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Abstract:

• The matrix S =
[
tr(WiQWjQ)

]
i,j=1,...,k

where Q is a symmetric positive definite ma-

trix and Wi = X′

iDiXi, i = 1, ..., k is formed by data tables Xi and diagonal matrices

of weights Di, plays a central role in dual STATIS method. In this paper, we ap-

proximate the distribution function of the entries of S, assuming data tables Xi given

by Ui + Ei, i = 1, ..., k with independent random matrices Ei representing errors, in

order to obtain (approximately) the distribution of Sv, where v is the orthonormal

eigenvector of S associated to the largest eigenvalue. To achieve this goal, we ap-

proximate uniformly the distribution of each entry of S. In general, our technique

consists in to approximate uniformly the distribution sequence
{
g(Vn + µn), n > 1

}
,

where g is some smooth function of several variables, {Vn, n > 1} is a sequence of

identically distributed random vectors of continuous type and {µn} is a non-random

vector sequence.
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1. INTRODUCTION

The dual STATIS method is an exploratory technique of multivariate data

analysis used to study simultaneously multiple data tables, each with information

of groups of individuals measured on the same set of variables (see [4], [8] or [9]).

The purpose of this method is to analyze the relationship between data tables and

combine them into a compromise matrix corresponding to an optimal agreement

between the data.

In this paper, we shall consider the ni-by-p random data tables Xi, i =

1, ..., k consisting in the measurements of k groups of ni individuals on the same

set of p variables, the ni-by-ni diagonal matrices Di of positive weights attached

to the ni observations of each matrix Xi in order to define

(1.1) Wi = X′
iDiXi ,

where prime denotes transpose. If the columns of Xi are Di-centered then Wi is

the covariance matrix between the p variables of Xi and its elements corresponds

to the scalar products between the variables in R
ni . To evaluate the closeness

of two data configurations in R
ni and R

nj , the trace tr(WiQWjQ), where Q is

a p-by-p symmetric positive definite matrix, is commonly used as scalar product

between Wi and Wj , known as Hilbert–Schmidt scalar product between Wi and

Wj (see [8], page 38).

We shall set sij = tr(WiQWjQ), i, j = 1, ..., k as being the entries of the

k-by-k interstructure matrix S. The vectorial correlation coefficient RV of Wi

and Wj is defined as

RV(Wi,Wj) =
tr(WiQWjQ)√

tr(WiQWiQ) tr(WjQWjQ)
.

(see [4]), which appears as a measure of similarity between Wi and Wj . The

reader is referred to [13] for further details on the RV coefficient. Moreover, from

Cholesky decomposition (see [5], page 229), there exists a unique upper triangular

p-by-p matrix T with positive diagonal elements such that Q = T′T and putting

Ai = D
1/2
i XiT

′
we get

A′
iAi = TX′

iDiXiT
′

which implies

tr(WiQWjQ) = tr(A′
iAiA

′
jAj) =

∣∣∣∣∣∣AiA
′
j

∣∣∣∣∣∣2
tr

> 0

where |||A|||tr =
√

tr(A′A) (see [5], page 60). Denoting by aiℓ, ℓ = 1, ..., ni the

rows of Ai and ajm, m = 1, ..., nj the rows of Aj , aiℓa
′
jm is the covariance between

aiℓ and ajm so that

tr(WiQWjQ) =

ni∑

ℓ=1

nj∑

m=1

[
cov(aiℓ,ajm)

]2
.
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Consider the eigenvalues ρ1 > ρ2... > ρk of S and the corresponding or-

thonormal eigenvectors v1,v2, ...,vk. From the spectral theorem for symmetric

matrices (see [7], page 104) we get

S = ρ1v1v
′
1 + ... + ρkvkv

′
k = PΛP′

where Λ is the diagonal matrix whose elements are the corresponding eigenvalues

and P′P = I, where I is the k-by-k identity matrix. From the above expression,

we can plot the ith stage in R
k

as a point Mi whose coordinates are the ith row

of PΛ1/2
(see [9]). Along all text, we will assume that points Mi are all near by

each other lying on around first axis, which lead us to ρi ≈ 0, for each i = 2, ..., k

and

(1.2) S ≈ ρvv′

setting ρ = ρ1 and v = v1. In our model, we will also assume random errors on

the data i.e.

(1.3) Xi = Ui + Ei

where Ei are independent ni-by-p random matrices representing the errors with

i.i.d. continuous entries and Ui are ni-by-p non-random matrices. Moreover, we

shall admit that E(S) has rank one, so that the spectral theorem for symmetric

matrices allow us to write

(1.4) E(S) = λαα′

where λ is the largest eigenvalue of E(S) associated to the orthonormal eigenvector

α. Hence, we are led to consider the model

(1.5) S = λαα′
+ E

for some p-by-p random matrix E satisfying E(E) = O (null matrix).

Let us start with the following question: if the sequence of matrices Ei, i =

1, 2, ..., k are independent with i.i.d. continuous entries how can we compute the

distribution function of each entry sij of the matrix S? Generally, the distribution

function of sij is hard to compute, so that our proposal answer to this question will

be to approximate the distribution of sij by some computable distribution. More

precisely, our results will permit us to approximate uniformly the distribution

function of each entry of the random matrix S by its linear part. The Section 2

will describe in detail all the theoretical results required to fulfill our intentions.

Once the distribution of the elements of S is achieved, we will be able to obtain

(approximately) the distribution of β̂ = Sv, which will be taken as an estimator

of β = λα. The example exhibited in last section considering the elements of Ei

i.i.d. normal distributed with zero mean and variance σ2
, it will illustrate our

inferential purposes in a very clear way.
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2. UNIFORM APPROXIMATIONS

In general way, our idea to approaching the distribution function of the

entries of S, will consist in expanding asymptotically a sequence of r.v.’s (with

unknown distribution) to obtain a random sequence with identifiable distribu-

tion. Thereafter, with the aid of a uniform bound, we will establish the uniform

approximation results imposing on the remainder term the asymptotic condition

oPr(1).
1

The driving tool in the our proof technique is to consider asymptotic

Taylor expansions.

Let us introduce the following notation: ‖a‖ =
(∑κ

i=1 a2
i

)1/2
for the Eu-

clidean norm of a vector a ∈ R
κ

(see [7], page 264) and |||A||| =

(∑κ
i,j=1 a2

ij

)1/2

for the norm of a real matrix A =
[
aij

]
i,j=1,...,κ

(known as Frobenius norm, see

[7] page 291). Given a differentiable mapping ϕ : R
N → R

M
we shall denote the

jacobian matrix of ϕ at the point x by Dϕ(x). For a differentiable real-valued

function ϕ : R
N → R having second partial derivatives, Dϕ(x) and D2ϕ(x) will

denote, respectively, the gradient vector and the Hessian matrix of ϕ at the

point x.

Lemma 2.1. Ifϕ ∈ C1
(R

N , RN
) satisfies |||Dϕ(x)||| = o

(
‖ϕ(x)‖

)
, ‖x‖ →

∞ then
∣∣∣∣∣∣Dϕ

(
x+ θ(x)

)∣∣∣∣∣∣ = o
(
‖ϕ(x)‖

)
, ‖x‖ → ∞ for any bounded function

θ(x).

Proof: We have,

∣∣∣∣∣∣Dϕ
(
x+ θ(x)

)∣∣∣∣∣∣
‖ϕ(x)‖ =

∣∣∣∣∣∣Dϕ
(
x+ θ(x)

)∣∣∣∣∣∣
∥∥ϕ
(
x+ θ(x)

)∥∥

∥∥ϕ
(
x+ θ(x)

)∥∥
‖ϕ(x)‖

and it is sufficient to prove that
∥∥ϕ
(
x+ θ(x)

)∥∥ ∼ ‖ϕ(x)‖ as ‖x‖ → ∞. Consid-

ering h : [0, 1] → R defined by

h(t) = log
∥∥ϕ
(
x+ tθ(x)

)∥∥

and setting ϕ(x) =
(
ϕ1(x), ..., ϕN (x)

)
we get

d
dth(t) =

ϕ1(x+tθ(x)) θ(x)·Dϕ1(x+tθ(x))+...+ϕN (x+tθ(x)) θ(x)·DϕN (x+tθ(x))

‖ϕ(x+tθ(x))‖2 .

Hence,

∣∣∣∣
d

dt
h(t)

∣∣∣∣6
|ϕ1(x+tθ(x))| ‖θ(x)‖‖Dϕ1(x+tθ(x))‖+...+|ϕN (x+tθ(x))| ‖θ(x)‖‖DϕN (x+tθ(x))‖

‖ϕ(x+tθ(x))‖2

6 N ‖θ(x)‖ |||Dϕ(x+tθ(x))|||
‖ϕ(x+tθ(x))‖

1Xn = oPr(1) means Xn
Pr
−→ 0 as n → ∞.
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and mean value theorem lead us to
∣∣log

∥∥ϕ
(
x+ θ(x)

)∥∥− log ‖ϕ(x)‖
∣∣ = |h(1) − h(0)| =

=

∣∣∣∣
dh

dt
(c)

∣∣∣∣ 6 κ ‖θ(x)‖
∣∣∣∣∣∣Dϕ

(
x+ cθ(x)

)∣∣∣∣∣∣
∥∥ϕ
(
x+ cθ(x)

)∥∥ , 0 < c < 1

which implies
∥∥ϕ
(
x+ θ(x)

)∥∥ ∼ ‖ϕ(x)‖ as ‖x‖ → ∞.

Next, we present the main uniform approximation result.

Theorem 2.1. Let Vn = (V1n, ..., VNn) be a sequence of random vectors

of continuous type such that {Vin, n > 1} (1 6 i 6 N) is identically distributed

and supn>1 ‖Vn‖ 6 W for some r.v. W . If Xn := g(Vn + µn) where µn is a

non-random vector sequence verifying ‖µn‖ → ∞ and g is a C2
(R

N
) map such

that
Dg(t)

‖Dg(t)‖ exists as ‖t‖ → ∞ and
∣∣∣∣∣∣D2g(t)

∣∣∣∣∣∣ = o
(
‖Dg(t)‖

)
, ‖t‖ → ∞ then,

with Yn := g(µn) + Dg(µn) · Vn, the law of Xn is uniformly approximate by the

law of Yn for large values of n, that is,

sup
x∈R

|FXn(x) − FYn(x)| → 0 .

Proof: Using the Taylor formula for g we get

Xn := g(µn + Vn) = g(µn) + Dg(µn) · Vn+
1

2
D2g(µn + θnVn) · V 2

n =

= Yn +
1

2
D2g(µn + θnVn) · V 2

n , 0 < θn < 1

where Dg(a) · Vn =

∑

i

∂g

∂xi
(a)Vin and D2g(a) · V 2

n =

∑

i,j

∂2g

∂xi∂xj
(a)VinVjn (see

[11], page 150). For ε > 0 fixed we have

Pr
{
Xn 6 x

}
= Pr

{
Xn 6 x,

|Xn − Yn|
‖Dg(µn)‖ 6 ε

}
+ Pr

{
Xn 6 x,

|Xn − Yn|
‖Dg(µn)‖ > ε

}

6 Pr {Yn 6 x + ε ‖Dg(µn)‖} + Pr

{ |Xn − Yn|
‖Dg(µn)‖ > ε

}

and

Pr {Yn 6 x − ε ‖Dg(µn)‖} = Pr {Yn 6 x − ε ‖Dg(µn)‖ , Xn 6 x}+

+ Pr {Yn 6 x − ε ‖Dg(µn)‖ , Xn > x}

6 Pr
{
Xn 6 x

}
+ Pr

{ |Xn − Yn|
‖Dg(µn)‖ > ε

}

that is,

−Pr

{
|Xn−Yn|
‖Dg(µn)‖ > ε

}
+ FDg(µn)·V 1

(x − g(µn) − ε ‖Dg(µn)‖) 6 FXn(x) 6

6 FDg(µn)·V 1
(x − g(µn) + ε ‖Dg(µn)‖) + Pr

{
|Xn−Yn|
‖Dg(µn)‖ > ε

}
.
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We can rewrite the above inequalities as

−Pr

{
|Xn−Yn|
‖Dg(µn)‖ > ε

}
+ FDg(µn)·V 1

‖g(µn)‖

(
x−g(µn)
‖Dg(µn)‖ − ε

)
6 FXn(x) 6

6 FDg(µn)·V 1
‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖ + ε

)
+ Pr

{
|Xn−Yn|
‖Dg(µn)‖ > ε

}
.

Therefore,

|FXn(x) − FYn(x)|6
∣∣∣∣FDg(µn)·V 1

‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖ + ε

)
− FDg(µn)·V 1

‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖

)∣∣∣∣+

+

∣∣∣∣FDg(µn)·V 1
‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖

)
− FDg(µn)·V 1

‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖ − ε

)∣∣∣∣+ Pr

{
|Xn−Yn|
‖Dg(µn)‖ >ε

}

and we obtain the following uniform bound,

sup
x∈R

|FXn(x) − FYn(x)| 6 sup
x∈R

∣∣∣∣FDg(µn)·V 1
‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖ +ε

)
−FDg(µn)·V 1

‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖

)∣∣∣∣+

+ sup
x∈R

∣∣∣∣FDg(µn)·V 1
‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖

)
− FDg(µn)·V 1

‖Dg(µn)‖

(
x−g(µn)
‖Dg(µn)‖ −ε

)∣∣∣∣+ Pr

{
|Xn−Yn|
‖Dg(µn)‖ >ε

}

(2.1)

Since
Dg(µn) · V 1

‖Dg(µn)‖
d−→ τ · V 1 (τ 6= 0)

and τ ·V 1 =

∑

i

τiVi1 is continuous then Polya’s theorem (see [3], page 3) states

FDg(µn)·V 1
‖Dg(µn)‖

−→ Fτ ·V 1 uniformly on R.

Hence, we can still write

sup
x∈R

∣∣∣∣FDg(µn)·V 1
‖Dg(µn)‖

(
x − g(µn)

‖Dg(µn)‖ + ε

)
− FDg(µn)·V 1

‖Dg(µn)‖

(
x − g(µn)

‖Dg(µn)‖

)∣∣∣∣ 6

6 sup
x∈R

∣∣∣∣FDg(µn)·V 1
‖Dg(µn)‖

(
x − g(µn)

‖Dg(µn)‖ + ε

)
− Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖ + ε

)∣∣∣∣+

+ sup
x∈R

∣∣∣∣Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖ + ε

)
− Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖

)∣∣∣∣+

+ sup
x∈R

∣∣∣∣Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖

)
− FDg(µn)·V 1

‖Dg(µn)‖

(
x − g(µn)

‖Dg(µn)‖

)∣∣∣∣

and

sup
x∈R

∣∣∣∣FDg(µn)·V 1
‖Dg(µn)‖

(
x − g(µn)

‖Dg(µn)‖

)
− FDg(µn)·V 1

‖Dg(µn)‖

(
x − g(µn)

‖Dg(µn)‖ − ε

)∣∣∣∣ 6

6 sup
x∈R

∣∣∣∣FDg(µn)·V 1
‖Dg(µn)‖

(
x − g(µn)

‖Dg(µn)‖

)
− Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖

)∣∣∣∣+

+ sup
x∈R

∣∣∣∣Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖

)
− Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖ − ε

)∣∣∣∣+

+ sup
x∈R

∣∣∣∣Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖ − ε

)
− FDg(µn)·V 1

‖Dg(µn)‖

(
x − g(µn)

‖Dg(µn)‖ − ε

)∣∣∣∣ .
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Choosing ε > 0 small enough, we get for each η > 0

sup
x∈R

∣∣∣∣Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖ + ε

)
− Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖

)∣∣∣∣ < η

and

sup
x∈R

∣∣∣∣Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖

)
− Fτ ·V 1

(
x − g(µn)

‖Dg(µn)‖ − ε

)∣∣∣∣ < η

provided that Fτ ·V 1 is uniformly continuous. Since sup
n>1

‖θnVn‖ 6 W we obtain

from Lemma 2.1,

|Xn − Yn|
‖Dg(µn)‖ 6

‖Vn‖2

2

∣∣∣∣∣∣D2g(µn + θnVn)
∣∣∣∣∣∣

‖Dg(µn)‖ 6
W 2

2

∣∣∣∣∣∣D2g(µn + θnVn)
∣∣∣∣∣∣

‖Dg(µn)‖
a.s.−→ 0

so that for every ε > 0, Pr

{ |Xn − Yn|
‖Dg(µn)‖ > ε

}
= o(1) as n → ∞. Taking ε > 0

small enough, Polya’s theorem permit us to conclude that

sup
x∈R

|FXn(x) − FYn(x)| → 0.

Remark 2.1. Let us note that, in Theorem 2.1, when N = 1 the condition

Dg(t)

‖Dg(t)‖ exists as ‖t‖ → ∞ can be dropped since in this case the uniform bound

(2.1) takes the look

sup
x∈R

|FXn(x) − FYn(x)| 6 sup
x∈R

∣∣∣∣∣FV1

(
x − g(µn)

dg
dx1

(µn)
+ ε

)
− FV1

(
x − g(µn)

dg
dx1

(µn)

)∣∣∣∣∣+

+ sup
x∈R

∣∣∣∣∣FV1

(
x − g(µn)

dg
dx1

(µn)

)
− FV1

(
x − g(µn)

dg
dx1

(µn)
− ε

)∣∣∣∣∣+ Pr

{∣∣∣∣∣
Xn − Yn

dg
dx1

(µn)

∣∣∣∣∣ > ε

}

and FV1 is uniformly continuous.

When N = 1 we can consider functions g : R −→ R defined by g(x) = xr

(power behavior) or more generally any polynomial
∑m

k=0 akx
k

with real coeffi-

cients ak. Moreover, functions g such that
d
dxg(x) = exp (xr

), r < 1 (exponen-

cial behavior) or
d
dxg(x) = log

r
(
x2

+ 1
)

(logarithmic behavior) can be chosen

broadening the important class of polynomials. In the multidimensional case, a

remarkable example occurs when V 1 has multivariate normal distribution with

positive-definite variance-covariance matrix and g is a polynomial function in N

variables x1, ..., xN with arbitrary real coefficients, that is,

g(x1, ..., xN ) =

m1∑

k1=0

...

mN∑

kN=0

ak1...kN
xk1

1 ...xkN

N .
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3. APPLICATION OF THE UNIFORM APPROXIMATIONS TO

THE DUAL STATIS METHOD

Without loss of generality, we will assume that the p-by-p symmetric

positive definite matrix Q and the ni-by-ni diagonal matrix Di introduced in

the first section are, respectively, the identity matrix and the diagonal matrix

diag

(
1
ni

, ..., 1
ni

)
. Indeed, these assumptions can be made performing the linear

transformation Xi to Yi =
√

ni D
1/2
i XiT

′
as a preliminary step. From (1.1) and

(1.3) we have

Wi = X′
iDiXi

= (Ui + Ei)
′Di(Ui + Ei)

=
1

ni
U′

iUi +
1

ni

[
U′

iEi + (U′
iEi)

′
]
+

1

ni
E′

iEi.

Thus,

WiWi =
1

n2
i

(U′
iUi)

2
+

1

n2
i

(U′
iUi)

(
U′

iEi + (U′
iEi)

′
)

+
1

n2
i

(U′
iUi)(E

′
iEi)+

+
1

n2
i

(
U′

iEi + (U′
iEi)

′
)
(U′

iUi) +
1

n2
i

(
U′

iEi + (U′
iEi)

′
)2

+

+
1

n2
i

(
U′

iEi + (U′
iEi)

′
)
(E′

iEi) +
1

n2
i

(E′
iEi)(U

′
iUi)+

+
1

n2
i

(E′
iEi)

(
U′

iEi + (U′
iEi)

′
)

+
1

n2
i

(E′
iEi)

2.

and

tr(WiWi) =
1

n2
i

tr
(
(U′

iUi)
2
)

+
4

n2
i

tr
(
U′

iUiU
′
iEi

)
+

2

n2
i

tr
(
(U′

iUi)(E
′
iEi)

)
+

+
4

n2
i

tr
(
E′

iEiU
′
iEi

)
+

1

n2
i

tr

((
U′

iEi + (U′
iEi)

′
)2)

+
1

n2
i

tr
(
(E′

iEi)
2
)

provide that tr(A) = tr(A′
) and tr(AB) = tr(BA) (see [5], page 50). Moreover,

WiWj =
1

ninj
(U′

iUi)(U
′
jUj) +

1

ninj
(U′

iUi)
(
U′

jEj + (U′
jEj)

′
)
+

+
1

ninj
(U′

iUi)(E
′
jEj) +

1

ninj

(
U′

iEi + (U′
iEi)

′
)
(U′

jUj)+

+
1

ninj

(
U′

iEi + (U′
iEi)

′
)(

U′
jEj + (U′

jEj)
′
)

+
1

ninj

(
U′

iEi + (U′
iEi)

′
)
(E′

jEj)+

+
1

ninj
(E′

iEi)(U
′
jUj) +

1

ninj
(E′

iEi)
(
U′

jEj + (U′
jEj)

′
)

+
1

ninj
(E′

iEi)(E
′
jEj).
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when i 6= j and so

tr(WiWj) =
1

ninj
tr
(
U′

iUiU
′
jUj

)
+

2

ninj
tr
(
U′

iUiU
′
jEj

)
+

+
1

ninj
tr
(
U′

iUi)(E
′
jEj

)
+

2

ninj
tr
(
U′

iEiU
′
jUj

)
+

2

ninj
tr
(
U′

iEiU
′
jEj

)
+

+
2

ninj
tr
(
U′

iEi(U
′
jEj)

′
)

+
2

ninj
tr
(
U′

iEiE
′
jEj

)
+

1

ninj
tr
(
E′

iEiU
′
jUj

)
+

+
2

ninj
tr
(
E′

iEiU
′
jEj

)
+

1

ninj
tr
(
E′

iEiE
′
jEj

)
.

We will apply now the theoretical results of Section 2 to obtain an uniform ap-

proximation for the entries of the matrix S considering gi : R
ni×p −→ R defined

by

gi(X) =
1

n2
i

tr
(
(X′X)

2
)
, i = 1, ..., k.

Representing ij the jth column of an identity matrix of unspecified dimensions

we have

∂gi(X)

∂xℓj
=

1

n2
i

tr
(
X′X(X′iℓi

′
j + iji

′
ℓX) + (X′iℓi

′
j + iji

′
ℓX)X′X

)

=
4

n2
i

tr
(
X′XX′iℓi

′
j

)

ℓ = 1, ..., ni, j = 1, ..., p (see [5], pages 299 and 300). Therefore,

gi(Ui) + Dgi(Ui) · Ei =
1

n2
i

tr
(
(U′

iUi)
2
)

+
4

n2
i

tr
(
U′

iUiU
′
iEi

)

and from Theorem 2.1 we obtain

(3.1) sup
x∈R

∣∣Fgi(Ui+Ei) − Fgi(Ui)+Dgi(Ui)·Ei

∣∣→ 0

as ‖vec(Ui)‖ → ∞, where vec(Ui) is the vectorization of Ui (see [5], pages 339

and 340), since the entries of Ei are continuous r.v.’s. For the case i 6= j consider

gi,j : R
ni×p × R

nj×p −→ R defined by

gi,j(X,Y) =
1

ninj
tr
(
X′XY′Y

)
, i, j = 1, ..., k, i 6= j.

Thus,

gi,j(Ui,Uj) + Dgi,j(Ui,Uj)·(Ei,Ej) =
1

ninj
tr
(
U′

iUiU
′
jUj

)
+

+
2

ninj
tr
(
U′

iUiU
′
jEj

)
+

2

ninj
tr
(
U′

jUjU
′
iEi

)

and again, from Theorem 2.1 we have

(3.2) sup
x∈R

∣∣∣Fgi,j(Ui+Ei,Uj+Ej) − Fgi,j(Ui,Uj)+Dgi,j(Ui,Uj)·(Ei,Ej)

∣∣∣→ 0
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as ‖vec(Ui)‖ → ∞ for each i. Therefore, considering S = [sij ]i,j=1,...,k where

sii = gi(Ui) + Dgi(Ui) · Ei and sij = gi,j(Ui,Uj) + Dgi,j(Ui,Uj) · (Ei,Ej),

with i 6= j for all i, j = 1, ..., k, we can state from (3.1) and (3.2) that the distri-

bution of each entry of S can be uniformly approximated by the distribution of

the same entry of S when ‖vec(Ui)‖ → ∞ for each i.

The above exposure can be summarized in the following result

Theorem 3.1. If Xi, i = 1, ..., k are ni-by-p random data tables such that

Xi = Ui + Ei, where Ei are independent ni-by-p random matrices having i.i.d.

continuous entries and Ui are non-random ni-by-p matrices then, for each i, j =

1, ..., k, the distribution of

sij =
1

ninj
tr
[
(Ui + Ei)

′
(Ui + Ei)(Uj + Ej)

′
(Uj + Ej)

]

is uniformly approximated by the distribution of

sij =
1

ninj
tr
(
U′

iUiU
′
jUj

)
+

2

ninj
tr
(
U′

iUiU
′
jEj

)
+

2

ninj
tr
(
U′

jUjU
′
iEi

)
,

as ‖vec(Ui)‖ → ∞ for each i.

Remark 3.1. Observe that the condition ‖vec(Ui)‖ → ∞ for each i are

related with the smallness coefficient of variation and it is a verifiable assumption

in some scenarios.

3.1. Estimating the eigenvalue and the eigenvector of E(S)

Recovering (1.5) we can write synthetically

(3.3) S
d≈ S = λαα′

+ E

when ‖vec(Ui)‖ is large enough for all i (i.e. the distribution of each entry of E

can be computable approximately). From (1.2) and (1.4), one estimates λ by the

eigenvalue ρ and one estimates α by the eigenvector v, that is, we will consider

the following estimators

λ̂ = ρ and α̂ = v

of λ and α, respectively. The choice of λ̂ and α̂ as estimators of λ and α, respec-

tively, arises in a very natural way (the same estimation method of eigenvalues

and eigenvectors was already used in Anderson (1963)). On the other hand, the

symmetry of S implies

β̂ = Sv =
(
I ⊗ v′

)
vec(S)
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where ⊗ denotes the Kronecker product (see [5], page 333) and vec(S) is the

vectorization of S. Using (3.3) we can compute approximately the distribution

of β̂. Indeed, we can consider the approximated estimator β̃ = (I ⊗α′
) vec(S)

instead of β̂, since its distribution is always determinable with the aid of the

errors distribution.

3.2. Example with i.i.d. normal errors

Let us consider the entries of Ei i.i.d. normal distributed with zero mean and

variance σ2
. Given an non-random q-by-ni matrix M, it is well-known that the

trace tr(MEi) is distributed normally with zero mean and variance σ2
tr(MM′

).

Therefore, sii is distributed normally with mean
tr((U′

iUi)
2)

n2
i

and variance

16σ2 tr((U′
iUi)

3)

n4
i

. Moreover, sij is distributed normally with mean
tr(U′

iUiU
′
jUj)

ninj
and

variance
4σ2 tr((U′

iUi)
2U′

jUj+(U′
jUj)

2U′
iUi)

n2
i n2

j

for all i, j = 1, ..., k with i 6= j.

Using the covariance properties we also get

Cov (sii, sii) = Cov

(
4
n2

i

tr(U′
iUiU

′
iEi),

4
n2

i

tr(U′
iUiU

′
iEi)

)
=

16σ2

n4
i

tr
(
(U′

iUi)
3
)

and for i 6= j,

Cov (sii, sjj) = Cov

(
4
n2

i

tr(U′
iUiU

′
iEi),

4
n2

j

tr(U′
jUjU

′
jEj)

)
= 0

Cov (sii, sij) =

= Cov

(
4
n2

i

tr (U′
iUiU

′
iEi) , 2

ninj
tr

(
U′

iUiU
′
jEj

)
+

2
ninj

tr

(
U′

jUjU
′
iEi

))

=
8σ2

n3
i nj

tr

(
(U′

iUi)
2
U′

jUj

)

Cov (sij , sij) = Cov

(
2

ninj
tr

(
U′

iUiU
′
jEj

)
+

2
ninj

tr

(
U′

jUjU
′
iEi

)
,

2
ninj

tr

(
U′

iUiU
′
jEj

)
+

2
ninj

tr

(
U′

jUjU
′
iEi

))

=
4σ2

n2
i n2

j

tr

(
(U′

iUi)
2U′

jUj

)
+

4σ2

n2
i n2

j

tr

(
(U′

jUj)
2U′

iUi

)
.

For all different i, j, ℓ, q we still have

Cov (sii, sjℓ) = Cov

(
4
n2

i

tr(U′
iUiU

′
iEi),

2
njnℓ

tr(U′
jUjU

′
ℓEℓ) +

2
njnℓ

tr(U′
ℓUℓU

′
jEj)

)

= 0
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Cov (sij , siℓ) = Cov

(
2

ninj
tr(U′

iUiU
′
jEj) +

2
ninj

tr(U′
jUjU

′
iEi),

2
ninℓ

tr(U′
iUiU

′
ℓEℓ) +

2
ninℓ

tr(U′
ℓUℓU

′
iEi)

)

=
4σ2

n2
i njnℓ

tr

(
U′

jUjU
′
iUiU

′
ℓUℓ

)

Cov (sij , sqℓ) = Cov

(
2

ninj
tr(U′

iUiU
′
jEj) +

2
ninj

tr(U′
jUjU

′
iEi),

2
nqnℓ

tr(U′
qUqU

′
ℓEℓ) +

2
nqnℓ

tr(U′
ℓUℓU

′
qEq)

)

= 0

The next table resumes all covariance computations:

Table 1: Covariance between elements of S.

Elements Covariance # of elements

Cov(sii, sii)
16 σ2

n4

i

tr
��

U
′
iUi

�3�
k

Cov(sii, sij)
8 σ2

n3

i
nj

tr
��

U
′
iUi

�2
U

′
jUj

�
k (k−1)

Cov(sii, sji)
8 σ2

n3

i
nj

tr
��

U
′
iUi

�2
U

′
jUj

�
k (k−1)

Cov(sij , sii)
8 σ2

n3

i
nj

tr
��

U
′
iUi

�2
U

′
jUj

�
k (k−1)

Cov(sji, sii)
8 σ2

n3

i
nj

tr
��

U
′
iUi

�2
U

′
jUj

�
k (k−1)

Cov(sii, sjj) 0 k (k−1)

Cov(sii, sjℓ) 0 k (k−1)(k−2)

Cov(sij , sℓℓ) 0 k (k−1)(k−2)

Cov(sij , sij)
4 σ2

n2

i
n2

j

tr
��

U
′
iUi

�2
U

′
jUj

�
+ 4 σ2

n2

i
n2

j

tr
��

U
′
jUj

�2
U

′
iUi

�
k (k−1)

Cov(sij , sji)
4 σ2

n2

i
n2

j

tr
��

U
′
jUj

�2
U

′
iUi

�
+ 4 σ2

n2

i
n2

j

tr
��

U
′
jUj

�2
U

′
iUi

�
k (k−1)

Cov(sij , siℓ)
4 σ2

n2

i
njnℓ

tr
�
U

′
jUjU

′
iUiU

′
ℓUℓ

�
k (k−1)(k−2)

Cov(sij , sjℓ)
4 σ2

n2

j
ninℓ

tr
�
U

′
iUiU

′
jUjU

′
ℓUℓ

�
k (k−1)(k−2)

Cov(sij , sℓi)
4 σ2

n2

i
njnℓ

tr
�
U

′
iUiU

′
jUjU

′
ℓUℓ

�
k (k−1)(k−2)

Cov(sij , sℓj)
4 σ2

n2

j
ninℓ

tr
�
U

′
iUiU

′
jUjU

′
ℓUℓ

�
k (k−1)(k−2)

Cov(sij , sqℓ) 0 k (k−1)(k−2)(k−3)

Generally, if Σ+
i is the Moore–Penrose inverse (see [5], page 493) of the

covariance matrix Σi of vec(Ui + Ei) (the vectorization of Ui + Ei) then the

quadratic form vec(Ui + Ei)
′Σ+

i vec(Ui + Ei) has chi-square distribution with

ri = rank(Σi) degrees of freedom and non-centrality parameter δi = U′
iΣ

+
i Ui (see

[12], page 182). Hence, we may use δi to measure the non-centrality of the sample.
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In this case, the covariance matrix of vec(Ei) is known, so that the assumption

‖vec(Ui)‖ → ∞ for each i corresponds to consider observations with low variation

coefficients which implies a large δi.

Since S = λαα′
+ E with E(E) = O we get

E
((

I ⊗α′
)
vec(S)

)
=
(
I ⊗α′

)
vec(λαα′

) = λα = β

that is, β̂ is approximately unbiased. The covariance matrix of β̂ can also be

computed (approximately) through

(3.4)
(
I ⊗α′

)
Σvec(S) (I ⊗α)

where Σvec(S) is the covariance matrix of S (i.e. the elements of the previous

table). Hence, β̂ will have (approximately) normal distribution with mean value

β and covariance matrix C = (I ⊗α′
)Σvec(S) (I ⊗α).

Remark 3.2. Relation (3.4) lead us even to consider

Σ̂ =
(
I ⊗ v′

)
Σvec(S) (I ⊗ v)

as an estimator of the covariance matrix of β̂.

Now, we will construct a non-random k2
-by-k2

matrix G (k > 1) such that

the random vector y = Gvec(S) be independent of β̂ and

E
(
Gvec(S)

)
= 0, GΣvec(S)G

′
=

[
σ2I O12

O21 O22

]

where I is the identity matrix of some size less than or equal to k2
and O12,

O21, O22 are matrices with zero elements. First, we can obtain an k2
-by-k2

non-random matrix B such that

BE
(
vec(S)

)
= 0 and BΣvec(S)(I ⊗α) = O

taking, for instance,

B = R

(
I −

[
Σvec(S)(I ⊗α) E

(
vec(S)

) ] [
Σvec(S)(I ⊗α) E

(
vec(S)

) ]+)

where R is an arbitrary (conformatable) matrix (see [1], page 295). Hence,

Bvec(S) will have multivariate normal distribution with mean vector BE
(
vec(S)

)

and covariance matrix BΣvec(S)B
′

(see [14], page 32). Since BΣvec(S)B
′

is an

symmetric matrix with rank r such that BΣvec(S)B
′

is either positive definite

(r = k2
) or positive semidefinite (r < k2

) then:
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(i) If r = k2
then there exists a nonsingular k2

-by-k2
matrix H such that

HBΣvec(S)B
′H′

= I.

(ii) If r < k2
then there exists a nonsingular r-by-r matrix H such that

HBΣvec(S)B
′H′

=

[
I O12

O21 O22

]

where O12, O21 and O22 are r-by-(k2 − r), (k2 − r)-by-r and (k2 − r)-

by-(k2 − r) matrices with zero elements, respectively (see [14], page

27). Therefore, we can take

G = σHB

and the components of y will be i.i.d. normal distributed with zero

mean and variance σ2
.

For testing the assumption rank
(
E(S)

)
= 1 we can use the following statis-

tical test:

F =
rσ2β̂

′
Σ̂

+
β̂

ν ‖y‖2

where ν is the rank of Σ̂.

Remark 3.3. Let us stand out that Σ̂
+

=
1

σ2
Σ̃

+
where Σ̃

+
is independent

of σ and so F do not depend on σ.

The statistical test F will have (approximately) F-distribution with pa-

rameters ν, r and non-centrality parameter δ = β′Σ̂
+
β (see [6], page 609). Since

rank
(
E(S)

)
= 1 if δ > 0, we will use F to test the null hypothesis H0 : δ = 0

against H1 : δ > 0 and the p-value of this statistical test of hypothesis can be

computed by

p-value = Pr(F > Fobs|δ = 0)

where Fobs is the observed value.

After validate the model, we are able to use statistical hypothesis tests

on the components of the vector β. Given a ℓ-by-k non-random matrix Z and

ψ = Zβ, we can test the hypothesis H0 : ψ = z, where z is a non-random vector.

Considering the estimator ψ̂ = Zβ̂ of ψ then ψ̂ will have (approximately) normal

distribution with mean value ψ = Zβ and covariance matrix ZΣ̂Z′
(see [14], page

32). Moreover, ψ̂ will be also independent from y which lead us to use the

following statistical test:

F =

rσ2
(ψ̂ − z)

′
(
ZΣ̂Z′

)+
(ψ̂ − z)

ν ‖y‖2
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where ν is the rank of ZΣ̂Z′
. Again, F do not depend on σ (see Remark 4). If

H0 is accepted then F will have (approximately) F-distribution with parameters

ν, r and noncentrality parameter

δ = (ψ − z)
′
(
ZΣ̂Z′

)+
(ψ − z).

If ZΣ̂Z′
was invertible then δ = 0 is equivalent to the acceptance of H0. Hence,

the p-value of this statistical test of hypothesis is given by

p − value = Pr(F > Fobs|H0 is true)

where Fobs is the observed value.

Remark 3.4. Observe that the above statistical test of hypothesis is a

generalization of the first one, in the sense that we can use it with Z = I and

z = 0 to test the assumption rank
(
E(S)

)
= 1.

Remark 3.5. Furthermore, choosing the matrix Z and the vector z ap-

propriately we can perform statistical tests of hypothesis to compare two or more

components of β = (β1, ..., βk), for instance, H0 : βi = βj against H1 : βi 6= βj (i.e.

z = 0 and Z =
[
zij

]
i=1,...,ℓ
j=1,...,k

defined by z1i = −z1j = 1 with all remaining entries

being zero). Note also that the statistical test H0 : βi = βj against H1 : βi 6= βj

(i 6= j) is equivalent to compare two different components of α provided that

λ 6= 0.

4. CONCLUSIONS

The theoretical results of Section 2 arose to get the solution to the following

problem: when there is no limiting distribution for a sequence of r.v.’s Xn can

we approximate the limit distribution of g(Xn) for large values of n and some

fixed function g? The well-known delta method cannot be used to give an answer

to this question since there is no limiting distribution for Xn. In Theorem 2.1

we partially answer to the above question considering Xn = Vn + µn and giving

sufficient conditions on g to obtain a sequence of random variables which are of

the same type of g(Xn) for large values of n. Let us observe also that our result

allows us to get “normalizing constants” for g(Xn) when n is large enough.

Therefore, besides the uniform approximation of the distribution function

sequence Fg(Vn+µn) by a computable one, this work develops inference results on

the components of the vector λα, where λ and α are, respectively, the eigenvalue

and the eigenvector of the rank one matrix E(S), with S the interstructure matrix

used in dual STATIS method admitting data tables of the form (1.3). So, our
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results appears in the same alignment of Lazraq (see [10]) which considered an

inferencial approach for the validation of the compromise matrix obtained by the

STATIS method.

In our scenario of data tables, remains an open problem the generalization

of the presented inferential results to the case where the rank of E(S) is greater

than one.
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1. INTRODUCTION

One recurrent question in multivariate extreme value theory (MEVT)

is how to infer the strength of dependence among maxima. To illustrate this

inquiry by an example, monthly maxima of hourly precipitation measured at two

french stations from February 1987 to December 2002 are displayed in Figure 1.

The two stations belong to the same hydrological basin of Orgeval

(https://gisoracle.cemagref.fr/) that is located in France, west of Paris.

For each season, a scatterplot between the two stations shows the original

45 (15 years × 3 months per season) monthly maxima recorded in millimeters.

The dependence structure seems to vary according to seasons and it is not clear

if the largest summer values are close to independence.
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Figure 1: Monthly maxima of hourly precipitation for each season,

measured at two stations in the basin of Orgeval (near Paris)

during 1987-2002.

This concept of asymptotic independence has been studied by many au-

thors. In this paper, we follow the approach introduced by Ledford and Tawn

(1996) and extended by Ramos and Ledford (2009). Before explaining the de-

tails of our method, we need to recall a few basic concepts about MEVT and to

introduce some notations. Suppose that we have at our disposal n independent

and identically distributed pairs (Xi, Yi) with unit-Fréchet margins (P(Xi ≤ x) =

exp(−1/x) for x > 0) and that the component-wise maxima vector (MX,n, MY,n)=
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(max(X1, ..., Xn), max(Y1, ..., Yn)) converges in the following way:

lim
n→∞

P

(
MX,n

n
≤ x,

MY,n

n
≤ y

)
= G(x, y), for x, y > 0.(1.1)

The limiting distribution function G is called the bivariate extreme value distri-

bution and it can be written as G(x, y) = exp{−V (x, y)}, with

V (x, y) =

∫ 1

0
max

(
ω

x
,
1 − ω

y

)
dH(ω),

where H(.) is a finite non-negative measure on [0, 1] such that
∫ 1
0 ωdH(w) =∫ 1

0 (1−ω)dH(w) = 1. This latter condition on H ensures that the margins G(x,∞)

and G(∞, y) are unit-Fréchet distributed. The function V is called the pairwise

extremal dependence function. It is homogeneous of order −1, i.e. V (tx, ty) =

t−1V (x, y) for any positive t and G is max-stable, i.e. Gt
(tx, ty) = G(x, y). By

definition of H, the function V has no explicit form and various non-parametric

estimators of V have been studied (e.g. Capéraà et al., 1997). As an example,

an approach based on a classical geostatistical tool, the madogram (Matheron,

1987), was proposed by Naveau et al. (2009). Its simplest version (Cooley et al.,

2006) focused on the estimation of the extremal coefficient θ = V (1, 1). This coef-

ficient provides a quick summary of the dependence between maxima. It belongs

to the interval [1, 2]. If θ equals two, the pairwise maxima are independent, and

if θ equals one, it is the complete dependence case. Cooley et al. (2006) defined

the so-called F -madogram

ν =
1

2
E |F (MX,n) − F (MY,n)| ,(1.2)

where F denotes the distribution function of MX,n and MY,n, in order to express

the extremal coefficient as

θ =
1 + 2ν

1 − 2ν
.(1.3)

Going back to the maxima displayed in Figure 1, one may wonder if con-

vergence (1.1) provides an appropriate probabilistic framework to study the near

independence seen in our summer rainfall data. Convergence (1.1) implies that

limnP

(
Xi

n > x or
Yi

n > y
)

= − log G(x, y). Hence

lim
n−→∞

nP

(
Xi

n
> x and

Yi

n
> y

)
= log G(x, y) − log G(x,∞) − log G(∞, y).

If we are in the asymptotically independent case, i.e. G(x, y) can be written as

the product G(x, y) = G(x,∞)G(∞, y), the right-hand side of the last conver-

gence is nothing else than zero. This result is uninformative about the degree of

dependence among our rainfall maxima. A conceptual extension is needed to im-

prove our understanding of the probability of having joint extremes. To fill in this
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gap, Ledford and Tawn in a series of papers (e.g. Ledford and Tawn, 1996, 1997,

1998) introduced a new tail model of the distribution which has been simplified

by Ramos and Ledford (2009) as follows

(1.4) P (X > x, Y > y) = (xy)
− 1

2η L(x, y), for some η ∈ (0, 1],

with L a bivariate slowly varying function at infinity. The coefficient of tail de-

pendence, η, is a measure of asymptotic independence. It is equal to one in the

asymptotic dependence case and less than one in the asymptotic independence

one. Condition (1.4) is tailored to analyze large excesses in the asymptotic in-

dependent case but it needs a reformulation in order to be used with pairs of

maxima, as the ones pictured in Figure 1. This reformulation has been recently

proposed by Ramos and Ledford (2011) who studied an extension of (1.1) by

proving under the tail model (1.4) that, for x, y > 0,

lim
ε→0

lim
n→∞

P

[
MX,n,εbn

bn
≤ x,

MY,n,εbn

bn
≤ y

]
= Gη(x, y) = exp

[
− Vη(x, y)

]
,(1.5)

where the normalising constants bn are defined implicitly as nP(X > bn, Y >

bn) = 1, M•,n,ε corresponds to the component-wise maxima such that (Xi, Yi)

occur within the set Rε = {(x, y) : x > ε, y > ε} and

Vη(x, y) = η

∫ 1

0

[
max

(
ω

x
,
1 − ω

y

)] 1
η

dHη(ω),(1.6)

with Hη a finite and non-negative measure satisfying the constraint

η−1
=

∫ 1
2

0
ω

1
η dHη(ω) +

∫ 1

1
2

(1 − ω)
1
η dHη(ω).

The new dependence function Vη is homogeneous of order − 1
η :

Vη(tx, ty) = t
− 1

η Vη(x, y),

and the distribution Gη(x, y) obeys an extended max-stable property:

Gt1/η

η (tx, ty) = Gη(x, y).

In (1.1), a normalisation of n−1
is required in order to stabilize the component-

wise maxima whereas in (1.5) bn is of order O(nη
).

The main goal of this paper is to adapt the concept of madogram to this

framework of asymptotic independence. The asymptotic properties of our es-

timators are also derived. A small simulation study allows us to compare our

inference scheme with the maximum likelihood estimation approach. All these

estimators are applied to our rainfall data set.
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2. THE F -MADOGRAM IN THE ASYMPTOTIC INDEPEND-

ENCE CASE

Denote (M∗
X , M∗

Y ) the bivariate vector that follows the distribution Gη(x, y),

i.e.

P (M∗
X ≤ x, M∗

Y ≤ y) = exp{−Vη(x, y)},(2.1)

with Vη(x, y) of the form (1.6).

Concerning the marginals, we denote

F ∗X(x) := P (M∗
X ≤ x) = exp

[
− σXx

− 1
η

]
and F ∗Y (y) := exp

[
− σY y

− 1
η

]
,(2.2)

with σX = Vη(1,∞) and σY = Vη(∞, 1). As the scaling coefficients σX and σY

are not necessarily equal, the Fréchet margins of M∗
X and M∗

Y differs by a mul-

tiplicative factor. In the classical MEVT setup defined by (1.1), the extremal

coefficient θ = V (1, 1) was simple to explain. It always varied between one (de-

pendence) and two (independence). Having different marginals in (2.2) makes it

difficult to find simple and interpretable summaries like the extremal coefficient.

One possible way around this interpretability issue is to go back to the madogram

distance because it is trivial to interpret it as a metric and it is marginal free.

The F -madogram for the pair (M∗
X , M∗

Y ) can be defined as

(2.3) νη :=
1

2
E |F ∗X (M∗

X) − F ∗Y (M∗
Y )| ,

and we can derive from (1.6) and (2.2) the relationship (see Appendix)

θη =
1 + 2νη

1 − 2νη
,(2.4)

where θη := Vη(σ
η
X , σ

η
Y ) could be viewed as an analog of the classical extremal

coefficient, comparing equations (1.3) and (2.4). If νη equals zero, then θη equals

one. As the distance νη increases, the coefficient θη also increases. If M∗
X and

M∗
Y are independent, then F ∗X (M∗

X) and F ∗Y (M∗
Y ) are independent and uniformly

distributed random variables. It follows that νη = 1/6. From (2.4), we deduce

that θη = 2.

The only difference between equations (1.3) and (2.4) resides in the fact

that the pairwise maxima vector belongs now to the largest family Gη instead of

the classical G. It is also essential to emphasize that the F -madogram should not

be interpreted alone. The coefficient η is paramount to explore the asymptotic

independence domain.
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3. INFERENCE

3.1. A method-of-moment approach

Our main result is the following theorem that deals with the convergence

of the empirical estimator deduced from (2.3).

Theorem 1. Let
(
M∗

Xi,n
, M∗

Yi,n

)
be a sample of N bivariate maxima

vectors of block size n that converges in distribution, as n → ∞, to a bivariate

extreme value distribution with an η-dependence function defined as in (1.6). Let

ν̂η =
1

2N

N∑

i=1

∣∣∣F̂ ∗X(M∗
Xi,n) − F̂ ∗Y (M∗

Yi,n)

∣∣∣ ,(3.1)

where F̂ ∗X , resp. F̂ ∗Y , denotes the empirical distribution function of the sample

M∗
Xi,n

, resp. M∗
Yi,n

. Then, as n → ∞ and N → ∞

√
N
(
ν̂η − νη

)
d−→
∫

[0,1]2
NC(u, v)dJ(u, v),

where J(x, y) =
1
2 |x − y| and NC is a Gaussian process defined by

(3.2) NC(u, v) = BC(u, v) − BC(u, 1)
∂C

∂u
(u, v) − BC(1, v)

∂C

∂v
(u, v),

and BC is a Brownian bridge on [0, 1]
2 with covariance function

E{BC(u, v) · BC(u′, v′)} = C(u ∧ u′, v ∧ v′) − C(u, v) · C(u′, v′),

with u ∧ u′ = min(u, u′) and C the copula function with respect to (2.1).

From (2.4), we introduce the following estimator for the extremal coefficient

θ̂η =
1 + 2ν̂η

1 − 2ν̂η
.(3.3)

Applying the delta method, the following corollary follows.

Corollary 2. Under the assumption of Theorem 1, we have

√
N
(
θ̂η − θη

)
d−→ (1 + θη)

2

∫

[0,1]2
NC(u, v)dJ(u, v).
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To infer the value of η, we complement our method-of-moment via a Gen-

eralized Probability Weighted Moment (GPWM) approach (Diebolt et al., 2008)

based on the following moment equality

µω = E(M∗ω(FM∗)) =

∫ +∞

−∞
x ω(FM∗(x))dFM∗(x),

for any variable M∗
with a distribution function FM∗ and ω a suitable continuous

function satisfying

{
ω(t) = O((1 − t)b

) for t close to 1, b ≥ 0,

ω(t) = O(ta
′
) for t close to 0, a′ > 0.

(3.4)

If we take M∗
= max(M∗

X,n, M∗
Y,n), whose distribution function equals FM∗(x) =

exp{−Vη(1, 1)x
− 1

η } (using Equation (2.1) and the homogeneous property of Vη)

and if ω(t) := ωa,b(t) = ta(− log t)b, a > a′ then Diebolt et al. (2008) proved that

µa,b := µω =
V

η
η (1, 1)

(a + 1)b−η+1
Γ(b − η + 1)(3.5)

where Γ(α) =
∫∞
0 xα−1e−xdx.

A natural estimator for µa,b can be obtained by replacing FM∗ by its em-

pirical version Fn

µ̂a,b =

∫ 1

0
F
−1
n (u)ua

(− log u)
bdu.

Using (3.5) with suitable values for (a, b) allows us to obtain an estimator for η

in function of µ̂a,b

(3.6) η̂gpwm = 2

(
1 − µ̂1,2

µ̂1,1

)
.

The asymptotic normality of η̂gpwm can then be deduced from the asymptotic

properties of the GPWM estimator, see our Appendix.

Proposition 3. Let
(
M∗

Xi,n
, M∗

Yi,n

)
be a sample of N bivariate maxima

vectors of block size n that follows a bivariate extreme value distribution with

an η-dependence function defined as in (1.6). Then the GPWM estimator of η

defined by η̂gpwm converges in the following way

√
N (η̂gpwm − η)

d−→ η2
3−η

Γ(2 − η)
[I1 − (1 − η/2)I2] ,

with I1 =
∫ 1
0 B(t)(− log t)−η+1 dt, I2 =

∫ 1
0 B(t)(− log t)−η dt and B a Brownian

bridge.
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3.2. The maximum likelihood approach

Besides our aforementioned method-of-moment approach, a Maximum Like-

lihood (ML) method can also be implemented. Our ML method is based on the

normalized sample {Mi} =

{
max

(
M∗Xi,n

ση
X

,
M∗Yi,n

ση
Y

)}
, i = 1, ..., N which admits the

following log-likelihood

log L(M1, ..., MN ; θη, η) = N log

(
θη

η

)
− (1/η + 1)

N∑

i=1

log(Mi) − θη

N∑

i=1

M
−1/η
i .

If η̂mle denotes the ML estimator for η based on the univariate sample{
max

(
M∗

Xi,n
, M∗

Yi,n

)}
with a distribution function given by (2.1), it allows us

to derive

θ̂η,mle =

[
1

N

N∑

i=1

min

(
σ̂X,mle(M

∗
Xi,n)

−1/bηmle , σ̂Y,mle(M
∗
Yi,n)

−1/bηmle

)]−1

.

The estimates for σX and σY in the above equality can be derived from (2.2) as

σ̂X,mle =

[
1
N

∑N
i=1(M

∗
Xi,n

)
−1/bηmle

]−1
and a similar expression for σ̂Y,mle. Thus

we can define

(3.7)

θ̂η,mle =

[
1

N

N∑

i=1

min

(
(M∗

Xi,n
)
−1/bηmle

1
N

∑N
j=1(M

∗
Xj ,n)−1/bηmle

,
(M∗

Yi,n
)
−1/bηmle

1
N

∑N
j=1(M

∗
Yj ,n)−1/bηmle

)]−1

.

4. EXAMPLES

4.1. A small simulation

To compare our estimators with the ML approach, we simulate 300 samples

of 500 pairs of maxima from the η-asymmetric logistic dependence model (see

Ramos and Ledford, 2011):

Vη(x, y) =
1

2 − 2α/η
(x−1/α

+ y−1/α
)
α/η, for x, y > 0,

with α ∈ {0.1, 0.3, 0.5, 0.6} and η = 0.7. This specific value of η corresponds to a

case of asymptotic independence (η < 1) and provides θη = 2
α/η

.
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Boxplots of the estimators of θ and η are given in Figures 2 and 3 for

different values of α and η. In these figures, the small square represents the true

value of the parameter whereas the horizontal line is the median based on the

300 simulations.
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Figure 2: Simulation: comparing θ̂η from (3.3) with θ̂η,mle from (3.7).

In Figure 2 we can observe that the estimate θ̂η,mle from (3.7) has a higher

variability than θ̂η from (3.3). This is particularly true when α is close to η, i.e.

θ̂η near two.
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Concerning the estimation of η, Figure 3 basically tells the opposite story.

The ML approach appears slightly better than the method-of-moment. This

small simulation study advocates for not restricting one inference approach but

rather to combine or at least compare different inference techniques.

:;<=>?@ :AB CDBB CDE
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(a) Case α = 0.1, η = 0.7 (b) Case α = 0.3, η = 0.7
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(c) Case α = 0.5, η = 0.7 (d) Case α = 0.6, η = 0.7

Figure 3: Simulation: comparing η̂gpwm from (3.6) with η̂mle.
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4.2. Orgeval Rainfall data

Table 1 summarizes our inference with respect to the maxima plotted in

Figure 1.

If one has to guess from Figure 1 some information about the degree of

dependence, precipitation maxima during the Summer season clearly appear to

be the less uncorrelated, followed by the Winter ones. The Spring and Fall seasons

seem to witness a stronger and similar dependence.

Table 1: Estimates with GPWM and ML approaches

for the Orgeval rainfall data.

θ̂η θ̂η,mle η̂gpwm η̂mle

winter 1.44 1.26 0.44 0.71

spring 1.33 1.22 0.50 0.70

summer 1.45 1.47 0.56 0.72

fall 1.36 1.60 0.49 0.51

Concerning the GPWM approach, from Table 1 we can see that the Spring

and Fall seasons basically have the same η and the same θ. This parallel confirms

Figure 1 where the points are strongly clustered for those two panels. Concerning

the Winter and Summer seasons, the corresponding θ̂η are much alike, but the

η̂gpwm are different. Visually, this does not contradict the Winter and Summer

displays, but it is not straightforward to interpret such results.

From Table 1, η̂mle appears to be almost equal to 0.7 for all seasons, but the

Fall. It is puzzling that the Spring season belongs to this group because Figure 1

and the GPWM approach clearly discriminates the Spring from the Winter and

Summer seasons. On the positive for the MLE approach, having the same η for

the Winter, Spring and Summer, we can compare the ML estimates of θ. The

ordering among those three θ̂η,mle is coherent with Figure 1, the Summer has

the largest value and the Spring the smallest one. The Fall season is difficult to

interpret with the MLE approach, η̂mle being quite different to the values in the

other seasons.

Now, if we want to compare the two approaches, GPWM and MLE, looking

at Table 1, we can see that θ̂η is quite stable, which is not the case for θ̂η,mle. At

first sight, as both quantities estimate θ, it is difficult to know what to conclude.

However, if we look at Figure 2(b) where the value of θη is in the range 1.3–1.4
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(corresponding to the values given in Table 1) we can observe that indeed the

variability with the maximum likelihood approach is more important than with

the moment method. Thus this corroborates the instability of θ̂η,mle observed in

Table 1.

Overall, the time period of 1987–2002 may be too short to clearly compare

the dependence among different seasons. Still, this example illustrates that ana-

lyzing jointly θ and η can bring relevant information that may not be obtained

by simply interpreting θ.
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APPENDIX

Proof of (2.4): Applying the equality |a− b|/2 = max(a, b)− (a+ b)/2 to

νη, we get:

1

2
E |F ∗X(M∗

X) − F ∗Y (M∗
Y )| = E max{F ∗X(M∗

X), F ∗Y (M∗
Y )} − 1

2
.

Then we calculate

P[max{F ∗X(M∗
X), F ∗Y (M∗

Y )} ≤ u] = P[M∗
X ≤ F ∗←X (u), M∗

Y ≤ F ∗←Y (u)]

= exp{−Vη(F
∗←
X (u), F ∗←Y (u))}

= exp{log(u)Vη(σ
η
X , σ

η
Y )} = uVη(ση

X
,ση

Y
)

because from the margin model (2.2) we have F ∗←X (u) = (− log(u)/σX)
−η

and

F ∗←Y (u) = (− log(u)/σY )
−η. Therefore, E max{F ∗X(M∗

X), F ∗Y (M∗
Y )} =

Vη(ση
X

,ση
Y

)

1+Vη(ση
X

,ση
Y

)

from which (2.4) follows.

Proof of Theorem 1: First, we introduce the ‘normalized’ empirical dis-

tribution functions

F̃n,N,X(u) :=
1

N

N∑

i=1

1lh
b−1
n M∗

Xi,n
≤u

i, F̃n,N,Y (u) :=
1

N

N∑

i=1

1lh
b−1
n M∗

Yi,n
≤u

i,
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and we rewrite the estimator of the madogram as

ν̂η =
1

2N

N∑

i=1

∣∣∣F̃n,N,X

(
b−1
n M∗

Xi,n

)
− F̃n,N,Y

(
b−1
n M∗

Yi,n

)∣∣∣.

Before starting the proof, we need to introduce a series of definitions linked to

the copula function C. Although very similar, these definitions represent slightly

different estimators of the same copula function. One difficulty of the proof is to

show how close these versions are:

C̃n,N (u, v) :=
1

N

N∑

i=1

1l{ eFn,N,X

�
b−1
n M∗

Xi,n

�
≤u, eFn,N,Y

�
b−1
n M∗

Yi,n

�
≤v

},

Cn,N (u, v) :=
1

N

N∑

i=1

1l{
b−1
n M∗

Xi,n
≤ eF←

n,N,X
(u),b−1

n M∗
Yi,n
≤ eF←

n,N,Y
(v)

},

C̃∗n,N (u, v) :=
1

N

N∑

i=1

1l{
UXi,n≤ eF ∗←n,N,X

(u),VYi,n≤ eF ∗←n,N,Y
(v)

}

where

F̃X,n(z) := P

(
b−1
n M∗

Xi,n ≤ z
)
, F̃Y,n(z) := P

(
b−1
n M∗

Yi,n ≤ z
)
,

UXi,n := F̃X,n

(
b−1
n M∗

Xi,n

)
, VYi,n := F̃Y,n

(
b−1
n M∗

Yi,n

)
,

F̃ ∗n,N,X(u) :=
1

N

N∑

i=1

1l{UXi,n≤u}, F̃ ∗n,N,Y (v) :=
1

N

N∑

i=1

1l{VYi,n≤v}.

The proof of Theorem 1 is divided into the following five steps.

Step 1. The function C̃n,N (u, v) is very similar to Cn,N (u, v), i.e.

sup0≤u,v≤1 |C̃n,N (u, v) − Cn,N (u, v)| ≤ 2/N .

Step 2. We have Cn,N (u, v) = C̃∗n,N (u, v).

Step 3. Define now the empirical distribution function of (UXi,n, VYi,n) as

H̃∗n,N (u, v) =
1

N

N∑

i=1

1l{
UXi,n≤u,VYi,n≤v

}

and its non-empirical version as

H̃∗n(u, v) = P

(
F̃X,n

(
b−1
n M∗

Xi,n

)
≤ u, F̃Y,n

(
b−1
n M∗

Yi,n

)
≤ v

)
.

We establish that the process
√

N(H̃∗n,N − H̃∗n) tends in distribution to

a Brownian bridge BC . To this end, we prove the convergence of the

finite-dimensional distributions and the tightness of the process.
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Step 4. The process
√

N(C̃∗n,N − H̃∗n) tends in distribution to a Gaussian

process NC .

Step 5. We conclude the proof of our theorem using the integration by

parts.

This proof is only sketched here as it is a slightly modified version of the one

of Proposition 4 in Naveau et al. (2009) which is detailed in http://sama.ipsl.

jussieu.fr/Documents/articles/NaveauBiometrika07DetailedProofs.pdf.

Remark about our Theorem 1. The limiting process is such that

∫

[0,1]2
NC(u, v)dJ(u, v) =

1

2

∫ 1

0
NC(0, v)dv +

1

2

∫ 1

0
NC(u, 0)du −

∫ 1

0
NC(u, u)du.

This limiting process cannot be precised without specifying the copula function

and in special cases where these integrals can be computed. For instance, consider

the Product copula, also called the independent copula, defined as C(u, v) = uv.

In that case

NC(u, v) = BC(u, v) − vBC(u, 1) − uBC(1, v),

from which direct computations lead to

Var

(∫

[0,1]2
NC(u, v)dJ(u, v)

)
=

1

90
.

Proof of Proposition 3: As η ∈ (0, 1], we have according to Theorem 2.1

in Diebolt et al. (2008) that

√
N

(
µ̂1,1 − µ1,1

µ̂1,2 − µ1,2

)
d−→




ηV η
η (1, 1)

∫ 1

0

B(t)

t

(
− log t

)−η−1
t(− log t)dt

ηV η
η (1, 1)

∫ 1

0

B(t)

t

(
− log t

)−η−1
t(− log t)2dt


 ,

where B denotes a Brownian bridge and n → ∞. It follows

√
N (η̂gpwm − η) = − 2

µ̂1,1µ1,1

√
N (µ1,1µ̂1,2 − µ1,2µ̂1,1)

= − 2

µ̂1,1µ1,1

[
µ1,1

√
N(µ̂1,2 − µ1,2) − µ1,2

√
N(µ̂1,1 − µ1,1)

]
.

An application of Slutzky’s theorem leads to

√
N (η̂gpwm − η)

d−→ −2ηV
η
η (1, 1)

µ2
1,1

∫ 1

0

B(t)

t

(
− log t

)−η−1
[µ1,1ω1,2(t) − µ1,2ω1,1(t)] dt,

from which Proposition 3 follows.
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1. INTRODUCTION

Polynomials form the backbone of mathematics in general and approxi-

mation of complex deterministic and random nonlinear functions and dynamic

processes in particular. Examples of their use are countless coming from diverse

areas such as quantum chaotic dynamics to ecology. Their use repeatedly appears

in asymptotic theory of statistics and in particular in time series analysis which

will be our primary interest.

In its simplest form, algebraic characteristics of polynomials are very much

used in statistics. The celebrated expansions related to central limit theorems

such as the Edgeworth expansions, Berry–Esseen type theorems and the delta

method all depend on polynomial expansions and form the basis of asymptotic

theory of statistics. Polynomials and their algebraic properties are also used in

constructing stationary, invertible finite parameter linear representations for time

series. Wold decomposition theorem says that under fairly general conditions any

stationary time series may be represented as a causal convergent sum

Xt =

∞∑

j=0

ψj ǫt−j ,

with uncorrelated finite variance random variables {ǫt} and real values {ψj} such

that
∑

j ψ
2
j <∞. As a class of models, such a representation is not particularly

useful due to the infinite number of parameters, and finite parameter versions

called the class of stationary and invertible ARMA models are found by using

the backshift operator BjXt = Xt−j , then representing the series in the form

Xt =

[
∞∑

j=0

ψjB
j

]
ǫt .

Under quite general conditions, the polynomial ψ(B) =
∑∞

j=0 ψjB
j

can be writ-

ten as a ratio of two finite order polynomials Φp(B) and Θq(B) of orders p and q

respectively, thus permitting us to write Φp(B)Xt = Θq(B) ǫt. The conditions of

stationarity and invertibility of the processXt are then given in terms of the roots

of the polynomials Φ(B) and Θ(B). In these examples, the well known algebraic

results on deterministic polynomials are used. However, in a more general set

up, random polynomials are used for very general representations for stationary

times series.

Let us start with a collection of standard Gaussian random variables {Xs,

s ≤ t} and consider the space of all measurable functions defined on this collection

with the usual inner product

(1.1) 〈f, g〉 =

∫ ∞

−∞
f(x) g(x)

1√
2π

exp(−x2/2) dx .
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This space together with this inner product is a Hilbert space, and (random)

Hermite polynomials form a closed and complete orthogonal system.

Hermite polynomials Hn(x) of degree n are defined as

(1.2)

∫ ∞

−∞
Hn(x)Hm(x)

1√
2π

exp(−x2/2) dx = n! δn,m , n,m = 0, 1, 2, ...

where

δn,m =

{
1 , n = m ;

0 , n 6= m .
(1.3)

Hence, every Borel measurable function g with finite variance (with respect

to the Gaussian density) such that

∫ ∞

−∞
g2

(x)
1√
2π

exp(−x2/2) dx < ∞ ,

can be written as a linear combination (or as a limit) of these Hermite polynomials

(1.4) g(x) = lim
N→∞

N∑

n=0

gn

n!
Hn(x) ,

where, the coefficients gn are given by

gn =

∫ ∞

−∞
g(x)Hn(x)

1√
2π

exp(−x2/2) dx .

The convergence of (1.4) is in the mean square sense

lim
N→∞

∫ ∞

−∞

(
g(x) −

N∑

n=0

gn

n!
Hn(x)

)2
1√
2π

exp(−x2/2) dx = 0 .

Note that the inner product is a integral with respect to the standard

Gaussian density and hence the Hermite polynomials are orthogonal with respect

to the standard normal probability distribution. Instead of Hermite polynomials,

we can define Hermite functions

ψn(x) =
1√

n! 2n
√

2π
exp(−x2/2)Hn(x) .

Hermite functions are normalized versions of the Hermite polynomials, therefore

they form an closed and complete orthonormal basis. The closed linear span of

Hermite polynomials is the space of all polynomials, and any element of this space

can be represented as sums of products of polynomials given in the form

(1.5)

∞∑

p=1

∞∑

i1=1

···
∞∑

ip=1

ai1i2··· ip
p∏

v=1

Xiv .
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Here we will not enter into further details, which can be found in Terdik

(1999).

The following remarkable result due to Nisio (1964) extends this polynomial

representation to any strictly stationary time series.

Let ǫt be independent, standard Gaussian random variables. The polyno-

mial representation

Y
(m)
t =

m∑

p=1

∞∑

i1=−∞

∞∑

i2=−∞

···
∞∑

im=−∞

gi1i2··· im
p∏

v=1

ǫt−iv

=

∞∑

i1=−∞

gi1 ǫt−i1

+

∞∑

i1=−∞

∞∑

i2=−∞

gi1i2 ǫt−i1 ǫt−i2

(1.6)

+

∞∑

i1=−∞

∞∑

i2=−∞

∞∑

i3=−∞

gi1i2 i3 ǫt−i1 ǫt−i2 ǫt−i3

+ ···

+

∞∑

i1=−∞

∞∑

i2=−∞

···
∞∑

im=−∞

gi1i2··· im ǫt−i1 ǫt−i2 ··· ǫt−im

is called a Volterra series of order m. We will call

(1.7) Yt =

∞∑

p=1

∞∑

i1=−∞

∞∑

i2=−∞

···
∞∑

ip=−∞

gi1i2··· ip
p∏

v=1

ǫt−iv ,

the Volterra series expansion.

Theorem 1.1. Let Xt be any strictly stationary time series. Then there

exists a sequence of Volterra series Y
(m)
t such that

lim
m→∞

Y
(m)
t

d
= Xt ,

in the sense that for any n and for any θj , |j| ≤ n as m→ ∞,

∣∣∣E exp
(
i θ−nX−n + ··· + i θnXn

)

(1.8)

− E exp
(
i θ−nY

(m)
−n + ··· + i θnY

(m)
n

)∣∣∣ → 0 .

If further Xt is Gaussian, then Xt can be represented by

Xt =

∞∑

j=−∞

gj ǫt−j ,

for some real numbers {gj}, such that
∑∞

=−∞ g2
j <∞.
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Hence random polynomials are basic functions with which we construct

very general random processes. There is also a relationship between solutions of

random difference equations and random polynomials.

Consider a stochastic difference equation

(1.9) Xt = AtXt−1 +Bt ,

where {At, Bt} is a sequence of random variables. We will call (1.9) a stochastic

recurrence equation. It is possible to define (1.9) in a more general form

(1.10) Xt = AtXt−1 + Bt ,

where Xt and Bt are random vectors in Rd
, At are d×d random matrices and

{At,Bt}∞n=0 is a strictly stationary ergodic process.

Many well known classes of nonlinear time series models such as bilin-

ear, ARCH, GARCH, random coefficient autoregressive models (RCA) as well as

threshold models can be represented in this form. Theorems due to Vervaat(1979)

and Brant(1986) show that under fairly general conditions on {At, Bt}, stochastic

difference equations of the form (1.9) have solutions given by

(1.11) R =

∞∑

k=1

k−1∏

j=1

AjBk .

It is clear that the solution (1.11) are algebraic polynomials of random variables.

Extremal behavior of these polynomial expansions have played important

role in understanding the oscillatory behavior of nonlinear processes, and many

results on the point processes of upcrossings or exceedances of such polynomial

expansions exist. See Turkman and Amaral Turkman(1997) and Scotto and Turk-

man(2002,2005) and de Haan et al.(1989).

Random polynomials of different nature given in the form

(1.12) Fn(ω, x) = a0(ω)F1(x) + a1(ω)F2(x) + ....+ an(ω)Fn(x) ,

where {ai(ω)}n
i= are a sequence of random variables defined on a probability space

(Ω,F , P ) and {Fi(x)}n
i=1 are deterministic functions of x, have found significant

applications in many fields involving the reliability of complex random physical

systems. When Fi(x) = xi
, then the solution (1.12) is an algebraic polynomial

with random coefficients, taking the form

Fn(ω, x) =

n∑

j=0

aj(ω)xj ,

whereas when Fi(x) are trigonometric functions then (1.12) is a trigonometric

polynomial of order n with random coefficients, often given in the form

Fn(ω, x) = a0(ω) +

n∑

j=0

aj(ω) cos jx +

n∑

j=1

bj(ω) sin jx .
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Here, contrary to polynomials given in (1.6), the type of polynomials we consider

in (1.12) are deterministic in its argument, having random coefficients. We refer

the reader to Bharucha-Reid and Sambandham(1986) and Farahmand(1998) for

the general treatment of such random polynomials. We also refer the reader to

Zygmund(2002) for a full account of developments on trigonometric polynomials.

Polynomials with random coefficients have many interesting characteristics,

but the level crossing properties are particularly important and useful. Describing

the reliability of a complex physical system subject to random inputs depends

on understanding the oscillatory behavior of its sample paths. Level crossing

problems of stochastic processes and the related random variable, the number of

times the trajectory of a stochastic process crosses an arbitrary level u during

the time interval [0, T ] has considerable importance and forms the basis of ex-

treme value theory for stochastic processes. We refer the reader to Cramer and

Leadbetter(1962), Leadbetter et al.(1983) and Albin(1990, 2001) for the gen-

eral treatment of extreme value theory for stochastic processes and level crossing

problems.

Let X(t), t ≥ 0 be a continuous time, strictly stationary stochastic process

with almost surely continuous sample paths x(t). x(t) is said to have an upcross-

ing of u at the point t0 > 0, if for some ǫ > 0, x(t) ≤ u in the interval (t0 − ǫ, t0)

and x(t) > u in (t0, t0 + ǫ). Here we assume that the sample paths are not iden-

tically equal to u in any subinterval with probability 1. Downcrossings of the

level u can similarly be defined with obvious changes. We denote by the random

variable Nu(I), the number of upcrossings of the level u by the process X(t) in

the time interval I. We will also write Nu(T ) = Nu((0, T ]), and in particular

Nu(1) = Nu((0, 1]). This random variable plays the fundamental role in studying

the level crossing problems of stochastic processes. Much is known on the random

variable Nu(I), particularly for Gaussian processes. For example, under general

conditions, the mean number of upcrossings of the level u in the unit interval

(0, 1] is given by

(1.13) E(Nu(1)) = lim
q→0

Jq(u) =

∫ ∞

0
z p(u, z) dz ,

where for arbitrarily small q > 0, Jq(u) =
1
q P
(
X(0)≤ u<X(q)

)
and gq(u, z) is

the joint density of X(0) and
1
q

(
X(q)−X(0)

)
such that p(u, z) = limq→0 gq(u, z).

In most cases the limiting density p(u, z) is the joint density of X(t) and its

derivative X ′
(t) calculated at t = 0. In this case,

(1.14) E(Nu(1)) = p(u)

∫ ∞

0
z p(z|u) dz = p(u)E

(
max{0, X ′

(0)}|X(0) = u
)
,

where p(u) and p(z|u) are respectively the density of X(t) and the conditional

density of the derivative X ′
(t) given X(t) = u, again calculated at t = 0. Hence,

the expected number of upcrossings is given in terms of the density of X(0) and

the average positive slope of the sample path at u.
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The expected number of upcrossings of a Gaussian process is totally char-

acterized by the behavior of its covariance function at origin. If r(τ) is the

covariance function of the process X(t) such that as τ → 0,

r(τ) = 1 − λ2 τ
2

2
+ o(τ2

) ,

then the expected number of upcrossings is given

(1.15) E(Nu(1)) =
1

2π
λ

1/2
2 exp

(
−u

2

2

)
.

Here, λ2 = r′′(0) is called the second spectral moment, assumed to be finite and

(1.15) is the well known Rice formula. We note that in extreme value theory, a

more general class of Gaussian processes with covariance function of the type

r(τ) = 1 − C|τ |α = O(|τ |α) , τ → 0 ,

where 0 < α ≤ 2 are considered. This class includes the Gaussian processes with

differentiable sample paths, that is, Gaussian process with finite second spectral

moments and consequently with finite number of upcrossings. In general, when

α < 2, the process is nondifferentiable and consequently, has infinitely many up-

crossings in any finite interval.

Although the expected number of upcrossings gives quite a lot of informa-

tion on the oscillatory behavior of the process, more can be learned from the

higher moments of upcrossings or indeed from its asymptotic probability distri-

bution. Second upcrossing moment given by

(1.16) E
(
Nu(I) (Nu(I) − 1)

)
=

∫ ∞

0

∫ ∞

0
z1z2 p(u, u, z1, z2) dz1 dz2 ,

where p(u, u, z1, z2) is the joint density of (X(t1), X(t2), X
′
(t1), X

′
(t2)) calculated

at X(t1) = u, X(t2) = u, plays particularly important role in obtaining limiting

results for the extremal behavior of the process. For example, as u→ ∞ it can

be shown that

1 − E
(
Nu(T )

)
+ o(1) ≤ P

(
max

t∈(0,T ]
X(t) ≤ u

)

≤ 1 − E
(
Nu(T )

)
+ E

(
Nu(T ) (Nu(T ) − 1)

)
,

from which one can obtain the asymptotic expression for the maximum of a

stochastic process over fixed and increasing intervals. See for example, Leadbet-

ter(1978) and Turkman and Walker(1984). It is possible to obtain more complete

results on upcrossing events other than their moments. For a given level u, let

µ(u) = E(Nu(1)) be the finite mean number of u-crossings per unit time by the

process X(t). If we look at the number of u-upcrossings of the process over an

interval [0, T ] as T → ∞, then almost surely this number would diverge to ∞.
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However, if we increase the level u as a function of the the increasing time interval

T in such a way that that Tµ(u) → τ , for some fixed 0 < τ <∞, as T → ∞, then

it may be possible to obtain many nice limiting properties. Indeed, Let NT (·) be

the time normalized point process of u-crossings defined by

NT (B) = Nu(TB) = ♯
{
u-crossings by X(t); t/T ∈ B

}

for any Borel set in [0, 1]. Thus, NT has a point at t, if X(t) has an u-upcrossing

at tT . Then it is known that under quite general conditions, this point process

converges to a homogeneous Poisson process with intensity τ . These results are

called complete convergence theorems, since one can obtain many interesting

asymptotic results from this basic convergence. For example, the asymptotic

distribution of the maximum of the process over increasing intervals as well as

the asymptotic distribution of the upper order statistics of the process can be

recovered from such basic results. See for example Leadbetter et al.(1983) and

Resnick(1987, 2007) for convergence of point processes related to exceedances and

upcrossings.

The corresponding results for Gaussian processes are well known. Let X(t)

be a stationary Gaussian process with covariance function r(τ) such that

1. as h→ 0, r(h) = 1 − λ2
2 h

2
+ o(h2

);

2. as h→ ∞, r(h) log h→ 0.

Let u and T tend to infinity in such a way that Tµ ∼ τ , where, µ =

1
2π λ

1/2
2 exp(−u2/2) is the expected number of upcrossings in the unit interval.

Then the time normalized point process NT of u-upcrossings converges in distri-

bution to a Poisson process with intensity τ on the positive real line. For processes

other than Gaussian processes, asymptotic results of similar type are very difficult

to obtain. We refer the reader to Albin(2001) on asymptotic results on upcross-

ings by many non-Gaussian processes such as Markov jump processes, α-stable

processes and quadratic functionals of Gaussian processes. For specific results on

streams of upcrossings by random coefficient polynomials, see Farahmand(1998).

See Scotto and Turkman( 2005) for similar weak convergence of point processes of

u-upcrossings of finite order Volterra series expansions, although such polynomi-

als are quite different in nature than the random coefficient polynomials defined

in (1.12).

In section 2, we will look at the point processes of u-upcrossings of cer-

tain types of trigonometric polynomials and show Poisson nature of the limiting

process.
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2. u-UPCROSSINGS OF RANDOM TRIGONOMETRIC POLY-

NOMIALS

Assume that xt, t= 1, 2, ...n are n consecutive observations generated by a

stationary time series Xt with 0 mean and finite variance. The periodogram of

the observations defined by

In,X(ω) =
2

n

∣∣∣∣∣

n∑

t=1

xt e
iωt

∣∣∣∣∣

2

plays an important role in the inference for spectral distribution function. In

particular, crucial tests of hypotheses regarding jumps in the spectral distribution

function depend on the statistics

Mn,I = max
ω∈[0,π]

In,X(ω) ,

and

Mn,K = max
ω∈[0,π]

Kn,X(ω) ,

where,

Kn,X(ω) =
In,X

2π f̂(ω)
,

and f̂(ω) is a suitable estimator of the spectral density function. Hence the

asymptotic distribution of Mn,I and Mn,K have considerable interest. Since,

In,X = X2
n(ω) + Y 2

n (ω) ,

where

Xn(ω) =

√
n

2

n∑

t=1

xt cosωt ,

and

Yn(ω) =

√
n

2

n∑

t=1

xt sinωt ,

it is clear that the study of the asymptotic distribution of the maximum peri-

odogram ordinate in ω ∈ [0, π] can be done by studying similar asymptotic results

for Xn(ω) and Yn(ω). Both Xn(ω) and Yn(ω) are trigonometric polynomials with

random coefficients. Periodogram is also a trigonometric polynomial since it can

be written in the form

In,X(ω) = 2

n∑

k=−n

ck e
ikω ,

where ck =
1
n

∑n−|k|
t=1 xt xt+|k|.
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The asymptotic distributions for Mn,X = maxω∈[0,π]Xn(ω) as well as of

Mn,Y = maxω∈[0,π] Yn(ω) and Mn,I are given in Turkman and Walker(1984), un-

der the assumption that xt are iid, normal random variables. These results are

then extended to Mn,K , when Xt is a stationary time series.

Note that if Xt is a Gaussian time series, then both Xn(ω) and Yn(ω) are

continuous parameter Gaussian processes defined over the fixed interval ω ∈ [0, π].

As such, it may be tempting to obtain all desired results on u-upcrossings based

on the well known theory for Gaussian processes. However, the second spectral

moments of the processes Xn(ω) and Yn(ω) are given by

r′′(0) = −n
2

3

(
1 +O(1/n)

)
,

and for finite n, both processes are differentiable having finite number of up-

crossings in ω ∈ [0, π]. However, as the sample size n increases, these processes

have sample paths that oscillate wildly, having infinitely many upcrossing of any

finite level u in any finite subset of ω ∈ [0, π] with probability one. This is the

fundamental reason why periodogram appears as an inconsistent estimator of the

spectral density function. Hence, known results on u-upcrossings for Gaussian

processes cannot be used in a straightforward fashion. In order to get mean-

ingful asymptotic results for the level crossings of the polynomials Xn(ω) and

Yn(ω) as n→ ∞, one has to study the u-upcrossings for levels u which increase

to infinity in a controlled fashion as n→ ∞. We refer the reader to Turkman

and Walker(1984, 1991) for details in obtaining the first two moments of the

u-crossings by such processes for appropriately chosen level u and the consequent

asymptotic distribution of the maxima of these polynomials in the interval [0, π].

Here, we will derive the asymptotic Poisson character of the u-upcrossings of these

trigonometric polynomials, for suitably increasing levels u = u(n), as n→ ∞.

2.1. Poisson character of u-upcrossings

Let

Xn(ω) =

√
n

2

n∑

t=1

xt cosωt ,

and

Yn(ω) =

√
n

2

n∑

t=1

xt sinωt ,

be trigonometric polynomials, where xt is a realization of iid standard Gaussian

random variables. Let NX(I) = Nun,X(I) and NY (I) = Nun,Y (I) be respectively

the number of upcrossings of a suitable chosen level un by the processesXn(ω) and

Yn(ω) in the interval I ⊂ [0, π]. In this section we prove the following theorem:
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Theorem 2.1. Let

un =
x√

2 log n
+

√
2 log n− log 12

2
√

2 logn
,

and let

τ = τ(x) = e−x .

Then

lim
n→∞

P
(
NX [0, π] = s

)
=

e−ττ s

s!
,(2.1)

lim
n→∞

P
(
NY [0, π] = s

)
=

e−ττ s

s!
.(2.2)

We will give the proof only for (2.1). The proof for (2.2) is similar. For

ease in notation, we write

N(I) = Nun,X(I) .

The proof of Theorem (2.1) is quite long and we give an outline of the

proof.

Let k > 0 be a fixed but arbitrarily large integer and divide the interval

[0, π] into subintervals Ij , j = 1, 2, ..., k such that

Ij =

[
π(j −1)

k
,
πj

k

)
, j = 1, 2, .., k−1 ,

and

Ik =

[
π(k−1)

k
, π

]
.

For any β ∈ (0, 1/2) arbitrarily small, for every j = 2, ..., k divide every Ij further

into two disjoint subintervals

Ij,1 =

[
π(j − 1)

k
,
πj

k

)
,

Ij,2 =

[
π(j − β)

k
,
πj

k

)
, 2 ≤ j ≤ k ,

Ik,2 =

[
π(k − β)

k
, π

]
, 2 ≤ j ≤ k .

Special attention is paid to the interval I1 and we divide I1 as

I1,0 =

[
0,
πβ

k

)
, I1,1 =

[
πβ

k
,
π(1 − β)

k

)
, I1,2 =

[
π(1 − β)

k
,
π

k

)
.
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The proof is based on first showing that number of upcrossings over the inter-

vals Ij1 are asymptotically independent and that number of upcrossings over the

intervals Ij,2 are asymptotically negligible. Thus the outline of the proof is as

follows:

1. For any s, approximate P
(
N [0, π] ≥ s

)
by P

(
N
(⋃

j Ij,1
)
≥ s
)
.

2. Approximate P
(
N
(⋃

j Ij,1
)
≥ s
)

by P (An,s), where An,s is the event

that N(Ij,1) ≥ 1 for at least s values of j = 1, ..., k.

3. Approximate P (An,s) by P (Dn,s) whereDn,s is the event that in exactly

s of the intervals Ij,1 we have Xn(ω) ≥ un for some ω ∈ Ij,1, so that

P
(
N [0, π] = s

)
is approximated by P (Dn,s).

4. Let

p = pk,β,τ = lim
n→∞

P
(
Mn(Ij,1) ≤ un

)
,

show that

p = exp

(
−(1 − β) τ

k

)
,

and then approximate P (Dn,s) by the binomial probability

(
k

s

)
(1 − p)s pk−s .

5. Let β → 0, then k → ∞ and use the Poisson approximation to the

binomial probability to obtain the desired result.

We now give proofs for these assertions in terms of series of Lemmas.

Lemma 2.1. For any s = 0, 1, 2, ..., as n→ ∞,

(2.3) 0 ≤ P
(
N [0, π] ≥ s

)
− P

(
N

(
k⋃

j=1
Ij,1

)
≥ s

)
≤ βτ + on(1) .

Proof: The event
{
N [0, π] ≥ s

}
contains the event

{
N
(⋃k

j=1 Ij,1
)
≥ s
}

and the difference is the event

{
k⋃

j=1

(
N(Ij,2 ≥ 1)

)
∪
(
N(I1,0 ≥ 1)

)}
.
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Hence

0 ≤ P
(
N [0, π] ≥ s

)
− P

(
N

(
k⋃

j=1
Ij,1

)
≥ s

)

= P

[
k⋃

j=1

(
N(Ij,2 ≥ 1)

)
∪
(
N(I1,0 ≥ 1)

)]

(2.4)

≤
k∑

j=1

P
(
N(Ij,2 ≥ 1)

)
+ P

(
N(I1,0 ≥ 1)

)

≤
k−1∑

j=1

E
(
N(Ij,2)

)
+ E

(
N(I1,0)

)
+ E

(
N(Ik,2)

)
.

It can be shown that (see Turkman and Walker, 1984) as n→ ∞, for every

j = 1, ...., k − 1

E
(
N(Ij,2)

)
=
τβ

k
.

However, E(N(I1,0)) and E(N(Ik,2)) need special attention in calculations. The

reason for this extra complication is that the expected number of upcrossings

are calculated as an integral with respect to the joint density of the vector(
Xn(ω), X ′

(ω)
)

and this vector has a normal density with mean 0 and covari-

ance function given by

(
1 + rn(2ω) r′n(2ω)

r′n(2ω)
n2

3 + r′′n(2ω)

)
,(2.5)

where rn(ω) =
1
n

∑n
j=1 cos jω and r′n(ω), r′′n(ω) are respectively first and second

order derivatives of rn(ω) respectively. This covariance matrix tends to be singu-

lar as ω gets arbitrarily close to 0 or π. Hence E(N(Ij,0)) needs to be calculated

separately over regions

Rn,1 =

{
ω ∈ I1,0 : ω ≥ log n

n

}
,

Rn,2 =

{
ω ∈ I1,0 :

1

nk
≤ ω ≤ logn

n

}
,

Rn,3 =

{
ω ∈ I1,0 : 0 ≤ ω ≤ 1

nk

}
.

It is shown in Turkman and Walker (1984) that

lim
n→∞

E
(
N(Ij,0)

)
=





τβ

k
, ω ∈ Rn,1 ,

0 , ω ∈ Rn,2 ∪Rn,3 .

(2.6)
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Similar expression can be found forE(N(Ik,2)) and hence from (2.4) for arbitrarily

large k and arbitrarily small β,

k∑

j=1

E
(
N(Ij,2)

)
+ E

(
N(Ij,0)

)
= τ β

(
1 +

1

k

)
.

This proves the Lemma.

Define An,s to be the event that {N(Ij,1) ≥ 1} for at least s values of

j = 1, .., k. Then

Lemma 2.2. As n→ ∞,

0 ≤ P
(
N [0, π] ≥ s

)
− P

(
An,s

)
≤ β τ +

k∑

j=1

P
(
N(Ij,1) ≥ 2

)
+ on(1) ,(2.7)

and

lim sup
n→∞

k∑

j=1

P
(
N(Ij,1) ≥ 2

)
≤ (1− β)τ − k

(
1 − exp

(
−(1− β)

τ

k

))
.(2.8)

Proof:

0 ≤ P

(
N

(
k⋃

j=1
Ij,1

)
≥ s

)
− P (An,s)

≤ P

(
k⋃

j=1

(
N(Ij,1) ≥ 2

))
(2.9)

≤
k∑

j=1

P
(
N(Ij,1) ≥ 2

)
.

Now combining this inequality with the inequality (2.4), we get (2.7). To prove

(2.8), we proceed as follows: First note that for any j = 1, ..., k

(2.10) P
(
N(Ij,1) ≥ 2

)
≤ E

(
N(Ij,1)

)
− P

(
N(Ij,1) ≥ 1

)
.

also

0 ≤ P
(
Mn(Ij,1)> un

)
− P

(
N(Ij,1) ≥ 1

)
≤ P

(
Xn

(π(j − 1)

k

)
≥ un

)
,

which implies that

P
(
Mn(Ij,1)> un

)
− P

(
Xn

(π(j − 1)

k

)
≥ un

)
≤ P

(
N(Ij,1) ≥ 1

)
,

so that from (2.10),

(2.11)

P
(
N(Ij,2)≥ 2

)
≤ (1−β)

τ

k
− P

(
Mn(Ij,1 >un)

)
+ P

(
Xn

(π(j−1)

k

)
≥ un

)
.
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Now, for any ω ∈ Ij,1, Xn(ω) ∼ N(0, 1 + rn(2ω)), thus as n→ ∞,

P

(
Xn

(π(j − 1)

k

)
≥ un

)
= on(1) ,

since, from Turkman and Walker(1984) we have

lim
n→∞

P
(
Mn(Ij,1)> un

)
= 1 − exp

(
−(1− β)τ

k

)
.

Now the proof is complete by combining (2.10) with (2.11).

Denote by Cn,s, the event that Xn(ω) > un in at least s = 1, ..., k of the

intervals Ij,1 for some ω ∈ Ij,1.

Then

Lemma 2.3. As n→ ∞,

(2.12) 0 ≤ P (Cn,s) − P (An,s) = on(1) .

Proof: The event

A =

{
N(Ij,1) ≥ 1

}

is contained in the event

B =

{
Xn(ω) ≥ un, for some ω ∈ Ij,1

}

and the difference of these events are given by

B −A = Ac ∩B =

{
Xn

(π(j − 1)

k

)
> un

}
.

Hence it follows from the definitions of the events Cn,s and An,s that as n→ ∞,

0 ≤ P (Cn,s) − P (An,s)

≤ P

(
k⋃

k=1

(
Xn

(π(j − 1)

k

)
> un

))
(2.13)

≤
k∑

k=1

P

(
Xn

(π(j − 1)

k

)
> un

)
= on(1) .

Clearly for any s < k, Cn,s+1 ⊂ Cn,s. Let Dn,s = Cn,s − Cn,s+1 = Cc
n,s+1 ∩ Cn,s.

Dn,s is the event that Xn(ω) > un in exactly s of the k intervals and

P (Dn,s) = P (Cn,s) − P (Cn,s+1) .
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Lemma 2.4.

(2.14) lim sup
n→∞

∣∣∣P
(
N [0, π] = s

)
− P

(
Dn,s

)∣∣∣ ≤ τ − k

(
1 − exp

(
−(1− β)τ

k

))
.

Proof: From (2.12), for any s < k, 0 ≤ P (Cn,s) − P (An,s) = on(1), there-

fore, as n→ ∞,

∣∣∣P (An,s) − P (An,s+1) − P (Dn,s)

∣∣∣ ≤ on(1) .

Hence from (2.7), for any s < k,

(2.15) 0 ≤ P
(
N [0, π] ≥ s

)
− P

(
Dn,s

)
≤ βτ +

k∑

j=1

P
(
N(Ij,1) ≥ 2

)
+ on(1) ,

and the lemma follows from (2.8).

Let Mj = {Mn(Ij,1) ≤ un} and M c
j be the compliment of Mj . Let

Pn,j = P
(
Mn(Ij,1) ≤ un

)
.

We know from Turkman and Walker(1984) that

lim
n→∞

Pn,j = exp

(
−(1− β)τ

k

)
= p , say .

Lemma 2.5.

(2.16) lim sup
n→∞

∣∣∣∣P (Dn,s) −
(
k

s

)
(1− p)s pk−s

∣∣∣∣ = 0 .

Proof:

Dn,s =

⋃(
M c

i1 .M
c
i2 ...M

c
is .Mis+1 ...Mik

)
,

where the union is taken over all combinations of distinct integers with i1 < i2 <

... < ik. Here, we omit the intersection signs, replacing them with “.”. We first

start by looking at the probability

(2.17) P
(
M c

i1 .M
c
i2 ...M

c
im .Mi1 ...Mit

)
,

where m and t are integers such that m+ t ≤ k. When m = 0, (2.17) is equal to

P
(
Mi1 ...Mit

)
= P

(
t⋂

k=1

(
Mn(Ij,1) ≤ un

))
.

It follows from Lemma 2.6 of Turkman and Walker (1984) that for any t ≤ k

lim sup
n→∞

∣∣∣P
(
Mi1 ...Mit

)
− pt

∣∣∣ = 0 .
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Now assume that for an m ≥ 1 and for all t ≤ k − (m− 1)

(2.18) lim sup
n→∞

∣∣∣P
(
M c

i1 .M
c
i2 ...M

c
im−1

.Mi1 ...Mit

)
− (1− p)m−1pt

∣∣∣ = 0 .

We now show that

(2.19) lim sup
n→∞

∣∣∣P
(
M c

i1 .M
c
i2 ...M

c
im .Mi1 ...Mit

)
− (1− p)mpt

∣∣∣ = 0 ,

and the proof will be complete by induction:

{
M c

i1 .M
c
i2 ...M

c
im−1

.Mi1 ...Mit

}
−
{
M c

i1 .M
c
i2 ...M

c
im .Mi1 ...Mit

}
=

=

{
M c

i1 .M
c
i2 ...M

c
im−1

.Mi1 ...Mit

}
∩
{
M c

i1 .M
c
i2 ...M

c
im .Mi1 ...Mit

}

=

{
M c

i1 .M
c
i2 ...M

c
im−1

.Mim .Mi1 ...Mit

}
.

Hence,

P
(
M c

i1 .M
c
i2 ...M

c
im .Mi1 ...Mit

)
=

= P
(
M c

i1 .M
c
i2 ...M

c
im−1

.Mim .Mi1 ...Mit

)
− P

(
M c

i1 .M
c
i2 ...M

c
im−1

.Mim .Mi1 ...Mit

)

From the assumption (2.18) we have

lim sup
n→∞

∣∣∣P
(
M c

i1 .M
c
i2 ...M

c
im−1

.Mi1 ...Mit

)
− (1− p)m−1pt

∣∣∣ = 0 ,

and

lim sup
n→∞

∣∣∣P
(
M c

i1 .M
c
i2 ...M

c
im−1

.Mim .Mi1 ...Mit

)
− (1− p)m−1pt+1

∣∣∣ = 0 ,

so that (2.19) follows immediately. Choosing t = m− k, we get

lim sup
n→∞

∣∣∣P
(
M c

i1 .M
c
i2 ...M

c
im .Mim+1 .Mi1 ...Mik

)
− (1− p)mpk−m

∣∣∣ = 0

and the lemma follows immediately from induction.

The proof of the theorem 2.1 now follows from lemmas 1–5 by first letting

β → 0, then k → ∞. First note that

(2.20)

lim sup
n→∞

∣∣∣∣P
(
N [0, π] = s

)
−
(
k

s

)
(1−p)spk−s

∣∣∣∣ ≤ τ − k

(
1−exp

(
−(1−β)τ

k

))
,

where,

p = exp

(
−(1− β)τ

k

)
.

Thus,

(2.21)

lim sup
n→∞

P
(
N [0, π] = s

)
≤
(
k

s

)
(1 − p)s pk−s

+ τ − k

(
1 − exp

(
−(1− β)τ

k

))
,
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so that letting β → 0,

lim sup
n→∞

P
(
N [0, π] = s

)
≤

(2.22)

≤
(
k

s

)(
1 − exp(−τ/k)

)s(
exp(−τ/k)

)k−s
+ τ − k

(
1 − exp

(
−(1 − β)τ

k

))
.

Now let k → ∞. Then k(1 − exp(−τ/k)) → τ , and by Poisson approximation to

binomial we get

lim sup
n→∞

P
(
N [0, π] = s

)
≤ e−ττ s

s!
.

Similarly we can show that

lim inf
n→∞

P
(
N [0, π] = s

)
≥ e−ττ s

s!
,

and this completes the proof.

It is possible to obtain the following similar asymptotic result for the peri-

odogram, although proofs are slightly more tedious and we omit the proof.

Theorem 2.2. Let un = 2(x+logn+
1
2 log logn− 1

2 log
3
π ). Then the num-

ber of un-upcrossingsNun,I [0, π] of the periodogram in the interval [0, π] is asymp-

totically Poisson, in the sense that

lim
n→∞

P
(
Nun,I [0, π] = s

)
=
e−ττ s

s!
, s = 0, 1, ... ,

where τ = τ(x) = e−x.

Asymptotic results given in Theorems 2.1 and 2.2 are very useful and many

convergence results for upper order statistics can be recovered from these basic

results. For example, if

Mn[0, π] = max
ω∈[0,π]

Xn(ω) ,

then {
Mn(0, π] ≤ un

}
=

{
NX [0, π] = 0

}
,

and consequently,

lim
n→∞

P

(
Mn ≤ x√

2 logn
+

√
2 logn− log 12

2
√

2 logn

)
= e−e−x

,

which was proved in Turkman and Walker(1984) based on calculating the first

two moments of the u-upcrossings.
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1. INTRODUCTION

Let (X1, Y1), ..., (XN , YN ) be independent bivariate Gaussian random vec-

tors with N(0, 1) distributed marginals and correlation coefficient ρ ∈ (−1, 1).

We define a bivariate Rayleigh random vector (risk), (Um, Vm), by

Um =

N∑

i=1

(
Xi −

N∑

i=1

Xi/N
)2

, and Vm =

N∑

i=1

(
Yi −

N∑

i=1

Yi/N
)2

,

where m := N − 1. Basic distributional properties of bivariate Rayleigh random

vectors are derived in Nadarajah [23]. In view of equation (3) in Nadarajah [23],

the joint probability density function (pdf) of (Um, Vm), m ≥ 1 is

h(u, v) =
(uv)

m/2−1

Γ(m/2) (2˜̺)m/2
exp

(
−u + v

2˜̺
)

·0F1

(
; m/2; ρ2uv/ (2˜̺)2

)
, ∀u, v ∈ (0,∞),(1.1)

where ρ ∈ (−1, 1), ˜̺ := 1 − ρ2
and

0F1 (; a; x) =

∞∑

k=0

1

(a)k

xk

k!

denotes a hypergeometric function, where (e)k = e(e + 1)···(e + k − 1) denotes

the ascending factorial.

The distribution given by the joint pdf (1.1) is known as the bivariate

Rayleigh distribution. It has received widespread applications especially in en-

gineering. Some recent applications have included: statistics of wave groups

measured in the northern North Sea (Stansell et al. [27]); performance analysis

of system with selection combining over correlated Rician fading channels in the

presence of cochannel interference (Panajotović et al. [24]); cochannel interference

effect on bit error probability performance of switch and stay combining receiver

in correlated Rician fading (Panajotović et al. [25]).

The bivariate Rayleigh distribution has also been used to model extreme

values, for example, with respect to depth-limited extreme wave heights in a sea

state (Méndez and Castanedo [21]), reliability assessment of marine structures

(Leira and Myrhaug [17], Leira et al. [18]), and asymptotic capacity analysis in

point-to-multipoint cognitive radio networks (Ji and Chen [14]). But the asymp-

totic distribution of the extreme values of (Um, Vm) has not been known. The

principal aim of this short note is to establish the limiting max-stable distribution

of (Um, Vm).

An important max-stable multivariate distribution related to our results is

the Hüsler–Reiss distribution due to Hüsler and Reiss [13]. In a bivariate setting,
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Hüsler–Reiss distribution has the joint cumulative distribution function (cdf)

Hλ(x, y) = exp

[
− Φ

(
λ +

x − y

2λ

)
exp(−y)

−Φ

(
λ +

y − x

2λ

)
exp(−x)

]
, x, y ∈ R,(1.2)

where Φ(·) denotes the standard normal cdf and λ ∈ (0,∞) is a parameter. For

any λ, the marginal cdf’s of Hλ are the Gumbel cdf’s Λ(x) = exp{− exp(−x)},
x ∈ R.

The parameter λ has a nice representation and comes naturally in the setup

of Gaussian triangular arrays. Roughly speaking, if ρn ∈ (−1, 1) is the correlation

coefficient of a bivariate triangular array, then under the Hüsler–Reiss condition

lim
n→∞

(1 − ρn) lnn = λ2 ∈ (0,∞),

the cdf Hλ appears as the limiting distribution of the normalized maxima.

Hüsler–Reiss distribution has received widespread applications. Hüsler–

Reiss distribution arises not only as the limiting max-stable distribution of the

componentwise maxima of Gaussian random vectors, but it arises also as the

limiting max-stable distribution of the componentwise maxima of random vectors

having chi-square, elliptically symmetric and other distributions, see Hashorva

[10], Frick and Reiss [8] and Hashorva et al. [11].

Some applications of Hüsler–Reiss distribution have included: models for

environmental data (Joe [15]); portfolio risk measurement (Bouyé [2]); extremal

dependence of multivariate catastrophic losses (Lescourret and Robert [19], Haug

et al. [12]); inference for bivariate survival data (Ding and Wang [4]); models for

spatial extremes (Smith and Stephenson [26]); spatial extreme fields (Bacro et al.

[1]); models for extremes observed in space and time (Davis et al. [3]); multivariate

value at risks for operational risk capital computation (Guegan and Hassani [9]);

extremal discriminant analysis (Manjunath et al. [20]); multiasset derivatives

and joint distributions of asset prices (Molchanov and Schmutz [22]). Important

recent contributions and insights concerning the Hüsler–Reiss distribution can be

found in Kabluchko [16] and Engelke et al. [5, 6, 7].

It follows from (1.1) that both Um and Vm are chi-squared random variables

with m degrees of freedom. Let Gm denote the cdf’s of Um and Vm. They belong

to the Gumbel max-domain of attraction with scaling function w(t) = 1/2, i.e.,

lim
x→∞

1 − Gm (x + s/w(x))

1 − Gm(x)
= exp(−s), s ∈ R.

Equivalently,

lim
n→∞

sup
s∈R

∣∣∣(Gm (ans + bn))
n − Λ(s)

∣∣∣ = 0
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with constants

an = 2, bn = 2 lnn + (m − 2) ln lnn − 2 ln Γ

(m

2

)
, n > 1.

As in Hüsler and Reiss [13] we shall consider a triangular array setup,

which is of interest when the components are asymptotically independent. In

the Gaussian framework, the asymptotic independence of the components is well

known, i.e.,

lim
u→∞

P (X1 > u, Y1 > u)

P (X1 > u)
= 0

for any ρ ∈ (−1, 1). In view of Hashorva et al. [11], Um and Vm are asymptotically

independent for any ρ ∈ (−1, 1). So, we have

lim
n→∞

nP (Um > x + bn, Vm > y + bn) = 0.(1.3)

Our first result below presented in Theorem 2.1 gives the exact rate of convergence

to zero claimed in (1.3). In the light of the aforementioned paper, the component-

wise maxima of bivariate triangular arrays of Rayleigh risks is attracted to the

Hüsler–Reiss distribution. Indeed, in order to see that let (U ′
m, V ′

m) be another

bivariate random vector defined by the stochastic representation

U ′
m =

m∑

i=1

X2
i , V ′

m =

m∑

i=1

Y 2
i

and further

Um + N
(
XN

)2
= U ′

m+1, Vm + N
(
Y N

)2
= V ′

m+1, N = m + 1.

Moreover, (Um, Vm) is independent of (XN , Y N ), and (
√

NXN ,
√

NY N ) has the

same distribution as (X1, Y1), implying the equality in distribution

(Um, Vm)
d
=
(
U ′

m, V ′
m

)
.

Consequently, in view of Hashorva et al. [11] the asymptotic behavior of the

component-wise maxima of a Hüsler–Reiss triangular array scheme of bivariate

Rayleigh risks is known.

In Section 2, we establish the rate of convergence to zero for the joint sur-

vival function P (Um > x + b, Vm > y + b) as b tends to infinity. Then we consider

a perturbation of Rayleigh risks and derive the limiting distribution of bivariate

maxima of triangular arrays of such risks, which turns out to be the bivariate

Hüsler–Reiss distribution. All of the proofs are provided in Section 3.
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2. MAIN RESULTS

Our first result derives the exact tail asymptotic behavior of the joint sur-

vival function of two bivariate Rayleigh risks, which in particular implies (1.3).

Theorem 2.1. With the notation as in Section 1, for any x, y reals and

ρ ∈ (−1, 1), we have

P (Um > x + b, Vm > y + b) =

√
2|ρ|(1−m)/2 ˜̺3/2

√
π

b(m−3)/2
exp

(
− b

1 + |ρ|

)

·
[
1 + O

(
b−1
)]

as b → ∞.

A direct consequence of Theorem 2.1 is that Um and Vm are asymptotically

independent for any ρ ∈ (−1, 1).

Our second result is concerned with perturbed Rayleigh risks: in order to

motivate the definition of such risks, recall that we can write

Yi
d
= ρXi +

√
1 − ρ2Zi, 1 ≤ i ≤ N

with Xi, Zi, i ≤ N independent N(0, 1) risks. Since in the triangular array frame-

work introduced in Hüsler and Reiss [13] the correlation coefficient ρ = ρn tends

to one as n → ∞, we see that the base risk is Xi, i ≤ N and Zi plays the role

of a perturbation. Since as mentioned in Section 1, the case of Rayleigh risks is

already dealt with in Hashorva et al. [11], we consider the asymptotic distribu-

tion of component-wise maxima for triangular arrays of perturbed independent

Rayleigh risks. Therefore, we introduce next (Xi, Yi), i ≥ 1 with the stochastic

representation

(Xi, Yi)
d
=

(
X, ρX +

√
1 − ρ2Z

)
,(2.1)

where X is a base random variable independent of Z ∼ N(0, 1). Clearly, if X

is also a N(0, 1) random variable, then (Xi, Yi) is a bivariate Rayleigh risk and

ρ is the correlation coefficient. Let now (U (n)
m,i,V

(n)
m,i), 1 ≤ i ≤ n be independent

bivariate random vectors with joint cdf Fmn that coincides with the joint cdf

of (Um, Vm) for some fixed ρn ∈ (−1, 1), where for the definition of (Um, Vm)

we consider the general bivariate random vectors (Xi, Yi) given by (2.1) with ρ

substituted by ρn ∈ (−1, 1). Note that the cdf of Vm depends on n since we use

now ρn. However, the cdf of Um does not depend on n.

Under some restrictions on the marginal distributions Fmn,i, i = 1, 2 of Fmn

we have the following result.
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Theorem 2.2. Suppose that for some positive constants an > 0, bn ∈ R,

n ≥ 1 we have

lim
n→∞

sup
x∈R

∣∣∣(Fmn,i (anx + bn))
n − Λ(x)

∣∣∣ = 0, i = 1, 2.

If further the Hüsler–Reiss condition

lim
n→∞

(1 − ρn)
bn

an
= λ2 ∈ [0,∞)(2.2)

holds, then

lim
n→∞

sup
x,y∈R

∣∣∣(Fmn (anx + bn, any + bn))
n − Hλ(x, y)

∣∣∣ = 0,(2.3)

where Hλ is given in (1.2).

Remarks:

a) The convergence in (2.3) can be stated equivalently as the joint weak

convergence of

(
maxi≤n U (n)

mi , maxi≤n V(n)
mi

)
as n → ∞.

b) In the case m = 2 and the base risk is X = WI with W having N(0, 1)

distribution and I being a Bernoulli random variable independent of

W , we can check that the assumptions of Theorem 2.2 are fulfilled.

3. PROOFS

Proof of Theorem 2.1: Using the well-known fact that

0F1 (; b, z) ∼ Γ(b)

2
√

π
z(1−2b)/4

exp
(
2
√

z
)

as z → ∞, we have

P (Um > x + b, Vm > y + b)

=
1

Γ(m/2) (2˜̺)m/2

∫ ∞

x+b

∫ ∞

y+b
(uv)

m/2−1
exp

(
−u + v

2˜̺
)

·0F1

(
; m/2; ρ2uv/ (2˜̺)2

)
dvdu

∼ |ρ|(1−m)/2

2
√

π (2˜̺)1/2

∫ ∞

x+b

∫ ∞

y+b
(uv)

(m−3)/4
exp

( |ρ|√uv

˜̺ − u + v

2˜̺
)
dvdu

=:
|ρ|(1−m)/2

2
√

π (2˜̺)1/2
I (b) .(3.1)
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Since
√

uv ≤ (u + v)/2,

I(b) ≤
∫ ∞

x+b

∫ ∞

y+b
(uv)

(m−3)/4
exp

(
− u + v

2(1 + |ρ|)

)
dvdu

=

∫ ∞

x+b
u(m−3)/4

exp

(
− u

2(1 + |ρ|)

)
du

∫ ∞

y+b
v(m−3)/4

exp

(
− v

2(1 + |ρ|)

)
dv

=
1

[2 (1 + |ρ|)](m+1)/2
Γ

(m + 1

4
,

2x + b

2(1 + |ρ|)
)
Γ

(m + 1

4
,

2y + b

2(1 + |ρ|)
)
,

where Γ(s, z) =
∫∞
z ts−1

exp(−t)dt denotes the complementary incomplete gamma

function. Since ∫ ∞

z
ts−1

exp(−At)dt =
Γ(s, Az)

As
, A > 0

and

Γ(s, z) = exp(−z)zs−1
(
1 + O

(
z−1
))

as |z| → ∞, we conclude that for |ρ| < 1

I(b) =

[
exp

(
−x + b/2

1 + |ρ|

)(x + b/2

1 + |ρ|
)m−3

4

]

·
[
exp

(
−y + b/2

1 + |ρ|

)(y + b/2

1 + |ρ|
)m−3

4

](
1 + O

(
b−1
))

= b

m−3
2

exp

 
−

b

1 + |ρ|

!(
1+O(b−1)

)

(3.2)

as b → ∞. The proof follows by combining (3.2) and (3.1).

Proof of Theorem 2.2: Let (Um, Vmn) be a bivariate random vector with

the joint cdf Fmn. By the assumptions on the marginal distributions of Fmn, the

proof follows if we show that

lim
n→∞

nP (Um > anx + bn, Vmn > any + bn) = exp(−x) + exp(−y) − lnHλ(x, y)

=: g(x, y)

holds for any x, y ∈ R. Let Z, Z1, ..., Zn be independent N(0, 1) random variables

and let

(Xi, Yi)
d
=

(
Xi, ρnXi +

√
1 − ρ2

nZi

)
,

assuming further that Xi, Zi, i ≤ n are mutually independent and Xi
d
= X, i ≥ 1.

Hence, we obtain

V 2
mn

d
=

N∑

i=1

(
Yi −

N∑

i=1

Yi/N

)2

d
=

N∑

i=1

(
ρn

(
Xi − XN

)
−
√

1 − ρ2
n

(
Zi − ZN

))2

d
= ρ2

nUm − 2ρn

√
1 − ρ2

nTm +
(
1 − ρ2

n

)
V ∗

m,
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where

Tm =

N∑

i=1

(
Xi − XN

)
Zi, V ∗

m =

N∑

i=1

(
ZN − Zi

)2
.

By the independence of Xi, Zi, i ≤ n, XN and the fact that Z, Z1, ..., ZN are in-

dependent N(0, 1) random variables, we may further write

Tm =

N∑

i=1

(
Xi − XN

)
Zi

d
= Z1

√√√√
N∑

i=1

(
Xi − XN

)2 d
= Z

√
Um.(3.3)

Hence, as in Hashorva et al. [11], we have for any ε > 0 and any x, y ∈ R

P (Um > anx + bn, Vmn > any + bn)

= P

(
Um > anx + bn, ρ2

nUm − 2ρn

√
1 − ρ2

nTm +
(
1 − ρ2

n

)
V ∗

m > any + bn

)

≤ P

(
Um > anx + bn, ρ2

nUm − 2ρn

√
1 − ρ2

nTm +
(
1 − ρ2

n

)
V ∗

m > any + bn,

(
1 − ρ2

n

)
V ∗

m ≤ ε
)

+ P
(
Um > anx + bn,

(
1 − ρ2

n

)
V ∗

m > ε
)

≤ P

(
Um > anx + bn, ρ2

nUm − 2ρn

√
1 − ρ2

nZ
√

Um > any − ε + bn

)

+ P
(
Um > anx + bn,

(
1 − ρ2

n

)
V ∗

m > ε
)
.

By the assumptions, we have

lim
n→∞

nP (Um > anx + bn) = exp(−x), ∀x ∈ R.

Consequently, for some ε sufficiently small

lim
n→∞

nP
(
Um > anx + bn,

(
1 − ρ2

n

)
V ∗

m > ε
)

= lim
n→∞

nP (Um > anx + bn) P
((

1 − ρ2
n

)
V ∗

m > ε
)

= 0.

By the fact that V ∗
m is non-negative, we have further

P (Um > anx + bn, Vmn > any + bn)

≥ P

(
Um > anx + bn, ρ2

nUm − 2ρn

√
1 − ρ2

nZ
√

Um > any + bn

)
.

We have with H the cdf of Um (which does not depend on n)

n [1 − H (bn)] → 1, Hn(x) :=
1 − H (anx + bn)

1 − H (bn)
→ exp(−x), ∀x ∈ R

as n → ∞. Furthermore, by condition (2.2) and the fact that Z
d
= −Z

ln(x, y) := P

(
ρn (anx + bn) − 2ρn

√
1 − ρ2

n

√
anx + bnZ > any + bn

)

→ P
(
4λZ > 2y − 2x + 2λ2

)
, n → ∞



166 E. Hashorva, S. Nadarajah and T.K. Pogány

holds locally uniformly for x ∈ R. Using a conditional argument as in Hashorva

et al. [11] and utilizing further (3.3), we obtain

g(x, y)

= lim
n→∞

n

∫ ∞

anx+bn

P

(
ρ2

nUm − 2ρn

√
1 − ρ2

nZ
√

Um > any + bn

∣∣∣Um = s
)

dH(s)

= lim
n→∞

1

1 − H (bn)

∫ ∞

x
P

(
ρ2

n (ant + bn) − 2ρn

√
1 − ρ2

nZ
√

Um > any + bn

∣∣∣

Um = ant + bn

)
dH (ant + bn)

= − lim
n→∞

∫ ∞

x
P

(
ρ2

n (ant + bn) − 2ρn

√
1 − ρ2

n

√
ant + bnZ > any + bn

)
dHn(t)

= − lim
n→∞

∫ ∞

x
ln(t, y)dHn(t)

=

∫ ∞

x
P (Z > (y − t)/(2λ) + λ/2) exp(−t)dt.

Utilizing the explicit expression of g(x, y) derived in Hüsler and Reiss [13] estab-

lishes the proof.
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Abstract:

• There is a vast literature on robust estimators, but in some situations it is still not

easy to make inferences, such as confidence regions and hypothesis testing. This is

mainly due to the following facts. On one hand, in most situations, it is difficult to

derive the exact distribution of the estimator. On the other one, even if its asymptotic

behaviour is known, in many cases, the convergence to the limiting distribution may

be rather slow, so bootstrap methods are preferable since they often give better small

sample results. However, resampling methods have several disadvantages including

the propagation of anomalous data all along the new samples. In this paper, we dis-

cuss the problems arising in the bootstrap when outlying observations are present.

We argue that it is preferable to use a robust bootstrap rather than to bootstrap

robust estimators and we discuss a robust bootstrap method, the Influence Function

Bootstrap denoted IFB. We illustrate the performance of the IFB intervals in the uni-

variate location case and in the logistic regression model. We derive some asymptotic

properties of the IFB. Finally, we introduce a generalization of the Influence Function

Bootstrap in order to improve the IFB behaviour.
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1. INTRODUCTION

It is well known, that outliers or contamination have often an undesirable

effect on statistical procedures. For this reason, robust methods provide more

reliable inferences. However, in most situations, it is difficult to derive the exact

distribution of robust estimators. On the other hand, even when its asymptotic

distribution may be derived, the convergence to it may be rather slow. This

suggests the use of bootstrap methods which are preferable since they can give

even better small sample results. It is easy to understand that the outliers’

effect increases when bootstrapping. Indeed, due to propagation effects, many

bootstrap samples may have a higher contamination level than the original one.

For that reason, the breakdown point for the whole procedure decreases and may

become very small, even when based on an estimator with a high breakdown

point. Besides, bootstrapping a robust estimator poses other challenges since

the frequency of mathematical and numerical difficulties increases and also, the

computation time grows up dramatically. These facts motivates the search of

robust bootstrap procedures.

To allow for a small proportion of contamination on the data, we assume

that the actual distribution of the data belongs to a contamination “neighbour-

hood”of a certain specified“central”parametric model, PΩ with Ω = (θ, τ ), where

θ ∈ Θ ⊂ R
q

stands for the parameter of interest while τ ∈ R
s

denotes the nui-

sance parameters. In other words, we assume that X1, ...,Xn are a random sample

with the same distribution as X ∈ R
p
, where X ∼ PΩ. The problem is to per-

form robust inference for the parameter θ, but with the snag that the sampling

distribution of the statistics (pivot variable) is unknown.

As far as we know, the first work related to estimating the sampling distri-

bution of robust estimators is due to Ghosh et al. (1984). This author showed that

it is necessary to impose a tail condition on the underlying distribution, to ensure

that the bootstrap variance estimate of the sample median converges. Athreya

(1987) also showed that the bootstrap fails for heavy tailed distributions, while

Shao (1990) again pointed out the non-robustness of the classical bootstrap. Shao

(1992) proposed a“tail truncation” in order to obtain consistency of the bootstrap

variance estimators, however it is not clear how to apply this in practice. Later

on, Stromberg (1997) recommended either a robust estimate of the variance (of

the bootstrap distribution) or the use of the deleted-d jackknife, as alternative

bootstrap estimates for the robust estimators variability. Stromberg (1997) also

studied a different resampling scheme (Limited Replacement Bootstrap), but con-

cluded that it does not perform very well. Singh (1998) suggested a robust version

of the bootstrap, for certain univariate L and M -estimators, by resampling from

a winsorized sample instead of the original sample. This method is denoted, from

now on, WB. Salibian–Barrera and Zamar (2002) introduced a robust bootstrap,
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denoted RB, based on a weighted representation of MM -regression and univari-

ate location estimates. In Willems and Van Aelst (2005) and Salibian–Barrera et

al. (2006), these methods were extended to other families of estimators. These

proposals, being fast and stable, solve most of the problems pointed out above.

Amado and Pires (2004) suggested another method, also fast and stable,

which consists on forming each bootstrap sample by resampling with different

probabilities so that the potentially more harmful observations have smaller prob-

abilities of selection. This method, denoted IFB, performs robust inference for

a parameter based on the influence function (at the central model) of a classical

point estimator. In this paper, we investigate the performance of the IFB pro-

cedure by simulation. To adapt for the sample size, a generalized procedure will

also be considered.

The paper is organized as follows. In Section 2, we review the IFB proce-

dure. In Section 3, we give different simulation results concerning the bootstrap

intervals for univariate location and for logistic regression parameters. In Section

4, we present a generalization of the method and compare the results obtained

with the new proposal and with the WB and RB procedures. Conclusions are

given in Section 5, while technical results are relegated to the Appendix.

2. INFLUENCE FUNCTION BOOTSTRAP

The Influence Function Bootstrap is based on three main ideas: (1) re-

sample less frequently highly influential observations (in the sense of Hampel’s

influence function); (2) at the same time, resample with equal probabilities the

observations belonging to the “main structure”; (3) use a classical estimator on

each “robustified” resample. Let us first consider a non robust estimator of θ,

θ̂
nr

, based on the random sample with influence function IF

(
x; θ̂

nr
, PΩ

)
and its

Standardized Influence Function, i.e.

SIF(x; θ̂
nr
, PΩ) =

[
IF

(
x; θ̂

nr
, PΩ

)t
V −1

(θ̂
nr,PΩ)

IF

(
x; θ̂

nr
, PΩ

)]1/2

,

with V(θ̂,PΩ) = EPΩ

[
IF

(
x; θ̂, PΩ

)
IF

(
x; θ̂, PΩ

)t]
stands for the asymptotic vari-

ance of the estimator θ̂. Assume that, as usual, SIF(x; θ̂
nr
, PΩ) depends on PΩ

only through the vector of unknown parameters, Ω = (θ, τ ), and that appro-

priate invariance properties hold. Now, define a Robust Standardized Empirical

Influence Function by plugging into the SIF robust estimates, Ω̂r
= (θ̂

r
, τ̂ r

), of

the unknown parameters and denote this function by RESIF(x; θ̂
nr
, Ω̂r

).

As a simple example on the computation of the RESIF(x; θ̂
nr
, Ω̂r

), consider

multivariate location, θ, with a multivariate normal distribution as central model.
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In this case, the nuisance parameter τ = Σ is the scatter matrix, so that Ω̂r
=

(θ̂
r
, Σ̂

r
) are robust estimators of the location and scatter parameters. Thus, it is

easy to verify that, when θ̂
nr

= x̄, RESIF(x; θ̂
nr
, Ω̂r

) is the robust Mahalanobis

distance currently used for outlier detection in multivariate data sets.

We now proceed to recall the IFB procedure introduced in Amado and

Pires (2004). Given c > 0, let 0 ≤ η(c, ·) ≤ 1 be a weight function verifying

∂ η (c, t)

∂t

∣∣∣
t=c

= 0(2.1)

lim
t→∞

t2 η(c, t) = 0 ,(2.2)

for each fixed value of the tuning constant c. As pointed out in Proposition 1 in

Amado and Pires (2004), the condition (2.2) protects the bootstrap distribution

from the harmful effect of outliers.

The Influence Function Bootstrap (IFB) procedure is described in the fol-

lowing steps:

a) Obtain RESIFi = RESIF(xi; θ̂
nr
, Ω̂r

), i = 1, 2, ..., n.

b) Compute weights, wi, according to

wi = I[0,c] (|RESIFi|) + η (c, |RESIFi|) × I]c,+∞] (|RESIFi|) .

c) Compute the resampling probabilities p = (p1, p2, ..., pn) as pi = wi/∑n
j=1wj .

d) Resample with replacement according to p and for each robustified

bootstrap sample compute the non-robust version of the estimate of

interest.

Remark 2.1. The tuning constant c can be calibrated so as to obtain

highly efficient procedures. Effectively, it is enough to determine or simulate the

distribution of the SIF at the central parametric model and choose for c a very

high percentile of this distribution.

Remark 2.2. A flexible family of functions from where the η function can

be chosen is the kernel of the p.d.f. of the t-distribution and its limiting form,

the normal distribution, that is,

ηd,γ(c, x) =





[
1 +

(x− c)2

γ d2

]− γ+1
2

0 < γ <∞

exp

[
−(x− c)2

2d2

]
γ = ∞

.
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More details about the method can be found in Amado and Pires (2004).

However, this method does not provide an explicit estimator to being boot-

strapped. To identify this estimator, we will consider the case of a univariate

parameter, to be more precise, the simplest case of an univariate location param-

eter with known scale.

Let us fix some notation which will be helpful in the sequel.

At the sample level we have: the sample denoted (x1, x2, ···, xn); the em-

pirical distribution function, Pn =
∑n

i=1 δxi
/n with δx the point mass at x; the

weights, wi = w(xi;Pn), 1 ≤ i ≤ n, defined in b); the weighted empirical distri-

bution function denoted Pwn,n =
∑n

i=1 piδxi
, with pi = wi/

∑n
i=1wi introduced in

c).

Related to the above description, at the population level we have: an uni-

variate random variable X; its probability density function, f with related dis-

tribution function P and a random variable denoted Xw with probability density

function, fw, called the weighted density function, with related weighted distri-

bution function, Pw defined through

fw(x) =
w(x;P )f(x)∫
w(x;P )f(x)dx

and Pw(x) =

∫ x

−∞
fw(u)du .

Besides, we can also define the mean, µ (Pw), and variance, σ2
(Pw), of Xw. If

limx→∞ x2w(x; ·) <∞, then both µ (Pw) and σ2
(Pw) are well defined and finite.

Moreover, µ (Pw) ≡ µw (P ). The IFB procedure actually bootstraps the sample

mean from Pwn,n.

Concerning the asymptotic behaviour of the bootstrap proposal, Proposi-

tion 6.1 in the Appendix states that if Ω̂r a.s.−→ Ω and w(x; ·) is a Lipschitz contin-

uous function of the unknown parameters, then Pwn,n(I(−∞,x])
a.s.−→ Pw(I(−∞,x]),

uniformly in x. This result entails easily that if limx→∞ x2w(x; ·) = 0, the vari-

ance of the weighted empirical distribution converges to σ2
(Pw). We will now

show that σ2
(Pw) is related to the asymptotic variance of a robust estimator with

score function u
√
w(u).

By the Central Limit Theorem,
√
n (µ (Pwn,n) − µ (Pw))

d−→ N
(
0, σ2

(Pw)
)

(see Proposition 6.1b) in the Appendix for a related result concerning the Influ-

ence Function Bootstrap distribution). Thus, for large n, we have that

(2.3) Var (µ(Pwn,n)) ≃ σ2
(Pw)

n
=

∫
(x− µ(Pw))

2w(x)f(x)dx

n
∫
w(x)f(x)dx

.

Let us consider a location M -functional with score function ψM (u) = u
√
w(u),

denoted by µ√w(P ) and its related estimator, µ√w(Pn). The asymptotic variance



Robust Bootstrap 175

of µ√w(Pn), at the central model, is given by

(2.4)

∫
(x− µ)

2w(x)f(x) dx

n
[
Eψ′

M (X − µ)
]2 =

∫
(x− µ)

2w(x)f(x)dx

n

[∫ (√
w(u) + u

(√
w(u)

)′)
dP

]2 ,

where h′ stands for the derivative of the function h : R → R. It is worth noting

that the difference between expressions (2.3) and (2.4) is the denominator which

will lead to the correction term to be introduced in Section 4. Almost equivalently,

we may consider a weighted estimator (W -estimator) with a fixed number of steps

and weights
√
w(u). As we will see in Section 4 this relation give us a initial start

point to perform a generalization of IFB method.

3. NUMERICAL RESULTS

In this section, we illustrate the IFB method in two models. We first

consider the problem of computing confidence intervals for the location parameter

under a location-scale model. Then, we focus on the problem of providing exact

inferences for the regression parameter under a logistic regression model.

3.1. Univariate location model

We now present, as an example, the results of a simulation study concerning

an univariate location parameter, µ, in the framework of a location-scale model.

The aim is to compute confidence intervals for the parameter µ. In this simula-

tion study we choose the nominal confidence level equal to 90%. We considered

data sets X1, ..., Xn, with sample size n = 20 and 50. The uncontaminated ob-

servations, which we label as C0 in the Tables, are generated from N(0, 1). Three

contamination situations are also studied

• C1: Under this contamination, the data are generated from a 0.75N(0,1)+

0.25N(0, 9) distribution.

• C2: This contamination corresponds to a high pointwise contamination,

where 90% of the data have a standard normal distribution, N(0, 1),

and 10% of the points are replaced by 10.

• C3: The observations have the same distribution as Y/U where Y ∼
N(0, 1) and U ∼ U(0, 1), with Y and U independent.

The estimator is X̄ and the intervals computed are: the classical t-intervals

(CIml), the classical bootstrap with uniform weights (BCIml), the robust influ-
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ence function bootstrap (BCIif) and the bootstrap intervals obtained by resam-

pling from a winsorized sample (BCIwin). For the three bootstrap procedures

the bootstrap percentile method was used for obtaining the confidence inter-

vals. For BCIif intervals, we take RESIF(x) = |x− median(Xi)|/MAD(Xi) and

η(c, ·) = ηd,γ(c, ·) with d = c =

√
χ2

1;0.99 and γ = ∞. The number of bootstrap

samples was B = 2000 in all cases and the number of simulation runs was 1000.

The nominal level of the confidence intervals is 0.90.

Table 1 summarizes the results obtained by reporting coverage probability

estimates, as well as mean and standard deviation of the lengths of the 1000

simulated confidence intervals.

Table 1: Confidence intervals for univariate location

with confidence nominal level 0.90.

n = 20 n = 50
Coverage

Length Length
Cont.

Scheme
Method

n = 20 n = 50 Mean Std.Dev. Mean Std.Dev.

CIml 0.899 0.901 0.7646 0.1252 0.4727 0.0484
C0 BCIml 0.874 0.895 0.7070 0.1165 0.4583 0.0475

BCIif 0.871 0.892 0.7061 0.1155 0.4584 0.0478
BCIwin 0.764 0.805 0.5570 0.1150 0.3764 0.0465

CIml 0.917 0.903 1.2799 0.3621 0.8073 0.1322
C1 BCIml 0.873 0.883 1.1811 0.3337 0.7813 0.1283

BCIif 0.888 0.900 1.0770 0.2644 0.7107 0.1020
BCIwin 0.766 0.765 0.7914 0.2203 0.7813 0.1283

CIml 0.820 0.048 2.4879 0.0655 1.5049 0.0244
C2 BCIml 0.598 0.015 2.2919 0.0767 1.4555 0.0375

BCIif 0.864 0.890 0.8299 0.2096 0.5410 0.0928
BCIwin 0.673 0.426 0.7158 0.1391 0.4937 0.0659

CIml 0.951 0.939 22.748 163.06 26.478 202.24
C3 BCIml 0.858 0.829 20.093 141.56 24.184 181.13

BCIif 0.880 0.883 1.8251 0.4686 1.1783 0.1883
BCIwin 0.698 0.678 1.8900 1.1634 1.1495 0.3450

From Table 1, we conclude that in the non-contaminated setting, C0, the

bootstrap intervals BCIml and BCIif have a behaviour similar to that of the clas-

sical t intervals, even when the latter are the optimal ones. The bootstrap inter-

vals are shorter than the exact intervals CIml, but at the cost of losing some level.

As expected, the optimal intervals CIml attain the largest coverage probabilities

values. Besides, the intervals BCIwin achieve the smallest coverage probability

for both n = 20 and 50, but they also have the smallest mean length. Under

C1, all the procedures keep a similar coverage value, even when their lengths
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are increased. On the other hand, under both C2 and C3, the coverage of the

classical t and classical bootstrap intervals is completely spoiled for n = 50. For

n = 20, the classical intervals almost keep their coverage, while classical boot-

strap intervals lose coverage, under C2. Under C3, the coverage preservation is

made at the expense of providing larger confidence intervals than those obtained

for normal samples, leading to practically non-informative intervals. Under any

contamination, for both sample sizes, the BCIwin intervals achieve smaller cov-

erage probabilities than BCIif intervals, and far away from the nominal value.

On the other hand, the coverage of BCIif intervals is very stable under all the

contamination patterns keeping at same time the length under control.

These results show that, for the location model, the IFB procedure achieves

its aim: it is a fast, robust and efficient inference method. It has also proven

to work well in other situations including inference for the correlation coefficient

(Amado and Pires, 2004) and selection of variables in linear discriminant analysis

(Amado, 2003).

3.2. The logistic regression model

In order to check the behaviour of the proposal in a more complex model,

we consider a special case of the generalized linear model (GLM), the logistic

regression model. Under a logistic regression model, the observations (Yi,Xi),

1 ≤ i ≤ n, Xi ∈ R
p
, are independent with the same distribution as (Y,X) ∈ R

p+1

such that the conditional distribution of Y |X = x is Bi(1, µ(x)). The mean

µ(x) = E(Y |X = x) is modelled linearly through a known link function, that

is, µ (x) = H
(
β0 + xtβ

)
where, for the logistic model, H(t) = 1/(1 + exp(−t)).

Note that in this case, the nuisance parameter τ is not present, so we will denote

the distribution of the observations Pθ . We consider Influence Function Bootstrap

intervals based on the weighted version of the Bianco and Yohai estimators (wby)

as introduced in Croux and Haesbroeck (2003). In order to guarantee existence

of solution, Croux and Haesbroeck (2003) proposed to use the score function

φ(t) =

{
t exp(−

√
d) if t ≤ d

−2(1 +
√
t) exp(−

√
t) +

(
2(1 +

√
d) + d

)
exp(−

√
d) otherwise.

(3.1)

To define the robust bootstrap, we need to compute the SIF. The influence

function of the functional βml related to the maximum likelihood estimator β̂ml

is given by

IF((y,x),βml, Pθ) = I(β)
−1

(y −H(xtβ))x ,(3.2)

where Pβ(y = 1|x) = H(xtβ) and I(β) = E
(
H(xtβ)(1 −H(xtβ))xxt

)
stands
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for the information matrix. Therefore,

SIF((y,x),βml, Pβ) =
{
(y −H(xtβ))

2xtI(β)
−1x

} 1
2 .

Note that the distribution of the SIF is not independent of the parameter and

so, the tuning constant c, as defined in Amado and Pires (2004), depends on β.

A data-driven procedure to compute c can be defined considering a preliminary

robust estimator of β. For the sake of simplicity, in our simulation process we

have computed a unique value c from the true value β.

To assess the performance of the bootstrapping influence robust intervals in

the logistic model, first consider uncontaminated data sets following a model simi-

lar to that presented in Croux and Haesbroeck (2003). We select a high dimension

regression parameter combined with a moderate sample size, that is p = 11 and

n = 100. Since the influence function (3.2) depends on the regression parameter,

we consider two different values for β. To be more precise, we generate 1000 sam-

ples with covariates Xi = (1,Zt
i )

t
with Zi ∼ N10(0, I) and binary responses Yi

such that Yi|Xi = x ∼ Bi(1, H(xtβ)). In the first case, β = (0, 0, ..., 0)
t
, while

in the second one, we choose β = (1, ..., 1)
t/3

√
11.

We calculate the classical maximum likelihood (ml) and the robust weighted

estimators introduced in Croux and Haesbroeck (2003) and denoted β̂wby. The

robust estimators were computed using the loss function (3.1) with tuning con-

stant d = 0.5 and weights based on the robust Mahalanobis distance d(z, µ̂z, Σ̂z),

where (µ̂z, Σ̂z) stand for the Minimum Covariance Determinant estimators (mcd)

of multivariate location and scatter of the explanatory variables Zi. We compute

the asymptotic intervals based on the maximum likelihood estimators, ACIml,

the related bootstrap intervals BCIml, the asymptotic intervals associated to the

robust estimators ACIrob and the Influence Function Bootstrap intervals, BCIif,

computed using the robust weights derived from the robust estimator β̂wby. In

all cases, the number of bootstrap samples is B = 2000.

Tables 2 and 3 summarize the results in terms of coverage, mean length and

standard deviation of the length of the obtained intervals, for both values of the

regression parameter, under the central model. In Tables 2 and 3, we observe that

the coverage of all the computed intervals is close to the nominal confidence level

0.90 for all the components of the regression parameter. The observed confidence

level of the BCIif is close to the values obtained for the classical asymptotic

intervals, while the classical bootstrap intervals BCIml achieve the lowest confi-

dence levels. Besides, as expected, the asymptotic maximum likelihood intervals

ACIml are the shortest ones, showing also the smallest standard deviations of the

lengths. At the same time, we observe that BCIml intervals are the longest, while

the BCIif have smaller standard deviation of the lengths than ACIrob and BCIml

intervals. In fact, we confirm that the performance of the BCIif intervals is the

same regardless the value of the regression parameter.
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Table 2: Coverage, mean length and standard deviation of the length

for the non-contaminated samples from a logistic model with

β = (0, ..., 0)
t
, p = 11. Nominal level 0.90.

Comp. ACIml ACIrob BCIml BCIif

Coverage

β0 0.876 0.907 0.850 0.887
β1 0.885 0.904 0.842 0.892
β2 0.884 0.916 0.841 0.888
β3 0.898 0.908 0.868 0.894
β4 0.896 0.916 0.852 0.893
β5 0.880 0.914 0.877 0.887
β6 0.890 0.917 0.861 0.890
β7 0.867 0.888 0.851 0.866
β8 0.875 0.900 0.862 0.883
β9 0.894 0.897 0.845 0.891
β10 0.868 0.896 0.842 0.867

Mean Length

β0 0.743 0.848 0.977 0.929
β1 0.755 0.898 1.014 0.965
β2 0.758 0.904 1.016 0.967
β3 0.757 0.908 1.012 0.968
β4 0.758 0.907 1.018 0.967
β5 0.755 0.906 1.018 0.966
β6 0.756 0.903 1.015 0.966
β7 0.757 0.900 1.011 0.965
β8 0.755 0.909 1.011 0.966
β9 0.756 0.904 1.018 0.968
β10 0.755 0.907 1.015 0.966

Standard Deviation Length

β0 0.030 0.091 0.082 0.064
β1 0.064 0.158 0.137 0.106
β2 0.068 0.164 0.136 0.112
β3 0.064 0.156 0.128 0.104
β4 0.063 0.172 0.133 0.110
β5 0.064 0.163 0.128 0.108
β6 0.063 0.172 0.130 0.106
β7 0.064 0.161 0.129 0.105
β8 0.064 0.165 0.131 0.110
β9 0.065 0.162 0.132 0.118
β10 0.065 0.172 0.137 0.127
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Table 3: Coverage, mean length and standard deviation of the length

for the non-contaminated samples from a logistic model with

β = (1, ..., 1)
t/3

√
11, p = 11. Nominal level 0.90.

Comp. ACIml ACIrob BCIml BCIif

Coverage

β0 0.885 0.912 0.851 0.895
β1 0.872 0.900 0.833 0.879
β2 0.873 0.900 0.857 0.887
β3 0.882 0.900 0.862 0.892
β4 0.875 0.897 0.847 0.882
β5 0.892 0.918 0.871 0.903
β6 0.895 0.925 0.843 0.901
β7 0.878 0.881 0.834 0.875
β8 0.875 0.913 0.829 0.880
β9 0.888 0.907 0.855 0.894
β10 0.876 0.907 0.853 0.888

Mean Length

β0 0.754 0.874 1.006 0.947
β1 0.772 0.937 1.054 0.988
β2 0.770 0.930 1.051 0.986
β3 0.765 0.922 1.039 0.978
β4 0.767 0.923 1.044 0.979
β5 0.766 0.923 1.041 0.977
β6 0.771 0.928 1.050 0.985
β7 0.774 0.940 1.051 0.991
β8 0.767 0.921 1.043 0.980
β9 0.769 0.927 1.046 0.980
β10 0.768 0.935 1.044 0.985

Standard Deviation Length

β0 0.034 0.110 0.103 0.069
β1 0.069 0.179 0.164 0.117
β2 0.067 0.180 0.153 0.117
β3 0.067 0.185 0.154 0.113
β4 0.067 0.182 0.148 0.113
β5 0.066 0.181 0.152 0.114
β6 0.068 0.185 0.149 0.114
β7 0.068 0.188 0.154 0.116
β8 0.067 0.175 0.144 0.112
β9 0.069 0.180 0.154 0.114
β10 0.068 0.190 0.150 0.122
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In the second part of this numerical study, we evaluate the performance of

the Influence Function Bootstrap intervals under non-contaminated and contam-

inated samples with p = 3. We generate 1000 samples of size n = 100 where X =

(1,Zt
)
t ∈ R

3
, corresponding to an intercept and two covariates. The explanatory

variables Zi are i.i.d. and such that Zi ∼ N2(0, I2), while the response variables

Yi follow a logistic model Yi|Xi = x ∼ Bi(1, H(xtβ)) with βt
= (0, 2, 2). We

identify this case as the non-contaminated situation C0 and we also consider the

following contamination schemes:

• C1: 5 misclassified observations are introduced on a hyperplane parallel

to the true discriminating hyperplane xtβ with a shift equal to 1.5×
√

2

and with the first covariate x1 around 5.

• C2 : similar to scheme of C1, but with a shift equal to 5 ×
√

2.

We computed the same intervals as for p = 11. In the bootstrapping pro-

cedures, the number of resamples is B = 2000 and the simulated samples where

we detect possible non-overlapping leading to non-convergence were replaced by

new ones. Table 4 sums up the simulation results. Under the central model,

Table 4: Coverage, mean length and standard deviation of the length,

for non-contaminated and contaminated samples from a logistic

model with β = (0, 2, 2)
t
. Nominal level 0.90.

Coverage Mean Length Std. Dev. Length
Method

β0 β1 β2 β0 β1 β2 β0 β1 β2

C0

ACIml 0.902 0.890 0.901 1.010 1.624 1.629 0.101 0.357 0.354
ACIrob 0.929 0.930 0.933 1.072 1.810 1.827 0.157 0.566 0.584
BCIml 0.846 0.778 0.797 1.152 2.038 2.030 0.207 0.845 0.824
BCIif 0.908 0.827 0.860 1.124 1.924 1.924 0.158 0.582 0.579

C1

ACIml 0.714 0.088 0.859 0.903 0.882 1.352 0.084 0.153 0.285
ACIrob 0.882 0.860 0.844 1.003 1.647 1.632 0.134 0.504 0.506
BCIml 0.819 0.280 0.716 1.087 1.050 1.951 0.186 0.723 1.361
BCIif 0.767 0.513 0.861 0.976 1.377 1.633 0.132 0.603 0.468

C2

ACIml 0.629 0.000 0.001 0.708 0.547 0.749 0.027 0.030 0.070
ACIrob 0.881 0.860 0.843 1.004 1.647 1.634 0.137 0.500 0.510
BCIml 0.689 0.000 0.007 0.725 0.553 0.779 0.044 0.060 0.100
BCIif 0.820 0.824 0.798 0.982 1.801 1.692 0.154 0.410 0.480

we observe a similar behaviour to that described for p = 11, that is the coverage of

the BCIrob is close to the values obtained with ACIml. We can observe the serious

effect of the contamination on the classical asymptotic and bootstrap intervals
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ACIml and BCIml. Indeed, both types of intervals are completely non-informative

for β1 under both contamination schemes, since the coverage is less than 0.30

under C1 and 0 under C2. On the other hand, under C1, the intervals BCIif

achieve lower coverages than the asymptotic intervals ACIrob for components β0

and β1, but they are also shorter than the former. Besides, the intervals BCIif

obtained for β2 have higher coverage with a similar length to that of ACIrob

and the standard deviation of their length is smaller than that of the asymptotic

robust intervals based on β̂wby. Under C2, the comparison of the BCIif intervals

and the asymptotic robust ones, ACIrob, is similar to that described for C1, but

in this case the coverage values of the intervals obtained for β0 and β1 are closer.

Unlike the previous case, for β2 the BCIif intervals achieve a lower coverage than

ACIrob and BCIif intervals for β1 and β2 are larger than the robust asymptotic

ones. Moreover, the standard deviations of the length of theBCIif intervals for β2

and β3 is smaller than those of the ACIrob ones. We conclude that BCIif intervals

are comparable to the asymptotic intervals based on the robust estimator, and

this is more evident under C0 and under the case of the more severe contamination

C3 for the chosen value of the parameter.

4. GENERALIZATION OF THE INFLUENCE FUNCTION BOOT-

STRAP

As shown in the simulation study, a weakness of the IFB procedure is the

choice of the tuning constant. Effectively, in order to avoid undercoverage of the

confidence intervals (or underestimation of the variance), the constant c needs to

be a very high percentile of the SIF which restricts the degree of robustness of

the proposal.

In order to determine the needed correction, recall the discussion given

in Section 2 for an univariate location parameter with known scale, regarding

the M -estimator related to the bootstrap procedure. In fact, (2.3) and (2.4)

give the expressions for the asymptotic variance of the mean of the bootstrap

distribution and of an M -estimator with score function ψM (u) = u
√
w(u). Now,

assuming that µ√w(P ) ≈ µw(P ), which is true if P is approximately symmetric,

the bootstrap distribution of µ(Pwn,n) can be corrected, in order to be closer

to the bootstrap distribution of µ√w(Pn), by sampling nnew observations from

Pwn,n, with

nnew =

[∫ (√
w(u) + u

(√
w(u)

)′)
dP

]2

∫
w(u)dP

× n ,(4.1)

where h′ stands for the derivative of the function h : R → R. The corrected sample
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size nnew can be estimated by

n̂new =

[∑n
i=1

√
w(ui) +

∑n
i=1 ui

(√
w(ui)

)′]2

∑n
i=1w(ui)

,

where ui denotes the current standardized residuals. Another possible correction

is to sample n observations from Pwn,n and to multiply the centred bootstrap

distribution by
√
n/n̂new. Incidentally, we note that this correction is very similar

to one of the corrections needed by the robust bootstrap of Salibian–Barrera

(2000) denoted RB. The Influence Function Bootstrap with correction is denoted

by IFB
∗
.

In order to illustrate the generalization of the IFB to another univariate

example, we deal now with the correlation coefficient. Let Xt
= (X1, X2) be a

random vector following a bivariate distribution P with mean µ and covariance

matrix

Σ =

(
σ11 σ12

σ21 σ22

)
,

with σii = Var(Xi) and σij = Cov(Xi, Xj), for i 6= j and i, j = 1, 2. The correla-

tion coefficient between X1 and X2 is given by ρ = corr(X1, X2) = σ12/
√
σ1σ2.

Assume that we have a a random sample (x11, x12), (x21, x22), ···, (x1n, x2n)

with distribution P and let ρ(Pn) be the Pearson sample correlation coefficient.

Amado and Pires (2004) give the SIF, the robust empirical function RESIF and

the weights wi for ρ(Pn). To apply the generalization and obtain the IFB
∗

cor-

responding to ρ, we follow analogous calculus to those derived for the univariate

location parameter. In order to get IFB
∗
, we resample in each bootstrap step

nnew observations, where nnew is given in (4.1). Note that we are dealing with

the distribution of ρ√w(Pn)− ρ√w(P ), where ρ√w(Pn) is the estimator that links

original and weighted models given by

ρ√w (Pn) =

∑n
i=1wi (xi1 − µ̂1) (xi2 − µ̂2)√∑n

i=1wi (xi1 − µ̂1)
2∑n

i=1wi (xi2 − µ̂2)
2
,

with µ̂j = (
∑n

i=1wixij) (
∑n

i=1wi)
−1

, j = 1, 2.

This generalization of the IFB can be extended to more complex models

with multivariate parameters such as generalized linear models, but this topic

will be the subject of future work.

In the next sections, we make a comparison between the IFB
∗

distribution

and the distribution of the W -estimator for an univariate location model. We

also evaluate the performance of bootstrap confidence intervals for the univariate

location parameter and for the correlation coefficient.



184 C. Amado, A. Bianco, G. Boente and A. Pires

4.1. The IFB∗ distribution for the univariate location case

To study the performance of the IFB
∗

distribution, we generate 500 random

samples X1, ..., Xn of size n = 20 and 50. In the non-contaminated situation,

labelled C0 in the Tables, the observations have a N(0, 1) distribution. The

contaminated model, denoted C1, is such that Xi ∼ 0.9N(0, 1) + 0.1N(10, 0.1)

which corresponds to a contaminated pattern where 10% of the observations

have a large mean with a small variance. The compared methods are IFB and

IFB
∗

with RESIF(x) = |x− median(Xi)|/MAD(Xi) and η(c, ·) = ηd,γ(c, ·) with

d = c = 1.5 and γ = ∞. The number of bootstrap samples is B = 5000.

To compare the IFB
∗

distribution with the distribution of the W -estimator

we need a reliable estimate of the “true” distribution. For that purpose, an

independent prior simulation was run as follows: 5000 samples were generated

from the considered distributions and the empirical percentiles (2.5, 5, 10, 25, 50,

75, 90, 95, 97.5) were determined. The selected percentiles were used in a study

to evaluate bootstrap distributions by Srivastava and Chan (1989). The previous

step was repeated 100 times. The final estimate of each percentile is the median

of the corresponding 100 observations.

Let P ∗
stand for the bootstrap distribution. Four bootstrap distributions

were actually considered

• The IFB distribution (without correction), centered at µw(Pn),

R(if)
boot(x) =

1

B

B∑

b=1

I
{
µ(P ∗

wn,n) − µw(Pn) ≤ x
}
,

• The IFB
∗

distribution (with correction), centered at µ√w(Pn),

R(1)
boot(x) =

1

B

B∑

b=1

I
{
µ(P ∗

wn,n̂new
) − µ√w(Pn) ≤ x

}
,

• The IFB
∗

distribution (with correction), centered at µw(Pn),

R(2)
boot(x) =

1

B

B∑

b=1

I
{
µ(P ∗

wn,n̂new
) − µw(Pn) ≤ x

}
,

• The IFB
∗

distribution with two corrections, the previous one and an

empirical correction for asymmetry, centered at µw(Pn),

R(3)
boot(x) =

1

B

B∑

b=1

I
{(
µ(P ∗

wn,n̂new
) − µ∗n̂new

)
× fc + µ∗n̂new

−µw(Pn) ≤ x
}
,

with fc =(Vboot +25D2/n)/Vboot, D=µw(Pn)−µ√w(Pn) and Vboot equals

the bootstrap estimator of mean variance from the weighted sample.
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For a given percentile, p, let
̂P−1
µ√

w
(p) be the estimated percentile of the

distribution of µ√w(Pn) in the previous simulation study. For each of the 500

replications and for each p, we computed R
(m)
boot

(
̂P−1
µ√

w
(p)

)
, with m = IF, 1, 2, 3.

Note that if the bootstrap distribution is close to the distribution of µ√w, then

R
(m)
boot

(
̂P−1
µ√

w
(p)

)
must be close to p. Table 5 reports the mean (MEp) over the

500 replications, for each p. To assess a the global performance a Kolmogorov–

Smirnov type statistic is also given in the last column of Table 5 and denoted

KS = maxp |MEp − p|. The results for other distributions, including the Cauchy

and the log-normal distribution are available in Amado (2003).

Table 5: Comparison of different bootstrap distributions

with the “true” distribution of the weighted estimator

for the univariate location model when n= 20 and 50.

C0, n = 20

p 2.5 5 10 25 50 75 90 95 97.5 KS

R
(if)
boot 1.97 3.96 8.23 22.63 49.80 77.09 91.71 96.06 98.04 2.37

R
(1)
boot 2.50 4.75 9.34 23.90 49.98 76.07 90.76 95.39 97.60 1.10

R
(2)
boot 2.46 4.68 9.26 23.77 49.93 76.15 90.80 95.41 97.60 1.23

R
(3)
boot 2.49 4.73 9.32 23.84 49.93 76.08 90.73 95.37 97.57 1.16

C1, n = 20

p 2.5 5 10 25 50 75 90 95 97.5 KS

R
(if)
boot 3.29 5.17 8.97 22.26 49.33 78.92 94.63 98.56 99.80 4.63

R
(1)
boot 4.23 6.42 10.62 23.83 48.83 76.51 92.68 97.46 99.36 2.68

R
(2)
boot 2.53 4.31 7.95 20.38 45.26 73.86 91.16 96.58 98.93 4.74

R
(3)
boot 3.27 5.16 8.88 21.27 45.79 73.91 91.00 96.40 98.79 4.21

C0, n = 50

p 2.5 5 10 25 50 75 90 95 97.5 KS

R
(if)
boot 2.21 4.44 9.10 23.88 49.95 76.01 90.89 95.58 97.83 1.12

R
(1)
boot 2.44 4.83 9.66 24.48 50.03 75.45 90.33 95.16 97.57 0.52

R
(2)
boot 2.44 4.82 9.64 24.46 50.05 75.52 90.38 95.21 97.60 0.54

R
(3)
boot 2.45 4.83 9.65 24.48 50.05 75.50 90.37 95.19 97.59 0.52

C1, n = 50

p 2.5 5 10 25 50 75 90 95 97.5 KS

R
(if)
boot 2.90 5.14 9.74 24.98 52.44 79.63 93.76 97.58 99.12 4.63

R
(1)
boot 3.37 6.07 11.20 26.52 52.18 77.65 92.03 96.48 98.54 2.65

R
(2)
boot 2.35 4.63 9.18 23.58 48.98 75.31 90.78 95.76 98.13 1.42

R
(3)
boot 2.55 4.88 9.47 23.87 49.14 75.30 90.70 95.68 98.07 1.13
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The main conclusions from the overall experiment are: (1) the accuracy

of the bootstrap approximation increases with n, but it can be quite good even

for n = 20; (2) the results are better for symmetric distributions; (3) R
(3)
boot is

usually the best approximation, especially for asymmetric distributions. This

study was also performed for another contamination patterns and larger sample

sizes (n = 100) leading to analogous conclusions.

4.1.1. Confidence intervals for univariate location based on IFB∗

For this study, we consider the simulation design of Salibian–Barrera (2000,

Section 3.6.2). We generate i.i.d. observations X1, ..., Xn with n = 20, 30, 50 such

that Xi ∼ (1− ε)N(0, 1)+ εN(−7, 0.1), with ε = 0, 0.1, 0.2, 0.3. The method cho-

sen is the basic percentile method with IFB
∗
, where RESIF(x) = |x− µ̂LTS |/σ̂LTS

with µ̂LTS and σ̂2
LTS the least trimmed mean and variance estimators. We also

choose c = 1.5 and 2 and denote the procedure IFB
∗
(1.5) and IFB

∗
(2), respec-

tively. The number of bootstrap samples is B = 5000 and the number of simula-

tion runs is 1000.

Table 6 reports the estimated coverage and the length of 95% confidence

intervals. The results under the heading“Censored simulation”are obtained after

excluding from the simulation (not from the bootstrap) samples with more than

50% contamination, since there is no equivariant method able to deal with this

situation.

Table 6: Estimated coverage and length, between brackets, of nomi-

nal 95% confidence intervals for a univariate location model

from contaminated distribution (1−ε)N(0, 1) + εN(−7, 0.1).

Results in boldface indicate significant difference to target.

n ε IFB∗(2) IFB∗(1.5) Censored simulation

20

0.0 0.922 (0.83) 0.915 (0.85) — —
0.1 0.944 (1.14) 0.923 (0.95) — —
0.2 0.955 (1.54) 0.927 (1.13) 0.958 (1.58) 0.935 (1.12)
0.3 0.920 (2.08) 0.890 (1.36) 0.954 (2.08) 0.938 (1.33)

30

0.0 0.939 (0.70) 0.930 (0.70) — —
0.1 0.964 (0.93) 0.942 (0.79) — —
0.2 0.959 (1.29) 0.934 (0.90) — —
0.3 0.961 (1.78) 0.933 (1.08) 0.975 (1.78) 0.951 (1.06)

50

0.0 0.941 (0.55) 0.943 (0.55) — —
0.1 0.956 (0.70) 0.954 (0.60) — —
0.2 0.974 (0.98) 0.952 (0.71) — —
0.3 0.978 (1.41) 0.961 (0.83) — —
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Comparing the obtained results with those reported in Salibian–Barrera

(2000, page 129) for the studentized robust (SRB) and weighted (WB) Bootstrap

(with the same simulation conditions, but 3000 runs) we conclude that: (1) the

coverage of IFB
∗

intervals is similar to the coverage of WB intervals in all cases,

and worse than that of SRB intervals only when n = 20; (2) under contamination,

the length of the intervals follows the following order, IFB
∗
(1.5) < WB < IFB

∗
(2)

< SRB.

4.2. The correlation coefficient

As in Section 4.1, we now consider the distribution of IFB
∗

for the case of

the correlation coefficient. Samples with n = 20 observations were generated from

a non-contaminated and a contaminated model, labelled C0 and C1, respectively.

Under C0, Xi are i.i.d. Xi ∼ N(0,Σ), where

Σ =

(
1 0.5

0.5 1

)
.

Under C1, the observations are still independent and such that Xi ∼ N2 (0,Σ)

for 1 ≤ i ≤ n− [εn] while Xi ∼ δx when n− [εn] + 1 ≤ i ≤ n. We choose ε = 0.1

and x = (−5, 5)
t
.

As in Section 4.1, we consider four bootstrap distributions IFB (taking

c = 5) defined as

• R
(if)
boot(x) = (1/B)

∑B
b=1 I

{(
ρ(P ∗

wn,n) − ρw(Pn)
)
≤ x

}
,

• R
(1)
boot(x) = (1/B)

∑B
b=1 I

{(
ρ(P ∗

wn,n̂new
) − ρ√w(Pn)

)
≤ x

}
,

• R
(2)
boot(x) = (1/B)

∑B
b=1 I

{(
ρ(P ∗

wn,n̂new
) − ρw(Pn)

)
≤ x

}
,

•

R(3)
boot(x) =(1/B)

B∑

b=1

I
{(
ρ(P ∗

wn,n̂new
) − ρ∗

)
×
√
n/n̂new×

×
√
fc + ρ∗ − ρw(Pn) ≤ x

}
,

where ρ∗ is the Monte Carlo approximation of the bootstrap estimator

and the correction factor, fc, is given by

fc =
{
Vboot + n−1a3D

2
est

}
/Vboot

with Vboot = [Var(ρ(Pwn,n))]
B
boot

the bootstrap estimator of the variance

of the usual estimator of the correlation coefficient in the weighted sam-

ple and Dest = ρ√w(Pn) − ρ√w(P ).

As above, the “true” distribution of ρ√w(Pn) − ρ√w(P ) was estimated thr-

ough an independent simulation study based on 5000 samples. This sample of
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5000 observations was centered using its mean. Then, the empirical percentiles

were computed. The previous step, was repeated 20 times and the final estimate

of each percentile is the median of the obtained values over the 20 replications.

Table 7: Comparison of different bootstrap distributions

with the “true” distribution of the weighted estimator

for the correlation coefficient when n = 20.

C0

p 2.5 5 10 25 50 75 90 95 97.5 KS

R
(if)
boot 2.58 4.98 9.72 24.91 53.98 80.39 91.93 95.17 96.82 5.39

R
(1)
boot 2.64 5.14 9.83 24.88 54.09 80.46 91.87 95.14 96.84 5.46

R
(2)
boot 2.49 4.96 9.61 24.63 53.92 80.43 91.88 95.13 96.82 5.43

R
(3)
boot 2.55 5.03 9.68 24.69 53.89 80.31 91.77 95.04 96.74 5.31

C1

p 2.5 5 10 25 50 75 90 95 97.5 KS

R
(if)
boot 2.72 5.26 10.02 25.32 54.99 80.98 92.08 95.18 96.77 5.98

R
(1)
boot 2.63 5.17 9.88 25.10 54.25 80.47 91.74 94.81 96.41 5.47

R
(2)
boot 2.53 5.08 9.82 25.15 54.50 80.85 92.06 95.03 96.55 5.85

R
(3)
boot 2.60 5.17 9.91 25.19 54.42 80.66 91.86 94.87 96.42 5.66

Table 7 summarizes the results obtained. We observe that the approxima-

tions are better for the extreme quantiles than for the central ones, in all cases.

It is worth noting that, for inference purposes, the extreme quantiles are the

relevant ones.

5. CONCLUSIONS

The IFB procedure discussed in this paper allows to use resampling methods

for robust inference, computing a robust estimator only for the original sample

and avoiding the problems related with bootstrapping a robust estimator. It

has shown to be effective for the location model. On the other hand, for the

logistic regression model it shows a performance similar to that of the asymptotic

confidence intervals.

To solve some problems of the procedure including the choice of the tuning

constant and the identification of the functional being bootstrapped, a generalized

influence function bootstrap is introduced. The empirical studies suggest that the

generalized procedure IFB
∗

has good properties, fixing some of the drawbacks of

the original IFB procedure.
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6. APPENDIX: SOME ASYMPTOTIC RESULTS

6.1. Convergence of the weighted empirical distribution to the weighted

distribution

In this section, we will derive asymptotic results related to the consistency

properties of the proposal. Let us first introduce some notation.

Let X1, ...,Xn be i.i.d. observations such that Xi ∈ R
p

with the same dis-

tribution as X, where X ∼ P and θ0 ∈ Θ ⊂ R
q
. Usually, θ is the parameter

allowing to parametrize the distribution of X. Now, assume that θ̂ is a consis-

tent estimator of θ0 and denote by Pn the empirical distribution.

Given a weight function w1 : R
p × R

q → R such that w1 ≥ 0, define the

following functions

Hn(t,θ) =
1

n

n∑

i=1

w1(Xi,θ)I(−∞,t](Xi)(6.1)

H(t,θ) = EPw1(X,θ)I(−∞,t](X) = Pw1(·,θ)I(−∞,t](6.2)

and note that H(t,θ) = EPHn(t,θ).

It is worth noticing that, in Section 2 as in Amado and Pires (2004),

the weighted empirical distribution involves a weight function w1 that equals

w1(x,θ) = w(x,θ){
∫
w(u,θ)dP (u)}−1

and thus, the distribution function used

therein is of the form given in (6.2).

Let us assume that Pw1=EPw1(X,θ)=1 and thatW1(x) = supθ∈Θw1(x,θ)

is such that PW 2
1 <∞.

We consider the following family of functions

F = {fθ,t : R
p → R such that fθ,t(x) = w1(x,θ)I(−∞,t](x) ,θ ∈ Θ and t ∈ R

p}
F0 = {ft : R

p → R such that ft(x) = w1(x,θ0)I(−∞,t](x) , t ∈ R
p}

W = {fθ : R
p → R such that fθ(x) = w1(x,θ) ,θ ∈ Θ}

G = {gt : R
p → R such that gt(x) = I(−∞,t](x) , t ∈ R

p} .

We have that F = W ·G and Hn(t,θ)−H(t,θ) = (Pn −P )fθ,t. Denote by Gn =√
n(Pn − P ).

It is worth noticing that, when w1 is bounded, G and F0 are both P -

Glivenko–Cantelli and Donsker with envelope G(x) ≡ 1 and F0(x) = w1(x,θ0).



190 C. Amado, A. Bianco, G. Boente and A. Pires

Proposition 6.1 states that Hn(t,θ) is a uniformly strongly consistent esti-

mator of H(t,θ) giving also the rate of this convergence.

We will need the following assumptions

A1. |w1(x,θ1)−w1(x,θ2)| ≤ ‖θ1 − θ2‖F (x), with PF 2 <∞ and Θ com-

pact

A2. W = ψ(L) with L a finite-dimensional family of functions and ψ :

R → R a bounded function with bounded variation.

A3. W1 is bounded.

A4. w1(·,θ) is continuous in θ.

A5. H is continuously differentiable in θ such thatH ′
(t,θ) = ∂H(t,θ)/∂θ

is bounded in R
p × V with V a neighbourhood of θ0.

Remark 6.1. W1 provides an envelope for W. Moreover, under mild

conditions on the functions w1, W is P -Glivenko–Cantelli and Donsker family.

For instance, W is both P -Glivenko–Cantelli and Donsker if either A1 or A2

holds.

Proposition 6.1. Assume θ̂ is a consistent estimator and that either A1

or A2 holds. Then,

a) supt∈Rp |Hn(t, θ̂) −H(t,θ0)| a.s.−→ 0 .

b) If, in addition, θ̂ has a root-n order of convergence and A3 to A5 hold,

we have that

(6.3)
√
n sup

t∈Rp

|Hn(t, θ̂) −H(t,θ0)| = OP(1) .

Proof of Proposition 6.1: a) Under either A1 or A2, we will have that

F is P -Glivenko–Cantelli and so,

sup
f∈F

|(Pn − P )f | = sup
θ∈Θ
t∈Rp

|Hn(t,θ) −H(t,θ)| a.s.−→ 0.

In particular, we have that

sup
t∈Rp

|Hn(t, θ̂) −H(t, θ̂)| a.s.−→ 0 .

Moreover, since either A1 or A2 holds, we have that M1(θ) = Pw1(·,θ) is a

continuous function. Hence, we have that the consistency of θ̂ implies that

supt∈Rp |H(t, θ̂) −H(t,θ0)| a.s.−→ 0 and thus, we obtain that

(6.4) sup
t∈Rp

|Hn(t, θ̂) −H(t,θ0)| a.s.−→ 0 .
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b) Using A3, we get that F is Donsker, so Gn =
√
n(Pn − P ) converges

weakly to a zero mean Gaussian process G in ℓ∞(F). Therefore, the following

equicontinuity condition holds

(6.5) lim
η→0

lim sup
n→∞

P

(
sup

ρP (fθ1,t1
−fθ2,t2

)<η
|Gn(fθ1,t1 − fθ2,t2)| > ǫ

)
= 0

with ρ2
P (f) =P (f−Pf)

2
. Note that, ρ2

P (fθ1,t−fθ2,t)≤EP (w1(X,θ1)−w1(X,θ2))
2

= B(θ1,θ2) where the function B(θ1,θ2) satisfies that limθ→θ0
B(θ,θ0) = 0,

since w1(·,θ) is continuous in θ and W1 is bounded. Then, using that θ̂ is con-

sistent, we obtain that supt∈Rp ρ2
P (fbθ,t − fθ0,t)

p−→ 0 which implies that

sup
t∈Rp

|Gn(fbθ,t − fθ0,t)|
p−→ 0 .

Therefore, Gnfbθ,t has the same asymptotic distribution as Gnfθ0,t in ℓ∞(F0).

Using that F0 is Donsker, we get that Gnfθ0,t converges to a zero mean Gaussian

process G0 in ℓ∞(F0) with covariances given by

EG0fθ0,t1G0fθ0,t1 = EPw
2
1(X,θ0)I(−∞,t1](X)I(−∞,t2](X) −

− EPw1(X,θ0)I(−∞,t1](X) EPw1(X,θ0)I(−∞,t2](X) .

In particular,
√
n supt∈Rp |Hn(t, θ̂) −H(t, θ̂)| is tight and has the same asymp-

totic distribution as
√
n supt∈Rp |Hn(t,θ0) −H(t,θ0)|.

Using that θ̂ has a root-n order of convergence and the fact that A5 implies

that H is continuously differentiable with bounded first derivative in a neighbour-

hood of θ0, we have that (6.3) holds concluding the proof of b).

Remark 6.2. The asymptotic distribution of
√
n supt∈Rp |Hn(t, θ̂) −

H(t,θ0)| may depend on that of
√
n(θ̂ − θ0). Using analogous arguments, it

is possible to show that

i) If EPW1(X)‖X‖ <∞, then

sup
θ∈Θ

∥∥∥∥∥
1

n

n∑

i=1

w1(Xi,θ)Xi − EPw1(X,θ)X

∥∥∥∥∥
a.s.−→ 0

and so, if A(θ) = EPw1(X,θ)X is a continuous function of θ, we have

that ∥∥∥∥∥
1

n

n∑

i=1

w1(Xi, θ̂)Xi − EPw1(X,θ0)X

∥∥∥∥∥
a.s.−→ 0 ,

ii) If EPW
2
1 (X)‖X‖2 <∞, then Zn =

√
n
(

1
n

∑n
i=1w1(Xi, θ̂)Xi − A(θ̂)

)

is tight and has the same asymptotic distribution as Zn,0 =
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√
n
(

1
n

∑n
i=1w1(Xi,θ0)Xi − A(θ0)

)
since Zn − Zn,0

p−→ 0. Moreover,

√
n

(
1

n

n∑

i=1

w1(Xi,θ̂)Xi−A(θ0)

)
= Zn +

√
n
(
A(θ0)−A(θ̂)

)

= Zn,0 +
√
n
(
A(θ0)−A(θ̂)

)
+ oP(1) .

Assume that θ̂ has a root-n order of convergence and that A(θ) is

continuously differentiable in θ. Denote A′
0 = ∂A(θ)/∂θ|θ=θ0

where

∂A(θ)/∂θ =




∂A1(θ)
∂θ1

··· ∂Ap(θ)
∂θ1

.

.

. ··· .
.
.

∂A1(θ)
∂θq

··· ∂Ap(θ)
∂θq


 .

Then, we have that

√
n

(
1

n

n∑

i=1

w1(Xi,θ̂)Xi−A(θ0)

)
= Zn,0− (A′

0)
t√n

(
θ̂−θ0

)
+ oP(1)

and so, again depending on A′
0, the asymptotic distribution of

√
n
(∑n

i=1w1(Xi,θ̂)Xi/n−A(θ0)

)
may depend on that of

√
n
(
θ̂−θ0

)
.

Remark 6.3. As pointed out above, for the weighted empirical distribu-

tion considered in this paper, w1 equals w1(x,θ) = w(x,θ){
∫
w(u,θ)dP (u)}−1

.

Thus, the function used in practice is not Hn but H̃n defined as

H̃n(t,θ) =





1

n

n∑

j=1

w(Xj ,θ)





−1

1

n

n∑

i=1

w(Xi,θ)I(−∞,t](Xi)

= Hn(t,θ)Mn(θ)
−1M(θ) .

where M(θ) = Pw(·,θ) =
∫
w(u,θ)dP (u) and Mn(θ) =

1
n

∑n
j=1w(Xj ,θ). Note

that

H̃n(t, θ̂)−H(t,θ0) = Hn(t, θ̂) −H(t,θ0) + H̃n(t, θ̂) −Hn(t, θ̂)

= Hn(t, θ̂) −H(t,θ0) +Mnθ̂)
−1
[
M(θ̂) −Mn(θ̂)

]

(
Hn(t, θ̂)−H(t,θ0)

)
+Mn(θ̂)

−1
[
M(θ̂)−Mn(θ̂)

]
H(t,θ0) .

Hence, if we denote by ∆̂n(t) = Hn(t, θ̂) −H(t,θ0), we have that

H̃n(t, θ̂) −H(t,θ0) = ∆̂n(t)
{

1 +Mn(θ̂)
−1
[
M(θ̂) −Mn(θ̂)

]}
+

+Mn(θ̂)
−1
[
M(θ̂) −Mn(θ̂)

]
H(t,θ0) .
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Using that W is Glivenko–Cantelli, we get

Mn(θ̂) −M(θ̂) =
1

n

n∑

j=1

w(Xj , θ̂) −
∫
w(u, θ̂)dP (u)

a.s.−→ 0 ,

which together with (6.4) and the facts that
∫
w(u,θ0)dP (u) > 0 and M(θ) =

Pw(·,θ) is a continuous function entails that

sup
t∈Rp

|H̃n(t, θ̂) −H(t,θ0)| a.s.−→ 0 .

On the other hand, (6.3) entails that
√
n supt∈Rp |∆̂n(t)| = OP(1), hence

√
n sup

t∈Rp

|H̃n(t, θ̂) −H(t,θ0)| ≤ OP(1)

∣∣∣1 +Mn(θ̂)
−1
[
M(θ̂) −Mn(θ̂)

]∣∣∣

+|Mn(θ̂)
−1|

√
n
∣∣∣M(θ̂) −Mn(θ̂)

∣∣∣M(θ0) .

Using that W is Donsker, we obtain that
√
n
∣∣∣M(θ̂) −Mn(θ̂)

∣∣∣ = OP(1), which

implies that √
n sup

t∈Rp

|H̃n(t, θ̂) −H(t,θ0)| = OP(1) ,

as desired.

Moreover, as above, we have that
√
n
[
M(θ̂) −Mn(θ̂)

]
has the same asymp-

totic distribution as
√
n [M(θ0) −Mn(θ0)], so, using that M(θ0) 6= 0, we have

√
n
(
H̃n(t, θ̂) −H(t,θ0)

)
=
√
n∆̂n(t) −M(θ0)

−1×

×
√
n [Mn(θ0) −M(θ0)]H(t,θ0) + oP(1) .

An analogous expression can be derived for the mean computed with H̃n(t, θ̂).

6.2. Some results related with the bootstrap

In this section, we will derive some results concerning the bootstrap pro-

cedures. We will fix some notation. For the sake of simplicity denote by pi,θ =

pi(Xi,θ) = w1(Xi,θ)/n. Then, Hn(t,θ) =
∑n

i=1 pi,θI(−∞,t](Xi) and the boot-

strap distribution of Hn is

H⋆
n(t,θ) =

1

n

n∑

i=1

Wn,i,θI(−∞,t](Xi)

where (Wn,1,θ , ...,Wn,n,θ)|~X ∼ M(n, (p1,θ , ..., pn,θ) with ~X = (X1, ···,Xn).

It is worth noticing that EPWn,i,θ |~X = npi,θ entails that EP (H⋆
n(t,θ) −

Hn(t,θ)) = 0. Define µ̂θ =
∑n

i=1 pi,θXi and µ̂⋆
θ =

1
n

∑n
i=1Wn,i,θXi. The next
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proposition states that, conditionally on the sample, the difference between µ̂θ

and µ̂⋆
θ converges to 0 in probability.

Proposition 6.2. Assume that A3 holds. Then,

(6.6) H⋆
n(t, θ̂) −Hn(t, θ̂)|~X p−→ 0 ,

If, in addition supθ∈Θ supx ‖w1(x, θ)x‖ <∞, we have that µ̂⋆bθ − µ̂bθ |~X p−→ 0.

Proof of Proposition 6.2: Let us compute Var (H⋆
n(t,θ) −Hn(t,θ)).

Let ft(x) = I(−∞,t](x), then

Var (H⋆
n(t,θ) −Hn(t,θ)) =

n∑

i=1

Var

((
1

n
Wn,i,θ − pi,θ

)
ft(Xi)

)

+ 2

∑

i<j

Cov

((
1

n
Wn,i,θ − pi,θ

)
ft(Xi),

(
1

n
Wn,j,θ − pj,θ

)
ft(Xj)

)
.

Denote Zi = ((1/n)Wn,i,θ − pi,θ)ft(Xi). Then, using that EPZi = 0, we have that

Var(Zi) = EPZ
2
i = EP

[
f2
t (Xi)EP

((
1

n
Wn,i,θ − pi,θ

)2

|~X
)]

=
1

n
EP f

2
t (X1)p1,θ(1 − p1,θ) .

Similarly, we get that

Cov(Zi, Zj) = EPZiZj

= EP

[
ft(Xi)ft(Xj)EP

((
1

n
Wn,i,θ − pi,θ

)(
1

n
Wn,j,θ − pj,θ

)
|~X
)]

= − 1

n
EP ft(X1)ft(X2)p1,θp2,θ .

Thus,

Var(H⋆
n(t,θ)−Hn(t,θ)) = EP f

2
t (X1)p1,θ(1−p1,θ)−2

1

n

(
n

2

)
EP ft(X1)ft(X2)p1,θp2,θ

=
1

n
EP f

2
t (X1)w1(X1,θ)

(
1 − 1

n
w1(X1,θ)

)

− 2

n

(
n

2

)
1

n2
EP ft(X1)ft(X2)w1(X1,θ)w1(X2,θ) ,

which entails that H⋆
n(t,θ) −Hn(t,θ)

p−→ 0 for each fixed θ, t.

Moreover, we have the bounds

∣∣∣∣EP f
2
t (X1)w1(X1,θ)

(
1 − 1

n
w1(X1,θ)

)∣∣∣∣ ≤ EP f
2
t (X1)W1(X1) = A1

|EP ft(X1)ft(X2)w1(X1,θ)w1(X2,θ)| ≤ EP f
2
t (X1)W

2
1 (X1) = A2
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which imply that

sup
θ∈Θ

Var (H⋆
n(t,θ) −Hn(t,θ)) ≤ 1

n
(A1 +A2) ,

so,

sup
θ∈Θ

P (|H⋆
n(t,θ) −Hn(t,θ)| > ǫ) ≤ 1

ǫ2
1

n
(A1 +A2) .

The fact that EPZi|~X = 0, Cov(Zi, Zj |~X) = −(1/n)ft(Xi)ft(Xj)pi,θpj,θ and

Var(Zi|~X) = (1/n)f2
t (Xi)p

2
i,θ , imply

Var

(
H⋆

n(t,θ) −Hn(t,θ)|~X
)

=
1

n

n∑

i=1

f2
t (Xi)p

2
i,θ −

2

n

∑

i<j

ft(Xi)ft(Xj)pi,θpj,θ .

Hence, using that W1 is a bounded function and that pi,θ = w1(Xi,θ)/n, we get

the following bound

Var

(
H⋆

n(t,θ) −Hn(t,θ)|~X
)

≤

≤ 1

n2
‖W1‖2

∞

1

n

n∑

i=1

f2
t (Xi) +

1

n2
‖W1‖2

∞

1

n

(
n∑

i=1

ft(Xi)

)2

(6.7)

≤ 1

n2
‖W1‖2

∞

1

n

n∑

i=1

f2
t (Xi) +

1

n
‖W1‖2

∞

(
1

n

n∑

i=1

ft(Xi)

)2

.

The fact that |f2
t
(Xi)| ≤ 1 entails that

sup
θ∈Θ

P

(
|H⋆

n(t,θ) −Hn(t,θ)| > ǫ|~X
)
≤ 1

ǫ2
2

n
‖W1‖2

∞ .

Hence,

P

(∣∣∣H⋆
n(t, θ̂) −Hn(t, θ̂)

∣∣∣ > ǫ|~X
)
≤ 1

ǫ2
2

n
‖W1‖2

∞

implying (6.6).

Let us denote µ̂θ =
∑n

i=1 pi,θXi and µ̂⋆
θ =

1
n

∑n
i=1Wn,i,θXi. Taking f(Xi) =

Xi in (6.7), we obtain

Var

(
µ̂⋆

θ − µ̂θ |~X
)

≤ 1

n2

1

n

n∑

i=1

‖f(Xi)‖2w2
1(Xi, θ) +

1

n

∥∥∥∥∥
1

n

n∑

i=1

f(Xi)w1(Xi, θ)

∥∥∥∥∥

2

.

Hence, since B = supθ∈Θ supx ‖f(Xi)w1(Xi, θ)‖ <∞, we get that

P

(
|µ̂⋆bθ − µ̂bθ | > ǫ|~X

)
≤ 1

ǫ2
2

n
B2

implying that µ̂⋆bθ − µ̂bθ |~X p−→ 0.
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Background

Statistical Institute of Portugal (INE, I.P.), well aware of how vital a statis-

tical culture is in understanding most phenomena in the present-day world, and

of its responsibility in disseminating statistical knowledge, started the publication
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