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Abstract:

• One notion of stochastic comparisons of non-negative random variables based on ra-

tios of n
th

derivative of Laplace transforms (n-Laplace transform order or shortly

≤
n-Lt-r order) is introduced by Mulero et al. (2010). In addition, they studied

some of its applications in frailty models. In this paper, we have focused on some

further properties of this order. In particular, we have shown that ≤
n-Lt-r order

implies dual weak likelihood ratio order (≤DWLR order). Moreover, ≤
n-Lt-r order,

under certain circumstances, implies likelihood ratio order (≤lr order). Finally, the

L(n)
(L̄(n)

)-class of life distribution is proposed and studied. This class reduces to

L (L̄)-class if we take n = 0.
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• likelihood ratio order; hazard rate order; shock models; dual weak likelihood ratio
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1. INTRODUCTION, DEFINITIONS AND IMPLICATIONS

There are several stochastic orders that have been introduced in the liter-

ature based on Laplace transforms. For example, Laplace transform order (≤Lt

order) compares two random variables via their Laplace transforms. Moreover,

Laplace transform ratio order (≤Lt-r order) and reverse Laplace transform ra-

tio order (≤r-Lt-r order) which are presented based on ratios of Laplace trans-

forms, studied by Shaked and Wong (1997). Recently, Li et al. (2009) introduced

differentiated Laplace transform order (≤d-Lt-r order) which is based on ratio

of derivative of Laplace transforms, and then, Mulero et al. (2010) generalized

differentiated Laplace transform order to n-Laplace transform order. In addi-

tion, one can see Rolski and Stoyan (1976), Alzaid et al. (1991) and Shaked

and Shanthikumar (2007) for more details. The main purpose of this article is

to study the n-Laplace transform ratio order. The L (L̄)-class of life distributions

states that
∫∞
0 e

−st
F̄ (t) dt ≥ (≤)

∫∞
0 e

−st
Ḡ(t) dt, where Ḡ(t) = e

−t/µ
, t ≥ 0 and

µ =
∫∞
0 F̄ (t) dt which was introduced by Klefsjo (1983). He presented results

concerning closure properties under some of this class reliability operations, un-

der shock models and a certain cumulative damage model. Mitra et al. (1995),

Sengupta (1995), Bhattacharjee and Sengupta (1996), Chaudhuri et al. (1996),

Lin (1998), Lin and Hu (2000) and Klar (2002) have studied this topic.

Here, we give some preliminaries and definitions and study some new results

that are used to present our main results. Various properties and its relationships

to other stochastic orders, will be described in the next section.

Throughout the paper, we assume that X and Y are absolutely continuous

and non-negative random variables and use the term increasing in place of non-

decreasing.

For any absolutely continuous and non-negative random variable X with

density function f and survival function F̄ , the Laplace transform of f is given

by LX(s) =
∫∞
0 e

−st
f(t) dt, s > 0, and the Laplace transform of F̄ is defined as

L
∗
X(s) =

∫ ∞

0
e
−st

F̄ (t) dt , s > 0 .

It is easy to see that LX(s) = 1 − sL
∗
X(s). For absolutely continuous and non-

negative random variable Y with density function g and survival function Ḡ,

LY (s) and L
∗
Y (s) can be defined similar to LX(s) and L

∗
X(s) respectively.

Think of X as representing the length of an interval. Let this interval

be subject to a poissonian marking process with intensity s. Then the Laplace
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transform LX(s) is the probability that there are no marks in the interval.

P{X has no marks} = E

(

P{X has no marks} |X
)

= E

(

P{the number of events in the interval X is 0 |X}
)

= E

(

e
−sX

)

= LX(s) .

Note that

P{there are n events in the interval X |X} =
(sX)

n

n!
e
−sX

,

P{the number of events in the interval X is 0 |X} = e
−sX

,

so,

E

(

P{there are n events in the interval X |X}
)

= (−1)
n s

n

n!
L

(n)
X (s) ,

and

E

(

P{the number of events in the interval X is 0 |X}
)

= LX(s) .

Example 1.1 (Thinning of a Renewal Stream). Assume that for a ran-

dom point process the lengths of the time intervals between the points which are

independent and equally distributed random variables with probability density f

and Laplace transform LX(s). Such a point process is called a renewal stream.

The process is subject to the following thinning operation. Each point is kept

with probability 1 − p and is removed with probability p and the removal of dif-

ferent points are independent. We will derive the Laplace transform L
(n)
Y (s) for

the time intervals in the new stream. Let Y be the length of the time interval

from a point to the next in the thinned stream and let X be the length of the

time interval from the same point to the next in the original stream of points.

By conditioning with respect to whether the next point is kept or removed we

get, if a catastrophe risk is added as described above,

L
(n)
Y (s) = P (n catastrophe in X)

= (1 − p) . P (n catastrophe in X)

+ p . P (n catastrophe in X) P (n catastrophe in Y ) ,

we have used the fact that if the next point is removed the process starts from

scratch again. Thus we have

L
(n)
Y (s) = (1 − p)L

(n)
X (s) + p L

(n)
X (s) L

(n)
Y (s) ,

which gives

L
(n)
Y (s) =

(1 − p) L
(n)
X (s)

1 − p L
(n)
X (s)

.
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If, for instance, X has an exponential distribution with parameter λ, which is the

case if the stream is a Poisson process,

L
(n)
X (s) = (−1)

n

∫ ∞

0
λx

n
e
−x(s+λ)

= (−1)
n λn!

(s + λ)n+1

and

L
(n)
Y (s) =

(−1)
n

(1 − p)λn!

(s + λ)n+1 − (−1)n
p λn!

.

For instance, if n = 0 then

LY (s) =
(1 − p)λ

s + λ(1 − p)
,

thus the lengths of the time intervals in the new stream have exponential distri-

butions with parameter λ(1 − p).

Thinning of streams of points appears in many applications in operations

research, in technology and in biology. For instance, consider the stream of

customers arriving at a supermarket, and make this stream thinner by considering

only those customers which buy a certain item.

Example 1.2 (Waiting Time for the M/G/1 System). In this system, the

customers arrive according to a Poisson process with parameter λ. There is one

service station and we assume the queue discipline is “first come-first served”. Let

Xn be the waiting time of customer number n which the density function of Xn

is denoted by fn. We now assume that the customers on arrival at the system

are marked with probability 1− s. If the waiting time Xn of customer number n

is t, the conditional probability that m marked customer arrive during this time

is

∞
∑

k=0

e
−λt (λt)

k

k!
.

(

k

m

)

(1 − s)
m

s
k−m

,

so,

P (m marked customer during Xn) =

=

(

1 − s

s

)m ∞
∑

k=0

(λs)
k

k!

(

k

m

)
∫ ∞

0
e
−λt

t
k
fn(t) dt

=

(

1 − s

s

)m ∞
∑

k=0

(λs)
k

k!

(

k

m

)

(−1)
k
L

(k)
Xn

(s) .

Recall that X is said to be smaller than Y in the Laplace transform or-

der (denoted by X ≤Lt Y ), if LX(s) ≥ LY (s), ∀ s > 0. Shaked and Wong (1997)

established and extensively investigated stochastic orderings based on ratios of
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Laplace transform. They said that X is smaller than Y in the Laplace trans-

form ratio order (and denoted by X ≤Lt-r Y ) if
LX(s)
LY (s)

(

1−sL∗
X(s)

1−sL∗
Y

(s)

)

is increasing

in s > 0. Also, X is smaller than Y in the reverse Laplace transform ratio order

(denoted by X ≤r-Lt-r Y ) if
1−LX(s)
1−LY (s)

(

L∗
X(s)

L∗
Y

(s)

)

is increasing in s > 0. It is evident

that X ≤Lt-r (≤r-Lt-r) Y implies X ≤Lt Y .

Li et al. (2009) introduced a new stochastic order upon Laplace transform

with applications. They said that X is smaller than Y in the differentiated

Laplace transform ratio order (denoted by X ≤d-Lt-r Y ) if
L′

X(s)

L′
Y

(s)
is increasing in

s > 0. They demonstrated that

X ≤d-Lt-r Y =⇒ X ≤Lt-r (≤r-Lt-r) Y .

For two random variables X and Y with densities f and g and survival functions

F̄ and Ḡ respectively, we say that X is smaller than Y in the likelihood ratio

order (X ≤lr Y ) if
g(t)
f(t) is increasing in t and say that X is smaller than Y in the

hazard rate order (X ≤hr Y ) if
Ḡ(t)
F̄ (t)

is increasing in t. For more details of other

stochastic orders one can see Shaked and Shanthikumar (2007).

Indeed, their new order has been constructed using the first derivative of the

Laplace transform of density functions rather than the own Laplace transform.

In order to clarify and further to determine how does the comparison affect,

Mulero et al. (2010) considered, in general, the n
th

derivative of the Laplace

transform. As a useful observation, for example, the order based on ratios of the

Laplace transform as it increases or decreases, may be important to present much

information about comparison of two random variables. Moreover, as shown in

the continue, for a special shock model, it is highly motivated to be considered in

the case of comparison of number of shocks according to ≤lr order. Thus, they

introduced a new partial orderings as below:

Definition 1.1. We say that X is smaller than Y in n-Laplace transform

ratio (denoted by X ≤n-Lt-r Y ) if

L
(n)
X (s)

L
(n)
Y (s)

is increasing in s > 0 ,(1.1)

in which n ≥ 0 is an integer and L
(n)
X (s) denotes n

th
derivative of LX(s) and

similarly for Y .

We can define ≤n-Lt∗-r order for n
th

derivative of L
∗
X(s) in a same manner.

Example 1.3. As pointed out in Mulero (2010), when Xi∼Gamma(αi, βi),

i = 1, 2, then X1 ≤n-Lt-r X2 holds if for every n ≥ 0, β1 ≥ β2 and α2 ≥ α1.

It can be seen in this case that if α1 = α2 = 1 and β1 ≥ β2 then X1 ≤n-Lt∗-r X2.
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2. MAIN RESULTS

In this section, we present some results for ≤n-Lt-r order and then we discuss

≤n-Lt-r order for shock models. The same results can be obtained for ≤n-Lt∗-r.

2.1. Basic properties

First of all, stochastic orders which have connections to ≤n-Lt-r order have

been described.

Theorem 2.1. Let X1 and X2 be absolutely continuous and non-negative

iid random variables with density functions f1(·) and f2(·) respectively, and n be

a non-negative integer. Then for any n, we have:

(a) If X1 ≤lr X2 then X1 ≤n-Lt-r X2.

(b) If f1 and f2 are both bounded on [0,∞) then for all n, X1 ≤n-Lt-r X2

implies that X1 ≤lr X2.

(c) If X1 ≤n+1-Lt-r X2 then X1 ≤n-Lt-r X2.

Proof: As we know that a non-negative function h(x, y) is said to be TP2

(RR2) if

∣

∣

∣

∣

h(x1, y1) h(x1, y2)

h(x2, y1) h(x2, y2)

∣

∣

∣

∣

≥(≤) 0

for every x1 ≤ x2 and y1 ≤ y2.

(a) It is easy to verify, that t
n
e
−st

is RR2 in s > 0 and in t > 0. So, by

Karlin (1968, Lemma 1.1 on p. 99) it follows that

∫ ∞

0
t
n
e
−st

fj(t) dt ,

is RR2 in j ∈ {1, 2} and in s > 0, that is,

∫∞
0 t

n
e
−st

f2(t) dt

∫∞
0 t

n
e
−st

f1(t) dt

,

is decreasing in s > 0. Hence we have the result.

(b) Let X1 ≤n-Lt-r X2, so, by Widder (1946), we have

lim
n→∞

L
(n)
X1

(s)
∣

∣

s=n+1
t

= f1(t) ,

and similarly we have for Y . So,
f2(t)
f1(t) is increasing in t > 0.
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(c) Since

−L
(n)
Xi

(s) =

∫ ∞

s
L

(n+1)
Xi

(t) dt

=

∫ ∞

0

[

L
(n+1)
Xi

(t) 1(s,∞)(t)

]

dt ,

and L
(n+1)
Xi

(s) is TP2(i, t) and 1(s,∞)(t) is TP2(t, s), so, by “basic composition

theorem” in Karlin (1968), L
(n)
Xi

(s) is TP2(i, s), and thus
L

(n)
X2

(s−1)

L
(n)
X1

(s−1)
is increasing in

s > 0.

Note that the inverse of the above theorem necessarily does not establish,

for this case, see the following example:

Example 2.1. Let P (X= 0) = P (X= 1) =
1
2 and P (Y = 0) =

2
4 , P (Y = 1)

=
1
4 , P (Y = 2) =

1
4 . It is clear that X ≤lr Y is invalid, but X ≤n-Lt-r Y and

X ≤n-Lt∗-r Y are true.

There is no relationship between ≤n-Lt-r and ≤n-Lt∗-r orderings which is

mentioned by Shaked and Wong (1997).

Example 2.2. Let P (X= 1) = P (X= 2) = P (X= 3) =
1
3 and P (Y = 0)

= P (Y = 1) =
1
4 and P (Y = 2) =

1
2 . Then, X ≤n-Lt-r Y and X ≤n-Lt∗-r Y are

not hold.

The inverse of part (c) of Theorem 2.1 is not necessarily established. This

review is the following example:

Example 2.3. Let P (X= 1) =
3
4 , P (X= 2) = P (X= 3) =

1
8 , P (Y = 1)

=
1
4 and P (Y = 2) =

3
4 . Then,

(i) for n = 1, Li et al. (2009) showed that X ≤1-Lt-r Y ,

(ii) for n = 2, we have,
d
ds

L
(n)
X

(s)

L
(n)
Y

(s)
=

1
2

68e−s−18e−2s−108e−3s

(1+12e−s)
, which for s = 0.1

is equal to −1.4, for s =1 is equal to 1.59 and for s =10 gives 0.0015,

so X 6≤2-Lt-r Y .

The next result can be easily built and thus is presented only with proof of

part (c).
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Theorem 2.2.

(a) Let {Xj} and {Yj} be two sequences of random variables such that

Xj → X and Yj → Y in distribution. If Xj ≤n-Lt-r Yj , j = 1, 2, ...,

then X ≤n-Lt-r Y .

(b) Let X and Y be non-negative random variables with moments µi and νi,

i = 1, 2, ..., respectively, (µ0 = ν0 = 1). Then, X ≤n-Lt-r Y if and

only if
∞
∑

i=0

(−s)i

i! µn+i

∞
∑

i=0

(−s)i

i! νn+i

is increasing in s > 0 .

(c) Let X, Y and Θ be random variables such that [X |Θ = θ] ≤n-Lt-r

[Y |Θ = θ
′
] for all θ and θ

′ in the support of Θ. Then X ≤n-Lt-r Y .

Proof: We only present the proof of part (c). The proof of parts (a) and

(b) is clear.

With similar arguments to Theorem 5.B.8 of Shaked and Shanthikumar

(2007) we have

L
(n)
X (s)

L
(n)
Y (s)

=

EΘ

(

L
(n)
[X|Θ](s)

)

EΘ

(

L
(n)
[Y |Θ](s)

) .

On the other hand
d
ds

L
(n)
[X|θ]

(s)

L
(n)

[Y |θ′]
(s)

≥ 0, if and only if

L
(n+1)
[X|θ] (s) L

(n)
[Y |θ′](s) − L

(n)
[X|θ](s) L

(n+1)
[Y |θ′] (s) ≥ 0 ,

for all θ and θ
′
in the support of Θ. Consequently,

EΩ

(

L
(n+1)
[X|θ] (s) L

(n)
[Y |θ′](s) − L

(n)
[X|θ](s) L

(n+1)
[Y |θ′] (s)

)

≥ 0 ,

where Ω = (θ, θ
′
), and the proof is complete.

Theorem 2.3. Let f(t) and g(t) be both bounded on [0,∞). If X≤n-Lt-r Y,

then X ≤DWLR Y .

Proof: If X ≤n-Lt-r Y , then
L

(n)
X

(s)

L
(n)
Y

(s)
≥

E(Xn)
E(Y n) so,

lim
n→∞

L
(n)
X (s)

L
(n)
Y (s)

∣

∣

∣

∣

s=n+1
t

≥ lim
n→∞

E(X
n
)

E(Y n)
= c

where 0 < c ≤ 1. So by Widder (1946), if f(t) and g(t) are both bounded on

[0,∞), then we have f(t) ≥ cg(t), from which we conclude X ≤DWLR Y . (Note

that if c > 1 then
∫

f(t) dt ≥ 1.)
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2.2. Shock models

A device is subjected to shocks arriving according to a Poisson process

with parameter λ. Then the lifetime T1 of the system is given by T1 =

N1
∑

j=1
Xj ,

where N1 denote the number of shocks survived by the system and Xj is the

random interval time between the j − 1 and j
th

shocks. Suppose further that

the device has probability P̄k = P (N1> k) for all k ∈ N of surviving the first k

shocks, where 1 = P̄0 ≥ P̄1 ≥ ... . Also, let pk+1 = P̄k − P̄k+1, k = 0, 1, 2, ..., then,

the probability function of the device is given by

f(t1) =

∞
∑

k=0

e
−λt1(λt1)

k

k!
λpk+1 .

The survival function of this device is given by

F̄ (t1) =

∞
∑

k=0

e
−λt1(λt1)

k

k!
P̄k .

Consider another device which is also subjected to shocks arriving according to a

Poisson process with the same parameter λ. Then the lifetime T2 of the system

is given by T2 =

N2
∑

j=1
Yj , where N2 denote the number of shocks survived by the

system and Yj is the random interval time between the j − 1 and j
th

shocks.

The device has probability Q̄k = P (N2 >k) for all k ∈ N of surviving the first

k shocks, where 1 = Q̄0 ≥ Q̄1 ≥ ... . Also, qk+1 = Q̄k − Q̄k+1, k = 0, 1, 2, ..., then,

the probability function of the device is given by

g(t2) =

∞
∑

k=0

e
−λt2(λt2)

k

k!
λqk+1 .

The corresponding survival function of this device is given by

Ḡ(t2) =

∞
∑

k=0

e
−λt2(λt2)

k

k!
Q̄k .

Theorem 2.4. Let N1, N2, T1 and T2 be random variables as above. If

N1 ≤lr N2 then T1 ≤n-Lt-r T2.

Proof: Let us denote L
(n)
Ti

(s) = L
(n)
i (s), i = 1, 2. We have

L
(n)
i (s) =

∞
∑

k=0

(−1)
n (n + k)!

k!

λ
k+1

(λ + s)n+k+1
pk+1 ,

in which (−1)
n (n+k)!

k!
λk+1

(λ+s)n+k+1 is RR2(s, k) and pk+1 is TP2(k, i), so, by Karlin

(1968, Lemma 1.1 on p. 99) it follows that L
(n)
i (s) is RR2(s, i), therefore

L
(n)
2 (s)

L
(n)
1 (s)

is decreasing in s > 0, or equivalently, T1 ≤n-Lt-r T2.
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3. L(n)-CLASS

The L (L̄)-class of life distributions for which
∫∞
0 e

−st
F̄ (t) dt ≥ (≤)

∫∞
0 e

−st
Ḡ(t) dt, where Ḡ(t) = e

−t/µ
, t ≤ 0 and µ =

∫∞
0 F̄ (t) dt has been intro-

duced by Klefsjo (1983). He presented results concerning closure properties

under some usual reliability operations and studied some shock models and a

certain cumulative damage model. The L-class is strictly larger than the well

known HNBUE class (the harmonic new better than used in expectation class

of life distributions) in which a life distribution F is said to be HNBUE if
∫∞
t F̄ (x) dx ≤ µ exp(−

t
µ) for all t ≥ 0. The L-class of life distributions has at-

tracted a great deal of attention (for more details see Lin 1998).

3.1. Basic properties of L(n)-class

We will define the class L(n)
(L̄(n)

)-class of life distributions based on n
th

derivative of Laplace transform in the same manner of L (L̄)-class.

Definition 3.1. Let X be a non-negative random variable with life dis-

tribution F , survival function F̄ = 1−F and finite mean µ =
∫∞
0 F̄ (t) dt. We say

that the life distributions F belongs to the L(n)
-class if

∫ ∞

0
t
n
e
−st

F̄ (t) dt ≥ n!

(

µ

1 + sµ

)n+1

, for s ≥ 0 .(3.1)

If the reversed inequality holds we shall say that F belongs to the L̄(n)
-class.

Theorem 3.1.

(a) If X ∈ L(n)-class and X ∈ L̄(n)-class, then X has exponential distri-

bution with mean µ.

(b) L(n) ⊂ L(n−1) for all n = 1, 2, ... .

(c) L(n)
= L

(n)
0 ∪L

(n)
+ , in which L

(n)
+ denote the class of all distributions F

having support SF ⊂ (0,∞), mean µ < ∞, and satisfying the relation

(3.1). Also, denote by L
(n)
0 = {F0}, where F0 is the degenerate at 0.

(d) F ∈ L(n) if and only if
∫∞
0 t

n
e
−st

f(t) dt ≤ n!
µn

(1+sµ)n+1 .

Proof: (a) By assumptions

∫ ∞

0
t
n
e
−st
(

F̄ (t) − e
−t/µ

)

dt = 0 .(3.2)
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Due to statistical completeness property of the exponential distribution, it follows

that F̄ (t) = e
−t/µ

, ∀ t ≥ 0.

(b) By equation (3.1), the random variable X belongs to L(n)
-class if

∫ ∞

0
t
n
e
−st
(

F̄ (t) − e
−t/µ

)

dt ≥ 0 ,

that gives
∫ ∞

x

∫ ∞

0
t
n
e
−st
(

F̄ (t) − e
−t/µ

)

dt ds ≥ 0 ,

so
∫ ∞

0
t
n−1
(

F̄ (t) − e
−t/µ

)

∫ ∞

x
te

−st
ds dt ≥ 0 ,

therefore
∫ ∞

0
t
n−1

e
−xt
(

F̄ (t) − e
−t/µ

)

dt ≥ 0 ,

which means X ∈ L(n−1)
-class.

(c) Using (3.1) we conclude that for all s ≥ 0

n!

(

µ

1 + sµ

)n+1

≤
(

1 − F (0)
)

∫ ∞

0
t
n
e
−st

dt ,

from which we get
(

µ

1 + sµ

)n+1

≤
1

s
n+1

(

1 − F (0)
)

,

hence, µ
n+1 ≤

(

1 − F (0)
)(

µ +
1
s

)n+1
. Letting s → ∞ yields µ

n+1
F (0) ≤ 0, and

with similar discuss to Lin (1998) obtain the result.

(d) Using L
(n)
X (s) = nL

∗
X

(n−1)
(s) − sL

∗
X

(n)
(s) for all n = 1, 2, 3, ..., the de-

sired result follows.

Theorem 3.2. If X has distribution function F and Y has exponential

distribution with mean µ, such that E(X
n
) = E(Y

n
), then, Y ≤n-Lt∗-r X implies

that X ∈ L(n).

Proof: Note that Y ≤n-Lt∗-r X so,
L∗

Y
(n)(s)

L∗
X

(n)(s)
is increasing in s ≥ 0. Hence,

∫ ∞

0
t
n
e
−t(s+ 1

µ
)
dt

∫ ∞

0
t
n
e
−st

F̄ (t) dt

≥ lim
s→0

∫ ∞

0
t
n
e
−t(s+ 1

µ
)
dt

∫ ∞

0
t
n
e
−st

F̄ (t) dt

= 1 ,

which means X is in L(n)
.
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We are going to give another interesting characterization of the L
(n)
+ -class

through the equilibrium transformation, which will be used to estimate the mo-

ments of F ∈ L
(n)
+ and to characterize the exponential distribution. Let X be a

non-negative random variable with distribution function F and finite mean µ > 0.

Then the equilibrium transformation Fe of F is defined by

Fe(x) =
1

µ

∫ x

0
F̄ (t)dt for x ≥ 0 .

The distribution Fe is known by the names equilibrium distribution and let the

random variable with distribution function Fe is denoted by Xe.

Theorem 3.3. Let X be a positive random variable with distribution

function F and finite mean µ > 0. If X ∈ L
(n)
+ and E(X

n
e
−sX

) ≥ E(X
n
e e

−sXe)

then X ∈ L
(n−1)
+ .

Proof: Note that

E(X
n
e
−sX

) ≥ E(X
n
e e

−sXe) ⇐⇒

⇐⇒
1

µ

∫ ∞

0
t
n
e
−st

F̄ (t) dt ≤

∫ ∞

0
t
n
e
−st

f(t) dt

⇐⇒
1

µ

∫ ∞

0
t
n
e
−st

F̄ (t) dt ≤ n

∫ ∞

0
t
n−1

e
−st

F̄ (t) dt − s

∫ ∞

0
t
n
e
−st

F̄ (t) dt

⇐⇒
1 + sµ

µ

∫ ∞

0
t
n
e
−st

F̄ (t) dt ≤ n

∫ ∞

0
t
n−1

e
−st

F̄ (t) dt ,

since X ∈ L
(n)
+ then

∫∞
0 t

n−1
e
−st

F̄ (t) ≥ (n − 1)! (
µ

1+sµ)
n

that means X ∈ L
(n−1)
+ .

Block and Savits (1980) considered

an(s) =
(−1)

n

(n)!
L
∗
X

(n)
(s) , n = 0, 1, 2, ... , s > 0 ,

and set αn+1(s) = s
n+1

an(s) for n = 0, 1, 2, ..., s > 0. So, X ∈ L(n)
if and only if

αn+1(s) ≥

(

sµ

1 + sµ

)n+1

.

Block and Savits (1980) supposed that
{

Ns(t), t ≥ 0
}

be a Poisson process with

rate s > 0. They showed, if X is a random variable with survival function F̄ (u),

then

αn+1(s) = s

∫ ∞

0

e
−su

(su)
n

n!
F̄ (u) du

= s

∫ ∞

0
P

{

Ns(u) = n

}

F̄ (u) du

= s

∫ ∞

0
P

{

Ns(u) > n

}

dF (u)

= P

{

Ns(X) > n

}

.
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Furthermore, if Y1, Y2, ... are the (exponential) arrival times for the process, then

αn+1(s) = P

(

n+1
∑

i=1

Yi ≤ X

)

=

∫ ∞

0
G

(n+1)
(u) dF (u) ,(3.3)

where Ḡ(u) = exp(−su), u ≥ 0. Thus (3.3) shows that the {αn(s), n ≥ 1} are

the discrete survival probabilities for a special case of the random threshold cu-

mulative damage model of Esary et al. (1973).

3.2. L(n) (L̄(n)) class for discrete life distributions

Let ξ be a strictly positive integer valued random variable and denote P̄k =

P (ξ > k), k = 0, 1, 2, ..., the corresponding survival probabilities. Also, suppose

that 1 = Q̄0 ≥ Q̄1 ≥ Q̄2 ≥ ... denote the corresponding survival probabilities of a

geometric distribution with mean

µ =

∞
∑

k=0

Q̄k =

∞
∑

k=0

P̄k ,

that is,

Q̄k = (1 − 1/µ)
k
, k = 0, 1, 2, ... .

Since the discrete counterpart to Laplace transform is the probability generating

function, we consider the following natural definition:

Definition 3.2. A discrete life distribution and its survival probabilities

P̄k, k = 0, 1, 2, ..., with finite mean

∞
∑

k=0

P̄k = µ are in L(n)
(L̄(n)

) class if

∞
∑

k=n

k!

(k − n)!
P̄k p

k−n
≥ (≤)

n! µ(µ−1)
n

(

p + (1−p)µ

)n+1 , for 0 ≤ p ≤ 1 .

Example 3.1. Let P̄0 = 1, P̄1 =
1
2 , P̄2 =

1
4 , P̄3 =

1
5 and P̄k = 0 for k =

4, 5, 6, ... . Then P̄k is belong to L-class but is not belong to L(1)
.

Preservation of L(n)
and L̄(n)

classes under mixture and convolutions are

studied as follow:

Mixtures:

Let {FΘ} be a family of life distribution, where Θ is random variable with

distribution H(θ), the mixture F of FΘ according to H is F (t) =
∫

FΘ(t) dH(θ).

If each FΘ is an exponential distribution and therefore DFR, then F is DFR

that follows F not in L(n)
.
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Consider Ḡ(t) =
∫

ḠΘ(t) dH(θ), t ≥ 0, where ḠΘ(t) = exp(−t/µΘ) in which

µΘ =
∫∞
0 F̄Θ(t)dt and µ =

∫∞
0 F̄ (t)dt. If every FΘ is in L̄(n)

so,

∫ ∞

0
t
n
e
−st
(

Ḡ(t) − F̄ (t)
)

dt =

∫ ∞

0
t
n
e
−st

∫

θ

(

ḠΘ(t) − F̄Θ(t)
)

dH(θ) dt

=

∫

θ

∫ ∞

0
t
n
e
−st
(

ḠΘ(t) − F̄Θ(t)
)

dt dH(θ) ≥ 0 .

Convolutions:

Let θ1 and θ2 be two independent random variables with life distributions

F1 and F2 with means µ1 and µ2, respectively, belonging to L(n)
class. If Ḡ1(t) =

exp (−t/µ1), t ≥ 0, and Ḡ2(t) = exp (−t/µ2), t ≥ 0, then θ1 + θ2, that has life

distribution F1 ∗F2, belongs to L(n)
, too. With a similar argument to Klefsjo

(1983), by using properties of the Laplace transform of convolutions we get

∫ ∞

0
t
n
e
−st

F1 ∗F2(t) dt ≥

∫ ∞

0
t
n
e
−st

G1 ∗G2(t) dt ,

due to the fact G1 ∗G2 is IFR, it follows that θ1 + θ2 is in L(n)
class. Note

that since G1 ∗G2 is IFR then it also follows that L̄(n)
class is not closed under

convolutions.
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ing and stochastic comparisons of residual life times in multivariate frailty models,

Journal of Statistical Planning and Inference, 140, 1594–1600.

[14] Rolski, T. and Stoyan, D. (1976). On the comparison of waiting times in

GI/G/1 queues, Operations Research, 24, 197–199.

[15] Sengupta, D. (1995). Reliability bounds for the L-class and Laplace order,

Journal of Applied Probability, 32, 832–835.

[16] Shaked, M. and Shanthikumar, J.G. (2007). Stochastic Orders, Academic

Press, New York.

[17] Shaked, M. and Wong, T. (1997). Stochastic orders based on ratios of Laplace

transforms, Journal of Applied Probability, 34, 404–419.

[18] Widder, D.V. (1946). The Laplace Transform, Princeton University Press.



REVSTAT – Statistical Journal

Volume 14, Number 3, June 2016, 245–271

A MIXTURE INTEGER-VALUED GARCH MODEL

Authors: Mamadou Lamine Diop
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1. INTRODUCTION

Time series count data are widely observed in real-world applications (epi-

demiology, econometrics, insurance). Many different approaches have been pro-

posed to model time series count data, which are able to describe different types

of marginal distribution. Zeger (1988) discusses a model for regression analy-

sis with a time series of counts by illustrating the technique with an analysis of

trends in U.S. polio incidence, while Ferland et al. (2006) proposed an integer-

valued autoregressive conditional heteroscedastic (INARCH) model to deal with

integer-valued time series with overdispersion. Zhu (2011) proposed a negative

binomial INGARCH (NBINGARCH) model that can deal with both overdisper-

sion and potential extreme observations simultaneously. Zhu (2012) introduced a

generalized Poisson INGARCH model, which can account for both overdispersion

and underdispersion, among others.

In the literature, time series are often assumed to be driven by a unimodal

innovation series. However, many time series may exhibit multimodality either

in the marginal or the conditional distribution. For example, Martin (1992) pro-

posed to model multimodal jump phenomena by a multipredictor autoregressive

time series (MATS) model, while Wong and Li (2000) generalized the GMTD

model to the full mixture autoregressive (MAR) model whose predictive distribu-

tion could also be multimodal. Muller and Sawitzki (1991) proposed and studied

a method for analyzing the modality of a distribution.

Recently, Zhu et al. (2010) have used the idea of Saikkonen (2007) on the

definition of a very general mixture model to generalize the INARCH model to the

mixture (MINARCH) model, which has the advantages over the INARCH model

because of its ability to handle multimodality and non-stationary components.

But, they did not take into account the MA part of the model. Sometimes,

as in the classical GARCH model, large number of lagged residuals must be

included to specify the model correctly. As it is well known that computational

problem may arise when the autoregressive polynomial in the conditional mean

of the MINARCH model presents high order, we introduce in this paper the

MINGARCH model which is a natural generalization of the MINARCH model.

The paper is organized as follows. In Section 2 we describe the MINGARCH

model and the stationarity conditions. In Section 3, we discuss the estimation

procedures by using an expectation-maximization (EM) algorithm introduced by

Dempster et al. (1997) with a simulation study. We illustrate the usefulness of the

model in Section 4 by an empirical example. A brief discussion and concluding

remarks are given in Section 5.
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2. THE MIXTURE INTEGER-VALUED GARCH MODEL

The MINGARCH(K; p1, ..., pK ; q1, ..., qK) model is defined by:

(2.1)



















Xt =
∑K

k=1 1(ηt = k)Ykt ,

Ykt|Ft−1 : P(λkt) ,

λkt = αk0 +
∑pk

i=1 αkiXt−i +
∑qk

j=1 βkj λk(t−j) ,

where P(λ) is the Poisson distribution with parameter λ, αk0 > 0, αki ≥ 0, βkj ≥ 0,

(i = 1, ..., pk, j = 1, ..., qk, k = 1, ..., K), 1(·) denotes the indicator function,

pk and qk are respectively the MA and AR orders of λkt, Ft−1 indicates the in-

formation given up to time t − 1, ηt is a sequence of independent and identically

distributed random variables with P(ηt = k) = αk, k = 1, ..., K. It is assumed

that Xt−j and ηt are independent for all t and j > 0, the variables Ykt and ηt

are conditionally independent given Ft−1, α1 ≥ α2 ≥ ... ≥ αK for identifiability

(see Titterington (1985)) and
∑K

k=1 αk = 1. If βkj = 0, k = 1, ..., K, j = 1, ..., qk,

the model is denoted MINARCH(K; p1, ..., pK).

The MINGARCH model is able to handle the conditional overdispersion in

integer-valued time series. In fact, the conditional mean and variance are given

by

E

(

Xt|Ft−1

)

=

K
∑

k=1

αk λkt ,

and

Var

(

Xt|Ft−1

)

= E

(

Xt|Ft−1

)

+

K
∑

k=1

αk λ
2
kt −

(

K
∑

k=1

αk λkt

)2

.

Using the Jensen’s inequality, we can easily see that:

K
∑

k=1

αk λ
2
kt −

(

K
∑

k=1

αk λkt

)2

> 0 .

Hence the conditional variance is greater than the conditional mean. Furthermore

Var

(

Xt

)

= E

(

Var
(

Xt|Ft−1

)

)

+ Var

(

E
(

Xt|Ft−1

)

)

= E

(

K
∑

k=1

αk λkt +

K
∑

k=1

αk λ
2
kt −

( K
∑

k=1

αk λkt

)2
)

+ Var

(

K
∑

k=1

αk λkt

)

= E

(

Xt

)

+

K
∑

k=1

αk E

(

λ
2
kt

)

−

(

E
(

Xt

)

)2

≥ E

(

Xt

)

+ E

(

K
∑

k=1

αk λ
2
kt −

( K
∑

k=1

αk λkt

)2
)

.
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Then the variance is larger than the mean, which indicates that model (2.1) is

also able to describe the time series count with overdispersion.

Let us now introduce the polynomials Dk(B) = 1 − βk1B − βk2B
2 − ··· −

βkqB
q
, k = 1, ..., K, where B is the backshift operator. In the following, we

assume that

H1 : For k = 1, ..., K, the roots of Dk(z) = 0 lie outside the unit circle ,

H2 : λkt < ∞ a.s. for any fixed t and k .

Let p = max(p1, ..., pK); q = max(q1, ..., qK); αki = 0, for i > pk ; βkj = 0,

for j > qk and L = max(p, q).

First and second-order stationarity conditions for the MINGARCH model

(2.1) are given in Theorem 2.1 and Theorem 2.2.

Theorem 2.1. Assume that the conditions H1 and H2 hold. A necessary

and sufficient condition for model (2.1) to be stationarity in the mean is that the

roots of the equation:

(2.2) 1 −

K
∑

k=1

αk

(

∑pk

i=1 αkiZ
−i

1 −
∑qk

j=1 βkj Z
−j

)

= 0

lie inside the unit circle.

Proof: Let µt = E(Xt) =
∑K

k=1 αk E(λkt) for all t ∈ Z. Since

λkt = αk0 +

pk
∑

i=1

αkiXt−i +

qk
∑

j=1

βkj λk(t−j) ,

the recursion equation gives, for all m > 1,

λkt = αk0 +

L
∑

i=1

αkiXt−i +

m
∑

l=1

L
∑

j1,...,jl=1

αk0 βkj1···βkjl

+

m
∑

l=1

L
∑

j1,...,jl+1=1

αkjl+1
βkj1···βkjl

Xt−j1−···−jl−jl+1

+

L
∑

j1,...,jm+1=1

βkj1···βkjm+1 λk(t−j1−···−jm+1) .

Let Ck0 = αk0 +
∑∞

l=1

∑L
j1,...,jl=1 αk0 βkj1···βkjl

. We define

(2.3) λ
′
kt = Ck0 +

L
∑

i=1

αkiXt−i +

∞
∑

l=1

L
∑

j1,...,jl+1=1

αkjl+1
βkj1···βkjl

Xt−j1−j2−···−jl+1
.
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Since
∑L

j=1 βkj < 1 it is easy to see that 0 ≤ λ
′
kt < ∞ a.s. for any fixed t and k.

We will show below that λkt = λ
′
kt almost surely as m → ∞ for any fixed

t and k. In what follows, C will denote any positive constant whose value is

unimportant and may vary from line to line. Let t and k be fixed now. It follows

that for any m ≥ 1

∣

∣

λkt − λ
′
kt

∣

∣ ≤

∞
∑

l=m+1

L
∑

j1,...,jl=1

αk0 βkj1···βkjl

+

∞
∑

l=m+1

L
∑

j1,...,jl+1=1

αkjl+1
βkj1···βkjl

Xt−j1−j2−···−jl+1

+

L
∑

j1,...,jm+1=1

βkj1···βkjm+1 λk(t−j1−···−jm+1) .

Under H2, we have

E







L
∑

j1,...,jl+1=1

αkjl+1
βkj1···βkjl

Xt−j1−j2−···−jl+1







≤ C





L
∑

j=1

βkj





l

,

and

E







L
∑

j1,...,jm+1=1

βkj1···βkjm+1 λk(t−j1−···−jm+1)







≤ C





L
∑

j=1

βkj





m+1

.

The expectation of the right-hand side of the above is bounded by



Ck0 + C1

(

1 −

L
∑

j=1

βkj

)−1








L
∑

j=1

βkj





m+1

.

Let Am =
{

|λkt − λ
′
kt| >

1
m

}

. Then

P(Am) ≤ m



Ck0 + C1

(

1 −

L
∑

j=1

βkj

)−1








L
∑

j=1

βkj





m+1

.

Then, using Borel–Cantelli lemma and the fact that Am ⊂ Am+1, we can show

that λkt = λ
′
kt a.s. Therefore,

µt =

K
∑

k=1

αk Ck0 +

L
∑

i=1

K
∑

k=1

αk αki µt−i(2.4)

+

∞
∑

l=1

L
∑

j1,...,jl+1=1

K
∑

k=1

αk αkjl+1
βkj1···βkjl

µt−j1−j2−···−jl+1
.
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The necessary and sufficient condition for a non-homogeneous difference equation

(2.4) to have a stable solution, which is finite and independent of t, is that all

roots of the equation

1−

L
∑

i=1

K
∑

k=1

αk αkiZ
−i

−

∞
∑

l=1

L
∑

j1,...,jl+1=1

K
∑

k=1

αk αkjl+1
βkj1···βkjl

Z
−(j1+j2+ ···+jl+1)

= 0

lie inside the unit circle (see Goldberg (1958)). This equation is equivalent to

1 −

K
∑

k=1

αk

(

pk
∑

i=1

αkiZ
−i

)

∞
∑

l=0

(

qk
∑

j=1

βkj Z
−j

)l

= 0 .

Since
∑qk

j=1 βkj < 1, k = 1, ..., K and ‖Z‖ < 1, the equation (2.2) follows.

As an illustration, we consider in the following corollary the MINARCH(K;

p1, ..., pK).

Corollary 2.1. A necessary and sufficient condition for the MINARCH(K;

p1, ..., pK) model to be first-order stationary is that the roots of the equation

1 −

p
∑

i=1

(

K
∑

k=1

αk αki

)

Z
−i

= 0

lie inside the unit circle, where p = max(p1, ..., pK).

Now, we consider the MINGARCH model with pk = qk = 1 for all k =

1, ..., K. The following corollary gives a necessary and sufficient condition for the

MINGARCH(K; 1, ..., 1; 1, ..., 1) model to be stationary in the mean.

Corollary 2.2. A necessary and sufficient condition for the

MINGARCH(K; 1, ..., 1; 1, ..., 1) model to be first-order stationarity is that the

roots of the equation

1 + C1Z
−1

+ C2Z
−2

+ ··· + CK Z
−K

= 0

lie inside the unit circle where

C1 = −

K
∑

k=1

(

δk + αk γk

)

and

Cj = (−1)
j









K
∑

k1>k2>...>kj

δk1δk2···δkj
+

K
∑

k=1

αkγk









K
∑

k1>k2>...>kj−1

k1 6=k, k2 6=k, ..., kj−1 6=k

δk1δk2 ...δkj−1

















for j = 2, ..., K, with γk = αk1 and δk = βk1.
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Proof: The equation (2.2) becomes

1 −

K
∑

k=1

αk γk Z
−1

1 − δk Z
−1

= 0 .

Reducing to the same denominator, the preceding equation is equivalent to:

K
∏

k=1

(

1 − δk Z
−1
)

−

K
∑

k=1

αk γk Z
−1

K
∏

k′=1
k′ 6=k

(

1 − δk′Z
−1
)

=

= 1 + C1Z
−1

+ C2Z
−2

+ ··· + CK Z
−K

= 0 .

From equation (2.4), we have

E(Xt) = µ =

K
∑

k=1

αk Ck0 + µ

∞
∑

l=0

L
∑

j1,...,jl+1=1

K
∑

k=1

αk αkjl+1
βkj1···βkjl

.(2.5)

Hence

µ =

∑K
k=1

(

αk αk0

1−
Pqk

j=1βkj

)

1 −
∑K

k=1

(Ppk
i=1 αk αki

1−
Pqk

j=1βkj

) .

A necessary condition for first-order stationarity of model (2.1) is given in

the following proposition.

Proposition 2.1. Under conditions H1 and H2, a necessary condition for

first-order stationarity of model (2.1) is

K
∑

k=1

(

∑pk

i=1 αk αki

1 −
∑qk

j=1 βkj

)

< 1 .

Remark 2.1.

1. As a special case, a necessary condition for the MINGARCH(2; 1, 1; 1, 1)

model to be stationary in the mean is:

α1α11

1 − β11
+

α2α21

1 − β21
< 1 .

2. When the process (Xt) follows a MINARCH(K; p1, ..., pK), the condi-

tion stated in Proposition 2.1, reduced
∑K

k=1 (
∑pk

i=1 αk αki) < 1 as in

Zhu et al. (2010).
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The second order stationarity condition for the MINGARCH model (2.1)

in given the following theorem. Its proof is postponed in an Appendix.

Theorem 2.2. Let (Xt)t∈Z
be a MINGARCH(K; p1, ..., pK ; q1, ..., qK)

model. Assume that the conditions H1 and H2 hold. If the process (Xt)t∈Z
is

first-order stationary then a necessary and sufficient condition for the process to

be second-order stationary is that all roots of 1−c1Z
−1−c2Z

−2−···−cLZ
−L

= 0

lie inside the unit circle, where

cu =

K
∑

k=1

αk

(

∆k,u−

L−1
∑

v=1

Λkv bvu ωu0

)

, u = 1, ..., L−1 and cL =

K
∑

k=1

αk ∆k,L ,

with

∆k,i = ∆
(1)
k,i + ∆

(2)
k,i ,

∆
(1)
k,i =

∞
∑

l=0

L
∑

jl+2=i
jl+2=j1+ ···+jl+1

αkjl+1
αkjl+2

βkj1···βkjl
,

∆
(2)
k,i =

∞
∑

l=0
l′=0

L
∑

j1+ ···+jl+2=i
j1+ ···+jl+2=j′1+ ···+j′

l′+1

αkjl+2
βkj1···βkjl+1

αkj′
l′+1

βkj′1
···βkj′

l′
,

Λkv = Λ
(1)
kv + Λ

(2)
kv ,

Λ
(1)
kv =

∞
∑

l=0

L
∑

|jl+2−j1−···−jl+1|=v

αkjl+1
αkjl+2

βkj1···βkjl
,

Λ
(2)
kv =

∞
∑

l=0
l′=0

L
∑���j1+ ···+jl+2−j′1−···−j′

l′+1

���=v

αkjl+2
βkj1···βkjl+1

αkj′
l′+1

βkj′1
···βkj′

l′
,

and Γ = (ωij)
L−1
i,j=1 , Γ

−1
= (bij)

L−1
i,j=1, two matrices such that

ωi0 =

∞
∑

l=0

K
∑

k=1

αkδi0kl , ωiu =

∞
∑

l=0

K
∑

k=1

αkδiukl for u 6= i, ωii =

∞
∑

l=0

K
∑

k=1

αkδiikl −1 ,

δiukl =

∑

|i−j1−···−jl+1|=u

αkjl+1
βkj1···βkjl

.

We remark that when (Xt) follows a MINARCH(K; p1, ..., pK), Theorem

2.2 reduces to Theorem 2 of Zhu et al. (2010), where L = max(p1, ..., pK).

If the process (Xt) following a MINGARCH(K; p1, ..., pK ; q1, ..., qK) model

is second-order stationary, then from (5.2), we have

E(X
2
t ) =

c0

1 −
∑L

u=1 cu

,
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where c0 > 0 (see Appendix B). Hence, necessary second order stationary condi-

tion for a special case is given by the following proposition.

Proposition 2.2. The second order stationary condition for a

MINGARCH(K; 1, ..., 1; 1, ..., 1) is c1 < 1 where c1 =
∑K

k=1 αk α
2
k1.

In the following theorem, we give a necessary and sufficient condition for the

process (Xt) following a MINGARCH(K; 1, ..., 1; 1, ..., 1) model to be m order sta-

tionary. The results for the general model MINGARCH(K; p1, ..., pK ; q1, ..., qK)

are difficult to obtain and need further investigations.

Theorem 2.3. The m-th moment of a MINGARCH(K; 1, ..., 1; 1, ..., 1)

model is finite if and only if

(2.6)

K
∑

k=1

αk (αk1 + βk1)
m

< 1 .

Proof: Since Ykt|Ft−1 is a Poisson random variable with mean λkt = αk0 +

αk1Xt−1 + βk1λk(t−1) conditionally to time t− 1, the m-th moment of Xt is given

by

E (X
m
t ) =

K
∑

k=1

αk

m
∑

j=0

{

m

j

}

E
(

λ
j
kt

)

where
{

m
j

}

is the Stirling number of the second kind (see Gradshteyn and Ryzhik

(2007), p. 1046) and

λ
j
kt =

j
∑

n=0

(

j

n

)

α
j−n
k0

n
∑

r=0

(

n

r

)

(

αk1Xt−1

)r(
βk1λk(t−1)

)n−r
.

We mimic the proof of Proposition 6 in Ferland et al. (2006) by setting

Λk,t =
(

λ
m
kt, ..., λ

2
kt, λkt

)T

and showing that for all k

E(Λk,t|Ft−2) = dk + DkΛk,t−1

where dk and Dk are respectively a constant vector and an upper triangular

matrix. The derivation of the required condition follows the great lines of the

proof of Proposition 6 in Ferland et al. (2006).

The result obtained in Theorem (2.6) is an extension of Proposition 6 in

Ferland et al. (2006) for an INGARCH(1, 1) process. When the βki’s equal to

zero, the (necessary) condition (2.6) is a special case of the result obtained in

Theorem 3 of Zhu et al. (2010).
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3. PARAMETER ESTIMATION AND SIMULATION

3.1. Estimation procedure

In this section, we discuss the estimation of the parameters of a MIN-

GARCH model by using the expectation-maximization (EM) algorithm (see

Dempster et al. (1997)). Suppose that the observation X = (X1, ..., Xn) is gen-

erated from the MINGARCH model.

Let Z = (Z1, ..., Zn) be the random variable where Zt = (Z1,t, ..., ZK,t)
T

is

a vector whose components are defined by:

Zi,t =

{

1 if Xt comes from the i-th component; 1 ≤ i ≤ K ,

0 otherwise .

The vectors Zt are not observed and its distribution is:

P
(

Zt = (1, 0, ..., 0)
T
)

= α1 , ... , P
(

Zt = (0, 0, ..., 0, 1)
T
)

= αK .

Let α = (α1, ..., αK−1)
T
, α(k) = (αk0, αk1, ..., αkpk

)
T
, β(k) = (βk1, ..., βkqk

)
T

θ(k) = (α
T
(k), β

T
(k)) and θ = (α, θ(1), ..., θ(K))

T ∈ Θ (the parameter space).

Given Zt, the distribution of the complete data (Xt, Zt) is then given by

K
∏

k=1

(

αk
λ

Xt

kt exp(−λkt)

Xt!

)Zkt

.

Let lt be the conditional log-likelihood function at time t. The log-likelihood

is given by l(θ) =
∑n

t=1 lt.

l(θ) is the joint log-likelihood function of the first L random variables of

the series and l
∗
(θ) =

∑n
t=L+1 lt is called the conditional log-likelihood function.

When the sample size n is large, the influence of
∑L

t=1 lt will be negligible. In

this study, the parameters will be estimated by maximizing the conditional log-

likelihood function l
∗

given by

l
∗
(θ) =

n
∑

t=L+1

{

K
∑

k=1

Zkt log(αk) + Xt

K
∑

k=1

Zkt log(λkt) −

K
∑

k=1

Zktλkt − log(Xt!)

}

.

The first derivatives of the conditional log-likelihood with respect to θ are:

(3.1)
∂l∗

∂αk
=

n
∑

t=L+1

(

Zkt

αk
−

ZKt

αK

)

, k = 1, ..., K − 1 ,
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(3.2)
∂l∗

∂αki
=

n
∑

t=L+1

Zkt
Xt − λkt

λkt
U(Xt, i) , k = 1, ..., K, i = 0, ..., pk ,

(3.3)
∂l

∗

∂βkj
=

n
∑

t=L+1

Zkt
Xt − λkt

λkt
λk,t−j , k = 1, ..., K, j = 1, ..., qk ,

where U(Xt, i) = 1 for i = 0 and U(Xt, i) = Xt−i for i > 0.

Given that the process {Zt} is not observed, the data that we have do not

allow the estimation of the parameter θ. An iterative procedure (EM) is pro-

posed for estimating the parameters by maximizing the conditional log-likelihood

function l
∗
(θ), which consists of two steps (E and M) that we describe in the

following.

E-step:

Suppose that θ is known. The missing data Z are then replaced by their

conditional expectations, conditional on the parameters and on the observed data

X. In this case the conditional expectation of the k-th component of Zt is just the

conditional probability that the observation Xt comes from the k-th component

of the mixture distribution conditional on θ and X. Let τk,t be the conditional

expectation of Zkt.

Then the E-step equation is given by:

τk,t =
αkλkt

Xt exp(−λkt)
∑K

i=1 αiλit
Xt exp(−λit)

where k = 1, 2, ..., K and t = L + 1, ..., n. In practice, we take Zkt = τk,t from the

previous E-step of the EM procedure.

M-step:

The missing data Z are replaced by their conditional expectations on the

parameters θ and on the observed data X1, ..., Xn. The estimates of the parame-

ters θ can then be obtained by maximizing the conditional log-likelihood function

l
∗
(θ) by equating expressions (3.2)–(3.3) to 0.

The M-step equations become

α̂k =
1

n − L

n
∑

t=L+1

τk,t , k = 1, ..., K .

From the equation (3.2), we have:

n
∑

t=L+1

τt,kXt

λ̂kt

U(Xt, i) =

n
∑

t=L+1

τk,t U(Xt, i) .
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Then

n
∑

t=L+1

{

τk,t Xt
∑pk

j=0 α̂kj U(Xt, j) +
∑qk

j=1 β̂kjλ̂k(t−j)

U(Xt, i)

}

=

n
∑

t=L+1

τk,t U(Xt, i) ,

for k = 1, ..., K, i = 0, ..., pk.

Similarly equation (3.3) gives:

n
∑

t=L+1

τk,t Xt

λ̂kt

λ̂k,t−j =

n
∑

t=L+1

τ
(s)
k,t λ̂

(s)
k,t−j .

Then

n
∑

t=L+1







τ
(s)
k,t Xt

∑pk

i=0 α̂
(s)
ki U(Xt, i) +

∑qk

t=L+1 β̂
(s)
ki λ̂

(s)
k,t−i

λ̂
(s)
k,t−j







=

n
∑

t=L+1

τ
(s)
k,t λ̂

(s)
k,t−j ,

for k = 1, ..., K, j = 1, ..., qk.

The estimate of θ is then obtained by iterating these two steps until con-

vergence. The criterion used for checking convergence of the EM procedure is

max

{∣

∣

∣

∣

∣

θ
(s+1)
i − θ

(s)
i

θ
(s)
i

∣

∣

∣

∣

∣

, s, i ≥ 1

}

≤ 10
−5

where θ
(s)
i is the i-th component of θ obtained in the s-th iteration.

Among different strategies for choosing starting initial values for the EM

algorithm (see Karlis and Xekalaki (2003), Melnykov and Melnykov (2012)), the

random initialization method is employed in this paper (the initial values for

θ(k) are chosen randomly from a uniform distribution and the mixing proportions

are generated from a Dirichlet distribution). The asymptotic properties are not

treated in this paper but they have been studied by many authors. For exam-

ple, Nityasuddhia and Böhning (2003) have studied the asymptotic properties of

the EM algorithm estimate for normal mixture models. They show that the EM

algorithm gives reasonable solutions of the score equations in an asymptotic unbi-

ased sense. The performance of the EM algorithm is assessed by some simulation

experiments.

3.2. Simulation studies

Monte Carlo experiment was conducted to investigate the performance of

the EM estimation method. In all these simulation experiments, we use 100
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independent realizations of the MINGARCH model defined in (2.1) with sizes n =

100, n = 200 and n = 500. The following two models were used in the experiment.

The first, denoted Model (I), is a MINGARCH(2; 1,1; 1,1) model with parameter

values
(

α1 α10 α11 β11

α2 α20 α21 β21

)

=

(

0.75 1.00 0.20 0.30

0.25 5.00 0.50 0.30

)

.

The second, denoted Model (II), is a MINGARCH(3; 1,1,1; 1,1,1) model with

parameter values





α1 α10 α11 β11

α2 α20 α21 β21

α3 α30 α31 β31



 =





0.55 0.80 0.40 0.30

0.25 1.00 0.50 0.25

0.20 0.50 0.60 0.20



 .

The performances of the estimators are evaluated by the root mean square error

(RMSE) and the mean absolute error (MAE).

Based on the results in Tables 1 and 2, we can see that as the sample

size increases, the estimates seem to converge to the true parameter values.

Table 1: Results of the simulation study with model (I).

Sample size k αk αk0 αk1 βk1

100

1

True values 0.7500 1.0000 0.2000 0.3000

Mean estimated 0.7410 1.1883 0.1833 0.2446
RMSE 0.0523 0.5789 0.0623 0.2137
MAE 0.0405 0.4726 0.0506 0.1801

2

True values 0.2500 5.0000 0.5000 0.3000

Mean estimated 0.2590 5.1660 0.4619 0.2901
RMSE 0.0523 2.6410 0.2823 0.2588
MAE 0.0405 2.2060 0.2103 0.2274

200

1

True values 0.7500 1.0000 0.2000 0.3000

Mean estimated 0.7463 1.0093 0.1909 0.3054
RMSE 0.0359 0.4429 0.0468 0.1773
MAE 0.0291 0.3641 0.0381 0.1460

2

True values 0.2500 5.0000 0.5000 0.3000

Mean estimated 0.2537 5.2571 0.4612 0.2928
RMSE 0.0359 2.2616 0.1728 0.2380
MAE 0.0291 1.8728 0.1314 0.1976

500

1

True values 0.7500 1.0000 0.2000 0.3000

Mean estimated 0.7510 1.0646 0.1959 0.2817
RMSE 0.0259 0.2525 0.0272 0.1035
MAE 0.0212 0.1867 0.0214 0.0783

2

True values 0.2500 5.0000 0.5000 0.3000

Mean estimated 0.2490 5.3064 0.5026 0.2688
RMSE 0.0259 1.6316 0.0982 0.1702
MAE 0.0212 1.3483 0.0774 0.1443



A Mixture Integer-Valued GARCH Model 259

Table 2: Results of the simulation study with model (II).

Sample size k αk αk0 αk1 βk1

100

1

True values 0.5500 0.8000 0.4000 0.3000

Mean estimated 0.5435 0.7671 0.4429 0.2163
RMSE 0.1063 0.4997 0.1898 0.2339
MAE 0.0828 0.4054 0.1482 0.1977

2

True values 0.2500 1.0000 0.5000 0.2500

Mean estimated 0.2240 1.0888 0.5344 0.2532
RMSE 0.0802 0.7182 0.3804 0.2563
MAE 0.0607 0.5504 0.2420 0.2113

3

True values 0.2000 0.5000 0.6000 0.2000

Mean estimated 0.2323 0.9516 0.4475 0.2714
RMSE 0.0600 0.7127 0.2413 0.2263
MAE 0.0429 0.5490 0.1895 0.1850

200

1

True values 0.5500 0.8000 0.4000 0.3000

Mean estimated 0.5286 0.7471 0.4113 0.2552
RMSE 0.1117 0.4363 0.1563 0.1942
MAE 0.0838 0.3566 0.1190 0.1545

2

True values 0.2500 1.0000 0.5000 0.2500

Mean estimated 0.2316 1.0570 0.5340 0.2433
RMSE 0.0785 0.6025 0.2584 0.1928
MAE 0.0602 0.4787 0.1751 0.1506

3

True values 0.2000 0.5000 0.6000 0.2000

Mean estimated 0.2397 0.8867 0.4450 0.3042
RMSE 0.0652 0.6088 0.2306 0.2439
MAE 0.0452 0.4959 0.1806 0.1825

500

1

True values 0.5500 0.8000 0.4000 0.3000

Mean estimated 0.5556 0.7040 0.4248 0.2725
RMSE 0.0825 0.3246 0.1171 0.1797
MAE 0.0614 0.2595 0.0934 0.1407

2

True values 0.2500 1.0000 0.5000 0.2500

Mean estimated 0.2182 0.9508 0.5223 0.2656
RMSE 0.0620 0.4723 0.2059 0.2132
MAE 0.0487 0.3853 0.1569 0.1576

3

True values 0.2000 0.5000 0.6000 0.2000

Mean estimated 0.2261 0.8985 0.4690 0.2815
RMSE 0.0536 0.5883 0.1963 0.1988
MAE 0.0298 0.4780 0.1586 0.1506

The performance of the estimate improves when the sample size increases. But

this performance varies depending on the parameters. Indeed the parameter

estimate αk seems to give good results for all sample sizes considered. For the

parameter αk0, the RMSE and the MAE are slightly higher.
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4. REAL DATA EXAMPLE

In this section we investigate the time series representing a count of the

calls monthly reported in the 22nd police car beat in Pittsburg, starting in Jan-

uary 1990 and ending in December 2001. The data are available online at the

forecasting principles site (http://www.forecastingprinciples.com), in the sec-

tion about crime data. The summary statistics are given in Table 3. Mean and

variance are estimated as 6.3056 and 23.0249, respectively. Hence the data seem

to be overdispersed. The histogram of the series in Figure 1 shows that the series

seems to be bimodal. Using the bimodality index of Der and Everitt (2002),

Zhu et al. (2010) show that the series is bimodal. Moreover, they found that the

MINARCH model is more appropriate for this dataset than the INARCH model.

The autocorrelation function in Figure 2 implies that the moving average poly-

nomial order is at most equal to three (i.e. 0 ≤ q ≤ 3) while when considering the

partial autocorrelation function, we can choose p such that 1 ≤ p ≤ 3. Thus, in

the following, we consider a MINGARCH model (2.1) with K = 1, 2, 3.

Table 3: Summary statistics of the crime counts series.

Sample size Minimum Maximum Median Mean Variance Skewness Kurtosis

144 0 30 5 6.3056 23.0249 1.9732 8.7530
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Figure 1: Histogram of the crime counts series.
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Figure 2: Crime counts series: the time plot, the sample autocorrelation

and partial autocorrelation function.

The model selection criteria considered here are the Akaike information criterion

(AIC), the Bayesian information criterion (BIC) and the mixture regression cri-

terion (MRC) proposed by Naik et al. (2007). These two first criteria are both

defined as minus twice the maximized log-likelihood plus a penalty term. The

first choice is the maximum log-likelihood given by the EM estimation, it includes

the information of the unobserved random variable Z. The second choice is com-

puted from the (conditional) probability density function of the MINGARCH

model and is defined as

l
′
=

n
∑

t=L+1

log

{

K
∑

k=1

αk
λ

Xt

kt exp(−λkt)

Xt!

}

.

We use l

′
in this paper, it may have better performance in finite samples (see

Wong and Li (2000)). The AIC and the BIC are given by:

AIC = −2l
′
+ 2

(

2K − 1 +

K
∑

k=1

pk +

K
∑

k=1

qk

)

,

BIC = −2l
′
+ log

(

n − max(pmax, qmax)

)

(

2K − 1 +

K
∑

k=1

pk +

K
∑

k=1

qk

)

.
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The MRC consists of three terms: the first measures the lack of fit, the second im-

poses a penalty for regression parameters, and the third is the clustering penalty

function. For the MINGARCH model, the MRC is defined as

MRC =

K
∑

k=1

n̂k log(σ̂
2
k) +

K
∑

k=1

n̂k(n̂k + ̂hk)

n̂k − ̂hk − 2
− 2

K
∑

k=1

n̂k log(α̂k),

where n̂k = tr(̂Wk),
̂

hk = tr( ̂Hk), σ̂
2
k = (U − V θ

∗
k)

T
̂

W
1/2
k (I − ̂

Hk)(U − V θ
∗
k)/n̂k

with

̂

Wk = diag
(

(τ̂k,L+1, ..., τ̂kn)
T
)

,
̂

Vk =̂W
1/2
k V,

̂

Hk = ̂

Vk

(

̂

V
T
k
̂

Vk

)−1
̂

V
T
k , k=1, ..., K,

V = (VL+1, ..., Vn)
T
, Vj = (1, Xj−1, ..., Xj−p, λkj(j−1), ..., λkj(j−q))

T
,

kj | τkj ,j = max {τ1,j , ..., τK,j} , j = L + 1, ..., n,

θ
∗
k =

(

α(k)
T
,0T

, β(k)
T
,0T

)T

(p+q+1)×1
, U = (XL+1, ..., Xn)

T
.

The problem of model selection for MINGARCH models requires two as-

pects. First, we must select the number of components K. Second, the model

identification problem needs to be addressed (i.e. the AR polynomial order, pk,

and the MA polynomial order, qk). In this paper we not discuss the selection

problem for the number of components. We concentrate on the order selection of

each component. The order of the components is chosen to be that minimizing

the values of the three criterions. The results are given in Tables 4, 5 and 6.

Table 4: AIC, BIC and MRC values for the crime counts series, K = 1.

Order
AIC BIC MRC

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

q = 0 832.52 813.55 811.50 838.44 822.41 823.29 558.37 546.64 545.87

q = 1 815.11 813.62 813.31 824.01 825.44 852.80 550.56 548.57 547.16
q = 2 813.04 815.06 813.39 824.87 829.84 831.09 548.57 550.50 549.37
q = 3 807.35 809.35 811.82 846.83 827.04 832.46 546.31 548.31 547.19

Table 5: AIC, BIC and MRC values for the crime counts series, K = 2.

Order
AIC BIC MRC

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

q = 0 767.11 760.23 757.05 781.93 780.92 783.59 607.93 606.19 596.61
q = 1 760.55 758.91 755.24 781.29 785.52 787.68 557.14 548.20 550.90
q = 2 756.33 760.51 757.54 782.94 793.02 795.88 537.59 540.95 548.81
q = 3 751.82 755.78 759.26 838.69 794.12 803.49 538.54 541.92 546.76
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Table 6: AIC, BIC and MRC values for the crime counts series, K = 3.

Order
AIC BIC MRC

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

q = 0 766.75 760.89 759.21 790.46 793.41 800.49 647.45 660.88 720.25
q = 1 559.52 759.75 758.96 792.11 801.13 809.09 575.82 577.42 631.02
q = 2 756.75 766.67 756.16 798.13 816.91 824.13 573.34 642.36 649.52
q = 3 749.04 757.72 763.83 799.17 804.11 945.47 573.38 573.62 938.79

For the AIC, the BIC and the MRC, the minimums are represented by the un-

derlined values. Based on the results in these tables (4, 5 and 6), the BIC and the

MRC retain the two-component mixture model respectively with (p, q) = (2, 0)

and (p, q) = (1, 2), which confirm the bimodality observed in the histogram. In

contrast, the AIC retains the three-component mixture model with (p, q) = (1, 3),

which confirms the phenomena often observed in a lot of applications, namely

that the AIC overclusters and overfits the data (for instance, see Naik et al.

(2007)). In practice, it is observed that the BIC criterion selects the model of

dimension smaller than the AIC criterion, which is not surprising since the BIC

penalizes more than the AIC (when n > 7). We notice also that the next smallest

AIC, BIC and MRC values are obtained in the two-component model with re-

spectively (p, q) = (1, 3), (p, q) = (1, 1) and (p, q) = (1, 3). These results confirm

the result of the histogram and lends substantial support to the two-component

model with p = 1 and q 6= 0. The values of the AIC and MRC obtained in our

model are better than those of the MINARCH model. The values of BIC suggest

the MINARCH(2; 2, 2) model, but the smallest value is near of the BIC value

obtained with MINGARCH(2; 1, 1; 2, 2) model (780.92 and 782.94). In addition,

the AIC of the MINGARCH(2; 1, 1; 2, 2) (selected by the MRC) is better than

the one in the MINARCH(2; 2, 2) model. Hence, our results indicate that the

MINGARCH model should be preferred to the MINARCH for this dataset.

5. CONCLUDING REMARKS

In this paper, a new model which generalizes the MINARCH model is

proposed. Conditions for stationarity of the model and estimation procedure

based on EM algorithm are investigated. Moreover, we study the finite per-

formance of the estimation method using Monte Carlo simulations. Finally, a

real case study is proposed. In a forthcoming, we plan to study the ergod-

icity conditions of the model as well as the optimal choice of the parameter

K. In addition, we plan to study necessary and sufficient conditions for the

MINGARCH(K; p1, ..., pK ; q1, ..., qK) process to be m order stationary for m > 2.
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APPENDIX A — Proof of Theorem 2.2

Let γit = E(XtXt−i) for i = 0, 1, ..., L,

γit =

K
∑

k=1

αkE(λktXt−i)

=

K
∑

k=1

αk0αkE(Xt−i) +

m
∑

l=1

K
∑

k=1

L
∑

j1,...,jl=1

αk0αkβkj1···βkjl
E(Xt−i)

+

m
∑

l=1

K
∑

k=1

L
∑

j1,...,jl+1=1

αkαkj+1βkj1···βkjl
E(Xt−j1−···−jl+1

Xt−i)

+

K
∑

k=1

L
∑

j1,...,jm+1=1

αkβkj1···βkjm+1E(λk(t−j1−···−jm+1)Xt−i) .

Using the same arguments as in the proof of Theorem 2.1, we can show that

almost surely

γit =

K
∑

k=1

αk0αkE(Xt−i) +

∞
∑

l=1

K
∑

k=1

L
∑

j1,...,jl=1

αk0αkβkj1···βkjl
E(Xt−i)

+

K
∑

k=1

L
∑

j=1

αkjαkE(Xt−jXt−i)

+

∞
∑

l=1

K
∑

k=1

L
∑

j1,...,jl+1=1

αkαkjl+1
βkj1···βkjl

E(Xt−j1−···−jl+1
Xt−i)

= I + II + III + IV

with

III =

K
∑

k=1

L
∑

j=1

αkjαkE(Xt−jXt−i)

=

K
∑

k=1

αkiαkγ0,t−i +

K
∑

k=1

L
∑

j=1,i6=j

αkjαkγ|j−i|,t

=

K
∑

k=1

αkiαkγ0,t−i

+

K
∑

k=1

αk

(

∑

|j−i|=1

αkiγ1,t + ··· +

∑

|j−i|=i

αkjγi,t + ··· +

∑

|j−i|=L−1

αkjγL−1,t

)

=

K
∑

k=1

αkδi0k0γ0,t−i +

K
∑

k=1

L−1
∑

u=1

αkδiuk0γu,t
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and

IV =

∞
∑

l=1

K
∑

k=1

L
∑

j1,...,jl+1=1

αkαkjl+1
βkj1···βkjl

γ|i−j1−···−jl+1|,t

=

∞
∑

l=1

K
∑

k=1

L
∑

j1+ ···+jl+1=i

αkαkjl+1
βkj1···βkjl

γ0,t−i

+

∞
∑

l=1

K
∑

k=1

L
∑

j1+ ···+jl+1 6=i

αkαkjl+1
βkj1···βkjl

γ|i−j1−···−jl+1|,t

=

∞
∑

l=1

K
∑

k=1

αkδi0klγ0,t−i +

∞
∑

l=1

K
∑

k=1

L−1
∑

u=1

αkδiuklγu,t

where

δiukl =

∑

|i−j1−···−jl+1|=u

αkjl+1
βkj1···βkjl

.

Then

III + IV =

∞
∑

l=0

K
∑

k=1

αkδi0klγ0,t−i +

∞
∑

l=0

K
∑

k=1

L−1
∑

u=1

αkδiuklγu,t

where the first term of this summation (l = 0) is III.

Moreover, using the same notation, we get

I + II =





K
∑

k=1

αk0αk +

∞
∑

l=1

K
∑

k=1

L
∑

j1,...,jl=1

αk0αkβkj1···βkjl



µ

=





∞
∑

l=0

K
∑

k=1

L
∑

j1,...,jl=1

αk0αkβkj1···βkjl



µ =: K1

Finally, for i = 1, ..., L

K1 + ωi0γ0,t−i +

L−1
∑

u=1

ωiuγu,t = 0

where

ωi0 =

∞
∑

l=0

K
∑

k=1

αkδi0kl, ωiu =

∞
∑

l=0

K
∑

k=1

αkδiukl

for u 6= i and ωii =

∞
∑

l=0

K
∑

k=1

αkδiikl − 1.

Let Γ = (ωij)
L−1
i,j=1 and Γ

−1
= (bij)

L−1
i,j=1. The invertibility of the matrix Γ is

checked in Appendix B.
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Then

Γ(γ1,t, ..., γL−1,t)
T

= −
(

K1 + ω10γ0,t−1, ..., K1 + ω(L−1)0γ0,t−(L−1)

)

which is equivalent to

(γ1,t, ..., γL−1,t)
T

= −Γ
−1
(

K1 + ω10γ0,t−1, ..., K1 + ω(L−1)0γ0,t−(L−1)

)

.

We can show that

γi,t = −K1

L−1
∑

u=1

biu −

L−1
∑

u=1

biuωu0γ0,t−u .

The second moment is given by:

γ0,t = E(Xt) +

K
∑

k=1

αkE(λ
2
kt) .

For k = 1, ..., K, we have

λ
2
kt =

(

αk0 +

L
∑

i=1

αkiXt−i +

L
∑

j=1

βkjλk(t−j)

)

λkt

= αk0λkt +

L
∑

i=1

αkiXt−iλkt +

L
∑

j=1

βkjλk(t−j)λkt .

The hypothesis H1 implies that the process {λkt, t ∈ Z} is first-order stationary.

Hence

E(λkt) =
αk0 +

∑L
i=1 αkiµ

1 −
∑L

j=1 βkj

for k = 1, ..., K.

We have

E

(

L
∑

i=1

αkiXt−iλkt

)

=

= E

(

Ck0

L
∑

i=1

αkiXt−i +

L
∑

i=1

αkiXt−i

∞
∑

l=0

L
∑

j1,...,jl+1=1

αkjl+1
βkj1···βkjl

Xt−j1−j2−···−jl+1

)

= E

(

Ck0

L
∑

i=1

αkiXt−i +

∞
∑

l=0

L
∑

j1,...,jl+2=1

αkjl+1
αkjl+2

βkj1···βkjl
Xt−j1−j2−···−jl+1

Xt−jl+2

)

= Ck0µ

L
∑

i=1

αki +

L
∑

i=1

∆
(1)
k,iγ0,t−i +

L−1
∑

v=1

Λ
(1)
kv γv,t

where

∆
(1)
k,i =

∞
∑

l=0

L
∑

jl+2=i
jl+2=j1+ ···+jl+1

αkjl+1
αkjl+2

βkj1···βkjl
,

Λ
(1)
kv =

∞
∑

l=0

L
∑

|jl+2−j1−···−jl+1|=v

αkjl+1
αkjl+2

βkj1···βkjl
.
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Moreover

L
∑

j=1

βkjλk(t−j) =

L
∑

j=1

βkj







Ck0 +

∞
∑

l=0

L
∑

j1,...,jl+1=1

αkjl+1
βkj1···βkjl

Xt−j−j1−j2−···−jl+1







= Ck0

L
∑

j=1

βkj +

∞
∑

l=0

L
∑

j1,...,jl+2=1

αkjl+2
βkj1···βkjl+1

Xt−j1−j2−···−jl+2
.

Hence

L
∑

j=1

βkjλk(t−j)λkt =

=







Ck0

L
∑

j=1

βkj +

∞
∑

l=0

L
∑

j1,...,jl+2=1

αkjl+2
βkj1···βkjl+1

Xt−j1−j2−···−jl+2







×







Ck0 +

∞
∑

l=0

L
∑

j1,...,jl+1=1

αkjl+1
βkj1···βkjl

Xt−j1−j2−···−jl+1







= C
2
k0

L
∑

j=1

βkj + Ck0

L
∑

j=1

βkj

∞
∑

l=0

L
∑

j1,...,jl+1=1

αkjl+1
βkj1···βkjl

Xt−j1−j2−···−jl+1

+ Ck0

∞
∑

l=0

L
∑

j1,...,jl+2=1

αkjl+2
βkj1···βkjl+1

Xt−j1−j2−···−jl+2

+

∞
∑

l=0
l′=0

L
∑

j1,...,jl+2=1
j′1,...,j′

l′+1
=1

αkjl+2
βkj1···βkjl+1

αkj′
l′+1

βkj′1
···βkj′

l′
Xt−j1−j2−···−jl+2

Xt−j′1−j′2−···−j′
l′+1

.

The term E

(

∑L
j=1 βkjλk(t−j)λkt

)

is given by

E

(

L
∑

j=1

βkjλk(t−j)λkt

)

= C
2
k0

L
∑

j=1

βkj + 2Ck0µ

∞
∑

l=0

L
∑

j1,...,jl+2=1

αkjl+2
βkj1···βkjl+1

+

L
∑

i=1

∆
(2)
k,iγ0,t−i +

L−1
∑

v=1

Λ
(2)
kv γv,t

where

∆
(2)
k,i =

∞
∑

l=0
l′=0

L
∑

j1+ ···+jl+2=i
j1+ ···+jl+2=j′1+ ···+j′

l′+1

αkjl+2
βkj1···βkjl+1

αkj′
l′+1

βkj′1
···βkj′

l′

Λ
(2)
kv =

∞
∑

l=0
l′=0

L
∑���j1+ ···+jl+2−j′1−···−j′

l′+1

���=v

αkjl+2
βkj1···βkjl+1

αkj′
l′+1

βkj′1
···βkj′

l′
.



268 M.L. Diop, A. Diop and A.K. Diongue

Let ∆k,i = ∆
(1)
k,i + ∆

(2)
k,i and Λkv = Λ

(1)
kv + Λ

(2)
kv .

For k = 1, ..., K, the expectation of λ
2
kt is given by

E(λ
2
k,t) = Ck +

L
∑

i=1

∆k,iγ0,t−i +

L−1
∑

v=1

Λkvγv,t

with

Ck = αk0E(λkt) + Ck0

L
∑

i=1

αkiµ + C
2
k0

L
∑

j=1

βkj + 2Ck0

∞
∑

l=0

L
∑

j1,...,jl+2=1

αkjl+2
βkj1···βkjl+1

µ .

Then

γ0,t = µ +

K
∑

k=1

αk

(

Ck +

L
∑

i=1

∆k,iγ0,t−i +

L−1
∑

v=1

Λkvγv,t

)

= µ +

K
∑

k=1

αk

[

Ck +

L
∑

u=1

∆k,uγ0,t−u

+

L−1
∑

v=1

Λkv

(

−K1

L−1
∑

u=1

bvu −

L−1
∑

u=1

bvuωu0γ0,t−u

)]

= c0 +

K
∑

k=1

αk

[

L
∑

u=1

∆k,uγ0,t−u −

L−1
∑

u=1

(

L−1
∑

v=1

Λkvbvuωu0

)

γ0,t−u

]

where

c0 = µ +

K
∑

k=1

αkCk − K1

K
∑

k=1

αk

L−1
∑

v=1

Λkv

L−1
∑

u=1

bvu.

Hence

γ0,t = c0 +

K
∑

k=1

αk

[

L−1
∑

u=1

(

∆k,u −

L−1
∑

v=1

Λkvbvuωu0

)

γ0,t−u + ∆k,Lγ0,t−L

]

.(5.1)

Let

cu =

K
∑

k=1

αk

(

∆k,u −

L−1
∑

v=1

Λkvbvuωu0

)

, u = 1, ..., L−1 and cL =

K
∑

k=1

αk∆k,L .

Then the equation (5.1) is equivalent to:

(5.2) γ0,t = c0 +

L
∑

u=1

cuγ0,t−u .

The necessary and sufficient condition for a non-homogeneous difference equation

(5.2) to have a stable solution, which is finite and independent of t, is that all

roots of the equation: 1 − c1Z
−1 − c2Z

−2 − ··· − cLZ
−L

= 0 lie inside the unit

circle.
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APPENDIX B — Invertibility of Γ and positivity of c0

In the following lines, we establish the invertibility of Γ and check the

positivity of c0. The same ideas were already used in the paper by Gonçalves et

al. (2013).

Invertibility of Γ:

We show that the matrix Γ = (ωij)
L−1
i,j=1 is strictly diagonally dominant by

rows. For i = 1, ..., L − 1,

|ωii| −

L−1
∑

u=1
u 6=i

|ωiu| = 1 −

∞
∑

l=0

K
∑

k=1

αkδiikl −

L−1
∑

u=1
u 6=i

∞
∑

l=0

K
∑

k=1

αkδiukl

= 1 −

L−1
∑

u=1

∞
∑

l=0

K
∑

k=1

αkδiukl .

We have

L−1
∑

u=1

∞
∑

l=0

K
∑

k=1

αkδiukl =

L−1
∑

u=1

∞
∑

l=0

K
∑

k=1

αk

∑

|i−j1−···−jl+1|=u

αkjl+1
βkj1···βkjl

≤

L
∑

j1,...,jl+1=1

∞
∑

l=0

K
∑

k=1

αkαkjl+1
βkj1···βkjl

.

Based on the necessary condition for first-order stationarity in equation (2.5), we

have
L
∑

j1,...,jl+1=1

∞
∑

l=0

K
∑

k=1

αkαkjl+1
βkj1···βkjl

< 1 .

Hence, |ωii| −
∑L−1

u=1
u 6=i

|ωiu| > 0. Then Γ is strictly diagonally dominant by rows.

Hence, the matrix Γ is invertible by using the Levy–Desplanques Theorem (see

Horn and Jonhson (2013), pp. 352, 392).

Positivity of c0:

c0 = µ +

K
∑

k=1

αkCk − K1

K
∑

k=1

αk

L−1
∑

v=1

Λkv

L−1
∑

u=1

bvu .

To prove the positivity of c0, it suffices to show that bvu ≤ 0, v = 1, ..., L− 1, u =

1, ..., L − 1. Indeed, it is easily seen that −Γ is strictly diagonally dominant by

rows. In addition, −ωij < 0 for i 6= j and −ωii > 0 for i = 1, ..., L−1. Then −Γ is

a nonsingular M-matrix (see Quarteroni et al. (2000), p. 30, Property 1.20). This

implies that −Γ is inverse-positive that is (−Γ)
−1 ≥ 0. Hence, Γ

−1 ≤ 0, therefore

bvu ≤ 0 for v = 1, ..., L − 1, u = 1, ..., L − 1.
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1. INTRODUCTION

Given a sample of size n of independent, identically distributed random

variables (RVs), Xn := (X1, ..., Xn), with a common cumulative distribution func-

tion (CDF) F , let us denote by X1:n ≤ ··· ≤ Xn:n the associated ascending order

statistics. As usual in a framework of extreme value theory (EVT), let us fur-

ther assume that there exist sequences of real constants {an > 0} and {bn ∈ R}

such that the maximum, linearly normalised, i.e. (Xn:n − bn) /an, converges in

distribution to a non-degenerate RV. Then, the limit distribution is necessarily

of the type of the general extreme value (EV) CDF, given by

(1.1) EVξ(x) =

{

exp(−(1 + ξx)
−1/ξ

), 1 + ξx > 0, if ξ 6= 0,

exp(− exp(−x)), x ∈ R, if ξ = 0.

The CDF F is said to belong to the max-domain of attraction of EVξ, and we

consider the common notation F ∈ DM (EVξ). The parameter ξ is the extreme

value index (EVI), the primary parameter of extreme events.

The EVI measures the heaviness of the survival function or right tail-

function

(1.2) F (x) := 1 − F (x),

and the heavier the right tail, the larger ξ is. Let us further use the notation Ra

for the class of regularly varying functions at infinity, with an index of regular

variation equal to a ∈ R, i.e. positive measurable functions g(·) such that for all

x > 0, g(tx)/g(t) → x
a
, as t→ ∞ (see Bingham et al., 1987, among others, for

details on the theory of regular variation). In this paper we work with Pareto-

type underlying models, i.e. with a positive EVI, a quite common assumption

in many areas of application, like bibliometrics, biostatistics, computer science,

insurance, finance, social sciences and telecommunications, among others. The

right-tail function F , in (1.2), belongs then to R−1/ξ. Indeed, and more generally,

(1.3) F ∈ DM (EVξ>0) =: DM
+

⇐⇒ F ∈ R−1/ξ,

a result due to Gnedenko (1943).

For the class of Pareto-type models in (1.3), the most well-known EVI-

estimators are the Hill (H) estimators (Hill, 1975), which are the averages of the

log-excesses,

Vik := lnXn−i+1:n − lnXn−k:n, 1 ≤ i ≤ k < n.

We can thus define the H-class of EVI-estimators as:

(1.4) H(k) := H(k;Xn) :=
1

k

k
∑

i=1

Vik, 1 ≤ k < n.
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We can further write

H(k) =

k
∑

i=1

ln

(

Xn−i+1:n

Xn−k:n

)1/k

= ln

(

k
∏

i=1

Xn−i+1:n

Xn−k:n

)1/k

, 1 ≤ k < n.

The Hill estimator is thus the logarithm of the geometric mean (or mean of order

0) of

Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n.

Brilhante et al. (2013) considered as basic statistics, the mean of order p (MOP)

of Uik, 1 ≤ i ≤ k, for p ≥ 0. More generally, Gomes and Caeiro (2014) considered

those same statistics for any p ∈ R, i.e. the class of statistics

Mp(k) =



























(

1
k

k
∑

i=1
U

p
ik

)1/p

, if p 6= 0,

(

k
∏

i=1
Uik

)1/k

, if p = 0,

and the following associated class of MOP EVI-estimators:

(1.5) Hp(k) = Hp(k;Xn) ≡ MOP(k) :=











(

1 − M
−p
p (k)

)

/p, if p < 1/ξ,

ln M0(k) = H(k), if p = 0,

with H0(k) ≡ H(k), given in (1.4). This class of MOP EVI-estimators depends

now on this tuning parameter p ∈ R, it is highly flexible, but, as often desired, it is

not location-invariant, depending strongly on possible shifts in the model under-

lying the data. To make the EVI-estimators Hp(k), in (1.5), location-invariant,

it is thus sensible to use the peaks over a random threshold (PORT) technique

now applied to the MOP EVI-estimation. The PORT methodology, introduced

in Araújo Santos et al. (2006) and further studied in Gomes et al. (2008a), is

based on a sample of excesses over a random threshold Xnq :n, nq := ⌊nq⌋ + 1,

where ⌊x⌋ denotes the integer part of x, i.e. it is based on the sample of size

n
(q)

= n− nq, defined by

(1.6) X(q)
n :=

(

Xn:n −Xnq :n, ..., Xnq+1:n −Xnq :n

)

.

After the introduction, in Section 2, of a few technical details in the field

of EVT and a brief reference to the most simple minimum-variance reduced-

bias (MVRB) EVI-estimators, the corrected-Hill (CH) EVI-estimators introduced

and studied in Caeiro et al. (2005), we refer a class of optimal MOP (OMOP)

EVI-estimators recently studied in Brilhante et al. (2014). We further introduce

the new classes of PORT-MOP and PORT-OMOP EVI-estimators. Section 3 is

essentially dedicated to consistency and asymptotic normal behaviour of these

new classes of EVI-estimators, with a brief reference to the known asymptotic
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behaviour of the CH and MOP EVI-estimators. Section 4 is dedicated to the

finite sample properties of the new classes of estimators, comparatively to the

behaviour of the aforementioned MVRB and even PORT-MVRB EVI-estimators,

done through a small-scale simulation study. In Section 5, we refer possible

methods for the adaptive choice of the tuning parameters (k, p, q), either based

on the bootstrap or on heuristic methodologies, and provide some concluding

remarks.

2. PRELIMINARY RESULTS IN THE AREA OF EVT

In the area of EVT and whenever working with large values, i.e. with the

right tail of the model F underlying the available sample, the model F is usu-

ally said to be heavy-tailed whenever (1.3) holds. Moreover, with the notation

F
←

(t) := inf{x : F (x) ≥ t} for the generalised inverse function of F , the condition

F ∈ D
+
M is equivalent to say that the tail quantile function U(t) := F

←
(1 − 1/t)

is of regular variation with index ξ (de Haan, 1984). We thus assume the validity

of any of the following first-order conditions:

(2.1) F ∈ D
+
M ⇐⇒ F ∈ R−1/ξ ⇐⇒ U ∈ Rξ.

The second-order parameter ρ (≤ 0) rules the rate of convergence in the first-order

condition, in (2.1), and can be defined as the non-positive parameter appearing

in the limiting relation

(2.2) lim
t→∞

lnU(tx) − lnU(t) − ξ lnx

A(t)
= ψρ(x) :=







xρ−1
ρ , if ρ < 0,

lnx, if ρ = 0,

which is assumed to hold for every x > 0, and where |A| must then be of regular

variation with index ρ (Geluk and de Haan, 1987). For related details on the

topic, see Beirlant et al. (2004) and de Haan and Ferreira (2006).

Whenever dealing with bias reduction in the field of extremes, it is usual

to consider a slightly more restrict class than D
+
M, the class of models

(2.3) U(t) = C t
ξ
{

1 +A(t)/ρ+ o(t
ρ
)
}

, A(t) = ξβt
ρ
,

as t→ ∞, where C > 0, ξ > 0, ρ < 0 and β 6= 0 (Hall and Welsh, 1985). This

means that the slowly varying function L(t) in U(t) = t
ξ
L(t) is assumed to behave

asymptotically as a constant. To assume (2.3) is equivalent to choose A(t) = ξβt
ρ
,

ρ < 0, in the more general second-order condition in (2.2). Models like the log-

Gamma (ρ = 0) are thus excluded from this class. The standard Pareto (ρ = −∞)

is also excluded. But most heavy-tailed models used in applications, like the EVξ,

in (1.1), the Fréchet, F (x) = exp(−x−1/ξ
), x ≥ 0, both for ξ > 0, and the well-

known Student’s t CDFs, among others, belong to Hall–Welsh class.
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2.1. The CH class of EVI-estimators

Due to its simplicity and just as mentioned above, the most popular EVI-

estimators, consistent only for non-negative values of ξ, are Hill estimators in

(1.4). We further consider the simplest class of CH EVI-estimators, the one

introduced in Caeiro et al. (2005),

(2.4) CH(k) = CH(k;Xn) := H(k)

(

1 −
β̂(n/k)

ρ̂

1 − ρ̂

)

.

The estimators in (2.4) can be second-order MVRB EVI-estimators, for adequate

levels k and an adequate external estimation of the vector of second-order param-

eters, (β, ρ), in (2.3), algorithmically given in Gomes and Pestana (2007), among

others, i.e. the use of CH(k), and an adequate estimation of (β, ρ), enables us to

eliminate the dominant component of the bias of the Hill estimator, H(k), keeping

its asymptotic variance. Like that, and theoretically, CH(k) outperforms H(k)

for all k.

We again suggest the use of the class of β-estimators in Gomes and Martins

(2002) and the simplest class of ρ-estimators in Fraga Alves et al. (2003). In the

simulations, we have considered only models with |ρ| ≤ 1. Indeed, this is the

case where alternatives to the H-class of EVI-estimators are welcome due to the

high bias of H EVI-estimators for moderate up to large values of k, including

the optimal k in the sense of minimal root mean square error (RMSE). In such

cases, we suggest the use of the tuning parameter τ = 0 in the simplest class of

ρ-estimators in Fraga Alves et al. (2003), given by

(2.5) ρ̂τ (k) ≡ ρ̂τ (k;Xn) := min

(

0,
3(R

(τ)
n (k;Xn) − 1)

R
(τ)
n (k;Xn) − 3

)

,

and dependent on the statistics

R
(τ)
n (k;Xn) :=

(

M
(1)
n (k;Xn)

)τ
−
(

M
(2)
n (k;Xn)/2

)τ/2

(

M
(2)
n (k;Xn)/2

)τ/2
−
(

M
(3)
n (k;Xn)/6

)τ/3
, τ ∈ R,

with the usual notation a
bτ

= b ln a if τ = 0, and where

M
(j)
n (k;Xn) :=

1

k

k
∑

i=1

{lnXn−i+1:n − lnXn−k:n}
j
, j = 1, 2, 3.

As already suggested in previous papers, we have here decided for the computa-

tion of ρ̂τ (k) at k = k1, given by k1 = ⌊n1−ǫ⌋, ǫ = 0.001, the threshold used in

Caeiro et al. (2005) and Gomes and Pestana (2007).
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For the estimation of the scale second-order parameter β, in (2.3), and

again on the basis of a sample Xn, we consider

(2.6) β̂ρ̂(k) ≡ β̂ρ̂(k;Xn) :=

(

k

n

)ρ̂
dρ̂(k) D0(k) −Dρ̂(k)

dρ̂(k) Dρ̂(k) −D2ρ̂(k)
,

dependent on the estimator ρ̂ = ρ̂0(k1;Xn), with ρ̂τ (k) defined in (2.5), and

where, for any α ≤ 0,

dα(k) :=
1

k

k
∑

i=1

(

i

k

)−α

and

Dα(k) :=
1

k

k
∑

i=1

(

i

k

)−α

Ui, Ui := i

(

ln
Xn−i+1:n

Xn−i:n

)

,

with Ui, 1 ≤ i ≤ k, the scaled log-spacings associated with Xn. Details on the

distributional behaviour of the estimator in (2.6) can be found in Gomes and

Martins (2002) and more recently in Gomes et al. (2008b) and Caeiro et al. (2009).

Interesting alternative classes of estimators of the ‘shape’ and ‘scale’ second-order

parameters have recently been introduced. References to those classes can be

found in recent overviews on reduced-bias estimation (Chapter 6 of Reiss and

Thomas, 2007; Beirlant et al., 2012; Gomes and Guillou, 2014).

2.2. The OMOP class of EVI-estimators

Working in the class of models in (2.3) for technical simplicity, Brilhante

et al. (2014) noticed that there is an optimal value p ≡ pM = ϕρ/ξ, with

(2.7) ϕρ = 1 − ρ/2 −

√

ρ
2 − 4ρ+ 2

/

2 ∈
(

0, 1 −
√

2/2
)

,

which maximises the asymptotic efficiency of the class of estimators in (1.5).

They then considered the MOP EVI-estimator associated with the optimal p ≡ pM

estimated through p̂M, based on any initial consistent estimator of ξ and ρ, i.e. an

optimal MOP (OMOP) class of EVI-estimators. Here, we estimate the optimal

k-value for the H EVI-estimation, k0|0 := arg mink RMSE
(

H0(k)
)

, computing, as

given in Hall (1982),

k̂0|0 ≡ k̂0|H0
=

(

(1 − ρ̂)n
−ρ̂
/

(

β̂

√

−2ρ̂
)

)2/(1−2ρ̂)
,

the associated observed value of the EVI-estimator H00 := H(k̂0|0), and, with ϕρ

given in (2.7), the OMOP EVI-estimators

(2.8) H
∗
(k) ≡ H

∗
(k;Xn) := Hp̂M

(k;Xn), 1 ≤ k < n, p̂M = ϕρ̂/H00.

Neither the H nor the CH nor the MOP EVI-estimators are invariant for changes

in location, but they can easily be made location-invariant with the technique in-

troduced in Araújo Santos et al. (2006), briefly discribed in the following Section.
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2.3. The PORT methodology

The EVI-estimators in (1.4), (1.5), (2.4) and (2.8) are scale-invariant, but

not location-invariant, as often desired, due to the fact that the EVI itself enjoys

such a property, i.e. it is location and scale invariant. Indeed, note that a general

first-order condition to have F ∈ DM (EVξ), given in de Haan (1984), can be

written as

(2.9) F ∈ DM (EVξ) ⇐⇒ lim
t→∞

U(tx) − U(t)

a(t)
= ψξ(x),

for an adequate function a(·), with an absolute value necessarily in Rξ, and where

ψρ(·) is the Box–Cox function, already defined in (2.2). If a shift s is induced in

data associated with the RV X, i.e. if we consider Y = X + s, the relationship

between the tail quantile functions of Y and X is given by U
Y
(t) = s+ U

X
(t).

Consequently, U
Y
(tx) − U

Y
(t) = U

X
(tx) − U

X
(t) and from (2.9), the EVI, ξ, is

the same for X and Y = X + s, for any shift s ∈ R.

Just as mentioned above, the class of PORT-Hill estimators is based on

the sample of excesses in (1.6). In this article, we shall work with PORT-MOP

and PORT-OMOP EVI-estimators, generally denoted E. They have the same

functional form of the associated EVI-estimators in (1.5) and (2.8) but with the

original sample Xn replaced everywhere by the sample of excesses X
(q)
n , in (1.6).

Consequently, they are given by the functional equations,

(2.10) E
(q)

(k) := E
(

k;X(q)
n

)

, with E ≡ Hp and E ≡ H
∗
.

These estimators are now invariant for both changes of location and scale, and

depend on the extra tuning parameter q, which only influences the asymptotic

bias, making them highly flexible and even able to compare favourably with the

MVRB EVI-estimators in (2.4), for a large variety of underlying models in the

domain of attraction for maxima of the EVξ CDF, in (1.1). In the simulation

procedure, we further include the PORT-MVRB EVI-estimators,

(2.11) CH
(q)

(k) = CH
(

k;X(q)
n

)

,

studied by simulation in Gomes et al. (2011a, 2013), with X
(q)
n and CH

(

k;Xn

)

respectively given in (1.6) and (2.4).
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3. ASYMPTOTIC BEHAVIOUR OF EVI-ESTIMATORS

Consistency of the Hill EVI-estimators, H ≡ H0, written both in (1.4) and

(1.5), is achieved in the whole D
+
M whenever we work with intermediate values

of k, i.e.

(3.1) k = kn → ∞, 1 ≤ k < n, and kn = o(n), as n→ ∞.

3.1. Asymptotic normal behaviour of MOP and OMOP EVI-estimators

Let us consider the notation N (µ, σ
2
) for a normal RV with mean value

µ and variance σ
2
. Under the aforementioned second-order framework, in (2.2),

and as a generalization of the results in de Haan and Peng (1998), Brilhante et

al. (2013) derived, for the MOP EVI-estimators in (1.5) and 0 ≤ p ≤ 1/(2ξ), the

asymptotic distributional representation,

√
k

(

Hp(k) − ξ

)

d
= N

(

0,
ξ2(1−pξ)2

1−2pξ

)

+
(1 − pξ)

√
kA(n/k)

1 − ρ− pξ

(

1 + op(1)
)

,

more generally valid for p ∈ R (Gomes and Caeiro, 2014). For the OMOP EVI-

estimators, in (2.8), Brilhante et al. (2014) got the obvious validity of a similar

asymptotic distributional representation, but with pξ replaced by ϕρ, in (2.7),

i.e.

√
k

(

H
∗
(k) − ξ

)

d
= N

(

0,
ξ2(1−ϕρ)2

1−2ϕρ

)

+
(1 − ϕρ)

√
kA(n/k)

1 − ϕρ − ρ

(

1 + op(1)
)

.

The asymptotic variance increases when p moves away from p = 0, but the bias

decreases and, at optimal levels in the sense of minimal RMSE, the OMOP EVI-

estimators outperform the H EVI-estimators.

Under the same conditions as before, but with CH(k) given in (2.4) and

assuming that (2.3) holds, an adequate estimation of the second-order parameters,

(β, ρ), enables to guarantee that
√
k

(

CH(k) − ξ

)

can be asymptotically normal

with variance also equal to ξ
2

but with a null mean value. Indeed, from the

results in Caeiro et al. (2005), we know that it is possible to get

√
k

(

CH(k) − ξ

)

d
= N

(

0, ξ
2
)

+ op

(√
kA(n/k)

)

.

On the basis of the results in the aforementioned papers, and generally

denoting by E(k) any of the EVI-estimators in (1.5) and (2.8), we can state the

following theorem.
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Theorem 3.1. (de Haan and Peng, 1998; Caeiro et al., 2005; Brilhante et

al., 2013, 2014). Under the validity of the first-order condition, in (2.1), and for

intermediate sequences k = kn, i.e. if (3.1) holds, the classes of EVI-estimators

Hp(k), in (1.5), for p < 1/ξ, and the EVI-estimators in (2.4) and (2.8) are con-

sistent for the estimation of ξ. If we assume the validity of the second-order

condition in (2.2) and additionally assume that we are working with values of

k such that λ
A

:= limn→∞

√
k A(n/k) is finite, we can then guarantee that for

p < 1/(2ξ) whenever dealing with Hp(k),

√
k (E(k) − ξ)

d
−→
n→∞

N
(

λ
A
b•, σ

2
•

)

,

where

bHp
=

1 − pξ

1 − ρ− pξ

, b
H∗ =

1 − ϕρ

1 − ρ− ϕρ
,

σ
2
Hp

=
ξ
2
(1 − pξ)

2

1 − 2pξ
, σ

2
H∗ =

ξ
2
(1 − ϕρ)

2

1 − 2ϕρ
.

If we further assume to be working in Hall–Welsh class of models in (2.3), and

estimate β and ρ consistently through β̂ and ρ̂, with ρ̂− ρ = op(1/ lnn), we get

the aforementioned normal behaviour also for E = CH, in (2.4), but now with

bCH = 0 and σ
2
CH

= σ
2
H

= ξ
2.

Remark 3.1. Note again that σ
2
H
< σ

2
Hp

for all ξ > 0 and 0 6= p < 1/ξ.

The other way round, bH ≥ bHp
for all ξ. And as can be seen in Brilhante et

al. (2013; 2014), at the optimal p, Hp(k) can asymptotically outperform H(k) at

optimal levels in the sense of minimal RMSE, in the whole (ξ, ρ)-plane. As far as

we know, such a property is so far achieved only by this class of EVI-estimators.

See also Paulauskas and Vaiciulis (2013).

3.2. Asymptotic behaviour of PORT-MOP EVI-estimators

Note first that if there is a possible shift s in the model, i.e. if the CDF

F (x) ≡ Fs(x) = F (x; s) depends on (x, s) through the difference x− s, the pa-

rameter ξ does not change, as mentioned above in Section 2.3, but the parameter

ρ, as well as the A-function, in (2.2), depend on such a shift s, i.e. ρ = ρs, A = As,

and

(As(t), ρs) :=























(

− ξs/U0(t),−ξ
)

, if ξ + ρ0 < 0 ∧ s 6= 0,

(

A0(t) − ξs/U0(t), ρ0

)

, if ξ + ρ0 = 0 ∧ s 6= 0,

(

A0(t), ρ0

)

, otherwise.
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Further details on the influence of such a shift in
(

β, ρ,A(·)
)

and on the estima-

tion of ‘shape’ and ‘scale’ second-order parameters can be found in Henriques-

Rodrigues et al. (2014, 2015).

To study the asymptotic properties of the PORT-MOP (and PORT-OMOP)

EVI-estimators for p 6= 0, it is convenient to study first the behaviour of the statis-

tics,

(3.2) Wp(k; q) :=
1

k

k
∑

i=1

(

Xn−i+1:n −Xnq :n

Xn−k:n −Xnq :n

)p

, p 6= 0,

for X = X0 ⌢ F0. Indeed,

(3.3) Hp

(

k;X(q)
n

)

=
1 −W

−1
p (k; q)

p

if p 6= 0.

Remark 3.2. Note that with

Qr(k; q) =
1

k

k
∑

i=1

(

i

k

)r
Xn−i+1:n −Xnq :n

Xn−k:n −Xnq :n
,

the statistics studied in Caeiro et al. (2014), we get, with Wp(k; q) given in (3.2),

W1(k; q) = Q0(k; q).

Remark 3.3. It is also worth noting that, as already detected in Fraga

Alves et al. (2009), for invariant versions of the mixed moment, and in Caeiro

et al. (2014), for invariant versions of the Pareto probability weighted moment

EVI-estimators, due to the fact that

X⌊nq⌋+1:n − U0(1/(1 − q)) = Op

(

1/
√
n

)

,

Xnq :n can be replaced by the q-quantile

(3.4) χq := U0(1/(1 − q)).

The asymptotic behaviour of the statistics Wp(k; q), in (3.2), comes then

straightforwardly from the behaviour of the non-shifted statistics, as stated in

the following proposition.

Theorem 3.2. Under the second order framework in (2.2), and for in-

termediate k, i.e. whenever (3.1) holds, we can guarantee, under general broad

conditions, the asymptotic normality of Wp(k; q), in (3.2). Indeed, we can write,

for pξ < 1/2,

(3.5) Wp(k; q)
d
=

1

1 − pξ

+
σp(ξ)N (0, 1)

√
k

+
pA0(n/k)(1 + op(1))

(1 − pξ)(1 − pξ − ρ0)

+
pξχq(1 + op(1))

(1 − pξ)(1 − (p− 1)ξ)U0(n/k)
,
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where

(3.6) σ
2
p(ξ) :=

(pξ)
2

(1 − pξ)2(1 − 2pξ)
.

Proof: It is well-known that U0(Xi:n)
d
= Yi:n, where Y is a standard unit

Pareto RV, with CDF FY (y) = 1 − 1/y, y > 1. Moreover, Yn−i+1:n/Yn−k:n
d
=

Yk−i+1:k, 1 ≤ i ≤ k. Under the second order framework in (2.2), and thinking

on the fact that we are now working with s = 0 due to the location invariance

property of the statistics in (3.2), we can write

Xn−i+1:n

Xn−k:n

d
=

U0

(Yn−i+1:n

Yn−k:n
Yn−k:n

)

U0(Yn−k:n)

d
= Y

ξ
k−i+1:k

(

1 +
Y ρ

k−i+1:k−1

ρ A0(Yn−k:n)(1 + op(1))

)

.

Next, with the notation χq = U0(1/(1 − q)), already introduced in (3.4),

Xn−i+1:n − χq

Xn−k:n − χq
=
Xn−i+1:n

Xn−k:n

(

1 − χq/Xn−i+1:n

1 − χq/Xn−k:n

)

=
Xn−i+1:n

Xn−k:n

(

1 +
χq

Xn−k:n

(

1 −
Xn−k:n

Xn−i+1:n

)

(1 + op(1))

)

.

Consequently,

Wp(k; q) :=
1

k

k
∑

i=1

(

Xn−i+1:n −Xnq :n

Xn−k:n −Xnq :n

)p

=
1

k

k
∑

i=1

(

Xn−i+1:n

Xn−k:n

(

1 +
χq

Xn−k:n

(

1 −
Xn−k:n

Xn−i+1:n

)

(1 + op(1))

))p

,

and we can write

Wp(k; q)
d
=

1

k

k
∑

i=1

Y
pξ
i:k +

pξχq

U0(n/k)

1

k

k
∑

i=1

Y
pξ
i:k

Y
−ξ
i:k − 1

−ξ
(1 + op(1))

+
p

k

k
∑

i=1

Y
pξ
i:k

Y
ρ
i:k − 1

ρ

A0(n/k)(1 + op(1)).

Since, for pξ < 1

1

k

k
∑

i=1

Y
pξ
i:k

P
−→

1

1 − pξ

and if we further assume that ρ < 0,

1

k

k
∑

i=1

Y
pξ
i:k

(

Y
ρ
i:k − 1

ρ

)

P
−→

1

(1 − pξ)(1 − pξ − ρ)
,

equation (3.5) follows. Moreover, σ
2
p(ξ), given in (3.6), is merely the variance of

∑k
i=1 Y

pξ
i:k/k =

∑k
i=1 Y

pξ
i /k.
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We next state the main theoretical result in this article, related to the shift

invariant versions of the EVI-estimators in (1.5) and (2.8), i.e. the shift-invariant

EVI-estimators, generally denoted E
(q)

(k) in (2.10). Again, the asymptotic vari-

ance is kept at the same level of the unshifted EVI-estimators, but the dominant

component of bias changes only in a few cases.

Theorem 3.3. Under the second order framework in (2.2), with pξ < 1/2,

and for intermediate k, i.e. if (3.1) holds, the asymptotic bias of the PORT-MOP

and PORT-OMOP EVI-estimators, in (2.10), is going to be ruled by

B(t) =























ξχq/U0(t), if ξ + ρ0 < 0 ∧ χq 6= 0,

A0(t) + ξχq/U0(t), if ξ + ρ0 = 0 ∧ χq 6= 0,

A0(t), otherwise,

with χq defined in (3.4). If we assume that
√
k A0(n/k) → λ

A
and/or

√
k/U0(n/k)

→ λ
U
, finite, as n→ ∞, and with E denoting either Hp or H

∗, as given in (2.10),

√
k

(

E
(q)

(k) − ξ

)

d
−→
n→∞

N
(

b
E|q, σ

2
E

)

,

where

b
E|q =































ξ(1−pξ)χq

1−(p−1)ξ λU
, if ξ + ρ0 < 0 ∧ χq 6= 0,

1−pξ
1−(p−1)ξ λA

+
ξ(1−pξ)χq

1−(p−1)ξ λU
, if ξ + ρ0 = 0 ∧ χq 6= 0,

1−pξ
1−pξ−ρ0

λ
A
, otherwise.

Proof: For p 6= 0, (3.3) and the use of Taylor’s expansion (1 + x)
−1

=

1 − x+ o(x), as x→ 0, enables us to get

H
(q)
p (k)

d
= ξ +

σp(ξ)(1 − pξ)
2N (0, 1)(1 + op(1))

|p|
√
k

+
(1 − pξ)A0(n/k)(1 + op(1))

(1 − pξ − ρ0)
+
ξ(1 − pξ)χq(1 + op(1))

(1 − (p− 1)ξ)U0(n/k)
.

Consequently, the result in the theorem follows.



286 M.I. Gomes, L. Henriques-Rodrigues and B.G. Manjunath

4. FINITE SAMPLE PROPERTIES OF THE EVI-ESTIMATORS

We have implemented multi-sample Monte-Carlo simulation experiments of

size 5000 × 20, i.e. 20 independent replicates with 5000 runs each, for the classes

of MOP and PORT-MOP EVI-estimators associated with p = pℓ = 2ℓ/(5ξ), ℓ =

0, 1, 2, and also for the OMOP and PORT-OMOP EVI-estimators. The values

q = 0 and q = 0.25 were considered. We further proceeded to the comparison with

the MVRB and the PORT MVRB EVI-estimators, for the same values of q as

mentioned above. Sample sizes from n = 100 until n = 5000 were simulated from

a set of underlying models that include the ones shown here as an illustration, the

EV model, with CDF F (x) = EVξ(x), with EVξ(x) given in (1.1), ξ = 0.1, 0.25,

and the Student-tν , with ν = 4, 2 degrees-of-freedom (ξ = 1/ν = 0.25, 0.5). For

details on multi-sample simulation, see Gomes and Oliveira (2001), among others.

For the EV parents, results are presented essentially for q = 0, the value of q

associated with the best performance of the PORT methodology for these models.

For Student parents we consider q = 0.25. This is due to the fact that for the

Student model the left endpoint is infinite and we cannot thus consider q = 0 (see

Araújo Santos et al., 2006, and Gomes et al., 2008a, for further details related to

the topic).

Remark 4.1. Note that, as already stated in the aforementioned articles

dealing with a PORT framework, if there are only positive observed values in

the sample, we gain nothing with the use of the PORT methodology. The other

way round, if there are negative elements in the sample, as happens with EV and

Student models and, in practice, with log-returns in financial data, among other

types of data, the gain is quite high, as we shall see in the following. This is the

main reason for the choice of the aforementioned parents.

4.1. Mean values and mean square error patterns as k-functionals

For each value of n and for each of the above-mentioned models, we have

first simulated the mean value (E) and the RMSE of the estimators under con-

sideration, as functions of the number of top order statistics k involved in the

estimation. Apart from the MOP, Hp, in (1.5), p = 0
(

H0 ≡ H
)

and p = pℓ =

2ℓ/(5ξ), ℓ = 1 (for which asymptotic normality holds), and ℓ = 2 (where only con-

sistency was proved), the OMOP (H
∗
), in (2.8), and the MVRB (CH) EVI-

estimators, in (2.4), we have also included their PORT versions, respectively

given in (2.10) and (2.11), for the above mentioned values of q.

The results are illustrated in Figure 1, for an EVξ underlying parent, with

ξ = 0.25 and q = 0. In this case, and for all k, there is a clear reduction in
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RMSE, as well as in bias, with the obtention of estimates closer to the target

value ξ, particularly when we consider Hp2 and the associated PORT-version.

However, at optimal levels, even the PORT-H
∗

and PORT-Hp1 versions beat the

MVRB EVI-estimators. Indeed, the PORT-Hp1 can even beat the PORT-MVRB

EVI-estimators, as happens in this illustration.
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Figure 1: Mean values (left) and root mean square errors (right) of H,

H
∗
(OMOP), CH, and Hp, p = pℓ = 2ℓ/(5ξ), ℓ = 1, 2 (MOP),

together with their PORT versions, associated with q = 0 and

generally denoted •|0, for EV0.25 underlying parents and sam-

ple size n = 1000.

Similar patterns have been obtained for all other simulated models, with

the PORT-MVRB outperforming the PORT-MOP only in a few cases and for

large sample sizes n.

4.2. Mean values and relative efficiency indicators at optimal levels

Table 1 is also related to the EVξ model, with ξ = 0.25. We there present,

for different sample sizes n, the simulated mean values at optimal levels (levels

where RMSEs are minima as functions of k) of the EVI-estimators under consid-

eration in this study. Information on standard errors, computed on the basis of

the 20 replicates with 5000 runs each, are available from the authors, upon re-

quest. Among the estimators considered, and distinguishing 3 regions, a first one

with (H, CH, H
∗
, Hp1), a second one with the associated PORT versions, (H|0,

CH|0, H
∗|0, Hp1 |0), and a third one with (Hp2 , Hp2 |0), for which an asymptotic

normal behaviour is not available, the one providing the smallest squared bias

is underlined and written in bold whenever there is an out-performance of the

behaviour achieved in the previous region.
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Table 1: Simulated mean values of the semi-parametric EVI-estimators

under consideration, at their simulated optimal levels for under-

lying EV0.25 parents.

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

H 0.4202 0.3915 0.3646 0.3482 0.3348 0.3212
CH 0.3816 0.3716 0.3533 0.3416 0.3295 0.3174
H∗ 0.3398 0.3351 0.3303 0.3226 0.3167 0.3082
Hp1

0.3059 0.3077 0.3034 0.3013 0.2998 0.2940

H|0 0.3663 0.3464 0.3261 0.3154 0.3053 0.2957
CH|0 0.3510 0.3369 0.3210 0.3114 0.3033 0.2945
H∗|0 0.3292 0.3208 0.3106 0.3046 0.2980 0.2904
Hp1

|0 0.3052 0.3001 0.2963 0.2928 0.2895 0.2848

Hp2
0.2723 0.2698 0.2669 0.2651 0.2638 0.2620

Hp2
|0 0.2669 0.2650 0.2625 0.2614 0.2603 0.2590

We have further computed the Hill estimator, given in (1.5) when p = 0,

at the simulated value of k0|0 = arg mink RMSE
(

H0(k)
)

, the simulated optimal

k in the sense of minimum RMSE, not relevant in practice, but providing an

indication of the best possible performance of Hill’s estimator. Such an estimator

is denoted by ˜H00. For any of the estimators under study, generally denoted E(k),

we have also computed E0, the estimator E(k) computed at the simulated value

of k0|E := arg mink RMSE
(

E(k)
)

. The simulated indicators are

(4.1) REFFE|0 :=

RMSE

(

˜H00

)

RMSE (E0)
.

Remark 4.2. Note that, as usual, an indicator higher than one means

a better performance than the Hill estimator. Consequently, the higher these

indicators are, the better the associated EVI-estimators perform, comparatively

to ˜H00.

Table 2: Simulated values of RMSE0 (first row) and of REFF•|0

indicators, for underlying EV0.25 parents.

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

RMSE0 0.246 0.200 0.157 0.133 0.113 0.092

CH 1.3256 1.2374 1.1711 1.1304 1.1008 1.0716
H∗ 1.4391 1.3384 1.2491 1.2021 1.1653 1.1333
Hp1

1.9307 1.7443 1.5646 1.4633 1.3785 1.2999

H|0 1.4875 1.4991 1.5169 1.5309 1.5405 1.5542
CH|0 1.9212 1.8505 1.7790 1.7366 1.6958 1.6633
H∗|0 1.8966 1.8156 1.7511 1.7217 1.6995 1.6868
Hp1

|0 2.3988 2.2171 2.0478 1.9564 1.8828 1.8230

Hp2
6.4033 5.6755 4.9396 4.4849 4.0943 3.6784

Hp2
|0 7.5643 6.7594 5.9369 5.4315 4.9769 4.4991
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Again as an illustration of the results obtained, we present Table 2. In the

first row, we provide RMSE0, the RMSE of ˜H00, so that we can easily recover the

RMSE of all other estimators. The following rows provide the REFF-indicators

for the different EVI-estimators under study. A similar mark (underlined and

bold) is used for the highest REFF indicator, again considering the aforemen-

tioned three regions.

For a better visualization of the results presented in Table 1 and Table 2, we

further present Figure 2. Due to the high REFF-indicators of Hp2 and associated

PORT estimators, we present them in a different scale, at the top of Figure 2,

right, the one related to the REFF-indicators.
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Figure 2: Mean values (left) and REFF-indicators (right) at optimal

levels of the different estimators under study, for an under-

lying EV0.25 parent and sample sizes n = 100(100)500 and

500(500)5000.

Tables 3–4, 5–6 and 7–8 are similar to Tables 1–2, respectively for EV0.1,

Student-t4 and Student-t2 underlying parents.

Table 3: Simulated mean values of the semi-parametric EVI-estimators

under consideration, at their simulated optimal levels for under-

lying EV0.1 parents.

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

H 0.2918 0.2644 0.2403 0.2225 0.2089 0.1952
CH 0.2714 0.2544 0.2341 0.2214 0.2076 0.1946
H∗ 0.1895 0.1745 0.1605 0.1516 0.1442 0.1464
Hp1

0.1601 0.1496 0.1396 0.1330 0.1274 0.1315

H|0 0.2404 0.2191 0.2009 0.1895 0.1801 0.1688
CH|0 0.2346 0.2176 0.1989 0.1887 0.1793 0.1689
H∗|0 0.1611 0.1499 0.1435 0.1441 0.1458 0.14440
Hp1

|0 0.1400 0.1317 0.1278 0.1290 0.1271 0.1291

Hp2
0.1159 0.1149 0.1133 0.1127 0.1114 0.1105

Hp2
|0 0.1131 0.1124 0.1110 0.1104 0.1098 0.1090
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Table 4: Simulated values of RMSE0 (first row) and of REFF•|0

indicators, for underlying EV0.1 parents.

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

RMSE0 0.2524 0.2109 0.1732 0.1511 0.1329 0.1136

CH 1.1778 1.1141 1.0684 1.0450 1.0293 1.0186
H∗ 2.0954 1.9436 1.7846 1.6708 1.5618 1.4483
Hp1

3.0221 2.7527 2.4758 2.2837 2.1044 1.9174

H|0 1.4292 1.4185 1.4153 1.4093 1.4006 1.3967
CH|0 1.5680 1.5140 1.4760 1.4509 1.4290 1.4134
H∗|0 2.5865 2.3621 2.1291 1.9935 1.8775 1.7709
Hp1

|0 3.5906 3.2188 2.8408 2.6229 2.4277 2.2369

Hp2
12.1731 10.5862 9.1739 8.3307 7.6068 6.8415

Hp2
|0 13.3178 11.6827 10.1972 9.2846 8.5188 7.6951

Table 5: Simulated mean values of the semi-parametric EVI-estimators

under consideration, at their simulated optimal levels for under-

lying Student-t4 parents (ξ = 0.25).

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

H 0.3607 0.3392 0.3167 0.3055 0.2959 0.2862
CH 0.3109 0.3104 0.3005 0.2939 0.2879 0.2805
H∗ 0.3236 0.3135 0.3028 0.2959 0.2891 0.2818
Hp1

0.2964 0.2914 0.2881 0.2844 0.2810 0.2765

H|0.25 0.3078 0.2935 0.2806 0.2728 0.2672 0.2613
CH|0.25 0.2869 0.2783 0.2686 0.2641 0.2599 0.2561

H∗|0.25 0.2923 0.2861 0.2764 0.2699 0.2658 0.2607
Hp1

|0.25 0.2797 0.2762 0.2709 0.2671 0.2640 0.2599

Hp2
0.2662 0.2646 0.2616 0.2604 0.2589 0.2575

Hp2
|0.25 0.2613 0.2591 0.2570 0.2558 0.2550 0.2539

Table 6: Simulated values of RMSE0 (first row) and of REFF•|0

indicators, for underlying Student-t4 parents.

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

RMSE0 0.1830 0.1431 0.1059 0.0854 0.0696 0.0535

CH 1.4349 1.3982 1.3615 1.3223 1.2834 1.2358

H∗ 1.2984 1.2280 1.1625 1.1297 1.1046 1.0822
Hp1

1.7501 1.5845 1.4200 1.3285 1.2554 1.1819

H|0.25 1.6242 1.6823 1.7745 1.8702 1.9850 2.1777
CH|0.25 2.4005 2.5115 2.7219 2.8846 3.1153 3.5054

H∗|0.25 1.9459 1.9360 1.9712 2.0386 2.1329 2.3108
Hp1

|0.25 2.4223 2.3048 2.2245 2.2166 2.2410 2.3346

Hp2
5.3556 4.7308 4.0399 3.5993 3.2243 2.7827

Hp2
|0.25 6.6674 6.0186 5.2884 4.8145 4.3920 3.8883
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Table 7: Simulated mean values of the semi-parametric EVI-estimators

under consideration, at their simulated optimal levels for under-

lying Student-t2 parents (ξ = 0.5).

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

H 0.6015 0.5769 0.5560 0.5439 0.5355 0.5257
CH 0.4644 0.5059 0.5117 0.5073 0.5041 0.5019

H∗ 0.5823 0.5671 0.5510 0.5404 0.5324 0.5233
Hp1

0.5553 0.5486 0.5393 0.5325 0.5261 0.5182

H|0.25 0.5203 0.5139 0.5063 0.5037 0.5020 0.5009
CH|0.25 0.4885 0.4940 0.4974 0.4988 0.4995 0.4997

H∗|0.25 0.5194 0.5142 0.5070 0.5035 0.5018 0.5009
Hp1

|0.25 0.5186 0.5130 0.5078 0.5048 0.5023 0.5011

Hp2
0.5206 0.5168 0.5137 0.5111 0.5086 0.5053

Hp2
|0.25 0.5120 0.5096 0.5072 0.5051 0.5036 0.5018

Table 8: Simulated values of RMSE0 (first row) and of REFF•|0

indicators, for underlying Student-t2 parents.

n = 100 n = 200 n = 500 n = 1000 n = 2000 n = 5000

RMSE0 0.2028 0.1528 0.1078 0.0835 0.0652 0.0470

CH 0.9803 1.4180 1.7059 1.9437 2.2267 2.6414

H∗ 1.1363 1.1047 1.0811 1.0695 1.0666 1.0644
Hp1

1.4333 1.3224 1.2344 1.1957 1.1841 1.1844

H|0.25 1.8476 1.9699 2.2126 2.4120 2.6709 3.0481
CH|0.25 2.4870 2.6495 2.9310 3.1988 3.5307 4.0413

H∗|0.25 1.9814 2.0820 2.3071 2.5030 2.7652 3.1490
Hp1

|0.25 2.2140 2.2306 2.3726 2.5269 2.7644 3.1234

Hp2
3.7572 3.2811 2.7464 2.4304 2.2496 2.1766

Hp2
|0.25 4.5942 4.1347 3.6354 3.3598 3.2719 3.3502

Remark 4.3. As intuitively expected, Hp|• are decreasing in p, approach-

ing the true value of ξ, or all simulated models.

Remark 4.4. For adequate values of q and p, the PORT-MOP EVI-

estimators are able to outperform the MVRB and even the PORT-MVRB, in

some cases.
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5. AN ADAPTIVE CHOICE OF (k, p, q) AND CONCLUDING

REMARKS

Apart from heuristic choices based on sample path stability, similar to the

ones in Neves et al. (2015), we suggest the use of the double-bootstrap method-

ology, briefly described in the following Section.

5.1. Bootstrap adaptive PORT-MOP EVI-estimation

A reasonably sophisticated and time-consuming algorithm, that has proved

to work properly in many situations, is the double-bootstrap algorithm. The

basic framework for such algorithm is related to the fact that for any class of

EVI-estimators, generally denoted E(k),

(5.1) k0|E(n) = arg min
k

RMSE
(

E(k)
)

= kA|E(n)
(

1 + o(1)
)

,

with kA|E(n) := arg mink ARMSE
(

E(k)
)

and ARMSE standing for asymptotic

root mean square error. The bootstrap methodology can then enable us to consis-

tently estimate the optimal sample fraction, k0|E(n)/n, with k0|E(n) given in (5.1),

on the basis of a consistent estimator of kA|E(n), in a way similar to the one used

in Draisma et al. (1999), Danielson et al. (2001) and Gomes and Oliveira (2001),

for the classical adaptive Hill EVI-estimation, performed through H(k) ≡ H0(k),

in (1.4), in Brilhante et al. (2013), for the MOP EVI-estimation through Hp(k),

in (1.5), in Gomes et al. (2011b, 2012), for second-order reduced-bias estimation,

and in Gomes et al. (2015) for the CH and PORT-CH EVI-estimation.

The bootstrap methodology is applied to sub-samples of size m1 = o(n)

and m2 = m
2
1/n, is practically independent on m1 for an adequate PORT EVI-

estimation and it is essentially based on the relationship between the optimal

sample fraction of the EVI-estimator under consideration, and the one of the

auxiliary statistics

Tk,n ≡ T (k|E) := E([k/2]) − E(k), k = 2, ..., n− 1,

which converge in probability to the known value zero, for any intermediate k, and

have an asymptotic behaviour strongly related with the asymptotic behaviour of

E(k). For details, see Gomes et al. (2015), where an algorithm for the optimal

choice of (k, q) is provided for the PORT-MVRB EVI-estimators, in (2.11). In-

deed, for the adaptive choice of (k, p, q) based on minimal bootstrap RMSE, an

algorithm of the type of the one in Gomes et al. (2015) can be conceived with the

inclusion of the MOP and PORT-MOP together with the Hill, the PORT-Hill,

the MVRB and the PORT-MVRB. This is however a topic out of the scope of

this article.
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5.2. Overall comments

A few concluding remarks:

• For both mean values and RMSEs at optimal levels, and for all simulated

models, if we restrict ourselves to the region of values of p where we can

guarantee asymptotic normality, i.e. p < 1/(2ξ), the best results were

obtained for the value of p closer to 1/(2ξ), i.e. p = 2/(5ξ). The OMOP

is not at all competitive with the MOP, regarding both bias and MSE.

• For the simulated models, the MOP can clearly beat the MVRB, be-

ing beaten by the MVRB only for Student-t2 parents. A similar com-

ment applies to the behaviour of the PORT-MOP comparatively to the

PORT-MVRB EVI-estimators.

• The improvement achieved with the use of the PORT-MOP EVI-estima-

tion can be highly significant, as illustrated. Indeed, the PORT-MOP

can, for an adequate (p, q) beat the MVRB EVI-estimators for all k,

being often able to beat the optimal PORT-MVRB. This is surely due

to the small increase in the variance and the high reduction of bias of

the PORT-MOP comparatively with the PORT-MVRB, a topic not yet

investigated, due to the deep involvement of a third-order framework.
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1. INTRODUCTION

The paper concerns the invariant problem of sequentially estimating a com-

mon location parameter of two independent populations from the same distribu-

tion with an unknown location parameter and known but different scale param-

eters, in the special case when the observations arrive at random times. For

example, in studying the effectiveness of experimental safety devices of mobile

constructions relevant data may become available only as a result of accidents.

Medical data (such as data on drug abuse or an asymptomatic disease) can some-

times only be obtained when patients voluntarily seek help or are somehow other-

wise identified and examined, at random times. Other examples are data resulting

from an undersea survey of containerized radioactive waste, from archeological

discoveries, from market research or from planning the assortment of production

(when the orders come forward at random times).

The estimation problem of a common location of two independent popu-

lations has been extensively discussed in the literature. Rao and Reddy (1988)

studied the estimation of the unknown common location parameter of two sym-

metric distributions with different scale parameters. They derived asymptotic

distributions and the asymptotic relative efficiencies of proposed estimators: the

mean, the median, the average of the mean and the median and the Hodges–

Lehmann estimator. Baklizi (2004) considered estimation of the common location

parameter of several exponentials. It is found that the proposed estimators are

effective in taking advantage of the available prior information. Farsipour and

Asgharzadeh (2002) investigated the problem of estimating the common mean of

two normal distributions. They derived a class of risk unbiased estimators which

linearly combines the means of the two samples from both distributions. Mitra

and Sinha (2007) studied some aspects of the problem of estimation of a com-

mon mean of two normal populations from an asymptotic point of view. They

also considered the Bayes estimate of the common mean under Jeffrey’s prior.

Chang et al. (2012) considered the problem of estimating the common mean of

two normal distributions with unknown ordered variances. They gave a broad

class of estimators which includes the estimators proposed by Nair (1982) and

Elfessi et al. (1992) and showed that the estimators stochastically dominate the

estimators which do not take into account the order restriction on variances, in-

cluding the one given by Graybill and Deal (1959). Then they proposed a broad

class of individual estimators of two ordered means when unknown variances are

ordered.

The problem of estimating with delayed observations was investigated by

Starr et al. (1976), who considered the case of Bayes estimation of a mean of

normally distributed observations with known variance. Some of their results

were generalized by Magiera (1996). He dealt with estimation of the mean value
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parameter of the exponential family of distributions. Jokiel-Rokita and St
֒
epień

(2009) studied the model with delayed observations for estimating a location

parameter.

We consider the following model. Let the samples (X1, ..., Xn1) and

(Y1, ..., Yn2) be independent and have a joint distribution Pθ with a Lebesgue

p.d.f.

f

(

x1 − θ

σ1
, ...,

xn1 − θ

σ1

)

,

and

f

(

y1 − θ

σ2
, ...,

yn2 − θ

σ2

)

,

respectively, where f is known, σ1, σ2 > 0 are known and different scale param-

eters, and θ ∈ R is an unknown location parameter.

The set of observations is bounded, i.e., the statistician can receive at most

N = n1 + n2 observations. It is assumed that Xi is observed at time ti, i =

1, ..., n1, where t1, ..., tn1 are the values of the order statistics of positive i.i.d.

random variables U1, ..., Un1 which are obtained before the conducted observations

X1, ..., Xn1 and independent of X1, ..., Xn1 . Similarly: Yi is observed at time si,

i = 1, ..., n2, where s1, ..., sn2 are the values of the order statistics of positive i.i.d.

random variables V1, ..., Vn2 which are obtained before the conducted observations

Y1, ..., Yn2 and independent of Y1, ..., Yn2 . Furthermore, it is assumed that the

samples (U1, ..., Un1) and (V1, ..., Vn2) are independent.

Let

k1(t) =

n1
∑

i=1

1[0,t](Ui)(1.1)

and

k2(t) =

n2
∑

i=1

1[0,t](Vi)(1.2)

denote the number of observations which have been made by time t ≥ 0 for the

sample (X1, ..., Xn1) and (Y1, ..., Yn2), respectively, and let F1,t = σ

{

k1(r), r ≤ t,

X1, ..., Xk1(t)

}

and F2,t = σ

{

k2(r), r ≤ t, Y1, ..., Yk2(t)

}

be the informations which

is available at time t.

The problem is to estimate the parameter θ. If observation is stopped at

time t, the loss incurred is defined by

Lt(θ, d) := L(θ, d) + cAk1(t) + cBk2(t) + c1(t) + c2(t),(1.3)
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where L(θ, d) denotes the loss associated with estimation, when θ is the true

value of the parameter and d is the chosen estimate. The functions c1(t) and

c2(t) represents the cost of observing the processes up to time t (k1(t) and k2(t),

respectively). It is supposed to be a differentiable and increasing convex functions

such that c1(0) = 0 and c2(0) = 0. The constants cA ≥ 0 and cB ≥ 0 are the cost

of taking one observation Xi and Yi, respectively.

The family {Pθ : θ ∈ R} is invariant under the location transformations

x 7→ x + α (y 7→ y + α) with α ∈ R. Consequently, the decision problem is invari-

ant under location transformations if and only if L(θ, a) = L(θ + α, a + α) for all

α ∈ R, which is equivalent to

L(θ, a) = δ(a − θ)(1.4)

for a Borel function δ(·) on R. An estimator d of the parameter θ is location

equivariant if and only if

d(X1 + α, ..., Xn1 + α, Y1 + α, ..., Yn2 + α) = d(X1, ..., Xn1 , Y1, ..., Yn2) + α.

Suppose that we agree to take at least one observation. If we observe the

process for t ≥ t1 units of time, then the conditional expected loss, given k1(t)

and k2(t), associated with an equivariant estimator d

(

Xk1(t),Yk2(t)

)

based on

the random size samples Xk1(t) =
(

X1, ..., Xk1(t)

)

and Yk2(t) =
(

Y1, ..., Yk2(t)

)

is

of the form

Rt

(

θ, d

(

Xk1(t),Yk2(t)

))

: = Eθ

[

Lt

(

θ, d

(

Xk1(t),Yk2(t)

))

∣

∣

∣
k1(t), k2(t)

]

= h1(k1(t)) + h2(k2(t)) + c1(t) + c2(t),(1.5)

where Eθ means the expectation with respect to the conditional distribution given

θ. The functions h1 and h2 depend only on the loss function δ.

The form of the risk function Rt(θ, d), given by (1.5), follows from the fact

that the risk of any equivariant estimator of the parameter θ in the invariant

problem of estimation is independent of θ (see e.g. Lehmann and Casella 1998,

Theorem 3.1.4). Hence, if an equivariant estimator exists which minimizes the

constant risk, it is called the minimum risk equivariant (MRE) estimator.

In Section 2 we present the method of finding a stopping time which min-

imizes the expected risk associated with a MRE estimator of the parameter θ

over all stopping times. We consider a situation when the common distributions

of the random variables U1, ..., Un1 and V1, ..., Vn2 , respectively, which can be in-

terpreted as the lifetimes of n1 and n2 objects are known exactly. In Section 3

we apply the results of Section 2 to estimate a common location parameter of

two normal distributions under the squared error loss and a LINEX loss function.

Additionally, in Section 4 some illustrative simulations are given.
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2. THE OPTIMAL STOPPING TIME

Suppose that in the estimation problem of the parameter θ with the loss

function L(θ, d) there exists an MRE estimator, denoted by d
∗
. We look for a

stopping time τ
∗

which minimizes the expected risk

E

[

Rτ

(

θ, d
∗
(

Xk1(τ),Yk2(τ)

))]

= E[h1(k1(τ)) + h2(k2(τ)) + c1(τ) + c2(τ)](2.1)

over all stopping times τ ≥ t1, τ ∈ T , where T denotes the class of (F1,t,F2,t)-

measurable functions. Such a stopping time will be called an optimal stopping

time. Then we construct an optimal sequential estimation procedure of the form
(

τ
∗
, d

∗
(

Xk1(τ∗),Yk2(τ∗)

))

.

Let the random variables U1, ..., Un1 be independent and have a common

known distribution function G1. Suppose that G1(0) = 0, G1(t) > 0 for t > 0, G1

is absolutely continuous with density g1, and g1 is the right hand derivative of G1

on (0,∞). Denote the class of such G1 by G1. Let ζ1 = sup{t : G1(t) < 1}, and

ρ1(t) = g1(t)[1 − G1(t)]
−1

, 0 ≤ t < ζ1, denote the failure rate. Under the above

assumptions the process k1(t), given by (1.1), is a nonstationary Markov chain

with respect to F1,t, 0 ≤ t ≤ ζ1 (see Starr et al. (1976)). The random variables

V1, ..., Vn2 satisfy the analogous assumptions. Namely, let the random variables

V1, ..., Vn2 be independent and have a common known distribution function G2.

Suppose that G2(0) = 0, G2(t) > 0 for t > 0, G2 is absolutely continuous with

density g2, and g2 is the right hand derivative of G2 on (0,∞). Denote the class

of such G2 by G2. Let ζ2 = sup{t : G2(t) < 1}, and ρ2(t) = g2(t)[1−G2(t)]
−1

, 0 ≤

t < ζ2, denote the failure rate. Under the above assumptions the process k2(t),

given by (1.2), is a nonstationary Markov chain with respect to F2,t, 0 ≤ t ≤ ζ2.

The infinitesimal operator A1,t of the processes k1(t) at ˜

h1 is defined by

A1,t
˜

h1(k) := lim
s→0+

s
−1

E

[

˜

h1(k1(t + s)) − ˜

h1(k1(t))|k1(t) = k

]

.(2.2)

The domain DA1,t
of A1,t is the set of all bounded Borel measurable functions

˜

h1 on the set {0, 1, ..., n1} for which the limit in (2.2) exists boundedly pointwise

for every k ∈ {0, 1, ..., n1}. The infinitesimal operator A2,t of the processes k2(t)

is defined analogously.

To determine an optimal stopping time we use the following lemma which

provides the form of the infinitesimal operator A1,t of the process k1(t), given by

(1.1).

Lemma 2.1. Let ˜

h1 be a given real-valued function on the set {0, 1, ...,

n1}. The infinitesimal operator A1,t of the process k1(t), given by (1.1), at ˜

h1 is

of the form

A1,t
˜

h1(k) = (n1 − k)

[

˜

h1(k + 1) − ˜

h1(k)

]

ρ1(t).
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Proof: Fix k ∈ {0, 1, ..., n1}. It is clear that

E

[

˜

h1(k1(t + s)) − ˜

h1(k1(t))|k1(t) = k

]

=

=

n1
∑

i=k+1

[

˜

h1(i) −
˜

h1(k)

]

P (k1(t + s) = i|k1(t) = k)

=

[

˜

h1(k + 1) − ˜

h1(k)

]

P (k1(t + s) = k + 1|k1(t) = k)

+

n1
∑

i=k+2

[

˜

h1(i) −
˜

h1(k)

]

P (k1(t + s) = i|k1(t) = k)

=

[

˜

h1(k + 1) − ˜

h1(k)

]

(n1 − k)
G1(t + s) − G1(t)

1 − G1(t)

[

1 − G1(t + s)

1 − G1(t)

]n1−k−1

+

n1
∑

i=k+2

[

˜

h1(i) −
˜

h1(k)

]

P (k1(t + s) = i|k1(t) = k)

≤

[

˜

h1(k + 1) − ˜

h1(k)

]

(n1 − k)
G1(t + s) − G1(t)

1 − G1(t)

[

1 − G1(t + s)

1 − G1(t)

]n1−k−1

+ 2 sup
i≤n1

∣

∣

∣

˜

h1(i)

∣

∣

∣
P (k1(t + s) ≥ k + 2|k1(t) = k)

=

[

˜

h1(k + 1) − ˜

h1(k)

]

(n1 − k)
G1(t + s) − G1(t)

1 − G1(t)

[

1 − G1(t + s)

1 − G1(t)

]n1−k−1

+ 2 sup
i≤n1

∣

∣

∣

˜

h1(i)

∣

∣

∣

{

1 −

[

1 − G1(t + s)

1 − G1(t)

]n1−k [

1 − (n1 − k)
G1(t + s) − G1(t)

[1 − G1(t + s)]

]

}

.

Now it is easy to see that

lim
s→0+

E

[

˜

h1(k1(t + s)) − ˜

h1(k1(t))|k1(t) = k

]

s

=

= (n1 − k)

[

˜

h1(k + 1) − ˜

h1(k)

]

ρ1(t)

and the lemma is proved.

The infinitesimal operator A2,t of the processes k2(t) is calculated analo-

gously and we have

A2,t
˜

h2(k) = (n2 − k)

[

˜

h2(k + 1) − ˜

h2(k)

]

ρ2(t).

Let ˜

h1(k) = h1(k) for k = 1, ..., n1 and ˜

h1(0) = 0, and ˜

h2(k) = h2(k) for k =

1, ..., n2 and ˜

h2(0) = 0. The following theorem determines the optimal stopping

time τ
∗

for a large class of possible h1 and h2.

Theorem 2.1. Suppose that G1 ∈ G1 has non-increasing failure rate ρ1,

G2 ∈ G2 has non-increasing failure rate ρ2, and the functions h1(k) and h2(k) in
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formula (1.5) are such that h1(k)−h1(k+1) is non-increasing for k ∈ {1, ..., n1−1}

and h2(k)− h2(k + 1) is non-increasing for k ∈ {1, ..., n2 − 1}. Then the stopping

time

τ
∗

= inf

{

t ≥ t1 : A1,t
˜

h1(k1(t)) + A2,t
˜

h2(k2(t)) + c
′
1(t) + c

′
2(t) ≥ 0

}

= inf

{

t ≥ t1 : (n1 − k1(t))[h1(k1(t)) − h1(k1(t) + 1)]ρ1(t)

+ (n2 − k2(t))[h2(k2(t)) − h2(k2(t) + 1)]ρ2(t) ≤ c
′
1(t) + c

′
2(t)

}

(2.3)

minimizes the expected risk given by (2.1) over all stopping times τ ≥ t1, τ ∈ T .

Proof: The proof follows Starr et al. (1976), Theorem 2.1. Using Dynkin’s

formula, we have

E[˜h1(k1(τ)) + ˜

h2(k2(τ)) + c1(τ) + c2(τ)] =

= E

{
∫ τ

0
[A1,t

˜

h1(k1(t)) + A2,t
˜

h2(k2(t)) + c
′
1(t) + c

′
2(t)]dt

}

for all stopping times τ . In particular for τ ≥ t1 we have

E[h1(k1(τ
∗
)) + h2(k2(τ

∗
)) + c1(τ

∗
) + c2(τ

∗
)] −

− E[h1(k1(τ)) + h2(k2(τ)) + c1(τ) + c2(τ)] =

= E[˜h1(k1(τ
∗
)) + ˜

h2(k2(τ
∗
)) + c1(τ

∗
) + c2(τ

∗
)]

− E[˜h1(k1(τ)) + ˜

h2(k2(τ)) + c1(τ) + c2(τ)]

= E

{

∫ τ∗

τ
[A1,t

˜

h1(k1(t)) + A2,t
˜

h2(k2(t)) + c
′
1(t) + c

′
2(t)]dt1(τ < τ

∗
)

}

− E

{
∫ τ

τ∗
[A1,t

˜

h1(k1(t)) + A2,t
˜

h2(k2(t)) + c
′
1(t) + c

′
2(t)]dt

}

1(τ > τ
∗
).(2.4)

Taking into account the assumptions concerning the function h1(k), h2(k), c1(t),

c2(t), ρ1(t) and ρ2(t) we have that (2.4) is less or equal to zero. Thus, the stopping

time τ
∗

is optimal.

3. SPECIAL CASE

In this section we use the solutions of Section 2 to estimate a common

location parameter of two normal distributions under the squared error loss

L(θ, d) = (d − θ)
2

(3.1)

and under a LINEX loss function

L(θ, d) = exp[a(d − θ)] − a(d − θ) − 1,(3.2)
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where a 6= 0. Taking MRE estimators as optimal estimators of a location pa-

rameter of two normal distributions, we construct optimal sequential estimation

procedures under the aforementioned loss functions in the model with observa-

tions which are available at random times.

Let Xi, i = 1, ..., n1, be independent random variables from the normal dis-

tribution N (θ, σ
2
1) and Yi, i = 1, ..., n2, be independent random variables from the

normal distribution N (θ, σ
2
2), where θ ∈ R is an unknown location parameter and

σ1, σ2 > 0 are known. We assume that the samples (X1, ..., Xn1) and (Y1, ..., Yn2)

are independent and σ1 6= σ2.

Let

Xk1(t) =
1

k1(t)

k1(t)
∑

i=1

Xi, Y k2(t) =
1

k2(t)

k2(t)
∑

i=1

Yi

denote the sample means based on the random size sample Xk1(t)=
(

X1, ...,Xk1(t)

)

and Yk2(t) =
(

Y1, ..., Yk2(t)

)

, respectively, where k1(t) is given by (1.1) and k2(t)

is given by (1.2).

The following theorem provides the MRE estimator of the parameter θ and

the corresponding risk function under the loss function given by (3.1) and (3.2),

respectively.

Theorem 3.1. For any stopping time t

(a) If the loss function is given by (3.1), then the MRE estimator of the

parameter θ is

d
∗
S

(

Xk1(t),Yk2(t)

)

= ωXk1(t) + (1 − ω)Y k2(t)

with ω ∈ (0, 1), and the risk function of the estimator d
∗
S has the form

Rt (θ, d
∗
S) =

ω
2
σ

2
1

2k1(t)
+

(1 − ω)
2
σ

2
2

2k2(t)
+ cAk1(t) + cBk2(t) + c1(t) + c2(t).

(b) If the loss function is given by (3.2), then the MRE estimator of the

parameter θ is

d
∗
L

(

Xk1(t),Yk2(t)

)

= ω

(

Xk1(t)−
aσ

2
1

2k1(t)

)

+ (1−ω)

(

Y k2(t)−
aσ

2
2

2k2(t)

)

+ ω(1 − ω) a

(

σ
2
1

2k1(t)
+

σ
2
2

2k2(t)

)

with ω ∈ (0, 1), and the risk function of the estimator d
∗
L has the form

Rt(θ,d
∗
L) =

ω
2
a

2
σ

2
1

2k1(t)
+

(1−ω)
2
a

2
σ

2
2

2k2(t)
+ cAk1(t) + cBk2(t) + c1(t) + c2(t).
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Proof: The forms of the MRE estimators d
∗
S and d

∗
L are obtained from

the general formula for the MRE estimators of the location parameter under the

loss function (1.4) (see e.g. Shao (2003), Theorem 4.5). The formulas for the risk

functions Rt (θ, d
∗
S) and Rt (θ, d

∗
L) follow from straightforward calculations.

On the basis of Theorems 2.1 and 3.1 we construct optimal sequential esti-

mation procedures of the form
(

τ
∗
, d

∗
(

Xk1(τ∗),Yk2(τ∗)

))

, where τ
∗

is defined by

(2.3), and d
∗

is the corresponding sequential MRE estimator of θ based on the

random size samples Xk1(τ∗) and Yk2(τ∗).

The next theorem determines the optimal sequential estimation procedure

under the loss function L(θ, d) given by (3.1) and (3.2), respectively.

Theorem 3.2. Suppose that G1 ∈ G1 has non-increasing failure rate ρ1

and G2 ∈ G2 has non-increasing failure rate ρ2.

(a) Under the loss function Lt(θ, d) given by (1.3) with L(θ, d) of the form

(3.1), the sequential estimation procedure
(

τ
∗
S , d

∗
S

(

Xk1(τ∗
S)

,Yk2(τ∗
S)

))

,

where

τ
∗
S = inf

{

t ≥ t1 : (n1 − k1(t))

[

ω
2
σ

2
1

2k1(t)
−

ω
2
σ

2
1

2(k1(t) + 1)
− cA

]

ρ1(t)

+ (n2−k2(t))

[

(1−ω)
2
σ

2
2

2k2(t)
−

(1−ω)
2
σ

2
2

2(k2(t)+1)
− cB

]

ρ2(t) ≤ c
′
1(t) + c

′
2(t)

}

and

d
∗
S

(

Xk1(τ∗
S
),Yk2(τ∗

S
)

)

= ωXk1(τ∗
S
) + (1 − ω)Y k2(τ∗

S
)

is optimal.

(b) Under the loss function Lt(θ, d) given by (1.3) with L(θ, d) of the form

(3.2), the sequential estimation procedure
(

τ
∗
L, d

∗
L

(

Xk1(τ∗
L)

,Yk2(τ∗
L)

))

,

where

τ
∗
L = inf

{

t ≥ t1 : (n1 − k1(t))

[

ω
2
a

2
σ

2
1

2k1(t)
−

ω
2
a

2
σ

2
1

2(k1(t) + 1)
− cA

]

ρ1(t)

+ (n2−k2(t))

[

(1−ω)
2
a

2
σ

2
2

2k2(t)
−

(1−ω)
2
a

2
σ

2
2

2(k2(t)+1)
− cB

]

ρ2(t) ≤ c
′
1(t) + c

′
2(t)

}

and

d
∗
L

(

Xk1(τ∗
L
),Yk2(τ∗

L
)

)

= ω

(

Xk1(τ∗
L
) −

aσ
2
1

2k1(τ
∗
L)

)

+ (1 − ω)

(

Y k2(τ∗
L
) −

aσ
2
2

2k2(τ
∗
L)

)

+ ω(1 − ω) a

(

σ
2
1

2k1(τ
∗
L)

+
σ

2
2

2k2(τ
∗
L)

)

is optimal.
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Proof: We have to show that the assumptions of Theorem 2.1 are satisfied,

i.e., the functions h1(k) − h1(k + 1) and h2(k) − h2(k + 1) are non-increasing on

the set {1, ..., n1−1} and {1, ..., n2−1}, respectively. Hence, we need to verify the

condition 2h1(k + 1) − h1(k) − h1(k + 2) ≤ 0 and 2h2(k + 1) − h2(k) − h2(k + 2)

≤ 0, which are equivalent to h1(k + 1) ≤ (h1(k) + h1(k + 2))/2 and h2(k + 1) ≤

(h2(k) + h2(k + 2))/2. This can be reduced to the verification that h1 and h2 are

convex on the interval [1, n1 − 1] and [1, n2 − 1], respectively. It is easy to see

that

(a) h
′′
1(k) =

ω
2
σ

2
1

k
3

, h
′′
2(k) =

(1 − ω)
2
σ

2
2

k
3

and h
′′
1(k) > 0, h

′′
2(k) > 0 for k ≥ 1;

(b) h
′′
1(k) =

ω
2
a

2
σ

2
1

k
3

, h
′′
2(k) =

(1 − ω)
2
a

2
σ

2
2

k
3

and h
′′
1(k) > 0, h

′′
2(k) > 0 for k ≥ 1.

4. SIMULATION RESULTS

In this section we present some results of the numerical study. The first

table contains the results of the simulation study for X1, ..., Xn1 ∼ N (0, 1), n1 =

30 and Y1, ..., Yn2 ∼ N (0, 25), n2 = 50: the means of τ
∗
S , d

∗
S , τ

∗
L and d

∗
L for a = 2,

over the 1000 replications, when ω = 0.25, ρ1(t) = 1 (Ui ∼ E(1)), c1(t) = t
2

and

ρ2(t) = (2 ·
√

3t)
−1

, (Vi ∼ We(1/2, 3)), c2(t) = e
t − 1.

cA cB Mean(τ
∗

S
) Mean(d

∗

S
) Mean(τ

∗

L
) Mean(d

∗

L
)

0.005 0.000001 0.2388 −0.0094 0.4705 −0.8777

0.000001 0.005 0.2339 −0.0099 0.4629 −0.8949

0.005 0.005 0.2281 0.0123 0.4537 −0.8943

0.000001 0.000001 0.2455 −0.0406 0.4687 −0.9203

The second table contains the results of the simulation study for X1, ..., Xn1 ∼

N (0, 1), n1 = 30 and Y1, ..., Yn2 ∼ N (0, 25), n2 = 50: the means of τ
∗
S , d

∗
S , τ

∗
L and

d
∗
L for a = 2, over the 1000 replications, when ω = 0.5, ρ1(t) = (2 ·

√
3t)

−1
(Ui ∼

We(1/2, 3)), c1(t) = e
t − 1 and ρ2(t) = 1 (Vi ∼ E(1)), c2(t) = t

2
.

cA cB Mean(τ
∗

S
) Mean(d

∗

S
) Mean(τ

∗

L
) Mean(d

∗

L
)

0.005 0.000001 0.3634 0.0036 0.6073 −0.4517

0.000001 0.005 0.3657 −0.0088 0.6144 −0.4831

0.005 0.005 0.3610 −0.0097 0.6102 −0.4881

0.000001 0.000001 0.3665 0.0134 0.6165 −0.4453
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The third table contains the results of the simulation study for X1, ..., Xn1 ∼

N (0, 1), n1 = 30 and Y1, ..., Yn2 ∼ N (0, 25), n2 = 50: the means of τ
∗
S , d

∗
S , τ

∗
L and

d
∗
L for a = 2, over the 1000 replications, when ω = 0.75, ρ1(t) = (2 ·

√
3t)

−1
(Ui ∼

We(1/2, 3)), c1(t) = t
2

and ρ2(t) = 1 (Vi ∼ E(1)), c2(t) = e
t − 1.

cA cB Mean(τ
∗

S
) Mean(d

∗

S
) Mean(τ

∗

L
) Mean(d

∗

L
)

0.005 0.000001 0.2975 −0.0107 0.5129 −0.1816

0.000001 0.005 0.2956 0.0284 0.5076 −0.1504

0.005 0.005 0.2908 0.0014 0.5010 −0.1417

0.000001 0.000001 0.3021 0.0106 0.5110 −0.1710

Simulation results above are consistent with expectations. The both procedures

are working properly. In case of Linex loss function, decision function is biased,

however it is MRE estimator because ω is fixed. It could be applicable especially

in a case when one sample is more preferable than second one.
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1. INTRODUCTION

Due to rapid development of science and technology, it is possible to col-

lect data that are naturally functions. This type of data , that are referred as

functional data, has many applications in various fields of science, including, for

example, environmental science, chemometrics, engineering, biomedical studies,

public health, and econometrics. Functional data analysis deals with situations

in which the individual observed data are infinite-dimensional, such as curves.

See Ramsay and Silverman (2002, 2005) and Ferraty and Vieu (2006) for com-

prehensive discussions on methods and applications for functional data.

Functional linear model is one of the most useful methods to explore the

relationship between two sets of observations. There are various types of func-

tional linear model that have been widely studied in the literature. In this pa-

per, we consider a functional linear model where one observe a random sample

{(Xi, Yi) : i = 1, 2, ..., n} corresponds to functional varying coefficient model, i.e.,

(1.1) Y (t) = α(t) + β(t)X(t) + Z(t),

where α and β are smoothed functions, and Z(t) is a noise term with zero

mean and finite variance. Without loss of generality, we assume that E [X(t)] =

E [Y (t)] = 0, then the functional linear model (1.1) becomes,

(1.2) Y (t) = β(t)X(t) + Z(t).

Relation (1.2) models Y via X pointwisely, and allows β to vary with time. Fan and

Zhang (2008) have provided a review of statistical methods proposed for various

varying coefficient models according to three approaches. These approaches are

based on polynomial spline, smoothing splines and local polynomial smoothing.

See also Wu et al. (1998), Huang et al. (2002, 2004), Hoover et al. (1998), Chiang

et al. (2001), Wu and Chiang (2000), and Kauermann and Tutz (1999). Fan and

Zhang (1999), Wang and Xia (2009), and Lin and Ying (2001) applied another

approaches for varying coefficient models. Most of these papers did not examine

sparse and irregular designs and face some problems in implementing these designs.

In many experiments though, for example most longitudinal studies, the

functional trajectories of the involved smooth random processes are not directly

observable. In these cases, the observed data are noisy, sparse and irregularly

spaced measurements of these trajectories.

Following the notation in Yao et al. (2005a), let Ui j and Vi j the jth obser-

vations of the random trajectories Xi(·) and Yi(·) at a random time points Ti j ,

respectively, where Ti j are independently drawn from a distribution on compact

domain T ⊂ R. Assume that Ui j and Vi j are contaminated with measurement

errors εi j and ǫi j , respectively. These errors are assumed to be i.i.d. with mean
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zero and finite variance σ
2
X

for εi j and σ
2
Y

for ǫi j . Therefore, the models may be

represented in the following forms:

(1.3)
Uij = Xi(Tij) + εij , j = 1, ..., m; i = 1, ..., n ,

Vij = Yi(Tij) + ǫij , j = 1, ..., m; i = 1, ..., n .

Functional data analysis of model (1.3) has been extended by Yao et. al (2005a,

2005b). See also Li and Hsing (2010), and Yang et. al (2011). Şentürk and

Müller (2010), and Şentürk and Nguyen (2011) have considered functional varying

coefficient in model (1.1). The model given in Şentürk and Müller (2010) is

a model with one covariate process that incorporates a history index. Their

estimation approach is based on least square estimation. Şentürk and Nguyen

(2011) have studied a model with error-prone time-dependent variables and time-

invariant covariates. They used covariance representation techniques to estimate

the slope function. More references that studied varying coefficient models for

model (1.3) include Şentürk and Müller (2008), Noh and Park (2010), Chiou et

al. (2012), and Şentürk et al. (2013).

In this paper, we assume that the slope function β belongs to a reproducing

kernel Hilbert space (RKHS) H, and investigate the regularization method for

estimating β. By simulation, we show that our estimation method perform well

as sampling frequency and sample size increase. We do our simulation study

in two different settings. One is when locations are same and equidistant for

all curves, that is, T1j = T2j = ··· = Tnj =
2j

2m+1 for all j = 1, 2, ..., m. Another

setting is when Tij are independently sampled from T . These settings are referred

as common design and stochastic design, respectively (see Cai and Yuan (2011)).

The paper is organized as follows. In section 2, our estimation procedure is

introduced. The numerical results are given in Section 3. Section 4 collects the

obtained results and discusses possible extensions of our work.

2. ESTIMATION PROCEDURE

In this section, we introduce a regularization method for estimating the

slope function β using a reproducing kernel Hilbert space (RKHS) framework.

First, we review some basic facts of RKHS. A Hilbert space H of functions on

a set T with inner product 〈·, ·〉H is called an RKHS if there exists a bivariate

function K(·, ·) on T × T such that for every t ∈ T and f ∈ H,

(i) K(·, t) ∈ H,

(ii) f(t) = 〈 f, K(·, t) 〉H .
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Relation (ii) is termed the reproducing property of K, and K is called reproducing

kernel of H. Every reproducing kernel determine unique RKHS. In addition, an

RKHS has unique reproducing kernel. For any s1, ..., sm′ , s
′
1, ..., s

′
n′ ∈ T and

a1, ..., am′ , b1, ..., bn′ ∈ R, we have

(2.1) 〈

m′
∑

i=1

aiK(·, si),

n′
∑

j=1

bjK(·, s
′
j)〉H =

m′
∑

i=1

n′
∑

j=1

aibjK(si, s
′
j)

More details on RKHS can be found in Aronszajn (1950), Berlinet and Thomas-

Agnan (2004) and Wahba (1990).

Now, we investigate the method of regularization to estimate β. We assume

that β ∈ H(K), where H(K) is an RKHS with reproducing kernel K. We estimate

β via

(2.2) β̂λ = arg min

β∈H(K)

{

ℓmn(β) + λ‖β‖
2
H(K)

}

where

ℓmn(β) =
1

nm

n
∑

i=1

m
∑

j=1

(Vij − Uijβ(Tij))
2

and λ > 0 is tuning parameter that control tradeoff between fidelity to the data

measured by ℓmn and smoothness of the solution measured by RKHS norm.

Remark 1. We can define minimization problem (2.2) in more general

sense. For example, one may replace ‖β‖2
H(K) by J(β) and then define

β̂λ = arg min

β∈H(K)
{ℓmn(β) + λJ(β)}

where the penalty functional J is a squared semi-norm on H(K) such that the

null space

H0(K) = {g ∈ H(K) : J(g) = 0}

be a finite dimensional linear subspace of H(K).

The representer theorem gives the solution of regularization problem (2.2)

in a finite dimensional subspace, although it is taken over an infinite dimensional

subspace (see Wahba 1990).

Theorem 1. Consider minimization problem (2.2), then there exist con-

stants aij , i = 1, ..., n, j = 1, ..., m, such that

β̂λ(t) =

n
∑

i=1

m
∑

j=1

aijK(t, Tij).
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The proof of this Theorem is similar to that of Theorem 1.3.1 in Wahba

(1990) and so we omit it.

In order to see how calculate this estimate, let T := [0, 1] and H := Wr
2

where Wr
2 is the rth order Sobolev–Hilbert space:

W
r
2 =

{

g : [0, 1] → R | g, g
(1)

, ..., g
(r−1)

are absolutely continuous

and g
(r)

∈ L
2
([0, 1])

}

.

Sobolev spaces have many applications in nonparametric function estimation.

The smoothness of a function that belongs to some Sobolev spaces is guaranteed

by existing its derivatives in some orders. To further study about Sobolev spaces

see, for example, Adams (1975). There are various norms that we can equip

to Wr
2 so that Wr

2 be an RKHS (see Berlinet and Thomas-Agnan (2004)). If

we endow Wr
2 with squared norm ‖g‖2

Wr
2

=

r−1
∑

k=0

(∫

g
(k)

)2
+

∫

[g
(r)

]
2
, then it is an

RKHS with reproducing kernel

Kr(s, t) =
1

(r!)
2 Br(s)Br(t) +

(−1)
r−1

(2r)!
B2r(|s − t|),

where Br(.) is the rth Bernoulli polynomial. By Theorem 1, it suffices to consider

β of the following form:

β(t) =

n
∑

i=1

m
∑

j=1

aijKr(t, Tij)

for some a = [a11, ..., a1m, a21, ..., anm]
′ ∈ R

nm
. Using equation (2.1) yields

‖β‖
2
Wr

2
=

n
∑

i1=1

m
∑

j1=1

n
∑

i2=1

m
∑

j2=1

ai2j2ai1j1Kr(Ti1j1 , Ti2j2)

= a′Pa

where

P =











P11 P12 P13 ··· P1n

P21 P22 P23 ··· P2n
.
.
.

.

.

.
. . .

.

.

.
.
.
.

Pn1 Pn2 Pn3 ··· Pnn











and

Pi1i2 = [Kr(Ti1j1 , Ti2j2)]1≤j1,j2≤m , 1 ≤ i1, i2 ≤ n

Define U = [U11, ..., U1m, U21, ..., Unm]
′
and V = [V11, ..., V1m, V21, ..., Vnm]

′
then

(2.3) ℓmn(β) + λ‖β‖
2
Wr

2
=

1

nm

‖V − U ◦ (Pa)‖
2
ℓ2 + λa′Pa,

where A ◦ B is the Hadamard product of two matrices A and B. So finding

minimizer of left hand side of (2.3) over Wr
2 is equivalent to finding a vector
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a ∈ R
nm

which minimizes right hand side of (2.3). Let Q be an nm× nm matrix

such that

(the ith column of Q) = (the ith column of P) ◦ (U ◦ U)), i = 1, 2, ..., nm

It can be seen that the minimizer of (2.3) is

a = (Q + nmλI)
−1

(U ◦ V)

3. SIMULATION STUDY

In our simulation study, we carried out a set of simulation studies to em-

phasize the practical implementation of our methodology. Let true slope function

be

β(t) =

50
∑

k=1

ζkφk(t), t ∈ [0, 1],

where ζ1 = 0.3, φ1(t) = 1, ζk = 4(−1)
k+1

k
−2

and φk(t) = cos((k−1)πt) for k ≥ 1.

It is clear that this function belongs to the second order Sobolev space (r = 2).

Random functions Xi’s are generated independently as follows:

X(t) =
√

2 sin(πt)ξ1 +
√

2 cos(πt)ξ2, t ∈ [0, 1],

where ξ1 and ξ2 are independent random variables with ξi ∼ N(0, i), i = 1, 2. The

response trajectories are generated according to model (1.2) with

Z(t) =
√

2 sin(πt)Z1 +
√

2 cos(πt)Z2, t ∈ [0, 1],

where Z1 and Z2 are i.i.d. random variables from N(0, 0.1). Design points are

selected based on common or random design. Noisy observations of each curve

obtain according to model (1.3) in each curve.

The fifty curves from X(t) and Y (t) were given in the top panels of Figure 1,

the left panel for X(t) and the right panel for Y (t). The lower panels of Figure 1

shows the observed data for m = 5 random design points based on stochastic

design, the left panel for U and the right panel for V .

We use integrated squared error, ‖β̂λ − β‖2
L2

=
∫ 1
0

(

β̂λ(t) − β(t)

)2
dt, to

assess goodness of fit of the model. The integrated squared error, ‖β̂λ − β‖2
L2

, as

a function of smoothing parameter λ is shown in Figure 2 for both designs, the

right panel for stochastic design, and the left panel for common design. The best

choice for smoothing parameter is the value of λ that minimizes ‖β̂λ − β‖2
L2

.
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Figure 1: The top panels give 50 simulated curves, the left panel for X

and the right panel for Y . Noisy observations at 5 random lo-

cation based on stochastic design are shown in the lower panels,

the left panel for U and the right panel for V .

Figure 2: Sensitivity of integrated squared error, ‖β̂λ − β‖2
L2

, with respect

to smoothing parameter λ for both designs. The right panel for

stochastic design, and the left panel for common design.

We calculated ‖β̂λ−β‖2
L2

for different combinations of n ∈ {25, 50, 100, 200}

and m ∈ {3, 5, 10, 20}. Table 1 presents the obtained value of the smoothing
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parameter for each simulated data set. As we see in Table 1, the smoothing pa-

rameter for common design is much greater than the smoothing parameter for

stochastic design. This is because, in the stochastic design we observe random

functions X and Y in many different points over whole of n samples, while in the

common design, we observe random functions X and Y in only m equidistant

points. In addition, the results of a Monte Carlo approximations of ‖β̂λ − β‖2
L2

for common and stochastic design are reported in Tables 2 and 3 respectively.

It can be seen from both Tables that the averaged integrated squared error and

variance of estimated slope function decrease as either m or n increases. On

the other hand, the values of ‖β̂λ − β‖2
L2

for stochastic design is smaller than

that is for common design. These results imply that stochastic design has better

performance than common design.

Table 1: The value of smoothing parameter for common and stochastic design.

Type of design n
m

3 5 10 15 20

common design
25

8× 10−5 2.5× 10−5 3.5× 10−6 5× 10−7 10−7

stochastic design 5× 10−7 10−7 5× 10−8 2× 10−8 10−8

common design
50

7.5× 10−5 2× 10−5 3× 10−6 5× 10−7 9× 10−8

stochastic design 10−7 5× 10−8 1.5× 10−8 4× 10−9 2× 10−9

common design
100

7× 10−5 1.5× 10−5 2.5× 10−6 4.5× 10−7 8.5× 10−8

stochastic design 2.5× 10−8 7.5× 10−9 2.5× 10−9 10−9 5.5× 10−10

common design
200

6.5× 10−5 10−5 2× 10−6 4× 10−7 8× 10−8

stochastic design 7.5× 10−9 2.5× 10−9 6.5× 10−10 4.5× 10−10 3.5× 10−10

Table 2: Averaged integrated squared error ‖β̂λ − β‖2
L2

and variance of β̂λ

(in the parentheses) for common design.

n
m

3 5 10 15 20

25 0.7683 (0.0091) 0.4967 (0.0085) 0.3167 (0.0074) 0.2498 (0.0064) 0.2136 (0.0051)
50 0.7628 (0.0050) 0.4882 (0.0041) 0.3112 (0.0033) 0.2458 (0.0031) 0.2108 (0.0027)

100 0.7596 (0.0024) 0.4854 (0.0019) 0.3085 (0.0015) 0.2436 (0.0013) 0.2098 (0.0011)
200 0.7538 (0.0012) 0.4827 (0.0009) 0.3029 (0.0007) 0.2400 (0.0006) 0.2054 (0.0004)

Table 3: Averaged integrated squared error ‖β̂λ − β‖2
L2

and variance of β̂λ

(in the parentheses) for stochastic design.

n
m

3 5 10 15 20

25 0.3435 (0.1335) 0.2866 (0.1111) 0.2324 (0.0673) 0.1944 (0.0406) 0.1902 (0.0354)
50 0.2660 (0.0902) 0.2316 (0.0667) 0.1858 (0.0413) 0.1794 (0.0313) 0.1676 (0.0305)

100 0.2111 (0.0569) 0.1812 (0.0392) 0.1609 (0.0258) 0.1528 (0.0214) 0.1487 (0.0172)
200 0.1776 (0.0366) 0.1577 (0.0245) 0.1437 (0.0165) 0.1365 (0.0111) 0.1312 (0.0084)
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4. APPLICATION

The human immune deficiency virus (HIV) attacks immune cells called

CD4+ and leads to AIDS. CD4+ cells are a specific kind of white blood cell and

are a necessary part of the immune system. They lead the attack against infec-

tions. The CD4+ cell count measures the number of CD4+ cells in a sample of

blood. CD4+ cell counts are reported as the number of cells in a cubic millimetre

of blood. A normal CD4+ cell count is around 1100 cells per cubic millimetre of

blood. The CD4+ cell counts can vary time to time. When someone is infected

with HIV the number of CD4+ cells they have goes down. So an infected person’s

CD4+ cell number can be used to monitor disease progression.
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Figure 3: The top panel provides observed individual trajectories and the

smooth estimate of the mean function for CD4+ cell counts.

The bottom panel includes observed individual trajectories and

the smooth estimate of the mean function for CES-D scores.

The CES-D scale is a short self-report scale designed to measure depressive

symptomatology during the past week. A higher score indicates greater depressive

symptoms. It is interesting to explore whether there is an association between
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depressive symptoms and CD4+ cell counts over time. The data, reported by

Kaslow et al. (1987), recorded CD4+ cell counts, CES-D scores and other vari-

ables over time for a total of 369 infected men enrolled in the Multicenter AIDS

Cohort Study. The measurements were scheduled at each half-yearly visit. But

because of missing appointments among other factors, the actual measurement

times are random, irregular and sparse. For both CD4+ and CES-D the num-

ber of observations ranged from 1 to 12, with a median of 6 measurements per

subject, yielding a total of 2376 records.

In this dataset, both the CD4+ cell counts and CES-D scores are considered

as functions of time since seroconversion (time when HIV becomes detectable).

We model the response process CD4+ cell counts and the predictor process CES-

D scores via functional varying coefficient model (1.1). Individual trajectories

of CD4+ cell counts and CES-D scores are shown in Figure 3, along with the

smooth estimated mean functions of CD4+ cell counts and CES-D scores. The

estimated mean function of CD4+ cell counts shows a drastic decreasing from

seroconversion to around 2 years after seroconversion. Also the estimated mean

function of CES-D scores is decreasing in this period.

We used 5-fold cross-validation to choose the smoothing parameter λ. The

procedure is as follows. Divide the data into 5 roughly equal parts at random.

For each part, fit the model with parameter λ to the remaining 4 parts. Let

β̂
(−k)
λ be the estimated slope function by dropping the kth part, k = 1, 2, ..., 5.

The cross-validation error is given by

CV (λ) =
1

5

5
∑

k=1

∑

i∈ kth part

1

mi

mi
∑

j=1

(

Vij − µ̂Y (Tij) − [Uij − µ̂X(Tij)]β̂
(−k)
λ (Tij)

)2
,

where mi is number of measurements for ith subject and, µ̂X(t) and µ̂Y (t) are

the smooth estimates of mean function for CD4+ cell counts and CES-D scores

respectively. To estimate the mean function under sparse and irregular designs,

we refer the readers to Yao et al. (2005a), Li and Hsing (2010), and Cai and Yuan

(2011). Now calculate CV (λ) for different values of λ and choose the optimal

value of λ as the minimal of CV (λ). Here we obtained λ = 100.

The estimated slope function β̂ and intercept function α̂ are displayed in

Figure 4, where we used α̂(t) = µ̂Y (t)− µ̂X(t)β̂(t) to estimate the intercept func-

tion. Since the value of CES-D and the estimated slope function are small with

respect to the value CD4+ cell counts, the shapes of µ̂Y (t) and α̂(t) are obtained

almost similar. In Figure 5, we provided difference µ̂Y (t) − α̂(t). By comparing

Figures 4 and 5 we see that there is a minor association between CD4+ cell counts

and CES-D scores in earlier and later times. In addition the association in other

times is negligible.
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Figure 4: The left panel shows the estimated slope function and

the right panel displays the estimated intercept function.

Figure 5: The difference µ̂Y (t) − α̂(t).

5. CONCLUSIONS AND EXTENSIONS

We have presented a regularization method to estimate the slope function

in functional varying coefficient model using an RKHS approach. Our procedure

is easy to implement in the numerical scheme and do not need resorting some

numerical techniques to compute the slope function. As we saw in the simula-

tion study, increasing either m or n leads to improved estimates, in the sense of

integrated squared error and variance. In this paper, we have assumed that all

sampling points on each curve are same. We note that this assumption is not

necessary and we may have different sampling points on each curves. Let mi be
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the sampling frequency on ith curve. It is suffice to define

β̂λ = arg min
β∈H

{

ℓmn(β) + λ‖β‖
2
H

}

where

ℓmn(β) =
1

n

n
∑

i=1

1

mi

mi
∑

j=1

(Vij − Uijβ(Tij))
2

and then use the given procedure with some mild modifications.

Obtaining rates of convergence and studying optimality of the estimators,

in some sense, are interesting problems in nonparametric function estimation.

Şentürk and Müller (2010) have given rate of convergence for functional varying

coefficient model with sparse and noise-contaminated data in the supremum of

absolute error sense but they have not studied optimality of their estimators.

Another interesting problem is estimating derivatives of β(t) in this model. These

ideas will be explored in future works.
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1. INTRODUCTION

Kernel density estimation is a non-parametric method to estimate a prob-

ability density function (pdf) f(x). It was originally studied in [20], [22] for sym-

metric kernels and univariate independent identically distributed (i.i.d.) data.

When the support of the underlying pdf is unbounded, this approach performs

well. If the pdf has a support on [0,∞), the use of classical estimation methods

with symmetric kernels yield a large bias on the zero boundary and leads to a

bad quality of the estimates [30]. This is due to the fact that symmetric ker-

nel estimators assign nonzero weight at the interval (−∞, 0]. There are several

methods to reduce the boundary bias effect, for example, the data reflection [25],

boundary kernels [19], the hybrid method [14], the local linear estimator [18], [17]

among others. Another approach is to use asymmetric kernels. In case of univari-

ate nonnegative i.i.d. random variables (r.v.s), the pdf estimators with gamma

kernels were proposed in [8]. In [5] the gamma-kernel estimator was developed for

univariate dependent data. The gamma kernel is nonnegative and it changes its

shape depending on the position on the semi-axis. Estimators constructed with

gamma kernels have no boundary bias if f
′′
(0) = 0 holds, i.e. when the underlying

density f(x) has a shoulder at x = 0 (see formula (4.3) in [31]). This shoulder

property is fulfilled particularly for a wide exponential class of pdfs which satisfy

important integral condition

(1.1)

∫ ∞

0
x
−1/2

f(x)dx < ∞

assumed in [8]. In [31] the half normal and standard exponential pdfs are consid-

ered as examples such that the boundary kernel Kc(t) (p. 553 in [31]) gives the

better estimate than the gamma-kernel estimator considered in [8]. At the same

time, the exponential distribution does not satisfy both the shoulder condition

and the condition (1.1). The half normal density satisfies the shoulder condition,

but it does not satisfy (1.1). Since (1.1) is not valid for the latter pdfs, such

comparison is not appropriate.

Alternative asymmetrical kernel estimators like inverse Gaussian and recip-

rocal inverse Gaussian estimators were studied in [24]. The comparison of these

asymmetric kernels with the gamma kernel is given in [6].

Along with the density estimation it is often necessary to estimate the

derivative of a pdf. Derivative estimation is important in the exploration of struc-

tures in curves, comparison of regression curves, analysis of human growth data,

mean shift clustering or hypothesis testing. The estimation of the density deriva-

tive is required to estimate the logarithmic derivative of the density function. The

latter has a practical importance in finance, actuary mathematics, climatology

and signal processing. However, the problem of the density derivative estimation

has received less attention. It is due to a significant increasing complexity of
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calculations, especially for the multivariate case. The boundary bias problem for

the multivariate pdf becomes more solid [4]. The pioneering papers devoted to

univariate symmetrical kernel density derivative estimation are [7], [26].

The paper does not focus on the boundary performance but on finding of

the optimal bandwidth that is appropriate for the pdf derivative estimation in

case of dependent data satisfying a strong mixing condition. In [30] an optimal

mean integrated squared error (MISE) of the kernel estimate of the first derivative

of order n
− 4

7 was indicated. This corresponds to the optimal bandwidth of order

n
− 1

7 for symmetrical kernels. The estimation of the univariate density derivative

using a gamma kernel estimator by independent data was proposed in [11], [12].

This allows us to achieve the optimal MISE of the same order n
−4/7

with a

bandwidth of order n
− 2

7 .

1.1. Contributions of this paper

It is shown that in the case of dependent data, assuming strong mixing, we

can estimate the derivative of the pdf using the same technique that has been

applied for independent data in [11]. Lemma 2.1, Section 2.1 contains the upper

bound of the covariance. The mathematical technic applied for the derivative

estimation is similar to one applied for the pdf. However, formulas became much

more complicated, particularly because one has to deal with the special Digamma

function that includes the bandwidth b. Thus, one has to pick out the order by b

from complicated expressions containing logarithms and the special function. In

Section 2.2 we find the optimal bandwidth b ∼ n
−2/7

which is different from the

optimal bandwidth b
∗
2 ∼ n

−2/5
proposed for the pdf estimation (see [8], p. 476).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.15

0.1

0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 1: Nonparametric gamma-kernel estimation of Maxwell density

derivative function for sample size n=2000. The pdf derivative

(solid line), the estimate with b (dotted gray line), the estimate

with b
∗
2 (dashed line).
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In Fig. 1 it is shown that the use of b
∗
2 to estimate the pdf derivative leads to a

bad quality (for simplicity the i.i.d. data were taken). We prove that the optimal

MISE of the pdf derivative has the same rate of convergence to the true pdf

derivative as for the independent case, namely O(n
−4/7

). We show in Section 2.3

that for the strong mixing autoregressive process of the first order (AR(1)) all

results are valid without additional conditions. In Section 3 a simulation study

for i.i.d. and dependent samples is performed. The flexibility of the gamma kernel

allows us to fit accurately the multi-modal pdf derivatives.

1.2. Practical motivation

In practice it is often necessary to deal with sequences of observations that

are derived from stationary processes satisfying the strong mixing condition. As

an example of such processes one can take autoregressive processes like in Section

2.3. Along with the evaluation of the density function and its derivative by

dependent samples, the estimation of the logarithmic derivative of the density is

an actual problem. The logarithmic pdf derivative is the ratio of the derivative of

the pdf to the pdf itself. The pdf derivative estimation is necessary for an optimal

filtering in the signal processing and control of nonlinear processes where only the

exponential pdf class is used, [10]. Moreover, the pdf derivative gives information

about the slope of the pdf curve, its local extremes, significant features in data

and it is useful in regression analysis [9]. The pdf derivative also plays a key role

in clustering via mode seeking [23].

1.3. Theoretical background

Let {Xi; i = 1, 2, ...} be a strongly stationary sequence with an unknown

probability density function f(x), which is defined on x ∈ [0,∞). We assume

that the sequence {Xi} is α-mixing with coefficient

α(i) = sup
k

sup

A∈Fk
1 (X)

B∈F∞
k+i

(X)

|P (A ∩ B) − P (A)P (B)|.

Here, Fk
i (X) is the σ-field of events generated by {Xj , i ≤ j ≤ k} and α(i) → 0 as

i → ∞. For these sequences we will use a notation {Xj}j≥1 ∈ S(α). Let fi(x, y)

be a joint density of X1 and X1+i, i = 1, 2, ....

Our objective is to estimate the derivative f
′
(x) by a known sequence of

observations {Xi}. We use the non-symmetric gamma kernel estimator that was
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defined in [8] by the formula

(1.2) ̂

fn(x) =
1

n

n
∑

i=1

Kρb(x),b(Xi).

Here

(1.3) Kρb(x),b(t) =
t
ρb(x)−1

exp(−t/b)

b
ρb(x)Γ(ρb(x))

is the kernel function, b is a smoothing parameter (bandwidth) such that b → 0

as n → ∞, Γ(·) is a standard gamma function and

ρb(x) =

{

ρ1(x) = x/b, if x ≥ 2b,

ρ2(x) = (x/(2b))
2
+ 1, if x ∈ [0, 2b).

(1.4)

The use of gamma kernels is due to the fact that they are nonnegative, change

their shape depending on the position on the semi-axis and possess better bound-

ary bias than symmetrical kernels. The boundary bias becomes larger for mul-

tivariate densities. Hence, to overcome this problem the gamma kernels were

applied in [4]. Earlier the gamma kernels were only used for the density estima-

tion of identically distributed sequences in [4], [8] and for stationary sequences in

[5].

To our best knowledge, the gamma kernels have been applied to the density

derivative estimation at first time in [11]. In this paper the derivative f
′
(x) was

estimated under the assumption that {X1, X2, ..., Xn} are i.i.d. random variables

as derivative of (1.2). This implies that

f̂
′
n(x) =

1

n

n
∑

i=1

K
′
ρb(x),b(Xi)(1.5)

holds, where

K
′
ρb(x),b(t) =

{

K
′
ρ1(x),b(t) =

1
bKρ1(x),b(t)L1(t), if x ≥ 2b,

K
′
ρ2(x),b(t) =

x
2b2

Kρ2(x),b(t)L2(t), if x ∈ [0, 2b),
(1.6)

is the derivative of Kρ(x),b(t),

L1(t) = L1(t, x) = ln t − ln b − Ψ(ρ1(x)),(1.7)

L2(t) = L2(t, x) = ln t − ln b − Ψ(ρ2(x)),

Here Ψ(x) denotes the Digamma function (the logarithmic derivative of the

gamma function). The unknown smoothing parameter b was obtained as the

minimum of the mean integrated squared error (MISE) which, as known, is

equal to

MISE(f̂
′
n(x)) = E

∞
∫

0

(f
′
(x) − f̂

′
n(x))

2
dx.
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Remark 1.1. The latter integral can be splitted into two integrals
∫ 2b
0

and
∫∞
2b . In the case when x ≥ 2b the integral

∫ 2b
0 tends to zero when b → 0.

Hence, we omit the consideration of this integral in contrast to [31]. The first

integral has the same order by b as the second one, thus it cannot affect on the

selection of the optimal bandwidth.

The following theorem has been proved.

Theorem 1.1 ([11]). If b → 0 and nb
3/2 → ∞ as n → ∞, the integrals

∞
∫

0

P (x)dx,

∞
∫

0

x
−3/2

f(x)dx

are finite and
∞
∫

0

P (x)dx 6= 0, then the leading term of a MISE expansion of the

density derivative estimate f̂
′
(x) is equal to

MISE(f̂
′
n(x)) =

b
2

16

∫ ∞

0
P (x)dx

+

∫ ∞

0

n
−1

b
−3/2

x
−3/2

4
√

π

(

f(x) + b

(

f(x)

2x

−
f
′
(x)

2

))

dx(1.8)

+ o(b
2
+ n

−1
(b

−3/2
)),

where

P (x) =

(

f(x)

3x
2

+ f
′′
(x)

)2

.

Taking the derivative of (1.8) in b leads to equation

b

8

∫ ∞

0

(

f(x)

3x
2

+ f
′′
(x)

)2

dx −
3n

−1
b
− 5

2

8
√

π

∫ ∞

0
x
− 3

2 f(x)dx(1.9)

+
n
−1

b
− 3

2

16
√

π

∫ ∞

0
x
− 3

2

(

f(x)

x

− f
′
(x)

)

dx = 0.

Neglecting the term with b
−3/2

as compared to the term b
−5/2

, the equation

becomes simpler and its solution is equal to the optimal global bandwidth

b0 =







3
∫∞
0 x

−3/2
f(x)dx

√
π

∫∞
0

(

f(x)
3x2 + f

′′(x)

)2
dx







2/7

n
−2/7

.(1.10)

The substitution of b0 into (1.8) yields an optimal MISE with the rate of con-

vergence O(n
− 4

7 ). The unknown density and its second derivative in (1.10) were

estimated by the rule of thumb method [12].
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In [30], p. 49, it was indicated an optimal MISE of the first derivative

kernel estimate n
− 4

7 with the bandwidth of order n
− 1

7 for symmetrical kernels.

Nevertheless, our procedure achieves the same order n
−4/7

with a bandwidth of

order n
− 2

7 . Moreover, our advantage concerns the reduction of the bias of the

density derivative at the zero boundary by means of asymmetric kernels. Gamma

kernels allow us to avoid boundary transformations which is especially important

for multivariate cases.

Further results presented in Section 2.2 will be based on Theorem 1.1.

2. MAIN RESULTS

2.1. Estimation of the density derivative by dependent data

Here, we estimate the density derivative by means of the kernel estimator

(1.5) by dependent data. Thus, its mean squared error is determined as

MSE(̂f ′
n(x)) = (Bias(̂f ′

n(x)))
2
+ var(̂f ′

n(x)),(2.1)

where, due to the stationarity of the process Xi, the variance is given by

var(̂f ′
n(x)) = var

(

1

n

n
∑

i=1

K
′
b(Xi)

)

=
1

n
2
var

(

n
∑

i=1

K
′
b(Xi)

)

=
1

n
2





n
∑

i=1

var(K
′
b(Xi)) + 2

∑

1≤i<j≤n

cov(K
′
b(Xi), K

′
b(Xj))





=
1

n

var(K
′
b(Xi)) +

2

n
2

∑

1≤i<j≤n

cov(K
′
b(Xi), K

′
b(Xj))

=
1

n

var(K
′
b(Xi)) +

2

n

n−1
∑

i=1

(

1 −
i

n

)

cov(K
′
b(X1), K

′
b(X1+i))

= V (x) + C(x).

For simplicity we use here and further the notation K
′
ρb(x),b(t) = K

′
b(t) in (1.5).

Thus, (2.1) can be written as

MSE(̂f ′(x)) = B(x)
2
+ V (x) + C(x),(2.2)

where

B(x) = Bias(̂f ′
n(x)).

The bias of the estimate does not change, but the variance contains a covariance.

The next lemma is devoted to its finding.
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Lemma 2.1. Let

1. {Xj}j≥1 ∈ S(α) and
∞
∫

1

α(τ)
υ
dτ < ∞, 0 < υ < 1 hold,

2. f(x) be a twice continuously differentiable function,

3. b → 0 and nb
−(υ+1)/2 → ∞ as n → ∞.

Then the covariance C(x) is bounded by

|C(x)| =

∣

∣

∣

∣

∣

2

n

n−1
∑

i=1

(

1 −
i

n

)

cov(K
′
ρb(x),b(X1), K

′
ρb(x),b(X1+i))

∣

∣

∣

∣

∣

≤

(

2
−υ+3

2 π

1−υ
2 x

−υ+5
2

b
−υ+1

2

n

(

b
2
C2(υ, x) + bC1(υ, x) + C3(υ, x)

)1−υ

(2.3)

+ o(b
2
)

) ∞
∫

1

α(τ)
υ
dτ,

where K
′
ρb(x) is defined by (1.6) and C1(υ, x), C2(υ, x) and C1(υ, x) are given by

(4.8).

A similar lemma was proved in [10] for symmetrical kernels and not strictly

positive x.

2.2. Mean integrated squared error of f̂
′
n(x)

Using the upper bound (2.3) we can obtain the upper bound of the MISE

and find the expression of the optimal bandwidth b as the minimum of the latter.

Theorem 2.1. If the conditions of Theorem 1.1 and Lemma 2.1 hold,

then the MISE expansion for the estimate f̂
′
n(x) of the density derivative is

equal to

MISE(f
′
(x)) ≤

∞
∫

0

n
−1

b
− 3

2 x
− 3

2

4
√

π

(

f(x) +
b

2

(

f(x)

x

− f
′
(x)

))

dx

+

∞
∫

0

(

2
−υ+3

2 π

1−υ
2 x

−υ+5
2

b
−υ+1

2

n

C3(υ, x)
1−υ

) ∞
∫

1

α(τ)
υ
dτdx(2.4)

+
b
2

16

∞
∫

0

P (x)dx + o(b
2
+ n

−1
(b

− 3
2 )).

and the optimal bandwidth is bopt = o(n
−2/7

) and the MISEopt = O(n
−4/7

).
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Remark 2.1. It is evident from the formula (2.4) that the term responsi-

ble for the covariance has the order
b−

υ+1
2

n , 0 < υ < 1. Thus, it does not influence

the order of MISE irrespective of the mixing coefficient α(τ).

The proof is given in Appendix 4.

2.3. Example of a strong mixing process

We use the first-order autoregressive process as an example of a process

that satisfies Theorem 1.1. Xi determines a first-order autoregressive (AR(1))

process with the innovation r.v. ǫ0 and the autoregressive parameter ρ ∈ (−1, 1)

if

Xi = ρXi−1 + ǫi, i = ... − 1, 0, 1, ...,(2.5)

holds and ǫi is a sequence of i.i.d. r.v.s. Let AR(1) process (2.5) be strong mixing

with mixing numbers α(τ), τ = 1, 2, ...

α(τ) ≤ α̃(τ) ≡

{

2(C + 1)E|Xi|
ν |ρν |τ , if τ ≥ τ0,

1, if 1 ≤ τ < τ0,
(2.6)

where ν = min{p, q, 1} and p > 0, q > 0, C > 0, τ0 > 0 hold. In [2] it was proved

that with some conditions AR(1) is a strongly mixing process.

In Appendix 4 we prove the following lemma.

Lemma 2.2. Under the conditions (2.6) the AR(1) process (2.5) satisfies

Lemma 2.1 and Theorem 2.1.

3. SIMULATION RESULTS

To investigate the performance of the gamma-kernel estimator we select the

following positive defined pdfs: the Maxwell (σ = 2), the Weibull (a = 1, b = 4)

and the Gamma (α = 2.43, β = 1) pdf,

fM (x) =

√
2x

2
exp(−x

2
/2σ

2
)

σ
3
√

π

,

fW (x) = sx
s−1

exp(−x
s
),

fG(x) =
x

α−1
exp(−x/β)

β
αΓ(α)

.
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Their derivatives

f
′
M (x) = −

√
2x exp(−x

2
/2σ

2
)(x

2 − 2σ
2
)

σ
5
√

π

,

f
′
W (x) = −sx

s−2
exp(−x

s
)(sx

s
− s + 1),(3.1)

f
′
G(x) =

x
α−2

exp(−x/β)(β + x − αβ)

β
α+1Γ(α)

are to be estimated. The Weibull and the Gamma pdfs are frequently used in

a wide range of applications in engineering, signal processing, medical research,

quality control, actuarial science and climatology among others. For example,

most total insurance claim distributions are shaped like gamma pdfs [13]. The

gamma distribution is also used to model rainfalls [1]. Gamma class pdfs, like

Erlang and χ
2

pdfs are widely used in modeling insurance portfolios [15].

We generate Maxwell, Weibull and Gamma i.i.d. samples with sample sizes

n ∈ {100, 500, 1000, 2000} using standard Matlab generators. To get the depen-

dent data we generate Markov chains with the same stationary distributions using

the Metropolis–Hastings algorithm [16]. Due to the existence of the probability

of rejecting a move from the previous point to the next one, the variance of such

Markov sequence {Xt} is corrupted by the function of the latter rejecting prob-

ability (see [27], Theorem 3.1). The Metropolis–Hastings Markov chains [16] are

geometrically ergodic for the underlying light-tailed distributions. Hence, they

satisfy the strong mixing condition [21].

The gamma kernel estimates (1.2) with the optimal bandwidth (1.10) for

the derivatives (3.1) can be seen in Figures 2–4. The optimal bandwidth (1.10) is

counted for every replication of the simulation using the rule of thumb method,

where as a reference density we take the gamma pdf.
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Figure 2: Estimates of the Maxwell pdf derivative by i.i.d. data (left) and

by dependent data (right): the f
′
M

(x) (black line), gamma ker-

nel estimate from the rule of thumb (grey line) for the sample

size n = 2000.
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Figure 3: Estimates of the Weibull pdf derivative by i.i.d. data (left) and

by dependent data (right): the f
′
W

(x) (black line), gamma ker-

nel estimate from the rule of thumb (grey line) for the sample

size n = 2000.
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Figure 4: Estimates of the Gamma pdf derivative by i.i.d. data (left) and

by dependent data (right): the f
′
G

(x) (black line), gamma ker-

nel estimate from the rule of thumb (grey line) for the sample

size n = 2000.

The estimation error of the pdf derivative is calculated by the following

formula

m =

∞
∫

0

(f
′
(x) − f̂

′
(x))

2
dx,

where f
′
(x) is a true derivative and f̂

′
(x) is its estimate. Values of m

′
s aver-

aged over 500 simulated samples and the standard deviations for the underlying

distributions are given in Table 1 for i.i.d. r.v.s and in Table 2 for dependent data.

Table 1: Mean errors m and standard deviations for i.i.d. r.v.s.

Distribution
n

100 500 1000 2000

Gamma
0.032792 0.015208 0.010675 0.0074668

(0.011967) (0.0044094) (0.0027815) (0.0016452)

Weibull
2.0056 1.1987 0.9157 0.69155

(0.52931) (0.25172) (0.18333) (0.12178)

Maxwell
0.0077597 0.0035692 0.0028675 0.0020923

(0.0033915) (0.0015351) (0.00099263) (0.00068739)
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Table 2: Mean errors m and standard deviations for strong mixed r.v.s.

Distribution
n

100 500 1000 2000

Gamma
0.039226 0.018124 0.01252 0.0086675

(0.015824) (0.006055) (0.0038485) (0.0023361)

Weibull
2.2052 1.3009 0.97509 0.75382

(1.1585) (0.5957) (0.41041) (0.28755)

Maxwell
0.0077694 0.0039277 0.002878 0.0027313
(0.006793) (0.0028336) (0.0020021) (0.0016573)

As expected, the mean error and the standard deviation decrease when

the sample size rises, and this holds both for i.i.d. and the dependent case. The

performance of the gamma kernel changes when dependence is introduced, but the

results in both tables are close. The mean errors are very close due to the fact the

bandwidth parameter is selected to minimize this error. However, the standard

deviations for the dependent data are higher than for the i.i.d. r.v.s. For example,

for the sample size of 500 the mean errors and the standard deviations for the

Maxwell pdf for the i.i.d. r.v.s are 0.0035692 (0.0015351) and for dependent r.v.s

0.0039277 (0.0028336). They differ due to the contribution of the Metropolis–

Hastings rejecting probability. This difference is less pronounced for larger sample

sizes.

The Metropolis–Hastings algorithm gives opportunity to generate AR pro-

cesses with known pdfs. As a consequence we know their derivatives and can

find mean errors and standard deviations of the gamma-kernel density deriva-

tives estimates for the dependent data. In the case when we consider the noise

distribution {ǫ} of the AR model (2.5) and the autoregressive parameter ρ that

influences on the dependence rate (2.6), we cannot indicate in general the true pdf

of the process. Hence, we consider the histogram based on 200000 observations

as a true pdf. As the noise distribution {ǫ} let us take the Gamma distribution

(α = 1.5, β = 1) and the Maxwell distribution (σ = 1). In [5] it was proved that,

as in the i.i.d. case, the gamma-kernel estimator of the pdf achieves the same

optimal rate of convergence in terms of the mean integrated squared error as

for strongly mixed r.v.s. For the various parameters ρ ∈ {0.1, 0.2, 0.3, 0.4} the

gamma estimates for the densities of the AR models are given in Figures 5–6.

Since the gamma-kernel estimators perform good for the various depen-

dence rates it is also true for the gamma-kernel pdf derivative estimators, but the

bandwidth parameter must be selected differently.

Hence, this findings confirms the fact that the covariance term (2.3) of the

pdf derivative is negligible in comparison with its variance and implies that one
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can use the same optimal bandwidth (1.10), both for independent and strongly

mixed dependent data.
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Figure 5: Gamma-kernel estimates of the pdf of the AR model with the

Gamma noise and ρ ∈ {0.1, 0.2, 0.3, 0.4} for the sample size

n = 2000.
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Figure 6: Gamma-kernel estimates of the pdf of the AR model with the

Maxwell noise and ρ ∈ {0.1, 0.2, 0.3, 0.4} for the sample size

n = 2000.
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4. APPENDIX

Proof of Lemma 2.1: Taking an integral from (2.2) we get

MISE(̂f ′(x)) =

∞
∫

0

(B(x)
2
+ V (x) + C(x))dx,(4.1)

where

C(x) =
2

n

n−1
∑

i=1

(

1 −
i

n

)

cov(K
′
b(X1), K

′
b(X1+i)).(4.2)

To evaluate the covariance we shall apply Davydov’s inequality

|cov(K
′
b(X1), K

′
b(X1+i))| ≤ 2πα(i)

1/r
‖ K

′
b(X1) ‖q‖ K

′
b(X1+i) ‖p,(4.3)

where p
−1

+ q
−1

+ r
−1

= 1, 1 ≤ p, q, r ≤ ∞, [3].

The latter norm for the case x ≥ 2b is determined by

‖ K
′
b(X1) ‖q =

(
∫
(

1

b

K(y)L1(y)

)q

f(y)dy

)1/q

(4.4)

=
1

b

(

E
(

K(ξ1)
q−1

L1(ξ1)
q
f(ξ1)

))1/q
,

where L1(t) is introduced in (1.7). The kernel K(ξ1) was used in (4.4) as a density

function and ξ1 is a Gamma(ρ1(x), b) random variable.

In the case x ∈ [0, 2b), similarly we have

‖ K
′
b(X1) ‖q =

(
∫

(

x

2b
2
K(y)L2(y)

)q
f(y)dy

)1/q

(4.5)

=
x

2b
2

(

E
(

K(ξ2)
q−1

L2(ξ2)
q
f(ξ2)

))1/q
,

where L2(t) is determined by (1.7), and ξ2 is a Gamma(ρ2(x), b) random variable.

Expressions (4.4) and (4.5) are constructed similarly, thus to a certain point, we

will not make differences between them.

By the standard theory of the gamma distribution it is known that µ =

E(ξ) = ρb(x)b and the variance is given by var(ξ) = ρb(x)b
2
. For simplicity, we

further use the notation ρ instead of ρb(x) defined in (1.4).

The Taylor expansion of both mathematical expectations in (4.4), (4.5) in

the neighborhood of µ is represented by

E
(

K(ξ)
q−1

L(ξ)
q
f(ξ)

)

= K(µ)
q−1

L(µ)
q
f(µ) + (K(ξ)

q−1
L(ξ)

q
f(ξ))

′
|ξ=µE(ξ − µ)

+
(

K(ξ)
q−1

L(ξ)
q
f(ξ)

)′′
|ξ=µ

E(ξ − µ)
2

2
+ o

(

E(ξ − µ)
2
)

.
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In the case when x ≥ 2b, µ = ρb = x, var(ξ) = ρb
2

= xb, we get

E
(

K(ξ)
q−1

L(ξ)
q
f(ξ)

)

=

=
K(x)

q−1

b

(

qL(x)
q+1

f
′
(x) − L(x)

q
f(x)L

′
(x)

−L(x)
q+1

f
′
(x) + bL(x)

q
f
′′
(x) + q

2
L(x)

q
f(x)L

′
(x) + bq

2
L(x)

q−2
(L

′
(x))

2
f(x)

+ 2bqL(x)
q−1

L
′
(x)f

′
(x) + bqL(x)

q−1
f(x)L

′′
(x) − bqL(x)

q−2
(L

′
(x))

2

)

+
K(x)

q−1
L(x)(q − 1)

b
2

(

(q − 1)f(x)L(x)
q+1

+ bL(x)
q
f
′
(x)

+ bqL(x)
q−1

f(x)L
′
(x)

)

+ o

(

b
2
)

.

Using Stirling’s formula

Γ(z) =

√

2π

z

(

z

e

)z
(

1 + O

(

1

z

))

,

we can rewrite the kernel function as

K(t) =
t
ρ−1

exp(−t/b)

b
ρΓ(ρ)

=
t
ρ−1

exp(−t/b) exp(ρ)

b
ρ
√

2πρ
ρ− 1

2 (1 + O(1/ρ))

.

Taking ρ = ρ1(x) according to (1.4), t = x, it holds

K(ρ1(x)b) =
1

√
2π

x
x/b−1

exp((x − x)/b)

b

x
b

x
b

x
b
− 1

2 (1 + O(b/x))

=
x
− 1

2 b
− 1

2

√
2π(1 + O(b/x))

.

Hence, its upper bound is given by

K(x) ≤
1

√
2πxb

.(4.6)

Next, using the property of the Digamma function Ψ(x) = ln(x) −
1
2x −

1
12x2 +

1
120x4 + O(1/x

6
), the first equation in (1.7) can de rewritten as

L1(ρ1b) = ln(ρ1b) − ln(b) − Ψ(ρ1) =
b

2x

+
b
2

12x
2

+ o(b
2
).(4.7)

Then substituting (4.6) in (4.4) and using the expressions (4.6) and (4.7), we

deduce

‖ K
′
b(X1) ‖q ≤ π

1−q
2q (2x)

1−q
2q

−1
b

1−q
2q

(

b
2
C2(q, x) + bC1(q, x) + C3(q, x)

)1/q

+o(b
2
),
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where we used the notations

C1(q, x) = −f(x)
2q

3 − 9q
2
+ 4q − 33

24x

− f
′
(x)

q + 1

2
+ f

′′
(x)

x

2
,(4.8)

C2(q, x) = f(x)
2q + 54x − q

2
x + 21q

3
x + q

4
x + 93qx

144x
3

− f
′
(x)

(q + 1)
2

12x

+ f
′′
(x)

q + 1

12
,

C3(q, x) = −f(x)
(q + 1)(q − 2)

2
.

The same steps can be done for ‖ K
′
b(X1+i) ‖p from (4.3). Then, if p = q holds,

one can represent Davydov’s inequality (4.3) as

|cov(K
′
b(X1), K

′
b(X1+i))| ≤(4.9)

≤ 2πα(i)
1
r π

1−q
q (2x)

1−q
q

−2
b

1−q
q

(

b
2
C2(q, x) + bC1(q, x) + C3(q, x)

)2/q

+ o(b
2
).

Using (4.9) and taking p = q = 2 + δ, r =
2+δ

δ it can be deduced that the covari-

ance (4.2) is given by

|C(x)| =

∣

∣

∣

∣

∣

2

n

n−1
∑

i=1

(

1 −
i

n

)

cov(K
′
b(X1), K

′
b(X1+i))

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

(

2
− 2δ+3

δ+2 π

1
δ+2 x

− 3δ+5
δ+2

b
− δ+1

δ+2

n

(

b
2
C2(δ, x) + bC1(δ, x) + C3(δ, x)

)
2

2+δ
)

·

n−1
∑

i=1

(

1 −
i

n

)

α(i)
δ

2+δ

∣

∣

∣

∣

∣

+ o(b
2
).

Then we can estimate the covariance by the previous expressions

|C(x)| ≤ S(b, x, δ, n)

n
∑

τ=2

(

1 −
τ − 1

n

)

α(τ − 1)
δ

2+δ + o(b
2
)

≤ S(b, x, δ, n)

∞
∑

τ=2

α(τ − 1)
δ

2+δ + o(b
2
) ≤ S(b, x, δ, n)

∞
∫

1

α(τ)
δ

2+δ dτ + o(b
2
),

where we used the following notation

S(b, x, δ, n) = 2
− 2δ+3

δ+2 π

1
δ+2 x

− 3δ+5
δ+2

b
− δ+1

δ+2

n

(

b
2
C2(δ, x) + bC1(δ, x) + C3(δ, x)

)
2

2+δ

.

Let us denote
δ

2+δ = υ, 0 < υ < 1. Then, in this notations, we get the estimate

of the covariance

|C(x)| ≤

(

2
−υ+3

2 π

1−υ
2 x

−υ+5
2

b
−υ+1

2

n

(

bC1(υ, x) + C3(υ, x)

)1−υ

+ o(b
2
)

) ∞
∫

1

α(τ)
υ
dτ.
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By 0 < υ < 1 then it follows

|C(x)| ∼
1

n

b
−υ+1

2 .

Remark 4.1. The main contribution to MISE (4.1) is provided by the

part corresponding to x ≥ 2b, so we will not do similar calculations here and

further for x ∈ [0, 2b) as b → 0.

Proof of Theorem 2.1: Regarding the dependent case it is known that

the MISE contains the bias, the variance and the covariance. By (1.8) it fol-

lows that the integrated sum of the squared bias and variance is the following

expression

∞
∫

0

(B(x)
2
+ V (x))dx =

b
2

16

∞
∫

0

P (x)dx

+

∞
∫

0

n
−1

b
− 3

2 x
− 3

2

4
√

π

(

f(x) +
b

2

(

f(x)

x

− f
′
(x)

))

dx(4.10)

+ o(b
2
+ n

−1
b
− 3

2 ).

This corresponds to the independent case.

By integration of (2.3) we get the upper bound of the integrated covariance

∞
∫

0

C(x)dx ≤

∞
∫

0

(

2
−υ+3

2 π

1−υ
2 x

−υ+5
2

b
−υ+1

2

n

C3(υ, x)
1−υ

+ o(b
2
)

)∞
∫

1

α(τ)
υ
dτdx.(4.11)

Combining (4.10) and (4.11), one can write

MISE(f
′
(x)) ≤

∞
∫

0

n
−1

b
−3/2

x
−3/2

4
√

π

(

f(x) +
b

2

(

f(x)

x

− f
′
(x)

))

dx

+

∞
∫

0

2
−υ+3

2 π

1−υ
2 x

−υ+5
2

b
−υ+1

2

n

C3(υ, x)
1−υ

dx

∞
∫

1

α(τ)
υ
dτ

+
b
2

16

∞
∫

0

P (x)dx + o(b
2
+ n

−1
b
− 5

2 ).

The derivative of this expression in b leads to

b

8

∞
∫

0

P (x)dx −
3n

−1
b
− 5

2

8
√

π

∞
∫

0

x
− 3

2 f(x)dx +
n
−1

b
− 3

2

16
√

π

∞
∫

0

x
− 3

2

(

f(x)

x

− f
′
(x)

)

dx

−

∞
∫

0

υ + 1

2
2
−υ+3

2 π

1−υ
2 x

−υ+5
2

b
−υ+3

2

n

C3(υ, x)
1−υ

dx

∞
∫

1

α(τ)
υ
dτ = 0.(4.12)
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Since 0 < υ < 1 holds as in Lemma 2.1, the third term in (4.12) by b has the

worst rate

c1b
−υ+3

2 = O

(

b
− 3

2

)

,

where c1 is a constant.

Neglecting terms with b
−3/2

and b
−υ+3

2 in comparison to the term containing

b
−5/2

, we simplify the equation

b
7/2

8

∞
∫

0

P (x)dx −
3n

−1

8
√

π

∞
∫

0

x
− 3

2 f(x)dx + o(b
7/2

) = 0.

The optimal b = o(n
−2/7

) is the same as in (1.10). Let us insert such b in (2.4)

MISEopt(f̂
′
(x)) =

∫ ∞

0

P (x)n
− 4

7

16
T

4
7 dx +

∞
∫

0

n
−4/7

T
−3/7

x
−3/2

4
√

π

f(x)dx

+

∞
∫

0

n
−6/7

T
−1/7

x
−3/2

8
√

π

(

f(x)

x

− f
′
(x)

)

dx(4.13)

+

∞
∫

0

(

2
−υ+3

2 π

1−υ
2 x

−υ+5
2

T
−υ+1

7

n

6−υ
7

C3(υ, x)
1−υ

dx

∞
∫

1

α(τ)
υ
dτ,

where

T =
3
∫∞
0 x

−3/2
f(x)dx

√
π

∫∞
0

(

f(x)
3x2 + f

′′(x)

)2
dx

.

The last term in (4.13) has the rate o(n
υ−6

7 ). By 0 < υ < 1 we get that the optimal

rate of convergence of MISE is given by MISEopt(f̂
′
(x)) = O(n

−4/7
).

Proof of Lemma 2.2: We have to prove that α(τ) defined by (2.6) sat-

isfies the conditions of Lemma 2.1. Conditions 2 and 3 of Lemma 2.1 only refer

to the density distribution. Thus, we remain to check only the first condition of

Lemma 2.1.

To this end, using (2.6) we get

∞
∫

1

α(τ)
υ
dτ ≤

τ0
∫

1

dτ +

∞
∫

τ0

(2(C + 1)E|Xi|
ν
|ρ

ν
|
τ
)
υ
dτ(4.14)

= τ0 − 1 + (2(C + 1)E|Xi|
ν
)
υ

∞
∫

τ0

(|ρ
ν
|
τ
)
υ
dτ.
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The integral in (4.14) can be taken in general as

∞
∫

τ0

(|ρ
ν
|
τ
)
υ
dτ =

|ρν |τυ

υ ln(|ρν |)

∣

∣

∣

∞

τ0

Thus, to satisfy the first condition of Lemma 2.1, it must be

|ρ
ν
|
τυ
∣

∣

∣

τ=∞
< ∞.(4.15)

Since ρ ∈ (−1, 1) holds, it follows |ρ| ∈ [0, 1). For ρ = 0 (4.15) is satisfied. For

|ρ| ∈ (0, 1) one can rewrite (4.15) as

(

1

ξ

)ντυ ∣
∣

∣

τ=∞
< ∞, ξ > 1,

which is valid as νυ > 0. The latter is true since 0 < υ < 1 and ν = min{p, q, 1} >

0. Thus, the strong mixing AR(1) process (2.5) satisfies Lemma 2.1. Hence, it

satisfies the conditions of Theorem 2.1.
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