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FOREWORD

Modern biomarker data analysis entails challenging modeling issues of the

utmost importance for public health. Medical tests often use biomarker data

as input, and the statistical evaluation of these tests—before their widespread

application in clinical practice—requires the collaborative effort from experts with

a wealth of backgrounds.

This special issue of Revstat—Statistical Journal gives an account of recent

advances in the evaluation of medical tests, with a special emphasis on method-

ological, graphical, and inferential methods related to the well-known ROC curve.

The key themes being surveyed include estimation, inference, and statistical mod-

eling of ROC curves, ROC surfaces, and ROC regression, as well as modeling

issues on diagnostic testing data when a verification bias exists or when no gold

standard is available.

Statistical Models for Diagnosis and ROC Analysis offers a fresh look into

recent advances, with an eye on future developments and on trending topics for

the upcoming years.

We hope these papers encourage debate between all the experts which take

part in the statistical evaluation of medical tests, and that they can provide

newcomers to the field some directions on latest progresses.

On the behalf of the Editorial Board we would like to thank the authors for

contributing to this special issue. Lastly, we would like to take this opportunity of

putting on record our indebtedness to Professor M. Ivette Gomes, Editor-in-Chief

of Revstat—Statistical Journal, for supporting our initiative and encouraging us

throughout this editorial challenge.

V. Inácio de Carvalho and M. de Carvalho W. González-Manteiga

Pontificia Univ. Católica de Chile Univ. de Santiago de Compostela

Santiago Santiago de Compostela
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Abstract:

• This work overviews some developments on the estimation of the Receiver Operating

Characteristic (ROC) curve. Estimation methods in this area are constantly being

developed, adjusted and extended, and it is thus impossible to cover all topics and

areas of application in a single paper. Here, we focus on some frequentist and Bayesian

methods which have been mostly employed in the medical setting. Although we

emphasize the medical domain, we also describe links with other fields where related

developments have been made, and where some modeling concepts are often known

under other designations.
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1. INTRODUCTION

The Receiver Operating Characteristic (ROC) curve was developed by en-

gineers during World War II for detecting enemy objects in battlefields (Collison,

1998). Its expansion to other fields was prompt and, for instance, in psychology

it was used to study the perceptual detection of stimuli (Swets, 1996). Over

the years, it has been widely applied in many fields including atmospheric sci-

ences, biosciences, experimental psychology, finance, geosciences, and sociology

(Marzaban, 2004; Krzanowski and Hand, 2009, and the references therein). ROC

analysis has also been increasingly used in machine learning and data mining, and

other relevant applications have also emerged in economics (Lasko et al., 2005).

Yet in another setting, Morrison et al. (2003) described the ROC curve as a simple

and effective method to compare the accuracies of reference variables of bacterial

beach water quality. Since several fields have contributed independently to the

development of ROC analysis, many concepts and techniques are often known

under different names in different communities.

This paper provides an overview on some inference methods used in ROC

analysis—which have been mostly employed in the medical setting—, and points

out the usefulness of transferring knowledge from one field to another. The esti-

mation target of interest is the so-called ROC curve which is a graphical represen-

tation of the relationship between false positive and true positive rates or, using

an epidemiological language, it is a graphical representation of Se as a function

of 1− Sp, where Se is the sensitivity and Sp is the specificity of a diagnostic test.

Se is the probability that a truly diseased individual has a positive test result,

and Sp is the probability that a truly non-diseased individual has a negative test

result. Using the true/false positive/negative rates or the specificity and sensitiv-

ity, we deal with conditional probabilities of belonging to a particular predicted

class given the true classification (Krzanowski and Hand, 2009), in a two-class

classification (e.g., diseased and nondiseased subjects, email messages are spam

or not, credit card transactions are fraudulent or not).

In medicine, one of the earliest applications of ROC analysis was published

in the 1960s (Lusted, 1960), although the ROC curve only gained its popular-

ity in the 1970s (Martinez et al., 2003; Zhou et al., 2011). Nowadays, medical

technologies offer a vast array of ways to diagnose a disease, or to predict the

disease progression, and new diagnostic tests and biomarkers are continuously

being studied. ROC analysis is widely used for evaluating the discriminatory

performance of a continuous variable representing a diagnostic test, a marker, or

a classifier.

According to different aims, the ROC analysis is useful to: (i) evaluate the

discriminatory ability of a continuous marker to correctly assign into a two-group
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classification; (ii) find an optimal cut-off point to least misclassify the two-group

subjects; (iii) compare the efficacy of two (or more) diagnostic tests or markers;

and (iv) study the inter-observer variability when two or more observers measure

the same continuous variable.

Many parametric, semiparametric, and nonparametric estimation methods

have been proposed for estimating the ROC curve and its associated summary

measures. Here, we focus on some frequentist and Bayesian methods which have

been mostly employed in the medical setting. In Section 2 we introduce nota-

tion and the basic modeling concepts. Frequentist and Bayesian approaches are

reviewed in Section 3 and Section 4, respectively. The paper ends with a short

discussion in Section 5.

2. DEFINITIONS AND MODELING FRAMEWORK

Let X and Y be two independent random variables, respectively denoting

the diagnostic test measure for a healthy population (D = 0) and for a diseased

population (D = 1), defined using a gold standard. Without loss of generality,

and for an appropriate cut-off point c, the test result is positive if it is greater

than c and negative otherwise.

Let F and G be the distribution functions of the random variables X and

Y , respectively. The sensitivity of the test is given by Se(c) = 1 − G(c), and the

specificity is defined as Sp(c) = F (c). An example is presented in Figure 1.
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Figure 1: Distribution of the diagnostic test measures

for the healthy and the diseased populations.
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The ROC curve is defined as a plot of Se(c) versus 1−Sp(c) for −∞≤c≤∞,

or equivalently as a plot of

(2.1) ROC(t) = 1 − G
(
F−1

(1 − t)
)
,

over t ∈ [0, 1], where F−1
(1 − t) = inf

{
x ∈ R : F (x) ≥ 1 − t

}
.

The ROC curve is increasing and invariant under any monotone increasing

transformation of the variables X and Y . Several ROC curve summary measures

have been proposed in the literature, such as the area under the curve (AUC) or

the Youden index (maxc{Se(c) + Sp(c) − 1}). They are considered as summaries

of the discriminatory accuracy of a test. The AUC is given by

(2.2) AUC =

∫
1

0

ROC(u) du .

Different approaches to estimate the ROC curve lead to different estimates of

the AUC. The AUC can be interpreted as the probability that, in a randomly

selected pair of nondiseased and diseased individuals, the diagnostic test value

is higher for the diseased subject, i.e., AUC = P (Y > X). Values of AUC close

to 1 suggest a high diagnostic accuracy of the test or marker. Bamber (1975)

established an important link with the popular nonparametric test of Mann–

Whitney. The area of the empirical ROC curve is equal to the Mann–Whitney U

statistic that provides an unbiased nonparametric estimator for the AUC (Faraggi

and Reiser, 2002). Since the seminal work of Bamber (1975), several authors have

proposed refining the nonparametric approach to obtain smoothed ROC curves,

for example, by using the kernel method to be described below. Parametric esti-

mation of the ROC curve is also an active area of research and several proposals

for F and G are considered. The most widely used parametric ROC model is the

bi-normal, which is described in the next section.

3. FREQUENTIST METHODS

3.1. Parametric approaches

3.1.1. The bi-normal estimator

Parametric methods are used when F and G in nondiseased and diseased

populations are known. The bi-normal model is commonly considered, and it

is applicable when both diseased and nondiseased test outcomes follow normal

distributions (Faraggi and Reiser, 2002). If data are actually bi-normal, or a Box–

Cox transformation, such as the logarithm or the square root, makes the data



6 L. Gonçalves, A. Subtil, M. Rosário Oliveira and P. de Zea Bermudez

bi-normal, then the relevant parameters can be easily estimated by the means

and variances of test values in diseased and nondiseased populations.

Let X and Y be independent normal variables with mean values µ0, µ1 and

variances σ2

0
, σ2

1
. Then, the ROC curve can be summarized in the following way:

(3.1) ROC(t) = Φ
{
a + b Φ

−1
(t)
}

, 0 ≤ t ≤ 1 ,

where, Φ is the standard normal distribution function and a and b are the sepa-

ration and the symmetry coefficients, respectively, given by a = (µ1 −µ0)/σ1 and

b = σ0/σ1. In this case, the AUC has a closed form given by

(3.2) AUC = Φ

(
a√

1 + b2

)
.

Returning to the example presented in Figure 1, the graphical representa-

tion of the ROC curve is illustrated in Figure 2.
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Figure 2: Example of an ROC curve for a bi-normal

model, constructed using Equation (3.1).

The bi-normal model leads to convenient maximum likelihood estimates

(and corresponding asymptotic variances) of the ROC curve parameters.

In this example, the normal distributions for healthy and diseased popu-

lations have the same variance and, hence, the curve is concave. Concavity is a

characteristic of proper ROC curves (Dorfman et al., 1996). This is a desirable

property because it guarantees that the ROC curve will never cross the main
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diagonal. Moreover, it is a property of the optimal ROC curve to establish deci-

sion rules (Huang and Pepe, 2009). However, a problem with using the bi-normal

ROC model is that it is not concave in (0, 1) unless b = 1, as noted by Huang and

Pepe (2009). Hughes and Bhattacharya (2013) characterize the symmetry prop-

erties of bi-normal and bi-gamma ROC curves in terms of the Kullback–Leibler

divergences. Considering the negative diagonal of the plot, a ROC curve may

be symmetric or skewed towards the left-hand axis or the upper axis of the plot.

ROC curves with different symmetry properties may have the same AUC value.

Not all continuous parametric ROC curves are proper. It is well known that the

bi-normal ROC curve is not proper in general, while the bi-gamma ROC curve is

proper (Dorfman et al., 1996; Hughes and Bhattacharya, 2013). Several alterna-

tive models have been explored and compared in simulation studies, considering

bi-gamma, bi-beta, bi-logistic, bi-exponential (a particular case of bi-gamma),

bi-lognormal, bi-Rayleigh and even other proposals, such as the triangular distri-

bution with constrained or unconstrained support (Dorfman et al., 1996; Zou et

al., 1997; Marzaban, 2004; Tang et al., 2010; Pundir and Amala, 2012; Tang and

Balakrishnan, 2011; Hussain, 2012; Hughes and Bhattacharya, 2013).

3.1.2. Robustness of the bi-normal estimator

The choice of the bi-normal estimator to fit a ROC curve is usually justi-

fied by theoretical considerations, mathematical tractability, familiarity with the

normal model or just by convenience. Hanley (1988) presents a table summariz-

ing the most common arguments in favor of the use of this estimator. But some

authors also argue that the bi-normal estimator is robust. The word robust can

have many different meanings. Here it is used in the sense of robust statistics, i.e.

meaning that in the presence of a certain amount of observations coming from a

non-normal distribution the bi-normal estimator will yield reliable results. Lately,

the impact of model misspecification in the parametric or semiparametric models

used in health sciences is gaining importance, since practitioners are aware that

theoretical models are only approximations of reality, and statistical procedures

that give reliable results under model departures are essential for solving real

problems. This concern is addressed by Heritier et al. (2009) and Farcomeni and

Ventura (2010).

In the case of the bi-normal estimator of the ROC curve, authors like Swets

(1986) argue that“Empirical ROC’s drawn from experimental psychology and sev-

eral practical fields, (...) are fitted well on a binormal graph...”. This statement is

reinforced by Hanley (1988), who claims that “...the binormal-based fits are cer-

tainly good enough for all practical purposes.”. Hajian-Tilaki et al. (1997) state

that, “The results suggested that the AUC is robust to departures from binomality

if one uses the binormal model as implemented in LARROC program.”. Neverthe-
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less, these authors were more cautious adding that a possible explanation relies

in the use of ranks instead of the original data, in both estimation procedures.

Walsh (1997) clarifies these arguments. Robustness, in Swets (1986) and

Hanley (1988), is understood as the ability of the bi-normal estimator to fit a ROC

curve that ‘looks right’ in comparison either with the theoretical ROC curve or

with the observed rating method. But this author goes further, discussing the

ability of the bi-normal estimator to produce valid inferences in circumstances in

which the data does not satisfy the normality assumption. A simulation study

to analyze the impact of data coming from a bi-logistic model combined with

bi-normal estimator was developed to study: (i) the AUC estimator, (ii) the

performance of the statistical test to compare AUC from two ROC curves, and

(iii) the impact on size and power of this statistical test. The choice of the bi-

logistic distributions to model departures from bi-normal assumption relies on

the difficulty to distinguish these models, since the logistic model was considered

one of the possible hardest scenarios to detect departures from the normality

assumption. In his simulation study, Walsh also considers the effect of different

sets of decision thresholds, and concludes that the bi-normal estimator is sensitive

to model misspecification and to the location of the decision thresholds.

The problem of robustness has deserved the attention of other authors.

Greco and Ventura (2011) develop an M -estimator for the P (Y > X) in the

context of a stress-strength model, that has direct application in AUC estimation.

Recently, Devlin et al. (2013) discuss the impact of model misspecification in

three estimators resulting from modeling the parametric form of the ROC curve

directly.

3.2. Nonparametric estimation of the ROC curve

3.2.1. Empirical estimator and variants

The simplest nonparametric method is the empirical estimator, which is

based plugging in empirical estimates into (2.1). Specifically, the empirical esti-

mate of the ROC curve is given by

(3.3) R̃OC(t) = 1 − G̃
(
F̃−1

(1 − t)
)
,

where F̃−1
and G̃ respectively denote the empirical quantile function and the

empirical distribution function associated to healthy and diseased populations;

roughly speaking, the empirical distribution function is defined, for any given

value t, as the percentage of sample points smaller or equal to t.
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The empirical ROC curve preserves many properties of the empirical dis-

tribution function and it is uniformly convergent to the theoretical curve (Hsieh

and Turnbull, 1996). Nevertheless, the estimator has some drawbacks, and it

may suffer from large variability, particularly for small sample sizes (Lloyd, 1998;

Lloyd and Yong, 1999; Jokiel-Rokita and Pulit, 2013). While this is not a major

problem in machine learning, data mining, and finance—where large samples are

common—in medicine this may be inadequate, as small samples are common-

place in clinical practice. In addition to all this, the estimated ROC curve is not

continuous, and thus its interpretation becomes more complex (Jokiel-Rokita and

Pulit, 2013).

Other methods have been explored to obtain smooth ROC curve estimates,

either through kernel smoothing (Lloyd, 1998; Lloyd and Yong, 1999) or through

smooth versions of the empirical distribution function (Jokiel-Rokita and Pulit,

2013).

3.2.2. Kernel estimator

To overcome the lack of smoothness of the empirical estimator, Zou et al.

(1997) used kernel methods to estimate the ROC curve, which were later improved

by Lloyd (1998). Kernel density estimators are known to be simple, versatile,

with good theoretical and practical properties (Silverman, 1986; Tenreiro, 2010),

merits that the corresponding ROC curve estimator inherit.

Let (x1, ..., xn) and (y1, ..., ym) be two independent samples from X and Y ,

respectively. The kernel density estimators of f and g, the probability density

functions associated with F and G, are:

f̂(x) =
1

nh0

n∑

i=1

K0

(
x − xi

h0

)
, ĝ(y) =

1

mh1

m∑

i=1

K1

(
y − yi

h1

)
.

Here the hi > 0 are bandwidths, which are used to control the amount of

smoothness, and the Ki are kernel functions, that obey (i)
∫

R
Ki(x) dx = 1,

(ii)
∫

R
xKi(x) dx = 0, and (iii)

∫
R

x2Ki(x) dx > 0, for i = 0, 1. Using these esti-

mators, the cumulative distribution functions can be estimated as

(3.4)

F̂ (x) =
1

n

n∑

i=1

∫ x

−∞

1

h0

K0

(
u − xi

h0

)
du , Ĝ(y) =

1

m

m∑

i=1

∫ y

−∞

1

h1

K1

(
v − yi

h1

)
dv .

These integrals can be evaluated numerically. The choice of the kernels K0 and K1

among the available proposals is not problematic, since they all give comparable

results, as was pointed out by Krzanowski and Hand (2009) and Jokiel-Rokita

and Pulit (2013). This justifies the pragmatic option of using equal kernels, and
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a popular option is the Gaussian kernel (Sheather, 2004; Hong et al., 2007; Zhou

et al., 2011; Fabsic, 2012), and in this case Equation (3.4) can be written as

(3.5) F̂ (x) =
1

n

n∑

i=1

Φ

(
x − xi

h0

)
, Ĝ(x) =

1

m

m∑

i=1

Φ

(
y − yi

h1

)
.

Plugging-in (3.4) into (2.1) leads to the kernel-based ROC curve estimator:

(3.6) R̂OC(t) = 1 − Ĝ
(
F̂−1

(1 − t)
)
.

The most sensitive aspect of the kernel-based ROC curve estimator in (3.6)

is the choice of the ‘optimal’ bandwidth (Zhou and Harezlak, 2002; Hall and Hyn-

dmann, 2003; Zhou et al., 2011; Jokiel-Rokita and Pulit, 2013). This, combined

with the selection of K determines the properties of the estimator. Zou et al.

(1997) used bandwidths that are asymptotically optimal for estimating f and g.

Lloyd (1998) improved the previous proposal by choosing bandwidths that are

asymptotically optimal for estimating F and G, since the ROC curve depends di-

rectly on these cumulative distribution functions. Lloyd and Yong (1999) showed

how kernel density estimators overcome the empirical ones. Qiu and Le (2001)

proposed a ROC curve estimator based on a kernel distribution function esti-

mator to G and a local smoothing quantile function estimator to F−1
. Peng

and Zhou (2004) introduced another kernel estimator involving only one band-

width, estimated in an optimal asymptotical way, that has better performance

near the boundary of the support of X and Y . Koláček and Karunamuni (2009)

proposed a related kernel-based estimator for the ROC curve that removes the

boundary effects. Contrasting with these approaches, Jokiel-Rokita and Pulit

(2013) proposed a strongly consistent estimator based on a smoothed version of

the empirical ROC curve that, according to a simulation study, outperformed the

empirical and a kernel estimator for small sample sizes.

Kernel-based estimators can also be used for estimating the AUC. For ex-

ample, using the estimators proposed by Lloyd (1998) and a Gaussian kernel,

yields the following estimator

(3.7) ÂUC =
1

nm

n∑

i=1

m∑

j=1

Φ

(
yj − xi√
h2

0
+ h2

1

)
.

See Fabsic (2012), for a simulation study comparing several parametric and non-

parametric methods.
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4. BAYESIAN METHODS

4.1. Introduction

Bayesian methods are introduced in ROC curve estimation as an alternative

to maximum likelihood methods. Bayesian approaches enable the introduction

of prior information into the estimation process, which reduces the uncertainty

of the inferences. This point is specially important when a gold standard test,

which correctly classifies all subjects as healthy or diseased, is unavailable, either

because there is no gold standard for the disease or because the procedure is costly,

technically demanding, harmful or even life-threatening. In this framework, the

true state of the individuals is unknown and the modeling process may benefit

from including existing information about the problem under study through the

use of prior distributions.

The Bayesian framework enables obtaining credibility intervals for the ROC

curve and for other summary measures, such as the AUC. As it is known, one of

the benefits of the Bayesian methodology is the capability of producing regions in

terms of the posterior distributions of the parameters. These regions, contrarily

to confidence intervals resulting from frequentist analysis, allow for probabilis-

tic interpretations of the inferences. Additionally, predictive probabilities of the

health status of future individuals can be obtained through the predictive dis-

tribution. Furthermore, the Bayesian perspective is specially suited to model

complex designs, namely through the use of hierarchical structures (Ishwaran

and Gatsonis, 2000; O’Malley and Zou, 2006; Johnson and Johnson, 2006).

It is well known that the ability of a diagnostic test to discriminate between

diseased and healthy populations, may be influenced by various factors (Pepe,

2003). Moreover, assessing the covariate impact may provide useful information

regarding the test adequacy towards different populations and conditions (de

Carvalho et al., 2013). On the contrary, neglecting covariate effects may lead

to biased inferences about the test performance. Covariate effects on the ROC

curves are addressed in several works (e.g. Peng and Hall, 1996; Branscum et al.,

2008; de Carvalho et al., 2013).

Traditionally, in a Bayesian framework, ROC curve estimation has been

explored in a parametric manner. More recently, semiparametric and nonpara-

metric methodologies have also been developed. In the next subsections some of

these approaches will be described.
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4.2. Parametric approaches

Some of the first accounts of using a Bayesian methodology in ROC curve

estimation are based on regression models (Peng and Hall, 1996; Hellmich et al.,

1998). Probit-linked generalized linear regression models are applied to ordinal

test results, leading to Bayesian inferences for ROC curves and functionals such

as the AUC. In particular, the approach adopted by Peng and Hall (1996) admits

latent bi-normal distributions for diseased and nondiseased populations, even

though other parametric distributions could be considered. The authors use data

augmentation techniques to impute unobserved continuous data from the latent

distribution, thus allowing to overcome the difficulties due to the ordinal nature

of the observations. Noninformative priors are applied. This ordinal regression

model can explain modifications observed in the ROC curves caused by changing

the value of a single covariate.

As mentioned earlier, some regression approaches to ROC curve analysis

consider hierarchical structures (O’Malley and Zou, 2006; Johnson and Johnson,

2006). A Bayesian multivariate hierarchical transformation model is developed

by O’Malley and Zou (2006) based on clustered continuous diagnostic test data

with covariates. This approach is useful in the context of multilevel data with

clustered responses, like, for example, radiologic data collected from patients

(individual level) nested in different hospitals (clusters). The authors aim to

model the diagnostic test accuracy and define a composite diagnostic test. The

authors remark that a cluster-specific transformation of the outcomes is applied

to handle the heterogeneity between the clusters and that multiple correlated

outcomes may be used. The methodology is applied to prostate cancer biopsy

data gathered from a multi-center clinical trial.

Johnson and Johnson (2006) address a situation frequently observed in

radiology, in which several radiologists rate, in an ordinal scale, multiple exams

collected from the same individual. A Bayesian hierarchical latent variable model

for analyzing multirater correlated ordinal data is proposed. The three sources

of variation (differences in patients characteristics, in diagnostic exams and in

raters) are explicitly modeled, each one corresponding to a different level of the

model hierarchy. Simulation studies show that this model is more efficient than

the most widely used model for multirater correlated data analysis (Dorfman et

al., 1992).
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4.3. Semiparametric and nonparametric approaches

Bayesian semiparametric and nonparametric approaches have been used

for ROC curve estimation in the last few years (Erkanli et al., 2006; Wang et al.,

2007; Gu et al., 2008; Branscum et al., 2013). These methodologies are still being

developed and constitute a very active line of research.

Nonparametric Bayesian methods are meant to overcome the restrictions

imposed by considering a fixed parametric model and the consequent difficulties

in capturing nonstandard data features, such as multimodality and skewness.

Contrarily to the traditional parametric framework, the nonparametric frame-

work enables a more flexible modeling of the data, in the sense that no specific

parametric family of distributions is considered.

The nonparametric approach entails a modeling framework that requires

specifying a prior distribution over the space of all probability measures. As

pointed out by Inácio (2012), this does not mean an absence of parameters in the

model, on the contrary it involves an (possibly) infinite number of parameters. In

this framework, Dirichlet processes, mixtures of Dirichlet processes, Polya trees,

and mixtures of Polya trees are frequently used priors; for further details on this

see Inácio (2012), and references therein.

A Bayesian semiparametric approach for ROC curve estimation method,

based on mixtures of Dirichlet processes, was developed by Erkanli et al. (2006).

A Gibbs sampling framework is used to obtain posterior distributions of the mix-

tures of Dirichlet processes model, thus providing posterior predictive estimates of

sensitivity, specificity, ROC curves and AUC. The authors show that, even when

a gold standard diagnostic test is not available, the results still stand. Moreover,

it closely parallels the kernel density estimation approach, previously referred to

in this paper.

A nonparametric Bayesian method reported by Hanson et al. (2008) uses

Dirichlet process mixtures and mixtures of Polya trees for analyzing continuous

serologic data. A novelty of this approach is the inclusion of a stochastic ordering

constraint for the serologic values distributions of the infected and noninfected

populations. This is a biologically reasonable assumption, since the serologic

scores tend to be higher for the infected individuals than for the noninfected

ones. According to the authors, the approach has the benefit of guaranteeing

that the AUC is always larger than 0.5, meaning that the ROC curve never goes

below the main diagonal. The two models are applied to Johne’s disease data

observed in dairy cattle. Qualitatively similar inferences are obtained and the

same conclusions, regarding the accuracy of the serologic tests, can be drawn

from both applications.
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In the Bayesian nonparametric context, few works study the effect of co-

variates in ROC curve estimation. This issue is explored by de Carvalho et al.

(2013). The model is based on dependent Dirichlet processes and allows the en-

tire distribution in each group to smoothly change as a function of the covariates.

This approach can accommodate multiple continuous and categorical predictors.

An approximated version of the general model, based on B-splines, was compared

with the semiparametric approach of Pepe (1998), with an extension of the pre-

vious approach that uses a B-splines trend and with the nonparametric kernel

estimator of Rodŕıguez-Álvarez et al. (2011). The proposed model outperforms

its competitors for nonlinear scenarios and small sample sizes. An application of

the model to diabetes diagnosis is presented.

As explained by Inácio (2012), ROC surfaces have been proposed for the

evaluation of the diagnostic accuracy in ordered three-class problems as a direct

generalization of the ROC curve. A flexible Bayesian nonparametric approach

based on mixtures of finite Polya trees priors is described by Inácio (2012).

The bootstrap has been used to ROC curve estimation by Gu et al. (2008).

The authors also present estimation credible intervals of the ROC curve and apply

the approach for testing the validity of the bi-normal assumption.

4.4. Absence of a gold standard

Imperfect diagnostic tests are widely used in medicine and, as we pointed

out earlier, the Bayesian methodology is particularly suited for problems of this

nature (Krzanowski and Hand, 2009).

Returning to the previously mentioned work of Erkanli et al. (2006), an

extension of the nonparametric model to the case of imperfect reference test is

given, in which a binary latent variable is introduced to express the true but

unknown disease status. Extensive literature exists on the use of latent class

models to evaluate the performance of binary diagnostic tests in the absence of a

gold standard, either using maximum likelihood or Bayesian estimation methods

(see Gonçalves et al., 2012, and references therein).

Again, in the context of no gold standard data analysis, Choi et al. (2006)

develop a parametric Bayesian methodology that admits two diagnostic tests

applied to the same individuals. The data are modeled under the bi-normal

assumption; this assumption may require a suitable transformation, which can be

difficult to find in the absence of a gold standard test. Training data or previous

studies with a gold standard could suggest an adequate transformation. The

method is initially formulated for the gold standard case and slightly modified to

address the gold standard absence. A latent variable indicating the true disease
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state is introduced, resembling Erkanli et al. (2006). The method has difficulty in

assigning the correct disease status when the overlap of diseased and nondiseased

groups is too large.

Wang et al. (2007) explore the problem of estimating the ROC curve of a

new ordinal or continuous scale diagnostic test by comparison with an imperfect

binary reference test, assuming conditional independence between the two tests.

Identifiability problems require data from at least two populations with different

prevalences. The method is based on a multinomial model and no assumptions

are needed concerning the shape of the distributions corresponding to the test

values. Care is taken in guaranteeing the monotonicity of the ROC curve.

Both Choi et al. (2006) and Wang et al. (2007) illustrate their methods

using different datasets from Johne’s disease in cattle.

A group of Bayesian latent class models for mixed continuous and discrete

diagnostic test data is explored by Weichenthal et al. (2010). These models are

used to determine the probability of asbestos exposure from lung fiber count data.

The model admits correlations between repeated measurements of the same test

within individuals.

Branscum et al. (2008) propose Bayesian nonparametric and semiparamet-

ric approaches to ROC analysis and disease diagnosis in the absence of a gold

standard. A nonparametric model using mixtures of Polya trees is proposed to

estimate probabilities of disease risk and the ROC curve. Semiparametric exten-

sions of this model are also proposed. These semiparametric models incorporate

additional information regarding the disease status. Two types of information

are used: standard covariate information and information from additional binary

diagnostic tests. Such additional information improves the discriminatory ability

to correctly classify subjects as healthy or diseased, leading to a modeling process

in between the gold standard case and the nonparametric modeling in the absence

of a gold standard. This is a very flexible approach that allows combining in a

single framework available information on risk factors and additional diagnostic

tests outcomes to enhance diagnostic predictive accuracy.

Nonparametric Bayesian analysis involving Polya tree priors is also dealt

with in Branscum et al. (2013). The usefulness of the discussed flexible models

over a standard parametric method is shown in an application to a lung cancer

biomarker.
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5. FINAL REMARKS

Statistical modeling of ROC curves is a vast topic and offers several fu-

ture research lines. The use of flexible models that accommodate covariates and

prior information is an active field of research. If proper ROC curves are de-

sired in many applications, in Bioinformatics not proper ROC curves have been

increasingly used as new tools for the analysis of differentially expressed genes

in microarray experiments (e.g. Parodi et al., 2008; Silva-Fortes et al., 2012).

A particularly relevant issue in this setting is robustness, but further research is

definitely required on this.
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(2011). ROC curve and covariates: extending induced methodology to the

non-parametric framework, Statistics and Computing, 21, 483–499.

Sheather, S. J. (2004). Density estimation, Statistical Science, 19, 588–597.

Silva-Fortes, C.; Amaral Turkman, M.A. and Sousa L. (2012). Arrow

plot: a new graphical tool for selecting up and down regulated genes and genes

differentially expressed on sample subgroups, BMC Bioinformatics, 13, 147.

Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis,

Chapman & Hall, London.

Swets, J.A. (1986). Form of empirical ROCs in discrimination and diagnostic

tasks: implications for theory and measurement of performance, Psycological

Bulletin, 99, 181–198.

Swets, J.A. (1996). Signal Detection Theory and ROC Analysis in Psychology

and Diagnostics: Collected Papers, Lawrence Erlbaum Associates, New Jersey.

Tang, L.; Du, P. and Wu, C. (2010). Compare diagnostic tests using

transformation-invariant smoothed ROC curves, Journal of Statistical Plan-

ning and Inference, 140, 3540–3551.
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1. INTRODUCTION

ROC curves are a very useful instrument to measure how well a variable

or a diagnostic test is able to distinguish two populations from each other. It is

therefore an essential element in the classification and discrimination literature,

and it has interested and still interests many statisticians from a theoretical as

well as from an applied point of view.

When covariates are present, it might be advisable to incorporate them

in the ROC curve in order to make use of the additional information. In fact,

in many situations the performance of a diagnostic test and, by extension, its

discriminatory capacity can be affected by covariates. Pepe (2003, pp. 48–49)

provides several examples of covariates that can affect a test result. For instance,

patient characteristics, such as age and gender, are important covariates to be

considered. Furthermore, when a diagnostic test is performed by a tester (e.g.,

a radiologist engaged in interpreting images), a characteristic of the tester, such

as experience or expertise, will often affect the test result. The incorporation

of covariates into the ROC curve might be done for two purposes: (a) obtain

covariate-specific ROC curves, or ROC curves that condition on a specific value

of a covariate vector; and (b) get some kind of average ROC-curve, or covariate-

adjusted ROC curve, which takes the covariate information of each data point

into account in order to obtain a better measure of the discriminatory capacity

than the rude ‘marginal’ or ‘pooled’ ROC curve.

In this paper we first explain in Section 2 why it is important to take

covariate information into account by giving some concrete examples of situa-

tions where the covariates have an impact on the performance of the diagnostic

test and/or its discriminatory capacity. We next consider in Section 3 both the

covariate-specific and the covariate-adjusted ROC curve, and we give an overview

of estimation methods that have been proposed for both concepts in Section 4.

The focus lies on reviewing the literature and not on giving detailed derivations

or lengthy discussions. They can be found in the respective papers. For rea-

sons of brevity, we mostly focus on nonparametric approaches, although some

parametric and semiparametric methods are also discussed. In Section 5 we ana-

lyze endocrinological data on the body mass index to illustrate the methodology.

Finally, in Section 6 we mention some research topics that need further investi-

gation or that are still unexplored.
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2. MOTIVATION

This section is devoted to motivating the need for incorporating covariates

into the ROC analysis by means of illustrating the consequences that ignoring

such information may have on the practical conclusions drawn from the study at

hand. In brief, there are two different scenarios on which covariate information

will have to be incorporated into the ROC analysis: (a) when the performance of

the diagnostic test is affected by covariates, but not its discriminatory capacity;

and, (b) when the discriminatory capacity itself is affected. A good overview

of this aspect can be found in Janes and Pepe (2008, 2009a) and in fact, the

examples given here are partially based on both papers. For a more detailed

review of the subject, readers are urged to consult these references.

On the one hand, let us start with those situations in which the performance

of the diagnostic test is affected by covariates, even where the discriminatory ca-

pacity of the test is unaffected. This situation is depicted in Figure 1(a), in which

a covariate X (e.g., patient gender) affects the result but not the discriminatory

capacity of diagnostic test Y . In other words, the separation between the condi-

tional distributions of the diagnostic test result in both healthy and diseased pop-

ulations is the same, irrespective of the values of covariate X. In Figure 1(b), co-

variate X is independent of disease status, which will be denoted by D (diseased)

and D̄ (healthy), i.e., the result of the diagnostic test changes according to the

gender of the patient but the prevalence of the disease is the same for both gen-

ders. In such a case, when data are pooled regardless of the gender of the patient,

the obtained ROC is attenuated with respect to the ROC curve in each of the pop-

ulations determined by covariate X. However, if covariate X is associated with

disease status, the pooled ROC curve will also ‘incorporate’ the portion of dis-

crimination attributable to the covariate. This situation can lead to a pooled (or

marginal) ROC curve that lies above or below the conditional ROC curve (see Fig-

ures 1(c) and 1(d)). It should be noted that, despite the fact that in the previous

examples the discriminatory capacity of the diagnostic test is the same for both

populations defined by covariate X, the threshold that gives rise to a pair of val-

ues for the FPF (false positive fraction) and the TPF (true positive fraction) could

not coincide in each population. This is also illustrated in Figure 1. The red lines

and dots represent a common threshold used to define test positivity. As can be

observed, this threshold provides a different pair of FPF and TPF on X =1 and

X = 0, as well as on the pooled data. On the other hand, the green lines and dots

depict the threshold to be used to ensure a FPF= 0.2 in both populations. Ac-

cordingly, studying the effect of covariates on the distribution of a diagnostic test

in the healthy/diseased population will enable assessment of which factors affect

the FPF/TPF when a specific threshold value is set. Conversely, different thresh-

old values can be chosen for each of the populations determined by the covariates,

in order to ensure that the FPF/TPF remains constant across all of them.
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(d) Scenario III

Figure 1: (a) Probability distributions of a hypothetical diagnostic test Y in diseased (solid
line) and healthy (dashed line) populations conditional on a binary covariate
X = 0, 1.
Shown in (b), (c) and (d) are the pooled probability distributions (left panel), and
the corresponding pooled ROC curves, along with the common conditional ROC
curves (right panel).
Scenario I: disease status and covariate are independent, P (status D |X =0) = 0.5
and P (status D | X = 1) = 0.5.
Scenario II: P (status D | X = 0) = 0.2 and P (status D | X = 1) = 0.8.
Scenario III: P (status D | X = 0) = 0.6 and P (status D | X = 1) = 0.4.
In all cases P (status D) = 0.5 and P (X = 1) = 0.5 were considered. The perfor-
mance of the common threshold 3.9 is also indicated (red lines and dots), as well
as the common conditional threshold that gives rise to a FPF = 0.2 in both the
populations determined by covariate X (green lines and dots).
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On the other hand, in those situations where the accuracy of a diagnostic

test is affected by covariates, failure to incorporate information furnished by them

may lead, as in the previous cases, to erroneous conclusions. For instance, let us

consider the example shown in Figure 2, where the accuracy of a diagnostic test

changes according to a binary covariate X (with X again assumed to be patient

gender). The conditional ROC curve shows that test Y is more accurate when

X = 1 than when X = 0, though discriminatory capacity is high in both cases.

Nevertheless, pooling the data regardless of the values of the covariate yields a

ROC curve that is below the specific ROC curves for each of the populations

determined by covariate X. Taking into account the possible modifying effect of

covariates on the accuracy of a diagnostic test, i.e., on the ROC curve, will help

identifying the optimal populations to whom or conditions under which the test

should be applied, or alternatively, those where the test is unlikely to be useful.

Furthermore, different thresholds for defining test positivity can be chosen to vary

with covariate values.
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Figure 2: (a) Probability distributions of Y in diseased (solid line) and healthy (dashed line)
populations conditional on X and pooled probability distributions.
(b) Conditional ROC curve in each of the populations determined by covariate
X , together with the pooled ROC curve.
The shown results were obtained assuming that the performance and discrimi-
natory capacity of the diagnostic test depend on X , but X is independent of
true disease status: P (status D | X = 1) = P (status D | X = 0) = 0.5. Moreover,
P (status D) = 0.5 and P (X = 1) = 0.5 were considered.

Summarising, both in situations where the result of a diagnostic test,

though not necessarily its discriminatory capacity, is affected by covariates, and

in those where the discriminatory capacity itself is affected by covariates, this

information must be incorporated into the ROC analysis. Failure to do so, by
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pooling the data regardless of the values of the covariates and using a classifica-

tion rule that relies on a common threshold value, will result in the test having a

discriminatory capacity that is biased compared to its ‘true potential’ discrimina-

tory capacity. Accordingly, optimistic or pessimistic results may be obtained and,

by extension, erroneous conclusions with respect to the real discriminatory capac-

ity of the diagnostic test, which in turn entails an ‘incorrect’ choice of threshold

values to be used in practice.

The previous explanations motivate two possibilities when estimating ROC

curves under the presence of covariates. If the discriminatory capacity of the di-

agnostic test is affected by covariates, then conditional or covariate-specific ROC

curves must be considered. When the test diagnostic varies with the covari-

ates, but its discriminatory capacity is not affected by them, then the covariate-

adjusted ROC curve, introduced by Janes and Pepe (2009a), is recommended.

Both concepts will be defined in the next Section.

3. NOTATION AND DEFINITIONS

Let us assume that along with the continuous diagnostic variables in the

diseased population, YD, and in the healthy population, YD̄, covariate vectors XD

and XD̄ are also available. For the sake of clarity, in this paper we will further

assume that the covariates of interest are the same in both healthy and diseased

populations. It should be noted, however, that this is not always so. In some

circumstances, it could be of interest to evaluate the discriminatory capacity of

a diagnostic test with respect to population-specific covariates, as for instance

disease stage.

As a natural extension of the ROC curve for continuous diagnostic tests, the

conditional or covariate-specific ROC curve, given a covariate value x, is defined

as

(3.1) rocx(p) = 1 − FD

(
F−1

D̄
(1−p | x) | x

)
, 0 ≤ p ≤ 1 ,

where

FD(y |x) = P
(
YD ≤ y | XD = x

)
,

FD̄(y |x) = P
(
YD̄ ≤ y | XD̄ = x

)
.

Note that in this case, a number of possible different ROC curves can be ob-

tained for each value x in the range of the common part of the supports of XD

and XD̄. Associated with the conditional ROC curve, some other measures of

discriminatory performance can also be defined. The most widely used one is

the area under the ROC curve (AUC), which in the conditional case is defined

as aucx =
∫

1

0
rocx(p) dp. As for the unconditional case, the aucx takes values

between 0.5 (for an uninformative test) and 1 (for a perfect test).
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Both, the conditional ROC curve and the conditional AUC defined above,

depict the discriminatory capacity of a test but for specific values of the covariate

vector. It would nevertheless be of great interest to have global discriminatory

measures that also take into account covariate information. In this context, the

so-called covariate-adjusted ROC curve is defined as an average of conditional

ROC curves weighted according to the distribution of the covariate in the diseased

population, that is

(3.2) aroc(p) =

∫
rocx(p) dHD(x) ,

were HD(x) = P (XD ≤x) is the multivariate distribution function of the vec-

tor XD. Despite of the intuitive definition given in the expression above, the

covariate-adjusted ROC curve admits other equivalent representations. For in-

stance, in Janes and Pepe (2009a) it is also expressed as

(3.3) aroc(p) = P
(
YD > F−1

D̄
(1−p |XD)

)
,

which means that the covariate-adjusted ROC curve for a FPF= p can be seen

as the overall TPF when the threshold used to define test positivity is covariate-

specific. This latter expression will be useful when it comes to construct esti-

mators for aroc(p). Note that based on (3.2), in those situations where the

accuracy of a diagnostic test is not affected by covariates, the covariate-adjusted

ROC curve coincides with the covariate-specific ROC curve which is common for

all covariate values.

4. ESTIMATION PROCEDURES

In order to introduce the estimators, let us assume that we have two in-

dependent samples of i.i.d. observations (XD̄1
, YD̄1

), ..., (XD̄nD̄
, YD̄nD̄

) from pop-

ulation (XD̄, YD̄) and (XD1, YD1), ..., (XDnD
, YDnD

) from population (XD, YD).

Some of the estimators that will be presented below only apply for one-dimensional

covariates. However, by a slight abuse of notation, even in those cases we will

keep the bold typography to denote the covariates.

4.1. Estimation of the conditional ROC curve

Several proposals for estimating the conditional ROC curve have been given

in the statistical literature. Estimators can immediately be obtained by estimat-

ing the conditional distribution functions involved in the definition given in (3.1).

Besides, other approaches within the general regression framework have been

studied, namely the so-called induced and direct ROC-regression methodologies
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(see, e.g., Pepe, 1998, 2003; Rodŕıguez-Álvarez et al., 2011). In this section, we

will first present the general ideas behind both approaches, and then focus our

attention on nonparametric estimation techniques.

Estimators based on conditional distribution functions. An obvious esti-

mator of the conditional ROC curve follows directly from its definition. Given a

covariate value, x, the estimator can be constructed as

(4.1) r̂ocx(p) = 1 − F̂D

(
F̂−1

D̄
(1−p | x) | x

)
,

where F̂D(· |x) and F̂D̄(· |x) are estimators of the conditional distributions

FD(· |x) and FD̄(· |x), respectively. When we restrict our attention to one-

dimensional covariates, the conditional distributions can be estimated nonpara-

metrically, for instance, by kernel-based estimators given in Stone (1977):

F̂j,hj
(y |x) =

∑nj

i=1
k
(

x−Xji

hj

)
I(Yji ≤ y)

∑nj

i=1
k
(

x−Xji

hj

) ,

with j ∈ {D̄, D}, where I(·) denotes the indicator function and where k is the

kernel (usually a symmetric density) and hD and hD̄ are the smoothing param-

eters. Under this approach, the estimator of the conditional ROC curve at a

specific covariate value uses the information corresponding to individuals whose

covariate values are close to x.

The estimator given in (4.1) is of an empirical type, and therefore has

discontinuities. In López-de Ullibarri et al. (2008) a nonparametric smooth es-

timator of the conditional ROC curve is obtained by applying the methodology

that Peng and Zhou (2004) proposed in the unconditional case. The key idea

of this method consists of smoothing the empirical ROC curve by means of ker-

nel techniques. In the conditional case, the smoothed version of (4.1) given in

López-de Ullibarri et al. (2008) is

(4.2) r̂ocx,h(p) = 1 −
∫

F̂D,hD

(
F̂−1

D̄,hD̄

(1−p+hu | x) | x
)
k(u) du ,

where the parameter h controls the amount of smoothing and k is a kernel func-

tion. The authors propose a bootstrap method to choose the smoothing param-

eters involved in (4.1) and (4.2).

Very recently, Inácio de Carvalho et al. (2013) presented a nonparamet-

ric Bayesian model to estimate the conditional distribution functions involved

in (3.1). The main advantage of their approach, in contrast to the proposal of

López-de Ullibarri et al. (2008), is the possibility of studying the effect of multidi-

mensional covariates. Specifically, covariate-dependent Dirichlet processes (DDP)

(MacEachern, 2000) defined in terms of i.i.d.Gaussian processes are proposed to
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estimate FD(· |x) and FD̄(· |x). Moreover, the computational burden associated

with the proposal is overcome by approximating the Gaussian processes by B-

splines basis functions, yielding the so-called B-splines DDP mixture model. The

authors show by means of simulation the better performance of the proposed

model in complex scenarios when compared to other nonparametric estimators of

the conditional ROC curve (González-Manteiga et al., 2011; Rodŕıguez-Álvarez

et al., 2011a).

Estimators based on induced-regression methodology. An alternative way

to incorporate information from covariates to the ROC analysis is through regres-

sion models. The induced methodology in ROC analysis consists of modelling the

effect of the covariates through regression models linking the classification vari-

able and the covariates in each population separately. The regression models will

then be used to compose the conditional ROC curve. In a general framework, the

relationship between the covariate and the classification variable in each popula-

tion is given by location-scale regression models

YD̄ = µD̄(XD̄) + σD̄(XD̄) εD̄ ,(4.3)

YD = µD(XD) + σD(XD) εD ,(4.4)

where, for j ∈ {D̄, D}, µj(x) = E(Yj | Xj = x) and σ2

j (x) = var(Yj | Xj = x) are

the conditional mean and the conditional variance of Yj given Xj = x, respec-

tively, and the error εj is independent of the covariate Xj . The independence

between the error and the covariate in the location-scale regression model allows

us to rewrite the conditional distribution function of the classification variable in

terms of the distribution of the regression error as follows:

Fj(y |x) = P
(
Yj ≤ y | Xj = x

)

= P
(
µj(Xj) + σj(Xj) εj ≤ y | Xj = x

)

= P

(
εj ≤

y − µj(x)

σj(x)

)
= Gj

(
y − µj(x)

σj(x)

)
,

where, for j ∈ {D̄, D}, Gj(y) = P (εj ≤ y) is the distribution function of the re-

gression error. An analogous relationship can be established between the condi-

tional quantile function of Yj given Xj = x, F−1

j (· |x), and the quantile function

of εj , G−1

j (·), through the expression F−1

j (p |x) = µj(x) + σj(x)G−1

j (p). There-

fore, for a fixed covariate value x, and for 0 < p < 1, the conditional ROC curve

can be expressed as

rocx(p) = 1 − FD

(
F−1

D̄
(1−p | x) | x

)
(4.5)

= 1 − FD

(
µD̄(x) + σD̄(x)G−1

D̄
(1−p) | x

)

= 1 − GD

(
µD̄(x) + σD̄(x)G−1

D̄
(1−p) − µD(x)

σD(x)

)

= 1 − GD

(
G−1

D̄
(1−p) b(x) − a(x)

)
,
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where a(x) =
(
µD(x) − µD̄(x)

)
/σD(x) and b(x) = σD̄(x)/σD(x). This formula-

tion allows us to express the conditional ROC curve in terms of the distribution

function and quantile function of the regression errors, which are not conditional.

Hence, from an estimation point of view, instead of estimating the conditional

distribution of YD and YD̄ given x, one only needs to estimate the error distribu-

tion in each population. This is a main advantage with respect to the estimator

given in (4.2).

The induced ROC methodology described above has been presented for the

most general case. In fact, only particular cases have been addressed in the liter-

ature. In a parametric or semiparametric framework, Faraggi (2003) assumes an

additive parametric model for the conditional means, with homoscedastic vari-

ances and normal errors, in both healthy and diseased populations. Pepe (1998)

relaxes the distributional assumptions by not assuming a known probability dis-

tribution for the error terms, although the same distribution is considered for both

populations. Zhou et al. (2002) extend the model in Pepe (1998) by allowing for

heteroscedasticity. Finally, Zheng and Heagerty (2004) propose a semiparamet-

ric estimator for the conditional ROC curve, in which the distribution of the

error terms is unknown and allowed to depend on the covariates, but, as in the

previous articles, the effect of the covariates on the conditional means and vari-

ances is modelled parametrically. Very recently, Rodŕıguez and Mart́ınez (2014)

presented a Bayesian semiparametric model, where the error terms are assumed

to be normally distributed, but nonparametric specifications of the conditional

means and variances are allowed.

A different line of research has led to estimation in a fully nonparametric

framework, although so far only one-dimensional covariates have been consid-

ered. We focus now on those approaches, introduced by González-Manteiga et al.

(2011) and Rodŕıguez-Álvarez et al. (2011a). When models (4.3) and (4.4) are

nonparametric, the estimator of the conditional ROC curve involves the following

steps. First, for j ∈ {D̄, D}, we need to estimate nonparametrically the location

and scale functions in the regression models, say µ̂j(x) and σ̂j(x) by means, for

example, of Nadaraya–Watson or local-linear estimators (see, for example, Fan

and Gijbels, 1996). Then the distribution of the errors in the two regression

models are estimated by the corresponding empirical distribution function of

the estimated residuals, i.e., Ĝj(y) = n−1

j

∑nj

i=1
I(ε̂ji ≤ y), where, for j ∈ {D̄, D},

ε̂ji =
(
Yji − µ̂j(Xji)

)
/σ̂j(Xji), i = 1, ..., nj . Finally, given the covariate value x,

an empirical estimator of the conditional ROC curve is

(4.6) r̂ocx(p) = 1 − ĜD

(
Ĝ−1

D̄
(1−p) b̂(x) − â(x)

)
,

where â(x) =
(
µ̂D(x) − µ̂D̄(x)

)
/σ̂D(x) and b̂(x) = σ̂D̄(x)/σ̂D(x). As in the case

of (4.1), the previous estimator of the conditional ROC curve is not continuous.

In order to obtain a smooth version, González-Manteiga et al. (2011) also apply
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the methodology in Peng and Zhou (2004), which yields

(4.7) r̂ocx,h(p) = 1 −
∫

ĜD

(
Ĝ−1

D̄
(1 − p + hu) b̂(x) − â(x)

)
k(u) du .

The authors show that the former estimator also admits the following explicit

expression:

r̂ocx,h(p) =
1

nD

nD∑

i=1

K

(
ĜD̄

({
ε̂Di + â(x)

}
/b̂(x)

)
− 1 + p

h

)
,

where K is the distribution function corresponding to the density kernel k.

A detailed study of the asymptotic properties of the estimators given in

(4.6) and (4.7) is provided in González-Manteiga et al. (2011). In Rodŕıguez-

Álvarez et al. (2011a), a bootstrap-based test to check for the effect of the covari-

ate over the conditional ROC curve is proposed. Although both papers focus on

the estimation of the conditional ROC curve, an estimator of the conditional AUC

is also presented, âucx =
∫

1

0
r̂ocx(p) dp, with the integral being approximated

by numerical integration methods. In that sense, the paper by Yao et al. (2010)

goes one step further in proposing a nonparametric estimator for aucx based

also on induced modelling and local linear kernel smoothers. The authors exploit

the relation between the Mann–Whitney statistic and the empirical estimator of

the unconditional AUC (see, e.g., Bamber, 1975) and propose a covariate-specific

Mann–Whitney estimator for aucx.

Estimators based on direct-regression methodology. In contrast to the

induced methodology, in the direct methodology the effect of the covariates is

directly evaluated on the ROC curve. To motivate the standard formulation of

direct methodology, let us re-express the conditional ROC curve as follows:

rocx(p) = 1 − FD

(
F−1

D̄
(1−p | x) | x

)

= 1 − P
(
YD ≤ F−1

D̄
(1−p | x) | XD = x

)

= 1 − P
(
FD̄(YD |x) ≤ 1−p | XD = x

)

= P
(
1−FD̄(YD |x) < p | XD = x

)
(4.8)

= E
[
I
(
1−FD̄(YD |x) < p

)
| XD = x

]
.(4.9)

As can be observed, the conditional ROC curve may be seen as: (a) the conditional

distribution function of the random variable 1−FD̄(YD |x) in expression (4.8), or

(b) the conditional expected value of the binary variable I
(
1 − FD̄(YD |x) < p

)

in expression (4.9). The random variable 1 − FD̄(YD |x) is called ‘placement

value’ in related literature (see, for example, Hanley and Hajian-Tilaki, 1997)

and represents the standardization of the classification variable in the diseased

population to the conditional distribution of the non-diseased population.
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These two interpretations justify to express the conditional ROC curve as

a sort of regression model of the form

(4.10) rocx(p) = g
(
µ(x), γ(p)

)
,

where g is a bivariate function on [0, 1] and γ is a function defined on the interval

[0, 1]. The function µ collects the effect of the covariates on the conditional ROC

curve, and γ is a baseline function related to the shape of the ROC curve. In order

to obtain a valid model of ROC curves, some restrictions need to be imposed on

the elements of model (4.10). In particular, the function g needs to be monotone

increasing in p, with g(µ(x), γ(0)) = 0 and g(µ(x), γ(1)) = 1 for all x. As in the

case of the induced methodology presented above, model (4.10) represents the

most general formulation of the direct methodology. In fact, only the additive

specification

(4.11) rocx(p) = g
(
µ(x) + γ(p)

)

has been addressed in the statistical literature. Different proposals have been

suggested, which differ in the assumptions made about the functions g, µ and γ.

In Pepe (1997, 2000) and Alonzo and Pepe (2002), g is assumed to be known,

the effect of the covariates on the conditional ROC curve is assumed to be linear,

i.e., µ(x) = βT x, and the baseline function γ is assumed to have a parametric

form. Cai and Pepe (2002) and Cai (2004) leave γ completely unspecified, but

the function µ is linear as well. In general, models such as (4.11) with parametric

specifications for µ define the so-called class of ROC-GLMs due to its similarity

with a generalized linear model (GLM, McCullagh and Nelder, 1989) in regres-

sion (Pepe, 2003). In all the aforementioned papers, the function g is assumed

to be known. Huazhen et al. (2012) relax this assumption, by allowing a com-

pletely unknown function g. As for the approaches in Cai and Pepe (2002) and

Cai (2004), the function γ remains unspecified and µ is assumed to have a para-

metric form. In a completely nonparametric framework, Rodŕıguez-Álvarez et al.

(2011b) extend the class of ROC-GLM regression models, by assuming a gener-

alized additive model (GAM, Hastie and Tibshirani, 1990) for the ROC curve,

that is

µ(x) = µ(x1, ..., xd) = α +

d∑

k=1

fk(xk) ,

where f1, ..., fd are unknown nonparametric functions, and γ also remains un-

specified.

Either if the specifications in (4.11) involve a GLM structure (as in Alonzo

and Pepe, 2002) or a GAM structure (as in Rodŕıguez-Álvarez et al., 2011b), the

estimation process is similar and can be described as given in the following steps.

First, choose a set of FPFs 0 ≤ pl ≤ 1, l = 1, ..., nP , where the conditional ROC

curves will be evaluated. Second, estimate FD̄(· |x), say F̂D̄(· |x), on the basis of

the sample (XD̄i, YD̄i), i = 1, ..., nD̄. Third, for each observation in the diseased

population, calculate the estimated placement value 1− F̂D̄(YDi |x), 1 ≤ i ≤ nD.
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Fourth, calculate the binary indicators I
(
1 − F̂D̄(YDi |x) ≤ pl

)
, for 1 ≤ i ≤ nD

and 1 ≤ l ≤ nP . And finally, fifth, fit the model g
(
µ(x) + γ(p)

)
as a regression

model with the indicators I
(
1− F̂D̄(YDi |x) ≤ pl

)
as response and covariates XDi

and pl, i = 1, ..., nD, l = 1..., nP .

Depending on the chosen specifications for µ and γ, GLM or GAM tech-

niques will be employed for fitting the model (4.11). For instance, in Rodŕıguez-

Álvarez et al. (2011b) the proposed estimation procedure is based on a combi-

nation of local scoring and backfitting algorithms (Hastie and Tibshirani, 1990),

and the nonparametric functions f1, ..., fd and γ are estimated using local linear

kernel smoothers (see Fan and Gijbels, 1996). Note that in contrast to the non-

parametric approaches based on induced modelling presented above, this proposal

allows for the possibility of incorporating multidimensional covariates. However,

the study of the theoretical properties of the estimator is so far lacking in the

literature.

Throughout the above outline of induced and direct modelling, the covari-

ates (whose effect on the ROC curve we seek to evaluate) were assumed to be

common to both the healthy and the diseased population. As mentioned before,

in practice this is not necessarily so. For instance, it may be of interest to eval-

uate the performance of the diagnostic variable with respect to disease stage.

Induced methodology poses no problem when it comes to incorporating specific

covariates of healthy or diseased populations, or both. On the other hand, direct

methodology—as presented here—accepts no specific covariates of the healthy

population. Yet, even in cases where this may seem a restriction, the need arises

in few situations in practice.

4.2. Estimation of the covariate-adjusted ROC curve

As explained in the introduction, in some practical cases, although the

diagnostic test varies along with the covariates, its discriminatory capacity may

remain unalterable. In such a situation, instead of considering the conditional

ROC curve, the covariate-adjusted ROC curve is more convenient. The definition

given in (3.3)

aroc(p) = P
(
YD > F−1

D̄

(
1−p | XD

))

suggests estimating the covariate-adjusted ROC curve as sample proportion of

individuals in the diseased population that exceed a certain covariate-specific

threshold calculated with the conditional quantile function in the healthy popu-

lation. Note that the conditional quantile function is an unknown function and

therefore needs to be estimated. Janes and Pepe (2009a) propose estimators of

the form

âroc(p) =
1

nD

nD∑

i=1

I
(
YDi > F̂−1

D̄

(
1−p | XDi

))
,
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where F̂−1

D̄
(1−p | XDi) can be estimated semiparametrically or nonparametri-

cally. In the context of the induced methodology described in Subsection 4.1,

Rodŕıguez-Álvarez et al. (2011a) used the relation between the conditional quan-

tile and the quantile of the regression errors to obtain the following nonparametric

estimator:

âroc(p) =
1

nD

nD∑

i=1

I

(
YDi − µ̂D̄(XDi)

σ̂D̄(XDi)
> Ĝ−1

D̄
(1−p)

)
,

where µ̂D̄ and σ̂D̄ are nonparametric estimators of µD̄ and σD̄ in model (4.3), and

Ĝ−1

D̄
is the empirical quantile function of the estimated residuals. The theoretical

properties of this estimator have not been studied yet.

5. ILLUSTRATION WITH REAL DATA

In this section, a real data illustration of the importance of including co-

variates into the ROC framework is presented. The data set comes from a

cross-sectional study carried out by the Galician Endocrinology and Nutrition

Foundation (FENGA), consisting of 2860 individuals representative of the adult

population of Galicia (northwest of Spain). A detailed description of this data set

can be found in Tomé et al. (2008). For confidentiality reasons, only a subsample

of the global sample was used in this paper, where we aimed at assessing the per-

formance of the body mass index (BMI) for predicting clusters of cardiovascular

disease (CVD) risk factors. Accordingly, diseased subjects were defined as those

having two or more CVD risk factors (raised triglycerides, reduced high-density

lipoprotein cholesterol, raised blood pressure and raised fasting plasma glucose),

following the International Diabetes Federation criteria (International Diabetes

Federation, 2006). For the study here presented, a total of 1419 individuals were

selected from the original data set, with an age range between 18 and 85 years.

From those, 46.4% are men (449 healthy and 209 diseased) and the remaining

53.6% are women (625 healthy and 136 diseased). An in-depth study of the global

data set is presented in Rodŕıguez-Álvarez et al. (2011a,b).

It is well known that anthropometric measures behave differently according

to both age and gender. This can be observed in Table 1, where some summary

statistics of the BMI for men and women, as well as for different age strata, are

presented. As illustrated in Section 2, it is therefore advisable to incorporate both

covariates into the ROC analysis. In this paper, we applied the nonparametric

induced approach proposed by González-Manteiga et al. (2011) and Rodŕıguez-

Álvarez et al. (2011a) and presented in Section 4.1. Since this proposal only

admits one continuous covariate, separate analyses were conducted on men and

women respectively.
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Table 1: Median and interquartile range of the BMI for the global sample,

for men and women, and for different age strata.

1st Quartile Median 3rd Quartile

Global sample 22.84 25.91 29.34

Gender

Female 22.00 24.69 25.91
Male 24.16 26.88 27.14

Age strata

< 30 years 21.28 22.85 25.83
30–39 years 22.66 25.40 28.08
40–49 years 24.18 26.77 29.74
50–59 years 25.84 28.65 31.46
≥ 60 years 26.62 29.38 31.72

In addition to the estimated conditional ROC curves, other summary mea-

sures of accuracy, the conditional AUC and the age-adjusted ROC curve, were

also obtained. In Figure 3, the estimated age-adjusted ROC curve for both men

and women is shown, jointly with the estimated pooled ROC curve. As can be

observed, in both cases the age-adjusted ROC curve lies below the pooled ROC

curve, especially for men. It is worth remembering that the covariate-adjusted

ROC curve is an average of conditional ROC curves, and can therefore be in-

terpreted as a covariate-adjusted global discriminatory measure. Thus, for the

endocrinology data, pooling the data regardless of age and gender would lead

to an optimistic conclusion about the discriminatory capacity of the BMI when

predicting the presence of CVD risk factors.
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Figure 3: Estimated pooled ROC curve for the endocrinology data (solid line).

The dashed and dotted lines represent the estimated age-adjusted

ROC curve for women and men, respectively.
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In Figure 4 the estimated conditional ROC curve and AUC for different age

values are depicted, for both men and women. Note that whereas for men the

accuracy of the BMI is more or less constant along age, for women, age displays

a relevant effect on the discriminatory capacity of this anthropometric measure.

This graphical conclusion was confirmed by applying the bootstrap-based test

presented in Rodŕıguez-Álvarez et al. (2011a). The test enabled a significant age

effect to be detected in the case of women. In the case of men, however, there

was no evidence to suggest such an effect.
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Figure 4: Estimated conditional ROC curves and AUCs for the endocrinology

data for women and men. The dashed lines represent the 95 per cent

pointwise bootstrap confidence interval.

The results presented in this section emphasize once again the importance

and consequences of including the information provided by covariates when eval-

uating the discriminatory capacity of a diagnostic test. In the case of women,

the conditional ROC curve should be reported since it has been proved that age

has an effect on the accuracy of the BMI. For men, however, no age effect was

detected. Nevertheless, even in this case, reporting the discriminatory capac-

ity of the pooled data would lead to an optimistic conclusion, and therefore the

age-adjusted ROC curve should be provided.
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6. DISCUSSION

In this paper we explained why it is important to incorporate covariates in

the ROC analysis and which effect it has on the curve. We also presented two

different ways to take covariates into account, either by working with a conditional

ROC curve or with a so-called covariate-adjusted ROC curve. Several estimation

procedures were outlined for both approaches. Interested readers can find more

details in the provided references.

Although we focused in this review on the estimation of the ROC curve

in the presence of covariates, it is clear that apart from the ROC curve itself,

interest also lies in summary statistics of the ROC curve, like e.g. the AUC, the

Youden index and other related indices. Within a parametric or semiparametric

framework, some attempts about this topic can be found in Faraggi (2003), in

which the induced methodology is employed, and in Dodd and Pepe (2003a,b)

and Cai and Dodd (2008), all based on the ROC-regression direct modelling

approach.

An interesting extension of the ROC methodology is the extension to func-

tional data. We mention the paper by Inácio et al. (2012), who consider the

extension to functional covariates. To this end, semiparametric and nonpara-

metric induced ROC-regression estimators are proposed and studied. Also, the

extension of the ROC methodology from completely observed data to censored

data is a promising field of research. For an overview article on this topic we refer

to Pepe et al. (2008).

Another interesting point to note is that almost no theory has been done

for the nonparametric estimators of the conditional and adjusted ROC curve,

except in González-Manteiga et al. (2011), who obtain the asymptotic normality

of nonparametric estimators of both the conditional ROC curve and the con-

ditional AUC based on induced methodology. Their results are limited to a

one-dimensional covariate, but they can be easily extended to multi-dimensional

covariates by using Neumeyer and Van Keilegom (2010) in the proofs of the

asymptotic results.

A number of issues remain unexplored in the context of ROC curves with

covariates. For instance, a lot of work remains to be done to extend the concept

of relative distributions to the inclusion of covariates (see Handcock and Morris,

1999, for a textbook on this topic). ROC curves are very much related to relative

distributions or relative densities (see e.g. Li et al., 1996), but their objective is

different. In fact, the ROC curve in a point 0 < p < 1 equals one minus the rela-

tive distribution evaluated in 1 − p. Since the relative density of one population

versus another population equals the uniform density in case both populations

have the same distribution, it is clear that deviations from the uniform density

give an indication of the way in which the two distributions differ from each other.
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Hence, relative densities are more used in the context of comparing the distribu-

tion of two populations, whereas ROC curves are used for assessing the discrim-

inatory capacity of a diagnostic test. As far as we are aware of, no formal and

detailed study of the concept of relative distribution or relative density in the

presence of covariates has been developed so far.
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• This article reviews current state of the art of ROC surface analysis and illustrates

its use through an application on a pancreatic cancer diagnostic marker. Receiver

Operating Characteristic (ROC) surfaces have been studied in the literature essen-

tially only during the last decade and are considered as a natural generalization of

ROC curves in three-class diagnostic problems. This article presents the definition,

construction, modelling, and utility of the ROC surface while trying to provide an ex-

tensive reference list in the topic. It describes methodology for inference based on the

Volume Under the ROC surface (VUS) and methodology for decision making through

the selection of optimal cut-off points using the notion of the generalized Youden in-

dex as the optimality criterion of choice. It ends with a discussion regarding future
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1. INTRODUCTION

Receiver Operating Characteristic (ROC) curve analysis has been an active

area of research since the early 1950s. The ROC curve depicts the quality of a

diagnostic marker in a two-class classification problem. It illustrates the trade-off

between sensitivity and specificity as the cut-off point for decision making varies

through possible values of the diagnostic marker. Put more formally, suppose

that, in a two-class classification problem, a diagnostic marker results in mea-

surements X1 ∼ F1 from the first class under study and X2 ∼ F2 from the second

class under study. Suppose that, in general, values from X2 are larger than val-

ues from X1 but X1 and X2 are not perfectly separated, i.e. there is an amount

of overlap between measurements from the two-classes.
1

A cut-off point c is se-

lected for decision making which will result in the fractions of specificity, defined

as spec(c) = P (X1 ≤ c), and sensitivity, defined as sens(c) = P (X2 > c). The

fractions of sensitivity (or else True Positive Fraction, TPF) and specificity (True

Negative Fraction, TNF) vary as the cut-off point c varies. The ROC curve is de-

fined as the graph depicting (1 − P (X1 ≤ c), P (X2 > c)) = (1 − spec(c), sens(c))

in the unit square [0, 1] × [0, 1], as c varies. Equivalently, the ROC curve is

the graph of the function ROC(t) = 1 − F2(F
−1

1
(1 − t)), where t ∈ [0, 1]. The

Area Under the ROC Curve (AUC) is equivalent to P (X1 < X2) and it is the

most widely used index for the quantification of the performance of a diagnostic

marker in the two-class setting. A useful diagnostic marker will result in an ROC

curve with AUC close to 1. A diagnostic marker with AUC close to 0.5 will,

in general, be considered as uninformative. The AUC takes on values in [0.5, 1]

if the condition that measurements from X1 are in general smaller than those

from X2 actually holds. The non-parametric estimate of the AUC is equivalent

to the Wilcoxon–Mann–Whitney statistic (Pepe, 2003). Formal assessment of

the quality of a diagnostic marker based on the AUC consists of testing the null

hypothesis, H0 : AUC = 0.5 versus the alternative of interest through the statis-

tic z = {(AUC − 0.5)/se(AUC)} ∼ N(0, 1), where se(AUC) is the standard error

of AUC, estimated, e.g., using the bootstrap. If H0 is rejected, the diagnostic

marker under study is considered to be useful and a cut-off point c must be chosen

for decision-making purposes. Use of the maximum of the Youden index (J) is a

widely adopted approach for cut-off point selection. The Youden index is defined

as J = maxc{sens(c) + spec(c)− 1} = maxc{F1(c)−F2(c)}, as a result, the value

of c that maximizes J is chosen. ROC curve analysis is presented in detail in a

number of well-written books, such as Pepe (2003) and Zhou et al. (2011).

Notions of ROC curve analysis have been extended to accommodate prob-

lems of three-class and multiple-class classification. The ROC surface has been

proposed as a natural generalization of the ROC curve for the assessment of di-

agnostic markers in three-class classification problems. The ROC surface was

1However, we do not impose any type of stochastic ordering by X1 < X2.
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introduced by Scurfield (1996). The Volume Under the ROC Surface (VUS) was

proposed as an index for the assessment of the diagnostic accuracy of the marker

under consideration. Unfortunately, the latter article received very little atten-

tion probably because it only described the theoretical construction of the ROC

surface and did not provide any related application. A similar construction was

proposed independently, a few years later though, by Mossman (1999) which was

implemented in Mathematica by Heckerling (2001). Inference regarding the VUS,

based on Mossman’s construction, using non-parametric statistics, was studied

by Dreiseitl et al. (2000). The ROC surface construction, and the generalization

of this construction in multiple-class classification problems, in a non-parametric

context, was proposed in Nakas and Yiannoutsos (2004). Interestingly, the latter

construction unifies the approaches of Mossman and Scurfield in a natural way

and thus offered the framework and the theoretical basis for extending ROC curve

analysis concepts in multiple-class classification problems. This construction has

been reinvented at least a couple of times later on (e.g. Xiong et al., 2006; Li and

Fine, 2008), however, in Xiong et al. (2006) the parametric framework is studied

extensively supplementing the work in Nakas and Yiannoutsos (2004). Given the

theoretical basis for the ROC surface, several articles appeared in the literature

during the last 10 years generalizing notions from ROC curve analysis. ROC sur-

faces are overviewed in the textbook on ROC analysis by Krzanowski and Hand

(2009).

In the following sections the ROC surface analysis literature will be re-

viewed and unified, and an illustration offering insight on the use of ROC surfaces

will be described. The Discussion in Section 5 will constitute an effort to provide

guidance for future research to the interested reader.

2. ROC SURFACE ANALYSIS

2.1. Description of the problem

To define formally the general three-class classification problem, suppose

that n1 measurements from Class 1, denoted by X1, follow a distribution with

cumulative distribution function F1 (i.e. X1 ∼ F1), and similarly for n2 measure-

ments from Class 2, X2 ∼ F2, and for n3 measurements from Class 3, X3 ∼ F3.

A decision rule that classifies subjects in one of these classes can be defined using

two ordered threshold points c1 < c2. Specifically, suppose that the ordering of

interest is X1 < X2 < X3. The researcher’s goal is the assessment of the quality

of a diagnostic marker in classifying correctly subjects from the three ordered

classes.
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2.2. Definition

The construction of the ROC surface is based on the following algorithm:

Decide for Class 1 when a measurement is less than c1, for Class 2 when it is be-

tween c1 and c2, for Class 3 otherwise. This decision rule will result in three True

Class Fractions (TCFs) and six False Class Fractions (FCFs). Then, TCF1 =

P (X1 ≤ c1), TCF2 = P (c1 < X2 ≤ c2), and TCF3 = P (X3 > c2). Also, FCF12 =

P (c1 ≤ X1 ≤ c2) and the remaining five possible FCFij , i, j = 1, 2, 3, i 6= j are de-

fined accordingly. Varying c1, c2 in the union of the supports of F1, F2, and F3,

(TCF1, TCF2, TCF3) can be plotted in a three-dimensional coordinate system to

produce the ROC surface in the unit cube. The True Class Fractions take values

in [0, 1] with corner coordinates {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Thus, the ROC sur-

face is the 3-dimensional plot in the unit cube depicting (F1(c1), F2(c2)− F2(c1),

1 − F3(c2)), for all cut-off points (c1, c2), with c1 < c2. The functional form of

the ROC surface is ROCs(TCF1, TCF3) = F2(F
−1

3
(1−TCF3))−F2(F

−1

1
(TCF1))

(Nakas and Yiannoutsos, 2004). It can be seen that this is a generalization of the

ROC curve in three dimensions since projecting the ROC surface to the plane

defined by TCF2 versus TCF1, i.e. setting TCF3 = 0, the ROC curve between

Classes 1 and 2 is produced, i.e. ROC(TCF1) = 1 − F2(F
−1

1
(TCF1)). The latter

is the equivalent construction of the ROC curve depicting (TCF1(c1), TCF2(c1))

instead of (FCF12(c1), TCF2(c1)). Similarly, the projection of the ROC surface to

the plane defined by the axes TCF2, TCF3, yields the ROC curve between Classes

2 and 3, i.e. ROC(TCF3) = F2(F
−1

3
(1 − TCF3)), the latter being the functional

form of TCF2 versus TCF3 analogous to specificity versus sensitivity rather than

the other way around. For reasons of brevity, a pictorial representation will be

provided in Section 4.

2.3. The Volume Under the ROC Surface (VUS)

The Volume Under the ROC Surface (VUS) is equal to P (X1 < X2 < X3).

An unbiased non-parametric estimator of VUS is given by

V̂US =
1

n1n2n3

n1∑

i=1

n2∑

j=1

n3∑

k=1

I(X1i, X2j , X3k) ,

where I(X1, X2, X3) equals one if X1, X2, X3 are in the correct order and zero

otherwise (Dreiseitl et al., 2000). The definition of I(X1, X2, X3) can be adapted

to adjust for the presence of ties. Specifically, when ties are present, define:

I(X1, X2, X3) = 1/2 if X1 = X2 < X3 or if X1 < X2 = X3 and I(X1, X2, X3) = 1/6

if X1 = X2 = X3, and I(X1, X2, X3) = 0 (or 1 if perfectly ordered) otherwise.
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The expected value of VUS will be then

P (X1 < X2 < X3) +
1

2
P (X1 < X2 = X3)

+
1

2
P (X1 = X2 < X3) +

1

6
P (X1 = X2 = X3) .

The VUS takes the value 1/3! = 1/6 when the three distributions completely

overlap and the value one when the three classes are perfectly discriminated in

the correct order. Parametric approaches for the estimation of VUS have been

discussed in Xiong et al. (2006). Kang and Tian (2013) offer an extensive study

comparing possible parametric and non-parametric approaches for the estimation

of VUS in terms of bias and root mean square error.

In several situations in practice researchers may wish to limit the study of

the ROC surface to a clinically relevant range of measurement values. In such

cases the partial VUS has been defined in Xiong et al. (2006). The partial VUS

generalizes the notion of the partial AUC in the two-class problem (see e.g. Zhou

et al., 2011).

2.4. ROC surface modelling

Restate the functional form of the ROC surface, by writing TCF1 = p1 and

TCF3 = p3, as follows:

(2.1)

ROCs(p1, p3) =





F2

(
F−1

3
(1−p3)

)
− F2

(
F−1

1
(p1)

)
, if F−1

1
(p1) ≤ F−1

3
(1−p3) ,

0 , otherwise .

Then, VUS is defined as

VUS =

∫
1

0

∫
1−F3(F

−1

1
(p1))

0

ROCs(p1, p3) dp3 dp1 .

2.4.1. Empirical and non-parametric estimation

The empirical estimator of the ROC surface can be obtained by replacing

the distribution functions in the definition of the ROC surface with their empirical

counterparts. The empirical, non-parametric estimator of the ROC surface is

R̂OCs(p1, p3) =





F̂2

(
F̂−1

3
(1−p3)

)
− F̂2

(
F̂−1

1
(p1)

)
, if F̂−1

1
(p1) ≤ F̂−1

3
(1−p3) ,

0 , otherwise ,
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where F̂1, F̂2 and F̂3 are the empirical distribution functions for the measurements

from the three classes.

Most recently, kernel approaches for the estimation of the ROC surface have

been studied (Kang and Tian, 2013). Specifically, F1, F2, and F3, can be modeled

through Gaussian kernel estimators of the form Fi(t) = 1/niΣ
ni

j=1
Φ{(t − Xij)/hi},

for i = 1, 2, 3. For the bandwidth hi, which controls the amount of smoothing,

Kang and Tian (2013) have considered hi = {4/(3ni)}1/5
min(SDi, IQRi/1.349);

here, SDi and IQRi are the standard deviation and interquartile range, respec-

tively, for the Xi measurements.

Bayesian non-parametric estimation of the ROC surface based on Finite

Polya Tree (FPT) prior distributions for the three-classes was studied by Inácio

et al. (2011). The model is specified hierarchically and involves the specification

of independent FPT prior distributions for Fi, for i = 1, 2, 3, conditional on a set

of hyperparameters, i.e.

Fi | ci, θi ∼ FPTJi
(Fθi

, ci) , i = 1, 2, 3 .

Suppose, that the Fi are centered at Fθi
= N(µi, σi), where θi = (µi, σi). The

mixing parameters µi have independent normal prior distributions N(aµi
, bµi

),

whereas σi have independent gamma prior distributions Γ(aσi
, bσi

). Hyperpa-

rameters are considered fixed. The levels of the finite Polya trees are set equal

to Ji, and are used to determine the level of detail that is accommodated by the

model; mathematical subtleties on the model can be found in Inácio et al. (2011).

2.4.2. Parametric estimation

Under the assumption of normality for F1, F2, and F3 (i.e. X1 ∼ N(µ1, σ
2

1
),

X2 ∼ N(µ2, σ
2

2
), X3 ∼ N(µ3, σ

2

3
)), Xiong et al. (2006) used the model in (2.1) to

describe the general framework of the ROC surface and the VUS. The parametric

form of the ROC surface is

ROCs(p1, p3) =

{
Φ

(
β1 + β2Φ

−1
(1−p3)

)
− Φ

(
β3 + β4Φ

−1
(p1)

)}

× 1
{β3+β4Φ−1(p1)≤β1+β2Φ−1(1−p3)}(p1, p3) ,

where 1 denotes the indicator function, Φ is the distribution function of the

standard normal, and β = (β1, β2, β3, β4)
T

specifies the parameters of the ROC

surface. If the normality assumption is valid, the components of β may be ex-

pressed as functions of the means and variances of the three normal distributions

which model F1, F2, and F3, as follows:

β1 =
µ3 − µ2

σ2

, β2 =
σ3

σ2

, β3 =
µ1 − µ2

σ2

, β4 =
σ1

σ2

.
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Kang and Tian (2013) have considered the use of the Box–Cox transformation for

non-normally distributed data prior to the use of the parametric normal model

and have compared with the kernel approach they proposed in terms of the bias

and accuracy of the estimation of the VUS (see §2.4.1).

Under the Bayesian parametric paradigm, in order to find estimates for

the beta parameters, a Markov Chain Monte Carlo approach is needed. A

Metropolis–Hastings algorithm or a Gibbs sampler can be employed. The use

of the Metropolis–Hastings algorithm with uninformative normal priors for the

means and uninformative gamma prior distributions for the standard deviations

is recommended in Inácio et al. (2011). However, studies focusing on Bayesian

parametric approaches for the ROC surface have not appeared in the literature

yet.

2.4.3. Semi-parametric estimation

Semi-parametric estimation of the ROC surface was studied by Li and Zhou

(2009) generalizing the results of the two-class case in Hsieh and Turnbull (1996)

and by Nze Ossima et al. (2013), generalizing the results of the two-class case

in Gönen and Heller (2010). The estimation of the ROC surface of a diagnos-

tic marker with continuous measurements given covariate information has been

considered in Li et al. (2012). Specifically, suppose that the measurements of

the diagnostic marker under study can be modeled through the following general

regression model for a set of p covariates, Z = (Z1, ..., Zp)
T
,

(2.2) g(Xi) = ZTβi + σi ε , i = 1, 2, 3 ,

where g is a strictly monotone increasing function, βi = (βi1, ..., βip)
T

are the

regression coefficients for Class i, σi is a class-specific scale parameter, and ε is

the error following a common distribution function G with support (−∞,∞) for

all three classes. Then, the construction of the ROC surface is based on the rule:

Decide for Class 1 when the diagnostic marker’s measurement estimate from (2.2)

is less than c1, for Class 2 when it is between c1 and c2, for Class 3 otherwise.

2.5. Inference based on the VUS

Formal assessment of the diagnostic accuracy of a marker in a three-class

classification problem via its VUS can be based on testing the null hypothesis

H0 : VUS = 1/6 versus the alternative of interest. The test statistic is

(2.3) Z1 =
V̂US − 1/6√

var(V̂US)

∼ N(0, 1) .
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The V̂US is the non-parametric estimate of VUS. Then, Z1 is normally distributed

based on results from U-statistics theory (Pepe, 2003). Variance of V̂US can be

estimated by using U-statistics methodology or the bootstrap (Nakas and Yian-

noutsos, 2004). The bootstrap approach consists of sampling with replacement

n1, n2, n3 subjects from the initial samples from X1, X2, X3 respectively, and

calculating the VUS for each of the b replications of this procedure. The boot-

strap estimate of the variance of VUS is the sample variance of the b bootstrap

VUSs (Nakas and Yiannoutsos, 2004). Properties of non-parametric estimators

of the variance of V̂US have been studied by Guangming et al. (2013). Based

on Z1, 95% confidence intervals for VUS can be constructed in a straightforward

fashion. Wan (2012) proposed an empirical likelihood confidence interval for the

non-parametric estimate of VUS.

The parametric approach for confidence interval construction for VUS is

studied in Xiong et al. (2006). Confidence intervals are constructed based on

the Delta method, otherwise the bootstrap can be used, where for each bootstrap

replication the parametric VUS is calculated. Non-parametric predictive inference

for the ROC surface and the VUS is developed in Coolen-Maturi et al. (2013).

Regarding the comparison of VUSs, consider the case where two markers

(A and B) are measured on the same n = n1 + n2 + n3 specimens which are

classified by a gold standard procedure into three ordered disease classes. Let

(XA

1
, XA

2
, XA

3
) and (XB

1
, XB

2
, XB

3
) be the values for markers A and B, respectively.

To compare VUS
A

and VUS
B

via their non-parametric, empirical estimates,

Dreiseitl et al. (2000) proposed a U-statistics approach. Specifically, the null

hypothesis H0 : VUS
A

= VUS
B

is tested by calculating

Z2 =
V̂US

A − V̂US
B

√
var

(
V̂US

A)
+ var

(
V̂US

B)
− 2 cov

(
V̂US

A

, V̂US
B) ,

and then comparing this value to a standard normal distribution. The variance

and covariance of V̂US can be estimated using the estimators provided in Dreiseitl

et al. (2000). Alternatively, the bootstrap can be used to test H0 as in Nakas and

Yiannoutsos (2004). Xiong et al. (2007) have studied the parametric analogue

for the comparison of VUSs based on the results in Xiong et al. (2006), while

Tian et al. (2011) consider the parametric approach using notions of generalized

pivots. Inference for specific TCFs is studied in Dong et al. (2011, 2013).

2.6. The ROC umbrella

The notion of the ROC surface has been generalized to accommodate cases

with umbrella or tree orderings (i.e. X1 < X3 > X2 or X2 > X1 < X3, respec-
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tively) between the three classes under study by Nakas and Alonzo (2007). The

ROC surface and VUS reviewed in the previous sections are not applicable when

such orderings are of interest. Specifically, these approaches do not allow one to

assess the ability of a marker to differentiate two disease classes from a third dis-

ease class without requiring a specific monotone order for the three disease classes

under study. The derivation of an ROC surface for the ordering X2 > X1 < X3

is reviewed here, however, the derivation is analogous for the other ordering.

Using the fact that (X2 > X1 < X3) = (X1 < X2 < X3)∪ (X1 < X3 < X2),

or equivalently P (X2 > X1 < X3) = P (X1 < X2 < X3) + P (X1 < X3 < X2), the

construction of two ROC surfaces (say A and B) corresponding to the orderings

X1 < X2 < X3 and X1 < X3 < X2, respectively, is possible. These are the plots

of the points:
(
TCF

A

1 (c1, c2), TCF
A

2 (c1, c2), TCF
A

3 (c1, c2)
)

and
(
TCF

B

1 (c1, c2),

TCF
B

2 (c1, c2), TCF
B

3 (c1, c2)
)
, respectively, with (c1, c2) ∈ R2

and c1 < c2.

The umbrella ordering can be viewed however on a single graph in the unit

cube by plotting on the same axes defined by x = TCF
A

1 , y = TCF
A

2 , z = TCF
A

3 ,

in turn (
TCF

A

1 (c1, c2), TCF
A

2 (c1, c2), TCF
A

3 (c1, c2)

)

and (
1 − TCF

B

1 (c1, c2), 1 − TCF
B

2 (c1, c2), 1 − TCF
B

3 (c1, c2)

)
,

with (c1, c2) ∈ R2
and c1 < c2. It can be shown that surfaces A, B thus con-

structed on a single graph, are disjoint.

The resulting umbrella ROC graph is a diagnostic plot for the visual assess-

ment of the degree of separation in the given ordering of the three populations

based on the samples. The volume under surface A plus the volume over surface

B can be used for inference. We refer to this summary measure as the um-

brella volume (UV). UV is equivalently the sum of the volumes under the ROC

surfaces A and B corresponding to the monotone orderings X1 < X2 < X3 and

X1 < X3 < X2, respectively. The umbrella ROC graph contains both ordered

ROC surfaces.

The non-parametric unbiased estimator of the volume of the umbrella ROC

graph P (X2 > X1 < X3) is:

ÛV =
1

n1n2n3

n1∑

i=1

n2∑

j=1

n3∑

k=1

IU (X1i, X2j , X3k) ,

where IU (X1, X2, X3) equals one if X2 > X1 < X3 and zero otherwise; the UV

varies from zero to one and is equal to P (X1 < X2 < X3)+P (X1 < X3 < X2) =

1/6 + 1/6 = 1/3 when the three distributions completely overlap and equals one

when the three classes are perfectly discriminated in the given ordering.
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In practice, ties may occur between measurements in the three disease

classes, in which case IU (X1, X2, X3)=1 if X1 < X2 = X3, IU (X1, X2, X3)=1/2 if

X1 = X2 < X3 or if X1 = X3 < X2, and IU (X1, X2, X3)=1/6 if X1 = X2 = X3.

The expected value of UV will then be

P (X1 < X2 < X3) + P (X1 < X3 < X2) + P (X1 < X2 = X3)

+
1

2
P (X1 = X2 < X3) +

1

2
P (X1 = X3 < X2) +

1

6
P (X1 = X2 = X3) .

Comparison of umbrella ROC volumes in a non-parametric framework has been

studied in Alonzo and Nakas (2007), while the umbrella ROC has not been studied

in the parametric framework yet. Alonzo et al. (2009) provide a comparison of

tests for restricted orderings in the three-class case, illustrating the usefulness of

ROC surfaces and ROC umbrellas in different applied contexts.

2.7. The ROC manifold

For the k-class problem, with k > 3, based on a single diagnostic marker, an

ROC manifold may be constructed as described in Nakas and Yiannoutsos (2004).

Using k − 1 ordered decision thresholds cj , j = 1, ..., k − 1, with c1 < ··· < ck−1,

define a decision rule as in the three-class case given above. Then k TCFs are

defined in a k-dimensional space. The ROC manifold is produced by varying the

k − 1 ordered decision thresholds. The Hypervolume Under the ROC Manifold

(HUM) is

HUM = P
{

(X1 < X2) ∩ ··· ∩ (Xk−1 < Xk)

}
.

The HUM will vary from 1/k! to 1, taking the value 1/k! for a completely unin-

formative marker and the value 1 when the k populations are perfectly separated.

A non-parametric unbiased estimate of HUM is

ĤUM =
1

n1···nk

n1∑

i1=1

···
nk∑

ik=1

I(X1i1 , ..., Xkik) ,

where the ni, for i = 1, ..., k, are the sample sizes from the k populations and

the function I(X1, ..., Xk) is defined in analogy to the three-class case. The ROC

manifold and HUM have not been studied in a parametric framework yet. Theo-

retical extensions relating to the general k-class problem are studied in Davidov

and Herman (2012).
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2.8. Other topics in three- and k-class ROC methodology

Computational aspects regarding the calculation of the VUS or HUM when

computational complexity is an issue have also appeared in the literature (Waege-

man et al., 2008a,b; Clémençon et al., 2013). Alternative approaches for the gen-

eralization of the ROC curve in three- and multiple-class classification problems

have been proposed by Yang and Carlin (2000), Hand and Till (2001), Wan and

Zhang (2009) and Yang and Zhao (2010). These approaches, however, address

specific research questions in the sense that they do not offer a complete theo-

retical framework for the generalization of ROC curve analysis and will not be

studied further in this review. Generalizations of ROC analysis notions when

the gold standard is continuous-scale rather than categorical has been studied by

Obuchowski (2006) and by Shiu and Gatsonis (2012).

In the two-class case, considerable amount of research has been conducted

to address issues where no gold standard is available for the characterization of the

true status of the subjects in the study, or when the gold standard information

is available for a fraction of the subjects in the study, i.e., in the presence of

verification bias (see e.g. Pepe, 2003; Zhou et al., 2011). Only a few papers have

appeared that introduce these notions in ROC surface analysis (Chi and Zhou,

2009; Wang et al., 2011; Kang et al., 2013b). Bantis et al. (2013) have used a

cubic spline smoothing approach to model the ROC surface when measurements

are subject to a limit of detection.

Theoretical properties of the ROC surface and ROC manifold that span

beyond the scopes of the current article have been studied in Scurfield et al.

(1998), He and Frey (2006), He et al. (2006), Everson and Fieldsend (2006),

Edwards and Metz (2007), Sahiner et al. (2008), He and Frey (2008), He and

Frey (2009), He et al. (2010), Schubert et al. (2011), Edwards and Metz (2012),

and Edwards (2013).

3. THE GENERALIZED YOUDEN INDEX

3.1. Definition

A three-class Youden index has been recently proposed for the assessment

of accuracy and cut-off point selection in the three-class setting (Nakas et al.,

2010, 2013). Specifically, define:

J3 = max
c1,c2

{
TCF1 + TCF2 + TCF3 − 1

}

= max
c1,c2

{
F1(c1) + F2(c2) − F2(c1) − F3(c2)

}
.

(3.1)
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This is a constrained optimization problem with c1 < c2. This latter condition

will always be true if a usual stochastic order of the form P (X1 > x) ≤ P (X2 > x)

≤ P (X3 > x) holds. The pair of cut-off points c1, c2 that corresponds to J3 is

considered optimal and can be used in practice for decision making in the three-

class case. As in the two-class setting, weights can be added to the definition of J3

to reflect the relative importance of the three TCFs.

3.2. Properties

The generalized Youden index lends itself to a natural unification of the

two- and three-class analysis approaches. Denote by J3;(1,2,3) the J3 index cor-

responding to the ordering X1 < X2 < X3 and by J2;(i,j), the ordinary Youden

index corresponding to the ordering Xi < Xj , for i, j = 1, 2, 3. Then, by the

definitions of J2 and J3 above, it follows that

J3;(1,2,3) = max
c1,c2

{
F1(c1) − F2(c1) + F2(c2) − F3(c2)

}

= max
c1

{
F1(c1) − F2(c1)

}
+ max

c2

{
F2(c2) − F3(c2)

}

= J2;(1,2) + J2;(2,3) .

Thus, J3 is the sum of the Youden index for the two-class analysis of classes 1

and 2 and the Youden index for the two-class analysis of classes 2 and 3. This

result holds if weights are introduced in the definition of J3 since λ can be set to

one and ν∗
= ν/λ, µ∗

= µ/λ can be used instead of ν, µ in the definition of J+

3
.

Then, J+

3;(1,2,3)
= maxc1,c2{ν∗ ·TCF1 +µ∗ ·TCF2 +TCF3 − 1} = J+

2;(1,2)
+J+

2;(2,3)
.

This result also holds whenever the ordering X1 < X2 < X3 is true, thus c1 < c2.

A counterexample, where the ordering is not true and, as a result, the property

does not hold, can easily be constructed. As a rule of thumb, pairwise AUCs for

adjacent classes can reveal the correct order, which in turn can be used for the

three-class analysis. From the property above it follows that J3 takes on values

in [0, 2]. To define J3 in [0, 1], Luo and Xiong (2013) proposed using J3/2.

3.3. Estimation

Note that J3 can be estimated non-parametrically by using the empiri-

cal distribution functions in the definition in (3.1), i.e. Ĵ3 = maxc1,c2{F̂1(c1) +

F̂2(c2)− F̂2(c1)− F̂3(c2)}, or parametrically based on distributional assumptions

for the data. Empirical non-parametric estimation of the generalized Youden

index has been considered in Nakas et al. (2010, 2013), while parametric esti-

mation based on normality assumptions has been described in Luo and Xiong

(2012, 2013). Luo and Xiong created an R-package (DiagTest3Grp) for the es-

timation of the VUS, generalized Youden index and respective optimal cut-off
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points under the parametric normal model, of which further details can be found

in Luo and Xiong (2012). Estimation and use of the generalized Youden index

for non-parametric predictive inference is studied in Coolen-Maturi et al. (2013).

3.4. Other measures of discrimination ability

The generalized Youden index can serve as an index of the discrimination

ability of a diagnostic marker for the purpose of selecting the cut-off points that

may be used for decision making, while the VUS is the measure of choice for the

evaluation of the discrimination ability of the marker under study per se. The

reason for the selective use of different measures of discrimination ability is the

interpretation of the measure itself. Other measures for the evaluation of the

discrimination ability of a marker rising from the definition of the ROC surface

has also been proposed in the literature (e.g. Van Calster et al., 2012a,b) but

have not received much attention from the research community. Use of a general

cost function for the selection of cut-off points in multiple-class diagnostic testing

has been studied in Skaltsa et al. (2012).

4. ILLUSTRATION OF ROC SURFACE ANALYSIS

CA19-9 is a standard pancreatic cancer diagnostic marker. Measurements

on 40 pancreatic cancer patients, 23 pancreatitis patients, and 40 healthy controls

were available. The dataset that is used here for illustrative purposes is part of the

dataset in Leichtle et al. (2013). Evaluation of CA19-9 in terms of its diagnostic

ability to differentiate between the three classes in the order

Controls < Pancreatitis < Cancer

is illustrated. Descriptive statistics are given in Table 1, while respective boxplots

are depicted in Figure 1.

Table 1: Descriptive statistics for CA 19-9 marker measurements

for the three classes under study.

Controls Pancreatits Cancer

mean 6.94 22.50 200.46
sd 4.74 30.88 237.85

median 6.60 8.51 111.60
min 0.6 2.5 0.6
max 20.67 121.80 971.50
N 40 23 40
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Figure 1: Boxplots of CA 19-9 marker measurements

for the three classes under study.

Frequentist and Bayesian non-parametric ROC surfaces are depicted in Fig-

ure 2. The empirical non-parametric VUS is equal to 0.528 (95% CI: 0.403, 0.654;

p < 0.001), while the VUS based on the Bayesian non-parametric approach is

equal to 0.550 (95% CI: 0.455, 0.652; p < 0.001). The generalized Youden index

J3 is 0.929, resulting in c1 = 8.40 and c2 = 25.60. The cut-off point c1 corre-

sponds to the diagnosis between pancreatitis patients and healthy controls, while

c2 discriminates between pancreatic cancer patients and pancreatitis patients.
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Figure 2: Non-parametric ROC surface for the CA 19-9 data (left panel) and

Bayesian non-parametric model from a different viewpoint (right panel).
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The corresponding TCF for healthy controls is equal to 80.00%. Regarding

pancreatitis patients TCF is just 30.40%, while for pancreatic cancer patients

TCF is 82.50%. Compare with the parametric approach that the DiagTest3Grp

R-package employs: VUS = 0.519 (95% CI: 0.385, 0.653; p < 0.001), J3 = 1.22 =

0.61×2, with c1 = 16.17 and c2 = 86.62, corresponding to the TCF triplet (0.974,

0.562, 0.684) respectively. Unfortunately, the aforementioned R-package does not

offer a graph for the ROC surface. However, the Shapiro–Wilk test rejects

the normality assumption for all three groups in the study (with p < 0.001).

Non-parametric approaches are thus considered as more reliable in our example.

Data analysis was conducted using R version 3.0.0 (R Foundation for

Statistical Computing, http://www.R-project.org), Matlab R2013a (MathWorks

Inc., Natick, MA), and Stata 11.2 (StataCorp LP, College Station, TX).

5. DISCUSSION

ROC surface analysis is a valuable tool for three-class classification prob-

lems as it generalizes ROC curve analysis in a natural way within the ROC

framework. The utility of ROC surface analysis is demonstrated by the numer-

ous applications that have already appeared in diverse scientific fields (e.g. Yu,

2012; Ratnasamy et al., 2008; Yiannoutsos et al., 2008; Abraham et al., 2009;

Wandishin and Mullen, 2009; Dalrymple-Alford et al., 2010; Tremont et al., 2011;

Dunngalvin et al., 2011; Bruña et al., 2012; Cianferoni et al., 2012; Coleman et al.,

2013; Migliaretti et al., 2013; Leichtle et al., 2013).

Until now, researchers have mainly dealt with geometric properties of the

ROC surface itself and with generalizations of theoretical findings from the two-

class case. Many issues remain to be resolved. Multiple-class classification within

the ROC framework and the notion of the ROC umbrella have only scantly been

dealt with. Based on the probabilistic properties of the VUS and UV, the claim

that the ROC surface and VUS can also be used for three-class analysis when the

classes are nominal instead of ordinal (e.g. Li and Fine, 2008) seems to be flawed.

As a result, theoretical developments for the robustification of the framework of

ROC surface analysis are still needed. Other topics of future research include fur-

ther generalizations from the two-class case. Specifically, issues of future research

include time-varying ROC surfaces and generalized linear modelling approaches

for the ROC surface along the lines presented in Pepe (2003). The study of pre-

dictive values in the three-class and multiple-class case is also of interest. An

initial attempt is presented in Yiannoutsos et al. (2008). Reclassification issues

have just started attracting the interest of researchers in the field. Li et al. (2013)

have extended the notions in Pencina et al. (2012) regarding the net reclassifi-

cation improvement and integrated discrimination improvement for the k-class
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case. Pepe and Thompson (2000) have studied the issue of combination of di-

agnostic markers in the two-class case via maximizing the area under the ROC

curve and have compared this approach with the combination of the diagnostic

markers measurements using logistic regression and linear discriminant analysis.

Zhang and Li (2011) and Kang et al. (2013a) have generalized these results for

ROC surface analysis by considering the combinations that maximize the VUS.

Currently there is ongoing research on this topic regarding different approaches

for VUS maximization using combinations of diagnostic markers.

The generalized Youden index is a simple, useful loss-function for the se-

lection of the optimal cut-off points that can be used for decision-making based

on a diagnostic marker of interest in the three-class case. Modelling approaches

summarized here and in Kang and Tian (2013), could be employed to develop

further practices for the choice of cut-off points after the construction of the

ROC surface. Non-parametric predictive inference methods also offer a valuable

framework for decision-making in three-class ROC analysis (Coolen et al., 2013;

Coolen-Maturi et al., 2013).

R-packages for the implementation of ROC surface analysis tools are of

great importance. Researchers interested in using ROC surface methodology

should be able to use the Comprehensive R Archive Network repository for their

research needs.
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1. INTRODUCTION

Estimating accuracy of a diagnostic test, screening test, or biomarker is

ideally done by determining disease status using a gold standard test or reference

test for all study subjects. However, sometimes disease status verification via

the reference test is not obtained for all study subjects because the reference

test is too costly or invasive to be applied to all study subjects. When this is

the case, subjects who appear to be at high risk may be more likely to have

disease status assessed via the reference test than those who appear to be at

lower risk. Analysis of only those with disease ascertainment can result in biased

estimates of accuracy if the estimation methods do not properly account for

nonrandom disease ascertainment. This bias is known as work-up bias (Ransohoff

and Feinstein, 1978) and verification bias (Begg and Greenes, 1983). Verification

bias can yield investigators to incorrectly conclude that a diagnostic test is more

accurate than it is or the reverse that the test is less accurate than it actually

is. This can have significant implications if the diagnostic test is implemented in

practice based on incorrect conclusions.

Incomplete disease verification can occur by design or be unplanned. As

expected, designed partial verification is more likely to occur in prospective stud-

ies while retrospective studies more typically have unplanned partial verification.

In some studies it is not feasible to obtain the reference standard on subjects

thought to be at low risk so the study is designed with partial verification. For

example, the Prostate Cancer Prevention Study (Thompson et al., 2005) of the

effects of prostate specific antigen (PSA) the reference standard, prostate biopsy,

was recommended only if the PSA level was greater than 4.0 ng/ml or rectal

examination result was abnormal.

Methods for assessing accuracy of diagnostic tests differ depending on how

the test is measured. Diagnostic tests can yield dichotomous results indicat-

ing presence or absence of particular condition or disease. For example, stress

echocardiography to detect significant coronary artery stenosis. Diagnostic tests

can also yield results that are measured on a continuous scale, such as, prostate

specific antigen (PSA) for detecting prostate cancer. Typically, sensitivity, speci-

ficity, positive predictive value (PPV), and negative predictive value (NPV) are

used to assess the accuracy of dichotomous diagnostic tests. Conversely, receiver

operating characteristic (ROC) curves and corresponding summary measures,

such as area under the ROC curve (AUC), are used to assess the accuracy of

continuous tests.

Correcting for verification bias can be framed as a missing data problem

where true disease status is missing for a subset of study subjects. Each approach

for bias correction makes an assumption about the mechanism for the missing-
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ness of disease verification (Little and Rubin, 1987). Disease status is considered

missing completely at random (MCAR) if disease verification is independent of

observed and unobserved data. Disease status is considered missing at random

(MAR) when disease verification is only a function of observed data and is con-

sidered nonignorable (NI) when disease verification depends on unobserved data.

In Section 2 the notation for this paper is introduced. Sections 3 and 4

discuss the impact of verification bias when estimating the accuracy of a di-

chotomous diagnostic test and a continuous diagnostic test, respectively, and

summarize available bias correction methods. We end with a Discussion.

2. NOTATION

Consider a study with n subjects on which the diagnostic test T is measured.

Let D be disease status, as measured by a gold standard or reference test, where

D = 1 corresponds to presence of disease and D = 0 corresponds to absence of

disease. Further, let V be verification status where V = 1 if disease status is

verified and V = 0 otherwise. There are nV subjects with disease verification and

nV̄ = n − nV without disease verification.

3. DICHOTOMOUS TEST

Consider a dichotomous test T where T = 1 indicates a positive test and

T = 0 indicates a negative test. Table 1 summarizes the observed data from a

study of n = n1 + n0 subjects in which disease verification is not obtained in u1

test positives and u0 test negatives.

Table 1: Observed data for the verification bias problem

when T is dichotomous.

V D T = 1 T = 0

1 1 s1 s0

1 0 r1 r0

0 Missing u1 u0

Total: n1 n0
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3.1. Impact of bias

Consider a study of 1000 subjects to assess the sensitivity and specificity

of a dichotomous screening test with a true sensitivity of 80%, true specificity

of 90%, and disease prevalence, P (D = 1), of 10%. Data from this hypothetical

study are summarized on the left-hand side of Table 2. If the study design is such

that disease verification is obtained for all subjects who test positive and only

10% of subjects who test negative, this can result in observing the data on the

right-hand side of Table 2.

Table 2: Left side: results when disease verification is obtained for everyone.

Right side: observed data when disease verification is obtained for all

subjects who test positive and only 10% of subjects who test negative.

V D T = 1 T = 0 V D T = 1 T = 0

1 1 80 20 1 1 80 2
1 0 90 810 1 0 90 81
0 Missing 0 0 0 Missing 0 747

Total: 170 830 Total: 170 830

If we only consider test results for those with disease verification, referred

to as complete case estimators, the observed sensitivity is s1/(s1 + s0) = 80/82

or 98% and the observed specificity is r0/(r0 + r1) = 81/171 or 47%. This illus-

trates that if test positives are more likely to receive disease verification than test

negatives, observed sensitivity overestimates true sensitivity (98% vs. 80%) and

observed specificity underestimates true specificity (47% vs. 90%). This verifi-

cation bias can cause investigators to make incorrect conclusions regarding the

accuracy of a test under evaluation.

It can be shown that PPV, P (D = 1 | T = 1), is 47% using the full data

and 47% using only those who received disease verification. Similarly, NPV,

P (D = 0 | T = 0) is 98% using the full data and also when only those who received

disease verification are used. There is no bias in the complete case estimators of

PPV and NPV because disease verification is only a function of the test results T ,

and PPV and NPV are, by definition, calculated conditional on T . See Zhou

(1994) for a detailed discussion of the effect of verification bias on positive and

negative predictive values. Next, we discuss methods to correct for the biased

sampling when estimating sensitivity and specificity.
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3.2. Bias correction methods

3.2.1. MAR approaches

Begg and Greenes (1983) developed a bias correction method for sensitivity

and specificity by using Bayes’ Rule and assuming disease status is MAR. First,

consider estimating the sensitivity of a test. Bayes’ Rule can be used to re-write

sensitivity as

P (T = 1 | D = 1) =
P (T = 1, D = 1)

P (D = 1)

=
P (D = 1 | T = 1)P (T = 1)

P (D = 1 | T = 1)P (T = 1) + P (D = 1 | T = 0)P (T = 0)
.(3.1)

Each quantity on the right-hand-side of (3.1) can be directly estimated from

the observed data using empirical estimates. In particular, P (T ) can be estimated

using data from all subjects, and P (D | T ) can be estimated using the verification

group since by the MAR assumption P (D | T ) = P (D | T, V = 1). Substituting

empirical estimates of the probabilities in (3.1) results in the following unbiased

estimate of sensitivity

(3.2) P̂ (T = 1 | D = 1) =

s1n1

s1+r1

s1n1

s1+r1

+
s0n0

s0+r0

.

A bias-corrected estimate of specificity can be calculated in a similar fashion.

(3.3) P̂ (T = 0 | D = 0) =

r0n0

s0+r0

r0n0

s0+r0

+
r1n1

s1+r1

.

It can be shown that these estimators of sensitivity and specificity are

maximum likelihood estimators. Furthermore, this approach can be considered

single imputation as compared with multiple imputation which is discussed later.

The delta method can be used to develop variance estimators for sensitivity and

specificity.

Iglesias-Garriz et al. (2005) performed a study to estimate the sensitivity

and specificity of stress echocardiography to detect significant coronary artery

disease (CAD). The study involved 487 consecutive patients presenting at a hos-

pital emergency room with nontraumatic chest pain, and who were administered

stress echocardiography. Table 3 presents a tabulation of the study data, where

using our notation T represents stress echocardiography, D is CAD, and V is

an indicator of whether CAD status was determined. Of the 487 patients with

stress echocardiography results, only 78 (16%) received disease verification via
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coronary angiography to determine presence or absence of CAD. Furthermore,

a higher percentage of those who tested positive with stress echocardiography

received disease verification than those who tested negative with stress echocar-

diography (62.5% vs. 6.9%).

Table 3: Tabulation of Stress Echocardiography (T), CAD status (D), and

disease verification status (V) in the study by Iglesias-Garriz et al.

V D T = 1 T = 0

1 1 43 15
1 0 7 13
0 Missing 30 379

Total: 80 407

Using only those with CAD status obtained, the complete case estimate

of sensitivity is 74.1% (43/58) and the complete case estimate of specificity is

65.0% (13/20). Applying Equations 3.2 and 3.3, the Begg and Greenes estimate

of sensitivity is 24.0% and corrected estimate of specificity is 94.4%. In this study,

the uncorrected estimate of sensitivity clearly overestimates the corrected esti-

mate while the uncorrected specificity substantially underestimates the corrected

estimate.

Harel and Zhou (2006) discuss the use of multiple imputation to estimate

sensitivity and specificity of a binary diagnostic test in the presence of verification

bias. Each missing disease status is replaced by M imputed values and then each

of the M complete data sets is analyzed using complete data methods. The M

point estimates of sensitivity and specificity and their corresponding variances are

combined to provide final estimates. The predictive distribution of the missing

data is derived given the observed data and sampling iteratively from multinomial

distribution and posterior distribution. Harel and Zhou conclude that the pro-

posed estimators are better than the estimators of Begg and Greenes (Equations

3.2 and 3.3). However, there has been debate about the validity of this conclu-

sion (Hanley et al., 2007; Harel and Zhou, 2007). Subsequently, De Groot and

colleagues identified computational errors in the work of Harel and Zhou (2006)

which make it difficult to accurately draw conclusions from their work. There-

fore, a separate comparison of the multiple imputation estimator and Begg and

Greenes estimator was performed (De Groot et al., 2011). The conclusion of this

comparison is that both estimation methods yield similar results when the miss-

ing data mechanism is straightforward, but multiple imputation is recommended

when the missing data mechanism is less straightforward or unknown.
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3.2.2. NI approaches

If the decision to obtain disease verification depends on unrecorded factors

related to disease, then the MAR assumption is not satisfied and the estima-

tors discussed above could be biased. Zhou (1993) extended Begg and Greenes’

method to allow a more general model for the verification process and derived

the maximum likelihood estimators for the sensitivity and specificity of a diag-

nostic test and their corresponding variances. This approach does not assume D

is MAR, but assumes that

λ1 =
P

(
V = 1 | D = 1, T = 1

)

P
(
V = 1 | D = 0, T = 1

) , λ0 =
P

(
V = 0 | D = 1, T = 1

)

P
(
V = 0 | D = 0, T = 1

) ,

are known. In other words, the ratio of the probability of selecting for verification

a diseased patient with a given test result to that of selecting for verification a

non-diseased patient with the same test result is known. In practice, however, λ1

and λ0 are not usually known and may be difficult to estimate. If λ1 = λ0, then

Zhou’s estimators reduce to those of Begg and Greenes.

Kosinski and Barnhart (2003) derive a region of all sensitivity and speci-

ficity values consistent with the observed data. This region is referred to as the

test ignorance region. Recall that disease verification is not determined for u1

test positives and u0 test negatives. Of the u1 test positives, let u1D correspond

to those truly diseased so there are u1 − u1D test positives that are truly non-

diseased. Similarly, let u0D correspond to the truly diseased test negatives so

there are u0 −u0D test negatives that are truly non-diseased. If these values were

known, then sensitivity (sens) and specificity (spec) can be estimated as

sens =
s1 + u1D

s1 + u1D + s0 + u0D

, spec =
r0 + u0 − u0D

r0 + u0 − u0D + r1 + u1 − u1D

.

The test ignorance region is a plot of all sensitivity and specificity values resulting

by considering all possible values of u1D and u0D in these equations.

An interactive web-based tool has been developed (Richardson and Petscav-

age (2010)) to implement the global sensitivity analysis of Kosinski and Barnhart.

This tool is available at http://uwmsk.org/gsa. We illustrate this tool by using

the coronary artery disease data summarized in Table 3. The region between

the two curves in Figure 1 corresponds to the test ignorance region of all sen-

sitivity and specificity values consistent with the observed data. The Begg and

Greenes estimates (labeled MAR) fall in this region while the complete case or

unadjusted estimates (labeled MCAR) fall outside the region and are therefore

not compatible with the data.



Verification Bias 75

Figure 1: Global sensitivity analysis of the coronary artery disease data.

MAR corresponds to Begg and Greenes estimates.

MCAR corresponds to complete case estimates.

Baker (1995) and Kosinski and Barnhart (2003) propose likelihood-based

regression approaches to deal with NI missingness when estimating the accuracy

of a dichotomous test. These approaches require multiple diagnostic tests or

covariates X. The approaches differ in how they factor the joint probability

P (V, T, D) as the product of conditional probabilities. Baker considered

P (V, T, D |X) = P (T |X)P (D | T, X)P (V | T, D, X)

while Kosinski and Barnhart considered

P (V, T, D |X) = P (D |X)P (T |D, X)P (V | T, D, X) .

The latter formulation is a product of the disease component P (D |X), diag-

nostic test component P (T |D, X), and missing data mechanism component

P (V |D, T, X). This formulation has the nice feature that sensitivity and speci-

ficity can be obtained directly from the diagnostic test component. Logistic re-

gression models can be used to estimate parameters for each of the three com-

ponents. When D is not included as a covariate in the missing data mechanism

model, the missingness is MAR. Therefore, likelihood ratio, Wald, or Score tests

can be used to test whether the MAR assumption is valid by testing whether

the parameter is zero for D in the logistic regression model for P (V |D, T, X).

The expectation and maximization (EM) algorithm can be used to determine

maximum likelihood estimates.
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3.2.3. Bayesian approaches

Two Bayesian approaches have been developed to adjust for verification

bias when estimating sensitivity and specificity of a binary diagnostic test. Both

approaches allow for NI missingness. Martinez et al. (2006) describes an empiri-

cal Bayesian approach where Beta prior distributions are assumed for sensitivity,

specificity, prevalence of disease, and the ratio of the probability of selecting for

verification a diseased patient with a given test result to that of selecting for

verification a non-diseased patient with the same test result is known (λ1 and

λ0 considered by Zhou (1993)). Prior distributions for sensitivity and speci-

ficity are based on Begg and Greenes estimates of sensitivity and specificity and

non-informative priors are used for the other parameters. The Gibbs sampling

algorithm is used to estimate marginal posterior densities for all parameters.

Buzoianu and Kadane (2008) use the formulation P (V, T, D) is equal to

P (D)P (T |D)P (V | T, D) considered by Kosinski and Barnhart (2003) to ac-

commodate NI missingness. Similar to Kosinksi and Barnhart, logistic regression

models can be used for each component. Prior distributions are used for the

parameters in the logistic models.

4. CONTINUOUS TEST

Consider a continuous test T where higher values of T are more indicative of

disease. The accuracy of a continuous diagnostic test is typically assessed using an

ROC curve. An ROC curve is a plot of the true positive rate (TPR), sensitivity,

versus the false positive rate (FPR), one minus the specificity, associated with all

the dichotomous tests that can be formed by varying the cut point that defines

a positive dichotomous test. When all subjects are verified, TPR and FPR can

be estimated nonparametrically for a particular cutpoint c by using

T̂PR(c) =

∑n
i=1

I(Ti ≥ c)Di∑n
i=1

Di

, F̂PR(c) =

∑n
i=1

I(Ti ≥ c) (1 − Di)∑n
i=1

(1 − Di)
.

4.1. Impact of bias

Complete case estimators only use data from subjects who received disease

verification. That is,

T̂PR(c)CC =

∑n
i=1

I(Ti ≥ c)ViDi∑n
i=1

ViDi

, F̂PR(c)CC =

∑n
i=1

I(Ti ≥ c)Vi(1 − Di)∑n
i=1

Vi(1 − Di)
.
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The complete case estimator yields unbiased estimates of the ROC curve and cor-

responding AUC when disease verification is MCAR. If the missing data mech-

anism is not MCAR, the complete case estimator can yield biased estimates of

the ROC curve by overestimating TPR(c) and FPR(c) for each cutpoint c that

results in operating points on the ROC curve that are biased upwards relative to

the full data curve and thus underestimates the ROC curve and corresponding

AUC. However, the complete case approach can also overestimate the ROC curve

and AUC depending on the verification mechanism and accuracy of T (Alonzo

and Pepe, 2005).

4.2. Bias correction—ROC curve

4.2.1. MAR approaches

Alonzo and Pepe (2005) proposed several bias-corrected estimators of TPR

and FPR that assume disease status is MAR. Bias-corrected ROC curves are ob-

tained by plotting bias-corrected estimators of TPR and FPR for all cutpoints.

One approach for bias correction is to use full imputation (FI) over the distri-

bution P (D | T, X). That is, FI imputes ρ = P (D | T, X) for all subjects in the

study which results in the following estimators

T̂PRFI(c) =

∑n
i=1

I(Ti ≥ c) ρ̂i∑n
i=1

ρ̂i

, F̂PRFI(c) =

∑n
i=1

I(Ti ≥ c) (1 − ρ̂i)∑n
i=1

(1 − ρ̂i)
,

where ρ̂i is an estimate of P (Di = 1 | Ti, Xi) that can obtained using, for example,

logistic regression. By the MAR assumption, the disease model P (D = 1 | T, X)

can be estimated using the verification sample. When T and X are discrete

and a saturated model is used, these estimators of TPR and FPR reduce to the

Begg and Greenes (1983) bias-corrected estimators of sensitivity and specificity

presented in the previous section.

Another approach for bias correction is to use mean score imputation (MSI)

where the observed disease status is used for those in the verification sample and

disease status is imputed for subjects not in the verification sample. That is,

T̂PRMSI(c) =

∑n
i=1

I(Ti ≥ c)
{
Vi Di + (1−Vi) ρ̂i

}
∑n

i=1

{
Vi Di + (1−Vi) ρ̂i

} ,

F̂PRMSI(c) =

∑n
i=1

I(Ti ≥ c)
{
Vi (1−Di) + (1−Vi) (1− ρ̂i)

}
∑n

i=1

{
Vi (1−Di) + (1−Vi) (1− ρ̂i)

} .

Again, the MAR assumption implies that data from the verification sample can

be used to obtain valid estimates of ρi.
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Alonzo and Pepe (2005) also propose the following inverse probability

weighting (IPW) estimators (Horvitz and Thompson, 1952) that weight each

observation in the verification sample by the inverse of the sampling fraction

(i.e. probability the subject was selected for verification)

T̂PRIPW(c) =

∑n
i=1

I(Ti ≥ c) Vi Di / π̂i∑n
i=1

Vi Di / π̂i

,

F̂PRIPW(c) =

∑n
i=1

I(Ti ≥ c) Vi(1−Di) / π̂i∑n
i=1

Vi(1−Di) / π̂i

,

where π̂i = P (Vi = 1 | Ti, Xi) may be known or may need to be estimated de-

pending on the design of the study. The IPW estimators are similar to the CC

estimators in that they use the observed disease status for the verification sample.

Unlike the CC, however, they correct for the biased sampling by weighting the

observed value by the probability the subject was verified.

The following doubly robust (DR) estimators have also been proposed:

T̂PRDR(c) =

∑n
i=1

I(Ti ≥ c)
{
ViDi/π̂i − (Vi− π̂i) ρ̂i/π̂i

}
∑n

i=1

{
ViDi/π̂i − (Vi− π̂i) ρ̂i/π̂i

} ,

F̂PRDR(c) =

∑n
i=1

I(Ti ≥ c)
{
Vi(1−Di)/π̂i − (Vi− π̂i) (1− ρ̂i)/π̂i

}
∑n

i=1

{
Vi(1−Di)/π̂i − (Vi− π̂i) (1− ρ̂i)/π̂i

} .

These estimators are referred to as doubly robust because they are consistent if

either πi or ρi is estimated consistently. That is, the verification model or disease

model can be incorrectly specified and consistency is still guaranteed. These

estimators have also been referred to as semiparametric because they require

parametric conditional mean models to be specified for the disease model P (D |
T, X) and for the verification model P (V | T, X) but are non-parametric with

respect to the joint distribution of the data P (D, T, X).

Alonzo and Pepe (2005) illustrated that misspecifying the verification model

yields biased IPW estimates of the ROC curve and misspecifying the disease

model results in biased FI and MSI. Furthermore, they showed the DR estimator

of the ROC curve is unbiased if either the model for verification or the model for

disease is correctly specified. Thus, they recommend the DR approach is used in

practice.

The AUC can be estimated empirically for each of the bias-corrected ROC

curves described above by using the Trapezoidal Rule (Bamber, 1975). Closed-

form expressions for the AUC corresponding to the IPW and DR ROC estimators

have been obtained as well as variance expressions (He et al., 2009).
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4.2.2. NI approaches

Rotnitzky et al. (2006) describe a DR estimator of the AUC. They note

that AUC is identified under the untestable assumption

(4.1) log

{
P (V = 0 | T, X, V )

P (V = 1 | T, X, V )

}
= h(T, V ) + q(T, V )X ,

where q(T, V ) is an arbitrary specified function and h(T, V ) is an arbitrary un-

known function. q(T, V )=0 for all T and V corresponds to the MAR assump-

tion while q(T, V ) 6= 0 corresponds to NI missingness. Fluss et al. (2009) extend

the approach of Rotnitzky et al. (2006) to obtain a DR estimate of TPR and

FPR and, thus, the empirical ROC curve that allows for NI missingness. They

recommend performing a sensitivity analysis by repeating the estimation of TPR

and FPR under a variety of reasonable choices for the selection bias function q.

Conversely, Liu and Zhou (2010) use the likelihood approach to estimate a non-

ignorable parameter and obtain DR estimates of the ROC curve and AUC. They

assume the disease verification model

P
(
Vi = 1 |Di, Ti, Xi

)
=

exp(x)

1 + exp(x)

{
h(Ti, Xi; β) + α Di

}
,

where α is the NI parameter and h(Ti, Xi; β) = β0 +β1Ti +β2Xi. Since the nonig-

norable parameter cannot be tested nonparametrically, Liu and Zhou recommend

that scientific knowledge is used to construct an appropriate disease verification

model.

4.3. Covariate-adjusted ROC curves

The accuracy of a diagnostic test can be affected by factors such as dis-

ease severity, age, and gender. ROC curves have been adjusted for age in the

assessment, for example, of the accuracy of fingerstick postprandial blood glu-

cose measurements to discriminate between healthy and diseased subjects in the

presence of verification bias (Fluss et al., 2012).

Page and Rotnitzky (2009) discuss a parametric model for estimating the

covariate-specific ROC curve in the presence of verification bias. They make the

assumption that the ROC curve has an underlying binormal distribution and

disease verification has NI missingness. Liu and Zhou (2011) discuss a likelihood

approach to estimate the covariate-specific ROC curve in the presence of verifica-

tion bias. Disease verification is assumed to be MAR and diagnostic test results

are modeled using a location-scale model. Weighted estimating equations are used

to estimate the parameters in the location-scale model. DR, IPW, and imputa-

tion approaches are compared for the estimation. Liu and Zhou conclude that
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the DR estimator performed best in their simulation studies and their method is

sensitive to the location-scale model assumption.

Fluss et al. (2012) develop a DR method for estimating the ROC curve

adjusted for covariates for a NI missing data mechanism. Using the approach of

Pepe (1998), they model the diagnostic test values distribution as a function of

disease status and covariate values using a semi-parametric location-scale model.

Since the proposed approach relies on the untestable specification of q(T, V ) (see

Equation 4.1), the authors recommend a sensitivity analysis is performed to ex-

amine the sensitivity of the estimated ROC curve to the specified form of q(T, V ).

5. DISCUSSION

This paper highlights methods available for estimating the accuracy of di-

chotomous and continuous diagnostic tests in the presence of verification bias.

More recently, this bias has also been referred to as partial verification bias so as

not to be confused with differential disease verification in which a subset of study

subjects have a different reference standard to determine disease status (Whiting,

2004).

As investigators design future studies of test accuracy, it is important to

record all factors that may affect the decision to offer and receive disease verifi-

cation. In cases where all factors are captured, then the MAR assumption will

likely be satisfied and bias-correction methods that rely on this assumption can

be used. When all factors that impact disease verification are not collected, it is

preferred to use bias-correction methods that allow for NI missingness.

The focus of this paper is on the estimation of the sensitivity and specificity

of a single dichotomous test and the ROC curve and AUC for a single continuous

test in the presence of verification bias. Bias correction methods are also available

for diagnostic tests measured on an ordinal scale (Gray et al., 1984; Hunink et al.,

1990; Baker, 1995; Toledano and Gatsonis, 1996; Rodenberg and Zhou, 2000),

such as a radiologist’s interpretations of images to quantify the suspicion of cancer.

In addition, methods have been developed to estimate the difference between two

diagnostic tests in regards to bias-corrected sensitivity and specificity. Assuming

disease verification is MAR, Zhou (1998) and Roldán Nofuentes and Luna del

Castillo (2008) provide estimators for the difference in bias-corrected sensitivity

and specificity.

This paper considers the setting when there are only two disease states

(diseased and non-diseased). In some settings there can be more than two disease

states. For example, Alzheimer’s Disease dementia can be classified into more
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than two categories. Chi and Zhou (2008) propose a non-parametric likelihood-

based approach to construct the empirical ROC surface (extension of ROC curve

to more than two disease states) and estimate the volume under the ROC surface

in the presence of verification bias for ordinal diagnostic tests. Future work is

needed to develop bias correction methods for estimating the ROC surface and

volume under the ROC surface for continuous diagnostic tests.

The bias correction methods described in this paper, especially for contin-

uous tests, would benefit from the development and distribution of code to apply

the methods in practice. Increasing the availability of these methods in standard

statistical packages would likely increase the use of the methods.
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1. INTRODUCTION

In the area of diagnostic medicine, it is common that the medical practi-

tioner considers one or more complementary diagnostic tests for decision-making

and detailed clinical analysis. Within this context, it is important that the physi-

cian knows the parameters of the test to be used, such as sensitivity and/or

specificity, false-positive and/or false-negative rates, and positive and/or nega-

tive predictive values. The modeling structure for this estimation problem is

relatively simple and straightforward when the subjects being investigated are

submitted to the so-called gold standard test for confirmation, as they are usu-

ally 100% sensitive and specific (Kraemer, 1992).

However, in many practical situations no patient under investigation is sub-

mitted to a confirmatory test (Joseph et al., 1995), either due to the lack of such a

test or its high invasiveness, or to the high cost of its large scale implementation,

or to the presence of subgroups with different prevalence rates (Hui and Walter,

1980).

Our main objectives here are to provide a short discussion on identifiability

issues appearing under the absence of a gold standard, and to construct an exten-

sion of the Hui–Walter stratification model which allows for stratum-dependedent

performance parameters. In the next section we discuss the modeling concepts

and the inference techniques. In Section 3 we report details on numerical exper-

iments, and we provide an illustration to Chagas disease data in Section 4.

2. MODELING WITHOUT A GOLD STANDARD

2.1. Absence of gold standard

In the case where the health condition of a subject (D) cannot be verified,

due to the absence of a gold standard, the likelihood for a random sample of n

subjects, can be written as

(2.1) L (θ) =

n∏

i=1

L∏

l=1

{
ξ se

ti,l
l

(1− sel)
1−ti,l + (1−ξ) sp

1−ti,l
l

(1− spl)
ti,l

}
,

where, θ = (ξ, se, sp)
T
, with ξ denoting the disease prevalence, and

se = (se1, ..., seL)
T , sp = (sp1, ..., spL)

T ,



88 F. Louzada et al.

Here sel and spl are respectively the sensitivity and specificity of the lth test,

and ti,l is the outcome of the lth diagnostic test on the ith subject (0: negative,

1: positive). In this model there are 2L + 1 parameters to be estimated, and

2
L − 1 degrees of freedom.

A popular approach for modeling the performance of diagnostic tests, under

the absence of a gold standard, is to consider latent classes. In this setting,

the health condition yi of the ith subject (healthy or diseased) can be modeled

through a Bernoulli random variable, Y , with probability of success,

(2.2) τi =

ξ
L∏

l=1

se
ti,l
l

(1− sel)
1−ti,l

ξ
L∏

l=1

se
ti,l
l

(1− sel)
1−ti,l + (1−ξ)

L∏

l=1

sp
1−ti,l
l

(1− spl)
ti,l

.

By combining the likelihood of the incomplete data (2.1) with the likelihood of the

latent variable, Y , we can write the augmented likelihood (Dempster et al., 1977;

Tanner and Wong, 1987) for the case where L diagnostic tests are conducted, as

(2.3) L (θ) =

n∏

i=1

L∏

l=1

[{
ξ se

ti,l
l

(1− sel)
1−ti,l

}yi
{

(1−ξ) sp
1−ti,l
l

(1− spl)
ti,l

}1−yi

]
,

where yi is the unobservable health condition of the ith subject (0: healthy;

1: diseased), which is modeled through a Bernoulli distribution with probability

of success τi as given in (2.2). Estimation can then be conducted through numeric

methods, such as the Expectation-Maximization algorithm (em) (Dempster et al.,

1977), in the frequentist context, and Gibbs sampling (Gelfand and Smith, 1990)

or a Metropolis–Hastings algorithm (Chib and Greenberg, 1995), in the Bayesian

context.

According to Swartz et al. (2004), a primary difficulty regarding latent-

class models is related to identifiability issues, and one of the practical lessons

obtained by using them is that this issue becomes relatively less important as the

dimension of the model increases.

2.2. Identifiability

The modeling approach discussed in §2.1 has been widely applied in the

literature, for the case where the model obeys what we will call throughout as

the basic identifiability condition,

(2.4) df ≥ p ,
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where df is the number of degrees of freedom, and p is the number of param-

eters to be estimated. For example, for the latent-class model in §2.1 to obey

the basic identifiability condition, df = 2
L − 1 ≥ 2L + 1 = p, a minimum of three

conditionally independent tests is required.

Several procedures for assessing identifiability have been documented in the

literature. For example, Goodman (1974) discusses a Jacobian-based criterion,

whereas Garret and Zeger (2000) proposes a graphical method to assess weak

identifiability, which is based on the idea that weak identifiability is associated

with smaller sample sizes relatively to the number of latent classes, case in which

the number of subjects may be insufficient to assign an element to each class.

The Bayesian approach offers here an important advantage: Although a

certain model may not be identifiable, it is always valid as data can be suitably

described from both its identifiable parameters and prior information (Lindley,

1971); this point is reinforced by Neath and Samaniego (1997), who support the

view that Bayesian analysis may yield reasonable answers even for nonindentifi-

able models.

2.2.1. Hui–Walter stratification

To reestablish the basic identifiability condition many approaches have been

considered, such as the introduction of constraints on the parameter space (Walter

and Irwig, 1988), the choice of informative priors according to well defined criteria

(Gustafson, 2005), or stratification-based approaches (Hui and Walter, 1980).

These latter approaches are known as the Hui–Walter paradigm, and will be of

particular interest for the remainder of this article; the Hui–Walter stratification

paradigm has been widely discussed in the literature, and it has been modeled

through a wealth of Bayesian and frequentist approaches (Singer et al., 1998;

Johnson et al. 2001; Nielsen et al., 2002; Gustafson, 2005; Gardner, 2004; Toft et

al., 2005; Branscum et al., 2005; Bertrand et al., 2005; Toft et al., 2007, among

others).

The Hui–Walter stratification model is based on stratum-dependent disease

prevalence rates, although it uses equal performance parameters across strata.

Stratification increases the number of parameters to 2
L

+ V and the number of

degrees of freedom to 2
LV −V ; hence, if the population is divided into two strata

(V = 2), a minimum of two conditionally independent tests (L = 2) is sufficient

to obey the basic condition for identifiability (2.4). As a byproduct, stratification

also allows us estimate specific disease prevalence rates in each homogeneous

subpopulation.

For the absence of gold standard, the likelihood of the Hui–Walter stratifi-
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cation model can be written as

L (θ) =

V∏

v=1

nv∏

i=1




{
ξv

L∏

l=1

se
ti,l
l

(1− sel)
1−ti,l

}yi,v

×
{

(1−ξv)

L∏

l=1

sp
1−ti,l
l

(1− spl)
ti,l

}1−yi,v


 ,

where nv and ξv are respectively the number of subjects and the prevalence

rate in the vth stratum, whereas yi,v is the unobservable health condition of the

ith subject in the vth stratum, modeled through a Bernoulli distribution with

probability of success τi,v.

Toft et al. (2005) pointed out some potential pitfalls of the Hui–Walter

paradigm, particularly regarding the accuracy of estimates, which are strongly

influenced by the magnitude of the difference in disease prevalence rates between

strata, suggesting that the greater the difference of the prevalence rates the higher

the estimation accuracy (smaller amplitude of 95% credibility interval) in the case

of two tests (L = 2) and two strata (V = 2). Moreover, sensitivity and specificity

may be overestimated.

2.2.2. Extended stratification

Since in most practical situations it is rather challenging to find a stratifi-

cation factor in which both sensitivity and specificity of the tests are kept similar

across strata, here we propose an extension of the Hui–Walter model which as-

sumes that not only prevalences (ξ)—but also sensitivities and specificities—are

stratum-dependent. Specifically, our setting is the following: We assume that L

diagnostic tests are conducted—none of which being a gold standard—and we

assume that the population is divided into V strata, with stratum-dependent

prevalences {
ξv = Pv(D = 1): v = 1, ..., V

}
,

and with stratum-dependent performance parameters,

{
(sel,v, spl,v) : l = 1, ..., L; v = 1, ..., V

}
.

The unobservable health condition of a subject in the vth stratum, Yv, can be

modeled through a Bernoulli distribution, with probability of success τv. With

our extension of the Hui–Walter model, the number of parameters increases

to 2LV + V , whereas the number of degrees of freedom remains unchanged

(df = 2
LV − V ). This means that, for example, for a population stratified into

two strata (V = 2), at least three tests need to be conducted (L ≥ 3), so that the

model obeys the basic condition for identifiability (2.4). (Compare with §2.2.1.)
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The augmented data likelihood of the latent class model, for the general

case of L conditionally independent tests and V strata, can be written as

L (θ) =

V∏

v=1

nv∏

i=1




{
ξv

L∏

l=1

se
ti,l,v
l,v

(1− sel,v)
1−ti,l,v

}yi,v

×
{

(1−ξv)

L∏

l=1

sp
1−ti,l,v
l,v

(1− spl,v)
ti,l,v

}1−yiv


 ,

(2.5)

where, θ = (ξ, se1, ..., seV , sp1, ..., spV )
T

with

ξ = (ξ1, ..., ξV )
T , sel = (se1,v, ..., seL,v)

T , spl = (sp1,v, ..., spL,v)
T ,

for v = 1, ..., V . Here, ξv is prevalence rate in the vth stratum, whereas sel,v and

spl,v are the sensibility and specificity of lth test in the vth stratum, respectively;

in addition, ti,l,v is the lth test result for the ith subject in the vth stratum, and

yi,v is the unobservable health condition of the ith subject in the vth stratum,

which is modeled through a Bernoulli with success probability,

τi,v =

ξv

L∏

l=1

se
ti,l,v
l,v

(1− sel,v)
1−ti,l,v

ξv

L∏

l=1

se
ti,l,v
l,v

(1− sel,v)
1−ti,l,v + (1−ξv)

L∏

l=1

sp
1−ti,l,v
l,v

(1− spl,v)
ti,l,v

,

for i = 1, ..., nv and v = 1, ..., V .

The non-stratified model (V = 1) in (2.3), and the Hui–Walter model in

(2.2.1) are particular cases of our stratification model with stratum-dependent

parameters.

2.2.3. Inference

A fully Bayesian approach is here used for conducting inference. This choice

is based on the fact that each parameter in (2.5) is directly interpreted within

the context of diagnostic tests, including the availability of expert opinions that

can be modeled separately in terms of prior distribution for each parameter. We

consider Beta(1, 1) prior distributions for the components of θ, all independent

among them; by combining the likelihood (2.5) with the joint prior of θ we

obtain the joint posterior and full conditionals, which can then be used in a

Gibbs sampler, and which are given by

ξv |Xξv
∼ Beta(αξv

, βξv
) ,

sel,v |Xsel,v
∼ Beta(αsel,v

, βsel,v
) ,

spl,v |Xspl,v
∼ Beta(αspl,v

, βspl,v
) ,

(2.6)
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where, Xξv
= {aξv

, bξv
, yi,v, nv},

Xsel,v
= {asel,v

, bsel,v
, ti,l,v, yi,v, } , Xspl,v

= {aspl,v
, bspl,v

, ti,l,v, yi,v} ,

and

αξv
=

nv∑

i=1

yi,v + aξv
, βξv

= nv −
nv∑

i=1

yi,v + bξv
,

αsel,v
=

nv∑

i=1

ti,l,v yi,v + asel,v
, βsel,v

=

nv∑

i=1

(1− ti,l,v) yi,v + bsel,v
,

αspl,v
=

nv∑

i=1

(1− ti,l,v) (1−yi,v) + aspl,v
, βspl,v

=

nv∑

i=1

ti,l,v (1−yi,v) + bspl,v
.

3. SIMULATION STUDY

We consider a simulation study to compare the performance of our model

with the Hui–Walter model. Following Georgiadis et al. (2003), we simulate data

according to the following steps.

Step 1. Calculate the probabilities for each combination of outcomes of the L

tests under investigation in vth stratum, given the health condition of

a subject, D ∈ {0, 1}, i.e.

Pv|D=1

(
T1,v = t1,v, ..., TL,v = tL,v | D = 1

)
,

(3.1)

Pv|D=0

(
T1,v = t1,v, ..., TL,v = tLv | D = 0

)
.

Step 2. Calculate the amount of Xv|D elements for each combination of out-

comes of the L tests under investigation in vth stratum, given the

health condition of a subject, D ∈ {0, 1},

E(Xv|D) = nv

{
ξv Pv|D=1

(
T1,v = t1,v, ..., TL,v = tL,v | D = 1

)

(3.2)
+ (1−ξv)Pv|D=0

(
T1,v = t1,v, ..., TL,v = tL,v | D = 0

)}
.

For the structure of conditional independence we have conditional probabilities

(3.1) given by

Pv|D=1

(
T1v = t1,v, ..., TL,v = tL,v | D = 1

)
=

L∏

l=1

se
ti,l,v
l,v

(1− sel,v)
1−ti,l,v ,

(3.3)

Pv|D=0

(
T1v = t1,v, ..., TL,v = tL,v | D = 0

)
=

L∏

l=1

sp
1−ti,l,v
l,v

(1− spl,v)
ti,l,v .
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Table 1: Settings under which data were simulated; here ξ denotes preva-

lence, whereas ‘se’ and ‘sp’ denote sensitivity and specificity.

Data have been simulated with the following sample sizes:

n = 50, 100, 500, 1000.

Configuration

Stratum (v)

(CONF)
1 2 3

ξ1 sel,1 spl,1 ξ2 sel,2 spl,2 ξ3 sel,3 spl,3

I 0.30 0.93 0.99 0.70 0.99 0.93 0.50 0.95 0.95
II 0.35 0.93 0.99 0.65 0.99 0.93 0.50 0.95 0.95
III 0.40 0.93 0.99 0.60 0.99 0.93 0.50 0.95 0.95

We have compared the performance of two particular cases of our model:

model i (Hui–Walter stratification) and model ii (Hui–Walter extended strati-

fication).

Table 2: aic, bic, and dic for model i and model ii,

according to the settings in Table 1.

Configuration

(CONF)
n aic bic dic

model i

I

50 1605.4 1626.5 2018.6
100 3701.5 3727.4 4555.8
500 24551.4 24588.6 28832.8

1000 54053.8 54095.9 62572.0

II

50 1587.0 1608.0 1955.9
100 2471.8 2497.7 2583.8
500 23544.8 23581.9 2743.7

1000 51669.2 51711.3 59633.8

III

50 1499.6 1520.7 1835.6
100 3389.0 3414.9 4083.2
500 21695.6 21732.7 25094.1

1000 47547.6 4759.6 54538.5

model ii

I

50 1065.2 1146.5 2524.1
100 2565.6 2665.6 6393.4
500 11676.3 11819.7 15908.6

1000 27800.0 27962.1 36265.5

II

50 1094.4 1175.7 1395.8
100 2578.1 2678.1 3279.6
500 17765.8 17909.2 21554.1

1000 40106.1 40268.3 47881.8

III

50 1169.7 1251.0 1451.0
100 2660.1 2760.1 3298.8
500 17623.7 17767.2 21019.9

1000 39340.7 39502.8 46184.2
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Two MCMC parallel chains of 50.000 iterations were generated from pos-

terior conditionals (2.6), discarding the first 5.000 iterations (burn-in) of each

chain; after thining, we were left with a posterior sample of size n = 2.000. The

convergence of posterior conditionals (2.6) to the posterior marginals of θ, was

monitored by using the potential scale reduction factor (R) (Gelman and Rubin,

1992), and the posterior marginals were graphically evaluated in terms of sym-

metry, unimodality, and variability of estimates based on the amplitude of 95%

credibility interval and mean standard errors. The aic, bic, and dic criteria

were used to evaluate the performance of the models (Iliopoulos et al., 2007),

and according to these criteria our model (model ii) overperforms model i; see

Table 2.

We observe estimates with smaller standard error as we increase the sam-

ple size and/or absolute mean difference in disease prevalence rates between the

strata, with slightly smaller rates of sensitivity (sel,v) and specificity (spl,v) being

found in more prevalent and less prevalent strata, respectively; see Figure 2.

Despite presenting a slightly larger standard error to that of model i, our

model (model ii) had stationary marginals and estimates very close to the true

ones; in addition, we note that sensitivity and specificity are always overestimated

with model i; see Figure 3.
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Figure 1: Standard error (× 10
−2

) to the sensitivities

and specificities of the first test in model i

according to the settings in Table 1.
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Figure 2: Standard error (× 10
−2

) to the sensitivities

and specificities of the first test in model ii

according to the settings in Table 1.
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Figure 3: Posterior mean to the sensitivities and specifici-

ties of the first test in model i and model ii

according to the settings in Table 1.



96 F. Louzada et al.

4. ILLUSTRATION ON CHAGAS DISEASE DATA

We now consider an illustration using a Chagas disease case study in Brazil.

The data were gathered from 238 blood donors attending a blood center in the

region of Triângulo Mineiro, Brazil, who were randomly selected from two groups

with different prevalences. Stratum I consists of 29 samples from blood bank

donors with positive serology in three conventional serological reactions for Cha-

gas’ disease (positive control), and 30 blood samples with five or more negative

donations (negative control). Stratum II consists of 179 samples from blood bank

donors collected between 2005 and 2008, whose values were low, or within the

region denominated ‘gray zone’ ± 20% of the reactivity threshold (undetermined

serology). Several commercially available kits have been used to determine the

diagnostic performance of the four tests, namely: One immunoblotting TB (TESA-

blot), and three ELISA-based tests, viz.: ELISA Wienner total extract from the

subclass IgG1, E-BIO (ELISA BioMérieux) and E-WIE (ELISA Winner recombi-

nant).

Table 3: Results of four serological tests in two subgroups of blood donors.

Test Group

IgG1 E-BIO E-WIE TB Control Inc.

− − − − 30 78
− − − + 0 1
− − + − 0 13
+ − − − 0 11
+ − + − 0 18
+ − + + 0 1
+ + + + 29 57

Total: 59 179

IgG1: ELISA Wienner total extract from the subclass IgG1;

E-BIO: ELISA BioMérieux;

E-WIE: ELISA Winner recombinant;

TB: Imunoblotting TESA-blot;

Control: negative and positive serology;

Inc.: inconclusive in screening serology;

‘−’: negative result;

‘+’: positive result.

In Table 4 we report the aic, bic, and dic, for model i and model ii; sim-

ilarly to the simulation study in §3, we observe here that our model overperforms

the Hui–Walter model.
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Table 4: aic, bic, and dic for model i (Hui–Walter stratification) and

model ii (Hui–Walter extended stratification); for purposes of

presentation each of the entries was multiplied by ×10
−4

.

model i model ii

p dic bic aic p dic bic aic

10 67.4 52.0 52.0 18 36.9 31.4 31.4

In Table 5 we present the estimates obtained from the application of our

model by using the group serology strata defined above.

Table 5: Estimates obtained from the application of our model by using

group serology strata (Stratum I and Stratum II).

Control Inc.

Test
Mean 2.5 Pc 97.5 Pc Mean 2.5 Pc 97.5 Pc

Sensitivity

IgG1 96.94 89.52 99.91 98.39 94.02 99.97
E-BIO 96.88 88.52 99.90 96.64 90.97 99.71
E-WIE 96.73 88.14 99.92 98.30 93.31 99.95

TB 96.66 88.47 99.94 98.14 93.07 99.95

Specificity

IgG1 96.92 89.93 99.93 79.21 73.03 85.35
E-BIO 96.92 88.84 99.90 99.34 97.53 99.98
E-WIE 96.92 89.16 99.91 79.19 72.47 85.35

TB 96.95 90.05 99.91 98.63 96.40 99.83

Prevalence 49.30 36.22 61.74 28.19 22.64 34.09

Pc: percentile;

IgG1: ELISA Wienner total extract from the subclass IgG1;

E-BIO: ELISA BioMérieux;

E-WIE: ELISA Winner recombinant;

TB: Imunoblotting TESA-blot;

Control: negative and positive serology;

Inc.: inconclusive in screening serology.
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1000-043 LISBOA

PORTUGAL

Copyright

Upon acceptance of an article, the author(s) will be asked to transfer copy-

right of the article to the publisher, the INE, I.P., in order to ensure the widest

possible dissemination of information, namely through the Statistics Portugal’s

website (http://www.ine.pt).

After assigning the transfer copyright form, authors may use their own

material in other publications provided that the REVSTAT is acknowledged as

the original place of publication. The Executive Editor of the Journal must be

notified in writing in advance.


	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page



