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Abstract:

• We consider (arc) density of a parameterized interval catch digraph (ICD) family

with random vertices residing on the real line. The ICDs are random digraphs where

randomness lies in the vertices and are defined with two parameters, a centrality pa-

rameter and an expansion parameter, hence they will be referred as central similarity

ICDs (CS-ICDs). We show that arc density of CS-ICDs is a U -statistic for vertices

being from a wide family of distributions with support on the real line, and provide

the asymptotic (normal) distribution for the (interiors of) entire ranges of centrality

and expansion parameters for one dimensional uniform data. We also determine the

optimal parameter values at which the rate of convergence (to normality) is fastest.

We use arc density of CS-ICDs for testing uniformity of one dimensional data, and

compare its performance with arc density of another ICD family and two other tests

in literature (namely, Kolmogorov–Smirnov test and Neyman’s smooth test of uni-

formity) in terms of empirical size and power. We show that tests based on ICDs

have better power performance for certain alternatives (that are symmetric around

the middle of the support of the data).
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• asymptotic normality; class cover catch digraph; intersection digraph; Kolmogorov–
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1. INTRODUCTION

Intersection graphs have received considerable attention in literature since

their introduction. The main reasons for this attention are their applications in

real life and their “tame” behavior, in the sense that many problems that are

NP-hard for graphs in general are solvable in polynomial time for intersection

graphs ([Prisner, 1994]). Intersection digraphs are introduced by [Beineke and

Zamfirescu, 1982] who called them “connection digraphs”. Let V be an index

set and (Sv, Tv) be ordered pairs of sets associated with the elements v of V ,

where Sv is called the source and Tv is called the target or sink set ([Douglas,

1996]). The intersection digraph associated with this collection of ordered pairs

is D = (V, A) which has vertex set V and arc (i.e., directed edge) set A with

(u, v) ∈ A iff Su ∩ Tv 6= ∅. When the source and sink sets are intervals, we obtain

interval digraphs ([Douglas, 1996]). If the set Tv resides in Sv for each v ∈ V ,

then the ordered pair set is a nest representation for the interval digraph, and if

Tv is just a point residing in Sv, it is called a catch representation. A digraph

is called an interval catch digraph (ICD), if it is an intersection digraph with a

catch representation ([Prisner, 1994]). The set of ordered pairs, {Sv, Tv = {pv}},
in the catch representation for the ICD is also called a “pointed set” where Sv

is a set with base point pv ([Prisner, 1989]). Equivalently, an ICD is the catch

digraph of a family of pointed intervals of T if (T,≤) is a totally ordered set.

Indeed, [Maehara, 1984] provides a simple characterization of ICDs for finite n,

for which one can always take T = R.

The ICDs we consider in this article are defined in a randomized setting.

Our ICDs are vertex random digraphs in which each vertex corresponds to a

random data point from a distribution, and arcs are defined by a bivariate relation

using the regions based on these data points. Our ICDs are a special type of

proximity graphs which were introduced by [Toussaint, 1980], and are closely

related to the class cover problem of [Cannon and Cowen, 2000] and proximity

catch digraphs (PCDs) which were introduced recently and have applications in

spatial data analysis and statistical pattern classification ([Ceyhan and Priebe,

2005]).

In this article, we define central similarity (CS) ICDs for one dimensional

data which may also be viewed as one dimensional version of the PCDs considered

in [Ceyhan et al., 2007]. We derive the asymptotic distribution of the arc density

of CS-ICDs for random data points. For undirected simple graphs, the edge

density (also called graph density) is defined as the ratio of number of edges

in the graph to the total number of edges possible with the same number of

vertices. So the edge density is 2 |E|/
(
n(n−1)

)
for a graph G = (V, E) with

|V | = n. The minimal density is 0, which is attained for empty graphs (i.e.,

for E = ∅) and the maximal density is 1, which is attained for complete graphs
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([Coleman and Moré, 1983]). Based on the graph density concept, ‘dense’ and

‘sparse’ graphs are defined. For a dense graph, graph density is close to 1 and

for sparse graphs it is close to 0. There are other quantities related to graph

density, such as average degree which is defined as 2 |E|/n ([Goldberg, 1984]);

edge density of a graph is also defined as |E|/n in literature (see, e.g., [Grünbaum,

1988]). Notice that both of these quantities are scaled versions of the edge or

graph density, 2 |E|/
(
n(n−1)

)
. On the other hand, density of a digraph is the

ratio of number of arcs in a given digraph with n vertices to the total number

of arcs possible (i.e., to the number of arcs in a complete symmetric digraph of

order n). Hence for a simple digraph D = (V, A) with vertex set |V | = n and arc

set A, digraph density (or arc density) is |A|/
(
n(n−1)

)
, which is the quantity

of interest in this article. Arc density is also referred to as relative density in

literature. Properly scaled, the arc density of the ICDs is a U -statistic, which

yields the asymptotic normality by the general central limit theory of U -statistics

([Lehmann, 2004]). Our ICDs can also be viewed as a generalization of class

cover catch digraphs (CCCDs) which was introduced by [Priebe et al., 2001].

CS-ICDs have two defining parameters, a centrality and an expansion parameter.

Here, we derive the explicit form of the asymptotic normal distribution of the arc

density of the CS-ICDs for the (interiors of) entire ranges of these parameters for

uniform one dimensional data from a class whose support being partitioned by

points from another class. We investigate the arc density of CS-ICDs for uniform

data in one interval (in R) and the analysis is generalized to uniform data in

multiple intervals (see Remark 4.1). We determine the optimal parameters for

the rate of convergence to normality and show that arc density of CS-ICDs has a

faster rate than that of the respective optimal parameter values of another ICD

family called proportional-edge (PE) ICDs which were introduced in [Ceyhan,

2012] (and therein referred to as proportional-edge proximity catch digraphs).

We employ the arc density of CS-ICDs for testing uniformity of one dimensional

data and compare its performance with two prevalent tests in literature (namely,

Kolmogorov–Smirnov test and Neyman’s smooth test) in terms of size and power

as well as arc density of the PE-ICDs. Testing uniformity of one-dimensional data

is of substantial importance in various fields, e.g., for assessing the goodness-of-fit

problems ([Marhuenda et al., 2005]). For this purpose, some graph theoretical

tools are used in literature although not so commonly; e.g., minimum spanning

trees are employed for testing uniformity of two-dimensional data ([Jain et al.,

2002]). However, to the best of author’s knowledge, arc density is not previously

employed for testing uniformity of one-dimensional data. The tests based on the

arc density of the ICD families have been shown to have better power performance

for certain types of alternatives (which are symmetric around the midpoint of the

support of the distribution) against uniformity. CS-ICDs can also be used for

testing spatial patterns between (two or more) classes of data points.

We define the ICDs and describe the random ICDs and CS-ICDs in

Section 2, define their arc density and provide preliminary results in Section 3,
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provide the distribution of the arc density for uniform data in one interval in

Section 4, present the size and power analysis and comparison with other tests as

well as some consistency results in Section 5, and discussion and conclusions in

Section 6. Shorter proofs are given in the main body of the article; while longer

proofs are deferred to the Appendix.

2. RANDOM INTERVAL CATCH DIGRAPHS

Let (Ω,F , Px) be a probability space equipped with a metric d : Ω×Ω →
[0,∞). Our random catch digraphs will be defined in a randomized setting where

vertices are randomly generated in Ω and the associated metric distance will

be taken to be the Euclidean distance. Let Xn = {X1, X2, ..., Xn} and Ym =

{Y1, Y2, ..., Ym} be two sets of Ω-valued random variables from classes X and Y,

respectively, whose joint probability distribution is FX,Y with marginals FX and

FY , respectively. Our random catch digraph will be based on Xn and Ym. More

specifically, we choose X points to be the vertices and put an arc from Xi to

Xj , based on a binary relation which measures the relative allocation of Xi and

Xj with respect to Y points. In particular, in our setting, the Y points will be

used to partition the support set Ω, and the relative position of Xi and Xj with

respect to Y points will be determined by the Euclidean distances between Xi,

Xj , and the Y points. Notice that the randomness is only on the vertices, hence

our catch digraphs are vertex random. Given Ym ⊆ Ω, let P(Ω) represent the

power set of Ω, then proximity map NY : Ω → P(Ω) maps each point x ∈ Ω to

a proximity region NY(x) ⊆ Ω. A vertex random catch digraph has the vertex

set V = Xn and arc set A defined by (Xi, Xj) ∈ A if Xj ∈ NY(Xi) for i 6= j.

Hence the binary relation defining the digraph is based on the proximity region,

NY , which indicates the relative allocation of X points with respect to Y points.

Notice also that arcs of the form (Xi, Xi) (i.e., loops) are not allowed in our catch

digraph definition. If loops were allowed, the corresponding digraph would have

been called a pseudodigraph according to some authors (see, e.g., [Chartrand et

al., 2010]). We also define arc probability, denoted pa(i, j), between two vertices

Xi and Xj as pa(i, j) := P ((Xi, Xj) ∈ A) for all i 6= j, i, j = 1, 2, ..., n. If Xn is

a random sample from FX , then pa(i, j) = pa for all i 6= j, i, j = 1, 2, ..., n. For

calculations leading to the distribution of arc density of ICDs, we also need a

concept which is dual to proximity regions. For a set B ⊆ Ω, the Γ1-region is the

image of the map Γ1(·, NY) : P(Ω) → P(Ω) that assigns the region Γ1(B, NY) :=

{z ∈ Ω: B ⊆ NY(z)} to the set B. For a point x ∈ Ω, we denote Γ1({x}, NY) as

Γ1(x, NY). The concept of Γ1-region is introduced in [Ceyhan and Priebe, 2005]

and is associated with another graph invariant called domination number (which

is denoted as γ). In a proximity graph, if a vertex falls in the Γ1-region, then the

domination number would equal to 1. For brevity, we drop the subscript Y in

the notation, NY , henceforth.
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2.1. Central Similarity ICDs

For one dimensional data, we have Ω = R, then there is a natural partition-

ing of the real line based on Y points. Let Y(i) be the ith order statistic of Ym for

i = 1, 2, ..., m, with the extension that −∞ =: Y(0) and Y(m+1) := ∞ and assume

Y(i) values are distinct (which happens with probability one for continuous dis-

tributions). The Y(i) values partition R into (m + 1) intervals, with
(
−∞, Y(1)

)

and
(
Y(m),∞

)
being the end intervals, and

(
Y(i−1), Y(i)

)
for i = 2, ..., m being the

middle intervals. For one dimensional data sets, Xn and Ym, we define the CS-

ICD with expansion parameter τ > 0 and centrality parameter c ∈ (0, 1) as fol-

lows. For x ∈
(
Y(i−1), Y(i)

)
(i.e., for x in a middle interval) with i ∈ {2, ..., m} and

Mc,i = Y(i−1) + c
(
Y(i) − Y(i−1)

)
∈
(
Y(i−1), Y(i)

)
, that is c×100 % of

(
Y(i) − Y(i−1)

)

is to the left of Mc,i, we define the CS proximity region as follows:

(2.1) N(x, τ, c) =

=





(
x− τ

(
x−Y(i−1)

)
, x+

τ (1−c)
c

(
x−Y(i−1)

))
∩
(
Y(i−1), Y(i)

)
if x∈

(
Y(i−1), Mc,i

)
,

(
x− c τ

1−c

(
Y(i)−x

)
, x+ τ

(
Y(i)−x

))
∩
(
Y(i−1), Y(i)

)
if x∈

(
Mc,i, Y(i)

)
.

Notice that dependence on Y points is explicit in the definition of the CS proxim-

ity region. Furthermore, the Euclidean distance is implicit in the terms
(
x−Y(i−1)

)

and
(
Y(i) − x

)
, where the former is d

(
x, Y(i−1)

)
and the latter is d

(
x, Y(i)

)
. This

definition yields two types of regions for N(x, τ, c), one with τ ∈ (0, 1] and the

other with τ > 1. For τ ∈ (0, 1], we have

(2.2)

N(x, τ, c) =





(
x− τ

(
x−Y(i−1)

)
, x +

τ (1−c)
c

(
x−Y(i−1)

))
if x∈

(
Y(i−1), Mc,i

)
,

(
x− c τ

1−c

(
Y(i)−x

)
, x + τ

(
Y(i)−x

))
if x∈

(
Mc,i, Y(i)

)
,

and with τ > 1, we have

(2.3) N(x, τ, c) =

=





(
Y(i−1), x +

τ (1−c)
c

(
x−Y(i−1)

))
if x∈

(
Y(i−1),

c Y(i)+τ (1−c) Y(i−1)

c+τ (1−c)

)
,

(
Y(i−1), Y(i)

)
if x∈

(
cY(i)+τ (1−c) Y(i−1)

c+τ (1−c) ,
(1−c) Y(i−1)+c τ Y(i)

1−c+c τ

)
,

(
x − c τ

1−c

(
Y(i)−x

)
, Y(i)

)
if x∈

(
(1−c) Y(i−1)+c τ Y(i)

1−c+c τ , Y(i)

)
.

For an illustration of N(x, τ, c) in the middle interval case, see Figure 1 (left)

where Y2 = {y1, y2} with y1 = 0 and y2 = 1 (hence Mc,2 = c).

Additionally, for x in an end interval, i.e., x∈
(
Y(i−1), Y(i)

)
with i∈ {1, m+1},

the central similarity proximity region depends on the expansion parameter only.
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y2 = 1
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1 − x

c = 1/2

2 x

c = 1/2 x

2 (1 − x)

Figure 1: Plotted in the top two rows are illustrations of the construction

of central similarity proximity regions, N(x, τ, c) with τ ∈ (0, 1],

Y2 = {y1, y2} with y1 = 0 and y2 = 1 (hence Mc,2 = c) and x ∈
(0, c) (first row) and x ∈ (c, 1) (second row); and in the bottom

two rows are the proximity regions associated with CCCD, i.e.,

N(x, τ = 1, c = 1/2) for an x ∈ (0, 1/2) (third row) and x ∈ (1/2, 1)

(fourth row).

So we denote the central similarity proximity region for an x in an end interval

as Ne(x, τ). Then with τ ∈ (0, 1], we have

(2.4) Ne(x, τ) =





(
x − τ

(
Y(1) − x

)
, x + τ

(
Y(1) − x

))
if x < Y(1) ,

(
x − τ

(
x − Y(m)

)
, x + τ

(
x − Y(m)

))
if x > Y(m) ,

and with τ > 1, we have

(2.5) Ne(x, τ) =





(
x − τ

(
Y(1) − x

)
, Y(1)

)
if x < Y(1) ,

(
Y(m) , x + τ

(
x − Y(m)

))
if x > Y(m) .

If x ∈ Ym, then we define N(x, τ, c) = {x} and Ne(x, τ) = {x} for all τ > 0, and

if x = Mc,i, then in Equation (2.1), we arbitrarily assign N(x, τ, c) to be one of
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the two defining intervals. For X from a continuous distribution, these special

cases in the construction of central similarity proximity region — X ∈ Ym and

X = Mc,i — occur with probability zero. Notice that τ > 0 implies x ∈ N(x, τ, c)

for all x ∈
[
Y(i−1), Y(i)

]
with i ∈ {2, ..., m} and x ∈ Ne(x, τ) for all x ∈

[
Y(i−1), Y(i)

]

with i ∈ {1, m + 1}. Furthermore, limτ→∞ N(x, τ, c) =
(
Y(i−1), Y(i)

)
for all x ∈(

Y(i−1), Y(i)

)
with i ∈ {2, ..., m}, so we define N(x,∞, c) =

(
Y(i−1), Y(i)

)
for all

such x. Similarly, limτ→∞ Ne(x, τ) =
(
Y(i−1), Y(i)

)
for all x ∈

(
Y(i−1), Y(i)

)
with

i ∈ {1, m + 1}, so we define Ne(x,∞) =
(
Y(i−1), Y(i)

)
for all such x. In the special

case of c =1/2 and τ =1, central similarity proximity region N(x, τ, c) is identical

to the proportional edge proximity region with centrality parameter 1/2 and

expansion parameter 2 (see [Ceyhan, 2012]).

In a vertex random CS-ICD, the vertex set is Xn and arc set A is defined

by (Xi, Xj) ∈ A ⇐⇒ Xj ∈ N(Xi, τ, c) for Xi, Xj with i 6= j in the middle in-

tervals and (Xi, Xj) ∈ A ⇐⇒ Xj ∈ Ne(Xi, τ) for Xi, Xj with i 6= j in the end

intervals. We denote such digraphs as Dn,m(τ, c). When τ = 1 and c = 1/2(
i.e., Mc,i =

(
Y(i−1) + Y(i)

)
/2
)

we have N(x, 1, 1/2) = B(x, r(x)) for an x in a

middle interval and Ne(x, 1) = B(x, r(x)) for an x in an end interval where

r(x) = d(x,Ym) = miny∈Ym
d(x, y) and the corresponding ICD is the CCCD of

[Priebe et al., 2001] or the proportional-edge PCD (PE-PCD) of [Ceyhan, 2012]

with expansion parameter 2 and centrality parameter 1/2. See also Figure 1

(right).

3. ARC DENSITY OF CS-ICDS

For a digraph Dn = (V,A) with vertex set V and arc set A, the arc density

of Dn which is of order |V| = n ≥ 2, denoted ρ(Dn), is defined as ρ(Dn) =
|A|

n(n−1)

([Janson et al., 2000]) where | · | stands for the set cardinality function. So ρ(Dn)

is the ratio of the number of arcs in the digraph Dn to the number of arcs in

the complete symmetric digraph of order n, which is n(n − 1). For n ≤ 1, we set

ρ(Dn) = 0.

Let Iij = I
(
(Xi, Xj) ∈ A

)
= I
(
Xj ∈ N(Xi)

)
. Then for an ICD (hence for a

CS-ICD), we can write the arc density as

ρ(Dn) =
2

n(n − 1)

∑

i<j

hij

where hij := (Iij + Iji)/2 Since the digraph is based on a relation that is not

symmetric, hij is defined as half of the number of arcs between Xi and Xj in order

to produce a symmetric kernel with finite variance ([Lehmann, 2004]). Notice that

E
[
ρ(Dn)

]
= E [h12] = pa
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and

0 ≤ Var
[
ρ(Dn)

]
=

2

n(n − 1)
Var [h12] +

4(n − 2)

n(n − 1)
Cov [h12, h13] ≤ 1/4

where

Var[hij ] = Var [h12] =
1

4
Var

[
I12 + I21

]
= (pa +psa)/2 − (1−pa)

2
,

where psa = P
({

(Xi, Xj), (Xj , Xi)
}
⊂ A

)
is the symmetric arc probability and

Cov [h12, h13] = E [h12h13] − p2
a ,

with

4E [h12h13] = 4E
[
(I12 + I21)(I13 + I31)

]

= P
(
{X2, X3} ⊂ N(X1)

)
+ 2 P

(
X2 ∈ N(X1), X3 ∈ Γ1(X1, N)

)

+ P
(
{X2, X3} ⊂ Γ1(X1, N)

)
.

See [Ceyhan, 2012] for the derivations. Since ρ(Dn), is a one-sample U -statistic

of degree 2 and is an unbiased estimator of the arc probability pa, a CLT for

U -statistics ([Lehmann, 2004]) yields
√

n
[
ρ(Dn) − pa

] L−→ N(0, 4 ν) as n → ∞,

where
L−→ stands for convergence in law and N(µ, σ2

) stands for the normal

distribution with mean µ and variance σ2
provided ν = Cov [hij , hik] > 0 for all

i 6= j 6= k, i, j, k ∈ {1, 2, ..., n}.

Since E
[
|hij |3

]
≤ 1, for ν > 0, the sharpest rate of convergence in the

asymptotic normality of ρ(Dn) is

(3.1)

sup
t∈R

∣∣∣∣∣P
(√

n
(
ρ(Dn) − pa

)
√

4 ν
≤ t

)
− Φ(t)

∣∣∣∣∣ ≤ 8 K pa (4ν)
−3/2 n−1/2

= K
pa√
n ν3

,

where K is a constant and Φ(t) is the distribution function for the standard

normal distribution ([Callaert and Janssen, 1978]).

3.1. Distribution of the arc density of CS-ICDs

We consider CS-ICDs for which Xn and Ym are random samples from FX

and FY , respectively, so that the joint distribution of X, Y is FX,Y ∈ F(R) where

F(R) :=

{
FX,Y on R with P (X =Y ) = 0

and the marginals, FX and FY , are non-atomic

}
.
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Then the order statistics of Xn and Ym are distinct with probability one.

We denote such digraphs as Dn,m(F, τ, c) and focus on the random variable

ρn,m(F,τ, c) := ρ
(
Dn,m(F,τ, c)

)
. Clearly 0≤ ρn,m(F,τ, c)≤ 1, and ρn,m(F,τ, c) > 0

for nontrivial digraphs.

We first partition the real line based on Y points. Along this line, we let

Y[i] :=
{
Y(i−1), Y(i)

}
, Ii :=

(
Y(i−1), Y(i)

)
, and X[i] :=Xn∩Ii for i = 1, 2, ..., (m +1).

Let D[i](F, τ, c) be the component of the random CS-ICD induced by the vertices

in X[i] (and based on Y[i]). Then we have a disconnected digraph with subdi-

graphs, each might be null or itself disconnected and denoted as D[i](F, τ, c) for

i = 1, 2, ..., (m + 1). Let A[i] be the arc set of D[i](F, τ, c), and ρ
[i]

(F, τ, c) de-

note the arc density of D[i](F, τ, c); ni :=
∣∣X[i]

∣∣, and Fi be the distribution FX

restricted to Ii for i ∈ {1, 2, ..., m+ 1}. Furthermore, let Mc,i ∈ Ii be the point so

that it divides the interval Ii in ratios c and 1 − c. Since we have at most m + 1

subdigraphs D[i](F, τ, c) each of which having at most ni(ni − 1) arcs, it follows

that we can have at most n
T

:=
∑m+1

i=1 ni(ni−1) arcs in the digraph Dn,m(F, τ, c).

We adjust the arc density for the entire digraph as

(3.2) ρ̃n,m(F, τ, c) :=
|A|
n

T

=

∑m+1
i=1 |A[i]|

n
T

=
1

n
T

m+1∑

i=1

(
ni(ni −1)

)
ρ

[i]
(F, τ, c) .

Hence, ρ̃n,m(F, τ, c) is called as the adjusted arc density and is a mixture of the

ρ
[i]

(F, τ, c) values, since
ni (ni−1)

n
T

≥ 0 for each i and

m+1∑

i=1

ni (ni − 1)

n
T

= 1. We first

focus on the simpler random variable ρ
[i]

(F, τ, c). The almost sure (a.s.) results

follow from the marginal distributions FX and FY being non-atomic in the rest

of this section.

Lemma 3.1. For i ∈ {1, (m + 1)} (i.e., in the end intervals) if ni ≤ 1,

then ρ
[i]

(F, τ, c) = 0 for all τ > 0. Moreover, if ni > 1, then ρ
[i]

(F, τ, c) ≥ 1/2 a.s.

for all τ > 1.

Proof: By symmetry, distribution of ρ
[i]

(F, τ, c) is same for i = 1, m + 1.

So we only consider i = m + 1 (i.e., the right end interval). If nm+1 ≤ 1, then by

definition ρ
[m+1]

(τ, c) = 0. So, assume nm+1 >1 and let X[m+1] = {Z1,Z2, ...,Znm+1}
with Z(j) being the corresponding order statistics. Then there is an arc from

Z(j) to each Z(k) for k < j, with j, k ∈ {1, 2, ..., nm+1} (and possibly to some

other Zl) for all τ > 1, since Ne

(
Z(j), τ

)
=
(
Y(m), Z(j) + τ

(
Z(j)−Y(m)

))
and so

Z(k) ∈ Ne

(
Z(j), τ

)
. This implies that there are at least 0+1+2+ ···+nm+1−1 =

nm+1(nm+1−1)/2 arcs in D[m+1](τ, c). Then ρ
[m+1]

(τ, c) ≥
(
nm+1(nm+1−1)/2

)
/(

nm+1(nm+1 −1)
)

= 1/2.

Let Dn,m(F, τ, c) be a CS-ICD with n > 0 and m > 0. Then we obtain the

following lower bound for ρn,m(F, τ, c) with τ > 1.
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Theorem 3.1. Let k1 and k2 be two natural numbers defined as k1 :=∑m
i=2

(
ni,ℓ(ni,ℓ −1)/2 + ni,r(ni,r −1)/2

)
and k2 :=

∑
i∈{1,m+1} ni(ni−1)/2, where

ni,ℓ :=
∣∣Xn ∩

(
Y(i−1), Mc,i

)∣∣ and ni,r :=
∣∣Xn ∩

(
Mc,i, Y(i)

)∣∣. Then for τ > 1, we

have (k1 + k2)/n
T
≤ ρn,m(F, τ, c) ≤ 1 a.s.

Proof: We have k2 as in Lemma 3.1 for the end intervals (i.e., for i ∈
{1, (m +1)}). In the middle intervals, i.e., for i ∈ {2, 3, ..., m}, let Xi,ℓ := X[i] ∩(
Y(i−1), Mc,i

)
= {U1, U2, ..., Uni,ℓ

}, and Xi,r :=X[i]∩
(
Mc,i, Y(i)

)
= {V1, V2, ..., Vni,r

}.
Furthermore, let U(j) and V(k) be the corresponding order statistics. For τ > 1,

there is an arc from U(j) to U(k) and possibly to some other Ul for k < j with

j, k, l ∈ {1, 2, ..., ni,ℓ}, and similarly there is an arc from V(j) to V(k) and pos-

sibly to some other Vl for k > j with j, k, l ∈ {1, 2, ..., ni,r}. Therefore, we have

ρn,m(F,τ,c)≥ (k1+k2)/n
T
, since there are at least ni,ℓ(ni,ℓ −1)/2+ni,r(ni,r−1)/2

arcs in D[i](F, τ, c).

Theorem 3.2. When the expansion parameter is infinity (i.e., τ = ∞),

we have ρ
[i]

(τ =∞, c) = I(ni >1) and ρn,m(τ =∞, c) =1 a.s. for i =1, 2, 3, ..., m+1

and ni > 1.

Proof: For τ = ∞, if ni ≤ 1, then ρ
[i]

(τ =∞, c) = 0. So we assume ni > 1

and let i = m + 1. Then Ne(x,∞) =
(
Y(m),∞

)
for all x ∈

(
Y(m),∞

)
. Hence

D[m+1](∞, c) is a complete symmetric digraph of order nm+1, which implies

ρ
[m+1]

(τ =∞, c) = 1. By symmetry, the same holds for i = 1. For i ∈ {2, 3, ..., m}
and ni > 1, we have N(x,∞, c) = Ii for all x ∈ Ii, hence D[i](∞, c) is a complete

symmetric digraph of order ni, which implies ρ
[i]

(∞, c) = 1. Then ρn,m(∞, c) =

∑m+1
i=1

ni(ni−1) ρ
[i]

(∞,c)

n
T

= 1, since when ni ≤ 1, ni has no contribution to n
T
, and

when ni > 1, we have ρ
[i]

(∞, c) = 1.

4. DISTRIBUTION OF THE ARC DENSITY OF CS-ICDS FOR

UNIFORM DATA

Let Xn = {X1, X2, ..., Xn} be a random sample from FX = U(δ1, δ2), the

uniform distribution on the bounded interval (δ1, δ2), and let Ym be a random

sample from non-atomic FY with support S(FY ) ⊆ (δ1, δ2). Then FX,Y ∈ F(R).

Suppose we have a realization of Ym as Ym = {y1, y2, ..., ym} with the order statis-

tics satisfying δ1 < y(1) < y(2) < ··· < y(m) < δ2, with the extension that y(0) := δ1

and y(m+1) := δ2. Then the distribution of Xi restricted to Ii is FX |Ii
= U(Ii).

We provide the distribution of the arc density of Dn,m(τ, c) for the whole range

of the parameters τ and c. The following “scale invariance” for CS-ICDs will
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allow us to consider the special case of the unit interval (0, 1) as the support of

X points, thereby simplifying the computations in our subsequent analysis.

Theorem 4.1 (Scale Invariance Property). Let Ym be a set of m distinct

Y points in a bounded interval (δ1, δ2) and Xn be random sample from U(δ1, δ2).

Then the distribution of ρ
[i]

(τ, c) is independent of Y[i] (and hence independent of

the restricted support interval Ii) for all i ∈ {1, 2, ..., m+1}, τ > 0, and c ∈ (0, 1).

Proof: Let δ1 and δ2 and Ym be as in the hypothesis. Any U(δ1, δ2) random

variable can be transformed into a U(0, 1) random variable by φ(x) = (x − δ1)/

(δ2−δ1), which maps intervals (t1, t2) ⊆ (δ1, δ2) to intervals
(
φ(t1), φ(t2)

)
⊆ (0, 1).

That is, if X ∼ U(δ1, δ2), then we have φ(X) ∼ U(0, 1) and P
(
X ∈ (t1, t2)

)
=

P
(
φ(X) ∈

(
φ(t1), φ(t2)

))
for all (t1, t2) ⊆ (δ1, δ2). The distribution of ρ

[i]
(τ, c) is

obtained by calculating such probabilities. So, without loss of generality, we can

assume X[i] is a set of iid (independent identically distributed) random variables

from the U(0, 1) distribution. That is, the distribution of ρ
[i]

(τ, c) does not depend

on Y[i] and hence does not depend on the restricted support interval Ii.

For τ = ∞, we have ρ
[i]

(τ =∞, c) = 1 a.s. for any non-atomic FX with

support in (δ1, δ2), hence the scale invariance of ρ
[i]

(τ =∞, c) holds for all Xn

from any such FX . Based on Theorem 4.1, we may assume each Ii as the unit

interval (0, 1) for uniform data. If x ∈ Ii for i ∈ {2, ..., m} (i.e., in the middle

intervals), when transformed to (0, 1), the central similarity proximity region for

x ∈ (0, 1) with parameters c ∈ (0, 1) and τ > 0 is

(4.1) N(x, τ, c) =





(
(1− τ)x,

(
1+

(1−c)
c τ

)
x
)
∩ (0, 1) if x ∈ (0, c) ,

(
x− c τ

(1−c) (1− x), x + (1− x)τ
)
∩ (0, 1) if x ∈ (c, 1) .

In particular, for τ ∈ (0, 1], we have

(4.2) N(x, τ, c) =





(
(1− τ)x,

(
1+

(1−c)
c τ

)
x
)

if x ∈ (0, c) ,

(
x− c τ

(1−c) (1− x), x + (1− x)τ
)

if x ∈ (c, 1) ,

and for τ > 1, we have

(4.3) N(x, τ, c) =





(
0,
(
1 +

(1−c)
c τ

)
x
)

if x ∈
(
0, c

c+(1−c) τ

)
,

(0, 1) if x ∈
(

c
c+(1−c) τ , c τ

1−c+c τ

)
,

(
x− c τ

(1−c) (1− x), 1
)

if x ∈
(

c τ
1−c+c τ , 1

)
,

and N(x = c, τ, c) is arbitrarily taken to be one of the two defining intervals above.

But the case of “X = c” happens with probability zero for uniform X.
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Furthermore, when transformed to (0, 1), if x is in the left end interval (i.e.,

x ∈ I1), we have Ne(x, τ) =
(
max

(
0, x− τ (1−x)

)
, min

(
1, x+ τ (1−x)

))
; and if x

is in the right end interval (i.e., x ∈ Im+1), we have Ne(x, τ) =
(
max

(
0, (1−τ)x

)
,

min
(
1, (1+ τ)x

))
.

Each subdigraph D[i](τ, c) is itself a random CS-ICD (for brevity of nota-

tion, we suppress the dependence on the uniform distribution). The distribution

of the arc density of D[i](τ, c) is given in the following theorem.

Theorem 4.2. Let ρ
[i]

(τ, c) be the arc density of subdigraph D[i](τ, c) of

the CS-ICD based on U(δ1, δ2) data and Ym be a set of m distinct Y points in

(δ1, δ2). Then, as ni → ∞, for τ ∈ (0,∞) we have,

(i)
√

ni

[
ρ

[i]
(τ, c)−pa(τ, c)

] L−→N(0, 4 ν(τ, c)), where pa(τ, c) =E
[
ρ

[i]
(τ, c)

]

is the arc probability and ν(τ, c) = Cov[h12, h13] in the middle inter-

vals (i.e., for i ∈ {2, ..., m}), and

(ii)
√

ni

[
ρ

[i]
(τ, c)−pe

a(τ, c)
] L−→N(0, 4 νe(τ)), where pe

a(τ, c) = E
[
ρ

[i]
(τ, c)

]

is the arc probability and νe(τ) = Cov[h12, h13] in the end intervals

(i.e., for i ∈ {1, m + 1}).

Proof: By Theorem 1 of [Ceyhan, 2012], arc density of CS-ICDs is a U -

statistic, and hence the proofs follow by the asymptotic normality of U -statistics

provided the asymptotic variance is positive. In particular, in (i) by the scale

invariance for uniform data (see Theorem 4.1), a middle interval can be assumed

to be the unit interval (0, 1). Then

E
[
ρ

[i]
(τ, c)

]
= E[h12] = P

(
X2 ∈ N(X1, τ, c)

)
= pa(τ, c)

which is the arc probability. Similarly in (ii) we have E
[
ρ

[i]
(τ, c)

]
= E[h12] =

P
(
X2 ∈ Ne(X1, τ)

)
= pe

a(τ, c).

Furthermore, in (i), for τ ∈ (0,∞), h12 and h13 tend to be high (resp. low)

together, if the proximity region N(X1, τ, c) is large (resp. small), since 2h12 =

I
(
X2 ∈ N(X1, τ, c)

)
+ I
(
X1 ∈ N(X2, τ, c)

)
is the number of arcs between X1 and

X2 in the ICDs. Hence the asymptotic variance of ρ
[i]

(τ, c), Cov[h12, h13] =

4 ν(τ, c) > 0. The same holds for end intervals in (ii) as well.

For middle intervals, the asymptotic variance in Theorem 4.2 can be written

as

Cov[h12, h13] =
1

4

(
P2N + 2 PNG + P2G

)
− pa(τ, c)

2 ,

where

P2N := P
(
{X2, X3} ⊂ N(X1, τ, c)

)
,

PNG := P
(
X2 ∈ N(X1, τ, c), X3 ∈ Γ1(X1, τ, c)

)
,

and
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P2G := P
(
{X2, X3} ⊂ Γ1(X1, τ, c)

)
.

Similarly, for end intervals

Cov[h12, h13] =
1

4

(
P2N,e + 2 PNG,e + P2G,e

)
− pe

a(τ, c)
2 ,

where

P2N,e := P
(
{X2, X3} ⊂ Ne(X1, τ)

)
,

PNG,e := P
(
X2 ∈ Ne(X1, τ), X3 ∈ Γ1,e(X1, τ)

)
,

and

P2G,e := P
(
{X2, X3} ⊂ Γ1,e(X1, τ)

)
,

with Γ1,e(x, τ) being the Γ1-region corresponding to Ne(x, τ) in the end in-

tervals. Furthermore, for τ = ∞, E
[
ρ

[i]
(∞, c)

]
= E [h12] = µ(∞, c) = P

(
X2 ∈

N(X1,∞, c)
)

= P (X2 ∈ Ii) = 1 and ν(∞, c) = 0. Thus, ρ
[i]

(τ =∞, c) = 1 a.s. and

the CLT result does not hold for τ = ∞.

4.1. Distribution of the arc density of Dn,2(τ, c)

In this section, we find the distribution of the arc density of Dn,2(τ, c) for

τ > 0 and c ∈ (0, 1). For the special case of m = 2, we have Y2 = {y1, y2} and

δ1 = y1 < y2 = δ2, and only one middle interval and the two end intervals are

empty. By Theorems 4.1 and 4.2, the asymptotic distribution of any ρ
[i]

(τ, c) for

the middle intervals with m > 2 will be same as the asymptotic distribution of

density of the CS-ICD based on U(0, 1) data.

For τ ∈ (0, 1], the proximity region is defined as in Equation (4.2) and for

τ > 1, the proximity region is as in Equation (4.3).

Theorem 4.3. For τ ∈ (0,∞), we have
√

n
[
ρn,2(τ, c) − pa(τ, c)

] L−→
N
(
0, 4 ν(τ, c)

)
, as n → ∞, where

(4.4) pa(τ, c) =





τ
2 if 0 < τ < 1 ,

τ (1+2 c (τ−1)(1−c))
2 (c τ−c+1)(τ+c−c τ) if τ > 1 ,

and

4 ν1(τ, c) = κ1(τ, c) I(0 < τ < 1) + κ2(τ, c) I(τ > 1)

where

κ1(τ, c) =
τ2
(
c2 τ3 − 3 c2 τ2 − c τ3

+ 2 c2 τ + 3 c τ2 − c2 − 2 c τ − τ2
+ c + τ

)

3 (c τ − c + 1) (c + τ − c τ)
,
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and

κ2(τ, c) =

[
c (1− c)

(
2 c4 τ5 − 7 c4 τ4 − 4 c3 τ5

+ 8 c4 τ3
+ 14 c3 τ4

+ 3 c2 τ5

− 2 c4 τ2 − 16 c3 τ3 − 7 c2 τ4 − c τ5 − 2 c4 τ + 4 c3 τ2
+ 12 c2 τ3

+ c4
+ 4 c3 τ − 6 c2 τ2 − 4 c τ3 − 2 c3 − 3 c2 τ + 4 c τ2

+ c2
+ c τ − τ2

)]/[
3
(
c τ − c + 1

)3(
c τ − c − τ

)3]
.

The proof is provided in the Appendix. Notice that pa(τ, c) is indepen-

dent of the centrality parameter c for τ ∈ (0, 1]. See Figure 2 for the surface

plots of pa(τ, c) and 4 ν(τ, c). Observe that limτ→∞ ν(τ, c) = 0, so the CLT re-

sult fails for τ = ∞ and limτ→0 ν1(τ, c) = 0, but CS-ICD is not defined for τ = 0.

0

0.5

1

0
1

2
3

4
5

0

0.2

0.4

0.6

0.8

τ
c

0

0.5

1

0
1

2
3

4
5

0

0.02

0.04

0.06

0.08

0.1

τ
c

Figure 2: The surface plots of the asymptotic mean pa(τ, c) (top) and

the variance 4 ν(τ, c) (bottom) as a function of τ and c for

τ ∈ (0, 5] and c ∈ (0, 1), respectively.

The sharpest rate of convergence in Theorem 4.3 is K pa(τ,c)√
n ν(τ,c)3

(the explicit form

not presented) and is minimized at τ ≈ 1.55 and c = 1/2 which is found by setting
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the first order partial derivatives of this convergence rate with respect to τ and c

to zero and solving for τ and c numerically and verified by the surface plot.

Surface plots for the convergence rates f c
CS

(τ, c) and f c
PE

(τ, c) are presented in

Figure 3. At optimal parameters within their entire ranges, the convergence rate

for the arc density of CS-ICDs is faster than that of the PE-PCDs.
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Figure 3: The surface plots of the rates of convergence to normality for

PE- and CS-ICDs for the entire ranges of expansion parameter, t,
and centrality parameter, c. The rate for CS-ICD is plotted in

light gray, while that for PE-PCDs is plotted in dark gray.

Each of the following special cases follows as a corollary of Theorem 4.3.

Special Cases:

Case (i): τ > 0 and c = 1/2.

As n → ∞, we have
√

n
[
ρn,2(τ, 1/2) − pa(τ, 1/2)

] L−→ N
(
0, 4 ν(τ, 1/2)

)
,

where

(4.5) pa(τ, 1/2) =

{
τ/2 if 0 < τ < 1 ,

τ/(τ + 1) if τ > 1 ,

and

(4.6) 4 ν (τ, 1/2) =





τ2 (1+2 τ−τ2−τ3)
3 (τ+1)2

if 0 < τ ≤ 1 ,

2 τ−1
3 (τ+1)2

if τ > 1 .

Case (ii): τ = 1 and c ∈ (0, 1).

As n → ∞, we have
√

n
[
ρn,2(1, c) − pa(1, c)

] L−→ N
(
0, 4 ν(1, c)

)
, where

pa(1, c) = 1/2 and 4 ν(1, c) = c (1− c)/3.
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Case (iii): τ = 1 and c = 1/2:

As n → ∞, we have
√

n
[
ρn(1, 1/2)−pa(1, 1/2)

] L−→ N
(
0, 4 ν(1, 1/2)

)
, where

pa(1, 1/2) = 1/2 and 4 ν(1, 1/2) = 1/12.

4.2. Arc density in the case of end intervals

(for U
(
δ1, y(1)

)
or U

(
y(m), δ2

)
data)

With m ≥ 1, we have the end intervals, I1 =
(
δ1, y(1)

)
and Im+1 =

(
y(m), δ2

)
.

In these intervals, the proximity and Γ1-regions are only dependent on x and τ

(but not on c). Let D[i](1, c) be the subdigraph of the CS-ICD based on uniform

data in (δ1, δ2) where δ1 < δ2 and Ym be a set of m distinct Y points in (δ1, δ2).

By scale invariance of Theorem 4.1, we can assume that each of the end intervals

is (0, 1).

For τ ∈ (0, 1] and x in the right end interval, the proximity region is

(4.7) Ne(x, τ) =





(
(1− τ)x, (1+ τ)x

)
if x ∈

(
0, 1/(1+ τ)

)
,

(
(1− τ)x, 1

)
if x ∈

(
1/(1+ τ), 1

)
,

and for τ > 1 and x in the right end interval, the proximity region is

(4.8) Ne(x, τ) =





(
0, (1+ τ)x

)
if x ∈

(
0, 1/(1+ τ)

)
,

(0, 1) if x ∈
(
1/(1+ τ), 1

)
.

Theorem 4.4. For i ∈ {1, m +1} and τ ∈ (0,∞), as ni → ∞, we have
√

ni

[
ρ

[i]
(τ) − pe

a(τ)

] L−→ N(0, 4 νe(τ)), where

(4.9) pe
a(τ, c) =





τ (τ+2)
2 (τ+1) if 0 < τ < 1 ,

1+2 τ
2 (τ+1) if τ > 1 ,

and

(4.10) 4 νe(τ) =





τ2(4 τ+4−2 τ4−4 τ3−τ2)

3 (τ+1)3
if 0 < τ < 1 ,

τ2

3 (τ+1)3
if τ > 1 .

The proof is provided in the Appendix. See Figure 4 for the plots of pe
a(τ)

and 4 νe(τ) with τ ∈ (0, 10]. Notice that limτ→∞ νe(τ) = 0, so the CLT result fails

for τ = ∞ and limτ→0 νe(τ) = 0. The sharpest rate of convergence in Theorem 4.4
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is K pe
a(τ)√

ni νe(τ)3
(explicit form not presented) for i ∈ {1, m +1} and is minimized

at τ ≈ 0.58 which is found numerically as before and verified by the plot of

pe
a(τ)/

√
νe(τ)3.
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Figure 4: The plots of the asymptotic mean pe
a(τ, c) (top) and the vari-

ance 4 νe(τ) (bottom) for the end intervals as a function of τ
for τ ∈ (0, 10].

The distribution for the special case of τ = 1 follows as a corollary to The-

orem 4.4: For x in the right end interval, Ne(x, 1) =
(
0, min(1, 2x)

)
for x ∈ (0, 1).

For i∈ {1, m+1} (i.e., in the end intervals), as ni →∞, we have
√

ni

[
ρ

[i]
(1)−pe

a(1)

]

L−→ N(0, 4 νe(1)), where pe
a(1) = 3/4 and 4 νe(1) = 1/24.

Remark 4.1. Multiple Interval Case: In the case of m > 2, we have two

versions of arc density. One is defined as the (adjusted) arc density as in Equation
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(3.2). The asymptotic distribution of ρn,m(τ, c) is the same as given in Theorem11

of [Ceyhan, 2012]. As for the other one, if we consider the entire data set Xn,

then we have n vertices. So we can also consider the arc density as ρn,m(τ, c) =

|A| /
(
n (n −1)

)
. The asymptotic distribution for ρn,m(τ, c) is as in Theorem 12

of [Ceyhan, 2012].

Remark 4.2. Use of Arc Density for Testing Multi-Class Spatial Interactions:

Arc density of CS-ICDs can be employed in testing two-class spatial point pat-

terns of one-dimensional data, as was done in [Ceyhan et al., 2007] for two-

dimensional data. In particular, for two classes of points, X and Y, whose support

is in a compact interval in R, we assume some form of complete spatial random-

ness of X points (i.e., X points having uniform distribution in the support interval

irrespective of the distribution of the Y points) as our null hypothesis. The al-

ternative patterns of interest are segregation of X from Y points or association

of X points with Y points. Association is the pattern in which the points from

the two classes tend to occur close to each other, while segregation is the pattern

in which the points from the same class tend to cluster together. In our context,

association implies that X points are clustered around Y points, while segrega-

tion implies that X points are clustered away from the Y points. The use of arc

density of CS-ICDs requires number of X points to be much larger compared

to the number of Y points. Furthermore, the power comparisons are possible for

data from large families of distributions to obtain the optimal parameters against

segregation and association alternatives.

Remark 4.3. Extension of Central Similarity Proximity Regions to Higher

Dimensions: In this article, we discuss the construction of CS-ICDs for one-

dimensional data and asymptotic distribution of their arc density (for uniform

data). The CS-ICDs in this article can be viewed as the one-dimensional version

of the PCDs introduced in [Ceyhan et al., 2007], which also contains the extension

to higher dimensions.

5. TESTING UNIFORMITY WITH THE ARC DENSITY

OF CS-ICDS

We can employ the arc density of the CS-PCDs for testing uniformity based

on its asymptotic normality. Let Xi
iid∼ F for i = 1, 2, ..., n where F has a bounded

interval support (a, b) in R. Then our null hypothesis is Ho : F = U(a, b). For

testing this hypothesis, we use the arc density ρn,2(τ, c) whose asymptotic dis-

tribution is provided in Theorem 4.3 for uniform data. By the scale invariance

property of the distribution of ρn,2(τ, c) (see Theorem 4.1), without loss of gen-

erality, we can assume (a, b) = (0, 1). In this approach, for each choice of (τ, c),
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we compute the arc density, ρn,2(τ, c), and standardize it as

Rn(τ, c) :=
√

n
(
ρn,2(τ, c) − pa(τ, c)

)/√
4ν(τ, c)

and use the standardized version as our test statistic. The critical values for the

one- and two-sided alternatives are based on the standard normal distribution,

e.g., the level α critical value for the left-sided alternative is zα, the α×100
th

percentile of the standard normal distribution.

For comparative purposes, we employ the arc density of PE-ICDs intro-

duced by [Ceyhan, 2012]. In particular, the defining regions for the PE-ICD

are

(5.1) NPE(x, r, c) =





(0, r x) ∩ (0, 1) if x ∈ (0, c) ,

(
1 − r (1− x), 1

)
∩ (0, 1) if x ∈ (c, 1) .

The asymptotic distribution of the arc density of PE-ICDs for uniform data was

provided in [Ceyhan, 2012]. Furthermore, we also employ Kolmogorov–Smirnov

(KS) test for uniform distribution and Neyman’s smooth test of uniformity since

the former is one of the most commonly used tests and latter is recommended for

a large family of alternatives for testing uniformity by [Marhuenda et al., 2005].

5.1. Empirical size analysis

We first perform an extensive size analysis to determine for which parameter

values the arc density of the ICDs have the appropriate size at specific sample sizes

in testing Ho : F = U(0, 1). For this purpose, we partition the ranges of τ and c

for the CS-ICD as follows. We take c = .01, .02, ..., .99 and τ = .01, .02, ..., 10.00,

and consider each (τ, c) combination on a 99×1000 grid with n = 20, 50, 100.

Similarly, we partition the ranges of r and c for the PE-ICD as follows. We

use the same partition above for c and take r = 1.01, ..., 10.00, and consider each

(r, c) combination on a 99×900 grid with n = 20, 50, 100. For each (τ, c) (and

(r, c)) combination, we generate Nmc = 10000 samples of size n iid from U(0, 1)

distribution. Then for each sample generated, we compute the arc densities and

use their standardized versions as approximate test statistics. Empirical size

is estimated as the frequency of number of times p-value is significant at α =

.05 level divided by Nmc = 10000. We also estimate the empirical sizes for KS

and Neyman’s smooth tests with n = 20 and Nmc = 10000. With Nmc = 10000,

empirical size estimates larger than .0536 (resp. less than .0464) are deemed liberal

(resp. conservative). These bounds are determined using a binomial test for the

proportions with n = 10000 trials at .05 level of significance. The size estimates

for KS and Neyman’s smooth test are found to be about the nominal level (i.e.,

between .0464 and .0536).
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Figure 5: Two-level (i.e., black and white) image plots for the empirical size esti-

mates for the arc density of CS-ICD and PE-PCD based on n = 20 and

Nmc = 10000 the two-sided (TS), right-sided (RS) and left-sided (LS)

alternatives. The empirical sizes not significantly different from 0.05

are represented with black dots, and others are represented with white

dots. For CS-ICD, we take τ = .01, .02, ..., 10.00 and for PE-ICD, we take

r = 1.01, 1.02, ..., 10.00 and for both ICDs, we take c = .01, .02, ..., .99

with Nmc = 10000 Monte Carlo replications.
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We present the empirical size estimates in two-level image plots (with em-

pirical sizes not significantly different from 0.05 in black, and others in white)

for the two-, right- and left-sided alternatives for the CS-ICD with n = 20, c =

.01, .02, ..., .99 and τ = .01, .02, ..., 10.00 and for the PE-ICD with n = 20, c =

.01, .02, ..., .99 and r = 1.01, 1.02, ..., 10.00 in Figure 5. The size estimates for

n = 50 and 100 have the similar trend with sizes closer to nominal level for more

parameter combinations (not presented). Notice that there is symmetry in size

estimates around c = 1/2. For the one-sided alternatives, the regions at which

size estimates are appropriate are somewhat complementary, in the sense that,

the sizes are appropriate for the parameter combinations in one region for left-

sided alternative and mostly in its complement for the right-sided alternative for

each ICD family. Notice also that arc density of PE-ICD has appropriate size

for the two-sided alternative for more parameter combinations, and arc density

of CS-ICD has appropriate size for the left-sided alternative for more parameter

combinations.

5.2. Empirical power analysis

We perform power analysis to determine which tests have higher power

under various alternatives against uniformity. For the alternatives, we use three

families of non-uniform distributions with support in (0, 1) which are proposed

by [Stephens, 1974]:

(I) F1(x, δ) =
(
1 − (1− x)

δ
)

I(0 ≤ x < 1) + I(x ≥ 1) ,

(II) F2(x, δ) = (2
δ−1xδ

) I(0≤x<1/2) +
(
1− 2

δ−1
(1−x)

δ
)

I(1/2≤x<1)

+ I(x ≥ 1) ,

(III) F3(x, δ) =
(
1/2 − 2

δ−1
(1/2 − x)

δ
)

I(0 ≤ x < 1/2)

+
(
1/2 + 2

δ−1
(x − 1/2)

δ
)

I(1/2 ≤ x < 1) + I(x ≥ 1) .

That is,

HI
a : F = F1(x, δ) with δ > 1 ,

HII
a : F = F2(x, δ) with δ > 1 ,

HIII
a : F = F3(x, δ) with δ > 1 .

The corresponding pdfs for the distributions in the alternatives are

(I) f1(x) =
(
δ(1− x)

δ−1
)

I(0<x<1) ,

(II) f2(x) = (δ 2
δ−1xδ−1

) I(0<x≤1/2)+
(
δ 2

δ−1
(1−x)

δ−1
)

I(1/2<x<1) ,

(III) f3(x) =
(
δ(1−2x)

δ−1
)

I(0<x≤1/2)+
(
δ(2x−1)

δ−1
)

I(1/2<x<1) .
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See Figure 6 for sample plots of the pdfs with various parameters under

types I–III alternatives. Notice that in all the alternatives, δ = 1 corresponds to

U(0, 1) distribution. Under type I alternatives, with increasing δ > 1, the pdf of

the distribution is more clustered around 0 and less clustered around 1; under

type II alternatives, with increasing δ > 1, the pdf of the distribution gets more

clustered around 1/2 (and less clustered around the end points, 0 and 1); and

under type III alternatives, with increasing δ > 1, the pdf of the distribution is

more clustered around the end points, 0 and 1, and less clustered around 1/2.

Under the type II and III alternatives, the pdfs are symmetric around 1/2.
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Figure 6: Sample plots for the pdfs of the alternative types I (top left), II (top right),

and III (bottom) with δ = 2, 3, 4. The horizontal line at 1 indicates the pdf

for U(0, 1) distribution (with δ = 1).

We generate n = 20 points according to the specified alternatives with var-

ious parameters. In particular, for each of HI
a–HIII

a , we consider δ = 2, 3, 4.

With CS-ICDs, we use (τ, c) for τ = .01, .02, ..., 10.00 and c = .01, .02...., .99 and

with PE-ICDs, we use (r, c) for r = 1.01, .02, ..., 10.00 and c = .01, .02...., .99.

With CS-ICDs, for each (τ, c) and δ combination, and with PE-ICDs, for each

(r, c) and δ combination, we replicate the sample generation Nmc = 10000 times.

We compute the power using the asymptotic critical values based on the normal

approximation.
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Table 1: The maximum power estimates for the one-sided alternatives

unadjusted (the first entry) and adjusted (the second entry)

for size. In the size adjusted version, only the parameter com-

binations at which the tests have appropriate level are kept.

RS: right-sided, LS: left-sided alternatives.

CS-ICD PE-ICD
alternative

RS LS RS LS

HI
a 0.86, .73 .65, .30 .93, .75 .41, .41

HII
a 0.93, .90 .29, .00 .91, .90 .60, .00

HIII
a 0.41, .18 .81, .81 .27, .13 .81, .81
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Figure 7: Image plots for the power estimates for PE-ICD with r ∈ (1, 10) and

c ∈ (0, 1) and CS-ICD with τ ∈ (0, 10) and c ∈ (0, 1) under HI
a : δ = 2,

with n = 20, Nmc = 10000. The intensity of the gray level increases

as the power increases, and the same darkness scale is used for each

image plot. RS stands for right-sided, LS stands for left-sided alter-

natives.
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We only keep the parameter combinations ((r, c) for PE-ICDs and (τ, c)

for CS-ICDs) at which the tests have the appropriate level (of .05), i.e., if the

test is conservative or liberal for the one-sided version in question, we ignore that

parameter combination in our power estimation, as they would yield unreliable

results. We call this procedure the “size adjustment” for the power estimation.

The maximum values of the power estimates under the one-sided alternatives

adjusted and unadjusted for the correct size are provided in Table 1. Observe that

the size adjustment has a substantial effect on the highest power values (and tends

to reduce the highest power estimates). Furthermore, under the alternatives HI
a

and HII
a , the ICDs yield higher power for the right-sided alternative, while under

HIII
a the ICDs yield higher power for the left-sided alternative. In particular,

PE-ICDs have high power for the right-sided alternative under HI
a and HII

a ,

and left-sided alternative under HIII
a with virtually zero power for the opposite

direction under these alternatives. On the other hand, CS-ICDs tend to have a
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Figure 8: Image plots for the power estimates for PE-ICD with r ∈ (1, 10) and

c ∈ (0, 1) and CS-ICD with τ ∈ (0, 10) and c ∈ (0, 1) under HII
a and

HIII
a with δ = 2, n = 20, Nmc = 10000. The gray level intensity and

alternative labeling are as in Figure 7.
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similar trend, but the power estimates for the direction of the one-sided version

depends on the parameters. That is, e.g., under HI
a , CS-PCD has high power

estimates for the right-sided alternative at some (τ, c) combinations, and for the

left-sided alternative at some other (τ, c) values. The gray-scale image plots of

the power estimates under HI
a are presented in Figure 7 and under HII

a and HIII
a

in Figure 8 (with the higher power estimates are represented with darker gray

level). Notice that the power estimates are symmetric around c = 1/2 under HII
a

and HIII
a , which is in agreement with the symmetry in the corresponding pdfs

(around c = 1/2).

The maximum power estimates and at which parameters of the ICDs they

occur are presented in Table 2. We also plot the histograms of the power esti-

mates (normalized to have unit area) under the alternatives in Figure 9. Under

HI
a , although the maximum power estimate for the right-sided alternative is at-

tained by PE-ICD test at (r, c) = (1.02, .78), the CS-ICD test tends to have higher

power estimates. Among the competitors, the power estimate is .50 for Neyman’s

smooth test and .82 for KS test (with the right-sided alternative), and the ICD

tests have lower power compared to KS-test. Likewise, under HII
a , although the

maximum power estimate for the right-sided alternative is attained by CS-ICD

at (τ, c) = (1.96, .49), the PE-ICD test tends to have higher power estimates.

Among the competitors, the power estimate is .39 for Neyman’s test and .14 for

KS test (with the right-sided alternative), and the ICD tests have higher power

compared to Neyman’s test. Finally, under HIII
a , the PE-ICD test tends to

have higher power estimates. Among the competitors, the power estimate is .59

Table 2: The maximum power estimates and the parameter combinations

at which they occur. RS: right-sided, LS: left-sided alternatives

and β̂ stands for empirical power estimates.

For CS-ICDs

HI
a HII

a HIII
a

RS LS RS LS RS LSbβ 0.65–.73 .20–.29 .85–.90 — .15–.18 .75–.80

τ (7,9) (6.5,10) (2.75,4) — (2.5,3) (1,2.5)

c ≈ .2 (.96,1) (.35,.65) — (0, .04) ∪ (.96, 1) (.4,.6)

For PE-ICDs with RS alternatives

HI
a HII

a HIII
abβ 0.65–.75 .88–.89 .80–.81

r ≈ 1 ≈ 3.8 ≈ 2.5

c ≈ .86 (.2,.8) (.33,.67)
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for Neyman’s test and .23 for KS test (with the left-sided alternative), and the

ICD tests have higher power compared to Neyman’s test for most parameter

combinations.
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Figure 9: Histograms of the power estimates the alternatives HI
a–HIII

a for

the appropriate one-sided alternatives for CS-ICDs and PE-ICDs.

The vertical lines are the power estimates for KS (dotted lines)

and Neyman’s tests (dashed lines). LS: left-sided, RS: right-sided

alternatives.
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5.3. Consistency of the tests based on the density of ICDs

Any reasonable test should have higher power under the alternatives as the

sample size increases, and this property is reflected in the concept of consistency.

We will prove consistency of the tests under the alternatives based on the arc

density of ICDs in a general framework, and then extend the results to our al-

ternative types for certain parameter combinations. Let Ho : F = U(0, 1) and the

alternative Ha : F 6= U(0, 1) is parameterized by δ so that δ = δo corresponds to

the null hypothesis and with increasing δ > δo, arc probability tends to increase

or decrease.

Theorem 5.1 (Consistency). Let ρn,2(δ) be the arc density of the ICD

based on data from F parameterized by δ and pa(δ) be the corresponding

arc probability. Moreover, suppose 4ν(δ) be the covariance term Cov[h12, h13].

If the arc probability increases as δ increases (resp. decreases), the test against

Ha : F 6= U(0, 1) which rejects for Rn > z1−α (resp. for Rn < zα) are consistent.

Proof: Under Ho (i.e., for Xn being a random sample from U(0, 1)), the

arc density is ρn,2(δo), and arc probability is pa(δo) and Cov(h12, h13) is ν(δo).

Similarly, under Ha (i.e., for Xn being a random sample from F ) these quantities

are denoted similarly with δo being replaced with δ. Suppose arc probability

increases as δ > δo increases. Then pa(δ) > pa(δo) and the asymptotic variances

4ν(δo)/n and 4ν(δ)/n tends to zero as n → ∞. As standardized arc density,

Rn, tends to standard normal distribution or is degenerate with unit mass at

pa(δo) or pa(δ) under both null and alternative hypotheses, respectively, the power

under Ha tends to 1 as n goes to infinity, and hence consistency follows. The

consistency for the alternative under which arc probability increases as δ decreases

is similar.

The alternatives, HI
a–HIII

a , are parameterized with δ so that δo = 1. Under

HI
a and HII

a with F = Fi(x, δ) for i = 1, 2 the test based on CS-ICD and PE-ICD

which rejects for Rn > z1−α is consistent for most of the parameter combinations.

In particular, let ρn,2(F, τ, c) be the arc density, pa(F, τ, c) and ν(F, τ, c) be the arc

probability and Cov(h12, h13) for CS-ICD with Xn being a random sample from

F . Then under HI
a , pa(F1, τ, c) > pa(U , τ, c) for c ≤ 1/2, since under F1, Xi are

more likely to be in (0, 1/2) and hence more likely to be closer to c and hence the

N(τ, c) regions are more likely to be larger which implies higher arc probability

compared to the null case. Moreover, for c closer to 1 and large τ (say τ ≥ 5),

under F1, the N(τ, c) regions are more likely to be smaller which implies lower

arc probability compared to the null case. Under HII
a , pa(F1, τ, c) > pa(U , τ, c)

for all c away from 0 and 1 and τ > 0, since under F1, Xi are more likely to be
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closer to 1/2 and hence the N(τ, c) regions are more likely to be larger which

implies higher arc probability compared to the null case. Moreover, for c closer

to 1 and large τ (say τ ≥ 5), under F1, the N(τ, c) regions are more likely to be

smaller which implies lower arc probability compared to the null case. Similarly,

under HII
a , pa(F2, τ, c) < pa(U , τ, c) for all c away from 0 and 1 and τ > 0. Hence

consistency follows for these one-sided tests for such parameter combinations.

In fact, with careful bookkeeping one can determine the parameter ranges for

which consistency holds for each of the one-sided alternatives. For example,

under HI
a : δ = 2 with c ∈ (0, 1), for τ ∈ (0, 1), pa(F1, τ, c) > (resp. <) pa(U , τ, c)

for τ > (resp. <)
2c2−6c+3

(2c−1)(2c−3) , hence consistency for the right-sided (resp. left-

sided) alternative follows; likewise, for τ > 1, pa(F1, τ, c) > (resp. <) pa(U , τ, c)

for τ < (resp. >)
2c+1−

√
3

2c−3+
√

3
, hence consistency for the right-sided (resp. left-sided)

alternative follows. The corresponding three dimensional figure to illustrate these

regions of consistency for the one-sided alternatives are plotted in Figure 10 in the

Appendix. Under HII
a : δ = 2, pa(F2, τ, c) > pa(U , τ, c) for all c ∈ (0, 1) and τ > 0,

hence consistency for the right-sided alternative follows; and under HIII
a : δ = 2,

pa(F3, τ, c) < pa(U , τ, c) for all c ∈ (0, 1) and τ > 0, hence consistency for the left-

sided alternative follows. The actual ranges of (τ, c) for the one-sided alternatives

with other specific δ values can also be determined by careful calculations.

Similarly, let ρPE
n,2 (F, r, c) be the arc density, pPE

a (F, r, c) and νPE(F, r, c)

be the arc probability and Cov(h12, h13) for PE-ICD with Xn being a random

sample from F , respectively. Then under HI
a , pPE

a (F1, r, c) > pPE
a (U , r, c) for c

close to 0, since for F1, Xi are more likely to be around 0 and hence the NPE(r, c)

regions are more likely to be larger which implies higher arc probability compared

to the null case. Under HII
a (resp. HIII

a ), pPE
a (F2, r, c) > (resp. <) pPE

a (U , r, c)

for c around 1/2, since for F2 (resp. F3), Xi are more likely to be closer to 1/2

(resp. 0 and 1) and hence the NPE(r, c) regions are more likely to be larger (resp.

smaller) which implies higher (resp. lower) arc probability compared to the null

case. Hence consistency follows for the right-sided (resp. left-sided) tests for such

parameter combinations. In fact, under HI
a : δ = 2:

• With c ∈ (0, 1/2):

— pPE
a (F1, r, c) > (resp. <) pPE

a (U , r, c), for 1 < r < 1/(1 − c) and

r < (resp. >)
8c3−6c2−6c+3

6c4−16c3+18c2−12c+3
;

— pPE
a (F1, r, c) > (resp. <) pPE

a (U , r, c), for 1/(1 − c) < r < 1/c and

(r, c) is in (resp. outside) the region bounded by r = 1/(1 − c)

and the implicit curve 3 r4c4 − 4 r4c3 − 8 r3c3
+ 9 r3c2

+ 6 r2c2 −
6 cr2

+ 3 r − 3 = 0 ;

— pPE
a (F1, r, c) > pPE

a (U , r, c) for r ≥ 1/c .

Hence consistency for the right-sided (resp. left-sided) alternative follows

for these parameter values.
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• With c ∈ (1/2, 1):

— pPE
a (F1, r, c) > pPE

a (U , r, c) for 1 < r < 1/c hence consistency for the

right-sided alternative follows ;

— pPE
a (F1, r, c) > (resp. <) pPE

a (U , r, c), for 1/c < r < 1/(1 − c) and

(r, c) is in (resp. outside) the region bounded by c = 1 and the

implicit curve 3 r4c4 − 12 r4c3
+ 18 c2r4 − 3 r3c2 − 12 cr4 − 6 r2c2

+

6 cr3
+ 3 r4

+ 6 cr2 − 3 r3 − r + 1 = 0 ;

— pPE
a (F1, r, c) > pPE

a (U , r, c) for r ≥ 1/(1 − c) .

Hence consistency for the right-sided (resp. left-sided) alternative follows

for these parameter values.

These regions of consistency for the one-sided alternatives are plotted in

Figure 11 in the Appendix. Under HII
a : δ = 2, pPE

a (F2, r, c) > pPE
a (U , r, c) for

all c ∈ (0, 1) and r > 1, hence consistency for the right-sided alternative follows;

and under HIII
a : δ = 2, pPE

a (F3, r, c) < pPE
a (U , r, c) for all c ∈ (0, 1) and r > 1

(except (r, c) inside a region that is part of [1, 1.4]×([9.98, 1] ∪ [0, .02]) where

the inequality is reversed), hence consistency for the left-sided (resp. right-sided)

alternative follows. These regions of consistency for the one-sided alternatives are

presented in Figure 12 in the Appendix. The actual ranges of (r, c) for the one-

sided alternatives with other specific δ values can also be determined by careful

calculations.

5.4. Extension of the methodology to test non-uniform distributions

We can modify the CS-ICD approach to test any distribution in a bounded

interval in R. Since any bounded interval (a, b) with a < b can be mapped to

(0, 1), we can assume the support for the distribution in question to be (0, 1).

First we prove the below result which is instrumental for this purpose.

Proposition 5.1. Let Xi be iid from an absolutely continuous distribu-

tion F with support (0, 1) and let Xn = {X1, X2, ..., Xn}. Define the proximity

map NF (x, τ, c) := F−1
(
N
(
F (x), τ, c

))
. More specifically for τ ∈ (0, 1],

(5.2) NF (x, τ, c) =

=





(
F−1

(
(1− τ)F (x)

)
, F−1

((
1+

(1−c)
c τ

)
F (x)

))
if x∈

(
0, F−1

(c)
)
,

(
F−1

(
F (x)− c τ

(1−c)

(
1−F (x)

))
, F−1

(
F (x)+

(
1−F (x)

)
τ
))

if x∈
(
F−1

(c), 1
)
,
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and for τ > 1,

(5.3) NF (x, τ, c) =

=





(
0, F−1

((
1+

(1−c)
c τ

)
F (x)

))
if x ∈

(
0, F−1

(
c

c+(1−c) τ

))
,

(0, 1) if x ∈
(
F−1

(
c

c+(1−c) τ

)
, F−1

(
c τ

1−c+c τ

))
,

(
F−1

(
F (x)− c τ

(1−c)

(
1−F (x)

))
, 1

)
if x ∈

(
F−1

(
c τ

1−c+c τ

)
, 1
)

.

Then the arc density of the ICD based on NF and Xn has the same distribution

as ρn,2(U , τ, c) (provided in Theorem 4.3).

Proof: Let Ui := F (Xi) for i = 1, 2, ..., n and Un := {U1, U2, ..., Un}. Hence,

by probability integral transform, Ui
iid∼U(0,1). So the image of NF (x, r, c) under F

is F
(
NF (x, r, c)

)
= N

(
F (x), r, c

)
for (almost) all x∈ (0,1). Then F

(
NF (Xi, r, c)

)
=

N
(
F (Xi), r, c

)
= N(Ui, r, c) for i = 1, 2, ..., n. Since Ui

iid∼ U(0, 1), the distribution

of the arc density of the ICD based on N(·, τ, c) and Un is given in Theorem4.3.

Observe that for any j, Xj ∈ NF (Xi, τ, c) iff Xj ∈ F−1
(
N
(
F (Xi), τ, c

))
iff F (Xj)∈

N
(
F(Xi), τ, c

)
iff Uj ∈N(Ui,τ,c) for i =1, 2, ..., n. Hence the desired result follows.

A similar construction is available for the PE-ICDs.

In Proposition 5.1, we have shown that if the defining proximity region for

our ICD is defined as NF (x, τ, c) := F−1
(
N
(
F (x), τ, c

))
where F is an increasing

function in (a, b) with a < b, the exact (and asymptotic) distribution of the arc

density based on the ICD for NF is the same as ρn,2(U , τ, c). Hence we can test

whether the distribution of any data set is from F or not with the methodology

proposed in this article. For example, to test a “data set is from F (x) = x2

with S(F ) = (0, 1)” (so the inverse is F−1
(x) =

√
x and the corresponding pdf is

f(x) = 2x I(0 < x < 1)), we need to compute the arc density for the ICD based

on the following proximity region: For τ ∈ (0, 1],

(5.4)

NF (x, τ, c) =





(
x
√

1− τ , x

√
1 +

(1−c)
c τ

)
if x ∈

(
0,
√

c
)
,

(√
x2 − c τ

(1−c) (1− x2) ,
√

x2 + (1− x2) τ

)
if x ∈

(√
c, 1
)
,

and for τ > 1,

(5.5)

NF (x, τ, c) =





(
0, x

√
1 +

(1−c)
c τ

)
if x ∈

(
0,
√

c
c+(1−c) τ

)
,

(0, 1) if x ∈
(√

c
c+(1−c) τ ,

√
c τ

1−c+c τ

)
,

(√
x2 − c τ

(1−c) (1− x2) , 1

)
if x ∈

(√
c τ

1−c+c τ , 1

)
.
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Then the arc density for the ICD based on NF (·, τ, c) will have the same distri-

bution as ρn,2(U , τ, c) and hence can be used for testing data is from F or not

with the procedure discussed in Section 5.

6. DISCUSSION AND CONCLUSIONS

We consider the central similarity interval catch digraphs (CS-ICDs) based

on one dimensional data. The CS-ICDs are defined with two parameters: an ex-

pansion parameter τ > 0 and a centrality parameter c ∈ (0, 1). We study the arc

density of CS-ICDs, and using its U -statistics property, we derive its asymptotic

(normal) distribution for uniform data for the (interiors of) entire ranges of τ and c.

Along this process, we also determine the parameters τ and c for which the rate

of convergence to normality is the fastest. We also consider the arc density of

proportional-edge ICD (PE-ICD) for comparative purposes. We demonstrate

that convergence rate of arc density of CS-ICDs is faster than that of PE-PCDs

at their respective optimal parameters, which implies that distribution of arc

density of CS-ICDs is closer to normality at smaller sample sizes, compared to

the arc density of PE-PCDs.

We use the arc density of the ICDs for testing uniformity (i.e., for testing

Ho “data set is a random sample from U(0, 1)”), and show that under type I

alternatives in which pdf of the data points is larger around one of the end points

(0 or 1) CS-ICD test has higher power compared to PE-ICD test, but under the

types II and III alternatives in which pdf is larger around 1/2 or around both

end points, then PE-ICD test tends to have higher power compared to CS-ICDs.

We also compare the ICD tests with two well known tests in literature (namely,

Kolmogorov–Smirnov (KS) test and Neyman’s smooth test of uniformity). Under

type I alternatives, KS test tends to have higher power compared to the ICD tests

and Neyman’s smooth test, Neyman’s smooth test has higher power compared

to PE-ICD test, but lower power compared to CS-ICD tests for some parameter

combinations. Under type II (resp. type III) alternatives, ICD tests have higher

power than KS and Neyman’s smooth test for almost all (resp. most) parameter

values which have appropriate size. The recommended parameter combinations

for the ICDs are provided in Table 2.

The CS-ICDs for one dimensional data can also be used in testing spatial

interaction between multiple classes whose support is one-dimensional (see Re-

mark 4.2). The arc density approach is easily adaptable to testing nonuniform

distributions as well (see Section 5.4 for more detail). Furthermore, the study of

arc density of CS-ICDs in the one dimensional case will provide insight for and

form the foundation of related catch digraph extensions in higher dimensions.
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APPENDIX

A. PRELIMINARIES

In the proofs below, we can, without loss of generality, assume that the

support of the uniform distribution is (0, 1) based on Theorem 4.1.

A.1. Proof of Theorem 4.3

There are two cases for τ , namely 0 < τ ≤ 1 and τ > 1.

For τ ∈ (0, 1], the proximity region is defined as in Equation (4.2) and the

Γ1-region is

(A.1) Γ1(x, τ, c) =





(
cx

c+(1−c)τ , x
1−τ

)
if x ∈

(
0, c (1− τ)

]
,

(
cx

c+(1−c)τ , (1−c)x+cτ
1−c+cτ

)
if x ∈

(
c (1− τ), c (1− τ) + τ

]
,

(
x−τ
1−τ , (1−c)x+cτ

1−c+cτ

)
if x ∈

(
c (1− τ) + τ, 1

)
.

For τ > 1, the proximity region is as in Equation (4.3) and the Γ1-region is

(A.2) Γ1(x, τ, c) =

(
c x

c + (1 − c) τ
,
(1 − c) x + c τ

1 − c + c τ

)
.

Case 1: 0 < τ ≤ 1: In this case depending on the location of x1, the

following are the different types of the combinations of N(x1, τ, c) and Γ1(x1, τ, c).

Let

a1 := (1 − τ)x1 , a2 := x1

(
1 +

(1 − c) τ

c

)
,

a3 := x1 −
c τ (1 − x1)

1 − c
, a4 := x1 + (1 − x1) τ ,

and

g1 :=
c x1

c + (1 − c) τ
, g2 :=

x1

1 − τ
,

g3 :=
x1 − τ

1 − τ
, g4 :=

x1 (1 − c) + c τ

1 − c + c τ
.

Then

(i) for 0 < x1 ≤ c (1−τ), we have N(x1, τ, c) = (a1, a2) and Γ1(x1, τ, c) =

(g1, g2),
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(ii) for c (1 − τ) < x1 ≤ c, we have N(x1, τ, c) = (a1, a2) and

Γ1(x1, τ, c) = (g1, g4),

(iii) for c < x1 ≤ c (1 − τ) + τ , we have N(x1, τ, c) = (a3, a4) and

Γ1(x1, τ, c) = (g1, g4),

(iv) for c (1 − τ) + τ < x1 < 1, we have N(x1, τ, c) = (a3, a4) and

Γ1(x1, τ, c) = (g3, g4).

Then

pa(τ, c) = P
(
X2 ∈ N(X1, τ, c)

)
=

∫ c

0
(a2 − a1) dx1 +

∫ 1

c
(a4 − a3) dx1 = τ/2 .

For Cov(h12, h13), we need to calculate P2N , PNG, and P2G.

P2N = P
(
{X2, X3} ⊂ N(X1, τ, c)

)

=

∫ c

0
(a2 − a1)

2dx1 +

∫ 1

c
(a4 − a3)

2dx1 = τ2/3 .

PNG = P
(
X2 ∈ N(X1, τ, c), X3 ∈ Γ1(X1, τ, c)

)

=

∫ c (1−τ)

0
(a2 − a1) (g2 − g1) dx1 +

∫ c

c (1−τ)
(a2 − a1) (g4 − g1) dx1

+

∫ c (1−τ)+τ

c
(a4 − a3) (g4 − g1) dx1 +

∫ 1

c (1−τ)+τ
(a4 − a3) (g4 − g3) dx1

=
τ2
(
c2 τ3 − 5 c2 τ2 − c τ3

+ 4 c2 τ + 5 c τ2 − 2 c2 − 4 c τ − τ2
+ 2 c + 2 τ

)

6 (c τ − c + 1) (c + τ − c τ)
.

Finally,

P2G = P
(
{X2, X3} ⊂ Γ1(X1, τ, c)

)

=

∫ c (1−τ)

0
(g2 − g1)

2dx1 +

∫ c (1−τ)+τ

c (1−τ)
(g4 − g1)

2dx1 +

∫ 1

c (1−τ)+τ
(g4 − g3)

2dx1

=

(
2 c2 τ − c2 − 2 c τ + c + τ

)
τ2

3 (c τ − c + 1) (c + τ − c τ)
.

Therefore

4E[h12h13] =

= P2N + 2 PNG + P2G

=
τ2
(
c2 τ3 − 6 c2 τ2 − c τ3

+ 8 c2 τ + 6 c τ2 − 4 c2 − 8 c τ − τ2
+ 4 c + 4 τ

)

3 (c τ − c + 1) (c + τ − c τ)
.

Hence

4Cov[h12, h13] =

=
τ2
(
c2 τ3 − 3 c2 τ2 − c τ3

+ 2 c2 τ + 3 c τ2 − c2 − 2 c τ − τ2
+ c + τ

)

3 (c τ − c + 1) (c + τ − c τ)
.
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Case 2: τ > 1: In this case depending on the location of x1, the following

are the different types of the combinations of N(x1, τ, c) and Γ1(x1, τ, c).

(i) for 0 < x1 ≤ c
c+(1−c)τ , we have N(x1, τ, c) = (0, a2) and

Γ1(x1, τ, c) = (g1, g4),

(ii) for
c

c+(1−c)τ < x1 ≤ cτ
1−c+cτ , we have N(x1, τ, c) = (0, 1) and

Γ1(x1, τ, c) = (g1, g4),

(iii) for
cτ

1−c+cτ < x1 < 1, we have N(x1, τ, c) = (a3, 1) and

Γ1(x1, τ, c) = (g1, g4).

Then

pa(τ, c) = P
(
X2 ∈ N(X1, τ, c)

)

=

∫ c
c+(1−c)τ

0
a2 dx1 +

∫ cτ
1−c+cτ

c
c+(1−c)τ

1 dx1 +

∫ 1

cτ
1−c+cτ

(1− a3) dx1

=
τ
(
2 c2 τ − 2 c2 − 2 c τ + 2 c − 1

)

2 (c τ − c + 1) (c τ − c − τ)
.

Next

P2N = P
(
{X2, X3} ⊂ N(X1, τ, c)

)

=

∫ c
c+(1−c)τ

0
a2

2 dx1 +

∫ cτ
1−c+cτ

c
c+(1−c)τ

1 dx1 +

∫ 1

cτ
1−c+cτ

(1− a3)
2 dx1

=
3 c2 τ2 − 2 c2 τ − 3 c τ2 − c2

+ 2 c τ + c − τ

3 (c τ − c + 1) (c τ − c − τ)
.

PNG = P
(
X2 ∈ N(X1, τ, c), X3 ∈ Γ1(X1, τ, c)

)

=

∫ c
c+(1−c)τ

0
a2 (g4 − g1) dx1 +

∫ cτ
1−c+cτ

c
c+(1−c)τ

(g4 − g1) dx1

+

∫ 1

cτ
1−c+cτ

(1− a3) (g4 − g1) dx1

=

[
τ2
(
6 c6 τ4 − 24 c6 τ3 − 18 c5 τ4

+ 36 c6 τ2
+ 72 c5 τ3

+ 18 c4 τ4 − 24 c6 τ − 108 c5 τ2 − 84 c4 τ3 − 6 c3 τ4
+ 6 c6

+ 72 c5 τ + 132 c4 τ2
+ 48 c3 τ3 − 18 c5 − 92 c4 τ − 84 c3 τ2

− 12 c2 τ3
+ 26 c4

+ 64 c3 τ + 30 c2 τ2 − 22 c3 − 26 c2 τ − 6 c τ2

+ 10 c2
+ 6 c τ − 2 c − τ

)]/[
6 (c τ − c + 1)

3
(c τ − c − τ)

3
]

.
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Finally,

P2G = P
(
{X2, X3} ⊂ Γ1(X1, τ, c)

)

=

∫ 1

0
(g4 − g1)

2dx1

=

[
τ2
(
3 c4 τ2 − 6 c4 τ − 6 c3 τ2

+ 3 c4
+ 12 c3 τ + 3 c2 τ2 − 6 c3

− 9 c2 τ + 7 c2
+ 3 c τ − 4 c + 1

)]/[
3 (c τ − c + 1)

2
(c τ − c − τ)

2
]
.

Therefore

4E[h12h13] = P2N + 2 PNG + P2G

=

[
12 c6 τ6 − 50 c6 τ5 − 36 c5 τ6

+ 79 c6 τ4
+ 150 c5 τ5

+ 36 c4 τ6

− 56 c6 τ3 − 237 c5 τ4 − 175 c4 τ5 − 12 c3 τ6
+ 14 c6 τ2

+ 168 c5 τ3
+ 297 c4 τ4

+ 100 c3 τ5
+ 2 c6 τ − 42 c5 τ2

− 220 c4 τ3 − 199 c3 τ4 − 25 c2 τ5 − c6 − 6 c5 τ + 58 c4 τ2

+ 160 c3 τ3
+ 75 c2 τ4

+ 3 c5
+ 7 c4 τ − 46 c3 τ2

− 70 c2 τ3 − 15 c τ4 − 3 c4 − 4 c3 τ + 20 c2 τ2
+ 18 c τ3

+ c3
+ c2 τ − 4 c τ2 − 3 τ3

]/[
3 (c τ − c + 1)

3
(c τ − c − τ)

3
]
.

Hence

4Cov[h12, h13] =

[
c (1− c)

(
2 c4 τ5 − 7 c4 τ4 − 4 c3 τ5

+ 8 c4 τ3
+ 14 c3 τ4

+ 3 c2 τ5 − 2 c4 τ2 − 16 c3 τ3 − 7 c2 τ4 − c τ5 − 2 c4 τ + 4 c3 τ2

+ 12 c2 τ3
+ c4

+ 4 c3 τ − 6 c2 τ2 − 4 c τ3 − 2 c3 − 3 c2 τ + 4 c τ2

+ c2
+ c τ − τ2

)]/[
3 (c τ − c + 1)

3
(c τ − c − τ)

3
]
.

A.1.1.Special Case (i) τ > 0 and c = 1/2

For x ∈ (0, 1/2), the proximity region for τ ∈ (0, 1] is

(A.3) N(x, τ, 1/2) =





(
(1− τ)x, (1+ τ)x

)
if x ∈ (0, 1/2) ,

(
x − (1− x)τ , x + (1− x)τ

)
if x ∈ (1/2, 1) ,

and for τ > 1

(A.4) N(x, τ, 1/2) =





(
0, (1+ τ)x

)
if x ∈

(
0, 1/(1+ τ)

)
,

(0, 1) if x ∈
(
1/(1+ τ), τ/(1+ τ)

)
,

(
x − (1− x)τ, 1

)
if x ∈

(
τ/(1+ τ), 1

)
.
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Corollary A.1. For τ ∈ (0,∞) and c = 1/2, we have
√

n
[
ρn,2(τ, 1/2) −

pa(τ, 1/2)
] L−→ N

(
0, 4 ν(τ, 1/2)

)
as n → ∞, where

(A.5) pa(τ, 1/2) =





τ/2 if 0 < τ < 1 ,

τ/(τ +1) if τ > 1 ,

and

(A.6) 4 ν(τ, 1/2) =





τ2 (1+2τ−τ2−τ3)
3 (τ+1)2

if 0 < τ ≤ 1 ,

2τ−1
3 (τ+1)2

if τ > 1 .

See Figure 10 for the plots of pa(τ, 1/2) and 4 ν(τ, 1/2) with τ ∈ (0, 5].
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Figure 10: The plots of the asymptotic mean pa(τ, 1/2) (top) and the

variance 4 ν(τ, 1/2) (bottom) as a function of τ for τ ∈ (0, 5].
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The sharpest rate of convergence in Corollary A.1 is
K√
n
f c

CS
(τ, 1/2) where

(A.7) f c
CS

(τ, 1/2) =





27 τ
2

(
(6τ+3−3τ3−3τ2)τ2

(τ+1)2

)−3/2

if 0 < τ ≤ 1 ,

3
√

3 τ
τ+1

(
2τ−1
(τ+1)2

)−3/2
if τ > 1 ,

and is minimized at τ ≈ .73 which is found by using simple calculus and numerical

methods.

The plot of pa(τ, 1/2)/
√

ν(τ, 1/2)3 also indicates that this is where the

global minimum occurs. Convergence rates for PE- and CS-ICDs are presented

in Figure 11 (bottom) for c = 1/2 as a function of expansion parameter. See

[Ceyhan, 2012] for the explicit form of f c
PE

(r, 1/2). Notice that at the optimal

expansion parameters, convergence rate of CS-ICDs is faster with c = 1/2.
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Figure 11: The plots of the rates of convergence to normality for PE-

and CS-ICDs. Plotted in the top are fc
CS

(1, c) (solid line) and

fc
P E

(2, c) (dashed line); and in the bottom are fc
CS

(t, 1/2) (solid)

and fc
P E

(t, 1/2) (dashed).
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A.1.2.Special Case (ii) τ = 1 and c ∈ (0, 1)

For x ∈ (0, 1), the proximity region has the following form:

(A.8) N(x, 1, c) =





(0, x/c) if x ∈ (0, c) ,

(
(x− c)/(1− c), 1

)
if x ∈ (c, 1) .

Corollary A.2. As n→∞, for c∈ (0, 1), we have
√

n
[
ρn,2(1, c)−pa(1, c)

]

L−→ N
(
0, 4 ν(1, c)

)
, where pa(1, c) = 1/2 and 4ν(1, c) = c (1− c)/3.

Observe that pa(1, c) is constant (i.e., independent of c) and ν(1, c) is sym-

metric around c = 1/2 with ν(1, c) = ν(1, 1− c). Let
K√
n

f c
CS

(τ, c) be the rate of

convergence to normality for CS-ICDs. Then the sharpest rate of convergence in

Corollary A.2 is
K√
n

f c
CS

(1, c) where

(A.9) f c
CS

(1, c) =
3
√

3

2
√

c3 (1− c)3
.

Convergence rate is minimized at c = 1/2 (which can be verified by simple calcu-

lus). Also, let
K√
n

f c
PE

(r, c) be the rate of convergence to normality for PE-ICDs

(see [Ceyhan, 2012] for its explicit forms). Then we have f c
PE

(2, c) ≤ f c
CS

(1, c)

for all c ∈ (0, 1) with equality holding only at c = 1/2 (see also Figure 11 (top)).

Thus at these specific centrality parameters, convergence rate to normality is

faster for PE-PCDs.

A.1.3.Special Case (iii) τ = 1 and c = 1/2

In this case we have N(x, 1, 1/2) = B(x, r(x)) where r(x) = min(x, 1 − x)

for x ∈ (0, 1). Hence CS-ICD based on N(x, 1, 1/2) is equivalent to the CCCD of

[Priebe et al., 2001] and the PE-ICD with expansion parameter 2 and centrality

parameter 1/2 of [Ceyhan, 2012].

Corollary A.3. As n → ∞, we have
√

n
[
ρn(1, 1/2) − pa(1, 1/2)

] L−→
N
(
0, 4 ν(1, 1/2)

)
, where pa(1, 1/2) = 1/2 and 4ν(1, 1/2) = 1/12 with the sharpest

rate of convergence being K pa(1,1/2)√
n ν(1,1/2)3

= 12
√

3
K√
n
.

A.2. Proof of Theorem 4.4

There are two cases for τ , namely, 0 < τ < 1 and τ > 1.
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For τ ∈ (0, 1] and x in the right end interval, the proximity region is

(A.10) Ne(x, τ) =





(
(1− τ)x, (1+ τ)x

)
if x ∈

(
0, 1/(1+ τ)

)
,

(
(1− τ)x, 1

)
if x ∈

(
1/(1+ τ), 1

)
,

and the Γ1-region is

(A.11) Γ1,e(x, τ) =





(
x

1+τ , x
1−τ

)
if x ∈ (0, 1 − τ) ,

(
x

1+τ , 1
)

if x ∈ (1 − τ, 1) .

For τ > 1 and x in the right end interval, the proximity region is

(A.12) Ne(x, τ) =





(
0, (1+ τ)x

)
if x ∈

(
0, 1/(1+ τ)

)
,

(0, 1) if x ∈
(
1/(1+ τ), 1

)
,

and the Γ1-region is Γ1,e(x, τ) =
(
x/(1+ τ), 1

)
.

Case 1: 0 < τ ≤ 1: For x1 ∈ (0, 1), depending on the location of x1, the

following are the different types of the combinations of Ne(x1, τ) and Γ1,e(x1, τ).

(i) for 0 < x1 ≤ 1 − τ , we have Ne(x1, τ) =
(
(1− τ)x1 , (1+ τ)x1

)
and

Γ1,e(x1, τ) =
(
x1/(1+ τ), x1/(1− τ)

)
,

(ii) for 1− τ < x1 ≤ 1/(1+ τ), we have Ne(x1, τ) =
(
(1−τ)x1 , (1+τ)x1

)

and Γ1,e(x1, τ) =
(
x1/(1+ τ), 1

)
,

(iii) for 1/(1 + τ) < x1 < 1, we have Ne(x1, τ) =
(
(1− τ)x1, 1

)
and

Γ1,e(x1, τ) =
(
x1/(1+ τ), 1

)
.

Then

pe
a(τ, c) = P

(
X2 ∈ Ne(X1, τ)

)

=

∫ 1/(1+τ)

0

(
(1+ τ)x1 − (1− τ)x1

)
dx1 +

∫ 1

1/(1+τ)

(
1 − (1− τ)x1

)
dx1

=

∫ 1/(1+τ)

0
(2 τ x1) dx1 +

∫ 1

1/(1+τ)
(1− x1 + x1 τ) dx1 =

τ (τ + 2)

2 (τ +1)
.

For Cov(h12, h13), we need to calculate P2N,e, PNG,e, and P2G,e.

P2N,e = P
(
{X2, X3} ⊂ Ne(X1, τ)

)

=

∫ 1/(1+τ)

0
(2 τ x1)

2 dx1 +

∫ 1

1/(1+τ)
(1− x1 + x1 τ)

2 dx1

=
τ2

(τ2
+ 3 τ + 4)

3 (τ + 1)2
.
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PNG,e = P
(
X2 ∈ Ne(X1, τ), X3 ∈ Γ1,e(X1, τ)

)

=

∫ 1−τ

0
(2 τ x1)

(
2 τ x1

1− τ2

)
dx1 +

∫ 1/(1+τ)

1−τ
(2 τ x1)

(
1− x1

1+ τ

)
dx1

+

∫ 1

1/(1+τ)

(
1 − (1− τ)x1

)(
1− x1

1+ τ

)
dx1

=

(
7 τ2

+ 14 τ + 8 − 2 τ4 − 2 τ3
)
τ2

6 (τ + 1)
3 .

Finally,

P2G,e = P
(
{X2, X3} ⊂ Γ1,e(X1, τ)

)

=

∫ 1−τ

0

(
2 τ x1

1− τ2

)2
dx1 +

∫ 1

1−τ

(
1− x1

1+ τ

)2
dx1 =

τ2
(3 τ + 4)

3 (τ + 1)2
.

Therefore 4E[h12h13] = P2N,e + 2 PNG,e + P2G,e =
τ2(2τ2+5τ+4)(2τ+4−τ2)

3(τ+1)3
.

Hence

4Cov[h12, h13] =
τ2
(
4 τ + 4 − 2 τ4 − 4 τ3 − τ2

)

3 (τ + 1)
3 .

Case 2: τ > 1: For x1 ∈ (0, 1), depending on the location of x1, the

following are the different types of the combinations of Ne(x1, τ) and Γ1,e(x1, τ).

(i) for 0 < x1 ≤ 1/(1 + τ), we have Ne(x1, τ) =
(
0, (1+ τ)x1

)
and

Γ1,e(x1, τ) =
(
x1/(1+ τ), 1

)
,

(ii) for 1/(1 + τ) < x1 < 1, we have Ne(x1, τ) = (0, 1) and Γ1,e(x1, τ) =(
x1/(1+ τ), 1

)
.

Then

pe
a(τ, c) = P

(
X2 ∈ Ne(X1, τ)

)

=

∫ 1/(1+τ)

0
(1+ τ)x1 dx1 +

∫ 1

1/(1+τ)
1 dx1 =

1 + 2 τ

2 (τ +1)
.

Next,

P2N,e = P
(
{X2, X3} ⊂ Ne(X1, τ)

)

=

∫ 1/(1+τ)

0

(
(1+ τ)x1

)2
dx1 +

∫ 1

1/(1+τ)
1 dx1 =

1 + 3 τ

3 (τ +1)
,

PNG,e = P
(
X2 ∈ Ne(X1, τ), X3 ∈ Γ1,e(X1, τ)

)

=

∫ 1/(1+τ)

0

(
(1+ τ)x1

)(
1− x1

1+ τ

)
dx1 +

∫ 1

1/(1+τ)

(
1− x1

1+ τ

)
dx1

=
6 τ3

+ 12 τ2
+ 6 τ + 1

6 (τ + 1)
3 .
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Finally,

P2G,e = P
(
{X2, X3} ⊂ Γ1,e(X1, τ)

)

=

∫ 1

0

(
1− x1

1+ τ

)2
dx1 =

3 τ2
+ 3 τ + 1

3 (τ + 1)2
.

Therefore 4E[h12h13] = P2N,e + 2PNG,e + P2G,e =
12τ3+25τ2+15τ+3

3(τ+1)3
. Hence

4Cov[h12, h13] =
τ2

3 (τ +1)3
.

A.3. Figures for the consistency results in Section 5.3

0
1

2
3

4
5

0

0.5

1

–0.04

–0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

τ

c

Figure 12: The three dimensional plot of the difference between arc prob-

ability of CS-ICD under HI
a : δ = 2 and the null hypothesis

pa(F1, τ, c) − pa(U , τ, c) for c ∈ (0, 1) and τ ∈ (0, 5). The hor-

izontal plane is at z = 0 and is used to determine the sign

changes in the difference.
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Figure 13: The three dimensional plot of the difference between arc prob-

ability of PE-ICD under HI
a : δ = 2 and the null hypothesis

pPE
a (F1, r, c) − pPE

a (U , r, c) for c ∈ (0, 1) and r ∈ (1, 10). The

horizontal plane is at z = 0 and is used to determine the sign

changes in the difference.
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Figure 14: The three dimensional plot of the difference between arc prob-

ability of PE-ICD under HIII
a : δ = 2 and the null hypothe-

sis pPE
a (F3, r, c) − pPE

a (U , r, c). The top plot is with c ∈ (0, 1)

and r ∈ (1, 10) and the bottom plot is with c ∈ (.98, 1) and

r ∈ (1, 1.4) (to better visualize the region of positive difference

around (r, c) = (1, 1)). The horizontal planes at z = 0 are used

to determine the sign changes in the difference.
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1. INTRODUCTION

Verifying the identifiability conditions for time series models is a funda-

mental task in constructing the consistent estimators of model parameters and

ensuring the positive definiteness of their asymptotic covariance matrices. Al-

though time series models are assumed to be identifiable in many situations, its

verification is often nontrivial and even troublesome, especially in handling non-

linear generalized autoregressive conditional heteroscedasticity (GARCH) mod-

els. This issue has a long history and there exist a vast amount of relevant studies

in the literature. For instance, Rothenberg [28] introduced the global and local

identification concept and verified that local identifiability is equivalent to the

nonsingularity of the information matrix. Phillips [26] derived asymptotic the-

ories in partially identified models. Hansen [12] and Francq et al. [7] proposed

a test for the hypothesis wherein nuisance parameters are unidentifiable. Ko-

munjer [16] provided the primitive conditions for global identification in moment

restriction models. In most cases, the identifiability condition is inherent to given

statistical models; for example, the multiple linear regression model is uniden-

tifiable when exact multicollinearity exists. Thus, in nature, the verification of

identifiability is more complicated in nonlinear time series models with volatili-

ties, such as threshold autoregressive and smooth transition GARCH models (see,

for instance, Chan [3] and Meitz and Saikkonen [24]). Thus, there is a need to

develop a more refined approach than the existing ones to cope with the problem

more adequately.

In this study, we deal with the identifiability problem within a framework

similar to that of the M -estimation. To elucidate, let us consider the nonlin-

ear least squares (NLS) estimation from a strictly stationary ergodic process

{(Yt, Zt)}, with E(Yt|Zt) = f(Zt, β
◦
) for some known function f . Then, the limit

of the random objective functions for parameter estimation is uniquely minimized

at β◦
when the following identifiability condition holds:

f(Z1, β) = f(Z1, β
◦
) a.s. implies β = β◦ .(1.1)

In most M -estimation procedures, the identifiability conditions are given in the

form of (1.1), where f can be a conditional mean, variance, or quantile function

(see Hayashi [13, p. 463], Berkes et al. [2], and Lee and Noh [19]). Moreover,

as seen in Wu [33], to ensure the positive definiteness of asymptotic covariance

matrices of the NLS estimator, one needs to verify that λT ∂f(Z1, β
◦
)/∂β = 0 a.s.

implies λ = 0. The method described in this study is also useful to verify the

positive definiteness of asymptotic covariance matrices of parameter estimators.

As a representative study on the issue with nonlinear time series, we can

refer to Chan and Tong [4], who studied the asymptotic theory of NLS esti-

mators for the smooth transition AR (STAR) models and verified the positive
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definiteness of asymptotic variance matrices. Later, many authors handled this

problem using various GARCH-type models because it is crucial when verify-

ing the asymptotic properties of quasi-maximum likelihood estimators (QMLEs).

For example, Straumann–Mikosch [29], Medeiros and Veiga [22], Kristensen and

Rahbek [17], Meitz and Saikkonen [24], and Lee and Lee [18] consider the iden-

tifiability problem in exponential and asymmetric GARCH(p, q) models, flexi-

ble coefficient GARCH(1, 1) models nesting a smooth transition GARCH(1, 1)

(STGARCH) model, nonlinear ARCH models, nonlinear AR(p) models with

nonlinear GARCH(1, 1) errors, STAR(p)–STGARCH(1, 1) models, and Box–Cox

transformed threshold GARCH(p, q) models. To ensure (1.1), these authors de-

veloped their own methods that reflect the nonlinear structure of underlying

models.

In this study, we develop a method that refines existing ones to deduce

the identifiability conditions for various nonlinear time series models, tribute to

STGARCH(p, q), Poisson autoregressive, and multiple regime STAR(p) models.

The remainder of this paper is organized as follows. In Section 2, we describe

our method using some examples. In Section 3, we investigate the identifiability

conditions in the aforementioned models. The proofs are provided in Section 4.

2. EXAMPLES AND MOTIVATION

In this section, we explore some existing methods that verify the identifi-

ability of STAR models and asymmetric GARCH (AGARCH) models. In what

follows, {Xt} and Ft denote the data-generating process and the σ-field generated

by {Xs : s ≤ t}.

First, we consider the STAR model with two regimes as follows:

Xt = m(Xt−1, ..., Xt−p; θ
◦
) + εt ,

m(Xt−1, ..., Xt−p; θ
◦
) = β◦

0
T
Xt−1 + β◦

1
T
Xt−1F

(
Xt−d − c◦

z◦

)
,

where {εt} are iid random variables, θ◦T
= (β◦

0
T , β◦

1
T , c◦, r◦) and Xt−1 = (1, Xt−1,

..., Xt−p)
T
, and F (·) is a smooth distribution function. Chan and Tong [4] verified

the positive definiteness of E[ṁt(θ
◦
)ṁt(θ

◦
)
T
], where ṁt(θ

◦
) = ṁ(Xt−1, ..., Xt−p; θ

◦
)

denotes the gradient of m(x; θ) at θ◦, by showing that for a given λ 6= 0, there

exists S ⊂ R
p
, such that {λT ṁ(x; θ◦)}2

is positive for any x ∈ S and P ({(Xt−1, ...,

Xt−p) ∈ S}) > 0. On the other hand, Meitz and Saikkonen [24] also considered

the above model and verified that m(Xt−1, ..., Xt−p; θ) = m(Xt−1, ..., Xt−p; θ
◦
)

a.s. implies θ = θ◦. In both cases, the main step is commonly to show that the

function x 7→ g(x; θ, θ◦), which equals (θ − θ◦)T ṁ(x; θ◦) in Chan and Tong [4]

and m(x; θ) − m(x; θ◦) in Meitz and Saikkonen [24], satisfies g(x; θ, θ◦) = 0 for
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all x ∈ supp(Xt−1, ..., Xt−p), where supp(Y ) denotes the distribution support of

the random vector Y . With this equation, they could deduce certain conditions

to guarantee θ = θ◦. Motivated by these studies, we take a similar approach to

deduce the identifiability conditions for nonlinear time series models. In fact,

our method is handier than those in the existing studies, such as Kristensen–

Rahbek [17], Meitz and Saikkonen [24], and Lee and Lee [18]. For example, our

method no longer requires the condition that either the observations or their

conditional volatilities should take all values of an open interval with a positive

probability.

Next, we consider the case of an AGARCH(1,1) model with power 2:

Xt = σtηt , σ2
t = ω◦

+ α◦
(|Xt−1| − γ◦Xt−1)

2
+ β◦σ2

t−1 ,(2.1)

where {ηt} is a sequence of iid random variables with Eηt = 0 and Eη2
t = 1.

Kristensen and Rahbek [17] and Straumann and Mikosch [29] derived identifia-

bility conditions for asymmetric power ARCH and AGARCH models. We denote

θ◦ = (ω◦, α◦, β◦, γ◦
)
T

and Θ = (0,∞) × [0,∞) × [0, 1) × [−1, 1], where α◦ > 0.

Assuming that Model (2.1) has a strictly stationary solution {Xt}, for θ ∈ Θ,

we define a strictly stationary process {σ2
t (θ)} as the solution of

σ2
t (θ) = ω + α (|Xt−1| − γXt−1)

2
+ βσ2

t−1(θ) , ∀t ∈ Z ,(2.2)

where σ2
t (θ

◦
) is equal to σ2

t .

In this case, the identifiability condition is that σ2
t = σ2

t (θ) a.s. for some

t ∈ Z and θ ∈ Θ implies θ = θ◦, which is crucial to verify the strong consistency

of QMLE. Below, we demonstrate the approach of Straumann and Mikosch [29].

Note that σ2
t = σ2

t (θ) a.s. for all t because {σ2
t − σ2

t (θ)} is stationary. Then, one

can obtain

ω◦ − ω + σ2
t−1Yt−1 = 0 a.s. ,(2.3)

where Yt−1 = α◦
(|ηt−1| − γ◦ηt−1)

2 − α (|ηt−1| − γηt−1)
2
+ β◦ − β. As shown in

Lemma 5.3 of Straumann and Mikosch [29], Yt−1 is Ft−2-measurable due to (2.3),

but at the same time, it is independent of Ft−2. Then, θ = θ◦ can be easily de-

duced from the degeneracy of Yt−1 and certain mild conditions on the distribution

of ηt−1. This approach, however, cannot be extended straightforwardly to more

complicated models. Thus, in our study, we take a different approach.

Our idea is to interpret the left-hand side of equation (2.3) as a function

of ηt−1. Considering that σt−1 is given, for example, as constant σ, we introduce

the continuous function:

g(x, σ) = ω◦ − ω + σ2
{

α◦
(|x| − γ◦x)

2 − α (|x| − γx)
2
+ β◦ − β

}
.

Since (2.3) implies g(ηt−1, σt−1) = 0 a.s., it follows that g(x, σ) = 0 for all (x, σ) ∈
supp(ηt−1, σt−1). Further, owing to the independence of ηt−1 and σt−1, we have
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g(x, σ) = 0 for all (x, σ) ∈ supp(ηt−1) × supp(σt−1). This, in turn, implies

P
{

g(x, σt−1) = 0 for all x ∈ supp(ηt−1)

}
= 1 .(2.4)

Assume that supp(ηt−1) = R; in fact, it is sufficient to assume that supp(ηt−1)

comprises three distinct (one positive and one negative) real numbers.

Then, g(x, σt−1) = 0 a.s. for all x ∈ R and, particularly g(0, σt−1) = ω◦ − ω +

σ2
t−1 (β◦ − β) = 0 a.s., which leads to β = β◦

and ω = ω◦
owing to the nondegen-

eracy of σ2
t−1. Henceforth, the equation g(x, σt−1) = 0 a.s. ∀x ∈ R is now reduced

to

α◦
(|x| − γ◦x)

2 − α (|x| − γx)
2

= 0 , ∀x ∈ R ,(2.5)

and thus, θ = θ◦ is derived. This AGARCH(1, 1) example demonstrates that

equation (2.4) plays a crucial role in obtaining the conditions to guarantee the

identifiability of a time series model. Later, to obtain the desired results for

general nonlinear time series models, such as STGARCH, nonlinear Poisson au-

toregressive, and multiple regime STAR models, we will often apply the equa-

tions analogous to (2.4) and results such as P {limx→∞ g(x, σt−1) = 0} = 1 or

P
{
limx→−∞ x−2g(x, σt−1) = 0

}
= 1, as seen in the proof of Theorem 3.1.

3. IDENTIFIABILITY IN NONLINEAR TIME SERIES

3.1. Smooth transition GARCH models

González-Rivera [11] introduced the STGARCH(p, q, d) model:

Xt = σtηt ,

σ2
t = ω◦

+

q∑

i=1

α◦
1iX

2
t−i +

(
q∑

i=1

α◦
2iX

2
t−i

)
F (Xt−d, γ

◦
) +

p∑

j=1

β◦
j σ2

t−j ,
(3.1)

where {ηt} is the same as that in Model (2.1),

F (Xt−d, γ
◦
) =

1

1 + eγ◦Xt−d
− 1

2
,

d ∈ {1, ..., q} is pre-specified, and γ◦ > 0 is the smoothness parameter that

determines the speed of transition. It is noteworthy that when γ◦ → ∞, the

STGARCH(1, 1, 1) model becomes a GJR-GARCH(1, 1) model proposed by

Glosten et al. [10], which is identical to Model (2.1).
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We denote the true parameter vector by θ◦= (γ◦, ω◦, α◦
11, ..., α

◦
1q, α

◦
21, ..., α

◦
2q,

β◦
1 , ..., β◦

p)
T
. Let Θ = [0,∞) × (0,∞) × A × B be the parameter space, where

A =

{
(α11, ..., α1q, α21, ..., α2q) ∈ R

2q
: α1i ≥ 0, |α2i| ≤ 2α1i,∀i

}
,

B =

{
(β1, ..., βp) ∈ [0, 1)

p
:

p∑

j=1

βj < 1

}
,(3.2)

and assume that θ◦ ∈ Θ for the conditional variance to be positive.

Sufficient conditions to ensure the existence of a stationary solution for

Model (3.1) are not specified in the literature. For instance, Straumann–Mikosch

[29] and Meitz and Saikkonen [23] derived such conditions only for general GARCH-

type models. However, for example, it can be seen that the STGARCH(1, 1, 1)

model is stationary when E
[
log
{
β◦

1 +
(
α◦

11 +
1
2 |α◦

21|
)
η2

t−1

}]
< 0 (cf. Example 4

and Table 1 of Meitz and Saikkonen [23]).

Given the stationary solution {Xt} and a parameter vector θ ∈ Θ, we define

ct(α) = ω +

q∑

i=1

α1iX
2
t−i +

(
q∑

i=1

α2iX
2
t−i

)
F (Xt−d, γ) ,

where α = (γ, ω, α11, ..., α1q, α21, ..., α2q). Note that the polynomial β(z) = 1 −∑p
j=1 βjz

j
has all its zeros outside the unit disc because of (3.2). Define σ2

t (θ) =

β(B)
−1ct(α), where B is the backshift operator. Then, we have the following.

Theorem 3.1. Let {Xt} be a stationary process satisfying (3.1) and sup-

pose that

(a) α◦
2i 6= 0 for some 1 ≤ i ≤ q and γ◦ > 0.

(b) The support of the distribution of η1 is R.

Then, if σ2
t = σ2

t (θ) a.s. for some t ∈ Z and θ ∈ Θ, we have θ = θ◦.

Remark 3.1. It is remarkable that the identifiability in the STGARCH

models needs no restriction concerning orders p and q. The above theorem shows

that the STGARCH(p, q, d) models can be consistently estimated by fitting any

STGARCH(p∗, q∗, d) models with p∗ ≥ p and q∗ ≥ q. However, this is not true for

GARCH and AGARCH models, wherein conditions such as (c) in Theorem 3.2

below are necessary. See Francq and Zaköıan [8] and Straumann and Mikosch [29].

Remark 3.2. As pointed out by a referee, the common root condition

for the STGARCH models is not required owing to the reasons described below.

Consider a STGARCH(0, 1, d) model and let σ2
t be the conditional variance. Mul-

tiplying (1 − βB) to both sides of the volatility equation, we get (1 − βB)σ2
t =

(1 − β)ω + α11X
2
t−1 − βα11X

2
t−2 + α21X

2
t−1F (Xt−d, γ) − βα21X

2
t−2F (Xt−d−1, γ).
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This, however, is not expressible as a form of STGARCH(1, 2, d) models, unlike

we see in GARCH and AGARCH models.

Remark 3.3. As in the case of the AGARCH model in Section 2, the

support needs not be R. For example, supp(η1) = Z is sufficient.

Condition (a) in Theorem 3.1 suggests that there exists a smooth transition

mechanism, that is, conditional variances asymmetrically respond to positive and

negative news. When it fails, the STGARCH model becomes a standard GARCH

model. The following theorem demonstrates that model parameters in (3.1) are

only partially identified when no such transition mechanism exists.

Theorem 3.2. Let {Xt} be a stationary process satisfying (3.1) with

γ◦
= 0 or α◦

2i = 0, i = 1, ..., q. Suppose that condition (b) in Theorem 3.1 and

the following condition hold:

(c) α◦
1i > 0 for some 1 ≤ i ≤ q, (α◦

1q, β
◦
p) 6= (0, 0), and the polynomials

α◦
1(z) =

∑q
i=1 α◦

1iz
i and β◦

(z) = 1−∑p
j=1 β◦

j zj have no common zeros.

If σ2
t = σ2

t (θ) a.s. for some t ∈ Z and θ ∈ Θ, then ω = ω◦, α1i = α◦
1i, βj = β◦

j for

1 ≤ i ≤ q, 1 ≤ j ≤ p, and either γ = 0 or α2i = 0, 1 ≤ i ≤ q holds.

Remark 3.4. The hypothesis testing of whether the smoothness mecha-

nism exists has been studied by González-Rivera [11]. This is a type of testing

problem wherein nuisance parameters are unidentifiable under the null hypothe-

sis. In addition, inference in a similar situation has been studied by Hansen [12]

and Francq et al. [7].

3.2. Threshold Poisson autoregressive models

Poisson autoregressive models (or integer-valued GARCH models) are used

to model time series of counts with over-dispersion and have been widely applied

in fields ranging from finance to epidemiology to estimate, for example, the num-

ber of transactions per minute of certain stocks and the daily epileptic seizure

counts of patients. See Fokianos et al. [5], Kang and Lee [15], and the references

therein.

Let {Xt : t ≥ 0} be a time series of counts and {λt : t ≥ 0} its intensity

process. Let F0,t denote the σ-field generated {λ0, X0, ..., Xt}. An integer-valued

threshold GARCH (INTGARCH) model is then defined by

Xt|F0,t−1 ∼ Poisson(λt) ,

λt = ω◦
+ α◦

1Xt−1 + (α◦
2 − α◦

1)(Xt−1 − l◦)+ + β◦λt−1 ,
(3.3)
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for t ≥ 1, where a+
denotes max{0, a}. We assume that the true parameter vector

θ◦ = (ω◦, α◦
1, α

◦
2, β

◦, l◦) belongs to a parameter space Θ = (0,∞) × [0, 1)
3 × N.

Theorem 2.1 of Neumann [25] indicates that if β◦
+max{α◦

1, α
◦
2} < 1, there exists

a unique stationary bivariate process {(Xt, λt) : t ≥ 0} satisfying (3.3). Then, the

time domain can be extended from N0 = N∪{0} to Z. Franke et al. [9] considered

the conditional LS estimation in these models.

Given the stationary process {Xt : t ∈ Z} and a parameter vector θ ∈ Θ,

we define a stationary process {λt(θ)} as the solution of

λt(θ) = ω + α1Xt−1 + (α2 − α1)(Xt−1 − l)+ + βλt−1(θ) , t ∈ Z .

Then, we have the following.

Theorem 3.3. Suppose that {Xt : t ∈ Z} is a stationary process satisfy-

ing (3.3) and α◦
1 6= α◦

2. Then, if λt = λt(θ) a.s. for some t ∈ Z and θ ∈ Θ, we have

θ = θ◦.

Remark 3.5. When α◦
1 = α◦

2 > 0, Model (3.3) becomes an integer-valued

GARCH(1, 1) model. In this case, it can be seen that parameters, except the

threshold parameter l, are identifiable.

3.3. General Poisson autoregressive models

Neumann [25] considered a class of nonlinear Poisson autoregressive models

{Xt : t ∈ Z} of counts with intensity process {λt : t ∈ Z} such as

Xt|Ft−1 ∼ Poisson(λt) , λt = f(λt−1, Xt−1, θ
◦
) ,(3.4)

for some known function f : [0,∞)×N0×Θ → [0,∞). According to Theorems 2.1

and 3.1 of Neumann [25], when f(·, θ◦) satisfies the following contractive condi-

tion:

|f(λ, y, θ◦) − f(λ′, y′, θ◦)| ≤ κ1|λ − λ′| + κ2|y − y′| , ∀λ, λ′ ≥ 0 , ∀y, y′ ∈ N0 ,

where κ1, κ2 ≥ 0 and κ1 +κ2 < 1, there exists a stationary process {(Xt, λt)} with

λt ∈ Ft−1 satisfying (3.4). Further, in view of Theorem 3.1 in Neumann [25], one

can define a stationary process {λt(θ)} satisfying

λt(θ) = f(λt−1(θ), Xt−1, θ) , ∀t ∈ Z ,

for the stationary process {Xt} and parameter vector θ ∈ Θ. Fokianos and Tjøs-

theim [6] studied ML estimation in these models.
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The following theorem presents the mild requirements of f for their iden-

tifiability assumptions. Its proof is straightforward in view of the proof of Theo-

rem 3.3.

Theorem 3.4. Let {(Xt, λt)} be a stationary process satisfying (3.4) and

suppose that

(a) For each θ ∈ Θ, f(·, θ) is continuous on supp(λ1) × N0.

(b) f(λ, y, θ) = f(λ, y, θ◦), ∀λ ∈ supp(λ1), ∀y ∈ N0 implies θ = θ◦.

Then, if λt = λt(θ) a.s. for some t ∈ Z and θ ∈ Θ, θ = θ◦.

3.4. Multiple regime smooth transition autoregressive models

Regime switching models for financial data have received considerable at-

tention. For example, Teräsvirta [32] studied inference for two-regime STAR

models and McAleer and Medeiros [21] and Li and Ling [20] considered multiple-

regime smooth transition and threshold AR models. In this subsection, we con-

sider the nonlinear LS estimation in a multiple-regime STAR model with het-

eroscedastic errors proposed by McAleer and Medeiros [21].

Suppose that {Xt} follows a multiple-regime STAR model of order p with

M + 1 (limiting) regimes, that is,

Xt = β◦
0

T
Xt−1 +

M∑

i=1

β◦
i

T
Xt−1G(Xt−d◦ ; γ

◦
i , c◦i ) + εt ,(3.5)

where {εt} is white noise, β◦
i = (φ◦

i0, φ
◦
i1, ..., φ

◦
ip)

T
for 0 ≤ i ≤ M , Xt−1 = (1, Xt−1,

..., Xt−p)
T
, and G(Xt−d◦ ; γ

◦
i , c◦i ) is a logistic transition function given by

G(Xt−d◦ ; γ
◦
i , c◦i ) =

1

1 + e−γ◦

i (Xt−d◦−c◦i )
,(3.6)

wherein the regime switches according to the value of transition variable Xt−d◦ :

d◦ ∈ {1, ..., p} is a delay parameter, −∞ < c◦1 < ··· < c◦M < ∞ are threshold pa-

rameters, and γ◦
i > 0, i = 1, ..., M , are smoothing parameters. When γ◦

i is quite

large, Model (3.5) is barely distinguishable from the threshold model studied by

Li and Ling [20].

In the literature, one can find sufficient conditions under which Model (3.5)

is stationary when the error terms are iid. For example, Theorem 2 of McAleer

and Medeiros [21] ensures the stationarity of Model (3.5) of order 1. Using the

same reasoning and Lemma 2.1 of Berkes et al. [2], we can see that Model (3.5)
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has a stationary solution if

p∑

j=1

sup
x∈R

∣∣∣∣∣φ
◦
0j +

M∑

i=1

φ◦
ijG(x; γ◦

i , c◦i )

∣∣∣∣∣ < 1 .

It is also true if max0≤i≤M
∑p

j=1

∣∣∣
∑i

k=0 φ◦
kj

∣∣∣ < 1, which can be deduced from

Theorem 3.2 and Example 3.6 in An and Huang [1].

We denote by θ = (βT
0 , βT

1 , ..., βT
M , γ1, ..., γM , c1, ..., cM , d)

T
a parameter vec-

tor belonging to a parameter space Θ ⊂ R
(M+1)(p+1)+2M × {1, ..., p} and set

m(Xt−1, ..., Xt−p, θ) = β0
TXt−1 +

M∑

i=1

βi
TXt−1G(Xt−d; γi, ci) .

Then, we have the following.

Theorem 3.5. Let {Xt} be a stationary process satisfying (3.5). Assume

that

(a) For each i = 1, ..., M , β◦
i 6= (0, ..., 0)

T ∈ R
p+1.

(b) The support of the stationary distribution of (Xp, ..., X1) is R
p.

(c) The parameter space Θ satisfies that γi > 0, i = 1, ..., M , and −∞ <

c1 < ··· < cM < ∞.

Then, if m(Xt−1, ..., Xt−p, θ
◦
) = m(Xt−1, ..., Xt−p, θ) a.s. for some t ∈ Z and

θ ∈ Θ, we have θ = θ◦.

Remark 3.6. Theorem 3.5 is closely related to the identifiability of the

finite mixture of logistic distributions (see Lemma 4.1 in Section 4). Although

the restriction on threshold parameters has a natural interpretation, it is not

necessarily required. In fact, if we only assume that (γ◦
i , c◦i ), i = 1, ..., M , are

distinct, instead of the condition c◦i < c◦i+1, then Model (3.5) is weakly identifiable

in the sense of Redner and Walker [27].

4. PROOFS

Proof of Theorem 3.1: We only prove the theorem when d = 1 since

the other cases can be handled similarly. Owing to the stationarity, we have

σ2
t = σ2

t (θ) a.s. for any t ∈ Z. Since β◦
(z) 6= 0 for |z| ≤ 1 and σ2

t = β◦
(B)

−1ct(α
◦
),

we can express

ct(α) = β(B)σ2
t (θ) = β(B)β◦

(B)
−1ct(α

◦
) = ct(α

◦
) +

∞∑

j=1

bjct−j(α
◦
) ,(4.1)
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where 1 +
∑∞

j=1 bjz
j

= β(z)/β◦
(z) for |z| ≤ 1. As discussed in Section 2, we can

express (4.1) as a function of ηt−1 and Ft−2-measurable random variables:

g1(ηt−1, σt−1, At,2, Bt,2, A
◦
t,2, B

◦
t,2, Dt,2) :=

:= (α11 − α◦
11)σ

2
t−1η

2
t−1 + At,2 − A◦

t,2 +
(
α21σ

2
t−1η

2
t−1 + Bt,2

)
F (σt−1ηt−1, γ)

−
(
α◦

21σ
2
t−1η

2
t−1 + B◦

t,2

)
F (σt−1ηt−1, γ

◦
) − Dt,2

= 0 a.s.,

where for 2 ≤ i∗ ≤ q and 2 ≤ k,

At,i∗ = ω +

q∑

i=i∗

α1iX
2
t−i , Bt,i∗ =

q∑

i=i∗

α2iX
2
t−i , Dt,k =

∞∑

j=k−1

bjct−j(α
◦
) ,

A◦
t,i∗ = ω◦

+

q∑

i=i∗

α◦
1iX

2
t−i , B◦

t,i∗ =

q∑

i=i∗

α◦
2iX

2
t−i .

Using the arguments that obtain (2.4) and condition (b), we can see that with

probability 1, g1(x, σt−1, At,2, Bt,2, A
◦
t,2, B

◦
t,2, Dt,2) = 0 for all x ∈ R. Particularly,

this implies

g1(0, σt−1, At,2, Bt,2, A
◦
t,2, B

◦
t,2, Dt,2) = At,2 − A◦

t,2 − Dt,2 = 0 a.s..(4.2)

Then, viewing (4.2) as a function of ηt−2 and Ft−3-measurable random variables,

we can express

g2(ηt−2, σt−2, At,3, A
◦
t,3, A

◦
t−1,2, B

◦
t−1,2, Dt,3) :=

:= (α12 − α◦
12)σ

2
t−2η

2
t−2 + At,3 − A◦

t,3 − b1ct−1(α
◦
) − Dt,3

= (α12 − α◦
12)σ

2
t−2η

2
t−2 + At,3 − A◦

t,3 − Dt,3

− b1

{
α◦

11σ
2
t−2η

2
t−2 + A◦

t−1,2 +
(
α◦

21σ
2
t−2η

2
t−2 + B◦

t−1,2

)
F (σt−2ηt−2, γ

◦
)
}

= 0 a.s. ,

(4.3)

which entails

P
(
g2(x, σt−2, At,3, A

◦
t,3, A

◦
t−1,2, B

◦
t−1,2, Dt,3) = 0, ∀x ∈ R

)
= 1 .(4.4)

Note that if

f(x) := ax2
+ b + (cx2

+ d)F (σx, γ◦
) = 0(4.5)

for all x ∈ R, where a, b, c, d, σ > 0, γ◦ > 0 are real numbers, because

limx→±∞ x−2f(x) = 0 and limx→±∞ f(x) = 0, it must hold that a = c = 0 and

b = d = 0. Then, combining this and (4.4), we get b1α
◦
21 = 0 and b1B

◦
t−1,2 = 0

a.s.. Further, B◦
t−1,2 = 0 a.s. if and only if α◦

22 = ··· = α◦
2q = 0. Due to condi-

tion (a) and (4.3), we have b1 = 0 and At,3 −A◦
t,3 −Dt,3 = 0 a.s., and similarly, it

can be seen that bk = 0, k ≥ 2, At,k+2 − A◦
t,k+2 − Dt,k+2 = 0 a.s., 2 ≤ k ≤ q − 2,

and ω − ω◦ − Dt,k+2 = 0 a.s., k ≥ q − 1. This implies β(·) = β◦
(·), ω = ω◦

, and
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At,2 = A◦
t,2, ..., At,q = A◦

t,q a.s., and subsequently, α1q = α◦
1q, ..., α12 = α◦

12. From

this and (4.1), we can obtain

h1(ηt−1, σt−1, Bt,2, B
◦
t,2) :=

:= (α11 − α◦
11)σ

2
t−1η

2
t−1 +

(
α21σ

2
t−1η

2
t−1 + Bt,2

)
F (σt−1ηt−1, γ)

−
(
α◦

21σ
2
t−1η

2
t−1 + B◦

t,2

)
F (σt−1ηt−1, γ

◦
)

= 0 a.s.

(4.6)

Suppose that γ = 0. Then, F (Xt−1, γ) ≡ 0, and using (4.5) and (4.6), we

get α◦
21 = 0 and B◦

t,2 = 0 a.s. Since this is a contradiction to condition (a), γ must

be positive. Thus, from (4.6), we have

lim
x→∞

x−2h1(x, σt−1, Bt,2, B
◦
t,2) = σ2

t−1

{
α11 − α◦

11 − 2
−1

(α21 − α◦
21)
}

= 0 a.s..

Further, taking the limit x → −∞, we obtain α11 = α◦
11 and α21 = α◦

21, so that

lim
x→∞

h1(x, σt−1, Bt,2, B
◦
t,2) = −2

−1Bt,2 + 2
−1B◦

t,2 = 0 a.s. ,

which results in α2i = α◦
2i, 2 ≤ i ≤ q. Then, in view of (4.6), we obtain

h2(ηt−1, σt−1, B
◦
t,2) :=

(
α◦

21σ
2
t−1η

2
t−1 + B◦

t,2

)( 1

1 + eγσt−1ηt−1
− 1

1 + eγ◦σt−1ηt−1

)

= 0 a.s. .

If γ < γ◦
and additionally if α◦

21 6= 0, we should have

lim
x→∞

x−2eγσt−1xh2(x, σt−1, B
◦
t,2) = α◦

21σ
2
t−1 = 0 a.s. ,

which leads to a contradiction. However, if α◦
21 = 0, we have limx→∞ eγσt−1xh2(x,

σt−1, B
◦
t,2) = B◦

t,2 = 0 a.s., which also leads to a contradiction to condition (a).

Hence, we must have γ ≥ γ◦
. Since γ > γ◦

is also impossible, we conclude that

γ = γ◦
, which completes the proof.

Proof of Theorem 3.2: As in handling (4.3), we follow the same lines in

the proof of Theorem 3.1 to obtain

g′2(ηt−2, σt−2, At,3, A
◦
t,3, A

◦
t−1,2, Dt,3) :=

:= (α12 − α◦
12 − b1α

◦
11)σ

2
t−2η

2
t−2 + At,3 − A◦

t,3 − b1A
◦
t−1,2 − Dt,3

= 0 a.s. .

Then, as in handling (4.2), we get At,3 −A◦
t,3 − b1A

◦
t−1,2 −Dt,3 = 0 a.s. Similarly,

it can be seen that ω−ω◦− b1A
◦
t−1,q − b2A

◦
t−2,q−1−···− bq−1A

◦
t−q+1,2−Dt,q+1 = 0

a.s. Then, with probability 1, for all x ∈ R,

g(x) := (ω − ω◦
) − b1

(
α◦

1qσ
2
t−q−1x

2
+ ω◦)− b2

(
α◦

1,q−1σ
2
t−q−1x

2
+ A◦

t−2,q

)
− ···

− bq−1

(
α◦

12σ
2
t−q−1x

2
+ A◦

t−q+1,3

)
− bq

(
α◦

11σ
2
t−q−1x

2
+ A◦

t−q,2

)
− Dt,q+2

= 0 ,

(4.7)
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which, in turn, implies

P

(
lim

x→∞
−g(x)

σ2
t−q−1x

2
= b1α

◦
1q + ··· + bqα

◦
11 = 0

)
= 1 .

In fact, we can obtain an analogous relationship between ηt−q−k and Ft−q−k−1-

measurable random variables, k ≥ 2, and as such, bkα
◦
1q + ···+ bk+q−1α

◦
11 = 0 for

all k ≥ 1, which implies that β(z)β◦
(z)

−1α◦
1(z) is a polynomial of at most q orders.

Then, using condition (c) and the arguments similar to those in Straumann and

Mikosch (2006), p. 2481, we can see that β(·) = β◦
(·), and thus, bj = 0 for j ≥ 1.

Combining this, (4.2) and (4.7), we get At,2 = A◦
t,2, ..., At,q = A◦

t,q a.s. and ω = ω◦
,

which, in turn, implies α1q = α◦
1q, ..., α12 = α◦

12. Hence, (4.1) can be reexpressed

as

h′
1(ηt−1, σt−1, Bt,2) := (α11−α◦

11)σ
2
t−1η

2
t−1 +

(
α21σ

2
t−1η

2
t−1 +Bt,2

)
F (σt−1ηt−1, γ)

= 0 a.s. .

From this, we can easily obtain α11 = α◦
11 and the same equation as in (4.5),

which finally leads to α21 = ··· = α2q = 0. This completes the proof.

Proof of Theorem 3.3: First, we conjecture that the support of the sta-

tionary distribution of (X1, λ1) is a Cartesian product of N0 and supp(λ1). If it is

not true, there exists (m′, λ′
) ∈ N0 × supp(λ1) such that (m′, λ′

) /∈ supp(X1, λ1),

and for some positive real number r,

0 = P
(
X1 = m′, λ1 ∈ (λ′ − r, λ′

+ r)
)

=

∫ λ′+r

λ′−r
(m′

!)
−1e−uum′

dFλ1(u) ,

where Fλ1 is the distribution function of λ1. Since the integrand is positive, it

must hold that P (λ1 ∈ (λ′ − r, λ′
+ r)) = 0, which, however, contradicts to the

fact that λ′ ∈ supp(λ1). Thus, our conjecture is validated.

Note that owing to the stationarity, for all t ∈ Z,

g(Xt−1, λt−1) := (ω − ω◦
) + (α1 − α◦

1)Xt−1 + (α2 − α1)(Xt−1 − l)+

− (α◦
2 − α◦

1)(Xt−1 − l◦)+ + (β − β◦
)λt−1

= 0 a.s. ,

and therefore,

g(m, λ) = 0 for all m ∈ N0 and λ ∈ supp(λ1) ,(4.8)

since g(·) is continuous and supp(X1, λ1) = N0×supp(λ1). In particular, g(0, λ) =

(ω − ω◦
) + (β − β◦

)λ = 0 for any λ ∈ supp(λ1). Note that λt is not degenerate

when α◦
1 6= α◦

2, since otherwise, Xt−1 should be degenerate. Thus, we have ω = ω◦

and β = β◦
, so that g(1, λ) = α1 − α◦

1 = 0. Further, it follows from (4.8) that

limm→∞ m−1g(m, λ) = α2 −α◦
2 = 0. Then, using the fact that g(l, λ) = g(l◦, λ) =

0 and α◦
1 6= α◦

2, we obtain l = l◦, which completes the proof.
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Proof of Theorem 3.5: For simplicity, we assume that d◦ = 1: the other

cases can be handled similarly. From condition (b) and the continuity of m(·, θ),
we can see that

m(x1, ..., xp, θ
◦
) = m(x1, ..., xp, θ) , ∀xj ∈ R , 1 ≤ j ≤ p .(4.9)

Suppose that d 6= 1. From (4.9), we can express

m(x1, ..., xp, θ
◦
) − m(x1, ..., xp, θ) =

=

{
f◦
0 (x2) − f0(x2) −

M∑

i=1

fi(x2)G(xd; γi, ci)

}

+

{
φ◦

01 − φ01 −
M∑

i=1

φi1G(xd; γi, ci)

}
x1

+

M∑

i=1

(f◦
i (x2) + φ◦

i1x1)G(x1; γ
◦
i , c◦i )

= 0 ,

(4.10)

where G(·) is the one in (3.6), x2 = (x2, ..., xp)
T
, and

f◦
i (x2) = φ◦

i0 +

∑

2≤j≤p

φ◦
ijxj , fi(x2) = φi0 +

∑

2≤j≤p

φijxj , for i = 0, 1, ..., M .

Then, applying Lemma 4.1 below to (4.10), we have φ◦
11 = 0 and f◦

1 (x2) = 0 for

each x2 ∈ R
p−1

, which, however, contradicts to condition (a). Thus, it must hold

that d = d◦ = 1. Owing to the above, we can reexpress (4.9) as

(4.11) (f◦
0 (x2) + φ◦

01x1) +

M∑

i=1

(f◦
i (x2) + φ◦

i1x1)G(x1; γ
◦
i , c◦i ) =

= (f0(x2) + φ01x1) +

M∑

i=1

(fi(x2) + φi1x1) G(x1; γi, ci) ,

∀xj ∈ R , 1 ≤ j ≤ p .

Lemma 4.1 ensures that a family of real-valued functions G = {1, i(·)}∪{G(·; γ, c) :

γ > 0, c ∈ R} ∪ {i(·)G(·; γ, c) : γ > 0, c ∈ R}, where i(·) is an identity function,

i.e., i(y) = y, are linearly independent. Thus, any element of the linear span

of G is uniquely represented as a linear combination of the elements of G: see

Yakowitz and Spragins [34]. Further, there exists a vector x′
2 ∈ R

p−1
such that

(f◦
i (x′

2), φ
◦
i1) 6= (0, 0) for all i = 1, ..., M ; unless otherwise, φ◦

i0 = ··· = φ◦
ip = 0 for

some i, which contradicts condition (a). Then, viewing (4.11) with x2 substituted

by x′
2 as a function of x1 and using condition (c), we obtain φ◦

01 = φ01 and φ◦
i1 =

φi1, γ◦
i = γi, c◦i = ci for i = 1, ..., M . Subsequently, owing to (4.11), for all x1 ∈ R

and x2 ∈ R
p−1

, we get

(f◦
0 (x2) − f0(x2)) +

M∑

i=1

(f◦
i (x2) − fi(x2)) G(x1; γ

◦
i , c◦i ) = 0 .
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Then, applying Lemma 4.1 again, we conclude that φ◦
i0 = φi0 and φ◦

ij = φij , j =

2, ..., p, i = 0, 1, ..., M . This completes the proof.

Lemma 4.1. Let (γ1, c1), ..., (γk, ck) be distinct real vectors with γi > 0,

i = 1, ..., k. Suppose that for all y ∈ R,

d00 + d01y +

k∑

i=1

(di0 + di1y)
1

1 + e−γi(y−ci)
= 0 .(4.12)

Then, di0 = di1 = 0 for i = 0, 1, ..., k.

Proof: Denote by g(y) the left-hand side of (4.12). Then, limy→−∞ y−1g(y)

= d01 = 0, and thus, limy→−∞ g(y) = d00 = 0. In what follows, for function f :

R → R, we denote by L{f} its two-sided Laplace transform, that is, L{f(·)}(s) =∫∞
−∞ e−syf(y)dy. Note that the transform of the logistic distribution function is

as follows:

F0(s; γ, c) := L{G(·; γ, c)}(s) =
πγ−1e−cs

sin πγ−1s
, 0 < s < γ .

Further,

F1(s; γ, c) := L{i(·)G(·; γ, c)}(s)

=
πγ−1ce−cs

sin πγ−1s
+

π2γ−2e−cs
cos πγ−1s

sin
2 πγ−1s

, 0 < s < γ .

Without loss of generality, assume that (γi, ci), i = 1, ..., k, satisfy a lexicograph-

ical ordering, that is, γi ≤ γi+1 and ci < ci+1 when γi = γi+1. Suppose that

γ1 = ··· = γl < γl+1 ≤ ··· ≤ γk and c1 < ··· < cl. Then, applying the two-sided

Laplace transformation to (4.12), we have that for all 0 < s < γ1,

k∑

i=1

di0F0(s; γi, ci) +

k∑

i=1

di1F1(s; γi, ci) = 0 .(4.13)

Since the numerator of the left-hand side of (4.13) is an analytic function on R,

(4.13) is still valid for all s ∈ R\D, where D = {s : s = γim, 1 ≤ i ≤ k, m ∈ Z}.
Multiplying sin

2 πγ−1
1 s to both the sides of (4.13), we attain

sin πγ−1
1 s

l∑

i=1

{
di0πγ−1

1 e−cis + di1πγ−1
1 cie

−cis
}

+

+ sin
2 πγ−1

1 s
k∑

i=l+1

{
di0

πγ−1
i e−cis

sin πγ−1
i s

+ di1
πγ−1

i cie
−cis

sin πγ−1
i s

}

+ cos πγ−1
1 s

l∑

i=1

di1π
2γ−2

1 e−cis + sin
2 πγ−1

1 s
k∑

i=l+1

di1
π2γ−2

i e−cis cos πγ−1
i s

sin
2 πγ−1

i s
= 0 .
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Then, if we set N1 = {n ∈ N : γ1n 6= γim for all l < i ≤ k, m ∈ N}, for any fixed

n ∈ N1, letting s → γ1n through the values in R\D, we can have

l∑

i=1

di1e
−ciγ1n

= 0 .(4.14)

Since (4.14) holds for all n ∈ N1, multiplying ec1γ1n
to both the sides of (4.14)

and letting n → ∞ through the values in N1, we get d11 = 0. Similarly, it can be

seen that d21 = ··· = dl1 = 0. Meanwhile, multiplying sinπγ−1
1 s to both the sides

to (4.13) and letting s → γ1n, we can have
∑l

i=1 di0e
−ciγ1n

= 0 for any n ∈ N1,

and henceforth, d10 = ··· = dl0 = 0. Continuing the above process, one can finally

establish the lemma.

Remark 4.1. Lemma 4.1 actually entails the identifiability of logistic mix-

ture distributions (cf. Yakowitz and Spragins [34] and Sussmann [30]). Hwang

and Ding [14] also proved the linear independence of logistic distributions and

their density functions to deal with the identifiability problem in artificial neural

networks. However, their results do not directly imply Lemma 4.1. Our proof is

simpler and is based on Theorem 2 of Teicher [31].
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[11] González-Rivera, G. (1998). Smooth-transition GARCH models, Stud. Non-

linear Dyn. Econom., 3, 61–78.

[12] Hansen, B.E. (1996). Inference when a nuisance parameter is not identified

under the null hypothesis, Econometrica, 64, 413–430.

[13] Hayashi, F. (2000). Econometrics, Princeton University Press, Princeton, NJ.

[14] Hwang, J.T.G. and Ding, A.A. (1997). Prediction intervals for artificial neural

networks, J. Amer. Statist. Assoc., 92, 748–757.

[15] Kang, J. and Lee, S. (2014). Parameter change test for Poisson autoregressive

models, Scand. J. Statist. (to appear).

[16] Komunjer, I. (2012). Global identification in nonlinear models with moment

restrictions, Economet. Theor., 28, 719–729.

[17] Kristensen, D. and Rahbek, A. (2009). Asymptotics of the QMLE for non-

linear ARCH models, J. Time Ser. Econom., 1, 38.

[18] Lee, S. and Lee, T. (2012). Inference for Box–Cox transformed threshold

GARCH models with nuisance parameters, Scand. J. Statist., 39, 568–589.

[19] Lee, S. and Noh, J. (2013). Quantile regression estimator for GARCH models,

Scand. J. Stat., 40, 2–20.

[20] Li, D. and Ling, S. (2012). On the least squares estimation of multiple-regime

threshold autoregressive models, J. Econometrics, 167, 240–253.

[21] McAleer, M. and Medeiros, M.C. (2008). A multiple regime smooth tran-

sition heterogeneous autoregressive model for long memory and asymmetries,

J. Econometrics, 147, 104–119.

[22] Medeiros, M.C. and Veiga, A. (2009). Modeling multiple regimes in financial

volatility with a flexible coefficient GARCH(1,1) model, Economet. Theor., 25,

117–161.

[23] Meitz, M. and Saikkonen, P. (2008). Ergodicity, mixing, and existence of

moments of a class of Markov models with applications to GARCH and ACD

models, Economet. Theor., 24, 1291–1320.

[24] Meitz, M. and Saikkonen, P. (2011). Parameter estimation in nonlinear

AR–GARCH models, Economet. Theor., 27, 1236–1278.



Identifiability in Nonlinear Time Series Models 413

[25] Neumann, M.H. (2011). Absolute regularity and ergodicity of Poisson count

processes, Bernoulli, 17, 1268–1284.

[26] Phillips, P.C.B. (1989). Partially identified econometric models, Economet.

Theor., 5, 181–240.

[27] Redner, R.A. and Walker, H.F. (1984). Mixture densities, maximum likeli-

hood and the EM algorithm, SIAM Rev., 26, 195–239.

[28] Rothenberg, T.J. (1971). Identification in parametric models, Econometrica,

39, 577–591.

[29] Straumann, D. and Mikosch, T. (2006). Quasi-maximum-likelihood estima-

tion in conditionally heteroscedastic time series: a stochastic recurrence equations

approach, Ann. Statist., 34, 2449–2495.

[30] Sussmann, H. (1992). Uniqueness of the weights for minimal feedforward nets

with a given input-output map, Neural Networks, 5, 589–593.

[31] Teicher, H. (1963). Identifiability of finite mixtures, Ann. Math. Statist., 34,

1265–1269.
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1. INTRODUCTION

Topp and Leone [19] introduced a family of distributions with finite support

whose cumulative distribution function (cdf) is given by

(1.1) F (x|θ, β) =





0 , x < 0(
x
β

(
2 − x

β

))θ
, 0 ≤ x < β

1 , x ≥ β

, θ > 0 ,

and the probability density function (pdf) is given by

(1.2) f(x|θ, β) =
2θ

β

(
1 − x

β

)(
x

β

(
2 − x

β

))θ−1

, 0 < x < β , θ > 0 .

For simplicity, we denote this distribution by TL (θ, β). Topp–Leone (T-L)

distribution is a continuous unimodal distribution with bounded support; this

makes it appropriate for modeling lifetime of distributions with finite support.

Topp and Leone [19] did not provide any motivation for this family of distribu-

tions except to saying that it could be used to model failure data. Nadarajah

and Kotz [15] showed that this distribution exhibit bathtub failure rate functions

with widespread applications in reliability. Moreover, Ghitany et al. [10] showed

that T-L distribution possesses some attractive reliability properties such as the

bathtub-shape hazard rate, decreasing reversed hazard rate, upside-down mean

residual life, and increasing expected inactivity time. Moments for T-L distribu-

tion were derived by Nadarajah and Kotz [15]. Zghoul [21] provided expressions

for moments of ordered statistics from T-L distribution. Recently, Bayoud [6]

derived admissible minimax estimates for the shape parameter of the T-L distri-

bution under squared and linear-exponential loss functions. A reflected version of

the Generalized T-L distribution was used by Van Drop and Kotz [20] to fit the

U.S. income data for the year 2001 for Caucasian, Hispanic and Afro American

populations.

Classical and Bayesian inferences of the parameters of T-L distribution

have not yet been studied in the presence of censored samples. In this pa-

per, we study classical and Bayesian estimations for the shape parameter of

the T-L distribution when the sample is progressive Type II censored. A Type

II progressive censoring scheme can be expressed as follows: suppose that n

units are placed on a life test at time zero and the experimenter decides before-

hand the quantity m, the number of failures to be observed. When the first

failure time X1:m:n is observed, R1 of the remaining n − 1 surviving units are

randomly selected and removed. At the second observed failure time X2:m:n,

R2 of the remaining n − R1 − 2 surviving units are randomly selected and re-

moved. This experiment terminates at the time Xm:m:n when the mth
failure
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is observed, and the remaining Rm = n − R1 − R2 − ··· − Rm−1 − m surviving

units are all removed. The sample {X1:m:n, X2:m:n, ..., Xm:m:n} is called progres-

sively Type II censored sample of size m from a sample of size n with censoring

scheme {R1, R2, ..., Rm}. The values {m; R1, R2, ..., Rm} are determined prior to

the study. Note that, if R1 = R2 = ··· = Rm = 0, so that n = m, then the pro-

gressively Type II censoring scheme reduces to the case of complete sample. Also

note that if R1 = R2 = ··· = Rm−1 = 0, so that Rm = n − m, then the censoring

scheme reduces to a conventional Type II censoring scheme. Readers may refer

to [2] for more details about the progressive censoring.

The rest of this paper is organized as follows. In Section 2, we provide

the model assumptions based on the progressive Type II censoring. The MLE is

studied in Section 3. We propose an approximate MLE (AMLE) in Section 4.

The Bayes estimate and the construction of the credible interval are discussed in

Section 5. In Section 6, data analysis and some simulation studies are carried out

to investigate the performance of the proposed estimation methods. Finally, we

conclude the paper in Section 7.

2. MODEL ASSUMPTIONS

Let X1:m:n, X2:m:n, ..., Xm:m:n be a progressively Type II censored sample

from T-L lifetime distribution (1.2), with {m; R1, R2, ..., Rm} being the progres-

sive censoring scheme. The likelihood function based on the observed progressive

Type II censored sample D = {x1:m:n, x2:m:n, ..., xm:m:n} is given by:

(2.1) L(D|θ, β) = c

(
2θ

β

)m m∏

i=1

(
1 − xi:m:n

β

)
u(θ−1)

(xi:m:n)

[
1 − uθ

(xi:m:n)

]Ri

,

where

c = n(n − 1 − R1)(n − 2 − R1 − R2)···
(

n −
m−1∑

i=1

(Ri + 1)

)
, 0 < xi:m:n < β ,

and

u (xi:m:n) =
xi:m:n

β

(
2 − xi:m:n

β

)
∈ (0, 1) ∀i = 1, 2, ..., m .

The log-likelihood function, l(D|θ, β) = lnL(D|θ, β), may be written from (2.1)

as:

(2.2) l(D|θ, β) ∝ m ln(θ) +

m∑

i=1

θ lnu (xi:m:n) +

m∑

i=1

Ri ln

[
1 − uθ

(xi:m:n)

]
.
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3. MAXIMUM LIKELIHOOD ESTIMATE

Equating the partial derivative of the log-likelihood function l(D|θ, β) in

(2.2) to zero, we have that:

(3.1)
∂l(D|θ, β)

∂θ
=

m

θ
+

m∑

i=1

lnu (xi:m:n)−
m∑

i=1

uθ
(xi:m:n)

1−uθ (xi:m:n)
lnu (xi:m:n)Ri = 0 .

The MLE of θ is the solution of the likelihood equation (3.1). Since (3.1) is

a non-linear equation, a numerical technique is needed. Newton-Raphson method

is proposed to obtain the MLE iteratively. A suitable initial guess for the iter-

ative method will be proposed in the next section. However, numerical results,

presented in Section 6, show that the numerical MLE converges to the true pa-

rameter quite accurately without showing any problem with convergence.

4. APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATE

The likelihood equation (3.1), as mentioned in the previous section, does

not admit explicit solution for the shape parameter. Therefore, we expand the

function gi (θ) =
uθ(xi:m:n)

1−uθ(xi:m:n)
in a first-order Taylor series around vi =

ln pi

ln u(xi:m:n) ,

where pi = 1 −∏m
j=m−i+1

j+
Pm

i=m−j+1 Ri

1+j+
Pm

i=m−j+1 Ri
for i = 1, 2, ..., m. We may then con-

sider the following approximation:

(4.1) gi (θ) ≈ uvi (xi:m:n)

1 − uvi (xi:m:n)
+ (θ − vi)

uvi (xi:m:n)

[1 − uvi (xi:m:n)]
2 ln u (xi:m:n) .

Using the approximation in (4.1), (3.1) is roughly:

(4.2)

m

θ
+

m∑

i=1

lnu (xi:m:n) −

−
m∑

i=1

uvi (xi:m:n)

1−uvi (xi:m:n)

[
1+

(θ − vi)

1−uvi (xi:m:n)
lnu (xi:m:n)

]
lnu (xi:m:n)Ri = 0 .

From (4.2), we obtain the AMLE of θ as a solution of the quadratic equa-

tion:

Aθ2
+ Bθ + m = 0 ,

where

A = −
m∑

i=1

uvi (xi:m:n)

[1 − uvi (xi:m:n)]
2 [lnu (xi:m:n)]

2 Ri

and
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B =

m∑

i=1

lnu (xi:m:n)

[
1 − Ri

uvi (xi:m:n)

1 − uvi (xi:m:n)

[
1 − vi

lnu (xi:m:n)

1 − uvi (xi:m:n)

]]
.

Therefore, the AMLE, say θ̂AMLE, is obtained as

(4.3) θ̂AMLE =
−B −

√
B2 − 4Am

2A
,

which is the only positive root. This procedure has been used, for example, by

Balakrishnan and Aggarwala [2], Balakrishnan and Varadan [3], Balosooriya and

Balakrishnan [4] and Kim and Han [12].

It is worth mentioning that the proposed AMLE (4.3) may provide a con-

venient starting value for the iterative solution for the MLE in (3.1).

5. BAYESIAN INFERENCE

In this section, we discuss the Bayes estimate and the associated credible

interval for the shape parameter. The squared error loss function (SELF) is

considered, which is defined as

L(θ̂) =
(
θ − θ̂

)2
,

where θ̂ is the estimator of θ.

5.1. Prior and posterior analysis

The shape parameter θ is positive. So, it is assumed that θ has an Expo-

nential prior with pdf:

g (θ) = ae−aθ , θ > 0 and a > 0 .

This prior is conjugate when the complete sample is considered; see [6].

It follows, from (2.1) and the prior pdf, that the posterior density function

of θ can be written as:

(5.1)

π (θ|D, β) =
L(D|θ, β)g (θ)

∞∫
0

L(D|θ, β)g (θ) dθ

=
θme−aθ

∏m
i=1 uθ

(xi:m:n)
[
1 − uθ

(xi:m:n)
]Ri

K
,
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where K =

∞∫
0

θme−aθ
∏m

i=1 uθ
(xi:m:n)

[
1 − uθ

(xi:m:n)
]Ri dθ, the normalizing con-

stant.

Under the SELF, the Bayes estimate of θ, say θ̂B(a), is the posterior mean,

which is given by:

(5.2) θ̂B(a) = Eπ (θ|D, β) =
1

K

∞∫

0

θm+1e−aθ
m∏

i=1

uθ
(xi:m:n)

[
1 − uθ

(xi:m:n)

]Ri

.

It is obvious that (5.2) cannot be evaluated explicitly. Therefore, we propose two

approaches to approximate (5.2): Lindley’s procedure and the MCMC using the

importance sampling technique.

5.2. Lindley’s approximation

Lindley [14] proposed an approximation procedure to evaluate the ratio of

two integrals, such that the Bayes estimate in (5.2) takes a form containing no

integrals. This procedure has been used by several authors in the literature to

obtain the Bayes estimates for various distributions; see, for instance, Press [18].

Consider:

(5.3) I(D, a) =

∫
y(θ)el(θ)+τ(θ)dθ∫

el(θ)+τ(θ)dθ

where l is the log-likelihood function of the observed sample, y(θ) is a continuous

function in θ, and τ(θ) = ln g(θ) where g (θ) is the prior pdf of θ.

Based on Lindley’s procedure, the ratio (5.3) is approximated by:

(5.4) I(D, a) ≈ y
(
θ̂
)

+
1

2
(ŷθθ + 2ŷθ τ̂θ) σ̂θθ +

1

2

(
ŷθσ̂

2
θθ l̂θθθ

)

where yθθ denotes the second derivative of the function y(θ) with respect to θ,

ŷθθ represents the same expression evaluated at θ = θ̂MLE, τ̂θ =
∂
∂θτ(θ)|θ=θ̂MLE

,

l̂θθ =
∂2l
∂θ2 |θ=θ̂MLE

, l̂θθθ =
∂3l
∂θ3 |θ=θ̂MLE

and σ̂θθ = − 1
l̂θθ

.

Hence, the approximate Bayes estimate can be obtained using Lindley’s

procedure, by substituting y(θ) = θ, l=log-likelihood function (2.2) and g (θ) =

ae−aθ
in Lindley’s approximation (5.4), as:

(5.5) θ̂B,L (a) ≈ θ̂MLE +
a

l̂θθ

+
1

2

l̂θθθ

l̂2θθ



422 H.A. Bayoud

where θ̂MLE is the MLE of θ,

l̂θθ =
∂2l

∂θ2
|θ = θ̂MLE

= − m

θ̂2
MLE

−
m∑

i=1

[lnu (xi:m:n)]
2 uθ̂MLE (xi:m:n)
[
1 − uθ̂MLE (xi:m:n)

]2 Ri ,

and

l̂θθθ =
∂3l

∂θ3
|θ=θ̂MLE

=
2m

θ̂3
MLE

−
m∑

i=1

[lnu (xi:m:n)]
3

uθ̂MLE (xi:m:n)

[
1 + uθ̂MLE (xi:m:n)

]

[
1 − uθ̂MLE (xi:m:n)

]3 Ri .

5.3. MCMC method

Unfortunately, Lindley’s procedure fails to construct credible intervals for

the unknown parameter. Hence, we propose to use the importance sampling

technique to approximate the Bayes estimate and to construct the associated

credible interval. Similar procedure was used, for example, by Chen et al. [7],

Kundu and Pradhan [13], Pradhan and Kundu [16] and [17]. To implement the

importance sampling technique, we rewrite the posterior pdf (5.1) as follows:

π(θ|D, β) ∝ f1(θ|D)f2(θ)

where

f1(θ|D) =
[a −∑m

i=1 ln u(xi:m:n)]
m

Γ(m + 1)
θme−θ[a−Pm

i=1 ln u(xi:m:n)]

which is clearly a gamma density function with the shape parameter (m + 1) and

scale parameter [a −∑m
i=1 ln u(xi:m:n)]

−1
; and

f2(θ) =

m∏

i=1

[
1 − uθ

(xi:m:n)
]Ri .

Therefore, (5.2) can be written as:

(5.6) θ̂B (a) =

∞∫
0

θf1(θ|D)f2(θ)dθ

∞∫
0

f1(θ|D)f2(θ)dθ

.

Now, we propose the following algorithms, along the line of Kundu and Pradhan

[13], to compute the approximate Bayes estimate and to construct the associated

credible interval for the parameter θ.
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5.3.1. Algorithm 1 (BE)

Step 1) Generate a random sample of size M from f1(θ|D), gamma density

function with the shape parameter (m + 1) and scale parameter

[a −∑m
i=1 lnu(xi:m:n)]

−1
, say θ1, θ2, ..., θM ;

Step 2) Compute f2(θj) =
∏m

i=1[1 − uθj (xi:m:n)]
Ri , for j = 1, 2, ..., M ;

Step 3) Under the assumption of SELF, a simulation consistent estimate

of θ can be obtained using the importance sampling technique as:

θ̂B,IS (a) =

∑M
j=1 θjf2(θj)

∑M
j=1 f2(θj)

.

Using this algorithm, it is possible to construct the Bayes estimate of any function

of θ, say H(θ) as:

Ĥ(θ) =

∑M
j=1 H(θj)f2(θj)

∑M
j=1 f2(θj)

, provided that Ĥ(θ) is defined at all j = 1, 2, ..., m .

Now, to compute the credible interval of θ. Let, for 0 < p < 1, θp be such that

P (θ ≤ θp|D, β) =

θp∫
0

π(θ|D, β)dθ = p, where π(θ|D, β) is the posterior pdf defined

in (5.1).

5.3.2. Algorithm 2 (credible interval)

Here, we use the sample θ1, θ2, ..., θM that is obtained from Algorithm 1.

Step 1) Compute wj =
f2(θj)PM

j=1 f2(θj)
for j = 1, 2, ..., M ;

Step 2) Arrange the set {(θ1, w1), (θ2, w2), ..., (θM , wM )} as

{
(θ(1), w[1]), (θ(2), w[2]), ..., (θ(M), w[M ])

}
,

where θ(1) ≤ θ(2), ...,≤ θ(M);

Step 3) The 100(1 − α)% credible interval for θ is given by:

(
θ̂α

2
, θ̂1−α

2

)

where θ̂p is a simulation consistent Bayes estimate for θp, which

is given by θ(Mp) such that Mp is the integer satisfying:

Mp∑

j=1

w[j] ≤ p <

Mp+1∑

j=1

w[j] .
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Proposition 5.1. The posterior pdf π(θ|D, β) in (5.1) is log-concave.

Proof: Since u(xi) =
xi

β (2 − xi

β ) > 0, then it is easy to see that:

∂2
lnπ(θ|D, β)

∂θ2
= −

[
m

θ2
+

m∑

i=1

[lnu (xi:m:n)]
2 uθ

(xi:m:n)

[1 − uθ (xi:m:n)]
2 Ri

]
< 0

for any θ, this proves the result.

Since the posterior distribution (5.1) is log-concave, then one can apply

Devroye’s algorithm introduced in Devroye [8] to generate a sample from the

posterior distribution, say θ1, θ2, ..., θM . Based on this sample and under the

SELF, the approximate Bayes estimate of θ is given by:

θ̂MCMC = Ê(θ|D) =
1

M

M∑

j=1

θj .

The 100(1−α)% credible interval of θ can be computed by ordering θ1, θ2, ..., θM

as θ(1) ≤ θ(2) ≤ ... ≤ (θM ) and taking the interval as:

(
θ(M(α

2
)), θ(M(1−α

2
))

)
.

6. SIMULATION STUDY AND DATA ANALYSIS

6.1. Simulations

In this section, we present some simulation studies to observe the behavior

of the proposed estimation methods for different sample sizes, different priors and

for different censoring schemes. We have considered three sample sizes, n = 15,

25 and 50; and three progressive Type II censoring schemes with m = 5, namely,

(n − m, 0, 0, 0, 0), (0, 0, 0, 0, n − m) and (R1, R2, R3, R4, R5) where Ri =
n−m

m for

i = 1, 2, ..., 5.

In all cases, the parameter β is assumed without loss of generality to equal

1. Simulations are performed for three values of the shape parameter, namely,

θ = 0.5, θ = 1 and θ = 10. For a given n, m and (R1, R2, ...Rm), we have generated

a sample for the given censoring scheme. The AMLE is computed for the shape

parameter based on the method proposed in Section 3. We use this AMLE as a

starting value to obtain the MLE iteratively by using Newton-Raphson method

as discussed in Section 2. The approximate Bayes estimate is computed for
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the shape parameter using Lindley’s procedure and the importance sampling

technique based on 1000 importance sampling. For Bayesian estimation, the

following priors are considered: Prior 0: assuming a = 0.0001, a very small value,

and Prior 1: informative prior with a ≈ 1/θ and a ≈ 2/θ, separately, since E(θ) =

1/a. The expected value and the corresponding mean squared error (MSE) of the

proposed estimates are computed over 1000 replications. The results are reported

in Tables 1, 2 and 3 when θ = 0.5, θ = 1 and θ = 10, respectively.

From Tables 1, 2 and 3, it is clear that as the sample size increases, the

MSE decreases for all estimation methods. This verifies the consistency of the

proposed methods. It is also obvious that the AMLE and the approximate Bayes

estimates under Prior 1 perform, in terms of MSE, better than the iterative MLE

and the approximate Bayes estimates under Prior 0. For fixed sample size n,

fixed θ and for any censoring scheme, the approximate Bayes estimates under

Prior 1 with a ≈ 2/θ outperform the other estimates in terms of the MSE. It

is noticeable that the AMLE performs better than the MLE in all cases. The

approximate Bayes estimates under Prior 0 do not perform as efficiently as the

other estimates.

Table 1: Expected value of the proposed estimators

and the corresponding MSE when θ = 0.5.

θ̂B,L(a) θ̂B,IS(a)
n Scheme θ̂MLE θ̂AMLE

a = 2 a = 4 a = 10−4 a = 2 a = 4 a = 10−4

15

(0,0,0,0,10)
0.532 0.521 0.530 0.483 0.587 0.528 0.488 0.586
0.0204 0.0193 0.0170 0.0112 0.0353 0.0175 0.0132 0.0356

(2,2,2,2,2)
0.534 0.477 0.534 0.481 0.593 0.533 0.488 0.593
0.0235 0.0167 0.0192 0.0120 0.0394 0.0200 0.0141 0.0392

(10,0,0,0,0)
0.533 0.517 0.543 0.472 0.623 0.540 0.483 0.624
0.0308 0.0286 0.0252 0.0125 0.0604 0.0254 0.0166 0.0607

25

(0,0,0,0,20)
0.522 0.516 0.524 0.497 0.555 0.515 0.490 0.548
0.0145 0.0141 0.0131 0.0105 0.0190 0.0137 0.0123 0.0188

(4,4,4,4,4)
0.523 0.474 0.527 0.493 0.562 0.524 0.493 0.558
0.0167 0.0128 0.0150 0.0111 0.0226 0.0155 0.0122 0.0225

(20,0,0,0,0)
0.524 0.509 0.541 0.494 0.587 0.537 0.497 0.588
0.0252 0.0232 0.0230 0.0131 0.0360 0.0225 0.0153 0.0364

50

(0,0,0,0,45)
0.509 0.507 0.514 0.500 0.532 0.476 0.452 0.505
0.0078 0.0077 0.0075 0.0063 0.0102 0.0093 0.0097 0.0117

(9,9,9,9,9)
0.508 0.470 0.515 0.498 0.534 0.494 0.474 0.520
0.0087 0.0076 0.0084 0.0075 0.0111 0.0099 0.0094 0.0114

(45,0,0,0,0)
0.503 0.491 0.527 0.497 0.561 0.522 0.495 0.563
0.0135 0.0133 0.0138 0.0114 0.0215 0.0133 0.0120 0.0221
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Table 2: Expected value of the proposed estimators

and the corresponding MSE when θ = 1.

θ̂B,L(a) θ̂B,IS(a)
n Scheme θ̂MLE θ̂AMLE

a = 1 a = 2 a = 10−4 a = 1 a = 2 a = 10−4

15

(0,0,0,0,10)
1.08 1.06 1.08 0.978 1.13 1.07 0.989 1.13
0.1010 0.0946 0.0816 0.0524 0.1231 0.0842 0.0632 0.1228

(2,2,2,2,2)
1.08 0.969 1.08 0.974 1.15 1.08 0.990 1.15
0.1060 0.0760 0.0853 0.0513 0.1427 0.0884 0.0628 0.1434

(10,0,0,0,0)
1.09 1.06 1.11 0.956 1.19 1.10 0.981 1.20
0.1500 0.1370 0.1160 0.0509 0.2014 0.1190 0.0684 0.2032

25

(0,0,0,0,20)
1.03 1.02 1.04 0.994 1.09 1.02 0.973 1.08
0.0611 0.0594 0.0549 0.0443 0.0709 0.0559 0.0504 0.0751

(4,4,4,4,4)
1.03 0.937 1.04 0.985 1.10 1.04 0.981 1.10
0.0694 0.0548 0.0619 0.0465 0.0792 0.0648 0.0507 0.0784

(20,0,0,0,0)
1.04 1.01 1.08 0.986 1.16 1.07 0.993 1.16
0.1020 0.0960 0.0925 0.0527 0.1368 0.0917 0.0612 0.1388

50

(0,0,0,0,45)
1.02 1.05 1.03 0.996 1.06 0.953 0.903 0.990
0.0352 0.0347 0.0340 0.0245 0.0356 0.0384 0.0372 0.0390

(9,9,9,9,9)
1.02 0.947 1.04 0.991 1.07 1.00 0.947 1.04
0.0387 0.0326 0.0374 0.0260 0.0466 0.0431 0.0352 0.0470

(45,0,0,0,0)
1.01 0.992 1.06 0.983 1.12 1.05 0.979 1.13
0.0628 0.0600 0.0639 0.0408 0.0920 0.0618 0.0427 0.0930

Table 3: Expected value of the proposed estimators

and the corresponding MSE when θ = 10.

θ̂B,L(a) θ̂B,IS(a)
n Scheme θ̂MLE θ̂AMLE

a = 0.1 a = 0.2 a = 10−4 a = 0.1 a = 0.2 a = 10−4

15

(0,0,0,0,10)
10.7 10.5 10.5 9.6 11.5 10.6 9.8 11.4
11.1 10.6 8.9 4.9 13.0 9.4 5.9 12.8

(2,2,2,2,2)
10.8 9.6 10.7 9.6 11.7 10.7 9.7 11.7
12.2 8.9 9.7 5.1 14.7 9.9 6.1 14.7

(10,0,0,0,0)
10.8 10.5 11.0 9.4 12.2 10.9 9.6 12.3
15.0 13.4 11.5 5.2 21.3 11.9 6.9 21.5

25

(0,0,0,0,20)
10.5 10.3 10.5 10.0 10.9 10.3 9.8 10.8
5.8 5.6 5.2 4.1 7.4 5.5 4.8 7.6

(4,4,4,4,4)
10.5 9.5 10.6 10.0 11.1 10.5 10.0 11.0
6.5 4.9 5.9 4.5 8.6 6.1 5.0 8.7

(20,0,0,0,0)
10.4 10.1 10.7 9.8 11.8 10.7 9.9 11.8
9.4 8.9 8.6 5.3 14.9 8.4 6.1 15.1

50

(0,0,0,0,45)
10.1 10.1 10.2 10.1 10.6 9.5 9.2 9.9
3.1 3.1 3.0 2.7 3.9 3.8 3.9 4.2

(9,9,9,9,9)
10.2 9.4 10.3 10.1 10.6 9.9 9.6 10.3
3.8 3.2 3.7 3.0 4.5 4.3 3.8 4.8

(45,0,0,0,0)
10.1 9.9 10.6 10.0 11.2 10.5 10.0 11.3
6.3 6.0 6.5 4.4 10.2 6.2 4.7 10.4
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6.2. Data analysis

In this section, we analyze real and simulated data sets using the proposed

estimation methods for illustrative purposes.

6.2.1. Real data

We analyze the failure time (in mileage) of eighteen military carriers pre-

sented by Grubbs [11] as follows:

162, 200, 271, 302, 393, 508, 539, 629, 706, 777,

884, 1101, 1182, 1463, 1603, 1984, 2355, 2880 .

First, it was checked whether the T-L distribution can be used or cannot to

analyze this data set. The MLE of β is 2880, the maximum order statistic, and

the MLE of θ is 1.133 . The Bayes estimate of θ, under the SELF, is 1.125

when a = 1, see [6]. It is obvious that the MLE and the Bayes estimate are

almost the same. The Kolmogorov-Smirnov (KS) distance between the empirical

distribution function and the fitted distribution function, using the MLEs, has

been used to check the goodness of fit. The KS statistic value is 0.135, and the KS

critical value is 0.309 at at n = 18 and α = 0.05. Accordingly, one cannot reject

the hypothesis that the data are coming from T-L distribution. We consider the

following censoring schemes, assuming m = 6:

Scheme 1) (R1 = R2 = ··· = R5 = 0, R6 = 12).

Scheme 2) (R1 = R2 = ··· = R5 = R6 = 2).

Scheme 3) (R1 = 12, R2 = ··· = R5 = R6 = 0).

Based on Schemes 1, 2 and 3, we have generated the following progressive

Type II censored samples:

D = (162, 200, 271, 302, 393, 508) ,

D = (162, 271, 393, 508, 539, 884)

and

D = (162, 302, 508, 777, 884, 1463) ,

respectively. The proposed estimates and the credible interval for the shape

parameter are computed and reported in Table 4. It is observed from Table 4 that

all estimates are in quite similar agreement and close to the estimates obtained

using the complete sample. The approximate Bayes estimates dominate the other

estimates when the hyper-parameter a is assumed to equal 1. The associated

credible intervals for the shape parameter are satisfactory in all the cases.
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Table 4: Real Data Analysis.

Estimate
Censoring Scheme

Scheme 1 Scheme 2 Scheme 3

θ̂MLE 1.169 1.303 1.241

θ̂AMLE 1.153 1.289 1.236

θ̂B,L(a)

a = 0.5 1.205 1.346 1.307
a = 1 1.163 1.290 1.246
a = 3.5 0.996 1.066 1.002

θ̂B,IS(a)

a = 0.5 1.151 1.307 1.285
a = 1 1.128 1.287 1.246
a = 3.5 1.085 1.141 1.053

90% Credible Interval
a = 0.5 (0.76, 1.51) (0.69, 1.49) (0.79, 1.85)
a = 1 (0.74, 1.47) (0.66, 1.47) (0.77, 1.84)
a = 3.5 (0.66, 1.38) (0.58, 1.27) (0.65, 1.48)

6.2.2. Simulated data

We analyze the following simulated data set presented by Genc [9] assuming

θ = 0.3 and β = 1:

0.1425, 0.2707, 0.2783, 0.0718, 0.4537, 0.0615, 0.0047, 0.3454, 0.4428, 0.1909,

0.1028, 0.0013, 0.0592, 0.5413, 0.2442, 0.0001, 0.0002, 0.0178, 0.0114, 0.5388

We consider the following censoring schemes, assuming m = 4:

Scheme 1) (R1 = R2 = R3 = 0, R4 = 16).

Scheme 2) (R1 = R2 = R3 = R4 = 4).

Scheme 3) (R1 = 16, R2 = R3 = R4 = 0).

Based on Schemes 1, 2 and 3, we have generated the following progressive

Type II censored samples:

D = (0.0001, 0.0002, 0.0013, 0.0047),

D = (0.0001, 0.0047, 0.01114, 0.0178)

and
D = (0.0001, 0.0013, 0.0718, 0.2707) , respectively.

The proposed estimates and the credible interval are computed and reported

in Table 5. It is clear from Table 5 that all estimates are quite similar, and

the approximate Bayes estimates dominate the other when the hyper-parameter

a = 5. It is also observed that the credible intervals are satisfactory under all the

cases.
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Table 5: Simulated Data Analysis.

Estimate
Censoring Scheme

Scheme 1 Scheme 2 Scheme 3

θ̂MLE 0.3699 0.4381 0.3664

θ̂AMLE 0.3694 0.4266 0.3662

θ̂B,L(a)

a = 0.75 0.3901 0.4651 0.4041
a = 3.5 0.3674 0.4294 0.3720
a = 5 0.3550 0.4100 0.3546

θ̂B,IS(a)

a = 0.75 0.3541 0.4731 0.3972
a = 3.5 0.3792 0.4120 0.3675
a = 5 0.3530 0.4054 0.3555

90% Credible Interval
a = 0.75 (0.25, 0.46) (0.23, 0.46) (0.24, 0.58)
a = 3.5 (0.24, 0.47) (0.21, 0.44) (0.22, 0.56)
a = 5 (0.23, 0.45) (0.21, 0.42) (0.22, 0.51)

7. CONCLUSIONS

In this article, classical and Bayesian point estimations were proposed for

the shape parameter of the Topp–Leone distribution when the sample is pro-

gressive Type II censored. It was observed that the MLE cannot be derived in

explicit form. Hence, an approximate MLE was proposed. Bayes estimate of the

shape parameter cannot be obtained in explicit form. Lindley’s procedure and the

importance sampling technique were proposed to obtain the approximate Bayes

estimate and to construct the credible interval for the shape parameter. The

performance of the different estimation methods was compared by Monte Carlo

simulations. It was observed that the approximate Bayes estimates, based on the

informative prior with a ≈ 2/θ, outperform the other estimates in terms of the

MSE. It was also noticed that the AMLE performs well and dominates the MLE

in terms of the MSE in all cases.
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1. INTRODUCTION

The Rayleigh distribution is a continuous probability distribution serving

as a special case of the well-known Weibull distribution. This distribution has

long been considered to have significant applications in fields such as survival

analysis, reliability theory and especially communication engineering.

When considering the complete Rayleigh model, the probability density

function is given by

(1.1) f(x; θ) = 2θxe−θx2
, x, θ > 0 ,

using the parametrization of the distribution as proposed by Bhattacharya and

Tyagi (1990), and is denoted by X ∼ Rayleigh(θ). The parameter θ is a scale

parameter, and characterizes the lifetime of the object under consideration in

application.

Mostert (1999) did extensive work concerning the censored model, and

showed that the censored Rayleigh model is relatively easy to use compared to

other more complex models (such as the Weibull- and compound Rayleigh mod-

els). In certain types of applications, it is not uncommon that some observations

may cease to be observed due to machine failure, budgetary constraints, and the

likes. To compensate for such events, right censored analyses utilizes information

only obtained from the first d observations. Thus, the right censored sample con-

sists of n observations, where only d lifetimes (d an integer), x1 < x2 < ... < xd

are measured fully, while the remainder n− d are censored. These n− d censored

observations are ordered separately and are denoted by xd+1 < xd+2 < ... < xn.

In the context of reliability analysis (for example), a lifetime would be the time

until a unit / machine fails to operate successfully.

In the paper of Soliman (2000), a family of non-informative priors were

introduced:

(1.2) g(θ) =
1

θm
, m, θ > 0 ,

and was termed a“quasi-density”prior family. This paper explores the application

of this prior family with regards to the right censored Rayleigh model. Different

known prior densities are contained within (1.2), namely the Jeffreys prior (m =1),

Hartigan’s prior (m = 3), and a third prior illustrating the diminishing effect of

the prior density family — this is termed a “vanishing” prior (some large value

of m, chosen arbitrarily such that m = 10). The choice of m would be up to

the practitioner to determine the extent of the objectivity required. It is worth

noting that Hartigan’s prior (m = 3) is known as an asymptotically invariant prior

as well. Liang (2008) provides valuable contributions when considering relevant

choices of hyperparameters.
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Mostert (1999) showed that the likelihood of the censored Rayleigh model

is given by

L(θ) ∝ (2θ)due−θT

where T =
∑n

i=1 x2
i ∼ gamma(

n
2 , θ). The quantity u is defined as u =

d∏

i=1

xi, see

Mostert (1999) for further details. It can be shown that the posterior distribution

results in

(1.3) g(θ|T ) =
T d−m+1

Γ(d − m + 1)
θ(d−m+1)−1e−θT

which characterizes a gamma(d − m + 1, T ) distribution, where Γ(·) denotes the

gamma function. Note that, since the posterior distribution is always a proper

distribution, it ensures the need of restrictions on the parameter space. In order

for (1.3) to be well-defined, it is thus assumed throughout that m < d + 1.

Together with Soliman (2000), Mostert (1999) compared the Bayesian es-

timators under the linear exponential (LINEX) loss function and squared-error

loss (SEL) function, and Dey and Dey (2011) did similar work for the complete

model by applying Jeffreys prior and a loss function as proposed by Al-Bayyati

(2002). This paper extends concepts in the literature for the censored Rayleigh

model by considering this new loss function, namely the Al-Bayyati loss (ABL),

and comparing it to other known results.

Gruber (2004) proposed a method where a balanced loss function is used

in a Bayesian context. A balanced loss function is where a weighted loss value

is constructed by substituting each estimate into its corresponding loss function

and determining some weighted value thereof. In this paper an extension of this

methodology is considered, by obtaining a new estimator as a weighted value of

the Bayesian estimator under either SEL or ABL, and some other estimate of the

unknown parameter (in this case, θ). This is also known as a shrinkage based

estimation approach.

The focus of this paper is the evaluation of the ABL estimator in terms of its

performance by considering its risk efficiency in comparison to the SEL estimator,

and also the effect of the parameter m, the prior density family degree. In this

respect the following proposal is adopted:

1. Obtain the Bayes estimator under SEL, and evaluate under ABL;

2. Obtain the Bayes estimator under ABL, and evaluate under SEL; and

3. Obtain shrinkage estimators of both SEL and ABL estimators by com-

bining the Bayesian estimators with some prespecified point estimate

of the parameter, and evaluate under SEL.

In Section 2 the respective Bayesian estimators are determined and the

risk (expected loss) are studied comparatively. The effect of risk efficiency is



Objective Bayesian Estimators 437

also investigated, and a shrinkage approach is also then considered. In section 3

an illustrative example involving a simulation study and a real data analysis

presented, and section 4 contains a discussion and some final conclusions.

2. SQUARED-ERROR LOSS (SEL) & AL-BAYYATI LOSS (ABL)

2.1. Parameter estimation under SEL & ABL

This section explores the Bayesian estimators under the loss functions for

the model discussed in the introduction. The SEL is defined by

(2.1) LSEL(θ̂, θ) = (θ̂ − θ)2

and the loss function proposed by Al-Bayyati (2002):

(2.2) LABL(θ̂, θ) = θc
(θ̂ − θ)2 , c ∈ R .

SEL is a widely used loss function due to its attractive feature of symme-

try — where the function focuses on the size of the loss rather than the direction

(over- or underestimation) of the loss. The ABL introduces the additional param-

eter c, which assists in determining a flatter loss function (albeit still symmetric)

or the alternative, and it specifically generalizes the SEL (2.1). c can also be

considered the order of weighting of the quadratic component. Under SEL, the

(posterior) risk function has the following form:

RSEL(θ̂, θ) =

∫ ∞

0
LSEL(θ̂, θ)g(θ|T )dθ

= θ̂2
SEL − 2θ̂SEL

Γ(d − m + 2)

Γ(d − m + 1)T
+

Γ(d − m + 3)

Γ(d − m + 1)T 2
.

From (1.3) the Bayesian estimator θ̂SEL is given by the posterior mean of

θ:

(2.3) θ̂SEL =
d − m + 1

T
.

Since (1.1) indicates that the parameter θ must be positive, a restriction implied

by (2.3) is that m < d + 1 (corresponding to the restriction discussed in the In-

troduction regarding the posterior distribution). Under ABL, the (posterior) risk
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function has the following form:

RABL(θ̂, θ) =

∫ ∞

0
LABL(θ̂, θ)g(θ|T )dθ

= θ̂2
ABL

Γ(d − m + c + 1)

Γ(d − m + 1)T c
− 2θ̂ABL

Γ(d − m + c + 2)

Γ(d − m + 1)T c+1

+
Γ(d − m + c + 3)

Γ(d − m + 1)T c+2
.

The Bayesian estimator θ̂ABL is

(2.4) θ̂ABL =
d − m + c + 1

T
.

Similar to the case of the SEL estimator, m < d+ c+1 for positive c, and m+ c <

d + 1 for negative c in order for the gamma function to be well-defined.

2.2. Comparing the risk of SEL and ABL

The three different prior degrees are of interest here, namely the Jeffreys

prior (m = 1), Hartigan’s prior (m = 3), and the vanishing prior (m = 10). The

posterior risk of the two loss functions was compared against each other for certain

parameter values — notably for increasing values of θ and for the three different

values of m.

The risk was determined empirically by simulating 5000 samples of sizes

n = 30, 40 and 50 each, using the inverse-transform method and uniform (0, 1)

random variates. From each of these obtained samples, the parameter was es-

timated under SEL and ABL (with c = 0.5), and the average loss of all 5000

samples was determined. The value of d was set at d = 0.2n, which implies that

20% of lifetimes have been observed. There are practical examples were a cen-

soring of between 70% and 90% have been observed (see Stablein, Carter, and

Novak (1981)), which is why, as an illustration, a censoring of 80% is used.

In Figures 1 to 3 it is seen that the shape of the functions do not change

for different values of m, but it is observed that the risk is increasing for larger

m values. Also, as the sample size n increases, the magnitude of the risk is

decreasing. From the simulation it is evident that for positive c, SEL has least

risk and would thus be preferable. An effective way of comparing the risk of

different loss functions is by determining the risk efficiency — which is explored

in the next section.
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Figure 1: Simulated risk for SEL and ABL (n = 30).

Figure 2: Simulated risk for SEL and ABL (n = 40).



440 J.T. Ferreira, A. Bekker and M. Arashi

Figure 3: Simulated risk for SEL and ABL (n = 50).

2.3. Risk efficiency between SEL and ABL

Risk efficiency is a method that provides an intuitive way of determining

which estimator — under a certain loss function — performs better than the

other. The form of the risk function considered is

R∗
L(θ̂est, θ) = ET (L(θ̂est, θ)) =

∫ ∞

0
L(θ̂est, θ)f(T )dT

using the distribution of T . Here, L denotes the loss function under which the

risk efficiency is calculated, and θ̂est denotes its estimator of θ. The risk efficiency

is then given by:

REL(θ̂L, θ̂y) ≡ R∗
L(θ̂y, θ)

R∗
L(θ̂L, θ)

translating to, the risk efficiency of θ̂L with respect to θ̂y under L loss (θ̂y de-

notes an estimator under any other loss function than L). This is similar as

the approach by Dey (2011). Now, θ̂L denotes the estimator for the parameter

that needs to be estimated under loss L, and θ̂y denotes the estimator for the

parameter under the loss y. The interpretation of this expression is that when

REL(θ̂L, θ̂y) > 1, the estimator θ̂L is preferable under L loss than that of θ̂y.
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2.3.1. SEL vs. ABL under SEL

The risk efficiency for the estimators derived in section 2.1 under SEL are

given by:

RESEL(θ̂SEL, θ̂ABL) =
R∗

SEL(θ̂ABL, θ)

R∗
SEL(θ̂SEL, θ)

.

The expressions required by above equation are obtained as:

R∗
SEL(θ̂ABL, θ) =

∫ ∞

0
LSEL(θ̂ABL, θ)f(T )dT

= θ2

(
(d − m + 1 + c)2

(
n
2 − 1)(

n
2 − 2)

− 2
d − m + 1 + c

(
n
2 − 1)

+ 1

)

and

R∗
SEL(θ̂SEL, θ) =

∫ ∞

0
LSEL(θ̂SEL, θ)f(T )dT

= θ2

(
(d − m + 1)

2

(
n
2 − 1)(

n
2 − 2)

− 2
d − m + 1

(
n
2 − 1)

+ 1

)
.

The risk efficiency of θ̂sel with respect to θ̂abl under SEL is then

(2.5)

RESEL(θ̂SEL, θ̂ABL) =
R∗

SEL(θ̂ABL, θ)

R∗
SEL(θ̂SEL, θ)

=

(
(d−m+1+c)2

(n
2
−1)( n

2
−2) − 2

d−m+1+c
(n
2
−1) + 1

)

(
(d−m+1)2

(n
2
−1)( n

2
−2) − 2

d−m+1
(n
2
−1) + 1

) .

An interesting characteristic of this equation (2.5) is that it is independent

from the sample information i.e. independent of xi. It is only dependent on n, d,

c, and m.

Figure 4 illustrates the risk efficiency (2.5) for arbitrary parameter values.

Since the function is not dependent on sample information, no simulation from

(1.1) is required. A sample size of n = 30 was specified along with d = 0.2n and

for different values of c. The risk efficiency values is plotted against values of m,

the prior family degree. It is of special interest that for negative values of c, the

ABL estimator performs better than that of the SEL counterpart for small values

of m. The converse holds when this “threshold” value of m is reached, where the

more efficient estimator becomes the SEL estimator.
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Figure 4: Risk efficiency of SEL- and ABL estimator under SEL.

2.3.2. ABL vs. SEL under ABL

The risk efficiency for SEL and ABL under ABL is given by:

REABL(θ̂ABL, θ̂SEL) =
R∗

ABL(θ̂SEL, θ)

R∗
ABL(θ̂ABL, θ)

.

The expressions required by above equation are obtained as:

R∗
ABL(θ̂SEL, θ) =

∫ ∞

0
LABL(θ̂SEL, θ)f(T )dT

= θc+2

(
(d − m + 1)

2

(
n
2 − 1)(

n
2 − 2)

− 2
d − m + 1

(
n
2 − 1)

+ 1

)

and

R∗
ABL(θ̂ABL, θ) =

∫ ∞

0
LABL(θ̂ABL, θ)f(T )dT

= θc+2

(
(d − m + 1 + c)2

(
n
2 − 1)(

n
2 − 2)

− 2
d − m + 1 + c

(
n
2 − 1)

+ 1

)
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again using the relations derived in section (2.3.1). The risk efficiency of θ̂abl

versus θ̂sel under ABL is:

(2.6)

REABL(θ̂ABL, θ̂SEL) =
R∗

ABL(θ̂SEL, θ)

R∗
ABL(θ̂ABL, θ)

=

(
(d−m+1)2

(n
2
−1)( n

2
−2) − 2

d−m+1
(n
2
−1) + 1

)

(
(d−m+1+c)2

(n
2
−1)( n

2
−2) − 2

d−m+1+c
(n
2
−1) + 1

) .

It is observed that this last result is the reciprocal of the (2.5). Figure 5 illustrates

this result; where the converse of the discussion of (2.5) holds.

Figure 5: Risk efficiency of SEL- and ABL estimator under ABL.

2.4. Shrinkage estimation approach

Gruber (2004) proposed a method where a balanced loss function is used

for Bayesian analysis. A balanced loss function is where a weighted loss value

is constructed by substituting each estimate into its corresponding loss function

and determining some weighted value thereof. As a slight twist on this approach,

consider obtaining a new estimator as a weighted value of the Bayesian estimator
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under either SEL or ABL, and some other estimate of the unknown parameter

(in this case, θ). This is also known as a shrinkage based estimation approach.

Define the SEL-based Bayesian shrinkage estimator by

(2.7) θ̂S1 = λθ̂SEL + (1 − λ)θo , 0 ≤ λ ≤ 1 ,

and the ABL-based Bayesian shrinkage estimator by

(2.8) θ̂S2 = λθ̂ABL + (1 − λ)θo , 0 ≤ λ ≤ 1 .

where θo is a pre-specified point realization of θ. Similar as in the case of the

SEL- and ABL estimators, these two newly proposed estimators ((2.7) and (2.8))

is compared in terms of their risk functions. The analysis here is only considered

under the SEL. For the SEL-based shrinkage Bayesian estimator we have from

(2.1) and (2.7)

R∗
SEL(θ̂S1 , θ) = ET

(
λθ̂SEL − λθ + λθ + (1 − λ)θ0 − θ

)2

= λ2

(
θ2

(
(d − m + 1)

2

(
n
2 − 1

) (
n
2 − 2

) − 2(d − m + 1)(
n
2 − 1

) + 1

))

+ (1 − λ2
)(θ0 − θ)2

+ 2λ(1 − λ)

(
θ0ET (θ̂SEL) − θET (θ̂SEL) − θθ0 + θ2

)

)

where ET (θ̂SEL) = (d − m + 1)
θ

(
n
2
−1)

, using the expected value of the gamma

distribution of T . The ABL-based shrinkage Bayesian estimator is, from (2.2)

and (2.8), given by

R∗
SEL(θ̂S2 , θ) = ET

(
λθ̂ABL − λθ + λθ + (1 − λ)θ0 − θ

)2

= λ2

(
θ2

(
(d − m + 1 + c)2(

n
2 − 1

) (
n
2 − 2

) − 2(d − m + 1 + c)(
n
2 − 1

) + 1

))

+ (1 − λ2
)(θ0 − θ)2

+ 2λ(1 − λ)

(
θ0ET (θ̂ABL) − θET (θ̂ABL) − θθ0 + θ2

)

)

where ET (θ̂ABL) = (d − m + 1 + c) θ

(
n
2
−1)

. When this method is repeated with

ABL as the underlying loss functions, similar expressions are obtained but in a

scaled form (stemming from the scaling value θc
from the ABL), and is omitted

here.
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2.4.1. Risk comparison under SEL and ABL for shrinkage estimators

A similar approach was followed as in Dey (2011) and as discussed in section

2.2, but in this instance the shrinkage estimators were considered with the true

risk. Again because of the inferential nature of the ABL, it is only discussed here

for the SEL. Two viewpoints were considered: the first of which was for different

prior point estimates and for varying λ, and the second was for fixed prior point

estimate, different values of m, and for varying λ. This was all considered in the

same simulated data setting as in section 2.2, with the addition that the “true”

value of θ was 10. An underestimated value, an overestimated value, together

with the MLE of θ was considered; i.e. θ0 = 7, 7.7625, and 15 (here, θ̂MLE =
d
T ).

Figure 6 illustrates the effect of these different prior point estimates and m = 1,

whilst Figure 7 illustrates for different values of m and the prior point estimate

equal to the MLE of the censored Rayleigh distribution. The two figures illustrate

these effects.

Figure 6: Risk under SEL for shrinkage estimators θ̂S1
and θ̂S2

,

different θ0, and varying λ (m = 1 (fixed)).

As can be seen in both cases, least risk can be obtained for some nonzero

and nonunity value of λ, except for the case depicted in Figure 7 when m = 10.
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This however makes little practical sense if not viewed in comparison with that

of the “original” risk for only the Bayesian estimators. In the next section, this

comparison is explored with reference to the risk efficiency.

Figure 7: Risk under SEL for shrinkage estimators θ̂S1
and θ̂S2

,

different m, and varying λ (θ0 = MLE (fixed)).

2.4.2. Risk efficiency under SEL and ABL for shrinkage estimators

Now, the risk efficiency for the shrinkage estimators was determined under

these two loss functions. The following comparisons are considered:

(2.9) RESEL(θ̂SEL, θ̂S1) =
R∗

SEL(θ̂S1 , θ)

R∗
SEL(θ̂sel, θ)

and

(2.10) REABL(θ̂ABL, θ̂S2) =
R∗

ABL(θ̂S2 , θ)

R∗
ABL(θ̂ABL, θ)

.

The same parameter choices as used previously was employed here, and

different values of θ0 were chosen arbitrarily, to assist with the comparison.
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The prior density degree was m = 1, the Jeffreys prior, and the true value of

θ from which the observations were simulated from, is 10. Three values were con-

sidered: a value that underestimates the true value of θ, the MLE, and a value

that overestimated the true value of θ. Two considerations were examined and is

illustrated by the respective figures below. Figure 7 illustrates the risk efficiency

under SEL for varying λ, and these different prior point estimates. Figure 8 il-

lustrates the same, but for the case where the underlying loss function is ABL.

For these illustrative purposes, the ABL constant c was set to 0.5.

Figure 8: Risk efficiency under SEL for shrinkage estimators θ̂S1

and θ̂S2
, different θ0, and varying λ.

Figure 8 clearly shows that there is indeed some shrinkage estimator value

(i.e. 0 ≤ λ ≤ 0.25) that is more appropriate to use than the the true corresponding

Bayesian estimator (for a risk efficiency value of < 1). This seems only true for the

case of underestimation (θ0 = 7). For the case of the MLE and overestimation

(θ0 = 15), only the Bayesian estimate seems appropriate. Figure 9 shows the

reciprocal results, where the shrinkage estimator seems more appropriate to use

in overestimation.
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Figure 9: Risk efficiency under ABL for shrinkage estimators θ̂S1

and θ̂S2
, different θ0, and varying λ.

3. ILLUSTRATIVE EXAMPLES

3.1. Simulation study

In this section, the RMSE (root mean square error) comparison of the

SEL estimator (2.3), the ABL estimator (2.4), and the shrinkage counterparts

(2.7) and (2.8) is calculated via simulation. It is known that an estimator with

least RMSE is considered preferable. As the parameter θ in (1.1) indicates a

lifetime, it is important to use an estimator which estimates the true value of the

population parameter as closely as possible, otherwise the chosen estimator may

overestimate or underestimate the value too severely, resulting in catastrophic

events in real life. For example, when estimating the lifetime of an airplane

engine, underestimating the lifetime is much less serious than overestimating the

lifetime of the engine. By using the RMSE the estimator which exhibits the

smallest error in estimation can be determined.
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The RMSE is given by RMSE =

√√√√√
p∑

i=1

(θ̂est−θ)
2

p , where p denotes the num-

ber of observations of θ. θ̂est denotes the estimated value of θ under a specific

loss function. The following steps outline the method followed in this simulation.

1. Simulate p = 5000 random samples from (1.1) for a given value of θ.

From each simulated sample, determine θ̂est under SEL, ABL, and both

considered shrinkage estimators (for the shrinkage estimators, the value

of θ0 = MLE). Then, calculate the value of the RMSE.

2. Repeat Step 1 for a successive range of θ values, in this case, θ = 1...40.

3. Plot the RMSE for all four estimators upon the same set of axis. The

estimator with lowest RMSE is considered the preferable estimator.

Figure 10 and 11 shows the results for different choices of λ.

Figure 10: Root mean square error for θ̂est under SEL, ABL, S1

and S2 where θ0 = MLE, and varying θ (m = 1 (fixed),

c = 0.5, λ = 0.5).

It is observed that the SEL estimator is preferable for the considered

Rayleigh model against that of the ABL estimator, and both considered shrinkage
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estimators. The SEL estimator is also preferable to its corresponding shrinkage

estimator, and the ABL estimator is also preferable to its corresponding shrink-

age estimator. These are for the cases when the MLE and the Bayesian estimate

carries equal weight in the shrinked estimator.

Figure 11: Root mean square error for θ̂est under SEL, ABL, S1

and S2 where θ0 = MLE, and varying θ (m = 1 (fixed),

c = 0.5, λ = 0.1).

Figure 11 shows the case when the weight of the shrinkage estimators are

skewed toward the MLE. Even in this case, both Bayesian estimates are preferred

compared to their respective shrinkage estimators.

3.2. Practical application: gastrointestinal tumor group

The results are illustrated using gastrointestinal tumor study group data,

obtained from Stablein, Carter, and Novak (1981) from a clinical trial in the

treatment of locally advanced nonresectable gastric carcinoma. Mostert (1999)

showed that the Rayleigh model is suitable for this data — it is also of censored

nature which applies here. The sample size is n = 45, and the number of fully
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observed lifetimes is d = 37, where T = 133.643. The MLE of θ was used as the

estimate θ0. Table 1 below gives the parameter estimates under different loss

function ((2.3) and (2.4)) for different parameter combinations.

Table 1: Parameter estimates under SEL and ABL for the real data set,

for different values of m and c.

Value of m Estimate value c = −1 c = −0.5 c = 0.5 c = 1

θ̂SEL = 0.27685

m = 1 θ̂MLE = 0.27685

θ̂ABL 0.26937 0.27311 0.28059 0.28433

θ̂SEL = 0.26189

m = 3 θ̂MLE = 0.27685

θ̂ABL 0.25440 0.25815 0.26563 0.26937

θ̂SEL = 0.20951

m = 10 θ̂MLE = 0.27685

θ̂ABL 0.20203 0.20577 0.21325 0.21699

This example aims to emphasize the effect of the shrinkage effect of the

respective shrinkage estimators ((2.7) and (2.8)) and was achieved via a boot-

strapping approach. By using the bootstrap method, a sampling distribution

of the mentioned estimators can be constructed, and determined whether the

estimator has a convergent nature — also, to have small standard error. The

convergent nature of the bootstrap in parameter estimation is expected to illus-

trate the shrinkage effect to determine which estimator seems more appropriate

for the given data set.

As mentioned, the performance of the estimator was studied via bootstrap-

ping from the sample k = 1000 times. Thus, 1000 samples were drawn from the

original sample with replacement, and for each of the drawn samples, the estima-

tor under SEL was computed, and the risk value. The risk value was computed

via

R∗
(
θ̂SEL, θ

)
=

1

k

k∑

i=1

(
θ̂S1,i − θ

)2

where θ̂S1,i is the shrinkage estimator (2.3) for the ith bootstrapped sample, and θ

the fixed sample parameter (determined via reparametrization of the mean of the

distribution, equal to µ =
1
2

√
π
θ , thus θ =

π
(2µ)2

). This risk value was determined

for increasing λ and graphed correspondingly, and is presented in Figure 12. It can

be concluded that the estimator is indeed accurate and stable; in addition, from

visual inspection it is observed that the estimator indeed has a small standard

error. However, because of its near-convergent nature as λ → 1, in this example,

θ̂SEL is preferred to that of the MLE. This is in accordance with the RMSE
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study in the preceeding section. This could be attributed to the shrinkage effect

present in the shrinkage expression (2.7).

Figure 12: Bootstrap estimated values of θ̂S1,i, for m = 1

and increasing λ.

4. CONCLUSION

This paper explored the behaviour of the loss function proposed by Al-

Bayyati (2002) by comparing it to the well-known squared error loss function.

Bayes- and shrinkage estimators were derived. Their performance was studied

under each of the mentioned loss functions in terms of their respective risk. It

was observed that for positive values of c, the Al-Bayyati loss parameter, the risk

of SEL was lower than that of ABL. Another focus of this paper was the effect of

the prior family degree m. It was observed that the risk of both SEL and ABL

became larger as m increased. In a risk efficiency perspective, it was seen that

negative values of c results in the ABL estimator being more efficient under SEL

since the risk is then smaller. The reciprocal result holds when the underlying

loss function is the ABL. When the underlying loss is ABL, then for positive

values of c the SEL estimator performs better in terms of risk.
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After proposing shrinkage estimators (where the derived Bayesian estima-

tors are combined in linear fashion with some pre-specified point estimate of the

parameter) their risk and risk efficiency was also studied. It was observed that for

underestimation of the parameter, the shrinkage estimator yielded lower risk than

that of only the Bayesian estimator itself. For overestimation, only the Bayesian

estimator performed better than the shrinkage estimator. In the risk efficiency

setting it was observed that there does exist some values of λ which results in the

shrinkage estimator under ABL performing better than the SEL estimator when

the underlying loss function is SEL.

As a simulation study the RMSE was determined for each of the proposed

estimators and subsequently compared. It was seen that the estimator under SEL

remains preferable when considering the RMSE criterion. A numerical example

also followed showing the applicational use of the estimators to a real data set.
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Abstract:

• Examples of time series of counts arise in several areas, for instance in epidemiology,

industry, insurance and network analysis. Several time series models for these counts

have been proposed and some are based on the binomial thinning operation, namely

the integer-valued autoregressive (INAR) model, which mimics the structure and the

autocorrelation function of the autoregressive (AR) model.

The detection of shifts in the mean of an INAR process is a recent research subject and

it can be done by using quality control charts. Underlying the performance analysis

of these charts, there is an indisputable popular measure: the run length (RL), the

number of samples until a signal is triggered by the chart. Since a signal is given as

soon as the control statistic falls outside the control limits, the RL is nothing but a

hitting time.

In this paper, we use stochastic ordering to assess:

– the ageing properties of the RL of charts for the process mean of Poisson INAR(1)

output;

– the impact of shifts in model parameters on this RL.

We also explore the implications of all these properties, thus casting interesting light

on this hitting time for a Markov time series of counts.
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1. THE INAR(1) PROCESS

Time series of counts become apparent in areas such as:

• epidemiology — the number of new cases of some infectious and notifi-

able diseases is monitored monthly to assess and surveil the incidence of

acute viral infections such as poliomyelitis, as reported by Zeger (1988)

and Silva (2005, pp. 145–147);

• industry — the monthly number of accidents in a manufacturing plant

(Silva et al., 2009), the number of defects per sample (Weiss, 2009a) and

the number non-conforming units within a sample of finite size counts

(Weiss, 2009b,c) have to be controlled;

• insurance — modelling the number of claim counts is an extremely im-

portant part of insurance pricing (Boucher et al., 2008);

• network analysis — the number of intrusions on computers and network

systems (Weiss, 2009d, p. 11) also requires surveillance.

In some cases, the integer values of the time series are large and continuous-

valued models can be (and are frequently) used. However, when the time series

consists only of small integer numbers, ARMA processes are of limited use for

modelling purposes, namely because the multiplication of an integer-valued ran-

dom variable (r.v.) by a real constant may lead to a non-integer r.v. (Silva, 2005,

p. 22).

A possible way out is to replace the scalar multiplication by a random oper-

ation, such as the binomial thinning operation. This operation can be thought as

the scalar multiplication counterpart in the integer-valued setting which preserves

the integer structure of the process, it is due to Steutel and Van Harn (1979) and

may be stated as follows.

Definition 1.1. Let X be a discrete r.v. with range N0 = {0, 1, ...} and

α a scalar in [0, 1]. Then the binomial thinning operation on X results in the

following r.v.:

(1.1) α ◦ X =

X∑

i=1

Yi ,

where {Yi : i ∈ N} is a sequence of i.i.d. Bernoulli(α) r.v. independent of X.

In this case α ◦ X emerges from X by binomial thinning, and ◦ represents

the binomial thinning operator. Furthermore, according to Steutel and Van Harn

(1979), α ◦ X also takes values in N0 and: 1 ◦ X = X; 0 ◦ X = 0; α ◦ X | X =
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x ∼ Bin(x, α); E(α ◦ X) = α × E(X), as in scalar multiplication; V (α ◦ X) =

α2 × V (X) + α(1 − α) × E(X), unlike in scalar multiplication.

Several models for time series of counts have been proposed based on the

binomial thinning operation. These models are in general obtained as discrete

analogues of the standard linear time series models. For example, the first-order

integer-valued autoregressive (INAR(1)) model, introduced by McKenzie (1985)

and Al-Osh and Alzaid (1987), mimics the structure and the autocorrelation

function of the real-valued first-order autoregressive AR(1) model.

Definition 1.2. Let {ǫt : t ∈ Z} be a sequence of nonnegative integer-

valued independent and identically distributed (i.i.d.) r.v. with range N0, mean

µǫ and variance σ2
ǫ , and α a scalar in (0, 1). Then {Xt : t ∈ Z} is said to be a

INAR(1) process if it satisfies the recursion

(1.2) Xt = α ◦ Xt−1 + ǫt ,

where: ◦ represents the binomial thinning operator; all thinning operations are

performed independently of each other and of {ǫt : t ∈ Z}; the thinning operations

at time t are independent of {..., Xt−2, Xt−1}; and ǫt and Xt−1 are assumed to be

independent r.v.

Besides taking only nonnegative integer values, the INAR(1) model also

differs from the real-valued AR(1) model because the r.v. ǫt in this latter are usu-

ally interpreted as random noise, whereas in the INAR(1) model they introduce

innovation to the process by keeping the system alive (Weiss, 2009d, p. 283) with

arrivals.

Furthermore, the marginal distribution of the INAR(1) process can be ex-

pressed in terms of the r.v. ǫt (Silva, 2005, p. 35):

(1.3) Xt
d
=

+∞∑

j=0

αj ◦ ǫt−j

(Al-Osh and Alzaid, 1987), the analogue of the moving average representation of

the real-valued AR(1) model.

In the INAR(1) model setting, choosing an adequate family of distribu-

tions for the r.v. ǫt, say F , so that Xt has a distribution that also belongs to

F , leads us to the class of discrete self-decomposable distributions defined by

Steutel and Van Harn (1979): the r.v. X, with range N0, is said to have a dis-

crete self-decomposable distribution if X = α ◦ X ′
+ Xα, where α ◦ X ′

and Xα

are independent, and X ′
is distributed as X.

It is worth mentioning that if ǫt has a discrete self-decomposable distri-

bution such that E(ǫt) = µǫ and V (ǫt) = σ2
ǫ < +∞ then the INAR(1) process is
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second order weakly stationary with constant mean and variance function given

by E(Xt) =
µǫ

1−α and V (Xt) =
α µǫ+σ2

ǫ

1−α2 , respectively (Weiss, 2009d, p. 283). More-

over, the INAR(1) and the AR(1) processes have similar autocorrelation function:

ρk = corr(Xt, Xt−k) = α|k|, k ∈ Z (Weiss, 2009d, p. 285).

The class of discrete self-decomposable distributions contains the family of

Poisson distributions (Silva, 2005, p. 35) and the Poisson INAR(1) process can

be defined and characterised.

Definition 1.3. If ǫt
i.i.d.∼ Poisson(λ), t∈Z, then {Xt = α◦Xt−1+ ǫt : t∈Z}

is said to be a Poisson INAR(1) process.

The Poisson INAR(1) process is a second order weakly stationary process

with marginal distribution

(1.4) Xt ∼ Poisson

(
λ

1 − α

)
, t ∈ Z ,

and can be characterized as follows, according to Weiss (2009d, p. 283).

Proposition 1.1. The Poisson INAR(1) process is a (time-)homogeneous

Markov chain, with state space N0 and one-step transition probability matrix

(TPM) P, which depends on the values of λ and α and whose entries are given

by

pi j ≡ pi j(λ, α)

= P (Xt = j | Xt−1 = i)

=

i∑

m=0

P (α ◦ Xt−1 = m | Xt−1 = i) × P (ǫt = j − m)(1.5)

=

min{i,j}∑

m=0

(
i

m

)
αm

(1 − α)
i−m × e−λ λj−m

(j − m)!
, i, j ∈ N0 .

The calculation of P, for a few values of λ and α, led us to believe that no

particular features are apparent in this matrix. For instance, even though Xt is a

nonnegative r.v., P has no triangular block of zeros in the lower left hand corner

or equal values along a line parallel to the main diagonal, such as the TPM Brook

and Evans (1972) or Morais (2002) dealt with in a quality control setting.

Nevertheless, we managed to identify a peculiar and important feature of

the TPM associated with a Poisson INAR(1) process: P is totally positive of order

2 (TP2), i.e., it is a nonnegative matrix whose 2 × 2 minors are all nonnegative

—

(1.6) pi j × pi′ j′ ≥ pi′ j × pi j′ , i < i′, j < j′

—, as proved in the next section.
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2. DISTINCTIVE FEATURES OF THE POISSON INAR(1)

PROCESS

It is well known that the Poisson and binomial probability functions (p.f.),

• fPoi(λ)(x) = e−λ λx

x! , x ∈ N0 ,

• fBin(n,p)(x) =
(
n
x

)
px

(1 − p)
n−x, x = 0, 1, ..., n ,

are log-concave in the sense that the likelihood ratio functions

fPoi(λ)(x)

fPoi(λ)(x + 1)
=

x + 1

λ

fBin(n,p)(x)

fBin(n,p)(x + 1)
=

(x + 1)(1 − p)

(n − x)p

are nondecreasing functions of x over the supports of these p.f. That is to say, the

Poisson and binomial distributions have what is also termed the Pólya frequency

of order 2 (PF2) property (Li and Shaked, 1997) or an increasing likelihood ratio

(ILR),
1

the strongest ageing property that we consider here.

Furthermore, according to Casella and Berger (2002, p. 391), the families

of Poisson and binomial p.f. have monotone likelihood ratio, in particular the

following ones:

• {fPoi(ξ)(x) : ξ > 0} ;

• {fBin(ξ,p)(x) : ξ ∈ N} (here p is held fixed in (0, 1));

• {fBin(n,ξ)(x) : ξ ∈ (0, 1)} (n is fixed in N).

For example, for ξ1 ≤ ξ2,

(2.1)
fPoi(ξ1)(x)

fPoi(ξ2)(x)
= e−(ξ1−ξ2)

(ξ1/ξ2)
x , x ∈ N0 ,

is a monotone — in this case nonincreasing — function of x. Interestingly enough,

if we consider P (x, ξ) ≡ fPoi(ξ)(x) (or ≡ fBin(ξ,p)(x), fBin(n,ξ)(x)) then P (x, ξ) is

a TP2 function in x and ξ, i.e., the determinant

(2.2)

∣∣∣∣
P (x1, ξ1) P (x1, ξ2)

P (x2, ξ1) P (x2, ξ2)

∣∣∣∣ ≥ 0 , x1 < x2, ξ1 < ξ2

(Karlin and Proschan, 1960).

1If you define the likelihood ratio function as P (X=x+1)
P (X=x)

instead, like Kijima (1997, p. 114)

did, then the PF2 property is equivalent to a decreasing likelihood ratio (DLR), as noted by
Kijima (1997, p. 115).
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Incidentally, the monotone likelihood ratio character — or TP2 property —

of a family of p.f. is related to the notion of stochastically smaller in the likelihood

ratio sense (Ross, 1983, p. 281) stated below.

Definition 2.1. Let X and Y be two discrete r.v. with p.f. P (X = x) and

P (Y = x). Then X is said to be stochastically smaller than Y in the likelihood

ratio sense — denoted by X ≤lr Y — iff
P (X=x)
P (Y =x) is a nonincreasing function of x

over the union of the supports of the r.v. X and Y (Shaked and Shanthikumar,

1994, pp. 27–28).

Expectedly, if a family of p.f. has monotone nonincreasing (resp. nonde-

creasing) likelihood ratio then the associated r.v. stochastically increase (resp.

decrease) in the likelihood ratio sense — i.e., if ξ1 ≤ ξ2 then X(ξ1) ≤lr X(ξ2)

(resp. X(ξ1) ≥lr X(ξ2)), in short X(ξ) ↑lr with ξ (resp. X(ξ) ↓lr with ξ). For the

families of Poisson and binomial p.f. we have considered:

• X(ξ) ∼ Poi(ξ) ↑lr with ξ (ξ > 0);

• X(ξ) ∼ Bin(ξ, α) ↑lr with ξ (ξ ∈ N, here α is held fixed in (0, 1));

• X(ξ) ∼ Bin(n, ξ) ↑lr with ξ (n fixed in N, ξ ∈ (0, 1)).

After these preliminary notions we can state that Xt ≡Xt(λ, α)∼Poi

(
λ

1−α

)

has the PF2 property and

(2.3) Xt ≡ Xt(λ, α) ↑lr with λ, α .

But what can be said about the Poisson INAR(1) process {Xt ≡ Xt(λ, α) : t ∈ Z}?

• Is the PF2 (resp. TP2) property of the (resp. families of) Poisson and

binomial distributions somehow inherited by a Poisson INAR(1) process

(resp. a family of Poisson INAR(1) processes)?

• If that is the case what are the consequences?

Proper replies to these queries are provided in this and the following sec-

tions.

Proposition 2.1. The Poisson INAR(1) process {Xt : t ∈ Z} satisfies

(2.4) (Xt | Xt−1 = i) ≤lr (Xt | Xt−1 = m) , i ≤ m ,

for any t ∈ Z. Equivalently, (Xt | Xt−1 = i) ↑lr with i, for t ∈ Z, and we write

(2.5) {Xt : t ∈ Z} ∈ Mlr ,

where Mlr stands for the class of stochastic processes that are stochastically

monotone in the likelihood ratio sense.



462 M.C. Morais and A. Pacheco

We defer the proof of Proposition 2.1 until a few remarks are made.

{Xt : t ∈ Z} ∈ Mlr can be written as P ∈ Mlr, where P obviously denotes

the TPM of this Markov chain. This feature of P obviously means that, if we

associate a p.f. of a discrete r.v. to one of its rows, the corresponding r.v. stochas-

tically increase in the likelihood ratio sense as we progress along the rows of this

stochastic matrix. It also means that

(2.6) P ∈ TP2 ,

as mentioned by Kijima (1997, p. 129, Definition 3.11).

Bearing in mind that the ith row of P corresponds to the probability (row

vector) of the r.v. (Xt+1 | Xt = i) and taking advantage of ≤lr ordering, we are

tempted to investigate whether P ∈ Mlr by checking if
pi j

pi+1 j
↓j , over N0, for any

fixed i ∈ N0; another possibility of proving Proposition 2.1 would be to check

whether P ∈ TP2.

This is not the easiest way of proving that P ∈ TP2, thus the proof of

Proposition 2.1 relies on a different reasoning.

Proof: Let us first note that, for i ∈ N0, (Xt | Xt−1 = i)
st
= Z(i)+ǫt, where:

Z(0)
st
= 0; Z(i)∼Bin(i, α), i∈N; ǫt ∼Poisson(λ); Z(i) and ǫt are independent r.v.

Now, capitalizing not only on the fact that, for i ≤ m (i, m ∈ N0) and α

(held fixed in the interval (0, 1)), Z(i) ≤lr Z(m), but also on the log-concave (or

PF2) character of the p.f. of the summands Z(i) and the independence between

Z(n) and ǫt (n = i, m), we can invoke the basic decomposition formula (Karlin,

1968, p. 17) or the closure of the stochastic order ≤lr under the sum of indepen-

dent r.v. with log-concave densities (Shaked and Shanthikumar, 1994, p. 30)
2

to

conclude that

Z(i) + ǫt ≤lr Z(m) + ǫt, i ≤ m,

thus proving the result.

The stochastic ordering result in the next proposition may be thought as

an extension of the notion of monotone likelihood ratio to the family of Poisson

INAR(1) processes, {{Xt ≡ Xt(λ, α) : t ∈ Z} : (λ, α) ∈ R
+ × (0, 1)}.

Proposition 2.2. Let {Xt(λ, α) : t ∈ Z} be a Poisson INAR(1) process

such that Xt(λ, α) = α ◦ Xt−1(λ, α) + ǫt(λ), for (λ, α) ∈ R
+ × (0, 1). Then

(2.7)

(Xt(λ1, α1) | Xt−1(λ1, α1) = i) ≤lr (Xt(λ2, α2) | Xt−1(λ2, α2) = m) , i ≤ m,

for any 0 < λ1 ≤ λ2, 0 < α1 ≤ α2 < 1 and t ∈ Z.

2For a slightly stronger result, please refer to Shaked and Shanthikumar (1994, p. 30, Theorem
1.C.5).
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Proof: This proposition can be proved in a similar fashion to Proposition

2.1. Thus, let us consider (Xt(λ, α) | Xt−1(λ, α) = i)
st
= Z(i, α) + ǫt(λ), where:

Z(0, α)
st
= 0; Z(i, α) ∼ Bin(i, α), i ∈ N; ǫt(λ) ∼ Poisson(λ); Z(i, α) and ǫt(λ) are

independent r.v.

By taking into account the monotone likelihood ratio of the Poisson and

binomial families, we can add that, for 0 < λ1 ≤ λ2, 0 < α1 ≤ α2 < 1: Z(i, α1) ≤lr

Z(i, α2); ǫt(λ1) ≤lr ǫt(λ2).

If we add to these stochastic ordering results the PF2 character of all the

summands involved and the independence between Z(i, αj) and ǫt(λj), for j =

1, 2, we can use once again the closure of ≤lr under the sum of independent r.v.

with log-concave densities to assert that

(Xt(λ1, α1) | Xt−1(λ1, α1) = i) ≤lr (Xt(λ2, α2) | Xt−1(λ2, α2) = i) .

Finally, take notice that {Xt(λj , αj) : t ∈ Z} ∈ Mlr, for j = 1, 2, as a con-

sequence, (Xt(λ2, α2) | Xt−1(λ2, α2) = i) ≤lr (Xt(λ2, α2) | Xt−1(λ2, α2) = m), for

i ≤ m, and

(Xt(λ1, α1) | Xt−1(λ1, α1) = i) ≤lr (Xt(λ2, α2) | Xt−1(λ2, α2) = m) , i ≤ m.

This ends the proof.

Corollary 2.1. Let P (n, λ, α) ≡ P [Xt(λ, α) = n | Xt−1(λ, α) = i]. Then

P (n, λ, α) is TP2 both as a function of n and λ (with α held fixed) and as a

function of n and α (for fixed λ).

As for the implications of propositions 2.1 and 2.2 — in particular on what

the random time the Poisson INAR(1) process needs to exceed a critical level x

is concerned — we refer the reader to the next sections.

3. VITAL PROPERTIES OF THE HITTING TIMES FOR

POISSON INAR(1) PROCESSES

Hitting times (HT) arise naturally in level-crossing problems in several

areas:

• in reliability theory, HT of appropriate stochastic processes often rep-

resent the time to failure of a device subjected to shocks (and wear),

which fails when its damage level crosses a critical value (Li and Shaked,

1995);
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• in queueing systems, the identity of the first customer whose waiting

time exceeds a critical threshold is a HT and a relevant performance

measure (Greenberg, 1997);

• HT become also apparent while dealing with the problem of the first

detection of words in random sequences of letters from a finite alphabet

(De Santis and Spizzichino, 2014).

Considering the applications of Poisson INAR(1) processes, studying the

HT of these stochastic processes is surely of vital importance.

More than on the distribution of HT, in this section we are interested in

assessing the ageing properties of the HT and the impact of an increase in

• the critical level,

• the initial state, and

• the parameters λ and α

on the associated HT. Needless to say that dealing with a stochastic process with

a TP2 TPM will play a major role in the derivation of all the results.

The conditions under which HT possess specific ageing properties have

been extensively studied by many authors (see e.g.: Brown and Chaganty, 1983;

Assaf et al., 1985; Karasu and Özekici, 1989), and rigorously reported by Li and

Shaked (1997). Furthermore, these conditions are closely related to the stochastic

monotonicity character of the underlying process, as noted by Li and Shaked

(1995).

The next result can be translated as follows in our specific setting: the PF2

property of the Poisson and binomial distributions is shared with a particular

HT. It is a consequence of an important result that can be traced back to Karlin

(1964).

Proposition 3.1. Let: {Xt : t ∈ N0} be a Poisson INAR(1) process with

initial state X0 = 0; HT 0
= min{t ∈ N : Xt > x | X0 = 0} be the random number

of transitions needed to exceed the critical level x (x ∈ N0) starting from the initial

state 0. Then HT 0 ∈ PF2.

Proof: This proposition follows fromTheorem3.1 byAssaf et al.(1985),who

pointed out that their result was essentially proved by Karlin (1964, pp. 93–94).

Let us remind the reader that, since HT 0 ∈ PF2, {Xt : t ∈ N0} is said to

be a PF2 process (Shaked and Li, 1997, p. 12). We ought to also mention that

Proposition 3.1 can be referred to as the PF2 Theorem (Shaked and Li, 1997,

p. 12) for the Poisson INAR(1) process.
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The next result translates the stochastic impact of an increase of the critical

value x.

Proposition 3.2. Let: {Xt : t ∈ N} be a Poisson INAR(1) process, where

X1 ∼ Poisson
(

λ
1−α

)
; HTx = min{t ∈ N : Xt > x} be the random time at which

the process exceeds the critical level x (x ∈ N0). Then HTx ↑lr with x.

Proof: Since Xt can be written as a sum of r.v. with PF2 p.f.,

Xt =

t−1∑

j=0

αj ◦ ǫt−j + αt ◦ X1 , t ∈ N\{1} ,

we can apply Theorem 2 from Karlin and Proschan (1960) and conclude that the

p.f. of HTx,

P (n, x) ≡ P (HTx = n) = P (Xn > x; Xj ≤ x, j = 1, 2, ..., n − 1) , n ∈ N ,

as a function of n and x, is TP2. Consequently, HTx ↑lr with x.

The next proposition shows how the TP2 character of the Poisson INAR(1)

process is crucial to guarantee a specific stochastic decrease of the HT with respect

to the initial value of this process.

Proposition 3.3. Let: {Xt : t ∈ N0} be a Poisson INAR(1) process with

initial state X0 = i (i ∈ N0); HT i
= min{t ∈ N : Xt > x | X0 = i} be the random

number of transitions needed to exceed the critical level x (x ∈ N0) starting from

the initial state i. Then HT i ↓lr with i.

Proof: Since P ∈ TP2, we are allowed to invoke Theorem 2.1 from Karlin

(1964, pp. 42–43) and assert that the p.f. of HT i
,

P (n, i) ≡ P (HT i
= n)

= P (Xn > x; Xj ≤ x, j = 1, 2, ..., n − 1) , n ∈ N ,

as a function of n and i, is sign reverse rule of order 2 (RR2), i.e.,

P (n, i) × P (n′, i′) ≤ P (n′, i) × P (n, i′) , n ≤ n′, i ≤ i′ .

This inequality is equivalent to

P (HT i
= n)

P (HT i′ = n)
≤ P (HT i

= n′
)

P (HT i′ = n′)
, n < n′, i < i′ ,

that is, HT i ≥lr HT i′
, for i ≤ i′.
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So far we were not able to prove the following conjecture regarding a

stochastic implication of an increase in parameter λ.

• Let {Xt(λ, α) : t ∈ N0} be a Poisson INAR(1) process with initial state

X0(λ, α) = 0 and HT 0
(λ, α) = min{t ∈ N : Xt(λ, α) > x | X0(λ, α) = 0}.

Then HT 0
(λ, α) ↓lr with λ.

Morais (2002, p. 47) discusses thoroughly the problems that arise when we

try to prove results such as the one stated in previous conjecture while dealing

with hitting times for discrete-time Markov chains arising in quality control. As a

consequence we have to content ourselves with further — yet weaker — stochastic

ordering results; they are stated in Section 5 and are particularly relevant in the

performance analysis of a quality control chart, described in Section 4 and meant

to detect changes in the mean of a Poisson INAR(1) process.

4. CONTROLLING THE MEAN OF A POISSON INAR(1)

PROCESS

Although quality has long been considered absolutely relevant, we have to

leap to the beginning of the 20th century to meet the founder of Statistical Process

Control (SPC) (Ramos, 2013, p. 2). When Walter A. Shewhart joined the Western

Electric Company, industrial quality exclusively relied on the inspection of end

products and the removal of defective items; however, this physicist, engineer and

statistician soon realized that it was important to control not only the finished

product but also the process responsible for its production (ASQ, n.d.).

Shewhart essentially suggested that we should monitor a (production) pro-

cess by:

• choosing a measurable characteristic, say X, of this process;

• selecting a relevant parameter;

• collecting data on a regular basis;

• plotting the observed value of a control statistic against time and com-

paring it with appropriate control limits;

• triggering a signal if the observed value of the statistic is beyond these

control limits.

The resulting graphic device is called a quality control chart, undoubtedly

one of the most important tools of SPC.

Control charts are used with the purpose of establishing whether the process

is operating within its limits of expected variation (Nelson, 1982, p. 176), and to
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detect changes in process parameters which may indicate a deterioration in qual-

ity. The control chart should be set in such way that a change in the parameter

is detected as fast as possible without triggering false alarms too frequently.

The detection of changes in the mean of an i.i.d. process of Poisson counts

can be done by making use of quality control charts such as the c-chart pioneered

by Shewhart (Montgomery, 2009, p. 309), the CUSUM chart (Brook and Evans,

1972; Gan, 1993) or the EWMA chart (Gan, 1990). However, autocorrelation

often arises, severely changing the performance of all quality control charts relying

on the assumption that the observations refer to i.i.d. r.v., hence the use of the

charts such like the ones proposed by Weiss (2009, Chap. 20).

Throughout the remainder of this paper, we assume that:

• the target value of the process mean is
λ0

1−α0
;

• the purpose of using an upper one-sided control chart is to detect an

aggravation in the mean number of defects, from its target value
λ0

1−α0

to
λ

1−α , due to a change either from λ0 to λ or from α0 to α.

Consequently, we proceed to describe the upper one-sided version of the

c-control chart found in Weiss (2007) and Weiss (2009d, p. 419).

Definition 4.1. Let {Xt ≡ Xt(λ, α) : t ∈ N0} be a Poisson INAR(1) pro-

cess, where denotes the number of defects in sample t, for t ∈ N, given that the

process mean is at level
λ

1−α . Then xt ≡ xt(λ, α) is the observed value of the

control statistic of the upper one-sided c-chart for the mean of this process and

this chart triggers a signal at time t (t ∈ N) if

(4.1) xt > UCL =
λ0

1 − α0
+ k ×

√
λ0

1 − α0
,

where k is a positive constant chosen in such way that increases in the process

mean
λ

1−α are detected as quickly as possible and false alarms are rather unfre-

quent.

Since points lying above the upper control limit (UCL) indicate a potential

increase in the process mean that should be investigated and eliminated, the

performance of this control chart is unsurprisingly assessed by making use of the

run length (RL), the random number of samples collected before a signal (either

false or a valid alarm) is triggered by the chart. Hence the RL coincides with the

following HT for the Poisson INAR(1) process

(4.2) HT (λ, α) = min{t ∈ N : Xt(λ, α) > x} ,

where x = ⌊UCL⌋ is the integer part of the upper control limit defined in (4.1).
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In the next section we shall start by addressing a few weaker ageing notions

with more tangible interpretations/implications than the PF2 property of hitting

times such as the RL of the upper one-sided c-chart for the mean of a Poisson

INAR(1) process.

5. OTHER PROPERTIES OF THE HITTING TIMES FOR THE

POISSON INAR(1) PROCESS

Let us start this section by reminding the reader of the ageing notions of

increasing failure rate (IFR), new better than used (NBU) and new better than

used in expectation (NBUE).

Definition 5.1. The nonnegative integer valued r.v. Y is said to be:

• increasing failure rate — Y ∈ IFR — if hY (m) =
P (Y =m)
P (Y ≥m) ↑m∈N;

• new better than used — Y ∈NBU — if P (Y > j) ≥ P (Y−m > j | Y > m),

m, j ∈ N0;

• new better than used in expectation — Y ∈ NBUE — if E(Y ) ≥
E(Y − m | Y > m), m ∈ N0.

Please note that Y ∈PF2 =⇒ Y ∈ IFR =⇒ Y ∈NBU (Kijima, 1997, p. 118),

and, clearly, Y ∈NBU =⇒ Y ∈NBUE.

By capitalizing on the TP2 character of the TPM of the Poisson INAR(1)

process and on the fact that Y ∈PF2 =⇒ Y ∈ IFR, we can immediately conclude

that the RL of the upper one-sided c-chart starting with a zero value,

(5.1) HT 0
(λ, α) ≡ min{t ∈ N : Xt(λ, α) > x | X0(λ, α) = 0} ,

has PF2 character and therefore

(5.2) HT 0
(λ, α) ∈ IFR ,

as illustrated by Example 5.1.

Note, however, that, according to the IFR Theorem (Shaked and Li, 1997,

p. 12), this property is ensured by a weaker condition than P ∈ TP2. In fact, if

we let Q = [qij ]i,j ≡ [
∑

k≤j pik]i,j denote the matrix of left partial sums of P then

Q ∈ TP2 would have been sufficient to have HT 0
(λ, α) ∈ IFR.

Example 5.1. Assume the number of defects in the tth random sample

of fixed size (say n) is modelled by a Poisson INAR(1) process {Xt ≡ Xt(λ, α) :

t ∈ N0}.
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Consider that the detection of increases in the expected value of Xt(λ, α),

µ =
λ

1−α , is done by means of the upper one-sided c-chart Poisson chart in Defi-

nition 4.1.

The performance of this chart is measured via the HT

(5.3) HT i
(λ, α) ≡ min{t ∈ N : Xt(λ, α) > x | X0(λ, α) = i} ,

where i (i = 0, 1, ..., x) is the fixed value assigned to X0(λ, α) by the quality

practitioner. If i = 0 (resp. i > 0) no head start (resp. a head start) has been

given to the chart.

Moreover, assume the constant k in the expression of the upper control

limit in (4.1) was set in such way that the average run length (ARL) when the

values of λ and α are on-target, E[HT i
(λ0, α0)], is reasonably large, say larger

than 100 samples.

It is well known that, for each x, HT i
(λ, α) has exactly the same distribu-

tion as the time to absorption of a Markov chain with state space {0, 1, ..., x + 1}
and TPM represented in partitioned form,

(5.4)

[
Q (I − Q)1

0⊤
1

]
,

where:

• Q ≡ Q(λ, α) = [pij(λ, α)]
x
i,j=0 ;

• I is the identity matrix with rank x + 1;

• 1 (resp. 0⊤
) is a column vector (resp. row vector) of x + 1 ones (resp.

zeros).

The associated expected value, survival function and failure (or alarm) rate

function are given by

E[HT i
(λ0, α0)] = e⊤i × [I − Q(λ, α)]

−1 × 1 ,(5.5)

FHT i(λ,α)(m) = e⊤i × [Q(λ, α)]
m × 1 , m ∈ N ,(5.6)

hHT i(λ,α)(m) =
P [HT i

(λ, α) = m]

P [HT i(λ, α) ≥ m]

=
FHT i(λ,α)(m − 1) − FHT i(λ,α)(m)

FHT i(λ,α)(m − 1)
, m ∈ N(5.7)

(respectively), where ei represents the (i + 1)
th

vector of the orthonormal basis

of R
x+1

.

The failure (or alarm) rate function was proposed by Margavio et al. (1995)

and represents the conditional probability that the critical level x has been
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exceeded at time m, given that this threshold has not been crossed before.

Even though the alarm rate function is defined in terms of HT probabilities, it will

bring forth insights into the chart detection capability, as we progress with the

sampling procedure, insights that cannot be provided by the ARL E[HT i
(λ0, α0)],

as illustrated by Margavio et al. (1995) and Morais and Pacheco (2012).

The parameters λ0 = 1, α0 = 0.4 and k = 3 yield an upper one-sided c-chart

for the mean of the Poisson INAR(1) process with x = 5 and in-control ARL

equal to E[HT 0
(λ0, α0)] = 157.457 and E[HT 3

(λ0, α0)] = 153.971.

E[HT i
(λ0, α0)] should be calculated for a wide range of changes in the

parameters λ and α in order to assess the chart detection ability to several out-

of-control conditions. For instance, an increase of 10% in λ leads to out-of-control

ARL of E[HT 0
(1.1λ0, α0)] = 104.554 and E[HT 3

(1.1λ0, α0)] = 101.548, whereas

an increase of the same magnitude in α yields E[HT 0
(λ0, 1.1 α0)] = 120.560 and

E[HT 3
(1.1λ0, 1.1 α0)] = 117.018.

The values and graphs of the alarm rate function in Table 1 and Figure 1

give additional insights to the performance of the chart as we proceed with the

sampling, and to the impact of the adoption of a head start.

Table 1: Values of: the alarm rate function hHT i(λ,α)(m), for λ0 = 1,

α0 = 0.4, x = 5, i = 0, 2 and several values of m; the associated

ARL values.

m
hHT (m)

HT 0(λ0,α0) HT 3(λ0,α0) HT 0(1.1λ0,α0) HT 3(1.1λ0,α0) HT 0(λ0,1.1α0) HT 3(λ0,1.1α0)

1 0.000594 0.012317 0.000968 0.016344 0.000594 0.014636
2 0.003143 0.009673 0.004939 0.013533 0.003591 0.012668
3 0.005033 0.007672 0.007755 0.011176 0.006166 0.010237
4 0.005884 0.006891 0.008980 0.010259 0.007468 0.009171
5 0.006220 0.006598 0.009449 0.009919 0.008035 0.008733

10 0.006422 0.006424 0.009722 0.009725 0.008427 0.008435
20 0.006423 0.006423 0.009724 0.009724 0.008432 0.008432
30 0.006423 0.006423 0.009724 0.009724 0.008432 0.008432
40 0.006423 0.006423 0.009724 0.009724 0.008432 0.008432
50 0.006423 0.006423 0.009724 0.009724 0.008432 0.008432

E(HT) 157.457 153.971 104.554 101.548 120.560 117.018

When no head start has been adopted, the IFR character of HT means

that signaling, given that no observation has previously exceeded the upper con-

trol limit, becomes more likely as we proceed with the collection of samples, as

previously noted by Morais and Pacheco (2012) for other control charts for i.i.d.

output, contributing to a considerable decrease of the inconvenient initial inertia

of this chart in the out-of-control situation.
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Figure 1: Alarm rates of HT i
(λ, α), for i = 0 (on the left)

and i = 3 (on the right), and (λ, α) = (λ0, α0),
(1.1λ0, α0), (λ0, 1.1α0) (top, center, bottom).

We ought to also note that, although the adoption of a 60% head start is re-

sponsible for mild reductions in the in-control and out-of-control ARL, adding this

head-start radically changes the monotone behaviour of the alarm rate function,

as shown by Figure 1: HT 3
(λ0, α0), HT 3

(1.1λ0, α0), HT 3
(λ0, 1.1 α0) 6∈ IFR.

Figure 1 also suggests a practical meaning of the impact of the adoption of a

head start in the absence and in the presence of assignable causes: the false

alarm (resp. valid signal) rate conveniently (resp. inconveniently) increases at the

first samples.

We strongly believe that the results in this example show that the alarm

rate function provides a more insightful portrait of the performance of the control

chart than the one based on the ARL.
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Even though HT i
(λ, α) may not be IFR for i 6= 0, it has a weaker ageing

property:

(5.8) HT i
(λ, α) ∈ NBU , i = 0, 1, ..., x .

Brown and Chaganty (1983) devised a sufficient condition to deal with a HT with

such property. However, stating this condition requires the definition of another

stochastic order, a related class of stochastically monotone matrices/processes

and a ordering between stochastic matrices.

Definition 5.2. Let X and Y be two nonnegative integer r.v. Then X is

said to be stochastically smaller than Y in the usual sense — X ≤st Y — if

(5.9) P (X > m) ≤ P (Y > m) , m ∈ N0

(Shaked and Shanthikumar, 1994, p. 3).

If the Markov chain {Xt : t ∈ Z} with TPM P satisfies

(5.10) (Xt | Xt−1 = i) ≤st (Xt | Xt−1 = m) , i ≤ m ,

for any t ∈ Z, then it is said to be stochastically monotone in the usual sense

(Kijima, 1995, p. 129). In this case we write {Xt : t ∈ Z} ∈ Mst or P ∈ Mst,

where Mst denotes the class of stochastic processes that are stochastically mono-

tone in the usual sense.

Let P and P′
two stochastic matrices governing two Markov chains {Xt :

t ∈ Z} and {X ′
t : t ∈ Z} defined in the same state space. Then P is said to be

smaller than P′
in the usual sense (or in the Kalmykov sense) — P≤st P

′
— if

(5.11) (Xt | Xt−1 = i) ≤st

(
X ′

t | X ′
t−1 = m

)
, i ≤ m .

Since the stochastic orders ≤st and ≤lr can be related — after all Theorem

1.C.1 of Shaked and Shanthikumar (2007, p. 42) leads to X ≤lr Y =⇒ X ≤st Y —,

we naturally have P ∈ Mlr =⇒ P ∈ Mst. Furthermore, Brown and Chaganty

(1983) proved that P ∈ Mst is sufficient to be dealing with NBU HT. Conse-

quently, the Poisson INAR(1) process satisfies what Shaked and Li (1997, p. 13)

called the NBU Theorem:

(5.12) HT i
(λ, α) ∈ NBU , i = 0, 1, ..., x .

Consequently,

(5.13) HT i
(λ, α) ∈ NBUE , i = 0, 1, ..., x .

By invoking Corollary 2.1 from Morais and Pacheco (2012),
3

we can add

an implication of (5.13):

(5.14) V [HT i
(λ, α)] ≤ V (Y ) ,

3This result reads as follows: if X is a discrete NBUE r.v. and Y is a geometric r.v. such
that E(X) ≤ E(Y ), then V (X) ≤ V (Y ).
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where is Y has a geometric distribution with parameter p ≤ 1
E[HT i(λ,α)]

. In other

words, if we hypothetically replace the upper one-sided c-chart by a chart with a

geometrically distributed RL and this results in an aggravation of the ARL, then

an increase in the standard deviation of the RL will also follow.

As put by Morais and Pacheco (2012), quality control practitioners should

be reminded of Chebyshev’s inequality and that considerable benefit it is to be

gained by adopting a chart with a smaller standard deviation of the RL, thus

diminishing the possibility of having observations beyond the UCL much sooner

or much later than expected.

Now, we turn our attention to the HT for a Poisson INAR(1) process whose

initial value is a r.v. X0(λ, α) ∼ Poisson

(
λ

1−α

)
. Following Weiss (2009d, p. 422),

this could be called overall RL of the upper one-sided c-chart for the mean of

such a process. This HT is a mixture of (x + 1) r.v. HT i
(λ, α), i = 0, 1, ..., x,

and a zero-valued r.v. because any value of X0(λ, α) beyond the UCL would

lead to a null RL. The associated weights are P [X0(λ, α) = i], i = 0, 1, ..., x, and

P [X0(λ, α) > x].

The next proposition provides a thorough characterization of this HT, rep-

resented from now on by HTX0(λ,α)
(λ, α).

Proposition 5.1. Let {Xt(λ, α) : t ∈ N0} be a Poisson INAR(1) process,

where X0(λ, α) ∼ Poisson
(

λ
1−α

)
. Then the HT

(5.15) HTX0(λ,α)
(λ, α) = min{t ∈ N0 : Xt(λ, α) > x}

has expected value, survival function and failure rate function given by

E[HTX0(λ,α)
(λ, α)] =

x∑

i=0

E[HT i
(λ, α)] × P [X0(λ, α) = i] ,(5.16)

FHT X0(λ,α)(λ,α)(m) =





1 − P [X0(λ, α) > x] , m = 0 ,

1 − ∑x
u=0 FHT i(λ,α)(m) × P [X0(λ, α) = i]

−P [X0(λ, α) > x] , m ∈ N ,

(5.17)

hHT X0(λ,α)(λ,α)(m) =
P [HTX0(λ,α)

= m]

P [HTX0(λ,α) ≥ m]
(5.18)

=





P [X0(λ, α) > x] , m = 0 ,

1 −
F

HTX0(λ,α)(λ,α)
(m)

F
HTX0(λ,α)(λ,α)

(m−1)
, m ∈ N0

(respectively).
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Not much can be said about the ageing properties of HTX0(λ,α)
(λ, α) be-

cause the classes of NBU and NBUE r.v. are not closed under mixtures even

though they are closed under convolutions (Barlow and Proschan, 1975/1981,

pp. 104 and 187).

Table 2: Values of: the alarm rate function hHT X0(λ,α)(λ,α)
(m), for λ0 = 1,

α0 = 0.4, x = 5 and several values of m; the associated ARL values.

m
h

HT X0
(m)

HT X0(λ0,α0)(λ0, α0) HT X0(1.1 λ0,α0)(1.1 λ0, α0) HT X0(λ0,1.1 α0)(λ0, 1.1 α0)

0 0.007302 0.011272 0.010011
1 0.006551 0.009957 0.008677
2 0.006462 0.009795 0.008512
3 0.006437 0.009748 0.008462
4 0.006428 0.009732 0.008444
5 0.006425 0.009727 0.008437

10 0.006423 0.009724 0.008432
20 0.006423 0.009724 0.008432
30 0.006423 0.009724 0.008432
40 0.006423 0.009724 0.008432
50 0.006423 0.009724 0.008432

E(HT X0) 154.525 101.648 70.147

Nonetheless, extensive numerical results, illustrated here by the values in

Table 2 and the graphs in Figure 2, suggest that we are dealing with a HT with

a decreasing failure rate.
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Figure 2: Alarm rates of HTX0(λ,α)
(λ, α), for (λ, α) =

(λ0, α0), (1.1λ0, α0), (λ0, 1.1α0) (left, center, right).

Finally, we qualitatively assess the impact of an increase in λ or α on

HTX0(λ,α)
(λ, α) in the next proposition, stated without a proof since it follows

from the fact that ≤lr=⇒≤st and an adaptation of Corollary 3.13 from Morais

(2002, p. 46).

Proposition 5.2. Let {Xt(λj , αj) : t ∈ N0} be a Poisson INAR(1) pro-

cess with initial state X0(λj , αj), for j = 1, 2. If λ1 ≤ λ2 and α1 ≤ α2 then
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X0(λ1, α1) ≤st X0(λ2, α2) and more importantly:

P(λ1, α1) ≤st P(λ2, α2) ,(5.19)

HTX0(λ1,α1)
(λ1, α1) ≥st HTX0(λ2,α2)

(λ2, α2) ,(5.20)

that is, HTX0(λ,α)
(λ, α) ↓st with λ, α.

The stochastic ordering result (5.20) from Proposition 5.2 can be inter-

preted as follows: the upper one-sided c-chart for the mean of a Poisson INAR(1)

process stochastically increases its detection speed as the increase in λ or α be-

comes more severe. This result parallels with the notion of a sequentially repeated

test possessing what Ramachandran (1958) called the monotonicity property.

Results such as (5.20) also remind us of the notion of the level crossing

ordering introduced by Irle and Gani (2001). For instance, a Markov chain {Yt :

t ∈ N0} is slower in level crossing than a Markov chain {Zt : t ∈ N0} if it takes {Yt :

t ∈ N0} stochastically longer than {Zt : t ∈ N0} to exceed any given level. Thus,

instead of comparing two stochastic processes through all their finite dimensional

distributions as for st-ordering, the lc-ordering compare two stochastic processes

through their hitting times (Ferreira and Pacheco, 2007).

In light of this definition we can add that result (5.20) translates as follows:

for λ1 ≤ λ2 and α1 ≤ α2, the Poisson INAR(1) process {Xt(λ1, α1) : t ∈ N0} is

said to be slower in level-crossing in the st-sense than {Xt(λ2, α2) : t ∈ N0}.

6. ON GOING AND FURTHER WORK

More than 50 years after Samuel Karlin’s first and astounding contributions

on total positivity, we illustrate how this concept and its implications provide

insights on the performance of quality control charts for the mean of the Poisson

INAR(1) process.

Directions for future work include trying to prove the conjecture HT 0
(λ, α)

↓lr with λ.

So far we can add that extensive numerical results, such as the ones shown in

Figure 3, suggest this conjecture is valid. In this figure, we can find the likelihood

ratio functions
P [HT 0((j+0.1) λ0,α0)=m]

P [HT 0(j λ0,α0)=m]
, for j = 1, 1.1, 1.2, 1.3, when λ0 =1, α0 = 0.4

and k = 3, as in Example 5.1. All these likelihood ratios are nonincreasing func-

tions suggesting that

(6.1) HT 0
((j + 0.1)λ0, α0) = m] ≤lr HT 0

(j λ0, α0) , j = 1, 1.1, 1.2, 1.3 .
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Interestingly, additional numerical results led to the conclusion that HT 0
(λ,α)6 ↓lr

with α.
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Figure 3: Likelihood ratios functions:
P [HT 0

((j+0.1) λ0,α0)=m]

P [HT 0(j λ0,α0)=m]
,

for λ0 = 1, α0 = 0.4, k = 3, and j = 1 (top left),

1.1 (top right), 1.2 (bottom left), 1.3 (bottom right).

The simplicity of the Shewhart control charts, such as the upper one-sided

c-chart we used, was responsible for their widespread popularity among quality

control practitioners. The fact that Shewhart-type charts only use the last ob-

served value of their control statistics to trigger (or not) a signal is responsible

for a serious limitation: they are not effective in the detection of small and mod-

erate shifts in the parameter being monitored. As put by Ramos (2013, p. 5), this

limitation led to the cumulative sum control chart (CUSUM) proposed by Page

(1954) and the exponentially weighted moving average control chart (EWMA)

introduced by Roberts (1959), originally designed to monitor the process mean.

CUSUM and EWMA control charts make use of recursive control statistics that

account for the information contained in every collected sample of the process

and prove to be more sensitive to small and moderate shifts in the process mean.

As a consequence, we also plan to conduct a similar analysis on the HT of

these more sophisticated quality control charts to monitor
λ

1−α . A few difficulties

may arise in the derivation of a result such as (5.20), namely because the CUSUM

and EWMA control statistics constitute Markov chains with two-dimensional

state spaces, as noted by Weiss and Testik (2009) and Weiss (2009c).
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