameters (a, b), i.e.

Pθ

{
θ ∈

(
F−1

(
X, n−X +1; γ1

)
; F−1

(
X +1, n−X; γ2

))}
≥ γ , ∀ θ ∈ (0, 1) .

For X = 0 the left end is taken to be 0, and for X = n the right end is taken to

be 1.

Zieliński (2010) considered the length of the confidence interval when X = x

is observed:

d(γ1, x) = F−1
(
x+1, n−x; γ + γ1

)
− F−1

(
x, n−x+1; γ1

)
.

Let x be given. The existence as well as the method of finding 0 < γ∗

1 < 1−γ

such that d(γ∗

1 , x) is minimal was shown. Examples of shortest confidence inter-

vals (left , right) are given in Table 1.

Table 1: The shortest c.i. (n = 20, γ = 0.95).

x γ∗1 left right

0 0.00000 0.00000 0.13911
1 0.00000 0.00000 0.21611
2 0.00125 0.00261 0.28393
3 0.00561 0.01839 0.34998
4 0.00966 0.04318 0.41249
5 0.01302 0.07344 0.47156
6 0.01587 0.10763 0.52766
7 0.01840 0.14496 0.58118
8 0.02071 0.18496 0.63234
9 0.02288 0.22733 0.68126

10 0.02500 0.27196 0.72804

By symmetry, for x > n/2 we have γ∗

1(x) = (1 − γ) − γ∗

1(n − x), left(x) =

1−right(n−x) and right(x) = 1− left(n−x). The confidence level of the shortest

confidence interval for probability θ equals

n∑

x=0

(
n

x

)
θx

(1 − θ)n−x 1(x, θ) ,
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where

1(x, θ) =





1 if θ ∈

(
left(x), right(x)

)
,

0 otherwise .

For n = 20 and γ = 0.95 the confidence level is shown in Figure 1.

Figure 1: The confidence level of the shortest confidence interval:

n = 20, γ = 0.95.

Note that for some probabilities θ the confidence level is smaller than the

nominal one. This is in contradiction with the definition of the confidence interval

(see Neyman 1934, Cramér 1949, Lehmann 1959, Silvey 1970).

In what follows, a small modification is introduced, after which the resulting

shortest confidence interval does not have the above mentioned disadvantage, i.e.

its confidence level is not smaller than the prescribed one.

Let Y be a random variable conditionally distributed on the interval (0, 1)

with cdf GY |X=x(·). The confidence interval will be constructed on the basis of

two random variables: Zs = X + Y and Zd = X − (1 − Y ). The distributions of

those r.v.’s are easy to obtain:

Pθ

{
Zs ≤ t

}
=






0 if t≤ 0 ,

α
(
⌊t⌋, ⌈t⌉

)
Pθ

{
X = ⌊t⌋

}
if ⌊t⌋= 0 ,

∑
⌊t⌋−1

k=0
Pθ

{
X = k

}
+ α

(
⌊t⌋, ⌈t⌉

)
Pθ

{
X = ⌊t⌋

}
if 1≤ ⌊t⌋ ≤ n ,

1 if ⌊t⌋> n ,
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Pθ

{
Zd ≤ t

}
=






0 if t≤−1 ,

α
(
⌊t⌋,⌈t⌉

)
Pθ

{
X = ⌊t⌋+1

}
if ⌊t⌋=−1 ,

∑
⌊t⌋
k=0

Pθ

{
X=k

}
+ α

(
⌊t⌋+1,⌈t⌉

)
Pθ

{
X=⌊t⌋+1

}
if 0≤ ⌊t⌋ ≤ n−1 ,

1 if ⌊t⌋ ≥ n ,

where ⌊t⌋ denotes the greatest integer no greater than t and

⌈t⌉ = t − ⌊t⌋ and α
(
⌊t⌋, ⌈t⌉

)
=

∫
⌈t⌉

0

GY |X=⌊t⌋(du) .

It is easy to note that the distribution of Y may be taken as the uniform U(0, 1)

independently of X.

The shortest confidence interval (θL, θU ) at the confidence level γ will be

obtained as a solution with respect to θ of the following problem:






θU − θL = min! ,

PθL

{
Zs ≤ t

}
= γ2 ,

PθU

{
Zd ≥ t

}
= 1 − γ1 ,

γ2 − γ1 = γ .

Hence, for observed X = x and Y = y we have to find θL and θU such that






θU − θL = min! ,
∑x−1

k=0
PθL

{
X = k

}
+ yPθL

{
X = x

}
= γ2 ,

∑x
k=0

PθU

{
X = k

}
+ y PθU

{
X = x+1

}
= γ1 ,

γ2 − γ1 = γ ,

or, equivalently,






θU − θL = min! ,

(1−y)F
(
x, n−x+1; θL

)
+ yF

(
x+1, n−x; θL

)
= γ1 ,

(1−y)F
(
x+1, n−x; θU

)
+ yF

(
x+2, n−x−1; θU

)
= γ + γ1 .

Let

G(θ; n, x, y) = (1−y)F
(
x, n−x+1; θ

)
+ yF

(
x+1, n−x; θ

)
.

We take F (a, 0; θ) = 0 and F (0, b; θ) = 1. Then

θL = G−1
(γ1; n, x, y) and θU = G−1

(γ + γ1; n, x+1, y) .

In what follows we consider only the case x ≤ n/2. If x ≥ n/2, the role of

success and failure should be interchanged.
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The problem of finding the shortest confidence interval may be written as

the problem of finding γ1 which minimizes

d(γ1; n, x, y) = G−1
(γ + γ1; n, x+1, y) − G−1

(γ1; n, x, y)

for given y ∈ [0, 1], n and x.

Theorem 2.1. For x ≥ 2 and for all y ∈ (0, 1) there exists a two-sided

shortest confidence interval.

Proof: We have to show that for x ≥ 2 and for all y ∈ (0, 1) there exists

0 < γ1 < 1 − γ such that d(γ1; n, x, y) is minimal. The derivative of d(γ1; n, x, y)

with respect to γ1 equals

∂d(γ1; n, x, y)

∂γ1

=
1

LHS (γ1; n, x, y)
− 1

RHS (γ1; n, x, y)

where

LHS (γ1; n, x, y) =

(
1 − G−1

(
γ + γ1; n, x+1, y

))n−x−1

G−1
(
γ + γ1; n, x+1, y

)x+1

·
(

1 − y

G−1(γ + γ1; n, x + 1, y)B(x + 1, n − x)

+
y(

1 − G−1(γ + γ1; n, x + 1, y)
)
B(x + 2, n − x − 1)

)

and

RHS (γ1; n, x, y) =

(
1 − G−1

(γ1; n, x, y)

)n−x
G−1

(γ1; n, x, y)
x

·
(

1 − y

G−1(γ1; n, x, y)B(x, n − x + 1)

+
y(

1 − G−1(γ1; n, x, y)
)
B(x + 1, n − x)

)
.

Because

G−1
(0; n, x, y) = 0 and G−1

(1; n, x, y) = 1 ,

for 2 ≤ x ≤ n/2 we have:

if γ1 → 0 then LHS (γ1; n, x, y) > 0 and RHS (γ1; n, x, y) → 0
+ ,

if γ1 → 1 − γ then LHS (γ1; n, x, y) → 0
+

and RHS (γ1; n, x, y) > 0 .

Therefore, the equation

(∗) ∂d(γ1; n, x, y)

∂γ1

= 0

has a solution.
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It is easy to see that LHS (·; n, x, y) and RHS (·; n, x, y) are unimodal and

concave on the interval (0, 1 − γ). Hence, the solution of (∗) is unique. Let γ∗

1

denote the solution. Because
∂d(γ1;n,x,y)

∂γ1
< 0 for γ1 < γ∗

1 and
∂d(γ1;n,x,y)

∂γ1
> 0 for

γ1 > γ∗

1 , we have d(γ∗

1 ; n, x, y) = inf
{
d(γ1; n, x, y) : 0 < γ1 < 1 − γ

}
.

Theorem 2.2. For x = 1 there exists y∗ ∈ (0, 1) such that if Y < y∗ then

the shortest confidence interval is one-sided, and it is two-sided otherwise.

Proof: For x = 1 we have

∂d(γ1; n, 1, y)

∂γ1

=
1

LHS (γ1; n, 1, y)
− 1

RHS (γ1; n, 1, y)

where

LHS (γ1; n, 1, y) =

(
1 − G−1

(
γ + γ1; n, 2, y

))n−2

G−1
(
γ + γ1; n, 2, y

)2

·
(

1 − y

G−1(γ + γ1; n, 2, y)B(2, n − 2)

+
y(

1 − G−1(γ + γ1; n, 2, y)
)
B(3, n − 2)

)

=
1

2
(n−1)n

(
1−G−1

(γ + γ1; n, 2, y)
)n−3

G−1
(γ + γ1; n, 2, y)

·
(
2
(
1−G−1

(γ + γ1; n, 2, y)
)

+ y
(
n G−1

(γ + γ1; n, 2, y) − 2
))

and

RHS (γ1; n, 1, y) =

(
1 − G−1

(γ1; n, 1, y)

)n−1

G−1
(γ1; n, 1, y)

·
(

1 − y

G−1(γ1; n, 1, y)B(1, n)

+
y(

1 − G−1(γ1; n, 1, y)
)
B(2, n − 1)

)

= n
(
1 − G−1

(γ1; n, 1, y)
)n−2

·
(
1 − G−1

(γ1; n, 1, y) + y
(
n G−1

(γ1; n, 1, y) − 1
))

.

It can be seen that if γ1 → 0, then

LHS (γ1; n, 1, y) →
(
1 − G−1

(γ; n, 2, y)
)n−3

G−1
(γ; n, 2, y)

B(2, n − 1)

·
(
2
(
1 − G−1

(γ; n, 2, y)
)

+ y
(
n G−1

(γ; n, 2, y) − 2
))

,

RHS (γ1; n, 1, y) → (1 − y)n .

If γ1 → 1 − γ, then

LHS (γ1; n, 1, y) → 0
+

,

RHS (γ1; n, 1, y) > 0 .
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Because LHS (0; n, 1, 0) < RHS (0; n, 1, 0) and LHS (0; n, 1, 1) > RHS (0; n, 1, 1),

there exists y∗ such that LHS (0; n, 1, y∗) = RHS (0; n, 1, y∗). So, for y < y∗ the

shortest confidence interval is one-sided, and it is two-sided otherwise.

The value of y∗ may be found numerically as a solution of

LHS (0; n, 1, y∗) = RHS (0; n, 1, y∗) .

In Table 2 the values of y∗ for different n and confidence levels γ are given.

Table 2: Values of y∗.

n γ = 0.9 γ = 0.95 γ = 0.99 γ = 0.999

10 0.783163 0.870995 0.964326 0.994792
20 0.828155 0.904080 0.976758 0.997138
30 0.840388 0.912599 0.979647 0.997620
40 0.846076 0.916491 0.980924 0.997825
50 0.849360 0.918718 0.981643 0.997937
60 0.851499 0.920160 0.982104 0.998009
70 0.853002 0.921170 0.982424 0.998058
80 0.854117 0.921917 0.982660 0.998094
90 0.854976 0.922491 0.982840 0.998121

100 0.855658 0.922947 0.982983 0.998143
150 0.857680 0.924294 0.983403 0.998206
200 0.858678 0.924955 0.983608 0.998237
300 0.859666 0.925610 0.983810 0.998267
400 0.860156 0.925934 0.983910 0.998281
500 0.860449 0.926128 0.983969 0.998290
600 0.860644 0.926257 0.984009 0.998296
700 0.860784 0.926349 0.984037 0.998300
800 0.860888 0.926418 0.984058 0.998303
900 0.860969 0.926471 0.984075 0.998306

1000 0.861034 0.926514 0.984088 0.998308

The above considerations may be summarized as follows. Observe a r.v. X

distributed as Bin(n, θ) and draw Y distributed as U(0, 1). If X > n/2 then

consider X ′
= n−X. Calculate y∗, the solution of the equation LHS (y∗; 0, n, 1) =

RHS (y∗; 0, n, 1).

If X + Y ≤ 1 + y∗ then the confidence interval is of the form

(
0; G−1

(γ; n, X + 1, Y )

)
.

If X +Y ≥ 1+y∗ then find γ∗

1 which minimizes d(γ1; n, x, y). Then the confidence

interval takes on the form

(
G−1

(γ∗

1 ; n, X, Y ); G−1
(γ + γ∗

1 ; n, X + 1, Y )

)
.
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If X > n/2 is observed then the shortest confidence interval has the form






(
1 − G−1

(γ; n, X ′
+ 1, Y ); 1

)
if X ′

+Y ≤1+y∗ ,
(
1 − G−1

(γ + γ∗

1 ; n, X ′
+ 1, Y ); 1 − G−1

(γ∗

1 ; n, X ′, Y )

)
otherwise .

Theorem 2.3. Pθ{θL ≤ θ ≤ θU} ≥ γ for θ ∈ (0, 1), and P0.5{θL ≤ 0.5 ≤
θU} = γ.

Proof: Let θ ∈ (0,1) be given. Let xu, yu and γu be such that θ = G−1
(γ + γu;

n, xu, yu). Similarly, let xd, yd and γd be such that θ = G−1
(γd; n, xd + 1, yd).

Of course, xd < xu and γd ≤ γu. So

Pθ{θL ≤ θ ≤ θU} = Pθ{xd + yd ≤ X + Y ≤ xu + yu} = γ + γu − γd ≥ γ .

If θ = 0.5 then, by symmetry, xu = n − xd, yu = 1 − yd and γu = γd. Hence

P0.5{θL ≤ 0.5 ≤ θU} = γ.

The confidence level of the randomized shortest confidence interval for n =

20 and γ = 0.95 is shown in Figure 2.

Figure 2: The confidence level of the randomized shortest

confidence interval: n = 20, γ = 0.95.

In Clopper and Pearson’s times, calculating quantiles of a beta distribu-

tion was numerically complicated. Nowadays, it is very easy with the aid of
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computer software, so using the shortest confidence interval is recommended (a

short Mathematica program is given in the Appendix). To avoid problems with

wrong inference due to the confidence level, one should use randomized shortest

confidence intervals. Of course, the generated value y of a U(0, 1) r.v. must be

attached to the final report. So results now are given by three numbers: number

of trials, number of successes and the value y.

3. AN EXAMPLE

Consider an experiment consisting of n = 20 Bernoulli trials in which x = 3

successes were observed. Let γ = 0.95. The standard Clopper–Pearson confidence

interval
(
F−1

(3, 18; 0.025); F−1
(4, 17; 0.975)

)
takes on the form

(0.0321, 0.3789) .

The length of the standard Clopper–Pearson confidence interval equals 0.3468.

To calculate the randomized shortest confidence interval one has to draw a

value y of the auxiliary variable Y and then calculate the ends of the confidence

interval on the basis of x + y. The uniform random number generator gives

y = 0.0102162 and the randomized shortest confidence interval takes on the form

(0.0184, 0.2898) .

The length of that confidence interval is 0.2714. Note that the length of the

proposed confidence interval equals 78% of the length of the standard confidence

interval.

The final report may look as follows:

n = 20 , x = 3 , y = 0.0102162 , γ = 0.95 , θ ∈ (0.0184, 0.2898) .

In practical applications it is important to have conclusions as precise as

possible. Hence the use of the randomized shortest confidence intervals is recom-

mended, especially for small sample sizes. Those intervals are very easy to obtain

with the aid of the standard computer software (see Appendix).
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APPENDIX

Below we give a short Mathematica program for calculating γ∗

1 and the

ends of the randomized shortest confidence interval. Of course, one can also use

other mathematical or statistical packages (in a similar way) to find the values

of γ∗

1 .

In[1]:= << Statistics’ContinuousDistributions’

n=.; x=.; y=.; q=.;

Bet[a_,b_,x_]=CDF[BetaDistribution[a, b], x];

G[θ_,n_,x_,y_]=(1-y)*If[x==0,0,Bet[x,n-x+1,θ]]+y*If[x==n,0,Bet[x+1,n-x,θ]];

(*definition of the confidence interval*)

Lower[p_,n_,x_,y_]:=If[x<=1+Ystar,0,θ/.FindRoot[G[θ,n,x,y]==p,{θ,0.001,0.999}];

Upper[p_,n_,x_,y_]:=If[x>=n-1-Ystar,1,θ/.FindRoot[G[θ,n,x,y]==p,{θ,0.001,0.999}];

Length[p_,n_,x_,y_,γ_]:=Upper[γ+p,n,x+1,y]-Lower[p,n,x,y];

In[2]:= n=20;(*input n*)

x=7;(*input x (≤n/2)*)

q=0.95 ;(*input confidence level*)

y=RandomReal[];

(*calculate Y star*)

eps=10^(-10); al=0; ar=1;

While[ar-al>eps,{

aa=(ar+al)/2;

Dol=θ/.FindRoot[G[θ,n,2,aa]==q, {θ, 0.001, 0.999}];

LHS=(1-Dol)^(n-3)*Dol*(2*(1-Dol)+aa*(n*Dol-2))/Beta[2,n-1];

RHS=(1-aa)*n;

If[LHS>RHS,ar=aa,al=aa];}]

Ystar=aa;

(*calculate ends of the shortest confidence interval*)

pp=If[x+y<=1+Ystar,0,

p/.FindMinimum[Length[p,n,x,y,q],{p,0,1-q }][[2]]] (*probability γ1*)

Left=Lower[pp,n,x,y] (*left end*)

Right=Upper[q+pp,n,x,y] (*right end*)

y (*drawn U(0,1) r.v.*)
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